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Abstract

This dissertation presents a novel technique to implement the behaviour of some

widely used design patterns using a combination of aspect oriented programming

and computational reflection.

Object-oriented languages do not support design patterns as a language con-

struct, instead these have to be specifically implemented by the programmer. As

a result, their implementation ends up scattered over different classes and tangled

with the domain code of such classes, leading to reusability, modularity and com-

prehensibility issues.

The aspect-oriented implementations presented in this thesis get rid of such

issues. A design pattern is implemented as an aspect which, by intercepting an

annotation that marks an application class, enforces the role of the pattern on that

class, thus making the pattern available for the system.

Such implementations enjoy four properties, especially defined from the analysis

of the literature, considered useful and not found together in existing approaches.

Efficient variants of the proposed approach are also described and compared with

the standard object-oriented approach in terms of running times.

The proposed implementations can be used in object-oriented legacy applica-

tions, applying specific refactoring steps to convert legacy code to make it use the

aspect versions.
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Chapter 1

Introduction

This dissertation puts forward a novel modularisation of several widely used Design

Patterns [GHJV94, BMR+96] using Aspect Oriented Programming [KLM+97] and

Computational Reflection [Mae87].

Several Aspect Oriented Design Patterns (AODPs) are implemented by means

of completely reusable aspects to enhance the modularity of the application using

them. The classes of the latter need not to be aware of a design pattern’s role they

might play, as an aspect takes care of the enforcing of the pattern behaviour.

An object-oriented design pattern describes a solution for a recurring design

problem in terms of relationships and interactions between classes and objects of

an object-oriented system, it is used as a known solution to be implemented, with

known advantages and drawbacks. In Software Engineering a software product has

to respect some fundamental properties such as robustness, correctness, maintain-

ability and reusability [Som01, Pre05]. The use of object-oriented design patterns

is very helpful in the design of a software system as it allows the software to be

structured in such a way to anticipate its changes and improve maintainability and

reusability of its components. As a software product is prone to changes during its

life-cycle, design patterns are very useful for supporting different kinds of changes:

to adapt the software to different environments (adaptive maintenance), to improve

its internal structure (preventive maintenance) and to extend its functionalities (per-

fective maintenance). The benefits of using design patterns are widely acknowledged

as paramount also when dealing with the refactoring of a major software applica-

tion [FBB+99, Ker04].

A design pattern defines roles that an involved class can play, i.e. a set of software
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Chapter 1: Introduction

structures and behaviours it has to conform to. Often these roles impose additional

code to be added to the related classes to allow them to play the specific roles. While

this additional code allows the implementation of the design pattern in the system,

thus bringing its benefits, it comes at the price of some significant drawbacks, as

summarised in the following, that can be lifted using the approach proposed in this

dissertation.

Every time a programmer has to implement the same design pattern for different

applications, she has to write very similar code and usually will not be able to reuse

previous implementations of the same pattern, as such implementations had been

especially tailored to the classes on which they had been applied to.

Thus, a class implementing a role for a design pattern becomes longer, more

complex and difficult to understand, in addition it will not always respect the Sep-

aration of Concerns [HL95] principle, as its code would address both its functional

(or domain) responsibilities, and those related to the design pattern’s role.

In a system, all the classes that interacts with the ones implementing a role

will often have to be aware of the pattern implementation and thus become tightly

coupled with it.

Removing the code implementing a role for a pattern from a class is not a trivial

task, as there is no sharp separation in its code between the functional responsibil-

ities and the role-related ones. Moreover, changes on the class might propagate to

other classes of the system that interacted with the role-implementing class, as the

coupling between classes has increased.

To illustrate these drawbacks it is useful to briefly discuss a simple and widely

used design pattern: Singleton. This pattern is used to limit the instances of a class

to just one. To do so, the involved class must not expose any public constructors,

and any access to a Singleton class must pass through a static method which returns

the only reference to the instance.

To make an existing class a Singleton, it has to be modified by making any con-

structor private and by adding the public static method (getInstance()) hosting

the code to manage the only instance. Now, any client class accessing a Singleton

can not use the constructor but has to use the getInstance() method. Thus, if

(when) the Singleton class stops playing this role in a later phase of development,

the getInstance() method should be removed and its constructors made public.

As its public interface changes, this triggers all the client classes to be changed ac-
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Chapter 1: Introduction

cordingly, i.e. the programmer has to modify them to use the now-exposed public

constructor instead of the getInstance() method. Such propagation of changes

negatively affects the maintainability of the code base, rendering the use of design

patterns less effective than they were originally intended.

All of the summarised problems are known and the literature presents different

approaches to solve them while preserving the design patterns’ benefits. However,

existing approaches lack a way to avoid some of the summarised drawbacks, as it is

extensively covered in chapter 6.

As a tool to tackle these limitations of the object-oriented design patterns, several

authors [NK01, HK02, HB02] advocate the use of aspect orientation as a way to a

better modularisation, the most notable approach being the well-known work by

Hannemann and Kiczales [HK02]. They partition the behaviour of a design pattern

into abstract and concrete aspects, so as to reuse the abstract ones, which contains

the basic pattern’s behaviour, for any application, while the programmer has just

to specialise the concrete ones with the actual application classes. However, since

the concrete aspects ultimately depend on application classes and some other ad-hoc

code, concrete aspects can not be fully reused, just some components can. Moreover,

certain aspects impose undesirable limitations on the implemented design patterns

(see chapter 6).

In this dissertation the aspect-oriented language used is AspectJ [hp11], a wide-

spread extension for the Java programming language1. The AODPs proposed in

this dissertation use an aspect to encapsulate the behaviour needed for a class to

play a given role in a design pattern. Such an aspect is independent of application

classes and thus completely reusable as is. The gluing code to impose an application

class to perform a role for a design pattern is an annotation to be added to such a

class. Once the aspect is woven into the application, the expected role behaviour

for the class is automatically enforced by the aspect. To remove such a role from

the application, it is sufficient to remove the annotation and compile again.

The proposed aspects can be generic thanks to the use of computational reflec-

tion, used at runtime to gain any additional information needed to perform the

pattern-related tasks.

1Please note that the proposal is not tied to any specificity of the said languages and is in

principle applicable to any sufficiently developed aspect-oriented language implementation for an

object-oriented language.
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Chapter 1: Introduction

The use of reflection causes longer running times, so two possible alternatives to

the main solution are provided. One is the caching of some results of the reflective

methods’ calls and another is the generation of specialised aspects from an aspect

template. All these versions provide the same black-box behaviour.

This dissertation is structured as follows. In section 1.1 the four essential prop-

erties of the proposed aspect-oriented approach are presented. Chapter 2 deals with

the tools that allowed the AODP’s implementations. Chapter 3 and 4 detail the

proposed patterns’ implementations in their three variants: reflective, cached and

specialised. In chapter 5 an overall evaluation of the proposed implementations is

presented, and such implementations are analysed in terms of running times against

a regular object-oriented solution. Chapter 6 presents a literature review, with par-

ticular care for the comparison with the state-of-the-art approach of [HK02]. The

author’s conclusions are drawn in chapter 7.

1.1 Properties of aspect-oriented design patterns

The drawbacks of the object-oriented design patterns described in the previous sec-

tion, in concert with a thorough analysis of the existing literature, have led to the

definition of the following desired properties for a design pattern implementation. In

particular, the AODPs proposed in this dissertation verify each one of these prop-

erties, while the previous approaches fail to satisfy at least some subset of these

properties, as the literature review shows in chapter 6.

Separation of Concerns (SoC) – The functional (domain) code of a class should

be completely separated from the code implementing a design pattern role. This

improves the maintainability of the software system and reduces maintenance costs.

Entire Characterisation of Roles (ECoR) – The role of a design pattern should

be fully specified in a single module, i.e. not spread into different components, in a

generic way, i.e. not tied to any specific class. This makes it easy to understand and

reuse it in different contexts (application) without any changes.

Single Point of Change (SPoC) – When a role has to be added to (or removed

from) a class, there should be just a single part of the code to change, to minimise

the propagation of changes.

Robust Enforcement of Roles (REoR) – A design pattern’s role implementation

should be general and robust enough to be used in different applications and contexts
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Chapter 1: Introduction

without changes, possibly disallowing a wrong use of the pattern.

In order to summarise the above desired characteristics: the code imposing a role

from a design pattern to some classes of an application should be separated from the

functional concerns of the classes involved (SoC ), possibly fully specified (ECoR)

in just one module, loosely coupled with other classes of the application (SPoC )

and possibly capable of being used in any application without changes, assuring

the programmer that the design pattern will work as expected in the application

(REoR). These characteristics are true for the AODPs described in the following

chapters.

The appropriate use of Aspect-Oriented Programming (AOP, see section 2.2)

allows the implementation of these characteristics. The implementations of the

roles for a design pattern are kept in a single module (an aspect) which hosts all

the needed code (SoC, SPoC ). The generality of these implementations is achieved

by means of computational reflection (section 2.1), thus making an aspect (i.e. a

design pattern) completely reusable (ECoR). Activation of the aspect is triggered

by well-defined rules (pointcuts, see section 2.2) of the aspect, thus the programmer

can not misuse the design pattern (REoR); moreover the superimposition of a role

on a class is turned on by adding the aspect to the application, and removed by

compiling the application without the aspect (SPoC ).

1.2 Papers 2008–2011

During his PhD years the author of this dissertation has been a co-author of the

following papers on aspect orientation and design patterns:

• Using Aspects and Annotations to Separate Application Code from Design Pat-

terns. In the 25th ACM Symposium on Applied Computing (SAC 2010),

Programming for Separation of Concerns track [GPT10];

• Aspects and Annotations for Controlling the Roles Application Classes play

for Design Patterns. In the 18th Asia-Pacific Software Engineering Conference

(APSEC 2011) [GPT11];

• Superimposing Roles for Design Patterns into Application Classes by means

of Aspects. In the 27th ACM Symposium on Applied Computing (SAC 2012),

Programming for Separation of Concerns track [GPT12b];
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• AODP: Refactoring Code to Provide Advanced Aspect-Oriented Modularization

of Design Patterns. In the 27th ACM Symposium on Applied Computing

(SAC 2012), Software Engineering track [GPT12a].

He also co-authored the following papers on large-scale distributed systems:

• Analysing the Performances of Grid Services Handling Job Submission. In the

18th IEEE International Workshops on Enabling Technologies: Infrastructures

for Collaborative Enterprises (WETICE 2009) [GMPT09a];

• Measuring Performances of Globus Toolkit middleware Services. In the Final

workshop of GRID projects “PON Ricerca 2000–2006, Avviso 1575” [GMPT09c];

• Improving the Performances of a Grid Infrastructure by means of Replica Se-

lection Policies. In the Final workshop of GRID projects “PON Ricerca 2000–

2006, Avviso 1575” [GMPT09b].
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Chapter 2

Used tools

In order to understand and appreciate the proposed solutions it is useful to firstly

introduce the tools used for their implementation. The following sections provide a

basic introduction on these tools with particular care on the most important ones.

In section 2.1 an overview of Computational Reflection is presented, with par-

ticular emphasis on the standard Java API providing such support. Section 2.2

deals with the main concepts of Aspect Orientation, especially with the most used

ones in the rest of this dissertation. Section 2.3 provides a basic summary of Java

annotations.

2.1 Computational reflection

In [Mae87] Pattie Maes defines a reflective system as a “system which incorporates

structures representing (aspects of) itself”. A computational system bearing such

a feature is able to answer messages about (aspects of) its internal structure(s),

i.e. the system exposes an interface to access its internal structures, and thus can

change its own behaviour.

One of the basic models for such a system is depicted in figure 2.1 (other models

exist [Fer89]). In it, each object in the system can be paired with a metaobject,

with the former unaware of being paired with the latter. Using this model, when a

programming language supports computational reflection (or simply reflection), two

different types of possible operations are allowed to the programmer: introspection

and interception.

A metaobject (mo) is allowed to introspect the object (o) to which it is paired,
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Chapter 2: Used tools

mo

o

metalevel

baselevel1: m()

2: trap
3: reflect

Figure 2.1: Pairing of an object and a metaobject in a reflective system

this allows mo to get data, usually inaccessible, about the object o, such as a repre-

sentation of its fields, declared and inherited methods. Moreover mo can intercept,

analyze and possibly change any message sent to o. E.g., it can choose wether to

pass the message to o or not, thus altering the program flow.

Using such facilities in an object-oriented programming language allows the pro-

grammer to flexibly manipulate the objects of a running program. These features

are very useful to write generic code untied to choices made at compile time, instead

allowing the programmer to use information only known at runtime. A typical ex-

ample is to discover at runtime the list of public constructors available for the class

of a given object. The known tradeoff for such capabilities is a possible loss of per-

formance [FF05]. These introspection tools play a central role in the rewriting of

the Design Patterns described in chapter 3.

2.1.1 Summary of used reflective Java methods

The object-oriented programming language used in this thesis is Java [AG96]. The

purpose of this section is to summarise a part of the reflective API provided by the

language.

Java provides a limited, although useful, reflective interface [FF05], in particular

it allows1 the introspection of classes. The language also provides two powerful kinds

of support: (i) the capability of loading at runtime classes unknown at compile time,

and (ii) the capability of dynamic invocation, i.e. to invoke at runtime a method

unknown at compile time.

Some of the classes involved for the reflection operations are Class, Method and

1Without recurring to extensions such as Javassist [Chi00] or Kava [WS00].
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Chapter 2: Used tools

Field2, which are made available as standard Java classes, representing (some of)

the internal structure held by the Java Virtual Machine (JVM), and allowing their

introspection at runtime.

The full API is deeply documented in [Sun07], the following is a brief description

of the most important methods that will be used throughout the next technical

chapters.

• Class Class.forName(String)

is a static method which returns a Class object after, possibly, the load and

initialisation of the class into the JVM. For example

Class c = Class.forName("java.lang.String");

will create an object c which represents the String class. Please note that c

is not an instance of String.

• Class getClass()

is a method of Object (any Java object will inherit it) which returns a Class

object representing the object on which it is called. For example

String s = "test";

Class c = s.getClass();

will retrieve and insert into c an object representing the String class, as in

the previous example, but using object s to get the reference.

• newInstance(...)

allows the instantiation at runtime of a class represented by a Class object.

For example

Class c = Class.forName("java.lang.String");

String s = c.newInstance();

will create a new (empty) string in s.

• Method getMethod(...)

returns an instance of Method representing the method name passed as an

argument, as in the next example.

2The related package for the classes is java.lang.reflect, except for java.lang.Class.

9
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• Object invoke(Object obj, Object[] args)

the invoke() method belongs to the Method class and allows the dynamic

invocation of a method unknown at compile time, represented by a Method

object. Its parameters specify on which object (obj) the method has to be

invoked and its potential arguments. E.g.

Class c = Class.forName("String");

String s = c.newInstance();

Method m = c.getMethod("isEmpty", null);

boolean res = m.invoke(s, null);

will invoke isEmpty() on the dynamically created String held in s.

2.2 Aspect-oriented programming

Object orientation imposes the decomposition of a software system in small, self-

contained reusable units (i.e. classes) implementing a (part of a) specific functionality

or concern. Instances of these units (i.e. objects) interact with each other exchanging

messages (i.e. calling methods).

Unfortunately it is not always possible to partition a software system into purely

self-contained classes without spreading the code implementing a concern into more

than one class. Such functionalities are called crosscutting concerns (ccc), as their

implementation spreads across the system’s classes. Typical examples are the log-

ging, synchronisation and authorisation concerns.

A software system implementing ccc usually suffers from tangling and scattering.

The code implementing a ccc is written in various classes (it is scattered), each of

which hosts both its own code (its main, domain, responsibility) and parts of the

ccc one (tangling). This poses many problems for a software system in terms of

software engineering, especially for its modularity. Some of the problems that arise

are: tightly coupling between classes; code duplication; less reusable code; code

more difficult (and expensive) to maintain and understand.

Aspect Oriented Programming [KLM+97] can be seen as a superset of object-

oriented programming, adding some conceptual tools to manage the cccs of a soft-

ware system, allowing an improved modularity. The AOP implementation used in

10
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this dissertation is AspectJ [Lad09, hp11], arguably the most mature and developed

one, on which both the following description and the whole thesis is based.

To allow the implementation of a ccc into a single module the concept of aspect

is introduced. A system is partitioned in classes (holding the usual business logic)

and aspects (holding the cccs). These entities will be recomposed by a specialised

bytecode compiler (ajc, a weaver) to create the final, intended, system. This phase

is called weaving, and is guided by the rules stated in the aspects.

An aspect can perform both static and dynamic crosscutting. Static crosscutting

allows an aspect to modify the structure of existing classes (e.g. adding variable

members and methods), so as to allow the programmer to write the code of a ccc

in a single aspect instead of scattering it throughout the involved classes of the

system. Dynamic crosscutting deals with the behaviour of the system, allowing

the programmer to alter the flow of the program by defining a set of points in the

program flow (pointcuts) upon which additional code (advices) should be executed.

AspectJ offers a set of specialised keywords to implement both kinds of cross-

cutting. For the sake of understanding this work it is useful to briefly introduce the

most important (and used) ones in this dissertation.

An aspect is a module similar to a regular class, which however is automatically

instantiated by the system (the programmer can not explicitly instantiate an aspect),

which defines pointcut and advices that implement a ccc to be added to the system.

A pointcut indicates a set of join points. A join point is a well-defined moment

in the flow of a program, such as the setting of a member variable, the execution

of a method with a certain signature, etc. The weaver is capable of analysing a

source program and intercepting the join points defined in a pointcut. A pointcut

usually triggers the execution of a related advice, thus altering the regular flow of the

program. Pointcuts can be combined using the logical operators && (and), || (or),
! (not).

An advice is a fragment of code (very similar to a regular method), related to

some pointcuts, that will be executed when the pointcuts are activated. Given an

advice it is possible to let its code execute after, before or instead of the event rep-

resented by the pointcut by using, respectively, the before, after() and around()

constructs. The additional proceed() construct, used only inside around() advices,

returns the control flow to the captured join point.

A very simple, yet complete, aspect is shown in figure 2.2. The Hello aspect logs

11
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1 public aspect Hello{
2

3 pointcut hello():

4 call(void ∗.sayHello (..));

5

6 void around(): hello(){
7 long start, end;

8 start = System.currentTimeMillis();

9 System.out.println(”log : ”+start+”, before call to sayHello() method”);

10 Object res = proceed();

11 end = System.currentTimeMillis();

12 System.out.println(”log : ”+end+”, sayHello() method executed in ”+(end−start)+” ms”);

13 }
14 }

Figure 2.2: A sample aspect

on the standard output console the time of any call to any sayHello() methods,

and keeps track of its running time. The pointcut hello takes no parameters and

intercepts all the calls to any sayHello() method which returns nothing (i.e. void)

and that has zero or more parameters. Lines 6–13 show the related advice definition.

This code will be bind by the weaver to the application classes, i.e. the code will be

inserted into the join points satisfying the hello pointcut.

The basic keywords used to capture execution of some methods are call()

and execution(). Some constructs used in the next chapter are presented in the

following.

• call()

the pointcut call(int Account.refresh()) collects at runtime all the calls

of the Account.refresh() method returning an int. The context of the call

is in the scope of the caller object.

• execution()

the pointcut execution(int Account.refresh()) collects at runtime the ex-

ecution of the refresh() method. This is different from the previous one

as the collected context is in the scope of the Account object executing the

method.

12
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• set() and get()

respectively intercept the reading or writing of a member variable.

• within()

collects all the join points happening inside a scope: within(Account) cap-

tures all the join points inside the Account class.

Additional constructs are made available by AOP languages to allow the code of

the advices to be able to access the context on which they are injected.

• this() – provides a reference to the object executing the captured join point.

• target() – provides a reference to the object receiving a method call.

• args() – provides a reference to the values of parameters of the captured

invocation.

• @target(Deprecated) – filters out all method calls whose target is annotated

with the @Deprecated annotation.

• thisJoinPoint – provides various forms of reflective access to the dynamic

context of the captured join point, e.g. the signature of the captured join point.

2.3 Metadata and annotations

Many programming languages offer support for managing metadata, i.e. additional

data about the program itself that usually do not affect its execution. One of the

simplest metadata supported arguably by any programming language are comments

in the source code, usually discarded in the compilation phase. The Java language

supports metadata by means of annotations, a structured way integrated with the

language to deal with metadata.

Annotations are written in the code usually to mark classes, methods and fields

with specialised meaning. Annotations provided by the Java language allow, e.g.,

to disable warnings at compile time or to force the override of a method.

Annotations can have parameters and can be user-defined. Figure 2.3 shows

such an annotation, which defines an @Proxy annotation with a String parameter

named value. A class can be annotated as follows:

13
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1 @Retention(RetentionPolicy.RUNTIME)

2 public @interface Proxy {
3 String value ();

4 }

Figure 2.3: User-defined annotation to mark a Proxy role

@Proxy("Checker") public class Account { ... }

Such an annotation marks the Account class as part of a Proxy design pattern. In

particular it defines the Checker class as a Proxy for the Account class3.

3The detailed explanation can be found in section 3.3.
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Chapter 3

Aspect-oriented design patterns

This chapter deals with the aspect-based design pattern implementations proposed,

presenting them in different versions. All the basic object-oriented patterns dis-

cussed are originally described in [GHJV94].

The main contribution is the Aspect-Oriented and Annotated (AA) version of a

design pattern. A design pattern written in the AA version takes full advantage of

the tools described in chapter 2, i.e. AOP, computational reflection and annotations.

A design pattern is encapsulated in a general aspect to be woven into any application

needing some classes to implement the design pattern’s roles. The full generality

of the aspect is obtained by means of reflection, gaining any additional information

needed to apply the advices at runtime. A class playing a role for a design pattern

is usually marked with a provided user-defined annotation specifying its role and

possibly additional parameters. The triggered advices of the aspect implement the

behaviour of the specific roles of the pattern.

The generality of an AA aspect allows the complete reusability of the aspects in

any context, as the aspects do not mention any specific class names in their code, any

needed information is gathered at runtime by means of reflection. However, the use

of reflection might become a limit for the system performance [FF05], so the Cached,

Aspect-Oriented and Annotated (CA) version is proposed as an improved, function-

ally equivalent, alternative over the AA implementation. A thorough assessment of

the performance of all the variants of the approach is presented in chapter 5.
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1 public @interface Singleton { }

Figure 3.1: Annotation for the Singleton design pattern

3.1 Singleton

The Singleton design pattern describes a solution for limiting the number of in-

stances of a class, tipically allowing just one instance.

In the regular object-oriented solution, to render an existing C class a Singleton,

C has to be modified to expose no public constructors, the only access point for

the class is a specifically written static method, usually getInstance(), that im-

plements the instantiation logic. All the clients need to pass through this method

to get an instance of the Singleton class. The constructors made private are still

accessible by the getInstance() method, that is allowed to create a new instance

of the class or return the existing one to the caller (client).

The changes in the C class are reflected in all the clients’ classes, as they are

tightly coupled with the Singleton class, i.e. a client class must be aware of the

role played by C to be able to use it. Thus, any class accessing C must use the

getInstance() method instead of the regular constructor. So when a Singleton

class will not play this role in future evolutions of the software, all clients accessing

it must also be changed to use the regular constructor (instead of the getInstance()

method).

When a class is (or becomes) a Singleton a new responsibility is superimposed on

its main concern. The C class will not just implement its main domain code but also

the Singleton-related code for the management of its unique instance. This additional

code makes the class less reusable and more complex to understand. Moreover the

code of the getInstance() method that must be implemented is essentially the

same for any class that has to behave as a Singleton.

3.1.1 Aspect-oriented and annotated Singleton

The @Singleton annotation (figure 3.1) is a tagging annotation, as it bears no

parameters, and is used to impose the Singleton behaviour on any C class without

any changes to its constructors nor requiring the getInstance() method.

For instance, to make a Bank class a Singleton it is sufficient to annotate it as
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follows

@Singleton public class Bank { ... }

leaving the original constructor visibility as it is (i.e. there is no need to make

it private) and also without explicitly writing a getInstance() method. The pro-

vided aspect will implement the (apparently) missing Singleton behaviour (satisfying

ECoR).

The SingletonPattern aspect (figure 3.2) intercepts any new invocation on any

C class marked with the @Singleton annotation, checks whether the call for a new C

object is the first one or not, and, respectively returns a new C object or the already

instantiated (unique) instance of C. No changes need to be made on clients’ classes.

When, e.g., the annotated class is the Bank one, clients will access the Bank

class by using its public constructor, i.e. making a new invocation, however this

instruction will be intercepted by the aspect that will make sure that the actual

instantiation happens just once. Any client can transparently access the Singleton

class without knowing whether it is playing a Singleton role or not, thus making

clients independent of the Singleton role.

For example, using the provided aspect, a client instead of invoking a static

method, as in the following

Bank b = Bank.getInstance();

will just invoke

Bank b = new Bank();

as the aspect will allow or disallow such an invocation taking care of the number of

instances of the Bank class.

This approach is also robust enough, thanks to the nature of the aspect-oriented

technology. The programmer can not make the mistake of creating more than one

instance of the Bank class, as the uniqueness of the instance will be guaranteed by

the SingletonPattern aspect, in fact for successive new invocations the aspect will

provide the same reference. This satisfies REoR.

Thus, in general, a Singleton class can be used as such without burdening the

programmer to explicitly write code for such a role. To allow a class to behave as

a Singleton all the programmer has to do is to weave the SingletonPattern aspect

17
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1 public aspect SingletonPattern {
2 private Hashtable<Class, Object> singles = new Hashtable<Class, Object>();

3

4 pointcut trapCreation(): call((@Singleton ∗).new(..));

5

6 Object around() : trapCreation() {
7 Object obj = null;

8 Class s = thisJoinPoint.getSignature().getDeclaringType();

9 if ( singles .get(s) == null) {
10 obj = proceed();

11 singles .put(s, (Object) obj);

12 }
13 else obj = singles .get(s );

14 return obj;

15 }
16 }

Figure 3.2: The SingletonPattern aspect

singles

Class Object

Bank Bank@739

Spooler Spooler@255

Table 3.1: Sample values for the singles map

with its own application code (thus satisfying SPoC ), by appropriately annotating

the class. The Bank class will have its regular constructor and will be reusable,

without changes, in other contexts which might not require it to play a Singleton

role (satisfying SoC ).

3.1.2 SingletonPattern aspect

The SingletonPattern shown in figure 3.2 keeps the singles map which stores

the references to all the Singleton classes’ instances, indexed by class. As a desired

characteristic of the aspect is its generality, the values stored into the map are of

the Object class, so to accommodate any possible object type to play the Singleton

role.

The aspect is composed of just one pointcut, trapCreation, and its related
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:Account
<<aspect>> 

SingletonPattern :Bank

new Bank()

new Bank()

singles.put()

(Singleton)(client)
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Figure 3.3: A Singleton created, and stored, by the aspect

advice. The trapCreation pointcut (line 6) intercepts any constructor (i.e. new)

invocation on any class marked with the @Singleton annotation.

When the trapCreation advice is triggered, it interrupts the captured new call

and stores its target class in s. This is done using reflection (line 8), obtaining the

class using the getDeclaringType() method on the signature of the intercepted

join point.

If a Bank class is annotated as a Singleton, a call from any client yields thisJoin-

Point to become call(Bank()), so getDeclaringType() returns a reference to the

Bank class, i.e. the class on which the intercepted Bank() constructor is declared.

Next, it will be checked if an instance of the (dynamically retrieved) Bank class

has already been created (line 9), by looking for a Bank key in the singles map; an

example of a populated singles map is shown in table 3.1. Two possibile scenarios

are: there is no instance of the Bank class (figure 3.3) or an instance has already

been created (figure 3.4).

In figure 3.3 an Account object tries to instantiate a Bank object marked as

Singleton. The new invocation is intercepted by the SingletonPattern aspect and

the if instruction on line 9 evaluates to true, so the proceed instruction executes

the intercepted new call, passing the message to the Bank class. The newly created

Bank object is stored in the singles map, so to return it as the unique instance for

any future call, as in the next case. In the end the created object is returned to the

client (line 14).

Supposing that the same Account client tries to instantiate another Bank object,
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:Account
<<aspect>> 

SingletonPattern :Bank
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Figure 3.4: A Singleton is not created but retrieved from the aspect

the behaviour of the SingletonPattern for this scenario is depicted in figure 3.4.

This time control in line 9 yields false, later (line 13) the obj variable will contain

the reference for the Bank object already created, this reference is returned to the

invoking client, so no call to the Bank constructor is made and the caller gets the

only instance of the Bank class already instantiated.

The SingletonPattern aspect makes use of two reflective calls in line 8; such

calls are repeated for any intercepted new call to a Singleton class. So the aspect

could be rewritten in order to allow the caching of the results of these repeated

reflective calls. This rewriting has been done for other design patterns (e.g. see

Proxy in 3.3.3), however no practical benefits in terms of execution time would be

achieved for this very AODP.

For the implementation of such a cache, the getSignature() call can not be

avoided, as it is needed to tell apart what join point has been intercepted, but the

result of getDeclaringType() could be cached in a map, say sigs, indexed by the

Signature obtained from the previous call. However, to retrieve the Class from

a Signature it is necessary an access to the sigs map instead of the call to the

reflective method. Unfortunately, this exchange of calls gives no performance gain,

as preliminary tests have shown that the cache version, for this pattern, is between

9–12% slower than the AA version, thus it has not been used.

A variant of the described SingletonPattern is the Limiton variant [SW08]

of the Singleton pattern, where the number of instances of the class acting as a

Singleton is limited to n. The annotation used for this version is shown in figure 3.5.
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1 @Retention(RetentionPolicy.RUNTIME)

2 public @interface Singleton {
3 Integer n();

4 }

Figure 3.5: Annotation for the Limiton variant

The n parameter on an annotated C class is used by the aspect as an upper bound

on the number of instances of C.

3.2 Flyweight

The Flyweight design pattern is mainly used in a performance-aware environment,

as it provides a solution to the instantiation of many objects of the same class, say

C, possibly exhausting the system memory.

The solution suggests to partition the members of the C class in two sets: a set

representing the intrinsic state of C and a set for the extrinsic state. The former

is a set of attributes of proper data about C, independent of the context on which

an object will be used, such as a character, while the latter includes any other

information about the context where the former will be used, e.g. the position or

the font size for the character. The intrinsic state is stored in a new class C’, playing

the ConcreteFlyweight role, the extrinsic state is stored in another class, say E. This

partition allows clients to share the same object for the part of the state of an object

that remains the same in any context where it can be used.

Any client class can not directly instantiate a ConcreteFlyweight object, instead

it has to ask a FlyweightFactory for a reference. The FlyweightFactory, given a key to

identify the requested object, returns the reference to the object corresponding to the

passed key. The returned object conforms to the Flyweight interface, implemented

by the ConcreteFlyweights. It is a responsibility of the client class to provide the

received ConcreteFlyweight with the necessary extrinsic state so to be able to properly

use it.

Using this design pattern, it is self-evident how any client class have to be tightly

coupled with the FlyweightFactory class to be able to instantiate any ConcreteFly-

weight object, thus hindering its reusability when the ConcreteFlyweight class should

not play that role anymore for evolution purposes.
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1 public @interface Flyweight { }

Figure 3.6: Annotation for the Flyweight design pattern

1 public aspect FlyweightPattern {
2 private Map<Class, Map<Integer, Object>> flyws =

3 new Hashtable<Class, Map<Integer, Object>>();

4

5 pointcut trapCreation(Object a): call((@Flyweight ∗).new(..)) && args(a);

6

7 Object around(Object a): trapCreation(a) {
8 Integer hash = MyHashing.getHash(a);

9 Class targetFlyw = thisJoinPoint.getSignature().getDeclaringType();

10 Map<Integer, Object> keys = flyws.get(targetFlyw);

11 if (keys == null) keys = new Hashtable<Integer, Object>();

12 if (keys.containsKey(hash)) return keys.get(hash);

13 Object ref = proceed(a);

14 keys.put(hash, ref );

15 if (keys. size () == 1) flyws.put(targetFlyw, keys);

16 return ref;

17 }
18 }

Figure 3.7: The FlyweightPattern aspect

Moreover the FlyweightFactory has to be specifically written every time a new

Flyweight design pattern has to be implemented. Its code is basically the same as

its responsibility is to check if, given a key, the corresponding instance has already

been created or not (and then return its reference to the client), however it depends

on the class playing as ConcreteFlyweight.

3.2.1 Aspect-oriented and annotated Flyweight

The implementation of the Flyweight design pattern detailed in the next section

uses the @Flyweight annotation (figure 3.6) to mark any class that should play the

ConcreteFlyweight role. When an application is woven with the FlyweightPattern

aspect (figure 3.7) the latter will intercept any new call to any class annotated with

the @Flyweight annotation. The management of the ConcreteFlyweights is done by

the FlyweightPattern, thus satisfying the ECoR property, which can be disabled
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Figure 3.8: A ConcreteFlyweight is created, and stored, by the aspect

just by removing the aspect from the application (fulfilling the SPoC property).

A client does not need to resort to any FlyweightFactory to receive an instance

of a ConcreteFlyweight, given that the ConcreteFlyweight class has been properly

annotated. For example, to make the MyCharacter class a ConcreteFlyweight, the

class has to be annotated as follows

@Flyweight public class MyCharacter { ... }

so that any client instead of invoking

MyCharacter c = MyCharacterFactory.getMyCharacter();

can just invoke

MyCharacter c = new MyCharacter();

thus making it not coupled anymore with the MyCharacterFactory class.

Using the FlyweightPattern aspect the programmer still needs to manually

separate the intrinsic and extrinsic state from the original class to be made a

ConcreteFlyweight, as such a “semantic” partitioning can not be automatically per-

formed. However, the FlyweightFactory behaviour is transparently provided by the

FlyweightPattern, which bears the responsibility to provide the shared instances

to any client invoking new, thus fulfilling REoR. This allows the client classes to
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remain unchanged when the MyCharacter class does not play the ConcreteFlyweight

role anymore.

All the code for instance management is held in the FlyweightPattern aspect,

which, thanks to the use of reflective constructs, is completely reusable and allows

the class acting as ConcreteFlyweight to implement just its domain code (thus ful-

filling SoC ).

3.2.2 FlyweightPattern aspect

The code for the FlyweightPattern is shown in figure 3.7. The aspect uses the

flyws map to store the references to the ConcreteFlyweight already instantiated.

To identify an instance of a ConcreteFlyweight class, a pair (Class, Integer) is

used. The class of the requested ConcreteFlyweight is used paired with an integer

number computed as a hash of the parameters used by the client to create the

ConcreteFlyweight.

As the aspect has to be generic, the map has to accommodate any possible class

instance, thus the value for the map is declared as an Object type. The map is

declared as a Hashtable (instead of a WeakHashMap), as the references it stores have

to be kept even if there is no object of the application having any reference, i.e., as

a policy, when an object is created it remains in memory, ready to be returned to

any client.

The trapCreation pointcut intercepts any new call to any class marked with the

@Flyweight annotation, in the same way as it happens in the SingletonPattern.

The similarity they share comes from the fact that both have to manage a limited

number of instances of classes. In this case however there is more than one possible

instance per class, as, at most, for each ConcreteFlyweight class there will be an

instance for every possible value of the parameters (for the constructor) of the class.

Figure 3.8 depicts a possible interception of a ConcreteFlyweight creation captured

by the aspect.

The first operation performed in the advice (line 8) is the computation of an

hash for the parameters passed to the intercepted new call by the client, to identify

which object of the ConcreteFlyweight class has been requested.

The computation of the hash for the parameters is done by the MyHashing.-

getHash() method. If the input parameter is a primitive type its hash is computed
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by the hashCode() method inherited by any Java object. For any other param-

eter type a map (pars) with all the types and values of its variable members is

constructed and its resulting hash is the hashCode() of the pars map. Please note

that [GHJV94] does not impose, nor show, a general way to deal to the identification

of the ConcreteFlyweights, the one proposed here is just a possible general way to

solve this problem1.

In line 9 the target class of the intercepted new is computed in the same way as in

the SingletonPattern. The remaining lines checks if an object for the (class, hash)

pair has already been computed or if it has to be created (and thus let the intercepted

pointcut to be executed by the proceed() statement in line 13) and inserted in the

flyw map before returning its reference to the client.

The FlyweightPattern aspect bears some resemblance to the SingletonPat-

tern one in the usage of reflective calls (cf. figure 3.7 line 9 with figure 3.2 line 8).

Thus the use of a map to cache repeated calls brought similar conclusions about the

caching of the getDeclaringType() method results. As in the SingletonPattern

case a caching mechanism offers no benefits in terms of speeding up the execution

time of the design pattern code, in this case preliminary tests have shown that the

cache version of the FlyweightPattern aspect becomes about 5% slower than the

regular one.

3.3 Proxy

The Proxy design pattern describes a way to shield an object from direct access

from other clients’ objects, as they access just a substitute object for any message

to be sent to the shielded one.

The shielded object plays the RealSubject role, the substitute object plays the

Proxy role. All the accesses to the RealSubject pass through the Proxy, which exposes

the same interface of the RealSubject and it is the only entity allowed to access it.

Both Proxy and RealSubject implement the same Subject interface, so that clients can

use the same methods to access the Proxy as they would to access the RealSubject.

1In [GHJV94] a generic key parameter is used to identify a ConcreteFlyweight instance. If such

a key is just a char, as in the [GHJV94] sample code, it can directly be used as an index for a

map of ConcreteFlyweights, however a key could be any arbitrary object, so it has to be treated

accordingly, as in the proposed solution.
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Figure 3.9: Sample application using an object-oriented Proxy
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Figure 3.10: Sample application using an AA Proxy

It is a responsibility of the Proxy to forward any message to its RealSubject. For

instance, a Proxy might cache the results of a computation and return these cached

results instead of making the RealSubject redo the computation.

Figure 3.9 shows an UML class diagram for a sample application implement-

ing a Proxy. A client class Tester accesses the Checker class (Proxy) instead of

Account (RealSubject); both RealSubject and Proxy implements the same interface

BaseAccount.
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1 @Retention(RetentionPolicy.RUNTIME)

2 public @interface Proxy {
3 String value ();

4 }

Figure 3.11: Annotation for the Proxy design pattern

3.3.1 Aspect-oriented and annotated Proxy

For the AA version of the Proxy design pattern a special annotation @Proxy is de-

fined, shown in figure 3.11, to be used together with the aspect shown in figure 3.12.

With this facility, for any application class C to play role RealSubject behind a Proxy

class C’, it is sufficient to have C marked with the annotation @Proxy(C’). Once

aspect ProxyPattern has been woven into the annotated class C, it will enforce

the RealSubject behaviour expected of C. This fulfils property SoC. Moreover, client

classes need not be changed to let them invoke methods of Proxy C’ (instead of C),

satisfying SPoC.

A simple example is the object-oriented application in figure 3.9. To make use

of the AA version of Proxy, to inhibit clients direct access to Account, thus making

it play as a RealSubject, the class just needs to be annotated as follows:

@Proxy("Checker") public class Account { ... }

The resulting UML-like notation for the AA version is shown in figure 3.10.

Unlike the object-oriented version of Proxy, in the AA version of Proxy, client classes

need not explicitly invoke methods on instances of the class playing Proxy, but keep

referring to the instances of the class playing RealSubject. Then, it is the intervening

aspect that shields RealSubject and forces the use of Proxy. E.g., to access class

Account playing as a RealSubject, a client class Tester would use a code fragment

like:

Account acc = new Account();

acc.getBalance();

Upon the execution of the above new Account(), the general aspect ProxyPat-

tern will: (i) intercept instantiation of Account (the RealSubject); (ii) create an

instance of the associated Proxy, i.e. Checker; and finally (iii) pair the two just

created instances. Then, whenever method getBalance() is called on the created
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instance acc of RealSubject Account, the said aspect will intervene and the namesake

method on the corresponding instance of Proxy Checker will be invoked instead.

Through this approach, client classes are unaware of Proxy and the type of the

variable holding a RealSubject (i.e. acc of the example) remains unchanged even

though Proxy is used instead. This accommodates property REoR.

Moreover, if the choice to shield an application class behind a Proxy is aban-

doned for evolution purposes, the @Proxy annotation is simply removed from it,

and remaining application code is unaffected, thus ensuring SPoC. This also makes

client classes reusable in different contexts, as their code is not coupled with the

Proxy class. E.g., the caller code in the previous fragment is not affected if the

Checker–Account pair is separated. Thus, property ECoR is fulfilled.

3.3.2 ProxyPattern aspect

To implement the desired behaviour, the ProxyPattern in figure 3.12 defines two

pointcuts, trapCalls and trapCreation, each with an associated advice. The ad-

vices respectively handle any method call or any constructor call to any RealSubject.

The proxies map2 stores the objects’ pairs (RealSubject, Proxy), as the aspect

needs to link each RealSubject instance with its (automatically created) Proxy. Please

note that the proxies map is defined to hold just Object references, thus it is

capable of holding any class for both RealSubject (the key of the map) and Proxy

(the value of the map).

The pointcut trapCalls intercepts any method call on objects whose class is

marked with the Proxy annotation, so effectively intercepting any call to any Real-

Subject object, provided that its class has been properly annotated. It also collects

references about the context of the call: the caller object t (by using this), the

invoked object o (by using target) and a as the annotation on the callee (through

@target).

The responsibility of the trapCalls-related advice is to redirect a call on a

RealSubject to a Proxy, as explained before. The advice behaviour depends on the

context of the interception, in particular on the type of the caller t (see the if

statement in line 9 of figure 3.12). If t is a RealSubject calling its own method,

2Please note that proxies is initialised as a WeakHashMap so to allow the garbage collector to

reclaim unused memory should a RealSubject become a null reference.
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1 public aspect ProxyPattern {
2 private Map<Object, Object> proxies = new WeakHashMap<Object, Object>();

3 private Object tmp = null;

4

5 pointcut trapCalls(Object o, Object t, Proxy a):

6 call(∗ ∗.∗(..)) && target(o) && this(t) && @target(a);

7

8 Object around(Object o, Object t, Proxy a) : trapCalls(o, t, a) {
9 if ((t == o) || (t .getClass (). getName().equals(a.value())))

10 return proceed(o, t, a);

11 try {
12 Class c = Class.forName(a.value());

13 MethodSignature s = (MethodSignature) thisJoinPoint.getSignature();

14 Method m = c.getMethod(s.getName(), s.getMethod().getParameterTypes());

15 return m.invoke(proxies.get(o), thisJoinPoint.getArgs());

16 } catch (Exception e) { /∗ ... ∗/ }
17 return null;

18 }
19

20 pointcut trapCreation(Object t):

21 call((@Proxy ∗).new(..)) && this(t);

22

23 Object around(Object t): trapCreation(t) {
24 Proxy ap = (Proxy) thisJoinPoint.getSignature()

25 .getDeclaringType().getAnnotation(Proxy.class);

26 if (t .getClass (). getName().equals(ap.value())) return tmp;

27 tmp = proceed(t);

28 try {
29 proxies .put(tmp, Class.forName(ap.value()).newInstance());

30 } catch (Exception e) { /∗ ... ∗/ }
31 return tmp;

32 }
33 }

Figure 3.12: The ProxyPattern aspect

the call will proceed without any other effect. The same applies if the caller is the

Proxy for the RealSubject o; these are verified by comparing the caller’s class name

with the class name found as a parameter of the annotation on the RealSubject

(i.e. a.value()).
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Figure 3.13: A call dynamically passed to the RealSubject

Any other call captured by the trapCalls pointcut is treated as a regular client

call to a RealSubject object, so the method call has to be invoked on the Proxy

instead of invoking it on the RealSubject. This scenario, with the Proxy invoking the

call on its RealSubject is depicted in figure 3.13.

Since the ProxyPattern aspect is generic, it bears no reference to any specific

method to invoke when the trapCalls pointcut activates. The method name to

invoke on the Proxy is retrieved at runtime by introspection. Specifically, the name

and parameters of the captured method, i.e. invoked by the caller t (a client), are

discovered and then used to dynamically invoke the namesake method on the Proxy

(see lines 12–15, figure 3.12). The name of the captured method is discovered using

getSignature() on thisJoinPoint, for the dynamic invocation a Method object is

created, using the name and parameters of the captured one, then it is invoked on

the Proxy paired with the RealSubject o. The correct Proxy on which to invoke the

target method is retrieved from the proxies map, which is populated as explained

later.

Please note that the scenario depicted in figure 3.13 is not the only one possible,

as the call from a Proxy to its RealSubject depends on the logic of the method

implemented within the Proxy, e.g. if the Proxy acts as a caching device, it might

not forward the invocation to its RealSubject but would just return the cached return

value.
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Populating the proxies map

The advice corresponding to pointcut trapCalls works as described as long as

the proxies map is correctly initialised, the responsibility for such initialisation is

described in the following and depicted in figure 3.14.

The trapCreation pointcut intercepts any new invocation on a class bearing

the @Proxy annotation. The only context to be collected in this case is the caller

object t, the client requesting a new RealSubject object. The related advice provides

the (transparent for the client) connection between a RealSubject and its Proxy,

populating the proxies map.

Once activated, the advice obtains, via AspectJ facilities and reflection, the

parameter of the @Proxy annotation found in the RealSubject class whose instatiation

has been intercepted. This is the Proxy’s class name, stored in the ap local variable

(line 24, figure 3.12). When the caller is a regular client (i.e. not a Proxy), unaware of

the Proxy intervention, the instantiation is allowed (proceed on line 27 in figure 3.12)

and locally stored in tmp. Using reflection a new Proxy is created and linked to the

just created RealSubject, putting the pair in the proxies map. The Proxy class

to be (possibly) loaded at runtime, is obtained using Class.forName(), and is

identified by the value of the @Proxy annotation retrieved in ap. A new instance is

dynamically created using newInstance(). Control is now returned to the client,

with the proxies map now ready to respond to future calls of methods on the newly

created RealSubject by routing them to its unique Proxy.

Advice execution can also be triggered when new on a RealSubject is executed

from a Proxy. This case is similar to the trapCalls’ advice, i.e. the Proxy is allowed

to instantiate a RealSubject. By the very nature of a Proxy, the instantiation of

its RealSubject might be deferred in time or might not even happen, this depends

on the code of the Proxy. Although the RealSubject has already been created by

the provided aspect, nothing bad happens if that would be the case, as the already

created instance will be returned to the Proxy, when at later time the Proxy executes

new. The trapCreation advice is triggered again and the if (line 26) evaluates to

true, thus since tmp still points to the RealSubject instance to be associated with

the invoking Proxy instance, the latter is simply returned tmp.

Please, once again, note how the behaviour of the ProxyPattern aspect render

it completely general and unaware of the environment in which it will be woven
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Figure 3.14: Automatic instantiation of a Proxy

into. Any information needed to link the aspect’s behaviour to any application is

reflectively acquired at runtime, while the weaving is driven by the annotations that

mark the RealSubject classes.

3.3.3 ProxyPatternCA aspect

As shown in the previous section, the AA ProxyPattern makes an extensive use of

reflective calls to be as general as possible. However, its generality might become a

burden to the performance of the application using it, so an enhanced (and refac-

tored) version is provided, i.e. the cached version, shown in figures 3.15 and 3.16.

The CA version retains the generality, the behaviour and the activation logic

(i.e. the pointcuts) of the AA version while allowing the code to run faster. The

following depicts just the differences with the AA version.

The ProxyPatternCA aspect uses three additional maps (classes, mets and

rss) and a list (rs); the latter is an enhanced replacement for the tmp variable in

figure 3.12.

The classes map is used to limit the number of invocations to the reflective

method getClass() (line 9, figure 3.12). In the AA version, the trapCalls-related

advice has to call the getClass() method in order to go on, so if the same client

(as Proxy or as a regular client) executes the same method several times, the advice

will need to call getClass() each time, to compute the client’s class. However, the

result of getClass() is the same when applied to the same object, so, given the
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1 public aspect ProxyPatternCA {
2

3 private Map<Object, Object> proxies = new WeakHashMap<Object, Object>();

4 private Map<SourceLocation, Method> mets = new Hashtable<SourceLocation, Method>();

5 private Map<Object, String> classes = new Hashtable<Object, String>();

6 private Map<Object, Object> rss = new Hashtable<Object, Object>();

7 private LinkedList<Object> rs = new LinkedList<Object>();

8

9 pointcut trapCalls(Object o, Object t, Proxy a):

10 call(∗ ∗.∗(..)) && target(o) && this(t) && @target(a);

11

12 Object around(Object o, Object t, Proxy a): trapCalls(o, t, a) {
13 if ((t == o) || (t==proxies.get(o)) ) return proceed(o, t, a);

14 return invokeOnProxy(thisJoinPoint, proxies.get(o));

15 }
16

17 pointcut trapCreation(Object t):

18 call((@Proxy ∗).new(..)) this(t);
19

20 Object around(Object t): trapCreation(t) {
21 String s = ((Proxy) thisJoinPoint.getSignature().getDeclaringType().

22 getAnnotation(Proxy.class)).value ();

23 if (isCallerProxy(t , s)) {
24 if (rss .containsKey(t))

25 return rss.get(t );

26 return rs.peek();

27 }
28 rs .add( proceed(t));

29 try {
30 Object p = Class.forName(s).newInstance();

31 proxies .put(rs.peek(), p);

32 rss .put(p, rs .peek());

33 } catch (Exception e) { /∗ ... ∗/ }
34 return rs.poll ();

35 }
36 }

Figure 3.15: The ProxyPatternCA aspect (part 1 of 2)
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1 private boolean isCallerProxy(Object t, String s) {
2 if (proxies .containsValue(t))

3 return true;

4 String c = t.getClass (). getName();

5 classes .put(t, c );

6 return c.equals(s);

7 }
8

9 private Object invokeOnProxy(JoinPoint jp, Object p) {
10 SourceLocation s = jp.getSourceLocation();

11 try {
12 if (mets.containsKey(s))

13 return mets.get(s).invoke(p, jp.getArgs());

14 Method m1 = ((MethodSignature)jp.getSignature()).getMethod();

15 Method m = p.getClass().getMethod(m1.getName(), m1.getParameterTypes());

16 mets.put(s, m);

17 return m.invoke(p, jp.getArgs());

18 }
19 catch (Exception e) {
20 /∗ ... ∗/
21 return null;

22 }
23 }

Figure 3.16: The ProxyPatternCA aspect (part 2 of 2)

same client, all invocations except the first one can be avoided. Hence a caching

device is used to store the result of the getClass() invocation the first time it is

executed and later the stored value is retrieved when the same client is identified

(method isCallerProxy() in figure 3.16).

The mets map is used by the invokeOnProxy() method as a cache memory for

reflective calls, so to allow it to retrieve references to already intercepted methods.

The invokeOnProxy() method encapsulates the basic behaviour of the trapCalls-

related advice shown in figure 3.12. It takes two input parameters: jp as the refer-

ence to the join point intercepted by the trapCalls pointcut, and p as the reference

to the Proxy on which the intercepted method shall be invoked. It encapsulates the

main responsibility of the trapCalls-related advice, that is to invoke on the Proxy

the intercepted method. However, there are two main differences between these
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implementations.

The biggest difference is the use of the metsmap to avoid unnecessary repetitions

of the computations in lines 14–15 of figure 3.16. These lines respectively compute

the method intercepted by the trapCalls advice (i.e. the method directly invoked

on the RealSubject by the client: m1) and the reference to the method of the same

name declared on the Proxy p (i.e. m), in the same fashion as in figure 3.12. However,

once such a reference is computed it is also stored in the mets map, so to be directly

accessible in (possible) future calls. The key used to identify an already executed

method is its SourceLocation, i.e. the line of code where the method is defined in

its class.

Apart from the use of an additional cache memory, the other difference with

the original trapCalls advice is its main if statement. The original one (line 9,

figure 3.12) needs to use reflective code, this is avoided in this enhanced version

(line 13, figure 3.15).

The purpose of the conditional statement, as in the AA case, is to tell apart the

nature of the caller of an intercepted method on a RealSubject. To check if the caller

is a RealSubject, and so allowed to invoke its own methods, the same reference

comparison will be performed in both AA and CA cases.

To discover whether the caller of the intercepted method is a Proxy is now per-

formed by checking for the existence of the caller reference on the proxies map.

This is possible because, whenever a new Proxy object is created, it is also inserted

into the proxies map, so it is sufficient to compare the caller with the (possibly)

existing Proxy for the RealSubject on which the captured method was directed to,

i.e. the reference obtained using proxies.get(o).

The rss map is used in the trapCalls advice, as a facility to store the pairs

(Proxy, RealSubject) for a Proxy that defers the creation of its own RealSubject,

i.e. when the RealSubject is not created inside its own constructor.

The following scenarios detail two possible cases for the creation of the RealSub-

ject by a Proxy, thus thoroughly explaining all the creation logic implemented in

the ProxyPatternCA aspect. The examples use the class structure already shown in

figure 3.10.

The first scenario depicts a Proxy, Checker, which creates its own RealSubject,

Account, inside its own constructor (figure 3.17). This scenario is triggered when

a Tester (i.e. a client) class invokes new on an Account (i.e. RealSubject) class.
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Figure 3.17: A Proxy creating its own RealSubject in its own constructor

The ProxyPatternCA aspect is activated and executes the trapCreation advice.

The isCallerProxy() call (line 23) yield false, as the new call comes from from

the Tester class. Moreover, its execution populates the classes map, e.g., with

the pair (Tester@739, "Tester"). trapCreation creates the new Account object

(RealSubject) using proceed() (line 28), which will be added to the pending Re-

alSubjects list (rs), i.e. the reference to return to the Proxy that is going (line 30)

to be reflectively created. In this scenario the Checker (Proxy) constructor will

try to instantiate its own RealSubject, so a second trapCalls-related advice will

be triggered putting on hold the previous one, interrupting it while waiting for the

completion of newInstance() in line 30. In this second trapCalls execution the

isCallerProxy() call returns true. The if statement on line 2 (figure 3.16) is

false, as the proxies map has not yet been populated with the instance of Checker

(Proxy) being created, however, after adding to the classes map the pair, e.g.,
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Figure 3.18: A Proxy creating its own RealSubject outside its own constructor

(Checker@255, "Checker"), the return statement on line 6 evaluates to true, as

the class name found in the annotation (lines 21–22, figure 3.15) of the Account

class (i.e. "Checker") is the same as the Proxy one (i.e., again, "Checker"). The

trapCreation advice’s execution continues with the conditional in line 24, which

returns rs.peek() to the Checker object, i.e. the reference to already created Re-

alSubject. This ends the second trapCreation execution, returning the control to

the first one, which was interrupted on line 30. Now the p object is finally as-
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signed, holding the reference to the new reflectively created Proxy (a Checker),

and the proxies and rss maps are populated, with pairs such as, respectively,

(Account@551, Checker@255) and (Checker@255, Account@551). The last instruc-

tion (line 34) removes the reference to the RealSubject (an Account) held in rs,

returning it to the original client, Tester, which requested the creation.

A different scenario takes place when a Proxy does not create its RealSubject

inside its own constructor, but inside another method (figure 3.18). In this scenario

everything remains the same as in the previous one until the reflective call creates

the new Checker (Proxy) on line 30, figure 3.15. As the Checker’s constructor

does not create its RealSubject the trapCreation advice ends after putting the new

(Proxy, RealSubject) pair in both proxies and rss maps, hence without the double

activation of the advice previously described.

Now suppose that the Checker class is programmed to instantiate an Account

object as its RealSubject in the check() method, and the same Tester client invokes

the check() method on the Account reference obtained by the ProxyAspectCA, this

activates the trapCalls advice. Since the calling object is a Tester (thus neither

a Proxy nor a RealSubject) the advice has to invoke a check method on the related

Proxy, by means of the invokeOnProxy() method (line 14, figure 3.15), after caching

the results of the reflective operations (lines 14–15, figure 3.16). The Proxy will have

to create its RealSubject inside this method since it had not been created before,

this triggers the trapCreation advice, note that the trapCalls advice was waiting

for the end of the check() method. The trapCreation advice will identify the

caller as a Proxy (isCallerProxy() yields true as proxies.containsValue() is

true due to the previous addition of the reference to this very Proxy), and instead of

letting the Proxy (Checker) create another RealSubject, advice trapCreation will

return its paired RealSubject stored in the rss map. The Proxy (Checker) now has

a reference to its Proxy and will (and can) invoke the original check() method on

its RealSubject.

Table 3.2 shows sample pairs’ values3 from the proxies, classes and rss maps

after the execution of the following sample code where a Tester class creates an

Account object as in the previous description

3The values shown have to be read as Java object references.
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proxies classes rss

RealSubject Proxy Object String Proxy RealSubject

Account@551 Checker@255 Tester@739 "Tester" Checker@255 Account@551

Checker@255 "Checker"

Table 3.2: Sample values for the ProxyPatternCA’s maps

1 @Retention(RetentionPolicy.RUNTIME)

2 public @interface Bypass {
3 String [] value ();

4 }

Figure 3.19: Annotation for the @Bypass annotation

Account acc = new Account();

acc.check();

3.3.4 ProxyPattern aspect’s variants

Both the AA and CA versions of the Proxy design pattern might be used in scenarios,

such as smart reference or protection proxy, however an additional variation that is

made available is a bypassable Proxy, that is the possibility for selected (privileged)

clients to directly access a RealSubject bypassing the Proxy shield. This might be

considered a violation of the principle of the Proxy design pattern, however it gives

to the programmer the capability to (possibly) choose some classes to be ignored

by the Proxy enforcement mechanism implemented by the aspect. As the rest of

the approach, the granularity remains at the class level, i.e. a class might be in the

bypass whitelist, but a specific object can not.

The @Bypass annotation is shown in figure 3.19 and can be used in combination

with the @Proxy one, for example as in the following code

@Bypass({"Bank", "ATM"}) @Proxy("Checker")

public class Account { ... }

where the same Account class of the previous examples is declared to be a RealSub-

ject with an automatically created Proxy (a Checker object) and the classes Bank

and ATM will not be affected by the aspect and can access any Account objects

without being redirected to a Checker.
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1 private WeakHashMap<Object, String> exclude = new WeakHashMap<Object, String>();

2

3 private boolean isCallerExcluded(Object t , String s) {
4 if (exclude.containsKey(t))

5 return exclude.get(t).equals(s );

6 String c = t.getClass (). getName();

7 exclude.put(t,c );

8 return c.equals(s);

9 }

Figure 3.20: Additional code to manage the @Bypass annotation

The existing ProxyPattern’s aspects need to be enhanced with the code shown

in figure 3.20. Please note that for the sake of simplicity and comprehensibility the

shown code just refers to the case of a bypass list holding a single element; however

the code for the case of a list is logically equivalent and similarly managed, with

additional code used to recover and check the full list.

This utility method takes two parameters, the first one, t, is the reference to the

calling object, the last is a string representing the value of the @Bypass annotation,

i.e. the name of a class authorised to access that specific RealSubject directly.

The exclude map holds the pairs (object, class name) of all objects that invoke

an intercepted method. It is populated in the same way as the isCallerProxy()

method (figure 3.16), so in the CA case the code can be modified to use only the

classes map, as they serve the same purpose.

To check whether or not t is allowed to access the RealSubject its class name is

compared with the class name found in the @Bypass annotation. The class name is

obtained either by accessing the exclude map (line 4, figure 3.20) or using reflection

(line 6, figure 3.20).

The isCallerExcluded() method has to be inserted into the trapCalls and

trapCreation advices, to let a privileged client to behave such as a Proxy or a Real-

Subject would do, i.e. having its calls not redirected by the aspect. The trapCalls

advice (lines 12–15, figure 3.15) is enhanced with another check for the condition,

as shown in figure 3.21, where the caller is managed in the same way as a Proxy or

a RealSubject.

For the trapCreation advice the same behaviour must be implemented. In this

case the privileged class can not be managed in the same way as, e.g., a RealSubject.
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1 Object around(Object o, Object t , Proxy a): trapCalls(o, t , a) {
2 if ((t == o) || (t == proxies.get(o)) || (isCallerExcluded(t, a.value())) )

3 return proceed(o, t, a);

4 return invokeOnProxy(thisJoinPoint, a, proxies.get(o));

5 }

Figure 3.21: Additional code to manage the @Bypass annotation

1 if (isCallerExcluded(t, ((Bypass) thisJoinPoint.getSignature()

2 .getDeclaringtype().getAnnotation(Bypass.class)).value())

3 return proceed(t);

Figure 3.22: Additional code to manage the @Bypass annotation

The only change that need to be done is the addition of the conditional statement

in figure 3.22 as the second instruction of the advice, before line 23 of figure 3.15,

to allow the execution of the intercepted join point.

Another variation that can be implemented is to support of a sequence of proxies,

e.g. when an Account class plays as a RealSubject for a Checker class (a Proxy),

and the Checker class also plays the RealSubject role for a Counter class. It is

possible to extend the ProxyPattern aspect with additional pointcuts and advices

to accommodate such a scenario.

The annotation to use remains the same, and would be used, as expected, on

both RealSubject classes, i.e.

@Proxy("Checker") class Account { ... }
@Proxy("Counter") class Checker { ... }

To automatically capture the calls on the Checker’s methods an additional pointcut

has to be defined. The existing one can not be directly used as it would not capture

the dynamic invocation (line 15, figure 3.12) as it is not a call to a Proxy but to the

invoke() method of the Method class, which will invoke a Proxy method, however

not as an exposed join point. Thus an additional trapReflectiveCalls pointcut

captures any Method.invoke() and checks if the captured call is directed to a class

marked with the @Proxy annotation, the rest of the related advice is essentially the

same as the non-reflective variant already described.
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3.3.5 Evaluations

The described ProxyPattern aspects present a possible puzzling feature, some might

define it inversion of control, however, in practice, this is not the case. Using the

ProxyPattern it seems as if the usual flow of execution when using a Proxy is changed

as a client (apparently) directly creates a RealSubject object and invokes its methods.

Albeit this is exactly what the proposed AODP prescribes the programmer to do,

the final, observable behaviour when using the ProxyPattern is the same as the

object-oriented alternative. E.g. if the Account class is playing the RealSubject role,

the invocation of the check() method on an Account object will be intercepted,

i.e. interrupted, by the aspect and will not be executed unless its related Proxy

(the paired Checker object) logic allows the execution, exactly as it happens in the

object-oriented version of the pattern. The intent of the Proxy design pattern is

fully obeyed. It might also be worth noting that this same behaviour is observable

in the aspect version in [HK02].

Another characteristic of the design of the ProxyPattern aspect is how it treats

the possibile (RealSubject, Proxy) pairs with a granularity set at the class level,

i.e. once the Account class is associated to the Checker one as its Proxy, all the

Account instances will inherit this association, so a single, selected instance can not

be associated to, say, a CounterProxy class. Managing such a case would still be

possibile however at the cost of a considerably more complex aspect.

Lastly, the pointcuts capturing the methods’ calls to be proxied assume that the

call for such methods happens outside a static method, because the this construct

(line 6, figure 3.12) can not capture an invocation happening from a static scope, as

no this object would be associated to it. This can be easily solved using a variation

of the pointcut which captures the execution of the method and instead of relying

on the this construct, using the thisJoinPoint.getThis() method to initialise

the t variable.

3.4 Observer

The Observer design pattern is used to allow loose coupling in the observation rela-

tionship between objects, i.e. when objects of (possibly) different classes (playing the

ConcreteObserver role) are interested in changes of states of another object (playing
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1 @Retention(RetentionPolicy.RUNTIME)

2 public @interface Observer {
3 String clas ();

4 String meth();

5 String par();

6 }

Figure 3.23: Annotation for the Observer design pattern

the ConcreteSubject role).

It proposes to make the ConcreteObservers implement the Observer interface,

so to deal with different ConcreteObservers in the same fashion, and to make a

ConcreteSubject inherit from a Subject class. The Subject class contains the code

for the management of the list of Observers (with the attach() and detach()

methods) and the notify() method is used to inform all the ConcreteObservers of

a state change in the ConcreteSubject.

When a ConcreteSubject changes its state, it will invoke the notify() method

to let all the ConcreteObservers know about it, and in turn all the ConcreteObservers

will invoke their update() method to get the new state from the ConcreteSubject.

This architectural detail effectively takes the Observers-related code out of a

ConcreteSubject class, however, as the notify() invocation has to be explicitly per-

formed by the ConcreteSubject, it makes it tightly coupled with its Subject super-

class. Apart from the coupling, such a call is not part of the main responsibility of

a class, as it is added just to implement the design pattern.

The Subject–ConcreteSubject class relationship can become a burden to deal with

in an object-oriented language, such as Java, where multiple inheritance is disal-

lowed, as a ConcreteSubject has to inherit from Subject and can not inherit from

other classes4.

Another disadvantage of the coupling that comes with the object-oriented solu-

tion is that when a ConcreteSubject has to be used in an architecture where it does

not have to play this role anymore, all the notify() calls have to be removed from

the code.

4Unless the designer uses composition to provide the Subject behaviour.
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1 public class Account {
2 double balance=0; ...

3

4 @Observer(clas=”Store”, meth=”update”, par=”balance”)

5 public void deposit(double i) {
6 balance+=i;

7 }

Figure 3.24: Sample usage of the @Observer annotation

3.4.1 Aspect-oriented and annotated Observer

The ObserverPattern aspect (figure 3.25) encapsulates all the behaviour needed to

handle the Observers list. By capturing any method call marked with the @Observer

annotation (figure 3.23), the aspect will automatically notify any Observer after the

observed method has been executed successfully, so a ConcreteSubject need not (i) be

subject to a hierarchy constraint, i.e. extend the Subject superclass, (ii) intertwine

its own domain code with interspersed calls to its Subject superclass. Also there

is no need for a ConcreteSubject class to implement the code for the Observers’ list

management and notifications, as it will be the ObserverPattern that will take care

of them (verifying SoC ), with the aspect fully implementing the behaviour of the

Subject role (verifying ECoR).

The annotation is intended to be used on any class’ method whose results are

of any interest for a ConcreteObserver. As any method of any class can be anno-

tated, the aspect is general and reusable in any application: to impose (remove)

an observation relationship between classes it is sufficient to weave (remove) the

ObserverPattern in the application without having to also change other classes

(fulfilling SPoC ).

The parameters of the annotation are meant to be used on methods of a Con-

creteSubject as in the example in figure 3.24 where a deposit() method is declared

to be observed, hence its declaring class (Account) plays the ConcreteSubject role.

The retention policy of the annotation is declared to be “runtime” to allow the

parameters to be reflectively read then.

In particular, every time the deposit() method ends (without launching any

exception) the update() method declared in the Store class will be invoked, using

the fresh value for the balance variable as a parameter, on any ConcreteObserver
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1 public aspect ObserverPattern {
2 private WeakHashMap<Object, List> subjects = new WeakHashMap<Object, List>();

3

4 pointcut trapCalls(Observer ann, Object obj): this(obj) &&

5 execution(@Observer ∗ ∗.∗(..)) && @annotation(ann);

6

7 after(Observer ann, Object obj): trapCalls(ann, obj) {
8 try {
9 Class c = Class.forName(ann.clas());

10 Method m = c.getMethod(ann.meth(), new Class[]{Object.class});
11 List observers = subjects.get(obj);

12 Field par = obj.getClass().getDeclaredField(ann.par());

13 Object pp = par.get(obj);

14 if (observers != null)

15 for (int i=0; i<observers.size (); i++)

16 if (observers.get( i ).getClass() == c)

17 m.invoke(observers.get( i ), pp);

18 } catch (Exception e) { /∗ ... ∗/ }
19 }
20

21 public void addObserver(Object subj, Object obs) {
22 List<Object> obsLst = subjects.get(subj);

23 if (obsLst == null) obsLst = new LinkedList<Object>();

24 obsLst.add(obs);

25 subjects .put(subj, obsLst);

26 }
27 }

Figure 3.25: The ObserverPattern aspect

(of Store class) that has previously been attached to the Observers list.

As the ObserverPattern aspect automatically takes care of notifying the inter-

ested Observers, there is no possibility for the programmer to make mistakes such

as forgetting to invoke a notify() in the ConcreteSubject code after some value has

been updated, thus fulfilling the REoR property.
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3.4.2 ObserverPattern aspect

The ObserverPattern (figure 3.25) implements the behaviour of the Subject role.

The main behaviour is obtained by a single pointcut (trapCalls) and its related

advice.

As the aspect has to manage the list of Observers, it uses the subjects map

to store it in a general way, i.e. unconstrained by the actual classes involved. The

subjects map holds ConcreteSubjects as keys, to which a list of ConcreteObservers

are associated. Both roles are stored as generic object references, to let the aspect

be completely independent of the classes it will work with, any needed information

about the actual class will be discovered at runtime using reflection. The map is

declared as a WeakHashMap, to allow the garbage collector to remove entries whose

keys are not referenced. This is considered reasonable as if a ConcreteSubject is

no longer in existence it should not have any ConcreteObservers attached.

To populate the subjects map an addObserver() method is provided; this

is used by client classes to dynamically register a ConcreteObserver as observing

a ConcreteSubject, as in the standard object-oriented implementation. A similar

method to dynamically remove a ConcreteObserver is provided, but not shown in

figure.

To add a new ConcreteObserver in the list, a client just needs to invoke the

method as follows

ObserverPattern.aspectOf().addObserver(cs, co);

where cs is an instance of a ConcreteSubject, co an instance of a ConcreteObserver

and at least a method of cs is annotated with the class of co as the clas parameter

of the @Observer annotation.

The after construct available within AOP fits as a natural way to implement

the fundamental behaviour of the Observer, i.e. intervening after a method updating

the state of the ConcreteSubject has been executed, to update all ConcreteObservers.

The trapCalls pointcut intercepts all the executions of any method annotated

with the @Observer annotation, also capturing a reference to the caller of the

method, using construct this, and a reference to the annotation, to be accessible

in its related advice.

The advice has to invoke on any ConcreteObservers the method specified in the

annotation. To obtain a reference to the update method (whose execution has been
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Figure 3.26: Automatic activation of the ObserverPattern aspect

intercepted by the aspect) all the parameters of the annotation are needed. In line

9 the class found as the clas parameter of the annotation is retrieved in c. The

name of the method to be executed for the update, retrieved in m, is found in the

meth parameter of the annotation and is used in line 10. In line 12 the parameter

(ann.par) read from the annotation is retrieved as a Field and then used to retrieve

its current value in pp, so to pass it as the updated value to the ConcreteObservers.

The list of all ConcreteObservers associated to the ConcreteSubject reference (obj)

is retrieved in line 11, and used for the loop (lines 15–17). All the ConcreteObservers

are updated by the dynamic invocation (line 17) of their m method, using pp as the

value for the parameter.

Supposing the Account class annotated as in figure 3.24, and the existing objects

a and o respectively of class Account and Store, the following (simplified) code

snippet
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ObserverPattern.aspectOf().addObserver(a, o);

a.deposit(7.39);

logObject.log(time+": new value deposited.");

when executed, becomes as if it were written

ObserverPattern.aspectOf().addObserver(a, o);

a.deposit(7.39);

o.update(7.39);

logObject.log(time+": new value deposited.");

as also shown in the sequence diagram in figure 3.26.

3.4.3 ObserverPatternCA aspect

The ObserverPatternCA (figure 3.27) is an enhanced version of the regular Obser-

verPattern. Since the latter uses many reflective calls to be general, and the results

of their invocations remain constant when applied to the same input arguments, it is

possible to use a map to store those results instead of making the same computations

every time the trapCalls advice is activated. This enhancement is just for the

running times of the advice’s execution, as both versions are functionally equivalent,

they also they share the same pointcut. The changes are only related to the advice

and the addition of the ref map as a caching device.

The cached values are stored using a reflectInfo class (figure 3.28), to store the

interested values, i.e. the reference to the class of the ConcreteObserver, the method

to call and its parameters, so to avoid all the repeated reflective instructions.

3.4.4 Evaluations

An interesting side effect of the proposed Observer ’s approach is that different meth-

ods of the same ConcreteSubject class can be independently observed by instances

of distinct ConcreteObserver classes. This can be useful e.g. when operations

change different parts of the observed state, or when the same state can be changed

in several ways, and the observers are just interested in some part of the state

or in some of the possible changes. If needed, annotation @Observer marking a

method can be given arguments that are not those of the annotation marking an-

other method. This would allow alerting different methods and possibly different
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1 public aspect ObserverPatternCA {
2

3 private WeakHashMap<Object, List> subjects = new WeakHashMap<Object, List>();

4 private WeakHashMap<Signature, reflectinfo> ref =

5 new WeakHashMap<Signature,reflectinfo>();

6

7 pointcut obser(Observer ann, Object obj): this(obj) &&

8 execution(@Observer ∗ ∗.∗(..)) && @annotation(ann);

9

10 after(Observer ann, Object obj): obser(ann, obj) {
11 try {
12 Signature sig=thisJoinPoint.getSignature();

13 Class c=null; Method m=null; Field par=null;

14 List observers=null;

15 Object pp=null;

16 if (! ref .containsKey(sig)){
17 c = Class.forName(ann.clas());

18 m = c.getMethod(ann.meth(), new Class[] { Object.class });
19 observers = subjects.get(obj);

20 par = obj.getClass().getDeclaredField(ann.par());

21 pp = par.get(obj);

22 ref .put(sig , new reflectinfo(c, m, par));

23 }
24 else{
25 c=ref.get(sig ).getClas();

26 m=ref.get(sig).getMethod();

27 observers = subjects.get(obj);

28 par=ref.get(sig ). getField ();

29 pp = par.get(obj);

30 }
31 if (observers != null)

32 for (int i = 0; i < observers. size (); i++)

33 if (observers.get( i ).getClass() == c)

34 m.invoke(observers.get( i ), pp);

35 } catch (Exception e) { /∗ ... ∗/ }
36 }
37 }

Figure 3.27: The ObserverPatternCA aspect
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1 public class reflectinfo {
2 Class c;

3 Method m;

4 Field par;

5

6 reflectinfo (Class c, Method m, Field par){
7 this.c=c;

8 this.m=m;

9 this.par=par;

10 }
11

12 Class getClas(){ return c; }
13

14 Method getMethod(){ return m; }
15

16 Field getField(){ return par; }
17 }

Figure 3.28: The reflectinfo class

classes when some operations of ConcreteSubject are executed. In contrast, the clas-

sical approach forces all ConcreteObservers to be notified for all operations changing

the state of a ConcreteSubject.

The ObserverPattern shown in figure 3.25 manages only instances of a class

where only instances of one class playing as ConcreteObserver role have to be notified

for each method, the extended version handling a list of classes, using

@Observer(clas={"Store", "View"}, meth="update", par="balance")

is not shown for the sake of brevity.

3.5 Composite

The Composite design pattern aims at making the interaction of clients’ classes

the same, both when interacting with simple objects or with aggregates of objects.

The intention is to avoid clients’ classes to implement different behaviours when

interacting with the two possible cases.

In the suggested solution of [GHJV94] the Component interface (or abstract
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1 public @interface Composite { }

Figure 3.29: Annotation for the Composite design pattern

class) is a parent of both Leaf and Composite, and defines methods that these chil-

dren have to implement, each relative to its own nature. A Leaf class is a simple

class, thus implementing an operation() method acting by itself, while a Composite

class represents an aggregation, i.e. it may contain both Leafs and Composites, thus

implementing the same operation() method acting upon all the subtrees starting

from the Composite node it represents.

For example, a file system might be modeled using a Leaf class to represent a

file in a file system, and the Composite one to represent a directory. When a client

calls the size() method on a Component it will receive the size of the file (if the

Component is a Leaf) or the size of the files in the subdirectory starting from the

Component (if it is a Composite).

In the so-called safe solution, the Composite class has to provide methods for the

addition (or removal) of its children elements, thus having to cope with references to

such elements. In the so-called transparent solution these methods are implemented

in the Component class. Thus a Composite class is expected to mix its own domain

code with the code needed to implement the handling of the aggregated objects.

This mixing hinders its reusability, as the class becomes tightly coupled with the

role it is playing.

3.5.1 Aspect-oriented and annotated Composite

The CompositePattern aspect shown in figure 3.30 is used in concert with the

@Composite annotation (figure 3.29). Such annotation acts just as a tagging an-

notation, as it bears no parameters, it just marks a class as playing the Composite

role. It has been defined with “runtime” retention policy as its existence has to be

detected while the application is running.

The aspect intercepts any method call (say m()) to a Composite object (say of

class C), and handles the expected aggregation behaviour for m() by reflectively

invoking it on all the children of C and finally on the Composite it was originally

directed to. This renders the code of the C class effectively free from the non-domain

code it should have implemented, as this code is kept in the CompositePattern
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aspect (SoC ). Moreover, C does not need to implement additional methods such as

add() and remove() to manage its children, as these are provided by the aspect.

Since all the DP behaviour is encapsulated in the CompositePattern aspect, the

ECoR criterion is verified.

To impose (or remove) the Composite role to a class it is sufficient to just add

(or remove) the CompositePattern aspect when compiling the application, no other

parts of the application have to be changed (SPoC ). Any client class invoking the

m() method also remains the same, when C stops playing the Component role. In

any case, the programmer can not err by invoking the wrong method on (REoR).

3.5.2 CompositePattern aspect

CompositePattern in figure 3.30 consists of one pointcut (trapOperations), its

related advice and several utility methods that implement the main Composite be-

haviour.

The comps map holds the children list of any Composite object regardless of the

actual class, as it is defined to hold a generic object as a key and a list of generic

objects as its children’s list. This is necessary to keep the aspect completely general

and independent of the application it is woven into. The utility method to manage

the comps map shown in figure are used to add a child to an existing Composite

object, and to get the list of all the children of a given Composite.

The trapOperations-related pointcut carefully selects all the calls to any method

declared in a class marked with the @Composite annotation. It captures a reference

to the Composite object to which the call is directed.

The advice starts by retrieving all the children of the intercepted Composite (co)

then it reflectively detects the name of the intercepted method (line 11), mc. The

mc method is then invoked on every children of co.

The invocation takes place via the local invokeOnChild() method. This accepts

the reference to the child, extracts method (m) with the same name and parameters

(line 21) of the initially intercepted method on co and then dynamically invokes m

on the child, using the (possible) actual parameters collected from the context using

getArgs() on thisJoinPoint. The return value obtained from the invocation is

returned in res.

After the invocation of mc on a child, the result is passed to the Composite
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1 public aspect CompositePattern {
2 private Map<Object, List> comps = new Hashtable<Object, List>();

3

4 pointcut trapOperations(Object co) :

5 call(∗ ∗.∗(..)) && target(co) && @target(Composite) && !within(CompositePattern);

6

7 Object around(Object co) : trapOperations(co) {
8 List children = comps.get(co);

9 if (children != null) {
10 Object res;

11 Method mc = ((MethodSignature) thisJoinPoint.getSignature()).getMethod();

12 for (int i = 0; i < children. size (); i++) {
13 res = invokeOnChild(thisJoinPoint, mc, children.get(i));

14 invokeOnComposite(mc, co, res);

15 }
16 }
17 return proceed(co);

18 }
19

20 private Object invokeOnChild(JoinPoint jp, Method mc, Object ch) {
21 try { Method m = ch.getClass().getMethod(mc.getName(), mc.getParameterTypes());

22 return m.invoke(ch, jp.getArgs());

23 } catch (Exception e) { /∗ ... ∗/ return null; }
24 }
25 private void invokeOnComposite(Method mc, Object co, Object res) {
26 try { Method mce = co.getClass().getMethod(mc.getName(), res.getClass());

27 mce.invoke(co, res );

28 } catch (Exception e) { /∗ ... ∗/ }
29 }
30 public void addChild(Object comp, Object child) {
31 List childLst = comps.get(comp);

32 if (childLst == null) childLst = new LinkedList<Object>();

33 childLst .add(child);

34 if (childLst . size () == 1) comps.put(comp, childLst);

35 }
36 public List getChildrenList(Object comp) {
37 return comps.get(comp);

38 }
39 }

Figure 3.30: The CompositePattern aspect
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Figure 3.31: A possible scenario for the CompositePattern aspect

(co), using the invokeOnComposite() method. The programmer has to provide the

Composite class with a method with the same name as the captured one (held in mc)

but with an additional argument (say mce). The responsibility of mce is to collect

and operate on all the partial results obtained by the execution of mc on every single

children. So the type of the extra argument must be the same of the result type of

mc. The execution of the invokeOnComposite() method takes place by means of

dynamic invocation (line 27).

As a note, the mce method might seem a further responsibility that is added on

the Composite class, however on the contrary it can easily be considered a respon-

sibility of a Composite class, i.e. a class that manages and manipulates instances of

its peers and so has all the knowledge to handle the intermediate results.

After the mc method has been executed on every children of co, the proceed()

statement (line 17) executes it on the original co object on which the call had been

performed.

Figure 3.31 shows a scenario with a GUI object invoking a method to compute

the size of a MyFolder object. The aspect takes care of dynamically invoking the

size()method on the child of the MyLeaf object, then, the size()method (with the

additional parameter) is invoked on the MyFolder object. Eventually the size()

method is invoked to get the final result. All the invocations performed by the

aspect, comps.get() excluded, are dynamic invocations.

54



Chapter 3: Aspect-oriented design patterns

1 pointcut trapRecursiveOperations(Method co, Object comp, Object[] pars) :

2 call(∗ Method.invoke(..)) && target(co) && args(comp, pars)

3 && within(CompositePattern)

4 && if(co.getDeclaringClass().getAnnotation(Composite.class)!=null)

5 && !cflow(call(void invokeOnComposite(..)));

6

7 Object around(Method m, Object comp, Object[] pars) :

8 trapRecursiveOperations(m, comp, pars) {
9 List children = comps.get(comp);

10 Object res;

11 if (children != null) {
12 for (int i = 0; i < children. size (); i++) {
13 try { // invoke on child, then on composite

14 Method mc = children.get(i).getClass().getMethod(m.getName(),

15 m.getParameterTypes());

16 res= mc.invoke(children.get(i ), pars);

17 invokeOnComposite(m , comp, res);

18 } catch (Exception e) { /∗ . ∗/ return null; }
19 }
20 }
21 return proceed(m,comp, pars);

22 }

Figure 3.32: Recursive variation for the CompositePattern aspect

The CompositePattern shown in figure 3.30 is a simplified version of the full

one, the former being shown to understand its basic internal behaviour. The shown

version can not capture reflective calls to the mc method, thus if a visited Component

(line 13) instead of being a Leaf is a Composite, it will not be visited recursively.

To avoid this behaviour the aspect has to be enhanced with the additional trap-

RecursiveOperations pointcut, and its related advice, shown in figure 3.32.

The basic behaviour is the same as the original trapOperations pointcut, how-

ever the trapRecursiveOperations is more complex. The original trapOperations

pointcut just captures all the calls to a method from a class marked with the

@Composite annotation, however this pointcut will not be triggered when the invoke-

OnChild method is reflectively invoked (line 22, figure 3.30), as the only exposed join

point is the invoke() method of the Method class, not the method that will be dy-

namically called. So to capture this dynamic invocation the call to be intercepted is
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1 pointcut trapOperations(Object o) :

2 call(∗ ∗.∗(..)) && target(o) && @target(Composite)

3 && !within(CompositePatternCA) && !within(CacheAO);

4

5 private Object invokeOnChild(JoinPoint jp, Object ch) {
6 Method m = CacheAO.getM(ch, jp);

7 try {
8 return m.invoke(ch, jp.getArgs());

9 } catch (Exception e) { /∗ ... ∗/ }
10 return null;

11 }
12

13 private void invokeOnComposite(JoinPoint jp, Object c, Object r) {
14 Method m = CacheAO.getMco(c, r, jp);

15 try {
16 m.invoke(c, r );

17 } catch (Exception e) { /∗ ... ∗/ }
18 }

Figure 3.33: Variations for the CompositePatternCA aspect

exactly Method.invoke(), this, however, has to occur inside the CompositePattern

aspect (line 3, figure 3.32). Moreover the invocation has to occur outside the con-

trol flow of the invokeOnComposite() method, so to avoid infinite recursion (line

5) and the target class, i.e. the co object, has to be marked with the @Composite

annotation. The related advice behaves essentially as the original one, with trivial

differences in getting the mc method.

3.5.3 CompositePatternCA aspect

Figure 3.33 shows the CompositePatternCA, i.e. the functionally equivalent, faster,

version using a caching device. The cache maps in the utility class CacheAO (not

shown) a reference to the intercepted method, i.e. the method to invoke on all the

children of Composite and the method with the same name with the additional pa-

rameter (see section 3.5.1), indexing them by the SourceLocation of the intercepted

join point.
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3.5.4 Evaluations

A simple variant of the CompositePattern allows the programmer to choose whether

to enable automatic calls of methods on children or just let the aspect take care of

the children’s list. This allows the Composite code to incorporate any algorithm

that performs any desired action, say selectively call the provided operation on the

children, use the intermediate results, etc. It is worth noting that a Composite can

access the children’s list using the utility methods provided by the aspect. The

corresponding aspect is not shown as it is a subset of the one in figure 3.30.

3.6 Analysis and other design patterns

All the presented AODPs fulfil the properties stated in section 1.1, such as, em-

phasizing one of their main strong points, their complete reusability without any

changes, just as a library function. This is different from the other approaches found

in literature, examined in chapter 6, as the reasonably clever use of reflection renders

unprofitable the counterpart implementation of abstract and concrete aspects.

A tradeoff brought by the generality of the AODPs is about the internal struc-

tures (maps) of the aspects that, being generic, can not assure the type safety of

held objects. Thus, while an aspect can accommodate any class in its maps, it may

also be subject to runtime exceptions as such classes are obtained as strings from the

annotations’ parameters. Such strings are however part of the source code and do

not change, as they are not obtained from the user’s input but inserted once and for

all by the programmer, therefore an appropriate test suite can be used to verify the

correctness of a complete application using the proposed patterns’ implementations.

Another limit bound to the technology of choice, AOP in this case, might be

argued to be the comprehensibility of the (flow of the) final application. It might be

more difficult to understand the flow of a program without tools, such as IDEs, which

remind the programmer if an instruction is adviced by an aspect, or to understand

if there is any interaction between the aspects. Again, this is an issue that comes

with AOP, not brought by the proposed AODPs’ implementations. However, also

the opposite might be argued: since a class is explicitly marked with a simple (if

not self-explanatory) annotation5, such a class makes it clear its additional role

5Unless the programmer chooses to use the alternative described in section 3.7.
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and so its expected (superimposed) behaviour. E.g. even when the programmer

edits a source file with a simple text editor a method marked with the @Observer

annotation should make clear for the programmer that the method execution will

be followed by an update to its observers.

The proposed AODPs are implemented in Java and AspectJ, however the ap-

proach should be general enough to be ported to any object-oriented language sup-

porting the same basic tools used (aspects, reflection and annotations).

The detailed AODPs presented in this chapter are just a subset of some of the

most basic and used design patterns described in literature [GHJV94, BMR+96,

SSRB00]. Unfortunately this novel aspect-oriented implementation is not automat-

ically extendable to arbitrary patterns without human intervention.

A useful discrimination made in [HK02] is between a defining and a superim-

posing role for a design pattern. The former is a role that “defines the participants

completely”, i.e. played by a class decoupled from the whole system except for the

pattern-related classes (such as the FlyweightFactory role), while the latter is a role

which adds responsibilities to a system class to implement the pattern’s behaviour

(such as the Flyweight role). The definition is however not a strict one. However,

using this loose partition it is easy to see how the proposed AODPs encapsulate the

code of the superimposing roles of the original object-oriented patterns as advices

and methods in the AODPs’ aspects, as both ECoR and SoC properties verified by

the AODPs imply that an application class playing a role should not be concerned

with the code for such a role’s implementation.

It is however possible to extend the approach to implement other design patterns

in the aspect-oriented fashion described in this dissertation, although not in a trivial,

automatic, way. The main difficulty encountered for such an extension is to write an

aspect that can be completely reusable as is, capable of supporting all the properties

described in section 1.1. The definition of one or more additional annotations to

describe a design pattern might be relatively a simple task, however the non-trivial

part of the approach is the definition of general pointcuts for any application, to be

coupled with advices that implement (add to the application) the additional non-

domain behaviour for the superimposing roles of the pattern. This problem can be

separated in two different but strongly related subproblems that the programmer

has to tackle. The first is the very definition of the pointcuts as hook points to any

application, in terms of AOP constructs, the second one is, given a context collected
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by the defined pointcuts, how to provide an advice’s code with enough context

information to be able to perform its own expected behaviour. In approaches such

as [HK02] the definition of a design pattern is not as problematic, as the partition the

authors make between an abstract and a concrete aspect allow them to define just

an abstract pointcut to be concretised in the concrete aspect, at the price of limiting

the reusability of their code, as the concrete aspect, and especially its pointcuts, has

to be specifically written for any instance of the pattern.

Other AODPs’ implementations have been analysed and sketched, as reported

in the following.

The Abstract Factory and Factory Method use a parameterised @Product annota-

tion as a way to mark the ConcreteProduct, used to discover all the implementations

of the Product interface, as the parameter specifies exactly the Product class. The

provided aspect intercepts the creation of all the instances of a class marked as Prod-

uct and decides which class to instantiate, among subclasses of the Product interface.

The created instance is returned to the client. The aspect enforces the creation logic

for any ConcreteProduct class (REoR), on the contrary the object-oriented version

does not help the programmer for possible wrong uses of a new call on a class which

should be managed by a factory.

The Mediator design pattern is implemented using an annotation on a subset of

the methods of a ConcreteColleague class. The aspect intervenes after such methods

have been successfully executed to call methods on other classes also playing as

ConcreteColleagues. The aspect connects all the ConcreteColleagues, however leaving

the code of classes independent of each other. The used annotation indicates the

name of classes playing as ConcreteColleagues, and in addition the name of the

method to be called. The aspect takes care of collecting the references to instances

of classes playing as ConcreteColleagues.

The Memento design pattern uses the @Memento annotation to mark a class

playing the Originator role, the aspect takes care of keeping a copy of the state of

any Originator object. The copy of the state is performed before any execution of

a method of an Originator class. The use of reflection permits to perform the copy

of the state of the object without knowing beforehand its structure, as the object is

introspected at runtime accessing its fields and respective values. A saved state for

an object can be restored using a provided method. The backup of the state can be

dynamically enabled or disabled using provided methods.
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3.7 Annotations’ connector aspect

To be able to use the AA and CA versions of the presented design patterns, the

programmer needs to explicitly define the roles to be played by the involved classes

using the provided annotations. While annotations provide a means to easily and

concisely superimpose design patterns’ roles onto application classes, it would be

still more desirable for the latter to be even annotation-free. This can be achieved

by means of a connector aspect, designed to annotate classes as necessary.

As a crosscutting instruction, AspectJ provides the declare instruction to inject

static changes to a class. An example of such an aspect, to be used with the

ProxyPattern aspect, is the following:

public aspect Connector {
declare @type: Account: @Proxy("Checker");

}

where the classes Account and Checker are forced to act as, respectively, a RealSub-

ject and a Proxy (as in figure 3.10). Once both the connector and the ProxyPattern

aspect are woven into the application, the ProxyPattern aspect will have the nec-

essary hooks to intervene at runtime.

Such a connector aspect is application-dependent, but the dependency is actu-

ally a simple parameterisation on class names, the connector structure being fully

generic. The use of such a connector aspect would improve the SoC criterion, leaving

untouched the involved class even from the annotation.

However, both options (direct annotation and connector aspect) are viable and

of practical use in different scenarios. For example, in the Proxy pattern both the

RealSubject and Proxy can change their names during development for evolution

purposes. Using the sample architecture of figure 3.10, where the Account class (a

RealSubject) must be changed to BankAccount, if the annotation is directly written

into the class source file, then no change to the annotation would be necessary, as

the annotation makes no reference to the class name on which it is applied. Instead,

using the connector aspect, the connector aspect itself must be changed to adapt it

to the new class name in its @type declaration6.

However, a quite opposite scenario could also happen. If a Proxy class name has

to be changed, e.g. Checker becomes AccountChecker, when using the annotation

6Such changes can be considered aspect-aware refactorings [HOU03, IZ03].
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on the class file of the RealSubject, all the annotation values in classes annotated to

use Checker as their Proxy must be changed with the new AccountChecker name.

Using the connector aspect changes must also be applied, but they are all localised

in the same file (i.e. the connector aspect).
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Specialised aspects for

aspect-oriented design patterns

The design patterns’ implementations discussed in this chapter are based on the ones

already discussed in chapter 3. For each proposed pattern’s implementation (i.e. an

aspect) a correspondent template version is derived, used to generate a Specialised

Aspect (SA). The already described reflective AODPs, albeit bringing an enhanced

modularity, might be slower than their respective object-oriented implementations,

mainly for the extensive use of introspective instructions and dynamic invocations.

The SA variants described in this chapter are put forward as a faster alternative,

also easier to read, of their respective AA and CA versions. Such versions need not

use the already defined annotations.

Such aspects are derived from a template that does not mention any specific

class in its code, instead it mainly uses the roles’ name (in place of the ones of

the involved classes) that should be played in the DP. A template offers a set of

code fragments –mainly being pointcuts, advices, and member variables– related to

abstract roles’ names. A template’s purpose is just to be a model, thus it is general,

yet not intended to be used directly. It defines the essential behaviour of a design

pattern without being coupled with any specific class.

Given an aspect template and a role–class mapping for a design pattern, such

templates are used to automatically generate an aspect to be woven into a specific

application to enforce the roles (and behaviour) of the pattern for that application.

The aspect is created from template fragments by mapping the roles’ names to

actual classes of an application, thus being a completely working and usable aspect
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for the specific application it is generated to. A SA is created for each instance of a

design pattern.

There are two fundamental differences between the AA versions already discussed

and the SA ones of this chapter. The generated, specific, aspect has no need to use

the reflective API to access information at runtime, thus it avoids the overhead

introduced with the AA versions of the design pattern. Hence, such specialised

aspects need not use a caching mechanism.

The approach using these specialised aspects need not use annotations marking

classes, as both pointcuts and advices are generated with the specific involved classes

for each role.

All the properties already discussed in section 1.1 still hold true for these versions.

In particular, the aspects that will be shown in the sequel, as the ones already

discussed, completely fulfil the SPoC property. In fact, given an application and

any version of an aspect (i.e. AA, CA or SA) for a design pattern, the behaviour

of the pattern can be added (or removed) from the application just by weaving an

aspect. This is exactly how the performance measures (section 5.2) were performed

for all the versions of a design pattern.

For example, using the Eclipse IDE [Pro11], the execution of the code of an

application using the SingletonPattern or the SingletonPatternSA (described in

the following), is just a matter of mutually excluding one of the two from the build

path, compiling and running the application. The application will behave in the

same way in both cases, however in the former case the aspect using reflection is

executed while in the latter it is the specialised aspect that is being executed. No

changes to any other class are needed.

The aspects’ generation is mainly intended to be used to produce the design

patterns’ code when developing a new application. However, the specialised aspects

can also be used in legacy object-oriented applications already implementing a pat-

tern: such applications can be converted to use the aspect-oriented implementations

for the related pattern. For this case some refactoring steps have to be performed

to alter the legacy classes to be able to use the SA for an AODP. For example,

when the SingletonPattern (in any version) is used to convert a SingletonBank

class into a Bank class that uses the SingletonPattern to play the Singleton role,

there might be some classes, clients of Bank, whose code uses the getInstance()

of SingletonBank and have to be modified to use the new instruction as the new
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1 public aspect SingletonPatternSA {
2 Singleton obj = null;

3

4 pointcut trapCreation(): call(Singleton.new (..));

5

6 Singleton around() : trapCreation() {
7 if (obj == null) {
8 obj = proceed();

9 }
10 return obj;

11 }
12 }

Figure 4.1: The SingletonPatternSA aspect’s template

Bank class allows.

In the next sections the solutions for the proposed implementations of SAs are

described, mainly highlighting the differences with their respective AA counterparts.

In section 4.6 are described the generation phases of the aspects and the refactorings

for converting legacy classes.

4.1 SingletonPatternSA aspect

The template aspect for the Singleton DP is shown in figure 4.1. The intent (and

behaviour) of the generated aspect remains the same as the previous version (thus

inheriting both SoC and SPoC ), that is to capture the invocations of new on classes

defined as playing the Singleton role (say Bank), so to let the clients’ classes to invoke

new instead of the (static) getInstance() method. Thus any client can invoke the

following

Bank b = new Bank();

to obtain a reference to the only instance of Bank, either freshly created by the

SingletonRolesBank aspect (figure 4.2) or already created before (thus verifying

REoR).

A sample generated aspect is shown in figure 4.2, with which a Bank class is made

a Singleton. At a first glance, the template may seem very similar to the original

64



Chapter 4: Specialised aspects for aspect-oriented design patterns

1 public aspect SingletonPatternBank {
2 Bank obj = null;

3

4 pointcut trapCreation(): call(Bank.new(..));

5

6 BankAsp around() : trapCreation() {
7 if (obj == null) {
8 obj = proceed();

9 }
10 return obj;

11 }
12 }

Figure 4.2: A sample specialised aspect from the SingletonPatternSA template

placeholder value

SingletonPatternSA SingletonPatternBank

Singleton Bank

SingletonPackage BankApp

Table 4.1: Sample substitutions for the SingletonPatternSA generation

AA aspect (figure 3.2). Although they may look similar, there are fundamental

differences between them.

The first difference between the AA version and this one is that the Singleton-

PatternBank aspect makes no reference to the @Singleton annotation, i.e. for the

developer there is no need to explicitly mark the Singleton (Bank) class to make

it play such a role, once the aspect is generated, all the programmer has to do is

to weave the aspect into the application, the SingletonPatternBank will intercept

only new invocations on the Bank class, as specified by the pointcut in line 4.

The advice code is basically the same as in the AA version, as they share the

same black-box behaviour, but no reflective calls are made: the advice code is aware

that it manipulates Bank instances. Thus, as it will store the only instance of Bank,

the singles map used in the AA version (line 2, figure 3.2) is not needed anymore.

The specific aspect can be automatically generated using values such as the ones

shown in table 4.1, i.e. to make a Bank class a Singleton. The generated aspect is

meant to be used only for the application it is tailored to, and contains in a single
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1 public aspect FlyweightPatternSA {
2 private Map<Integer, ConcreteFlyweight> flies =

3 new Hashtable<Integer, ConcreteFlyweight>();

4

5 pointcut trapCreation(Object k): call(ConcreteFlyweight.new(..)) && args(k);

6

7 ConcreteFlyweight around(Object k) : trapCreation(k) {
8 ConcreteFlyweight ref = null;

9 Integer hash = MyHashing.getHash(k);

10 ref = flies .get(hash);

11 if ( ref == null) {
12 ref = proceed(k);

13 flies .put(hash, ref );

14 }
15 return ref;

16 }
17 }

Figure 4.3: The FlyweightPatternSA aspect’s template

module all the code needed for the specific class to implement a Singleton behaviour,

thus the ECoR property holds true.

4.2 FlyweightPatternSA aspect

The template aspect encapsulating the Flyweight DP behaviour is shown in fig-

ure 4.3. All the code needed to implement the behaviour of the DP is put in the

aspect, thus ECoR is satisfied.

The class playing as a ConcreteFlyweight is left untouched when using the as-

pect, and thus can implement just its domain code and being reusable (SoC ); no

FlyweightFactory is needed as its responsibility is carried out by the aspect.

The aspect intercepts the creation of classes playing the ConcreteFlyweight role

providing the caller with an instance identified by the key parameter. A client

needing a ConcreteFlyweight instance would simply invoke new, without having to

resort to a FlyweightFactory as it happens in the regular object-oriented solution.

Thanks to this enforcing, as in the AA and CA versions, the REoR property is

satisfied. The management of the keys used to retrieve a specific instance of a
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1 public aspect FlyweightPatternMyCharacter {
2 private Map<Integer, MyCharacter> flies=new Hashtable<Integer, MyCharacter>();

3

4 pointcut trapCreation(Object k): call(MyCharacter.new(..)) && args(k);

5

6 MyCharacter around(Object k): trapCreation(k){
7 MyCharacter ref = null;

8 Integer hash = MyHashing.getHash(k);

9 ref = flies .get(hash);

10 if ( ref == null) {
11 ref = proceed(k);

12 flies .put(hash, ref );

13 }
14 return ref;

15 }
16 }

Figure 4.4: A sample specialised aspect from the FlyeightPatternSA template

placeholder value

ConcreteFlyweight MyCharacter

FlyweightPatternSA FlyweightPatternMyCharacter

Table 4.2: Sample substitutions for the FlyweightPatternSA generation

ConcreteFlyweight is the same as in the AA version, by the same MyHashing class.

The template holds no references to the @Flyweight annotation nor to the re-

flective calls used in the AA FlyweightPattern, however its observable behaviour

is the same.

If a MyCharacter class has to behave as a ConcreteFlyweight, the substitutions

needed for the generation of the specialised aspect (figure 4.4) are, e.g., the one

shown in table 4.2.

The FlyweightPatternMyCharacter aspect intercepts all new invocations on

the MyCharacter class from any client class. Once a new is trapped its argument

is hashed (line 8) so to properly recognise which instance of MyCharacter, stored

in the flies map, to return to the caller. So a client class can directly create a

MyCharacter object and, based on the arguments, will receive a reference without

having to be coupled with a FlyweightFactory (which does not exist in this version
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of the design pattern).

A difference with the AA version is apparent comparing the definition of the

flies map on the two aspects. The AA version, being general, needs to tell apart

different classes playing the ConcreteFlyweight role, and for each class it stores

a reference for each possible (hashed) argument. In the SA version this is not

needed. The SA version is customised for a specific class (such as MyCharacter)

and the flies map stores just the references to the instantiated MyCharacter ob-

jects, indexed by the (hashed) argument used for the creation. If another class (say

Weather), even in the same application, has to be treated as a ConcreteFlyweight, it

is sufficient to generate another aspect (say FlyweightPatternWeather), as it will

hold its own flies map, with Weather objects as values.

Removing the aspect from the application makes the MyCharacter class a regular

class, i.e. not a ConcreteFlyweight anymore, hence making it reusable in any other

context as it is, i.e. without changes. This accommodates for the SPoC property.

4.3 ProxyPatternSA aspect

The template for the ProxyPatternSA aspect is shown in figure 4.5. As with other

specialised aspects, it just holds the references to the roles to be played instead of

real classes. All the code implementing the Proxy behaviour for a specific set of

classes is obtained by generating the specific aspect from the template version. A

single aspect holds all the behavior of an instance of a Proxy design pattern, thus

ensuring both SoC and ECoR, as the aspect implements all the behaviour for the

pattern in a single module without implementing other concerns.

All the clients of a RealSubject (intended both as a role and as a class), directly

access it while the aspect will enforce the routing to the Proxy. So a client (and a

programmer) can not mistakenly access a RealSubject, thus satisfying REoR. Thus,

when a RealSubject class is not required to play this role for evolution purposes,

both clients and RealSubject remain the same. Also to remove the shielding of the

RealSubject class it suffices to remove the ProxyPatternSA from the application

(ensuring SPoC ).

The ProxyPatternSA aspect makes no reference to the @Proxy annotation. No

reflective call is used in its code, so, e.g., the trapCreation advice can directly

perform a new invocation on a Proxy class, while the AA version, to be general,
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1 public aspect ProxyPatternSA {
2 private Map<RealSubject, Proxy> proxies =

3 new WeakHashMap<RealSubject, Proxy>();

4 private RealSubject tmp = null;

5

6 pointcut trapCreation(): call(RealSubject.new(..));

7

8 Object around() : trapCreation() && !within(Proxy) {
9 tmp = (RealSubject) proceed();

10 Proxy newp = new Proxy();

11 proxies .put(tmp, newp);

12 return tmp;

13 }
14

15 Object around() : trapCreation() && within(Proxy) {
16 return tmp;

17 }
18

19 pointcut omit(RealSubject o) :

20 target(o) && !within(Proxy);

21

22 Object around(RealSubject o): trapCalls(∗ RealSubject.request1(..)) && omit(o){
23 return proxies.get(o).request1();

24 }
25 }

Figure 4.5: The ProxyPatternSA aspect’s template

has to perform an equivalent instantiation calling the newInstance() method and

reading the value of the @Proxy annotation.

To generate a usable aspect to implement a specific instance of the Proxy design

pattern a possible mapping for some placeholders values are shown in table 4.3. An

abridged version of the complete generated aspect to force the Point class to play

the RealSubject role is shown in figures 4.6 and 4.7, the aspect is meant to be used

just for the pair Point and ProxyPoint.

The differences with the AA version seem more discernible in this case, which,

by the way, is more paradigmatic with respect to other specialised aspects of design

patterns presented in this chapter.
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placeholder value

RealSubject Point

Proxy ProxyPoint

Subject PointInterface

request1 setX

request2 getY

Table 4.3: Sample substitutions for the ProxyPatternSA generation

The proxies map aims at keeping the pairs (RealSubject, Proxy), however there

is no need to have both the key and the value defined as generic Object type, as the

aspect is generated to hold, respectively, a Point and a ProxyPoint (cf. table 4.3).

Similarly, the tmp variable is declared to be a Point, instead of an Object.

The trapCreation pointcut (line 6, figure 4.6) is combined with other point-

cut designators to distinguish three1 possible cases. I.e. the single (general) advice

needed for the AA version, is split in three different advices, all capturing different

executions of new for a specific RealSubject (a Point). The generated code refers to

a Point class with two constructors, one without parameters and one with an int

parameter.

The first advices (lines 8 and 15, figure 4.6) hold essentially the same code,

however they accommodate two possible invocation of new on the Point class: with

(line 15) and without a parameter (line 8). This is necessary as the aspect does not

use reflection and have to treat each case in a different advice. Please remember

that albeit this code is duplicated, it is automatically generated.

These advices capture the instatiation of a Point class and put its reference in

the proxies list, pairing it with the Proxy (a ProxyPoint) automatically assigned,

yielding the exact behaviour obtained when alternatively using the AA version.

The trapCreation pointcut-related advice of the AA version, in its code, distin-

guishes between different new invocations. It recognises the ones made by a Proxy

and, instead of allowing the instantiation, returns its paired RealSubject reference

from the proxies map. This is now done via the advice in line 22 (figure 4.6),

which is executed when a new invocation made by a ProxyPoint (i.e. a Proxy) is

intercepted: i.e. the code is now split in different advices instead of being in the

1The exact number is dependent on the application, as it reflects the different constructors

existing for a RealSubject class. For more details on the generation please see section 4.6.
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1 public aspect ProxyPatternPoint{
2

3 private Map<Point, ProxyPoint> proxies = new WeakHashMap<Point, ProxyPoint>();

4 private Point tmp = null;

5

6 pointcut trapCreation() : call(Point.new (..));

7

8 Point around() : trapCreation() && !within(ProxyPoint) {
9 tmp = (Point) proceed();

10 ProxyPoint newp = new ProxyPoint();

11 proxies .put(tmp, newp);

12 return tmp;

13 }
14

15 Point around(int p0) : trapCreation() && args(p0) && !within(ProxyPoint) {
16 tmp = (Point) proceed(p0);

17 ProxyPoint newp = new ProxyPoint(p0);

18 proxies .put(tmp, newp);

19 return tmp;

20 }
21

22 Point around() : trapCreation() && within(ProxyPoint) {
23 return tmp;

24 }
25 ...

Figure 4.6: A sample specialised aspect from the ProxyPatternSA template (part 1 of 2)

same one and dependent on a conditional statement. These advices handle all the

possible cases for the creation of a RealSubject.

The trapCalls advice is substituted with all of the pointcuts and advices in

figure 4.7: such pointcuts and advices implement the same behaviour of the said

advices of the AA version. Any method call on a Point object is routed to a

method with the same name of the ProxyPoint associated object. The generated

code defines a set of pointcuts and related advices, instead of only one, to perform

this kind of invocations. Every public method of the original Point class are used to

generate pointcuts such as the ones in figure 4.7. The pointcuts and advices shown

in figure 4.7 are just a meaningful subset of the generated ones.
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1 pointcut omit(Point o) : target(o) && !within(ProxyPoint);

2

3 void around(Point o, int p0) : call(∗ Point.setX(int)) && args(p0) && omit(o) {
4 proxies .get(o).setX(p0);

5 }
6 void around(Point o) : call(∗ Point.resetY()) && omit(o) {
7 proxies .get(o).resetY();

8 }
9

10 pointcut omit1() : !within(ProxyPoint);

11

12 void around(Point p0) : call(∗ Point.setStaticPoint(Point)) && args(p0) && omit1() {
13 ProxyPoint.setStaticPoint(p0);

14 }

Figure 4.7: A sample specialised aspect from the ProxyPatternSA template (part 2 of 2)

Additional poincuts such as omit and omit1 are generated as reusable pointcuts,

e.g. the omit pointcut is used for two advices (line 3 and 6) to filter calls, as calls

to Point taking place inside the ProxyPoint class are allowed as it is a Proxy.

When the omit pointcut is used in conjunction with the pointcut in line 3, it

supports the advice in identifying calls to the Point.setX(int)method, thus letting

the advice to execute the setX()method, with the same captured actual parameters,

on the ProxyPoint object associated with the o reference in the proxies map.

When the omit pointcut is used with the advice on line 6, it supports the advice

to capture the resetY() method, without parameters. The omit1 pointcut is used

for invocations where the reference to the target object is not needed, such as for a

static method invocation. The advice in line 12 is an example of such an advice. It

is executed when the Point.setStaticPoint() is invoked, and instead of letting

its execution go on, it calls the method with the same name but on the Proxy.

4.4 ObserverPatternSA aspect

The ObserverPatternSA aspect template (figure 4.8) contains a pointcut, trap-

Observed (lines 5–6), to intercept the observed methods of a ConcreteSubject (e.g. na-

med observedMethod1(), as in figure), i.e. the methods that change the observable
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1 public aspect ObserverPatternSA {
2 private Map<ConcreteSubject, List<Observer>> subjects =

3 new WeakHashMap<ConcreteSubject, List<Observer>>();

4

5 pointcut trapObserved(ConcreteSubject obj) :

6 this(obj) && execution(∗ ConcreteSubject.observedMethod1(..));

7

8 after (ConcreteSubject obj) : trapObserved(obj) {
9 List<Observer> observers = subjects.get(obj);

10 if (observers != null)

11 for (int i = 0; i < observers. size (); i++) {
12 observers.get( i ).update(obj);

13 }
14 }
15

16 public void addObserver(ConcreteSubject subj, Observer obs) {
17 List<Observer> observers = subjects.get(subj);

18 if (observers == null)

19 observers = new LinkedList<Observer>();

20 observers.add(obs);

21 subjects .put(subj, observers );

22 }
23 }

Figure 4.8: The ObserverPatternSA aspect’s template

state of the ConcreteSubject, and a paired advice (lines 8–14) that is triggered after

the execution of such a method and informs all the registered ConcreteObservers

by calling their update() method with the captured ConcreteSubject reference (this

satisfies both SoC and ECoR).

This behaviour satisfies the REoR property as the programmer has no need

to explicitly call the update() method in its code, as it is the woven aspect that

will enforce such calls. Please note how this specialised aspect is free of both the

annotation’s and reflection API use.

The aspect keeps the subject map to associate each ConcreteSubject with the

list of its ConcreteObservers. The key for the map is a specific ConcreteSubject

class, and so the values of the list of ConcreteObservers. The list is managed by

the addObserver() method (lines 16–22), which does exactly the same as the AA
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1 public aspect ObserverPatternMyData {
2 private WeakHashMap<MyData, List<DataObserverInterface>> subjects =

3 new WeakHashMap<MyData, List<DataObserverInterface>>();

4

5 pointcut trapObserved(MyData obj):

6 this(obj) && execution(void MyData.addMember()) ;

7

8 after(MyData obj): trapObserved(obj) {
9 List<DataObserverInterface> observers = subjects.get(obj);

10 if (observers != null)

11 for (int i = 0; i < observers. size (); i++) {
12 observers.get( i ).update(obj);

13 }
14 }
15

16 public void addObserver(MyData subj, DataObserverInterface obs) {
17 List<DataObserverInterface> observers = subjects.get(subj);

18 if (observers == null)

19 observers = new LinkedList<DataObserverInterface>();

20 observers.add(obs);

21 subjects .put(subj, observers );

22 }
23 }

Figure 4.9: A sample specialised aspect from the ObserverPatternSA template

version, but aware of holding specific classes’ references, instead of generic objects.

To generate the fragment of the specific aspect shown in figure 4.9 the needed

substitution are shown in table 4.4. The ObserverPatternMyData automatically

notify all the registered ConcreteObservers stored in the subjects map when the

addMember() method changes the state of any object of the MyData class (which

is identified with its own list of observers, by its reference, i.e. the obj reference

captured in line 6 by the pointcut). The generated aspect can be woven or removed

at will without changes in both client and roles classes, thus ensuring SPoC.
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placeholder value

ConcreteSubject MyData

Observer MyDataObserverInterface

observedMethod1 addMember

Table 4.4: Sample substitutions for the ObserverPatternSA generation

placeholder value

Component Resource

Composite Dir

operation1 show

Table 4.5: Sample substitutions for the CompositePatternSA generation

4.5 CompositePatternSA aspect

The template aspect (figure 4.10) implements all the operations needed to manage

the lists (the comps map) of Component objects (so either Leafs or Composites),

allowing the Composite class to be free from implementing such code (fulfilling SoC

and ECoR).

The CompositePatternSA aspect intercepts all the calls to a operation1()

method on a Component object and automatically calls the same method on all

its children. As in the AA version, after the operation1() method has been called

on a child, it is also called the same method, with an additional parameter, on the

Composite object so to allow the collection of intermediate results obtained by the

children.

The template is used to generate specific aspects, such as the (fragment of) one

shown in figure 4.11. Some of the substitutions needed to generate the Composite-

PatternFileSystem are shown in table 4.5. The addChild() method is the only

extra method shown.

The comps map stores Resources, the interface from which a Dir class (i.e. a

Composite) inherits. The trapOperations1 pointcut intercepts all the calls to the

show() method advice on a Dir object. Similar advices are generated for any other

operation() method of the Dir class, these are not shown in figure. Once a show()

method is intercepted by the aspect it will be executed on each children of the co

object, alternating it with passing the return value (an int) to the show(int)
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1 public aspect CompositePatternSA {
2 private Map<Component, List<Component>> comps =

3 new Hashtable<Component, List<Component>>();

4

5 pointcut trapOperations(Composite co) :

6 call(int Component.operation1(..)) && target(co);

7

8 Object around(Composite co) : trapOperations(co) {
9 List<Component> children = comps.get(co);

10 if (children != null)

11 for (int i=0; i<children.size (); i++)

12 co.operation1(children.get( i ).operation1());

13 return proceed(co);

14 }
15

16 public void addChild(Component comp, Component child) {
17 List<Component> childLst = comps.get(comp);

18 if (childLst == null) childLst = new LinkedList<Component>();

19 childLst .add(child);

20 if (childLst . size () == 1) comps.put(comp, childLst);

21 }
22

23 public List<Component> getChildrenList(Object comp) {
24 return comps.get(comp);

25 }
26 }

Figure 4.10: The CompositePatternSA aspect’s template

method of co. After all the children are visited by the show() method, this is called

on the original co object it was trapped to. Please note that this aspect does not

need to use the trapRecursiveOperations pointcut (and related advice), to allow

the recursion on the children of the children of a Dir.

To remove the Composite role from the Dir class it suffices to remove the aspect

from the application, thus SPoC is verified. The REoR property is also verified as

the programmer has no need to write the code for the handling of the children’s list.
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1 public aspect CompositePatternFileSystem {
2 private Map<Resource, List<Resource>> comps =

3 new Hashtable<Resource, List<Resource>>();

4

5 pointcut trapOperations1(Dir co) :

6 call(int Resource.show(..)) && target(co);

7

8 int around(Dir co) : trapOperations1(co) {
9 List<Resource> children = comps.get(co);

10 if (children != null) {
11 int res ;

12 for (int i = 0; i < children. size (); i++) {
13 res=children.get( i ). show();

14 co.show(res);

15 }
16 }
17 return proceed(co);

18 }
19

20 public void addChild(Resource comp, Resource child) {
21 List<Resource> childLst = comps.get(comp);

22 if (childLst == null) childLst = new LinkedList<Resource>();

23 childLst .add(child);

24 if (childLst . size () == 1) comps.put(comp, childLst);

25 }
26 }

Figure 4.11: A sample specialised aspect from the CompositePatternSA template

4.6 Generation of specialised aspects

The presented aspects’ templates are used to create concrete aspects to be woven

into real applications. The generation of the aspects described in the previous

sections is intended to be used when the programmer develops an application aware

of the AODPs since the start of the development. This means that client classes

are developed so that they can use the AODPs version, e.g. a client for a Singleton

will not use a getInstance() method but will use new, as the Singleton role will be

automatically superimposed by weaving the SingletonPatternSA aspect with the

application.
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In this case the programmer has to generate an aspect for each instance of the

design patterns needed by the application, so if both classes Bank and Account have

to play the Singleton role, two specialised aspects (namely, SingletonPatternBank

and SingletonPatternAccount) have to be generated.

To perform the creation it is mandatory to identify the classes of the applica-

tion involved in the design pattern’s role superimposition, i.e. to define a mapping

between roles played in the design pattern and classes that should play these roles.

This can be done both manually, when the programmer knows which classes play

which role in the application, or automatically, using one of the available approaches

found in literature [PT06, DZS09, TCSH06].

The simplest case of SA generation is the substitution of role names in the

template aspect with class names to play that role, as in the tables already shown

(such as tables 4.4 and 4.3).

The generation of the SAs is performed in, basically, the same fashion for all of

the presented design patterns, with minimal differences among them. The case of

the Proxy design pattern will be analysed here since it encompasses the techniques

used for other SA generations.

The template is composed by some variable parts, such as the class placeholders’

names, and fixed parts, such as lines 11–12 in figure 4.5. Moreover, some pointcuts

and advices can be repeated in the final SA, because they can be applied to more than

one method call. For example, the trapCreation advice (lines 8–13 in figure 4.5)

has to be used for both possible constructor calls in the sample application, once for

the Point() constructor (which yields the advice in lines 8–13 figure 4.6) and once

for the Point(int) constructor (which yields the advice in lines 15–20). Please note

that not every part of the aspect might need to be repeated, as the proxies map

definition and the tmp declaration (lines 2–4 in figure 4.5) are unique for each pattern

instance. The information on which parts of the template should be repeated, at

this stage, are hardcoded in the generation tool (called SpecialiseAspect or sa).

Essentially, the sa tool internally stores the design pattern’s template as strings,

each string has to be repeated and/or modified to adapt the aspect to the mapping

used for a specific application. The classes specified in the mapping have to be

reflectively analysed to (i) verify the existence of classes and methods defined in the

mapping, and (ii) to obtain the signature for the involved methods (i.e., return type

and parameters list).
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For the Proxy design pattern the classes that have to play the RealSubject and

Proxy roles are (reflectively) checked to make sure they implement the same Subject

interface, as mandatory for the pattern itself2, should this control fail the generation

is aborted.

The sa tool repeats its addTrapCreation() and addTrapCall() methods re-

spectively one time for each constructor and method found in the Subject interface,

each time substituting the role name with the name of the class that has to play it.

The proxies map definition and tmp variable are inserted just once. The name of

the aspect is uniquely generated as a combination of both the pattern name and the

involved class names, so to avoid conflict with other specialised aspects involving

other classes.

The output of sa is written as a file, to be used with the application. A sample

of a specialised aspect has been shown in figure 4.5, generated with the mapping

shown in table 4.3. The generated aspect will be compiled using the ajc weaver3.

4.6.1 Refactoring of existing applications

The generation of specialised aspects is a mandatory phase when dealing with exist-

ing object-oriented applications and when the superimposition of roles to classes is

desired. Beside the specialised aspects’ generation, some additional refactoring steps

have to be performed on the existing classes that already use object-oriented design

patterns to let them use an SA version of the pattern. For example a client class

accessing a Singleton has to be changed not to use the getInstance() method4.

2Similar controls are performed for other design patterns, e.g. in the Singleton case the tool

checks that the designated class has no public constructor.
3Developers could change the code of classes and/or aspects for further evolution purposes,

then the ajc weaver will automatically perform checks on classes and aspects that assess whether

expected classes, methods and parameters are actually implemented. Checks at weaving-time

are performed for methods invoked and declared variables, however no alert is given when some

pointcuts do not match any point on the code. This is known as fragile pointcuts problem [Lad09].

In the proposed apporach, the generation of aspects according to the designated roles for existing

classes makes the fragile pointcuts problem less significant, i.e. when the interface of classes are

changed it will suffice to generate specific aspects again and these will accordingly match the new

interfaces.
4Several researchers investigated refactorings of object-oriented applications to convert them

into equivalent aspect ones, a notable example being [HMK05].
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Some of the changes needed have been sketched in the AODPs description, in

the following sections they will be described in greater detail.

Proxy refactoring

The structure of the Proxy design pattern is so that the removal of a Proxy from

an existing object-oriented application is facilitated, as only the client classes of the

Proxy are coupled with the Proxy class. The class acting as a RealSubject is not

coupled with its Proxy, so it need not changes, while a Proxy class is allowed to

access to its RealSubject, so its call must be preserved. These classes are preserved

from the refactoring5.

A client class may instantiate, or use, a Proxy in two ways: using a Subject

member or a Proxy one. When a p variable is instantiated, in both cases, a Proxy

object has to be instantiated. So if the programmer wants to use the AODP version

of the Proxy design pattern, once the sa tool generates the SA, it suffices to examine

the object-oriented application to find out all the references to the Proxy class in

non-role classes, given in the class–role mapping.

The refactoring steps are repeated for each reference of a Proxy (or Subject)

class found in non-role classes. Any Proxy variable is changed with the respective

RealSubject one, found in the mapping; if necessary, the type of the variable is also

changed into the Subject interface. E.g. for the mapping in table 4.3, the following

instruction

ProxyPoint p = new ProxyPoint(3,7);

is changed in

PointInterface p = new Point(3,7);

as the ProxyPatternPoint aspect will automatically take care of the ProxyPoint

instantiation by intercepting the Point creation.

For a p reference, both a Proxy or a Subject, its declaring type is changed, all the

method calls on that variable remain valid. This holds true by the definition of a

Proxy, as both Proxy and RealSubject have to implement the same Subject interface

and so the same public methods. Thus any existing method call, say p.show(),

5In the following, the classes which do not play any specific role for a design pattern are simply

called non-role classes.
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made on a Proxy object remains valid when performed on a RealSubject object, and

the original code need not to be changed.

After the refactoring has been performed the resulting client classes are no more

coupled with the Proxy class, the Proxy behaviour is obtained by weaving the SA

with the application.

Singleton and Flyweight refactoring

Both Singleton and Flyweight AODPs share similar refactoring steps, as both are

invoked by their clients only to obtain a reference to an object. In the Singleton

case a client invokes the static getInstance() method on the Singleton class, while

in the Flyweight one a client invokes a FlyweightFactory’s method passing a key as

an argument.

In the Singleton class, found in the class mapping, all the private constructors

have to be found and changed to become public. All the methods in the Singleton

class returning a Singleton object are checked to identify the getInstance() one,

once found this method can be removed from the class (its name is internally stored

for the following step). As the getInstance() method could perform arbitrary

operations before the instantiation of the Singleton object (e.g. memory constraints

checks), only the simple and general case shown in [GHJV94] is considered. The

static private member variable of Singleton class is removed6, as it will be stored

in the generated SA. The specific name found for the getInstance() method is

discovered in all the non-role classes of the application. Once found it has to be

changed to the equivalent call to the (now public) constructor of the Singleton class.

The object-oriented Flyweight removal is very similar. All client classes invok-

ing a FlyweightFactory method returning a ConcreteFlyweight reference have to be

changed to use the regular constructor. An invocation such as

MyCharacterInterface c = CharacterFlyweightFactory.getChar(x);

is converted to

MyCharacterInterface c = new MyCharacter(x);

using table 4.2 as a possible mapping. The FlyweightFactory class can be removed

from the application.

6Supposing only one of such variable is declared.
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Observer refactoring

To remove the object-oriented version of the Observer design pattern the following

steps have to be performed. Given the class mapping, the class playing as a Con-

creteSubject has to be changed to not extend the Subject superclass, so effectively

keeping it free to extends other domain classes instead of the pattern-related one.

This is done by removing the extends Subject in the class definition.

Since the object-oriented pattern relied on its (former) superclass it used the

notify() and setState() methods provided by the Subject superclass. Calls to

these methods are searched in the body of all methods of the ConcreteSubject class

and removed, as they are implemented by the generated ObserverPatternSA.

In the ConcreteObserver classes no changes need to be done, as their update()

method will be called by the generated specialised aspect.

All the non-role classes in the application must be checked to find out any call

to the attach() or detach() methods. These calls must be changed to use the

equivalent alternatives provided by the specialised aspect. So, given the mapping in

table 4.4, and given the a and v objects defined as in the following

MyDataObserver v = new MyDataObserver(); // ConcreteObserver

MyData a = new MyData(); // ConcreteSubject

the following instruction

a.attach(v);

found in a non-role class, is changed to

ObserverPatternMyData.aspectOf().addObserver(a, v);

thus obtaining the same effect of the original instruction.

Composite refactoring

To change an object-oriented Composite design pattern all the utility methods

(add(), remove() and getChildren()) must be changed from calls to the inherited

Component methods to the methods provided by the SA. For example, using the

mapping in table 4.5, if a dir object plays the Composite role, the following

dir.add(f);
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is changed to

CompositePatternFileSystem.aspectOf().addChild(dir, f);

As the order of the parameters of the object-oriented add() method is different from

the SA version’s, some changes in their order have to be performed. I.e. the dir

object has to be passed as the additional argument to the addChild() method.

From each Composite class (found by the mapping) the member variable storing

its children list has to be removed, as such lists are stored in the specialised aspect.

To find out the involved variable all the aforementioned utility methods are analysed,

as they all are supposed to access and manage exactly this list. The list can be found

by enumerating the objects modified by the add() and remove() methods (just one,

in the simplest case), comparing with the object used in a loop in the getChildren()

method, if all three methods use the same reference a match is found and the related

variable is assumed to be removable. In case of multiple matches the programmer

is asked to provide which variable to remove.

The last changes to be performed are related to the operation() methods listed

in the mapping. Such methods loop on all the children of a Composite and per-

form specific operations on them. All accesses to the member variable holding the

children list are removed, while the relevant code performing the operation on each

child should remain; the result (if any) computed by this code, will appear as an

input parameter of the amended operation() method to be implemented by the

Composite to collect the results on its children.
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Chapter 5

Assessment of aspect-oriented

design patterns

The previous chapters put the focus on the mechanisms that allow the proposed

AODPs to perform as a reasonable alternative to the original object-oriented ones.

In this chapter, section 5.1 illustrates the benefits that can be obtained by the adop-

tion of AODPs. They are evaluated in terms of advantages for the developer and

the resulting application modularity with respect to the object-oriented counter-

parts, showing how known problems1 of classical object-oriented implementations

can be avoided using the proposed AODPs. Section 5.2 deals with the performance

assessment of the proposed AODPs. A sample application using the proposed im-

plementations has been developed for both approaches, the regular object-oriented

and the aspect-oriented one. Both applications are functionally equivalent, the only

difference is how the design patterns are implemented. The AODPs have been im-

plemented in all the versions available for a given pattern, i.e. all AA, CA and SA

versions have been implemented where possible.

5.1 Overall assessment

A developer can choose to use both categories of proposed AODPs, the reflective ver-

sion (AA or CA versions) or the generated, non-reflective alternative (SA version).

Both alternatives provide similar advantages over the standard object-oriented im-

plementation of a design pattern.

1Several authors identify such problems, e.g. [HK02, HB02, Bos98].
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When a developer implements a design pattern using object orientation the code

of the involved classes is not compactly defined in a single module, instead it ends up

scattered over different classes of the application. This also means that the involved

classes become more complex to manage, to understand and to reuse. Moreover,

as the code implementing the pattern is dispersed over the application classes, if

a developer is unaware of such an implementation of the pattern, the presence of

the latter in the system is not evident. On top of that, the classes implementing

roles for a design pattern are not the only concerned by reusability and modularity

problems. Also the client classes of the role-implementing ones may have to be

especially tailored to fit the pattern format when the latter is accessed.

In the object-oriented Observer, for example, the ConcreteSubject class has to

be modified to host a list of ConcreteObservers and the code for the management,

e.g. the attach() or notify() methods. Such code could be provided by inheri-

tance, object composition or directly added to the ConcreteSubject class. However,

such methods are not related to the main domain responsibilities of the Concrete-

Subject, they are provided only to superimpose the behaviour for the role the class

has to play. Moreover, selected methods of the ConcreteSubject have to contain

calls to the notify() method, so to properly update the ConcreteObservers. Thus

such methods contain both domain code (such as the domain code which updates

the internal state of the ConcreteSubject) and pattern-related code (to notify the

ConcreteObservers of the state change). A ConcreteSubject class should, if possible,

be reused, however this additional non-domain responsibility makes it coupled with

pattern-related code and thus makes it less reusable. The ConcreteSubject class also

becomes more difficult to understand.

By using one of the ObserverPattern aspects proposed, a ConcreteSubject class

is not complicated with the list of ConcreteObservers or pattern-related methods as

these are defined in the aspect, not in the role-implementing class. The Concrete-

Subject’s methods can just be annotated using a connector aspect (section 3.7) to

define methods which the ConcreteObservers are interested in. This implies that the

notify() call is not mixed with the ConcreteSubject code, as such call is automati-

cally activated by pointcuts defined in the aspect by means of the said annotations.

The resulting ConcreteSubject class is thus simpler, contains only its domain-related

code and is more reusable. By using the the generated specialised aspect for the

Observer design pattern similar results are obtained. The ConcreteSubject class does
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not have to mix its code with the pattern-related one, as a generated aspect con-

tains the hooks and code for the specific classes to let the notify() method be

automatically invoked after an observed method is executed.

The object-oriented Observer implementation is tangled with the class imple-

menting the ConcreteSubject role, i.e. the code implementing it is interspersed with

the domain code of the ConcreteSubject class. This makes the pattern implementa-

tion difficult to recognise for the developer, as a class has to be analysed with care

to understand if the pattern is implemented and by what methods.

In contrast to the object-oriented implementation, using the AODPObserver, the

code for the pattern is all defined in a single module (the ObserverPattern aspect)

and by reading the annotations contained in the connector aspect the programmer

can immediately recognise the classes involved for both roles (ConcreteObserver and

ConcreteSubject). Instead, to recognise the occurrence of the design pattern in an

object-oriented implementation the programmer is forced to first recognise what

class plays the ConcreteSubject role, then to identify, e.g., the attach() method (it

might be called differently) and finally search all the classes of the application for

calls to the said attach() method so to understand the involved ConcreteObservers

classes. The same advantage over the object-oriented version is also available in

the proposed SA version. An occurrence of the pattern is encapsulated in a single

aspect, which, when visually inspected, makes clear for the programmer what classes

are involved in the design pattern.

Another problem typical of the object-oriented implementation of many design

patterns is the coupling of the application classes with the role-implementing ones.

This can be shown using the Proxy design pattern as an example. In an object-

oriented implementation a client class accessing a RealSubject is tightly coupled

with its shielding Proxy class. As the client should not directly instantiate a Real-

Subject but can, and should, instantiate a Proxy instead. This solution hinders the

reusability and evolution of such client classes. Clients are tightly coupled with the

Proxy class and could become less reusable. Moreover, when for evolution purposes

clients are allowed to directly access the RealSubject, they have to be modified to

accommodate this change, i.e. each reference to a Proxy class should be changed to a

RealSubject one2. Such changes have to be manually performed by the programmer

each time client classes have to be adapted, for example also if the RealSubject has

2More details on such changes can be found in section 4.6.1.
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to be shielded by a different Proxy class.

In such cases if the programmer uses one of the AODP versions no changes

are needed in client classes. Clients are written to directly access the RealSubject

class, instead of being tightly coupled with a specific Proxy shielding it. The Proxy

behaviour is obtained by weaving the ProxyPattern aspect and annotating the

RealSubject class. This makes client classes decoupled from a specific Proxy, thus

they remain unchanged, e.g., if reused in a different application, or if the actual

Proxy class changes or if a Proxy is added to (or removed from) a RealSubject. Even

using a specialised aspect the same results can be obtained, as the generated aspect

intercepts calls from the RealSubject and not from the Proxy.

As the previous discussion has shown, a programmer adopting the proposed

AODPs can write better code with respect to the object-oriented alternative. Client

classes can be designed to be independent of specific roles other classes play (such as

the aforementioned Proxy example), e.g. such classes do not mix domain code with

pattern-related code, thus producing simpler, more reusable classes.

Of the proposed AODPs, the AA and CA versions need some annotations to

be added to involved classes for an aspect to be activated, either by means of a

connector aspect or directly on the involved classes; such annotations are not needed

for the specialised aspects. In both cases the benefits are very similar, as the previous

discussion has shown. When designing a new application a programmer could adopt

any AODP versions: the choice is essentially related to the different running times

between the reflective and non-reflective alternatives (section 5.2).

Legacy object-oriented classes implementing a design pattern could also be used

by performing some refactoring steps (section 4.6.1) prior to their integration in

the system. After such classes are modified, both reflective (AA and CA) and non-

reflective (SA) AODPs can be used. By using the reflective approach, classes playing

specific roles for the design pattern have to properly be annotated, while in the SA

approach this is not needed, as the generated aspect contains the specific pointcuts

used to perform the expected pattern’s behaviour.

The proposed AODPs have been designed to allow a better modularisation of

the pattern code and its related classes. However, there are possible scenarios where

they can’t be adopted. For example the Proxy AODP can not be used as a virtual

proxy, as the aspect’s mechanisms can not avoid to create a RealSubject when a client

instantiate it, thus the aspect can not defer its creation to the moment the virtual
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proxy would perform the instantiation. Another limitation is due to the generality

of the used reflective technology, as in the AA and CA versions no type checks can

be performed at compile time on the string parameters of the annotations, thus

specific test suites may be adopted to ensure the final application not to throw any

related runtime exception.

5.2 Performance assessment

The goal of the performance assessment study is to find out how much the proposed

AODPs impacts the running times of an application, compared with the regular

object-oriented alternative.

An application using the AODPs is expected to be slower than the object-

oriented counterpart, with the execution overhead usually (and mainly) dependent

on runtime checks and searches [FF05], and especially the AA version of a design

pattern adds several reflective instructions to be executed in the normal program

flow.

Another reason for the expected slower running times is the use of the aspect

technology. The weaving of an advice into an application might impose some condi-

tional instructions to be inserted and evaluated at runtime, as the pointcut can not

evaluate them at compile time. For example the evaluation of target in a pointcut

can not be determined at compile time as the target object exact type might only

be determined at runtime, when the object is actually instantiated.

The approach for this assessment is to measure and compare just the design

pattern’s mechanisms running times between the implementations alternatives, not

the whole running time of the application. To do so the microbenchmarks approach,

and its related guidelines suggested in [FF05], has been used.

A microbenchmark measures the running time of a fragment of code, the mea-

sured fragments have been chosen to take into account the execution times of the

instructions related to the pattern management.

The basic form of a microbenchmark is to put a timing instruction just before

and after the fragment of code to be measured. As the running time of the fragment

is expected to be small (with respect to the clock resolution of the machine running

the tests), the fragment is repeated n times and the assumed running time is the

average of the n repetitions.
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Some of the suggestions followed from the guidelines are reported here and have

been applied to all the presented measures. The measured code has been “warmed

up” before the measure. I.e. the methods to be measured are executed before the

measure itself so to allow all the classes to be loaded before the measure, so the

class loading time is not counted in the running time. To avoid possible compiler

optimisations to misrepresent the measures, the method body are as small as pos-

sibile, however not empty (to avoid the compiler to inline them), a public static

variable is incremented, so, being accessible from outside, it can not be removed by

the compiler. In the machine running the experiments3 all the unessential operating

system’s services have been disabled to avoid interferences.

Each experiment was performed with n set to 1 million iterations and repeated

100 times, the resulting standard deviation of the measured running time for any

experiment is under 5% of the average running time. The values shown in the

following tables are all taken using these parameters.

The indexes (n,m) in the first column in table 5.1 tell the number of instances (n)

and classes (m) playing the different roles for the related design pattern. In partic-

ular:

• Flyweight : n ConcreteFlyweights of m different classes. Measurement: a client

requesting a (possibly new) ConcreteFlyweight.

• Proxy : n instances of Proxy, partitioned in m different classes (all implement-

ing the same Subject interface). Measurement: invocation of a shielded method

of a RealSubject.

• Composite: n Leafs of m different classes. Measurement: invocation of a

method on a Composite object, iterated on all its Leafs.

• Observer : n ConcreteObservers of m different classes (all implementing the

Observer interface). Measurement: invocation of an observed method which

triggers the n ConcreteObservers to be updated.

The possible scenarios to measure for the Singleton design pattern are a subset

of the Flyweight ones. This is due to the similarities of both pattern’s behaviours

and, thus, the proposed implementations. Both patterns have to return to the

3Apple MacBook, 2.26 GHz Intel Core 2 Duo with 4 GB RAM.
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client the unique instance of an object of a given class, with the Flyweight one

also recognising a limited number of different objects of the same class using a key.

However, preliminary experiments have shown no significant overhead in running

times of both patterns, hence just the Flyweight microbenchmarks are shown.

The microbenchmarks represent the complete execution time of the related me-

thod (for the object-oriented implementation) or the related method and the related

advice (for the proposed aspect-oriented versions). The instruction used for the mea-

surements is System.nanoTime() which, as the Java API [Sun07] states, “returns

the current value of the most precise available system timer, in nanoseconds.”

Table 5.1 reports all the microbenchmarks, expressed in µs, while table 5.2 re-

ports the ratio between aspect-oriented and object-oriented versions. The SA ver-

sion is presented for all the design patterns, just one of the reflective alternative is

presented, as they just differ internally and have the same black-box behaviour.

Nearly every running time for any aspect-oriented version is longer than the

object-oriented alternative, as expected. The AA version of Flyweight version is

between 9 and 16 times slower than the object-oriented version, while the SA version

provides better results being just between 4 and 5 times slower. The CA version of

Proxy is between 77 and 766 times slower and generally decreases when m increases.

However the SA version results bounded between just 5 and 27 times the object-

oriented alternative. The Observer design pattern provides smaller running times

increment in both the CA and SA versions, being respectively between 1 and 7, and

1 and 5 times slower4. The CA version of the Composite design pattern manages

to be between 5 and 32 times slower than the object-oriented alternative, while the

SA version is comparable with the object-oriented implementation.

Just by seeing these values, the overhead of the AODP approach might seem to

hinder its applicability whatever modularity enhancement it might bring. However,

the shown values can not directly tell how much an application using the AODPs

will be slowed down. To understand the actual slowdown for the final application, it

is possible to use a modified version of the Amdahl’s law [HP06] used to compute the

speedup of a CPU. It can be also be used to capture the slowdown of an application,

such as the object-oriented and aspect-oriented ones, as described in [FF05] and

briefly reported here for the sake of clarity.

The measured quantity for an aspect-oriented microbenchmark represents just

4Excluding the (1,1), (2,2) and (5,5) cases.
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Flyweight Proxy Observer Composite

n,m AA/OO SA/OO CA/OO SA/OO CA/OO SA/OO CA/OO SA/OO

1,1 9.09 5.06 77.8 5.87 1.15 0.39 8.21 1.63

2,2 9.6 4.26 104 5.7 1.19 0.42 7.38 1.56

5,5 11.28 4.33 135.75 7.61 1.32 0.6 5.72 0.68

20,1 15.28 5.62 592.04 21.18 2.33 1.41 32.59 1.91

20,2 13.07 4.5 420.89 16.44 2.37 1.33 23.39 1.35

20,5 13.94 4.66 319.68 12.02 1.92 1.04 9.08 0.59

50,1 15.63 5.6 766.66 27.79 3.91 2.56 24.44 1.65

50,2 12.54 4.34 696.97 24.19 3.73 2.45 21.08 1.61

50,5 14.94 4.9 563.11 20.35 1.78 1.49 10.19 0.88

100,1 15.68 5.61 753.23 23.98 7.04 5.67 13.73 1.28

100,2 14.26 4.84 473.42 16.25 6.52 5.26 13.52 1.38

100,5 16.54 5.42 446.16 15.96 2.53 2.42 9.04 1.02

Table 5.2: Ratio of the microbenchmarks for the design patterns’ versions

the time it takes for the AODP to be activated and pass the control to the related

method. E.g. in the Observer design pattern the time spent by the advice to cycle

through all the attached ConcreteObservers and invoke the update() method on

them, compared with the same operation performed by the object-oriented notify()

method of the ConcreteSubject. The time spent inside the update() method is not

counted in neither cases, just the activation mechanism is measured. Thus the

complete application slowdown is proportional to the time spent by the application

performing such pattern-related operations in the possible alternatives.

The slowdown is computed as follows

slowdown(x) =
RTime
NTime

+ x

1 + x

where

• NTime is the time spent for the execution of the regular, nonreflective, im-

plementation (i.e. object-oriented version);

• RTime is the time spent for the execution of the reflective alternative (i.e. aspect-

oriented versions);
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• x is the scaling factor representing how much time is spent in the application

doing anything else; x is a multiple of NTime.

It is worth noting that the slowdown curve asymptotically approaches the y = 1

line.

Using the slowdown function it is possibile to understand the realistic impact

on the running times of any application using AODPs compared with the same

application using the object-oriented ones.

In the test machine on which the measures have been performed, a simple

println("Hello! World") instruction has been measured (also as a microbench-

mark) and this takes 7.5 µs. Such information will be used as a reference to properly

evaluate the slowdown caused by the AODPs.

With such a value, the actual slowdown for the application, shown in figures 5.1

and 5.2, is computed as a function of the scaling factor, i.e. the time spent by the

application doing anything that is not pattern-management code. Such a scaling

factor is represented on the x axis. On the y axis it is represented the value for

the slowdown function. The parameters, RTime and NTime, used to compute the

curve are taken from table 5.2 for each scenario. Just a meaningful set of curves is

shown.

Some of the values shown in table 5.2 are below 1, this happens for several

SA versions. This means that such specialised aspects perform better than the

object-oriented alternative in that scenario, as it can also be seen by comparing the

values in table 5.1. The reason for such results is not completely unexpected, as

the SA versions are, in practice, an object-oriented version rewritten using aspects,

as no reflection is used in their code. Such values are excluded from both the

following evaluations and the slowdown curves, as the focus of the following is just

the slowdown.

The slowdown for the Observer in the CA version, with 20 instances of Con-

creteObservers played by 5 different classes (i.e. row (20,5) in the table), the ratio

RTime/NTime amounts to 1.92. Thus for x = 2 the whole application is 30% slower

than the object-oriented counterpart (as the slowdown amounts to 1.30), while with

x = 5 it becomes just 15% slower (as the slowdown is 1.15). In practice, the x value

can be compared with the time spent, for example, to perform the aforementioned

print instruction on the same machine. A single println instruction is almost 11

times NTime (7.5 µs/0.7 µs) for the CA Observer (20,5), thus for an application
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Figure 5.1: Sample slowdown curves (Flyweight and Proxy)

having a single execution of the said print instruction and the execution of the CA

Observer (20,5), the application will have to bear an overall 7% slowdown with re-

spect to the object-oriented alternative, i.e. slowdown(11) = 1.07. With ten print

instructions the application is just under 1% slower than the object-oriented alter-

native. Similar evaluations can be formulated on all the slowdown curves shown.

The values just mentioned are different for any AODPs, as the different curves

show. The ratio for the AA Flyweight design pattern ranges from 9.09 and 16.54,

respectively for the (1,1) and (100,5) cases. In the former case a single print instruc-

tion brings the slowdown to just 3%, while in the latter it takes 100 print instructions

to have the application be 15% slower. In the SA version the minimum ratio, 4.26,
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Figure 5.2: Sample slowdown curves (Observer and Composite)

brings a slowdown of just 2% with a single print instruction. With the maximum

ratio, 5.62, just 50 prints lead the application to be just 9% slower.

The CA Proxy design pattern has a minimun ratio of 77.8 and a maximum of

766.66, respectively for the (1,1) and (50,1) cases. This pattern implementation is

the slowest between all the proposed AODPs, however, 50 printing instructions are

sufficient to have any application using it to be just 10% slower than the object-

oriented alternative. In the SA case the ratio ranges between 5.7 and 27.79, in the

worst case with just 2 println an application will be 8% slower, while in the best

one just one print will make the application have a 1% slowdown.

The CA and SA Observer ’s ratios are small enough to let just 10 println in-
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structions to have an application be less than 5% slower in all the cases.

For the SA Composite just 2 println instructions make an application just 7%

slower in the worst case; in the worst case for the CA scenario 20 println brings

the same 7% slowdown.

Of course for a real application, and in general, the actual code outside design

pattern’s mechanisms will be much bigger than the few print instructions mentioned,

hence the slowdown affecting the application is in practice much smaller.

The main result of these evaluations is that the actual impact on the running

times of an application using the AODPs just looking at tables 5.1 and 5.2 might

appear worse than it really is. The slowdown has to be evaluated as the time

spent performing the pattern-related code with respect to the whole running time of

the application. Just several simple printing instructions can practically make the

proposed aspect-oriented versions run with the same running times as the object-

oriented ones, with the added benefits of a better modularity. Moreover, improve-

ments to mechanisms, e.g. handling dynamic invocations [Caz04], could be used in

order to further reduce execution times.
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Related work

Design patterns have been widely studied and several proposals have been made to

improve their modularity. This chapter reviews the literature on existing approaches

and compares them with the aspect-oriented proposals of this dissertation, putting

particular care in the analysis of the state of the art approach of Hannemann and

Kiczales [HK02].

6.1 Hannemann and Kiczales’ approach compar-

ison

In the pioneering work from Hannemann and Kiczales [HK02] the 23 design patterns

from [GHJV94] have been converted into an aspect-oriented version. Their approach

proposes to separate the code implementing a design pattern into an abstract and

possibly several concrete aspects. The abstract aspect of a design pattern usually

defines utility interfaces and the basic behaviour of the pattern, e.g. for the Observer

design pattern the iterative code for the notify() call on the observers. Such an

abstract aspect is meant to be reusable, as its code does not mention any specific

class. To be able to use the pattern it is however mandatory for the programmer

to manually write at least a concrete aspect, which acts as a connector between

the abstract aspect and the application. It maps the roles the actual classes play

and usually adds additional code to concretise the abstract methods defined in the

abstract aspect.

The first difference with the approach proposed in this dissertation is exactly
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about the reusability of patterns’ implementation. Although the abstract aspect

is absolutely reusable, no produced concrete aspect is. Any concrete aspect a pro-

grammer writes for a specific implementation can not be reused in other contexts

as by its very nature it is tightly coupled with the specific application it has been

written for. This causes a programmer to write very similar code1 any time a design

pattern has to be implemented in a different application, gaining just little benefits

from the approach’s usage. This is not the case in the proposal of this thesis, as

the AA and CA versions of a design pattern are completely reusable as they need

not additional gluing code to be attached to a particular application, thanks to the

use of reflection. For the generated aspects of the SA approach, while they are not

reusable, they can easily be automatically generated from a template.

It could be argued that this lack of generality in the aspects defined in [HK02]

allows the authors to tackle all the regular design patterns, as the abstract aspect can

simply define an abstract pointcut as a hook point with the application, delegating

the responsibility of its actual definition to a concrete aspect (i.e., ultimately, to the

programmer). However, for some design patterns, e.g. Observer and Proxy, most of

work has to be implemented as a concrete aspect.

In the following, selected implementations from [HK02] are compared with the

respective aspect-oriented versions of this dissertation.

Flyweight

The Flyweight version in [HK02] is organised in terms of abstract and concrete as-

pects, thus it has the already mentioned limitations about reusability and duplicated

code. In this approach the FlyweightFactory role, instead of being implemented in a

class, is implemented into a concrete aspect, thus all the clients need to explicitly

call its methods to get a ConcreteFlyweight instance. This voids the SPoC property,

as removing the ConcreteFlyweight role from a class implies to accordingly update

all the clients’ code accessing it. Moreover REoR is not satisfied, as the programmer

could try to instantiate a ConcreteFlyweight directly (using new), bypassing the Fly-

weight instantiation logic and obtaining a new reference. This can not take place in

the aspect-oriented versions proposed in this thesis, as the programmer would use

the new constructor oblivious whether a class is playing the ConcreteFlyweight role.

1In several cases this is also duplicated code.
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Proxy

A limitation of the Proxy implementation of [HK02] is that it does not discrimi-

nate between different RealSubjects, i.e. when two different RealSubjects of the same

class are instantiated, the concrete aspect will use the same Proxy instance for both

RealSubjects. The programmer is free to modify a concrete aspect to tell apart the

different instances, however the aspect-oriented versions of this dissertation auto-

matically performs the pairing with different Proxy objects. Thus [HK02] does not

properly support the REoR property.

Another limitation is that it might not be so easy to instantiate a concrete aspect,

as the programmer has to: (i) define the roles played by each class; (ii) define all

the signatures of all the methods to be proxied; (iii) redefine some of the concrete

aspect’s methods. Thus concrete aspects might differ just in their mapping between

classes and roles, i.e. the programmer has to replicate code for the concrete aspects

(thus ECoR is not satisfied).

In the versions of the Proxy proposed in this thesis it is easier and less error-

prone to define only the mapping with the roles by annotations, both directly or

with a connector aspect (i.e. SPoC is not verified in [HK02]), while all the code for

the pattern implementation is fully contained in the ProxyPattern aspect, instead

of an abstract aspect and several concrete ones (i.e. SoC is not verified in [HK02]).

Observer

The abstract aspect proposed in [HK02] defines the Subject and Observer roles and

contains the collection of ConcreteObserver instances, paired with the respective

ConcreteSubjects.

To define a concrete aspect to be used in an actual application, the programmer

has to: (i) define the (role, class) pairs; (ii) list all the observed methods’ signatures

which will trigger the updating logic; (iii) manually define the method to call by

the updating logic. The concrete aspect is far from being reusable, especially com-

pared with the proposed aspect-oriented versions of this dissertation which just use

annotations and thus exempting the programmer from the aforementioned burdens.

Moreover, the REoR is not satisfied in [HK02], as the programmer could simply

make a mistake and invoking the wrong class for a ConcreteObserver.
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Composite

The abstract aspect containing the basic behaviour of the design pattern defines its

roles as interfaces and provides several methods for managing the children’s lists.

It also generalises the operation to be performed using an implementation of the

Visitor pattern, thus forcing the programmer to reason in terms of such pattern

and use awkward code in the concrete aspect so to accommodate this design choice.

This imposition is not present in the aspect-oriented versions of this thesis, as

the programmer can reason about the domain problem independently of another

pattern, also the code of a role is thus contained in one place (the Composite class)

instead of being separated in both the Composite class and the concrete aspect,

i.e. the proposed versions yield a better SoC and satisfy CDoR.

6.2 Other approaches

Apart from the state of the art approach analysed in the previous section, the lit-

erature about design patterns presents many possible enhancements of the object-

oriented paradigm that would also provide a better modularisation of design pat-

terns, such as Composition Filters [AWB+94], the LayOM architecture [Bos99] and

various software architectures [BMR+96, MWY91].

Examples of the categories of limitations of object orientation when dealing with

design patterns’ implementations are the pattern’s traceability [Bos98, HB02], as

the object-oriented host languages used for a design pattern implementation do

not support them with a first class representation, and the reusability of the pat-

tern’s code. Arguably proposals such as Composition Filters and the LayOM ar-

chitecture have been evolved in concepts also implemented with aspect orientation,

and although studies such as [KAB07] reports on the difficulties of using aspect

orientation in Feature Oriented Programming [Pre97], many authors put forward

the use of aspect orientation in relation to design patterns implementations, such

as [NK01, HK02, HB02, HLW03, BH07]. Selected studies are reviewed in the fol-

lowing.

In [NK01] the authors propose to use aspects to separate the code of design pat-

terns from that of application classes. They put forward the use of aspect orientation

as a way to improve the modularity of the resulting code. They propose to sepa-

100



Chapter 6: Related work

rate a design pattern’s implementation into a reusable abstract aspect and one or

more concrete aspect, the former to encapsulate the application-independent parts

of the pattern, the latter to define the mapping with the actual application classes.

Concrete aspects have to be manually coded, and as such they are not reusable and

might need additional code to implement the desired pattern behaviour. Thus SoC,

SPoC and ECoR are not verified.

In [HB02, HB03] the authors advocate the use of advanced separation of con-

cerns techniques, especially aspect orientation, as a solution of what they consider

the main cause for some problems arising in design patterns’ implementations using

object orientation, i.e. caused by code scattering and tangling. An important exam-

ple of such problems is the traceability of an implementation, as the code of a design

pattern results spread into different modules and thus hinders code readability and

maintenance. Other problems they found are inheritance dependency and encap-

sulation breaching. The authors also stress the importance of an aspect-oriented

description of design patterns in catalogues such as [GHJV94].

The authors put forward the use of a single aspect to implement a design pattern,

so to enhance its traceability. Thus they provide the Visitor and Strategy imple-

mentation using a single aspect. However, such implementations, while improving

the traceability of the design pattern’s implementation, fail to be reusable as they

are especially written for a specific application.

In [MF04], the authors analyse the approach in [HK02] finding some limita-

tions affecting the proposed aspect-oriented version of design patterns. One of such

limitations is the missing reusability of some of the produced aspects. A deeper

experiment is performed in [MF08], where the authors start from an object-oriented

implementation of the Observer design pattern and, using known refactoring steps,

aim to derive the aspect-oriented version proposed in [HK02]. A result they find

is that even in small applications the reuse of the abstract aspect of [HK02] is not

trivial to exploit, as the authors state: “though the abstract aspect from [HK02]

is potentially reusable, it had to undergo invasive changes in order to adapt it to

the simple Java example [used]”. However, the abstract aspect they derive from the

refactoring steps is very similar to the original in [HK02], while the concrete aspect

is tightly coupled with the application, thus retaining the issues already mentioned.

The author of [Can04] proposes the use of specific keywords as an extension to

aspect-oriented languages so to allow a better language expressiveness when deal-
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ing with design patterns. Some of the proposed keywords are roles, generic and

class-set. However a keyword like multiple seems useful just for a few design

patterns. These can be used to define an abstract aspect as a base for the pat-

tern implementation. Such an abstract aspect must be extended by a concrete one

that defines the role–class mapping specific for the application. This reminds other

approaches already analysed with the added limitation of forcing the programmer

to deal with the specifically defined additional keywords. For this approach SoC,

ECoR and SPoC are not satisfied, whereas REoR is difficult to evaluate, in that no

implementation is provided of an environment supporting the proposed keywords.

Moreover, the approach would be based on a non-standard weaver, making it less

general.

The authors of [HU03] propose parametric introductions to allow the insertion of

code fragments into classes, such additional code depends on parameters used in the

weaving process. This approach is based, like the previous one, on specific extensions

to be applied to the aspect-oriented language to be used, and thus providing the

programmer with more powerful, non-standard, pointcuts. For example a C class

that has to play the Singleton role forces to programmer to define a parametric

aspect that inserts, via parametric introduction at weaving time, the getInstance()

method into C. The classes affected by the introduction can be described in a concrete

connector aspect thus making the abstract aspect reusable. The connector aspect

might remind the aspect proposed in section 3.7, however the one they propose is

based on a non-standard language and produces non reusable classes, while the AA

and CA approaches use the connector aspect just to statically inject annotations

into application classes, not to change their code, but to prepare them to (re)use

the related aspects. SoC and SPoC are not satisfied, as the modified classes still

mix their domain code with the design pattern one, also ECoR is not satisfied as the

programmer could by mistake avoid using the getInstance() method introduced.

Moreover all clients need to be updated when the C class should not play the Singleton

role anymore.

In [KRH04] another extension of AspectJ is proposed. This one allows logic

variables to be used to represent packages, types, fields and methods within “generic”

aspects. The values for such logic variables are set by conditions’ evaluation on join

points, this is similar to the parameters in the parametric introductions approach

already described, as the variable would ultimately be tied to actual application
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members. They implement the Decorator design pattern in a “generic” aspect which

however still needs specific aspects to define roles played by application classes. SoC,

ECoR and SPoC are not satisfied.

About the benefits of aspect orientation for design patterns implementation

the authors of [GSF+05] thoroughly studied the aspect-oriented implementations

of [HK02] and obtained a quantitative assessment of the benefits of the aspect-

oriented approach by comparing all the patterns of [GHJV94] in both object- and

aspect-oriented fashion. The metrics used are extended versions of the classic object-

oriented metrics [CK94] to be used for aspect-oriented implementations. Some

aspect-oriented implementations resulted in more complex or coupled code than the

object-oriented versions, however for a great variety of patterns, values for metrics

such as coupling, cohesion and size are improved.

In [HMK05] an aspect-oriented refactoring approach for generic crosscutting con-

cerns (cf. section 2.2) is put forward. The authors apply it to the special case of

design patterns implemented as in [HK02]. The refactoring approach forces the

developer to describe a refactoring (e.g. a design pattern occurrence in an object-

oriented application to be changed into an aspect-oriented alternative) in terms of

roles and relationships between roles. The description has to be defined by means

of a non standard notation which uses keywords like hasArgument or aggregates.

The authors test the approach to refactor an existing object-oriented application im-

plementing several design patterns. Such patterns are converted in their equivalent

aspect-oriented version as in [HK02], i.e. using an abstract aspect and possibly sev-

eral concrete ones. Thus the implementation resulting from the said aspect-oriented

refactoring approach would still have the same limitation of the implementations

of [HK02].

How to adopt such an approach with a different modularisation of a design pat-

tern, such as one of the versions presented in this dissertation, is not straightforward.

E.g. whether their assumption of an abstract aspect representing the general pattern

behaviour is mandatory or not. While some basic refactoring steps they proposed

could remain unchanged, others might be changed to accommodate different design

pattern structures. E.g. the Observer of [HK02] needs to define a Subject interface

which is not needed in the AODP version presented in this thesis, thus would lead

to a different formulation for the refactoring steps of the same pattern (implemented

in a different fashion). Further studies might lead to an extension of their approach
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to also encompass AODPs. Such an extension, however, would just be limited to a

different way of refactoring for the SA approach.

The authors of [FF05] put forward a generative approach for design patterns,

however just by using object orientation and computational reflection. Their ap-

proach extends a class, say C, on which a design pattern’s role has to be imposed,

by subclassing C. The automatic generation of a subclass of C is performed by in-

trospecting the original class. For example in the Singleton design pattern the

generated subclass would have a generated private constructor which the clients is

expected to use. Such generation would however produce object-oriented imple-

mentations, so it would not appropriately satisfy SoC as the final class would mix

both domain and pattern related code. The REoR property is not satisfied as a

programmer could also explicitly invoke a new on the original class. Moreover, the

SPoC property would not be satisfied as all the clients are tightly coupled with the

generated subclass. E.g. clients are expected to invoke the static method on the

subclassed Singleton class and have to be accordingly changed when such class does

not play the role anymore.

Other approaches, loosely related to aspect orientation, have been proposed and

could be used for design patterns’ implementations, with Object Teams [Her03] and

CaesarJ [AGMO06] being two notable examples.

In Object Teams an object team defines a set of collaborating classes (called

roles), variables and methods in a single module. With the callout mechanism, a

team can superimpose a role to a base class, i.e. mapping a method from a role class

to the base class. This allows the invocations of the method of a role class to be

redirected to the correspondent base class’ method.

The callin mechanism is similar to a pointcut in aspect-oriented languages, as it

allows a method of a role class to be called before, after or instead of the correspon-

dent method on the base class. This is defined by mapping a method on the role

class to a method on a base class. Even if similar to some AspectJ constructs, the

mapping is defined according to the method’s name and thus can not be reused.

A Proxy implementation using this language would use the callin to redirect

the calls for each method of a RealSubject class to the related Proxy one, however

it would require this method mapping to be manually expressed for each pair of

methods, yielding non-reusable code coupled with such specific classes.

The CaesarJ language [AGMO06] uses the idea of family class (or cclass) that
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groups a set of collaborating classes, it also provides a join point language with the

syntax in common with AspectJ.

A design pattern can be implemented writing an abstract cclass defining the roles

for the pattern and additional managing code, then a concrete cclass can be defined

to connect it to actual classes on which the roles have to be superimposed. The

authors of [SM08] compared several implementations of design patterns in AspectJ

and CaesarJ. The results are not conclusive enough but slightly leans towards the

use of CaesarJ, however the implementations suffers from the same limitations noted

for the [HK02] approach, even using the specific mechanisms offered by CaesarJ, as

the reusable components have to be connected to the actual application classes thus

producing non reusable code as in [HK02].

A declarative metaprogramming approach is presented in [MT01] and used to

generate specific design pattern code for an application and to manage its evolution

and refactoring also by generating code. The proposed framework is based on a

variant of Prolog which uses predicates to represent object-oriented constructs. The

target language is Smalltalk. E.g. class(?C) is used to state that C represents a

class, and abstractMethod(?C, ?M) to state that method M of the C class must be

abstract.

Such predicates are used by the programmer to generate the code for a design

pattern, check for constraints to be verified by the pattern (such as inheritance

relationships) and to perform refactoring transformations. To perform such tasks

the programmer has to write several lines of Prolog code. In the case of generated

classes for a design pattern the programmer has to include additional fragments of

code to complete the pattern implementation. This is different from the SA aspects

proposed in this dissertation, as, once generated, they do not need any further

adjustments.

Moreover, the generated Smalltalk code does not verify properties such as SPoC,

as when a design pattern needs to be removed all its client classes have to be updated,

and REoR, as, e.g. for the Singleton design pattern, a programmer could also create

a new object instead of invoking the getInstance() method.
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Conclusions

This dissertation presented a novel implementation of some design patterns, which

allows to avoid some common problems that arise using object orientation.

Such implementations allow a design pattern to be compactly defined in a single,

completely reusable aspect, without any further specialisation needed, thanks to the

use of computational reflection. This is a step forward from the state of the art

approaches. Indeed these force the programmer to separate a design pattern into an

abstract and, possibly more than one, concrete aspect, of which only the abstract

one is reusable.

An application employing the proposed versions can use the aspect implementing

a design pattern as a module inserted into (or removed from) the application by

simply adding (or removing) the aspect. The behaviour of a role played by a class

in a design pattern is provided by the aspect and activated by annotations, which

can directly mark involved classes or can be collected in a connector aspect. In

standard object orientation practice, when a class is evolved to play a role for a

design pattern, usually other application classes need to be updated to make use

of such change. Instead, using the proposed approach, no other application classes

need to be updated, as there is no coupling between them and the role-implementing

classes.

The provided implementations also offer a better separation of concerns. A class

just contains its domain code, instead of mixing it with the code implementing

some design pattern behaviour, which is fully included in the aspect. Such classes

are reusable and easier to evolve, as they are not concerned with additional code

unrelated to their main responsibility.
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Chapter 7: Conclusions

The code implementing a desing pattern is not dispersed in different classes, but

it is instead accessible from a single module. This makes it easy for the programmer

to understand the presence of the pattern in the application and to easily discover

involved classes by simply reading the connector aspect.

Another important property of the proposed implementations is the enforcing

of a role behaviour for a design pattern. By means of aspect orientation the addi-

tional behaviour of a class for a given role is automatically enforced by activation

of the advices, preventing errors from the programmer such as forgetting to update

observers about a state change in an observed class.

Up to two different variants have been provided for each design pattern: the

cached version, which avoids as much as possible repeating the execution of compu-

tational reflection methods, and the specialised, generated, version which does not

use reflection at all. Moreover, specialised aspects do not make use of annotations

as they can be generated for given classes.

All versions provide the same behaviour, each version yielding different run-

ning times for an application using it. Such running times have been extensively

compared with the corresponding times obtained using standard object-oriented im-

plementations. In many cases the aspect-oriented design patterns have been found

comparable, and thus convenient to use, both for the modularity they bring and

their performance.

The presented aspects can be used since the beginning of the design phase of

an application, however a refactoring approach has also been put forward to make

them applicable in legacy object-oriented applications. Such legacy applications,

once refactored, can use any version of the proposed implementations.

A drawback of the proposed approach is its non-trivial extension to other design

patterns. Indeed, it has been proposed just for a subset of the most common design

patterns, but as a future line of research it would be interesting to further the study

of such implementations for other design patterns. It would also be interesting

to investigate how to find a general method to convert any object-oriented design

patterns’ implementation into its aspect-oriented version.
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