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INTRODUCTION 

 

 

A model is a simplification of a real system so that we can better understand the 

system we are developing or analysing. Modelling is an essential aspect of any 

engineering field. Engineers, managers and domain experts use models for many 

practical reasons Just to name a few: a model helps us to visualize a system as it is or 

as we want it to be; allows to specify the structure and the behaviour of a system; 

gives us a template that guides in constructing a system and documents the decision 

we have made. In most circumstance a model must be supported by appropriate 

evaluation methods that allow us to retrieve some specified measures of interest of 

the system.  

The main objective of this thesis is to define a modelling formalism, provided by 

some type of evaluation methods, applicable in reliability engineering for modelling 

and evaluate reliability measure of interest complex systems. In the last years 

reliability engineering has been concerned with systems subjected to complex 

interdependencies between their parts. Since the behaviour of such systems is driven 

by these interdependencies, the appropriate way of capturing them in a model of the 

system has gained interest from academic and industrial practitioners. For instance, 

the typical classes of interdependencies existing in reliability engineering are those 

involving redundancy management, share load, maintenance management in 

presence of limited resource, stochastic associations between parts, shared load, etc. 
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 The aspect of capturing interdependencies, however, has not been always the 

main driver in reliability modelling. Early works in reliability engineering made use 

of the assumption of stochastic independence between the system parts and did not 

consider any kind of functional dependency deriving from redundancy and 

maintenance management. Fault Trees (FTs) and Reliability Block Diagrams (RBDs) 

are an example of modelling formalisms where any kind of possible dependency is  

neglected. 

As a matter of fact, these formalisms do not consider temporal dependencies in the 

logic that brings to the failure at the system level, too. For instance, the possible 

extension of a fire could be avoided if the fire alarm works properly at the time the 

fire starts. Thus, the common AND condition of a FT “alarm failed-fire” can have 

two meanings depending on which of the two events occurred before. However a FT 

cannot handle the difference between the two scenarios. 

In order to deal with stochastic associations and functional and temporal 

dependencies many practitioners switched their attentions to Markov models. A 

Markov model represents a system by a set of states and transitions between states. 

States represent different conditions the system can be in. For instance, in a Markov 

chain is possible to distinguish the state “alarm failed-fire” depending on which of 

the two events occurred before. Transitions, on the other hand, represent possible 

events that may occur given the system is in a specific state. 

However, practitioners almost immediately realized that Markov chains present some 

limitations that impact the resolution, construction and fidelity in the representation 

of the true behaviour of the system. As a matter of fact, Markov chains results in 

very large state spaces, i.e., high number of states representing the possible system 

conditions. Moreover, Markov chains support only exponential distribution for the 

time occur of events. Extensions taking into account general distributions have been 

considered. This has lead to semi Markov process, regenerative semi Markov 

processes and to some extend also to generalized semi Markov process. However, 

analytical solution for these models presents still many limitation such as the 

maximum number of simultaneously enabled transitions with general distributions, 

the kind of general distribution itself and again the size of the state-space. 
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Driven by these conditions discrete event simulation and Monte Carlo simulation 

have been extensively used to solve system of general complexity. There is a large 

literature on simulation methods and applications to complex systems for reliability 

studies. The main drawback concerns the time that is needed to obtain a reliable 

result, thus, researchers have been exploiting the use of appropriate techniques to 

reduce it, e.g., variance reducing techniques. 

Both Markov models and discrete event simulation models however present 

another main disadvantage: they are not provided by an high level language of 

description. As a matter of fact, the manual construction of a Markov chain is a 

tedious and error prone work. Such can be a discrete event simulation model if the 

constructing procedure is not well formalized. Generalized semi Markov process aid 

in the construction of simulation models, but still they lack of an higher level of 

abstraction that would be beneficial to easily capture the structure and the behaviour 

of the system at hand. 

High level formalisms, both using analytical or simulation evaluation methods, 

have been proposed. In this thesis we shall refer to these formalism as hybrid, since 

they are characterized by a non state-space model, e.g., FTs, but, at the moment of 

their birth were supported by an algorithmic conversion of the model into a Markov 

chain. 

There are several kinds of hybrid formalisms: some are an extension of 

methodologies like FTs and RDBs, e.g., Dynamic Fault Trees (DFTs), Driven 

Boolean Markov Process (DBMP), Dynamic Reliability Block Diagrams (DRBDs); 

some are extensions of earlier works on distributed systems, e.g., Stochastic Petri 

Nets (SPNs), Stochastic Reward Nets (SRNs), Stochastic Activity Networks (SANs), 

Stochastic Process Algebra (SPA); etc. 

With the aid of these formalisms a wide class of dependencies existing between 

system parts can be captured in a model of the system. Moreover, at the state of the 

art, both analytical and simulation techniques are provided for the evaluation of 

specific measures of interest. 
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Driven by experience with hybrid formalisms and the tools that implement them 

we have found some limitations concerning their applications in reliability studies. 

While extensions of classical reliability models, e.g., FT and RBD, impose still some 

limitation of the kind of behaviour that is possible to represent, extensions of models 

like Petri nets and Process Algebra result too general to represent the kind of systems 

we deal with.  

For instance, Dynamic Fault Trees introduce dynamic gates to the set of Boolean 

gates of classic Fault Tree. With the introduction of dynamic gates some class of 

functional and temporal dependencies and redundancy management have become 

representable in a FT-like model. However, many other kind of dependencies cannot 

be considered and, for instance, there is still a lack of applications to evaluate 

measure of interest in case of repairable components. 

On the other hand, stochastic extension of Petri nets allow to model “any kind of 

system” by a net representation of the system. While concerns about the “flat” 

structure of the net has been addressed and resolved in formalism like Stochastic 

Reward Nets, Stochastic Activity Networks and even Stochastic Process Algebra, 

some issues remains about the fact that, due to the generality of the formalism, a 

model is often subjected to the specific modeller preference. Therefore, debugging 

and maintenance of the model result often difficult tasks. Moreover, for instance, 

Stochastic Activity Networks introduce a set of predicates and functions that are not 

supported by graphical means. 

Thus, while extensions of formalism like Dynamic Fault Trees in order to increase 

their generality are desirable, one would like to limit the modelling capabilities of 

stochastic extensions of Petri nets maintaining however a as more general language 

as possible for the kind of studies that one is concerned about. 

Driven by these considerations we present a modelling formalism based on 

interdependent transition systems, i.e., a set of interdependent state-space models, 

supported by a set of additional variables. These variables take the form of inputs and 

outputs of a set of communication functions, that while allowing different transition 

systems to communicate, are the mean to model dependencies between the modelled 
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elements of a system. Moreover, in most circumstances these functions can be 

expressed graphically by a tree structure (a Fault Tree-like structure) that maintains, 

together with the state-space models, an high (graphical) level language of 

description of the system. 

We call the formalism Adaptive Transition System (ATS), since, in our vision, 

transition systems adapt their behaviour on the basis of the evolution of other 

transition systems as time progresses. This adaption is represented by an opportune 

model of transitions that is able to capture the effects of changes in the system. 

Our model of transition takes on from formalism like Stochastic Activity Network. 

We model a transition by a set of attributes that determine the time to complete of a 

transition. On the basis of these attributes the supporting mathematical law together 

with its parameter can change as time progresses. Moreover a transition can exist or 

not and can be restarted or not on the basis of some condition. 

The conditions that define the behaviour of a transitions are specified by a set of 

transition functions whose inputs are a set of variables that register some condition of 

the evolution of the system. At every change of these variables, transition functions 

are evaluated in order to adapt to the new reached conditions. 

Variables responsible for registering the state of the system must be set in such a way 

that the class of information used to define the interdependencies existing in the 

system can be taken into consideration. We will show that all the class of 

dependencies seen above can be considered by the introduction of three kind of 

variables that register: the state, the last completed transition and the time at which 

transitions most recently completed. 

Moreover, in evaluating some kind of performance measure, one could be interested 

in the effect that the conditions specified by these measure have on the behaviour of 

the system itself. For instance if one want to evaluate the reliability with repair of a 

system, one should force all restoring activities to cease when a system level failure 

condition is met. 

Finally, ATS can be solved via simulation or, under some constrain, through 

conversion into a Markov chain. From a simulation point of view ATS results very 
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powerful since their execution logic is specified in terms of event as in generalized 

semi Markov processes. The definition of the updating structure of variables is also 

well specified. From an analytical point of view the main advantage of ATS lays on 

the class of systems that are representable under the Markov assumption, i.e., 

dependencies on previous states are taken into account by an extended definition of 

state that consider the ordering of occurrence of events. However, for this reason the 

resulting state space is very large in size. Both evaluation techniques can be 

improved by considering only the subset of variables that are considered in the 

definition of the dependencies and measures of interest of the system. 

The remainder of this dissertation is organized as follows: 

- In Chapter 1 we present an introduction of the basic concepts of reliability 

engineering. We give the definition of a system; present some development 

that have been introduced in the reliability community and classical measures 

of interest; and illustrate the main difference between classical reliability 

models and state-space models and between analytical and simulation 

evaluation methods. 

- In Chapter 2 classical reliability models and state-space models will be 

described in more details. Thus we give the definition of FT, RBD and 

Markov chains and their extensions. 

- In Chapter 3 we introduce some of the hybrid formalism introduced above. 

Special attention will be given to Dynamic Fault Trees and Stochastic Activity 

Networks. 

- In Chapter 4 we present a tool implemented in Simulink for the evaluation of 

Dynamic Fault Tree via simulation that we call MatCarloRe, i.e., Matlab 

Monte Carlo Reliability. Moreover, an extension of the tool in Matlab with a 

Java interface is also presented. The extension was developed in order to 

overcome the limitation of the Simulink tool to handle shared spare 

components. 

- In Chapter 5 we present Adaptive Transition Systems in detail. We define the 

variables and functions of the model, the execution logic and the solution 
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techniques. Finally, a simulation ATS model for a real case study of Power-

Telco critical infrastructures is shown. 

- In Chapter 6 we show how to convert an ATS model into a Stochastic Activity 

Network model. We show the benefit of using ATS as an high level formalism 

to build SAN models with a standardized structure. 

- In Chapter 7 an ATS application to solve Repairable DFT, a new concept of 

Dynamic Fault Trees that has not yet been introduced. We show how ATS are 

capable to extend the kind of dependencies handled by DFTs. 

Finally, we report some conclusion and future work. Moreover, Appendix A is a 

collection of accepted publications in international journals and proceedings of 

international conferences; in Appendix B we report the developed MatCarloRe 

scripts and in Appendix C we give some more insights and report the Matlab scripts 

of the case study introduced in Chapter 5. 
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CHAPTER 1 

 

1.1 INTRODUCTION 

Reliability Engineering concerns the study and evaluation of a set of performance 

indexes that express the “ability” of a system to perform a required task during its 

life-cycle. Reliability engineering provides the theoretical and practical tools 

whereby these measures of performance can be specified, designed, predicted, tested 

and demonstrated [1].  

Reliability is concerned with failures. The effects of product failures rang from 

those that cause minor nuisances to catastrophic failures involving loss of life and 

property. Reliability engineering was born out of the necessity to avoid such 

catastrophic events. 

Nowadays, however, increasing attention is put also in those products whose 

failure does not have any major life and death consequences to the consumer. Due to 

increasing product-awareness of modern consumer, products that do not perform in a 

reliable fashion are no longer tolerated. Therefore, customer dissatisfaction can have 

disastrous financial consequences to the manufacturer. Moreover, it is essential for a 

company to know the reliability of its product and to be able to control it. Moreover, 

to succeed, a company must produce products that work successfully for the desired 
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period of time, but also must avoid the design of products that operate longer than 

the required life. 

In this chapter we give the basic definition employed in Reliability Engineering. 

We start, in Section 1.2, by giving the definition of system as a ensemble of 

hierarchical interacting parts. Successively in Section 1.3 we give the formal 

definition of dependability and its performance indexes. Section 1.4 concerns with 

the definition of the hazard rate of a system. In Section 1.5 we give a classification of 

the common modelling formalism and evaluation methods in Reliability Engineering 

and finally in Section 1.6 we report some conclusion. 

1.2 SYSTEM DEFINITION 

The word “system” has a very wide connotation. There is a wide variety of 

systems around us. Several of them have been created by man to satisfy his needs 

while others exist in nature. With system we may connote anything ranging from 

simple, artificial or composite, physical systems to conceptual, static and dynamic 

systems or even organizational and information systems. 

We define a system as an aggregation of parts or elements, connected in some 

form of interaction or interdependence to form a complex or unitary whole with a 

specific scope. Misra [2] defines a system as: “a system is a set of mutually related 

elements or parts assembled together in some specified order to perform an intended 

function”. This is a very broad definition and allows anything from a power system 

down to an incandescent lamp to be classified as a system provided that a system 

must have an objective or a function to perform. 

A system has basically three levels of hierarchy [3], i.e., systems, subsystems and 

components. In such a hierarchy, a component is defined as the lowest level of 

hierarchy in a system and it is a basic functional unit of a system. Components, in the 

system definition should be regarded as those units of the system, which can be 

assumed indivisible in the context of the problem being considered at hand. The 

assembly of components connected to produce a functional unit is designated as a 

subsystem. This is the next higher level of hierarchy in a system, above the 
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component. Finally, an assembly of subsystems connected functionally to achieve an 

objective is called “system”. 

Laprie [4] makes use of the concept of atomic system, i.e. a system where any 

internal structure cannot be discerned, or is not of interest to discern (a component, in 

the terminology of Misra). An atomic system has defined boundaries that distinguish 

it from its external environment. The external environment provides one or more 

inputs to the atomic system that is used to process a service(s). The service that an 

atomic system provides is thus dependent on the fact that the correct input is received 

and on the fact that is correctly processed. Therefore, a system can be considered as a 

set of interrelated atomic systems working together to accomplish some common 

objective, purpose or goal. 

Most of the engineering systems today belong to the category of complex 

systems. Although such a distinction between simple and complex systems is totally 

arbitrary, the degree of complexity of a system relates to the number of elements, 

their physical dimensions, multiplicity of links or connections of the constituent 

elements within the system, multiple functions, etc. The complexity of a system can 

be best defined on the basis of its structural complexity and the functions performed 

by the system. 

A system can be modelled in terms of a set of states that describe its internal 

status on the basis of its input(s) and its intrinsic capability to process the input to 

provide the output. As an example let consider an electronic equipment. In order to 

provide the service the first requirement is that the power is provided to the 

equipment by the external environment. Given that the external input is correct the 

ability of processing the output depend on a series of internal characteristics like the 

fact that the equipment works properly, i.e., no internal failures. In a state-space 

characterization of such a system the generic state the system can be in is given by a 

two-dimensional vector where the first entry represent the correctness of the input 

and the second the correctness of the internal status. As we will see, state-space 

based approaches are widely used to describe system behaviour. 
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In a large variety of natural or man-made systems, the inputs, the processes and 

the outputs are described mostly in statistical terms and uncertainty exists in both the 

number of inputs and their distribution over time. Therefore, these features can be 

best described in terms of probability distributions and the system operation is 

known to be probabilistic. This is the class of system we are concerned with. 

Complex systems with stochastic behaviour. It is required that an engineering system 

must be trustworthy and dependable otherwise it cannot serve the purpose it was 

intended. 

1.3 DEPENDABILITY CONCEPTS AND PERFORMANCE 

INDEXES 

Reliability engineering is an engineering field which aims to retrieve measure of 

interest of a modelled system such that reliance can be placed on the service it 

delivers. This field of engineering has undertaken many changes in the last years 

since new systems and new properties of these systems have been introduced. With 

the introduction of the term Dependability [4] the various characteristics of reliability 

engineering were lined out. In this dissertation we consider only few aspect of the 

concept of dependability that are of interest for our purposes. 

Dependability may be viewed according to different, but complementary, 

properties, which enable the attributes of dependability to be defined. In the context 

of this dissertation we are interested in the following properties: 

- the readiness for usage leads to availability; 

- the continuity of service leads to reliability; 

- the non-occurrence of catastrophic consequences on the environment leads to 

safety. 

Availability is concerned to the fact that a system is ready to operate when 

requested and is a measure that includes repairs of the system also after the system 

failure. Reliability is concerned with the operation of a system during its life-cycle 

without system failures. Repairs can be included only at component and subsystem 



                                                                                             Concepts of Reliability Engineering 

levels, but not at the system level. Safety is related to reliability in that the service 

interruption is seen as the occurrence of a catastrophic event. Another difference is 

the level of impact of failures on society and the control of governments. Although 

safety requirements can lower system reliability, we do not distinguish between 

safety and reliability assuming that safety can be regarded as a special type of 

reliability. 

We now give the definition of reliability and availability as proposed by the 

International Telecommunications Union (ITU-T) and the mathematical formulation 

that leads to the evaluation of the two measure of interest. 

Definition 1.1 (Reliability): Reliability is defined in International 

Telecommunications Union (ITU-T) recommendations E.800 as follows: 

“The ability of an item to perform a required function under given conditions for 

a given time interval.” 

Reliability can be expressed as the probability of a system being up throughout an 

interval without system-level repairs. With system level repairs we refer to the 

possibility of system components to be repaired when the service provided by the 

system is “true” and we do not allow repairs when the system service is “false”. This 

brings to the distinction between reliability with repairs and classical reliability 

where components are assumed not repairable. 

Definition 1.2 (Probabilistic measure of Reliability). Let  be the random variable 

that represents the time to failure of a system and  the distribution of the system 

life time, we define the reliability of the systems as: 

.     (1.1) 

Another important quantity in the context of reliability is the Mean Time to 

Failure (MTTF). It is the mean time between 0 and the time to failure of the system. 

Definition 1.3 (Mean Time to Failure). Let  be the random variable that 

represents the time to failure of a system and  the probability density function of 

the system life time, we define the MTTF as: 
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.    (1.2) 

Definition 1.4 (Availability). Availability is closely related to Reliability, and is 

also defined in ITU-T Recommendation E.800 as follows: 

"The ability of an item to be in a state to perform a required function at a given 

instant of time or at any instant of time within a given time interval, assuming that 

the external resources, if required, are provided." 

An important difference between reliability and availability is that reliability 

refers to failure-free operation during an interval, while availability refers to failure-

free operation at a given instant of time, usually the time when a device or system is 

first accessed to provide a required function or service. 

From a mathematical point of view we can describe the availability as the 

probability of a system being UP (i.e., providing the service) at a specific instant of 

time t. 

Definition 1.5 (probabilistic measure of Availability). Given the stochastic process 

, where  is a Bernoulli random variable that takes on value 1 when 

the system is UP and 0 when DOWN, we define the availability at time t (or point 

availability) as: 

.      (1.3) 

Definition 1.6 (Steady State Availability). Given the Definition 1.5 we define the 

steady state availability (or inherent availability) as: 

.      (1.4) 

Definition 1.7 (Average Availability). Given the definition of availability in eq. 

(1.3), we define the average availability (or interval availability) in [0, t] as: 

.      (1.5) 
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Definition 1.8 (Mean Time to Repair). Let  be the random variable that 

represents the time to repair of a system and  the density function of the system 

repair time, we define the MTTR as: 

.    (1.6) 

Definition 1.9 (Mean Time between Failures). Given Definitions 1.3 and 1.8 we 

define the MTBF as: 

.     (1.7) 

1.4 HAZARD RATE 

Let us consider a sample of  identical elements and let us assume that at time 

 all the  are in the working state. Let us define  and  the number 

of working and failed elements at time t, respectively. Since we can express the 

probability of an event as the ratio between the number of successes and the total 

number of trials, we introduce: 

- Unreliability or probability of an element to be failed at t,  

.      (1.8) 

- Reliability or probability of an element to be working at time t,   

.     (1.9) 

Obviously . 

The derivative of ,  is defined as the density function of the element 

lifetime. The quantity , the differential of , represents the infinitesimal 

probability of failure in . It can be shown that  is a probability density 

function, i.e., the integral of the function over the real axis is equal to 1, and that the 

following relation holds . The instant of time t subdivide the 

area under the curve in the two zones which areas measure  and . 
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We can rewrite  as: 

.      (1.10) 

Substituting  to  in 1.10 we obtain the instantaneous hazard rate . 

We have: 

.      (1.11) 

 represents the ratio of population that experience a failure in the time interval 

 given the number of remaining working elements at time t. 

It can be shown that the following relations hold: 

,       (1.12) 

,      (1.13) 

,      (1.14) 

given . 

Equation 1.12 states that it is possible to retrieve the failure rate from the knowledge 

of  since  (see eq. 1.13). Equation 1.14 is also important 

because allows to retrieve the reliability function on the basis of the hazard rate 

function . 

The hazard rate is a very important quantity in reliability engineering. It is 

common to represent the hazard rate function as a decreasing function during the 

burn-in period of the life of a component. It is considered constant during the normal 

lifetime of the component, i.e., random failures, and increasing during the wear-out 

period. Generally in reliability engineering this behaviour of the failure rate is 

represented by the well known bathtub-curve. It is common to represent the failure 

rate by the following function: 

,     (1.15) 
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where a and b are two constants greater than 0 and depending on the value of b 

(  the function results increasing, decreasing and constant, 

respectively. Another common way to represent  is given by: 

,     (1.16) 

where , , . 

Substituting 1.16 in 1.14 we obtain: 

 ,     (1.17) 

and substituting 1.17 in 1.13 we have: 

,     (1.18) 

that is the Weibull distribution function. In the case  we obtain the exponential 

distribution with parameter . The exponential distribution, in fact, is the distribution 

for which the hazard rate is constant. 

It can be shown that if X is the random variable that represents the time to failure 

of a component the following relation holds (probabilistic interpretation of 1.12): 

.    (1.18) 

Eq. 1.18 highlights the meaning of the hazard rate, that is: the conditional probability 

of a component failing in  given that it has not failed in . Moreover 

from 1.18 is possible to show that the exponential distribution has a constant (with 

respect to time) failure rate (and it is the only distribution with this characteristic). 

This is directly related to the memory-less property of the exponential distribution. In 

fact the failure is not related to some deterioration mechanism but is the result of 

some suddenly appearing failure. For the sake of completeness we give the definition 

of the memory-less property: 

.    (1.19) 
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1.5 RELIABILITY MODELLING AND EVALUATION 

METHODS 

Reliability modelling is the first step in reliability evaluation. A system is usually 

decomposed into its constituent parts. The model must highlight the relationship 

between individual components, or subsystems failures with the system failures for 

the known system objective. 

To this end the state of the system is specified in terms of the states of the various 

components (white-box approach). Two approaches are possible: 

- forward, in which starting with the failure events at the component level, the 

system level failure is assessed as the consequence of such failures, e.g., 

Failure Mode and Effect Analysis (FMEA) [5]. 

- bottom- up, where starting at the system level, system performance are linked 

to the failures of components, proceeding downwards to the component level, 

e.g., Fault Tree Analysis (FTA) [6]. 

System performance can be linked to the component performances qualitatively 

and quantitatively. Qualitative analysis brings to the evaluation of the logical 

relationship between components, while in quantitative analysis one obtains a 

measure of system performance. 

Logical relationship can be expressed graphically. Reliability Block Diagrams 

(RBDs) and Fault Trees (FTs) are the two most know formalism in this context [6,7]. 

In RBD logical relationships highlight the conditions for which the system succeed 

in fulfil its requirements, while FTs highlight the conditions for which a failure of the 

system is related to the failures of system constituents. Other graphical relationships 

are possible by which the same task can be achieved, e.g., events trees, binary 

decision diagrams (BDD), causal trees or diagraphs [8] etc. Petri nets [9-14] have 

shown their capabilities in system reliability assessment or fault diagnosis programs. 

The underlying assumption in reliability modelling is that each component or 

system can have only two states, working or failed. Thus the model is a two-state 

model. Multi-state systems have been considered in [15,16]. They are useful in 
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considering degraded states in addition to working and failed states. Multi-state 

systems cannot be handled by FT and RBD, thus new formalisms like Dynamic Fault 

Trees (DFTs) and Dynamic Reliability Block Diagram (DRBD) have been 

introduced [17,18]. 

In Reliability Engineering, redundancy techniques are used to improve system 

reliability [1]. Model like FT and RBD can capture redundancy only in the case of 

independence across the components within the system. In other words, it is assumed 

that the failure of a component does not affect the failure properties (failure rates) of 

the remaining components. We can distinguish two cases of redundancy where the 

independence assumptions do not hold: stand-by redundancy and load-sharing. 

Again FTs and RBDs cannot cope with these scenarios. DFTs and DRBDs can tackle 

stand-by redundancy, but cannot be used to model load-sharing redundant systems. 

In these cases one can use formalisms like stochastic extensions of Petri Nets or 

Markov models. 

Therefore, it is important to develop reliability models that incorporate stochastic 

dependencies among the system’s components. Another class of dependency that is 

common in Reliability Engineering are shocks. In this case the system is exposed to 

shocks that cause random amounts of damage [1]. The shocks themselves can occur 

according to a random process. The intensity and occurrence frequency of the shocks 

may vary with time. Generally, the occurrences of shocks are modelled using 

homogeneous or non-homogeneous Poisson processes. The additional damage to the 

system at a given shock may depend on the intensity of the shock, the damage 

already experienced by the system, and the age of the system. The system fails when 

the cumulative damage exceeds a certain level. Another class of shock models 

includes common cause failures. For example, the bivariate shock model introduced 

by Marshall and Olkin [19] analyzes component dependencies by incorporating 

latent variables to allow simultaneous component failures.  

There are models [20,21] that help to compute system reliability with the 

assumption of dependency of failures to approach realistic situations where the 

analyst cannot ignore the dependency of failures. Markov chains provide a modelling 
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procedure for the availability or reliability modelling of maintained systems under 

various assumptions of practical importance. 

Reliability models has been distinguished into two main groups: non state-space 

models and state space model. Classically non state-space models are solved by the 

mean of combinatorial techniques while state-space models recall the use of Markov 

Chains and their generalizations. Another class of models, that we define as hybrid 

models, use an high level formalism of description that is more convenient to use 

because it reduces modelling efforts. This high level formalism of description 

resemble the one used by non state-space models. However, the solution of these 

models is achieved by their conversion into an isomorphic state-space model. We 

will consider hybrid approaches in the Chapter 3, while in Chapter 2 we present non 

state-space and state-space models. 

1.5.1 NON STATE-SPACE MODELS 

Classical non state-space models are: 

- Series/Parallel Block Diagram (or Reliability Block Diagram, RBD); 

- Non Series-Parallel Block Diagram (or Reliability Graphs); 

- Fault Trees without repeated events; 

- Fault Trees with repeated events. 

All the models are similar in that they capture condition that make the system fail in 

terms of the structural relationship between the system components. In fact, these 

models are usually solved by retrieving the structure function of the system; that is 

that combination of events that leads to the system failure. The model is solved 

analytically without generating the state-space using techniques like Boolean 

Algebra, order statistics and convolution. Given a set of components that make up 

the system and given for each of them a quantity like a probability of failure, a 

failure rate, a distribution of time to failure or the steady state or instantaneous 

availability and, assumed statistical independence, the resulting model is very easy to 

use and able to evaluate measures like reliability (without repair), point and steady 

state availability and the system MTTF. In the case of repairable components is also 
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assumed that the repair units are as many as needed. Relatively good algorithms are 

available to solve these models so that large number of component can be handled, 

e.g., Sum of Disjoint Product (SDP) algorithms, Binary Decision Diagram (BDD) 

algorithms, Factoring and Series-Parallel composition algorithms. 

The main drawback of these methodologies is that they cannot easily handle 

failure/repair dependencies, e.g., shared repair, warm/cold spares, imperfect 

coverage, non-zero switching time, travel to repair person, reliability with repair. 

1.5.2 STATE-SPACE MODELS 

In the early approaches, components of a system were assumed to be independent, 

whereas in practice, the times to failure and recover from a fault depend, broadly 

speaking, on the state of the system. As a result, combinatorial models, such as FTs 

and RBDs, cannot be used to accurately model the system behaviour. Further, non 

state-space (combinatorial) models cannot adequately model the sequence-dependent 

failure mechanisms associated with spares management, changing working 

conditions, and so on. Demands for increased accuracy in reliability estimation 

quickly forced the development of more elaborate system models without the vastly 

simplifying independence assumptions [22].  

For this reason, many modellers turned to Markov chains for reliability assessment of 

fault tolerant systems. Markov chains are extremely flexible and they can capture the 

fault coverage mechanism quite well. They belong to the group of state-space 

methods. For instance a state can keep track of the number of functioning resource of 

each type, the recovery state for each failed resource, the allocation of resource to 

tasks, etc. Transitions are directed from one state to another and represent the change 

of the system state due to the occurrence of an event. Transition are labelled and the 

kind of label depends on the kind of state-space model used. In fact we can 

distinguish  state space model in: Markovian, i.e., Discrete Time Markov Chain 

(DTMC), Continuous Time Markov Chain (CTMC), Markov Reward Models 

(MRC); non Markovian, i.e., Semi Markov Processes (SMP), Markov Regenerative 

Processes (MRGP) and Generalized Semi Markov Process (GSMP) [23-28]. 
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Thus the label of a transition can be a probability in the case of DTMC, a rate in the 

case of CTMC, a distribution function in the case of SMP or two distribution 

function in the case of MRGP or GSMP. Finally time dependent rates are handled by 

the mean of Non Homogeneous Continuous Time Markov Chains (NHCTMC). 

Markov Models are effective in handling fault-tolerance and recovery/repair, 

dependencies, contention for resources, concurrency and timeliness, etc. The use of 

MRGP and NHCTMC allows to model general distributed event times and Weibull 

failure distribution, respectively.  

The main drawback of these methodologies is the large state space, i.e. exponential 

in the number of components. This brings to the problems of specification, storage 

and solution of the model. Storage problems can be handle with sparse matrices and 

with methods of truncation and lumping of the state space; the solution problem with 

“sparsity preserving” solution methods, e.g., successive overrelaxation, Gauss-

Seidel, uniformization, ODE solution methods. Finally the specification problem can 

be handle by a higher level formalism like Generalized Stochastic Petri Nets (GSPN) 

that furnishes aid in the generation of the chain using a formalism that allow 

hierarchical composition, concurrency, contention and conditional branching and 

thus facilitating the construction of the model. 

In addition to computational complexity, a major disadvantage of Markov chains 

(state-space models) is that it is difficult to determine the correct Markov model for a 

given system. This is because the modeller must specify each operational 

configuration of the system explicitly and determine the rate at which the system 

changes from one state to another. However, the relative advantages of combinatorial 

models (fault trees and RBDs) and Markov models have been exploited by using two 

key techniques: a) behavioural decomposition [29], and b) automatic conversion of a 

non state-space model to an equivalent Markov model [30-32]. 

Several different Markov chain based methods are available for reliability 

analysis. The basic idea is to construct a single Markov chain to represent the failure 

behaviour of the entire system. Solving the Markov chain models yields the 
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probability of the system being in each state. The system unreliability is obtained by 

summing all the failure state probabilities.  

Instead of generating and solving an overall Markov chain one could generate and 

solve separate Markov chains for each independent subsystem. Apparently, each 

individual Markov chain is much smaller than the overall Markov chain. The 

reliability (or unreliability) of the system can be computed merging the results of the 

independent Markov chains. 

Both state-space and non state-space models will be briefly discussed in Chapter 

2. They represent the background for any further develop in reliability modelling and 

thus will be considered as a comparative mean in the following of this dissertation. 

1.5.3 HYBRID MODELS 

With hybrid models we refer to the class of formalisms that use non state-space 

representation of the system, but whose quantitative evaluation has been usually 

developed generating a state space model. In Chapter 3 we will introduce two kind of 

these formalisms: extensions of the non state-space models described above; and 

stochastic extension to Petri Nets.  

Among the former we will introduce Dynamic Fault Trees (DFT) and give a brief 

description of Dynamic Reliability Block Diagrams (DRBD) and Boolean Driven 

Markov Processes (BDMP) [3]. Among the second we will introduce Stochastic Petri 

nets (SPN) and their generalization with particular attention to Stochastic Activity 

Networks (SAN) [34]. We will see that hybrid formalism overcome many of the 

limitation of state-space and non state-space models. 

To the class of hybrid models belong also Adaptive Transition Systems (ATS), a 

formalism developed during this doctoral course in order to overcome two main 

problems observed when using DFTs and SANs. In particular ATS deal with the 

limited modelling capabilities of DFT and the “generality” of SAN models. 
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1.5.4 ANALYTIC SOLUTION VS SIMULATION 

Beside the modelling approach used to describe a system, another important 

aspect concerns the evaluation methods. We can distinguish between two kinds of 

evaluation methods: Discrete Event Simulation and Analytic (or numerical). 

Analytic solutions aim to obtain a closed form solution of the measure of interest, 

or when the model results too complex they aim to retrieve the solution by evaluating 

it numerically by the assistance of a tool. Analytic solutions are generally of two 

kinds: combinatorial, when a non state-space model is used; or determined by the 

definition of the (integro)-differential equations that describe the evolution of a 

stochastic process, in the case of state-space model. 

Limitations of combinatorial approaches are the difficulty to consider the effect of 

time on the system behaviour. On the other hand, the definition of a stochastic 

process requires the definition of the state-space of the system that may be too large 

to be solved. Moreover, both approaches suffer when general distributions of the 

time of events are used to describe the system behaviour. 

On the other hand Discrete Event Simulation (DES) has proven to be an effective 

approach to retrieve measure of interest of large systems that present a complex 

behaviour not easily caught by state-space models [35-40]. The methodology does 

not suffer from the state explosion problem and can be effectively used in presence 

of general distributions. The use of DES implies statistical analysis of the output like 

design of experiments, hypothesis testing, statistical inference, analysis of variance 

and regression models. The main question when using DES is how many simulation 

runs are sufficient, a question that can be resolved depending on the level of accuracy 

required. DES can represent in detail the system behaviour. However the main 

drawback of the methodology is that the simulation time can be very costly (although 

in some case variance reduction methods can be applied). 
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1.6 CONCLUSION 

In this chapter we have presented the principal concepts of Reliability 

Engineering with particular focus on the modelling task and modelling 

methodologies. We have introduced the three classes of models that will be described 

in this dissertation: non state-space methods, state-space methods and hybrid 

methods. Each of these methods present advantages and disadvantages. It is, then, 

clear that the choice of the “right” technique is dictated several parameters 

concerning the outputs of the analysis. Among these parameters we have: 

- the nature of the measure of interest that we want to evaluate; 

- the level of detail of description of the system behaviour that we want to 

achieve; 

- the convenience of the model specification and solution; 

- the representation power of the model; and 

- the access to suitable tools. 

Following this parameterization, one should use non state-space models when the 

measure of interest is not too “complex”, when the level of detail or the behaviour of 

the system are tractable by combinatorial techniques, etc.. State-space models should 

be used when the system is complex, when dependencies are present and the level of 

detail is elevated.  

The use of hybrid formalisms depend on the formalism itself. DFTs should be 

used when we want to capture temporal and functional dependencies but their power 

is limited when considering complex measure of interest or higher level of details. In 

these case, therefore, one should use stochastic extensions of Petri nets. The choice is 

furthermore dictated by the available tools. 

Finally, regarding evaluation methods, DES should be used in the case of very 

complex systems with very complex interactions, e.g., power networks, or in the case 

when analytical models cannot solve systems too large or systems with general 

distributions of the time of events. 
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As we will see, however, in Chapter 5 a possible composition of more formalism is 

possible, allowing to exploit the advantages of single modelling and evaluation 

methods. 
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CHAPTER 2 

 

2.1 INTRODUCTION 

In Chapter 1 we introduced two classes of reliability models: state-space and non 

state-space models. In this chapter we present a review of the most known models for 

reliability evaluation that belong to these classes. In Section 2.2 we will present two 

of the most used non state-space models in Reliability Engineering: Reliability Block 

Diagrams (RBD) and Fault Trees (FTs). In Section 2.3, among state-space models, 

we will present the classes of stochastic processes mostly used in Reliability 

Engineering; Markov Chains and generalizations. Advantages and disadvantages of 

the revised modelling methodologies are discussed and finally in Section 2.4 we will 

report some conclusions. 

2.2 NON STATE-SPACE MODELS 

In this section we describe the following models introduced in Chapter 1: 

Reliability Block Diagrams (RBDs), Reliability Graphs (RG) and Fault Trees (FTs). 

The modelling language is introduced together with the resolution techniques. 

Finally we address the main limitations of these models. 
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2.2.1 RELIABILITY BLOCK DIAGRAMS 

Reliability Block Diagram (RBD) is a well known modelling methodology in 

Reliability Engineering. RBD belongs to the class of non state-space models. RBDs 

are usually solved by the mean of combinatorial evaluation methods [1,2]. They 

make use of a very intuitive representation that results easy to implement and 

analyze. 

In RBDs each system component is represented by a block. Blocks are connected 

following two kind of configurations: series and parallel.  

- In a series configuration, the failure of one component causes the failure of 

the system; while  

- in a parallel configuration all the N components belonging to the parallel 

structure must be failed for the system to fail. 

Mixed architectures are allowed combining together series and parallel structures. 

In the case of more complex architecture, e.g., bridge connections, we refer to 

Reliability Diagrams. In the latter case the topology of the system is said complex [1] 

and it is not resolvable with the traditional methods used in RBDs.  

Another possible configuration in RBDs is the k/N structure; that is a parallel 

configuration where k out of N block are required to be operating. 

In RBD a block can be viewed as a switch that is closed when the block is 

operating and open when the block has failed. In fact only two states, i.e., failed and 

operating, are used to describe the state of a component. The system is operational if 

a path of closed switches is found from the input to the output of the diagram. 

Definition 2.1 (Reliability Block Diagram). A RBD is a 4-tuple M = (C, L, N, J) 

where: 

- C, is the set of blocks; 

- L, is the set of connections existing between blocks; 

- N, is the set of nodes. For each diagram is given at least an input and an output 

node. 
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- J, is the set of connection relation such that: 

i. N x L x C, is the connection relation with respect to the input node; 

ii. C x L x N, is the connection relation with respect to the output 

node; 

iii. C x L x C, is the connection relation between blocks. 

2.2.1.1 RBD EVALUATION METHODS 

To solve a RBD by the mean of combinatorial or order statistics the following 

hypothesis are made [3]: 

- failure of individual components are assumed to be independent; 

- at the initial time all the components are assumed to be operating; 

- any block can be either failed or operating; 

- only active redundancies are allowed, e.g., no warm/cold stand-by. 

Serial-parallel reduction algorithms are used to solve a diagram with series 

parallel structures. For a series system made up of independent components we can 

use the product low of reliabilities to retrieve the reliability of the system. Let  

denote that the i-th component of the RBD is operating and  its reliability. 

Then the series system reliability is given by (under the assumption of 

independency): 

.     (2.1) 

For a parallel system configuration we have (product law of unreliabilities ): 

.   (2.2) 

In 2.1 and 2.2 reliability is treated as a probability instead of a function of time 

(Figure 2.1). In fact 2.1 and 2.2 are a special case of order statistic. 
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Order statistics is useful when considering k/N configurations in the case that all 

the time to failure of the components in the structure are independent and identically 

distributed random variables (although generalization is also possible). 

 

Fig. 2.1. Reliability of common RBD structures. 

Let  be N independent and identically distributed random variables with 

the same distribution function F and the same density f. Let  be N 

independent random variables obtained by permuting the set  so that 

they are in increasing order. The random variable  is called the k-th order statistic. 

To derive the distribution of  we first note that the probability that a given  is 

less than or equal to y is . So the probability that exactly j of ’s lie in  

and (n-j) in  is given by the binomial probability mass function 

. Hence,  is less than or equal to y, if k of the ’s are less 

than or equal to y. Thus, the cumulative density function of  is given by 

 and the reliability of a k/N parallel RBD is given by: 



                                                                                                            Classic Reliability Models 

.     (2.3) 

Function of random variables can be used to retrieve a closed form for the above 

relations. For instance to evaluate the reliability at time t in the case of a series 

configuration we can introduce the random variable , where  is the 

random variable that represents the time to failure of the i-th component of the series 

RBD. Then the reliability of the systems is given by . 

At the same way for a parallel system, introduced the random variable 

, we can evaluate the reliability of the system by .  

Assuming independence we retrieve again solution of the kind of 2.1 and 2.2. 

However this methodology is very expensive and leads to very complicated 

formulations even in the case  of exponential distribution functions. For instance in 

the case of the k/N configuration made of independent and identically distributed 

exponential random variables these leads to a hypo-exponential distribution with 

parameters  while in the case the random variables are not 

identically distributed the resulting distribution is very complex.  

Joint distributions, and convolution in the case of sum of independent random 

variables, can be used to model warm, cold and hot stand-by redundancy although 

the use of state space models, where possible, would facilitate the evaluation of the 

measure of interest. 

2.2.1.2 ADVANTAGES AND DISADVANTAGES OF RBD 

The main advantages of RBDs are the easy implementation and resolution as well 

as the peculiarity of representing the reliability structure of the system. However, 

when more complex structures are considered, i.e., Reliability Graphs, techniques 

like state enumeration (Boolean true table), factoring and conditioning and Binary 

Decision Diagrams (BDDs) should be used.  

- Boolean true table requires to enumerate all the states and for each of them 

evaluate the operability of the system. For those state where the system is 

operating probabilities are evaluated and summed together using Boolean 
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algebra. BDDs can be seen as the graphical representation of the truth  table 

and give an efficient way to build it. 

- Factoring and conditioning requires the definition of a condition, i.e., 

working or failed, on a specific block so that it can be eliminated from the 

graph. In this way the resulting graph is made of only series and parallel 

configuration. By the mean of the theorem of the total probability the 

reliability of the system is evaluated taking the reliabilities evaluated with the 

imposition of the conditions. 

Reliability Graphs represent the generalization of RBDs and many combinatorial 

models can be converted into RGs (Figure 2.2). As RDBs consist of nodes and edges, 

where edges represent components that can fail. There is always a source (input node 

of the diagram) and a sink (output node of the diagram). They are often referred as a 

non-series-parallel RDBs and are used in network reliability problems. 

 

Figure 2.2. Example of Reliability Graphs and solutions. 

The main drawback of RBDs is that the methodology cannot tackle dependencies 

between the modelled elements. As said before, the independence assumption of the 

time to failure of components must be respected for the evaluation methods to be 



                                                                                                            Classic Reliability Models 

applied. These constrains are overcome in Dynamic Reliability Block Diagram 

(DRBD). We will discuss them shortly in Chapter 3 among the hybrid reliability 

models. 

2.2.2 FAULT TREE ANALYSIS 

Fault Tree Analysis (FTA) was developed in 1962 at Bell Telephone Laboratories 

in the analysis of the launch control system of the intercontinental Minuteman 

missile [4]. It was later adopted, improved, and extensively applied to many different 

contexts, so that, FTA has become one of the most widely used techniques for 

system reliability and safety assessments. Therefore, different forms of FTs, 

including static, dynamic, parametric and extended have been proposed [5,6,7]. 

FTA is an analytical technique, where on the basis of an undesired event (the 

system failure) all combinations of basic events (BE) that will lead to the occurrence 

of the predefined event (or top event TE) are defined [8].  

BEs represent basic causes for the TE; examples are: component failures, human 

errors, environmental conditions, etc. In first instance a FT is a graphical 

representation of logical relationships between the TE and the BEs. More generally 

can be defined as a framework for the assessment of system properties such as 

reliability, availability and other measures of interest. 

To build a FT we start with the failure scenario being considered, and decompose 

the failure symptom into its possible causes. Each possible cause is then investigated 

and further refined until the basic causes of the failure are understood. For more 

details, one can refer to [9,10]. The failure scenario to be analyzed is normally called 

the TOP event of the fault tree. The basic causes are the basic events of the fault tree. 

The fault tree should be completed in levels, and they should be built from top to 

bottom. However, various branches of a fault tree can be built to achieve different 

levels of granularity. 

Definition 2.2 (Fault Tree). A FT is a 4-tuple M = (TE, BE, G, R) where: 

- TE, is the top event or the top node of the FT; 
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- BE, is the set of basic events or lower level nodes; 

- G, is the set of Boolean gates, i.e., a function of Boolean variables that return 

a Boolean value; 

- R, is the set of connection relations between the elements of BE and G, the 

elements of G and the elements of G and TE. 

More details of these elements and their graphical representation can be found in 

[11,12,13]. 

2.2.2.1 STRUCTURE FUNCTION 

To solve FTs we can make use of the concept of the complement to the structure 

function and of the polynomial algorithm presented for RBDs. The structure function 

defines whether the system is operating or less on the basis of the state of its 

components. In the case of a FT the structure function is represented in term of the 

logical gates that propagate the failure of the BEs up to the TE. Given the state vector 

 where  takes on value 1 if the i-th component is working and 0 

if failed, the structure function is defined as 

 .    (2.4) 

In case of repeated events Boolean algebra can be used to retrieve the set of 

minimal cut set (MCS), i.e.,  the minimum set of events that leads to the occurrence 

of the TE, and use the method of the sum of disjoint products to evaluate the 

unreliability. This is necessary since the terms in the MCS are not mutually 

exclusive. While a FT without repeated events can be solved in nearly polynomial 

time, the complexity of a FT with repeated events is exponential with the number of 

BEs. 

2.2.2.2 QUALITATIVE ANALYSIS 

Qualitative analysis is usually based on the analysis of Minimal Cut-Sets (MCSs). 

A Cut-Set (CS) is a set of BEs whose occurrence leads to the occurrence of the TE. 

A MCS is a CS without redundancy. MCSs are evaluated applying a top-down 
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approach. Starting from the top gate (the gate connected to the TOP event of the fault 

tree), CSs are built by considering the gates at each lower level. AND gates are 

replaced by a list of all its inputs (i.e., intersection or product of lower level 

elements). In OR gates the occurrence of any input can activate the gate. In this case 

the CS is split into several CSs, one containing each input to the OR gate (i.e., union 

or sum of lower level elements).  Possible results from the qualitative analysis based 

on MCSs include: 

- combinations of component failures that may result in a critical event in the 

system (the individual minimal cut set);  

- single components whose failure leads to the system failure (singleton CS); 

- focus on specific components (considering MCSs that contain the component 

of interest).  

Qualitative results are thus useful to identify conditions that might lead to the 

system failure. In this way one can take proper preventive measures can plan specific 

reactive measures. 

2.2.2.3 QUANTITATIVE ANALYSIS 

Based on the evaluation of the MCSs from a FT the probability of occurrence of 

the TE can be simply retrieved as the probability that all the basic events in one or 

more MCSs will occur [9,10,14].  

Let  denote the N MCSs derived from a FT. The probability of 

occurrence of the TE,  is given by: 

.      (2.5) 

Generally, MCSs are not disjoint. Thus, the probability of the union in (2.5) is not 

equal to the sum of the probabilities of the individual MCSs. Several methods exist 

for the evaluation of (2.5) [9,10, 14]. Among them we describe the sum of disjoint 

products (SPD), where the solution is retrieved making disjoint MCSs using Boolean 

algebra. We have: 
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,  (2.6) 

where  represents the negation of . Thus  can be evaluated substituting 

(2.6) into (2.5) applying the property of the probability of the union of disjoint 

events. 

Another solution technique, efficient for the evaluation of large FTs are Binary 

Decision Diagrams (BDD). The reader may refer to [15,16,17,18,19,20,21] for a 

complete definition of BDD and their application to FTs. 

In some circumstance FTs are solved via Discrete Event Simulation. This can be 

due to very large FTs (where the evaluation of MCSs can be troublesome) or because 

to the use of “exotic” gates like in the case of non-coherent FTs. In this case, the time 

to failure of each BE is first sampled and compared with the mission time. If the time 

to failure of the component is less than the mission time, the component is regarded 

as failed. Once that all the components state have been defined the tree is evaluated 

bottom-up in order to assess the occurrence of the TE. 

2.2.2.4 COMPARISON WITH RBD 

The most fundamental difference between FTs and RBDs is that RBDs are a 

success-oriented, while FTs are failure-oriented. Specifically, in an RBD, one works 

in the “success space” and thus looks at system success combinations, whereas in a 

fault tree one works in the “failure space” and thus looks at system failure 

combinations. In most cases, we may convert a fault tree to an RBD or vice versa. 

Particularly, the conversion is possible for all static coherent structures. In the 

conversion from a fault tree to an RBD, we start from the TOP event of the fault tree 

and replace the gates successively. A logic AND-gate is replaced by a parallel 

structure of the inputs of the gate, and an OR gate is replaced by a series structure of 

the inputs of the gate. In the conversion from an RBD to a fault tree, a parallel 

structure is represented as a fault tree where all the input events are connected 

through an AND-gate, and a series structure is represented as a fault tree where all 

the input events are connected through an OR-gate. 
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The modelling capabilities of FTs and RBDs have been enhanced in order to 

support a wide range of scenarios. In non-coherent FTs new gates were introduced, 

e.g., XOR, NOR etc.. A non-coherent FT is characterized by inverse gates besides 

logic gates used in coherent fault trees. In particular, it may have Exclusive-OR and 

NOT gates. A non-coherent fault tree is used to describe failure behaviour of a non-

coherent system, which can transit from a failed state to a good state by the failure of 

a component, or transit from a good state to a failed state by the repair of a 

component. Non-coherent systems are typically prevalent in systems with limited 

resources, multi-tasking and safety control applications. They are often used to 

accurately analyze disjoint events [19], dependent events [20], and event trees [6]. 

These relationships cannot be modelled by a RBD. Thus, FT are capable to 

capture more complex relations than RBDs. Similarly, there are some other 

enhancements to RBDs that are not available in FTA, i.e., Reliability Graphs. Hence, 

it is not always possible to convert all fault trees into equivalent RBDs and vice 

versa. 

2.2.2.5 ADVANTAGES AND DISADVANTAGES OF FT 

The main advantages of FTs rely on the graphical representation of the causes of 

occurrence of the TE, the possibility of investigating the weakness in the system and 

the possibility of using the methodology in the design phase in order to support the 

decision of the best system configuration. 

As for RBD, disadvantages of FT rely on the fact that is not possible to tackle 

dependencies between the modelled elements, temporal logics, finite maintenance 

resources, etc.. Moreover measure of interest like reliability with repairs cannot be 

evaluated. In these case state-space methods should be used. Availability can be 

evaluated in the case the availability of components are first derived. However, also 

the availability of components is often evaluated by the mean of state-space methods. 
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2.3 STATE-SPACE MODELS 

State-space methods are based on the stochastic process that define the behaviour 

of a system. In this section we give the definition of the most common stochastic 

processes used in Reliability Engineering. A more complete argumentation of the 

concepts described in this section can be found in [22-26]. 

Definition 2.3 (Stochastic Process). A stochastic process is a family of random 

variables , defined on a given probability space. 

The set of all possible values that random variables can take is called the state 

space. If the state space of a stochastic process is discrete, it is called a discrete state 

process; otherwise it is said a continuous state-space. A stochastic process can be 

continuous or discrete with respect to the parameter set T. It is continuous if T is 

continuous, otherwise it is said discrete.  

Denoted with  the finite dimensional joint distribution of a 

stochastic process , we have that if  satisfies: 

, (2.7)  

for , the stochastic process is called an independent process. 

Although it is easy to study, most real life processes do have some dependencies 

among these random variables. The most important and most common one is the 

first-order dependency, which is known as Markov dependency. 

Definition 2.4 (Markov Process). A stochastic process  is called a 

Markov process if for any , the conditional distribution of 

 for given values of  depends only on ; that is 

. (2.8) 

The next state of a Markov process may only depend on the current state. No 

information about the prior sequence of states visited could affect the next transition. 

If the state space is discrete, we call such a stochastic process a Markov chain. If the 

parameter t is continuous it is said a Continuous time Markov chains (CTMC), if 

discrete a Discrete Time Markov Chain (DTMC). 
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The transition behaviours are characterized by transition rates or transition 

probabilities for CTMC and DTMC, respectively. 

In many practical problems, the time origin does not matter, i.e., only the time 

elapsed decides the chain behaviour. Such kinds of Markov chains are time 

homogeneous, which means: 

.    (2.9) 

It is shown [27] that the sojourn time of a homogeneous continuous time Markov 

chain is exponentially distributed (memoryless property). The probability that the 

process stays in state i at time  given it was in state i at time  only depends 

on state i, but does not depend on how much time it has spent in state i. 

An extension of Markov process is that transition rates not only depend on the 

current state, but also the duration the process spends in that state may depend on the 

particular transition. The Markov property still holds at the time of entry (exit) to 

(from) a states. Such a process is called a semi-Markov process. Before defining 

SMP we need to introduce some fundamental stochastic processes. 

Definition 2.5 (Renewal Sequence and Renewal Process).  is said to 

be a renewal sequence and  a renewal process generated by  

if  is a sequence of independently and identically distributed non-

negative random variables, where: 

,       (2.10) 

,         (2.11) 

.       (2.12) 

The random variable  is the time interval between the successive arrivals  

and n. The same (probabilistically exact) process is repeated at each time epoch . 

 is the absolute time of the n-th arrival.  is the total number of arrivals at time 

t. 
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Definition 2.6 (Markov Renewal Sequence and Markov Renewal Process). 

 is said to be a Markov renewal sequence with state space I if for all 

n  0 and i, j  I, the following property holds: 

      

     (2.13)  

.         

The stochastic process  is a Markov renewal process, where: 

,        (2.14) 

,        (2.15) 

.       (2.16) 

 is the number of times state j is visited by time t,  is total number of state 

changes at time t. In Markov renewal process the processes over each interval are not 

independent, but have one-order dependency. In this case the future evolution of the 

stochastic process depends on the current state of the process at Markov renewal 

points. Thus, in Markov renewal process, we are only interested in the states changes 

at time epochs ’s. 

Definition 2.7 (Semi-Markov Process). Given a Markov renewal sequence 

 with state space I, the stochastic process  is called a semi-

Markov process with state space I if  for . In a SMP the 

sample path is piecewise constant and right continuous. Jumps only happen at the 

Markov renewal points. The inter-arrival times  are generally distributed. 

Definition 2.8 (Markov Regenerative Process). A stochastic process 

 is called a Markov regenerative process (MRGP) if there exists a Markov renewal 

sequence of random variables such that all the conditional finite 

dimensional distributions of  given are 

the same as those of given .  
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A Markov regenerative process is also constructed from the Markov renewal process 

(as SMP). Each  is a Markov regenerative point because the stochastic process 

evolution from that point on is independent of the history before it. 

The difference between SMP and MRGP is that in SMP no state change occurs 

between successive Markov regenerative points, but for Markov regenerative 

process, the stochastic process between  and  could be any continuous-time 

stochastic process. Hence, in MRGP the sample paths are no longer piecewise 

constant. 

Like semi-Markov processes, Markov regenerative process allows non-exponentially 

distributed firing time transitions, but it is an even more general process. If a 

transition t is the only transition out of state i, t is called an exclusive transition. A 

transition t is said to be competitive with respect to another transition t’ if both t and 

t’ can occur in state i and the firing of t disables t’. If the firing of t does not disable t’, 

t is said to be concurrent with t’. Semi-Markov chains do not allow concurrent 

transitions, while the MRGP just defined can have all these types of transitions. 

Definition 2.9 (Generalized Semi Markov Process). A stochastic process 

 is called a Generalized Semi Markov Process (GSMP) if there is not 

any restriction on the kind of distribution associated with the sojourn time in a state 

and there can be more than one concurrent transition enabled in a state.  

Strictly speaking, GSMPs are not Markov chains because they lack the memoryless 

property. In [28] each state of a GSMP is characterised as a set of active elements, 

each of which has an associated lifetime. When an active element completes a state 

change occurs but the residual lifetime of all the interrupted elements, if still enabled, 

are maintained. 

Analytical treatment of GSMP becomes viable under restrictions on number of 

concurrent enabled non-exponential transitions. Under the enabling restriction, 

which assumes that at most one generally distributed transition is enabled in any 

state, activity cycles of generally distributed transitions never overlap. In this case, 

the model underlies a Markov Regenerative Process (MRGP) which regenerates at 
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every change in the enabling status of non-exponential timed transitions 

[29,30,31,32].  

The analysis of a model with multiple concurrent generally distributed transitions has 

been formulated with the introduction of supplementary variables [32,33,34]. In this 

theory the logical state is extended. It is a vector that record of ages of generally 

distributed enabled transitions. However, practical solution is limited to one or two 

concurrently enabled non-exponential distributions, thus falling again within the 

limits of the enabling restriction typical of MRGP [35]. Some work where the limit 

of the enabling restriction is overcome can be found in [36,37] but only for the case 

where all timed transitions are either exponential or deterministic. In [38,39,40] state 

classes are used to manage the case of multiple concurrent generally distributed 

transitions. In [41] the approach is extended in order to support derivation of 

continuous time transient probabilities. However, in these works only expolynomial 

distributions are considered.   

In the most general settings GSMP are used as a mean to define Discrete Event 

Simulation (DES) models [42]. In fact, the above mentioned methods, beside the 

limitations of concurrently enabled transitions as well as the limitations of the kind of 

supported distributions, suffer from computational limits that make the solution 

possible only for small systems. 

2.4 CONCLUSION 

In this chapter we have described some of the most known methodologies used in 

Reliability Engineering. Non-state space models as RBD and FT are probably the 

most well known methodologies in reliability evaluation. They are simple to use and 

allow to specify a system in term of its requirements. As we have seen, however, 

their application is limited to systems with the following characteristics: 

- components must be independent; 

- components can be only in two possible states, working or failed; 



                                                                                                            Classic Reliability Models 

- stand-by policies, shared loads, finite resource maintenance, detection 

systems cannot be modelled; 

- failure logics are limited to the kind of relations admitted by the formalisms; 

- it is not possible to evaluate measure of interest like reliability with repair and 

availability; 

- time of events and temporal ordering are not explicated in the formalism. 

State-space models, on the other hand, overcome the limits of non state-space 

models. They allow to model complex systems and evaluate various kind of measure 

of interest.  

However, Markov Chains and generalizations are flat structures that are difficult to 

design and understand. Many complicated systems result in Markov chains that are 

over a few million states in size; it is impossible to derive a Markov chain by hand. 

Therefore, Markovian models are typically constructed from some other high-level 

formalism.  

The hybrid formalism presented in the next sections try to alleviate this problem. 

We will describe two kind of formalism. The ones derived from non state-space 

models like Dynamic Fault Tree (DFT) extend the modelling capabilities of FTs and 

use a state-space based low level representation for the solution of the model. 

On the other hand, methodologies like stochastic extensions of Petri nets use an 

approach similar to the one used in state-space models but abstract these models by 

the mean of objects that allow the composition of reduced models obtained for the 

different parts of the system. 

Moreover, since Petri nets allow to solve a system via simulation, they are able to 

overcome problems of state-space models as the know issue of the explosion of the 

state-space and the possibility to solve systems whose underlying process fall in the 

class of GSMP. 
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CHAPTER 3 

 

3.1 INTRODUCTION 

The two formalism introduced in Chapter 2, RBD and FT, although well known 

and widely used in Reliability Engineering, are limited in their modelling 

capabilities. They cannot be developed to model systems with interactions, stochastic 

associations or sequential relationships. Examples are: load-sharing, standby 

redundancy, interferences, dependencies, common cause failures, etc.  

These lacks in system reliability modelling notations have awakened the scientific 

community to the need of new formalisms. An approach that has been adopted is to 

extend the existing formalisms with new elements to model the (uncovered) aspects. 

This resulted in the creation of hybrid formalisms that make use of a high level 

model of description that is then converted in a state-space based model. 

In this chapter we review two class of hybrid formalisms: the ones that are an 

extension of non state-space models, i.e., FT and RBD, and the ones that are defined 

as stochastic extensions of Petri nets. 

Dynamic Fault Trees (DFTs) were one of the first methodology that was 

developed in the context of hybrid modelling [1,2,3]. DFT extend FT to enable 

modelling of time dependent failures by introducing new dynamic gates and 

elements. DFTs were introduced due to the fact that the traditional static fault trees 
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with AND, OR, and Voting (k-out-of-N) gates cannot capture the dynamic behaviour 

of system failure mechanisms. In order to include these kind of behaviours in the FT 

terminology, dynamic gates were introduced, generating the DFT formalism. In their 

first formulation DFT were solved via conversion in CTMCs, but in recent literature 

other approaches have been reported [4-12]. 

In the same way RBD were also extended into Dynamic RBD (DRBD) [13]. 

DRBD formalize the concepts of state, event and dependence, providing a logic 

infrastructure to define several dynamic reliability behaviours. Many similarities link 

DFT to DRBD, but, at the same time, one of the aims of DRBD is to extend the DFT 

capabilities in dynamic behaviour modelling. In fact, many conditions modelled by 

DRBD elements do not have a correspondent in the DFT domain.  

Another methodology that has been increasing its popularity is Boolean Driven 

Markov Process (BDMP) [14]. This approach makes use of an extended FT at the 

high level that include new kind of objects called triggers. Moreover the leafs of the 

tree are modelled by CTMC extending the modelling capabilities of the modes of 

failure of components. 

The direct specification of a CTMC at the level of individual states and state-to-

state transitions is tedious and error prone and therefore only feasible for very small 

models. This motivated researchers to develop high level specification formalisms 

for defining Markovian models at a level of abstraction which is more convenient for 

the human modeller. The most popular of these formalisms are stochastic Petri nets 

[15]. 

Stochastic Petri nets (SPN) were developed in the 1980s for modelling complex 

synchronisation schemes. The modelling primitives of Petri nets (places, transitions, 

markings) are very basic and do not carry any application specific semantics. For that 

reason Petri nets are universally applicable and very flexible as it is reflected by their 

successful application in different areas. 

In the class of generalised SPNs (GSPN) transitions are either timed or immediate 

[16]. Timed transitions are associated with an exponentially distributed firing time, 

while immediate transitions fire as soon as they are enabled. During the analysis of a 
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GSPN the “Reachability Graph” is generated and the so called “vanishing markings”, 

which are due to the firing of immediate transitions, are eliminated. The result is a 

CTMC whose analysis yields steady-state or transient-state probabilities, i.e., the 

probabilities of the individual net markings from which high level measures can be 

computed.  

With the help of high-level model specification formalisms considered so far it is 

possible to specify larger CTMCs than at the state level, but these formalisms do not 

support the concepts of modularity hierarchy or composition of sub-models. As a 

result the models are monolithic and may be difficult to understand and debug. 

Moreover state space generation and numerical analysis of very large monolithic 

CTMCs is often not feasible in practice due to memory and CPU time limitations 

which is referred to as the notorious state space explosion problem. 

In the basic GSPN formalism a model consists of a single net which covers the 

whole system to be studied. Therefore GSPN models of complex systems tend to 

become very large and confused and suffer from the state space explosion problem. 

Stochastic activity networks (SAN) constitute an approach to the structuring of 

GSPNs through the sharing of places between different subnets [17]. In the presence 

of symmetric sub-models they tackle the state space explosion problem by directly 

generating a reduced Reachability Graph in which all mutually symmetric markings 

are collapsed into one. 

The remainder of this chapter is organized as follow. In Section 3.2 we give a 

brief introduction of Dynamic Fault Trees and related methodologies like DRBD and 

BDMP. In Section 3.3 stochastic extension of Petri nets are introduced with 

particular attention to the description of the SAN formalism. Advantages and 

disadvantages of the revised methodologies are discussed and finally in Section 3.4 

we report some conclusion. 

3.2 DYNAMIC FAULT TREES 

Traditional FT cannot capture the dynamic behaviour of the system failure 

mechanisms associated with sequence-dependent events, spares and dynamic 
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redundancy management, and priorities of failure events. For this reason, many 

modellers turned to Markov chains for reliability assessment of safety-critical 

systems. In addition to their computational complexity, a major disadvantage of 

Markov chains is that the correct Markov model for a given system is difficult to 

determine. In order to overcome this difficulty, the concept of Dynamic Fault Trees 

is introduced by adding sequential notion to the traditional fault tree approach 

[1,2,3]. 

In practice, the failure criteria of a system may depend on both the combinations 

of fault events and sequence of occurrence of input events. This is done by 

introducing dynamic gates into fault trees. With the help of dynamic gates, modellers 

can specify the system sequence-dependent failure behaviour using dynamic fault 

trees that are compact and easily understood. 

The modelling power of DFT has gained the attention of reliability engineers 

working on safety critical systems. Therefore, these gates are not only used in 

research-oriented projects, but also recently introduced in commercial tools for fault 

tree evaluation, eg, Relex [18]. 

3.2.1 DFT OBJECTS AND ASSUMPTIONS 

A DFT is a stochastic model for the reliability evaluation that synthesizes the 

ways how an undesired and time dependent event can occur. As a Fault Tree (FT), a 

DFT is composed by a top gate which represents the most undesired event (TE, top 

event) and a certain number of lower level gates and basic events (BEs) that, 

combined according with the logic of the fault scenario, cause the occurrence of the 

TE.  

The main hypotheses for the use of the DFT are that (i) events are binary and (ii), 

according to many authors [1,2,3], components are not repairable. Thus, the main 

difference with FT is that DFT were not conceived to evaluate availability but are 

appropriate to evaluate the reliability of model characterized by complex stochastic 

dependencies. The possibility to model complex interactions with the graphical 

symbolism of the FT has encouraged the development of dynamic models but, in 

point of the fact, DFT has shown many issues for what concern their resolution. 
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The reason of this anomaly has to be traced in the lack of a rigorous semantic 

language that has caused the proliferation of several and variegated techniques of 

resolution that resort to an equivalent stochastic model [1-12]. At the state of the art, 

an analytical solution exists only if another hypothesis is added to the previous ones: 

BEs have to be described by the exponential distribution. In this way, it is possible to 

convert a DFT into a state-space model and solve it within the domain of the Markov 

processes. 

Unfortunately the mentioned hypotheses can result too restrictive, especially for 

real industrial applications characterized not only by exponentially distributed time 

to fail but also by Weibull, Gaussian or lognormal probability distribution. 

Therefore, the reliability evaluation of systems that present generalized functions of 

probability is not possible with the analytical Markov processes and, at the state of 

the art, the more effective solution is the simulation [9,19]. 

In general, all the previous techniques of resolution (analytical and simulative) 

have been implemented in several software applications for reliability analysis 

[5,6,8,19] but, despite that, the real effectiveness of these tools is still questionable 

because none of them can be used to design and solve “complex DFT” in a 

straightforward manner. A synthesis of the main features of some automated tools 

that we have tested can be found in Appendix A. 

3.2.2 DYNAMIC GATES 

In this section we give a brief description of the dynamic gates of DFTs (Figure 

3.1). 

3.2.2.1 FUNCTIONAL DEPENDENCY GATE 

A functional dependency gate (FDEP) consists of a trigger event and a set of 

dependent events. The dependent basic events are functionally dependent on the 

trigger event. When the trigger event occurs, the dependent basic events are forced to 

occur. The separate occurrence of any of the dependent basic events has no effect on 

the trigger event. The output of the gate is a dummy, i.e., it is not taken into account 

in the calculation of the system failure probability. While the trigger can be any 

subsystem, i.e., a construct made of gates, originally the dependent events could be 
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only basic events. In [19] is proposed to extend the formalism allowing the triggering 

of any gate and not only BEs. 

 

Fig. 3.1 DFT dynamic gates. 

3.2.2.2 SPARE GATE 

Systems with cold and warm spares cannot be modelled exactly using usual FTs 

because the system failure criteria cannot be expressed in terms of combinations of 

basic events, all using the same time frame. 

The Spare gate has one primary input and one or more alternate inputs called spares. 

The primary input of a Spare gate is initially powered on and the alternate inputs are 

in standby mode. When the primary fails, it is replaced by the first available alternate 

input that switches from the standby mode to the active mode. In turn, when this 

alternate input fails, it is replaced by the next available alternate input, and so on. 

In standby mode, the failure rate  of BEs is reduced by a dormancy factor 

. Thus, the failure rate in standby mode is , while in the active mode it 

switches back to . Depending on the value of  we can distinguish the three 

different situations: 
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- , the spare is called cold spare and cannot fail before it becomes active; 

- , the spare is called hot spare and can fail in both the stand-by and 

active state with the same failure rate; 

- , the spare is called warm spare and can fail before it becomes 

active, but with a “scaled” failure rate. 

SPARE gates fail when the primary and all its spares have failed or are unavailable, 

i.e. used by other SPARE gates. In [19] is proposed to extend the formalism allowing 

spare events to be any subsystem. 

3.2.2.3 PRIORITY AND GATE 

The PAND gate models a failure sequence dependency. The priority-AND 

(PAND) gate is an AND gate with an additional condition: events must occur in a 

specific order [1,2,3]. The output of the gate is true if all the events have occurred in 

the left-to-right order in which they appear under the gate. If the inputs fail in a 

different order, the gate does not fail. Generally the gate accepts only two inputs and 

cascade of gates are used to represent the temporal condition on more inputs. 

3.2.2.4 SEQUENCE ENFORCING GATE 

The SEQ gate forces events to occur in a particular order. The input events are 

constrained to occur in the left-to-right order in which they appear under the gate. 

The sequence enforcing gate can be contrasted with the priority-AND gate in that the 

priority-AND gate detects whether events occur in a particular order (the events can 

occur in any order), whereas the sequence enforcing gate allows the events to occur 

only in a specified order. With the respect to the SPARE gate the SEQ gate can be 

seen as a SPARE gate with one primary and cold stand-by inputs. 

3.2.3 SOLUTION METHODS 

Fault trees with dynamic gates are typically solved by automatic conversion to 

equivalent Markov models [1,2,3]. In some cases, Monte Carlo simulation can be 

used to solve dynamic fault trees without converting to Markov models [9,19]. Once 

dynamic fault trees are converted to Markov models, the Markov models can be 

solved for state probabilities.  



                                                                                                                       Hybrid Formalisms 

In order to reduce the number of states in the retrieved Markov Chain many 

algorithms based on modularization of the DFT have been proposed [8,20]. These 

methods aim to find independent sub-trees from a point of view of repeated events 

and dynamic gates. If an independent sub-tree contains a dynamic gate, then it will 

be solved using a Markov model; otherwise, it will be solved using BDD, and their 

solutions will be integrated to get the solution for the entire fault tree.  

Other approaches use conditional probabilities to calculate the results of a 

dynamic module without generate the Markov Chain [4]. 

Another approach is to convert the DFT into a dynamic Bayesian network (DBN) 

[6,10,11]. With respect to CTMC, the use of a DBN allows one to take advantage of 

the factorization in the temporal probability model. As a matter of fact, the 

conditional independence assumptions implicit in a DBN enable a compact 

representation of the probabilistic model, allowing the system designer or analyst to 

avoid the complexity of specifying and using a global-state model (like a standard 

Markov Chain); this is particularly important when the dynamic module of the 

considered DFT is significantly large. 

Other approaches to the resolution of DFT with the use of Probabilistic Boolean 

Algebra were proposed in [21]. A conversion of DFT into Generalized Stochastic 

Petri Nets was proposed in [12]. Finally, approaches based on Stochastic Process 

Algebra can be found in [7]. 

3.2.4 RELATED WORK 

Other hybrid formalism that make use of both non state-space and state-space 

representation have been proposed. Among these we give a brief introduction of 

DRBD and BDMP. 

3.2.4.1 DYNAMIC RELIABILITY BLOCK DIAGRAM 

DRBDs [13] inherit the features of RBD in reliability modelling such as 

simplicity, versatility and expressive power and extend the formalism allowing 

taking into account the system dynamics.  To this end in DRBD each component can 

be in three different states: active, i.e., working, failed, i.e., not operational, and 
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stand-by, i.e., reliable but not available. DRBD extend the capabilities of DFTs 

because of the use of state-space models at the high level model. However, the state-

space model is limited to a specific structure (only three states are admitted), thus 

their application is limited by the formalism itself. 

3.2.4.2 BOOLEAN DRIVEN MARKOV PROCESS 

BDMP [14] extends FT with two new objects: triggers and Markov chains. 

Triggers are used to widespread failures of BEs or gates across the tree. To this end 

triggers carry on a Boolean value that forces BEs to behave differently according to 

the value of the trigger. In fact, BEs may have two modes. These two modes are 

represented by two different Markov chains. Only one Markov chain can be active at 

any time and the one that is selected to be active depends on the value of the trigger 

related to the BE. Modelling capabilities of BDMP extend the ones of DFT in that is 

possible to use Petri nets as the leafs of the tree. The main drawback however relies 

in the Boolean selector itself. In fact, only two processes are possible (depending on 

the Boolean values 1 or 0) while it could be necessary to use more than two 

processes to describe the behaviour of components, e.g., load sharing with multiple 

components (more than 2).   

3.2.5 ADVANTAGES AND DISADVANTAGES OF DFT 

Perhaps the main advantage of DFT is that of being a high level modelling 

formalism that, extending FT, results intuitive and easy to use. Although they do not 

cover all the possible scenarios, DFT have been referred ad a reference methodology 

by many researchers. Limitations of DFT have been addressed earlier in this chapter. 

Here we report the most meaningful: 

- only exponential distributions can be used to define the time to failure of 

components; 

-  components are not repairable, thus limited measure of interest can be 

evaluated; 

- complex redundancy and maintenance management, load sharing systems, 

etc. cannot be modelled. 
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During this doctoral course the main objectives have been to alleviate these 

problems. We have dealt with the issue of the kind of distribution that can be used to 

model components developing a software tool, MatCarloRe, to evaluate DFT via 

simulation. The tool will be presented in Chapter 4 while two published papers that 

describes the tool and compare it with other academic and commercial tool are 

presented in Appendix A. Moreover, in appendix A is reported another published 

paper where analytical and simulative resolution techniques are compared. The paper 

describes also the approaches used in modularization and introduces a classification 

based on weak and strong hierarchy.  

To alleviate other problems, we have taken an approach similar to the idea of 

BDMP, but that is even more general. The idea again is to attach one or more state-

space model to the leafs of the tree, but in our case we do not model dependencies 

via triggers but by an appropriate model of transitions of these state-space models. 

Adaptive Transition Systems (ATS) are even more general in that there can be 

several state-space models attached to any leaf. The behaviour of the system is 

entirely captured by these state-space models and thus the FT represents only a 

particular specification of a reward (a measure of interest) that we want to evaluate. 

For instance, temporal logics, e.g., Continuous Stochastic Logic (CSL) [22], can be 

used to specify the property of interest. ATS will be presented in Chapter 5. In 

Chapter 7 we present the application of ATS to evaluate repairable DFT. To our 

knowledge there is not at the moment any work where availability or reliability with 

repair of DFTs have been investigated exhaustively. An approach based on 

Stochastic Process Algebra can be found in [7].  

3.3 STOCHASTIC EXTENSION OF PETRI NETS 

Stochastic models have been extensively developed in the areas of performance 

and dependability evaluation. High level model specification formalisms have been 

developed in order to overcome the problems that arise when specifying the model at 

the level of the Markov chain, i.e., tedious and error prone. Stochastic extensions of 

Petri nets are a well know formalism that belong to this class. 
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Petri nets are abstract formal methods [23], for the description and analysis of 

flow of information and control in concurrent systems. Petri nets are graphically 

represented as collections of: 

- Places, which are represented by circles. Places model state variables and can 

contain tokens. 

- Tokens, are represented as black dots and represent the specific value of the 

state variables. 

- Transitions, are drawn as rectangles. They model activities which cause a 

change in state. 

- Arcs, are arrows between places and the transitions used to specify the 

interconnection between the two types of objects. 

The graphical aspect of these models are attractive for practical modelling since 

they help in understanding how features of the real system are conveyed in the 

model.  

Definition 3.1 (Petri Net). A Petri net is a 5-tuple  where: 

-  is the set of places;  

-  is the set of transitions;  

-  are the backward and forward incidence functions, i.e., 

define the arcs that connect places and transition and the assigned weights; 

and  

-  is the initial marking, i.e., the number of 

tokens contained by places. 

Transitions can be enabled, which means that they can fire. Firing means that the 

transition removes from its input places a number of tokens, defined by the weight of 

the input arc. It also adds to its output places the number of tokens defined by the 

weight of the output arc. A transition is enabled if all its input places are marked with 

as many tokens as specified by the backward incidence function. 
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The dynamic behaviour of the net is specified by its marking behaviour. A 

marking is an assignment of tokens to places. Classic PNs are independent of time 

and are characterised by the nondeterministic firing of transitions that are 

simultaneously enabled in a given marking (Figure 3.2). The marking of a Petri net 

determines the state of the Petri net.  

 

Fig. 3.2. An example of non-determinism in Petri nets. 

The most common way to analyse the behaviour of a PN is by the construction of 

the Reachability Graph (RG). It allows to build a state-space model of a PN. The 

Reachability Graph is built by determining all the markings which result from the 

different transitions firing. The state-space can be finite or not depending on the fact 

that the net is bounded or not (Figure 3.3). 

 

Fig. 3.3. The Reachability Graph of the PN in Figure 3.2. 

3.3.1 STOCHASTIC PETRI NET CLASSIFICATION 

In this section we present an overview of the some of the most know stochastic 

extensions of Petri nets. 
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3.3.1.1 STOCHASTIC PETRI NETS 

Stochastic PNs (SPN) are timed PNs in which all the firing delays are 

exponentially distributed. The use of exponential distributions for the temporal 

specifications results in a PN that can be mapped on continuous-time Markov chains 

[15]. 

SPNs are formally defined by adding the set  to the definition 

of a Petri net.  is the transition rate of the transition . Since transition delays are 

exponential,  is also the parameter of the exponential distribution governing the 

firing delay of .  

If two transitions are enabled at the same time, the transition that fires first will 

have the minimum delay. This is also known as the race condition. If  and  are 

both enabled, the probability that   will fire first is given by   (Figure 3.4). 

 

Fig. 3.4. An example of possible evolution of a SPN. 

The Reachability Graph of a SPN is a CTMC if rates of transitions in the SPN are 

assigned to the transition between states in the reachability graph. The stochastic 

process underlying a SPN is a CTMC and can be solved with normal numerical 

methods. 

3.3.1.2 GENERALIZED STOCHASTIC PETRI NETS 

GSPNs are SPNs with the introduction of immediate delays [16]. In GSPN there 

are two types of transitions, immediate and timed. Immediate transitions fire in zero 

time once enabled, while timed transitions fire in a delay time defined by an 

exponential distribution. 
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To overcome the problem that arise in case of concurrent enabled immediate 

transitions a priority rate is assigned to each immediate transition. Immediate 

transitions have priority over timed transition. 

The use of immediate transitions results in a more expressive PN but with little 

change to the analysis of the underlying CTMC. In fact, GSPN are analysed by 

considering two kinds of markings: vanishing and tangible. Vanishing markings are 

those in which the system spends zero time, i.e., markings that involve immediate 

transitions. On the other hand, markings that involve timed transitions are known as 

tangible. 

The Reachability Graph of a GSPN is built considering first the Extended 

Reachability Graph (ERG) in which both vanishing and tangible marking are 

present. Successively, the Reachability Graph is obtained eliminating vanishing 

markings from the state-space model (Figure 3.5). 

 

Fig. 3.5. An example of Reachability Graph construction of GSPN. 

3.3.1.3 STOCHASTIC PETRI NETS WITH GENERAL FIRING TIME 

DISTRIBUTION 

The need for non-exponentially distributed transition firing times in SPNs has 

been observed by several authors. To this end the following Petri net extensions have 
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- Deterministic and stochastic Petri nets (DSPNs) [24-27], where the firing 

delay of timed transitions may be deterministic, i.e., fixed. 

- Extended Stochastic Petri Nets (ESPN) [28], Markov regenerative SPNs 

(MR-SPN) [25,29], extended DSPN [30], where the firing delay of timed 

transitions may have arbitrary distribution. 

The numerical solution for these models are possible only under the enabling 

constrain: only one GEN or DET transition can be enabled in any marking [31,32]. 

The underlying stochastic process may be semi-Markov or Markov regenerative 

process. 

In the case the underlying process is a GSMP, PNs can be solved via simulation. 

PNs are naturally suited for Discrete Event Simulation, since they describe the 

behaviours of real systems in terms of events that correspond to transition firings 

[33-36]. 

3.3.2 STOCHASTIC ACTIVITY NETWORKS 

Composition is a highly desirable feature when modelling complex systems since 

it enables human users to focus on manageable parts from which a whole system can 

be constructed. 

In the basic PN formalism a model consists of a single net which covers the whole 

system to be studied. Therefore PN models of complex systems tend to become very 

large and confused and suffer from the state space explosion problem. Stochastic 

Activity Networks (SANs) are a modeling formalism which extends Petri Nets 

[17,36]. SANs constitute an approach to the structuring of PNs through the sharing of 

places between different subnets. In the presence of symmetric sub-models they 

tackle the state space explosion problem by directly generating a reduced reachability 

graph in which all mutually symmetric markings are collapsed into one. 

The basic elements of SAN are places, activities, input gates and output gates.  

Places in SAN have the same role and meaning of places of Petri Nets. They 

contain an arbitrary number of tokens.  
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Activities are equivalent to transitions in Petri Nets. They can take a certain 

amount of time to be completed (timed activities) or no time (instantaneous 

activities). Timed activities support several kind of distribution type that define the 

time to firing of the activity. Parameters of activities, i.e., the parameters of the 

supported distributions, may be marking dependent.  

For each activity is defined an execution policy that allow to reactivate, i.e., resample 

the completion time, an activity depending on the marking of the net. This is done by 

the mean of two predicates: the activation predicate and the reactivation predicate. 

An activity is reactivated when both the predicates are true. In any marking, the 

activation predicate is true if it was true at the moment the activity was last enabled. 

Thus, the activation predicate keep trace of the past marking of the net. On the other 

hand the reactivation predicate is evaluated at every evolution step, i.e., every time 

an activity fires. 

When an activity fires a case is chosen. Cases represent the possibility of taking a 

specified action. Each case is assigned a real number that can be marking dependent 

and its evaluated at the moment the activity fires. The case that will perform is 

chosen probabilistically on the basis of the assigned real number. 

Activities may complete at the same time if instantaneous or deterministic, i.e., timed 

with fixed delay. In this case a non deterministic choice decides which activity will 

complete first. 

Each activity may have one or more input arcs, coming from its input places (which 

precedes the activity) and one or more output arcs going to its output places (which 

follow the activity). In absence of input gate and output gate, the presence of at least 

one token in each input place makes it able to fire and after firing one token is placed 

in each output place.  

Input gates and output gates, typical constructs of  SAN, can modify such a rule, 

making the SAN formalism more rich to represent actual situations. Particularly, they 

consist in predicates and functions, written in C++ language, which contain the rules 

of firing of the activities and how to distribute the tokens after the activities have 

fired. 
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Output gates are connected to cases of activities. They can be used to change the 

marking of the net when the input activity fires and the input case is chosen. 

Input gates have a twofold function: they serve to specify guard conditions on 

activities and to define marking changes, like output gates. To this, input gates are 

assigned an input predicate and an input function, respectively. The input predicate 

defines, on the basis of the marking of the net, if an activity may complete or not. It 

can if the predicate is true, otherwise it cannot. 

As in Petri Nets, a marking depicts a state of the net, which is characterized by an 

assignment of tokens to all the places of the net. With respect to a given initial 

marking, the reachability set is defined as the set of all markings that are reachable 

through any possible firing sequences of activities, starting from the initial marking. 

Other than the input and output gates, which allow to specifically control the net 

execution, SAN offers two more relevant high-level constructs for building 

hierarchical models: REP and JOIN. Such constructs allow to build composed 

models (atomic models) based on simpler sub-models, which can be developed 

independently and then replied and joined with others sub-models and then executed. 

Particularly, the construct REP allows to replicate sub-models and the construct 

JOIN allows to join sub-models.  

The construct REP is useful for two reasons: first, from a modelling point of view 

it avoids the construction of the same model multiple times; and second from a 

resolution point of view the use of the REP construct allows to generate a reduced 

state-space model because aggregation of states are obtained from indications at the 

network level. For a complete explanation of how the state-space based model is 

constructed from a SAN the reader may refer to [36]. Here we just mention that for a 

state-space based model to be constructed the underlying stochastic process of a 

SAN model must be a Markov Chain, i.e., only instantaneous and exponential timed 

activities can be present in the model and the initial marking must be a stable 

marking (a tangible marking in PNs). 

Finally, in SAN is possible to specify extended places. Extended places offer the 

possibility of using non integer marking and to make use of vectors to represent the 
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marking of places. By the mean of extended place, modelling capabilities of SAN 

can be extended to deal with continuous state spaces. Moreover, the use of vectors 

allows a more compact specification of models. 

The SAN model specification and elaboration is supported by Möbius tool, 

developed by the University of Illinois. The tool allows to specify the graphical 

model, to define the performance measures through reward variables, to compute the 

measures by choosing a specific solver to generate the solution. 

Measure of interest are specified at the network level by the definition of reward 

function. Reward functions can be of two kind: state reward and impulse reward. 

State reward are function of the marking of the net, while impulse reward are 

function of the completion of activities. Moreover, reward can be defined at a 

specific time, an interval of time or averaged over an interval of time. The 

performance measure is then evaluated as the expected value of the reward function. 

Figure 3.6 shows several SAN models of a SPARE gate of a DFT with two inputs. 

Models differ in that increasing level of SAN objects are used. The reader may 

already appreciate how the same model can be constructed in different ways, often 

depending by the personal choice of the modeller. 

Figure 3.6.a shows the SPARE DFT gate and the associated Markov chain. The 

active component of the SPARE is A, while the warm stand-by component is B. 

Figure 3.6.b shows a SPN model of the system. In this case two activities are used to 

represent the failure of B. The activity that represents the failure of B when in stand-

by is enabled only if A is working, while the activity that represent the failure of B 

when active is enabled only when A has failed. These conditions are modelled by the 

two-way arrows associated with the places A_OK and A_failed, respectively. 

In Figure 3.6.c input gates have been introduced to replace the two-way links of 

Figure 3.6.b. The input predicate specified in the two input gates check the marking 

associated with A_OK and A_failed to enable the right activities relative to B. In 

Figure 3.6.d is shown that by the mean of the input functions is possible to avoid the 

use of output links from the two activities B_fail_WARM and B_fail_HOT. This 

could be done by the mean of output gates, too. 
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Figure 3.6.e shows the use of the reactivation predicate. The model results 

simplified, but we need to introduce a dummy place that is used to reactivate the 

activity B_fail. This is necessary when GEN distribution are used, while in the case 

of exponential distribution this additional construct can be avoided due to the 

memoryless propert. In fact, we could define the reactivation predicate of B_fail only 

in terms of A_failed. In this case, if there would be more components than just A and 

B, B_fail would have been reactivated at any activity firing, but since the presence of 

the meoryless property the model would be correct. 

Finally, all the above presented models are flat; a single net is used to model the 

SPARE system. In the case of large models this can lead to error and confusions. In 

Figure 3.6.f the use of the construct JOIN is shown. In this case three atomic models 

were created: A, B and AND and joined together, i.e., variables of atomic models are 

shared via the JOIN construct. 

The examples above show some problem when modelling with SAN. In particular 

three issue are of practical importance: 

- the flexibility of offered by SAN allows to model a very general class of 

systems. However, as seen, also for very small systems the construction 

possibilities are so many that the resulting model is often a choice of the 

modeller. This could result in debugging difficulties and poor maintainability 

of the model over time; 

- the use of the reactivation predicate could be problematic when large models 

are developed, due to the need of specifying apposite constructs that limit the 

modeller in abstracting from the complexity of the overall model. 

- when JOIN constructs are used it is not possible to develop reward functions 

that take as inputs information from different sub-models. Thus, in this cases, 

one must generate an atomic model that contains all the variables of interest 

used in the specification of the reward. 
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Fig. 3.6. Examples of SAN model of a SPARE gate with two inputs. 

All these problems will be addressed in Chapter 6 where we propose an algorithm for 

the automatic generation of SAN models from Adaptive Transition Systems (ATS); 

introduced in Chapter 5. ATS gives the possibility of generating standardized SAN 

models that are compositional and where the issue of reactivating a transition is 
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explicitly managed. Moreover, the ATS-to-SAN conversion algorithm resolves the 

third problem by the use of extended places. 

3.4 CONCLUSION 

In this chapter we gave a brief description of formalism used in Reliability 

Engineering that we have considered as hybrid because of the high level language of 

description, typical of non state-space models, that they offer and because of the 

solution techniques that are common to state-space models. 

In particular we have described DFT as an extension of FTs. We have seen that 

the main limitation of DFT lay in the formalism itself: DFT are not general enough. 

Spare components cannot have different failure rates depending on the subsystem 

where they are employed and load-sharing cannot be modelled. Since repairable 

components cannot be considered, measures like availability or reliability with 

repairs cannot be evaluated. If one try to extend DFT to consider repairable 

components one is subjected to the choice of a specific substitution logic. 

Maintenance management and non determinism are not consider as well. Finally, the 

failure logic of PAND gates is not able to consider complex ordering of events in the 

case of repairable components. 

On the other hand, stochastic extension of Petri nets allow to model very general 

systems and are very well suited for discrete event simulation when general 

distributions are considered. 

SAN extends SPN allowing one to compose atomic models of specific part of the 

modelled system. Thus, with SAN one of the main problem of SPN, i.e., SPN are 

flat, are overcome. The main problems of SAN, i.e., (i) the generality of the model 

that leads to a non standardized approach to the modelling activity; (ii) the difficulty 

of defining reactivation predicates; and (iii) the problem of defining reward functions 

when the JOIN construct is used, were illustrated in the previous section. As said all 

these issues, together with the generalization of DFT models to include repairable 

components, will be managed with the introduction of ATS. 
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CHAPTER 4 

 

4.1 INTRODUCTION 

In Chapter 3 we introduced DFTs [1-6,12,13] and addressed the main limitations. 

In this chapter we present a tool for the resolution of DFT via simulation with the 

objectives of overcoming the constrains typical of DFT. In particular with this tool 

we address the possibility of using general distribution function in the specification 

of the time to failure of the BEs of the tree.  

MatCarloRe is a tool that was first developed in Simulink® in order to benefit 

from the high level interface that the tool provides. Successively, a Java graphical 

interface was developed and integrated with the Matlab® environment (a new tool 

that we call JDFTDes). The creation of the Java interface has two advantages with 

respect to the Simulink model: (i) allows a more friendly construction of the model, 

and (ii) allows to bypass the limitations imposed by the Simulink® formalism that 

does not allow to consider shared spare components. 

The remainder of this chapter is organized as follow: in Section 2 we give an 

introduction of the Monte Carlo theory for Discrete Event Simulation. In Section 3 

we present the Simulink® tool MatCarloRe. In Section 4 we report the application of 

the tool to a real case study. The JDFTDes will be shortly introduced in Section 5. 

Two accepted papers describing MatCarloRe and MatCarloRe-JDFTDes are reported 
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in Appendix A, where two accepted paper are attached. Finally in Section 6 are 

reported some conclusion. 

4.2 MONTE CARLO SIMULATION OF DFT 

Simulation programs, especially if well structured, are in general very 

comprehensible and known for the ease with which modifications and additions can 

be made [15-19,31]. Monte Carlo simulation is a valuable method which is widely 

used in solving real problems in many engineering fields. It has been used by [32, 

33] for the study of system reliability, based on the well-developed neutron transport 

ideas. The simulation technique allows the estimation of reliability indices by 

simulating the actual process and random behaviour of the system through a 

computer model.  

Monte Carlo simulation is implemented by running the model a large number of 

times, each representing an ensemble of random walks within the discrete state-space 

of system configurations, in order to generate a large number instances from which 

all the reliability indices required about the system are retrieved. 

As the system is composed of many components (or elements) grouped together 

to perform a certain function, the system modelling begins with the identification of 

the components of which the system is composed. Let us denote by  the possible 

states in which the i-th component of the system may be. In the simplest case  may 

have two possible states: one is the "UP" or working ,the other is the "DOWN" or 

failed. The state of the system can be described by a vector : 

,       (4.1) 

where  represents the number of components of the system. When a component 

changes its state, a new point in the state-space is reached. Some of these points are 

of failure for the whole system. 

While in static-FT certain combinations of component failures correspond to 

system failure, in DFTs the same state can be either a failure state or a good one, 

depending on the previous state sequence. Hence, in DFT, given the notion of state in 
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eq. 4.1, it is not possible to define a system state a good one or a failed one without 

looking at the system evolution. 

Vector  changes with respect to time, so each simulation consists of a collection 

of state vectors representing the movement of the random walk within the phase 

space. Such history can be written as: 

,      (4.2) 

where  represents the simulation-run index,  the time of the transition from 

state  to state  and  represents the index of the ending simulation time, i.e., 

the last state change within a simulation batch. The point  represents a state-

space point, while the collection of all such points is called the state-space of the 

system. This space is continuous in time and discrete in the states. Transitions among 

states depend on the components transition from the UP state to the DOWN one, 

according to a stochastic law (the probability density function) that characterizes the 

component behavior. 

The only information needed for the analysis are: a) the probability density 

function (pdf) of the time to failure of each component and their parameters values; 

b) the mission time of the system; and c) the system failure mode configuration. 

The most common way to conduct the simulation of a FT is to consider the 

system as a whole (indirect Monte Carlo [36]); previous literature [34, 35] consider a 

system failure rate as the sum of all the component failure rate and calculate the 

transition time to the new state. After that, the component which performs the 

transition is chosen in a stochastic manner. When the component is chosen its failure 

rate is set equal to zero and the process is repeated till the occurrence of the TE or the 

end of the mission. The system operability (i.e. the occurrence of the TE) is 

evaluated each time a transition occurs. Generally it is convenient to make use of the 

FT methodology to check the system operability each time it changes its state.  

The problem with this approach is that we must check the operability state of the 

system each time the system makes a transition; moreover it is needed to recalculate 

the system failure rate at each state change by imposing the failed component failure 

rate equal to zero.  
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When considering DFTs we need to take into account the system evolution history 

in order to assess the nature of the reached state. Moreover, in the case of 

components with different time distribution the traditional indirect Monte Carlo 

method, becomes impractical due to the lack of the memoryless property of general 

distributions. 

A more straightforward method to account for time-dependent failure and repair 

behaviours of components is the direct Monte Carlo method [37]. It samples the time 

to failure of each BE instead of the overall system transition time. Following the idea 

of direct Monte Carlo, our simulation approach makes use simultaneously of the FT 

and the Monte Carlo methodologies. Instead of simulating the system walk in the 

phase space we consider BEs as basic entities. The failure time of each BE is 

calculated at the beginning of each batch and these information are passed to the 

gates which they are connected to. The gate state is determined and, if failed, its 

failure time is passed to the higher levels. In this way for each gate of the tree two 

information are available: the state of the gate before the mission time and, if failed, 

the time when this condition became true.  

Information about the time of events are important when considering dynamic 

gates. Moreover many simulation data can be stored in a very straightforward way: 

for each gate we can obtain the failure number of occurrences, the mean time to 

failure and information about which connected subsystem forced mostly the failure 

of the gate.  

The approach followed is very suitable for dynamic gates since the failing order is 

tracked. Therefore, in this way it is not necessary to store the previous system states 

and check the order of occurrence to assess whether a state is of failure or good. 

The complexity of the algorithm is carried by each single gate, whose logic is 

programmed in order to infer its own state. For the same reason, with this approach 

there is no need to update the overall system failure rate at each transition.  

Generated all the transition times of each component, the failure time for each 

gate can be calculated based on the logic of the gate itself with respect to its inputs. 
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At the highest level information about the system state are available and used to 

estimate the system reliability. 

Due to the nature of the approach, it would be straightforward to program or 

modify the logic of the gates in a modular way, without compromising the 

environment already set. In this way, the end user can just make full use of the gates 

created by the programmers and exploit with some small knowledge of Simulink® 

the power of the library. 

4.3 SIMULINK® LIBRARY 

The simulation tool implemented makes use of a high level modeling interface 

that allows the user to assemble the DFT by picking basic events and gates from a 

library and dropping these elements on a Simulink® sheet. BEs and gates are then 

linked together to create the system configuration. 

The tool consists of a Simulink® library called MatCarloRe (Figure 4.1), formed 

of blocks representing the various elements of DFT, such as, the dynamic gates 

PAND, SPARE, SEQ and FDEP as well as the static gates AND, OR and Voting and 

the BEs.  

Each block representing a gate can receive n input and distribute m output by 

simply using the mux and demux blocks available in the main Simulink® library. 

Inputs and outputs are of two kind: we define y as the binary vector which indicates 

whether the input and output have occurred (value 1) or not (value 0), and t as the 

vector containing the failure times. Only for blocks representing the SPARE and the 

FDEP gates is not provided the input vector y. 

Once the model is built and the input parameters are defined it is possible to run 

the simulation defining the total number of batches. At each batch the model returns 

a binary value that indicates whether the system has reached the state of failure or 

not. In particular, the model returns the value 1 if the fault is reached, 0 vice versa. 

To avoid large amounts of data storage the Simulink® block memory is used to 

set the progressive sum of results of each iteration. In this way only the total value of 
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batches that revealed a fault is considered and stored in the Matlab® workspace by 

the block TE. The estimated unreliability of the system can be finally obtained 

dividing the value stored in TE by the total number of batches. 

 

Fig. 4.1. MatCarloRe library elements. 

In the next section it is shown how to build a simulation model for a DFT 

introducing in more details the BE block and the dynamic gates. In order to proof the 

validity of the tool the results performed with the MatCarloRe are compared with 

analytical results. 

4.3.1 THE BE BLOCK 

The BE block is designed to generate the times of failure of basic events. At the 

time the tool was built it could generate only the times of failure for components with 

exponential distribution as well as fixed probability. The version developed by the 

support of the JAVA interface integrated with the Matlab® environment has been 

integrated to support also Weibull distributions. However, other type of distribution 

can be easily integrated.  

For components subjected to random failures the unreliability at time t can be 

expressed by the following relation: 

,        (4.3) 
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where  is the failure rate of the component. The sampled time to failure is then 

calculated by the inverse relationship: 

 ,        (4.4) 

where  is a random number generated in [0, 1]. If  is smaller than the mission 

time , the component is considered as failed. 

For events supplied with a fixed probability q the following procedure is defined: 

a random number  generated uniformly in [0, 1] is extracted and compare with the 

value q. This comparison returns a failure time according to the following relation: 

,      (4.5) 

where  is a random number generated uniformly in . 

4.3.2 THE PAND BLOCK 

The PAND block models the logic that underlies the PAND gate of a DFT 

[10,14,23]. The block logic is illustrated in the flowchart in Figure 4.2. First, 

according to the vector y, it is verified if all the input events occurred. If this 

condition is not satisfied the gate does not trigger. Otherwise the following 

conditions are checked:  for  with , where  is the 

number of inputs of the gate. If such control over failure times is satisfied the gate 

triggers with a time to failure equal to the maximum failure time of its inputs. 

To test the validity of the block to perform the requested calculation we use a 

small example. A PAND gate with two BEs is considered. The failure rates of BEs 

are  for the first component from the left hand side of the gate and  

for the second one. The mission time is .  

In Figure 4.3 is shown the model built for the simulation with the MatCarloRe 

tool. It is possible to see the BE block which takes as inputs the failure rates of the 

two components and the mission time of the system. The output of the block is the 

time to failure of the two components (i.e. vector t) and the binary vector y which 
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indicates whether the time to failure of the components is smaller than the mission 

time. These vectors are given as input to the PAND block. The output scalar yPAND 

of the PAND block is passed to a construct that perform the progressive sum of 

results over the number of batches and at the end of all the iterations the result is 

stored by the block TE into the Matlab® Workspace. 

 

Fig. 4.2. Flow Chart of the PAND Block. 

 

Fig. 4.3. Simulation model of a PAND gate with two basic event with failure rate 

 and mission time . 
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Fig. 4.4. Simulated Vs analytical reliability of a PAND gate with two basic event 

with failure rate  and mission time . Iteration are chosen equal 

to  with  Dotted line: analytical result; marked line: simulation 

results. 

The simulated reliability versus the analytical one calculated by the mean of the 

associated CTMC are shown in Figure 4.4. The total number of batches are set to 

 with  It is evident that for a large number of iterations (of five 

magnitude order) the error is very low and acceptable. 

4.3.3 THE SPARE BLOCK 

The SPARE block models the logic that underlies the SPARE gate of a DFT 

[10,14]. The block logic is illustrated in the flowchart in Figure 4.5. 

Before to describe the structure of the algorithm of the SPARE block let consider 

the operations performed by the BE block. In presence of spare components the BE 

block sample two time to failure for the considered elements; one relative to the 

stand-by state and the other relative to the active state. The sampled time to failure 

relative to the active state is considered active, while the sampled time to failure 

relative to the stand-by state is considered passive and will be used by the SPARE 

block only if the component is requested by the gate. 
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Our implementation of the SPARE gate extends the classical one of DFT where 

only one primary component can be consider. In our implementation the SPARE 

block allows to consider more than one primary component for the gate.  

The steps performed by the algorithm are:  

- first a permutation of the vector t, representing the sampled time to failure of 

primary components, is made, sorting the vector in the ascending order; 

- then, it is examined, among the primary components whether there are 

components that have failed before the end of the mission time; if no failure 

is verified the gate will not trigger; 

- on the other hand, the algorithm checks if there are spare components able to 

replace the primary component that failed first. 

Let us consider the logic of replacement of a generic active component which 

fails. Its replacement can take place only if: 

- the spare part is still available (namely, it has not been used to replace another 

failed component) and; 

- the time to failure of the spare (during its stand-by condition) is greater than 

the time to failure of the primary component that must be replaced. 

If these two conditions are not satisfied by any spare component the gate triggers 

with a time of occurrence equal to the last failed primary component. Otherwise the 

block updates the time to failure of the primary component by adding the sampled 

time to failure (when active) of the spare component chosen for the replacement. The 

substituting spare is finally declared as busy. The search for active components 

applicants for replacement is repeated till there are primary components with failure 

time smaller than the mission time. 

It is worth to highlight that the order in which the spares are chosen to replace the 

failed component follows the graphical order of positioning defined by the gate (e.g. 

in case of two spares that can replace an active failed component, it is chosen to 

replace the component with the spare that graphically is placed to the left).  
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Fig. 4.5. Flow Chart of the SPARE Block. 
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The SPARE block offers many advantages in terms of modelling power. Many 

reliability tools (e.g., Relex®, Galileo® [7-9,11,38]) present some difficulties about 

the construction of DFT with SPARE gates: if a spare part is shared among more 

components, the DFT will have as many SPARE gates as the number of active 

components which share the spare. In this way, the first input of the generic SPARE 

gate is the active component, while the second input is the shared spare part, 

common to all the set of SPARE gates drawn. The final logic implemented by the set 

of SPARE gates is realized linking them together by an OR gate in the upper level 

(Figure 4.6). 

Another situation is redundancy in the active components (i.e. not all the active 

components are requested for the system to work). In this case an AND gate is 

placed to the upper level (Figure 4.7). If the number of active components is even 

greater than the presented examples in the previous figures the modelling activity is 

even more complex involving the use of AND and OR gates in the tree structure. 

Therefore what the SPARE gate of the MatCarloRe library is able to do is to bypass 

all these architectural tricks, by the simple use of a single block called SPARE_k/N, 

where k is the number of components requested to work and N is the number of 

initial primary components. 

The differences in the flow chart between the SPARE block and SPARE_k/N 

block are located in the first rhombus of the chart in Figure 4.5 where it is needed to 

consider the N-k failures allowed for the system to work. 

To test the validity of the two blocks SPARE and SPARE_k/N the results of two 

simple example are shown. Let consider a system composed of two primary and two 

spare components with failure rate . The latency factor for the spare 

components is  and the mission time is . Figures 4.8 and 4.10 show 

the models built with the MatCarloRe tool using the SAPRE block and SPARE_k/N 

block, respectively. The simulation models are equal in both cases except that the 

number of components needed for the system to work in the second example are 

defined  by nreq. 
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Fig. 4.6. Illustration of SPARE gates modelling vantages introduced by the tool; 

case of common shared spare. Left: Relex® model; right: MatCarloRe model. 

 

Fig. 4.7. Illustration of SPARE gates modelling vantages introduced by the tool; 

case of redundancy in active components. Left: Relex model; right: MatCarloRe 

model. 
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The BE block takes as inputs the failure rates of the two active components, the 

failure rate of the spare components when in stand-by state and when active and the 

mission time of the system. It returns as output the time to failure of the two active 

components stored in the vector t. The time to failure of spare parts when in the 

stand-by state and when active are given respectively in the vectors tl and ts. Vectors 

t, tl and ts and the mission time  are the input of the SPARE block. The output 

ySPARE, taken over repeated iterations, is then used to compute the reliability of the 

system. 

In Figure 4.9 is shown the simulated reliability versus the analytical calculated by 

the mean of the associated CTMC with respect to the number of batches. Again, for a 

number of iterations of the order of  the error of prediction is very low and 

acceptable. 

The results of the simulation of the k/N model are shown in Figure 4.11. Again for 

iteration of order  the simulated reliability is very close to the CTMC results. 

 

Fig. 4.8. Simulation model of a SPARE gate with two active components with 

failure rate , two spare components with failure rates , latency factor 

  and mission time . 
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Fig. 4.9. Simulated Vs analytical reliability of a SPARE gate: two active 

components ( ); two spare components ( ); latency factor ; 

mission time .  Dotted line: analytical result; marked line: simulated results. 

 

Fig. 4.10. Simulation model of a SPARE_k/N gate with two active components 

with failure rate , two spare components with failure rates , latency 

factor   and mission time ; nreq = 1. 
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Fig. 4.11. Simulated Vs analytical reliability of a SPARE k/N gate with two active 

components with failure rate , two spare components with failure rates 

, latency factor   and mission time ; nreq = 1. Iteration are 

chosen equal to  with  Dotted line: analytical result; marked line: 

simulated results. 

4.3.4 THE SEQ BLOCK 

The feature of the SEQ gate is to force the components - inputs of the gate – to 

move towards the state of failure in a fixed order [10,14,23]. This order is usually 

expressed graphically by the position of the gate inputs, from left to right. It is 

generally used to represent different levels of degradation of a component. Therefore, 

a condition for the gate to trigger is the occurrence of all its inputs. The algorithm 

used for this task is simple: the SEQ block firstly calculates the sum S of the time to 

failure of all its inputs. If S is smaller than the mission time the gate triggers with a 

time to failure equal to S. 



                                                                             MatCarloRe: a tool for the resolution of DFT 

4.3.5 THE FDEP BLOCK 

The FDEP block models the FDEP gate of a DFT [10,14,23]. The feature of this 

gate is to force the input components to reach the failure state if the trigger event has 

occurred before they fail by themselves. The block checks if the failure time of each 

input component is smaller than the trigger failure time. If the condition is true the 

component will fail with its own failure time. Vice versa the component will occur 

with failure time equal to the trigger failure time.  

In the construction of a model with a FDEP, each component subjected to the 

action of the trigger is firstly connected to the FDEP gate and then the output of the 

latter is passed to the gate interested by the given component. We do not show the 

flow chart due to the simplicity of the task performed by the block. Likewise we do 

show any example for the FDEP block due its similarity with an OR gate between 

the trigger event and any of the basic event of the gate. 

4.4 A COMPARATIVE EXAMPLE 

In this section we present a case of study of a real system, in order to demonstrate 

the effectiveness of the simulation tool to calculate the reliability of such systems. 

The case of study represents the DFT model of a plant section for the alkylation and 

treatment of light olefin. Following the top-down procedure of the FT analysis, the 

tree was designed. The static-tree structure is shown in Figure 4.12 and Table 4.1 

reports the component failure rates.  

Beside the FT model of Figure 4.12, a DFT was designed in order to consider a 

more realistic safety behavior that the plant exposes. The dynamic re-arrangement 

considered concerns the modeling of the gates IE1, IE8 and of the TE. In fact, in the 

static modeling they are represented with the traditional AND gates. That results in 

an approximate evaluation of the logic for the real system, since time dependencies 

cannot be considered with the static-FT. In the DFT, the gate IE8 was substituted 

with a SPARE gate as in a classic cold stand-by redundant configuration. The second 
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re-arrangement is done by substituting IE1 with a PAND, in order to consider the 

priority condition that IE3 has on IE4. The same process is applied at the TE gate. 

 

Fig. 4.12. FT of the section plant considered. 

Table 4.1. Input data for basic events of the FT of Fig. 4.10. 

ID  q 

BE1 -  

BE2  - 

BE3 -  

BE4  - 

BE5  - 

BE6  - 

BE7  - 

BE8  - 

BE9  - 

BE10  - 

BE11  - 

BE12  - 
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Three cases were studied: (i) simulation of the static-FT, (ii) simulation of the 

DFT without fixed probabilities by substituting  with the relative failure rate 

calculated through (3) (i.e., assuming the value of F equal to q and calculating the 

failure rate trough inverse relationship); (iii) the simulation of the DFT with the 

original parameters of Table 1. 

 

Fig. 4.13. MatCarloRe model of the DFT of Fig. 4.10. Case (iii). 

The analytical resolution of these three cases expose different levels of 

complexity. In fact, the case (i) is the simplest because no time dependencies arise 

and traditional combinatorial techniques can be used. Case (ii) introduces two kind of 

dynamic gates. One of them is placed at the TE. It makes impossible the use of 

techniques to relax the complexity of the model (e.g. modularization [20-30]) 

without incurring in approximated calculation. The case (iii) can be classified as the 

most complex since it cannot be solved with the use of the traditional CTMC 

paradigm due to the presence of fixed probabilities. For this last case no analytical 

result are presented. The model of the case (iii) implemented in the MatCarloRe tool 

is shown in Figure 4.13. 
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We conducted a simulation for each case choosing a maximum number of batches 

of . For cases (i) and (ii) analytical results were computed by the implementation 

of the model in Relex®. The unreliability of the simulation model converges to the 

analytical result with  iterations in the case (i) with a very small relative error. In 

the case (ii) more iterations are needed to obtain valid results because of the more 

complex nature of the system involving temporal dependencies. About iterations 

to achieve a small estimating error. In the case (iii) we claim that the number of 

iterations needed to achieve a small error in case (ii) could be used as well. This is 

supported by the fact that the unreliability seems to stabilize around  iterations. 

Results are reported in Table 4.2. 

Table 4.2. Unreliability and relative error for the model MatCarloRe of the FT in 

Fig. 12. Case(i): SFT with fixed probability for BE1 and BE3; Case(ii): DFT with 

failure rate for  BE1 and BE3; Case(iii): DFT with fixed probability for BE1 and 

BE3. 

Iter Case (i) Err.rel% Case (ii) Err.rel% Case (iii) 

10^1 0,7000 9,45% 0 100,00% 0 

10^2 0,8000 3,48% 0 100,00% 0 

10^3 0,7730 0,01% 0 100,00% 0 

10^4 0,7717 0,18% 1,00E-04 88,39% 0 

10^5 0,7734 0,04% 6,00E-05 13,03% 3,00E-05 

10^6 0,7733 0,02% 6,20E-05 16,80% 4,40E-05 

10^7 0,7732 0,02% 5,58E-05 5,12% 5,49E-05 

10^8 0,7731 0,00% 5,36E-05 0,98% 5,45E-05 

Fteo 0,7731  5,31E-05   

4.5 JDFTDES: A JAVA-MATLAB
®

 INTEGRATED TOOL 

MatCarloRe has one main disadvantage: it is not possible to model complex 

structures involving repeated spares. In fact, while the SPARE block can handle 
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multiple primary components that share the same spares, problems arise when more 

SPARE gates that share the same spare component (of order greater than 1) have 

other components are inputs that are not the same. Figure 4.14 shows an example of 

a SPARE system that cannot be modelled by MatCarloRe. In this case, in fact, we 

cannot use any of the aggregation logic represented in Figure 4.6 or 4.7 because the 

element B2 can substitute only B but cannot substitute A. Since, MatCarloRe does 

not admit that spare components are input of more SPARE block, the system in 

Figure 4.14 cannot be solved by the tool. 

To overcome this limitation a Matlab® implementation of the tool was developed. 

To this end, functions implemented in the blocks of the Simulink® library were 

converted into Matlab® functions, forming a Matlab® library.  

In this way by calling those functions following the hierarchy of the tree is 

possible to obtain a simulative model that is identical to the one that can be modelled 

by MatCarloRe. 

 

Fig. 4.14. Example of SPARE system that cannot be modelled by MatCarloRe. 

To solve the mentioned problem we defined a new function called ALL_SPARE 

that evaluate iteratively all the SPARE functions that are implemented in the model. 

By the mean of the ALL_SPARE gate, SPARE gates can share information about the 

occupancy of a spare component in a specific SPARE gate, thus allowing SPARE 

gates to communicate to each other. 
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Fig. 4.15. Algorithm of the resolution of a DFT with the Matlab® library. 

The algorithm for the resolution of a DFT by the mean of the Matlab® library is 

shown in Figure 4.15. The figure shows that after the computation of the sampled 

time to failure of BEs, FDEP gates are evaluated. In this way the corrected time to 

failure of elements inputs of FDEP gates are assigned. Successively, the 

ALL_SPARE function is called, which in turn calls recursively a number of SPARE 

functions equal to the number of SPARE gates in the model. When this is done the 

remaining gates are evaluated by the mean of the supporting functions in a bottom-up 

procedure until the top gate. This procedure is nested into a for loop that counts for 

the number of batches. 

While solving modelling and evaluation concerns the Matlab® library results very 

difficult to organize when it comes to model a system. To this end a JAVA graphical 

interface that support the construction of the DFT was developed. By the mean of the 

interface the model of the system is generated in terms of a Matlab® functions where 

all the necessary functions of the Matlab® library are automatically organized.  

call FDEP functions

call ALL_SPARE.m

Solve gates level 0

Solve gates level i

Solve top level gate

iter = 

MaxIter ?

call BE functions
Set :

F = 0

MaxIter =  batch number

Set iter = 0

START

iter = iter + 1

F = F + y_top

F = F/MaxIter

NO

YES

call OUT_FDEP.m
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4.5.1 JAVA INTERFACE 

The creation of a DFT model with the MatCarloRe syntax can be error prone and 

tedious. In Figure 4.15 it is shown the flow chart that describes how to prepare the 

Matlab® script. At first, the initialization of the main variables (F, number of 

iterations) is needed. Then, the simulation runs inside a loop that contains the 

commands that refer to the DFT model; the functions of the library have to be 

invoked in the order shown in Figure 4.15, according with the structure of the DFT. 

The «BE functions» need to be invoked for first, in order to sample the 

correspondent times of failure of each BE; the «FDEP functions» and «OUT_FDEP 

functions» are called if the DFT contains FDEP gates, in order to refresh the time of 

failure of the BEs which are connected with such kind of gate. Hence, if there are 

spare gates which share spare components, they have to be assembled invoking the 

«ALL_SPARE function» function. Once this first part of the code is written, it is 

possible to call all the other functions (which represent the gates) following a 

bottom-up approach since the information of the lower level of the fault tree are 

requested to the upper gates. In the end, the unreliability is computed as the ratio 

between the number of TE occurrence over the number of iterations. 

In order to simplify the effort of typing the code of a model with the MatCarloRE 

syntax, a graphic user interface (GUI), the jDFTDes, was developed. The jDFTDes is 

a code processor that translates a graphic model of DFT in a program for the 

MatCarloRE engine. The jDFTDes stands for “Java® DFT Designer”, a java 

package that can be invoked directly under the Matlab® shell. The choice of using 

Java was natural, since Matlab® runs under a Java Virtual Machine (JVM) and this 

permits to use the Java interpreter and run programs written in Java. In our 

application, we created a Java Archive (JAR), a Java file that includes all the classes 

of the jDFTDes. The jDFTDes can be invoked through the “javaaddpath( )” 

command, specifying the path where the library is located and creating a dummy 

variable that contains an instance of the java main frame of the jDFTDes. jDFTDes is 

greatly simple and the construction of a DFT model is straight, easy and fast. This 

was accomplished implementing a “drag and drop” interface that permits a quick 
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interactions with the element of the DFT. In fact, by clicking the right button it is 

possible to change the property of a component (rename, modify the type of 

component and change the order of the dependency) while by clicking the left button 

is possible to add an input (if the component clicked is a gate) or specify the type of 

CDF if the component is a BE. 

The text field Tm must contain the value of the time mission and the text field 

“ITERATION” the number of batches requested for the simulation. Once the DFT is 

assembled and the input are correctly set, by clicking “COMPUTE” the jDFTDes 

will process the graphical model generating the code for the MatCarloRE and finally 

dumping it in the Matlab® shell. 

4.6 CONCLUSION 

In this chapter we summarized an integrating technique of Monte Carlo 

simulation and FT methodology for reliability assessment of complex systems in 

presence of time dependencies. Our simulating environment can go beyond the 

limitations of analytical methodologies with the additional advantage of a high level 

modeling interface based on the FT method.  

With the current implementation of the tool DFT with general distributions can be 

solved via simulation. Moreover the tool has shown its effectiveness with respect to 

commercial and academic tool for the resolution of DFT. In Appendix A an accepted 

paper is reported where comparison with known tool is performed on the basis of the 

kind of the supported distributions as well as in terms of simulation time. Currently, 

MatCarloRe and its most recent version (Java-Matlab) are still under development. 

Two are the research lines that have been considering: the first is to exploit the use of 

variance reduction techniques to speed up the simulation [15-19]. First results have 

shown that these techniques can be applied effectively when non repairable 

components are considered. Second, we want to achieve the modeling capabilities 

introduced in Extended-DFT [39] where the following limitations are overcome:  

- FDEP gates cannot accept input that are not BEs; 

- SPARE gates cannot accept inputs that are not BEs. 
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However, the tool carries on the limitations of DFTs in terms of modelling power:  

- the kind of behaviour that can be modelled depends on the gates that are used 

in the formalism (as an example is not possible to model shared load, 

dependencies that are not related to fault logics etc.) 

- it is not possible to evaluate the availability of the system since the recovery 

logic was not formalized; 

- it is not possible to evaluate measure like reliability with repairs or more 

complex behaviours that depend on the occurrence of the failure of subparts 

of the tree. 

To overcome this limitations we recognize the need of a methodology that offers 

more degree of freedom to modeller in describing dependencies without losing the 

benefit of a high level language of description. In order to address these issues we 

recognize the necessity to separate the behaviour of the system from the fault logic 

into two separate and interconnected model. The behavioural model is a description 

of the behaviour of the system while the fault model represents the configurations 

that bring to the system failure. The two model in additions are interconnected in the 

sense that the behavioural model must pass information about the state of the 

components to the fault model and the information retrieved by the evaluation of the 

fault model can be passed back to the behavioural model in order to allow more 

complex behaviours. The fault model, free from the behavioural part, is static and 

can be represented by a FT of a RBD for instance.  

However, this implementation needs the formalization of a new modelling 

semantic. We will show that with the introduction of Adaptive Transition Systems 

(ATS) these limitations can be overcome giving to the modeller a flexible formalism 

to model systems with such a behaviour. 
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CHAPTER 5 

 

5.1 INTRODUCTION 

It is often possible to represent the behaviour of a system by specifying a discrete 

number of states it can occupy and by describing how the system moves from one 

state to another as time progresses. We take the view that the evolution of a system 

can be the result of interaction among different parts of the system. 

This kind of approach, based on communicating (or interacting) transition 

systems, has been used in Stochastic Process Algebras (SPA), e.g., Performance 

Evaluation Process Algebra (PEPA), Interactive Markov Chains (IMC), etc. [1,2]. 

Here, the communication mechanism between models of the system interacting parts 

is based on synchronization of transitions that share the same name (like in the CSP 

approach [3]), i.e., state changes occur simultaneously across the models of 

interacting parts.  

In PEPA synchronization between timed transitions (exponential) is defined taking 

the minimum between the rates of synchronized transitions, while in IMC the 

problem is solved distinguishing timed transitions from synchronizing transitions 

(instantaneous). These approaches are limited to Markov models. IMC supports also 

phase-type distributions.  
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Among SPA extensions to non Markovian models is Interactive generalized Semi 

Markov Processes (IGSMP) [4]. However the solution for these methods is very 

expensive, thus one usually restores to simulation, e.g., the SPADE language [5]. 

A different approach has been used in the PRISM language (a stochastic and 

probabilistic model checker [7]), where transition systems are replaced by modules, 

states by variables and transitions by functions of these variables [6,8]. There can be 

more than one variable for each module, and each module can update the values of 

its internal variables. PRISM allows synchronization of transition, too, but in this 

case the rate of the transition is chosen as the product of individual rates of the 

synchronized transitions.  

PRISM introduces also guards on transitions, i.e., Boolean expressions that define 

the conditions for which a transition (a command in the PRISM language) may 

complete. Guards are functions of the variables defined in the model; also of 

variables belonging to other modules. PRISM lacks of a graphical interface, but is 

very powerful due to the possibility of specifying variables and synchronization. 

Again PRISM can be used only when the underlying process is Markov.  

In the context of model checking, when general distributions need to be accounted 

into the model, this has brought to statistical model checking, i.e., solved via 

simulation [10]. One relevant work is that of [9] where a statistical model checking is 

implemented based on the definition of a DESP. DESP resemble the definition of 

generalized semi-Markov process (GSMP) given in [11]. 

Another well known class of formalisms that have been widely used in 

dependability modelling are stochastic extensions of Petri nets (SPN) [12]. They 

allow one to analyze systems with various dependencies between the modelled 

elements and to use a range of distributions to model their stochastic behaviour. We 

have seen in Chapter 3 that Stochastic Activity Networks (SANs), an extension of 

SPN, allow compositional modelling, overcoming to one of the main limits of SPN 

in case of large and complex systems [13]. These formalisms represent the system in 

terms of a network composed of: places, containing tokens; and transitions, whose 

function is to change the marking of the net, i.e., the number of token in a place.  
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In SAN the modeller can define predicates of arbitrary complexity using directly an 

high level language(e.g., C++ in the Mobius tool [14,26]). Predicates are as guards in 

the PRISM, inhibiting transitions if the predicate is false. In most cases the predicates 

implement a simple Boolean function on set of state variables maintained in the 

model. Moreover, SANs allow to define parameter of transition dependent on the 

marking of the net. This feature is not included, for instance, in the previous 

mentioned formalism (PEPA, IMC, PRISM). 

Inspired by the indicated formalisms, we introduce a modelling approach for 

dependability analysis of complex interdependent systems where temporal 

dependencies have a central role. In the mentioned approaches we argue that 

temporal dependencies based on the ordering of occurrence of transitions can be 

modelled with increased complexity of the model itself. The resulting model is very 

large and one cannot completely abstract from the complexity of the interaction 

between the modelled elements. 

We model systems in terms of interacting transition systems (TS) with stochastic 

features [15]. The model consists of a set of TSs, each representing the state space of 

an element modelled in the systems. A TS can model a component as well as a 

specific dimension of the state space of the element. The main value of the approach 

is the separation of concerns: the modeller and the problem domain experts may 

benefit from being able to focus on the specific aspect of the state-space of a 

modelled element and abstract out the complexity of its entire state-space of the 

system. 

The class of interactive transition systems that we define are Adaptive Transition 

System (ATS). ATS is an high level modelling formalism that provides a concise and 

compositional way to describe the behaviour of interdependent reactive systems with 

general time distributions. Non determinism can be included in the model as well. 

Different kind of synchronization procedures can be defined, too. In ATS different 

parts of the system are modelled by different transition systems that are said adaptive 

because they adapt to each other according to their relative evolution as time 

progresses. 
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Adaption is a consequence of the kind of dependencies existing between parts of 

systems. In ATS we define a formal language to represent two kinds of dependencies 

that may exist in a system: 

- state dependencies, where the behaviour of interdependent systems is 

subjected to the different states they may be in; and 

- temporal dependencies, where the behaviour of interdependent systems is 

subjected to ordering of occurrence of state-transitions. 

From a modelling point of view, these two kinds of dependencies require different 

information about the state of the system parts. In fact, state dependencies can be 

modelled considering only indicator functions of the states occupied by the modelled 

elements. On the other hand, modelling temporal dependencies requires to know 

whether a defined sequence of actions has taken place. 

Another way to classify dependencies is in terms of impacts, i.e., the effects that a 

state or temporal dependency may have on the system behaviour. We model impacts 

by defining a model of transition that allows to capture the following behavioural 

aspects that may change as the system evolves in time:  

- the existence or not of a transition between pair of states;  

- the change in the mathematical law that define the time to complete of a 

transitions;  

- the change in the values of the parameters of these laws; and  

- the possibility to restart a transition. 

It is by the model of transitions that ATSs adapt their behaviour with respect to the 

evolution of other parts of the system as time progresses. In order to allow these 

possible behaviours we assign to transitions a set of attributes similar to those given 

in SAN for activities, i.e., type, activation, reactivation and parameter. In the ATS 

language attributes of transitions are variables that are defined by opportune 

functions, that we call transition functions. 
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Transition functions define the communication mechanism between ATSs. Outputs 

of transition functions are transition variables, i.e., activation, reactivation and 

parameter variables, and inputs are system variables.  

System variables are a reading of the system state at a given time. They are 

outputs of system functions, a set of functions defined over the evolution of the 

system. In this dissertation we give the definition of three kind of system functions 

that define three kind of system variables. However, the class of system functions 

and variables could be easily extended. Here we present system variables that give 

the following information about the state of a system: 

- the state occupied by each ATS;  

- the last completed transition among all ATS models; and  

- the time of completion of each transition when it last occurred. 

These system variables are said: state indicator, transition indicator and transition 

timing variables, respectively. State indicator variables and transition indicator 

variables can be used to define the class of state dependencies described above, 

while transition timing variables can be used to define temporal dependencies. They 

can impact on any of the attributes of transitions described above, although transition 

indicator variables are generally used only as inputs of reactivation functions. 

The specific structure of transition functions is defined by the modeller. It is by 

the specification of such structures that dependencies among parts of the systems are 

modelled. Transition functions take the last values of system variables, i.e., the value 

of these variables after the most recent state-change, to update the value of transition 

variables, thus allowing ATS to adapt to changes in the system (Figure 5.1). 

Due to the fact that only the last value of system variables, i.e., the value at the most 

recent state-change, the class of temporal dependencies that can modelled through 

the definition of transition functions is restricted to the most recent ordering of 

events. However, even with this limitation a wide class of systems can be 

represented. In this setting, each transition can be seen as a corridor that moves at 

point in time. At each completion of a given transition, the related corridor moves 
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forward to the new position. In this way the modeller can benefit from the knowledge 

of the relative position of corridors when state changes occur. 

 

Fig. 5.1. Communication mechanism between ATS models. 

Properties of the system are studied by the definition of reward variables. Reward 

variables are outputs of reward functions and inputs of reward functions are system 

variables. 

In our framework we extend the notion of reward variables. In fact we allow reward 

variables to be inputs of transition functions. Thus, not all the reward functions that 

are defined in the model are used as a mean to evaluate performance indexes of the 

system. While in the latter case one wish to estimate the expected value of these 

variables; in the case they are used as inputs of transition functions they are seen as 

variables that highlight composite information about the system (Figure 5.2). 

In fact, since reward functions take system variables as inputs they can be seen as a 

composite reading of the state of the system. They express an higher level of 

abstraction. 

Reward variables and systems variables are input of transition functions. The 

main consequence of this choice is to move the complexity of modelling 

dependencies to the model of transitions. In fact, defined the ATS of the interacting 

elements in terms of state and transitions the definition of transition and reward 

functions can be done subsequently. In this way one benefits of abstracting from the 

model of the other system parts when building the different ATSs.  
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Moreover, we show that, with the aid of a Fault Tree [16] like formalism, where 

gates are generalized to include not only Boolean operators, transition and reward 

functions can be graphically represented, improving the readability of the model.  

We argue that also the task of debugging and maintain a model are facilitated by the 

graphical representation of transition functions, and thus of dependencies between 

the modelled elements. This, for instance, in comparison to Petri Nets is a major 

advantage since in these models there is often a lack of standardized approach to 

modelling (the model depends from the modeller perspective). 

 

Fig. 5.2. Relations between variables. 

To build a state-space model of ATS that can be solved analytically we propose a 

definition of state based on system variables with constrain on the class of possible 

structure of transition and reward functions. 

However, transition functions and systems variables can be of any kind. In this case 

by giving ATS with an execution logic similar to the one defined for GSMP we show 

how a simulation model can be implemented directly from the execution rules of 

ATS. 
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Compared to IMC, we do not make use of the powerful formalism of SPA to address 

problems related to the size of the state-space. Our intent is to define a formalism 

that offers a structured approach to modelling complex systems that can be easily 

implemented in a simulation language and under some constrain and variables-

transformation can be solved analytically via the generation of the underlying 

Markov chain. 

The state-space of an ATS can be built by an algorithmic procedure that resemble the 

construction of a reachability graph in SPNs. Due to the timing relation the retrieved 

state-space can be very large even in case of small systems. We give some indication 

to achieve a reduction by an appropriate definition of the state where only those 

variables influent for the evolution and for the estimate of a performance measure are 

considered. 

In comparison to Petri net, however, probabilistic choice has not yet been defined 

in ATS. However the extension seems straightforward. Synchronization could be 

also be defined for future development of the formalism. Although we do not give a 

formal definition of synchronization between ATS, we show how it can be 

implemented with the aid of a case study based on a real system. Finally, we argue 

that a SPA formalization of ATS can be achieved, with the results of improving the 

techniques used for the analytical solution of the system. 

The remainder of this chapter is structured as follows: Section 2 gives a formal 

definition of ATS with a detailed explanation of the variables defined above and their 

possible relations. 

In Section 3 we present Ordered-ATS (OATS) a class of ATS with constrains on the 

structure of transition and reward functions. Within Section 3 we introduce a Fault 

Tree like formalism to the graphical representation of these functions.  

In section 4 we present a contrived example, the heat-power system, a system 

composed of four components with various kind of functional dependencies. 

Although the example does not exploit the full range of modelling capabilities of 

ATS, it shows how build the model of transition in a tutorial fashion.  
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Section 5 concerns with the evolution of ATS. We define the process of completion 

of a transition considering non deterministic choices and race conditions between 

transition.  

In Section 6 we introduce Markov-OATS (MOATS) a class of OATS for which a 

Markov model can be retrieved. We give the general rules for the generation of the 

state-space model defining an appropriate notion of state.  

Section 7 gives the general rules for solving the model via simulation. We show a 

case study based on the POWER-TELCO network nearby Rome Fiumicino (IRIIS 

Project [17,18]). In this case study ATS assume a very general form. In fact, one kind 

of reward functions represents the power associated with a node of the network and 

transition functions take as inputs these values. The power associated with the nodes 

is evaluated by solving the balance equations of the network, i.e., Kirchhoff circuit 

laws, given the absence of some node due to a failure. As a result some new node can 

become disconnected from the network due to overloading or missing of current. 

This process taking place into the Power network has effect on the batteries that 

supply energy to the Telco nodes.  

Finally, in Section 8 are reported some related works, conclusion and possible lines 

of further study. 

5.2 ADAPTIVE TRANSITION SYSTEM 

Definition 5.1. An ATS is a 5-tuple , where: 

-  is a finite set of N transition systems. The i-th element of  is 

specified in terms of a finite set of  states  and a 

finite set of  transitions  between pairs of states.  

and  are the set of states and transitions of the overall transition system , 

respectively. Elements of  are denote as  and 

elements of  as  or as .
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- , is a set of system functions that define the state of the system at a 

given time. We represent the system state in terms of three kinds of system 

functions. , where: 

-  are said state indicator functions (associated with each 

state );

-  are said transition indicator functions (associated with 

each transition ); and 

-  are said transition timing functions (associated with each 

transition ).

- , is a set of reward functions defined over the set of system 

variables ; 

-  is a set of transition functions defined over the set of system 

and reward variables,  and , respectively. Transition functions 

are of three kinds. , where:  

-  are said activation functions;  

-  are said reactivation functions; and  

-  are said parameter functions. 

- , is the initial state.  is the state variable of  at time t. As 

the system moves at point in times, we are interested in , the values of 

these variables as a state-transition occurs. With  we say that 

during the interval ,  is in state . 

5.2.1 SYSTEM VARIABLES 

As said in Definition 5.1 system functions  are of three kinds: 

-  are said state indicator functions and are defined for each state 

.  Given a state , we define the state indicator function of  

in the time interval  as: 
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.      (5.1) 

-  are said transition indicator functions and defined for each 

transition . Given a transition , we have that: 

,   (5.2) 

for  and . Thus, transition indicator function take on 

value 1 only if the transition is the one that most recently completed. The 

output of this function, can be analyzed also from the point of view of the 

states that the transition connects. 

In fact, if  we retrieve the following information:  is the state that 

was left at the n-th time step (or the state that most recently was left) and that 

 is the state that was entered at the n-th time step (or the state that most 

recently was entered). On the other hand, if  we can only state 

that  and  were not involved in any state-transition at the n-th time step. 

Transitions indicator functions can be seen as messages that are sent when a 

transition complete. In ATS, the presence of instantaneous and deterministic 

transitions can cause that more transitions complete at the same time 

(concurrent transitions). Although occurring at the same time, their 

completions occur at different time steps. Two cases are possible: (i) 

transitions are consecutive in the same ATS; or (ii) transitions belong to 

different ATS or are not consecutive. In the latter case, the modeller should 

be aware of the non-deterministic choice that is made on the ordering of 

completion of concurrent transitions. It is important to remind this fact in the 

context of transition indicator variables because they are impulse variables, 

i.e., they take on value 1 as long as a transition was the last that completed. 

-  are said transition timing functions and as transition indicator 

functions are assigned to each transition . Given a transition 

, we have that: 
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,   (5.3) 

for and . Transition timing functions returns the value 

of the most recent time point at which a given transition completed.  

From eq. (5.3) we see that the value of transition timing variables is kept the 

same until the transition completes again. Moreover, the value of these 

variables is set to 0 at the initial time. Transitions are seen as events that 

move along the real axis as corridors in a race. With this setting these 

variables express a relative ordering between transition, independently of the 

states they connect. 

Again, from the perspective of entered and left states,  returns the 

most recent time point value at which  was left and  was entered. 

Moreover, since the value of  is kept the same until a new completion of 

, the information about the time  was last entered is present in the 

model even if the system has moved out from . 

This is true in the case of a state with only one ingoing and outgoing 

transition, but it is not in general, i.e., a state with more ingoing or outgoing 

transitions. In the general case to retrieve information about the time a state 

was last entered, one should evaluate the maximum value of the transition 

timing functions of those transitions directed to the state. In these cases, were 

system variables must be related together in order to retrieve measure at 

higher levels, reward functions must be considered.  

5.2.2 REWARD FUNCTIONS 

Reward functions are defined over the set of possible values of system functions. 

Reward functions are commonly used to study some property of interest of the 

system. From a general perspective reward functions can be seen as relations that 

combine information of different parts of a system in order to generate a specific 

output. Reward variables, the outputs of reward functions, can be used as a 

specification of a measure of interest or simply considered as inputs of transition 
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functions. In the latter case they are used to define the behaviour of the system with 

higher levels of detail. 

If a reward is used as a mean to evaluate a performance measure, three kind of 

reward categories can be considered: instant of time, interval of time and averaged 

interval of time. Another categorization that is often given about rewards is that they 

can be rate rewards or impulsive rewards. Rate rewards are related to the occupancy 

of a particular state, while impulse rewards are related to the completion of 

transitions. 

ATS allow to model both rate rewards and impulse rewards. Inputs of rate reward 

functions are state indicator functions and transition timing functions and inputs of 

impulse reward functions are transition indicator functions. In addition these two 

kind of rewards can be implemented together in a single reward function. More 

specification about rewards classification can be found in [19]. 

We allow reward variables to be inputs of transition functions. This follows 

considerations like: to evaluate a measure like reliability with repair we allow repairs 

until a system failure state is reached. Since the reward is a specification of a system 

failure state at an higher level we can “stop” all transitions of the model when a 

specific value of the reward is reached. 

5.2.3 MODEL OF TRANSITIONS AND TRANSITION FUNCTIONS 

In ATS a transition represents a set of events whose occurrence makes the system 

move from a state to another. Each event of a transition is referred as a mode of a 

transition. For each mode is specified a type and a set of attributes. Possible types 

are: stochastic (stoc), deterministic (det) and instantaneous (inst). The difference 

between these classes lays in the different underlying process that defines the time to 

occur of an event. Stochastic means that the time to occur is defined via a probability 

density function, deterministic that an event takes a fixed amount of time to occur 

with probability one, and instantaneous that the event occurs in zero time having 

precedence over the other types. 



                 Adaptive Transition System 

Attributes related to a mode are of three kinds: activation (Act), reactivation 

(React) and parameters (Par). The activation defines if an event may occur, the 

reactivation if an event must be activated again (i.e., sampled again in simulation 

terminology) and the parameter defines the parameters of the function specified by 

the type of the mode. Stochastic and deterministic types support all the three 

attributes Act, React and Par, while instantaneous types support only the activation 

attribute. 

Modes of transitions are useful in situations where the type of function that 

determines the time to complete of transitions can change over time. In this case, 

having defined different modes of a transition, the activation associated to each mode 

can be used to define the way a transition may complete given a system 

configuration. For instance, think about a component with a constant failure rate that 

can fail instantaneously if some condition occurs. In this case one can model the 

failure of the component by a transition with two modes that stand for the natural 

failure mode of the component (the exponential one) and the one dependent on 

external factors (the instantaneous one). Moreover, competition between different 

modes are also allowed, i.e., more modes can be active simultaneously. 

 

Fig. 5.3. Modes and attributes of transitions. 
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Let  be a transition and  the set of possible modes. The m-th 

mode is a 4-tuple  where 

(Figure 5.3): 

-  is a label that specifies the mathematical 

relation that defines the time to occur of the mode. “stoc” represents 

“stochastic” and can be further specified in terms of a specific probability 

density function, e.g., “exp” stands for exponential; “det” stands for 

deterministic, i.e., takes a fixed amount of time to occur, and “inst” for 

instantaneous, i.e., occurs as soon as it is enabled; 

- , is the activation function; 

- , is the reactivation function; and 

- , is the parameter function. 

These three functions are related to the attributes of the mode. The activation 

function to the activation of a mode, the reactivation function to the reactivation of a 

mode and the parameter function to the mode parameters. To this end outputs of 

activation and reactivation functions are binary, while the outputs of parameter 

functions take on values in R.  

Transition variables change over time. Since the system moves at point in time, 

transition variables are updated at every state change. In particular: 

- The output of the activation function  is a binary variable that 

defines whether  may complete, given the system configuration 

at the n-th time step. It can if the variable takes on value 1 and will not if the 

variable takes on value 0. 

- Transition parameters can change during the system evolution too, i.e., they 

may be state dependent. The parameter function  defines the 

value of the parameter of  at the n-th time step. 

- In some cases it is necessary to reactivate a mode of a transition. For 

instance, any change of the transition parameter value will trigger 
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“reactivation”, a notion defined for SAN activities, which will trigger a 

generation of a new value for the duration of the particular transition mode 

using the current values of the mode parameter(s). The reactivation function 

 states if  must be reactivated at the n-th time step. 

The reactivation is triggered when this variable takes on value 1, it is not 

when it takes on value 0. 

The m-th mode of  is said enabled at the n-th time step if the system is in 

 and if the activation function  takes on value 1. We have: 

.   (5.4) 

The time to occur, , of the m-th mode of  is given by: 

                

 (5.5) 

Thus, the time to occur of a mode is set to: (i) infinite if the mode is not enabled; 

(ii) equal to the previous value if enabled at some previous time step and not 

reactivated at the current time step; and (iii) it is given by the defined type of the 

mode and its parameters if enabled at the current time or reactivated.  

A transition is enabled if at least one of its modes is enabled. The time to 

complete of a transition can be derived from the time to occur of its events. Let 

 be the time to complete of . It is given by: 

.     (5.6) 

Inputs of transition functions are system variables. We have that: 
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       (5.7) 

The specific form of  and its inputs are defined by the modeller. It is via the set 

of  that the modeler defines the dependencies between the elements of the system 

and the communication mechanisms between ATSs. 

5.3 ORDERED ADAPTIVE TRANSITION SYSTEMS 

Generally speaking transition and reward functions can be of any kind. In practice 

we see that most situation can be modelled considering only a subclass of possible 

relations. 

We define a Ordered-ATS (OATS) an ATS where transition timing variables are 

related only by relational operators . In practice transition timing 

variables can be related by min, max operators and use the outputs of the latter as 

inputs of the relational operators . The use of relational operators 

allows to define a notion of state when a base model in the form of a Markov chain 

must be derived. 

In order to make easier the construction and the readability of transition and 

reward functions we propose a graphical formalism similar to one used in fault trees. 

We model transition and reward variables as the top node of an acyclic graph whose 

initial nodes are system variables (and also reward variables in the model of 

transition functions) and intermediate nodes are gates that implement a specific 

function of their inputs. 

Top nodes are evaluated bottom-up from the initial nodes trough the various levels of 

the hierarchy defined by the tree. A top node can be connected to a single gate (the 

top gate) or to a single initial node and can take on the values of the outputs 

associated with these nodes. 

Intermediate nodes can be any function of their inputs. Moreover, weights can be 

associated to gates and the links that connect nodes of the tree. Therefore, parameter 

of a function implemented by a gate are the weight of the gate and those of the input 

links, while input variables take on the values of the input nodes. 
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The structure of the graph is similar to a FT and since we use it to model transition 

and reward functions we call it functional tree (f-T).  

Definition 5.2 Formally, a f-T is a 5-tuple ( ), where: 

- , is the set of initial nodes; 

- G, is the set of intermediate nodes (or gates); 

- , is the top node; 

- , is the set of connections between , , and ; and 

-  is the set of weights associated to  and . 

Gates implement a function of their inputs. For a given , we have that 

 where  is the weight associated to the gate and  

are the weights associated with the inputs .  

In OATS we the following specification for  are essential for transition timing 

variables to be used: 

- LESS, (<), is a functions with general inputs (in R) whose output can take on 

vale 1 if the first input is less that all the others and 0 otherwise. 

- MORE, (>), is a function with general inputs (in R) whose output can take on 

vale 1 if the first input is greater that all the others and 0 otherwise. 

- EQ, (=), is a function with general inputs (in R) whose output can take on 

vale 1 if all its inputs are equal and 0 otherwise. 

Moreover we can have the combinations  and . Other functions are common 

mathematical, algebraic and Boolean operators. In some case, a function can have a 

more complex structure. We have found that in modelling parameter functions the 

following gates can be used: 

- , or scaling gate. The gate is assigned a weight . Also input links are 

assigned weights , namely the scaling factors. The name derives from the 

fact that  scales the value of  if the j-the input node takes on value 1 

(when inputs are binary). 
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.        (5.8) 

- , or sum-progressive gate. Input links are assigned weights . The name 

derive from the fact that  sums if the j-the input node takes on value 1 

(when inputs are binary). 

.       (5.9) 

Generally the structure of a f-T of an OATS implements an “extended” Boolean 

function of its inputs. In facts, all inputs are binary except for transition timing 

functions that however are related by (and, in OATS, must be) relational operators 

 seen above. In this case all the considered variables in the f-T become 

binary.  

Weights, however, can restore the presence of non binary variables, but, do not 

change the notion of the underlying information considered by the set of system 

variables. This, as we will show, allows to define a notion of state of the system in a 

base model, i.e., state-space model, only in terms of system variables. 

5.4 THE HEAT-POWER SYSTEM 

In this section we present a contrived example to show how to build an ATS 

model of a system. Let consider a system made up of the following elements: three 

heat pumps P0, P1 and P2 and a generator G. P1 is in share-loading with P2 and both 

are in cold stand-by with respect to P0. G provides power to the pumps and a failure 

causes the instantaneous failure of all the pumps. Let assume the components are not 

repairable and can fail with a constant failure rate. The system failure is: “no heat is 

provided to the service”. 

Let , , ,  denote the four ATS models of P0, P1, P2 and G, respectively. 

Each of them is made up of two states representing the working and the failed 

condition. Let  and  denote the working and failed state ( ).  

is the transition that connects  to . 
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Transitions  represent two kind of events: the failure of P0, P1 and 

P2, respectively, due to internal faults or the failure due to the failure of the generator 

G. Thus, we assign two modes to these transition in order to represent both the 

possible events that can cause the state change. Let  be these 

modes. Each mode is represented by a 4-tuple . 

 is “exponential” for  and “instantaneous” for . The following 

activation functions can be considered for P0: 

 and , 

meaning that that the exponential mode is active ( ) if the generator is in the 

working state ( ) and that the instantaneous mode is active ( ) only if the 

generator is the failed state ( ). Reactivation and parameter are fixed for both 

modes. We assign: 

,  and . 

Figure 5.4 shows the ATS model of P0. 

 

Fig. 5.4. ATS model of P0. 

P1 and P2 are cold stand-by of P0. Thus, they can fail due to internal faults 
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meaning that that: (i) the exponential mode is active ( ) if the generator is in the 

working state ( ) and the pump P0 is in the failed state ( ); and that (ii) the 

instantaneous mode is active ( ) only if the generator is the failed state ( ). 

 

Fig. 5.5.ATS model of P1. 

 

Fig. 5.6.ATS model of P2. 

Since, P1 and P2 are in load sharing, parameter of the “exponential” mode are 

dependent on their reciprocal state. In particular let say that their parameter  is 

scaled by  if they both work. Thus, we can define the parameter functions as: 

 and . 

To be implemented, a change in the parameter needs reactivation. The following 

reactivation functions can be defined: 

 and , 
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where we have taken advantage of the impulse nature of transition indicator 

functions. In particular the reactivation function of the exponential mode of the 

“failure transition” of P1 ( ) takes on value 1 if P2 was the component that most 

recently failed ( ). Figure 5.5 and 5.6 show the ATS model of P1 and P2. 

Finally, the model of the generator G (Figure 5.7) is defined by the following 

transition functions: 

,  and , 

where the transition  is assigned only one mode of occurrence (exponential). 

 

Fig. 5.7.ATS model of G. 

The reward function can be expressed in terms of the failed state of the three 

pumps (according to the top event: “no heat provided to the service”) as:  

. 

The choice of using only system functions associated with the pumps follows to the 

fact that the generator is involved indirectly in the demand satisfaction. Thus, in ATS 

one can analyze the system at different level of details, considering first the elements 

directly related to the system requirements. 

5.5 EVOLUTION AND EXECUTION OF ATS 

The kind of systems we model are discrete event dynamic systems [9,10,11], thus, 

they move from a state to another in points in time  defined 
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over  where  is the initial instant and  for  is the instant of occurrence of 

the n-th event. 

The next event that will occur (or the next transition that will complete) is chosen 

by a race condition between concurrent enabled transitions. Transition can have the 

same time to complete in the case they are instantaneous or fixed. On the other hand, 

since the point probability of a continuous random variable is zero, stochastic 

transitions can never complete at the same time.  

When more transitions have the same time to complete a non-deterministic choice is 

made. In fact, in this case it is not defined which transition will trigger first, i.e., the 

process of completion of a transition. Moreover, it is not said that in the resulting 

state all the previous concurrent transitions will be still enabled. Concurrent 

transitions can exist into the same ATS and among ATSs. In practice, non-

determinism is solved probabilistically assigning the same probability to each 

simultaneous transitions. 

Basically, every time a transition completes, the new value of system, reward and 

transition functions with the consequent update of the time to complete of transitions 

(Figure 5.8) are evaluated. 

Given the time to complete  of  (with  the x-th 

transition of the set of all the transitions of the model T of cardinality NT), the choice 

of the transition that will complete is determined by selecting non-deterministically 

among all the transition with minimal time to complete.  

Let denote the set of 

transitions with minimal time to complete. We non-deterministically select  from 

the set . Obviously, given (5.8), it follows that that . 

In practice, the choice is effectuated randomly over the set of the transitions with 

minimum time to complete. If we denote with  the random variable that can 

take on  possible values equally probable, with total probability mass 1, we 

say that  if  is randomly selected from the set . Thus, we 

define the choice function as: 
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.  (5.10) 

Given  the state variable of the i-th ATS at time step , , 

is updated following: 

.   (5.11) 

 

Fig. 5.8. Evolution of ATS. 

The stochastic process underlying an ATS is defined by , where 

 is the random variable that define the state at the n-th step and  

defined the time at which the last state-transition occurred. Since all the variables 

defined above (system, reward and transition) can be defined in terms of , all 

variables are random variables. Moreover, since reward and transition variables are a 

function of system variables, only system variables can be considered in the 

definition of the state for the construction of a base state-space model of ATS. In the 

next section we show how to generate a Markov base model of OATS. OATS allows 
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to generate a finite state space because timing variables can be converted in ranking 

variables, i.e., rank of the order of completion of transitions. 

5.6 MARKOV ORDERED ADAPTIVE TRANSITION 

SYSTEMS 

In this section we show how is possible to generate a Markov model given an 

OATS. An OATS is said a Markov-OATS (MOATS) if modes of transitions are: (i) 

instantaneous or exponential; (ii) if there is not infinite cycles of instantaneous 

transitions; and (iii) if the first state is stable, i.e., there are not instantaneous 

transitions enabled at . 

We use a construction procedure that resemble the common algorithm used in 

Petri nets to generate the reachability graph of the net where states of the base model 

are defined as the marking of the net and transitions of the base model are the 

enabled transitions in each marking. In our approach a state of the base model will be 

derived in terms of the system variables of the ATS model while transitions of the 

base model will be derived from the enabled transitions given am ATS configuration, 

i.e., a given value of system variables. 

Before to give the notion of state of the base model of an OATS, let discuss the 

construction procedure. We start considering the first state and checking the enabled 

transitions, their kind and parameters. A transition is enabled if there is at least an 

enabled mode. If there are more enabled modes, we have the following situation: 

- if there is at least one instantaneous mode enabled, the transition is 

considered instantaneous; and 

- if there are only exponential modes enabled, the transition is considered 

exponential with rate equal to the sum of the parameters of the enabled 

modes. 

At the level of transitions enabled in a state, if there are instantaneous transitions, 

exponential transitions are discarded, because of the priority of instantaneous 
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transitions, and a weight, equal to the inverse of the total number of enabled 

instantaneous transitions, is assigned to each instantaneous transition. 

Enabled transitions in a state define the set of the reachable states. These states 

can be states that have been already encountered during the construction procedure 

(states are compared on the basis of the values of their internal (system) variables). If 

a state is an “old” state a connection in the base model is defined between the old 

state and the one from where the considered transition departs. If it is a “new” state, 

it is included in the set of states “to be explored”, i.e., verify the enabled transitions 

and define the reachable states.  

Obviously, for each connection between states is defined the type, exponential or 

instantaneous, and a weight for instantaneous transitions or a rate for exponential.  

When this procedure is completed, in order to generate the equations associated 

with a Markov chain, states with outgoing instantaneous transitions (unstable states) 

must be eliminated from the model. We do this, by multiplication of the weights of 

instantaneous transitions to the rates of exponential transitions ending in the state 

where instantaneous transitions depart from. 

The definition of the state must allow the evaluation of the enabling conditions of 

transition, the value of the parameters of transitions and the values of reward 

variables. In the following we give our definition of state in two cases: models with 

and without transition timing variables. 

5.6.1 MOATS WITHOUT TRANSITION TIMING VARIABLES 

In the case of MOATS without transition timing functions the state of the system 

is defined considering only indicator functions. In particular we define a state as the 

vector whose entries are the indicator functions of the system. It is  

.  

However, in the case transition indicator variables are input only of reactivation 

functions, the definition of a state is reduced to . This fact is related to the 

memory-less property of exponential distributions. 
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We show the construction procedure of the Markov chain of the Heat-Power 

system presented in Section 5.4. For the sake of simplicity we have chosen to 

represent a state by ordered labels of the names of components (for instance with 

“P0” we represent the working state of P0 and with “-” the failed one). Moreover we 

do not consider transition indicator functions for the reasons stated above. 

In Figure 5.9.a  represents the initial state where all components are in the 

working state. Then we consider the enabled transitions in . Let  be the set 

of enabled transitions:  

,    (5.12) 

where , the state indicator variables, are the entries of  and the only inputs of 

. 

For the system in figure , i.e., only P0 and G can fail. The 

nature of transitions (inst, exp) is determined considering the type of the enabled 

modes. In this case the enabled modes of both transitions are exponential, thus 

transitions in the base model are exponential. 

In general, given  we must check if the reachable states are new or have 

been already discovered. Two states are identical if . Given  two new 

states  and  are found. The process is then repeated until all states are 

discovered. 

If there are enabled instantaneous transitions, enabled exponential transitions are 

discarded. In the Heat-Power system example there are not simultaneously enabled 

instantaneous and exponential transitions.  

If there are more enabled instantaneous transitions, for each of them is assigned a 

weight. For instance, in  there are three enabled instantaneous transitions, i.e., P0, 

P1 and P2 can fail instantaneously. In this case transitions are assigned a weight 

equal to the inverse of the sum of the concurrent enabled instantaneous transitions (in 

this case 1/3). 
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This procedure leads to the construction of an Extended reachability graph where 

stable and unstable states are present. The procedure can be summarized as follows: 

- define the initial state ; 

- evaluate the value of the reward variables in ; 

- check the enabled transitions in ; 

- check the kind of the enabled transition in  and assign a parameter (a rate 

if exponential and a weight if instantaneous); 

- evaluate the reachable states given the enabled transition in  and add those 

states to the set “to be explored”. 

The procedure continues exploring each state in the set “to be explored” as it was 

done for . In this case, however, not all the reachable states belong to the set to be 

discovered, i.e., some of them are “old” states. 

Once that the above procedure has been completed (Figure 5.9.a) we must 

eliminate unstable states from the model. We start considering those unstable states 

that are reached by an exponential transition. These states are then eliminated from 

the model and transitions replaced by transitions connecting the preceding and 

successive states with rate equal to the product of the weight of the instantaneous 

transition and the rate of the exponential one (Figure 5.9.b). 

From Figure 5.9.a we see that unstable states are , , , , , , .  

is the first unstable state that must be eliminated since it is the only one where the 

incoming transitions are only exponential. This is done connecting directly  to , 

 and . The rates of these transitions are  where  is the failure rate of the 

generator G. In some cases an unstable state may have more incoming exponential 

transitions, e.g.,  has two incoming exponential transitions departing from  and 

. In these case one operates in the same way considering a transition per time and 

eliminating the unstable state once that all transitions have been merged. 

Finally, if there are more transitions connecting two states, they are aggregated 

considering the sum of their rates. In Figure 5.9.c is shown the resulting state-space, 
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where we have highlighted system failure state as circles in bold red. Failure states, 

are retrieved evaluating the reward function in a each reachable state. Lumping 

techniques can be further applied in order to reduce the state-space.  

 

Fig. 5.9.a. Extended Reachability Graph of the Heat-Power system of Section 5.4.  
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Fig. 5.9.b. Reduction process of the Extended Reachability Graph of Figure 5.9.a. 

Reward functions that contribute to the evaluation of a performance property are 

evaluated and assigned to each state of the generated Markov chain. In this case the 

model is a Markov Reward model [20]. 
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Fig. 5.9.c. Markov Chain of the ATS model presented in Section 5.4. 
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particular set of states of the system. Thus, a value of one will be assigned to those 

generated states of interest and 0 otherwise. In this case, solved the differential 

equations associated with the Markov chain, we can sum all the probabilities 

associated with those states where the reward takes on value 1. 

5.6.2 MOATS WITH TRANSITION TIMING FUNCTIONS 

In the case of MOATS models with timing functions the definition of the state of 

the base model must include the ordering of completion of transitions. To this end, 

we introduce a ranking function that associate a number (a rank) between 1 and the 

total number of transitions, , to each transition. 

Since transitions timing variables are initialized to 0 at the initial time, we set the 

initial rank of all transitions equal to 1, .   

Let  be the transition that completes at  and let 

 be the set of transitions whose 

ranking is not unique. For instance, at  all transitions belong to the set . We 

set the new rank of  to 1, . Remaining ranks at  can be 

evaluated considering the kind (“inst”,”exp”) of . In particular: 

if  is instantaneous we have the following cases ( ): 

- if  or  and   

; (5.13) 

- if  and   

;      (5.14) 

Figure 5.10 shows an example of possible evolution of the system between two states 

given a completing instantaneous transition and the conditions seen above.  

stands for “no repeated ranking”. In figure, transition whose ranking is 4 is selected 

to complete and its ranking is set to 1 in the new state. All ranking values less than 4 
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are kept fixed, while ranking values higher than 4 are scaled by 1. If   and 

 the transition that completes belong to the set of “repeated ranking”. In 

this case we keep fixed all the ranking values, unless the one of the completing 

transition that is set to 1. Finally, if  and  the new marking is 

defined as for the case . 

 

Fig. 5.10. Example of ranking values evolution as new states are discovered (inst). 

If   is exponential we have the following cases ( ): 

- if  or  and   

;     (5.15) 

- if  and   

;          (5.16) 

Figure 5.11 shows an example of possible evolution of the system between two states 

given an exponential transition and the conditions seen above. If   the 

transition whose ranking is 4 is selected to complete and its ranking is set to 1 in the 

new state. All ranking values higher than 4 are kept fixed, while ranking values less 

than 4 are added 1. If   and  we add 1 to all ranking values, 

unless the one of the completing transition that is set to 1. Finally, if  and 

 the new ranking is defined as for the case . 

Given the ranking of transitions we define the state of the system by the following 
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impulse reward and transition indicator variables are input only or reactivation functions as 

. 

 

Fig. 5.11. Example of ranking values evolution as new states are discovered (exp). 
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timing functions. Transition functions and reward functions can be evaluated from 
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 is retrieved considering the condition for the deactivation, that is: the system is in 

state  given that  was entered before  (i.e., component B has already failed 

when A fails) and given that  was entered before  (e.g., component A was not 

repaired after the failure of B). 

Figure 5.12 shows a reduced Markov chain of the system where we have considered 

only the ranking of those transitions whose timing functions define . This 

procedure permits, indeed, to reduce the dimension of the state space. For the sake of 

clarity, in figure we show the relations defined in  in the definition of the state. 

 

Fig. 5.12. Example of construction of a Markov chain of a MOATS with transition 

timing variables. 

Figure 5.13 shows the lumped Markov chain. It is shown the state transformation 

and the resulting system of differential equations. The model reminds a PAND gate 

with two repairable components as inputs where it is not possible to exit the failed 
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from the nominal state to the failed state in the succession , while 

the succession  will lead to the safe state. 

 

Fig. 5.13. Lumped Markov Chain and differential equations of the Markov Chain in 

Figure 5.12. 
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end 

end 

In order to make the algorithm execution faster, updating commands can be directed 

only to the subset of involved variables. Expected values of reward variables can be 

evaluated on the fly, as the simulation evolves, or analyzing the generated evolution 

traces. In bold are reported those commands that require user inputs. 

As we can see the only initial information needed to simulate the model are the 

initial values of the time to occur of transitions, generally set to  and the initial 

value of the system variables. In general  are defined in such a way that the initial 

occupied state in each ATS is defined and  and  are set to 0. Thus only the vales of 

s need to be given as input of the model. 

Other inputs of the model are the structure of ATS and the transition and reward 

functions. In particular, transition and reward functions are evaluated on the basis of 

the initial value of the system variables. 

In the next subsection we present a case study of a system specified in terms of an 

ATS model that was resolved by simulation using a simulator created in Matlab®. 

5.7.1 THE ROME POWER-TELCO NETWORK SYSTEM 

The Rome Power-Telco system is a case study based on the Integrated Risk 

Reduction of Information-based Infrastructure Systems (IRIIS) project (project co-

funded by the European Commission within the Sixth Framework Programme 2002-

2006) [17,18]. The objective of the study is to model and analyze interdependencies 

existing between two different critical infrastructure, a power and telecommunication 

networks. In this study we focus only on the dependencies directed from the power 

network to the Telco network. The context is that of the online risk estimator: given 

an initial state of the system, retrieve dependability measure about the probability of 

first failure of Telco node due to the lack of energy. 

Elements of the systems are 117 power elements and 48 batteries. Power elements 

are of two kinds: nodes (cabins) and links (cables) between nodes. 
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5.7.1.1 ATS MODEL OF POWER NETWORK ELEMENTS 

Power elements are represented in terms of two ATSs, one capturing aspects 

related to the working/failed dimension and the second the powered/unpowered 

dimension. 

Let  be the i-th element of the power network PN. For each element we 

build two ATSs. In particular we have: 

- an ATS with two states  and  that denote the working and failed states, 

respectively. Transitions connecting these two states are exponential and 

always active. Parameters (and reactivation) depend on the states of parent 

nodes. 

- An ATS with two states  and  that denote the powered and unpowered 

states, respectively. Transitions connecting these two states are instantaneous 

and the activation depends on the voltage associated with the element. 

System variables associated with the two ATSs are: 

-  and , are the state indicator variables of  and , respectively (the 

context specifies the meaning, i.e., states or state indicator variables). 

-  and , are the transition indicator variables of  and , 

respectively. 

-  and , are the state indicator variables of  and , respectively (the 

context specifies the meaning, i.e., states or state indicator variables). 

-  and , are the transition indicator variables of  and , 

respectively. 

- Transition timing functions are not defined. 

Parameter and reactivation functions of transitions between  and  

are subjected to stochastic association existing between elements.  
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Stochastic associations can be modelled in terms of parent and child elements. For an 

element , let  denote the set of its parent elements. Parent elements influence 

the parameter of transitions by scaling the relative transition rate.  

In particular the transition rate,  ( , of  ( ) is scaled by a factor  ( ) 

n times depending on the number of unpowered parent elements. This is modelled by 

a f-T with top node representing the parameter of the transition and a gate with 

inputs the state indicator functions relative to the unpowered state of parent elements 

. 

We reactivate a transition when a parent element switches (in both directions) 

between the powered and unpowered states. In this case we specify this condition by 

an OR relation between the transition indicator functions  and , where 

. 

The ATS model is shown in Figure 5.14. Dashed lines resemble the formalism used 

in Parametric Fault Trees [21]. 

 

Fig. 5.14. ATS model of the working/failed dimension of power elements ( ). 
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The ATS of the powered/unpowered dimension of power elements is shown in 

Figure 5.15. Transitions connecting these two states are instantaneous with activation 

depending on the value of the voltage associated with the element. In particular 

 is active if  is equal to 0 or greater of the threshold  and  is active if 

. 

The voltage associated with a power element is function of the working/failed 

elements of the network and is given solving the balance equation of the network 

considering the remaining elements, i.e., elements in the working state. Thus the 

voltage of elements is a particular kind of reward function with inputs state indicator 

functions . 

 

Fig. 5.15. ATS model of the powered/unpowered dimension of power elements ( ). 

Figure 5.16 shows three reward functions associated with the ATS model of the 

power network. The number of working and powered elements is retrieved using the 

gate with inputs the working and powered states, respectively, considering an 

unitary weight for the input links. The voltage level associated with elements are 

retrieved as described above (gate K stands for Kirchhoff balance equations). 

The system behaviour depends on the specific network configuration and the 

values of the parameters defined in the model. The following attributes impact on the 

system behaviour: 

- physical connections between power elements have effect on the voltage 

associated with the nodes (Kirchhoff balance equations); 
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- stochastic associations have effect on the failure and repair rates of the 

elements. In this context both the connections defined by the parent child 

relationship and the values of the scaling factor  and  are of influence. 

- Parameter like failure and repair rates as well as voltage thresholds of 

elements. 

 

Fig. 5.16. Reward function of the ATS model of the power network. 

Figure 5.17 and 5.18 show three possible evolutions of the power network in 

terms of number of working and powered components, respectively, with parameters 

 and , with initial conditions “all working and powered”. The values 

of other parameters (failure and repair rates, voltage thresholds, parent nodes, 

physical connections) were defined in the IRIIS project [18]. Results were obtained 

through a simulative model created in Matlab®.  

In order to speed up the simulation we consider a synchronization mechanism 

between instantaneous transitions of the kind: 

- when two or more transitions are synchronized and their time to complete is 

identical and one of them is chosen to be triggered, they occur 

simultaneously, i.e., state change are updated simultaneously. 
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way the variables of the systems are updated only after all synchronized transitions 

Number of working elements

W#

iW

1

PNEi i ∈∀ :

Number of powered elements

P#

iP

1

PNEi i ∈∀ :

Voltage of elements

iV

jW

K

PNEj j ∈∀ :

PNEi i ∈∀ :



                 Adaptive Transition System 

are fired. The main advantage is to avoid loops of instantaneous activities that update 

the state of systems made of several components. On the other hand, synchronization 

can be used as a modelling mean in some scenario. In the present case study we 

synchronized all the transitions of the powered/unpowered ATSs models. 

 

Fig. 5.17. Instance of evolution of the power network. Number of working elements. 

 

Fig. 5.18. Instance of evolution of the power network. Number of powered elements. 
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5.7.1.2 ATS MODEL OF BATTERIES 

Batteries are used to supply energy when a Telco element lacks of electricity due 

to a interruption of service of the power network. A number of 48 batteries are used 

to supply 48 distinct Telco elements. Each of these Telco elements can receive 

electricity by one or more power elements. When all of these elements are 

unpowered, batteries switches to the active state. At the same way, when at least one 

of these elements are powered again, batteries switch back to the stand-by state. 

Since there is a battery for each Telco element that receive energy from the power 

network we can consider batteries connected directly to the network. 

 

Fig. 5.19. ATS model of batteries ( ). 
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Let  be the k-th element of the set of batteries B and let  and  denote 

the charged and flat state, respectively. Furthermore, let  be the set of power 

elements that supply power to  (or, similarly, to the Telco node whose  is the 

battery). 

Transition  is exponential and active if all the power elements of  are 

unpowered. Transition  has two modes: an exponential mode that is active if 

all the power elements of  are unpowered and instantaneous if at least one of 

the elements of  is powered. The exponential mode model the time needed to 

change a flat battery, while the instantaneous mode is an approximation that reflects 

the fact that when the power is restored into the power network, the battery becomes 

charged instantaneously (approximation reasonable due to the small failure rates of 

power elements). The ATS model of batteries is shown in Figure 5.19. 

5.7.1.3 THE ONLINE RISK ESTIMATOR 

Defined the model of the real world, we simulate it and take snapshots of the 

values of its variables at different time steps. These values are used in the 

initialization of the risk estimator model. In particular beside the state of the 

modelled elements at the taken snapshot, inputs of the risk estimator are residual life 

of batteries given as the difference between the time to complete of transition and the 

value of the time step of the considered snapshot. Residual life times are used as 

initialization values of the time to complete of transitions. 

The property of interest is the reliability of batteries, that is, in the case of 

repairable components the probability of first occurrence of the failure of batteries. 

Thus the reward variable of which we want to estimate the expected value is 

. However, in order to evaluate the probability of first occurrence we need to stop 

the evolution of the system as the system failure occurs. Thus in the Risk estimator 

model all transition have assigned an activation variable that is true only when the 

considered battery has not failed. However, in this way we need to simulate the 

model for each battery. 
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Another way (instead of blocking the system evolution) is to simulate it all at once 

and retrieve off line the quantities of interest trough trace analysis. 

We evaluate the reliability of the batteries in relation with the size of the black out 

of the power network. Figure 5.10 shows the generated histograms for  

and . In the second dimension four classes of black out sizes are defined: low 

0-5, medium 6-25, high 26-50 and very high 51-117 (with 117 the total number of 

power elements). To retrieve these information we made use of the expected value of 

the reward function #P. In figure there are 48 histograms, one for each battery. 

 

Fig. 5.20. Output of the risk estimator. Each histogram represent the reliability 

(pdf) at various times (x-axis) of a battery in relation with the impact size (y-axis). 

5.8 CONCLUSION 

In our work we tried to alleviate some typical problems emerging during 

modelling systems for dependability studies. In the dependability community the 

need for modelling temporal aspects in the definition of performance measures has 

been widely recognized.  
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Initially we have been concerned with limitations of Dynamic Fault Trees (DFTs) 

that arise when considering repairable components or complex behaviour due to 

substitution logics and load-sharing systems that cannot be tackled by the dynamic 

gates of the tree [23]. 

In this context related works are Dynamic Reliability Block Diagrams (DRBDs) 

and Boolean driven Markov Processes (BDMPs) [23,24]. They try to alleviate 

problems of DFTs by the definition of state machines related to the blocks of the 

diagram or to the leaf of a Fault Tree. However, in DRBD the class of finite state 

machines is limited to three states and the relation between state machines are 

defined by fixed sender/receiver relations. In ATS, the state machines can have an 

arbitrary number of states with an arbitrary meaning and relations can involve the 

occurrence of more events in given sequences. The same consideration are true for 

BDMP where, though give more classes of possible state machines, their structure is 

defined and regulated by input Boolean functions that will start a state machine 

instead of another. There are some similarities between BDMP and ATS, but ATS 

extends BDMP because can have a general reward structure, while the reward 

structure of BDMP is related to a FT with triggers of the activation of state machines. 

Thus, also the relations that can be modelled in an ATS are more general than the 

ones of BDMPs. 

Another class of related works are extension to Petri nets [12] and especially 

Stochastic activity networks (SAN) [13]. Many of the objects defined in ATS are 

similar to those of SAN. In SAN for an activity is defined an activation and a 

reactivation. Parameter of activities can be marking dependent. Thus, modes of 

transitions in ATS are similar to activities in SAN. However, transitions in ATS are 

more general because the kind of distribution can vary too. In SAN this can be 

achieved considering a group of activities. SANs are also more general than ATS. 

Activities are assigned cases that probabilistically choose the next marking. In ATS 

probabilistic choice have not yet been defined. Moreover the structure of the network 

is more general of the structure of ATS. However, we believe that this is the major 

advantage that ATS have on SANs with respect to dependability studies: although, 

not general like SAN, they furnish a state space representation that can be used to 
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model many classes of systems. For instance, they can be applied in queuing systems 

with finite number of possible arrives. 

Another class of related research is the one of model checking and related 

methodologies [6-10]. In particular the PRISM language presents the possible states 

of a state machine by a variable that can take on a finite number of values and 

transitions between states as functions of these variables. Each function is assigned a 

guard condition (or an activation) and a rate that define its time to complete in the 

case the underlying process is Markov. One of the advantage of ATS is that the 

parameter of transitions can be state dependent. Moreover, the introduction of 

transition timing variables facilitates the definition of temporal dependencies based 

on sequence of events. In PRISM this may be modelled introducing the ranking 

variables and function defined for ATS. 

Another related methodology is that of interactive Markov chains (IMC) where a 

stochastic process algebra is used [2]. They use a completely different approach to 

define the communication between transition models: instantaneous transitions are 

labelled transitions that complete synchronously among sub models. In this way a 

communication mechanism is defined. Thus, they integrate interactive processes with 

Markov chains and define an algebraic semantic for the definition of the associated 

Markov chain. Central concept of IMC are synchronization and non determinism. In 

ATS we do not model synchronous transitions since transition system communicate 

by a set of defined variables that are updated at each state change. I/O IMC extends 

this concept with the introduction sender and receiver [22]. In our approach we treat 

non determinism with equi-probability. 

As an example let consider stand-by component that can replace two different 

components belonging to two different subsystems. A subsystem is considered failed 

if there are not active components. That is: the primary component has failed; and the 

stand-by component has either failed or has been already used in the other 

subsystem. If one want to model the system by the mean of IMC, one approach 

would be to define a IMC for each component of the system as well as of the 

subsystems (which could be an indication of which component is active). If 

components are not repairable the resulting model can be found in [22]. A quick look 
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at the model and one can see that there are many transitions (both timed and 

synchronizing). The complexity of the modelling activity lays in the definition of 

these transition systems that can be very large in size. In ATS the same system can 

be modelled by a transition system for each component. The size of the ATS models 

is smaller compared to the one of IMC and one can abstract more easily from the 

models of interdependent parts. 

Generalised Semi-Markov Processes (GSMPs), i.e. probabilistic timed systems 

where durations of delays are expressed by means of random variables with a general 

probability distribution, have been defined in terms of discrete event systems and 

discrete event simulation in [11] and in terms of stochastic process algebra in [4]. A 

GSMP describes the temporal behaviour of a system by using elements, which act 

similarly as clocks of a Timed Automata. In particular the temporal delays in the 

evolution of a system are represented by clocks (elements) whose duration is 

determined by an associated generally distributed random variable. In this way the 

temporal behaviour of the system is guided by the events of start and termination of 

clocks (elements). An ATS is a formal specification of GSMP where dependencies 

are modelled explicitly by the mean of a set of functions defined over the evolution 

of the system. 

With ATS we have developed a formal method to model dependencies in 

interdependent systems effective for dependability studies. ATS generalize the class 

of dependencies and behaviours captured by an high level modelling formalism like 

FT, DFTs, DRBD, BDMP. Moreover ATS can be seen as an high level model 

specification of stochastic extension of Petri nets. 

We consider the framework an important addition to the well known formalisms 

for stochastic modelling of complex systems because it offers a standardized way of 

building models of complex systems. We believe that standardization will alleviate 

the difficulties currently experienced by modellers to maintain each other’s or even 

own complex stochastic models caused by the modellers’ preferences in constructing 

models, which may be either unfamiliar to others or difficult to understand. We 

believe that promoting standardization and visualization in constructing models is 

also likely to improve model comprehension, make the model validation easier and 
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even make model maintenance easier: changes in most cases will be applied at an 

higher level of abstraction to the graphical representations of the transition attributes 

and various predicates. Hence, no intimate knowledge of the underlying 

implementation details (e.g. knowledge of the C++ classes used by the tool) is 

required.  

Finally, improved usability of the tools, in our opinion, will make it much more 

likely for domain experts to engage more closely to scrutinize the models and, thus, 

improve their quality.  

Exploiting the full potential of the framework will require tool support, more 

specifically for visually modelling ATSs and f-T and for automatic transformation of 

ATS to the chosen target modelling environment, e.g. Mobius, Matlab or any other 

tool with suitable functionality. These are concerns which we intend to address in our 

future work. 

Other future developments concern the introduction of probabilistic choice, the 

formalization of synchronizing mechanism between concurrent transitions, 

application of ATS to model checking, i.e., by the definition of a temporal logic 

suitable for the formalism, and the definition of a process algebra semantic for ATS. 

Finally we believe that multi-formalism models is one of the main achievements 

that must be reached in dependability modelling. The Mobius [14,26] tool for 

instance allows the composition of PEPA, SAN, ADVICE and FT models. SHARPE 

[27] allows multi-composition of Stochastic Reward Nets [25], Fault Trees, Markov 

chains, etc. In the next chapter we give a SAN representation of ATS. This 

conversion, beside the fact of allowing the resolution of ATS by a computer based 

tool,  shows that ATS could be implemented as one of the available formalisms in 

the Mobius tool. 
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CHAPTER 6 

 

6.1 INTRODUCTION 

In this chapter we present a procedure to implement Adaptive Transition System 

(ATS) into Stochastic Activity Network (SAN) [1]. The choice of SANs follows 

from the fact that is possible to specify in a straightforward manner quantities like 

system and transition variables introduced in previous chapter. 

The remainder of the chapter is structured as follows: in Section 2 we give a brief 

introduction of the Mobius tool [2], a tool that allow graphical implementation of 

SAN models. In Section 3 we illustrate the procedure for the conversion of ATS 

model to SAN models. In Section 4 the Heat-Power system presented in Chapter 5 is 

used as a tutorial example for the construction procedure and in Section 5 we report 

some conclusion. 

6.2 MOBIUS MODELLING TOOL 

Mobius [2] is a software tool, developed at the University of Illinois, for 

modelling the behaviour of complex systems. The first version was released in 2001 

as a successor to UltraSAN. Although Mobius was originally developed for studying 

the reliability, availability, and performance of computer and network systems, its 

use has expanded rapidly. The flexibility and power found in Mobius comes from its 
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support of multiple high-level modelling formalisms and multiple solution 

techniques.  

This flexibility allows engineers and scientists to represent their systems in 

modelling languages appropriate to their problem domains, and then accurately and 

efficiently solve the systems using the solution techniques best suited to the systems 

size and complexity. Time and space efficient distributed discrete event simulation 

and numerical solution are both supported. 

A model in Mobius is represented by a Join/Rep composition of atomic models. 

Atomic models can be SAN models, PEPA models, FT models, etc. [3,4]. In our case 

each atomic model is a SAN [1]. In particular for our purpose an atomic model is the 

SAN representation of a single ATS. Atomic models can be joined together via the 

REP construct, i.e., an atomic model is replicated N times or by the JOIN construct 

where variables can be shared across atomic models. 

Mobius allows to specify a reward function based on the variables (places) 

defined in the model that can be evaluated via numerical solution or discrete event 

simulation. 

6.3 SAN IMPLEMENTATION OF ATS 

We represent ATS in terms of SAN atomic models that are composed together by 

the JOIN construct. Modelling concerns are: (i) the data structure of the variables of 

ATS; (ii) the model of transitions and (iii) the updating structure. 

6.3.1 SYSTEM AND REWARD VARIABLES DATA STRUCTURE 

The three classes of system variables of an ATS are: state indicator, transition 

indicator and transition timing variables. We use a SAN representation based on 

extended places. In this way is possible to organize the data in two-dimensional 

matrices, one for each class of variables. 
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Le consider a ATS model with  transition systems. Let  be 

the i-th ATS,  denote the j-th state of  and 

 be the k-th transition of . 

For each ATS, , are defined the following variables: 

- , is the state indicator variable of ; 

- , is the transition indicator variable of ; and 

- , is the transition timing variable of . 

The extended place  is a two-dimensional data structure for state indicator 

variables. The first dimension specifies the ATS model ; while the second 

dimension states of , such that: 

,   (6.1) 

The extended place  is a is a two-dimensional data structure for transition 

indicator variables. The first dimension specifies the ATS model ; while the second 

dimension transitions of , such that: 

,   (6.2) 

The extended place  is a is a two-dimensional data structure for transition 

timing variables. The first dimension specifies the ATS model ; while the second 

dimension transitions of , such that: 

,   (6.3) 

Finally, the extended place  is a is a vector for reward variables. Given  

reward variables,  is  dimensional vector, such that: 

,      (6.4) 

In order to allow to store non integer values,  and  are extended places with 

data type double. However, in the case reward variables specify measures of interest 

like reliability, availability etc., the extended place can be of the type int. Also  can 
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be of the type int if transition timing variables are replaced by ranking variables as in 

Ordered-ATS (OATS). The use of int values allows one to transform the SAN model 

in a base model that can be solved numerically.  

Finally, if reward variables are not integer variables, a numerical solution can be 

obtained only if those rewards are not inputs of transition functions. In this case 

reward variables do not need to specified as a part of the net but can be specified in 

the Mobius interface Reward and used to obtain a Markov Reward Model [5].  

In this section we show how to build a SAN model derived by an ATS model that 

is suitable for discrete event simulation. SAN model of ATS suitable for numerical 

evaluation are not consider but their construction can be easily implemented 

following the rules given in this chapter and the ones defined in Chapter 5 about the 

conversion of transition timing variables to ranking variables.  

Figure 6.1 shows the extended places used to represent system and reward 

variables of ATS in SAN. The extended places presented here are specified in each 

SAN atomic model of ATS and are shared via the JOIN construct. 

 

Fig.6.1. Extended places of system and reward variables and data structure. 

6.3.2 SAN REPRESENTATION OF ATS TRANSITIONS 

Having defined the SAN representation of system variables let describe the SAN 

implementation of ATS transitions.  
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Parameter and reactivation functions of modes of transitions are specified as the 

attributes of the respective activity in the Mobius graphical interface. In particular the 

reactivation variable is specified in the execution policy as the reactivation predicate. 

The activation function of modes of transitions are specified by the mean of input 

gates. In particular an input gate,  is defined for each activity  

representing a mode of transitions. The input predicate of these input gates specifies 

the activation function. 

Finally, the input gate  is connected to each  in order to enable the 

activity if the system is in the state where the transition departs from. If  is a 

transition departing from , we define the input predicate of  by the relation 

. 

 

Fig. 6.2. SAN model of ATS transitions ( ). 

6.3.3 ATS-SAN UPDATE STRUCTURE 

For each transition is specified an output gate connected to each SAN activity that 

models the transition.  is the output gate connected to each . The output 

gate is used to set the new conditions after the firing of an activity (or the completion 
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code is specified in : 
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- state indicator variables: 

  

  

- transition indicator variables: 

  

  

  

  

  

  

- transition timing variables  

  

- reward variables  

 . 

 is a support place used to store the memory address of the last completed 

transition. Reward functions can be different. The update of reward variables must be 

done after the update of system variables. 

In bold are reported the part of the code that is different for each transition of the 

model. An automated conversion is possible and would simplify the task of writing 

the appropriate code. 

Transition variables are updated automatically by Mobius by the evaluation of 

input predicates of input gates and parameters and execution policies of activities. 

6.4 ATS-SAN MODEL OF THE HEAT-POWER SYSTEM 

In this section we show how to build the ATS.SAN model of the Heat-Power 

system introduced in Section 5.4 following the guidelines presented above. 

Parameters of the Heat-Power systems that are needed to be considered for the 

construction of the ATS-SAN model are: 
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- , the ATS representing P0, P1, P2 and G, respectively; 

- , the number of ATS; 

- , the of states in each ATS; 

- , the maximum number of states among ATSs; 

- , the number of transitions inn each ATS; 

- , the maximum number of transitions among ATSs; 

- , the number of reward variables; 

Given the information above, the structure of the extended places is: 

- , is a 4x2 matrix; 

- , is a 4x1 matrix; 

- , is a 4x1 matrix; 

- , is a 1x1 matrix. 

The ATS-SAN model is built implementing an SAN atomic model of each ATS 

model of the components of the system. The ATS-SAN model of P0 is shown in 

Figure 6.3. The ATS is made up only of one transition, thus the ATS-SAN model is 

composed of the following elements: the model of the transition of ; and the 

extended places used to store the variables of the model. 

Since  (or ) has two modes, two activities are present in the ATS-SAN 

model.  is the activity representing the first mode of the transition. It is a 

timed exponential activity, with fixed parameter. No reactivation predicates is 

assigned to the activity.  is the activity that represents the second mode of 

the transition. Since the mode of transition is instantaneous, an instantaneous activity 

is used to represent this mode. Each activity is assigned an exclusive input gate and a 

shared input gate.  is the exclusive input gate assigned to . The 

input predicate of the gate is a specification of the activation function of the mode of 

the transition in terms of  marking of the involved variables defined in the form of 

the extended places introduced above. 
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Fig. 6.3. ATS-SAN model of  (or of the pump P0). 
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Fig. 6.4. ATS-SAN model of  (or of the pump P1). 
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way is defined the input predicate of , the exclusive input gate of 

, the activity that represents the second mode of the considered transition. 

 

Fig. 6.5. ATS-SAN model of  (or of the pump P2). 
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Fig. 6.6. ATS-SAN model of  (or of the generator G). 
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Figure 6.4 and 6.5 show the ATS-SAN model for the pump P1 and P2. Here 

differently than the preceding case, the parameter of the timed activity is state 

dependent and the reactivation predicate must be specified. 

Finally the ATS-SAN model for the generator G is shown in Figure 6.6. Here, the 

transition has only one mode, thus only one activity is used to model the ATS 

transition. 

SAN atomic models are composed into a single model by the JOIN construct 

(Figure 6.7). 

 

Fig. 6.7. Model composition of ATS-SAN models for the Heat Power system. 

6.5 CONCLUSION 

In this chapter we have present a conversion procedure of ATS models into SAN 

model. We have seen that this approach leads to SAN models with a standard 

structure. In fact while tool’s flexibility is a great asset in building a model, the 

existence of many ways of constructing the same logic may become a problem. The 

subjective preferences of the modeler dictate which of the many modeling 

alternatives will be taken, but this option may be difficult for the others to 

understand. This may result in poor maintainability of the models over time, e.g. high 

propensity of introducing errors when modifying existing models which could have 

been avoided had the modeling options been more limited and well known to the 

modeler who has developed the model and those in charge of its maintenance. 

We believe that in this dissertation we make a small step towards alleviating both 

problems. 
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First, we propose a set of graphical notations for modeling the predicates common 

for the SAN models, i.e., the f-T model of transition functions. We also advocate the 

use of these graphical notations for modeling explicitly the dependencies between the 

modeled SAN elements: e.g. instantaneous state change or change of model 

parameters as a function of the model overall state.  

Second, we show that the proposed graphical notations can be automatically 

converted into equivalent SAN fragments. The advantage of so doing is not merely 

streamlining the construction of the models and communicating more easily to the 

domain experts what the model is doing, but also simplifying the models’ debugging 

– replacing the manually constructed code with a tool generated, ideally highly 

optimized code. 

We consider this framework an important addition to the well known formalisms 

for stochastic modelling of complex systems because it offers a standardized way of 

building models of complex systems. We believe that standardization will alleviate 

the difficulties currently experienced by modellers to maintain each other’s or even 

own complex stochastic models caused by the modelers’ preferences in constructing 

models, which may be either unfamiliar to others or difficult to understand. We 

believe that promoting standardization and visualization in constructing models is 

also likely to improve model comprehension, make the model validation easier and 

even make model maintenance easier: changes in most cases will be applied at a 

higher level of abstraction to the graphical representations of the transition attributes 

and various predicates.  

Hence, no intimate knowledge of the underlying implementation details (e.g. 

knowledge of the C++ classes used by the tool) is required.  

Finally, improved usability of the tools, in our opinion, will make it much more 

likely for domain experts to engage more closely to scrutinize the models and, thus, 

improve their quality.  

Exploiting the full potential of the framework will require tool support, more 

specifically for visually modelling ATS and for automatic transformation to the 
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chosen target modelling environment, e.g. Mobius. These are concerns which we 

intend to address in our future work. 
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CHAPTER 7 

 

7.1 INTRODUCTION 

In this Chapter we present the conversion procedure to generate an Adaptive 

Transition System (ATS) model of Repairable Dynamic Fault Trees (RDFT) [1-3]. 

Due to the complexity induced by repairable components no much attention has been 

given to the extension of DFT to the repairable case. We show that ATS offers a 

effective way to model RDFT.  

In fact, the extension to repairable elements involves the definition of new rules 

for dynamic gates. We show that several scenarios can be considered depending on 

the substitution logic of spare components, the effect of triggers and maintenance 

management. 

In order to model RDFT we propose to decompose behavioural aspects from 

failure logics. Behavioural aspects concern the definition of substitution logics 

between spare components, trigger effects, maintenance policies, etc. while the 

failure logic is responsible to define the system configurations that leads to the 

occurrence of the top event of the DFT, i.e., the structure function [4]. This is done 

converting the DFT to its related static Fault Tree [4]. Behavioural aspects are 

tackled by the definition of opportune ATS models that will be attached to the leaf of 

the static FT derived from the original DFT. 
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To this end, after that we have chosen a specific set of logics for dynamic gates 

with repairable components, we propose a classification of the basic event (BE) of 

DFT. BE will be regarded as primary or spare. Depending on the class of the BE, an 

ATS with a standard structure can be defined. The ATS model will carry in all the 

dynamic (behavioural) aspects of the system, modelled by an opportune definition of 

the transition functions of the model. 

On the other hand, the part of the DFT representing the fault logic of the system, 

free of any dynamic aspect, will be used to define the reward function of the model. 

The reward function will have the form of a static FT derived from the original DFT. 

In the following we will refer to a DFT from a case study taken from the literature 

[5]. The case study was chosen due to the presence of SPARE gates, FDEP gates and 

shared spare components. 

The remainder of this chapter is structured as follow: in Section 7.2 we introduce 

the DFT of the case study and show of to convert it into its static representation. In 

Section 7.3 we classify DFT components and define, on the basis of this 

classification the ATS models that will be attached to the leaf of the static 

representation of the DFT. In Section 7.4 the DFT introduced in Section 7.2 is solved 

through an ATS-SAN [6] implementation as described in Chapter 6. In Section 7.5 

we introduce a tool that is currently under development. The tool is an extension of 

the MatCarloRe tool presented in Chapter 4 to solve repairable DFTs. Finally in 

Section 7.6 are reported some conclusions. 

7.2 STATIC REPRESENTATION OF DFT  

Figure 7.1 shows the DFT model of a system taken from the literature [10]. In 

[10] is assumed that all components can be only in two states (working/failed), they 

are non-repairable and characterized by a time to failure exponentially distributed. 

Here we relax the assumption that components are not repairable showing how they 

can included in the DFT model. 

The components of the DFT of Figure 7.1 are:  
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- basic events, A1, A2, B1, B2, S, T1, T2, T3;  

- gate A, SPARE gate with an active component, A1, and two spares, A2, S;  

- gate B, SPARE gate with an active component, B1, and two spares, B2, S;  

- gate F1, FDEP gate with trigger T1 and components A1 and B2;  

- gate F2, FDEP gate with trigger T2 and components B1 and A2;  

- gate F3, FDEP gate with trigger T3 and component S,  

- gate TE, AND gate with gates A, B, F1, F2, F3 as inputs. 

 

Figure 7.1. Selected DFT. 

In order to build an ATS model of the system we start replacing dynamic gates 

with static gates. 



        Repairable Dynamic Fault Trees 

7.2.1 STATIC REPRESENTATION OF SPARE GATES  

SPARE gates are converted into AND gates. Here the challenge is to model the 

behaviour of spare components. In case of repairable components we should ask the 

following questions: 

- given that a spare component is active, when a component to the left-hand 

side of the component becomes again available, does the active component 

switch to the stand-by state or remains active? 

- if a spare component is shared by more gates, in the case the spare at the 

moment of its restoring has got more simultaneous calls, which of these will 

be satisfied? 

Although in ATS we may respond to these questions in different ways and in 

different ways for different subsystems, we choose here to employ an specific 

configuration. In our setting we will give priority to elements of SPARE gates 

according to their position as inputs of the gate (from left to right) and we will give 

priority to SPARE gates according to the temporal ordering of request. 

Finally, a shared spare will be named differently in the converted static FT. This 

because we need to take into account the fact that it can be unavailable for a given 

subsystem either because failed or because active elsewhere. 

7.2.2 STATIC REPRESENTATION OF FDEP GATES 

In the case of FDEP gates the following actions are taken: 

- said X an input of an FDEP gate that is not a trigger, we consider an OR gate 

with inputs the trigger of the gate and X;  

- the OR gate replaces X in all positions where X is present in the tree; 

- when all inputs components of a FDEP gate (that are not triggers) are 

replaced by the OR gate defined above, the FDEP gate is eliminated from the 

tree; 
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- when a component X is input of more FDEP gates the procedure is repeated 

iteratively, giving rise to a cascade of OR gates (that can be merged 

successively in a single OR gate). 

With this transformation the assumption we make is that a trigger has not direct 

influence on the state of the component. Thus the component can still fail or being 

repaired regardless of the state of the trigger component. The effect on the trigger 

component is to block the component to fulfil its requirements. The OR gate, indeed, 

registers a fail when the trigger or the component X have failed. 

Other configurations are also possible. For instance, the failure of a trigger can cause 

the instantaneous failure of its subordinated components. We have shown in Chapter 

5 how this can be modelled in terms of ATS (see the Heat-Power systems). However, 

in this other scenario mechanisms due to the restoring of components must be 

considered. Some questions may be:  

- can a component be restored if its trigger has not been previously restored? 

- assuming that a component can be restored even if the trigger is in the failed 

state, what happen to the component? It fails again instantaneously, or the 

failure of the trigger has effect on the component only at the moment it fails? 

This questions can be addressed by the implementation of an ATS model. However, 

we will not give more details about these other possible configurations. 

7.2.3 STATIC REPRESENTATION OF SEQ GATES 

SEQ gates are not present in the DFT in Figure 7.1. The model of SEQ gates if 

very simple. A SEQ gate is replaced in the static converted FT by a basic event. In 

fact in the ATS model of a SEQ gate will be represented by a transition system with 

a number of states equal to the number of inputs of the gate (or the degradable states 

of the component). The failure state is the one that will be considered in the static 

converted FT. 



        Repairable Dynamic Fault Trees 

7.2.4 PAND GATES 

PAND gates are not present in the DFT in Figure 7.1, too. PAND gates do not 

carry in any behavioural aspect, thus, in the converted static Fault Tree they cannot 

be eliminated. The conditions that bring to the trigger of the gate are the same as in 

the not-repairable case. Non-trivial configurations, however, could be defined. An 

example a possible extension of the logic of the gate can be found in Chapter 5. 

7.2.5 STATIC DFT  

With the rules stated above the static FT derived from the DFT in Figure 7.1 is 

shown in Figure 7.2.  

SPARE gates A and B are converted into AND gates. Component S is shared 

among A and B. Thus in the static DFT representation, we label it as S-A and S-B. 

As we will see, there will be a single ATS model of S. However the variables that 

will be used into the FT will be different depending on the gate where the component 

is attached. 

FDEP gates are converted in OR gates. For instance F1 is converted in F1-A1 and 

F1-B2. This because inputs of F1 are A1 and B2. Thus two OR gate will be used to 

substitute A1 and B2 in the static representation of the DFT. 

 

Fig. 7.2. Static Fault Tree of the DFT in Figure 7.1. 

The task now is to associate to each Basic Event of the tree an ATS model and 

define which variables must be used to evaluate the occurrence of the Top Event. 
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7.3 ATS MODEL OF DFT COMPONENTS 

In the previous section we have seen how to convert a DFT into a static FT. In this 

definition, however, are not considered all the dynamic aspects of dynamic gates. 

These aspects will be included in the ATS models of components of the system 

modelled by the DFT. To this end we distinguish those components that are not 

dependent on any other components, namely the primary components, and those 

whose behaviour depended on the state of other, namely the spare components.   

7.3.1 PRIMARY COMPONENTS 

Primary components are those components that are not spare. In the example of 

Figure 7.1 primary components are: A1, B1, T1, T2, T3. The ATS model of primary 

components is made of a single transition system with two states representing the 

working and failed condition. Since we assume that components are repairable, two 

transitions connect the two states of the ATS model. A transition represents the 

failure or the repair of a component.  

Figure 7.3 shows the ATS model of A1. The remain primary components have the 

same structure. Here the two state  and  represent the working and failed 

condition, respectively.  and  are transitions between these two 

states. 

System variables are: 

- state indicator variables,  and  (representing the 

fact that the component is in state  or , respectively); 

- transition indicator variables,  and  for 

 and , respectively (registering the fact a transition is the one 

that most recently completed); 

- transition timing variables,  and  for  and 

, respectively (registering the most recent time to complete of a 

transition). 
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Since primary components are not dependent on any other component the value of 

transition variables are fixed. However generalizations that include stochastic 

associations or different distributions of the time to complete are possible. For 

instance (in a simulation model) one would take into account that the failure of a 

component is exponentially distributed until a certain time and Weibull distribute 

afterwards. 

Here we present a model with exponential distribution of time to failure and time to 

repair. Thus, transitions have only one mode, the exponential one. Activation 

variables,  and  take on value 1; reactivation 

variables  and  take on value 0 and parameter 

variables  and  take on value  and , respectively. 

 

Fig. 7.3. ATS model of primary components (model for A1). 
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7.3.2 SPARE COMPONENTS  

Spare components are those components inputs of spare gates (not primary, i.e., 

starting from the second to the left in the graphical notation). We model spare 

components in terms of two ATS models, one capturing aspects related to the 

working/failed condition and one capturing aspects related to the stand-by/active 

condition. ATS models of spare components are similar in the structure. The main 

difference lays in the number of SPARE gates where these components are shared. 

A2 and B2 are two spare components that are similar since they are not shared 

among several SPARE gates and are both of order 1 in the respective gates, i.e., they 

are the first spare components on the left-hand side of the graphical notation of the 

gate. Component S, on the other hand is a shared component between the two 

SPARE gates A and B. 

Figure 7.4 and 7.5 shows the ATS models of A2. The model for B2 is similar. In 

Figure 7.4 is shown the ATS model of the stand-by/active dimension of the state-

space of the spare component. Here the two state  and  represent the stand-by and 

the active, i.e., operative, condition, respectively.  and  are transitions 

between these two states. 

System variables are: 

- state indicator variables,  and  (representing the 

fact that the component is in state  or , respectively); 

- transition indicator variables,  and  for 

 and , respectively (registering the fact a transition is the one 

that completed most recently); 

- transition timing variables,  and  for  and 

, respectively (registering the most recent time to complete of a 

transition). 

Spare components are dependent on other components, thus transition variables are a 

function of system variables. Here,  and  are modelled as 
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instantaneous transitions responsible of the switching of spare components between 

the two logical states, stand-by and active (here generalizations may include the 

possibility of a delay for a component to become active). Thus it is by the definition 

of the transition activation functions that these relations are modelled by the ATS 

formalism.  

In particular a spare component of order 1 switches to the active state in the case of 

failure of the primary component of the SPARE gate plus the additional condition 

that the spare element must be itself in the working state. In this case A2 switches to 

the active state when A1 is failed. In terms of system variables this is achieved when 

both  and  take on value 1. Thus . 

On the other hand, A2 switches back to the stand-by state when it fails or in the case 

A1 is restored. Thus . 

 

Fig. 7.4. ATS model of the stand-by/active dimension of not shared spare 

components of order 1 (model for A2). 

Defined the model of the stand-by active dimension we can introduce the model 

of the working/failed dimension of the spare components. This model depends on the 

fact that a spare component may be shared among more SPARE gates but does not 
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depend on the order of the spare element in the SPARE gate. This because all the 

logical relations are captured by the stand-by/active ATS model. Figure 7.5 shows 

the ATS model of the working/failed dimension of A2.  

System variables are similar to the case of primary components. Thus, state indicator 

variables are  and ; transition indicator variables are 

 and  for  and , respectively; and 

transition timing variables are  and  for  and 

, respectively. 

Variables associated with the transition that represents recovery activities are 

similar to the one defined for primary components, too. Thus, the activation variable 

of the “repairing transition” is fixed to 1, the reactivation to 0 and the parameter to 

the value of the repair rate associated with the component. 

On the other hand, in the model of the “failure transition” we must distinguish the 

case in which the component is a cold or a warm stand-by.  

The case of warm stand-by is represented at the top of Figure 7.5. Here we see 

that the activation variable is fixed to 1, while its the parameter and the reactivation 

variable depend on the state of stand-by/active dimension.  

In particular the value of the failure rate is scaled by a dormancy factor when the 

component is the stand-by condition. This is modelled by the SL gate defined in 

Chapter 5. We have that  . 

Here, differently from DFT we could define, instead of a dormancy factor, an “active 

factor”. In this case we could vary the failure rate of a component in dependence of 

the subsystem where it is employed, i.e., different working loads for different 

subsystems. 

The reactivation variable takes on value 1 whenever there is a change of the 

parameter. That is when the component enters or exits the stand-by state. To this end 

the reactivation function is given by OR relation between the transition indicator 

variables of  and . We have . 
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The case of cold stand-by is shown at the bottom on Figure 7.5. In this case only 

the activation function of the “failure transition” must be defined, the other variables 

remain fixed to 0, in the case of the reactivation variables, and to the value of the 

failure rate, in the case of the parameter. 

The condition for the activation of the failure transition is that the component must 

be not in the stand-by state. Thus we have that . 

 

Fig. 7.5. ATS model of the working/failed dimension of not shared spare components 

(model for A2). 

Inputs of the static representation of DFT of Figure 7.2 for A2 and B2 are defined by 

imposing that the components are failed. Thus, we that . 

The ATS model of S is different from the model of A2 and B2 in that S is a 

shared spare among more SPARE gates. In this case the ATS model of the stand-

by/active dimension must include the notion of which SPARE gate is served by the 

component. Thus, two active states are defined for S,  and , the first meaning 
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the spare is active in the SPARE gate A and the second that it is active in B. Figure 

7.6 shows this model. In figure only the transition functions relative to those 

transitions related to  are showed, being symmetric the relations on the transitions 

involving .  

Transition  models the switching of S from the stand-by state to the active 

state in A. The conditions that allow S to do so are defined by the transition 

activation function . The output of this function takes on value 1 only if: 

- S is in the working state ( ) and;  

- or A requires S when B does not ; or  

- in the case when both SPARE gates require S, A requested S before B 

. 

The gate  allows a non deterministic choice (if the model of  is symmetric 

to the one of ) in the case that both A and B requires S at the same time 

(however this cannot happen if all “failure and repair transitions” are exponential). 

Transition  models the switching of S to the stand-by state out of state . 

The conditions that allow this change are modelled by the transition activation 

function . The output of this function takes on value 1 only if: 

- S has failed ( ); or  

- S is not requested anymore from A and it is not requested from B, too 

. 

The structure of  may be different if the transition between the two active 

state  were not present in the model. The choice to include  is to 

present a model as more general as possible. In fact,  allows not to resample 

the time to failure of a spare component when switching between two active states. 



        Repairable Dynamic Fault Trees 

While in the case of exponential distribution this has no effect, it is important to 

address this issue when other distributions are used.  

 

Fig. 7.6. ATS model of the stand-by active dimension of shared spare components 

(model for S). 

The conditions that allow S to switch between two active states are given by the 

transition activation function , whose output takes on vale 1 only if: 

- S is in the working state ( ); and  

ATS – S     stand-by/active dimension

SSs ,

OASs ,

OASSt →, SOASt →,

State indicator

variables

Transition indicator

variables

Transition timing 

variablesS

OA

OASST →,

SOAST →,

OB

OBSST →,

SOBST →,

OBOAST →,

OAOBST →,

OBSs ,

OBSSt →, SOBSt →,

OBOASt →, OAOBSt →,

OASS →,π
SOAS →,π

OBSS →,π SOBS →,π

OBOAS →,π OAOBS →,π

OASSa →,

FAs ,1 FAs ,2

WBs ,1 WBs ,2

FAs ,1 FAs ,2 FBs ,1 FBs ,2

FWA →,1π

MAX

FWA →,2π
FWB →,1π

MAX

FWB →,2π

≤

inst−

inst− inst−

WSs ,

SOASa →,

FSs ,

WBs ,1 WBs ,2WAs ,1 WAs ,2

OBOASa →,

WSs ,

FBs ,1 FBs ,2WAs ,1 WAs ,2



        Repairable Dynamic Fault Trees 

- it is not requested anymore from A ; and  

- it is requested from B . 

The relation presented here for , ,  and symmetrically for 

, ,  must be generalized in the case that components of 

lower order in the SPARE gates where S is input, i.e., component A2 and B2, are 

shared among more SPARE gates. In this case, in fact, the above relations for the 

transition activation functions must include the possibility that not only a component 

can be failed but it can also be occupied in another subsystem. 

 

Fig. 7.7. ATS model of the working/failed dimension of shared spare components 

(model for S). 

The ATS model of the working/failed dimension of S is shown in Figure 7.7. The 

ATS model is similar to the one of A2 presented in Figure 7.5. Here the only 

difference lays in the definition of the reactivation function of the “failure transition” 

in the warm stand-by case. In this case in fact the component can enter and leave the 
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stand-by state by four transitions, thus all the transition indicator variables relative to 

these transitions must be included as inputs of the function. 

Finally, we must define the inputs of the static representation of the DFT of 

Figure 7.2. We do it imposing the following relations:  and 

. Thus SA takes on value 1 only if either S has failed or it is 

occupied in another SPARE subsystem. The symmetric condition applies for SB. 

7.3.3 REWARD FUNCTION SPECIFICATION 

The reward function of the ATS model (Figure 7.8) is retrieved directly from the 

static representation of the DFT in Figure 7.2 applying the input specified above for 

the BEs.  

 

Fig. 7.8. Reward function of the ATS model of the DFT of Figure 7.1. 

7.4 SAN IMPLEMENTATION AND EVALUATION 

The RDFT presented in the previous sections was solved through its 

implementation into a SAN model following the indications stated in Chapter 6. The 

ATS-SAN model of A1 and S is shown in Figure 7.9. 
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Fig. 7.9. Atomic SAN models of the ATS of components A1 and S. 

The time to failure and the time to repair of all components are exponentially 

distributed and the failure and repair rate values are reported in Table 7.1. From 

reference [5] the unreliability value of the system at 100 time units is 0.03126. 

Table 7.1. Components failure and repair rates [ ]. 

Component Failure rate  Repair rate  

A1 0.0010 0.025 

A2 0.0050 0.025 

B1 0.0020 0.025 

B2 0.0035 0.025 

S 0.0050 0.025 

T1, T2, T3 0.0030 0.025 

The model was resolved via simulation with the aid of the Mobius simulator [7].  

Table 7.2. Simulator Solver results. 

Simulation Batches Mean Conf. Int. CPU time 

SAN 59000 6.47e-03 +/-6.47e-04 54.56 sec 

The Simulator results are reported in Table 7.2. As expected, the unavailability 

value is less than the unreliability value reported in [5]. The experiment were carried 
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out by a laptop with the following characteristics: CPU, Intel Core 2 Duo 1.83 GHz; 

RAM, 1.99 GB. 

7.5 MATCARLOAV: AN EXTENSION TO SOLVE DRFT 

An extension of MatCarloRE, the simulative tool for DFT presented in Chapter 4 

is currently under development to solve RDFT. MatCarloAv will be a tool for 

discrete event simulation of RDFT that employs a conversion of the DFT to the 

related ATS model and solve it via simulation. The tool performs the following 

steps: 

- conversion of the DFT into an ATS model; 

- definition of the algorithm for the simulation of the ATS model; 

- use of the functions defined in MatCarloRe for the gates of the static FT 

derived from the original DFT to evaluate the availability (or the reliability 

with repair) of the RDFT. 

The conversion procedure of the DFT into an ATS model follows the same rules 

stated in this chapter. Once that the model has been converted, a Matlab code for the 

simulation of the ATS is generated on the basis of the execution logic described in 

Chapter 5. Finally the reward function is evaluated at every state change trough the 

use of the adapted function of the MatCarloRe tool. 

At the moment the tool is still under development. An accepted abstract of a paper 

describing the tool is attached in Appendix A. 

7.6 CONCLUSION 

In this chapter we have introduced Repairable Dynamic Fault Tree, a formalism 

that extend DFTs with repairable components. We have shown what the main issues 

are when restoring actions are taken on components of a DFT. In particular we have 

introduced new logics for dynamic gates.  
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Successively we have shown how ATS can be used to model and solve repairable 

DFTs. Due to the capability of ATS to tackle the characteristics of single 

components on the basis of their nature and their configuration into the system, DFT 

models can be extended to tackle more complex behaviours. 

In order to create an ATS model of a RDFT we need first to convert the DFT is to 

a static FT where basic events are modelled in terms of ATS models. In this way the 

failure logic of the system is separated from the substitution logic of spare 

components. The FT is used then as a specification of the reward function of the 

ATS model. It follows that a dynamic behaviour of a system can be modelled in 

terms of a FT and an ATS. However, dynamic gates represent useful high level 

representation of a kind of behaviour that is useful to maintain. 

However, we showed that with the implementation of f-T, the Fault Tree like 

graphical representation of transition and reward functions; dependencies existing 

among components are easily modelled and debugging of the model can be done 

with the advantages of a graphical support. 

Future work regards the construction of a software tool that automatically convert 

a DFT into an ATS model. The ATS model can be then solved via simulation or via 

its conversion into a Markov model. In fact when ATS are applied to model DFT, the 

class of dependencies involved in the model make the ATS an OATS. Furthermore, 

if only exponential distributions of the time to failure and to repair are used into the 

model, then the OATS model is a MOATS and can be solved trough conversion to a 

Markov chain. 
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CONCLUSION 

 

 

In this thesis we have addressed the issue of reliability modelling of complex 

interdependent systems.  

In Chapter 1, 2, 3 we have introduced the main concepts, models, and techniques 

of reliability engineering. Chapter 4 shows a Matlab tool for the evaluation of 

Dynamic Fault Tress via simulation.  

In Chapter 5 we have presented the major achievement of this doctoral work: 

Adaptive Transition Systems (ATS). ATS is an hybrid formalism that integrates 

concepts deriving from different fields: transition systems, stochastic extension of 

Petri nets and Fault Trees.  

ATS are substantially different from other approach of modelling distributed systems 

due to the model of communication mechanism that is defined between parallel 

models. The formalism allows to represent a system in terms of parallel transition 

systems and a Fault tree-like structure of the model of the communication 

mechanism.  

The communication mechanism defines the dependencies existing between parallel 

models in the natural way of defining dependencies between system subparts. The 

model construction results facilitate due to the separation of concerns, i.e., the 

modeller can abstract from the complexity of the whole (sub-)system when 

modelling specific system sub-parts. He can focus on the “state-space” of the 

modelled elements and then define the dependencies among them.  
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Moreover, debugging and maintenance of the model results also improved because 

of the “state-space” structure of the model and because changes can be often defined 

only at the communication mechanism level without the necessity of reconsidering 

the structure of the “state-space” of the modelled elements. 

Some comparison with formalisms like Stochastic Process Algebra and Model 

checking are also reported. Solutions methods have been proposed, too. We have 

shown that when an ATS is an Ordered-ATS (OATS) with exponential and 

instantaneous transition type the OATS is a Markov-OATS (MOATS) and can be 

resolved through its conversion into a Markov chain. We have shown, that the class 

of models representable by a Markov chain is extended by an opportune concept of 

state that include the ordering of the most recent completion of transitions. Finally, 

being the execution logic of ATS defined on the completion of events, ATS resemble 

generalized semi Markov process, thus ATS adopts an “educated” approach to 

simulation. 

In Chapter 6 a conversion ATS-to-SAN (Stochastic Activity Network) model is 

presented showing that the resulting SAN model has a standardized structure where 

the logic expression of the Boolean predicates of the network are graphically defined 

by the FT-like formalism used to define the communication mechanism between 

ATSs. 

Finally in Chapter 7 we introduce Repairable Dynamic Fault Tree (RDFT) and 

show a lower level conversion method of the RDFT to a an ATS model. In practice 

by the definition of a specific ATS model is possible to extend DFT to the class of 

repairable components. 

In addition ATS have been applied to model a real system defined as an 

Interdependent Critical Infrastructure (ICI). The application shows the capability of 

ATS to deal with interdependent large systems. The main achievement lays in the 

support to the modelling activity of ATS. We have shown that the task of modelling 

complex interdependencies results facilitate by the structured approach that ATS 

provides. 
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Future developments of ATS regard both theoretical and practical, i.e., tool 

implementation, fields. From a theoretical point of view it is interesting to exploit the 

conversion of ATS to Stochastic Process Algebra models like Performance 

Evaluation Process Algebra (PEPA) or Interactive Markov Chain (IMC). It is also 

interesting to extend the kind of properties that can be investigated by a n ATS model 

employing some kind of temporal logic used in Model Checking, e.g., Continuous 

temporal logic (cTL). We have indicated, in Chapter 5, that ATS can be implemented 

in the PRISM formalism (a Model Checking tool) if the ATS is an Ordered-ATS. 

We have shown that an ATS model can be converted to a Stochastic Activity 

Network model. In this context it would be beneficial to define a multi formalism 

language that make use of both ATS and SAN. For instance, the Mobius tool allows 

to model a system making use of both formalism SAN and PEPA. An extension of 

the tool to include ATS thus, would be straightforward having defined the conversion 

procedure ATS-to-SAN. 

On the other hand, a standalone tool, e.g., defined in Matlab with a Java interface 

support, can be defined in a way that both analytical and simulation evaluation 

techniques can be used in the most general setting for ATS and allowing “exotic” 

extension. 

Finally, from a point of view of ATS development, we should consider the 

introduction of case probabilities applied to transition, i.e., a transition can be 

directed to more states with different probabilities, and also among transitions, i.e., 

different instantaneous transitions with probabilities. Another future development 

can be directed to the formalization of synchronization procedures between 

transitions. We have show in Chapter 5 an application of synchronization but has not 

been formally defined. We remind, in this context, that ATS allows nondeterministic 

choices and, thus, the definition of synchronizations procedures and case 

probabilities should take into account also this fundamental aspect often present in 

distributed systems. 
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- Popov P. & Manno G., (2011). The effect of correlated failure rates on 

reliability of continuous time 1-out-of-2 software. Lecture notes in computer 

science, vol. 6894, pp. 1-14. 

- Chiacchio F., Compagno L., D’Urso D., Manno G. & Trapani N., (2011). An 

open source application to model and solve dynamic fault tree of real 
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 International conference on 
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a b s t r a c t

Safety assessment in industrial plants with ‘major hazards’ requires a rigorous combination of both

qualitative and quantitative techniques of RAMS. Quantitative assessment can be executed by static or

dynamic tools of dependability but, while the former are not sufficient to model exhaustively time-

dependent activities, the latter are still too complex to be used with success by the operators of the

industrial field.

In this paper we present a review of the procedures that can be used to solve quite general dynamic

fault trees (DFT) that present a combination of the following characteristics: time dependencies,

repeated events and generalized probability failure.

Theoretical foundations of the DFT theory are discussed and the limits of the most known DFT tools

are presented. Introducing the concept of weak and strong hierarchy, the well-known modular

approach is adapted to study a more generic class of DFT. In order to quantify the approximations

introduced, an ad-hoc simulative environment is used as benchmark.

In the end, a DFT of an accidental scenario is analyzed with both analytical and simulative

approaches. Final results are in good agreement and prove how it is possible to implement a suitable

Monte Carlo simulation with the features of a spreadsheet environment, able to overcome the limits of

the analytical tools, thus encouraging further researches along this direction.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The RAMS techniques offer qualitative analyses and quantitative

techniques for risk assessment. The former (such as HAZOP and

FMEA [1]) concern the context analysis (kind of process, geographic

issues, internal specifications and rules, etc.) and are used to reveal

potential hazards and consequences. The latter concern the risk

assessment, computed as the probability of occurrence of undesired

events (which are often highlighted by the qualitative analyses).

Two main classes of analytical stochastic models are used for

quantitative evaluations:

� combinatorial models (also known as static) that are straight-

forward, but unable to describe dynamic dependencies among

the components of the system and

� state-space models, mostly based on the Markov Chain repre-

sentation (DTMC, CTMC, MRM, MRGP and GSMP), that over-

come many of the limits of the static models but can become

too large to be handled [2–4].

In the last years researchers have proposed several techniques,

which combine the best properties of the previous models [4,7,8]

such as the BDMP [5,6], the DRBD [9], the DFT [10], the SPN [11],

etc. These powerful techniques of modeling are implemented

using many reliability tools [2,5,12,13,14,17] that can be used

according to their own hypotheses and features, which, often, are

not suitable to design and solve any possible type of model.
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In this paper we focused on the Fault Tree analysis because

nowadays it is the most used quantitative technique for accident

scenario assessment in the industry. The aim of this paper is to

review briefly the improvements of the DFT over the SFT and

provide a useful scheme to approach the resolution of a quite

general class of DFT that includes nested dynamic gates, events

with generalized distributed time to failure and MOE [40] (also

known as repeated events). Intentionally, we will not cover other

approaches (i.e. SPN, SAN, BDMP, etc.) because they are too

general [5,6] and their use requires notions that go over the

capability covered by the DFT approach.

A significant part of this work is devoted to reason about the

hierarchical approach for DFT [15,16,18,19]. The concepts of weak

and strong hierarchy are introduced and used to estimate what

approximations arise when DFT with nested dynamic gates are

analyzed.

This paper is organized as follows: in the first part we

present an overview of the fault tree analysis, introducing the

SFT of the presented case of study and its enhanced model by

the mean of the DFT technique. In the second part, the most

common analytical techniques of resolution are discussed, in

particular the state-space models and an adapted modular

approach for general DFTs. The aim of this section is to provide

a reference framework to analyze a generic DFT, what techniques

apply and what software uses (or combine) to obtain reasonable

results.

In the final section, the case of study is solved in several

manners, according to the scheme of resolution suggested. Among

the traditional analytical tools, a novel simulative approach—

developed under a well-known commercial spreadsheet [44]—is

used as a benchmark to compare the final results. In the end

conclusions are drawn and future works are indicated.

2. Research framework

The study is developed with reference to the FT model of

Fig. 1: an accident scenario in an alkylation plant, as it is reported

in the Safety Report required by the Seveso Directive. The SFT

was designed by the experts according to the HAZOP report.

Although SFTs are very common in the industrial field, DFTs are

desirable because some reliability schemes and the integration

with real time technology of monitoring (like the DCS [20])

introduce temporal dependencies that the static models are

unable to treat.

2.1. Static Fault Tree (SFT)

The TE of a SFT [21] is described through the well-known

structure function:

fðtÞ ¼ f ðX ðtÞÞ ¼
1, if the system is working

0, if the system is failed

(

ð1Þ

where X ðtÞ ¼ ½X1ðtÞ,X2ðtÞ,:::,XnðtÞ� is the vector of the states of the

system and XiðtÞ represents the ith component that can be in a

working or in a failed condition. Several methods of resolution

exist and their usability depends on the complexity of the tree. In

fact, a simple model without repeated events can be solved with

the equivalent RBD [22]. Nevertheless, in the industrial applica-

tions it is usual to deal with large SFT composed by BEs

characterized by a very low probability of occurrence. In these

cases, exact methods such as factorization [23] or BDD [24] can be

unfeasible; therefore the MCS technique is combined with the

rare event approximation renouncing to exact results. The choice

of what is the optimal truncation limit is discussed in many

regulatory guides of PRA and it has been the objective of further

elaborations through a technique that considers the important

measures and the sensitivity of the CDF [25]; however, there is

no certainty about the accuracy that can be reached and this

can cause the underestimation (or the overestimation) of the

sources of risk [26] and consequently can invalidate the safety

or optimization strategies, which are based on these evaluations.

The SFT models are constrained to the following assumptions [27]:

� binary nature of the components, which can only be in the

operative or in the failure state;

� BEs are independent;

� transition between the working and the failed state is

instantaneous;

� maintenance restores components as good as new and

� if the failure of a component influences other events on

superior levels, its repair restores these events to the normal

operative condition.

The algorithms for the resolution of the SFT are easy to

implement because they make use of the Boolean algebra.

2.2. Dynamic Fault Tree (DFT) and analytical resolution

State-space models have been used to overcome the limits of

the SFT, but

� unlike the FT, they are not systemic oriented;

� construction of the schema can become difficult and

error prone;

� readability of the model is less intuitive than the combinator-

ial representation and

� complexity of the model can make the analytical resolution

hard (or even unfeasible).

DFT methodology is a technique for the reliability assessment

that was born to overcome the state-space complications but

keeps the powerful representation of the SFT. In fact, the structure

function of these models is time dependent since the dynamic

gates (Fig. 2) establish interactions among the components (FDEP,

PAND) and modify their failure attitude (SPARE, SEQ) [4], but the

resolution of a DFT is not as simple as in the SFT because it cannot

be performed with the rules of the Boolean algebra.

After a careful review of the most important literature about

DFT models, we have realized the need to list and discuss theFig. 1. SFT of a real industrial plant (alkylation plant).
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method proposed in these previous works, as it came out that an

established procedure for the resolution of a DFT does not exist.

Fig. 3 shows the dynamic version of the static schema of Fig. 1.

The DFT of Fig. 3 was obtained, implementing the following

important rearrangements that consider the real behavior of the

safety systems of the alkylation plant: the static AND gates (IE1

and TE) were replaced by two PAND gates (as the alarm equip-

ment considers the time of occurrence of a fault) and the IE8 with

a SPARE in order to model the cold stand-by between two pumps.

In Fig. 4 we present a breakdown for the classification of a fault

tree. The procedure for the resolution of the fault tree is chosen

according to the following main characteristics: the distribution

function of the events time to fail, the presence of repeated BEs

and the type of tree.

If the BEs of the DFT are characterized by an exponential

distributed time to fail, the most used domain of the resolution of

a DFT is the HCTMC (or CTMC). The memory-less property (which

characterizes the HCTMC) makes the resolution of the problem

straightforward. In fact, the mapping of a DFT into a Markov chain

can be performed with the direct mapping, recursively construct-

ing the matrix of the infinitesimal generator Q. Hence, the closed

analytical solution for the instantaneous reliability is obtained by

solving the set of differential equations [28]:

dPðtÞ

dt
¼ PðtÞQ ð2Þ

where P(t) is the vector of the state probabilities and P(0) the

vector of the initial probabilities.

The main disadvantages of this approach is the constraint to

use only the exponential distribution and the state-space explo-

sion that can affect even small DFTs. In fact, if we assume a DFT

with n basic events, the matrix Q can be larger than 2n�2n.

If the state-space model is available, there are techniques that

can be used to reduce its largeness and improve the computation

performance: in [29] stochastic algebra it is used to find bisimi-

larity among the states and favor the lumping, while in [30] a

simple technique is shown for the aggregation of the states that

permits to find the equivalent transition rates also for repairable

systems.

In [34,35] DFTs are solved by the conversion into a Bayesian

network, a formalism based on the explicit dependencies among

the gates and the BEs of the fault tree. This method mitigates the

state-space explosion as it creates a DAG with a number of nodes

given by the sum of the number of the BEs (that are the leaves of

the DAG) and the gates.

In [37] an elegant solution, based on a temporal Boolean logic,

allows the resolution of a cascade of PAND gates for the reliability

computation of DFT with repeated events. However, this is just a

small set of all the classes of DFT that we are considering.

Even though the previous techniques are quite dynamic,

industrial applications make use of repairable components, which

are not described only by the exponential distribution; therefore

HCTMCs and Bayesian network are too limited. Non-homoge-

neous CTMCs (NHCTMCs) are more powerful but only simple

models can be analytically treated with MRGPs and GSMPs [31].

The continuous phase-type distribution [32] is an approximated

solution for solving the GSMP: a generalized distribution function

can be approximated by the use of one or more interrelated

Poisson processes that occur in sequence. But its application is not

feasible even for ordinary cases because a Markov chain that

approximates a single generalized distribution function of a BE

can be too large; with the increasing of the model the final

representation of the GSMP can suffer from the state-space

explosion problem [33] (Table 1).

In Table 2 a synthesis of the main features and limits of the

analytical techniques is presented.

Fig. 2. Most frequently used dynamic gates.

Fig. 3. DFT of the real industrial plant in Fig. 1.

SFT

Type of 

Fault Tree 

ExpD

GD

MOEUnMOE

DFT

Events

Distribution Function

Fig. 4. FT breakdown structure.
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2.3. Mitigation technique of large DFT: weak and strong hierarchical

approach

The issue of the state-space explosion can be mitigated with

the hierarchical approach [15,16,18,19]. This method (also known

as ‘‘modularization’’) was developed to reduce large combinator-

ial models.

The hierarchical technique is performed recursively in two

phases:

1. the decomposition phases, ‘Phase 1’, detect the independent

parts (sub-models) of the original FT that can be solved a part

(i.e. repeated events cannot be split into different sub-mod-

ules) and

2. the composition phases, ‘Phase 2’, perform the aggregation of

the sub-models which are substituted with an equivalent BE.

At the end of this recursive process, the original FT is collapsed

in a smaller but equivalent FTn, which can be solved with the

methods of the Boolean algebra.

Hierarchy can be applied in a similar fashion for DFT (Fig. 5):

the aim is to deal with a simpler aggregated DFT (in the following

indicated as DFTn) in order to mitigate the state-space explosion

of the equivalent CTMC.

In the following we will refer to

� composed sub-models to indicate the parts of the DFT, which

are solved as a part during the decomposition phase and

� hierarchical model to indicate the final representation of the

aggregated DFTn, built with the previous composed sub-

models.

Unfortunately, the dependencies of a DFT model are also

caused by the temporal interactions among different BEs through

the dynamic gates. Therefore, modularization can become less

effective. According to past literature [15,16], we focused on two

kinds of hierarchical approaches that we will refer to as

1. strong approach: it synthesizes a DFTn, which keeps the

temporal dependencies of the original DFT, providing exact

results and

2. weak approach: it disregards the temporal dependencies and

provides an approximated DFTn.

Fig. 6 shows a class of DFT that inspired many reliability

models [15,18,19].

In this kind of DFT, dynamic modules are solved as a mono-

lithic block; the white blocks can be thought as the intermediate

layers of the FT and can contain only static gates; gray

blocks are the lowest levels for which no more decompositions

are performed (sub-models of SFT and DFT are completely

reduced and solved). For these cases, the strong hierarchy is

enabled. In fact, unmanageable temporal dependencies do not

arise because these are all treated internally in the sub-models.

The final DFTn is solved with the techniques of the SFT, getting an

exact result.

The use of the hierarchy inside a pure dynamic sub-module

was suggested in [16]: we have noticed that it can turn into a

strong or weak approach, depending on the structure of the

sub-models, as in Fig. 7, where two similar DFTs are

shown. Through the modularization of the sub-models (inside

the circle), the original DFTs are converted into an equivalent

Table 1

Parameters of the BEs for the FT-A (l¼failure rate [1/h]; Q¼constant) probability

of failure.

ID Description l [1/h] Q

BE1 Human error – 1.0�10ÿ3

BE2 Breakage HV72 failure 9.1�10ÿ4 –

BE3 No operative intervention – 1.0�10ÿ3

BE4 LAHH78 failure 1.7�10ÿ4 –

BE5 LAHH failure 7.5�10ÿ4 –

BE6 HV75 failure 9.1�10ÿ4 –

BE7 Flow level control failure 4.5�10ÿ3 –

BE8 FV72 failure 8.6�10ÿ4 –

BE9 Level control system failure 4.5�10ÿ4 –

BE10 LAHH78 failure 7.9�10ÿ3 –

BE11 Pump G17 failure 1.5�10ÿ4 –

BE12 Pump G17S failure 9.5�10ÿ4 –

Table 2

Synthesis of the features and limits of the main analytical stochastic models.

Stochastic model Hypotheses Mitigation technique Overall limits

HCTMC Exponential distribution Stochastic algebra State-space explosion

Lumping Ineffective modeling of real industrial systems

Hierarchy

GSMP/MRGP Non-exponential distributions Continuous phase-type approximation Complex models are not solvable

Bayesian networks Reliability computation No cyclic dependencies

Fig. 5. Recursive two-phase procedure of the hierarchical technique.
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DFTn (Fig. 7c): the CDFs that describe the composed sub-models

‘S’ can be a GD.

In particular, the model of Fig. 7a can enable a straight strong

hierarchy as the CDF of the composed OR gate is still an

exponential distribution with leq¼lS¼lAþlB.

In the case of Fig. 7b, the CDF of the AND gate is an

exponomial; hence the hierarchical DFTn is no longer equivalent

to a CTMC.

In this last case, the use of a weak hierarchy can be applied to

get back a CTMC, finding an equivalent constant failure rate,

h(t)¼leq, which synthesizes the dynamic of the gate. Two

approaches can be followed:

W1. the computation of an instantaneous equivalent failure

rate [16], from the reverse law of the exponential distribution,

that depends on the precise instant of time Tn (where Tn is the

mission time of the original model);

W2. the second weak approach exploits the property of the

exponential distribution by the use of the inverse MTTF as

the equivalent failure rate of the combined sub-model. In

this case:

leq ¼
1

MTTFAND
¼

l
2
AlBþl

2
BlA

l
2
Aþl

2
BþlAlB

ð3Þ

We have quantified the quality of the approximation for the

example of Fig. 7 (Table 3), assuming all the BEs to have the same

failure rate: low values of the parameter lTm (i.e. 10ÿ2, 10ÿ3)

correspond to higher relative errors. Nevertheless, for high reli-

able systems these approximations are more tolerable than the

ones associated to larger lt. These approximations can grow

according to the complexity of the sub-model: final results may

not be significant in terms of both logical modeling and numerical

evaluations.

Fig. 6. Hierarchical decomposition of a DFT, which retrieves exact results.

Fig. 7. Two different DFTs (a) and (b) with the equivalent hierarchical model (c). Double circles are the state of failure for the system. DFT (a) enables the strong hierarchy

and DFT (b) the weak one.
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In conclusion, the hierarchical approach results are exact (or

strong) in the following cases:

1. DFT is structured like in Fig. 6;

2. under any dynamic gate if the modularization involves OR gate

sub-modules without repeated events.

In all the other cases, the hierarchical approach will be feasible

in terms of weak hierarchy, providing an approximated DFT,

which keeps the advantage to be equivalent to a CTMC.

2.4. Software tools analysis and application of the hierarchical

techniques

Automated tools can be classified (and used) according to the

way they solve a DFT, with respect to the engine used (analytical or

simulative), the domain of resolution (CTMC, Bayesian Space, BDMP,

SPN, etc.), the hierarchical algorithms and the measures retrieved.

The software tools reported in Table 4 have been tested.

Some considerations can be important:

1. TOOL_1 [42]: it provides an intuitive high level framework to

model a DFT. The engine of the TOOL_1 can retrieve the

reliability and the availability of the system and it can deal with

repeated events; only exponential distributions are permitted

and the hierarchy has to be handled manually (other kind of

reliability models can be assembled such as RBD, FT and CTMC).

2. TOOL_2 [13]: this software provides a user friendly graphic

interface to construct a DFT. It can compute only the reliability

of a system; repeated events are not permitted but, unlike

TOOL_1, it can deal also with the Weibull and lognormal

distributions through a simulative engine. Modularization is

handled automatically but only the exact (strong) hierarchy is

performed. Moreover, the algorithm is not optimized as it

cannot solve simple DFT as in [34].

3. TOOL_3 [43] is more than a reliability tool. It offers a practical

interface to solve SFT, Reliability Graph, RBD and HCTMC as

well as GSMP and MRGP. DFTs are not implemented; therefore

dynamic models have to be solved constructing manually the

equivalent state-space model. Hierarchy is allowed and relia-

bility, availability and other importance measures can be

automatically retrieved.

For the models of Fig. 6, TOOL_1 and TOOL_2 can process the

DFT as no nested PAND gates appear; instead, TOOL_3 needs to

solve the dynamic models a part—through the equivalent

CTMC—and embeds these results into the hierarchical SFT model.

But, if dynamic gates are nested along the structure of the tree the

previous software can get stuck due to the state-space explosion.

The solution that we want to suggest in order to mitigate the state

space is based on an adapted combination of strong and weak

hierarchy inside any dynamic sub-model of the original DFT. In this

way the original DFT can be drastically reduced. For instance, with the

strong hierarchical approach the hypothetical example of [35] is

reduced from the initial 16 BEs to 10. In this configuration TOOL_2

can easily solve the model. Applying another weak hierarchy for the

AND gate, the DFT is finally reduced to three BEs and also TOOL_1 can

process the computation with an error of 5.5�10ÿ10.

Among the proposed reliability software only TOOL_3 can deal

with GD once the DFTn is completely represented in terms of the

state-space model. However, it can solve only particular sub-

classes of non-Markovian models; therefore a generalization is

not easily feasible. In fact, GDs can be used only in the initial state

of the state-space model. The example of Fig. 8 explains this

statement: a 2-input PAND gate is modeled according to the two

possible permutations of the input of the gate (Fig. 8a and b). Let

us also assume that one basic event, BEG, is characterized by a

Table 4

Main features of the reliability automated tools for DFT.

Tool Dynamic modeling Hierarchy Measures computed

TOOL_1 [42] DFT WIZARD HTMC Manual Reliability/availability importance measures

Other measures of interest

TOOL_2 [13] DFT WIZARD Automated Reliability (no repeated events)

Sensitivity

Other measure of interest

TOOL_3 [43] HTMC Manual Reliability/availability

GSMP Importance measures

MRGP Other measure of interest

SPN Sensitivity

Fig. 8. (a) GSMP for a 2-input PAND gate; (b) GSMP for a 2-input PAND gate with

the permutation of the input of (a).

Table 3

Analytic unreliability for the DFT of Fig. 7b and for its weak hierarchical model

(Fig. 7c).

kTm Unreliability

Analytic W1 W2

10 3.33�10ÿ1 5.51�10ÿ1 3.99�10ÿ1

1 8.39�10ÿ2 1.98�10ÿ1 1.45�10ÿ2

10ÿ1 2.87�10ÿ4 4.52�10ÿ3 3.05�10ÿ3

10ÿ2 3.28�10ÿ7 4.95�10ÿ5 3.31�10ÿ5

10ÿ3 3.31�10ÿ10 4.94�10ÿ9 3.33�10ÿ7
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generalized CDF, G(t), and the other basic event, BEE, has time to

fail exponentially distributed with parameter l:

1. in Fig. 8a the BEG is the first input of the PAND and in that way

TOOL_3 is able to perform the ‘‘competing process’’ [31] from

the initial state of the GSMP and

2. in the second modeling (Fig. 8b) the BEG is put as the second

input of the PAND. Under this condition, the sojourn time tn of

the initial state ‘‘EG’’ is not determined and the CDF of the

state ‘‘XG’’, G(t, t0¼tn) is unknown.

2.5. Simulative approach

In the previous sections we discussed the lack of the analytical

approaches, which are generally caused by the state-space explo-

sion of the equivalent CTMC. When the hierarchical approach is

not of help and the events of the model are not exponentially

distributed, a comparative analysis based on a simulative

approach can be performed [36]. Its implementation requires

the following steps:

a) identification of the simulative horizon Tm (time of mission)

and of its time step of discretization;

b) definition of the stochastic behaviors of each BE (nature of

failures—described by a distribution function) and the codifi-

cation of their random sampling;

c) implementation of the interrelationships among the events,

modeled with the static and dynamic gates and

d) tracking of the results at any iteration and verification of the

convergence through the error test.

For our purposes, the simulative environment has been coded

with a commercial spreadsheet [44].

With this approach, the only informations needed to compute

the reliability of the system are the time to fail and the state of

each component (inputs and gates). Therefore, for a DFT with n

inputs and k gates, these data can be stored in a structure of

n�2k elements.

The main advantage of the spreadsheet environment is that

the logic relationships of the simulative engine can be implemen-

ted quickly with its standard functions, realizing a meta-struc-

tured language that is universally used and natively integrated

within many office suites of the same type.

The logic of any gate can be implemented in a master cell (i.e.

n-PAND, C-SPARE, W/H-SPARE, FDEP, etc.) and, thanks to the

‘‘copy and paste’’ function, copied at need into other cells in order

to build up the DFT. This characteristic is valuable because it

allows the implementation of new logics and can simplify the

evaluation of large DFT, no matter the number of repeated events.

In fact, for the inputs of the tree (the BEs) any kind of

stochastic failure behavior is allowed; the sampling process of

the CDF can be performed with reference to any generic law (for

example with a statistical inference of experimental data), as

shown in Table 5, through the RAND function (implemented with

the algorithm of [38] and tested in [39]) .

Fig. 9 explains the discrete event approach: a random number

in [0,1] is extracted and used as the value of the CDF (the

codomain). The inverse function (as in Table 5) retrieves the time

of failure for each BE, realizing the engine of the simulating

process.

For what concerns the logic of the gates, Fig. 10 shows the

relationships to put into the master cells for any dynamic 2-input

gate (the SEQ works exactly as a C-SPARE gate) and the model of

two C/W/H-SPARE gates with only one shared spare component.

The contribution of any FDEP gate can be considered preparing

the spreadsheet in a way that all the BEs that depend on a FDEP

gate are updated according with the time of the correspondent

failure of the trigger event. The relation is very simple as it

corresponds to the static OR logic. This way to code a model is

based on the Wysiwyg property of the spreadsheet, which favors

the knowledge sharing among the end users. In fact, it allows to

look inside any cell and understand what is the logic implemen-

ted in the fault tree.

In the schema of Fig. 10 the algorithm wants to compute the

time to fail of the ith component (Ti) for all the BEs of the DFT,

which are used for the other conditional statements like the state

of the components, the time of triggering of the gates and of

activation of the dependent logics (see the SPARE).

In point of fact, the scalability and the flexibility to develop

any kind of logic with the conditional statements, the primitive

functions and all the amount of cells of the spreadsheet environ-

ment can turn into an unreadable and bad structured spread-

sheet. In this sense, it would be worth understanding the limits of

the dependent behaviors to implement and the number of

components to treat in one sheet. For instance, as it is shown in

Fig. 10, the dependency between two spare gates that share one

spare component can be tackled with two additional conditions.

These conditions may easily become larger as the number of

spare components increases.

Another interesting characteristic is that with this environ-

ment RAMS analysis is not limited only to the reliability compu-

tation since cells are ‘‘almost’’ unlimited and data (also from other

sheets) can be linked with few clicks. For instance, the ‘‘failure

criticality index’’ [41] of each component can be retrieved count-

ing the number of system failures that occur in (0, Tm] due to the

failure of the same component.

In a similar way it is possible to attach to additional cells other

kind of data like real time measures from the field [20] and

retrieve evaluations about the current state of the system.

Table 5

Simulative code with the standard functions of the spreadsheet.

GD F(TBEi) TBEi¼F(TBEi)ÿ1

Exponential þRAND() ÿLN(1-RAND())/TBEim

Gaussian þRAND() þNORMINV(RAND();TBEim;sTBEi)

Constant þRAND() þRAND()*TBEimax
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Fig. 9. Discrete event simulation engine that determines the time of failure

according to the CDF of the BE.
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For instance, Fig. 11 shows a simple model of PAND built from the

master cell and the computation of the MTTF attached to any BE.

The model of Fig. 7b was developed and solved quickly: in this

case errors are negligible with respect to the weak hierarchy

(Table 6).

Table 7 shows the results collected for the case of

study of another complex model, a multiprocessor system

described in [34]. This case of study was developed with the

master cells of Fig. 10. Results prove the effectiveness of the

spreadsheet.

TM

IE1

1

1

BEx

Time to failure (Exp)

Time to failure (Norm)

random number

h002h001FTTM

devst MTTF                                20 h                           40 h

=+IF(AND(R16<T16;R16<S9;T16<S9);0;1)

= -LN(1-RAND())*T22

=+NORMINV(T19;T22;T23)

0.597473 0.84225

104.9362   h 240.15    h

176.9433   h 205.33    h

BEy

200 h

Fig. 11. Implementation of a 2-input PAND under the spreadsheet environment.

Fig. 10. Implementation of the dynamic 2-input gates under the spreadsheet environment of [44]. CDFÿ1 is not a function of the spreadsheet and represents the inverse

function of the CDF of the generic BE.
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3. Case of study solution

The simulations were executed with a standard laptop with

the following technical characteristics: a dual processor of

1.86 GHz and 2 GB of Ram.

According to the statistic parameters of Table 1, the DFT of the

case study (Fig. 3) would be unfeasible with the previously

described analytical techniques as it contains

� constant probabilities (BE1 and BE3) that invalidate the use of

the CTMC and

� a repeated event (BE1) at the lowest branch of the DFT that

does not verify the assumption of the hierarchical approach.

In order to test all the approaches reviewed in the paper,

several scenarios were designed as follows according to the

breakdown of Fig. 4:

1. Test 1: all the BEs are described by exponential distributions.

2. Test 2: this test represents the original input configuration of

Table 1 according to the industrial application.

3. Test 3: BE1 and BE3 are described by exponential distributions

(like in Test 1) and all the other BEs are characterized by a

Weibull distribution with a scale parameter equal to the

failure rate li (of the respective BEi) and a shape equals to 3.

The previous scenarios were evaluated twice to consider the FT

with (MOE-FT) and without (UnMOE-FT) the repeated event.

The results are shown in Tables 8 and 9, respectively, for the

static and the dynamic FT: not feasible computations (n.f.) happen

when the tool is not able to perform the resolution of the model,

not performed (n.p.) are the computations that would need more

investigations and no results (–) when the computation got stuck.

For what concerns the results in terms of reliability, it is

possible to notice that in both the STF and the DFT the repeated

BE1 does not contribute significantly to the TE occurrence.

For the monolithic UnMOE-FT, TOOL_1 got stuck while TOOL_2

and the simulator retrieved comparable results: the former was

computed in about 30 min, and the latter—with a number of 108

iterations—took about 9 h.

The computations with the strong and weak hierarchical

approaches (possible only for Test 1) simplified the model; hence

both TOOL_1 and TOOL_2 were able to perform the computation

very quickly, retrieving the same results.

In order to use the strong (Fig. 12a) and the weak hierarchy

(Fig. 12b) few other simplifications were needed. In fact, the gate

IE8 was elided (its contribution to the failure of the IE4 is

negligible) and the BE3 was cut off (its failure rate is much lower

than the equivalent failure rate of the gate IE9). In this way, the

original OR gate IE4 was replaced with a strong equivalence

characterized by a failure rate computed as the sum of the failure

rates as follows:

lIE4 ¼ lBE1n þlBE6þlBE7þlBE8þlBE9þlBE10 ¼ 2:235� 10ÿ2 ½1=h�

For the weak configuration of Fig. 11b, another composition

was added through the weak equivalence of the AND gate IE9:

lIE3=IE9 ¼
1

MTTFIE9
¼

l
2
BE4lBE5þl

2
BE5lBE4

l
2
BE4þl

2
BE5þlBE4lBE5

¼ 1:6316� 10ÿ4 1=h
� �

As shown in Table 9, the strong hierarchy retrieved results that

are very close to the ones obtained with the monolithic model.

The weak hierarchy, instead, introduced an error of two orders of

magnitude, not far from the one computed for the same DFT

structure (Fig. 7c) with respect to the parameter lTm (Table 6).

Test 2 and Test 3 were solved only with the simulative

approach and it is interesting to notice how the Weibull

Table 8

Static unreliability model results.

FT type Software

application

SFT unreliability

Test 1 Test 2 Test 3

MOE-FT

(BE1¼BE1n)

TOOL_1 7.73�10ÿ1 7.73�10ÿ1 9.48�10ÿ1

TOOL_2 n.f. n.f. n.f.

TOOL_3 7.73�10ÿ1 7.73�10ÿ1 9.48�10ÿ1

Simulative

approach

7.73�10ÿ1 7.73�10ÿ1 9.42�10ÿ1

UnMOE-FT

(BE1aBE1n)

TOOL_1 7.73�10ÿ1 7.73�10ÿ1 9.63�10ÿ1

TOOL_2 7.73�10ÿ1 7.73�10ÿ1 9.63�10ÿ1

TOOL_3 7.73�10ÿ1 7.73�10ÿ1 9.63�10ÿ1

Simulative

approach

7.73�10ÿ1 7.73�10ÿ1 9.50�10ÿ1

Table 9

Dynamic unreliability model results.

FT type Software

application

DFT unreliability

Test 1 Test 2 Test 3

MOE-FT

(BE1¼BE1n)

TOOL_1 – n.f. n.f.

TOOL_2 n.f. n.f. n.f.

TOOL_3 n.f. n.f. n.f.

Simulative

approach

5.35�10ÿ5 5.49�10ÿ5
o10ÿ7

UnMOE-FT

(BE1aBE1n)

TOOL_1

Monolithic

– n.f. n.f.

TOOL_1 Strong

Hierarchy

5.32�10ÿ5 n.f. n.f.

TOOL_1 Weak

Hierarchy

4.47�10ÿ4 n.f. n.f.

TOOL_2

Monolithic

5.31�10ÿ5 n.f. 7.93�10ÿ9

TOOL_2 Strong

Hierarchy

5.32�10ÿ5 n.f. n.p.

TOOL_2 Weak

Hierarchy

4.47�10ÿ4 n.f. n.p.

TOOL_3 n.f. n.f. n.f.

Simulative

Approach

5.45�10ÿ5 5.07�10ÿ5
o6.00�10ÿ8

Table 6

Analytic unreliability for the DFT of Fig. 7(b) and for the simulating model.

kTm Analytic unreliability Simulated unreliability

10 3.33�10ÿ1 3.35�10ÿ1

1 8.39�10ÿ2 8.38�10ÿ2

0.1 2.87�10ÿ4 2.96�10ÿ4

0.01 3.28�10ÿ7 3.31�10ÿ7

0.001 3.31�10ÿ10 3.37�10ÿ10

Table 7

Simulated unreliability for the DFT of a multiprocessor system [34].

Mission

time Tm [h]

Unreliability

(104 iterations)

Unreliability

(105 iterations)

Unreliability

(106 iterations)

1000 5.40�10ÿ3 5.90�10ÿ3 6.00�10ÿ3

2000 1.10�10ÿ2 1.26�10ÿ2 1.23�10ÿ2

3000 1.88�10ÿ2 1.91�10ÿ2 1.91�10ÿ2

4000 2.71�10ÿ2 2.73�10ÿ2 2.73�10ÿ2

5000 3.42�10ÿ2 3.74�10ÿ2 3.72�10ÿ2
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distributions affect in a very different way the behavior of the SFT

and the DFT. In fact, for the former model the TE occurrence

increases whereas for DFT it is drastically reduced to values

(10ÿ8–10ÿ9 order of magnitude), which can be considered

negligible for safety purposes. This last result offers an important

cue about the meaning of the risk assessment when the compo-

nents of these models have a time to failure characterized by GDs.

In Table 10 the resolution tools of this study are classified

according to the type of DFT that they can resolve.

In the appendix, the results of the Monte Carlo simulating

processes for the DFT are shown.

4. Conclusions and future works

This study has been motivated by the need to improve the

quality and the performance of the risk assessment of industrial

plant, with the aim to find an environment for the reliability

assessment with the following requirements:

� easy to use by the actors of the industry;

� able to match the safety logic and dependability schemes of

real plant;

� able to provide results with a reasonable time of computation

and

� suitable to retrieve on-line risk assessment using data reported

in real time from the field.

The choice of the DFT technique as an instrument for the risk

assessment met the first and the second requirement, due to the

intuitiveness and the power of the modeling approach.

In this paper, the stochastic analytical techniques to solve DFT

were discussed with reference to the presence of repeated events

and generalized probability distribution function, enlarging the

usual domain of application of DFT models often restricted within

the Markov domain.

Therefore, the first result highlighted a breakdown for the

classification of industrial FT; the scheme was used to study the

suitability of three of the most known automated tools for DFT

models [13,42,43] and classify these software applications

according to their capabilities and limits.

An adapted hierarchical technique for DFT, based on an exact

(strong) and approximated (weak) approach, was experimented

in order to improve the performances of the previous tools. This

offered the clue for a second result that revealed what kind of

approximations are carried by the weak approach (that works in

the scope of the continuous time Markov chain) and what class of

DFT the strong hierarchy turns in semi-Markov processes.

After these results, we could claim that the power of the DFT is

not exploited fully because no precise procedures of resolution

exist and the ordinary reliability tools for DFT are neither

satisfactory nor easy to handle.

In this context, we suggested the possibility to develop ad-hoc

simulative models to use at least as benchmarks for other

analytical evaluations. Therefore, the other contribution of this

research was to show how to implement a simulative environ-

ment with a commercial spreadsheet [44], as it is a well-known

software adopted in many business companies.

The solution seems valuable since the spreadsheet environ-

ment carries the following interesting characteristics:

1) produced files are easy to distribute and improve the informa-

tion, sharing among the risk analysts, the managers and

employers who are involved in the risk evaluations;

2) Wysiwyg property of the spreadsheet allows access simulta-

neously to the logics and the results of the DFT, favoring the

understanding of the process, which is an added value of the

risk analysis;

3) dynamic model can be customized to build up the most known

dynamic gates, design other kind of dependencies logics and

implement several other means, like the importance measures

and

4) it can be integrated with the DCS in force of the plant in order

to process data in real time and retrieve fresh information on

the real state of the system.

In this work, we showed how to prepare the master cells

of the spreadsheet environment, which embed the generalized

Fig. 12. (a) Strong and (b) weak hierarchy representation for the model of Fig. 3.

Table 10

Resolution tools for each kind of DFT model.

MOE-DFT UnMOE-DFT

ExpD

Simulative application TOOL_2

Simulative application

TOOL_1 (if strong hierarchy is permitted)

GD

Simulative application Simulative application
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distributions for any BE and the logic of the most used dynamic

gates of a DFT; afterwards, they were used to construct a

complete model, with quite complex dependencies.

Thanks to the framework developed for the case of study, we

recognized the existence of singular results when the BEs of the

plant are not described by the common exponential distributions.

In our opinion, these results offer the cue for new studies since

the characteristics of the components and processes inside the

industrial field can be quite general.

Following this path, in future works, we aim to develop a more

flexible and faster simulative environment able to merge the

intuitiveness of the DFT representation with the power of the

simulative approach and able to support data in real time. Finally,

we want to emphasize that quantitative risk assessment, based on

any technique, is not significant without an accurate identifica-

tion of hazards and assessment of scenarios and of their root

causes. However, the results provided by quantitative risk assess-

ment are normally used by the supervisory authorities to assess

the safety of facilities and therefore it becomes important to

provide results that take into account the actual system and its

operating modes. In addition, these results may be useful to the

plant manager in order to assess the effectiveness of technical

solutions that affect the reliability and the safety of the plant.

Appendix

Simulated¼unreliability of the DFT (performed with the

simulated process);

Analytic¼unreliability of the DFT (performed with TOOL_2

and TOOL_1 using the strong hierarchical approach); a¼
significance level (Figs. A1 and A2).
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Abstract 

With the aim of a more effective representation of reliability assessment for real industry, in the last years concepts like Dynamic 

Fault Trees (DFT) have gained the interest of many researchers and engineers (dealing with problems concerning safety 

management, design and development of new products, decision analysis and project management, maintenance of industrial plant, 

etc.). With the increased computational power of modern calculators is possible to achieve results with low modeling efforts and 

calculating time. Supported by the strong mathematical basis of state space models, the DFT technique has increased its popularity. 

Nevertheless, DFT analysis of real application has been more likely based on a specific case to case resolution procedure that often 

requires a great effort in terms of modeling by the human operator. Moreover, limitations like the state space explosion for increasing 

number of components, the constrain of using exponential distribution for all kind of basic events constituting any analyzed system 

and the ineffectiveness of modularization for DFT which exhibit dynamic gates at top levels without incurring in calculation and 

methodological errors are faces of these methodologies. In this paper we present a high level modeling framework that exceeds all 

these limitations, based on Monte Carlo simulation. It makes use of traditional DFT systemic modeling procedure and by replicating 

the true casual nature of the system can produce relevant results with low effort in term of modeling and computational time. A 

Simulink library that integrates Monte Carlo and FT methodologies for the calculation of DFT reliability has been developed, 

revealing new insights about the meaning of spare gates.  

 
Keywords: Reliability Assessment, Dynamic Fault Tree, Monte Carlo Simulation, Continuous Time Markov Chain 

              

1. Introduction 

In recent years the importance of risk assessment in the safety context of industrial processes has increased 

significantly. On the one hand, companies must provide, even more than before, guarantees about the 

occurrence of significant risks and adopt preventive measures and mitigation of their occurrence, while one 

the other side, engineers need to predict the reliability of the system from the design phase, especially for 

critical applications. The systemic reliability representation of the plant process, the quantitative results and 

sensitivity analysis are straightforwardly obtained using stochastic models such as Reliability Block Diagram 

(RBD) and Fault Tree Analysis (FTA). These methods have gained wide acceptance for the study of 

reliability for many kind of plants and systems.  

A fault-tree (FT) can be simply described as an analytical technique, whereby an undesirable state of the 

system is specified; the system is then analysed in the context of its environment and operation in order to 

find all credible ways in which the undesirable event can occur [1]. Although there are relatively efficient 

algorithms for solving FTs, the main disadvantage is that dependencies of various kinds, which are in real 

systems, are not easily captured in the model. Indeed, traditional FT cannot capture the dynamic behaviour of 

a system such as the sequence of events in time dependence, the replacement of spare parts and priorities of 

failure events [2, 3, 4, 5].  

To overcome these difficulties, dynamic-FT (DFT) was introduced, with the formalization of dynamic gates 

(PAND, SPARE, SEQ and FDEP). With the help of dynamic gates, the reliability behaviour of systems with 

time dependencies can be modelled using the DFT technique, keeping the intuitive construction of traditional 

FT.  

DFT resolution cannot rely just on Boolean algebra as well as traditional-FT because dynamic features are 

not captured with a binary time independent logic. Therefore, beside DFT many other methods have been 

devised: Dynamic Reliability Block Diagram (DRBD), Continuous Time Markov Chain (CTMC), 

Input/Output Interactive Markov Chain (I/O IMC), Bayesian Network, Stochastic Petri Network, etc. [6, 7, 8, 

9, 10, 11, 12, 13]. 

The complexity of modern engineering system as well as the need for realistic reliability makes their 

modelling and analysis a non trivial task. The analytical resolution of systems with dynamic redundancy is 

very difficult to accomplish. Therefore risk analysts require the use of other techniques in order to construct 
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a comprehensive but achievable and efficient study of the system. The simulation of DFTs can help to 

overcome many of the difficulties raising from analytical approaches and can offer a high level modelling 

interface based on the FT methodology. Scenarios that may be difficult to solve analytically are easily 

resolved with the approach of Monte Carlo simulation. Due to the intrinsic ability to simulate the actual 

process and the random behaviour of the system, this approach can eliminate uncertainty of the reliability 

modelling. It has been used for the availability, reliability and important measure estimation of complex 

systems [14, 15, 16, 17, 18, 19]. 

In this paper we present a novel approach to conduct Monte Carlo simulation for the reliability evaluation  of 

DFTs. In our approach Monte Carlo and FT methodologies are integrated in order to allow the user to benefit 

of an high level FT-like interface that exploits the power of Monte Carlo simulation to overcome many of the 

difficulties raising from the use of analytical resolution methods. A library object, MatCarloRe, based on 

Simulink was created. Using the graphical interface of the Matlab simulator, it is possible to construct a DFT 

model of the process by using the library blocks. Each block carries the logic of a DFT gate. The Monte 

Carlo engine is based on the collection of the outputs of many runs and their agglomerate to construct 

significant statistics of interest. 

The results of a case study based on the probabilistic assessment of the reliability of an alkylation and 

treatment olefin plant node were evaluated. Three commons problem of analytical methods (e.g. CTMC) are 

discussed: a) the state explosion; b) the impossibility of CTMC to evaluate the reliability of the system when 

basic events with fixed probability are considered; and c) the impossibility of modularization of the tree in 

independent sub-trees without incurring in approximation due to a dynamic gate at the TE. 

After presenting the validation of the MatCarloRe tool, based on simple cases, it is shown the resolution of 

the case study in three different configurations: i) static configuration (FT); ii) dynamic configuration (DFT); 

and iii) dynamic configuration with the introduction of fixed probability basic events. As it is known the first 

two modelling case can be compared with analytical values calculated by use of combinatorial and CTMC 

methodologies, while the last case is solved only through the use of the simulation tool. 

Section 2 presents an overview on the main limits of analytical methods; Section 3 make a comparison 

between traditional Monte Carlo reliability simulation and our approach; Section 4 introduce in more detail 

the MatCarloRe tool, its object library, and some validating example; in Section 5 is presented the results of 

the case study; and in section 6 conclusions are reported. 

2. Analytical reliability evaluation for DFT 

A fault tree is a stochastic model for reliability evaluation based on the Boolean algebra. It can synthesize the 

ways of failures or the undesired events of a system. It is composed of entities known as "gates" which 

implement the Boolean relationships among the events, leading to the occurrence of “higher” events up to 

the tree. The inputs of the gates can be other gates or basic events (BE); the main undesired event is called 

the top event (TE) of the tree . The methodology is based on three assumptions: (i) the events are binary, (ii) 

the events are statistically independent, and (iii) the relationships between events are described with the 

Boolean logic through the gates (AND, OR and Voting ). 

The main constrains of traditional FTs is that dynamic time dependencies cannot be modelled and complex 

system behaviour evaluated. DFTs were introduced to overtake these limitations: it is an evolution of 

traditional FT, in which dynamic gates are added. In particular if a FT includes at least one dynamic gate it 

becomes a dynamic-FT. 

The most likely method used to solve a DFT is through the use of CTMC. They are indeed effective in 

representing various types of dependencies. The main problem of this methodology is the well known state 

space explosion which grows exponentially with the increasing of the number of Bes in the model. 

Moreover, the analysis of large DFT by the mean of CTMC can be costly in computational terms and in 

terms of modelling efforts. 

Modularization is one way to tackle the analysis of large FT. For traditional FT, a module is simply a sub-

tree which events do not occur in other parts of the tree. This technique intends to break down large models 

with a hierarchy of sub-models, characterized by independent failure modes. The sub-models are then 

analyzed in order to extract the measures of interest which are used as input as a simplified version of the 

sub-tree at the higher level of the hierarchy. The main point of this technique is the sintering of the 

equivalent failure rates to use in the simplified parent tree [20, 21, 22]. Dugan et al. [23, 24, 25] have shown 

that it is possible to identify sub-trees and use several independent Markov chains for each of 

them. However, this approach has limitations when dynamic gates are present at high levels of the 



hierarchy. In fact, the modularization of dynamic sub-trees introduces errors due to the generalized 

probability distributions that, in the composed model, is still treated as negative exponential distribution [26, 

27]. Other ordering methods aim to reduce the complexity of the CTMC by lumping and condensate chain 

states. However, this requires the construction of the entire chain and the subsequent ranking and 

aggregation, not solving the tedious problem of modelling the full chain [28, 29, 30]. 

Another of the limitations resulting from the use of CTMC is the need to use a negative exponential 

distributions for each basic event considered. This is often simplistic in terms of modelling because events or 

components are often characterized by other distribution probabilities.  

We therefore emphasize that many of the methods to solve the DFT are related to specific problems and can 

be difficult to generalize for all scenarios. 

3. Reliability Monte Carlo simulation for DFT 

Simulation programs, especially if well structured, are in general very comprehensible and known for the 

ease with which modifications and additions can be made. Perhaps their main benefit arises from the fact that 

it is possible to output information about sub-systems and gain more understanding of the whole system [31]. 

Monte Carlo simulation is a valuable method which is widely used in solving real problems in many 

engineering fields. It has been used by [32, 33] for the study of system reliability, based on the well-

developed neutron transport ideas. The simulation technique allows the estimation of reliability indices by 

simulating the actual process and random behaviour of the system through a computer model. This model 

has to be able the realistic scenario of the system lifetime.  

Monte Carlo simulation is implemented by running the model a large number of times, each representing an 

ensemble of random walks within the discrete phase space of system configurations, in order to generate a 

large number instances from which all the reliability indices required about the system are retrieved. 

As the system is composed of many components (or elements) grouped together to perform a certain 

function, the system modelling begins with the identification of the components of which the system is 

composed. Let us denote by  the possible states in which the i-th component of the system may be. In the 

simplest case  may have two possible states: one is the "up" or "active and functioning" state; the other is 

the "down" or "failed" state. The state of the system can be described by a vector : 

,          (1) 

where  represents the number of components of the system. When a component changes its state, a new 

point in phase space is reached. Some of this point are of failure for the whole system. While in static-FT 

certain combination of component failures correspond to system failure, in DFTs the same state can be either 

a failure state or a good one, depending on the previous state sequence. Hence, in DFT it is not possible to 

define a system state a good one or a failed one without looking at the system evolution. Vector  changes 

with respect to time, so each simulation consist of a collection of state vectors representing the movement of 

the random walk within the phase space. Such history can be written as: 

,          (2) 

where  represents the simulation-run index,  the time of transition from state  to state  and  

represents the index of the ending simulation time. The point  represents a phase space point, while 

the collection of all such points is called the phase space of the system. This space is continuous in time and 

discrete in the states. The transitions among system states depend on the component transitions from the up 

state to the down one, according to a stochastic law (the probability density function) that characterizes the 

component behavior.  

The only information needed for the analysis are: a) the probability density function (pdf) of the time to 

failure of each component and their parameters values; b) the mission time of the system; and c) the system 

failure mode configuration. 

The most common way to conduct the simulation of a FT is to consider the system as a whole; previous 

literature [34, 35] consider a system failure rate as the sum of all the component failure rate and calculate the 

transition time to the new state. After that, the component which performs the transition is chosen in a 

stochastic manner. When the component is chosen its failure rate is set equal to zero and the process is 

repeated till the occurrence of the TE or the end of the mission. The system operability (i.e. the occurrence of 

the TE) is evaluated each time a transition occurs. Generally it is convenient to make use of the FT 



methodology to check the system operability each time it changes its state. The problem with this approach 

is that we must check the operability state of the system each time the system makes a transition; moreover it 

is needed to recalculate the system failure rate by imposing the failed component failure rate equal to zero. 

When considering DFTs we need to take into account the system evolution history in order to assess the 

nature of the reached state. Moreover in the case of components with different time distribution the 

traditional indirect Monte Carlo method [36], in which the transition time for the whole system is firstly 

sampled from the system transition time distribution and then the kind of transition is sampled, becomes 

impractical. 

A more straightforward method to account for time-dependent failure and repair behaviours of components 

is the direct Monte Carlo simulation [37]. It samples the time to failure of each BE instead of the overall 

system transition time.  

Following the idea of direct Monte Carlo, our simulation approach makes use simultaneously of the FT and 

the Monte Carlo methodologies. Instead of simulating the system walk in the phase space we consider BEs 

as basic entities. The failure time of each BE is calculated and these information are passed to the gates 

which they are connected with. The gate state is determined and, if failed, its failure time is passed to the 

higher levels. In this way for each gate is possible to calculate if a failure occurred before the mission time 

and pass the failure time to next level. These information are  important for the dynamic gates. Moreover 

many simulation data can be stored in a very straightforward way: for each gate we can obtain the failure 

number of occurrences, the mean time to failure and information about which connected subsystem forced 

mostly the failure of the gate.  

The approach followed is very suitable for dynamic gates since the failing order is tracked. Therefore, in this 

way it is not necessary to store the previous system states and check the order of occurrence to asses whether 

a state is of failure or good. 

The complexity of the algorithm is carried by each single gate, whose logic is programmed in order to infer 

its own state. For the same reason, with this approach there is no need to update the overall system failure 

rate at each transition.  

Generated all the transition times of each component, the failure time for each gate can be calculated based 

on the logic of the gate itself with respect to its inputs. At the highest level information about the system state 

are available and used to compute the system reliability estimate. 

Due to the nature of the approach, it would be straightforward to program or modify the logic of the gates in 

a modular way, without compromising the environment already set. In this way, the end user can just make 

full use of the gates created by the programmers and exploit with some small knowledge of Simulink the 

power of the library.  

4. MatCarloRe library 

 

The simulation tool implemented make use of a high level modeling interface: it allows the user to assemble 

the FT by picking basic events and gates from a library and dropping these elements on a graphical interface 

furnished by Simulink®. BEs and gates are then linked together to create the system configuration. The tool 

consists of a Simulink® library called MatCarloRe (Fig. 1), formed of blocks representing the various parts 

of DFT, such as the dynamic gates PAND, SPARE, SEQ and FDEP as well as the static gates AND, OR and 

Voting. In addition to the gates it is necessary to insert a block that calculates the failure times of BEs. Each 

block representing a tree gate can receive n input and distribute m output by simply using the mux and demux 

blocks available in the main Simulink library. Inputs and outputs are of two kind: we define y as the binary 

vector which indicates whether the input and output have occurred (value 1) or not (value 0), and t as the 

vector containing the failure times. Only for the block representing the SPARE and the FDEP gates is not 

provided the input vector y. 

Once the model is built and the input parameters are defined it is possible to run the simulation without a 

limit of iterations to achieve the desiderate estimation error. At each iteration the model returns a binary 

value that indicates whether the system has reached the state of failure or not. In particular, the model returns 

the value 1 if the fault is reached, 0 vice versa. To avoid large amounts of storage of the entire iterations 

binary vector the Simulink® block memory is used to set the progressive sum of results of each iteration. In 

this way only the total value of runs that revealed a fault is considered. The estimated unreliability of the 

system can be finally obtained dividing the number of runs which had shown the system failure by the total 

number of runs performed. 



In the next section it is shown with small examples how to build a simulation model for a DFT introducing in 

more details the BE block and the dynamic gates. In order to proof the validity of the tool the results 

performed with the MatCarloRe are compared with analytical results. 

Fig.1. MatCarloRe library elements.  

4.1 BE block 

The BE block is designed to generate the times of failure of basic events. It can generate the times of failure 

for components with negative exponential failure distribution (e.g. components subject to random failures) as 

well as fixed probability (e.g. the non-action of an operator). It is worth to mention the possibility to define 

events that follow distributions of any kind, such as Weibull, Normal distribution etc. simply by making 

small changes to the code in the BE block. 

For components subjected to random failures the unreliability at time t can be expressed by the following 

relation: 

,           (3) 

where  is the failure rate of the component. The simulated failure time can be calculated by the inverse 

relationship: 

 ,           (4) 

where  is a random number generated in [0, 1]. If  is smaller than the mission time , the component is 

considered as failed.  

For events supplied with a fixed probability q the following procedure is defined: a random number  

generated uniformly in [0, 1] is extracted and compare with the value q. This comparison returns a failure 

time according to the following relation: 

,         (5) 

where  is a random number generated uniformly in . 

4.2 PAND Block 

The PAND block models the logic that underlies the PAND gate of a DFT [10, 14, 23]. The logic of the gate 

can be summarized as follows: the occurrence of the gate is obtained if all input components have failed 

before the mission time but in a fixed order (i.e. from left to right in the graphical representation). The block 

logic is illustrated in the flowchart in Fig. 2. First, according to the vector y, it is verified if all the input 

events occurred. If this condition is not satisfied the gate does not trigger. Otherwise the following conditions 

are checked:  for  with , where  is the gate number of inputs. If such control 

over failure times is satisfied the gate triggers with a time to failure equal to the maximum failure time of its 

inputs. 

Fig. 2. Flow Chart of the PAND Block. 

To test the validity of the block to perform the requested calculation we show the results of the following 

example. A PAND gate with two basic events is considered. The basic event failure rates are  for the 

first component from the left and  for the second one. The mission time is . In Fig. 3 is 

shown the model built for the simulation with the MatCarloRe tool. It is possible to see the BE block which 

takes as inputs the failure rates of the two components and the mission time of the system. The output of the 

block is the time to failure of the two components (i.e. vector t) and the binary vector y which indicates 

whether the time to failure of the components is smaller than the mission time. These vectors are given as 

input to the PAND block. The output scalar yPAND of the PAND block is passed to a progressive sum and at 

the end of all the iterations the result is stored by the block TE into the Matlab® Workspace. 

Fig. 3. Simulation model of a PAND gate with two basic event with failure rate  and mission time . 



The simulated reliability versus the analytical one calculated by the mean of the associated CTMC are shown 

in Figure 4. Iteration are chosen equal to  with It is evident that for a large number of 

iterations (of five magnitude order) the error is very low and acceptable. 

Fig. 4. Simulated Vs analytical reliability of a PAND gate with two basic event with failure rate  and mission time 

. Iteration are chosen equal to  with  Dotted line: analytical result; marked line: simulated results. 

4.3 SPARE Block 

The SPARE block models the logic that underlies the SPARE gate of a DFT [10, 14]. It can be summarized 

as follow: given n active components, if one of them fails it can be replaced by one of the ns spare parts. The 

spare parts can fail under two conditions: either because of a failure when in latent state or because of a 

failure after becoming active. The spare becomes active when it replaces a failed active component or a 

failed active spare. The failure of the gate occurs when the number of surviving components is less than the 

number of required components which depends on the logic of the gate (usually it is assumed equal to the 

initial active components number). The block can, therefore, model the logic of cold stand-by (i.e. spare parts 

cannot fail during the latent time) or warm/hot stand-by (i.e. when it is possible for a spare to fail even if not 

running; usually with a lower failure rate). 

The block logic is illustrated in the flowchart in Figure 5. Firstly it is needed to compute the time to failure of 

the components by the BE block. This is done for active components as well as for spare ones (both when 

active and in latent state). The SPARE block performs a permutation of the vector t, the time to failure of 

active components, sorting the vector in ascending order. Then, it is examined among active components 

whether there are components which have failed before the end of the mission time. If no failure is verified 

the gate will not trigger.  

Vice versa, the algorithm checks if there are spare parts able to replace the active component that have 

failed. Let us consider the logic of replacement of a generic active component which fails. Its replacement 

can take place only if: 

1. the spare part is still available (namely, it has not been used to replace another failed component) and; 

2. the time to failure of the spare (during its latent condition) is greater than the time to failure of the active 

component to be replaced. 

If these two conditions are not satisfied by any spare the gate triggers with a time of occurrence equal to the 

last failed active component. Otherwise the block updates the time to failure of the active component by 

adding the time to failure (when active) of the spare component chosen for the replacement. The substituting 

spare is finally declared as busy. The search for active components applicants for replacement is repeated till 

there are active components with failure time smaller than the mission time.  

It is worth to highlight that the order in which the spares are chosen to replace the failed component follows 

the graphical order of positioning defined into the spare (e.g. in case of two spares that can replace an active 

failed component, it is chosen to replace the component with the spare that graphically is placed to the left).  

This block offers many advantages in terms of modelling. Many reliability tools (Relex, Galileo [9]) are, in 

fact, difficult about the construction of DFT whit SPARE gates: if a spare part is shared among more 

components, the DFT will have as many SPARE gates as the number of active components which share the 

spare. In this way, the first input of the generic SPARE gate is the active component, while the second input 

is the shared spare part, common to all the set of SPARE gates drawn. The final logic implemented by the set 

of SPARE gates is realized linking them together by an OR gate in the upper level (Figure 5). 

Fig. 5. Illustration of SPARE gates modelling vantages introduced by the tool; case of common shared spare. Left: Relex model; 

right: MatCarloRe model.  

Another situation is redundancy in the active components (i.e. not all the active components are requested for 

the system to work). In this case an AND gate is placed to the upper level (Figure 6). If the number of active 

components is even greater than the presented examples in the previous figures the modelling activity is even 

more complex involving the use of AND and OR gates in the tree structure. Therefore what the SPARE gate 

of the MatCarloRe library is able to do is to bypass all these architectural tricks, by the simple use of a single 

block called SPARE_k/N, where k is the number of components requested to work and N is the number of 

initial active components (Figure 6). 

Fig. 6. Illustration of SPARE gates modelling vantages introduced by the tool; case of redundancy in active components. Left: Relex 

model; right: MatCarloRe model. 



The differences in the flow chart between the two SPARE gates considered are located in the first rhombus 

of the chart in Figure 7 where it is needed to consider the N-k failures allowed for the system to work. 

Fig. 7. Flow Chart of the SPARE Block. 

To test the validity of the two blocks SPARE and SPARE_k/N the results of two simple example are shown. 

The system is composed of two active and two spare components with failure rate . The latency 

factor for the spare components is  and the mission time is . Figures 8 and 10 show the 

models built with the MatCarloRe tool in the two different cases. The simulation models are equal in both 

cases except that the number of components needed for the system to work in the second example are 

defined  by nreq.  

The BE block takes as inputs the failure rates of the two active components, the failure rate of the spare 

components when in latent state and when active and the mission time of the system. It returns as output the 

time to failure of the two active components stored in the vector t. The time to failure of spare parts when in 

latent state and when active are given respectively in the vectors tl and ts. Vectors t, tl and ts and the mission 

time  are the input of the SPARE block. The output ySPARE, taken over repeated iterations, is then used 

to compute reliability value. 

Fig. 8. Simulation model of a SPARE gate with two active components with failure rate , two spare components with failure 

rates , latency factor   and mission time . 

In Figure 9 is shown the simulated reliability versus the analytical calculated by the mean of the associated 

CTMC. Iteration are chosen equal to  with  It is evident that for iteration of order  the 

error of prediction is very low and acceptable. 

Fig. 9. Simulated Vs analytical reliability of a SPARE gate with two active components with failure rate , two spare 

components with failure rates , latency factor   and mission time . Iteration are chosen equal to  with 

 Dotted line: analytical result; marked line: simulated results. 

Fig. 10. Simulation model of a SPARE_k/N gate with two active components with failure rate , two spare components with 

failure rates , latency factor   and mission time ; nreq = 1. 

The results of the simulation of the k/N model are shown in Figure 11. Again for iteration of order  the 

simulated reliability is very close to the CTMC results. 

Fig. 11. Simulated Vs analytical reliability of a SPARE k/N gate with two active components with failure rate , two spare 

components with failure rates , latency factor   and mission time ; nreq = 1. Iteration are chosen equal to  

with  Dotted line: analytical result; marked line: simulated results. 

4.4 SEQ Block 

The feature of the SEQ gate is to force the components - inputs of the gate – to move towards the state of 

failure in a fixed order [10, 14, 23]. This order is usually expressed graphically by the position of the gate 

inputs, from left to right. It is generally used to represent different levels of degradation of a 

component. Therefore, a condition for the gate to trigger is the occurrence of all its inputs. The algorithm 

used for this task is simple: the SEQ block firstly calculates the sum S of the time to failure of all its inputs. 

If S is smaller than the mission time the gate triggers with a time to failure equal to S. 

 

4.5 FDEP Block 

The FDEP block models the FDEP gate of a DFT [10, 14, 23]. The feature of this gate is to force the input 

components to reach the failure state if the trigger event has occurred before they fail by themselves. The 

block checks if the failure time of each input component is smaller than the trigger failure time. If the 

condition is true the component will fail with its own failure time. Vice versa the component will occur with 

failure time equal to the trigger failure time.  

In the construction of a model with a FDEP, each component subjected to the action of the trigger is firstly 

connected to the FDEP gate and then the output of the latter is passed to the gate interested by the given 

component. We do not show the flow chart due to the simplicity of the task performed by the block. 

Likewise we do show any example for the FDEP block due its similarity with an OR gate between the trigger 

event and any of the basic event of the gate. 



5. Study Case 

In this section we present a case of study of a real complex system, in order to demonstrate the effectiveness 

of the simulation tool to calculate the reliability of such systems. The case of study represents the FT model 

of a plant section for the alkylation and treatment of light olefin. Following the top-down procedure of the 

FT analysis, the tree was designed. The static-tree structure is shown in Figure 12 and Table 1 reports the 

component failure rates. 

Beside that model, the DFT was designed in order to consider a more realistic safety behavior that the plant 

exposes. The dynamic re-arrangement considered concerns the modeling of the gates IE1, IE8 and of the TE. 

In fact, in the static modeling they are represented with the traditional AND gates. That results in an 

approximate evaluation of the logic for the real system, since time dependencies cannot be considered with 

the static-FT. In the DFT, the gate IE8 was substituted with a SPARE gate as in a classic cold stand-by 

redundant configuration. The second re-arrangement is done by substituting IE1 with a PAND, in order to 

consider the priority condition that IE3 has on IE4. The same process is applied at the TE gate. 

Fig. 12. FT of the section plant considered. 

Table 1. Input data for basic events of the FT of Fig. 10. 

Therefore, three cases were studied: (i) simulation of the static-FT, (ii) simulation of the DFT without fixed 

probabilities by substituting  with the relative failure rate calculated through (3) (i.e. assuming the value of 

F equal to q and calculating the failure rate trough inverse relationship); (iii) the simulation of the DFT with 

the original parameters of Table 1.  

The analytical resolution of these three cases expose different levels of complexity. In fact, the case (i) is the 

simplest because no time dependencies arise and traditional techniques, based on the Boolean algebra, can be 

used. Case (ii) introduces two kind of dynamic gates. One of them is placed at the TE. It makes impossible 

the use of techniques to relax the complexity of the model (e.g. modularization [20, 21, 22, 23, 24, 25]) 

without incurring in approximated calculation. The case (iii) can be classified as the most complex since it 

cannot be solved with the use of the traditional CTMC paradigm due to the presence of fixed probabilities. 

For this last case no analytical result are presented. The model of the case (iii) implemented in the 

MatCarloRe tool is shown in Figure 13. 

Fig. 13. MatCarloRe model of the DFT of Fig. 10. Case (iii).  

We conducted eight simulation for each case. The number of iterations were chosen till the maximum value 

of . For cases (i) and (ii) analytical results were computed through Relex®. The unreliability of the 

simulation model converges to the analytical result with  iterations in the case (i) with a very small 

relative error. In the case (ii) more iterations are needed to obtain valid results because of the more complex 

nature of the system involving temporal dependencies. About iterations to achieve a small estimating 

error. In the case (iii) we claim that the number of iterations needed to achieve a small error in case (ii) could 

be used as well. This is supported by the fact that the unreliability seems to stabilize around  iterations. 

Table 2. Unreliability and relative error for the model MatCarloRe of the FT in Fig. 10. Case(i): SFT with fixed probability for BE1 

and BE3; Case(ii): DFT with failure rate for  BE1 and BE3; Case(iii): DFT with fixed probability for BE1 and BE3. 

6. Conclusion 

In this paper we summarize an integrating technique of Monte Carlo simulation and FT methodology for 

reliability assessment of complex systems in presence of time dependencies. We showed that our simulating 

environment can go beyond the limitations of analytical methodologies with the additional advantage of a 

high level modelling interface based on the FT method. Some results are presented reporting good 

performance in terms of modeling and calculation efforts. Moreover important contributions for the SPARE 

model are introduced, reducing the efforts of the construction of  a complex FT. It is shown that for iteration 

of order  it is possible to obtain reliable results for real system in a time frame of 1-10 hours. 

Reducing computation time technique are well developed (e.g. biasing techniques) and could be easily 

introduced in the MatCarloRe tool. In the future our effort will be pushed in the development of tool 

characteristics for the calculation of important measures, availability and system performance indicators. 
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Fig. 1. MatCarloRe library elements. 
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Fig. 3. Simulation model of a PAND gate with two basic event with failure rate  and mission time . 
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Fig. 4. Simulated Vs analytical reliability of a PAND gate with two basic event with failure rate  and mission time 
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Fig. 5. Illustration of SPARE gates modelling vantages introduced by the tool; case of common shared spare. Left: Relex model; 

right: MatCarloRe model.  

 

 
Fig. 6. Illustration of SPARE gates modelling vantages introduced by the tool; case of redundancy in active components. Left: Relex 

model; right: MatCarloRe model.  
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Fig. 7. Flow Chart of the SPARE Block. 

 

 
Fig. 8. Simulation model of a SPARE gate with two active components with failure rate , two spare components with failure 

rates , latency factor   and mission time . 
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Fig. 9. Simulated Vs analytical reliability of a SPARE gate with two active components with failure rate , two spare 

components with failure rates , latency factor   and mission time . Iteration are chosen equal to  with 

 Dotted line: analytical result; marked line: simulated results. 

 

 
Fig. 10. Simulation model of a SPARE_k/N gate with two active components with failure rate , two spare components with 

failure rates , latency factor   and mission time ; nreq = 1. 

 

 
Fig. 11. Simulated Vs analytical reliability of a SPARE k/N gate with two active components with failure rate , two spare 

components with failure rates , latency factor   and mission time ; nreq = 1. Iteration are chosen equal to  

with  Dotted line: analytical result; marked line: simulated results. 

 



 

Fig. 12. FT of the section plant considered. 

 

 
Fig. 13. MatCarloRe model of the DFT of Fig. 12. Case (iii). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



List of tables 

 

ID λ q 

BE1 -  

BE2  - 

BE3 -  

BE4  - 

BE5  - 

BE6  - 

BE7  - 

BE8  - 

BE9  - 

BE10  - 

BE11  - 

BE12  - 

Table 1. Input data for basic events of the FT of Fig. 12 

 

 

Iter Case (i) Err.rel% Case (ii) Err.rel% Case (iii) 

10^1 0,7000 9,45% 0 100,00% 0 

10^2 0,8000 3,48% 0 100,00% 0 

10^3 0,7730 0,01% 0 100,00% 0 

10^4 0,7717 0,18% 1,00E-04 88,39% 0 

10^5 0,7734 0,04% 6,00E-05 13,03% 3,00E-05 

10^6 0,7733 0,02% 6,20E-05 16,80% 4,40E-05 

10^7 0,7732 0,02% 5,58E-05 5,12% 5,49E-05 

10^8 0,7731 0,00% 5,36E-05 0,98% 5,45E-05 

Fteo 0,7731  5,31E-05   

Table 2. Unreliability and relative error for the model MatCarloRe of the FT in Fig. 12. Case(i): SFT with fixed probability for BE1 

and BE3; Case(ii): DFT with failure rate for  BE1 and BE3; Case(iii): DFT with fixed probability for BE1 and BE3. 
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Abstract. In this paper we study the effects on system reliability of the 

correlation over partitions of the input space between the rates of failure of two-

channel fault-tolerant control software. We use a continuous-time semi-Markov 

model to describe the behavior of the system switching between different 

modes of operations (i.e. processing inputs from the different partitions of the 

input space). We demonstrate via simulation that the variation of the failure 

rates of the channels over the partitions of the input space can affect the system 

reliability very significantly. With a plausible range of model parameters we 

observed that the mean time to system failure may vary by more than an order 

of magnitude: positive correlation between the channel rates makes the system 

less reliable while negative correlation between the channel rates implies that 

the system is more reliable than assuming constant failure rates for the 

channels. The effects we report are similar to those observed for on-demand 

software systems. Our observations seem to make a case for more detailed 

reliability measurements than is typically undertaken in practice. We briefly 

discuss model parameter estimation applying the theory of competing risks. 

Finally we compare our model with similar models for a single channel 

software developed in the past by others and discuss ways forward.  

1. Motivation 

All systems need to be sufficiently reliable. There are two related issues here. In the 

first place there is the issue of achieving the necessary reliability. Secondly, there is 

the issue of assessing the reliability that has actually been achieved, to convince 

oneself that it is 'good enough'. 

In the light of the rather strict limitations to the levels of software reliability that 

can typically be achieved or claimed from observation of operational behavior of a 

single version program [1], fault tolerance via design diversity has been suggested as 

a way forward both for achieving higher levels of reliability, and for assisting in its 

assessment.  

Design diversity has been studied thoroughly in the past 30+ years. For a relatively 

recent study the reader is referred to [2]. The focus, however, has been primarily on 
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‘on demand’ systems, e.g. a protection system called upon when a failure is detected 

in the operation of the system controlling a plant.  

The focus of this paper is control software, i.e. which exercises control of an object 

of control and in the process executes a series of inputs (trajectories) coming directly 

from the controlled object, its environment and also the internal state of the software 

itself. Assessing accurately reliability of control software is important not only for 

minimizing the losses due to downtime. In some cases, e.g. of critical applications, 

the control software reliability defines reliability requirements for the protection 

system designed and deployed to deal with situations of inadequate control. A 

protection system of given reliability may be adequate in some cases – e.g. when the 

control system is very reliable – or may be inadequate – e.g. if the control system is of 

modest reliability. The reliability of the total system (control and protection) depends 

on both the reliability of the control and of the protection and therefore accurately 

assessing reliability of both systems is important. 

Our focus in this paper is a 2-channel control software for which the input space is 

divided in partitions, which represent different modes of operation. Examples of 

modes of operation might be an initialization, a normal control loop and terminating 

the control, e.g. to allow for maintenance. More refined scenario, e.g. as in robotics, 

might include a robot having to deal with different obstacles, which may require 

applying different algorithms of adaptive behavior to the current environment, etc. 

We address on purpose the problem at a sufficiently high level of abstraction – using 

a continuous time semi-Markov model – which will allow us to state the main result 

in a concise way. 

Continuous-time semi-Markov models are typically used to model the behavior of 

control software: the modeling assumptions and the model details depend on the 

specific aspects of interest. For instance, failure clustering is typical for control 

software [3]. Modeling such behavior is impossible with models assuming that 

successive inputs are drawn independently from the input space. Instead, models, in 

which the failure rate changes significantly after the occurrence of first failure proved 

to be useful [4].  

The paper is organized as follows. Section 2 states the problem. Section 3 presents 

the model and the main result. In section 4 we compare our model with a model 

developed in the past by Littlewood for a single channel software with modular 

structure. In section 5 we discuss our findings and some parameter estimation 

techniques. Section 6 offers a survey of the relevant literature. The conclusions and 

directions for future research are presented in section 7. 

2. The problem 

Consider a 2-channel control system as shown in Figure 1. During the operation of 

the system each of the channels can fail and so can the adjudicator. In this paper we 

concentrate on the case of an absolutely reliable adjudicator and study the reliability 

of the control system only. Once a failure of a channel is detected by the adjudicator 

an attempt is undertaken to ‘repair’ the failed channel, which eventually succeeds 

after time , during which time the other channel will either work correctly or will 
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also fail. Examples of repair envisage here are the typical backward/forward recovery 

mechanisms used in practice such as retrying the execution with a slightly perturbed 

data [3] or merely restarting the channel,.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A typical architecture of a 2-channel control system. At any time the actuators of 

the controlled object (e.g. a nuclear plant) are generated by one of the channels, while the 

second channel is available as a hot/cold standby. An adjudicator is responsible to detect 

anomalies of the active channel and switch to the standby channel, if such is available. The 

failed channel is ‘repaired’ which takes finite time and becomes available to take over control 

again. The channels are diverse – if design faults are considered – or merely redundant if only 

hardware related faults are considered. 

The channels are assumed to fail independently of each other: the chances of both 

channels failing simultaneously are, therefore, vanishingly small. The only source of 

coincident failure is the finite repair time  of the failed channel during which the 

second channel may also fail. We later will discuss relaxing the assumption of 

independent failure and discuss the model of a “common stress” that might cause 

simultaneous failure of both channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The timing diagram illustrates the events of interest and the times associated with 

them. The times, TAx, TBx and TABx, respectively, characterize the up times in the stochastic 

processes associated with the behavior of the individual channels and the control system. 
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We assume, further that the system’s input space is divided into partitions, 

identical for both channels. Each of these partitions is associated with rates of failure 

of the channels, respectively. These rates may vary across partitions and it is the 

nature of this variation – whether the rates of channel failure are positively or 

negatively correlated or not correlated (e.g. the rate of one of the channels does not 

vary over the partitions at all) – that the study is focused on. 

Figure 2 shows a typical timing diagram which illustrates the failure processes of 

interest. 

In this study we concentrate on the time to system failure (i.e. the times until both 

channels fail) starting from a state when both channels are operational. Clearly, the 

time to failure may include multiple cases of a single channel failure and successful 

repairs of the failed channel. 

3. Model of the system 

We studied the problem using the formalism of stochastic activity networks (SAN) 

and the tool support offered by the Möbius tool [5]. The results – the distribution of 

the time to system failure – are obtained via simulation.  

3.1. Diagrammatic representation of the model 

Now we defined the system model. Consider that the system can be represented as 

a stochastic activity network, in which there are several partitions as shown in Figure 

3. 

 

Figure 3. Model of a system operating on 4 partitions of the input space, subdomain1 – 

subdomain4. The syntax of the graphical representation is Möbius specific. Each of the 

partitions is a detailed representation of the states that the system (the two channels) might be 

in while in the respective partition. 

Figure 4 shows in detail the system behavior of the system in one of the partitions. 

The models of the other partitions are identical, but the parameters may differ. The 

system changes its state from both channels working correctly (OO) to states in which 

one of the channels has faied (OF or FO), from which it may either recover (i.e. return 

to OO) or instead the second channel may also fail (i.e. reach the state FF). While in 

OO state, the system may switch to a different partition: the other partitions are 

labeled S2, S3 S4, which are really labels for the OO states in the respective partitions 

(subdomain2, subdomain3 and subdomain4). One notices that in our model the 
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system cannot switch to a different partition unless both channels work correctly. This 

simplifying assumption seems plausible. In a typical scenario of a fast repair (e.g. a 

restart) and a relatively infrequent change of modes of operation, the chances that the 

system will have moved to a different partition are negligible. In some other cases, 

however, the transitions between the partitions may be fast and the simplification 

introduced in the model may be problematic. Relaxing this assumption, although 

possible, is beyond the scope of the paper.  

 

Figure 4. Detailed behavior of the 1-out-of-2 software in partition subdomain1. The model 

states are shown as places (nodes) OO, OF, FO and FF suitably named to indicate the state of 

the channels: both channels working correctly is represented by the place OO, …, both states 

having failed is represented by the place FF, respectively. The transitions between the places 

are characterized by a set of ‘stochastic activities’, e.g. a change of the system state from OO to 

FO is represented by the stochastic activity OOtoFO. A transition in the opposite direction (FO 

 OO) is represented by the stochastic activity FOtoOO. The place FF is absorbing, i.e. there 

are no outgoing transitions (activities) from it to some other places.  

3.2. Möbius model parameters 

The model is parameterized under a set of assumptions: 

- Failures of the channels are driven by independent Poisson processes, which 

are homogeneous conditional on sub-domains, but may be non-homogeneous 

across partitions. 

- Repairs of the channels are perfect, but not instantaneous. Repairs are only 

undertaken if there is a channel working correctly. 

Given these assumptions the model was parameterized as follows.  

- The transitions between the partitions (between the respective OO states, that 

is) are all assumed exponentially distributed with a rate of 0.3. The 
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uniformity of the rates here was chosen for convenience: we wanted to keep 

the channels equally reliable and be able to vary easily their rates of failure 

in partitions. Any difference, thus, in the system behavior observed between 

the studied cases could be attributed solely to the correlation between the 

failure rates in the partitions. This objective is easily achieved if the domains 

are equally likely, which in turn is achieved by setting the same transition 

rates between the OO states of the partitions. 

- The repair times were assumed of fixed duration, 0.01 units.  

- The failure rates in the partitions are chosen from the set {0.01, 0.02, 0.03} 

in such a way that the marginal rates of failure of the channels remain 

unchanged (0.02 given the partitions are equally likely,  0.25).  

The following cases (see Table 1) were studied, which represent different types 

of correlation between the failure rates of the channels over the partitions. 

Table 1. Failure rates of the channels conditional on partitions (S1-S4)
1

  S1 S2 S3 S4 

Channel 1 0.03 0.01 0.03 0.01 Experiment 1: ‘High’ Positive correlation 

between the rates. Channel 2 0.03 0.01 0.03 0.01 

Channel 1 0.03 0.01 0.03 0.01 Experiment 2: ‘High’ Negative correlation 

between the rates. Channel 2 0.01 0.03 0.01 0.03 

Channel 1 0.02 0.02 0.02 0.02 Experiment 3: Constant rates of both 

channels. Channel 2 0.02 0.02 0.02 0.02 

Channel 1 0.02 0.02 0.02 0.02 Experiment 4: Constant rate of channel 1. 

Channel 2 0.01 0.03 0.01 0.03 

Channel 1 0.01 0.02 0.03 0.02 Experiment 5: ‘Low’ positive correlation 

between the rates. Channel 2 0.01 0.02 0.03 0.02 

Channel 1 0.03 0.02 0.01 0.02 Experiment 6: ‘Low’ Negative correlation 

between the rates. Channel 2 0.01 0.02 0.03 0.02 

As one can see, a uniform profile on the set of partitions (P(S1) = P(S2) = P(S3) = 

P(S4) = 0.25) guarantees that the marginal rates of failure of the channels indeed 

remains the same – 0.02.  

3.3. Measure of interest 

The time to system failure was measured via simulation and the results are 

summarized in Table 2.  

Clearly, the mean time to system failure differs is significantly affected by the 

covariance between the failure rates.2. The greatest MTTF corresponds to Experiment 

2 with high negative correlation between the rates of failure of the channels. The other 

extreme – the shortest MTTF – corresponds to the case with high positive correlation 

between the conditional rates of failure of the channels. A constant rate of failure of at 

least one of the channels (Experiment 3 and Experiment 4) forms the ‘case in the 

middle’, while more modest correlations – either positive or negative – place the 

                                                           
1 S1 – S4 are shortcuts for subdomain1 – subdomain4, respectively. 
2 The MTTF of Experiment 3 and 4 are very close, but for these the covariance of the failure 

rates is 0, as for at least one of the channels the failure rates are constant over partitions. 
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respective cases between the ‘case in the middle’ and the respective cases with high 

correlation of the same sign. 

Table 2. Mean time to system failure 

 Mean 

 Value 95% Confidence interval Runs 

‘High’ Positive correlation 

between rates (Experiment 1) 

 

97,569.53 

 

+/- 2,000.9 

 

12,000 

‘High’ Negative correlation 

between rates (Experiment 2) 

 

157,353.8 

 

+/- 4,563.3 

 

5,000 

Constant rates of both channels 

(Experiment 3) 

 

122,060.4 

 

+/- 2,972.8 

 

8,000 

Constant rate of channel 1 

(Experiment 4) 

 

122,498.6 

 

+/- 2,996.9 

 

8,000 

‘Low’ positive correlation 

between rates  (Experiment 5) 

 

107,831.7 

 

+/- 2,426.1 

 

10,000 

‘Low’ Negative correlation 

between rates  (Experiment 6) 

 

137,377.9 

 

+/- 3,504.0 

 

7,000 

 We looked at the distributions associated with the experiments, which are 

presented in Figure 5. It turned out that the times to system failures are stochastically 

ordered: the ordering being the same as the ordering between the respective MTTFs 

(Table 2). Analyzing these distributions we established that in all 6 experiments they 

can be approximated very well using an exponential distribution with parameters 

equal to the reciprocal of the means defined in Table 2.  
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Figure 5. Distribution of the time to system failure, truncated after 500,000 time units of 

simulation.  

We scrutinized further, via simulation, how the distribution of the activities 

associated with failures of the channels will affect the distribution of the time to 
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system failure. While the activities modeling the transitions between sub-domains 

were left exponentially distributed with a rate of 0.3 and fixed repair times of 0.01 

were used, as before, we set the activities modeling the time to a channel failure to 

have Weibull and Gamma distributions with parameters which lead to non-constant 

hazard rate. The parameters were chosen in such a way that the transitions between 

the partitions remained significantly more frequent than the channel failures. The 

distributions of the activities did affect the time to system failure very significantly. 

The effect that we highlighted above, however, remained in place: negatively 

correlated rates would lead to longer times to system failure than constant rates, 

which in turn were longer than if the rates of failure of the channels were positively 

correlated. We observed that the MTTF may differ up to an order of magnitude 

between positively and negatively correlated rates. The time to system failure in all 

simulated cases remained exponential despite the significant differences in the rates. 

4. Littlewood’s semi-Markov model of software reliability 

Littlewood studied [6] systems with modular structure. The structures he 

considered were defined by the software modules (functions, procedures, etc.) of 

which the software consists. He assumed that the failures of the software can happen 

within a module or during the invocation of a module by another module.  

Littlewood’s reasoning is based on three essential assumptions: 

- the underlying stochastic process describing the software behavior is semi-

Markov. The time that software spends in a module (the sojourn time) can 

have an arbitrary distribution, but the transition probabilities between the 

modules are constant.  

- while occupying a module the program may fail randomly with a constant 

failure rate. 

- the transition probabilities between the modules are significantly greater 

than the rates of failure (either within the module or during the module 

invocation). Otherwise the software would have been, Littlewood argues, 

very unreliable. 

Under these assumptions Littlewood proved analytically that the failure process 

will be a Poisson process. Its parameter can be computed from the steady-state 

probabilities of the embedded Markov chain (after eliminating the failure state, which 

in his description was absorbing), the mean times the program spends in a module and 

the small failure rates. 

How does the model described by Littlewood differ from the one used by us to 

model the behaviour of a 2-channel control system?  

The first assumption by Littlewood is clearly sufficiently general to apply to our 

model too. Our model is a model of a semi-Markov process, too. Although we 

describe the model in terms of transitions between the partitions and ignore the 

internal structure of the software (functions, procedures, etc.) the model is 

conceptually very similar: there are states represented by the partitions and transitions 

between these states. In each state our model is strictly a model of competing risks – 

the shortest activity defines the next system state. However, one can easily transform 
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the competing risk model with states to a semi-Markov process. Indeed, one can 

directly express the sojourn time as a function of the distributions chosen for the 

activities [7]. The marginal probabilities that the random variable representing a 

particular competing risk will be the shortest one can easily be derived, too (see the 

Appendix for details). These probabilities will form the transition probabilities for the 

embedded Markov chain associated with the semi-Markov model. In summary, the 

first assumption of the Littlewood theorem is satisfied.  

The second assumption, however, is not always satisfied. For exponentially 

distributed activities representing the channel failure, the assumption is satisfied, but 

for Weibull and Gamma distributed activities – it is not. Thus, our model formally 

violates the second assumption made by Littlewood, that failures occur randomly. 

The third assumption made by Littlewood is also plausible in our case: as evident 

from the used parameterization, the transition probabilities to all non-absorbing states 

are significantly more frequent (including the repair) than the transition to the 

absorbing state of failure of both channels3.  

Despite the violation of the second assumption made by Littlewood, his asymptotic 

result seems to apply: asymptotically the time to system failure is exponentially 

distributed. It is outside the scope of this paper to offer an analytic explanation why 

this is the case, a problem worth addressing in the future. 

5. Discussion 

The effect reported in this paper, that the correlation of failure rates over partitions 

of the input space matters, is not surprising. Similar effects, that variation of the 

probability of failure, conditional on partitions, have been studied extensively in the 

past for on-demand systems [8].  

The practical implications of the work presented here seem significant. If one is to 

measure the marginal rates of failure of the channels and then use these to estimate, 

e.g. by simulation, how the speed of recovery will impact the reliability of the system 

one will be implicitly assuming the situation described by our example 3 – no 

variation of the failure rates of both channels. But such an evaluation may be incorrect 

                                                           
3 There is a subtle difference between a semi-Markov process and the model of competing risks 

which is rarely discussed in the literature. For the competing risks model the transition 

probabilities are proportional to the respective hazard rates (of the random variables 

representing the competing risks), while in the semi-Markov process it is typically assumed 

that an embedded Markov chain exists with fixed transition probabilities. If all competing 

risks are exponentially distributed, then the hazard rates are constant and so are the transition 

probabilities – they remain the same irrespective of the length of the sojourn time. However, 

if at least some of the competing risks are not exponentially distributed then the hazard rate 

may vary over time (e.g. with Weibull distribution it may increase or decrease) and thus it 

becomes dependent on the duration of the sojourn time (see the Appendix for further details). 

This subtle difference, however, does not seem to matter, at least not for our studies. Despite 

exploring a wide range of scenarios (with activities assumed to have Gamma and Weibull 

distributions) the distributions of the times to system failure remained exponentially 

distributed.  
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– it may be optimistic or pessimistic depending on the variation of the rates of failure 

in partitions. Results based on ignoring the variation of the failure rates will only be 

useful if one can demonstrate that at least one of the channels fails with the same 

failure rate in all partitions (as in experiment 4 in Table 2). Constant failure rate over 

the partitions, however, does not seem realistic. For various reasons the partitions are 

likely to be subjected to different scrutiny – some are less critical than others, or are 

less used by the users and hence problems are less likely to be reported, etc. The point 

in the end is that, ignoring the effect we report here may lead to overestimation or 

underestimation of system reliability and it is impossible to know in advance even the 

sign of the estimation error one will make by ignoring the correlation between the 

rates over the partitions. Overestimating system reliability may be dangerous, while 

underestimating may lead to waste of resources – e.g. insisting on further V&V to 

improve system reliability.   

The model presented above assumes that the channel failure processes are 

independent processes. This assumption can be relaxed. An example is the model of 

‘common stress’, which causes both channels to fail simultaneously, e g. due to a 

specification fault. A useful and widely used example is the Marshall and Olkin 

model [9]. The joint pdf of the channels’ time to failure is defines as follows: 
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where x > 0, y > 0, 1 > 0, 2 > 0, and 3 > 0. X and Y are the lifetimes of the two 

channels subjected to three kinds of shocks, assumed to be governed by three 

independent Poisson processes with parameters 1, 2, and 3, respectively. Shock 1 

applies to channel 1 only, shock 2 applies to channel 2 only, while shock 3 applies to 

both channels (hence ‘common stress’). The model has been used widely in nuclear 

reactor safety, competing risks reliability, etc [10]. The marginal distributions of X 

and Y are exponential distributions with parameters 31  and 32 , respectively. 

Clearly we could easily integrate the Marshall and Olkin model in the model 

presented in section 3 by adding a third activity, from place OO (Figure 4) to the 

absorbing place FF, to model the common stress, i.e. shock 3.  

Accurately measuring system reliability will require more detailed measurement, 

which includes the following steps:  

- estimating the probabilities of the partitions (the partition profile). Provided 

sufficient statistical testing is undertaken, one could easily arrive at a very 

accurate estimate of the probabilities of partitions. With more care one can 

even measure directly the transition rates between the partitions, which will 

be used directly in the model; 

- estimating the rates of channel failure in partitions. This may require more 

effort, than measuring the partition profile, especially in case of very reliable 

channels. Failure rates can be estimated from the log of observed channel 

failures.  

- relaxing the assumption that the channels fail conditionally independently 

will further complicate the measurements. Now one will need to quantify the 

strength of dependence between the channel failure processes. 
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Developing in details techniques for parameters estimation is beyond the scope of 

this paper. We notice in passing that the theory of competing risks is well developed 

and has been applied successfully in a wide range of applications. In our model every 

place (or state of the system) is associated with a set of competing risks – several 

activities compete to move the system to one of the states reachable by a single 

activity. For instance, in an OO place (Figure 4) several risks (represented by their 

respective activities) compete – to move the system to a new partition or to a state in 

which one of the channels has failed (or both in case the model is extended to include 

a common stress). The parameters associated with the risks may be unknown with 

certainty and need to be estimated from the available observations. The Appendix 

provides details, including the likelihood of any possible observation, sufficient for 

parameter estimation – either by maximizing the likelihood of the observations or by 

applying Bayesian inference. The point here is that every time a transition from a state 

takes place, we collect an observation associated with the realization of the competing 

risks defined for this place. Given the assumed Markov structure of the model, 

estimating the model parameters will consist of independent data collection and 

estimation of the model parameters associated with the individual states.  

We note that estimating the parameters of different parts of the model can be done 

using different techniques. For instance, we can obtain the parameters of the 

transitions (activities) between the OO states of the partitions directly from the 

observations (as these will be likely to be frequent and many realizations can be 

observed in a short period of observation). The parameters (i.e. distributions) of the 

activities OOtoFO of OOtoOF in turn can be assessed using Bayesian inference 

(given the typically small number of observations one can collect within a limited 

statistical testing or operational exposure). Once the estimation of the parameters of 

OOtoFO and OOtoOF activities is done, one can use these to parameterize the 

activities FOtoFF and OFtoFF, as in the model we assume them to have the same 

parameters as OOtoOF and OOtoFO, respectively. 

Once the parameters of the model activities are estimated, one could run a 

simulation experiment to measure directly the time to system failure. Further, as new 

operational data becomes available, one could revise the model (by re-assessing 

periodically the model parameters) and then re-run a new simulation to estimate the 

time to system failure.  

6. Relevant Literature 

Probabilistic models of on-demand fault-tolerant software have attracted 

significant attention. The original work by Ekhardt and Lee [11] demonstrated that 

failure independence is unlikely for even independently developed software versions 

(channels of a fault-tolerant system). The reason for this is that the individual 

demands processed by software may differ in their “difficulty”, i.e. they will be 

problematic to independent developers and the chances of simultaneous failures on 

these demands of independently developed channels are greater than what would be 

expected assuming independent failures. This was a very important insight, which 

affected the research and practical adoption of software fault-tolerance. The model by 
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Ekhardt and Lee was extended by Littlewood and Miller [12], to the case of forces 

design diversity (e.g. different teams are forced to use different development 

methodologies which lead to different difficulties of the demands). This work 

demonstrated the possibility for achieving system reliability better than assuming 

failure independence between the channels. Popov and Littlewood [13] extended the 

earlier models by allowing the channels reliability to grow, e.g. as a result of testing 

and compared the effect on system reliability of different testing regimes – testing the 

channels in isolation, testing them together on the same testing suite and back-to-back 

and ranked these testing regimes according to their impact on system reliability.  

These models were models “on average” – they modeled the process of software 

development of fault-tolerant software as a random selection from populations of 

versions, which hypothetically can be developed to a given specification. The models, 

however, do not address the issue of assessing the reliability of a particular fault-

tolerant system. This problem was addressed in [8]: the authors developed a model of 

a fault-tolerant software operating on demand space with partitions and demonstrated 

that it can be used for practical assessment by establishing bounds on the probability 

of system failure based on estimates of the probabilities of failure of the channels in 

the partitions only, which are typically estimable.  

The models summarized above are applicable to on-demand software only, i.e. in 

which the individual demands are drawn independently from the demand space. 

Another line of research addressed the characteristics specific for control software, 

e.g. the fact that control software is typically executed on trajectories of inputs, which 

are not independently drawn from the input space. An important implication of 

trajectory based execution is failure clustering due to the fact that failure regions 

usually occupy ‘blobs’ of individual inputs, [14] , [3]. Modeling explicitly failure 

clustering was done in a number of studies, e.g. [15]. 

7. Conclusion and Future work 

We present a model of system reliability of a 2-channel control software operating 

over partitions of the input space. The failure rates of the channels may vary over the 

partitions. The model reveals a useful insight – the probability of system failure may 

be significantly affected by the correlation of the failure rates of the channels over the 

partitions – we recorded up to an order of magnitude difference in the mean time to 

systems failure between assessment ignoring the effect of failure rate variation and 

taking it into account. The result seems important because it suggest the need for 

more accurate reliability measurement than is currently undertaken. 

We further considered a model of reliability for software with modular semi-

Markov structure developed by Littlewood in the past and established that our model, 

although generally very similar, deviates from the mathematical description provided 

by Littlewood. Despite the deviations, however, similarly to Littlewood, we observed 

that the time to system failure is exponentially distributed. Providing an analytical 

proof for the cases when the failures in partitions are not random (i.e. do not occur as 

Poisson processes) or identifying the cases when the system failure process ceases to 

be a Poisson process itself, is an open research problem.  
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We also discuss the issue of model parameter estimation. The theory of competing 

risks offers a suitable framework for parameter estimation using either maximum 

likelihood or Bayesian inference. Developing detailed assessment techniques with 

illustrative examples to help practitioners will be addressed in the future. 
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Appendix
The material and the notation used here are based on [7]. 

Let Cl (l = 1, …, k) denote the k competing risks or causes of failure. Let the 

random variable Yi denote the individual length of life if Yi were the only risk present 

with cdf Pi(x) = Pr{Yi  x} and pdf pi(x). When all risks are present, we can only 

observe the random variable, Z, defined as follows: Z = min(Y1, …, , Yk). 

Clearly, if Z exceeds x, then every Yi exceeds x, too, i.e.: 

Pr{Z > x} = Pr{Y1 > x, … , Yk > x}, which we denote as xFxF ZZ 1 .  

An important characteristic is the hazard rate defined as: 
xF

xf
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Z

Z
Z . The hazard 

rates of the individual competing risks are defined similarly: 
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For the case of independent risks, the total hazard rate is equal to the sum of the 

hazard rates of the competing risks: 
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Let i be the probability that a failure is caused by risk Ci.  

A related measure is the conditional probability Pr{Y1 = min(Y1, …, , Yk) | Z = x}, 

which is defined by the ratio 
xr

xr

Z

i . If this ratio is a constant (so called proportional 

hazard rates) the probability does not depend on the value of x and is equal to i. But 

this is not always the case and in the general case i
Z

i
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.  

If Ni individuals fail from cause Ci, and Xij denotes the lifetime of the j-th 

individual failing from clause Ci (j=1,…,ni; i = 1, …, k), then the joint pfd of the Xij is: 
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This is conditional on the random variables, Ni = ni (i = 1, …, k), which have 

multinomial distribution: 
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likelihood function of interest is: 
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This expression is sufficient for one to apply either maximum likelihood for 

parameter estimation associated with the individual risks, Yi, or Bayesian inference 

directly to the distributions of Yi. 
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In recent years, a new generation of modeling tools for the risk assessment have been developed. The concept of “dynamic” was 

exported also in the field of reliability and techniques like dynamic fault tree, dynamic reliability block diagrams, boolean logic driven 

Markov processes, etc., have become of use. But, despite the promises of researchers and the efforts of end-users, the dynamic paradox 

hangs: risk assessment procedures are not as straight as they were with the traditional static methods and, what is worse, it is difficult 

to assess the reliability of these results.  

Far from deny the importance of the scientific achievement, we have tested and cursed some of these dynamic tools realizing that 

none of them was appropriate to solve a real case. In this context, we decided to develop a new DFT reliability solver, based on the 

Monte Carlo simulative approach. The tool is greatly powerful because it is written with Matlab® code, hence is open-source and can 

be extended. In this first version, we have implemented the most used dynamic gates (PAND, SEQ, FDEP and SPARE), the existence of 

repeated events and the possibility to simulate different cumulative distribution function of failure (Weibull, negative exponential CDF 

and constant). The tool is provided with a snappy graphic user interface written in Java®, which allows an easy but efficient modeling 

of any fault tree schema. The tool has been tested with many literature cases of study and results encourage other developments.

Index Terms— Reliability, Dynamic Fault Tree, Monte Carlo simulation, Parallel Computing, Continuous time Markov chains.  

I. INTRODUCTION

n recent years the importance of risk assessment in the 

industrial field has significantly increased and the most used 

tools of RAMS – the well known combinatorial techniques 

such as Reliability Block Diagram (RBD) and Static Fault 

Tree (SFT) – have been object of a reasonable criticism. In 

fact, these techniques are not able to model the time-

dependent behaviors of a system (or a process), like the 

replacement of spare components, a chain of events and so on.  

State-space models have been used in order to overcome the 

previous limits and, on the wave of their success, other 

formalisms were proposed, such as:  

• DFT (Dynamic Fault Tree) [1]; 

• DRBD (Dynamic Reliability Block Diagrams) [2]; 

• BDMP (Boolean logic Driven Markov Process) [3]. 

 The declared aim was to combine the intutive symbolic 

representation of the combinatorial methods with the powerful 

modeling of the state space models: these new techniques 

were named “dynamic” and, conversely, the combinatorial 

ones were referred as “static”. Among these new formalisms, 

the dynamic fault tree analysis (DFT) has been one of the most 

promising [4] because, with the introduction of the dynamic 

gates, the power of the modeling increases but the effort of the 

designing is kept low (like in static fault tree). 

The reason of our interest in this technique is that most of 

the risk assessments in the industrial field are still based on the 

static fault tree, hence a re-examination of such risk reports 

with the aid of the DFT could be a valuable work. The attempt 

to apply the DFT technique to some existing reliability schema 

typical of the industrial field is discussed in [5], where the 

inadequacy of the traditional analytical methods is shown for 

complex systems, the limits of the most known automated 

software of reliability are highlighted and the lines for the 

development of a simulative algorithm in a spreadsheet 

environment are traced (ie. Excel®).  

Starting from the results [5], in this paper we present a 

software tool for the resolution of complex DFT model, based 

on the direct Monte Carlo simulative approach [6]. 

The paper is organized as follow: in the second section we 

introduce the DFT technique, briefly mentioning the

resolution procedures and the limits of the most used tools; in 

the third paragraph we describe the simulative approach for 

the fault tree resolution and in the fourth we introduce our 

Monte Carlo engine (MatCarloRE), implemented within the 

Matlab® framework; in the fifth paragraph, the Java® graphic 

user interface (GUI) (jDFTDes, which stands for java 

Dynamic Fault Tree Designer) that embeds the MatCarloRE 

library is presented and in the sixth section some results are 

discussed and compared with the enhancing of the parallel 

computing approach. In the end conclusion are drawn. 

II. THE DYNAMIC FAULT TREE TECHNIQUE

A Dynamic Fault Tree (DFT) is a stochastic model for the 

reliability evaluation that synthesizes the ways how an 

undesired and time dependent event can occur. As a Static 

Fault Tree (SFT), a DFT is composed by a top gate which 

represents the most undesired event (TE, top event) and a 

certain number of lower level gates and basic events (BEs) 

that, combined according with the logic of the fault scenario, 

cause the occurrence of the TE. The main hypotheses for the 

use of the DFT are that (i) events are binary and (ii), according 

to many authors [7-9],  components are not repairable. Thus, 

the main difference with the SFT is that DFT were not 

conceived to compute the availability but are appropriate to 

evaluate the reliability of model characterized by complex 

stochastic dependencies (Fig. 1).  

The possibility to model complex interactions with the 

graphical symbolism of the SFT has encouraged the 

development of dynamic models [10] but, in point of the fact, 

DFT has shown many issues for what concern their resolution. 

I
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The reason of this anomaly has to be traced in the lack of a 

rigorous semantic language [11] that has caused the 

proliferation of several and variegated techniques of resolution 

that resort to an equivalent stochastic model [1,  11-13]. At the 

state of the art, an analytical solution exists only if another 

hypothesis is added to the previous ones [9]: BEs have to be 

described by the exponential distribution. In this way, it is 

possible to convert a DFT into a state-space model and solve it 

within the domain of the Markov processes. Unfortunately the 

mentioned hypotheses can result too restrictive, especially for 

real industrial applications characterized not only by 

exponentially distributed time to fail but also by Weibull, 

gaussian or lognormal probability distribution. Therefore, the 

reliability evaluation of systems that present generalized 

functions of probability is not possible with the analytical 

Markov processes and, at the state of the art, the more 

effective solution is the simulation [14, 15].

Fig. 1: the most frequently used dynamic gates

In general, all the previous techniques of resolution 

(analytical and simulative) have been implemented in a lot of 

software applications for reliability analysis [16, 17] but, 

despite that, the real effectiveness of these tools is still 

questionable because none of them can be used to design and 

solve “complex DFT” in a straightforward manner. In Table 1, 

we synthesize the main features of some automated tools that 

we have tested; for more details about their characteristics we 

remind to [5].

Table 1: main features of the reliability automated tools for DFT 

TOOL MAIN RESULTS LIMITS 

RELEX Reliability 

Availability 

Importance Measures 

Results are questionable 

NO nested dynamic gates 

Only exponential CDF 

GALILEO Reliability  

Sensitivity 

 NO repeated events 

BDMP Reliability 

Availability 

Importance Measures 

and Sensitivity 

Not intuitive  

(introducing other 

formalism) 

In our scope, a “complex DFT" is a model that presents a 

combination of the following characteristics: repeated events, 

events characterized by generalized distributions of 

probability and nested dynamic gates. All of these elements 

are necessary to obtain an accurate modeling of the failure 

scenarios in real industrial systems. 

III. MONTE CARLO SIMULATION IN RELIABILITY 

ASSESSMENT

Monte Carlo simulation is a statistical method used to solve 

real problems in many engineering field, in particular when 

analytical approaches are not feasible. This method is based 

on the generation of a large number of realizations of the 

simulated process, which represent the generic random walk 

inside a discrete “phase space” of the system configurations. 

In this method, a certain number of stochastic sampling (called 

iterations, runs or batches of the simulation) of the 

independent variables are performed in order to implement the 

simulated process; for this reason, a Monte Carlo simulation 

cannot produce an exact evaluation as it is computed as a 

weighted average among the results of the generated phase 

space. 

Nowadays, this class of methods is gaining a lot of interest 

due to the power of modern computers that permit to speed up 

the simulative process and collect a large number of runs, 

ensuring higher accuracy. For reliability evaluations [18, 19], 

the main advantage of the simulative approach over the 

analytical ones is that it is possible to remove the hypothesis 

of the exponential distribution and, more in general, to 

implement any kind of failure and safety logic. The other 

important difference concerns the resolution process: with the 

simulative paradigma the computation of a TE needs the 

information from the entire parts of the fault tree (ie. single 

components and sub-models), whereas the analytical solutions 

mix these dynamics in a set of ordinary differential equations. 

Hence, at the end of a simulation it is possible to retrieve also 

information about the other parts of the fault tree (BEs and 

intermediate events), whereas with the analytical methods this 

would need an ad-hoc computation for the sub-system of 

interest.  

In our approach, we make use of the direct Monte Carlo 

simulation [6] that considers BEs as single entities, sampling 

the time of failure of any BE once, at the beginning of any 

iteration. These information are used to evaluate the logic of 

the gates which the BEs are connected with, in order to 

retrieve the state and the trigger time of each gate. In turn, 

these information are passed to the gates of the higher levels, 

ascending the fault tree up to the TE gate. From the 

implementation point of view, the main advantage of this 

approach is the modularity, as the algorithms behind the logic 

of the gates (static and dynamic) can be implemented 

separately. 

In order to build up a Monte Carlo simulation, let us 

consider the following notation:  
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1) FT is the generic fault tree composed by a number n of 

BEs; at the beginning of any iteration, the method will sample 

n stochastic time of failure t
f
i, one for each BEi; 

2) F(t) is the unreliability of the system at the time t, 

computed as the probability that the system is down at the 

time t, F(t) = P(system is down);  

3) S = (s1, s2,..,sn) is the generic “vector of the states” where si

represents the state of the i-th component that can be ‘working 

(=0) or ‘failed’ (=1) and represents a point of the phase space 

of the system; 

4)  is the set of all the vectors of the states S in which the 

system fails and depends on the structure of the fault tree; 

5) Hk={S(t0); S(t1);...; S(Tm)} is the evolution of the k-th

iteration of the Monte Carlo simulation; in general, the 

evolution Hk of an iteration can be characterized by a number 

of different vectors of the states S; in fact, these vectors are 

determined with respect to the stochastic times of failure 

generated at the beginning of the Monte Carlo sampling.  

For instance, let consider the simple SFT of Fig. 2 and assume 

a Monte Carlo simulation of K iterations and a mission time 

Tm = 10h. In this case  = {(1A, 1B, 1C)}, no matter the 

sequences of failures of the components. 

Fig. 2: a simple example of SFT and DFT 

Now, let us consider the generic i-th iteration (i<K) and 

assume the following random sampling: 

t
f
A = 5h; t

f
B = 9h; t

f
C = 8h. In this case we can consider the 

following vectors of the states:  

S(t0) = (0A, 0 B, 0C);  S(t
f
A) = (1A, 0 B, 0C);  S(t

f
B) = (1A, 1 B, 0C); 

S(t
f
C) = (1A, 1 B, 1C); S(Tm) = (1A, 1 B, 1C); therefore H1 = 

{S(t0); S(t
f
A); S(t

f
C); S(t

f
B); S(TM)}. In this case, there is a 

vector of the states S in H1 which belongs to , S(t
f
B), 

therefore the TE occurs. 

Let us assume that the j-th (j<K) iteration is characterized by 

the following sampling: 

t
f
A = 11h; t

f
B = 9h; t

f
C = 15h. In this case we have: 

S(t0) = (0A, 0 B, 0C);  S(t
f
B) = (0A, 1 B, 0C);  S(Tm) = (0A, 1 B, 

0C). What happens after Tm is out of the scope of the Monte 

Carlo simulation therefore, for this sampling, H2 = {(S(t0); 

S(t
f
B); S(Tm)} and none of the S(ti) is contained in . For this 

iteration, the TE does not occur.  

In order to speed up the simulative algorithm, it is possible to 

trim the iterations by checking at any transition whether the 

state S(ti) belongs or not to : if this condition is verified the 

batch ends and the TE occurs, otherwise it continues until Tm

is reached. 

At the end of the iterations, the unreliability of the fault tree 

is computed with the following: 

where iter is the number of iterations of the Monte Carlo 

simulation and Fi is the occurrence of the TE during the i-th

batch. Fi will assume the value 1 if the TE occurs, 0 otherwise. 

This algorithm can be used effectively for the resolution of a 

DFT because the evolution H is able to keep track of the 

sequence of failures simulated during an iteration of the Monte 

Carlo simulation; in this way the time dependencies of a DFT 

can be taken into account for the correct evaluation of the 

dynamic logics. For instance, let us consider the DFT of Fig. 

2; also for this DFT the  = {(1A, 1B, 1C)}, but the way how 

this configuration is reached matters. In fact, in this case, the 

evolution H generated for the previous example (H={S(t0); 

S(t
f
A); S(t

f
C); S(t

f
B); S(TM)}) would not reach to a failure state, 

due to the presence of the PAND gate.  

The other important features of this simuative approach is 

that with the use of the H, many simulation data can be stored 

in a very straightforward way: for each BE and gate we can 

count the number of triggering, the mean time to failure and 

easily infer other measures.    

IV. THE SIMULATIVE ENGINE OF MATCARLORE   

MatCarloRE is the library of functions that constitute the 

Monte Carlo simulative engine for the resolution of DFTs 

reliability. It has been implemented in the Matlab® 

environment following the direct Monte Carlo paradigm [6]. 

The library is composed by a set of .m files such that, in order 

to make the library as flexible as possible, the logic of any 

gate is implemented in different file. In this way it is possible 

to modify these files separately without compromising the 

other logics. Any of these files represents a Matlab® function 

that is invokated inside the code of the fault tree model.  

In this current release of the library, it is possible to 

compute the unreliability (F) of the system at a fixed instant of 

time or in a discrete time interval and use all the measures 

retrieved inside the Matlab® environment for further studies.  

In the next sections we will discuss the most important 

functions, focusing in particular on the logic of the dynamic 

gates [11, 15]. 

A. The «BE function» 

The BE function is the core of the Monte Carlo engine 

because it samples the times of failure of the BEs, retrieving if 

the BE has failed before the time of mission (Fig. 3).  

Fig. 3: specifications of the BE function  

So far, the «BE function» can model basic events with a 

negative exponential distribution, with a fixed probability or 

with a Weibull distribution. The code can be easily 

customized to define any type of probability distribution. In 

fact, the characteristic time of failure t
Fi

 of the generic BEi is 

sampled for any batch of the simulation through the inverse 

function: t
Fi

=CDF
-1

(param), where CDF
-1

 is the inverse of the 

cumulative distribution function and param is the vector 

which contains the parameters of the CDF.  
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For instance, let us consider a component characterized by an 

exponential distributed time to fail, F(t) = 1 – e
- t

, where  is 

the failure rate of the component. The sampled time of failure 

can be calculated by the inverse relationship: 

where F
*
 is a random number in [0, 1] generated with a 

uniform distribution of probability. If t
Fi

 is smaller than the 

mission time Tm, the component is assumed failed at the time 

t
Fi

. These method has to be invoked for any BE of the fault 

tree.  

B. The «PAND function» 

The «PAND function» models the Priority-And gate: the 

specifications of the function are shown in Fig. 4, while the 

logic is reported in the flow chart of Fig. 5. 

At first, the algorithm verifies if all the BEs of the gates 

(conteined in the input vector ‘y_in’) have occurred (the sum 

has to equal the number n of the inputs of the gate). If this 

condition is not satisfied the gate does not trigger. Otherwise, 

the following conditions are checked: if ti < tj for each i<j, 

with i, j=1,2,...n, the gate triggers with a time of failure equals 

to the maximum failure time of the inputs. 

Fig. 4: specifications of the PAND function  

START

=

=

n

i
i

ys

1

yPAND = 1

tPAND = max(t)

yPAND = 0

tPAND = Inf

END

tt ji
<

ji <∀

YES NO

s = n ?

YES

NO

Fig. 5: flow chart of the PAND function. 

C. The «SPARE function» and «ALL_SPARE function» 

The «SPARE function» is the most complicated logic due 

to the variety of configurations allowed. The MatCarloRE 

library can handle cold, warm and hot stand-by (C/W/H 

Stand-By) with any number of active and spare parts. The 

algorithm is shown in the flow chart of Fig. 6, while the 

specifications of the function are shown in Fig. 7.  

In this first release it is not possible to model extended DFT 

[20] therefore the inputs of a spare gate can be only BEs (and 

not other gates). The assumption made for the spare gate is 

that its failure occurs when the number of surviving 

components is less than the minimum number of components 

required for functioning (usually it is assumed equal to the 

number of the initial active components). Therefore, the first 

operation performed is to sort in the ascending order the times 

of failure of the active components, in order to list which have 

failed before the end of the mission time. If no failure is 

verified the gate will not trigger, otherwise the algorithm 

checks if there are spare parts able to replace the failed active 

components following the order previously established. The 

replacement of an active component can take place only if: 

1. the spare part is still available (namely, it has not been 

used to replace another failed component); 

2. the time of failure of the spare part (during its latent 

condition) is greater than the time to failure of the active 

component to be replaced. 

If these conditions are satisfied, the function updates the time 

of failure of the active component by adding the time of 

failure of the spare component that is finally declared as busy.

Otherwise the spare gate triggers, setting a time of failure 

equal to the last failed active component. 

START

ySPARE = 1

tSPARE = tref

ySPARE = 0

tSPARE = Inf

YES

NO

<
=

elsewhere

Tmitif
iG

0

)(1
)(

Find Active Components requiring substitution:

Sort Active Components Vector by Failure Time

?0)(
1

>

=

n

i

iG

=>
=

elsewhere

iOitlif
iGS tref

0

0)(&)(1
)(

Find Spare Components available for  

substitution:

))1,1(( === Gfindttref

Set reference time for iteration

?0)(
1

>

=

ns

i

iGS NO

))1,1(())1,1(())1,1(( ==+===== GSfindtsGfindtGfindt

Update the failure time of Active Component

1))1,1(( ===GSfindO

Update the occupancy of the Spare Component

YES

Fig. 6: flow chart of the SPARE function  

The MatCarloRE makes use of another function called 

“ALL_SPARE” that takes all the spare gates as input (see Fig. 

8).  The output of the ALL_SPARE function  is a vector that 

contains the state and the time of trigger of the spare gates 

passed. This function is important because it handles the 

allocation of the shared resources among the spare gates which 

have the same spare components.
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Fig. 7: specifications of the SPARE function 

Fig. 8: specifications of the ALL_SPARE function  

D. The «SEQ function» 

The seq gate forces the components to fail in a fixed order 

[11, 15], from the left to right position. It is generally used to 

represent different levels of degradation of a component. The 

algorithm used for this task is simple: the «SEQ function» 

firstly calculates the sum Q of the times of failure of all the 

inputs. If Q is smaller than the mission time the gate triggers 

with a time of failure equal to Q. 

E. The «FDEP function» and «OUT_FDEP function» 

The fdep gate vehicles the effects of the primary input to its 

dependent components [11, 15] in a way that if the primary 

component fails all the dependent ones fail too, with the same 

time of failure.  

MatCarloRE handle this gate with two function: the 

“FDEP” and the “OUT_FDEP”. The former is invokated to 

compute the time of failure of the secondary inputs. This logic 

can be easily implemented because a fdep gate with k 

secondary inputs is equal to k or gates with two inputs: the 

primary and the i-th secondary component of the fdep gate. 

But, if a component is a secondary input of more than one 

fdep gate, the «OUT_FDEP» function (Fig. 9) must be

invokated. In fact, in this case the real time of failure has to be 

chosen as the minimum among the time of failure of the 

correspondent fdep gates. 

Fig. 9: specifications of the FDEP_OUT function 

V. JDFTDES: A JAVA GUI FOR MATCARLORE 

The creation of a DFT model with the MatCarloRE syntax can 

be error prone and tedious. In Fig. 10 it is shown the flow 

chart that describes how to prepare the Matlab® script. At 

first, the initialization of the main variables (F, number of 

iterations) is needed. Then, the simulation runs inside a loop 

that contains the commands that refer to the DFT model; the 

functions of the library have to be invoked in the order shown 

in Fig. 10, according with the structure of the DFT. The «BE 

functions» need to be invoked for first, in order to sample the 

correspondent times of failure of each BE; the «FDEP 

functions» and «OUT_FDEP functions» are called if the DFT 

contains fdep gates, in order to refresh the time of failure of 

the BEs which are connected with such kind of gate. Hence, if 

there are spare gates which share spare components, they have 

to be assembled invoking the «ALL_SPARE function» 

function. Once this first part of the code is written, it is 

possible to call all the other functions (which represent the 

gates) following a bottom-up approach since the information 

of the lower level of the fault tree are requested to the upper 

gates. In the end, the unreliability is computed as the ratio 

between the number of TE occurrence over the number of 

iterations.   

In order to simplify the effort of typing the code of a model 

with the MatCarloRE syntax, a graphic user interface (GUI), 

the jDFTDes, was developed. The jDFTDes is a code-

processor that translates a graphic model of DFT in a program 

for the MatCarloRE engine. The jDFTDes stands for “Java® 

DFT Designer”, a java package that can be invoked directly 

under the Matlab® shell. The choice of using Java was 

natural, since Matlab® runs under a Java Virtual Machine 

(JVM) and this permits to use the Java interpreter and run 

programs written in Java. In our application, we created a Java 

Archive (JAR), a Java file that includes all the classes of the 

jDFTDes. The jDFTDes can be invoked through the 

“javaaddpath( )” command, specifying the path where the 

library is located and creating a dummy variable  that contains 

an instance of the java main frame of the jDFTDes. 

jDFTDes is greatly simple and the construction of a DFT 

model is straight, easy and fast. This was accomplished 

implementing a “drag and drop” interface that permits a quick 

interactions with the element of the DFT. Infact, by clicking 

the right button it is possible to change the property of a 

component (rename, modify the type of component and 

change the order of the dependency) while by clicking the left 

button is possible to add an input (if the component clicked is 

a gate) or specify the type of CDF if the component is a BE. 

The text field Tm must contain the value of the time mission 

and the text field “ITERATION” the number of batches 

requested for the simulation. Once the DFT is assembled and 

the input are correctly set, by clicking “COMPUTE” the 

jDFTDes will process the graphical model generating the code 

for the MatCarloRE and finally dumping it in the Matlab® 

shell.

Fig. 10: flow chart to build a Matlab® script of a DFT model with the 

MatCarloRE syntax 
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VI. CASES OF STUDY: CONFIGURATION OF THE  MULTI-

PROCESSOR SYSTEM

In this section we present the implementation of a set of cases 

of study that refer to previous literature [5, 20].  

The MatCarloRE library and Galileo® were tested using a 

standard 64bit laptop Intel® i7 CPU, Q740 @ 1.7 GHz with 

6GB of Ram. As far as concerns the DFTSim (the simulative 

tool which is the closest benchmark for the MatCarloRe 

library), so far, we could not obtain any version of the tool, 

therefore we did consider the results taken from [20] which 

were obtained with a different system configuration (a 

Pentium 4 @ 3.2 GHz with 2GB of Ram). For this reason, a 

detailed comparison between the simulating tools was not 

possible. 

Looking forward to get a version of the DFTSim, we 

configured our machine in order to make possible a 

comparison in term of results accuracy and time of execution 

between the MatCarloRE and DFTSim [20] (see also note 1 

and Table 5 in the next section), starting from the following 

assumptions:  

•  the simulative engines of both MatCarloRe and DFTSim 

behave similarly, as they sample the time of failure for each 

BE and propagate the BEs failure times through the DFT; 

•  iterative computations (like Monte Carlo simulations) are 

mostly affected by the CPU clock and by the dimension of 

the second-level cache, whereas the extension of the Ram 

memory does not bring improvement if it can store entirely 

the amount of data processed (and this is the case we are 

dealing with). 

Under the previous conditions, a system mounting two CPUs 

of 1.7 GHz, working in parallel and sharing the computation 

effort, can be compared with one only CPU of 3.2 GHz [20], 

as they can process approximately they same number of 

operations per unit of time. In Matlab® it is possible to enable 

the use of the multi-processors platform through the command 

matlabpool; clearly, the multi-processors is effective only if 

the source code of the script is compliant with the rules of the 

parallel programming. MatCarloRE can be easily customized 

to run in a parallel environment, just replacing the traditional 

for instruction with the parfor, standing for “parallel for” [21].   

A. The Cascaded PAND System (CPS) 

This is a hypothetical case of study of a cascade of dynamic 

PAND gates, which results of interest for the comparisons 

between the simulative approach and the analytic one. In fact, 

due to the state space explosion Relex® got stuck, while 

Galileo® took ten times the time needed with the simulative 

approach to solve it. MatCarloRE converges within few 

seconds. All the BEs have a failure rate of 1 [h
-1

]. 

B. The Multi-processor Distributed Computing System 

(MDCS) 

The main feature of the model of the MDCS (Fig. 11) is the 

shared W/stand-by spare memory (M3) between the 

subsystems Mem1 and Mem2. Table 2 shows the parameters 

of the components of the MDCS. 

Table 2: failure rates of the BE of the MDCS in [h-1] 

C. The Cardiac Assist System (CAS) 

The CAS system is a model more complex than the previous 

ones, as it is composed by many dynamic gates. Fig. 12 shows 

the screenshoot of the jDFTDes application: the red circles 

denote the same sub-systems (the Pumps) and the jDFTDes 

needs to draw the repeated spare PS twice (in orange). 

Fig. 11: DFT of the MDCS [20] 

Table 3 shows the input parameters of the BEs; moreover, B 

is in a warm stand-by with a dormancy factor of 0.5, while PS 

and MB are in cold stand-by.  

D. The Section of an Alkylation Plant (SAP) 

This case of study [5] represents the dynamic version of a 

real SFT of an alkylation plant (Fig. 13). For this example, 

analytical modeling is not appropriated due the presence of the 

fixed probability (BE1 and BE3), while DFTSim could not be 

tested due to the impossibility to obtain a version of the tool.  

Fig. 12: DFT of the CAS [20] developed with jDFTDes
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Table 3: failure rates of the BE of the CAS in [h-1] 

VII. FINAL RESULTS AND CONCLUSION

Table 5 shows the comparison among the results for the 

proposed cases of study, for each tools used. They definetely 

prove that:  

1) simulation is the most valuable approach for those 

complex dependent models that analytical tools are not able to 

solve and  

2) simulation can also be used to compare and confirm the 

evaluation provided by the analytical approaches. 

The binomial of MatCarloRE engine and jDFTDes GUI suits 

perfectly these two requirements; in fact, on one hand the risk 

assessment evaluations of the MatCarloRE library are 

satisfactory both in terms of accuracy and time of 

computation, warranting the resolution of complex models; on 

the other hand, the intuitiveness of the graphic user interface 

implemented with the jDFTDes favours the modeling design 

of large DFT, encouraging the use of the tool. 

Fig. 13: DFT of the SAP [5] 

As far as concerns the comparison of performance between 

the simulating tools DFTSim and MatCarloRE, we have to 

rely on the assumptions made in the previous section. Under 

those conditions we can assess that, on equal terms of machine 

configuration, DFTSim seems to offer greater performance 

than MatCarloRE, as proven by the Execution Time (Table 5). 

This happens in particular for DFT models in which more than 

one SPARE gates share a spare component (see example of 

Fig. 11 and Fig. 12). In our opinion, the reason is that the 

stream of instructions used to code the algorithms of the 

SPARE gates logic is more efficient in the DFTSim; this 

offers new clues for the improvement of MatCarloRE. In 

future research, we aim to be able to test both the tools with 

the same machine configuration in order to refine these 

evaluations. 

At the state of the art, a point in favour of the MatCarloRE 

library is the integration with the Matlab® framework that 

allow a simple implementation of the parallel paradigma. In 

Table 6, the results of the distributed computing are shown: 

when four processors share in parallel the computation effort, 

the perfomance of MatCarloRE are greater than the DFTSim.  

Table 4: failure rates of the BE of the SAP  

Component Value Type 

BE1 1x10-3 Fixed 

BE2 9.1x10-4 [h-1] Exponential 

BE3 1x10-3 Fixed 

BE4 1.71x10-4   [h-1] Exponential 

BE5 7.51x10-4 [h-1] Exponential 

BE6 9.11x10-4   [h-1] Exponential 

BE7 4.51x10-3 [h-1] Exponential 

BE8 8.61x10-4 [h-1] Exponential 

BE9 4.51x10-4 [h-1] Exponential 

BE10 7.91x10-3 [h-1] Exponential 

BE11 1.51x10-4 [h-1] Exponential 

BE12 9.51x10-4 [h-1] Exponential 

Another considerable plus value of working inside the 

Matlab® environment is the plenty of mathematical 

instruments offered which can be used for further evaluations, 

like importance measures, sensitivity analysis and 

optimization.  

In future work we aim to improve the library in order to: 

1) remove the hypothesis of non reparaible components, 

switching in the domain of the availability, 

2) implement a set of instruments for the evaluation of the 

maintainance strategies,  

3) deal with components that can be described by multiple 

states (overcoming the constraint of the working or failed 

state) and 

4) adapt the parallel source code of MatCarloRE for the cloud 

computing (the Sicilia Grid infrastructure of Cometa).  

Table 5: comparisons among the reliability tools  

Case study Tool Iterations Unreliability Execution 

Time (sec)

CPS 

(Tm=1h)

Relex® 

Galileo® 

- 

- 

X

0.00135 

- 

380  

DFTSIM
1

MatCarloRE 

105

105 

0.00142 

0.00140

40 

17 (2 Cpu) 

CAS Relex® - X - 

(Tm=1h) Galileo®  0.65790 1 

DFTSIM1

MatCarloRE 

105

105
0.65651 

0.65770 

43 

64 (2 Cpu) 

    

MDCS Relex® - X - 

(Tm=1h) Galileo® - 0.06664 1 

DFTSIM1 105 0.06737 39 

MatCarloRE 105 0.06680 52 (2 Cpu) 

    

SAP Relex® - X - 

(Tm=8760h) Galileo® - X - 

DFTSIM Not tested Not tested Not tested 

MatCarloRE 106 0.000185 278(2 Cpu) 

                                                           
1 Results taken from the paper [20] performed with a different system 

configuration 
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Table 6: distributed computing results of MatCarloRE  
Case study N.of CPU Unreliability Execution 

Time (sec)

CPS 1 0.00130 26 

2 0.00140 17 

4 0.00140 9.8 

CAS 1 0.65570 87 

2 0.65770 64 

4 0.65960 39 

MDCS 1 0.06480 77 

2 0.06680 52 

4 0.06591 32 

SAP 1 0.000192 546 

2 0.000185 278 

4 0.000197 162 

For any request about the use of the MatCarloRE and 

JDFTDes, you can email the scientific coordinator, Prof. 

Lucio Compagno, at his email address: lco@diim.unict.it. 
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MATCARLOAV, AN EXTENSIBLE MATLAB® LIBRARY FOR 

THE SIMULATIVE EVALUATION OF DYNAMIC FAULT TREES 

Abstract 

In recent years, a new generation of modeling tools for the risk assessment have 

been developed. The concept of “dynamic” was exported also in the field of 

reliability. At first, the state-space technique of modeling were successfully used to 

implement dynamic dependencies in a fault schema, thus overcoming the limits of 

the traditional combinatorial techniques. Afterwards, more descriptive techniques 

(like DFT, DRBD, BDMP, etc.) have been proposed in order to enrich the 

intuitiveness of combinatorial methods with the capability to model dynamic 

dependencies. But, despite the promises of researchers and the efforts of end-users, 

the dynamic paradox raised: risk assessment procedures were not as straight as 

earlier and, what is worse, it was difficult to understand the effects of such 

dynamism. In this paper, we focus on the DFT technique and present a tool for the 

reliability and availability computation of a quite generic class of system. Starting 

from the state of the art, a set of standardized rules that clarify the real behaviours of 

the dynamic gates – in particular for what concerns DFT with repairable components 

– is drawn. Afterwards, a comparisons with earlier works (commercial and non 

commercial applications) will prove the advantages of this novel simulative 

approach, for which a Matlab® library is under development. The aim is to provide a 

basic library for the resolution of extended DFT. The tool may result of great interest 

because it is written with Matlab® code, hence is open-source and can be also 

extended. It has been tested with many literature cases of study such that results 

encourage other developments. 

 


