
UNIVERSITÀ DEGLI STUDI DI CATANIA

DOTTORATO DI RICERCA IN MATEMATICA APPLICATA

ALL’INGEGNERIA

XXIV CICLO

GABRIELE MANNO

RELIABILITY MODELLING OF COMPLEX

SYSTEMS: AN ADAPTIVE TRANSITION SYSTEM

APPROACH TO MATCH ACCURACY AND

EFFICIENCY

TESI DI DOTTORATO

COORDINATOR:

PROF. ANTONIO SCALIA

SUPERVISOR:

PROF. NATALIA TRAPANI

 Acknowledgment

An undertaking such as this can never be accomplished in isolation; it is only

through the support and advice of many others, both technical and moral, that it can

be carried out.

I would like to acknowledge the CTI
2
 research group of the Department of

Industrial and Mechanical Engineering of the University of Catania and the Centre

for Software Reliability team of the London City University. Their collective

technical guidance added much to the content of this work.

In particular I would like to mention Professor Natalia Trapani, my thesis advisor,

and Professor Peter Popov, my supervisor during the time I spent at the City

University as a visiting researcher, for their continuous support and significant

advices.

Lastly, but by no means lesser in importance, I would like to thank my family and

friends for their moral support during the time of this effort. While technical advice

is necessary, it is by no means sufficient. Without their encouragement, none of this

work would have been possible.

INDEX

INDEX I

INTRODUCTION VII

CHAPTER 1: CONCEPTS OF RELIABILITY

ENGINEERING

1.1 INTRODUCTION 1

1.2 SYSTEM DEFINITION 2

1.3 DEPENDABILITY CONCEPTS AND PERFORMANCE INDEXES 4

1.4 HAZARD RATE 7

1.5 RELIABILITY MODELLING AND EVALUATION METHODS 10

1.5.1 NON STATE-SPACE MODELS 12

1.5.2 STATE-SPACE MODELS 13

1.5.3 HYBRID MODELS 15

1.5.4 ANALYTICAL SOLUTION VS SIMULATION 16

1.6 CONCLUSION 17

BIBLIOGRAPHY 18

CHAPTER 2: CLASSIC RELIABILITY MODELS

2.1 INTRODUCTION 22

2.2 NON STATE-SPACE MODELS 22

2.2.1 RELIABILITY BLOCK DIAGRAMS 23

2.2.1.1 RBD EVALUATION METHODS 24

2.2.1.2 ADVANTAGES AND DISADVANTAGES OF RBD 26

2.2.2 FAULT TREE ANALYSIS 28

2.2.2.1 STRUCTURE FUNCTION 29

2.2.2.2 QUALITATIVE ANALYSIS 29

2.2.2.3 QUANTITATIVE ANALYSIS 30

2.2.2.4 COMPARISON WITH RBD 31

2.2.2.5 ADVANTAGES AND DISADVANTAGES OF FT 32

2.3 STATE-SPACE MODELS 33

2.4 CONCLUSION 37

BIBLIOGRAPHY 39

CHAPTER 3: HYBRID MODELS

3.1 INTRODUCTION 44

3.2 DYNAMIC FAULT TREE 46

3.2.1 DFT OBJECTS AND ASSUMPTIONS 47

3.2.2 DYNAMIC GATES 48

3.2.2.1 FUNCTIONAL DEPENDENCY GATE 48

3.2.2.2 SPARE GATE 49

3.2.2.3 PRIORITY AND GATE 50

3.2.2.4 SEQUENCING ENFORCING GATE 50

3.2.3 SOLUTION METHODS 50

3.2.4 RELATED WORK 51

3.2.4.1 DYNAMIC RELIABILITY BLOCK DIAGRAM 51

3.2.4.2 BOOLEAN DRIVEN MARKOV PROCESS 52

3.2.5 ADVANTAGES AND DISADVANTAGES OF DFT 52

3.3 STOCHASTIC EXTENSIONS OF PETRI NETS 53

3.3.1 STOCHASTIC PETRI NET CLASSIFICATION 55

3.3.1.1 STOCHASTIC PETRI NET 56

3.3.1.2 GENERALIZED STOCHASTIC PETRI NET 56

3.3.1.3 STOCHASTIC PETRI NET WITH GENERAL DISTRIBUTION 57

3.3.2 STOCHASTIC ACTIVITY NETWORKS 58

3.4 CONCLUSION 66

BIBLIOGRAPHY 67

CHAPTER 4: MATCARLORE

4.1 INTRODUCTION 71

4.2 MONTE CARLO SIMULATION OF DFT 72

4.3 SIMULINK® LIBRARY 75

4.3.1 THE BE BLOCK 76

4.3.2 THE PAND BLOCK 77

4.3.3 THE SPARE BLOCK 79

4.3.4 THE SEQ BLOCK 86

4.3.5 THE FDEP BLOCK 87

4.4 A COMPARATIVE EXAMPLE 87

4.5 JDFTDES: A JAVA-MATLAB INTEGRATED TOOL 90

4.5.1 JAVA INTERFACE 93

4.6 CONCLUSION 94

BIBLIOGRAPHY 95

CHAPTER 5: ADAPTIVE TRANSITION SYSTEM

5.1 INTRODUCTION 100

5.2 ADAPTIVE TRANSITION SYSTEMS 108

5.2.1 SYSTEM VARIABLES 109

5.2.2 REWARD VARIABLES 111

5.2.3 TRANSITION VARIABLES 112

5.3 ORDERED-ATS 116

5.4 THE HEAT-POWER SYSTEM 118

5.5 EXECUTION OF ATS 121

5.6 MARKOV-OATS 124

5.6.1 MOATS WITHOUT TRANSITION TIMING VARIABLES 125

5.6.2 MOATS WITH TRANSITION TIMING VARIABLES 131

5.7 DISCRETE EVENT SIMULATION OF ATS 135

5.7.1 THE ROME POWER-TELCO SYSTEM 136

5.7.1.1 ATS MODEL OF POWER NETWORK ELEMENTS 137

5.7.1.2 ATS MODEL OF BATTERIES 142

5.7.1.3 THE ONLINE RISK ESTIMATOR 143

5.8 CONCLUSION 144

BIBLIOGRAPHY 148

CHAPTER 6: SAN REPRESENTATION OF ATS MODELS

6.1 INTRODUCTION 152

6.2 MOBIUS MODELLING TOOL 152

6.3 SAN REPRESENTATION OF ATS 153

6.3.1 SYSTEM AND REWARD VARIABLES DATA STRUCTURE 153

6.3.2 SAN REPRESENTATION OF ATS TRANSITIONS 155

6.3.3 ATS-SAN UPDATE STRUCTURE 156

6.4 ATS-SAN MODEL OF THE HEAT-POWER SYSTEM 157

6.5 CONCLUSION 163

BIBLIOGRAPHY 165

CHAPTER 7: ATS MODEL OF REPAIRABLE DFT

7.1 INTRODUCTION 166

7.2 STATIC REPRESENTATION OF DFT 167

7.2.1 STATIC REPRESENTATION OF SPARE GATES 169

7.2.2 STATIC REPRESENTATION OF FDEP GATES 169

7.2.3 STATIC REPRESENTATION OF SEQ GATES 170

7.2.4 PAND GATES 171

7.2.5 STATIC DFT 171

7.3 ATS MODEL OF DFT COMPONENTS 172

7.3.1 PRIMARY COMPONENTS 172

7.3.2 SPARE COMPONENTS 174

7.3.3 REWARD FUNCTION SPECIFICATION 181

7.4 SAN IMPLEMENTATION AND EVALUATION 181

7.5 MATCARLOAV: AN EXTENSION TO SOLVE RDFT 183

7.6 CONCLUSION 183

BIBLIOGRAPHY 184

CONCLUSION AND FUTURE WORK 186

APPENDIXES: PUBLICATIONS 189

A.1 DFT RESOLUTION: A CONSCIOUS TRADE-OFF BETWEEN ANALYTICS AND

SIMULATIVE APPROACHES 190

A.2 MATCARLORE: AN INTEGRATED FT AND MONTE CARLO SIMULINK

TOOL FOR THE RELIABILITY ASSESSMENT OF DYNAMIC FAULT TREES....... .202

A.3 THE EFFECT OF CORRELATED FAILURE RATES ON RELIABILITY OF

CONTINUOUS TIME 1-OUT-OF-2 SOFTWARE 218

A.4 AN OPEN SOURCE APPLICATION TO MODEL AND SOLVE DYNAMIC FAULT

TREES OF REAL INDUSTRIAL SYSTEMS 232

A.5 MATCARLOAV, AN EXTENSIBLE MATLAB LIBRARY FOR THE SIMULATIVE

EVALUATION OF DYNAMIC FAULT TREES 240

 Introduction

INTRODUCTION

A model is a simplification of a real system so that we can better understand the

system we are developing or analysing. Modelling is an essential aspect of any

engineering field. Engineers, managers and domain experts use models for many

practical reasons Just to name a few: a model helps us to visualize a system as it is or

as we want it to be; allows to specify the structure and the behaviour of a system;

gives us a template that guides in constructing a system and documents the decision

we have made. In most circumstance a model must be supported by appropriate

evaluation methods that allow us to retrieve some specified measures of interest of

the system.

The main objective of this thesis is to define a modelling formalism, provided by

some type of evaluation methods, applicable in reliability engineering for modelling

and evaluate reliability measure of interest complex systems. In the last years

reliability engineering has been concerned with systems subjected to complex

interdependencies between their parts. Since the behaviour of such systems is driven

by these interdependencies, the appropriate way of capturing them in a model of the

system has gained interest from academic and industrial practitioners. For instance,

the typical classes of interdependencies existing in reliability engineering are those

involving redundancy management, share load, maintenance management in

presence of limited resource, stochastic associations between parts, shared load, etc.

 Introduction

 The aspect of capturing interdependencies, however, has not been always the

main driver in reliability modelling. Early works in reliability engineering made use

of the assumption of stochastic independence between the system parts and did not

consider any kind of functional dependency deriving from redundancy and

maintenance management. Fault Trees (FTs) and Reliability Block Diagrams (RBDs)

are an example of modelling formalisms where any kind of possible dependency is

neglected.

As a matter of fact, these formalisms do not consider temporal dependencies in the

logic that brings to the failure at the system level, too. For instance, the possible

extension of a fire could be avoided if the fire alarm works properly at the time the

fire starts. Thus, the common AND condition of a FT “alarm failed-fire” can have

two meanings depending on which of the two events occurred before. However a FT

cannot handle the difference between the two scenarios.

In order to deal with stochastic associations and functional and temporal

dependencies many practitioners switched their attentions to Markov models. A

Markov model represents a system by a set of states and transitions between states.

States represent different conditions the system can be in. For instance, in a Markov

chain is possible to distinguish the state “alarm failed-fire” depending on which of

the two events occurred before. Transitions, on the other hand, represent possible

events that may occur given the system is in a specific state.

However, practitioners almost immediately realized that Markov chains present some

limitations that impact the resolution, construction and fidelity in the representation

of the true behaviour of the system. As a matter of fact, Markov chains results in

very large state spaces, i.e., high number of states representing the possible system

conditions. Moreover, Markov chains support only exponential distribution for the

time occur of events. Extensions taking into account general distributions have been

considered. This has lead to semi Markov process, regenerative semi Markov

processes and to some extend also to generalized semi Markov process. However,

analytical solution for these models presents still many limitation such as the

maximum number of simultaneously enabled transitions with general distributions,

the kind of general distribution itself and again the size of the state-space.

 Introduction

Driven by these conditions discrete event simulation and Monte Carlo simulation

have been extensively used to solve system of general complexity. There is a large

literature on simulation methods and applications to complex systems for reliability

studies. The main drawback concerns the time that is needed to obtain a reliable

result, thus, researchers have been exploiting the use of appropriate techniques to

reduce it, e.g., variance reducing techniques.

Both Markov models and discrete event simulation models however present

another main disadvantage: they are not provided by an high level language of

description. As a matter of fact, the manual construction of a Markov chain is a

tedious and error prone work. Such can be a discrete event simulation model if the

constructing procedure is not well formalized. Generalized semi Markov process aid

in the construction of simulation models, but still they lack of an higher level of

abstraction that would be beneficial to easily capture the structure and the behaviour

of the system at hand.

High level formalisms, both using analytical or simulation evaluation methods,

have been proposed. In this thesis we shall refer to these formalism as hybrid, since

they are characterized by a non state-space model, e.g., FTs, but, at the moment of

their birth were supported by an algorithmic conversion of the model into a Markov

chain.

There are several kinds of hybrid formalisms: some are an extension of

methodologies like FTs and RDBs, e.g., Dynamic Fault Trees (DFTs), Driven

Boolean Markov Process (DBMP), Dynamic Reliability Block Diagrams (DRBDs);

some are extensions of earlier works on distributed systems, e.g., Stochastic Petri

Nets (SPNs), Stochastic Reward Nets (SRNs), Stochastic Activity Networks (SANs),

Stochastic Process Algebra (SPA); etc.

With the aid of these formalisms a wide class of dependencies existing between

system parts can be captured in a model of the system. Moreover, at the state of the

art, both analytical and simulation techniques are provided for the evaluation of

specific measures of interest.

 Introduction

Driven by experience with hybrid formalisms and the tools that implement them

we have found some limitations concerning their applications in reliability studies.

While extensions of classical reliability models, e.g., FT and RBD, impose still some

limitation of the kind of behaviour that is possible to represent, extensions of models

like Petri nets and Process Algebra result too general to represent the kind of systems

we deal with.

For instance, Dynamic Fault Trees introduce dynamic gates to the set of Boolean

gates of classic Fault Tree. With the introduction of dynamic gates some class of

functional and temporal dependencies and redundancy management have become

representable in a FT-like model. However, many other kind of dependencies cannot

be considered and, for instance, there is still a lack of applications to evaluate

measure of interest in case of repairable components.

On the other hand, stochastic extension of Petri nets allow to model “any kind of

system” by a net representation of the system. While concerns about the “flat”

structure of the net has been addressed and resolved in formalism like Stochastic

Reward Nets, Stochastic Activity Networks and even Stochastic Process Algebra,

some issues remains about the fact that, due to the generality of the formalism, a

model is often subjected to the specific modeller preference. Therefore, debugging

and maintenance of the model result often difficult tasks. Moreover, for instance,

Stochastic Activity Networks introduce a set of predicates and functions that are not

supported by graphical means.

Thus, while extensions of formalism like Dynamic Fault Trees in order to increase

their generality are desirable, one would like to limit the modelling capabilities of

stochastic extensions of Petri nets maintaining however a as more general language

as possible for the kind of studies that one is concerned about.

Driven by these considerations we present a modelling formalism based on

interdependent transition systems, i.e., a set of interdependent state-space models,

supported by a set of additional variables. These variables take the form of inputs and

outputs of a set of communication functions, that while allowing different transition

systems to communicate, are the mean to model dependencies between the modelled

 Introduction

elements of a system. Moreover, in most circumstances these functions can be

expressed graphically by a tree structure (a Fault Tree-like structure) that maintains,

together with the state-space models, an high (graphical) level language of

description of the system.

We call the formalism Adaptive Transition System (ATS), since, in our vision,

transition systems adapt their behaviour on the basis of the evolution of other

transition systems as time progresses. This adaption is represented by an opportune

model of transitions that is able to capture the effects of changes in the system.

Our model of transition takes on from formalism like Stochastic Activity Network.

We model a transition by a set of attributes that determine the time to complete of a

transition. On the basis of these attributes the supporting mathematical law together

with its parameter can change as time progresses. Moreover a transition can exist or

not and can be restarted or not on the basis of some condition.

The conditions that define the behaviour of a transitions are specified by a set of

transition functions whose inputs are a set of variables that register some condition of

the evolution of the system. At every change of these variables, transition functions

are evaluated in order to adapt to the new reached conditions.

Variables responsible for registering the state of the system must be set in such a way

that the class of information used to define the interdependencies existing in the

system can be taken into consideration. We will show that all the class of

dependencies seen above can be considered by the introduction of three kind of

variables that register: the state, the last completed transition and the time at which

transitions most recently completed.

Moreover, in evaluating some kind of performance measure, one could be interested

in the effect that the conditions specified by these measure have on the behaviour of

the system itself. For instance if one want to evaluate the reliability with repair of a

system, one should force all restoring activities to cease when a system level failure

condition is met.

Finally, ATS can be solved via simulation or, under some constrain, through

conversion into a Markov chain. From a simulation point of view ATS results very

 Introduction

powerful since their execution logic is specified in terms of event as in generalized

semi Markov processes. The definition of the updating structure of variables is also

well specified. From an analytical point of view the main advantage of ATS lays on

the class of systems that are representable under the Markov assumption, i.e.,

dependencies on previous states are taken into account by an extended definition of

state that consider the ordering of occurrence of events. However, for this reason the

resulting state space is very large in size. Both evaluation techniques can be

improved by considering only the subset of variables that are considered in the

definition of the dependencies and measures of interest of the system.

The remainder of this dissertation is organized as follows:

- In Chapter 1 we present an introduction of the basic concepts of reliability

engineering. We give the definition of a system; present some development

that have been introduced in the reliability community and classical measures

of interest; and illustrate the main difference between classical reliability

models and state-space models and between analytical and simulation

evaluation methods.

- In Chapter 2 classical reliability models and state-space models will be

described in more details. Thus we give the definition of FT, RBD and

Markov chains and their extensions.

- In Chapter 3 we introduce some of the hybrid formalism introduced above.

Special attention will be given to Dynamic Fault Trees and Stochastic Activity

Networks.

- In Chapter 4 we present a tool implemented in Simulink for the evaluation of

Dynamic Fault Tree via simulation that we call MatCarloRe, i.e., Matlab

Monte Carlo Reliability. Moreover, an extension of the tool in Matlab with a

Java interface is also presented. The extension was developed in order to

overcome the limitation of the Simulink tool to handle shared spare

components.

- In Chapter 5 we present Adaptive Transition Systems in detail. We define the

variables and functions of the model, the execution logic and the solution

 Introduction

techniques. Finally, a simulation ATS model for a real case study of Power-

Telco critical infrastructures is shown.

- In Chapter 6 we show how to convert an ATS model into a Stochastic Activity

Network model. We show the benefit of using ATS as an high level formalism

to build SAN models with a standardized structure.

- In Chapter 7 an ATS application to solve Repairable DFT, a new concept of

Dynamic Fault Trees that has not yet been introduced. We show how ATS are

capable to extend the kind of dependencies handled by DFTs.

Finally, we report some conclusion and future work. Moreover, Appendix A is a

collection of accepted publications in international journals and proceedings of

international conferences; in Appendix B we report the developed MatCarloRe

scripts and in Appendix C we give some more insights and report the Matlab scripts

of the case study introduced in Chapter 5.

 Concepts of Reliability Engineering

CHAPTER 1

1.1 INTRODUCTION

Reliability Engineering concerns the study and evaluation of a set of performance

indexes that express the “ability” of a system to perform a required task during its

life-cycle. Reliability engineering provides the theoretical and practical tools

whereby these measures of performance can be specified, designed, predicted, tested

and demonstrated [1].

Reliability is concerned with failures. The effects of product failures rang from

those that cause minor nuisances to catastrophic failures involving loss of life and

property. Reliability engineering was born out of the necessity to avoid such

catastrophic events.

Nowadays, however, increasing attention is put also in those products whose

failure does not have any major life and death consequences to the consumer. Due to

increasing product-awareness of modern consumer, products that do not perform in a

reliable fashion are no longer tolerated. Therefore, customer dissatisfaction can have

disastrous financial consequences to the manufacturer. Moreover, it is essential for a

company to know the reliability of its product and to be able to control it. Moreover,

to succeed, a company must produce products that work successfully for the desired

 Concepts of Reliability Engineering

period of time, but also must avoid the design of products that operate longer than

the required life.

In this chapter we give the basic definition employed in Reliability Engineering.

We start, in Section 1.2, by giving the definition of system as a ensemble of

hierarchical interacting parts. Successively in Section 1.3 we give the formal

definition of dependability and its performance indexes. Section 1.4 concerns with

the definition of the hazard rate of a system. In Section 1.5 we give a classification of

the common modelling formalism and evaluation methods in Reliability Engineering

and finally in Section 1.6 we report some conclusion.

1.2 SYSTEM DEFINITION

The word “system” has a very wide connotation. There is a wide variety of

systems around us. Several of them have been created by man to satisfy his needs

while others exist in nature. With system we may connote anything ranging from

simple, artificial or composite, physical systems to conceptual, static and dynamic

systems or even organizational and information systems.

We define a system as an aggregation of parts or elements, connected in some

form of interaction or interdependence to form a complex or unitary whole with a

specific scope. Misra [2] defines a system as: “a system is a set of mutually related

elements or parts assembled together in some specified order to perform an intended

function”. This is a very broad definition and allows anything from a power system

down to an incandescent lamp to be classified as a system provided that a system

must have an objective or a function to perform.

A system has basically three levels of hierarchy [3], i.e., systems, subsystems and

components. In such a hierarchy, a component is defined as the lowest level of

hierarchy in a system and it is a basic functional unit of a system. Components, in the

system definition should be regarded as those units of the system, which can be

assumed indivisible in the context of the problem being considered at hand. The

assembly of components connected to produce a functional unit is designated as a

subsystem. This is the next higher level of hierarchy in a system, above the

 Concepts of Reliability Engineering

component. Finally, an assembly of subsystems connected functionally to achieve an

objective is called “system”.

Laprie [4] makes use of the concept of atomic system, i.e. a system where any

internal structure cannot be discerned, or is not of interest to discern (a component, in

the terminology of Misra). An atomic system has defined boundaries that distinguish

it from its external environment. The external environment provides one or more

inputs to the atomic system that is used to process a service(s). The service that an

atomic system provides is thus dependent on the fact that the correct input is received

and on the fact that is correctly processed. Therefore, a system can be considered as a

set of interrelated atomic systems working together to accomplish some common

objective, purpose or goal.

Most of the engineering systems today belong to the category of complex

systems. Although such a distinction between simple and complex systems is totally

arbitrary, the degree of complexity of a system relates to the number of elements,

their physical dimensions, multiplicity of links or connections of the constituent

elements within the system, multiple functions, etc. The complexity of a system can

be best defined on the basis of its structural complexity and the functions performed

by the system.

A system can be modelled in terms of a set of states that describe its internal

status on the basis of its input(s) and its intrinsic capability to process the input to

provide the output. As an example let consider an electronic equipment. In order to

provide the service the first requirement is that the power is provided to the

equipment by the external environment. Given that the external input is correct the

ability of processing the output depend on a series of internal characteristics like the

fact that the equipment works properly, i.e., no internal failures. In a state-space

characterization of such a system the generic state the system can be in is given by a

two-dimensional vector where the first entry represent the correctness of the input

and the second the correctness of the internal status. As we will see, state-space

based approaches are widely used to describe system behaviour.

 Concepts of Reliability Engineering

In a large variety of natural or man-made systems, the inputs, the processes and

the outputs are described mostly in statistical terms and uncertainty exists in both the

number of inputs and their distribution over time. Therefore, these features can be

best described in terms of probability distributions and the system operation is

known to be probabilistic. This is the class of system we are concerned with.

Complex systems with stochastic behaviour. It is required that an engineering system

must be trustworthy and dependable otherwise it cannot serve the purpose it was

intended.

1.3 DEPENDABILITY CONCEPTS AND PERFORMANCE

INDEXES

Reliability engineering is an engineering field which aims to retrieve measure of

interest of a modelled system such that reliance can be placed on the service it

delivers. This field of engineering has undertaken many changes in the last years

since new systems and new properties of these systems have been introduced. With

the introduction of the term Dependability [4] the various characteristics of reliability

engineering were lined out. In this dissertation we consider only few aspect of the

concept of dependability that are of interest for our purposes.

Dependability may be viewed according to different, but complementary,

properties, which enable the attributes of dependability to be defined. In the context

of this dissertation we are interested in the following properties:

- the readiness for usage leads to availability;

- the continuity of service leads to reliability;

- the non-occurrence of catastrophic consequences on the environment leads to

safety.

Availability is concerned to the fact that a system is ready to operate when

requested and is a measure that includes repairs of the system also after the system

failure. Reliability is concerned with the operation of a system during its life-cycle

without system failures. Repairs can be included only at component and subsystem

 Concepts of Reliability Engineering

levels, but not at the system level. Safety is related to reliability in that the service

interruption is seen as the occurrence of a catastrophic event. Another difference is

the level of impact of failures on society and the control of governments. Although

safety requirements can lower system reliability, we do not distinguish between

safety and reliability assuming that safety can be regarded as a special type of

reliability.

We now give the definition of reliability and availability as proposed by the

International Telecommunications Union (ITU-T) and the mathematical formulation

that leads to the evaluation of the two measure of interest.

Definition 1.1 (Reliability): Reliability is defined in International

Telecommunications Union (ITU-T) recommendations E.800 as follows:

“The ability of an item to perform a required function under given conditions for

a given time interval.”

Reliability can be expressed as the probability of a system being up throughout an

interval without system-level repairs. With system level repairs we refer to the

possibility of system components to be repaired when the service provided by the

system is “true” and we do not allow repairs when the system service is “false”. This

brings to the distinction between reliability with repairs and classical reliability

where components are assumed not repairable.

Definition 1.2 (Probabilistic measure of Reliability). Let be the random variable

that represents the time to failure of a system and the distribution of the system

life time, we define the reliability of the systems as:

. (1.1)

Another important quantity in the context of reliability is the Mean Time to

Failure (MTTF). It is the mean time between 0 and the time to failure of the system.

Definition 1.3 (Mean Time to Failure). Let be the random variable that

represents the time to failure of a system and the probability density function of

the system life time, we define the MTTF as:

 Concepts of Reliability Engineering

. (1.2)

Definition 1.4 (Availability). Availability is closely related to Reliability, and is

also defined in ITU-T Recommendation E.800 as follows:

"The ability of an item to be in a state to perform a required function at a given

instant of time or at any instant of time within a given time interval, assuming that

the external resources, if required, are provided."

An important difference between reliability and availability is that reliability

refers to failure-free operation during an interval, while availability refers to failure-

free operation at a given instant of time, usually the time when a device or system is

first accessed to provide a required function or service.

From a mathematical point of view we can describe the availability as the

probability of a system being UP (i.e., providing the service) at a specific instant of

time t.

Definition 1.5 (probabilistic measure of Availability). Given the stochastic process

, where is a Bernoulli random variable that takes on value 1 when

the system is UP and 0 when DOWN, we define the availability at time t (or point

availability) as:

. (1.3)

Definition 1.6 (Steady State Availability). Given the Definition 1.5 we define the

steady state availability (or inherent availability) as:

. (1.4)

Definition 1.7 (Average Availability). Given the definition of availability in eq.

(1.3), we define the average availability (or interval availability) in [0, t] as:

. (1.5)

 Concepts of Reliability Engineering

Definition 1.8 (Mean Time to Repair). Let be the random variable that

represents the time to repair of a system and the density function of the system

repair time, we define the MTTR as:

. (1.6)

Definition 1.9 (Mean Time between Failures). Given Definitions 1.3 and 1.8 we

define the MTBF as:

. (1.7)

1.4 HAZARD RATE

Let us consider a sample of identical elements and let us assume that at time

 all the are in the working state. Let us define and the number

of working and failed elements at time t, respectively. Since we can express the

probability of an event as the ratio between the number of successes and the total

number of trials, we introduce:

- Unreliability or probability of an element to be failed at t,

. (1.8)

- Reliability or probability of an element to be working at time t,

. (1.9)

Obviously .

The derivative of , is defined as the density function of the element

lifetime. The quantity , the differential of , represents the infinitesimal

probability of failure in . It can be shown that is a probability density

function, i.e., the integral of the function over the real axis is equal to 1, and that the

following relation holds . The instant of time t subdivide the

area under the curve in the two zones which areas measure and .

 Concepts of Reliability Engineering

We can rewrite as:

. (1.10)

Substituting to in 1.10 we obtain the instantaneous hazard rate .

We have:

. (1.11)

 represents the ratio of population that experience a failure in the time interval

 given the number of remaining working elements at time t.

It can be shown that the following relations hold:

, (1.12)

, (1.13)

, (1.14)

given .

Equation 1.12 states that it is possible to retrieve the failure rate from the knowledge

of since (see eq. 1.13). Equation 1.14 is also important

because allows to retrieve the reliability function on the basis of the hazard rate

function .

The hazard rate is a very important quantity in reliability engineering. It is

common to represent the hazard rate function as a decreasing function during the

burn-in period of the life of a component. It is considered constant during the normal

lifetime of the component, i.e., random failures, and increasing during the wear-out

period. Generally in reliability engineering this behaviour of the failure rate is

represented by the well known bathtub-curve. It is common to represent the failure

rate by the following function:

, (1.15)

 Concepts of Reliability Engineering

where a and b are two constants greater than 0 and depending on the value of b

(the function results increasing, decreasing and constant,

respectively. Another common way to represent is given by:

, (1.16)

where , , .

Substituting 1.16 in 1.14 we obtain:

 , (1.17)

and substituting 1.17 in 1.13 we have:

, (1.18)

that is the Weibull distribution function. In the case we obtain the exponential

distribution with parameter . The exponential distribution, in fact, is the distribution

for which the hazard rate is constant.

It can be shown that if X is the random variable that represents the time to failure

of a component the following relation holds (probabilistic interpretation of 1.12):

. (1.18)

Eq. 1.18 highlights the meaning of the hazard rate, that is: the conditional probability

of a component failing in given that it has not failed in . Moreover

from 1.18 is possible to show that the exponential distribution has a constant (with

respect to time) failure rate (and it is the only distribution with this characteristic).

This is directly related to the memory-less property of the exponential distribution. In

fact the failure is not related to some deterioration mechanism but is the result of

some suddenly appearing failure. For the sake of completeness we give the definition

of the memory-less property:

. (1.19)

 Concepts of Reliability Engineering

1.5 RELIABILITY MODELLING AND EVALUATION

METHODS

Reliability modelling is the first step in reliability evaluation. A system is usually

decomposed into its constituent parts. The model must highlight the relationship

between individual components, or subsystems failures with the system failures for

the known system objective.

To this end the state of the system is specified in terms of the states of the various

components (white-box approach). Two approaches are possible:

- forward, in which starting with the failure events at the component level, the

system level failure is assessed as the consequence of such failures, e.g.,

Failure Mode and Effect Analysis (FMEA) [5].

- bottom- up, where starting at the system level, system performance are linked

to the failures of components, proceeding downwards to the component level,

e.g., Fault Tree Analysis (FTA) [6].

System performance can be linked to the component performances qualitatively

and quantitatively. Qualitative analysis brings to the evaluation of the logical

relationship between components, while in quantitative analysis one obtains a

measure of system performance.

Logical relationship can be expressed graphically. Reliability Block Diagrams

(RBDs) and Fault Trees (FTs) are the two most know formalism in this context [6,7].

In RBD logical relationships highlight the conditions for which the system succeed

in fulfil its requirements, while FTs highlight the conditions for which a failure of the

system is related to the failures of system constituents. Other graphical relationships

are possible by which the same task can be achieved, e.g., events trees, binary

decision diagrams (BDD), causal trees or diagraphs [8] etc. Petri nets [9-14] have

shown their capabilities in system reliability assessment or fault diagnosis programs.

The underlying assumption in reliability modelling is that each component or

system can have only two states, working or failed. Thus the model is a two-state

model. Multi-state systems have been considered in [15,16]. They are useful in

 Concepts of Reliability Engineering

considering degraded states in addition to working and failed states. Multi-state

systems cannot be handled by FT and RBD, thus new formalisms like Dynamic Fault

Trees (DFTs) and Dynamic Reliability Block Diagram (DRBD) have been

introduced [17,18].

In Reliability Engineering, redundancy techniques are used to improve system

reliability [1]. Model like FT and RBD can capture redundancy only in the case of

independence across the components within the system. In other words, it is assumed

that the failure of a component does not affect the failure properties (failure rates) of

the remaining components. We can distinguish two cases of redundancy where the

independence assumptions do not hold: stand-by redundancy and load-sharing.

Again FTs and RBDs cannot cope with these scenarios. DFTs and DRBDs can tackle

stand-by redundancy, but cannot be used to model load-sharing redundant systems.

In these cases one can use formalisms like stochastic extensions of Petri Nets or

Markov models.

Therefore, it is important to develop reliability models that incorporate stochastic

dependencies among the system’s components. Another class of dependency that is

common in Reliability Engineering are shocks. In this case the system is exposed to

shocks that cause random amounts of damage [1]. The shocks themselves can occur

according to a random process. The intensity and occurrence frequency of the shocks

may vary with time. Generally, the occurrences of shocks are modelled using

homogeneous or non-homogeneous Poisson processes. The additional damage to the

system at a given shock may depend on the intensity of the shock, the damage

already experienced by the system, and the age of the system. The system fails when

the cumulative damage exceeds a certain level. Another class of shock models

includes common cause failures. For example, the bivariate shock model introduced

by Marshall and Olkin [19] analyzes component dependencies by incorporating

latent variables to allow simultaneous component failures.

There are models [20,21] that help to compute system reliability with the

assumption of dependency of failures to approach realistic situations where the

analyst cannot ignore the dependency of failures. Markov chains provide a modelling

 Concepts of Reliability Engineering

procedure for the availability or reliability modelling of maintained systems under

various assumptions of practical importance.

Reliability models has been distinguished into two main groups: non state-space

models and state space model. Classically non state-space models are solved by the

mean of combinatorial techniques while state-space models recall the use of Markov

Chains and their generalizations. Another class of models, that we define as hybrid

models, use an high level formalism of description that is more convenient to use

because it reduces modelling efforts. This high level formalism of description

resemble the one used by non state-space models. However, the solution of these

models is achieved by their conversion into an isomorphic state-space model. We

will consider hybrid approaches in the Chapter 3, while in Chapter 2 we present non

state-space and state-space models.

1.5.1 NON STATE-SPACE MODELS

Classical non state-space models are:

- Series/Parallel Block Diagram (or Reliability Block Diagram, RBD);

- Non Series-Parallel Block Diagram (or Reliability Graphs);

- Fault Trees without repeated events;

- Fault Trees with repeated events.

All the models are similar in that they capture condition that make the system fail in

terms of the structural relationship between the system components. In fact, these

models are usually solved by retrieving the structure function of the system; that is

that combination of events that leads to the system failure. The model is solved

analytically without generating the state-space using techniques like Boolean

Algebra, order statistics and convolution. Given a set of components that make up

the system and given for each of them a quantity like a probability of failure, a

failure rate, a distribution of time to failure or the steady state or instantaneous

availability and, assumed statistical independence, the resulting model is very easy to

use and able to evaluate measures like reliability (without repair), point and steady

state availability and the system MTTF. In the case of repairable components is also

 Concepts of Reliability Engineering

assumed that the repair units are as many as needed. Relatively good algorithms are

available to solve these models so that large number of component can be handled,

e.g., Sum of Disjoint Product (SDP) algorithms, Binary Decision Diagram (BDD)

algorithms, Factoring and Series-Parallel composition algorithms.

The main drawback of these methodologies is that they cannot easily handle

failure/repair dependencies, e.g., shared repair, warm/cold spares, imperfect

coverage, non-zero switching time, travel to repair person, reliability with repair.

1.5.2 STATE-SPACE MODELS

In the early approaches, components of a system were assumed to be independent,

whereas in practice, the times to failure and recover from a fault depend, broadly

speaking, on the state of the system. As a result, combinatorial models, such as FTs

and RBDs, cannot be used to accurately model the system behaviour. Further, non

state-space (combinatorial) models cannot adequately model the sequence-dependent

failure mechanisms associated with spares management, changing working

conditions, and so on. Demands for increased accuracy in reliability estimation

quickly forced the development of more elaborate system models without the vastly

simplifying independence assumptions [22].

For this reason, many modellers turned to Markov chains for reliability assessment of

fault tolerant systems. Markov chains are extremely flexible and they can capture the

fault coverage mechanism quite well. They belong to the group of state-space

methods. For instance a state can keep track of the number of functioning resource of

each type, the recovery state for each failed resource, the allocation of resource to

tasks, etc. Transitions are directed from one state to another and represent the change

of the system state due to the occurrence of an event. Transition are labelled and the

kind of label depends on the kind of state-space model used. In fact we can

distinguish state space model in: Markovian, i.e., Discrete Time Markov Chain

(DTMC), Continuous Time Markov Chain (CTMC), Markov Reward Models

(MRC); non Markovian, i.e., Semi Markov Processes (SMP), Markov Regenerative

Processes (MRGP) and Generalized Semi Markov Process (GSMP) [23-28].

 Concepts of Reliability Engineering

Thus the label of a transition can be a probability in the case of DTMC, a rate in the

case of CTMC, a distribution function in the case of SMP or two distribution

function in the case of MRGP or GSMP. Finally time dependent rates are handled by

the mean of Non Homogeneous Continuous Time Markov Chains (NHCTMC).

Markov Models are effective in handling fault-tolerance and recovery/repair,

dependencies, contention for resources, concurrency and timeliness, etc. The use of

MRGP and NHCTMC allows to model general distributed event times and Weibull

failure distribution, respectively.

The main drawback of these methodologies is the large state space, i.e. exponential

in the number of components. This brings to the problems of specification, storage

and solution of the model. Storage problems can be handle with sparse matrices and

with methods of truncation and lumping of the state space; the solution problem with

“sparsity preserving” solution methods, e.g., successive overrelaxation, Gauss-

Seidel, uniformization, ODE solution methods. Finally the specification problem can

be handle by a higher level formalism like Generalized Stochastic Petri Nets (GSPN)

that furnishes aid in the generation of the chain using a formalism that allow

hierarchical composition, concurrency, contention and conditional branching and

thus facilitating the construction of the model.

In addition to computational complexity, a major disadvantage of Markov chains

(state-space models) is that it is difficult to determine the correct Markov model for a

given system. This is because the modeller must specify each operational

configuration of the system explicitly and determine the rate at which the system

changes from one state to another. However, the relative advantages of combinatorial

models (fault trees and RBDs) and Markov models have been exploited by using two

key techniques: a) behavioural decomposition [29], and b) automatic conversion of a

non state-space model to an equivalent Markov model [30-32].

Several different Markov chain based methods are available for reliability

analysis. The basic idea is to construct a single Markov chain to represent the failure

behaviour of the entire system. Solving the Markov chain models yields the

 Concepts of Reliability Engineering

probability of the system being in each state. The system unreliability is obtained by

summing all the failure state probabilities.

Instead of generating and solving an overall Markov chain one could generate and

solve separate Markov chains for each independent subsystem. Apparently, each

individual Markov chain is much smaller than the overall Markov chain. The

reliability (or unreliability) of the system can be computed merging the results of the

independent Markov chains.

Both state-space and non state-space models will be briefly discussed in Chapter

2. They represent the background for any further develop in reliability modelling and

thus will be considered as a comparative mean in the following of this dissertation.

1.5.3 HYBRID MODELS

With hybrid models we refer to the class of formalisms that use non state-space

representation of the system, but whose quantitative evaluation has been usually

developed generating a state space model. In Chapter 3 we will introduce two kind of

these formalisms: extensions of the non state-space models described above; and

stochastic extension to Petri Nets.

Among the former we will introduce Dynamic Fault Trees (DFT) and give a brief

description of Dynamic Reliability Block Diagrams (DRBD) and Boolean Driven

Markov Processes (BDMP) [3]. Among the second we will introduce Stochastic Petri

nets (SPN) and their generalization with particular attention to Stochastic Activity

Networks (SAN) [34]. We will see that hybrid formalism overcome many of the

limitation of state-space and non state-space models.

To the class of hybrid models belong also Adaptive Transition Systems (ATS), a

formalism developed during this doctoral course in order to overcome two main

problems observed when using DFTs and SANs. In particular ATS deal with the

limited modelling capabilities of DFT and the “generality” of SAN models.

 Concepts of Reliability Engineering

1.5.4 ANALYTIC SOLUTION VS SIMULATION

Beside the modelling approach used to describe a system, another important

aspect concerns the evaluation methods. We can distinguish between two kinds of

evaluation methods: Discrete Event Simulation and Analytic (or numerical).

Analytic solutions aim to obtain a closed form solution of the measure of interest,

or when the model results too complex they aim to retrieve the solution by evaluating

it numerically by the assistance of a tool. Analytic solutions are generally of two

kinds: combinatorial, when a non state-space model is used; or determined by the

definition of the (integro)-differential equations that describe the evolution of a

stochastic process, in the case of state-space model.

Limitations of combinatorial approaches are the difficulty to consider the effect of

time on the system behaviour. On the other hand, the definition of a stochastic

process requires the definition of the state-space of the system that may be too large

to be solved. Moreover, both approaches suffer when general distributions of the

time of events are used to describe the system behaviour.

On the other hand Discrete Event Simulation (DES) has proven to be an effective

approach to retrieve measure of interest of large systems that present a complex

behaviour not easily caught by state-space models [35-40]. The methodology does

not suffer from the state explosion problem and can be effectively used in presence

of general distributions. The use of DES implies statistical analysis of the output like

design of experiments, hypothesis testing, statistical inference, analysis of variance

and regression models. The main question when using DES is how many simulation

runs are sufficient, a question that can be resolved depending on the level of accuracy

required. DES can represent in detail the system behaviour. However the main

drawback of the methodology is that the simulation time can be very costly (although

in some case variance reduction methods can be applied).

 Concepts of Reliability Engineering

1.6 CONCLUSION

In this chapter we have presented the principal concepts of Reliability

Engineering with particular focus on the modelling task and modelling

methodologies. We have introduced the three classes of models that will be described

in this dissertation: non state-space methods, state-space methods and hybrid

methods. Each of these methods present advantages and disadvantages. It is, then,

clear that the choice of the “right” technique is dictated several parameters

concerning the outputs of the analysis. Among these parameters we have:

- the nature of the measure of interest that we want to evaluate;

- the level of detail of description of the system behaviour that we want to

achieve;

- the convenience of the model specification and solution;

- the representation power of the model; and

- the access to suitable tools.

Following this parameterization, one should use non state-space models when the

measure of interest is not too “complex”, when the level of detail or the behaviour of

the system are tractable by combinatorial techniques, etc.. State-space models should

be used when the system is complex, when dependencies are present and the level of

detail is elevated.

The use of hybrid formalisms depend on the formalism itself. DFTs should be

used when we want to capture temporal and functional dependencies but their power

is limited when considering complex measure of interest or higher level of details. In

these case, therefore, one should use stochastic extensions of Petri nets. The choice is

furthermore dictated by the available tools.

Finally, regarding evaluation methods, DES should be used in the case of very

complex systems with very complex interactions, e.g., power networks, or in the case

when analytical models cannot solve systems too large or systems with general

distributions of the time of events.

 Concepts of Reliability Engineering

As we will see, however, in Chapter 5 a possible composition of more formalism is

possible, allowing to exploit the advantages of single modelling and evaluation

methods.

BIBLIOGRAPHY

[1] Kececioglu, D., 1991. Reliability Engineering Handbook, Prentice Hall, Inc.,

Englewood Cliffs, New Jersey.

[2] Misra, K.B., 2008. The Handbook of Performability Engineering. Springer.

[3] Misra, K.B., 1992. Reliability Analysis and Prediction: A Methodology Oriented

Treatment. Elsevier Science, Amsterdam.

[4] Laprie., J.C., 1985. Dependable computing and fault tolerance: concepts and

terminology. In Digest of FTCS-15; 2-11.

[5] Langford, J. W.,1995. Logistics: Principles and Applications. McGraw Hill.

[6] Vesely, W.E., Goldberg F.F., Roberts N.H. & Haasl D.F., 1981. Fault tree

handbook. U.S. Nuclear Regulatory Commission, Washington DC.

[7] Murphy, K.E. & Carter, C.M., 2003. Reliability Block Diagram Construction

Techniques: Secrets to Real-Life Diagramming Woes. In Proceedings Annual

Reliability and Maintainability Symposium-Tutorial Notes. Tampa, Florida.

[8] Chang, Y.R., Amari, S.V. & Kuo, S.Y., 2005. OBDD-based evaluation of

reliability and importance measures for multistate systems subject to imperfect

fault coverage. IEEE Transactions Dependable and Secure Computing; 2(4):

336-347.

[9] Malhotra, M. & Trivedi, K.S., 1995. Dependability modelling using Petri nets. In

IEEE Trans. on Reliability; 44:428-440.

[10] Sifakis, J., 1977. Use of timed Petri nets for performance evaluation. 3rd Int.

Symp.. Measuring, Modeling and Evaluating Computer System. Beliner and

Gelenbe, Editors; 75-95.

 Concepts of Reliability Engineering

[11] Hura, G.S., 1982. Petri nets as a modeling tool. Microelectronics and Rel;

22(3): 433-439.

[12] Molloy, M.K., 1982. Performance analysis using stochastic Petri nets. IEEE

Trans. on Rel.; 31(9): 913–917.

[13] Hura, G.S. & Etessami, F.S., 1988. The use of Petri nets to analysis coherent

fault trees. IEEE Trans. on Rel.; 37(5):469-474.

[14] Hura, G.S., 1993. Use of Petri nets for system reliability evaluation. In Misra

K.B., (Ed.) New Trends in System Reliability Evaluation. Elsevier; 339-364.

[15] Levitin, G., 2003. Reliability evaluation for acyclic transmission networks of

multi-state elements with delays. IEEE Transactions on Rel.;52(2):231-237.

[16] Levitin, G., 2003. Reliability of multi-state systems with two failure-modes.

IEEE Trans. on Rel.; 52(3):340-348.

[17] Amari, S., Dill, G., & Howald, E., 2003. A new approach to solve dynamic fault

trees. Annual Reliability and maintainability symposium; 374–379.

[18] Distefano, S., & Puliafito, A., 2007. Dynamic reliability block diagrams vs

dynamic fault trees. In Proceedings Annual Reliability and Maintainability

Symposium RAMS '07; 71-76.

[19] Marshall, A.W. & Olkin, I., 1967. A multivariate exponential distribution.

Journal American Statistical Association; 62:30-44.

[20] Balagurusamy, E. & Misra, K.B., 1976. Failure rate operating chart for parallel

redundant units with dependent failures. IEEE Trans. on Rel.; 25(2):122.

[21] Misra, K.B., 1992. Reliability analysis and prediction: A methodology oriented

treatment. Elsevier Science Publishers BV, Amsterdam.

[22] Geist, R. & Trivedi, K.S., 1990. Reliability estimation of fault-tolerant systems:

Tools and techniques. IEEE Computer, Special Issue on Fault-tolerant

Computing; 23:52-61.

 Concepts of Reliability Engineering

[23] Nielses, S.F., 2009. Continuous-time homogeneous Markov chains.

Copenhagen: University of Copenhagen - Department of Mathematical

Sciences.

[24] Boudewijn, R. Haverkort, 2002. Markovian Models for Performance and

Dependability Evaluation. Lectures on formal methods and performance

analysis. Spronger Verlang, New York.

[25] Bause, F. & Kritzinger, S.P., 1996. Stochastic Petri nets - an introduction to the

theory. Advanced Studies in Computer Science. Vieweg Verlagsgesellschaft.

[26] William J. Stewart., 1994. Introduction to the Numerical Solution of Markov

Chains. Princeton University Press, 41 William Street, Princeton, New Jersey

08540.

[27] Cinlar, E., 1969. Markov Renewal Theory. Advances in Applied Probability,

1(2): 123-187

[28] Glynn, P. W., 1989. A GSMP formalism for discrete-event systems. Proceedings

of the IEEE; 77:14-23.

[29] Trivedi, K.S. & Geist, R., 1983. Decomposition in reliability analysis of fault

tolerant systems. IEEE Trans. on Reliability; 32:463-468.

[30] Bavuso, S.J., Dugan, J.B., Trivedi, K.S., Rothmann, E.M. & Smith, W.E., 1987.

Analysis of typical fault-tolerant architectures using HARP. IEEE Trans. on

Reliability; 36:176-185.

[31] Boyd, M.A., Veeraraghavan, M., Dugan, J.B. & Trivedi, K.S., 1988. An

approach to solving large reliability models. Proc. of IEEE/AIAA 8th

Embedded Digital Avionics Conf.; 243-250.

[32] Trivedi, K.S., Dugan, J.B., Geist, R. & Smotherman, M., 1984. Modeling

imperfect coverage in fault-tolerant systems. Fault-Tolerant Computing Symp.

(FTCS) IEEE Computer Society; 77-82.

[33] Bouissou, M. & Bon, J.L., 2003. A new formalism that combines advantages of

fault-trees and Markov models: Boolean logic driven Markov processes. RESS;

149-163.

 Concepts of Reliability Engineering

[34] Sanders, W.H., & Meyer, J.F., 2002. Stochastic activity networks: Formal

definitions and concepts. Lectures on Formal Methods and Performance

Analysis. SpringerVerlag.

[35] Durga Rao, K., Gopika, V., Sanyasi Rao, V.V.S., Kushwaha, H.S., Verma,

A.K., & Srividya, A., 2009. Dynamic fault tree analysis using Monte Carlo

simulation in probabilistic safety assessment. Reliability Engineering and

System Safety; 94:872-883.

[36] Marsaguerra, M., Zio, E., Devooght, J., & Labeau, P.E., 1998. A concept paper

on dynamic reliability via Monte Carlo simulation. Mathematics and Computers

in simulation; 47:371-382.

[37] Marquez, A.C., Heguedas, A.S., & Iung, B., 2005. Monte Carlo-based

assessment of system availability. A case study for cogeneration plants.

RESS;88:273-289.

[38] Zio, E., Marella, M., & Podollini, L., 2007. A Monte Carlo simulation approach

to the availability assessment of multi-state systems with operational

dependencies. RESS; 92:871-882.

[39] Zio, E., Podofillini, L., & Levitin, G., 2004. Estimation of the importance

measures of multi-state elements by Monte Carlo simulation. RESS; 86:191-

204.

[40] Marseguerra, M., & Zio, E., 2004. Monte Carlo estimation of the differential

importance measure: application to the protection system of a nuclear reactor.

RESS; 86:11-24.

 Classic Reliability Models

CHAPTER 2

2.1 INTRODUCTION

In Chapter 1 we introduced two classes of reliability models: state-space and non

state-space models. In this chapter we present a review of the most known models for

reliability evaluation that belong to these classes. In Section 2.2 we will present two

of the most used non state-space models in Reliability Engineering: Reliability Block

Diagrams (RBD) and Fault Trees (FTs). In Section 2.3, among state-space models,

we will present the classes of stochastic processes mostly used in Reliability

Engineering; Markov Chains and generalizations. Advantages and disadvantages of

the revised modelling methodologies are discussed and finally in Section 2.4 we will

report some conclusions.

2.2 NON STATE-SPACE MODELS

In this section we describe the following models introduced in Chapter 1:

Reliability Block Diagrams (RBDs), Reliability Graphs (RG) and Fault Trees (FTs).

The modelling language is introduced together with the resolution techniques.

Finally we address the main limitations of these models.

 Classic Reliability Models

2.2.1 RELIABILITY BLOCK DIAGRAMS

Reliability Block Diagram (RBD) is a well known modelling methodology in

Reliability Engineering. RBD belongs to the class of non state-space models. RBDs

are usually solved by the mean of combinatorial evaluation methods [1,2]. They

make use of a very intuitive representation that results easy to implement and

analyze.

In RBDs each system component is represented by a block. Blocks are connected

following two kind of configurations: series and parallel.

- In a series configuration, the failure of one component causes the failure of

the system; while

- in a parallel configuration all the N components belonging to the parallel

structure must be failed for the system to fail.

Mixed architectures are allowed combining together series and parallel structures.

In the case of more complex architecture, e.g., bridge connections, we refer to

Reliability Diagrams. In the latter case the topology of the system is said complex [1]

and it is not resolvable with the traditional methods used in RBDs.

Another possible configuration in RBDs is the k/N structure; that is a parallel

configuration where k out of N block are required to be operating.

In RBD a block can be viewed as a switch that is closed when the block is

operating and open when the block has failed. In fact only two states, i.e., failed and

operating, are used to describe the state of a component. The system is operational if

a path of closed switches is found from the input to the output of the diagram.

Definition 2.1 (Reliability Block Diagram). A RBD is a 4-tuple M = (C, L, N, J)

where:

- C, is the set of blocks;

- L, is the set of connections existing between blocks;

- N, is the set of nodes. For each diagram is given at least an input and an output

node.

 Classic Reliability Models

- J, is the set of connection relation such that:

i. N x L x C, is the connection relation with respect to the input node;

ii. C x L x N, is the connection relation with respect to the output

node;

iii. C x L x C, is the connection relation between blocks.

2.2.1.1 RBD EVALUATION METHODS

To solve a RBD by the mean of combinatorial or order statistics the following

hypothesis are made [3]:

- failure of individual components are assumed to be independent;

- at the initial time all the components are assumed to be operating;

- any block can be either failed or operating;

- only active redundancies are allowed, e.g., no warm/cold stand-by.

Serial-parallel reduction algorithms are used to solve a diagram with series

parallel structures. For a series system made up of independent components we can

use the product low of reliabilities to retrieve the reliability of the system. Let

denote that the i-th component of the RBD is operating and its reliability.

Then the series system reliability is given by (under the assumption of

independency):

. (2.1)

For a parallel system configuration we have (product law of unreliabilities):

. (2.2)

In 2.1 and 2.2 reliability is treated as a probability instead of a function of time

(Figure 2.1). In fact 2.1 and 2.2 are a special case of order statistic.

 Classic Reliability Models

Order statistics is useful when considering k/N configurations in the case that all

the time to failure of the components in the structure are independent and identically

distributed random variables (although generalization is also possible).

Fig. 2.1. Reliability of common RBD structures.

Let be N independent and identically distributed random variables with

the same distribution function F and the same density f. Let be N

independent random variables obtained by permuting the set so that

they are in increasing order. The random variable is called the k-th order statistic.

To derive the distribution of we first note that the probability that a given is

less than or equal to y is . So the probability that exactly j of ’s lie in

and (n-j) in is given by the binomial probability mass function

. Hence, is less than or equal to y, if k of the ’s are less

than or equal to y. Thus, the cumulative density function of is given by

 and the reliability of a k/N parallel RBD is given by:

 Classic Reliability Models

. (2.3)

Function of random variables can be used to retrieve a closed form for the above

relations. For instance to evaluate the reliability at time t in the case of a series

configuration we can introduce the random variable , where is the

random variable that represents the time to failure of the i-th component of the series

RBD. Then the reliability of the systems is given by .

At the same way for a parallel system, introduced the random variable

, we can evaluate the reliability of the system by .

Assuming independence we retrieve again solution of the kind of 2.1 and 2.2.

However this methodology is very expensive and leads to very complicated

formulations even in the case of exponential distribution functions. For instance in

the case of the k/N configuration made of independent and identically distributed

exponential random variables these leads to a hypo-exponential distribution with

parameters while in the case the random variables are not

identically distributed the resulting distribution is very complex.

Joint distributions, and convolution in the case of sum of independent random

variables, can be used to model warm, cold and hot stand-by redundancy although

the use of state space models, where possible, would facilitate the evaluation of the

measure of interest.

2.2.1.2 ADVANTAGES AND DISADVANTAGES OF RBD

The main advantages of RBDs are the easy implementation and resolution as well

as the peculiarity of representing the reliability structure of the system. However,

when more complex structures are considered, i.e., Reliability Graphs, techniques

like state enumeration (Boolean true table), factoring and conditioning and Binary

Decision Diagrams (BDDs) should be used.

- Boolean true table requires to enumerate all the states and for each of them

evaluate the operability of the system. For those state where the system is

operating probabilities are evaluated and summed together using Boolean

 Classic Reliability Models

algebra. BDDs can be seen as the graphical representation of the truth table

and give an efficient way to build it.

- Factoring and conditioning requires the definition of a condition, i.e.,

working or failed, on a specific block so that it can be eliminated from the

graph. In this way the resulting graph is made of only series and parallel

configuration. By the mean of the theorem of the total probability the

reliability of the system is evaluated taking the reliabilities evaluated with the

imposition of the conditions.

Reliability Graphs represent the generalization of RBDs and many combinatorial

models can be converted into RGs (Figure 2.2). As RDBs consist of nodes and edges,

where edges represent components that can fail. There is always a source (input node

of the diagram) and a sink (output node of the diagram). They are often referred as a

non-series-parallel RDBs and are used in network reliability problems.

Figure 2.2. Example of Reliability Graphs and solutions.

The main drawback of RBDs is that the methodology cannot tackle dependencies

between the modelled elements. As said before, the independence assumption of the

time to failure of components must be respected for the evaluation methods to be

 Classic Reliability Models

applied. These constrains are overcome in Dynamic Reliability Block Diagram

(DRBD). We will discuss them shortly in Chapter 3 among the hybrid reliability

models.

2.2.2 FAULT TREE ANALYSIS

Fault Tree Analysis (FTA) was developed in 1962 at Bell Telephone Laboratories

in the analysis of the launch control system of the intercontinental Minuteman

missile [4]. It was later adopted, improved, and extensively applied to many different

contexts, so that, FTA has become one of the most widely used techniques for

system reliability and safety assessments. Therefore, different forms of FTs,

including static, dynamic, parametric and extended have been proposed [5,6,7].

FTA is an analytical technique, where on the basis of an undesired event (the

system failure) all combinations of basic events (BE) that will lead to the occurrence

of the predefined event (or top event TE) are defined [8].

BEs represent basic causes for the TE; examples are: component failures, human

errors, environmental conditions, etc. In first instance a FT is a graphical

representation of logical relationships between the TE and the BEs. More generally

can be defined as a framework for the assessment of system properties such as

reliability, availability and other measures of interest.

To build a FT we start with the failure scenario being considered, and decompose

the failure symptom into its possible causes. Each possible cause is then investigated

and further refined until the basic causes of the failure are understood. For more

details, one can refer to [9,10]. The failure scenario to be analyzed is normally called

the TOP event of the fault tree. The basic causes are the basic events of the fault tree.

The fault tree should be completed in levels, and they should be built from top to

bottom. However, various branches of a fault tree can be built to achieve different

levels of granularity.

Definition 2.2 (Fault Tree). A FT is a 4-tuple M = (TE, BE, G, R) where:

- TE, is the top event or the top node of the FT;

 Classic Reliability Models

- BE, is the set of basic events or lower level nodes;

- G, is the set of Boolean gates, i.e., a function of Boolean variables that return

a Boolean value;

- R, is the set of connection relations between the elements of BE and G, the

elements of G and the elements of G and TE.

More details of these elements and their graphical representation can be found in

[11,12,13].

2.2.2.1 STRUCTURE FUNCTION

To solve FTs we can make use of the concept of the complement to the structure

function and of the polynomial algorithm presented for RBDs. The structure function

defines whether the system is operating or less on the basis of the state of its

components. In the case of a FT the structure function is represented in term of the

logical gates that propagate the failure of the BEs up to the TE. Given the state vector

 where takes on value 1 if the i-th component is working and 0

if failed, the structure function is defined as

 . (2.4)

In case of repeated events Boolean algebra can be used to retrieve the set of

minimal cut set (MCS), i.e., the minimum set of events that leads to the occurrence

of the TE, and use the method of the sum of disjoint products to evaluate the

unreliability. This is necessary since the terms in the MCS are not mutually

exclusive. While a FT without repeated events can be solved in nearly polynomial

time, the complexity of a FT with repeated events is exponential with the number of

BEs.

2.2.2.2 QUALITATIVE ANALYSIS

Qualitative analysis is usually based on the analysis of Minimal Cut-Sets (MCSs).

A Cut-Set (CS) is a set of BEs whose occurrence leads to the occurrence of the TE.

A MCS is a CS without redundancy. MCSs are evaluated applying a top-down

 Classic Reliability Models

approach. Starting from the top gate (the gate connected to the TOP event of the fault

tree), CSs are built by considering the gates at each lower level. AND gates are

replaced by a list of all its inputs (i.e., intersection or product of lower level

elements). In OR gates the occurrence of any input can activate the gate. In this case

the CS is split into several CSs, one containing each input to the OR gate (i.e., union

or sum of lower level elements). Possible results from the qualitative analysis based

on MCSs include:

- combinations of component failures that may result in a critical event in the

system (the individual minimal cut set);

- single components whose failure leads to the system failure (singleton CS);

- focus on specific components (considering MCSs that contain the component

of interest).

Qualitative results are thus useful to identify conditions that might lead to the

system failure. In this way one can take proper preventive measures can plan specific

reactive measures.

2.2.2.3 QUANTITATIVE ANALYSIS

Based on the evaluation of the MCSs from a FT the probability of occurrence of

the TE can be simply retrieved as the probability that all the basic events in one or

more MCSs will occur [9,10,14].

Let denote the N MCSs derived from a FT. The probability of

occurrence of the TE, is given by:

. (2.5)

Generally, MCSs are not disjoint. Thus, the probability of the union in (2.5) is not

equal to the sum of the probabilities of the individual MCSs. Several methods exist

for the evaluation of (2.5) [9,10, 14]. Among them we describe the sum of disjoint

products (SPD), where the solution is retrieved making disjoint MCSs using Boolean

algebra. We have:

 Classic Reliability Models

, (2.6)

where represents the negation of . Thus can be evaluated substituting

(2.6) into (2.5) applying the property of the probability of the union of disjoint

events.

Another solution technique, efficient for the evaluation of large FTs are Binary

Decision Diagrams (BDD). The reader may refer to [15,16,17,18,19,20,21] for a

complete definition of BDD and their application to FTs.

In some circumstance FTs are solved via Discrete Event Simulation. This can be

due to very large FTs (where the evaluation of MCSs can be troublesome) or because

to the use of “exotic” gates like in the case of non-coherent FTs. In this case, the time

to failure of each BE is first sampled and compared with the mission time. If the time

to failure of the component is less than the mission time, the component is regarded

as failed. Once that all the components state have been defined the tree is evaluated

bottom-up in order to assess the occurrence of the TE.

2.2.2.4 COMPARISON WITH RBD

The most fundamental difference between FTs and RBDs is that RBDs are a

success-oriented, while FTs are failure-oriented. Specifically, in an RBD, one works

in the “success space” and thus looks at system success combinations, whereas in a

fault tree one works in the “failure space” and thus looks at system failure

combinations. In most cases, we may convert a fault tree to an RBD or vice versa.

Particularly, the conversion is possible for all static coherent structures. In the

conversion from a fault tree to an RBD, we start from the TOP event of the fault tree

and replace the gates successively. A logic AND-gate is replaced by a parallel

structure of the inputs of the gate, and an OR gate is replaced by a series structure of

the inputs of the gate. In the conversion from an RBD to a fault tree, a parallel

structure is represented as a fault tree where all the input events are connected

through an AND-gate, and a series structure is represented as a fault tree where all

the input events are connected through an OR-gate.

 Classic Reliability Models

The modelling capabilities of FTs and RBDs have been enhanced in order to

support a wide range of scenarios. In non-coherent FTs new gates were introduced,

e.g., XOR, NOR etc.. A non-coherent FT is characterized by inverse gates besides

logic gates used in coherent fault trees. In particular, it may have Exclusive-OR and

NOT gates. A non-coherent fault tree is used to describe failure behaviour of a non-

coherent system, which can transit from a failed state to a good state by the failure of

a component, or transit from a good state to a failed state by the repair of a

component. Non-coherent systems are typically prevalent in systems with limited

resources, multi-tasking and safety control applications. They are often used to

accurately analyze disjoint events [19], dependent events [20], and event trees [6].

These relationships cannot be modelled by a RBD. Thus, FT are capable to

capture more complex relations than RBDs. Similarly, there are some other

enhancements to RBDs that are not available in FTA, i.e., Reliability Graphs. Hence,

it is not always possible to convert all fault trees into equivalent RBDs and vice

versa.

2.2.2.5 ADVANTAGES AND DISADVANTAGES OF FT

The main advantages of FTs rely on the graphical representation of the causes of

occurrence of the TE, the possibility of investigating the weakness in the system and

the possibility of using the methodology in the design phase in order to support the

decision of the best system configuration.

As for RBD, disadvantages of FT rely on the fact that is not possible to tackle

dependencies between the modelled elements, temporal logics, finite maintenance

resources, etc.. Moreover measure of interest like reliability with repairs cannot be

evaluated. In these case state-space methods should be used. Availability can be

evaluated in the case the availability of components are first derived. However, also

the availability of components is often evaluated by the mean of state-space methods.

 Classic Reliability Models

2.3 STATE-SPACE MODELS

State-space methods are based on the stochastic process that define the behaviour

of a system. In this section we give the definition of the most common stochastic

processes used in Reliability Engineering. A more complete argumentation of the

concepts described in this section can be found in [22-26].

Definition 2.3 (Stochastic Process). A stochastic process is a family of random

variables , defined on a given probability space.

The set of all possible values that random variables can take is called the state

space. If the state space of a stochastic process is discrete, it is called a discrete state

process; otherwise it is said a continuous state-space. A stochastic process can be

continuous or discrete with respect to the parameter set T. It is continuous if T is

continuous, otherwise it is said discrete.

Denoted with the finite dimensional joint distribution of a

stochastic process , we have that if satisfies:

, (2.7)

for , the stochastic process is called an independent process.

Although it is easy to study, most real life processes do have some dependencies

among these random variables. The most important and most common one is the

first-order dependency, which is known as Markov dependency.

Definition 2.4 (Markov Process). A stochastic process is called a

Markov process if for any , the conditional distribution of

 for given values of depends only on ; that is

. (2.8)

The next state of a Markov process may only depend on the current state. No

information about the prior sequence of states visited could affect the next transition.

If the state space is discrete, we call such a stochastic process a Markov chain. If the

parameter t is continuous it is said a Continuous time Markov chains (CTMC), if

discrete a Discrete Time Markov Chain (DTMC).

 Classic Reliability Models

The transition behaviours are characterized by transition rates or transition

probabilities for CTMC and DTMC, respectively.

In many practical problems, the time origin does not matter, i.e., only the time

elapsed decides the chain behaviour. Such kinds of Markov chains are time

homogeneous, which means:

. (2.9)

It is shown [27] that the sojourn time of a homogeneous continuous time Markov

chain is exponentially distributed (memoryless property). The probability that the

process stays in state i at time given it was in state i at time only depends

on state i, but does not depend on how much time it has spent in state i.

An extension of Markov process is that transition rates not only depend on the

current state, but also the duration the process spends in that state may depend on the

particular transition. The Markov property still holds at the time of entry (exit) to

(from) a states. Such a process is called a semi-Markov process. Before defining

SMP we need to introduce some fundamental stochastic processes.

Definition 2.5 (Renewal Sequence and Renewal Process). is said to

be a renewal sequence and a renewal process generated by

if is a sequence of independently and identically distributed non-

negative random variables, where:

, (2.10)

, (2.11)

. (2.12)

The random variable is the time interval between the successive arrivals

and n. The same (probabilistically exact) process is repeated at each time epoch .

 is the absolute time of the n-th arrival. is the total number of arrivals at time

t.

 Classic Reliability Models

Definition 2.6 (Markov Renewal Sequence and Markov Renewal Process).

 is said to be a Markov renewal sequence with state space I if for all

n 0 and i, j I, the following property holds:

 (2.13)

.

The stochastic process is a Markov renewal process, where:

, (2.14)

, (2.15)

. (2.16)

 is the number of times state j is visited by time t, is total number of state

changes at time t. In Markov renewal process the processes over each interval are not

independent, but have one-order dependency. In this case the future evolution of the

stochastic process depends on the current state of the process at Markov renewal

points. Thus, in Markov renewal process, we are only interested in the states changes

at time epochs ’s.

Definition 2.7 (Semi-Markov Process). Given a Markov renewal sequence

 with state space I, the stochastic process is called a semi-

Markov process with state space I if for . In a SMP the

sample path is piecewise constant and right continuous. Jumps only happen at the

Markov renewal points. The inter-arrival times are generally distributed.

Definition 2.8 (Markov Regenerative Process). A stochastic process

 is called a Markov regenerative process (MRGP) if there exists a Markov renewal

sequence of random variables such that all the conditional finite

dimensional distributions of given are

the same as those of given .

 Classic Reliability Models

A Markov regenerative process is also constructed from the Markov renewal process

(as SMP). Each is a Markov regenerative point because the stochastic process

evolution from that point on is independent of the history before it.

The difference between SMP and MRGP is that in SMP no state change occurs

between successive Markov regenerative points, but for Markov regenerative

process, the stochastic process between and could be any continuous-time

stochastic process. Hence, in MRGP the sample paths are no longer piecewise

constant.

Like semi-Markov processes, Markov regenerative process allows non-exponentially

distributed firing time transitions, but it is an even more general process. If a

transition t is the only transition out of state i, t is called an exclusive transition. A

transition t is said to be competitive with respect to another transition t’ if both t and

t’ can occur in state i and the firing of t disables t’. If the firing of t does not disable t’,

t is said to be concurrent with t’. Semi-Markov chains do not allow concurrent

transitions, while the MRGP just defined can have all these types of transitions.

Definition 2.9 (Generalized Semi Markov Process). A stochastic process

 is called a Generalized Semi Markov Process (GSMP) if there is not

any restriction on the kind of distribution associated with the sojourn time in a state

and there can be more than one concurrent transition enabled in a state.

Strictly speaking, GSMPs are not Markov chains because they lack the memoryless

property. In [28] each state of a GSMP is characterised as a set of active elements,

each of which has an associated lifetime. When an active element completes a state

change occurs but the residual lifetime of all the interrupted elements, if still enabled,

are maintained.

Analytical treatment of GSMP becomes viable under restrictions on number of

concurrent enabled non-exponential transitions. Under the enabling restriction,

which assumes that at most one generally distributed transition is enabled in any

state, activity cycles of generally distributed transitions never overlap. In this case,

the model underlies a Markov Regenerative Process (MRGP) which regenerates at

 Classic Reliability Models

every change in the enabling status of non-exponential timed transitions

[29,30,31,32].

The analysis of a model with multiple concurrent generally distributed transitions has

been formulated with the introduction of supplementary variables [32,33,34]. In this

theory the logical state is extended. It is a vector that record of ages of generally

distributed enabled transitions. However, practical solution is limited to one or two

concurrently enabled non-exponential distributions, thus falling again within the

limits of the enabling restriction typical of MRGP [35]. Some work where the limit

of the enabling restriction is overcome can be found in [36,37] but only for the case

where all timed transitions are either exponential or deterministic. In [38,39,40] state

classes are used to manage the case of multiple concurrent generally distributed

transitions. In [41] the approach is extended in order to support derivation of

continuous time transient probabilities. However, in these works only expolynomial

distributions are considered.

In the most general settings GSMP are used as a mean to define Discrete Event

Simulation (DES) models [42]. In fact, the above mentioned methods, beside the

limitations of concurrently enabled transitions as well as the limitations of the kind of

supported distributions, suffer from computational limits that make the solution

possible only for small systems.

2.4 CONCLUSION

In this chapter we have described some of the most known methodologies used in

Reliability Engineering. Non-state space models as RBD and FT are probably the

most well known methodologies in reliability evaluation. They are simple to use and

allow to specify a system in term of its requirements. As we have seen, however,

their application is limited to systems with the following characteristics:

- components must be independent;

- components can be only in two possible states, working or failed;

 Classic Reliability Models

- stand-by policies, shared loads, finite resource maintenance, detection

systems cannot be modelled;

- failure logics are limited to the kind of relations admitted by the formalisms;

- it is not possible to evaluate measure of interest like reliability with repair and

availability;

- time of events and temporal ordering are not explicated in the formalism.

State-space models, on the other hand, overcome the limits of non state-space

models. They allow to model complex systems and evaluate various kind of measure

of interest.

However, Markov Chains and generalizations are flat structures that are difficult to

design and understand. Many complicated systems result in Markov chains that are

over a few million states in size; it is impossible to derive a Markov chain by hand.

Therefore, Markovian models are typically constructed from some other high-level

formalism.

The hybrid formalism presented in the next sections try to alleviate this problem.

We will describe two kind of formalism. The ones derived from non state-space

models like Dynamic Fault Tree (DFT) extend the modelling capabilities of FTs and

use a state-space based low level representation for the solution of the model.

On the other hand, methodologies like stochastic extensions of Petri nets use an

approach similar to the one used in state-space models but abstract these models by

the mean of objects that allow the composition of reduced models obtained for the

different parts of the system.

Moreover, since Petri nets allow to solve a system via simulation, they are able to

overcome problems of state-space models as the know issue of the explosion of the

state-space and the possibility to solve systems whose underlying process fall in the

class of GSMP.

 Classic Reliability Models

BIBLIOGRAPHY

[1] Murphy, K.E. & Carter, C.M., 2003. Reliability Block Diagram Construction

Techniques: Secrets to Real-Life Diagramming Woes. In Proceedings Annual

Reliability and Maintainability Symposium-Tutorial Notes. Tampa, Florida.

[2] Sahinoglu, M., Ramamoorthy, C.V., Smith, A.E. & Dengiz, B., 2004. A

Reliability Block Diagramming Tool to Describe Networks. In IEEE, ed.

Reliability and Maintainability Symposium. Los Angeles.

[3] Birolini, A., 2003. Reliability Engineering. Springer.

[4] Watson, H.A., 1962. Launch Control Safety Study. BELL Telephone

Laboratories. WG 10.4.

[5] Dugan, J.B., Bavuso, S.J. & Boyd M.A., 1990. Fault Trees and sequence

dependencies. In: Proceedings of the annual reliability and maintainability

symposium; 286-93.

[6] Codetta-Raiteri, D., 2011. Integrating several formalisms in order to increase

Fault Trees’ modeling power. Reliab Eng Syst Safety.

[7] Codetta-Raiteri, D. & Portinale, L., 2010. ARPHA: an FDIR architecture for

Autonomous Spacecrafts based on Dynamic Probabilistic Graphical Models.

TECHNICAL REPORT TR-INF-2010-12-04-UNIPMN.

[8] Lee, W.S., Grosh, D.L., Tillman, F.A. & Lie, C.H., 1985. Fault Tree Analysis,

Methods, and Applications - A Review. IEEE Transactions on Reliability; 194-

203.

[9] Misra, K.B., 1992. Reliability analysis and prediction: a methodology oriented

treatment. Elsevier, Amsterdam.

[10] Shooman, M.L., 1990. Probabilistic reliability: an engineering approach (2nd

Edition). McGraw- Hill, New York.

[11] Vesely, W.E., Goldberg F.F., Roberts N.H. & Haasl D.F., 1981. Fault tree

handbook. U.S. Nuclear Regulatory Commission, Washington DC.

 Classic Reliability Models

[12] Dugan, J.B. & Doyle, S.A., 1997. New results in fault-tree analysis. Tutorial

Notes of the Annual Reliability and Maintainability Symposium.

[13] NASA, 2002. Fault tree handbook with aerospace applications. NASA Office

of Safety and Mission Assurance, Washington DC.

[14] Henley, E.J. & Kumamoto, H., 1992. Probabilistic risk assessment. IEEE Press,

New York.

[15] Chang, Y.R., Amari, S.V. & Kuo, S.Y., 2005. OBDD-based evaluation of

reliability and importance measures for multistate systems subject to imperfect

fault coverage. IEEE Transactions Dependable and Secure Computing; 2(4):

336-347.

[16] Kuo, S., Lu, S. & Yeh, F., 1999. Determining terminal-pair reliability based on

edge expansion diagrams using OBDD. IEEE Transactions on Reliability;

48(3): 234-246.

[17] Xing, L. & Dugan, J.B., 2002. Analysis of generalized phased-mission systems

reliability, performance and sensitivity. IEEE Transactions on Reliability; 51(2):

199-211.

[18] Xing, L., 2004. Fault-tolerant network reliability and importance analysis using

binary decision diagrams. Proceedings of the 50th Annual Reliability and

Maintainability Symposium, Los Angeles, CA.

[19] Yeh, F., Lu, S. & Kuo, S., 2002. OBDD-based evaluation of k-terminal network

reliability. IEEE Transactions on Reliability; 51(4): 443-451.

[20] Zang, X., Sun, H. & Trivedi, K.S., 1999. A BDD-based algorithm for reliability

analysis of phased mission systems. IEEE Transactions on Reliability; 48(1): 50-

60.

[21] Zang, X., Wang, D., Sun, H. & Trivedi, K.S., 2003. A BDD based algorithm for

analysis of multistate systems with multistate components. IEEE Transactions on

Computers; 52(12): 1608-1618.

 Classic Reliability Models

[22] Nielses, S.F., 2009. Continuous-time homogeneous Markov chains.

Copenhagen: University of Copenhagen - Department of Mathematical

Sciences.

[23] Boudewijn, R. Haverkort, 2002. Markovian Models for Performance and

Dependability Evaluation, Lectures on formal methods and performance

analysis. Spronger Verlang, New York.

[24] Bause, F. & Kritzinger, S.P., 1996. Stochastic Petri nets - an introduction to the

theory. Advanced Studies in Computer Science. Vieweg Verlagsgesellschaft.

[25] William J. Stewart., 1994. Introduction to the Numerical Solution of Markov

Chains. Princeton University Press, 41 William Street, Princeton, New Jersey

08540.

[26] Cinlar, E., 1969. Markov Renewal Theory. Advances in Applied Probability,

1(2): 123-187.

[27] Sahner, R.A., Trivedi, K.S. & Puliafito, A., 1995. Performance and Reliability

Analysis of Computer Systems: An Example-Based Approach Using the

SHARPE Software Package. Kluwer Academic Publishers.

[28] Hillston, J. & Pooley, R. Stochastic Process Algebras and their Application to

Performance Modelling. URL:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.819

[29] Choi, H, Kulkarni, V. G. & Trivedi, K.S., 1994. Markov Regenerative

Stochastic Petri Nets. Perf. Eval.; 20: 337-357.

[30] Ciardo, G., German, R. & Lindemann, C., 1994. A characterization of the

stochastic process underlying a Stochastic Petri Net. IEEE Trans. Software.

Eng.: 20(7): 506-515.

[31] Bobbio, A. & Telek, M., 1995. Markov Regenerative SPN with non-overlapping

activity cycles. Int. Computer Performance and Dependability Symp. - IPDS95;

124-133.

 Classic Reliability Models

[32] German, R. & Lindemann, C., 1994. Analysis of Stochastic Petri Nets by the

method of supplementary variables. In Performance Evaluation; 20:317-335.

[33] Cox, D., 1955. The analysis of non-markovian stochastic processes by the

inclusion of supplementary variables. Proceedings of the Cambridge

Phylosophical Society; 51:433-440.

[34] Telek, M. & Horvath, A., 1998. Supplementary variable approach applied to the

transient analysis of age-MRSPNs. In Proc. Int. Performance and Dependability

Symp.; 44-51.

[35] German, R. & Telek, M., 1999. Formal relation of Markov renewal theory and

supplementary variables in the analysis of Stochastic Petri Nets. In Proc. 8

International Workshop on Petri Nets and Performance Models; 64-73.

[36] Lindemann, C. & Schedler, G.S., 1996. Numerical analysis of Deterministic and

Stochastic Petri Nets with concurrent deterministic transitions. Performance

Evaluation, vol. 27-28: 565-582.

[37] Lindemann, C. & Thuemmler, A., 1999. Transient analysis of Deterministic and

Stochastic Petri Nets with concurrent deterministic transitions. Performance

Evaluation, vol. 36-37:35-54.

[38] Bucci, G., Piovosi, R., Sassoli, L. & Vicario, E., 2005. Introducing probability

within state class analysis of dense time dependent systems. Proc. of the 2 Int.

Conf. on the Quant. Evaluation of Sys.(QEST).

[39] Carnevali, L., Sassoli, L. & Vicario, E., 2009. Using stochastic state classes in

quantitative evaluation of dense-time reactive systems. IEEE Trans. on Soft.

Eng.

[40] Horvath, A. & Vicario, E., 2009. Aggregated stochastic state classes in

quantitative evaluation of non-markovian stochastic Petri nets. In Proc. of 6th

International Conference on the Quantitative Evaluation of Systems (QEST),

Budapest, Hungary.

[41] Horvath, A. Ridi, L., & Vicario, E., 2010. Transient analysis of generalised

semi-Markov processes using transient stochastic state classes. Seventh

 Classic Reliability Models

International Conference on the Quantitative Evaluation of Systems

Williamsburg, VA, USA.

[42] Glynn, P. W., 1989. A GSMP formalism for discrete-event systems. Proceedings

of the IEEE; 77:14–23.

 Hybrid Formalisms

CHAPTER 3

3.1 INTRODUCTION

The two formalism introduced in Chapter 2, RBD and FT, although well known

and widely used in Reliability Engineering, are limited in their modelling

capabilities. They cannot be developed to model systems with interactions, stochastic

associations or sequential relationships. Examples are: load-sharing, standby

redundancy, interferences, dependencies, common cause failures, etc.

These lacks in system reliability modelling notations have awakened the scientific

community to the need of new formalisms. An approach that has been adopted is to

extend the existing formalisms with new elements to model the (uncovered) aspects.

This resulted in the creation of hybrid formalisms that make use of a high level

model of description that is then converted in a state-space based model.

In this chapter we review two class of hybrid formalisms: the ones that are an

extension of non state-space models, i.e., FT and RBD, and the ones that are defined

as stochastic extensions of Petri nets.

Dynamic Fault Trees (DFTs) were one of the first methodology that was

developed in the context of hybrid modelling [1,2,3]. DFT extend FT to enable

modelling of time dependent failures by introducing new dynamic gates and

elements. DFTs were introduced due to the fact that the traditional static fault trees

 Hybrid Formalisms

with AND, OR, and Voting (k-out-of-N) gates cannot capture the dynamic behaviour

of system failure mechanisms. In order to include these kind of behaviours in the FT

terminology, dynamic gates were introduced, generating the DFT formalism. In their

first formulation DFT were solved via conversion in CTMCs, but in recent literature

other approaches have been reported [4-12].

In the same way RBD were also extended into Dynamic RBD (DRBD) [13].

DRBD formalize the concepts of state, event and dependence, providing a logic

infrastructure to define several dynamic reliability behaviours. Many similarities link

DFT to DRBD, but, at the same time, one of the aims of DRBD is to extend the DFT

capabilities in dynamic behaviour modelling. In fact, many conditions modelled by

DRBD elements do not have a correspondent in the DFT domain.

Another methodology that has been increasing its popularity is Boolean Driven

Markov Process (BDMP) [14]. This approach makes use of an extended FT at the

high level that include new kind of objects called triggers. Moreover the leafs of the

tree are modelled by CTMC extending the modelling capabilities of the modes of

failure of components.

The direct specification of a CTMC at the level of individual states and state-to-

state transitions is tedious and error prone and therefore only feasible for very small

models. This motivated researchers to develop high level specification formalisms

for defining Markovian models at a level of abstraction which is more convenient for

the human modeller. The most popular of these formalisms are stochastic Petri nets

[15].

Stochastic Petri nets (SPN) were developed in the 1980s for modelling complex

synchronisation schemes. The modelling primitives of Petri nets (places, transitions,

markings) are very basic and do not carry any application specific semantics. For that

reason Petri nets are universally applicable and very flexible as it is reflected by their

successful application in different areas.

In the class of generalised SPNs (GSPN) transitions are either timed or immediate

[16]. Timed transitions are associated with an exponentially distributed firing time,

while immediate transitions fire as soon as they are enabled. During the analysis of a

 Hybrid Formalisms

GSPN the “Reachability Graph” is generated and the so called “vanishing markings”,

which are due to the firing of immediate transitions, are eliminated. The result is a

CTMC whose analysis yields steady-state or transient-state probabilities, i.e., the

probabilities of the individual net markings from which high level measures can be

computed.

With the help of high-level model specification formalisms considered so far it is

possible to specify larger CTMCs than at the state level, but these formalisms do not

support the concepts of modularity hierarchy or composition of sub-models. As a

result the models are monolithic and may be difficult to understand and debug.

Moreover state space generation and numerical analysis of very large monolithic

CTMCs is often not feasible in practice due to memory and CPU time limitations

which is referred to as the notorious state space explosion problem.

In the basic GSPN formalism a model consists of a single net which covers the

whole system to be studied. Therefore GSPN models of complex systems tend to

become very large and confused and suffer from the state space explosion problem.

Stochastic activity networks (SAN) constitute an approach to the structuring of

GSPNs through the sharing of places between different subnets [17]. In the presence

of symmetric sub-models they tackle the state space explosion problem by directly

generating a reduced Reachability Graph in which all mutually symmetric markings

are collapsed into one.

The remainder of this chapter is organized as follow. In Section 3.2 we give a

brief introduction of Dynamic Fault Trees and related methodologies like DRBD and

BDMP. In Section 3.3 stochastic extension of Petri nets are introduced with

particular attention to the description of the SAN formalism. Advantages and

disadvantages of the revised methodologies are discussed and finally in Section 3.4

we report some conclusion.

3.2 DYNAMIC FAULT TREES

Traditional FT cannot capture the dynamic behaviour of the system failure

mechanisms associated with sequence-dependent events, spares and dynamic

 Hybrid Formalisms

redundancy management, and priorities of failure events. For this reason, many

modellers turned to Markov chains for reliability assessment of safety-critical

systems. In addition to their computational complexity, a major disadvantage of

Markov chains is that the correct Markov model for a given system is difficult to

determine. In order to overcome this difficulty, the concept of Dynamic Fault Trees

is introduced by adding sequential notion to the traditional fault tree approach

[1,2,3].

In practice, the failure criteria of a system may depend on both the combinations

of fault events and sequence of occurrence of input events. This is done by

introducing dynamic gates into fault trees. With the help of dynamic gates, modellers

can specify the system sequence-dependent failure behaviour using dynamic fault

trees that are compact and easily understood.

The modelling power of DFT has gained the attention of reliability engineers

working on safety critical systems. Therefore, these gates are not only used in

research-oriented projects, but also recently introduced in commercial tools for fault

tree evaluation, eg, Relex [18].

3.2.1 DFT OBJECTS AND ASSUMPTIONS

A DFT is a stochastic model for the reliability evaluation that synthesizes the

ways how an undesired and time dependent event can occur. As a Fault Tree (FT), a

DFT is composed by a top gate which represents the most undesired event (TE, top

event) and a certain number of lower level gates and basic events (BEs) that,

combined according with the logic of the fault scenario, cause the occurrence of the

TE.

The main hypotheses for the use of the DFT are that (i) events are binary and (ii),

according to many authors [1,2,3], components are not repairable. Thus, the main

difference with FT is that DFT were not conceived to evaluate availability but are

appropriate to evaluate the reliability of model characterized by complex stochastic

dependencies. The possibility to model complex interactions with the graphical

symbolism of the FT has encouraged the development of dynamic models but, in

point of the fact, DFT has shown many issues for what concern their resolution.

 Hybrid Formalisms

The reason of this anomaly has to be traced in the lack of a rigorous semantic

language that has caused the proliferation of several and variegated techniques of

resolution that resort to an equivalent stochastic model [1-12]. At the state of the art,

an analytical solution exists only if another hypothesis is added to the previous ones:

BEs have to be described by the exponential distribution. In this way, it is possible to

convert a DFT into a state-space model and solve it within the domain of the Markov

processes.

Unfortunately the mentioned hypotheses can result too restrictive, especially for

real industrial applications characterized not only by exponentially distributed time

to fail but also by Weibull, Gaussian or lognormal probability distribution.

Therefore, the reliability evaluation of systems that present generalized functions of

probability is not possible with the analytical Markov processes and, at the state of

the art, the more effective solution is the simulation [9,19].

In general, all the previous techniques of resolution (analytical and simulative)

have been implemented in several software applications for reliability analysis

[5,6,8,19] but, despite that, the real effectiveness of these tools is still questionable

because none of them can be used to design and solve “complex DFT” in a

straightforward manner. A synthesis of the main features of some automated tools

that we have tested can be found in Appendix A.

3.2.2 DYNAMIC GATES

In this section we give a brief description of the dynamic gates of DFTs (Figure

3.1).

3.2.2.1 FUNCTIONAL DEPENDENCY GATE

A functional dependency gate (FDEP) consists of a trigger event and a set of

dependent events. The dependent basic events are functionally dependent on the

trigger event. When the trigger event occurs, the dependent basic events are forced to

occur. The separate occurrence of any of the dependent basic events has no effect on

the trigger event. The output of the gate is a dummy, i.e., it is not taken into account

in the calculation of the system failure probability. While the trigger can be any

subsystem, i.e., a construct made of gates, originally the dependent events could be

 Hybrid Formalisms

only basic events. In [19] is proposed to extend the formalism allowing the triggering

of any gate and not only BEs.

Fig. 3.1 DFT dynamic gates.

3.2.2.2 SPARE GATE

Systems with cold and warm spares cannot be modelled exactly using usual FTs

because the system failure criteria cannot be expressed in terms of combinations of

basic events, all using the same time frame.

The Spare gate has one primary input and one or more alternate inputs called spares.

The primary input of a Spare gate is initially powered on and the alternate inputs are

in standby mode. When the primary fails, it is replaced by the first available alternate

input that switches from the standby mode to the active mode. In turn, when this

alternate input fails, it is replaced by the next available alternate input, and so on.

In standby mode, the failure rate of BEs is reduced by a dormancy factor

. Thus, the failure rate in standby mode is , while in the active mode it

switches back to . Depending on the value of we can distinguish the three

different situations:

 Hybrid Formalisms

- , the spare is called cold spare and cannot fail before it becomes active;

- , the spare is called hot spare and can fail in both the stand-by and

active state with the same failure rate;

- , the spare is called warm spare and can fail before it becomes

active, but with a “scaled” failure rate.

SPARE gates fail when the primary and all its spares have failed or are unavailable,

i.e. used by other SPARE gates. In [19] is proposed to extend the formalism allowing

spare events to be any subsystem.

3.2.2.3 PRIORITY AND GATE

The PAND gate models a failure sequence dependency. The priority-AND

(PAND) gate is an AND gate with an additional condition: events must occur in a

specific order [1,2,3]. The output of the gate is true if all the events have occurred in

the left-to-right order in which they appear under the gate. If the inputs fail in a

different order, the gate does not fail. Generally the gate accepts only two inputs and

cascade of gates are used to represent the temporal condition on more inputs.

3.2.2.4 SEQUENCE ENFORCING GATE

The SEQ gate forces events to occur in a particular order. The input events are

constrained to occur in the left-to-right order in which they appear under the gate.

The sequence enforcing gate can be contrasted with the priority-AND gate in that the

priority-AND gate detects whether events occur in a particular order (the events can

occur in any order), whereas the sequence enforcing gate allows the events to occur

only in a specified order. With the respect to the SPARE gate the SEQ gate can be

seen as a SPARE gate with one primary and cold stand-by inputs.

3.2.3 SOLUTION METHODS

Fault trees with dynamic gates are typically solved by automatic conversion to

equivalent Markov models [1,2,3]. In some cases, Monte Carlo simulation can be

used to solve dynamic fault trees without converting to Markov models [9,19]. Once

dynamic fault trees are converted to Markov models, the Markov models can be

solved for state probabilities.

 Hybrid Formalisms

In order to reduce the number of states in the retrieved Markov Chain many

algorithms based on modularization of the DFT have been proposed [8,20]. These

methods aim to find independent sub-trees from a point of view of repeated events

and dynamic gates. If an independent sub-tree contains a dynamic gate, then it will

be solved using a Markov model; otherwise, it will be solved using BDD, and their

solutions will be integrated to get the solution for the entire fault tree.

Other approaches use conditional probabilities to calculate the results of a

dynamic module without generate the Markov Chain [4].

Another approach is to convert the DFT into a dynamic Bayesian network (DBN)

[6,10,11]. With respect to CTMC, the use of a DBN allows one to take advantage of

the factorization in the temporal probability model. As a matter of fact, the

conditional independence assumptions implicit in a DBN enable a compact

representation of the probabilistic model, allowing the system designer or analyst to

avoid the complexity of specifying and using a global-state model (like a standard

Markov Chain); this is particularly important when the dynamic module of the

considered DFT is significantly large.

Other approaches to the resolution of DFT with the use of Probabilistic Boolean

Algebra were proposed in [21]. A conversion of DFT into Generalized Stochastic

Petri Nets was proposed in [12]. Finally, approaches based on Stochastic Process

Algebra can be found in [7].

3.2.4 RELATED WORK

Other hybrid formalism that make use of both non state-space and state-space

representation have been proposed. Among these we give a brief introduction of

DRBD and BDMP.

3.2.4.1 DYNAMIC RELIABILITY BLOCK DIAGRAM

DRBDs [13] inherit the features of RBD in reliability modelling such as

simplicity, versatility and expressive power and extend the formalism allowing

taking into account the system dynamics. To this end in DRBD each component can

be in three different states: active, i.e., working, failed, i.e., not operational, and

 Hybrid Formalisms

stand-by, i.e., reliable but not available. DRBD extend the capabilities of DFTs

because of the use of state-space models at the high level model. However, the state-

space model is limited to a specific structure (only three states are admitted), thus

their application is limited by the formalism itself.

3.2.4.2 BOOLEAN DRIVEN MARKOV PROCESS

BDMP [14] extends FT with two new objects: triggers and Markov chains.

Triggers are used to widespread failures of BEs or gates across the tree. To this end

triggers carry on a Boolean value that forces BEs to behave differently according to

the value of the trigger. In fact, BEs may have two modes. These two modes are

represented by two different Markov chains. Only one Markov chain can be active at

any time and the one that is selected to be active depends on the value of the trigger

related to the BE. Modelling capabilities of BDMP extend the ones of DFT in that is

possible to use Petri nets as the leafs of the tree. The main drawback however relies

in the Boolean selector itself. In fact, only two processes are possible (depending on

the Boolean values 1 or 0) while it could be necessary to use more than two

processes to describe the behaviour of components, e.g., load sharing with multiple

components (more than 2).

3.2.5 ADVANTAGES AND DISADVANTAGES OF DFT

Perhaps the main advantage of DFT is that of being a high level modelling

formalism that, extending FT, results intuitive and easy to use. Although they do not

cover all the possible scenarios, DFT have been referred ad a reference methodology

by many researchers. Limitations of DFT have been addressed earlier in this chapter.

Here we report the most meaningful:

- only exponential distributions can be used to define the time to failure of

components;

- components are not repairable, thus limited measure of interest can be

evaluated;

- complex redundancy and maintenance management, load sharing systems,

etc. cannot be modelled.

 Hybrid Formalisms

During this doctoral course the main objectives have been to alleviate these

problems. We have dealt with the issue of the kind of distribution that can be used to

model components developing a software tool, MatCarloRe, to evaluate DFT via

simulation. The tool will be presented in Chapter 4 while two published papers that

describes the tool and compare it with other academic and commercial tool are

presented in Appendix A. Moreover, in appendix A is reported another published

paper where analytical and simulative resolution techniques are compared. The paper

describes also the approaches used in modularization and introduces a classification

based on weak and strong hierarchy.

To alleviate other problems, we have taken an approach similar to the idea of

BDMP, but that is even more general. The idea again is to attach one or more state-

space model to the leafs of the tree, but in our case we do not model dependencies

via triggers but by an appropriate model of transitions of these state-space models.

Adaptive Transition Systems (ATS) are even more general in that there can be

several state-space models attached to any leaf. The behaviour of the system is

entirely captured by these state-space models and thus the FT represents only a

particular specification of a reward (a measure of interest) that we want to evaluate.

For instance, temporal logics, e.g., Continuous Stochastic Logic (CSL) [22], can be

used to specify the property of interest. ATS will be presented in Chapter 5. In

Chapter 7 we present the application of ATS to evaluate repairable DFT. To our

knowledge there is not at the moment any work where availability or reliability with

repair of DFTs have been investigated exhaustively. An approach based on

Stochastic Process Algebra can be found in [7].

3.3 STOCHASTIC EXTENSION OF PETRI NETS

Stochastic models have been extensively developed in the areas of performance

and dependability evaluation. High level model specification formalisms have been

developed in order to overcome the problems that arise when specifying the model at

the level of the Markov chain, i.e., tedious and error prone. Stochastic extensions of

Petri nets are a well know formalism that belong to this class.

 Hybrid Formalisms

Petri nets are abstract formal methods [23], for the description and analysis of

flow of information and control in concurrent systems. Petri nets are graphically

represented as collections of:

- Places, which are represented by circles. Places model state variables and can

contain tokens.

- Tokens, are represented as black dots and represent the specific value of the

state variables.

- Transitions, are drawn as rectangles. They model activities which cause a

change in state.

- Arcs, are arrows between places and the transitions used to specify the

interconnection between the two types of objects.

The graphical aspect of these models are attractive for practical modelling since

they help in understanding how features of the real system are conveyed in the

model.

Definition 3.1 (Petri Net). A Petri net is a 5-tuple where:

- is the set of places;

- is the set of transitions;

- are the backward and forward incidence functions, i.e.,

define the arcs that connect places and transition and the assigned weights;

and

- is the initial marking, i.e., the number of

tokens contained by places.

Transitions can be enabled, which means that they can fire. Firing means that the

transition removes from its input places a number of tokens, defined by the weight of

the input arc. It also adds to its output places the number of tokens defined by the

weight of the output arc. A transition is enabled if all its input places are marked with

as many tokens as specified by the backward incidence function.

 Hybrid Formalisms

The dynamic behaviour of the net is specified by its marking behaviour. A

marking is an assignment of tokens to places. Classic PNs are independent of time

and are characterised by the nondeterministic firing of transitions that are

simultaneously enabled in a given marking (Figure 3.2). The marking of a Petri net

determines the state of the Petri net.

Fig. 3.2. An example of non-determinism in Petri nets.

The most common way to analyse the behaviour of a PN is by the construction of

the Reachability Graph (RG). It allows to build a state-space model of a PN. The

Reachability Graph is built by determining all the markings which result from the

different transitions firing. The state-space can be finite or not depending on the fact

that the net is bounded or not (Figure 3.3).

Fig. 3.3. The Reachability Graph of the PN in Figure 3.2.

3.3.1 STOCHASTIC PETRI NET CLASSIFICATION

In this section we present an overview of the some of the most know stochastic

extensions of Petri nets.

1p

2p

3p

1p

2p

3p

1p

2p

3p

1p

2p

3p

Non deterministic

choice

()
()0,1,1

)(),(),(321 pmpmpm

()
()1,1,0

)(),(),(321 pmpmpm

()
()1,0,1

)(),(),(321 pmpmpm

()
()2,0,0

)(),(),(321 pmpmpm

 Hybrid Formalisms

3.3.1.1 STOCHASTIC PETRI NETS

Stochastic PNs (SPN) are timed PNs in which all the firing delays are

exponentially distributed. The use of exponential distributions for the temporal

specifications results in a PN that can be mapped on continuous-time Markov chains

[15].

SPNs are formally defined by adding the set to the definition

of a Petri net. is the transition rate of the transition . Since transition delays are

exponential, is also the parameter of the exponential distribution governing the

firing delay of .

If two transitions are enabled at the same time, the transition that fires first will

have the minimum delay. This is also known as the race condition. If and are

both enabled, the probability that will fire first is given by (Figure 3.4).

Fig. 3.4. An example of possible evolution of a SPN.

The Reachability Graph of a SPN is a CTMC if rates of transitions in the SPN are

assigned to the transition between states in the reachability graph. The stochastic

process underlying a SPN is a CTMC and can be solved with normal numerical

methods.

3.3.1.2 GENERALIZED STOCHASTIC PETRI NETS

GSPNs are SPNs with the introduction of immediate delays [16]. In GSPN there

are two types of transitions, immediate and timed. Immediate transitions fire in zero

time once enabled, while timed transitions fire in a delay time defined by an

exponential distribution.

1p

2p

3p

1p

2p

3p

1p

2p

3p

1p

2p

3p

Race condition

1λ

2λ

1λ

2λ

1λ

2λ

1λ

2λ

 Hybrid Formalisms

To overcome the problem that arise in case of concurrent enabled immediate

transitions a priority rate is assigned to each immediate transition. Immediate

transitions have priority over timed transition.

The use of immediate transitions results in a more expressive PN but with little

change to the analysis of the underlying CTMC. In fact, GSPN are analysed by

considering two kinds of markings: vanishing and tangible. Vanishing markings are

those in which the system spends zero time, i.e., markings that involve immediate

transitions. On the other hand, markings that involve timed transitions are known as

tangible.

The Reachability Graph of a GSPN is built considering first the Extended

Reachability Graph (ERG) in which both vanishing and tangible marking are

present. Successively, the Reachability Graph is obtained eliminating vanishing

markings from the state-space model (Figure 3.5).

Fig. 3.5. An example of Reachability Graph construction of GSPN.

3.3.1.3 STOCHASTIC PETRI NETS WITH GENERAL FIRING TIME

DISTRIBUTION

The need for non-exponentially distributed transition firing times in SPNs has

been observed by several authors. To this end the following Petri net extensions have

been proposed:

1p

3p

λ

2p

α β

4p

1p

2p

λ

2p
3p

βα

α

+ βα

β

+

1p

2p
3p

βα

α
λ

+ βα

β
λ

+

GSPN ERG RG

 Hybrid Formalisms

- Deterministic and stochastic Petri nets (DSPNs) [24-27], where the firing

delay of timed transitions may be deterministic, i.e., fixed.

- Extended Stochastic Petri Nets (ESPN) [28], Markov regenerative SPNs

(MR-SPN) [25,29], extended DSPN [30], where the firing delay of timed

transitions may have arbitrary distribution.

The numerical solution for these models are possible only under the enabling

constrain: only one GEN or DET transition can be enabled in any marking [31,32].

The underlying stochastic process may be semi-Markov or Markov regenerative

process.

In the case the underlying process is a GSMP, PNs can be solved via simulation.

PNs are naturally suited for Discrete Event Simulation, since they describe the

behaviours of real systems in terms of events that correspond to transition firings

[33-36].

3.3.2 STOCHASTIC ACTIVITY NETWORKS

Composition is a highly desirable feature when modelling complex systems since

it enables human users to focus on manageable parts from which a whole system can

be constructed.

In the basic PN formalism a model consists of a single net which covers the whole

system to be studied. Therefore PN models of complex systems tend to become very

large and confused and suffer from the state space explosion problem. Stochastic

Activity Networks (SANs) are a modeling formalism which extends Petri Nets

[17,36]. SANs constitute an approach to the structuring of PNs through the sharing of

places between different subnets. In the presence of symmetric sub-models they

tackle the state space explosion problem by directly generating a reduced reachability

graph in which all mutually symmetric markings are collapsed into one.

The basic elements of SAN are places, activities, input gates and output gates.

Places in SAN have the same role and meaning of places of Petri Nets. They

contain an arbitrary number of tokens.

 Hybrid Formalisms

Activities are equivalent to transitions in Petri Nets. They can take a certain

amount of time to be completed (timed activities) or no time (instantaneous

activities). Timed activities support several kind of distribution type that define the

time to firing of the activity. Parameters of activities, i.e., the parameters of the

supported distributions, may be marking dependent.

For each activity is defined an execution policy that allow to reactivate, i.e., resample

the completion time, an activity depending on the marking of the net. This is done by

the mean of two predicates: the activation predicate and the reactivation predicate.

An activity is reactivated when both the predicates are true. In any marking, the

activation predicate is true if it was true at the moment the activity was last enabled.

Thus, the activation predicate keep trace of the past marking of the net. On the other

hand the reactivation predicate is evaluated at every evolution step, i.e., every time

an activity fires.

When an activity fires a case is chosen. Cases represent the possibility of taking a

specified action. Each case is assigned a real number that can be marking dependent

and its evaluated at the moment the activity fires. The case that will perform is

chosen probabilistically on the basis of the assigned real number.

Activities may complete at the same time if instantaneous or deterministic, i.e., timed

with fixed delay. In this case a non deterministic choice decides which activity will

complete first.

Each activity may have one or more input arcs, coming from its input places (which

precedes the activity) and one or more output arcs going to its output places (which

follow the activity). In absence of input gate and output gate, the presence of at least

one token in each input place makes it able to fire and after firing one token is placed

in each output place.

Input gates and output gates, typical constructs of SAN, can modify such a rule,

making the SAN formalism more rich to represent actual situations. Particularly, they

consist in predicates and functions, written in C++ language, which contain the rules

of firing of the activities and how to distribute the tokens after the activities have

fired.

 Hybrid Formalisms

Output gates are connected to cases of activities. They can be used to change the

marking of the net when the input activity fires and the input case is chosen.

Input gates have a twofold function: they serve to specify guard conditions on

activities and to define marking changes, like output gates. To this, input gates are

assigned an input predicate and an input function, respectively. The input predicate

defines, on the basis of the marking of the net, if an activity may complete or not. It

can if the predicate is true, otherwise it cannot.

As in Petri Nets, a marking depicts a state of the net, which is characterized by an

assignment of tokens to all the places of the net. With respect to a given initial

marking, the reachability set is defined as the set of all markings that are reachable

through any possible firing sequences of activities, starting from the initial marking.

Other than the input and output gates, which allow to specifically control the net

execution, SAN offers two more relevant high-level constructs for building

hierarchical models: REP and JOIN. Such constructs allow to build composed

models (atomic models) based on simpler sub-models, which can be developed

independently and then replied and joined with others sub-models and then executed.

Particularly, the construct REP allows to replicate sub-models and the construct

JOIN allows to join sub-models.

The construct REP is useful for two reasons: first, from a modelling point of view

it avoids the construction of the same model multiple times; and second from a

resolution point of view the use of the REP construct allows to generate a reduced

state-space model because aggregation of states are obtained from indications at the

network level. For a complete explanation of how the state-space based model is

constructed from a SAN the reader may refer to [36]. Here we just mention that for a

state-space based model to be constructed the underlying stochastic process of a

SAN model must be a Markov Chain, i.e., only instantaneous and exponential timed

activities can be present in the model and the initial marking must be a stable

marking (a tangible marking in PNs).

Finally, in SAN is possible to specify extended places. Extended places offer the

possibility of using non integer marking and to make use of vectors to represent the

 Hybrid Formalisms

marking of places. By the mean of extended place, modelling capabilities of SAN

can be extended to deal with continuous state spaces. Moreover, the use of vectors

allows a more compact specification of models.

The SAN model specification and elaboration is supported by Möbius tool,

developed by the University of Illinois. The tool allows to specify the graphical

model, to define the performance measures through reward variables, to compute the

measures by choosing a specific solver to generate the solution.

Measure of interest are specified at the network level by the definition of reward

function. Reward functions can be of two kind: state reward and impulse reward.

State reward are function of the marking of the net, while impulse reward are

function of the completion of activities. Moreover, reward can be defined at a

specific time, an interval of time or averaged over an interval of time. The

performance measure is then evaluated as the expected value of the reward function.

Figure 3.6 shows several SAN models of a SPARE gate of a DFT with two inputs.

Models differ in that increasing level of SAN objects are used. The reader may

already appreciate how the same model can be constructed in different ways, often

depending by the personal choice of the modeller.

Figure 3.6.a shows the SPARE DFT gate and the associated Markov chain. The

active component of the SPARE is A, while the warm stand-by component is B.

Figure 3.6.b shows a SPN model of the system. In this case two activities are used to

represent the failure of B. The activity that represents the failure of B when in stand-

by is enabled only if A is working, while the activity that represent the failure of B

when active is enabled only when A has failed. These conditions are modelled by the

two-way arrows associated with the places A_OK and A_failed, respectively.

In Figure 3.6.c input gates have been introduced to replace the two-way links of

Figure 3.6.b. The input predicate specified in the two input gates check the marking

associated with A_OK and A_failed to enable the right activities relative to B. In

Figure 3.6.d is shown that by the mean of the input functions is possible to avoid the

use of output links from the two activities B_fail_WARM and B_fail_HOT. This

could be done by the mean of output gates, too.

 Hybrid Formalisms

Figure 3.6.e shows the use of the reactivation predicate. The model results

simplified, but we need to introduce a dummy place that is used to reactivate the

activity B_fail. This is necessary when GEN distribution are used, while in the case

of exponential distribution this additional construct can be avoided due to the

memoryless propert. In fact, we could define the reactivation predicate of B_fail only

in terms of A_failed. In this case, if there would be more components than just A and

B, B_fail would have been reactivated at any activity firing, but since the presence of

the meoryless property the model would be correct.

Finally, all the above presented models are flat; a single net is used to model the

SPARE system. In the case of large models this can lead to error and confusions. In

Figure 3.6.f the use of the construct JOIN is shown. In this case three atomic models

were created: A, B and AND and joined together, i.e., variables of atomic models are

shared via the JOIN construct.

The examples above show some problem when modelling with SAN. In particular

three issue are of practical importance:

- the flexibility of offered by SAN allows to model a very general class of

systems. However, as seen, also for very small systems the construction

possibilities are so many that the resulting model is often a choice of the

modeller. This could result in debugging difficulties and poor maintainability

of the model over time;

- the use of the reactivation predicate could be problematic when large models

are developed, due to the need of specifying apposite constructs that limit the

modeller in abstracting from the complexity of the overall model.

- when JOIN constructs are used it is not possible to develop reward functions

that take as inputs information from different sub-models. Thus, in this cases,

one must generate an atomic model that contains all the variables of interest

used in the specification of the reward.

 Hybrid Formalisms

 Hybrid Formalisms

 Hybrid Formalisms

Fig. 3.6. Examples of SAN model of a SPARE gate with two inputs.

All these problems will be addressed in Chapter 6 where we propose an algorithm for

the automatic generation of SAN models from Adaptive Transition Systems (ATS);

introduced in Chapter 5. ATS gives the possibility of generating standardized SAN

models that are compositional and where the issue of reactivating a transition is

 Hybrid Formalisms

explicitly managed. Moreover, the ATS-to-SAN conversion algorithm resolves the

third problem by the use of extended places.

3.4 CONCLUSION

In this chapter we gave a brief description of formalism used in Reliability

Engineering that we have considered as hybrid because of the high level language of

description, typical of non state-space models, that they offer and because of the

solution techniques that are common to state-space models.

In particular we have described DFT as an extension of FTs. We have seen that

the main limitation of DFT lay in the formalism itself: DFT are not general enough.

Spare components cannot have different failure rates depending on the subsystem

where they are employed and load-sharing cannot be modelled. Since repairable

components cannot be considered, measures like availability or reliability with

repairs cannot be evaluated. If one try to extend DFT to consider repairable

components one is subjected to the choice of a specific substitution logic.

Maintenance management and non determinism are not consider as well. Finally, the

failure logic of PAND gates is not able to consider complex ordering of events in the

case of repairable components.

On the other hand, stochastic extension of Petri nets allow to model very general

systems and are very well suited for discrete event simulation when general

distributions are considered.

SAN extends SPN allowing one to compose atomic models of specific part of the

modelled system. Thus, with SAN one of the main problem of SPN, i.e., SPN are

flat, are overcome. The main problems of SAN, i.e., (i) the generality of the model

that leads to a non standardized approach to the modelling activity; (ii) the difficulty

of defining reactivation predicates; and (iii) the problem of defining reward functions

when the JOIN construct is used, were illustrated in the previous section. As said all

these issues, together with the generalization of DFT models to include repairable

components, will be managed with the introduction of ATS.

 Hybrid Formalisms

BIBLIOGRAPHY

[1] Ren, Y., & Dugan, J.B., 1998. Design of reliable systems using static and

dynamic fault trees. IEEE Transactions on Reliability; 47:234-244.

[2] Dugan, J.B, & Bavuso, S.J., 1990. Fault trees and sequence dependencies. Proc.

Ann. Reliability and Maintainability Symposium; 232-235.

[3] Dugan, J.B, & Bavuso, S.J., 1992. Dynamic fault-tree models for fault tolerant

computer systems. IEEE Transactions on reliability; 41(3):363-377.

[4] Amari, S., Dill, G., & Howald, E., 2003. A new approach to solve dynamic fault

trees. Annual Reliability and maintainability symposium; 374–379.

[5] Dugan, J.B., Venkataraman, B., & Gulati, R., 1997. Diftree: a software package

for the analysis of dynamic fault tree models. In Proceedings Annual Reliability

and Maintainability Symposium; 64-70.

[6] Montani, S., Portinale, L., Bobbio, A., & Codetta-Raiteri, D., 2008. RADYBAN:

A tool for reliability analysis of dynamic fault trees through conversion into

dynamic bayesian networks. Reliability Engineering and System Safety; 93:922-

932.

[7] Boudali, H., Crouzen, P., & Stoelinga, M., 2007. Dynamic fault tree analysis

using input/output interactive Markov chains. In Proceedings 37th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks DSN

'07; 708-717.

[8] Sullivan, K.J., Dugan, J.B., & Coppit, D., 1999. The Galileo fault tree analysis

tool. In Proceedings of the Twenty-Ninth Annual International Symposium on

Fault-Tolerant Computing; 232-235.

[9] Durga Rao, K., Gopika, V., Sanyasi Rao, V.V.S., Kushwaha, H.S., Verma,

A.K., & Srividya, A., 2009. Dynamic fault tree analysis using Monte Carlo

simulation in probabilistic safety assessment. Reliability Engineering and System

Safety; 94:872-883.

 Hybrid Formalisms

[10] Boudali, H., & Dugan, J.B., 2005. A New Bayesian Network Approach to Solve

Dynamic Fault Trees. In Proceedings Annual Reliability and Maintainability

Symposium; 451-456.

[11] Boudali, H., & Dugan, J.B., 2006. A Continuous-Time Bayesian Network

Reliability Modeling and Analysis Framework. IEEE Transactions on

Reliability; 55:86-97.

[12] Codetta-Raiteri, D., 2005. The Conversion of Dynamic Fault Trees to Stochastic

Petri Nets, as a case of Graph Transformation. Electronic Notes in Electronic

Computer Science; 127:45-60.

[13] Distefano, S., & Puliafito, A., 2007. Dynamic reliability block diagrams vs

dynamic fault trees. In Proceedings Annual Reliability and Maintainability

Symposium RAMS '07; 71-76.

[14] Bouissou, M. & Bon, J.L., 2003. A new formalism that combines advantages of

fault-trees and Markov models: Boolean logic driven Markov processes.

Reliability Engineering and System Safety; 82:149-163.

[15] Bause, F. & Kritzinger, P.S, 2002. Stochastic Petri Nets. An introduction to the

theory. Vieweg.

[16] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S. & Franceschinis, G., 1995.

Modelling with Generalized Stochastic Petri Nets. J. Wiley.

[17] Sanders, W. H., & Meyer, J. F., 2002. Stochastic activity networks: Formal

definitions and concepts. Lectures on Formal Methods and Performance

Analysis. Springer Verlag.

[18] Relex. URL: http://www.ptc.com/products/windchill/quality-solutions/

[19] Boudali, H., Nijmeijer, A.P. & Stoelinga, M.I.A., 2009. DFTsim : a simulation

tool for extended Dynamic Fault Trees. Proceeding Spring Sim ’09.

[20] Gulati, R., & Dugan, J.B., 1997. A modular approach for analyzing static and

dynamic fault trees. Proc. Ann. Reliability and Maintainability Symposium; 57-

63.

 Hybrid Formalisms

[21] Merle, G., Roussel, J., Lesage, J. & Bobbio, A., 2010. Probabilistic Algebraic

Analysis of Fault Trees With Priority Dynamic Gates and Repeated Events.

IEEE Transactions on Reliability; 250-62.

[22] Baier, C. & Katoen J.P., 2008, Principles of Model Checking. The MIT Press.

[23] Peterson, J.L., 1981. Petri Net theory and the modelling of systems. Englewood

Cliffs, NJ: Prentice-Hall.

[24] Marsan, M.A. & Chiola, G., 1987. On Petri Nets with Deterministic and

Exponentially Distributed Firing Times. LNCS; 266:132-145. Springer Verlag.

[25] Choi, H., Kulkarni, G. & Trivedi, K.S., 1993. Transient analysis of deterministic

and stochastic petri nets. In Proc. 14-th Intern. Conference on Application and

Theory of Petri Nets, Chicago, Illinois. Springer Verlag.

[26] Ciardo, G. & Lindemann, C., 1993. Analysis of deterministic and stochastic

Petri nets. In Proc. 5-th Intern. Workshop on Petri Nets and Performance

Models; 160-169.

[27] Lindemann, C., 1993. An improved numerical algorithm for calculating steady-

state solutions of deterministic and stochastic Petri net models. Performance

Evaluation; 18:75-95.

[28] Dugan, J.B, Trivedi, K.S., Geist, R.M & Nicola, V.F, 1984. Extended Stochastic

Petri Nets: applications and analysis. In Performance ’84, E. Gelenbe, Ed.,

Paris, France, North-Holland.

[29] Choi, H., Kulkarni, V.G. & Trivedi, K.S., 1993. Markov regenerative stochastic

Petri nets. In Performance, North-Holland.

[30] German, R. & Lindemann, C. 1993. Analysis of Stochastic Petri Nets by the

Method of Supplementary Variables. In Performance ’93, North-Holland.

[31] Ciardo, G., Muppala, J. & Trivedi, K.S., 1991. On the solution of GSPN reward

models. Performance Evaluation, 12(4):237-253.

 Hybrid Formalisms

[32] Ciardo, G., German, R. & Lindemann, C., 1993. A characterization of the

stochastic process underlying a stochastic Petri net. In Proc. 5-th Intern.

Workshop on Petri Nets and Performance Models; 170-179.

[33] Chiola, G. & Ferscha, A., 1993. Distributed discrete event simulation of timed

transition Petri Nets. IEEE Parallel and Distributed Technology, 1 Special Issue

on “Parallel and Distributed Systems: from theory to practice”.

[34] Chiola, G. & Ferscha, A., 1993. Distributed simulation of timed Petri nets:

exploiting the net structure to obtain efficiency. In Proc. 14-th Intern.

Conference on Application and Theory of Petri Nets, Chicago, Illinois. Springer

Verlag.

[35] Chiola, G. & Ferscha, A., 1993. Exploiting Petri net model structure to improve

distributed Simulation. In 26-th Hawaii Intern. Computer Science Symposium,

Honolulu, Hawaii.

[36] Chiola, G. & Ferscha, A., 1995. Performance comparable design of efficient

synchronization protocols for distributed simulation. In Proc. of MASCOT'95;

343-348.

[37] Sanders, W.H. &Meyer J.F., 1999. Reduced Base Model Construction Methods

for Stochastic Activity Networks, IEEE Journal on Selected Areas in

Communication; 9(1):25-36.

 MatCarloRe: a tool for the resolution of DFT

CHAPTER 4

4.1 INTRODUCTION

In Chapter 3 we introduced DFTs [1-6,12,13] and addressed the main limitations.

In this chapter we present a tool for the resolution of DFT via simulation with the

objectives of overcoming the constrains typical of DFT. In particular with this tool

we address the possibility of using general distribution function in the specification

of the time to failure of the BEs of the tree.

MatCarloRe is a tool that was first developed in Simulink® in order to benefit

from the high level interface that the tool provides. Successively, a Java graphical

interface was developed and integrated with the Matlab® environment (a new tool

that we call JDFTDes). The creation of the Java interface has two advantages with

respect to the Simulink model: (i) allows a more friendly construction of the model,

and (ii) allows to bypass the limitations imposed by the Simulink® formalism that

does not allow to consider shared spare components.

The remainder of this chapter is organized as follow: in Section 2 we give an

introduction of the Monte Carlo theory for Discrete Event Simulation. In Section 3

we present the Simulink® tool MatCarloRe. In Section 4 we report the application of

the tool to a real case study. The JDFTDes will be shortly introduced in Section 5.

Two accepted papers describing MatCarloRe and MatCarloRe-JDFTDes are reported

 MatCarloRe: a tool for the resolution of DFT

in Appendix A, where two accepted paper are attached. Finally in Section 6 are

reported some conclusion.

4.2 MONTE CARLO SIMULATION OF DFT

Simulation programs, especially if well structured, are in general very

comprehensible and known for the ease with which modifications and additions can

be made [15-19,31]. Monte Carlo simulation is a valuable method which is widely

used in solving real problems in many engineering fields. It has been used by [32,

33] for the study of system reliability, based on the well-developed neutron transport

ideas. The simulation technique allows the estimation of reliability indices by

simulating the actual process and random behaviour of the system through a

computer model.

Monte Carlo simulation is implemented by running the model a large number of

times, each representing an ensemble of random walks within the discrete state-space

of system configurations, in order to generate a large number instances from which

all the reliability indices required about the system are retrieved.

As the system is composed of many components (or elements) grouped together

to perform a certain function, the system modelling begins with the identification of

the components of which the system is composed. Let us denote by the possible

states in which the i-th component of the system may be. In the simplest case may

have two possible states: one is the "UP" or working ,the other is the "DOWN" or

failed. The state of the system can be described by a vector :

, (4.1)

where represents the number of components of the system. When a component

changes its state, a new point in the state-space is reached. Some of these points are

of failure for the whole system.

While in static-FT certain combinations of component failures correspond to

system failure, in DFTs the same state can be either a failure state or a good one,

depending on the previous state sequence. Hence, in DFT, given the notion of state in

 MatCarloRe: a tool for the resolution of DFT

eq. 4.1, it is not possible to define a system state a good one or a failed one without

looking at the system evolution.

Vector changes with respect to time, so each simulation consists of a collection

of state vectors representing the movement of the random walk within the phase

space. Such history can be written as:

, (4.2)

where represents the simulation-run index, the time of the transition from

state to state and represents the index of the ending simulation time, i.e.,

the last state change within a simulation batch. The point represents a state-

space point, while the collection of all such points is called the state-space of the

system. This space is continuous in time and discrete in the states. Transitions among

states depend on the components transition from the UP state to the DOWN one,

according to a stochastic law (the probability density function) that characterizes the

component behavior.

The only information needed for the analysis are: a) the probability density

function (pdf) of the time to failure of each component and their parameters values;

b) the mission time of the system; and c) the system failure mode configuration.

The most common way to conduct the simulation of a FT is to consider the

system as a whole (indirect Monte Carlo [36]); previous literature [34, 35] consider a

system failure rate as the sum of all the component failure rate and calculate the

transition time to the new state. After that, the component which performs the

transition is chosen in a stochastic manner. When the component is chosen its failure

rate is set equal to zero and the process is repeated till the occurrence of the TE or the

end of the mission. The system operability (i.e. the occurrence of the TE) is

evaluated each time a transition occurs. Generally it is convenient to make use of the

FT methodology to check the system operability each time it changes its state.

The problem with this approach is that we must check the operability state of the

system each time the system makes a transition; moreover it is needed to recalculate

the system failure rate at each state change by imposing the failed component failure

rate equal to zero.

 MatCarloRe: a tool for the resolution of DFT

When considering DFTs we need to take into account the system evolution history

in order to assess the nature of the reached state. Moreover, in the case of

components with different time distribution the traditional indirect Monte Carlo

method, becomes impractical due to the lack of the memoryless property of general

distributions.

A more straightforward method to account for time-dependent failure and repair

behaviours of components is the direct Monte Carlo method [37]. It samples the time

to failure of each BE instead of the overall system transition time. Following the idea

of direct Monte Carlo, our simulation approach makes use simultaneously of the FT

and the Monte Carlo methodologies. Instead of simulating the system walk in the

phase space we consider BEs as basic entities. The failure time of each BE is

calculated at the beginning of each batch and these information are passed to the

gates which they are connected to. The gate state is determined and, if failed, its

failure time is passed to the higher levels. In this way for each gate of the tree two

information are available: the state of the gate before the mission time and, if failed,

the time when this condition became true.

Information about the time of events are important when considering dynamic

gates. Moreover many simulation data can be stored in a very straightforward way:

for each gate we can obtain the failure number of occurrences, the mean time to

failure and information about which connected subsystem forced mostly the failure

of the gate.

The approach followed is very suitable for dynamic gates since the failing order is

tracked. Therefore, in this way it is not necessary to store the previous system states

and check the order of occurrence to assess whether a state is of failure or good.

The complexity of the algorithm is carried by each single gate, whose logic is

programmed in order to infer its own state. For the same reason, with this approach

there is no need to update the overall system failure rate at each transition.

Generated all the transition times of each component, the failure time for each

gate can be calculated based on the logic of the gate itself with respect to its inputs.

 MatCarloRe: a tool for the resolution of DFT

At the highest level information about the system state are available and used to

estimate the system reliability.

Due to the nature of the approach, it would be straightforward to program or

modify the logic of the gates in a modular way, without compromising the

environment already set. In this way, the end user can just make full use of the gates

created by the programmers and exploit with some small knowledge of Simulink®

the power of the library.

4.3 SIMULINK® LIBRARY

The simulation tool implemented makes use of a high level modeling interface

that allows the user to assemble the DFT by picking basic events and gates from a

library and dropping these elements on a Simulink® sheet. BEs and gates are then

linked together to create the system configuration.

The tool consists of a Simulink® library called MatCarloRe (Figure 4.1), formed

of blocks representing the various elements of DFT, such as, the dynamic gates

PAND, SPARE, SEQ and FDEP as well as the static gates AND, OR and Voting and

the BEs.

Each block representing a gate can receive n input and distribute m output by

simply using the mux and demux blocks available in the main Simulink® library.

Inputs and outputs are of two kind: we define y as the binary vector which indicates

whether the input and output have occurred (value 1) or not (value 0), and t as the

vector containing the failure times. Only for blocks representing the SPARE and the

FDEP gates is not provided the input vector y.

Once the model is built and the input parameters are defined it is possible to run

the simulation defining the total number of batches. At each batch the model returns

a binary value that indicates whether the system has reached the state of failure or

not. In particular, the model returns the value 1 if the fault is reached, 0 vice versa.

To avoid large amounts of data storage the Simulink® block memory is used to

set the progressive sum of results of each iteration. In this way only the total value of

 MatCarloRe: a tool for the resolution of DFT

batches that revealed a fault is considered and stored in the Matlab® workspace by

the block TE. The estimated unreliability of the system can be finally obtained

dividing the value stored in TE by the total number of batches.

Fig. 4.1. MatCarloRe library elements.

In the next section it is shown how to build a simulation model for a DFT

introducing in more details the BE block and the dynamic gates. In order to proof the

validity of the tool the results performed with the MatCarloRe are compared with

analytical results.

4.3.1 THE BE BLOCK

The BE block is designed to generate the times of failure of basic events. At the

time the tool was built it could generate only the times of failure for components with

exponential distribution as well as fixed probability. The version developed by the

support of the JAVA interface integrated with the Matlab® environment has been

integrated to support also Weibull distributions. However, other type of distribution

can be easily integrated.

For components subjected to random failures the unreliability at time t can be

expressed by the following relation:

, (4.3)

 MatCarloRe: a tool for the resolution of DFT

where is the failure rate of the component. The sampled time to failure is then

calculated by the inverse relationship:

 , (4.4)

where is a random number generated in [0, 1]. If is smaller than the mission

time , the component is considered as failed.

For events supplied with a fixed probability q the following procedure is defined:

a random number generated uniformly in [0, 1] is extracted and compare with the

value q. This comparison returns a failure time according to the following relation:

, (4.5)

where is a random number generated uniformly in .

4.3.2 THE PAND BLOCK

The PAND block models the logic that underlies the PAND gate of a DFT

[10,14,23]. The block logic is illustrated in the flowchart in Figure 4.2. First,

according to the vector y, it is verified if all the input events occurred. If this

condition is not satisfied the gate does not trigger. Otherwise the following

conditions are checked: for with , where is the

number of inputs of the gate. If such control over failure times is satisfied the gate

triggers with a time to failure equal to the maximum failure time of its inputs.

To test the validity of the block to perform the requested calculation we use a

small example. A PAND gate with two BEs is considered. The failure rates of BEs

are for the first component from the left hand side of the gate and

for the second one. The mission time is .

In Figure 4.3 is shown the model built for the simulation with the MatCarloRe

tool. It is possible to see the BE block which takes as inputs the failure rates of the

two components and the mission time of the system. The output of the block is the

time to failure of the two components (i.e. vector t) and the binary vector y which

 MatCarloRe: a tool for the resolution of DFT

indicates whether the time to failure of the components is smaller than the mission

time. These vectors are given as input to the PAND block. The output scalar yPAND

of the PAND block is passed to a construct that perform the progressive sum of

results over the number of batches and at the end of all the iterations the result is

stored by the block TE into the Matlab® Workspace.

Fig. 4.2. Flow Chart of the PAND Block.

Fig. 4.3. Simulation model of a PAND gate with two basic event with failure rate

 and mission time .

START

=

=

n

i
i

ys

1

yPAND = 1

tPAND = max(t)

yPAND = 0

tPAND = Inf

END

tt ji
<

ji <∀

YES NO

s = n ?

YES

NO

 MatCarloRe: a tool for the resolution of DFT

Fig. 4.4. Simulated Vs analytical reliability of a PAND gate with two basic event

with failure rate and mission time . Iteration are chosen equal

to with Dotted line: analytical result; marked line: simulation

results.

The simulated reliability versus the analytical one calculated by the mean of the

associated CTMC are shown in Figure 4.4. The total number of batches are set to

 with It is evident that for a large number of iterations (of five

magnitude order) the error is very low and acceptable.

4.3.3 THE SPARE BLOCK

The SPARE block models the logic that underlies the SPARE gate of a DFT

[10,14]. The block logic is illustrated in the flowchart in Figure 4.5.

Before to describe the structure of the algorithm of the SPARE block let consider

the operations performed by the BE block. In presence of spare components the BE

block sample two time to failure for the considered elements; one relative to the

stand-by state and the other relative to the active state. The sampled time to failure

relative to the active state is considered active, while the sampled time to failure

relative to the stand-by state is considered passive and will be used by the SPARE

block only if the component is requested by the gate.

 MatCarloRe: a tool for the resolution of DFT

Our implementation of the SPARE gate extends the classical one of DFT where

only one primary component can be consider. In our implementation the SPARE

block allows to consider more than one primary component for the gate.

The steps performed by the algorithm are:

- first a permutation of the vector t, representing the sampled time to failure of

primary components, is made, sorting the vector in the ascending order;

- then, it is examined, among the primary components whether there are

components that have failed before the end of the mission time; if no failure

is verified the gate will not trigger;

- on the other hand, the algorithm checks if there are spare components able to

replace the primary component that failed first.

Let us consider the logic of replacement of a generic active component which

fails. Its replacement can take place only if:

- the spare part is still available (namely, it has not been used to replace another

failed component) and;

- the time to failure of the spare (during its stand-by condition) is greater than

the time to failure of the primary component that must be replaced.

If these two conditions are not satisfied by any spare component the gate triggers

with a time of occurrence equal to the last failed primary component. Otherwise the

block updates the time to failure of the primary component by adding the sampled

time to failure (when active) of the spare component chosen for the replacement. The

substituting spare is finally declared as busy. The search for active components

applicants for replacement is repeated till there are primary components with failure

time smaller than the mission time.

It is worth to highlight that the order in which the spares are chosen to replace the

failed component follows the graphical order of positioning defined by the gate (e.g.

in case of two spares that can replace an active failed component, it is chosen to

replace the component with the spare that graphically is placed to the left).

 MatCarloRe: a tool for the resolution of DFT

Fig. 4.5. Flow Chart of the SPARE Block.

START

ySPARE = 1

tSPARE = tref

ySPARE = 0

tSPARE = Inf

YES

NO

<
=

elsewhere

Tmitif
iG

0

)(1
)(

Find Active Components requiring substitution:

Sort Active Components Vector by Failure Time

?0)(
1

>

=

n

i

iG

=>
=

elsewhere

iOitlif
iGS tref

0

0)(&)(1
)(

Find Spare Components available for

substitution:

))1,1((=== Gfindttref

Set reference time for iteration

?0)(
1

>

=

ns

i

iGS
NO

))1,1(())1,1(())1,1((==+===== GSfindtsGfindtGfindt

Update the failure time of Active Component

1))1,1((===GSfindO

Update the occupancy of the Spare Component

YES

 MatCarloRe: a tool for the resolution of DFT

The SPARE block offers many advantages in terms of modelling power. Many

reliability tools (e.g., Relex®, Galileo® [7-9,11,38]) present some difficulties about

the construction of DFT with SPARE gates: if a spare part is shared among more

components, the DFT will have as many SPARE gates as the number of active

components which share the spare. In this way, the first input of the generic SPARE

gate is the active component, while the second input is the shared spare part,

common to all the set of SPARE gates drawn. The final logic implemented by the set

of SPARE gates is realized linking them together by an OR gate in the upper level

(Figure 4.6).

Another situation is redundancy in the active components (i.e. not all the active

components are requested for the system to work). In this case an AND gate is

placed to the upper level (Figure 4.7). If the number of active components is even

greater than the presented examples in the previous figures the modelling activity is

even more complex involving the use of AND and OR gates in the tree structure.

Therefore what the SPARE gate of the MatCarloRe library is able to do is to bypass

all these architectural tricks, by the simple use of a single block called SPARE_k/N,

where k is the number of components requested to work and N is the number of

initial primary components.

The differences in the flow chart between the SPARE block and SPARE_k/N

block are located in the first rhombus of the chart in Figure 4.5 where it is needed to

consider the N-k failures allowed for the system to work.

To test the validity of the two blocks SPARE and SPARE_k/N the results of two

simple example are shown. Let consider a system composed of two primary and two

spare components with failure rate . The latency factor for the spare

components is and the mission time is . Figures 4.8 and 4.10 show

the models built with the MatCarloRe tool using the SAPRE block and SPARE_k/N

block, respectively. The simulation models are equal in both cases except that the

number of components needed for the system to work in the second example are

defined by nreq.

 MatCarloRe: a tool for the resolution of DFT

Fig. 4.6. Illustration of SPARE gates modelling vantages introduced by the tool;

case of common shared spare. Left: Relex® model; right: MatCarloRe model.

Fig. 4.7. Illustration of SPARE gates modelling vantages introduced by the tool;

case of redundancy in active components. Left: Relex model; right: MatCarloRe

model.

 MatCarloRe: a tool for the resolution of DFT

The BE block takes as inputs the failure rates of the two active components, the

failure rate of the spare components when in stand-by state and when active and the

mission time of the system. It returns as output the time to failure of the two active

components stored in the vector t. The time to failure of spare parts when in the

stand-by state and when active are given respectively in the vectors tl and ts. Vectors

t, tl and ts and the mission time are the input of the SPARE block. The output

ySPARE, taken over repeated iterations, is then used to compute the reliability of the

system.

In Figure 4.9 is shown the simulated reliability versus the analytical calculated by

the mean of the associated CTMC with respect to the number of batches. Again, for a

number of iterations of the order of the error of prediction is very low and

acceptable.

The results of the simulation of the k/N model are shown in Figure 4.11. Again for

iteration of order the simulated reliability is very close to the CTMC results.

Fig. 4.8. Simulation model of a SPARE gate with two active components with

failure rate , two spare components with failure rates , latency factor

 and mission time .

 MatCarloRe: a tool for the resolution of DFT

Fig. 4.9. Simulated Vs analytical reliability of a SPARE gate: two active

components (); two spare components (); latency factor ;

mission time . Dotted line: analytical result; marked line: simulated results.

Fig. 4.10. Simulation model of a SPARE_k/N gate with two active components

with failure rate , two spare components with failure rates , latency

factor and mission time ; nreq = 1.

 MatCarloRe: a tool for the resolution of DFT

Fig. 4.11. Simulated Vs analytical reliability of a SPARE k/N gate with two active

components with failure rate , two spare components with failure rates

, latency factor and mission time ; nreq = 1. Iteration are

chosen equal to with Dotted line: analytical result; marked line:

simulated results.

4.3.4 THE SEQ BLOCK

The feature of the SEQ gate is to force the components - inputs of the gate – to

move towards the state of failure in a fixed order [10,14,23]. This order is usually

expressed graphically by the position of the gate inputs, from left to right. It is

generally used to represent different levels of degradation of a component. Therefore,

a condition for the gate to trigger is the occurrence of all its inputs. The algorithm

used for this task is simple: the SEQ block firstly calculates the sum S of the time to

failure of all its inputs. If S is smaller than the mission time the gate triggers with a

time to failure equal to S.

 MatCarloRe: a tool for the resolution of DFT

4.3.5 THE FDEP BLOCK

The FDEP block models the FDEP gate of a DFT [10,14,23]. The feature of this

gate is to force the input components to reach the failure state if the trigger event has

occurred before they fail by themselves. The block checks if the failure time of each

input component is smaller than the trigger failure time. If the condition is true the

component will fail with its own failure time. Vice versa the component will occur

with failure time equal to the trigger failure time.

In the construction of a model with a FDEP, each component subjected to the

action of the trigger is firstly connected to the FDEP gate and then the output of the

latter is passed to the gate interested by the given component. We do not show the

flow chart due to the simplicity of the task performed by the block. Likewise we do

show any example for the FDEP block due its similarity with an OR gate between

the trigger event and any of the basic event of the gate.

4.4 A COMPARATIVE EXAMPLE

In this section we present a case of study of a real system, in order to demonstrate

the effectiveness of the simulation tool to calculate the reliability of such systems.

The case of study represents the DFT model of a plant section for the alkylation and

treatment of light olefin. Following the top-down procedure of the FT analysis, the

tree was designed. The static-tree structure is shown in Figure 4.12 and Table 4.1

reports the component failure rates.

Beside the FT model of Figure 4.12, a DFT was designed in order to consider a

more realistic safety behavior that the plant exposes. The dynamic re-arrangement

considered concerns the modeling of the gates IE1, IE8 and of the TE. In fact, in the

static modeling they are represented with the traditional AND gates. That results in

an approximate evaluation of the logic for the real system, since time dependencies

cannot be considered with the static-FT. In the DFT, the gate IE8 was substituted

with a SPARE gate as in a classic cold stand-by redundant configuration. The second

 MatCarloRe: a tool for the resolution of DFT

re-arrangement is done by substituting IE1 with a PAND, in order to consider the

priority condition that IE3 has on IE4. The same process is applied at the TE gate.

Fig. 4.12. FT of the section plant considered.

Table 4.1. Input data for basic events of the FT of Fig. 4.10.

ID q

BE1 -

BE2 -

BE3 -

BE4 -

BE5 -

BE6 -

BE7 -

BE8 -

BE9 -

BE10 -

BE11 -

BE12 -

 MatCarloRe: a tool for the resolution of DFT

Three cases were studied: (i) simulation of the static-FT, (ii) simulation of the

DFT without fixed probabilities by substituting with the relative failure rate

calculated through (3) (i.e., assuming the value of F equal to q and calculating the

failure rate trough inverse relationship); (iii) the simulation of the DFT with the

original parameters of Table 1.

Fig. 4.13. MatCarloRe model of the DFT of Fig. 4.10. Case (iii).

The analytical resolution of these three cases expose different levels of

complexity. In fact, the case (i) is the simplest because no time dependencies arise

and traditional combinatorial techniques can be used. Case (ii) introduces two kind of

dynamic gates. One of them is placed at the TE. It makes impossible the use of

techniques to relax the complexity of the model (e.g. modularization [20-30])

without incurring in approximated calculation. The case (iii) can be classified as the

most complex since it cannot be solved with the use of the traditional CTMC

paradigm due to the presence of fixed probabilities. For this last case no analytical

result are presented. The model of the case (iii) implemented in the MatCarloRe tool

is shown in Figure 4.13.

 MatCarloRe: a tool for the resolution of DFT

We conducted a simulation for each case choosing a maximum number of batches

of . For cases (i) and (ii) analytical results were computed by the implementation

of the model in Relex®. The unreliability of the simulation model converges to the

analytical result with iterations in the case (i) with a very small relative error. In

the case (ii) more iterations are needed to obtain valid results because of the more

complex nature of the system involving temporal dependencies. About iterations

to achieve a small estimating error. In the case (iii) we claim that the number of

iterations needed to achieve a small error in case (ii) could be used as well. This is

supported by the fact that the unreliability seems to stabilize around iterations.

Results are reported in Table 4.2.

Table 4.2. Unreliability and relative error for the model MatCarloRe of the FT in

Fig. 12. Case(i): SFT with fixed probability for BE1 and BE3; Case(ii): DFT with

failure rate for BE1 and BE3; Case(iii): DFT with fixed probability for BE1 and

BE3.

Iter Case (i) Err.rel% Case (ii) Err.rel% Case (iii)

10^1 0,7000 9,45% 0 100,00% 0

10^2 0,8000 3,48% 0 100,00% 0

10^3 0,7730 0,01% 0 100,00% 0

10^4 0,7717 0,18% 1,00E-04 88,39% 0

10^5 0,7734 0,04% 6,00E-05 13,03% 3,00E-05

10^6 0,7733 0,02% 6,20E-05 16,80% 4,40E-05

10^7 0,7732 0,02% 5,58E-05 5,12% 5,49E-05

10^8 0,7731 0,00% 5,36E-05 0,98% 5,45E-05

Fteo 0,7731 5,31E-05

4.5 JDFTDES: A JAVA-MATLAB
®

 INTEGRATED TOOL

MatCarloRe has one main disadvantage: it is not possible to model complex

structures involving repeated spares. In fact, while the SPARE block can handle

 MatCarloRe: a tool for the resolution of DFT

multiple primary components that share the same spares, problems arise when more

SPARE gates that share the same spare component (of order greater than 1) have

other components are inputs that are not the same. Figure 4.14 shows an example of

a SPARE system that cannot be modelled by MatCarloRe. In this case, in fact, we

cannot use any of the aggregation logic represented in Figure 4.6 or 4.7 because the

element B2 can substitute only B but cannot substitute A. Since, MatCarloRe does

not admit that spare components are input of more SPARE block, the system in

Figure 4.14 cannot be solved by the tool.

To overcome this limitation a Matlab® implementation of the tool was developed.

To this end, functions implemented in the blocks of the Simulink® library were

converted into Matlab® functions, forming a Matlab® library.

In this way by calling those functions following the hierarchy of the tree is

possible to obtain a simulative model that is identical to the one that can be modelled

by MatCarloRe.

Fig. 4.14. Example of SPARE system that cannot be modelled by MatCarloRe.

To solve the mentioned problem we defined a new function called ALL_SPARE

that evaluate iteratively all the SPARE functions that are implemented in the model.

By the mean of the ALL_SPARE gate, SPARE gates can share information about the

occupancy of a spare component in a specific SPARE gate, thus allowing SPARE

gates to communicate to each other.

 MatCarloRe: a tool for the resolution of DFT

Fig. 4.15. Algorithm of the resolution of a DFT with the Matlab® library.

The algorithm for the resolution of a DFT by the mean of the Matlab® library is

shown in Figure 4.15. The figure shows that after the computation of the sampled

time to failure of BEs, FDEP gates are evaluated. In this way the corrected time to

failure of elements inputs of FDEP gates are assigned. Successively, the

ALL_SPARE function is called, which in turn calls recursively a number of SPARE

functions equal to the number of SPARE gates in the model. When this is done the

remaining gates are evaluated by the mean of the supporting functions in a bottom-up

procedure until the top gate. This procedure is nested into a for loop that counts for

the number of batches.

While solving modelling and evaluation concerns the Matlab® library results very

difficult to organize when it comes to model a system. To this end a JAVA graphical

interface that support the construction of the DFT was developed. By the mean of the

interface the model of the system is generated in terms of a Matlab® functions where

all the necessary functions of the Matlab® library are automatically organized.

call FDEP functions

call ALL_SPARE.m

Solve gates level 0

Solve gates level i

Solve top level gate

iter =

MaxIter ?

call BE functions
Set :

F = 0

MaxIter = batch number

Set iter = 0

START

iter = iter + 1

F = F + y_top

F = F/MaxIter

NO

YES

call OUT_FDEP.m

 MatCarloRe: a tool for the resolution of DFT

4.5.1 JAVA INTERFACE

The creation of a DFT model with the MatCarloRe syntax can be error prone and

tedious. In Figure 4.15 it is shown the flow chart that describes how to prepare the

Matlab® script. At first, the initialization of the main variables (F, number of

iterations) is needed. Then, the simulation runs inside a loop that contains the

commands that refer to the DFT model; the functions of the library have to be

invoked in the order shown in Figure 4.15, according with the structure of the DFT.

The «BE functions» need to be invoked for first, in order to sample the

correspondent times of failure of each BE; the «FDEP functions» and «OUT_FDEP

functions» are called if the DFT contains FDEP gates, in order to refresh the time of

failure of the BEs which are connected with such kind of gate. Hence, if there are

spare gates which share spare components, they have to be assembled invoking the

«ALL_SPARE function» function. Once this first part of the code is written, it is

possible to call all the other functions (which represent the gates) following a

bottom-up approach since the information of the lower level of the fault tree are

requested to the upper gates. In the end, the unreliability is computed as the ratio

between the number of TE occurrence over the number of iterations.

In order to simplify the effort of typing the code of a model with the MatCarloRE

syntax, a graphic user interface (GUI), the jDFTDes, was developed. The jDFTDes is

a code processor that translates a graphic model of DFT in a program for the

MatCarloRE engine. The jDFTDes stands for “Java® DFT Designer”, a java

package that can be invoked directly under the Matlab® shell. The choice of using

Java was natural, since Matlab® runs under a Java Virtual Machine (JVM) and this

permits to use the Java interpreter and run programs written in Java. In our

application, we created a Java Archive (JAR), a Java file that includes all the classes

of the jDFTDes. The jDFTDes can be invoked through the “javaaddpath()”

command, specifying the path where the library is located and creating a dummy

variable that contains an instance of the java main frame of the jDFTDes. jDFTDes is

greatly simple and the construction of a DFT model is straight, easy and fast. This

was accomplished implementing a “drag and drop” interface that permits a quick

 MatCarloRe: a tool for the resolution of DFT

interactions with the element of the DFT. In fact, by clicking the right button it is

possible to change the property of a component (rename, modify the type of

component and change the order of the dependency) while by clicking the left button

is possible to add an input (if the component clicked is a gate) or specify the type of

CDF if the component is a BE.

The text field Tm must contain the value of the time mission and the text field

“ITERATION” the number of batches requested for the simulation. Once the DFT is

assembled and the input are correctly set, by clicking “COMPUTE” the jDFTDes

will process the graphical model generating the code for the MatCarloRE and finally

dumping it in the Matlab® shell.

4.6 CONCLUSION

In this chapter we summarized an integrating technique of Monte Carlo

simulation and FT methodology for reliability assessment of complex systems in

presence of time dependencies. Our simulating environment can go beyond the

limitations of analytical methodologies with the additional advantage of a high level

modeling interface based on the FT method.

With the current implementation of the tool DFT with general distributions can be

solved via simulation. Moreover the tool has shown its effectiveness with respect to

commercial and academic tool for the resolution of DFT. In Appendix A an accepted

paper is reported where comparison with known tool is performed on the basis of the

kind of the supported distributions as well as in terms of simulation time. Currently,

MatCarloRe and its most recent version (Java-Matlab) are still under development.

Two are the research lines that have been considering: the first is to exploit the use of

variance reduction techniques to speed up the simulation [15-19]. First results have

shown that these techniques can be applied effectively when non repairable

components are considered. Second, we want to achieve the modeling capabilities

introduced in Extended-DFT [39] where the following limitations are overcome:

- FDEP gates cannot accept input that are not BEs;

- SPARE gates cannot accept inputs that are not BEs.

 MatCarloRe: a tool for the resolution of DFT

However, the tool carries on the limitations of DFTs in terms of modelling power:

- the kind of behaviour that can be modelled depends on the gates that are used

in the formalism (as an example is not possible to model shared load,

dependencies that are not related to fault logics etc.)

- it is not possible to evaluate the availability of the system since the recovery

logic was not formalized;

- it is not possible to evaluate measure like reliability with repairs or more

complex behaviours that depend on the occurrence of the failure of subparts

of the tree.

To overcome this limitations we recognize the need of a methodology that offers

more degree of freedom to modeller in describing dependencies without losing the

benefit of a high level language of description. In order to address these issues we

recognize the necessity to separate the behaviour of the system from the fault logic

into two separate and interconnected model. The behavioural model is a description

of the behaviour of the system while the fault model represents the configurations

that bring to the system failure. The two model in additions are interconnected in the

sense that the behavioural model must pass information about the state of the

components to the fault model and the information retrieved by the evaluation of the

fault model can be passed back to the behavioural model in order to allow more

complex behaviours. The fault model, free from the behavioural part, is static and

can be represented by a FT of a RBD for instance.

However, this implementation needs the formalization of a new modelling

semantic. We will show that with the introduction of Adaptive Transition Systems

(ATS) these limitations can be overcome giving to the modeller a flexible formalism

to model systems with such a behaviour.

BIBLIOGRAPHY

[1] Roberts, N. H. , Vesely, W. E., Haasl, D.F., & Goldberg, F.F. (1981). Fault tree

handbook, NUREG-0492. Washington: US NRC.

 MatCarloRe: a tool for the resolution of DFT

[2] Ren, Y., & Dugan, J. B. (1998). Design of reliable systems using static and

dynamic fault trees. IEEE Transactions on Reliability, 47, 234-244.

[3] Siu, N. (1994). Risk assessment for dynamic systems: an overview. Reliability

Engineering and System Safety, 43, 43-73.

[4] Cepin, M., & Mavko, B. (2002). A dynamic fault tree. Reliability Engineering

and System Safety, 75, 83-91.

[5] Amari, S., Dill, G., & Howald, E. (2003). A new approach to solve dynamic fault

trees. Annual Reliability and maintainability symposium, 374–379.

[6] Distefano, S., & Puliafito, A. (2007). Dynamic reliability block diagrams vs

dynamic fault trees. In Proceedings Annual Reliability and Maintainability

Symposium RAMS '07, Jan. 22-25, 71-76.

[7] Dugan, J. B., Venkataraman, B., & Gulati, R. (1997). Diftree: a software package

for the analysis of dynamic fault tree models. In Proceedings Annual Reliability

and Maintainability Symposium, Jan. 13-16, 64-70.

[8] Dugan, J. B., Trivedi, K. S., Smotherman, M. K., & Geist, R. M. (1986). The

hybrid automated reliability predictor. Journal of Guidance, Control, and

Dynamics, 9, 319-331.

[9] Sullivan, K. J., Dugan, J. B., & Coppit, D. (1999). The galileo fault tree analysis

tool. In Proceedings of the Twenty-Ninth Annual International Symposium on

Fault-Tolerant Computing, June 15-18, 232-235.

[10] Boudali, H., Crouzen, P., & Stoelinga, M. (2007). Dynamic fault tree analysis

using input/output interactive markov chains. In Proceedings 37th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

DSN '07, June 25-28, 708-717.

[11] Montani, S., Portinale, L., Bobbio, A., & Codetta-Raiteri, D. (2008).

RADYBAN: A tool for reliability analysis of dynamic fault trees through

conversion into dynamic bayesian networks, Reliability Engineering and System

Safety, 93, 922–932.

 MatCarloRe: a tool for the resolution of DFT

[12] Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001). Improving

the analysis of dependable systems by mapping fault trees into Bayesian

networks. Reliability Engineering and System Safety, 71, 249–260.

[13] Volovoi, V. (2004). Modeling of system reliability petri nets with aging tokens.

Reliability Engineering and System Safety, 84, 149–161.

[14] Durga Rao, K., Gopika, V., Sanyasi Rao, V. V. S., Kushwaha, H. S., Verma,

A. K., & Srividya, A. (2009). Dynamic fault tree analysis using Monte Carlo

simulation in probabilistic safety assessment. Reliability Engineering and

System Safety, 94, 872–883.

[15] Marsaguerra, M., Zio, E., Devooght, J., & Labeau, P. E. (1998). A concept

paper on dynamic reliability via Monte Carlo simulation. Mathematics and

Computers in simulation, 47, 371-382.

[16] Marquez, A. C., Heguedas, A. S., & Iung, B. (2005). Monte Carlo-based

assessment of system availability. A case study for cogeneration plants.

Reliability Engineering and System Safety, 88, 273–289.

[17] Zio, E., Marella, M., & Podollini, L. (2007). A Monte Carlo simulation

approach to the availability assessment of multi-state systems with operational

dependencies. Reliability Engineering and System Safety, 92, 871–882.

[18] Zio, E., Podofillini, L., & Levitin, G. (2004). Estimation of the importance

measures of multi-state elements by Monte Carlo simulation. Reliability

Engineering and System Safety, 86, 191–204.

[19] Marseguerra, M., & Zio, E. (2004). Monte Carlo estimation of the differential

importance measure: application to the protection system of a nuclear reactor.

Reliability Engineering and System Safety, 86, 11-24.

[20] Chatterjee, P. (1975). Modularization of fault trees: A method to reduce the cost

of analysis. SIAM Reliability and Fault Tree Analysis, 101-137.

[21] Rosenthal, A. (1980). Decomposition methods for fault tree analysis. IEEE

Transactions of Reliability, R-29, 136- 138.

 MatCarloRe: a tool for the resolution of DFT

[22] Khoda, T., Henley, E. J., & Inoue, K. (1989). Finding modules in fault trees.

IEEE Transactions on Reliability, 38, 165-176.

[23] Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic Fault-Tree Models

for Fault-Tolerant Computer Systems. IEEE Transactions on reliability, 41, 363-

377.

[24] Dugan, J. B., Sullivan, K. J., & Coppit, D. (2000). Developing a low cost high-

quality software tool for dynamic fault-tree analysis. IEEE Transaction on

reliability, 49, 49–59.

[25] Meshkat, L., Dugan, J. B., & Andrews, J. D. (2002). Dependability Analysis of

Systems With On-Demand and Active Failure Modes, Using Dynamic Fault

Trees. IEEE Transactions on reliability, 51, 240-251.

[26] Anand, A., & Somani, A. K. (1998). Hierarchical analysis of fault trees with

dependencies, using decomposition. Proceedings Annual on Reliability and

Maintainability Symposium, 69–75.

[27] Huang, C. Y., & Chang Y. R. (2007). An improved decomposition scheme for

assessing the reliability of embedded systems by using dynamic fault trees.

Reliability Engineering System Safety, 92, 1403–1412.

[28] Lanus, M., Yin, L., & Trivedi, K. S. (2003). Hierarchical Composition and

Aggregation of State-Based Availability and Performability Models. IEEE

Transactions on reliability, 52, 44-52.

[29] Feinberg, B. N., & Chiu, S. S. (1987). A Method to Calculate Steady-State

Distributions of Large Markov Chains by Aggregating States. Operations

Research, 35, 282-290.

[30] Malhotra, M., & Trivedi, K. S. (1993). A methodology for formal specification

of hierarchy in model solution. In Proceedings Fifth Intiernational Workshop

Petri Nets and Performance Models, (PNPM-1993), 258–267.

[31] Windebank, E. (1983). A Monte Carlo Simulation Method Versus a General

Analytical Method for Determining Reliability Measures of Repairable Systems.

Reliability Engineering, 5, 73-81.

 MatCarloRe: a tool for the resolution of DFT

[32] Goldfeld, A., & Dubi, A. (1987). Monte Carlo Methods in Reliability

Engineering. Quality and Reliability Engineering International, 3, 83-91.

[33] Dubi, A. (1989). Monte Carlo Methods in Reliability. Operation Research and

System Engineering Commission of the European Communities Joint Research

Centre, Ispra Italy.

[34] Lewis, E. E., & Bohm, F. (1984). Monte Carlo Simulation of Markov

Unreliability Models. Nuclear Engineering and Design, 77, 49-62.

[35] Dubi, A. (1986). Monte Carlo Calculations for Nuclear Reactors. CRC

Handbook of Nuclear Reactors Calculations, Vol. II, CRC PRESS.

[36] Wu, Y. F., & Lewins, J. D. (1992). Monte Carlo Studies of Engineering System

Reliability. Annual nuclear engineering, 19, 825-859.

[37] Zio, E. (1995). Biasing the transition probabilities in direct Monte Carlo.

Reliability Engineering and System Safety, 47, 59-63.

[38] Relex. URL: http://www.ptc.com/products/windchill/quality-solutions/

[39] DFTsim. URL: http://wwwhome.cs.utwente.nl/~marielle/papers/BNS09.pdf

 Adaptive Transition System

CHAPTER 5

5.1 INTRODUCTION

It is often possible to represent the behaviour of a system by specifying a discrete

number of states it can occupy and by describing how the system moves from one

state to another as time progresses. We take the view that the evolution of a system

can be the result of interaction among different parts of the system.

This kind of approach, based on communicating (or interacting) transition

systems, has been used in Stochastic Process Algebras (SPA), e.g., Performance

Evaluation Process Algebra (PEPA), Interactive Markov Chains (IMC), etc. [1,2].

Here, the communication mechanism between models of the system interacting parts

is based on synchronization of transitions that share the same name (like in the CSP

approach [3]), i.e., state changes occur simultaneously across the models of

interacting parts.

In PEPA synchronization between timed transitions (exponential) is defined taking

the minimum between the rates of synchronized transitions, while in IMC the

problem is solved distinguishing timed transitions from synchronizing transitions

(instantaneous). These approaches are limited to Markov models. IMC supports also

phase-type distributions.

 Adaptive Transition System

Among SPA extensions to non Markovian models is Interactive generalized Semi

Markov Processes (IGSMP) [4]. However the solution for these methods is very

expensive, thus one usually restores to simulation, e.g., the SPADE language [5].

A different approach has been used in the PRISM language (a stochastic and

probabilistic model checker [7]), where transition systems are replaced by modules,

states by variables and transitions by functions of these variables [6,8]. There can be

more than one variable for each module, and each module can update the values of

its internal variables. PRISM allows synchronization of transition, too, but in this

case the rate of the transition is chosen as the product of individual rates of the

synchronized transitions.

PRISM introduces also guards on transitions, i.e., Boolean expressions that define

the conditions for which a transition (a command in the PRISM language) may

complete. Guards are functions of the variables defined in the model; also of

variables belonging to other modules. PRISM lacks of a graphical interface, but is

very powerful due to the possibility of specifying variables and synchronization.

Again PRISM can be used only when the underlying process is Markov.

In the context of model checking, when general distributions need to be accounted

into the model, this has brought to statistical model checking, i.e., solved via

simulation [10]. One relevant work is that of [9] where a statistical model checking is

implemented based on the definition of a DESP. DESP resemble the definition of

generalized semi-Markov process (GSMP) given in [11].

Another well known class of formalisms that have been widely used in

dependability modelling are stochastic extensions of Petri nets (SPN) [12]. They

allow one to analyze systems with various dependencies between the modelled

elements and to use a range of distributions to model their stochastic behaviour. We

have seen in Chapter 3 that Stochastic Activity Networks (SANs), an extension of

SPN, allow compositional modelling, overcoming to one of the main limits of SPN

in case of large and complex systems [13]. These formalisms represent the system in

terms of a network composed of: places, containing tokens; and transitions, whose

function is to change the marking of the net, i.e., the number of token in a place.

 Adaptive Transition System

In SAN the modeller can define predicates of arbitrary complexity using directly an

high level language(e.g., C++ in the Mobius tool [14,26]). Predicates are as guards in

the PRISM, inhibiting transitions if the predicate is false. In most cases the predicates

implement a simple Boolean function on set of state variables maintained in the

model. Moreover, SANs allow to define parameter of transition dependent on the

marking of the net. This feature is not included, for instance, in the previous

mentioned formalism (PEPA, IMC, PRISM).

Inspired by the indicated formalisms, we introduce a modelling approach for

dependability analysis of complex interdependent systems where temporal

dependencies have a central role. In the mentioned approaches we argue that

temporal dependencies based on the ordering of occurrence of transitions can be

modelled with increased complexity of the model itself. The resulting model is very

large and one cannot completely abstract from the complexity of the interaction

between the modelled elements.

We model systems in terms of interacting transition systems (TS) with stochastic

features [15]. The model consists of a set of TSs, each representing the state space of

an element modelled in the systems. A TS can model a component as well as a

specific dimension of the state space of the element. The main value of the approach

is the separation of concerns: the modeller and the problem domain experts may

benefit from being able to focus on the specific aspect of the state-space of a

modelled element and abstract out the complexity of its entire state-space of the

system.

The class of interactive transition systems that we define are Adaptive Transition

System (ATS). ATS is an high level modelling formalism that provides a concise and

compositional way to describe the behaviour of interdependent reactive systems with

general time distributions. Non determinism can be included in the model as well.

Different kind of synchronization procedures can be defined, too. In ATS different

parts of the system are modelled by different transition systems that are said adaptive

because they adapt to each other according to their relative evolution as time

progresses.

 Adaptive Transition System

Adaption is a consequence of the kind of dependencies existing between parts of

systems. In ATS we define a formal language to represent two kinds of dependencies

that may exist in a system:

- state dependencies, where the behaviour of interdependent systems is

subjected to the different states they may be in; and

- temporal dependencies, where the behaviour of interdependent systems is

subjected to ordering of occurrence of state-transitions.

From a modelling point of view, these two kinds of dependencies require different

information about the state of the system parts. In fact, state dependencies can be

modelled considering only indicator functions of the states occupied by the modelled

elements. On the other hand, modelling temporal dependencies requires to know

whether a defined sequence of actions has taken place.

Another way to classify dependencies is in terms of impacts, i.e., the effects that a

state or temporal dependency may have on the system behaviour. We model impacts

by defining a model of transition that allows to capture the following behavioural

aspects that may change as the system evolves in time:

- the existence or not of a transition between pair of states;

- the change in the mathematical law that define the time to complete of a

transitions;

- the change in the values of the parameters of these laws; and

- the possibility to restart a transition.

It is by the model of transitions that ATSs adapt their behaviour with respect to the

evolution of other parts of the system as time progresses. In order to allow these

possible behaviours we assign to transitions a set of attributes similar to those given

in SAN for activities, i.e., type, activation, reactivation and parameter. In the ATS

language attributes of transitions are variables that are defined by opportune

functions, that we call transition functions.

 Adaptive Transition System

Transition functions define the communication mechanism between ATSs. Outputs

of transition functions are transition variables, i.e., activation, reactivation and

parameter variables, and inputs are system variables.

System variables are a reading of the system state at a given time. They are

outputs of system functions, a set of functions defined over the evolution of the

system. In this dissertation we give the definition of three kind of system functions

that define three kind of system variables. However, the class of system functions

and variables could be easily extended. Here we present system variables that give

the following information about the state of a system:

- the state occupied by each ATS;

- the last completed transition among all ATS models; and

- the time of completion of each transition when it last occurred.

These system variables are said: state indicator, transition indicator and transition

timing variables, respectively. State indicator variables and transition indicator

variables can be used to define the class of state dependencies described above,

while transition timing variables can be used to define temporal dependencies. They

can impact on any of the attributes of transitions described above, although transition

indicator variables are generally used only as inputs of reactivation functions.

The specific structure of transition functions is defined by the modeller. It is by

the specification of such structures that dependencies among parts of the systems are

modelled. Transition functions take the last values of system variables, i.e., the value

of these variables after the most recent state-change, to update the value of transition

variables, thus allowing ATS to adapt to changes in the system (Figure 5.1).

Due to the fact that only the last value of system variables, i.e., the value at the most

recent state-change, the class of temporal dependencies that can modelled through

the definition of transition functions is restricted to the most recent ordering of

events. However, even with this limitation a wide class of systems can be

represented. In this setting, each transition can be seen as a corridor that moves at

point in time. At each completion of a given transition, the related corridor moves

 Adaptive Transition System

forward to the new position. In this way the modeller can benefit from the knowledge

of the relative position of corridors when state changes occur.

Fig. 5.1. Communication mechanism between ATS models.

Properties of the system are studied by the definition of reward variables. Reward

variables are outputs of reward functions and inputs of reward functions are system

variables.

In our framework we extend the notion of reward variables. In fact we allow reward

variables to be inputs of transition functions. Thus, not all the reward functions that

are defined in the model are used as a mean to evaluate performance indexes of the

system. While in the latter case one wish to estimate the expected value of these

variables; in the case they are used as inputs of transition functions they are seen as

variables that highlight composite information about the system (Figure 5.2).

In fact, since reward functions take system variables as inputs they can be seen as a

composite reading of the state of the system. They express an higher level of

abstraction.

Reward variables and systems variables are input of transition functions. The

main consequence of this choice is to move the complexity of modelling

dependencies to the model of transitions. In fact, defined the ATS of the interacting

elements in terms of state and transitions the definition of transition and reward

functions can be done subsequently. In this way one benefits of abstracting from the

model of the other system parts when building the different ATSs.

System variables

ATS-1

- State indicator

- Transition indicator

- Transition timing

Transition

functions

Transition variables

ATS-2

- Activation

- Reactivation

- Parameter

Transition

functions

System variables

ATS-2

- State indicator

- Transition indicator

- Transition timing

Transition variables

ATS-1

- Activation

- Reactivation

- Parameter

ATS-2ATS-1

 Adaptive Transition System

Moreover, we show that, with the aid of a Fault Tree [16] like formalism, where

gates are generalized to include not only Boolean operators, transition and reward

functions can be graphically represented, improving the readability of the model.

We argue that also the task of debugging and maintain a model are facilitated by the

graphical representation of transition functions, and thus of dependencies between

the modelled elements. This, for instance, in comparison to Petri Nets is a major

advantage since in these models there is often a lack of standardized approach to

modelling (the model depends from the modeller perspective).

Fig. 5.2. Relations between variables.

To build a state-space model of ATS that can be solved analytically we propose a

definition of state based on system variables with constrain on the class of possible

structure of transition and reward functions.

However, transition functions and systems variables can be of any kind. In this case

by giving ATS with an execution logic similar to the one defined for GSMP we show

how a simulation model can be implemented directly from the execution rules of

ATS.

System variables

ATS-1

- State indicator

- Transition indicator

- Transition timing

Transition

functions

Transition variables

ATS-2

- Activation

- Reactivation

- Parameter

Transition

functions

System variables

ATS-2

- State indicator

- Transition indicator

- Transition timing

Transition variables

ATS-1

- Activation

- Reactivation

- Parameter

ATS-2ATS-1

Reward

functions

Reward variables

Expected value

 Adaptive Transition System

Compared to IMC, we do not make use of the powerful formalism of SPA to address

problems related to the size of the state-space. Our intent is to define a formalism

that offers a structured approach to modelling complex systems that can be easily

implemented in a simulation language and under some constrain and variables-

transformation can be solved analytically via the generation of the underlying

Markov chain.

The state-space of an ATS can be built by an algorithmic procedure that resemble the

construction of a reachability graph in SPNs. Due to the timing relation the retrieved

state-space can be very large even in case of small systems. We give some indication

to achieve a reduction by an appropriate definition of the state where only those

variables influent for the evolution and for the estimate of a performance measure are

considered.

In comparison to Petri net, however, probabilistic choice has not yet been defined

in ATS. However the extension seems straightforward. Synchronization could be

also be defined for future development of the formalism. Although we do not give a

formal definition of synchronization between ATS, we show how it can be

implemented with the aid of a case study based on a real system. Finally, we argue

that a SPA formalization of ATS can be achieved, with the results of improving the

techniques used for the analytical solution of the system.

The remainder of this chapter is structured as follows: Section 2 gives a formal

definition of ATS with a detailed explanation of the variables defined above and their

possible relations.

In Section 3 we present Ordered-ATS (OATS) a class of ATS with constrains on the

structure of transition and reward functions. Within Section 3 we introduce a Fault

Tree like formalism to the graphical representation of these functions.

In section 4 we present a contrived example, the heat-power system, a system

composed of four components with various kind of functional dependencies.

Although the example does not exploit the full range of modelling capabilities of

ATS, it shows how build the model of transition in a tutorial fashion.

 Adaptive Transition System

Section 5 concerns with the evolution of ATS. We define the process of completion

of a transition considering non deterministic choices and race conditions between

transition.

In Section 6 we introduce Markov-OATS (MOATS) a class of OATS for which a

Markov model can be retrieved. We give the general rules for the generation of the

state-space model defining an appropriate notion of state.

Section 7 gives the general rules for solving the model via simulation. We show a

case study based on the POWER-TELCO network nearby Rome Fiumicino (IRIIS

Project [17,18]). In this case study ATS assume a very general form. In fact, one kind

of reward functions represents the power associated with a node of the network and

transition functions take as inputs these values. The power associated with the nodes

is evaluated by solving the balance equations of the network, i.e., Kirchhoff circuit

laws, given the absence of some node due to a failure. As a result some new node can

become disconnected from the network due to overloading or missing of current.

This process taking place into the Power network has effect on the batteries that

supply energy to the Telco nodes.

Finally, in Section 8 are reported some related works, conclusion and possible lines

of further study.

5.2 ADAPTIVE TRANSITION SYSTEM

Definition 5.1. An ATS is a 5-tuple , where:

- is a finite set of N transition systems. The i-th element of is

specified in terms of a finite set of states and a

finite set of transitions between pairs of states.

and are the set of states and transitions of the overall transition system ,

respectively. Elements of are denote as and

elements of as or as .

 Adaptive Transition System

- , is a set of system functions that define the state of the system at a

given time. We represent the system state in terms of three kinds of system

functions. , where:

- are said state indicator functions (associated with each

state);

- are said transition indicator functions (associated with

each transition); and

- are said transition timing functions (associated with each

transition).

- , is a set of reward functions defined over the set of system

variables ;

- is a set of transition functions defined over the set of system

and reward variables, and , respectively. Transition functions

are of three kinds. , where:

- are said activation functions;

- are said reactivation functions; and

- are said parameter functions.

- , is the initial state. is the state variable of at time t. As

the system moves at point in times, we are interested in , the values of

these variables as a state-transition occurs. With we say that

during the interval , is in state .

5.2.1 SYSTEM VARIABLES

As said in Definition 5.1 system functions are of three kinds:

- are said state indicator functions and are defined for each state

. Given a state , we define the state indicator function of

in the time interval as:

 Adaptive Transition System

. (5.1)

- are said transition indicator functions and defined for each

transition . Given a transition , we have that:

, (5.2)

for and . Thus, transition indicator function take on

value 1 only if the transition is the one that most recently completed. The

output of this function, can be analyzed also from the point of view of the

states that the transition connects.

In fact, if we retrieve the following information: is the state that

was left at the n-th time step (or the state that most recently was left) and that

 is the state that was entered at the n-th time step (or the state that most

recently was entered). On the other hand, if we can only state

that and were not involved in any state-transition at the n-th time step.

Transitions indicator functions can be seen as messages that are sent when a

transition complete. In ATS, the presence of instantaneous and deterministic

transitions can cause that more transitions complete at the same time

(concurrent transitions). Although occurring at the same time, their

completions occur at different time steps. Two cases are possible: (i)

transitions are consecutive in the same ATS; or (ii) transitions belong to

different ATS or are not consecutive. In the latter case, the modeller should

be aware of the non-deterministic choice that is made on the ordering of

completion of concurrent transitions. It is important to remind this fact in the

context of transition indicator variables because they are impulse variables,

i.e., they take on value 1 as long as a transition was the last that completed.

- are said transition timing functions and as transition indicator

functions are assigned to each transition . Given a transition

, we have that:

 Adaptive Transition System

, (5.3)

for and . Transition timing functions returns the value

of the most recent time point at which a given transition completed.

From eq. (5.3) we see that the value of transition timing variables is kept the

same until the transition completes again. Moreover, the value of these

variables is set to 0 at the initial time. Transitions are seen as events that

move along the real axis as corridors in a race. With this setting these

variables express a relative ordering between transition, independently of the

states they connect.

Again, from the perspective of entered and left states, returns the

most recent time point value at which was left and was entered.

Moreover, since the value of is kept the same until a new completion of

, the information about the time was last entered is present in the

model even if the system has moved out from .

This is true in the case of a state with only one ingoing and outgoing

transition, but it is not in general, i.e., a state with more ingoing or outgoing

transitions. In the general case to retrieve information about the time a state

was last entered, one should evaluate the maximum value of the transition

timing functions of those transitions directed to the state. In these cases, were

system variables must be related together in order to retrieve measure at

higher levels, reward functions must be considered.

5.2.2 REWARD FUNCTIONS

Reward functions are defined over the set of possible values of system functions.

Reward functions are commonly used to study some property of interest of the

system. From a general perspective reward functions can be seen as relations that

combine information of different parts of a system in order to generate a specific

output. Reward variables, the outputs of reward functions, can be used as a

specification of a measure of interest or simply considered as inputs of transition

 Adaptive Transition System

functions. In the latter case they are used to define the behaviour of the system with

higher levels of detail.

If a reward is used as a mean to evaluate a performance measure, three kind of

reward categories can be considered: instant of time, interval of time and averaged

interval of time. Another categorization that is often given about rewards is that they

can be rate rewards or impulsive rewards. Rate rewards are related to the occupancy

of a particular state, while impulse rewards are related to the completion of

transitions.

ATS allow to model both rate rewards and impulse rewards. Inputs of rate reward

functions are state indicator functions and transition timing functions and inputs of

impulse reward functions are transition indicator functions. In addition these two

kind of rewards can be implemented together in a single reward function. More

specification about rewards classification can be found in [19].

We allow reward variables to be inputs of transition functions. This follows

considerations like: to evaluate a measure like reliability with repair we allow repairs

until a system failure state is reached. Since the reward is a specification of a system

failure state at an higher level we can “stop” all transitions of the model when a

specific value of the reward is reached.

5.2.3 MODEL OF TRANSITIONS AND TRANSITION FUNCTIONS

In ATS a transition represents a set of events whose occurrence makes the system

move from a state to another. Each event of a transition is referred as a mode of a

transition. For each mode is specified a type and a set of attributes. Possible types

are: stochastic (stoc), deterministic (det) and instantaneous (inst). The difference

between these classes lays in the different underlying process that defines the time to

occur of an event. Stochastic means that the time to occur is defined via a probability

density function, deterministic that an event takes a fixed amount of time to occur

with probability one, and instantaneous that the event occurs in zero time having

precedence over the other types.

 Adaptive Transition System

Attributes related to a mode are of three kinds: activation (Act), reactivation

(React) and parameters (Par). The activation defines if an event may occur, the

reactivation if an event must be activated again (i.e., sampled again in simulation

terminology) and the parameter defines the parameters of the function specified by

the type of the mode. Stochastic and deterministic types support all the three

attributes Act, React and Par, while instantaneous types support only the activation

attribute.

Modes of transitions are useful in situations where the type of function that

determines the time to complete of transitions can change over time. In this case,

having defined different modes of a transition, the activation associated to each mode

can be used to define the way a transition may complete given a system

configuration. For instance, think about a component with a constant failure rate that

can fail instantaneously if some condition occurs. In this case one can model the

failure of the component by a transition with two modes that stand for the natural

failure mode of the component (the exponential one) and the one dependent on

external factors (the instantaneous one). Moreover, competition between different

modes are also allowed, i.e., more modes can be active simultaneously.

Fig. 5.3. Modes and attributes of transitions.

1, +→ jjiT m

jjimode 1, +→

jiQ ,

1, +jiQ

m

jjia 1, +→

m

jjir 1, +→

m

jji 1, +→θ

Modes of

transitions
ATS

Attributes of

modes

m

jjitype 1, +→

 Adaptive Transition System

Let be a transition and the set of possible modes. The m-th

mode is a 4-tuple where

(Figure 5.3):

- is a label that specifies the mathematical

relation that defines the time to occur of the mode. “stoc” represents

“stochastic” and can be further specified in terms of a specific probability

density function, e.g., “exp” stands for exponential; “det” stands for

deterministic, i.e., takes a fixed amount of time to occur, and “inst” for

instantaneous, i.e., occurs as soon as it is enabled;

- , is the activation function;

- , is the reactivation function; and

- , is the parameter function.

These three functions are related to the attributes of the mode. The activation

function to the activation of a mode, the reactivation function to the reactivation of a

mode and the parameter function to the mode parameters. To this end outputs of

activation and reactivation functions are binary, while the outputs of parameter

functions take on values in R.

Transition variables change over time. Since the system moves at point in time,

transition variables are updated at every state change. In particular:

- The output of the activation function is a binary variable that

defines whether may complete, given the system configuration

at the n-th time step. It can if the variable takes on value 1 and will not if the

variable takes on value 0.

- Transition parameters can change during the system evolution too, i.e., they

may be state dependent. The parameter function defines the

value of the parameter of at the n-th time step.

- In some cases it is necessary to reactivate a mode of a transition. For

instance, any change of the transition parameter value will trigger

 Adaptive Transition System

“reactivation”, a notion defined for SAN activities, which will trigger a

generation of a new value for the duration of the particular transition mode

using the current values of the mode parameter(s). The reactivation function

 states if must be reactivated at the n-th time step.

The reactivation is triggered when this variable takes on value 1, it is not

when it takes on value 0.

The m-th mode of is said enabled at the n-th time step if the system is in

 and if the activation function takes on value 1. We have:

. (5.4)

The time to occur, , of the m-th mode of is given by:

 (5.5)

Thus, the time to occur of a mode is set to: (i) infinite if the mode is not enabled;

(ii) equal to the previous value if enabled at some previous time step and not

reactivated at the current time step; and (iii) it is given by the defined type of the

mode and its parameters if enabled at the current time or reactivated.

A transition is enabled if at least one of its modes is enabled. The time to

complete of a transition can be derived from the time to occur of its events. Let

 be the time to complete of . It is given by:

. (5.6)

Inputs of transition functions are system variables. We have that:

 Adaptive Transition System

 (5.7)

The specific form of and its inputs are defined by the modeller. It is via the set

of that the modeler defines the dependencies between the elements of the system

and the communication mechanisms between ATSs.

5.3 ORDERED ADAPTIVE TRANSITION SYSTEMS

Generally speaking transition and reward functions can be of any kind. In practice

we see that most situation can be modelled considering only a subclass of possible

relations.

We define a Ordered-ATS (OATS) an ATS where transition timing variables are

related only by relational operators . In practice transition timing

variables can be related by min, max operators and use the outputs of the latter as

inputs of the relational operators . The use of relational operators

allows to define a notion of state when a base model in the form of a Markov chain

must be derived.

In order to make easier the construction and the readability of transition and

reward functions we propose a graphical formalism similar to one used in fault trees.

We model transition and reward variables as the top node of an acyclic graph whose

initial nodes are system variables (and also reward variables in the model of

transition functions) and intermediate nodes are gates that implement a specific

function of their inputs.

Top nodes are evaluated bottom-up from the initial nodes trough the various levels of

the hierarchy defined by the tree. A top node can be connected to a single gate (the

top gate) or to a single initial node and can take on the values of the outputs

associated with these nodes.

Intermediate nodes can be any function of their inputs. Moreover, weights can be

associated to gates and the links that connect nodes of the tree. Therefore, parameter

of a function implemented by a gate are the weight of the gate and those of the input

links, while input variables take on the values of the input nodes.

 Adaptive Transition System

The structure of the graph is similar to a FT and since we use it to model transition

and reward functions we call it functional tree (f-T).

Definition 5.2 Formally, a f-T is a 5-tuple (), where:

- , is the set of initial nodes;

- G, is the set of intermediate nodes (or gates);

- , is the top node;

- , is the set of connections between , , and ; and

- is the set of weights associated to and .

Gates implement a function of their inputs. For a given , we have that

 where is the weight associated to the gate and

are the weights associated with the inputs .

In OATS we the following specification for are essential for transition timing

variables to be used:

- LESS, (<), is a functions with general inputs (in R) whose output can take on

vale 1 if the first input is less that all the others and 0 otherwise.

- MORE, (>), is a function with general inputs (in R) whose output can take on

vale 1 if the first input is greater that all the others and 0 otherwise.

- EQ, (=), is a function with general inputs (in R) whose output can take on

vale 1 if all its inputs are equal and 0 otherwise.

Moreover we can have the combinations and . Other functions are common

mathematical, algebraic and Boolean operators. In some case, a function can have a

more complex structure. We have found that in modelling parameter functions the

following gates can be used:

- , or scaling gate. The gate is assigned a weight . Also input links are

assigned weights , namely the scaling factors. The name derives from the

fact that scales the value of if the j-the input node takes on value 1

(when inputs are binary).

 Adaptive Transition System

. (5.8)

- , or sum-progressive gate. Input links are assigned weights . The name

derive from the fact that sums if the j-the input node takes on value 1

(when inputs are binary).

. (5.9)

Generally the structure of a f-T of an OATS implements an “extended” Boolean

function of its inputs. In facts, all inputs are binary except for transition timing

functions that however are related by (and, in OATS, must be) relational operators

 seen above. In this case all the considered variables in the f-T become

binary.

Weights, however, can restore the presence of non binary variables, but, do not

change the notion of the underlying information considered by the set of system

variables. This, as we will show, allows to define a notion of state of the system in a

base model, i.e., state-space model, only in terms of system variables.

5.4 THE HEAT-POWER SYSTEM

In this section we present a contrived example to show how to build an ATS

model of a system. Let consider a system made up of the following elements: three

heat pumps P0, P1 and P2 and a generator G. P1 is in share-loading with P2 and both

are in cold stand-by with respect to P0. G provides power to the pumps and a failure

causes the instantaneous failure of all the pumps. Let assume the components are not

repairable and can fail with a constant failure rate. The system failure is: “no heat is

provided to the service”.

Let , , , denote the four ATS models of P0, P1, P2 and G, respectively.

Each of them is made up of two states representing the working and the failed

condition. Let and denote the working and failed state ().

is the transition that connects to .

 Adaptive Transition System

Transitions represent two kind of events: the failure of P0, P1 and

P2, respectively, due to internal faults or the failure due to the failure of the generator

G. Thus, we assign two modes to these transition in order to represent both the

possible events that can cause the state change. Let be these

modes. Each mode is represented by a 4-tuple .

 is “exponential” for and “instantaneous” for . The following

activation functions can be considered for P0:

 and ,

meaning that that the exponential mode is active () if the generator is in the

working state () and that the instantaneous mode is active () only if the

generator is the failed state (). Reactivation and parameter are fixed for both

modes. We assign:

, and .

Figure 5.4 shows the ATS model of P0.

Fig. 5.4. ATS model of P0.

P1 and P2 are cold stand-by of P0. Thus, they can fail due to internal faults

(“exponential” mode) only if P0 has failed (). In this case activation functions are

defined as:

 and .

0,0Q

1,0Q

10,0 →a

0,3s

10,0 →T

1

10,0 →mode

2

10,0 →mode
10,0 →a

1,3s

State transition

diagram
Transition modes Type

exp

inst

Activation

010,0 =→r

010,0 =→r

Reactivation

Pλθ =→10,0

010,0 =→θ

Parameter

 Adaptive Transition System

meaning that that: (i) the exponential mode is active () if the generator is in the

working state () and the pump P0 is in the failed state (); and that (ii) the

instantaneous mode is active () only if the generator is the failed state ().

Fig. 5.5.ATS model of P1.

Fig. 5.6.ATS model of P2.

Since, P1 and P2 are in load sharing, parameter of the “exponential” mode are

dependent on their reciprocal state. In particular let say that their parameter is

scaled by if they both work. Thus, we can define the parameter functions as:

 and .

To be implemented, a change in the parameter needs reactivation. The following

reactivation functions can be defined:

 and ,

0,1Q

1,1Q

10,1 →a

0,3s
10,1 →T

1

10,1 →mode

2

10,1 →mode

10,1 →a

1,3s

State transition

diagram
Transition modes Type

exp

inst

Activation

010,1 =→r

Reactivation

Pλ

010,1 =→θ

Parameter

1,0s

10,1 →r

10,2 →t

10,0 →θ

0,2s

Pα

0,2Q

1,2Q

10,2 →a

0,3s
10,2 →T

1

10,2 →mode

2

10,2 →mode

10,2 →a

1,3s

State transition

diagram
Transition modes Type

exp

inst

Activation

010,2 =→r

Reactivation

Pλ

010,2 =→θ

Parameter

1,0s

10,2 →r

10,1 →t

10,2 →θ

0,1s

Pα

 Adaptive Transition System

where we have taken advantage of the impulse nature of transition indicator

functions. In particular the reactivation function of the exponential mode of the

“failure transition” of P1 () takes on value 1 if P2 was the component that most

recently failed (). Figure 5.5 and 5.6 show the ATS model of P1 and P2.

Finally, the model of the generator G (Figure 5.7) is defined by the following

transition functions:

, and ,

where the transition is assigned only one mode of occurrence (exponential).

Fig. 5.7.ATS model of G.

The reward function can be expressed in terms of the failed state of the three

pumps (according to the top event: “no heat provided to the service”) as:

.

The choice of using only system functions associated with the pumps follows to the

fact that the generator is involved indirectly in the demand satisfaction. Thus, in ATS

one can analyze the system at different level of details, considering first the elements

directly related to the system requirements.

5.5 EVOLUTION AND EXECUTION OF ATS

The kind of systems we model are discrete event dynamic systems [9,10,11], thus,

they move from a state to another in points in time defined

0,3Q

1,3Q

110,3 =→a10,3 →T 1

10,3 →mode

State transition

diagram
Transition modes Type

exp

Activation

010,3 =→r

Reactivation

Gλθ =→10,3

Parameter

 Adaptive Transition System

over where is the initial instant and for is the instant of occurrence of

the n-th event.

The next event that will occur (or the next transition that will complete) is chosen

by a race condition between concurrent enabled transitions. Transition can have the

same time to complete in the case they are instantaneous or fixed. On the other hand,

since the point probability of a continuous random variable is zero, stochastic

transitions can never complete at the same time.

When more transitions have the same time to complete a non-deterministic choice is

made. In fact, in this case it is not defined which transition will trigger first, i.e., the

process of completion of a transition. Moreover, it is not said that in the resulting

state all the previous concurrent transitions will be still enabled. Concurrent

transitions can exist into the same ATS and among ATSs. In practice, non-

determinism is solved probabilistically assigning the same probability to each

simultaneous transitions.

Basically, every time a transition completes, the new value of system, reward and

transition functions with the consequent update of the time to complete of transitions

(Figure 5.8) are evaluated.

Given the time to complete of (with the x-th

transition of the set of all the transitions of the model T of cardinality NT), the choice

of the transition that will complete is determined by selecting non-deterministically

among all the transition with minimal time to complete.

Let denote the set of

transitions with minimal time to complete. We non-deterministically select from

the set . Obviously, given (5.8), it follows that that .

In practice, the choice is effectuated randomly over the set of the transitions with

minimum time to complete. If we denote with the random variable that can

take on possible values equally probable, with total probability mass 1, we

say that if is randomly selected from the set . Thus, we

define the choice function as:

 Adaptive Transition System

. (5.10)

Given the state variable of the i-th ATS at time step , ,

is updated following:

. (5.11)

Fig. 5.8. Evolution of ATS.

The stochastic process underlying an ATS is defined by , where

 is the random variable that define the state at the n-th step and

defined the time at which the last state-transition occurred. Since all the variables

defined above (system, reward and transition) can be defined in terms of , all

variables are random variables. Moreover, since reward and transition variables are a

function of system variables, only system variables can be considered in the

definition of the state for the construction of a base state-space model of ATS. In the

next section we show how to generate a Markov base model of OATS. OATS allows

1S

)1(+nvS

iS

NSS

)(nvT)1(+nvR

)1()1()1(−→−→− nvnvnv TRS)()()(nvnvnv TRS →→

n-th state transition

 Adaptive Transition System

to generate a finite state space because timing variables can be converted in ranking

variables, i.e., rank of the order of completion of transitions.

5.6 MARKOV ORDERED ADAPTIVE TRANSITION

SYSTEMS

In this section we show how is possible to generate a Markov model given an

OATS. An OATS is said a Markov-OATS (MOATS) if modes of transitions are: (i)

instantaneous or exponential; (ii) if there is not infinite cycles of instantaneous

transitions; and (iii) if the first state is stable, i.e., there are not instantaneous

transitions enabled at .

We use a construction procedure that resemble the common algorithm used in

Petri nets to generate the reachability graph of the net where states of the base model

are defined as the marking of the net and transitions of the base model are the

enabled transitions in each marking. In our approach a state of the base model will be

derived in terms of the system variables of the ATS model while transitions of the

base model will be derived from the enabled transitions given am ATS configuration,

i.e., a given value of system variables.

Before to give the notion of state of the base model of an OATS, let discuss the

construction procedure. We start considering the first state and checking the enabled

transitions, their kind and parameters. A transition is enabled if there is at least an

enabled mode. If there are more enabled modes, we have the following situation:

- if there is at least one instantaneous mode enabled, the transition is

considered instantaneous; and

- if there are only exponential modes enabled, the transition is considered

exponential with rate equal to the sum of the parameters of the enabled

modes.

At the level of transitions enabled in a state, if there are instantaneous transitions,

exponential transitions are discarded, because of the priority of instantaneous

 Adaptive Transition System

transitions, and a weight, equal to the inverse of the total number of enabled

instantaneous transitions, is assigned to each instantaneous transition.

Enabled transitions in a state define the set of the reachable states. These states

can be states that have been already encountered during the construction procedure

(states are compared on the basis of the values of their internal (system) variables). If

a state is an “old” state a connection in the base model is defined between the old

state and the one from where the considered transition departs. If it is a “new” state,

it is included in the set of states “to be explored”, i.e., verify the enabled transitions

and define the reachable states.

Obviously, for each connection between states is defined the type, exponential or

instantaneous, and a weight for instantaneous transitions or a rate for exponential.

When this procedure is completed, in order to generate the equations associated

with a Markov chain, states with outgoing instantaneous transitions (unstable states)

must be eliminated from the model. We do this, by multiplication of the weights of

instantaneous transitions to the rates of exponential transitions ending in the state

where instantaneous transitions depart from.

The definition of the state must allow the evaluation of the enabling conditions of

transition, the value of the parameters of transitions and the values of reward

variables. In the following we give our definition of state in two cases: models with

and without transition timing variables.

5.6.1 MOATS WITHOUT TRANSITION TIMING VARIABLES

In the case of MOATS without transition timing functions the state of the system

is defined considering only indicator functions. In particular we define a state as the

vector whose entries are the indicator functions of the system. It is

.

However, in the case transition indicator variables are input only of reactivation

functions, the definition of a state is reduced to . This fact is related to the

memory-less property of exponential distributions.

 Adaptive Transition System

We show the construction procedure of the Markov chain of the Heat-Power

system presented in Section 5.4. For the sake of simplicity we have chosen to

represent a state by ordered labels of the names of components (for instance with

“P0” we represent the working state of P0 and with “-” the failed one). Moreover we

do not consider transition indicator functions for the reasons stated above.

In Figure 5.9.a represents the initial state where all components are in the

working state. Then we consider the enabled transitions in . Let be the set

of enabled transitions:

, (5.12)

where , the state indicator variables, are the entries of and the only inputs of

.

For the system in figure , i.e., only P0 and G can fail. The

nature of transitions (inst, exp) is determined considering the type of the enabled

modes. In this case the enabled modes of both transitions are exponential, thus

transitions in the base model are exponential.

In general, given we must check if the reachable states are new or have

been already discovered. Two states are identical if . Given two new

states and are found. The process is then repeated until all states are

discovered.

If there are enabled instantaneous transitions, enabled exponential transitions are

discarded. In the Heat-Power system example there are not simultaneously enabled

instantaneous and exponential transitions.

If there are more enabled instantaneous transitions, for each of them is assigned a

weight. For instance, in there are three enabled instantaneous transitions, i.e., P0,

P1 and P2 can fail instantaneously. In this case transitions are assigned a weight

equal to the inverse of the sum of the concurrent enabled instantaneous transitions (in

this case 1/3).

 Adaptive Transition System

This procedure leads to the construction of an Extended reachability graph where

stable and unstable states are present. The procedure can be summarized as follows:

- define the initial state ;

- evaluate the value of the reward variables in ;

- check the enabled transitions in ;

- check the kind of the enabled transition in and assign a parameter (a rate

if exponential and a weight if instantaneous);

- evaluate the reachable states given the enabled transition in and add those

states to the set “to be explored”.

The procedure continues exploring each state in the set “to be explored” as it was

done for . In this case, however, not all the reachable states belong to the set to be

discovered, i.e., some of them are “old” states.

Once that the above procedure has been completed (Figure 5.9.a) we must

eliminate unstable states from the model. We start considering those unstable states

that are reached by an exponential transition. These states are then eliminated from

the model and transitions replaced by transitions connecting the preceding and

successive states with rate equal to the product of the weight of the instantaneous

transition and the rate of the exponential one (Figure 5.9.b).

From Figure 5.9.a we see that unstable states are , , , , , , .

is the first unstable state that must be eliminated since it is the only one where the

incoming transitions are only exponential. This is done connecting directly to ,

 and . The rates of these transitions are where is the failure rate of the

generator G. In some cases an unstable state may have more incoming exponential

transitions, e.g., has two incoming exponential transitions departing from and

. In these case one operates in the same way considering a transition per time and

eliminating the unstable state once that all transitions have been merged.

Finally, if there are more transitions connecting two states, they are aggregated

considering the sum of their rates. In Figure 5.9.c is shown the resulting state-space,

 Adaptive Transition System

where we have highlighted system failure state as circles in bold red. Failure states,

are retrieved evaluating the reward function in a each reachable state. Lumping

techniques can be further applied in order to reduce the state-space.

Fig. 5.9.a. Extended Reachability Graph of the Heat-Power system of Section 5.4.

G

P

P

P

M
2

1

0

0 = GλPλ

−

=
2

1

0

2
P

P

P

M

G

P

P
M

2

1
1

−

=

G

P
M

2
3

−

−

=

G

P
M

−

−

=
1

4

−

−

=
2

1
5

P

P
M

PP λα ⋅

PP λα ⋅

Gλ

−

−
=

2

0

6
P

P

M

−

−
=

1

0

7

P

P

M

3/1

3/1

3/1

G

M
−

−

−

=8

−

−

−

=
2

9
P

M

−

−

−

=
1

10

P
M

−

−

−
=

0

11

P

M

2/1
2/12/1

GP λλ , GP λλ ,

−

−

−

−

=12M

Gλ 1

11

 Adaptive Transition System

Fig. 5.9.b. Reduction process of the Extended Reachability Graph of Figure 5.9.a.

Reward functions that contribute to the evaluation of a performance property are

evaluated and assigned to each state of the generated Markov chain. In this case the

model is a Markov Reward model [20].

G

P

P

P

M
2

1

0

0 = GλPλ

G

P

P
M

2

1
1

−

=

G

P
M

2
3

−

−

=

G

P
M

−

−

=
1

4

PP λα ⋅

PP λα ⋅

Gλ

3/1

3/1

3/1

G

M
−

−

−

=8

2/1
2/1

2/1

GP λλ , GP λλ ,

−

−

−

−

=12M

Gλ
1

11

×

×××

×××

 Adaptive Transition System

Fig. 5.9.c. Markov Chain of the ATS model presented in Section 5.4.

In the case of the Heat-Power system as well as for all the case where a measure

of interest is the reliability or availability of the system, reward variables are binary.

In fact, for these kind of measures we are interested in the probability of being in a

G

P

P

P

M
2

1

0

0 =

6/6 Gλ⋅

Pλ

G

P

P
M

2

1
1

−

=

G

P
M

2
3

−

−

=

G

P
M

−

−

=
1

4

PP λα ⋅

PP λα ⋅

2/2 Gλ⋅

G

M
−

−

−

=8

Pλ

Gλ

−

−

−

−

=12M

Gλ

Pλ

Gλ

 Adaptive Transition System

particular set of states of the system. Thus, a value of one will be assigned to those

generated states of interest and 0 otherwise. In this case, solved the differential

equations associated with the Markov chain, we can sum all the probabilities

associated with those states where the reward takes on value 1.

5.6.2 MOATS WITH TRANSITION TIMING FUNCTIONS

In the case of MOATS models with timing functions the definition of the state of

the base model must include the ordering of completion of transitions. To this end,

we introduce a ranking function that associate a number (a rank) between 1 and the

total number of transitions, , to each transition.

Since transitions timing variables are initialized to 0 at the initial time, we set the

initial rank of all transitions equal to 1, .

Let be the transition that completes at and let

 be the set of transitions whose

ranking is not unique. For instance, at all transitions belong to the set . We

set the new rank of to 1, . Remaining ranks at can be

evaluated considering the kind (“inst”,”exp”) of . In particular:

if is instantaneous we have the following cases ():

- if or and

; (5.13)

- if and

; (5.14)

Figure 5.10 shows an example of possible evolution of the system between two states

given a completing instantaneous transition and the conditions seen above.

stands for “no repeated ranking”. In figure, transition whose ranking is 4 is selected

to complete and its ranking is set to 1 in the new state. All ranking values less than 4

 Adaptive Transition System

are kept fixed, while ranking values higher than 4 are scaled by 1. If and

 the transition that completes belong to the set of “repeated ranking”. In

this case we keep fixed all the ranking values, unless the one of the completing

transition that is set to 1. Finally, if and the new marking is

defined as for the case .

Fig. 5.10. Example of ranking values evolution as new states are discovered (inst).

If is exponential we have the following cases ():

- if or and

; (5.15)

- if and

; (5.16)

Figure 5.11 shows an example of possible evolution of the system between two states

given an exponential transition and the conditions seen above. If the

transition whose ranking is 4 is selected to complete and its ranking is set to 1 in the

new state. All ranking values higher than 4 are kept fixed, while ranking values less

than 4 are added 1. If and we add 1 to all ranking values,

unless the one of the completing transition that is set to 1. Finally, if and

 the new ranking is defined as for the case .

Given the ranking of transitions we define the state of the system by the following

vector , or in the case there are not

51423 −−−−

41123 −−−−

∅=)(nR

nτ

1+nτ

12233 −−−−

12133 −−−−

)(' nRTx ∈ ∅≠∉)(', nRT ki

12324 −−−−

12123 −−−−

inst:',kiT

 Adaptive Transition System

impulse reward and transition indicator variables are input only or reactivation functions as

.

Fig. 5.11. Example of ranking values evolution as new states are discovered (exp).

The procedure to build the state-space is identical to the case without transition

timing functions. Transition functions and reward functions can be evaluated from

the information contained in the state vector. In OATS transition timing functions

can be inputs only of relational operators. In the case of ranking functions we use the

inverse of these operators. Thus, min (max) operator becomes a max (min) operators

and the relational operator “>” (“<”) becomes “<” (“>”).

Although this state notation allows to specify the underlying stochastic process in

terms of a CTMC, the main drawback is that the resulting state-space is very large

even for very small systems. In fact, with this definition of state, different succession

of events define different states even if state indicator functions are the same. The

advantage, however, is that the class of systems that can be modelled by a Markov

chain is larger. In fact, differently from ATS models without transition timing

functions, where the state space is simply given by the orthogonal product of the

state space of ATSs (and where some state can be isolated), in an OATS the

definition of a state of the base model include the specific succession of events that

leads to that state.

To explain this fact let us consider an ATS model made up of two ATSs each with

two states connected by two transitions. Let and be the states of the first ATS

and and those of the second. Moreover let and (and) be the transitions

from to (to) and to (to), respectively. Furthermore, let the

activation functions of and be .

51423 −−−−

52134 −−−−

∅=)(nR

nτ

1+nτ

12233 −−−−

23144 −−−−

)(' nRTx ∈ ∅≠∉)(', nRT ki

12324 −−−−

23134 −−−−

exp:',kiT

 Adaptive Transition System

 is retrieved considering the condition for the deactivation, that is: the system is in

state given that was entered before (i.e., component B has already failed

when A fails) and given that was entered before (e.g., component A was not

repaired after the failure of B).

Figure 5.12 shows a reduced Markov chain of the system where we have considered

only the ranking of those transitions whose timing functions define . This

procedure permits, indeed, to reduce the dimension of the state space. For the sake of

clarity, in figure we show the relations defined in in the definition of the state.

Fig. 5.12. Example of construction of a Markov chain of a MOATS with transition

timing variables.

Figure 5.13 shows the lumped Markov chain. It is shown the state transformation

and the resulting system of differential equations. The model reminds a PAND gate

with two repairable components as inputs where it is not possible to exit the failed

state (). Moreover the failed state can be reached only if both components pass

,..,2 BAx =

,..,4 BAx =

,..,6 BAx =

,..,5 BAx =

,..,8 BAx =,..,7 BAx =

,..,12 BAx =

,..,11 BAx =

,..,1 BAx =

,..,3 BAx =

,..,10 BAx =

,..,9 BAx =

,..,13 BAx =

() () ()
() () ()
() () ()
() () ()><>=<

>><=<

>=>=<

>===<

abbaBAx

abbaBAx

abbaBAx

abbaBAx

,,,

,,,

,,,

,,,

4

3

2

1
() () ()
() () ()
() () ()
() () ()>><=<

><<=<

><>=<

>><=<

abbaBAx

abbaBAx

abbaBAx

abbaBAx

,,,

,,,

,,,

,,,

8

7

6

5 () () ()
() () ()
() () ()
() () ()><<=<

><>=<

>><=<

>>>=<

abbaBAx

abbaBAx

abbaBAx

abbaBAx

,,,

,,,

,,,

,,,

12

11

10

9

() () ()><>=< abbaBAx ,,,13

 Adaptive Transition System

from the nominal state to the failed state in the succession , while

the succession will lead to the safe state.

Fig. 5.13. Lumped Markov Chain and differential equations of the Markov Chain in

Figure 5.12.

5.7 DISCRETE EVENT SIMULATION OF ATS

Simulation of ATS can be used to solve complex system with general

distributions and for which the state-space results to big or analytical methods are not

applicable. Simulation of an ATS consists of an execution of an ATS as described in

Section 5.5. The algorithm that permits the simulation of ATSs can be defined as:

Until ending conditions met (e.g., #batches)

Initialize time to complete of transitions

Initialize system variables

Evaluate reward variables

Tprog = 0

While Tprog < Tmax

 Evaluate transition variables

 Update time to complete

 Choose the firing transition

 Update system variables

 Update reward variables

1153

1372

8621

1210410

xxy

xxy

xxxy

xxxxy

+=

+=

++=

+++=

,..,0 BAy =

,..,1 BAy = ,..,3 BAx =

,..,9 BAx =

,..,2 BAy =

,..,3 BAy =

39

303

3213

322

3101

32100

'

)('

)('

)('

)('

)('

xx

xyx

yyyy

yyy

yyyy

xyyyy

A

BAB

BAAB

ABA

BBAA

BBABA

λ

µλλ

µµλλ

µµλ

µλµλ

µµµλλ

=

+−=

+−+=

++−=

++−=

++++−=

 Adaptive Transition System

end

end

In order to make the algorithm execution faster, updating commands can be directed

only to the subset of involved variables. Expected values of reward variables can be

evaluated on the fly, as the simulation evolves, or analyzing the generated evolution

traces. In bold are reported those commands that require user inputs.

As we can see the only initial information needed to simulate the model are the

initial values of the time to occur of transitions, generally set to and the initial

value of the system variables. In general are defined in such a way that the initial

occupied state in each ATS is defined and and are set to 0. Thus only the vales of

s need to be given as input of the model.

Other inputs of the model are the structure of ATS and the transition and reward

functions. In particular, transition and reward functions are evaluated on the basis of

the initial value of the system variables.

In the next subsection we present a case study of a system specified in terms of an

ATS model that was resolved by simulation using a simulator created in Matlab®.

5.7.1 THE ROME POWER-TELCO NETWORK SYSTEM

The Rome Power-Telco system is a case study based on the Integrated Risk

Reduction of Information-based Infrastructure Systems (IRIIS) project (project co-

funded by the European Commission within the Sixth Framework Programme 2002-

2006) [17,18]. The objective of the study is to model and analyze interdependencies

existing between two different critical infrastructure, a power and telecommunication

networks. In this study we focus only on the dependencies directed from the power

network to the Telco network. The context is that of the online risk estimator: given

an initial state of the system, retrieve dependability measure about the probability of

first failure of Telco node due to the lack of energy.

Elements of the systems are 117 power elements and 48 batteries. Power elements

are of two kinds: nodes (cabins) and links (cables) between nodes.

 Adaptive Transition System

5.7.1.1 ATS MODEL OF POWER NETWORK ELEMENTS

Power elements are represented in terms of two ATSs, one capturing aspects

related to the working/failed dimension and the second the powered/unpowered

dimension.

Let be the i-th element of the power network PN. For each element we

build two ATSs. In particular we have:

- an ATS with two states and that denote the working and failed states,

respectively. Transitions connecting these two states are exponential and

always active. Parameters (and reactivation) depend on the states of parent

nodes.

- An ATS with two states and that denote the powered and unpowered

states, respectively. Transitions connecting these two states are instantaneous

and the activation depends on the voltage associated with the element.

System variables associated with the two ATSs are:

- and , are the state indicator variables of and , respectively (the

context specifies the meaning, i.e., states or state indicator variables).

- and , are the transition indicator variables of and ,

respectively.

- and , are the state indicator variables of and , respectively (the

context specifies the meaning, i.e., states or state indicator variables).

- and , are the transition indicator variables of and ,

respectively.

- Transition timing functions are not defined.

Parameter and reactivation functions of transitions between and

are subjected to stochastic association existing between elements.

 Adaptive Transition System

Stochastic associations can be modelled in terms of parent and child elements. For an

element , let denote the set of its parent elements. Parent elements influence

the parameter of transitions by scaling the relative transition rate.

In particular the transition rate, (, of () is scaled by a factor ()

n times depending on the number of unpowered parent elements. This is modelled by

a f-T with top node representing the parameter of the transition and a gate with

inputs the state indicator functions relative to the unpowered state of parent elements

.

We reactivate a transition when a parent element switches (in both directions)

between the powered and unpowered states. In this case we specify this condition by

an OR relation between the transition indicator functions and , where

.

The ATS model is shown in Figure 5.14. Dashed lines resemble the formalism used

in Parametric Fault Trees [21].

Fig. 5.14. ATS model of the working/failed dimension of power elements ().

iW

iF

1

, FWimode →

State transition

diagram
Type

exp

Activation Reactivation Parameter

1, =→FWia
iλ

jU

FWi →,θ

α

)(: ij EPEj ∈∀FWiT →,

WFiT →,

1

, WFimode →
exp 1, =→WFia

jp ju

FWir →,

)(: ij EPEj ∈∀

jp ju

WFir →,

)(: ij EPEj ∈∀

iµ

jU

WFi →,θ

β

)(: ij EPEj ∈∀

Transition modes

 Adaptive Transition System

The ATS of the powered/unpowered dimension of power elements is shown in

Figure 5.15. Transitions connecting these two states are instantaneous with activation

depending on the value of the voltage associated with the element. In particular

 is active if is equal to 0 or greater of the threshold and is active if

.

The voltage associated with a power element is function of the working/failed

elements of the network and is given solving the balance equation of the network

considering the remaining elements, i.e., elements in the working state. Thus the

voltage of elements is a particular kind of reward function with inputs state indicator

functions .

Fig. 5.15. ATS model of the powered/unpowered dimension of power elements ().

Figure 5.16 shows three reward functions associated with the ATS model of the

power network. The number of working and powered elements is retrieved using the

gate with inputs the working and powered states, respectively, considering an

unitary weight for the input links. The voltage level associated with elements are

retrieved as described above (gate K stands for Kirchhoff balance equations).

The system behaviour depends on the specific network configuration and the

values of the parameters defined in the model. The following attributes impact on the

system behaviour:

- physical connections between power elements have effect on the voltage

associated with the nodes (Kirchhoff balance equations);

iP

iU

1

, UPimode →

State transition

diagram
Type Activation Reactivation Parameter

UPiT →,

PUiT →,

1

, PUimode →

0, =→UPir 0, =→UPiθinst

inst 0, =→PUir 0, =→PUiθ

PUia →,

1

0

iViv0

Transition modes

UPia →,

1

0

iViv0

 Adaptive Transition System

- stochastic associations have effect on the failure and repair rates of the

elements. In this context both the connections defined by the parent child

relationship and the values of the scaling factor and are of influence.

- Parameter like failure and repair rates as well as voltage thresholds of

elements.

Fig. 5.16. Reward function of the ATS model of the power network.

Figure 5.17 and 5.18 show three possible evolutions of the power network in

terms of number of working and powered components, respectively, with parameters

 and , with initial conditions “all working and powered”. The values

of other parameters (failure and repair rates, voltage thresholds, parent nodes,

physical connections) were defined in the IRIIS project [18]. Results were obtained

through a simulative model created in Matlab®.

In order to speed up the simulation we consider a synchronization mechanism

between instantaneous transitions of the kind:

- when two or more transitions are synchronized and their time to complete is

identical and one of them is chosen to be triggered, they occur

simultaneously, i.e., state change are updated simultaneously.

Synchronization allows to fire more than a transition in a single time step. In this

way the variables of the systems are updated only after all synchronized transitions

Number of working elements

W#

iW

1

PNEi i ∈∀ :

Number of powered elements

P#

iP

1

PNEi i ∈∀ :

Voltage of elements

iV

jW

K

PNEj j ∈∀ :

PNEi i ∈∀ :

 Adaptive Transition System

are fired. The main advantage is to avoid loops of instantaneous activities that update

the state of systems made of several components. On the other hand, synchronization

can be used as a modelling mean in some scenario. In the present case study we

synchronized all the transitions of the powered/unpowered ATSs models.

Fig. 5.17. Instance of evolution of the power network. Number of working elements.

Fig. 5.18. Instance of evolution of the power network. Number of powered elements.

 Adaptive Transition System

5.7.1.2 ATS MODEL OF BATTERIES

Batteries are used to supply energy when a Telco element lacks of electricity due

to a interruption of service of the power network. A number of 48 batteries are used

to supply 48 distinct Telco elements. Each of these Telco elements can receive

electricity by one or more power elements. When all of these elements are

unpowered, batteries switches to the active state. At the same way, when at least one

of these elements are powered again, batteries switch back to the stand-by state.

Since there is a battery for each Telco element that receive energy from the power

network we can consider batteries connected directly to the network.

Fig. 5.19. ATS model of batteries ().

kC

kF

1

, FCkmode →

State transition

diagram
Type

exp

Activation Reactivation Parameter

FCka →,

FCkT →,

CFkT →,

1

, CFkmode →

iU

)(: ki BCEi ∈∀

0, =→FCkr kFCk λθ =→,

exp

CFka →,

iU

)(: ki BCEi ∈∀

0, =→CFkr kCFk µθ =→,

inst

CFka →,

iP

)(: ki BCEi ∈∀

0, =→CFkr 0, =→CFkθ

Transition modes

2

, CFkmode →

 Adaptive Transition System

Let be the k-th element of the set of batteries B and let and denote

the charged and flat state, respectively. Furthermore, let be the set of power

elements that supply power to (or, similarly, to the Telco node whose is the

battery).

Transition is exponential and active if all the power elements of are

unpowered. Transition has two modes: an exponential mode that is active if

all the power elements of are unpowered and instantaneous if at least one of

the elements of is powered. The exponential mode model the time needed to

change a flat battery, while the instantaneous mode is an approximation that reflects

the fact that when the power is restored into the power network, the battery becomes

charged instantaneously (approximation reasonable due to the small failure rates of

power elements). The ATS model of batteries is shown in Figure 5.19.

5.7.1.3 THE ONLINE RISK ESTIMATOR

Defined the model of the real world, we simulate it and take snapshots of the

values of its variables at different time steps. These values are used in the

initialization of the risk estimator model. In particular beside the state of the

modelled elements at the taken snapshot, inputs of the risk estimator are residual life

of batteries given as the difference between the time to complete of transition and the

value of the time step of the considered snapshot. Residual life times are used as

initialization values of the time to complete of transitions.

The property of interest is the reliability of batteries, that is, in the case of

repairable components the probability of first occurrence of the failure of batteries.

Thus the reward variable of which we want to estimate the expected value is

. However, in order to evaluate the probability of first occurrence we need to stop

the evolution of the system as the system failure occurs. Thus in the Risk estimator

model all transition have assigned an activation variable that is true only when the

considered battery has not failed. However, in this way we need to simulate the

model for each battery.

 Adaptive Transition System

Another way (instead of blocking the system evolution) is to simulate it all at once

and retrieve off line the quantities of interest trough trace analysis.

We evaluate the reliability of the batteries in relation with the size of the black out

of the power network. Figure 5.10 shows the generated histograms for

and . In the second dimension four classes of black out sizes are defined: low

0-5, medium 6-25, high 26-50 and very high 51-117 (with 117 the total number of

power elements). To retrieve these information we made use of the expected value of

the reward function #P. In figure there are 48 histograms, one for each battery.

Fig. 5.20. Output of the risk estimator. Each histogram represent the reliability

(pdf) at various times (x-axis) of a battery in relation with the impact size (y-axis).

5.8 CONCLUSION

In our work we tried to alleviate some typical problems emerging during

modelling systems for dependability studies. In the dependability community the

need for modelling temporal aspects in the definition of performance measures has

been widely recognized.

 Adaptive Transition System

Initially we have been concerned with limitations of Dynamic Fault Trees (DFTs)

that arise when considering repairable components or complex behaviour due to

substitution logics and load-sharing systems that cannot be tackled by the dynamic

gates of the tree [23].

In this context related works are Dynamic Reliability Block Diagrams (DRBDs)

and Boolean driven Markov Processes (BDMPs) [23,24]. They try to alleviate

problems of DFTs by the definition of state machines related to the blocks of the

diagram or to the leaf of a Fault Tree. However, in DRBD the class of finite state

machines is limited to three states and the relation between state machines are

defined by fixed sender/receiver relations. In ATS, the state machines can have an

arbitrary number of states with an arbitrary meaning and relations can involve the

occurrence of more events in given sequences. The same consideration are true for

BDMP where, though give more classes of possible state machines, their structure is

defined and regulated by input Boolean functions that will start a state machine

instead of another. There are some similarities between BDMP and ATS, but ATS

extends BDMP because can have a general reward structure, while the reward

structure of BDMP is related to a FT with triggers of the activation of state machines.

Thus, also the relations that can be modelled in an ATS are more general than the

ones of BDMPs.

Another class of related works are extension to Petri nets [12] and especially

Stochastic activity networks (SAN) [13]. Many of the objects defined in ATS are

similar to those of SAN. In SAN for an activity is defined an activation and a

reactivation. Parameter of activities can be marking dependent. Thus, modes of

transitions in ATS are similar to activities in SAN. However, transitions in ATS are

more general because the kind of distribution can vary too. In SAN this can be

achieved considering a group of activities. SANs are also more general than ATS.

Activities are assigned cases that probabilistically choose the next marking. In ATS

probabilistic choice have not yet been defined. Moreover the structure of the network

is more general of the structure of ATS. However, we believe that this is the major

advantage that ATS have on SANs with respect to dependability studies: although,

not general like SAN, they furnish a state space representation that can be used to

 Adaptive Transition System

model many classes of systems. For instance, they can be applied in queuing systems

with finite number of possible arrives.

Another class of related research is the one of model checking and related

methodologies [6-10]. In particular the PRISM language presents the possible states

of a state machine by a variable that can take on a finite number of values and

transitions between states as functions of these variables. Each function is assigned a

guard condition (or an activation) and a rate that define its time to complete in the

case the underlying process is Markov. One of the advantage of ATS is that the

parameter of transitions can be state dependent. Moreover, the introduction of

transition timing variables facilitates the definition of temporal dependencies based

on sequence of events. In PRISM this may be modelled introducing the ranking

variables and function defined for ATS.

Another related methodology is that of interactive Markov chains (IMC) where a

stochastic process algebra is used [2]. They use a completely different approach to

define the communication between transition models: instantaneous transitions are

labelled transitions that complete synchronously among sub models. In this way a

communication mechanism is defined. Thus, they integrate interactive processes with

Markov chains and define an algebraic semantic for the definition of the associated

Markov chain. Central concept of IMC are synchronization and non determinism. In

ATS we do not model synchronous transitions since transition system communicate

by a set of defined variables that are updated at each state change. I/O IMC extends

this concept with the introduction sender and receiver [22]. In our approach we treat

non determinism with equi-probability.

As an example let consider stand-by component that can replace two different

components belonging to two different subsystems. A subsystem is considered failed

if there are not active components. That is: the primary component has failed; and the

stand-by component has either failed or has been already used in the other

subsystem. If one want to model the system by the mean of IMC, one approach

would be to define a IMC for each component of the system as well as of the

subsystems (which could be an indication of which component is active). If

components are not repairable the resulting model can be found in [22]. A quick look

 Adaptive Transition System

at the model and one can see that there are many transitions (both timed and

synchronizing). The complexity of the modelling activity lays in the definition of

these transition systems that can be very large in size. In ATS the same system can

be modelled by a transition system for each component. The size of the ATS models

is smaller compared to the one of IMC and one can abstract more easily from the

models of interdependent parts.

Generalised Semi-Markov Processes (GSMPs), i.e. probabilistic timed systems

where durations of delays are expressed by means of random variables with a general

probability distribution, have been defined in terms of discrete event systems and

discrete event simulation in [11] and in terms of stochastic process algebra in [4]. A

GSMP describes the temporal behaviour of a system by using elements, which act

similarly as clocks of a Timed Automata. In particular the temporal delays in the

evolution of a system are represented by clocks (elements) whose duration is

determined by an associated generally distributed random variable. In this way the

temporal behaviour of the system is guided by the events of start and termination of

clocks (elements). An ATS is a formal specification of GSMP where dependencies

are modelled explicitly by the mean of a set of functions defined over the evolution

of the system.

With ATS we have developed a formal method to model dependencies in

interdependent systems effective for dependability studies. ATS generalize the class

of dependencies and behaviours captured by an high level modelling formalism like

FT, DFTs, DRBD, BDMP. Moreover ATS can be seen as an high level model

specification of stochastic extension of Petri nets.

We consider the framework an important addition to the well known formalisms

for stochastic modelling of complex systems because it offers a standardized way of

building models of complex systems. We believe that standardization will alleviate

the difficulties currently experienced by modellers to maintain each other’s or even

own complex stochastic models caused by the modellers’ preferences in constructing

models, which may be either unfamiliar to others or difficult to understand. We

believe that promoting standardization and visualization in constructing models is

also likely to improve model comprehension, make the model validation easier and

 Adaptive Transition System

even make model maintenance easier: changes in most cases will be applied at an

higher level of abstraction to the graphical representations of the transition attributes

and various predicates. Hence, no intimate knowledge of the underlying

implementation details (e.g. knowledge of the C++ classes used by the tool) is

required.

Finally, improved usability of the tools, in our opinion, will make it much more

likely for domain experts to engage more closely to scrutinize the models and, thus,

improve their quality.

Exploiting the full potential of the framework will require tool support, more

specifically for visually modelling ATSs and f-T and for automatic transformation of

ATS to the chosen target modelling environment, e.g. Mobius, Matlab or any other

tool with suitable functionality. These are concerns which we intend to address in our

future work.

Other future developments concern the introduction of probabilistic choice, the

formalization of synchronizing mechanism between concurrent transitions,

application of ATS to model checking, i.e., by the definition of a temporal logic

suitable for the formalism, and the definition of a process algebra semantic for ATS.

Finally we believe that multi-formalism models is one of the main achievements

that must be reached in dependability modelling. The Mobius [14,26] tool for

instance allows the composition of PEPA, SAN, ADVICE and FT models. SHARPE

[27] allows multi-composition of Stochastic Reward Nets [25], Fault Trees, Markov

chains, etc. In the next chapter we give a SAN representation of ATS. This

conversion, beside the fact of allowing the resolution of ATS by a computer based

tool, shows that ATS could be implemented as one of the available formalisms in

the Mobius tool.

BIBLIOGRAPHY

[1] Clark, A., Gilmeore, S., Hillston, J. & Tribastone, M., 2007. Stochastic Process

Algebras. Lecture notes in computer science, Springer. Vol. 4486, pp. 132-179.

 Adaptive Transition System

[2] Hermanns, H., 2002. Interactive Markov Chains. Lecture notes in computer

science, Springer. Vol. 2428.

[3] Hoare, C.A.R., 1985. Communicating Sequential Processes. Prentice-Hall.

[4] Bravetti, M. & Gorrieri, R., 2002. The theory of interactive generalized semi

Markov processes. Theoretical computer science. Vol. 282(1), pp. 5-32

[5] Strulo, B., 1993. Process Algebra for Discrete Event Simulation. PhD Thesis,

Imperial College.

[6] Kwiatkowska, M., Norman, G. & Parker, D., 2009. PRISM: probabilistic model

checking for performance and reliability analysis. ACM Sigmetrics Performance

evaluation review. Vol. 36(4), pp. 40-45.

[7] Baier, C. & Kaoten, J.P., 2008. Principles of Model Checking. MIT Press.

[8] Kwiatkowska, M., Norman, G. & Parker, D., 2002. PRISM: probabilistic

symbolic model checker. Lecture notes in computer science, Springer. Vol. 2324,

pp. 113-140.

[9] Ballarini, P., Djafri, H., Duflot, M., Haddad, S. & Pekergin, N., 2011. HASL: An

Expressive Language for Statistical Verification of Stochastic Models. In

VALUETOOLS'11.

[10] Younes, H.L.S. & Simmons, R.G., 2006. Statistic probabilistic models checking

with focus on time-bounded properties. Information and computation. Vol.

204(9), pp. 1325-1345.

[11] Glynn., P. W., 1983. On the role of generalized semi-Markov processes in

simulation output analysis. In Proceedings of the 15
th

 conference on Winter

simulation. Vol. 1, pp. 38–42.

[12] M. Marsan, A., Balbo, G., Conte, G., Donatelli, S. & Franceschinis, G., 1995.

Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons.

[13] Sanders, W. H. & Meyer, J. F., 2002. Stochastic activity networks: Formal

definitions and concepts. Lectures on Formal Methods and Performance

Analysis. Springer Verlag.

 Adaptive Transition System

[14] Mobius. http://www.mobius.illinois.edu/.

[15] De Alfaro, l., 1998. Stochastic Transition Systems. Lecture notes in computer

science. Vol. 1466, pp. 423-438.

[16] Vesely, W.E., Goldberg F.F., Roberts N.H. & Haasl D.F., 1981. Fault tree

handbook. U.S. Nuclear Regulatory Commission, Washington DC.

[17] Bloomfield, R. , Buzna, L., Popov, P., Salako, K. & Wright, D., 2009.

Stochastic Modelling of the Effects of Interdependencies between Critical

Infrastructure. Critical Information Infrastructures Security, 4
th

 International

Workshop, CRITIS 2009. Lecture notes on computer science. Vol. 6027, pp.

201-212.

[18] IRRIIS project. http://www.irriis.org/

[19] Sanders, W.H., 1988. Construction and Solution of performability models based

on stochastic activity networks. PhD Thesis, University of Michigan.

[20] Reibman, A., Smith, R. & Trivedi, K.S., 1989. Markov and Markov reward

models transient analysis: an overview of numerical approaches. European

journal of operational research. Vol. 40(2), pp. 257-267.

[21] Bobbio, A. & Raiteri, D.C., 2004. Parametric fault tree with dynamic gates and

repair boxes. Annual symposium on RAMS, pp. 459-465.

[22] Boudali, H., Crouzen, P. & Stoelinga, M., 2007. Dynamic Fault Trees analysis

using Input/Output Interactive Markov chains. 37
th

 IEEE international

conference in Dependable systems and Networks, pp. 708-717.

[23] Distefano, S., & Puliafito, A., 2007. Dynamic reliability block diagrams vs

dynamic fault trees. In Proceedings Annual Reliability and Maintainability

Symposium RAMS '07; 71-76.

[24] Bouissou, M. & Bon, J.L., 2003. A new formalism that combines advantages of

fault-trees and Markov models: Boolean logic driven Markov processes.

Reliability Engineering and System Safety; 82:149-163.

 Adaptive Transition System

[25] Muppala, J.K., Ciardo, G. & Trivedi, K.S., 1994. Stochastic reward nets for

reliability prediction. Communication in Reliability, Maintainability and

Serviceability.

[26] PERFORM, 2006. Möbius: Model Based Environment for Validation of System

Reliability, Availability, Security and Performance. User's Manual, v. 2.0 Draft.

[27] Sahner, R.A. & Trivedi, K.S., 1987. Reliability modelling using SHARPE. IEEE

Transactions on Reliability. Vol. R-36(2), pp. 186-193.

 SAN implementation of ATS

CHAPTER 6

6.1 INTRODUCTION

In this chapter we present a procedure to implement Adaptive Transition System

(ATS) into Stochastic Activity Network (SAN) [1]. The choice of SANs follows

from the fact that is possible to specify in a straightforward manner quantities like

system and transition variables introduced in previous chapter.

The remainder of the chapter is structured as follows: in Section 2 we give a brief

introduction of the Mobius tool [2], a tool that allow graphical implementation of

SAN models. In Section 3 we illustrate the procedure for the conversion of ATS

model to SAN models. In Section 4 the Heat-Power system presented in Chapter 5 is

used as a tutorial example for the construction procedure and in Section 5 we report

some conclusion.

6.2 MOBIUS MODELLING TOOL

Mobius [2] is a software tool, developed at the University of Illinois, for

modelling the behaviour of complex systems. The first version was released in 2001

as a successor to UltraSAN. Although Mobius was originally developed for studying

the reliability, availability, and performance of computer and network systems, its

use has expanded rapidly. The flexibility and power found in Mobius comes from its

 SAN implementation of ATS

support of multiple high-level modelling formalisms and multiple solution

techniques.

This flexibility allows engineers and scientists to represent their systems in

modelling languages appropriate to their problem domains, and then accurately and

efficiently solve the systems using the solution techniques best suited to the systems

size and complexity. Time and space efficient distributed discrete event simulation

and numerical solution are both supported.

A model in Mobius is represented by a Join/Rep composition of atomic models.

Atomic models can be SAN models, PEPA models, FT models, etc. [3,4]. In our case

each atomic model is a SAN [1]. In particular for our purpose an atomic model is the

SAN representation of a single ATS. Atomic models can be joined together via the

REP construct, i.e., an atomic model is replicated N times or by the JOIN construct

where variables can be shared across atomic models.

Mobius allows to specify a reward function based on the variables (places)

defined in the model that can be evaluated via numerical solution or discrete event

simulation.

6.3 SAN IMPLEMENTATION OF ATS

We represent ATS in terms of SAN atomic models that are composed together by

the JOIN construct. Modelling concerns are: (i) the data structure of the variables of

ATS; (ii) the model of transitions and (iii) the updating structure.

6.3.1 SYSTEM AND REWARD VARIABLES DATA STRUCTURE

The three classes of system variables of an ATS are: state indicator, transition

indicator and transition timing variables. We use a SAN representation based on

extended places. In this way is possible to organize the data in two-dimensional

matrices, one for each class of variables.

 SAN implementation of ATS

Le consider a ATS model with transition systems. Let be

the i-th ATS, denote the j-th state of and

 be the k-th transition of .

For each ATS, , are defined the following variables:

- , is the state indicator variable of ;

- , is the transition indicator variable of ; and

- , is the transition timing variable of .

The extended place is a two-dimensional data structure for state indicator

variables. The first dimension specifies the ATS model ; while the second

dimension states of , such that:

, (6.1)

The extended place is a is a two-dimensional data structure for transition

indicator variables. The first dimension specifies the ATS model ; while the second

dimension transitions of , such that:

, (6.2)

The extended place is a is a two-dimensional data structure for transition

timing variables. The first dimension specifies the ATS model ; while the second

dimension transitions of , such that:

, (6.3)

Finally, the extended place is a is a vector for reward variables. Given

reward variables, is dimensional vector, such that:

, (6.4)

In order to allow to store non integer values, and are extended places with

data type double. However, in the case reward variables specify measures of interest

like reliability, availability etc., the extended place can be of the type int. Also can

 SAN implementation of ATS

be of the type int if transition timing variables are replaced by ranking variables as in

Ordered-ATS (OATS). The use of int values allows one to transform the SAN model

in a base model that can be solved numerically.

Finally, if reward variables are not integer variables, a numerical solution can be

obtained only if those rewards are not inputs of transition functions. In this case

reward variables do not need to specified as a part of the net but can be specified in

the Mobius interface Reward and used to obtain a Markov Reward Model [5].

In this section we show how to build a SAN model derived by an ATS model that

is suitable for discrete event simulation. SAN model of ATS suitable for numerical

evaluation are not consider but their construction can be easily implemented

following the rules given in this chapter and the ones defined in Chapter 5 about the

conversion of transition timing variables to ranking variables.

Figure 6.1 shows the extended places used to represent system and reward

variables of ATS in SAN. The extended places presented here are specified in each

SAN atomic model of ATS and are shared via the JOIN construct.

Fig.6.1. Extended places of system and reward variables and data structure.

6.3.2 SAN REPRESENTATION OF ATS TRANSITIONS

Having defined the SAN representation of system variables let describe the SAN

implementation of ATS transitions.

Each mode of an ATS transition is represented by a SAN activity. Given the

transition with modes we define an activity

 for each of them.

The type of activity is specified by the type of the mode (timed,

instantaneous, deterministic, etc.).

Tt

NS

)(max i
i

NT

NS

)(max i
i

NTIt

NS

)(max i
i

NQIs R

NR

 SAN implementation of ATS

Parameter and reactivation functions of modes of transitions are specified as the

attributes of the respective activity in the Mobius graphical interface. In particular the

reactivation variable is specified in the execution policy as the reactivation predicate.

The activation function of modes of transitions are specified by the mean of input

gates. In particular an input gate, is defined for each activity

representing a mode of transitions. The input predicate of these input gates specifies

the activation function.

Finally, the input gate is connected to each in order to enable the

activity if the system is in the state where the transition departs from. If is a

transition departing from , we define the input predicate of by the relation

.

Fig. 6.2. SAN model of ATS transitions ().

6.3.3 ATS-SAN UPDATE STRUCTURE

For each transition is specified an output gate connected to each SAN activity that

models the transition. is the output gate connected to each . The output

gate is used to set the new conditions after the firing of an activity (or the completion

of a transition). Given , the transition that connects to , the following

code is specified in :

1

,kiACT

kiNM

kiACT ,

,

kiOG ,

1

,kiIG

kiNM

kiIG ,

,

kiIG ,

kiT ,

ATS model SAN model of ATS transitions

 SAN implementation of ATS

- state indicator variables:

- transition indicator variables:

- transition timing variables

- reward variables

 .

 is a support place used to store the memory address of the last completed

transition. Reward functions can be different. The update of reward variables must be

done after the update of system variables.

In bold are reported the part of the code that is different for each transition of the

model. An automated conversion is possible and would simplify the task of writing

the appropriate code.

Transition variables are updated automatically by Mobius by the evaluation of

input predicates of input gates and parameters and execution policies of activities.

6.4 ATS-SAN MODEL OF THE HEAT-POWER SYSTEM

In this section we show how to build the ATS.SAN model of the Heat-Power

system introduced in Section 5.4 following the guidelines presented above.

Parameters of the Heat-Power systems that are needed to be considered for the

construction of the ATS-SAN model are:

 SAN implementation of ATS

- , the ATS representing P0, P1, P2 and G, respectively;

- , the number of ATS;

- , the of states in each ATS;

- , the maximum number of states among ATSs;

- , the number of transitions inn each ATS;

- , the maximum number of transitions among ATSs;

- , the number of reward variables;

Given the information above, the structure of the extended places is:

- , is a 4x2 matrix;

- , is a 4x1 matrix;

- , is a 4x1 matrix;

- , is a 1x1 matrix.

The ATS-SAN model is built implementing an SAN atomic model of each ATS

model of the components of the system. The ATS-SAN model of P0 is shown in

Figure 6.3. The ATS is made up only of one transition, thus the ATS-SAN model is

composed of the following elements: the model of the transition of ; and the

extended places used to store the variables of the model.

Since (or) has two modes, two activities are present in the ATS-SAN

model. is the activity representing the first mode of the transition. It is a

timed exponential activity, with fixed parameter. No reactivation predicates is

assigned to the activity. is the activity that represents the second mode of

the transition. Since the mode of transition is instantaneous, an instantaneous activity

is used to represent this mode. Each activity is assigned an exclusive input gate and a

shared input gate. is the exclusive input gate assigned to . The

input predicate of the gate is a specification of the activation function of the mode of

the transition in terms of marking of the involved variables defined in the form of

the extended places introduced above.

 SAN implementation of ATS

Fig. 6.3. ATS-SAN model of (or of the pump P0).

0,0Q

1,0Q

10,0 →
a

0,3s

10,0 →
T

1

10,0 →
mode

2

10,0 →
mode

10,0 →
a

1,3s

State transition

diagram
Transition modes Type

exp

inst

Activation

010,0 =
→

r

010,0 =
→

r

Reactivation

Pλθ =
→10,0

010,0 =
→

θ

Parameter

ATS-SAN model

))0,3(()1_0_0_(. IsmarkIGpredinp =−

))1,3(()2_0_0_(. IsmarkIGpredinp =−

))0,0(()0_0_(. IsmarkIGpredinp =−

))1,2(())1,1(())1,0(())0((

;TimeLastAction::lassBaseModelC))0,0((

;0))2((;0))1((

;1))0,0((;0)),((

));2(());1((

;1))1,0((;0))0,0((

:)0_0_(.

IsmarkIsmarkIsmarkRmark

Ttmark

AmarkAmark

ItmarkyxItmark

AmarkyAmarkx

IsmarkIsmark

OGfunout

⋅⋅=

=

==

==

==

==

−

definednotpredreact

definednotpredact

par

type

ACT

P

=

=

=

=

−

.

.

exp

:1_0_0_

λ

insttype

ACT

=

− :2_0_0_

 SAN implementation of ATS

Fig. 6.4. ATS-SAN model of (or of the pump P1).

Since the activation variable of the considered mode of transition takes on value 1 if

the generator G is in the working state, the input predicate of the gate is set to

, where represent the state indicator variable . At the same

0,110,1 TT ≡
→

ATS-SAN model

))0,3(()1_0_1_(. IsmarkIGpredinp =−

))1,3(()2_0_1_(. IsmarkIGpredinp =−

))0,1(()0_1_(. IsmarkIGpredinp =−

))1,2(())1,1(())1,0(())0((

;TimeLastAction::lassBaseModelC))0,1((

;0))2((;1))1((

;1))0,1((;0)),((

));2(());1((

;1))1,1((;0))0,1((

:)0_1_(.

IsmarkIsmarkIsmarkRmark

Ttmark

AmarkAmark

ItmarkyxItmark

AmarkyAmarkx

IsmarkIsmark

OGfunout

⋅⋅=

=

==

==

==

==

−

)0,2(.

1.

)))0,2((,(

exp

:1_0_1_

Itpredreact

predact

Ismarkpowpar

type

ACT

P

=

=

=

=

−

αλ

insttype

ACT

=

− :2_0_1_

0,1Q

1,1Q

10,1 →
a

0,3s
10,1 →

T

1

10,1 →
mode

2

10,1 →
mode

10,1 →
a

1,3s

State transition

diagram
Transition modes Type

exp

inst

Activation

010,1 =
→

r

Reactivation

Pλ

010,1 =
→

θ

Parameter

1,0s

10,1 →
r

10,2 →
t

10,0 →
θ

0,2s

Pα

 SAN implementation of ATS

way is defined the input predicate of , the exclusive input gate of

, the activity that represents the second mode of the considered transition.

Fig. 6.5. ATS-SAN model of (or of the pump P2).

0,210,2 TT ≡
→

ATS-SAN model

))0,3(()1_0_2_(. IsmarkIGpredinp =−

))1,3(()2_0_2_(. IsmarkIGpredinp =−

))0,2(()0_2_(. IsmarkIGpredinp =−

))1,2(())1,1(())1,0(())0((

;TimeLastAction::lassBaseModelC))0,2((

;0))2((;2))1((

;1))0,2((;0)),((

));2(());1((

;1))1,2((;0))0,2((

:)0_2_(.

IsmarkIsmarkIsmarkRmark

Ttmark

AmarkAmark

ItmarkyxItmark

AmarkyAmarkx

IsmarkIsmark

OGfunout

⋅⋅=

=

==

==

==

==

−

)0,1(.

1.

)))0,1((,(

exp

:1_0_2_

Itpredreact

predact

Ismarkpowpar

type

ACT

P

=

=

=

=

−

αλ

insttype

ACT

=

− :2_0_2_

0,2Q

1,2Q

10,2 →
a

0,3s
10,2 →

T

1

10,2 →
mode

2

10,2 →
mode

10,2 →
a

1,3s

State transition

diagram
Transition modes Type

exp

inst

Activation

010,2 =
→

r

Reactivation

Pλ

010,2 =
→

θ

Parameter

1,0s

10,2 →
r

10,1 →
t

10,2 →
θ

0,1s

Pα

 SAN implementation of ATS

Fig. 6.6. ATS-SAN model of (or of the generator G).

Finally, the output function of the output gate updates the values of the

marking of the extended places representing the system and reward variables.

0,310,3 TT ≡
→

ATS-SAN model

1)1_0_3_(. =− IGpredinp

))0,3(()0_3_(. IsmarkIGpredinp =−

))1,2(())1,1(())1,0(())0((

;TimeLastAction::lassBaseModelC))0,3((

;0))2((;3))1((

;1))0,3((;0)),((

));2(());1((

;1))1,3((;0))0,3((

:)0_3_(.

IsmarkIsmarkIsmarkRmark

Ttmark

AmarkAmark

ItmarkyxItmark

AmarkyAmarkx

IsmarkIsmark

OGfunout

⋅⋅=

=

==

==

==

==

−

definednotpredreact

definednotpredact

par

type

ACT

G

=

=

=

=

−

.

.

exp

:1_0_3_

λ

0,3Q

1,3Q

110,3 =
→

a10,3 →
T 1

10,3 →
mode

State transition

diagram
Transition modes Type

exp

Activation

010,3 =
→

r

Reactivation

Gλθ =
→10,3

Parameter

 SAN implementation of ATS

Figure 6.4 and 6.5 show the ATS-SAN model for the pump P1 and P2. Here

differently than the preceding case, the parameter of the timed activity is state

dependent and the reactivation predicate must be specified.

Finally the ATS-SAN model for the generator G is shown in Figure 6.6. Here, the

transition has only one mode, thus only one activity is used to model the ATS

transition.

SAN atomic models are composed into a single model by the JOIN construct

(Figure 6.7).

Fig. 6.7. Model composition of ATS-SAN models for the Heat Power system.

6.5 CONCLUSION

In this chapter we have present a conversion procedure of ATS models into SAN

model. We have seen that this approach leads to SAN models with a standard

structure. In fact while tool’s flexibility is a great asset in building a model, the

existence of many ways of constructing the same logic may become a problem. The

subjective preferences of the modeler dictate which of the many modeling

alternatives will be taken, but this option may be difficult for the others to

understand. This may result in poor maintainability of the models over time, e.g. high

propensity of introducing errors when modifying existing models which could have

been avoided had the modeling options been more limited and well known to the

modeler who has developed the model and those in charge of its maintenance.

We believe that in this dissertation we make a small step towards alleviating both

problems.

 SAN implementation of ATS

First, we propose a set of graphical notations for modeling the predicates common

for the SAN models, i.e., the f-T model of transition functions. We also advocate the

use of these graphical notations for modeling explicitly the dependencies between the

modeled SAN elements: e.g. instantaneous state change or change of model

parameters as a function of the model overall state.

Second, we show that the proposed graphical notations can be automatically

converted into equivalent SAN fragments. The advantage of so doing is not merely

streamlining the construction of the models and communicating more easily to the

domain experts what the model is doing, but also simplifying the models’ debugging

– replacing the manually constructed code with a tool generated, ideally highly

optimized code.

We consider this framework an important addition to the well known formalisms

for stochastic modelling of complex systems because it offers a standardized way of

building models of complex systems. We believe that standardization will alleviate

the difficulties currently experienced by modellers to maintain each other’s or even

own complex stochastic models caused by the modelers’ preferences in constructing

models, which may be either unfamiliar to others or difficult to understand. We

believe that promoting standardization and visualization in constructing models is

also likely to improve model comprehension, make the model validation easier and

even make model maintenance easier: changes in most cases will be applied at a

higher level of abstraction to the graphical representations of the transition attributes

and various predicates.

Hence, no intimate knowledge of the underlying implementation details (e.g.

knowledge of the C++ classes used by the tool) is required.

Finally, improved usability of the tools, in our opinion, will make it much more

likely for domain experts to engage more closely to scrutinize the models and, thus,

improve their quality.

Exploiting the full potential of the framework will require tool support, more

specifically for visually modelling ATS and for automatic transformation to the

 SAN implementation of ATS

chosen target modelling environment, e.g. Mobius. These are concerns which we

intend to address in our future work.

BIBLIOGRAPHY

[1] Sanders, W. H. & Meyer, J. F., 2002. Stochastic activity networks: Formal

definitions and concepts. Lectures on Formal Methods and Performance

Analysis. Springer Verlag.

[2] PERFORM, 2006. Möbius: Model Based Environment for Validation of System

Reliability, Availability, Security and Performance. User's Manual, v. 2.0 Draft.

[3] Clark, A., Gilmeore, S., Hillston, J. & Tribastone, M., 2007. Stochastic Process

Algebras. Lecture notes in computer science, Springer. Vol. 4486, pp. 132-179.

[4] Vesely, W.E., Goldberg F.F., Roberts N.H. & Haasl D.F., 1981. Fault tree

handbook. U.S. Nuclear Regulatory Commission, Washington DC.

[5] Reibman, A., Smith, R. & Trivedi, K.S., 1989. Markov and Markov reward

models transient analysis: an overview of numerical approaches. European

journal of operational research. Vol. 40(2), pp. 257-267.

 Repairable Dynamic Fault Trees

CHAPTER 7

7.1 INTRODUCTION

In this Chapter we present the conversion procedure to generate an Adaptive

Transition System (ATS) model of Repairable Dynamic Fault Trees (RDFT) [1-3].

Due to the complexity induced by repairable components no much attention has been

given to the extension of DFT to the repairable case. We show that ATS offers a

effective way to model RDFT.

In fact, the extension to repairable elements involves the definition of new rules

for dynamic gates. We show that several scenarios can be considered depending on

the substitution logic of spare components, the effect of triggers and maintenance

management.

In order to model RDFT we propose to decompose behavioural aspects from

failure logics. Behavioural aspects concern the definition of substitution logics

between spare components, trigger effects, maintenance policies, etc. while the

failure logic is responsible to define the system configurations that leads to the

occurrence of the top event of the DFT, i.e., the structure function [4]. This is done

converting the DFT to its related static Fault Tree [4]. Behavioural aspects are

tackled by the definition of opportune ATS models that will be attached to the leaf of

the static FT derived from the original DFT.

 Repairable Dynamic Fault Trees

To this end, after that we have chosen a specific set of logics for dynamic gates

with repairable components, we propose a classification of the basic event (BE) of

DFT. BE will be regarded as primary or spare. Depending on the class of the BE, an

ATS with a standard structure can be defined. The ATS model will carry in all the

dynamic (behavioural) aspects of the system, modelled by an opportune definition of

the transition functions of the model.

On the other hand, the part of the DFT representing the fault logic of the system,

free of any dynamic aspect, will be used to define the reward function of the model.

The reward function will have the form of a static FT derived from the original DFT.

In the following we will refer to a DFT from a case study taken from the literature

[5]. The case study was chosen due to the presence of SPARE gates, FDEP gates and

shared spare components.

The remainder of this chapter is structured as follow: in Section 7.2 we introduce

the DFT of the case study and show of to convert it into its static representation. In

Section 7.3 we classify DFT components and define, on the basis of this

classification the ATS models that will be attached to the leaf of the static

representation of the DFT. In Section 7.4 the DFT introduced in Section 7.2 is solved

through an ATS-SAN [6] implementation as described in Chapter 6. In Section 7.5

we introduce a tool that is currently under development. The tool is an extension of

the MatCarloRe tool presented in Chapter 4 to solve repairable DFTs. Finally in

Section 7.6 are reported some conclusions.

7.2 STATIC REPRESENTATION OF DFT

Figure 7.1 shows the DFT model of a system taken from the literature [10]. In

[10] is assumed that all components can be only in two states (working/failed), they

are non-repairable and characterized by a time to failure exponentially distributed.

Here we relax the assumption that components are not repairable showing how they

can included in the DFT model.

The components of the DFT of Figure 7.1 are:

 Repairable Dynamic Fault Trees

- basic events, A1, A2, B1, B2, S, T1, T2, T3;

- gate A, SPARE gate with an active component, A1, and two spares, A2, S;

- gate B, SPARE gate with an active component, B1, and two spares, B2, S;

- gate F1, FDEP gate with trigger T1 and components A1 and B2;

- gate F2, FDEP gate with trigger T2 and components B1 and A2;

- gate F3, FDEP gate with trigger T3 and component S,

- gate TE, AND gate with gates A, B, F1, F2, F3 as inputs.

Figure 7.1. Selected DFT.

In order to build an ATS model of the system we start replacing dynamic gates

with static gates.

 Repairable Dynamic Fault Trees

7.2.1 STATIC REPRESENTATION OF SPARE GATES

SPARE gates are converted into AND gates. Here the challenge is to model the

behaviour of spare components. In case of repairable components we should ask the

following questions:

- given that a spare component is active, when a component to the left-hand

side of the component becomes again available, does the active component

switch to the stand-by state or remains active?

- if a spare component is shared by more gates, in the case the spare at the

moment of its restoring has got more simultaneous calls, which of these will

be satisfied?

Although in ATS we may respond to these questions in different ways and in

different ways for different subsystems, we choose here to employ an specific

configuration. In our setting we will give priority to elements of SPARE gates

according to their position as inputs of the gate (from left to right) and we will give

priority to SPARE gates according to the temporal ordering of request.

Finally, a shared spare will be named differently in the converted static FT. This

because we need to take into account the fact that it can be unavailable for a given

subsystem either because failed or because active elsewhere.

7.2.2 STATIC REPRESENTATION OF FDEP GATES

In the case of FDEP gates the following actions are taken:

- said X an input of an FDEP gate that is not a trigger, we consider an OR gate

with inputs the trigger of the gate and X;

- the OR gate replaces X in all positions where X is present in the tree;

- when all inputs components of a FDEP gate (that are not triggers) are

replaced by the OR gate defined above, the FDEP gate is eliminated from the

tree;

 Repairable Dynamic Fault Trees

- when a component X is input of more FDEP gates the procedure is repeated

iteratively, giving rise to a cascade of OR gates (that can be merged

successively in a single OR gate).

With this transformation the assumption we make is that a trigger has not direct

influence on the state of the component. Thus the component can still fail or being

repaired regardless of the state of the trigger component. The effect on the trigger

component is to block the component to fulfil its requirements. The OR gate, indeed,

registers a fail when the trigger or the component X have failed.

Other configurations are also possible. For instance, the failure of a trigger can cause

the instantaneous failure of its subordinated components. We have shown in Chapter

5 how this can be modelled in terms of ATS (see the Heat-Power systems). However,

in this other scenario mechanisms due to the restoring of components must be

considered. Some questions may be:

- can a component be restored if its trigger has not been previously restored?

- assuming that a component can be restored even if the trigger is in the failed

state, what happen to the component? It fails again instantaneously, or the

failure of the trigger has effect on the component only at the moment it fails?

This questions can be addressed by the implementation of an ATS model. However,

we will not give more details about these other possible configurations.

7.2.3 STATIC REPRESENTATION OF SEQ GATES

SEQ gates are not present in the DFT in Figure 7.1. The model of SEQ gates if

very simple. A SEQ gate is replaced in the static converted FT by a basic event. In

fact in the ATS model of a SEQ gate will be represented by a transition system with

a number of states equal to the number of inputs of the gate (or the degradable states

of the component). The failure state is the one that will be considered in the static

converted FT.

 Repairable Dynamic Fault Trees

7.2.4 PAND GATES

PAND gates are not present in the DFT in Figure 7.1, too. PAND gates do not

carry in any behavioural aspect, thus, in the converted static Fault Tree they cannot

be eliminated. The conditions that bring to the trigger of the gate are the same as in

the not-repairable case. Non-trivial configurations, however, could be defined. An

example a possible extension of the logic of the gate can be found in Chapter 5.

7.2.5 STATIC DFT

With the rules stated above the static FT derived from the DFT in Figure 7.1 is

shown in Figure 7.2.

SPARE gates A and B are converted into AND gates. Component S is shared

among A and B. Thus in the static DFT representation, we label it as S-A and S-B.

As we will see, there will be a single ATS model of S. However the variables that

will be used into the FT will be different depending on the gate where the component

is attached.

FDEP gates are converted in OR gates. For instance F1 is converted in F1-A1 and

F1-B2. This because inputs of F1 are A1 and B2. Thus two OR gate will be used to

substitute A1 and B2 in the static representation of the DFT.

Fig. 7.2. Static Fault Tree of the DFT in Figure 7.1.

The task now is to associate to each Basic Event of the tree an ATS model and

define which variables must be used to evaluate the occurrence of the Top Event.

 Repairable Dynamic Fault Trees

7.3 ATS MODEL OF DFT COMPONENTS

In the previous section we have seen how to convert a DFT into a static FT. In this

definition, however, are not considered all the dynamic aspects of dynamic gates.

These aspects will be included in the ATS models of components of the system

modelled by the DFT. To this end we distinguish those components that are not

dependent on any other components, namely the primary components, and those

whose behaviour depended on the state of other, namely the spare components.

7.3.1 PRIMARY COMPONENTS

Primary components are those components that are not spare. In the example of

Figure 7.1 primary components are: A1, B1, T1, T2, T3. The ATS model of primary

components is made of a single transition system with two states representing the

working and failed condition. Since we assume that components are repairable, two

transitions connect the two states of the ATS model. A transition represents the

failure or the repair of a component.

Figure 7.3 shows the ATS model of A1. The remain primary components have the

same structure. Here the two state and represent the working and failed

condition, respectively. and are transitions between these two

states.

System variables are:

- state indicator variables, and (representing the

fact that the component is in state or , respectively);

- transition indicator variables, and for

 and , respectively (registering the fact a transition is the one

that most recently completed);

- transition timing variables, and for and

, respectively (registering the most recent time to complete of a

transition).

 Repairable Dynamic Fault Trees

Since primary components are not dependent on any other component the value of

transition variables are fixed. However generalizations that include stochastic

associations or different distributions of the time to complete are possible. For

instance (in a simulation model) one would take into account that the failure of a

component is exponentially distributed until a certain time and Weibull distribute

afterwards.

Here we present a model with exponential distribution of time to failure and time to

repair. Thus, transitions have only one mode, the exponential one. Activation

variables, and take on value 1; reactivation

variables and take on value 0 and parameter

variables and take on value and , respectively.

Fig. 7.3. ATS model of primary components (model for A1).

Finally we need to define which variables will be used as inputs (i.e., BEs) of the

static representation of the DFT. Since the FT is a model of the system failure we

will use state indicator variables of the failure state of components. In particular:

.

W

F

ATS - A1

FWAT →,1

1,1

,1

,1

0

1

exp

AFWA

FWA

FWA

r
a

λθ =−

=−

=−

−

→

→

→

WAs ,1 FAs ,1

FWAt →,1 WFAt →,1

State indicator

variables

Transition indicator

variables

Transition timing

variables

WFAT →,1

1,1

,1

,1

0

1

exp

AWFA

WFA

WFA

r
a

µθ =−

=−

=−

−

→

→

→

FWA →,1π WFA →,1π

 Repairable Dynamic Fault Trees

7.3.2 SPARE COMPONENTS

Spare components are those components inputs of spare gates (not primary, i.e.,

starting from the second to the left in the graphical notation). We model spare

components in terms of two ATS models, one capturing aspects related to the

working/failed condition and one capturing aspects related to the stand-by/active

condition. ATS models of spare components are similar in the structure. The main

difference lays in the number of SPARE gates where these components are shared.

A2 and B2 are two spare components that are similar since they are not shared

among several SPARE gates and are both of order 1 in the respective gates, i.e., they

are the first spare components on the left-hand side of the graphical notation of the

gate. Component S, on the other hand is a shared component between the two

SPARE gates A and B.

Figure 7.4 and 7.5 shows the ATS models of A2. The model for B2 is similar. In

Figure 7.4 is shown the ATS model of the stand-by/active dimension of the state-

space of the spare component. Here the two state and represent the stand-by and

the active, i.e., operative, condition, respectively. and are transitions

between these two states.

System variables are:

- state indicator variables, and (representing the

fact that the component is in state or , respectively);

- transition indicator variables, and for

 and , respectively (registering the fact a transition is the one

that completed most recently);

- transition timing variables, and for and

, respectively (registering the most recent time to complete of a

transition).

Spare components are dependent on other components, thus transition variables are a

function of system variables. Here, and are modelled as

 Repairable Dynamic Fault Trees

instantaneous transitions responsible of the switching of spare components between

the two logical states, stand-by and active (here generalizations may include the

possibility of a delay for a component to become active). Thus it is by the definition

of the transition activation functions that these relations are modelled by the ATS

formalism.

In particular a spare component of order 1 switches to the active state in the case of

failure of the primary component of the SPARE gate plus the additional condition

that the spare element must be itself in the working state. In this case A2 switches to

the active state when A1 is failed. In terms of system variables this is achieved when

both and take on value 1. Thus .

On the other hand, A2 switches back to the stand-by state when it fails or in the case

A1 is restored. Thus .

Fig. 7.4. ATS model of the stand-by/active dimension of not shared spare

components of order 1 (model for A2).

Defined the model of the stand-by active dimension we can introduce the model

of the working/failed dimension of the spare components. This model depends on the

fact that a spare component may be shared among more SPARE gates but does not

S

O

ATS – A2 stand-by/active dimension

OSAT →,2SOAT →,2

inst−

SAs ,2 OAs ,2

OSAt →,2 SOAt →,2

State indicator

variables

Transition indicator

variables

Transition timing

variables OSA →,2π SOA →,2π

inst−

SOAa →,2

WAs ,1 FAs ,2

OSAa →,2

FAs ,1 WAs ,2

 Repairable Dynamic Fault Trees

depend on the order of the spare element in the SPARE gate. This because all the

logical relations are captured by the stand-by/active ATS model. Figure 7.5 shows

the ATS model of the working/failed dimension of A2.

System variables are similar to the case of primary components. Thus, state indicator

variables are and ; transition indicator variables are

 and for and , respectively; and

transition timing variables are and for and

, respectively.

Variables associated with the transition that represents recovery activities are

similar to the one defined for primary components, too. Thus, the activation variable

of the “repairing transition” is fixed to 1, the reactivation to 0 and the parameter to

the value of the repair rate associated with the component.

On the other hand, in the model of the “failure transition” we must distinguish the

case in which the component is a cold or a warm stand-by.

The case of warm stand-by is represented at the top of Figure 7.5. Here we see

that the activation variable is fixed to 1, while its the parameter and the reactivation

variable depend on the state of stand-by/active dimension.

In particular the value of the failure rate is scaled by a dormancy factor when the

component is the stand-by condition. This is modelled by the SL gate defined in

Chapter 5. We have that .

Here, differently from DFT we could define, instead of a dormancy factor, an “active

factor”. In this case we could vary the failure rate of a component in dependence of

the subsystem where it is employed, i.e., different working loads for different

subsystems.

The reactivation variable takes on value 1 whenever there is a change of the

parameter. That is when the component enters or exits the stand-by state. To this end

the reactivation function is given by OR relation between the transition indicator

variables of and . We have .

 Repairable Dynamic Fault Trees

The case of cold stand-by is shown at the bottom on Figure 7.5. In this case only

the activation function of the “failure transition” must be defined, the other variables

remain fixed to 0, in the case of the reactivation variables, and to the value of the

failure rate, in the case of the parameter.

The condition for the activation of the failure transition is that the component must

be not in the stand-by state. Thus we have that .

Fig. 7.5. ATS model of the working/failed dimension of not shared spare components

(model for A2).

Inputs of the static representation of DFT of Figure 7.2 for A2 and B2 are defined by

imposing that the components are failed. Thus, we that .

The ATS model of S is different from the model of A2 and B2 in that S is a

shared spare among more SPARE gates. In this case the ATS model of the stand-

by/active dimension must include the notion of which SPARE gate is served by the

component. Thus, two active states are defined for S, and , the first meaning

W

F

ATS – A2 working/failed dimension warm stand-by

FWAT →,2WFAT →,2

2,2

,2

,2

0

1

exp

AWFA

WFA

WFA

r
a

µθ =−

=−

=−

−

→

→

→

WAs ,2 FAs ,2

FWAt →,2 WFAt →,2

State indicator

variables

Transition indicator

variables

Transition timing

variables FWA →,2π WFA →,2π

2Aλ

2Aα

1

exp

,2 =−

−

→FWAa
FWAr →,2

OSAt →,2 SOAt →,2

FWA →,2θ

SAs ,2

ATS – A2 working/failed dimension cold stand-by

W

F

FWAT →,2WFAT →,2

2,2

,2

,2

0

1

exp

AWFA

WFA

WFA

r
a

µθ =−

=−

=−

−

→

→

→

2,2

,2 0

exp

AFWA

FWAr

λθ =−

=−

−

→

→

FWAa →,2

SAs ,2

NOT

 Repairable Dynamic Fault Trees

the spare is active in the SPARE gate A and the second that it is active in B. Figure

7.6 shows this model. In figure only the transition functions relative to those

transitions related to are showed, being symmetric the relations on the transitions

involving .

Transition models the switching of S from the stand-by state to the active

state in A. The conditions that allow S to do so are defined by the transition

activation function . The output of this function takes on value 1 only if:

- S is in the working state () and;

- or A requires S when B does not ; or

- in the case when both SPARE gates require S, A requested S before B

.

The gate allows a non deterministic choice (if the model of is symmetric

to the one of) in the case that both A and B requires S at the same time

(however this cannot happen if all “failure and repair transitions” are exponential).

Transition models the switching of S to the stand-by state out of state .

The conditions that allow this change are modelled by the transition activation

function . The output of this function takes on value 1 only if:

- S has failed (); or

- S is not requested anymore from A and it is not requested from B, too

.

The structure of may be different if the transition between the two active

state were not present in the model. The choice to include is to

present a model as more general as possible. In fact, allows not to resample

the time to failure of a spare component when switching between two active states.

 Repairable Dynamic Fault Trees

While in the case of exponential distribution this has no effect, it is important to

address this issue when other distributions are used.

Fig. 7.6. ATS model of the stand-by active dimension of shared spare components

(model for S).

The conditions that allow S to switch between two active states are given by the

transition activation function , whose output takes on vale 1 only if:

- S is in the working state (); and

ATS – S stand-by/active dimension

SSs ,

OASs ,

OASSt →, SOASt →,

State indicator

variables

Transition indicator

variables

Transition timing

variablesS

OA

OASST →,

SOAST →,

OB

OBSST →,

SOBST →,

OBOAST →,

OAOBST →,

OBSs ,

OBSSt →, SOBSt →,

OBOASt →, OAOBSt →,

OASS →,π
SOAS →,π

OBSS →,π SOBS →,π

OBOAS →,π OAOBS →,π

OASSa →,

FAs ,1 FAs ,2

WBs ,1 WBs ,2

FAs ,1 FAs ,2 FBs ,1 FBs ,2

FWA →,1π

MAX

FWA →,2π
FWB →,1π

MAX

FWB →,2π

≤

inst−

inst− inst−

WSs ,

SOASa →,

FSs ,

WBs ,1 WBs ,2WAs ,1 WAs ,2

OBOASa →,

WSs ,

FBs ,1 FBs ,2WAs ,1 WAs ,2

 Repairable Dynamic Fault Trees

- it is not requested anymore from A ; and

- it is requested from B .

The relation presented here for , , and symmetrically for

, , must be generalized in the case that components of

lower order in the SPARE gates where S is input, i.e., component A2 and B2, are

shared among more SPARE gates. In this case, in fact, the above relations for the

transition activation functions must include the possibility that not only a component

can be failed but it can also be occupied in another subsystem.

Fig. 7.7. ATS model of the working/failed dimension of shared spare components

(model for S).

The ATS model of the working/failed dimension of S is shown in Figure 7.7. The

ATS model is similar to the one of A2 presented in Figure 7.5. Here the only

difference lays in the definition of the reactivation function of the “failure transition”

in the warm stand-by case. In this case in fact the component can enter and leave the

W

F

ATS – S working/failed dimension warm stand-by

FWST →,WFST →,

SWFS

WFS

WFS

r
a

µθ =−

=−

=−

−

→

→

→

,

,

,

0

1

exp

WSs , FSs ,

FWSt →, WFSt →,

State indicator

variables

Transition indicator

variables

Transition timing

variables FWS →,π WFS →,π

Sλ

Sα

1

exp

, =−

−

→FWSa
FWSr →,

OASSt →, SOASt →,

FWS →,θ

SSs ,

ATS – S working/failed dimension cold stand-by

W

F

FWST →,WFST →,

SWFS

WFS

WFS

r
a

µθ =−

=−

=−

−

→

→

→

,

,

,

0

1

exp

SFWS

FWSr

λθ =−

=−

−

→

→

,

, 0

exp FWSa →,

SSs ,

NOT

OBSSt →, SOBSt →,

 Repairable Dynamic Fault Trees

stand-by state by four transitions, thus all the transition indicator variables relative to

these transitions must be included as inputs of the function.

Finally, we must define the inputs of the static representation of the DFT of

Figure 7.2. We do it imposing the following relations: and

. Thus SA takes on value 1 only if either S has failed or it is

occupied in another SPARE subsystem. The symmetric condition applies for SB.

7.3.3 REWARD FUNCTION SPECIFICATION

The reward function of the ATS model (Figure 7.8) is retrieved directly from the

static representation of the DFT in Figure 7.2 applying the input specified above for

the BEs.

Fig. 7.8. Reward function of the ATS model of the DFT of Figure 7.1.

7.4 SAN IMPLEMENTATION AND EVALUATION

The RDFT presented in the previous sections was solved through its

implementation into a SAN model following the indications stated in Chapter 6. The

ATS-SAN model of A1 and S is shown in Figure 7.9.

FTs ,1 FAs ,1 FTs ,2 FAs ,2 FTs ,3

WSs , OASs ,

FTs ,2 FBs ,1 FTs ,1 FBs ,2 FTs ,3

WSs , OBSs ,

 Repairable Dynamic Fault Trees

Fig. 7.9. Atomic SAN models of the ATS of components A1 and S.

The time to failure and the time to repair of all components are exponentially

distributed and the failure and repair rate values are reported in Table 7.1. From

reference [5] the unreliability value of the system at 100 time units is 0.03126.

Table 7.1. Components failure and repair rates [].

Component Failure rate Repair rate

A1 0.0010 0.025

A2 0.0050 0.025

B1 0.0020 0.025

B2 0.0035 0.025

S 0.0050 0.025

T1, T2, T3 0.0030 0.025

The model was resolved via simulation with the aid of the Mobius simulator [7].

Table 7.2. Simulator Solver results.

Simulation Batches Mean Conf. Int. CPU time

SAN 59000 6.47e-03 +/-6.47e-04 54.56 sec

The Simulator results are reported in Table 7.2. As expected, the unavailability

value is less than the unreliability value reported in [5]. The experiment were carried

SAN-ATS: stand-by/active S

OASST →,

OBSST →,

SOAST →,

OBOAST →,

SOBST →,

OAOBST →,

SAN-ATS: working/failed S

SAN-ATS: A1

FWAT →,1

WFAT →,1

FWST →,

WFST →,

 Repairable Dynamic Fault Trees

out by a laptop with the following characteristics: CPU, Intel Core 2 Duo 1.83 GHz;

RAM, 1.99 GB.

7.5 MATCARLOAV: AN EXTENSION TO SOLVE DRFT

An extension of MatCarloRE, the simulative tool for DFT presented in Chapter 4

is currently under development to solve RDFT. MatCarloAv will be a tool for

discrete event simulation of RDFT that employs a conversion of the DFT to the

related ATS model and solve it via simulation. The tool performs the following

steps:

- conversion of the DFT into an ATS model;

- definition of the algorithm for the simulation of the ATS model;

- use of the functions defined in MatCarloRe for the gates of the static FT

derived from the original DFT to evaluate the availability (or the reliability

with repair) of the RDFT.

The conversion procedure of the DFT into an ATS model follows the same rules

stated in this chapter. Once that the model has been converted, a Matlab code for the

simulation of the ATS is generated on the basis of the execution logic described in

Chapter 5. Finally the reward function is evaluated at every state change trough the

use of the adapted function of the MatCarloRe tool.

At the moment the tool is still under development. An accepted abstract of a paper

describing the tool is attached in Appendix A.

7.6 CONCLUSION

In this chapter we have introduced Repairable Dynamic Fault Tree, a formalism

that extend DFTs with repairable components. We have shown what the main issues

are when restoring actions are taken on components of a DFT. In particular we have

introduced new logics for dynamic gates.

 Repairable Dynamic Fault Trees

Successively we have shown how ATS can be used to model and solve repairable

DFTs. Due to the capability of ATS to tackle the characteristics of single

components on the basis of their nature and their configuration into the system, DFT

models can be extended to tackle more complex behaviours.

In order to create an ATS model of a RDFT we need first to convert the DFT is to

a static FT where basic events are modelled in terms of ATS models. In this way the

failure logic of the system is separated from the substitution logic of spare

components. The FT is used then as a specification of the reward function of the

ATS model. It follows that a dynamic behaviour of a system can be modelled in

terms of a FT and an ATS. However, dynamic gates represent useful high level

representation of a kind of behaviour that is useful to maintain.

However, we showed that with the implementation of f-T, the Fault Tree like

graphical representation of transition and reward functions; dependencies existing

among components are easily modelled and debugging of the model can be done

with the advantages of a graphical support.

Future work regards the construction of a software tool that automatically convert

a DFT into an ATS model. The ATS model can be then solved via simulation or via

its conversion into a Markov model. In fact when ATS are applied to model DFT, the

class of dependencies involved in the model make the ATS an OATS. Furthermore,

if only exponential distributions of the time to failure and to repair are used into the

model, then the OATS model is a MOATS and can be solved trough conversion to a

Markov chain.

BIBLIOGRAPHY

[1] Bobbio, A. & Raiteri, D.C., 2004. Parametric fault tree with dynamic gates and

repair boxes. Annual symposium on RAMS, pp. 459-465.

[2] Boudali, H., Crouzen, P. & Stoelinga, M., 2007. Dynamic Fault Trees analysis

using Input/Output Interactive Markov chains. 37
th

 IEEE international

conference in Dependable systems and Networks, pp. 708-717.

 Repairable Dynamic Fault Trees

[3] Distefano, S., & Puliafito, A., 2007. Dynamic reliability block diagrams vs

dynamic fault trees. In Proceedings Annual Reliability and Maintainability

Symposium RAMS '07; 71-76.

[4] Vesely, W.E., Goldberg F.F., Roberts N.H. & Haasl D.F., 1981. Fault tree

handbook. U.S. Nuclear Regulatory Commission, Washington DC.

[5] Boudali, H., & Dugan, J., 2005. A New Bayesian Network Approach to Solve

Dynamic Fault Trees. In Proceedings Annual Reliability and Maintainability

Symposium, Jan. 451-456.

[6] Sanders, W. H. & Meyer, J. F., 2002. Stochastic activity networks: Formal

definitions and concepts. Lectures on Formal Methods and Performance

Analysis. Springer Verlag.

[7] PERFORM, 2006. Möbius: Model Based Environment for Validation of System

Reliability, Availability, SEcurity and Performance. User's Manual, v. 2.0 Draft.

 Conclusion

CONCLUSION

In this thesis we have addressed the issue of reliability modelling of complex

interdependent systems.

In Chapter 1, 2, 3 we have introduced the main concepts, models, and techniques

of reliability engineering. Chapter 4 shows a Matlab tool for the evaluation of

Dynamic Fault Tress via simulation.

In Chapter 5 we have presented the major achievement of this doctoral work:

Adaptive Transition Systems (ATS). ATS is an hybrid formalism that integrates

concepts deriving from different fields: transition systems, stochastic extension of

Petri nets and Fault Trees.

ATS are substantially different from other approach of modelling distributed systems

due to the model of communication mechanism that is defined between parallel

models. The formalism allows to represent a system in terms of parallel transition

systems and a Fault tree-like structure of the model of the communication

mechanism.

The communication mechanism defines the dependencies existing between parallel

models in the natural way of defining dependencies between system subparts. The

model construction results facilitate due to the separation of concerns, i.e., the

modeller can abstract from the complexity of the whole (sub-)system when

modelling specific system sub-parts. He can focus on the “state-space” of the

modelled elements and then define the dependencies among them.

 Conclusion

Moreover, debugging and maintenance of the model results also improved because

of the “state-space” structure of the model and because changes can be often defined

only at the communication mechanism level without the necessity of reconsidering

the structure of the “state-space” of the modelled elements.

Some comparison with formalisms like Stochastic Process Algebra and Model

checking are also reported. Solutions methods have been proposed, too. We have

shown that when an ATS is an Ordered-ATS (OATS) with exponential and

instantaneous transition type the OATS is a Markov-OATS (MOATS) and can be

resolved through its conversion into a Markov chain. We have shown, that the class

of models representable by a Markov chain is extended by an opportune concept of

state that include the ordering of the most recent completion of transitions. Finally,

being the execution logic of ATS defined on the completion of events, ATS resemble

generalized semi Markov process, thus ATS adopts an “educated” approach to

simulation.

In Chapter 6 a conversion ATS-to-SAN (Stochastic Activity Network) model is

presented showing that the resulting SAN model has a standardized structure where

the logic expression of the Boolean predicates of the network are graphically defined

by the FT-like formalism used to define the communication mechanism between

ATSs.

Finally in Chapter 7 we introduce Repairable Dynamic Fault Tree (RDFT) and

show a lower level conversion method of the RDFT to a an ATS model. In practice

by the definition of a specific ATS model is possible to extend DFT to the class of

repairable components.

In addition ATS have been applied to model a real system defined as an

Interdependent Critical Infrastructure (ICI). The application shows the capability of

ATS to deal with interdependent large systems. The main achievement lays in the

support to the modelling activity of ATS. We have shown that the task of modelling

complex interdependencies results facilitate by the structured approach that ATS

provides.

 Conclusion

Future developments of ATS regard both theoretical and practical, i.e., tool

implementation, fields. From a theoretical point of view it is interesting to exploit the

conversion of ATS to Stochastic Process Algebra models like Performance

Evaluation Process Algebra (PEPA) or Interactive Markov Chain (IMC). It is also

interesting to extend the kind of properties that can be investigated by a n ATS model

employing some kind of temporal logic used in Model Checking, e.g., Continuous

temporal logic (cTL). We have indicated, in Chapter 5, that ATS can be implemented

in the PRISM formalism (a Model Checking tool) if the ATS is an Ordered-ATS.

We have shown that an ATS model can be converted to a Stochastic Activity

Network model. In this context it would be beneficial to define a multi formalism

language that make use of both ATS and SAN. For instance, the Mobius tool allows

to model a system making use of both formalism SAN and PEPA. An extension of

the tool to include ATS thus, would be straightforward having defined the conversion

procedure ATS-to-SAN.

On the other hand, a standalone tool, e.g., defined in Matlab with a Java interface

support, can be defined in a way that both analytical and simulation evaluation

techniques can be used in the most general setting for ATS and allowing “exotic”

extension.

Finally, from a point of view of ATS development, we should consider the

introduction of case probabilities applied to transition, i.e., a transition can be

directed to more states with different probabilities, and also among transitions, i.e.,

different instantaneous transitions with probabilities. Another future development

can be directed to the formalization of synchronization procedures between

transitions. We have show in Chapter 5 an application of synchronization but has not

been formally defined. We remind, in this context, that ATS allows nondeterministic

choices and, thus, the definition of synchronizations procedures and case

probabilities should take into account also this fundamental aspect often present in

distributed systems.

 Accepted publications

APPENDIX A

In this appendix are reported the following accepted papers in international

journals:

- Chiacchio F., Compagno L., D’Urso D., Manno G. & Trapani N., (2011).

Dynamic fault trees resolution: A conscious trade-off between analytical and

simulative approaches. Reliab Eng Syst Safety, under press.

- Manno G. & Chiacchio F., (2011). MatCarloRe: an integrated FT and Monte

Carlo Simulink tool for the reliability assessment of dynamic fault tree. Expert

System With Applications, under press.

and in the proceedings of international conferences:

- Popov P. & Manno G., (2011). The effect of correlated failure rates on

reliability of continuous time 1-out-of-2 software. Lecture notes in computer

science, vol. 6894, pp. 1-14.

- Chiacchio F., Compagno L., D’Urso D., Manno G. & Trapani N., (2011). An

open source application to model and solve dynamic fault tree of real

industrial systems. IEEE Proceedings of the 5
th

 International conference on

Software, Knowledge Information, Industrial Management and Application

(SKIMA).

- Chiacchio F. & Manno G., (2011). MatCarloAV, an extensible Matlab library

for the simulative evaluation of dynamic fault trees. PSAM 11 & ESREL.

Accepted abstract.

Dynamic fault trees resolution: A conscious trade-off between analytical

and simulative approaches

F. Chiacchio a,n, L. Compagno b, D. D’Urso b, G. Manno a, N. Trapani b

a Dipartimento di Matematica e Informatica—DMI, Universit �a degli Studi di Catania, Italy
b Dipartimento di Ingegneria Industriale e Meccanica—DIIM, Universit�a degli Studi di Catania, Italy

a r t i c l e i n f o

Article history:

Received 4 August 2010

Received in revised form

7 June 2011

Accepted 30 June 2011

Keywords:

Risk assessment

Combinatorial models

Markov chains

Hierarchy

Spreadsheet modeling

a b s t r a c t

Safety assessment in industrial plants with ‘major hazards’ requires a rigorous combination of both

qualitative and quantitative techniques of RAMS. Quantitative assessment can be executed by static or

dynamic tools of dependability but, while the former are not sufficient to model exhaustively time-

dependent activities, the latter are still too complex to be used with success by the operators of the

industrial field.

In this paper we present a review of the procedures that can be used to solve quite general dynamic

fault trees (DFT) that present a combination of the following characteristics: time dependencies,

repeated events and generalized probability failure.

Theoretical foundations of the DFT theory are discussed and the limits of the most known DFT tools

are presented. Introducing the concept of weak and strong hierarchy, the well-known modular

approach is adapted to study a more generic class of DFT. In order to quantify the approximations

introduced, an ad-hoc simulative environment is used as benchmark.

In the end, a DFT of an accidental scenario is analyzed with both analytical and simulative

approaches. Final results are in good agreement and prove how it is possible to implement a suitable

Monte Carlo simulation with the features of a spreadsheet environment, able to overcome the limits of

the analytical tools, thus encouraging further researches along this direction.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The RAMS techniques offer qualitative analyses and quantitative

techniques for risk assessment. The former (such as HAZOP and

FMEA [1]) concern the context analysis (kind of process, geographic

issues, internal specifications and rules, etc.) and are used to reveal

potential hazards and consequences. The latter concern the risk

assessment, computed as the probability of occurrence of undesired

events (which are often highlighted by the qualitative analyses).

Two main classes of analytical stochastic models are used for

quantitative evaluations:

� combinatorial models (also known as static) that are straight-

forward, but unable to describe dynamic dependencies among

the components of the system and

� state-space models, mostly based on the Markov Chain repre-

sentation (DTMC, CTMC, MRM, MRGP and GSMP), that over-

come many of the limits of the static models but can become

too large to be handled [2–4].

In the last years researchers have proposed several techniques,

which combine the best properties of the previous models [4,7,8]

such as the BDMP [5,6], the DRBD [9], the DFT [10], the SPN [11],

etc. These powerful techniques of modeling are implemented

using many reliability tools [2,5,12,13,14,17] that can be used

according to their own hypotheses and features, which, often, are

not suitable to design and solve any possible type of model.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

0951-8320/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2011.06.014

Abbreviations: BDD, Binary Decision Diagram; BDMP, Boolean logic Driven

Markov Process; BE, Basic Event; CDF, Cumulated Distribution Function; CTMC,

Continuous Time Markov Chain; DAG, Direct Acyclic Graph; DCS, Decision Support

System; DFT, Dynamic Fault Free; DRBD, Dynamic Reliability Block Diagram;

DTMC, Discrete Time Markov Chain; ExpD, Exponential Distribution of Probability;

FDEP, Functional Dependency; FMEA, Failure Mode and Effects Analysis; FT, Fault

Tree; FT-A, Fault Tree Analysis; GD, Generalized Distribution of Probability; GSMP,

Generalized Semi-Markov Process; HAZOP, Hazard and Operability Study; MCS,

Minimal Cut Sets; MOE, Multiple Occurring Event; MOE-FT, Fault Tree with

repeated events; MRGP, Markov Regenerative Process; MRM, Markov Rewards

Model; (N)HCTMC, (Non) Homogenous Continuous Time Markov Chain; PAND,

Priority AND; RAMS, Reliability, Availability, Maintainability and Safety; RBD,

Reliability Block Diagram; SEQ, Sequence Enforcing; SFT, Static Fault Tree; SPN,

Stochastic Petri Net; TE, Top Event; UnMOE-FT, Fault Tree with no repeated

events; Wysiwyg, What you see is what you get
n Corresponding author. Tel.: þ39 95 7382412; fax: þ39 95 337994.

E-mail addresses: chiacchio@dmi.unict.it (F. Chiacchio),

lco@diim.unict.it (L. Compagno), ddurso@diim.unict.it (D. D’Urso),

gmanno@dmi.unict.it (G. Manno), ntrapani@diim.unict.it (N. Trapani).

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

Reliability Engineering and System Safety] (]]]])]]]–]]]

In this paper we focused on the Fault Tree analysis because

nowadays it is the most used quantitative technique for accident

scenario assessment in the industry. The aim of this paper is to

review briefly the improvements of the DFT over the SFT and

provide a useful scheme to approach the resolution of a quite

general class of DFT that includes nested dynamic gates, events

with generalized distributed time to failure and MOE [40] (also

known as repeated events). Intentionally, we will not cover other

approaches (i.e. SPN, SAN, BDMP, etc.) because they are too

general [5,6] and their use requires notions that go over the

capability covered by the DFT approach.

A significant part of this work is devoted to reason about the

hierarchical approach for DFT [15,16,18,19]. The concepts of weak

and strong hierarchy are introduced and used to estimate what

approximations arise when DFT with nested dynamic gates are

analyzed.

This paper is organized as follows: in the first part we

present an overview of the fault tree analysis, introducing the

SFT of the presented case of study and its enhanced model by

the mean of the DFT technique. In the second part, the most

common analytical techniques of resolution are discussed, in

particular the state-space models and an adapted modular

approach for general DFTs. The aim of this section is to provide

a reference framework to analyze a generic DFT, what techniques

apply and what software uses (or combine) to obtain reasonable

results.

In the final section, the case of study is solved in several

manners, according to the scheme of resolution suggested. Among

the traditional analytical tools, a novel simulative approach—

developed under a well-known commercial spreadsheet [44]—is

used as a benchmark to compare the final results. In the end

conclusions are drawn and future works are indicated.

2. Research framework

The study is developed with reference to the FT model of

Fig. 1: an accident scenario in an alkylation plant, as it is reported

in the Safety Report required by the Seveso Directive. The SFT

was designed by the experts according to the HAZOP report.

Although SFTs are very common in the industrial field, DFTs are

desirable because some reliability schemes and the integration

with real time technology of monitoring (like the DCS [20])

introduce temporal dependencies that the static models are

unable to treat.

2.1. Static Fault Tree (SFT)

The TE of a SFT [21] is described through the well-known

structure function:

fðtÞ ¼ f ðX ðtÞÞ ¼
1, if the system is working

0, if the system is failed

(

ð1Þ

where X ðtÞ ¼ ½X1ðtÞ,X2ðtÞ,:::,XnðtÞ� is the vector of the states of the

system and XiðtÞ represents the ith component that can be in a

working or in a failed condition. Several methods of resolution

exist and their usability depends on the complexity of the tree. In

fact, a simple model without repeated events can be solved with

the equivalent RBD [22]. Nevertheless, in the industrial applica-

tions it is usual to deal with large SFT composed by BEs

characterized by a very low probability of occurrence. In these

cases, exact methods such as factorization [23] or BDD [24] can be

unfeasible; therefore the MCS technique is combined with the

rare event approximation renouncing to exact results. The choice

of what is the optimal truncation limit is discussed in many

regulatory guides of PRA and it has been the objective of further

elaborations through a technique that considers the important

measures and the sensitivity of the CDF [25]; however, there is

no certainty about the accuracy that can be reached and this

can cause the underestimation (or the overestimation) of the

sources of risk [26] and consequently can invalidate the safety

or optimization strategies, which are based on these evaluations.

The SFT models are constrained to the following assumptions [27]:

� binary nature of the components, which can only be in the

operative or in the failure state;

� BEs are independent;

� transition between the working and the failed state is

instantaneous;

� maintenance restores components as good as new and

� if the failure of a component influences other events on

superior levels, its repair restores these events to the normal

operative condition.

The algorithms for the resolution of the SFT are easy to

implement because they make use of the Boolean algebra.

2.2. Dynamic Fault Tree (DFT) and analytical resolution

State-space models have been used to overcome the limits of

the SFT, but

� unlike the FT, they are not systemic oriented;

� construction of the schema can become difficult and

error prone;

� readability of the model is less intuitive than the combinator-

ial representation and

� complexity of the model can make the analytical resolution

hard (or even unfeasible).

DFT methodology is a technique for the reliability assessment

that was born to overcome the state-space complications but

keeps the powerful representation of the SFT. In fact, the structure

function of these models is time dependent since the dynamic

gates (Fig. 2) establish interactions among the components (FDEP,

PAND) and modify their failure attitude (SPARE, SEQ) [4], but the

resolution of a DFT is not as simple as in the SFT because it cannot

be performed with the rules of the Boolean algebra.

After a careful review of the most important literature about

DFT models, we have realized the need to list and discuss theFig. 1. SFT of a real industrial plant (alkylation plant).

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]]2

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

method proposed in these previous works, as it came out that an

established procedure for the resolution of a DFT does not exist.

Fig. 3 shows the dynamic version of the static schema of Fig. 1.

The DFT of Fig. 3 was obtained, implementing the following

important rearrangements that consider the real behavior of the

safety systems of the alkylation plant: the static AND gates (IE1

and TE) were replaced by two PAND gates (as the alarm equip-

ment considers the time of occurrence of a fault) and the IE8 with

a SPARE in order to model the cold stand-by between two pumps.

In Fig. 4 we present a breakdown for the classification of a fault

tree. The procedure for the resolution of the fault tree is chosen

according to the following main characteristics: the distribution

function of the events time to fail, the presence of repeated BEs

and the type of tree.

If the BEs of the DFT are characterized by an exponential

distributed time to fail, the most used domain of the resolution of

a DFT is the HCTMC (or CTMC). The memory-less property (which

characterizes the HCTMC) makes the resolution of the problem

straightforward. In fact, the mapping of a DFT into a Markov chain

can be performed with the direct mapping, recursively construct-

ing the matrix of the infinitesimal generator Q. Hence, the closed

analytical solution for the instantaneous reliability is obtained by

solving the set of differential equations [28]:

dPðtÞ

dt
¼ PðtÞQ ð2Þ

where P(t) is the vector of the state probabilities and P(0) the

vector of the initial probabilities.

The main disadvantages of this approach is the constraint to

use only the exponential distribution and the state-space explo-

sion that can affect even small DFTs. In fact, if we assume a DFT

with n basic events, the matrix Q can be larger than 2n�2n.

If the state-space model is available, there are techniques that

can be used to reduce its largeness and improve the computation

performance: in [29] stochastic algebra it is used to find bisimi-

larity among the states and favor the lumping, while in [30] a

simple technique is shown for the aggregation of the states that

permits to find the equivalent transition rates also for repairable

systems.

In [34,35] DFTs are solved by the conversion into a Bayesian

network, a formalism based on the explicit dependencies among

the gates and the BEs of the fault tree. This method mitigates the

state-space explosion as it creates a DAG with a number of nodes

given by the sum of the number of the BEs (that are the leaves of

the DAG) and the gates.

In [37] an elegant solution, based on a temporal Boolean logic,

allows the resolution of a cascade of PAND gates for the reliability

computation of DFT with repeated events. However, this is just a

small set of all the classes of DFT that we are considering.

Even though the previous techniques are quite dynamic,

industrial applications make use of repairable components, which

are not described only by the exponential distribution; therefore

HCTMCs and Bayesian network are too limited. Non-homoge-

neous CTMCs (NHCTMCs) are more powerful but only simple

models can be analytically treated with MRGPs and GSMPs [31].

The continuous phase-type distribution [32] is an approximated

solution for solving the GSMP: a generalized distribution function

can be approximated by the use of one or more interrelated

Poisson processes that occur in sequence. But its application is not

feasible even for ordinary cases because a Markov chain that

approximates a single generalized distribution function of a BE

can be too large; with the increasing of the model the final

representation of the GSMP can suffer from the state-space

explosion problem [33] (Table 1).

In Table 2 a synthesis of the main features and limits of the

analytical techniques is presented.

Fig. 2. Most frequently used dynamic gates.

Fig. 3. DFT of the real industrial plant in Fig. 1.

SFT

Type of

Fault Tree

ExpD

GD

MOEUnMOE

DFT

Events

Distribution Function

Fig. 4. FT breakdown structure.

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]] 3

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

2.3. Mitigation technique of large DFT: weak and strong hierarchical

approach

The issue of the state-space explosion can be mitigated with

the hierarchical approach [15,16,18,19]. This method (also known

as ‘‘modularization’’) was developed to reduce large combinator-

ial models.

The hierarchical technique is performed recursively in two

phases:

1. the decomposition phases, ‘Phase 1’, detect the independent

parts (sub-models) of the original FT that can be solved a part

(i.e. repeated events cannot be split into different sub-mod-

ules) and

2. the composition phases, ‘Phase 2’, perform the aggregation of

the sub-models which are substituted with an equivalent BE.

At the end of this recursive process, the original FT is collapsed

in a smaller but equivalent FTn, which can be solved with the

methods of the Boolean algebra.

Hierarchy can be applied in a similar fashion for DFT (Fig. 5):

the aim is to deal with a simpler aggregated DFT (in the following

indicated as DFTn) in order to mitigate the state-space explosion

of the equivalent CTMC.

In the following we will refer to

� composed sub-models to indicate the parts of the DFT, which

are solved as a part during the decomposition phase and

� hierarchical model to indicate the final representation of the

aggregated DFTn, built with the previous composed sub-

models.

Unfortunately, the dependencies of a DFT model are also

caused by the temporal interactions among different BEs through

the dynamic gates. Therefore, modularization can become less

effective. According to past literature [15,16], we focused on two

kinds of hierarchical approaches that we will refer to as

1. strong approach: it synthesizes a DFTn, which keeps the

temporal dependencies of the original DFT, providing exact

results and

2. weak approach: it disregards the temporal dependencies and

provides an approximated DFTn.

Fig. 6 shows a class of DFT that inspired many reliability

models [15,18,19].

In this kind of DFT, dynamic modules are solved as a mono-

lithic block; the white blocks can be thought as the intermediate

layers of the FT and can contain only static gates; gray

blocks are the lowest levels for which no more decompositions

are performed (sub-models of SFT and DFT are completely

reduced and solved). For these cases, the strong hierarchy is

enabled. In fact, unmanageable temporal dependencies do not

arise because these are all treated internally in the sub-models.

The final DFTn is solved with the techniques of the SFT, getting an

exact result.

The use of the hierarchy inside a pure dynamic sub-module

was suggested in [16]: we have noticed that it can turn into a

strong or weak approach, depending on the structure of the

sub-models, as in Fig. 7, where two similar DFTs are

shown. Through the modularization of the sub-models (inside

the circle), the original DFTs are converted into an equivalent

Table 1

Parameters of the BEs for the FT-A (l¼failure rate [1/h]; Q¼constant) probability

of failure.

ID Description l [1/h] Q

BE1 Human error – 1.0�10ÿ3

BE2 Breakage HV72 failure 9.1�10ÿ4 –

BE3 No operative intervention – 1.0�10ÿ3

BE4 LAHH78 failure 1.7�10ÿ4 –

BE5 LAHH failure 7.5�10ÿ4 –

BE6 HV75 failure 9.1�10ÿ4 –

BE7 Flow level control failure 4.5�10ÿ3 –

BE8 FV72 failure 8.6�10ÿ4 –

BE9 Level control system failure 4.5�10ÿ4 –

BE10 LAHH78 failure 7.9�10ÿ3 –

BE11 Pump G17 failure 1.5�10ÿ4 –

BE12 Pump G17S failure 9.5�10ÿ4 –

Table 2

Synthesis of the features and limits of the main analytical stochastic models.

Stochastic model Hypotheses Mitigation technique Overall limits

HCTMC Exponential distribution Stochastic algebra State-space explosion

Lumping Ineffective modeling of real industrial systems

Hierarchy

GSMP/MRGP Non-exponential distributions Continuous phase-type approximation Complex models are not solvable

Bayesian networks Reliability computation No cyclic dependencies

Fig. 5. Recursive two-phase procedure of the hierarchical technique.

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]]4

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

DFTn (Fig. 7c): the CDFs that describe the composed sub-models

‘S’ can be a GD.

In particular, the model of Fig. 7a can enable a straight strong

hierarchy as the CDF of the composed OR gate is still an

exponential distribution with leq¼lS¼lAþlB.

In the case of Fig. 7b, the CDF of the AND gate is an

exponomial; hence the hierarchical DFTn is no longer equivalent

to a CTMC.

In this last case, the use of a weak hierarchy can be applied to

get back a CTMC, finding an equivalent constant failure rate,

h(t)¼leq, which synthesizes the dynamic of the gate. Two

approaches can be followed:

W1. the computation of an instantaneous equivalent failure

rate [16], from the reverse law of the exponential distribution,

that depends on the precise instant of time Tn (where Tn is the

mission time of the original model);

W2. the second weak approach exploits the property of the

exponential distribution by the use of the inverse MTTF as

the equivalent failure rate of the combined sub-model. In

this case:

leq ¼
1

MTTFAND
¼

l
2
AlBþl

2
BlA

l
2
Aþl

2
BþlAlB

ð3Þ

We have quantified the quality of the approximation for the

example of Fig. 7 (Table 3), assuming all the BEs to have the same

failure rate: low values of the parameter lTm (i.e. 10ÿ2, 10ÿ3)

correspond to higher relative errors. Nevertheless, for high reli-

able systems these approximations are more tolerable than the

ones associated to larger lt. These approximations can grow

according to the complexity of the sub-model: final results may

not be significant in terms of both logical modeling and numerical

evaluations.

Fig. 6. Hierarchical decomposition of a DFT, which retrieves exact results.

Fig. 7. Two different DFTs (a) and (b) with the equivalent hierarchical model (c). Double circles are the state of failure for the system. DFT (a) enables the strong hierarchy

and DFT (b) the weak one.

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]] 5

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

In conclusion, the hierarchical approach results are exact (or

strong) in the following cases:

1. DFT is structured like in Fig. 6;

2. under any dynamic gate if the modularization involves OR gate

sub-modules without repeated events.

In all the other cases, the hierarchical approach will be feasible

in terms of weak hierarchy, providing an approximated DFT,

which keeps the advantage to be equivalent to a CTMC.

2.4. Software tools analysis and application of the hierarchical

techniques

Automated tools can be classified (and used) according to the

way they solve a DFT, with respect to the engine used (analytical or

simulative), the domain of resolution (CTMC, Bayesian Space, BDMP,

SPN, etc.), the hierarchical algorithms and the measures retrieved.

The software tools reported in Table 4 have been tested.

Some considerations can be important:

1. TOOL_1 [42]: it provides an intuitive high level framework to

model a DFT. The engine of the TOOL_1 can retrieve the

reliability and the availability of the system and it can deal with

repeated events; only exponential distributions are permitted

and the hierarchy has to be handled manually (other kind of

reliability models can be assembled such as RBD, FT and CTMC).

2. TOOL_2 [13]: this software provides a user friendly graphic

interface to construct a DFT. It can compute only the reliability

of a system; repeated events are not permitted but, unlike

TOOL_1, it can deal also with the Weibull and lognormal

distributions through a simulative engine. Modularization is

handled automatically but only the exact (strong) hierarchy is

performed. Moreover, the algorithm is not optimized as it

cannot solve simple DFT as in [34].

3. TOOL_3 [43] is more than a reliability tool. It offers a practical

interface to solve SFT, Reliability Graph, RBD and HCTMC as

well as GSMP and MRGP. DFTs are not implemented; therefore

dynamic models have to be solved constructing manually the

equivalent state-space model. Hierarchy is allowed and relia-

bility, availability and other importance measures can be

automatically retrieved.

For the models of Fig. 6, TOOL_1 and TOOL_2 can process the

DFT as no nested PAND gates appear; instead, TOOL_3 needs to

solve the dynamic models a part—through the equivalent

CTMC—and embeds these results into the hierarchical SFT model.

But, if dynamic gates are nested along the structure of the tree the

previous software can get stuck due to the state-space explosion.

The solution that we want to suggest in order to mitigate the state

space is based on an adapted combination of strong and weak

hierarchy inside any dynamic sub-model of the original DFT. In this

way the original DFT can be drastically reduced. For instance, with the

strong hierarchical approach the hypothetical example of [35] is

reduced from the initial 16 BEs to 10. In this configuration TOOL_2

can easily solve the model. Applying another weak hierarchy for the

AND gate, the DFT is finally reduced to three BEs and also TOOL_1 can

process the computation with an error of 5.5�10ÿ10.

Among the proposed reliability software only TOOL_3 can deal

with GD once the DFTn is completely represented in terms of the

state-space model. However, it can solve only particular sub-

classes of non-Markovian models; therefore a generalization is

not easily feasible. In fact, GDs can be used only in the initial state

of the state-space model. The example of Fig. 8 explains this

statement: a 2-input PAND gate is modeled according to the two

possible permutations of the input of the gate (Fig. 8a and b). Let

us also assume that one basic event, BEG, is characterized by a

Table 4

Main features of the reliability automated tools for DFT.

Tool Dynamic modeling Hierarchy Measures computed

TOOL_1 [42] DFT WIZARD HTMC Manual Reliability/availability importance measures

Other measures of interest

TOOL_2 [13] DFT WIZARD Automated Reliability (no repeated events)

Sensitivity

Other measure of interest

TOOL_3 [43] HTMC Manual Reliability/availability

GSMP Importance measures

MRGP Other measure of interest

SPN Sensitivity

Fig. 8. (a) GSMP for a 2-input PAND gate; (b) GSMP for a 2-input PAND gate with

the permutation of the input of (a).

Table 3

Analytic unreliability for the DFT of Fig. 7b and for its weak hierarchical model

(Fig. 7c).

kTm Unreliability

Analytic W1 W2

10 3.33�10ÿ1 5.51�10ÿ1 3.99�10ÿ1

1 8.39�10ÿ2 1.98�10ÿ1 1.45�10ÿ2

10ÿ1 2.87�10ÿ4 4.52�10ÿ3 3.05�10ÿ3

10ÿ2 3.28�10ÿ7 4.95�10ÿ5 3.31�10ÿ5

10ÿ3 3.31�10ÿ10 4.94�10ÿ9 3.33�10ÿ7

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]]6

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

generalized CDF, G(t), and the other basic event, BEE, has time to

fail exponentially distributed with parameter l:

1. in Fig. 8a the BEG is the first input of the PAND and in that way

TOOL_3 is able to perform the ‘‘competing process’’ [31] from

the initial state of the GSMP and

2. in the second modeling (Fig. 8b) the BEG is put as the second

input of the PAND. Under this condition, the sojourn time tn of

the initial state ‘‘EG’’ is not determined and the CDF of the

state ‘‘XG’’, G(t, t0¼tn) is unknown.

2.5. Simulative approach

In the previous sections we discussed the lack of the analytical

approaches, which are generally caused by the state-space explo-

sion of the equivalent CTMC. When the hierarchical approach is

not of help and the events of the model are not exponentially

distributed, a comparative analysis based on a simulative

approach can be performed [36]. Its implementation requires

the following steps:

a) identification of the simulative horizon Tm (time of mission)

and of its time step of discretization;

b) definition of the stochastic behaviors of each BE (nature of

failures—described by a distribution function) and the codifi-

cation of their random sampling;

c) implementation of the interrelationships among the events,

modeled with the static and dynamic gates and

d) tracking of the results at any iteration and verification of the

convergence through the error test.

For our purposes, the simulative environment has been coded

with a commercial spreadsheet [44].

With this approach, the only informations needed to compute

the reliability of the system are the time to fail and the state of

each component (inputs and gates). Therefore, for a DFT with n

inputs and k gates, these data can be stored in a structure of

n�2k elements.

The main advantage of the spreadsheet environment is that

the logic relationships of the simulative engine can be implemen-

ted quickly with its standard functions, realizing a meta-struc-

tured language that is universally used and natively integrated

within many office suites of the same type.

The logic of any gate can be implemented in a master cell (i.e.

n-PAND, C-SPARE, W/H-SPARE, FDEP, etc.) and, thanks to the

‘‘copy and paste’’ function, copied at need into other cells in order

to build up the DFT. This characteristic is valuable because it

allows the implementation of new logics and can simplify the

evaluation of large DFT, no matter the number of repeated events.

In fact, for the inputs of the tree (the BEs) any kind of

stochastic failure behavior is allowed; the sampling process of

the CDF can be performed with reference to any generic law (for

example with a statistical inference of experimental data), as

shown in Table 5, through the RAND function (implemented with

the algorithm of [38] and tested in [39]) .

Fig. 9 explains the discrete event approach: a random number

in [0,1] is extracted and used as the value of the CDF (the

codomain). The inverse function (as in Table 5) retrieves the time

of failure for each BE, realizing the engine of the simulating

process.

For what concerns the logic of the gates, Fig. 10 shows the

relationships to put into the master cells for any dynamic 2-input

gate (the SEQ works exactly as a C-SPARE gate) and the model of

two C/W/H-SPARE gates with only one shared spare component.

The contribution of any FDEP gate can be considered preparing

the spreadsheet in a way that all the BEs that depend on a FDEP

gate are updated according with the time of the correspondent

failure of the trigger event. The relation is very simple as it

corresponds to the static OR logic. This way to code a model is

based on the Wysiwyg property of the spreadsheet, which favors

the knowledge sharing among the end users. In fact, it allows to

look inside any cell and understand what is the logic implemen-

ted in the fault tree.

In the schema of Fig. 10 the algorithm wants to compute the

time to fail of the ith component (Ti) for all the BEs of the DFT,

which are used for the other conditional statements like the state

of the components, the time of triggering of the gates and of

activation of the dependent logics (see the SPARE).

In point of fact, the scalability and the flexibility to develop

any kind of logic with the conditional statements, the primitive

functions and all the amount of cells of the spreadsheet environ-

ment can turn into an unreadable and bad structured spread-

sheet. In this sense, it would be worth understanding the limits of

the dependent behaviors to implement and the number of

components to treat in one sheet. For instance, as it is shown in

Fig. 10, the dependency between two spare gates that share one

spare component can be tackled with two additional conditions.

These conditions may easily become larger as the number of

spare components increases.

Another interesting characteristic is that with this environ-

ment RAMS analysis is not limited only to the reliability compu-

tation since cells are ‘‘almost’’ unlimited and data (also from other

sheets) can be linked with few clicks. For instance, the ‘‘failure

criticality index’’ [41] of each component can be retrieved count-

ing the number of system failures that occur in (0, Tm] due to the

failure of the same component.

In a similar way it is possible to attach to additional cells other

kind of data like real time measures from the field [20] and

retrieve evaluations about the current state of the system.

Table 5

Simulative code with the standard functions of the spreadsheet.

GD F(TBEi) TBEi¼F(TBEi)ÿ1

Exponential þRAND() ÿLN(1-RAND())/TBEim

Gaussian þRAND() þNORMINV(RAND();TBEim;sTBEi)

Constant þRAND() þRAND()*TBEimax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

F
 (

t)

t [h]

F
i

=
 r

.n
.

ti

Exp

Gauss

cost

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Fig. 9. Discrete event simulation engine that determines the time of failure

according to the CDF of the BE.

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]] 7

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

For instance, Fig. 11 shows a simple model of PAND built from the

master cell and the computation of the MTTF attached to any BE.

The model of Fig. 7b was developed and solved quickly: in this

case errors are negligible with respect to the weak hierarchy

(Table 6).

Table 7 shows the results collected for the case of

study of another complex model, a multiprocessor system

described in [34]. This case of study was developed with the

master cells of Fig. 10. Results prove the effectiveness of the

spreadsheet.

TM

IE1

1

1

BEx

Time to failure (Exp)

Time to failure (Norm)

random number

h002h001FTTM

devst MTTF 20 h 40 h

=+IF(AND(R16<T16;R16<S9;T16<S9);0;1)

= -LN(1-RAND())*T22

=+NORMINV(T19;T22;T23)

0.597473 0.84225

104.9362 h 240.15 h

176.9433 h 205.33 h

BEy

200 h

Fig. 11. Implementation of a 2-input PAND under the spreadsheet environment.

Fig. 10. Implementation of the dynamic 2-input gates under the spreadsheet environment of [44]. CDFÿ1 is not a function of the spreadsheet and represents the inverse

function of the CDF of the generic BE.

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]]8

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

3. Case of study solution

The simulations were executed with a standard laptop with

the following technical characteristics: a dual processor of

1.86 GHz and 2 GB of Ram.

According to the statistic parameters of Table 1, the DFT of the

case study (Fig. 3) would be unfeasible with the previously

described analytical techniques as it contains

� constant probabilities (BE1 and BE3) that invalidate the use of

the CTMC and

� a repeated event (BE1) at the lowest branch of the DFT that

does not verify the assumption of the hierarchical approach.

In order to test all the approaches reviewed in the paper,

several scenarios were designed as follows according to the

breakdown of Fig. 4:

1. Test 1: all the BEs are described by exponential distributions.

2. Test 2: this test represents the original input configuration of

Table 1 according to the industrial application.

3. Test 3: BE1 and BE3 are described by exponential distributions

(like in Test 1) and all the other BEs are characterized by a

Weibull distribution with a scale parameter equal to the

failure rate li (of the respective BEi) and a shape equals to 3.

The previous scenarios were evaluated twice to consider the FT

with (MOE-FT) and without (UnMOE-FT) the repeated event.

The results are shown in Tables 8 and 9, respectively, for the

static and the dynamic FT: not feasible computations (n.f.) happen

when the tool is not able to perform the resolution of the model,

not performed (n.p.) are the computations that would need more

investigations and no results (–) when the computation got stuck.

For what concerns the results in terms of reliability, it is

possible to notice that in both the STF and the DFT the repeated

BE1 does not contribute significantly to the TE occurrence.

For the monolithic UnMOE-FT, TOOL_1 got stuck while TOOL_2

and the simulator retrieved comparable results: the former was

computed in about 30 min, and the latter—with a number of 108

iterations—took about 9 h.

The computations with the strong and weak hierarchical

approaches (possible only for Test 1) simplified the model; hence

both TOOL_1 and TOOL_2 were able to perform the computation

very quickly, retrieving the same results.

In order to use the strong (Fig. 12a) and the weak hierarchy

(Fig. 12b) few other simplifications were needed. In fact, the gate

IE8 was elided (its contribution to the failure of the IE4 is

negligible) and the BE3 was cut off (its failure rate is much lower

than the equivalent failure rate of the gate IE9). In this way, the

original OR gate IE4 was replaced with a strong equivalence

characterized by a failure rate computed as the sum of the failure

rates as follows:

lIE4 ¼ lBE1n þlBE6þlBE7þlBE8þlBE9þlBE10 ¼ 2:235� 10ÿ2 ½1=h�

For the weak configuration of Fig. 11b, another composition

was added through the weak equivalence of the AND gate IE9:

lIE3=IE9 ¼
1

MTTFIE9
¼

l
2
BE4lBE5þl

2
BE5lBE4

l
2
BE4þl

2
BE5þlBE4lBE5

¼ 1:6316� 10ÿ4 1=h
� �

As shown in Table 9, the strong hierarchy retrieved results that

are very close to the ones obtained with the monolithic model.

The weak hierarchy, instead, introduced an error of two orders of

magnitude, not far from the one computed for the same DFT

structure (Fig. 7c) with respect to the parameter lTm (Table 6).

Test 2 and Test 3 were solved only with the simulative

approach and it is interesting to notice how the Weibull

Table 8

Static unreliability model results.

FT type Software

application

SFT unreliability

Test 1 Test 2 Test 3

MOE-FT

(BE1¼BE1n)

TOOL_1 7.73�10ÿ1 7.73�10ÿ1 9.48�10ÿ1

TOOL_2 n.f. n.f. n.f.

TOOL_3 7.73�10ÿ1 7.73�10ÿ1 9.48�10ÿ1

Simulative

approach

7.73�10ÿ1 7.73�10ÿ1 9.42�10ÿ1

UnMOE-FT

(BE1aBE1n)

TOOL_1 7.73�10ÿ1 7.73�10ÿ1 9.63�10ÿ1

TOOL_2 7.73�10ÿ1 7.73�10ÿ1 9.63�10ÿ1

TOOL_3 7.73�10ÿ1 7.73�10ÿ1 9.63�10ÿ1

Simulative

approach

7.73�10ÿ1 7.73�10ÿ1 9.50�10ÿ1

Table 9

Dynamic unreliability model results.

FT type Software

application

DFT unreliability

Test 1 Test 2 Test 3

MOE-FT

(BE1¼BE1n)

TOOL_1 – n.f. n.f.

TOOL_2 n.f. n.f. n.f.

TOOL_3 n.f. n.f. n.f.

Simulative

approach

5.35�10ÿ5 5.49�10ÿ5
o10ÿ7

UnMOE-FT

(BE1aBE1n)

TOOL_1

Monolithic

– n.f. n.f.

TOOL_1 Strong

Hierarchy

5.32�10ÿ5 n.f. n.f.

TOOL_1 Weak

Hierarchy

4.47�10ÿ4 n.f. n.f.

TOOL_2

Monolithic

5.31�10ÿ5 n.f. 7.93�10ÿ9

TOOL_2 Strong

Hierarchy

5.32�10ÿ5 n.f. n.p.

TOOL_2 Weak

Hierarchy

4.47�10ÿ4 n.f. n.p.

TOOL_3 n.f. n.f. n.f.

Simulative

Approach

5.45�10ÿ5 5.07�10ÿ5
o6.00�10ÿ8

Table 6

Analytic unreliability for the DFT of Fig. 7(b) and for the simulating model.

kTm Analytic unreliability Simulated unreliability

10 3.33�10ÿ1 3.35�10ÿ1

1 8.39�10ÿ2 8.38�10ÿ2

0.1 2.87�10ÿ4 2.96�10ÿ4

0.01 3.28�10ÿ7 3.31�10ÿ7

0.001 3.31�10ÿ10 3.37�10ÿ10

Table 7

Simulated unreliability for the DFT of a multiprocessor system [34].

Mission

time Tm [h]

Unreliability

(104 iterations)

Unreliability

(105 iterations)

Unreliability

(106 iterations)

1000 5.40�10ÿ3 5.90�10ÿ3 6.00�10ÿ3

2000 1.10�10ÿ2 1.26�10ÿ2 1.23�10ÿ2

3000 1.88�10ÿ2 1.91�10ÿ2 1.91�10ÿ2

4000 2.71�10ÿ2 2.73�10ÿ2 2.73�10ÿ2

5000 3.42�10ÿ2 3.74�10ÿ2 3.72�10ÿ2

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]] 9

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

distributions affect in a very different way the behavior of the SFT

and the DFT. In fact, for the former model the TE occurrence

increases whereas for DFT it is drastically reduced to values

(10ÿ8–10ÿ9 order of magnitude), which can be considered

negligible for safety purposes. This last result offers an important

cue about the meaning of the risk assessment when the compo-

nents of these models have a time to failure characterized by GDs.

In Table 10 the resolution tools of this study are classified

according to the type of DFT that they can resolve.

In the appendix, the results of the Monte Carlo simulating

processes for the DFT are shown.

4. Conclusions and future works

This study has been motivated by the need to improve the

quality and the performance of the risk assessment of industrial

plant, with the aim to find an environment for the reliability

assessment with the following requirements:

� easy to use by the actors of the industry;

� able to match the safety logic and dependability schemes of

real plant;

� able to provide results with a reasonable time of computation

and

� suitable to retrieve on-line risk assessment using data reported

in real time from the field.

The choice of the DFT technique as an instrument for the risk

assessment met the first and the second requirement, due to the

intuitiveness and the power of the modeling approach.

In this paper, the stochastic analytical techniques to solve DFT

were discussed with reference to the presence of repeated events

and generalized probability distribution function, enlarging the

usual domain of application of DFT models often restricted within

the Markov domain.

Therefore, the first result highlighted a breakdown for the

classification of industrial FT; the scheme was used to study the

suitability of three of the most known automated tools for DFT

models [13,42,43] and classify these software applications

according to their capabilities and limits.

An adapted hierarchical technique for DFT, based on an exact

(strong) and approximated (weak) approach, was experimented

in order to improve the performances of the previous tools. This

offered the clue for a second result that revealed what kind of

approximations are carried by the weak approach (that works in

the scope of the continuous time Markov chain) and what class of

DFT the strong hierarchy turns in semi-Markov processes.

After these results, we could claim that the power of the DFT is

not exploited fully because no precise procedures of resolution

exist and the ordinary reliability tools for DFT are neither

satisfactory nor easy to handle.

In this context, we suggested the possibility to develop ad-hoc

simulative models to use at least as benchmarks for other

analytical evaluations. Therefore, the other contribution of this

research was to show how to implement a simulative environ-

ment with a commercial spreadsheet [44], as it is a well-known

software adopted in many business companies.

The solution seems valuable since the spreadsheet environ-

ment carries the following interesting characteristics:

1) produced files are easy to distribute and improve the informa-

tion, sharing among the risk analysts, the managers and

employers who are involved in the risk evaluations;

2) Wysiwyg property of the spreadsheet allows access simulta-

neously to the logics and the results of the DFT, favoring the

understanding of the process, which is an added value of the

risk analysis;

3) dynamic model can be customized to build up the most known

dynamic gates, design other kind of dependencies logics and

implement several other means, like the importance measures

and

4) it can be integrated with the DCS in force of the plant in order

to process data in real time and retrieve fresh information on

the real state of the system.

In this work, we showed how to prepare the master cells

of the spreadsheet environment, which embed the generalized

Fig. 12. (a) Strong and (b) weak hierarchy representation for the model of Fig. 3.

Table 10

Resolution tools for each kind of DFT model.

MOE-DFT UnMOE-DFT

ExpD

Simulative application TOOL_2

Simulative application

TOOL_1 (if strong hierarchy is permitted)

GD

Simulative application Simulative application

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]]10

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

distributions for any BE and the logic of the most used dynamic

gates of a DFT; afterwards, they were used to construct a

complete model, with quite complex dependencies.

Thanks to the framework developed for the case of study, we

recognized the existence of singular results when the BEs of the

plant are not described by the common exponential distributions.

In our opinion, these results offer the cue for new studies since

the characteristics of the components and processes inside the

industrial field can be quite general.

Following this path, in future works, we aim to develop a more

flexible and faster simulative environment able to merge the

intuitiveness of the DFT representation with the power of the

simulative approach and able to support data in real time. Finally,

we want to emphasize that quantitative risk assessment, based on

any technique, is not significant without an accurate identifica-

tion of hazards and assessment of scenarios and of their root

causes. However, the results provided by quantitative risk assess-

ment are normally used by the supervisory authorities to assess

the safety of facilities and therefore it becomes important to

provide results that take into account the actual system and its

operating modes. In addition, these results may be useful to the

plant manager in order to assess the effectiveness of technical

solutions that affect the reliability and the safety of the plant.

Appendix

Simulated¼unreliability of the DFT (performed with the

simulated process);

Analytic¼unreliability of the DFT (performed with TOOL_2

and TOOL_1 using the strong hierarchical approach); a¼
significance level (Figs. A1 and A2).

0.00E+00

8.00E-06

1.60E-05

2.40E-05

3.20E-05

4.00E-05

4.80E-05

5.60E-05

6.40E-05

7.20E-05

8.00E-05

1
.0

E
+

0
0

9
.9

E
+

0
5

2
.0

E
+

0
6

3
.0

E
+

0
6

4
.0

E
+

0
6

5
.0

E
+

0
6

6
.0

E
+

0
6

7
.0

E
+

0
6

8
.0

E
+

0
6

9
.0

E
+

0
6

1
.0

E
+

0
7

U
n

re
li

a
b

il
it

y

iterations

UnMOE-FT (test1)

Simulated Analytic

Fig. A1. Comparison between the simulated and the analytic results for the UnMOE-FT of test 1. This is the only scenario that can be solved with the analytical approach

(TM¼8760 h, a¼0.01; confidence¼9.62�10ÿ10).

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

9.00E-05

1.00E-04

1
.0

0
E

+
0

0

9
.9

0
E

+
0

5

1
.9

9
E

+
0

6

2
.9

9
E

+
0

6

3
.9

9
E

+
0

6

4
.9

9
E

+
0

6

5
.9

9
E

+
0

6

6
.9

9
E

+
0

6

7
.9

9
E

+
0

6

8
.9

9
E

+
0

6

9
.9

9
E

+
0

6

U
n

rl
ia

b
il

it
y

iterations

MOE-FT (test2)

Simulated

Fig. A2. Simulative process for the MOE-FT of test 2 (TM¼8760 h, a¼0.01; confidence¼5.35�10ÿ10). For test 2, analytic resolution of DFT with fixed probability is not

feasible (n.f., see Table 9).

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]] 11

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

References

[1] Khan FI, Abbasi SA. Techniques and methodologies for risk analysis in
chemical process industries. Journal of Loss Prevention in the Process
industries 1998;11:261–77.

[2] Trivedi KS, Sahner RA. Reliability modeling using Sharpe. IEEE Transactions
on Reliability 1987;R-36:186–92.

[3] Dugan JB, Bavuso SJ, Boyd MA. Fault Trees and sequence dependencies. In:
Proceedings of the annual reliability and maintainability symposium; 1990.
p. 286–93.

[4] Boudali H, Crouzen P, Stoelinga M. Dynamic fault tree analysis using input/
output interactive Markov chains. In: Proceedings of the 37th annual IEEE/
IFIP international conference on dependable systems and networks, DSN ’07.
p. 708–17.

[5] Bouissou M, Bon JL. A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic driven Markov processes. Reliability
Engineering and System Safety 2003;82:149–63.

[6] Bouissou M. A generalization of dynamic fault trees through Boolean logic
driven Markov processes (BDMP)s. EDF R&D, MRI Department, Clamart,
France.

[7] Cepin M, Mavko B. A dynamic fault tree. Reliability Engineering and System
Safety 2002;75:83–91.

[8] Amari S, Dill G, Howald E. A new approach to solve dynamic fault trees. In:
Proceedings of the annual reliability and maintainability symposium; 2003.
p. 374–9.

[9] Distefano S, Puliafito A. Dynamic reliability block diagrams vs dynamic fault
trees. In: Proceedings of the annual reliability and maintainability sympo-
sium, RAMS ’07; 2007. p. 71–6.

[10] Dugan JB, Bavuso JS, Boyd MA. Dynamic fault-tree models for fault-tolerant
computer systems. IEEE Transactions on Reliability 1992;41(3):363–77.

[11] Ciardo G, Muppala JK, Trivedi KS. SPNP: stochastic petri net package. In:
Proceedings of the third international workshop on petri nets and perfor-
mance models; 1989. p. 142–51.

[12] Dugan JB, Venkataraman B, Gulati R. DIFTree: a software package for the
analysis of dynamic fault tree models. In: Proceedings of the annual
reliability and maintainability symposium; 1997. p. 64–70.

[13] Sullivan KJ, Dugan JB, Coppit D. The Galileo fault tree analysis tool. In:
Proceedings of the 29th annual international symposium on digest of papers
fault-tolerant computing; 1999. p. 232–5.

[14] Dugan JB, Sullivan KJ. Developing a low-cost high-quality software tool for
dynamic fault-tree analysis. IEEE Transactions on Reliability 2000;49(1):49–58.

[15] Gulati R, Dugan JB. A modular approach for analyzing static and dynamic
fault trees. In: Proceedings of the annual reliability and maintainability
symposium; 1997. p. 57–63.

[16] Anand A, Somani AK. Hierarchical analysis of fault trees with dependencies,
using decomposition. In: Proceedings of the annual reliability and maintain-
ability symposium; 1998. p. 69–75.

[17] Montani S, Portinale L, Bobbio A. A tool for automatically translating dynamic
fault trees into dynamic Bayesian networks. In: Varesio M, editor. Proceed-
ings of the RAMS’06; 2006.

[18] Sun H, Andrews JD. Identification of independent modules in fault trees
which contain dependent basic events. Reliability Engineering and System
Safety 2004;86:285–96.

[19] Ou Y, Dugan JB. Modular solution of dynamic multi-phase systems. IEEE
Transactions on Reliability 2004;53:499–508.

[20] Compagno L, et al. An on-line fault tree analysis for the continuous
monitoring of the industrial plant accidents. Pisa: VGR; 2008. p. 51–60.

[21] Vesely W. Fault tree handbook. US Nuclear Regulatory Commission; 1981.
[22] Malhotra M, Trivedi KS. Power-hierarchy of dependability-model types. IEEE

Transactions on Reliability 1994;43(3):493–502.
[23] Rauzy A. Mathematical foundations of minimal cutsets. IEEE Transactions on

Reliability 2001;50(4):389–96.
[24] Veeraraghavan M, Trivedi KS. An improved algorithm for symbolic reliability

analysis. IEEE Transactions on Reliability 1991;40(3):347–58.
[25] Cepin M. Analysis of truncation limit in probabilistic safety assessment.

Reliability Engineering and System Safety 2005;87:395–403.
[26] Epstein S, Rauzy A. Can we trust PRA? Reliability Engineering and System

Safety 2005;88:195–205.
[27] Xing SAL. Handbook of performability engineering. Springer; 2008. p. 595–617

[chapter 38].
[28] Trivedi KS. Probability & statistics with reliability, queueing, and computer

science applications.2nd ed. New York (NY, USA): JohnWiley & Sons; 2002.
[29] Hermanns H, Mertsiotakis V, Siegle M. TIPPTool: compositional specification

and analysis of Markovian performance models. CAV’99, LNCS 1633. Berlin

Heidelberg: Springer-Verlag; 1999. p. 487–90.
[30] Lanus M, Trivedi KS. Hierarchical composition and aggregation of state-based

availability and performability models. IEEE Transactions on Reliability

2003;52(1):44–52.
[31] Sahner R, Puliafito A, Trivedi KS. Performance and reliability analysis of

computer systems: an example-based approach using the SHARPE software

package. Kluwer Academic Publishers; 1996.
[32] Younes HLS, Simmons RG. Solving generalized semi-Markov processes using

continuous phase-type distributions. In: Proceedings of the 19th national

conference on artificial intelligence. San Jose, California; 2004. p. 742–7.
[33] Kosiuczenko P, Lajios G. Simulation of generalised semi-Markov processes

based on graph transformation systems. Electronic Notes in Theoretical

Computer Science 2007;175:73–86.
[34] Montani S, et al. Automatically translating dynamic fault trees into dynamic

bayesian networks by means of a software tool. In: Proceedings of the first

international conference on availability, reliability and security; 2006.
[35] Boudali H, Dugan JB. A discrete-time Bayesian network reliability modeling

and analysis framework. Reliability Engineering and System Safety

2005:337–49.
[36] Durga Rao K, et al. Dynamic fault tree analysis using Monte Carlo simulation

in probabilistic safety assessment. Reliability Engineering and System Safety

2007;94:872–83.
[37] Merle G, et al. Probabilistic algebraic analysis of fault trees with priority

dynamic gates and repeated events. IEEE Transactions on Reliability

2010;59(1).
[38] Wichman BA, Hill ID. Algorithm AS 183: an efficient and portable pseudo-

random number generator. Applied Statistics 1982;31:188–90.
[39] Rotz W, et al., A comparison of random number generators used in business.

Presented at Joint Statistical Meetings. Atlanta, GA; 2001.
[40] Ericson CA. What do you do when you run out of computer? In: Proceedings

of the 19th international system safety conference; 2001.
[41] Wang W, et al. Reliability importance of components in a complex system In:

Proceedings of the 2004 annual symposium on reliability and maintainabil-

ity, RAMS.
[42] Relex reliability studio reference manual. Relex Software Corporation,

Greensburg, PA, USA; 2007.
[43] Trivedi K. SHARPE interface user’s manual version 1.01. Center for Advanced

Computing and Communication (CACC), Department of Electrical and Com-

puter Engineering, Duke University; 1999.
[44] Microsoft Office Excel 2007 /http://www.microsoft.com/office/excelS.

F. Chiacchio et al. / Reliability Engineering and System Safety] (]]]])]]]–]]]12

Please cite this article as: Chiacchio F, et al. Dynamic fault trees resolution: A conscious trade-off between analytical and
simulative approaches. Reliab Eng Syst Safety (2011), doi:10.1016/j.ress.2011.06.014

MatCarloRe: an integrated FT and Monte Carlo Simulink

tool for the reliability assessment of dynamic fault tree

,

* DMI,, Department of Mathematics and Informatics, University of Catania

Abstract

With the aim of a more effective representation of reliability assessment for real industry, in the last years concepts like Dynamic

Fault Trees (DFT) have gained the interest of many researchers and engineers (dealing with problems concerning safety

management, design and development of new products, decision analysis and project management, maintenance of industrial plant,

etc.). With the increased computational power of modern calculators is possible to achieve results with low modeling efforts and

calculating time. Supported by the strong mathematical basis of state space models, the DFT technique has increased its popularity.

Nevertheless, DFT analysis of real application has been more likely based on a specific case to case resolution procedure that often

requires a great effort in terms of modeling by the human operator. Moreover, limitations like the state space explosion for increasing

number of components, the constrain of using exponential distribution for all kind of basic events constituting any analyzed system

and the ineffectiveness of modularization for DFT which exhibit dynamic gates at top levels without incurring in calculation and

methodological errors are faces of these methodologies. In this paper we present a high level modeling framework that exceeds all

these limitations, based on Monte Carlo simulation. It makes use of traditional DFT systemic modeling procedure and by replicating

the true casual nature of the system can produce relevant results with low effort in term of modeling and computational time. A

Simulink library that integrates Monte Carlo and FT methodologies for the calculation of DFT reliability has been developed,

revealing new insights about the meaning of spare gates.

Keywords: Reliability Assessment, Dynamic Fault Tree, Monte Carlo Simulation, Continuous Time Markov Chain

1. Introduction

In recent years the importance of risk assessment in the safety context of industrial processes has increased

significantly. On the one hand, companies must provide, even more than before, guarantees about the

occurrence of significant risks and adopt preventive measures and mitigation of their occurrence, while one

the other side, engineers need to predict the reliability of the system from the design phase, especially for

critical applications. The systemic reliability representation of the plant process, the quantitative results and

sensitivity analysis are straightforwardly obtained using stochastic models such as Reliability Block Diagram

(RBD) and Fault Tree Analysis (FTA). These methods have gained wide acceptance for the study of

reliability for many kind of plants and systems.

A fault-tree (FT) can be simply described as an analytical technique, whereby an undesirable state of the

system is specified; the system is then analysed in the context of its environment and operation in order to

find all credible ways in which the undesirable event can occur [1]. Although there are relatively efficient

algorithms for solving FTs, the main disadvantage is that dependencies of various kinds, which are in real

systems, are not easily captured in the model. Indeed, traditional FT cannot capture the dynamic behaviour of

a system such as the sequence of events in time dependence, the replacement of spare parts and priorities of

failure events [2, 3, 4, 5].

To overcome these difficulties, dynamic-FT (DFT) was introduced, with the formalization of dynamic gates

(PAND, SPARE, SEQ and FDEP). With the help of dynamic gates, the reliability behaviour of systems with

time dependencies can be modelled using the DFT technique, keeping the intuitive construction of traditional

FT.

DFT resolution cannot rely just on Boolean algebra as well as traditional-FT because dynamic features are

not captured with a binary time independent logic. Therefore, beside DFT many other methods have been

devised: Dynamic Reliability Block Diagram (DRBD), Continuous Time Markov Chain (CTMC),

Input/Output Interactive Markov Chain (I/O IMC), Bayesian Network, Stochastic Petri Network, etc. [6, 7, 8,

9, 10, 11, 12, 13].

The complexity of modern engineering system as well as the need for realistic reliability makes their

modelling and analysis a non trivial task. The analytical resolution of systems with dynamic redundancy is

very difficult to accomplish. Therefore risk analysts require the use of other techniques in order to construct

*Manuscript

Click here to view linked References

a comprehensive but achievable and efficient study of the system. The simulation of DFTs can help to

overcome many of the difficulties raising from analytical approaches and can offer a high level modelling

interface based on the FT methodology. Scenarios that may be difficult to solve analytically are easily

resolved with the approach of Monte Carlo simulation. Due to the intrinsic ability to simulate the actual

process and the random behaviour of the system, this approach can eliminate uncertainty of the reliability

modelling. It has been used for the availability, reliability and important measure estimation of complex

systems [14, 15, 16, 17, 18, 19].

In this paper we present a novel approach to conduct Monte Carlo simulation for the reliability evaluation of

DFTs. In our approach Monte Carlo and FT methodologies are integrated in order to allow the user to benefit

of an high level FT-like interface that exploits the power of Monte Carlo simulation to overcome many of the

difficulties raising from the use of analytical resolution methods. A library object, MatCarloRe, based on

Simulink was created. Using the graphical interface of the Matlab simulator, it is possible to construct a DFT

model of the process by using the library blocks. Each block carries the logic of a DFT gate. The Monte

Carlo engine is based on the collection of the outputs of many runs and their agglomerate to construct

significant statistics of interest.

The results of a case study based on the probabilistic assessment of the reliability of an alkylation and

treatment olefin plant node were evaluated. Three commons problem of analytical methods (e.g. CTMC) are

discussed: a) the state explosion; b) the impossibility of CTMC to evaluate the reliability of the system when

basic events with fixed probability are considered; and c) the impossibility of modularization of the tree in

independent sub-trees without incurring in approximation due to a dynamic gate at the TE.

After presenting the validation of the MatCarloRe tool, based on simple cases, it is shown the resolution of

the case study in three different configurations: i) static configuration (FT); ii) dynamic configuration (DFT);

and iii) dynamic configuration with the introduction of fixed probability basic events. As it is known the first

two modelling case can be compared with analytical values calculated by use of combinatorial and CTMC

methodologies, while the last case is solved only through the use of the simulation tool.

Section 2 presents an overview on the main limits of analytical methods; Section 3 make a comparison

between traditional Monte Carlo reliability simulation and our approach; Section 4 introduce in more detail

the MatCarloRe tool, its object library, and some validating example; in Section 5 is presented the results of

the case study; and in section 6 conclusions are reported.

2. Analytical reliability evaluation for DFT

A fault tree is a stochastic model for reliability evaluation based on the Boolean algebra. It can synthesize the

ways of failures or the undesired events of a system. It is composed of entities known as "gates" which

implement the Boolean relationships among the events, leading to the occurrence of “higher” events up to

the tree. The inputs of the gates can be other gates or basic events (BE); the main undesired event is called

the top event (TE) of the tree . The methodology is based on three assumptions: (i) the events are binary, (ii)

the events are statistically independent, and (iii) the relationships between events are described with the

Boolean logic through the gates (AND, OR and Voting).

The main constrains of traditional FTs is that dynamic time dependencies cannot be modelled and complex

system behaviour evaluated. DFTs were introduced to overtake these limitations: it is an evolution of

traditional FT, in which dynamic gates are added. In particular if a FT includes at least one dynamic gate it

becomes a dynamic-FT.

The most likely method used to solve a DFT is through the use of CTMC. They are indeed effective in

representing various types of dependencies. The main problem of this methodology is the well known state

space explosion which grows exponentially with the increasing of the number of Bes in the model.

Moreover, the analysis of large DFT by the mean of CTMC can be costly in computational terms and in

terms of modelling efforts.

Modularization is one way to tackle the analysis of large FT. For traditional FT, a module is simply a sub-

tree which events do not occur in other parts of the tree. This technique intends to break down large models

with a hierarchy of sub-models, characterized by independent failure modes. The sub-models are then

analyzed in order to extract the measures of interest which are used as input as a simplified version of the

sub-tree at the higher level of the hierarchy. The main point of this technique is the sintering of the

equivalent failure rates to use in the simplified parent tree [20, 21, 22]. Dugan et al. [23, 24, 25] have shown

that it is possible to identify sub-trees and use several independent Markov chains for each of

them. However, this approach has limitations when dynamic gates are present at high levels of the

hierarchy. In fact, the modularization of dynamic sub-trees introduces errors due to the generalized

probability distributions that, in the composed model, is still treated as negative exponential distribution [26,

27]. Other ordering methods aim to reduce the complexity of the CTMC by lumping and condensate chain

states. However, this requires the construction of the entire chain and the subsequent ranking and

aggregation, not solving the tedious problem of modelling the full chain [28, 29, 30].

Another of the limitations resulting from the use of CTMC is the need to use a negative exponential

distributions for each basic event considered. This is often simplistic in terms of modelling because events or

components are often characterized by other distribution probabilities.

We therefore emphasize that many of the methods to solve the DFT are related to specific problems and can

be difficult to generalize for all scenarios.

3. Reliability Monte Carlo simulation for DFT

Simulation programs, especially if well structured, are in general very comprehensible and known for the

ease with which modifications and additions can be made. Perhaps their main benefit arises from the fact that

it is possible to output information about sub-systems and gain more understanding of the whole system [31].

Monte Carlo simulation is a valuable method which is widely used in solving real problems in many

engineering fields. It has been used by [32, 33] for the study of system reliability, based on the well-

developed neutron transport ideas. The simulation technique allows the estimation of reliability indices by

simulating the actual process and random behaviour of the system through a computer model. This model

has to be able the realistic scenario of the system lifetime.

Monte Carlo simulation is implemented by running the model a large number of times, each representing an

ensemble of random walks within the discrete phase space of system configurations, in order to generate a

large number instances from which all the reliability indices required about the system are retrieved.

As the system is composed of many components (or elements) grouped together to perform a certain

function, the system modelling begins with the identification of the components of which the system is

composed. Let us denote by the possible states in which the i-th component of the system may be. In the

simplest case may have two possible states: one is the "up" or "active and functioning" state; the other is

the "down" or "failed" state. The state of the system can be described by a vector :

, (1)

where represents the number of components of the system. When a component changes its state, a new

point in phase space is reached. Some of this point are of failure for the whole system. While in static-FT

certain combination of component failures correspond to system failure, in DFTs the same state can be either

a failure state or a good one, depending on the previous state sequence. Hence, in DFT it is not possible to

define a system state a good one or a failed one without looking at the system evolution. Vector changes

with respect to time, so each simulation consist of a collection of state vectors representing the movement of

the random walk within the phase space. Such history can be written as:

, (2)

where represents the simulation-run index, the time of transition from state to state and

represents the index of the ending simulation time. The point represents a phase space point, while

the collection of all such points is called the phase space of the system. This space is continuous in time and

discrete in the states. The transitions among system states depend on the component transitions from the up

state to the down one, according to a stochastic law (the probability density function) that characterizes the

component behavior.

The only information needed for the analysis are: a) the probability density function (pdf) of the time to

failure of each component and their parameters values; b) the mission time of the system; and c) the system

failure mode configuration.

The most common way to conduct the simulation of a FT is to consider the system as a whole; previous

literature [34, 35] consider a system failure rate as the sum of all the component failure rate and calculate the

transition time to the new state. After that, the component which performs the transition is chosen in a

stochastic manner. When the component is chosen its failure rate is set equal to zero and the process is

repeated till the occurrence of the TE or the end of the mission. The system operability (i.e. the occurrence of

the TE) is evaluated each time a transition occurs. Generally it is convenient to make use of the FT

methodology to check the system operability each time it changes its state. The problem with this approach

is that we must check the operability state of the system each time the system makes a transition; moreover it

is needed to recalculate the system failure rate by imposing the failed component failure rate equal to zero.

When considering DFTs we need to take into account the system evolution history in order to assess the

nature of the reached state. Moreover in the case of components with different time distribution the

traditional indirect Monte Carlo method [36], in which the transition time for the whole system is firstly

sampled from the system transition time distribution and then the kind of transition is sampled, becomes

impractical.

A more straightforward method to account for time-dependent failure and repair behaviours of components

is the direct Monte Carlo simulation [37]. It samples the time to failure of each BE instead of the overall

system transition time.

Following the idea of direct Monte Carlo, our simulation approach makes use simultaneously of the FT and

the Monte Carlo methodologies. Instead of simulating the system walk in the phase space we consider BEs

as basic entities. The failure time of each BE is calculated and these information are passed to the gates

which they are connected with. The gate state is determined and, if failed, its failure time is passed to the

higher levels. In this way for each gate is possible to calculate if a failure occurred before the mission time

and pass the failure time to next level. These information are important for the dynamic gates. Moreover

many simulation data can be stored in a very straightforward way: for each gate we can obtain the failure

number of occurrences, the mean time to failure and information about which connected subsystem forced

mostly the failure of the gate.

The approach followed is very suitable for dynamic gates since the failing order is tracked. Therefore, in this

way it is not necessary to store the previous system states and check the order of occurrence to asses whether

a state is of failure or good.

The complexity of the algorithm is carried by each single gate, whose logic is programmed in order to infer

its own state. For the same reason, with this approach there is no need to update the overall system failure

rate at each transition.

Generated all the transition times of each component, the failure time for each gate can be calculated based

on the logic of the gate itself with respect to its inputs. At the highest level information about the system state

are available and used to compute the system reliability estimate.

Due to the nature of the approach, it would be straightforward to program or modify the logic of the gates in

a modular way, without compromising the environment already set. In this way, the end user can just make

full use of the gates created by the programmers and exploit with some small knowledge of Simulink the

power of the library.

4. MatCarloRe library

The simulation tool implemented make use of a high level modeling interface: it allows the user to assemble

the FT by picking basic events and gates from a library and dropping these elements on a graphical interface

furnished by Simulink®. BEs and gates are then linked together to create the system configuration. The tool

consists of a Simulink® library called MatCarloRe (Fig. 1), formed of blocks representing the various parts

of DFT, such as the dynamic gates PAND, SPARE, SEQ and FDEP as well as the static gates AND, OR and

Voting. In addition to the gates it is necessary to insert a block that calculates the failure times of BEs. Each

block representing a tree gate can receive n input and distribute m output by simply using the mux and demux

blocks available in the main Simulink library. Inputs and outputs are of two kind: we define y as the binary

vector which indicates whether the input and output have occurred (value 1) or not (value 0), and t as the

vector containing the failure times. Only for the block representing the SPARE and the FDEP gates is not

provided the input vector y.

Once the model is built and the input parameters are defined it is possible to run the simulation without a

limit of iterations to achieve the desiderate estimation error. At each iteration the model returns a binary

value that indicates whether the system has reached the state of failure or not. In particular, the model returns

the value 1 if the fault is reached, 0 vice versa. To avoid large amounts of storage of the entire iterations

binary vector the Simulink® block memory is used to set the progressive sum of results of each iteration. In

this way only the total value of runs that revealed a fault is considered. The estimated unreliability of the

system can be finally obtained dividing the number of runs which had shown the system failure by the total

number of runs performed.

In the next section it is shown with small examples how to build a simulation model for a DFT introducing in

more details the BE block and the dynamic gates. In order to proof the validity of the tool the results

performed with the MatCarloRe are compared with analytical results.

Fig.1. MatCarloRe library elements.

4.1 BE block

The BE block is designed to generate the times of failure of basic events. It can generate the times of failure

for components with negative exponential failure distribution (e.g. components subject to random failures) as

well as fixed probability (e.g. the non-action of an operator). It is worth to mention the possibility to define

events that follow distributions of any kind, such as Weibull, Normal distribution etc. simply by making

small changes to the code in the BE block.

For components subjected to random failures the unreliability at time t can be expressed by the following

relation:

, (3)

where is the failure rate of the component. The simulated failure time can be calculated by the inverse

relationship:

 , (4)

where is a random number generated in [0, 1]. If is smaller than the mission time , the component is

considered as failed.

For events supplied with a fixed probability q the following procedure is defined: a random number

generated uniformly in [0, 1] is extracted and compare with the value q. This comparison returns a failure

time according to the following relation:

, (5)

where is a random number generated uniformly in .

4.2 PAND Block

The PAND block models the logic that underlies the PAND gate of a DFT [10, 14, 23]. The logic of the gate

can be summarized as follows: the occurrence of the gate is obtained if all input components have failed

before the mission time but in a fixed order (i.e. from left to right in the graphical representation). The block

logic is illustrated in the flowchart in Fig. 2. First, according to the vector y, it is verified if all the input

events occurred. If this condition is not satisfied the gate does not trigger. Otherwise the following conditions

are checked: for with , where is the gate number of inputs. If such control

over failure times is satisfied the gate triggers with a time to failure equal to the maximum failure time of its

inputs.

Fig. 2. Flow Chart of the PAND Block.

To test the validity of the block to perform the requested calculation we show the results of the following

example. A PAND gate with two basic events is considered. The basic event failure rates are for the

first component from the left and for the second one. The mission time is . In Fig. 3 is

shown the model built for the simulation with the MatCarloRe tool. It is possible to see the BE block which

takes as inputs the failure rates of the two components and the mission time of the system. The output of the

block is the time to failure of the two components (i.e. vector t) and the binary vector y which indicates

whether the time to failure of the components is smaller than the mission time. These vectors are given as

input to the PAND block. The output scalar yPAND of the PAND block is passed to a progressive sum and at

the end of all the iterations the result is stored by the block TE into the Matlab® Workspace.

Fig. 3. Simulation model of a PAND gate with two basic event with failure rate and mission time .

The simulated reliability versus the analytical one calculated by the mean of the associated CTMC are shown

in Figure 4. Iteration are chosen equal to with It is evident that for a large number of

iterations (of five magnitude order) the error is very low and acceptable.

Fig. 4. Simulated Vs analytical reliability of a PAND gate with two basic event with failure rate and mission time

. Iteration are chosen equal to with Dotted line: analytical result; marked line: simulated results.

4.3 SPARE Block

The SPARE block models the logic that underlies the SPARE gate of a DFT [10, 14]. It can be summarized

as follow: given n active components, if one of them fails it can be replaced by one of the ns spare parts. The

spare parts can fail under two conditions: either because of a failure when in latent state or because of a

failure after becoming active. The spare becomes active when it replaces a failed active component or a

failed active spare. The failure of the gate occurs when the number of surviving components is less than the

number of required components which depends on the logic of the gate (usually it is assumed equal to the

initial active components number). The block can, therefore, model the logic of cold stand-by (i.e. spare parts

cannot fail during the latent time) or warm/hot stand-by (i.e. when it is possible for a spare to fail even if not

running; usually with a lower failure rate).

The block logic is illustrated in the flowchart in Figure 5. Firstly it is needed to compute the time to failure of

the components by the BE block. This is done for active components as well as for spare ones (both when

active and in latent state). The SPARE block performs a permutation of the vector t, the time to failure of

active components, sorting the vector in ascending order. Then, it is examined among active components

whether there are components which have failed before the end of the mission time. If no failure is verified

the gate will not trigger.

Vice versa, the algorithm checks if there are spare parts able to replace the active component that have

failed. Let us consider the logic of replacement of a generic active component which fails. Its replacement

can take place only if:

1. the spare part is still available (namely, it has not been used to replace another failed component) and;

2. the time to failure of the spare (during its latent condition) is greater than the time to failure of the active

component to be replaced.

If these two conditions are not satisfied by any spare the gate triggers with a time of occurrence equal to the

last failed active component. Otherwise the block updates the time to failure of the active component by

adding the time to failure (when active) of the spare component chosen for the replacement. The substituting

spare is finally declared as busy. The search for active components applicants for replacement is repeated till

there are active components with failure time smaller than the mission time.

It is worth to highlight that the order in which the spares are chosen to replace the failed component follows

the graphical order of positioning defined into the spare (e.g. in case of two spares that can replace an active

failed component, it is chosen to replace the component with the spare that graphically is placed to the left).

This block offers many advantages in terms of modelling. Many reliability tools (Relex, Galileo [9]) are, in

fact, difficult about the construction of DFT whit SPARE gates: if a spare part is shared among more

components, the DFT will have as many SPARE gates as the number of active components which share the

spare. In this way, the first input of the generic SPARE gate is the active component, while the second input

is the shared spare part, common to all the set of SPARE gates drawn. The final logic implemented by the set

of SPARE gates is realized linking them together by an OR gate in the upper level (Figure 5).

Fig. 5. Illustration of SPARE gates modelling vantages introduced by the tool; case of common shared spare. Left: Relex model;

right: MatCarloRe model.

Another situation is redundancy in the active components (i.e. not all the active components are requested for

the system to work). In this case an AND gate is placed to the upper level (Figure 6). If the number of active

components is even greater than the presented examples in the previous figures the modelling activity is even

more complex involving the use of AND and OR gates in the tree structure. Therefore what the SPARE gate

of the MatCarloRe library is able to do is to bypass all these architectural tricks, by the simple use of a single

block called SPARE_k/N, where k is the number of components requested to work and N is the number of

initial active components (Figure 6).

Fig. 6. Illustration of SPARE gates modelling vantages introduced by the tool; case of redundancy in active components. Left: Relex

model; right: MatCarloRe model.

The differences in the flow chart between the two SPARE gates considered are located in the first rhombus

of the chart in Figure 7 where it is needed to consider the N-k failures allowed for the system to work.

Fig. 7. Flow Chart of the SPARE Block.

To test the validity of the two blocks SPARE and SPARE_k/N the results of two simple example are shown.

The system is composed of two active and two spare components with failure rate . The latency

factor for the spare components is and the mission time is . Figures 8 and 10 show the

models built with the MatCarloRe tool in the two different cases. The simulation models are equal in both

cases except that the number of components needed for the system to work in the second example are

defined by nreq.

The BE block takes as inputs the failure rates of the two active components, the failure rate of the spare

components when in latent state and when active and the mission time of the system. It returns as output the

time to failure of the two active components stored in the vector t. The time to failure of spare parts when in

latent state and when active are given respectively in the vectors tl and ts. Vectors t, tl and ts and the mission

time are the input of the SPARE block. The output ySPARE, taken over repeated iterations, is then used

to compute reliability value.

Fig. 8. Simulation model of a SPARE gate with two active components with failure rate , two spare components with failure

rates , latency factor and mission time .

In Figure 9 is shown the simulated reliability versus the analytical calculated by the mean of the associated

CTMC. Iteration are chosen equal to with It is evident that for iteration of order the

error of prediction is very low and acceptable.

Fig. 9. Simulated Vs analytical reliability of a SPARE gate with two active components with failure rate , two spare

components with failure rates , latency factor and mission time . Iteration are chosen equal to with

 Dotted line: analytical result; marked line: simulated results.

Fig. 10. Simulation model of a SPARE_k/N gate with two active components with failure rate , two spare components with

failure rates , latency factor and mission time ; nreq = 1.

The results of the simulation of the k/N model are shown in Figure 11. Again for iteration of order the

simulated reliability is very close to the CTMC results.

Fig. 11. Simulated Vs analytical reliability of a SPARE k/N gate with two active components with failure rate , two spare

components with failure rates , latency factor and mission time ; nreq = 1. Iteration are chosen equal to

with Dotted line: analytical result; marked line: simulated results.

4.4 SEQ Block

The feature of the SEQ gate is to force the components - inputs of the gate – to move towards the state of

failure in a fixed order [10, 14, 23]. This order is usually expressed graphically by the position of the gate

inputs, from left to right. It is generally used to represent different levels of degradation of a

component. Therefore, a condition for the gate to trigger is the occurrence of all its inputs. The algorithm

used for this task is simple: the SEQ block firstly calculates the sum S of the time to failure of all its inputs.

If S is smaller than the mission time the gate triggers with a time to failure equal to S.

4.5 FDEP Block

The FDEP block models the FDEP gate of a DFT [10, 14, 23]. The feature of this gate is to force the input

components to reach the failure state if the trigger event has occurred before they fail by themselves. The

block checks if the failure time of each input component is smaller than the trigger failure time. If the

condition is true the component will fail with its own failure time. Vice versa the component will occur with

failure time equal to the trigger failure time.

In the construction of a model with a FDEP, each component subjected to the action of the trigger is firstly

connected to the FDEP gate and then the output of the latter is passed to the gate interested by the given

component. We do not show the flow chart due to the simplicity of the task performed by the block.

Likewise we do show any example for the FDEP block due its similarity with an OR gate between the trigger

event and any of the basic event of the gate.

5. Study Case

In this section we present a case of study of a real complex system, in order to demonstrate the effectiveness

of the simulation tool to calculate the reliability of such systems. The case of study represents the FT model

of a plant section for the alkylation and treatment of light olefin. Following the top-down procedure of the

FT analysis, the tree was designed. The static-tree structure is shown in Figure 12 and Table 1 reports the

component failure rates.

Beside that model, the DFT was designed in order to consider a more realistic safety behavior that the plant

exposes. The dynamic re-arrangement considered concerns the modeling of the gates IE1, IE8 and of the TE.

In fact, in the static modeling they are represented with the traditional AND gates. That results in an

approximate evaluation of the logic for the real system, since time dependencies cannot be considered with

the static-FT. In the DFT, the gate IE8 was substituted with a SPARE gate as in a classic cold stand-by

redundant configuration. The second re-arrangement is done by substituting IE1 with a PAND, in order to

consider the priority condition that IE3 has on IE4. The same process is applied at the TE gate.

Fig. 12. FT of the section plant considered.

Table 1. Input data for basic events of the FT of Fig. 10.

Therefore, three cases were studied: (i) simulation of the static-FT, (ii) simulation of the DFT without fixed

probabilities by substituting with the relative failure rate calculated through (3) (i.e. assuming the value of

F equal to q and calculating the failure rate trough inverse relationship); (iii) the simulation of the DFT with

the original parameters of Table 1.

The analytical resolution of these three cases expose different levels of complexity. In fact, the case (i) is the

simplest because no time dependencies arise and traditional techniques, based on the Boolean algebra, can be

used. Case (ii) introduces two kind of dynamic gates. One of them is placed at the TE. It makes impossible

the use of techniques to relax the complexity of the model (e.g. modularization [20, 21, 22, 23, 24, 25])

without incurring in approximated calculation. The case (iii) can be classified as the most complex since it

cannot be solved with the use of the traditional CTMC paradigm due to the presence of fixed probabilities.

For this last case no analytical result are presented. The model of the case (iii) implemented in the

MatCarloRe tool is shown in Figure 13.

Fig. 13. MatCarloRe model of the DFT of Fig. 10. Case (iii).

We conducted eight simulation for each case. The number of iterations were chosen till the maximum value

of . For cases (i) and (ii) analytical results were computed through Relex®. The unreliability of the

simulation model converges to the analytical result with iterations in the case (i) with a very small

relative error. In the case (ii) more iterations are needed to obtain valid results because of the more complex

nature of the system involving temporal dependencies. About iterations to achieve a small estimating

error. In the case (iii) we claim that the number of iterations needed to achieve a small error in case (ii) could

be used as well. This is supported by the fact that the unreliability seems to stabilize around iterations.

Table 2. Unreliability and relative error for the model MatCarloRe of the FT in Fig. 10. Case(i): SFT with fixed probability for BE1

and BE3; Case(ii): DFT with failure rate for BE1 and BE3; Case(iii): DFT with fixed probability for BE1 and BE3.

6. Conclusion

In this paper we summarize an integrating technique of Monte Carlo simulation and FT methodology for

reliability assessment of complex systems in presence of time dependencies. We showed that our simulating

environment can go beyond the limitations of analytical methodologies with the additional advantage of a

high level modelling interface based on the FT method. Some results are presented reporting good

performance in terms of modeling and calculation efforts. Moreover important contributions for the SPARE

model are introduced, reducing the efforts of the construction of a complex FT. It is shown that for iteration

of order it is possible to obtain reliable results for real system in a time frame of 1-10 hours.

Reducing computation time technique are well developed (e.g. biasing techniques) and could be easily

introduced in the MatCarloRe tool. In the future our effort will be pushed in the development of tool

characteristics for the calculation of important measures, availability and system performance indicators.

References

[1] Roberts, N. H. , Vesely, W. E., Haasl, D.F., & Goldberg, F.F. (1981). Fault tree handbook, NUREG-

0492. Washington: US NRC.

[2] Ren, Y., & Dugan, J. B. (1998). Design of reliable systems using static and dynamic fault trees. IEEE

Transactions on Reliability, 47, 234-244.

[3] Siu, N. (1994). Risk assessment for dynamic systems: an overview. Reliability Engineering and System

Safety, 43, 43-73.

[4] Cepin, M., & Mavko, B. (2002). A dynamic fault tree. Reliability Engineering and System Safety, 75,

83-91.

[5] Amari, S., Dill, G., & Howald, E. (2003). A new approach to solve dynamic fault trees. Annual

Reliability and maintainability symposium, 374–379.

[6] Distefano, S., & Puliafito, A. (2007). Dynamic reliability block diagrams vs dynamic fault trees. In

Proceedings Annual Reliability and Maintainability Symposium RAMS '07, Jan. 22-25, 71-76.

[7] Dugan, J. B., Venkataraman, B., & Gulati, R. (1997). Diftree: a software package for the analysis of

dynamic fault tree models. In Proceedings Annual Reliability and Maintainability Symposium, Jan. 13-

16, 64-70.

[8] Dugan, J. B., Trivedi, K. S., Smotherman, M. K., & Geist, R. M. (1986). The hybrid automated

reliability predictor. Journal of Guidance, Control, and Dynamics, 9, 319-331.

[9] Sullivan, K. J., Dugan, J. B., & Coppit, D. (1999). The galileo fault tree analysis tool. In Proceedings

of the Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing, June 15-18, 232-

235.

[10] Boudali, H., Crouzen, P., & Stoelinga, M. (2007). Dynamic fault tree analysis using input/output

interactive markov chains. In Proceedings 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks DSN '07, June 25-28, 708-717.

[11] Montani, S., Portinale, L., Bobbio, A., & Codetta-Raiteri, D. (2008). RADYBAN: A tool

[12] for reliability analysis of dynamic fault trees through conversion into dynamic bayesian networks,

Reliability Engineering and System Safety, 93, 922–932.

[13] Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001). Improving the analysis of

dependable systems by mapping fault trees into Bayesian networks. Reliability Engineering and System

Safety, 71, 249–260.

[14] Volovoi, V. (2004). Modeling of system reliability petri nets with aging tokens. Reliability Engineering

and System Safety, 84, 149–161.

[15] Durga Rao, K., Gopika, V., Sanyasi Rao, V. V. S., Kushwaha, H. S., Verma, A. K., & Srividya, A.

(2009). Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment.

Reliability Engineering and System Safety, 94, 872–883.

[16] Marsaguerra, M., Zio, E., Devooght, J., & Labeau, P. E. (1998). A concept paper on dynamic reliability

via Monte Carlo simulation. Mathematics and Computers in simulation, 47, 371-382.

[17] Marquez, A. C., Heguedas, A. S., & Iung, B. (2005). Monte Carlo-based assessment of system

availability. A case study for cogeneration plants. Reliability Engineering and System Safety, 88, 273–

289.

[18] Zio, E., Marella, M., & Podollini, L. (2007). A Monte Carlo simulation approach to the availability

assessment of multi-state systems with operational dependencies. Reliability Engineering and System

Safety, 92, 871–882.

[19] Zio, E., Podofillini, L., & Levitin, G. (2004). Estimation of the importance measures of multi-state

elements by Monte Carlo simulation. Reliability Engineering and System Safety, 86, 191–204.

[20] Marseguerra, M., & Zio, E. (2004). Monte Carlo estimation of the differential importance measure:

application to the protection system of a nuclear reactor. Reliability Engineering and System Safety, 86,

11-24.

[21] Chatterjee, P. (1975). Modularization of fault trees: A method to reduce the cost of analysis. SIAM

Reliability and Fault Tree Analysis, 101-137.

[22] Rosenthal, A. (1980). Decomposition methods for fault tree analysis. IEEE Transactions of Reliability,

R-29, 136- 138.

[23] Khoda, T., Henley, E. J., & Inoue, K. (1989). Finding modules in fault trees. IEEE Transactions on

Reliability, 38, 165-176.

[24] Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic Fault-Tree Models for Fault-Tolerant

Computer Systems. IEEE Transactions on reliability, 41, 363-377.

[25] Dugan, J. B., Sullivan, K. J., & Coppit, D. (2000). Developing a low cost high-quality software tool for

dynamic fault-tree analysis. IEEE Transaction on reliability, 49, 49–59.

[26] Meshkat, L., Dugan, J. B., & Andrews, J. D. (2002). Dependability Analysis of Systems With On-

Demand and Active Failure Modes, Using Dynamic Fault Trees. IEEE Transactions on reliability, 51,

240-251.

[27] Anand, A., & Somani, A. K. (1998). Hierarchical analysis of fault trees with dependencies, using

decomposition. Proceedings Annual on Reliability and Maintainability Symposium, 69–75.

[28] Huang, C. Y., & Chang Y. R. (2007). An improved decomposition scheme for assessing the reliability

of embedded systems by using dynamic fault trees. Reliability Engineering System Safety, 92, 1403–

1412.

[29] Lanus, M., Yin, L., & Trivedi, K. S. (2003). Hierarchical Composition and Aggregation of State-Based

Availability and Performability Models. IEEE Transactions on reliability, 52, 44-52.

[30] Feinberg, B. N., & Chiu, S. S. (1987). A Method to Calculate Steady-State Distributions of Large

Markov Chains by Aggregating States. Operations Research, 35, 282-290.

[31] Malhotra, M., & Trivedi, K. S. (1993). A methodology for formal specification of hierarchy in model

solution. In Proceedings Fifth Intiernational Workshop Petri Nets and Performance Models, (PNPM-

1993), 258–267.

[32] Windebank, E. (1983). A Monte Carlo Simulation Method Versus a General Analytical Method for

Determining Reliability Measures of Repairable Systems. Reliability Engineering, 5, 73-81.

[33] Goldfeld, A., & Dubi, A. (1987). Monte Carlo Methods in Reliability Engineering. Quality and

Reliability Engineering International, 3, 83-91.

[34] Dubi, A. (1989). Monte Carlo Methods in Reliability. Operation Research and System Engineering

Commission of the European Communities Joint Research Centre, Ispra Italy.

[35] Lewis, E. E., & Bohm, F. (1984). Monte Carlo Simulation of Markov Unreliability Models. Nuclear

Engineering and Design, 77, 49-62.

[36] Dubi, A. (1986). Monte Carlo Calculations for Nuclear Reactors. CRC Handbook of Nuclear Reactors

Calculations, Vol. II, CRC PRESS.

[37] Wu, Y. F., & Lewins, J. D. (1992). Monte Calo Studies of Engineering System Reliability. Annual

nuclear engineering, 19, 825-859.

[38] Zio, E. (1995). Biasing the transition probabilities in direct Monte Carlo. Reliability Engineering and

System Safety, 47, 59-63.

List of figures

Fig. 1. MatCarloRe library elements.

Fig. 2. Flow Chart of the PAND Block.

Fig. 3. Simulation model of a PAND gate with two basic event with failure rate and mission time .

START

n

i
i

ys

1

yPAND = 1

tPAND = max(t)

yPAND = 0

tPAND = Inf

END

tt ji

ji

YES NO

s = n ?

YES

NO

Figure(s)

Fig. 4. Simulated Vs analytical reliability of a PAND gate with two basic event with failure rate and mission time

. Iteration are chosen equal to with Dotted line: analytical result; marked line: simulated results.

Fig. 5. Illustration of SPARE gates modelling vantages introduced by the tool; case of common shared spare. Left: Relex model;

right: MatCarloRe model.

Fig. 6. Illustration of SPARE gates modelling vantages introduced by the tool; case of redundancy in active components. Left: Relex

model; right: MatCarloRe model.

SPARE

A

S

SPARE

B

OR

SPARE

A SB

SPARE

A

S

SPARE

B

AND

SPARE 1/2

A SB

Fig. 7. Flow Chart of the SPARE Block.

Fig. 8. Simulation model of a SPARE gate with two active components with failure rate , two spare components with failure

rates , latency factor and mission time .

START

ySPARE = 1

tSPARE = tref

ySPARE = 0

tSPARE = Inf

YES

NO

elsewhere

Tmitif
iG

0

)(1
)(

Find Active Components requiring substitution:

Sort Active Components Vector by Failure Time

?0)(
1

n

i

iG

elsewhere

iOitlif
iGS t ref

0

0)(&)(1
)(

Find Spare Components available for

substitution:

))1,1((Gfindttref

Set reference time for iteration

?0)(
1

ns

i

iGS NO

))1,1(())1,1(())1,1((GSfindtsGfindtGfindt

Update the failure time of Active Component

1))1,1((GSfindO

Update the occupancy of the Spare Component

YES

Fig. 9. Simulated Vs analytical reliability of a SPARE gate with two active components with failure rate , two spare

components with failure rates , latency factor and mission time . Iteration are chosen equal to with

 Dotted line: analytical result; marked line: simulated results.

Fig. 10. Simulation model of a SPARE_k/N gate with two active components with failure rate , two spare components with

failure rates , latency factor and mission time ; nreq = 1.

Fig. 11. Simulated Vs analytical reliability of a SPARE k/N gate with two active components with failure rate , two spare

components with failure rates , latency factor and mission time ; nreq = 1. Iteration are chosen equal to

with Dotted line: analytical result; marked line: simulated results.

Fig. 12. FT of the section plant considered.

Fig. 13. MatCarloRe model of the DFT of Fig. 12. Case (iii).

List of tables

ID λ q

BE1 -

BE2 -

BE3 -

BE4 -

BE5 -

BE6 -

BE7 -

BE8 -

BE9 -

BE10 -

BE11 -

BE12 -

Table 1. Input data for basic events of the FT of Fig. 12

Iter Case (i) Err.rel% Case (ii) Err.rel% Case (iii)

10^1 0,7000 9,45% 0 100,00% 0

10^2 0,8000 3,48% 0 100,00% 0

10^3 0,7730 0,01% 0 100,00% 0

10^4 0,7717 0,18% 1,00E-04 88,39% 0

10^5 0,7734 0,04% 6,00E-05 13,03% 3,00E-05

10^6 0,7733 0,02% 6,20E-05 16,80% 4,40E-05

10^7 0,7732 0,02% 5,58E-05 5,12% 5,49E-05

10^8 0,7731 0,00% 5,36E-05 0,98% 5,45E-05

Fteo 0,7731 5,31E-05

Table 2. Unreliability and relative error for the model MatCarloRe of the FT in Fig. 12. Case(i): SFT with fixed probability for BE1

and BE3; Case(ii): DFT with failure rate for BE1 and BE3; Case(iii): DFT with fixed probability for BE1 and BE3.

Table(s)

The Effect of Correlated Failure Rates on the

Reliability of Continuous Time 1-out-of-2 Software

Peter Popov†, Gabriele Manno‡

†Centre for Software Reliability, City University,

Northampton Square, London, UK

e-mail: ptp@csr.city.ac.uk

‡Department of Mathematics and Informatics, University of Catania

Viale Andrea Doria 6, Catania, Italy

e-mail: gmanno@dmi.unict.it

Abstract. In this paper we study the effects on system reliability of the

correlation over partitions of the input space between the rates of failure of two-

channel fault-tolerant control software. We use a continuous-time semi-Markov

model to describe the behavior of the system switching between different

modes of operations (i.e. processing inputs from the different partitions of the

input space). We demonstrate via simulation that the variation of the failure

rates of the channels over the partitions of the input space can affect the system

reliability very significantly. With a plausible range of model parameters we

observed that the mean time to system failure may vary by more than an order

of magnitude: positive correlation between the channel rates makes the system

less reliable while negative correlation between the channel rates implies that

the system is more reliable than assuming constant failure rates for the

channels. The effects we report are similar to those observed for on-demand

software systems. Our observations seem to make a case for more detailed

reliability measurements than is typically undertaken in practice. We briefly

discuss model parameter estimation applying the theory of competing risks.

Finally we compare our model with similar models for a single channel

software developed in the past by others and discuss ways forward.

1. Motivation

All systems need to be sufficiently reliable. There are two related issues here. In the

first place there is the issue of achieving the necessary reliability. Secondly, there is

the issue of assessing the reliability that has actually been achieved, to convince

oneself that it is 'good enough'.

In the light of the rather strict limitations to the levels of software reliability that

can typically be achieved or claimed from observation of operational behavior of a

single version program [1], fault tolerance via design diversity has been suggested as

a way forward both for achieving higher levels of reliability, and for assisting in its

assessment.

Design diversity has been studied thoroughly in the past 30+ years. For a relatively

recent study the reader is referred to [2]. The focus, however, has been primarily on

2 Peter Popov†, Gabriele Manno‡

‘on demand’ systems, e.g. a protection system called upon when a failure is detected

in the operation of the system controlling a plant.

The focus of this paper is control software, i.e. which exercises control of an object

of control and in the process executes a series of inputs (trajectories) coming directly

from the controlled object, its environment and also the internal state of the software

itself. Assessing accurately reliability of control software is important not only for

minimizing the losses due to downtime. In some cases, e.g. of critical applications,

the control software reliability defines reliability requirements for the protection

system designed and deployed to deal with situations of inadequate control. A

protection system of given reliability may be adequate in some cases – e.g. when the

control system is very reliable – or may be inadequate – e.g. if the control system is of

modest reliability. The reliability of the total system (control and protection) depends

on both the reliability of the control and of the protection and therefore accurately

assessing reliability of both systems is important.

Our focus in this paper is a 2-channel control software for which the input space is

divided in partitions, which represent different modes of operation. Examples of

modes of operation might be an initialization, a normal control loop and terminating

the control, e.g. to allow for maintenance. More refined scenario, e.g. as in robotics,

might include a robot having to deal with different obstacles, which may require

applying different algorithms of adaptive behavior to the current environment, etc.

We address on purpose the problem at a sufficiently high level of abstraction – using

a continuous time semi-Markov model – which will allow us to state the main result

in a concise way.

Continuous-time semi-Markov models are typically used to model the behavior of

control software: the modeling assumptions and the model details depend on the

specific aspects of interest. For instance, failure clustering is typical for control

software [3]. Modeling such behavior is impossible with models assuming that

successive inputs are drawn independently from the input space. Instead, models, in

which the failure rate changes significantly after the occurrence of first failure proved

to be useful [4].

The paper is organized as follows. Section 2 states the problem. Section 3 presents

the model and the main result. In section 4 we compare our model with a model

developed in the past by Littlewood for a single channel software with modular

structure. In section 5 we discuss our findings and some parameter estimation

techniques. Section 6 offers a survey of the relevant literature. The conclusions and

directions for future research are presented in section 7.

2. The problem

Consider a 2-channel control system as shown in Figure 1. During the operation of

the system each of the channels can fail and so can the adjudicator. In this paper we

concentrate on the case of an absolutely reliable adjudicator and study the reliability

of the control system only. Once a failure of a channel is detected by the adjudicator

an attempt is undertaken to ‘repair’ the failed channel, which eventually succeeds

after time , during which time the other channel will either work correctly or will

The Effect of Correlated Failure Rates on the Reliability of Continuous Time 1-out-of-2

Software 3

also fail. Examples of repair envisage here are the typical backward/forward recovery

mechanisms used in practice such as retrying the execution with a slightly perturbed

data [3] or merely restarting the channel,.

Figure 1. A typical architecture of a 2-channel control system. At any time the actuators of

the controlled object (e.g. a nuclear plant) are generated by one of the channels, while the

second channel is available as a hot/cold standby. An adjudicator is responsible to detect

anomalies of the active channel and switch to the standby channel, if such is available. The

failed channel is ‘repaired’ which takes finite time and becomes available to take over control

again. The channels are diverse – if design faults are considered – or merely redundant if only

hardware related faults are considered.

The channels are assumed to fail independently of each other: the chances of both

channels failing simultaneously are, therefore, vanishingly small. The only source of

coincident failure is the finite repair time of the failed channel during which the

second channel may also fail. We later will discuss relaxing the assumption of

independent failure and discuss the model of a “common stress” that might cause

simultaneous failure of both channels.

Figure 2. The timing diagram illustrates the events of interest and the times associated with

them. The times, TAx, TBx and TABx, respectively, characterize the up times in the stochastic

processes associated with the behavior of the individual channels and the control system.

Repair

time, 2

Repair

time, 1 Channel A

failure

Channel B

failure

Coincident

failures

time
TA1 TA2

TB1 TB2 TB3

TAB1

time

time

State signals Control signals

Output A

Output BHot/Cold standby

(Channel B)

Controlled object

Adjudicator

Fault-tolerant control system

Active channel

(Channel A)

4 Peter Popov†, Gabriele Manno‡

We assume, further that the system’s input space is divided into partitions,

identical for both channels. Each of these partitions is associated with rates of failure

of the channels, respectively. These rates may vary across partitions and it is the

nature of this variation – whether the rates of channel failure are positively or

negatively correlated or not correlated (e.g. the rate of one of the channels does not

vary over the partitions at all) – that the study is focused on.

Figure 2 shows a typical timing diagram which illustrates the failure processes of

interest.

In this study we concentrate on the time to system failure (i.e. the times until both

channels fail) starting from a state when both channels are operational. Clearly, the

time to failure may include multiple cases of a single channel failure and successful

repairs of the failed channel.

3. Model of the system

We studied the problem using the formalism of stochastic activity networks (SAN)

and the tool support offered by the Möbius tool [5]. The results – the distribution of

the time to system failure – are obtained via simulation.

3.1. Diagrammatic representation of the model

Now we defined the system model. Consider that the system can be represented as

a stochastic activity network, in which there are several partitions as shown in Figure

3.

Figure 3. Model of a system operating on 4 partitions of the input space, subdomain1 –

subdomain4. The syntax of the graphical representation is Möbius specific. Each of the

partitions is a detailed representation of the states that the system (the two channels) might be

in while in the respective partition.

Figure 4 shows in detail the system behavior of the system in one of the partitions.

The models of the other partitions are identical, but the parameters may differ. The

system changes its state from both channels working correctly (OO) to states in which

one of the channels has faied (OF or FO), from which it may either recover (i.e. return

to OO) or instead the second channel may also fail (i.e. reach the state FF). While in

OO state, the system may switch to a different partition: the other partitions are

labeled S2, S3 S4, which are really labels for the OO states in the respective partitions

(subdomain2, subdomain3 and subdomain4). One notices that in our model the

The Effect of Correlated Failure Rates on the Reliability of Continuous Time 1-out-of-2

Software 5

system cannot switch to a different partition unless both channels work correctly. This

simplifying assumption seems plausible. In a typical scenario of a fast repair (e.g. a

restart) and a relatively infrequent change of modes of operation, the chances that the

system will have moved to a different partition are negligible. In some other cases,

however, the transitions between the partitions may be fast and the simplification

introduced in the model may be problematic. Relaxing this assumption, although

possible, is beyond the scope of the paper.

Figure 4. Detailed behavior of the 1-out-of-2 software in partition subdomain1. The model

states are shown as places (nodes) OO, OF, FO and FF suitably named to indicate the state of

the channels: both channels working correctly is represented by the place OO, …, both states

having failed is represented by the place FF, respectively. The transitions between the places

are characterized by a set of ‘stochastic activities’, e.g. a change of the system state from OO to

FO is represented by the stochastic activity OOtoFO. A transition in the opposite direction (FO

 OO) is represented by the stochastic activity FOtoOO. The place FF is absorbing, i.e. there

are no outgoing transitions (activities) from it to some other places.

3.2. Möbius model parameters

The model is parameterized under a set of assumptions:

- Failures of the channels are driven by independent Poisson processes, which

are homogeneous conditional on sub-domains, but may be non-homogeneous

across partitions.

- Repairs of the channels are perfect, but not instantaneous. Repairs are only

undertaken if there is a channel working correctly.

Given these assumptions the model was parameterized as follows.

- The transitions between the partitions (between the respective OO states, that

is) are all assumed exponentially distributed with a rate of 0.3. The

6 Peter Popov†, Gabriele Manno‡

uniformity of the rates here was chosen for convenience: we wanted to keep

the channels equally reliable and be able to vary easily their rates of failure

in partitions. Any difference, thus, in the system behavior observed between

the studied cases could be attributed solely to the correlation between the

failure rates in the partitions. This objective is easily achieved if the domains

are equally likely, which in turn is achieved by setting the same transition

rates between the OO states of the partitions.

- The repair times were assumed of fixed duration, 0.01 units.

- The failure rates in the partitions are chosen from the set {0.01, 0.02, 0.03}

in such a way that the marginal rates of failure of the channels remain

unchanged (0.02 given the partitions are equally likely, 0.25).

The following cases (see Table 1) were studied, which represent different types

of correlation between the failure rates of the channels over the partitions.

Table 1. Failure rates of the channels conditional on partitions (S1-S4)
1

 S1 S2 S3 S4

Channel 1 0.03 0.01 0.03 0.01 Experiment 1: ‘High’ Positive correlation

between the rates. Channel 2 0.03 0.01 0.03 0.01

Channel 1 0.03 0.01 0.03 0.01 Experiment 2: ‘High’ Negative correlation

between the rates. Channel 2 0.01 0.03 0.01 0.03

Channel 1 0.02 0.02 0.02 0.02 Experiment 3: Constant rates of both

channels. Channel 2 0.02 0.02 0.02 0.02

Channel 1 0.02 0.02 0.02 0.02 Experiment 4: Constant rate of channel 1.

Channel 2 0.01 0.03 0.01 0.03

Channel 1 0.01 0.02 0.03 0.02 Experiment 5: ‘Low’ positive correlation

between the rates. Channel 2 0.01 0.02 0.03 0.02

Channel 1 0.03 0.02 0.01 0.02 Experiment 6: ‘Low’ Negative correlation

between the rates. Channel 2 0.01 0.02 0.03 0.02

As one can see, a uniform profile on the set of partitions (P(S1) = P(S2) = P(S3) =

P(S4) = 0.25) guarantees that the marginal rates of failure of the channels indeed

remains the same – 0.02.

3.3. Measure of interest

The time to system failure was measured via simulation and the results are

summarized in Table 2.

Clearly, the mean time to system failure differs is significantly affected by the

covariance between the failure rates.2. The greatest MTTF corresponds to Experiment

2 with high negative correlation between the rates of failure of the channels. The other

extreme – the shortest MTTF – corresponds to the case with high positive correlation

between the conditional rates of failure of the channels. A constant rate of failure of at

least one of the channels (Experiment 3 and Experiment 4) forms the ‘case in the

middle’, while more modest correlations – either positive or negative – place the

1 S1 – S4 are shortcuts for subdomain1 – subdomain4, respectively.
2 The MTTF of Experiment 3 and 4 are very close, but for these the covariance of the failure

rates is 0, as for at least one of the channels the failure rates are constant over partitions.

The Effect of Correlated Failure Rates on the Reliability of Continuous Time 1-out-of-2

Software 7

respective cases between the ‘case in the middle’ and the respective cases with high

correlation of the same sign.

Table 2. Mean time to system failure

 Mean

 Value 95% Confidence interval Runs

‘High’ Positive correlation

between rates (Experiment 1)

97,569.53

+/- 2,000.9

12,000

‘High’ Negative correlation

between rates (Experiment 2)

157,353.8

+/- 4,563.3

5,000

Constant rates of both channels

(Experiment 3)

122,060.4

+/- 2,972.8

8,000

Constant rate of channel 1

(Experiment 4)

122,498.6

+/- 2,996.9

8,000

‘Low’ positive correlation

between rates (Experiment 5)

107,831.7

+/- 2,426.1

10,000

‘Low’ Negative correlation

between rates (Experiment 6)

137,377.9

+/- 3,504.0

7,000

 We looked at the distributions associated with the experiments, which are

presented in Figure 5. It turned out that the times to system failures are stochastically

ordered: the ordering being the same as the ordering between the respective MTTFs

(Table 2). Analyzing these distributions we established that in all 6 experiments they

can be approximated very well using an exponential distribution with parameters

equal to the reciprocal of the means defined in Table 2.

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

0

2
5

,0
0

0

5
0

,0
0

0

7
5

,0
0

0

1
0

0
,0

0
0

1
2

5
,0

0
0

1
5

0
,0

0
0

1
7

5
,0

0
0

2
0

0
,0

0
0

2
2

5
,0

0
0

2
5

0
,0

0
0

2
7

5
,0

0
0

3
0

0
,0

0
0

3
2

5
,0

0
0

3
5

0
,0

0
0

3
7

5
,0

0
0

4
0

0
,0

0
0

4
2

5
,0

0
0

4
5

0
,0

0
0

4
7

5
,0

0
0

‘High’ Positive correlation between rates (Experiment 1)

‘High’ Negative correlation between rates (Experiment 2)

Constant rates of both channels (Experiment 3)

Constant rate of channel 1 (Experiment 4)

‘Low’ positive correlation between rates (Experiment 5)

‘Low’ Negative correlation between rates (Experiment 6)

Figure 5. Distribution of the time to system failure, truncated after 500,000 time units of

simulation.

We scrutinized further, via simulation, how the distribution of the activities

associated with failures of the channels will affect the distribution of the time to

8 Peter Popov†, Gabriele Manno‡

system failure. While the activities modeling the transitions between sub-domains

were left exponentially distributed with a rate of 0.3 and fixed repair times of 0.01

were used, as before, we set the activities modeling the time to a channel failure to

have Weibull and Gamma distributions with parameters which lead to non-constant

hazard rate. The parameters were chosen in such a way that the transitions between

the partitions remained significantly more frequent than the channel failures. The

distributions of the activities did affect the time to system failure very significantly.

The effect that we highlighted above, however, remained in place: negatively

correlated rates would lead to longer times to system failure than constant rates,

which in turn were longer than if the rates of failure of the channels were positively

correlated. We observed that the MTTF may differ up to an order of magnitude

between positively and negatively correlated rates. The time to system failure in all

simulated cases remained exponential despite the significant differences in the rates.

4. Littlewood’s semi-Markov model of software reliability

Littlewood studied [6] systems with modular structure. The structures he

considered were defined by the software modules (functions, procedures, etc.) of

which the software consists. He assumed that the failures of the software can happen

within a module or during the invocation of a module by another module.

Littlewood’s reasoning is based on three essential assumptions:

- the underlying stochastic process describing the software behavior is semi-

Markov. The time that software spends in a module (the sojourn time) can

have an arbitrary distribution, but the transition probabilities between the

modules are constant.

- while occupying a module the program may fail randomly with a constant

failure rate.

- the transition probabilities between the modules are significantly greater

than the rates of failure (either within the module or during the module

invocation). Otherwise the software would have been, Littlewood argues,

very unreliable.

Under these assumptions Littlewood proved analytically that the failure process

will be a Poisson process. Its parameter can be computed from the steady-state

probabilities of the embedded Markov chain (after eliminating the failure state, which

in his description was absorbing), the mean times the program spends in a module and

the small failure rates.

How does the model described by Littlewood differ from the one used by us to

model the behaviour of a 2-channel control system?

The first assumption by Littlewood is clearly sufficiently general to apply to our

model too. Our model is a model of a semi-Markov process, too. Although we

describe the model in terms of transitions between the partitions and ignore the

internal structure of the software (functions, procedures, etc.) the model is

conceptually very similar: there are states represented by the partitions and transitions

between these states. In each state our model is strictly a model of competing risks –

the shortest activity defines the next system state. However, one can easily transform

The Effect of Correlated Failure Rates on the Reliability of Continuous Time 1-out-of-2

Software 9

the competing risk model with states to a semi-Markov process. Indeed, one can

directly express the sojourn time as a function of the distributions chosen for the

activities [7]. The marginal probabilities that the random variable representing a

particular competing risk will be the shortest one can easily be derived, too (see the

Appendix for details). These probabilities will form the transition probabilities for the

embedded Markov chain associated with the semi-Markov model. In summary, the

first assumption of the Littlewood theorem is satisfied.

The second assumption, however, is not always satisfied. For exponentially

distributed activities representing the channel failure, the assumption is satisfied, but

for Weibull and Gamma distributed activities – it is not. Thus, our model formally

violates the second assumption made by Littlewood, that failures occur randomly.

The third assumption made by Littlewood is also plausible in our case: as evident

from the used parameterization, the transition probabilities to all non-absorbing states

are significantly more frequent (including the repair) than the transition to the

absorbing state of failure of both channels3.

Despite the violation of the second assumption made by Littlewood, his asymptotic

result seems to apply: asymptotically the time to system failure is exponentially

distributed. It is outside the scope of this paper to offer an analytic explanation why

this is the case, a problem worth addressing in the future.

5. Discussion

The effect reported in this paper, that the correlation of failure rates over partitions

of the input space matters, is not surprising. Similar effects, that variation of the

probability of failure, conditional on partitions, have been studied extensively in the

past for on-demand systems [8].

The practical implications of the work presented here seem significant. If one is to

measure the marginal rates of failure of the channels and then use these to estimate,

e.g. by simulation, how the speed of recovery will impact the reliability of the system

one will be implicitly assuming the situation described by our example 3 – no

variation of the failure rates of both channels. But such an evaluation may be incorrect

3 There is a subtle difference between a semi-Markov process and the model of competing risks

which is rarely discussed in the literature. For the competing risks model the transition

probabilities are proportional to the respective hazard rates (of the random variables

representing the competing risks), while in the semi-Markov process it is typically assumed

that an embedded Markov chain exists with fixed transition probabilities. If all competing

risks are exponentially distributed, then the hazard rates are constant and so are the transition

probabilities – they remain the same irrespective of the length of the sojourn time. However,

if at least some of the competing risks are not exponentially distributed then the hazard rate

may vary over time (e.g. with Weibull distribution it may increase or decrease) and thus it

becomes dependent on the duration of the sojourn time (see the Appendix for further details).

This subtle difference, however, does not seem to matter, at least not for our studies. Despite

exploring a wide range of scenarios (with activities assumed to have Gamma and Weibull

distributions) the distributions of the times to system failure remained exponentially

distributed.

10 Peter Popov†, Gabriele Manno‡

– it may be optimistic or pessimistic depending on the variation of the rates of failure

in partitions. Results based on ignoring the variation of the failure rates will only be

useful if one can demonstrate that at least one of the channels fails with the same

failure rate in all partitions (as in experiment 4 in Table 2). Constant failure rate over

the partitions, however, does not seem realistic. For various reasons the partitions are

likely to be subjected to different scrutiny – some are less critical than others, or are

less used by the users and hence problems are less likely to be reported, etc. The point

in the end is that, ignoring the effect we report here may lead to overestimation or

underestimation of system reliability and it is impossible to know in advance even the

sign of the estimation error one will make by ignoring the correlation between the

rates over the partitions. Overestimating system reliability may be dangerous, while

underestimating may lead to waste of resources – e.g. insisting on further V&V to

improve system reliability.

The model presented above assumes that the channel failure processes are

independent processes. This assumption can be relaxed. An example is the model of

‘common stress’, which causes both channels to fail simultaneously, e g. due to a

specification fault. A useful and widely used example is the Marshall and Olkin

model [9]. The joint pdf of the channels’ time to failure is defines as follows:

,,

,,

,,

,

321

312

321

3

312

321

yxife

xyife

yxife

yxf

y

xy

yx

where x > 0, y > 0, 1 > 0, 2 > 0, and 3 > 0. X and Y are the lifetimes of the two

channels subjected to three kinds of shocks, assumed to be governed by three

independent Poisson processes with parameters 1, 2, and 3, respectively. Shock 1

applies to channel 1 only, shock 2 applies to channel 2 only, while shock 3 applies to

both channels (hence ‘common stress’). The model has been used widely in nuclear

reactor safety, competing risks reliability, etc [10]. The marginal distributions of X

and Y are exponential distributions with parameters 31 and 32 , respectively.

Clearly we could easily integrate the Marshall and Olkin model in the model

presented in section 3 by adding a third activity, from place OO (Figure 4) to the

absorbing place FF, to model the common stress, i.e. shock 3.

Accurately measuring system reliability will require more detailed measurement,

which includes the following steps:

- estimating the probabilities of the partitions (the partition profile). Provided

sufficient statistical testing is undertaken, one could easily arrive at a very

accurate estimate of the probabilities of partitions. With more care one can

even measure directly the transition rates between the partitions, which will

be used directly in the model;

- estimating the rates of channel failure in partitions. This may require more

effort, than measuring the partition profile, especially in case of very reliable

channels. Failure rates can be estimated from the log of observed channel

failures.

- relaxing the assumption that the channels fail conditionally independently

will further complicate the measurements. Now one will need to quantify the

strength of dependence between the channel failure processes.

The Effect of Correlated Failure Rates on the Reliability of Continuous Time 1-out-of-2

Software 11

Developing in details techniques for parameters estimation is beyond the scope of

this paper. We notice in passing that the theory of competing risks is well developed

and has been applied successfully in a wide range of applications. In our model every

place (or state of the system) is associated with a set of competing risks – several

activities compete to move the system to one of the states reachable by a single

activity. For instance, in an OO place (Figure 4) several risks (represented by their

respective activities) compete – to move the system to a new partition or to a state in

which one of the channels has failed (or both in case the model is extended to include

a common stress). The parameters associated with the risks may be unknown with

certainty and need to be estimated from the available observations. The Appendix

provides details, including the likelihood of any possible observation, sufficient for

parameter estimation – either by maximizing the likelihood of the observations or by

applying Bayesian inference. The point here is that every time a transition from a state

takes place, we collect an observation associated with the realization of the competing

risks defined for this place. Given the assumed Markov structure of the model,

estimating the model parameters will consist of independent data collection and

estimation of the model parameters associated with the individual states.

We note that estimating the parameters of different parts of the model can be done

using different techniques. For instance, we can obtain the parameters of the

transitions (activities) between the OO states of the partitions directly from the

observations (as these will be likely to be frequent and many realizations can be

observed in a short period of observation). The parameters (i.e. distributions) of the

activities OOtoFO of OOtoOF in turn can be assessed using Bayesian inference

(given the typically small number of observations one can collect within a limited

statistical testing or operational exposure). Once the estimation of the parameters of

OOtoFO and OOtoOF activities is done, one can use these to parameterize the

activities FOtoFF and OFtoFF, as in the model we assume them to have the same

parameters as OOtoOF and OOtoFO, respectively.

Once the parameters of the model activities are estimated, one could run a

simulation experiment to measure directly the time to system failure. Further, as new

operational data becomes available, one could revise the model (by re-assessing

periodically the model parameters) and then re-run a new simulation to estimate the

time to system failure.

6. Relevant Literature

Probabilistic models of on-demand fault-tolerant software have attracted

significant attention. The original work by Ekhardt and Lee [11] demonstrated that

failure independence is unlikely for even independently developed software versions

(channels of a fault-tolerant system). The reason for this is that the individual

demands processed by software may differ in their “difficulty”, i.e. they will be

problematic to independent developers and the chances of simultaneous failures on

these demands of independently developed channels are greater than what would be

expected assuming independent failures. This was a very important insight, which

affected the research and practical adoption of software fault-tolerance. The model by

12 Peter Popov†, Gabriele Manno‡

Ekhardt and Lee was extended by Littlewood and Miller [12], to the case of forces

design diversity (e.g. different teams are forced to use different development

methodologies which lead to different difficulties of the demands). This work

demonstrated the possibility for achieving system reliability better than assuming

failure independence between the channels. Popov and Littlewood [13] extended the

earlier models by allowing the channels reliability to grow, e.g. as a result of testing

and compared the effect on system reliability of different testing regimes – testing the

channels in isolation, testing them together on the same testing suite and back-to-back

and ranked these testing regimes according to their impact on system reliability.

These models were models “on average” – they modeled the process of software

development of fault-tolerant software as a random selection from populations of

versions, which hypothetically can be developed to a given specification. The models,

however, do not address the issue of assessing the reliability of a particular fault-

tolerant system. This problem was addressed in [8]: the authors developed a model of

a fault-tolerant software operating on demand space with partitions and demonstrated

that it can be used for practical assessment by establishing bounds on the probability

of system failure based on estimates of the probabilities of failure of the channels in

the partitions only, which are typically estimable.

The models summarized above are applicable to on-demand software only, i.e. in

which the individual demands are drawn independently from the demand space.

Another line of research addressed the characteristics specific for control software,

e.g. the fact that control software is typically executed on trajectories of inputs, which

are not independently drawn from the input space. An important implication of

trajectory based execution is failure clustering due to the fact that failure regions

usually occupy ‘blobs’ of individual inputs, [14] , [3]. Modeling explicitly failure

clustering was done in a number of studies, e.g. [15].

7. Conclusion and Future work

We present a model of system reliability of a 2-channel control software operating

over partitions of the input space. The failure rates of the channels may vary over the

partitions. The model reveals a useful insight – the probability of system failure may

be significantly affected by the correlation of the failure rates of the channels over the

partitions – we recorded up to an order of magnitude difference in the mean time to

systems failure between assessment ignoring the effect of failure rate variation and

taking it into account. The result seems important because it suggest the need for

more accurate reliability measurement than is currently undertaken.

We further considered a model of reliability for software with modular semi-

Markov structure developed by Littlewood in the past and established that our model,

although generally very similar, deviates from the mathematical description provided

by Littlewood. Despite the deviations, however, similarly to Littlewood, we observed

that the time to system failure is exponentially distributed. Providing an analytical

proof for the cases when the failures in partitions are not random (i.e. do not occur as

Poisson processes) or identifying the cases when the system failure process ceases to

be a Poisson process itself, is an open research problem.

The Effect of Correlated Failure Rates on the Reliability of Continuous Time 1-out-of-2

Software 13

We also discuss the issue of model parameter estimation. The theory of competing

risks offers a suitable framework for parameter estimation using either maximum

likelihood or Bayesian inference. Developing detailed assessment techniques with

illustrative examples to help practitioners will be addressed in the future.

References

1. Littlewood, B. and L. Strigini, Validation of Ultra-High Dependability for Software-

based Systems, Communications of the ACM, 1993. 36(11): p. 69-80.

2. Littlewood, B., P. Popov, et al. Design Diversity: an Update from Research on

Reliability Modelling, in Safety-Critical Systems Symposium 2001. 2001. Bristol, U.K.:

Springer.

3. Ammann, P.E. and J.C. Knight, Data Diversity: An Approach to Software Fault

Tolerance, IEEE Transactions on Computers, 1988. C-37(4): p. 418-425.

4. Bondavalli, A., S. Chiaradonna, et al. Dependability Models for Iterative Software

Considering Correlation among Successive Inputs, in IEEE International Symposium

on Computer Performance and Dependability (IPDS'95). 1995. Erlangen, Germany.

5. PERFORM, Möbius: Model Based Environment for Validation of System Reliability,

Availability, SEcurity and Performance. User's Manual, v. 2.0 Draft. 2006.

6. Littlewood, B., A Semi-Markov Model for Software Reliability with Failure Costs, in

MRI Symposium on Computer Software Engineering. 1976, Polytechnic Press

(Available from Wiley, London): Polytechnic of New York, New York. p. 281-300.

7. David, H.A. and M.L. Moeschberger, The theory of competing risks. Griffin's

Statistical Monographs & Courses, ed. D.S.E. Prof. Alan Stuart. Vol. 39. 1978. 103.

8. Popov, P., L. Strigini, et al., Estimating Bounds on the Reliability of Diverse Systems,

IEEE Transactions on Software Engineering, 2003. 29(4): p. 345-359.

9. Marshall, A.W. and I. Olkin, A generalised bivariate exponential distribution, Journal

of Applied Probability, 1967. 4: p. 291-302.

10. Nadarajah, S. and S. Kotz, Reliability for Some Bivariate Exponential Distributions,

Mathematical Problems in Engineering, 2006. 2006: p. 1-14.

11. Eckhardt, D.E. and L.D. Lee, A theoretical basis for the analysis of multiversion

software subject to coincident errors, IEEE Transactions on Software Engineering,

1985. SE-11(12): p. 1511-1517.

12. Littlewood, B. and D.R. Miller, Conceptual Modelling of Coincident Failures in

Multi-Version Software, IEEE Transactions on Software Engineering, 1989. SE-15(12):

p. 1596-1614.

13. Popov, P. and B. Littlewood. The Effect of Testing on Reliability of Fault-Tolerant

Software, in Dependable Systems and Networks (DSN'04). 2004. Florence, Italy: IEEE

Computer Society Press.

14. Bishop, P.G. and F.D. Pullen. PODS Revisited - A Study of Software Failure

Behaviour, in 18th International Symposium on Fault-Tolerant Computing. 1988.

Tokyo, Japan: IEEE Computer Society Press.

15. Bondavalli, A., S. Chiaradonna, et al., Modelling the effects of input correlation in

iterative software, Reliability Engineering and System Safety, 1997. 57(3): p. 189-202.

14 Peter Popov†, Gabriele Manno‡

Appendix
The material and the notation used here are based on [7].

Let Cl (l = 1, …, k) denote the k competing risks or causes of failure. Let the

random variable Yi denote the individual length of life if Yi were the only risk present

with cdf Pi(x) = Pr{Yi x} and pdf pi(x). When all risks are present, we can only

observe the random variable, Z, defined as follows: Z = min(Y1, …, , Yk).

Clearly, if Z exceeds x, then every Yi exceeds x, too, i.e.:

Pr{Z > x} = Pr{Y1 > x, … , Yk > x}, which we denote as xFxF ZZ 1 .

An important characteristic is the hazard rate defined as:
xF

xf
xr

Z

Z
Z . The hazard

rates of the individual competing risks are defined similarly:
xP

xp
xr

i

i
i

For the case of independent risks, the total hazard rate is equal to the sum of the

hazard rates of the competing risks:

k

i

iZ xrxr

1

.

Let i be the probability that a failure is caused by risk Ci.

A related measure is the conditional probability Pr{Y1 = min(Y1, …, , Yk) | Z = x},

which is defined by the ratio
xr

xr

Z

i . If this ratio is a constant (so called proportional

hazard rates) the probability does not depend on the value of x and is equal to i. But

this is not always the case and in the general case i
Z

i

xr

xr
.

If Ni individuals fail from cause Ci, and Xij denotes the lifetime of the j-th

individual failing from clause Ci (j=1,…,ni; i = 1, …, k), then the joint pfd of the Xij is:
i

ik

n

j
il

l

ijliji

k

i

n
i

knkn xPxpxxxxf

1 11

1111
1

,...,,...,,...,
1

.

This is conditional on the random variables, Ni = ni (i = 1, …, k), which have

multinomial distribution:

k

i

n
ik

i

i

k
i

n

n
nnf

1

1

1

!

!
,..., , where

k

i

inn

1

. Hence, the

likelihood function of interest is:

k

i

n

j

k

il
l

ijlijik

i

i

i

xPxp

n

n
L

1 1 1

1

!
.

This expression is sufficient for one to apply either maximum likelihood for

parameter estimation associated with the individual risks, Yi, or Bayesian inference

directly to the distributions of Yi.

1

An open-source application to model and solve dynamic fault tree of

real industrial systems

Ferdinando Chiacchio1, Lucio Compagno2, Diego D’Urso2, Gabriele Manno1 and Natalia Trapani2

1
Dipartimento di Matematica e Informatica, Università degli Studi di Catania (ITALY)

2
 Dipartimento di Ingegneria Industriale e Meccanica, Università degli Studi di Catania (ITALY)

In recent years, a new generation of modeling tools for the risk assessment have been developed. The concept of “dynamic” was

exported also in the field of reliability and techniques like dynamic fault tree, dynamic reliability block diagrams, boolean logic driven

Markov processes, etc., have become of use. But, despite the promises of researchers and the efforts of end-users, the dynamic paradox

hangs: risk assessment procedures are not as straight as they were with the traditional static methods and, what is worse, it is difficult

to assess the reliability of these results.

Far from deny the importance of the scientific achievement, we have tested and cursed some of these dynamic tools realizing that

none of them was appropriate to solve a real case. In this context, we decided to develop a new DFT reliability solver, based on the

Monte Carlo simulative approach. The tool is greatly powerful because it is written with Matlab® code, hence is open-source and can

be extended. In this first version, we have implemented the most used dynamic gates (PAND, SEQ, FDEP and SPARE), the existence of

repeated events and the possibility to simulate different cumulative distribution function of failure (Weibull, negative exponential CDF

and constant). The tool is provided with a snappy graphic user interface written in Java®, which allows an easy but efficient modeling

of any fault tree schema. The tool has been tested with many literature cases of study and results encourage other developments.

Index Terms— Reliability, Dynamic Fault Tree, Monte Carlo simulation, Parallel Computing, Continuous time Markov chains.

I. INTRODUCTION

n recent years the importance of risk assessment in the

industrial field has significantly increased and the most used

tools of RAMS – the well known combinatorial techniques

such as Reliability Block Diagram (RBD) and Static Fault

Tree (SFT) – have been object of a reasonable criticism. In

fact, these techniques are not able to model the time-

dependent behaviors of a system (or a process), like the

replacement of spare components, a chain of events and so on.

State-space models have been used in order to overcome the

previous limits and, on the wave of their success, other

formalisms were proposed, such as:

• DFT (Dynamic Fault Tree) [1];

• DRBD (Dynamic Reliability Block Diagrams) [2];

• BDMP (Boolean logic Driven Markov Process) [3].

 The declared aim was to combine the intutive symbolic

representation of the combinatorial methods with the powerful

modeling of the state space models: these new techniques

were named “dynamic” and, conversely, the combinatorial

ones were referred as “static”. Among these new formalisms,

the dynamic fault tree analysis (DFT) has been one of the most

promising [4] because, with the introduction of the dynamic

gates, the power of the modeling increases but the effort of the

designing is kept low (like in static fault tree).

The reason of our interest in this technique is that most of

the risk assessments in the industrial field are still based on the

static fault tree, hence a re-examination of such risk reports

with the aid of the DFT could be a valuable work. The attempt

to apply the DFT technique to some existing reliability schema

typical of the industrial field is discussed in [5], where the

inadequacy of the traditional analytical methods is shown for

complex systems, the limits of the most known automated

software of reliability are highlighted and the lines for the

development of a simulative algorithm in a spreadsheet

environment are traced (ie. Excel®).

Starting from the results [5], in this paper we present a

software tool for the resolution of complex DFT model, based

on the direct Monte Carlo simulative approach [6].

The paper is organized as follow: in the second section we

introduce the DFT technique, briefly mentioning the

resolution procedures and the limits of the most used tools; in

the third paragraph we describe the simulative approach for

the fault tree resolution and in the fourth we introduce our

Monte Carlo engine (MatCarloRE), implemented within the

Matlab® framework; in the fifth paragraph, the Java® graphic

user interface (GUI) (jDFTDes, which stands for java

Dynamic Fault Tree Designer) that embeds the MatCarloRE

library is presented and in the sixth section some results are

discussed and compared with the enhancing of the parallel

computing approach. In the end conclusion are drawn.

II. THE DYNAMIC FAULT TREE TECHNIQUE

A Dynamic Fault Tree (DFT) is a stochastic model for the

reliability evaluation that synthesizes the ways how an

undesired and time dependent event can occur. As a Static

Fault Tree (SFT), a DFT is composed by a top gate which

represents the most undesired event (TE, top event) and a

certain number of lower level gates and basic events (BEs)

that, combined according with the logic of the fault scenario,

cause the occurrence of the TE. The main hypotheses for the

use of the DFT are that (i) events are binary and (ii), according

to many authors [7-9], components are not repairable. Thus,

the main difference with the SFT is that DFT were not

conceived to compute the availability but are appropriate to

evaluate the reliability of model characterized by complex

stochastic dependencies (Fig. 1).

The possibility to model complex interactions with the

graphical symbolism of the SFT has encouraged the

development of dynamic models [10] but, in point of the fact,

DFT has shown many issues for what concern their resolution.

I

2

The reason of this anomaly has to be traced in the lack of a

rigorous semantic language [11] that has caused the

proliferation of several and variegated techniques of resolution

that resort to an equivalent stochastic model [1, 11-13]. At the

state of the art, an analytical solution exists only if another

hypothesis is added to the previous ones [9]: BEs have to be

described by the exponential distribution. In this way, it is

possible to convert a DFT into a state-space model and solve it

within the domain of the Markov processes. Unfortunately the

mentioned hypotheses can result too restrictive, especially for

real industrial applications characterized not only by

exponentially distributed time to fail but also by Weibull,

gaussian or lognormal probability distribution. Therefore, the

reliability evaluation of systems that present generalized

functions of probability is not possible with the analytical

Markov processes and, at the state of the art, the more

effective solution is the simulation [14, 15].

Fig. 1: the most frequently used dynamic gates

In general, all the previous techniques of resolution

(analytical and simulative) have been implemented in a lot of

software applications for reliability analysis [16, 17] but,

despite that, the real effectiveness of these tools is still

questionable because none of them can be used to design and

solve “complex DFT” in a straightforward manner. In Table 1,

we synthesize the main features of some automated tools that

we have tested; for more details about their characteristics we

remind to [5].

Table 1: main features of the reliability automated tools for DFT

TOOL MAIN RESULTS LIMITS

RELEX Reliability

Availability

Importance Measures

Results are questionable

NO nested dynamic gates

Only exponential CDF

GALILEO Reliability

Sensitivity

 NO repeated events

BDMP Reliability

Availability

Importance Measures

and Sensitivity

Not intuitive

(introducing other

formalism)

In our scope, a “complex DFT" is a model that presents a

combination of the following characteristics: repeated events,

events characterized by generalized distributions of

probability and nested dynamic gates. All of these elements

are necessary to obtain an accurate modeling of the failure

scenarios in real industrial systems.

III. MONTE CARLO SIMULATION IN RELIABILITY

ASSESSMENT

Monte Carlo simulation is a statistical method used to solve

real problems in many engineering field, in particular when

analytical approaches are not feasible. This method is based

on the generation of a large number of realizations of the

simulated process, which represent the generic random walk

inside a discrete “phase space” of the system configurations.

In this method, a certain number of stochastic sampling (called

iterations, runs or batches of the simulation) of the

independent variables are performed in order to implement the

simulated process; for this reason, a Monte Carlo simulation

cannot produce an exact evaluation as it is computed as a

weighted average among the results of the generated phase

space.

Nowadays, this class of methods is gaining a lot of interest

due to the power of modern computers that permit to speed up

the simulative process and collect a large number of runs,

ensuring higher accuracy. For reliability evaluations [18, 19],

the main advantage of the simulative approach over the

analytical ones is that it is possible to remove the hypothesis

of the exponential distribution and, more in general, to

implement any kind of failure and safety logic. The other

important difference concerns the resolution process: with the

simulative paradigma the computation of a TE needs the

information from the entire parts of the fault tree (ie. single

components and sub-models), whereas the analytical solutions

mix these dynamics in a set of ordinary differential equations.

Hence, at the end of a simulation it is possible to retrieve also

information about the other parts of the fault tree (BEs and

intermediate events), whereas with the analytical methods this

would need an ad-hoc computation for the sub-system of

interest.

In our approach, we make use of the direct Monte Carlo

simulation [6] that considers BEs as single entities, sampling

the time of failure of any BE once, at the beginning of any

iteration. These information are used to evaluate the logic of

the gates which the BEs are connected with, in order to

retrieve the state and the trigger time of each gate. In turn,

these information are passed to the gates of the higher levels,

ascending the fault tree up to the TE gate. From the

implementation point of view, the main advantage of this

approach is the modularity, as the algorithms behind the logic

of the gates (static and dynamic) can be implemented

separately.

In order to build up a Monte Carlo simulation, let us

consider the following notation:

3

1) FT is the generic fault tree composed by a number n of

BEs; at the beginning of any iteration, the method will sample

n stochastic time of failure t
f
i, one for each BEi;

2) F(t) is the unreliability of the system at the time t,

computed as the probability that the system is down at the

time t, F(t) = P(system is down);

3) S = (s1, s2,..,sn) is the generic “vector of the states” where si

represents the state of the i-th component that can be ‘working

(=0) or ‘failed’ (=1) and represents a point of the phase space

of the system;

4) is the set of all the vectors of the states S in which the

system fails and depends on the structure of the fault tree;

5) Hk={S(t0); S(t1);...; S(Tm)} is the evolution of the k-th

iteration of the Monte Carlo simulation; in general, the

evolution Hk of an iteration can be characterized by a number

of different vectors of the states S; in fact, these vectors are

determined with respect to the stochastic times of failure

generated at the beginning of the Monte Carlo sampling.

For instance, let consider the simple SFT of Fig. 2 and assume

a Monte Carlo simulation of K iterations and a mission time

Tm = 10h. In this case = {(1A, 1B, 1C)}, no matter the

sequences of failures of the components.

Fig. 2: a simple example of SFT and DFT

Now, let us consider the generic i-th iteration (i<K) and

assume the following random sampling:

t
f
A = 5h; t

f
B = 9h; t

f
C = 8h. In this case we can consider the

following vectors of the states:

S(t0) = (0A, 0 B, 0C); S(t
f
A) = (1A, 0 B, 0C); S(t

f
B) = (1A, 1 B, 0C);

S(t
f
C) = (1A, 1 B, 1C); S(Tm) = (1A, 1 B, 1C); therefore H1 =

{S(t0); S(t
f
A); S(t

f
C); S(t

f
B); S(TM)}. In this case, there is a

vector of the states S in H1 which belongs to , S(t
f
B),

therefore the TE occurs.

Let us assume that the j-th (j<K) iteration is characterized by

the following sampling:

t
f
A = 11h; t

f
B = 9h; t

f
C = 15h. In this case we have:

S(t0) = (0A, 0 B, 0C); S(t
f
B) = (0A, 1 B, 0C); S(Tm) = (0A, 1 B,

0C). What happens after Tm is out of the scope of the Monte

Carlo simulation therefore, for this sampling, H2 = {(S(t0);

S(t
f
B); S(Tm)} and none of the S(ti) is contained in . For this

iteration, the TE does not occur.

In order to speed up the simulative algorithm, it is possible to

trim the iterations by checking at any transition whether the

state S(ti) belongs or not to : if this condition is verified the

batch ends and the TE occurs, otherwise it continues until Tm

is reached.

At the end of the iterations, the unreliability of the fault tree

is computed with the following:

where iter is the number of iterations of the Monte Carlo

simulation and Fi is the occurrence of the TE during the i-th

batch. Fi will assume the value 1 if the TE occurs, 0 otherwise.

This algorithm can be used effectively for the resolution of a

DFT because the evolution H is able to keep track of the

sequence of failures simulated during an iteration of the Monte

Carlo simulation; in this way the time dependencies of a DFT

can be taken into account for the correct evaluation of the

dynamic logics. For instance, let us consider the DFT of Fig.

2; also for this DFT the = {(1A, 1B, 1C)}, but the way how

this configuration is reached matters. In fact, in this case, the

evolution H generated for the previous example (H={S(t0);

S(t
f
A); S(t

f
C); S(t

f
B); S(TM)}) would not reach to a failure state,

due to the presence of the PAND gate.

The other important features of this simuative approach is

that with the use of the H, many simulation data can be stored

in a very straightforward way: for each BE and gate we can

count the number of triggering, the mean time to failure and

easily infer other measures.

IV. THE SIMULATIVE ENGINE OF MATCARLORE

MatCarloRE is the library of functions that constitute the

Monte Carlo simulative engine for the resolution of DFTs

reliability. It has been implemented in the Matlab®

environment following the direct Monte Carlo paradigm [6].

The library is composed by a set of .m files such that, in order

to make the library as flexible as possible, the logic of any

gate is implemented in different file. In this way it is possible

to modify these files separately without compromising the

other logics. Any of these files represents a Matlab® function

that is invokated inside the code of the fault tree model.

In this current release of the library, it is possible to

compute the unreliability (F) of the system at a fixed instant of

time or in a discrete time interval and use all the measures

retrieved inside the Matlab® environment for further studies.

In the next sections we will discuss the most important

functions, focusing in particular on the logic of the dynamic

gates [11, 15].

A. The «BE function»

The BE function is the core of the Monte Carlo engine

because it samples the times of failure of the BEs, retrieving if

the BE has failed before the time of mission (Fig. 3).

Fig. 3: specifications of the BE function

So far, the «BE function» can model basic events with a

negative exponential distribution, with a fixed probability or

with a Weibull distribution. The code can be easily

customized to define any type of probability distribution. In

fact, the characteristic time of failure t
Fi

 of the generic BEi is

sampled for any batch of the simulation through the inverse

function: t
Fi

=CDF
-1

(param), where CDF
-1

 is the inverse of the

cumulative distribution function and param is the vector

which contains the parameters of the CDF.

4

For instance, let us consider a component characterized by an

exponential distributed time to fail, F(t) = 1 – e
- t

, where is

the failure rate of the component. The sampled time of failure

can be calculated by the inverse relationship:

where F
*
 is a random number in [0, 1] generated with a

uniform distribution of probability. If t
Fi

 is smaller than the

mission time Tm, the component is assumed failed at the time

t
Fi

. These method has to be invoked for any BE of the fault

tree.

B. The «PAND function»

The «PAND function» models the Priority-And gate: the

specifications of the function are shown in Fig. 4, while the

logic is reported in the flow chart of Fig. 5.

At first, the algorithm verifies if all the BEs of the gates

(conteined in the input vector ‘y_in’) have occurred (the sum

has to equal the number n of the inputs of the gate). If this

condition is not satisfied the gate does not trigger. Otherwise,

the following conditions are checked: if ti < tj for each i<j,

with i, j=1,2,...n, the gate triggers with a time of failure equals

to the maximum failure time of the inputs.

Fig. 4: specifications of the PAND function

START

=

=

n

i
i

ys

1

yPAND = 1

tPAND = max(t)

yPAND = 0

tPAND = Inf

END

tt ji
<

ji <∀

YES NO

s = n ?

YES

NO

Fig. 5: flow chart of the PAND function.

C. The «SPARE function» and «ALL_SPARE function»

The «SPARE function» is the most complicated logic due

to the variety of configurations allowed. The MatCarloRE

library can handle cold, warm and hot stand-by (C/W/H

Stand-By) with any number of active and spare parts. The

algorithm is shown in the flow chart of Fig. 6, while the

specifications of the function are shown in Fig. 7.

In this first release it is not possible to model extended DFT

[20] therefore the inputs of a spare gate can be only BEs (and

not other gates). The assumption made for the spare gate is

that its failure occurs when the number of surviving

components is less than the minimum number of components

required for functioning (usually it is assumed equal to the

number of the initial active components). Therefore, the first

operation performed is to sort in the ascending order the times

of failure of the active components, in order to list which have

failed before the end of the mission time. If no failure is

verified the gate will not trigger, otherwise the algorithm

checks if there are spare parts able to replace the failed active

components following the order previously established. The

replacement of an active component can take place only if:

1. the spare part is still available (namely, it has not been

used to replace another failed component);

2. the time of failure of the spare part (during its latent

condition) is greater than the time to failure of the active

component to be replaced.

If these conditions are satisfied, the function updates the time

of failure of the active component by adding the time of

failure of the spare component that is finally declared as busy.

Otherwise the spare gate triggers, setting a time of failure

equal to the last failed active component.

START

ySPARE = 1

tSPARE = tref

ySPARE = 0

tSPARE = Inf

YES

NO

<
=

elsewhere

Tmitif
iG

0

)(1
)(

Find Active Components requiring substitution:

Sort Active Components Vector by Failure Time

?0)(
1

>

=

n

i

iG

=>
=

elsewhere

iOitlif
iGS tref

0

0)(&)(1
)(

Find Spare Components available for

substitution:

))1,1((=== Gfindttref

Set reference time for iteration

?0)(
1

>

=

ns

i

iGS NO

))1,1(())1,1(())1,1((==+===== GSfindtsGfindtGfindt

Update the failure time of Active Component

1))1,1((===GSfindO

Update the occupancy of the Spare Component

YES

Fig. 6: flow chart of the SPARE function

The MatCarloRE makes use of another function called

“ALL_SPARE” that takes all the spare gates as input (see Fig.

8). The output of the ALL_SPARE function is a vector that

contains the state and the time of trigger of the spare gates

passed. This function is important because it handles the

allocation of the shared resources among the spare gates which

have the same spare components.

5

Fig. 7: specifications of the SPARE function

Fig. 8: specifications of the ALL_SPARE function

D. The «SEQ function»

The seq gate forces the components to fail in a fixed order

[11, 15], from the left to right position. It is generally used to

represent different levels of degradation of a component. The

algorithm used for this task is simple: the «SEQ function»

firstly calculates the sum Q of the times of failure of all the

inputs. If Q is smaller than the mission time the gate triggers

with a time of failure equal to Q.

E. The «FDEP function» and «OUT_FDEP function»

The fdep gate vehicles the effects of the primary input to its

dependent components [11, 15] in a way that if the primary

component fails all the dependent ones fail too, with the same

time of failure.

MatCarloRE handle this gate with two function: the

“FDEP” and the “OUT_FDEP”. The former is invokated to

compute the time of failure of the secondary inputs. This logic

can be easily implemented because a fdep gate with k

secondary inputs is equal to k or gates with two inputs: the

primary and the i-th secondary component of the fdep gate.

But, if a component is a secondary input of more than one

fdep gate, the «OUT_FDEP» function (Fig. 9) must be

invokated. In fact, in this case the real time of failure has to be

chosen as the minimum among the time of failure of the

correspondent fdep gates.

Fig. 9: specifications of the FDEP_OUT function

V. JDFTDES: A JAVA GUI FOR MATCARLORE

The creation of a DFT model with the MatCarloRE syntax can

be error prone and tedious. In Fig. 10 it is shown the flow

chart that describes how to prepare the Matlab® script. At

first, the initialization of the main variables (F, number of

iterations) is needed. Then, the simulation runs inside a loop

that contains the commands that refer to the DFT model; the

functions of the library have to be invoked in the order shown

in Fig. 10, according with the structure of the DFT. The «BE

functions» need to be invoked for first, in order to sample the

correspondent times of failure of each BE; the «FDEP

functions» and «OUT_FDEP functions» are called if the DFT

contains fdep gates, in order to refresh the time of failure of

the BEs which are connected with such kind of gate. Hence, if

there are spare gates which share spare components, they have

to be assembled invoking the «ALL_SPARE function»

function. Once this first part of the code is written, it is

possible to call all the other functions (which represent the

gates) following a bottom-up approach since the information

of the lower level of the fault tree are requested to the upper

gates. In the end, the unreliability is computed as the ratio

between the number of TE occurrence over the number of

iterations.

In order to simplify the effort of typing the code of a model

with the MatCarloRE syntax, a graphic user interface (GUI),

the jDFTDes, was developed. The jDFTDes is a code-

processor that translates a graphic model of DFT in a program

for the MatCarloRE engine. The jDFTDes stands for “Java®

DFT Designer”, a java package that can be invoked directly

under the Matlab® shell. The choice of using Java was

natural, since Matlab® runs under a Java Virtual Machine

(JVM) and this permits to use the Java interpreter and run

programs written in Java. In our application, we created a Java

Archive (JAR), a Java file that includes all the classes of the

jDFTDes. The jDFTDes can be invoked through the

“javaaddpath()” command, specifying the path where the

library is located and creating a dummy variable that contains

an instance of the java main frame of the jDFTDes.

jDFTDes is greatly simple and the construction of a DFT

model is straight, easy and fast. This was accomplished

implementing a “drag and drop” interface that permits a quick

interactions with the element of the DFT. Infact, by clicking

the right button it is possible to change the property of a

component (rename, modify the type of component and

change the order of the dependency) while by clicking the left

button is possible to add an input (if the component clicked is

a gate) or specify the type of CDF if the component is a BE.

The text field Tm must contain the value of the time mission

and the text field “ITERATION” the number of batches

requested for the simulation. Once the DFT is assembled and

the input are correctly set, by clicking “COMPUTE” the

jDFTDes will process the graphical model generating the code

for the MatCarloRE and finally dumping it in the Matlab®

shell.

Fig. 10: flow chart to build a Matlab® script of a DFT model with the

MatCarloRE syntax

6

VI. CASES OF STUDY: CONFIGURATION OF THE MULTI-

PROCESSOR SYSTEM

In this section we present the implementation of a set of cases

of study that refer to previous literature [5, 20].

The MatCarloRE library and Galileo® were tested using a

standard 64bit laptop Intel® i7 CPU, Q740 @ 1.7 GHz with

6GB of Ram. As far as concerns the DFTSim (the simulative

tool which is the closest benchmark for the MatCarloRe

library), so far, we could not obtain any version of the tool,

therefore we did consider the results taken from [20] which

were obtained with a different system configuration (a

Pentium 4 @ 3.2 GHz with 2GB of Ram). For this reason, a

detailed comparison between the simulating tools was not

possible.

Looking forward to get a version of the DFTSim, we

configured our machine in order to make possible a

comparison in term of results accuracy and time of execution

between the MatCarloRE and DFTSim [20] (see also note 1

and Table 5 in the next section), starting from the following

assumptions:

• the simulative engines of both MatCarloRe and DFTSim

behave similarly, as they sample the time of failure for each

BE and propagate the BEs failure times through the DFT;

• iterative computations (like Monte Carlo simulations) are

mostly affected by the CPU clock and by the dimension of

the second-level cache, whereas the extension of the Ram

memory does not bring improvement if it can store entirely

the amount of data processed (and this is the case we are

dealing with).

Under the previous conditions, a system mounting two CPUs

of 1.7 GHz, working in parallel and sharing the computation

effort, can be compared with one only CPU of 3.2 GHz [20],

as they can process approximately they same number of

operations per unit of time. In Matlab® it is possible to enable

the use of the multi-processors platform through the command

matlabpool; clearly, the multi-processors is effective only if

the source code of the script is compliant with the rules of the

parallel programming. MatCarloRE can be easily customized

to run in a parallel environment, just replacing the traditional

for instruction with the parfor, standing for “parallel for” [21].

A. The Cascaded PAND System (CPS)

This is a hypothetical case of study of a cascade of dynamic

PAND gates, which results of interest for the comparisons

between the simulative approach and the analytic one. In fact,

due to the state space explosion Relex® got stuck, while

Galileo® took ten times the time needed with the simulative

approach to solve it. MatCarloRE converges within few

seconds. All the BEs have a failure rate of 1 [h
-1

].

B. The Multi-processor Distributed Computing System

(MDCS)

The main feature of the model of the MDCS (Fig. 11) is the

shared W/stand-by spare memory (M3) between the

subsystems Mem1 and Mem2. Table 2 shows the parameters

of the components of the MDCS.

Table 2: failure rates of the BE of the MDCS in [h-1]

C. The Cardiac Assist System (CAS)

The CAS system is a model more complex than the previous

ones, as it is composed by many dynamic gates. Fig. 12 shows

the screenshoot of the jDFTDes application: the red circles

denote the same sub-systems (the Pumps) and the jDFTDes

needs to draw the repeated spare PS twice (in orange).

Fig. 11: DFT of the MDCS [20]

Table 3 shows the input parameters of the BEs; moreover, B

is in a warm stand-by with a dormancy factor of 0.5, while PS

and MB are in cold stand-by.

D. The Section of an Alkylation Plant (SAP)

This case of study [5] represents the dynamic version of a

real SFT of an alkylation plant (Fig. 13). For this example,

analytical modeling is not appropriated due the presence of the

fixed probability (BE1 and BE3), while DFTSim could not be

tested due to the impossibility to obtain a version of the tool.

Fig. 12: DFT of the CAS [20] developed with jDFTDes

7

Table 3: failure rates of the BE of the CAS in [h-1]

VII. FINAL RESULTS AND CONCLUSION

Table 5 shows the comparison among the results for the

proposed cases of study, for each tools used. They definetely

prove that:

1) simulation is the most valuable approach for those

complex dependent models that analytical tools are not able to

solve and

2) simulation can also be used to compare and confirm the

evaluation provided by the analytical approaches.

The binomial of MatCarloRE engine and jDFTDes GUI suits

perfectly these two requirements; in fact, on one hand the risk

assessment evaluations of the MatCarloRE library are

satisfactory both in terms of accuracy and time of

computation, warranting the resolution of complex models; on

the other hand, the intuitiveness of the graphic user interface

implemented with the jDFTDes favours the modeling design

of large DFT, encouraging the use of the tool.

Fig. 13: DFT of the SAP [5]

As far as concerns the comparison of performance between

the simulating tools DFTSim and MatCarloRE, we have to

rely on the assumptions made in the previous section. Under

those conditions we can assess that, on equal terms of machine

configuration, DFTSim seems to offer greater performance

than MatCarloRE, as proven by the Execution Time (Table 5).

This happens in particular for DFT models in which more than

one SPARE gates share a spare component (see example of

Fig. 11 and Fig. 12). In our opinion, the reason is that the

stream of instructions used to code the algorithms of the

SPARE gates logic is more efficient in the DFTSim; this

offers new clues for the improvement of MatCarloRE. In

future research, we aim to be able to test both the tools with

the same machine configuration in order to refine these

evaluations.

At the state of the art, a point in favour of the MatCarloRE

library is the integration with the Matlab® framework that

allow a simple implementation of the parallel paradigma. In

Table 6, the results of the distributed computing are shown:

when four processors share in parallel the computation effort,

the perfomance of MatCarloRE are greater than the DFTSim.

Table 4: failure rates of the BE of the SAP

Component Value Type

BE1 1x10-3 Fixed

BE2 9.1x10-4 [h-1] Exponential

BE3 1x10-3 Fixed

BE4 1.71x10-4 [h-1] Exponential

BE5 7.51x10-4 [h-1] Exponential

BE6 9.11x10-4 [h-1] Exponential

BE7 4.51x10-3 [h-1] Exponential

BE8 8.61x10-4 [h-1] Exponential

BE9 4.51x10-4 [h-1] Exponential

BE10 7.91x10-3 [h-1] Exponential

BE11 1.51x10-4 [h-1] Exponential

BE12 9.51x10-4 [h-1] Exponential

Another considerable plus value of working inside the

Matlab® environment is the plenty of mathematical

instruments offered which can be used for further evaluations,

like importance measures, sensitivity analysis and

optimization.

In future work we aim to improve the library in order to:

1) remove the hypothesis of non reparaible components,

switching in the domain of the availability,

2) implement a set of instruments for the evaluation of the

maintainance strategies,

3) deal with components that can be described by multiple

states (overcoming the constraint of the working or failed

state) and

4) adapt the parallel source code of MatCarloRE for the cloud

computing (the Sicilia Grid infrastructure of Cometa).

Table 5: comparisons among the reliability tools

Case study Tool Iterations Unreliability Execution

Time (sec)

CPS

(Tm=1h)

Relex®

Galileo®

-

-

X

0.00135

-

380

DFTSIM
1

MatCarloRE

105

105

0.00142

0.00140

40

17 (2 Cpu)

CAS Relex® - X -

(Tm=1h) Galileo® 0.65790 1

DFTSIM1

MatCarloRE

105

105
0.65651

0.65770

43

64 (2 Cpu)

MDCS Relex® - X -

(Tm=1h) Galileo® - 0.06664 1

DFTSIM1 105 0.06737 39

MatCarloRE 105 0.06680 52 (2 Cpu)

SAP Relex® - X -

(Tm=8760h) Galileo® - X -

DFTSIM Not tested Not tested Not tested

MatCarloRE 106 0.000185 278(2 Cpu)

1 Results taken from the paper [20] performed with a different system

configuration

8

Table 6: distributed computing results of MatCarloRE
Case study N.of CPU Unreliability Execution

Time (sec)

CPS 1 0.00130 26

2 0.00140 17

4 0.00140 9.8

CAS 1 0.65570 87

2 0.65770 64

4 0.65960 39

MDCS 1 0.06480 77

2 0.06680 52

4 0.06591 32

SAP 1 0.000192 546

2 0.000185 278

4 0.000197 162

For any request about the use of the MatCarloRE and

JDFTDes, you can email the scientific coordinator, Prof.

Lucio Compagno, at his email address: lco@diim.unict.it.

REFERENCES

[1] M. Cepin, B. A Mavko, “A dynamic fault tree”, Reliability Engineering

and System Safety, 75: 83-91, 2002.

[2] S. Distefano, A. Puliafito, “Dynamic reliability block diagrams vs
dynamic fault trees”. In Proceedings Annual Reliability and

Maintainability Symposium, RAMS '07: 71-76, 2007.

[3] M. Bouissou, J. L. Bon. “A new formalism that combines advantages of
fault-trees and markov models: Boolean logic driven markov processes”.

Reliability Engineering and System Safety, 11, 149–163, 11 2003.

[4] R. Gulati, J. B. Dugan, “A modular approach for analyzing static and
dynamic fault trees”, in Proceedings Annual Reliability and

Maintainability Symposium: 57-63, 1997.

[5] F. Chiacchio et al., “Dynamic fault treee resolution: a conscious trade-
off between analytical and simulative approaches”, Reliability

Engineering and System Safety, 2011, DOI 10.1016/j.ress.2011.06.014.
[6] E. Zio, “Biasing the transportation probabilities in direct Monte Carlo”,

Reliability Engineering & System Safety, 47, 59-63, 1995.

[7] W.E. Vesely, “Fault Tree Handbook”, NUREG-0492, 1981.
[8] G. Merle et al., “Dynamic Fault Tree Analysis based on the Structure

Function”, in Proceedings Annual Reliability and Maintainability

Symposium: 1-6, 2011.
[9] H. Boudali, P. Crouzen, M. Stoelinga, “A Compositional Semantics for

Dynamic Fault Trees in Terms of Interactive Markov Chains”, K.S.

Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 441–456, 2007.
[10] J.B. Dugan, J.S. Bavuso, M.A Boyd, “Dynamic fault-tree models for

fault-tolerant computer systems”. IEEE Transactions on Reliability, 41

(3):363-377, 1992
[11] H. Boudali, P. Crouzen, M. Stoelinga, “Dynamic fault tree analysis

using input/output interactive Markov chains”, Proceedings 37th Annual

IEEE/IFIP International Conference on Dependable Systems and
Networks DSN '07: 708-717.

[12] A. Bobbio, L. Portinale, M. Minichino, Ciancamerla, E., “Improving the

analysis of dependable systems by mapping fault trees into Bayesian
networks”, Reliability Engineering and System Safety, 71, 249–260,

2001.

[13] A. Anand, A. K. Somani, “Hierarchical analysis of fault trees with
dependencies, using decomposition”, Proceedings Annual on Reliability

and Maintainability Symposium, 69–75, 1998.
[14] E. Windebank, “A Monte Carlo Simulation Method Versus a General

Analytical Method for Determining Reliability Measures of Repairable

Systems”. Reliability Engineering, 5, 73-81, 1983.

[15] K. Durga Rao et al., “Dynamic fault tree analysis using Monte Carlo
simulation in probabilistic safety assessment”. Reliability Engineering

and System Safety, 94, 872–883, 2009.

[16] K.J. Sullivan, J.B Dugan, D. Coppit, “The Galileo fault tree analysis
tool”, in Proc. Digest of Papers Fault-Tolerant Computing Twenty-

Ninth Annual International Symposium: 232-235, 1999.

[17] S. Amari, G. Dill, E. Howald, “A new approach to solve Dynamic Fault
Trees”, in Proceedings Annual Reliability and Maintainability

Symposium, 374-379, 2003.

[18] E. E. Lewis, F. Bohm, “Monte Carlo Simulation of Markov Unreliability

Models”, Nuclear Engineering and Design, 77, 49-62, 1984.
[19] A. Dubi, “Monte Carlo Calculations for Nuclear Reactors”, CRC

Handbook of Nuclear Reactors Calculations, Vol. II, CRC PRESS

(1986)
[20] H. Boudali, A.P. Nijmeijer, M.I.A. Stoelinga, “DFTSim: A Simulation

Tool for Extended Dynamic Fault Trees”, in Proceedings of SpringSim,

2009, article n.31, 1-8.
[21]http://www.mathworks.com/help/toolbox/distcomp/creatematlabpooljob.

html

MATCARLOAV, AN EXTENSIBLE MATLAB® LIBRARY FOR

THE SIMULATIVE EVALUATION OF DYNAMIC FAULT TREES

Abstract

In recent years, a new generation of modeling tools for the risk assessment have

been developed. The concept of “dynamic” was exported also in the field of

reliability. At first, the state-space technique of modeling were successfully used to

implement dynamic dependencies in a fault schema, thus overcoming the limits of

the traditional combinatorial techniques. Afterwards, more descriptive techniques

(like DFT, DRBD, BDMP, etc.) have been proposed in order to enrich the

intuitiveness of combinatorial methods with the capability to model dynamic

dependencies. But, despite the promises of researchers and the efforts of end-users,

the dynamic paradox raised: risk assessment procedures were not as straight as

earlier and, what is worse, it was difficult to understand the effects of such

dynamism. In this paper, we focus on the DFT technique and present a tool for the

reliability and availability computation of a quite generic class of system. Starting

from the state of the art, a set of standardized rules that clarify the real behaviours of

the dynamic gates – in particular for what concerns DFT with repairable components

– is drawn. Afterwards, a comparisons with earlier works (commercial and non

commercial applications) will prove the advantages of this novel simulative

approach, for which a Matlab® library is under development. The aim is to provide a

basic library for the resolution of extended DFT. The tool may result of great interest

because it is written with Matlab® code, hence is open-source and can be also

extended. It has been tested with many literature cases of study such that results

encourage other developments.

