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2 Hölder continuity of solutions of variable sign to singular porous medium type

equation 17

2.1 Change of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Preliminary estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Reduction of the oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 The first alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 The second alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Harnack estimates for non-negative weak solutions to singular porous medium

type equation 39

3.1 Some useful estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Comparison principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Improved regularity for some Dirichlet problems 57

4 Existence and regularity results for solutions to non-coercive Dirichlet prob-

lems 58

4.1 Approximate problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Finite energy solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Infinite energy solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Passing to the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Bounded solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ii



Introduction

The present thesis deals with the regularity of solutions to nonlinear partial differential

equations of elliptic and parabolic type, and it collects some results obtained during the

last three years under the supervision of Prof. Ugo Gianazza.

The first part concerns the study of singular porous medium type equations: we start

proving Hölder regularity for solutions of variable sign, then we continue with an Harnack

type inequality for positive solutions.

The second part treats existence and regularity results for a class of non-coercive ellip-

tic equations with discontinuous coefficients, extending a paper by Prof. Lucio Boccardo.

Elliptic equations

The study of the regularity of elliptic partial differential equations essentially began with

the pioneering works by De Giorgi [21] and Moser [50, 51] around 1950-1960. They

consider the following linear problem

u ∈ H1
loc(Ω) : (aij(x) uxi

)xj
= 0 weakly in Ω, (0.1)

where Ω is a domain in R
N and {aij} is a bounded, measurable matrix, satisfying the

ellipticity condition

aij(x) ξi · ξj ≥ λ|ξ|2.

The celebrated De Giorgi’s Theorem states that the local solutions of equation (0.1)

are Hölder continuous, while the Moser’s iteration technique allows to obtain Harnack

inequality for non-negative solutions, which in turn implies Hölder regularity.

Later on, Stampacchia [62, 63] considered the non-coercive Dirichlet problem

u ∈ H1
0 (Ω) : − (aij(x) uxi

+ dj(x)u)xj
+ bi(x) uxi

+ cu = f(x) weakly in Ω,
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where bi, di, c and f satisfy some suitable summability properties, proving existence of

weak solutions and showing regularity results for these solutions depending on the summa-

bility of the data f .

De Giorgi’s and Moser’s approaches can be extended to quasi-linear elliptic equations

of p-laplacian type, namely

divA(x, u,Du) = B(x, u,Du) weakly in Ω, (0.2)

with A and B satisfying the structural conditions{
A(x, z, ξ) · ξ ≥ C0|ξ|p − ϕ(x)

|A(x, z, ξ)|+ |B(x, z, ξ)| ≤ C1|ξ|p−1 + ϕ(x),
(0.3)

being 0 ≤ C0 ≤ C1, ϕ ∈ L∞loc(Ω), ϕ ≥ 0 and p > 1.

Notice that, as soon as p �= 2, the principal part A(x, u,Du) has a nonlinear dependence

with respect to Du and a nonlinear growth with respect to |Du|.
These extensions have been proved by Ladyženskaja and Ural’tzeva [47] following the

method by De Giorgi, and by Serrin [61] and Trudinger [64] following the one by Moser.

Parabolic equations

In 1954 Hadamard [41] and Pini [55] proved Harnack inequality for solutions to the heat

equation

ut −Δu = 0. (0.4)

Ten years later, this result was generalized by Moser [52] to the linear problem{
u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

ut − (aij(x, t)uxi
)xj

= 0 in ΩT ,

where, for T > 0, we denote by ΩT = Ω× (0, T ] a cylindrical domain.

Concerning nonlinear parabolic equations, the most famous examples are the p-

laplacian

ut − div
(|Du|p−2Du

)
= 0, (0.5)

where p > 1, and the porous medium equation

ut −Δ(um) = 0, (0.6)

in which m > 0.

Both the p-laplacian and the porous medium equation reduce to the heat equation (0.4)
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Introduction

when p = 2 and m = 1 respectively.

Equation (0.5) (resp. (0.6)) shows a different behaviour for p > 2 and 1 < p < 2 (resp.

for m > 1 and 0 < m < 1). In particular, the first case is referred to as degenerate

and the second one as singular. For the porous medium equation one also speaks about

slow (if m > 1) and fast diffusion (if 0 < m < 1).

Sometimes people refer to porous medium equation only for the case m > 1.

In many physical settings the restriction u ≥ 0 naturally appears; it is mathematically

convenient and thus often followed. In the general case when u is not imposed to be non-

negative, (0.6) becomes the so-called signed porous medium equation, i.e.

ut −Δ
(|u|m−1u) = 0. (0.7)

Parabolic equations of p-laplacian type

Since in the elliptic case it was possible to pass from the linear framework (0.1) to the

quasi-linear one of p-laplacian type (0.2)-(0.3), one could expect that the De Giorgi’s and

Moser’s techniques allow to treat nonlinear parabolic equations of the form

ut − divA(x, t, u,Du) = B(x, t, u,Du) weakly in ΩT , (0.8)

under the p-growth assumptions⎧⎪⎨⎪⎩
A(x, t, z, ξ) · ξ ≥ C0|ξ|p − ϕ0(x)

|A(x, t, z, ξ)| ≤ C1|ξ|p−1 + ϕ1(x)

|B(x, t, z, ξ)| ≤ C2|ξ|p + ϕ2(x),

(0.9)

where Ci are positive constants and ϕi are non-negative functions satisfying suitable

summability properties.

Unfortunately, De Giorgi’s argument cannot be applied to equation (0.8), while Moser’s

method can only reach the quadratic case p = 2, as shown by Aronson and Serrin [3], and

by Trudinger [65].

Analogous results were obtained by Nash [54] and by Kružkov [43, 44, 45] by means

of different approaches.

Notice that the prototype of the class of parabolic equations (0.8)-(0.9) is the p-

laplacian (0.5).

Many developments were made in the 1980’s starting from the innovative paper by

DiBenedetto [23], where it has been proved the Hölder regularity of local, weak solutions

to p-laplacian type equations (0.8)-(0.9), in the degenerate case p > 2.
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Another crucial step forward consisted in the proof of Hölder continuity also for the

singular case 1 < p < 2 obtained by Chen and DiBenedetto [17] (see also [26]) at the

beginning of the 1990’s.

Parabolic equations of porous medium type

The porous medium equation (0.6) is one of the simplest nonlinear evolution equations.

It appears in the description of different natural phenomena, and its theory and property

depart strongly from those of the heat equation (0.4).

There are a number of physical applications in which this simple model appears in

a natural way. Some of the best known are the description of the flow of an isentropic

gas through a porous medium, modeled independently by Leibenzon [48] and Muskat [53]

around 1930, or the heat radiation in plasmas, developed by Zeldovich and Raizer [70]

around 1950. Other applications have been proposed in mathematical biology, spread of

viscous fluids, boundary layer theory, and other fields.

In 1952, Barenblatt [4] found a similarity solution for the porous medium equation,

which resembles the fundamental solution of the heat equation.

In the 1980’s Caffarelli and Friedman [16] proved that non-negative solutions to the

Cauchy problem in R
N×(0,+∞) associated with the porous medium equation, for m > 1

and positive initial data, are Hölder continuous. In the same period, well-posedness in

classes of general data was established by Aronson and Caffarelli in [2] and by Bénilan,

Crandall and Pierre [6], while the study of solutions with measure data was started by

Brezis and Friedman [14], and continued by Dahlberg and Kenig [20].

Few years later, Herrero and Pierre [42] showed existence of solutions to the Cauchy

problem associated to signed porous medium equation with 0 < m < 1 and with locally

integrable initial data. While these results are non-local, a more local point of view was

adopted in [15, 22].

For a complete survey on the porous medium equation we refer to the book by Vázquez

[67].

The porous medium equation admits a more general formulation too. More precisely the

quasi-linear parabolic equation (0.8) is said of porous medium type if the following

conditions hold ⎧⎪⎨⎪⎩
A(x, t, z, ξ) · ξ ≥ C0|z|m−1|ξ|2 − ϕ0(x)

|A(x, t, z, ξ)| ≤ C1|z|m−1|ξ|+ ϕ1(x)

|B(x, t, z, ξ)| ≤ C2

( |z|m−1|ξ| )2 + ϕ2(x).

(0.10)
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Introduction

On the relation between the two model equations

Let us notice a further link between p-laplacian and porous medium type equations.

Let u be a local solution to (0.5), for p > 2. Then the function v = |Du|2 formally satisfies

(see [66, 36])

vt −
(
a� k v

p
2
−1vxk

)
x�

≤ 0,

where

a� k = δ� k + (p− 2)
ux�

uxk

|Du|2 ,

and δ� k is the Kronecker’s delta.

This is a quasi-linear version of the porous medium equation (0.6) with m =
p

2
. Therefore,

the study of the local behaviour of solutions to porous medium type equations is useful

to understand also the p-laplacian.

Intrinsic rescaling and Harnack inequality

Let (x0, t0) ∈ ΩT , ρ > 0, and Bρ(x0) be the ball of radius ρ centered at x0.

The cylinders associated to the heat equation (0.4) and to the porous medium equation

are of the type

Bρ(x0)× (t0 − ρ2, t0 + ρ2),

since the structure of these equations is invariant under those space-time variable trans-

formations such that
|x|2
t

remains constant.

Instead, in the case of the p-laplacian, the space-time variable transformations for which

the structure remains unchanged are those that keep constant the ratio
|x|p
t

; therefore

the cylinders associated to this class of parabolic equations are

Bρ(x0)× (t0 − ρp, t0 + ρp).

The evolution of the diffusion process scales differently in space and time, and the different

scaling depends on the pointwise value of u itself. This observation lead DiBenedetto and

Friedman ([27, 28]) to introduce the intrinsic rescaling, that is, a rescaling determined

by the function itself.

To explain this concept, let us think about the prototype equations (0.4), (0.5), (0.6).

Given a non-negative solution u, for any constant α > 0 let us consider v = αu.

In the case of the heat equation we have

ut −Δu = 0 ⇐⇒ vt −Δv = 0,
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while for the p-laplacian or the porous medium equation, we find respectively

vt − div
(|Dv|p−2Dv

)
= 0 ⇐⇒ ut − αp−2div

(|Du|p−2Du
)
= 0,

vt −Δ(vm) = 0 ⇐⇒ ut − αm−1Δ(um) = 0.

As a consequence, while for the heat equation v is again a solution for any choice of

the constant α, in the other cases this is no more true, except trivially for α = 1. The

homogeneity is restored once we further stretch the time variable by a factor and we work

with suitable intrinsic cylinders (see (0.12) and (0.14) below).

This has been a main tool to prove local Hölder regularity (see [23, 17, 18]) and Harnack

inequalities (see [24, 25, 35, 19] and [30, 31, 32, 33]) for solutions to (0.8) with conditions

(0.9) or (0.10) and some assumptions on p or m.

Let us describe more in detail the results concerning Harnack type inequalities starting

from the p-laplacian case, letting u be a non-negative, local weak solutions to (0.8)-(0.9).

If p > 2, then u satisfies the parabolic Harnack inequality in some intrinsic form. Precisely,

there exist positive constants γ and c depending only upon data such that

γ−1 sup
x∈Bρ(x0)

u(x, t0 − θρp) ≤ u(x0, t0) ≤ γ inf
x∈Bρ(x0)

u(x, t0 + θρp), (0.11)

where

θ =

(
c

u(x0, t0)

)p−2
,

whenever the intrinsic parabolic cylinder

B2ρ(x0)×
(
t0 − θ(2ρ)p, t0 + θ(2ρ)p

)
(0.12)

is contained within the domain of definition of the solution.

Consider now the singular case 1 < p < 2: here there is a critical value of p, namely

p∗ =
2N

N + 1
,

to be taken into account. If p is supercritical, i.e. p∗ < p < 2, then (see [32]) u satisfies

forward, backward and elliptic Harnack inequalities. More precisely, there exist positive

constants γ̃ and δ depending only upon the data, such that

γ̃−1 sup
x∈Bρ(x0)

u(x, τ) ≤ u(x0, t0) ≤ γ̃ inf
x∈Bρ(x0)

u(x, τ), (0.13)

for all

t0 − δ [u(x0, t0)]
2−p ρp ≤ τ ≤ t0 + δ [u(x0, t0)]

2−p ρp,
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Introduction

for each cylinder (0.12) contained in the domain of u.

The first Harnack type inequality in the subcritical range 1 < p ≤ p∗ was given by

Bonforte, Iagar and Vázquez (see [11]) who proved forward, backward and elliptic Harnack

inequalities only for the prototype equation (0.5), by letting the constant γ̃ depend on

the solution itself through the ratio of suitable integral norms of u and slightly changing

the intrinsic geometry.

Finally, a recent paper by Fornaro and Vespri [37] extends the above result [11] to the

quasi-linear p-laplacian case, using a comparison principle.

We conclude this section by briefly addressing to the case of the porous medium type

equations. Some of the techniques just described for the p-laplacian type equations (for

instance, those in [23, 17, 30, 33]) can be adapted; however, the porous medium case

shows some peculiarities which need to be treated in different ways.

In particular, in the degenerate case m > 1 one can show the same inequality of Harnack

type (0.11) corresponding to p > 2. In the singular case m < 1, there exists again a

critical exponent

m∗ =
N − 2

N
,

and the inequality (0.13) holds in the subcritical range m∗ < m < 1. In these results, the

constant θ becomes

θ =

(
c

u(x0, t0)

)m−1

and, as one can expect, the intrinsic cylinders take the form

Bρ(x0)×
(
t0 − θρ2, t0 + θρ2

)
. (0.14)

Results of the thesis

The results of this Ph.D. thesis follow basically three directions. In the first part, which

regards the study of quasi-linear porous medium type equations, we show local Hölder

continuity for signed solutions, and Harnack inequality for positive solutions; in the second

part, we obtain existence and regularity results for a certain class of non-coercive elliptic

equations. We now describe these results more in detail.

• Hölder continuity. As we already mentioned above, in some physical applica-

tions it is natural to consider positive solutions to quasi-linear parabolic equations of the

form (0.8), and it is also a very useful simplification from the mathematical point of view.

Therefore, most of the papers directly deal with positive solutions.
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A first Hölder regularity result for signed solutions were obtained in 1988 by Chen and

DiBenedetto [17], who treated the case of singular p-laplacian type equations. Later on,

in 1993 Porzio and Vespri [57] considered the case of a degenerate doubly non-linear

equation, whose prototype is

ut − div
(|u|m−1|Du|p−2Du

)
= 0,

for p ≥ 2 and m ≥ 1. Notice that this kind of equations admits as a particular case

both the degenerate p-laplacian type equations (for m = 1 and p > 2) and the degenerate

porous medium type equations (for p = 2 and m > 1). As a consequence, it only remained

open the case of the singular porous medium type equations. This is precisely our first

result, Theorem 2.1. Our proof essentially follows the lines of [17]; an important point of

our strategy is to work with a different equation, apparently more complicate but instead

easier to handle with, to which we can reduce thanks to a change of variable introduced

by Vespri in [68]. This result is contained in the forthcoming paper [59].

• Harnack inequality. Let us now pass to the results about the Harnack inequal-

ity. We briefly recall the different steps of the history, that we have already outlined

above.

In the case of p-laplacian type equations, a parabolic Harnack type inequality has been

proved for the degenerate case p > 2 by DiBenedetto in [24] (see also [26]). For the

singular case p < 2, a backward, forward and elliptic type Harnack inequality has been

proved for the supercritical case p∗ < p < 2 by DiBenedetto, Gianazza and Vespri in

[31], and for the subcritical case 1 < p ≤ p∗ first by Bonforte, Iagar and Vazquez in [11]

only for the prototype equation, and then by Fornaro and Vespri in [37] for the general

case. In particular, in [37] the authors make use of a comparison principle and of a higher

integrability result given in [38].

In the case of porous medium type equations, instead, the results for the degenerate case

m > 1 and for the singular supercritical case m∗ < m < 1 have been obtained together

with their p-laplacian counterpart, while for the subcritical case 0 < m ≤ m∗ the only

available result is for the prototype equation, and it has been obtained by Bonforte and

Vazquez in [12].

Our second result, Theorem 3.1 provides a Harnack type inequality for the general porous

medium type equation in the whole range 0 < m < 1, thus in particular completing

the analysis for the subcritical case. Our construction resembles that of [37], again us-

ing a comparison principle (see Section 3.2) and a higher integrability result obtained by

Fugazzola in [39]. Our result is the object of the paper [60].
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• Results for the elliptic problem. The work of the second part of this thesis

(whose results are contained in the recent paper [58]) started after a fruitful discussion

with Lucio Boccardo. He has recently dealt in [7] with the elliptic non-coercive problem{
−div(M(x)Du

)
= −div(uE(x)

)
+ f in Ω

u = 0 on ∂Ω,
(0.15)

where M is a bounded, elliptic, measurable matrix, and E and f are measurable functions

satisfying suitable summability properties. He has established existence and regularity

results, which depend on the summability of |E| and f .

We are able to prove the analogous of the results of [7] for the equation{
−div (M(x)Du) = −div (|u|θ−1 uE(x)

)
+ f in Ω

u = 0 on ∂Ω,

with 0 < θ < 1. Notice that our problem is a sort of interpolation between the linear

case, corresponding to θ = 0, and (0.15), corresponding to θ = 1.

In fact, also all our results need assumptions on |E| and on f which are weaker than those

in [7], and reduce exactly to those of [7] when θ → 1.
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Chapter 1

Notations and functional spaces

Throughout this chapter we consider Ω to be a bounded domain in R
N .

For ρ > 0 and y ∈ R
N , denote by Bρ(y) the ball of radius ρ centered at y and by

Kρ(y) the cube centered at y with edge 2ρ, i.e.

Kρ(y) =

{
x ∈ R

N : max
1≤i≤N

|xi − yi| < ρ

}
.

If y coincides with the origin, we let Bρ(0) = Bρ and Kρ(0) = Kρ.

As usual, given A ⊆ Ω, we will denote by |A| the Lebesgue measure of the set A, by ∂A

its boundary, and by Ā its closure.

If f ∈ Lq(Ω), for some 1 ≤ q ≤ ∞, we denote by ‖f‖q,Ω the Lq norm of f over Ω;

we also write ‖f‖q whenever the specification of the domain Ω is unambiguous from the

context.

Let us recall some basic facts we will need in the sequel, for the proofs related to this part

we will refer to [13] and [1].

Given 1 ≤ p ≤ ∞ and f ∈ Lp(Ω), we say that f ∈ W 1,p(Ω) if there exist gi ∈ Lp(Ω),

for i = 1, . . . , N such that∫
Ω

f
∂ϕ

∂xi

dx = −
∫
Ω

giϕ dx ∀ϕ ∈ C∞0 (Ω).

For any f ∈ W 1,p(Ω), we let
∂f

∂xi

= gi and Df =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xN

)
.

Let us remind that W 1,p(Ω) is a Banach space with norm

‖f‖W 1,p = ‖f‖Lp +
N∑
i=1

∥∥∥∥ ∂f∂xi

∥∥∥∥
Lp

∀f ∈ W 1,p(Ω).

Recall also that the space W 1,p
0 (Ω) is defined as the closure of C1

0(Ω) in W 1,p(Ω).

10



CHAPTER 1. Notations and functional spaces

Theorem 1.1. (Sobolev)

For 1 ≤ p < N , W 1,p(Ω) ↪→ Lp∗(Ω), with p∗ given by
1

p∗
=

1

p
− 1

N
, where ↪→ denotes a

continuous injection.

In particular, there exists a positive constant S depending only upon p, N and Ω, such

that

‖f‖Lp∗ ≤ S‖Df‖Lp ∀f ∈ W 1,p
0 (Ω).

Theorem 1.2. (Poincaré)

If 1 ≤ p <∞, then there exists a constant P , depending upon p and Ω, such that

‖f‖Lp ≤ P‖Df‖Lp ∀f ∈ W 1,p
0 (Ω).

In particular, this implies that ‖Df‖Lp is a norm in W 1,p
0 (Ω), which is equivalent to

‖f‖W 1,p .

If k ∈ R and v ∈ W 1,p(E), introduce the truncated functions

(v − k)± = max{±(v − k), 0}.

We have the following result, due to Stampacchia [63].

Lemma 1.1. Let v ∈ W 1,p(Ω). Then (v − k)± ∈ W 1,p(Ω), for all k ∈ R; if we assume

also that the trace of v on ∂Ω is essentially bounded and

‖v‖∞,∂Ω ≤M for some M > 0,

then, for all k ≥M , (v − k)± ∈ W 1,p
0 (Ω).

One can find a simple proof of the previous lemma in [40].

1.1 Some technical lemmas

Let us recall the general Young inequality.

Lemma 1.2. For p, q > 1 conjugate exponents

(
i.e.

1

p
+

1

q
= 1

)
and ε > 0, one has

ab ≤ εp

p
ap +

1

εqq
bq ∀a, b > 0.

The following lemma, proved in [21] by De Giorgi, will be very useful in the sequel.
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Lemma 1.3. Let v ∈ W 1,1(Kρ(y)) and let k, l ∈ R, with k < l. There exists a positive

constant c, depending only upon N and p, such that

(l − k)|{v > l}| ≤ c
ρN+1

|{v < k}|
∫
{k<v<l}

|Dv| dx. (1.1)

The previous inequality (1.1) is a particular case of a more general Poincaré type

inequality (see [26]).

Let us state now a lemma on fast geometric convergence one can find in [21]; for a

simpler proof see again [26] and also [46].

Lemma 1.4. Let {Yn}n∈N be a sequence of positive numbers satisfying

Yn+1 ≤ CbnY 1+α
n ,

being C, b > 1 and α > 0. If

Y0 ≤ C−
1
α b−

1
α2 ,

then Yn converges to 0, as n tends to +∞.

Here we state a measure-theoretical lemma, recently obtained in [29], see also [34].

Lemma 1.5. Let v ∈ W 1,1(Kρ) satisfy

‖v‖W 1,1(Kρ) ≤ α ρN−1, |{v > 1}| ≥ β|Kρ| (1.2)

for some α > 0 and β ∈ (0, 1). Then for every δ, λ ∈ (0, 1), there exist x0 ∈ Kρ and

ε ∈ (0, 1) depending upon α, β, δ, λ,N such that∣∣{v > λ} ∩Kερ(x0)
∣∣ > (1− δ)

∣∣Kερ(x0)
∣∣.

Roughly speaking, the previous lemma asserts that if the set where v is bounded away

from zero occupies a sizeable portion of Kρ, then there exists at least one point x0 and a

neighborhood Kερ(x0) such that v remains large in a large portion of Kερ(x0). Thus the

set where v is positive clusters about at least one point of Kρ.

1.2 Parabolic spaces

For T > 0 denote the cylindrical domain

ΩT = Ω× (0, T ],

12



CHAPTER 1. Notations and functional spaces

and let Γ = ∂ΩT \ Ω̄× {T} be the parabolic boundary of ΩT .

Let us introduce the space

Lq,r(ΩT ) := Lr (0, T ;Lq(Ω))

with q, r ≥ 1, that is the space of the functions f defined and measurable in ΩT such that

‖f‖q,r; ΩT
:=

(∫ T

0

(∫
Ω

|f |qdx
) r

q

dt

) 1
r

is finite.

Also f ∈ Lq,r
loc(ΩT ) if, for every compact set K ⊂ Ω and every subinterval [t1, t2] ⊂ (0, T ],

the following integral ∫ t2

t1

(∫
K
|f |qdx

) r
q

dt

is finite.

If q = r, Lq,r(ΩT ) = Lq(ΩT ) and Lq,r
loc(ΩT ) = Lq

loc(ΩT ). These definitions are extended in

the obvious way when either q or r are infinity.

Here we introduce spaces of functions in which typically solutions to parabolic equations

in divergence form are found (see [46]).

Let m, p ≥ 1 and consider the Banach spaces

V m,p(ΩT ) := L∞
(
0, T ;Lm(Ω)

) ∩ Lp
(
0, T ;W 1,p(Ω)

)
V m,p
0 (ΩT ) := L∞

(
0, T ;Lm(Ω)

) ∩ Lp
(
0, T ;W 1,p

0 (Ω)
)

both equipped with the norm

‖v‖V m,p(ΩT ) = ess sup
0<t<T

‖v(·, t)‖m,Ω + ‖Dv‖p,ΩT
;

when m = p, set V p,p(ΩT ) = V p(ΩT ) and V p,p
0 (ΩT ) = V p

0 (ΩT ).

These spaces are embedded in Lq(ΩT ), for some q > p, in the following way.

Proposition 1.1. If v ∈ V m,p
0 (ΩT ), then there exists a positive constant c = c(N, p,m)

such that ∫∫
ΩT

|v|qdxdt ≤ cq
(∫∫

ΩT

|Dv|pdxdt
)(

ess sup
0<t<T

∫
Ω

|v|mdx
) p

N

(1.3)

with q = p
N +m

N
. In particular

‖v‖q,ΩT
≤ c‖v‖V m,p(ΩT ).

13



Proposition 1.2. If ∂Ω is piecewise smooth, and v ∈ V m,p(ΩT ), then there exists a

positive constant c = c(N, p,m, ∂Ω) such that

‖v‖q,ΩT
≤ c

(
1 +

T

|Ω|N(p−m)+mp
Nm

) 1
q

‖v‖V m,p(ΩT ),

with q as in Proposition 1.1.

For a proof of the previous propositions one can see [26].

Notice that, taking m = p in Proposition 1.1 and 1.2, and applying Hölder inequality, one

obtains

Corollary 1.1. Let p > 1. If v ∈ V p
0 (ΩT ), then there exists a positive constant c depending

only upon N and p such that

‖v‖pp,ΩT
≤ c |{|v| > 0}| p

N+p ‖v‖pV p(ΩT ).

Corollary 1.2. Let p > 1. If v ∈ V p(ΩT ), then there exists a positive constant c depending

only upon N , p and ∂Ω such that

‖v‖pp,ΩT
≤ c

(
1 +

T

|Ω| pN
) N

N+p

|{|v| > 0}| p
N+p ‖v‖pV p(ΩT ).

We can give now a sort of parabolic version of Lemma 1.1.

Lemma 1.6. Let v ∈ V m,p(ΩT ). Then (v − k)± ∈ V m,p(ΩT ) for all k ∈ R. If in addition

∂Ω is piecewise smooth, the trace of v(·, t) on ∂Ω is essentially bounded and

ess sup
0<t<T

‖v(·, t)‖∞,∂Ω ≤M for some M > 0,

then (v − k)± ∈ V m,p
0 (ΩT ) for all k ≥M .

14



Part I

Singular porous medium type

equation
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Let Ω be an open set in R
N , for T > 0 denote the cylindrical domain

ΩT = Ω× (0, T ],

and let Γ = ∂ΩT \ Ω̄× {T} be the parabolic boundary of ΩT .

We consider quasi-linear homogeneous parabolic partial differential equations of the

form

ut − divA(x, t, u,Du) = 0 weakly in ΩT , (1.4)

where A : ΩT × R
N+1 → R

N is measurable and subject to the structure conditions{
A(x, t, z, ξ) · ξ ≥ C0m|z|m−1|ξ|2
|A(x, t, z, ξ)| ≤ C1m|z|m−1|ξ|

(1.5)

for a.e. (x, t) ∈ ΩT , for every z ∈ R, ξ ∈ R
N , where C0, C1 are given positive constants

and m > 0.

The prototype of this class of parabolic equations is the porous medium equation

ut − div
(
m|u|m−1Du

)
= 0 weakly in ΩT . (1.6)

The modulus of ellipticity of this class of parabolic equations is |u|m−1. Whenever m > 1,

such a modulus vanishes when u vanishes and for this reason we say that the equation

(1.4) is degenerate. Whenever 0 < m < 1, such a modulus goes to infinity when u→ 0

and for this reason we say that the equation (1.4) is singular.

We are interested only in local solutions to singular porous medium type equation.

Let us give the notion of weak solution for this kind of equations as follows.

A function u ∈ Cloc(0, T ;L
2
loc(Ω)) with |u|m ∈ L2

loc (0, T ;H
1
loc(Ω)) is a local weak sub

(super)-solution to (1.4) if for every compact set K ⊂ Ω and every subinterval [t1, t2] ⊂
(0, T ] ∫

K
uϕ dx

∣∣t2
t1 +

∫ t2

t1

∫
K
[−uϕt +A(x, t, u,Du) ·Dϕ]dxdt ≤ (≥) 0, (1.7)

for all non-negative test functions ϕ ∈ W 1,2
loc (0, T ;L

2(K)) ∩ L2
loc(0, T ;W

1,2
0 (K)).

The parameters {N,m,C0, C1} are the data of our problem. In this first part, the

letter c will be used to denote a constant depending upon the data, which can be quan-

titavely determined a priori only in terms of the indicated parameters. As usual, the

constant c may change from line to line.
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Chapter 2

Hölder continuity of solutions of

variable sign to singular porous

medium type equation

The aim of this chapter is to show that local solutions of variable sign to our problem

(1.4)-(1.5), with 0 < m < 1, are locally Hölder continuous.

Let us introduce the parabolic m - distance from a compact set K ⊂ ΩT to the

parabolic boundary Γ in the following way

m - dist(K,Γ) = inf
(x,t)∈K, (y,s)∈Γ

(
‖u‖

1−m
2

∞,ΩT
|x− y|+ |t− s| 12

)
.

Now, we can state the main result of this chapter.

Theorem 2.1. Let u be a locally bounded, local, weak solution to (1.4)− (1.5). Then u is

locally Hölder continuous in ΩT and there exist constants γ > 1 and α ∈ (0, 1) such that

for every compact set K ⊂ ΩT

|u(x1, t1)− u(x2, t2)| ≤ γ ‖u‖∞,ΩT

⎛⎝‖u‖ 1−m
2

∞,ΩT
|x1 − x2|+ | t1 − t2| 12
m - dist(K,Γ)

⎞⎠α

,

for every pair of points (x1, t1), (x2, t2) ∈ K.

The constant γ depends only upon the data, the norm ‖u‖∞,K and m - dist(K,Γ), while
the constant α depends only upon the data and the norm ‖u‖∞,K.

We will prove this result by applying a technique due to DiBenedetto [26] via an

alternative argument. We introduce a suitable change of variable, so that (1.4) is rewritten
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as (2.2) below. The Hölder continuity of a solution u to (2.2) will be heuristically a

consequence of the following fact: for every (x0, t0) ∈ ΩT there exists a family of nested

and shrinking cylinders in which the essential oscillation of u goes to zero in a way that

can be quantitavely determined in terms of the data.

Since this result is well known for non-negative solutions (see [34]), it will suffice to

consider the case in which the infimum of our solution is negative and the supremum is

positive.

2.1 Change of variables

In order to justify some of the following calculations, we assume u to be smooth. In no

way this is a restrictive assumption: indeed the modulus of continuity of u will play no

role in the forthcoming calculations.

Let us consider n ∈ N such that

n >
1

m
,

and define

|v|n−1v = u,

which is equivalent to

v = |u| 1n−1u.
Observe that

Du = n|v|n−1Dv, Dv =
1

n
|u| 1n−1Du.

With this substitution equation (1.4) becomes(|v|n−1v)
t
− divÃ(x, t, v,Dv) = 0 weakly in ΩT ,

where

Ã(x, t, v,Dv) = A(x, t, u,Du)
∣∣
u=|v|n−1v

.

Now, let us see what the structure conditions become

Ã(x, t, v,Dv) ·Dv =
1

n
|u| 1n−1A(x, t, u,Du) ·Du ≥ m

n
C0|u| 1n+m−2|Du|2

= nmC0|v|1+nm−2n|v|2(n−1)|Dv|2 = nmC0|v|nm−1|Dv|2;
since the exponent is nm− 1 > 0, the equation is now “degenerate”.

In the same way

|Ã(x, t, v,Dv)| = |A(x, t, u,Du)| ≤ mC1|u|m−1|Du|
= mC1|v|n(m−1)n|v|n−1|Dv| = nmC1|v|nm−1|Dv|.

18



CHAPTER 2. Hölder continuity of solutions of variable sign

If we denote our variable with u again, then we consider equations of the type(|u|n−1u)
t
− divÃ(x, t, u,Du) = 0,

with structure conditions{
Ã(x, t, z, ξ) · ξ ≥ nmC0|z|nm−1|ξ|2
|Ã(x, t, z, ξ)| ≤ nmC1|z|nm−1|ξ|,

(2.1)

for a.e. (x, t) ∈ ΩT and for every z ∈ R, ξ ∈ R
N . Without loss of generality, we can

assume n to be odd; in this case

|u|n−1u = un,

and we can rewrite the equation in the following way

(un)t − divÃ(x, t, u,Du) = 0. (2.2)

Hence we have reduced problem (1.4)-(1.5) to (2.2) with structure conditions (2.1).

Let us see now how the notion of weak solution becomes in this new setting.

A function u such that un ∈ Cloc(0, T ;L
2
loc(Ω)) with |u|nm ∈ L2

loc(0, T ;W
1,2
loc (Ω)) is a local

weak sub(super)-solution to (2.2) if for every compact set K ⊂ Ω and every subinterval

[t1, t2] ⊂ (0, T ]∫
K
unϕdx

∣∣t2
t1 +

∫ t2

t1

∫
K
[−unϕt + Ã(x, t, u,Du) ·Dϕ]dxdt ≤ (≥) 0

for all non-negative test functions ϕ ∈ W 1,2
loc (0, T ;L

2(K)) ∩ L2
loc(0, T ;W

1,2
0 (K)).

2.2 Preliminary estimates

Given (y, s) ∈ ΩT and λ,R > 0, we denote the generic cylinder as

(y, s) +QR(λ) := KR(y)× (s− λ, s].

Let us prove energy estimates we will need later. We start with estimates for super-

solutions, then we will state the analogous ones for sub-solutions.

Proposition 2.1. (Energy estimates for super-solutions)

Let u be a local, weak super-solution to (2.2) in ΩT . There exists a positive constant c,
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depending only upon data, such that for every cylinder (y, s) + QR(λ) ⊂ ΩT , every level

k ∈ R and every non-negative, piecewise smooth cutoff function ζ vanishing on ∂KR(y),

ess sup
s−λ<t≤s

∫
KR(y)

(∫ k

u

(k − s)+s
n−1ds

)
ζ2(x, t) dx

+

∫∫
(y,s)+QR(λ)

|u|nm−1|D[(u− k)−ζ]|2dxdτ

≤ c

{∫
KR(y)

(∫ k

u

(k − s)+s
n−1ds

)
ζ2(x, s− λ) dx

+

∫∫
(y,s)+QR(λ)

(∫ k

u

(k − s)+s
n−1ds

)
ζ |ζτ | dxdτ

+

∫∫
(y,s)+QR(λ)

|u|nm−1(u− k)2−|Dζ|2dxdτ
}
.

(2.3)

Proof. After a translation we may assume that (y, s) coincides with the origin and it

suffices to prove (2.3) for the cylinder QR(λ). In the weak formulation of (2.2), take the

test function

ϕ = −(u− k)−ζ2

over Qt = KR × (−λ , t], where −λ < t ≤ 0.

Taking into account that

∂

∂τ

(∫ k

u

(k − s)+s
n−1ds

)
= −un−1(u− k)−uτ ,

and estimating the various terms separately, we have first

−
∫∫

Qt

(un)τ (u− k)−ζ2 dxdτ = n

∫∫
Qt

∂

∂τ

(∫ k

u

(k − s)+s
n−1ds

)
ζ2 dxdτ

≥n

∫
KR

(∫ k

u

(k − s)+s
n−1ds

)
ζ2(x, t) dx

− n

∫
KR

(∫ k

u

(k − s)+s
n−1ds

)
ζ2(x,−λ) dx

− 2n

∫∫
Qt

(∫ k

u

(k − s)+s
n−1ds

)
ζ |ζτ | dxdτ
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CHAPTER 2. Hölder continuity of solutions of variable sign

From the structure conditions (2.1) and Young’s inequality it follows that

−
∫∫

Qt

Ã(x, τ, u,Du)D
[
(u− k)−ζ2

]
dxdτ

=−
∫∫

Qt

Ã(x, τ, u,Du)D(u− k)−ζ2 dxdτ − 2

∫∫
Qt

Ã(x, τ, u,Du) (u− k)− ζ Dζ dxdτ

≥nmC0

∫∫
Qt

|u|nm−1∣∣D(u− k)−
∣∣2 ζ2 dxdτ

− 2nmC1

∫∫
Qt

|u|nm−1∣∣D(u− k)−
∣∣ (u− k)− ζ |Dζ| dxdτ

≥nmC0

2

∫∫
Qt

|u|nm−1∣∣D[(u− k)−ζ
]∣∣2 dxdτ − 2nm

C2
1

C0

∫∫
Qt

|u|nm−1 (u− k)2− |Dζ|2 dxdτ.

Combining these estimates and taking the supremum over t ∈ (−λ , 0 ], proves the propo-
sition.

Proposition 2.2. (Energy estimates for sub-solutions)

Let u be a local, weak sub-solution to (2.2) in ΩT . There exists a positive constant c,

depending only upon data, such that for every cylinder (y, s) + QR(λ) ⊂ ΩT , every level

k ∈ R and every non-negative, piecewise smooth cutoff function ζ vanishing on ∂KR(y),

ess sup
s−λ<t≤s

∫
KR(y)

(∫ u

k

(s− k)+s
n−1ds

)
ζ2(x, t) dx

+

∫∫
(y,s)+QR(λ)

|u|nm−1|D[(u− k)+ζ]|2dxdτ

≤ c

{∫
KR(y)

(∫ u

k

(s− k)+s
n−1ds

)
ζ2(x, s− λ) dx

+

∫∫
(y,s)+QR(λ)

(∫ u

k

(s− k)+s
n−1ds

)
|ζτ | dxdτ

+

∫∫
(y,s)+QR(λ)

|u|nm−1(u− k)2+|Dζ|2dxdτ
}
.

(2.4)

Proof. The proof is analogous to the previous one, just take the test function

ϕ = (u− k)+ζ
2,

and observe that
∂

∂τ

(∫ u

k

(s− k)+s
n−1ds

)
= un−1(u− k)+uτ .
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Let us introduce the logarithmic function

ψ (Hn, (un − kn)+, ν
n) = log+

(
Hn

Hn − (un − kn)+ + νn

)
,

where

Hn = ess sup
(x0,t0)+QR(λ)

(un − kn)+, 0 < νn < min {1, Hn} ,

and for s > 0

log+ s = max{log s, 0}.

Proposition 2.3. (Logarithmic estimates)

Let u be a local, weak solution to (2.2) in ΩT . There exists a positive constant c, depending

only upon data, such that for every cylinder (y, s) + QR(λ) ⊂ ΩT , every level k ∈ R and

every non-negative, piecewise smooth cutoff function ζ = ζ(x)

ess sup
s−λ<t≤s

∫
KR(y)

ψ2 (Hn, (un − kn)+, ν
n) (x, t) ζ2(x) dx

≤
∫
KR(y)

ψ2 (Hn, (un − kn)+, ν
n) (x, s− λ) ζ2(x) dx

+ c

∫∫
(y,s)+QR(λ)

|u|n(m−1) ψ (Hn, (un − kn)+, ν
n) |Dζ|2 dxdτ.

(2.5)

Proof. Again we assume that (y, s) coincides with the origin. Put v = un and, in the

weak formulation of (2.2), take the test function

ϕ =
∂ψ2

∂v
ζ2 = 2ψψ′ζ2,

over Qt = KR × (−λ , t], where −λ < t ≤ 0.

By direct calculation (
ψ2
)′′

= 2(1 + ψ)(ψ′)2 ∈ L∞loc(ΩT ), (2.6)

which implies that such a ϕ is an admissible testing function.

Estimating the various terms separately, we have∫∫
Qt

vτ
∂ψ2

∂v
ζ2dxdτ =

∫∫
Qt

∂

∂τ
ψ2 ζ2dxdτ

=

∫
KR

ψ2(x, t) ζ2(x) dx−
∫
KR

ψ2(x,−λ) ζ2(x) dx,
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CHAPTER 2. Hölder continuity of solutions of variable sign

using (2.6) and the structure conditions (2.1)∫∫
Qt

Ã(x, τ, u,Du)D

(
∂ψ2

∂v
ζ2
)
dxdτ

=

∫∫
Qt

Ã(x, τ, u,Du)Dv(ψ2)′′ ζ2dxdτ + 2

∫∫
Qt

(ψ2)′ ζ Ã(x, τ, u,Du)Dζ dxdτ

=2n

∫∫
Qt

un−1Ã(x, τ, u,Du)Du (1 + ψ)(ψ′)2 ζ2dxdτ

+ 4

∫∫
Qt

ψ ψ′ ζ Ã(x, τ, u,Du)Dζ dxdτ

≥ 2n2mC0

∫∫
Qt

un−1|u|nm−1|D(u− k)+|2(1 + ψ)(ψ′)2ζ2dxdτ

− 4nmC1

∫∫
Qt

|u|nm−1|D(u− k)+| ζ |Dζ|ψψ′dxdτ.

Applying Young’s inequality, we get∫∫
Qt

Ã(x, τ, u,Du)D

(
∂ψ2

∂v
ζ2
)
dxdτ

≥ 2nm(nC0 − C1ε
2)

∫∫
Qt

|u|nm−1|u|n−1|D(u− k)+|2ψ(ψ′)2ζ2dxdτ

− 2nm
C1

ε2

∫∫
Qt

|u|n(m−1)|Dζ|2ψ dxdτ.

Combining these estimates, discarding the term with the gradient on the left-hand side,

and taking the supremum over t ∈ (−λ , 0 ], proves the proposition.

2.3 Reduction of the oscillation

To obtain the Hölder regularity, we argue as usual by a reduction of oscillation procedure.

Let us state the basic result.

Theorem 2.2. Let (y, s) ∈ ΩT , and ρ, ω > 0 such that

(y, s) +Q2θρ

(
(2ρ)2

ωnm−1

)
⊂ ΩT , ess osc

(y,s)+Q2θρ

(
(2ρ)2

ωnm−1

)u ≤ ω ,

where

θ = ω
1−n
2 .

Then, there exist η∗, c0 ∈ (0, 1), depending only upon data, such that

ess osc
Q∗ u ≤ η∗ω ,
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being

Q∗ = (y, s) +Qθρ

(
θ∗ρ2

)
, θ∗ =

c0
2
ω1−nm .

Our proof of this theorem splits into two alternatives.

Let us define

μ+ ≥ ess sup
(y,s)+Q2θρ

(
(2ρ)2

ωnm−1

)u , μ− ≤ ess inf
(y,s)+Q2θρ

(
(2ρ)2

ωnm−1

)u ,

such that ω = μ+ − μ−.

Let us recall that, without loss of generality, we can assume μ+ > 0, μ− < 0 and

μ+ ≥ |μ−| .

Indeed, otherwise just change the sign of u and work with the new function.

2.3.1 The first alternative

We distinguish two alternatives, the first of them consists in assuming∣∣∣∣{u < μ− +
ω

2

}
∩
{
(y, s) +Q2θρ

(
(2ρ)2

ωnm−1

)}∣∣∣∣ ≤ c0

∣∣∣∣Q2θρ

(
(2ρ)2

ωnm−1

)∣∣∣∣ , (2.7)

being c0 ∈ (0, 1) a constant to be specified later.

Let us prove now the following De Giorgi type lemma.

Lemma 2.1. There exists a number c0 ∈ (0, 1), depending only upon data, such that if

(2.7) is true, then

u ≥ μ− +
ω

4
a.e. in (y, s) +Qθρ

(
ρ2

ωnm−1

)
. (2.8)

Proof. Without loss of generality we may assume (y, s) = (0, 0) and for k = 0, 1, . . ., set

ρk = ρ+
ρ

2k
, K̃k = Kθρk , Q̃k = K̃k ×

(
− ρ2k
ωnm−1 , 0

]
.

Let ζk be a piecewise smooth cutoff function in Q̃k vanishing on the parabolic boundary

of Q̃k such that 0 ≤ ζk ≤ 1, ζk = 1 in Q̃k+1 and

|Dζk| ≤ 2k+2

ρ
ω

n−1
2 , 0 ≤ ζk,t ≤ 2k

ρ2
ωnm−1.
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CHAPTER 2. Hölder continuity of solutions of variable sign

Consider the following levels

hk = μ− +
ω

4
+

ω

2k+2
if μ− ≥ −ω

8
,

hk = μ− +
ω

25
+

ω

2k+5
if μ− < −ω

8
.

(2.9)

We treat first the least favourable case in which u might be close to zero, i.e. we assume

first

μ− ≥ −ω

8
. (2.10)

Write down the energy estimates (2.3) for (u− hk)− over the cylinder Q̃k, to get

ess sup

− ρ2
k

ωnm−1<t≤0

∫
K̃k

(∫ hk

u

(hk − s)+s
n−1ds

)
ζ2k(x, t) dx

+

∫∫
Q̃k

|u|nm−1|D[(u− hk)−ζk]|2dxdτ

≤ c

{∫∫
Q̃k

(∫ hk

u

(hk − s)+s
n−1ds

)
|ζk,τ | dxdτ +

∫∫
Q̃k

|u|nm−1(u− hk)
2
−|Dζk|2dxdτ

}
.

Let us introduce the truncation

v = max
(
u,

ω

24

)
in order to estimate the terms with the integral over [u, hk]; we have∫ hk

u

(hk − s)+s
n−1ds ≥

∫ hk

v

(hk − s)+s
n−1ds ≥ vn−1

(v − hk)
2
−

2
≥
( ω
24

)n−1 (v − hk)
2
−

2
.

(2.11)

As (u− hk)− ≤ ω and μ− < 0, we have∫ hk

u

(hk − s)+s
n−1ds ≤ hn−1

k

(u− hk)
2
−

2
≤ ωn+1

2
. (2.12)

By the definition of v, we obtain∫∫
Q̃k

vnm−1|D[(v − hk)−ζk]|2dxdτ

=

∫∫
Q̃k∩{u> ω

24
}
|u|nm−1|D[(u− hk)−ζk]|2dxdτ

+

∫∫
Q̃k∩{u≤ ω

24
}
( ω
24

)nm−1 ( ω
24
− hk

)2
−
|Dζk|2dxdτ

≤
∫∫

Q̃k

|u|nm−1|D[(u− hk)−ζk]|2dxdτ +
22(k+1)

ρ2
ωn(m+1)|Ak| ,

(2.13)
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where

Ak = {u < hk} ∩ Q̃k.

Let us prove

Ak = Ãk := {v < hk} ∩ Q̃k. (2.14)

The inclusion Ak ⊇ Ãk follows by the definition of v. Prove the other one: if v = u there

is nothing to prove; if v =
ω

24
, by (2.10) we have

hk = μ− +
ω

4
+

ω

2k+2
≥ ω

8
+

ω

2k+2
≥ ω

24
.

Taking into account that |u| ≤ ω, (2.11)–(2.14) yield( ω
24

)n−1
ess sup

− ρ2
k

ωnm−1<t≤0

∫
K̃k

(v − hk)
2
− ζ

2
k(x, t) dx

+

∫∫
Q̃k

vnm−1|D[(v − hk)−ζk]|2dxdτ ≤ c
22k

ρ2
ωn(m+1)|Ãk|.

and again, thanks to the definition of v, it follows

ess sup

− ρ2
k

ωnm−1<t≤0

∫
K̃k

(v − hk)
2
− ζ

2
k(x, t) dx+

( ω
24

)n(m−1) ∫∫
Q̃k

|D[(v − hk)−ζk]|2dxdτ

≤ c
22k

ρ2
ωnm+1|Ãk|.

(2.15)

The change of variables

x̄ = x θ−1, t̄ = ωnm−1 τ

maps the cube K̃k into Kρk and the cylinder Q̃k into Qk = Kρk × (−ρ2k, 0].
With (x̄, t̄) → u(x̄, t̄) denoting again the transformed function, the assumption (2.7) of

the lemma becomes ∣∣∣{v < μ− +
ω

2

}
∩Q0

∣∣∣ ≤ c0|Q0|. (2.16)

Performing such a change of variables in (2.15), we have

ess sup
−ρ2k<t≤0

∫
Kρk

(v − hk)
2
− ζ

2
k(x̄, t) dx̄+

∫∫
Qk

|D[(v − hk)−ζk]|2dx̄dt̄

≤ c
22k

ρ2
ω2|Āk|,

where

Āk = {v < hk} ∩Qk.
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CHAPTER 2. Hölder continuity of solutions of variable sign

This implies ∥∥(v − hk)−ζk
∥∥2
V 2(Qk)

≤ c
22k

ρ2
ω2|Āk|. (2.17)

Then from Corollary 1.1 with p = 2 and (2.17), one gets∫∫
Qk+1

(v − hk)
2
−dx̄dt̄ ≤

∫∫
Qk

(v − hk)
2
−ζ

2
k dx̄dt̄

≤c |{v < hk} ∩Qk| 2
N+2

∥∥(v − hk)−ζk
∥∥2
V 2(Qk)

≤ c
22k

ρ2
ω2|Āk|1+ 2

N+2 ;

the left-hand side is estimated by∫∫
Qk+1

(v − hk)
2
−dx̄dt̄ =

∫∫
Qk+1∩{v<hk}

(hk − v)2dx̄dt̄

≥
∫∫

Qk+1∩{v<hk+1}
(hk − v)2dx̄dt̄ ≥ (hk − hk+1)

2|Āk+1| =
( ω

2k+3

)2
|Āk+1|.

Combining the previous estimates yields

|Āk+1| ≤ c
24k

ρ2
|Āk|1+ 2

N+2 ,

and setting

Yk =
|Āk|
|Qk| ,

it follows

Yk+1 ≤ c 24k Y
1+ 2

N+2

k .

Thanks to Lemma 1.4, we deduce that Yk tends to zero as k →∞, provided

Y0 =
|{v < h0} ∩Q0|

|Q0| =

∣∣∣{v < μ− +
ω

2

}
∩Q0

∣∣∣
|Q0| ≤ c−

N+2
2 2−(N+2)2 ,

that is (2.16) with c0 := c−
N+2

2 2−(N+2)2 .

Therefore

v ≥ μ− +
ω

4
a.e. in Kρ ×

(−ρ2, 0] .
Returning to the variables x, t, one has

v ≥ μ− +
ω

4
a.e. in Qθρ

(
ρ2

ωnm−1

)
; (2.18)
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this implies that u = v in Qθρ

(
ρ2

ωnm−1

)
and, consequently, (2.8). In fact, by contradiction,

if there were a point (x, t) ∈ Qθρ

(
ρ2

ωnm−1

)
such that v(x, t) =

ω

24
, by (2.18) and (2.10), we

would obtain
ω

24
≥ μ− +

ω

4
≥ ω

8
.

Assume now that (2.10) is violated, that is μ− < −ω

8
; choosing the levels hk according to

(2.9), we have

hk = μ− +
ω

25
+

ω

2k+5
< −ω

8
+

ω

25
+

ω

2k+5
≤ − ω

25
,

which is false.

Therefore on the set {u ≤ hk}

|u|nm−1 ≥
( ω
25

)nm−1
.

It follows that |u|nm−1 can be estimated above and below by ωnm−1 up to a constant

depending only upon the data; the proof can be repeated as before, but in this case there

is no need to introduce the truncated function v.

Therefore, under assumption (2.7)

− ess inf
Qθρ

(
ρ2

ωnm−1

)u ≤ −μ− −
ω

4
;

adding

ess sup
Qθρ

(
ρ2

ωnm−1

)u,

gives

ess osc
Qθρ

(
ρ2

ωnm−1

)u ≤ −μ− −
ω

4
+ ess sup

Qθρ

(
ρ2

ωnm−1

)u ≤
3

4
ω.

2.3.2 The second alternative

Let us recall the two fundamental hypotheses, namely

μ+ > 0 , μ− < 0, μ+ ≥ |μ−|.

Throughout this new section, let us assume that (2.7) does not hold, i.e.∣∣∣∣{u ≥ μ− +
ω

2

}
∩
{
(y, s) +Q2θρ

(
(2ρ)2

ωnm−1

)}∣∣∣∣ < (1− c0)

∣∣∣∣Q2θρ

(
(2ρ)2

ωnm−1

)∣∣∣∣ . (2.19)

For simplicity in the following we assume (y, s) = (0, 0).
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CHAPTER 2. Hölder continuity of solutions of variable sign

Lemma 2.2. There exists a time level t∗ in the interval

(
− (2ρ)2

ωnm−1 ,−
c0
2

(2ρ)2

ωnm−1

)
such

that ∣∣∣{u(·, t∗) < μ− +
ω

2

}
∩K2θρ

∣∣∣ > c0
2
|K2θρ|. (2.20)

This in turn implies∣∣∣{u(·, t∗) ≥ μ+ − ω

4

}
∩K2θρ

∣∣∣ ≤ (1− c0
2

)
|K2θρ|. (2.21)

Proof. By contradiction, suppose that (2.20) does not hold for every t∗ in the indicated

range, then∣∣∣∣{u < μ− +
ω

2
} ∩Q2θρ

(
(2ρ)2

ωnm−1

)∣∣∣∣ = ∫ − c0
2

(2ρ)2

ωnm−1

− (2ρ)2

ωnm−1

|{u(·, t∗) < μ− + ξω} ∩K2θρ| dt∗

+

∫ 0

− c0
2

(2ρ)2

ωnm−1

|{u(·, t∗) < μ− + ξω} ∩K2θρ| dt∗

<
c0
2
|K2θρ|

(
1− c0

2

) (2ρ)2

ωnm−1 + |K2θρ|c0
2

(2ρ)2

ωnm−1 < c0

∣∣∣∣Q2θρ

(
(2ρ)2

ωnm−1

)∣∣∣∣ .
This proves (2.20); (2.21) follows by the fact that (2.20) is equivalent to∣∣∣{u(·, t∗) ≥ μ− +

ω

2

}
∩K2θρ

∣∣∣ < (1− c0
2

)
|K2θρ|

and μ− +
ω

2
≤ μ+ − ω

4
.

The next lemma asserts that a property similar to (2.21) continues to hold for all time

levels from t∗ up to zero.

Lemma 2.3. There exists a positive integer j∗, depending upon the data and c0, such that∣∣∣{u(·, t) > μ+ − ω

2j∗

}
∩K2θρ

∣∣∣ < (1− c20
4

)
|K2θρ| (2.22)

for all times t∗ < t < 0.

Proof. Consider the logarithmic estimates (2.5) written over the cylinder K2θρ × (t∗, 0)

for the function (un − kn)+ and for the level k =
(
μn
+ −

(ω
4

)n) 1
n

. Notice that, thanks to

our assumptions, μ+ >
ω

4
, so k > 0.

The number ν in the definition of the logarithmic function is taken as ν =
ω

2j+2
, where j

is a positive integer to be chosen. Thus we have

ψ (Hn, (un − kn)+, ν
n) = log+

⎛⎜⎝ Hn

Hn − (un − kn)+ +
ωn

2(j+2)n

⎞⎟⎠ ,
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where

Hn = ess sup
K2θρ×(t∗,0)

[
un −

(
μn
+ −

(ω
4

)n)]
+
.

The cutoff function x→ ζ(x) is taken such that

ζ = 1 on K(1−σ)2θρ for σ ∈ (0, 1), |Dζ| ≤ 1

2σθρ
.

With these choices, inequality (2.5) yields∫
K(1−σ)2θρ

ψ2(x, t) dx ≤
∫
K2θρ

ψ2(x, t∗) dx+ c

∫ 0

t∗

∫
K2θρ

|u|n(m−1) ψ |Dζ|2dxdτ (2.23)

for all t∗ ≤ t ≤ 0. Let us observe that

ψ ≤ log

⎛⎜⎝ ωn

22n
ωn

2(j+2)n

⎞⎟⎠ = jn log 2.

To estimate the first integral on the right-hand side of (2.23), notice that ψ vanishes on

the set {un < kn} and that μn
+ −

(ω
4

)n
≥
(
μ+ − ω

4

)n
; therefore by (2.21)∫

K2θρ

ψ2(x, t∗) dx ≤ j2n2 log2 2
(
1− c0

2

)
|K2θρ|.

The remaining integral is estimated in the following way

c

∫ 0

t∗

∫
K2θρ

|u|n(m−1) ψ |Dζ|2dxdτ ≤ c

(σθρ)2
jn log 2

(2ρ)2

ωnm−1 ω
n(m−1)|K2θρ| = c

σ2
jn |K2θρ|.

Combining the previous estimates∫
K(1−σ)2θρ

ψ2(x, t) dx ≤
{
j2n2 log2 2

(
1− c0

2

)
+

c

σ2
jn
}
|K2θρ| (2.24)

for all t∗ ≤ t ≤ 0. The left-hand side of (2.24) is estimated below by integrating over the

smaller set {
un > μn

+ −
ωn

2(j+2)n

}
;

on such a set, since ψ is a decreasing function of Hn, we have

ψ2 ≥ log2

⎛⎜⎝ ωn

22n
ωn

2(j+1)n

⎞⎟⎠ = (j − 1)2n2 log2 2;

30



CHAPTER 2. Hölder continuity of solutions of variable sign

hence, for all t∗ ≤ t ≤ 0, we obtain∣∣∣∣{un(·, t) > μn
+ −

ωn

2(j+2)n

}
∩K(1−σ)2θρ

∣∣∣∣ ≤
{(

j

j − 1

)2 (
1− c0

2

)
+

c

σ2j

}
|K2θρ|.

On the other hand∣∣∣∣∣
{
un(·, t) > μn

+ −
ωn

2(j+2)n

}
∩K2θρ

∣∣∣∣∣
≤
∣∣∣∣{un(·, t) > μn

+ −
ωn

2(j+2)n

}
∩K(1−σ)2θρ

∣∣∣∣+ |K2θρ \K(1−σ)2θρ|

≤
∣∣∣∣{un(·, t) > μn

+ −
ωn

2(j+2)n

}
∩K(1−σ)2θρ

∣∣∣∣+Nσ|K2θρ|.

Then∣∣∣∣{un(·, t) > μn
+ −

ωn

2(j+2)n

}
∩K2θρ

∣∣∣∣ ≤
{(

j

j − 1

)2 (
1− c0

2

)
+

c

σ2j
+Nσ

}
|K2θρ|.

for all t∗ ≤ t ≤ 0.

Now choose σ so small and then j so large as to obtain∣∣∣∣∣
{
u(·, t) >

(
μn
+ −

ωn

2(j+2)n

) 1
n

}
∩K2θρ

∣∣∣∣∣ ≤
(
1− c20

4

)
|K2θρ| ∀t∗ ≤ t ≤ 0.

Notice that our hypotheses imply μ+ ≥ ω

2
, μ+ < ω, therefore

(
μn
+ −

ωn

2(j+2)n

) 1
n

<

(
μn
+ −

μn
+

2(j+2)n

) 1
n

= μ+

(
1− 1

2(j+2)n

) 1
n

≤μ+

(
1− 1

2(j+2)n n

)
≤ μ+ − ω

2(j+2)n+1 n
.

The proof is finished once we choose j∗ as the smallest integer such that

μ+ − ω

2(j+2)n+1 n
≤ μ+ − ω

2j∗
.

Corollary 2.1. For all j ≥ j∗ and for all times −c0
2

(2ρ)2

ωnm−1 < t < 0,

∣∣∣{u(·, t) > μ+ − ω

2j

}
∩K2θρ

∣∣∣ < (1− c20
4

)
|K2θρ|. (2.25)

31



Motivated by Corollary 2.1, introduce the cylinder

Q∗ = K2θρ × (−θ∗(2ρ)2, 0], with θ∗ =
c0
2
ω1−nm.

Lemma 2.4. For every ν∗ ∈ (0, 1), there exists a positive integer q∗ = q∗(data, ν∗) such

that ∣∣∣{u ≥ μ+ − ω

2j∗+q∗

}
∩Q∗

∣∣∣ ≤ ν∗|Q∗|.

Proof. Write down the energy estimates (2.4) for the truncated functions (u− kj)+, with

kj = μ+ − ω

2j
, for j = j∗, . . . , j∗ + q∗ over the cylinder

Q̃ = K4θρ ×
(
− c0

(2ρ)2

ωnm−1 , 0

]
⊃ Q∗ ;

the cutoff function ζ is taken to be one on Q∗, vanishing on the parabolic boundary of Q̃

and such that

|Dζ| ≤ 1

θρ
, 0 ≤ ζt ≤ ωnm−1

c0ρ2
.

Thanks to these choices, the energy estimates (2.4) take the form∫∫
Q̃

|u|nm−1|D(u− kj)+|2ζ2dxdτ

≤ c

{
ωnm−1

c0ρ2

∫∫
Q̃

(∫ u

kj

(s− kj)+s
n−1ds

)
dxdτ +

ωn−1

ρ2

∫∫
Q̃

|u|nm−1(u− kj)
2
+dxdτ

}
.

Estimating ∫ u

kj

(s− kj)+s
n−1ds ≤ un−1 (u− kj)

2
+

2
≤ ωn−1 (u− kj)

2
+

2
, (2.26)

and taking into account (u− kj)+ ≤ ω

2j
, yields∫∫

Q̃

|u|nm−1|D(u− kj)+|2ζ2dxdτ ≤ c
( ω
2j

)2
ωn−1 ω

nm−1

c0 ρ2
|Q∗|.

Notice that u > kj ≥ ω

4
: indeed the second inequality is equivalent to

μ+ ≥ |μ−|
1

4
+

1

2j
3

4
− 1

2j
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and this is implied by our assumptions.

So we can estimate∫∫
Q̃

|u|nm−1|D(u− kj)+|2ζ2dxdτ ≥
∫∫

Q∗
|u|nm−1|D(u− kj)+|2dxdτ

≥
(ω
4

)nm−1 ∫∫
Q∗
|D(u− kj)+|2dxdτ ;

it follows ∫∫
Q∗
|D(u− kj)+|2dxdτ ≤ c

( ω
2j

)2
ωn−1 1

c0 (2ρ)2
|Q∗|. (2.27)

Next, apply the isoperimetric inequality of Lemma 1.3 to the function u(·, t), for t in the

range (−θ∗(2ρ)2, 0], over the cube K2θρ, and for the levels

k = kj < l = kj+1;

in this way (l − k) =
ω

2j+1
.

Taking into account (2.25), this gives

ω

2j+1
|{u(·, t) > kj+1} ∩K2θρ| ≤ (2θρ)N+1

|{u(·, t) < kj} ∩K2θρ|
∫
{kj<u(·,t)<kj+1}∩K2θρ

|Du| dx

≤8θρ

c20

∫
{kj<u(·,t)<kj+1}∩K2θρ

|Du| dx,

integrating in dt over the indicated interval and applying the Hölder inequality, one gets

ω

2j+1
|Aj+1| ≤ 8θρ

c20

(∫∫
Q∗
|D(u− kj)+|2dxdt

) 1
2

(|Aj| − |Aj+1|)
1
2 ,

where

Aj = {u > kj} ∩Q∗.

Square both sides of this inequality and estimate above the term containing |D(u− kj)+|
by inequality (2.27), to obtain

|Aj+1|2 ≤ c

c50
|Q∗| (|Aj| − |Aj+1|) .

Add these recursive inequalities for j = j∗ + 1, . . . , j∗ + q∗ − 1, where q∗ is to be chosen.

Majorizing the right-hand side with the corresponding telescopic series, gives

(q∗ − 2) |Aj∗+q∗ |2 ≤
j∗+q∗−1∑
j=j∗+1

|Aj+1|2 ≤ c

c50
|Q∗|2.
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From this

|Aj∗+q∗ | ≤
1√

q∗ − 2

√
c

c50
|Q∗|.

The number ν∗ being fixed, choose q∗ from

1√
q∗ − 2

√
c

c50
= ν∗.

Now let β ∈
(
0,

1

2

)
, a ∈ (0, 1) be fixed numbers.

Lemma 2.5. There exists a number c∗ ∈ (0, 1), depending upon the data, β, and a, such

that if

|{u ≥ μ+ − βω} ∩Q∗| ≤ c∗ |Q∗| , (2.28)

then

u ≤ μ+ − aβω a.e. in Qθρ

(
θ∗ρ2

)
. (2.29)

Proof. For k = 0, 1, . . ., set

ρk = ρ+
ρ

2k
, Kk = Kθρk , Qk = Kk ×

(−θ∗ρ2k, 0] .
Let ζ(x, t) = ζ1(x)ζ2(t) be a piecewise smooth cutoff function in Qk such that

ζ1 =

{
1 in Kk+1

0 in R
N \Kk

|Dζ1| ≤2k+2

θρ
,

ζ2 =

⎧⎪⎨⎪⎩
1 if t ≥ − ρ2k+1

ωnm−1

0 if t < − ρ2k
ωnm−1

0 ≤ ζ2,t ≤ 2k

θ∗ρ2
.

Choose the sequence of truncating levels

hk = μ+ − βkω, where βk = aβ +
1− a

2k
β

and write down the energy estimates (2.4) for (u− hk)+ over the cylinder Qk

ess sup

− ρ2
k

ωnm−1<t≤0

∫
Kk

(∫ u

hk

(s− hk)+s
n−1ds

)
ζ2(x, t) dx+

∫∫
Qk

|u|nm−1|D[(u− hk)+ζ]|2dxdτ

≤ c

{∫∫
Qk

(∫ u

hk

(s− hk)+s
n−1ds

)
|ζτ | dxdτ +

∫∫
Qk

|u|nm−1(u− hk)
2
+|Dζ|2dxdτ

}
.
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Let us estimate

∫ u

hk

(s− hk)+s
n−1ds ≥ hn−1

k

(u− hk)
2
+

2
,∫ u

hk

(s− hk)+s
n−1ds ≤ un−1 (u− hk)

2
+

2
≤ ωn−1 (u− hk)

2
+

2
.

(2.30)

Taking into account that (u− hk)+ ≤ βω and the definitions of θ and θ∗, we have

ess sup

− ρ2
k

ωnm−1<t≤0
hn−1
k

∫
Kk

(u− hk)
2
+

2
ζ2(x, t) dx+

∫∫
Qk

|u|nm−1|D[(u− hk)+ζ]|2dxdτ

≤ c (βω)2

{
ωn−1 2k

θ∗ρ2
+ ωnm−1 22k

(θρ)2

}
|Ak|

= c
22k

ρ2
(βω)2ωn−1 ωnm−1 |Ak|,

where

Ak = {u < hk} ∩Qk.

Now, notice that u > hk ≥
(
1

2
− β

)
ω: indeed the last inequality is equivalent to

μ+ ≥ |μ−|
(
1

2
− β + βk

)(
1

2
+ β − βk

)−1

and this follows by our hypotheses.

So, we obtain

ess sup

− ρ2
k

ωnm−1<t≤0

∫
Kk

(u− hk)
2
+ ζ2(x, t) dx ≤ c

22k

ρ2

(
1

2
− β

)1−n
(βω)2 ωnm−1 |Ak|,

∫∫
Qk

|D[(u− hk)+ζ]|2dxdτ ≤ c
22k

ρ2

(
1

2
− β

)1−nm
(βω)2ωn−1 |Ak|.

(2.31)

By (u − hk)+ ≥ 1− a

2k+1
βω, applying the Hölder inequality, and Proposition 1.1, (2.31)
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yields

(1− a)2

22(k+1)
(βω)2|Ak+1| ≤

∫∫
Qk+1

(u− hk)
2
+dxdτ ≤

∫∫
Qk

(u− hk)
2
+ζ

2dxdτ

≤
(∫∫

Qk

[(u− hk)+ζ]
2(N+2)

N dxdτ

) N
N+2

|Ak| 2
N+2

≤ c

(∫∫
Qk

|D[(u−hk)+ζ]|2dxdτ
) N

N+2

⎛⎜⎝ ess sup

− ρ2
k

ωnm−1<t≤0

∫
Kk

[(u− hk)+ ζ]2dx

⎞⎟⎠
2

N+2

|Ak| 2
N+2

≤ c
22k

ρ2
(βω)2ω

2(nm−1)+N(n−1)
N+2

(
1

2
− β

)N(1−nm)+2(1−n)
N+2

|Ak|1+ 2
N+2 .

Therefore

|Ak+1| ≤ c
24k

(1− a)2ρ2
ω

2(nm−1)+N(n−1)
N+2

(
1

2
− β

)N(1−nm)+2(1−n)
N+2

|Ak|1+ 2
N+2 .

Setting

Yk =
|Ak|
|Qk| ,

we obtain

Yk+1 ≤c 24k

(1− a)2ρ2
ω

2(nm−1)+N(n−1)
N+2

(
1

2
− β

)N(1−nm)+2(1−n)
N+2

ρ2
(
θNθ∗

) 2
N+2 Y

1+ 2
N+2

k

= c
24k

(1− a)2

(
1

2
− β

)N(1−nm)+2(1−n)
N+2

Y
1+ 2

N+2

k .

By Lemma 1.4, Yk tends to zero as k →∞, provided

Y0 =
|{u > h0} ∩Q0|

|Q0| =
|{u > μ+ − βω} ∩Q0|

|Q0|

≤ c−
N+2

2

(1− a)−(N+2)

(
1

2
− β

)N(nm−1)+2(n−1)
2

2−(N+2)2 ,

that is (2.28) with c∗ :=
c−

N+2
2

(1− a)−(N+2)

(
1

2
− β

)N(nm−1)+2(n−1)
2

2−(N+2)2 .

This concludes the proof.

Thanks to Lemma 2.4, we can apply Lemma 2.5 with β =
1

2j∗+q∗
and a =

1

2
, getting

u ≤ μ+ − ω

2j∗+q∗+1
a.e. in Qθρ

(
θ∗ρ2

)
,
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CHAPTER 2. Hölder continuity of solutions of variable sign

which implies

ess sup
Qθρ(θ∗ρ2)

u ≤ μ+ − ω

2j∗+q∗+1
.

Hence

ess osc
Qθρ(θ∗ρ2)

u ≤ μ+ − ess inf
Qθρ(θ∗ρ2)

u− ω

2j∗+q∗+1
≤ ω

(
1− 1

2j∗+q∗+1

)
.

2.3.3 Conclusion

The two alternatives just discussed can be combined to prove Theorem 2.2.

Proof of Theorem 2.2. The concluding statement of the first alternative says that

ess osc
Qθρ

(
ρ2

ωnm−1

)u ≤
3

4
ω;

analogously, the conclusion of the second alternative is that

ess osc
Q∗ u = ess osc

Qθρ(θ∗ρ2)
u ≤ ω

(
1− 1

2j∗+q∗+1

)
.

Recalling the definition of θ∗, we observe that

Q∗ = Qθρ

(
θ∗ρ2

) ⊂ Qθρ

(
ρ2

ωnm−1

)
.

The thesis follows by defining

η∗ := 1− 1

2j∗+q∗+1
.

We are now ready to show the Hölder regularity.

Proof of Theorem 2.1. We fix any (y, s) ∈ ΩT , and we choose R0, ω0 > 0 such that

(y, s) +QR0(R
2
0) ⊂ ΩT , ω0 ≥ max

{
1, ess osc

(y,s)+QR0
(R2

0)
u

}
.

Let now b, δ ∈ (0, 1) to be chosen, and let us introduce the sequences

Rk := R0b
k , ωk := ω0δ

k , θk := ω
1−n
2

k Qk := (y, s) +QθkRk

(
R2

k

ωnm−1
k

)
,

for k ∈ N.

The thesis follows by standard arguments once we prove that

Qk+1 ⊂ Qk ⊂ QR0(R
2
0) ⊂ ΩT ∀k ∈ N ,
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ess osc
Qk

u ≤ ωk . (2.32)

The fact that Q0 ⊂ QR0(R
2
0) is a direct consequence of ω0 ≥ 1, while Qk+1 ⊂ Qk is

equivalent to

b ≤ min
{
δ

n−1
2 , δ

nm−1
2

}
= δ

n−1
2 .

To prove (2.32), we will argue by induction. The validity for k = 0 is true by construction.

Assume that (2.32) holds for k and apply Theorem 2.2 taking ρ =
Rk

2
and ω = ωk. Thanks

to this choice

θ = θk , (y, s) +Q2θρ

(
(2ρ)2

ωnm−1

)
= Qk .

The assumptions of Theorem 2.2 are satisfied because (2.32) holds for k; hence, we get

ess osc
Q∗ u ≤ η∗ωk ,

where in this setting

Q∗ = (y, s) +Q
θk

Rk
2

(c0
8
ω1−nm
k R2

k

)
.

This leads us to choose δ = η∗ ∈ (0, 1), so that η∗ωk = ωk+1. It remains only to check

Qk+1 ⊂ Q∗, which by a simple calculation is equivalent to

b ≤ min

{
1

2
δ

n−1
2 ,

√
c0
8
δ

nm−1
2

}
.

We conclude by choosing b small enough.
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Chapter 3

Harnack estimates for non-negative

weak solutions to singular porous

medium type equation

In this chapter we want to prove Harnack estimates for non-negative, weak solutions to

(1.4)-(1.5), with 0 < m < 1. In order to use a comparison principle (see Section 3.2 below)

we have to require the following further monotonicity assumption and growth conditions,

namely we assume that there exists a positive constant L such that{ (A(x, t, z, ξ1)−A(x, t, z, ξ2)) · (ξ1 − ξ2) ≥ 0,

|A(x, t, z1, z1−m1 ξ)−A(x, t, z2, z1−m2 ξ)| ≤ L |zm1 − zm2 |
(
1 + |ξ|) (3.1)

for a.e. (x, t) ∈ ΩT and all z, z1, z2 ∈ R+, ξ, ξ1, ξ2 ∈ R
N .

A class of quasi-linear porous medium type equations satisfying (3.1) is

ut =
∑
i,j

(
aij(x, t)|u|m−1 uxi

)
xj
,

where the coefficients aij belong to L∞loc(ΩT ) and the matrix (aij) is symmetric and elliptic

in ΩT . In particular, (3.1) is verified by the porous medium equation (1.6).

We consider u to be a non-negative, local, weak solution to the equation (1.4) with

conditions (1.5) and (3.1), such that

u ∈ Lr
loc(ΩT ), for some r ≥ 1 with λr = N(m− 1) + 2r > 0. (3.2)

This assumption in turn implies that u is locally bounded (see Proposition 3.1 below).
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Having fixed (y, s) ∈ ΩT and ρ > 0 with Bρ(y) ⊂ Ω, we define

δ :=

(
γ−
∫
Bρ(y)

u(x, s)dx

)1−m

ρ2, η :=

⎛⎜⎝ −
∫
Bρ(y)

u(x, s)dx(
−
∫
Bρ(y)

ur(x, s)dx
) 1

r

⎞⎟⎠
2r
λr

,

where γ is a parameter that will be fixed in the following.

Theorem 3.1. There exist a constant γ ∈ (0, 1), depending only upon the data, and two

positive constants c and d, depending upon the data and r, such that if B16ρ(y)×[s, s+δ] ⊂
ΩT , then

inf
B4ρ(y)×[s+ 3

4
δ,s+( 3

4
+ 1

26
)δ]
u ≥ c ηd sup

B ρ
2
(y)×[s+ 1

2
δ,s+δ]

u.

Remark 3.1. It is known (see for instance [26, 37]) that, if m >
N − 2

N + 2
, then every local

weak solution u satisfies (3.2), therefore it is locally bounded. As a consequence, in the

previous range for m, Theorem 3.1 holds true for every non-negative, local, weak solution.

3.1 Some useful estimates

Here we state some technical results we will use in the sequel.

We start with an Lr
loc-L

∞
loc estimate one can find in [69, 56]; see also the Appendix B of

[34].

Proposition 3.1. Let u be a non-negative, local, weak super-solution to (1.4) in ΩT and

let y ∈ Ω, ρ > 0. There exists a positive constant cr, depending upon the data and r, such

that for every cylinder B2ρ(y) × [2s− t, t] ⊂ ΩT

sup
Bρ(y)×[s,t]

u ≤ cr

(t− s)
N
λr

(∫
B2ρ(y)

ur(x, 2s− t) dx

) 2
λr

+ cr

(
t− s

ρ2

) 1
1−m

.

We pass then to a sort of Harnack inequality in the L1 topology, originally proved for

the prototype porous medium equation (1.4) in [42]; for a proof in the general case see

the Appendix B of [34].

Proposition 3.2. Let u be a non-negative, local, weak super-solution to (1.4) in ΩT and

let y ∈ Ω, ρ > 0. There exists a positive constant c, depending upon the data, such that

for every cylinder B2ρ(y)× [s, t] ⊂ ΩT

sup
s<τ<t

−
∫
Bρ(y)

u(x, τ) dx ≤ c inf
s<τ<t

−
∫
B2ρ(y)

u(x, τ) dx+ c

(
t− s

ρ2

) 1
1−m

.
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CHAPTER 3. Harnack estimates for non-negative weak solutions

Let us prove now the following energy estimates.

Proposition 3.3. Let u be a non-negative, local, weak super-solution to (1.4) in ΩT and

let y ∈ Ω, ρ > 0. There exists a positive constant c = c(data) such that for every cylinder

Bρ(y) × (t1, t2) ⊂ ΩT , every level k > 0 and every non-negative piecewise smooth cutoff

function ζ = ζ(x) vanishing on ∂Bρ(y),

km−1 ess sup
t1<t≤t2

∫
Bρ(y)

(u− k)2−ζ
2(x) dx+

∫ t2

t1

∫
Bρ(y)

|D(um − km)−|2ζ2(x) dxdτ

≤km

∫
Bρ(y)

(
u(x, t1)− k

)
−
ζ2(x) dx+ c k2m

∫ t2

t1

∫
Bρ(y)

χ{u<k} |Dζ|2dxdτ.
(3.3)

Proof. Assume for simplicity y = 0. In the weak formulation (1.7), take ϕ = (um−km)−ζ2

as test function over Qt = Bρ × (t1, t], with t1 < t ≤ t2.

Notice that (∫ k

u

(km − sm)+ds

)
τ

= −(um − km)− uτ ;

therefore, looking at the first term of the weak formulation, we obtain

∫∫
Qt

uτ (u
m − km)−ζ2(x) dxdτ = −

∫∫
Qt

(∫ k

u

(km − sm)+ds

)
τ

ζ2(x) dxdτ

=

∫
Bρ

(∫ k

u(x,t1)

(km − sm)+ds

)
ζ2(x) dx−

∫
Bρ

(∫ k

u(x,t)

(km − sm)+ds

)
ζ2(x) dx.

By a simple calculation, one has

∫ k

u(x,t1)

(km − sm)+ds ≤ km
(
u(x, t1)− k

)
−
,∫ k

u(x,t)

(km − sm)+ds ≥ m

2
km−1(u− k)2− ,

thus, one gets∫∫
Qt

uτ (u
m − km)−ζ2(x) dxdτ

≤ km

∫
Bρ

(
u(x, t1)− k

)
−
ζ2(x) dx− m

2
km−1

∫
Bρ

(u− k)2−ζ
2(x) dx.
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Thanks to structure conditions (1.5) and Young’s inequality∫∫
Qt

A(x, τ, u,Du)D
[
(um − km)−ζ2

]
dxdτ

=−m

∫∫
Qt∩{u<k}

um−1A(x, τ, u,Du)Du ζ2dxdτ

+2

∫∫
Qt

(um − km)−A(x, τ, u,Du) ζ Dζ dxdτ

≤ −C0

∫∫
Qt

|D(um − km)−|2ζ2dxdτ + 2C1

∫∫
Qt

(um − km)− |D(um − km)−| ζ |Dζ|dxdτ

≤ −C0

2

∫∫
Qt

|D(um − km)−|2ζ2dxdτ + c

∫∫
Qt

(um − km)2− |Dζ|2dxdτ.

Combining these estimates and taking the supremum over t ∈ (t1, t2], we get (3.3).

One of the main points of our proof takes advantage of the following local higher

integrability estimate for Du.

Proposition 3.4. There exist two positive constant � and C, that can be determined only

in terms of the data and r, such that for every cylinder

Q4R,θ(x0, t0) = B4R(x0)×
(
t0 − θ(4R)2, t0 + θ(4R)2

) ⊂ ΩT ,

it holds

R�θ
m�

m−1

∫∫
QR,θ(x0,t0)

|Dum|2+�dxdτ

≤ Cmax

⎧⎨⎩1,

(
θ

r
m−1

∫∫
Q4R,θ(x0,t0)

urdxdτ

) �λr
m+1

⎫⎬⎭
∫∫

Q2R,θ(x0,t0)

|Dum|2dxdτ.
(3.4)

The estimate (3.4) can be easily deduced by [39]. In fact, in the proof of [39, Theorem 1]

(see step 3) the inequality∫∫
Q1

|Dum|2+εdz ≤ c kεm
0

∫∫
Q2

|Dum|2dz

is established for

k0 = max

{
1,

(∫∫
Q4

urdz

)m+1
mλr

}
.

Changing variables by putting

v = θ
1

m−1 u(x0 +Rx, t0 + θR2t),
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CHAPTER 3. Harnack estimates for non-negative weak solutions

one directly gets (3.4).

We will use the following expansion of positivity property taken from [33] (see also

[34]).

Proposition 3.5. For (y, s) ∈ ΩT , M > 0 and α, ε ∈ (0, 1) suppose that

|{u(·, t) ≥M} ∩ Bρ(y)| ≥ α|Bρ(y)|,

for all times

s− εM1−mρ2 < t ≤ s;

suppose moreover that

B16ρ × (s− εM1−mρ2, s] ⊂ ΩT .

Then there exists σ ∈ (0, 1) depending upon the data, α and ε, and independent of M ,

such that

u(x, t) ≥ σM ∀x ∈ B2ρ(y)

for all times

s− ε

2
M1−mρ2 < t ≤ s.

3.2 Comparison principle

Our proof of the Harnack estimate will make use of a comparison principle. The idea

of using suitable comparison principles to show Harnack type estimates for quasi-linear

parabolic equations is not new (see [19] and also [37]).

Let us introduce the boundary value problem associated to the equation (1.4) as⎧⎪⎨⎪⎩
ut = divA(x, t, u,Du) in Ω× (0, T ) ,

u = f on ∂Ω× (0, T ) ,

u = u0 in Ω× {t = 0} .
(3.5)

We can then state the comparison principle that we are going to use.

Proposition 3.6. Assume (1.5) and (3.1) hold, and let u, v be two weak solutions to the

boundary value problem (3.5), with initial data fu, u0 and fv, v0 respectively. If fu ≤ fv

on ∂Ω× (0, T ) and u0 ≤ v0 in Ω, then u ≤ v in ΩT . In particular, for every data f and

u0 there can be at most one solution of (3.5).
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We will obtain the above result as an easy consequence of the following comparison

principle, given in [34, Chapter 7, Proposition 5.1 and Corollary 5.2] (one can find a proof

for the p−laplacian in [26]). Their result considers the case of signed solutions; however,

since we are only interested to the case of non-negative solutions, we restrict their result

to this case. Notice that they work in a slightly different context.

Proposition 3.7. Let us consider the boundary value problem⎧⎪⎨⎪⎩
ut = divÂ(x, t, u, um−1Du) in Ω× (0, T ) ,

um = f̂ on ∂Ω× (0, T ) ,

u = u0 in Ω× {t = 0} ,
(3.6)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Â(x, t, z, ξ) · ξ ≥ Ĉ0|ξ|2 ,∣∣Â(x, t, z, ξ)∣∣ ≤ Ĉ1|ξ| ,(
Â(x, t, z, ξ1 − Â(x, y, z, ξ2)

)
· (ξ1 − ξ2) ≥ 0 ,∣∣Â(x, t, z1, ξ)− Â(x, t, z2, ξ)∣∣ ≤ L̂
∣∣zm1 − zm2

∣∣(1 + |ξ|) .
(3.7)

If u and v are two weak solutions with initial data u0 ≤ v0 and f̂u ≤ f̂v, then u ≤ v in

ΩT . In particular, the uniqueness for given boundary data follows.

Proof. Following the lines of [34], we only give here the proof of the uniqueness of so-

lutions (if any) to the boundary value problem (3.6), since the generalization to get the

comparison principle is standard.

Assume then that u and v are two different solutions to (3.6) with u0 = v0 and f̂u = f̂v,

and introduce the function

ψ(x, t) = u(x, t)m − v(x, t)m .

Let now Hε be the Lipschitz approximation of the Heaviside function given by

Hε(s) :=

⎧⎪⎪⎨⎪⎪⎩
0 for s < 0 ,
s

ε
for 0 ≤ s ≤ ε ,

1 for s > ε ,

and finally set ϕ = Hε ◦ψ. Using ϕ as a test function in (3.6) for u and for v, one obtains∫
Ω

(
u(·, t)− v(·, t)

)
Hε ◦ ϕ−

∫
Ω

(
u(·, 0)− v(·, 0)

)
Hε ◦ ϕ

=

∫ t

0

∫
Ω

H ′
ε(ψ)

(
Â(x, t, v, vm−1Dv)− Â(x, t, u, um−1Du)

)
·Dψ
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CHAPTER 3. Harnack estimates for non-negative weak solutions

for a generic t ∈ (0, T ). Recalling that u0 = v0, the left-hand side equals∫
Ω

(
u(·, t)− v(·, t)

)
Hε ◦ ϕ −→

ε→0

∫
Ω

(
u(·, t)− v(·, t))

+
.

Concerning the right-hand side, we can rewrite is as

∫ t

0

∫
Ω

H ′
ε(ψ)

(
Â(x, t, v, vm−1Dv)− Â(x, t, u, vm−1Dv)

)
·Dψ

+

∫ t

0

∫
Ω

H ′
ε(ψ)

(
Â(x, t, u, vm−1Dv)− Â(x, t, u, um−1Du)

)
·Dψ

Since Dψ = m
(
um−1Du− vm−1Dv

)
, the second term is negative by (3.7), while the first

term can be bounded by∫ t

0

∫
Ω∩{ψ∈(0,ε)}

H ′
ε(ψ)L̂

(
um − vm

)(
1 + |vm−1Dv|)∣∣Dψ

∣∣
≤ L̂

ε

∫ t

0

∫
Ω∩{ψ∈(0,ε)}

ψ
(
1 + |vm−1Dv|)∣∣Dψ

∣∣
≤ L̂

∫ t

0

∫
Ω∩{ψ∈(0,ε)}

(
1 + |vm−1Dv|)∣∣Dψ

∣∣ −→
ε→0

0 .

Summarizing, we have obtained that∫
Ω

(
u(·, t)− v(·, t))

+
= 0 ,

which means that u ≤ v at time t. The proof is concluded recalling that t is generic, and

exchanging the role of u and v.

We are now ready to derive Proposition 3.6 from Proposition 3.7.

Proof of Proposition 3.6. We start defining

Â(x, t, z, ξ) := A(x, t, z, z1−mξ) , (3.8)

so that the solutions to the boundary value problem (3.5) coincide with those to (3.6).

Therefore, the claim of Proposition 3.6 directly follows from Proposition 3.7 as soon as

one verifies that (1.5) and (3.1) imply (3.7), but this is an immediate check from (3.8).
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3.3 Proof of the main result

The aim of this section is to present the proof of Theorem 3.1, which will be achieved by

means of some technical results.

For the sake of simplicity, we will consider (y, s) = (0, 0) and we will denote by

Ω′T = Ω′ × (−s, T ′) the translated cylinder.

Recall that

δ =

(
γ−
∫
Bρ

u(x, 0) dx

)1−m

ρ2, η =

⎛⎜⎝ −
∫
Bρ

u(x, 0) dx(
−
∫
Bρ

ur(x, 0) dx
) 1

r

⎞⎟⎠
2r
λr

(3.9)

where λr = N(m− 1) + 2r > 0, with r ≥ 1.

Following the approach of [37], we start finding an upper bound for the supremum of u.

Proposition 3.8. Assume Bρ × [0, δ] ⊂ Ω′T . Then there exists a positive constant c̃,

depending upon data and r, such that

sup
B ρ

2
×[ δ

2
,δ]

u ≤ c̃
γ

N(m−1)
λr

η
−
∫
Bρ

u(x, 0) dx.

Proof. Thanks to the Lr-L∞ estimate given in Proposition 3.1, there exists a positive

constant cr, depending upon the data and r, such that

sup
B ρ

2
×[ δ

2
,δ]

u ≤ cr

⎡⎣(2
δ

) N
λr

(∫
Bρ

ur(x, 0) dx

) 2
λr

+

(
2δ

ρ2

) 1
1−m

⎤⎦ .
By the expressions of δ and η in (3.9), we get

sup
B ρ

2
×[ δ

2
,δ]

u ≤cr
⎡⎣(γ−∫

Bρ

u(x, 0) dx

)N(m−1)
λr

ρ
−2N
λr

(∫
Bρ

ur(x, 0) dx

) 2
λr

+ γ−
∫
Bρ

u(x, 0) dx

⎤⎦
≤ c̃

⎡⎣(γ−∫
Bρ

u(x, 0) dx

)N(m−1)
λr

(
−
∫
Bρ

u(x, 0) dx

) 2r
λr

η−1 + γ−
∫
Bρ

u(x, 0) dx

⎤⎦
= c̃

(
γ

N(m−1)
λr

η
+ γ

)
−
∫
Bρ

u(x, 0) dx ≤ c̃
γ

N(m−1)
λr

η
−
∫
Bρ

u(x, 0) dx.
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CHAPTER 3. Harnack estimates for non-negative weak solutions

Suppose now that

B16ρ × [0, δ] ⊂ Ω′T (3.10)

and introduce an auxiliary function

v ∈ C
(
0, T ′;L2(B16ρ)

)
with |v|m ∈ L2

(
0, T ′;H1

0 (B16ρ)
)
,

solution of the following Cauchy-Dirichlet problem⎧⎪⎨⎪⎩
vt = divA(x, t, u,Du) in B16ρ × (0, T ′)

v = 0 on ∂B16ρ × (0, T ′)

v = uχBρ in B16ρ × {t = 0}.
Let us notice that the function v just defined exists and is unique (see [49]).

As already observed, by the comparison principle (Proposition 3.6)

u ≥ v in B16ρ × (0, T ′].

Then, once we find a lower estimate for v, the same bound holds also for u. Observe

that the definitions of δ and η do not change if we put v instead of u. Moreover, since v

vanishes outside B16ρ, the previous proposition holds true even for v.

Introducing the notation

κ := γ
N(m−1)

λr −
∫
Bρ

u(x, 0) dx, (3.11)

by the observations just done, and keeping in mind (3.10), we have

sup
B8ρ×[ δ2 ,δ]

v ≤ c̃
κ

η
. (3.12)

Proposition 3.9. There exist a constant γ ∈ (0, 1), depending upon the data, and two

constants ν, ĉ ∈ (0, 1), depending upon data and r, such that

|B2ρ ∩ {v(·, τ) ≥ νκ}| ≥ ĉ η |B2ρ|, (3.13)

for all times τ ∈
[
δ

2
, δ

]
.

Proof. By Proposition 3.2 with s = 0 and t = δ, there exists a positive constant c,

depending upon the data, such that for every cylinder B2ρ × [0, δ] ⊂ ET

sup
0<τ<δ

−
∫
Bρ

v(x, τ) dx ≤ c inf
0<τ<δ

−
∫
B2ρ

v(x, τ) dx+ c

(
δ

ρ2

) 1
1−m

,
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which, by (3.9), yields

−
∫
Bρ

v(x, 0) ≤ sup
0<τ<δ

−
∫
Bρ

v(x, τ) dx ≤ c inf
0<τ<δ

−
∫
B2ρ

v(x, τ) dx+ c γ−
∫
Bρ

v(x, 0) dx

≤ c−
∫
B2ρ

v(x, τ) dx+ c γ−
∫
B2ρ

v(x, 0) dx

for all times τ ∈ [0, δ].

By (3.11), choosing γ ∈ (0, 1) such that c γ ≤ 1

2
, and thanks to the upper estimate (3.12),

we deduce

κγ
N(1−m)

λr =−
∫
Bρ

v(x, 0) ≤ 2c−
∫
B2ρ

v(x, τ) dx

=
2c

|B2ρ|

(∫
B2ρ∩{v(·,τ)<νκ}

v(x, τ) dx+

∫
B2ρ∩{v(·,τ)≥νκ}

v(x, τ) dx

)

≤ 2cνκ+ 2cc̃
κ

η

|B2ρ ∩ {v(·, τ) ≥ νκ}|
|B2ρ|

with ν ∈ (0, 1) to be chosen and for every τ ∈
[
δ

2
, δ

]
. Therefore

|B2ρ ∩ {v(·, τ) ≥ νκ}| ≥
(
γ

N(1−m)
λr − 2cν

)
2cc̃

η |B2ρ|, ∀ τ ∈
[
δ

2
, δ

]
,

and the proof is concluded by taking ν and γ small enough.

Lemma 3.1. For all times τ ∈
[
δ

2
, δ

]
, there exist xτ ∈ B2ρ and ετ ∈ (0, 1) such that

∣∣∣Brτ (xτ ) ∩
{
v(·, τ) ≥ νκ

2

}∣∣∣ > 1

2
|Brτ (xτ )| , (3.14)

where

rτ = 2 ετρ = c
νκη2

−
∫
B2ρ

|Dv(·, τ)|
(3.15)

and c is a positive constant depending only upon the data.

Proof. For any τ ∈
[
δ

2
, δ

]
, we want to apply the measure-theoretical Lemma 1.5 to the

function
v

νκ
, choosing δ = λ =

1

2
. To do so, we need to select also α, β > 0 such that

(1.2) holds true. The right estimate in (1.2) coincides with (3.13) as soon as one choose
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CHAPTER 3. Harnack estimates for non-negative weak solutions

β = ĉη, so we have to concentrate on the left one. Thanks to (3.12) we know that v ≤ c̃κ

η
,

thus

‖w‖L1(B2ρ)
=
∥∥∥ v

νκ

∥∥∥
L1(B2ρ)

≤ (2ρ)N c̃

νη
.

On the other hand,

‖Dw‖L1(B2ρ)
=

1

νκ

∫
B2ρ

|Dv| = (2ρ)N

νκ
−
∫
B2ρ

|Dv| .

Summarizing, we can say that

‖w‖W 1,1(B2ρ)

ρN−1
≤ ρ

ν

(
2N

κ
−
∫
B2ρ

|Dv|+ c̃

η

)
≤ c

ρ

νκ
−
∫
B2ρ

|Dv| ,

where c > 0 is a constant depending on the data. Concerning the last inequality, a

geometric estimate shows that if it is not true, then one directly deduce (3.14).

As a consequence, the left estimate in (1.2) holds true with the choice

α = c
ρ

νκ
−
∫
B2ρ

|Dv| .

The constant ε of Lemma 1.5 can be explicitly evaluated as ε = c
β2

α
: this can be obtained

by inspecting the proof given in [34], as pointed out in [34, Remark 3.1]. In our case, this

gives

rτ = 2ετρ = cρ
β2

α
= c

η2νκ
−
∫
B2ρ
|Dv| ,

which is exactly (3.15).

Now, we prove the following “time propagation of positivity” property.

Proposition 3.10. For α ∈ N sufficiently large, depending upon the data, and for every

τ ∈
[
δ

2
, δ

]
, it holds

∣∣∣{v(·, t) ≥ νκ

2α+1

}
∩ Brτ (xτ )

∣∣∣ ≥ 1

4
|Brτ (xτ )|

for all times

τ < t ≤ τ +
( νκ

2α+1

)1−m
r2τ .

49



Proof. Let us write the energy estimates (3.3) for the level
νκ

2
over the cylinder

Qτ := Brτ (xτ )×
(
τ, τ +

( νκ

2α+1

)1−m
r2τ

]
, (3.16)

for α ∈ N to be chosen later. Take ζ = ζ(x) to be a non-negative, piecewise smooth cutoff

function in Brτ (xτ ), which equals 1 on B(1−a)rτ (xτ ) and such that |Dζ| ≤ c(arτ )
−1, with

a ∈ (0, 1).

Thanks to (3.14), we have(νκ
2

)m−1 ∫
Brτ (xτ )

(
v − νκ

2

)2
−
ζ2(x) dx

≤ 1

2

(νκ
2

)m+1

|Brτ (xτ )|+ c
(νκ

2

)2m 1

a2r2τ
|Brτ (xτ )|

( νκ

2α+1

)1−m
r2τ

=

(
1

2
+ c

2α(m−1)

a2

)(νκ
2

)m+1

|Brτ (xτ )| ,

(3.17)

for every t ∈
(
τ, τ +

( νκ

2α+1

)1−m
r2τ

]
.

Estimate the left-hand side by integrating on the smaller set B(1−a)rτ (xτ ) ∩
{
v <

νκ

2α+1

}
(νκ

2

)m−1 ∫
Brτ (xτ )

(
v − νκ

2

)2
−
ζ2(x) dx

≥
(νκ

2

)m−1 ∫
B(1−a)rτ (xτ )∩{v< νκ

2α+1 }

(
v − νκ

2

)2
−
ζ2(x) dx

≥
(
1− 1

2α

)2 (νκ
2

)m+1 ∣∣∣B(1−a)rτ (xτ ) ∩
{
v <

νκ

2α+1

}∣∣∣ .
By the last estimate and (3.17), we get

∣∣∣B(1−a)rτ (xτ ) ∩
{
v <

νκ

2α+1

}∣∣∣ ≤ (1− 1

2α

)−2(
1

2
+ c

2α(m−1)

a2

)
|Brτ (xτ )| ,

and finally∣∣∣Brτ (xτ ) ∩
{
v <

νκ

2α+1

}∣∣∣ ≤ ∣∣∣B(1−a)rτ (xτ ) ∩
{
v <

νκ

2α+1

}∣∣∣+Na |Brτ (xτ )|

≤
[(

1− 1

2α

)−2(
1

2
+ c

2α(m−1)

a2

)
+Na

]
|Brτ (xτ )| .

By taking a small and α large, we conclude.
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CHAPTER 3. Harnack estimates for non-negative weak solutions

Let us introduce the following quantities

μ = (3−m)�+ 6 +
r�λr

m+ 1
, b = μ

2

�
. (3.18)

Proposition 3.11. There exists a number ε̄ ∈
(
0,

1

26

)
, depending upon data and r, such

that for every τ ∈
[
3

4
δ,

(
3

4
+

1

26

)
δ

]
there exists sτ ∈

[(
3

4
− 1

26

)
δ, τ − ε̄ηbδ

]
, with

sτ ≤ τ ≤ sτ +
( νκ

2α+1

)1−m
r2sτ . (3.19)

Proof. Suppose, by contradiction, that for every ε ∈
(
0,

1

26

)
, there exists a number

τ̄ ∈
[
3

4
δ,

(
3

4
+

1

26

)
δ

]
such that, for every

s ∈
[(

3

4
− 1

26

)
δ, τ̄ − εηbδ

]
=: [t1, t2],

τ̄ does not belong to the time interval (3.19). By construction, this is equivalent to

τ̄ > s+
( νκ

2α+1

)1−m
r2s .

By the previous inequality, the definition of rs in (3.15) and the Hölder inequality, one

gets

τ̄ − s > c
( νκ

2α+1

)1−m (νκη2)
2(

−
∫
B2ρ

|Dv(x, s)| dx
)2 ≥

c

2(α+1)(1−m)

(νκ)3−mη4(
−
∫
B2ρ

|Dv(x, s)|2+� dx

) 2
2+�

,

being � the constant found in Proposition 3.4.

Therefore

−
∫
B2ρ

|Dv(x, s)|2+� dx > c

(
(νκ)3−mη4

2(α+1)(1−m)

1

τ̄ − s

) 2+�
2

;

integrating on s ∈ [t1, t2] and taking into account that τ̄ − t1 ≥ δ

26
, we obtain

∫ t2

t1

−
∫
B2ρ

|Dv(x, s)|2+� dxds > c

(
(νκ)3−mη4

2(α+1)(1−m)

) 2+�
2 2

�

[
(εηb)−

�
2 − 23�

]
δ−

�
2 . (3.20)

Now, by (3.9), (3.11), and the definition of λr in (3.2), we notice that δ can be written as

δ =
(
γ1+

N(1−m)
λr κ

)1−m
ρ2 =

(
γ

2r
λr κ
)1−m

ρ2; (3.21)
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thus, putting (3.21) into (3.20), and thanks to (3.18), we have∫ t2

t1

−
∫
B2ρ

|Dv(x, s)|2+� dxds > c κ
(3−m)(2+�)

2 η2(2+�)
[
ε−

�
2η−μ − 23�

] (
γ

2r
λr κ
)− (1−m)�

2
ρ−�

≥ c κ�+3−m η2(2+�)
[
ε−

�
2η−μ − 23�

]
ρ−�.

(3.22)

By the higher integrability result (3.4) with (x0, t0) =

(
0,

3

4
δ

)
, R = 2ρ, θ =

δ

4(8ρ)2
, and

s1 := t0 − θ(2R)2 =

(
3

4
− 1

24

)
δ, s2 := t0 + θ(2R)2 =

(
3

4
+

1

24

)
δ

we obtain∫ t2

t1

−
∫
B2ρ

|Dvm|2+�dxdτ

≤ c
θ

m�
1−m

(2ρ)�
max

⎧⎨⎩1,

(
θ

r
m−1−
∫ δ

δ
2

−
∫
B8ρ

vrdxdτ

) �λr
m+1

⎫⎬⎭
∫ s2

s1

−
∫
B4ρ

|Dvm|2dxdτ.

Notice that the interval [t1, t2] is included in [t0 − θR2, t0 + θR2] =

[
t1,

(
3

4
+

1

26

)
δ

]
.

On the other hand, thanks to (3.12)∫ t2

t1

−
∫
B2ρ

|Dvm|2+�dxdτ = m2+�

∫ t2

t1

−
∫
B2ρ

v(m−1)(2+�)|Dv|2+�

≥ cm2+�

(
κ

η

)(m−1)(2+�) ∫ t2

t1

−
∫
B2ρ

|Dv|2+�.

Therefore, using again (3.12), we get∫ t2

t1

−
∫
B2ρ

|Dv|2+�

≤c
(
κ

η

)(1−m)(2+�)
θ

m�
1−m

(2ρ)�
max

{
1,

(
θ

r
m−1

κr

ηr

) �λr
m+1

}∫ s2

s1

−
∫
B4ρ

|Dvm|2dxdτ.

Taking into account (3.21), we rewrite θ =
(γ

2r
λr κ)1−m

28
, and the previous inequality can

be rewritten as∫ t2

t1

−
∫
B2ρ

|Dv|2+�

≤c η(m−1)(2+�) κ2(1−m)+� γ
2rm�
λr

ρ�
max

⎧⎪⎨⎪⎩1,

⎛⎝γ−
2r2

λr 2
8r

1−m

ηr

⎞⎠
�λr
m+1

⎫⎪⎬⎪⎭
∫ s2

s1

−
∫
B4ρ

|Dvm|2dxdτ ;
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since
γ−

2r2

λr 2
8r

1−m

ηr
> 1, we obtain∫ t2

t1

−
∫
B2ρ

|Dv|2+� ≤ c η(m−1)(2+�)− r�λr
m+1 κ2(1−m)+� 1

ρ�

∫ s2

s1

−
∫
B4ρ

|Dvm|2dxdτ. (3.23)

Now, we want to estimate the integral on the right-hand side of (3.23): in order to do

this, let us write the energy estimates (3.3) over the cylinder B8ρ ×
(
δ

2
, δ

)
for the level

c̃
κ

η
, being ζ = ζ(x) a non-negative, piecewise smooth cutoff function in B8ρ which equals

1 on B4ρ, with |Dζ| ≤ c (4ρ)−1, we obtain∫ δ

δ
2

∫
B4ρ

|Dvm|2 dxdτ =

∫ δ

δ
2

∫
B4ρ

|D(vm − km)−|2 dxdτ

≤ c

{(
κ

η

)m+1

+

(
κ

η

)2m
1

(4ρ)2
δ

2

}
|B8ρ|.

By (3.21) and recalling that η ≤ 1, one gets∫ δ

δ
2

∫
B4ρ

|Dvm|2 dxdτ ≤ c
κm+1

η2m
|B8ρ|.

Thus, noticing that [s1, s2] ⊂
(
δ

2
, δ

)
and relying on (3.23), one obtains∫ t2

t1

−
∫
B2ρ

|Dv|2+� ≤ c η�(m−1)−2−
r�λr
m+1 κ�+3−m 1

ρ�
.

Finally, putting this together with (3.22) yields

ε−
�
2 ≤ c+ 23�ημ,

and again by η ≤ 1, one gets

ε ≥ (c+ 23�)−
2
� ,

which contradicts our assumption ε < 2−6.

Corollary 3.1. There exists a number σ ∈ (0, 1), depending upon data and r, such that,

for every τ ∈
[
3

4
δ,

(
3

4
+

1

26

)
δ

]
, there exists sτ < τ for which rsτ ≥ 2σ

1
2η

b
2ρ and∣∣∣∣∣

{
v(·, t) ≥ η

b
1−mνκ

2α+1

}
∩ Brsτ (xsτ )

∣∣∣∣∣ ≥ 1

4
|Brsτ (xsτ )|, (3.24)

for all

τ − σηb
( νκ

2α+1

)1−m
r2sτ < t ≤ τ.
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Proof. Fix τ ∈
[
3

4
δ,

(
3

4
+

1

26

)
δ

]
and notice that, by the previous proposition, there

exist ε̄ ∈
(
0,

1

26

)
and sτ ∈

[(
3

4
− 1

26

)
δ, τ − ε̄ηbδ

]
such that (3.19) holds.

This implies

[τ − ε̄ηbδ, τ ] ⊆
[
sτ , sτ +

( νκ

2α+1

)1−m
r2sτ

]
. (3.25)

Thanks to (3.21), we can write

δ =

(
γ

2r
λr
2α+1

ν

)1−m ( νκ

2α+1

)1−m
ρ2;

setting

σ :=
ε̄

4

(
γ

2r
λr
2α+1

ν

)1−m

we get

δ =
4

ε̄
σ
( νκ

2α+1

)1−m
ρ2.

Let us notice that

τ ≤ sτ +
( νκ

2α+1

)1−m
r2sτ ≤ τ − ε̄ηbδ +

( νκ

2α+1

)1−m
r2sτ ;

then

r2sτ ≥ ε̄ηbδ
( νκ

2α+1

)m−1
= 4σηbρ2,

which implies rsτ ≥ 2σ
1
2η

b
2ρ.

The following inclusion holds[
τ − σηb

( νκ

2α+1

)1−m
r2sτ , τ

]
⊆ [τ − ε̄ηbδ, τ ] :

indeed

σηb
( νκ

2α+1

)1−m
r2sτ ≤ ε̄ηbδ ⇐⇒ r2sτ ≤ 4ρ2,

which holds true by the definition of rτ (3.15).

By (3.25) and the previous inclusion, it follows[
τ − σηb

( νκ

2α+1

)1−m
r2sτ , τ

]
⊆
[
sτ , sτ +

( νκ

2α+1

)1−m
r2sτ

]
.

We conclude by Proposition 3.10, which ensures∣∣∣{v(·, t) ≥ νκ

2α+1

}
∩ Brsτ (xτ )

∣∣∣ ≥ 1

4
|Brsτ (xτ )| ∀ t ∈

(
sτ , sτ +

( νκ

2α+1

)1−m
r2τ

]
.
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3.4 Conclusion

We are now ready to obtain a lower bound for the infimum of v.

Proposition 3.12. There exist two positive constants c and d, depending only upon data

and r, such that

inf
B4ρ×[ 34 δ,( 34+ 1

26
)δ]
v ≥ c ηd−1κ. (3.26)

Proof. For any τ ∈
[
3

4
δ,

(
3

4
+

1

26

)
δ

]
fixed, there exists sτ < τ as in the previous corol-

lary such that (3.24) holds for every t ∈
(
τ − σηb

( νκ

2α+1

)1−m
r2sτ , τ

]
. Then apply Propo-

sition 3.5 to the function v with y = xsτ , ρ = rsτ and M = η
b

1−m
νκ

2α+1
. This guarantees

the existence of ξ ∈ (0, 1), depending upon the data and σ, such that

v(x, t) ≥ ξM ∀x ∈ B2rsτ (xsτ ), ∀ t ∈
(
τ − σ

2
M1−mr2sτ , τ

]
.

If we take

s ∈
(
τ − σ

2
M1−mr2sτ + σ(ξM)1−m(2rsτ )

2, τ
]
, (3.27)

then the following inclusion holds(
s− σ(ξM)1−m(2rsτ )

2, s
]
⊆
(
τ − σ

2
M1−mr2sτ , τ

]
.

Therefore, in particular

v(x, t) ≥ ξM ∀x ∈ B2rsτ (xsτ ), ∀ t ∈
(
s− σ(ξM)1−m(2rsτ )

2, s
]
.

So we can apply once again the expansion of positivity, obtaining

v(x, t) ≥ ξ̄ξM ∀x ∈ B4rsτ (xsτ ), ∀ t ∈
(
s− σ

2
(ξM)1−m(2rsτ )

2, s
]
.

Denoting again ξ the smallest between ξ̄ and ξ, and considering all the possible s in (3.27),

we get

v(x, t) ≥ ξ2M ∀x ∈ B4rsτ (xsτ ), ∀ t ∈
(
τ − σ

2
M1−mr2sτ +

σ

2
(ξM)1−m(2rsτ )

2, τ
]
.

After j iterations, one obtains

v(x, t) ≥ ξjM ∀x ∈ B2jrsτ
(xsτ )
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for all times

t ∈
(
τ − σ

2
M1−mr2sτ +

σ

2
M1−mr2sτ

j−1∑
i=1

(4ξ1−m)i, τ
]
. (3.28)

Recall that, by the previous corollary, rsτ ≥ 2σ
1
2η

b
2ρ. We choose j such that 6ρ ≤

2j+1σ
1
2η

b
2ρ ≤ 2jrsτ , which is true if

j =
[
log2(3σ

− 1
2η−

b
2 )
]
+ 1,

where [·] denotes the integer part.

In this way B4ρ ⊂ B2jrsτ
(xsτ ), as xsτ ∈ B2ρ, and

ξj ≥ ξ ξlog2(3σ
− 1

2 η−
b
2 ) = ξ (3σ−

1
2η−

b
2 )log2 ξ = ξ

(
σ

1
2

3

)log2
1
ξ

η
b
2
log2

1
ξ .

Thanks to these remarks and substituting the value of M selected before, one gets

v(x, t) ≥ ξ

(
σ

1
2

3

)log2
1
ξ

η
b
2
log2

1
ξ
+ b

1−m
νκ

2α+1
∀x ∈ B4ρ,

and for all times t as in (3.28).

Setting d =
b

2
log2

1

ξ
+

b

1−m
+ 1, we conclude the proof.

We can finally conclude the proof of our main theorem.

Proof of Theorem 3.1. Thanks to the comparison principle and to (3.26), we get

inf
B4ρ×[ 34 δ,( 34+ 1

26
)δ]
u ≥ inf

B4ρ×[ 34 δ,( 34+ 1
26

)δ]
v ≥ c ηd−1κ,

and by Proposition 3.8

sup
B ρ

2
×[ δ

2
,δ]

u ≤ c̃
κ

η
.

It follows

inf
B4ρ×[ 34 δ,( 34+ 1

26
)δ]
u ≥ c

c̃
ηd sup

B ρ
2
×[ δ

2
,δ]

u.
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Part II

Improved regularity for some

Dirichlet problems
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Chapter 4

Existence and regularity results for

solutions to non-coercive Dirichlet

problems

In this part we are interested in the existence and regularity for solutions to the following

Dirichlet problem{
−div (M(x)Du) = −div (|u|θ−1 uE(x)

)
+ f in Ω

u = 0 on ∂Ω,
(4.1)

where Ω ⊂ R
N is an open bounded set, N > 2, M is a symmetric elliptic matrix with

measurable and bounded coefficients, E and f are measurable functions satisfying suitable

summability properties and 0 < θ < 1.

The main difficulty of our problem is due to the non-coercivity of the nonlinear differential

operator

u �−→ −div (M(x)Du− |u|θ−1 uE(x)
)

In the case θ = 1, and if μ > 0 is sufficiently large the problem{
−div (M(x)Du− uE(x)) + B(x)Du+ μu = f(x) in Ω

u = 0 on ∂Ω

is coercive and existence and regularity of the weak solution have been studied by Stam-

pacchia in [62, 63], assuming |E|, |B| ∈ LN(Ω).

Nonlinear problems of the same type have been considered in [9, 10].

Recently, Boccardo in [7] dealt with the non-coercive problem{
−div (M(x)Du) = −div (uE(x)) + f in Ω

u = 0 on ∂Ω
(4.2)
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CHAPTER 4. Non-coercive Dirichlet problems

establishing existence and regularity results for solutions, depending upon the regularity

of the data. Our results can be regarded as an interpolation between the linear case and

(4.2), corresponding to θ = 0 and θ = 1, respectively.

Let us state our assumptions and our results.

Throughout this last part we assume M : Ω→ R
N2

to be a measurable matrix such that

∃α > 0 : M(x) ξ · ξ ≥ α|ξ|2 for a.e. x ∈ Ω, ∀ ξ ∈ R
N , (4.3)

∃ β > 0 : |M(x)| ≤ β for a.e. x ∈ Ω. (4.4)

Let E : Ω → R
N be a vector field and f : Ω → R be a measurable function with the

following summability properties

|E| ∈ Lq(Ω), f ∈ Lm(Ω), (4.5)

where the values of q and m will be specified later and will be different in our different

results.

Let us define the exponents

q̄ = q̄(θ) :=
2N

N − θ(N − 2)
, (4.6)

q̃ = q̃(θ,m) := max

{
2,

mN

N −m− θ(N − 2m)

}
. (4.7)

Remark 4.1. Notice that 2 < q̄ < N and if
2N

N + 2
≤ m <

N

2
we can compare our

exponents as follows

2 < q̄(θ) ≤ q̃(θ,m) < N, q̃

(
θ,

2N

N + 2

)
= q̄(θ) ∀θ ∈ (0, 1).

Moreover, in the case m = 1, the exponent q̃ equals 2 if and only if θ ≤ 1

2
.

Our results can be summarized as follows

• if m >
N

2
and q > N , then u ∈ H1

0 (Ω) ∩ L∞(Ω) (Theorems 4.1 and 4.5);

• if
2N

N + 2
≤ m <

N

2
and q = q̃, then u ∈ H1

0 (Ω) ∩ Lm∗∗
(Ω) (Theorems 4.1 and 4.2);
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• if 1 < m <
2N

N + 2
and q = q̃, then u ∈ W 1,m∗

0 (Ω) (Theorem 4.3);

• if m = 1 and q = q̃, then u ∈ W 1,p
0 (Ω), ∀p <

N

N − 1
(Theorem 4.4).

Furthermore, the presence of the nonlinear term allows us to obtain existence of weak

(or distributional) solutions to (4.1) under weaker assumptions on the summability of E,

namely

• if m ≥ 2N

N + 2
and q = q̄, then u ∈ H1

0 (Ω) (Theorems 4.1);

• if 1 ≤ m <
2N

N + 2
, q = 2 and

1

2
< θ <

N

2(N − 1)
, then u ∈ W 1,p

0 (Ω),

∀p <
2N(1− θ)

N − 2θ
(Theorem 4.4).

4.1 Approximate problems

For any n ∈ N, let us denote by Tn the usual truncation

Tn(s) =

⎧⎨⎩ s if |s| ≤ n

n
s

|s| if |s| > n

and let Gn(s) = s− Tn(s).

Following the approach of [9],[10], for any n ∈ N, let un ∈ H1
0 (Ω) be the weak solution of

the approximate problem

−div (M(x)Dun) = −div

⎛⎜⎜⎝ |un|θ−1 un

1 +
|un|θ
n

E(x)

1 +
|E|
n

⎞⎟⎟⎠+ fn, (4.8)

where fn = Tn(f).

The existence of un follows by Schauder fixed point theorem and, thanks to Stampacchia’s

regularity theorem (see [62]), un is bounded.

Throughout this section, we fix n ∈ N and call for simplicity w a solution of (4.8).

All of the following estimates will not depend on n.
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Lemma 4.1. If |E| ∈ L2(Ω) and f ∈ L1(Ω), then the solution w of (4.8) satisfies(∫
Ω

| log(1 + |w|)|2∗
) 2

2∗
≤ c

(∫
Ω

|E2|+
∫
Ω

|f |
)

(4.9)

where c is a positive constant depending only upon α and the Sobolev constant S.

Proof. Take
|w|

1 + |w| as test function in the weak formulation of (4.8) and use the fact

that

1 +
|w|θ
n
≥ 1, 1 +

|E|
n
≥ 1, |fn| ≤ |f |, (4.10)

to obtain ∫
Ω

M(x)
Dw ·Dw

(1 + |w|)2 ≤
∫
Ω

|w|θ|E| |Dw|
(1 + |w|)2 +

∫
Ω

|f | |w|
1 + |w| .

By (4.3), the fact that
|w|θ

1 + |w| ≤
|w|θ

(1 + |w|)θ ≤ 1, Young inequality and
|w|

1 + |w| < 1, we

get

α

∫
Ω

|Dw|2
(1 + |w|)2 ≤

1

2α

∫
Ω

|E|2 + α

2

∫
Ω

|Dw|2
(1 + |w|)2 +

∫
Ω

|f | .

Now, observe that
|Dw|
1 + |w| = |D log(1 + |w|)|

and apply Sobolev inequality to find

α

2S2

(∫
Ω

| log(1 + |w|)|2∗
) 2

2∗
≤ α

2

∫
Ω

|D log(1 + |w|)|2 ≤ 1

2α

∫
Ω

|E|2 +
∫
Ω

|f | .

Let us now introduce the following notation

Ak := {|w| ≥ k} ∩ Ω.

Remark 4.2. For any ε > 0, it is possible to choose kε such that

|Ak|
2
2∗ ≤ ε, for every k > kε. (4.11)

Indeed, thanks to (4.9), we obtain

| log(1 + k)|2 |Ak| 2
2∗ ≤

(∫
Ak

| log(1 + |w|)|2∗
) 2

2∗

≤
(∫

Ω

| log(1 + |w|)|2∗
) 2

2∗
≤ c

(∫
Ω

|E2|+
∫
Ω

|f |
)
.
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4.1.1 Finite energy solutions

Here we consider the case of finite energy solutions that corresponds to takingm ≥ 2N

N + 2
.

Let us recall that for any θ ∈ (0, 1)

q̃(θ,m) ≥ q̄(θ) if
2N

N + 2
≤ m <

N

2
, q̃

(
θ,

2N

N + 2

)
= q̄(θ).

Lemma 4.2. If |E| ∈ L2(Ω) and f ∈ L1(Ω), then, for every positive number k, the

truncation Tk(w) is bounded in H1
0 (Ω). More precisely,∫

Ω

|DTk(w)|2 ≤ c

(
k2θ

∫
Ω

|E|2 + k

∫
Ω

|f |
)
, (4.12)

where c is a positive constant depending only upon α.

Proof. Taking Tk(w) as test function in the weak formulation of (4.8) and using again

(4.10), we get∫
Ω

M(x)Dw ·DTk(w) ≤
∫
Ω

|w|θ|E| |DTk(w)|+
∫
Ω

|f | |Tk(w)|.

Then, by applying (4.3), Young inequality and the fact that |Tk(w)| ≤ k, one obtains

α

∫
Ω

|DTk(w)|2 ≤ 1

2α

∫
{|w|<k}∩Ω

|w|2θ|E|2 + α

2

∫
Ω

|DTk(w)|2 + k

∫
Ω

|f | ,

which implies (4.12).

Lemma 4.3. Assume |E| ∈ Lq̄(Ω), with q̄ as in (4.6), and f ∈ Lm(Ω), with m ≥
2N

N + 2
. Then, for every positive number k, the truncation Gk(w) is bounded in H1

0 (Ω).

In particular, ∫
Ω

|DGk(w)|2 ≤ c

(
‖E‖

2
1−θ

q̄,Ak
+ k2θ

∫
Ak

|E|2 + ‖f‖22N
N+2

,Ak

)
, (4.13)

where c is a positive constant depending upon α and the Sobolev constant S.

Proof. The use of Gk(w) as test function in the weak formulation of (4.8) and (4.10) yields∫
Ω

M(x)Dw ·DGk(w) ≤
∫
Ω

|w|θ|E| |DGk(w)|+
∫
Ω

|f | |Gk(w)|.
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Notice that

|w| = |Gk(w)|+ k in Ak,

which implies the existence of a constant c̄ > 1 such that

|w|θ ≤ c̄
( |Gk(w)|θ + kθ

)
in Ak. (4.14)

Then, by (4.3), (4.14), Hölder and Young inequalities, and observing that, thanks to (4.6),
θ

2∗
+

1

q̄
+

1

2
= 1, we have

α

∫
Ω

|DGk(w)|2 ≤c̄
∫
Ω

|Gk(w)|θ|E| |DGk(w)|+ c̄ kθ

∫
Ω

|E| |DGk(w)|+
∫
Ω

|f | |Gk(w)|

≤c̄ ‖Gk(w)‖θ2∗‖E‖q̄,Ak
‖DGk(w)‖2 + c̄k2θ

4ε

∫
Ak

|E|2

+ c̄ ε‖DGk(w)‖22 + ‖f‖ 2N
N+2

,Ak
‖Gk(w)‖2∗ .

By choosing ε =
α

4c̄
and by applying Sobolev and Young inequalities with exponent

2

θ + 1
,

we get

α

∫
Ω

|DGk(w)|2

≤ c

{
‖E‖q̄,Ak

‖DGk(w)‖θ+1
2 + k2θ

∫
Ak

|E|2
}

+
α

4

∫
Ω

|DGk(w)|2 + S ‖f‖ 2N
N+2

,Ak
‖DGk(w)‖2

≤ c

{
‖E‖

2
1−θ

q̄,Ak
+ k2θ

∫
Ak

|E|2 + ‖f‖22N
N+2

,Ak

}
+

α

2

∫
Ω

|DGk(w)|2,

where c is a positive constant depending upon α and S.

This last estimate implies the thesis.

Remark 4.3. The function q̄ = q̄(θ) defined in (4.6) is increasing with respect to θ and

2 < q̄ < N , since 0 < θ < 1.

Furthermore, q̄ converges to N in the limit case θ → 1.

Corollary 4.1. Assume |E| ∈ Lq̄(Ω) and f ∈ Lm(Ω), with m ≥ 2N

N + 2
. Then a weak

solution w of (4.8) is bounded in H1
0 (Ω).
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Proof. By (4.12) and (4.13)∫
Ω

|Dw|2 =
∫
Ω

|DTk(w)|2 +
∫
Ω

|DGk(w)|2

≤c
(
k2θ

∫
Ω

|E|2 + k

∫
Ω

|f | + ‖E‖
2

1−θ

q̄,Ak
+ ‖f‖22N

N+2
,Ak

)
.

Lemma 4.4. Assume |E| ∈ Lq̃(Ω), with q̃ defined in (4.7), and f ∈ Lm(Ω), with
2N

N + 2
≤

m <
N

2
. Then a weak solution w of (4.8) is bounded in Lm∗∗

(Ω).

Proof. Choose ϕ =
|Gk(w)|2(λ−1)Gk(w)

2λ− 1
as test function in the weak formulation of (4.8),

with λ =
m∗∗

2∗
, which is greater than 1 thanks to our choice of m. In this way

Dϕ = |Gk(w)|2(λ−1)DGk(w),

and using (4.10), we obtain∫
Ω

M(x)Dw |Gk(w)|2(λ−1) DGk(w)

≤
∫
Ω

|w|θ|E| |Gk(w)|2(λ−1) |DGk(w)|+ 1

2λ− 1

∫
Ω

|f | |Gk(w)|2λ−1.

Thanks to (4.3), (4.14), Young and Hölder inequalities

α

∫
Ω

|Gk(w)|2(λ−1) |DGk(w)|2

≤ c̄

∫
Ω

|Gk(w)|θ+2(λ−1) |E| |DGk(w)|+ c̄ kθ

∫
Ω

|E| |Gk(w)|2(λ−1) |DGk(w)|

+
1

2λ− 1

∫
Ω

|f | |Gk(w)|2λ−1

≤ α

2

∫
Ω

|Gk(w)|2(λ−1) |DGk(w)|2 + c

{∫
Ω

|Gk(w)|2(θ+λ−1) |E|2

+ k2θ

∫
Ω

|Gk(w)|2(λ−1) |E|2 + ‖f‖m,Ak

(∫
Ω

|Gk(w)|m′(2λ−1)
) 1

m′
}
.
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By the previous estimate and by Sobolev and Hölder inequalities again, one finds(∫
Ω

|Gk(w)|2∗λ
) 2

2∗
≤S2

∫
Ω

∣∣D|Gk(w)|λ
∣∣2

≤ c

{(∫
Ak

|E|q̃
) 2

q̃
(∫

Ω

|Gk(w)|2∗λ
) 2(θ+λ−1)

2∗λ

+ k2θ

(∫
Ak

|E|q̃
) 2

q̃
(∫

Ω

|Gk(w)|2∗λ
) 2(λ−1)

2∗λ
|Ak|1−

2
q̃
− 2(λ−1)

2∗λ

+ ‖f‖m,Ak

(∫
Ω

|Gk(w)|m′(2λ−1)
) 1

m′
}

where c is a positive constant depending only upon α and S.

Observe that

2(λ− 1)

2∗λ
<

2(θ + λ− 1)

2∗λ
<

2

2∗
,

1

m′ <
2

2∗
⇐⇒ 1− 1

m
< 1− 2

N
⇐⇒ m <

N

2
,

and also that

m′(2λ− 1) = m∗∗.

Therefore(∫
Ω

|Gk(w)|m∗∗
) 2

2∗
≤c(α, S)

{(∫
Ak

|E|q̃
) 2

q̃
(∫

Ω

|Gk(w)|m∗∗
) 2(θ+λ−1)

2∗λ

+ k2θ

(∫
Ak

|E|q̃
) 2

q̃
(∫

Ω

|Gk(w)|m∗∗
) 2(λ−1)

2∗λ
|Ak|1−

2
q̃
− 2(λ−1)

2∗λ

+ ‖f‖m,Ak

(∫
Ω

|Gk(w)|m∗∗
) 1

m′
}
.

(4.15)

Let us now recall the general fact that, if a is any positive number verifying the following

inequality

ap ≤ k1 + k2 a
r with p > r and k1, k2 > 0,

then a is bounded. As a consequence, the thesis directly follows by (4.15).

Remark 4.4. The quantity q̃ = q̃(θ,m) defined in (4.7) is an increasing function of θ and

m, which converges to N when θ → 1. One can see that, under the assumptions made on

m, 2 < q̃ < N .
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4.1.2 Infinite energy solutions

In this section we will treat the case in which

f ∈ Lm(Ω), with 1 ≤ m <
2N

N + 2
.

In this case our problem does not admit weak solutions, but distributional ones.

Let us introduce now

θ̃ :=
2N −m(N + 2)

2(N − 2m)
, (4.16)

and let us observe that θ̃ ∈ (0, 1).

Notice that, while in the case of finite energy one had q̃ > 2, for every
2N

N + 2
≤ m <

N

2
(see Remark 4.4), now the exponent q̃ satisfies

q̃(θ,m) > 2 if and only if θ > θ̃, (4.17)

and q̃(θ,m) < N .

Lemma 4.5. Assume |E| ∈ Lq̃(Ω), with q̃ as in (4.7), and f ∈ Lm(Ω), with 1 < m <
2N

N + 2
. Then a distributional solution w of (4.8) is bounded in Lm∗∗

(Ω).

Proof. Take

ϕ =
(1 + |Gk(w)|)2γ−1 − 1

2γ − 1
sign(w)

as test function in (4.8), with

γ =
m∗∗

2∗

and observe that
1

2
< γ < 1. In this way

Dϕ = (1 + |Gk(w)|)2(γ−1)DGk(w).

Thanks to these choices, (4.10), (4.14) and Hölder inequality∫
Ω

M(x)
Dw ·DGk(w)

(1 + |Gk(w)|)2(1−γ)

≤
∫
Ω

|w|θ|E| DGk(w)

(1 + |Gk(w)|)2(1−γ) +
1

2γ − 1

∫
Ω

|f | (1 + |Gk(w)|)2γ−1

≤ c̄

∫
Ω

|Gk(w)|θ|E| DGk(w)

(1 + |Gk(w)|)2(1−γ) + c̄kθ

∫
Ω

|E| DGk(w)

(1 + |Gk(w)|)2(1−γ)

+
1

2γ − 1
‖f‖m,Ak

(∫
Ω

(1 + |Gk(w)|)m′(2γ−1)
) 1

m′
.
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Now, let us apply (4.3) and Young inequality to get

α

2

∫
Ω

|DGk(w)|2
(1 + |Gk(w)|)2(1−γ)

≤ c

{∫
Ω

(1 + |Gk(w)|)2(θ+γ−1) |E|2 + k2θ

∫
Ak

|E|2

+ ‖f‖m,Ak

(∫
Ω

(1 + |Gk(w)|)m′(2γ−1)
) 1

m′
}
.

By Sobolev inequality, and observing that m′(2γ − 1) = 2∗γ = m∗∗(∫
Ω

∣∣∣(1 + |Gk(w)|)m∗∗
2∗ − 1

∣∣∣2∗) 2
2∗
≤ S2

∫
Ω

∣∣D[(1 + |Gk(w)|)γ − 1]
∣∣2

≤ c

{∫
Ω

(1 + |Gk(w)|)2(θ+γ−1) |E|2 + k2θ

∫
Ak

|E|2 + ‖f‖m,Ak

(∫
Ω

(1 + |Gk(w)|)m∗∗
) 1

m′
}
.

Now, we have to take into account the sign of the exponent θ + γ − 1.

If θ + γ − 1 ≤ 0, which happens if and only if θ ≤ θ̃, then

(1 + |Gk(w)|)2(θ+γ−1) ≤ 1,

therefore(∫
Ω

∣∣∣(1 + |Gk(w)|)m∗∗
2∗ − 1

∣∣∣2∗) 2
2∗

≤ c

{(
1 + k2θ

) ∫
Ak

|E|2 + ‖f‖m,Ak

(∫
Ω

(1 + |Gk(w)|)m∗∗
) 1

m′
}
,

and we conclude by observing that
1

m′ <
2

2∗
.

On the other hand, if θ+ γ− 1 > 0, which happens if and only if θ > θ̃, we can apply

Hölder inequality with exponent
2∗γ

2(θ + γ − 1)
> 1 to get

(∫
Ω

∣∣∣(1 + |Gk(w)|)m∗∗
2∗ − 1

∣∣∣2∗) 2
2∗

≤ c

{(∫
Ω

(1 + |Gk(w)|)2
∗γ
) 2(γ+θ−1)

2∗γ
‖E‖2q̃,Ak

+ k2θ

∫
Ak

|E|2 + ‖f‖m,Ak

(∫
Ω

(1 + |Gk(w)|)m∗∗
) 1

m′
}
,

and we conclude just by observing that
2(γ + θ − 1)

2∗γ
<

2

2∗
.
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Corollary 4.2. Assume |E| ∈ Lq̃(Ω) and f ∈ Lm(Ω), with 1 < m <
2N

N + 2
. Then a

distributional solution w of (4.8) is bounded in W 1,m∗
0 (Ω).

Proof. In the proof of the previous lemma, we have just proved that Gk(w) ∈ L2∗γ and

that ∫
Ω

|DGk(w)|2
(1 + |Gk(u)|)2(1−γ)

is bounded, with γ =
m∗∗

2∗
. Thanks to Hölder inequality, we have

∫
Ω

|DGk(w)|m∗
=

∫
Ω

|DGk(w)|m∗

(1 + |Gk(w)|)m∗(1−γ) (1 + |Gk(w)|)m
∗(1−γ)

≤
(∫

Ω

|DGk(w)|2
(1 + |Gk(u)|)2(1−γ)

)m∗
2 (∫

Ω

(1 + |Gk(w)|)
2m∗(1−γ)

2−m∗
) 2−m∗

2

and the thesis follows by observing that
2m∗(1− γ)

2−m∗ = 2∗γ.

Remark 4.5. Let us observe that when m = 1, θ̃ defined in (4.16) becomes
1

2
.

Lemma 4.6. Suppose f ∈ L1(Ω). If |E| ∈ Lq̃(Ω), then a distributional solution w of

(4.8) is bounded in Lp(Ω), for every p <
N

N − 2
.

Furthermore, if
1

2
< θ <

N

2(N − 1)
and |E| ∈ L2(Ω), then a distributional solution w of

(4.8) is bounded in Lp(Ω), for every p ≤ 2∗(1− θ).

Proof. Choose

ϕ =
1− (1 + |Gk(w)|)1−2σ

2σ − 1
sign(w), with

1

2
< σ < 1,

as test function in (4.8), so that its gradient is

Dϕ = (1 + |Gk(w)|)−2σ sign(w),

then by (4.10) and (4.14), we obtain∫
Ω

M(x)
Dw ·DGk(w)

(1 + |Gk(w)|)2σ ≤
∫
Ω

|w|θ|E| DGk(w)

(1 + |Gk(w)|)2σ +
1

2σ − 1

∫
Ak

|f |

≤ c̄

∫
Ω

|Gk(w)|θ|E| DGk(w)

(1 + |Gk(w)|)2σ + c̄kθ

∫
Ω

|E| DGk(w)

(1 + |Gk(w)|)2σ +
1

2σ − 1

∫
Ak

|f |.
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Thanks to (4.3) and Young inequality, one has∫
Ω

|DGk(w)|2
(1 + |Gk(w)|)2σ ≤ c

(∫
Ω

|Gk(w)|2θ|E|2
(1 + |Gk(w)|)2σ + k2θ

∫
Ω

|E|2 +
∫
Ak

|f |
)
.

and applying Sobolev inequality, one gets(∫
Ω

[
1− (1 + |Gk(w)|)1−σ

]2∗) 2
2∗
≤ S

∫
Ω

∣∣D[1− (1 + |Gk(w)|)1−σ]
∣∣2

≤ c

(∫
Ω

(1 + |Gk(w)|)2(θ−σ)|E|2 + k2θ

∫
Ak

|E|2 +
∫
Ak

|f |
)
.

Now, we have to distinguish two cases. When σ ≥ θ, we can estimate(∫
Ω

[
1− (1 + |Gk(w)|)1−σ

]2∗) 2
2∗
≤ c

((
1 + k2θ

) ∫
Ak

|E|2 +
∫
Ak

|f |
)
. (4.18)

When σ < θ, we use Hölder inequality with exponent
2∗(1− σ)

2(θ − σ)
> 1 to have

(∫
Ω

[
1− (1 + |Gk(w)|)1−σ

]2∗) 2
2∗

≤c
{(∫

Ω

(1 + |Gk(w)|)2∗(1−σ)
) 2(θ−σ)

2∗(1−σ)
(∫

Ak

|E| 2N(1−σ)
N−2σ−θ(N−2)

)N−2σ−θ(N−2)
N(1−σ)

+ k2θ

∫
Ak

|E|2 +
∫
Ak

|f |
}
,

(4.19)

and we observe that
2(θ − σ)

2∗(1− σ)
<

2

2∗
. Let us notice also that

2N(1− σ)

N − 2σ − θ(N − 2)
> 2.

We can then subdivide our argument. First of all, if θ ≤ 1

2
, then q̃ = 2. Therefore,

assuming |E| ∈ L2(Ω), for any σ >
1

2
we can apply (4.18), which yields Gk(w) ∈ Lp(Ω),

with p = 2∗(1− σ). As a consequence, by letting σ → 1

2
, we obtain that Gk(w) ∈ Lp(Ω),

for every p <
N

N − 2
.

On the other hand, if θ >
1

2
, then q̃ > 2, and we split our argument in the following

way. If |E| ∈ L2(Ω), then we apply again (4.18) choosing σ = θ and we obtain Gk(w) ∈
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L2∗(1−θ)(Ω). Notice that 2∗(1− θ) > 1 under the assumptions made on θ.

Finally, consider what happens for |E| ∈ Lq̃(Ω). If it is so, it is immediate to check that

2N(1− σ)

N − 2σ − θ(N − 2)
< q̃ for every σ >

1

2
. (4.20)

Arguing as in the first case, but using (4.19) in spite of (4.18), by letting σ → 1

2
, we again

find Gk(w) ∈ Lp(Ω) for every p <
N

N − 2
.

Remark 4.6. Consider the case when |E| has an intermediate summability, that is |E| ∈
Lq(Ω), with some 2 < q < q̃. By the previous Lemma, just using |E| ∈ L2(Ω), we already

know that w ∈ Lp(Ω), for every p ≤ 2∗(1 − θ). However, it is possible to say something

more. In fact, by the same argument of the Lemma, we obtain w ∈ L2∗(1−σ), for every
1

2
< σ < θ for which

2N(1− σ)

N − 2σ − θ(N − 2)
≥ q. (4.21)

A simple calculation ensures that (4.21) is equivalent to

σ ≥ σ̂(q, θ) :=
N(2− q) + qθ(N − 2)

2(N − q)
,

and in turn σ̂ is strictly decreasing in q, with

σ̂ → 1

2
for q → q̃, σ̂ → θ for q → 2,

so that, in particular,
1

2
< σ̂ < θ.

Summarizing, for any 2 < q < q̃, we can say that |E| ∈ Lq(Ω) implies w ∈ L2∗(1−σ̂).

Corollary 4.3. Suppose f ∈ L1(Ω). If |E| ∈ Lq̃(Ω), then a distributional solution w of

(4.8) is bounded in W 1,p
0 (Ω), for every p <

N

N − 1
.

Furthermore, if
1

2
< θ <

N

2(N − 1)
and |E| ∈ L2(Ω), then a distributional solution w of

(4.8) is bounded in W 1,p
0 (Ω), for every p ≤ p(θ) =

2N(1− θ)

N − 2θ
.
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Proof. When |E| ∈ Lq̃(Ω), by the proof of Lemma 4.6 we know that∫
Ω

|Gk(w)|2∗(1−σ) ,
∫
Ω

|DGk(w)|2
(1 + |Gk(w)|)2σ

are bounded, for every
1

2
< σ < 1.

Take 1 < p < 2 and apply Hölder inequality to get∫
Ω

|DGk(w)|p =
∫
Ω

|DGk(w)|p
(1 + |Gk(w)|)p σ (1 + |Gk(w)|)p σ

≤
(∫

Ω

|DGk(w)|2
(1 + |Gk(w)|)2σ

) p
2
(∫

Ω

(1 + |Gk(w)|)
2pσ
2−p

) 2−p
2

.

Now, we notice that

2p σ

2− p
= 2∗(1− σ) if and only if p =

2N(1− σ)

N − 2σ
,

and letting σ → 1

2
, we conclude the proof for the case |E| ∈ Lq̃(Ω).

When |E| ∈ L2(Ω), we proceed almost in the same way, just replacing σ by θ and observing

that p(θ) > 1 is equivalent to θ <
N

2(N − 1)
.

4.2 Passing to the limit

In this section we will prove existence and regularity for solutions to problem (4.1).

Theorem 4.1. Assume |E| ∈ Lq̄(Ω), with q̄ as in (4.6), and f ∈ Lm(Ω), with m ≥ 2N

N + 2
.

Then there exists a weak solution u ∈ H1
0 (Ω) of (4.1), that is∫

Ω

M(x)DuDv =

∫
Ω

|u|θ−1 uE(x)Dv +

∫
Ω

fv ∀v ∈ H1
0 (Ω). (4.22)

Proof. Let un be a weak solution of (4.8). Then, for every n ∈ N, we can write∫
Ω

M(x)DunDv =

∫
Ω

|un|θ−1 un

1 + |un|θ
n

E

1 + |E|
n

Dv +

∫
Ω

fnv ∀v ∈ H1
0 (Ω). (4.23)

We want to pass to the limit in the previous equality. We start observing that

φn :=
|un|θ−1 un

1 + |un|θ
n
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is bounded in L
2∗
θ (Ω), since∫
Ω

|φn| 2
∗
θ ≤

∫
Ω

|uθ
n|

2∗
θ =

∫
Ω

|un|2∗ ∀n ∈ N,

and the integral on the right-hand side is bounded thanks to Corollary 4.1.

Now,
E

1 + |E|
n

converges to E in Lq̄(Ω) and φn weakly converges to a function in L
2∗
θ (Ω).

Again by Corollary 4.1, un → u in L2(Ω) and then it converges a.e. up to a subsequence.

This implies φn → |u|θ−1 u a.e., therefore φn ⇀ |u|θ−1 u in L
2∗
θ (Ω).

Moreover, fn converges to f in L2∗′(Ω)

Finally, by the fact that Dv ∈ L2(Ω) and that the exponents 2, q̄,
2∗

θ
are conjugated, we

can pass to the limit in (4.23) finding (4.22).

Proceeding as in the previous theorem we can prove also the following results.

Theorem 4.2. Assume |E| ∈ Lq̃(Ω), with q̃ defined in (4.7), and f ∈ Lm(Ω), with
2N

N + 2
≤ m <

N

2
. Then there exists a weak solution u ∈ Lm∗∗

(Ω) of (4.1).

Theorem 4.3. Assume |E| ∈ Lq̃(Ω) and f ∈ Lm(Ω), with 1 < m <
2N

N + 2
. Then there

exists a distributional solution u ∈ W 1,m∗
0 (Ω) of (4.1).

Theorem 4.4. Suppose f ∈ L1(Ω). If |E| ∈ Lq̃(Ω), then there exists a distributional

solution u of (4.1), which belongs to W 1,p
0 (Ω), for every p <

N

N − 1
.

Furthermore, if
1

2
< θ <

N

2(N − 1)
and |E| ∈ L2(Ω), then there exists a distributional

solution u of (4.1), which belongs to W 1,p
0 (Ω), for every p ≤ p(θ) =

2N(1− θ)

N − 2θ
.

4.3 Bounded solutions

We conclude this chapter by showing the boundedness of solutions, for which we need

further regularity assumptions on E and f .

We follow the lines of [7], which use a standard technique due to Stampacchia (see [63])).

Lemma 4.7. Let ϕ(t) : ]h0,+∞[→ R be a non-negative, decreasing function such that

ϕ(k) ≤ c

(k − h)σ
[ϕ(h)]δ ∀k > h ≥ h0,
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being c, σ, δ positive constants. If δ > 1, then

ϕ(h0 + d) = 0,

with dσ = c [ϕ(h0)]
δ−1 2

σδ
δ−1 .

Theorem 4.5. Assume |E| ∈ Lq(Ω), with q > N , and f ∈ Lm(Ω), with m >
N

2
. Then

there exists a weak solution u ∈ H1
0 (Ω) ∩ L∞(Ω) of (4.1).

Proof. Let u ∈ H1
0 (Ω) be a weak solution of (4.1), which exists by Theorem 4.1 and let

us take as test function

ψ(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |u| ≤ k
u

1 + u
− k

1 + k
if u > k

u

1− u
− k

1 + k
if u < −k

to get ∫
Ω∩{|u|>k}

M(x)
Du ·Du

1 + |u|2 ≤
∫
Ω∩{|u|>k}

|u|θ|E| Du

1 + |u|2 +

∫
Ω

|f | |ψ|.

By (4.3), the fact that
|u|θ

1 + |u| ≤
|u|θ

(1 + |u|)θ ≤ 1, Young inequality and |ψ| ≤ 1, one has

α

2

∫
Ω∩{|u|>k}

|Du|2
1 + |u|2 ≤

1

2α

∫
Ω∩{|u|>k}

|E|2 +
∫
Ω∩{|u|>k}

|f | ,

and putting k = eh − 1, one gets∫
Ω∩{log(1+|u|)>h}

|D log(1 + |u|)|2 ≤ c

∫
Ω∩{log(1+|u|)>h}

( |E|2 + |f | ).
Let us denote by

v = log(1 + |u|), g = |E|2 + |f |,

and let us observe that g ∈ Lm(Ω), with m >
N

2
. Now, we introduce the notation

Āh := Ω ∩ {|v| > h},

in this way ∫
Ω

|DGh(v)|2 =
∫
Āh

|Dv|2 ≤ c

∫
Āh

|g|.
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Applying Sobolev and Hölder inequalities, we get(∫
Ω

|Gh(v)|2∗
) 2

2∗
≤ c ‖g‖m,Āh

|Āh|1− 1
m . (4.24)

Take � > h > 0, then

Ā� ⊆ Āh, |Gh(v)| ≥ �− h in Ā�,

and therefore (4.24) implies

(�− h)2|Ā�| 2
2∗ ≤

(∫
Ā�

|Gh(v)|2∗
) 2

2∗
≤ c ‖g‖m,Āh

|Āh|1− 1
m .

It follows

|Ā�| ≤ c

(�− h)2∗
‖g‖

2∗
2

m,Āh
|Āh| 2

∗
2
(1− 1

m
),

so we can apply Lemma 4.7 to the measure of the set Āh with δ =
2∗

2

(
1− 1

m

)
which is

greater than 1 if and only if m >
N

2
.

This tell us that |v| ≤ d a.e., where d is a positive constant depending only upon

|Ω|, N, E, f . So u is bounded and our proof is complete.

Remark 4.7. We want to stress what follows. In all our results we have needed weaker

assumptions on |E| than those in [7] for the problem (4.2), corresponding to the limit

case θ = 1. Instead, in this last result we used the same hypothesis as in [7]. This is

however not surprising because, when m approaches
N

2
, q̃(θ,m) converges to N for every

θ ∈ (0, 1).
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[43] S.N. Kružkov, An a priori estimate of the solutions of linear parabolic equations

and solutions of boundary-value problems for a certain class of quasi-linear parabolic

equations, (Russian) Dokl. Akad. Nauk SSSR 138 (1961) 1005-1008.
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