
a dissertation on human machine interaction

complexityinmotion

ignazio aleo

2

complexity in motion
a dissertation on human machine interaction
ignazio aleo

university of catania
XXIV doctoral school

coordinator: prof. luigi fortuna

tutor: prof paolo arena
 ing. luca patanè

cover from a drawing of sebastiano aleo 2011

3

none of us is as smart as all of us
(japanese proverb)

4

introduction

exploiting motion and control of living beings:
from data analysis to feedback control

algorithms for motor and motion control:
from refl exes to complex coordination

perceiving the world:
action-oriented perception

algorithmic solutions for actions and more:
sequence learning toward given objectives

a general framework for robot control and system integration:
from structure to complex algorithms

advanced motion platform for inertial sensing:
beyond the pure motion control research

conclusion

table of contents

5

Academic path is a very hard path. As it is possible to imagine what
follows in these pages is fruit of my studies and of my work but it is
important to highlight that, more than this, it is fruit of several form of
support I have recieved in this years.
Fortunately, this work has been deeply supported. First of all, most
of the funds needed to investigate these opportunities comes from
STMicroelectronics and from European projects.
I am really grateful to the Automation Robotics and Trasportation
group (ART). Furthermore several people from the University of
Catania helped me a lot through every diffi cult subject. Last but not
least I would like to thank all the people who still trusts in me and in
my work despite my sharp nature.

acknowledgment

6

In the last few years my interest in motion of living beings started
to grow day after day, month after month...without my control.

It all started during the complex systems course attended within
my master degree (in automation engineering and complex sys-
tems control) at the university of catania. At that time my profes-
sors, Luigi Fortuna and Paolo Arena (respectively the coordinator
and the turor of my Ph.D. course), introduced me to the world of
non-linerity, complexity and reaction-diffusion and showed me
how it is possible to consider a lot of natural phenomena under
this frame: from waves to fur spots and walk patterns in animals.
I decided that I would have spent time (even years) studying this
fi eld. As often happens, the decision was taken without consider-

preface

7

ing diffi culties and without a focused working strategy.
With this point in mind, day after day I took all the incoming opportu-
nities to develop this research. After the fi nal test of control of com-
plex systems I worked on my master thesis on complex dynamics
in population dynamics inside the city and than I come across Ph.D.
course in human machine interaction in collaboration with STMicroe-
lectronics: the opportunity to make (or at least, to try to make) things
interesting for a big (very big, indeed) international company.

Almost impossible...

...but that was a huge opportunity and so I decided to take it, with-
out considering diffi culties and without a focused working strategy,
again.

The years in this joint work with STMicroelectronics were very inter-
esting and fruitful but as expected they have been very hard.
My project was slowed by a lot and even stopped sometimes. Nev-
ertheless, month by month, I learned several technical things at the
front edge of the technological research and how to merge company
driven interest with my project.

After a couple of years I could now say that the aim work (and of this
thesis) is to address the human machine interaction problem from
analysis to synthesis.
It is important to notice that, both completeness and a rigorous
mathematical (and analytical) treatment are out of the scope of this
thesis. Moreover I have been lucky enough to have time to study,
and work, on very different fi elds under this view I hope that this pro-
ject could serve as a fi rst information gatherer of multiple intercon-
nected disciplines. Last but not least this is a work in progress and
so stay tuned and don’t be too hard in judgment.

8

A lot of works have been done in the fi eld of motor control. Several
different hypothesis have been described and reviewed to under-
stand living beings on motor coordination (Latash 2008).
What is commonly referred to as motor control is indeed, an articu-
lated problem that is, at least from a robotic perspective, often more
suitably divided in: sensing (perception, cognition), deliberation,
planning, kinematic control and dynamic control (as described in Fig
1).
Moreover all these things could, in line of principle, be represented
by a fl exible and learnable structure and so, as commonly described,
they could be learned.

Robotic and machine learning communities are performing signifi -

introduction

9

cant effort to provide tools and framework in which it is possible at
the same time to face classic robotic control problems and more
deeply understand what so far is known on biological motor control
(Peters 2007; Schaal 2010).
On the other side standard optimal control strategy, together with
effi cient learning strategy, are under investigation to cope with agile
and under-actuated platforms (Tedrake 2005) to shorten the me-
chanical technological gap with the living counterparts.

Embodiment and environmental niche are two of the most cited
words in this, quite new, emerging fi eld (Pfeifer and Bongard 2006).
Living beings (animals) grow and change experiencing at the same
time their body, their control system and the environment (Fig 2).
Under this point of view the motion control and the overall learning
process have to be considered in a situated body: both innner sys-
tem dynamical properties and environmental constraints are strictly
related to the learned behaviours.

System dynamics includes all subsystems together with sub-prob-

Motion Control

Perception

Deliberation

Planning

Low Level Control

nnnnnnnnnnnnnnnn nnnnnnnnnn

l

Sensing

reflex-based

A
cting

Fig 1. Block diagram for motion control. The high level control task
is divided into several, hierarchical descending, sub-problems. Each
problem has to be addressed almost separately and than their interac-
tion must be considered.

10

lem decomposition (e.g. low level motion control, muscle synergies).
Under this point of view the learning process is achieved in a situ-
ated body: both dynamical properties and environmental constraints
are strictly related to the learned behaviors.
It is almost useless to consider the system without considering the
environment interaction and the whole environmental condition.

Moreover, in several recent publications is common sense that Cen-
tral Nervous System (CNS) only give parameter control on a refl ex-
based (self-stabilized) complex system (Bizzi 1998; Pilon, De Serres
et al. 2007) instead of trying to fi nely control the complex nonlinear
structure.
The very complex control of motor capabilities in animals are
achieved trough the hierarchical decomposition of task into simpler-
and-simpler problems (Pilon, De Serres et al. 2007; Latash 2008)
(as depicted in Fig 3).

In this understanding, a huge part of the learning process is at level
of refl exes tuning and in an unconscious level.
Complex algorithmic solution are therefore proposed based on
neural networks, spiking neuron model and reinforcement learning
paradigm (Fig 4 and Fig 5)

Recent advantages in motor control and learning discourage the
previously adopted hypothesis on internal model as a detailed kin-
ematic perspective of body representation (Latash, 2008).

Fig 2. Under the ecological niche hypothesis the controller (i.e. natural
or artifi cial system that performs parameter control on the hierarchical
lower structure) has to learn control in a situated body. It is clear that
the environment plays a fundamental role: it is impossible to consider
the system dynamics without including it.

11

As described in (Feldman 2009) the learning process can be per-
formed without knowing the exact relation between parameters,
adopted policy and environment. Nevertheless critic sensing lets
the system to correctly adjust parameters adopting, for instance, a
descending gradient of the cost function.

The monitoring of real limbs trajectories in day life experiences for
human motion control is certainly a big help to understand underling
strategies.

Common used strategies are based on multiple cameras and mark-
ers. Emerging solution are now developed with inertial modules and
sensors fusion techniques (Roetemberg, 2007).
In this quite new fi eld the possibility of using low cost MEMS sensor
(Vlasic, 2008) creates interests for the consumer electronics market,
drastically shortening development time.

In the following sections, through the pages of this work, several
different problems related to motion control, to living beings motion
analysis and to its robotic counterpart will be addressed.
The strong underling motif of all the proposed algorithms and ar-

sinergy I�

task�

sinergy II�

sinergy III�

limbs�

joints�

sinergy IV�

muscles�

motor units�

Fig 3. Task decomposition into simpler and simpler tasks identifying
motor synergies (Bernstein, 1967) (Bizzi, 1998)

12

chitectures (both software and hardware) is the presence of a real
environment interaction.

In particular sections will be dedicated to sensors, kinematic of the
human body and its application to industrial robotics, mobile platform
design and robotic architecture implementation, algorithms for mo-
tion planning, central pattern generation and perception.

The first step, explored in chapter 1, is an attempt to understand
basis of motion starting form motion data analysis and closing the
feedback of the eye-hand (sensor and actuators) coordination.
After that, in chapter 2, several bio-inspired algorithms for motion
control will be investigated. These algorithms explore different prob-
lems of control: from hard-wired reflexes implementation to complex
high level motion planning learning trough reward function.

Fig 5. Complex robot control loop trough a classic biologically relevant
algorithmic solution.

Fig 4. Example of a multi-layer solution based on Self-Organizing
Maps (SOM) for the control of a dynamical system (e.g. torque limited
pendulum swing-up). Inner layer are also based on realistic spiking
neuron model.

13

The problem of perception is faced in chapter 3.
The problem of sequences learning and of delayed reward is ad-
dressed in chapter 4.
A general framework for robot control and modular system integra-
tion is proposed in chapter 5.
The development of an advanced motion platform for inertial sensing
is presented in chapter 6.

Let’s start from the beginning.

Fig 6. iNEMOTM evaluation board from STMicroelectronics: 10 DoF
demonstration board based on accelerometer, gyroscope and mag-
netometer. It integrates a common quaternion based Kalman fi lter.

14

1chapter

The incoming necessity of fast and reactive gesture recognition, for
Human-Machine Interaction, and the diffusion of cheap and reliable
MEMS multi-axial accelerometers, gyroscopes and digital com-
passes (i.e. magnetometer) are introducing a new discipline called
“Inertial Motion Detection”.
In this fi eld already known problems, native for aeronautics, are the
Inertial Navigation System (INS) and Attitude and Heading Refer-
ence System (AHRS).
Under this kind of open problems we are going to analyze all the
diffi culties about the implementation of an Inertial Mouse platform
using accelerometers.
In order to understand underling dynamics in human motion and be-
hind eye-hand coordination in humans, a complete sensor platform

exploiting motion and control of living beings:
from data analysis to feedback control

15

has been realized and acceleration data from it has been acquired.

Though the analyzed device is the LIS3LV02DL (a tri-axial digital ac-
celerometer), all the considerations can be extended to any kind of
analog and digital device.
This chapter is organized in two different parts. In the fi rst one most
of the common theoretical and numerical problems are discussed. In
the second part algorithmic procedures based on proposed solution
to those problems are presented.

Reference frame
Consider now a personal computer on a table (Fig 8). The acceler-
ometer local reference system (Oxyz2), in which accelerations are
measured, is rigid with the mobile platform (Oxyz1) and any transla-
tion and/or rotation between them could be considered constant.

For such a defi ned body the acceleration of the point O2, expressed
in the inertial reference system , can be, in general, evaluated as
follows:

Fig 7. Acceleration pattern during a common walk on a fl at fl oor. Ac-
celeration data have been aligned using the computed orientation (ob-
tained using a kalman fi lter). A motion detection algorithm has been
used to identify motion contion to avoid long term integration. Highlight
zones identify motion.

16

�aO2 = �aO1 + �ω × (�ω × (O2 −O1)) + �̇ω × (O2 −O1) + 2�ω × �v(r)02
(1)

where �ω is the angular velocity of the body (rotation of the Oxyz1
reference system) and �v(r)O2 is the relative velocity of the point O2 with
respect to the point O1.
The accelerometer will, therefore, measure that acceleration �aP in
the Oxyz2 coordinate system.
As in any common pointing device (e.g. optical mouse) motion
should be interpreted as in a local reference system.
As described by the equation (1), the distance between Oxyz1 and
Oxyz2 (r = (O2 −O1)) will cause the measurement of both centrip-
etal/centrifugal force and Euler force due to the dynamic rotation of
the system Oxyz1 (with �ω angular velocity) in an absolute reference
system.
However these accelerations can be considered as a part of the
motion of the accelerometer reference system (Oxyz2). Furthermore
their effects, on the adopted local system, are very similar (for very
different reasons) to those present in any other pointing device (e.g.
optical mouse off-lens-axis rotation in plane) and they are easily

Fig 8. Simple sketch of the all adopted reference systems. The iner-
tial platform and the accelerometer sensor are in different frames of
reference.

x2�

y2�z2�

x1�
y1�

z1�

x0�

y0�z0�

17

understood and compensated by the feedback control of the user
(eye-hand coordination).
Coriolis effect, due to the motion of the accelerometer frame (Oxyz2),
with relative velocity �v(r)O2 within the rotating mobile platform system
(Oxyz1), is hard to compensate and needs to be analyzed in the ac-
celerometer mechanical design.
The angle between the local reference (i.e. accelerometer frame,
Oxyz2) on the mobile platform (Oxyz1) and the absolute reference
(Oxyz) could be discarded.

Nevertheless, in order to establish a user friendly cursor control, the
angles between the accelerometer reference (Oxyz2) and the mo-
bile platform reference (Oxyz1) must be kept as small as possible or
compensated with static rotation matrices Rx(ψ), Ry(θ) and Rz(φ) as
follows:
�x1 = Rx(ψ)Ry(θ)R(φ)�x2 (2)

where �xi =
[
xi yi zi

]T
 and

Fig 9. Statistical characterization of a dataset of N=1000 points with
T=1s f=640Hz with respect to random walk of position in the absence
of external signal and with offset calibration.

18

Rx(ψ) =

⎡
⎣

1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)

⎤
⎦
,

Ry(θ) =

⎡
⎣

cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

⎤
⎦

Rz(φ) =

⎡
⎣
cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎤
⎦

(3)

As already defi ned all these matrices are constant and can be easily
evaluated in a fi rst calibration step. However if the structure is built
to minimize this mismatch the overall rotation can be discarded for
most applications.

Gravity acceleration
Due to the gravity force the accelerometer will measure approxi-

mately 9.806
m

s2
 (standard gravity acceleration is equal to 1g) even

in a rest condition.
Though, in a fi rst approximation, this component is on the inertial
z-axis (z) and is (almost) perpendicular to the mobile platform mo-
tion plane (motion surface) and parallel to its z-axis (z1) in a deeper
analysis a different condition arises: this is due to the misalignment
among the motion surface (e.g. table) and the absolute xy plane and
due to the accelerometer frame imperfections.
Therefore the accelerometer offset values in all three dimensions
must be updated through the entire path following.
Though the dynamic estimation of these offset values is not possible
with just a tri-axial accelerometer, they can be considered constant

Fig 10. Mobile platform and accelerometer frame.

19

in a motion xy plane-constrained and under this hypothesis they can
be estimated through time considering, in a fi rst approximation, the
off-plane motion as a disturbance.
Under all the analyzed constraints the numerical integration of the
accelerometer readings (i.e. the acceleration vector �a = [ax ay])
should be, in line of principle, the velocity (�v = [vx vy]) and the
numerical integration of this one should be the position
(�p = [px py]).

�vt = �v0 +

∫ t

0

�a(τ)dτ � �v0 +
N∑
i=1

�aiΔt

(4)

�pt = �p0 +

∫ t

0

�v(τ)dτ � �a0 +

N∑
i=1

�viΔt

(5)

Where Δt =
1

f
 and f is the sampling frequency.

From a computational point of view it is easier to consider the itera-
tive form of the integration as follows:
�vk+1 = �vk + �akΔt
and

�pk+1 = �pk + �vkΔt (6)

Fig 11. Plot of the square root of the Allan variance with respect to the
time lag τ (seconds in logarithmic scale).

20

Accumulation
The working data set consists on approximately 167 minutes (104s)
of continuous data acquisition. As described in the following sections
the same data were, for different common statistical tools, split into
dataset of various length.

Noise analysis: the Allan Variance method
The Allan VARiance (AVAR) technique differentiates the various
noise sources for the sensor under test: quantization noise, Speed
Random Walk (SRW)/white noise, correlated noise, bias stability and
Acceleration Random Walk (ARW).
As described by the reference the AVAR has been estimated with
respect to the time lag to indentify major noise component.

As it is possible to derive from Fig 11 (with common AVAR analysis)
there are three main noise components: random noise, measure
bias and ARW. With low averaging time τ the main component is the
random noise SRW.
The effect of the random noise decreases with longer averaging
time until a minimum is reached when the best bias estimation is
achieved. As the averaging time increases, the variance starts to
increase again (clearly evident in x and y components) since the

Fig 12. Example of density probability distribution of acceleration in
static condition. It is important to notice that acceleration values show
a sharp distribution with low variance.

21

presence of the bias instability of the sensor takes the lead (ARW).

Noise Integration
The presence of random noise in all the accelerometer measure-
ments cause both in the fi rst integration (velocity) and in the second
integration (position) a well known drift problem called “Random
Walk” (RW) due to the not perfectly zero average (in a fi nite number
of samples).

780 790 800 810 820 830

0

0.05

0.1

0.15

0.2

0.25

0.3

p(
x)

Acceleration value [mg]

p
z
(x)

p
cz

(x)

Fig 13. Density probability distribution spreading during motion (or
shock) condition.

800 805 810 815 820 825 830 835

0

0.05

0.1

0.15

0.2

0.25

0.3

p(
x)

Acceleration value [mg]

p
z
(x)

p
cz

(x)

Fig 14. Average shift in off-plane axes z1 during off-plane notion.

22

One of the possible strategies to evaluate the effect of the random
noise in the random walk behaviour is to identify its stochastic model
in terms of average �μP and standard deviation �σP : the position
�p =

[
px py pz

]T
 is evaluated with acceleration integration in a

time interval T in the absence of motion.

For the considered device (LIS3LV02DL) at a sampling frequency of
f=640Hz the standard deviation of PRW is

�σp = [0.877 · 10−3 0.925 · 10−3 4 · 10−3] m (7)

Fig 15. Example of N=70 dataset in which Speed Random Walk
(SRW) (a) and Position Random Walk (PRW) (b) are evaluated trough
time (T=10s).

23

for a time interval T=1s (see Fig. 4) and it is

�σp = [77.3 · 10−3 89.3 · 10−3 0.432] m (8)

for a time interval T=10s (Fig. 5).

It can be noticed that, as described from the literature, while the of
the Speed Random Walk (SRW) increases almost linearly with the
time the of the Position Random Walk (PRW) increases approxi-
mately with the square of the time.

Algorithmic procedures
Under all of these considerations the main problem in accelera-
tion integration is to dynamically set to zero the integration (i.e. the
velocity) periodically to avoid very large time drift. From this point
of view, it must be taken into account that the application is mostly
independent from “small” position errors (i.e. double integration of
the acceleration) thanks to the strong stabilizing action of the human
eye-hand coordination.

Motion reset and active offset
As described, thanks to the closed loop control, errors in position are

Fig 16. Statistical characterization of N =100 dataset with T =10s
f =640Hz with respect to random walk of position in absence of exter-
nal signal and with offset calibration.

24

in large part corrected, nevertheless even a small drift in speed will
cause a numerical divergence during the second integration that is
impossible to compensate. For this reason a “no-motion” condition
recognition (�v = 0) is a critical feature for an effi cient control algo-
rithm. A such defi ned feature should also allow to correct all long
term drift errors on acceleration due to instability and/or temperature
thanks to an active offset evaluation during “rest” periods.

How does an accelerometer detect an integration-free “no-motion”
condition?
Though from a mathematical point of view the problem has no

�σp =

√√√√ 1

N

N∑
i=1

(�pi − �μp)2 with �μp =
1

N

N∑
i=1

�pi (9)

solution because of the constant-velocity motion in the real world
it is possible to discriminate “motion” condition with a time interval
statistical analysis.
The density probability function of all the three axis is evaluated and,
similarly to equation (9), a non zero variance (or standard devia-
tion) is revealed due to the accelerometer random noise (Fig 11).
Due to the motion of the mobile platform the density probability dis-
tribution spreads along abscissa as shown in Fig 13.

�σa =

√√√√ 1

N

N∑
i=1

(�ai − �μa)2 with �μa =
1

N

N∑
i=1

�ai (10)

and �a =
[
ax ay az

]T

Fig 17. Functional block diagram of the eye-hand closed loop control
of position with integration reset

eye-hand �
coordination� motion�

I int� II int�

v=0�

a� v� p�
yes�

no�

algorithm for long term motion integration�

25

It is important to remark that false positive motion condition is detect-
ed in case of acceleration shocks because they have almost same
impact on the data distribution. Nevertheless, while in our application
false “rest” conditions are disruptive for acceleration integration, the
integration of shock acceleration data does not cause any further er-
ror beyond the already known SRW and PRW.

The presented approach needs a vector acceleration buffer of length
N (one for each axes) and therefore the state of the mobile platform
is evaluated after seconds. This time interval is seen as response
delay from the user. As in any other statistical approach the error de-
creases with the number of samples. Therefore it can be greatly re-
duced increasing the sampling time (i.e. using more CPU time) and
a delay-consumption trade-off of the algorithm must be performed.

Off-plane motion detection
A very similar problem could be defi ned to distinguish between
On-plane (within the working two-dimensional surface) and Off-
plane (outside that surface) motion. In this case the statistical value
of interest is the average value of off-plane axes (z1) within the N
samples dataset. In an ideal on-plane motion this value should be
almost constant and equal to the active offset value. However as in
the case of standard deviation, previously analyzed, it happens that
additional motion-induced “almost zero-average” noise is present as
depicted in Fig 13 (e.g. high frequency shock or low frequency me-
chanical bend) and described in the previous section. Therefore the
motion can be considered on-plane if the difference with offset value
is below a threshold δz.

| μz − offz |≤ δz (11)

Where offz is the current active offset for z1 axes.

Position-Cursor function
Any pointer device has a non-linear function that assigns a cursor
velocity for a given pointer-case velocity. In other words different
variation in cursor position is assigned for the same variation in

26

pointer-case position with respect to the time this variation occurs.

�pk+1 = �pk +Gp(�v) · �vkΔt with Gp(�v) = α | �vk |β (12)
and
‖ �pk+1 ‖≤ �D with �(D) = [W

2
H
2

] (13)
In which α is a constant dependent on pixel/inches ratio of the
monitor, and are respectively the monitor width and the monitor
height [pixel], useful to introduce a saturation in the position along
both x and y monitor axis, and β is user defi ned distortion factor.
From experimental data it has been found that typically 20 ≤ α ≤ 100
and 0 ≤ β ≤ 1.

Enhanced functionality
Thanks to the developed algorithm, based on accelerometer data, it
is possible to enhance the classical two-dimensional mouse opera-
tion in case of different orientation detected within the mobile plat-
form rest condition or in case of particular acceleration pattern (e.g.
shocks in a particular axes).
The fi rst straightforward application of this consideration is to imple-
ment an orientation-free mouse and a shock triggered click.
Another simple application could be a tri-dimensional mouse operat-
ing mode that can be implemented in case of reversed z-axes.
With the add-on of a yaw gyroscope it is also possible to develop a
tri-dimensional pointer.

In particular referring to the a multiple circles test (where the num-
ber of consecutive circles is n = 5, i.e. typical test for hand pointer

Fig 18. Overall functional block diagram of the eye-hand closed loop
control of position with integration reset and with Position-Cursor
transformation.

eye-hand �
coordination� motion�

I int� M(p,v)�

v=0�

a� v� p�
yes�

no�

algorithm for long term motion integration�

PC�

27

devices) trajectory tested at different speed:
- the test requires high accuracy in position estimation within a very
long time interval (several minutes) while real mouse movements
are typically performed in couple of seconds;

 r = 20mm and s = n · 2πr = 628mm so y = 1
mm

s

and
s =

s

y
= 628s ∼ 10.5min

The test does not consider the strong feedback correction naturally
performed by the user coordination (eye-hand coordinator).
Under these assumptions, even if we consider the acceleration
noise as the only present technological constraint (and this is clearly
not true), in order to apply a trivial double integration of the accel-
erations to estimate motion, the required device specifi cations are
far away from the real device specifi cations.
In fact, assuming a normal distribution model, the numerical simula-
tions show that to achieve less than 2 mm (10%) of error in
T = 628s, as shown in Fig. 11, less than σa = 10−6mg (standard de-
viation) is required with a sampling frequency of fs = 600Hz (while
real measured σa > 4.5 · 10−4mg).

R(q)�

q=[q0,q1,q2,q3]�

a=[ax,ay,az]�

raw sensor data�

filtered quaternion vector �

I integration�

II integration�
Δp=[Δpx, Δpy, Δpz]�

relative poistion change�

absolute frame alignment and gravity deletion�

Fig 19. Block diagram for absolute referenced acceleration integra-
tion. Output from Kalman fi lter (i.e. rotation matrix or quaternion) is
used for data alignment and gravity deletion. Two step of integration
are used to fi rst achieve speed and then to get position. Zero Velocity
Update is used with motion detection algorithm.

28

However it can be shown that those condition reports about motion
estimation tests and not about real user driven mouse operations.
Moreover it is important to understand that, from a theoretical point
of view, the PRW proportionally decrease both with the square root
of the number of accelerometers and with the frequency (e.g. 100
accelerometers have 10 times lower PRW, the same as 10 acceler-
ometers with 10 times higher frequency). Under this point of view,
array or matrices of accelerometer, sampled at higher frequency,
could theoretically be used to improve overall system performances.

To summurize, in this chapter, the basis of accelerometer data pro-
cessing algorithm has been presented.
The movements of a mobile platform actuated from a user have
been recorded and analyzed in order to perform a feasibility study of
a two dimensional pointer device.
Moreover it has been shown that the “no-motion” condition accuracy
detection and the Position Random Walk (PRW) standard deviation
are both function of the amplitude of the noise density of the ac-
celerometer. Common short term motion (approximately < 2s) is up
to now considered precise enough to permit a user-friendly device.
Very long term drift is virtually eliminated thanks to the active offset
evaluation.

Though very complex trajectories could be traced, the midterm PRW
is still too big to achieve the user desired position. Infact, although
the use of multiple accelerometer devices together with more com-
plex data fi ltering algorithms (e.g. Kalman fi lters) has not be tested
yet, it must be noticed that, as showed in the Test Analysis section,
when no assumption could be done on the device movements and
the performances are tested in a long-term run the achievable preci-
sion is still lower than what required in this kind of application.
Specifi cations test on the PRW with the inertial sensors especially in
the mid-range time interval (between 2s and 10s) has been per-
formed.

29

30

Let’s start from the problem of motion at a level of joint coordination.
If we think at the motion of the tip of one of our fi nger or at motion of
a part of our body, the coordination of each muscles comes out as a
refl ex.

Well, it is all but trivial.

Multi-link structures (referred to as kinematic chains), move in a
very complex and non linear way. At a joint level and from a robotic
perspective this problem has been studied since decades and it is
addressed, especially in industrial robotics, as kinematic problem.

The industrial robotics community, has divided it in two sub-prob-

2chapter
algorithms for motor and motion control:
from refl exes to complex coordination

31

lems: forward kinematic problem and inverse kinematic problem.
The former intends to understand the position of the end-effector
(end, or tip, of the whole kinematic chain) given the joint angular
position. The latter intends to fi nd angular values for each joint for a
given end-effector position.
The inverse kinematic problem is the one we have to face, even not
consciously, when we want to grab a cup of coffee with our left hand.

For all these reasons we are going to consider now a industrial-like
robotic structure and to look for different ways to control it and to
solve, already solved problem, in a different and more fl exible way.
As entry point it is important to analyze the framework of industrial
robotic and to understand why in the last decades these problem
were solved in a particular way.

Robotic manipulators are widely used in several fi elds of applica-
tions: for mechanical structure assembly, in industries, on roving
platforms for manipulation of heavy or dangerous objects, in human-
oid robots for research and others.
These robotic structures, depending on the application, can present
a potentially large number of degrees of freedom and can work
either in a 2D-like or 3D environment. In some cases, a redundant

Fig 20. Considered kinematic chain on a human subject and a robotic
counter part (from Schunk).

32

confi guration can be used increasing the complexity needed to de-
fi ne a model of the structure and to develop a control algorithm.
Depending on the application, an important performance index that
can be considered is the computational power consumption.
In fact, it constrains the control frequency and therefore the possibili-
ty to develop an algorithm embedded on a low MIPS microcontroller-
based board for real-time applications.

The robustness against singularities, the capability to face angular
constraints in the joint space or other constraints in the operating
workspace (e.g. obstacle avoidance) are important aspect that have
to be considered.
The three-dimensional positioning task (inverse kinematic problem,
IK) for a redundant serial manipulator is an already-solved problem
through various classic approaches, like pseudo-inverse Jacobian
and Jacobian transpose algorithms.
Generally the problem is fi rst mapped onto the velocity domain by
using the fi rst-order instantaneous kinematic relation, which is given
by the Jacobian matrix (J), and then solved in that domain.
For redundant manipulators J has a null space and therefore
minimization algorithms can be used to achieve various subtasks
like singularity (or obstacle) avoidance (Nenchev, 2004) or to cope
with angular joint limits (Siciliano ed., 2008).
Several approaches have been proposed addressing the joint limit
problem in the velocity domain (see for details Ahn, 2002 and Chan,
2005), nevertheless, as discussed in (Shimizu, 2008) , the best way
to fi nd a suitable solution consists into considering the problem in
the position domain.

Shimizu and Kakuya (Shimizu, 2008) and, similarly Tondu (Tondu,
2006), analytically derive the inverse kinematic model for a 7-De-
grees-of-Freedom (DoF) redundant anthropomorphic manipulator
with joint limits. Nevertheless, their results are not easily generaliz-
able to any kind of manipulator. Almost the same considerations can
be done to the Lee and Bejczy’s closed form IK solution based on
joint parametrization technique (Moradi, 2005) and to Moradi and
Lee redundancy resolution method for minimizing elbow movement

33

do not address neither all possible confi gurations of the manipulator
(Moradi, 2005). Under these hypotheses, the aim of this chapter is
to propose a low computational effort, numerical approach, that can
provide, for any kind of robot manipulator confi guration, a sub-opti-
mal solution, for both forward kinematic (FK) and inverse kinematic
(IK) problems. The proposed strategy makes the robot able to react
to environmental changes and therefore to cope with dynamically
changing joint limits.

The approach is based on the already developed Mean of Multiple
Computations (MMC) Recurrent Neural Network (RNN) algorithm
which provides a fast, fl exible and robust to confi guration singulari-
ties sub-optimal solution to the discussed problems (Cruse, 1993),
(Arena, 2009).
Although several minimization algorithms can be used for DK and
the IK problems, as discussed before, the proposed MMC approach
(Cruse, 1993) is quite simple and bio-inspired (Cruse, 1998). In
fact several recent studies in limb Neurophysiology indicate that in
particular neural sites, like, for example the spinocerebellar neurons
in vertebrates, proprioceptive sensory signals are processed in a
fl exible network organization which encodes functional relationships
among the limb segments, resulting in a global representation of the
limb parameters.

In movement planning, the weights of inputs from various limb seg-
ments might be biased toward an explicit representation of the whole
limb (Bosco, 2001). This representation is also somatotopically dis-
tributed, allowing multiple (redundant) representations of the same
limb parts. This rule adapts both to cerebral and to cerebellar cortex
(Kandel, 2000). Also corticospinal neural cells in the Primary motor
cortex of rhesus macaques are considered as representing different
combinations of muscles that constitute functional synergies for the
execution of both single and multijoint limb movements (Park, 2001).

Very recent studies suggest that that the cat motor cortex controls
the musculature in an integrated manner rather than singly and
separately and that there appears to be a substrate for the dynamic

34

selection of motor output patterns, laying the basis for the idea that
fl exible selections of motor outputs occur on a moment-to-moment
basis as a result of the motor cortex’s activation state (Capaday,
2009).
Taking inspiration from these considerations, the MMC approach
represents a candidate, yet simple model of such an integrated
network organization. It provides a framework in which a global,
distributed and redundant representation of the limb parameters is
encoded, providing a concurrent natural solution to the IK and DK
problem iteratively, with the addition of a robust real-time adaptation
to external obstacles that, differently from other approaches (Seraji,
1999), (Cheng, 1998), (Kheradpir, 1988) are formulated as joint
limits. This approach allows a kind of ”on-the-fl y” fl exibility. From the
pure algorithmic point of view the MMC approach provides also a
selectable precision-speed trade-off.
Furthermore the other classical approaches taken into consideration
for comparison, do not address the problem in a dynamically chang-
ing environment. In fact, the cited solutions consider at least joint
limits only if they are known and constant through time.

This chapter is organized in four main sections. First the general
MMC model is discussed. Then, multiple control strategies are
described in order to achieve desired end-effector position and/or

Fig 21. A planar manipulator consisting of three vector segments: L1,L2,
L3. The joint angles are: α, β and γ. The end-effector position is indi-
cated by the vector R, D1 and D2 are two additional vectors describing
the diagonals.

35

orientation control. After that, some experimental results are pre-
sented and fi nally, results of the proposed model are analyzed and
compared to the most common velocity domain algorithms in terms
of timing performance, iterations per convergence and robustness to
external disturbance.

Model description
Since many years neural networks have been largely used to solve
manipulator control problems, in which the set of variables involved
in the process are combined in a single pattern (Miller 1990),
(Ritter 1992). The output values are retrieved by completion of an
even partially defi ned pattern given as input.

TWithin the neural network approach, the Mean of Multiple Com-
putation is an interesting method introduced in (Cruse, 1993), and
further exploited in (Steinkuhler,, 1998), that can be used to create a
model of multi-link, m-dimensional structure by using simple geo-
metrical relations between arcs of the same complete graph.
Going deeper into details we can consider as a simple example, a
planar manipulator with three degrees of freedom like the one shown
in Fig 21.
The procedure herewith exposed can be further extended to more
complex structures using simple principles of the graph theory. The
modelling phase is important for successive formalization strategies.
In fact the proposed control mechanisms are strictly related to the
characteristics of the MMC-based model formulated for the redun-
dant manipulator.

MMC manipulator model
The main idea followed to construct an MMC-based model is that,
looking at the serial manipulator as a geometrical multi-link structure,
it is possible to compute each geometric quantity (i.e. vectors ∈ R2 in
the example) in several ways, using different graph paths, and then
average over them.
For instance for the link L3 of the planar manipulator in Fig 21 all the
following relationships can be considered:

36

(14)

According to the MMC theory, looking at the equations in (14),
the mean value of L3 (L3m) can be computed as:

(15)

In this way the MMC model provides a parallel computation of each
variable that represents a key point to guarantee robustness to sin-
gularities in the IK problem formulation.
Referring to Fig 21 the complete geometrical structure of the ma-
nipulator, defi ned in terms of an MMC network, is constituted by
vectors Li (real links ∈ R2) as well as by vectors Di (virtual links, i.e.
diagonals) and R (end-effector absolute position) that will be referred
to as virtual links.
The complete pattern for the defi ned model can be expressed as:

(16)

Therefore, it is possible to defi ne the matrix M (weight matrix of the
network) that summarizes all the relationships within the considered
graph as shown in equation (17).

(17)

where, as for L3m in equation (15), Pm is the vector of the average
values of each quantity present in P.
The general form of M can be computed systematically using simple
geometric relationships and principles of the graph theory (Diestel,
2005): for instance, for the simple three DoF manipulator shown in
the previous section, M can be defi ned as in equation (18):

With the considered MMC model, defi ning input and output of the
network (modifying the weights), several unknown elements of the
input vector can be reconstructed, iteratively, starting from a refer-
ence input using the matrix M.

37

(18)

Therefore the same model can be used, for instance, both for in-
verse and direct kinematic problem solving. In the fi rst case a de-
sired end-effector position Rd is given and L1, L2 and L3 are retrieved
and therefore α, β and γ. To impose as known value the vector Rd,
the corresponding line in the weight matrix M (4th row) is modifi ed
deleting the relations with the other variables.
For such a defi ned problem the modifi ed weight matrix MIK, should
be expressed as:

(19)

Moreover, as described in (Cruse, 1993), (Cruse, 1998), the P vector
for the current iteration i can be computed as in the following equa-
tion:

(20)

It must be noticed that in (18), a damping factor d has been intro-
duced, in the diagonal elements, for a speed-accuracy trade-off:
for large values of d the system is faster but can show overshooted
behaviour while for small values the system dynamics is smoother
but slower.
It is important to remark that equation (19), with the modifi ed matrix
MIK, implies: R(i) = R(i-1). This leads the system, through a certain
number of iterations, toward the desired geometrically-feasible con-
fi guration in which results:

38

(21)

where etol is the chosen position error tolerance.
In direct kinematic problem solving, α, β and γ and therefore L1d, L2d
and L3d are given while R is retrieved as output.

Graph extension
Thanks to the graph theory it is possible to extend the model to vari-
ous architectures in order to address the problem for structures with
a different number of degrees of freedom, eventually even for a par-
allel manipulator. As described in Fig 23, the dimensions of the MMC
linear computational matrix (NxN) depend on the number of the arcs
of the complete graph (Fig 23) and so it can be determined referring

Fig 22. Algorithm block diagram for a given absolute reference input
pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy and MMCz
are the three-dimensional linear computational networks. NLB is the
Non-Linear Block and miniARM is the manipulator itself (simulator or
real robot). Pj are the MMC input pattern while Aj are the outputs. d are
the desired angular values and are the read joints values.

Fig 23. MMC complexity increases with number of links of the ma-
nipulator geometrical structure.

39

to the number of manipulator links, nl, as follows:

(22)

Control strategies
In order to guarantee the redundancy for the 3D positioning and
orientation task, a seven degrees of freedom serial manipulator
structure has been considered. The modeled geometrical structure
is a four link serial structure and therefore more than one degrees of
freedom are computed with the same geometrical quantity (e.g. two
relative joints associated with
the same link).
A complete pattern �P = [Px Py Pz]T for this kind of structure,
made up of all the arcs present in the graph (similar to the one seen
in Fig.1), can be written as:

(23)

where, as described before, both real and virtual links are present.
Due to our hardware implementation , i.e. the servo motor fea-
tures, also joint angle limits have to be considered in the model and
therefore the linear model introduced in the equation (20) needs a
further extension.
In this section three different problems will be considered, dealing
with the end-effector position control with absolute reference input
and relative error feedback. Moreover a general end-effector con-
fi guration control (i.e. both position and orientation) is proposed.

Position control with absolute reference input
The simplest extension of the two-dimensional positioning of a
planar redundant serial manipulator (shown in Fig 21) introduced in
the previous section (deeply described in Cruse, 1993) is the tri-
dimensional positioning of the end-effector for the redundant serial
manipulator in space (i.e. R3).
Each vector component of the geometrical links is processed, itera-
tion after iteration by a different linear MMC network and then given
as input at the non linear block (NLB).
The single blocks of the control architecture are described below.

40

PC (Pattern Constructor): it defi nes inputs and outputs within the
pattern structure (see equation (23)) for the iteration i, modifying,
similarly to (19), the weight matrix M to obtain relation (24).

(24)

The PC block also sets input values (Pj(i)) for the network for the
given vector reference Pjd = (...,Rjd,...), with j = x, y, z and the actual
angular positions �θ(i) (values read from the encoders or simulated):
MMC (linear blocks): for a given vectorial input pattern Pj these
structures compute separately and linearly the outputs Aj , in all the
three dimensions.

(25)

For example, the desired link confi guration for Lj3 of the planar ma-
nipulator (Fig 22) is obtained iteratively as follows:

Fig 24. Algorithm block diagram with relative position error feedback
(eP). PM is the Pattern Modifi er block and RC is the Reference Com-
parator block.

Fig 25. Algorithm block diagram with relative position error feed-
back (eP). PM is the Pattern Modifi er block and RC is the Refer-
ence Comparator block.

41

(26)

NLB (Non-Linear Block): it defi nes the links inextensibility and other
constraints known a priori (e.g. servo angular operating range),
since these are not considered in the linear MMC block (Cruse
1993), (Cruse, 1998). So NLB transforms the networks output Aj in
desired angular position �θkd for each joint (k = 1; 2; ...; 7).

(27)

in which the functions fk implement a rotational transformation of
reference systems from absolute to particular local joint components
while the functions gk rebuild the angular value from given link com-
ponents: in the simplest case, i.e. for the fi rst link, it results

 (28)

As it is possible to see in equations (27) both 2d and 3d are com-
puted with the same link, L2 due to the fact that in a 3D problem
more than one angle can be associated to a link.
It must be remarked that the introduction of the NLB, of primary
importance for the control of the real manipulator, modifi es the
dynamics of the system affecting in some cases the global optimum
convergence of the overall network.

Position control with relative error feedback
The most relevant difference with the control scheme described in
the previous section is that the control action is given, with the addic-
tion of the Reference Comparator (RC) block, by the feedback of the
relative position error (eP) instead of an external absolute reference
(Pd), as follows:

42

(29)

Equation (29) computes the error value for the current iteration
(eP(i)) with respect to the absolute instantaneous position of the end-
effector R(i). In some application its value can be measured directly
(e.g. with stereoscopic vision).
Each error component (ejP) modulates a different MMC layer ac-
cording to the following rule:

(30)

where (KP) is a gain able to modulate a damping factor in the posi-
tion control and to decide a speed-accuracy trade-off.
PM: Pattern Modifi er, it modifi es the R components in the network
outputs (Aj) proportionally to the measured end-effector position er-
ror as described in equations (30).

Absolute position and orientation control with relative error feedback
The MMC network architecture maps the real manipulator links into
vectors. Therefore each quantity results to be invariant (in R3) to
rotations around its extension direction.
Orientation control, under this point of view, can operate with two
degrees of freedom following the reference as desired confi guration
for the last n-link (Lnd). It is possible to modify the weight matrix M to
ensure the following relation through iterations:

(31)

Although (31), similarly to (24) is able, thanks to the NLB, to let
the system relax towards the desired orientation it also gives an
even more pressing constraint because the orientation would be
kept through all the algorithm iterations. Therefore the feedback for
the orientation error (eO) is analyzed.

(32)

PM changes the Ln components in the output patterns (Aj) propor-
tionally to that component error (ejO) in order to allow the network to
relax toward the desired orientation as follows:

43

(33)

where (KO) is a constant able to modulate a damping factor in the
orientation control.

Simulation and experimental setup
The considered manipulator is custom built with seven degrees of
freedom (revolute joints) in which the z-axis of j-link is 90o rotated
around x-axis from the (j-1)-link.
The physical structure can be mapped, as requested for the MMC
modeling, into the geometric theoretical model links whose lengths
are reported in TABLE I.

Due to the chosen real robot architecture, angular limits are not
equal for each joint (see TABLE II). As described in

the previous section, each presented control strategy has been

TABLE I Lengths of the link of the considered manipulator

TABLE II Constraints of each joint of the considered manipulator

44

tested both in simulation and on real robot (i.e. the miniARM shown
in Fig 27).

Fig 26. Hardware confi guration of the experimental setup: low level
microcontroller AVR32 board, actuators and sensors bus architecture
and high level control host computer.

Fig 27. Experimental setup with the real robot (7-DoF manipulator)
and the 32 bit microcontroller board.

45

The proposed algorithms have been implemented both in the PC
and in a custom microcontroller unit (mcu) board.
Respectively a Dual Core Intel Centrino 2.2 GHz host computer with
2GB of RAM and an UC3A AVR32 mcu with 66MHz of maximum
clock and only 64KB of RAM were used as comparison platforms
(Fig 26). As sketched in Fig 26, in our fi rst implementation the overall
manipulator control can be split in two levels: low level (hardware)
control and high level control. The low level control is, in all cases,
achieved thanks to a mcu-based board that is used both to acquire
information from the distributed sensory system and to control the
actuators. Moreover a serial bus is used for low level communica-
tion purposes. The high level control and the data logging are made
through a host PC connected to the board via serial interface (with a
USB-to-serial transceiver). In the second (embedded) version of the
control algorithm all the MMC-based calculations are directly execut-
ed locally in the mcu-based board while the PC is just used for data
logging and for the Virtual Reality (VR) simulation environment.

Simulation and experimental results
Each of the proposed control schemes has been tested not consid-
ering the high level control platform (both mcu-based and PC) to
compare tasks achievement and performances.
In order to guarantee a reliable and fast end-effector positioning,

Fig 28. Position errors through iterations in trial with absolute
reference:simulation results tested in the real robot using simulated
angular values as real joint references.

46

in each trial, a damping factor proportional to the position error has
been chosen as follows:

(34)

where dS is the initial damping factor and KS is a constant.

Fig 29. Errors through iterations in position and orientation con-
trol with absolute reference (in position) and relative feedback
(in orientation): simulation results tested in real robot using
simulated joint values as references for real joints.

Fig 30. Last manipulator and target (circle) confi guration in a simu-
lated environment in the simple position control task.

47

A fi rst trial a in simple position task, for a given absolute reference
Rd = (0.15, 0.2, 0.2) m,
has been realized with dS = 0.001 and KS = 200.

It must be noticed that reference is given in terms of absolute vector
components.

Fig 31. Last confi guration of the manipulator and target in a simulated
environment for position and orientation control task.

Fig 32. Errors through iterations in position and orientation control with
absolute reference (in position) and relative feedback (in orientation):
simulation results tested in real robot using simulated joint values as
references for real joints.

48

As shown in Fig 28, after less than 80 iterations the network con-
verges toward the desired position and the residual error is
||eP|| < 0:001 m.
The fi nal confi guration of the manipulator is depicted in Fig 30.
In Fig 33 it is possible to see that, due to joint angular constraints
(Table II), introduced in the NLB, the angular position of each servo
is constrained. It is also important to notice that, as described in
(Cruse, 1993), the performance of this approach outside the operat-
ing space are still very good: the manipulator reaches the minimum
distance point inside the operating space.

End-effector positioning with relative error feedback
The same experimental setup has been kept to test the control
scheme with relative error feedback instead of the absolute refer-
ence. In this trial the same dS and KS were used, while for feedback
error a KP = 0.2 was chosen in equation (30). Up to now the end-
effector position error measurement is just estimated using, even in
real robot implementation, the forward kinematic model.

The simulation results show a signifi cant increase in the number of
iterations needed to reach the same desired position.
In fact the same position error value is reached after 600 iterations

Fig 33. Joint values during iterations in position with absolute refer-
ence trial: simulations outcomes used as references for real robot
joints positioning.

49

(Fig 29). Further simulations show that quantitative results for the
number of iterations needed for a complete convergence (i.e. within
a defi ned error tolerance) depends on the KP value and therefore an
optimal speed-accuracy trade-off should be chosen (e.g. with
KP = 0.7 the same error value is reached after only 100 iterations

Fig 34. Confi guration of the real robot and of the virtual target (circle)
after the position control of the end-effector (on the left) and after the
position and orientation control of the end-effector (on the right).

Fig 35. Joint encoder readings trough iterations in real robot simple
position trial. Angular values are acquired in encoder values (10 bit
resolution) within servo constraints.

50

without overshoot).

End-effector position and orientation control
In order to test performances of the complete model in an orientation
constrained task, a Rd = (0.15, 0.2, 0.2) m together with a desired
Ld = (0, 0, 0.05) m for the last link were given. As shown in Fig 32, it

Fig 36. Joint encoder readings trough iterations in real robot trial with
external disturbance. Angular values are acquired in encoder values
(10 bit resolution) within servo constraints.

Fig 37. Estimated position error of the end-effector of the real robot
trough the iterations in position control task.

51

results that, for KO = 0.6 (equation (33)), after just 90 iterations the
network is completely relaxed and the errors are ||eP|| < 0.001 m and
||eO|| < 0.001 m (where eO is the last link relative error vector). The
fi nal confi guration of the manipulator is depicted in Fig 31.
Position control and position-orientation control tasks have been
performed on the real robot (Fig 34), without changing parameters,
introducing the encoder readings as angular feedback values and
estimating the errors trough iterations with forward kinematics (e.g.
position task shown in Fig 35 and in Fig 36). Error tolerance (et) has
been increased from et = 0.001 m to et = 0.005 m due to mechanical
constraints and to the accuracy given by the low cost components of
the experimental setup.

The mechanical fi nite acceleration and the fi nite speed of the real ro-
bot motion introduce a natural damping factor whose value depends
on algorithmic time needs related to the joint speed.

Behaviour in front of dynamically changing constraints
The introduction of real angular feedback gives to the introduced al-
gorithm an interesting added value, especially in dynamically chang-
ing environment. In fact, let us consider the case in which an exter-
nal disturbance is added, for example, to the fi rst degree of freedom
of the manipulator .
The behavior is shown in Fig 36, where the same input reference
and algorithm parameters as for the previous simulation (Fig 29)
were used.
The external disturbance could be due to the effect of a moving ob-
stacle, or simply by a mechanical fault.
This implies imposing a new, unforeseen constraint to the joint posi-

Fig 38. Modifi ed MMC block diagram for Obstacle Avoidance (OA).
Implemented for Power Cube (PCube) robotic structure (from Schunk)
.

52

tion. The corresponding error feedback modifi es the network behav-
iour, but the network nevertheless is able to relax toward a minimal
position error, whose value depends on the entity of the constraint
imposed, that could bring the target even outside the new opera-
tive space. This can be appreciated in Fig 36, where θ1 is blocked
by physically preventing its motion for about a half of the number of
iterations.
It is also possible to appreciate that the joint driven by θ6, though it
shows some chattering, is able to overcome the angular limitation
and the encoder dead zone. Videos of the described experiments
together with high resolution pictures of the fi gures are available on
the web (SPARK II website).

Moreover another explored possibility is to implement an Obstacle
Avoidance block (namely OA) in order to produce a repulsive force
in the near fi led of each presented obstacle (Fig 38). From an hard-
ware point of view, this can be simply realized adding a small net-
work of range sensor (e.g. sonar) within the links of the manipulator
(Fig 39)

Fig 39. Hardware block diagram for Power Cube (PCube, from
Schunk) high level control from a PC.

53

Result analysis
Due to the lack of strong analytical proof of convergence and sta-
bility of the introduced method an extensive statistical simulation
campaign has been performed.
A sampled version (with number of points N = 107) of the workspace
of the described structure has been computed and the histogram
has been analyzed.

Moreover random reachable targets have been selected from the
sampled workspace and used to test the algorithm. Starting from the
same initial condition �0 = [0 0 0 0 0 0 0] using a variable
damping (function of the position error) and with a maximum number
of iteration imax = 3 · 103 the algorithm converged in position task
with joint limits with probability p = 0.877 (estimated in N = 105 tri-
als).

Although the iteration number needed to reach the desired reference
strongly depends on the chosen parameters and on the particular
given reference, in order to estimate the algorithm performance,
multiple comparisons with common algorithms for kinematic inver-
sion, such as pseudo-inverse Jacobian (J) and Jacobian transpose
(Jt), have been considered. It must be taken into account that in the
J the joint limit constraints are introduced in form of an additional
task to be completed while in the Jt no joint limitations are consid-
ered.
Free parameters were chosen to maximize convergence speed
keeping a non-overshoot condition on end-effector positioning. As
it is possible to see in TABLE III and in TABLE IV the performance
in terms of number of iterations needed for convergence (i.e.

TABLE III Algorithm performance in position control task

54

‖ eP ‖≤ eT) are comparable with already known algorithms for the
MMC model with relative position feedback (MMCrpf) and for the
MMC with a non-variable damping (MMCnvd) while they are even
lower for MMC with absolute position reference (MMCabs) and rela-
tive orientation feedback (in orientation control task).

Thanks to its low computational effort, the proposed model archi-
tecture permits a simple and fast hardware implementation. TABLE
V gives an idea of time needed for each iteration. For a complete
comparison among all the different implementations of the proposed
algorithm we have to consider that the MMCrpf and the MMC with
relative orientation feedback are almost the same as the MMCabs
in terms of computational effort while the MMCnvd is signifi cantly
faster because it is possible to compute the weight matrix M once
for all the iterations needed even if more iterations are requested for
convergence.

In this chapter, a fast, reliable algorithm able to solve at the same
time both position and orientation tasks is proposed. Its implementa-
tion on an embedded mcu-based board has been tested and a real

TABLE IV Algorithm performance in position and orientation control
task.

TABLE V Algorithm timing for different implementation on different
platforms

55

robot application has been developed.
The convergence of the MMC network has been robustly extended
in a position and orientation task inside a threedimensional operat-
ing space. Beyond the state of the art (Jacobian-based algorithms
(Sciavicco ed., 2008) and other cited analytical approaches (Moradi,
2005), (Tondu, 2006)), though both problems are solved in a sub-
optimal way the real-time implementation addresses the problem not
only in presence of angle limits but also in a dynamically changing
environment even in a mcu-based hardware. That results together
with sensors readings have been investigated in order to effectively
modify the trajectory of the manipulator toward a constrained op-
timum confi guration. Further development should include a multi-
legged robot application and a moving target followed trough visual
feedback.

56

3chapter

The gather and the analysis of the distributed sensor information
present in the body of a living beings is for sure the most important
(and the most interesting) part of these studies and of this project.

In this very wide and complex fi eld the most challenging part is how
to address the dimensionality problem.
The number of dimension of the sensor information of a complex
structure is quite huge. Whatever is the problem to solve and how-
ever you think to use this sensor information the dimension of the
sensor space will be higher than necessary.

With the local Principal Components it is possible to represent sen-
sor distributions locally constrained to sub-spaces with fewer dimen-

perceiving the world:
action oriented perception

57

sions than the space of the sensed data. Under this point of view, as
described in (Martinez, 1993), PCA is able to model distributions in
those directions with almost zero variance exist.
In robotic applications data classifi cation is extremely important and
as far as the visual input is considered, the number of features and
the complexity of in-class discrimination increase enormously. For
these reason it is important to identify algorithm for classifi cation that
show characteristics like robustness.
The Neural Gas (NG) (Martinez, 1993) is a vector quantization
technique that try to approximate a given manifold with a reduced
number of points. With Principal Component Analysis (PCA) each
of this data-rapresentative points (code-book vectors or particles) is
extended into hyper-ellipsoid to better match the given data distribu-
tion. This technique has been applied in different fi elds as redundant
inverse and forward kinematic (IK and FK) for serial manipulator
and roving robot path planning (Martinez, 1993). Our purpose is to
further develop a fully unsupervised classifi er for real robotic appli-
cations. Under this point of view our algorithm has been compared,
from the beginning, with Self-Organizing Map (SOM) (Kohonen,
1995) approach which is at the same fl exible and simple.
As a key point for a real time application the data set is acquired
during the experiment and not completely available at the beginning.
Under this point of view, it is important to envisage a growing mech-
anism that allows the algorithm to cope with sample collection typical
of a roving agent in unknown environment (i.e. dynamically changing
training set).
The model architecture can be easily divided in a learning phase, in
which the data distribution is approximated and in a recall phase in
which an incomplete pattern is presented to the network in order to
retrieve the output (complete pattern). As already discussed (Cruse,
1993 and Arena, 2009), similarly to Recurrent Neural Networks
(RNNs), this model is able to cope with multiple solution tasks pro-
viding one of the possible solutions and it is also possible to choose
the role of input and output neurons, after the training, simply modi-
fying the recall phase.
A supervised classifi cation extension of the algorithm, with visual
cues variables in the input pattern portion, will be discussed.

58

Moreover an incremental on-line version of the architecture gives a
action-oriented classifi cation capability for roving robot applications
(SPARK II project).

Model description
The Neural Gas algorithm is a variant of the soft-clustering vector
quantization with the addiction of annealing. For a given pattern
space , the algorithm starts choosing m points cj (with
j = 1,2,...,m), in this hyperspace, from the N training set elements.
During each step, a random pattern x is chosen from the training set.
Then each j-point position cj is updated for next iteration step relating
to its rank rj function of the distance from the selected pattern trough
the learning rate “ and the neighborhood range ρ as follows:

(58)

where αj is defi ned by .
In order to force algorithm convergence through iterations both ε and
ρ exponentially decrease from εinit (ρinit) to εf (ρf) as in the follow-
ing.

(59)

where ti is the current iteration number and T is the lat iteration num-
ber.
The local PCA extension of the NG considers hyper-ellipsoid units,
with q principal components, instead of simple points and therefore
the ranking of the units cannot depend on an Euclidean distance.
One of the possible distance measure is the normalized Mahalano-
bis distance (Hoffmann, 2003) (Hinton, 1997), an elliptical distance
that can be computed, for each j particle, as:

(60)

where ξ = x− c is the deviation of vector x from the centre unit, W
is the eigenvector matrix, is a diagonal matrix containing the eigen-

59

values. The second term of equation (60) is the reconstruction error
divided by 2 that depends on the total residual variance vres, among
all d-q minor dimensions (d ≥ q), as in equation (61).

(61)

The total residual variance is updated according to

(62)

To modify principal components of existing ellipsoids, one step
of the Robust Recursive Least Square Algorithm (RRLSA)
(Moller, 2002), described in (Ouyang, 2000) is performed.

(63)

Since the orthogonality of W is not preserved after each step, the
Gram-Schmidt orthogonalization method has been introduced (Hoff-
mann, 2003).
The algorithm overall block diagram is shown in Fig 40 where the
already introduced main blocks are: an initialization block (init) that
initialize all learning parameters and variables; a Neural Gas block
(NG) that update the position of the centers of the ellipsoids for a
given pattern x chosen from the Training Selector (TS) from the
training set T = T1,T2, ..., TN as in equation (58); a Principal Com-
ponent Analysis block (PCA) that update hyper-ellipsoids axes with

Fig 40. Algorithm block diagram for the learning phase of the Neural
Gas with local Principal Component Analysis (NGPCA). The NG block
performs centre updating for a given training vector, extracted by the
Training Selector (TS), the PCA block executes one step of local prin-
cipal components algorithm and GSo (Graham-Schmidt ortho-gonali-
zation) is able to give eigenvectors orthogonality property.

60

RRLSA as in equation (63) and a orthogonalization block (GSo)
that performs the so called Gram-Schmidt algorithm.

Relevant parameters and variables used in the model are summa-
rized in table VI.

In order to reduce the dependence of the error in equation (60)
from the volume of the considered ellipsoid and to avoid useless
points (with weight almost zero) in the pattern space it is possible,
as in [1], to modify the distance measure as follows:

(64)

where V is the volume of the considered ellipsoid unit and can
be computed according to

(65)

Test phase
After the learning phase, the data distribution is represented by m
hyper-ellipsoids with center cj (with j = 1,2, ..., m), semi-axes lengths √
λk
j (with k = 1,2,...,q), wk

j principal component eigenvectors and a
residual variance σ2

j .
In the recall phase and incomplete pattern p∗ ⊆ R

d−s, with s num-
ber of laking dimensions (s ≤ d), is given as input and the algorithm
would rebuild the s free dimensions and give the optimum complete
pattern ẑj∗ as output.

TABLE VI Notation summary for Neural Gas with Principal component
analysis

61

In order to perform the recall, a potential function in the constrained
subspace Ej(z) can be computed for each ellipsoid as:

(66)

where ξj is the displacement from the center ξj = z− cj and
yj =WT

j ξj j is the representation in the local coordinate system of
the ellipsoid.
The input to the network is given in form of an offset p in the con-
strained space as follows:

 (67)

where M matrix aligns the constrained space to a particular parame-
ters space while η ∈ R

s is a vector of free parameters. For each unit
j, the point of constrained space with smallest potential bzj is deter-
mined, according to equation (67), and then the unit j∗ that has the
minimal potential among all Ej(ẑj) is chosen as complete pattern.
As shown in (Hoffmann, 2003), the function E(η) is convex and it is
possible to determine analytically the only minimum η̂j computing:

(68)

with

(69)

Classifi cation problem
A simple supervised classifi cation problem is one of the straightfor-
ward application of this kind of approach. Moreover the pattern is
divided, as in equation in a feature hyperspace f and a class param-
eter n.

(70)

During the training phase the complete pattern is presented as input
to the algorithm. In the testing phase the class number portion of the
vector is left free and is retrieved as output.

62

Patterns
Simple visual cues have been chosen to build features part f of the
input training pattern. Both a space-color representation and geo-
metrical features extraction have been performed in a segmented
image. The most present hue, saturation and value (respectively cH,
cS and cV) and some geometrical features p, A, em and eM (respec-
tively the perimeter, the area, the shorter and the longer edge of the
minimum rectangle that containing the object) have been extracted
from an image portion obtained with a Canny segmentation algo-
rithm.

(71)

As often happens in real-time robotics, in our application, the train-
ing data-set is not fully available at the beginning of the learning: we
suppose the robot to collect training images (i.e. complete training
patterns) through its mission (i.e. iteration after iteration) and at the
same time try to correctly classify them for better foraging task-ori-
ented performances.

Incremental Learning
In order to achieve incremental learning several problems needs to
be overcame with some modifi cation to the presented algorithm.
First of all the number of code-book vectors should be variable.
Then the annealing of each ellipsoid (i.e. the capability to move)
must be function of its own age (i.e. number of steps it is present of
the training). The on-line supervised nature of the algorithm needs
both recall and training phase to be achieved per each iteration. A

Fig 41. Algorithm block diagram for on-line incremental learning that
uses pre-processed input vectors. The Segmentation and Feature Ex-
traction block (SFE) performs a frame segmentation and extracts the
feature vector f . The Incremental Block (IB) regulates the increase of
the number of gas particles used in the classifi cation.

63

block diagram of the modifi ed algorithm is shown in Fig 41.

When a new input is presented (i.e. a vector of features f with a
class n from the Segmentation and Feature Extraction (SFE) pre-
processing block) the Incremental Block (IB) performs a test phase
and then check the distances e E(x) from for all the ellipsoids al-
ready instantiated.
Therefore when a pattern is chosen for learning purposes if inequal-
ity (72) is false a new instance of code-books is made. Moreover its
ellipsoid is initialized and its Mahalanobis distance from that patter is
set to zero.

(72)

The time variable is then no more an global iteration counter but
becomes a variable of each particle. Therefore the ellipsoid j at itera-
tion i would have age aj(i) and its specifi c learning parameter are ξj
and ρj as in following equations.

(73)

where amax is the maximum ellipsoid age.
This mechanism allow to selectively force the convergence of each
code-book ellipsoid and therefore it is possible to cope with a dy-
namically changing training set.

Pruning
One of the problem introduced with the incremental learning mecha-
nism is the possible growing of the number of particles that can
appear during the learning time but that cannot In order to achieve
a fast convergence maintaining the forgetting capability and perfor-
mances increasing the over long time simulation, a pruning strategy
has been implemented. Thanks to the supervised classifi cation
process each time one particle is selected as the nearest to the
presented input pattern, its distances is under a given threshold, a

64

recall phases is performed and the resulting class is compared with
the real one.
Considering that the class number is a discrete variable while algo-
rithmic outcomes are continuous, a classifi cation error means that
the distance between reconstructed class number nz and test pattern
class number nt exceed a user defi ned threshold (eth ≥ 0)

(74)

Fig 42. Image of all laboratory tools used to create the input data set.
Image has been acquired at VGA resolution (640px x 480px)

Fig 43. Reduced feature-space obtained after segmentation. Depict-
ed dimensions have been reduced from six to three (i.e. em, eM and A).
Each grey-scale value stands for a different class. It can be noticed
that patterns from all three scree-drivers have reduced Euclidean dis-
tance in this feature sub-space (on the left).

65

Fig 44. Two different views of the reduced normalized features space
(em, eM and A) together with code-book ellipsoids after learning.

Fig 45. Flow of the segmentation process. First a gaussian fi lter is ap-
plied (top-left), then the Canny algorithm generates a binary image
(top-right) and fi nally meaningful contours are isolated (bottom-left).
Segmented object area is determined and the same portion of the
original image is extracted for color space based statistical analysis
(bottom-right).

66

In this way per each particle j, at iteration i, it is possible to compute
an error rate ej(i) as it follows:

(75)

where nerr is the number of times the particle is the nearest and re-
calls phase leads to a classifi cation error and nwins,j is the total num-
ber of times it is the nearest.
After code-book j has expired its life (i.e. aj ≥ amax) if its error rate
(ej) is over a tolerance threshold (rth) the corresponding particle be
erased. In other case it is held freezed with minimum learning pa-
rameter (i.e. ξ = ξf and ρ = ρf).

Experimental setup
Experimental images have been acquired to test algorithm perfor-
mances. In order to consider a realistic visual fl ow on autonomous
robot both resolution and overall quality of the images have been
kept low. Testing objects have been chosen from common laboratory
tools, see an example if Fig 42.

Visual cues have been extracted with OpenCV library (OpenCV
website) and a custom made simple segmentation algorithm through

Fig 46. Number of code-book ellipsoids (m) through learning with re-
spect to the time (algorithm iteration number). The number of particles
decrease for a while, around iteration 3500, due to the pruning strat-
egy that allows each j particle to be erased when aj ≥ amax.

67

a host PC with low-resolution webcam (640px x 480px). It must be
remarked that considering a frame rate of 30fps, a that resolution,
simple segmentation routine can be easily performed in less than
ts = 1/60 s in modern PC leaving at least tl = 1/60 s for classifi cation
learning. A reduced feature space of the outcomes of the segmenta-
tion process is shown in Fig 45 with one gray-scale value per each
class.

Experimental results
The input data set T = {i1, i2, ..., iN} has been built of N = 1300 dif-
ferent images in which one of the object belongs to one class was
present. Six different classes were chosen.

During a testing phase, at the iteration i, the considered performance
index eT is the sum of each particle error rate ej.

(76)

In order to be comparable even in supervised and semi-supervised
problem solving the classic SOM has been trained with a discrete
class parameter and a test phase has been introduced at each itera-
tion.
For a given pattern x, the Best Matching Unit j * (BMU, i.e. the near-

Fig 47. Error indexes eT comparison between implemented NGPCA
(solid line) and Self-Organizing Map approaches with 50 by 50 neu-
rons (dashedline) and 200 by 200 neurons (dotted-lint) through learn-
ing iteration.

68

est unit under Euclidian metric) is chosen just on distance on the
features part of the x vector, f as follows.

(77)

with ms number of neurons in map. The classifi cation error is then
evaluated on the class part of the vector (i.e. n parameter) between
the BMU and the presented pattern as in inequality (74).

For a ξinit = 0.5, ξf = 0.02 · ξinit, ρinit = 0.01, ρf = 0.02 · ρinit and
amax = 3000, if we consider each frames to have a meaningful dif-
ferent pattern confi guration, with an error eT ≤ 0.07 in less than 500
iteration with an average computational time of ti = 5 · 10−3 (on a
laptop Core 2 Duo 2.2 GHz with 2GB of RAM).
As briefl y introduced in previous sections starting from a number of
ellipsoid m(0) = 0 as initial condition, m(i) increases through iteration
as shown in Fig 46.

As it is possible to see in Fig 46, starting from N = 1300 input pat-
terns the number of code-book ellipsoids is far less (maximum
reached value m = 30). Therefore considering one learning algorithm
iteration at each acquired frame with an image frame rate of 30fps,
an elaboration time te 28x10-3 s can be used for segmentation and
other control algorithm.

Moreover same parameters lead toward a eT<0.015 in 2500 itera-
tions (t = 12.5s in our hardware setup) and eT<0.005 in 15000
iterations (i.e. t = 75s) as summarized in Table II. SOM with a rela-
tively large number of neurons (i.e. S50 with 5050 neurons and S20
with 200200) have been tested. It is possible to observe that, in our
simulations, larger is the number of neurons of the map smaller is
the overall classifi cation. SOM with 40000 neurons performs largely
worse than NGPCA. The complexity of the NGPCA algorithm is
O(Nq) with N number of code-book ellipsoid and q is the number of
principal components.

In this chapter an on-line classifi cation application of the Neural Gas
with Principal Component Analysis is presented.

69

Both the algorithm and the whole experimental setup have been
chosen for straightforward porting of the architecture to a PC-based
object manipulation in a roving platform. Under this point of view, the
error-to-performances trade-off of the learning process is selectable
through parameter tuning and the overall computational cost of the
algorithm can be kept low, even for a embedded version of the clas-
sifi er.

The model input-output variables can be changed at any time for
a given learning. A fi rst comparison with standard structures, like
Self-Organizing Maps, shows a higher level of fl exibility without error
nor complexity increase. Nevertheless, for a complete classifi cation
capability, focused on robot action-perception closed loop applica-
tion, the proposed algorithm should be further developed in a fully
unsupervised classifi er.

TABLE VI Performance analysis table

70

As already introduced, actions toward a given objective can be de-
composed in multiple ways, at multiple levels of abstraction.
From a behavioural point of view (i.e. a high level of abstraction)
and considering as a atomic action the complex motor coordination
for motion of a multi-link structure (as almost any living beings limb)
from one point to another, several considerations can be done on
motion sequences.
Nevertheless the complexity of this trivial coordination can be very
hard and not so trivial. Consider now, for instance, the quite simple
task of the pendulum swing up.

It is clearly easy and straightforward to imagine the solution of the
problem at a joint level (and eventually to derive equations for the

4chapter
algorithmic solutions for actions and more:
sequence learning toward given objectives

71

control of an actuated structure).
It can be still easy to imagine the solution of the problem in terms
of agonist and antagonist muscles that can concurrently control the
joint. It not so simple and not so straightforward to imagine (and
eventually to derive equation) of this pendulum swing-up in case of
limited torque.

Moreover, as it is possible to imagine, problem can be even harder if

Ĵv(x) estimated cost function πw(x) learned policy

Fig 49. Very simple pendulum model used to demonstrate situated
controller learning. In particular the considered task was a torque lim-
ited pendulum and a spiking Self-Organizing Map was used to learn
both the optimal policy and the estimated cost function.

Fig 48. Torque limited pendulum swing-up. Example of a learned poli-
cy (on the right) and estimated cost function (on the left), with the help
of a multi-layer spiking Self-Organized Map (SOM).

72

you want to start from a general purpose structure (like a Motor Map
or a more general Self-Organizing Map) and want to learn a poilicy
and estimate the cost function if every point of the domain (i.e. two
dimensional space made up of angular joint position and angular
joint velocity).

For all this diffi culties and for many others not even cited, let us con-
sider, it this chapter the synthetic problem of sequences of actions
and let us face with this problem employing a Reinforcement learn-
ing approach..

Reinforcement Learning (RL) is the straightforward learning para-
digm for bio-inspired architectures. In the last few decades the state
of the art for robot learning has moved towards RL (Lee, 2006)
(Braga, 2003). Unfortunately in robotics the common trial-and-error
practice is not so trivial: the lowcost mechanical structures have
very different compliance and timing capabilities with respect to
their biological counterpart. A large number of different approaches
have been proposed to overcome this kind of problems (Bakker,
2006) (Abbeel, 2008). Generally speaking, the underling idea is to
use computational power to minimize necessity of real environment
interaction.

Eligibility traces, model based approaches (like Prioritized Sweep-
ing in Moore, 1993) and probabilistic methods (like Ant-Colony
Optimization in Dorigo, 2004) increase computational costs in order
to reduce the number of environment examples needed (Kaelbling,
1996) (Barto, 2003). A commonly used strategy is to perform multi-
ple iterations based on past observations between two real experi-
ences (Sutton, 1998).

In this chapter an application of a modifi ed version of a simple State-
Action-Reward-State-Action (SARSA) algorithm is presented in
order to cope with a discrete shortest path problem with a redundant
serial manipulator.
The task taken into consideration includes a robotic arm equipped
with a pointer as end-effector. The robot, hereafter referred to as the

73

agent, should learn which is the best way to position the end-effector
on all the black squares in a given custom checkerboard. Multiple
levels have been used to hierarchically control the hardware. A high
level, behavioral, control is fi rst performed in a host computer. The
algorithm output (i.e. a discrete checkerboard position) is then given
as input to a kinematic inversion algorithm able to cope with the
redundant serial structure. A low level control is then performed both
in a custom designed control board and in the distributed control
system of the robot.

As in any other Q-learning based algorithms, for a given state and a
policy, the next action is chosen, reward is evaluated, and therefore
the action-value (Q-function) for state-action pair is updated itera-
tively. The particular reward function determines the overall behav-
iour of the agent.
In contrast to what previously discussed, for a given state the most
suitable action (i.e. the one that leads to the estimated best next
state) is simulated and through the uncomplete model the estimated
reward is assigned. Furthermore the learning process is strongly
accelerated with action simulation performed by the agent based
on what previously learnt: starting from a particular state the agent
explores multiple parallel simulated trials and respectively evaluates
rewards creating a tree of all chosen possibilities. It is clear that the
problem is better achieved via n-step prediction algorithms(Sutton,
1998).
Eligibility traces have been used in order to further keep trace of
meaningful state-action pairs.

The system performances have been evaluated using the Ant-Col-
ony Optimization meta-heuristic method (Dorigo, 2004), that is one
of the most suitable approaches for this kind of problem. In the fi rst
section, the considered general SARSA model is introduced. In the
second section, an improvement with a model-based prediction is
discussed. Finally, in the other two sections the experimental archi-
tecture is presented and the experimental results are shown.

Model description

74

The problem of the shortest path is herewith introduced in a uncon-
ventional task-driven way. The environment is a modifi ed checker-
board with white and black squares: when the agent is on a black
(sv = 0) square, the selected area changes its state to white (sv = 1).
The goal is reached when all the squares become white. Both the
state and the action spaces are discrete. In particular, state set S
includes all the bistable MxN checkerboard squares confi gurations
together with agent position for a total of ns possible states:

(35)

The actions from action set A can drive the end-effector to one of all
possible squares:

Fig 50. Example of four by two checkerboard together with the end-
effector position representation (circle).

Fig 51. Example of all possible actions (arrows) in a four by two state-
space checkerboard by the agent (circle).

75

(36)

A representation of one possible state from the state-space set S is
depicted in Fig 50.
As previously described, for a given state all the possible actions
a ∈ A are those sketched in Fig 51. Therefore considering the actual
state s and what since now learned, the most rewarding action a is
chosen, using Q-learning,with the following method:

(37)

In contrast to what happens in Q-learning, shown in equation (37),
in SARSA-based algorithms the performed action is not always the
one with the highest value in Q-function (for a given state).
For instances, the so called e-greedy policy can be followed by the
agent as described in the next pseudo-code block.

The simplest SARSA block diagram is shown in Fig. 3 where, after
parameters and variables initialization performed by the init block,
the (s, a, r, s *, n *) vector is collected iteration after iteration. Moreo-
ver the action value function Q is updated at each iteration as in the
following assignment:

(38)

where α is the step-size of the learning process, r is the current step

Fig 52. Block diagram of single episode cycle. After an initialization
phase implemented in the init block, the (s, a, r, s*, n*) vector is built
at each iteration.

76

reward and γ is the discount factor while s * is the next step state.
Considering that the largest part of the movement time of the real
manipulator from one cell to another is not dependent on the dis-
tance, though white cells are not a physical constraint, the best path
should avoid them. Therefore the problem can be easily split into
two sub-problems: the agent should learn to avoid white squares
and than learn the shortest path through black squares.
As can be easily understood, the former is not suitable for one-step
prediction: too many iterations are needed to obtain low errors (i.e.
big deal for real robot implementation).
A. Eligibility Traces In order to reduce the number of iterations de-
spite the increase in computational cost, eligibility traces have been
introduced (Sutton, 1998) (Riebeiro, 1999).
When a state-action pair (s, a) is visited, the corresponding value in
eligibility function is updated as follows:

(39)

The Q-function update is modifi ed as in the following equations:

Fig 53. Cost function part for initial state depicted in Fig 50 in the case
of movement towards black squares with sv = 1 (on the left). State-
dependent overall cost function used as reward (on the right).

Fig 54. Block diagram of cycle with state-to-state prediction. After an
initialization phase implemented in the init block, the (s, a, r, s *,n*)
vector is built each iteration, model Qs is updated and agent prediction
is evaluated by the prediction block and darker reward block.

77

(40)

Fig 55. Parallel agent simulation in state predicted tree for a four by
two state-space checkerboard. The light arrows and circles indicates
possible transitions and states of the virtual agent.

Fig 56. Hardware block diagram of the adopted experimental setup.
High level algorithms run on a PC-based platform. Both tri-dimension-
al kinematic simulation and real hardware control have been imple-
mented. Low level control of the custom manipulator (i.e. the Mini-
ARM) is achieved, through a USB-to-serial converter, thanks to a 32
bit microcontroller-based custom designed board. Lowest level motor
control and angular joint readings are decentralized in each servo.

78

and then for all state-action pairs (s, a)

(41)

where λ is the eligibility discount factor and is again the step-size
of the learning process. From a computational point of view the
straightforward application of eligibility trace implies a single episode
problem dimensionality to increase from O(steps) to O(steps x ns),
where steps is the number of action performed in order to reach the
goal.
Therefore in the real application a modifi ed version of the algorithm
has been implemented to hold information about the (s, a) pairs for
which the following inequality is verifi ed:

(42)

This increases the complexity from O(steps) to O(steps!) (it must be
noticed that typically ns steps).

Reward cost function
The defi nition of the reward function is an important aspect of the

Fig 57. Analyzed indexes in an experimental test. The dashed line
indicates the real data and the solid line μ20 is the moving average
computed with the most recent twenty samples. Both ns and lt have
been investigated in order to understand different learning capabilities
on tasks (i.e. avoid white squares and choose shortest black squares
path.

79

algorithm in the proposed application. For shortest path solution, the
coeffi cient γ is set to 1, as suggested in (Sutton, 1998), and a nega-
tive reward for all non-terminal states is given, while zero reward is
assigned for goal achievement.

Fig 58. Normalized number of steps needed for task achievement. It
must be remarked that when the agent is able to avoid white squares
(fi rst task achieved) ns = 1. Dashed line exploits the performance of
the fi rst tested algorithm, without prediction. Solid line indicates the
predictive model performances.

Fig 59. Summary of the experimental results on shortest path task-
performance evaluation expressed through the index lt that is a func-
tion of the over-length of the path traveled. Dashed line exploits the
performance of the fi rst tested algorithm, without prediction. Solid line
depicts the predictive model performances, while the dotted line are
the Ant-Colony Optimization performances.

80

The cost function used as reward is state-dependent and evaluated
through the following system:

(43)

where it is clear how all non-terminal states are negatively rewarded
according to the squared step length, in order to progressively
reduce overall traveled distance. Actions that lead to a white square
(i.e. in which sv = 1) are negatively biased to further increase conver-
gence speed of the algorithm. An example of the cost function used
as reward is shown Fig 53.

Predictive model
As already described, the model has been enhanced to improve the
performances in terms of number of episodes needed for a complete
learning, in order to meet real hardware timing necessities. The ap-
proach consists in reducing the number of real actions needed for
learning by introducing a virtual agent that will simulate the out-
comes of the environment based on what previously learnt by the
real agent.
A state-to-state transition matrix Qs is built incrementally through
iterations based on actual state-action pair (s, a) next state sn and
respective reward r. Therefore the updated block diagram is shown
in the diagram in (53), where the agent movement prediction is
performed (by the prediction block) and evaluated at each iteration
using the vector (s, a, r, s*, n*) updating the Qs function.

 (44)

where f is a reinforcement-based state-to-state function. An example
of parallel agent motion simulation that forms a state predicted tree
is shown in Fig 55.
It must be noticed that even for a trivial case of M = 4 and N = 2, Qs
is quite a huge matrix 2048 by 2048. Nevertheless, if we choose to
initialize it as zeros matrix instead of random, this results sparse: the
possible transitions from one state to any other are fewer, as com-
puted in the equation:

81

(45)

where nbk is the number of black cells in the state space. Therefore
the worst case is n a = (MxN)2, in our example is n a = 64.

Experimental setup
The considered robot is the MiniARM (SPARK project website
(shown in Fig 56), a custom built seven degrees of freedoms ma-
nipulator with revolute joints. The architecture for both simulation
and hardware control is sketched in a diagram in Fig 56 Virtual Real-
ity Modeling Language (VRML) models of simple environment and
manipulator have been realized in order to have the same function
interfaces as the real hardware control devices.
The highest level control is achieved with a PC, while the low level
control is performed with a 32 bit mcu-based board. The PC-board
communication is done with a USB-serial interface, while the robot is
position-controlled through a RS485 serial bus.
Although positions are known and few, in the case study the end-
effector positioning is realized with inverse kinematic algorithm for
generality (an iterative novel strategy called Mean of Multiple Com-
putation MMC Cruse, 1998 and Arena, 2009).

Experimental results and comparisons
A reinforcement learning algorithm, because of the high param-
eter and particular strategy dependency, is not easy to be numeri-
cally compared to other approaches. Under this point of view a
cross-comparison between predictive and non predictive algorithm
seemed a straightforward comparison.
Moreover the well known ACO meta-heuristic method (Dorigo, 2004)
is used as gold-reference to give idea of best achievable perfor-
mance without explicitly computing it.
Two different performance indexes have been chosen to compare
the proposed algorithm with respect to other classical SARSA-based
approaches. The fi rst is the normalized number of steps needed for
a single task achievement.

82

(46)

where nsteps is the overall number of steps executed by the agent
while nbk is the number of black squares in the checkerboard.
The second performance index is:

(47)

where d is the total distance traveled by the agent and d b* is the
minimum distance between the end-effector starting position and the
black squares. It is clear how though the minimum value for lt is
lt* = 1, not all confi gurations admit this value as optimal sequence
because of the distance between black squares in initial state. A typi-
cal dynamical evolution of the two indexes, chosen to evaluate sys-
tem performance, through iteration is shown is Fig 57. As it is possi-
ble to see, both indexes show a fast decrease through iterations.
Considering an average time per movement tavg = 1s, the overall
computational time requested per iteration is far less and therefore,
as discussed above, the number of real agent actions can be kept
low.
In order to compare the performances, a number of iteration of 1000
was chosen (i.e. number of real robot actions).
Each robot experiment is completed in about tmax = 20 minutes (i.e.
all together with computational time).
As shown in Fig 58 and in Fig 59, the presence of the state transi-
tion model improves the learning time in terms of number of actions
performed from the real robot: both chosen indexes show faster
decreasing in presence of a predictive model. It must be remarked
that the ACO algorithm has been implemented, for simplicity, to
solve shortest path sub-task without considering the actions leading
to white squares.
Moreover, by using the ACO strategy the problem is solved iterative-
ly for a given static environment confi guration and it is not possible
to extract a general model from the data. Nevertheless, it is a quite
good benchmark algorithm because it provides a fast numerical sub-
optimal solution for a particular problem. For each RL iteration,

83

Fig 60. Example Q-function before learning. In abscissa there are all
the possible 2048 states, in ordinate there are all the possible actions.
As shown, random high value (lighter) initializations have been cho-
sen.

Fig 61. Example of Q-function after learning. In abscissa there are all
the possible 2048 states, in ordinate there are all the possible actions.
Due to the binary coding of the states, the trained Q-function looks like
a binary tree, confi rming the correct training. Nevertheless, high value
stripes (lighter) in low value areas (darker) indicates non-explored
state-action pairs.

84

iACO = 500 have been performed for a computational time
tACO = 0.12s per each solution. The color map depicted in Fig 60
shows the state-action weights matrix Q before learning. Iteration
after iteration the weight matrix changes its values. The color map in
Fig 61 shows the same matrix after learning: as it is possible to see,
all non-rewarding actions values are decreased.
As previously introduced, all described learning results have been
obtained using both simulations and the real robot.
Up to now no sensors have been applied for state transition check. A
laptop LCD monitor has been used for solution visualization. Never-
theless, a touch sensitive panel is a straightforward upgrade that can
be used in order to close the loop with the real hardware. Snapshots
from the real manipulator learning are shown in Fig 62.

Fig 62. Example of sequence reproduction after learning process has
been successfully performed. A laptop LCD was adopted to visualize
the solution.

85

In this section, an application to shortest path discrete problem in
real hardware is presented. Both simulation and experimental results
show the improvement achieved thanks to the state transition model.
It must be remarked that a considerable improvement was obtained
in the real application because the number of actions performed by
the real agent (end-effector manipulator) was heavily reduced. In
fact, the virtual agent performs a lot of simulated actions based on
what previously learnt by the real agent.

Moreover it following paragraphs of this chapter, a generalization of
the Neural Gas Algorithm for sequence learning and reproduction
will be shown.

Sequences generation

Fig 63. Classic, NGPCA algortim block diagram. The NG block per-
forms center updating for a given training vector, extracted by Training
Selector (TS), the PCA block executes one step of local principal com-
ponents algorithm and GSo (Graham-Schmidt ortho-normalization) is
able to normalize eigenvectors.

Fig 64. Algorithm block diagram for sequence learning with Neural
Gas with local Principal Component Analysis (NGPCA). The Pattern
Constructor block (PC) performs control modifying the input pattern
with the oset Pd. The miniARM block is the serial redundant manipula-
tor (controlled in the operating space).

86

One of the possible extensions of this vector reconstruction strategy
is to introduce the actual state xi and next state xi+1 of the considered
system as part of the input vector

(48)

In this way it is possible to learn not only a static complex law but
even a particular sequence.
Under this point of view it is possible to make both short and long
term prediction and then analyze model prediction with real sen-
sor information for updating the internal model. The so generalized
model, shown in Fig 64, has been applied to control a custom built
seven degrees of freedom redundant manipulator (SPARK II web-
site) not only in forward and inverse kinematic problem solving (see
Hoffmann, 2003) but also in operating space motion planning.

The introduced Pattern Constructor block (PC) processes inputs for
the abstract network (NGPCA) in order to determine the constrained
space for the current iteration, reading the joint variables , and there-
fore leading the system toward the given reference Pd (e.g. solving
forward kinematics), as in

(49)

The miniARM block is the serial manipulator itself and has been
implemented both in simulation and in real hardware setup. It take
an input vector reference and give a feedback vector (e.g. it can be
implemented in the operating space solving the inverse kinematics
and reading joint angular position) (see [5],[6]).
The same overall model architecture could also be used to deter-
mine an iterative converging recall algorithm, not discussed in this
chapter, modifying the one described in the previous section, in or-
der to control the system with constrains toward a desired trajectory
in the free-parameters subspace.

Experimental setup
As in other experiment, the overall control of the robot is made up of
a high level sequence control in the computer and a low level hard-
ware layer control (custom built) with a 32 bit microcontroller unit.

87

Architecture functional diagram is shown in Fig 65.

Training set
The training set have been acquired from the real robot reading all
the encoder positions through the direct kinematic of the manipula-
tor. Each data set is made up of N=1000 three-dimensional points
acquired every 0.08s inside the operating space during a user
guided real-time trajectory following.

Fig 65. Functional diagram of the implemented control algorithm.

Fig 66. Picture of MiniARM fi rst prototype realized in our laboratories.
Experimental setup for square sequence learning in a plane.

88

 (50)

and

Though desired trajectories are planar and repetitive, the acquisition
method is very noisy and three dimensional by defi nition, as shown
in Fig 67.
Learning patterns have been built up using two consecutive points
from acquired data set.

Results
Performance of the algorithm have been tested under different oper-
ating conditions. All presented results have been obtained with the
experimental setup shown in Fig 66.

Normal operations
As described in the following relationship, the algorithm provide just
the next point of the sequence in the operating space given the ac-
tual point as part of the reconstructed pattern ẑ∗

(51)

where the offset vector p is able to defi ne the constrained subspace

Fig 67. Three dimensional plot of an example data set acquired with
n =1000 (up-left), XY plane plot (up-right), YZ (down-left), XZ (down-
right).

89

as in equation (52) iteration after iteration.

 (52)

The M, as usual (see previous chapters for details), align free and
constrained subspaces in separate regions of the whole space.

(53)

The joint space trajectories are generated solving iteratively the
inverse kinematic problem (see Cruse, 1993 and Arena, 2009).
Robot reproduced trajectories are shown in Fig 68.
Three different trajectories have been reproduced in order to ana-
lyze the generalization capabilities. All these have been generated
with human-guided points acquisition method.

Numeric robustness
One of the most important features of the algorithm is that both
learning phase and recall phase have very high numeric robustness.
As shown in Fig 67, learning data set defi nes a real noisy trajectory.
Same trajectories have been reproduced adding noise in feedback
variable as in equation (54).

(54)

where θ̂ is the measured feedback variable vector while rand ⊆ [0, 1]
with uniform probability density distribution and e ⊆ [0, 1] is the
maximum error amplitude.

Fig 68. Examples of sequences learned with the NGPCA.

90

The circle trajectory has been chosen in order to test numeric ro-
bustness of sequence reproduction.

Performance outside learned space
The performance outside the operating space have been tested us-
ing multiple distances from the centre of the trajectory and measur-
ing the number of steps needed to go through the sequence (i.e. the
Euclidean distance Ei under a chosen threshold Eth = 0.1 cm as in
inequality (55)).
Though particular values strongly depend on the shape of the path

Fig 69. Trajectories reproduced from points far away from the trained-
operating space. DDR=7 on the left and DDR=10 on the right.

Fig 70. Examples of NGPCA sequences reproduction in presence of
simulated feedback errors: p = 0:05 (5% of random component in) (on
the left), p = 0:1 of random component (center) and p = 0:15 (right).

91

and on the learning phase, for a given trajectory and a dened train-
ing phase values can be compared through all dierent distances.
In order to normalized these distances with the eective dimension of
the path an adimensional Distance over Dimension Ratio (DDR) is
defi ned as in equation (56).

(55)

(56)

where d [m] is the distance from the centre of the trajectory and
md[m] is the maximum dimension of it. TABLE VII and Fig 71 sum-
marize the algorithm performance: n is the number of steps noise-
less and n10 is the same quantity when an additional 10% of random
component is added in feedback variable .

TABLE VII Algorithm performance outside the learned space

Fig 71. Number of steps needed to go into the sequence respect to
the DDR on the left (dots are real data while line is a logarithmic inter-
polation), same plot with DDR on logarithmic scale (abscissa) on the
right.

92

Reversed operations
As in common RNNs, in the NGPCA the pattern reconstruction is
possible careless on which part of the pattern is lacking. Therefore it
is possible to use the same learning not only for one way sequences
reproduction but also for reversed sequences.

(57)

In the last part of this chaper, the Neural Gas algorithm with local
Principal Component Analysis implementation has been tested and
extended for the control of motion sequences for a redundant serial
manipulator.
As it is possible to imagine its modifi cation for different robotic struc-

Fig 72. Example image used for sequence learning (on the left).
70x70 cells map for Self Organizing Map (SOM) implementation (on
the right).

Fig 73. Sequence reproduced by a learned SOM. Extracted from
longer sequence: ...F-A-B-C-D-E F-A...

93

tures are minor and, in any case,straightforward.
Though the training phase needs a complete training set and a
computational effort the recalling phase is very fast and possible to
implement also in a common microcontroller-based platform. The
one-to-many mappings, the prediction capability and the inputs/out-
puts role independence in the training phase shows the possibility of
generalization over a wide range of control applications.
Several different implementation with similar structures can be done.
In Fig 72 and in Fig 73 some results of a SOM-based implementa-
tion herewith used just for performances comparison are depicted.
Nevertheless, within the paradigm of sub-problem hierarchical solv-
ing, all of these can directly be exchanged with those presented
here.

94

Small universities and schools have several problems to cope with
robot architecture defi nition.
Principal problems are introduced by limited founds and by the re-
duced hardware development knowledge and possibilities.
The main needs are for sure the short time-to-demonstration for un-
tested algorithm (that needs powerful debug tools); low cost, pro-
gramming simplicity (avoid low-level programming) through different
operating systems (namely Windows, Linux and eventually MacOS),
high customizability and opening to 3rd party devices and applica-
tions (indeed this is probably the most important feature because of
the growing robotic community all over the world).

Though several existing modular architectures are present on the

5chapter
a general framework for robot control and system integration:
from structure to complex algorithms

95

market, probably because of the the dimension of this small techno-
logical niche none of them is actually universally adopted.
Moreover, each of them has several features but it lacks of something
else and none of them can completely replace all the others (Fig 74).

Its most important features are:
- very high computational power (up to 54 Gfl ops)
- high performance-per-watts
- x86 CPU architecture (windows, linux, macos, …)
- GPU parallel computation with CUDATM

- remote control and multi-robot cooperation trough 802.15.4/n
- iNemoTM and TeseoTM STMicroelectronics technologies
- decentralized low-level control (simple wiring through buses)
- very high hardware modularity

As it is possible to imagine, because of the nature of this project the
two most important features can be considered the hardware modu-
larity and the computational capability (indeed, strictly related to hard-
ware modularity because, replicated parallel hardware is faster than
any of the most powerful supercomputers. Moreover the modularity
of this solution is crucial to guarantee the interface with multiple and
fl exible sensor interfaces and actuator systems.
In order to test the goodness of the proposed approach, several struc-

Fig 74. Commercial solution for actuated modular systems built up as
network of several modules: sensors, control cores and actuator. Main
solutions can be split by the overall cost. Low cost solution on the left
while high cost solution on the right.

96

tures have been realized and tested with simple and complex algo-
rithms.

In
tel ®

C

P
U

In
tel ®

C

ontroller

D
D

R
2

D
D

R
3

STM
icroelectronics

®
iN

E
M

O
TM

T
eseo

TM

Servos

U
SB

 to R
S485

H
i-R

es
LC

D

Sensors

SSD

H
D

D

W
ireless

802.15.4

U
SB

 to C
A

N

M
otors

U
SB

 H
i-Speed

C
ontroller

M
icrosoft ®

K
inect TM

Hardware
User space

Em
bedded PC

Devices

Fig 75. General block diagram for system network control. It could be
(and indeed it have been) used for robot control (sensors and servo)
and for sensor network solution.

97

The hierarchical sub-problem approach proposed as biologically driv-
en solution of the motion control problem is mirrored in the presented
solution: the level of abstraction of the control grows layer by layer. In
this direction it is possible to modify a complete layer (algorithm, refl ex
or mechanical layer) without changing the other if the overall interface
s are kept. In this way the nature of the mechanical structure, as well
as any other part of the architecture, can be changed with minor ef-
fort.

The analyzed platforms are various and very different. The most used
platforms were a roving platform a serial manipulator and a legged
robot (e.g. a humanoid structure). Also a simulator of all of these has
been developed and interfaced to some part of the hardware.

Rovers
The roving platform used for navigation experiments, is a modifi ed
version of the dual drive Lynx Motion rover, called Rover I and II. It is a
classic four wheeled drive rover controlled through a differential drive
system. The robot dimensions are 35 x 35 cm about.

Fig 76. Snapshots from a physics simulation based on nVidia PhysX
and C++ implementation. The Bioloid robot and the miniARM have
been simulated in order to obtain a realistic interaction simulation (for
both each-other and environment interaction).

98

It is equipped with an on-board netbook based on Intel Atom 455, two
sonar range (detection range 3 cm to 3 m), a low level target sen-
sor to detect color spot on the ground, the Eye-RIS v1.3 visual sys-
tem for panosferic application (e.g. insects behaviour experiments),
a 640x480 webcam and the Eye-RIS v2.1 visual system mounted on
a pan-tilt module for frontal view purpose (e.g. focused attention and
feature detection in insects).
The Eye-RIS systems are bio-inspired vision devices that implement
retina-like architecture which combines signal acquisition and embed-
ded processing on the same physical structure. The core of the device
is the Q-Eye chip, an evolution of the previously adopted Analogic
Cellular Engines (ACE), the family of stand-alone chips developed in
the last decade and capable of performing analogue and logic opera-
tions on the same architecture. The Q-Eye was devised to overcome
the main drawbacks of ACE chips, such as lack of robustness and
large power consumption.
Eye-RIS is a multiprocessor system since it employs two different
processors: the Anafocus’ Q-Eye Focal Plane Processor and the Al-
tera’s Nios II Digital Soft Core processors. The AnaFocus Q-Eye Fo-
cal Plane Processor (FPP) acts as an Image Coprocessor: it acquires
and processes images, extracting the relevant information from the
scene being analyzed, usually with no intervention of the Nios II pro-
cessor. Its basic analog processing operations among pixels are lin-
ear convolutions with programmable masks. Size of the acquired and
processed image is the Q-CIF (Quarter Common Intermediate For-
mat) standard 176 x 144. Altera NIOS II digital processor is a FPGA-
synthesizable digital microprocessor (32-bit RISC μP at 70 MHz- re-
alized on a FPGA). It controls the execution fl ow and processes the
information provided by the FPP.
Generally, this information is not an image, but image features pro-
cessed by Q-Eye. Thus, no image transfer is usually needed in Eye-
RIS, increasing in this way the frequency of operation.

As said before, the robot is equipped with two different versions of
the Eye-Ris vision system. Practically, the 2.1 version has the same
capabilities of the 1.3 one reducing the power consumption and the
dimensions.

99

The robot is also equipped with the STEVAL-MKI062V2 board (from
STMicroelectronics). It is the second generation of the iNEMO module
family. As already described, it combines accelerometers, gyroscopes
and magnetometers with pressure and temperature sensors to pro-
vide 3-axis sensing of linear, angular and magnetic motion, comple-
mented with temperature and barometer/altitude readings.

In the robot, the inertial sensor board (i.e. the iNEMO) and the ac-
celerometers are used to control low level (e.g. rotation and forward
motion) movements and the magnetometers for robot orientation.

Finally the robot is completely autonomous from the power supply.
One 14:8V, 5Ah Li Poly battery pack is used that guarantee autonomy
of about 2.5 hours.

The complete control architecture, similar to the one reported in Fig
75, shows the distributed architecture used to control all the activities
of the robot.
As already discussed, all the modules of the robot are independent
(and interchangeable) and the communication is implemented thanks
to a Master-Slave protocol on RS485 bus at 1 Mbit.
The adopted communication protocol allows to exchange informa-
tion among different nodes and supports connections such as TTL,
RS485, and XBee.

Thanks to the variety of the sensors mounted and the on board com-
puter, the Rover permits to perform a different types of experiments in
a wide variety of scenarios (i.e. the Robot is able to perform a different
type of image processing thanks to the three different types of the im-
age acquisition sensors mounted).

Industrial-like serial manipulator: the miniARM case
Serial manipulators are, nowadays, commonly used in industrial ap-
plications, for example in the automotive market.
Their manipulation capabilities and kinematic properties are already
known and well studied in past decades. Nevertheless their use in

100

service robotics is almost completely limited in big static structure with
high costs and a really closed development and control environment.
Due to these characteristics they are often not well suited for aca-
demic research purposes. Exceptions are Schunk (PowerCube, used
for MMC experiment and Light Weight Arm) and DLR modular robots,
for high-end users, and Lynxmotion Robotic Arms, mostly for low-end
users and hobbyists.

Inside the SPARK II project, a standard serial manipulator for research
activity, called PowerCube, is used to apply the cognitive algorithms
to different robotic platforms.
The PowerCube is a commercial platform provided by Schunk. In
order to decrease a development time, an effi cient small version of
PowerCube, called MiniARM, has been designed and realized.
Its control has been implemeted as part of the proposed architecture
and the modularity of the approach has been kept.
As introduced, for the same reason, its accurate kinematic and dy-
namic model have been developed. Their extensive use have been
shown trough the chapters of this work for algorithm implementation
and debug.

The MiniARM, shown in Fig 77, is a serial manipulator with rotational
joints. It is completely custom built and developed in order to analyze
and compare algorithm performances with low implementation effort:
the underling idea for the design was the realization of a robust test-
bed for high-level control algorithms. In this way, the most important
features were the control and simulation simplicity of a such complex
structure.
The chosen actuators for the entire system are the Dynamixel smart
servos from Robotis and an embedded microcontroller board with an
AVR32 UC3A 32bit microcontroller architecture, from Atmel, is used to
control all the servos and retrieve sensory information through a RS-
485 four-wires bus. It must be noticed that each of this smart servo as
an internal microcontroller to perform a refl exes control very similar
to the multiple muscles control presented in (Latash, 2008) under the
Equilibrium Point (EP) hypothesis.
A custom built sensor unit with a three-axial accelerometer a gyro-

101

scope and a digital compass (more deeply discussed in the next
chapter) is linkable to any of the present servo through the common
serial bus.
As in the case of the rover platform, all the high level control algo-
rithms can be developed directly in the PC (Windows, Linux and Ma-
cOS operating systems are supported) using a USB-to-Serial com-
munication and thanks to a Matlab Graphical User Interface and a
developed interface library.
An external USB camera directly connected to the PC is supported by
the GUI to achieve image segmentation and feature detection.
The compatibility with all the most common simulation tools and con-
trol environments is given by a standard 3D model reconstruction,
realized in a CAD drawing software (Solid Works) using IGES model
distributed by Robotis (available on the web), together with a simpli-
fi ed low-count vertex VRML mesh and the control interface library.

The MiniARM serial kinematic chain is designed to be redundant in
space, within its dextrous operating space, and the mechanical struc-
ture has been realized for high payload/weight ratios (1 : 2, 1 : 3).

The geometry of the manipulator and the assemble of the entire struc-
ture have been studied through a detailed CAD project,.
The fi nal developed confi guration shows the subsequence of seven
rotational axis servos.
Almost all the structure interconnection frames are made with light

Fig 77. Smart servo used to implement a bio-inspired torque ramp
(dynamixel from Robotis)

102

commercial aluminium parts. The gripper module is a custom design.
A fully functional fi rst prototype of the overall architecture has been
realized. The estimated payload is of about 300g when fully stretched.
A simple pointer as been realized as end-effector for inverse kinemat-
ic problem solving using multiple approaches.
The overall robot weight has been estimated to be about 0.7 Kg
(slightly depends on last module) and it is 45 cm long, together with
the end-effector module.
Preliminary power supply test shows a maximum power consump-
tion of 3.5 A with full payload. Despite the complexity of the structure
the wiring is extremely simple thanks to the communication bus pres-
ence. The mechanical structure has been assembled using alumini-
um brackets (2 mm thick) and hexagonal mounting screws (M2 and
M2.5 and M3).

Multi-limb structures and complex algorithms
Robotic multi-limb structures are widely used in research as test-bed
for biologically relevant models (Siciliano ed. 2008) (Cruse, 1998).
The control of these kinds of structures is complex and often implies
high computational capabilities or preprogrammed motion control.
On the other hand, the biological paradigm of the Central Pattern
Generator (CPG) can be considered to impose a certain sequence
of states on the arms and legs of a robot. In some cases, a redun-
dant confi guration can be used, increasing the complexity needed
to defi ne a model of the structure and to develop a reliable control
algorithm. The robustness against singularities, the capability to face
angular constraints in the joint space or other constraints in the op-
erating workspace (e.g. obstacle avoidance) are important aspects
that have to be considered (Ahn, 2002) (Shimizu, 2008) (Tondu,
2006).
In embedded control platforms, an important performance index that
can be, therefore, considered is the computational power. In fact,
it constrains the control frequency and therefore the possibility to
develop an algorithm on a low MIPS microcontroller unit (mcu) for
real-time applications.
The proposed approach is based on the already developed, here-
with presented in the previous chapters, Mean of Multiple Compu-

103

tations (MMC) Recurrent Neural Network (RNN) algorithm which
provides a fast, fl exible and robust to confi guration singularities sub-
optimal solution to the discussed problems (Cruse, 1993) (Arena,
2009).
In the following section the MMC, a direct and inverse kinematic
solver, is used to control the motion of a very complex structure. In
particular the case of a humanoid robot (i.e. Bioloid from Robotis)
with 18 Degrees of Freedom has been taken into account.

Limbs model and control strategies
In order to kinematically model both arms and legs of the humanoid,
different structures have been considered.
The modelled geometrical structure for each arm (i.e. left and right)
is a three links serial structure with three Degrees of Freedom (DoF)
(from θ1 to θ3 for each arm).
The geometrical structure used for each leg is a four links serial
structure with fi ve (from θ1 to θ5for each leg) DoF and therefore more
than one DoF are computed with the same geometrical quantity (e.g.
two relative joints are associated with the same link).

Fig 78. Hardware confi guration of the experimental setup: low level
microcontroller AVR32 board, actuators and sensors bus architecture-
and high level control host computer.

104

Control strategies
As presented in the previous chapters and as thought in the pro-
posed architecture, the robot control can be easily and conceptually
divided into high level (i.e. behaviour) control task, and low level (i.e.
gait and grasping strategies) control.

1) Robot behavior: The robot overall behavior is controlled through
simple visual frame-based decision making through direction of
walking and grasping. The behavior selection loop is shown in Fig
79. The Segmentation and Feature Extraction block (SFE) process-
es image from on-board camera and it uses distance d for discrimi-
nation.

2) Grasping: as introduced, two different position controlled MMCs
with three links have been used to control recognized object grasp-

Fig 79. Simple behaviour selection loop implemented through visual-
processing and robot control. Segmentation and Feature Extraction
(SFE) block performs image processing algorithm to detect object dis-
tance d. Behaviour evaluation is achieved with a binary threshold dth.

Fig 80. Control scheme for each arm for a given absolute reference in-
put pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy and MMCz
are the three-dimensional linear computational networks. NLB is the
Non-Linear Block and ARM is the manipulator itself (simulator or real
robot). Pj are the MMC input pattern while Aj are the outputs. θd are the
desired angular values and are the read joints values.

105

ing. The simplest extension of the two-dimensional positioning of a
planar redundant serial manipulator (shown in the previous chapter)
(deeply described in Cruse, 1993 and Cruse, 1998) is the three-
dimensional positioning of the end-effector for the redundant serial
manipulator in space (i.e. R3).
As usual, each vector component of the geometrical links is pro-
cessed, iteration after iteration by a different linear MMC network
and then given as input at the non linear block (NLB), as shown in
Fig 80.

3) Walking gait: For the described legs control strategy, the walking
gait is obtained using a state dependent reference (from S1 to S6) for
each leg and a state transition model with transition conditions (as
sketched in Fig 81).
Two position and orientation controlled MMCs have been used for
convergence toward reference within the state. State dependent
offset are introduced in θleg1 (off-sagittal plane hip angle) and θleg5
(off-sagittal plane ankle angle) for balance control.
As depicted in Fig 81, in the algorithm block diagram, the low level
control strategy guides the system (i.e. the single leg) towards the
desired orientation through a relative error feedback. Therefore the
feedback for the orientation error (eO) is analyzed.
The distance between two different leg states can be defi ned, in

Fig 81. Control scheme for each arm for a given absolute referencein-
put pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy and MMCz
are the three-dimensional linear computational networks. NLB is the
Non-Linear Block and miniARM is the manipulator itself (simulator or
real robot). Pj are the MMC input pattern while Aj are the outputs.θd are
the desired angular values and are the read joints values.

106

the simplest case, as the Euclidian distance between the two end-
effector points.

Furthermore, overall distance (and therefore the whole system state)
can be computed as the mean distance of both legs).

Simulation and experimental results
The considered robot has 18 DoF, through revolute joints: three
joints for each arm and six joints for each leg. The physical structure
can be mapped, as requested for the MMC modeling, into the geo-
metric theoretical model links. Due to the chosen real robot architec-
ture, angular limits are not equal for each joint.
As described in the previous section, each presented control strat-
egy has been tested both in simulation and on real robot.
As in the previous case of MMC implementation, the proposed algo-
rithms have been implemented both in the PC and in a custom mcu-
based board. Respectively a Dual Core Intel Centrino 2.2 GHz host
computer with 2GB of RAM and an UC3A AVR32 mcu with 66MHz
of maximum clock and only 64KB of RAM were used as comparison
platforms (Fig 78).
As sketched in Fig 78, in our fi rst implementation the overall robot
control can be split in two levels: low level (hardware) control and
high level control. The low level control is, in all cases, achieved
thanks to a mcu-based board that is used both to acquire informa-
tion from the distributed sensory system and to control the actuators.
Moreover a serial bus is used for low level communication purposes.
The high level control and the data logging are made through a host
PC connected to the board via serial interface (with a USB-to-serial
transceiver).
In the second (embedded) version of the control algorithm all the
MMC-based calculations are directly executed locally in the mcu-
based board while the PC is just used for data logging and for the
Virtual Reality (VR) simulation environment.

Simulation and Experimental Results
In order to test performance of the designed control structure, trajec-
tories followed in both walking and grasping behaviours have been

107

analyzed. The center point trajectory of the foot-base (i.e. end-effec-
tor of leg serial structure) of one leg during sequence in the walking
behavior is depicted in Fig 83. The distance from a known object is
estimated based on simple segmented image feature (e.g. area in
px2 or maximum edge of minimum rectangle containing the object).
After the object area (i.e. camera estimated distance under thresh-
old dth) is reached the arms start to converge toward the selected
centroid, as shown in Fig 82.

Fig 82. Multiple snapshots of grasping sequence. End of walking (i.e.
d < dth) and start of grasping (on the left). MMC iterations are execut-
ed in parallel on both arms (center). Grasping sequence ends when
both arm position errors go below error tolerance (on the right).

Fig 83. Left leg end-effector position through different states (onthe
left). Relevant coordinates (robot sagittal plane) have been plotted
with respect to time. Simple sketch of the geometrical structure in-
which legs are mapped (on the right)

108

Although the iteration number needed to reach the desired reference
strongly depends on the chosen parameters and on the particular
given reference, in order to estimate the algorithm performance,
multiple comparisons with common algorithms for kinematic inver-
sion, such as pseudo-inverse Jacobian (J) and Jacobian transpose
(Jt), have been considered. It must be taken into account that in the
J* the joint limit constraints are introduced in the form of an ad-
ditional task to be completed while in the Jt no joint limitations are
considered.
Free parameters were chosen to maximize convergence speed
keeping a non-overshoot condition on end-effector positioning.

A complete hardware and software architecture has been described
and proposed. Modularity, short time-to-demonstration and hierarchi-
cal decomposition are the most important feature of this solution.

Several robotic structures and a complex algorithmic example have
been presented.

The extension of the MMC approach to a multi-limb structure (e.g.
a humanoid robot) is presented for walking and grasping behavior.
The problem is addressed not only in presence of angle limits but
also in a dynamically changing environment even in a mcu-based
hardware.

Moreover, in the next chapter a fi rst step to the development of an
embedded solution for distributed sensing suitable for this hw/sw
architecture will be presented.

109

110

6chapter

Electronics devices, currently deployed in worldwide market, are
using an increasing amount of MEMS technology for motion identifi -
cation and reconstruction with multiple sensors. The greater part of
these sensors is made up of accelerometers, gyroscopes and mag-
netometers (i.e. magnetic fi eld sensors used as compasses) (Ab-
bate, 2009). For instance, in the game industry, accelerometers and
gyros are used as player user interfaces. In telecommunications,
especially in smartphones, accelerometers are often used as incli-
nometers and gyros enable an improved gaming experience, and

advanced motion platform for inertial sensing:
beyond the pure motion control research

111

eventually a camera image stabilization (Cardani, 2006). Together
with GPS and compass they are also investigated for augmented
reality and Location Based Services (LBS) (Hide, 2005).
In sports and healthcare systems accelerometers are used for
pedometer function (Foxlin, 2005). Adding gyros and, eventually, a
compass allows for true 3-D motion tracking, which can be useful
for evaluating trajectories and body movement (Roetemberg, 2007)
(Roetemberg, 2006).
As it is possible to fi gure out, the computational capabilities of these
applications are heterogeneous: todays high-end smartphones have
powerful application processor (up to 1GHz) with Floating Point Unit
(FPU) while consumer pedometer have a very low amount of com-
putational power.

For what concerns smart system for movement analysis it must be
noted that the overall complexity of this kind of systems is increasing
over time. Under this point of view, while commercial platforms for
reliable orientation estimation currently exist (Roetemberg, 2006),
they are mostly standalone solutions not suitable for embedded
system integration.
The possibility to have a small-packaged monolithic device that
provides, effortless, the overall orientation “on demand”, integrating

Fig 84. Inertial Motion Module (IMM) block diagram for host applica-
tion integration: the module microcontroller takes data from the sen-
sors (gyroscope and geomagnetic module), performs the computation
needed for sensor fusion algorithm and orientation estimation and
provides multiple communication interfaces to a host microcontroller
(application level).

112

accelerometer, gyroscope and digital compass (i.e. magnetometer)
measures is still under development.
In order to investigate this solution, starting from the iNEMOTM evalu-
ation board from STMicroelectronics (for further information see
iNEMO page on ST website), whose dimensions are 4cm x 4cm,
a fi rst prototype of a smart Inertial Motion Module (IMM) has been
realized.
This module keeps the main functionalities of the iNEMO platform
but with a very different form factor: 13mm x 13mm (depicted in

Fig 85. Block diagram of the sensor fusion algorithm running inside
on-module processor (STM32) that uses gyroscope and geomagnetic
module for orientation (i.e. quaternion vector) estimation.

TABLE IX Sensor specifi cation in terms of full-scale range for acceler-
ometer, gyroscope and digital compass (i.e. magnetometer).

113

Fig 86).
From design issues to fi rst results, this chapter introduces this mod-
ule through different sections. In particular fi rst, the hardware and
conceptual architecture of the module have been addressed togeth-
er with sensors and microcontroller specifi cations. Next, the algo-
rithmic solution together with the fi rmware implementation will be
analyzed with respect to the state of the art and then, some output
results of the orientation estimation of the module fi lter are showed.
Finally a couple of straightforward applications of this system are
described.
Let’s start from the module architecture.

Module architecture
The module takes data from the sensors (gyroscope and geomag-
netic module), performs the computation needed for sensor fusion
algorithm and orientation estimation and provides multiple commu-
nication interfaces to an host microcontroller (application level) (Fig
84).
Furthermore, the IMM design aims to reach the best possible inte-
gration level in user applications: for this reason particularly attention
was paid to the form factor and to the pin out. The overall system
can be easily seen as a Surface-Mount Device (SMD) that features
28 pins in a 169 mm2 PCB. It means that in this, very small size, all
the components are placed on the top layer and at its edges metal-

Fig 86. Realized prototype of iNEMO M1. As it is possible to observe
it is very tiny. Its real dimensions are 13 x 13 x 2 mm3. It embeds an
accelerometer a gyroscope, a digital compass with a Cortex M3 core
from STMicroelectronics. A Kalman fi lter internally performs the sen-
sor fusion.

114

ized areas realize the module pin out. In this way the module can be
directly soldered in the user system as a single component.

As briefl y sketched, the designed architecture is made up of a 32-bit
microcontroller unit (MCU), a geomagnetic module (3-axis accel-
erometer and a 3-axis magnetometer) and a 3-axis gyroscope (Fig
85). While the inter-module communication (between local MCU
and sensors) is managed through the I2C and SPI serial interfaces,
the communication with the outside world (e.g. between the mod-
ule itself and the host application) can be achieved through several
interfaces (USART, SPI, I2C, CAN).
The microcontroller is a STM32F103 from STMicroelectronics and
it features an ARM Cortex M3 architecture (from STM32 reference
manual). This MCU has a maximum core frequency of 72 MHz, a
computational capability of 1.25 DMIPS/MHz, 64 Kbyte of RAM and
512 Kbyte of fl ash memory. To keep the overall system dimensions
as small as possible a Wafer-Level Chip Scale Package (WLCSP)
has been chosen for this component for a volume of 4.5x4.4x0.5
mm3. The gyroscope is the L3G4200D (also from ST) (information
available in L3G4200D datasheet), a 16-bit digital sensor with user-
selectable full-scale and bandwidth: the former is between ±250°/s
and ±2000º/s while the latter is between 100 Hz and 800 Hz. Its
package form factor is 4x4x1.1 mm3.
The geomagnetic module is the LSM303DLH (from ST) [9]. It unifi es
in a single tiny package (3x5x1 mm3) both the accelerometer and
the magnetometer: the former full-scale, user modifi able, is between
±2g and ±16g; the latter, also user-selectable, full-scale are between
±1.3 gauss and ±8.1 gauss.

Powered by a single supply voltage between 2.16V and 3.6V, pro-
vides orientation data (e.g. rotation matrix, quaternions and/or Euler
angles) with a maximum update rate of 100 Hz. The fully operating
power consumption is around 210mW (@3V), nevertheless low pow-
er and stop modes can be forced by the external application proces-
sor through both hardware and software commands.
Let us consider now the adopted software solution.

115

Software solution
The idea to combine digital processing and calibrated sensor meas-
urements to provide an absolute orientation data to the host applica-
tion processor is achieved through an Extended Kalman Filter (EKF)
(Bishop, 2001)), running on the embedded MCU, that manages the
smart sensor fusion to obtain the benefi t of each sensor in orienta-
tion estimation (Fig 85). Even if the EKF theory is beyond the scope
of this chapter, it is useful to remark that its discrete time formulation,
it tries to estimate the state of a generic non-linear system from a
system model and multiple noisy sensor measurements. Its algorith-
mic procedure iterates through cycles and each of them can be eas-
ily divided in two main parts: prediction phase and correction phase.

As showed in (Bishop, 2001), after the prediction phase updates
the state using he model of the process, the output is corrected
through the measures and Kalman gain computation. The gyroscope
measures are used for strap-down integration (Sabatini, 2005) (Sa-
batini, 2006) in the prediction phase while both accelerometer and
magnetometer measures are used to compensate the angular-rate
integration drift in the correction phase (Yun 2006). In particular the
accelerometers provide an attitude reference using gravity accelera-
tion projections while the magnetometers provide a heading refer-
ence using the earth’s magnetic fi eld vector (Yun, 2006).
The implemented fi lter is based on quaternion vector
�q = [q0 q1 q2 q3] estimation and therefore they are part of state
vector.
The quaternions formulation ensures, at the same time, the lack
of representation singularities typical of Roll, Pitch and Yaw (RPY)
based fi lters and an effi cient mathematical framework (Yun, 2006)
(Vlasic, 2007).

Nevertheless both rotation matrices notation and RPY orientation
representation are internally computed and available as outputs. It
must be noticed that, without a fi lter structure and a sensor fusion
algorithm, considering only separate independent measurements, as
usually done in current application, the orientation data would eas-
ily be far from the true trajectory due to: noisy integration (typical of

116

gyroscopes), low-pass fi ltering (accelerometer) and magnetic distur-
bances (compasses problems).
Moreover the Kalman fi lter correction step provides an on-the-fl y
calibration for the gyros by providing corrections to the attitude tra-
jectory and a characterization of the gyro bias state.
Furthermore, in order to reduce disturbances due to external accel-
erations (i.e. different from gravity) and perturbing magnetic fi elds,
respective sensor covariance has been considered variable in the
fi lter (Roetemberg, 2006) (Roetemberg, 2007).
In this way the individual sensor error is estimated dynamically from
measures.

Results and future development
As described in the previous sections the IMM provides orientation
data in the form of quaternions, rotation matrix or RPY. Some exam-
ples of RPY angles estimation obtained in a preliminary motion tests
are showed in Fig 87. Overall errors of the system have been esti-
mated to be around ±0.5º in Pitch and Roll angles and ±2º in Yaw in
quasi-static condition while ±1.5º in Pitch and Roll angles and ±4º
in Yaw in free motion (within sensors operative range) (example in
Fig. 6). It must be noticed that the adopted microcontroller, as often
happens in low-cost units, does not have a FPU and therefore all
the mathematical computations for sensor data fi ltering and fusion

Fig 87. Euler angles time series from the proposed Inertial Motion-
Module solution: Roll (red), Pitch (blue) and Yaw (green).

117

requires several CPU clock cycles and must be optimized. A prelimi-
nary timing and complexity analysis of the implemented algorithm
on the considered processing core (STM32) lead to an iteration time
of 4 x10−3 s (i.e. time needed for a complete prediction-correction
cycle), for a theoretical maximum fi lter update rate of 250Hz.

Beyond all the typical applications in which the orientation of the
single device is the only need (e.g. smartphone, Inertial Naviga-
tion Systems), an increasing interest in Inertial Measurement Units
(IMUs) is coming from MOtion CAPture (MOCAP) (Vlasic, 2007)
(Roetemberg, 2007) systems (especially form lowcost ones) from
entertainment industry (e.g. game and movies), from medical reha-
bilitation studies and from sport performance analysts.

Two similar versions of the module have been realized and addition-
al tests have been performed in order to evaluate the overall robust-

Fig 88. Data from inertial (iNEMO, solid red line) and optical systems
(BTS, solid blue line) comparison

118

ness of the both.
The fi rst prototype has been thought as a component like System-
on-Board and under this understanding it doesn’t feature an internal
voltage regulator.
The second prototype has some minor pinout revision and more im-
portantly it features an internal LDO in order to be powered up to 5V.
Some pictures of thermal analysis of both of them are shown in Fig
89 and in Fig 90. Additionally some X-Ray analysis has been done
on a malfunctioning unit.

Motion Capture solution
In order to validate these approaches and to perform a feasibility
study for module-based realization, a fi rst prototype of a MOCAP so-

Fig 89. Thermal camera image for the proposed module with environ-
ment temperature around 25°C in fully operative condition. No forced
convection nor any dissipative substrate have been considered in this
test.

Fig 90. Thermal camera image for alternative version of the proposed
module. A linear regulator is present in these images

119

lution, based on the iNEMO evaluation board, has been developed.
In particular this system has been realized by daisy-chained module
network achieved through a serial bus. In order to extend this pro-
totype to a module based implementation the module-bus interface
needs to be managed, in our analysis by an adapter board whose
only functions are to match voltages and physical layer bus require-
ments.

Let us consider this scenario as a straightforward application of the
described Motion Processing Module and a RS485 bus interfaced
with the USART port of the module (up to 4.5Mbps). Under these
considerations this interface board has been designed with just two
4-poles connector, a low drop voltage regulator and a RS485 3.3V
transceiver. In this way with a total amount of 10 components (in-
cluding passives) in an overall volume of 20x17x5 mm3 this platform
is able to provide a daisy-chained sensor network suitable for all
kinds of MOCAP applications.
Considering a maximum 100 Bytes (largely much more than neces-
sary in typical applications) for sensor node orientation communica-
tion, through a bus protocol, to the master of the network (e.g. host
computer or an embedded system working as a concentrator) and
considering a 100 Hz update rate, the throughput on the physical

Fig 91. X-Ray vision of a bad functioning unit.

120

layer of the bus should be able to cope with more than 35 devices.

In this chapter a tiny Surface-Mount Device (SMD) module to pro-
vide both the calibrated sensor measurements and an effortless
orientation measure of the system to any kind of embedded appli-
cations has been presented. This device integrates accelerometer,

Fig 92. Motion sequence captured from a little girl learning physical
interaction between her body and the environment.

121

gyroscope and magnetometer measures and is able to combine
them with digital processing capabilities within an embedded sen-
sor fusion algorithm. Some design considerations and benefi ts with
respect to the state of the art have been considered together with a
very brief description and scheme of some possible applications.
Under this point of view it is important to highlight that, as exempli-
fi ed in MOCAP application description, the possibility to have a mon-
olithic, component-like, device ready to be soldered could simplify a
lot users application design.

The developed application is still under development within the
STMicroelectronics as technological demonstration of the capabili-
ties of inertial sensors.

Moreover as additional investigation a combined approach between
inertial Motion Capture and Simultaneous Localization And Mapping
(SLAM) has been performed.
Under this point of view, it must be considered that, at the time of
writing, SLAM algorithms are almost completely related to robotic
research labs and so to robotics platform. In most cases this is

Fig 93. MOCAP interensting points in human body. In its simplest im-
plementation it counts 10 sensors: two per each limb plus two through
the spine. Additional sensors could be mounted on wrist, ankles and
head.

122

achieved through odometry information from the robotic platform
(e.g. PIONEER from mobile robots) fused together with scanner
laser information (examples from SICK, Hokuyo).

It must be noticed that a Microsoft kinect-based SLAM is reliable, low
cost and quite simple but
- has some robustness issues;
- does not provide body tracking nor any body related information.
At the same time, the inertial full body tracking provides:
- body tracking;
- rough estimation in relative pose change for camera (or kinect);
- a step into the sensor network concept.

At the same time traditional computer vision approaches to depth
estimation in image processing have been signifi cantly enhanced.
The hardware embedded in Microsoft Kinect solution is based on an
Infrared (IR) projector and a standard CMOS sensor and it is capa-
ble, through the Prime Sense (PS1080) chip, to correctly estimate a
depth image (640x480@60fps) in indoor environment. The accuracy

Fig 94. Snapshot for the realized graphical user interface for inertial
Body Motion Reconstruction (iBMR) demonstration.

123

of this solution (±3cm in 5m max distance) is certainly lower than the
laser- ‐based solution (±1mm over 5m of range) and its horizontal
Field Of View (60°) is also largely narrower (240°).
Nevertheless having RGB and Depth images (RGB-D), aligned in
a true 3D coloured perspective, in a simple and low cost solution
seems attractive.

The possibility to have the whole inertial data and RGB-D images
available can be used in multiple ways: fi rst of all, an animated virtu-
al avatar of the agent could be integrated in the 3D rendered scene;
second the MOCAP data could be used as additional information to
initialize/enhance the standard ICP algorithm (eventually substitut-
ing the RGB image processing step); fi nally the created virtual world
could serve to enhance inertial data information in terms of position
estimation (the inertial data truly estimate the orientation and provide
position trough environment hypothesis).
Dieter Fox et al. (Fox, 2011) at the University of Washington (in Se-
attle WA), in a joint work with Intel Labs proposed a RGB- D Mapping
technique for dense 3D modelling in indoor environment (reference).

Their idea, reproduced in the following pages, is to start with a
standard Iterative Closest Point (ICP), commonly used for SLAM,
and to enhance it considering additional information obtained from
aligned depth and colour images provided by the Prime Sense solu-

Fig 95. Experimental setup used for inertial Attitude and Heading
Reference systems evaluation. In order to evaluate performance
the system has been compared with an optical tracking system gold
standard.

124

tion. They executed a fi rst level of image processing in order to have
multiple information on the same feature from the two images and
two minimize local minima problems in the ICP algorithm. Moreover
they organize the globally aligned dense 3D cloud in small surfaces,
called surfels for rendering simplicity and speed.
Some brief consideration on both inertial Kalman Filter and on ICP
algorithm are reported below.

Extended Kalman Filter
The idea behind the sensor fusion is that, using several kinds of sen-
sors, the characteristics of one type of sensor avoid overcoming the
limitation of other sensors (Bishop 2001)(Sabatini, 2005).
In this way, the Kalman fi lter is useful for combining data from sev-

Fig 96. (On the left) 3D maps generated by RGB-D Mapping for large
loops in the Intel. (on the right) Maps (red) overlaid on a 2D laser scan
map of the Intel Lab. For clarity, most fl oor and ceiling points were
removed from the 3D maps (extracted from D. Fox work)

Fig 97. Hardware modifi cation for combined SLAM and MOCAP ap-
proach. The iNEMO-based solution for inertial movement reconstruc-
tion has been linked to a Microsoft Kinect-based solution for environ-
ment reconstruction.

125

eral different noisy measurements. In fact, gyroscopes measure ori-
entation by integrating angular rates whereas the accelerometer and
magnetometer provide a noisy and disturbed but drift-free measure-
ment of orientation. The Kalman fi lter weights the three sources of
information appropriately with knowledge about the signal character-
istics based on their models, to make the best use of all sensor data.

In general, the Extended Kalman Filter algorithm addresses the
problem of trying to estimate the state of a discrete-time process
described by the equations below:

(78)

where x is the state vector; u is the input vector; Ak, Bk, Hk, are
respectively state, input, and output matrices; furthermore w, v are
state and measurement noise.

Fig 98. RGB-D camera images. The colour information is depicted
on the left (RGB) while the depth information is on the right (mono-
chrome) (pictures from prime sense website).

��

��

��

��

��
Fig 99. Frame of references from image coordinate system to real
system coordinates (real world reference) .

126

The state and measurement noise are Gaussian and white noise
sources with covariance matrix Q and R respectively.
At each time step, the algorithm propagates both the state estima-
tion and the error covariance matrix. The latter provides an indica-
tion of the uncertainty associated with the current state estimation.
These are evaluated in the prediction equations.
The Kalman Gain is derived from minimizing the a posteriori error
covariance, and it could be considered as a measurement of the
level of confi dence to give to the predict state.
If the the problem is an orientation problem, as in the considered
case, one good choice is to use the unit quaternion-based orienta-
tion representation (‖ q ‖= 1) in order to avoid singularities.

�������	
����
��	

��� ����� ���	
� ��
� �
�
�

�
�
����
�� ��� ��
� �

����� �����
��
����������
��

�
���������������

�� �����
�
� �
��
�� ���

����
�

�� �
��
�������
�
��������������	����
���

���
�������	����
��	
�	

�� �
��

����
�

��
�
�
�

�
� ����
��� ��
�
�
�	
�� �
�� ��
� ����� ���
�������
��
���	���
� ���
������
���

�
�����	���
�����	

���� ����	�
����
���� �
�����
��
�� ������ ������ ���	� �
� ���
�
������	��������

�����	�����	��		
�	
���	��	��	

����������	��
�������
�	�	����
�������	� �
����������	� �������
�
�����������������������
���

������	������	�		
���
	�	����	

����
���
��� ����
��
����
��
�����������

����	�

����
��	���	
����
��	

Fig 100. Overall structure of mixed inertial-camera environment re-
construction solution based on human movement motion capture sys-
tem together with an RGB-D environment mapping.

Fig 101. Major problems in environment mapping and reconstruction
from multiple snapshot from a RGB-D camera like Microsoft kinect.

127

In this case, one good choice (Sabatini, 2005) for the state vector is
to made it up of orientation and gyroscopes biases.
Considering now the general Extended Kalman Filter equations:

(79)

where:

and

(80)

The measurement vector is y = a where a =
[
ax ay az

]T

In a strap-down inertial navigation system, the rigid body angular
motion is described by the differential equation:

(81)

where:

(82)

If quasi-static condition, when the acceleration acting on the body is
far less than the gravity acceleration the following is true:

(83)

While the previuos section was dedicated to Extended Kalman filter
algorithm the next one will be devoted to Iterative Closest Point
(ICP) algorithm and to possible applications to point clouds.

Iterative Closest Point and its application to mesh alignment
As briefly discussed the first big problem working with multiple point
clouds is alignment.
Going more in deep, in our workflow (depicted in Fig 101) the snap-
shots from the RGB-D camera are, sooner or later, converted in a
cloud of points and considering a, even large, range of speeds for

128

the motion of the human body the 30 frame per seconds of those
cameras are usually enough to obtain successive overlapped
frames.
The result is that usually the points in two clouds (respectively ai and
bi) are mostly overlapped and then a rotation matrix between them
can be computed as follows:

(84)

where

(85)

and

 (86)

where

(87)

and

Fig 102. A point cloud (blue) and its transformed version (red) after a
roto-translation matrix have been applied. Iterative Closest Point (ICP)
algorithm inted to solve the inverse problem: given the two meshes

129

(88)

The implemented ICP algorithm is made up of two major phases: a
matching step and a transformation step.
At each step both have to be performed. In the matching step each
point of cloud B (or A) is assigned to the nearest point in cloud A
(or B). As in any other matching algorithm, metric could make the
difference: distance could be computed just as simple point-to-point
distance or point-to-plane or even more complex non-euclieadian
distances but this is out of the scope of this work. At this time, let us
consider the simplest point-to-point distance.

Though in its naive implementation the complexity of the matching
step is O(n2) it is quite trivial to move toward a O(n log(n)) implemen-
tation, using much more complex data structure (e.g. kdtree).

One of the major concerns about the ICP algorithm is that its conver-
gence is often affected by wrong local minima drop.
For this reason the proposed idea is to use all the information from
the Inertial Body Motion Recognition (iBMR with iNEMO) to esti-
mate (even, roughly) the initial position and orientation of the camera
(e.g. the kinect).
The iBMR is presented as a technology of recording movements of

Fig 103. Snapshot from the working developed solution based on in-
ertial full body tracking (iBMR) and Microsoft Kinect.

130

the human body and translating them to a digital model in real-time
mode. Its applications include animation of characters in movies
and video games; gait analysis (study of human motion) in clinical
and sports medicine to help identify posture-related or movement-
related problems in people with injuries and help athletes run more
effi ciently.

As described, each node functions as an Attitude and Heading Ref-
erence System (AHRS) with 9-axis MEMS sensing of linear, angular,
and magnetic motion. It integrates a 32-bit microcontroller that com-
putes the complex AHRS algorithm, using ST’s proprietary fi ltering
and predictive software for sensor data fusion. All nodes are sending

Fig 104. How to proceed toward a system integration for inertial body
reconstruction and augmented reality. While, in line of principle, the
technological needs are full fi lled by ST-Microelectronics and ST-Er-
icsson.

Fig 105. Major problems in environment mapping and reconstruction
from multiple snapshot from a RGB-D camera like Microsoft kinect.

131

their data to the control unit – a PC – which applies the measure-
ment to a graphical skeleton model and displays body motions in
real time.

In the current version of the inertial motion capture solution (iBMR),
there is a iNEMO M1 system in each node: on each arm, forearm,
thigh, calf, and two nodes on the back; however, the system is
scalable up to 15 nodes, so additional nodes can, for example, be
mounted on shoes or on the head.
The size of the node is 4 x 4 x 10 mm, its weight is 12 g, and it is
encapsulated in a special housing.
Extensive tests with realistic, complex motions of the human body
have been carried out, in which this solution showed outstanding
precision and speed. Deviation in spatial accuracy is below 0.5 cm
during the movement and negligible in motionless conditions.
Meanwhile, the system is able to process the acquired data in less
than 15 ms - the time elapsed from the acquisition of sensor inputs
up to their applying to the skeleton model in the control unit.

Moreover it is important to highlight that as discussed in block
diagrams depicted in Fig 104 and in Fig 105 the combined inertial
motion capture and camera based environment mapping and recon-
struction open multiple scenarios into the augmented reality applica-
tions.

Consider now just a limb (e.g. an arm) and start to develop its
kinematic model. Then think a step beyond and link this analysis ap-
proach to a possible synthesis in a robotic perspective.
It must be remarked that this indicates absolute orientation, there-
fore if used in multi-link structure (e.g. human limbs) relative orienta-
tion have to be retrieved if relative rotation have to be performed for
kinematic motion of the model.

Kinematic model of the human body
If we take into consideration that each sensor computes the absolute
orientation, starting from the Centre of Gravity (CoG) of the body,
geometrical relationships (Sciavicco ed., 2008) leads to following

132

equations:

pElbow,0 = pShoulder ,0 + RShoulder
0 ⋅ pElbow (89)

and to its similars (ankles, wrists, knees, etc.)
In which Plimb
with limb = {Cord1, Cord2, Hip, Shoulder,Knee,Ankle,Head}
have been derived from a kinematic body skeleton.
Moreover it must be noticed that quaternion needed to derive rota-
tion matrices (Sciavicco ed., 2008) are computed locally from each
node (through Kalman fi lter Bishop, 2001) while matrices are recon-
structed by the host as follows:

�q =
[
q1 q2 q3 q4

]T

(90)

Fig 106. Torque ramp characteristic of the dynamixel servo. B and C
are no laod zones, useless from a theoretical point of view, useful for
real life application (and strictly related to E,F value, minimal torque
value). A and D value determine the slope of the ramp.

Fig 107. Equilibrium point hypothesis (Latash 2008) in single mus-
cle refl ex and agonist-antagonist couple for joint motion (picture from
Latash, 2008).

133

R = a

⎛
⎝

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

⎞
⎠

where

a =
1√

q21 + q22 + q23 + q24

and q4 is the scalar part of the quaternion.

Similarly to what happens with threshold position control in agonist-
antagonist muscles couple (Latash, 2008), using these servos it is
possible to separately control, and just with parameters change,
both the equilibrium angular position of the joint and its stiffness. The
resulting dynamical system can be therefore considered globally as-
intotically stable around a phase-state point described by the angle-
torque couple. The effective dynamics of the system from outside
the equilibrium point toward it depends both on the inner control loop
and on the environmental condition.

For sake of simplicity the case of a single human upper limb has
been selected and its movement monitored through two inertial
platforms (i.e. iNemo boards from STMicroelectronics): one for each
major kinematic link, the arm and the forearm.
At each time step the rotations around the articulation of the shoul-
der and of the elbow have been identifi ed.
Moreover the orientation of each limb is then used to rotate the
model parts that are kinematically constrained to be linked to each
other.

�p1,0 = R0
1 · �p1,1

�p2,0 = R0
1R

1
2 · �p2,2 +R0

1 · �p1,1 (91)

It must be remarked that the rotation matrix obtained for each link is
absolute, therefore R2

0 is directly computed as follow:

R1
0R2

1 = R2
0

(92)

Elementary, single axis, joint rotations have been selected for the
given kinematic chain of the serial manipulator from the measured
fi ve DoF.
Under this point of view the rotation matrix can be computed through

134

multiple rotation matrices around rotated cartesian axis: x, y or z.
In particular, the forearm rotations can be described as two rotations
around elbow articulation in order to be comparable with joint actua-
tion in the robotic structure.

R2
1 = R0

1R2
0
 and R2

1 = RzRy
(93)

Comparing previous relations it is possible to write:p g p p

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

cosφcosθ sinφ 0

−sinφcosθ cosφ 0

−sinθ 0 cosθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(94)

In which, for r22 ≠ 0 and for r33 ≠ 0 , angles φ and θ can be deter-
mined as follows:

φ = tan−1
r12
r22

 and θ = − tan
−1 r31
r33

This is just to show that using all these relations, the developed
distributed sensory system and the control hardware architecture it
is possible to mimic the human body motion in a robotic structure.
Furthermore it is possible to reproduce recorded movement into a
topologically (i.e. kinematically) different structure and finally to out-
source the action perception loop...

....but this is another story.

135

136

conclusion

To conclude, wrap-up and propose how to go beyond what it
has been already done, let me briefl y discuss about this work.
The challenging problem of human machine interaction has
been addressed from an analysis-to-synthesis perspective in
the fi eld of motion control.
The overall problem has been divided into several sub-prob-
lems.
Major hardware concerns are related to a modular architecture
able to cope with very different platforms: sensors, actuators,
power and logic interfaces and mathematical algorithmic cores.
From a software perspective it is important to distinguish be-
tween low level programming and high level programming.

137

While both need to be developed in such type of solution, the
former is mainly involved in distributed decentralized control
(e.g. actuator feedback control under parametric high level
control), the latter is devoted to complex algorithm implemen-
tation.
Under these points of view, each of the proposed architectures
try to effi ciently divide these two aspects: refl exes implementa-
tion and sensor fusion algorithms.
Several algorithms for refl ex-like motor control have been fi rst
described, then implemented and fi nally tested on real plat-
forms.
A systematic solution to problem of system integration has
been proposed. In this fi eld a sensor solution and a network
architecture for embedded sensing has been presented.
Problems like embedded computing and reduced computa-
tional power on mobile platforms have been considered and
addressed.
Advances beyond the state of the art are herewith proposed
for both structures and algorithms.
Wherever it has been possible, multiple real life problems like
movement disorders or inertial based machine interfaces have
been considered

As a fi nal remark, the path toward a satisfying solution to the
problem of motion analysis and synthetic motion generation
and control in a robotic (and hopefully, everyday life) perspec-
tive, it is still far and hard (very hard). However I think that all
the presented solutions are in line with the already introduced
idea that this work should serve just as fi rst gatherer of techno-
logical and mathematical research.
I also hope that the reader has taken home some food for
thoughts to further exploit each of these sub-problems from
both my good solution and from my mistakes.

138

references

[1] B. Siciliano O. Khatib, editors, ”Handbook of robotics”, Springer
2008.

[2] D.N. Nenchev, ”Redundancy resolution through local optimization:
review”, J. Robot. Syst., vol. 6,no. 6,pp. 769-798, 1989.

[3] D. N. Nenchev, Y. Tsumaki, ”Singularity-consinstent kinematic re-
dundancy resolution for the S-R-S manipulator”, in Proc. 2004 IEEE/
RSJ Int. Conf. Intell. Robots Syst., pp. 3607-3612, 2004.

[4] K. Ahn and W.K. Chung, ”Optimization with joint space reduction
and extension induced by kinematic limits for redundant manipula-

139

tors”, in Proc. IEEE Int. Conf. Robot Autom., Washington, DC, pp.
2412-2417, 2002.

[5] T.F.Chan and R. V. Dubey, ”A weighted least-norm solution based
scheme for avoiding joint limits for redundant joint manipulators”,
IEEE Trans. Robot. Autom., vol. 11, no. 2, pp. 286-292, Apr. 1995.

[6] M. Shimizu, H. Kayuka, ”Analytical Inverse Kinematic Computa-
tion for 7-DOF Redundant Manipulators With Joint Limits and Its Ap-
plication to Redundancy Resolution”, IEEE transaction on robotics
vol.24, No.5, October 2008.

[7] B. Tondu, ”A closed-form inverse kinematic modelling of a 7R an-
thropomorphic upper limb based on a joint parametrization”, in Proc.
6th IEEE-RAS Int. Conf. Hum. Robots, pp. 423-432, 2006.

[8] H. Moradi and S. Lee, ”Joint limit analysis and elbow movement
minimization for redundant manipulators using closed form method”,
in Advances in Intelligent Computingm, Berlin/Heidelberg: Springer, ,
Part 2, vol. 3645, pp. 423-432, 2005.

[9] S. Lee and A. K. Bejczy, ”Redundant arm kinematic control based
on parametrization”, in Proc. IEEE Int. Conf. Robot. Autom., Sacra-
mento, CA, pp. 458-465, 1991.

[10] H. Cruse and U. Steinkuhler, ”Solution of the direct and inverse
kinematics problems by a common algorithm based on the mean of
multiple computations”, Biol. Cybernetics 69, 345-351 2, 1993.

[11] P. Arena and L. Patan, ”Spatio Temporal Patterns for Action Ori-
ented Perception in Roving Robots”, Springer, Series: Cognitive Sys-
tems Monographs, vol. 1, 2009.

[12] H. Cruse, U. Steinkuhler and Ch. Burkamp, ”MMC - a recurrent
neural network which can be used as manipulable body model”, in
From animals to animats 5, R. Pfeifer, B. Blumberg, J.-A. Meyer, S.W.
Wilson (eds.) MIT Press, pp. 381-389, 1998.

140

[13] G. Bosco and R. E. Poppale, ”Proprioception from a spinocer-
ebellar perspective”, Physiol. Rev. 81: 539-568, 2001.

[14] Kandel, Schwartz and Jessel, ”Principles of neural science”,
McGraw- Hill, 2000.

[15] M. C. Park, A. Belhaj-Saf, M. Gordon, and P. D. Cheney, ”Consist-
ent Features in the Forelimb Representation of Primary Motor Cortex
in Rhesus Macaques”, The Journal of Neuroscience, April 15, 2001,
21(8):2784-2792.10

[16] C. Capaday, C. Ethier, L. Brizzi, A. Sik, C. Van Vreeswijk, D. Gin-
gras, ”On the Nature of the Intrinsic Connectivity of the Cat Motor
Cortex”, J. Neurophys. 102: 2131-2141, 2009.

[17] W. T. Miller, R. P. Hewes, F. H. Glanz and L. G. Kraft, ”Real-
Time Dynamic Control of an Industrial. Manipulator Using a Neural-
Network-Based. Learning Controller”, IEEE Trans. on Robotics and
Automation vol. 6. no. I, February 1990.

[18] H. Ritter, T. Martinetz and K. Schulten, ”Neural Computation and
selsorga izing maps”, Addison-Wesley, New York, 1992.

[19] U. Steinkuhler, H. Cruse, ”A holistic model for an internal repre-
sentation to control the movement of a manipulator with redundant
degrees of freedom”, Biol. Cybernetics 79, 457-466, 1998.

[20] H. Seraji and B. Bon, ”Real-Time Collision Avoidance for Posi-
tion-Controlled Manipulators”, IEEE Trans. on Robotics and Automa-
tion, Vol.15, No. 4, pp. 670-677, August 1999.

[21] F. Cheng, Y. Lu, Y. Sun, ”Window-shaped obstacle avoidance for
a redundant manipulator”, IEEE Trans. on Systems, Man and Cyber-
netics, Part B, Vol. 28, No. 6, pp. 806-815, Dec 1998.

141

[22] Reinhard Diestel, ”Graph Theory”, Springer-Verlag Heidelberg,
New York 2005.

[23] S. Kheradpir, J.S. Thorp , ”Real-time control of robot manipula-
tors in the presence of obstacles”, IEEE Trans. on Robotics and Auto-
mation, Vol. 4, No. 6, pp. 687-698, Dec 1988.

[24] T. Tsuji, S. Nakayama, K. Ito, ”Distributed feedback control for
redundant manipulators based on virtual arms”, Prooceeding of Au-
tonomous Decentralized Systems, pp. 143-149, 1993.

[25] EU Project SPARK II, website online at www.spark2.diees.unict.
it/MiniArm.html

[26] Hoffmann, H., M¨oller, R. , ”Unsupervised learning of a kinematic
armmodel”, Artifi cial Neural Networks and Neural Information Pro-
cessing, vol. 2714, (ICANN/ICONIP), LNCS, Kaynak O, Alpaydin E,
Oja E, Xu L,Springer, Berlin, pp. 463-470, 2003.

[27] Moller R. and Hoffmann, H. ,”An extension of neural gas to local
PCA”, Neurocomputing, vol. 62, 305-326, 2004.

[28] Moller, R. ”Interlocking of learning and orthonormalization in
RRLSA”.Neurocomputing, vol. 49, pp. 429-433.

[29] Ouyang, S., Bao, Z., Liao, G.S. , ”Robust recursive least squares
learning algorithm for principal component analysis”, IEEE Transac-
tions on Neural Networks, vol. 11(1), pp. 215-221, 2000.

[30] Tipping, M. E., Bishop, C. M. ,”Mixtures of probabilistic princi-
pal component analyzers”, Neural Computation, vol. 11, pp. 443-482,
1999.

[31] Hinton, G. E., Dayan, P., and Revow, M. ”Modeling the manifolds
of images of handwritten digits”, IEEE Transactions on Neural Net-
works, vol. 8, pp. 65-74, 1997.

142

[32] Kohonen, T. , ”Self-Organizing Maps” Springer, Berlin, 1995.

[33] Martinetz, T. M., Berkovich, S. G., and Schulten, K. J., ”Neural-
Gas network for vector quantization and its application to time-series
prediction”, IEEE Transactions on Neural Networks, 4, pp. 558-569,
1993.

[34] OpenCV website homepage online at http://opencv.willowga-
rage.com

[35] Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet Singh and An-
drew Y. Ng, “Quadruped Robot Obstacle Negotiation via Reinforce-
ment Learning”, ICRA, 2006.

[36] Arthur P. S. Braga, Aluizio F. R. Araujo, “A topological reinforce-
ment learning agent for navigation” Neural Comput. and Applic., vol.
12, pp. 220-236, 2003.

[37] Bram Bakker, Viktor Zhumatiy, Gabriel Gruener and J¨urgen
Schmidhuber, “Quasi-Online Reinforcement Learning for Robots”,
Proc. IEEE International Conference on Robotics and Automation,
2006.

[38] Kolter, Abbeel and Ng, “Hierarchical Apprenticeship Learning
with Application to Quadruped Locomotion”, NIPS 2008

[39] Andrew W. Moore and Christopher G. Atkeson, “Prioritized
sweeping: Reinforcement learning with less data and less time”, Ma-
chine Learning, Springer, vol. 13, pp. 103-130, 1993.

[40] Marco Dorigo and Thomas Stutzle, “Ant Colony Optimization”,
MITPress, 2004.

[41] Leslie P. Kaelbling, Michael L. Littman and Andrew W. Moore,
“Reinforcement Learning: A Survey”, Journal of Artilcial IntelligenceR-

143

esearch, vol. 4, 1996.

[42] Andrew G. Barto and Sridhar Mahadevan “Recent advances in
hierarchical reinforcement learning”, Discrete Event Dynamic Sys-
tems: Theory and Applications, vol. 13, pp. 41-77, 2003.

[43] Sutton, R.G, Barto, A.G, “Reinforcement Learning: An Introduc-
tion” 2 ed. (sl): Mit Press. pp. 51-185,1998.

[44] Ribeiro, C.H.C., “A Tutorial on Reinforcement Learning Tech-
niques” in Proc. of International Conference on Neural Networks,
INNS Press, Washington, DC, USA, pp. 1-23, 1999.

[45] H. Cruse, U. Steinkuhler and Ch. Burkamp, “MMC - A recurrent
neural network which can be used as manipulable body model”, From
animals to animats vol. 5, R. Pfeifer, B. Blumberg, J.-A. Meyer, S.W.
Wilson (eds.) MIT Press, pp. 381-389, 1998.

[46] U. Steinkuhler, H. Cruse, “A holistic model for an internal repre-
sentation to control the movement of a manipulator with redundant
degrees of freedom”, Biol. Cybernetics vol. 79, pp. 457-466, 1998.

[47] Tipping ME, Bishop CM (1999) “Mixtures of probabilistic princi-
pal component analyzers”, Neural Computation vol. 11, pp: 443-482,
1999.

[48] N. Abbate, A. Basile, A. Brigante, C. Faulisi, “Development of a
MEMS based wearable motion capture system,” Human System In-
teractions (HSI), 2009.

[49] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sen-
sors,” IEEE Comput. Graph. Appl. , vol. 25 (6), pp. 38-46, 2005.

[50] D. Roetenberg, P. Slycke, and P. Veltink, “Ambulatory position
and orientation tracking fusing magnetic and inertial sensing,” IEEE
Transactions on Biomedical Engineering, vol. 54, pp. 883–890, 2007.

144

[51] D. Roetenberg, “Inertial and magnetic sensing of human motion,”
Ph.D. thesis, University of Twente, 2006.

[52] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens MVN: Full 6DOF
Human Motion Tracking Using Miniature Inertial Sensors,” whitechap-
ter. Available: www.xsens.com

[53] iNEMO data brief. Available: www.st.com/inemo

[54] STM32 datasheet and reference manual. Available: www.st.com

[55] L3G4200D datasheet. Available: www.st.com

[56] LSM303DLH datasheet. Available: www.st.com

[57] G. Bishop and G. Welch, “An Introduction to the Kalman Filter,”
presented at the SIGGRAPH course notes, 2001.

[58] A. M. Sabatini, “Quaternion-based strap-down integration meth-
od for application of inertial sensing to gait analysis,” Medical and-
Biological Engineering and Computing, vol. 43 (1), pp. 94-101, 2005.

[59] A. M. Sabatini, “Quaternion-based extended Kalman fi lter for de-
termining orientation by inertial and magnetic sensing,” IEEE Trans.
Biomed. Eng., vol. 53, pp. 1346-56, Jul 2006.

[60] X. Yun, “Design, Implementation, and Experimental Results of a
Quaternion-Based Kalman Filter for Human Body Motion Tracking,”
IEEE Transactions on Robotics, vol. 22, no. 6, Dec. 2006

[61] D. Vlasic et al., “Practical motion capture in everyday surround-
ings,” ACM Transactions on Graphics (TOG), vol. 26, 2007.

[62] B. Cardani, “Optical Image Stabilization for Digital Cameras,”
IEEE Control System Magazine, vol.26 (2) pp. 21-22, 2006.

145

[63] C. Hide and T. Moore, “GPS and low cost INS integration for po-
sitioning in the urban environment,” Proceedings of ION GPS, Long
Beach, CA, USA, pp.1007-1015, 2005.

[64] Bizzi, E. “Spinal Cord Modular Organization and Rhythm Genera-
tion: An NMDA Iontophoretic Study in the Frog.” 1-18., 1998

[65] Dean, J., T. Kindermann, et al. “Control of walking in the stick
insect: from behavior and physiology to modeling.” Auton Robot 7(3):
271-288., 1999

[66] Feldman, A. G. “New insights into action–perception coupling.”
Experimental Brain Research.,2009

[67] Ijspeert, A. J., J. Nakanishi, et al. “Learning attractor landscapes
for learning motor primitives.” Advances in neural information pro-
cessing systems: 1547-1554., 2003

[68] Latash, M. Synergy., 2008

[69] Peters, J. “Machine learning of motor skills for robotics.”, 2007

[70] Pfeifer, R. and J. Bongard. “How the body shapes the way we
think: a new view of intelligence.”, 2006

[71] Pilon, J.-F., S. De Serres, et al. (2007). “Threshold position con-
trol of arm movement with anticipatory increase in grip force.” Experi-
mental Brain Research 181(1): 49-67.

[72] Schaal, S. (2010). “Dynamic Movement Primitives–A Framework
for Motor Control in Humans and Humanoid Robotics.” 1-10.

[73] Schaal, S., P. Mohajerian, et al. (2007). “Dynamics systems vs.
optimal control--a unifying view.” Progress in brain research 165: 425.

146

[74] Schaal, S., D. Sternad, et al. .“Rhythmic arm movement is not
discrete.” 1-8., 2004

[75] Siciliano, B., L. Sciavicco, et al. (2009). “Robotics: Modelling,
Planning and Control.” 1-644.

[76] Tedrake, R. . “Stochastic Policy Gradient Reinforcement Learn-
ing on a Simple 3D Biped.” 1-6., 2005

[77] Bernstein N. The Coordination and Regulation of Movements.
Pergamon Press. New York. OCLC 301528509, 1967

147

	tesi_1_1
	tesi_1_2
	tesi_1_3
	tesi_1_4
	tesi_1_5
	tesi_1_6
	tesi_1_7
	tesi_1_8
	tesi_1_9
	tesi_2_10
	tesi_2_11
	tesi_2_12
	tesi_2_13
	tesi_2_14
	tesi_2_15
	tesi_2_16
	tesi_2_17
	tesi_2_18
	tesi_2_19
	tesi_2_20
	tesi_2_21
	tesi_2_22
	tesi_2_23
	tesi_2_24
	tesi_2_25
	tesi_2_26
	tesi_2_27
	tesi_2_28
	tesi_2_29
	tesi_2_30
	tesi_2_31
	tesi_2_32
	tesi_2_33
	tesi_2_34
	tesi_2_35
	tesi_2_36
	tesi_2_37
	tesi_2_38
	tesi_2_39
	tesi_2_40
	tesi_2_41
	tesi_2_42
	tesi_2_43
	tesi_2_44
	tesi_2_45
	tesi_2_46
	tesi_2_47
	tesi_2_48
	tesi_2_49
	tesi_2_50
	tesi_2_51
	tesi_2_52
	tesi_2_53
	tesi_2_54
	tesi_2_55
	tesi_2_56
	tesi_2_57
	tesi_2_58
	tesi_2_59
	tesi_2_60
	tesi_2_61
	tesi_2_62
	tesi_2_63
	tesi_2_64
	tesi_2_65
	tesi_2_66
	tesi_2_67
	tesi_2_68
	tesi_2_69
	tesi_2_70
	tesi_2_71
	tesi_2_72
	tesi_2_73
	tesi_2_74
	tesi_2_75
	tesi_2_76
	tesi_2_77
	tesi_2_78
	tesi_2_79
	tesi_2_80
	tesi_2_81
	tesi_2_82
	tesi_2_83
	tesi_2_84
	tesi_2_85
	tesi_2_86
	tesi_2_87
	tesi_2_88
	tesi_2_89
	tesi_2_90
	tesi_2_91
	tesi_2_92
	tesi_2_93
	tesi_2_94
	tesi_2_95
	tesi_2_96
	tesi_2_97
	tesi_2_98
	tesi_2_99
	tesi_3_100
	tesi_3_101
	tesi_3_102
	tesi_3_103
	tesi_3_104
	tesi_3_105
	tesi_3_106
	tesi_3_107
	tesi_3_108
	tesi_3_109
	tesi_3_110
	tesi_3_111
	tesi_3_112
	tesi_3_113
	tesi_3_114
	tesi_3_115
	tesi_3_116
	tesi_3_117
	tesi_3_118
	tesi_3_119
	tesi_3_120
	tesi_3_121
	tesi_3_122
	tesi_3_123
	tesi_3_124
	tesi_3_125
	tesi_3_126
	tesi_3_127
	tesi_3_128
	tesi_3_129
	tesi_3_130
	tesi_3_131
	tesi_3_132
	tesi_3_133
	tesi_3_134
	tesi_3_135
	tesi_3_136
	tesi_3_137
	tesi_3_138
	tesi_3_139
	tesi_3_140
	tesi_3_141
	tesi_3_142
	tesi_3_143
	tesi_3_144
	tesi_3_145
	tesi_3_146
	tesi_3_147

