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none of us is as smart as all of us
(japanese proverb)
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Academic path is a very hard path. As it is possible to imagine what 
follows in these pages is fruit of my studies and of my work but it is 
important to highlight that, more than this, it is fruit of several form of 
support I have recieved in this years.
Fortunately, this work has been deeply supported. First of all, most 
of the funds needed to investigate these opportunities comes from 
STMicroelectronics and from European projects. 
I am really grateful to the Automation Robotics and Trasportation 
group (ART). Furthermore several people from the University of 
Catania helped me a lot through every diffi cult subject. Last but not 
least I would like to thank all the people who still trusts in me and in 
my work despite my sharp nature.
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In the last few years my interest in motion of living beings started 
to grow day after day, month after month...without my control. 

It all started during the complex systems course attended within 
my master degree (in automation engineering and complex sys-
tems control) at the university of catania. At that time my profes-
sors, Luigi Fortuna and Paolo Arena (respectively the coordinator 
and the turor of my Ph.D. course), introduced me to the world of 
non-linerity, complexity and reaction-diffusion and showed me 
how it is possible to consider a lot of natural phenomena under 
this frame: from waves to fur spots and walk patterns in animals.
I decided that I would have spent time (even years) studying this 
fi eld. As often happens, the decision was taken without consider-

preface
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ing diffi culties and without a focused working strategy. 
With this point in mind, day after day I took all the incoming opportu-
nities to develop this research. After the fi nal test of control of com-
plex systems I worked on my master thesis on complex dynamics 
in population dynamics inside the city and than I come across Ph.D. 
course in human machine interaction in collaboration with STMicroe-
lectronics: the opportunity to make (or at least, to try to make) things 
interesting for a big (very big, indeed) international company. 

Almost impossible...

...but that was a huge opportunity and so I decided to take it, with-
out considering diffi culties and without a focused working strategy, 
again.

The years in this joint work with STMicroelectronics were very inter-
esting and fruitful but as expected they have been very hard. 
My project was slowed by a lot and even stopped sometimes. Nev-
ertheless, month by month, I learned several technical things at the 
front edge of the technological research and how to merge company 
driven interest with my project. 

After a couple of years I could now say that the aim work (and of this 
thesis) is to address the human machine interaction problem from 
analysis to synthesis. 
It is important to notice that, both completeness and a rigorous 
mathematical (and analytical) treatment are out of the scope of this 
thesis. Moreover I have been lucky enough to have time to study, 
and work, on very different fi elds under this view I hope that this pro-
ject could serve as a fi rst information gatherer of multiple intercon-
nected disciplines. Last but not least this is a work in progress and 
so stay tuned and don’t be too hard in judgment.
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A lot of works have been done in the fi eld of motor control. Several 
different hypothesis have been described and reviewed to under-
stand living beings on motor coordination (Latash 2008).
What is commonly referred to as motor control is indeed, an articu-
lated problem that is, at least from a robotic perspective, often more 
suitably divided in: sensing (perception, cognition), deliberation, 
planning, kinematic control and dynamic control (as described in Fig 
1). 
Moreover all these things could, in line of principle, be represented 
by a fl exible and learnable structure and so, as commonly described, 
they could be learned.

Robotic and machine learning communities are performing signifi -

introduction
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cant effort to provide tools and framework in which it is possible at 
the same time to face classic robotic control problems and more 
deeply understand what so far is known on biological motor control 
(Peters 2007; Schaal 2010). 
On the other side standard optimal control strategy, together with 
effi cient learning strategy, are under investigation to cope with agile 
and under-actuated platforms (Tedrake 2005) to shorten the me-
chanical technological gap with the living counterparts.

Embodiment and environmental niche are two of the most cited 
words in this, quite new, emerging fi eld (Pfeifer and Bongard 2006). 
Living beings (animals) grow and change experiencing at the same 
time their body, their control system and the environment (Fig 2).
Under this point of view the motion control and the overall learning 
process have to be considered in a situated body: both innner sys-
tem dynamical properties and environmental constraints are strictly 
related to the learned behaviours. 

System dynamics includes all subsystems together with sub-prob-

Motion Control 

Perception 

Deliberation 

Planning 

Low Level Control 

nnnnnnnnnnnnnnnn nnnnnnnnnn 

l

Sensing 

reflex-based 

A
cting 

Fig 1.  Block diagram for motion control. The high level control task 
is divided into several, hierarchical descending, sub-problems. Each 
problem has to be addressed almost separately and than their interac-
tion must be considered. 
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lem decomposition (e.g. low level motion control, muscle synergies).
Under this point of view the learning process is achieved in a situ-
ated body: both dynamical properties and environmental constraints 
are strictly related to the learned behaviors.
It is almost useless to consider the system without considering the 
environment interaction and the whole environmental condition. 

Moreover, in several recent publications is common sense that Cen-
tral Nervous System (CNS) only give parameter control on a refl ex-
based (self-stabilized) complex system (Bizzi 1998; Pilon, De Serres 
et al. 2007) instead of trying to fi nely control the complex nonlinear 
structure.
The very complex control of motor capabilities in animals are 
achieved trough the hierarchical decomposition of task into simpler-
and-simpler problems (Pilon, De Serres et al. 2007; Latash 2008) 
(as depicted in Fig 3).

In this understanding, a huge part of the learning process is at level 
of refl exes tuning and in an unconscious level.
Complex algorithmic solution are therefore proposed based on 
neural networks, spiking neuron model and reinforcement learning 
paradigm (Fig 4 and Fig 5)

Recent advantages in motor control and learning discourage the 
previously adopted hypothesis on internal model as a detailed kin-
ematic perspective of body representation (Latash, 2008).

Fig 2.  Under the ecological niche hypothesis the controller (i.e. natural 
or artifi cial system that performs parameter control on the hierarchical 
lower structure) has to learn control in a situated body. It is clear that 
the environment plays a fundamental role: it is impossible to consider 
the system dynamics without including it.
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As described in (Feldman 2009) the learning process can be per-
formed without knowing the exact relation between parameters, 
adopted policy and environment. Nevertheless critic sensing lets 
the system to correctly adjust parameters adopting, for instance, a 
descending gradient of the cost function.

The monitoring of real limbs trajectories in day life experiences for 
human motion control is certainly a big help to understand underling 
strategies. 

Common used strategies are based on multiple cameras and mark-
ers. Emerging solution are now developed with inertial modules and 
sensors fusion techniques (Roetemberg, 2007). 
In this quite new fi eld the possibility of using low cost MEMS sensor 
(Vlasic, 2008) creates interests for the consumer electronics market, 
drastically shortening development time. 

In the following sections, through the pages of this work, several 
different problems related to motion control, to living beings motion 
analysis and to its robotic counterpart will be addressed. 
The strong underling motif of all the proposed algorithms and ar-

sinergy I�

task�

sinergy II�

sinergy III�

limbs�

joints�

sinergy IV�

muscles�

motor units�

Fig 3.  Task decomposition into simpler and simpler tasks identifying 
motor synergies (Bernstein, 1967) (Bizzi, 1998)



12

chitectures (both software and hardware) is the presence of a real 
environment interaction. 

In particular sections will be dedicated to sensors, kinematic of the 
human body and its application to industrial robotics, mobile platform 
design and robotic architecture implementation, algorithms for mo-
tion planning, central pattern generation and perception.

The first step, explored in chapter 1, is an attempt to understand 
basis of motion starting form motion data analysis and closing the 
feedback of the eye-hand (sensor and actuators) coordination.
After that, in chapter 2, several bio-inspired algorithms for motion 
control will be investigated. These algorithms explore different prob-
lems of control: from hard-wired reflexes implementation to complex 
high level motion planning learning trough reward function. 

Fig 5.  Complex robot control loop trough a classic biologically relevant 
algorithmic solution.

Fig 4.  Example of a multi-layer solution based on Self-Organizing 
Maps (SOM) for the control of a dynamical system (e.g. torque limited  
pendulum swing-up). Inner layer are also based on realistic spiking 
neuron model. 
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The problem of perception is faced in chapter 3. 
The problem of sequences learning and of delayed reward is ad-
dressed in chapter 4. 
A general framework for robot control and modular system integra-
tion is proposed in chapter 5.
The development of an advanced motion platform for inertial sensing 
is presented in chapter 6.

Let’s start from the beginning.

Fig 6. iNEMOTM evaluation board from STMicroelectronics: 10 DoF 
demonstration board based on accelerometer, gyroscope and mag-
netometer. It integrates a common quaternion based Kalman fi lter.
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1chapter

The incoming necessity of fast and reactive gesture recognition, for 
Human-Machine Interaction, and the diffusion of cheap and reliable 
MEMS multi-axial accelerometers, gyroscopes and digital com-
passes (i.e. magnetometer) are introducing a new discipline called 
“Inertial Motion Detection”.
In this fi eld already known problems, native for aeronautics, are the 
Inertial Navigation System (INS) and Attitude and Heading Refer-
ence System (AHRS).
Under this kind of open problems we are going to analyze all the 
diffi culties about the implementation of an Inertial Mouse platform 
using accelerometers. 
In order to understand underling dynamics in human motion and be-
hind eye-hand coordination in humans, a complete sensor platform 

exploiting motion and control of living beings:
from data analysis to feedback control 
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has been realized and acceleration data from it has been acquired.

Though the analyzed device is the LIS3LV02DL (a tri-axial digital ac-
celerometer), all the considerations can be extended to any kind of 
analog and digital device.
This chapter is organized in two different parts. In the fi rst one most 
of the common theoretical and numerical problems are discussed. In 
the second part algorithmic procedures based on proposed solution 
to those problems are presented.

Reference frame
Consider now a personal computer on a table (Fig 8). The acceler-
ometer local reference system (Oxyz2), in which accelerations are 
measured, is rigid with the mobile platform (Oxyz1) and any transla-
tion and/or rotation between them could be considered constant.

For such a defi ned body the acceleration of the point O2, expressed 
in the inertial reference system , can be, in general, evaluated as 
follows:

Fig 7.  Acceleration pattern during a common walk on a fl at fl oor. Ac-
celeration data have been aligned using the computed orientation (ob-
tained using a kalman fi lter). A motion detection algorithm has been 
used to identify motion contion to avoid long term integration. Highlight 
zones identify motion.
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�aO2 = �aO1 + �ω × (�ω × (O2 −O1)) + �̇ω × (O2 −O1) + 2�ω × �v(r)02
( 1 )   

where �ω is the angular velocity of the body (rotation of the Oxyz1 
reference system) and �v(r)O2 is the relative velocity of the point O2 with 
respect to the point O1.
The accelerometer will, therefore, measure that acceleration �aP  in 
the Oxyz2 coordinate system.
As in any common pointing device (e.g. optical mouse) motion 
should be interpreted as in a local reference system.
As described by the equation ( 1 ), the distance between Oxyz1 and 
Oxyz2 (r = (O2 −O1)) will cause the measurement of both centrip-
etal/centrifugal force and Euler force due to the dynamic rotation of 
the system Oxyz1 (with �ω angular velocity) in an absolute reference 
system. 
However these accelerations can be considered as a part of the 
motion of the accelerometer reference system (Oxyz2). Furthermore 
their effects, on the adopted local system, are very similar (for very 
different reasons) to those present in any other pointing device (e.g. 
optical mouse off-lens-axis rotation in plane) and they are easily 

Fig 8.  Simple sketch of the all adopted reference systems. The iner-
tial platform and the accelerometer sensor are in different frames of 
reference.

x2�

y2�z2�

x1�
y1�

z1�

x0�

y0�z0�
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understood and compensated by the feedback control of the user 
(eye-hand coordination).
Coriolis effect, due to the motion of the accelerometer frame (Oxyz2), 
with relative velocity �v(r)O2 within the rotating mobile platform system 
(Oxyz1), is hard to compensate and needs to be analyzed in the ac-
celerometer mechanical design.  
The angle between the local reference (i.e. accelerometer frame, 
Oxyz2) on the mobile platform (Oxyz1) and the absolute reference 
(Oxyz) could be discarded. 

Nevertheless, in order to establish a user friendly cursor control, the 
angles between the accelerometer reference (Oxyz2) and the mo-
bile platform reference (Oxyz1) must be kept as small as possible or 
compensated with static rotation matrices Rx(ψ), Ry(θ) and Rz(φ) as 
follows:
�x1 = Rx(ψ)Ry(θ)R(φ)�x2  ( 2 )  

where �xi =
[
xi yi zi

]T
 and

Fig 9. Statistical characterization of a dataset of N=1000 points with 
T=1s f=640Hz with respect to random walk of position   in the absence 
of external signal and with offset calibration.
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Rx(ψ) =

⎡
⎣

1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)

⎤
⎦
, 

Ry(θ) =

⎡
⎣

cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

⎤
⎦

Rz(φ) =

⎡
⎣
cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎤
⎦
  

( 3 )  

As already defi ned all these matrices are constant and can be easily 
evaluated in a fi rst calibration step. However if the structure is built 
to minimize this mismatch the overall rotation can be discarded for 
most applications.  

Gravity acceleration
Due to the gravity force the accelerometer will measure approxi-

mately 9.806 
m

s2
 (standard gravity acceleration is equal to 1g) even 

in a rest condition. 
Though, in a fi rst approximation, this component is on the inertial 
z-axis (z) and is (almost) perpendicular to the mobile platform mo-
tion plane (motion surface) and parallel to its z-axis (z1) in a deeper 
analysis a different condition arises: this is due to the misalignment 
among the motion surface (e.g. table) and the absolute xy plane and 
due to the accelerometer frame imperfections.
Therefore the accelerometer offset values in all three dimensions 
must be updated through the entire path following. 
Though the dynamic estimation of these offset values is not possible 
with just a tri-axial accelerometer, they can be considered constant 

Fig 10. Mobile platform and accelerometer frame.
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in a motion xy plane-constrained and under this hypothesis they can 
be estimated through time considering, in a fi rst approximation, the 
off-plane motion as a disturbance. 
Under all the analyzed constraints the numerical integration of the 
accelerometer readings (i.e. the acceleration vector �a = [ax ay]) 
should be, in line of principle, the velocity (�v = [vx vy]) and the 
numerical integration of this one should be the position 
(�p = [px py]).

�vt = �v0 +

∫ t

0

�a(τ)dτ � �v0 +
N∑
i=1

�aiΔt
  

( 4 )  

�pt = �p0 +

∫ t

0

�v(τ)dτ � �a0 +

N∑
i=1

�viΔt
  

( 5 )  

Where Δt =
1

f
 and f  is the sampling frequency.

From a computational point of view it is easier to consider the itera-
tive form of the integration as follows:
�vk+1 = �vk + �akΔt 
and 

�pk+1 = �pk + �vkΔt  ( 6 )  

Fig 11.  Plot of the square root of the Allan variance with respect to the 
time lag τ (seconds in logarithmic scale). 
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Accumulation
The working data set consists on approximately 167 minutes (104s) 
of continuous data acquisition. As described in the following sections 
the same data were, for different common statistical tools, split into 
dataset of various length.  

Noise analysis: the Allan Variance method
The Allan VARiance (AVAR) technique differentiates the various 
noise sources for the sensor under test: quantization noise, Speed 
Random Walk (SRW)/white noise, correlated noise, bias stability and 
Acceleration Random Walk (ARW).
As described by the reference the AVAR has been estimated with 
respect to the time lag to indentify major noise component.

As it is possible to derive from Fig 11 (with common AVAR analysis) 
there are three main noise components: random noise, measure 
bias and ARW. With low averaging time τ the main component is the 
random noise SRW. 
The effect of the random noise decreases with longer averaging 
time until a minimum is reached when the best bias estimation is 
achieved. As the averaging time increases, the variance starts to 
increase again (clearly evident in x and y components) since the 

Fig 12. Example of density probability distribution of acceleration in 
static condition. It is important to notice that acceleration values show 
a sharp distribution with low variance.
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presence of the bias instability of the sensor takes the lead (ARW).

Noise Integration
The presence of random noise in all the accelerometer measure-
ments cause both in the fi rst integration (velocity) and in the second 
integration (position) a well known drift problem called “Random 
Walk” (RW) due to the not perfectly zero average (in a fi nite number 
of samples).
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Fig 13.  Density probability distribution spreading during motion (or 
shock) condition. 
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One of the possible strategies to evaluate the effect of the random 
noise in the random walk behaviour is to identify its stochastic model 
in terms of average �μP  and standard deviation �σP : the position 
�p =

[
px py pz

]T
 is evaluated with acceleration integration in a 

time interval T in the absence of motion.

For the considered device (LIS3LV02DL) at a sampling frequency of 
f=640Hz the standard deviation of PRW is

�σp = [0.877 · 10−3 0.925 · 10−3 4 · 10−3] m  ( 7 )  

Fig 15. Example of N=70 dataset in which Speed Random Walk 
(SRW) (a) and Position Random Walk (PRW) (b) are evaluated trough 
time (T=10s).
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for a time interval T=1s (see Fig. 4) and it is

�σp = [77.3 · 10−3 89.3 · 10−3 0.432] m  ( 8 )  

for a time interval T=10s (Fig. 5). 

It can be noticed that, as described from the literature, while the  of 
the Speed Random Walk (SRW) increases almost linearly with the 
time the  of the Position Random Walk (PRW) increases approxi-
mately with the square of the time.

Algorithmic procedures 
Under all of these considerations the main problem in accelera-
tion integration is to dynamically set to zero the integration (i.e. the 
velocity) periodically to avoid very large time drift. From this point 
of view, it must be taken into account that the application is mostly 
independent from “small” position errors (i.e. double integration of 
the acceleration) thanks to the strong stabilizing action of the human 
eye-hand coordination.

Motion reset and active offset 
As described, thanks to the closed loop control, errors in position are 

Fig 16.  Statistical characterization of N =100 dataset with T =10s 
f =640Hz with respect to random walk of position   in absence of exter-
nal signal and with offset calibration.
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in large part corrected, nevertheless even a small drift in speed will 
cause a numerical divergence during the second integration that is 
impossible to compensate. For this reason a “no-motion” condition 
recognition (�v = 0) is a critical feature for an effi cient control algo-
rithm. A such defi ned feature should also allow to correct all long 
term drift errors on acceleration due to instability and/or temperature 
thanks to an active offset evaluation during “rest” periods.

How does an accelerometer detect an  integration-free “no-motion” 
condition? 
Though from a mathematical point of view the problem has no 

�σp =

√√√√ 1

N

N∑
i=1

(�pi − �μp)2  with �μp =
1

N

N∑
i=1

�pi  ( 9 )   

solution because of the constant-velocity motion in the real world 
it is possible to discriminate “motion” condition with a time interval 
statistical analysis. 
The density probability function of all the three axis is evaluated and, 
similarly to equation ( 9 ), a non zero variance (or standard devia-
tion) is revealed due to the accelerometer random noise (Fig 11). 
Due to the motion of the mobile platform the density probability dis-
tribution spreads along abscissa as shown in Fig 13.

�σa =

√√√√ 1

N

N∑
i=1

(�ai − �μa)2 with �μa =
1

N

N∑
i=1

�ai  ( 10 )  

and �a =
[
ax ay az

]T
 

Fig 17. Functional block diagram of the eye-hand closed loop control 
of position with integration reset
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It is important to remark that false positive motion condition is detect-
ed in case of acceleration shocks because they have almost same 
impact on the data distribution. Nevertheless, while in our application 
false “rest” conditions are disruptive for acceleration integration, the 
integration of shock acceleration data does not cause any further er-
ror beyond the already known SRW and PRW.

The presented approach needs a vector acceleration buffer of length 
N (one for each axes) and therefore the state of the mobile platform 
is evaluated after  seconds. This time interval is seen as response 
delay from the user. As in any other statistical approach the error de-
creases with the number of samples. Therefore it can be greatly re-
duced increasing the sampling time (i.e. using more CPU time) and 
a delay-consumption trade-off of the algorithm must be performed.

Off-plane motion detection
A very similar problem could be defi ned to distinguish between 
On-plane (within the working two-dimensional surface) and Off-
plane (outside that surface) motion. In this case the statistical value 
of interest is the average value of off-plane axes (z1) within the N 
samples dataset. In an ideal on-plane motion this value should be 
almost constant and equal to the active offset value. However as in 
the case of standard deviation, previously analyzed, it happens that 
additional motion-induced “almost zero-average” noise is present as 
depicted in Fig 13 (e.g. high frequency shock or low frequency me-
chanical bend) and described in the previous section. Therefore the 
motion can be considered on-plane if the difference with offset value 
is below a threshold  δz.

| μz − offz |≤ δz  ( 11 )  

Where offz is the current active offset for z1 axes.

Position-Cursor function
Any pointer device has a non-linear function that assigns a cursor 
velocity for a given pointer-case velocity. In other words different 
variation in cursor position is assigned for the same variation in 
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pointer-case position with respect to the time this variation occurs.
 
�pk+1 = �pk +Gp(�v) · �vkΔt with Gp(�v) = α | �vk |β  ( 12 )  
and
‖ �pk+1 ‖≤ �D with �(D) = [ W

2
H
2

]  ( 13 )  
In which α is a constant dependent on pixel/inches ratio of the 
monitor,  and  are respectively the monitor width and the monitor 
height [pixel], useful to introduce a saturation in the position  along 
both x and y monitor axis, and β is user defi ned distortion factor. 
From experimental data it has been found that typically 20 ≤ α ≤ 100 
and 0 ≤ β ≤ 1.

Enhanced functionality 
Thanks to the developed algorithm, based on accelerometer data, it 
is possible to enhance the classical two-dimensional mouse opera-
tion in case of different orientation detected within the mobile plat-
form rest condition or in case of particular acceleration pattern (e.g. 
shocks in a particular axes). 
The fi rst straightforward application of this consideration is to imple-
ment an orientation-free mouse and a shock triggered click.
Another simple application could be a tri-dimensional mouse operat-
ing mode that can be implemented in case of reversed z-axes. 
With the add-on of a yaw gyroscope it is also possible to develop a 
tri-dimensional pointer. 

In particular referring to the a multiple circles test (where the num-
ber of consecutive circles is n = 5, i.e. typical test for hand pointer 

Fig 18. Overall functional block diagram of the eye-hand closed loop 
control of position with integration reset and with Position-Cursor 
transformation.
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devices) trajectory tested at different speed:
- the test requires high accuracy in position estimation within a very 
long time interval (several minutes) while real mouse movements 
are typically performed in couple of seconds;

 r = 20mm and s = n · 2πr = 628mm  so y = 1
mm

s
 

and
s =

s

y
= 628s ∼ 10.5min

The test does not consider the strong feedback correction naturally 
performed by the user coordination (eye-hand coordinator).
Under these assumptions, even if we consider the acceleration 
noise as the only present technological constraint (and this is clearly 
not true),  in order to apply a trivial double integration of the accel-
erations to estimate motion, the required device specifi cations are 
far away from the real device specifi cations.
In fact, assuming a normal distribution model, the numerical simula-
tions show that to achieve less than 2 mm (10%) of error in 
T = 628s, as shown in Fig. 11, less than σa = 10−6mg (standard de-
viation) is required with a sampling frequency of fs = 600Hz  (while 
real measured σa > 4.5 · 10−4mg).

R(q)�

q=[q0,q1,q2,q3]�

a=[ax,ay,az]�

raw sensor data�

filtered quaternion vector  �

I integration�

II integration�
Δp=[Δpx, Δpy, Δpz]�

relative poistion change�

absolute frame alignment and gravity deletion�

Fig 19. Block diagram for absolute referenced acceleration integra-
tion. Output from Kalman fi lter (i.e. rotation matrix or quaternion) is 
used for data alignment and gravity deletion. Two step of integration 
are used to fi rst achieve speed and then to get position. Zero Velocity 
Update is used with motion detection algorithm.
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However it can be shown that those condition reports about motion 
estimation tests and not about real user driven mouse operations. 
Moreover it is important to understand that, from a theoretical point 
of view, the PRW proportionally decrease both with the square root 
of the number of accelerometers and with the frequency (e.g. 100 
accelerometers have 10 times lower PRW, the same as 10 acceler-
ometers with 10 times higher frequency). Under this point of view, 
array or matrices of accelerometer, sampled at higher frequency, 
could theoretically be used to improve overall system performances.

To summurize, in this chapter, the basis of accelerometer data pro-
cessing algorithm has been presented. 
The movements of a mobile platform actuated from a user have 
been recorded and analyzed in order to perform a feasibility study of 
a two dimensional pointer device.
Moreover it has been shown that the “no-motion” condition accuracy 
detection and the Position Random Walk (PRW) standard deviation 
are both function of the amplitude of the noise density of the ac-
celerometer. Common short term motion (approximately < 2s) is up 
to now considered precise enough to permit a user-friendly device. 
Very long term drift is virtually eliminated thanks to the active offset 
evaluation. 

Though very complex trajectories could be traced, the midterm PRW 
is still too big to achieve the user desired position. Infact, although 
the use of multiple accelerometer devices together with more com-
plex data fi ltering algorithms (e.g. Kalman fi lters) has not be tested 
yet, it must be noticed that, as showed in the Test Analysis section, 
when no assumption could be done on the device movements and 
the performances are tested in a long-term run the achievable preci-
sion is still lower than what required in this kind of application.
Specifi cations test on the PRW with the inertial sensors especially in 
the mid-range time interval (between 2s and 10s) has been per-
formed.
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Let’s start from the problem of motion at a level of joint coordination.
If we think at the motion of the tip of one of our fi nger or at motion of  
a part of our body, the coordination of each muscles comes out as a 
refl ex. 

Well, it is all but trivial.

Multi-link structures (referred to as kinematic chains), move in a 
very complex and non linear way. At a joint level and from a robotic 
perspective this problem has been studied since decades and it is 
addressed, especially in industrial robotics, as kinematic problem. 

The industrial robotics community, has divided it in two sub-prob-

2chapter
algorithms for motor and motion control:
from refl exes to complex coordination
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lems: forward kinematic problem and inverse kinematic problem. 
The former intends to understand the position of the end-effector 
(end, or tip, of the whole kinematic chain) given the joint angular 
position. The latter intends to fi nd angular values for each joint for a 
given end-effector position. 
The inverse kinematic problem is the one we have to face, even not 
consciously, when we want to grab a cup of coffee with our left hand. 
 
For all these reasons we are going to consider now a industrial-like 
robotic structure and to look for different ways to control it and to 
solve, already solved problem, in a different and more fl exible way.
As entry point it is important to analyze the framework of industrial 
robotic and to  understand why in the last decades these problem 
were solved in a particular way.

Robotic manipulators are widely used in several fi elds of applica-
tions: for mechanical structure assembly, in industries, on roving 
platforms for manipulation of heavy or dangerous objects, in human-
oid robots for research and others.
These robotic structures, depending on the application, can present 
a potentially large number of degrees of freedom and can work 
either in a 2D-like or 3D environment. In some cases, a redundant 

Fig 20. Considered kinematic chain on a human subject and a robotic 
counter part (from Schunk).
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confi guration can be used increasing the complexity needed to de-
fi ne a model of the structure and to develop a control algorithm.
Depending on the application, an important performance index that 
can be considered is the computational power consumption.
In fact, it constrains the control frequency and therefore the possibili-
ty to develop an algorithm embedded on a low MIPS microcontroller-
based board for real-time applications.

The robustness against singularities, the capability to face angular 
constraints in the joint space or other constraints in the operating 
workspace (e.g. obstacle avoidance) are important aspect that have 
to be considered.
The three-dimensional positioning task (inverse kinematic problem, 
IK) for a redundant serial manipulator is an already-solved problem 
through various classic approaches, like pseudo-inverse Jacobian 
and Jacobian transpose algorithms.
Generally the problem is fi rst mapped onto the velocity domain by 
using the fi rst-order instantaneous kinematic relation, which is given 
by the Jacobian matrix (J), and then solved in that domain.
For redundant manipulators J has a null space and therefore
minimization algorithms can be used to achieve various subtasks 
like singularity (or obstacle) avoidance (Nenchev, 2004) or to cope 
with angular joint limits (Siciliano ed., 2008).
Several approaches have been proposed addressing the joint limit 
problem in the velocity domain (see for details Ahn, 2002 and Chan, 
2005), nevertheless, as discussed in (Shimizu, 2008) , the best way 
to fi nd a suitable solution consists into considering the problem in 
the position domain.

Shimizu and Kakuya (Shimizu, 2008) and, similarly Tondu (Tondu, 
2006), analytically derive the inverse kinematic model for a 7-De-
grees-of-Freedom (DoF) redundant anthropomorphic manipulator 
with joint limits. Nevertheless, their results are not easily generaliz-
able to any kind of manipulator. Almost the same considerations can 
be done to the Lee and Bejczy’s closed form IK solution based on 
joint parametrization technique (Moradi, 2005) and to Moradi and 
Lee redundancy resolution method for minimizing elbow movement 
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do not address neither all possible confi gurations of the manipulator 
(Moradi, 2005). Under these hypotheses, the aim of this chapter is 
to propose a low computational effort, numerical approach, that can 
provide, for any kind of robot manipulator confi guration, a sub-opti-
mal solution, for both forward kinematic (FK) and inverse kinematic 
(IK) problems. The proposed strategy makes the robot able to react 
to environmental changes and therefore to cope with dynamically 
changing joint limits.

The approach is based on the already developed Mean of Multiple 
Computations (MMC) Recurrent Neural Network (RNN) algorithm 
which provides a fast, fl exible and robust to confi guration singulari-
ties sub-optimal solution to the discussed problems (Cruse, 1993), 
(Arena, 2009). 
Although several minimization algorithms can be used for DK and 
the IK problems, as discussed before, the proposed MMC approach 
(Cruse, 1993) is quite simple and bio-inspired (Cruse, 1998). In 
fact several recent studies in limb Neurophysiology indicate that in 
particular neural sites, like, for example the spinocerebellar neurons 
in vertebrates, proprioceptive sensory signals are processed in a 
fl exible network organization which encodes functional relationships 
among the limb segments, resulting in a global representation of the 
limb parameters. 

In movement planning, the weights of inputs from various limb seg-
ments might be biased toward an explicit representation of the whole 
limb (Bosco, 2001). This representation is also somatotopically dis-
tributed, allowing multiple (redundant) representations of the same 
limb parts. This rule adapts both to cerebral and to cerebellar cortex 
(Kandel, 2000). Also corticospinal neural cells in the Primary motor 
cortex of rhesus macaques are considered as representing different 
combinations of muscles that constitute functional synergies for the 
execution of both single and multijoint limb movements (Park, 2001). 

Very recent studies suggest that that the cat motor cortex controls 
the musculature in an integrated manner rather than singly and 
separately and that there appears to be a substrate for the dynamic 
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selection of motor output patterns, laying the basis for the idea that 
fl exible selections of motor outputs occur on a moment-to-moment 
basis as a result of the motor cortex’s activation state (Capaday, 
2009). 
Taking inspiration from these considerations, the MMC approach 
represents a candidate, yet simple model of such an integrated 
network organization. It provides a framework in which a global, 
distributed and redundant representation of the limb parameters is 
encoded, providing a concurrent natural solution to the IK and DK 
problem iteratively, with the addition of a robust real-time adaptation 
to external obstacles that, differently from other approaches (Seraji, 
1999), (Cheng, 1998), (Kheradpir, 1988) are formulated as joint 
limits. This approach allows a kind of ”on-the-fl y” fl exibility. From the 
pure algorithmic point of view the MMC approach provides also a 
selectable precision-speed trade-off.
Furthermore the other classical approaches taken into consideration 
for comparison, do not address the problem in a dynamically chang-
ing environment. In fact, the cited solutions consider at least joint 
limits only if they are known and constant through time.

This chapter is organized in four main sections. First the general 
MMC model is discussed. Then, multiple control strategies are 
described in order to achieve desired end-effector position and/or 

Fig 21.  A planar manipulator consisting of three vector segments: L1,L2, 
L3. The joint angles are: α, β and γ. The end-effector position is indi-
cated by the vector R, D1 and D2 are two additional vectors describing 
the diagonals.
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orientation control. After that, some experimental results are pre-
sented and fi nally, results of the proposed model are analyzed and 
compared to the most common velocity domain algorithms in terms 
of timing performance, iterations per convergence and robustness to 
external disturbance.

Model description
Since many years neural networks have been largely used to solve 
manipulator control problems, in which the set of variables involved 
in the process are combined in a single pattern (Miller 1990), 
(Ritter 1992). The output values are retrieved by completion of an 
even partially defi ned pattern given as input.

TWithin the neural network approach, the Mean of Multiple Com-
putation is an interesting method introduced in (Cruse, 1993), and 
further exploited in (Steinkuhler,, 1998), that can be used to create a 
model of multi-link, m-dimensional structure by using simple geo-
metrical relations between arcs of the same complete graph. 
Going deeper into details we can consider as a simple example, a 
planar manipulator with three degrees of freedom like the one shown 
in Fig 21.
The procedure herewith exposed can be further extended to more 
complex structures using simple principles of the graph theory. The 
modelling phase is important for successive formalization strategies. 
In fact the proposed control mechanisms are strictly related to the 
characteristics of the MMC-based model formulated for the redun-
dant manipulator.

MMC manipulator model
The main idea followed to construct an MMC-based model is that, 
looking at the serial manipulator as a geometrical multi-link structure, 
it is possible to compute each geometric quantity (i.e. vectors ∈ R2 in 
the example) in several ways, using different graph paths, and then 
average over them. 
For instance for the link L3 of the planar manipulator in Fig 21 all the 
following relationships can be considered:
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( 14 )   

According to the MMC theory, looking at the equations in ( 14 ),
the mean value of L3 (L3m) can be computed as:

  
( 15 )   

In this way the MMC model provides a parallel computation of each 
variable that represents a key point to guarantee robustness to sin-
gularities in the IK problem formulation.
Referring to Fig 21 the complete geometrical structure of the ma-
nipulator, defi ned in terms of an MMC network, is constituted by 
vectors Li (real links ∈ R2) as well as by vectors Di (virtual links, i.e. 
diagonals) and R (end-effector absolute position) that will be referred 
to as virtual links.
The complete pattern for the defi ned model can be expressed as: 

  
( 16 )  

Therefore, it is possible to defi ne the matrix M (weight matrix of the 
network) that summarizes all the relationships within the considered 
graph as shown in equation ( 17 ).

  
( 17 )   

where, as for L3m in equation ( 15 ), Pm is the vector of the average 
values of each quantity present in P. 
The general form of M can be computed systematically using simple 
geometric relationships and principles of the graph theory (Diestel, 
2005): for instance, for the simple three DoF manipulator shown in 
the previous section, M can be defi ned as in equation ( 18 ):

With the considered MMC model, defi ning input and output of the 
network (modifying the weights), several unknown elements of the 
input vector can be reconstructed, iteratively, starting from a refer-
ence input using the matrix M.
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( 18 )   

Therefore the same model can be used, for instance, both for in-
verse and direct kinematic problem solving. In the fi rst case a de-
sired end-effector position Rd is given and L1, L2 and L3 are retrieved 
and therefore α, β and γ. To impose as known value the vector Rd, 
the corresponding line in the weight matrix M (4th row) is modifi ed 
deleting the relations with the other variables. 
For such a defi ned problem the modifi ed weight matrix MIK, should 
be expressed as:

  

( 19 )   

Moreover, as described in (Cruse, 1993), (Cruse, 1998), the P vector 
for the current iteration i can be computed as in the following equa-
tion:

  
( 20 )   

It must be noticed that in ( 18 ), a damping factor d has been intro-
duced, in the diagonal elements, for a speed-accuracy trade-off: 
for large values of d the system is faster but can show overshooted 
behaviour while for small values the system dynamics is smoother 
but slower.
It is important to remark that equation ( 19 ), with the modifi ed matrix 
MIK, implies: R(i) = R(i-1). This leads the system, through a certain 
number of iterations, toward the desired geometrically-feasible con-
fi guration in which results:
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( 21 )  

where etol is the chosen position error tolerance. 
In direct kinematic problem solving, α, β and γ and therefore L1d, L2d 
and L3d are given while R is retrieved as output.

Graph extension
Thanks to the graph theory it is possible to extend the model to vari-
ous architectures in order to address the problem for structures with 
a different number of degrees of freedom, eventually even for a par-
allel manipulator. As described in Fig 23, the dimensions of the MMC 
linear computational matrix (NxN) depend on the number of the arcs 
of the complete graph (Fig 23) and so it can be determined referring 

Fig 22.  Algorithm block diagram for a given absolute reference input 
pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy and MMCz 
are the three-dimensional linear computational networks. NLB is the 
Non-Linear Block and miniARM is the manipulator itself (simulator or 
real robot). Pj are the MMC input pattern while Aj are the outputs. d are 
the desired angular values and  are the read joints values.

Fig 23.  MMC complexity increases with number of links of the ma-
nipulator geometrical structure.
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to the number of manipulator links, nl, as follows:

  

( 22 )  

Control strategies
In order to guarantee the redundancy for the 3D positioning and 
orientation task, a seven degrees of freedom serial manipulator 
structure has been considered. The modeled geometrical structure 
is a four link serial structure and therefore more than one degrees of 
freedom are computed with the same geometrical quantity (e.g. two 
relative joints associated with
the same link).
A complete pattern �P = [ Px Py Pz ]T  for this kind of structure, 
made up of all the arcs present in the graph (similar to the one seen 
in Fig.1), can be written as:

 
( 23 )   

where, as described before, both real and virtual links are present.
Due to our hardware implementation , i.e. the servo motor fea-
tures, also joint angle limits have to be considered in the model and 
therefore the linear model introduced in the equation ( 20 ) needs a 
further extension.
In this section three different problems will be considered, dealing 
with the end-effector position control with absolute reference input 
and relative error feedback. Moreover a general end-effector con-
fi guration control (i.e. both position and orientation) is proposed.

Position control with absolute reference input
The simplest extension of the two-dimensional positioning of a 
planar redundant serial manipulator (shown in Fig 21) introduced in 
the previous section (deeply described in Cruse, 1993) is the tri-
dimensional positioning of the end-effector for the redundant serial 
manipulator in space (i.e. R3).
Each vector component of the geometrical links is processed, itera-
tion after iteration by a different linear MMC network and then given 
as input at the non linear block (NLB).
The single blocks of the control architecture are described below.



40

PC (Pattern Constructor): it defi nes inputs and outputs within the 
pattern structure (see equation ( 23 )) for the iteration i, modifying, 
similarly to ( 19 ), the weight matrix M to obtain relation ( 24 ). 

  
( 24 )   

The PC block also sets input values (Pj(i)) for the network for the 
given vector reference Pjd = (...,Rjd,...), with j = x, y, z and the actual 
angular positions �θ(i) (values read from the encoders or simulated):
MMC (linear blocks): for a given vectorial input pattern Pj these 
structures compute separately and linearly the outputs Aj , in all the 
three dimensions.

  
( 25 )  

For example, the desired link confi guration for Lj3 of the planar ma-
nipulator (Fig 22) is obtained iteratively as follows:

Fig 24. Algorithm block diagram with relative position error feedback 
(eP ). PM is the Pattern Modifi er block and RC is the Reference Com-
parator block.

Fig 25.  Algorithm block diagram with relative position error feed-
back (eP ). PM is the Pattern Modifi er block and RC is the Refer-
ence Comparator block.
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( 26 )  

NLB (Non-Linear Block): it defi nes the links inextensibility and other 
constraints known a priori (e.g. servo angular operating range), 
since these are not considered in the linear MMC block (Cruse 
1993), (Cruse, 1998). So NLB transforms the networks output Aj in 
desired angular position �θkd for each joint (k = 1; 2; ...; 7).

  

( 27 )   

in which the functions fk implement a rotational transformation of 
reference systems from absolute to particular local joint components 
while the functions gk rebuild the angular value from given link com-
ponents: in the simplest case, i.e. for the fi rst link, it results

  ( 28 )  

As it is possible to see in equations ( 27 ) both 2d and 3d are com-
puted with the same link, L2 due to the fact that in a 3D problem 
more than one angle can be associated to a link.
It must be remarked that the introduction of the NLB, of primary 
importance for the control of the real manipulator, modifi es the 
dynamics of the system affecting in some cases the global optimum 
convergence of the overall network.

Position control with relative error feedback
The most relevant difference with the control scheme described in 
the previous section is that the control action is given, with the addic-
tion of the Reference Comparator (RC) block, by the feedback of the 
relative position error (eP) instead of an external absolute reference 
(Pd), as follows:
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( 29 )   

Equation ( 29 ) computes the error value for the current iteration 
(eP(i)) with respect to the absolute instantaneous position of the end-
effector R(i). In some application its value can be measured directly 
(e.g. with stereoscopic vision). 
Each error component (ejP ) modulates a different MMC layer ac-
cording to the following rule:

  
( 30 )   

where (KP ) is a gain able to modulate a damping factor in the posi-
tion control and to decide a speed-accuracy trade-off.
PM: Pattern Modifi er, it modifi es the R components in the network 
outputs (Aj ) proportionally to the measured end-effector position er-
ror as described in equations ( 30 ).

Absolute position and orientation control with relative error feedback
The MMC network architecture maps the real manipulator links into 
vectors. Therefore each quantity results to be invariant (in R3) to 
rotations around its extension direction.
Orientation control, under this point of view, can operate with two 
degrees of freedom following the reference as desired confi guration 
for the last n-link (Lnd). It is possible to modify the weight matrix M to 
ensure the following relation through iterations:

  
( 31 )   

Although ( 31 ), similarly to ( 24 ) is able, thanks to the NLB, to let 
the system relax towards the desired orientation it also gives an 
even more pressing constraint because the orientation would be 
kept through all the algorithm iterations. Therefore the feedback for 
the orientation error (eO) is analyzed.

  
( 32 )  

PM changes the Ln components in the output patterns (Aj ) propor-
tionally to that component error (ejO) in order to allow the network to 
relax toward the desired orientation as follows:
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( 33 )   

where (KO) is a constant able to modulate a damping factor in the 
orientation control. 

Simulation and experimental setup
The considered manipulator is custom built with seven degrees of 
freedom (revolute joints) in which the z-axis of j-link is 90o rotated 
around x-axis from the (j-1)-link.
The physical structure can be mapped, as requested for the MMC 
modeling, into the geometric theoretical model links whose lengths 
are reported in TABLE I.

Due to the chosen real robot architecture, angular limits are not 
equal for each joint (see TABLE II). As described in

the previous section, each presented control strategy has been 

TABLE I Lengths of the link of the considered manipulator

TABLE II Constraints of each joint of the considered manipulator
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tested both in simulation and on real robot (i.e. the miniARM shown 
in Fig 27).

Fig 26.  Hardware confi guration of the experimental setup: low level 
microcontroller AVR32 board, actuators and sensors bus architecture 
and high level control host computer.

Fig 27.  Experimental setup with the real robot (7-DoF manipulator) 
and the 32 bit microcontroller board.
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The proposed algorithms have been implemented both in the PC 
and in a custom microcontroller unit (mcu) board. 
Respectively a Dual Core Intel Centrino 2.2 GHz host computer with  
2GB of RAM and an UC3A AVR32 mcu with 66MHz of maximum 
clock and only 64KB of RAM were used as comparison platforms 
(Fig 26). As sketched in Fig 26, in our fi rst implementation the overall 
manipulator control can be split in two levels: low level (hardware) 
control and high level control. The low level control is, in all cases, 
achieved thanks to a mcu-based board that is used both to acquire 
information from the distributed sensory system and to control the 
actuators. Moreover a serial bus is used for low level communica-
tion purposes. The high level control and the data logging are made 
through a host PC connected to the board via serial interface (with a 
USB-to-serial transceiver). In the second (embedded) version of the 
control algorithm all the MMC-based calculations are directly execut-
ed locally in the mcu-based board while the PC is just used for data 
logging and for the Virtual Reality (VR) simulation environment.

Simulation and experimental results
Each of the proposed control schemes has been tested not consid-
ering the high level control platform (both mcu-based and PC) to 
compare tasks achievement and performances.
In order to guarantee a reliable and fast end-effector positioning,

Fig 28.  Position errors through iterations in trial with absolute 
reference:simulation results tested in the real robot using simulated 
angular values as real joint references.
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in each trial, a damping factor proportional to the position error has 
been chosen as follows: 

  
( 34 )  

where dS is the initial damping factor and KS is a constant.

Fig 29.  Errors through iterations in position and orientation con-
trol with absolute reference (in position) and relative feedback 
(in orientation): simulation results tested in real robot using 
simulated joint values as references for real joints.

Fig 30.  Last manipulator and target (circle) confi guration in a simu-
lated environment in the simple position control task. 
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A fi rst trial a in simple position task, for a given absolute reference 
Rd = (0.15, 0.2, 0.2) m, 
has been realized with dS = 0.001 and KS = 200. 

It must be noticed that reference is given in terms of absolute vector 
components.

Fig 31.  Last confi guration of the manipulator and target in a simulated 
environment for position and orientation control task.

Fig 32.  Errors through iterations in position and orientation control with 
absolute reference (in position) and relative feedback (in orientation): 
simulation results tested in real robot using simulated joint values as 
references for real joints.



48

As shown in Fig 28, after less than 80 iterations the network con-
verges toward the desired position and the residual error is 
||eP|| < 0:001 m. 
The fi nal confi guration of the manipulator is depicted in Fig 30.
In Fig 33 it is possible to see that, due to joint angular constraints 
(Table II), introduced in the NLB, the angular position of each servo 
is constrained. It is also important to notice that, as described in 
(Cruse, 1993), the performance of this approach outside the operat-
ing space are still very good: the manipulator reaches the minimum 
distance point inside the operating space.

End-effector positioning with relative error feedback 
The same experimental setup has been kept to test the control 
scheme with relative error feedback instead of the absolute refer-
ence. In this trial the same dS and KS were used, while for feedback 
error a KP = 0.2 was chosen in equation ( 30 ). Up to now the end-
effector position error measurement is just estimated using, even in 
real robot implementation, the forward kinematic model.

The simulation results show a signifi cant increase in the number of 
iterations needed to reach the same desired position.
In fact the same position error value is reached after 600 iterations 

Fig 33.  Joint values during iterations in position with absolute refer-
ence trial: simulations outcomes used as references for real robot 
joints positioning.
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(Fig 29). Further simulations show that quantitative results for the 
number of iterations needed for a complete convergence (i.e. within 
a defi ned error tolerance) depends on the KP value and therefore an 
optimal speed-accuracy trade-off should be chosen (e.g. with 
KP = 0.7 the same error value is reached after only 100 iterations 

Fig 34.  Confi guration of the real robot and of the virtual target (circle) 
after the position control of the end-effector (on the left) and after the 
position and orientation control of the end-effector (on the right).

Fig 35.  Joint encoder readings trough iterations in real robot simple 
position trial. Angular values are acquired in encoder values (10 bit 
resolution) within servo constraints.
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without overshoot).

End-effector position and orientation control
In order to test performances of the complete model in an orientation 
constrained task, a Rd = (0.15, 0.2, 0.2) m together with a desired 
Ld = (0, 0, 0.05) m for the last link were given. As shown in Fig 32, it 

Fig 36.  Joint encoder readings trough iterations in real robot trial with 
external disturbance. Angular values are acquired in encoder values 
(10 bit resolution) within servo constraints.

Fig 37. Estimated position error of the end-effector of the real robot 
trough the iterations in position control task.
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results that, for KO = 0.6 (equation ( 33 )), after just 90 iterations the 
network is completely relaxed and the errors are ||eP|| < 0.001 m and
||eO|| < 0.001 m (where eO is the last link relative error vector). The 
fi nal confi guration of the manipulator is depicted in Fig 31. 
Position control and position-orientation control tasks have been 
performed on the real robot (Fig 34), without changing parameters, 
introducing the encoder readings as angular feedback values and 
estimating the errors trough iterations with forward kinematics (e.g. 
position task shown in Fig 35 and in Fig 36). Error tolerance (et) has 
been increased from et = 0.001 m to et = 0.005 m due to mechanical 
constraints and to the accuracy given by the low cost components of 
the experimental setup.

The mechanical fi nite acceleration and the fi nite speed of the real ro-
bot motion introduce a natural damping factor whose value depends 
on algorithmic time needs related to the joint speed.

Behaviour in front of dynamically changing constraints
The introduction of real angular feedback gives to the introduced al-
gorithm an interesting added value, especially in dynamically chang-
ing environment. In fact, let us consider the case in which an exter-
nal disturbance is added, for example, to the fi rst degree of freedom 
of the manipulator . 
The behavior is shown in Fig 36, where the same input reference 
and algorithm parameters as for the previous simulation (Fig 29) 
were used. 
The external disturbance could be due to the effect of a moving ob-
stacle, or simply by a mechanical fault.
This implies imposing a new, unforeseen constraint to the joint posi-

Fig 38.  Modifi ed MMC block diagram for Obstacle Avoidance (OA). 
Implemented for Power Cube (PCube) robotic structure (from Schunk) 
.
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tion. The corresponding error feedback modifi es the network behav-
iour, but the network nevertheless is able to relax toward a minimal 
position error, whose value depends on the entity of the constraint 
imposed, that could bring the target even outside the new opera-
tive space. This can be appreciated in Fig 36, where θ1 is blocked 
by physically preventing its motion for about a half of the number of 
iterations.
It is also possible to appreciate that the joint driven by θ6, though it 
shows some chattering, is able to overcome the angular limitation 
and the encoder dead zone. Videos of the described experiments 
together with high resolution pictures of the fi gures are available on 
the web (SPARK II website).

Moreover another explored possibility is to implement an Obstacle 
Avoidance block (namely OA) in order to produce a repulsive force 
in the near fi led of each presented obstacle (Fig 38). From an hard-
ware point of view, this can be simply realized adding a small net-
work of range sensor (e.g. sonar)  within the links of the manipulator 
(Fig 39)

Fig 39.  Hardware block diagram for Power Cube (PCube, from 
Schunk) high level control from a PC.
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Result analysis
Due to the lack of strong analytical proof of convergence and sta-
bility of the introduced method an extensive statistical simulation 
campaign has been performed.
A sampled version (with number of points N = 107) of the workspace 
of the described structure has been computed and the histogram 
has been analyzed. 

Moreover random reachable targets have been selected from the 
sampled workspace and used to test the algorithm. Starting from the 
same initial condition �0 = [ 0 0 0 0 0 0 0 ] using a variable 
damping (function of the position error) and with a maximum number 
of iteration imax = 3 · 103 the algorithm converged in position task 
with joint limits with probability p = 0.877 (estimated in N = 105 tri-
als). 

Although the iteration number needed to reach the desired reference 
strongly depends on the chosen parameters and on the particular 
given reference, in order to estimate the algorithm performance, 
multiple comparisons with common algorithms for kinematic inver-
sion, such as pseudo-inverse Jacobian (J ) and Jacobian transpose 
(Jt), have been considered. It must be taken into account that in the 
J  the joint limit constraints are introduced in form of an additional 
task to be completed while in the Jt no joint limitations are consid-
ered. 
Free parameters were chosen to maximize convergence speed 
keeping a non-overshoot condition on end-effector positioning. As 
it is possible to see in TABLE III and in TABLE IV the performance 
in terms of number of iterations needed for convergence (i.e. 

TABLE III Algorithm performance in position control task
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‖ eP ‖≤ eT ) are comparable with already known algorithms for the 
MMC model with relative position feedback (MMCrpf ) and for the 
MMC with a non-variable damping (MMCnvd) while they are even 
lower for MMC with absolute position reference (MMCabs) and rela-
tive orientation feedback (in orientation control task). 

Thanks to its low computational effort, the proposed model archi-
tecture permits a simple and fast hardware implementation. TABLE 
V gives an idea of time needed for each iteration. For a complete 
comparison among all the different implementations of the proposed 
algorithm we have to consider that the MMCrpf and the MMC with 
relative orientation feedback are almost the same as the MMCabs 
in terms of computational effort while the MMCnvd is signifi cantly 
faster because it is possible to compute the weight matrix M once 
for all the iterations needed even if more iterations are requested for 
convergence. 

In this chapter, a fast, reliable algorithm able to solve at the same 
time both position and orientation tasks is proposed. Its implementa-
tion on an embedded mcu-based board has been tested and a real 

TABLE IV Algorithm performance in position and orientation control 
task.

TABLE V Algorithm timing for different implementation on different 
platforms
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robot application has been developed. 
The convergence of the MMC network has been robustly extended 
in a position and orientation task inside a threedimensional operat-
ing space. Beyond the state of the art (Jacobian-based algorithms 
(Sciavicco ed., 2008) and other cited analytical approaches (Moradi, 
2005), (Tondu, 2006)), though both problems are solved in a sub-
optimal way the real-time implementation addresses the problem not 
only in presence of angle limits but also in a dynamically changing 
environment even in a mcu-based hardware. That results together 
with sensors readings have been investigated in order to effectively 
modify the trajectory of the manipulator toward a constrained op-
timum confi guration. Further development should include a multi-
legged robot application and a moving target followed trough visual 
feedback.
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3chapter

The gather and the analysis of the distributed sensor information 
present in the body of a living beings is for sure the most important 
(and the most interesting) part of these studies and of this project.

In this very wide and complex fi eld the most challenging part is how 
to address the dimensionality problem. 
The number of dimension of the sensor information of a complex 
structure is quite huge. Whatever is the problem to solve and how-
ever you think to use this sensor information the dimension of the 
sensor space will be higher than necessary. 

With the local Principal Components it is possible to represent sen-
sor distributions locally constrained to sub-spaces with fewer dimen-

perceiving the world:
action oriented perception
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sions than the space of the sensed data. Under this point of view, as 
described in (Martinez, 1993), PCA is able to model distributions in 
those directions with almost zero variance exist.
In robotic applications data classifi cation is extremely important and 
as far as the visual input is considered, the number of features and 
the complexity of in-class discrimination increase enormously. For 
these reason it is important to identify algorithm for classifi cation that 
show characteristics like robustness. 
The Neural Gas (NG) (Martinez, 1993) is a vector quantization 
technique that try to approximate a given manifold with a reduced 
number of points. With Principal Component Analysis (PCA) each 
of this data-rapresentative points (code-book vectors or particles) is 
extended into hyper-ellipsoid to better match the given data distribu-
tion. This technique has been applied in different fi elds as redundant 
inverse and forward kinematic (IK and FK) for serial manipulator 
and roving robot path planning (Martinez, 1993). Our purpose is to 
further develop a fully unsupervised classifi er for real robotic appli-
cations. Under this point of view our algorithm has been compared, 
from the beginning, with Self-Organizing Map (SOM) (Kohonen, 
1995) approach which is at the same fl exible and simple.
As a key point for a real time application the data set is acquired 
during the experiment and not completely available at the beginning. 
Under this point of view, it is important to envisage a growing mech-
anism that allows the algorithm to cope with sample collection typical 
of a roving agent in unknown environment (i.e. dynamically changing 
training set). 
The model architecture can be easily divided in a learning phase, in 
which the data distribution is approximated and in a recall phase in 
which an incomplete pattern is presented to the network in order to 
retrieve the output (complete pattern). As already discussed (Cruse, 
1993 and Arena, 2009), similarly to Recurrent Neural Networks 
(RNNs), this model is able to cope with multiple solution tasks pro-
viding one of the possible solutions and it is also possible to choose 
the role of input and output neurons, after the training, simply modi-
fying the recall phase. 
A supervised classifi cation extension of the algorithm, with visual 
cues variables in the input pattern portion, will be discussed. 
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Moreover an incremental on-line version of the architecture gives a 
action-oriented classifi cation capability for roving robot applications 
(SPARK II project).

Model description
The Neural Gas algorithm is a variant of the soft-clustering vector 
quantization with the addiction of annealing. For a given pattern 
space , the algorithm starts choosing m points cj (with 
j = 1,2,...,m), in this hyperspace, from the N training set elements. 
During each step, a random pattern x is chosen from the training set. 
Then each j-point position cj is updated for next iteration step relating 
to its rank rj function of the distance from the selected pattern trough 
the learning rate “ and the neighborhood range ρ as follows:

  
( 58 )   

where αj is defi ned by .
In order to force algorithm convergence through iterations both ε and 
ρ exponentially decrease from εinit (ρinit) to εf  (ρf) as in the follow-
ing.

  

( 59 )   

where ti is the current iteration number and T is the lat iteration num-
ber. 
The local PCA extension of the NG considers hyper-ellipsoid units, 
with q principal components, instead of simple points and therefore 
the ranking of the units cannot depend on an Euclidean distance. 
One of the possible distance measure is the normalized Mahalano-
bis distance (Hoffmann, 2003) (Hinton, 1997), an elliptical distance 
that can be computed, for each j particle, as:

  

( 60 )   

where ξ = x− c is the deviation of vector x from the centre unit, W 
is the eigenvector matrix,   is a diagonal matrix containing the eigen-
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values. The second term of equation ( 60 ) is the reconstruction error 
divided by 2 that depends on the total residual variance vres, among 
all d-q minor dimensions (d ≥ q), as in equation ( 61 ).

  
( 61 )   

The total residual variance is updated according to

  
( 62 )   

To modify principal components of existing ellipsoids, one step 
of the Robust Recursive Least Square Algorithm (RRLSA) 
(Moller, 2002), described in (Ouyang, 2000) is performed.

   
( 63 )   

Since the orthogonality of W is not preserved after each step, the 
Gram-Schmidt orthogonalization method has been introduced (Hoff-
mann, 2003). 
The algorithm overall block diagram is shown in Fig 40 where the 
already introduced main blocks are: an initialization block (init) that 
initialize all learning parameters and variables; a Neural Gas block 
(NG) that update the position of the centers of the ellipsoids for a 
given pattern x chosen from the Training Selector (TS) from the 
training set T = T1,T2, ..., TN as in equation ( 58 ); a Principal Com-
ponent Analysis block (PCA) that update hyper-ellipsoids axes with 

Fig 40.  Algorithm block diagram for the learning phase of the Neural 
Gas with local Principal Component Analysis (NGPCA). The NG block 
performs centre updating for a given training vector, extracted by the 
Training Selector (TS), the PCA block executes one step of local prin-
cipal components algorithm and GSo (Graham-Schmidt ortho-gonali-
zation) is able to give eigenvectors orthogonality property.
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RRLSA as in equation ( 63 ) and a orthogonalization block (GSo) 
that performs the so called Gram-Schmidt algorithm.

Relevant parameters and variables used in the model are summa-
rized in table VI.

In order to reduce the dependence of the error in equation ( 60 ) 
from the volume of the considered ellipsoid and to avoid useless 
points (with weight  almost zero) in the pattern space it is possible, 
as in [1], to modify the distance measure as follows:

  

( 64 )   

where V is the volume of the considered ellipsoid unit and can 
be computed according to

  
( 65 )   

Test phase
After the learning phase, the data distribution is represented by m 
hyper-ellipsoids with center cj (with j = 1,2, ..., m), semi-axes lengths √
λk
j  (with k = 1,2,...,q), wk

j  principal component eigenvectors and a 
residual variance σ2

j .
In the recall phase and incomplete pattern p∗ ⊆ R

d−s, with s num-
ber of laking dimensions (s ≤ d), is given as input and the algorithm 
would rebuild the s free dimensions and give the optimum complete 
pattern  ẑj∗ as output.

TABLE VI Notation summary for Neural Gas with Principal component 
analysis 
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In order to perform the recall, a potential function in the constrained 
subspace Ej(z) can be computed for each ellipsoid as:

  

( 66 )   

where ξj is the displacement from the center ξj = z− cj and 
yj =WT

j ξj j is the representation in the local coordinate system of 
the ellipsoid. 
The input to the network is given in form of an offset p in the con-
strained space as follows:

  ( 67 )   

where M matrix aligns the constrained space to a particular parame-
ters space while η ∈ R

s is a vector of free parameters. For each unit 
j, the point of constrained space with smallest potential bzj is deter-
mined, according to equation ( 67 ), and then the unit j∗ that has the 
minimal potential among all Ej(ẑj) is chosen as complete pattern. 
As shown in (Hoffmann, 2003), the function E(η) is convex and it is 
possible to determine analytically the only minimum η̂j computing:

  
( 68 )   

with

 

( 69 )   

Classifi cation problem
A simple supervised classifi cation problem is one of the straightfor-
ward application of this kind of approach. Moreover the pattern is 
divided, as in equation  in a feature hyperspace f and a class param-
eter n.

  
( 70 )   

During the training phase the complete pattern is presented as input 
to the algorithm. In the testing phase the class number portion of the 
vector is left free and is retrieved as output. 
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Patterns
Simple visual cues have been chosen to build features part f of the 
input training pattern. Both a space-color representation and geo-
metrical features extraction have been performed in a segmented 
image. The most present hue, saturation and value (respectively cH, 
cS and cV ) and some geometrical features p, A, em and eM (respec-
tively the perimeter, the area, the shorter and the longer edge of the 
minimum rectangle that containing the object) have been extracted 
from an image portion obtained with a Canny segmentation algo-
rithm. 

  
( 71 )   

As often happens in real-time robotics, in our application, the train-
ing data-set is not fully available at the beginning of the learning: we 
suppose the robot to collect training images (i.e. complete training 
patterns) through its mission (i.e. iteration after iteration) and at the 
same time try to correctly classify them for better foraging task-ori-
ented performances.

Incremental Learning
In order to achieve incremental learning several problems needs to 
be overcame with some modifi cation to the presented algorithm. 
First of all the number of code-book vectors should be variable. 
Then the annealing of each ellipsoid (i.e. the capability to move) 
must be function of its own age (i.e. number of steps it is present of 
the training). The on-line supervised nature of the algorithm needs 
both recall and training phase to be achieved per each iteration. A 

Fig 41.  Algorithm block diagram for on-line incremental learning that 
uses pre-processed input vectors. The Segmentation and Feature Ex-
traction block (SFE) performs a frame segmentation and extracts the 
feature vector f . The Incremental Block (IB) regulates the increase of 
the number of gas particles used in the classifi cation.
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block diagram of the modifi ed algorithm is shown in Fig 41. 

When a new input is presented (i.e. a vector of features f with a 
class n from the Segmentation and Feature Extraction (SFE) pre-
processing block) the Incremental Block (IB) performs a test phase 
and then check the distances e E(x) from for all the ellipsoids al-
ready instantiated. 
Therefore when a pattern is chosen for learning purposes if inequal-
ity ( 72 ) is false a new instance of code-books is made. Moreover its 
ellipsoid is initialized and its Mahalanobis distance from that patter is 
set to zero.

  
( 72 )   

The time variable is then no more an global iteration counter but 
becomes a variable of each particle. Therefore the ellipsoid j at itera-
tion i would have age aj(i) and its specifi c learning parameter are ξj 
and ρj as in following equations.

  

( 73 )   

where amax is the maximum ellipsoid age. 
This mechanism allow to selectively force the convergence of each 
code-book ellipsoid and therefore it is possible to cope with a dy-
namically changing training set.

Pruning
One of the problem introduced with the incremental learning mecha-
nism is the possible growing of the number of particles that can 
appear during the learning time but that cannot In order to achieve 
a fast convergence maintaining the forgetting capability and perfor-
mances increasing the over long time simulation, a pruning strategy 
has been implemented. Thanks to the supervised classifi cation 
process each time one particle is selected as the nearest to the 
presented input pattern, its distances is under a given threshold, a 
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recall phases is performed and the resulting class is compared with 
the real one. 
Considering that the class number is a discrete variable while algo-
rithmic outcomes are continuous, a classifi cation error means that 
the distance between reconstructed class number nz and test pattern 
class number nt exceed a user defi ned threshold (eth ≥ 0)

  
( 74 )   

Fig 42.  Image of all laboratory tools used to create the input data set. 
Image has been acquired at VGA resolution (640px x 480px)

Fig 43. Reduced feature-space obtained after segmentation. Depict-
ed dimensions have been reduced from six to three (i.e. em, eM and A). 
Each grey-scale value stands for a different class. It can be noticed 
that patterns from all three scree-drivers have reduced Euclidean dis-
tance in this feature sub-space (on the left).
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Fig 44. Two different views of the reduced normalized features space 
(em, eM and A) together with code-book ellipsoids after learning.

Fig 45.  Flow of the segmentation process. First a gaussian fi lter is ap-
plied (top-left), then the Canny algorithm generates a binary image 
(top-right) and fi nally meaningful contours are isolated (bottom-left). 
Segmented object area is determined and the same portion of the 
original image is extracted for color space based statistical analysis 
(bottom-right).
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In this way per each particle j, at iteration i, it is possible to compute 
an error rate ej(i) as it follows: 

  

( 75 )   

where nerr is the number of times the particle is the nearest and re-
calls phase leads to a classifi cation error and nwins,j is the total num-
ber of times it is the nearest. 
After code-book j has expired its life (i.e. aj ≥ amax) if its error rate 
(ej ) is over a tolerance threshold (rth) the corresponding particle be 
erased. In other case it is held freezed with minimum learning pa-
rameter (i.e. ξ = ξf  and ρ = ρf ).

Experimental setup
Experimental images have been acquired to test algorithm perfor-
mances. In order to consider a realistic visual fl ow on autonomous 
robot both resolution and overall quality of the images have been 
kept low. Testing objects have been chosen from common laboratory 
tools, see an example if Fig 42.

Visual cues have been extracted with OpenCV library (OpenCV 
website) and a custom made simple segmentation algorithm through 

Fig 46.  Number of code-book ellipsoids (m) through learning with re-
spect to the time (algorithm iteration number). The number of particles 
decrease for a while, around iteration 3500, due to the pruning strat-
egy that allows each j particle to be erased when aj ≥ amax.
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a host PC with low-resolution webcam (640px x 480px). It must be 
remarked that considering a frame rate of 30fps, a that resolution, 
simple segmentation routine can be easily performed in less than 
ts = 1/60 s in modern PC leaving at least tl = 1/60 s for classifi cation 
learning. A reduced feature space of the outcomes of the segmenta-
tion process is shown in Fig 45 with one gray-scale value per each 
class.

Experimental results
The input data set T = {i1, i2, ..., iN} has been built of N = 1300 dif-
ferent images in which one of the object belongs to one class was 
present. Six different classes were chosen.

During a testing phase, at the iteration i, the considered performance 
index eT is the sum of each particle error rate ej.

  

( 76 )   

In order to be comparable even in supervised and semi-supervised 
problem solving the classic SOM has been trained with a discrete 
class parameter and a test phase has been introduced at each itera-
tion.
For a given pattern x, the Best Matching Unit j * (BMU, i.e. the near-

Fig 47. Error indexes eT comparison between implemented NGPCA 
(solid line) and Self-Organizing Map approaches with 50 by 50 neu-
rons (dashedline) and 200 by 200 neurons (dotted-lint) through learn-
ing iteration. 
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est unit under Euclidian metric) is chosen just on distance on the 
features part of the x vector, f as follows.

  
( 77 )   

with ms number of neurons in map. The classifi cation error is then 
evaluated on the class part of the vector (i.e. n parameter) between 
the BMU and the presented pattern as in inequality ( 74 ).

For a ξinit = 0.5, ξf = 0.02 · ξinit,  ρinit = 0.01, ρf = 0.02 · ρinit and 
amax = 3000, if we consider each frames to have a meaningful dif-
ferent pattern confi guration, with an error eT ≤ 0.07 in less than 500 
iteration with an average computational time of ti = 5 · 10−3 (on a 
laptop Core 2 Duo 2.2 GHz with 2GB of RAM).
As briefl y introduced in previous sections starting from a number of 
ellipsoid m(0) = 0 as initial condition, m(i) increases through iteration 
as shown in Fig 46.

As it is possible to see in Fig 46, starting from N = 1300 input pat-
terns the number of code-book ellipsoids is far less (maximum 
reached value m = 30). Therefore considering one learning algorithm 
iteration at each acquired frame with an image frame rate of 30fps, 
an elaboration time te  28x10-3 s can be used for segmentation and 
other control algorithm.

Moreover same parameters lead toward a eT<0.015 in 2500 itera-
tions (t = 12.5s in our hardware setup) and eT<0.005 in 15000 
iterations (i.e. t = 75s) as summarized in Table II. SOM with a rela-
tively large number of neurons (i.e. S50 with 5050 neurons and S20 
with 200200) have been tested. It is possible to observe that, in our 
simulations, larger is the number of neurons of the map smaller is 
the overall classifi cation. SOM with 40000 neurons performs largely 
worse than NGPCA. The complexity of the NGPCA algorithm is 
O(Nq) with N number of code-book ellipsoid and q is the number of 
principal components.

In this chapter an on-line classifi cation application of the Neural Gas 
with Principal Component Analysis is presented. 
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Both the algorithm and the whole experimental setup have been 
chosen for straightforward porting of the architecture to a PC-based 
object manipulation in a roving platform. Under this point of view, the 
error-to-performances trade-off of the learning process is selectable 
through parameter tuning and the overall computational cost of the 
algorithm can be kept low, even for a embedded version of the clas-
sifi er. 

The model input-output variables can be changed at any time for 
a given learning. A fi rst comparison with standard structures, like 
Self-Organizing Maps, shows a higher level of fl exibility without error 
nor complexity increase. Nevertheless, for a complete classifi cation 
capability, focused on robot action-perception closed loop applica-
tion, the proposed algorithm should be further developed in a fully 
unsupervised classifi er.

TABLE VI Performance analysis table
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As already introduced, actions toward a given objective can be de-
composed in multiple ways, at multiple levels of abstraction. 
From a behavioural point of view (i.e. a high level of abstraction) 
and considering as a atomic action the complex motor coordination 
for motion of a multi-link structure (as almost any living beings limb) 
from one point to another, several considerations can be done on 
motion sequences. 
Nevertheless the complexity of this trivial coordination can be very 
hard and not so trivial. Consider now, for instance, the quite simple 
task of the pendulum swing up. 

It is clearly easy and straightforward to imagine the solution of the 
problem at a joint level (and eventually to derive equations for the 

4chapter
algorithmic solutions for actions and more:
sequence learning toward given objectives



71

control of an actuated structure). 
It can be still easy to imagine the solution of the problem in terms 
of agonist and antagonist muscles that can concurrently control the 
joint. It not so simple and not so straightforward to imagine (and 
eventually to derive equation) of this pendulum swing-up in case of 
limited torque. 

Moreover, as it is possible to imagine, problem can be even harder if 

Ĵv(x) estimated cost function  πw(x) learned policy

Fig 49. Very simple pendulum model used to demonstrate situated 
controller learning. In particular the considered task was a torque lim-
ited pendulum and a spiking Self-Organizing Map was used to learn 
both the optimal policy and the estimated cost function.

Fig 48. Torque limited pendulum swing-up. Example of a learned poli-
cy (on the right) and estimated cost function (on the left), with the help 
of a multi-layer spiking Self-Organized Map (SOM). 
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you want to start from a general purpose structure (like a Motor Map 
or a more general Self-Organizing Map) and want to learn a poilicy 
and estimate the cost function if every point of the domain (i.e. two 
dimensional space made up of angular joint position and angular 
joint velocity). 

For all this diffi culties and for many others not even cited, let us con-
sider, it this chapter the synthetic problem of sequences of actions 
and let us face with this problem employing a Reinforcement learn-
ing approach..

Reinforcement Learning (RL) is the straightforward learning para-
digm for bio-inspired architectures. In the last few decades the state 
of the art for robot learning has moved towards RL (Lee, 2006) 
(Braga, 2003). Unfortunately in robotics the common trial-and-error 
practice is not so trivial: the lowcost mechanical structures have 
very different compliance and timing capabilities with respect to 
their biological counterpart. A large number of different approaches 
have been proposed to overcome this kind of problems (Bakker, 
2006) (Abbeel, 2008). Generally speaking, the underling idea is to 
use computational power to minimize necessity of real environment 
interaction. 

Eligibility traces, model based approaches (like Prioritized Sweep-
ing in Moore, 1993) and probabilistic methods (like Ant-Colony 
Optimization in Dorigo, 2004) increase computational costs in order 
to reduce the number of environment examples needed (Kaelbling, 
1996) (Barto, 2003). A commonly used strategy is to perform multi-
ple iterations based on past observations between two real experi-
ences (Sutton, 1998).

In this chapter an application of a modifi ed version of a simple State-
Action-Reward-State-Action (SARSA) algorithm is presented in 
order to cope with a discrete shortest path problem with a redundant 
serial manipulator.
The task taken into consideration includes a robotic arm equipped 
with a pointer as end-effector. The robot, hereafter referred to as the 
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agent, should learn which is the best way to position the end-effector 
on all the black squares in a given custom checkerboard. Multiple 
levels have been used to hierarchically control the hardware. A high 
level, behavioral, control is fi rst performed in a host computer. The 
algorithm output (i.e. a discrete checkerboard position) is then given 
as input to a kinematic inversion algorithm able to cope with the 
redundant serial structure. A low level control is then performed both 
in a custom designed control board and in the distributed control 
system of the robot.

As in any other Q-learning based algorithms, for a given state and a 
policy, the next action is chosen, reward is evaluated, and therefore 
the action-value (Q-function) for state-action pair is updated itera-
tively. The particular reward function determines the overall behav-
iour of the agent.
In contrast to what previously discussed, for a given state the most 
suitable action (i.e. the one that leads to the estimated best next 
state) is simulated and through the uncomplete model the estimated 
reward is assigned. Furthermore the learning process is strongly 
accelerated with action simulation performed by the agent based 
on what previously learnt: starting from a particular state the agent 
explores multiple parallel simulated trials and respectively evaluates 
rewards creating a tree of all chosen possibilities. It is clear that the 
problem is better achieved via n-step prediction algorithms(Sutton, 
1998). 
Eligibility traces have been used in order to further keep trace of 
meaningful state-action pairs.

The system performances have been evaluated using the Ant-Col-
ony Optimization meta-heuristic method (Dorigo, 2004), that is one 
of the most suitable approaches for this kind of problem. In the fi rst 
section, the considered general SARSA model is introduced. In the 
second section, an improvement with a model-based prediction is 
discussed. Finally, in the other two sections the experimental archi-
tecture is presented and the experimental results are shown.

Model description
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The problem of the shortest path is herewith introduced in a uncon-
ventional task-driven way. The environment is a modifi ed checker-
board with white and black squares: when the agent is on a black 
(sv = 0) square, the selected area changes its state to white (sv = 1). 
The goal is reached when all the squares become white. Both the 
state and the action spaces are discrete. In particular, state set S 
includes all the bistable MxN checkerboard squares confi gurations 
together with agent position for a total of ns possible states:

  
( 35 )   

The actions from action set A can drive the end-effector to one of all 
possible squares:

Fig 50.  Example of four by two checkerboard together with the end-
effector position representation (circle).

Fig 51.  Example of all possible actions (arrows) in a four by two state-
space checkerboard by the agent (circle).
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( 36 )   

A representation of one possible state from the state-space set S is 
depicted in Fig 50. 
As previously described, for a given state all the possible actions 
a ∈ A are those sketched in Fig 51. Therefore considering the actual 
state s and what since now learned, the most rewarding action a  is 
chosen, using Q-learning,with the following method:

  
( 37 )   

In contrast to what happens in Q-learning, shown in equation ( 37 ), 
in SARSA-based algorithms the performed action is not always the 
one with the highest value in Q-function (for a given state). 
For instances, the so called e-greedy policy can be followed by the 
agent as described in the next pseudo-code block.

 
The simplest SARSA block diagram is shown in Fig. 3 where, after 
parameters and variables initialization performed by the init block, 
the (s, a, r, s *, n *) vector is collected iteration after iteration. Moreo-
ver the action value function Q is updated at each iteration as in the 
following assignment:

  
( 38 )   

where α is the step-size of the learning process, r is the current step 

Fig 52. Block diagram of single episode cycle. After an initialization 
phase implemented in the init block, the (s, a, r, s*, n* ) vector is built 
at each iteration.
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reward and γ is the discount factor while s * is the next step state.
Considering that the largest part of the movement time of the real 
manipulator from one cell to another is not dependent on the dis-
tance, though white cells are not a physical constraint, the best path 
should avoid them. Therefore the problem can be easily split into 
two sub-problems: the agent should learn to avoid white squares 
and than learn the shortest path through black squares.
As can be easily understood, the former is not suitable for one-step 
prediction: too many iterations are needed to obtain low errors (i.e. 
big deal for real robot implementation). 
A. Eligibility Traces In order to reduce the number of iterations de-
spite the increase in computational cost, eligibility traces have been 
introduced (Sutton, 1998) (Riebeiro, 1999).
When a state-action pair (s, a) is visited, the corresponding value in 
eligibility function is updated as follows:

  
( 39 )   

The Q-function update is modifi ed as in the following equations:

Fig 53.  Cost function part for initial state depicted in Fig 50 in the case 
of movement towards black squares with sv = 1 (on the left). State-
dependent overall cost function used as reward (on the right).

Fig 54. Block diagram of cycle with state-to-state prediction. After an 
initialization phase implemented in the init block, the (s, a, r, s *,n* ) 
vector is built each iteration, model Qs is updated and agent prediction 
is evaluated by the prediction block and darker reward block.
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( 40 )   

Fig 55.  Parallel agent simulation in state predicted tree for a four by 
two state-space checkerboard. The light arrows and circles indicates 
possible transitions and states of the virtual agent.

Fig 56.  Hardware block diagram of the adopted experimental setup. 
High level algorithms run on a PC-based platform. Both tri-dimension-
al kinematic simulation and real hardware control have been imple-
mented. Low level control of the custom manipulator (i.e. the Mini-
ARM) is achieved, through a USB-to-serial converter, thanks to a 32 
bit microcontroller-based custom designed board. Lowest level motor 
control and angular joint readings are decentralized in each servo.
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and then for all state-action pairs (s, a)

  
( 41 )   

where λ is the eligibility discount factor and  is again the step-size 
of the learning process. From a computational point of view the 
straightforward application of eligibility trace implies a single episode 
problem dimensionality to increase from O(steps) to O(steps x ns), 
where steps is the number of action performed in order to reach the 
goal. 
Therefore in the real application a modifi ed version of the algorithm 
has been implemented to hold information about the (s, a) pairs for 
which the following inequality is verifi ed:

  
( 42 )   

This increases the complexity from O(steps) to O(steps!) (it must be 
noticed that typically ns  steps).

Reward cost function
The defi nition of the reward function is an important aspect of the 

Fig 57.  Analyzed indexes in an experimental test. The dashed line 
indicates the real data and the solid line μ20 is the moving average 
computed with the most recent twenty samples. Both ns and lt have 
been investigated in order to understand different learning capabilities 
on tasks (i.e. avoid white squares and choose shortest black squares 
path.
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algorithm in the proposed application. For shortest path solution, the 
coeffi cient γ is set to 1, as suggested in (Sutton, 1998), and a nega-
tive reward for all non-terminal states is given, while zero reward is 
assigned for goal achievement.

Fig 58.  Normalized number of steps needed for task achievement. It 
must be remarked that when the agent is able to avoid white squares 
(fi rst task achieved) ns = 1. Dashed line exploits the performance of 
the fi rst tested algorithm, without prediction. Solid line indicates the 
predictive model performances.

Fig 59.  Summary of the experimental results on shortest path task-
performance evaluation expressed through the index lt that is a func-
tion of the over-length of the path traveled. Dashed line exploits the 
performance of the fi rst tested algorithm, without prediction. Solid line 
depicts the predictive model performances, while the dotted line are 
the Ant-Colony Optimization performances.
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The cost function used as reward is state-dependent and evaluated 
through the following system:

  

( 43 )   

where it is clear how all non-terminal states are negatively rewarded 
according to the squared step length, in order to progressively 
reduce overall traveled distance. Actions that lead to a white square 
(i.e. in which sv = 1) are negatively biased to further increase conver-
gence speed of the algorithm. An example of the cost function used 
as reward is shown Fig 53.

Predictive model
As already described, the model has been enhanced to improve the 
performances in terms of number of episodes needed for a complete 
learning, in order to meet real hardware timing necessities. The ap-
proach consists in reducing the number of real actions needed for 
learning by introducing a virtual agent that will simulate the out-
comes of the environment based on what previously learnt by the 
real agent. 
A state-to-state transition matrix Qs is built incrementally through 
iterations based on actual state-action pair (s, a) next state sn and 
respective reward r. Therefore the updated block diagram is shown 
in the diagram in ( 53 ), where the agent movement prediction is 
performed (by the prediction block) and evaluated at each iteration 
using the vector (s, a, r, s*, n*) updating the Qs function. 

  ( 44 )   

where f is a reinforcement-based state-to-state function. An example 
of parallel agent motion simulation that forms a state predicted tree 
is shown in Fig 55. 
It must be noticed that even for a trivial case of M = 4 and N = 2, Qs 
is quite a huge matrix 2048 by 2048. Nevertheless, if we choose to 
initialize it as zeros matrix instead of random, this results sparse: the 
possible transitions from one state to any other are fewer, as com-
puted in the equation:
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( 45 )   

where nbk is the number of black cells in the state space. Therefore 
the worst case is n a = (MxN)2, in our example is n a = 64.

Experimental setup
The considered robot is the MiniARM (SPARK project website 
(shown in Fig 56), a custom built seven degrees of freedoms ma-
nipulator with revolute joints. The architecture for both simulation 
and hardware control is sketched in a diagram in Fig 56 Virtual Real-
ity Modeling Language (VRML) models of simple environment and 
manipulator have been realized in order to have the same function 
interfaces as the real hardware control devices. 
The highest level control is achieved with a PC, while the low level 
control is performed with a 32 bit mcu-based board. The PC-board 
communication is done with a USB-serial interface, while the robot is 
position-controlled through a RS485 serial bus. 
Although positions are known and few, in the case study the end-
effector positioning is realized with inverse kinematic algorithm for 
generality (an iterative novel strategy called Mean of Multiple Com-
putation MMC Cruse, 1998 and Arena, 2009 ).

Experimental results and comparisons
A reinforcement learning algorithm, because of the high param-
eter and particular strategy dependency, is not easy to be numeri-
cally compared to other approaches. Under this point of view a 
cross-comparison between predictive and non predictive algorithm 
seemed a straightforward comparison.
Moreover the well known ACO meta-heuristic method (Dorigo, 2004) 
is used as gold-reference to give idea of best achievable perfor-
mance without explicitly computing it. 
Two different performance indexes have been chosen to compare 
the proposed algorithm with respect to other classical SARSA-based 
approaches. The fi rst is the normalized number of steps needed for 
a single task achievement.
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( 46 )   

where nsteps is the overall number of steps executed by the agent 
while nbk is the number of black squares in the checkerboard.
The second performance index is:

  
( 47 )   

where d is the total distance traveled by the agent and d b* is the 
minimum distance between the end-effector starting position and the 
black squares. It is clear how though the minimum value for lt is 
lt* = 1, not all confi gurations admit this value as optimal sequence 
because of the distance between black squares in initial state. A typi-
cal dynamical evolution of the two indexes, chosen to evaluate sys-
tem performance, through iteration is shown is Fig 57. As it is possi-
ble to see, both indexes show a fast decrease through iterations.
Considering an average time per movement tavg = 1s, the overall 
computational time requested per iteration is far less and therefore, 
as discussed above, the number of real agent actions can be kept 
low.
In order to compare the performances, a number of iteration of 1000 
was chosen (i.e. number of real robot actions). 
Each robot experiment is completed in about tmax = 20 minutes (i.e. 
all together with computational time).
As shown in Fig 58 and in Fig 59, the presence of the state transi-
tion model improves the learning time in terms of number of actions 
performed from the real robot: both chosen indexes show faster 
decreasing in presence of a predictive model. It must be remarked 
that the ACO algorithm has been implemented, for simplicity, to 
solve shortest path sub-task without considering the actions leading 
to white squares. 
Moreover, by using the ACO strategy the problem is solved iterative-
ly for a given static environment confi guration and it is not possible 
to extract a general model from the data. Nevertheless, it is a quite 
good benchmark algorithm because it provides a fast numerical sub-
optimal solution for a particular problem. For each RL iteration, 
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Fig 60.  Example Q-function before learning. In abscissa there are all 
the possible 2048 states, in ordinate there are all the possible actions. 
As shown, random high value (lighter) initializations have been cho-
sen.

Fig 61.  Example of Q-function after learning. In abscissa there are all 
the possible 2048 states, in ordinate there are all the possible actions. 
Due to the binary coding of the states, the trained Q-function looks like 
a binary tree, confi rming the correct training. Nevertheless, high value 
stripes (lighter) in low value areas (darker) indicates non-explored 
state-action pairs.
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iACO = 500 have been performed for a computational time 
tACO = 0.12s per each solution. The color map depicted in Fig 60 
shows the state-action weights matrix Q before learning. Iteration 
after iteration the weight matrix changes its values. The color map in 
Fig 61 shows the same matrix after learning: as it is possible to see, 
all non-rewarding actions values are decreased. 
As previously introduced, all described learning results have been 
obtained using both simulations and the real robot. 
Up to now no sensors have been applied for state transition check. A 
laptop LCD monitor has been used for solution visualization. Never-
theless, a touch sensitive panel is a straightforward upgrade that can 
be used in order to close the loop with the real hardware. Snapshots 
from the real manipulator learning are shown in Fig 62.

Fig 62.  Example of sequence reproduction after learning process has 
been successfully performed. A laptop LCD was adopted to visualize 
the solution.
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In this section, an application to shortest path discrete problem in 
real hardware is presented. Both simulation and experimental results 
show the improvement achieved thanks to the state transition model.
It must be remarked that a considerable improvement was obtained 
in the real application because the number of actions performed by 
the real agent (end-effector manipulator) was heavily reduced. In 
fact, the virtual agent performs a lot of simulated actions based on 
what previously learnt by the real agent.

Moreover it following paragraphs of this chapter, a generalization of 
the Neural Gas Algorithm for sequence learning and reproduction 
will be shown.

Sequences generation

Fig 63. Classic, NGPCA algortim block diagram. The NG block per-
forms center updating for a given training vector, extracted by Training 
Selector (TS), the PCA block executes one step of local principal com-
ponents algorithm and GSo (Graham-Schmidt ortho-normalization) is 
able to normalize eigenvectors.

Fig 64.  Algorithm block diagram for sequence learning with Neural 
Gas with local Principal Component Analysis (NGPCA). The Pattern 
Constructor block (PC) performs control modifying the input pattern 
with the oset Pd. The miniARM block is the serial redundant manipula-
tor (controlled in the operating space).
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One of the possible extensions of this vector reconstruction strategy 
is to introduce the actual state xi and next state xi+1 of the considered 
system as part of the input vector

  
( 48 )   

In this way it is possible to learn not only a static complex law but 
even a particular sequence. 
Under this point of view it is possible to make both short and long 
term prediction and then analyze model prediction with real sen-
sor information for updating the internal model. The so generalized 
model, shown in Fig 64, has been applied to control a custom built 
seven degrees of freedom redundant manipulator (SPARK II web-
site) not only in forward and inverse kinematic problem solving (see 
Hoffmann, 2003) but also in operating space motion planning. 

The introduced Pattern Constructor block (PC) processes inputs for 
the abstract network (NGPCA) in order to determine the constrained 
space for the current iteration, reading the joint variables , and there-
fore leading the system toward the given reference Pd (e.g. solving 
forward kinematics), as in

  
( 49 )   

The miniARM block is the serial manipulator itself and has been 
implemented both in simulation and in real hardware setup. It take 
an input vector reference and give a feedback vector (e.g. it can be 
implemented in the operating space solving the inverse kinematics 
and reading joint angular position) (see [5],[6]).
The same overall model architecture could also be used to deter-
mine an iterative converging recall algorithm, not discussed in this 
chapter, modifying the one described in the previous section, in or-
der to control the system with constrains toward a desired trajectory 
in the free-parameters subspace.

Experimental setup
As in other experiment, the overall control of the robot is made up of 
a high level sequence control in the computer and a low level hard-
ware layer control (custom built) with a 32 bit microcontroller unit. 
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Architecture functional diagram is shown in Fig 65.

Training set
The training set have been acquired from the real robot reading all 
the encoder positions through the direct kinematic of the manipula-
tor. Each data set is made up of N=1000 three-dimensional points 
acquired every 0.08s inside the operating space during a user 
guided real-time trajectory following.

Fig 65.  Functional diagram of the implemented control algorithm.

Fig 66.  Picture of MiniARM fi rst prototype realized in our laboratories.
Experimental setup for square sequence learning in a plane.
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  ( 50 )   

and

Though desired trajectories are planar and repetitive, the acquisition 
method is very noisy and three dimensional by defi nition, as shown 
in Fig 67.
Learning patterns have been built up using two consecutive points 
from acquired data set.

Results
Performance of the algorithm have been tested under different oper-
ating conditions. All presented results have been obtained with the 
experimental setup shown in Fig 66.

Normal operations
As described in the following relationship, the algorithm provide just 
the next point of the sequence in the operating space given the ac-
tual point as part of the reconstructed pattern ẑ∗

  
( 51 )   

where the offset vector p is able to defi ne the constrained subspace 

Fig 67.  Three dimensional plot of an example data set acquired with 
n =1000 (up-left), XY plane plot (up-right), YZ (down-left), XZ (down-
right).



89

as in equation ( 52 ) iteration after iteration.

  ( 52 )   

The M, as usual (see previous chapters for details), align free and 
constrained subspaces in separate regions of the whole space.

  

( 53 )   

The joint space trajectories are generated solving iteratively the 
inverse kinematic problem (see Cruse, 1993 and Arena, 2009). 
Robot reproduced trajectories are shown in Fig 68.
Three different trajectories have been reproduced in order to ana-
lyze the generalization capabilities. All these have been generated 
with human-guided points acquisition method.

Numeric robustness
One of the most important features of the algorithm is that both 
learning phase and recall phase have very high numeric robustness. 
As shown in Fig 67, learning data set defi nes a real noisy trajectory. 
Same trajectories have been reproduced adding noise in feedback 
variable  as in equation ( 54 ).

  
( 54 )   

where θ̂ is the measured feedback variable vector while rand ⊆ [0, 1] 
with uniform probability density distribution and e ⊆ [0, 1] is the 
maximum error amplitude.

Fig 68.  Examples of sequences learned with the NGPCA.
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The circle trajectory has been chosen in order to test numeric ro-
bustness of sequence reproduction.

Performance outside learned space
The performance outside the operating space have been tested us-
ing multiple distances from the centre of the trajectory and measur-
ing the number of steps needed to go through the sequence (i.e. the 
Euclidean distance Ei under a chosen threshold Eth = 0.1 cm as in 
inequality ( 55 )). 
Though particular values strongly depend on the shape of the path 

Fig 69. Trajectories reproduced from points far away from the trained-
operating space. DDR=7 on the left and DDR=10 on the right.

Fig 70. Examples of NGPCA sequences reproduction in presence of 
simulated feedback errors: p = 0:05 (5% of random component in ) (on 
the left), p = 0:1 of random component (center) and p = 0:15 (right).
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and on the learning phase, for a given trajectory and a dened train-
ing phase values can be compared through all dierent distances. 
In order to normalized these distances with the eective dimension of 
the path an adimensional Distance over Dimension Ratio (DDR) is 
defi ned as in equation ( 56 ).

  
( 55 )   

  

( 56 )   

where d [m] is the distance from the centre of the trajectory and 
md[m] is the maximum dimension of it. TABLE VII and Fig 71 sum-
marize the algorithm performance: n is the number of steps noise-
less and n10 is the same quantity when an additional 10% of random 
component is added in feedback variable .

TABLE VII Algorithm performance outside the learned space

Fig 71.  Number of steps needed to go into the sequence respect to 
the DDR on the left (dots are real data while line is a logarithmic inter-
polation), same plot with DDR on logarithmic scale (abscissa) on the 
right.
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Reversed operations
As in common RNNs, in the NGPCA the pattern reconstruction is 
possible careless on which part of the pattern is lacking. Therefore it 
is possible to use the same learning not only for one way sequences 
reproduction but also for reversed sequences.

( 57 )   

In the last part of this chaper, the Neural Gas algorithm with local 
Principal Component Analysis implementation has been tested and 
extended for the control of motion sequences for a redundant serial 
manipulator. 
As it is possible to imagine its modifi cation for different robotic struc-

Fig 72.  Example image used for sequence learning (on the left). 
70x70 cells map for Self Organizing Map (SOM) implementation (on 
the right). 

Fig 73.  Sequence reproduced by a learned SOM. Extracted from 
longer sequence: ...F-A-B-C-D-E F-A...
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tures are minor and, in any case,straightforward.
Though the training phase needs a complete training set and a 
computational effort the recalling phase is very fast and possible to 
implement also in a common microcontroller-based platform. The 
one-to-many mappings, the prediction capability and the inputs/out-
puts role independence in the training phase shows the possibility of 
generalization over a wide range of control applications.
Several different implementation with similar structures can be done. 
In Fig 72 and in Fig 73 some results of a SOM-based implementa-
tion herewith used just for performances comparison are depicted.
Nevertheless, within the paradigm of sub-problem hierarchical solv-
ing, all of these can directly be exchanged with those presented 
here.
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Small universities and schools have several problems to cope with 
robot architecture defi nition. 
Principal problems are introduced by limited founds and by the re-
duced hardware development knowledge and possibilities.
The main needs are for sure the short time-to-demonstration for un-
tested algorithm (that needs powerful debug tools); low cost, pro-
gramming simplicity (avoid low-level programming) through different 
operating systems (namely Windows, Linux and eventually MacOS), 
high customizability and opening to 3rd party devices and applica-
tions (indeed this is probably the most important feature because of 
the growing robotic community all over the world). 

Though several existing modular architectures are present on the 

5chapter
a general framework for robot control and system integration:
from structure to complex algorithms
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market, probably because of the the dimension of this small techno-
logical niche none of them is actually universally adopted. 
Moreover, each of them has several features but it lacks of something  
else and none of them can completely replace all the others (Fig 74).

Its most important features are:
- very high computational power (up to 54 Gfl ops)
- high performance-per-watts
- x86 CPU architecture (windows, linux, macos, …)
- GPU parallel computation with CUDATM

- remote control and multi-robot cooperation trough 802.15.4/n 
- iNemoTM and TeseoTM STMicroelectronics technologies
- decentralized low-level control (simple wiring through buses)
- very high hardware modularity 

As it is possible to imagine, because of the nature of this project the 
two most important features can be considered the hardware modu-
larity and the computational capability (indeed, strictly related to hard-
ware modularity because, replicated parallel hardware is faster than 
any of the most powerful supercomputers. Moreover the modularity 
of this solution is crucial to guarantee the interface with multiple and 
fl exible sensor interfaces and actuator systems.
In order to test the goodness of the proposed approach, several struc-

Fig 74.  Commercial solution for actuated modular systems built up as 
network of several modules: sensors, control cores and actuator. Main 
solutions can be split by the overall cost. Low cost solution on the left 
while high cost solution on the right. 
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tures have been realized and tested with simple and complex algo-
rithms.
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Fig 75.  General block diagram for system network control. It could  be 
(and indeed it have been) used for robot control (sensors and servo) 
and for sensor network solution.
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The hierarchical sub-problem approach proposed as biologically driv-
en solution of the motion control problem is mirrored in the presented 
solution: the level of abstraction of the control grows layer by layer. In 
this direction it is possible to modify a complete layer (algorithm, refl ex 
or mechanical layer) without changing the other if the overall interface 
s are kept. In this way the nature of the mechanical structure, as well 
as any other part of the architecture, can be changed with minor ef-
fort.

The analyzed platforms are various and very different. The most used 
platforms were a roving platform a serial manipulator and a legged 
robot (e.g. a humanoid structure). Also a simulator of all of these has 
been developed and interfaced to some part of the hardware.

Rovers
The roving platform used for navigation experiments, is a modifi ed 
version of the dual drive Lynx Motion rover, called Rover I and II. It is a 
classic four wheeled drive rover controlled through a differential drive 
system. The robot dimensions are 35 x 35 cm about. 

Fig 76. Snapshots from a physics simulation based on nVidia PhysX 
and C++ implementation. The Bioloid robot and the miniARM have 
been simulated in order to obtain a realistic interaction simulation (for 
both each-other and environment interaction). 
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It is equipped with an on-board netbook based on Intel Atom 455, two 
sonar range (detection range 3 cm to 3 m), a low level target sen-
sor to detect color spot on the ground, the Eye-RIS v1.3 visual sys-
tem for panosferic application (e.g. insects behaviour experiments), 
a 640x480 webcam and the Eye-RIS v2.1 visual system mounted on 
a pan-tilt module for frontal view purpose (e.g. focused attention and 
feature detection in insects). 
The Eye-RIS systems are bio-inspired vision devices that implement  
retina-like architecture which combines signal acquisition and embed-
ded processing on the same physical structure. The core of the device 
is the Q-Eye chip, an evolution of the previously adopted Analogic 
Cellular Engines (ACE), the family of stand-alone chips developed in 
the last decade and capable of performing analogue and logic opera-
tions on the same architecture. The Q-Eye was devised to overcome 
the main drawbacks of ACE chips, such as lack of robustness and 
large power consumption.
Eye-RIS is a multiprocessor system since it employs two different 
processors: the Anafocus’ Q-Eye Focal Plane Processor and the Al-
tera’s Nios II Digital Soft Core processors. The AnaFocus Q-Eye Fo-
cal Plane Processor (FPP) acts as an Image Coprocessor: it acquires 
and processes images, extracting the relevant information from the 
scene being analyzed, usually with no intervention of the Nios II pro-
cessor. Its basic analog processing operations among pixels are lin-
ear convolutions with programmable masks. Size of the acquired and 
processed image is the Q-CIF (Quarter Common Intermediate For-
mat) standard 176 x 144. Altera NIOS II digital processor is a FPGA-
synthesizable digital microprocessor (32-bit RISC μP at 70 MHz- re-
alized on a FPGA). It controls the execution fl ow and processes the 
information provided by the FPP. 
Generally, this information is not an image, but image features pro-
cessed by Q-Eye. Thus, no image transfer is usually needed in Eye-
RIS, increasing in this way the frequency of operation.

As said before, the robot is equipped with two different versions of 
the Eye-Ris vision system. Practically, the 2.1 version has the same 
capabilities of the 1.3 one reducing the power consumption and the 
dimensions. 
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The robot is also equipped with the STEVAL-MKI062V2 board (from 
STMicroelectronics). It is the second generation of the iNEMO module 
family. As already described, it combines accelerometers, gyroscopes 
and magnetometers with pressure and temperature sensors to pro-
vide 3-axis sensing of linear, angular and magnetic motion, comple-
mented with temperature and barometer/altitude readings. 

In the robot, the inertial sensor board (i.e. the iNEMO) and the ac-
celerometers are used to control low level (e.g. rotation and forward 
motion) movements and the magnetometers for robot orientation. 

Finally the robot is completely autonomous from the power supply. 
One 14:8V, 5Ah Li Poly battery pack is used that guarantee autonomy 
of about 2.5 hours.

The complete control architecture, similar to the one reported in Fig 
75, shows the distributed architecture used to control all the activities 
of the robot. 
As already discussed, all the modules of the robot are independent  
(and interchangeable) and the communication is implemented thanks 
to a Master-Slave protocol on RS485 bus at 1 Mbit. 
The adopted communication protocol allows to exchange informa-
tion among different nodes and supports connections such as TTL, 
RS485, and XBee. 

Thanks to the variety of the sensors mounted and the on board com-
puter, the Rover permits to perform a different types of experiments in 
a wide variety of scenarios (i.e. the Robot is able to perform a different 
type of image processing thanks to the three different types of the im-
age acquisition sensors mounted).

Industrial-like serial manipulator: the miniARM case
Serial manipulators are, nowadays, commonly used in industrial ap-
plications, for example in the automotive market. 
Their manipulation capabilities and kinematic properties are already 
known and well studied in past decades. Nevertheless their use in 
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service robotics is almost completely limited in big static structure with 
high costs and a really closed development and control environment. 
Due to these characteristics they are often not well suited for aca-
demic research purposes. Exceptions are Schunk (PowerCube, used 
for MMC experiment and Light Weight Arm) and DLR modular robots, 
for high-end users, and Lynxmotion Robotic Arms, mostly for low-end 
users and hobbyists. 

Inside the SPARK II project, a standard serial manipulator for research 
activity, called PowerCube, is used to apply the cognitive algorithms 
to different robotic platforms. 
The PowerCube is a commercial platform provided by Schunk. In 
order to decrease a development time, an effi cient small version of 
PowerCube, called MiniARM, has been designed and realized.
Its control has been implemeted as part of the proposed architecture 
and the modularity of the approach has been kept. 
As introduced, for the same reason, its accurate kinematic and dy-
namic model have been developed.  Their extensive use have been 
shown trough the chapters of this work for algorithm implementation 
and debug. 

The MiniARM, shown in Fig 77, is a serial manipulator with rotational 
joints. It is completely custom built and developed in order to analyze 
and compare algorithm performances with low implementation effort: 
the underling idea for the design was the realization of a robust test-
bed for high-level control algorithms. In this way, the most important 
features were the control and simulation simplicity of a such complex
structure.
The chosen actuators for the entire system are the Dynamixel smart 
servos from Robotis and an embedded microcontroller board with an 
AVR32 UC3A 32bit microcontroller architecture, from Atmel, is used to 
control all the servos and retrieve sensory information through a RS-
485 four-wires bus. It must be noticed that each of this smart servo as 
an internal microcontroller to perform a refl exes control very similar 
to the multiple muscles control presented in (Latash, 2008) under the 
Equilibrium Point (EP) hypothesis. 
A custom built sensor unit with a three-axial accelerometer a gyro-
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scope and a digital compass (more deeply discussed in the next 
chapter) is linkable to any of the present servo through the common 
serial bus. 
As in the case of the rover platform, all the high level control algo-
rithms can be developed directly in the PC (Windows, Linux and Ma-
cOS operating systems are supported) using a USB-to-Serial com-
munication and thanks to a Matlab Graphical User Interface and a 
developed interface library. 
An external USB camera directly connected to the PC is supported by 
the GUI to achieve image segmentation and feature detection. 
The compatibility with all the most common simulation tools and con-
trol environments is given by a standard 3D model reconstruction, 
realized in a CAD drawing software (Solid Works) using IGES model 
distributed by Robotis (available on the web), together with a simpli-
fi ed low-count vertex VRML mesh and the control interface library. 

The MiniARM serial kinematic chain is designed to be redundant in 
space, within its dextrous operating space, and the mechanical struc-
ture has been realized for high payload/weight ratios (1 : 2, 1 : 3).

The geometry of the manipulator and the assemble of the entire struc-
ture have been studied through a detailed CAD project,.
The fi nal developed confi guration shows the subsequence of seven 
rotational axis servos. 
Almost all the structure interconnection frames are made with light 

Fig 77.  Smart servo used to implement a bio-inspired torque ramp 
(dynamixel from Robotis)
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commercial aluminium parts. The gripper module is a custom design.
A fully functional fi rst prototype of the overall architecture has been 
realized. The estimated payload is of about 300g when fully stretched. 
A simple pointer as been realized as end-effector for inverse kinemat-
ic problem solving using multiple approaches. 
The overall robot weight has been estimated to be about 0.7 Kg 
(slightly depends on last module) and it is 45 cm long, together with 
the end-effector module. 
Preliminary power supply test shows a maximum power consump-
tion of 3.5 A with full payload. Despite the complexity of the structure 
the wiring is extremely simple thanks to the communication bus pres-
ence. The mechanical structure has been assembled using alumini-
um brackets (2 mm thick) and hexagonal mounting screws (M2 and 
M2.5 and M3).

Multi-limb structures and complex algorithms
Robotic multi-limb structures are widely used in research as test-bed 
for biologically relevant models (Siciliano ed. 2008) (Cruse, 1998). 
The control of these kinds of structures is complex and often implies 
high computational capabilities or preprogrammed motion control. 
On the other hand, the biological paradigm of the Central Pattern 
Generator (CPG) can be considered to impose a certain sequence 
of states on the arms and legs of a robot. In some cases, a redun-
dant confi guration can be used, increasing the complexity needed 
to defi ne a model of the structure and to develop a reliable control 
algorithm. The robustness against singularities, the capability to face 
angular constraints in the joint space or other constraints in the op-
erating workspace (e.g. obstacle avoidance) are important aspects 
that have to be considered (Ahn, 2002) (Shimizu, 2008) (Tondu, 
2006). 
In embedded control platforms, an important performance index that 
can be, therefore, considered is the computational power. In fact, 
it constrains the control frequency and therefore the possibility to 
develop an algorithm on a low MIPS microcontroller unit (mcu) for 
real-time applications. 
The proposed approach is based on the already developed, here-
with presented in the previous chapters, Mean of Multiple Compu-
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tations (MMC) Recurrent Neural Network (RNN) algorithm which 
provides a fast, fl exible and robust to confi guration singularities sub-
optimal solution to the discussed problems (Cruse, 1993) (Arena, 
2009). 
In the following section the MMC, a direct and inverse kinematic 
solver, is used to control the motion of a very complex structure. In 
particular the case of a humanoid robot (i.e. Bioloid from Robotis) 
with 18 Degrees of Freedom has been taken into account.

Limbs model and control strategies
In order to kinematically model both arms and legs of the humanoid, 
different structures have been considered. 
The modelled geometrical structure for each arm (i.e. left and right) 
is a three links serial structure with three Degrees of Freedom (DoF) 
(from θ1 to θ3 for each arm). 
The geometrical structure used for each leg is a four links serial 
structure with fi ve (from θ1 to θ5for each leg) DoF and therefore more 
than one DoF are computed with the same geometrical quantity (e.g. 
two relative joints are associated with the same link).

Fig 78.  Hardware confi guration of the experimental setup: low level 
microcontroller AVR32 board, actuators and sensors bus architecture-
and high level control host computer.
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Control strategies
As presented in the previous chapters and as thought in the pro-
posed architecture, the robot control can be easily and conceptually 
divided into high level (i.e. behaviour) control task, and low level (i.e. 
gait and grasping strategies) control.

1) Robot behavior: The robot overall behavior is controlled through 
simple visual frame-based decision making through direction of 
walking and grasping. The behavior selection loop is shown in Fig 
79. The Segmentation and Feature Extraction block (SFE) process-
es image from on-board camera and it uses distance d for discrimi-
nation.

2) Grasping: as introduced, two different position controlled MMCs 
with three links have been used to control recognized object grasp-

Fig 79.  Simple behaviour selection loop implemented through visual-
processing and robot control. Segmentation and Feature Extraction 
(SFE) block performs image processing algorithm to detect object dis-
tance d. Behaviour evaluation is achieved with a binary threshold dth.

Fig 80.  Control scheme for each arm for a given absolute reference in-
put pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy and MMCz 
are the three-dimensional linear computational networks. NLB is the 
Non-Linear Block and ARM is the manipulator itself (simulator or real 
robot). Pj are the MMC input pattern while Aj are the outputs. θd are the 
desired angular values and  are the read joints values.
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ing. The simplest extension of the two-dimensional positioning of a 
planar redundant serial manipulator (shown in the previous chapter)  
(deeply described in Cruse, 1993 and Cruse, 1998) is the three-
dimensional positioning of the end-effector for the redundant serial 
manipulator in space (i.e. R3). 
As usual, each vector component of the geometrical links is pro-
cessed, iteration after iteration by a different linear MMC network 
and then given as input at the non linear block (NLB), as shown in 
Fig 80.

3) Walking gait: For the described legs control strategy, the walking 
gait is obtained using a state dependent reference (from S1 to S6) for 
each leg and a state transition model with transition conditions (as 
sketched in Fig 81). 
Two position and orientation controlled MMCs have been used for 
convergence toward reference within the state. State dependent 
offset are introduced in θleg1 (off-sagittal plane hip angle) and θleg5 
(off-sagittal plane ankle angle) for balance control. 
As depicted in Fig 81, in the algorithm block diagram, the low level 
control strategy guides the system (i.e. the single leg) towards the 
desired orientation through a relative error feedback. Therefore the 
feedback for the orientation error (eO) is analyzed. 
The distance between two different leg states can be defi ned, in 

Fig 81.  Control scheme for each arm for a given absolute referencein-
put pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy and MMCz 
are the three-dimensional linear computational networks. NLB is the 
Non-Linear Block and miniARM is the manipulator itself (simulator or 
real robot). Pj are the MMC input pattern while Aj are the outputs.θd are 
the desired angular values and  are the read joints values.
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the simplest case, as the Euclidian distance between the two end-
effector points. 

Furthermore, overall distance (and therefore the whole system state) 
can be computed as the mean distance of both legs).

Simulation and experimental results
The considered robot has 18 DoF, through revolute joints: three 
joints for each arm and six joints for each leg. The physical structure 
can be mapped, as requested for the MMC modeling, into the geo-
metric theoretical model links. Due to the chosen real robot architec-
ture, angular limits are not equal for each joint.
As described in the previous section, each presented control strat-
egy has been tested both in simulation and on real robot.
As in the previous case of MMC implementation, the proposed algo-
rithms have been implemented both in the PC and in a custom mcu-
based board. Respectively a Dual Core Intel Centrino 2.2 GHz host 
computer with 2GB of RAM and an UC3A AVR32 mcu with 66MHz 
of maximum clock and only 64KB of RAM were used as comparison 
platforms (Fig 78). 
As sketched in Fig 78, in our fi rst implementation the overall robot 
control can be split in two levels: low level (hardware) control and 
high level control. The low level control is, in all cases, achieved 
thanks to a mcu-based board that is used both to acquire informa-
tion from the distributed sensory system and to control the actuators. 
Moreover a serial bus is used for low level communication purposes. 
The high level control and the data logging are made through a host 
PC connected to the board via serial interface (with a USB-to-serial 
transceiver).
In the second (embedded) version of the control algorithm all the 
MMC-based calculations are directly executed locally in the mcu-
based board while the PC is just used for data logging and for the 
Virtual Reality (VR) simulation environment.

Simulation and Experimental Results
In order to test performance of the designed control structure, trajec-
tories followed in both walking and grasping behaviours have been 
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analyzed. The center point trajectory of the foot-base (i.e. end-effec-
tor of leg serial structure) of one leg during sequence in the walking 
behavior is depicted in Fig 83. The distance from a known object is 
estimated based on simple segmented image feature (e.g. area in 
px2 or maximum edge of minimum rectangle containing the object). 
After the object area (i.e. camera estimated distance under thresh-
old dth) is reached the arms start to converge toward the selected 
centroid, as shown in Fig 82.

Fig 82.  Multiple snapshots of grasping sequence. End of walking (i.e. 
d < dth) and start of grasping (on the left). MMC iterations are execut-
ed in parallel on both arms (center). Grasping sequence ends when 
both arm position errors go below error tolerance (on the right).

Fig 83.  Left leg end-effector position through different states (onthe 
left). Relevant coordinates (robot sagittal plane) have been plotted 
with respect to time. Simple sketch of the geometrical structure in-
which legs are mapped (on the right)
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Although the iteration number needed to reach the desired reference 
strongly depends on the chosen parameters and on the particular 
given reference, in order to estimate the algorithm performance, 
multiple comparisons with common algorithms for kinematic inver-
sion, such as pseudo-inverse Jacobian (J ) and Jacobian transpose 
(Jt), have been considered. It must be taken into account that in the 
J*  the joint limit constraints are introduced in the form of an ad-
ditional task to be completed while in the Jt no joint limitations are 
considered.
Free parameters were chosen to maximize convergence speed 
keeping a non-overshoot condition on end-effector positioning.

A complete hardware and software architecture has been described 
and proposed. Modularity, short time-to-demonstration and hierarchi-
cal decomposition are the most important feature of this solution.

Several robotic structures and a complex algorithmic example have 
been presented. 

The extension of the MMC approach to a multi-limb structure (e.g. 
a humanoid robot) is presented for walking and grasping behavior. 
The problem is addressed not only in presence of angle limits but 
also in a dynamically changing environment even in a mcu-based 
hardware.

Moreover, in the next chapter a fi rst step to the development of an 
embedded solution for distributed sensing suitable for this hw/sw 
architecture will be presented. 
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6chapter

Electronics devices, currently deployed in worldwide market, are 
using an increasing amount of MEMS technology for motion identifi -
cation and reconstruction with multiple sensors. The greater part of 
these sensors is made up of accelerometers, gyroscopes and mag-
netometers (i.e. magnetic fi eld sensors used as compasses) (Ab-
bate, 2009). For instance, in the game industry, accelerometers and 
gyros are used as player user interfaces. In telecommunications, 
especially in smartphones, accelerometers are often used as incli-
nometers and gyros enable an improved gaming experience, and 

advanced motion platform for inertial sensing:
beyond the pure motion control research
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eventually a camera image stabilization (Cardani, 2006). Together 
with GPS and compass they are also investigated for augmented 
reality and Location Based Services (LBS) (Hide, 2005). 
In sports and healthcare systems accelerometers are used for 
pedometer function (Foxlin, 2005). Adding gyros and, eventually, a 
compass allows for true 3-D motion tracking, which can be useful 
for evaluating trajectories and body movement (Roetemberg, 2007) 
(Roetemberg, 2006). 
As it is possible to fi gure out, the computational capabilities of these 
applications are heterogeneous: todays high-end smartphones have 
powerful application processor (up to 1GHz) with Floating Point Unit 
(FPU) while consumer pedometer have a very low amount of com-
putational power.

For what concerns smart system for movement analysis it must be 
noted that the overall complexity of this kind of systems is increasing 
over time. Under this point of view, while commercial platforms for 
reliable orientation estimation currently exist (Roetemberg, 2006), 
they are mostly standalone solutions not suitable for embedded 
system integration.
The possibility to have a small-packaged monolithic device that 
provides, effortless, the overall orientation “on demand”, integrating 

Fig 84.  Inertial Motion Module (IMM) block diagram for host applica-
tion integration: the module microcontroller takes data from the sen-
sors (gyroscope and geomagnetic module), performs the computation 
needed for sensor fusion algorithm and orientation estimation and 
provides multiple communication interfaces to a host microcontroller 
(application level).
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accelerometer, gyroscope and digital compass (i.e. magnetometer) 
measures is still under development. 
In order to investigate this solution, starting from the iNEMOTM evalu-
ation board from STMicroelectronics (for further information see 
iNEMO page on ST website), whose dimensions are 4cm x 4cm, 
a fi rst prototype of a smart Inertial Motion Module (IMM) has been 
realized. 
This module keeps the main functionalities of the iNEMO platform 
but with a very different form factor: 13mm x 13mm (depicted in 

Fig 85.  Block diagram of the sensor fusion algorithm running inside 
on-module processor (STM32) that uses gyroscope and geomagnetic 
module for orientation (i.e. quaternion vector) estimation.

TABLE IX Sensor specifi cation in terms of full-scale range for acceler-
ometer, gyroscope and digital compass (i.e. magnetometer).
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Fig 86). 
From design issues to fi rst results, this chapter introduces this mod-
ule through different sections. In particular fi rst, the hardware and 
conceptual architecture of the module have been addressed togeth-
er with sensors and microcontroller specifi cations. Next, the algo-
rithmic solution together with the fi rmware implementation will be 
analyzed with respect to the state of the art and then, some output 
results of the orientation estimation of the module fi lter are showed.
Finally a couple of straightforward applications of this system are 
described.
Let’s start from the module architecture.

Module architecture
The module takes data from the sensors (gyroscope and geomag-
netic module), performs the computation needed for sensor fusion 
algorithm and orientation estimation and provides multiple commu-
nication interfaces to an host microcontroller (application level) (Fig 
84). 
Furthermore, the IMM design aims to reach the best possible inte-
gration level in user applications: for this reason particularly attention 
was paid to the form factor and to the pin out. The overall system 
can be easily seen as a Surface-Mount Device (SMD) that features 
28 pins in a 169 mm2 PCB. It means that in this, very small size, all 
the components are placed on the top layer and at its edges metal-

Fig 86.  Realized prototype of iNEMO M1. As it is possible to observe 
it is very tiny. Its real dimensions are 13 x 13 x 2 mm3. It embeds an 
accelerometer a gyroscope, a digital compass with a Cortex M3 core 
from STMicroelectronics. A Kalman fi lter internally performs the sen-
sor fusion.
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ized areas realize the module pin out. In this way the module can be 
directly soldered in the user system as a single component. 

As briefl y sketched, the designed architecture is made up of a 32-bit 
microcontroller unit (MCU), a geomagnetic module (3-axis accel-
erometer and a 3-axis magnetometer) and a 3-axis gyroscope (Fig 
85). While the inter-module communication (between local MCU 
and sensors) is managed through the I2C and SPI serial interfaces, 
the communication with the outside world (e.g. between the mod-
ule itself and the host application) can be achieved through several 
interfaces (USART, SPI, I2C, CAN). 
The microcontroller is a STM32F103 from STMicroelectronics and 
it features an ARM Cortex M3 architecture (from STM32 reference 
manual). This MCU has a maximum core frequency of 72 MHz, a 
computational capability of 1.25 DMIPS/MHz, 64 Kbyte of RAM and 
512 Kbyte of fl ash memory. To keep the overall system dimensions 
as small as possible a Wafer-Level Chip Scale Package (WLCSP) 
has been chosen for this component for a volume of 4.5x4.4x0.5 
mm3. The gyroscope is the L3G4200D (also from ST) (information 
available in L3G4200D datasheet), a 16-bit digital sensor with user-
selectable full-scale and bandwidth: the former is between ±250°/s 
and ±2000º/s while the latter is between 100 Hz and 800 Hz. Its 
package form factor is 4x4x1.1 mm3. 
The geomagnetic module is the LSM303DLH (from ST) [9]. It unifi es 
in a single tiny package (3x5x1 mm3) both the accelerometer and 
the magnetometer: the former full-scale, user modifi able, is between 
±2g and ±16g; the latter, also user-selectable, full-scale are between 
±1.3 gauss and ±8.1 gauss. 

Powered by a single supply voltage between 2.16V and 3.6V, pro-
vides orientation data (e.g. rotation matrix, quaternions and/or Euler 
angles) with a maximum update rate of 100 Hz. The fully operating 
power consumption is around 210mW (@3V), nevertheless low pow-
er and stop modes can be forced by the external application proces-
sor through both hardware and software commands.
Let us consider now the adopted software solution.
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Software solution
The idea to combine digital processing and calibrated sensor meas-
urements to provide an absolute orientation data to the host applica-
tion processor is achieved through an Extended Kalman Filter (EKF) 
(Bishop, 2001)), running on the embedded MCU, that manages the 
smart sensor fusion to obtain the benefi t of each sensor in orienta-
tion estimation (Fig 85). Even if the EKF theory is beyond the scope 
of this chapter, it is useful to remark that its discrete time formulation, 
it tries to estimate the state of a generic non-linear system from a 
system model and multiple noisy sensor measurements. Its algorith-
mic procedure iterates through cycles and each of them can be eas-
ily divided in two main parts: prediction phase and correction phase. 

As showed in (Bishop, 2001), after the prediction phase updates 
the state using  he model of the process, the output is corrected 
through the measures and Kalman gain computation. The gyroscope 
measures are used for strap-down integration (Sabatini, 2005) (Sa-
batini, 2006) in the prediction phase while both accelerometer and 
magnetometer measures are used to compensate the angular-rate 
integration drift in the correction phase (Yun 2006). In particular the 
accelerometers provide an attitude reference using gravity accelera-
tion projections while the magnetometers provide a heading refer-
ence using the earth’s magnetic fi eld vector (Yun, 2006).
The implemented fi lter is based on quaternion vector 
�q = [ q0 q1 q2 q3 ] estimation and therefore they are part of state 
vector.
The quaternions formulation ensures, at the same time, the lack 
of representation singularities typical of Roll, Pitch and Yaw (RPY) 
based fi lters and an effi cient mathematical framework (Yun, 2006) 
(Vlasic, 2007). 

Nevertheless both rotation matrices notation and RPY orientation 
representation are internally  computed and available as outputs. It 
must be noticed that, without a fi lter structure and a sensor fusion 
algorithm, considering only separate independent measurements, as 
usually done in current application, the orientation data would eas-
ily be far from the true trajectory due to: noisy integration (typical of 
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gyroscopes), low-pass fi ltering (accelerometer) and magnetic distur-
bances (compasses problems).
Moreover the Kalman fi lter correction step provides an on-the-fl y 
calibration for the gyros by providing corrections to the attitude tra-
jectory and a characterization of the gyro bias state. 
Furthermore, in order to reduce disturbances due to external accel-
erations (i.e. different from gravity) and perturbing magnetic fi elds, 
respective sensor covariance has been considered variable in the 
fi lter (Roetemberg, 2006) (Roetemberg, 2007). 
In this way the individual sensor error is estimated dynamically from 
measures.

Results and future development
As described in the previous sections the IMM provides orientation 
data in the form of quaternions, rotation matrix or RPY. Some exam-
ples of RPY angles estimation obtained in a preliminary motion tests 
are showed in Fig 87. Overall errors of the system have been esti-
mated to be around ±0.5º in Pitch and Roll angles and ±2º in Yaw in 
quasi-static condition while ±1.5º in Pitch and Roll angles and ±4º 
in Yaw in free motion (within sensors operative range) (example in 
Fig. 6). It must be noticed that the adopted microcontroller, as often 
happens in low-cost units, does not have a FPU and therefore all 
the mathematical computations for sensor data fi ltering and fusion 

Fig 87.  Euler angles time series from the proposed Inertial Motion-
Module solution: Roll (red), Pitch (blue) and Yaw (green).
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requires several CPU clock cycles and must be optimized. A prelimi-
nary timing and complexity analysis of the implemented algorithm 
on the considered processing core (STM32) lead to an iteration time 
of 4 x10−3 s (i.e. time needed for a complete prediction-correction 
cycle), for a theoretical maximum fi lter update rate of 250Hz. 

Beyond all the typical applications in which the orientation of the 
single device is the only need (e.g. smartphone, Inertial Naviga-
tion Systems), an increasing interest in Inertial Measurement Units 
(IMUs) is coming from MOtion CAPture (MOCAP) (Vlasic, 2007) 
(Roetemberg, 2007) systems (especially form lowcost ones) from 
entertainment industry (e.g. game and movies), from medical reha-
bilitation studies and from sport performance analysts.

Two similar versions of the module have been realized and addition-
al tests have been performed in order to evaluate the overall robust-

Fig 88. Data from inertial (iNEMO, solid red line) and optical systems 
(BTS, solid blue line) comparison
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ness of the both. 
The fi rst prototype has been thought as a component like System-
on-Board and under this understanding it doesn’t feature an internal 
voltage regulator. 
The second prototype has some minor pinout revision and more im-
portantly it features an internal LDO in order to be powered up to 5V.
Some pictures of thermal analysis of both of them are shown in Fig 
89 and in Fig 90. Additionally some X-Ray analysis has been done 
on a malfunctioning unit.

Motion Capture solution
In order to validate these approaches and to perform a feasibility 
study for module-based realization, a fi rst prototype of a MOCAP so-

Fig 89.  Thermal camera image for the proposed module with environ-
ment temperature around 25°C in fully operative condition. No forced 
convection nor any dissipative substrate have been considered in this 
test.  

Fig 90.  Thermal camera image for alternative version of the proposed 
module. A linear regulator is present in these images 
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lution, based on the iNEMO evaluation board, has been developed.
In particular this system has been realized by daisy-chained module 
network achieved through a serial bus. In order to extend this pro-
totype to a module based implementation the module-bus interface 
needs to be managed, in our analysis by an adapter board whose 
only functions are to match voltages and physical layer bus require-
ments.

Let us consider this scenario as a straightforward application of the 
described Motion Processing Module and a RS485 bus interfaced 
with the USART port of the module (up to 4.5Mbps). Under these 
considerations this interface board has been designed with just two 
4-poles connector, a low drop voltage regulator and a RS485 3.3V 
transceiver. In this way with a total amount of 10 components (in-
cluding passives) in an overall volume of 20x17x5 mm3 this platform 
is able to provide a daisy-chained sensor network suitable for all 
kinds of MOCAP applications. 
Considering a maximum 100 Bytes (largely much more than neces-
sary in typical applications) for sensor node orientation communica-
tion, through a bus protocol, to the master of the network (e.g. host 
computer or an embedded system working as a concentrator) and 
considering a 100 Hz update rate, the throughput on the physical 

Fig 91. X-Ray vision of a bad functioning unit.
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layer of the bus should be able to cope with more than 35 devices.

In this chapter a tiny Surface-Mount Device (SMD) module to pro-
vide both the calibrated sensor measurements and an effortless 
orientation measure of the system to any kind of embedded appli-
cations has been presented. This device integrates accelerometer, 

Fig 92. Motion sequence captured from a little girl learning physical 
interaction between her body and the environment.
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gyroscope and magnetometer measures and is able to combine 
them with digital processing capabilities within an embedded sen-
sor fusion algorithm. Some design considerations and benefi ts with 
respect to the state of the art have been considered together with a 
very brief description and scheme of some possible applications. 
Under this point of view it is important to highlight that, as exempli-
fi ed in MOCAP application description, the possibility to have a mon-
olithic, component-like, device ready to be soldered could simplify a 
lot users application design. 

The developed application is still under development within the 
STMicroelectronics as technological demonstration of the capabili-
ties of inertial sensors.

Moreover as additional investigation a combined approach between 
inertial Motion Capture and Simultaneous Localization And Mapping 
(SLAM) has been performed.
Under this point of view, it must be considered that, at the time of 
writing, SLAM algorithms are almost completely related to robotic 
research labs and so to robotics platform. In most cases this is 

Fig 93. MOCAP interensting points in human body. In its simplest im-
plementation it counts 10 sensors: two per each limb plus two through 
the spine. Additional sensors could be mounted on wrist, ankles and 
head.
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achieved through odometry information from the robotic platform 
(e.g. PIONEER from mobile robots) fused together with scanner 
laser information (examples from SICK, Hokuyo).

It must be noticed that a Microsoft kinect-based SLAM is reliable, low 
cost and quite simple but 
- has some robustness issues;
- does not provide body tracking nor any body related information.
At the same time, the inertial full body tracking provides:
- body tracking;
- rough estimation in relative pose change for camera (or kinect);
- a step into the sensor network concept.

At the same time traditional computer vision approaches to depth 
estimation in image processing have been signifi cantly enhanced. 
The hardware embedded in Microsoft Kinect solution is based on an 
Infrared (IR) projector and a standard CMOS sensor and it is capa-
ble, through the Prime Sense (PS1080) chip, to correctly estimate a 
depth image (640x480@60fps) in indoor environment. The accuracy 

Fig 94.  Snapshot for the realized graphical user interface for inertial 
Body Motion Reconstruction (iBMR) demonstration. 
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of this solution (±3cm in 5m max distance) is certainly lower than the 
laser- ‐based solution (±1mm over 5m of range) and its horizontal 
Field Of View (60°) is also largely narrower (240°). 
Nevertheless having RGB and Depth images (RGB-D), aligned in 
a true 3D coloured perspective, in a simple and low cost solution 
seems attractive.

The possibility to have the whole inertial data and RGB-D images 
available can be used in multiple ways: fi rst of all, an animated virtu-
al avatar of the agent could be integrated in the 3D rendered scene; 
second the MOCAP data could be used as additional information to 
initialize/enhance the standard ICP algorithm (eventually substitut-
ing the RGB image processing step); fi nally the created virtual world 
could serve to enhance inertial data information in terms of position 
estimation (the inertial data truly estimate the orientation and provide 
position trough environment hypothesis).
Dieter Fox et al. (Fox, 2011) at the University of Washington (in Se-
attle WA), in a joint work with Intel Labs proposed a RGB- D Mapping 
technique for dense 3D modelling in indoor environment (reference). 

Their idea, reproduced in the following pages, is to start with a 
standard Iterative Closest Point (ICP), commonly used for SLAM, 
and to enhance it considering additional information obtained from 
aligned depth and colour images provided by the Prime Sense solu-

Fig 95. Experimental setup used for inertial Attitude and Heading 
Reference systems evaluation. In order to evaluate performance 
the system has been compared with an optical tracking system gold 
standard.
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tion. They executed a fi rst level of image processing in order to have 
multiple information on the same feature from the two images and 
two minimize local minima problems in the ICP algorithm. Moreover 
they organize the globally aligned dense 3D cloud in small surfaces, 
called surfels for rendering simplicity and speed. 
Some brief consideration on both inertial Kalman Filter and on ICP 
algorithm are reported below.

Extended Kalman Filter 
The idea behind the sensor fusion is that, using several kinds of sen-
sors, the characteristics of one type of sensor avoid overcoming the 
limitation of other sensors (Bishop 2001)(Sabatini, 2005).
In this way, the Kalman fi lter is useful for combining data from sev-

Fig 96.  (On the left) 3D maps generated by RGB-D Mapping for large 
loops in the Intel. (on the right) Maps (red) overlaid on a 2D laser scan 
map of the Intel Lab. For clarity, most fl oor and ceiling points were 
removed from the 3D maps (extracted from D. Fox work)

Fig 97. Hardware modifi cation for combined SLAM and MOCAP ap-
proach. The iNEMO-based solution for inertial movement reconstruc-
tion has been linked to a Microsoft Kinect-based solution for environ-
ment reconstruction.
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eral different noisy measurements. In fact, gyroscopes measure ori-
entation by integrating angular rates whereas the accelerometer and 
magnetometer provide a noisy and disturbed but drift-free measure-
ment of orientation. The Kalman fi lter weights the three sources of 
information appropriately with knowledge about the signal character-
istics based on their models, to make the best use of all sensor data.

In general, the Extended Kalman Filter algorithm addresses the 
problem of trying to estimate the state of a discrete-time process 
described by the equations below:

  
( 78 )   

where x is the state vector; u is the input vector; Ak, Bk, Hk, are 
respectively state, input, and output matrices; furthermore w, v are 
state and measurement noise. 

Fig 98. RGB-D camera images. The colour information is depicted 
on the left (RGB) while the depth information is on the right (mono-
chrome) (pictures from prime sense website).
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Fig 99. Frame of references from image coordinate system to real 
system coordinates (real world reference) . 
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The state and measurement noise are Gaussian and white noise 
sources with covariance matrix Q and R respectively.
At each time step, the algorithm propagates both the state estima-
tion and the error covariance matrix. The latter provides an indica-
tion of the uncertainty associated with the current state estimation. 
These are evaluated in the prediction equations.
The Kalman Gain is derived from minimizing the a posteriori error 
covariance, and it could be considered as a measurement of the 
level of confi dence to give to the predict state.
If the the problem is an orientation problem, as in the considered 
case, one good choice is to use the unit quaternion-based orienta-
tion representation (‖ q ‖= 1) in order to avoid singularities. 
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Fig 100. Overall structure of mixed inertial-camera environment re-
construction solution based on human movement motion capture sys-
tem together with an RGB-D environment mapping.  

Fig 101.  Major problems in environment mapping and reconstruction 
from multiple snapshot from a RGB-D camera like Microsoft kinect.
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In this case, one good choice (Sabatini, 2005) for the state vector is 
to made it up of orientation and gyroscopes biases.
Considering now the general Extended Kalman Filter equations:

   
( 79 )   

where:

  
and

      
( 80 )   

The measurement vector is y = a where a =
[
ax ay az

]T

In a strap-down inertial navigation system, the rigid body angular 
motion is described by the differential equation: 

  
( 81 )   

where: 

  

( 82 )   

If quasi-static condition, when the acceleration acting on the body is 
far less than the gravity acceleration the following is true:

  

( 83 )   

While the previuos section was dedicated to Extended Kalman filter 
algorithm the next one will be devoted to Iterative Closest Point 
(ICP) algorithm and to possible applications to point clouds.

Iterative Closest Point and its application to mesh alignment
As briefly discussed the first big problem working with multiple point 
clouds is alignment. 
Going more in deep, in our workflow (depicted in Fig 101) the snap-
shots from the RGB-D camera are, sooner or later, converted in a 
cloud of points and considering a, even large, range of speeds for 
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the motion of the human body the 30 frame per seconds of those 
cameras are usually enough to obtain successive overlapped 
frames. 
The result is that usually the points in two clouds (respectively ai and 
bi) are mostly overlapped and then a rotation matrix between them 
can be computed as follows:

  

( 84 )   

where

  
( 85 )   

and 

  ( 86 )   

where

  
( 87 )   

and

Fig 102. A point cloud (blue) and its transformed version (red) after a 
roto-translation matrix have been applied. Iterative Closest Point (ICP) 
algorithm inted to solve the inverse problem: given the two meshes 
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( 88 )   

The implemented ICP algorithm is made up of two major phases: a 
matching step and a transformation step. 
At each step both have to be performed. In the matching step each 
point of cloud B (or A) is assigned to the nearest point in cloud A 
(or B). As in any other matching algorithm, metric could make the 
difference: distance could be computed just as simple point-to-point 
distance or point-to-plane or even more complex non-euclieadian 
distances but this is out of the scope of this work. At this time, let us 
consider the simplest point-to-point distance. 

Though in its naive implementation the complexity of the matching 
step is O(n2) it is quite trivial to move toward a O(n log(n)) implemen-
tation, using much more complex data structure (e.g. kdtree). 

One of the major concerns about the ICP algorithm is that its conver-
gence is often affected by wrong local minima drop. 
For this reason the proposed idea is to use all the information from 
the Inertial Body Motion Recognition  (iBMR with iNEMO) to esti-
mate (even, roughly) the initial position and orientation of the camera 
(e.g. the kinect).
The iBMR is presented as a technology of recording movements of 

Fig 103. Snapshot from the working developed solution based on in-
ertial full body tracking (iBMR) and Microsoft Kinect.
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the human body and translating them to a digital model in  real-time 
mode. Its applications include animation of characters in movies 
and video games; gait analysis (study of human motion) in clinical 
and sports medicine to help identify posture-related or movement-
related problems in people with injuries and help athletes run more 
effi ciently.

As described, each node functions as an Attitude and Heading Ref-
erence System (AHRS) with 9-axis MEMS sensing of linear, angular, 
and magnetic motion. It integrates a 32-bit microcontroller that com-
putes the complex AHRS algorithm, using ST’s proprietary fi ltering 
and predictive software for sensor data fusion. All nodes are sending 

Fig 104.  How to proceed toward a system integration for inertial body 
reconstruction and augmented reality. While, in line of principle, the 
technological needs are full fi lled by ST-Microelectronics and ST-Er-
icsson.

Fig 105.  Major problems in environment mapping and reconstruction 
from multiple snapshot from a RGB-D camera like Microsoft kinect.
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their data to the control unit – a PC – which applies the measure-
ment to a graphical skeleton model and displays body motions in 
real time.

In the current version of the inertial motion capture solution (iBMR), 
there is a iNEMO M1 system in each node: on each arm, forearm, 
thigh, calf, and two nodes on the back; however, the system is 
scalable up to 15 nodes, so additional nodes can, for example, be 
mounted on shoes or on the head. 
The size of the node is 4 x 4 x 10 mm, its weight is 12 g, and it is 
encapsulated in a special housing.
Extensive tests with realistic, complex motions of the human body 
have been carried out, in which this solution showed outstanding 
precision and speed. Deviation in spatial accuracy is below 0.5 cm 
during the movement and negligible in motionless conditions. 
Meanwhile, the system is able to process the acquired data in less 
than 15 ms - the time elapsed from the acquisition of sensor inputs 
up to their applying to the skeleton model in the control unit.

Moreover it is important to highlight that as discussed in block 
diagrams depicted in Fig 104 and in Fig 105 the combined inertial 
motion capture and camera based environment mapping and recon-
struction open multiple scenarios into the augmented reality applica-
tions. 

Consider now just a limb (e.g. an arm) and start to develop its 
kinematic model. Then think a step beyond and link this analysis ap-
proach to a possible synthesis in a robotic perspective.
It must be remarked that this indicates absolute orientation, there-
fore if used in multi-link structure (e.g. human limbs) relative orienta-
tion have to be retrieved if relative rotation have to be performed for 
kinematic motion of the model. 

Kinematic model of the human body 
If we take into consideration that each sensor computes the absolute 
orientation, starting from the Centre of Gravity (CoG) of the body, 
geometrical relationships (Sciavicco ed., 2008) leads to following 
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equations:

pElbow,0 = pShoulder ,0 + RShoulder
0 ⋅ pElbow   ( 89 )  

and to its similars (ankles, wrists, knees, etc.)
In which Plimb 
with limb = {Cord1, Cord2, Hip, Shoulder,Knee,Ankle,Head}
have been derived from a kinematic body skeleton. 
Moreover it must be noticed that quaternion needed to derive rota-
tion matrices (Sciavicco ed., 2008) are computed locally from each 
node (through  Kalman fi lter Bishop, 2001) while matrices are recon-
structed by the host as follows:

�q =
[
q1 q2 q3 q4

]T
  

( 90 )  

Fig 106. Torque ramp characteristic of the dynamixel servo. B and C 
are  no laod zones, useless from a theoretical point of view, useful for 
real life application (and strictly related to E,F value, minimal torque 
value). A and D value determine the slope of the ramp. 

Fig 107. Equilibrium point hypothesis (Latash 2008) in single mus-
cle refl ex and agonist-antagonist couple for joint motion (picture from 
Latash, 2008).
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R = a

⎛
⎝

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 − q22 + q23 + q24

⎞
⎠

where

a =
1√

q21 + q22 + q23 + q24

and q4 is the scalar part of the quaternion.

Similarly to what happens with threshold position control in agonist-
antagonist muscles couple (Latash, 2008), using these servos it is 
possible to separately control, and just with parameters change,  
both the equilibrium angular position of the joint and its stiffness. The 
resulting dynamical system can be therefore considered globally as-
intotically stable around a phase-state point described by the angle-
torque couple. The effective dynamics of the system from outside 
the equilibrium point toward it depends both on the inner control loop 
and on the environmental condition.

For sake of simplicity the case of a single human upper limb has 
been selected and its movement monitored through two inertial 
platforms (i.e. iNemo boards from STMicroelectronics): one for each 
major kinematic link, the arm and the forearm. 
At each time step the rotations around the articulation of the shoul-
der and of the elbow have been identifi ed. 
Moreover the orientation of each limb is then used to rotate the 
model parts that are kinematically constrained to be linked to each 
other.

�p1,0 = R0
1 · �p1,1

�p2,0 = R0
1R

1
2 · �p2,2 +R0

1 · �p1,1  ( 91 )  

It must be remarked that the rotation matrix obtained for each link is 
absolute, therefore R2

0 is directly computed as follow:

R1
0R2

1 = R2
0

  
( 92 )  

Elementary, single axis, joint rotations have been selected for the 
given kinematic chain of the serial manipulator from the measured 
fi ve DoF.
Under this point of view the rotation matrix can be computed through 
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multiple rotation matrices around rotated cartesian axis: x, y or z.
In particular, the forearm rotations can be described as two rotations 
around elbow articulation in order to be comparable with joint actua-
tion in the robotic structure.

R2
1 = R0

1R2
0
 and R2

1 = RzRy   
( 93 )  

Comparing previous relations it is possible to write:p g p p

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

cosφcosθ sinφ 0

−sinφcosθ cosφ 0

−sinθ 0 cosθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  

( 94 )  

In which, for r22 ≠ 0 and for r33 ≠ 0 , angles φ and θ  can be deter-
mined as follows:

φ = tan−1
r12
r22

 and θ = − tan
−1 r31
r33

This is just to show that using all these relations, the developed  
distributed sensory system and the control hardware architecture it 
is possible to mimic the human body motion in a robotic structure. 
Furthermore it is possible to reproduce recorded movement into a 
topologically (i.e. kinematically) different structure and finally to out-
source the action perception loop...

....but this is another story.
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conclusion

To conclude, wrap-up and propose how to go beyond what it 
has been already done, let me briefl y discuss about this work.
The challenging problem of human machine interaction has 
been addressed from an analysis-to-synthesis perspective in 
the fi eld of motion control. 
The overall problem has been divided into several sub-prob-
lems. 
Major hardware concerns are related to a modular architecture 
able to cope with very different platforms: sensors, actuators, 
power and logic interfaces and mathematical algorithmic cores. 
From a software perspective it is important to distinguish be-
tween low level programming and high level programming. 
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While both need to be developed in such type of solution, the 
former is mainly involved in distributed decentralized control 
(e.g. actuator feedback control under parametric high level 
control), the latter is devoted to complex algorithm implemen-
tation. 
Under these points of view, each of the proposed architectures 
try to effi ciently divide these two aspects: refl exes implementa-
tion and sensor fusion algorithms.
Several algorithms for refl ex-like motor control have been fi rst 
described, then implemented and fi nally tested on real plat-
forms.
A systematic solution to problem of system integration has 
been proposed. In this fi eld a sensor solution and a network 
architecture for embedded sensing has been presented. 
Problems like embedded computing and reduced computa-
tional power on mobile platforms have been considered and 
addressed.
Advances beyond the state of the art are herewith proposed 
for both structures and algorithms.
Wherever it has been possible, multiple real life problems like 
movement disorders or inertial based machine interfaces have 
been considered

As a fi nal remark, the path toward a satisfying solution to the 
problem of motion analysis and synthetic motion generation 
and control in a robotic (and hopefully, everyday life) perspec-
tive, it is still far and hard (very hard). However I think that all 
the presented solutions are in line with the already introduced 
idea that this work should serve just as fi rst gatherer of techno-
logical and mathematical research. 
I also hope that the reader has taken home some food for 
thoughts to further exploit each of these sub-problems from 
both my good solution and from my mistakes. 
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