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Synopsis

We live, as defined by prof. Chua [1], in the age of complexity, whose

ubiquity is the reason of the increasing interest in the scientific com-

munity.

Many of the systems that surround us are complex. The goal of

understanding their properties motivates many researchers. Universal

laws and phenomena are essential to inquiry and to understand and

all scientific endeavor is based on the existence of universality, which

manifests itself in diverse ways. The study of complex systems as a new

effort seeks to increase the ability to understand the universality that

arises when systems are highly complex.

A complex system may be thinked as a system formed out of many

components whose behavior is emergent, meaning that the behavior of

the system cannot be simply inferred from the behavior of its compo-

nents. In fact, it is not possible to describe the whole without describing

each part, and each part must be described in relation to other parts to

understand the behavior of a complex system. The amount of informa-
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tion necessary to describe the behavior of such a system is a measure

of its complexity.

Usually, the behavior of a complex system is investigated considering

how the simple units communicate. Thus, a complex system can be

defined by its network of interactions and studied according to graph

theory.

The aim of this PhD Thesis is to provide new tools and strategies for

the analysis and modeling of complex systems. The designed tools will

be then applied to two particular classes of complex systems: complex

networks and cellular automata.

In particular, several fundamental topics of complex networks have

been faced in this work. Starting from the key issue of data analysis

in networks, which due to the large availability of data has now be-

come a fundamental aspect of the research in complex networks, we

found that existing models do not adequately reproduce the charac-

teristics, often uniques, of the social networks analysed and introduced

a new model of growing network based on an attachment to commu-

nities instead of sparse nodes. We have then considered one of the

major applications of complex networks, i.e., power grids. While most

of the approaches existing in literature are static ones and focuse on

the network topology, we considered a model which explicitely takes

into account the oscillatory dynamics of power grid nodes. Our results

revealed different qualitative scenarios to the network failure. Finally,

the Thesis focuses on a hardware tool for the emulation of a nearest-

neighbor coupled network, which, despite its simple topology, is able
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to generate many complex phenomena and for a set of parameters is

equivalent to a Turing machine.

The Thesis is organized as follow: in Chapter 1 complex systems

and in particular complex networks will be introduced; Chapter 2 and

3 will describe the results obtained on social networks and power grids;

Chapter 4 will introduce a new stand-alone complex system hardware

emulator; in the conclusive Chapter the conclusions will be drawn.
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1

What is Complex

In this Chapter a brief introduction on complex systems is given and

in particular complex networks are taken into account. Starting from

the historical roots of the complex networks analysis some definitions

are given and models for generation of these networks are introduced.

1.1 Complex Systems

One of the most wide and interesting research field is the study of com-

plex systems. Researchers studying complex systems include physicists,

ecologists, economists, engineers of all kinds, entomologists, computer

scientists, linguists, sociologists, and political scientists. The field of

complex systems seeks to explain and uncover common laws for the

emergent, self-organizing behavior seen in complex systems across dis-

ciplines.

A complex system may be imagined as a collection of numerous com-

ponents and interconnections, interactions or interdependencies that

are difficult to describe, understand, predict, manage, design, and/or
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change. Alternatively, a complex system may be considered as a large

network of simple components with no central control, in which emer-

gent complex behavior is exhibited.

In the framework of complex systems a very interesting field is the

analysis of complex networks. Under this consideration, a complex sys-

tem is well-defined by knowing the complex network underlying the

interactions and by analyzing the topological properties, because in-

formation sharing between the parts occurs through links connecting

them.

Many real systems, in fact, may be represented in the form of net-

works of nodes joined together by links. Well-known examples are com-

munication networks such as the Internet or the telephone network,

transportation networks such as airline routes or roads, distribution

networks such as the movements of delivery trucks or the blood ves-

sels of the body, biological networks such as the metabolic networks

or food chain [2]. A very interesting area of complex networks is com-

posed by social networks where people, as individuals, with different

kinds of social relationship (friendship, kinship, status, sexual, busi-

ness or political) are the units of several networks. This brief list shows

how complex networks are all around us being tangible objects in the

Euclidian space or entities defined in an abstract space.
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1.2 Complex Networks

Historically, the analysis of networks has been the domain of discrete

mathematics and in particularly of graph theory. The “conception” of

the theory is universally attributed to Euler with his solution, in 1736,

to the Königsberg bridge puzzle shown in Figure 1.1.

Fig. 1.1. The Königsberg bridge puzzle. (a) The town of Königsberg, now Kaliningrad,

Russia, with seven bridges. (b) Schematic representation of the area with the bridges. (c)

Eulers representation of the problem.

As stated in Euler’s manuscript: “In the town of Königsberg in Prus-

sia there is an island, called “Kneiphoff”, with the two branches of the

river (Pregel) flowing around it. There are seven bridges, a, b, c, d, e, f,

and g, crossing the two branches. The question is whether a person can

plan a walk in such a way that he will cross each of these bridges once

but not more than once.” Euler noticed that physical distance is of no

importance in this problem and represented the topological constraints

of the problem in the form of a graph of nodes and links connecting
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pairs of nodes. Euler divided the nodes into odd and even based on the

parity of their degree, that is, the number of links directly connected

to the node.

He demonstrated that the sum of degrees of the nodes of a graph is

even and every graph must have an even number of odd nodes. Basing

on these results he obtained that to have walk between two arbitrary

nodes for which every link in the graph appears exactly once, the so

called Euler walk, the number of odd nodes can’t be greater than 2.

Therefore, since all four nodes in the Königsberg bridge problem are

odd, Euler demonstrated that there was no solution.

The development of network theory is due in great part to Erdös.

Erdös interest on network theory is linked to a social puzzle: What

is the structure of social networks? This problem was formalized by

Kochen and Pool in the 1950s, leading them to the definition of random

graphs [3]: i.e., graphs in which a link between any pair of nodes exists

with probability p. Erdös, in collaboration with Rènyi, pursued the

theoretical analysis of the properties of random graphs obtaining a

number of important results [4].

In 1960s Milgram brought a series of experiments to estimate the

number of steps in a chain of acquaintances discovering a new property

that many real networks show: the small world effect. In these networks,

in fact, there is a relatively short path between any two nodes, despite

of their often large size [5].

In the last years there has been within the scientific community

a renewed and increasing interest in the study of complex networks
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because it is possible to describe, using a common paradigm, different

kinds of systems.

Watts and Strogatz in 1998 [6] proposed a minimal model for the

emergence of the small-world phenomenon in simple networks. In their

model, small-world networks emerge as the result of randomly rewiring

a fraction p of the links in a d-dimensional lattice.

In the late nineties, Barabàsi and Albert [7] founded that a number

of real-world networks have a scale-free degree distribution with tails

that decay as a power law. So they defined a new model suggesting

that scale-free networks emerge in the context of growing network in

which new nodes connect preferentially to the most connected nodes

already in the network.

After that a plenty of new models and results related to topological

properties, networks models, static and dynamic robustness, epidemic

and rumor spreading, synchronization and collective dynamics, algo-

rithms for finding community structures has been produced within the

scientific community [2].

1.3 Some definitions

In this Section some definitions and notations will be introduced and

the basic quantities used to describe the topology of a network will be

discussed.

A network is a collection of vertices or nodes, that are the funda-

mental units, and edges connecting two vertices. Edge may be directed
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or undirected. An edge is directed if it runs in only one direction, and

undirected if it runs in both directions. A network is directed if all of

its edges are directed.

It is often useful to consider a matricial representation of a network.

A network ofN nodes connected by L links can be completely described

by giving the adjacency (or connectivity) matrix A, a N × N square

matrix whose entry aij (i, j = 1, ..., N) is equal to 1 when the link lij ex-

ists, and zero otherwise. The diagonal of the adjacency matrix contains

zeros. For undirected graphs the adjacency matrix is symmetric.

1.3.1 Node degree and degree distribution

The degree (or connectivity) ki of a node i is the number of edges

incident with the node [2], and is defined in terms of the adjacency

matrix A as:

ki =
∑

jεN

aij . (1.1)

If the graph is directed, the degree of the node has two components:

the number of outgoing links kout
i =

∑
j aij , and the number of ingoing

links kin
i =

∑
j aji. The total degree is then defined as ki = kout

i + kin
i .

The most basic topological characterization of a network can be

obtained in terms of the degree distribution P (k), defined as the prob-

ability that a node chosen uniformly at random has degree k or, equiva-

lently, as the fraction of nodes in the graph having degree k. In the case

of directed networks one needs to consider two distributions, P (kin) and

P (kout).
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1.3.2 Shortest path lengths, diameter and betweenness

An interesting parameter with an important role in the characterization

of the internal structure of a graph is the shortest path. It may be

defined as the path that connects two nodes with the minimum cost,

and it is possible to have more than one shortest path between two

vertices.

It is useful to represent all the shortest path lengths of a network as

a matrix D in which the entry dij is the length of the path from node

i to node j. The maximum value of dij is called the diameter of the

graph.

A measure of the typical separation between two nodes in the graph

is given by the average shortest path length, also known as character-

istic path length, defined as the mean of shortest paths over all couples

of nodes [8]:

L =
1

N(N − 1)

∑

i,jεN,i �=j

dij. (1.2)

A measure of the relevance of a given node can be obtained by

counting the number of shortest paths going through it, and defining

the so-called node betweenness [2]. The betweenness, togheter with the

degree of a node, is one of the standard measures of node centrality,

originally introduced to quantify the importance of an individual in a

social network. Mathematically the betweenness bi of a node i is defined

as:

bi =
∑

i,jεN,i �=j

njk(i)

njk
, (1.3)



8 1 What is Complex

where njk is the number of shortest paths connecting j and k, while

njk(i) is the number of shortest paths connecting j and k and passing

through i.

The concept of betweenness can be extended also to edges. The edge

betweenness is defined as the number of shortest paths between pairs

of nodes that run through that edge.

1.3.3 Clustering

Clustering, also known as transitivity, is a typical property of acquain-

tance networks, where two individuals with a common friend are likely

to know each other [9]. In terms of network topology, transitivity means

the presence of a heightened number of triangles in the network, i.e.,

sets of three vertices each of which is connected to each of the others.

It can be quantified by the clustering coefficient C defined as:

C =
3× number of triangles in the network

number of connected triples of vertices
, (1.4)

where a “connected triple” means a single vertex with edges running

to an unordered pair of others. The factor of three in the numerator

accounts for the fact that each triangle contributes to three triples and

ensures that C lies in the range 0 ≤ C ≤ 1. An alternative definition

of the clustering coefficient, also widely used, has been given by Watts

and Strogatz [6]. A quantity ci (the local clustering coefficient of node

i) is first introduced, expressing how likely ajm = 1 for two neighbors j

and m of node i. Its value is obtained by counting the actual number

of edges (denoted by ei) in the subnetwork of neighbors of i. The local
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clustering coefficient is defined as the ratio between ei and ki(ki−1)/2,

i.e., the maximum possible number of edges in the subnetwork:

ci =
2ei

ki(ki − 1)
. (1.5)

The clustering coefficient of the network is then given by the average

of ci over all the nodes:

C = 〈c〉 = 1

N

∑

i

ci. (1.6)

1.4 Complex Network Models

Measuring some basic properties of a complex network, such as the

average path length L, the clustering coefficient C, and the degree

distribution P (k), is the first step toward understanding its structure.

The next step is to develop a mathematical model with a topology of

similar statistical properties, thereby obtaining a platform on which

mathematical analysis is possible.

1.4.1 Regular Coupled Networks

The first very simple model that we discuss is a network in which each

node is connected to all the other ones of the network. This is called

all-to-all network or globally coupled network.

An all-to-all network is characterized by the smallest average path

length and the largest clustering coefficient. Although the globally cou-

pled network model captures the small-world and large-clustering prop-

erties of many real networks, there are many limitations. In fact, real
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networks are not fully connected and their number of edges is generally

of order N rather than N2 like for fully connected networks.

A widely studied, sparse, and regular network model is the nearest-

neighbor coupled network (a lattice), which is a regular graph in which

every node is joined only by a few of its neighbors [9]. A nearest-

neighbor lattice with a periodic boundary condition consists ofN nodes

arranged in a ring, where each node i is adjacent to its neighboring

nodes, i = 1, 2, . . . , K/2, with K being an even integer. The nearest-

neighbor coupled network is not a small-world network. On the con-

trary, its average path length is quite large and tends to infinity as

N → ∞. An example of regular network that is sparse and clustered,

but has a small average path length is a star-shaped coupled network,

in which there is a center node and each of the other N − 1 nodes only

connects to this center but not among themselves. For this kind of net-

work, the average path length tends to 2 and its clustering coefficient

tends to 1, as N → ∞. The star-shaped network model captures the

sparse, clustering, small-world, as well as some other interesting prop-

erties of many real-world networks and, in this sense, it is better than

the regular lattice as a model of many well-known real networks.

1.4.2 Random Networks

At the opposite end of the spectrum from a completely regular net-

work is a network characterized by the disordered nature of links ar-

rangement between different nodes. First studies on this model were

conducted by Erdös and Rènyi [4], that proposed a model to generate
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random graphs with N nodes and K links. Starting with N discon-

nected nodes, ER random networks are generated by connecting cou-

ples of randomly selected nodes, prohibiting multiple connections, until

the number of edges equals K. An alternative model for ER random

graphs consists in connecting each couple of nodes with a probability

0 ≤ p ≤ 1. The result is a network withN nodes and about pN(N−1)/2

edges.

A central problem of the random graph theory is to determine at

what connection probability p a particular property of a graph will

most likely arise. ER showed that, if the probability p is greater than

a certain threshold pc ∼ (lnN)/N , then almost every random graph is

connected.

The average degree of the random network is 〈k〉 = p(N−1) ∼= pN .

For large N , and fixed 〈k〉, the degree distribution is well approximated

by a Poisson distribution, since all nodes are statistically equivalent.

The average shortest path length L has the same behavior as a

function of N , L ∼ lnN/ln〈k〉. This logarithmic increase in average

path length with the size of the network is a typical small-world effect.

The clustering coefficient of these networks is equal to C = p =

〈k〉/N . This means that a large-scale random network does not show

clustering.

1.4.3 Small-World Models

As discussed in the previous Sections, regular lattices are clustered,

but do not exhibit the small-world effect while random graphs show
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the small-world effect, but do not show clustering. In view of this, the

regular lattice model and the ER random model are not appropriate

to reproduce some important features of many real networks.

Aiming to describe a transition from a regular lattice to a random

graph, Watts and Strogatz [6] introduced an interesting small-world

network model, referred to as WS small-world model.

The model is based on a rewiring procedure of the edges imple-

mented with a probability p. The starting point is a N nodes ring, in

which each node is symmetrically connected to its 2m nearest neighbors

for a total of K = mN edges. Then, for every node, each link is rewired

to a randomly chosen node with a probability p, and preserved with a

probability 1 − p. Limit cases are p = 0 and p = 1 in which a regular

lattice and a random network are obtained respectively. For intermedi-

ate values of p the procedure generates networks with the small-world

property and a non-trivial clustering coefficient, where clustering coef-

ficient and average path length are function of the rewiring probability

p.

For a small probability of rewiring, when the local properties of the

network are still nearly the same as those for the original regular net-

work, and when the clustering coefficient does not differ subsequently

from its initial value, the average path length drops rapidly and is in the

same order as the one for random networks. It is sufficient to make sev-

eral random rewirings to decrease the average path length significantly

but several rewired links cannot crucially change the local clustering

property of the network.
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A typical variant of the WS-model is the one proposed by Newman

and Watts [10]. In this model, there is no rewiring of any connection

between neighbors, but, instead, with probability p a connection be-

tween a pair of nodes is added. With p = 0, the NW model reduces to

the original nearest-neighbor coupled network, and if p = 1 it becomes

a globally coupled network. The NW model is easier to analyze than

the original WS model because it does not lead to the formation of

isolated clusters. For sufficiently small p and sufficiently large N , the

NW model is essentially equivalent to the WS model.

The small-world models are able to reproduce some characteristics

of social networks.

1.4.4 Scale-Free Models

To explain the origin of power-law degree distribution of many real

networks, such as the Internet and WWW, Barabàsi and Albert (BA)

proposed another network model [7]. They argued that many existing

models fail to take into account two important attributes of most real

networks: real networks are open and dynamically formed by continu-

ous addition of new nodes to the network, and new nodes are prefer-

entially attached to existing nodes with large numbers of connections

(the so called rich get richer effect). So the BA model is based on the

concepts of growth and preferential attachment.

Starting with m0 isolated nodes, at each time step t = 1, 2, 3, ..., N−
m0 a new node j with m ≤ m0 links is added to the network. The
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probability that a link j will connect to an existing node i is linearly

proportional to the actual degree of i:
∏

j→i =
ki∑
l kl

.

After t time steps, this algorithm results in a network with N =

t+m0 nodes and mt edges. Growing according to this model, the net-

work evolves into a scale-invariant state: the shape of the degree distri-

bution does not change over time. The corresponding degree distribu-

tion is described by a power law with exponent -3, so the probability of

finding a node with k edges is proportional to k−3. In comparison with

a random graph with the same size and the same average degree, the

average path length of the scale-free model is smaller and the clustering

coefficient is higher.

To account for more realistic models of real networks, preferential

attachment has been modified and generalized in several ways [11].

Node initial attractiveness [12], nonlinear attachment probability [13],

accelerating growth [14] or preferential attachment applied only to the

neighborhood of the newly added nodes [15] are a few examples of the

factors that have been included in the model. In general, preferential

attachment has been shown to be very important for the growth of

social networks [7, 16].
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A New Model for Growing Social

Networks

In this Chapter real social networks extracted from the popular on-line

social network Facebook are analyzed and a new model is introduced.

The main characteristic of this model is an attachment mechanism

based on the existence of network communities, a key feature of real

social networks. This model shares with real networks several peculiar-

ities (such as high levels of clustering, low values of the characteristic

path length and node betweenness, division into communities and het-

erogeneous degree distribution), not captured in other network models.

At the end of this Chapter another issue of these networks is shown.

A time-series is obtained taken into account the number of on-line

friends of a given user to study its determinism.

2.1 On-line social networks

Among complex networks, social ones have a primary role for several

reasons. On one hand, today, they provide a large amount of data that

can be analyzed to test the hypothesis from which new models are
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derived. On the other hand, in an historically perspective, social net-

works analysis started very early (in the 1920s), focusing on relation-

ships among social entities that are subject of research in various dis-

ciplines as sociology, applied anthropology, social psychology, physics

and statistics [17], and often pushed and motivated the research on

complex networks and the definition of new network models.

Nowadays, there is an explosion of on-line social networks, which,

thanks also to the large dataset they constitute, often offer interesting

case studies. Among these, Facebook, originally developed for students

of U.S. colleges, is one of the most popular on-line social networks

that today put in relation people from many countries of the whole

world. Users may share pictures, video, music, add friends and talk

with them with private or public messages, add applications or games,

update their personal profile, join groups and networks organized by

city, workplace, school, region, interest. It is available in more than 65

languages, and at present there are about 500 millions of active users

in the world with an average number of friends for user of about 130

persons [18].

An important characteristic of on-line social networks is that users

tend to form groups, called communities, where the connections be-

tween nodes of the same community are more dense than between nodes

of different communities [19]. These communities represent the different

groups a user belongs to, for instance, schools, works, etc. The presence

of communities is not limited to on-line social networks, and the prob-

lem of community detection in complex networks has now become an
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important topic. In particular, several algorithms for community de-

tection have been developed. Among these, there are algorithms based

on spectral graph partitioning, hierarchical clustering, centrality and

modularity optimization [2, 20], as well as on other techniques [21, 22]

such as the method proposed by Wu and Huberman [23] and based on

voltage drops across the network.

2.2 Analysis of the dataset

Analysis on a dataset of on-line social networks from Facebook has

been conducted.

On the basis of 100 volunteer participants (18-60 years of age), de-

veloping an appropriate application, for each user the so-called friends

network has been extracted: for a given user A, the nodes of his friends

network represent the users to which he is connected to, i.e., the friends,

while the links are the connections existing between his friends. There-

fore, each of the networks analyzed in this work represents the subnet-

work of first neighbors of the user A extracted from the entire Facebook

network.

An example of such network is reported in Figure 2.1 where a net-

work with 79 nodes and 338 edges is shown. The graphic user interface

of the developed application is also shown. It allows the user to extract

the main component of the network [2] and to measure the most impor-

tant network characteristics like characteristic path length, clustering

and so on.
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The number of nodes of the networks in the dataset varies from

62 to 694, while the number of links varies from 634 to 29731. The

average number of friends is about 130 persons for user. When the main

component of the network is considered, removing isolated nodes and

secondary components, completely connected networks with a number

of nodes ranging from 53 to 592 and a number of links ranging from

372 to 24909 are obtained.

Fig. 2.1. An example of the network of the used dataset and the graphic user interface

of the developed application.

The analysis of the topological characteristics of the friends networks

of our dataset revealed a great heterogeneity. Common characteristics

of these networks are an high clustering coefficient, a low characteristic
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path length and a low node betweenness compared to that of random

networks with the same number of nodes and links. Furthermore, such

networks are characterized by a significant presence of communities of

different sizes, that point out the peculiarity of having friends belong-

ing to different contexts. The analysis carried out has been focused on

the following topological features [2]: number of nodes N , character-

istic path length L, average degree 〈k〉, clustering coefficient C, node

betweenness B, number of communities NC and type of degree distri-

bution P (k). Table 2.1 reports several examples of these parameters

measured for the networks in our dataset. Interestingly, our results [24]

reach the same conclusions on high clustering coefficient and low char-

acteristic path length of [25, 26] which have access to a much larger

database of Facebook data.

As concerns the degree distribution, different types of distributions

have been found. To characterize such variability of the degree distri-

bution a statistical analysis has been carried out. Consequently, it has

been found that, on the basis of their degree distribution, the networks

under analysis can be grouped in two main classes: networks with a

log-logistic–like degree distribution (an example is shown in Figure 2.2)

and networks with a normal–like degree distribution (Figure 2.3). This

classification has been performed by carrying on a χ-squared test [27]

on the network probability density function with a significance level

α = 0.05.

These networks have been compared with ER and BA models. In

particular, ER and BA networks have been generated in such a way
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Fig. 2.2. Degree distribution P (k) of a real network of 154 nodes. The continuous line

represents a log-logistic fitting.
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Fig. 2.3. Degree distribution P (k) of a real network of 71 nodes. The continuous line

represents a normal fitting.
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Real networks

N L <k> C B NC type of P (k)

58 2.275 10.724 0.726 0.057 6 log-logistic

59 2.285 12.576 0.735 0.080 7 log-logistic

71 2.172 12.628 0.538 0.039 6 normal

89 2.671 11.303 0.692 0.079 12 log-logistic

91 2.488 9.538 0.675 0.050 10 log-logistic

102 2.910 7.784 0.560 0.050 11 log-logistic

105 2.301 10.666 0.609 0.033 4 log-logistic

129 2.449 18.108 0.653 0.032 4 normal

138 2.733 8.811 0.621 0.037 15 log-logistic

140 2.829 10.085 0.601 0.033 14 normal

146 2.643 20.739 0.655 0.032 6 log-logistic

154 2.566 13.751 0.592 0.025 11 log-logistic

163 2.162 34.687 0.566 0.016 9 normal

209 2.612 12.665 0.516 0.018 20 log-logistic

234 2.195 28.393 0.578 0.011 9 log-logistic

242 2.190 29.900 0.572 0.011 9 log-logistic

266 2.690 19.015 0.539 0.014 13 log-logistic

340 2.338 28.214 0.400 0.008 8 log-logistic

592 2.419 46.947 0.467 0.005 13 log-logistic

Table 2.1. Topological measures for some examples in our dataset of friends networks.

that they have the same number of nodes and the same average de-

gree of the real networks of Table 2.1, so that they can be compared

to real networks with respect to the other topological parameters such

as L, C, B, NC and type of P (k). Table 2.2 and Table 2.3 report the

topological parameters obtained for ER networks and for BA networks,

respectively. The comparison revealed that, in general, real networks

have an higher clustering coefficient and a lower characteristic path
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length with respect to ER and BA models and a different degree dis-

tribution.

This has been considered as an indication of the fact that in the

real networks links are established in a different way with respect to

BA and ER models. In fact, neither with the preferential attachment of

BA model, where there are some high-degree nodes that acquire new

links at higher rates than low-degree ones, nor with random linking

mechanism of ER model, the topological features observed in the real

networks, including also the low number of communities (indicating a

strong tendency to form communities) and the type of degree distribu-

tion, have been obtained.

For these reasons, a new model able to account for the variability of

the observed degree distributions as a function of its parameters and

able to reproduce the other characteristics of friends networks has been

developed.

2.3 The FA model

Growing network models are characterized by the way in which new

nodes attach to the others. The most important model of growing net-

works is the BA model [7], introduced in the previous Chapter, but the

existing models are not able to reproduce all the characteristics of the

real on-line social networks analysed.

In fact, in the real networks derived from Facebook, it can be ob-

served a strong tendency of new nodes (i.e., new Facebook users) to
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ER networks

N L <k> C B NC type of P (k)

58 1.907 11.103 0.197 0.031 11 normal

59 1.856 12.102 0.225 0.029 8 normal

71 1.872 13.239 0.181 0.024 7 normal

89 2.094 11.011 0.133 0.024 10 normal

91 2.200 9.890 0.115 0.026 8 normal

102 2.434 8.059 0.079 0.028 22 normal

105 2.177 10.952 0.107 0.022 13 normal

129 1.922 18.140 0.138 0.014 12 normal

138 2.455 9.159 0.073 0.021 25 normal

140 2.353 10.343 0.073 0.019 16 normal

146 1.900 20.918 0.143 0.012 13 normal

154 2.223 12.935 0.080 0.016 16 normal

163 1.791 33.939 0.209 0.010 12 normal

209 2.413 12.115 0.057 0.013 19 normal

234 1.914 27.812 0.122 0.008 16 normal

242 1.898 29.835 0.121 0.007 14 normal

266 2.170 18.992 0.072 0.009 32 normal

340 2.013 27.759 0.083 0.006 17 normal

592 1.944 46.659 0.079 0.003 18 normal

Table 2.2. Topological measures for ER networks.

link to nodes belonging to a community. To make an example, in such

networks, often a community representing the high school classmates

of the given user is present. It may happen that a classmate makes a

search for known people and, once he/she founds the given user, he/she

connects not only to the given user, but also to several of the individu-

als belonging to the high school classmate community. Therefore, when

a new user links to an existing one, it happens often that, since he/she
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BA networks

N L <k> C B NC type of P (k)

58 1.961 10.897 0.470 0.045 9 power law

59 1.942 12.068 0.476 0.044 10 power law

71 1.950 12.789 0.512 0.041 8 power law

89 2.186 11.169 0.390 0.032 17 power law

91 2.192 9.495 0.377 0.043 18 power law

102 2.515 7.255 0.219 0.039 22 power law

105 2.212 10.648 0.427 0.035 20 power law

129 2.055 18.806 0.476 0.023 15 power law

138 2.535 7.855 0.156 0.028 29 power law

140 2.367 9.800 0.275 0.024 30 power law

146 2.055 19.507 0.364 0.017 11 power law

154 2.186 13.610 0.346 0.019 20 power law

163 1.848 35.975 0.534 0.013 11 power law

209 2.333 13.627 0.301 0.015 33 power law

234 2.030 28.171 0.452 0.012 11 power law

242 2.016 29.636 0.454 0.012 12 power law

266 2.143 20.383 0.371 0.012 23 power law

340 2.098 29.741 0.367 0.008 16 power law

592 2.097 46.716 0.373 0.005 14 power law

Table 2.3. Topological measures for BA networks.

also knows other ‘friends’ of the user, he/she links with several nodes;

at this points two possibilities arise: 1) the ‘friends’ belong to a com-

munity to which the new user has some relations; 2) the ‘friends’ don’t

belong to a community. These two possibilities represent two differ-

ent kinds of social relations with the given user: a relation involving

a community shared by the new and the given user or a relation just

involving some sparse common friends (not forming a community). In
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the first case, the community of the user is enforced as result of the

new connections.

These considerations motivated the idea underlying the model, re-

ferred to as friend attachment (FA) model, where a new attachment

mechanism has been implemented. In particular, the attachment can

occur either with nodes belonging to a community or with nodes picked

at random in the whole network. More in details, the growth of the FA

model is ruled by the following algorithm. The algorithm starts from a

fully connected network of three nodes. Then, at each time step:

1. the communities C1, C2, . . . , Ch in which the network is divided are

calculated;

2. a new node is added;

3. the attachment mechanism is selected: with probability p random

attachment is selected; with probability 1−p community attachment

is selected;

4. in case of random attachment, the new node is linked with nodes

picked at random (uniform distribution) from the entire network; in

particular,mp new links are generated, withmp chosen with uniform

distribution probability in the interval [1, np];

5. in case of community attachment one of the communities C1, C2, . . . ,

Ch is chosen (with uniform distribution probability). Let us indicate

this community as Cj: the new node is linked with nodes picked at

random (uniform distribution) from Cj; in particular, m1−p new

links are generated, with m1−p chosen with uniform distribution

probability in the interval [1, n1−p].
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The model introduced contains several parameters which can be

here summarized: the threshold parameter p (ruling at each time step

if random or community attachment has to be chosen); np, i.e., the

maximum number of connections made to existing network nodes in

case of random attachment; n1−p, i.e., the maximum number of con-

nections made to existing nodes of a network community in case of

community attachment.

These parameters make the model quite general and able to account

for the great variability of real social networks previously shown. The

threshold parameter p allows to obtain networks with different char-

acteristics, ranging from a completely random network (p = 1) to a

single community network (p = 0). When not differently specified, np

is set to the number of existing nodes in the network and n1−p is set to

the size of the chosen community. Finally, it is worth remarking that

at each time step the communities of the network are recalculated and

that the initial network configuration is not divided into communities.

For community detection the so-called Louvain Method [28] has been

used.

The FA model exhibits the small-world effect and it is characterized

by a great variety of possible degree distributions. These distributions

have been classified according to the results of a χ-squared tests on their

probability density functions with significance level α = 0.05. Varying

the threshold p, in fact, different degree distributions can be obtained:

log-logistic–like distributions (two examples are shown in Figure 2.4

and Figure 2.5 obtained with p = 0.5), and normal–like distributions
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Fig. 2.4. Degree distribution P (k) for a FA network. The number of nodes is 154. The

continuous line represents a log-logistic fitting.
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Fig. 2.5. Degree distribution P (k) for a FA network. The number of nodes is 600. The

continuous line represents a log-logistic fitting.
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Fig. 2.6. Degree distribution P (k) for a FA network. The number of nodes is 71. The

continuous line represents a normal fitting.
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Fig. 2.7. Degree distribution P (k) for a FA network. The number of nodes is 600. The

continuous line represents a normal fitting.
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(as shown in Figure 2.6 and Figure 2.7, obtained with p = 0.8). Varying

these parameters it is also possible to obtain networks with power law

degree distribution, as shown in Figure 2.8.
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Fig. 2.8. Degree distribution P (k) for a network obtained with FA model. The number

of nodes is 250 and p = 0.05, np = 2.

The comparison between FA model and the real social networks an-

alyzed has been performed in terms of characteristic path length L,

clustering coefficient C, node betweenness B, number of communities

NC and type of degree distribution P (k). In Table 2.4 some examples

of networks generated by the introduced model are reported. Networks

with the same number of nodes of the real networks in Table 2.1 have

been generated, so that they can be directly compared. The other pa-

rameters of the model (p, np and n1−p) have been fixed by trial and
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error in order to obtain approximatively the same average degree 〈k〉 of
the real network. Then, the topological features (L, C, B, Nc and type

of P (k)) have been extracted so that they can be compared with those

of the real networks. As it can be observed the matching of L, C, and B

is quite good. Furthermore, the model may account for different degree

distributions (the type of degree distribution also matches with that of

the real networks). Finally, in many cases the number of communities

is similar to that really observed in networks with the same number

of nodes. More precisely, if the mean square error (MSE) between the

number of communities in the model and in the real case is calculated

for ER networks (Table 2.2), BA networks (Table 2.3) and FA net-

works (Table 2.4), one obtains MSEER = 28.8, MSEBA = 55.9 and

MSEFA = 5.4. FA networks thus predict the number of communities

more accurately than ER and BA networks. As an example, in Figures

2.9 and 2.10 a real network and a FA network generated with the same

number of nodes (N = 154) are shown, respectively. The number of

communities is quite similar (11 for the real network, 12 for the FA

network).

The results discussed above refer to networks obtained by assum-

ing as initial network configuration a fully connected network of three

nodes and that the communities are detected by using the Louvain

method [28]. As initial configuration, the different topologies shown

in Figure 2.11 have been considered, with the aim to study if these

hypotheses affect the behaviour of the FA model: a fully connected

network of three or five nodes (Figure 2.11(a) and (c)); an array of five
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Fig. 2.9. A real network with 154 nodes. The network is divided in 11 communities.

Fig. 2.10. A FA network with 154 nodes. The network is divided in 12 communities.
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FA model

N L <k> C B NC model parameters type of P (k)

58 2.804 10.413 0.725 0.106 4 p=0.35, np=45, n1−p=21 log-logistic

59 2.401 12.610 0.758 0.087 4 p=0.3, np=65, n1−p=21 log-logistic

71 2.127 12.197 0.449 0.033 5 p=0.3, np=20, n1−p=20 normal

89 3.471 10.921 0.674 0.081 5 p=0.3, np=60, n1−p=2 log-logistic

91 2.810 9.560 0.606 0.043 9 p=0.4, np=60, n1−p=5 log-logistic

102 3.607 7.156 0.525 0.063 9 p=0.1, np=12, n1−p=2 log-logistic

105 2.736 10.209 0.578 0.039 7 p=0.05, np=19, n1−p=1 log-logistic

129 2.9230 18.186 0.578 0.035 3 p=0.2, np=45, n1−p=1 normal

138 3.428 7.913 0.526 0.042 16 p=0.5, np=60, n1−p=4 log-logistic

140 3.293 11.500 0.590 0.038 7 p=0.1, np=24, n1−p=1 normal

146 2.270 20.095 0.510 0.018 6 p=0.4, np=130, n1−p=10 log-logistic

154 2.303 12.194 0.416 0.018 12 p=0.1 log-logistic

163 2.232 30.023 0.526 0.016 9 p=0.1, np=60, n1−p=15 normal

209 3.074 11.428 0.514 0.021 13 p=0.5, np=52, n1−p=6 log-logistic

234 2.899 20.357 0.481 0.016 5 p=0.1, np=40, n1−p=2 log-logistic

242 2.518 27.301 0.435 0.013 6 p=0.01, np=40, n1−p=40 log-logistic

266 3.071 18.105 0.528 0.016 8 p=0.3, np=60, n1−p=5 log-logistic

340 2.040 27.741 0.394 0.009 10 p=0.25, np=1 log-logistic

592 1.941 59.003 0.341 0.003 5 p=0.2, np=30 log-logistic

Table 2.4. Topological measures for FA networks.

nodes (Figure 2.11(b)); a star network with five nodes (Figure 2.11(d));

and several others (Figure 2.11(e)-(g)). The numerical simulations per-

formed have shown that the results discussed above do not depend on

the initial configuration used. The application of different algorithms

for community detection (and, in particular, spectral graph partition-

ing, hierarchical clustering and the algorithm by Girvan and Newman

[2, 20]) has led to the same conclusion.
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Fig. 2.11. Initial configurations used for the FA model.
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2.4 Analysis of the determinism of time-series

extracted from social systems

Another interesting issue that has been studied on the networks of our

dataset is the observation of the time evolution of the number of the

on-line friends [29]. For this analysis an appropriate application has

been developed and the number of on-line friends of a Facebook user

with about 300 friends has been monitored. The number of friends

is constant during this analysis to avoid erroneous measurements and

the application has been used for a week with sampling frequency of 5

minutes, obtaining the trend shown in Figure 2.12 where the maximum

is 27 while the minimum is 2.

To correctly study this trend the time series has been filtered to

eliminate the sinusoidal component that represents the day and night

cycle. To obtain this the power spectrum of the time series has been

analyzed to know at which frequency to apply a filter. So a second

order Butterworth high pass filter with cutoff frequency of 0.2 Hz has

been applied, obtaining the signal shown in Figure 2.13.

The Kaplan test [30] has been applied to detect determinism in this

time series. The results of this analysis are shown in Figure 2.14, where

the trend of Ln parameter for the Kaplan test of the filtered time series

is shown. If this parameter is high, and remains high as n is varied, this

can be considered an indication of the presence of determinism in the

time-series.
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Fig. 2.12. Trend of the number of on-line friends of a Facebook user for a week, sampled

with frequency f=5 min.

For comparison Figure 2.15 shows the trend of the Ln parameter for

the Kaplan test for a surrogate signal with the same mean and variance

of the filtered signal.

A deterministic component in the time series obtained starting from

on-line Facebook users is evident: in fact the trend of Ln parameter in

the first case is totally different than in the second one.

We remark that often the lack of data availability and of adequate

analysis tools makes impossible or very difficult the analysis of a net-

work under the point of view of its time evolution, so that in most

of the cases the links are considered static. However, as this example

shows, links may evolve in time and, for instance, be active at different
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Fig. 2.13. Signal obtained applying the Butterworth high-pass filter.

times. Such analysis is one of the most interesting open problems now

faced in complex network theory.

2.5 Conclusions

In this Chapter, starting from the analysis of a dataset of on-line so-

cial networks, i.e., friends networks extracted from Facebook on the

basis of a volunteer participation to the project, a new model of grow-

ing complex networks has been introduced. The idea underlying this

model is based on a possible mechanism explaining the growth of the

friends networks analyzed. In such networks, in fact, communities play

a fundamental role, being eventually also involved in the growing pro-

cess of the network itself. In particular, when a new node attaches to
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Fig. 2.14. Trend of the Ln parameter for the Kaplan test of the filtered time series.

the existing ones, due to the strong social interactions in the networks

analyzed, it may happen that the selected nodes are not uncorrelated,

but belong to the same community. This mechanism has been explic-

itly incorporated in the model, leading to a new attachment rule. It

has been then shown that this model is able to reproduce the main

features observed in the networks of the dataset, such as high cluster-

ing coefficient, low characteristic path length, low node betweenness,

strong division in communities and variability of degree distributions.

The topological features of the introduced model (including the de-

gree distribution type) are obviously influenced by the model parame-

ters in a way not simple to be characterized. The comparison between

real networks and those generated with the model has been carried
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Fig. 2.15. Trend of the Ln parameter for the Kaplan test of a random signal with with

the same mean and variance of the filtered signal.

out by fixing the model parameters to match only the node number

and the average degree of the real network, so that the similarity of

the other topological features can be considered in favor of the capa-

bility of the model to capture the real attachment mechanism of the

social networks investigated. This could imply that, depending on the

relationship involved in the formation of the social network, a richer-

get-richer principle or other attachment mechanisms could be at the

basis of the network growth.

Another aspect of the analysis of real social networks has been shown

in the last Section where the number of on-line friends using a Facebook

account has been analyzed showing the presence of a deterministic com-
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ponent. Including the time-dependence in complex networks makes the

analysis more difficult, but at the same time may reveal new interesting

features.





3

Dynamical Analysis of the Italian

High-Voltage Power Grid

In this Chapter, the tools from complex networks theory are used for

the analysis of the Italian high-voltage (380 kV) power grid. The topo-

logical properties of the network are investigated and, using a dynam-

ical model based on Kuramoto-like oscillators, the synchronization of

nodes is analyzed. Synchronization in the network represents the nor-

mal working operating regime, after which the effect of perturbations

has been studied to investigate the dynamical robustness of the net-

work to faults, then the relationship between threshold and topological

properties and the time to obtain complete loss of synchronization is

investigated. The analysis allows to define several dynamical param-

eters whose relationship with the topological ones is not-trivial. The

results obtained are then compared with those obtained on a surrogate

random network.



42 3 Dynamical Analysis of the Italian High-Voltage Power Grid

3.1 Topological analysis of power grids

The rapid development of complex network theory provides new re-

search tools for complex power grids e. g. to analyze error and attack

resilience of both artificially generated topologies and real world net-

works where nodes are generators, substations and transformers and

edges are high-voltage (220-380-400 kV) transmission lines.

Power grids are one of the most attractive case studies of complex

networks, together with social networks, so that many works [31, 32]

focused on them, although often without considering the specific nature

and characteristics of nodes and links, but working on a higher level of

abstraction.

The analysis of the topology of power grids of the major European

countries carried out in [33] and [34] allows to reveal some common

characteristics of these networks: (a) most of them are small world; (b)

they are very sparse; (c) the link distribution is exponential; (d) these

networks are weakly or not correlated.

Another interesting topic, specially when the analysis of blackouts

is dealt with, is identification of critical lines and modeling of cascad-

ing failures [31, 32, 34, 35]. Such phenomena are often explained by

focusing on the topological properties of the network. In fact, in most

of the above mentioned works, the approach is essentially static, and

the dynamical characteristics of the nodes are not considered. However,

recent works [36, 37, 38], have removed this hypothesis by applying to
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the power grids analysis the Kuramoto model of coupled oscillators [39]

and studied the power grid behavior in terms of synchronization.

Power systems depend on synchronous machines for electricity gen-

eration and so the synchronism of the machines that form the system is

a necessary condition for the whole network to operate in a proper way.

The concept of stability of a power system is therefore closely linked

to that of synchronism. An important form of stability for an electri-

cal network is the so-called transient stability [37], which is the ability

of the network to maintain synchronism when it is subjected to tran-

sient disturbances such as faults in transmission systems or problems

with generators or heavy loads. If the perturbations cause a limited

angular separation between the components of the system, the system

maintains synchronism.

The response of the system to these perturbations involves large

ranges of machine rotor angles values, power flows, voltages at the

nodes, and other variables of the system. In this case it is possible

that the automatic security devices of the nodes isolate parts of the

system to prevent damages. For example, the Italian blackout of 2003

was caused by the fault on a line and caused a series of failures that

led to loss of synchronism of the Italian power system with respect to

the rest of Europe [40].
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3.2 Kuramoto-like model of generators and

substations

Following [36], a Kuramoto-like second-order model of electric systems

can be obtained using a power balance equation to describe each gen-

erator or machine. A generator converts some source of energy into

electrical power, while the reverse is true for a machine. The turbine

of the generic generator i produces electrical power with a frequency

that is close to the standard frequency Ω of the electric system (50 or

60 Hz):

θi = Ωt + θ̃i, (3.1)

where θi is the phase angle at the output generator i and θ̃i is the

deviation from the uniform rotation. During the rotation the turbine

dissipates energy at a rate proportional to the square of the angular

velocity θ̇i:

Pdiss = KDθ̇i
2

(3.2)

or it accumulates kinetic energy

Pacc =
1

2
I
d

dt
(θ̇i)

2, (3.3)

where I is the moment of inertia.

The condition for the power transmission is that devices do not

operate in phase, being the mismatch between the rotators of two of

them (devices i and j) indicated by:

Δθ = θj − θi = θ̃j − θ̃i, (3.4)
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considering that all the oscillators share the same common frequency

Ω. As a function of this phase difference a power is transmitted:

Ptransmitted = −PMAX sinΔθ. (3.5)

Each generator or machine is described by a power balance equation

of the type:

Psource = Pdiss + Pacc + Ptransmitted. (3.6)

Substituting expressions (3.2), (3.3) and (3.5) in equation (3.6) and

assuming that dissipation is the same for all sources, it is possible to

obtain a Kuramoto-like equation for the node i:

¨̃
θi = −α

˙̃
θi + Pi + PMAX

∑

j �=i

aj,i sin (θ̃j − θ̃i), (3.7)

where α is the dissipation parameter, Pi is the power generated or

absorbed and contains informations on the nature of the device and it

is positive for a generator that is a source of power while negative for

an absorbing machine, aj,i is the element of the adjacency matrix and

accounts for the topology of the power grid.

The Italian high-voltage (380 kV) power grid is taken into account

in this Chapter. It counts 127 nodes, divided into 34 sources (hydro-

electric and thermal power stations) and 93 substations, and 342 edges.

Informations on the location of generating plants and substations have

been obtained from the UCTE map [41] and the data used in [31, 32, 42]

and have been used to obtain the elements of the adjacency matrix.

For this network some significant topological parameters such as de-

gree distribution, clustering and betweenness have been calculated. Av-
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Fig. 3.1. Degree distribution of the high-voltage Italian power grid network.

erage values for these three parameters are 〈k〉 = 2.6850, 〈c〉 = 0.1561,

〈b〉 = 0.2032. In Fig. 3.1 and Fig. 3.2 the degree and betweenness dis-

tributions are shown respectively. It is possible to observe that there

are a lot of nodes characterized by a low degree and a low betweenness,

a characteristic of the Italian power grid network that it is possible

to correlate to the streched shape of the Italian peninsula (and conse-

quently on the related power grid). In [38] the topological vulnerability

and improvability of the Italian high-voltage (380 kV) power grid have

been analyzed. The removal of a single edge, as the line connecting

Laino and Rossano, is sufficient to isolate seven nodes from the rest of

the network and Italian power grid, compared with Spanish and French

ones, is the most vulnerable but also the most improvable network.
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Fig. 3.2. Betweenness distribution of the high-voltage Italian power grid network.

3.3 Analysis of the Italian high-voltage power grid

In the Italian high-voltage (380 kV) power grid two are the kinds of

network nodes: generators and substations [43]. The system has been

simulated using equal parameters for all the nodes and links. It has

been considered unitary absorbed power for substations (1 pu) and, in

order to respect the equality between generated and absorbed power,

the power supplied by generators are all been put equal to 2.7353 pu.

The dissipation parameter α is the same for all the nodes and its value

is α = 0.1. Concerning the coupling parameter PMAX, numerical simu-

lations were carried out to find the value that allows to obtain complete

synchronization. It was found that for values less than 5 it is not possi-

ble to obtain complete synchronization. In fact, the difference between
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two phases is subjected to fluctuations that persist over time. For val-

ues greater or equal to 5, the network reaches synchronism: differences

between two phases, apart from the initial transient, stabilize at a value

that remains constant over the time, that means that the units have

the same frequency.

Transient stability of the network applying disturbances ΔPi to the

nodes has been then studied. This extra energy is taken from the ki-

netic energy of the rotators that after few time units restore normal

operation. This type of perturbation constitutes a realistic model of an

unbalanced power due to faults in transmission systems or problems

with generators or heavy loads.

When a perturbation ΔPi is applied to node i equation (3.7) be-

comes:

¨̃
θi = −α

˙̃
θi + Pi +ΔPi + PMAX

∑

j �=i

aj,i sin (θ̃j − θ̃i), (3.8)

while the other dynamics remain unchanged.

As result of the application of the perturbation, two outcomes are

possible:

1. the network is able to return to synchronism condition, despite

the initial fluctuations that affect the transmitted power;

2. the network is not able to restore the synchronism and fluctuations

in the phases difference persist over time. In this case the system loses

its stability even when perturbations end.

To evaluate the perturbation response of each node, once synchro-

nization between nodes has been established, increasing values of per-
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turbations have been applied for 50 seconds. In this way a threshold

P̃i has been defined for each node, representing the minimum value of

node perturbation that causes loss of synchronization in the network:

P̃i = (ΔPi)MIN . (3.9)

The treshold distribution is shown in Fig. 3.3. The different thresh-

old values indicate that not all nodes respond in the same way. An

analysis to investigate the correspondence between threshold and topo-

logical properties of the node has been carried out. In Fig. 3.4 the trend

of the threshold with nodes degree is shown. The value of the threshold

tends to increase with increasing value of the degree. It is sufficient to

apply a lower disturbance to nodes with few links to lose the network

synchronism.

To fully investigate the response of the network, and the failure

propagation, an high perturbation (20 pu) has been applied to each of

the nodes.

Two different responses have been observed:

1. cascading failure: the perturbed node fails (loss of synchronism)

and the failure involves first the nearby elements and then propagates

to other (more for) nodes;

2. fast failure: all the nodes fail in short time.

These two kinds of response can be distinguished by comparing for

each node the time t̃ defined as the time from the application of the

perturbation to the complete loss of the network synchronism.
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Fig. 3.3. Threshold distribution of the Italian high-voltage power grid.

Fig. 3.5 shows the behaviours of nodes 1 (in blue) and 68 (in red)

that may be considered as examples of the two cases. In fact, these two

nodes are characterized respectively by degree 1 and 7, betweenness 0

and 0.5385 and threshold values of 4 and 11, so node 1 is more periph-

eral than node 68. There is a graduality in the failure propagation of

node 68 while an immediate propagation is obtained in node 1. The

two graphs represent the trend of θ1 and θ68 respectively showing the

different propagation delay of perturbation. Time for complete desyn-

cronization is respectively t̃1 = 13.4947s and ˜t68 = 105.8578s for node

1 and node 68.

In Fig. 3.6 the parameter t̃ is shown for all the network nodes, while

in Fig. 3.7 the parameter t̃ with respect to node degree is shown. The
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Fig. 3.4. Threshold P̃ with respect to node degree.

bigger is the degree of a node the bigger is the time interval t̃ to lose

synchronization. Nodes with high degree tend to cascading failures.

3.4 Comparison with surrogate network

A comparison between the Italian high-voltage power grid and a surro-

gate random network in order to understand which features are peculiar

of the Italian high-voltage power grid and which, on the contrary, are

common features of these network is discussed in this Section. The

surrogate data has been generated by considering the same number

of nodes, the same number of links (and so the same degree) and a

different arrangement of the links. In particular, in the surrogate data

the links are randomly established. Therefore, an Erdös-Renyi network



52 3 Dynamical Analysis of the Italian High-Voltage Power Grid

0 100 200 300 400 500
0

20

40

60

80

100

120

140

t

d n

0 200 400
−15000

−10000

−5000

0

5000

t
� 1

0 200 400
−2

−1

0

1
x 10

4

t

� 68

Fig. 3.5. Time to obtain complete loss of desynchronization (desynchronized nodes dn =

127) for nodes 1 (blue) and 68 (red). The beahaviour of θ1 and θ68 are showed respectively

on the top and down of the picture.

with 127 nodes and 342 links has been built up. This network has then

been used to perform a dynamical simulation with the Kuramoto-like

model discussed in Section 3.2.

The average degree is 〈k〉 = 2.6772; the clustering coefficient is

〈c〉 = 0.0198 and the betweenness is 〈b〉 = 0.1981. Compared with

the values of the Italian high-voltage power grid, it can be observed

that the clustering coefficient is lower. It should be also noted that this

random network differs from the Italian high-voltage power grid for the

fact that it does not take into account physical geographic constraints

which, on the contrary, are a key factor of the Italian high-voltage

power grid.
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Fig. 3.6. Time for the complete loss of the synchronization for the Italian power grid

when a perturbation ΔP = 20pu is applied to the node i.

The degree distribution and the betwenness distribution are re-

ported in Figs. 3.8 and 3.9, respectively. No significant differences with

the corresponding distributions observed in the Italian high-voltage

power grid emerge.

The Kuramoto-like model in equation (3.7) has been then simu-

lated on the surrogate network. The simulations were first devoted to

derive the minimum value of PMAX leading to synchronization. It has

been obtained that PMAX = 13 is needed to obtain complete synchro-

nization. Interestingly, this value is significantly larger than the value

PMAX = 5 of the real network. This means that the surrogate net-

work is more difficult to be synchronized. Then, the transient stability

analysis of the surrogate network has been carried out. The threshold
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Fig. 3.7. t̃ with respect to node degree when a perturbation ΔP = 20pu is applied.

distribution obtained for the surrogate network is shown in Fig. 3.10.

It can be observed that the threshold values are also on average larger

than the corresponding values in the real network. The conclusion is

that the surrogate network seems to be more robust.

The analysis of the threshold with respect to the node degree has

been repeated for the surrogate network. The results are shown in

Fig. 3.11, where the same tendency of the threshold to increase with

the node degree can be observed.

As concerns the failure analysis, also in this case both cascading

failures and fast failures have been observed. Also for the surrogate

network cascading failures are associated with high degree nodes.
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Fig. 3.8. Degree distribution of the surrogate network.

3.5 Conclusions

In this Chapter a study of the Italian high-voltage power grid has been

proposed. A Kuramoto-like second-order model has been taken into

account to model the node dynamics. It is interesting to note that

the mapping between oscillators and power grid nodes can be made

quantitative and under some approximations the class of Kuramoto-

like models with bimodal distribution of the frequencies is the most

appropriate choice. In fact in the power grid there are two kinds of

oscillators: “sources” and “consumers”. Dynamical parameters such as

the minimum value of perturbation leading to desynchronization and

the time to reach the complete loss of synchronism have been intro-

duced. A non-trivial relationship between dynamical and topological
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Fig. 3.9. Betweenness distribution of the surrogate network.

parameters of the network has been observed. In general, the higher is

node degree the higher is the minimum absorbable perturbation and

the bigger is the time interval to lose synchronization with cascading

failure, but it can be concluded that the dynamical parameters studied

are not a function of a single topological parameter.

The analysis has been then repeated for a surrogate network with

the same number of nodes and links, but with random links in order

to understand which specific features are related to the particular ge-

ographical shape underlying the Italian high-voltage power grid. The

conclusions that can be drawn is that the surrogate network is more

difficult to synchronize but also more robust, which can be explained

with the particular geographic configuration of the Italian peninsula.
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Fig. 3.10. Threshold distribution of the surrogate network.
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Emulation of complex networks: the

Wolfram Machine

Most of the tools for the study of complex systems are theoretical

and/or software. In this Chapter, a new stand-alone complex system

hardware emulator, called the Wolfram Machine, is presented. The sys-

tem is a programmable hardware cellular automaton able to emulate

and show the outcome of all elementary cellular automata, allowing for

their experimental analysis. The system consists of an LED matrix and

a board equipped with a microcontroller. This simple low-cost system

can be programmed to reproduce the complex behavior of Wolfram’s

cellular automata, ranging from periodic patterns to Turing machines

and Isles of Eden.

4.1 The Wolfram Cellular Automaton

Cellular automata are mathematical models for complex natural sys-

tems containing a large number of simple identical cells with local inter-

actions. They were invented in the 1940s by the mathematicians John

von Neuman and Stanislaw Ulam, to provide insight into the logical re-
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quirements for machine self-replication [44]. The idea was to construct

a machine able to generate a new machine of identical complexity and

capabilities. Cellular automata have been then applied to a wide range

of different problems in mathematics, physics, biology, complexity, and

modeling [45].

Cellular automata may be considered as an array of “colored” cells

on a grid of specified shape where each cell may assume, at a given time,

one of a finite set of possible values. The cell states evolve synchronously

in discrete time steps according to identical local rules that take into

account the previous states of the cell itself and of the neighboring

ones.

Despite their simple construction, cellular automata are capable of

complex behavior [46, 47]. According to the behavior exhibited by

them, one-dimensional cellular automata have been classified into four

classes by Wolfram [46].

From the perspective of nonlinear dynamical systems, cellular au-

tomata can be thought of as discrete dynamical systems with trajec-

tories evolving in the configuration space that tend to some attractors

or evolving around Isles of Eden [48], devoid of any basin of attrac-

tion. The attractor is a manifestation of “self-organizing” behavior, in

which the dynamics evolves from a structure-less initial state toward

an organized state, after a sufficiently long time.

Many researchers have studied in detail one-dimensional cellular au-

tomaton rules, showing that, even in this simple framework, they ex-

hibit many of the complex behaviors of a continuous system [46, 47, 49].
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These features make cellular automata and their generalization, such

as Cellular Nonlinear Networks (CNNs), valuable tools for studying the

behavior of complex systems.

One-dimensional cellular automata have been studied in particular

by Stephen Wolfram. His research, started in the 1980s, culminated in

the publication of his monumental book “A New Kind of Science”. In

this remarkable book, considered a milestone of results in automata

studies, Wolfram asserts that cellular automata operations underlie

much of the real empirical world. He even asserts that the entire Uni-

verse itself is a big cellular-automaton computer [46].

Chua, then, reconsidered the Wolfram’s approach, which was based

on empirical observations obtained with brute-force computer simula-

tions, under the perspective of dynamical systems [50, 51] and geo-

metrical approaches. He developed an analytical theory, valid for any

elementary one-dimensional cellular automata, which provides a foun-

dation for the emergence of behaviors shown by the automaton in terms

of only six different classes of complexity [52].

A new low-cost stand-alone hardware device which constitutes a

small self-contained implementation of the Wolfram cellular automaton

has been developed.

4.2 Model of the Wolfram Cellular Automaton

A one-dimensional cellular automaton consists of a ring of coupled

cells as shown in Fig. 4.1. Each cell evolves, synchronously with the
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others, combining its inputs through a local rule R (as shown in the

block diagram of Fig. 4.2) that is the same for all cells. In the case of

Wolfram cellular automata, only rules based on two neighboring cells

are considered.

Fig. 4.1. Schematic representation of a one-dimensional cellular automaton, consisting of

a ring of L+ 1 identical cells.

Fig. 4.2. Representation of inputs and output of a local rule of Wolfram cellular automa-

ton cells.

The state of a cell and those of its two neighbors form a substring of

three states (each one assuming one of two possible values 0 or 1 and
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coded blue or red respectively), so that there are 23 = 8 possible input

patterns for each cell. At every time step, the next value of a given cell

is determined by a function of the states of the cell itself and its im-

mediate left and right neighbors. The cells are updated synchronously

taking into account the state values at the previous step. Under such

hypotheses, there are 28 = 256 possible rules [46].

A classification of all the 256 local rules is given in [53] in the frame-

work of nonlinear dynamical system science. In this way, the Wolfram

machine is seen as a complex class of cellular automata, with one spa-

tial dimension, a binary state variable, and a neighborhood of radius

one.

Every rule may be represented with a Boolean cube (as shown in

Fig. 4.3) [47], where every vertex of the cube represents one of the eight

possible states of the three-cells neighborhoods and has binary values,

representing the output corresponding to the given input pattern.

According to the analysis reported in [49], each rule of the cel-

lular automaton can be furthermore mapped into a nonlinear time-

continuous dynamical system defined by the following state equation:

ẋi = (−xi + (|xi + 1| − |xi − 1|))+
+ {z2 + c2| (z1 + c1|z0 + b1ui−1 + b2ui + b3ui+1|) |}
xi(0) = 0 i = 0, · · · , L

(4.1)

where b1, b2, b3, c1, c2, z0, z1, z2 are real numbers which characterize

the given rules, ui represents the binary state of the cellular automa-

ton (assuming values -1 or 1), while xi is the state of the equivalent

continuous-time system to which the cellular automaton is mapped.
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The parameters b1, b2, b3, c1, c2, z0, z1, z2 are such that system (4.1)

converges to an equilibrium point xi(Q) for i = 0, · · · , L. The output of
the i− th cell, defined as yi(t) = 0.5(|xi(t) + 1| − |xi(t)− 1|), converges
to a Boolean value 1 or -1, given by the following formula:

yi(Q) = sgn {z2 + c2| (z1 + c1|z0 + b1ui−1 + b2ui + b3ui+1|) |} . (4.2)

The discrete-time evolution of the binary state of the cellular au-

tomaton cells is explicitly given by the following relationship:

ut+1
i = sgn

{
z2 + c2|

(
z1 + c1|z0 + b1u

t
i−1 + b2u

t
i + b3u

t
i+1|

) |} . (4.3)

Fig. 4.3. A Boolean cube, representing rule 137, one-dimensional cellular automaton.

Using tools from nonlinear dynamics the degree of the nonlinearity

of the Wolfram cellular automata can be quantified in terms of their
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index of complexity [47, 49, 53]. The complexity index κ is defined by

the number of parallel planes necessary to segregate all blue vertices

from the red vertices. Equivalently, the complexity index κ of each rule

N is equal to 1+α, where α ∈ {0, 1, 2} is the number of absolute-value

functions required in Eq. (4.3). In this way all 256 rules are classified by

three possible values of the complexity index. There are 104 rules with

complexity index one and they exhibit a period-1, period-2 or simple

Bernoulli-shift patterns [54]. There are 126 rules with index two and

they support mobile self-localizations, gliders, and non-trivially inter-

acting propagating patterns. The remaining 26 rules, having complexity

index three, have unpredictable complex behaviors. A rigorous classi-

fication of these rules according to the nature of space-time patterns

they generate divides all rules into six groups [55, 56, 57]. Examples

from all such groups will be discussed in Section 4.4.

4.3 The Wolfram Machine

The Wolfram Machine [58] consists of an LED Matrix, for visualiza-

tion, i.e., a rectangular array of Light-Emitting-Diodes (LED), and a

small board based on the ATmega168 microcontroller, for implement-

ing equation (4.3) and controlling the display. The core of the system

is thus the control board, in which the evolution of all the rules is

computed. The whole system is shown in Fig. 4.4.

A 2416 (16 rows with 24 pixels each) Dot Matrix Red Display In-

formation Board, manufactured by Sure Electronics, was used [59]. It
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is a memory mapping LED display board, driven by an HT1632 LED

display controller. The device supports 16-gradation LEDs for each

outline controlled in PWM (Pulse Width Modulation). In this way, the

color intensity of each LED can be gradually varied (through the PWM

control signal) from a maximum intensity to the off level. In our work,

since the cells may only assume binary values, two levels (maximum

and off level) have been only used. A serial interface is conveniently

provided for the command mode and data mode. Only three or four

signals are required for the interface between the host controller and

the information board. These signals are: CS (Chip Select: it enables

the information board); WR (Write Clock Input: it writes the clock

input from the microcontroller); RD (Read Clock Input: it reads the

clock input from the microcontroller; this signal is optional and has not

been used in our work); DATA (Serial Data Input: it permits to send

to the LED matrix the data to be visualized).

For each row i of the LED display, each pixel represents the state

of a one-dimensional cellular automaton cell at a given time t. The

next step is represented in row i + 1 (rows are numbered from top to

bottom). In the basic configuration, therefore, 16 different time instants

of the evolution of a cellular automaton with 24 cells can be visualized:

an advantage of the system is that the display can be easily extended

by cascading the information board for wider applications. Periodic

boundary conditions are used.

Other characteristics of the display board are: compact dimensions,

2416 dot matrix on each board divided into 6 pieces of 0808 LED,
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operating voltage and current: 5 V, 350 mA (Max.), 200 mA (Avg.).

The power can be supplied and command data can be transmitted by

IDC sockets from microcontrollers.

The control board used is an Arduino Nano [60]. It is a complete,

breadboard-friendly, small board based on the ATmega168 microcon-

troller. It needs only a DC power jack and works with a Mini-B USB

cable used both for power and programming. It is also possible to use

an external power-source connected directly to the proper pins. To pro-

vide the external power supply, two options have been incorporated: in

the first case, an AC adapter for a mobile phone with Mini-B USB can

be used; in the second case a 9 V battery can be employed to obtain a

real portable stand-alone hardware system, as shown in Fig. 4.4.

The control board has 30 pins, 22 of which are dedicated to input

and output operations. They are divided into analogic and digital pins.

There are 14 digital pins and they can be used either as input or output.

They operate at 5 V. Each pin can provide or receive a maximum of

40 mA and has an internal pull-up resistor (disconnected by default)

of 20-50 kΩ. There are 8 analogic pins and they can be used only for

input and, by default, they measure from ground to 5 V, though it is

possible to change the upper limit of their range. The remaining pins

have specialized functions, i.e. for ground and external power.

The idea is to emulate a one-dimensional cellular automaton by

connecting the LED Matrix to the Arduino board. By programming

the board, the Wolfram Machine, a stand-alone emulation system, has

been realized. The algorithm implemented allows anyone to reproduce
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Fig. 4.4. The Wolfram Machine, consisting of a microcontroller, an LED display, a bread-

board and a 9V battery.

all 256 rules by changing the parameters appearing in equation (4.3).

One possible set of parameters for each rule is listed in Table 4 of [49].

All parameters for the 256 rules have been already programmed and

stored in the microcontroller, and the user only has to input the rule

number to emulate any rule (this does not require the user to reprogram

the microcontroller). Moreover, since the parameters listed in Table 4 of

[49] represent only typical values, there is a large robust neighborhood

of parameters that can emulate the same rule. The user may therefore

input his own set of parameters by substituting the actual values with
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his own set and reprogramming the microcontroller, and verify they

give the correct truth table. It is also possible to change the number of

iterations for every rule to find eventual cycles, or to fix the string which

codes the initial conditions to study the effect of the initial pattern on

the cellular automaton behavior.

For example, to display the last 16 iterations after iterating 512

iterations, from some initial state, its enough to simply set to 512 the

number of iterations. The microcontroller repeats the execution of the

rule for 32 times and, after the first execution, the initial state of the

first top row is the last row of the display. There is no limit for the

number of possible iterations.

It is also possible to program the execution of several different rules

in succession, in order to define a spatio-temporal algorithm, in analogy

with CNNs. In this case, the user can program the number of iterations

to be executed for each rule in the algorithm.

4.4 Experimental results

The results discussed in this Section refer to the emulation of different

rules, according to their index of complexity κ = 1, 2, 3, as proposed in

[47]. The time needed for the execution of a single rule is very small

(order of magnitude of ms) so that, with this new system, it is possible

to emulate all the 256 rules in a few minutes. In fact, in the algorithm

a delay time has to be inserted in order to visualize the step-by-step

evolution of the initial string. For each of the rules examined, a com-
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parison between the computer simulation and a picture (taken with a

digital photo camera) of the Wolfram Machine output is shown.

In Figs. 4.5 and 4.6 the evolution of two rules with complexity index

κ = 1, rule 77 and 87 respectively, is shown. Each row represents the

state of a cellular automaton with 24 cells, while time flows from top

to bottom. A simple periodic behavior is obtained in these two cases.

The images shown in Figs. 4.5 and 4.6, in particular, refer to the initial

condition chosen by Wolfram in which only the central pixel of the

array starts from a logic 1, while all the other cells starts from a logic

0. This pattern is the digital analog of the “unit impulse” used for

testing continuous-time linear systems.

In Figs. 4.7 and 4.8 two rules with complexity index κ = 2, rule 73

and 82 respectively, are exhibited. In Figs. 4.9 and 4.10 an example of

rules with complexity index κ = 3, rule 114 and 150 respectively, is

shown.

Beyond the classification of the rules based on their complexity in-

dex, they can be grouped into six classes on the basis of the asymptotic

behavior typically obtained with such rules starting from almost ran-

dom initial conditions. According to this analysis [55, 56], out of 256

rules, only 88 rules can be considered as globally-independent from each

other. All other rules are equivalent to one of these 88 rules in the sense

that the remaining 168 rules can be derived from these 88 rules via one

of the three global transformations from the Vierergruppe [53]; namely,

the Left-Right Transformation T †, the Global Complementation T , and

the Left-Right Complementation T ∗. These 88 independent rules are
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Fig. 4.5. Rule 77. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) starting from the same “unit impulse” initial

conditions.

classified into six groups, in a mathematically rigorous sense, unlike

Wolfram’s classification into four groups which is based on empirical

simulations.

In the first group, indicated as G = 1 (period-1 rules), there are

67 of the 256 rules and 25 of the 88 independent rules. In the second

group (period-2 rules) there are 25 of the 256 rules and 13 of the 88

independent rules. In the third group (period-3 and period-6 rules)

there are 6 of the 256 rules and 2 of the 88 independent rules. In the

fourth group (Bernoulli στ -shift rules) there are 108 of the 256 rules and

30 of the 88 independent rules. In the fifth group (complex Bernoulli

rules) there are 18 of the 256 rules and 10 of the 88 independent rules.

In the sixth group (hyper Bernoulli rules) there are 32 of the 256 rules

and 8 of the 88 independent rules.
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Fig. 4.6. Rule 87. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) starting from the same “unit impulse” initial

conditions.

The rules belonging to group 1 exhibit space-time patterns which

mostly converge to a period-1 orbit. These space-time patterns include

single point attractors and period-1 Isle of Eden. An example of a rule

of this group is shown in Fig. 4.11.

Group 2 includes rules characterized by the fact that almost all

space-time patterns converge to a period-2 orbit. An example of a rule

of this group is shown in Fig. 4.12.

Almost all space-time patterns generated by rules of group 3 con-

verge to a period-3 orbit. An example of a rule of this group is shown

in Fig. 4.13.

For group 4 rules, almost all space-time patterns converge to a

Bernoulli στ -shift attractor, or Isle of Eden, where |σ| ∈ {1, 2} and

|τ | ∈ {1, 2}. An example of a rule of this group is shown in Fig. 4.14.
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Fig. 4.7. Rule 73. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) starting from the same “unit impulse” initial

conditions.

Rules of groups 5 and 6 are characterized by space-time patterns

which have very long transients and converge to period-T attractors

with a very large period T . In these cases, the asymptotic behavior

also depends on the length L and the initial configuration of the string.

Group 5 includes bilateral rules, while group 6 non-bilateral ones. Two

examples are reported in Figs. 4.15 and 4.21.

A complete gallery of the execution of all 256 rules is exhibited in

Table 4.1.

Isles of Eden are particular behaviors exhibited by most (228 out of

256) of the rules of Wolfram cellular automata [61, 62]. They are period-

n orbits which can be reached by the system, only if it starts from one

of the n states visited by the orbit itself. No other initial conditions lead

the cellular automaton to such Isles of Eden. The presence of Isles of
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Fig. 4.8. Rule 82. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) starting from the same “unit impulse” initial

conditions.

Eden has been verified in three examples with different periods. Figure

4.17 refers to rule 97 exhibiting an Isle of Eden of period 3. Figure

4.18 refers to rule 14 exhibiting an Isle of Eden of period 6. Figure 4.19

refers to rule 84 exhibiting an Isle of Eden of period 8.

With the used LED matrix it is possible to obtain a bigger display

by simply connecting more LED matrices in cascade to emulate and

visualize bigger arrays or longer time evolutions. In Fig. 4.20 the emu-

lation of rule 210 (having κ = 2) with two LED matrices in cascade is

shown: the cellular automaton taken into consideration has therefore

48 cells.

The number of iterations can also be increased, as shown in Fig.

4.21, where rule 137 is emulated for 48 iterations. This is obtained by
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Fig. 4.9. Rule 114. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) starting from the same “unit impulse” initial

conditions.

repeating for three times the execution of the rule, by replacing (after

the first execution) the initial state by the last row of the display.

4.5 Conclusions

A low-cost stand-alone portable system that constitutes a compact

single-board implementation of a Wolfram Machine has been intro-

duced. With this device it is possible to emulate and study all of the

Wolfram’s cellular automata without the need of a PC and to display

their evolution on a LED matrix controlled by a microcontroller board.

It is also possible to define spatio-temporal algorithms made of alter-

nating rules and easily extending the basic configuration for emulating

automata with a larger number of cells. In this sense, this system aims
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Fig. 4.10. Rule 150. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) starting from the same “unit impulse” initial

conditions.

to provide a new hardware tool for improving Wolfram’s concept of

New Kind of Science.

The Wolfram Machine introduced in this Chapter can be used both

for educational aims and for developing stand-alone hardware tools for

the control of LED screens. LED screens are recently gaining much

interest for artistic installations and publicity [63]. An example is the

OPEN WALL project in which a wall-mounted LED installation was

set up in the city of Trondheim, Norway, with the aim of exploring

the possibility of technology and interaction with technical people, re-

searchers and public at large [63]. The installation has attracted a lot

of interest, involving information and communication technology engi-

neers, artists and a broad audience. By using the Wolfram Machine,

an analogy with the artistic patterns, reproduced by using CNNs [64],
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Fig. 4.11. Rule 4. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) of a period-1 rule, starting from the same “unit

impulse” initial conditions.

can be also established. For educational purposes the Wolfram Machine

may be connected with a simple input interface, allowing students to

explore the evolution of different Wolfram’s rules and to experiment

the effects of initial conditions in a hands-on low-cost laboratory of

Wolfram’s New Kind of Science. In the perspective of educational ap-

plications, it can also be useful to understand the advantages of mi-

crocontrollers to develop dedicated low-cost applications and to learn

the basics on microcontroller programming with physically motivating

examples.
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Fig. 4.12. Rule 37. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) of a period-2 rule, starting from the same “unit

impulse” initial conditions.

Fig. 4.13. Rule 62. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) of a period-3 rule, starting from the same “unit

impulse” initial conditions.
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Fig. 4.14. Rule 57. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) of a Bernoulli στ -shift rule with σ = 1, and

τ = 2, starting from the same “unit impulse” initial conditions.

Fig. 4.15. Rule 90. Comparison between a PC-based numerical simulation (left) and the

evolution of the Wolfram Machine (right) of a complex Bernoulli rule, starting from the

same “unit impulse” initial conditions.
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Fig. 4.16. Rule 137. Comparison between a PC-based numerical simulation (left) and

the evolution of the Wolfram Machine (right) of a hyper Bernoulli rule, starting from the

same “unit impulse” initial conditions.

Fig. 4.17. Rule 97. Isle of Eden of period-3. Comparison between a PC-based numerical

simulation (left) and the evolution of the Wolfram Machine (right).

Fig. 4.18. Rule 14. Isle of Eden of period-6. Comparison between a PC-based numerical

simulation (left) and the evolution of the Wolfram Machine (right).
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Fig. 4.19. Rule 84. Isle of Eden of period-8. Comparison between a PC-based numerical

simulation (left) and the evolution of the Wolfram Machine (right).



82 4 Emulation of complex networks: the Wolfram Machine

Fig. 4.20. Evolution of a cellular automaton with 48 cells obtained using two LED ma-

trices in cascade. The rule emulated is rule 210. The comparison between a PC-based

numerical simulation is also shown.
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Fig. 4.21. Rule 137. This hyper Bernoulli rule is emulated for 48 iterations. A PC-based

numerical simulation is shown for comparison.
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Table 4.1: Rules emulated by the Wolfram Machine.
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Table 4.1. (Continued)
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Concluding remarks

Complex networks are today pervading our world with implications

and applications in engineering, physics, biology, ecology and social

systems.

We are members of and we use many social systems, often provid-

ing us a plenty of new data which give new insights on the structure

and properties of the system itself and of complex systems in general.

Modeling is always a primary tool for studying such systems. In this

Thesis real social networks, in particular extracted from the popular

on-line social network Facebook, have been deeply analyzed to un-

derstand their peculiar characteristics as high levels of clustering, low

values of the characteristic path length and node betweenness, division

into communities and heterogeneous degree distribution. These results

have been confirmed by recent works on social networks. With the aim

to reproduce these characteristics, a new model for growing social net-

works has been proposed. It is based on the idea that communities play

a fundamental role in social networks and may be involved also in the

growing process of the network itself.
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On-line social networks are interesting not only as a collection of

complex networks, but every node may be interpreted as a time-series

generator. In fact, with this consideration, an analysis on the number

of on-line friends using a Facebook account has been carried out. In

this way, a social time series has been extracted observing the on-line

friends number. The application of the Kaplan test to the time series

obtained has showed the presence of a deterministic component.

Focusing on applications of complex networks, a very interesting

case study is the analysis of power grids. In this Thesis an analysis of

the Italian high-voltage (380 kV) power grid under the point of view

of dynamical nodes has been proposed. The mapping between oscil-

lators and power grid nodes, divided into “sources” and “consumer”,

has been made using Kuramoto-like models with bimodal distribution

of the frequencies. Synchronization, representing the normal working

operating regime, in this network has been analyzed and the effect of

perturbations has been studied with the aim to investigate the dynam-

ical robustness of the network to faults. Dynamical parameters such as

the minimum value of perturbation leading to desynchronization and

the time to reach the complete loss of synchronism have been defined. A

non-trivial relationship between dynamical and topological parameters

of the network has been discussed.

The study of complex networks is mostly based on data analysis,

models, theoretical and software tools. In this Thesis, focusing on a

simple topology, we have investigated the possibility of designing and

implementing a hardware tool for complex network emulation with
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possible applications in the field of artistic installations and publicity.

In particular, the emulation of one-dimensional cellular automata has

been investigated. A new hardware tool for implementing Wolfram’s

concept of New Kind of Science has been developed.

With this device, a low-cost stand-alone portable system, it is possi-

ble to emulate and study all of the Wolfram’s cellular automata without

the need of a PC and to display their evolution on a LED matrix con-

trolled by a microcontroller board. It is also possible to define spatio-

temporal algorithms made of alternating rules and easily extending

the basic configuration for emulating automata with a larger number

of cells.
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