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AbstractAbstractAbstractAbstract    

Chaos is a remarkable phenomenon occurring in many nonlinear sys-
tems, where the deterministic nature of the system structure conjugates 
with the irregularity of the behviour. 
Since the first findings on chaos in mathematical models, the idea of us-
ing electronic circuits as experimental testbeds for chaos aroses. The fo-
cus of this PhD thesis is indeed on an experimental approach to the 
study of chaos, to its characteristic features and to the synchronization 
properties mainly through chaotic circuit design implementation and 
experiments. 
Starting from general guidelines on how to impl,ement from a mathe-
matical model, an electronic circuit governed by the some equations, a 
gallery of circuits (Chua, Lorenz, Rössler, Hindmarsh-Rose, Duffing, 
Langford, Colpitts and a memristive circuit) designed and implemented 
with off-the-shelf components is presented in Chapter 1.  
A general methodology for designing a new class of chaotic circuits 
based on time-delay is then discussed in Chapter 2. Chaos has unique 
properties even when two or more coupled chaotic systems are consi-
dered. The experimental approach to this topic of chaos theory pursued 
in this thesis led to several important results that otherwise had not 
been possible to reveal.  
In fact, in Chapter 3 we discuss findings on the synchronization of  
chaotic circuits in the presence of either parametric or structural        
dissimetries, and present a very interesting observation of the circuits is 
minimized when the two circuits synchronously evolve. 
Finally, Chapter 4 discusses a new form of synchronization occurring 
when more than two nonlinear circuits are coupled in networks with 
particular topologies. 
 



 

 

 

CCCChapter 1hapter 1hapter 1hapter 1        

A A A A GALLERY OF NONLINEARGALLERY OF NONLINEARGALLERY OF NONLINEARGALLERY OF NONLINEAR    CIRCUITSCIRCUITSCIRCUITSCIRCUITS    

1.1.1.1. IntroductionIntroductionIntroductionIntroduction        

This thesis is the synthesis of the activities carried on during the three 
years of the Ph.D. course. Main subject of the thesis is the design, im-
plementation and characterization of nonlinear circuits and of complex 
dynamical phenomena emerging from the coupling of two, or more, of 
them. 
Before describing the results summarized in the following chapters, aim 
of this introductive chapter is to give the basic insights on the design 
techniques developed and adopted for the realization of all the experi-
mental activities. Furthermore, in this chapter the design flow to obtain 
the circuital implementation of several nonlinear models is described. 
As it will be clearly shown in the following sections, the design of the 
electrical analogue of a nonlinear model is based on the use of simple 
basic configurations, most of which essentially formed by operational 
amplifiers. In the next paragraph, such simple configurations will be 
outlined. 

 

1.1.1.1.1.1.1.1. Operational AmplifierOperational AmplifierOperational AmplifierOperational Amplifier    

The main building block for nonlinear circuits is the operational am-

plifier (OP-AMP). OP-AMPs are electronic devices important for a wide 

range of applications. They are characterized by two differential inputs 

V+ and V- and one output Vout. The circuital symbol used is shown in 
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Fig.1.1, in which the

The transfer characteristic 

nonlinear and can be expressed 

 

where  is the voltage value at which the output of the oper

tional amplifier saturates. It depends on the internal circuitry design of 

the device and on the voltage supply used.

The region in which

 

In the ideal case, the device has high input impedance, low output i
pedance and a high voltage gain A
impedance, no current 
An OP-AMP can be
several types of mathematical operations according to the specific conf
guration. The most used 

1. Inverting 
2. Non-inverting
3. Algebraic adder
4. RC integrator

 

1, in which the needed power supplies are indicated as V

transfer characteristic of thre OPAM from input to the output is 

nonlinear and can be expressed as follows: 

 
  

is the voltage value at which the output of the oper

er saturates. It depends on the internal circuitry design of 

and on the voltage supply used. 

The region in which  is defined as the linear region.

 

Fig.1.1 – Operational Amplifier 

ideal case, the device has high input impedance, low output i
a high voltage gain Av. As a consequence of the high input 

current flows into or out of the input terminals.
AMP can be integrated in a single chip and used to implement 

several types of mathematical operations according to the specific conf
used configurations are the follows: 

inverting 
Algebraic adder 
RC integrator 

Chapter 1 

plies are indicated as Vs+ and Vs-. 

from input to the output is 

(1.1) 

is the voltage value at which the output of the opera-

er saturates. It depends on the internal circuitry design of 

ned as the linear region. 

ideal case, the device has high input impedance, low output im-
As a consequence of the high input 

 
integrated in a single chip and used to implement 

several types of mathematical operations according to the specific confi-
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1.2.1.2.1.2.1.2. Inverting configuratioInverting configuratioInverting configuratioInverting configurationnnn    

In Fig.1.1 is shown the inverting configuration. An inverting amplifier 

uses negative feedback to invert (i.e., negate) and amplify a voltage. The 

input vin is related to the output vout through the following equation: 

 

vinout
R

R
v

1

2−=  (1.2) 

 

where the gain is fixed by the ratio between R2 and R1.  

 Fig.1.2 Inverting configuration. 

 

This relationship can be derived by taking into account that the 

current i flowing into the resistor R1 is given by: 

 

1R

vv
i din +

=  (1.3) 

 
Since no current flows in the negative input terminal, the current in R2 
is the same in R1, and thus: 
 

dout viRv +−= 2  (1.4) 

 

It is possible to derive that: 
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dinout v
R

R
v

R

R
v 








+−−= 1

1

2

1

2  (1.5) 

 

and considering  that usually the device works in the linear region: 
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
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
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in

out
 (1.5) 

 

In the limit of large gain, Av→∞, the relationship introduced at the be-

ginning of this paragraph is obtained. An inverting adder is shown in 

Fig.1.2  in the limit of large gain the output is given by: 

 

vv
R

R

R

R
vout 2

3

2
1

1

2 −−=  (1.6) 

 

 

 
Fig.1.3 Inverting adder.

 
1.3.1.3.1.3.1.3. NonNonNonNon----inverting configurationinverting configurationinverting configurationinverting configuration    

In Fig.1.3 the non-inverting configuration is shown. A non-inverting 

amplifier amplifies a voltage and it can be demonstrated that the output 

vout is given by:  
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inout v
R

R
v 








+= 1

1

2  (1.7) 

 

 

 

Fig.1.4 Non-Inverting configuration. 
 

1.4.1.4.1.4.1.4. Algebraic adder configurationAlgebraic adder configurationAlgebraic adder configurationAlgebraic adder configuration    

 
If the mathematical operation to be implemented is an algebraic sum, 
the corresponding circuital configuration is the algebraic adder, re-
ported in Fig 1.5 
 

 
Fig.1.5 Algebaic adder. 

The scheme of Fig.1.5  implements the following mathematical opera-

tion as in (1.8): 
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vvvv
R

R

R

R

R

R

R

R
v FFFF

out 4
4

3
3

2
4

1
1

−+−−=  (1.8) 

 

To adopt this configuration it is important that the compensation resis-
tance Rp is calculated to satisfies the gain rule as in (1.9): 
 

Fp

p
RRRRRR

R
111111

  : 
2143

++=++  (1.9) 

 
 
then the output of the circuit is given by the following equation in: 
 
 

∑=
i

iiout vAv  (1.10) 

 

with Ai=Rf/Ri. 
The output depends on each single input by means of only the asso-
ciated input resistor and not of the other resistors, which is very conve-
nient  from the designer perspective. We notice that, when satisfying 
the gain rule results in a negative value of Rp, Rf should be changed to 
avoid this. 

1.5.1.5.1.5.1.5. RC integratorRC integratorRC integratorRC integrator    

 
Another important mathematical operation is integrator configura-

tion that exploits the properties of the operational amplifier in the li-
near region. The configuration is shown in Fig.1.6. 
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Fig.1.6 RC integrator. 

 
In the limit of large voltage gain Av, it can be assumed that the current 
flowing in the resistor R is i = vin R and is equal to that in the capacitor.  
 

inoutout AvvvCR +−=&  (1.11) 

 
In the RC integrator the current flowing into the resistor R is: 
 

R

vv
i

−
= 0  (1.12) 

 
 
On the other hand, taking into account the relationship between current 

and voltage across a capacitor, since 
dt

dv
Ci = one has: 

 

CR

vv

dt

dv −
= 0

 (1.13) 

 
 

and thus  

0vvvCR +−=&  (1.14) 
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The relationship expressed by Eq. (2.4) will be used to design operation-
al amplifier that implement base blocks of a first order generic differen-
tial equation of the type: 
 

),( txfxx +−=&  (1.15) 

 
 

1.6.1.6.1.6.1.6. The aThe aThe aThe analog multiplier AD633nalog multiplier AD633nalog multiplier AD633nalog multiplier AD633    

Chaotic circuits have polynomial nonlinearities or products of state va-
riables. Electronic realization of the operation of multiplication is rea-
lized with AD633 analog component. This low cost multiplier has a 
functional block diagram as in Fig 1.7. 
 

 
 

Fig.1.7 AD633 functional block diagram. 

 
The transfer function of AD633 is the following: 
 

Z
V

YYXX
W +

−−
=

10

)21)(21(
 (1.16) 
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1.7.1.7.1.7.1.7. The oThe oThe oThe operational amplifier TL084perational amplifier TL084perational amplifier TL084perational amplifier TL084    

Operational amplifiers used in the design of nonlinear circuits are of 
two models TL084 and TL082. They have respectively the two function-
al block diagrams as in Fig 1.8 and Fig 1.9. 
 

 
 

Fig.1.8 TL084 functional block diagram. 
 
 

 
 

Fig.1.9 TL082 functional block diagram. 
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1.8.1.8.1.8.1.8. Implementing nonlinear circuitsImplementing nonlinear circuitsImplementing nonlinear circuitsImplementing nonlinear circuits    

A possible strategy for the design of nonlinear electronic circuits relies 

on the concept of Cellular Neural/Nonlinear Networks (CNNs). CNNs 

were introduced by L. O. Chua [Chua and Yang (1988b,a)] in 1988. His 

idea was to use an array of simple, identical, locally interconnected non-

linear dynamical circuits, called cells, to build large scale analog signal 

processing systems.  
The cell was defined as the nonlinear first order circuit shown in Fig. 
1.10 (a), uij , yij and xij being the input, the output and the state variable 
of the cell, respectively. The output is related to the state by the nonli-
near equation: 
 

|1 -x|-|1 + x0.5(| = y ijijij    
(1.17) 

A CNN is defined as a two-dimensional array of MxN identical cells ar- 
ranged in a rectangular grid, as depicted in Fig. 1.10 (b).  

 

 

Fig.1.10 – (a) Chua-Yang CNN cell, (b) schematic representation of a CNN (b) 

 
Each cell mutually interacts with its nearest neighbors by means of the 
voltage controlled current sources �����, �;  
, ��  
  ���, �; 
, ����� and 

�����, �;  
, ��  
  ���, �; 
, ����� The constant coefficients ���, �; 
, �� and 
���, �; 
, �� are known as the feedback and input cloning templates, re-
spectively. If they are equal for each cell, they are called space-
invariant. If ���, �; 
, �� 
 0  the CNN is said autonomous. 
A CNN is described by the state equations of all cells: 
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�
����

��

 �

���

��
� ∑  ���, �; 
, ����� �!��,��"#$�%,&�  ���, �; 
, �����' � �  (1.18) 

 
where i=1,2,…,M and j=1,2,…,N and 
 
 

()��, �� 
 *��
, �� | max �|
 � �|, |� � �|� / 01  (1.19) 
 
with  k=1,2,…,M and l=1,2,…,N is the r-neighborhood. 
This model is known as the Chua-Yang model or linear CNN and refers 
to a single-layer CNN. This model can be extended to a multilayer CNN 
if each cell has more than one state variable.  
The CNN behavior is basically dictated by the templates [Chua (1998); 
Chua and Roska (2005); Manganaro et al. (1999)]. However, the choice 
of templates that are suitable to achieve a desired processing task is 
hard to accomplish in a direct way. 
This leads to the so-called learning and design problem [Nossek (1994); 
Nossek et al. (1993)]. The term design is used when the desired task can 
be translated into a set of local dynamic rules, while the term learning 
is used when the templates need to be obtained by learning techniques, 
so pairs of inputs and outputs must correspond. Some good results have 
been obtained with discrete-time CNNs in simple cases, but this is a re-
ally difficult problem for continuous-time models. Most of the templates 
currently available have been obtained by intuitive principles and re-
fined by trial and error with the aid of simulators. 
Many different spatial-temporal phenomena can be studied by using 
CNNs [Chua and Roska (2005); Manganaro et al. (1999)]. In fact, com-
plex phenomena such as pattern generation, wave propagation, birth of 
spiral waves, visual processing can be investigated and reproduced with 
applications in different disciplines, many of them are today possible 
thanks to the recently developed VLSI realizations [Fortuna et al. 
(2001a)]. The emulation of these different phenomena is obtained by 
suitably programming the templates of the CNN, which makes it an 
universal paradigm for the study and the emulation of nonlinear com-
plex dynamics. 
The Chua-Yang model has been generalized in many different ways. 
These generalizations allow the inclusion in the model (1.18) of nonli-
near interactions, direct dependence on the state variables of the neigh-
borhood cells, different grids, and lead to a more general definition for 
CNNs [Chua and Roska (1993)]. 
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As discussed above, in the standard CNN model the state variable of 
each cell directly depends on the outputs and inputs of the neighbouring 
cells. A possible generalization of the CNN model is the so-called State 
Controlled CNN (SC-CNN), in which the direct dependance on the state 
variable is introduced. Since, in the following, only mono-dimensional 
arrays will be used, the definition reported below is restricted to this 
case. In accordance with the CNN symbolism, the SC-CNN is defined as 
follows: a SC-CNN is an array of nonlinear circuits C(j) with the follow-
ing state equation: 
 

���

��

 �6& � ∑ 7��;
�
���;
�
 � ��;
6
8 �  �!���"#�&�   (1.20) 

 
�& 
 9�6&� 

 
1 / � / ( 

 
where: 

9�6� 
 0.5�|6 � 1| � |6 � 1|�    (1.21) 
 
where xj , yj , uj are the state variable, the output and the input of the 
cell C(j), respectively, N is the number of cells, N(j) is the neighbour set 
of the cell C(j), f is the output nonlinearity function and I is the bias. 
Furthermore, together with the classical A and B templates, a new tem-
plate, named state template, is introduced. 
Since each cell is a first-order system, a SC-CNN made of N cells is a    
N-order dynamical system. By choosing the templates of the SC-CNN, 
i.e., the connections between the cells, different dynamical systems may 
be reproduced.  
In the next Chapter it will be shown how a SC-CNN made of n cells 
(which is, thus, a n-order system) may be used to implement a mathe-
matical model. 

1.9.1.9.1.9.1.9. A gallery of nonlinear circuits: A gallery of nonlinear circuits: A gallery of nonlinear circuits: A gallery of nonlinear circuits: pppprelimirelimirelimireliminnnnariesariesariesaries    

The design of a nonlinear circuit follows three successive phases: the 
first consists in the simulation of the original mathematical model 
which we want to implement as a circuit; in the second phase, the cir-
cuit is designed and simulated according to the observation made dur-
ing the model analysis; finally, the circuit is physically implemented 
and experimentally characterized. 
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Any mathematical model, which is the basis of a dynamical system, has 
a number of state variables that follow precise temporal trends. These 
trends are contained in a range which depends on the model.  
In order to implement the model in hardware using circuital compo-
nents (resistors, capacitors, operational amplifiers, etc.), it is important 
that the oscillations of state variables are confined within the limit im-
posed by the voltage supplies powering operational amplifiers. To estab-
lish the specific power supply voltage, it is necessary to examine the 
model using simulation tools, in order to overcome possible errors of 
feasibility. 
The first simulation tool, which is based on the numerical integration of 
the mathematical model, is Matlab. In this first phase, the oscillations 
range and the operating frequencies are characterized. On the basis of 
these observations the power supply voltage is chosen. However, if the 
state variables oscillate outside physically realizable voltage limits, the 
system can be suitably scaled in amplitude through a mathematical 
transformation.  
The range of operating frequencies of each state variable is an impor-
tant parameter of the system for both the feasibility of the system and 
the ability to simultaneously acquire the trend of the state variables of 
the circuit. The acquisition of waveforms generated by the circuits, in 
fact, is a necessary practice that is performed in order to analyze in 
more detail the individual behavior of all the state variables and com-
pare them with the theoretical trends that have been obtained in the 
simulation using Matlab. The time variable of the dynamical system 
can also be rescaled, and this choice determines the values of capacitors 
used to reproduce system dynamics. 
The second phase consists in the design of the circuit by suitably con-
necting simple blocks based on operational amplifiers. In this phase, a 
second simulation tool is used, i.e. Spice, with which the behavior of the 
designed electronic circuit can be simulated and adjusted. 
The realization of the circuit with off-the-shelf electronic components 
leads to the conclusive phase, i.e. the experimentation and the observa-
tion of the dynamical behavior of the electronic analogue. 
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2.2.2.2. Chua’s circChua’s circChua’s circChua’s circuituituituit    

The dimensionless equations of Chua’s circuit [103,104] consist of the fol-

lowing three state equations: 

 

yz

zyxy

xhyx

β

α

−=

+−=

−=

&

&

& )]([

 (1.24) 

 

where 
7

1
,

7

2
|),1||1)(|(

2

1
)( 01101 −==−−+−+= mmxxmmxmxh  

and 286.14,9 == βα . 

As shown in the simulation trend of Fig 1.11, obtained with Matlab, the 

behavior of x, y and z variable exhibits a typical feature of a chaotic sys-

tem with irregular trends. 

 
Fig.1.11 Theoretical temporal trend of each state variable x, y and z.  

In Fig. 1.12, a typical chaotic attractor of the circuit, defined as “double–
scroll”, is shown. The graph is obtained using the following parameters:  
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286.14,9,
7

1
,

7

2
01 ==−== βαmm  

 
Fig.1.12 – 3D theoretical Chua’s attractor. 

 

Following the SC-CNN approach, in Fig. 1.13, an electronic circuit 

has been designed with Spice’s tool and in Fig. 1.14 realized using resis-

tors, capacitors and operational amplifiers.  
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Fig.1.13 SC-CNN circuit diagram of Chua’s model used in the experiment. Kit’s compo-
nents: R1 = 4kΩ, R2 = 13.3 kΩ, R3 = 5.6 kΩ, R4 = 20kΩ, R5 = 20kΩ, R6 = 380Ω (potenti-
ometer), R7 = 112 kΩ, R8 = 112 kΩ, R9 = 1MΩ, R10 = 1MΩ, R11 = 12.1 kΩ, R12 = 1kΩ, 
R13 = 51.1 kΩ, R14 = 100 kΩ, R15 = 100 kΩ, R16 = 100 kΩ, R17 = 100 kΩ, R18 = 1kΩ, 
R19 = 8.2 kΩ, R20 = 100 kΩ, R21 = 100 kΩ, R22 = 7.8kΩ, R23 = 1kΩ, C1 = C2 = C3 = 

100 nF, power supply = V9±  . 

 
 

Fig.1.14 Hardware implementation of the Chua’s circuit. 
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The circuital equations associated to the implementation of Chua’s cir-

cuit are the following: 

y
R

R
z

R

R
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z
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R
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 (1.25) 

where 

|)1||1(|
8

9

1211

12 −−+
+

= xx
R

R

RR

R
h  (1.26) 

 

Matching equations (1.25) with the mathematical model in equations 

(1.24), it is possible to choose the values. The different behavior shown 

by the Chua’s circuit by varying the single bifurcation parameter α can 

be observed in the circuit by varing resistor R6.  

In Fig.1.15  a typical chaotic behavior of the experimental circuit is 

shown. 

 
 
Fig.1.15 Experimental attractor of Chua’s circuit. Phase plane: x |y, horizontal axis: 
500mV=div, vertical axis 200mV=div. 
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3.3.3.3. The LThe LThe LThe Lorenzorenzorenzorenz    circuitcircuitcircuitcircuit    

The dimensionless equations of the Lorenz system [102] are: 

 

zxyz

yxzxy

xyx

β

ρ

α

−=

−−=

−=

&

&

& )(

 (1.27) 

 

where 
3

8
,28,10 === βρα  

As shown in the simulation trend of Fig.1.16, obtained with Matlab tool, 
the behavior of x, y and z variable exhibit a typical feature of a chaotic 
system. 
 

 

Fig.1.16 – Theoretical trend of x, y, and z variables. 
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Fig.1.17– Theoretical Lorenz’s attractor. 

Choosing the power supply of operational amplifiers to be ± 9V, it is 
possible to notice that the amplitude of the state variables has a value 
above the 9V. In this regard it is necessary to apply a transformation to 
reduce any single variable. In particular, for the state variable x, y and 
z the  transformations are the following: 

10

old
new

x
x =  

10

old
new

y
y =  

100

old
new

z
z =  

(1.28) 

 

the new rescaled system is shown in (1.29). 
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(1.29) 
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So the system can be realized using resistors, capacitors and opera-

tional amplifiers as shown in Fig.1.18. 

 
Fig.1.18 Circuit diagram of Lorenz model used in the experiment. Kit’s components: 
C1=200nF, C2=200nF, C3=200nF, R3=100kΩ, Rf1=100kΩ, Rf2=100kΩ,  R4 =5.6kΩ, 
R5=3.3kΩ, R9=3.3kΩ, R11=3.3kΩ, R8=3.19kΩ, R1=10kΩ, R2=10kΩ, R13=3.74kΩ, 
R14=1kΩ, Rx=1kΩ, Ry=1kΩ, Rz=1kΩ, R15=9kΩ, R10=39kΩ, R32=4.2kΩ, power supply 

= V9±  

 
Fig.1.19 – Hardware implementation of the Lorenz’s circuit. 
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The circuital equations associated to the implementation of Lorenz cir-

cuit are: 
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where we have taken into account that the output of AD633 is as in 

(1.16): 

yzYZ

xzXZ

=
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 (1.31) 

 

Matching equations (1.30) with the mathematical model in (1.29), it is 

possible to choose the values of components. Using low cost components, 

the chaotic attractor can be obtained as shown in Fig.1.20. The different 

behavior shown by the Lorenz circuit by varying the single bifurcation  

parameter ρ can be observed in the circuit by varing resistor R32.  
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Fig.1.20 –Lorenz’s attractor. 

4.4.4.4. The The The The Rossler’s circuitRossler’s circuitRossler’s circuitRossler’s circuit    

The dimensionless equations of Rössler’s system [105] are: 
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where 2.0== ba and 14=c . 

As shown in the simulation trend of Fig.1.21 and Fig.1.22, obtained 
with Matlab, the behavior of x, y and z variable exhibits the typical fea-
tures of a chaotic system. 
 

 

Fig.1.21 Theoretical trend of x (blue), y (green), and z (red) variables. 
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Fig.1.22 – Theoretical Rossler’s attractor. 

  
This system has a dynamic with amplitudes that exceed the required 
range, so it is necessary a mathematical trasformation to reduce the 
amplitude. The trasformations adepte are the following: 
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The rescaled system is as follows:  
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Fig.1.23 Circuit diagram of the Rossler model. Kit’s components: C1=100nF, C2=100nF, 
C3=100nF, R2=1kΩ, R5=1kΩ, R7=1kΩ, R12=1kΩ, R60=1kΩ, R6=78kΩ, R13=78kΩ, 
R9=10kΩ, R10=10kΩ, R542=10kΩ, R1=100kΩ, R3=100kΩ, R4=100kΩ, R11=100kΩ, 
R35=100kΩ, R46=100kΩ, R57=100kΩ, R63=100kΩ, Rf1=100kΩ, Rf2=100kΩ, 

Rf3=100kΩ, R14=449kΩ, R58=9kΩ, Rg=33.3kΩ, R56=177kΩ. Power supply = V9±  
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Fig.1.24 – Hardware implementation of the Rossler’s circuit. 

 

The circuital equations associated to the implementation of Rossler cir-

cuit are: 
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where, we have taken that into account the output of AD633 is as in 

(1.16): 
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(1.36) 

Matching equations (1.35) with the mathematical model in equations 

(1.34), it is possible to choose the values of the components. Using low 

cost components, it is possible to obtain the chaotic attractor shown in 

Fig.1.25. The different behavior shown by the Rossler circuit by varying 

the single bifurcation parameter c  can be observed in the circuit by var-

ing resistor R56. 

 

 
 

Fig.1.25 –Rossler’s attractor. 

 

5.5.5.5. The The The The HindmarshHindmarshHindmarshHindmarsh----Rose’s circuitRose’s circuitRose’s circuitRose’s circuit    

In traditional artificial neural networks, the neuron behavior is de-
scribed only in terms of firing rate, while most real neurons, commonly 
known as spiking neurons, transmit information by pulses, also called 
action potentials or spikes. The Hindmarsh-Rose (HR) model [106] is 
computationally simple and capable of producing rich firing patterns 
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exhibited by real biological neurons. Nevertheless, the HR model is also 
able to mimic neuronal bursting.  It consists of three coupled first order 
differential equations , it can generate a tonic spiking, phasic spiking, 
and so on, for different parameters in the model equations. 
The dimensionless equations of Hindmarsh-Rose’s circuit consist of the 
following three state equations: 
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where x represents the membrane potential y and z are associated with 
fast and slow currents, respectively.  
I is an applied current, and a, α, µ, b and c are constant parameters and 

in particular 1=a , 3=b , 1=c , 5=d , 002.0=r , 4=s , 6.1−=χ  
As shown in the simulation trend of Fig.1.26, obtained with Matlab, the 
behavior of x, y and z variable exhibits the typical features of a chaotic 
system.  

 
Fig.1.26 – Theoretical trend of x (blue), y (green), and z (red) variables. 
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Fig.1.27 – Theoretical HR attractor 

. 

Following the SC-CNN approach, in Fig. 1.28 an electronic circuit 

has been designed with Spice’s tool and in Fig. 1.31 realized using resis-

tors, capacitors and operational amplifiers. To simplify the construction 

of the circuit, the circuit is built in two subparts, as shown in the dia-

gram in Fig.1.29 and Fig.1.30, which implements the square sub-circuit 

and the cube sub-circuit.  

 
 



A gallery of nonlinear circuits 35 

 

 
Fig.1.28 SC-CNN based implementation of HR’s circuit. Kit’s components: 
D1=D2,=D3=D4=D5=D6=D7=D8=D9=D10=D11=1N4148, C3=1uF, C4=1uF, C1=467uF, 
R1=200kΩ, R20=200kΩ, R23=200kΩ, R36=200kΩ, R40=200kΩ, R2=10kΩ, R19=10kΩ, 
R30=10kΩ, R31=10kΩ, R34=10kΩ, R35=10kΩ, R45=10kΩ, R46=10kΩ, R3=20kΩ, 
R4=100kΩ, R14=100kΩ, R18=100kΩ, R37=100kΩ, R39=100kΩ, R5=22kΩ, R6=1kΩ,  
R21=1kΩ, R50=1kΩ, R51=1kΩ, R53=1kΩ, R13=32kΩ, R25=32kΩ, R15=200Ω, 
R16=43kΩ, R17=125kΩ, R22=36kΩ, R24=26.6kΩ, R26=250kΩ, R27=500kΩ, 
R29=500kΩ, R32=4kΩ, R33=30kΩ, R42=12kΩ, R43=15k, R44=2kΩ, R47=70kΩ, 

R48=89kΩ, R49=1.81kΩ, R52=2.17kΩ. Power supply = V15± . 
 

 
Fig. 1.29 Sub-circuit that realizes the square, X1quad=X12. 
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Fig. 1.30 Sub-circuit that realizes inverted cube, X1quad=-X13. 

 

 
Fig.1.31 Hardware implementation of HR model. 

 

The circuital equations associated to the implementation of HR circuit 

are: 
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Matching equations (1.38)

possible to choose the valuesof the values of 

components it is possible 

Fig.1.32. R52 can be varid to control the system bifurcations

 

 

Fig.1.32 – Experimental trend of x variable
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ns (1.38) with the mathematical model in (1.37), it is 

the valuesof the values of components. Using low cost 

is possible to obtain the chaotic behavior 

can be varid to control the system bifurcations. 

 

 

Experimental trend of x variable, obtained for I=1.89 more precisely for 
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ith the mathematical model in (1.37), it is 

components. Using low cost 

the chaotic behavior shown in 

obtained for I=1.89 more precisely for 
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6.6.6.6. The The The The Duffing’s circuitDuffing’s circuitDuffing’s circuitDuffing’s circuit    

The dimensionless equations of the Duffing’s circuit consist of the fol-

lowing three state equations: 

 

)sin(3
wtgdyxxy
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 (1.40) 

 

where 25.0=d , 3.0=g and 1=w . 

Fig.1.33 shows the trend of the state variables obtained with Matlab. 
 
 

Fig.1.33 Theoretical trend of x (blue) and y (green) variables. 
 

 

In Fig.1.34 , the typical  chaotic attractor shown.  
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Fig.1.34 Theoretical Duffing’s attractor. 
 
 

In the implementation of the model (1.40), 
the Miller integrator configuration was chosen as can be seen in the cir-
cuit diagram in Fig.1.35. 
 

 
 
Fig.1.35 Hardware implementation of Duffing circuit. Kit’s components: C4=100nF, 
C5=100nF, R31 =4kΩ, R32=75Ω, R39=10kΩ, R4=1kΩ, R27=1kΩ, R29=1kΩ, R30=1kΩ, 
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R34=1kΩ, R36=1kΩ, R37=1kΩ, R40=1kΩ, R3=100Ω, R28=100Ω, R33=100Ω. The para-

meter of Vin signal are: f=15.9kHz, Vamplitude=0.3V, Voffset=0, Power supply = V9± . 

 
 

 
Fig.1.36 Hardware implementation of Duffing’s circuit. 

 

The circuital equations associated to the implementation of the Duffing 

circuit as shown in (1.36) is reported in (1.41). 
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with 
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(1.42) 

Vin corresponds to an external sinusoidal wave with amplitude=0.3V 

and frequency = 15.9kHz. 

Matching equations (1.41) with the mathematical model (1.40), it is 

possible to choose the values of the components. Varying the amplitude 
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g  of  the external sinusoidal wave, different chaotic attractors can be  

observed. 
 

  
Fig.1.37 Experimental Duffing’s attractor for g=0.8V. 

7.7.7.7. MemrMemrMemrMemriiiistive circuitstive circuitstive circuitstive circuit    

Memristors are gaining an increasing interest in the scientific commu-

nity for their possible applications, e.g. high–speed low–power proces-

sors or new biological models for associative memories. Due to the in-

trinsic nonlinear characteristic of memristive devices, it is possible to 

use them in the design of new dynamical circuits able to show complex 

behavior, like chaos. In this paragraph, a new memristive chaotic circuit 

is presented discussing, in particular, an approach based on Cellular 

Nonlinear Networks for the implementation of the memristive device. 

The approach investigated in this work allows to obtain memristor with 

common off-the-shelf components and to observe the onset of new chao-

tic attractors in nonlinear circuits with memristors. The circuits pre-

sented here, being the first example of memristive chaotic circuits based 

on CNNs, can be considered as the link between the three inventions by 

Leon O. Chua, i.e. the memristor [107], the first chaotic electronic cir-

cuit and the Cellular Nonlinear Networks. 
The dimensionless equations [78] of the memristive circuit consist of the 
following four state equations: 
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and 1=β , 65.0=γ . 

As shown in the simulation trend of Fig.1.38, obtained with Matlab, the 
behavior of x, y,z and w variable exhibits the typical features of a chao-
tic system. 
 
 

 
Fig.1.38 Theoretical trend of x (blue), y (green), z (red) and w (yellow) variables of the 
memristive model. 
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Fig.1.39 Theoretical attractors of memresistive circuit. 
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Fig.1.40 Memristive circuit. Kit’s components: D10=1N4148, C1=100nF, C2=100nF, 
C3=100nF, C4=100nF, R24=200kΩ, R135=40kΩ, R26=200kΩ, R27=200kΩ, R28=200kΩ, 
R38=200kΩ, R39=200kΩ, R123=200kΩ, R126=200kΩ, R127=200kΩ, R128=200kΩ, 
R132=200kΩ, R134=200kΩ, R139=200kΩ, R35=20kΩ, R36=20kΩ, R41=50kΩ, 
R42=198kΩ, R43=241kΩ, R130=241kΩ, R23=10kΩ, R34=10kΩ, R40=10kΩ, R108=10kΩ, 
R110=10kΩ, R111=10kΩ, R129=10kΩ, R107=196Ω, R109=1kΩ, R116=1kΩ, R117=1kΩ, 
R124=165kΩ, R131=25kΩ, R138=121.2kΩ, R140=100kΩ, R45=198kΩ, DG300A=switch. 

 

The circuital equations associated to the implementation of the memre-

sistive circuit (1.43) are: 
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where we have used some particular configurations to realize the func-

tion presented in equation (1.44). 

In particular it has been used the rectifier configuration in Fig.1.41, 

combined with the comparator shown in Fig.1.42 with V127=1V, and 

the fast switch in Fig.1.43  that uses, the output of the comparator as 

control signal. 

 
Fig.1.40 Rectifier configuration. 

  

 
Fig.1.42 Comparator. 

 

 
Fig.1.43 AD300A fast switch. 

 

 

Matching equations (1.45) with the mathematical model (1.43), it is 

possible to choose the values of the components. In the Fig.1.44, the     

Lissajous figures are reported. 
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Fig.1.44 Lissajous figures of the memristive circuit. 

 

8.8.8.8. The The The The LangfordLangfordLangfordLangford’s circuit’s circuit’s circuit’s circuit    

The dimensionless equations of Langford’s circuit consist of the follow-

ing three state equations: 
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where ,2.17.0 ÷=p  ,7.0=q ,10=w .5.0=ε  

As shown in the simulation trend of Fig.1.45, obtained with Matlab, the 
behavior of x, y and z variable exhibits a typical features of a chaotic 
system. 

 
Fig.1.45 Theoretical trend of x(blue), y(green) and  z(red) variables of the Langford  
model. 
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Fig.1.46 Theoretical Langford attractor 
 
 

 
Fig.1.47 Theoretical bifurcation of Langford circuit. 

 
 

For this model, to rescale the system it has been necessary to apply a 
transformation as follow: 
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The rescaled system is as follows: 
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Fig.1.48 Circuit diagram of Langford model. 
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Fig.1.49 Hardware implementation of the Langford’s circuit. 
 
 

The circuital equations associated to the implementation of the Lang-

ford circuit are: 

z
R

R
COST

R

R
PR

R

R
Z

R

R
zzRC

y
R

R
x

R

R
xy

R

R
yyRC

x
R

R
xz

R

R
y

R

R
xxRC

CUBE

19

17

18

17

20

17

21

17
224

9

6

8

6

7

6
105

4

1

2

1

3

1
56

1 ++−−−=

+++−=

++−−=

&

&

&

 (1.49) 

where, taking into account that the output of AD633 is as in (1.16) and 

using the square sub-circuit in Fig.1.29 and the cube sub-circuit in 

Fig.1.30, it is possible to match equations (1.49) with the mathematical 

model (1.48) and consequently to choose the values of the components. 

The different behaviors shown by the Langford circuit by varying the 



A gallery of nonlinear circuits 51 

 

single bifurcation parameter p can be observed in the circuit by varyng 

resistor R15.

 

 

 
 

Fig.1.50 Experimental attractors of theLangford’s circuit.

 
Fig.1.51 Experimental bifurcation of the Langford’s circuit. 

 

9.9.9.9. The The The The Colpitts circuitColpitts circuitColpitts circuitColpitts circuit    

The Colpitts oscillator [108] is one of the simplest examples of an 
electronic oscillator. The term refers to several possible configurations 
in which the combination of an inductance, two capacitors, some resis-
tances and a nonlinear element (in general, a transistor) is used to gen-
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erate periodic waveforms. Peculiarities of this type of oscillators are 
simplicity and robustness. Recently, it has been demonstrated that for 
some parameters a chaotic behavior can also be obtained, thus showing 
that it is possible to design Colpitts oscillators able to generate high
frequency chaotic signals.
cuit are represented by the following st
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where 0=BI  if 
BEV

are the forward current gain and the small
base-emitter junction of the transistor, respectively. 

In the experimental setup these parameters are estimated as 

and Ω= 100ONR .  

In Fig.1.5 the electronic circuit 
reports the ciruit realized using 
inductors. 
 

 
Fig.1.52  Chaotic Colpitts oscillator. Components: R
54nF, L = Hµ5.98 , Lc = 

 

erate periodic waveforms. Peculiarities of this type of oscillators are 
simplicity and robustness. Recently, it has been demonstrated that for 
ome parameters a chaotic behavior can also be obtained, thus showing 

that it is possible to design Colpitts oscillators able to generate high
frequency chaotic signals. The circuital equations of chaotic Colpitts ci
cuit are represented by the following state equations: 
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are the forward current gain and the small-signal on-resistance o
emitter junction of the transistor, respectively.  

In the experimental setup these parameters are estimated as 

electronic circuit is shown, while tool and in the Fig
realized using off-the-shelves resistors, capacitors and 

 

Chaotic Colpitts oscillator. Components: R1 = 35Ω, R2 = 500Ω, C1 = 54nF, C
, Lc = Hµ23 , Q1 = BJT2N2222, Vcc = 5V , Vee = -5V . 

Chapter 1 

erate periodic waveforms. Peculiarities of this type of oscillators are 
simplicity and robustness. Recently, it has been demonstrated that for 
ome parameters a chaotic behavior can also be obtained, thus showing 

that it is possible to design Colpitts oscillators able to generate high-
equations of chaotic Colpitts cir-

(1.50) 

β  and RON 

resistance of the 

In the experimental setup these parameters are estimated as 200=β  

tool and in the Fig.1.53 
resistors, capacitors and 

= 54nF, C2 = 
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Fig.1.53 Colpitts oscillator realized with recycled components.  
 

In Fig.1.54,  the Lissajous figure obtained with the Colpitts oscillator is 

reported. 

 
 

 
 

Fig.1.54 Projection on the plane VC2-VC1 of the Colpitts attractor. Horizontal axis: 
200mV/div; vertical axis 500mV/div. 
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DESIGN OF TIMEDESIGN OF TIMEDESIGN OF TIMEDESIGN OF TIME----DELAY CHAOTIC ELECTRDELAY CHAOTIC ELECTRDELAY CHAOTIC ELECTRDELAY CHAOTIC ELECTRONIC ONIC ONIC ONIC 
CIRCUITSCIRCUITSCIRCUITSCIRCUITS    

    

This chapter deals with the problem of the design and the implementa-

tion of time-delay chaotic circuits. A simple feedback scheme consisting 

of a nonlinearity, a first-order RC circuit and a delay block has been 

fixed and a procedure to design the characteristics of these blocks in or-

der to obtain chaotic dynamics has been introduced. A series of Bessel 

filters in cascade is used to implement the time-delay. The suitability of 

the approach is demonstrated introducing two new chaotic circuits im-

plemented with off-the-shelf discrete components. The approach allows 

us to design and implement a new class of time-delay chaotic circuits 

with simple components, like resistors, capacitors, and operational am-

plifiers. 

2.2. 2.2. 2.2. 2.2. TimeTimeTimeTime----delayed nonlinear systemsdelayed nonlinear systemsdelayed nonlinear systemsdelayed nonlinear systems    

The presence of time-delay in dynamical systems is particularly signifi-

cant, since it may represent a source of instability or, in general, may 

induce undesired oscillations and, thus, poor performance [1]. However, 

the existence of time-delay in nonlinear dynamical systems, by making 

the system infinite-dimensional, may be beneficial, allowing the occur-

rence of complex dynamics and, in particular, chaos. 
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Mathematical models which include time-delays and exhibit chaos can 

be found in various fields. In particular, high-dimensional chaos in-

duced by time-delay in feedback systems has been reported in [2], while 

in [3] the use of chaos generated by systems with time-delays for the 

transmission of encrypted information has been discussed. Several oth-

er examples of chaotic behavior in time-delayed systems have been ob-

served in purely mathematical models [4], [6], in biological systems [7], 

[8] and, in particular, in neural systems, where time-delays may en-

hance the synchronization properties of the spiking activity of coupled 

neural models [9]. Furthermore, delay plays an important role in con-

trolling the behavior of dynamical systems. Delayed signals, in fact, are 

used for chaos control according to a technique, proposed in [10], based 

on the OGY method [11]. According to this method [10], one of the unst-

able periodic orbits contained in the chaotic attractor is stabilized 

through the feedback of a small time-dependent perturbation, realized 

by comparing a measurable state variable to a signal obtained delaying 

the state variable itself. 

Despite the abundance of examples of mathematical models of time-

delayed systems with chaotic behavior, few chaotic electronic circuits 

with time-delay are reported in literature, for example [12]–[16]. In fact, 

the main issue in designing time-delayed circuits is a suitable choice of 

the circuitry devoted to the implementation of low frequency delays. 

The use of delay lines is a common solution for the distribution of clock 

signals among logic gates. Flat spiral lines or serpentine lines provide 

maximum delay times in the order of micro-seconds [17]. These solu-

tions can be adopted for the design of high-frequency chaos generators, 

while if larger delays are needed, other possibilities should be explored. 

Low frequency chaotic circuits, on the other hand, are useful for         

different potential applications: chaos-based noise generators [18], im-

provement of sensors [19] and of motion capabilities in robotics [20]. A 

different implementation consists in a network of T-type LCL filters and 

has been adopted in [13], [14] to obtain a chaotic circuit based on the 

Mackey-Glass model [7]. This latter solution allows to obtain delays up 

to a maximum of 3ms. However, the implementation based on T-type 

LCL filters has the drawback of parasitic resistive effects of inductances 
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whichcan not be neglected since they produce a strong attenuation of 

the delayed signal. 

Aim of this work is to introduce a new class of time-delayed chaotic cir-

cuits. First, a general feedback scheme based on three simple blocks (a 

nonlinearity, an integrator and a time-delay block implemented through 

n Bessel filters in cascade) is introduced, and, then, the conditions for 

the existence of chaos in such scheme are discussed. In order to gener-

ate different dynamics with the same conceptual scheme introduced, on-

ly the nonlinearity and the parameters of the circuit have to be changed. 

Moreover, a strategy to fix such parameters, to approximatethe delay 

and to evaluate the approximation error has been introduced, and, then, 

applied to the design of a time-delay chaotic circuit. The circuit has been 

then implemented with off-the-shelf discrete components and experi-

mentally investigated, showing the suitability of the approach for de-

signing chaotic circuits with large (in the order of milliseconds) time-

delays. 

 

 

 

Fig. 2.1. Feedback scheme of the time-delay chaotic circuit. 

2.3. Design procedure for time2.3. Design procedure for time2.3. Design procedure for time2.3. Design procedure for time----delay chaotic systemsdelay chaotic systemsdelay chaotic systemsdelay chaotic systems    

In this paragraph the feedback scheme shown in Fig. 2.1 is investigated. 

It represents a simple feedback scheme of a nonlinear system contain-

ing all the elements strictly needed to have the possibility that chaotic 

behavior emerges. It consists of three blocks: a nonlinearity, a RC cir-

cuit, and a time-delay block. It represents a minimal configuration to 

observe chaotic dynamics in autonomous time-delay circuits. The nonli-

nearity is needed since chaos is a prerogative of nonlinear circuits; the 

RC circuit implements the dynamics of the single state variable; and the 
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presence of the delay makes the system infinite-dimensional, allowing 

chaos to be observed in a system with a single state variable. 

In terms of dimensionless equations, the dynamics of the system shown 

in Fig. 2.1 can be expressed as follows: 

 

)))(()(()( τ−−−= txbhtaxktx&     (2.1) 

 

where ℜ∈)(tx is the circuit state variable, ℜ→ℜ:)(xh  is the non-

linear function, 
+ℜ∈τ

 
is the time-delay, k is a scaling factor, and a 

and b are system parameters. b represents the gain multiplying the 

nonlinearity, while ka is the pole of the RC circuit. System (2.1) 

represents a nonlinear system in Lur’e form with dynamical linear part 

given by )/()()( kaskesL
s += − τ

and feedback nonlinear part given by 

).(xbhN =  

For systems in Lur’e form, it is possible to analytically derive approx-

imate conditions for the existence of chaotic behavior. They are summa-

rized in the following criterion [23]:  

 

Criterion 2.1 (For the Existence of Chaos in Lur’e Systems): 

The conditions required for the existence of chaos in a Lur’e system are: 

1) existence of a stable predicted limit cycle; 

2) existence of a separate unstable equilibrium point; 

3) interaction between the unstable equilibrium point and the stable 

predicted limit cycle. 

Additionally, it is required that the linear part has filtering properties, 

which in our case is always satisfied, since )/()()( kaskesL
s += − τ

 

The existence of a stable predicted limit cycle is derived by applying the 

harmonic balance method [23]. A limit cycle solution of the type exists if 

the amplitude and the bias of satisfy the following equations: 

 

0),()(1

0),()0(1

1

0

=+

=+

BANjwL

BANL
     (2.2) 
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where 0N  and 1N  are static and dynamic describing functions [25] ap-

proximations of the nonlinearity N. Solving (2.2) means to express as A 

function of B, i.e., A(B) from the static equation, and, then, to consider 

the intersections between the curve )( jwL  and the curve 

)),((/1 1 BBAN− in the complex plane. Each intersection corresponds 

to a limit cycle with a given frequency and amplitude. The stability 

properties of the predicted limit cycle y0 are inferred by applying the 

limit cycle criterion [26]. 

 

Criterion 2.2 (Limit Cycle Criterion):  

Each intersection point of the curve )( jwL  and the curve 

)),((/1 1 BBAN−  corresponds to a limit cycle. If the points near the in-

tersection, corresponding to the considered limit cycle, along the curve 

)),((/1 1 BBAN−  for increasing values of B are not encircled by the 

curve )( jwL , then the limit cycle is stable. Otherwise the limit cycle is 

unstable.  

Let us now focus on the second condition of criterion 2.1. The equili-

brium points of the system can be calculated by solving  

 

0)( =+ xbhxa      (2.3) 

 

The criterion for the existence of chaos in Lur’e systems requires the ex-

istence of an equilibrium point which has to be separate from the limit 

cycle and unstable. We now briefly discuss how the stability properties 

of the equilibrium points can be checked. Since in the following piece-

wise linear (PWL) nonlinearities will be used, the stability of the generic 

equilibrium point can be analyzed taking into account the following sys-

tem: 

)))((')(()( utxhbtaxktx +−−−= τ&

   
 (2.4) 

 

which represents the dynamics of the system (2.1) in the PWL region to 

which the equilibrium point under examination belongs, i.e., ibmb ='

where im  is the slope of the PWL nonlinearity in the region of the equi-
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librium point Ei. u is a generic constant input. Alternatively, if h(x) is 

not a PWL function, linearization around Ei could be considered. 

For system (2.4) two different types of asymptotic stability can be de-

fined [24]: delay-independent (if the system (2.4) is stable for all the 

values of 
+ℜ∈τ ) and delay-dependent (if the system (2.4) is stable for 

some values of and unstable for other values of τ ) stability. To check 

them, the following criteria [24] can be applied. 

 

Criterion 2.3 (Delay-Independent Stability): The equilibrium point Ei is de-

lay-independent stable if and only if 0>+ ba and || ba ≥ . 

 

Criterion 2.4 (Delay-Dependent Stability): The equilibrium point Ei  is delay-

dependent stable if and only if || ab > . The equilibrium point Ei  is sta-

ble for ))(/())/((cos* 221 abkba −−=≤ −ττ . 

 

Finally, the third condition of criterion 2.1, i.e., the interaction between 

the stable predicted limit cycle and the unstable equilibrium point , can 

be expressed as follows: 

 

|| BEA −≥      (2.5) 

 

The system represented in Fig. 2.1 thus exhibits chaotic behavior if con-

ditions (2.1)–( 2.3) of criterion 2.1 are satisfied, i.e., if (2.2) and (2.5) ad-

mit a solution and a separate equilibrium point satisfying neither crite-

rion 2.3 nor criterion 2.4 exists. These conditions can be satisfied by a 

proper choice of the nonlinearity )(xh and of the parameters a, b and τ
of system (2.1). 
The time-delay τ  plays an important role in conditions (2.1)–( 2.3) of 

the criterion 2.1. τ  may change the stability properties of equilibrium 

points (if they are delay-dependent stable) and may also affect the Ny-

quist diagram of )(sL  (and thus the conditions on the existence of the 

limit cycle and on its interaction with the equilibrium point). In general, 

when criterion 2.1 admits a solution, for a given nonlinearity and for 
fixed values of and , one obtains a range of values of τ , i.e., 
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maxmin τττ ≤≤ for which the system exhibits a chaotic behavior. Once 

fixed τ in this range, i.e., ττ = , the problem of the implementation of a 

circuitry introducing this delay arises. Taking into account the typical 

scaling factor k in discrete-components circuit implementations, this de-

lay is in the order of magnitude of milliseconds and thus its implemen-

tation requires the definition of an appropriate strategy.  

The idea underlying our approach is to implement the timedelay block 

with a cascade of n Bessel filters which are low-pass filters with a max-

imally flat magnitude and a maximally linear phase response [27]. 

Since a Bessel filter with transfer function H(s) introduces a time-delay 

up to the 3 dB frequency equal to )/())(( dwwdi Φ−=τ , a given delay 

τ can be obtained with blocks in cascade according to  

 

inττ ≅       (2.6)  

 

In this way, the time-delay can be easily tuned by changing the number 

n of filters in cascade. The Bessel filter implemented is an uncertain 

Bessel filter, since its implementation is based on off-the-shelf compo-

nents with standard values, which additionally are subjected to toler-

ance. For this reason, it is important to evaluate the error between the 

model and the circuit implemented with a given n, and, if necessary, use 

a different number of filters in cascade. Since the implemented system 

is chaotic and thus sensitive to parameters, the introduced approach re-

lies on the definition of an error measure taking into account this prop-

erty. Let us consider two chaotic circuits coupled through a master slave 

configuration [29]. If the two circuits are identical, in general, it is poss-

ible to synchronize them, obtaining state variables which asymptotically 

follow the same trajectory. In the case of non-identical circuits, complete 

synchronization cannot be obtained, but the synchronization error is 

kept small if the circuits have similar parameters. Therefore, the syn-

chronization error can be used to evaluate the accuracy of the approxi-

mation based on Bessel filters. 

More in detail, let us consider  
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txbhtaxktx
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&

& τ
  (2.7) 

 

where )(tx  is the state variable of the ideal model (2.1), i.e., with 

)/()()( kaskesL
s += − τ

, )(txn is the corresponding state variable of 

the approximated model, i.e., with )()/()(
~

sHkasksL
n+= , k is the 

coupling strength, and )(ˆ tx is the output of the n Bessel filters in cas-

cade, which ideally is )()(ˆ τ−= txtx n . Let us then define the synchro-

nization error between the ideal model (with time-delay τ  ) and the ap-

proximated model (with a time-delay given by filters in cascade) as fol-

lows  

 

|)()(|)( txtxn n−=δ      (2.8) 

 

where ⋅  represents the average with respect to time. The synchroniza-

tion error (2.8) is used to evaluate the accuracy of the approximated 

model. Moreover, n is selected to minimize this error. On the basis of 

the considerations discussed in this section, a procedure for the design 

of a time-delay chaotic circuit with the feedback scheme of Fig. 2.1 can 

be thus defined. The procedure is summarized in the following with the 

indication of the condition required and the equations and criteria that 

can be used to verify it. 

Procedure 1: In order to design a time-delay chaotic circuit with the 

feedback scheme of Fig. 2.1 the nonlinearity h(x) and the circuit para-

meters should be selected so that the following occurs. 

1) The circuit should admit a stable predicted limit cycle. Satisfy (2.2) 

and criterion 2.2. 

2) The circuit should have an unstable separate equilibrium point. Use 

(3) and criteria 2.3 and 2.4. 

3) The stable predicted limit cycle should interact with the unstable  

equilibrium point E-Use (2.5). 
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4) Once fixed the parameters (and in particular τ ), the number of fil-

ters n for implementing the time-delay has to be chosen.—Use (2.6). 

5) The accuracy of the approximation has to be evaluated with respect 

to different n.—Use (2.8) and choose n so that )(nδ is minimum. 

This procedure defines a class of circuits with the feedback scheme of 

Fig. 2.1 and chaotic behavior. In the next Section, we illustrate an ex-

ample of such circuits. 

 

2.4. 2.4. 2.4. 2.4. First cFirst cFirst cFirst circuit implementationircuit implementationircuit implementationircuit implementation    

The feedback scheme illustrated in Fig. 2.1 is based on three blocks. We 
briefly discuss some general aspects on the implementation of these 
three blocks and, then, discuss in detail an example designed following 
Procedure 1.  
The circuit implementation is based on operational amplifier blocks.  
A first block implements the RC circuit. The time constant of the block 
as been chosen equal to RC=1ms, which scales the dynamics of system 

(2.1) by a factor equal to 
310=k .  

 

 
Fig. 2.2. Schematics of the Sallen-Key low-pass active filter implementing a lowpass 

Bessel filter. 
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Fig. 2.3. Piece-wise linear function h(x). 

 
A second block implements the nonlinearity of the circuit. In the exam-
ple described below a PWL nonlinearity is used. PWL nonlinearities are 
typically found in many chaotic circuits, like in the Chua’s circuit [21], 
and therefore design strategies for their implementation are widely stu-
died [21], [22]. In particular, for the design of this block, the approach 
described in [21] has been followed. This approach exploits the satura-
tion working region of operational amplifiers to obtain a PWL input-
output characteristics with tracts with different slopes. Concerning the 
third block, the time-delay is implemented by using a cascade of low-
pass second-order Bessel filters. Each filter is characterized by the Sal-
len-Key topology [30] as shown in Fig. 2.2 and by the following transfer 
function:  
 
 

2
2121211 )(1

1
)(

sRRCCsRRC
sH

+++
=    (2.9) 

 
 
The values of the filter components (listed in Appendix) have been cho-
sen in order to realize a Bessel filter with 3 dB frequency equal to 

kHzfc 1=  and taking into account off-theshelf component values. The 

time-delay introduced by this filter in the band up to cf  can be calcu-

lated as )/())(( dwwdi φτ −= . In the 3 dB band, )( 211 RRCi +≈τ . 
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For the values of the components in Section 2.5. Larger delays are rea-
lized by taking into account a cascade of n filters.  

 
Fig. 2.4. Numerical bifurcation diagram of system (1) with nonlinearity (10) with respect 

to time-delay τ . Other parameters are a=1, b=3. 

 

 
An example of a time-delay chaotic circuit designed by following Proce-
dure 1 is now described. The circuit is characterized by the following 
PWL function h(x): 
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The nonlinearity in (2.10) is also shown in Fig. 2.3. It can be approx-
imated by the following describing function [28]: 
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where m is the slope of h(x), i.e., m=1.  
 

 
 

Fig. 2.5. Graphical solution of (2) for different values of τ . The continuous line refers to 

the function )),((/1 1 BBAN− , while the dotted line is the Nyquist plot of )( jwL for 

(a) r=0.6ms, (b) r=0.8ms. 
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Fig. 2.6. Amplitude of the predicted limit cycle as a function of τ . The dotted curve in-

dicates the right hand term of (2.5). 

 

 
The description of system (2.1) with nonlinearity (2.10) in terms of Lur’e 

form is completed by including the linear part )/()()( kaskesL
s += − τ

. 

The conditions for the existence of chaos can be satisfied for a=1, b=3 
and different values of τ . For b=3 and a=1, the system (1) with nonli-
nearity (10) has three equilibrium points that can be found solving the 

equation 0)(3 =+ xhx , yielding to: )4/3(21 =−= EE , and 00 =E . 

We study the stability properties of these equilibrium points by consi-

dering a=1, b=3 and let τ  vary. 1E and 2E  according to criterion 2.4 are 

stable for ms68.0* =≤ ττ  and unstable otherwise. The PWL function 

(10) is not continuous in 0E . However, the stability of the equilibrium 

point 0E  can be studied by assuming a PWL tract with a large negative 

slope (indeed, this is the real case, since in the circuit implementation 
the ideal PWL function of Fig. 2.3 is realized by a comparator with a fi-
nite large negative slope). With this assumption, i.e., 0' <<b , according 

to criteria 2.3 and 2.4, 0E  is neither delay-dependent stable nor delay-

independent stable, and thus is unstable for all τ . 
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The bifurcation diagram with respect to τ  is shown in Fig. 2.4. For 

ms68.0≤τ , the equilibrium points 1E  and 2E are stable, and, depend-

ing on initial conditions, the trajectory of system (2.1) with nonlinearity 

(10) converges either to 1E  or 2E  . Indeed, for ms68.0≤τ , (2.2) do not 

have a solution, and the harmonic balance method predicts that no limit 
cycles arise in this case. This is also evident in the Nyquist plot of 

)( jwL for ms6.0=τ , shown in Fig. 2.5(a), that does not intersect the 

curve )),((1/1 BBAN− .  

For ms8.0=τ , (2.2) predict a limit cycle (as shown in Fig. 2.5(b)) with 
amplitude A=0.735 and B=0.733 bias. Furthermore, this limit cycle sa-
tisfies the interaction condition (2.5), and so chaos emerges.  
 

 

Fig. 2.7. Magnitude and phase Bode diagrams of G1(s) and H4(s). 

 
 
Numerical simulations for this set of parameters confirm that the sys-
tem behaves chaotically, as furtherly confirmed by the maximum Lya-

punov exponent 14.0max ≅λ , calculated with the procedure discussed 

in [6]. It is interesting to note, that in this system when (2.2) admit a so-
lution (for instance, for ms8.0=τ ), also (2.5) is satisfied, so that chaos 

emerges. In Fig. 2.6 the curve )(τA  for different values of τ  hand term 

of (2.5).  
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For ms68.0<τ  there is no predicted limit cycle.  
For ms68.0≥τ a limit cycle is predicted, according to (2.2) and simul-
taneously the interaction condition (2.5) is satisfied (as shown by the 

curve )(τA  which is always above the dotted line).  

Following Procedure 1, in order to implement a given timedelay 
msms 68.08.01 >=τ , n=4 blocks can be used. The accuracy of the ap-

proximation is now evaluated by using two different approaches. We 
first evaluate the accuracy of the approximation of the delay by compar-

ing )(4
sH with the transfer function of the ideal time-delay 

 
 

1)(1

τs
esG

−=       (2.12) 

 
 
and then we evaluate the accuracy of the approximation of the whole 
system in terms of the synchronization error )(nδ  . The Bode diagram of 

the ideal delay, reported in Fig. 2.7, is characterized by a unitary mag-
nitude for any frequency, and an exponentially decaying phase. In Fig. 

2.7 the Bode diagram of the transfer function )(4
sH is also reported. 

Comparing the two frequency responses of the ideal delay )(1 sG  and of 

)(4
sH , both magnitude and phase show a good match in the frequency 

range of the circuit dynamics.  
The accuracy of the approximation of the ideal model (2.1) with a sys-
tem making use of a cascade of n uncertain Bessel filters is evaluated by 
measuring the synchronization error between the two models coupled 
according to (2.7). Fig. 2.8 shows that the synchronization error )(nδ  as 

a function of n takes its minimum value for n=4 . In the inset of Fig. 2.8
)(txn
 versus )(tx for n=4 is shown. The analysis of Fig. 2.8 indicates 

that n=4 is a suitable value for the number of Bessel filters to be used. 
It is worth noticing that this analysis is not only based on the corres-
pondence of the ideal time-delay value with the real one, but on the ac-
curacy of the whole circuit in implementing the designed chaotic dy-
namics. The analysis was carried out assuming that the only free para-
meter is the number of n cascaded filters and taking into account, in the 
calculation of the synchronization error, the source of non-ideality deriv-
ing from the use of standard off-the-shelf components. However, the 
procedure can be used to tune any other parameter for which the sys-
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tem is particularly sensitive, taking also into account other sources of 
non-ideality. 

2.2.2.2.5555. . . . Experimental resultsExperimental resultsExperimental resultsExperimental results    

The circuit described in Section III has been implemented with off-the 
shelf discrete components. The time-delay block of the circuit has been 
implemented by taking into account a maximum number n=8 of filters 
in cascade, so that the effective time-delay introduced can be tuned and 
it was possible to carry out an analysis with respect to different values 
of waveforms have been acquired by using a NI USB6255 data acquisi-
tion board, with sampling frequency kHzf s 300= .  

 
Fig. 2.8. Synchronization error )(nδ  as function of n for k=1. Inset:xn(t) versus x(t) for 

n=4. 

 
Fig. 2.9. Experimental results. Behaviour of the circuit for n=4 cascaded filters. Attrac-

tor in the phase plane X(T − 
1τ )–X(T). 
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Fig. 2.10. Experimental results. Behaviour of the circuit for n=4 cascaded filters. Attrac-

tor in the phase plane X(T − 
1τ )–X(T) for the following values of the parameters: a=1, 

b=3 and n=8. 

 
 
The experimental results allow to conclude that the observed nonlinear 
characteristic corresponds to (2.10) in the limit of parametric tolerances 
of components. As concerns the time-delay block, the measured time-
delay introduced by each of the filters is 0.219 ms. The difference with 
the theoretical prediction is also due to parametric tolerances. For the 
nominal values of the parameters (in particular, with n=4 Sallen-Key 
blocks) the circuit exhibits the expected chaotic behavior. Fig. 2.9 shows 

the chaotic attractor in the phase-plane )()( 1 TXTX −−τ . The experi-

mental results are in good agreement with numerical simulations. By 
varying the number of Sallen-Key blocks, the results of the numerical 
analysis discussed in Section have been confirmed by the experimental 
results. For n<4 a stable equilibrium point is observed. For 4≥n  a 
chaotic behavior is obtained; an example for n=8 is shown in Fig. 2.10. 
The chaotic dynamics persists for the whole range of investigated, i.e., 
for 84 ≤≤ n . 
 
The suitability of the approach leading to a class of time-delayed chaotic 
circuits has been experimentally confirmed by a second case study, in 
which the nonlinearity is given by  
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and the other parameters are fixed as: a=1, b=5 and ms65.1=τ  and ms 
(which corresponds to n=8 Bessel filters).  
 

 
 
Fig. 2.11. Circuit implementing system (1) with nonlinearity (10). The following compo-

nent are used: ,161 Ω== kRR ,8.13 Ω= kR ,85.74 Ω= kR ,4.35 Ω= kR

,10... 2287 Ω==== kRRR ,11 FC µ= ,22...... 16242 FCCCC i µ======  

and FCCCC i µ10...... 171253 ====== + , the voltage supply is Vsup= V9± . 
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Fig. 2.12. Circuit implementing nonlinearity (13). The following component are used: 

,121 Ω== kRR ,32.43 Ω= kR ,12.44 Ω= kR ,74.15 Ω= kR ,74.26 Ω= kR

,11 FC µ= the voltage supply is Vsup= V9± . 

 
 
The implementation of this second example follows the same procedure 
and guidelines used for the first example discussed in section 2.6. It is 
worth to notice that the scenario is different in the two cases, although 
in both examples chaos has been experimentally observed. In both cas-
es, the time-delay constitutes an interesting bifurcation parameter, but, 
while, in the first case, the behavior changes from fixed point to chaos 
when the number of Bessel filters is increased, in the second example 
small delays induce periodic oscillations, while chaotic behavior occurs 
for larger delays. The model described has been implemented with off-
the-shelf discrete components. The time–delay block of the circuit has 
been implemented by taking into account a maximum number n = 12 of 
filters in cascade, so that the effective time–delay introduced can be 
tuned and it was possible to carry out an analysis with respect to differ-
ent values of n. 
The behavior of the circuit for the nominal values of the parameters (in 
particular, for n = 8) is shown in Fig. 2.13(b). For these values the cir-
cuit exhibits a chaotic dynamics  as predicted by the theoretical and 
numerical analysis discussed above. The behavior with respect to differ-
ent time–delays, obtained by varying the number of Sallen-Key cas-
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caded filters has been then characterized. Different behaviors have been 
observed, as reported in Fig. 2.13. In particular, increasing n bifurca-
tions from limit cycles to chaotic attractors can be observed. Other ex-
amples of the behavior with respect to different values of n are reported 
in Fig. 2.13. 
 

 
  
Fig. 2.13. Experimental results. Behavior of the circuit in the phase plane                    
X(T − 1)–X(T) for the following values of the parameters: a = 1, b = 5, and (a) n = 5, (b)    
n = 8, (c) n = 10. 

2.2.2.2.6666. . . . Equation and compEquation and compEquation and compEquation and complete scheme of the timelete scheme of the timelete scheme of the timelete scheme of the time----delay chaotic delay chaotic delay chaotic delay chaotic     circuitcircuitcircuitcircuit    

The equations of the circuit implemented and the scheme are here    
given. The circuit implementing system (1) with nonlinearity (2.10) is 
shown in Fig. 2.11. The block performing the integration of the state va-
riable is realized through OP-AMP (algebraic adder) and a RC circuit 
acting as an integrator. The nonlinear stage is constituted by the two 
OP-AMPs and . is connected in the non-inverting configuration, while is 
an open loop comparator. The PWL nonlinearity of (10) is obtained by 
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summing the output of these two operational amplifiers directly at the 
integrator stage. The circuit is governed by the following 
equation: 
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where is the output of the comparator, i.e., 

satVTXTXg |))(/(|))(( 111 ττ −−=  (
satV is the saturation voltage of the op-

erational amplifier), and τ  is the time-delay realized in the circuit with 
n=4 Bessel filters in cascade. Equation (2.14) with choice of the compo-
nents values reported in Fig. 2.11 match (1) with nonlinearity (2.10) and 

parameters 310=k , 1=a and 3=b . Finally, in Fig. 2.12 the circuit im-
plementing the nonlinearity (2.13) to realize the second example dis-
cussed in the text is shown. 
In summary, we ca conclude that the definition of design methods for 
chaotic circuits is not trivial and constitutes a fundamental aspect of 
nonlinear circuits. In this chapter, a general scheme of time-delay con-
tinuous-time chaotic circuits and a methodology to design them have 
been introduced. The implementation of the time-delay block has been 
based on the use of a cascade of Bessel filters and a methodology for the 
design of the nonlinearity, of the system parameters and of has been 
proposed. The methodology has been then applied to two examples, 
which have been first theoretically and numerically analysed, and, then, 
implemented and experimentally investigated, confirming the suitabili-
ty of the approach. Although the procedure introduced is general, the 
use of PWL nonlinearities simplifies the implementation stage and 
makes possible the implementation of the whole circuits by only using 
simple off-the-shelf circuital components like resistors, capacitors and 
operational amplifiers. A key issue of the implementation is the design 
of the circuitry providing the suitable timedelay needed to observe a 
chaotic behavior. The proposed delay circuit is a modular circuit, com-
posed by Bessel filters in cascade, approximating an ideal delay. 
A criterion to evaluate the accuracy of the approximation has been giv-
en. This criterion is based on the synchronization properties of chaotic 
systems: in fact, complete synchronization cannot be obtained if the cir-
cuits have different parameters, and the synchronization error can be 
assumed as a measure of the differences between the two circuits. 
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3.13.13.13.1    SSSSynchronization ynchronization ynchronization ynchronization of Chua’s circuits of Chua’s circuits of Chua’s circuits of Chua’s circuits with with with with diffusive couplingdiffusive couplingdiffusive couplingdiffusive coupling    

Synchronization is the process through which two or more coupled cir-
cuits adjust a given property towards a common feature, thanks to a 
form of coupling or common external forcing. 
In this chapter, the synchronization of two diffusively coupled Chua’s 
circuit is studied from the analytical and experimental points of view. 
The conditions under which complete synchronization is ensured are de-
rived by applying a strategy based on the Master Stability Function. 
The experimental realization, that makes use of the State-Controlled 
Cellular Nonlinear Network based implementation of Chua’s circuit, 
shows the synchronized behavior of two circuits coupled with a passive 
resistor as diffusion coefficient. The results obtained indicates diffusive 
coupling as a mutually reduced order state observer, in the sense that 
one circuit observes the other and vice versa. Moreover, the concept of 
synchronization by using passive elements can be extended to spatially 
extended reaction–diffusion systems.  
This experimental application is devoted to the synchronization of two 
Chua’s circuits achieved by using the easier coupling possible, i.e. a 
simple resistor implementing a diffusion term between two correspond-
ing statevariables. In nonlinear dynamical systems, and in particolar in 
chaotic systems, the case in which systems assume a common behavior 
is referred to as complete synchronization. Several approaches allow the 
emergence of synchronous behavior: negative feedback [37], sporadic 
driving [31], active–passive decomposition [38,41], diffusive coupling 
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and some other hybrid methods [36]. Moreover, synchronization can be 
achieved with either unidirectional or bidirectional coupling. For the 
sake of simplicity, let us consider the case of two coupled dynamical 
units: if the coupling is unidirectional, one chaotic system remains unal-
tered while forcing the other to follow its dynamics; if the coupling is bi-
directional, both systems are influenced by the coupling itself. 
This latter case can be implemented in an electronic circuit simply 
through a resistor connecting two corresponding state variables of the 
chaotic circuits. The use of diffusive coupling in Chua’s circuit has been 
considered in [38] where it is shown that a diffusive coupling can pro-
duce the instability of fixed points, causing the emergence of chaos. 
Moreover, the synchronization of two Chua’s circuits coupled in a bidi-
rectional diffusive scheme has been considered in [34] where a sufficient 
condition for the onset of synchronization, based on the evaluation of 
the stability of the linearized error system, is given. Furthermore, for 
the case of diffusive coupling between the first state variables, synchro-
nization is proved using this condition and confirmed by means of nu-
merical simulations and experimental setups. However, if the diffusion 
operates along the other two state variables, an analytical condition for 
the onset of synchronization is not  given. In this section, a strategy 
based on the Master Stability Function (MSF) is used in order to derive 
the analytical conditions for the occurrence of synchronization in all 
possible cases (i.e. scalar coupling with each of the state variables).  
Experiments have been performed on a State-Controlled Cellular Non-
linear Network (SC-CNN) based implementation of two Chua’s circuits. 
From the observation of real circuits it is possible to see that, even if in 
the real case the two circuits are not exactly identical, diffusive coupling 
does work properly and synchronization occurs. The reason to emphas-
ize the synchronization of two Chua’s circuits with a simple element like 
a resistor is given by a wider class of experiments that allows to prove 
how, in any case, one circuit is the reduced order observer of the other 
and therefore only one gain has to be designed. Furthermore, synchro-
nization can be achieved without any active component in the coupling.  
 

3.3.3.3.1.1.1.1.1111. . . . Master Master Master Master     Stability Function Stability Function Stability Function Stability Function     bbbbased ased ased ased     sssstrategytrategytrategytrategy    

The MSF, introduced in [42], is an efficient tool that allows to evaluate 
the conditions under which N identical oscillators can be synchronized 
when coupled through a network configuration admitting an invariant 
synchronization manifold. The dynamics of each node can be modeled as 
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where i = 1, . . . ,N, 
ix& = F(xi) represents the dynamics of each node, σ is 

the coupling coefficient, H : RN → RN the coupling function and               

G = [ ijG ] is a zero-row sum matrix modeling the coupling network.  

Linearizing Eq. (3.1) around the synchronous state and performing a 
diagonalization of the resulting linear equation, a generic variational 
equation can be written as: 
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where DF and DH represent the Jacobian of F(xi) and H(xj) computed 
around the synchronous state. Calculating the maximum conditional 
Lyapunov exponent Λmax of Eq. (3.2) as a function of α and β, the neces-
sary condition for synchronization can be derived. The function Λmax = 
Λmax(α + iβ) is independent of the specific network topology and is called 
the MSF. Hence, the stability of the synchronization manifold in a given 
network can be evaluated by computing the eigenvalues γh (with h = 2, . 
. . ,N) of the matrix G and checking if the sign of Λmax at the points α + iβ 

= hαγ  is either negative (corresponding to a stable eigenmode) or posi-

tive (corresponding to an unstable eigenmode). If all associated eigen-
modes with h = 2, . . . ,N are stable, then the synchronous state is stable 
at the given coupling strength σ. 
When diffusion between two nodes is considered, the coupling matrix 

becomes 














−

−
=

11

11
G

, hence it has only real eigenvalues, i.e. 01 =γ  and 

02 =γ . In this case, the MSF can be computed as function of α  only.  

The MSF approach allows to put the choice of the diffusive coupling in 
the framework of the design of a reduced order state observer. In fact, 
two diffusively coupled dynamical systems can be seen as two mutual 
observer systems, in which both the states are reconstructed from only 
one state variable from each system. Hence, the design of the observer 
consists in choosing one gain on the basis of the computed MSF. 
The functional dependence of Λmax on α can give rise to three different 
cases [33]. The first case (type I MSF) is the case in which Λmax is posi-
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tive = α and, thus, the gain is able to ensure that the stability of the 
synchronous state does not exist. In the second case  type II) above a 
threshold value, say σc, Λmax assumes negative values and then this case 
always leads to a stable synchronous state for higher enough coupling 
strength, allowing the design of coupling by choosing a gain σ > σc. In 
the third case (type III), Λmax is negative only in a closed interval of σ 
values: the coupling can be designed fixing a gain for which 

hσγ  with     

h = 2, . . . ,N lie in such interval. 
 

3.3.3.3.1.1.1.1.2222. . . . Synchronization of Synchronization of Synchronization of Synchronization of ttttwo wo wo wo ddddiffusively  iffusively  iffusively  iffusively  ccccoupled Chua’s oupled Chua’s oupled Chua’s oupled Chua’s ccccircuitsircuitsircuitsircuits    

The Chua circuit [40] is a paradigmatic circuit able to show chaotic be-
havior in a wide variety of different attractors, nonlinear behaviors and 
bifurcation scenarios, therefore the onset of synchronization in systems 
of coupled Chua’s circuits has been often investigated. 
In this paragraph, the synchronization of two diffusively coupled Chua’s 
circuits is considered.  
This task has been accounted for in [34], where a sufficient condition for 
the onset of synchronization is given, and numerical and experimental 
results are also shown. However, the derived condition is not able to 
prove analytically the onset of synchronization in all the considered cas-
es. 
The aim of this paper is to adopt an MSF based approach in order to as-
sess analytically the conditions for the stability of the synchronous 
state, and consequently derive the diffusive gain, thus enabling to en-
sure the onset of synchronization. The dimensionless equations of 
Chua’s circuit are represented by the following well-known state equa-
tions: 
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Fig. 3.1  Master Stability Function for the diffusively coupled Chua’s circuits. Diffusion 
operates along (a) x1 and x2, (b) y1 and y2, (c) z1 and z2. 

 
The two diffusively coupled Chua’s circuit equation can be then written 
as: 
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where δx, δy, and δz can be either one, if the two corresponding state va-
riables are diffusively coupled, or zero otherwise. σ is the coupling coef-
ficient, as indicated in the previous section. In Fig. 3.1, the three MSF 
corresponding to the cases in which only a scalar signal is used in the 
synchronization scheme are reported. In Fig. 3.1(a) and in Fig. 3.1(b), 
corresponding to the cases δy = δz = 0 and δx = δz = 0 respectively, it can 
be noticed that the computed MSF is type II, hence for values above a 
threshold, the MSF is negative and then the synchronous state is stable. 
Moreover, in Fig. 3.1(c), corresponding to the case δx = δy = 0, the MSF 
is type III, hence synchronization can be achieved only if the coupling 
strength is chosen in the negative values interval. However, being only 
local, the stability properties of the synchronous manifold evaluated by 
the MSF, in this case by means of numerical simulations only, the syn-
chronization can actually be obtained and for specific sets of initial con-
ditions, as describe in [34]. 
 

3.3.3.3.1.1.1.1.3333. Experimental . Experimental . Experimental . Experimental rrrresultsesultsesultsesults    
The circuital implementation based on the SC-CNN approach, intro-
duced in [32], is used. Diffusive coupling is realized by the introduction 
of a single resistor Rc between two corresponding state variables, as re-
ported in Fig. 3.2 The analysis performed through the MSF allows, in 
the first two cases, to define a lower bound for the coupling strength, 
and then an upper bound for the coupling resistor Rc, for the occurrence 
of synchronization. In particular, from Fig. 3.1(a) a value of σc ≈ 5 can be 

derived for the case of diffusive coupling between x1 and x2. σcx = 2γ
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(α R6/Rc) > 5, hence Rc < 2γ  (α R6/5) ≈ 1.25 kΩ. Moreover, starting from 

Fig. 3.1(b) the bound Rc < 2γ  (R12/7) ≈ 285Ω can be obtained.  

When dealing with the synchronization of nonlinear electronic circuits 
differences due to component tolerances should be taken into account.  
 
 
 

 
 
Fig. 3.2. Scheme of the diffusive coupling performed by the variable resistor Rc. The 
case in which diffusion is implemented between state variables x1 and x2 is reported. 

 
 
However, diffusive coupling allows to obtain a synchronous motion as 
shown by oscilloscope pictures reported in Fig. 3.4. 
For the case in which diffusion is performed between state variables x1 
and x2, i.e. δy =δz = 0, the coupling is realized by resistor RC = 330Ω cor-

responding to a diffusive constant σ  = 2γ α  (R6/RC) = 18.98 at which 

the MSF has a negative value, as shown in Fig. 3.1(a). In Figs. 3.3(a) 
and 3.1.4(b) two pictures taken from the oscilloscope are reported show-
ing the synchronized behavior of state variables z1 and z2.  
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Fig. 3.3. Experimental results observed at the oscilloscope. Synchronization plot y1 ver-
sus y2 (a) and waveforms related to the state variables z1 and z2 (b) for the case in which 
δy = δz = 0. 
 
Moreover, coupling the two Chua’s circuits with a diffusion between the 
state variables y1 and y2, i.e. δx = δz = 0, synchronization can be obtained 
with a coupling resistor RC = 180Ω implementing a diffusive constant  

σ  = 2γ  (R12/RC) = 11.10 which leads to a negative value of the MSF, as 

confirmed by the synchronized trends reported in Figs. 3.1.5(a) and 
1.5(b).  
 

 
Fig. 3.4. Experimental results observed at the oscilloscope. Synchronization plot x1 ver-
sus x2 (a) and waveforms related to the state variables z1 and z2 (b) for the case in which 
δx = δz = 0. 
 
In order to quantify the synchronization between the two Chua’s cir-
cuits, an index based on a cross-correlation analysis has been intro-
duced:  
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212121 *,*,* zzyyxxXc =    (3.5)  

 
where x1, y1, and z1 are state variables of the first Chua’s circuit, x2, y2, 
and z2 are state variables of the second Chua’s circuit, and the symbol * 
indicates the standard cross-correlation function.  
In Fig. 3.5 the index Xc is reported as a function of resistor Rc that im-
plements the coupling in the case of diffusive coupling along the state 
variables y1 and y2.  
The vertical dotted line marks the upper bound identified in the pre-
vious section: as it can be noticed, below this threshold, the correlation 
between corresponding state variables is higher than 60%. For all the 
considered values of Rc the two circuits behave chaotically. 
 

 
Fig. 3.5. Index Xc as a function of the coupling resistor Rc for the case of diffusion im-
plemented between state variables y1 and y2. The dotted line represents the bound for 
the coupling resistor Rc as calculated through the MSF. 

 

3.2 Experimental synchronization of non3.2 Experimental synchronization of non3.2 Experimental synchronization of non3.2 Experimental synchronization of non----identical chaotic circuitsidentical chaotic circuitsidentical chaotic circuitsidentical chaotic circuits    

In this paragraph, the experimental synchronization of chaotic circuits 

with different dynamical behavior is taken into account. Starting from 

both qualitative and quantitative considerations, a procedure, based on 

linear matrix inequalities, to assess the necessary condition for the syn-

chronization of non-identical circuits is discussed. The results obtained 
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are then evaluated through an experimental approach showing the syn-

chronization of chaotic circuits differing either in parameter values or in 

their dynamical equations. 

Aim of this experimental application is to show experimental results on 

the synchronization of pairs of non-identical chaotic circuits, i.e. circuits 

affected by either structural or parametric differences. 

The synchronization of chaotic systems affected by uncertainties has 

been addressed in a limited number of papers. 

In particular, in [56, 51] the case of parametric mismatches between 

systems is considered, while in [58, 53, 59] the case of structurally dif-

ferent coupled circuits is investigated. More in details, in [56] the syn-

chronization of two Lorenz systems in two different chaotic regions 

coupled through a master-slave negative feedback scheme [50] is 

achieved by using three different scalar signals to force the slave dy-

namics. The phase synchronized motion of a lattice of non-identical 

Rossler oscillators is considered in [51]. Moreover, dealing with syn-

chronization between nonidentical dynamical systems, in [58] an active 

control strategy is introduced and synchronization of a Chen and a Liu 

system driven by a Lorenz oscillator is shown. The design procedure of a 

scalar controller for the synchronization of two non-identical systems is 

provided in [53] showing the synchronization between a Chua’s circuit 

and a Rossler oscillator. Finally, in [59] a sliding mode controller based 

on Lyapunov stability theory is introduced. Furthermore, both cases of 

structural and parametric differences have been considered in [55] in 

which the analytical conditions to achieve synchronization are given 

considering a master-slave coupling configuration and sending three dif-

ferent scalar signals. 

Here a strategy based on linear matrix inequalities (LMIs) for the syn-

chronization of non-identical chaotic systems coupled through a unique 

scalar signal is introduced and experimental results supporting our con-

siderations are also provided. The proposed strategy is based on the 

negative feedback scheme and allows the design of the slave system as 

an observer of the master. The basic idea arose from the evaluation of 

similar dynamics in two non-identical circuits: the dissipative nonauto-

nomous oscillator introduced in [54], and the Duffing oscillator. Even if 
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the dynamics are different quantitative conditions can be derived to as-

sess the possibility of achieving synchronization. In order to investigate 

also the case of non-identical circuits that differ only in a parameter 

value, the synchronization of two Chua’s circuit in different chaotic re-

gions (i.e. single-scroll and double-scroll attractors) is considered and 

experimental results given. 

3.2.3.2.3.2.3.2.1111.  T.  T.  T.  The LMIhe LMIhe LMIhe LMI----based strategy for the synchronization of nonbased strategy for the synchronization of nonbased strategy for the synchronization of nonbased strategy for the synchronization of non----identical identical identical identical 

chaotic systemschaotic systemschaotic systemschaotic systems    

The synchronization of chaotic systems can be achieved through a wide 

range of coupling schemes [44]. The attention is focused on the negative 

feedback scheme [50]. It consists of a master-slave coupling in which the 

slave is designed as an observer of the master and it is driven by a sca-

lar error signal. The case of identical master and slave systems has been 

considered in several papers [52, 43, 46, 48], where different strategies 

for the design of the observer system are described. In particular, a 

strategy for the synchronization of two piece-wise linear (PWL) multip-

lexed systems is discussed in [43] giving the analytical conditions under 

which the slave system can be designed as an observer of the master. 

Such strategy is based on the simultaneous stabilization of the error 

system in each region of the PWL function in terms of a system of linear 

matrix inequalities (LMIs). 

Let us assume that the observed system equations are: 

 

mmm XAX =&     (3.6) 

 

Moreover, the observer is a dynamical system with the following equa-

tions: 

 

KeXAX sss +=&     (3.7) 

 

where K is the vector of observer gains and .sCXCXe −=  
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In linear systems theory the problem of the asymptotic observer can be 

solved by suitably choosing the vector K in order to ensure the stability 

of the error system:  

 

)( smssmm XXKCXAXAe −−−=&   (3.8) 

 

In the case of Am = As = A, i.e. in the case of identical master and slave 

systems, the error dynamics is governed by the state matrix  
Ao = A − KC.  

The stability problem of Ao can be formulated in terms of LMIs [45] by 

considering the well-known Lyapunov criterion in its LMI form:  
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where P > 0 (P < 0) indicates a positive (negative) definite matrix. Solv-

ing the LMI problem expressed by Eq.(3.9) leads to the definition of ob-

server gains vector K. 

The effectiveness of the LMI approach reveals itself when dealing with 

the simultaneous stability problem: a unique observer that ensures the 

stability of the error system for more than one observed system. At each 

observed system, in fact, corresponds a LMI in the system (3.9). If the 

resulting LMI problem is feasible, then there exists a unique gain vector 

K able to simultaneously stabilize all the possible error dynamics. 

In this work, starting from the approach discussed in [43], an LMI-

based procedure for the synchronization of non-identical chaotic systems 

is introduced.  

The LMI approach for the simultaneous stability problem is used to ob-

tain the synchronization conditions for chaotic PWL systems consider-

ing them as switching between different linear regions. 

Furthermore, non-identical systems are considered, thus the error sys-

tem has the form reported in Eq. (3.8), where Am and As are the state 

matrices of all the possible linear regions of master and slave chaotic 

circuits.  
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Adding and subtracting the quantity (As+KC)Xm to Eq.(3.2.3) it can be 

rewritten as: 

 

msms XAAeKCAe )()( −++=&    (3.10) 

 

The stability of the error system can be ensured by suitably choosing 

the gains vector K in order to fix negative eigenvalues for all the ma-

trices Asi + KC, with Asi the state matrix of the i -th linear region of the 

PWL function in the slave system. Moreover, the error system described 

by Eq. (3.10) is a non-autonomous system driven by the bounded input 

Xm, hence the error will be also bounded. 

This strategy can be applied also to systems with continuous nonlineari-

ty since it is always possible [49] to approximate, with a given error, any 

continuous nonlinear function as the superposition of a finite number of 

PWL functions. 

In the following sections, the proposed approach will be used to obtain 

synchronization between two non-identical systems, considering both 

cases of structural and parametric uncertainty. 

 

3.2.3.2.3.2.3.2.2222. . . . SynchronizatiSynchronizatiSynchronizatiSynchronization of two chaotic circuits with structural differenceson of two chaotic circuits with structural differenceson of two chaotic circuits with structural differenceson of two chaotic circuits with structural differences    

This section deals with the problem of synchronizing two chaotic circuit 

affected by structural differences. A Duffing oscillator and a second-

order nonlinear non-autonomous PWL oscillator, introduced in [54] and 

recently implemented and characterized in [46], have been considered. 

The similar fractal dimensions of their attractors (i.e. 902.1=DUFd

and 903.1=OSCd ) calculated through the Grassberger-Procaccia algo-

rithm [57], as well as their similar dynamical behavior reveal the close-

ness of the two systems and give us the idea of synchronize them. 

The equations describing Duffing oscillator dynamics are the following: 
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while the equation of the considered nonlinear oscillator are: 
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where |)15||15(|
2

1
)( −−+= sss xxxs and 01.01 =a  and 01.02 =a  

take into account the dissipative effects given by the circuital imple-

mentation. 

The two systems are coupled in a negative feedback scheme, hence the 

equations of the coupled slave system will read as follows: 
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where ssmm yxyxe −−+= . 

Parameter values are chosen in order to ensure that both dynamical 
systems show a chaotic motion, i.e. 1,1,3.0,25.0 ==== wbγδ  

The slave system in Eq. (3.13) has a PWL function s(x) that gives rise to 

two possible state matrices, i.e. 
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Hence, the corresponding LMI problem will be:  
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The LMI problem in Eq. (3.14) is feasible and its solution allows to de-

fine the observer gains as k1 = 0.5 and k2 = 20. Two circuits implement-

ing the dynamics reported in Eqs. (3.11) and (3.13) have been realized 

and waveforms generated by the circuits have been acquired by using a 

data acquisition board (National Instruments AT-MIO 1620E) with a 

sampling frequency fs = 200kHz for T = 5s (i.e., 1000000 samples for each 

time series). Fixing the coupling gains as calculated through the LMI 

procedure, the onset of generalized synchronization is clearly visible in 

Fig. 3.6, where the trend of the state variables acquired from the two 

circuits are reported. 

3.2.3.2.3.2.3.2.3333. Synchronization of two chaotic circuits with parametric mi. Synchronization of two chaotic circuits with parametric mi. Synchronization of two chaotic circuits with parametric mi. Synchronization of two chaotic circuits with parametric mis-s-s-s-

matchesmatchesmatchesmatches    

In this section, two circuits governed by the same dinamica equations 

are considered. The two circuits, however, differ in a parameter value 

and then show different chaotic behavior. 

Let us consider the well-known Chua’s circuit represented by the follow-

ing dynamical equations: 
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Equations in (3.15) are able to show several dinamical behaviors, from 

periodic to quasi-periodic and chaotic motion depending on the selected 
values of parameters α  and β . In particular, choosing 9=α , 

286.14=β , 
7

1
,

7

2
01 −== mm  the system shows the well known 

double-scroll attractor. Moreover, varying α  Chua’s circuit can evolve 

along different kind of chaotic attractors. 
In particular, setting α  = 8.6, the system dynamics evolves along a sin-

gle-scroll chaotic attractor.  

 
 

Fig. 3.6. Experimental results showing the onset of generalized synchronization between 
the non-autonomous PWL oscillator and the Duffing oscillator. Waveforms generated by 
the two coupled circuits: master system (continuous lines), slave system (dotted lines). 
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Fig. 3.7. Experimental results showing the onset of generalized synchronization between 

a Chua’s circuit showing a single-scroll attractor and a Chua’s circuit showing a double-

scroll attractor. When the feedback loop is closed at T = 2.522s, the slave system state 

variables change their behavior. Waveforms generated by the two coupled circuits: mas-

ter system (continuous lines), slave system (dotted lines). 

 

 

In this section, two Chua’s circuits characterized by different values of 
α  are synchronized by coupling them through a negative feedback 

scheme in which master and slave equations read as follows: 
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with mα  = 9, sα  = 8.6, β  = 14.286, 
7

1
,

7

2
01 −== mm , and 

ssmm yxyxe −−+=  

The values of coupling gains k1, k2, and k3 are calculated applying the 

proposed approach. Also in this case, the three regions of the Chua’s cir-

cuit PWL function corresponds to two possible linearizations, i.e. 
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Solving the corresponding LMI problem, the observer gain can be fixed 
as k1 = −0.26, k2 = 1.33, and k3 = 4.51. 

In Fig. 3.9 the waveforms acquired from the two coupled circuits are re-

ported. It can be noticed that the slave system evolves along the single-

scroll attractor until the feedback loop is closed and then it is forced to 

follow the double-scroll dynamical behavior of the master system. 
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3.3 Minimum power absorbtion during synchr3.3 Minimum power absorbtion during synchr3.3 Minimum power absorbtion during synchr3.3 Minimum power absorbtion during synchrooooniznizniznizationationationation 

This paragraph focuses on a new aspect of the phenomenon of synchro-

nization, emerged during a series of experiments performed in our la-

boratory.  

In such experiments, a new qualitative finding that is of great interest 

for the case of two (or more) coupled circuits has been observed: the 

power absorbed by the system is minimum when synchronization is 

achieved.  

The experiments refer to synchronization in electronic circuits, and, in 

particular, the following case studies have been taken into account: syn-

chronization of two chaotic circuits with master-slave coupling (i.e.,    

unidirectionally coupling); synchronization of two chaotic circuits with 

diffusive coupling (i.e., bidirectionally coupling); synchronization of two 

chaotic circuits with “qualitatively similar” dynamics; synchronization 

of two hyperchaotic circuits.  

We refer here to the two most common types of synchronization, i.e., 

complete synchronization, where the systems have exactly equal state 

variables, and phase synchronization, where a locking of the phases is 

observed, while the amplitudes are highly uncorrelated.  

Different coupling schemes and different dynamical circuits (Chua's cir-

cuit, Lorenz system, Rossler system, hyperchaotic circuits) have been 

experimentally investigated. In such experiments the power absorption 

of the circuits was monitored while the coupling parameters were va-

ried. It has been observed that the minimum of the power absorbed by 

the system occurs exactly when the coupling parameters are such that a 

synchronous behavior of the circuit is obtained.  

In other words the coupling parameters which guarantee synchroniza-

tion are those for which the power absorption of the circuits is mini-

mum. This observation opens the way to a new scenario on synchroniza-

tion, since it highlights a relationship between the synchronous state 

and the minimum power absorbed by the system. 
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Fig.3.8 Scheme of the diffusive coupling performed by the variable resistor Rdiffusive        

(Rd) between state variables x1 and x2. 

 
Let us first consider two Chua's circuits coupled through the first state 
variable in a diffusive way as in Fig.3.8. From the point of view of cir-
cuit implementation, this coupling corresponds to a resistor connecting 
the two capacitors associated with the two corresponding state va-
riables. In terms of dimensionless equations, it can be described by: 
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    (3.17) 

 
where |)1||1(|5.)( −−+= xxxh  and x1, y1, z1, x2, y2, z2 represent the 

state variables of the first (second) circuit and k is the coupling factor 
which is proportional to the inverse of the coupling resistor. 

This kind of diffusive coupling has been theoretically and experimental-

ly demonstrated to guarantee synchronization if the coupling k is higher 

than a given threshold. System has been implemented in laboratory and 

the power absorption P has been measured by with respect to different 

values of the coupling factor.  

In particular, the power absorption has been evaluated separately for 

each circuit, by measuring the current absorbed by each circuit and the 

voltage supply provided by the voltage supply generator. 
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Fig. 3.9 Comparison between synchronization error Es and dissipated power in two      

diffusively coupled Chua's circuits with respect to different values of the coupling        

resistor Rd. 

 

Fig.3.9 shows the power absorption dP for both circuits with respect to 

the parameter Rd along with the synchronization error sE , defined by 

 

( ) ( ) ( )2

21

2

21
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21 zzyyxxEs −+−+−=     (3.18) 

 

As it can be noticed, the power absorption dP for both the two coupled 

systems decreases monotonically when the coupling resistor is de-
creased (which corresponds to increasing the coupling k  in Eqs. (3.19).  
In correspondence, the synchronization error decreases when the coupl-
ing factor increases. The synchronization error is close to zero when the 
power absorption is minimum. The synchronization error is not exactly 
zero, because circuits are non-identical due to parametric tolerance, and 
for the same reason there is a slight difference in the power absorption 
of the two circuits. 
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Fig.3.10 Unidirectionally coupled between two Chua’s circuit. 

 
As a second example, let us now consider unidirectional coupling be-
tween two Chua's circuit. 
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In terms of dimensionless equations, this can be expressed as in (3.19), 
where circuit 1 acts as master and circuit 2 as slave.  
In this case the coupling is implemented using an operational amplifier 
and two resistors (one of which Rf is assumed to be variable), so that the 
coupling factor is proportional to resistor Rf. 
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Fig.3.11  Comparison between synchronization error Es and dissipated power in two     

unidirectionally coupled Chua's circuits with respect to different values of the coupling 

resistor Rf . 

 
Fig.3.11 shows the dissipated power Pd for both circuits and the syn-
chronization error Es with respect to Rf. In this case, the two circuits do 
synchronize for Ω> 1600Rf . It can be noticed that the dissipated power 

at the master circuit (blue line) remains constant, while the dissipated 
power at the slave circuit (red line) is high when the two circuits are not 
synchronized, until it reaches a value close to zero when the two circuits 
do synchronize. The same qualitative result discussed in these two ex-
amples has been observed in many other synchronization experiments 
and, in particular, in the following cases: two circuits implementing the 
Lorenz dynamics either diffusively coupled or unidirectionally coupled 
(negative feedback); two circuits implementing the Rössler dynamics ei-
ther unidirectionally coupled (negative feedback) or coupled according to 
the scheme of Pecora and Carroll; two hyperchaotic circuits coupled 
through negative feedback; synchronization of two “qualitatively differ-
ent” circuits (synchronization of a Chua's circuit in double scroll with a 
Chua's circuit in single scroll and synchronization of a Hartley circuit 
with a Colpitts circuit); synchronization of networks of dynamical cir-
cuits (a network of nodes implementing the Hopf normal form equations 
and a network of Chua's circuits). 
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4.1. 4.1. 4.1. 4.1. Networks of oscillatorsNetworks of oscillatorsNetworks of oscillatorsNetworks of oscillators    

In thi chapter phase synchronization (PS) in a network motif with a 

star-like structure in which the frequency of the central node (the hub) 

is strongly detuned against the other peripheral nodes is investigated. 

We find numerically and experimentally a regime of remote synchroni-

zation (RS), where the peripheral nodes form a phase synchronized clus-

ter, while the hub remains free with its own dynamics and serves just 

as a transmitter for the other nodes.  

Networks of oscillatory units have been recently studied widely [60-63]. 

These kinds of systems serve as a modeling basis for a variety of sys-

tems from neuroscience [65], pattern recognition [65], chemistry [66], 

biology [67], climatology [68-70], ecology [71], social systems [72], or en-

gineering as for instance in robot coordination [73], communication [74] 

and sensor networks [75], and as a general concept for understanding 

complex self-organizing systems. Gaining knowledge about networks of 

coupled dynamical systems helps understanding several phenomena, in 

particular synchronization, self-organization and information transfer 

in complex systems. Many networks found in nature have a scale-free 
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topology [60, 76], which is a structure where just a few nodes ( the so 

called hubs) hold the major bulk of the links. In this work we study a 

typical network motif of such a hub Fig. 4.1. It is interesting to study 

synchronization in such a hub motif as it captures the essence of scale-

free topologies. 

 
Fig.4.1 Graphic visualization of a hub network motif (star motif). 

    

Many articles on oscillatory networks focus on a rather homogenous dis-

tribution of the nodes' parameters across the network, i.e. all nodes are 

either identical or just detuned within a small parameter range. This is 

very likely due to the possibility of an analytical treatment of the under-

lying equations, which becomes very complicated or even undoable if the 

network and thus the describing equations become too heterogenous. 

But the assumption of homogeneity is, in fact, not fulfilled in most rea-

listic situations, that means it's quite unlikely to find a real system 

made up of several absolutely identical subsystems. Therefore, we study 

in this work an oscillatory network model and focus on a strong hetero-

geneity, precisely, the frequency of the hub is strongly detuned with re-

spect to the peripheral nodes. We investigate phase synchronization 

(PS) in these motifs. Within this setup we focus on a phenomenon which 

we will call remote synchronization (RS), that is a situation in which 

two or more nodes, say n and m, which are not coupled directly, but 

through other nodes only, are phase synchronized, but, and this is im-

portant, the transmitter nodes, i.e. the nodes along the path from n to m 

are not phase synchronized with n and m, respectively. 

We also investigate remote synchronization experimentally. To this aim, 

we designed a complex network made of coupled electronic nonlinear os-
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cillators and study it with respect to different values of the coupling 

strength.  

The experimental results obtained confirm the emergence of remote 

synchronization in real systems. In addition to numerical and experi-

mental studied we give necessary conditions for the existence of RS and 

show that fixed amplitude systems, such as Kuramoto phase oscillators 

cannot generate the phenomenon. 

 

4.4.4.4.2222. Model and experimental setup. Model and experimental setup. Model and experimental setup. Model and experimental setup    

Since we want to focus on the mere phenomenon of synchronization, in 

particular PS, we chose a simple and paradigmatic model, namely the 

Stuart-Landau oscillator. This model is the most simple one having a 

harmonic limit cycle without any distortions, so we can exclude n:m 

synchronization in our analysis for now. We consider a network of diffu-

sively coupled Stuart-Landau oscillators [66,77]. The equations are giv-

en by 
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where ,Cu ∈ α is the (Hopf) bifurcation parameter which controls how 

fast the trajectory will decay onto the attractor, wn is the eigen frequen-

cy of the individual uncoupled oscillator wn, is the overall or global 

coupling strength, in

nd is the in-degree of node n and is used to normalize 

the input into node n, and (gnm) is the adjacency matrix, which is sym-

metric, since we consider bidirectional couplings. 

Now we give the values of the parameters used for the simulations in 

this paper. The number of nodes has been set to N = 5 in correspondence 

with our experimental setup, but we also verified numerically the exis-

tence of the phenomenon for higher values of N. The decay parameter is 

α = 1. As mentioned in the introduction we are analyzing a hub motif 

(star-like network, Fig. 4.1), due to its importance as building block for 

scalefree networks. Node 1 is chosen to be the hub and thus n = 2…N 

subscripts the peripheral nodes. The adjacency matrix is given by: 
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The in-degrees are { }in

nd = { }1 1, 1, 1, 4, . We chose the frequency of the hub 

to be w1 = 2.5 in the beginning, but we will discuss the inuence of a con-

tinuous change of this value later, as well. The peripheral nodes have a 

similar frequency but not identical, since some repelling force is needed 

in order to see the transition to PS. The frequencies used in numerical 

simulations are { } { } 1.025 1.008, 0.992, 0.975,
5

2
=

=nnw  

For the experimental realization Eq. (4.1) must be transformed into its 

equivalent real form which is given by 

 

 

(4.2) 

 

The experimental setup is based on an electronic circuit mimicking the 

behavior of the Stuart-Landau oscillator. The circuit made of discrete 

components (operational amplifiers, multipliers realizing the nonlinear-

ities of the oscillator, and a number of passive components such as re-

sistors and capacitors) has been designed in order to obey to the same 

equations [Eq. (4.2)] of the Stuart- Landau oscillator, after appropriate 

scaling in frequency. We designed the circuit by following the guidelines 

reported in [94] and used for instance in [79, 96]. The values of some 

components of the hub and peripheral circuits are chosen in a different 

way so that to realize the different simulation parameters used for hub 

and peripheral nodes. The circuits have been then coupled in such a 

way that a single resistor for each node controls the value of the coupl-
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ing strength in Eq. (4.2). The circuit schematic, the governing equations 

and the used component values are reported in Fig.4.10.  An assembly 

of coupled electronic circuits was used to test remote synchronization in 

real physical systems. In this Appendix, the electronic oscillator used 

and the coupling circuitry between the oscillators are briey described. 

The circuit that was built is governed by a rescaled version of Eqs. (4.2), 

i.e. 
dt

d

dt

d
τ→ d, where τ  is a time scaling factor s

510 −=τ  in our cir-

cuit). The other circuit parameters were set to the values discussed in 

Section II. Fig. 4.10 shows a schematic of the circuit. The values of the 

circuit components have been chosen in order to 
match Eqs. (4.2). In particular, the relationships between the parame-
ters α  and w  and the component values are given by: 

 

 

(4.3) 

 
Eqs. (4.3) have been used to set the component values for the hub circuit 
and for the peripheral nodes. The component values listed in the caption 
of Fig. 4.10 refer to a peripheral node. The hub components di_er from 
that of a peripheral node for the following resistors: R3 = 667 Ω ,           
R4 = 400 Ω , R11 = 1.6k Ω , R12 = 727 Ω . Resistors with 1% tolerances and 
capacitors with 5% tolerances have been used. 
The experimental coupled oscillator setup consisted of five circuits ar-

ranged in a star-like network. The coupling terms )( ij xx −χ and 

)( ij yy −χ  are produced by adding the x (respectively y) signals and 

multiplying them for a tunable gain factor through an operation am-
plifier in algebraic adder configuration. The tuning of the coupling coefi-
cient is realized by using as feedback resistor a potentiometer. The 
coupling terms are then added into the equations of the electronic oscil-

lator through the operational amplifier adders U1 [term )( ij xx −χ ] and 

U2 [term )( ij yy −χ ]. 
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Fig 4.10. Schematic of the circuit described by Eqs. (2) (rescaled in time with τ  ). The 

component values are: R1 = 500 Ω , R3 = R4 = R5 = R6 = 1k Ω , R6 = 100 Ω , R8 = R9 = 

4k, R10 = 2k Ω , R11 = 4k Ω , R12 = 1k Ω , R13 = 4k Ω , R14 = 100 Ω , R15 = 1k Ω , 

R16 = 7.2k Ω , R17 = 1k, R18 = 7:2k, R19 = R20 = R21 = R22 = 1k, R23 = R24 = 2k, R25 
= 1k, R26 = 2k, R27 = R28 = R29 = R30 = R31 = R32 = 1k, C1 = C2 = 100nF. The opera-
tional amplifiers U1,…,U9 are all type TL084. The analog multipliers M1,…,M4 are all 

type AD633. Power supply is ± 9V . 
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Fig 4.11. Hardware implementation of a star motif of Stuart-Landau oscillators. 

 
Our findings shed some new light on the issue of functional versus 
structural topology in networks of interacting dynamical systems, which 
is of high importance especially in the field of neuroscience. We have 
shown that the measured topology via a “naïve” phase synchronization 
measure gives a wrong picture of the underlying network structure and 
explained this by a mechanism which we call remote synchronization 
(RS). Nodes can “speak” with each other through a transmitting nodes 
without synchronizing with this one, given that the transmitter has a 
suficiently different frequency. We verified that RS also occurs in real 
experiments, by designing a network of five coupled oscillators showing 
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the regime of RS for coupling strength values which are intermediate 
between the case of no synchronization and that of PS of the whole net-
work. Therefore, not purely phase oscillators may reveal phenomena 
that can be experimentally observed and that purely phase models are 
not able to explain. We expect that the same phenomenon of RS occurs 
in more complex topologies as confirmed by some preliminary 
results including those obtained on scale-free networks as discussed 
above. RS can be also important with anharmonic or chaotic oscillators, 
where more complicated dynamics are possible. RS might also find ap-
plications in several fields, such as neuroscience, here in understanding 
information transmission inside the brain or help designing new more 
efficient artificial neural networks as described in [65]. Another applica-
tion might be in climate research, in particular in understanding tele-
connections (i.e long-range connections) such as between the Indian 
Monsoon and El Ninno/Southern Oscillation [69,70]. 

4.4.4.4.3333. Emergence of remote synchronization. Emergence of remote synchronization. Emergence of remote synchronization. Emergence of remote synchronization    

We start our analysis with a visual inspection of numerically integrated 

time series of system (4.1). Fig. 4.2 depicts the excerpts from the time 

series as well as the instantaneous frequencies and Lissajous-like pat-

terns of the phases. For low coupling [Fig. 4.2(a)] we see that the nodes 

are interacting with each other and modulations of the phase appear, 

but no synchronization is visible. For a strong coupling [Fig. 4.2(c)] we 

find a regime of full phase synchronization with an identical amplitude 

of all nodes and without any modulations. The phenomenon of RS ap-

pears for intermediate values of the coupling strength [Fig. 4.2(b)]. Here 

we see, that all peripheral nodes become phase synchronized, while the 

hub remains with its own phase and frequency. In order to study this 

more precisely, we will introduce some measures for PS. The most 

common measure for PS is the Kuramoto order parameter, which is de-

fined:  

 

 
(4.4) 
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where 
t

⋅ denotes the mean over time, and )(tnϕ is the phase of oscilla-

tor n. For the Stuart-Landau oscillator the phase is simply given by 

|)|/log()( uuitn −=ϕ . 

 
 
Fig. 4.2 These plots illustrate the observed phenomenon of the remote synchronization. 
For three different values of the coupling strength χ  snapshots are shown of: the time 
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series u(t), the instantaneous frequencies )(tϕ&  and Lissajous-like figures made by plot-

ting pairwise the phases nϕ  of all oscillators against each other. The red line is the hub. 

 

 
Since we are interested in the situation where the peripheral nodes 
form one synchronized cluster and the hub is separated from this, i.e. it 
forms another trivial cluster with itself, we introduce two measures ac-
counting for that situation. For measuring the coherence of the hub 

with the rest of the network we define ∑
=−
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for the coherence of the peripheral cluster we define 
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2
, i.e. the mean of the pairwise measured 

phase coherence among the peripheral nodes.  
 

 
 
Fig. 4.3 Transition to phase synchronization for the hub motif [Fig. 4.1]. From the plot 
the onset of RS is clearly visible. The three annotations indicate synchronization be-
tween two, three and four peripheral oscillators,respectively. 
 
Fig. 4.3 shows the transision to PS of both measures in dependence on 
the coupling strength χ . The measures have been computed from nu-

merical integration of Eq.( 4.1) with the parameter setup given in Sec. 
4.2. Here it is clearly visible that the phase coherence of the peripheral 
nodes increases considerably faster than the synchronization of the hub 
with the rest. The peripheral nodes reach full PS at a value of the coupl-
ing strength χ  of about 0.47, while the hub joins this cluster much later 

at ≈χ  0.74, when it hits the global Arnold tongue of the network. In 

the figure we marked three steps in the curve of rindirect. These steps cor-
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respond to the onset of RS between two, three and all (four in our case) 
peripheral nodes of the network. These transitions are more clearly vis-
ible in Fig. 4.5(b) in which the number of synchronized clusters are 
shown.  

 
Fig.4.4 Transition to phase synchronization for the hub motif for experimentally ob-
tained data. The regime of RS is clearly visible. 

 
Fig. 4.4 shows the same plot for experimentally generated data. The da-
ta have been obtained by a set of experiments on the implemented net-
work of Stuart-Landau oscillator circuits performed with respect to dif-
ferent values of the coupling χ , starting from χ  = 1.0 and decreasing 

this parameter. The coupling strength is decreased by small steps and 
for each value of it, the state variable xn for each circuit has been ac-
quired with a National Instruments USB6255 acquisition board with 
the sampling frequency fs = 300kHz. The phases of the oscillators have 
been then calculated by applying the Hilbert transform on the obtained 
time series and the two parameters rindirect and rdirect have been calcu-
lated. The result, shown in Fig. 4.4, confirms the existence of RS in real 
systems. It should be noted that the coupling strength is implemented 
in the circuit through five different components, which makes it quite 
difficult to obtain exactly the same value for it, taking also into account 
the tol erances in the whole network circuit. For this reason, in Fig. 4.4 

the average value χ of this parameter is reported. The scenario ob-

served is qualitatively similar to that obtained with numerical data, and 
the two transitions occur at slightly different values of the parameter. It 
is clearly visible that there exists a quite large domain of the coupling 
parameter, where we have RS while the hub remains with its own dy-
namics. As a second analysis tool we are computing the Lyapunov spec-
trum (LS). Any non-trivial attractor (limit cycle, chaotic) of continuous 
dynamical systems has one Lyapunov exponent (LE) equal to zero, cor-
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responding to the free phase of that system. Any perturbation in the di-
rection of the system's flow will remain constant over time. In the case 
of an ensemble of uncoupled systems with a limit cycle or chaotic attrac-
tor, there will be as many zero LEs as there are systems included. As 
one couples those systems, PS will manifest itself by one or more (de-
pending on the number of sub-systems forming the synchronized clus-
ter) LEs becoming strictly negative due to the attractive force between 
the former free phases of the oscillators [97]. Hence, the number of LEs 
equal to zero can be used as an indirect measure for the number of 
phase synchronized clusters. 
 

 
Fig.4.5 (a) shows r∆  in dependence on w∆ and χ , which can assume values between 0 

and 1, whereby values close to 1 indicate RS (see text). The dotted line shows the analyt-
ically derived border of the Arnold tongue. The red areas to the left and right of the Ar-
nold tongue are regimes in which RS occurs. (b) depicts the number of LEs equal to zero 

in dependence on w∆  and χ . The 2-cluster state corresponds to the RS regime. 

 
 
In order to examine this phenomenon in more detail, we also studied 
the clustering in dependence on the hub's frequency. In Fig. 4.5(a) we 

plot ||: indirectdirect rrr −=∆ in dependence on the global coupling strength 

χ  and the frequency frequency mismatch w∆  of the hub with respect to 

the mean frequency of the peripheral nodes: 
N

nnwww
21:

=
−=∆ . 
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In the case of RS rindirect will be close to 1, while rdirect will be rather low, 
say less than 0.5, so for will be large here. If we are either in a regime 
where we have no synchronization or full synchronization rdirect and     
rindirect will be about equal (either around 0 or around 1) and thus r∆  
will be low. Fig. 4.5(b) shows the number of LEs equal to zero for the 
same parameters w∆  and χ . As already mentioned, this is an indirect 

measure for the number of synchronized clusters.  
The red area in Fig. 4.5(a) corresponds to the regime where RS exists. 
We find the same shape in Fig. 4.5(b) with a value of 2, thus showing 
that we have two synchronized clusters here. Both measures are in very 
good agreement with each other. For coupling strengths 1>χ  and out-

side the Arnold tongue we have oscillation death, which manifests in 
the Lyapunov spectrum by all LEs becoming negative, since the system 
has only one global stable fixpoint. In both figures we clearly see the 
classical V-shaped Arnold tongue of the globally synchronized state, i.e. 
a regime of one cluster PS. 
For system (4.1), the Arnold tongue A can be computed analytically: 
 

 
 

 
where Ω  is the frequency inside the Arnold tongue, given by 
 

 
 
In Fig. 4.5(a) the analytically computed border of A is shown with dot-
ted lines and agree very well with the border observed from the numeri-
cally integrated data. In the following we discuss the basic mechanism 
of RS and give an explanation for the necessary conditions for RS to oc-
cur robustly. 
 

4.4.4.4.4444. Mechanism underlying remote synchronization. Mechanism underlying remote synchronization. Mechanism underlying remote synchronization. Mechanism underlying remote synchronization    

Since we are interested in the mechanism of how two indirectly con-
nected oscillators become synchronized, it is suficient to focus on three 
nodes only: two peripheral nodes, to which we will refer to as node 2 and 
node 3 (in correspondence with our initially made numbering), con-
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nected indirectly via the hub (node 1). In order for node 2 and node 3 to 
mutually synchronize, actions of node 2 need to be transmitted to node 3 
and vise versa. It means that the dynamics of node 1 have to be such 
that they leave the transmitted actions of node 2 and node 3 possibly 
unaltered. Thus, two conditions have to be fulfilled for RS to occur. 
Firstly, the average time scale of the attractor of node 1 should be sufi-
ciently different from the ones of the attractors of node 2 and node 3 in 
order to not to synchronize with them. Furthermore, node 2 and node 3 
must not be too different such that they are able to synchronize through 
a weak interaction. Secondly, perturbations of node 1 must not decay 
too fast in order to get transmitted via node 1. The decay of perturba-
tions of the Stuart-Landau oscillator is controlled by the parameter α  
in Eq. (4.1). The larger α  the faster a deviation from the limit cycle will 
"fall back" onto that. For ∞→α any deviation of the amplitude will de-
cay immediately. Thus, we expect the RS regime disappears for ∞→α . 
In this case, after a change into polar coordinates and omitting the am-
plitude, Eq. (4.1) can be transformed into a network of coupled Kuramo-
to phase oscillators [66,98]: 
 

 
(4.5) 

 

 
Fig 4.6. (Color online) ),( χwr ∆∆ for the hub motif of Kuramoto phase oscillators 

[Eq.(4.5)] is shown. By comparing with Fig. 4.5(a) it can be observed that there is no RS 
regime, here. 

 
We applied the analysis described in Sec. 4.3 to this network of phase 
oscillators using the same setup and parameters as in the Stuart-
Landau case described in Sec. 4.2. Fig. 4.6 shows ),( χwr ∆∆ for this sys-

tem. By comparing Fig. 4.6 with Fig. 4.5(a) the absence of the RS regime 
for the phase oscillators is clearly visible (absence of the red areas to left 
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and right of the Arnold tongue which indicate RS). We have also 
checked that by computing r∆  for different increasing values of α . In 
this case the disappearance of the RS can be tracked. Thus, our pre-
viously made assumption is correct, that the ability of indirectly coupled 
oscillators to synchronize remotely depends on a certain exibility or 
memory of the amplitude of the transmitting system.  
Or even more crucial, it depends on the existence of a free amplitude at 
all. We show in fact that when amplitude perturbation is not possible, 
as for instance in coupled Kuramoto phase oscillators, for which a fixed 
not perturbable amplitude is assumed indirectly, remote synchroniza-
tion does not appear! 

4.4.4.4.5555. Remote synchronization in complex networks. Remote synchronization in complex networks. Remote synchronization in complex networks. Remote synchronization in complex networks    

In this section we want to give a short outlook on RS in complex net-
works. We will not discuss the phenomenon in detail in this context, as 
it needs a lot more preparation and advanced statistical methods for a 
detailed analys, since far more complex synchronization scenario are 
possible. However, one is able to find RS in more complex and asymme-
tric networks as well. For our demonstration we generated a network 
consisting of 100 nodes using the Barabasi-Albert algorithm [92]. 
Fig.4.7 illustrates the scenario of remote synchronization in this exem-
plary complex network. The parameters used for this simulation have 
been: 21.0=χ  and 2.0=α . The frequencies of all nodes have been 

drawn randomly from a uniform distribution on small interval of size 
0.1 centered at 3.5 for the hubs and 1.0 for the remaining nodes. The 
plot shows overlaid the actual (physical) network topology as it has been 
generated. The thick transparent lines depict synchronized nodes. Two 
nodes n and m have been declared phase synchronized if their PS index 
is rnm > 0.95. The different coloring have been chosen to guide the read-
ers eye. Gray coloring indicates synchronization between peripheral 
(non-hub) nodes while red color shows synchronization between two 
hub-nodes. In this chosen situation many remotely synchronized clus-
ters can be spotted, visual by many gray lines spanning across the net-
work. Some of those clusters even spread across long distances with 
several hub nodes lying in between which are not synchronized with the 
former. Further the hub nodes connecting the remotely synchronized 
clusters are synchronized itself into a cluster. This is especially interest-
ing since the topology one would infer from analyzing the synchroniza-
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tion state of the network does not reect even closely the physical connec-
tivity of the nodes. 

4.4.4.4.6666. Hidden information transfer. Hidden information transfer. Hidden information transfer. Hidden information transfer    

Finally we want to stress another important point. From our study we 
conclude that in the analysis of complex heterogeneous systems the 
choice of an appropriate correlation or information measure becomes 
more important We demonstrate this with an example.  

 
Fig 4.7. (Color online) Graphical representation of remote synchronization scenario in a 
scale-free network consisting of 100 nodes. Nodes with _ve or more links have been de-
clared as hub and are colored red. The hubs have a mean frequency of 3 while the re-
maining nodes have a mean frequency of 1. For each pair of nodes n and m a thick 
transparent line has been drawn if rnm > 0.95, i.e if both nodes can be assumed to be 
phase synchronized with respect to the PS order parameter r. Gray lines have been 
drawn between peripheral nodes and red lines between hubs. See text for more details. 
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In this thesis the study of chaos has been dealt with from an experimen-
tal point of view. Different topics have been investigated, starting from 
the issues connected to the appearance of chaos in electronic nonlinear 
circuits to the dynamics emerging in coupled circuits. First of all, prac-
tical guidelines to implement a nonlinear electronic circuit with given 
governing equations have been discussed. The procedure allows to ob-
tain low-cost, easy-to-realize circuits which behave in a way equivalent 
to that of the original mathematical model, but permit an experimental 
analysis. Following this procedure, a gallery of different chaotic circuits 
has been discussed with the aim of also providing a reference for the 
realization of experiments with chaos. Designing chaotic circuits is 
faced in literature with a variety of approaches. It is a topic of funda-
mental importance, which in our case has been dealt with by proposing 
a simple Lur'e feedback scheme with a time-delay element and deriving 
semi-analytical conditions for the emergence of chaos. In this way, a 
new class of chaotic circuits has been introduced with the unique fea-
ture of being based on a procedure which is strictly connected to the 
hardware steps needed to implement the circuit. Two different examples 
have been provided to demonstrate the suitability of the approach.  
We have then examined the case of two or more coupled units. In par-
ticular, the experimental study of synchronization in two different dy-
namical circuits has revealed that the power absorption of the system 
varies as a function of the coupling parameter and a minimum is 
achieved when the synchronous state is reached. This phenomenon has 
been characterized in many coupled identical and non-identical circuits 
and is of fundamental theoretical and applicative importance. In fact, 
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from a theoretical point of view the same concept may be at the basis of 
many natural and social phenomena of synchronization observed in 
natural and social systems, while, from a practical point of view, this 
idea can be exploited to design systems which automatically self-
organize towards the synchronized state or to implement simple mea-
surement systems for phase synchronization. The last topic dealt with 
the thesis has been the study of networks of coupled oscillators. A new 
phenomenon referred to as remote synchronization has been observed 
both numerically and experimentally. According to this phenomenon, in 
networks with given topologies (such as the star-like one) regimes in 
which two not directly connected nodes do synchronize thanks to an in-
termediate node which guarantees the information exchange needed for 
synchronization, but remains not synchronized. This phenomenon can 
also have interesting implications in climatology, brain dynamics, com-
munications, which need to be further explored. 
A common perspective has guided the research activity carried out: the 
experimental approach. In fact, it has been provided a gallery of circuits 
to be realized and used in lab experiments on chaos. All of these circuits 
do not require high implementation costs, but on the contrary have been 
often realized by using low-cost components or even recycled compo-
nents. In fact, in many cases, old disused electronic boards can be a 
source for all the components for implementing a chaotic circuit, so that 
"green" chaotic circuits can be realized. Moreover, only thanks to this 
experimental approach, specific studies such as the analysis of the pow-
er absorption and the investigation of real parameter mismatches be-
tween coupled circuits can be performed. The use of real circuits with 
real mismatches was fundamental to discover the property that syn-
chronization is related to a condition of minimum power absorption. 
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