
Università degli Studi di Catania

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica per la Tecnologia

XXIV ciclo

Finite-Difference Ghost-Cell
Multigrid Methods for

Elliptic Problems

with Mixed Boundary Conditions and

Discontinuous Coefficients

Armando Coco

Advisor

Prof. Giovanni Russo

Anno Accademico 2010-2011

Università degli Studi di Catania

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Matematica per la Tecnologia

XXIV ciclo

Finite-Difference Ghost-Cell
Multigrid Methods for

Elliptic Problems

with Mixed Boundary Conditions and

Discontinuous Coefficients

Relatore Candidato

Chiar.mo Prof. Giovanni Russo Armando Coco

Coordiantore

Prof. Giovanni Russo

Anno Accademico 2010-2011

A Laura

Per ogni giorno, ogni istante, ogni attimo che sto vivendo: Grazie Mille.
M. Pezzali

Contents

Introduction 1

1 Elliptic equations 11
1.1 Notation . 11

1.1.1 Level-set function . 12
1.2 Discretization of the problem 13

1.2.1 Discretization of boundary conditions 13
1.2.2 1D discretization . 16

1.3 Some extensions . 18
1.3.1 Robin boundary conditions 18
1.3.2 Variable diffusion coefficient 18
1.3.3 Anisotropic case . 19
1.3.4 Sharp-edged domain 21

1.4 Numerical tests . 23

2 Multigrid approach 39
2.1 Failure of the Jacobi scheme 40
2.2 Relaxation scheme: fictitious time 41

2.2.1 One-dimensional case 41
2.2.2 Two-dimensional case 43
2.2.3 Three-dimensional case 44

2.3 Convergence proof . 45
2.3.1 One-dimensional case 46
2.3.2 Two-dimensional case 47
2.3.3 Three-dimensional case 48

2.4 Relaxation scheme for some extensions 49
2.4.1 Robin boundary conditions 49
2.4.2 Variable diffusion coefficient 50

i

ii CONTENTS

2.4.3 Anisotropic case . 51

2.4.4 Sharp-edged domain 51

2.5 Multigrid components: one dimensional case 51

2.5.1 Transfer grid operators 54

2.6 Multigrid components: High-dimensional case 56

2.6.1 Transfer grid operators 59

2.7 Numerical tests . 63

3 Discontinuous coefficents: 1D case 75

3.1 Model problem . 75

3.1.1 Discretization . 77

3.1.2 Relaxation scheme . 79

3.1.3 Choosing constants µD and µN for transmission condi-
tions . 81

3.2 Multigrid approach . 82

3.2.1 Transfer grid operators 85

3.3 Numerical tests . 88

4 Discontinuous coefficients: 2D case 97

4.1 Model Problem . 97

4.1.1 Notation . 98

4.2 Discretization of the problem 99

4.2.1 Discretization of interface/boundary conditions 99

4.3 Multigrid approach . 102

4.3.1 Relaxation scheme . 102

4.3.2 Choosing constants µB, µD and µN 106

4.3.3 Smoothing property 107

4.4 Multigrid components . 108

4.5 Numerical tests . 112

5 Grid adaptivity 119

5.1 Domain discretization: quadtree data structure 119

5.1.1 Finite difference discretization 121

5.2 Numerical tests . 123

A A tentative of convergence proof for second order accuracy 133

A.1 Description of the iterative scheme 133

A.2 Convergence proof . 134

A.3 Comparison between the two methods: Taylor analysis 136

A.4 Numerical results . 140

CONTENTS iii

B Diffusion Equation with moving interface 147
B.1 Discretization . 148
B.2 Multigrid approach . 150
B.3 Alternative approaches . 151

B.3.1 Comparison of the three discretizations 152
B.4 Numerical tests . 153

Conclusion and Work in progress 155

References 161

iv CONTENTS

Acknowledgement

Ho sempre considerato il dottorato come l’adolescenza del ricercatore. Oggi,
ad un passo dal traguardo, posso affermare che, nonostante i tanti dubbi che
affioravano nella mia testa sul ramo da scegliere, questa mia adolescenza è
trascorsa in maniera felice e spensierata. Per questo ringrazio vivamente il
mio tutor, prof. Giovanni Russo, che mi ha incoraggiato fin dall’inizio e mi
ha guidato scrupolosamente nella formazione, facendomi scoprire passo dopo
passo la passione per la ricerca. Il suo essere all’avanguardia ha contribuito
a trasmettermi l’importanza che nella ricerca rivestono il confronto con gli
altri, l’allargamento degli orizzonti, la collaborazione senza limiti geografici.

Ringrazio i miei genitori, che sono sempre stati un solido sostegno morale,
fornendomi un appoggio concreto in ogni momento e permettendomi di man-
tenere viva la concentrazione nella ricerca.

Ringrazio mia sorella, con la quale ho condiviso una infanzia meravigliosa,
e che non smette mai di farmi sentire importante.

Ringrazio Moghinetta, l’unica persona che riesce ad intenerirmi anche
nei momenti di rabbia e nervosismo, capace di farmi riscoprire l’assoluta
importanza delle cose semplici.

Infine, grazie Laura. Tu sei la linfa del mio percorso, la soluzione ai miei
problemi, la ragione per cui tutto questo ha un senso.

v

Introduction

Elliptic equation in arbitrary domain (possibly with moving boundary) is
central to many applications, such as diffusion phenomena, fluid dynamics,
charge transport in semiconductors, crystal growth, electromagnetism and
many others. The wide range of applications may require different kinds of
boundary conditions. Let us look for instance at the temperature distribution
in a medium of arbitrary shape satisfying stationary heat equation: we may
have Dirichlet (the temperature is fixed at the boundary), Neumann (heat
flux is prescribed), or mixed boundary conditions (namely different boundary
conditions on different parts of the boundary). More general Robin boundary
conditions may also be considered, as in Stefan-type problem, in which a
combination of temperature and heat flux is prescribed at the boundary
(e.g. see [47, 28]).

The work of this thesis is devoted to the development of an original and
general numerical method for solving elliptic equations in an arbitrary do-
main (described by a level-set function) with general boundary conditions
(Dirichlet, Neumann, Robin, ...) on Cartesian grids. It can be then con-
sidered an immersed boundary method, and the scheme we use is based on
a finite-difference ghost-cell technique. The entire problem is solved by an
effective multigrid solver, whose components have been suitably constructed
in order to be applied to the scheme. The method is extended to the more
challenging case of discontinuous coefficients, and the multigrid is suitable
modified in order to attain the optimal convergence factor of the entire it-
eration procedure. The development of a multigrid solvers for discontinuous
coefficients maintaining the optimal convergence factor independently on the
jump in the coefficient and on the problem size is a challenging problem and it
is recently studied in the literature. However, the development of the multi-
grid is only based on a practical implementation, and then it is not provided
with a rigorous analytical study. The method is second order accurate in the

1

2 CONTENTS

solution and its gradient. A convergence proof for the first order scheme is
provided, while second order is confirmed by several numerical tests.

Survey of the literature for elliptic equations

Numerous techniques have been developed to treat such problems. Interface-
fitted grid methods such as those based on the finite element methods [13,
18, 52, 65] are difficult to use in the case of moving interfaces, because of the
computationally expensive meshing procedures needed at each time step. In
such cases an approach treating the interface as embedded in a Cartesian
grid may be preferred. Since the interface may be not aligned with the grid,
a special treatment is needed for the discretization of the equation near the
interface. The simplest method makes use of the Shortley-Weller discretiza-
tion [102], that discretizes the Laplacian operator with usual central differ-
ence away from the interface, and makes use of a non symmetric stencil in the
grid points close to the interface, adding extra-grid points on the interface.
While the treatment of jump conditions in the solution is straightforward to
discretize in the case where grid points lie on the interface, the discretization
of the jump condition in the flux (involving the normal derivative) is not
straightforward in more than one spatial dimension. In fact, Shortley-Weller
discretization requires that the value of the normal derivative of the solution
on both sides of the interface is suitably reconstructed at the intersection be-
tween the grid and the interface. This approach is adopted, for example, by
Hackbusch in [56] to first-order accuracy, and by other authors (see [20] and
references therein) to second-order accuracy. However, the method proposed
by Bramble in [20] for second-order accuracy is quite involved and may not
be recommended for all practical purposes.

Methods based on embedding the domain in a Cartesian grid are derived
from the pioneering work of Peskin [88], where the Immersed Boundary Meth-
ods is introduced to model blood flows in the heart. In that paper a source
term is localized on the interface and the method makes use of a discretized
δ-function to model the exchange of force between the interface and the fluid,
leading to a first-order accurate method. A second-order accurate extension
to jump coefficients is the Immersed Interface Methods, first developed by
LeVeque and Li in [67], where non-homogeneous jump conditions are allowed
on the function and on the normal flux. Another method which achieves
second-order accuracy was previously proposed by Mayo in [75] for solving
Poisson or biharmonic equations on irregular domains using boundary inte-
gral techniques. Liu et al. [70] developed a first-order accurate ghost-fluid
method for the variable coefficient Poisson equation in the presence of an
irregular interface across which the variable coefficient, the solution and the

CONTENTS 3

derivative of the solution may have jumps. This method leads to a symmetric
linear system that allows the use of fast iterative solvers.

In the case where Dirichlet boundary conditions are imposed, instead of
jump conditions, a second-order accurate ghost-fluid method can be built
[46]. The value at the ghost nodes is assigned by linear extrapolation, and
the whole discretization leads to a symmetric linear system. A fourth-order
accurate version is also proposed by Gibou et al. in [47] and several char-
acteristics concerning Poisson solvers on irregular domains with Dirichlet
boundary conditions using the ghost-fluid method can be found in [81].

The treatment of boundary conditions on irregular interfaces is also found
in methods modeling the interaction between multiphase flows and solid ob-
stacles. Examples are the arbitrary Lagrangian Eulerian method (ALE) [44,
39], distribute Lagrangian multiplier (DLM) [51] and the penalization meth-
ods [98, 10]. For example, in [31] a combination of penalization and level-set
methods is presented to solve inverse or shape optimization problems on
uniform Cartesian meshes. In [82] Ng et al. studied a simple and efficient
method for the Navier-Stokes equations on arbitrary shaped domains. Sev-
eral methods have been recently developed for sharp-edge interface, such as
the matched interface and boundary (MIB) method [110], the finite vol-
ume method [85], and the non-symmetric positive definite finite element
method [58], where the more general case of variable matrix coefficient is
treated.

In [87], an efficient discretization based on cut-cell method to impose
Robin conditions is proposed. This method provides second-order accuracy
for the Poisson and heat equation and first-order accuracy for Stefan-type
problems. The drop in accuracy for the Stefan problem is due to the fact
that the solution gradient, driving the free moving boundary, is only first-
order accurate. Other approaches based on cut-cell methods obtained by a
finite volume discretization are presented by Colella et al. in [60]. Cells that
are cut by the boundary requires a special treatment, such as cell-merging
and rotated-cell, in order to avoid too strict of a restriction of the time step
dictated by the CFL condition.

In some applications, it is desirable to obtain second-order accuracy in
the solution’s gradient, as it is the case of the Stefan problem or in the case
of two-way fluid-solid coupling. Also high-order accuracy may be required,
for instance when turbulence and shock interact, or high frequency wave
propagation are presented in inhomogeneous media [16].

4 CONTENTS

Survey of the literature for related multigrid

Multigrid technique is one of the most efficient strategy to solve a class of
partial differential equations, using a hierarchy of discretizations. It acceler-
ates the convergence of an existing iterative method, which otherwise slowly
converges toward the solution of the discrete problem, due to the bad conver-
gence rate for the low frequency components of the error. The idea of multi-
grid methods is to solve such low frequency components in a coarser grid.
Most iterative schemes to solve Elliptic equations can be speeded up by a
multigrid technique. Some multigrid textbooks are for example [27, 105, 55].

Multigrid has been developed since the 1960s, when first papers ap-
peared [42, 43, 15], while it has been studied more carefully since the 1970s [21,
54, 83, 6]. Several surveys on multigrid exist in literature, in particular for dif-
ferent kinds of applications [24, 22, 23], for multilevel-unstructured grids [29],
parallel implementation [62, 1], discontinuous coefficients [104].

The Algebraic Multigrid (AMR) is a multigrid procedure that use only
purely algebraic information, and it is mainly used in problems where a
supported grid is not available, and then a geometric relation between un-
knowns cannot be derived. It was first proposed in [25] and later popularized
in [94, 26]. Among the other numerous multigrid techniques, we recall the
Black-box multigrid of Dendy [38, 63], the BPX method [19], the matrix-
dependent interpolation [93, 111, 101], the energy-minimization [108, 30, 73].

Regarding the scope of this thesis, namely multigrid for elliptic equations
with mixed boundary conditions and discontinuous coefficients, a detailed
survey can be found in [104]. Several multigrid approaches exist in liter-
ature to treat the jumping coefficient problem in 2D when the interface is
aligned with the Cartesian grid. We mention the method based on operator-
dependent interpolation [6, 59], where the interpolation is carried out by
exploiting the continuity of the flux instead of the gradient of the solution,
and the method based on Galerkin Coarse Grid Operator [94], which makes
the algebraic problem more expensive from a computational point of view
and does not take advantage from the fact that the discrete problem comes
from a continuous problem. For Cartesian grids and arbitrary interfaces,
i.e. not aligned with line grids, we mention the paper [4], where a multigrid
approach for solving the linear system arising from the discretization of in-
terface conditions described in [4, 69] is provided. In this multigrid technique
a Black-box multigrid interpolation is used for grid points away from the in-
terface, while the interpolation weights for grid points near the interface are
derived from a Taylor expansion (with a change of coordinates). In [2] such
a multigrid has been improved, modifying the interpolation and restriction
operators in such a way the coarse-grid matrices are M-matrices. A com-

CONTENTS 5

parison of both multigrid method [4, 2] with Algebraic Multigrid solvers is
performed in [3] for the underlying discretization, showing that the multigrid
in [2] is the most efficient. Other recent developments of multigrid solvers for
non-smooth coefficients can be found in [106], where a geometric multigrid
method for multiple interfaces in higher dimensions is proposed. Here an ac-
curate interpolation which captures the correct boundary conditions at the
interfaces via a level set function is provided, and the issues coming from the
storage of the coarse-grid matrix are avoided. In [107] the coarse grid points
are selected in such a way the irregular interfaces are resolved as much as
possible: only linear interpolation is needed to obtain fast convergence.

Survey of the literature for Adaptive Mesh Refinement

Many physical problems have different scales and very often only small por-
tions of the computational domain require fine resolution. Uniform grids
become inefficient in this case in terms of memory storage and CPU usage.
Adaptive mesh strategies for elliptic linear partial differential equations, such
as the Poisson equations, are often associated with the finite element method
(see e.g. [14, 61]). Young et al. [109] introduced a finite element method
employing adaptive mesh refinements for second-order variable coefficient el-
liptic equations using a cut-cell representation of irregular domains. The
finite element method has the advantage of a rigorous theoretical framework
and a vast number of optimized commercial implementations. However, two
factors that must be considered are the adaptive mesh generation for com-
plicated domains and the efficiency of the organization of the resulting data
structure. Generally, when applying the finite element method to moving
boundary problems, one must take great care that the mesh generated is of
good quality everywhere (see e.g. [99]). Moreover, even though we are not
considering this case in this thesis, one is often interested in solving the vari-
able coefficient Poisson equation on time dependent irregular domains, where
it is hard to avoid the difficulty and cost associated with frequent mesh gen-
erations. This is where finite difference discretizations can be advantageous
(see e.g. [48]).

Johansen and Colella [60] presented a cell-centered finite volume method
for solving the variable coefficient Poisson equation on irregular domains us-
ing a multigrid approach and a block-grid algorithm related to the adaptive
mesh refinement scheme of Berger and Oliger [17]. McCorquodale et al. [76]
presented a node-centered finite difference approach for solving the variable
coefficient Poisson equation on irregular domains using the block-structured
adaptive mesh refinement and the multigrid solver of Almgren [7, 9, 8]. How-
ever, these patch based adaptive mesh refinement (AMR) techniques restrict

6 CONTENTS

the adaptivity to block structured meshes, as is made clear by the following
quote “The obvious first choice, suggested by the nested hierarchical nature
of the grid itself, is to use an octree in 3D or quadtree in 2D”, from [5].

The quadtree spatial discretization has been used in a variety of ap-
proaches for solving the Poisson equation. Greengard et al. [53] presented
a kind of domain decomposition and spectral element method to solve the
Poisson equation using the quadtree data structure. Popinet [89] proposed
a second-order nonsymmetric numerical method to study the incompressible
Navier-Stokes equations using a quadtree data structure for spatial discretiza-
tion. In this method, a Poisson equation for the pressure needs to be solved
to account for the incompressibility condition using a standard projection
method. Only graded trees (trees in which the ratio between two adjacent
cell sizes does not exceed two) were considered in [89].

Non-graded octrees have been used in [72] to obtain a first order accu-
rate symmetric discretization of the Poisson equation, which was extended
to second-order accuracy in [71]. In [79] Min et al. solved the variable coeffi-
cient Poisson equation on a rectangular domain using quadtrees (in 2D) and
octrees (in 3D) to represent the non-graded Cartesian grids, and second-order
accuracy in both the solution and its gradients were obtained. In [32] Chen
et al. extended this approach for Poisson and heat equations on irregular
domains with Dirichlet boundary conditions. At internal T-junction nodes,
the value at the missing direct neighbor is linearly interpolated and the dis-
cretization in the other direction is properly weighted to compensate for the
spurious error induced by the linear interpolation. When the node is next to
the interface, the interface point location and the Dirichlet boundary value
at this interface point are found by quadratic interpolation. In [78] Min et
al. proposed a second-order accurate level-set method on non-graded adap-
tive Cartesian grids. Incompressible Navier-Stokes equations on non-graded
adaptive Cartesian grids can be found in [50, 45, 49, 77].

Structure of the thesis

Chapter 1. In this chapter we present a rather simple numerical method
to solve the Poisson equation in an arbitrary domain Ω, identified by a level
set function φ (i.e. Ω =

{

x ∈ R
d : φ(x) < 0

}

), with mixed boundary condi-
tions. The method is based on a finite difference discretization on a regular
Cartesian grid using ghost points.

The plan of the chapter is the following: the first section introduces the
level-set function and some notations, while the second section presents the
description of the first and second order accurate method. The third section
is devoted to the extensions of the method to Robin boundary conditions,

CONTENTS 7

variable coefficient, anisotropic case and boundary with kinks. In the last
section, several numerical tests are presented, confirming the accuracy and
efficiency of the approach.

The results of this chapter can also be found in [34].
Chapter 2. In this chapter we present a multigrid approach to solve

the linear system coming from the discretization of the elliptic problem de-
scribed in Chapter 1. In the first section we motivate the necessity to find
a proper relaxation scheme, illustrating that naive Jacobi iteration scheme
fails to converge. The second section is devoted to the description of the
novel relaxation scheme, which consists of a transformation of the Poisson
problem into a fictitious-time dependent problem, that leads to an iterative
scheme converging to the solutions of the originary problem. A convergence
proof for the first-order accurate method is provided in Section 3. The other
sections describe the relaxation scheme for the extensions presented in Chap-
ter 1 (Robin boundary conditions, variable coefficient, anisotropic case and
boundary with kinks), and the transfer grid operators for one and two di-
mensions.

This multigrid strategy can be applied to more general problems where
a non-eliminated boundary condition approach is used. Arbitrary domains
make the definition of the restriction operator for boundary conditions hard
to find. In this thesis a suitable restriction operator is provided, together with
a proper treatment of the boundary smoothing, in order to avoid degradation
of the convergence factor of the multigrid due to boundary effects. Several
numerical tests confirm the good convergence properties of the new method.

The results of this chapter can also be found in [35].
Chapter 3. In this chapter we provide a 1D discretization of the discon-

tinuous coefficient case, together with a proper multigrid approach. We use
the standard interpolation operator and discretize the operator in the coarser
grid in the same way as in the fine grid, without making use of Galerkin con-
ditions. But, since the defect may jump crossing the interface, a separated
restriction for both sub-problems is needed. This approach provides a good
convergence factor, comparable with the ones measured for no-jumping case.
We also show that the convergence factor does not depend on the magnitude
of the jump in the coefficient, nor on the problem size. Interface conditions
are relaxed, then have to be transferred to the coarse grid as well. In one-
dimensional case this task is trivial, since such conditions are just two real
values that can be copied to the coarse grid.

This chapter is divided in 3 sections. In the first section we describe the
second order accurate discretization of the model problem and the iterative
scheme obtained by discretizing the fictitious time-dependent problem. The
second section is devoted to the multigrid approach, with a careful description

8 CONTENTS

of the transfer operators. In section 3 some numerical tests are performed,
to show the second order accuracy in the solution and in its first derivative
as well. We also measure the convergence factor and compare it with the
convergence factor obtained by other methods of the literature.

The results of this chapter can also be found in [36].
Chapter 4. The discretization of the 2D discontinuous coefficient case

is derived from the 1D discretization of Chapter 3 , using the ghost-cell struc-
ture of Chapter 1. In practice, new additional unknowns are added to the
linear system and they are related to ghost points close to the interface and
from both sides. In such ghost points two values of the solution are defined:
one for the solution of the sub-domain to which such grid points belongs,
and one for the ghost value related to the sub-domain on the other side of
the interface. For the multigrid ingredients, the restriction is performed sep-
arately for the defect of inner equations of both subdomains, and of interface
conditions. For inner equations, the stencil of the restriction is suitable re-
duced for grid points close to the interface, namely using only values from
one side of the interface, in the same manner as we restrict the defect of inner
equations in Chapter 2. For the interface conditions, in higher dimension the
defect is stored in ghost points, which can show a complex structure for ar-
bitrary interfaces. The restriction of the defect of interface conditions can be
carried out in the same manner of the restriction of the defect of boundary
conditions described in Chapter 2 for problems with non-eliminated bound-
ary conditions: the defect is first extrapolated outside the subdomain and
then transferred to the coarse grid in the same manner as the restriction of
the defect of inner equations, i.e., without using values from the other side
of the boundary. Numerical tests of the last section prove the second or-
der accuracy and the efficiency of the multigrid solver, namely the optimal
convergence factor is attained and it does not depends on the jump in the
coefficient nor on the problem size.

Chapter 5. The discretization proposed in Chapter 1 to solve elliptic
problems with mixed boundary conditions (i.e. Dirichlet on a part of the
boundary and Neumann on the other part) and in Chapter 4 to treat the
discontinuous coefficient case are embedded in the adaptive grid framework
presented by Gibou et al. in [79, 32], where the adaptive grid generation and
the finite difference discretization on quadtree were introduced for the Pois-
son equation in an arbitrary domain with continuous coefficient and Dirichlet
boundary condition. We obtain a second-order method in the solution and
the gradient for elliptic equation with discontinuous coefficient and mixed
boundary conditions in a fully adaptive non-graded grid, which as far as we
know is new in the literature. In order to easily implement the discretiza-
tion of the boundary/interface conditions illustrated in Chapters 1 and 4, a

CONTENTS 9

uniform grid is however required close to the boundary/interface. To this
purpose, the refinement criterion is modified with respect to the one used for
example in [79, 32], allowing uniform grid in a larger band surrounding the
boundary/interface. In this chapter only the accuracy of the discretization
is presented, relegating to a future work the implementation of the iterative
scheme, consisting in an extension of the multigrid presented in Chapters 2
and 4. A proper fast direct solver is used, such as BiCGSTAB or the Matlab
direct solver. Numerical results show that second-order accuracy is achieved
in both the solution and its gradient.

In the first section the adaptive grid generation and the discretization
of the elliptic equation on quadtrees are described. In Section 2 several
numerical tests (some of which taken from [84, 57, 70]) are illustrated, which
confirm the second-order accuracy of the solution and its gradient in L2 and
L∞ norms.

The results of this chapter can also be found in [33].

10 CONTENTS

Chapter 1
Elliptic equations

We start describing the numerical method for the simplest model problem,
namely the Poisson equation with mixed boundary conditions in a smooth
domain. Therefore we extend the technique for more general elliptic prob-
lems, such as the variable coefficient case, anisotropic problems, sharp-edged
domains.

Let d ≥ 1 an integer, D = [−1, 1]d the computational domain, Ω ⊂ D a
domain such that ∂Ω ∩ ∂D = ∅. We assume Ω is a smooth domain, i.e. the

boundary ∂Ω ∈ C1. Let ΓD,ΓN a partition of ∂Ω (i.e. ΓD ∪ ΓN = ∂Ω,
◦

ΓD

∩
◦

ΓN= ∅, where the interior points are computed in the d − 1 dimensional
topological space).

Model problem 1 Consider the model problem:

−∆u = f in Ω (1.1)

u = gD on ΓD (1.2)

∂u

∂n
= gN on ΓN (1.3)

where n̂ is the outward unit normal, f : Ω → R, gD : ΓD → R, gN : ΓN → R

are assigned functions.

1.1 Notation

Let N ≥ 1 an integer and h = 2/N the spatial step. Let Dh = jh, j =
(j1, . . . , jd) ∈ {−N,N}d and Ωh = Ω ∩ Dh be the discrete versions of D
and Ω respectively. Dh is the set of the grid points. Let Γh the set of the

11

12 CHAPTER 1. ELLIPTIC EQUATIONS

so-called ghost points, namely the grid points outside to Ω and belonging to
some five-point stencil centered in a grid point inside to Ω, i.e.

(x, y) ∈ Γh ⇐⇒ (x, y) ∈ Dh\Ωh and {(x± h, y), (x, y ± h)} ∩ Ωh 6= ∅

Let us denote Ni = |Ωh| and Ng = |Γh| the cardinality of sets Ωh and
Γh. We will use the following notation for discrete functions: wj1,...,jd ≈
w(j1 h, . . . , jd h), wP ≈ w(P).

1.1.1 Level-set function

In order to keep track of the boundary Γ, we introduce the level set function
φ0 : D → R, in such a way:

(x, y) ∈
◦

Ω⇐⇒ φ0(x, y) < 0, (x, y) ∈ ∂Ω⇐⇒ φ0(x, y) = 0.

The outward unit normal to the boundary is

n =
∇φ0
|∇φ0|

. (1.4)

General references on the level set method for tracking interfaces are, for
examples, [86] or [100]. The signed distance function φ is a particular case
of level-set function:

φ(x, y) =

{

−d ((x, y),Γ) if (x, y) ∈ Ω,
d ((x, y),Γ) if (x, y) /∈ Ω,

where d ((x, y),Γ) = inf
(x̄,ȳ)∈Γ

de ((x, y), (x̄, ȳ)) is the distance function between

a point and a set and de denotes the Euclidean distance between points.
From the level set function φ0, we can obtain the signed distance function φ
by fast marching methods [100] or by the reinitialization procedure based on
the numerical solution of the following PDE

∂φ

∂t
= sgn(φ0) (1− |∇φ|) , (1.5)

as we can see, for instance, in [103, 95, 40]. A signed distance function is
preferred to a simple level-set function because sharp gradients are avoided
and it is simpler to compute the boundary closest point to a given ghost
point. Now we assume that |∇φ| = 1 and suppose we know the signed
distance function just at the grid nodes. In practice, Eq. (1.5) has to be
solved for a few time steps, in order to compute the distance function a few
grid points away from the boundary.

1.2. DISCRETIZATION OF THE PROBLEM 13

1.2 Discretization of the problem

Let us start by describing the space discretization of the problem, i.e. the
discretization of model problem 1. Our goal is to write a (Ni+Ng)×(Ni+Ng)
linear system, where Ni = |Ωh| and Ng = |Γh|. In this section we refer to the
2D case, but easy generalization can be obtained in higher dimension. The
Ni equations coming from the inside grid points of Ω are obtained from the
discretization of the Laplace operator by the 5-point stencil (Fig. 1.1):

4ui,j − (ui,j−1 + ui,j+1 + ui−1,j + ui+1,j)

h2
= fi,j. (1.6)

To close the linear system, we must write an equation for each ghost point
G.

�

�

�

���

�

���

��� � ���

Fig. 1.1: Five-point stencil centered
at P . The grid point G is outside the
domain and it is named ghost point.

�

�

�
�����

�

Fig. 1.2: Computation of the bound-
ary closest point B to the ghost
point G from the normal unit vec-
tor, obtained from the signed dis-
tance function.

1.2.1 Discretization of boundary conditions

In order to close the linear system of equations (1.6) for inside grid points,
we must write an equation for each ghost point. Let G be a ghost point. We
compute the outward unit normal in G, that is n̂G = (nx

G, n
y
G) = ∇φ/ |∇φ|,

using a second order accurate discretization for ∇φ, such as central difference
in G. Now we can compute the closest boundary point to G, that we call B,
by the signed distance function (see Fig. 1.2):

B = G− n̂G · φ(G). (1.7)

We observe that indeed B depends on G, then it should be written as BG,
but we omit the subscript for clarity. Now, we discretize in some way the

14 CHAPTER 1. ELLIPTIC EQUATIONS

Dirichlet or the Neumann boundary condition if B lies respectively on the
Dirichlet or Neumann boundary. In particular, if B ∈ ΓD, the equation for
the system becomes:

uh(B) = gD(B) (1.8)

while, if B ∈ ΓN , it becomes:

∂uh

∂n
(B) = gN(B)

where uh(B) and
∂uh

∂n
(B) are suitable reconstructions of the exact solution

and its normal derivative by the numerical solution uh.
We obtain a first or second order accurate solution of the model problem 1

according to the accuracy order of the reconstructions. Let us choose the
reconstruction in detail.

1.2.1.1 First order accuracy

We can simply choose
uh(B) = uG, (1.9)

while ∂u/∂n is discretized by first order upwind (Fig. 1.3)

∂uh

∂n
(B) =

1

h

((

u
(n)
G − u

(n)
Qx

)

|nx|+
(

u
(n)
G − u

(n)
Qy

)

|ny|
)

(1.10)

where Qx and Qy are the two upwind close points to G (we say that the grid
point Q is an upwind close point to G if d(G,Q) = h and (G−Q) · n̂ > 0),
while n̂ = (nx, ny) is the outward unit normal to ∂Ω in B, computed using
(1.4) and discretizing ∇φ also in upwind fashion, i.e.

φx =
φG − φQx

h
sgn

(

G(x) −Q(x)
x

)

and φy =
φG − φQy

h
sgn

(

G(y) −Q(y)
y

)

1.2.1.2 Second order accuracy

We choose

uh(B) = ũ(B),
∂uh

∂n
(B) = (∇ũ · n̂)|B =

(

∇ũ · ∇φ̃/|∇φ̃|
)∣

∣

∣

B
(1.11)

where ũ and φ̃ are biquadratic interpolant respectively of u and φ on the
Upwind nine-point stencil St9 represented in Figure 1.4 (n

x
G > 0, ny

G > 0):

St9 =
{

G+ h(sx k1, sy k2) : (k1, k2) ∈ {0, 1, 2}2
}

, (1.12)

where sx = sgn(xB − xG) and sy = sgn(yB − yG), with the notation P ≡
(xP , yP), for P = G,B.

1.2. DISCRETIZATION OF THE PROBLEM 15

��
�

�
�

� �

Fig. 1.3: discretization of Ω in two
space dimensions. B is the boundary
closest point to G, while Qx and Qy

are the two upwind close points to
G.

���� �

� �� �
�

�

����

�	

�

�� �� �

Fig. 1.4: nine-point stencil in upwind
direction for the discretization of the
Neumann boundary condition concern-
ing the ghost point G

1.2.1.3 Remarks

Remark 1. (Error in the gradient) If we were interested in second order
accuracy just of the solution, we could use a linear interpolation for uh(B)
in grid points P,A1, A2, A3 (see Fig. 1.4). Since in general we want to obtain
second order accuracy also in the gradient, we use biquadratic interpolation
for both Dirichlet and Neumann conditions. We show in Example 1.4.2 that
we obtain second order accuracy also in the gradient. The accuracy of the
gradient is computed by the seminorm of the Sobolev space W 1,q(Ω), i.e.

|u− uh|W 1,q(Ω) = ‖∇u−∇huh‖Lq(Ω)

where ∇huh is computed by central difference and for q = 2.

Remark 2. (Efficient stencil) We propose a more efficient stencil to
reconstruct the normal derivative. We observe we just need to reconstruct
the gradient of the solution u at the closest point B. We can reconstruct
for instance the partial derivative ∂u/∂x as follows (for ∂u/∂y is similar).
Consider the six-point stencil depicted in Figure 1.5. Then

∂uh

∂x

∣

∣

∣

∣

B

= ϑy
∂uh

∂x

∣

∣

∣

∣

H′
+ (1− ϑy)

∂uh

∂x

∣

∣

∣

∣

H

Now, relating to Figure 1.5, we reconstruct ∂uh/∂x inH
′ [H] using a quadratic

interpolation of u in P1, P2, P [P ′1, P
′
2, P

′] and differentiating it in H [H ′]. Ul-
timately, we use a six-point stencil to reconstruct the x-derivative, that is

16 CHAPTER 1. ELLIPTIC EQUATIONS

more efficient than using a nine-point stencil. The computational cost im-
provement is more evident in three dimension, where a 12-point stencil is
used instead of a 27-point stencil.

Remark 3. (Outside points) In some case, we cannot have all nine
points of the upwind stencil in Figure 1.4 at our disposal, because some
of these points may be neither a point of Ωh nor a (ghost) point of Γh.
We call them outside points (e.g. point P2 in Fig. 1.6). Then, when an
outside point is one of the nine points of the stencil of Figure 1.4, we use
a different approach to discretize the Neumann condition. The six-point
stencil described in the previous remark is easier to deal if some grid point
is an outside point. For example, if we are in the case of Figure 1.6, point
P2 is an outside point. Then, we just use a first-order reconstruction in H:

∂uh

∂x

∣

∣

∣

∣

H

=
uP − uP1

h
,

leaving the second order reconstruction in H ′ unchanged. We will see numer-
ically in Section 1.4 (Ex. 1.4.3) that even if we are in the case of Figure 1.6
(P2 is an outside point), we do not loose the overall second order accuracy of
the solution.

We suppose the spatial step h is less than the minimum radius of cur-
vature of the boundary ∂Ω, in order to capture the profile of the boundary.
With this assumption, the reduced stencil rarely appears, and when it ap-
pears the closest point B is almost aligned with P ′, P ′1, P

′
2. Therefore, the

second order reconstruction in H ′ is weighted much more than the first order
reconstruction in H. This may be the reason for which we do not loose the
overall second order accuracy (this aspect may seem not evident in Figure
1.6, but we have to keep in mind that spatial step h is usually much smaller
than mean curvature radius of the boundary).

1.2.2 1D discretization

In order to study some properties of the discretization, such as ill conditioned
extrapolation, we analyze the easier 1D problem:

Model problem 2

−u′′ = f in [a, b] ⊆ [−1, 1] (1.13)

u(a) = ga (1.14)

u′(b) = gb (1.15)

1.2. DISCRETIZATION OF THE PROBLEM 17

��

�

� �
��� �

����
���

�

	

	�

�
�

�

Fig. 1.5: Six-point stencil for the sec-
ond order reconstruction of ∂u/∂x in
HP by linear interpolation of 1D recon-
structions of ∂u/∂x in H and H ′.

��

�

� �
��� �

����
���

�

	

	�

�
�

�

Fig. 1.6: P2 is an outside point, then
is not involved in calculus of the re-
construction. Anyway, the point HP is
closer to the line P ′−P ′2 with respect to
the line P−P2 and the first-order recon-
struction in H has a very small weight
in the linear interpolation.

�
�

�
�
�

�
��� ��

���
�
���

�
���

�
�
���

	 �
�
	

Fig. 1.7: Discretization of the domain in 1D.

Let l and r be such that xl ≤ a < xl+1, xr−1 < b < xr, and ϑl = (xl+1−a)/h,
ϑr = (b− xr−1)/h (see Figure 1.7).

In one dimension, the nine-point stencil of Fig. 1.4 reduces to a three-
point stencil, and the discretization of Section 1.2 consists in a simple 1D
extrapolation. The linear system becomes:

− 1

h2
(ui−1 − 2ui + ui+1) = fi i = l + 1, . . . , r − 1(1.16)

(1 + ϑl)
ϑl

2
ul + (1 + ϑl)(1− ϑl)ul+1 − (1− ϑl)

ϑl

2
ul+2 = ga (1.17)

1

h

(

ur−1 − ur−2 + (ur−2 − 2ur−1 + ur)

(

1

2
+ ϑr

))

= gb (1.18)

We observe that Eq. 1.17 is like performing a quadratic extrapolation of
the numerical solution in xl+1 and a to obtain the value in xl. When ϑl is
very small, this quadratic extrapolation is not too much accurate and leads
to an ill-conditioned system. Then, the error is quite over the best-fit line

18 CHAPTER 1. ELLIPTIC EQUATIONS

(which maintains a second order accuracy slope), as we can observe in Figure
1.13 of Example 1.4.1.

1.3 Some extensions

In this section we show how the approach can be used in more general cases,
which are of great relevance in practical applications. In particular, we con-
sider extension of the method to variable coefficients, anisotropic operators,
and domains with singularities.

1.3.1 Robin boundary conditions

So far we have considered the model problem 1 with mixed boundary con-
ditions. Indeed, the same approach to discretize the boundary conditions
works with the more general Robin boundary conditions. In such case, the
model problem 1 becomes:

Model problem 3

−∆u = f in Ω (1.19)

αu+ β
∂u

∂n
= g on Γ (1.20)

where Γ = ∂Ω, while α, β : Γ→ R and g : Γ→ R are assigned functions, with
α, β ≥ 0.

The model problem 1 is a particular case of the model problem 3, choos-
ing α = χΓD

and β = χΓN
, where χA : Γ → R denotes the characteristic

function over A ⊆ Γ. The discretization of the model problem 3 is obtained
straightforwardly from the discretization of the model problem 1 described
in Section 1.2.

1.3.2 Variable diffusion coefficient

The whole procedure (numerical method and convergence proof) can be ex-
tended to the case of variable diffusion coefficient, i.e. we replace the Lapla-
cian operator ∆u by a more general operator∇·(γ∇u). The model problem 1
becomes:

1.3. SOME EXTENSIONS 19

Model problem 4

−∇ · (γ∇u) = f in Ω

u = gD on ΓD

∂u

∂n
= gN on ΓN

where γ : Ω→ R is an assigned positive function.

Observe that actually Neumann boundary condition should be γ∂u/∂n = gN ,
but we can rename gN : = gN/γ and consider the usual Neumann condition
we dealt up to now.

Let us suppose we know the function γ only in the grid points and let
γi,j = γ(jh, ih). The discretized system is obtained in the same manner as
the one described in Sec. 1.2, according to replace (1.6) with:

− 1

h2
(

γi+1/2,j (ui+1,j − ui,j) + γi−1/2,j (ui−1,j − ui,j)

+γi,j+1/2 (ui,j+1 − ui,j) + γi,j−1/2 (ui,j−1 − ui,j)
)

= fi,j

where γi±1/2,j = (γi,j + γi±1,j)/2, γi,j±1/2 = (γi,j + γi,j±1)/2.
In the case of smooth coefficient γ, the method maintains the prescribed

second order accuracy (see Examples 1.4.3, 1.4.4, 1.4.7, 1.4.13). If the coef-
ficient γ is not smooth, then a loss of accuracy is observed. The important
case of piecewise smooth coefficient, which models, for example, a system
composed by different materials separated by an interface, and second order
accuracy is desired, is described in Chapter 3.

1.3.3 Anisotropic case

In this section we describe how to extend this technique to the case of variable
matrix coefficient. Let us consider the Model Problem:

Model problem 5

−∇ · (A∇u) = f in Ω (1.21)

u = gD on ΓD (1.22)

∇u ·N = gN on ΓN (1.23)

where A = (ai,j)i,j=1,2 : Ω → R
2×2 is a symmetric positive definite variable

matrix, and N = A · n is the co-normal vector to the boundary.

20 CHAPTER 1. ELLIPTIC EQUATIONS

Expanding 1.23, we obtain:

−
(

∂a11
∂x

∂u

∂x
+

∂a12
∂x

∂u

∂y
+

∂a12
∂y

∂u

∂x
+

∂a22
∂y

∂u

∂y

+ a11
∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2

)

= f. (1.24)

First, we observe that we need to know the value of A also in ghost
points, due to the presence of coefficient derivatives. If we know the matrix
A just in inside grid nodes, its ghost value can be obtained by second order
accurate extrapolation [12], or if we know A also on the boundary, we can
enforce such boundary value as a boundary condition, obtaining ghost values
by biquadratic extrapolation, using the usual nine-point stencil in Upwind
direction.

All the spatial derivatives appearing in (1.24) can be discretized by central
differences. In this case, the stencil will be composed by nine points instead
of five, due to the presence of the mixed derivative term ∂2u/∂x∂y, which
can be discretized by the standard stencil:

∂2u

∂x∂y
≈ 1

4 h2

1 0 1
0 0 0
1 0 1

 ui,j =
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4 h2
.

The whole stencil for an inside grid point results in a nine-points stencil. In
order to keep the same set Γh of ghost points as in the isotropic case, we
modify this nine-point stencil into a seven-point stencil for inside grid points
close to the boundary (see Fig. 1.8). In details, if a grid point (x, y) ∈
Ωh satisfies |φ(x, y)| < h, then we compute the normal n ≡ (nx, ny) =
∇φ/ |∇φ|. Then, if nx · ny ≥ 0, we use the following discretization for the
mixed derivative:

∂2u

∂x∂y
≈ 1

2 h2

−1 1 0
1 −2 1
0 1 −1

 ui,j

while, if nx · ny < 0, we use:

∂2u

∂x∂y
≈ 1

2 h2

0 1 1
−1 2 1
1 −1 0

 ui,j.

For an explanation of such stencils see for instance [105, pag. 264].

1.3. SOME EXTENSIONS 21

We observe that, for the Neumann boundary condition, we always find
the closest boundary point to the ghost point and set the nine-point stencil in
Upwind direction with respect to n, but we discretize the numerical derivative
along the co-normal direction N (see Fig. 1.9). This mismatching may lead
to a non-Upwind discretization for the co-normal derivative, especially for
strongly anisotropic operators.

1

4 h2

1 0 1
0 0 0
1 0 1

1

4 h2

−1 1 0
1 −2 1
0 1 −1

1

4 h2

0 1 1
−1 2 1
1 −1 0

Fig. 1.8: The stencil for the mixed derivative changes accordingly to the distance
from the boundary and to the normal direction.

1.3.4 Sharp-edged domain

The method is designed for C1 boundaries. Some extension is however possi-
ble when the boundary is only Lipschitz continuous, i.e. in presence of kinks
due to the intersection or union of two smooth domains. We observe that,
although it is possible to have an exact solution with singular gradients (due
to the lack of regularity of the boundary, even if boundary conditions and
sources are smooth), the numerical tests of Section 1.4 (1.4.10, 1.4.11 and
1.4.7) are limited to cases where the solution is smooth.

Let us describe how to modify the method near kink points due to inter-
section of two domains (if we are near the union of two domains the approach
is similar). In particular, let us consider the two-dimensional case. Let

Ω1 =
{

(x, y) ∈ R
2 : φ1(x, y) < 0

}

, Ω2 =
{

(x, y) ∈ R
2 : φ2(x, y) < 0

}

be two domains with non-empty intersection, and let Ω = Ω1 ∩Ω2 as in Fig.
1.10.

22 CHAPTER 1. ELLIPTIC EQUATIONS

�

�
��

��
����

�

Fig. 1.9: The stencil is in Upwind
direction with respect to the normal
vector nP computed in P , while the
discretization is performed along the
co-normal direction N.

�

��

��

�
�

�
	

Fig. 1.10: Domain as intersection of
two smooth domains (Section 1.3.4).

The domain Ω is described by the level set function φ = max {φ1, φ2}
(φ = min {φ1, φ2} in case of union of domains) and the approach proposed so
far easily applies also in this case, but a special treatment is needed close to
the kink points of the intersection ∂Ω1∩∂Ω2, because if we use the numerical
method proposed so far using the level-set function φ = max {φ1, φ2}, the
slope of the best-fit line in the accuracy test is just first order (even for L1-
error), as we can see in the Ex. 1.4.10, and this is due to the discontinuity
of ∇φ near the intersection between the two domains. In fact, referring to
the Fig. 1.12, let us consider the ghost point P . Computing the boundary
closest point using the level-set function φ we obtain H and the segment PH
is not normal to the boundary. Moreover, the normal to the boundary in the
point H computed using the stencil P,Q, P1, . . . , P7 is incorrect (the arrow is
normal to the approximation of the zero level-set of φ showed by the dashed
red line). We must use a different approach if we want to preserve second
order accuracy.

We refer to Fig. 1.11. Let us suppose we want to compute the solu-
tion in the ghost point P3. To do that, we must use the (reduced) stencil
P, P1, P2, P3. We involve the grid point P2 in our computation and we must
write an additional equation for it. Computing the boundary closest point
using the level-set function φ may produce an incorrect result, because φ
has a discontinuous gradient near the kink point K. Using separately the
two level-set functions φ1 and φ2, we can compute the two boundary closest
points (respectively to ∂Ω1 and ∂Ω2) M and N . Neither M nor N belongs
to ∂Ω, then we cannot use any boundary condition from them. Therefore,

1.4. NUMERICAL TESTS 23

��� ���� ��� ���� ��� ����

�����

����

�����

�

�� �� ��

�

��

���� �� ��

�	
 �

�

Fig. 1.11: Incorrect direction of the
normal near the intersection between
the two domains. This is due to the
discontinuity of ∇φ.

�

��
��

�

��
�

�

�

	

��

�����

��

��

�
�

��
���

��

��

Fig. 1.12: Treatment of the kink
points described in Section 1.3.4.

we find the point K ′ from P2, N,M solving the system:
{

(M −K ′) · (M − P2) = 0
(N −K ′) · (N − P2) = 0

The point K ′ is a second order accurate approximation of the exact kink
point K. Using the nine-point stencil P, P1, . . . , P8, we enforce the boundary
condition in K to match the biquadratic interpolation in K ′. In details, if
K ′ ∈ ∂ΓD, we enforce ũ(K ′) = gD(K), otherwise (∇ũ · ni)(K

′) = gN(K),

where ni = ∇φ̃i/
∣

∣

∣
∇φ̃i

∣

∣

∣
, while ũ and φ̃i are the biquadratic interpolant re-

spectively of u and φi in the nine-point stencil. We have to choose either
i = 1 or i = 2. In order to prevent as much as possible the Upwind direction
of the stencil, we choice i such that ni is closest to P2 −K ′, i.e., the scalar
product ni · (P2 −K ′) is minimum. A numerical test over a cardioid shaped
domain with one level-set is performed in Ex. 1.4.9. The accuracy order in
L∞ is about 1.65. In Ex. 1.4.10 we compare the two approaches (one unique
level-set with sharp gradient and two smooth level-set functions), showing
that the second one improves the accuracy, reaching second order.

A numerical test (Ex. 1.4.10) on the use of this technique is provided,
while a more complicated geometry with both union and intersection of do-
mains (the pentagon star) is treated in Ex. 1.4.11.

1.4 Numerical tests

This section provides numerical tests showing second order accuracy in 1D,
2D and 3D. We will start from 1D case, showing that very small ϑ does not
degrade the convergence (Sec. 1.2.2).

24 CHAPTER 1. ELLIPTIC EQUATIONS

Then we switch to 2D case, starting with a simple geometry, such as
the circular domain with both mixed (Example 1.4.2) and Robin (Example
1.4.3) boundary condition. In the first example, we also show the second or-
der accuracy of the gradient of the numerical solution (Remark of the Section
1.2.1.2); in the second example we will see how reduction of the stencil de-
scribed in Section 1.2.1.3 does not degrade the second order accuracy. After,
we provide examples with flower-shaped domain (Fig. 1.20) with mixed and
Robin boundary conditions (Ex. 1.4.4). Another example over a stronger
flower-shaped domain (Fig. 1.23) is provided (Ex. 1.4.6). In Example 1.4.5
a comparison between our method and the method proposed in [46] is pro-
vided. Then, a numerical test over a domain with a saddle point (Ex. 1.4.7)
is provided as well. The anisotropic case with a variable matrix coefficient
described in Section 1.3.3 is tested in Example 1.4.8. Therefore, we analyze
the case of domain with boundary kink points, making a comparison between
the method with a unique level-set function (whose gradient is discontinuous
near kink points) and the approach with two smooth level-set functions (de-
scribed in Section 1.3.4). First example is the cardioid-shaped domain (see
Figure 1.29). Even though we use a unique level-set function, we observe an
accuracy close to 1.65 for the L∞-error. In case of more complicated geome-
tries we observe a substantial loss of accuracy: in Ex. 1.4.10 the domain is
the intersection between two smooth domains and a comparison between the
two methods (unique level-set function and two smooth level-set functions)
is provided, showing as the second one provides second order. Then, in Ex.
1.4.11 a test in presence of more kink points (pentagon star) taken from [110]
is adopted. Last two numerical tests are in the 3D case (Examples 1.4.12,
1.4.13).

In all tests we choose an analytical expressions of the exact solution u
and diffusion coefficient γ and reconstruct the data of the problem (f , gD
and gN for mixed boundary conditions, or f and g for Robin boundary con-
ditions). We also choose an analytical expression of the level-set function φ0
and reinitialize it to signed distance function φ. Recall that we suppose to
know φ only in grid nodes.

Most of the numerical tests was taken from [46], [47], [87].
Numerical tests (in 2D and 3D) are related to as general as possible case,
namely variable diffusion coefficient problem with Robin boundary condi-
tions:

−∇ · (γ∇u) = f in Ω (1.25)

αu+ β
∂u

∂n
= g on Γ (1.26)

1.4. NUMERICAL TESTS 25

where Γ = ∂Ω, while f : Ω → R, γ : Ω → R, α : Γ → R, β : Γ → R and
g : Γ → R are assigned functions. In each test it is specified if it reduces to
mixed boundary condition (we always choose Dirichlet boundary condition
for all points (x, y) ∈ Γ such that x ≤ 0, Neumann boundary condition oth-
erwise), or constant diffusion coefficient (γ = 1).

The linear system is solved by the multigrid technique described later in
Chapter 2.
In all the following tables, the values in the column of the accuracy order are
computed as

log (ei−1/ei)

log (Ni/Ni−1)
,

where ei is the error indicated in the i-th row.

1.4.1 1D Numerical test

��
�

��
��

��
��

��
��

��
��

��
�

Fig. 1.13: Representation of the
L∞-error reported in Table 1.14
(Example 1.4.1). The slope of
the best-fit lines is s = −2.00.
The piece-wise straight line is ϑl.
When ϑl is very small, the error
is larger.

N L∞-error order ϑl

24 2.46 ·10−3 - 1.19 ·10−13
27 2.33 ·10−3 0.44 0.06
29 1.66 ·10−3 4.79 0.44
33 1.79 ·10−3 -0.59 0.19
36 1.48 ·10−3 2.20 0.25
40 8.85 ·10−4 4.85 2.02 ·10−13
44 1.01 ·10−3 -1.43 0.75
48 6.15 ·10−4 5.76 0.50
53 1.79 ·10−3 -10.81 0.94
59 4.93 ·10−4 12.04 0.06
65 4.69 ·10−4 0.52 0.19
71 3.59 ·10−4 3.02 0.31
79 4.88 ·10−4 -2.88 0.81
87 2.40 ·10−4 7.35 0.31
96 1.57 ·10−4 4.34 0.50
105 1.14 ·10−4 3.58 0.69
116 1.46 ·10−4 -2.53 0.25

Fig. 1.14: Example 1.4.1.

26 CHAPTER 1. ELLIPTIC EQUATIONS

Let us consider the one-dimensional model problem 2 (1.13)-(1.15) with
an exact solution u = ex

2

, over [−a, a] ⊆ [−1, 1], with a = 0.3725 + 10−15,
in order to have a very small ϑl when the number of grid points is n = 24
or n = 40. Table 1.14 shows the numerical results, and the convergence is
guaranteed even with very small ϑl (but the accuracy order computed by
subsequent error data is small as ϑl is small). Figure 1.13 shows the second
order slope of the best-fit line for the L∞-error. In this figure we also report
the values of ϑl, showing that the error is larger for smaller values of ϑl.
Remark Table 1.14 shows some negative convergence order in fifth column.
In fact, small values of ϑ cause inaccuracy that leads to negative convergence
order. Anyway, in this numerical test two subsequent grids have almost
the same number of points. Then, the accuracy of the local approximation
oscillates due to interpolation errors in points that are not grid points. Such
errors decrease on average when the grid is refined, but may fluctuate for
grids with almost the same number of points, leading to a non-monotone
behavior.

1.4.2 2D Numerical test: Circular domain with mixed
boundary condition

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

Fig. 1.15: Representation of the L∞-
error for the solution (left) and the
gradient (right) reported in Table
1.1 (Example 1.4.2). The slope of
the best-fit lines is respectively s =
−1.92 and s = −1.97.

��

����

�

���

�

��

����

�

���

�

�

���

�

���

�

���

�

Fig. 1.16: Numerical solution of the
Example 1.4.2 with n = 64 over a
circular domain. The (blue) circle
points represent the exact solution,
while (red) dot points represent the
numerical solution.

Let us consider the two-dimensional problem (1.25),(1.26) with γ = 1 and
with an exact solution u = 2 + cos(2πx) ∗ sin(2πy), over a circular domain
centered at the origin and with radius r = 0.813. We test the case of mixed

1.4. NUMERICAL TESTS 27

boundary condition and show the second order accuracy of the gradient.
Table 1.1 shows the numerical results, while in Figure 1.16 we depict the
solution. Figure 1.15 shows the second order slope of the best-fit line for the
L∞-error of the solution and the gradient. The errors in the gradient are
computed in the seminorm of the Sobolev space W 1,q(Ω), i.e.

|u− uh|W 1,q(Ω) = ‖∇u−∇huh‖Lq(Ω) .

for q = 2. The gradient of the numerical solution is computed in inside points
by central differences.

Table 1.1: Example 1.4.2.

No. of grid points ‖u− uh‖∞ order ‖∇u−∇uh‖2 order

32 · 32 3.45 ·10−2 - 6.10 ·10−2 -
64 · 64 1.17 ·10−2 1.56 1.70 ·10−2 1.84
128 · 128 2.77 ·10−3 2.08 4.16 ·10−3 2.03
256 · 256 6.67 ·10−4 2.05 1.02 ·10−3 2.03

1.4.3 Circular domain with Robin boundary condition

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
��

Fig. 1.17: Representation of the L1-
error (left) and L∞-error (right) re-
ported in Table 1.2 (Example 1.4.3).
The slope of the best-fit lines is re-
spectively s = −2.07 and s = −2.06.

Fig. 1.18: Reduction of the stencil
(described in Section 1.2.1.3). The
star-shaped grid points are the in-
side grid points, the circle points are
the ghost points, the solid line is the
boundary of Ω, the dashed lines are
the normal vectors to the boundary.
Stencil for ghost points must be re-
duced as described in Section 1.2.1.3

In this Example we show that the stencil reduction described in Section
1.2.1.3 does not degrade the second order accuracy. In fact, when n = 80,
the discretization requires a reduction of the stencil in a ghost point, as we

28 CHAPTER 1. ELLIPTIC EQUATIONS

can see in Figure 1.18.
Let us consider the two-dimensional problem (1.25),(1.26) with γ = 2 +
sin (xy) and with an exact solution u = exy, over a circular domain centered
at the origin and with radius r = 0.813. We have Robin boundary condition
with α(x, y) = β(x, y) = 0.5. Table 1.2 shows the numerical results. Figure
1.17 shows the second order slope of the best-fit line for the L1-error and
L∞-error.

Table 1.2: Example 1.4.3.

No. of grid points L1-error order L∞-error order

40 · 40 3.10 ·10−4 - 4.13 ·10−4 -
80 · 80 8.81 ·10−5 1.82 1.21 ·10−4 1.77
160 · 160 2.14 ·10−5 2.04 2.88 ·10−5 2.07
320 · 320 6.31 ·10−6 1.76 8.46 ·10−6 1.77

1.4.4 Flower shaped domain with mixed boundary con-
dition

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

Fig. 1.19: Representation of the L∞-
error reported in Table 1.3 (Exam-
ple 1.4.4) in case of mixed (left) and
Robin (right) boundary conditions.
The slope of the best-fit lines is re-
spectively s = −1.89 and s = −1.91.

��

����

�

���

�

��

����

�

���

�

�

���

���

���

��	

Fig. 1.20: Numerical solution of the
Example 1.4.4 with n = 64 over the
flower-shaped domain of Figure 1.20.
The (blue) circle points represent the
exact solution, while (red) dot points
represent the numerical solution.

Let us consider the two-dimensional problem (1.25),(1.26) over a flower-
shaped domain represented in Figure 1.20 and defined by the zero level-set

φ = r − 0.5− y5 + 5x4y − 10x2y3

5r5
, r =

√

x2 + y2.

1.4. NUMERICAL TESTS 29

�

�

�

�
���

�

���

��� � ���

�

�
�

�

��

�
�

�
�

Fig. 1.21: Comparison between our method and the method proposed in [46].

We test the case of mixed boundary conditions (test (M)) with γ = 1 and
with an exact solution u = x2+y2, and the case of Robin boundary conditions
with α(x, y) = β(x, y) = 0.5 (test (R)), with γ = 2 + sin (xy) and with an
exact solution u = exy. Table 1.3 shows the numerical results. Figure 1.19
shows the second order slope of the best-fit line for the L∞-error. Fig. 1.20
shows the numerical solution over the domain.

Table 1.3: Example 1.4.4.

No. of grid pts L∞-error ((M)) order L∞-error ((R)) order

32 · 32 2.60 ·10−2 - 7.65 ·10−3 -
64 · 64 8.80 ·10−3 1.56 2.43 ·10−3 1.66
128 · 128 1.98 ·10−3 2.15 8.59 ·10−4 1.50
256 · 256 5.39 ·10−4 1.88 1.31 ·10−4 2.72

1.4.5 Flower shaped domain with Dirichlet boundary
condition: comparison with the method [46]

In this Example we compare the numerical results between our method and
the method proposed in [46]. We recall the method proposed in [46] apply
to Dirichlet boundary condition, then we have to reduce our technique to
the case of pure Dirichlet condition to make comparison. We will see that
our method, even though is second order accurate, provide a greater error
than in [46]. A possible explanation is that the method proposed in [46] may
define more than one value in each ghost point, unlike our method, which
defines just one value for each ghost point. In details, referring to the Fig.

30 CHAPTER 1. ELLIPTIC EQUATIONS

1.21, the method [46] consists in discretizing the Laplace operator (1.6) in
the inside grid points P1 and P2, and using the linear interpolation to define
the numerical value in the ghost points belonging to the five-point stencil.
For instance, the ghost point G belongs either to the stencil centered in P1
or in P2. Then we have two value in G:

ϑ1u
(1)
G + (1− ϑ1)uP1

= g(B1)

ϑ2u
(2)
G + (1− ϑ2)uP2

= g(B2)

Both equations are solved respectively for u
(1)
G and u

(2)
G , and these value are

plugged in (1.6), written resp. for P1 and P2.
Let us consider the two-dimensional problem (1.25),(1.26) with γ = 1

and with an exact solution u = x2 + y2, over the flower-shaped domain of
Ex. 1.4.4. We have Dirichlet boundary condition on all the boundary. Table
1.4 shows the numerical results and compare them with the results taken
from [46].

Table 1.4: These two tables refer to the Example 1.4.5 (top) and the numerical
results from [46] (bottom).

No. of grid points L1-error order L∞-error order

101 · 101 1.8536 ·10−4 - 5.8390 ·10−4 -
201 · 201 5.4324 ·10−5 1.7707 1.0523 ·10−4 2.4722
401 · 401 1.3104 ·10−5 2.0515 2.5508 ·10−5 2.0445

No. of grid points L1-error order L∞-error order

101 · 101 7.329 ·10−5 - 9.777 ·10−5 -
201 · 201 1.776 ·10−5 2.04 2.427 ·10−5 2.01
401 · 401 4.714 ·10−6 1.92 6.178 ·10−6 1.97

1.4.6 Strong flower-shaped domain

Let us consider the two-dimensional problem (1.25),(1.26) with γ = 1 and
with an exact solution u = x2 + y2, over a flower-shaped domain showed in
Figure 1.23 and defined by the zero level-set of

φ = r − 0.5− y5 + 5x4y − 10x2y3

3r5
, r =

√

x2 + y2.

We have Dirichlet boundary condition for all points (x, y) ∈ ∂Ω such that x ≤
0, Neumann boundary condition otherwise. Table 1.5 shows the numerical
results, while in Figure 1.23 we depict the solution. Figure 1.22 shows the
second order slope of the best-fit line for the L1-error and L∞-error.

1.4. NUMERICAL TESTS 31

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

Fig. 1.22: Representation of the L1-
error (left) and L∞-error (right) re-
ported in Table 1.5 (Example 1.4.6).
The slope of the best-fit lines is re-
spectively s = −1.79 and s = −1.95.

��

����

�

���

�

��

����

�

���

�

�

���

���

���

��	

Fig. 1.23: Numerical solution of the
Example 1.4.6 with n = 64 over the
flower-shaped domain of Figure 1.23.
The (blue) circle points represent the
exact solution, while (red) dot points
represent the numerical solution.

Table 1.5: Example 1.4.6.

No. of grid points L1-error order L∞-error order

32 · 32 2.00 ·10−2 - 8.42 ·10−2 -
64 · 64 2.77 ·10−3 2.86 1.41 ·10−2 2.57
128 · 128 1.24 ·10−3 1.16 4.59 ·10−3 1.62
256 · 256 4.21 ·10−4 1.56 1.35 ·10−3 1.77

1.4.7 Domain with a saddle point

Let us consider the two-dimensional problem (1.25),(1.26) with γ = 2 +
sin (πx) cos (πy) and with an exact solution u = 2+cos (πx) sin (πy) over the
domain showed in Figure 1.25 and defined by the zero level-set of

φ(x, y) = 16y4 − x4 − 32y2 + 9x2.

We test the case of mixed boundary conditions (test (M)) and the case of
Robin boundary condition with α(x, y) = β(x, y) = 0.5 for each (x, y) ∈ Γ
(test (R)). Table 1.6 shows the numerical results. Figure 1.24 shows the
second order slope of the best-fit line for the L∞-error.

32 CHAPTER 1. ELLIPTIC EQUATIONS

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

Fig. 1.24: Representation of the L∞-
error reported in Table 1.6 (Exam-
ple 1.4.7) in case of mixed (left) and
Robin (right) boundary conditions.
The slope of the best-fit lines is re-
spectively s = −2.15 and s = −1.92.

��

����

��

����

�

���

�

���

�

����

��

����

�

���

�

���

�

���

�

���

�

���

�

Fig. 1.25: Numerical solution of the
Example 1.4.7 with n = 64 over a do-
main with a saddle point. The (blue)
circle points represent the exact so-
lution, while (red) dot points repre-
sent the numerical solution.

Table 1.6: Example 1.4.7.

No. of grid pts L∞-error (M) order L∞-error (R) order

32 · 32 4.87 ·10−2 - 2.09 ·10−2 -
64 · 64 8.74 ·10−3 2.48 4.33 ·10−3 2.27
128 · 128 2.18 ·10−3 2.00 1.31 ·10−3 1.72
256 · 256 5.40 ·10−4 2.01 3.65 ·10−4 1.84

�� ���� ���� ���� ���� � ��� ��� ��� ��� �

��

����

����

����

����

�

���

���

���

���

�

Fig. 1.26: Representation of the di-
rection of the co-normal vectors (red
arrays) with respect to the bound-
ary.

��
�

��
�

��
�

��
��

��
��

��
��

��
�	

��
��

��
��

��
�

��
�

��
�

��
��

��
��

��
��

��
�	

��
��

��
��

��
��

Fig. 1.27: Representation of the L1-
error (left) and L∞-error (right) re-
ported in Table 1.7 (Example 1.4.8).
The slope of the best-fit lines is re-
spectively s = −2.05 and s = −2.05.

1.4.8 Anisotropic case

This example is taken from [58] but it is applied to a simpler geometry. Let
us consider the two-dimensional problem of Sec. 1.3.3 with

A =

(

2 + xy 1 + xy
1 + xy 3 + xy

)

1.4. NUMERICAL TESTS 33

and with an exact solution u = sin (πx) cos (πy), over a circular domain
centered at the origin and with radius r = 0.813. We have Dirichlet boundary
condition for all points (x, y) ∈ ∂Ω such that x ≤ 0, Neumann boundary
condition otherwise. Table 1.7 shows the numerical results, while Figure
1.27 shows the second order slope of the best-fit line for the L1-error and L∞-
error. In Fig. 1.26 we can observe the direction of the co-normal direction
with respect to the boundary.

Table 1.7: Example 1.4.8.

No. of grid points L1-error order L∞-error order

32 · 32 4.4740 ·10−4 - 9.5728 ·10−4 -
64 · 64 1.0732 ·10−4 2.0596 2.2661 ·10−4 2.0787
128 · 128 2.5801 ·10−5 2.0565 5.4547 ·10−5 2.0546
256 · 256 6.2621 ·10−6 2.0427 1.3355 ·10−5 2.0301

1.4.9 Cardioid-shaped domain

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

Fig. 1.28: Representation of the L∞-
error reported in Table 1.8 (Exam-
ple 1.4.9) in case of mixed (left) and
Robin (right) boundary conditions.
The slope of the best-fit lines is re-
spectively s = −1.94 and s = −1.66.

����

�

���

���

���

���

���

��	

��

����

����

����

����

����

�

���

���

���

���

���

�

���

�

���

�

���

�

Fig. 1.29: Numerical solution of the
Example 1.4.9 with n = 80 over the
cardioid-shaped domain. The (blue)
circle points represent the exact so-
lution, while (red) dot points repre-
sent the numerical solution.

Let us consider the two-dimensional problem (1.25),(1.26) with γ = exy

and with an exact solution u = 2 + cos (πx) sin (πy), over a cardioid-shaped
domain (see Fig. 1.4.9) and defined by the zero level-set of

φ(x, y) =
(

3
(

x2 + y2
)

− x
)2 − x2 − y2.

34 CHAPTER 1. ELLIPTIC EQUATIONS

We test the case of mixed boundary condition (test (M)) and the case of
Robin boundary condition with α(x, y) = β(x, y) = 0.5 (test (R)). Table
1.8 shows the numerical results. Figure 1.28 shows a loss of accuracy for
the L∞-error because the kink in the boundary. In case of kink points the
approach of using two level-set functions instead of one near kink points (see
Sec. 1.3.4) may improve the accuracy (Ex. 1.4.10 and 1.4.11).

Table 1.8: Example 1.4.9.

No. of grid pts L∞-error (M) order L∞-error (R) order

32 · 32 4.87 ·10−2 - 2.09 ·10−2 -
64 · 64 8.74 ·10−3 2.48 4.33 ·10−3 2.27
128 · 128 2.18 ·10−3 2.00 1.31 ·10−3 1.72
256 · 256 5.40 ·10−4 2.01 3.65 ·10−4 1.84

1.4.10 Domain as intersection between two domains

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1.30: Domain of the Ex.
1.4.10

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Fig. 1.31: Representation of the L∞-error for
test (a) (left) and test (b) (right), reported
in Table 1.9 (Example 1.4.10). The slope of
the best-fit lines is respectively s = −0.50
and s = −1.92.

Let us consider the two-dimensional problem

−∆u = f in Ω

u = gD on ΓD

∂u

∂n
= gN on ΓN

1.4. NUMERICAL TESTS 35

and with an exact solution u = x2 + y2, over the domain Ω depicted in Fig.
1.30, intersection between the circle centered at (0, 0) and radius r = 0.5 and
the half-plane of equation 0.0313− y cos(1/16)− x sin(1/16) < 0. We choose

ΓD =
{

(x, y) : x2 + y2 = r2
}

∩ Ω̄

ΓN = {(x, y) : 0.0313− y cos(1/16)− x sin(1/16) = 0} ∩ Ω̄
In this example the domain has two kink points and the treatment is de-
scribed in Section 1.3.4. A comparison between the method with one unique
level-set function φ = max {φ1, φ2} (test (a)) and two smooth level-set func-
tions (test (b)) is provided.
Table 1.9 shows the numerical results, while Figure 1.31 shows the low order
slope of the best-fit line for the L1-error for test (a), while a better accuracy
is observed for test (b) for the L1-error and the L∞-error. Loss of accuracy
for test (a) is due to the inaccurate normal direction computed close to the
intersection between the two domains. In fact, referring to the figure 1.12,
the normal to the boundary in the point H is completely wrong (due to
the discontinuity of ∇φ) and the method impose that along this direction
the derivative of the solution should be gN , while such derivative should be
along the normal derivative. This lead to an incorrect value for the numerical
solution in P (which even is O(1)) and to a completely wrong solution.

Table 1.9: Example 1.4.10.

test (a)

No. of grid points L1-error order

40 · 40 1.35 ·10−3 -
80 · 80 6.65 ·10−4 1.02
160 · 160 6.75 ·10−4 -0.021

test (b)

No. of grid points L1-error order L∞-error order

20 · 20 1.0320 ·10−3 - 1.8140 ·10−3 -
40 · 40 2.6300 ·10−4 1.9723 4.5600 ·10−4 1.9921
80 · 80 6.9000 ·10−5 1.9304 1.3100 ·10−4 1.7995
160 · 160 1.7000 ·10−5 2.0211 3.3000 ·10−5 1.9890

1.4.11 Boundary with more kink points: pentagon star

The geometry of this example is taken, for instance, from [110, 58]. Let us
consider a more complicated geometry, given by the pentagon star depicted

36 CHAPTER 1. ELLIPTIC EQUATIONS

�� ���� ���� ���� ���� � ��� ��� ��� ��� �

��

����

����

����

����

�

���

���

���

���

�

Fig. 1.32: Pentagon star of the Ex.
1.4.11.

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

��
�

��
�

Fig. 1.33: Representation of the
L1-error (left) and L∞-error (right)
reported in Table 1.10 (Example
1.4.11). The slope of the best-fit
lines is respectively s = −2.13 and
s = −2.05.

in Fig. 1.32. Note that some kink points are due to the intersection of
domains, while some others are due to the union of domains. The special
treatment of the kink points is described in Sec. 1.3.4. The boundary of the
star is composed by ten sides, which are aligned in groups of two. Then, the
whole boundary may be described by five level-set functions:

φi(x, y) = (x− x0) cosϑi + (y − y0) sinϑi −R sinϑt/2, i = 1, . . . , 5

where x0 = 0.06, y0 = 0.08, R = 6/7, ϑt = π/5 and ϑi = ϑr+ϑt/2+2(i−1)ϑt

with ϑr = π/14. In this case, the domain can be identified by:

Ω =

{

(x, y) ∈ D :
5

∑

i=1

φi(x, y) ≥ 4

}

.

Let us choose an exact solution u = sin(2πx) cos(2πy) and a coefficient γ =
1. We have Dirichlet boundary condition for all points (x, y) ∈ ∂Ω such
that x ≤ 0, Neumann boundary condition otherwise. Table 1.10 shows the
numerical results. Figure 1.33 shows the second order slope of the best-fit
line for the L1-error and L∞-error.

1.4.12 3D Numerical tests: mixed boundary condition

Let us consider the three-dimensional problem (1.25),(1.26) with γ = 1 and
with an exact solution u = e−(x+y+z), over a spheric domain centered at the
origin and with radius r = 0.713. We have Dirichlet boundary condition

1.4. NUMERICAL TESTS 37

Table 1.10: Example 1.4.11.

No. of grid points L1-error order L∞-error order

20 · 20 5.0140 ·10−2 - 5.1696 ·10−1 -
40 · 40 1.6493 ·10−2 1.6619 1.0771 ·10−1 2.3444
80 · 80 3.4183 ·10−3 2.3114 3.5336 ·10−2 1.6369
160 · 160 6.7910 ·10−4 2.3526 7.2322 ·10−3 2.3093

for all points (x, y) ∈ ∂Ω such that x ≤ 0, Neumann boundary condition
otherwise. Table 1.11 shows the numerical results. Figure 1.34 shows the
second order slope of the best-fit line for the L1-error and L∞-error.

Table 1.11: Example 1.4.12.

No. of grid points L1-error order L∞-error order

32 · 32 · 32 8.7107 ·10−4 - 4.5800 ·10−3 -
48 · 48 · 48 3.4747 ·10−4 2.2667 2.4111 ·10−3 1.5824
64 · 64 · 64 2.2000 ·10−4 1.5887 1.1274 ·10−3 2.6424

1.4.13 3D Numerical tests: Robin boundary condition

��
�

��
�

��
��

��
��

��
��

��
�

��
�

��
��

��
��

Fig. 1.34: Representation of the
L1-error (left) and L∞-error (right)
reported in Table 1.11 (Example
1.4.12). The slope of the best-fit
lines is respectively s = −2.00 and
s = −1.99.

��
�

��
�

��
��

��
��

��
��

��
�

��
�

��
��

��
��

��
��

Fig. 1.35: Representation of the
L1-error (left) and L∞-error (right)
reported in Table 1.12 (Example
1.4.13). The slope of the best-fit
lines is respectively s = −2.06 and
s = −2.10.

Let us consider the three-dimensional problem (1.25),(1.26) with γ =
2 + sin (x+ y + z) and with an exact solution u = e−(x+y+z), over a spheric

38 CHAPTER 1. ELLIPTIC EQUATIONS

domain centered at the origin and with radius r = 0.713. We have Robin
boundary condition with α(x, y, z) = β(x, y, z) = 0.5. Table 1.12 shows the
numerical results. Figure 1.35 shows the second order slope of the best-fit
line for the L1-error and L∞-error.

Table 1.12: Example 1.4.13.

No. of grid points L1-error order L∞-error order

32 · 32 · 32 1.2958 ·10−3 1.9282 1.5971 ·10−3 1.9621
40 · 40 · 40 8.8416 ·10−4 1.7130 1.0532 ·10−3 1.8661
48 · 48 · 48 4.8639 ·10−4 3.2778 6.2784 ·10−4 2.8371
56 · 56 · 56 4.0368 ·10−4 1.2091 4.8267 ·10−4 1.7058
64 · 64 · 64 3.3051 ·10−4 1.4979 3.9041 ·10−4 1.5886

Chapter 2

Multigrid approach

In this chapter we provide a multigrid strategy to solve the linear system
arising from the second order discretization described in Chapter 1. The
main steps consists of the introduction of a suitable smoother, and the defi-
nition of the transfer (interpolation and restriction) operator. The multigrid
we are going to describe is a geometric multigrid, and the Galerkin condi-
tions (required in the Algebraic multigrid) are not satisfied. In practice, the
interpolation and restriction operator are not the transpose each other (mul-
tiplied by a suitable constant) and the coarse grid operator in constructed
in the same way as in the fine grid, without taking into account the transfer
operators.

The main goal of this study is to find a general strategy to make the
multigrid convergent and to attain the optimal convergent factor (i.e. the
one predicted by the Local Fourier Analysis). We are not interested in this
thesis in constructing the most efficient multigrid strategy, that is, we only
want to describe how to treat the ingredients of the multigrid in presence of
an arbitrary domain and in relation with the boundary conditions, in order
to limit the degradation of the convergence factor due to boundary effects.
In a few words, we describe the boundary treatment in order to gain the
convergence factor predicted by the Local Fourier Analysis for the smoother
used for inner equations, independently on the kind of smoother. Therefore,
we just use for simplicity a Gauss-Seidel Lexicographic smoother, in place of
the more efficient Red-Black Gauss-Seidel smoother, although it can be easily
implemented with our method. For the same argument, we only study the
convergence factor of the W -cycle algorithm, without implement the more
efficient Full Multigrid.

39

40 CHAPTER 2. MULTIGRID APPROACH

2.1 Failure of the Jacobi scheme

Since we want to provide the multigrid solver with a good smoother, we want
to use a Jacobi-like iterative scheme to solve the (Ni+Ng)× (Ni+Ng) linear
system. Here we show that, in general, a naive implementation of Jacobi
iteration does not guarantee the convergence. For simplicity, we analyze the
discretization in one dimension, described in Section 1.2.2.

The matrix of the linear system (1.16)-(1.18) is not diagonally dominant
and then the convergence of Jacobi schemes cannot be guaranteed, as we can
see in the following counterexample: let us consider the homogeneous elliptic
problem (1.13)-(1.15) with

f = ga = gb = 0, [a, b] = [−0.813, 0.813] , N = 100.

Starting from the initial guess u = 1, let us show the maximum absolute
value of the numerical solution every ten iterations (Table 2.1).

Table 2.1: Divergence of the numerical solution for the Jacobi iterative
scheme applied to the non-eliminated boundary condition system (1.16)-
(1.18)

Iteration no. maxi=l,...,r |ui|
10 2.86 ·10+3
20 4.10 ·10+8
30 5.87 ·10+12
40 8.40 ·10+16

We could eliminate the boundary equations (1.17) and (1.18) solving them
with respect to ul and ur respectively, and plugging the result into (1.16).
Such elimination leads to a diagonally dominant system, but is very hard
to perform in higher dimensions, since the boundary equations are strongly
coupled each other.

An alternative strategy could be the following. We perform one iteration
over the inside grid points, and after that we iterate until convergence over the
ghost points, and repeat both steps until convergence. Even in this case, the
convergence is not guaranteed (observe that in one dimension such scheme
reduces to Jacobi scheme when boundary conditions are not eliminated).
Therefore, we have to find a different approach if we still want to use an
iterative Jacobi-like scheme.

2.2. RELAXATION SCHEME: FICTITIOUS TIME 41

2.2 Relaxation scheme: fictitious time

The main idea is to keep a Jacobi-type iteration for inner equations, and to
relax in some way the boundary conditions. To do this, the model prob-
lem 1 (1.1)-(1.3) is transformed into the following associate time-dependent
problem:

∂ũ

∂t
= ∆ũ+ f in Ω (2.1)

∂ũ

∂t
= µD(gD − ũ) on ΓD (2.2)

∂ũ

∂t
= µN

(

gN −
∂ũ

∂n

)

on ΓN (2.3)

ũ = ũ0 in Ω, when t = 0 (2.4)

where µD and µN are two positive constants. If the solution of the prob-
lem (2.1)-(2.4) is stationary (i.e. ∂ũ/∂t → 0, as t → +∞), then u(x) =
limt→+∞ ũ(t, x) is a solution of the model problem 1 (1.1)-(1.3). A relaxation
scheme can be therefore obtained discretizing the problem (2.1)-(2.4), where
now the time t represents an iterative parameter.

Below we give a description of the method, starting from the easier 1D case.

2.2.1 One-dimensional case

Consider the model problem 2 (1.13)-(1.15). The associate time-dependent
problem is:

∂u

∂t
=

∂2u

∂x2
+ f in Ω (2.5)

∂u(t, a)

∂t
= µD (ga − u(t, a)) (2.6)

∂u(t, b)

∂t
= µN

(

gb −
∂u(t, b)

∂x

)

(2.7)

u(0, x) = u0(x) in Ω (2.8)

Let l and r be such that xl ≤ a < xl+1, xr−1 < b < xr (see Figure 1.7). In
order to discretize the time-dependent problem, we use central difference in
space and forward Euler in time for (2.5) obtaining:

u
(n+1)
i = u

(n)
i +

∆t

h2

(

u
(n)
i−1 − 2u

(n)
i + u

(n)
i+1

)

+∆tfi, i = l + 1, . . . , r − 1

42 CHAPTER 2. MULTIGRID APPROACH

Taking the maximum time step consented by CFL condition (see [37, 90] for
more details about CFL condition), i.e. ∆t = h2/2, we obtain:

u
(n+1)
i =

1

2

(

u
(n)
i−1 + u

(n)
i+1 + h2fi

)

, i = l + 1, . . . , r − 1. (2.9)

Note that if we discretize directly (1.13) using central difference for the Lapla-
cian operator, and use Jacobi iterative scheme for such discretization, we
obtain exactly (2.9).

For a first order method, we use first order accurate discretization of the
boundary conditions. This is obtained by discretizing (2.6) and (2.7) directly
in xl and xr respectively. We use forward Euler in time and upwind scheme
in space, obtaining:

u
(n+1)
l = u

(n)
l + µD∆t

(

ga − u
(n)
l

)

, (2.10)

u(n+1)r = u(n)r − µN∆t

h

(

u(n)r − u
(n)
r−1

)

+ µN∆tgb. (2.11)

Equation (2.8) is simply the initial condition for the iterative method and we

can choose it arbitrarily. We will set u
(0)
i = 0, for i = l, . . . , r. The iterative

scheme (2.9), (2.10), (2.11) is first order accurate.
To obtain a second order accuracy, we discretize u(t, a) in (2.6) and

the spatial derivative ∂u(t, b)/∂x in (2.7) to second order (note that we can
again discretize to first order in time, because we are just interested at the
accuracy in space as t→ +∞). Then we can use linear interpolation of u in
nodes xl, xl+1 to compute u(t, a) in (2.6) (that is second order accurate, as
we can see in [46]) and quadratic interpolation of u in nodes xr, xr−1, xr−2 to
compute the derivative ∂u(t, b)/∂x in (2.7). However, since we are interested
in the second order accuracy not only for the unknown function, but also for
its gradient, we use quadratic interpolation also for the Dirichlet condition,
i.e. quadratic interpolation of u in nodes xl, xl+1, xl+2 to compute u(t, a),
obtaining:

u
(n+1)
l = u

(n)
l

− µD∆t

(

(1 + ϑl)
ϑl

2
u
(n)
l + (1 + ϑl)(1− ϑl)u

(n)
l+1 − (1− ϑl)

ϑl

2
u
(n)
l+2 − ga

)

(2.12)

u(n+1)r = u(n)r

− µN∆t

h

(

u
(n)
r−1 − u

(n)
r−2 +

(

u
(n)
r−2 − 2u

(n)
r−1 + u(n)r

)

(

1

2
+ ϑr

))

+ µN∆tgb,

(2.13)

2.2. RELAXATION SCHEME: FICTITIOUS TIME 43

where ϑl = (xl+1 − a)/h and ϑr = (b− xr−1)/h. Note that the discretization
(2.9) is already second order accurate in space, hence (2.9), (2.12) and (2.13)
provide a second order accurate iterative scheme.

Constants µD and µN of (2.10) and (2.11) (first order accuracy) and of
(2.12) and (2.13) (second order accuracy) are obtained by CFL condition, i.e.

in such a way that the coefficient of u
(n)
l,r in the right-hand side of (2.10) and

(2.11) (first order accuracy) and of (2.12) and (2.13) (second order accuracy)
is positive. Such conditions read:

µD∆t < 1,
µN∆t

h
< 1 for first order accuracy;

µD∆t < 1,
µN∆t

h
<
2

3
for second order accuracy. (2.14)

In numerical tests of Section 2.7, we choose µD∆t = 0.9 and µN∆t = 0.9 ·
2h/(3). Since ∆t = h2/2, then µD = 1.8/h2 and µN = 3.6/(3h).

Anyway, if ϑl is very small, the discretization error is slightly greater than
what we expect, but the convergence is guaranteed.

2.2.2 Two-dimensional case

Consider the model problem 1 (1.1)-(1.3) and the associate time-dependent
problem (2.1)(2.4). For any grid point (jh, ih) of Ωh, we write an equation
obtained from the discretization of (2.1) in such point, using again forward
Euler in time and central difference in space and taking the maximum time
step consented by the CFL condition (i.e. ∆t = h2/4):

u
(n+1)
i,j = 1/4

(

h2fi,j + u
(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1

)

. (2.15)

As in the one-dimensional case, Eq. (2.15) is equivalent to directly discretizing
(1.1) using central difference in space and Jacobi iteration.

For any ghost point G ∈ Γh we compute the projection point B on the
boundary by (1.7) and discretize (2.2) or (2.3) if respectively G ∈ ΓD or
G ∈ ΓN . We use forward Euler in time and the discretizations (1.9), (1.10)
(first order accuracy) and (1.11) (second order accuracy) in space. We obtain
the iterative scheme:

u
(n+1)
G = u

(n)
G + µD∆t

(

gD(B)− u
(n)
h (B)

)

(2.16)

if G ∈ ΓD, or

u
(n+1)
G = u

(n)
G + µN∆t

(

gD(B)−
∂uh

∂n

(n)

(B)

)

(2.17)

44 CHAPTER 2. MULTIGRID APPROACH

if G ∈ ΓN .

The reconstructions u
(n)
h (B) and

∂uh

∂n

(n)

(B) are the ones described in Sec.

1.2.1, more precisely they are (1.9) and (1.10) for first order accuracy (of
the solution) and (1.11) for second order accuracy (of the solution and in
the gradient).

Constants µD and µN of (2.16) and (2.17) are obtained by CFL condition,

i.e. in such a way that the coefficient of u
(n)
P in the right-hand side of (2.16)

and (2.17) is positive. Such conditions read:

µD∆t < 1,
µN∆t

h
<

1√
2
for first order accuracy;

µD∆t < 1,
µN∆t

h
<

2

3
√
2
for second order accuracy. (2.18)

In numerical tests of Section 2.7, we choose µD∆t = 0.9 and µN∆t = 0.9 ·
2h/(3

√
2). Since ∆t = h2/4, then µD = 3.6/h2 and µN = 7.2/(3

√
2h).

2.2.3 Three-dimensional case

One of the strength of the method is the easy generalization in higher di-
mension. In fact, the description of the method is exactly the same in all
dimensions. Then we are able to provide a description holding in the general
case of dimension d. Anyway, for the sake of the argument, we just describe
the method in fixed dimension. In 3D, for instance, the description depicted
in Section 2.2.2 for 2D case still holds, but the equations of the linear system
have to be changed. For inner points, the equations (2.15) becomes:

u
(n+1)
i,j,k =

1

6

(

h2fi,j,k + u
(n)
i−1,j,k + u

(n)
i+1,j,k + u

(n)
i,j−1,k + u

(n)
i,j+1,k + u

(n)
i,j,k−1 + u

(n)
i,j,k+1

)

The equations (2.16) and (2.17) are:

u
(n+1)
P = u

(n)
P + µD∆t

(

gD(HP)− u
(n)
P

)

u
(n+1)
P = u

(n)
P + µN∆tgN(HP)

− µN
∆t

h

((

u
(n)
P − u

(n)
Qx

)

|nx|+
(

u
(n)
P − u

(n)
Qy

)

|ny|+
(

u
(n)
P − u

(n)
Qz

)

|nz|
)

for first order accuracy (in the solution), and:

u
(n+1)
P = u

(n)
P + µD∆t

(

gD(HP)− ũ
(n)
27 (HP)

)

2.3. CONVERGENCE PROOF 45

u
(n+1)
P = u

(n)
P + µN∆t

(

gN(HP)− (∇ũ27 · n̂)|HP

)

for second order accuracy (in the solution and its gradient). where ũ27 is
the triquadratic interpolation in the 27−point stencil P1 − P27 in upwind
direction.

As in Sec. 2.2.2, constants µD and µN are obtained by CFL condition. In
the general d-dimensional case they read:

µD∆t < 1,
µN∆t

h
<

1√
d
for first order accuracy;

µD∆t < 1,
µN∆t

h
<

2

3
√
d
for second order accuracy. (2.19)

Finally, by a numerical point of view, it is time-consuming to reconstruct
∇ũ27 · n̂ in HP using a 27−point stencil. To avoid it, we can use the approach
described in 2D case in Section 1.2.1.3 and easily adapt it to 3D case. We
will use this approach not only when we would like to reduce the stencil
(because some point of the stencil is an outside point), but everywhere. The
computation then uses just a 12−point stencil for any derivative and the
scheme is more efficient. We use this approach in the 3D numerical tests
described in Section 2.7.

2.3 Convergence proof

Note that the iterative scheme can be seen as a preconditioned iterative
method with a diagonal preconditioner P , whose diagonal is:

diag(P) =
[

. . . , 4/h2, . . . , (µD∆t)−1, . . . , (µN∆t)−1, . . .
]

,

where the entries refer respectively to the inner equations, the Dirichlet and
the Neumann boundary conditions. Therefore, the iterative scheme for the
linear system Au = f reads:

u(n+1) = u(n) + P−1
(

f − Au(n)
)

and the iteration matrix is B = I−P−1A, where I is the identity matrix. In
this section we shall prove the convergence in all space dimensions only for
the first order method. For the second order method, numerical experiments
confirm the convergence of the method, i.e. the spectral radius of the iteration
matrix B is less than one (as we can see, for instance, in numerical tests 1.1
and 1.5).

46 CHAPTER 2. MULTIGRID APPROACH

2.3.1 One-dimensional case

Consider the notation of Sections 1.2.2 and 2.2.1. Let Ñ = r − l + 1. Then
we can write the iterative scheme (2.9), (2.10), (2.11) in matrix fashion:

u(n+1) = Bu(n) + F (2.20)

where u(n), F ∈ R
Ñ , B ∈ R

Ñ×Ñ are defined as follows:

u(n) =

u
(n)
l

u
(n)
l+1
...

u
(n)
r

, F =

∆tga
h2fl+1
...

h2fr−1
∆tgb

B =

1− µD∆t 0
1/2 0 1/2

.

1/2 0 1/2
c (1− c)

,

where c = µN∆t/h is the Courant number. A necessary and sufficient con-
dition for the convergence of (2.20) is ρ(B) < 1, where ρ(B) is the spectral
radius of the matrix B (i.e. the maximum eigenvalue of B in absolute value).
In order to prove this condition we shall make use of Gershgorin-Hadamard
theorems (that can be founded in any good basic text of Numerical Analysis,
such as [80] or [91]).

The first theorem states that if B ∈ C
m×m, with m ∈ N, then every

eigenvalue λ of B satisfies:

λ ∈ SC = ∪m
i=1Ci, Ci = {z ∈ C : |z − bii| ≤

m
∑

j=1

j 6=i

|bij|}

and the sets Ci are said Gershgorin circles.
The second theorem states that, if B is an irreducible matrix, every eigen-

value of B belonging to the boundary of SC , belongs to the boundary of all
Gershgorin circles.

Applying the first Gershgorin-Hadamard theorem to the matrix B, we
have Ñ−2 coincident circles C ((0, 0), 1) centered at the origin and with radius
1, one circle reduced to a single point (1−∆t, 0), and one circle centered at
(1− c, 0) with radius c. Since 0 < c < 1 (CFL condition), the union of all

2.3. CONVERGENCE PROOF 47

Gershgorin circles is C ((0, 0), 1). Then ρ(B) ≤ 1. If ρ(B) = 1, there exists an
eigenvalue λ such that λ ∈ ∂C ((0, 0), 1). By second Gershgorin-Hadamard
theorem, this eigenvalue must belong to all Gershgorin circles, and this is
not possible because the presence of the circle C ((1−∆t, 0), 0). Therefore,
ρ(B) < 1 and the iterative scheme (2.20) converges.

2.3.2 Two-dimensional case

Consider the notation of Sections 1.2 and 2.2.2. Let Ni be the number of
the inside points to Ω and Ng the number of ghost points. The first order
accurate relaxation scheme is the following (by (2.15), (2.16), (2.17), (1.9),
(1.10)):

u
(n+1)
i,j =

1

4

(

h2fi,j + u
(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1

)

if (ih, jh) ∈ Ωh,

(2.21)

u
(n+1)
G = u

(n)
G + µD∆t

(

gD(B)− u
(n)
G

)

if G ∈ ΓD, (2.22)

u
(n+1)
P = u

(n)
P + µN∆tgN(HP)

− µN
∆t

h

((

u
(n)
P − u

(n)
Qx

)

|nx|+
(

u
(n)
P − u

(n)
Qy

)

|ny|
)

if G ∈ ΓN . (2.23)

By numbering all this points (inside and ghost) in some order in a single
vector, we can write the iteration scheme (2.21)-(2.23) in matrix fashion:

u(n+1) = Bu(n) + F

where u(n), F ∈ R
Ni+Ng , B = (bi,j) ∈ R

(Ni+Ng)×(Ni+Ng). As in the previous
section, we shall make use of Gershgorin-Hadamard theorems. Let us check
that all the Gershgorin circles are subset (in the complex plane) of the unit
circle B ((0, 0), 1) centered at the origin. For any row k, we define

ck = bk,k, rk =

Ni+Ng
∑

l=1

l 6=k

|bk,l|

respectively the center and the radius of the associated Gershgorin circle
B ((ck, 0), rk). Then:

B ((ck, 0), rk) ⊆ B ((0, 0), 1)⇐⇒ rk ≤ 1− |ck| (2.24)

Our goal is therefore to check that the right-hand side of (2.24) holds for any
k = 1, . . . , Ni + Ng. If k is related to one of the Ni equations of the kind

48 CHAPTER 2. MULTIGRID APPROACH

(2.15), then ck = 0, rk = 1 and the right hand-side of (2.24) is satisfied. If k
is related to an equation of the kind (2.22), then ck = 1− µD∆t, rk = 0 and
the right hand-side of (2.24) is (strictly) satisfied, since we assume µD∆t < 1.
If k is related to an equation of the kind (2.23), then

ck = 1− µN∆t

h
(|nx|+ |ny|) (2.25)

rk =
µN∆t

h
(|nx|+ |ny|) (2.26)

and the right hand-side of (2.24) is (strictly) satisfied if and only if rk ≤ 1.
This is true because

µN∆t/h < 1/
√
2 (2.27)

that is the CFL condition (2.18), and

|nx|+ |ny| ≤
√
2 (2.28)

(because n2x + n2y = 1). This leads us to claim ρ(B) ≤ 1. Thanks to the

strictly inequality rk̃ < 1−|ck̃| for at least one k̃, we can ensure by (2.24) that
B ((ck̃, 0), rk̃) ⊂ B ((0, 0), 1) and then ρ(B) < 1 by the second Gershgorin-
Hadamard theorem. �

2.3.3 Three-dimensional case

Another strength of the method is the easy generalization of the 2D-convergence
proof (for first order accuracy) in higher dimension. For instance, let us con-
sider three-dimensional case. The proof will be the same as that provided
in 2D case in the previous section, but the center and the radius of the
Gershgorin circle (2.25), (2.26) become respectively:

ck = 1− µN∆t/h (|nx|+ |ny|+ |nz|)

rk = µN∆t/h (|nx|+ |ny|+ |nz|)
while the convergence conditions (2.27), (2.28) will be replaced by:

µN∆t/h < 1/
√
3

|nx|+ |ny|+ |nz| ≤
√
3

(

because n2x + n2y + n2z = 1
)

The generalization in higher dimension is straightforward.

2.4. RELAXATION SCHEME FOR SOME EXTENSIONS 49

2.4 Relaxation scheme for some extensions

In this section we describe how to modify the associate time-dependent prob-
lem (2.1)-(2.4) for the cases introduced in Section 1.3, namely Robin bound-
ary conditions, variable coefficient diffusion, anisotropic operators, sharp-
edged domains.

2.4.1 Robin boundary conditions

Let us consider the Model Problem 3 (1.19)-(1.20). The associate time-
dependent problem is:

∂u

∂t
= ∆u+ f in Ω

∂u

∂t
= µ

(

g −
(

αu+ β
∂u

∂n

))

on Γ

u = u0 in Ω, when t = 0

For any ghost point G ∈ Γh, let ũ and Φ̃ be the biquadratic interpolants of
u and Φ in the Upwind nine-point stencil (see Fig. 1.4).

Therefore, the second order accurate iterative scheme for the problem
(1.19), (1.20) will be:

u
(n+1)
i,j = 1/4

(

h2fi,j + u
(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1

)

.

for any grid point (jh, ih) ∈ Ωh, and

u
(n+1)
P = u

(n)
P − µ∆t

(

αũ(n)(HP) + βµ∆t∇ũ(n) · n̂
∣

∣

HP

)

+ µ∆t g (2.29)

for any ghost point G, where B is the closest boundary point to G, n̂ =

∇φ̃/
∣

∣

∣
∇φ̃

∣

∣

∣
, α = α(B), β = β(B), g = g(B), and µ is chosen in order to

satisfy the CFL condition:

µ∆t

h
<

1

αh+ β
√
2
. (2.30)

2.4.1.1 Convergence proof

First order accurate scheme is obtained substituting (2.29) with (see Fig. 1.3)

u
(n+1)
P = u

(n)
P + µ∆t g

− µ∆t

(

αu
(n)
P +

β

h

(

u
(n)
P − u

(n)
Qx

)

|nx|+
(

u
(n)
P − u

(n)
Qy

)

|ny|
)

50 CHAPTER 2. MULTIGRID APPROACH

The convergence proof is similar to the one presented in the case of mixed
boundary condition in Section 2.3.2, provided to replace (2.25) and (2.26) by
respectively:

ck = 1− µ∆t

(

α +
β

h
(|nx|+ |ny|)

)

,

rk =
µ∆t

h
β (|nx|+ |ny|) .

The CFL condition (2.30) ensures that ck ≥ 0 and the right hand-side of
(2.24) reads:

µ∆t

h
β (|nx|+ |ny|) ≤ µ∆t

(

α +
β

h
(|nx|+ |ny|)

)

which is strictly satisfied for at least one ghost node since α is not identically
equal to zero (i.e. the problem has not pure Neumann conditions). This
leads us to claim ρ(B) < 1 by the same argument of Sec. 2.3.2. �

2.4.2 Variable diffusion coefficient

Let us consider the Model Problem 4 of Sec. 1.3.2. The associate time-
dependent problem is:

∂ũ

∂t
= µ (∇ · (γ∇ũ) + f) in Ω

∂ũ

∂t
= µD(gD − ũ) on ΓD

∂ũ

∂t
= µN

(

gN −
∂ũ

∂n

)

on ΓN

ũ = ũ0 in Ω, when t = 0

where µ is a positive function depending only on the space, in such a way in
grid points (ih, jh) we have:

µi,j∆t =
h2

γi−1/2,j + γi+1/2,j + γi,j−1/2 + γi,j+1/2
,

so that we can regain the Jacobi scheme for inner equations. Constants µD

and µN are defined as in Sec. 2.2. In practice, the relaxation scheme is the
same as the one described in Sec. 2.2.2, provided to replace (2.15) by:

u
(n+1)
i,j =

(

h2fi,j + γi−1/2,ju
(n)
i−1,j + γi+1/2,ju

(n)
i+1,j + γi,j−1/2u

(n)
i,j−1 + γi,j+1/2u

(n)
i,j+1

)

γi−1/2,j + γi+1/2,j + γi,j+1/2 + γi,j−1/2

where γi±1/2,j = (γi,j + γi±1,j)/2, γi,j±1/2 = (γi,j + γi,j±1)/2.

2.5. MULTIGRID COMPONENTS: ONE DIMENSIONAL CASE 51

2.4.3 Anisotropic case

Let us consider the Model Problem 5 of Sec. 1.3.3. The associate time-
dependent problem is:

∂u

∂t
= µ (∇ · (A∇u) + f) in Ω

∂u

∂t
= µD (gD − u) on ΓD

∂u

∂t
= µN (gN −∇u ·N) on ΓN

where µ is a positive function having the same meaning as in the previous
Sec. 2.4.2, i.e. in such a way the iteration scheme is Jacobi-like for inner
equations. The relaxation scheme is straightforward to obtain. We must
observe that the convergence of the relaxation scheme is gained only if the
anisotropy is sufficiently small, i.e. if the ratio between the maximum and
minimum eigenvalues of the matrix A is less than a suitable threshold.

2.4.4 Sharp-edged domain

Since the the only difference is the spatial discretization, the relaxation
scheme is straightforwardly obtained.

2.5 Multigrid components: one dimensional

case

In this section (1D) and in Section 2.6 (2D) we provide a multigrid approach
to speed up the convergence of the relaxation scheme (2.1)-(2.4) In all the
description, we consider the second order accuracy discretization. For one-
dimensional case, the multigrid approach in arbitrary domain is a natural
extension of the basic multigrid strategy that can be found in any good ba-
sic text about multigrid, such as [105, 27, 55]. Although we can eliminate
the boundary conditions from the linear system obtained by discretizing the
problem, we always want to treat the case of non-eliminated boundary con-
ditions in order to straightforwardly extend the method to more than one
dimension, where the elimination of the boundary conditions from the system
is hard to perform.

Let us refer to the notation of Secs. 1.2.2 and 2.2.1. We call Γh the
set of ghost points, i.e. Γh = {xl, xr}. Let Ih be a general subset of Dh.
We introduce the linear space of grid functions over Ih and we denote it

52 CHAPTER 2. MULTIGRID APPROACH

S(Ih) = {wh : Ih → R}. For any wh ∈ S(Ih), we pose wh
i = wh(xi). Let

fh ∈ S(Ωh) such that f
h
i = f(xi). The iterative scheme (2.9), (2.12), (2.13)

converges to the exact solution of the discretized system

−∆huh = fh (2.31)

ghD(uh) = ga (2.32)

ghN(uh) = gb, (2.33)

where ∆h : S(Ωh ∪ Γh)→ S(Ωh) is defined by:

∆huh(xi) =
uh
i−1 − 2uh

i + uh
i+1

h2
, xi ∈ Ωh,

while ghD, g
h
N : S(Ωh ∪ Γh) → R are the discrete versions of the boundary

conditions:

ghD(uh) = (1 + ϑl)
ϑl

2
uh
l + (1 + ϑl)(1− ϑl)u

h
l+1 − (1− ϑl)

ϑl

2
uh
l+2,

ghN(uh) =
uh
r−1 − uh

r−2

h
+

uh
r−2 − 2uh

r−1 + uh
r

h

(

1

2
+ ϑr

)

.

System (2.31)-(2.33) can be interpreted in general as a discrete system of a
Poisson equation with non-eliminated boundary conditions.

Let us consider an arbitrary grid function ũh ∈ S(Ωh ∪ Γh) and let

rh = fh +∆hũ
h

g̃a = ga − ghD(ũ
h)

g̃b = gb − ghN(ũ
h)

be the defects of (2.31), (2.32), (2.33) respectively. Because of the linearity
of ∆h, g

h
D, g

h
N , if we solve exactly the so-called residual problem

−∆heh = rh

ghD(eh) = g̃a

ghN(eh) = g̃b

in the unknown eh ∈ S(Ωh ∪ Γh), then uh = ũh + eh is the exact solution of
the system (2.31), (2.32), (2.33). In the basic idea of multigrid one needs to
solve the residual problem in a grid coarser than the original one.
We can summarize the iterative scheme (2.9), (2.12), (2.13) as follows:

u
(m+1)
h = ℜh

(

u
(m)
h , fh, ga, gb

)

(2.34)

2.5. MULTIGRID COMPONENTS: ONE DIMENSIONAL CASE 53

ℜh : S(Ωh ∪ Γh)× S(Ωh)× R
2 −→ S(Ωh ∪ Γh). (2.35)

Note that the iterative scheme (2.9), (2.12), (2.13) is of a Jacobi kind. In or-
der to provide a multigrid strategy, we just require that the iteration operator
(2.35) has the smoothing property, i.e. after few iteration steps (2.34), the
error becomes smooth (not necessarily small). Roughly speaking, the high-
frequency components of the error reduce quickly. We call smoothers any
operator (2.35) with this property. Many iterators have this property, such
as Gauss-Seidel or weighted Jacobi (with weight ω = 2/3 in 1D or ω = 4/5
in 2D), but not Jacobi (see [105, pag. 30–32] for more details). From now
on, by (2.34) we shall intend the Gauss-Seidel version of (2.9), (2.12), (2.13),
i.e.:

u
(m+1)
l = u

(m)
l + µD ∆t ga

− µD ∆t

(

(1 + ϑl)
ϑl

2
u
(m)
l + (1 + ϑl)(1− ϑl)u

(m)
l+1 − (1− ϑl)

ϑl

2
u
(m)
l+2

)

u
(m+1)
i =

1

2

(

u
(m+1)
i−1 + u

(m)
i+1 + h2fi

)

, i = l + 1, . . . , r − 1

u(m+1)r = u(m)r + µN ∆t gb

− µN ∆t

h

(

u
(m+1)
r−1 − u

(m+1)
r−2 +

(

u
(m+1)
r−2 − 2u

(m+1)
r−1 + u(m+1)r

)

(

1

2
+ ϑr

))

.

In order to explain the multigrid approach, we just describe the two-grid cor-
rection scheme (TGCS), because all the other schemes, such as V -cycle, W -
cycle, F -cycle or Full multigrid cycle, can be easily derived from it (see [105,
Sections 2.4, 2.6] for more details). The TGCS consists into the following
algorithm:

1. Set initial guess uh = 0

2. Relax ν1 times on the finest grid: for k from 1 to ν1 do

uh : = ℜh (uh, fh, ga, gb)

3. Compute the defects

rh = fh +∆huh

g̃a = ga − ghD(ũ
h)

g̃b = gb − ghN(ũ
h)

54 CHAPTER 2. MULTIGRID APPROACH

4. Transfer the defect rh to a coarser grid with spatial step 2h by a suitable
restriction operator

r2h = Ih2h (rh)

5. Solve exactly the residual problem on the coarser grid

−∆2he2h = r2h

g2hD (e2h) = g̃a

g2hN (e2h) = g̃b

in the unknown e2h ∈ S(Ω2h ∪ Γ2h)

6. Transfer the error to the finest grid by a suitable interpolation operator

eh = I2hh (e2h)

7. Correct the fine-grid approximation

uh : = uh + eh

8. Relax ν2 times on the finest grid: for k from 1 to ν2 do

uh : = ℜh (uh, fh, ga, gb)

We have just to explain the steps concerning grid migration (steps 4 and 6).

2.5.1 Transfer grid operators

In this section, we describe the transfer grid operators for vertex-centered
grid. We observe that our approach is based on the discretization of the equa-
tions on the various grids (both for inner and ghost points). This approach is
very different from algebraic multigrid. As a consequence, the interpolation
and the restriction operators are not the transpose of each other.

2.5.1.1 Restriction operator

Since such operator will act on the defect rh ∈ S(Ωh) (step 4), we must
determine Ih2hrh(x) for any x ∈ Ω2h using only values inside Ωh. This is
justified by the fact that the defect of the inside grid points (referred to
the Poisson equation) may be very different (after few relaxations) from the
defects g̃a, g̃b (referred to the boundary conditions and stored computation-
ally in the ghost points), because the operators (for inner equations and for

2.5. MULTIGRID COMPONENTS: ONE DIMENSIONAL CASE 55

boundary conditions) scale with different powers of h. Then, let x ∈ Ω2h

and refer to Fig. 2.1 (upper part). If x is not near an outside grid point,
i.e. min{|x− a| , |x− b|} ≥ h, then we will use the standard full-weighting
restriction operator (FW):

Ih2hrh(x) =
1

4
(rh(x− h) + 2 rh(x) + rh(x+ h)) , (2.36)

while if x− h < a or x+ h > b we set respectively

Ih2hrh(x) =
1

2
(rh(x) + rh(x+ h)) (2.37)

or

Ih2hrh(x) =
1

2
(rh(x− h) + rh(x)) . (2.38)

�
�� �

Ω
�

Ω
2�

������	��
��
����
�

�

�
�� �

Ω
�

Ω
2�

������	
���	�	�����	�

�

Fig. 2.1: Vertex-centered discretization in 1D. Inner grid nodes (red circles) and ghost
points (empty circles) on the fine and coarse mesh. The dashed lines represent the action
of the restriction (up) and the interpolation (down) operators.

2.5.1.2 Interpolation operator

Since the interpolation operator acts on the error (step 6), which is continuous
across the boundary, we do not need to separate the interpolation for inner
equations from the interpolation of ghost points, and then we just use the
standard linear interpolation operator (see the lower part of Fig. 2.1):

I2hh e2h(xj) = e2h(xj) if j is even

I2hh e2h(xj) = 1
2
(e2h(xj−1) + e2h(xj+1)) if j is odd.

56 CHAPTER 2. MULTIGRID APPROACH

Remark. 1 (V -cycle) The V -cycle algorithm is easily obtained from the
TGCS recursively, namely applying the same algorithm to solve the residual
equation in step 5. To terminate the recursion, an exact solver is used to
solve the residual problem when the grid becomes too coarse.

Remark. 2 (W -cycle) The W -cycle is similar to the V -cycle, with
the only difference that the residual problem is solved recursively two times
instead of one (in general schemes, γ times, but γ > 2 is considered useless
for practical purpose).

Remark. 3 (Coarser operator) We observe that the discrete operator
∆2h in step 5 is just the operator obtained discretizing directly the continuous
operator in the coarser grid, and not the operator obtained by the Galerkin
condition

∆2h = Ih2h ∆h I
2h
h .

The latter approach, typical of algebraic multigrid, makes the algebraic prob-
lem more expensive from a computational point of view and does not take
advantage of the fact that the discrete problem comes from a continuous
problem.

2.6 Multigrid components: High-dimensional

case

In this case the defect of the boundary conditions has to be transferred in a
suitable way to a coarser grid. The restriction has to be performed separately
from the restriction of the interior equations, since these defects may show
a sharp gradient crossing the boundary, because the discrete operators scale
with different powers of h.

In case of arbitrary domain, ghost points may have a complex structure
and the restriction cannot be defined straightforwardly as in the rectangular
case, where ghost points are aligned with the grid and the restriction can be
performed by a one dimensional operator.

For arbitrary domain we first need to extend the defect in a narrow band
outside the domain constant along normal direction, and then we can operate
the restriction as in the interior of the domain. For the sake of clarity, we de-
scribe the multigrid strategy in the two-dimensional case, but the procedure
can be extended straightforwardly in more dimensions.

Let us refer to the notation of Secs. 1.2 and 2.2.2 and add some further
notation. Let Ih be a general subset of Dh. We introduce the linear space of
grid functions over Ih and we denote it S(Ih) = {wh : Ih → R}. From now

2.6. MULTIGRID COMPONENTS: HIGH-DIMENSIONAL CASE 57

on, we shall consider the two space dimension, i.e. d = 2, but the results are
valid also for d > 2.

Using the simplified notation, the iterative scheme (2.15)-(2.17) converges
to the solution of the problem:

{

−∆huh = fh

Lhuh = gh

(2.39)

where:

• uh ∈ S(Ωh ∪ Γh) is the unknown;

• ∆h : S(Ωh ∪Γh)→ S(Ωh) is the standard discrete version of the Lapla-
cian operator, namely:

∆hwh(x, y) =
1

h2
(wh(x+ h, y) +wh(x− h, y)− 4wh(x, y)

+wh(x, y + h) +wh(x, y − h))

for any wh ∈ S(Ωh ∪ Γh) and (x, y) ∈ Ωh;

• fh ∈ S(Ωh) is defined by fh(P) = f(P) for any grid point P ∈ Ωh;

• Lh : S(Ωh∪Γh)→ S(Γh) is the discrete version of boundary conditions,
namely:

Lhwh(G) =

LStG [u](B) if B ∈ ΓD
(

∇LStG [u] ·
∇LStG [φ]

|∇LStG [φ]|

)∣

∣

∣

∣

B

if B ∈ ΓN
(2.40)

for any wh ∈ S(Ωh ∪ Γh) and G ∈ Γh;

• gh ∈ S(Γh) is defined by:

gh(G) =

{

gD(B) if B ∈ ΓD

gN(B) if B ∈ ΓN

for any ghost point G ∈ Γh.

Let us introduce, for any spatial step h, an exact solver

uh = Sh (fh,gh)

of the system (2.39), and denote by

ℜh : S(Ωh ∪ Γh)× S(Ωh)× S(Γh) −→ S(Ωh ∪ Γh) (2.41)

58 CHAPTER 2. MULTIGRID APPROACH

the relaxation operator, namely the iterative scheme

u
(m+1)
h = ℜh

(

u
(m)
h , fh,gh

)

(2.42)

converges to the solution of (2.39) as n → +∞. In details, the iteration
(2.42) summarize the iterative scheme (2.15)-(2.17).

As in one dimensional case, we will intend by (2.42) the Gauss-Seidel
version of (2.15)-(2.17), in order to deal with a proper smoother, and we have
to order all points of Ωh ∪ Γh in some way. Let us choose the lexicographic
ordering (GS-LEX):

(x′, y′) ≤ (x′′, y′′)⇐⇒ x′ < x′′ or x′ = x′′, y′ < y′′.

The relaxation scheme can be easily extended to more efficient kinds of
smoothers, such as Red-Black Gauss-Seidel (see [105]): however, we limit
ourselves to study of the GS-LEX smoother.

In order to explain the multigrid approach, we just describe the two-grid
correction scheme (TGCS), because all the others schemes, such as V -cycle,
W -cycle or Full multigrid, can be easily derived from it (see [105, Sections
2.4, 2.6] for more details). The TGCS consists into the following algorithm:

1. Set initial guess uh = 0

2. Relax ν1 times on the finest grid: for k from 1 to ν1 do

uh : = ℜh (uh, fh,gh)

3. Compute the following defects:

rΩh = fh +∆h uh

rΓh = gh − Lhuh

4. Transfer the defects to a coarser grid with spatial step 2h by a suitable
restriction operator

rΩ2h = Ih2h
(

rΩh
)

rΓ2h = Ih2h
(

rΓh
)

5. Solve exactly the residual problem in the coarser grid

e2h = S2h
(

rΩ2h, r
Γ
2h

)

2.6. MULTIGRID COMPONENTS: HIGH-DIMENSIONAL CASE 59

6. Transfer the error to the finest grid by a suitable interpolation operator

eh = I2hh (e2h)

7. Correct the fine-grid approximation

uh : = uh + eh

8. Relax ν2 times on the finest grid: for k from 1 to ν2 do

uh : = ℜh (uh, fh,gh)

We have just to explain the steps concerning grid migration (steps 4 and 6).
All the other steps are clear.

2.6.1 Transfer grid operators

2.6.1.1 Restriction operator

Let us consider the total defect rh = (rΩ2h, r
Γ
2h). If (2.41) has the smoothing

property, after ν1 relaxations (step 2 of the algorithm) we have a smooth
defect rh. Therefore, we can hope to transfer this defect to a coarser grid
without losing much information. Abusing of notation, we can say that
the defect rh belongs to S(Ωh ∪ Γh). In order to transfer it to a coarser
grid, one strategy could be to extend in some way this defect in the whole
computational domain Dh (i.e. rh ∈ S(Dh)), in such a way we can use
the standard full-weighting stencil for the restriction operator Ih2h : S(Dh)→
S(D2h), that is (see [105, pag. 42])

Ih2h =
1

16

1 2 1
2 4 2
1 2 1

h

2h

. (2.43)

In general, by the stencil notation

Ih2h =

...
...

...
· · · t−1,−1 t−1,0 t−1,1 · · ·
· · · t0,−1 t0,0 t0,1 · · ·
· · · t1,−1 t1,0 t1,1 · · ·

...
...

...

h

2h

60 CHAPTER 2. MULTIGRID APPROACH

we will intend the restriction operator Ih2h defined by:

Ih2hwh(x, y) =
∑

(i,j)∈Rk

ti,jwh(x+ jh, y + ih),

where only a finite number of coefficients ti,j is different from zero, and Rk ≡
{−k, . . . , k}2 for some positive integer k. In practice k = 1 allows second
order restriction operator.

Let us suppose we have extended the defect to the whole computational
domain Dh (as it is carefully described in Sec. 2.6.1.2). Anyhow, since we
have different operators for inner equations and for boundary conditions,
the defect is smooth separately inside Ωh and along the ghost point Γh (or
Dh − Ωh, because of the extension), but it is not smooth in all Ωh ∪ Γh.

For this reason, it is convenient to transfer separately to the coarse grid
the defects rΩh and rΓh. Let us define the new restriction operator:

Ih
2h : S(Zh) −→ S(Z2h), (2.44)

where Zh is an arbitrary subset of Dh, and where we intend Z2h = Zh ∩Ω2h.
Let (x, y) ∈ Z2h. We focus our attention to the neighborhood of (x, y), that
is N (x, y) = {(x+ jh, y + ih) : j, i = −1, 0, 1}.

Now consider the maximum full rectangle T with vertices belonging to
N (x, y) and such that T ∩Dh ⊆ Zh (see Fig. 2.2, where Zh = Ωh). Therefore,
the stencil we use in (x, y) to transfer wh to a coarse grid depends on the
size of T . In fact, let T ∩Dh be a 3 × 3 points (i.e. N (x, y) ⊆ Zh). In this
case we can use the standard full-weighting stencil (2.43).

Now let T ∩ Dh be a 3 × 2 points. Without loss of generality, we can
suppose the vertices of T are (x+ jh, y + ih), with j ∈ {−1, 0}, i ∈ {−1, 1}.
In this case, the stencil we will use is:

(

Ih2hwh

)

(x, y) =
1

16

2 2 0
4 4 0
2 2 0

h

2h

(x, y), (2.45)

while, if T is a 2× 2 points, with vertex (x+ jh, y + ih), j, i ∈ {−1, 0}, the
stencil will be:

(

Ih2hwh

)

(x, y) =
1

16

0 0 0
4 4 0
4 4 0

h

2h

(x, y), (2.46)

This three case are summarized in Fig. 2.2 (where Zh = Ωh).
Note that the stencils (2.43), (2.46), (2.45) can be derived as tensor prod-

ucts of the one-dimensional restrictions (2.36), (2.37), (2.38).

2.6. MULTIGRID COMPONENTS: HIGH-DIMENSIONAL CASE 61

� � �

1

16

1 2 1
2 4 2
1 2 1

h

2h

1

16

2 2 0
4 4 0
2 2 0

h

2h

1

16

0 0 0
4 4 0
4 4 0

h

2h

Fig. 2.2: Upper, the nine points of N (x, y) and the green boundary of the rectangle T .
The bold red point is on the coarser and finer grids, while the little red points are on
the finer grid. The arrows represent the action of the restriction operators. Below, the
respective stencil to be used.

2.6.1.2 Extension of the defect

The goal of this section is to extend the defect rΓh from S(Γh) to S(Dh−Ωh).
In every ghost point we store the defect of the boundary condition concerning
that ghost point. In formulas, we have seen in step 3 of the TGCS algorithm
that rΓh(G) = (gh − Lhuh) (G), for any ghost point G. But gh(G) = g(B)
and Lhuh(G) is the reconstructed boundary condition in B of the boundary
operator L (see (2.40)), where B is the closest boundary point to G (i.e. the
orthogonal projection on the boundary). In summary, the defect is stored
in a ghost point G, but it is geometrically referred to a boundary point B
placed along the normal direction. When we switch to a coarse grid, some
ghost point G1 may not be ghost point in the fine grid, i.e. Γ2h ⊆ Γh is not
true (see Fig. 2.3).

Then, no acceptable value of the defect is stored in G1. Indeed, we expect
that r2h has in the ghost point G1 the defect of the boundary conditions
referred to B1. Hence, if we extend the defect rh outside Ωh constant along
the normal lines to the boundary, we will find rΓh (G1) as an approximation
of the defect of the boundary conditions in B1. After coarsening (performed
using only points outside Ωh, as described before), the ghost points of the
coarser grid will contain the expected values of the defect.

The extension of the defect rΓh is performed by solving the transport
equation

∂rΓ

∂τ
+∇rΓ · n = 0

in a few steps of a fictitious time τ , where n ≡ (nx, ny) = ∇φ/|∇φ| is the

62 CHAPTER 2. MULTIGRID APPROACH

�

�

�
��

�

�
�

�

�
�

Fig. 2.3: Red bold and small points are grid points of Ωh, while red bold points are grid
points of Ω2h. G1 is a ghost point on the coarser grid, but not on the finer grid, then no
value of the defect is stored in it. Qx and Qy are the two upwind near points to G1.

unit normal vector to the level-set. In details, we compute few steps of the
following iteration scheme:

r
Γ (m+1)
h (P) = r

Γ (m)
h (P)

+
∆τ

h

((

r
Γ (m)
h (P)− r

Γ (m)
h (Qx)

)

|nx|+
(

r
Γ (m)
h (P)− r

Γ (m)
h (Qy)

)

|ny|
)

(2.47)

for all P ∈ Dh− (Ωh ∪ Γh), where Qx and Qy are the two upwind near points
to P , i.e.

Qx = P − sgn(nx) h i, Qy = P − sgn(ny) h j.

However, it is sufficient to perform the iteration (2.47) only in a narrow band
with width 3h. In order to speed up the extension, we can perform (2.47) in
a Gauss-Seidel fashion, sorting points in Dh−(Ωh ∪ Γh) by the distance from
the boundary (it can be done using the distance function φ), and starting
from the closest ghost point to the boundary P .

Finally, we can resume the extension process introducing an extension
operator, which in practice depends only on the set of ghost point Γh and on
the discretized signed distance function φh. Therefore:

E [Γh;φh] : S(Γh) −→ S(Dh − Ωh), (2.48)

2.7. NUMERICAL TESTS 63

and then the extension procedure and the restriction of the defect rΓh can be
resumed as follows:

Ih2h(E [Γh;φh](r
Γ
h)).

2.6.1.3 Interpolation

Since the interpolation operator acts on the error, which is continuous across
the boundary, we just use the standard bilinear interpolation operator:

I2hh =
1

4

1 2 1
2 4 2
1 2 1

2h

h

. (2.49)

2.7 Numerical tests

In all the following numerical tests we always choose the Dirichlet and Neu-
mann parts of Γ = ∂Ω as:

ΓD = {(x, y) ∈ Γ: x ≤ 0} , ΓN = {(x, y) ∈ Γ: x > 0} .

The Local Fourier Analysis (LFA) is a powerful tool to obtain the theoreti-
cally convergence factor by analyzing separately the action of different parts
of the multigrid algorithm to high and low frequency components of the error.
For a detailed explanation of the LFA, we refer to [105, Ch. 4].

Before to apply the LFA, one has to be sure that the relaxation operator
(2.41) has the smoothing property. Roughly speaking, the smoothing property
is the property to dump high frequency components of the error, in order to
make it smooth after few relaxation sweeps.

When the multigrid algorithm applies to a regular rectangular domain,
the LFA and smoothing analysis are well studied. In the case of arbitrary do-
main, as Achi Brandt points out in [105, pag. 587], there are some boundary
related difficulties about the discretization and relaxation near the boundary:

• There is no a general smoothing analysis when the boundary is not
aligned with the grid;

• The residuals should be reduced near boundaries more than in the
interior;

• The coarsest grid has not to be too coarse, because it should catch the
curvature of the boundary in order to guarantee the convergence.

64 CHAPTER 2. MULTIGRID APPROACH

Now, we perform a numerical test in order to check if the convergence factor is
close to the predicted one by LFA, which is obtained for rectangular domain
with periodic boundary conditions, i.e. without taking into account boundary
effects. Note that the multigrid algorithm described before may be seen as
an iterative scheme:

u
(m+1)
h = Mh u

(m)
h + bh

for some matrixMh and vector bh. We call ρ the convergence factor, which is
the spectral radius of the matrix Mh. For rectangular domain with periodic
boundary conditions and constant coefficients, the convergence factor is said
to be local and it is denoted by ρloc. The convergence factors predicted by
LFA for Gauss-Seidel LEX relaxation and FW restriction operator are listed
in Table 2.2 (see [105, pag. 117]).

Table 2.2: Predicted convergence factor ρloc by LFA for GS-LEX and
FW restriction operator.

ν = ν1 + ν2 1 2 3 4

ρloc 0.400 0.193 0.119 0.084

In all the numerical tests we perform, the convergence factor is estimated
as the ratio of consecutive defects, i.e.:

ρ = ρ(m) =

∥

∥

∥r
(m)
h

∥

∥

∥

∞
∥

∥

∥r
(m−1)
h

∥

∥

∥

∞

for m very large. In order to avoid difficulties related to numerical instability
related to the machine precision, we will always use the homogeneous model
problem, namely (1.1) with f = gD = gN = 0, and perform the multigrid
algorithm starting from an initial guess different from zero. Since we are just
interested at the convergence factor and not at the numerical solution itself
(which approaches zero indefinitely for homogeneous problem), a reasonable
stopping criterion will be

∣

∣ρ(m) − ρ(m−1)
∣

∣

ρ(m)
< 10−3.

Note that, since we want to study the efficiency of the multigrid components
proposed in this paper (smoother, restriction, ...), it is sufficient to study
basic kind of multigrid such as V-cycle and W-cycle, while a more efficient
algorithm (such as FMG) can be easily derived.

2.7. NUMERICAL TESTS 65

2.7.1 1D numerical test

Referring to Sec. 1.2.2, let us choose [a, b] = [−0.743, 0.843] ⊆ [−1, 1]. The
finest grid is obtained dividing the whole computational domain [−1, 1] into
N = 64 subintervals, while the coarsest grid is obtained dividing [−1, 1] into
Nc = 8 subintervals. The computed convergence factors are very close to
those ones predicted by LFA (Table 2.2), namely ρ = 0.185 for ν = 2 and
ρ = 0.122 for ν = 3.

2.7.2 An initial test in 2D

We start testing the multigrid algorithm on a circular domain Ω with center
(
√
2/20,

√
3/30) and radius r = 0.563 (Fig. 2.4).

�� ���� � ��� �

��

����

����

����

���	

�

��	

���

���

���

�

Fig. 2.4: Circular domain and the coarsest grid used to capture the
curvature. Blue ghost points refer to Dirichlet condition, while green
ghost points refer to Neumann condition. Red lines are normal to the
boundary.

The measured convergence factors for TGCS, V -cycle and W -cycle are
listed in Table 2.3.

As we can see, the measured convergence factor is far from the predicted
one by LFA (Table 2.2). Then, some boundary effect degrades the conver-
gence factor. Note that in 1D such boundary effects do not degrade the
convergence factor (Ex. 2.7.1), because we have only two boundary points,
and the degradation is due to the oscillating behavior of the residual on the
tangential direction to the boundary, that does not exist in 1D. Then, in 2D
we must smooth the error also along the tangential direction to the bound-
ary. To overcome this difficulty, we apply, after a single relaxation and at

66 CHAPTER 2. MULTIGRID APPROACH

Table 2.3: Measured convergence factor ρ with ν1 = ν2 = 1 on the left
and with ν1 = 2, ν2 = 1 on the right.

N TGCS V -cycle W -cycle

64 0.67 0.68 0.71
128 0.68 0.73 0.68
256 0.70 0.71 0.70

N TGCS V -cycle W -cycle

64 0.58 0.72 0.58
128 0.58 0.73 0.59
256 0.61 0.83 0.60

each grid level, λ extra relaxation sweeps on all ghost points Γh and on all
inside grid points of Ωh within δ > 0 distance from the boundary (the extra
computational work is O(N), then negligible as N → ∞). It can be proved
numerically that a good choice of these parameters will be:

λ = 5, δ = 3 h. (2.50)

The explanation of the optimal value λ = 5 is the following: the degradation
observed in Table 2.3 is an indication that the error decays much slower at the
boundary. Assuming that the convergence factor in Table 2.3 is essentially
the convergence factor at the boundary, ρB, we want to match it with the
convergence factor at the bulk, therefore λopt is the smallest value of λ for
which ρλ+1B ≤ ρI . The value ρI , in turn, can be computed as the convergence
factor for large value of λ.

Investigating the smoothing property, we observe that choosing the initial
error as an high frequency component, the error is not smoothed after few
relaxation sweeps. While, if we add the extra-relaxations, the error become
sufficiently smooth (Figs. 2.5-2.6).

2.7.3 Numerical tests in 2D

In this section we confirm numerically the improvement of the convergence
factor if we apply extra-relaxations, and we compare the relaxation scheme
with other well-known alternatives such as the Kaczmarz and the block re-
laxation. In all numerical tests, we choose an arbitrary domain Ω assigning
a level-set function φ0. Then we reinitialize it by the procedure described
in Section 1.1.1, obtaining the signed distance function φ. Afterwards, we
perform the multigrid technique applying the W -cycle algorithm instead of
the V -cycle, to ensure the independence of the convergence factor ρ from
the step size h (as explained for example in [105, pag. 78]). Several tests
are performed for each domain, based on the different size of the finest and
coarsest grids. The finest grid is obtained dividing the whole computational
domain D into N subintervals in each Cartesian direction, while the coarsest

2.7. NUMERICAL TESTS 67

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 2.5: High frequency initial error after 1 (up-left), 3 (up-right), 5 (down-left), 10
(down-right) relaxation sweeps and λ = 0 extra-relaxations.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Fig. 2.6: High frequency initial error after 1 (up-left), 3 (up-right), 5 (down-left), 10
(down-right) relaxation sweeps and λ = 5 extra-relaxations.

grid is obtained replacing N with Nc. The solution on the coarsest grid is
obtained by a direct solver.

2.7.3.1 Circular domain

In this case we can choose as a level-set function directly the signed distance
function, which is known analytically:

φ(x, y) =

√

(x−
√
2/20)2 + (y −

√
3/30)2 − 0.563.

The zero level-set is represented in Fig 2.7 (top-left). Different value of
the convergence factor are listed in Table 2.4 (for ν = ν1 + ν2 = 2 and

68 CHAPTER 2. MULTIGRID APPROACH

ν = 3). They are really improved with respect to those obtained without
extra-relaxations (Table 2.3) for the same test.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2.7: Different domains used in the numerical tests: Example 2.7.3.1 (top-left), 2.7.3.3
(top-right), 2.7.3.4 (bottom-left), 2.7.3.5 (bottom-right).

2.7.3.2 Comparison with the Kaczmarz and the block relaxations

Note that the relaxation scheme (2.9), (2.12), (2.13) is composed by a Gauss-
Seidel iteration over inner grid points and a suitable relaxation over ghost
points (boundary conditions). As an alternative to the relaxation of the
boundary condition, we can use the Kaczmarz relaxation [64] near the bound-
ary, which is known to be unconditionally convergent. Let us recall the
Kaczmarz iteration scheme for a subset of equations J ⊆ { . . . , Ni +Ng} of
a linear system Lu = f :

uTEMP = u(m),

for j ∈ J do: uTEMP : = uTEMP +
fj− < lj, u

TEMP >

‖lj‖22
lTj ,

u(m+1) = uTEMP .

2.7. NUMERICAL TESTS 69

Table 2.4: Convergence factor of the numerical test of Section 2.7.3.1.
We use N×N number of grid points in the finest grid; Nc×Nc number
of grid points in the coarsest grid. Top: ν = ν1 + ν2 = 2, bottom:
ν = ν1 + ν2 = 3.

N 16 32 64 128 256

Nc

8 0.052 0.053 0.11 0.13 0.14
16 0.061 0.11 0.13 0.14
32 0.11 0.13 0.14
64 0.13 0.14
128 0.14

N 16 32 64 128 256

Nc

8 0.059 0.035 0.09 0.08 0.08
16 0.041 0.09 0.08 0.08
32 0.09 0.08 0.08
64 0.09 0.08
128 0.09

The symbol < ·, · > denotes the inner product operator and lj is the j-th row
of the matrix L. If we choose J = { . . . , Ni +Ng} then we obtain the classical
Kaczmarz relaxation scheme for the solution of the linear system Lu = f ,
and the iteration scheme is equivalent to a Gauss-Seidel relaxation for the
system LTLu = LTf . In our case, one iteration of the alternative relaxation
we want to study is composed as follows: we perform a Gauss-Seidel sweep
in the interior of the domain, followed by λ Kaczmarz iterations over ghost
points and inner points close to the boundary (say within δ distance from
the boundary).

Another alternative is represented by the block relaxation [38]. As we
point out in Sec. 2.5, the elimination of the boundary conditions is hard to
perform in high dimensions, while in one dimension it is a trivial task and
leads to a diagonally dominant linear system. A middle ground between the
elimination of the boundary conditions and the relaxation operator we use
in this paper is the block relaxation. Let us describe it in details. For each
grid point P ∈ Ωh ∪ Γh we choose a stencil StP ⊆ Ωh ∪ Γh. For instance, if
P ∈ Ωh we choose StP = StP9 ∩ (Ωh ∪ Γh), where StP9 is the 3 × 3 stencil
centered at P , else if P ∈ Γh we choose the stencil StP defined in (1.12). One
iteration of the alternative relaxation is composed as follows. We perform a
Gauss-Seidel sweep in the interior of the domain except in grid points within

70 CHAPTER 2. MULTIGRID APPROACH

δ distance from the boundary. For each grid point P ∈ Ωh ∪ Γh within δ
distance from the boundary we rewrite the linear system Lu = f as follows
(by a permutation of rows):

Lu = f ⇔
(

A1,1 A1,2

A2,1 A2,2

)(

u1
u2

)

=

(

f1
f2

)

where u1 is referred to those grid points belonging to StP . Therefore, we
update the values of u1 as:

u1 = A−11,1 (f1 − A1,2u2) .

We perform a comparison between the relaxation proposed in this paper
(that we call new iteration in the following plots) and the two alternative
relaxation described above. Such a comparison is carried out in terms of
smoothing factor and convergence factor. We perform the comparison using
the TGCS for the test case of the circular domain 2.7.3.1 with N = 64.

In Fig. 2.8 we plot the smoothing factor µ for the three iteration schemes,
which is estimated by the ratio of subsequent defects after each iteration, i.e.

µ(m) =

∥

∥

∥
r
(m)
h

∥

∥

∥

∞
∥

∥

∥
r
(m−1)
h

∥

∥

∥

∞

.

In practice, we perform only the iteration schemes, without taking into ac-
count the effects of the multigrid procedure. In order to better capture the
behavior of the smoothing factor, we choose an initial guess being highly
oscillant, for example u = sin(40πx) sin(50πy).

In Fig. 2.9 we depict the convergence factor ρ for the Kaczmarz and the
new iteration against the number of extra-relaxations λ (for comparison, we
also plot the convergence factor of the block relaxation as an horizontal line,
since it does not depend on λ). After five extra-relaxations, the new iter-
ation reaches a plate configuration, since it achieves the convergence factor
of the Gauss-Seidel smoother for inner equations, i.e. the convergence factor
predicted by the LFA (see Table 2.2). The Kaczmarz iteration falls down
slower, while the block iteration already provides the optimal convergence
factor. The computational cost of five point-iterations of the new method is
considerably lower than the cost of one block-iteration.

2.7.3.3 Ellipsoidal domain

The level-set function is:

φ(x, y) =
(X(x, y)−

√
2/20)2

0.5632
+
(Y (x, y)−

√
3/30)2

0.2632
− 1

2.7. NUMERICAL TESTS 71

m-th iteration

µ

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kaczmarz
Box relaxation
new iteration

Fig. 2.8: Smoothing factor µ
against the number of itera-
tions for the three iterative
schemes: Kaczmarz relaxation,
Block relaxation, new itera-
tion.

�

�

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kaczmarz

Box relaxation

new iteration

Fig. 2.9: Convergence factor ρ of
the entire multigrid against the
number of extra-relaxations λ for
the three iterative schemes: Kacz-
marz relaxation, Block relaxation,
new iteration.

where

X(x, y) = cos(π/6) x− sin(π/6) y, X(x, y) = sin(π/6) x+ cos(π/6) y,

and the zero level-set is represented in Fig. 2.7 (top-right). The convergence
factor obtained are listed in Table 2.5 (for ν = ν1 + ν2 = 2 and ν = 3). We
observe as the convergence factor degrade choosing a coarsest grid too much
coarse, but starting from a certain level of coarsest grid it is relatively close
to the predicted convergence factor by LFA (Table 2.2).

2.7.3.4 Saddle-shaped domain

The level-set function is:

φ(x, y) = 9

(

1

2
x−

√
3

2
y

)2

+

(

3
√
3

2
x+

3

2
y − 1

)2

sin

(

3
√
3

2
x+

3

2
y − 1

)

− 1

and the zero level-set is represented in Fig. 2.7 (bottom-left). The conver-
gence factor obtained for ν = ν1 + ν2 = 3 are listed in Table 2.6 (left). Also
in this case, only if we choose N = 16 and Nc = 8 (which actually is TGCS)
the convergence factor is degraded.

72 CHAPTER 2. MULTIGRID APPROACH

Table 2.5: Convergence factor of the numerical test of Section 2.7.3.3.
We use N×N number of grid points in the finest grid; Nc×Nc number
of grid points in the coarsest grid. Top: ν = ν1 + ν2 = 2, bottom
ν = ν1 + ν2 = 3.

N 16 32 64 128 256

Nc

8 0.34 0.09 0.14 0.14 0.15
16 0.65 0.45 0.19 0.15
32 0.14 0.14 0.15
64 0.15 0.15
128 0.15

N 16 32 64 128 256

Nc

8 0.44 0.06 0.12 0.11 0.09
16 0.55 0.30 0.09 0.09
32 0.13 0.10 0.09
64 0.12 0.08
128 0.09

2.7.3.5 Flower-shaped domain

The level-set function is:

φ = r − 0.5− y5 + 5x4y − 10x2y3

5r5
, r =

√

x2 + y2

and the zero level-set is represented in Fig. 2.7 (bottom-right). The conver-
gence factor obtained for ν = ν1+ ν2 = 3 are listed in Table 2.6 (right). This
is the hardest numerical test, because of the indentation of the boundary. We
need to start from a coarsest level Nc = 32 to correctly capture the boundary
profile and to make the discretization accurate.

2.7. NUMERICAL TESTS 73

Table 2.6: Convergence factor of the numerical test of Sections 2.7.3.4
(top) and 2.7.3.5 (bottom). We use N×N number of grid points in the
finest grid; Nc ×Nc number of grid points in the coarsest grid. In this
test we use ν = ν1 + ν2 = 3. For the flower-shaped domain, if Nc = 8
the multigrid does not converge.

N 16 32 64 128 256

Nc

8 0.36 0.08 0.09 0.12 0.09
16 0.12 0.09 0.12 0.09
32 0.09 0.12 0.09
64 0.13 0.09
128 0.09

N 16 32 64 128 256

Nc

8 n.c. n.c. n.c. n.c. n.c.
16 0.89 0.75 0.50 0.25
32 0.49 0.25 0.12
64 0.24 0.11
128 0.09

74 CHAPTER 2. MULTIGRID APPROACH

Chapter 3
Discontinuous coefficents: 1D case

In this section we obtain a second order accurate numerical method to solve
an elliptic equation with discontinuous coefficients. After introducing the
model problem, we provide a discretization and an iterative solver of the
linear system. In some applications one may be interested in second order
accuracy also for the derivative of the solution. In numerical tests of Sec. 3.3
we show that the method is second order accurate in the solution and in its
first derivative.

3.1 Model problem

Let us consider the model problem

− d

dx

(

γ
du

dx

)

=f in Ω = [0, 1],

u(0) = g0, u(1) = g1.

(3.1)

where the diffusion coefficient γ : [0, 1] → R jumps on an interface α ∈]0, 1[,
i.e., is a smooth function in [0, α[and in]α, 1], but may be discontinuous
across α. We assume γ > ǫ > 0 in all the domain. If we solve this problem
by standard central differences on a uniform grid, the accuracy of the method
degrades to first order.

Let

uL = u|[0,α[, uR = u|]α,1], γL = γ|[0,α[, γR = γ|]α,1]

be the restriction functions of the solution and of the coefficient on the two

75

76 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

�

� ��
���

�

�
�

�
��� �

���

Fig. 3.1: Computational domain Ω with an arbitrary interface α.

subdomains. We split the problem into the following subproblems:

− d

dx

(

γLdu
L

dx

)

= f in [0, α[

uL(0) = g0,

(3.2)

− d

dx

(

γRdu
R

dx

)

= f in]α, 1]

uR(1) = g1.

(3.3)

In order to close the problem, we must provide an additional boundary con-
dition for each of uL and uR on the interface α. This additional conditions
are inferred to the requirement that the solution u and the flux γu′ are con-
tinuous across α. Introducing the jumping operator on α

[w] = lim
x→α+

w − lim
x→α−

w,

the additional boundary conditions may be resumed as

[u] = 0, [γu′] = 0

and are called transmission conditions [92]. They can be inferred by a phys-
ical requirement: for instance, in steady-state diffusion problems in two ma-
terials, the temperature and its flux are required to be continuous across α.
Non-homogeneous interface conditions may appear, for example, in presence
of a delta-function on the right hand side f = f1 + δα, with f1 ∈ C0([0, 1]).
Precisely, the two following problems are equivalent:

− d

dx
(γ

du

dx
) =f1 + Cδα in [0, 1]

u(0) = g0, u(1) = g1,

− d

dx
(γ

du

dx
) =f1 in [0, α[∪]α, 1]

u(0) = g0, u(1) = g1

[u] = 0, [γ u′] = −C.

3.1. MODEL PROBLEM 77

In the following we suppose the right-hand side is a regular function in the
two sub-regions, and non-homogeneous interface conditions are allowed:

[u] = gD, [γu′] = gN . (3.4)

Such general case is relevant for some applications, for example pressure
equation for incompressible flow in presence of surface tension at the inter-
face.
The two subproblems (3.2) and (3.3) are then coupled on α and cannot be
solved separately. The whole problem becomes

Model problem 6

− d

dx

(

γLd u
L

dx

)

= f in [0, α[(3.5)

− d

dx

(

γRd u
R

dx

)

= f in]α, 1] (3.6)

uL(0) = g0, uR(1) = g1 (3.7)

[u] = gD, [γu′] = gN . (3.8)

3.1.1 Discretization

LetN be an integer, h = 1/(N+1) be the spatial step and x0, x1, . . . , xN , xN+1

be the equally spaced grid points, with xj = j h. Let J be such that
xJ ≤ α < xJ+1 (see Fig. 3.1). We write J = ⌊α⌋, where ⌊·⌋ denotes the
integer part. We will denote by Lj[w] the quadratic interpolant of w in
nodes {xj−1, xj, xj+1}. By uL

j [uR
j] we denote the component of the numeri-

cal solution which approximates uL(xj) [u
R(xj)], while we intend fj = f(xj),

γL
j = γL(xj), γ

R
j = γR(xj).

Let us discretize the system (3.7). Discretizing Equation (3.5) on nodes
x1, x2, . . . , xJ using central differences for the solution uL and linear interpo-
lation for the coefficient function γL, we obtain:

1

h2

(

γL
j− 1

2

(

uL
j − uL

j−1

)

+ γL
j+ 1

2

(

uL
j − uL

j+1

)

)

= fj, j = 1, . . . J, (3.9)

where γL
j+1/2 = (γL

j + γL
j+1)/2. In Eq. (3.9) for j = 1 the value uL

0 is given

by the Dirichlet condition (3.7): uL
0 = g0. It can be easily eliminated from

(3.9), but we will leave it in the system just for simplicity. The same applies
for uR

N discretizing Eq. (3.6) in node xN .
Eq. (3.9) for j = J needs to know the values of uL and γL in node xJ+1. Since
u′ and γ are discontinuous, we cannot use respectively uR

J+1 and γ
R
J+1, because

78 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

this may result in a loss of accuracy, since it smears out the coefficient γ and
the numerical solution itself, while both jump on the interface. Then we need
to add an additional grid point value for the numerical solution uL(xJ+1),
called ghost point value, and to extrapolate γL up to the first ghost point
xJ+1. The same argument holds for u

R and γR in their ghost point xJ , when
discretizing Eq. (3.6) in node xJ+1.
The unknowns of the numerical method are therefore the N + 4 quantities

uL
0 , . . . , u

L
J+1, u

R
J , . . . , u

R
N+1. (3.10)

This approach has been called Ghost Fluid Method and used in the context
of multi-fluid flows [41]. The two additional unknowns uL

J+1 and uR
J require

two additional boundary conditions to close the system, which are given by
the transmission conditions (3.4), resulting in a 2 × 2 sub-system. We will
not solve this sub-system for uL

J+1 and uR
J , but we instead leave it in the

whole linear system, which will be solved iteratively. The extrapolation for
the coefficient functions γL and γR is simple linear extrapolation:

γL
J+1 = 2 γL

J − γL
J−1, γR

J = 2 γL
J+1 − γL

J+2.

Using then central differences to discretize (3.5) and (3.6), linear and quadratic
interpolation to discretize respectively the two conditions (3.8), we obtain the
following second order (N + 4)× (N + 4) linear system:

uL
0 = g0 (3.11)

1

h2

(

γL
j− 1

2

(

uL
j − uL

j−1

)

+ γL
j+ 1

2

(

uL
j − uL

j+1

)

)

= fj j = 1, . . . J (3.12)
(

(1− ϑ)uR
J + ϑuR

J+1

)

−
(

(1− ϑ)uL
J + ϑuL

J+1

)

= gD (3.13)

γR
α L′J [uR](α)− γL

α L′J−1[uL](α) = gN (3.14)

1

h2

(

γR
j− 1

2

(

uR
j − uR

j−1

)

+ γR
j+ 1

2

(

uR
j − uR

j+1

)

)

= fj j = J + 1, . . . N

(3.15)

uR
N + 1 = g1, (3.16)

with γL
α and γR

α obtained by linear interpolation:

γL
α = (1− ϑ)γL

J + ϑγL
J+1, γR

α = (1− ϑ)γR
J + ϑγR

J+1

and ϑ = (α− xJ)/h ∈ [0, 1].
If we apply a simple iterative method such as Gauss-Seidel or Jacobi to this
linear system, in general it will not converge, unless we solve the 2× 2 sub-
system of transmission conditions, eliminating them from the whole system.

3.1. MODEL PROBLEM 79

This elimination is easy to perform in one dimension, but becomes quite
involved in higher dimension. Therefore, we prefer to work with the whole
linear system without eliminate transmission conditions from it, in order to
extend the method to higher dimension in Chapter 4. Then we have to find
a different approach to solve iteratively the previous linear system. This can
be done by relaxing the transmission conditions.

3.1.2 Relaxation scheme

In order to find a convergent iterative method to solve the linear system
(3.11)-(3.16), following the approach introduced in Sec. 2.2, we solve the
associate time-dependent problem in the unknowns uL(x, t) and uR(x, t) for
(x, t) ∈ [0, 1]× (0,+∞):

uL(0, t) = g0 (3.17)

∂uL

∂t
= µ

(

∂

∂x

(

γL∂u
L

∂x

)

+ f

)

, x ∈ [0, α[(3.18)

∂uL

∂t

∣

∣

∣

∣

x=α

= µN

([

γ
∂u

∂x

]

− gN

)

(3.19)

∂uR

∂t

∣

∣

∣

∣

x=α

= µD (gD − [u]) (3.20)

∂uR

∂t
= µ

∂

∂x

(

γR∂u
R

∂x

)

+ f, x ∈]α, 1] (3.21)

uR(1, t) = g1. (3.22)

where µ is a positive function, and µD and µN are two positive constants,
that will be set in Sec. 3.1.3 to satisfy some stability condition.
The choice of the sign of the two constants µD and µN is crucial and re-
quires some explanation. Roughly speaking, when replacing a vector equa-

tion F (w) = 0 for F : Rm → R
m by

·
ω= F (ω), we have to be sure that

the solution is asymptotically stable, i.e. that λ(∇ωF) < 0. Eq. (3.20) will
be used to compute uR

J , therefore the derivative of the right hand side of
Eq. (3.20) with respect to uR

J has to be negative, to ensure convergence to
equilibrium. Eq. (3.19) is used to determine uL

J+1 by a transport equation on
uL(x, t). Since xJ+1 > α the propagation speed µN γL associated to uL(x, t),
has to be positive.
We are obviously interested in the steady-state solution and the time t repre-
sents an iterative parameter. We observe that transmission conditions (3.19)

80 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

and (3.20) can be replaced by

∂uR

∂t

∣

∣

∣

∣

x=α

= µN

(

gN −
[

γ
∂u

∂x

])

∂uL

∂t

∣

∣

∣

∣

x=α

= µD ([u]− gD)

because both choices lead to the same steady state conditions.
To obtain a second order accurate solution in space we are allowed to dis-
cretize first order accurate the time derivative. Using forward Euler in time
and central differences in space for (3.18) and (3.21), we obtain (superscripts
L and R are omitted):

u
(m+1)
j = u

(m)
j + µj ∆t

fj −
γj− 1

2

(

u
(m)
j − u

(m)
j−1

)

+ γj+ 1

2

(

u
(m)
j − u

(m)
j+1

)

h2

 ,

(3.23)
where j = 1, . . . , J for uL and j = J + 1, . . . , N for uR. Choosing the
maximum time step allowed by the CFL condition for diffusion equation,
i.e., µj ∆t = h2/(γj+1/2 + γj−1/2), Eq. (3.23) becomes:

u
(m+1)
j =

1

γj− 1

2

+ γj+ 1

2

(

fj h
2 + γj− 1

2

u
(m)
j−1 + γj+ 1

2

u
(m)
j+1

)

, (3.24)

where j = 1, . . . , J for uL and j = J + 1, . . . , N for uR. Observe that such
equation is the one obtained by applying Jacobi iteration to Eqs. (3.12) and
(3.15).
Let us discretize Eq. (3.19). The time derivative is discretized by forward
Euler at the ghost point xJ+1, which is the quantity we want to compute.
The jump is discretized as in (3.14), so it is second order accurate. We obtain
the iteration:

u
L,(m+1)
J+1 = u

L,(m)
J+1 + µN∆t

(

γR
α L′J [uR,(m)](α)− γL

α L′J−1[uL,(m)](α)− gN
)

.
(3.25)

Likewise, in Eq. (3.20) we discretize the time derivative in xJ , obtaining:

u
R,(m+1)
J = u

R,(m)
J

+ µD∆t
(

(1− ϑ)u
L,(m)
J + ϑuJ+1)

L,(m) − (1− ϑ)u
R,(m)
J + ϑu

R,(m)
J+1 + gD

)

.

(3.26)

Iterations (3.24), (3.25) and (3.26) constitute the iterative scheme to solve
problem (3.1) to second order accuracy.

3.1. MODEL PROBLEM 81

3.1.3 Choosing constants µD and µN for transmission
conditions

In (3.25) and (3.26) two arbitrary constants µD and µN appear. Following
the same argument as in Sec. 2.2, such constants will be chosen in order to
satisfy some stability condition for the equation where they appear. This
procedure is not rigorous because it does not take into account the coupling
between the equations, and does not consist in a convergence proof. However,
in all numerical tests we performed, the conditions we find seem to guarantee
convergence.
Constant µD is introduced in Eq. (3.20), which is just a relaxation of the
jump condition. Then we require:

µD ∆t < 1. (3.27)

This condition will ensure positivity, and is a factor 2 more stringent than
just stability restriction. For practical purpose, we set µD ∆t = 0.9. In
order to obtain a condition on µN , we rewrite Eq. (3.19) as follows (we have
supposed for simplicity homogeneous jump gN = 0):

∂uL

∂t
+ µN γL ∂uL

∂x
= µN γR ∂uR

∂x
, t ∈ (0,∞). (3.28)

This is a simple convection equation with speed µN γL. Then a simple CFL
condition for convection equation might be

µN∆t ≤ h

γL
.

Numerical experiments show that this condition is not enough, especially in
the case γR/γL ≫ 1. An explanation of this behavior may be that the right-
hand side of (3.28) is not stationary when the convection evolves in time, but
it depends on time itself by uR. An acceptable condition is

µN ∆t ≤ h

max {γL, γR} . (3.29)

For practical purpose we choose µN ∆t = 0.9h/max
{

γL, γR
}

. Numerical
tests show that conditions (3.27) and (3.29) are sufficient for guarantee con-
vergence, but not necessary. A more detailed analysis is in progress.
Notice that µ∆t = O(h2), µN ∆t = O(h), µD∆t = O(1). Furthermore, only
the product of the constants times ∆t enters into the conditions, therefore
we may imagine that ∆t = 1.

82 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

3.2 Multigrid approach

The convergence of the iterative method proposed in Sec. 3.1.2 is usually
very slow. To accelerate the convergence we use a multigrid strategy. To
make the iteration scheme (3.24)-(3.26) a building block for an efficient multi-
grid solver, we must be sure that such iteration (relaxation scheme) has the
smoothing property, i.e. that after few steps, the error becomes smooth (not
necessarily small). Roughly speaking, the high-frequency components of the
error reduce quickly. We do not explain all multigrid features, but just what
is different from classical multigrid approach, remanding to the literature for
more details (e.g., see [105, 55, 27]). The iteration scheme (3.24)-(3.26) is
a Jacobi-like scheme, as mentioned in Sec. 3.1.2. Jacobi scheme is not a
good smoother, since high-frequency components of the error reduce slowly.
A good smoother is instead the Gauss-Seidel scheme. Then, we use a Gauss-
Seidel version of (3.24)-(3.26) as a relaxation scheme, i.e.

u
L,(m+1)
j =

1

γj− 1

2

+ γj+ 1

2

(

fj h
2 + γj− 1

2

u
L,(m+1)
j−1 + γj+ 1

2

u
L,(m)
j+1

)

,

j = 1, . . . , J (3.30)

u
L,(m+1)
J+1 = u

L,(m)
J+1 +µN∆t

(

γR
α L′J [uR,(m)](α)− γL

α L′J−1[ũL](α)− gN
)

(3.31)

u
R,(m+1)
J = u

R,(m)
J

+ µD∆t
(

(1− ϑ)u
L,(m+1)
J + ϑu

L,(m+1)
J+1 − (1− ϑ)u

R,(m)
J − ϑu

R,(m)
J+1 + gD

)

(3.32)

u
R,(m+1)
j =

1

γj− 1

2

+ γj+ 1

2

(

fj h
2 + γj− 1

2

u
R,(m+1)
j−1 + γj+ 1

2

u
R,(m)
j+1

)

,

j = J + 1, . . . , N (3.33)

where in (3.31) we intend ũL such that ũL
j = u

L,(m+1)
j for j < J + 1 and

ũL
J+1 = u

L,(m)
J+1 . The unknowns are updated in the same order reported in

(3.10).
In order to explain the multigrid approach, we just describe the two-grid cor-
rection scheme (TGCS), because all the other schemes, such as V -cycle, W -
cycle, F -cycle or Full Multigrid cycle, can be easily derived from it (see [105,

3.2. MULTIGRID APPROACH 83

Sections 2.4 and 2.6] for more details). Let us introduce teh following nota-
tion. For a grid of spatial step h, we denote:

J =
⌊α

h

⌋

, ϑ =
α

h
− J

S(Ωh) =
{

wh = (wL, wR) such that

wL : {x0, . . . , xJ+1} → R, wR : {xJ , . . . , xN+1} → R
}

◦

S (Ωh) =
{

wh = (wL, wR) such that

wL : {x1, . . . , xJ} → R, wR : {xJ+1, . . . , xN} → R
}

uh = ((uL
j)j=0,...,J+1, (u

R
j)j=J,...,N+1) ∈ S(Ωh)

γh = ((γL
j)j=0,...,J+1, (γ

R
j)j=J,...,N+1) ∈ S(Ωh)

fh ∈
◦

S (Ωh) such that fh(xj) = fj

Lh : S(Ωh)× S(Ωh) −→
◦

S (Ωh) such that

(Lh(γh,uh))j =
1

h2

(

γL
j− 1

2

(

uL
j − uL

j−1

)

+ γL
j+ 1

2

(

uL
j − uL

j+1

)

)

if j ≤ J

(Lh(γh,uh))j =
1

h2

(

γR
j− 1

2

(

uR
j − uR

j−1

)

+ γR
j+ 1

2

(

uR
j − uR

j+1

)

)

if j ≥ J+1

[·]Dh : S(Ωh) −→ R such that

[uh]
D
h =

(

(1− ϑ)uR
J + ϑuR

J+1

)

−
(

(1− ϑ)uL
J + ϑuL

J+1

)

[· , ·]Nh : S(Ωh)× S(Ωh) −→ R such that

84 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

[γh,uh]
N
h = γR

α L′J [uR](α)− γL
α L′J−1[uL](α)

The linear system (3.11)-(3.16) can be resumed as follows:

Lh(γh,uh) = fh

[uh]
D
h = gD

[γh,uh]
N
h = gN

uL
0 = g0

uR
N = g1.

For simplicity we assume that N + 1 = 1/h is a power of 2. The TGCS
consists into the following algorithm:

1. Set initial guess uh = 0.

2. Relax ν1 times on the finest grid: for k from 1 to ν1 do (3.30), (3.31),
(3.32).

3. Compute the defects rh ∈
◦

S (Ωh), g̃D, g̃N ∈ R:

rh = fh + Lh(γh,uh)

g̃D = gD − [uh]
D
h

g̃N = gN − [γh,uh]
N
h

4. Transfer the defect rh to a coarser grid with spatial step 2h by a suitable
restriction operator

r2h = Ih2h (rh) .

5. Solve exactly the residual problem on the coarser grid in the unknown
e2h ∈ S(Ω2h)

Lh(γ2h, e2h) = r2h

[e2h]
D
h = g̃D

[γ2h,u2h]
N
h = g̃N

eL0 = 0

eR(N+1)/2 = 0

6. Transfer the error to the finest grid by a suitable interpolation operator

eh = I2hh (e2h) .

3.2. MULTIGRID APPROACH 85

7. Correct the fine-grid approximation

uh = uh + eh.

8. Relax ν2 times on the finest grid: for k from 1 to ν2 do (3.30), (3.31),
(3.32).

To complete the description of TGCS, we have just to explain the steps
concerning grid migration (steps 4 and 6).

3.2.1 Transfer grid operators

In this section, we describe the transfer grid operators for vertex-centered
grid. Observe that coefficients γL and γR can be transferred in an exact
manner by a simple injection operator.

3.2.1.1 Restriction operator

Since such operator will act on the defect rh = (rLh , r
R
h) ∈

◦

S (Ωh) (step 4),
we perform the restriction from a fine grid to a coarser grid separately for
rLh and rRh . This is justified by the fact that the defect rLh of the left do-
main may be very different (after few relaxations) from the defect rRh of
the right domain, especially in the case of high jumping coefficient, i.e.,
max

{

γL
α/γ

R
α , γ

R
α /γ

L
α

}

>> 1. In addition, these defects are very different
also from the defects of jumping conditions g̃D and g̃N , because the opera-
tors scale with different power of h.

Let us describe the restriction of rLh by the operator
(

Ih2h
)L

(see Fig. 3.2).
Let xJ be the closest grid point to α from the left in the fine grid (see Fig.
3.1). Let x be a grid point of the coarse grid. If x < xJ we will use the
standard full-weighting restriction operator (FW):

(

Ih2h
)L

rLh (x) =
1

4

(

rh(x− h)L + 2 rh(x)
L + rh(x+ h)L

)

, (3.34)

while if x = xJ we reduce to an upwind linear convex combination from the
left direction:

(

Ih2h
)L

rLh (x) = ω1 r
L
h (x) + (1− ω1)r

L
h (x− h), (3.35)

since in x + h only rRh is defined and not rLh . In our tests we found that
ω1 = 1/2 gives better results than ω1 = 3/4.

The operator
(

Ih2h
)R

works in a similar manner: let xJ+1 the closest grid point

86 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

to α from the right in the fine grid. If x > xJ+1 we will use the standard
full-weighting restriction operator (FW):

(

Ih2h
)R

rRh (x) =
1

4

(

rh(x− h)R + 2 rh(x)
R + rh(x+ h)R

)

, (3.36)

while if x = xJ we reduce to an Upwind mean value from the left direction:

(

Ih2h
)R

rRh (x) =
1

2

(

rRh (x) + rRh (x+ h)
)

. (3.37)

The whole restriction reads

Ih2hrh =
(

(

Ih2h
)L

rLh ,
(

Ih2h
)R

rRh

)

.

In the upper part of Fig. 3.2 is represented the case in which we have to use
(3.35) and (3.36). The only other possible case is that we have to use (3.34)
and (3.37).

�� �

��

����������	
��������

���

��

�� �

��

��������	�
�������	���

���

�� �

��

��������	�
�������	���

���

Fig. 3.2: Fine and coarse grid for transfer operators. The dashed lines represent the
action of the restriction (top) and the interpolation (middle and bottom) operators.

3.2. MULTIGRID APPROACH 87

3.2.1.2 Interpolation operator

Since such operator will act on the correction e2h = (eL2h, e
R
2h) ∈ S(Ω2h) (step

4), we perform the interpolation from a coarse grid to a finer grid separately
for eL2h and eR2h (see middle and lower part of Fig. 3.2), but always using the
standard linear interpolation:

{

(

I2hh
)L

eL2h(xj) = eL2h(xj) if j is even
(

I2hh
)L

eL2h(xj) = 1
2

(

eL2h(xj−1) + eL2h(xj+1)
)

if j is odd.

{

(

I2hh
)R

eR2h(xj) = eR2h(xj) if j is even
(

I2hh
)R

eR2h(xj) = 1
2

(

eR2h(xj−1) + eR2h(xj+1)
)

if j is odd.

The whole interpolation reads

I2hh e2h =
(

(

I2hh
)L

eL2h,
(

I2hh
)R

eR2h

)

.

Remark. 1 (Coarser operator) We observe that the discrete operator
L2h on the coarser grid (step 5) is just the operator obtained discretizing
directly the continuous operator in the grid with spatial step 2h, and not the
operator obtained by Galerkin condition

L2h = Ih2h Lh I
2h
h .

The last approach, typical of algebraic multigrid, makes the algebraic prob-
lem more expensive from a computational point of view and does not take
advantage of the fact that the discrete problem comes from a continuous
problem.

Remark. 2 (V -cycle) The V -cycle algorithm is easily obtained from the
TGCS recursively, namely applying the same algorithm to solve the residual
equation in step 5. To terminate the recursion, an exact solver is used to
solve the residual problem when the grid achieves a fixed level of coarsening.
We denote by V (ν1, ν2)-cycle the V -cycle performed with ν1 pre-relaxations
and ν2 post-relaxations.

Remark. 3 (W -cycle) The W -cycle is similar to the V -cycle, with
the only difference that the residual problem is solved recursively two times
instead of one (in general schemes, δ times, but δ > 2 is considered useless
for practical purposes).

88 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

3.3 Numerical tests

In this section we confirm numerically the second order accuracy of the dis-
cretization of Sec. 3.1.1 and compute the convergence factor ρ of the multi-
grid approach for several examples, to confirm the independence of ρ from
the spatial step h and the magnitude of the jumping coefficient.
Second order accuracy is gained also for first derivative of the solution, as it
is shown by the comparison between exact first derivative and the numerical
derivative obtained by central difference of the numerical solution.
In all numerical tests, we choose an arbitrary interface α ∈]0, 1[and an
analytical expression of the exact solution u = (uL, uR) and of diffusion co-
efficient γ = (γL, γR). Then we reconstruct the data f , gD and gN , perform
the multigrid technique, and compare the numerical solution with the exact
solution to compute the order of accuracy by the slope of the best-fit line.
In all our tests we use the following stopping criterion for the V−cycle

∥

∥

∥
u
(m+1)
h − u

(m)
h

∥

∥

∥

∞
∥

∥

∥
u
(m+1)
h

∥

∥

∥

∞

≤ TOL.

This will ensure that the actual relative error satisfies
∥

∥

∥e
(m+1)
h

∥

∥

∥

∞

‖eh‖∞
≤ ρ

TOL

1− ρ
.

The tolerance we used is TOL = 10−6, which ensures that the error in the
solution of the algebraic system is always lower than truncation error. For
each example we show a table in which we list the errors, and the value in the
third [fifth] column and i-th row of the table indicates the accuracy order,
computed as log2 (ei−1/ei), where ei is the L

∞-error of the numerical solution
[derivative] indicated in the second [fourth] column and i-th row.
To compute the asymptotic convergence factor, we use the following estimate:

ρ = ρ(m) =

∥

∥

∥
r
(m)
h

∥

∥

∥

∞
∥

∥

∥
r
(m−1)
h

∥

∥

∥

∞

,

which is reliable for m large. In order to avoid difficulties related to numeri-
cal instability due to machine precision, we will always use the homogeneous
model problem as a test when we want to compute the asymptotic conver-
gence factor, namely Eq. (3.1) with f = g0 = g1 = 0 and homogeneous

3.3. NUMERICAL TESTS 89

jump conditions, and perform the multigrid algorithm starting from an ini-
tial guess different from zero. Since in this case we are just interested in the
convergence factor and not in the numerical solution itself (which approaches
zero), a reasonable stop criterion will be

∣

∣ρ(m) − ρ(m−1)
∣

∣

ρ(m)
< 10−2.

Several tests are performed for each example, based on the different size of
the finest and coarsest grids. The finest grid is obtained dividing the domain
[0, 1] into N + 1 intervals, while the coarsest grid is obtained dividing the
domain into Nc + 1 intervals.

3.3.1 Example 1

We choose (see Fig. 3.3)

α = 0.343,

{

uL = esin(5πx)

uR = ex
2 ,

{

γL = 3 + cos(5πx)
γR = 109 (10 + sin(5πx))

.

Fig. 3.4 shows the numerical results and the second order slope of the best-fit
line for the L∞-error of the numerical solution and its derivative. Table 3.1
shows the convergence factor for different values of N and Nc.

0 0.5 1

0

0.5

1

1.5

2

2.5

3

exact solution

numerical solution

0 0.5 1

-25

-20

-15

-10

-5

0

5

10

15

20

25

exact first derivative

numerical first derivative

0 0.5 1
0

5

10

15

× 10
9

γ ���������	�
�	�
��

0 0.5 1
-15

-10

-5

0

5

× 10
10

���	
��
���

Fig. 3.3: We refer to Ex. 3.3.1. The data are computed for N = 64.

3.3.2 Example 2

We choose (see Fig. 3.5)

α = 0.743,

{

uL = esin(5πx)

uR = ex
2 ,

{

γL = 3 + cos(5πx)
γR = 109 (10 + sin(5πx))

.

90 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

�������

�
�
�
�
�
��
		
�
	

 � �

���

�

���

�

���

�

���

�

��

���

�		�	����������������

��������������
���

�������
�
�
�
�
�
��
		
�
	

 � �

�

���

�

���

�

��

���

�

���

�
�		�	����������	�����	�������

��������������
���

N + 1 ‖u− uh‖∞ order ‖u′ − u
′
h‖∞ order

64 1.87 ·10−2 - 3.33 ·10−1 -
128 4.59 ·10−3 2.03 8.38 ·10−2 1.99
256 1.13 ·10−3 2.02 2.12 ·10−2 1.98
512 2.77 ·10−4 2.03 5.35 ·10−3 1.99
1024 6.95 ·10−5 2.00 1.34 ·10−3 2.00
2048 1.73 ·10−5 2.01 3.36 ·10−4 1.99
4096 4.48 ·10−6 1.95 8.21 ·10−5 2.03
8192 1.11 ·10−6 2.01 2.07 ·10−5 1.99

Fig. 3.4: We refer to Ex 3.3.1. Left: Representation of the L∞-error of
the numerical solution and its derivative. The slope of the best-fit lines
is respectively s = −2.00 and s = −2.00. Right: List of errors and order
of accuracy computed by subsequent errors.

Table 3.1: Measured V (1, 1)-cycle convergence factor for the numerical
test of Ex. 3.3.1. We use N +2 number of grid points in the finest grid;
Nc + 2 number of grid points in the coarsest grid.

N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.15 0.16 0.15 0.17 0.19 0.15 0.15 0.15
32 0.14 0.12 0.17 0.19 0.15 0.15 0.15
64 0.07 0.16 0.19 0.15 0.15 0.15
128 0.11 0.17 0.15 0.15 0.15

The only difference with respect to the previous example is the value of α.
Fig. 3.6 shows the numerical results and the second order slope of the best-fit

3.3. NUMERICAL TESTS 91

line for the L∞-error of the numerical solution and its derivative. Table 3.2
shows the convergence factor for different values of N and Nc.

0 0.5 1

0

0.5

1

1.5

2

2.5

3

exact solution

numerical solution

0 0.5 1

-25

-20

-15

-10

-5

0

5

10

15

20

25

exact first derivative

numerical first derivative

0 0.5 1
0

5

10

15

× 10
9

0 0.5 1
-15

-10

-5

0

5

× 10
10

source term fγ ���������	�
�	�
��

Fig. 3.5: We refer to Ex. 3.3.2. The data are computed for N = 64.

Table 3.2: Measured V (1, 1)-cycle convergence factor for the numerical
test of Ex. 3.3.2. We use N +2 number of grid points in the finest grid;
Nc + 2 number of grid points in the coarsest grid.

N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.13 0.13 0.11 0.14 0.15 0.15 0.15 0.15
32 0.13 0.11 0.15 0.15 0.15 0.15 0.15
64 0.11 0.13 0.15 0.15 0.15 0.15
128 0.15 0.15 0.15 0.15 0.15

3.3.3 Example 3

We choose (see Fig. 3.7)

α = 0.283

{

uL = esin(5πx)

uR = ex
2 ,

{

γL = 109 (10 + sin(5πx))
γR = 3 + cos(5πx)

.

Fig. 3.8 shows the numerical results and the second order slope of the best-fit
line for the L∞-error of the numerical solution and its derivative. Table 3.3
shows the convergence factor for different values of N and Nc.

92 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

�������

�
�
�
�
�
��
		
�
	

 � �

���

�

���

�

���

�

���

�

��

���

�		�	����������������

��������������
���

�������
�
�
�
�
�
��
		
�
	

 � �

�

���

�

���

�

��

���

�

���

�
�		�	����������	�����	�������

��������������
���

N + 1 ‖u− uh‖∞ order ‖u′ − u
′
h‖∞ order

64 1.86 ·10−2 - 3.38 ·10−1 -
128 4.63 ·10−3 2.01 8.38 ·10−2 2.01
256 1.15 ·10−3 2.01 2.10 ·10−2 2.00
512 2.86 ·10−4 2.01 5.26 ·10−3 2.00
1024 7.24 ·10−5 1.98 1.30 ·10−3 2.01
2048 1.80 ·10−5 2.01 3.28 ·10−4 1.99
4096 4.48 ·10−6 2.01 8.21 ·10−5 2.00
8192 1.12 ·10−6 2.00 2.05 ·10−5 2.00

Fig. 3.6: We refer to Ex 3.3.2. Left: Representation of the L∞-error of
the numerical solution and its derivative. The slope of the best-fit lines
is respectively s = −2.00 and s = −2.00. Right: List of errors and order
of accuracy computed by subsequent errors.

0 0.5 1

0

0.5

1

1.5

2

2.5

3

exact solution

numerical solution

0 0.5 1

-25

-20

-15

-10

-5

0

5

10

15

20

25

exact first derivative

numerical first derivative

0 0.5 1
0

5

10

15

× 10
9

0 0.5 1
-5

0

5

10

× 10
12

source term fγ ���������	�
�	�
��

Fig. 3.7: We refer to Ex. 3.3.3. The data are computed for N = 64.

3.3.4 Example 4

We choose (see Fig. 3.9)

α = 0.813,

{

uL = ex
2

uR = esin(5πx)
,

{

γL = 109 (10 + sin(5πx))
γR = 3 + cos(5πx)

.

3.3. NUMERICAL TESTS 93

�������

�
�
�
�
�
��
		
�
	

 � �

���

�

���

�

���

�

���

�

��

���

�		�	����������������

��������������
���

�������

�
�
�
�
�
��
		
�
	

 � �

�

���

�

���

�

��

���

�

���

�
�		�	����������	�����	�������

��������������
���

N + 1 ‖u− uh‖∞ order ‖u′ − u
′
h‖∞ order

64 2.07 ·10−2 - 3.15 ·10−1 -
128 5.15 ·10−3 2.01 7.76 ·10−2 2.02
256 1.20 ·10−3 2.10 1.90 ·10−2 2.03
512 2.19 ·10−4 2.46 5.57 ·10−3 1.77
1024 6.10 ·10−5 1.84 1.33 ·10−3 2.07
2048 1.76 ·10−5 1.79 3.09 ·10−4 2.11
4096 5.05 ·10−6 1.80 7.60 ·10−5 2.02
8192 1.22 ·10−6 2.05 1.86 ·10−5 2.03

Fig. 3.8: We refer to Ex 3.3.3. Left: Representation of the L∞-error of
the numerical solution and its derivative. The slope of the best-fit lines
is respectively s = −2.01 and s = −2.00. Right: List of errors and order
of accuracy computed by subsequent errors.

Table 3.3: Measured V (1, 1)-cycle convergence factor for the numerical
test of Ex. 3.3.3. We use N +2 number of grid points in the finest grid;
Nc + 2 number of grid points in the coarsest grid.

N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.09 0.10 0.12 0.15 0.15 0.15 0.15 0.15
32 0.09 0.10 0.15 0.15 0.15 0.15 0.15
64 0.12 0.15 0.15 0.15 0.15 0.15
128 0.13 0.15 0.15 0.15 0.15

Fig. 3.10 shows the numerical results and the second order slope of the best-
fit line for the L∞-error of the numerical solution and its derivative. Table
3.4 shows the convergence factor for different values of N and Nc.

94 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

0 0.5 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

exact solution

numerical solution

0 0.5 1

-25

-20

-15

-10

-5

0

5

10

15

20

25

exact first derivative

numerical first derivative

0 0.5 1
0

5

10

15

× 10
9

0 0.5 1
-15

-10

-5

0

5

× 10
10

source term fγ ���������	�
�	�
��

Fig. 3.9: We refer to Ex. 3.3.4. The data are computed for N = 64.

�������

�
�
�
�
�
��
		
�
	

 � �

���

�

���

�

���

�

���

�

��

���

�		�	����������������

������������������

�������

�
�
�
�
�
��
		
�
	

 � �

�

���

�

���

�

��

���

�

���

�
�		�	����������	�����	�� ����

��������������
���

N + 1 ‖u− uh‖∞ order ‖u′ − u
′
h‖∞ order

64 1.59 ·10−2 - 3.46 ·10−1 -
128 3.99 ·10−3 2.00 8.74 ·10−2 1.98
256 9.66 ·10−4 2.05 2.22 ·10−2 1.98
512 2.23 ·10−4 2.12 5.74 ·10−3 1.95
1024 5.25 ·10−5 2.08 1.47 ·10−3 1.97
2048 1.68 ·10−5 1.64 3.31 ·10−4 2.15
4096 4.12 ·10−6 2.03 8.36 ·10−5 1.98
8192 9.87 ·10−7 2.06 2.13 ·10−5 1.97

Fig. 3.10: We refer to Ex 3.3.4. Left: Representation of the L∞-error of
the numerical solution and its derivative. The slope of the best-fit lines
is respectively s = −1.99 and s = −2.00. Right: List of errors and order
of accuracy computed by subsequent errors.

3.3.5 Independence of convergence factor from the jump
in the coefficient

In this section we show that the convergence factor does not depend on the
jump in the coefficient. We choose

α = 0.543,

{

uL = 0
uR = 0

,

{

γL = 10p

γR = 1

3.3. NUMERICAL TESTS 95

Table 3.4: Measured V (1, 1)-cycle convergence factor for the numerical
test of Ex. 3.3.4. We use N +2 number of grid points in the finest grid;
Nc + 2 number of grid points in the coarsest grid.

N+1 32 64 128 256 512 1024 2048 4096

Nc+1

16 0.17 0.12 0.14 0.18 0.17 0.15 0.16 0.15
32 0.11 0.14 0.16 0.15 0.15 0.15 0.15
64 0.06 0.14 0.15 0.15 0.15 0.15
128 0.12 0.15 0.15 0.15 0.15

and start the multigrid process with an initial guess different from zero, in
order to compute the asymptotic convergence factor. We list the results in
Table 3.5.

Table 3.5: Measured V (1, 1) asymptotic convergence factors for a prob-
lem with a jumping coefficient of the order 10p

p 0 1 2 3 4 5

ρ 0.11 0.10 0.11 0.11 0.11 0.10

Remark. (Comparison with Domain Decomposition Method)
Domain Decomposition Method (DDM) is another iterative method to solve
elliptic problems with discontinuous coefficient, based on solving iteratively
the two subproblems

− ∂

∂x

(

γL∂u
L,(m+1)

∂x

)

= f in [0, α[

uL,(m+1)(0) = g0
uL,(m+1)(α) = uR,(m)(α)

− ∂

∂x

(

γR∂u
R,(m+1)

∂x

)

= f in]α, 1]

γR ∂uR,(m+1)(α)

∂x
= γL ∂uL,(m+1)(α)

∂x
uR,(m+1)(1) = g1

until convergence. A little drawback of this method is that, in order to
guarantee the convergence, it must be α > 0.5 (see [92, pag. 12]). Our
method may be regarded as a DDM, but in place of solving a subproblem to
provide the right-hand side for the other subproblem (and so on iteratively),
we just perform a relaxation on a subproblem, and with the guess obtained

96 CHAPTER 3. DISCONTINUOUS COEFFICENTS: 1D CASE

we build the right-hand side of the other subproblem, as it can be seen in Sec.
3.1.2. With this relaxing strategy, the convergence is always guaranteed, as
showed in numerical tests.

Chapter 4
Discontinuous coefficients: 2D case

In this chapter we describe the discretization and the multigrid technique to
solve the elliptic problem with discontinuous coefficient in higher dimension.
Some general aspects are a straightforward extension from the one dimen-
sional case described in the previous chapter, such as the discretization of
inner equations, the ghost-technique for interface transmission conditions,
the kind of multigrid cycling. On the other hand, some specific aspects have
to be adapted in a suitable way to the high dimensional case, such as the
choice of the nine-point stencil for the transmission conditions (that, as we
will see, it is not a straightforward extension of the continuous coefficient
case), the defect extension far from the interface for both sides, the coarsest
grid direct solver.

4.1 Model Problem

Let D = [−1, 1]2 be the computational domain and Ω ⊂ D be a domain such
that ∂Ω ∩ ∂D = ∅. Let us consider a partition Ω = Ω− ∪ Ω+, i.e. Ω+ and

Ω− are two non-empty domains such that
◦

Ω− ∩
◦

Ω+= ∅ (see Fig. 4.1). Let Γ
be the interface separating the two subdomains, i.e. Γ = ∂Ω− ∩ ∂Ω+, while
the boundary is ∂Ω. Considering the description of Chapter 3, the equivalent
problem of the Model Problem 6 (3.5)-(3.8) is the following:

Model problem 7

−∇ · (β±∇u±) = f± in Ω±

[[u]] = gD on Γ
[[

β
∂u

∂n

]]

= gN on Γ

u = g on ∂Ω

(4.1)

97

98 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

�
�

�
�

�

�
�

�
�

� �� �
�

�
�

�
�

Fig. 4.1: Domain partition Ω = Ω− ∪ Ω+ and the interface Γ separating the two
subdomains along which we impose the jump conditions.

With [[·]] we denote the jump across the interface Γ, i.e.
[[ω]] (x̄, ȳ) = lim

Ω+∋(x,y)→(x̄,ȳ)
ω+(x, y)− lim

Ω−∋(x,y)→(x̄,ȳ)
ω−(x, y).

The domains and the interface are implicitly known by two level set functions
φ and φΓ in such a way:

Ω = {(x, y) : φ(x, y) < 0} ,
Ω− =

{

(x, y) : φΓ(x, y) < 0 and φ(x, y) < 0
}

,

Ω+ =
{

(x, y) : φΓ(x, y) >= 0 and φ(x, y) < 0
}

,

Γ =
{

(x, y) : φΓ(x, y) = 0 and φ(x, y) < 0
}

.

(4.2)

The level-set treatment of Sec. 1.1.1 can be repeated here for both level-
set functions φ and φΓ. The normal vectors are:

nΩ =
∇φ

|∇φ| , nΓ =
∇φΓ

|∇φΓ| .

4.1.1 Notation

Let us consider the notation introduced in Section 1.1 and add some further
definitions. Let Ω+

h = Ω+ ∩Dh and Ω
−
h = Ω− ∩Dh be the discrete versions

of Ω+ and Ω− respectively. Let Γ++h be the set of the ghost points for Ω+,
namely the grid points outside Ω+ and belonging to some five-point stencil
centered in a grid point inside Ω+, i.e.

(x, y) ∈ Γ++h ⇐⇒ (x, y) ∈ Dh\Ω+
h and {(x± h, y), (x, y ± h)} ∩ Ω+

h 6= ∅.
Similarly we define Γ−−h the set of the ghost points for Ω−, and Γh the set
of the ghost points for Ω. Let us define Γ−h = Γ−−h \Γh and Γ+h = Γ++h \Γh.
We call N+

i =
∣

∣Ω+
h

∣

∣, N+
g =

∣

∣Γ+h
∣

∣, N−
i =

∣

∣Ω−h
∣

∣, N−
g =

∣

∣Γ−h
∣

∣, Ng = |Γh|,
N++

i =
∣

∣Γ++h

∣

∣, N−−
i =

∣

∣Γ−−h
∣

∣.

4.2. DISCRETIZATION OF THE PROBLEM 99

4.2 Discretization of the problem

The final linear system coming from the discretization of the problem will
consist in a (N+

i +N+
g +N−

i +N−
g +Ng)× (N+

i +N+
g +N−

i +N−
g +Ng) linear

system. The N−
i equations coming from the grid points of Ω−h are obtained

by usual central differences:

β−i+1/2,j
(

u−i,j − u−i+1,j
)

+ β−i−1/2,j
(

u−i,j − u−i−1,j
)

+

β−i,j+1/2
(

u−i,j − u−i,j+1
)

+ β−i,j−1/2
(

u−i,j − u−i,j−1
)

= f−i,j h
2 (4.3)

where β−i±1/2,j = (β−i,j + β−i±1,j)/2, β
−
i,j±1/2 = (β−i,j + β−i,j±1)/2. Similarly, we

write an equation for each grid point of Ω+
h .

β+i+1/2,j
(

u+i,j − u+i+1,j
)

+ β+i−1/2,j
(

u+i,j − u+i−1,j
)

+

β+i,j+1/2
(

u+i,j − u+i,j+1
)

+ β+i,j−1/2
(

u+i,j − u+i,j−1
)

= f+i,j h
2 (4.4)

Therefore, to close the linear system, we must write an equation for each
ghost point G ∈ Γh ∪ Γ+h ∪ Γ−h .

�

�
� �� �

� ������

�

���

���

Fig. 4.2: In this figure G ∈ Γ−h . The
blue nine-point stencil is contained
in Ω+

h ∪Γ+

h and serves for interpolat-
ing ũ+; the red nine-point stencil is
contained in Ω−h ∪ Γ−h and serves for
interpolating ũ−.

�

�

�

�

�

�

� ������

�

���

���

Fig. 4.3: In this figure G ∈ Γ−h .
The nine-point stencil contained in
Ω+

h ∪ Γ+

h serving to interpolate ũ+

has been reduced to the blue three-
point stencil.

4.2.1 Discretization of interface/boundary conditions

Let G ∈ Γh. Then, we discretize the boundary condition on Ω, i.e. the fourth
equation of (4.1). For such discretization we follow the algorithm described
in Sec. 1.2.1.

100 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

Let G ∈ Γ−h ∪Γ+h , we discretize the interface conditions (second and third
equations of (4.1)). Let us explain such a discretization in details.

We compute an approximation of the unit normal vector to Γ in G point-
ing from Ω− to Ω+, that is nΓG =

(

∇φΓ/
∣

∣∇φΓ
∣

∣

)∣

∣

G
, using a second order

accurate discretization for ∇φΓ, such as central differences in G. Now we
can compute the closest interface point to G, that we call I, as:

I = G− nG · φ(G). (4.5)

The equation of the linear system for the ghost point G is obtained dis-
cretizing one of the jump conditions (second and third equation of (4.1)):
more precisely, if G ∈ Γ−h we use one of the two jump conditions, while if
G ∈ Γ+h we use the other jump condition. Which jump condition has to
be used in each case constitutes a choice, that can be based, for example,
on the condition number of the resulting linear system. In fact, it is pre-
ferred to use the jump in the flux (third equation in (4.1)) if G is the ghost
point for the domain where the coefficient β is greater, in order to obtain
a better conditioned linear system. In order to better explain this fact, let
us suppose we want to discretize the equation for the ghost point G ∈ Γ−

and that β− < β+. If we discretize the jump in the flux (third equation of
(4.1)) to construct the equation of the linear system, then the diagonal entry
is multiplied by β−, while some of the off-diagonal entries are multiplied by
β+ > β−, leading to ill-conditioned system.

Therefore:

• if
{

G ∈ Γ+h and β+(I) < β−(I)
}

or
{

G ∈ Γ−h and β+(I) > β−(I)
}

, then
the equation for the ghost point G is obtained from [[u]] (I) = gD(I):

ũ+h (I)− ũ−h (I) = gD(I) (4.6)

• otherwise, it is obtained from

[[

β
∂u

∂n

]]

(I) = gN(I):

(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣
∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

= gN(I) (4.7)

where ũ+h (resp. ũ−h) is the biquadratic interpolant of u
+
h (resp. u−h) in a

suitable nine-point stencil contained in Ω+
h ∪ Γ++h (resp. Ω−h ∪ Γ−−h), and φ̃h

is the biquadratic interpolant of φ in a any nine-point stencil surrounding I.
What is left is the choice of the nine-point stencils contained in Ω−h ∪ Γ−−h
and Ω+

h ∪ Γ++h .

4.2. DISCRETIZATION OF THE PROBLEM 101

4.2.1.1 Choice of the nine-point stencil

Let us suppose that G ∈ Γ−h (the case G ∈ Γ+h is treated similarly). The
nine-point stencil contained in Ω−h ∪ Γ−−h is chosen in upwind direction, i.e.:

St9 =
{

G+ h(sx k1, sy k2) : (k1, k2) ∈ {0, 1, 2}2
}

, (4.8)

where sx = sgn(xI − xG) and sy = sgn(yI − yG), with G ≡ (xG, yG) and
I ≡ (xI , yI). Such stencil can be modified according to the Remark 3 of Sec.
1.2.1.3.

The nine-point stencil contained in Ω+
h ∪ Γ++h will be set as follows: if

|xG − xI | ≥ |yG − yI | (as in Figs. 4.2 and 4.3) it will be composed by three
points of the row j − 1, three points of the row j, three points of the row
j+1; while if |xG−xI | < |yG− yI | it will be composed by three points of the
column i− 1, three points of the column i, three points of the column i+ 1.
Let us suppose |xG − xI | ≥ |yG − yI | (the opposite case is treated similarly).
Then:

• The three points of the row j are:

(i− 1, j)h, (i, j)h, (i+ 1, j)h.

Since (i, j)h ≡ G ∈ Ω+
h , such three points belong to Ω

+
h ∪ Γ++h .

• The three points of the row j + 1 are

(i− 1, j + 1)h, (i, j + 1)h, (i+ 1, j + 1)h

if all of them belong to Ω+
h ∪ Γ++h , otherwise we choose one of the

following two triples:

{(i− 2, j + 1)h, (i− 1, j + 1)h, (i, j + 1)h} or

{(i, j + 1)h, (i+ 1, j + 1)h, (i+ 2, j + 1)h}
if one of them is contained in Ω+

h ∪Γ++h , otherwise we reduce the stencil
as described later.

• The three points of the row j − 1 are

(i− 1, j − 1)h, (i, j − 1)h, (i+ 1, j − 1)h

if all of them belong to Ω+
h ∪Γ+h , otherwise we choose one of the following

two triples:

{(i− 2, j − 1)h, (i− 1, j − 1)h, (i, j − 1)h} or

{(i, j − 1)h, (i+ 1, j − 1)h, (i+ 2, j − 1)h}
if one of them is contained in Ω+

h ∪Γ++h . otherwise we reduce the stencil
as described later.

102 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

If it is not possible to build the nine-point stencil, we revert to a more robust
(less accurate) three-point stencil (Fig. 4.3):

(i, j)h, (i− 1, j)h, (i, j − 1)h.

Note that these three points belong to Ω+
h ∪ Γ++h , since G ≡ (i, j)h ∈ Ω+

h .
If G ∈ Γ−h the procedure is the same, provided to interchange the sub-

scripts + and −.

4.3 Multigrid approach

4.3.1 Relaxation scheme

As in Sec. 3.1.2 for 1D problems, the relaxation scheme is obtained discretiz-
ing the following associate time-dependent problem in space and time:

∂u±

∂t
= µ±

(

f± +∇ ·
(

β±∇u±
))

in Ω±

∂us1

∂t
= µD (gD − [[u]]) on Γ

∂us2

∂t
= µN

(

gN −
[[

β
∂u

∂n

]])

on Γ

∂u

∂t
= µB (g − u) on ∂Ω

(4.9)

where s1, s2 ∈ {−,+} and s1 6= s2. The choice of s1 and s2 depends on
the value of β in order to better precondition the linear system, as explained
in Sec. 4.2.1. In details:

s1 = +, s2 = − if β+ < β−,

s1 = −, s2 = + if β+ ≥ β−.

Let us describe such a relaxation scheme in details. For inner equations, the
relaxation scheme is straightforward. Let us consider, for instance, a grid
point (i, j)h ∈ Ω−h . The iterative scheme for such a point is obtained by the
first equation of (4.9) and by (4.3):

u
− (n+1)
i,j = u

− (n)
i,j + µ−i,j ∆t f−i,j

+
µ−i,j ∆t

h2

(

β−i+1/2,j

(

u
− (n)
i,j − u

− (n)
i+1,j

)

+ β−i−1/2,j

(

u
− (n)
i,j − u

− (n)
i−1,j

)

+β−i,j+1/2

(

u
− (n)
i,j − u

− (n)
i,j+1

)

+ β−i,j−1/2

(

u
− (n)
i,j − u

− (n)
i,j−1

))

(4.10)

4.3. MULTIGRID APPROACH 103

where µ−i,j is chosen in such a way it becomes a Jacobi-like scheme, i.e.:

µ−i,j∆t =
h2

β−i−1/2,j + β−i+1/2,j + β−i,j−1/2 + β−i,j+1/2
.

If (i, j)h ∈ Ω−h the iteration scheme is straightforward to obtain, according
to replace the subscript − with +:

u
+ (n+1)
i,j = u

+ (n)
i,j + µ+i,j ∆t f+i,j

+
µ+i,j ∆t

h2

(

β+i+1/2,j
(

u+i,j − u+i+1,j
)

+ β+i−1/2,j
(

u+i,j − u+i−1,j
)

+β+i,j+1/2
(

u+i,j − u+i,j+1
)

+ β+i,j−1/2
(

u+i,j − u+i,j−1
)

)

(4.11)

Now, let us consider a ghost point G ∈ Γh. Therefore, the iterative
scheme for G is obtained from the fourth equation of (4.9) and it is similar
to Eq. (2.16), i.e.:

u
(n+1)
G = u

(n)
G + µB ∆t

(

g(B)− u
(n)
h (B)

)

, (4.12)

where B is the projection point on the boundary ∂Ω starting from the ghost
point G and obtained by the signed distance function φ:

B = G− φ(G)
∇φ

|∇φ| ,

where ∇φ is discretized by central differences in G. Note that the value of
uG indeed refers to u−G or u+G if respectively B ∈ ∂Ω− or B ∈ ∂Ω+.

If G ∈ Γ−h , the iterative scheme for G is obtained by the second or third
equation of (4.9), more precisely, the second equation if s1 = −, the third
equation if s2 = −. This choice is in accord with the discretization of the
interface conditions described in Sec. 4.2.1. Recalling the choice (4.6) or
(4.7), and the (4.5), we summarize as follows:

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ−h is:

u
− (n+1)
G = u

− (n)
G + µD ∆t

(

gD(I)−
(

ũ+h (I)− ũ−h (I)
))

(4.13)

• otherwise, it is:

u
− (n+1)
G = u

− (n)
G +µN∆t

gN(I)−
(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣
∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

(4.14)

104 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

On the contrary, the iterative equation for a ghost point G ∈ Γ+h will be
set as follows.

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ+h is:

u
+ (n+1)
G = u

+ (n)
G +µN∆t

gN(I)−
(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣
∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

(4.15)

• otherwise, it is:

u
+ (n+1)
G = u

+ (n)
G + µD ∆t

(

gD(I)−
(

ũ+h (I)− ũ−h (I)
))

(4.16)

Up to now, nothing has been said about the sign of the constants µD,
µN and µB. Actually, this is a crucial point in order to make the whole
iterative process convergent. What we request for stability is, in fact, that
the coefficient of the right-hand side with respect to the variable on which
we are iterating is positive and less than one. For example, let us consider
the iteration (4.13). We are iterating on the variable u−G and the coefficient
of the right-hand side with respect to this variable is:

c−G = 1 + µD ∆t coeff(ũ−h (I), u
−
G).

Then, we impose that 0 < c−G < 1. The condition c−G < 1 is ensured by
µD < 0, while the condition 0 < c−G implies

−µD ∆t <
1

coeff(ũ−h (I), u
−
G)

.

This condition must holds for every possible value of coeff(ũ−h (I), u
−
G) (such

value depends in fact on the vector G − I), then for its maximum value,
which is one. Ultimately, the conditions are:

µD < 0, −µD∆t < 1. (4.17)

By the same argument, let us consider the iteration (4.14). We are iterat-
ing on the variable u−G and the coefficient of the right-hand side with respect
to this variable is:

c−G = 1 + µN ∆t cinterpG , with cinterpG = coeff

β−∇ũ−h (I) ·
∇φ̃h(I)
∣

∣

∣∇φ̃h(I)
∣

∣

∣

, u−G

 .

4.3. MULTIGRID APPROACH 105

Let us impose 0 < c−G < 1. The condition c−G < 1 is satisfied if µN < 0. In
fact, we observe that, since the nine-point stencil for the biquadratic interpo-
lation ũh is chosen in Upwind direction (see (4.8)), therefore the coefficient
cinterpG is positive if and only if the normal vector

ñI =
∇φ̃h(I)
∣

∣

∣
∇φ̃h(I)

∣

∣

∣

points from Ω− to Ω+, i.e. points outside the domain related to the variable
we are interpolating (in this case ũ−h , and the related domain is therefore
Ω−). Since we have chosen such a direction for the normal vector (i.e. from
Ω− to Ω+, see Fig. 4.1 and Eq. (4.2)), we have cinterpG > 0, which implies

µN < 0. Condition 0 < c−G implies −µN ∆t <
(

cinterpG

)−1
. As before, since it

has to be satisfied for all possible values of cinterpG , the final conditions read:

µN < 0, −µN ∆t

h
<

2

3
√
2 β−

, (4.18)

By the same argument, the conditions for the iterative equation (4.15)
are (now we are itearting on the variable u+G):

µN < 0, −µN ∆t

h
<

2

3
√
2 β+

, (4.19)

while, for the iteration (4.16) they are:

µD > 0, µD ∆t < 1. (4.20)

Finally, observe that the condition on µB is (see (4.12)):

µB > 0, µB ∆t < 1. (4.21)

4.3.1.1 Changing of notation

For the clarity, we want to keep a suitable notation such that constants
µD and µN are always positive. To this purpose, we change the associate
time-dependent problem (4.9) and the iteration equations of the interface
conditions (4.13)-(4.16) as follows:

106 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

∂u±

∂t
= µ±

(

f± +∇ ·
(

β±∇u±
))

in Ω±

∂us1

∂t
= s1 µD (gD − [[u]]) on Γ

∂us2

∂t
= µN

([[

β
∂u

∂n

]]

− gN

)

on Γ

∂u

∂t
= µB (g − u) on ∂Ω

(4.22)

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ−h is:

u
− (n+1)
G = u

− (n)
G − µD ∆t

(

gD(I)−
(

ũ+h (I)− ũ−h (I)
))

(4.23)

• otherwise, it is:

u
− (n+1)
G = u

− (n)
G −µN∆t

gN(I)−
(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣
∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

(4.24)

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ+h is:

u
+ (n+1)
G = u

+ (n)
G −µN∆t

gN(I)−
(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣
∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

(4.25)

• otherwise, it is:

u
+ (n+1)
G = u

+ (n)
G + µD ∆t

(

gD(I)−
(

ũ+h (I)− ũ−h (I)
))

(4.26)

Observe that we abused of notation: in fact, at the beginning of the right-
hand side of the second equation of (4.22), we intend by s1 = +1 if s1 = 1,
and s1 = −1 if s1 = −.

4.3.2 Choosing constants µB, µD and µN

The condition on the positive constant µB remains the (4.21).
With the new notation introduced in the previous section 4.3.1.1, the con-

ditions on the constants µD and µN (4.17), (4.18), (4.19) and (4.19) change

4.3. MULTIGRID APPROACH 107

accordingly. As we pointed out in Sec. 3.1.3 for 1D problems, also in 2D
the conditions (4.18) and (4.19) does not turn out to be sufficient for the
convergence, as we proved by numerical experiments. Therefore, also in this
case we have to switch to a more stringent condition, which is equivalent to
the 1D condition (3.29). The final conditions on the positive constants µD

and µN are then:

µD ∆t < 1,
µN ∆t

h
<

2

3
√
2 max {β−, β+}

.

4.3.3 Smoothing property

As we pointed out at the beginning of Sec. 3.2 for 1D problems, since we
want the relaxation scheme to be a good smoother, we cannot use a Jacobi-
like scheme, such as the one introduced in Sec. 4.3.1. Instead, we must
use a relaxation scheme having the smoothing property, such as the Gauss-
Seidel scheme or the weighted Jacobi scheme, with the weight ω = 4/5 in
2D. In the following, we revert for simplicity to a Gauss-Seidel relaxation
scheme. The smoothing property of the Gauss-Seidel scheme depends on
the ordering chosen for the variables. It is well known (see [105]) that the
Red-Black Gauss-Seidel (RB-GS) scheme is a better smoother with respect
to the Lexicographic Gauss-Seidel (GS-LEX) scheme, but, again for simplic-
ity, we just study the smoothing properties of the GS-LEX scheme, and we
compare the convergence factor with the predicted one by the Local Fourier
Analysis (see [105] for more details) for Gauss-Seidel scheme. Once we prove
(numerically) that the attained convergence factor is the optimal one for the
GS-LEX smoother, then we could straightforwardly switch to a more efficient
smoother, such as the RB-GS. This is not done in this work, because the only
goal is to construct an effective multigrid solver able to gain the optimal con-
vergence factor for inner equations (GS-LEX in this case), independently on
the kind of smoother used for such inner equations.

Therefore, we switch from the relaxation scheme described in Sec. 4.3.1
to a Gauss-Seidel version, namely we update the variable on which we are
iterating and we use such updated value for the following iterations on the
other variables. The only thing is left to choose is the ordering of the updating
sweep. As we said before, we use a lexicographic ordering for inner equations,
and any ordering for interface and boundary conditions.

In details, we order the grid points according to the following list:

{

Γh,Γ
−
h ,Γ

+
h ,Ω

−
h ,Ω

+
h

}

.

The order within any set of grid points of this list is arbitrary, except for grid

108 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

points of Ω−h and Ω+
h , where the lexicographic order is used. i.e.:

(x′, y′) ≤ (x′′, y′′)⇐⇒

x′ < x′′

or
x′ = x′′ and y′ < y′′.

By the same argument of Sec. 2.7.2, in order to avoid that the boundary
effects degrade the convergence factor, we add some extra-relaxations on two
suitable layers surrounding respectively the interface and the boundary. In
details, chosen two parameter λ and δ, by one single relaxation on the whole
problem we mean the Algorithm 1, where we have introduced two additional
sets of grid points:

Ω
(δ)
h = {P ∈ Ωh such that d(P, ∂Ω) < δ} ,

Ω
± (δ)
h =

{

P ∈ Ω±h such that d(P,Γ) < δ
}

.

We experienced that in this case a good choice of the parameters λ and δ is:

λ = 5, δ = 5 h,

in comparison with the case of continuous coefficient (2.50).

4.4 Multigrid components

Let us consider the notation of Sec. 4.1.1 and add some further notation. For
a grid of spatial step h, we denote:

S(Ih) = {wh : Ih → R} , for any Ih ⊆ Dh,

S̄(Ωh) = S(Ω−−h)× S(Ω++
h),

L−h : S(Ω
−−
h)× S(Ω−−h)→ S(Ω−h) such that

L−h (β
−
h ,u

−
h)i,j =

1

h2

(

β−i+1/2,j
(

u−i,j − u−i+1,j
)

+ β−i−1/2,j
(

u−i,j − u−i−1,j
)

+β−i,j+1/2
(

u−i,j − u−i,j+1
)

+ β−i,j−1/2
(

u−i,j − u−i,j−1
)

)

for any (i, j)h ∈ Ω−

L+h : S(Ω
++
h)× S(Ω++

h)→ S(Ω+
h) such that

L+h (β
+
h ,u

+
h)i,j =

1

h2

(

β+i+1/2,j
(

u+i,j − u+i+1,j
)

+ β+i−1/2,j
(

u+i,j − u+i−1,j
)

+β+i,j+1/2
(

u+i,j − u+i,j+1
)

+ β+i,j−1/2
(

u+i,j − u+i,j−1
)

)

for any (i, j)h ∈ Ω+

4.4. MULTIGRID COMPONENTS 109

Algorithm 1 One single relaxation on the whole problem include some over-
relaxations in the vicinity of the interface and boundary.

for i = 1→ λ do

for all G ∈ Γh do
perform the iteration equation (4.12);

end for
for all G ∈ Γ−h do
perform the iteration equation (4.23) or (4.24);

end for
for all G ∈ Γ+h do
perform the iteration equation (4.25) or (4.26);

end for
for all P ∈ Ω− (δ)

h do
perform the iteration equation (4.10);

end for
for all P ∈ Ω+ (δ)

h do
perform the iteration equation (4.11);

end for
end for

for all G ∈ Γh do
perform the iteration equation (4.12);

end for
for all G ∈ Γ−h do
perform the iteration equation (4.23) or (4.24);

end for
for all G ∈ Γ+h do
perform the iteration equation (4.25) or (4.26);

end for
for all P ∈ Ω−h do
perform the iteration equation (4.10);

end for
for all P ∈ Ω+

h do
perform the iteration equation (4.11);

end for

Lh : S̄(Ωh)× S̄(Ωh)→ S(Ωh) such that

Lh(βh,uh)(P) =

{

L−h (β
−
h ,u

−
h) if P ∈ Ω−h

L+h (β
+
h ,u

+
h) if P ∈ Ω+

h

where βh = (β−h , β
+
h), uh = (u−h ,u

+
h).

110 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

[·, ·]−h : S̄(Ωh)× S̄(Ωh)→ S(Γ−h) such that

[βh,uh]
−

h (G) =

ũ+h (I)− ũ−h (I)
or

(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣
∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

for any G ∈ Γ−h , according to the choice (4.6) or (4.7).

g+h ∈ S(Γ+h) such that g
+
h (G) = gD(I) or gN(I), for any G ∈ Γ+h ,

according to the choice (4.6) or (4.7).

[·, ·]+h : S̄(Ωh)× S̄(Ωh)→ S(Γ+h) such that

[βh,uh]
+
h (G) =

ũ+h (I)− ũ−h (I)
or

(

β+∇ũ+h − β−∇ũ−h
)∣

∣

I
·

∇φ̃h
∣

∣

∣∇φ̃h

∣

∣

∣

∣

∣

∣

∣

∣

∣

I

for any G ∈ Γ+h , according to the choice (4.6) or (4.7).

g−h ∈ S(Γ−h) such that g
−
h (G) = gD(I) or gN(I), for any G ∈ Γ−h ,

according to the choice (4.6) or (4.7).

Bh : S̄(Ωh)→ S(Γh) such that Bh(uh) = uh(B) according to the Eq. (1.8) .

gh ∈ S(Γh) such that gh(B) is defined according to the Eq. (1.8).

With this notation, we can write the linear system on the grid with spatial
step h in the following compact form:

Lh(βh,uh) = fh

[βh,uh]
−

h = g−h

[βh,uh]
+
h = g+h

B(uh) = gh

(4.27)

Let us suppose we have an exact solver of such linear system (4.27) for a
grid with an arbitrary spatial step h:

uh = S(βh, fh, g
−
h , g

+
h , gh).

4.4. MULTIGRID COMPONENTS 111

Now, in order to describe the multigrid technique to solve the linear
system (4.27), we just describe the TGCS (Two-Grid Correction Scheme),
since any other basic multigrid algorithm (such as V -cycle, W -cycle, Full
Multigrid, and so on) can be easily derived from it (see [105] for more details).
The TGCS consists into the following algorithm:

• Set initial guess uh = 0;

• Relax ν1 times (by the Algorithm 1) on the grid with spatial step h

• Compute the following defects:

rΩ
−

h = f−h − L−h (β
−
h ,u

−
h)

rΩ
+

h = f+h − L+h (β
+
h ,u

+
h)

rΓ
−

h = g−h − [βh,uh]
−

h

rΓ
+

h = g+h − [βh,uh]
+
h

rΓh = gh − B(uh)

• Extend the defects rΓ
−

h , rΓ
+

h and rΓh using the extension operator defined
in (2.48):

rΓ
−,ext

h = E [Γ−h ;−φΓh](rΓ
−

h),

rΓ
+,ext

h = E [Γ+h ;φΓh](rΓ
+

h),

rΓh,ext
h = E [Γh;φh](r

Γ
h).

• Transfer these defects to a coarser grid with spatial step 2h by the
restriction operator defined in (2.44):

rΩ
−

2h = Ih2h

(

rΩ
−

h

)

rΩ
+

2h = Ih2h

(

rΩ
+

h

)

rΓ
−

2h = Ih2h

(

rΓ
−,ext

h

)

rΓ
+

2h = Ih2h

(

rΓ
+,ext

h

)

rΓ2h = Ih2h

(

rΓ,exth

)

• Solve exactly the residual problem in the coarser grid

e2h = S(β2h, rΩ2h, rΓ
−

2h , r
Γ+

2h , r
Γ
2h)

where rΩ2h = (rΩ
−

2h , rΩ
+

2h).

112 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

• Transfer the error to the finer grid by the interpolation operator (2.49):

eh = I2hh (e2h)

• Correct the fine-grid approximation

uh : = uh + eh

• Relax ν2 times (by the Algorithm 1) on the grid with spatial step h.

4.5 Numerical tests

Numerical tests have been performed in the simpler case ∂Ω− ∩ ∂Ω = ∅ (see
right side of Fig. 4.1).

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

�
�

�
�

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

�
�

�
�

Fig. 4.4: Domains Ω− and Ω+ of the Example 4.5.1 (left) and of the
Example 4.5.2 (right).

4.5.1 Example 1: circular domains

Let us consider the following data:

φΓ(x, y) =
√

(x− x0)2 + (y − y0)2 −R1,

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R2,

u− = sin(4πx) cos(6πy), u+ = cos(2πx) sin(3πy),

β− = 106 + 105 sin(πx) cos(3πy), β+ = 1 + 0.5 sin(2πx) cos(4πy). (4.28)

4.5. NUMERICAL TESTS 113

or

β− = 1 + 0.5 sin(2πx) cos(4πy), β+ = 106 + 105 sin(πx) cos(3πy). (4.29)

We choose x0 = 30
√
2, y0 = 40

√
3, R1 = 0.353 and R2 = 0.753. The domain

is represented in Fig. 4.4 (left side). We performed one test with (4.28) and
one test with (4.29). We list in Tables 4.1 and 4.2 the errors of the solution
and its gradient in the L1 and L∞ norms, while Fig. 4.5 shows the related
bestfit lines.

Table 4.1: Example 4.5.1. Accuracy order in the solution (top) and in
the gradient (bottom) for the case (4.28).

No. of points L1 error of u order L∞ error of u order
32 × 32 8.34 ·103 - 7.70 ·104 -
64 × 64 2.07 ·103 2.01 1.85 ·104 2.06
128 × 128 5.79 ·102 1.84 5.10 ·103 1.86
256 × 256 1.46 ·102 1.99 1.28 ·103 2.00

No. of points L1 error of |∇u| order L∞ error of |∇u| order
32 × 32 1.46 ·105 - 3.90 ·105 -
64 × 64 3.49 ·104 2.06 1.06 ·105 1.88
128 × 128 9.56 ·103 1.87 2.96 ·104 1.84
256 × 256 2.39 ·103 2.00 7.45 ·103 1.99

Table 4.2: Example 4.5.1. Accuracy order in the solution (top) and in
the gradient (bottom) for the case (4.29).

No. of points L1 error of u order L∞ error of u order
32 × 32 4.40 ·10−3 - 1.22 ·10−1 -
64 × 64 1.02 ·10−3 2.11 2.93 ·10−2 2.06
128 × 128 3.29 ·10−4 1.64 7.61 ·10−3 1.95
256 × 256 8.24 ·10−5 2.00 2.14 ·10−3 1.83

No. of points L1 error of |∇u| order L∞ error of |∇u| order
32 × 32 3.93 ·10−1 - 3.52 ·100 -
64 × 64 9.95 ·10−2 1.98 9.71 ·10−1 1.86
128 × 128 2.63 ·10−2 1.92 2.80 ·10−1 1.80
256 × 256 6.60 ·10−3 1.99 7.32 ·10−2 1.93

114 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

Ln(N)

L
n
(e
rr
o
r)

1 1.5 2 2.5 3
1

2

3

4

5

6

7 L
∞
error in the gradient

bestfit slope=1.90

L
1
error in the gradient

bestfit slope=1.96

L
∞
error in the solution

bestfit slope=1.96

L
1
error in the solution

bestfit slope=1.93

Ln(N)

L
n
(e
rr
o
r)

1 1.5 2 2.5 3
-6

-5

-4

-3

-2

-1

0

1

2

L
∞
error in the gradient

bestfit slope=1.86

L
1
error in the gradient

bestfit slope=1.96

L
∞
error in the solution

bestfit slope=1.95

L
1
error in the solution

bestfit slope=1.89

Fig. 4.5: Example 4.5.1. Bestfit lines of the errors in the solution and in
the gradient (Tables 4.1 and 4.2) in both the L1 and L∞ norms. Left:
β− and β+ are given by (4.28); Right: β− and β+ are given by (4.29).

4.5.2 Example 2: flower-shaped domains

Let us consider the general flower-shaped interface with parametric equa-
tions:

X(ϑ) = r(ϑ) cos(ϑ) + x0,

Y (ϑ) = r(ϑ) sin(ϑ) + y0,

with ϑ ∈ [0, 2π] and r(ϑ) = r0 + r1 sin(ωϑ). Let us consider ω = 5. The
level-set representation of this interface is:

flower(r0, r1, x0, y0; x, y) = r − r0

− r1
(y − y0)

5 + 5(x− x0)
4(y − y0)− 10(x− x0)

2(y − y0)
3

r5
.

where r =
√

(x− x0)2 + (y − y0)2. Let us choose the following data:

φΓ(x, y) = flower(0.45, 1/7, 0.01
√
3, 0.02

√
2; x, y),

φ(x, y) = flower(0.75, 1/8, 0.01
√
3, 0.02

√
2; x, y),

u− = sin(4πx) cos(6πy), u+ = cos(2πx) sin(3πy),

β− = 106 + 105 sin(πx) cos(3πy), β− = 1 + 0.5 sin(2πx) cos(4πy). (4.30)

or

β− = 1 + 0.5 sin(2πx) cos(4πy), β− = 106 + 105 sin(πx) cos(3πy). (4.31)

4.5. NUMERICAL TESTS 115

The domain is represented in Fig. 4.4 (right side). We performed one test
with (4.30) and one test with (4.31). We list in Tables 4.3 and 4.4 the errors
of the solution and its gradient in the L1 and L∞ norms, while Fig. 4.6 shows
the related bestfit lines.

Table 4.3: Example 4.5.2. Accuracy order in the solution (top) and in
the gradient (bottom) for the case (4.30).

No. of points L1 error of u order L∞ error of u order
32 × 32 1.41 ·104 - 1.03 ·105 -
64 × 64 2.54 ·103 2.48 1.78 ·104 2.53
128 × 128 8.07 ·102 1.65 5.58 ·103 1.67
256 × 256 1.57 ·102 2.36 1.07 ·103 2.38

No. of points L1 error of |∇u| order L∞ error of |∇u| order
32 × 32 2.49 ·105 - 8.38 ·105 -
64 × 64 4.34 ·104 2.52 1.57 ·105 2.42
128 × 128 1.35 ·104 1.68 4.94 ·104 1.67
256 × 256 2.60 ·103 2.38 9.65 ·103 2.36

Table 4.4: Example 4.5.2. Accuracy order in the solution (top) and in
the gradient (bottom) for the case (4.31).

No. of points L1 error of u order L∞ error of u order
32 × 32 6.63 ·10−3 - 2.51 ·10−1 -
64 × 64 2.49 ·10−3 1.41 8.18 ·10−2 1.62
128 × 128 5.02 ·10−4 2.31 1.66 ·10−2 2.30
256 × 256 1.28 ·10−4 1.98 4.03 ·10−3 2.04

No. of points L1 error of |∇u| order L∞ error of |∇u| order
32 × 32 6.70 ·10−1 - 4.30 ·100 -
64 × 64 1.91 ·10−1 1.81 1.19 ·100 1.86
128 × 128 4.64 ·10−2 2.04 3.31 ·10−1 1.84
256 × 256 1.18 ·10−2 1.97 1.23 ·10−1 1.43

4.5.3 Example 3: Convergence factor of the multigrid

In this example we show that the asymptotic convergence factor does not
depend on the jump of the coefficient and on the size of the problem. The
study we want to carry out about the convergence factor concerns how it is
close to the optimal one (see Table 2.2), i.e. the convergence factor predicted

116 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

Ln(N)

L
n
(e
rr
o
r)

1 1.5 2 2.5 3
0

1

2

3

4

5

6

7
L
∞
error in the gradient

bestfit slope=2.10

L
1
error in the gradient

bestfit slope=2.14

L
∞
error in the solution

bestfit slope=2.14

L
1
error in the solution

bestfit slope=2.11

Ln(N)

L
n
(e
rr
o
r)

1 1.5 2 2.5 3
-6

-5

-4

-3

-2

-1

0

1

2

L
∞
error in the gradient

bestfit slope=1.72

L
1
error in the gradient

bestfit slope=1.95

L
∞
error in the solution

bestfit slope=2.02

L
1
error in the solution

bestfit slope=1.94

Fig. 4.6: Example 4.5.2. Bestfit lines of the errors in the solution and in
the gradient (Tables 4.3 and 4.4) in both the L1 and L∞ norms. Left:
β− and β+ are given by (4.30); Right: β− and β+ are given by (4.30).

by the Local Fourier Analysis for inner equations. As we pointed out in
Sec. 4.3.3, we know that more efficient smoothers than LEX-GS for inner
equations exist (such as RB-GS), but the goal of this work is to show that the
optimal convergence factor is attained, regardless on the smoother for inner
equations. The same argument holds for the multigrid algorithm: even if the
Full Multigrid is more efficient, we limit ourselves to study the convergence
factor for the W-cycle algorithm, in order to compare results with the well-
known Table 2.2.

However, we experienced that the convergence factor is close to the op-
timal one in the first few cycles of the entire algorithm (say the first ten),
while the asymptotic convergence factor slightly degrades. We believe that
some more effort can be done in order to lead the asymptotic convergence
factor to be the optimal one, and such a work will be done in near future.

Let us recall that we estimate the asymptotic convergence factor as:

ρ = lim
m→∞

ρ(m) = lim
m→∞

∥

∥

∥
r
(m)
h

∥

∥

∥

∞
∥

∥

∥
r
(m−1)
h

∥

∥

∥

∞

,

where rh =
(

rΩ
−

h , rΩ
+

h , rΓ
−

h , rΩ
+

h , rΓh

)

. In practice, we compute ρ(m) until the

following stop criterion is satisfied:
∣

∣ρ(m) − ρ(m−1)
∣

∣

ρ(m)
< 10−3. (4.32)

We compare this convergence factor with the averaged convergence factor of

4.5. NUMERICAL TESTS 117

the first ten W -cycle iterations, computed as follows:

ρ̄ = 9

√

√

√

√

10
∏

m=2

ρ(m). (4.33)

We perform the homogeneous model problem, namely the Model Problem 7
(4.1) with f± = gD = gN = g = 0 (starting with an initial guess different from
zero), in order to avoid difficulties related to numerical instability related to
the machine precision.

The numerical tests have been performed by a W -cycle algorithm with
ν1 = 2 pre-smoothing and ν2 = 1 post-smoothing (therefore ν = 3 in Table
2.2), and with the coarsest grid having 16×16 grid points. Tables 4.5 and 4.6
show the estimated convergence factors for different numbers of grid points
and jump in the coefficient. We performed such tests in the more complicated
geometry of Example 4.5.2. We choose the following coefficients:

β− = 10p, β+ = 1.

Table 4.5: Example 4.5.3. Asymptotic convergence factor, computed
with the stop criterion (4.32) (ν = ν1 + ν2 = 3).

p -9 -7 -5 -3 -1
N2

322 0.0875 0.0875 0.0875 0.0872 0.1019
642 0.1723 0.1723 0.1722 0.1553 0.1103
1282 0.1616 0.1616 0.1616 0.1616 0.1616

p 1 3 5 7 9
N2

322 0.2302 0.2411 0.2411 0.2411 0.2411
642 0.2176 0.2442 0.2445 0.2445 0.2445
1282 0.1617 0.1618 0.1947 0.1947 0.1947

118 CHAPTER 4. DISCONTINUOUS COEFFICIENTS: 2D CASE

Table 4.6: Example 4.5.3. Average convergence factor for the first ten
W -cycle iterations, computed by the formula (4.33) (ν = ν1 + ν2 = 3).

p -9 -7 -5 -3 -1
N2

322 0.0776 0.0776 0.0776 0.0773 0.0486
642 0.0930 0.0930 0.0930 0.0930 0.1107
1282 0.1544 0.1544 0.1544 0.1544 0.1544

p 1 3 5 7 9
N2

322 0.1563 0.1586 0.1585 0.1585 0.1585
642 0.0931 0.1027 0.1029 0.1029 0.1029
1282 0.1543 0.1543 0.1544 0.1544 0.1544

Chapter 5
Grid adaptivity

In this chapter we describe how to use adaptive grid to effectively reduce the
computational effort, without losing the level of accuracy. In practice, it is
well known that in elliptic problems the error concentrates on the vicinity
of the interface/boundary. Therefore, a good strategy to reduce the com-
putational work maintaining the accuracy is to refine the grid close to the
interface/boundary and leaving a coarser grid far from it. To this purpose
we introduce the adaptive grid.

In order to straightforwardly implement the treatment of boundary/interface
conditions proposed in Sections 1.2 and 4.2, we aim to obtain a uniform grid
in a suitable layer surrounding the boundary/interface, more precisely, in a
layer with width 2 h.

5.1 Domain discretization: quadtree data struc-

ture

n this section we describe how we obtain the adaptive grid by the quadtree
structure. Let us recall the domain discretization described in [79, 32]. The
domainD = [−1, 1]2 is discretized into squares, and a quadtree data structure
is used to represent this discretization. As depicted in Figure 5.1, the entire
domain is originally associated with the root of the tree which has level zero
by definition. Then it is split into four children cells of equal size which have
level one. This discretization proceeds recursively, i.e. each cell can be in
turn split into four children which have one more level than their parent cell.
A cell with no children is called a leaf. Two cells are called neighbors if they
share a common face or part of a face. The discretization in 3D is similar,
except that each cube is split into eight cubes of the same size (octree data

119

120 DOMAIN DISCRETIZATION

structure). The interested reader is referred to [79, 32, 96, 97] for more on
quadtree and octree data structures.

�

�

�

�

�

Fig. 5.1: Discretization of a two dimensional domain (left) and its quadtree representation
(right). The entire domain corresponds to the root of the tree (level 0), and each cell is
subdivided into four children, in the order of lower-left, upper-left, lower-right, upper-right.

Several criteria may be adopted to decide where the grid has to be re-
fined. Here we assume that the solution may vary more dramatically near the
boundary, which is likely to be the case, for example, if the boundary itself
has a complex shape. Because of the possible irregularity of Γ, we assume
for the moment that the refinement is needed only near the boundary. For
this reason, we discretize the computational domain in such a way that the
cell size is proportional to the absolute value of the signed distance function
φ, i.e., the distance to the boundary. We split a cell c if (see the left side of
Fig. 5.2):

min
v∈V

|φ(v)| < diag

2
, (5.1)

where v is a vertex of cell c, V is the set of all vertices of cell c and diag is
the diagonal length of the cell. Finally, the finest resolution is obtained at
cells cut by the boundary. Condition (5.1) is the refinement criterion used
in [79, 32].

We note that using the refinement criterion (5.1) leads us to an infinite
recursive algorithm, since we always must refine cells cut by the boundary,
obtaining smaller and smaller cells close to the boundary. Then, a stop-
ping criterion is required, in order to obtain a uniform (finer) grid along
the boundary. On the other hand, we want to avoid big cells, even far
from the boundary. Then, we start the refinement algorithm from an estab-
lished uniform (coarser) grid. In details, we proceed as follows: we choose

I 121

two levels of refinement: min level and max level. Accordingly, we define
hmin = 2/(2max level) and hmax = 2/(2max level). Then we split a cell if its side
h satisfies h > hmax or if (5.1) is satisfied and h > hmin.

We say that a grid is graded if the difference between two adjacent cells is
at most one. By definition, a quadtree is said to be graded if it corresponds
to a graded grid. In this paper, we sample the solution at the cell vertices
and pose no limitation on the level difference between two adjacent cells,
allowing for fully adaptive non-graded grids, which allow more flexibility and
efficiency in the adaptation.

In order to straightforwardly use the treatment of boundary/interface
conditions proposed in Sections 1.2 and 4.2, we want to obtain a uniform
grid in a suitable layer surrounding the boundary/interface, more precisely,
in a layer with width 2h. To this purpose, we modify the refinement criterion
(5.1) into the following (see the right side of Fig. 5.2):

min
v∈V

{|φ(v)|, |φ(v)− h|, |φ(v) + h|} < diag

2
. (5.2)

Remark. For practical purpose, in numerical tests we often deal with
a level-set function φ0 in place of a signed distance function φ. In such cases,
we use φ0 instead of φ in the refinement criteria (5.1) and (5.2) and multiply
the right-hand side by the Lipschitz constant of φ0.

5.1.1 Finite difference discretization

We follow the technique of [79, 32, 78]. Let us consider the finite difference
discretization for a T-junction node without a direct right neighboring node
as depicted in Fig. 5.3. Discretization at T-junction nodes without another
direct neighboring node (left, top or bottom) can be derived in the same
manner. The equation for a node P obtained from the discretization of the
first equation of (4.1) is:

uP − uA

dPA

(

βP + βA

2

)

+
uP − uB

dPB

(

βP + βB

2

)

+
uP − uC

dPC

(

βP + βC

2

)

+
uP − uD

dPD

(

βP + βD

2

)

= fP (5.3)

where dHK is the distance between points H and K. All values in (5.3) are
defined, except uA and βA, since A is not a grid point. We obtain such values
from the Taylor expansion formula

u(A) = ũA −
dDEdDF

2
uyy(P) +O(h3),

122 DOMAIN DISCRETIZATION

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.2: Adaptive grid refinement for the flower-shaped domain (see
numerical test 5.2.4). Top: cells to be refined according to the refinement
criterion (5.1) (left) and (5.2) (right). Using (5.2) is equivalent to using
(5.1) for three level-sets: φ = 0 (red bolder central line) and φ = ±h (red
smaller lines). Bottom: adaptive grid computed with max level = 7,
min level = 4 and with the refinement criterion (5.1) (left) and (5.2)
(right). Adopting (5.2) allows us to obtain a uniform grid along the
boundary/interface in a wider band.

where ũA denotes the linear interpolation in D between nodes E and F . Be-
cause only a first order accurate formula is needed for the second derivative,
we obtain the following third order interpolation formula [78]:

uA = ũA −
dDEdDF

dCD

(

uC − uP

dPC

+
uD − uP

dPD

)

=
uEdDF + uFdDE

dEF

− dDEdDF

dCD

(

uC − uP

dPC

+
uD − uP

dPD

)

.

(5.4)

The same interpolation formula applies for βD.

The discretization (5.3) along with the (5.4) is first order accurate for the
second derivatives, but it allows to obtain second order for the solution (see
e.g. [66, 74, 102]).

Now, we can easily define the first order derivatives to compute the gra-

5.2. NUMERICAL TESTS 123

�

�

�

� �

�

�

Fig. 5.3: A configuration illustrating the nodes involved in the discretization at a T-
junction node v0.

dient:

DxuP =
uA − uP

dPA

dPB

dAB

+
uP − uB

dPB

dPA

dAB

,

DyuP =
uC − uP

dPC

dPD

dCD

+
uP − uD

dPD

dPC

dCD

.

To close the linear system, we must write an equation for each ghost point,
imposing the boundary condition.

5.2 Numerical tests

In this section we present numerical tests that confirm the second order ac-
curacy of the scheme described in this paper both for the solution and its
gradient. For each test we set the minimum and maximum level of refine-
ment: min level and max level. Let Nmin = 2min level and Nmax = 2max level.
The maximum resolution of the adaptive grid is determined by a spatial step
hmin = 2/Nmax, while the minimum resolution is hmax = 2/Nmin. If not spec-
ified, we intend h = hmin. Most numerical tests are taken from [84, 57, 70].
In all the tests, all best-fit line figure are performed in a loglog scale plot,
using the natural logarithm. The BiCGSTAB solver is used to solve the re-
sulting linear system for numerical test 5.2.1 (continuous coefficient). For the
numerical tests regarding the discontinuous coefficient case, the BiCGSTAB

124 DOMAIN DISCRETIZATION

fails to converge, especially for linear systems with bigger dimension. In this
case the MATLAB solver is used.

5.2.1 Example 1: mixed boundary conditions

We start with two numerical tests to solve the Poisson equation with contin-
uous coefficient described in Chapter 1. The Dirichlet and Neumann part of
the boundary are chosen as follows:

ΓD = {(x, y) ∈ ∂Ω: x ≤ 0} , ΓN = ∂Ω\ΓD.

In this first numerical test we choose the exact solution u, the coefficient β,
and the domain (given by the level-set function) as follows:

u = sin(πx) cos(πy),

β = 2 + sin(xy),

φ =
√

(x− 0.0413)2 + (y + 0.0613)2 − 0.783.

In Table 5.1 we list the errors obtained in the L2 and L∞ norms for the
solution and the gradient. In Fig. 5.4 we depict the solution (left) and the
bestfit lines of the errors (right).

Table 5.1: Example 5.2.1. Accuracy order in the solution (top) and in
the gradient (bottom).

(Nmin,Nmax) L2 error of u order L∞ error of u order

(64,256) 2.07 ·10−3 - 3.58 ·10−3 -
(128,512) 5.38 ·10−4 1.94 9.60 ·10−4 1.90
(256,1024) 1.35 ·10−4 2.00 2.53 ·10−4 1.93
(512,2048) 2.73 ·10−5 2.30 6.46 ·10−5 1.97

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order
(64,256) 3.90 ·10−3 - 4.50 ·10−2 -
(128,512) 1.06 ·10−3 1.89 1.47 ·10−2 1.61
(256,1024) 2.74 ·10−4 1.95 4.25 ·10−3 1.79
(512,2048) 6.03 ·10−5 2.18 1.73 ·10−3 1.30

5.2.2 Example 2: discontinuous coefficient case

This example is taken from [84, 57].
The interface Γ is a simple circle with radius 0.5 and midpoint at (0, 0). The

5.2. NUMERICAL TESTS 125

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

3

Ln(h min)

L
n
(e
rr
o
r)

-7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4
-12

-10

-8

-6

-4

-2

0

L
∞
error in the gradient

bestfit slope=1.59

L
2
error in the gradient

bestfit slope=2.00

L
∞
error in the solution

bestfit slope=1.93

L
2
error in the solution

bestfit slope=2.07

Fig. 5.4: Example 5.2.1. Left: Numerical solution for (Nmin, Nmax) =
(64, 256). Right: bestfit lines of the errors in the L2 and L∞ norms.

analytic solutions u±, the coefficients β±, and the level set function are given
as follows:

u+ = ln(x2 + y2), u− = sin(x+ y)

β+ = sin(x+ y) + 2, β− = cos(x+ y) + 2

φ =
√

x2 + y2 − 0.5

Table 5.2: Example 5.2.2. Accuracy order in the solution (top) and in
the gradient (bottom).

(Nmin,Nmax) L2 error of u order L∞ error of u order
(64,256) 1.04 ·10−4 - 2.51 ·10−4 -
(128,512) 2.62 ·10−5 1.99 6.43 ·10−5 1.96
(256,1024) 7.02 ·10−6 1.90 1.75 ·10−5 1.87
(512,2048) 1.69 ·10−6 2.05 4.36 ·10−6 2.01

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order

(64,256) 9.71 ·10−4 - 3.57 ·10−3 -
(128,512) 2.82 ·10−4 1.78 1.12 ·10−3 1.68
(256,1024) 7.77 ·10−5 1.86 3.09 ·10−4 1.85
(512,2048) 2.04 ·10−5 1.93 8.34 ·10−5 1.89

In Table 5.2 we list the errors obtained in the L2 and L∞ norms for the
solution and the gradient. In Fig. 5.5 we depict the solution (left) and the
bestfit lines of the errors (right).

126 DOMAIN DISCRETIZATION

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1.5

-1

-0.5

0

0.5

1

Ln(h min)

L
n
(e
rr
o
r)

-7.5 -7 -6.5 -6 -5.5 -5 -4.5
-16

-14

-12

-10

-8

-6

-4

L
∞
error in the gradient

bestfit slope=1.81

L
2
error in the gradient

bestfit slope=1.86

L
∞
error in the solution

bestfit slope=1.94

L
2
error in the solution

bestfit slope=1.97

Fig. 5.5: Example 5.2.2. Left: Numerical solution for (Nmin, Nmax) =
(64, 256). Right: bestfit lines of the errors in the L2 and L∞ norms.

From Fig. 5.6 it can be inferred that an adaptive refinement withmax level =
min level+2 should be enough for damping the interface errors for such jump
in the coefficient. In fact, while for uniform grid the error is concentrated
on the interface, with an adaptive grid it is distributed on all the domain
smoothly.

-1 -0.5 0 0.5 1

-1

0

1
0

0.2

0.4

0.6

0.8

1
× 10

-3

-1 -0.5 0 0.5 1

-1

0

1
0

1

2

× 10
-4

Fig. 5.6: Example 5.2.2. Left: error obtained in a uniform grid with
(Nmin,Nmax) = (64, 64). The error is concentrated on the interface.
Right: error obtained with an adaptive grid with (Nmin,Nmax) =
(64, 256). The error varies smoothly.

5.2.3 Example 3

In this test we compare the results between the scheme proposed in this
paper and the scheme presented by Fedkiw et al. in [70]. The computational
domain is D = [0, 1]2. We choose the following data for the analytic solutions

5.2. NUMERICAL TESTS 127

u±, the coefficients β±, and the level set function (ellipse):

u+ = 0, u− = 5y

β+ = 1, β− = 1

φ =
√

35(x− 0.5)2 + (y − 0.5)2 − 0.45.

Table 5.3: Example 5.2.3. Accuracy order in the solution (top) and in
the gradient (bottom).

(Nmin,Nmax) L2 error of u order L∞ error of u order
(16,64) 1.30 ·10−4 - 6.31 ·10−4 -
(32,128) 3.16 ·10−5 2.04 1.19 ·10−4 2.40
(64,256) 1.07 ·10−5 1.57 3.50 ·10−5 1.77
(128,512) 2.85 ·10−6 1.90 9.84 ·10−6 1.83
(256,1024) 5.02 ·10−7 2.50 2.05 ·10−6 2.27
(512,2048) 9.51 ·10−8 2.40 4.74 ·10−7 2.11

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order

(16,64) 2.88 ·10−3 - 1.43 ·10−2 -
(32,128) 6.42 ·10−4 2.17 4.02 ·10−3 1.83
(64,256) 2.00 ·10−4 1.68 1.09 ·10−3 1.89
(128,512) 5.21 ·10−5 1.94 3.87 ·10−4 1.49
(256,1024) 9.85 ·10−6 2.40 9.86 ·10−5 1.97
(512,2048) 2.02 ·10−6 2.29 2.57 ·10−5 1.94

In Table 5.3 we list the errors obtained in the L2 and L∞ norms for the
solution and the gradient. In Fig. 5.7 we depict the solution (left) and the
bestfit lines of the errors for the scheme described in [70] (middle) and the
scheme proposed in this paper (right). Looking at the middle figure, we
can observe that the error decreases as expected until approximately 40 grid
points in each direction are introduced. After this point, the error no longer
decreases. By inspection of the exact solution, it is clear that over a majority
of the interface, the jump in the normal derivative is approximatively zero,
while the jump in the tangential derivative is significant. The method of
Fedkiw et al. [70] assumes the tangential derivative is zero. In cases (like
the one here) in which the tangential derivative is significant, the method
proposed in [70] fails to converge to the exact solution below some critical
mesh size.

Remark. Since the exact solutions u+ and u− are polynomials of
degree at most one, we should observe discretization errors of the order of

128 DOMAIN DISCRETIZATION

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

Ln(h min)

L
n
(e
rr
o
r)

-7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3
-18

-16

-14

-12

-10

-8

-6

-4

-2

L
∞
error in the gradient

bestfit slope=1.80

L
2
error in the gradient

bestfit slope=2.07

L
∞
error in the solution

bestfit slope=2.04

L
2
error in the solution

bestfit slope=2.06

Fig. 5.7: Example 5.2.3. Top: Exact solution. Bottom-left: bestfit lines
of the errors for the scheme proposed in [70]. Bottom-right: bestfit lines
of the errors for the scheme proposed in this paper.

machine accuracy. Indeed, the representation of the ellipsoidal domain is not
exact to the machine precision, and its error affects the discretization error
of the jump of the flux, and consequently the accuracy of the method, which
appears to be second order.

5.2.4 Example 4

This example is taken from [84, 68]. In this case, Γ is a flower-shaped interface
with parametric equations (see the right side of Fig. 5.2):

X(ϑ) = r(ϑ) cos(ϑ) + x0,

Y (ϑ) = r(ϑ) sin(ϑ) + y0,

with ϑ ∈ [0, 2π] and r(ϑ) = r0 + r1 sin(ωϑ). The parameters are set to r0 =
0.5, r1 = 0.2, ω = 5 and x0 = y0 = 0.2/

√
20. The level-set representation of

5.2. NUMERICAL TESTS 129

this interface is:

φ(x, y) = r − r0 − r1
(y − y0)

5 + 5(x− x0)
4(y − y0)− 10(x− x0)

2(y − y0)
3

r5
.

where r =
√

(x− x0)2 + (y − y0)2. The analytic solutions u
± and the coeffi-

cients β± are given as follows:

u+ =
r4 + C0 log(2r)

β+
, u− =

r2

β−

β+ = const., β− = const.

where C0 = −0.1.

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

Ln(h min)

L
n
(e
rr
o
r)

-8 -7.5 -7 -6.5 -6 -5.5 -5
-13

-12

-11

-10

-9

-8

-7

-6

-5

L
∞
error in the gradient

bestfit slope=1.72

L
2
error in the gradient

bestfit slope=1.83

L
∞
error in the solution

bestfit slope=1.92

L
2
error in the solution

bestfit slope=1.96

Fig. 5.8: Example 5.2.4. Left: numerical solution, Right: bestfit lines of the errors. The
results are obtained for β− = 1 and β+ = 10.

In Tables 5.4, 5.5, 5.6 we list the errors obtained in the L2 and L∞ norms
for the solution and the gradient. In Figs. 5.8 and 5.9 we depict the solutions
(left) and the bestfit lines of the errors (right) for different choices of the
coefficients.

5.2.5 Example 5

The interface Γ is a simple circle with radius 0.5 and midpoint at (x0, y0) ≡
(0.0413,−0.0613). The analytic solutions u± and the coefficients β± are given
as follows:

u+ = ex
(

x2 sin(y) + y2
)

; u− = −(x2 + y2);

β+ = 1000(xy + 5), β− = 1 + x2 + y2.

In Table 5.7 we list the errors obtained in the L2 and L∞ norms for the
solution and the gradient. In Fig. 5.10 we depict the solution (left) and the
bestfit lines of the errors (right).

130 DOMAIN DISCRETIZATION

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

Ln(h min)

L
n

(e
rr

o
r)

-8 -7.5 -7 -6.5 -6 -5.5 -5
-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

L
∞

error in the gradient

bestfit slope=1.70

L
2
error in the gradient

bestfit slope=1.84

L
∞

error in the solution

bestfit slope=1.91

L
2
error in the solution

bestfit slope=1.96

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

0.5

1

1.5

2

2.5

3

Ln(h min)

L
n

(e
rr

o
r)

-8 -7.5 -7 -6.5 -6 -5.5 -5
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

L
∞

error in the gradient

bestfit slope=1.98

L
2
error in the gradient

bestfit slope=1.85

L
∞

error in the solution

bestfit slope=1.98

L
2
error in the solution

bestfit slope=1.97

Fig. 5.9: Example 5.2.4. Left: numerical solution, Right: bestfit lines of the errors. The
results are obtained for different values of the coefficient: β− = 1 and β+ = 1000 (top),
β− = 1000 and β+ = 1 (bottom).

Table 5.4: Example 5.2.4. Accuracy order in the solution (top) and in
the gradient (bottom) for β− = 1, β+ = 10.

(Nmin,Nmax) L2 error of u order L∞ error of u order
(32,512) 4.51 ·10−4 - 5.63 ·10−4 -
(64,1024) 1.26 ·10−4 1.84 1.57 ·10−4 1.84
(128,2048) 3.16 ·10−5 1.99 4.08 ·10−5 1.95
(256,4096) 7.70 ·10−6 2.04 1.04 ·10−5 1.97

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order

(32,512) 3.61 ·10−4 - 1.82 ·10−3 -
(64,1024) 1.05 ·10−4 1.79 5.14 ·10−4 1.83
(128,2048) 2.93 ·10−5 1.83 4.93 ·10−4 0.06
(256,4096) 7.99 ·10−6 1.88 3.49 ·10−5 3.82

5.2. NUMERICAL TESTS 131

Table 5.5: Example 5.2.4. Accuracy order in the solution (top) and in
the gradient (bottom) for β− = 1, β+ = 1000.

(Nmin,Nmax) L2 error of u order L∞ error of u order
(32,512) 4.55 ·10−6 - 5.74 ·10−6 -
(64,1024) 1.27 ·10−6 1.84 1.62 ·10−6 1.83
(128,2048) 3.20 ·10−7 1.99 4.22 ·10−7 1.94
(256,4096) 7.79 ·10−8 2.04 1.08 ·10−7 1.96

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order

(32,512) 3.87 ·10−6 - 1.82 ·10−5 -
(64,1024) 1.12 ·10−6 1.78 5.14 ·10−6 1.83
(128,2048) 3.15 ·10−7 1.84 5.49 ·10−6 -0.10
(256,4096) 8.50 ·10−8 1.89 3.49 ·10−7 3.97

Table 5.6: Example 5.2.4. Accuracy order in the solution (top) and in
the gradient (bottom) for β− = 1000, β+ = 1.

(Nmin,Nmax) L2 error of u order L∞ error of u order
(32,512) 4.19 ·10−3 - 4.72 ·10−3 -
(64,1024) 1.16 ·10−3 1.85 1.25 ·10−3 1.91
(128,2048) 2.90 ·10−4 2.00 3.13 ·10−4 2.00
(256,4096) 7.02 ·10−5 2.05 7.77 ·10−5 2.01

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order

(32,512) 3.19 ·10−3 - 1.84 ·10−2 -
(64,1024) 8.46 ·10−4 1.92 8.58 ·10−3 1.10
(128,2048) 2.37 ·10−4 1.83 1.36 ·10−3 2.66
(256,4096) 6.78 ·10−5 1.81 3.50 ·10−4 1.96

132 DOMAIN DISCRETIZATION

Table 5.7: Example 5.2.5. Accuracy order in the solution (top) and in
the gradient (bottom).

(Nmin,Nmax) L2 error of u order L∞ error of u order
(32,128) 1.12 ·10−3 - 3.54 ·10−3 -
(64,256) 2.69 ·10−4 2.06 8.98 ·10−4 1.98
(128,512) 6.49 ·10−5 2.05 2.25 ·10−4 1.99
(256,1024) 1.59 ·10−5 2.03 5.64 ·10−5 2.00
(512,2048) 3.91 ·10−6 2.02 1.41 ·10−5 2.00

(Nmin,Nmax) L2 error of |∇u| order L∞ error of |∇u| order

(32,128) 8.91 ·10−3 - 1.96 ·10−1 -
(64,256) 3.08 ·10−3 1.53 6.99 ·10−2 1.49
(128,512) 9.33 ·10−4 1.72 2.12 ·10−2 1.72
(256,1024) 2.60 ·10−4 1.84 5.91 ·10−3 1.85
(512,2048) 6.92 ·10−5 1.91 1.57 ·10−3 1.91

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

0

1

2

3

4

5

Ln(h min)

L
n
(e
rr
o
r)

-7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5
-14

-12

-10

-8

-6

-4

-2

0

L
∞
error in the gradient

bestfit slope=1.75

L
2
error in the gradient

bestfit slope=1.76

L
∞
error in the solution

bestfit slope=1.99

L
2
error in the solution

bestfit slope=2.04

Fig. 5.10: Example 5.2.5. Left: Numerical solution for (Nmin, Nmax) =
(64, 256). Right: bestfit lines of the errors in the L2 and L∞ norms.

Appendix A
A tentative of convergence proof for

second order accuracy

n Chapter 2 a convergence proof of the first order method is provided by
Gershgorin-Hadamard theorems. Although the same proof cannot be carried
out for the second order accurate scheme, we always observed convergence
in all numerical tests we have performed. In this chapter we slightly modify
the one dimensional second order accurate scheme in order to provide a
convergence proof by Gershgorin-Hadamard theorems as well.

Section A.2 presents an alternative second order scheme and provides a
convergence proof. In Section A.3 a detailed Taylor analysis is carried out
in order to compare the original scheme with the modified one: as expected,
the original scheme is more accurate. In the last section, some numerical
tests are presented.

A.1 Description of the iterative scheme

The second order accurate iterative scheme for the one dimensional case
has been described in Chapter 2, in particular it consists of the relaxation
scheme (2.9), (2.12), (2.13). However, this scheme is second order accurate
in the solution and gradient as well, while if we want to limit to the second
order accuracy only in the solution we can replace the iteration (2.12) by the
following:

u
(n+1)
l = u

(n)
l − µD∆t

(

ϑlu
(n)
l + (1− ϑl)u

(n)
l+1 − ga

)

. (A.1)

We study the simpler second order accurate (only in the solution) iterative
scheme (2.9), (A.1), (2.13).

133

134 A TENTATIVE OF CONVERGENCE PROOF

The constants µD and µN are chosen in order to satisfy the CFL condi-
tions, i.e. µD∆t < 1 and µN∆t/h < 2/3 (see 2.14). Since ∆t = h2/2, we
then can choose (for instance) µD = 1.8/h2, µN = 3.6/(3h). In summary,
our second order accurate iterative method is composed by Eqs. (2.9), (A.1)
and (2.13), with the choice of constants

∆t = h2/2, µD = 1.8/h2, µN = 3.6/(3h).

A.2 Convergence proof

In all numerical tests we performed we always observed convergence of the
second order iterative scheme (2.9), (2.12) and (2.13). However, in order to
provide a convergence proof, we slightly modify the scheme, still maintaining
second order accuracy. A convergence proof of the first order accurate version
of the method can be found in [34].

Let Ñ = r − l + 1. Let us rewrite the scheme in matrix fashion:

u(n+1) = Bu(n) + F (A.2)

where u(n), F ∈ R
Ñ , B ∈ R

Ñ×Ñ are defined as follows:

u(n) =

u
(n)
l

u
(n)
l+1
...

u
(n)
r

, F =

∆tga
h2fl+1
...

h2fr−1
∆tgb

B =

1− µD∆t ϑl µD∆t (1− ϑl)
1/2 0 1/2

.

1/2 0 1/2
c (0.5− ϑr) 2 c ϑr 1− c (0.5 + ϑr)

.

(A.3)

where c = µN∆t/h is the Courant number. A necessary and sufficient
condition for the convergence of (A.2) is ρ(B) < 1, where ρ(B) is the spectral
radius of the matrix B (i.e. the maximum eigenvalue of B in absolute value).
In order to prove this condition we shall make use of Gershgorin-Hadamard
theorems (that can be founded in any good basic text of Numerical Analysis,
such as [80] or [91]).

A.2. CONVERGENCE PROOF 135

The first theorem states that ifB ∈ C
m×m, withm ∈ N, then every eigenvalue

λ of B satisfies:

λ ∈ SC = ∪m
i=1Ci, Ci = {z ∈ C : |z − bii| ≤

m
∑

j=1

j 6=i

|bij|}

and the sets Ci are said Gershgorin circles.
The second theorem states that, if B is an irreducible matrix, every eigen-
value of B belonging to the boundary of SC , belongs to the boundary of all
Gershgorin circles. Applying Gershgorin-Hadamard theorems, we proof the
convergence if all Gershgorin circles are contained in the circle C ((0, 0), 1)
centered at the origin and with radius 1, and at least one circle is contained in
the interior of C ((0, 0), 1). Letting ci = bii and ri =

∑m
j=1

j 6=i
|bij| be respectively

the center and the radius of the i−th Gershgorin circle for i = 1, . . . , Ñ ,
proving convergence is equivalent to proof that

|ci| ≤ 1− ri (A.4)

for all i = 1, . . . , Ñ and |cj| < 1− rj for at least one j ∈
{

1, . . . , Ñ
}

. While

this condition is satisfied for i = 2, . . . , Ñ−1, unfortunately it is not satisfied
for i = 1 and i = Ñ . more precisely, recalling the CFL conditions µD∆t < 1
and µN∆t/h < 1, condition (A.4) is satisfied for i = 1 if and only if ϑl ≥ 0.5,
while it is satisfied for i = Ñ if and only if ϑr ≤ 0.5.

In order to always satisfies ϑl ≥ 0.5 and ϑr ≤ 0.5, we modify the scheme
as follows. Iteration (2.12) use a linear interpolation in nodes xl and xl+1 for
the spatial discretization. In case of ϑl < 0.5, we instead use grid points xl

and xl+2 for the linear interpolation. In such case, iteration (2.12) is replaced
by:

u
(n+1)
l = u

(n)
l − µD∆t

(

ϑ̃lu
(n)
l + (1− ϑ̃l)u

(n)
l+2 − ga

)

where ϑ̃l = (1 + ϑl)/2.
Iteration (2.13) use a quadratic interpolation in nodes {xr−2, xr−1, xr} for

the spatial discretization. In case of ϑr > 0.5, we use xr+1 as ghost point
instead of xr, using a quadratic interpolation in nodes {xr−3, xr−1, xr+1} to
reconstruct the spatial derivative. Iteration (2.13) is replaced by:

u
(n+1)
r+1 = u

(n)
r+1−

µN ∆t

2h

(

u
(n)
r−1 − u

(n)
r−3 +

(

u
(n)
r−3 − 2u

(n)
r−1 + u

(n)
r+1

)

(

1

2
+ ϑ̃r

))

+µN ∆t gb

where ϑ̃r = ϑr/2. In this case we also must replace iteration (2.9) for i = r−1
with:

u
(n+1)
r−1 =

1

2

(

u
(n)
r−3 + u

(n)
r+1 + (2h)2fi

)

.

136 A TENTATIVE OF CONVERGENCE PROOF

In these cases, the iteration matrix B and vectors u(n) and F of (A.2) become:

u(n) =

u
(n)
l

u
(n)
l+1
...

u
(n)
r−1

u
(n)
r+1

, F =

∆tga
h2fl+1
...

h2fr−2
(2h)2fr−1
∆tgb

B =

1− µD∆t ϑ̃l 0 µD∆t (1− ϑ̃l)
1/2 0 1/2

.

1/2 0 0 1/2
c
2
(0.5− ϑ̃r) 0 c ϑ̃r 1− c

2
(0.5 + ϑ̃r)

.

(A.5)
Conditions ϑ̃l ≥ 0.5 and ϑ̃r ≤ 0.5 are always satisfied; therefore ρ(B) < 1.

A.3 Comparison between the two methods:

Taylor analysis

In this section we analyze the difference between the errors obtained with the
iteration scheme (A.2)-(A.3) (that we call method (A)) and with the iteration
scheme (A.2)-(A.5) (that we call method (B)). In order to avoid oscillation
in the error, when we perform method (B) we always use the matrix (A.5),
even if ϑl ≥ 0.5 or ϑr ≤ 0.5.

Method (A) converges to the solution of the linear system:

1

h2
(ui−1 − 2 ui + ui+1) = fi, i = l + 1, . . . , r − 1

ϑlul + (1− ϑl)ul+1 = ga
1

h
(ur−1 − ur−2 + (ur − 2 ur−1 + ur−2)(0.5 + ϑr)) = gb

(A.6)
that we summarize as Lhuh = fh, while method (B) converges to the solution

COMPARISON BETWEEN THE TWO METHODS 137

of the linear system:

1

h2
(ui−1 − 2 ui + ui+1) = fi, i = l + 1, . . . , r − 2

1

4h2
(ui−2 − 2 ui + ui+2) = fi, i = r − 1

ϑ̃lul + (1− ϑ̃l)ul+2 = ga
1

2h

(

ur−1 − ur−3 + (ur+1 − 2 ur−1 + ur−3)(0.5 + ϑ̃r)
)

= gb

(A.7)
that we summarize as L̃h ũh = f̃h.

Let u be the exact solution. Let us start studying the error for the linear
system (A.6). The error eh := uh − u satisfies the defect equation:

Lh eh = dh := fh − Lh u. (A.8)

By a Taylor analysis, we can compute the discretization error dh. For equa-
tions i = l + 1, . . . , r − 1, we obtain:

dhi = −u′′(xi)+
u(xi+1)− 2u(xi) + u(xi−1)

h2
=

h2

2
uIV (xi)+O(h

4), i = l+1, . . . , r−1
(A.9)

By the same argument, we can compute the discretization error for bound-
ary conditions. For the Dirichlet boundary condition, performing a Taylor
expansion of the solution, we obtain:

u(xl+1) = u(a) + (ϑl h)u
′(a) +

(ϑlh)
2

2
u′′(a) +O(h3)

u(xl) = u(a)− ((1− ϑl)h)u
′(a) +

((1− ϑl)h)
2

2
u′′(a) +O(h3)

Multiplying the first equation by 1−ϑl and second equation by ϑl, summing
and collecting terms, we obtain:

dhl = u(a)−(ϑlu(xl)+(1−ϑl)u(xl+1)) = −
ϑl(1− ϑl)h

2

2
u′′(a)+O(h3) (A.10)

For the Neumann boundary conditions:

u(xr) = u(b) + (1− ϑr)h u′(b) +
((1− ϑr)h)

2

2
u′′(b) +

((1− ϑr)h)
3

6
u′′′(b) +O(h4)

u(xr−1) = u(b)− ϑr h u′(b) +
(ϑr h)

2

2
u′′(b)− (ϑr h)

3

6
u′′′(b) +O(h4)

u(xr−2) = u(b)− (1 + ϑr)h u′(b) +
((1 + ϑr)h)

2

2
u′′(b)− ((1 + ϑr)h)

3

6
u′′′(b) +O(h4)

138 A TENTATIVE OF CONVERGENCE PROOF

After some algebra, we obtain the discretization error:

dhr = u′(b)− 1

h
(u(xr−1)− u(xr−2) + (u(xr)− 2u(xr−1) + u(xr−2))(0.5 + ϑr))

=

(

ϑ2r −
1

3

)

h2

2
u′′′(b) +O(h3)

(A.11)

Neglecting higher order terms, we can claim from (A.8), (A.9), (A.10) and
(A.11) that the error eh is a second order accurate numerical solution of the
differential problem:

−e′′ = h2

12
uIV in]a, b[

e(a) = −ϑl(1− ϑl)h
2

2
u′′(a)

e′(b) =

(

ϑ2r −
1

3

)

u′′′(b)

2
h2

(A.12)

Similarly, we can analyze the behavior of the error of (A.7). For simplicity
we do not take into account the difference between the first two equations of
(A.7) in the computation of the defect, and then we assume that the defect
for inner equations is again (A.9). At the end, we will obtain the following
differential problem for the error ẽh:

−e′′ = h2

12
uIV in]a, b[

e(a) = − ϑ̃l(1− ϑ̃l)(2h)
2

2
u′′(a)

e′(b) =

(

ϑ̃2r −
1

3

)

u′′′(b)

2
(2h)2

(A.13)

We can summarize (A.12) and (A.13) in a unique differential problem:

−e′′ = h2

12
uIV in]a, b[

e(a) = − ϑ̄l(1− ϑ̄l)(jh)
2

2
u′′(a)

e′(b) =

(

ϑ̄2r −
1

3

)

u′′′(b)

2
(jh)2

(A.14)

where ϑ̄I = ϑI (I ∈ {l, r}) and j = 1 for the method (A), while ϑ̄I = ϑ̃I

(I ∈ {l, r}) and j = 2 for the method (B). From the first equation of (A.14)

COMPARISON BETWEEN THE TWO METHODS 139

we obtain

e(x) = −h2

12
u′′(x) +mx+ q. (A.15)

We found the parameters m and q imposing second and third equation of
(A.14). From the third equation:

−h2

12
u′′′(b)+m =

(

ϑ̄2r −
1

3

)

u′′′(b)

2
(jh)2 =⇒ m =

h2u′′′(b)

2

(

j2
(

ϑ̄2r −
1

3

)

+
1

6

)

(A.16)
From the second equation of (A.14):

− h2

12
u′′(a) +mx+ q = − ϑ̄l(1− ϑ̄l)(jh)

2

2
u′′(a) =⇒

=⇒ q =
h2

2

(

u′′(a)

(

1

6
− ϑ̄l(1− ϑ̄l)j

2

)

− a u′′′(b)

(

1

6
+ j2

(

ϑ̄2r −
1

3

)))

(A.17)

In order to compare the errors for the two methods, we define the ratio

α =
‖error with method (B)‖
‖error with method (A)‖ . (A.18)

When h is very small, we can approximate the error e(x) with a line, i.e.,
from (A.15), e(x) ≈ m x + q. With this approximation, if we compute α by
(A.18) with the L1 norm or with the L∞ norm we obtain the same result.
Let us compute it using the L∞ norm. Let us suppose the greater error is
produced by the discretization of the Neumann condition, then

Assumption: max
[a,b]

|e(x)| = |e(b)| ≈ |m b+ q|. (A.19)

Then, from (A.16) and (A.17) we can compute the error for the method (A)
(choosing ϑ̄I = ϑI for I ∈ {l, r} and j = 1) and the error for the method (B)
(choosing ϑ̄I = ϑ̃I for I ∈ {l, r} and j = 2). Recalling that ϑ̃l = (ϑl + 1)/2
and ϑ̃r = ϑr/2, we obtain:

α =

∣

∣

∣

∣

∣

u′′(a)
(

1
6
− (1 + ϑl) (1− ϑl)

)

+ u′′′(b)
(

ϑ2r − 7
6

)

u′′(a)
(

1
6
− ϑl (1− ϑl)

)

+ u′′′(b)
(

ϑ2r − 1
6

)

∣

∣

∣

∣

∣

. (A.20)

In order to compute the value α under grid refinement for a fixed problem,
we should compute the expected value:

ᾱ =

∫

[0,1]2
αdϑldϑr.

140 A TENTATIVE OF CONVERGENCE PROOF

Even if the discretization error of the method (B) is four time greater than
the discretization error of the method (A), the value (A.20) may be greater
than 4, as we will see in the numerical tests of the next section.

A.4 Numerical results

In this section we compare the accuracy order and the absolute value of the
error between iteration schemes (A.2)-(A.3) (that we call method (A)) and
(A.2)-(A.5) (that we call method (B)). In order to avoid oscillation in the
error, when we perform method (B) we always use the matrix (A.5), even if
ϑl ≥ 0.5 or ϑr ≤ 0.5.

In all numerical tests we choose the exact solution u and the domain
[a, b] ⊂ [−1, 1], and from these we compute f , ga and gb.

Let u(n) be the numerical solution obtained at the iteration n. All nu-
merical computations in the following numerical tests are performed with a
very strict tolerance on the residue

∥

∥fh − Lh u
(n)

∥

∥ ≤ ǫ ‖fh‖

with ǫ = 10−12, so that the discretization error is the dominant cause of error.
For each numerical test we also compute the ratio α, defined in (A.18).

A.4.1 Example 1

We choose:

u = sin(2πx), Ω = [−0.5, 0.5 + 10−12].

In this case we get u′′(a) = 0 and, if we choose a grid with a number of node
equal to a power of two, ϑl = 1 and ϑr ≈ 0. Since ϑl = 1, the second equation
of (A.14) gives e(a) = 0 and then the assumption (A.19) is valid. Then, from
(A.20) we obtain α = 7. This value is confirmed by the numerical results of
Fig. A.1 and Table A.1. In Fig. 5.6 we observe the behavior of the error for
both methods (A) and (B).

A.4.2 Example 2

We choose:

u = sin(2πx), Ω = [−0.843, 0.813].
In Fig. A.3 and in Table A.2 we report the errors for both methods (A) and
(B) in L1 and L∞ norms and compute the respective values of α.

A.4. NUMERICAL RESULTS 141

L
1
-error,�=7.00

log10(N)

lo
g
1
0
(e
rr
o
r)

2.5 3 3.5 4 4.5 5
-9

-8

-7

-6

-5

-4

-3

-2

L
1
-error for the scheme (A)

L
1
-error for the scheme (B)

bestfit slope for (A): -2.00

bestfit slope for (B): -2.00

L
∞
-error,�=7.00

log10(N)
lo
g
1
0
(e
rr
o
r)

2.5 3 3.5 4 4.5 5
-9

-8

-7

-6

-5

-4

-3

-2

L
∞
-error for the scheme (A)

L
∞
-error for the scheme (B)

bestfit slope for (A): -2.00

bestfit slope for (B): -2.00

Fig. A.1: Example A.4.1. Errors obtained with methods (A) and (B) computed with L1

and L∞ norms and the respective best-fit lines. Left: L1 norm, mean value α = 7.00;
Right: L∞ norm, mean value α = 7.00.

Table A.1: L1 and L∞ errors for methods (A) and (B) and respective
values of α.

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L1 (B): L1 α

512 (1.00,0.00) (1.00,0.00) 1.58 ·10−4 1.11 ·10−3 7.00
1024 (1.00,0.00) (1.00,0.00) 3.95 ·10−5 2.77 ·10−4 7.00
2048 (1.00,0.00) (1.00,0.00) 9.87 ·10−6 6.91 ·10−5 7.00
4096 (1.00,0.00) (1.00,0.00) 2.47 ·10−6 1.73 ·10−5 7.00
8192 (1.00,0.00) (1.00,0.00) 6.16 ·10−7 4.31 ·10−6 7.00
16384 (1.00,0.00) (1.00,0.00) 1.54 ·10−7 1.08 ·10−6 7.00
32768 (1.00,0.00) (1.00,0.00) 3.85 ·10−8 2.69 ·10−7 7.00

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L∞ (B): L∞ α

512 (1.00,0.00) (1.00,0.00) 3.15 ·10−4 2.21 ·10−3 7.00
1024 (1.00,0.00) (1.00,0.00) 7.89 ·10−5 5.52 ·10−4 7.00
2048 (1.00,0.00) (1.00,0.00) 1.97 ·10−5 1.38 ·10−4 7.00
4096 (1.00,0.00) (1.00,0.00) 4.93 ·10−6 3.45 ·10−5 7.00
8192 (1.00,0.00) (1.00,0.00) 1.23 ·10−6 8.62 ·10−6 7.00
16384 (1.00,0.00) (1.00,0.00) 3.08 ·10−7 2.16 ·10−6 7.00
32768 (1.00,0.00) (1.00,0.00) 7.70 ·10−8 5.39 ·10−7 7.00

A.4.3 Example 3

We choose:

u = ex, Ω = [−0.843, 0.813].

142 A TENTATIVE OF CONVERGENCE PROOF

x

e
(x

)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6
× 10

-7

error for method (A)

error for method (B)

Fig. A.2: Example A.4.1. Behavior of the error for both methods (A) and (B).

L
1
-error,�=3.99

log10(N)

lo
g
1
0
(e
rr
o
r)

1.5 2 2.5 3 3.5 4 4.5 5
-9

-8

-7

-6

-5

-4

-3

-2

-1
L
1
-error for the scheme (A)

L
1
-error for the scheme (B)

bestfit slope for (A): -1.99

bestfit slope for (B): -1.94

L
∞
-error,�=3.48

log10(N)

lo
g
1
0
(e
rr
o
r)

1.5 2 2.5 3 3.5 4 4.5 5
-10

-8

-6

-4

-2

0
L
∞
-error for the scheme (A)

L
∞
-error for the scheme (B)

bestfit slope for (A): -2.00

bestfit slope for (B): -1.91

Fig. A.3: Example A.4.2. Errors obtained with methods (A) and (B) computed with L1

and L∞ norms and the respective best-fit lines. Left: L1 norm, mean value α = 3.99;
Right: L∞ norm, mean value α = 3.48.

In Fig. A.4 and in Table A.3 we report the errors for both methods (A) and
(B) in L1 and L∞ norms and compute the respective values of α.

A.4.4 Example 4

We choose:
u = ex

2

sin(2πx), Ω = [−0.823, 0.787].
In Fig. A.4 and in Table A.3 we report the errors for both methods (A) and
(B) in L1 and L∞ norms and compute the respective values of α.

A.4. NUMERICAL RESULTS 143

Table A.2: Example A.4.2: L1 and L∞ errors for methods (A) and (B)
and respective values of α.

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L1 (B): L1 α

58 (0.45,0.58) (0.72,0.29) 6.65 ·10−3 2.57 ·10−2 3.87
87 (0.17,0.87) (0.59,0.43) 1.03 ·10−2 7.75 ·10−3 0.75
130 (0.79,0.84) (0.90,0.42) 4.61 ·10−3 2.67 ·10−3 0.58
195 (0.69,0.77) (0.85,0.38) 1.61 ·10−3 2.33 ·10−3 1.45
292 (0.08,0.70) (0.54,0.35) 6.48 ·10−4 1.69 ·10−3 2.61
438 (0.62,0.05) (0.81,0.02) 1.61 ·10−4 1.09 ·10−3 6.78
657 (0.43,0.57) (0.71,0.29) 5.48 ·10−5 3.91 ·10−4 7.14
986 (0.60,0.81) (0.80,0.40) 7.52 ·10−5 1.10 ·10−4 1.47
1478 (0.98,0.81) (0.99,0.40) 3.91 ·10−5 3.22 ·10−5 0.82
2217 (0.97,0.71) (0.98,0.36) 1.26 ·10−5 1.96 ·10−5 1.55
3326 (0.91,0.02) (0.95,0.01) 1.91 ·10−6 1.67 ·10−5 8.75
4988 (0.44,0.62) (0.72,0.31) 1.32 ·10−6 6.62 ·10−6 5.01
7482 (0.66,0.43) (0.83,0.22) 1.66 ·10−7 3.23 ·10−6 19.45
11223 (0.99,0.65) (1.00,0.32) 4.03 ·10−7 8.53 ·10−7 2.12
16835 (0.45,0.93) (0.73,0.46) 3.72 ·10−7 3.17 ·10−7 0.85
25252 (0.72,0.94) (0.86,0.47) 1.75 ·10−7 1.04 ·10−7 0.60

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L∞ (B): L∞ α

58 (0.45,0.58) (0.72,0.29) 1.61 ·10−2 3.45 ·10−2 2.13
87 (0.17,0.87) (0.59,0.43) 2.18 ·10−2 9.66 ·10−3 0.44
130 (0.79,0.84) (0.90,0.42) 9.79 ·10−3 4.10 ·10−3 0.42
195 (0.69,0.77) (0.85,0.38) 3.52 ·10−3 3.67 ·10−3 1.04
292 (0.08,0.70) (0.54,0.35) 1.36 ·10−3 2.59 ·10−3 1.90
438 (0.62,0.05) (0.81,0.02) 2.76 ·10−4 1.95 ·10−3 7.07
657 (0.43,0.57) (0.71,0.29) 1.32 ·10−4 6.53 ·10−4 4.95
986 (0.60,0.81) (0.80,0.40) 1.64 ·10−4 1.76 ·10−4 1.07
1478 (0.98,0.81) (0.99,0.40) 7.95 ·10−5 6.22 ·10−5 0.78
2217 (0.97,0.71) (0.98,0.36) 2.59 ·10−5 3.79 ·10−5 1.46
3326 (0.91,0.02) (0.95,0.01) 3.92 ·10−6 3.22 ·10−5 8.21
4988 (0.44,0.62) (0.72,0.31) 3.08 ·10−6 1.10 ·10−5 3.59
7482 (0.66,0.43) (0.83,0.22) 2.95 ·10−7 5.77 ·10−6 19.6
11223 (0.99,0.65) (1.00,0.32) 8.22 ·10−7 1.69 ·10−6 2.05
16835 (0.45,0.93) (0.73,0.46) 7.98 ·10−7 4.44 ·10−7 0.56
25252 (0.72,0.94) (0.86,0.47) 3.69 ·10−7 1.56 ·10−7 0.42

144 A TENTATIVE OF CONVERGENCE PROOF

L
1
-error,�=5.80

log10(N)

lo
g

1
0

(e
rr

o
r)

1.5 2 2.5 3 3.5 4 4.5 5
-12

-10

-8

-6

-4

-2
L

1
-error for the scheme (A)

L
1
-error for the scheme (B)

bestfit slope for (A): -1.99

bestfit slope for (B): -2.03

L
∞

-error,�=5.76

log10(N)
lo

g
1

0
(e

rr
o

r)

1.5 2 2.5 3 3.5 4 4.5 5
-10

-9

-8

-7

-6

-5

-4

-3

-2
L

∞
-error for the scheme (A)

L
∞

-error for the scheme (B)

bestfit slope for (A): -1.97

bestfit slope for (B): -2.02

Fig. A.4: Example A.4.3. Errors obtained with methods (A) and (B) computed with L1

and L∞ norms and the respective best-fit lines. Left: L1 norm, mean value α = 5.80;
Right: L∞ norm, mean value α = 5.76.

L
1
-error,�=3.98

log10(N)

lo
g
1
0
(e
rr
o
r)

1.5 2 2.5 3 3.5 4 4.5 5
-8

-7

-6

-5

-4

-3

-2

-1

0
L
1
-error for the scheme (A)

L
1
-error for the scheme (B)

bestfit slope for (A): -1.97

bestfit slope for (B): -2.02

L
∞
-error,�=3.80

log10(N)

lo
g
1
0
(e
rr
o
r)

1.5 2 2.5 3 3.5 4 4.5 5
-8

-7

-6

-5

-4

-3

-2

-1

0
L
∞
-error for the scheme (A)

L
∞
-error for the scheme (B)

bestfit slope for (A): -2.00

bestfit slope for (B): -2.01

Fig. A.5: Example A.4.4. Errors obtained with methods (A) and (B) computed with L1

and L∞ norms and the respective best-fit lines. Left: L1 norm, mean value α = 3.98;
Right: L∞ norm, mean value α = 3.80.

A.4. NUMERICAL RESULTS 145

Table A.3: Example A.4.3: L1 and L∞ errors for methods (A) and (B)
and respective values of α.

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L1 (B): L1 α

58 (0.45,0.58) (0.72,0.29) 6.75 ·10−5 1.16 ·10−3 17.14
87 (0.17,0.87) (0.59,0.43) 2.37 ·10−4 3.32 ·10−4 1.40
130 (0.79,0.84) (0.90,0.42) 9.87 ·10−5 1.28 ·10−4 1.30
195 (0.69,0.77) (0.85,0.38) 3.09 ·10−5 7.33 ·10−5 2.37
292 (0.08,0.70) (0.54,0.35) 1.07 ·10−5 4.20 ·10−5 3.94
438 (0.62,0.05) (0.81,0.02) 5.43 ·10−6 2.66 ·10−5 4.89
657 (0.43,0.57) (0.71,0.29) 4.79 ·10−7 9.40 ·10−6 19.61
986 (0.60,0.81) (0.80,0.40) 1.44 ·10−6 2.76 ·10−6 1.91
1478 (0.98,0.81) (0.99,0.40) 7.17 ·10−7 9.99 ·10−7 1.39
2217 (0.97,0.71) (0.98,0.36) 2.06 ·10−7 5.60 ·10−7 2.72
3326 (0.91,0.02) (0.95,0.01) 8.28 ·10−8 4.27 ·10−7 5.16
4988 (0.44,0.62) (0.72,0.31) 1.65 ·10−8 1.54 ·10−7 9.32
7482 (0.66,0.43) (0.83,0.22) 5.62 ·10−9 7.79 ·10−8 13.85
11223 (0.99,0.65) (1.00,0.32) 4.44 ·10−9 2.39 ·10−8 5.38
16835 (0.45,0.93) (0.73,0.46) 5.35 ·10−9 7.24 ·10−9 1.35
25252 (0.72,0.94) (0.86,0.47) 2.49 ·10−9 2.68 ·10−9 1.08

N (A): (ϑl, ϑr) (A): L∞ (B): L∞ α

58 (0.45,0.58) (0.72,0.29) 1.23 ·10−4 2.13 ·10−3 17.39
87 (0.17,0.87) (0.59,0.43) 4.67 ·10−4 5.72 ·10−4 1.23
130 (0.79,0.84) (0.90,0.42) 1.94 ·10−4 2.46 ·10−4 1.26
195 (0.69,0.77) (0.85,0.38) 6.15 ·10−5 1.38 ·10−4 2.25
292 (0.08,0.70) (0.54,0.35) 2.01 ·10−5 7.58 ·10−5 3.77
438 (0.62,0.05) (0.81,0.02) 1.06 ·10−5 5.12 ·10−5 4.81
657 (0.43,0.57) (0.71,0.29) 8.52 ·10−7 1.75 ·10−5 20.58
986 (0.60,0.81) (0.80,0.40) 2.90 ·10−6 5.11 ·10−6 1.76
1478 (0.98,0.81) (0.99,0.40) 1.37 ·10−6 2.05 ·10−6 1.50
2217 (0.97,0.71) (0.98,0.36) 3.84 ·10−7 1.14 ·10−6 2.97
3326 (0.91,0.02) (0.95,0.01) 1.74 ·10−7 8.56 ·10−7 4.93
4988 (0.44,0.62) (0.72,0.31) 3.26 ·10−8 2.86 ·10−7 8.76
7482 (0.66,0.43) (0.83,0.22) 1.11 ·10−8 1.50 ·10−7 13.52
11223 (0.99,0.65) (1.00,0.32) 8.79 ·10−9 4.90 ·10−8 5.58
16835 (0.45,0.93) (0.73,0.46) 1.23 ·10−8 1.26 ·10−8 1.03
25252 (0.72,0.94) (0.86,0.47) 5.73 ·10−9 4.97 ·10−9 0.87

146 A TENTATIVE OF CONVERGENCE PROOF

Table A.4: Example A.4.4: L1 and L∞ errors for methods (A) and (B)
and respective values of α.

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L1 (B): L1 α

58 (0.87,0.82) (0.93,0.41) 6.24 ·10−2 7.50 ·10−2 1.20
87 (0.30,0.73) (0.65,0.37) 2.12 ·10−2 2.74 ·10−2 1.29
130 (0.49,0.15) (0.75,0.08) 2.91 ·10−3 2.32 ·10−2 8.00
195 (0.74,0.23) (0.87,0.12) 1.17 ·10−3 1.09 ·10−2 9.33
292 (0.16,0.90) (0.58,0.45) 2.97 ·10−3 9.26 ·10−4 0.31
438 (0.24,0.35) (0.62,0.18) 9.61 ·10−5 1.65 ·10−3 17.14
657 (0.86,0.03) (0.93,0.01) 1.69 ·10−4 1.03 ·10−3 6.13
986 (0.74,0.99) (0.87,0.50) 3.35 ·10−4 4.91 ·10−5 0.15
1478 (0.20,0.59) (0.60,0.30) 3.28 ·10−5 1.03 ·10−4 3.13
2217 (0.80,0.89) (0.90,0.44) 4.98 ·10−5 2.53 ·10−5 0.51
3326 (0.65,0.78) (0.82,0.39) 1.66 ·10−5 1.52 ·10−5 0.91
4988 (0.56,0.78) (0.78,0.39) 7.43 ·10−6 6.34 ·10−6 0.85
7482 (0.84,0.17) (0.92,0.08) 1.09 ·10−6 7.64 ·10−6 7.01
11223 (0.76,0.75) (0.88,0.38) 1.25 ·10−6 1.61 ·10−6 1.29
16835 (0.10,0.07) (0.55,0.04) 2.65 ·10−7 1.22 ·10−6 4.62
25252 (0.20,0.66) (0.60,0.33) 1.65 ·10−7 2.99 ·10−7 1.81

N (A): (ϑl, ϑr) (B): (ϑ̃l, ϑ̃r) (A): L∞ (B): L∞ α

58 (0.87,0.82) (0.93,0.41) 1.18 ·10−1 1.56 ·10−1 1.32
87 (0.30,0.73) (0.65,0.37) 3.81 ·10−2 6.55 ·10−2 1.72
130 (0.49,0.15) (0.75,0.08) 7.31 ·10−3 5.16 ·10−2 7.06
195 (0.74,0.23) (0.87,0.12) 2.88 ·10−3 2.33 ·10−2 8.09
292 (0.16,0.90) (0.58,0.45) 5.70 ·10−3 2.39 ·10−3 0.42
438 (0.24,0.35) (0.62,0.18) 2.87 ·10−4 3.83 ·10−3 13.35
657 (0.86,0.03) (0.93,0.01) 3.72 ·10−4 2.15 ·10−3 5.78
986 (0.74,0.99) (0.87,0.50) 6.40 ·10−4 1.36 ·10−4 0.21
1478 (0.20,0.59) (0.60,0.30) 5.64 ·10−5 2.48 ·10−4 4.40
2217 (0.80,0.89) (0.90,0.44) 9.46 ·10−5 5.90 ·10−5 0.62
3326 (0.65,0.78) (0.82,0.39) 3.01 ·10−5 3.59 ·10−5 1.19
4988 (0.56,0.78) (0.78,0.39) 1.33 ·10−5 1.54 ·10−5 1.15
7482 (0.84,0.17) (0.92,0.08) 2.46 ·10−6 1.60 ·10−5 6.50
11223 (0.76,0.75) (0.88,0.38) 2.29 ·10−6 3.63 ·10−6 1.58
16835 (0.10,0.07) (0.55,0.04) 5.71 ·10−7 2.83 ·10−6 4.96
25252 (0.20,0.66) (0.60,0.33) 2.93 ·10−7 7.34 ·10−7 2.50

Appendix B
Diffusion Equation with moving

interface

n this chapter we describe how to extend the method described in this the-
sis to solve the Diffusion Equation with discontinuous coefficients across a
moving interface. The method is implemented in 1D, but we think it can be
easily extended in higher dimensions. This chapter consists mainly of a work
in progress.

Model problem 8 Consider the model problem:

∂T

∂t
+ u · ∇T = µ∆T + f in Ω = [a, b] (B.1)

[[T]] = gD on α ∈ Ω (B.2)

[[γ T ′]] = gN on α ∈ Ω (B.3)

(B.4)

in the unknown T : Ω→ R, where u(t, x) is an assigned velocity, and the co-
efficient γ is discontinuous across α(t), which consists of a moving interface.

Let Ω1 = [a, α] and Ω2 = [α, b]. Eq. (B.1) is split in two equations:

∂Ti

∂t
+ u · ∇Ti = µi ∆Ti + fi in Ωi, i = 1, 2. (B.5)

Now the coefficient µi is continuous in Ωi and the problem can be solved
with the usual technique of ghost cells described in Chapter 3. The moving
interface can cause some troubles, especially when it crosses a grid point.
The velocity u is defined in all Ω, and consists on the velocity by which the
interface α moves in time:

α(t+∆t) = α(t) + ∆t u(α(t)).

147

148 DIFFUSION EQ. WITH MOVING INTERFACE

Of course we can use a more accurate discretization of the interface evolution
α̇ = u. In higher dimension, the evolution will be performed by the level-set
method.

B.1 Discretization

Let N1 and Nnew
1 be as in Fig. B.1, where α = α(tn) and αnew = α(tn+1).

���

�
�

�
��

�

�
����

� ����
�

���

�

�
�
��

�
����
�

�	

�	
 �
�������

�

�	

Fig. B.1: Discretization of the domain Ω at time tn (top) and tn+1 (bottom).

Let us suppose that we know at time tn the values T1(xj) for j = 0 . . . N1+
1 and T2(xj) for j = N1 . . . N , and from this values we want to know at
time tn+1 the values T new

1 (xj) for j = 0 . . . Nnew
1 + 1 and T new

2 (xj) for j =
Nnew
1 . . . N . Let us build a linear system by writing an equation for each

unknown T new
i (xj). If j = 0 or j = N the equation can be easily constructed

from the boundary conditions in a and b. If i = 1, . . . , Nnew
1 − 1 we use

Crank-Nicolson, i.e. we discretize Eq. (B.5) for i = 1 in P ≡ x
n+1/2
j (see Fig.

B.2):

T new
1 (xj)− T1(xj)

∆t
+

unew(xj) + u(xj)

2
· T

new
1 (xj+1)− T new

1 (xj−1) + T1(xj+1)− T1(xj−1)

4 ∆x
=

µnew
1 (xj) + µ1(xj)

4 ∆x2
(

δ2jT
new
1 + δjT1

)

+
fnew(xj) + f(xj)

2
(B.6)

where δ2j W = W (xj+1)− 2W (xj) +W (xj+1).

B.1. DISCRETIZATION 149

�������

�

���
�

Fig. B.2: We discretize the diffusion equation by Crank-Nicolson if we are far
from the interface, i.e. we discretize the equation in P .

If j = Nnew
1 and xj < α at time tnm the equation is obtained as Eq.

(B.6), else we have to find a different approach since we do not know the
value T1(xj+1). Of course we can extrapolate T1 far from the interface. In 1D
is a trivial task, while in 2D we can follow for example the method described
by Aslam in [12]. However, we here propose an alternative technique. In

practice, we discretize (B.5) for i = 1 in P ≡ x
n+1/2
j+1/2 (see Fig. B.3).

�������

�

���
�

�

Fig. B.3: If the interface crosses a grid point from left to right, we discretize Eq.
B.5 for i = 1 in P .

Let LjW the quadratic interpolation of W in nodes xj−1, xj, xj+1. Let us
discretize every term of (B.5) for i = 1.

∂T1
∂t

≈ LjT
new
1 (xj−1/2)− Lj−1T1(xj−1/2)

∆ t

u ≈ unew(xj) + u(xj−1)

2
∂T1
∂x

≈ 1

4 ∆x
(T new

1 (xj+1)− T new
1 (xj−1) + T1(xj)− T1(xj−2))

µ1 ≈
µnew
1 (xj) + µ1(xj−1)

2

∂2T1
∂x2

≈ 1

2 ∆x2
(

δ2jT
new
1 + δ2j−1T1

)

150 DIFFUSION EQ. WITH MOVING INTERFACE

f ≈ fnew(xj) + f(xj−1)

2
.

The whole procedure can be repeated similarly for T2(xj), for j = Nnew
1 +

1, . . . , N . Only the ghost values T1(xNnew
1

+1) and T2(xNnew
1

) are left. They
are found by discretizing the interface conditions (B.2) and (B.3):

Lj+1T2(α
new)− LjT1(α

new) = gD

µ2L′j+1T2(αnew)− µ1L′jT1(αnew) = gN .

B.2 Multigrid approach

In this section we describe the multigrid solver, with particular attention to
the relaxation scheme, since all the other components (transfer grid opera-
tors, ...) can be easily extended from those defined in Chapter 3.

The whole linear system can be resumed in matrix form:

A x = b,

where now the unknown is x. Following the observation at the beginning
of Sec. 2.3, the iterative scheme derived from the associate fictitious time
problem can be seen as a Richardson method with a suitable diagonal pre-
conditioner. In details, the iteration scheme becomes:

xm+1 = xm + P−1 (b−Mxm) .

The diagonal entries pk of P
−1 are:

pk =
∆t

1 + 2 c1
with c1 =

µ1 ∆t

2 ∆x2
(B.7)

for the inner equation of T1,

∆t

1 + 2 c2
with c2 =

µ2 ∆t

2 ∆x2
(B.8)

for the inner equation of T2,

pk = 1 and pk =
∆x

max {µ1, µ2}
for respectively the transmission conditions (B.2) and (B.3). The values (B.7)
and (B.8) are obtained in order to zero out the related diagonal entry of the
iteration matrix B = I − P−1M , in such a way it appears to be a Jacobi
iteration for inner equation. In order to have a proper multigrid smoother,
we switch to a Gauss-Seidel version, that can be resumed, after some algebra,
as follows:

xn+1 = xn + (P − E)−1(b−M xn).

B.3. ALTERNATIVE APPROACHES 151

B.3 Alternative approaches

In this section we propose some alternative approaches that we can use when
the interface cross a grid point.

Alternative 1: Fictitious velocity

Let us suppose we are in the case of Fig. B.3, i.e. the interface cross the grid
point xj from the left to the right. In order to write the linear equation for
the unknown T new

1 (xj) (and only for this unknown) we introduce in the Eq.
B.1 a fictitious velocity v in the following way (we have omitted for simplicity
the convection velocity u, i.e. we suppose u = 0):

∂T1
∂t

+ v
∂T1
∂x

= µ
∂2T1
∂x2

+ v
∂T

∂x
. (B.9)

We choose v = ∆x/∆t, in such a way the discretization of the left-hand side
of (B.9) is:

dT1
dt

: =
∂T1
∂t

+ v
∂T1
∂x

≈
T n+1
j − T n

j−1

∆t
.

Discretizing the other terms of (B.9) and collecting the terms in n + 1 and
n, we obtain (with an obvious notation of the stencil):

1
4
[1 4 − 1]j T

new
1 − 1

4
[−1 4 1]j−1 T1

∆t
=

µ1
2 ∆x2

(

δ2jT
new
1 + δ2j−1T1

)

.

(B.10)
Let us introduce the following notation: by w|nj we intend a second or-
der discretization of w in (xj, t

n), i.e. w|nj = w(xj, t
n) + O(h2), with h =

max {∆t,∆x}. Analyzing the first-hand side of Eq. B.10, which indeed must
be a consistent discretization of ∂T1/∂t in P of Fig. B.3 (from (B.9)), we
obtain:

1
4
[1 4 − 1]j T

new
1 − 1

4
[−1 4 1]j−1 T1

∆t

=
T new
1 (xj)− T1(xj)

∆t
+

1

∆t
([3/4 − 1 1/4]j−1 T1 − [−1 0 1]j T

new
1)

=
∂T1
∂t

∣

∣

∣

∣

n+1/2

j

− ∆x

2 ∆t

(

∂T1
∂x

∣

∣

∣

∣

n+1

j

− ∂T1
∂x

∣

∣

∣

∣

n

j

)

=
∂T1
∂t

∣

∣

∣

∣

n+1/2

j

− ∆x

2

∂2T1
∂t∂x

∣

∣

∣

∣

n+1/2

j

.

In other words, we have obtained the Taylor expansion of ∂T1/∂t centered
in (xj, t

n+1/2) and with spatial step −∆/2.

152 DIFFUSION EQ. WITH MOVING INTERFACE

Alternative 2: Shifted stencil

By this name we intend the discretization described in Sec. B.1, namely:

∂T1
∂t

∣

∣

∣

∣

n+1/2

j−1/2

≈ LjT
new
1 (xj−1/2)− Lj−1T1(xj−1/2)

∆ t
,

that can be resumed in the stencil notation:

∂T1
∂t

∣

∣

∣

∣

n+1/2

j−1/2

≈
1
8
[3 6 − 1]j T

new
1 − 1

8
[−1 6 3]j−1 T1

∆t
.

Alternative 3: Least square

We can compute a quadratic interpolation T̃1 of T1 in the six-point sten-
cil (xj−2, t

n), (xj−1, t
n), (xj, t

n), (xj−1, t
n+1), (xj, t

n+1), (xj+1, t
n+1), and then

compute the discretization as:

∂T1
∂t

∣

∣

∣

∣

n+1/2

j−1/2

≈ ∂T̃1
∂t

(xj−1/2, t
n+1/2).

Although the linear system to find the quadratic interpolation is composed
by 6 equations and 6 unknowns, such linear system is singular (observe that
we can compute a suitable discretization of Ttt with such a stencil). How-
ever, if we solve this linear system by least squares, we obtain the following
approximation:

∂T1
∂t

∣

∣

∣

∣

n+1/2

j−1/2

≈
1
12
[7 4 1]j T

new
1 − 1

12
[1 4 7]j−1 T1

∆t
.

B.3.1 Comparison of the three discretizations

These three discretizations can be resumed as follows:

∂T1
∂t

∣

∣

∣

∣

n+1/2

j−1/2

≈ 1

∆t

(

1

24
[9 18 − 3]j T

new
1 + β[1 − 2 1]j T

new
1

− 1

24
[−3 18 9]j−1 T1 − β[1 − 2 1]j−1 T1

)

, (B.11)

where β = −3/24 for the Alternative 1, β = 0 for the Alternative 2, β =
5/24 for the Alternative 3. Observe that (B.11) is second order accurate,
independently on β, since we have:

β
[1 − 2 1]j T

new
1 − [1 − 2 1]j−1 T1

∆t
= O(h2).

B.4. NUMERICAL TESTS 153

B.4 Numerical tests

We want to test the second order accuracy of the Alternative 2. We choose
[a, b] = [0, 1] and the following exact solutions:

T1 = sin(x+
1

t+ 1
), T2 = cos(x+

10

t+ 1
)

and a velocity

u = α̇(t)
(x− a)(x− b)

(α(t)− a)(α(t)− b)
,

where α(t) = 0.543 + 0.05 sin(t). In Figs. B.4 and B.5 we report the bestfit
line of the errors in the L∞ norm at the final time tfin = 0.25 respectively
for the alternatives 1 and 2.

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Fig. B.4: In the x-axis we report N ,
while in the y-axis we report the L∞

error. The slope of the bestfit line is
s = −1.97.

10
2

10
−6

10
−5

10
−4

10
−3

Fig. B.5: In the x-axis we report N ,
while in the y-axis we report the L∞

error. The slope of the bestfit line is
s = −2.04.

154 DIFFUSION EQ. WITH MOVING INTERFACE

Conclusion and Work in progress

In this thesis we have proposed a numerical method to solve the elliptic
equation in an arbitrary domain (described by a level-set function) with
mixed boundary conditions and discontinuous coefficients. The problem is
discretized on a Cartesian grid by a finite-difference ghost-cell method. The
value in each ghost point is computed by a biquadratic extrapolation of the
numerical solution in Upwind direction. Such a interpolation is computed in
the projection of the ghost point on the boundary, and it may involve other
ghost points. Therefore, the extrapolation equations for the ghost points are
strongly coupled each other, and cannot be solved by a proper sub-system
in order to eliminate the ghost equation from the system. This is the main
strength and drawback of the discretization. It is a strength because it allows
a simpler discretization, in particular for the Neumann boundary conditions,
since it gives information in both Cartesian directions. It is a drawback be-
cause it adds additional unknown to the linear system. Such complication
is overcame by adopting an iterative solver based on multigrid. First, we
construct a good smoother for the multigrid, namely a convergent Gauss-
Seidel-like relaxation scheme. Since a simple Gauss-Seidel applied to the
whole linear system fails to converge, a suitable strategy has been adopted:
the equations have been transformed into a fictitious time-dependent prob-
lem, whose time step represents an iterative parameter, which has been set
up in order to guarantee the convergence. Such a time step is chosen also
in such a way that the Gauss-Seidel iteration scheme for inner equations
is recovered. We observe that the relaxation scheme by the fictitious time
can be seen as a Richardson method with a diagonal preconditioner. Once
the smoother is set up, the transfer (restriction and interpolation) opera-
tors must be built. The interpolation acts on the error, which is continuous
across the boundary, therefore we chose the usual bilinear interpolation op-
erator. On the other hand, the restriction operator acts on the residual,

155

156 CONCLUSION AND WORK IN PROGRESS

which is supposed to be discontinuous across the boundary, since it refers
to differential operators scaling with different powers of the spatial step h:
the residual of inner equations is O(h−2), of Neumann boundary conditions
is O(h−1), of Dirichlet boundary condition is O(1). Therefore, the restric-
tion operator must be modified in the vicinity of the boundary, namely the
inside coarse value is a weighted mean of neighboring fine values, but only
of the ones belonging to the same side of the boundary, since ghost values
refer to boundary conditions. For the ghost coarse value the argument is
the same, provided to suitably extrapolate the residual outside the boundary
constant along the normal direction. In summary, the restriction operator is
performed separately for inner equations and for boundary conditions. The
final convergence factor is close to the optimal one (i.e. the predicted one by
the Local Fourier Analysis for inner relaxations), provided to add at each
relaxation sweep on each grid level some extra-relaxations over boundary
conditions and over inner equations close to the boundary (observe that the
additional computational effort is negligible as the problem increases, since
it is O(h−1)). The boundary treatment of the iteration process has been
compared with other techniques of the relevant literature, such as the Box
and Kaczmarz relaxations (Example 2.7.3.2), showing that our method out-
performs the Kaczmarz relaxation and performs nearly as well as the Box
relaxation (which however results more expansive).

We must observe that, in the case of complex domains such as the flower-
shaped domains, the convergence of the multigrid is observed only when the
coarsest grid is fine enough to capture the curvature of the domain, as we
can see in Example 2.7.3.5.

Other strengths of the whole method (discretization and multigrid) are
the easy implementation in higher dimension, the second order accuracy in
the solution and its gradient (and the method can be easily extended to
higher accuracy), and the power of the solver when embedded in a moving
boundary time dependent problem, such as those arising from applications,
for instance, the incompressible Navier-Stokes equations. The motion of
the domain can be easily handled by the level-set function, which implicitly
describes the boundary, and then the computational effort of the grid re-
generation at each time step is avoided.

The main motivation of the whole work is to embed the elliptic solver in
the incompressible fluid dynamic framework, in order to model the motion
of a fluid contained in a tank of arbitrary shape. In order to deal the two-
phase flow problems, such as air-water, or the more challenging fluid-solid
model, a discontinuous coefficient numerical method has been developed.
In practice, the fluid-solid interaction would be described by a two-phase
flow problem, where the solid is modeled as an highly viscous fluid with

CONCLUSION AND WORK IN PROGRESS 157

respect to the real fluid. To this purpose, we extended the method to the
case of discontinuous coefficients: we impose the continuity of the solution
and of its flux across the interface separating the two fluids (indeed, the
method can be applied to the more general case of non-homogeneous interface
conditions). The discretization is obtained by adding ghost values close to
the interface. In practice, in grid points close to the interface we define
two values: one for the real solution in that grid point, and one for the
ghost value related to the other side of the interface. The discrete equation
of the ghost value for one sub-domain is obtained discretizing one of the
jump conditions, and for the other sub-domain discretizing the other jump
condition. The correlation between sub-domain and jump condition makes
a choice, and finally we found a criterion based on the conditioning of the
problem. The multigrid strategy adopted in the continuous coeffficient case
can be extended to this case, provided to suitably extrapolate the residual
of the jump conditions far from the interface (without overwrite real values)
and to solve exactly the problem in the coarsest grid in place of simply relax
few times (by just relaxing few times on the coarsest grid we do not regain
the optimal convergence factor, especially for highly jump in the coefficient).
We observed that the convergence factor is close to the optimal one, and
non-depending on the jump in the coefficient nor on the size of the problem.
Such features are recently investigated in the relevant literature.

Even though such applications to fluid dynamics have been performed,
with satisfactory results, they are not reported in this thesis (we remind to
another Ph.D. thesis [11] for more details).

In Chapter 5, the boundary/interface discretization has been embedded
in the framework of the Adaptive Mesh refinement, in order to consider
problems with small scale details, and better control the computational cost
in terms of memory storage.

Work in progress

Let us describe the work in progress we have in mind, grouping them accord-
ing to the subject.

Adaptive Mesh refinement

This future work is intended in collaboration with the research group of F.
Gibou of University of Santa Barbara, California.

• Up to now, we have studied only the accuracy of the discretization in an
adaptive Cartesian grid, solving the resulting (non-symmetric) linear

158 CONCLUSION AND WORK IN PROGRESS

system with a (probably not the most efficient) direct solver. However,
we recognize that future work will need to focus on the design of efficient
multigrid solvers for our linear systems.

• Up to now, the refinement process is performed only close to the in-
terface/boundary and depends only on the distance from it. In future
works we aim to extend the method to more general criteria, for in-
stance based on the solution (in order to homogenize the discretization
error for all cells) or, more challenging, based on the curvature of the
interface/boundary, in order to capture small scale effects arising only
in some parts of the interface/boundary.

• The Poisson-Boltzmann/Poisson equation for biomolecules where one
needs a method for the Poisson equation with jump conditions is cur-
rently underway.

Improvement of the method for particular cases

• In case of multiple interfaces, some problem may occur when two or
more interfaces are very close each other. Let us think at the case of a
drop falling into a still water: when the drop is very close to the water,
some ghost points may refer at the same time to two inner grid points,
one inside the drop, and one inside the rest of water. In such cases,
the ghost-method described in this thesis may fail to gain the second
order accuracy. One possible solution is to define two ghost values in
the same grid points, referred to two different areas of the fluid (the
drop and the rest of water).

• In the case of anisotropic operators, we have observed (Sec. 2.4.3) that
the convergence of the relaxation scheme is not guaranteed when a
strong anisotropy occurs. The reason is that the stencil we use is not
in Upwind direction with respect to the co-normal derivative, but it
is in Upwind direction with the normal derivative. However, taking a
stencil in Upwind direction with respect the co-normal derivative is not
always allowed, since in most cases the grid points of such a stencil are
not unknowns of the linear system. A possible strategy can be obtained
by choosing three different stencils for the reconstruction respectively
of the solution (Dirichlet), the x-derivative and the y-derivative (Neu-
mann). Since it is not needed to use a proper Upwind stencil for the
reconstruction of the solution, we can just use the usual Upwind sten-
cil with respect to the normal direction. While, for the gradient re-
construction, we need a co-normal Upwind stencil, which we think can

CONCLUSION AND WORK IN PROGRESS 159

be always obtained, providing to use two different stencils (for x- and
y- directions) possibly reduced, but still maintaining the whole second
order accuracy.

• In presence of sharp-edged domains (Sec. 1.3.4), the accuracy slightly
degrades when the corner is very small. Applying a strategy close to the
one described in the previous point, namely using different stencil for
the reconstructions, we guess that we can obtain a more stable second
order discretization.

• In presence of convex zones of the domain, sometimes can be very
difficult to reconstruct the correct normal derivative on the boundary
by the signed-distance function φ, since it may presents a discontinuity
in the gradient. In such cases we think to use a WENO reconstruction
of the gradient of φ, namely we properly choose the stencil in such a
way it does not crosses the discontinuity in ∇φ.

Analytical studies

Even though we developed a purely practical multigrid solver, we hope in fu-
ture to provide the method with an analytical study of all multigrid compo-
nents. The first step will be the convergence proof of the relaxation scheme for
the second order accurate method, while the proof of the first order method
has been presented in Sec. 2.3.

• The convergence proof for the second order accurate discretization is
not a trivial task, since the resulting linear system is not diagonally
dominant. Starting from the easier 1D case, we gave an alternative
discretization of the method in order to prove the convergence. How-
ever, such idea is very simple and still not satisfactory in our opinion.
We described such a technique in Appendix A.

• For interface conditions, we observed that the CFL condition for the
jump in the flux must take into account the value of the coefficient of
both sides of the interface (Sec. 3.1.3). We think we can give in future
a suitable explanation of the condition (3.29) by the Fourier modes
analysis.

Implementation

Such work in progress will be carried out in near future.

• We are extending all the methods presented in this thesis to the 3D
case.

160 CONCLUSION AND WORK IN PROGRESS

• The code has being parallelized during a 13-week study period in Bor-
deaux, France, among the research group of A. Iollo, and with the
HPC-Europa2 fellowship.

Applications

• The extension of the method to the more general case of a convection-
diffusion equation with discontinuous coefficient across a moving inter-
face is currently underway:

∂T

∂t
+ u · ∇T = µ∆T + f

in the unknown T : Ω → R, where the coefficient µ is discontinuous
across a lower dimensional interface Γ(t) ⊆ Ω which evolves in time.
The time derivative is discretized by Crank-Nicolson. When the inter-
face cross a grid point, the two 5-point stencils at time tn and tn+1 must
be suitably modified, since some grid values may be not available. Sev-
eral kinds of strategies are currently under investigation, all providing
encouraging results. Some 1D results are described in Appendix B.

• The Stefan problem models the phase change of a medium describing
its temperature distribution. It is important to extend the method
proposed in this thesis to a Stefan-type problem in our research group
since one of the main applications is the crust-formation embedded
in the lava-crust interaction. The Stefan problem, combined with the
incompressible fluid dynamic framework, should be able to describe
this phenomena.

Bibliography

[1]

[2] L. Adams and T. P. Chartier. New geometric immersed interface multi-
grid solvers. SIAM Journal of Scientific Computing, 25:1516–1533,
2004.

[3] L. Adams and T. P. Chartier. A comparison of algebraic multigrid and
geometric immersed interface multigrid methods for interface problems.
SIAM Journal of Scientific Computing, 26:762–784, 2005.

[4] L. Adams and Z. Li. The immersed interface/multigrid methods for
interface problems. Journal of Scientific Computing, 24:463–479, 2002.

[5] M. J. Aftosmis, M. J. Berger, and J. E. Melton. In CRC Handbook of
Mesh Generation (Contributed Chapter), chapter Adaptive Cartesian
mesh generation, pages 199–208.

[6] R. E. Alcouffe, A. Brandt, J. Dendy, J. E., and J. W. Painter. The
multigrid method for the diffusion equation with strongly discontinuous
coefficients. Journal on Scientific and Statistical Computing, 2:430–454,
1981.

[7] A. Almgren. A Fast Adaptive Vortex Method Using Local Corrections.
PhD thesis, University of California, Berkeley, 1991.

[8] A. Almgren, J. Bell, P. Colella, L. Howell, and M.Welcome. A conserva-
tive adaptive projection method for the variable density incompressible
navier-stokes equations. J. Comput. Phys., 142:1–46, 1998.

[9] A. Almgren, R. Buttke, and P. Colella. A fast adaptive vortex method
in three dimensions. J. Comput. Phys., 113:177–200, 1994.

161

162 BIBLIOGRAPHY

[10] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to
take into account obstacles in incompressible viscous flows. Numer.
Math., 81, 1999.

[11] V. Artale. Level-Set Ghost Fluid Methods for Free Boundary Problems
in Incompressible Euler and Navier-Stokes Equations. PhD thesis, Uni-
versity of Catania, Italy, 2011.

[12] T. D. Aslam. A partial differential equation approach to multidimen-
sional extrapolation. Journal of Computational Physics, 193:349–355,
2003.

[13] I. Babuška. The finite element method for elliptic equations with
discontinuous coefficients. Computing, 5:207–213, 1970.

[14] I. Babuška, J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft, J. E. Oliger,
, and T. Tezduyar. Modeling, Mesh Generation, and Adaptive Numeri-
cal Methods for Partial Differential Equations. Springer Verlag, Berlin,
1995.

[15] N. Bachvalov. On the convergence of a relaxation method with natural
constraints on the elliptic operator. USSR Comput. Math. Phys., 6:101–
135, 1966.

[16] G. Bao, G. Wei, and S. Zhao. Numerical solution of the Helmholtz
equation with high wave numbers. J. Numer. Methods Engng., 59:389–
408, 2004.

[17] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. J. Comput. Phys., 92:484–512, 1984.

[18] J. Bramble and J. King. A finite element method for interface prob-
lems in domains with smooth boundaries and interfaces. Adv. Comput.
Math., 6:109–138, 1996.

[19] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Math. Comp., 55:1–22, 1990.

[20] J. H. Bramble and B. E. Hubbard. Approximation of solutions of mixed
boundary value problems for Poisson’s equation by finite differences.
J. Assoc. Comput. Mach., 12:114–123, 1965.

[21] A. Brandt. Multi-level adaptive solutions to boundary-value problems.
Math. Comp., 31:333–390, 1977.

BIBLIOGRAPHY 163

[22] A. Brandt. Guide to multigrid developments. In W. Hackbusch and
U. Trottenberg, editors, Multigrid Methods, Lectures Notes in Mathe-
matics, volume 960, pages 220–312, Berlin, 1982. Springer.

[23] A. Brandt. Multigrid, chapter Recent Developments in Multigrid Ef-
ficiency in Computational Fluid Dynamics, pages 573–589. Academic
Press, 2001. Authors of the book: U.Trottemberg, C.W. Oosterlee, A.
Schuller.

[24] A. Brandt. Multigrid techniques: 1984 Guide with Applications to Fluid
Dynamics, Revised Edition. SIAM, St. Augustin, 2011.

[25] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG)
for automatic multigrid solution with application to geodetic computa-
tions. Technical Report, Inst. for Computational Studies, Fort Collins,
CO, 1982.

[26] M. Brezina, A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel,
S. McCormick, and J. Ruge. Algebraic multigrid based on element
interpolation (AMGe). Technical Report UCRL-JC-131752, Lawrence
Livermore National Laboratory, 1988.

[27] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tuto-
rial. SIAM, 2000.

[28] R. E. Caflisch, M. F. Gyure, B. Merriman, S. J. Osher, C. Ratsch,
D. D. Vvedensky, and J. J. Zinck. Island dynamics and the level set
method for epitaxial growth. Applied Mathematics Letters, 4:13–22,
1999.

[29] T. Chan, S. Go, and L. Zikatanov. Lecture Notes on Multilevel Meth-
ods for Elliptic Problems on Unstructured Grids. In Lecture Course
28th Computational Fluid Dynamics, von Karman Institute for Fluid
Dynamics, Belgium, March 37 1997.

[30] T. Chan, J. Xu, and L. Zikatanov. An agglomeration multigrid method
for unstructured grids. Technical Report CAM 98-8, Department of
Mathematics, UCLA, Los Angeles, CA, February 1998.

[31] F. Chantalat, C.-H. Bruneau, C. Galusinski, and A. Iollo. Level-set,
penalization and cartesian meshes: A paradigm for inverse problems
and optimal design. Journal of Computational Physics, 228:6291–6315,
2009.

164 BIBLIOGRAPHY

[32] H. Chen, C. Min, and F. Gibou. A supra-convergent finite difference
scheme for the Poisson and heat equations on irregular domains and
non-graded adaptive Cartesian grids. Journal of Scientific Computing,
31:19–60, 2007.

[33] A. Coco, F. Gibou, and G. Russo. Adaptive solvers for Poisson prob-
lems with discontinuous coefficients on Cartesian grids. Submitted.

[34] A. Coco and G. Russo. A fictitious time method for the solution of
Poisson equation in an arbitrary domain embedded in a square grid.
Journal of Computation Physics. Under revision.

[35] A. Coco and G. Russo. Multigrid approach for Poisson’s equation with
mixed boundary condition in an arbitrary domain. Submitted. Pre-
print available in http://arxiv.org/pdf/1111.0983.

[36] A. Coco and G. Russo. Second order multigrid methods for ellip-
tic problems with discontinuous coefficients on an arbitrary inter-
face, I: one dimensional problems. Numerical Mathematics: The-
ory, Methods and Applications. In press. Pre-print available in
http://arxiv.org/pdf/1111.1167.

[37] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference
equations of mathematical physics. IBM J. Res. Develop., 11:215–234,
1967.

[38] J. Dendy. Black box multigrid. Journal of Computational Physics,
48:366–386, 1982.

[39] J. Donea. An arbitrary Lagrangian-Eulerian finite element method for
transient fluid-structure interactions. Computer Methods in Applied
Mechanics and Engineering, 33:689–723, 1982.

[40] A. du Chéné, C. Min, and F. Gibou. Second-Order Accurate Compu-
tation of Curvatures in a Level Set Framework Using Novel High Or-
der Reinitialization Schemes. Journal of Scientific Computing archive,
35:114–131, 2008.

[41] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-Oscillatory
Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost
Fluid Method). Journal of Computational Physics, 152:457–492, 1999.

[42] R. Fedorenko. A relaxation method for solving elliptic difference equa-
tions. USSR Comput. Math. Phys., 1:1092–1096, 1961.

BIBLIOGRAPHY 165

[43] R. Fedorenko. The speed of convergence of one iterative process. USSR
Comput. Math. Phys., 4:227–235, 1964.

[44] L. Formaggia and F. Nobile. Stability analysis of second-order time
accurate schemes for ALE-FEM. Computer Methods in Applied Me-
chanics and Engineering, 193:4097–4116, 2004.

[45] F. Gibou, L. Chen, D. Nguyen, and S. Banerjee. A level set based sharp
interface method for the multiphase incompressible Navier-Stokes equa-
tions with phase change. J. Comput. Phys., 2:536–555, 2007.

[46] F. Gibou and R. Fedkiw. A second-order-accurate symmetric discrati-
zation of the poisson equation on irregular domains. Journal of Com-
putational Physics, 176:205–227, 2002.

[47] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the
laplace and heat equations on arbitary domains, with applications to
the stefan problem. Journal of Computational Physics, 202:577–601,
2005.

[48] F. Gibou, R. Fedkiw, and R. Caflisch. A Level Set Approach for the
Numerical Simulation of Dendritic Growth. J. Sci. Comput., 19:183–
199, 2003.

[49] F. Gibou, C. Min, and H. Ceniceros. Free boundary problems, Internat.
Ser. Numer. Math., chapter Finite difference schemes for incompress-
ible flows on fully adaptive grids, pages 199–208. Birkhuser, Basel,
2007.

[50] F. Gibou, C. Min, and H. D. Ceniceros. Non-graded adaptive grid ap-
proaches to the incompressible Navier-Stokes equations. FDMP Fluid
Dyn. Mater. Process., 3:37–48, 2007.

[51] R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph. A distributed
Lagrange multiplier/fictitious domain method for particulate flows. In-
ternational Journal of Multiphase Flow, 25:755–794, 1999.

[52] I. G. Graham and M. J. Hagger. Unstructured additive Schwarzcon-
jugate gradient method for elliptic problems with highly discontinuous
coefficients. SIAM J. Sci. Comput., 20:2041–2066, 1999.

[53] L. Greengard and J. Y. Lee. A direct adaptive Poisson solver of arbi-
trary order accuracy. J. Comput. Phys., 125:415–424, 1996.

166 BIBLIOGRAPHY

[54] W. Hackbusch. A fast iterative method solving Poisson’s equation in
a general region. In R. Bulirsch, R. Grigorie, and J. Schroder, editors,
Lecture Notes in Mathematics, volume 631, pages 51–62, Oberwolfach,
July 1976. Springer, Berlin, 1978.

[55] W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

[56] W. Hackbusch. Elliptic Differential Equations: Theory and Numerical
Treatment. Springer, 2003.

[57] S. Hou and X. Liu. A numerical method for solving variable coefficient
elliptic equation with interfaces. Journal of Computational Physics,
202:411–445, 2005.

[58] S. Hou, W. Wang, and L. Wang. Numerical method for solving matrix
coefficient elliptic equation with sharp-edged interfaces. Journal of
Computational Physics, 229:7162–7179, 2010.

[59] J. J. E. Dendy. Black Box Multigrid. Journal of Computational Physics,
48:366–386, 1982.

[60] H. Johansen and P. Colella. A Cartesian Grid Embedded Boundary
Method for Poisson Equation on Irregular Domains. Journal of Com-
putational Physics, 147:60–85, 1998.

[61] C. Johnson. Numerical Solution of Partial Differential Equations by
the Finite Element Method. Cambridge University Press, New York,
NY, 1987.

[62] J. Jones and S. McCormick. Parallel multigrid methods. In D. Keyes,
A. Sameh, and V. Venkatakrishnan, editors, Parallel Numerical Algo-
rithms, Kluwer, Dordrecht, 1997. NASA=LaRC Interdisciplinary Series
in Science and Engineering.

[63] J. D. Jr. Black box multigrid for nonsymmetric problems. Appl. Math.
Comput., 13:261283, 1983.

[64] S. Kaczmarz. Angenherte Auflsung von Systemen linearer Gleichungen.
Bulletin International de l’Acadmie Polonaise des Sciences et des Let-
tres. Classe des Sciences Mathmatiques et Naturelles. Srie A, Sciences
Mathmatiques, 35:355–357, 1937.

[65] B. Koobus, M. H. Lallemand, and A. Derieux. Unstructured Volume-
Agglomeration MG: Solution of the Poisson Equation. Technical Re-
port 1946, INRIA, Sophia Antipolis, France, 1993.

BIBLIOGRAPHY 167

[66] H. O. Kreiss, H.-O. Manteuffel, T. A. Schwartz, B. Wendroff, and
J. White, A. B. Supra-convergent schemes on irregular grids. Math.
Comput., 47:537–554, 1986.

[67] R. LeVeque and Z. Li. The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources. SIAM
J. Numer. Anal., 31:1019–1044, 1994.

[68] Z. Li. A fast iterative algorithm for elliptic interface problems. SIAM
Journal of Numerical Analysis, 35:230–254, 1998.

[69] Z. Li and K. Ito. Maximum principle preserving schemes for interface
problems with discontinuous coefficients. SIAM Journal of Scientific
Computing, 23:339–361, 2001.

[70] X. Liu, R. Fedkiw, and M. Kang. A Boundary Condition Capturing
Method for Poissons Equation on Irregular Domains. Journal of Com-
putational Physics, 160:151–178, 2000.

[71] F. Losasso, R. Fedkiw, , and S. Osher. Spatially adaptive techniques for
level set methods and incompressible flow. J. Comput. Phys., 35:995–
1010, 2006.

[72] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with
an octree data structure. SIGGRAPH 2004, ACM TOG, 23:457–462,
2004.

[73] J. Mandel, M. Brezina, and P. Vaněk. Energy optimization of algebraic
multigrid bases. Computing, 62:205–228, 1999.

[74] T. Manteuffel and A. White. The numerical solution of second-order
boundary value problems on nonuniform meshes. Math. Comput.,
47:511–535, 1986.

[75] A. Mayo. The fast solution of Poisson’s and the biharmonic equations
on irregular regions. SIAM J. Numer. Anal., 21:285–299, 1984.

[76] P. McCorquodale, P. Colella, D. Grote, and J.-L. Vay. A node-centered
local refinement algorithm for poisson’s equation in complex geome-
tries. Journal of Computational Physics, 201:34–60, 2004.

[77] C. Min and F. Gibou. A second order accurate projection method
for the incompressible Navier-Stokes equations on non-graded adaptive
grids. J. Comput. Phys., 219:912–929, 2006.

168 BIBLIOGRAPHY

[78] C. Min and F. Gibou. A second order accurate level set method on non-
graded adaptive cartesian grids. Journal of Computational Physics,
225:300–321, 2007.

[79] C. Min, F. Gibou, and H. D. Ceniceros. A supra-convergent finite
difference scheme for the variable coefcient poisson equation on non-
graded grids. Journal of Computational Physics, 218:123–140, 2006.

[80] G. Naldi, L. Pareschi, and G. Russo. Introduzione al Calcolo Scientifico:
metodi e applicazioni con Matlab . McGraw-Hill, 2001.

[81] Y. T. Ng, H. Chen, C. Min, and F. Gibou. Guidelines for Poisson
solvers on irregular domains with Dirichlet boundary conditions using
the ghost fluid method. J. Sci. Comput., 41:300–320, 2009.

[82] Y. T. Ng, C. Min, and F. Gibou. An efficient fluid-solid coupling
algorithm for single-phase flows. J. Comput. Phys., 228:8807–8829,
2009.

[83] R. Nicolaides. On multiple grid and related techniques for solving
discrete elliptic systems. J. Comput. Phys., 19:418–431, 1975.

[84] M. Oevermann and R. Klein. A Cartesian grid finite volume method
for elliptic equations with variable coefficients and embedded interfaces.
Journal of Computational Physics, 219:749–769, 2006.

[85] M. Oevermann, C. Scharfenberg, and R. Klein. A sharp interface finite
volume method for elliptic equations on Cartesian grids. Journal of
Computational Physics, 228:5184–5206, 2009.

[86] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag New York, Applied Mathematical Sciences,
2002.

[87] J. Papac, F. Gibou, and C. Ratsch. Efficient Symmetric Discretization
for the Poisson, Heat and Stefan-Type Problems with Robin Boundary
Conditions. Journal of Computational Physics, 229:875–889, 2010.

[88] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of
Computational Physics, 25:220–252, 1977.

[89] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible
euler equations in complex geometries. J. Comput. Phys., 190:572–600,
2003.

BIBLIOGRAPHY 169

[90] A. Quarteroni and R. Sacco. Numerical approximation of partial dif-
ferential equations. Springer, 1994.

[91] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics.
Springer, 2000.

[92] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial
Differential Equations. Numerical Mathematics and Scientific Compu-
tation, 1999.

[93] A. Reusken. Multigrid with matrix-dependent transfer operators for a
singular perturbation problem. Computing, 50:199–211, 1993.

[94] J. W. Ruge and Stüben. Multigrid methods, chapter Algebraic multi-
grid, pages 73–130. SIAM, Philadelphia, 1987.

[95] G. Russo and P. Smereka. A remark on computing distance functions.
Journal of Computational Physics, 163:51–67, 2000.

[96] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, New York., 1989.

[97] H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing and GIS. Addison-Wesley, New York., 1990.

[98] A. Sarthou, S. Vincent, J. Caltagirone, and P. Angot. Eulerian-
Lagrangian grid coupling and penalty methods for the simulation of
multiphase flows interacting with complex objects. International Jour-
nal for Numerical Methods in Fluids, 00:1–6, 2007.

[99] A. Schmidt. Computation of three dimensional dendrites with finite
elements. Journal of Computational Physics, 125:293–312, 1996.

[100] J. Sethian. Level Set Methods and Fast Marching Methods: Evolv-
ing Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision and Materials Science. Cambridge University Press, 1999.

[101] Y. Shapira. Matrix-Based Multigrid: Theory and Applications. Second
Edition, volume 2 of Numerical Methods and Algorithms. Springer,
New York, 2008.

[102] G. H. Shortley and R. Weller. The numerical solution of laplace’s
equation. J. Appl. Phys., 9:334–348, 1938.

170 BIBLIOGRAPHY

[103] M. Sussman, P. Smereka, and S. Osher. A level set approach for com-
puting solutions to incompressible 2-phase flow. Journal of Computa-
tional Physics, 114:146–159, 1994.

[104] W. W. Tony F. Chan. Robust multigrid methods for nonsmooth co-
efficient elliptic linear systems. Journal of Computational and Applied
Mathematics, 123:323–352, 2000.

[105] U.Trottemberg, C. Oosterlee, and A. Schuller. Multigrid. Academic
Press, 2000.

[106] J. W. L. Wan and X.-D. Liu. A boundary condition-capturing multi-
grid approach to irregular boundary problems. Journal of Scientific
Computing, 25:1982–2003, 2004.

[107] W. L. Wan. Interface preserving coarsening multigrid for elliptic prob-
lems with highly discontinuous coefficients. Numer. Linear Algebra
Appl., 7:727–741, 2000.

[108] W. L. Wan, T. F. Chan, and B. Smith. An energy-minimizing in-
terpolation for robust multi-grid methods. SIAM J. Sci. Comput.,
21:1632–1649, 2000.

[109] D. Young, R. Melvin, M. Bieterman, F. Johnson, S. Samant, and
J. Bussoletti. A locally refined rectangular grid finite element
method: application to computational fluid dynamics and computa-
tional physics. J. Comput. Phys., 92:1–66, 1991.

[110] S. Yu, Y. Zhou, and G. Wei. Matched Interface and Boundary (MIB)
method for elliptic problems with sharp-edged interfaces. Journal of
Computational Physics, 224:729–756, 2007.

[111] P. M. D. Zeeuw. Matrix-dependent prolongations and restrictions in a
blackbox multigrid solver. J. Comput. Appl. Math., 33:1–27, 1990.

