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Introduction

All decision making situations we deal with during our lives have multiple criteria structure. That is,

several alternatives are evaluated with respect to some point of view, technically evaluation criteria,

and then compared in order to make the “best” decision. For example, buying a car can be seen as a

decision making problem in which the different cars are the alternatives, while price, comfort, accel-

eration, maximum speed etc. can be considered as criteria to which the cars are evaluated against.

Multiple Criteria Decision Aiding (MCDA) proposes useful methodologies to make decisions consid-

ering the preferences of the Decision Maker (DM). Obviously, every one would like to have the ideal

alternative, that is the alternative that is the best for all considered criteria, but often a compromise

has to be chosen. In fact, generally, when comparing two alternatives one is better compared to some

criteria, while the other is better considering other criteria. In this situation, the following question

arises: how to compare them?

Two different methodologies aiming to aggregate the evaluations of the alternatives with respect to

the considered criteria are known in literature: the Multiple Attribute Utility Theory (MAUT) and

the outranking methods. The first aims to assign to each alternative its utility, that is a numeri-

cal evaluation being representative of its worth, while the second uses binary relations to compare

alternatives pairwise. Both methodologies use several parameters and one can fix these parameters

using a direct or a indirect technique. The direct technique consists of asking the DM to directly

provide the parameters required by the aggregation model, while the indirect technique consists of

asking the DM to provide some preference information regarding some reference alternatives from

which one can elicit the preferential parameters.

In general, there could be more than one set of parameters compatible with the preference informa-

tion provided by the DM. All of them compare in the same way the reference alternatives but they

could compare differently the other alternatives not provided as example by the DM. In order to si-

multaneously take into account all the sets of parameters compatible with the preference information

provided by the DM, the Robust Ordinal Regression (ROR) constructs two preference relations, one
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necessary and one possible. The necessary preference relation holds if the preference of an alternative

over another is true for all sets of parameters compatible with the preferences of the DM, while the

possible preference relation holds if the preference of an alternative over another is true for at least

one set of parameters compatible with the preferences of the DM.

In this thesis we have dealt with two important issues of MCDA, that is the interaction between

criteria and the hierarchy of criteria.

The use of MAUT and outranking methods as preference models is based on the mutual independence

between criteria. In many real world problems, the criteria are not independent but interacting. This

means that it is possible to observe a certain form of synergy or redundancy between the evaluation

criteria. For example, considering again the problem of evaluating a car, the criteria maximum speed

and acceleration are redundant because often a very fast car also has good acceleration, while price

and maximum speed criteria are synergetic because a fast and cheap car is very appreciated. In

these cases, one needs to use non-additive integrals, as Choquet and Sugeno integrals, being the

most known non-additive integrals in MCDA. Another possibility is to use an “enriched” utility

function in which other than a marginal utility for each considered criterion there are some further

components representing a bonus or a malus for synergetic or redundant criteria.

On the basis of the concept of interaction between criteria, we have extended two very well

known MCDA methods, that are MUSA and PROMETHEE, giving rise to MUSA-int and the bipo-

lar PROMETHEE method.

Because the Choquet integral involves the use of many parameters and the elicitation of these pa-

rameters is a very troublesome problem for the DM, we have integrated the Choquet integral and

the SMAA methodologies building the SMAA-Choquet method.

In complex decision making problems, the alternatives are evaluated with respect to a family of

criteria organized in a hierarchical way. This means that all criteria are not at the same level, but

it is possible to fix some root criteria, a set of subcriteria descending from each root criterion, a set

of subsubcriteria descending from each subcriterion, and so on. For example, in location problems,

one has to take into account economical, environmental and social aspects. Each of these could be

considered as a macro-criterion having different subcriteria. For example, the social macro-criterion

can have “impact on individuals within site” and “impact on regional demographics” as subcriteria

while economic macro-criterion can present “risk of commercial failure” and “employment” as sub-

criteria and so on.

In the thesis, the problem of aggregating the evaluations of each alternative with respect to all cri-

teria in the hierarchy has been dealt both within MAUT and outranking methods and by also using

iv



the Choquet integral in case the hierarchy is composed of interacting criteria.

The thesis is organized as follows. In the first chapter, we shall describe the basic concepts

of a MCDA problem. Chapter 2 contains contributions related to the interaction between criteria

concept, that are:

• SMAA-Choquet: Stochastic Multicriteria Acceptability Analysis for the Choquet Integral,

• Interaction of Criteria and Robust Ordinal Regression in Bi-polar PROMETHEE Methods,

• MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria.

In chapter 3 we introduce the Multiple Criteria Hierarchy Process (MCHP) and its applications to

MAUT, outranking methods and Choquet integral. Final remarks are contained in the last chapter.
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Chapter 1

Basic concepts of Multiple Criteria

Decision Aiding

Making any type of decision, from buying a car to locating a nuclear plant, from choosing the best

student deserving a scholarship to ranking the cities of the world according to their liveability, involves

the evaluation of several alternatives with respect to different aspects, technically called evaluation

criteria. In these cases, we speak of Multiple Criteria Decision Making (MCDM) problems (for a

survey on MCDM see [29]) for which Multiple Criteria Decision Aiding (MCDA) methodologies need

to be provided to the Decision Maker (DM) in order to make the “best” decision. In a MCDM

problem, a set of n alternatives A = {a1, . . . , an} is evaluated with respect to a consistent family of

m criteria G = {g1, . . . , gm} [103], where consistent means that it is exhaustive (all relevant criteria

are taken into account), coherent (if two alternatives a and b have the same evaluations on all but one

criteria, and a gets an evaluation better than b on the remaining criterion, than a should be preferred

to b) and non-redundant (the removal of one criterion from the family makes the new set of criteria

not exhaustive). In general, each criterion gj ∈ G can be considered as a function gj : A→ Ij , where

Ij ⊆ R if the criterion is quantitative, that is, it can be described with real numbers, while Ij is a set

of discrete, ordered identifiers if the criterion is qualitative. Each criterion gj can have an increasing

or a decreasing direction of preference. In the first case, the higher the evaluation gj(a), the better a

is with respect to criterion gj; in the second case, the higher the evaluation gj(a), the worse a is with

respect to criterion gj (in the following, for the sake of simplicity and without loss of generality, we

shall suppose that all evaluation criteria have an increasing direction of preference). Just for example,

evaluating a car involves both quantitative and qualitative criteria having increasing or decreasing

direction of preference. Price and acceleration are typical quantitative criteria while comfort and
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safety are qualitative criteria. Among these, acceleration, comfort and safety have an increasing

direction of preference, while price has obviously a decreasing direction of preference.

According to Roy [105], in MCDM the following four different problematics can be distinguished:

description, choice, sorting and ranking.

• The description problematic consists of elaborating an appropriate set of alternatives A, build-

ing a consistent family of criteria G and determining, for all or some a ∈ A, their performances

on the considered criteria;

• The choice problematic consists of selecting a small number (as small as possible) of “good”

alternatives in such a way that a single alternative may finally be chosen;

• The sorting problematic consists of assigning each alternative to one of the predefined and

ordered categories;

• The ranking problematic consists of defining a complete or partial order on A; this preorder is

the result of a procedure allowing to put together in classes alternatives which can be judged

indifferent, and to rank these classes.

Given two alternatives a, b ∈ A and considering their evaluations with respect to the m criteria

belonging to G, very often a will be better than b for some of the criteria while b will be better than

a for the remaining criteria. For this reason, in order to cope with one of the last three problematics

mentioned above, the necessity to aggregate the evaluations of the alternatives taking into account

the preferences of the DM arises. In the literature, the two most known aggregation approaches are

the following:

• assigning to each alternative a ∈ A a real number synthesizing the evaluations of a with respect

to the m criteria and being representative of the desirability of a with respect to the problem

at hand,

• building some binary preference relations in order to compare pairs of alternatives in the set

A.

In the first approach, the number assigned to a ∈ A is independent from the evaluations of the other

alternatives; it leads us to define a complete preorder on A and it does not allow any incomparability

among the alternatives. The MAUT [80], that will be described in the next section, is based on this

approach.
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In the second approach, the pairwise comparisons can generate some intransitivities and the most ap-

propriate conclusion comparing pairs of alternatives is the incomparability. The outranking methods

that will be described in section 1.2 are based on binary preference relations on the set of alternatives.

1.1 Multiple Attribute Utility Theory

According to Dyer [26], preference theory studies the fundamental aspects of individual choice be-

havior, such as how to identify and quantify an individual’s preferences over a set of alternatives and

how to construct appropriate preference representation functions for decision making. An important

feature of preference theory is that it is based on rigorous axioms which characterize an individual’s

choice behavior. These preference axioms are essential for establishing preference representation

functions, and provide the rationale for the quantitative analysis of preference. In this context, it is

possible to distinguish between preferences under conditions of certainty or risk and over alternatives

described by a single attribute or by multiple attributes. We shall refer to a preference representa-

tion function under certainty as a value function, and to a preference representation function under

risk as a utility function [80]. In the following, we shall consider multiple attribute value functions.

Given I =
m
∏

j=1

Ij, and denoted by % the DM’s preference relation over I (where a % b reads a is

at least as good as b), we will be interested in conditions allowing to determine the existence of a

function U : I → R such that a % b if and only if U(g(a)) ≥ U(g(b)), with g(a), g(b) ∈ I and

g(a) = (g1(a), . . . , gm(a)), for all a ∈ A. A necessary condition for the existence of such a function is

that % is a weak order (complete and transitive binary relation). A second condition (and then both

are necessary and sufficient) is that A/ ∼ contains a countable order-dense subset (Birkhoff-Milgram

theorem) where ∼ is the symmetric part of % while ≻ is the asymmetric one (see also [52]).

The most common approach for evaluating multiattribute alternatives is to use an additive repre-

sentation. In an additive representation, a real value is assigned to each alternative a by:

U(a) =
m
∑

j=1

uj(gj(a))

where uj are single attribute non-decreasing value functions over Ij. Defining x∗j = max
a∈A

gj(a) and

xj,∗ = min
a∈A

gj(a) the best and the worst evaluations an alternative belonging to A can get on criterion

gj respectively, we normalize the value function U imposing that
m
∑

j=1

uj(x
∗
j) = 1 and uj(xj,∗) = 0 for

all j = 1, . . . ,m.
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If our interest is in simply rank-ordering the available alternatives, then the key condition for the

additive form is the mutual preference independence of the set of criteria G. We say that the set

of criteria T ⊆ G is preferentially independent [129] of G \ T if, for all aT , bT ∈
∏

j∈T

Ij, and for all

cG\T , dG\T ∈
∏

j∈G\T

Ij,

(aT , cG\T ) % (bT , cG\T ) ⇔ (aT , dG\T ) % (bT , dG\T )

that is, the preference of (aT , cG\T ) over (bT , cG\T ) does not depend on cG\T . The whole set of criteria

G is said to be mutually preferentially independent if T is preferentially independent of G \ T for

every T ⊆ G.

Even if the additive value function would seem to be an attractive choice for practical applications

of multiattribute decision making, the assessment of the single attribute value functions relies on

techniques that are cumbersome in practice, and that force the decision maker to make explicit

tradeoffs between two or more criteria. Keeney and Raiffa [80] illustrate two assessment procedures

for ordinal additive value functions.

Using a value function U , one gets a complete order among the considered alternatives and therefore

it does not generate any incomparability among them.

1.2 Outranking methods

Outranking methods were first developed in France in the late sixties by B. Roy following difficulties

experienced with the value function approach in dealing with practical problems. Outranking meth-

ods build a preference relation, usually called an outranking relation, among alternatives evaluated

on several criteria. An outranking relation is a binary relation S on the set of alternatives A such

that aSb means that alternative a is at least as good as alternative b and it holds if a majority of the

criteria supports this assertion and the opposition of the other criteria is not too strong. The binary

outranking relation is neither complete (it is possible that not(aSb) and not(bSa)) nor transitive

(it is possible that aSb and bSc but not(aSc)). Besides, the outranking methods take into account

imprecisions, incertitudes, and arbitrarity over the data using the quasi-criteria and pseudo-criteria

[110].

The two most known families of outranking methods are ELECTRE [104] and PROMETHEE

[15, 16, 17].
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1.2.1 ELECTRE methods

ELECTRE methods [104] were proposed by B.Roy for the first time in the late sixties to give a

realistic representation of four basic situation of preferences, that is indifference, weak preference,

strong preference and incomparability. Based on the binary outranking relation S, four situations

may occur:

• a is preferred to b (aPb) iff aSb and not bSa,

• b is preferred to a (bPa) iff bSa and not aSb,

• a is indifferent to b (aIb) iff aSb and bSa,

• a is incomparable to b (aRb) iff not(aSb) and not(bSa).

Remark that using outranking relation to model preferences introduces the incomparability relation

(R) being useful in situations in which the DM is not able to compare two actions.

The construction of an outranking relation is based on the concordance and the non-discordance

tests. The concordance test on aSb is verified if a sufficient majority of criteria is in favor of this

assertion, while the non-discordance test is verified if none of the criteria in the minority opposes too

strongly to the assertion aSb.

Two sets of parameters are meaningful in ELECTRE methods: importance coefficients and thresh-

olds. For each criterion gj, the importance coefficient wj represents the weight of the criterion gj

inside the family of criteria G when it is in favor of aSb. For the sake of simplicity, and without loss

of generality, it is supposed that wj ≥ 0, ∀j ∈ G and
∑

j∈G

wj = 1. These weights can be constant or

dependent from the evaluations of the alternatives.

For each criterion gj, three thresholds are taken into account in the ELECTRE methods:

• the indifference threshold qj, being the largest difference gj(b) − gj(a) compatible with the

indifference on criterion gj among alternatives a and b,

• the preference threshold pj, being the smallest difference gj(b) − gj(a) compatible with the

preference on criterion gj of b over a,

• the veto threshold vj, being the smallest difference gj(b) − gj(a) incompatible with the out-

ranking of a over b. This means that, if gj(b)− gj(a) ≥ vj then not(aSb).
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Depending on the type of problem they are able to deal with, several ELECTRE methods can be

distinguished: ELECTRE I [100] and IS [109] for choice problems; ELECTRE II [101], III [102] and

IV [107] for ranking problems; ELECTRE TRI [133] and Tri-nC [2] for sorting problems. In the

following we shall illustrate only the ELECTRE IS and ELECTRE III (for a review on ELECTRE

methods see [104]).

The ELECTRE IS method builds for each criterion gj, j ∈ G, and for each pair of alternatives

(a, b) ∈ A × A, the partial concordance index φj(a, b) and the comprehensive concordance index

C(a, b). φj(a, b) represents the degree of outranking of a over b with respect to criterion gj. It is

defined by a non-increasing function of gj(b)− gj(a):

φj(a, b) =



















1 if gj(b)− gj(a) ≤ qj,

[gj(b)−gj(a)]−qj
pj−qj

if qj < gj(b)− gj(a) < pj

0 if gj(b)− gj(a) ≥ pj.

φj(a, b) ∈ [0, 1] and the higher the value of φj(a, b), the higher the concordance with the outranking

of a over b on criterion gj is.

The comprehensive concordance index is instead defined by:

C(a, b) =
m
∑

j=1

wj · φj(a, b),

and it represents how much alternative a globally outranks alternative b.

In ELECTRE IS,

• the concordance test is verified if C(a, b) ≥ λ, where λ is called concordance cutting level, and

λ ∈ [0.5, 1],

• the non-discordance test is verified if there is no criterion putting a veto on the outranking of a

over b. Formally, this can be expressed saying that for all criteria gj, j ∈ G, gj(b)− gj(a) < vj.

In ELECTRE III, the construction of an outranking relation S is not based on the concordance

and the non-discordance tests. ELECTRE III builds for each criterion gj ∈ G and for each pair of

alternatives (a, b) ∈ A × A the discordance index dj(a, b) and the credibility index ρ(a, b). dj(a, b)

represents the degree of discordance on the outranking of a over b compared to the criterion gj. It is

defined by a non-decreasing function of gj(b)− gj(a):
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dj(a, b) =



















1, if gj(b)− gj(a) ≥ vj,

[gj(b)−gj(a)]−pj
vj−pj

, if pj < gj(b)− gj(a) < vj,

0, if gj(b)− gj(a) ≤ pj.

dj(a, b) ∈ [0, 1], and the higher the value of dj(a, b), the higher the discordance with the outranking

of a over b on criterion gj is.

The credibility index expresses the degree of credibility of the outranking of a over b. It is defined

as:

ρ(a, b) = C(a, b)
∏

{j: dj(a,b)>C(a,b)}

1− dj(a, b)

1− C(a, b)

where C(a, b) is the comprehensive concordance index already presented in ELECTRE IS, ρ(a, b) ∈

[0, C(a, b)], and obviously the higher the value of ρ(a, b), the higher the credibility of the outranking

of a over b is.

From the definition of ρ(a, b) it follows that if none of the criteria opposes veto to the outranking of

a over b (that is dj(a, b) = 0 for all j ∈ G), then ρ(a, b) = C(a, b); if some criterion opposes a veto

on the outranking of a over b (that is there exists a criterion gj, with j ∈ G, such that dj(a, b) = 1),

then ρ(a, b) = 0 and in all other cases the credibility index ρ(a, b) is lower than the comprehensive

concordance index C(a, b).

1.2.2 PROMETHEE methods

The PROMETHEE methods [15, 16, 17] were born in 1982 thanks to J.P. Brans; PROMETHEE

methods build an outranking relation in order to reduce the number of incomparabilities among some

pairs of alternatives. In PROMETHEE methods, the DM has to provide inter-criteria parameters

and intra-criterion parameters. Inter-criteria parameters are the importance of criteria wj, j ∈ G,

representing the importance of criterion gj inside the family of criteria G as in the ELECTRE

methods. Also in this case, we suppose that wj ≥ 0, ∀j ∈ G, and
∑

j∈G

wj = 1. Intra-criterion

parameters regard instead the choice, for each criterion gj ∈ G, of one preference function Pj(dj)

among the six showed in Fig.1.11.

1This figure has been taken from [15]
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Figure 1.1: Types of preference functions

Pj(dj(a, b)) gives the degree of preference of a over b. It is defined as a non-decreasing function of

dj(a, b) = gj(a) − gj(b), and it involves 0,1,2 or 3 parameters (the indifference threshold qj and the

preference threshold pj as in the ELECTRE methods and a parameter s defining the inflection point

in the sixth preference function showed in Fig.1.1). In the following, we shall describe PROMETHEE

I and II (for a survey on PROMETHEE methods see [15, 16, 11]).

For each pair of alternatives (a, b) ∈ A×A, PROMETHEE I and II compute π(a, b) =
m
∑

j=1

wj ·Pj(a, b)

being the equivalent of the comprehensive concordance index C(a, b) in the ELECTRE methods and

representing the comprehensive degree of preference of a over b. Obviously the greater the value of
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π(a, b), the greater the preference of a over b is.

In order to assess the worth of a ∈ A compared to all other alternatives in A, PROMETHEE I and

II compute the positive and the negative outranking flows:

• Φ+(a) =
1

n− 1

∑

b∈A\{a}

π(a, b),

• Φ−(a) =
1

n− 1

∑

b∈A\{a}

π(b, a),

Additionally, for each alternative a ∈ A, PROMETHEE II computes also the net outranking flow:

• Φ(a) = Φ+(a)− Φ−(a).

The positive outranking flow expresses how much an alternative a is outranking all other alternatives.

The higher Φ+(a), the better the alternative a is.

The negative outranking flow expresses how much an alternative a is outranked by all the others.

The lower Φ−(a), the better the alternative a is.

The net outranking flow is a balance between the positive and the negative outranking flows. The

higher Φ(a), the better the alternative a is.

PROMETHEE I provides a partial ranking among alternatives defining preference (PI), indifference

(II) and incomparability (RI) relations based on the positive and negative outranking flows:

• aP Ib iff Φ+(a) ≥ Φ+(b), Φ−(a) ≤ Φ−(b) and at least one of the two inequalities is strict,

• aIIb iff Φ+(a) = Φ+(b) and Φ−(a) = Φ−(b),

• aRIb otherwise.

Differently from PROMETHEE I, PROMETHEE II defines only a preference (PII) and an indif-

ference (III) relation based on the net outranking flow:

• aP IIb iff Φ(a) > Φ(b),

• aIIIb iff Φ(a) = Φ(b).

In PROMETHEE II, all the alternatives are comparable and the following properties hold:

• −1 ≤ Φ(a) ≤ 1, ∀a ∈ A,

•
∑

a∈A

Φ(a) = 0.
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1.3 Choquet integral and bi-polar Choquet integral

As stated in subsection 1.1, an additive value function can represent the preferences of the DM only

if the set of criteria G is mutually preferentially independent. In the following we provide an example

inspired by [43] in which an additive value function can not represent the preferences of the DM.

Let us suppose that a Dean has to compare four students whose marks on a common scale [0,20]

on the subjects of Literature, Mathematics and Physics are shown in Table 1.1. (S)he thinks that

scientific subjects are very important but (s)he does not want to favour students that are good in

scientific subjects but who are lacking in literature. Besides (s)he thinks that Mathematics and

Physics are redundant because, generally, a student good in Mathematics is also good in Physics.

Comparing x and y, the Dean observes that both students have good scores on scientific subjects but

Table 1.1: Student’s evaluations

Student Mathematics (M) Physics (P) Literature (L)

x 14 13 6
y 14 11 8
w 5 13 6
z 5 11 8

y has a better mark than x in Literature, so (s)he states that y is preferred to x. Comparing w and

z, the Dean observes that their marks on Mathematics are very low, so, because scientific subject

are more important than literature, (s)he states that w is preferred to z. We could summarize the

preferences of the Dean with the following rules:

R1) For a student good in Mathematics, Literature is more important than Physics,

R2) For a student bad in Mathematics, Physics is more important than Literature.

Using the definition given in subsection 1.1, it is easy to see that the set of criteria {Physics, Litera-

ture} is not preferentially independent from criterion {Mathematics} and therefore the whole set of

criteria {Mathematics, Physics, Literature} is not mutually preferentially independent. In this case,

an additive value function is not able to represent the preferences of the Dean. In fact,

• the preference y ≻ x, is translated by

uM(14) + uP (11) + uL(8) > uM(14) + uP (13) + uL(6), (1.1)
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• while the preference w ≻ z is translated by

uM(5) + uP (11) + uL(8) < uM(5) + uP (13) + uL(6). (1.2)

The two inequalities lead to the following contradiction:

uP (11) + uL(8) > uP (13) + uL(6) and uP (11) + uL(8) < uP (13) + uL(6).

In many real world problems, the evaluation criteria are not mutually preferentially independent

but it is possible to observe some interaction between them. For example, let us consider the

evaluation of a car considering the following criteria: maximum speed, acceleration and price. In this

case, there may exist a negative interaction (redundancy) between maximum speed and acceleration

because a car with a high maximum speed also has a good acceleration; so, even if each of these

two criteria is very important for a DM who likes sport cars, their joint impact on reinforcement of

preference of a more speedy and better accelerating car over a less speedy and worse accelerating

car will be smaller than a simple addition of the impacts of the two criteria considered separately

in validation of this preference relation. In the same decision problem, there may exist a positive

interaction (synergy) between maximum speed and price because a car with a high maximum speed

and relatively low price is very much appreciated. Thus, the comprehensive impact of these two

criteria on the strength of preference of a more speedy and cheaper car over a less speedy and

more expensive car is greater than the impact of the two criteria considered separately in validation

of this preference relation. To handle the interaction among criteria, one can consider non-additive

integrals, such as the Choquet integral [21] and the Sugeno integral [119], or an additive value function

augmented by additional components reinforcing the value when there is positive interaction for some

pairs of criteria, or penalizing the value when this interaction is negative, like in UTAGMS-INT [58]

or in MUSA-INT [5] (for a comprehensive survey on the use of non-additive integrals in MCDA see

[39, 44, 43]).

Given the set of criteria G and denoted by 2G the power set of G, that is the set of all subsets of

G, a capacity or fuzzy measure, is a set function µ : 2G → [0, 1] satisfying the following properties:

1a) µ(∅) = 0, µ(G) = 1,

2a) µ(A) ≤ µ(B), for all A ⊆ B ⊆ G.

Roughly speaking, µ(A) expresses the degree to which the coalition of criteria A ⊆ G is important for

making a decision. A capacity is said to be additive if µ(A∪B) = µ(A) +µ(B) whenever A∩B = ∅.
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Note that if a capacity is additive, then it suffices to define the m coefficients µ({g1}), . . . , µ({gm})

to define it.

Let µ be a capacity on G, and x = (x1, . . . , xm) ∈ I : xj = gj(x) ≥ 0, ∀j = 1 . . . ,m; then, the

Choquet integral of x with respect to the capacity µ is defined by:

Cµ(x) =

∫ 1

0

µ({j ∈ G : xj ≥ t})dt, (1.3)

or equivalently, as

Cµ(x) =
m
∑

j=1

x(j)
[

µ(A(j))− µ(A(j+1))
]

=
m
∑

j=1

[

x(j) − x(j−1)
]

µ(A(j)), (1.4)

where 0 = x(0) ≤ x(1) ≤ . . . ≤ x(m), A(j) =
{

i ∈ G : xi ≥ x(j)
}

and A(m+1) = ∅.

Considering the example showed above, and using the definition of the Choquet integral as seen in

equation (1.4), we get:

y ≻ x ⇔ µ({M}) + 1 > 2µ({M,P}), (1.5)

and

w ≻ z ⇔ 2µ({P}) > µ({P,L}). (1.6)

Because inequalities (1.5) and (1.6) are not in contradiction, then the Choquet integral is able to

describe the preferences of the Dean.

The Choquet integral can be redefined in terms of the Möbius representation [37], without re-

ordering the criteria, as:

Cµ(x) =
∑

T⊆G

a(T ) min
i∈T

gi (x) .

One of the main drawbacks of the Choquet integral is the necessity to elicit and give an adequate

interpretation of 2m − 2 parameters (because µ(∅) = 0, and µ(G) = 1). In order to reduce the

number of parameters to be computed and to eliminate a description of the interactions among

criteria that is too strict, which is not realistic in many applications, the concept of fuzzy k-additive

measure has been considered [40]; a fuzzy measure is called k-additive if a(T ) = 0 with T ⊆ G,

when |T | > k and there exists at least one T ⊆ G, with |T | = k, such that a(T ) > 0. We observe

that a 1-additive measure is the common additive fuzzy measure. In many real decision problems,
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it suffices to consider 2-additive measures. In this case, positive and negative interactions between

couples of criteria are modeled without considering the interaction among triples, quadruplets and

generally m-tuples, (with m > 2) of criteria. From the point of view of MCDA, the use of 2-additive

measures is justified by observing that the information on the importance of the single criteria and

the interactions between couples of criteria are noteworthy. Moreover, it might not be easy or not

straightforward for the DM to provide information on the interactions among three or more criteria

during the decision procedure. From a computational point of view, the interest in the 2-additive

measures lies in the fact that any decision model needs to evaluate a number m+
(

m
2

)

of parameters

(in terms of Möbius representation, a value a({i}) for every criterion i and a value a({i, j}) for

every couple of distinct criteria {i, j}). With respect to a 2-additive fuzzy measure, the inverse

transformation to obtain the fuzzy measure µ(R) from the Möbius representation is defined as:

µ(R) =
∑

i∈R

a ({i}) +
∑

{i,j}⊆R

a ({i, j}) , ∀R ⊆ G. (1.7)

With regard to 2-additive measures, properties 1a) and 2a) have, respectively, the following

formulations:

1b) a (∅) = 0,
∑

i∈G

a ({i}) +
∑

{i,j}⊆G

a ({i, j}) = 1,

2b)















a ({i}) ≥ 0, ∀i ∈ G,

a ({i}) +
∑

j∈T

a ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

In this case, the representation of the Choquet integral of x ∈ A is given by:

Cµ(x) =
∑

{i}⊆G

a ({i}) (gi (x)) +
∑

{i,j}⊆G

a ({i, j}) min{gi (x) , gj (x)}. (1.8)

Finally, we recall the definitions of the importance and interaction indices for a couple of criteria.

The importance index or Shapley value [113] is given by:

ϕ ({i}) = a ({i}) +
∑

j∈G\{i}

a ({i, j})

2
, ∀i ∈ G, (1.9)

while the interaction index [90] for a couple of criteria {i, j} ⊆ G, in case of two additive capacities,

is given by:
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ϕ ({i, j}) = a ({i, j}) . (1.10)

Now, let us suppose that the Dean has to evaluate four students whose marks on (M), (P ), and

(L) are given in Table 1.2.

Table 1.2: Second student’s evaluations

Student Mathematics (M) Physics (P) Literature (L)

x 14 17 5
y 14 15 7
w 8 17 5
z 8 15 7

According to rules R1) and R2), the Dean states that y is preferred to x and w is preferred to z.

Aggregating using the Choquet integral, from y ≻ x we get:

5 + 9µ({M,P}) + 3µ({P}) < 7 + 7µ({M,P}) + µ({P}) ⇔ µ({M,P}) + µ({P}) < 1. (1.11)

In the same way, w ≻ z is translated by:

5 + 3µ({M,P}) + 9µ({P}) > 7 + µ({M,P}) + 7µ({P}) ⇔ µ({M,P}) + µ({P}) > 1. (1.12)

Obviously, inequalities (1.11) and (1.12) are in contradiction. This means that the Choquet integral

can not explain the preferences of the Dean. The reason is that the Choquet integral satisfies the

comonotonic additive property, that is Cµ(a + b) = Cµ(a) + Cµ(b) for all comonotonic a and b

where a, b ∈ R
m are comonotonic if aj1 > aj2 ⇒ bj1 ≥ bj2 for any j1, j2 ∈ {1, . . . ,m} . In fact,

it is a straightforward observation that in our case the evaluation vectors of the four students are

comonotonic and therefore

y ≻ x⇔ Cµ(14, 15, 7) > Cµ(14, 17, 5) ⇔ Cµ(14, 15, 7)− Cµ(14, 17, 5) = Cµ(0,−2, 2) > 0
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w ≻ z ⇔ Cµ(8, 17, 5) > Cµ(8, 15, 7) ⇔ Cµ(8, 15, 7)− Cµ(8, 17, 5) = Cµ(0,−2, 2) < 0

being obviously in contradiction.

Rules R1) and R2) make an implicit reference to a neutral level that is neither good nor bad.

This suggests that criteria should be considered in a bipolar scale. According to [44], a scale on Ij is

bipolar if there exists in Ij a particular element or level 0j, called neutral level, such that the elements

of Ij preferred to 0j are considered as “good”, while the elements of Ij less preferred than 0j are

considered as “bad” for the DM. Typical examples of bipolar scales are [-1,1] (bounded cardinal), R

(unbounded cardinal) or {very bad, bad, medium, good, excellent} (ordinal). Considering the bipolar

scale, the problem to define the importance of coalitions of criteria and to evaluate the overall score

of an alternative arises. Let us take for simplicity the [−1, 1] scale, with neutral level 0. The simplest

way is to say that “positive” and “negative” parts are symmetric, so the overall evaluations of binary

alternative (1A, 0Ac) (i.e., the alternative having evaluation equal to one for all criteria in A and

evaluation equal to 0 for all other criteria) is the opposite of the one of negative binary alternative

(−1A, 0Ac). This leads to the symmetric Choquet integral (also called Šipoš integral [114]):

Cµ(x) = Cµ(x+)− Cµ(x−)

where x+j = max {xj, 0}, ∀j = 1, . . . ,m, and x− = (−x)+.

Considering the evaluations in Table 1.2, the value 10 can be considered as the neutral level for

all three criteria. Therefore, we can transform the evaluations in Table 1.2 subtracting 10 to each

mark (see Table 1.3).

Table 1.3: Bipolar evaluations

Student Mathematics (M) Physics (P) Literature (L)

x 4 7 -5
y 4 5 -3
w -2 7 -5
z -2 5 -3

Trying to explain the preferences of the Dean using the symmetric Choquet integral, we get:

y ≻ x ⇔ µ({L}) > µ({P}),
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w ≻ z ⇔ µ({L}) < µ({P}),

being again in contradiction.

A more complex model would consider only the independence between positive and negative parts,

that is to say, positive binary alternatives define a capacity µ1, while negative binary alternatives

define a different capacity µ2. This leads to the well-known Cumulative Prospect Theory (CPT)

mode, of Kahnemann and Tversky [127]:

CPTµ1, µ2(x) = Cµ1(x
+)− Cµ2(x

−).

It is straightforward proving that, also in this case, the translations of the preference information of

the Dean lead to a contradiction:

y ≻ x ⇔ µ1({L}) > µ2({P}),

w ≻ z ⇔ µ1({L}) < µ2({P}).

A more general model considers that independence between positive and negative part does not

hold, so that we have to consider ternary alternatives (1A,−1B, 0(A∪B)c), and assign to each of them

a number in [−1, 1]. We denote this number as µ̂(A,B), i.e., a two-argument function, whose first

argument is the set of totally satisfied criteria, and the second one the set of totally unsatisfied criteria,

the remaining criteria being at the neutral level. This function is called bi-capacity [41, 42, 54], since

it plays the role of a capacity, but with two arguments corresponding to the positive and the negative

sides of a bipolar scale.

Formally speaking, considering the set J = {(S, T ) : S, T ⊆ G and S ∩ T = ∅}, a bicapacity is a

function µ̂ : J → [−1, 1] such that:

• µ̂(∅, ∅) = 0, µ̂(G, ∅) = 1, µ̂(∅, G) = −1,

• µ̂(C,D) ≤ µ̂(E,F ), for all (C,D), (E,F ) ∈ J such that C ⊆ E and D ⊇ F.

Given x = (x1, . . . , xm) ∈ I such that xj = gj(x), and a bicapacity µ̂, the bipolar Choquet integral

of x with respect to µ̂ is defined as:

ChB(x, µ̂) =

∫ 1

0

µ̂({i ∈ G : xi ≥ t}, {i ∈ G : xi ≤ −t})dt
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or equivalently, as:

ChB(x, µ̂) =
∑

j∈G>

|x(j)|
[

µ̂(C(j−1), D(j−1))− µ̂(C(j), D(j))
]

where: |x(1)| ≤ . . . ≤ |x(m)|, C(0) = {i ∈ G : xi > 0}, D(0) = {i ∈ G : xi < 0},

G> = {i ∈ G : |x(i)| > 0}, C(j) = {i ∈ G> : xi ≥ |x(j)|}, and D(j) = {i ∈ G> : −xi ≥ |x(j)|}.

Trying to represent the preferences of the Dean related to the students’ evaluations in Table 1.3

using the bi-polar Choquet integral, we get:

y ≻ x ⇔ µ̂({M,P} , ∅) > µ̂({P} , ∅) + µ̂({M,P} , {L}) + µ̂({M} , {L}) (1.13)

and

w ≻ z ⇔ µ̂({P} , {L}) > 0. (1.14)

Because inequalities (1.13) and (1.14) are not in contradiction, the bipolar Choquet integral is able

to explain the preferences of the Dean.

Bicapacities have been introduced to represent complex preferences that cannot be modeled with a

capacity.

1.4 Robust Ordinal Regression

Each decision model requires the specification of some parameters. For example, using MAUT, the

parameters are related to the formulation of the marginal value functions uj(gj(a)), j = 1, . . . ,m;

using non-additive integrals, the parameters are related to fuzzy measures while using outranking

methods the parameters are related to thresholds and importance coefficients. Within MCDA, many

methods have been proposed to determine the parameters characterizing the considered decision

model in an indirect way, i.e., inducing the values of such parameters from some holistic preference

comparisons of alternatives given by the DM. Eliciting direct preference information from the DM

can be counterproductive in real-world decision making situations because of a high cognitive effort

required. Consequently, asking directly the DM to provide values for the parameters seems to make

the DM uncomfortable. Eliciting indirect preference is less demanding of cognitive effort. Indirect

preference information is mainly used in the ordinal regression paradigm. According to this paradigm,

a holistic preference information on a subset of some reference or training alternatives is known first
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and then a preference model compatible with the information is built and applied to the whole

set of alternatives. The ordinal regression paradigm has been applied within the two main MCDA

approaches: those using a value function as preference model [19, 72, 73, 95, 117], and those using

an outranking relation as preference model [88, 89].

Usually, from among many sets of parameters of a preference model representing the preference

information given by the DM, only one specific set is selected and used to work out a recommendation.

Since the selection of one from among many sets of parameters compatible with the preference

information given by the DM is rather arbitrary, Robust Ordinal Regression (ROR) proposes taking

into account all the sets of parameters compatible with the preference information, in order to give

a recommendation in terms of necessary and possible consequences of applying all the compatible

preference models on the considered set of alternatives. In ROR, using linear programming one

obtains two relations in the set A: the necessary weak preference relation, which holds for any two

alternatives a, b ∈ A if and only if a is at least as good as b for all compatible preference models, and

the possible weak preference relation, which holds for this pair if and only if a is at least as good as

b for at least one compatible preference model.

The first method applying ROR is a generalization of the UTA method [72], called UTAGMS [55].

Differently from UTA method, UTAGMS requires from the DM a set of pairwise comparisons on

a set of reference alternatives AR ⊆ A as preference information. Besides, it takes into account all

monotonic marginal value functions and not only the piecewise linear. Its extension, called GRIP [33],

considers also intensities of preference among reference alternatives comprehensively, that is taking

into account all criteria simultaneously, or partially, that is considering a single criterion. Other ROR-

methodologies using the additive value function as preference model are: Extreme Ranking Analysis

[76], UTAGMS-INT [58] and UTADISGMS [57]. Extreme ranking analysis examines how different

can be rankings provided by all compatible value functions determining the highest and the lowest

ranks, and the score that an alternative can attain; the UTAGMS-INT deals with interacting criteria

considering an additive value function augmented by two components corresponding to “bonus”

or “malus” values for positively and negatively interacting criteria, respectively; UTADISGMS is a

sorting method that aims at assigning alternatives to pre-defined and ordered classes. The preference

information provided by the DM consists of the assignment of reference alternatives to one or several

contiguous classes.

Other methodologies applying the ROR are: PROMETHEEGKS [76], ELECTREGKMS [47], NAROR

[7], UTAGMS-GROUP and UTADISGMS-GROUP [48] and UTAGSS [59]. PROMETHEEGKS and

ELECTREGKMS extend the PROMETHEE and the ELECTRE methods; NAROR (non-additive
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ordinal regression) uses the Choquet integral as preference model considering not only intensity of

preference on pairs of reference alternatives but also pairwise comparisons on the importance of

criteria and the sign and the intensity of interaction among pairs of criteria; UTAGMS-GROUP

and UTADISGMS-GROUP apply ROR to group decision making in ranking and sorting problems

respectively while UTAGSS uses ROR in case of interacting criteria on bipolar scales. New extensions

of the ROR will be introduced in this thesis.

Even if the recommendations obtained using ROR are “more robust” than a recommendation

made using an arbitrarily chosen compatible model, for some decision-making situations a score is

needed to assign to different alternatives; for this reason, some users would like to see the “most

representative” model among all the compatible ones. This allows assigning a score to each alterna-

tive. Based on the ROR concept, the most representative model is the compatible model maximizing

the difference of values between alternatives a and b for which a is necessarily preferred to b but

b is not necessarily preferred to a, and minimizing the difference of values between alternatives a

and b for which neither a is necessarily preferred to b nor b is necessarily preferred to a. The most

representative model concept has been introduced for the first time in [32] and then applied to deal

with ranking and choice problems [75], outranking methods [77], sorting problems [49] and group

decision making [74].

1.5 SMAA methods

Accepted the decision model M(ξ, w) where ξ is the matrix of criteria evaluations and w the vector

of preference parameters representing the subjective preferences of the DM, with precise ξ and w,

the decision model will produce precise results according to the problem setting. This means that

under perfect information about the criteria evaluations and about precise values for the preference

parameters, the decision-making problem is trivially solved by applying the decision model and ac-

cepting the recommended solution. However, in real-life decision problems, most of the associated

information is uncertain or imprecise.

Stochastic multicriteria acceptability analysis (SMAA) is a family of MCDA methodologies for prob-

lems where the uncertainty is so significant that it should be considered explicitly. Incomplete

criteria and preference information are represented by suitable probability distributions fχ(ξ) and

fW (w) where χ ⊆ R
n×m, ξ ∈ χ, and W is the set of parameters representing the preferences of

the DM. Depending on the considered preference model, and consequently on the type of preference

information provided, several variants of SMAA methods exist (for a complete survey on SMAA
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methods see [121]). These methods are based on exploring the weight space in order to describe the

preferences that make each alternative the most preferred one, or that would give a certain rank to

a specific alternative. In general, they can not determine a unique best solution, but some inferior

solutions can be eliminated, because they do not correspond to any possible preferences, and widely

accepted solutions favoured by a large variety of different preferences can be identified. In the follow-

ing, we shall describe the characteristics of the SMAA methods using the weighted sum as preference

model:

U(ai, w) =
m
∑

j=1

wjgj(ai).

Chosen an alternative ai ∈ A, a vector of weights w ∈ W = {w ∈ R
m : wj ≥ 0, ∀j, and

m
∑

j=1

wj = 1}

and a set of alternatives’ evaluations ξ ∈ χ, SMAA computes

rank(i, ξ, w) = 1 +
∑

k 6=i

ρ(u(ξk, w) > u(ξi, w)),

where ρ(true) = 1 and ρ(false) = 0, and the set of favourable rank weights W r
i (ξ)

W r
i (ξ) = {w ∈ W : rank(i, ξ, w) = r}

where r ∈ {1, . . . , n}; rank(i, ξ, w) is the position alternative ai gets in the final ranking when

evaluations ξ and preference information represented by weights vector w are considered, while W r
i (ξ)

measures the variety of weights that give rank r to alternative ai. Based on W r
i (ξ), the main results

of SMAA analysis are the rank acceptability indices, the central weight vectors and the confidence

factors for each alternative.

• The rank acceptability index

bri =

∫

ξ∈χ

fX(ξ)

∫

w∈W r
i (ξ)

fW (w) dw dξ

describes the share of parameters giving to alternative ai the position r in the final ranking

obtained; in particular, b1i measures the variety of weights that make alternative ai most pre-

ferred. Obviously, the best alternatives are those having rank acceptability index greater than

zero for the first positions and rank acceptability index close to zero for the lower positions.

• The central weight vector
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wc
i =

1

b1i

∫

ξ∈χ

fX(ξ)

∫

w∈W 1
i (ξ)

fW (w)w dw dξ

describes the preferences of a typical DM that make alternative ai the most preferred;

• The confidence factor

pci =

∫

ξ∈χ: u(ξi,w
c
i )≥u(ξk,w

c
i )

∀k=1,...,m

fX(ξ) dξ

measures if the criteria measurements are accurate enough to discern the efficient alternatives.

All indices are computed solving multidimensional integrals, while approximations of these integrals

are computed via Monte Carlo simulations.

SMAA methods have been applied to deal with many real decision making problems. See [84] for a

summary of these applications.

24



Chapter 2

Interaction between criteria

As stated in section 1.1, the axiom of mutual preference independence between criteria is the basis for

the use of the additive preference models. In many real world cases, the criteria are not independent

and it is possible observing a certain form of positive (synergy) or negative (redundancy) interaction

between them.

We have underlined that the Choquet integral is the most well known non-additive integral used to

aggregate the alternatives’ evaluations in case the criteria in a unipolar scale are interacting, while

its extension, the bipolar Choquet integral, is used to deal with the aggregations of the alternatives’

evaluations in case the criteria in a bipolar scale are interacting. In this section we illustrate our

contributions aiming to extend the interaction of criteria concept in MCDA. In particular, in section

2.1 we present the SMAA-Choquet method in which the Choquet integral is considered as preference

model and the SMAA method is used to investigate the ranking of the alternatives on varying

the parameters compatible with some preference information provided by the DM. The bipolar

PROMETHEE method extending the outranking method PROMETHEE to the case of interacting

criteria in a bipolar scale is presented in section 2.2 while in section 2.3 is discussed MUSA-INT, that

is the extension of customer satisfaction analysis method MUSA to the case of interacting criteria.
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2.1 SMAA-Choquet: Stochastic Multicriteria Acceptability

Analysis for the Choquet Integral

2.1.1 Introduction

In a multiple criteria decision problem (see [29] for a comprehensive state of the art), an alternative

aj, belonging to a finite set of n alternatives A = {a1, a2, . . . , an}, is evaluated on the basis of a

consistent family of m criteria G = {g1, g2, . . . , gm}. In our approach we make the assumption that

each criterion gi : A → R is an interval scale of measurement. From here on, we will use the terms

criterion gi or criterion i interchangeably (i = 1, 2, . . . ,m). Without loss of generality, we assume

that all the criteria have to be maximized.

We define a marginal weak preference relation as follows:

ar is at least as good as as with respect to criterion i ⇔ gi(ar) ≥ gi(as).

The purpose of Multi-Attribute Utility Theory (MAUT) [80] is to represent the preferences of

a Decision Maker (DM) on a set of alternatives A by an overall value function U : Rm → R with

U(g1(ar), . . . , gm(ar)) = U(ar):

• ar is indifferent to as ⇔ U(ar) = U(as),

• ar is preferred to as ⇔ U(ar) > U(as).

The principal aggregation model of value function is the multiple attribute additive utility [80]:

U(aj) = u1(g1(aj)) + u2(g2(aj)) + . . .+ um(gm(aj)) with aj ∈ A,

where ui are non-decreasing marginal value functions for i = 1, 2, . . . ,m.

As it is well-known in literature, the underlying assumption of the preference independence of

the multiple attribute additive utility is unrealistic since it does not permit to represent interaction

between the criteria under consideration. In a decision problem we, usually, distinguish between

positive and negative interaction among criteria, representing synergy and redundancy among criteria

respectively. In particular, two criteria are synergic (redundant) when the comprehensive importance

of these two criteria is greater (smaller) than the importance of the two criteria considered separately.

Within Multiple Criteria Decision Analysis (MCDA), the interaction of criteria has been consid-

ered in a decision model based upon a non-additive integral, viz. the Choquet integral [21] (see [39]

for a comprehensive survey on the use of non-additive integrals in MCDA).
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One of the main drawbacks of the Choquet integral decision model is the elicitation of its param-

eters representing the importance and interaction between criteria.

In literature, many multicriteria disaggregation procedures have been proposed to infer such

parameters from the DM (see for example, [86] and [6]). Recently, an approach based on the deter-

mination of necessary and possible preference relations within the so-called Robust Ordinal Regression

has been extended to the Choquet integral decision model (see [7]).

The principal aim of the work is to include eventual DM’s uncertain preference information on

the importance and interaction among criteria.

In this direction, we propose an extension of the Stochastic Multicriteria Acceptability Analysis

(SMAA) [82, 83] to the Choquet integral decision model.

The section is organized as follows. In Section 2.1.2, we present the basic concepts relative to

interaction between criteria and to the Choquet integral. In Section 2.1.3, we briefly describe the

SMAA methods. An extension of the SMAA method to the Choquet integral decision model is

introduced in Section 2.1.4 and illustrated by a didactic example in Section 2.1.5. Some conclusions

and future directions of research are presented in Section 2.1.6.

2.1.2 The Choquet integral decision model

Let 2G be the power set of G (i.e. the set of all subsets of G); a fuzzy measure (capacity) on G is

defined as a set function µ : 2G → [0, 1] satisfying the following properties:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ T ⊆ R ⊆ G, µ(T ) ≤ µ(R) (monotonicity condition).

A fuzzy measure is said to be additive if µ(T ∪ R) = µ(T ) + µ(R), for any T,R ⊆ G such that

T ∩R = ∅. An additive fuzzy measure is determined uniquely by µ({1}), µ({2}) . . . , µ({m}). In fact,

in this case, ∀ T ⊆ G, µ(T ) =
∑

i∈T

µ({i}). In the other cases, we have to define a value µ(T ) for

every subset T of G, obtaining 2|G| coefficients values. Therefore, we have to calculate the values of

2|G| − 2 coefficients, since we know that µ(∅) = 0 and µ(G) = 1.

The Möbius representation of the fuzzy measure µ (see [99]) is defined by the function a : 2G → R

(see [112]) such that:

µ(R) =
∑

T⊆R

a(T ).
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Let us observe that if R is a singleton, i.e. R = {i} with i = 1, · · · ,m then µ({i}) = a({i}). If R

is a couple (non-ordered pair) of criteria, i.e. R = {i, j}, then µ({i, j}) = a({i}) + a({j}) + a({i, j}).

In general, the Möbius representation a(R) is obtained by µ(R) in the following way:

a(R) =
∑

T⊆R

(−1)|R−T |µ(T ).

In terms of Möbius representation (see [20]), properties 1a) and 2a) are, respectively, formulated as:

1b) a(∅) = 0,
∑

T⊆G

a(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i},
∑

T⊆R

a(T ∪ {i}) ≥ 0.

Let us observe that in MCDA, the importance of any criterion gi ∈ G should be evaluated

considering all its global effects in the decision problem at hand; these effects can be “decomposed”

from both theoretical and operational points of view in effects of gi as single, and in combination

with all other criteria. Therefore, a criterion i ∈ G is important with respect to a fuzzy measure µ

not only when it is considered alone, i.e. for the value µ({i}) in itself, but also when it interacts

with other criteria from G, i.e. for every value µ(T ∪ {i}), T ⊆ G \ {i}.

Given x ∈ A and µ being a fuzzy measure on G, then the Choquet integral [21] is defined by:

Cµ(x) =
m
∑

i=1

[(

g(i)(x)
)

−
(

g(i−1) (x)
)]

µ (Ai) , (2.1)

where (·) stands for a permutation of the indices of criteria such that:

g(1) (x) ≤ g(2) (x) ≤ ... ≤ g(m) (x) , with Ai = {(i), ...., (m)}, i = 1, ..,m, and g(0)(x) = 0.

The Choquet integral can be redefined in terms of the Möbius representation [37], without re-

ordering the criteria, as:

Cµ(x) =
∑

T⊆G

a(T ) min
i∈T

gi (x) . (2.2)

One of the main drawbacks of the Choquet integral is the necessity to elicitate and give an

adequate interpretation of 2|G| − 2 parameters. In order to reduce the number of parameters to be

computed and to eliminate a too strict description of the interactions among criteria, which is not

realistic in many applications, the concept of fuzzy k-additive measure has been considered [40].

A fuzzy measure is called k-additive if a(T ) = 0 with T ⊆ G, when |T | > k and there exists at

least one T ⊆ G, with |T | = k, such that a(T ) > 0. We observe that a 1-additive measure is the
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common additive fuzzy measure. In many real decision problems, it suffices to consider 2-additive

measures. In this case, positive and negative interactions between couples of criteria are modeled

without considering the interaction among triples, quadruplets and generally m-tuples, (with m > 2)

of criteria. From the point of view of MCDA, the use of 2-additive measures is justified by observing

that the information on the importance of the single criteria and the interactions between couples of

criteria are noteworthy. Moreover, it could be not easy or not straightforward for the DM to provide

information on the interactions among three or more criteria during the decision procedure. From a

computational point of view, the interest in the 2-additive measures lies in the fact that any decision

model needs to evaluate a number m+
(

m
2

)

of parameters (in terms of Möbius representation, a value

a({i}) for every criterion i and a value a({i, j}) for every couple of distinct criteria {i, j}). With

respect to a 2-additive fuzzy measure, the inverse transformation to obtain the fuzzy measure µ(R)

from the Möbius representation is defined as:

µ(R) =
∑

i∈R

a ({i}) +
∑

{i,j}⊆R

a ({i, j}) , ∀R ⊆ G. (2.3)

With regard to 2-additive measures, properties 1b) and 2b) have, respectively, the following

formulations:

1c) a (∅) = 0,
∑

i∈G

a ({i}) +
∑

{i,j}⊆G

a ({i, j}) = 1,

2c)















a ({i}) ≥ 0, ∀i ∈ G,

a ({i}) +
∑

j∈T

a ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

In this case, the representation of the Choquet integral of x ∈ A is given by:

Cµ(x) =
∑

{i}⊆G

a ({i}) (gi (x)) +
∑

{i,j}⊆G

a ({i, j}) min{gi (x) , gj (x)}. (2.4)

Finally, we recall the definitions of the importance and interaction indices for a couple of criteria.

The Shapley value [113] expressing the importance of criterion i ∈ G, is given by:

ϕ ({i}) = a ({i}) +
∑

j∈G\{i}

a ({i, j})

2
, i ∈ G, (2.5)
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The interaction index [90] expressing the sign and the magnitude of the sinergy in a couple of

criteria {i, j} ⊆ G, in case of a 2-additive capacity µ, is given by:

ϕ ({i, j}) = a ({i, j}) . (2.6)

2.1.3 SMAA

A utility function gives a value to an alternative in order to represent its degree of desirability with

respect to the decision problem under consideration; in its easiest form

u(aj, w) =
m
∑

i=1

wigi(aj)

this function depends on two sets of parameters: the set W of weight vectors relative to the set of

criteria G = {g1, g2, . . . , gm} and the set of evaluations gi(aj) of alternative aj with respect to the set

of the considered criteria gi ∈ G.

In order to find a vector of weights of the model, in literature two different techniques are used:

direct and indirect. The direct technique consists of asking the DM to provide directly all these

parameters; the indirect technique consists of asking the DM a set of information from which a set

of parameters of the model can be elicited. In this context two situations can occur:

• the DM can not provide or does not want to provide this information,

• different DMs can provide different sets of parameters.

Stochastic Multicriteria Acceptability Analysis (SMAA) [82, 83] is a multicriteria decision support

method taking into account this uncertainty or lack of information. These methods are based on

exploring the set W of weight vectors and the space of alternatives’ evaluations in order to state

recommendation regarding a possible ranking obtained by the considered alternatives. For each

weight vector w ∈ W , and for each set of alternatives’ evaluations ξ ∈ χ, where χ is the set of all

vectors of possible evaluations with respect to considered criteria, SMAA computes the rank of an

alternative aj:

rank(j, ξ, w) = 1 +
∑

k 6=j

ρ (u(ξk, w) > u(ξj, w))

where ρ(false) = 0 and ρ(true) = 1.
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Then, for each alternative aj, for each alternatives’ evaluations ξ ∈ χ and for each rank r, SMAA

computes the set of weights of criteria for which alternative aj assumes rank r:

W r
j (ξ) = {w ∈ W : rank(j, ξ, w) = r} .

Imprecision and uncertainty are represented in SMAA as probability distributions: one fW regarding

weights of the set W and one fχ regarding evaluations of the set χ.

The SMAA methodology is mainly based on the computation of three indices:

• the rank acceptability index:

brj =

∫

ξ∈χ

fX(ξ)

∫

w∈W r
j (ξ)

fW (w) dw dξ

measuring for each alternative aj and for each rank r the variety of different DM’s preferences

information giving to aj the rank r. brj is a real number bounded between 0 and 1; obviously,

an alternative presenting large acceptability index for the best ranks will be preferred to an

alternative having lower acceptability index for the same best ranks;

• the central weight vector:

wc
j =

1

b1j

∫

ξ∈χ

fX(ξ)

∫

w∈W 1
j (ξ)

fW (w)w dwdξ

describing the middle preferences of the DMs giving to aj the best position;

• the confidence factor:

pcj =

∫

ξ∈χ: u(ξj ,w
c
j )≥u(ξk,w

c
j )

∀k=1,...,m

fχ(ξ) dξ

defined as the probability of an alternative to be the preferred one with the preferences expressed

by its central weight vector.

From a computational point of view, the considered indices are evaluated by the multidimensional

integrals approximated by using the Monte Carlo method.

All these sets of indices are considered simultaneously in order to help the DM to choose the better

solution of the decision problem under consideration.

31



The first paper on SMAA [82], appeared in 1998, is a generalization to the n−dimensional case of

two works of Bana E Costa [8, 9] providing an acceptability index only for the first rank; that is

it calculates which weights configurations give to each alternative the best rank; its generalization

is SMAA 2 [83] in which for each alternative it is computed not only the acceptability index corre-

sponding to the best rank, but also the acceptability indices for all the other possible ranks. For a

detailed survey on SMAA methods see [121].

2.1.4 An extension of the SMAA method to the Choquet integral deci-

sion model

As explained in Section 2.1.2, adopting the Choquet integral in terms of Möbius representation with

a 2-additive measure as utility value of every alternative aj, we need to estimate m+
(

m
2

)

parameters

(the Möbius measures).

Following a multicriteria disaggregation paradigm, preference information about importance and

interaction of criteria given by the DM can be represented by the following system of linear constraints

on G, denoted by EDM :











































































ϕ({gi}) > ϕ({gj}), if criterion i is more important than criterion j, with i, j ∈ G,

ϕ({gi, gj}) > 0, if criteria i and j are synergic with i, j ∈ G,

ϕ({gi, gj}) < 0, if criteria i and j are redundant with i, j ∈ G,

a ({∅}) = 0,
∑

gi∈G

a ({gi}) +
∑

{gi,gj}⊆G

a ({gi, gj}) = 1,

a ({gi}) ≥ 0, ∀gi ∈ G,

a ({gi}) +
∑

gj∈T

a ({gi, gj}) ≥ 0, ∀gi ∈ G and ∀ T ⊆ G \ {gi}



























(∗)

where (∗) denotes the set of boundary and monotonicity constraints on the Möbius measures.

In order to explore the preference given by the Choquet integral within the set of compatible

parameters, we integrate Choquet integral with SMAA. The sampling of compatible preference pa-

rameters (Möbius measures) is obtained by a Hit-and-Run procedure [116] on the set of constraints

EDM (see also [122] for a recent application of the above algorithm in multiple criteria decision

analysis).

The rank acceptability index of every alternative is evaluated by considering the variety of different

compatible preference parameters (the Möbius measures obtained after each iteration) giving to

32



alternative aj ∈ A the rank r on the basis of a utility function expressed in terms of a Choquet

integral. At the same time as preference parameters we compute the Möbius measures corresponding

to the capacities for which the Choquet integral ranks every alternative aj as the best.

2.1.5 A didactic example

In this Section, an example inspired from Barba-Romero and Pomerol [10] illustrates the multicriteria

model explained in Section 2.1.4. We consider an executive manager (the DM) that has to hire an

employee in her company. She evaluates a set A = {a1, a2, a3, a4, a5, a6, a7, a8, a9} of nine candidates

on the basis of the following four criteria: educational degree (criterion g1), professional experience

(criterion g2), age (criterion g3), job interview (criterion g4).

The evaluation performance matrix of the candidates is presented in Table 2.1.

The scores of every criterion are on a [0, 10] scale and are supposed to be maximized.

Let us consider the following DM’s partial preference information on the set of criteria G:

• criterion g1 is more important than criterion g2;

• criterion g2 is more important than criterion g3;

• criterion g3 is more important than criterion g4;

• there is a positive interaction between criteria g1 and g2;

• there is a positive interaction between criteria g2 and g3;

• there is a negative interaction between criteria g2 and g4.

The DM’s preference constraints jointly with the boundary and monotonicity conditions are summa-

rized in the following system:
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

































































































ϕ({g1}) > ϕ({g2}),

ϕ({g2}) > ϕ({g3}),

ϕ({g3}) > ϕ({g4}),

ϕ({g1, g2}) > 0,

ϕ({g2, g3}) > 0,

ϕ({g2, g4}) < 0,

a ({∅}) = 0,
∑

gi∈G

a ({gi}) +
∑

{gi,gj}⊆G

a ({gi, gj}) = 1,

a ({gi}) ≥ 0, ∀gi ∈ G,

a ({gi}) +
∑

gj∈T

a ({gi, gj}) ≥ 0, ∀gi ∈ G and ∀ T ⊆ G \ {gi} .

Then, as explained in Section 2.1.4, we apply a Hit-and-Run sampling [116] for a number

maximum of iterations denoted by MaxIter.

We evaluate the rank acceptabilities of every alternative, measuring on the basis of a Choquet

integral the utility value of each alternative aj and for each rank r, the variety of preference parameters

(the Möbius measures obtained after each iteration) giving to aj the rank r.

Considering MaxIter equal to 100.000, in the example the rank acceptabilities of the nine alter-

natives are displayed in Table 2.2.
Table 2.1: Evaluation matrix

Alternatives
Criteria a1 a2 a3 a4 a5 a6 a7 a8 a9

g1 8 3 10 5 8 5 8 5 0
g2 6 1 9 9 0 9 10 7 10
g3 7 10 0 2 8 4 5 9 2
g4 5 10 5 9 6 7 7 4 8

Then we compute as central preference parameters the Möbius measures which give the best

position to every alternative (in our example only a1, a3, a7, see Table 2.3).

According to the obtained first rank acceptability of every alternative and their corresponding

central preference parameters summarized in Table 2.3, we can observe that:

• on average, a1 is the most preferred alternative if educational degree (g1) is the most important

criterion and there is a synergy between professional experience (g2) and age (g3),

• on average, a3 is the most preferred alternative if educational degree is the most important

criterion and there is synergy between educational degree and professional experience,
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Table 2.2: Rank acceptabilities (bi) in percentages

Alt b1j b2j b3j b4j b5j b6j b7j b8j b9j

a1 0.03 51.32 43.64 4.35 0.66 0.00 0.00 0.00 0.00
a2 0.00 0.29 0.60 1.37 5.00 5.78 34.51 50.04 2.41
a3 13.28 34.08 20.51 12.25 9.62 5.49 3.94 0.83 0.01
a4 0.00 0.00 0.16 2.58 19.16 56.33 19.92 1.85 0.00
a5 0.00 0.00 0.48 4.60 5.29 7.94 36.55 44.50 0.65
a6 0.00 0.00 5.10 20.90 48.51 21.10 4.37 0.03 0.00
a7 86.70 13.15 0.15 0.00 0.00 0.00 0.00 0.00 0.00
a8 0.00 1.15 29.37 53.96 11.76 3.37 0.39 0.01 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.32 2.75 96.94

Table 2.3: First rank acceptability (b1) and central weights

Alt b1 a({1}) a({2}) a({3}) a({4}) a({1, 2}) a({1, 3}) a({1, 4}) a({2, 3}) a({2, 4}) a({3, 4})

a1 0.03 0.32799 0.1308 0.055755 0.18084 0.045792 0.1751 -0.10253 0.25613 -0.040672 -0.029203

a3 13.28 0.4833 0.12818 0.19372 0.16042 0.21504 -0.12405 -0.044048 0.053126 -0.049708 -0.015979

a7 86.70 0.23032 0.15372 0.14022 0.1788 0.2164 0.053909 0.0067834 0.092624 -0.063965 -0.0088056

• on average, a7 is the most preferred alternative if all criteria are almost equally important except

educational degree that is a bit more important than the other criteria, and there is synergy

between professional experience and age, and redundancy between age and job interview.

2.1.6 Conclusions

In this section, we have considered an extension of the SMAA method to the Choquet integral

decision model.

As future work, we plan to extend the SMAA-Choquet by including some DM’s preference infor-

mation on the alternatives such as ai is preferred to aj and considering the criteria expressed in

possible ranges of evaluations. Moreover, the SMAA-Choquet method could be enriched calculating

an index that gives the probability that an alternative ar is better than an alternative as. Finally,

the SMAA-Choquet method could be improved by coupling it with the approach of the Robust Or-

dinal Regression [60], and applying it to some more sophisticated fuzzy integrals such as the level

dependent Choquet integral [50].
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2.2 Interaction of Criteria and Robust Ordinal Regression

in Bi-polar PROMETHEE Methods

2.2.1 Introduction

Multiple Criteria Decision Analysis (MCDA) dealing with the comparison of the reasons in favor

and against a preference of an alternative a over an alternative b is of the utmost importance in a

wide range of decision-making real world situations (for state-of-the-art surveys on MCDA see [29]).

This kind of comparison is important, but it is only a part of the question. Indeed, after recognizing

the criteria in favor and the criteria against of the preference of a over b, there is the very tricky

question of comparing them (for a general discussion about bipolar aggregations of pros and cons in

MCDA see [45]). In this second step, some important observations must be taken into account.

One element that should be considered is the synergy (a strengthening effect) or the redundancy

(a weakening effect) of criteria in favor of a preference of an action a against an action b. For example,

if one likes sport cars, maximum speed and acceleration are very important criteria. However, since

in general speedy cars have also a good acceleration, giving a high weight to both criteria can over

evaluate some cars. Thus, it seems reasonable to give maximum speed and acceleration considered

together a weight smaller than the sum of the two weights given to these criteria when considered

separately. In this case we have a redundancy between the criteria of maximum speed and accel-

eration. On the contrary, we have a synergy effect between maximum speed and price because, in

general, speedy cars are also expensive and, therefore, a car which is good on both criteria is very

appreciated. In this case, it seems reasonable to give maximum speed and price considered together

a weight greater than the sum of the two weights given to these criteria when considered separately.

Of course there could be similar effects of synergy and redundancy regarding the criteria against the

comprehensive preference of a over b.

We have also to take into account the antagonism effects related to the fact that the importance of

criteria may also depend on the criteria which are opposed to them. For example, a bad evaluation

on aesthetics reduces the importance of maximum speed. Thus, the weight of maximum speed should

be reduced when there is a negative evaluation on aesthetics. In this case, we have an antagonism

effect between maximum speed and aesthetics.

Those types of interactions between criteria have been already taken into consideration in the ELEC-

TRE methods [30]. In this work, we deal with the same problem using the bipolar Choquet integral

[41, 42] applied to the PROMETHEE method [15, 17] (for the original Choquet integral see [21]).
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This section is organized as follows. In section 2.2.2 we introduce the application of the bipolar

Choquet integral to PROMETHEE method. In section 2.2.3, we discuss elicitation of preference

information permitting to fix the value of the preference parameters of the model (essentially the

bicapacities of the bipolar Choquet integral). Noting that generally there could be more than one

bicapacity compatible with the preference information provided by the Decision Maker (DM), in

section 2.2.4 we propose to adopt Robust Ordinal Regression (ROR) [60] that takes into account the

whole set of compatible bicapacities. Within ROR we distinguish between necessary preference, in

case of an alternative a is at least as good as an alternative b for all the compatible bicapacities, and

the possible preference, in case of an alternative a is at least as good as an alternative b for at least

one of the compatible bicapacities. In section 2.2.5, we present a didactic example showing how to

use the bipolar PROMETHEE method. Besides, in the same example, we apply the concept of the

most representative model [32] (see also [49, 75]) and the SMAA methodology [82] to our approach.

Section 2.2.6 provides some conclusions and lines for future research.

2.2.2 The Bipolar PROMETHEE method

Let us consider a set of actions or alternatives A = {a, b, c, . . .} evaluated with respect to a set of

criteria G = {g1, . . . , gm}, where gj : A → R, j ∈ J = {1, . . . ,m} and |A| = n. PROMETHEE

[15, 17] is a well-known MCDA method that aggregates preference information of a DM through an

outranking relation. Considering for each criterion gj a weight wj (representing the importance of

criterion gj within the family of criteria G), an indifference threshold qj (being the largest difference

dj(a, b) = gj(a)−gj(b) compatible with the indifference between alternatives a and b), and a preference

threshold pj (being the minimum difference dj(a, b) compatible with the preference of a over b),

PROMETHEE builds a function Pj(a, b) non decreasing with respect to dj(a, b), whose formulation

(see [15] for other formulations) can be stated as follows

Pj(a, b) =



















0 if dj(a, b) ≤ qj
dj(a,b)−qj

pj−qj
if qj < dj(a, b) < pj

1 if dj(a, b) ≥ pj

It represents a degree of preference of a over b on criterion gj.

For each ordered pair of alternatives (a, b) ∈ A× A, PROMETHEE method computes the value

π(a, b) =
∑

j∈J

wjPj(a, b)
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representing how much alternative a is preferred to alternative b taking into account the whole set

of criteria. It can assume values between 0 and 1 and obviously the greater the value of π(a, b), the

greater the preference of a over b.

In order to compare an alternative a with all the other alternatives of the set A, PROMETHEE

computes the negative and the positive net flow of a in the following way:

φ−(a) =
1

n− 1

∑

c∈A\{a}

π(c, a) and φ+(a) =
1

n− 1

∑

c∈A\{a}

π(a, c).

These net flows represent how much the alternatives of A \ {a} are preferred to a and how much

a is preferred to the alternatives of A \ {a}. Besides, PROMETHEE computes also the net flow

φ(a) = φ+(a)− φ−(a). Taking into account these net flows, three relations can be built: preference

(P), indifference (I), and incomparability (R); PROMETHEE I and PROMETHEE II differ for the

way in which these preference relations are defined.

In PROMETHEE I we have:

• aPb iff Φ+(a) ≥ Φ+(b), Φ−(a) ≤ Φ−(b) and at least one of the two inequalities is strict;

• aIb iff Φ+(a) = Φ+(b) and Φ−(a) = Φ−(b);

• aRb otherwise.

In PROMETHEE II instead, the comparison between alternatives a and b is done considering their

net flows φ(a) and φ(b), having:

• aPb iff Φ(a) > Φ(b);

• aIb iff Φ(a) = Φ(b).

Within the bipolar framework, we can consider the bipolar preference functions PB
j : A × A →

[−1, 1], j ∈ J as follows:

PB
j (a, b) = Pj(a, b)− Pj(b, a) =























Pj(a, b) if Pj(a, b) > 0

−Pj(b, a) if Pj(a, b) = 0

(2.7)

Notice that PB
j (a, b) = −PB

j (b, a) for all j ∈ J and for all pairs (a, b) ∈ A× A.

Determining comprehensive preferences
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The aggregation of bipolar preference functions PB
j through the bipolar Choquet integral is based on

a bicapacity [41, 42], being a function µ̂ : P (J ) = {(C,D) : C,D ⊆ J and C ∩D = ∅} → [−1, 1],

such that

• µ̂(∅,J ) = −1, µ̂(J , ∅) = 1, µ̂(∅, ∅) = 0,

• for all (C,D), (E,F ) ∈ P (J ), if C ⊆ E and D ⊇ F , then µ̂(C,D) ≤ µ̂(E,F ).

According to [46], we consider the following expression for a bicapacity µ̂:

µ̂(C,D) = µ+(C,D)− µ−(C,D), for all (C,D) ∈ P (J ) (2.8)

where µ+, µ− : P (J ) → [0, 1] such that:

µ+(J , ∅) = 1, µ+(∅, B) = 0, ∀B ⊆ J , (2.9)

µ−(∅,J ) = 1, µ−(B, ∅) = 0, ∀B ⊆ J , (2.10)

µ+(C,D) ≤ µ+(E,F ), for all (C,D), (E,F ) ∈ P (J ) : C ⊆ E, D ⊇ F, (2.11)

µ−(C,D) ≤ µ−(E,F ), for all (C,D), (E,F ) ∈ P (J ) : C ⊇ E, D ⊆ F. (2.12)

The interpretation of the functions µ+ and µ− is the following. Given the pair (a, b) ∈ A × A,

let us consider (C,D) ∈ P (J ) where C is the set of criteria expressing a preference of a over b and

D the set of criteria expressing a preference of b over a. In this situation, µ+(C,D) represents the

importance of criteria from C when criteria from D are opposing them, and µ−(C,D) represents

the importance of criteria from D opposing C. Consequently, µ̂(C,D) represents the balance of the

importance of C supporting a and D supporting b.

Given (a, b) ∈ A× A, the bipolar Choquet integral of preference functions PB
j (a, b) with respect

to the bicapacity µ̂ can be written as follows

ChB(PB(a, b), µ̂) =

∫ 1

0

µ̂({j ∈ J : PB
j (a, b) > t}, {j ∈ J : PB

j (a, b) < −t})dt,

while the bipolar comprehensive positive preference of a over b and the comprehensive negative

preference of a over b with respect to the bicapacity µ̂ are respectively:
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ChB+(PB(a, b), µ̂) =

∫ 1

0

µ+({j ∈ J : PB
j (a, b) > t}, {j ∈ J : PB

j (a, b) < −t})dt,

ChB−(PB(a, b), µ̂) =

∫ 1

0

µ−({j ∈ J : PB
j (a, b) > t}, {j ∈ J : PB

j (a, b) < −t})dt,

where µ+ and µ− have been defined before.

From an operational point of view, the bipolar aggregation of the preferences PB
j (a, b) can be

computed as follows: for all the criteria j ∈ J , the absolute values of these preferences should be

re-ordered in a non-decreasing way, as follows:

|PB
(1)(a, b)| ≤ |P

B
(2)(a, b)| ≤ . . . ≤ |PB

(j)(a, b)| ≤ . . . ≤ |PB
(m)(a, b)|

The bipolar comprehensive Choquet integral with respect to the bicapacity µ̂ for the pair (a, b) ∈

A× A can now be determined:

ChB(PB(a, b), µ̂) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂(C(j), D(j))− µ̂(C(j+1), D(j+1))
]

(2.13)

where PB(a, b) =
[

PB
j (a, b), j ∈ J

]

, J > = {j ∈ J : |PB
(j)(a, b)| > 0}, C(j) = {i ∈ J > : PB

i (a, b) ≥

|PB
(j)(a, b)|}, D(j) = {i ∈ J > : −PB

i (a, b) ≥ |PB
(j)(a, b)|} and C(m+1) = D(m+1) = ∅.

We could give also the following two definitions

ChB+(PB(a, b), µ+) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ+(C(j), D(j))− µ+(C(j+1), D(j+1))
]

, (2.14)

ChB−(PB(a, b), µ−) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ−(C(j), D(j))− µ−(C(j+1), D(j+1))
]

. (2.15)

ChB(PB(a, b), µ̂) gives the comprehensive preference of a over b and it is equivalent to π(a, b) −

π(b, a) = PC(a, b) in the classical PROMETHEE method while ChB+(PB(a, b), µ̂) and ChB−(PB(a, b), µ̂)

give, respectively, how much a outranks b (considering the reasons in favor of a) and how much a is

outranked by b (considering the reasons against a).

From the definitions above, it is straightforward proving that, for all a, b ∈ A,

ChB(PB(a, b), µ̂) = ChB+(PB(a, b), µ+)− ChB−(PB(a, b), µ−) (2.16)
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It is reasonable expecting that, for all a, b ∈ A, ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂). For this

reason, we get the following Proposition:

Proposition 2.2.1. ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for all possible a, b, iff µ̂(C,D) =

−µ̂(D,C) for each (C,D) ∈ P (J ).

Proof. Let us prove that if µ̂(C,D) = −µ̂(D,C), then ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂). As

noticed, PB
j (a, b) = −PB

j (b, a) for all j ∈ J , and consequently |PB
(j)(a, b)| = |−PB

(j)(b, a)| = |PB
(j)(b, a)|

for all j ∈ J .

From this, it follows that:

(α) C(j)(a, b) = {i ∈ J > : PB
i (a, b) ≥ |PB

(j)(a, b)|} = {i ∈ J > : −PB
i (b, a) ≥ |PB

(j)(b, a)|} =

= D(j)(b, a);

(β) D(j)(a, b) = {i ∈ J > : −PB
i (a, b) ≥ |PB

(j)(a, b)|} = {i ∈ J > : PB
i (b, a) ≥ |PB

(j)(b, a)|} =

= C(j)(b, a).

From (α) and (β) we have that

(γ) ChB(PB(a, b), µ̂) =

=
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂(C(j)(a, b), D(j)(a, b))− µ̂(C(j+1)(a, b), D(j+1)(a, b))
]

=

=
∑

j∈J>

|PB
(j)(b, a)|

[

µ̂(D(j)(b, a), C(j)(b, a))− µ̂(D(j+1)(b, a), C(j+1)(b, a))
]

.

Since µ̂(C,D) = −µ̂(D,C), ∀(C,D) ∈ P (J ), from (γ) we have that,

(δ) ChB(PB(b, a), µ̂) =

=
∑

j∈J>

|PB
(j)(b, a)|

[

µ̂(C(j)(b, a), D(j)(b, a))− µ̂(C(j+1)(b, a), D(j+1)(b, a))
]

=

=
∑

j∈J>

|PB
(j)(b, a)|

[

− µ̂(D(j)(b, a), C(j)(b, a)) + µ̂(D(j+1)(b, a), C(j+1)(b, a))
]

= −ChB(PB(a, b), µ̂).

Let us now prove that if ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), then µ̂(C,D) = −µ̂(D,C). Let

us consider the pair (a, b) such that,

PB
j (a, b) =



















1 if j ∈ C

−1 if j ∈ D

0 otherwise

(2.17)
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In this case we have that ChB(PB(a, b), µ̂) = µ̂(C,D) and ChB(PB(b, a), µ̂) = µ̂(D,C). Thus if

ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), from (iv) we obtain that µ̂(C,D) = −µ̂(D,C) and the proof

is concluded.

Analogously, it can be proved the following Proposition;

Proposition 2.2.2. ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−) for all possible a, b, iff

µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ).

Corollary 2.2.1. ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for all possible a, b, if µ+(C,D) =

µ−(D,C) for each (C,D) ∈ P (J ).

Proof. This can be seen as a Corollary both of Proposition 2.2.1 and Proposition 2.2.2. In fact,

• µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ) implies that µ̂(C,D) = −µ̂(D,C) for each

(C,D) ∈ P (J ), and by Proposition 2.2.1, it follows the thesis.

• By Proposition 2.2.1, µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ) implies that

ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−) and from this it follows obviously the thesis by

equation (2.16).

Using equations (2.13), (2.14) and (2.15), we can define:

φB(a) =
1

n− 1

∑

b∈A\{a}

ChB(PB(a, b), µ̂) (2.18)

φB+(a) =
1

n− 1

∑

b∈A\{a}

ChB+(PB(a, b), µ+) (2.19)

φB−(a) =
1

n− 1

∑

b∈A\{a}

ChB−(PB(a, b), µ−) (2.20)

By equation (2.16), it follows that φB(a) = φB+(a)− φB−(a) for each a ∈ A.

Determining the importance, the interaction, and the power of the opposing criteria

Several studies dealing with the determination of the relative importance of criteria were proposed

in MCDA (see e.g. [108]). The question of the interaction between criteria was also studied in

the context of MAUT methods [86]. In this section we present a quite similar methodology for

PROMETHEE method, which takes into account also the power of the opposing criteria.
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The case of PROMETHEE method

The use of the bipolar Choquet integral is based on a bicapacity which assigns numerical values to

each element P (J ). Let us remark that the number of elements of P (J ) is 3m. This means that

the definition of a bipolar capacity requires a rather huge and unpractical number of parameters.

Moreover, the interpretation of these parameters is not always simple for the DM. Therefore, the use

of the bipolar Choquet integral in real-world decision-making problems requires some methodology

to assist the DM in assessing the preference parameters (bicapacities). In the following we consider

only the 2-additive bicapacities [41, 34], being a particular class of bicapacities.

Defining a manageable and meaningful bicapacity measure

According to [46], we give the following decomposition of the functions µ+ and µ− previously defined:

• µ+(C,D) =
∑

j∈C

a+({j}, ∅) +
∑

{j,k}⊆C

a+({j, k}, ∅) +
∑

j∈C, k∈D

a+({j}, {k})

• µ−(C,D) =
∑

j∈D

a−(∅, {j}) +
∑

{j,k}⊆D

a−(∅, {j, k}) +
∑

j∈C, k∈D

a−({j}, {k})

The interpretation of each a±(·) is the following:

• a+({j}, ∅), represents the power of criterion gj by itself; this value is always non negative;

• a+({j, k}, ∅), represents the interaction between gj and gk, when they are in favor of the prefer-

ence of a over b; when its value is zero there is no interaction; on the contrary, when the value

is positive there is a synergy effect when putting together gj and gk; a negative value means

that the two criteria are redundant;

• a+({j}, {k}), represents the power of criterion gk against criterion gj, when criterion gj is in

favor of a over b and gk is against to the preference of a over b; this leads always to a reduction

or no effect on the value of µ+ since this value is always non-positive.

An analogous interpretation can be applied to the values a−(∅, {j}), a−(∅, {j, k}), and a−({j}, {k}).

In what follows, for the sake of simplicity, we will use a+j , a+jk, a+j|k instead of a+({j}, ∅), a+({j, k}, ∅)

and a+({j}, {k}), respectively; and a−j , a−jk, a−j|k instead of a−(∅, {j}), a−(∅, {j, k}) and a−({j}, {k}),

respectively, obtaining

µ̂(C,D) = µ+(C,D)− µ−(C,D) =

=
∑

j∈C

a+j −
∑

j∈D

a−j +
∑

{j,k}⊆C

a+jk −
∑

{j,k}⊆D

a−jk +
∑

j∈C, k∈D

a+j|k −
∑

j∈C, k∈D

a−j|k
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We call µ̂, 2-additive decomposable bicapacity. An analogous decomposition has been proposed

directly for µ̂ without considering µ+ and µ− in [35]. The following conditions should be fulfilled:

Monotonicity conditions

1) µ+(C,D) ≤ µ+(C ∪ {j}, D), ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D

a+h|k ≤
∑

h∈C∪{j}

a+h +
∑

{h,k}⊆C∪{j}

a+hk +
∑

h∈C∪{j},k∈D

a+h|k ⇔

⇔
∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D

a+h|k ≤ a+j +
∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

k∈C

a+jk +
∑

h∈C,k∈D

a+h|k +
∑

k∈D

a+j|k ⇔

⇔ a+j +
∑

k∈C

a+jk +
∑

k∈D

a+j|k ≥ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

2) µ+(C,D) ≥ µ+(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D

a+h|k ≥
∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D∪{j}

a+h|k ⇔

⇔
∑

h∈C,k∈D

a+h|k ≥
∑

h∈C,k∈D

a+h|k +
∑

h∈C

a+h|j ⇔

⇔
∑

h∈C

a+h|j ≤ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

being already satisfied because a+h|j ≤ 0, ∀h, j ∈ J , h 6= j. 1) and 2) are equivalent to the general

monotonicity condition for µ+ (see eq. (2.11)).

The same kind of monotonicity should be satisfied for µ−.

3) µ−(C,D) ≤ µ−(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

∑

h∈D

a−h +
∑

{h,k}⊆D

a−hk +
∑

h∈C,k∈D

a−h|k ≤
∑

h∈D∪{j}

a−h +
∑

{h,k}⊆D∪{j}

a−hk +
∑

h∈C,k∈D∪{j}

a−h|k ⇔

⇔
∑

h∈D

a−h +
∑

{h,k}⊆D

a−hk +
∑

h∈C,k∈D

a−h|k ≤
∑

h∈D

a−h + a−j +
∑

{h,k}⊆D

a−hk +
∑

k∈D

a−jk +
∑

h∈C,k∈D

a−h|k +
∑

h∈C

a−h|j ⇔

⇔ a−j +
∑

k∈D

a−jk +
∑

h∈C

a−h|j ≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

4) µ−(C,D) ≥ µ−(C ∪ {j}, D), ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )
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∑

h∈D

a−h +
∑

{h,k}⊆D

a−hk +
∑

h∈C,k∈D

a−h|k ≥
∑

h∈D

a−h +
∑

{h,k}⊆D

a−hk +
∑

h∈C∪{j},k∈D

a−h|k ⇔

⇔
∑

h∈C,k∈D

a−h|k ≥
∑

h∈C,k∈D

a−h|k +
∑

k∈D

a−j|k ⇔

⇔
∑

k∈D

a−j|k ≤ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

being already satisfied because a−h|j ≤ 0, ∀h, j ∈ J , h 6= j. 3) and 4) are equivalent to the general

monotonicity condition for µ− (see eq. (2.12)).

Conditions 1), 2), 3) and 4) ensure the monotonicity of the bi-capacity, µ̂, on J , obtained as the

difference of µ+ and µ−, that is,

∀ (C,D), (E,F ) ∈ P (J ) such that C ⊇ E, D ⊆ F, µ̂(C,D) ≥ µ̂(E,F ).

Boundary conditions

1. µ+(J , ∅) = 1, i.e.,
∑

j∈J

a+j +
∑

{j,k}⊆J

a+jk = 1

2. µ−(∅,J ) = 1, i.e.,
∑

j∈J

a−j +
∑

{j,k}⊆J

a−jk = 1

The 2-additive bipolar Choquet integral

The corollary of the following theorem expresses the bipolar Choquet integral in terms of the above

2-additive decomposition.

Theorem 2.2.1. Given a 2-additive decomposable bicapacity µ̂, then for all x ∈ R
m

1. ChB+(x, µ+) =
∑

j∈J ,xj>0

a+j xj +
∑

j,k∈J ,j 6=k:
: xj ,xk>0

a+jk min{xj, xk}+
∑

j,k∈J ,j 6=k:
: xj>0,xk<0

a+j|k min{xj,−xk}

2. ChB−(x, µ−) = −
∑

j∈J ,xj<0

a−j xj −
∑

j,k∈J ,j 6=k:
: xj ,xk<0

a−jk max{xj, xk} −
∑

j,k∈J ,j 6=k:
: xj>0,xk<0

a−j|k max{−xj, xk}

Proof. We shall prove only point 1. Proof of point 2. can be obtained analogously.

If the bicapacity µ̂ is 2−additive decomposable, then
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ChB+(x, µ+) =
∑

j∈J>

|x(j)|
[

µ+(C(j), D(j))− µ+(C(j+1), D(j+1))
]

=

=
∑

j∈J>

|x(j)|
[(

∑

k∈J>,xk≥|x(j)|

a+k −
∑

k∈J>,xk≥|x(j+1)|

a+k

)

+

+
(

∑

h,k∈J>,h 6=k,xh,xk≥|x(j)|

a+hk −
∑

h,k∈J>,h 6=k,xh,xk≥|x(j+1)|

a+hk

)

+

+
(

∑

h,k∈J>,h 6=k,xh,−xk≥|x(j)|

a+h|k −
∑

h,k∈J>,h 6=k,xh,−xk≥|x(j+1)|

a−h|k

)]

Let us remark that,

a)
(

∑

k∈J>,xk≥|x(j)|

a+k −
∑

k∈J>,xk≥|x(j+1)|

a+k

)

=























∑

k∈J>,xk=|x(j)|

a+k if |x(j)| < |x(j+1)|

0 otherwise

b)
(

∑

k∈J>,−xk≥|x(j)|

a−k −
∑

k∈J>,−xk≥|x(j+1)|

a−k

)

=























∑

k∈J>,−xk=|x(j)|

a−k if |x(j)| < |x(j+1)|

0 otherwise

c)
(

∑

h,k∈J>,h 6=k,
xh,xk≥|x(j)|

a+hk −
∑

h,k∈J>,h 6=k,
xh,xk≥|x(j+1)|

a+hk

)

=























∑

h,k∈J>,h 6=k,
min{xh,xk}=|x(j)|

a+hk if |x(j)| < |x(j+1)|

0 otherwise

Considering a)− c) we get that:

χ) =
∑

j∈J>,
|x(j)|<|x(j+1)|

|x(j)|
[

∑

k∈J>,xk=|x(j)|

a+k +
∑

h,k∈J>,h 6=k,
min{xh,xk}=|x(j)|

a+hk +
∑

h,k∈J>,h 6=k,
min{xh,−xk}=|x(j)|

a+h|k

]

and from this it follows the thesis.

Proposition 2.2.3. Given a 2-additive decomposable bicapacity µ̂, then µ̂(C,D) = −µ̂(D,C) for

each (C,D) ∈ P (J ) iff

1. for each j ∈ J , a+j = a−j ,
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2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+j|k − a−j|k = a−k|j − a+k|j.

Proof. First, let us prove that

(a) µ̂(C,D) = −µ̂(D,C)

implies 1., 2. and 3. For each j ∈ J ,

(b) µ̂({j}, ∅) = a+j and µ̂(∅, {j}) = −a−j

From (a) and (b) we have,

a+j = µ̂({j}, ∅) = −µ̂(∅, {j}) = a−j

which is 1.

For each {j, k} ⊆ J we have that,

(c) µ̂({j, k}, ∅) = a+j + a+k + a+jk and µ̂(∅, {j, k}) = −a−j − a−k − a−jk

Being µ̂({j, k}, ∅) = −µ̂(∅, {j, k}), and being a+j = a−j and a+k = a−k by 1., we have that for each

{j, k} ⊆ J , a+jk = a−jk, i.e. 2.

For all j, k ∈ J with j 6= k, we have:

µ̂({j}, {k}) = a+j − a−k + a+j|k − a−j|k

µ̂({k}, {j}) = a+k − a−j + a+k|j − a−k|j

Being µ̂({j}, {k}) = −µ̂({k}, {j}) and having proved that a+j = a−j , ∀j, we obtain that a+j|k − a−j|k =

−a+k|j + a−k|j i.e. 3.

It is straightforward to prove that 1., 2., and 3. imply µ̂(C,D) = −µ̂(D,C).

Corollary 2.2.2. Given a 2-additive decomposable bicapacity µ̂, ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂)

for all a, b ∈ A iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,
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3. for each j, k ∈ J , j 6= k, a+j|k − a−j|k = a−k|j − a+k|j.

Proof. It follows by Propositions 2.2.3 and 2.2.1.

Proposition 2.2.4. Given a 2-additive decomposable bicapacity µ̂, then µ+(C,D) = µ−(D,C) for

each (C,D) ∈ P (J ) iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+j|k = a−k|j.

Proof. Analogous to Proposition 2.2.3.

Corollary 2.2.3. Given a 2-additive decomposable bicapacity µ̂, ChB+(PB(a, b), µ+) = ChB−(PB(b, a), µ−)

for all a, b ∈ A iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+j|k = a−k|j.

Proof. It follows by Propositions 2.2.4 and 2.2.2.

2.2.3 Assessing the preference information

On the basis of the considered 2-additive decomposable bicapacity µ̂, and holding the symmetry

condition in Corollary 2.2.2, we propose the following methodology which simplifies the assessment

of the preference information.

We consider the following information provided by the DM and their representation in terms of linear

constraints:

1. Comparing pairs of actions. The constraints represent some pairwise comparisons on a set of

training actions. Given two actions a and b, the DM may prefer a to b, b to a or be indifferent

to both:

(a) the linear constraint associated with aPb is ChB(PB(a, b), µ̂) > 0;

(b) the linear constraint associated with aIb is ChB(PB(a, b), µ̂) = 0.
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2. Comparison of the intensity of preferences between pairs of actions. This comparison can be

stated as follows:

ChB(PB(a, b), µ̂) > ChB(PB(c, d), µ̂) if (a, b)P(c, d)

where, (a, b)P(c, d) means that the comprehensive preference of a over b is larger than the

comprehensive preference of c over d.

3. Importance of criteria. A partial ranking over the set of criteria J may be provided by the

DM:

(a) criterion gj is more important than criterion gk, which leads to the constraint aj > ak;

(b) criterion gj is equally important to criterion gk, which leads to the constraint aj = ak.

4. The sign of interactions. The DM may be able, for certain cases, to provide the sign of some

interactions. For example, if there is a synergy effect when criterion gj interacts with criterion

gk, the following constraint should be added to the model: ajk > 0.

5. Interaction between pairs of criteria. The DM can provide some information about interaction

between criteria:

a) if the DM feels that interaction between gj and gk is greater than the interaction between

gp and gq, the constraint should be defined as follows: |ajk| > |apq| where in particular:

• if both couples of criteria are synergic then: ajk > apq,

• if both couples of criteria are redundant then: ajk < apq,

• if (j, k) is a couple of synergic criteria and (p, q) is a couple of redundant criteria,

then: ajk > −apq,

• if (j, k) is a couple of redundant criteria and (p, q) is a couple of synergic criteria,

then: −ajk > apq.

b) if the DM feels that the strength of the interaction between gj and gk is the same of

the strength of the interaction between gp and gq, the constraint will be the following:

|ajk| = |apq| and in particular:

• if both couples of criteria are synergic or redundant then: ajk = apq,

• if one couple of criteria is synergic and the other is redundant then: ajk = −apq,

49



6. The power of the opposing criteria. Concerning the power of the opposing criteria several

situations may occur. For example:

a) when the opposing power of gk is larger than the opposing power of gh, with respect to gj,

which expresses a positive preference, we can define the following constraint: a+j|k < a+j|h

(because a+j|h ≤ 0 and a−j|h ≤ 0 for all j, k with j 6= k);

b) if the opposing power of gk, expressing negative preferences, is larger with gj rather than

with gh, the constraint will be a+j|k < a+h|k.

A linear programming model

All the constraints presented in the previous section along with the symmetry, boundary and mono-

tonicity conditions can now be put together and form a system of linear constraints. Strict inequalities

can be converted into weak inequalities by adding a variable ε. It is well-know that such a system

has a feasible solution if and only if when maximizing ε, its value is strictly positive [86]. Considering

constraints given by Corollary 2.2.3 for the symmetry condition, the linear programming model can

be stated as follows (where jPk means that criterion gj is more important than criterion gk; the

remaining relations have a similar interpretation):
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Max ε

ChB(PB(a, b), µ̂) ≥ ε if aPb, ChB(PB(a, b), µ̂) = 0 if aIb,

ChB(PB(a, b), µ̂) ≥ ChB(PB(c, d), µ̂) + ε if (a, b)P(c, d), ChB(PB(a, b), µ̂) = ChB(PB(c, d), µ̂) if (a, b)I(c, d),

aj − ak ≥ ε if jPk, aj = ak if jIk,

|ajk| − |apq | ≥ ε if {j, k}P{p, q}, (see point 5.a) of the previous subsection )

|ajk| = |apq | if {j, k}I{p, q}, (see point 5.b) of the previous subsection )

ajk ≥ ε if there is synergy between criteria j and k,

ajk ≤ −ε if there is redundancy between criteria j and k,

ajk = 0 if criteria j and k are not interacting,

Power of the opposing criteria of the type 6:

a+
j|k
− a+

j|p
≥ ε, a−

j|k
− a−

j|p
≥ ε,

a+
j|k
− a+

p|k
≥ ε, a−

j|k
− a−

p|k
≥ ε,

Symmetry condition (point 3. of Proposition 2.2.3):

a+
j|k

= a−
k|j

, ∀ j, k ∈ J , j 6= k

Boundary and monotonicity conditions:
∑

j∈J

aj +
∑

{j,k}⊆J

ajk = 1,

aj ≥ 0 ∀ j ∈ J , a+
j|k

, a−
j|k

≤ 0 ∀ j, k ∈ J ,

aj +
∑

k∈C

ajk +
∑

k∈D

a+
j|k
≥ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J ),

aj +
∑

k∈D

ajk +
∑

h∈C

a−
h|j
≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J ).


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
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


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
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




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


















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
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

EAR

Restoring PROMETHEE

The condition which allows to restore PROMETHEE is the following:

1. ∀j, k ∈ J , ajk = a+j|k = a−j|k = 0.

If Condition 1. is not satisfied and the following condition holds

2. ∀j, k ∈ J , a+j|k = a−j|k = 0,

then the comprehensive preference of a over b is calculated as the difference between the Choquet

integral of the positive preferences and the Choquet integral of the negative preferences, with a

common capacity µ on J for the positive and the negative preferences, i.e. there exists µ : 2J → [0, 1],

with µ(∅) = 0, µ(J ) = 1, and µ(A) ≤ µ(B) for all A ⊆ B ⊆ J , such that

ChB(PB(a, b), µ̂) =

∫ 1

0

µ({j ∈ J : PB
j (a, b) > t})dt−

∫ 1

0

µ({j ∈ J : PB
j (a, b) < −t})dt.
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We shall call this type of aggregation of preferences, the symmetric Choquet integral PROMETHEE

method.

If neither 1. nor 2. are satisfied, but the following condition holds

3. ∀j, k ∈ J , a+j|k = a−k|j,

then we have the Bipolar symmetric PROMETHEE method.

If conditions 1., 2. and 3. are not satisfied, then we have the Bipolar PROMETHEE method.

A constructive learning preference information elicitation process

The previous Conditions 1-2-3 suggest a proper way to deal with the linear programming model

in order to assess the interactive bipolar criteria coefficients. Indeed, it is very wise to try before

to elicit weights concordant with the classical PROMETHEE method. If this is not possible, one

can consider the symmetric Choquet integral PROMETHEE method which aggregates positive and

negative preferences using the same capacity. If, by proceeding in this way, we are not able to

represent the DM’s preferences, then we can take into account a more sophisticated aggregation

procedure by using the bipolar PROMETHEE method. This way to progress from the simplest to

the most sophisticated model can be outlined in a four steps procedure as follows:

1. Solve the linear programming problem

Max ε = ε1

EAR

ajk = a+j|k = a−j|k = 0, ∀j, k ∈ J







E1

(2.21)

adding to EAR

the constraint related to the previous Condition 1. If E1 is feasible and ε1 > 0,

the obtained preferential parameters are concordant with the classical PROMETHEE method.

Otherwise,

2. Solve the linear programming problem

Max ε = ε2

EAR

a+j|k = a−j|k = 0, ∀j, k ∈ J







E2

(2.22)
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adding to EAR

the constraint related to the previous Condition 2. If E2 is feasible and ε2 > 0,

the information is concordant with the symmetric Choquet integral PROMETHEE method

having a unique capacity for the negative and the positive part. Otherwise,

3. Solve the linear programming problem

Max ε = ε3

EAR

(2.23)

If EAR

is feasible and ε3 > 0, then the preference information is concordant with the bipolar

PROMETHEE method. Otherwise,

4. We can try to help the DM by providing some information about inconsistent judgments, when

it is the case, by using a similar constructive learning procedure proposed in [87]. In fact, in

the linear programming model some of the constraints cannot be relaxed, that is, the basic

properties of the model (symmetry, boundary and monotonicity conditions). The remaining

constraints can lead to an infeasible linear system which means that the DM provided incon-

sistent information about her/his preferences. The methods proposed in [87] can then be used

in this context, providing to the DM some useful information about inconsistent judgments.

2.2.4 ROR applied to Bipolar PROMETHEE method

In above sections we dealt with the problem of finding a bicapacity restoring preference informa-

tion provided by the DM in case where multiple criteria evaluations are aggregated by bipolar

PROMETHEE method. Generally, there could exist more than one model (in our case the model

will be a bicapacity, but in other contexts it could be a utility function or an outranking relation)

compatible with the preference information provided by the DM on the training set of alternatives.

Each compatible model restores the preference information provided by the DM but two different

compatible models could compare the other alternatives not provided as examples by the DM in

a different way. For this reason, the choice of one of these models among those compatible could

be considered arbitrary. In order to take into account not only one but the whole set of models

compatible with the preference information provided by the DM, we consider the ROR [60]. This

approach considers the whole set of models compatible with preference information provided by the

DM building two preference relations: the weak necessary preference relation, for which alternative a

is necessarily weakly preferred to alternative b (and we write a %N b), if a is at least as good as b for
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all compatible models, and the weak possible preference relation, for which alternative a is possibly

weakly preferred to alternative b (and we write a %P b), if a is at least as good as b for at least one

compatible model.

In the case of the bipolar PROMETHEE methods and considering a 2-additive decomposable bi-

capacity µ̂, we could define one local outranking and two global outrankings (one for the bipola

PROMETHEE I and one for the bipolar PROMETHEE II) of an alternative a over an alternative

b. We say that, a is at least as good as b,

• locally, if ChB(PB(a, b), µ̂) ≥ 0;

• globally and considering the bipolar PROMETHEE I method, if ΦB+(a) ≥ ΦB+(b), ΦB−(a) ≤

ΦB−(b) and at least one of the two inequalities is strict;

• globally and considering the bipolar PROMETHEE II method, if ΦB(a) ≥ ΦB(b).

To check if a is necessarily preferred to b, we look if it is possible that a does not outrank b. Locally,

this means that it is possible that there exists a bicapacity µ̂ such that ChB(PB(b, a), µ̂) > 0; globally,

considering the bipolar PROMETHEE I method this means that ΦB+(a) < ΦB+(b) or ΦB−(a) >

ΦB−(b), while considering the bipolar PROMETHEE II method this means that ΦB(a) < ΦB(b).

Given the following set of constraints,

EAR

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

ΦB(a) + ε ≤ ΦB(b)

if exploited in the way of the bipolar PROMETHEE I method, then:

ΦB+(a) + ε ≤ ΦB+(b) + 2M1 and ΦB−(a) + 2M2 ≥ ΦB−(b) + ε

where Mi ∈ {0, 1}, i = 1, 2, and
∑2

i=1Mi ≤ 1

if one verifies the truth of local outranking:

ChB(PB(b, a), µ̂) ≥ ε


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
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


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













EN(a, b)

we say that a is weakly necessarily preferred to b if EN(a, b) is infeasible or ε∗ ≤ 0 where ε∗ = max ε

s.t. EN(a, b).
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To check if a is possibly preferred to b, we check if it is possible that a outrank b for at least one

bicapacity µ̂. Partially, this means that there exists a bicapacity µ̂ such that ChB(PB(a, b), µ̂) ≥ 0;

globally, considering the bipolar PROMETHEE I method this means that ΦB+(a) ≥ ΦB+(b) and

ΦB−(a) ≤ ΦB−(b) and at least one of the two inequalities is strict, while considering the bipolar

PROMETHEE II method this means that Φ(a) ≥ Φ(b). Given the following set of constraints,

EAR

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

ΦB(a) ≥ ΦB(b)

if exploited in the way of the bipolar PROMETHEE I method, then:

ΦB+(a) ≥ ΦB+(b) and ΦB−(a) ≤ ΦB−(b)

if one verifies the truth of local outranking:

ChB(PB(a, b), µ̂) ≥ 0
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



EP (a, b)

we say that a is weakly possibly preferred to b if EP (a, b) is feasible and ε∗ > 0 where ε∗ = max ε

s.t. EP (a, b).

2.2.5 Didactic Example, the Most Representative Model and SMAA

method

Inspired by a famous example in literature [39], let us consider the problem of evaluating High

School students according to their grades in Mathematics, Physics and Literature. In the following

we suppose that the Director is the DM, while we will cover the role of analyst helping and supporting

the DM in (her)his evaluations.

The Director thinks that scientific subjects (Mathematics and Physics) are more important than

Literature. However, when students a and b are compared, if a is better than b both at Mathematics

and Physics but a is much worse than b at Literature, then the Director has some doubts about the

comprehensive preference of a over b.

Mathematics and Physics are in some sense redundant with respect to the comparison of students,

since usually students which are good at Mathematics are also good at Physics. As a consequence,
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if a is better than b at Mathematics, the comprehensive preference of the student a over the student

b is stronger if a is better than b at Literature rather than if a is better than b at Physics.

Let us consider the students whose grades (belonging to the range [0, 20]) are represented in Table

2.4 and the following formulation of the preference of a over b with respect to each criterion gj, for

all j = (M) Mathematics, (Ph) Physics, (L) Literature.

Students Mathematics Physics Literature
s1 16 16 16
s2 15 13 18
s3 19 18 14
s4 18 16 15
s5 15 16 17
s6 13 13 19
s7 17 19 15
s8 15 17 16

Table 2.4: Evaluations of the students

Pj(a, b) =



















0 if gj(b) ≥ gj(a)

(gj(a)− gj(b))/4 if 0 < gj(a)− gj(b) ≤ 4

1 otherwise

From the values of the partial preferences Pj(a, b), we obtain the positive and the negative partial

preferences PB
j (a, b) with respect to each criterion gj, for j = M,Ph, L using the definition (2.7).

Thus, to each pair of students (si, sj) is associated a vector of three elements:

PB(si, sj) =
[

PB
M(si, sj), P

B
Ph(si, sj), P

B
L (si, sj)

]

; for example, to the pair of students (s1, s2) is asso-

ciated the vector PB(s1, s2) = [0.25, 0.75,−0.5].

In order to apply the Bipolar PROMETHEE method and taking into account the conditions

for the symmetry given by the Corollary 2.2.3, we need all the parameters regarding the degree of

importance of each criterion (a1, a2 and a3), the intensity of the interaction for each couple of criteria

(a12, a13 and a23), and the power of the opposing criteria both in the case of positive and negative

preferences for each pair of criteria (a+j|k and a−j|k with j, k = (L), (Ph), (M) and j 6= k).

In a first moment, let us suppose that the Director is able to give a direct preference information,

providing the parameters shown in Table 2.5;

For each pair of students (si, sj), using the parameters in Table 2.5 and the formulation of the

Bipolar Choquet integral of Theorem 2.2.1 applied to the Bipolar vector PB(si, sj), we obtain the

results shown in Table 2.6 where the element corresponding to the raw si and to the column sj is
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a1 a2 a3
0.96 0.83 0.85

a12 a13 a23
-0.61 -0.58 -0.46

a+1|2 a+1|3 a+2|1 a+2|3 a+3|1 a+3|2
-0.23 -0.19 -0.20 -0.17 -0.16 -0.13

a−1|2 a−1|3 a−2|1 a−2|3 a−3|1 a−3|2
-0.23 -0.17 -0.20 -0.10 -0.18 -0.20

Table 2.5: Direct information provided by the DM

ChB(PB(si, sj), µ̂) being the difference π(si, sj)− π(sj, si) in the classical PROMETHEE method.

s1 s2 s3 s4 s5 s6 s7 s8
s1 0.245 -0.36 -0.2625 0.0225 0.18 -0.475 0.0325
s2 -0.245 -0.24 -0.18 -0.3925 0.2625 -0.305 -0.37
s3 0.36 0.24 0.2675 0.3825 0.24 0.17 0.5625
s4 0.2625 0.18 -0.2675 0.285 0.2025 -0.3825 0.41
s5 -0.0225 0.3925 -0.3825 -0.285 0.3275 -0.3275 0.0225
s6 -0.18 -0.2625 -0.24 -0.2025 -0.3275 -0.24 -0.305
s7 0.475 0.305 -0.17 0.3825 0.3275 0.24 0.355
s8 -0.0325 0.37 -0.5625 -0.41 -0.0225 0.305 -0.355

Table 2.6: ChB(PB(si, sj), µ̂) obtained applying the bipolar PROMETHEE method with the param-
eters obtained directly by the Director

In Figure 2.1, an arrow is directed from si to sj if ChB(PB(si, sj), µ̂) > 0 while in Table 2.7 it is

shown a complete ranking of the eight students obtained by the bipolar PROMETHEE II method

and using the net flow formulation of equation (2.18); from this we get that s3 is the best student

while s6 is the worst one.

Now, let us suppose that the Director cannot provide the parameters necessary to implement the

Bipolar PROMETHEE method and so we ask (her)him to provide an indirect preference information.

(S)he gives this information:

• student s1 is preferred to student s2 more than student s3 is preferred to student s4,

• student s7 is preferred to student s8 more than student s5 is preferred to student s6.

Using the Bipolar PROMETHEE method, this preference information is translated as:

• ChB(PB(s1, s2), µ̂) > ChB(PB(s3, s4), µ̂),
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Figure 2.1: Comparison between all pairs
of students obtained by the Bipolar
PROMETHEE method applied with the
parameters provided by the DM

Alternative/Net Flow Φ(s)
s3 0.3175
s7 0.2736
s4 0.0986
s5 -0.0393
s1 -0.0882
s8 -0.1011
s2 -0.21
s6 -0.2511

Table 2.7: Total order of the eight students ob-
tained by the bipolar PROMETHEE II method
and the net flows given by equation (2.18)

Figure 2.2: Necessary preference relation ob-
tained after the first piece of preference infor-
mation

Figure 2.3: Possible preference relation ob-
tained after the first piece of preference infor-
mation

• ChB(PB(s7, s8), µ̂) > ChB(PB(s5, s6), µ̂).

At the beginning, we check if the preferences expressed by the Director can be explained by

the classical PROMETHEE method or by the symmetric Choquet integral PROMETHEE method.

Solving the linear programming problems (2.21) and (2.22) we obtain ε1 < 0 and ε2 < 0 and there-

fore neither the classical PROMETHEE method nor the symmetric Choquet integral PROMETHEE

method are able to explain the preference information provided by the Director. For this reason, we

decide to use the Bipolar PROMETHEE method.

Applying the ROR methodology to the Bipolar PROMETHEE II method and considering the pref-

erence information provided by the Director, we can show to (her)him the necessary and possible

preference relations in Figure 2.2 and 2.3 respectively. In Figure 2.2 an arrow connects the pair

of students (si, sj) if student si is necessarily preferred to student sj while in Figure 2.3 an arrow

connects the pair of students (si, sj) if student si is possibly preferred to student sj.

Looking at the necessary and possible preference relations shown in Figures 2.2 and 2.3, the

Director thinks, without any doubt, that s3 and s7 are the best students because s7 is necessarily

preferred to five out of the other seven students while s3 is necessarily preferred to four out of the
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Figure 2.4: Necessary preference relation ob-
tained after the second piece of preference in-
formation

Figure 2.5: Possible preference relation ob-
tained after the second piece of preference in-
formation

other seven students. At the same time only two students (s3 and s4) are possibly preferred to s7

while three students (s5, s7 and s8) are possibly preferred to s3.

In order to enrich (her)his understanding about the problem at hand, the Director decides to

provide another preference information regarding students s4 and s1 who are not connected by any

arrow in the necessary preference relation shown in Figure 2.2, so (s)he states that student s4 is

preferred to student s1.

Including this new preference information, translated by the constraint ChB(PB(s4, s1), µ̂) > 0, we

can show to the Director the necessary and possible preference relations in Figures 2.4 and 2.5

respectively.

Because increasing the number of preference information it reduces the dimension of the space of the

models compatible with the preference information provided by the Director, the number of pairs in

the necessary preference relation will increase (or at least it will be the same of the previous one),

while the number of pairs in the possible preference relation will decrease (or at most it will be the

same of the previous one). In Figure 2.4, each red marked arrow connects a pair of students that

was not present in the previous necessary preference relation while each red dashed marked arrow in

Figure 2.5 connects a pair of students that was present in the previous Possible preference relation

but it is not present anymore. In this way, we can provide the Director of the information that

student s3 is now necessarily preferred also to students s5 and s8 while both of them are not anymore

possibly preferred to s3. At the same time the Director does not get any new information regarding

student s7, so (s)he begins to think that s3 could be considered the best student.

This procedure could continue until the Director is not satisfied of the obtained result; therefore (s)he

could give other preference information obtaining new necessary and possible preference relations.

The Director is able to give a scholarship to one of the eight students, so (s)he is interested

to have a complete order of them. Because we would like to take into account the necessary and

59



possible preference relations that we have obtained using the ROR, we could extend the concept of

most representative model to the Bipolar PROMETHEE method. The most representative model

is obtained using the results of necessary and possible preference relations of ROR in case the DM

is interested to get a unique model representative of all the models compatible with the preference

information provided by the DM. The concept of most representative model has been already in-

troduced for ranking and choice problems [32, 75] and also for sorting problems [49]. Based on the

necessary and possible preference relations, the most representative model (in our case the model

will be a bicapacity) is obtained by maximizing the value of ChB(PB(a, b), µ̂) for each pair of al-

ternatives (a, b) such that a is necessarily preferred to b but b is not necessarily preferred to a, and

by minimizing the value of ChB(PB(a, b), µ̂) for each pair of alternatives (a, b) for which neither a

is necessarily preferred to b nor b is necessarily preferred to a. The procedure to compute the most

representative model is described in the following:

Step 1)

max ε = ε∗, s.t.

EAR

Ch(PB(a, b), µ̂) ≥ ε if a %N b and b 6%N a







Step 2)

min δ = δ∗

ε = ε∗

EAR

Ch(PB(a, b), µ̂) ≥ ε if a %N b and b 6%N a

Ch(PB(a, b), µ̂) ≤ δ

Ch(PB(b, a), µ̂) ≤ δ







if a 6%N b and b 6%N a











































Following the described procedure, we obtain the parameters shown in the Table 2.8. Applying the

bipolar PROMETHEE II method with these parameters, we get the values ChB(BP (a, b), µ̂) shown

in Table 2.9 while in Figure 2.6 an arrow connects a pair of students (si, sj) if ChB(PB(si, sj), µ̂) > 0.

We can apply PROMETHEE II with the net flow formulation of equation (2.18) and getting the

total order presented in Table 2.10. From this Table we get that s7 is the best student, while s2 is

the worst one.

Because the Director would like to be very aware of the final result, we could provide (her)him with

other information regarding the eight considered students. In the classical regression method and in

the most representative model, we consider only one model compatible with the preference informa-
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a1 a2 a3
0.6667 0.5 0.2768

a12 a13 a23
0 -0.1667 -0.2768

a+1|2 a+1|3 a+2|1 a+2|3 a+3|1 a+3|2
0 -0.6667 0 0 0 -0.1101

a−1|2 a−1|3 a−2|1 a−2|3 a−3|1 a−3|2
0 0 0 -0.1101 -0.6667 0

Table 2.8: Parameters obtained using the most representative model

s1 s2 s3 s4 s5 s6 s7 s8
s1 0.2917 -0.3333 -0.0975 -0.0692 0.25 -0.3333 0.0417
s2 -0.2917 -0.3333 -0.25 -0.3333 0.0975 -0.3750 -0.4167
s3 0.3333 0.3333 0.2083 0.2641 0.3333 0.0417 0.3475
s4 0.0975 0.25 -0.2083 0.0283 0.1808 -0.2083 0.2083
s5 0.0692 0.3333 -0.2641 -0.0283 0.2917 -0.2917 -0.0833
s6 -0.25 -0.0975 -0.3333 -0.1808 -0.2917 -0.3333 -0.3750
s7 0.3333 0.3750 -0.0417 0.2083 0.2917 0.3333 0.3750
s8 -0.0417 0.4167 -0.3475 -0.2083 0.0833 0.3750 -0.3750

Table 2.9: ChB(PB(si, sj), µ̂) obtained applying the bipolar PROMETHEE method with the param-
eters of the most representative model

tion provided by the DM while in the ROR we take into account simultaneously all the models that

are compatible with the preference information provided by the DM.

Another methodology aiming to explore the whole set of models compatible with the preference

information provided by the DM is the Stochastic Multiobjective Acceptability Analysis (SMAA).

SMAA is a family of MCDA methodologies dealing with imprecision and/or lack of information on

the considered data, where with the term data generally we mean the weights of evaluation criteria

or the evaluations of the alternatives with respect to the considered criteria. For each choice of the

weights and of the alternatives’ evaluations, SMAA computes a ranking of the considered alternatives

(for the first works on SMAA see [82, 83] while for a survey on the SMAA methodologies see [121]).

In our context, in order to explore the set of the models compatible with the preference information

provided by the DM, we adapt a methodology presented in [3] inspired by SMAA. We will do a sam-

pling of several models (precisely 100000 models) among those compatible with the DM preferences

and for each of these sampled models we obtain a complete order of the eight students using the

bipolar PROMETHEE II method with the net flow formulation of equation (2.18). At the end of all
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Figure 2.6: Comparison between all pairs
of students obtained by the Bipolar
PROMETHEE method applied with the
parameters of the most representative model

Alternative/Net Flow Φ(s)
s7 0.2679
s3 0.2659
s4 0.0497
s5 0.0038
s8 -0.0139
s1 -0.0357
s6 -0.2659
s2 -0.2718

Table 2.10: Total order of the eight students ob-
tained by the bipolar PROMETHEE II method
(applied with the parameters of the most rep-
resentative model) and the net flows given by
equation (2.18)

the iterations, we obtain for each alternative sj the following values:

• the rank acceptability index brj , representing the proportion of times in which the alternative

sj has obtained the position r, with r = 1, . . . ,m,

• the central weight vector wc
j , representing the mean model giving to alternative sj the best

position in the ranking (obviously this vector will be provided only if alternative sj reached the

first position at least one time in the considered iterations).

Alt/Rank b1 b2 b3 b4 b5 b6 b7 b8

s1 0 0 0 8.856 19.037 72.099 0.008 0
s2 0 0 0 0 0 0 56.728 43.272
s3 44.38 55.59 0.03 0 0 0 0 0
s4 0 0.005 73.116 9.127 15.83 1.823 0.099 0
s5 0 0.03 25.185 59.828 13.08 1.877 0 0
s6 0 0 0 0 0.031 0.077 43.165 56.727
s7 55.62 44.375 0.005 0 0 0 0 0
s8 0 0 1.664 22.189 52.022 24.124 0 0.001

Table 2.11: Rank acceptability indices (bi) in percentages

Applying this methodology to the bipolar PROMETHEE II method, we obtain the results shown in

Tables 2.11 and 2.12. Each value brj in Table 2.11 has the following interpretation: picking randomly

a model M compatible with the preference information provided by the DM, the probability that

student sj is in the position r in the final ranking obtained applying the bipolar PROMETHEE II

method with the net flow formulation of equation 2.18 and the parameters of the model M is the

brj%. So, for example, the value 55.62 corresponding to b17 means that picking randolmy a sampled
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model M , there is a probability of the 55.62% that student s7 is in the first position in the final

ranking obtained applying the bipolar PROMETHEE II method with the model M .

student/parameters a1 a2 a3 a12 a13 a23 a+1|2 a+1|3 a+2|1
s3 0.8187 0.6698 0.6056 -0.3852 -0.3619 -0.347 -0.1958 -0.262 -0.1678
s7 0.6761 0.7801 0.6779 -0.3379 -0.3433 -0.4529 -0.1637 -0.2386 -0.1448

student/parameters a+2|3 a+3|1 a+3|2 a−1|2 a−1|3 a−2|1 a−2|3 a−3|1 a−3|2
s3 -0.1222 -0.0974 -0.1304 -0.1677 -0.0982 -0.1959 -0.1277 -0.2612 -0.1249
s7 -0.2061 -0.0713 -0.1661 -0.1386 -0.0758 -0.1699 -0.1714 -0.234 -0.2009

Table 2.12: Central weight vectors for students s3 and s7

From Table 2.11 we observe that only students s3 and s7 could reach the first position in the final

ranking computed using the bipolar PROMETHEE II method, even if the decision on s7 as the best

student could be considered more robust. From the other side, students s2, s6 and s8 could reach

the last position in the final ranking but the probability of s6 being the worst is the highest. From

Table 2.12 we get that student s3 is the best if Mathematics is the most important criterion, while

student s7 is the best if Physics is the most important criterion.

2.2.6 Conclusions

In this work we have dealt with a generalization of the classical PROMETHEE method. A basic

assumption of PROMETHEE method is the independence between criteria which implies that no

interaction between criteria is considered. In this work we have developed a methodology permit-

ting to take into account interaction between criteria (synergy, redundancy and antagonism effects)

within PROMETHEE method by using the bipolar Choquet integral. In this way we obtained a new

method called the Bipolar PROMETHEE method.

The Decision Maker (DM) can give directly the preferential parameters of the method; however,

due to their great number, it is advisable using some indirect procedure to elicit the preferential

parameters from some preference information provided by the DM.

Since, in general, there is more than one set of parameters compatible with these preference infor-

mation, we proposed to use the Robust Ordinal Regression (ROR) and the SMAA methodology to

consider the whole family of compatible sets of preferential parameters.

We believe that the proposed methodology can be successfully applied in many real world problems

where interacting criteria have to be considered.
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2.3 MUSA-INT: Multicriteria customer satisfaction analy-

sis with interacting criteria

2.3.1 Introduction

Customer satisfaction evaluation plays a key role in the enterprises’ organization, contributing

through discovery and representation of customers’ preferences to the definition of different salient

aspects of companies’ strategies.

Among other advantages, customer satisfaction could increase companies’ competitiveness [70],

identify potential market opportunities, direct new actions to the quality improvement of a product

or a service [67], and could also have a positive effect on brand equity [123].

Several approaches have been already developed to evaluate customer satisfaction (see [67] for a

detailed list of the existing methods). The most used approaches are the statistical ones: the multiple

regression analysis, the discriminant analysis and the conjoint analysis [61],[63] that nowadays is one

of the most important marketing research tools (see [68] for an overview and recent developments).

In conjoint analysis, customers are asked to evaluate combinations of different values of the

attributes considered for a product or a service. On the basis of customers’ answers, conjoint analysis

aims at identifying the most desirable attribute values to be implemented in a product or a service.

Customer satisfaction analysis has also been approached using a method based on dominance-

based rough set theory [51], which aims at inferring some simple decision rules from the consumers’

data [53], differently from the conjoint analysis methods which represent customers’ preferences with

a comprehensive utility function.

Another interesting approach to customer satisfaction analysis consists in preference learning

(see [36] for an updated state-of-the-art) that, given some preferences on a set of objects, searches a

function to predict the preferences on a new set of objects. For example, some preference learning

applications are provided by a search engine’s ranking of web pages according to customers’ prefer-

ences, or by stores’ rankings of particular products according to the preferences expressed on-line by

the clients.

Customers’ satisfaction evaluation has also been studied from a multicriteria point of view, using

the method MUSA (MUlticriteria Satisfaction Analysis [65]). MUSA is a preference disaggregation

method that, following the principle of ordinal regression analysis [72], finds an additive utility func-

tion representing the satisfaction level of a set of customers based on their expressed preferences

collected in a satisfaction survey’s data. Using MUSA, the customers are asked to give a comprehen-
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sive satisfaction level for a service or a product under consideration, but also a marginal satisfaction

level for each one of its features (evaluation criteria). MUSA has many advantages over the traditional

customer satisfaction models, since it fully considers the qualitative form of customers’ judgments

and preferences that are usually expressed in this way in the consumers’ questionnaires. The success

of MUSA is witnessed by many applications in different fields as, for example, bank sector [64],

agricultural marketing [115] and transportation-communication sector [66]. Despite these positive

aspects, MUSA is not able to represent positive and negative synergies between specific features of a

product or a service, since it considers an additive utility function and, consequently, its underlying

hypothesis is preference independence [80],[129].

This is an important issue because it is a common experience that in the evaluation of a product

or a service, some features could positively or negatively interact. For example, in the evaluation

of a supermarket, prices and special offers have, usually, a negative interaction. In fact, prices and

special offers are both important in evaluating a supermarket, however usually a supermarket with

low prices has also many special offers and thus, considering together prices and special offers, the

total importance is smaller than the sum of their marginal importances. Analogously, one can say

that there is a positive synergy between goods’ quality and prices, because in general a supermarket

with high quality of goods has also high prices and thus a supermarket with a high quality of goods

and relatively low prices is well appreciated, such that the total importance of goods’ quality and

prices considered together is higher than the sum of the importance of their marginal importances.

In Multiple Criteria Decision Aiding (MCDA, see [29] for an updated state-of-the-art) positive and

negative interaction among criteria are very often represented using some fuzzy integrals, such as the

Choquet integral [21] or some of its generalizations, e.g., the bipolar Choquet integral ([41],[42]; see

also [54]) or the level dependent Choquet integral [50], (see [43] for a survey about the use of Choquet

integral in MCDA). Fuzzy integrals, and among them the Choquet integral, are aggregation models

that, besides other technical assumptions, require a scale of measurement which is cardinal (more

precisely, an interval scale [98]) and common to all the criteria (features) taken into consideration.

Such a scale permits comparison of evaluations on different criteria, so that, e.g., it becomes possible

to say that, for a given supermarket, the level of prices is better than the special offers it proposes

and, moreover, these are better than the quality of the goods.

Even if the majority of conjoint analysis methods does not consider interaction among attributes

[18], there are several contributions, like [1],[38],[62],[69],[85],[93],[96], that estimate by means of a

statistical regression not only a value for each level of each attribute, but also a value for each

combination of levels on a set of couples of attributes (possibly all couples of attributes). Another
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approach proposed to represent interaction among attributes in conjoint analysis is based on the use

of the Choquet integral [124],[71],[92],[125],[126],[131].

Since we want to take into account not more than ordinal qualitative aspects of the scales of

criteria, we propose MUSA-INT, being a generalization of the multicriteria method MUSA, in which

we deal with positive and negative synergies between couples of criteria, using a formulation of the

utility function recently proposed in the multicriteria method UTAGMS-INT [58]. Differently from

the 2-additive Choquet integral aggregation model, UTAGMS-INT represents positive and negative

synergies avoiding any arbitrary transformation of the original ordinal scales into a unique artificial

cardinal scale.

This section is organized as follows. In section 2.3.2, we introduce the basic concepts and the

relative notation, a brief description of the MUSA method, and the specific utility function adopted

in our customer satisfaction model. In section 2.3.3 basic steps of the proposed multicriteria customer

satisfaction analysis are described. Section 2.3.4 contains an illustrative example, considering a set

of customers’ satisfaction questionnaires on which MUSA-INT is applied. Some further extensions

of the proposed method are presented in Section 2.3.5. Conclusions and future directions of research

are collected in Section 2.3.6.

2.3.2 Basic concepts and the MUSA method

The basic elements of the proposed methodology are the following:

• C = {1, . . . , r} is the set of customers,

• I = {1, . . . , n} is the set of evaluation criteria (features),

• Li = {ℓi1, . . . , ℓ
i
si
}, i = 1, . . . , n, is the set of levels of satisfaction for criterion i: for example, for

a given criterion i, the scale could be Li = {ℓi1, ℓ
i
2, ℓ

i
3}, with ℓi1 =“dissatisfied”, ℓi2 =“satisfied”,

ℓi3 =“very satisfied”; the levels ℓi1, . . . , ℓ
i
si

are increasingly ordered with respect to the satisfac-

tion level, i.e. the satisfaction represented by ℓip is greater than the satisfaction represented by

ℓip−1, p = 2, . . . , si,

• Ln+1 = {ℓn+1
1 , . . . , ℓn+1

sn+1
} is the set of levels of comprehensive satisfaction: the levels ℓn+1

1 , . . . , ℓn+1
sn+1

are increasingly ordered with respect to the satisfaction level,

• satc,i ∈ L
i is the satisfaction of customer c ∈ C with respect to criterion i ∈ I,

• satc,n+1 ∈ L
n+1 is the comprehensive satisfaction of customer c ∈ C,
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• ui : Li → [0, 1] is the marginal utility function of criterion i,

• U : Ln+1 → [0, 1] is the utility of comprehensive levels of satisfaction,

• Syn+ ⊆ I(2) with I(2) = {{i1, i2} ⊆ I} is the set of all couples of criteria for which there is a

positive interaction,

• Syn− ⊆ I(2) is the set of all couples of criteria for which there is a negative interaction; we

have Syn+ ∩ Syn− = ∅,

• syn+
ij : Li×Lj → [0, 1] is a function non decreasing in both its two arguments representing the

strength of the positive interaction between the couples of criteria {i, j} ∈ Syn+,

• syn−ij : Li×Lj → [0, 1] is a function non decreasing in both its two arguments representing the

strength of the negative interaction between the couples of criteria {i, j} ∈ Syn−.

Within the MUSA method [65], inspired by the idea of ordinal regression used in the UTA

methods [72], one represents customer satisfaction through the following additive utility function,

U(satc,n+1) =
n

∑

i=1

ui(satc,i), c ∈ C. (2.24)

The utility function (2.24) is obtained by solving the following LP problem [65]:

Minimize:
r

∑

c=1

(σ+
c + σ−c ), s.t. (2.25)
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U(satc,n+1) =
n

∑

i=1

ui(satc,i)− σ+
c + σ−c , for all c ∈ C

σ+
c ≥ 0, σ−c ≥ 0, for all c ∈ C

ui(ℓ
i
p) ≥ ui(ℓ

i
p−1), p = 2, . . . , si, for all i ∈ I,

U(ℓn+1
p ) ≥ U(ℓn+1

p−1 ), p = 2, . . . , sn+1,











(monotonicity conditions)

ui(ℓ
i
1) = 0, for all i ∈ I,

n
∑

i=1

ui(ℓ
i
si

) = 1,

U(ℓn+1
sn+1

) = 1,



























(normalization constraints)

where σ+ and σ− are over- and under-estimation errors for every customer’s utility function.
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Differently from MUSA, the utility function considered in our model is that one proposed in

the multicriteria method UTAGMS-INT (see [58]), which takes into account positive and negative

synergies between couples of criteria as follows:

U(satc,n+1) =
n

∑

i=1

ui(satc,i) +
∑

{i,j}∈Syn+

syn+
ij(satc,i, satc,j)−

∑

{i,j}∈Syn−

syn−ij(satc,i, satc,j), c ∈ C.

(2.26)

2.3.3 Description of MUSA-INT

In this section, we present a new procedure for finding a utility function representing the overall

satisfaction of a set of customers C. The adopted utility function defined by (2.26) considers synergies

between satisfaction levels on two criteria, i and j: satc,i and satc,j.

The multicriteria customer satisfaction analysis, we are proposing, is composed of three main

successive phases:

(i) finding a utility function U representing the satisfaction of all customers from set C with a

minimal sum of approximation errors;

(ii) identifying a minimal pair (Syn+, Syn−) of sets of couples of interacting criteria, where mini-

mality is referred to the inclusion;

(iii) finding a utility function discriminating as much as possible satisfaction levels for both marginal

and overall utility functions.

From a computational point of view, each phase consists in solving a specific mixed integer linear

program (MILP). Let us examine each phase in detail.

Phase (i): finding a utility function representing the satisfaction of all the customers

Since we want to get a utility function U representing the utility of all customers from set C with

a minimal sum of approximation errors, we need to introduce a double error variable (σ+
c , σ

−
c ≥ 0),

corresponding to over- and under-estimation, respectively, for every customer’s utility as follows:

U(satc,n+1) =
n

∑

i=1

ui(satc,i)+
∑

{i,j}∈I(2)

syn+
ij(satc,i, satc,j)−

∑

{i,j}∈I(2)

syn−ij(satc,i, satc,j)−σ
+
c +σ−c , for all c ∈ C.
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The objective function to be minimized is the sum of the error variables for every customer from

set C (analogically to the original UTASTAR method [72]):

r
∑

c=1

(σ+
c + σ−c ) (2.27)

Then, we introduce as many binary variables (δ+ij , δ
−
ij ∈ {0, 1}) as twice the couples of criteria,

i.e. 2×
(

n
2

)

. The meaning of every binary variable is the following:

δ+ij(δ
−
ij) =







1 if {i, j} ∈ I(2) are positively (negatively) interacting,

0 if {i, j} ∈ I(2) are not positively (negatively) interacting.

For every couple of criteria {i, j} ∈ I(2), three situations can arise:

1) i and j are interacting positively (δ+ij = 1),

2) i and j are interacting negatively (δ−ij = 1),

3) i and j are not interacting (δ+ij = δ−ij = 0).

In consequence, the following constraints are included in the first MILP problem:



















δ+ij + δ−ij ≤ 1,

syn+
ij(ℓ

i
si
, ℓjsj) ≤ δ+ij ,

syn−ij(ℓ
i
si
, ℓjsj) ≤ δ−ij .

(2.28)

Furthermore, a dominance constraint is considered if, for c, d ∈ C, satc,i ≥ satd,i, for all i ∈ I:

n
∑

i=1

ui(satc,i) +
∑

{i,j}∈I(2)

syn+
ij(satc,i, satc,j)−

∑

{i,j}∈I(2)

syn−ij(satc,i, satc,j)− σ+
c + σ−c ≥

≥
n

∑

i=1

ui(satd,i) +
∑

{i,j}∈I(2)

syn+
ij(satd,i, satd,j)−

∑

{i,j}∈I(2)

syn−ij(satd,i, satd,j)− σ+
d + σ−d .

(2.29)

Finally, the MILP formulation includes some technical constraints concerning monotonicity and

boundary conditions on the synergies, marginal utilities and overall utility.
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Summing up, we get the following MILP problem:

Minimize:
r

∑

c=1

(σ+
c + σ−c ), s.t. (2.30)

U(satc,n+1) =
n

∑

i=1

ui(satc,i) +
∑

{i,j}∈I(2)

syn+
ij(satc,i, satc,j)−

∑

{i,j}∈I(2)

syn−ij(satc,i, satc,j)− σ+
c + σ−c ,

for all c ∈ C,

ui(ℓ
i
1) = 0, ∀i ∈ I, U(ℓn+1

1 ) = 0, syn−ij(ℓ
i
1, ℓ

j
1) = 0, syn+

ij(ℓ
i
1, ℓ

j
1) = 0, for all {i, j} ∈ I(2),

n
∑

i=1

ui(satc,i) +
∑

{i,j}∈I(2)

syn+
ij(satc,i, satc,j)−

∑

{i,j}∈I(2)

syn−ij(satc,i, satc,j)− σ+
c + σ−c ≥

≥
n

∑

i=1

ui(satd,i) +
∑

{i,j}∈I(2)

syn+
ij(satd,i, satd,j)−

∑

{i,j}∈I(2)

syn−ij(satd,i, satd,j)− σ+
d + σ−d

if satc,i ≥ satd,i for all i = 1, . . . , n,

ui(ℓ
i
p) ≥ ui(ℓ

i
p−1), p = 2, . . . , si, for all i ∈ I,

U(ℓn+1
p ) ≥ U(ℓn+1

p−1 ) + ε, p = 2, . . . , sn+1,

syn+
ij(ℓ

i
p1
, ℓjq1) ≥ syn+

ij(ℓ
i
p2
, ℓjq2),

syn−ij(ℓ
i
p1
, ℓjq1) ≥ syn−ij(ℓ

i
p2
, ℓjq2),

ui(ℓ
i
p1

) + uj(ℓ
j
q1

)− syn−ij(ℓ
i
p1
, ℓjq1) ≥ ui(ℓ

i
p2

) + uj(ℓ
j
q2

)− syn−ij(ℓ
i
p2
, ℓjq2),

with p1 ≥ p2 and q1 ≥ q2,

p1, p2 = 1, . . . , si, q1, q2 = 1, . . . , sj, for all {i, j} ∈ I(2),



































































































(monotonicity conditions),

n
∑

i=1

ui(ℓ
i
si

) +
∑

{i,j}∈I(2)

syn+
ij(ℓ

i
si
, ℓjsj)−

∑

{i,j}∈I(2)

syn−ij(ℓ
i
si
, ℓjsj) = 1,

syn+
ij(ℓ

i
si
, ℓjsj) ≤ δ+ij , for all {i, j} ∈ I(2),

syn−ij(ℓ
i
si
, ℓjsj) ≤ δ−ij , for all {i, j} ∈ I(2),



































(boundary conditions),

δ+ij + δ−ij ≤ 1, for all {i, j} ∈ I(2),

δ+ij , δ
−
ij ∈ {0, 1}, for all {i, j} ∈ I(2), σ+

c ≥ 0, σ−c ≥ 0, for all c ∈ C,















































































































































































































































































































(E1)

where ε is an arbitrary small positive quantity.
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If the objective function of program (2.30) can be minimized to zero, then there exists at least one

utility function U , having the form of (2.26), representing the satisfaction of customers expressed by

set of constraints (E1); otherwise, if the minimum value of objective function of (2.30) is positive, then

there is no utility function U , having the form of (2.26), compatible with satisfaction of customers

expressed by set of constraints (E1).

The above mixed-integer linear program gives as solution the utility function U and two sets,

Syn+ and Syn−, of couples of positively and negatively interacting criteria, defined, respectively, as

follows:

Syn+ = {{i, j} ∈ I(2) : δ+ij = 1}, Syn− = {{i, j} ∈ I(2) : δ−ij = 1}.

Let us remark that if program (2.30) gives δ+ij = δ−ij = 0, for all {i, j} ∈ I(2), i.e. when there are

no interactions, the obtained utility function is the same as the one supplied by the MUSA method

[65]. For this reason, MUSA-INT can be considered as a generalization of MUSA.

Phase (ii): identifying of a minimal pair (Syn+, Syn−)

The pair (Syn+, Syn−) of sets of couples of interacting criteria obtained from the mixed-integer linear

program (2.30) is not necessarily minimal, in the sense that there could be other sets Syn
′+ and

Syn
′− of couples of positively or negatively interacting criteria that could represent the utility of all

customers with the same or similar approximation error
r

∑

c=1

(σ+
c +σ−c ), and such that Syn

′+ ⊆ Syn+

and Syn
′− ⊆ Syn−, with at least one of the two inclusions being strict.

In order to identify a minimal pair (Syn+, Syn−) of sets of couples of interacting criteria while

possibly accepting a small deterioration of the approximation error resulting from the previously con-

sidered mixed-integer linear program (2.30), the following mixed-integer linear programming problem

has to be solved:

Minimize:
∑

{i,j}∈I(2)

(δ+ij + δ−ij), s.t. (2.31)

(E1),
r

∑

c=1

(σ+
c + σ−c ) ≤ opterr × (1 + α),















(E2)

where opterr is the optimal value of the total approximation error
r

∑

c=1

(σ+
c + σ−c ) resulting from the
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solution of (2.30), and 0 ≤ α < 1 is a tolerance parameter controlling the possible deterioration of

the total optimal approximation error (in fact, we accept a deterioration of
r

∑

c=1

(σ+
c +σ−c ) by no more

than α× opterr).

In result of solving MILP problem (2.31), one gets a utility function U (possibly different from

the utility function resulting from (2.30)) and a minimal pair (Syn+, Syn−) of sets of couples of

positively and negatively interacting criteria, in the sense of inclusion.

Phase (iii): finding the most discriminating utility function

In order to find a utility function U (possibly different from the one obtained in the previous phase)

discriminating as much as possible all levels of satisfaction by the marginal utility functions ui(·), or

by the overall utility function U(·), while keeping the same number of interacting couples of criteria,

as obtained from (2.31), one has to solve two mixed-integer linear programming problems. The first

one tends to discriminate as much as possible the satisfaction levels of the comprehensive utility

function:

Maximize: ε = εcomprehensive, s.t. (2.32)

(E2),
∑

{i,j}∈I(2)

(δ+ij + δ−ij) ≤ optsyn,















(E3)

where ε is a variable present in the constraint U(ℓn+1
p+1 ) ≥ U(ℓn+1

p ) + ε, opterr and α have the same

meaning as in program (2.31), while optsyn is the optimal value of the objective function of program

(2.31).

The solution of MILP problem (2.32) gives a utility function maximizing the minimal difference

U(ℓn+1
p )−U(ℓn+1

p−1 ), p = 2, . . . , sn+1. In fact, the minimum of those differences is equal to εcomprehensive,

i.e the optimal value of ε given by program (2.32).

The analyst could be interested in finding the most discriminating function not only with respect

to the comprehensive utility, but also with respect to the marginal utilities. In order to find such

discriminating marginal utility functions, one has to solve the following MILP problem:

Maximize: ε = εmarginal, s.t. (2.33)
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(E
′

2),
∑

{i,j}∈I(2)

(δ+ij + δ−ij) ≤ optsyn,















(E
′

3)

where (E
′

2) is composed of the same constraints as (E2), apart from constraints

• ui(ℓ
i
p) ≥ ui(ℓ

i
p−1), p = 2, . . . , si, for all i ∈ I,

• U(ℓn+1
p ) ≥ U(ℓn+1

p−1 ) + ε, p = 2, . . . , sn+1,

that are replaced by

• ui(ℓ
i
p) ≥ ui(ℓ

i
p−1) + ε, p = 2, . . . , si, for all i ∈ I,

• U(ℓn+1
p ) ≥ U(ℓn+1

p−1 ) + εcomprehensive × (1− β), p = 2, . . . , sn+1,

with β ∈ [0, 1] representing the percentage of comprehensive discrimination threshold that the analyst

is ready to lose in order to gain on discrimination with respect to the marginal utilities.

As it will be shown in the next section, in some cases, in order to find a discriminating utility

function, both with respect to the comprehensive and the marginal satisfaction levels, it may be

necessary to increase the admissible total approximation error or increase the number of interacting

couples of criteria. In this case, one needs to solve again the two optimization problems (2.32) and

(2.33), increasing the chosen value of α in (E2) or substituting the constraint
∑

{i,j}∈I(2)

(

δ+ij + δ−ij
)

≤

optsyn with
∑

{i,j}∈I(2)

(

δ+ij + δ−ij
)

≤ (optsyn + γ), where γ represents the number of additional

interactions accepted by the analyst.

In Section 2.3.5, we shall describe how to identify alternative minimal pairs (Syn+, Syn−) of sets

of couples of interacting criteria being compatible with a fixed tolerance parameter α. In case of a

plurality of minimal pairs (Syn+, Syn−), it is interesting to compute the intersection of all the sets

Syn+ on one hand, and of all the sets Syn− on the other hand, without deteriorating the approx-

imation error. Let us observe that this interpretation of alternative minimal pairs (Syn+, Syn−) is

analogous to the concept of reducts in rough set theory [94]. Moreover, the intersection of all the

sets Syn+ on one hand, and of all the sets Syn− on the other hand, is analogous to the concept of

core in rough set theory [94].

2.3.4 Illustrative example

We will illustrate MUSA-INT using an example originally considered by Grigoroudis and Siskos [65],

concerning 20 customers evaluating a service provided by an enterprise. In order to show the full
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potential of our method, we have augmented the customer dataset presented in [65] by 4 customers,

denoted by x, y, w, and z. The main features of our illustrative example are listed hereafter:

1) evaluation of the service involves three criteria concerning: product (1), purchase process (2) and

additional service (3);

2) three levels of satisfaction (Very Satisfied (V), Satisfied (S), Dissatisfied (D)) are considered with

respect to both, every criterion and comprehensive satisfaction of the service;

3) the customer’s satisfaction survey is composed of 24 customers displayed in Table 2.13.

In the following, we suppose us to be the analyst supporting the customer satisfaction expert.

Table 2.13: Consumers’ satisfaction survey

Customer Comprehensive satisfaction Product (1) Purchase process (2) Additional service (3)

1 Satisfied Very Satisfied Satisfied Dissatisfied
2 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
3 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
4 Satisfied Very Satisfied Dissatisfied Satisfied
5 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
6 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
7 Satisfied Very Satisfied Dissatisfied Very Satisfied
8 Satisfied Very Satisfied Dissatisfied Very Satisfied
9 Satisfied Satisfied Satisfied Satisfied
10 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
11 Satisfied Satisfied Very Satisfied Dissatisfied
12 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
13 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
14 Satisfied Satisfied Very Satisfied Dissatisfied
15 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
16 Very Satisfied Very Satisfied Very Satisfied Satisfied
17 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
18 Very Satisfied Very Satisfied Very Satisfied Satisfied
19 Satisfied Satisfied Satisfied Satisfied
20 Dissatisfied Satisfied Dissatisfied Dissatisfied
x Very Satisfied Satisfied Very Satisfied Satisfied
y Satisfied Satisfied Satisfied Very Satisfied
w Dissatisfied Dissatisfied Very Satisfied Satisfied
z Satisfied Dissatisfied Satisfied Very Satisfied

For customers x, y, w, and z, it is easy to show that the axiom of the preferential independence

is violated [80].

Supposing that the utility function of all the customers has an additive form and does not handle

synergies between criteria, we can observe the following:
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1) since customers x and y have the same levels of satisfaction with respect to criterion Product,

and the comprehensive satisfaction level of x is greater than the comprehensive satisfaction

level of y, we get:

u1(x) + u2(x) + u3(x) > u1(y) + u2(y) + u3(y) ⇒ u2(x) + u3(x) > u2(y) + u3(y);

2) since customers w and z have the same levels of satisfaction with respect to criterion Product,

and the comprehensive satisfaction level of w is lower than the comprehensive satisfaction level

of z, we get:

u1(w) + u2(w) + u3(w) < u1(z) + u2(z) + u3(z) ⇒ u2(w) + u3(w) < u2(z) + u3(z);

3) since customers x and w have the same levels of satisfaction with respect to criteria Purchase

process and Additional service, and customers y and z have the same levels of satisfaction with

respect to criteria Purchase process and Additional service, we obtain:

u2(x) + u3(x) = u2(w) + u3(w) and u2(y) + u3(y) = u2(z) + u3(z).

From 1), 2) and 3) we get a contradiction since at the same time it should be true that u2(x)+u3(x) >

u2(y) + u3(y) and u2(x) + u3(x) < u2(y) + u3(y).

As a result, we conclude that the customers’ overall satisfaction cannot be represented by an

additive utility function, and thus, the MUSA method using this type of utility function is not able

to fully represent the comprehensive satisfaction of the customers shown in Table 2.13.

For this reason, to represent the customers’ comprehensive satisfaction shown in Table 2.13, we

apply MUSA-INT, adopting a utility function with positive and negative synergy components (2.26).

According to phase (i), we need to solve MILP problem (2.30). Fixing ε = 0.1, we get σ+
c = σ−c =

0 for all c ∈ C, while the binary variables, the marginal and comprehensive utilities, as well as the

synergies, are displayed in Table 2.14.

In phase (ii), we solve MILP problem (2.31) to determine a minimal pair (Syn+, Syn−) of sets of

couples of interacting criteria. Fixing α = 0 in order to maintain the same approximation error as

obtained in the previous phase, we get the same results as shown in Table 2.14. This means that

the pair (Syn+, Syn−) of sets of couples of interacting criteria found in phase (i) is the minimal one.
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Table 2.14: Parameters of the utility function resulting from optimal solution of MILP problem
(2.30)

(a) Marginal utilities and interactions

u1 u2 u3 U
D 0 0 0 0
S 0 0 0 0.5
V 0 0 0 1

δ+12 δ−12 δ+13 δ−13 δ+23 δ−23
1 0 1 0 0 0

(b) Synergies

syn+
12 syn−12 syn+

13 syn−13 syn+
23 syn−23

VV 0.5 0 0.5 0 0 0
VS 0 0 0.5 0 0 0
VD 0 0 0.5 0 0 0
SV 0.5 0 0.5 0 0 0
SS 0 0 0.5 0 0 0
SD 0 0 0 0 0 0
DV 0 0 0.5 0 0 0
DS 0 0 0 0 0 0
DD 0 0 0 0 0 0

In phase (iii), we proceed in two steps to find the most discriminating utility function. In the

first step, when maximizing the discrimination of satisfaction levels of the comprehensive utility, we

find the same utility function as in phase (ii), shown in Table 2.14. At this point, in the second

step, we accept to lose on the comprehensive discrimination in order to gain on the discrimination

of satisfaction levels of marginal utilities; for this reason in problem (2.33) we fix β = 0.6, and

after maximizing the discrimination of satisfaction levels of the marginal utilities, we find the utility

function shown in Table 2.15. Remark that satisfaction levels of all but one marginal utilities are

well discriminated.

Table 2.15: Parameters of the most discriminating utility function resulting from optimal solution of
MILP problem (2.33)

(a) Marginal utilities and interactions

u1 u2 u3 U
D 0 0 0 0
S 0.5 0.25 0 0.5
V 0.75 0.75 0 1

δ+12 δ−12 δ+13 δ−13 δ+23 δ−23
0 1 1 0 0 0

(b) Synergies

syn+
12 syn−12 syn+

13 syn−13 syn+
23 syn−23

VV 0 1 0.5 0 0 0
VS 0 0.75 0.5 0 0 0
VD 0 0.75 0.25 0 0 0
SV 0 0.75 0.5 0 0 0
SS 0 0.75 0.5 0 0 0
SD 0 0.5 0 0 0 0
DV 0 0.75 0.5 0 0 0
DS 0 0.25 0 0 0 0
DD 0 0 0 0 0 0
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This result is still not satisfactory since we would like to see some discrimination of satisfaction

levels for all marginal utilities. In this situation, we would like to know what is the value of the total

approximation error that should be accepted in order to obtain a discrimination of at least 0.2 both on

the marginal and comprehensive utilities in two separate cases: allowing any number of interactions

and allowing a limited number of interactions. Thus, fixing such a minimum discrimination on

all the marginal utilities and on the comprehensive utility, we obtain the utility functions shown,

respectively, in Tables 2.16 and 2.17.

Table 2.16: Parameters of a utility function ensuring the discrimination of at least 0.2 on both
marginal and comprehensive utilities, and accepting an increased number of interactions

(a) Utilities and Interactions

u1 u2 u3 U
D 0 0 0 0
S 0.5 0.2 0.2 0.5
V 0.7 0.7 0.4 1

δ+12 δ−12 δ+13 δ−13 δ+23 δ−23
0 1 1 0 0 1

(b) Synergies

syn+
12 syn−12 syn+

13 syn−13 syn+
23 syn−23

VV 0 0.9 0.5 0 0 0.4
VS 0 0.9 0.5 0 0 0.2
VD 0 0.7 0.5 0 0 0
SV 0 0.7 0.5 0 0 0.4
SS 0 0.7 0.5 0 0 0.2
SD 0 0.5 0 0 0 0
DV 0 0.7 0.5 0 0 0.4
DS 0 0.2 0 0 0 0.2
DD 0 0 0 0 0 0

Table 2.17: Parameters of the utility function discriminating all marginal and comprehensive levels
of satisfaction by at least 0.2, obtained for total approximation error equal to 0.2, and the number
of interactions limited to 2

(a) Marginal utilities and interactions

u1 u2 u3 U
D 0 0 0 0
S 0.8 0.2 0.6 0.4
V 1 1 0.8 1

δ+12 δ−12 δ+13 δ−13 δ+23 δ−23
0 1 0 0 0 1

(b) Synergies

syn+
12 syn−12 syn+

13 syn−13 syn+
23 syn−23

VV 0 1 0 0 0 0.8
VS 0 0.8 0 0 0 0.6
VD 0 0.8 0 0 0 0.6
SV 0 0.8 0 0 0 0.6
SS 0 0.8 0 0 0 0.4
SD 0 0.8 0 0 0 0
DV 0 0.8 0 0 0 0.6
DS 0 0 0 0 0 0.4
DD 0 0 0 0 0 0

In the first case, the results of which are shown in Table 2.16, we obtain the desired discrimination

for the total approximation error equal to zero (i.e. σ+
c = σ−c = 0, for all c ∈ C) and for the following
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sets of couples of interacting criteria: Syn+ = {1, 3} and Syn− = {{1, 2}, {2, 3}}. In the second

case, the results of which are shown in Table 2.17, the desired discrimination is achieved for the total

approximation error
∑r

c=1 (σ+
c + σ−c ) = 0.2 and the number of couples of interacting criteria limited

to two; in this case: Syn+ = ∅ and Syn− = {{1, 2}, {2, 3}}.

2.3.5 Further extensions

The three-phase method described until now can be considered a standard procedure; first, we check

the existence of a utility function of type (2.26) compatible with the customers’ answers (phase (i)),

then we look for a minimal pair of sets of couples of interacting criteria (phase (ii)), and finally we

look for a utility function having the maximum discrimination power (phase (iii)). In this section,

some interesting extensions of this procedure are presented.

Finding other minimal couples of sets of interacting criteria

In phase (ii), in result of solving problem (2.31), we find a minimal pair (Syn+
1 , Syn

−
1 ), where Syn+

1

and Syn−1 are sets of couples of positively and negatively interacting criteria.

In general, there may exist more than one minimal pair (Syn+, Syn−) and for this reason, it

could be interesting to find them all. In order to find another minimal pair (Syn+
2 , Syn

−
2 ), one has

to solve the following optimization problem:

Minimize:
∑

{i,j}∈I(2)

(

δ+ij + δ−ij
)

, s.t. (2.34)

(E2),
∑

{i,j}∈{Syn+
1 ∪Syn

−
1 }

(δ+ij + δ−ij) ≤ |Syn
+
1 ∪ Syn

−
1 | − 1.















(EM2)

The last constraint in (EM2) ensures that a newly found pair of sets of indices of couples of interacting

criteria is different from the previous one.

Let us suppose that at the (k − 1)th iteration we found the minimal pair (Syn+
k−1, Syn

−
k−1). In

order to check if there exists another minimal pair (Syn+
k , Syn

−
k ), it will be sufficient to solve the

following optimization problem:

Minimize:
∑

{i,j}∈I(2)

(

δ+ij + δ−ij
)

, s.t. (2.35)
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(E2),
∑

{i,j}∈{Syn+
1 ∪Syn

−
1 }

(δ+ij + δ−ij) ≤ |Syn
+
1 ∪ Syn

−
1 | − 1,

∑

{i,j}∈{Syn+
2 ∪Syn

−
2 }

(δ+ij + δ−ij) ≤ |Syn
+
2 ∪ Syn

−
2 | − 1,

· · ·
∑

{i,j}∈{Syn+
k−1∪Syn

−
k−1}

(δ+ij + δ−ij) ≤ |Syn
+
k−1 ∪ Syn

−
k−1| − 1.



































































(EMk
)

If problem (2.35) is infeasible, then there is no minimal pair (Syn+
k , Syn

−
k ), so that the set M of all

minimal pairs (Syn+, Syn−) is given by

M =
{

(Syn+
1 , Syn

−
1 ), · · · , (Syn+

k−1, Syn
−
k−1)

}

.

If, instead, problem (2.35) is feasible, then (Syn+
k , Syn

−
k ) is a new minimal pair with

Syn+
k =

{

{i, j} ∈ I(2) : δ+ij = 1 in the solution of problem (2.35)
}

and

Syn−k =
{

{i, j} ∈ I(2) : δ−ij = 1 in the solution of problem (2.35)
}

.

In phase (ii) of the illustrative example presented in Section 2.3.4, we found the first minimal pair

(Syn+
1 , Syn

−
1 ), in which Syn+

1 = {1, 3} and Syn−1 = {1, 2}. Searching for other minimal pairs, we

get:

• the solution of optimization problem (2.35) with constraints (EM2) is shown in Table 2.18,

where Syn+
2 = {1, 2} and Syn−2 = {1, 3};

δ+12 δ−12 δ+13 δ−13 δ+23 δ−23
1 0 0 1 0 0

Table 2.18: Binary variables defining the second minimal pair

• the solution of optimization problem (2.35) with constraints (EM3), is shown in Table 2.19,

where Syn+
3 = ∅ and Syn−3 = {{1, 2}, {1, 3}, {2, 3}};
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δ+12 δ−12 δ+13 δ−13 δ+23 δ−23
0 1 0 1 0 1

Table 2.19: Binary variables defining the third minimal pair

• finally, when solving optimization problem (2.35) with constraints (EM4) we don’t find any

other minimal pair, and thus the searching procedure stops. Therefore, the set M of minimal

pairs (Syn+, Syn−) is

M =
{

(Syn+
1 , Syn

−
1 ), (Syn+

2 , Syn
−
2 ), (Syn+

3 , Syn
−
3 )

}

.

Customer satisfaction evaluation using a set of compatible preference models

When analyzing the customers’ survey presented in Table 2.13, the experts of the company could

be interested to know what action should be made in order to improve the customer satisfaction

of the service provided. For this reason, the experts could be interested in answering the following

question: “is customer satisfaction of profile P1 = (S, V, S) better than customer satisfaction of

profile P2 = (V, S, V)?” To answer this question, the experts have to consider set U of utility

functions of type (2.26) satisfying set of constraints (E1) related to the considered customers’ survey.

Such utility functions are called compatible with customers’ preferences. Then, a natural question

arises whether customer satisfaction of profile P1 is at least as good as customer satisfaction of P2

for at least one or for all compatible utility functions from U . By answering this type of questions,

the experts can get an additional insight into more meaningful decision investments concerning the

service provided by the company. For example, if the experts find that customer satisfaction of profile

P1 is better than customer satisfaction of profile P2 for all compatible utility functions from U , they

can conclude that an action directed to increase satisfaction level from S to V on Purchase process

is more appreciated by the customers than another action directed to an analogous improvement

on both Product and Additional service. To perform this type of analysis, one can use the Robust

Ordinal Regression (ROR) methodology being a family of MCDA methods introduced in [55] (for a

recent survey on the topic see [60]). ROR has been applied to ranking problems (see UTAGMS[55],

GRIP [33]) and sorting problems (see UTADISGMS [57]), and also in methods using outranking

relations (ELECTREGKMS [47]) or Choquet integral (NAROR [7]) as preference models.

Given an initial set of preference information provided by a Decision Maker (DM), the ROR aims

at obtaining a final recommendation for the decision problem at hand, taking into account not only
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one preference model compatible with this preference information, but the whole set of compatible

preference models simultaneously. In fact, as it is often the case in the inference procedures, several

decision models could be compatible with the information provided by the DM, but each one of them

could lead to different preferences on the remaining alternatives, not considered by the DM at the

stage of expressing the preference information. The choice of one particular preference model among

all compatible ones could be considered arbitrary, and so it is more meaningful to take into account

the whole set of compatible preference models simultaneously. Supposing the preference model in

the form of a set of compatible utility functions, the conclusions drawn by ROR are based on two

preference relations:

• the necessary preference relation for which alternative a is necessarily preferred to alternative

b, if a is at least as good as b for all utility functions compatible with the preference information

provided by the DM,

• the possible preference relation for which alternative a is possibly preferred to alternative b

if a is at least as good as b for at least one utility function compatible with the preference

information provided by the DM.

In the following, we adapt the concept of ROR to MUSA-INT considering the following binary

relations on the set of profiles L =
∏n

i=1 Li. Given any two profiles, P1, P2 ∈ L:

• profile P1 is possibly preferred to profile P2, (P1 %P P2), if customer satisfaction of P1 is at

least as good as customer satisfaction of P2 for at least one compatible utility function of U ,

• profile P1 is necessarily preferred to profile P2, (P1 %
N P2), if customer satisfaction of P1 is at

least as good as customer satisfaction of P2 for all compatible utility functions of U .

Let us stress that in our context, there is no DM but only an analyst supporting the experts of the

company in the analysis of customer satisfaction; for this reason the preference information provided

by the DM in the ROR context is replaced by the answers to the customers’ survey (expressed set

of constraints (E1)) in our method.

In order to compute the necessary and possible preference relations between two profiles of sat-

isfaction (sata,1, sata,2, . . . , sata,n) and (satb,1, satb,2, . . . , satb,n), one should proceed in the following

way.
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Considering the sets of constraints,

n
∑

i=1

ui(satb,i) +
∑

(i,j)∈I(2)

syn+
ij(satb,i, satb,j)−

∑

(i,j)∈I(2)

syn−ij(satb,i, satb,j) ≥

≥
n

∑

i=1

ui(sata,i) +
∑

(i,j)∈I(2)

syn+
ij(sata,i, sata,j)−

∑

(i,j)∈I(2)

syn−ij(sata,i, sata,j) + ε,

(E1),

∑

c∈C

(

σ+
c + σ−c

)

≤ σ∗,



























































EN(a, b)

and

n
∑

i=1

ui(sata,i) +
∑

(i,j)∈I(2)

syn+
ij(sata,i, sata,j)−

∑

(i,j)∈I(2)

syn−ij(sata,i, sata,j) ≥

≥
n

∑

i=1

ui(satb,i) +
∑

(i,j)∈I(2)

syn+
ij(satb,i, satb,j)−

∑

(i,j)∈I(2)

syn−ij(satb,i, satb,j),

(E1),

∑

c∈C

(

σ+
c + σ−c

)

≤ σ∗,



























































EP (a, b)

where σ∗ is the maximum accepted total approximation error, and ε in the constraint U(ℓn+1
p ) ≥

U(ℓn+1
p−1 ) + ε is a variable, we can conclude the following:

• profile (sata,1, sata,2, . . . , sata,n) is necessarily preferred to profile (satb,1, satb,2, . . . , satb,n) if

EN(a, b) is infeasible or εN ≤ 0, where εN = max ε, subject to EN(a, b),

• profile (sata,1, sata,2, . . . , sata,n) is possibly preferred to profile (satb,1, satb,2, . . . , satb,n) if EP (a, b)

is feasible and εP > 0, where εP = max ε, subject to EP (a, b).

Hereafter, we report some results obtained for our example:

• profile (S,S,V) is necessarily preferred to profile (D,V,D), that is profile (S,S,V) is at least as

good as profile (D,V,D) for all utility functions compatible with the customers’ preferences,

• profile (V,V,D) is possibly, but not necessarily preferred to profile (D,D,V), that is profile

(V,V,D) is at least as good as profile (D,D,V) for at least one utility function compatible with

the customers’ preferences, however, there exists at least one utility function for which profile

(D,D,V) is better than profile (V,V,D).
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Analogical conclusions can be drawn using a set of approximately compatible utility functions.

Then, one has to consider the following two sets of constraints:

n
∑

i=1

ui(satb,i) +
∑

{i,j}∈I(2)

syn+
ij(satb,i, satb,j)−

∑

{i,j}∈I(2)

syn−ij(satb,i, satb,j) + σ+
b − σ−b ≥

≥
n

∑

i=1

ui(sata,i) +
∑

{i,j}∈I(2)

syn+
ij(sata,i, sata,j)−

∑

{i,j}∈I(2)

syn−ij(sata,i, sata,j) + σ+
a − σ−a + ε,

(E1),

∑

c∈C

(

σ+
c + σ−c

)

≤ opterr,

σ+
a + σ−a ≤ opt1,

σ+
b + σ−b ≤ opt2























































































EN
1 (a, b)

and

n
∑

i=1

ui(sata,i) +
∑

{i,j}∈I(2)

syn+
ij(sata,i, sata,j)−

∑

{i,j}∈I(2)

syn−ij(sata,i, sata,j) + σ+
a − σ−a ≥

≥
n

∑

i=1

ui(satb,i) +
∑

{i,j}∈I(2)

syn+
ij(satb,i, satb,j)−

∑

{i,j}∈I(2)

syn−ij(satb,i, satb,j) + σ+
b − σ+

b ,

(E1),

∑

c∈C

(

σ+
c + σ−c

)

≤ opterr,

σ+
a + σ−a ≤ opt1,

σ+
b + σ−b ≤ opt2,























































































EP
1 (a, b)

where σ+
a , σ

−
a , σ

+
b , and σ−b are, error variables of the utility values relative to profiles a and b, while

opt1 and opt2 represent the maximum accepted errors in each one of the considered profile’s utility.

Since the new set of constraints, EN
1 (a, b) and EP

1 (a, b), enlarge the decision space of the utility

functions compatible with the customers’ preferences, the following two preference relations, analog-

ical to the ones introduced above, are defined:

• a strong necessary preference relation, for which a is strongly necessarily preferred to b if a

is at least as good as b for all utility functions approximately compatible with the customers’

preferences,
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• a weak possible preference relation, for which a is weakly possibly preferred to b if a is at least

as good as b for at least one utility function approximately compatible with the customers’

preferences.

Let us remark that we have considered two different qualifications (strong and weak) for the nec-

essary and possible preference representation. In fact, taking into account the double-error variables

referring to the compared profiles of satisfaction enlarges the decision space of the compatible utility

functions. Consequently, if a is at least as good as b with respect to all approximately compatible

utility functions, which are many more than the ones in the basic decision space, then a is strongly

necessarily preferred to b.

On the contrary, if a is not at least as good as b for any compatible model in the enlarged decision

space, then this means that even considering utility functions admitting some error, we can’t find

one utility function for which a is at least as good as b. Among the preference relations obtained for

our example, we report the following:

• profile (S,S,V) is strongly necessarily preferred to profile (D,V,D),

• profile (S,V,S) is only necessarily preferred, but not strongly necessarily preferred to profile

(V,S,S).

2.3.6 Conclusions

In this work, we proposed MUSA-INT, a new multicriteria customer satisfaction analysis method

able to take into account positive and negative interactions among criteria, even if the customers’

judgments are qualitative and not quantitative. To explain the customer’s preferences, the method

employs an additive utility function augmented with components representing positive and negative

synergies between two satisfaction levels of two criteria.

Some strong points of our method are listed hereafter:

• the criteria are expressed on ordinal scales, without the necessity of expressing all the criteria

on a common scale, as this is the case of the Choquet integral or some other fuzzy integrals;

• the model reveals the synergies among criteria in the customer satisfaction evaluation of a

product or a service;

• the synergies among criteria have a meaningful interpretation for the DM as a bonus (for

positive interaction) or penalty (for negative interaction), added or subtracted from the sum

of marginal utility values;
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• there is a parsimonious representation of the interactions by considering minimal pairs of sets

of couples of interacting criteria;

• one can identify all minimal pairs of sets of interacting criteria;

• as the preference model (utility function) representing the customers’ satisfaction is, in general,

not unique, it is possible to take into account the whole set of compatible preference models

adopting the Robust Ordinal Regression methodology.

We envisage some possible directions of future research:

(1) Consideration of positive or negative interaction not only between couples of criteria, but also

triples, quadruples and, generally, sets of criteria of cardinality greater than 2. Using the

example of a supermarket, it may be reasonable to admit that there is a specific surplus in the

appreciation due to the presence at the same time of low prices, special offers and good quality.

In this case, the considered utility function will become

U(satc,n+1) =
n

∑

i=1

ui(satc,i) +
∑

A∈Syn+
G

syn+
A(satc,i, i ∈ A)−

∑

A∈Syn−
G

syn−A(satc,i, i ∈ A), c ∈ C

(2.36)

where Syn+
G, Syn

−
G ⊆ 2I are the families of all the subsets of criteria for which there is a

positive synergy and a negative synergy, respectively. Considerations of synergy among criteria

in subsets with cardinality greater than 2 requires to pay a specific attention to the trade-

off between the better knowledge one gets about customer satisfaction and the additional

computational effort required to get this knowledge.

(2) Consideration of a hierarchal structure of criteria in the customer survey. Indeed, very often the

customer is required to evaluate features of a product or a service organized in a given hierarchy.

For instance, taking into account our illustrative example, product satisfaction could be split in

satisfaction with respect to aspects A1, A2 and A3, so that we have an evaluation on the three

aspects and a comprehensive evaluation with respect to “Product”. A similar level of detail can

be considered for “Purchase product” and “Additional service”. In this case, we could consider

an ordinal regression approach concordant with the principle of Multiple Criteria Hierarchy

Process introduced in [23].

(3) The representation of customers’ preferences using an outranking model instead of a utility

function; in this case, the interaction can be represented taking into account the concordance

index of ELECTRE method presented in [30], or the bipolar PROMETHEE proposed in [22].
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(4) Application of all ROR extensions, such as extreme ranking analysis [76] and SMAA applied to

Robust Ordinal Regression [78].
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Chapter 3

Multiple Criteria Hierarchy Process

Complex real-world decision problems, such as choosing a new product pricing strategy, deciding

where to locate manufacturing plants, or forecasting the future of a country, involve factors of dif-

ferent nature. These factors may be political, economic, cultural, environmental, technological, or

managerial. Obviously, it is difficult for the DMs to consider so many different points of view si-

multaneously when assessing the quality of the alternatives. In fact, practical applications are often

explicitly imposing a hierarchical structure of criteria. In this case, the preference model may refer

to all levels of the hierarchy, representing values of particular scores of the alternatives on indicators,

sub-indicators, sub-sub-indicators, etc.

Several contributions in which the evaluation of alternatives is done with respect to a set of criteria

structured in a hierarchical way are known in literature. In the following we shall cite only some

of them. Belton and Stewart [12] present many real world examples in which evaluation criteria

have a hierarchical structure. They assign to each criterion a cumulative and a relative weight. The

cumulative weights of criteria at the bottom are computed by pairwise comparisons between them,

while the cumulative weight of a criterion in a particular node of the hierarchy is obtained as the sum

of the cumulative weights of criteria descending from it and in the subsequent level. Relative weights

are assessed within families of criteria, i.e. criteria sharing the same parent so that the weights within

each family are normalised to sum up one; Stillwell et al. [118] use a value tree in order to compare

three energy options; Keeney et al. [81] construct a list of criteria structured in a hierarchical way in

order to evaluate energy systems; Weber et al. [130] proved that the detail of attribute specification

enhances attribute weights while Poyhonen et al. [97] observe that the division of criteria in a hierar-

chical structure can either increase or decrease the weight of an attribute; Mustajoki [91] studies the

difference between hierarchical and non hierarchical models in which the preferences are constituted
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by imprecise weight ratios; Sugeno et al. [120] provide necessary and sufficient conditions so that the

Choquet integral can be computed as the sum of several Choquet integrals at different levels.

In this chapter we introduce the Multiple Criteria Hierarchy Process (MCHP) and we apply

this concept to MAUT, outranking methods ELECTRE and PROMETHEE and Choquet integral

considering also the ROR in the first two cases.

The basic idea of MCHP relies on consideration of preference relations at each node of the hi-

erarchy tree of criteria. These preference relations concern both the phase of eliciting preference

information, and the phase of analyzing a final recommendation by the DM. For example, in the

phase of eliciting preference information, in a decision problem related to the evaluation of students,

one can say not only that student a is comprehensively preferred to student b, but also that a is com-

prehensively preferred to b because a is preferred to b on subsets of subjects related to Mathematics

and Physics, even if b is preferred to a on subjects related to Humanities. Moreover, one can also

say that, a is preferred to b on the subset of subjects related to Mathematics because, considering

Analysis and Algebra as subjects related to Mathematics, a is preferred to b on Analysis, and this is

enough to compensate the fact that b is preferred to a on Algebra.

Putting together MCHP and ROR, permits us to define necessary and possible preference relations

at each node of the hierarchy tree. This gives insight into the evolution of the necessary and possible

preference relations along the hierarchy tree. In fact, if we know that an alternative a is not necessarily

comprehensively preferred to alternative b, with MCHP we can find at which level a particular

criterion opposes to the conclusion that a is necessarily preferred to b. All the properties that hold

for the “flat” version of ROR methods are also valid in the hierarchical context, and other properties

that are characteristic to the context are given in this chapter. In section 3.1, we applied the

MCHP to MAUT; in section 3.2, MCHP is extended to the outranking methods and in particular to

ELECTRE and PROMETHEE methods while in section 3.3 we presented the application of MCHP

to the Choquet integral.
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3.1 Multiple Criteria Hierarchy Process in Robust Ordinal

Regression

3.1.1 Introduction

It is well known that the dominance relation established in the set of alternatives evaluated on

multiple criteria is the only objective information that comes out from a formulation of a multiple

criteria decision problem (including sorting, ranking and choice). While dominance relation permits

to eliminate many irrelevant (i.e. dominated) alternatives, it does not compare completely all of

them, resulting in a situation where many alternatives remain incomparable. This situation may

be addressed by taking into account preferences of a Decision Maker (DM). Therefore, all Multiple

Criteria Decision Aiding (MCDA) methods (for state-of-the-art surveys on MCDA see [29]) require

some preference information elicited by a DM. Information provided by a DM is used within a MCDA

process to build a preference model which is then applied on a non-dominated (Pareto-optimal) set

of alternatives to arrive at a recommendation.

A great majority of methods designed for MCDA, assume that all evaluation criteria are con-

sidered at the same level, however, it is often the case that a practical application is imposing a

hierarchical structure of criteria. For example, in economic ranking, alternatives may be evaluated

on indicators which aggregate evaluations on several sub-indicators, and these sub-indicators may

aggregate another set of sub-indicators, etc. In this case, the marginal value functions may refer to

all levels of the hierarchy, representing values of particular scores of the alternatives on indicators,

sub-indicators, sub-sub-indicators, etc. Considering hierarchical, instead of flat, structure of criteria,

permits decomposition of a complex decision problem into smaller problems involving less criteria.

To handle the hierarchy of criteria, we introduce in this section a Multiple Criteria Hierarchy Process

(MCHP). The basic idea of MCHP relies on consideration of preference relations at each node of the

hierarchy tree of criteria. These preference relations concern both the phase of eliciting preference

information, and the phase of analyzing a final recommendation by the DM. Let us consider a very

simple and well known preference model, the linear value function, which assigns to each alternative

a ∈ A the value U(a) = w1g1(a) + . . . + wngn(a), wi ≥ 0, i = 1, . . . n, where gi(a) is an evaluation of

alternative a on criterion gi, i = 1, . . . , n. If in the phase of eliciting preference information, the DM

declares that alternative a is preferred to alternative b with respect to a criterion which, in a node
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of the hierarchy tree, groups a set of sub-criteria Gr, this can be modeled as

∑

i∈Gr

wigi(a) >
∑

i∈Gr

wigi(b),

which puts some constraints on the values of admissible weights wi. In the phase of analyzing a final

recommendation, even more important, MCHP shows preference relations %r on A with respect to

the set of subcriteria Gr, such that, for all a, b ∈ A,

a %r b⇔
∑

i∈Gr

wigi(a) >
∑

i∈Gr

wigi(b),

where a %r b reads alternative a is at least as good as alternative b on the set of subcriteria Gr.

Analyzing the preference relation %r is very useful in any decision aiding process because it permits

to look into structural elements of the overall preference relation % taking into account the whole set

of criteria, and justify better the final recommendation. For example, in a decision problem related to

evaluation of students, one can say not only that student a is comprehensively preferred to student b,

i.e. a ≻ b (where ≻ is the asymmetric part of %; analogously, in the following, ≻r is the asymmetric

part of %r), but also that a is comprehensively preferred to b because a is preferred to b on subsets

of subjects (subcriteria) related to Mathematics and Physics, i.e. a ≻Mathematics b and a ≻Physics b,

even if b is preferred to a on subjects related to Humanities, i.e. b ≻Humanities a. Moreover, one

can also say that, for example, a is preferred to b on the subset of subjects related to Mathematics

because, considering Analysis and Algebra as subjects (sub-criteria) related to Mathematics, a is

preferred to b on Analysis, i.e. a ≻Analysis b, and this is enough to compensate the fact that b is

preferred to a on Algebra, i.e. b ≻Algebra a. Since partial preference relations %Mathematics, %Physics,

%Humanities, %Analysis, %Algebra, and so on, can be constructed using any MCDA methodology, this

shows the universal character of MCHP.

In this section, in order to show the useful features of MCHP, we apply this methodology to a re-

cently proposed family of MCDA methods, called Robust Ordinal Regression (ROR) ([55],[33],[57],[60]).

Basic ideas of ROR can be summarized as follows. To deal with a multiple criteria decision problem,

Multiple Attribute Utility Theory (MAUT) ([80]) constructs a value function which assigns to each

alternative a real number representing its degree of preferability. The first MCDA methods using the

ordinal regression approach ([19],[117],[132]), aimed at finding one value function compatible with

preference information provided by the DM (see, e.g., [72],[117],[95],[25]). Most frequently additive

value functions have been considered, i.e. functions obtained by summing up marginal value func-
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tions corresponding to particular criteria. For example, in [72], each marginal value function is a

piecewise-linear one. Remark that in case of ordinal regression the preference information is always

indirect.

In ordinal regression, and also in ROR, the preference information elicited by the DM is indirect,

i.e. the DM provides decision examples, like preferential pairwise comparisons of some selected

alternatives. This type of preference information is opposed to the direct one, which is composed of

values of parameters of the assumed preference model, like weights or trade-off rates of the weighted

sum model. Research indicates that indirect preference elicitation requires less cognitive effort from

the DM than the direct one, and thus, it becomes more and more popular.

When building, via ordinal regression, a value function compatible with indirect preference in-

formation given as pairwise comparisons of some selected alternatives, one encounters a problem of

plurality of compatible value functions. Until recently, the usual practice was to select only one

of the compatible value functions, either by the DM or using some mathematical tools for finding

a “central” value function. In general, however, each compatible value function gives a different

ranking of the considered set of alternatives, and thus, it is reasonable to investigate what is the con-

sequence of applying all compatible value functions on the whole set of considered alternatives. For

this reason, ROR takes into account all compatible value functions simultaneously. In this context,

two preference relations are considered:

- possible preference relation, for which alternative a is possibly preferred to alternative b if a is at

least as good as b for at least one compatible value function, and

- necessary preference relation, for which alternative a is necessarily preferred to alternative b if a is

at least as good as b for all compatible value functions.

The first method that applied the concept of ROR was UTAGMS [55]: it takes into account pairwise

comparisons of alternatives provided by a DM; GRIP [33] was its generalization taking into account

not only pairwise comparisons, but also intensities of preference; ROR has been also applied to

sorting problems [57], and it has been adapted to other preference models, like outranking relation

[47],[76] and non additive integrals [7].

Applying MCHP to ROR, permits to consider preference information at each level of the hierarchy

in the phase of eliciting preference information. Moreover, putting together MCHP and ROR, permits

to define necessary and possible preference relations at each node of the hierarchy tree. This gives

an insight into evolution of the necessary and possible preference relations along the hierarchy tree.

In fact, if we know that a is not necessarily comprehensively preferred to b, with MCHP we can find

91



at which level a particular subcriterion opposes to the conclusion that a is necessarily preferred to b.

All the properties that hold for the “flat” version of ROR methods are also valid in the hierarchical

context, and other properties that are characteristic to the hierarchical context are given in this

section.

Thie section is structured in this way: section 3.1.2 describes some basic concepts of the MCHP;

section 3.1.3 describes the GRIP method adapted to the hierarchical context; in section 3.1.4 we

present the properties of necessary and possible preference relations; sections 3.1.5 and 3.1.6 describe

the concepts of intensity of preference and most representative value function; in section 3.1.7 we

present a didactic example; in section 3.1.8 we present some extensions of the hierarchical ROR;

conclusions are collected in section 3.1.9.

3.1.2 Multiple Criteria Hierarchy Process (MCHP)

In MCHP, we consider a set G of hierarchically ordered criteria, i.e. all criteria are not considered

at the same level, but they are distributed over l different levels (see Figure 3.1). At level 1, there

are first level criteria called root criteria. Each root criterion has its own hierarchy tree. The leafs of

each hierarchy tree are at the last level l and they are called elementary subcriteria. Thus, in graph

theory terms, the whole hierarchy is a forest. We will use the following notation:

• A = {a, b, c, . . .} is the finite set of alternatives,

• l is the number of levels in the hierarchy of criteria,

• G is the set of all criteria at all considered levels,

• IG is the set of indices of particular criteria representing position of criteria in the hierarchy,

• m is the number of the first level criteria, G1, . . . , Gm,

• Gr ∈ G, with r = (i1, . . . , ih) ∈ IG, denotes a subcriterion of the first level criterion Gi1 at level

h; the first level criteria are denoted by Gi1 , i1 = 1, . . . ,m,

• n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct subcriteria of Gr

are G(r,1), . . . , G(r,n(r)),

• gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion of the first level

criterion Gi1 , i.e a criterion at level l of the hierarchy tree of Gi1 ,
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• EL is the set of indices of all elementary subcriteria:

EL = {t = (i1, . . . , il) ∈ IG} where































i1 = 1, . . . ,m

i2 = 1, . . . , n(i1)

· · · · · ·

il = 1, . . . , n(i1, . . . , il−1)

• E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) = {(r, ih+1, . . . , il) ∈ IG} where



















ih+1 = 1, . . . , n(r)

· · · · · ·

il = 1, . . . , n(r, ih+1, . . . , il−1)

thus, E(Gr) ⊆ EL,

• when r = 0, then by Gr = G0, we mean the entire set of criteria and not a particular criterion

or subcriterion; in this particular case, we have E(G0) = EL.

Figure 3.1: Hierarchy of criteria for the first level (root) criterion Gi1

Gi1

G(i1,1) G(i1,2) G(i1,3)

g(i1,1,1) g(i1,1,2) g(i1,1,3) g(i1,2,1) g(i1,2,2) g(i1,3,1) g(i1,3,2) g(i1,3,3) g(i1,3,4)

Without loss of generality we suppose that each elementary subcriterion gt, t ∈ EL, maps alternatives

to real numbers gt : A→ R, such that for all a, b ∈ A, gt(a) ≥ gt(b) means that a is at least as good

as b with respect to elementary criterion gt. If criterion gt has, originally, an ordered qualitative

scale, e.g., very bad, bad, medium, good, very good, one can number code such linguistic labels in a

way maintaining the preference order. Each alternative a ∈ A is evaluated directly on the elementary

subcriteria only, such that to each alternative a ∈ A there corresponds a vector of evaluations:

(gt1(a), . . . , gtn(a)) , n = |EL| .
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Within MCHP, in each node Gr ∈ G of the hierarchy tree there exists a preference relation %r

on A, such that for all a, b ∈ A, a %r b means “a is at least as good as b on subcriterion Gr”. In the

particular case where Gr = gt, t ∈ EL, a %t b holds if gt(a) ≥ gt(b).

A minimal requirement that preference relations %r have to satisfy is a dominance principle for

hierarchy of criteria, stating that if alternative a is at least as good as alternative b for all subcriteria

G(r,j) of Gr of the level immediately below, then a is at least as good as b on Gr. For example, if

student a is at least as good as student b on Algebra and Analysis, being subcriteria of Mathematics,

then a is at least as good as b on Mathematics. Formally, this dominance principle can be stated as

follows: given Gr, r ∈ IG \ EL, if a %(r,j) b for all j = 1, . . . , n(r) then a %r b.

In this article, we will aggregate the evaluations of alternative a ∈ A with respect to the elemen-

tary subcriteria gt, t ∈ EL, using an additive value function:

U(gt1(a), . . . , gtn(a)) =
∑

t∈EL

ut(gt(a)), (3.1)

where ut are marginal value functions, non-decreasing with respect to the evaluation expressed by

its argument. Analogously, the marginal value function of alternative a ∈ A on criterion Gr ∈ G, is

given by:

Ur(gt(a), t ∈ E(Gr)) =
∑

t∈E(Gr)

ut(gt(a)), (3.2)

such that for all a, b ∈ A, a %r b iff Ur(a) ≥ Ur(b).

In the following, to simplify the notation, we shall write U(a) instead of U(gt1(a), . . . , gtn(a)), Ur(a)

instead of Ur(gt(a), t ∈ E(Gr)), and ut(a) instead of ut(gt(a)).

3.1.3 Multiple Criteria Hierarchy Process applied to a Robust Ordinal

Regression method

When aggregating evaluations of alternatives on multiple elementary subcriteria, we will take into

account some preference information provided by the DM. This preference information concerns a

subset of alternatives AR ⊆ A, called reference alternatives, on which the DM is relatively more

confident than on the others. The DM is expected to provide the following preference information:

- a partial preorder % on AR, whose meaning is: for a∗, b∗ ∈ AR

a∗ % b∗ ⇔ “ a∗ is at least as good as b∗ ”.
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Denoting by %−1 the inverse of %, i.e. if a∗ % b∗ then b∗ %−1 a∗, ∼ (indifference) is the

symmetric part of % given by % ∩ %−1, i.e. if a∗ ∼ b∗ then a∗ % b∗ and a∗ %−1 b∗, and ≻

(preference) is the asymmetric part given by (% \ ∼), i.e. if a∗ ≻ b∗ then a∗ % b∗ and not

a∗ ∼ b∗;

- a partial preorder %∗ on AR × AR, whose meaning is: for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) %∗ (c∗, d∗) ⇔ “a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗ ”.

Analogously to %, ≻∗ and ∼∗ are the asymmetric and the symmetric part of %∗;

- given r ∈ IG, a partial preorder %r on AR, whose meaning is: for a∗, b∗ ∈ AR,

a∗ %r b
∗ ⇔ “a∗ is at least as good as b∗ with respect to subcriterion Gr.”

Analogously to %, ≻r and ∼r are the asymmetric and the symmetric part of %r;

- given r ∈ IG, a partial preorder %∗r on AR × AR, whose meaning is: for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) %∗r (c∗, d∗) ⇔ “a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗

with respect to subcriterion Gr”.

Analogously to %, ≻∗r and ∼∗r are the asymmetric and the symmetric part of %∗r.

An additive value function is called compatible if it is able to restore the preference information

supplied by the DM. Therefore, an additive value function (3.1) is compatible if it satisfies the

following set of linear constraints:
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U(a∗) > U(b∗) if a∗ ≻ b∗

U(a∗) = U(b∗) if a∗ ∼ b∗

U(a∗)− U(b∗) > U(c∗)− U(d∗) if (a∗, b∗) ≻∗ (c∗, d∗)

U(a∗)− U(b∗) = U(c∗)− U(d∗) if (a∗, b∗) ∼∗ (c∗, d∗)

Ur(a
∗) > Ur(b

∗) if a∗ ≻r b
∗

Ur(a
∗) = Ur(b

∗) if a∗ ∼r b
∗

Ur(a
∗)− Ur(b

∗) > Ur(c
∗)− Ur(d

∗) if (a∗, b∗) ≻∗r (c∗, d∗)

Ur(a
∗)− Ur(b

∗) = Ur(c
∗)− Ur(d

∗) if (a∗, b∗) ∼∗r (c∗, d∗)


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








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






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



















































a∗, b∗, c∗, d∗ ∈ AR,

r ∈ IG \ EL

ut(x
k
t)− ut(x

k−1
t ) ≥ 0, ∀t ∈ EL, k = 2, ...,mt(A

R)

ut(x
1
t) ≥ 0, ut(x

mt(AR)
t ) ≤ ut(x

mt

t ), ∀t ∈ EL

ut(x
0
t) = 0, ∀t ∈ EL

∑

t∈EL ut(x
mt

t ) = 1.
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
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







(

EAR
)

where, x0t = mina∈A gt(a), and xmt

t = maxa∈A gt(a); xkt ∈ Xt(A
R), k = 1, ...,mt(A

R), with

Xt(A
R) ⊆ Xt, is the set of all different evaluations of reference alternatives from AR on elementary

subcriteria gt, t ∈ EL, and mt(A
R) =

∣

∣Xt(A
R)

∣

∣ . The values xkt , k = 1, ...,mt(A
R), are increasingly

ordered, i.e.,

x1t < x2t < ... < x
mt(AR)−1
t < x

mt(AR)
t .

In order to check the existence of a compatible value function, one has to transform first the strict

inequalities of EAR

by adding an auxiliary variable ε. Then, we have to solve the following linear pro-

gramming problem where the variables are the marginal value functions ut(x
k
t), k = 1, . . . ,mt(A

R),

and ut(x
mt

t ), t ∈ EL, as well as ε :
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maximize ε, subject to the constraints:

U(a∗) ≥ U(b∗) + ε if a∗ ≻ b∗

U(a∗) = U(b∗) if a∗ ∼ b∗

U(a∗)− U(b∗) ≥ U(c∗)− U(d∗) + ε if (a∗, b∗) ≻∗ (c∗, d∗)

U(a∗)− U(b∗) = U(c∗)− U(d∗) if (a∗, b∗) ∼∗ (c∗, d∗)

Ur(a
∗) ≥ Ur(b

∗) + ε if a∗ ≻r b
∗

Ur(a
∗) = Ur(b

∗) if a∗ ∼r b
∗

Ur(a
∗)− Ur(b

∗) ≥ Ur(c
∗)− Ur(d

∗) + ε if (a∗, b∗) ≻∗r (c∗, d∗)

Ur(a
∗)− Ur(b

∗) = Ur(c
∗)− Ur(d

∗) if (a∗, b∗) ∼∗r (c∗, d∗)
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a∗, b∗, c∗, d∗ ∈ AR,

r ∈ IG \ EL

ut(x
k
t)− ut(x

k−1
t ) ≥ 0, ∀t ∈ EL, k = 2, ...,mt(A

R)

ut(x
1
t) ≥ 0, ut(x

mt(AR)
t ) ≤ ut(x
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t ), ∀t ∈ EL

ut(x
0
t) = 0, ∀t ∈ EL

∑

t∈EL ut(x
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t ) = 1.
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(

EAR′
)

If ε(EAR
′

) > 0, where ε(EAR
′

) = max ε, s.t. constraints EAR
′

, then there exists at least one

compatible value function U(·); if instead ε(EAR
′

) ≤ 0, then there does not exist any compatible

value function U(·).

Supposing that there exists at least one compatible value function, each of these functions may induce

a different ranking on the whole setA; for this reason the ROR methods, (see [55],[33],[57],[47],[76],[7]),

do not take into consideration only one compatible value function but all the compatible value func-

tions simultaneously (we shall denote the set of all compatible value functions by U). Application

on the ROR involves the following definitions:

Definition 3.1.1. Given two alternatives a, b ∈ A, we say that a is weakly necessarily preferred to

b, and we write a %N b, if a is at least as good as b for all compatible value functions:

a %N b⇔ U(a) ≥ U(b) ∀U ∈ U .

Definition 3.1.2. Given two alternatives a, b ∈ A, we say that a is weakly possibly preferred to b,

and we write a %P b, if a is at least as good as b for at least one compatible value function:

a %P b⇔ ∃U ∈ U : U(a) ≥ U(b).
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Definition 3.1.3. Given two alternatives a, b ∈ A, we say that a is weakly necessarily preferred to b

with respect to subcriterion Gr, r ∈ IG \ EL, and we write a %N
r b, if a is at least as good as b with

respect to subcriterion Gr for all compatible value functions:

a %N
r b⇔ Ur(a) ≥ Ur(b) ∀U ∈ U .

Definition 3.1.4. Given two alternatives a, b ∈ A, we say that a is weakly possibly preferred to b

with respect to criterion Gr, r ∈ IG \ EL, and we write a %P
r b, if a is at least as good as b with

respect to criterion Gr for at least one compatible value function:

a %P
r b⇔ ∃U ∈ U : Ur(a) ≥ Ur(b).

Note that for r ∈ EL, we have:

%N
r =%P

r = {(xr, yr) ∈ Xr ×Xr : xr ≤ yr} .

Let us remark that we need both the possible and the necessary preference relation %P and %N .

In fact, considering the necessary preference relation %N only, we loose some important information

given by the ROR methodology. For example, for a, b ∈ A, let us consider the two following cases:

case 1) a %N b and b %P a,

case 2) a %N b and b 6%P a.

In both, case 1) and case 2), ∀U ∈ U , U(a) ≥ U(b). However, in case 1) there is at least one

compatible value function U ∈ U such that U(b) ≥ U(a), while this does not happen in case 2). If

we consider only the necessary preference relation %N we are not able to distinguish case 1) from

case 2), while, this is not the case if we use also the possible preference relation %P .

Necessary weak preference relations (%N and %N
r ), and possible weak preference relations (%P

and %P
r ) can be calculated as follows. For all alternatives a, b ∈ A, let Xt(A

R ∪ {a, b}) ⊆ Xt be

the set of all different evaluations of alternatives from AR ∪ {a, b} on criterion gt, t ∈ EL, and

mt(A
R ∪ {a, b}) = |Xt(A

R ∪ {a, b})|. The values xkt ∈ Xt(A
R ∪ {a, b}), k = 1, . . . ,mt(A

R ∪ {a, b}),

are increasingly ordered, i.e.,

x1t < x2t < . . . < x
mt(AR∪{a,b})−1
t < x

mt(AR∪{a,b})
t .
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Then, the characteristic points of ut(·), t ∈ EL, are in x0t, x
k
t , k = 1, . . . ,mt(A

R ∪ {a, b}), xmt

t .

Let us consider the following ordinal regression constraints E(a, b), with ut(x
k
t), t ∈ EL, k =

1, . . . ,mt(A
R ∪ {a, b}), ut(x

mt

t ), t ∈ EL, and ε as variables:

U(a∗) ≥ U(b∗) + ε if a∗ ≻ b∗

U(a∗) = U(b∗) if a∗ ∼ b∗

U(a∗)− U(b∗) ≥ U(c∗)− U(d∗) + ε if (a∗, b∗) ≻∗ (c∗, d∗)

U(a∗)− U(b∗) = U(c∗)− U(d∗) if (a∗, b∗) ∼∗ (c∗, d∗)

Ur(a
∗) ≥ Ur(b

∗) + ε if a∗ ≻r b
∗

Ur(a
∗) = Ur(b

∗) if a∗ ∼r b
∗

Ur(a
∗)− Ur(b

∗) ≥ Ur(c
∗)− Ur(d

∗) + ε if (a∗, b∗) ≻∗r (c∗, d∗)

Ur(a
∗)− Ur(b

∗) = Ur(c
∗)− Ur(d

∗) if (a∗, b∗) ∼∗r (c∗, d∗)















































































a∗, b∗, c∗, d∗ ∈ AR;

r ∈ IG \ EL

ut(x
k
t)− ut(x

k−1
t ) ≥ 0, t ∈ EL, k = 2, ...,mt(A

R ∪ {a, b})

ut(x
1
t) ≥ 0, ut(x

mt(AR∪{a,b})
t ) ≤ ut(x

mt

t ), t ∈ EL

ut(x
0
t) = 0, t ∈ EL

∑

t∈EL ut(x
mt

t ) = 1.































































































































(E(a, b))

The above constraints depend also on the pair of alternatives a, b ∈ A because their evaluations gt(a)

and gt(b) give coordinates for two of mt(A
R ∪{a, b}) characteristic points of marginal value function

ut(·), for each t ∈ EL.

For all a, b ∈ A, and r ∈ IG \ EL, let us consider the following sets of constraints:

U(b) ≥ U(a) + ε

E(a, b)







(EN(a, b)),
U(a) ≥ U(b)

E(a, b)







(EP (a, b)),

Ur(b) ≥ Ur(a) + ε

E(a, b)







(EN
r (a, b)),

Ur(a) ≥ Ur(b)

E(a, b)







(EP
r (a, b)).

Thus we get:

• a %N b iff EN(a, b) is infeasible or εN(a, b) ≤ 0, where εN(a, b) = max ε, s.t. constraints

EN(a, b);

• a %P b iff EP (a, b) is feasible and εP (a, b) > 0, where εP (a, b) = max ε, s.t. constraints

EP (a, b);
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• a %N
r b iff EN

r (a, b) is infeasible or εNr (a, b) ≤ 0, where εNr (a, b) = max ε, s.t. constraints

EN
r (a, b);

• a %P
r b iff EP

r (a, b) is feasible and εPr (a, b) > 0, where εPr (a, b) = max ε, s.t. constraints

EP
r (a, b).

3.1.4 Properties of necessary and possible preference relations

The necessary and possible preference relations satisfy some interesting properties presented in the

following propositions:

Proposition 3.1.1.

• %N ⊆ %P ; [55]

• %N is a partial preorder (i.e. reflexive and transitive); [55]

• %P is strongly complete (i.e. for all a, b ∈ A, a %P b or b %P a) and negatively transitive; [55]

• a %N b or b %P a, ∀a, b ∈ A; [55]

• a %N b and b %P c, then a %P c, ∀a, b, c ∈ A; [33]

• a %P b and b %N c, then a %P c, ∀a, b, c ∈ A. [33]

In case of the hierarchy of criteria, some further properties hold, as showed by the following propo-

sition.

Proposition 3.1.2. For every r ∈ IG,

1. %N
r ⊆ %P

r ;

2. %N
r is a partial preorder (i.e. reflexive and transitive);

3. %P
r is strongly complete (i.e. for all a, b ∈ A, a %P

r b or b %
P
r a) and negatively transitive;

4. a %N
r b or b %P

r a, ∀a, b ∈ A;

5. a %N
r b and b %P

r c, then a %P
r c, ∀a, b, c ∈ A;

6. a %P
r b and b %

N
r c, then a %P

r c, ∀a, b, c ∈ A.
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Proof. See Appendix.

Let us observe that if we consider the comprehensive preference represented by the value function U

at a “zero” level of the hierarchy, where r = 0, we can consider Proposition (3.1.1) as a specific case

of Proposition (3.1.2), e.g., we can write %N
0 ⊆%

P
0 instead of %N⊆%P . The next proposition presents

some results which are specific for the ROR in case of the hierarchy of criteria.

Proposition 3.1.3. For every r ∈ IG \ EL,

1. given two alternatives a, b ∈ A,

a %N
(r,j) b ∀j = 1, . . . , n(r) ⇒ a %N

r b;

2. given two alternatives a, b ∈ A such that:

α) a %N
(r,j) b, ∀j ∈ {1, . . . , n(r)} \ {w}

β) a %P
(r,w) b,

then a %P
r b;

3. given two alternatives a, b ∈ A,

a 6%P
(r,j) b ∀j ∈ {1, . . . , n(r)} ⇒ a 6%P

r b.

Proof. See Appendix.

3.1.5 Intensity of preference

As in the GRIP method [33], also in case of the hierarchy of criteria it is possible to define quaternary

relations %∗
N

, %∗
P

, %∗
N

t and %∗
P

t , t ∈ EL, related to intensity of preference, as follows:

- for each a, b, c, d ∈ A, we say that a is necessarily preferred to b at least as strongly as c is preferred

to d, and we write (a, b) %∗
N

(c, d), if a is preferred to b at least as strongly as c is preferred to

d for all compatible value functions:

(a, b) %∗
N

(c, d) ⇔ U(a)− U(b) ≥ U(c)− U(d), ∀U ∈ U ;
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- for each a, b, c, d ∈ A, we say that a is possibly preferred to b at least as strongly as c is preferred

to d, and we write (a, b) %∗
P

(c, d), if a is preferred to b at least as strongly as c is preferred to

d for at least one compatible value function:

(a, b) %∗
P

(c, d) ⇔ ∃U ∈ U : U(a)− U(b) ≥ U(c)− U(d);

- for each a, b, c, d ∈ A, we say that a is necessarily preferred to b at least as strongly as c is preferred

to d with respect to elementary subcriterion gt, and we write (a, b) %∗
N

t (c, d), if a is preferred to

b at least as strongly as c is preferred to d with respect to gt for all compatible value functions:

(a, b) %∗
N

t (c, d) ⇔ ut(a)− ut(b) ≥ ut(c)− ut(d), ∀U ∈ U ;

- for each a, b, c, d ∈ A, we say that a is possibly preferred to b at least as strongly as c is preferred

to d with respect to elementary subcriterion gt, and we write (a, b) %∗
P

t (c, d), if a is preferred

to b at least as strongly as c is preferred to d with respect to gt for at least one compatible

value function:

(a, b) %∗
P

t (c, d) ⇔ ∃U ∈ U : ut(a)− ut(b) ≥ ut(c)− ut(d);

In case of the hierarchy of criteria, we can further consider quaternary relations %∗
N

r and %∗
P

r ,

related to intensity of preference with respect to subcriterion Gr ∈ G at an intermediate level of the

hierarchy, as follows:

- for each a, b, c, d ∈ A, and for each r ∈ IG , we say that a is necessarily preferred to b at least as

strongly as c is preferred to d with respect to subcriterion Gr, and we write (a, b) %∗
N

r (c, d), if

a is preferred to b at least as strongly as c is preferred to d with respect to subcriterion Gr for

all compatible value functions:

(a, b) %∗
N

r (c, d) ⇔ Ur(a)− Ur(b) ≥ Ur(c)− Ur(d), ∀U ∈ U ;

- for each a, b, c, d ∈ A, and for each r ∈ IG, we say that a is possibly preferred to b at least as

strongly as c is preferred to d with respect to subcriterion Gr, and we write (a, b) %∗
N

r (c, d), if

a is preferred to b at least as strongly as c is preferred to d with respect to subcriterion Gr for
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at least one compatible value function:

(a, b) %∗
P

r (c, d) ⇔ ∃U ∈ U : Ur(a)− Ur(b) ≥ Ur(c)− Ur(d).

Observe that quaternary relations %∗
N

t and %∗
P

t , t ∈ EL, are a particular case of quaternary relations

%∗
N

r and %∗
P

r , r ∈ IG , in case r ∈ EL.

Quaternary relations %∗
N

and %∗
P

, %∗
N

r and %∗
P

r , and %∗
N

t and %∗
N

t can be computed as follows.

For all alternatives a, b, c, d ∈ A, let Xt(A
R∪{a, b, c, d}) ⊆ Xt be the set of all different evaluations of

alternatives from AR ∪ {a, b, c, d} on elementary subcriterion gt, t ∈ EL, and mt(A
R ∪ {a, b, c, d}) =

|Xt(A
R ∪ {a, b, c, d})|. The values xkt ∈ Xt(A

R ∪ {a, b, c, d}), k = 1, . . . ,mt(A
R ∪ {a, b, c, d}), are

increasingly ordered, i.e.,

x1t < x2t < . . . < x
mt(AR∪{a,b,c,d})−1
t < x

mt(AR∪{a,b,c,d})
t .

Then, the characteristic points of ut(·), t ∈ EL, are in x0t, x
k
t , k = 1, . . . ,mt(A

R ∪ {a, b, c, d}), xmt

t .

Let us consider the following ordinal regression constraints E(a, b, c, d), with ut(x
k
t), t ∈ EL, k =

1, . . . ,mt(A
R ∪ {a, b, c, d}), ut(x

mt

t ), t ∈ EL, and ε as variables:

U(a∗) ≥ U(b∗) + ε if a∗ ≻ b∗

U(a∗) = U(b∗) if a∗ ∼ b∗

U(a∗)− U(b∗) ≥ U(c∗)− U(d∗) + ε if (a∗, b∗) ≻∗ (c∗, d∗)

U(a∗)− U(b∗) = U(c∗)− U(d∗) if (a∗, b∗) ∼∗ (c∗, d∗)

Ur(a
∗) ≥ Ur(b

∗) + ε if a∗ ≻r b
∗

Ur(a
∗) = Ur(b

∗) if a∗ ∼r b
∗

Ur(a
∗)− Ur(b

∗) ≥ Ur(c
∗)− Ur(d

∗) + ε if (a∗, b∗) ≻∗r (c∗, d∗)

Ur(a
∗)− Ur(b

∗) = Ur(c
∗)− Ur(d

∗) if (a∗, b∗) ∼∗r (c∗, d∗)















































































a∗, b∗, c∗, d∗ ∈ AR;

r ∈ IG \ EL

ut(x
k
t)− ut(x

k−1
t ) ≥ 0, t ∈ EL, k = 2, ...,mt(A

R ∪ {a, b, c, d})

ut(x
1
t) ≥ 0, ut(x

mt(AR∪{a,b,c,d})
t ) ≤ ut(x

mt

t ), t ∈ EL

ut(x
0
t) = 0, t ∈ EL

∑

t∈EL ut(x
mt

t ) = 1.































































































































(E(a, b, c, d))

The above constraints depend also on the alternatives a, b, c, d ∈ A because their evaluations gt(a),

gt(b), gt(c) and gt(d) give coordinates to four of mt(A
R∪{a, b, c, d}) characteristic points of marginal
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value function ut(·), for each t ∈ EL.

For all a, b, c, d ∈ A, and r ∈ IG \ EL, let us consider the following sets of constraints:

U(c)− U(d) ≥ U(a)− U(b) + ε

E(a, b, c, d)







(EN (a, b, c, d)),
U(a)− U(b) ≥ U(c)− U(d)

E(a, b, c, d)







(EP (a, b, c, d)),

Ur(c)− Ur(d) ≥ Ur(a)− Ur(b) + ε

E(a, b, c, d)







(EN
r (a, b, c, d)),

Ur(a)− Ur(b) ≥ Ur(c)− Ur(d)

E(a, b, c, d)







(EP
r (a, b, c, d)),

Ut(c)− Ut(d) ≥ Ut(a)− Ut(b) + ε

E(a, b, c, d)







(EN
t (a, b, c, d)),

Ut(a)− Ut(b) ≥ Ut(c)− Ut(d)

E(a, b, c, d)







(EP
t (a, b, c, d)).

Thus we get:

• (a, b) %∗
N

(c, d) iff EN(a, b, c, d) is infeasible or εN(a, b, c, d) ≤ 0, where εN(a, b, c, d) = max ε,

s.t. constraints EN(a, b, c, d);

• (a, b) %∗
P

(c, d) iff EP (a, b, c, d) is feasible and εP (a, b, c, d) > 0, where εP (a, b, c, d) = max ε,

s.t. constraints EP (a, b, c, d);

• (a, b) %∗
N

r (c, d) iff EN
r (a, b, c, d) is infeasible or εNr (a, b, c, d) ≤ 0, where εNr (a, b, c, d) = max ε,

s.t. constraints EN
r (a, b, c, d);

• (a, b) %∗
P

r (c, d) iff EP
r (a, b, c, d) is feasible and εPr (a, b, c, d) > 0, where εPr (a, b, c, d) = max ε,

s.t. constraints EP
r (a, b, c, d);

• (a, b) %∗
N

t (c, d) iff EN
t (a, b, c, d) is infeasible or εNt (a, b, c, d) ≤ 0, where εNt (a, b, c, d) = max ε

s.t. constraints EN
t (a, b, c, d);

• (a, b) %∗
P

t (c, d) iff EP
t (a, b, c, d) is feasible and εPt (a, b, c, d) > 0, where εPt (a, b, c, d) = max ε,

s.t. constraints EP
t (a, b, c, d).
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Most of the properties of quaternary relations %∗
N

and %∗
P

, %∗
N

r and %∗
P

r , and %∗
N

t and %∗
N

t are

the same of those of the GRIP method presented in [33]. However, there are some properties specific

to the case of the hierarchy of criteria, which are presented in the following proposition.

Proposition 3.1.4. For all r ∈ IG \ EL,

1. given four alternatives a, b, c, d ∈ A,

(a, b) %∗
N

(r,j) (c, d), ∀j = 1, . . . , n(r) ⇒ (a, b) %∗
N

r (c, d);

2. given four alternatives a, b, c, d ∈ A such that:

(a) (a, b) %∗
N

(r,j) (c, d) ∀j ∈ {1, . . . , n(r)} \ {w},

(b) (a, b) %∗
P

(r,w) (c, d),

then (a, b) %∗
P

r (c, d);

3. given four alternatives a, b, c, d ∈ A,

(a, b) 6%∗
P

(r,j) (c, d) ∀j ∈ {1, . . . , n(r)} ⇒ (a, b) 6%∗
P

r (c, d).

Proof. See Appendix.

3.1.6 The representative value function

The ROR in case of the hierarchy of criteria builds a set of additive value functions compatible

with preference information provided by the DM and leads to two preference relations, %N
r and

%P
r , for each subcriterion Gr, r ∈ IG \ EL, from the hierarchy. Such preference relations answer to

robustness concerns, since they are in general “more robust” than a preference relation determined

by an arbitrarily chosen compatible value function. However, in practice, in some decision-making

situations it is required to assign a score to considered alternatives. Moreover, possible and necessary

preference relations may be not easy to interpret, even by a DM with some experience in MCDA.

Thus, it is useful to determine a value function which represents well all the information contained

in necessary and possible preference relations in an easily understandable way. For these reasons,

a method for finding among all compatible value functions resulting from ROR a “representative”
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value function has been proposed in [49],[75]. It is based on the principle of “one for all, all for one”,

i.e. we look for one value function representing the set of all compatible value functions, and all

compatible value functions contribute to define this representative value function.

In case of the hierarchy of criteria, the DM can be interested in a value function representing

not only comprehensive necessary and possible preference relations, %N and %P , but also necessary

and possible preference relations %N
r and %P

r , r ∈ IG \ EL, at intermediate levels. In general, the

idea of the “representative value function” is to select from among compatible value functions that

one which better highlights the necessary preference by maximizing the difference of values between

alternatives a, b ∈ A for which a ≻N b, i.e. a %N b and b 6%N a. As secondary objective, one

can consider minimizing the difference of values between alternatives a, b ∈ A for which a 6%N b

and b 6%N a. In case of the hierarchy of criteria one can imagine that the DM gives a sequence of

criteria Gr1 , . . . , Grf ∈ G, ordered with respect to his/her interest. In this case, the representative

value function is the one maximizing the difference of values between alternatives a, b ∈ A for which

a ≻N
ri
b, and minimizing the difference of values between alternatives a, b ∈ A for which a 6%N

ri
b and

b 6%N
ri
a, starting from the most interesting subcriterion Gr1 and proceeding in the above sequence

until subcriterion Grf . In this way, the discrimination power of the “representative value function” is

maximal for the most interesting subcriterion Gr1 , and it is decreasing, step by step, until subcriterion

Grf . Summing up, the “representative” value function can be found via the following procedure:

1. Consider the set of constraints EA including constraints representing preference information

provided by the DM, and monotonicity constraints on marginal value functions ut(·), t ∈ EL,

whose characteristic points correspond to all different evaluations of alternatives from set A
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(and not only from the reference subset AR ⊆ A) on particular elementary criteria:

U(a∗) ≥ U(b∗) + ε if a∗ ≻ b∗

U(a∗) = U(b∗) if a∗ ∼ b∗

U(a∗)− U(b∗) ≥ U(c∗)− U(d∗) + ε if (a∗, b∗) ≻∗ (c∗, d∗)

U(a∗)− U(b∗) = U(c∗)− U(d∗) if (a∗, b∗) ∼∗ (c∗, d∗)

Ur(a
∗) ≥ Ur(b

∗) + ε if a∗ ≻r b
∗

Ur(a
∗) = Ur(b

∗) if a∗ ∼r b
∗

Ur(a
∗)− Ur(b

∗) ≥ Ur(c
∗)− Ur(d

∗) + ε if (a∗, b∗) ≻∗r (c∗, d∗)

Ur(a
∗)− Ur(b

∗) = Ur(c
∗)− Ur(d

∗) if (a∗, b∗) ∼∗r (c∗, d∗)















































































a∗, b∗, c∗, d∗ ∈ AR,

r ∈ IG \ EL,

ut(x
k
t)− ut(x

k−1
t ) ≥ 0, ∀t ∈ EL, k = 1, ...,mt

ut(x
1
t) = 0, ∀t ∈ EL

∑

t∈EL ut(x
mt

t ) = 1,



















































































































(EA)

where, x1t = mina∈A gt(a), and xmt

t = maxa∈A gt(a); xkt ∈ Xt, k = 1, ...,mt, with Xt the set

of all different evaluations of alternatives from A on elementary subcriteria gt, t ∈ EL, and

mt = |Xt| . The values xkt , k = 1, ...,mt, are increasingly ordered, i.e.,

x1t < x2t < ... < xmt−1
t < xmt

t .

2. Calculate ε∗ = max ε, s.t. EA. If ε∗ > 0, then there exists at least one value function satisfying

constraints of EA, so go to step 3. If ε∗ ≤ 0, then there is no value function satisfying EA,

which means that the information provided by the DM cannot be faithfully represented by any

additive value function. If the DM accepts to work with not fully compatible value functions,

then go to step 3; if the DM decides to remove a part of preference information causing the

incompatibility, then after this removal (see section 3.1.8), go to step 3,

3. i = 1; E = EA,

4. Determine the necessary preference relation %N
ri

and the possible preference relation %P
ri

with

respect to subcriterion Gri ∈ G, considering the sets of constraints:

Uri(b) ≥ Uri(a) + ε

EA







(EN
ri

(a, b)),
Uri(a) ≥ Uri(b)

EA







(EP
ri

(a, b)).
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• a %N
ri
b⇔ ε∗,Nri

≤ 0, where ε∗,Nri
= max ε, s.t. constraints EN

ri
(a, b),

• a %P
ri
b⇔ ε∗,Pri

> 0, where ε∗,Pri
= max ε, s.t. constraints EP

ri
(a, b).

5. For all pairs of alternatives (a, b), such that a ≻N
ri
b, add the following constraint to E: Uri(a) ≥

Uri(b) + εri ; if i = 1, then go to step 6, otherwise go to step 7,

E

Uri(a) ≥ Uri(b) + εri if a ≻ri b







→ (E)

6. Add constraint εri = ε to E,

E

εri = ε







→ (E)

7. Maximize εri , subject to constraints E.

8. Add the constraint εri = ε∗ri to E, with ε∗ri = max εri computed in step 7,

E

εri = ε∗ri







→ (E)

9. For all pairs of alternatives (a, b), such that a 6%N
ri
b and b 6%N

ri
a (already computed in step 4),

add the following constraints to E: Uri(a)− Uri(b) ≤ δri and Uri(b)− Uri(a) ≤ δri ,

E

Uri(a)− Uri(b) ≤ δri

Uri(b)− Uri(a) ≤ δri







if a 6%N
ri
b and b 6%N

ri
a



















→ (E)

10. Minimize δri , subject to constraints E.

11. Add the constraint δri = δ∗ri to E, with δ∗ri = min δri computed in step 10,

E

δri = δ∗ri







→ (E)

12. If i < f then go to step 4 with i := i + 1, otherwise stop.

Observe that the above procedure takes into account the preference information given by the DM

by maximizing the value of auxiliary variable ε in the first iteration. This ensures that the DM’s
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preferences are represented with a maximal discrimination possible. If the DM does not want to

express a sequence of subcriteria Gr1 , . . . , Grf ∈ G, but (s)he wants to compute the representative

value function considering only the comprehensively necessary preference relation, it will be enough

to perform a single iteration of the procedure described until step 10, considering i = 1 and r1 = 0.

Let us mention that other methods proposed for finding a representative value function in ordinal

regression [13, 14], not referring to necessary and possible preference relations, can also be adapted

to the case of hierarchy of criteria.

3.1.7 A didactic example

In this section, we apply the procedure described in the previous sections to cope with a hi-

erarchical multiple criteria decision problem which is very frequent in the scholar system, and

in the academic sector in particular. Let us suppose that each year a faculty of natural sci-

ences has the economic possibility to give a scholarship to one of its best students; to make the

choice, the Dean is considering fifteen students who attended the courses and passed the test of

two macro subjects: Mathematics and Chemistry. Mathematics has two sub-subjects: Algebra

and Analysis, while Chemistry has two sub-subjects: Analytical Chemistry and Organic Chem-

istry; each of these sub-subjects has other two sub-subjects for a total of eight elementary sub-

subjects shown in Figure 3.2. Using the terminology introduced in Section 3.1.2, the set of alter-

natives A = {A,B, . . . ,R} is composed of 15 alternatives; the number of levels l = 3; the set

of all criteria G = {G1, G2, G(1,1), G(1,2), G(2,1), G(2,2), g(1,1,1), g(1,1,2), g(1,2,1), g(1,2,2), g(2,1,1), g(2,1,2),

g(2,2,1), g(2,2,2)
}

is composed of criteria and subcriteria whose names are given in Figure 3.2; the set

of indices of all criteria is IG = {1, 2, (1, 1), (1, 2), (2, 1), (2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)} ; the number of first level criteria m = 2; if we consider Gr = G1

then n(r) = 2, while if we consider Gr = G(1,1) then n((1, 1)) = 2; g(1,1,1), g(1,1,2), g(1,2,1), g(1,2,2),

g(2,1,1), g(2,1,2), g(2,2,1), g(2,2,2) are the elementary subcriteria; the set of indices of elementary subcri-

teria is EL = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)} ; if we consider

Gr = G1 then E(G(1)) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)} while if we consider Gr = G(2,1) then

E(G(2,1)) = {(2, 1, 1), (2, 1, 2)}.

As it was declared in Section 3.1.2, the students are evaluated directly on the elementary sub-

criteria only, and thus, they are evaluated with respect to the eight elementary sub-subjects; these

evaluations are shown in Table 3.1. Each elementary subcriterion has five qualitative levels of eval-

uation that go from very bad to very good, increasingly ordered.

109



Figure 3.2: Hierarchical structure of criteria

G1 Mathematics

G(1,1)Algebra

g(1,1,1)

Group
Theory

g(1,1,2)

Linear
Algebra

G(1,2)Analysis

g(1,2,1)

Calculus

g(1,2,2)

Functions
Theory

g(2,1,1)

Anal.
Chem.I

g(2,1,2)

Applied
Anal.Chem.

G(2,1)
Analytical
Chemistry

g(2,2,1)

Organic
Chem.I

g(2,2,2)

Organic
Chem.II

G(2,2)
Organic
Chemistry

G2 Chemistry

Table 3.1: Evaluations of students on the eight elementary subcriteria

student\subcriteria g(1,1,1) g(1,1,2) g(1,2,1) g(1,2,2) g(2,1,1) g(2,1,2) g(2,2,1) g(2,2,2)
A Very Bad Very Good Very Bad Good Very Good Very Good Very Bad Bad
B Bad Very Good Medium Very Good Very Bad Bad Very Bad Very Bad
C Very Good Medium Medium Very Bad Very Good Good Bad Medium
D Medium Very Bad Bad Very Bad Very Bad Bad Medium Very Bad
E Very Good Very Good Medium Medium Bad Very Good Bad Very Bad
F Good Bad Bad Medium Very Bad Very Bad Very Good Very Good
H Medium Very Bad Bad Bad Very Good Very Bad Very Bad Very Bad
I Good Good Good Medium Medium Bad Good Very Bad
L Good Very Bad Bad Good Good Very Bad Very Good Good
M Medium Medium Medium Bad Medium Medium Very Good Good
N Good Bad Very Good Medium Bad Very Good Very Good Medium
O Good Medium Bad Bad Medium Bad Very Good Very Bad
P Bad Very Bad Bad Medium Bad Very Good Medium Very Bad
Q Very Good Very Good Medium Very Bad Bad Medium Medium Bad
R Good Good Bad Very Bad Bad Bad Medium Medium

Figure 3.3: Dominance relation in the set of students

The only comprehensive relation that comes out from the problem formulation is the dominance

relation in the set of students, shown in Figure 3.3. The dominance relation does not take into

account the preferences of the Dean and, moreover, it leaves too many students incomparable. For

this reason, the Dean decides to use the ROR approach adapted to the hierarchical structure of

criteria.

The Dean provides the following preference information which is then transformed to constraints of
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Figure 3.4: Necessary preference relation determined by the first piece of preference information

the ordinal regression problem:

1. On Chemistry, student I is preferred to student H. In order to take into consideration this

preference information it is represented in the constraints (EAR

) as follows:

U2(I) > U2(H) ⇔ U(2,1)(I) + U(2,2)(I) > U(2,1)(H) + U(2,2)(H) ⇔

⇔ u(2,1,1)(I)+u(2,1,2)(I)+u(2,2,1)(I)+u(2,2,2)(I) > u(2,1,1)(H)+u(2,1,2)(H)+u(2,2,1)(H)+u(2,2,2)(H).

Figure 3.4 shows the necessary preference relation determined by this piece of preference in-

formation. In Figure 3.4, the arrow from I to H is bold marked because it constitutes the

part of necessary preference relation originating from the considered piece of preference infor-

mation and, therefore, not present at the previous stage (dominance relation, see Figure 3.3).

Bold marked arrows in the following figures have an analogous interpretation with respect to

preference information provided in further steps.

2. On Analytical Chemistry, student E is preferred to student H. This, can be modeled using the

following constraint:

U(2,1)(E) > U(2,1)(H) ⇔ u(2,1,1)(E) + u(2,1,2)(E) > u(2,1,1)(H) + u(2,1,2)(H).

Figure 3.5 shows the necessary preference relation determined by the two pieces of preference

information.

3. On Mathematics, student N is preferred to student Q. This, can be modeled using the following

constraint:

U1(N) > U1(Q) ⇔ U(1,1)(N) + U(1,2)(N) > U(1,1)(Q) + U(1,2)(Q) ⇔

⇔ u(1,1,1)(N)+u(1,1,2)(N)+u(1,2,1)(N)+u(1,2,2)(N) > u(1,1,1)(Q)+u(1,1,2)(Q)+u(1,2,1)(Q)+u(1,2,2)(Q).
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Figure 3.5: Necessary preference relation determined by the two pieces of preference information

Figure 3.6: Necessary preference relation determined by the three pieces of preference information

Figure 3.6 shows the necessary preference relation determined by the three pieces of preference

information.

4. On Chemistry, student L is preferred to student P. This, can be modeled using the following

constraint:

U2(L) > U2(P) ⇔ U(2,1)(L) + U(2,2)(L) > U(2,1)(P) + U(2,2)(P) ⇔

⇔ u(2,1,1)(L)+u(2,1,2)(L)+u(2,2,1)(L)+u(2,2,2)(L) > u(2,1,1)(P)+u(2,1,2)(P)+u(2,2,1)(P)+u(2,2,2)(P).

Figure 3.7 shows the necessary preference relation determined by the four pieces of preference

information.

In the context of the hierarchical multiple criteria evaluation, it is possible to check the necessary

preference relation at intermediate levels of the hierarchy, that is we can see if student a is necessarily

preferred to student b with respect to considered domain (Mathematics, Chemistry, Algebra, Analysis

and so on); in Tables 3.2 and 3.3, we present the necessary preference relation with respect to macro
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Figure 3.7: Necessary preference relation determined by the four pieces of preference information

subjects: Mathematics and Chemistry, respectively.

Table 3.2: Necessary preference relations for Mathematics and its subcriteria

student\subcriterion %N
1 %N

(1,1) %N
(1,2)

A
B A,P A,P A,C,D,E,F,H,L,M,O,P,Q,R
C D D,F,H,L,M,N,O,P D,Q,R
D H,P R
E C,D,F,H,M,O,P,Q,R A,B,C,D,F,H, I,L,M,N,O,P,Q,R C,D,F,H,M,O,P,Q,R
F D,H,P D,H,L,N,P D,H,O,P,R
H D D,P D,O,R
I D,F,H,M,O,P,R D,F,H,L,M,N,O,P,R C,D,E,F,H,M,O,P,Q,R
L D,H,P D,H,P A,D,F,H,O,P,R
M D,H D,H,P C,D,H,O,Q,R
N C,D,F,H,P,Q,R D,F,H,L,P C,D,E,F,H, I,M,O,P,Q,R
O D,H D,F,H,L,M,N,P D,H,R
P D,F,H,O,R
Q C,D,R A,B,C,D,E,F,H, I,L,M,N,O,P,R C,D,R
R D D,F,H, I,L,M,N,O,P D

Table 3.3: Necessary preference relation for Chemistry and its subcriteria

student\subcriterion %N
2 %N

(2,1) %N
(2,2)

A B,H B,C,D,E,F,H, I,L,M,N,O,P,Q,R B,H
B D,F H
C B,H B,D,F,H, I,L,M,O,Q,R A,B,E,H
D B B,F B,E,H,P
E B,H B,D,F,H,L,N,P,Q,R B,H
F A,B,C,D,E,H, I,L,M,N,O,P,Q,R
H F,L B
I B,D,H B,D,F,O,R B,D,E,H,P
L B,D,H,P F A,B,C,D,E,H, I,M,N,O,P,Q,R
M B,D,H, I,O,Q,R B,D,F, I,O,Q,R A,B,C,D,E,H, I,L,N,O,P,Q,R
N B,D,E,H,P,Q,R B,D,E,F,H,L,P,Q,R A,B,C,D,E,H, I,O,P,Q,R
O B,D,H,I B,D,F, I,R B,D,E,H, I,P
P B,D,E,H B,D,E,F,H,L,N,Q,R B,D,E,H
Q B,D B,D,F,R A,B,D,E,H,P
R B,D B,D,F A,B,C,D,E,H,P,Q

In Tables 3.2 and 3.3, the alternatives in italics are those for which the necessary preference

relation is true at the second level but it is not true at the level below. For example, L %N
2 B but

L 6%N
(2,1) B.
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As shown in subsection 3.1.6, one can compute the representative value function, taking into

account a sequence of subcriteria Gr1 , . . . , Grf ∈ G ordered with respect to the Dean’s interest.

Results presented in Table 3.4 show the ranking of students obtained using the representative value

function in three different cases:

• the Dean considers as the most important and the second most important the criteria Mathe-

matics (G1) and Chemistry (G2), respectively, and consequently, he considers the sequence of

corresponding necessary preference relations %N
1 ,%

N
2 (1st and 2nd columns),

• the Dean considers as the most important and the second most important the criteria Chem-

istry (G2) and Mathematics (G1), respectively, and consequently, he considers the sequence of

corresponding necessary preference relations %N
2 ,%

N
1 (3rd and 4th columns),

• the Dean does not discriminate criteria with respect to their importance and consequently he

takes into account only the comprehensive necessary preference relation %N
0 (5th column).

We can observe three important facts:

- student N is almost always the best one in the ranking obtained using different representative

value functions,

- the ranking obtained by the representative value function changes between the first and the

second iteration of the method,

- the ranking obtained by the representative value function changes if we consider a different

order of importance between the necessary preference relations.

3.1.8 Further extensions of ROR for the hierarchy of criteria

Infeasibility

We have seen in section 3.1.3, that the first step of ROR is to check if there exists at least one value

function compatible with the preference information provided by the DM. In fact, it is possible that

the information provided by the DM is such that it is not possible to find a compatible additive

value function. In this case, the DM, together with the analyst, can decide to continue the study

while accepting to work with not fully compatible value functions, or look for sets of constraints

responsible of this infeasibility (let us call them troublesome constraints), and remove them from the

linear program.
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Table 3.4: Ranking of students by a representative value function (in parentheses there are value of
the corresponding alternatives)

%N
r1

=%N
1 %N

r2
=%N

2 %N
r1

=%N
2 %N

r2
=%N

1 %N

N(0.8560) N(0.8586) N(1) N(1) M(0.8808)
I(0.6635) I(0.6949) M(0.8752) M(0.8636) N(0.8622)
E(0.6250) E(0.6250) L(0.7663) L(0.7273) F(0.6690)
M(0.6023) M(0.5881) O(0.6934) O(0.6818) L(0.6690)
Q(0.5611) Q(0.5453) F(0.6754) F(0.6364) A(0.6690)
F(0.5) F(0.5) P(0.5844) P(0.5455) I(0.5426)
L(0.5) L(0.5) I(0.5735) I(0.5) C(0.4915)

C(0.4773) C(0.4590) Q(0.4940) Q(0.4944) O(0.4893)
B(0.4630) A(0.4572) A(0.4875) A(0.4489) R(0.4654)
A(0.4588) O(0.4474) R(0.4091) R(0.4091) Q(0.4617)
O(0.4559) B(0.4389) E(0.4026) E(0.3636) P(0.4190)
R(0.4087) R(0.3678) C(0.3621) C(0.3567) E(0.4190)
P(0.25) P(0.25) D(0.2273) D(0.2273) B(0.3808)

H(0.1250) H(0.125) H(0.1934) H(0.1818) D(0.2117)
D(0.0880) D(0.0639) B(0.1754) B(0.1364) H(0.1690)

In case of the hierarchy of criteria, inconsistencies can be present at different levels of the hierarchy

and for this reason, differently from [87] where all constraints translate preference information con-

cerning the same level, the DM could be interested in removing troublesome constraints regarding a

particular set of criteria/subcriteria {Gr1 , . . . , Grh}. For example, considering preference information

regarding students evaluated on criteria structured according to the hierarchy shown in Section 3.1.7,

the DM could be interested in removing the troublesome constraints at the lowest level possible, i.e.

starting by the last but one level, that is constraints regarding Algebra, Analysis, Analytical Chem-

istry and Organic Chemistry. Then, if it is still not sufficient to get feasibility of the whole set of

constraints EAR

, one can look at the constraints of the level immediately above, that is constraints

regarding Mathematics and Chemistry, and so on; in this way (s)he could examine the infeasibility go-

ing up the hierarchy of criteria. Another DM could be interested in removing troublesome constraints

regarding sets of criteria from different levels, like, for example, {Mathematics, Organic Chemistry}

or {Analysis, Analytical Chemistry}, or Mathematics alone, or Chemistry alone, and so on. Two

important remarks concerning this procedure have to be done:

• looking for troublesome constraints among all constraints EAR

translating the full preference

information provided by the DM can be seen as a particular case of the above procedure;

in fact, in order to get the whole set of constraints EAR

, it is sufficient to consider the set

{Gr1 , . . . , Grh} of criteria composed of all criteria from the first level of the hierarchy,

• finding a set of troublesome constraints regarding a particular set of criteria/subcriteria could

be not sufficient to remove the infeasibility of the whole set of constraints EAR

; if it would
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be the case, one should continue the search and add some criterion/subcriterion to the set of

criteria {Gr1 , . . . , Grh} considered before in order to verify if removing troublesome constraints

from the extended set is sufficient to make EAR

feasible.

Knowing a few or all sets of constraints causing infeasibility, if the DM would refuse to choose the one

to be removed, then the analyst could suggest a certain heuristic for ordering these sets of constraints

with respect to importance of the corresponding piece of preference information. For example, given a

set of constraints S = {C1, . . . , Cp} coming from levels {h1, . . . , hp}, respectively, one could associate

to this set the number HS = (
∑p

k=1 hk) /p. HS represents an average level of constraints belonging

to set S. Supposing that a constraint from level h is more important than the one from level h+ 1,

one could decide to remove Si, such that HSi
> HSj

for all j 6= i, that is the set having the greatest

value of HSi
. If two sets, Si and Sj, would have the smallest score HSi

= HSj
, then we could remove

the one that has less constraints coming from the lowest level. In order to find sets of troublesome

constraints in a set of constraints translating preference information, one can proceed as shown in

[87].

Credibility

ROR methods permit to specify incrementally the preferences of the DM, assigning them a different

degree of credibility. The idea of considering a sequence of pieces of preference information ordered

according to their credibility has been introduced in [55] and investigated further in [76]. More

formally, the preference information given by the DM is represented as a chain of embedded preference

relations %1⊆ . . . ⊆%n, where for each r, s = 1, . . . , n, with r < s, the preference %r is more credible

than %s. If for any t = 1, . . . , n, we denote by Et the set of constraints obtained from %t, and

by Ut the sets of value functions compatible with the preference information of %t, then we have

E1 ⊆ . . . ⊆ En and U1 ⊇ . . . ⊇ Un, and consequently %N
1 ⊆ . . . ⊆%N

n , and %P
1 ⊇ . . . ⊇%P

n , that is the

smaller the credibility of the considered preference relation %t, the richer the necessary preference

relation %N
t and the poorer the possible preference relation %P

t . In case of the hierarchy of criteria, for

each subcriterion Gr ∈ G, we have a sequence of nested possible preference relations %P
r,1⊇ . . . ⊇%P

r,n

and a sequence of nested necessary preference relations %N
r,1⊆ . . . ⊆%N

r,n.

Extreme ranking

Necessary and possible preference relations give information regarding couples of alternatives. How-

ever, it could be interesting to analyse some information related to the whole set of alternatives in

terms of the best and the worst ranking position assigned to each alternative by the compatible value
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functions. This constitutes the extreme ranking analysis introduced in [76]. In case of the hierarchy

of criteria, the extreme ranking analysis can be performed for each subcriterion Gr ∈ G.

UTADISGMS

In general, MCDA considers three types of problems:

• ranking, consisting in completely or partially ordering the alternatives from the best to the

worst,

• choice, consisting in selecting a subset of the best alternatives,

• sorting, consisting in assigning the alternatives to some predefined and preferentially ordered

classes.

Ranking and choice problems are based on pairwise comparisons of alternatives and, therefore, they

can be dealt with possible and necessary preference relations. Sorting relies instead on the intrinsic

value of an alternative and not on its comparison to others. Therefore, sorting problems need specific

methods. Within ROR, UTADISGMS [57] has been proposed to deal with sorting problems as follows.

Given a set of pre-defined classes C1, C2, . . . , Cp, ordered from the worst to the best, the DM gives

preference information in terms of exemplary assignments of reference alternatives to some sequences

of classes, such that a∗ → [CLDM (a∗), CRDM (a∗)], with LDM ≤ RDM , means that reference alternative

a∗ can be assigned to one of the classes between CLDM (a∗) and CRDM (a∗). Denoting by AR ⊆ A the

set of reference alternatives considered by the DM, we say that a value function U is compatible if

∀a∗, b∗ ∈ AR, LDM(a∗) > RDM(b∗) ⇒ U(a∗) > U(b∗). (3.3)

Denoting by U the set of compatible value functions, we have that each U ∈ U assigns an

alternative a ∈ A to a sequence of classes
[

LU(a), RU(a)
]

, where

LU(a) = max
(

{1} ∪
{

LDM(a∗) : U(a∗) ≤ U(a), a∗ ∈ AR
})

,

RU(a) = min
(

{p} ∪
{

RDM(a∗) : U(a∗) ≥ U(a), a∗ ∈ AR
})

.

Within ROR, considering the set of all compatible value functions, for each a ∈ A one can define

the possible assignment CP (a) and the necessary assignment CN(a) as follows:

• CP (a) =
[

LUP (a), RUP (a)
]

= ∪U∈U

[

LU(a), RU(a)
]

,
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• CN(a) =
[

LUN(a), RUN(a)
]

= ∩U∈U

[

LU(a), RU(a)
]

.

In case of the hierarchy of criteria, the DM can give exemplary assignments a∗ → [CLDM (a∗), CRDM (a∗)]

at a comprehensive level, but (s)he can also give assignments a∗ →r

[

Cr
LDM
r

(a∗), Cr
RDM

r

(a∗)
]

with re-

spect to each subcriterion Gr from the hierarchy, excluding the elementary subcriteria, i.e. r ∈

IG \ EL.

For example, suppose that a Dean has to evaluate students according to their scores in various

subjects. He can say that student s1 is assigned comprehensively to a class between “Medium” and

“Very good”, i.e. s1 → [Medium,Very good], but he can also say that student s2 (not necessarily s2

different from s1) is assigned to a class between “Weakly bad” and “Weakly good” with respect to

Literature, i.e. s2 →Lit [Weakly badLit,Weakly goodLit]. The compatibility condition relative to the

assignment with respect to subcriterion Gr, r ∈ IG \ EL, is as follows:

∀a∗, b∗ ∈ AR, LDM
r (a∗) > RDM

r (b∗) ⇒ Ur(a
∗) > Ur(b

∗). (3.4)

At the output, for each a ∈ A, besides the comprehensive possible assignments CP (a) and the

necessary assignments CN(a), the method gives the possible assignment CP
r (a) and the necessary

assignment CN
r (a) for each Gr, r ∈ IG \ EL, as follows:

• CP
r (a) =

[

LUr,P (a), RUr,P (a)
]

= ∪U∈U

[

LU
r (a), RU

r (a)
]

,

• CN
r (a) =

[

LUr,N(a), RUr,N(a)
]

= ∩U∈U

[

LU
r (a), RU

r (a)
]

,

where

LU
r (a) = max

(

{1} ∪
{

LDM
r (a∗) : Ur(a

∗) ≤ Ur(a), a∗ ∈ A∗
})

,

RU
r (a) = min

(

{p} ∪
{

RDM
r (a∗) : Ur(a

∗) ≥ Ur(a), a∗ ∈ A∗
})

.

Group decision

In many decision making situations there is a plurality of DMs. For example, in case of decision

related to land development, a group of stakeholders with different perceptions of predefined criteria

has to be involved. ROR ([56, 48]) has been applied to group decision as follows. Considering a set

D of DMs, and a set of pairwise comparisons provided by the DM belonging to D
′
⊆ D, for each DM

dh ∈ D
′

we find the necessary and possible preference relations %N
h and %P

h . Then, we can represent

consensus between decision makers from D, defining the following preference relations for all D′ ⊆ D:
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• the necessary-necessary preference relation (%N,N

D
′ ), for which a is necessarily preferred to b for

all dh ∈ D
′
,

• the necessary-possibly preference relation (%N,P

D
′ ), for which a is necessarily preferred to b for

at least one dh ∈ D
′
,

• the possibly-necessary preference relation (%P,N

D
′ ), for which a is possibly preferred to b for all

dh ∈ D
′
,

• the possibly-possibly preference relation (%P,P

D
′ ), for which a is possibly preferred to b for at

least one dh ∈ D
′
.

In case of the hierarchy of criteria we can define the above four relations for each subcriterion Gr

from the hierarchy, excluding the elementary subcriteria, i.e. r ∈ IG \ EL.

Interacting criteria

UTAGMS, UTADISGMS and GRIP take into account an additive value function. This model is among

the most popular ones because it has the advantage of being easily manageable, and, moreover, it has

a very sound axiomatic basis (see, e.g., [80, 129]). However, the additive value function is not able to

represent interactions among criteria. For example, consider evaluation of cars using such criteria as

maximum speed, acceleration and price. In this case, there may exist a negative interaction (negative

synergy) between maximum speed and acceleration because a car with a high maximum speed also

has a good acceleration, so, even if each of these two criteria is very important for a DM who likes

sport cars, their joint impact on reinforcement of preference of a more speedy and better accelerating

car over a less speedy and worse accelerating car will be smaller than a simple addition of the impacts

of the two criteria considered separately in validation of this preference relation. In the same decision

problem, there may exist a positive interaction (positive synergy) between maximum speed and price

because a car with a high maximum speed is usually expensive, and thus a car with a high maximum

speed and relatively low price is very much appreciated. Thus, the comprehensive impact of these

two criteria on the strength of preference of a more speedy and cheaper car over a less speedy and

more expensive car is greater than the impact of the two criteria considered separately in validation

of this preference relation. To handle the interactions among criteria, one can consider non-additive

integrals, such as Choquet integral [21] and Sugeno integral [119], or an additive value function

augmented by additional components reinforcing the value when there is a positive interaction for

some pairs of criteria, or penalizing the value when this interaction is negative, like in UTAGMS-

INT [58]. In case of the hierarchy of criteria we can consider interaction among criteria at each
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level of the hierarchy. For example, evaluating students we can have negative synergy (redundancy)

for Mathematics and Physics (because, in general, good students in Mathematics are good also in

Physics) and positive synergy for Algebra and Analysis at a lower level (because Algebra and Analysis

require different aptitudes, and therefore a student good in Algebra is not always good in Analysis).

3.1.9 Conclusions

In this section, in order to deal with one important issue of Multiple Criteria Decision Aiding

(MCDA), that is the hierarchy of criteria, we proposed a new methodology called Multiple Cri-

teria Hierarchy Process (MCHP). The basic idea of MCHP relies on consideration of preference

relations regarding subcriteria at each level of the hierarchy of criteria, obtaining in this way a better

insight into the problem at hand. MCHP can be applied to any MCDA method. In this section,

we considered the case where evaluations of alternatives are aggregated by a value function, and we

applied MCHP to one particular MCDA methodology that is the Robust Ordinal Regression (ROR).

In this case, the preference model is the entire set of general additive value functions compatible with

preference information given by the Decision Maker (DM) in terms of pairwise comparisons of some

alternatives, and in terms of intensity of preference with respect to some pairs of alternatives. The

advantage is twofold:

• from the point of view of preference information, the hierarchy of criteria is enriching the

possibility of the DM to express his/her preferences: in fact, the DM can give preference

information at a comprehensive level, e.g., student s1 is comprehensively preferred to student

s2, as well as at an intermediate level with respect to subcriteria, e.g., student s1 is preferred

to student s2 on a subset of criteria related to Mathematics;

• with respect to decision support, taking into account the hierarchy of criteria permits to define

possible and necessary preference relations not only at a comprehensive level but also at each

intermediate level of the hierarchy: in fact, as a final result, we can have not only that student

s1 is comprehensively necessarily preferred to student s2, and student s3 is comprehensively

possibly preferred to student s4, but also that, e.g., student s1 is necessarily preferred to student

s2 on a subset of criteria related to Mathematics, and s3 is possibly preferred to student s4 on

criteria related to Organic Chemistry.

Adapting ROR to the hierarchy of criteria, i.e. putting together MCHP and ROR, gives a very

powerful methodology of multiple criteria decision aiding: in fact, in this way we conjugate, on one
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hand, the robustness concerns by taking into account the set of all value functions compatible with

preference information supplied by DM, and, on the other hand, the benefits of the hierarchical

decomposition of a complex multiple criteria decision problem. We have shown, moreover, that all

the methodological developments proposed within the ROR can be used in the case of the hierarchy

of criteria: calculation of a representative value function, consideration of different credibilities of

preference information, extreme ranking analysis, application to sorting problems, group decision,

handling interaction among criteria. Let us observe that we can consider preference relations referring

to a subset of criteria also if there is no explicit hierarchy in the set of criteria. In fact, for any subset

of criteria J , the DM can always express preferences of the type “a is preferred to b with respect to

J ”, as well as we can define necessary and possible preference relations with respect to J .

We envisage three further methodological developments of the ROR adapted to the case of the

hierarchy of criteria:

• consideration of imprecise evaluations on specific criteria;

• consideration of the outranking preference models;

• consideration of a structure of criteria more complex than the hierarchy defined in this section:

for example, while in this section we assume that each subcriterion descends from only one

criterion located at the upper level of the hierarchy tree, we can have a real situation where

one subcriterion descends from more than one criterion of the upper level; for example, in

case of evaluation of students at a scientific faculty, Analytic Mechanics can descend from both

Mathematics and Physics; we also plan to deal with more complex criteria structures, like those

considered in Analytical Network Process (ANP) [111].

3.1.10 Appendix

Proof of Proposition 3.1.2

1. For all a, b ∈ A

a %N
r b⇔ ∀U ∈ U , Ur(a) ≥ Ur(b) ⇒ ∃U ∈ U : Ur(a) ≥ Ur(b) ⇔ a %P

r b,

thus we proved that %N
r ⊆ %P

r .

2. We have

∀a ∈ A, ∀U ∈ U , Ur(a) ≥ Ur(a) ⇔ ∀a ∈ A, a %N
r a,

121



and therefore %N
r is reflexive.

For all a, b, c ∈ A,

a %N
r b, b %N

r c⇔ ∀U ∈ U , Ur(a) ≥ Ur(b) ≥ Ur(c) ⇒ ∀U ∈ U , Ur(a) ≥ Ur(c) ⇒ a %N
r c

and therefore %N
r is transitive. Being reflexive and transitive %N

r is a partial preorder.

3. For all a, b ∈ A,

a 6%P
r b⇔ ∀U ∈ U , Ur(a) < Ur(b) ⇒ ∃U ∈ U : Ur(b) ≥ Ur(a) ⇔ b %P

r a

and therefore %P
r is strongly complete.

For all a, b, c ∈ A,

a 6%P
r b and b 6%P

r c⇔ ∀U ∈ U , Ur(a) < Ur(b) < Ur(c) ⇒ ∀U ∈ U , Ur(a) < Ur(c) ⇒ a 6%P
r c

and thus we proved that %P
r is negatively transitive.

4. For all a, b ∈ A,

a 6%N
r b⇔ ∃U ∈ U : Ur(a) < Ur(b) ⇒ ∃U ∈ U : Ur(a) ≤ Ur(b) ⇒ b %P

r a

and therefore we proved that a %N
r b or b %P

r a.

5. For all a, b, c ∈ A, a %N
r b implies that Ur(a) ≥ Ur(b) for all compatible value functions; b %P

r c

implies that there exist at least one compatible value function U such that U r(b) ≥ U r(c); then

for this compatible value function we have U r(a) ≥ U r(b) ≥ U r(c), and thus a %P
r c.

6. a %P
r b implies that there exist at least one compatible value function U such that U r(a) ≥

U r(b); b %
N
r c implies that Ur(b) ≥ Ur(c), ∀U ∈ U ; in this way for the value function U we have

U r(a) ≥ U r(b) ≥ U r(c), and thus a %P
r c;

Proof of Proposition 3.1.3

1. Remembering that Ur(x) = U(r,1)(x) + . . .+ U(r,n(r))(x), we have

a %N
(r,j) b ∀j = 1, . . . , n(r) ⇔ U(r,j)(a) ≥ U(r,j)(b) ∀U ∈ U , ∀j = 1, . . . , n(r) ⇒
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⇒ ∀U ∈ U ,

n(r)
∑

j=1

U(r,j)(a) ≥

n(r)
∑

j=1

U(r,j)(b) ⇔ ∀U ∈ U , Ur(a) ≥ Ur(b) ⇔ a %N
r b.

2. a %P
(r,w) b implies that there exists U ∈ U such that U (r,w)(a) ≥ U (r,w)(b); considering that

a %N
(r,j) b for all j ∈ {1, . . . , n(r)} \ {w}, we have U(r,j)(a) ≥ U(r,j)(b) ∀j ∈ {1, . . . , n(r)} \ {w},

and therefore also for U ∈ U we have U (r,j)(a) ≥ U (r,j)(b) ∀j ∈ {1, . . . , n(r)} \ {w} and thus

U r(a) =

n(r)
∑

j=1

U (r,j)(a) ≥

n(r)
∑

j=1

U (r,j)(b) = U r(b),

from which a %P
r b.

3. Let us suppose, for contradiction, that a %P
r b; this means that there exists a value function

U ∈ U such that U r(a) ≥ U r(b); from this we obtain that

U r(a) ≥ U r(b) ⇔

n(r)
∑

j=1

U (r,j)(a) ≥

n(r)
∑

j=1

U (r,j)(b) ⇔

n(r)
∑

j=1

[

U (r,j)(a)− U (r,j)(b)
]

≥ 0

and from this, for at least one j ∈ {1, . . . , n(r)} we have U (r,j)(a)− U (r,j)(b) ≥ 0 ⇒ U (r,j)(a) ≥

U (r,j)(b) and thus a %P
(r,j) b which contradicts the hypothesis.

Proof of Proposition 3.1.4

Let us remember that ∀a ∈ A we have Ur(a) = U(r,1)(a) + . . .+ U(r,n(r))(a).

1. For any a, b, c, d ∈ A

(a, b) %∗
N

(r,j) (c, d) ∀j = 1, . . . , n(r) ⇔

⇔ U(r,j)(a)− U(r,j)(b) ≥ U(r,j)(c)− U(r,j)(d), ∀U ∈ U , ∀j = 1, . . . , n(r) ⇒

⇒ ∀U ∈ U ,

n(r)
∑

j=1

[

U(r,j)(a)− U(r,j)(b)
]

≥

n(r)
∑

j=1

[

U(r,j)(c)− U(r,j)(d)
]

⇔

⇔ ∀U ∈ U ,

n(r)
∑

j=1

U(r,j)(a)−

n(r)
∑

j=1

U(r,j)(b) ≥

n(r)
∑

j=1

U(r,j)(c)−

n(r)
∑

j=1

U(r,j)(d) ⇔

⇔ ∀U ∈ U , Ur(a)− Ur(b) ≥ Ur(c)− Ur(d) ⇔ (a, b) %∗
N

r (c, d).

2. For any a, b, c, d ∈ A, (a, b) %∗
P

(r,w) (c, d) implies that there exists U ∈ U such that U (r,w)(a) −

U (r,w)(b) ≥ U (r,w)(c)−U (r,w)(d); considering that (a, b) %∗
N

(r,j) (c, d) for all j ∈ {1, . . . , n(r)}\{w}
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and for all compatible value functions, we have U (r,j)(a)−U (r,j)(b) ≥ U (r,j)(c)−U (r,j)(d) ∀j ∈

{1, . . . , n(r)} \ {w}, and thus

n(r)
∑

j=1

[

U (r,j)(a)− U (r,j)(b)
]

≥

n(r)
∑

j=1

[

U (r,j)(c)− U (r,j)(d)
]

⇔

⇔

n(r)
∑

j=1

U (r,j)(a)−

n(r)
∑

j=1

U (r,j)(b) ≥

n(r)
∑

j=1

U (r,j)(c)−

n(r)
∑

j=1

U (r,j)(d) ⇔

⇔ U r(a)− U r(b) ≥ U r(c)− U r(d) ⇔ (a, b) %∗
P

r (c, d).

from which (a, b) %∗
P

r (c, d).

3. Let us suppose, for contradiction, that for a, b, c, d ∈ A (a, b) %∗
P

r (c, d); this means that there

exists a value function U ∈ U such that U r(a) − U r(b) ≥ U r(c) − U r(d); from this we obtain

that

U r(a)− U r(b) ≥ U r(c)− U r(d) ⇔

n(r)
∑

j=1

U (r,j)(a)−

n(r)
∑

j=1

U (r,j)(b) ≥

n(r)
∑

j=1

U (r,j)(c)−

n(r)
∑

j=1

U (r,j)(d) ⇔

⇔

n(r)
∑

j=1

U (r,j)(a)−

n(r)
∑

j=1

U (r,j)(b)−

n(r)
∑

j=1

U (r,j)(c) +

n(r)
∑

j=1

U (r,j)(d) ≥ 0 ⇔

⇔

n(r)
∑

j=1

[

U (r,j)(a)− U (r,j)(b) + U (r,j)(c)− U (r,j)(d)
]

≥ 0,

and from this follows that, for at least one j ∈ {1, . . . , n(r)} we have U (r,j)(a) − U (r,j)(b) ≥

U (r,j)(c)−U (r,j)(d), and thus (a, b) %∗
P

(r,j) (c, d) for at least one j, which contradicts the hypoth-

esis.
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3.2 Multiple Criteria Hierarchy Process with ELECTRE

and PROMETHEE

3.2.1 Introduction

Multiple Criteria Decision Aiding (MCDA) copes with three main types of decision problems: rank-

ing, sorting and choice. Ranking problems consist in rank ordering of all alternatives from the worst

to the best, looking at their evaluations on the considered criteria; sorting problems consist in assign-

ing each alternative to a predefined and preference ordered class; choice problems consist in selecting

a subset of alternatives considered as the best (for a more detailed survey, see [29, 27]). In order to

handle these problems, one can use either of the two different methodologies:

• assign to each alternative a utility value, i.e. a real number reflecting the degree of desirability

of a considered alternative, independently from the evaluations of other alternatives,

• compare alternatives pairwise, in order to discover if one is preferred to the other, or if they

are indifferent or incomparable.

In the first case, to associate a utility value to an alternative, taking into account its evaluations

on the considered criteria, multi attribute utility theory (MAUT) [80] frequently uses an additive

value function defined as a sum of as many marginal value functions as there are criteria. In the

second case, outranking methods [16, 103] construct a binary relation which reads: “alternative a is

at least as good as alternative b”, which means “a outranks b”. This construction takes into account

evaluation of both compared alternatives on the considered criteria, as well as some comparison

thresholds and weights expressing the relative importance of the criteria.

Generally, the information provided by the dominance relation on the set of alternatives is poor,

and makes many alternatives incomparable. To enrich this relation, the Decision Maker (DM) is

asked to provide some preference information, so that the outranking relation giving account of it

makes alternatives more comparable. As this comparability is consistent with the value system of

the DM, the outranking relation can be considered as the DM’s preference model.

Preference information can be direct or indirect; direct means that the DM can give information

regarding values of parameters of the considered preference model, while indirect means that the DM

gives information regarding some alternatives (s)he knows well, and from this information there are

inferred values of parameters of the considered preference model. Generally, the indirect methodology

is more realistic (see, e.g.,[72],[95],[117]), because the DM does not always understand well enough the

meaning of all these parameters. Using the indirect methodology, there usually exist more than one
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set of parameters compatible with the preference information provided by the DM, and each of these

sets of parameters could give different results to the decision problem at hand. For this reason, any

choice of one specific set of parameters compatible with preference information provided by the DM

could be considered as arbitrary and meaningless. In order to deal with this inconvenience, Robust

Ordinal Regression (ROR) takes into account not only one set of parameters compatible with the

preference information provided by the DM, but considers all these sets simultaneously defining two

preference relations:

• the necessary preference relation, for which “alternative a is necessarily preferred to alternative

b” if a is at least as good as b for all compatible sets of parameters,

• the possible preference relation, for which “alternative a is possibly preferred to alternative b”

if a is at least as good as b for at least one compatible set of parameters.

ROR methods have been proposed for ranking and choice problems [33, 55], sorting problems [57],

outranking models [47] and non additive models [7].

Remark that not all multiple criteria decision problems present evaluation criteria at the same

level, but there can exist a hierarchical structure of criteria. This is the case, for example, of

environmental planning in which it is possible to take into account economic, social and environmental

criteria, and each of these criteria can be composed of subcriteria on which the alternatives are

evaluated. In [23], we have considered the hierarchy of criteria in the context of ROR, showing the

following advantages of using this procedure:

• the DM can express preference information not only in a comprehensive way but also in a

partial way, that is considering preference information with respect to a subcriterion at an

intermediate level of the hierarchy,

• the DM can obtain results not only with respect to the comprehensive view, but also results at

intermediate levels of the hierarchy; for example, the DM can learn if a is necessarily or possibly

preferred to b with respect to a subcriterion G at an intermediate level of the hierarchy.

Let us remark that the use of the hierarchy of criteria proposed by our approach is rather different

from other MCDA methodologies assuming a hierarchical structure of the family of criteria. In

fact, while in general the hierarchy of criteria is used to decompose and make easier the preference

elicitation concerning pairwise comparisons of criteria with respect to relative importance, in our

approach, a preference relation in each node of the hierarchy constitutes a base for the discussion

with the DM.
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Indeed, the preference relations in particular nodes of the hierarchy are presented to the DM

as consequences (output) of her/his preference information provided at the input. In course of an

interactive process, the DM can add, modify or remove some items of the preference information if

(s)he feels that the preference relations do not reflect correctly her/his value system. This interac-

tive process ends when the DM get convinced by the preference relations obtained in consequence

of her/his preference information, and thus accepts the recommendations provided by the MCDA

methodology.

Observe that consideration of preference relations at each level of the hierarchy constitutes a

specific feature of our methodology, which we consider very useful in any decision process in which

a hierarchy of criteria is considered. Considering preference relations in particular nodes of the

hierarchy permits decomposition of arguments explaining the overall preferences. For example, in

case of evaluations of students, one could say that student a is comprehensively preferred to student

b, because even if a is slightly worse than b with respect to subjects related to Literature, he is much

better with respect to subjects related to Mathematics and Physics. Moreover, going in depth of the

hierarchy, one could add that the preference with respect to subjects related to Mathematics is based

on better evaluations of student a on subjects related to Analysis rather than on subjects related to

Algebra.

It is worth noting that this specific use of the hierarchy of criteria can be applied to any MCDA

methodology. In this work, we are applying it to Robust Ordinal Regression approach, but it can

be applied to any other MCDA methodology, even those which use the hierarchy to ask the DM for

pairwise comparisons of subcriteria with respect to their importance.

In this section, we propose a generalization of outranking methods, more specifically ELECTRE

and PROMETHEE methods, to the case of the hierarchy of criteria. No similar attempt is known in

the literature. We extend the methodologies of ELECTRE and PROMETHEE to the case where the

considered criteria are not at the same level, but they are structured into several levels. In this way,

the DM can obtain information not only regarding the comprehensive outranking of an alternative a

over an alternative b, but also partially, that is, considering a particular criterion/subcriterion of the

hierarchy. For example, in the environmental planning problem, it will be possible to investigate if a

certain location p1 outranks another location p2 with respect to economic criteria, or environmental

criteria, or social aspects, or with respect to all criteria simultaneously. In this particular context,

it is worth stressing that ELECTRE and PROMETHEE methods can be considered as particular

cases of our methodology, and for this reason, it can be considered as a real generalization of these

methods.

127



In the perspective of considering a constructive interaction between the DM and the analyst,

we intend to use the ROR methodology to deal with outranking methods in case of the hierarchy

of criteria. The application of ROR to ELECTRE and PROMETHEE methods has already been

done in [47] and [76], respectively, but also in this case, our methodology can be considered as their

generalization because, of course, the absence of hierarchy corresponds to the case of a hierarchy

with only one level containing all the criteria.

The section is organized in the following way: in section 3.2.2, we recall the principal concept

of the hierarchy of criteria and describe the ELECTRE method generalized to this case; in section

3.2.3, we extend the concept of ROR applied to ELECTRE (which constitutes ELECTREGKMS

method) in case of the hierarchy of criteria, and we propose a didactic example illustrating the use

of ELECTRE and ELECTREGKMS methods applied to a hierarchical structure of criteria; in section

3.2.4, we extend the PROMETHEE method to the case of the hierarchy of criteria; in section 3.2.5,

we describe the application of ROR to the PROMETHEE method in case of the hierarchy of criteria,

and we provide an example illustrating the PROMETHEE and PROMETHEEGKS methods applied

to a hierarchy of criteria; section 3.2.6 collects conclusions.

3.2.2 Hierarchical ELECTRE method

In this section, we recall the basic concepts of the hierarchy of criteria introduced in [23], and we

introduce the Hierarchical ELECTRE method.

We suppose that evaluation criteria are not at the same level but they are structured into several

levels (see Figure 3.8);

• A = {a, b, c, . . .} is the finite set of alternatives,

• l is the number of levels in the hierarchy of criteria,

• G is the set of all criteria at all considered levels,

• IG is the set of indices of particular criteria representing position of the criteria in the hierarchy,

• m is the number of the first level (root) criteria, G1, . . . , Gm,

• Gr ∈ G, with r = (i1, . . . , ih) ∈ IG, denotes a subcriterion of the first level criterion Gi1 at level

h,

• n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct subcriteria of Gr

are G(r,1), . . . , G(r,n(r)),
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• gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion of the first level

criterion Gi1 , i.e a subcriterion at level l,

• EL is the set of indices of all elementary subcriteria:

EL = {t = (i1, . . . , il) ∈ IG} , where































i1 = 1, . . . ,m

i2 = 1, . . . , n(i1)

· · · · · ·

il = 1, . . . , n(i1, . . . , il−1)

• E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) = {(r, ih+1, . . . , il) ∈ IG} , where



















ih+1 = 1, . . . , n(r)

· · · · · ·

il = 1, . . . , n(r, ih+1, . . . , il−1)

thus E(Gr) ⊆ EL and, more precisely, E(Gr) = EL if all elementary subcriteria descend from

criterion Gr,

• LBO is the set of indices of all subcriteria of the last but one level,

• LB(Gr) is the set of indices of subcriteria of the last but one level descending from crite-

rion/subcriterion Gr,

• when r = 0, then by Gr = G0, we mean the entire set of criteria and not a particular criterion

or subcriterion; in this particular case, we have E(G0) = EL and LB(G0) = LBO.

Figure 3.8: Example of the hierarchy of criteria starting from the first level (root) criterion Gi

Gi

Gi1

Gi11 Gi12 Gi13

Gi2

Gi21 Gi22

Gi3

Gi31 Gi32 Gi33 Gi34

Remark that, without loss of generality, we consider a hierarchical structure where each criterion

belongs to only one criterion of the level immediately above, that is a criterion Gr from the i-th level
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of the hierarchy is a subcriterion of only one of the criteria of the (i− 1)-th level (we call a structure

of this type a partitioned structure). Example of the hierarchy of criteria with a partitioned structure

is presented in Figure 3.8. In order to understand the reason of this restriction, let us examine an

example of the hierarchy of criteria with a non-partitioned structure shown in Figure 3.9. In this

particular structure, criterion Gixx and elementary subcriterion gixxx are subcriteria of more than

one criterion of the level immediately above. In particular, criterion Gixx is a subcriterion of criteria

Gi1 and Gi2 while elementary subcriterion gixxx is a subcriterion of criteria Gixx and Gi22. This

means that both criteria influence the criteria they descend from, in a different way. That is, the

evaluations of alternatives with respect to elementary subcriterion gixxx will be weighted in one way

if gixxx is considered to be a subcriterion of criterion Gixx, and they could be weighted in another

way if gixxx is considered to be a subcriterion of criterion Gi22. In this way, we can distinguish the

contribution of gixxx to Gixx, from the contribution of gixxx to Gi22. In order to take into account

these different types of contribution, we propose to split gixxx in two “indicators”: gixx2, representing

the contribution of elementary subcriterion gixxx to Gixx, and gi221, representing the contribution of

elementary subcriterion gixxx to criterion Gi22. All alternatives will keep the same evaluations with

respect to indicators gixx2 and gi221, as they had with respect to criterion gixxx, but their weights kixx2

and ki221 could be different and, moreover, they have to satisfy the relation: kixx2 + ki221 = kixxx;

this means that the sum of weights of new indicators gi221 and gixxx has to be equal to the weight

of criterion gixxx. Doing in this way, we obtain the hierarchical structure shown in Figure 3.10. At

this point, we observe that Gixx is a subcriterion in common of Gi1 and Gi2, thus, we may proceed

analogically to gixxx. So, we have to distinguish between the contribution of Gixx to Gi1 and the

contribution of Gixx to Gi2. But, in this case, subcriterion Gixx influences the two above criteria via

all its subcriteria (if any) and elementary subcriteria; for this reason we have to split all subcriteria

and elementary subcriteria descending from it (here: gixx1 and gixx2) in order to take into account

the different contribution they give to the above criteria. In this way we obtain the partitioned

hierarchical structure shown in Figure 3.11, where:

• subcriterion Gixx is split into indicators Gi12 and Gi21,

• indicator gixx1 is split into indicators gi121 and gi211, and thus, kixx1 = ki121 + ki211,

• indicator gixx2 is split into indicators gi122 and gi212, and thus, kixx2 = ki122 + ki212.

Let us remark that the above splitting of criteria, which aims to take into account their contribution

to different criteria at an upper level, can be applied independently of the type of the preference
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Figure 3.9: Example of the hierarchy of criteria with a non-partitioned structure

Gi

Gi1 Gi2

Gi22Gi11 Gixx

gixxx gi232gi333gi112gi111

Figure 3.10: Transformation of non-partitioned structure (step 1)

Gi

Gi1 Gi2

Gi22Gi11 Gixx

gixx2 gi221 gi232gixx1gi112gi111

model used in the hierarchical MCDA method. Thus, it could also be used in the hierarchical

method involving multiattribute utility functions presented in [23].

Handling the hierarchy of criteria in ELECTRE methods

In this sub-section, we introduce a generalization of ELECTRE methods to the case of the hierarchy

of criteria. We start with the hierarchical generalization of the ELECTRE IS method, and then we
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Figure 3.11: Partitioned structure resulting from the transformation of the non-partitioned one (step
2)

Gi

Gi1 Gi2

Gi22Gi11 Gi12 Gi21

gi122 gi211 gi212 gi221 gi232gi121gi112gi111

extend this generalization on the ELECTRE III method (see [104, 106] for description of different

ELECTRE methods).

Given a criterion/subcriterion Gr with r ∈ IG \ EL, an outranking relation is a binary relation

Sr ⊆ A × A (in the following A × A = B), such that aSrb means “a is at least as good as b with

respect to criterion Gr”. Knowing if Sr is true or not for an ordered pair of alternatives (a, b) ∈ B,

one is able to represent situations of weak (Qr) or strict (Pr) preference (the two relations together

called large preference), indifference (∼r), and incomparability (Rr) among a and b:

aSrb and not(bSra) ⇔ aQrb or aPrb,

aSrb and bSra⇔ a ∼r b,

not(aSrb) and not(bSra) ⇔ aRrb.























Let us denote by kt the weight assigned to elementary subcriterion gt, t ∈ EL. It is a non-negative

real number representing the relative importance (strength) of elementary subcriterion gt within the

family of elementary subcriteria. The indifference, preference, and veto thresholds on elementary

subcriterion gt are denoted by qt, pt and vt, respectively. qt is the greatest difference between

the evaluations of two alternatives, compatible with the indifference among them with respect to

elementary subcriterion gt; pt is the smallest difference between the evaluations of two alternatives,

compatible with the preference of an alternative over another with respect to elementary subcriterion
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gt; vt is an upper bound beyond which the discordance about the assertion “a is at least as good as

b” cannot surpass. For consistency, vt > pt ≥ qt ≥ 0, for all t ∈ EL. The thresholds on particular

elementary subcriterion can be either constant for all alternatives, or dependent on evaluation of a,

gt(a). In the sequel, we assume, for simplicity, constant thresholds, although this is not a necessary

assumption for our methodology. Moreover, we assume without loss of generality that all criteria are

increasing monotone with respect to the preference, i.e. the greater the evaluation, the better it is.

Construction of an outranking relation involves two concepts known as concordance and non-

discordance tests. The concordance test involves calculation of concordance index Cr(a, b). It rep-

resents the strength of the coalition of elementary subcriteria gt, t ∈ E(Gr), being in favor of aSrb.

This coalition is composed of two subsets of elementary subcriteria:

• subset of elementary subcriteria gt, t ∈ E(Gr), being clearly in favor of aSrb, i.e. such that,

gt(a) ≥ gt(b)− qt,

• subset of elementary subcriteria gt, t ∈ E(Gr), that do not oppose to aSrb, while being in an

ambiguous position with respect to this assertion, i.e. those with bQra, which is equivalent to

gt(b)− pt < gt(a) < gt(b)− qt.

Note that aSrb is true not only when alternative a is preferred to alternative b on criterion/subcriterion

Gr but also when a is indifferent to b on Gr, and even when b dominates a on Gr by a sufficiently

small amount in each elementary subcriterion descending from Gr.

Consequently, the partial concordance index is defined as:

Cr(a, b) =
∑

t∈E(Gr)

φt(a, b)× kt =
∑

t∈E(Gr)

ψt(a, b) (3.5)

where, traditionally, for each t ∈ E(Gr),

φt(a, b) =



















1, if gt(a) ≥ gt(b)− qt,

gt(a)−[gt(b)−pt]
pt−qt

, if gt(b)− pt ≤ gt(a) < gt(b)− qt,

0, if gt(a) < gt(b)− pt.

(3.6)

φt(a, b) is a marginal concordance index, indicating to what extent elementary subcriterion gt, t ∈

E(Gr), contributes to the concordance index Cr(a, b). In order to simplify calculations, and with-

out loss of generality, we assume that the weights of elementary subcriteria sum up to one, i.e.
∑

t∈EL kt = 1.
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Note 3.2.1. When comparing two alternatives a, b on a given elementary subcriterion, the zone

between −pt and −qt corresponds to hesitation between opting for indifference and preference. In

order to take into account this ambiguity, ELECTRE methods consider φt(a, b) being linear and

non-decreasing functions with respect to the difference gt(a) − gt(b). The assumption of linearity of

functions φt(a, b) is only conventional and it is not related in any case to the concept of intensity of

preference. Moreover, according to [31], slight changes of the form of φt(a, b) have no impact (apart

from very particular cases) on the results.

Remark that Cr(a, b) ∈ [0, Kr], where Kr =
∑

t∈E(Gr)
kt, and Cr(a, b) = 0 if gt(a) ≤ gt(b) − pt,

for all t ∈ E(Gr) (b is strictly preferred to a on all elementary subcriteria descending from Gr), and

Cr(a, b) = Kr if gt(a) ≥ gt(b) − qt, for all t ∈ E(Gr) (a outranks b on all elementary subcriteria

descending from Gr). When r = 0, C0(a, b) ∈ [0, 1] because E(G0) = EL and thus K0 = 1.

In ELECTRE, the result of the concordance test concerning a pair of alternatives is positive

when the value of the concordance index is not smaller than a fixed concordance cutting level.

In the hierarchical extension of ELECTRE, we admit one concordance cutting level λr for each

criterion/subcriterion Gr with r ∈ IG \ EL, that is, we consider one concordance cutting level for

each criterion/subcriterion except for elementary subcriteria, such that:

• λs ∈ [Ks/2, Ks], for all s ∈ LBO,

• λr =

n(r)
∑

j=1

λ(r,j), for all r ∈ IG \ {LBO ∪ EL} .

In particular, the first condition means that each concordance cutting level λs, s ∈ LBO, is

bounded between the half-sum and the sum of the weights of elementary subcriteria descending from

Gs; the second condition means that the concordance cutting level of a criterion/subcriterion Gr, is

equal to the sum of the concordance cutting levels of subcriteria G(r,j), j = 1, . . . , n(r), at the level

immediately below; we add this condition in order to avoid the case where an alternative a outranks

an alternative b with respect to all subcriteria G(r,1), . . . , G(r,n(r)) from the level immediately below

Gr, but a does not outrank b with respect to criterion/subcriterion Gr. For example, it is obvious that

if student s1 outranks student s2 with respect to Algebra and Analysis, being immediate subcriteria

of Mathematics, then s1 outranks s2 also with respect to Mathematics.

Note 3.2.2. Remark that the two above conditions ensure that:

λr ∈

[

Kr

2
, Kr

]

, for all r ∈ IG \ EL.
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This implies that not only the concordance cutting level of criteria from the last but one level of the

hierarchy, but all concordance cutting levels λr, r ∈ IG \ EL, are constrained between the half-sum

and the sum of weights of elementary subcriteria descending from Gr.

Note 3.2.3. In case the DM is not confident in providing a concordance cutting level for each

criterion belonging to the last but one level of the hierarchy, (s)he could give another information

regarding them. In fact, (s)he could state that each concordance cutting level λr, r ∈ IG \EL, should

be equal to a certain percentage of the sum of weights of the elementary subcriteria descending from

criterion Gr. For example, if the DM declared that the concordance cutting levels should be equal to

70% of the relative weights of elementary subcriteria descending from the corresponding criteria, it

would give λr = 0.7×
∑

t∈E(Gr)
kt. It is easy to observe that also in this case λr =

∑n(r)
j=1 λ(r,j) for all

r ∈ IG \ {LBO ∪ EL}.

The result of the concordance test for a pair (a, b) ∈ B is positive if Cr(a, b) ≥ λr. Once the

result of the concordance test has been positive, one can pass to the non-discordance test. Its result

is positive for the pair (a, b) ∈ B, unless “a is significantly worse than b” on at least one elementary

subcriterion descending from Gr, i.e. if gt(b)− gt(a) ≥ vt for any t ∈ E(Gr).

Remark that, if we consider r = 0 then this procedure boils down to the classical ELECTRE

method in which all evaluation criteria are considered at the same level.

Summing up, for each criterion/subcriterion Gr, with r ∈ IG \ EL, and for each a, b ∈ A, we have:

aSrb⇔ Cr(a, b) ≥ λr, and gt(b)− gt(a) < vt, for all t ∈ E(Gr).

In the following Proposition we show two fundamental properties of hierarchical outranking:

Proposition 3.2.1.

1. Given two alternatives a, b ∈ A, and r ∈ IG \ (LBO ∪ EL), such that

aS(r,j)b, for all j = 1, . . . , n(r),

then aSrb,

2. Given two alternatives a, b ∈ A, and r ∈ IG \ (LBO ∪ EL), such that

not(aS(r,j)b), for all j = 1, . . . , n(r),

then not(aSrb).

Proof. See Appendix A.
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Note 3.2.4. Until now, we have applied the concepts of the hierarchy of criteria to one specific ELEC-

TRE method that is the ELECTRE IS method. The Multiple Criteria Hierarchy Process (MCHP)

can be applied also to other ELECTRE methods, including the most popular ELECTRE III method.

ELECTRE III builds, for each couple of alternatives (a, b) ∈ B, the credibility index

ρ(a, b) = C(a, b)
∏

{j:dj(a,b)>C(a,b)}

1− dj(a, b)

1− C(a, b)

where for each criterion gj,

dj(a, b) =











1, if gj(a) ≤ gj(b)− vj,
gj(a)−[gj(b)−pj ]

vj−pj
, if gj(b)− vj < gj(a) < gj(b)− pj,

0, if gj(a) ≥ gj(b)− pj.

In MCHP, for each criterion Gr with r ∈ IG \ EL, we can define the following credibility index

ρr(a, b) = Cr(a, b)
∏

{t∈E(Gr) : dt(a,b)>Cr(a,b)}

1− dt(a, b)

1− Cr(a, b)

where dt(a, b) is defined equivalently to dj(a, b) for each elementary subcriterion gt, t ∈ EL.

From the definition of ρr(a, b) it follows that if none of the elementary subcriteria descending from

Gr opposes veto to the outranking of a over b on criterion Gr (that is dr(a, b) = 0 for all t ∈ E(Gr)),

then ρr(a, b) = Cr(a, b); if some elementary subcriterion descending from Gr opposes the veto to

the outranking of a over b with respect to criterion Gr (that is there exists at least one elementary

subcriterion gt, with t ∈ E(Gr), such that dt(a, b) = 1), then ρr(a, b) = 0 and in all other cases the

credibility index ρr(a, b) is lower than the concordance index Cr(a, b).

3.2.3 Hierarchical ELECTREGKMS

The only information the DM can obtain from the evaluations of alternatives with respect to the

considered criteria is the dominance relation. In general, information carried by the dominance

relation is very poor, and thus, in order to arrive to a final decision which would be concordant with

the value system of the DM, it is useful to take into account some preference information provided

by the DM. This preference information can be obtained in either direct or indirect way: if the way

is direct, then the DM provides precise values or interval of values for the parameters present in the

model, and if the way is indirect, then the DM is invited to provide preference information from

which the parameters of the model can be inferred.

In this work, we use a mix of both ways in order to infer the parameters of the model. We suppose

that, considering a multiple criteria choice or ranking problem, the DM can provide preference

information of two types:
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• pairwise comparisons of some reference alternatives from set AR ⊆ A, stating the truth or falsity

of outranking relation aSrb, with r ∈ IG \EL and a, b ∈ AR (in the following BR = AR ×AR),

• information regarding the indifference and preference thresholds qt and pt for each elementary

subcriterion gt, t ∈ EL and information regarding weights kt for some elementary subcriterion

gt, t ∈ EL.

Regarding the direct preference information, the DM can provide intervals of possible values [qt,∗, q
∗
t ]

and [pt,∗, p
∗
t] for each indifference and preference threshold qt, pt, t ∈ EL, where qt,∗ and q∗t are,

respectively, the smallest and the greatest value of the indifference threshold, and pt,∗ and p∗t are,

respectively, the smallest and the greatest value of the preference threshold allowed by the DM.

Besides, we assume that the DM could give information on the weight kt of some elementary subcrite-

rion providing interval of possible values [kt,∗, k
∗
t ], where kt,∗ and k∗t are, respectively, the smallest and

the greatest value of the weights allowed by the DM, or providing pairwise comparison between the

elementary subcriteria of the type: “elementary subcriterion gt1 is more important than elemenatry

subcriterion gt2” or “elementary subcriteria gt1 and gt2 are equally important” that are translated

from the constraints kt1 > kt2 and kt1 = kt2 respectively.

If the DM cannot provide intervals of indifference and preference threshold values for an elementary

subcriterion gt, then (s)he has to indicate at least one couple of reference alternatives a, b ∈ AR ⊆ A

for which the difference between gt(a) and gt(b) is non-significant for the DM (a ∼t b), and at least

one couple of reference alternatives a, b for which the difference between gt(a) and gt(b) is significant

for the DM (a ≻t b). We denote by EL1 and EL2 the subsets of EL (such that EL1 ∪ EL2 = EL)

containing indices of elementary subcriteria for which the DM provides information about the thresh-

olds in a direct or indirect way, respectively.

In order to ensure the consistency of the above thresholds, the following constraints need to be

satisfied:

• qt,∗ ≤ q∗t , pt,∗ ≤ p∗t and q∗t ≤ pt,∗, for all t ∈ EL1,

• |gt(a)− gt(b)| < gt(c)− gt(d), if a ∼t b and c ≻t d, for all t ∈ EL2,

• p∗t should be not greater than βt−αt, t ∈ EL1, where αt = mina∈A gt(a), and βt = maxa∈A gt(a).

We call compatible model, a set of parameters (thus variables ψt(a, b) for each pair of alternatives

(a, b) ∈ B and for each elementary subcriterion gt, t ∈ EL, veto thresholds vt for all t ∈ EL, and

concordance cutting levels λs for all s ∈ LBO) which restore the preference information provided
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by the DM and thus satisfy the following set of constraints (see [47] for a similar formulation in a

non-hierarchical case, and Appendix B for a detailed description of the constraints):

138



Pairwise comparison stating aSrb or not(aSrb):

Cr(a, b) =
∑

t∈E(Gr)
ψt(a, b) ≥ λr and gt(b)− gt(a) + ε ≤ vt, t ∈ E(Gr),

if aSrb, for (a, b) ∈ BR,

Cr(a, b) =
∑

t∈E(Gr)
ψt(a, b) + ε ≤ λr +M r

0 (a, b) and gt(b)− gt(a) ≥ vt − δrMt(a, b),

if not(aSrb), for (a, b) ∈ BR,

M r
0 (a, b),Mt(a, b) ∈ {0, 1}, for all t ∈ E(Gr), M

r
0 (a, b) +

∑

t∈E(Gr)
Mt(a, b) ≤ |E(Gr)| ,

δr ≥ maxt∈E(Gr){βt − αt} where αt = min
a∈A

gt(a) and βt = max
a∈A

gt(a).

Concordance cutting levels and values of inter-criteria parameters:

λs ≥
∑

t∈E(Gs)

ψt(x
∗
t, xt,∗)

2
, and λs ≤

∑

t∈E(Gs)

ψt(x
∗
t, xt,∗), for all s ∈ LBO,

λr =

n(r)
∑

j=1

λ(r,j), for all r ∈ IG \ {LBO ∪ EL} ,

∑

t∈EL

ψt(x
∗
t, xt,∗) = 1, where xt,∗, x

∗
t ∈ A for all t ∈ EL : gt(x

∗
t) = βt, and gt(xt,∗) = αt,

vt ≥ p∗t + ε, t ∈ EL,

vt ≥ gt(b)− gt(a) + ε if a ∼t b, and gt(a) ≤ gt(b), t ∈ EL2, for all (a, b) ∈ B,

Values of marginal concordance indices conditioned by intra-criterion preference information,

for all (a, b) ∈ B:

kt,∗ ≤ ψt(x
∗
t, xt,∗) ≤ k∗t , t ∈ EL,

ψt1(x∗t1 , xt1,∗) ≥ ψt2(x∗t2 , xt2,∗) + ε, if elementary subcriterion gt1 is more important than

elementary subcriterion gt2 , t1, t2 ∈ EL,

ψt1(x∗t1 , xt1,∗) = ψt2(x∗t2 , xt2,∗), if elementary subcriteria gt1 and gt2 are

equally important, t1, t2 ∈ EL,

ψt(a, b) = 0 if gt(a)− gt(b) ≤ −p
∗
t, t ∈ EL1,

ψt(a, b) ≥ ε if gt(a)− gt(b) > −pt,∗, t ∈ EL1,

ψt(a, b) = ψt(x
∗
t, xt,∗) if gt(a)− gt(b) ≥ −qt,∗, t ∈ EL1,

ψt(a, b) + ε ≤ ψt(x
∗
t, xt,∗) if gt(a)− gt(b) < −q

∗
t , t ∈ EL1,

ψt(a, b) = ψt(b, a) = ψt(x
∗
t, xt,∗) if a ∼t b, t ∈ EL2

ψt(a, b) = 0 if b ≻t a, t ∈ EL2.

Monotonicity of the functions of marginal concordance indices, for all a, b, c, d ∈ A, t ∈ EL:

ψt(a, b) ≥ ψt(c, d) if gt(a)− gt(b) > gt(c)− gt(d),

ψt(a, b) = ψt(c, d) if gt(a)− gt(b) = gt(c)− gt(d),


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EAR
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The whole set of constraints EAR

has the form of 0-1 Mixed Integer Linear Program (MILP), as

shown above. If EAR

is feasible and ε∗ = max ε, subject to EAR

, is greater than 0, then there exists

at least one outranking model compatible with the preference information.

In general, there may exist more than one outranking model compatible with preference infor-

mation provided by the DM; each one of the compatible models restores the preference information

concerning the reference alternatives provided by the DM, but it can compare in a different way

the other couples of alternatives not present in the preference information provided by the DM. For

this reason, ROR takes into account all outranking models compatible with preference information

provided by the DM simultaneously. In the ROR context, in case of the hierarchy of criteria applied

to ELECTRE, and considering a criterion/subcriterion Gr of the hierarchy, with r ∈ IG \ EL and

two alternatives a, b ∈ A, we can give the following definitions:

Definition 3.2.1.

• a necessarily outranks b with respect to Gr, and we write aSN
r b, if a outranks b with respect to

Gr, for all compatible models,

• a possibly outranks b with respect to Gr, and we write aSP
r b, if a outranks b with respect to Gr,

for at least one compatible model,

• a necessarily does not outrank b with respect to Gr, and we write aSCN
r b, if a does not outrank

b with respect to Gr, for all compatible models,

• a possibly does not outrank b with respect to Gr, and we write aSCP
r b, if a does not outrank b

with respect to Gr, for at least one compatible model.

Remark that, in case of r = 0, the necessary and possible outranking relations SN
r and SP

r are

the same as necessary and possible outranking relations defined in [47], for a flat (non-hierarchical)

structure of the set of criteria.

Given a pair of alternatives (a, b) ∈ B, and a criterion Gr ∈ G with r ∈ IG \ EL, necessary and

possible outranking relations (%N
r , %P

r ) can be computed as follows.

• To check whether aSN
r b, we assume that a does not outrank b with respect to criterion Gr

(not(aSrb)), and we add the corresponding constraints to set EAR

, getting the set of constraints

EN
r (a, b) shown below. Then, we verify whether not(aSrb) is possible in the set of all outranking

models compatible with the previously provided preference information.
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EAR

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) + ε ≤ λr +M r
0 (a, b) and gt(b)− gt(a) ≥ vt − δrMt(a, b),

M r
0 (a, b) +

∑

t∈E(Gr)

Mt(a, b) ≤ |E(Gr)|, M
r
0 (a, b),Mt(a, b) ∈ {0, 1}, t ∈ E(Gr).
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EN
r (a, b)

We say that:

aSN
r b if EN

r (a, b) is infeasible or εNr (a, b) ≤ 0 where εNr (a, b) = max ε, subject to EN
r (a, b).

• To check whether aSP
r b, we assume that a outranks b with respect to criterion Gr (aSrb), and

we add the corresponding constraints to the set EAR

, getting the set of constraints EP
r (a, b)

shown below. Then, we verify whether aSrb is possible in the set of all outranking models

compatible with the previously provided preference information.

EAR

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) ≥ λr and gt(b)− gt(a) + ε ≤ vt, t ∈ E(Gr)















EP
r (a, b)

We say that:

aSP
r b if EP

r (a, b) is feasible and εPr (a, b) > 0 where εPr (a, b) = max ε, subject to EP
r (a, b).

Note 3.2.5. It is worth noting that the set of constraints EAR

defines a set of variables ψt(a, b),

t ∈ EL, (a, b) ∈ B, being non-decreasing functions with respect to the difference gt(a) − gt(b), dif-

ferently from the functions φt(a, b) which are non-decreasing and linear. This is due to the fact that

indifference and preference thresholds, as well as the veto thresholds, are not directly provided by

the DM. In this situation, taking thresholds and weights as unknown variables, makes that the opti-

mization problems to be solved in ROR are non more linear programming ones. As there are many

optimization problems to be solved in ROR, the whole approach would be practically non-tractable.

If the DM would be able to provide all the thresholds considered in the model (indifference, preference

and veto), then linear programming could be applied again within a simplified model of ROR, con-

sidering as variables only the weights kt, t ∈ EL, and the concordance cutting levels λs, s ∈ LBO.

In this case, the feasibility constraints of the optimization problems considered in ROR can be simply

modified to the following form:
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Pairwise comparison stating aSrb or not(aSrb):

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) ≥ λr, if aSrb, for (a, b) ∈ BR,

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) + ε ≤ λr if not(aSrb), for (a, b) ∈ BR,

Concordance cutting levels and values of inter-criteria parameters:

λs ≥
∑

t∈E(Gs)

kt
2
, and λs ≤

∑

t∈E(Gs)

kt, for all s ∈ LBO,

∑

t∈EL

kt = 1,

kt,∗ ≤ kt ≤ k∗t , t ∈ EL,

kt1 ≥ kt2 + ε, if elementary subcriterion gt1 is more important than

elementary subcriterion gt2 , t1, t2 ∈ EL,

kt1 = kt2 , if elementary subcriteria gt1 and gt2 are

equally important, t1, t2 ∈ EL,







































































































































EAR

EAR

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) + ε ≤ λr,











EN
r (a, b),

EAR

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) ≥ λr,











EP
r (a, b)

The linearity and simplicity of the above formulation is concordant with reasoning of Note 3.2.1.

Remark that the preference information of the type aSrb and not(aSrb) provided by the DM involves

the concordance test only, because the veto thresholds were given before by the DM, and thus not

(aSrb) could not reasonably be caused by discordance. Indeed, it is reasonable to assume that the DM

stating that aSrb or not(aSrb) already knows that gt(b)− gt(a) < vt for all t ∈ E(Gr).

Properties of necessary and possible outranking relations in hierarchical ELECTREGKMS

Proposition 3.2.2.

1. For all r ∈ IG \ EL, S
N
r ⊆ SP

r ,

2. For all r ∈ IG \ EL, S
P
r and SN

r are reflexive,

3. For all a, b ∈ A, for all r ∈ IG \ EL, aS
N
r b⇔ not(aSCP

r b),

4. For all a, b ∈ A, for all r ∈ IG \ EL, aS
P
r b⇔ not(aSCN

r b),

5. SCN
r ⊆ SCP

r , for all r ∈ IG \ EL,

6. For all r ∈ IG \ EL, S
CP
r and SCN

r are irreflexive.
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Proof. See Appendix A.

Proposition 3.2.3.

1. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that

aSN
(r,j)b for all j = 1, . . . , n(r),

then aSN
r b,

2. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO) , such that:

α) aSN
(r,j)b for all j = 1, . . . , n(r), j 6= w,

β) aSP
(r,w)b,

then aSP
r b,

3. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that

aSCN
(r,j)b for all j = 1, . . . , n(r),

then aSCN
r b.

4. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that:

α) aSCN
(r,j)b for all j = 1, . . . , n(r), j 6= w,

β) aSCP
(r,w)b,

then aSCP
r b.

Proof. See Appendix A.

An illustrative example

In this section, we present an illustrative example in order to show how to use the ELECTRE method

and the ELECTREGKMS method in case of the hierarchical structure of criteria. At first, we describe

how to use ELECTRE method in case of availability of full preference information composed of the

weights, the preference, indifference and veto thresholds, and about the concordance cutting levels.

Let us suppose that a university department of natural sciences, like every year, has a possibility of

funding a scholarship for one of its best students. As five best students passed to the final selection,

the Dean has to choose from among them one laureate. These five finalists are evaluated with

respect to two macro-subjects: Mathematics and Chemistry. Both these macro-subjects present a

hierarchical structure; on one hand, Mathematics has two sub-subjects: Algebra and Analysis, and
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each one of these has other two sub-subjects: Group Theory and Linear Algebra are sub-subjects of

Algebra, while Calculus and Functional Analysis are sub-subjects of Analysis. On the other hand,

Chemistry has two sub-subjects: Analytical Chemistry and Organic Chemistry, and each one of them

has two sub-subjects: Analytical Chemistry I and Applied Analytical Chemistry are sub-subjects

of Analytical Chemistry, while Organic Chemistry I and Organic Chemistry II are sub-subjects of

Organic Chemistry. The described hierarchy of criteria is shown in Figure 3.12.

Figure 3.12: Hierarchical evaluation of students

G(0) λ(0) = 0.6499

G(1)

Mathematics
λ(1) = 0.3412
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The eight sub-subjects are thus the elementary subcriteria of the considered hierarchical structure

and the evaluations of the students with respect to the eight sub-subjects are shown in Table 3.5.

The evaluation of students on these elementary subcriteria is included between 18 and 30. Weights,

indifference, preference and veto thresholds are shown in Table 3.6(a).

Table 3.5: Evaluations of students on elementary subcriteria

Student g(1,1,1) g(1,1,2) g(1,2,1) g(1,2,2) g(2,1,1) g(2,1,2) g(2,2,1) g(2,2,2)
s1 28 22 27 21 29 21 28 20
s2 20 23 19 22 30 20 29 19
s3 29 21 28 20 18 24 18 23
s4 30 20 29 19 28 22 27 21
s5 18 24 18 23 20 23 19 22

The Dean decides to provide information regarding the concordance cutting levels in the way
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explained in the Note 3.2.3. Then, (s)he states that each concordance cutting level λs, s ∈ LBO,

should be equal to 65% of the sum of the weights of elementary subcriteria descending from Gs. In

consequence, for each criterion of the last but one level the values of concordance cutting levels are:

λ(1,1) = 0.1625, λ(1,2) = 0.1787, λ(2,1) = 0.1462 and λ(2,2) = 0.1625 as reported in Table 3.6(b).

Table 3.6: ELECTRE parameters in case of the hierarchy of criteria

(a) Weights and thresholds

Elementary subcriterion, gt kt qt pt vt
Group Theory 0.1 1 4 10
Linear Algebra 0.15 1 4 10

Calculus 0.125 1 4 10
Functional Analysis 0.15 1 4 10

Analytical Chemistry I 0.1 2 5 10
App. Anal. Chemistry 0.125 2 5 10
Organic Chemistry I 0.15 2 5 10
Organic Chemistry II 0.1 2 5 10

(b) Concordance cutting levels

Criterion, Gr λr
Algebra 0.1625
Analysis 0.1787

Analytical Chemistry 0.1462
Organic Chemistry 0.1625

Following the procedure explained in section 3.2.2, we obtain the outranking relations shown in

Table 3.7, where:

S(r)(s1, s2) =







1 if s1 outranks s2 with respect to criterion Gr,

0 if s1 does not outrank s2 with respect to criterion Gr.

In Table 3.7, we obtain the “overall outranking relation”, that is the outranking relation with respect

to the totality of criteria, as well as “partial outranking relations”, that is outranking relations with

respect to a particular subcriterion at a given level of the hierarchy.

Remark that using the classical ELECTRE method, we obtain the comprehensive outranking rela-

tion only because all criteria are considered at the same level. In consequence, using the classical

ELECTRE method, we could learn that student s2 does not outrank student s4 with respect to

the totality of criteria, but we could not know that student s2 outranks student s4 with respect to

Chemistry, Analytical Chemistry and Organic Chemistry.

According to point 1 of Proposition 3.2.1, we observe that if student s1 outranks student s5 with

respect to Mathematics (G(1)) and Chemistry (G(2)), then s1 outranks s5 with respect to the totality

of criteria (G(0)), but the contrary is not true; in fact, for example, student s2 outranks student s3

with respect to Chemistry, but at the same time student s2 does not outrank student s3 with respect

to Analytical Chemistry (G(2,1)), being a sub-criterion descending from Chemistry.

Now, let us suppose that the Dean cannot provide the full preference information regarding the
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Table 3.7: Outranking relations at particular levels of the hierarchy of criteria

S(0) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 1 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 0 0 1

S(1) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 0 1 0 0 1
s3 1 1 1 1 0
s4 1 0 1 1 0
s5 0 1 0 0 1

S(1,1) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 0 1 0 0 1
s3 1 1 1 1 0
s4 1 0 1 1 0
s5 0 1 0 0 1

S(1,2) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 0 1 0 0 1
s3 1 1 1 1 0
s4 1 0 1 1 0
s5 0 1 0 0 1

S(2) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 1 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 1 0 1

S(2,1) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 0 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 1 0 1

(2,2) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 1 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 1 0 1

parameters of the Hierarchical ELECTRE method. The only information the Dean can get from the

evaluation table is the dominance relation, but in this particular case there is no student dominating

another student. Thus, the Dean decides to use the Hierarchical ELECTREGKMS method. In fact,

(s)he realizes that using this procedure, (s)he has two advantages: (s)he can give finer preference

information, taking into account subsets of criteria at different levels of the hierarchy, and at the same

time, (s)he can get more information from the partial necessary and possible outranking relations.

In order to use this methodology, (s)he provides the thresholds shown in Table 3.8.

Table 3.8: Indifference and preference thresholds provided by the Dean

Elementary subcriterion, gt qt,∗ q∗t pt,∗ p∗t
Group Theory 1 2 3 4
Linear Algebra 1 2 3 4

Calculus 1 2 3 4
Functions Theory 1 2 3 4

Analytical Chemistry I 1 2 3 4
App. Anal. Chemistry 1 2 3 4
Organic Chemistry I 1 2 3 4
Organic Chemistry II 1 2 3 4

Looking at the evaluations of students shown in Table 3.5, the Dean specifies the following pairwise

comparisons:
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• student s4 outranks student s2 with respect to Mathematics (s4S(1)s2),

• student s5 does not outrank student s1 with respect to Organic Chemistry (not(s5S(2,2)s1)).

These two pieces of information, are translated into the following constraints regarding variables of

the ordinal regression problem:

• s4S(1)s2 is translated into:

1. ψ(1,1,1)(s4, s1) + ψ(1,1,2)(s4, s1) + ψ(1,2,1)(s4, s1) + ψ(1,2,2)(s4, s1) ≥ λ(1,1) + λ(1,2),

2. v(1,1,1) ≥ g(1,1,1)(s2)− g(1,1,1)(s4) + ε = −10 + ε,

3. v(1,1,2) ≥ g(1,1,2)(s2)− g(1,1,2)(s4) + ε = 3 + ε,

4. v(1,2,1) ≥ g(1,2,1)(s2)− g(1,2,1)(s4) + ε = −10 + ε,

5. v(1,2,2) ≥ g(1,2,2)(s2)− g(1,2,2)(s4) + ε = 3 + ε.

• not(s5S(2,2)s1) is translated into:

1. ψ(2,2,1)(s5, s1) + ψ(2,2,2)(s5, s1) + ε ≤ λ(2,2) +M
(2,2)
0 (s5, s1),

2. v(2,2,1) − δM(2,2,1)(5, 1) ≤ g(2,2,1)(s1)− g(2,2,1)(s5) = 9,

3. v(2,2,2) − δM(2,2,2)(5, 1) ≤ g(2,2,2)(s1)− g(2,2,2)(s5) = −2,

4. M
(2,2)
0 (s5, s1) +M(2,2,1)(s5, s1) +M(2,2,2)(s5, s1) ≤ 2,

5. M
(2,2)
0 (s5, s1),M(2,2,1)(s5, s1),M(2,2,2)(s5, s1) ∈ {0, 1} .

The necessary outranking relation resulting from application of all sets of preference model pa-

rameters compatible with the given preference information on the set of five students is presented in

Table 3.9.

Looking at Table 3.9, we can observe that with respect to the totality of criteria, the only

information the Dean obtains is that student s1 necessarily outranks student s2 and student s4

necessarily outranks student s1. But, when looking at the subcriteria of the hierarchy, the Dean could

observe some facts which cannot be seen when using the classic ELECTREGKMS designed for a flat

structure of criteria. According to Proposition 3.2.3, from the necessary outranking of student s4 over

student s1 with respect to Mathematics and Chemistry, follows the necessary outranking of student

s4 over student s1 with respect to the totality of criteria, but at the same time, while student s4

necessarily outranks student s1 with respect to Mathematics, student s4 does not necessarily outrank

student s1 with respect to Algebra being a subcriterion of Mathematics at the level immediately

below.
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Table 3.9: Necessary outranking relation obtained from application of the hierarchical version of
ELECTREGKMS (1 means true, and 0 means false)

SN
(0) s1 s2 s3 s4 s5
s1 1 1 0 0 0
s2 0 1 0 0 0
s3 0 0 1 0 0
s4 1 0 0 1 0
s5 0 0 0 0 1

SN
(1) s1 s2 s3 s4 s5
s1 1 1 1 0 1
s2 0 1 0 0 1
s3 1 1 1 1 1
s4 1 1 1 1 0
s5 0 0 0 0 1

SN
(1,1) s1 s2 s3 s4 s5
s1 1 1 1 0 0
s2 0 1 0 0 1
s3 1 0 1 1 0
s4 0 0 1 1 0
s5 0 0 0 0 1

SN
(1,2) s1 s2 s3 s4 s5
s1 1 1 1 0 0
s2 0 1 0 0 1
s3 1 0 1 1 0
s4 0 0 1 1 0
s5 0 1 0 0 1

SN
(2) s1 s2 s3 s4 s5
s1 1 1 0 1 0
s2 1 1 0 0 0
s3 0 0 1 0 0
s4 1 0 0 1 1
s5 0 0 1 0 1

SN
(2,1) s1 s2 s3 s4 s5
s1 1 1 0 1 0
s2 1 1 0 0 0
s3 0 0 1 0 0
s4 1 0 0 1 1
s5 0 0 1 0 1

SN
(2,2) s1 s2 s3 s4 s5
s1 1 1 0 1 0
s2 1 1 0 0 0
s3 0 0 1 0 1
s4 1 0 0 1 1
s5 0 0 1 0 1

3.2.4 Handling the hierarchy of criteria in PROMETHEE methods

In this section, we describe the extension of another outranking method, called PROMETHEE, to the

hierarchy of criteria (for a detailed description of PROMETHEE methods in case of a flat structure

of criteria see [16]).

In the case of the hierarchy of criteria, PROMETHEE methods compare couples of alternatives

with respect to criteria and subcriteria of the hierarchical family of criteria in order to construct an

outranking relation in the set of alternatives. This construction involves a few parameters, that is,

the weights of elementary subcriteria, as well as indifference and preference thresholds for differences

of evaluations of couples of alternatives on each elementary subcriterion. The preference of the DM

regarding a couple of alternatives (a, b) with respect to elementary subcriterion gt depends on the

difference between gt(a) and gt(b) and for this reason the preference of a over b can be represented by

a function Pt(a, b), increasing with dt(a, b) = gt(a)− gt(b). In [16], there are given six different types

of functions Pt(a, b), and each one of them involves from zero to three parameters. Let us suppose,

there are m evaluation criteria and n alternatives in set A. After the DM has decided which function

Pt is expressing the best her/his preferences with respect to elementary subcriterion gt, and after

introducing the weights kt for each elementary subcriterion gt, t ∈ EL, one can calculate for each

couple of alternatives (a, b) and for each criterion Gr, r ∈ IG, the following indices:
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• the partial aggregate preference indices:

πr(a, b) =











krPr(a, b) if r ∈ EL,
∑

t∈E(Gr)

ktPt(a, b) otherwise,

representing, the degree of preference of a over b, with respect to criterion/subcriterion Gr;

• the partial positive, negative, and net outranking flows:

Φ+
r (a) =

1

n− 1

∑

x∈A\{a}

πr(a, x), Φ−r (a) =
1

n− 1

∑

x∈A\{a}

πr(x, a), Φr(a) = Φ+
r (a)− Φ−r (a)

representing respectively how strongly alternative a outranks all other alternatives of A on Gr,

how strongly alternatives of A outrank a on Gr, and a balance between the two previous flows.

In this case, we can build preference P I
r , indifference IIr and incomparabilityRI

r relations of PROMETHEE

I as follows:























aP I
r b iff Φ+

r (a) ≥ Φ+
r (b), Φ−r (a) ≤ Φ−r (b), and at least one of the two inequalities is strict,

aIIr b iff Φ+
r (a) = Φ+

r (b) and Φ−r (a) = Φ−r (b),

aRI
rb otherwise

Moreover, preference
(

P II
r

)

and indifference
(

IIIr
)

relations of PROMETHEE II can be defined as

follows:

aP II
r b iff Φr(a) > Φr(b), while aIIIr b iff Φr(a) = Φr(b).

Note 3.2.6. Remark that in case r = 0, we obtain the indices and relations of the classical PROMETHEE

methods for a flat structure of criteria.

In case of the hierarchy of criteria, we can prove the following Propositions:

Proposition 3.2.4. For each a, b ∈ A, and for each Gr ∈ G, r ∈ IG \ EL, we have:

1. πr(a, b) =

n(r)
∑

j=1

π(r,j)(a, b)

2. Φ+
r (a) =

n(r)
∑

j=1

Φ+
(r,j)(a)

3. Φ−r (a) =

n(r)
∑

j=1

Φ−(r,j)(a)
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4. Φr(a) =

n(r)
∑

j=1

Φ(r,j)(a)

Proof. See Appendix A.

Proposition 3.2.5.

1. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aP I
(r,j)b for all j = 1, . . . , n(r),

then aP I
r b,

2. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that:

α) {C1, C2} is a partition of the set {1, . . . , n(r)} of indices of subcriteria of Gr in the subse-

quent level,

β) aP I
(r,j)b, for all j ∈ C1,

γ) aII(r,j)b, for all j ∈ C2,

then aP I
r b,

3. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aII(r,j)b for all j = 1, . . . , n(r),

then aIIr b,

Proof. See Appendix A.

Proposition 3.2.6.

1. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aP II
(r,j)b for all j = 1, . . . , n(r),

then aP II
r b,

2. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that:

α) {C1, C2} is a partition of the set {1, . . . , n(r)} of indices of subcriteria of Gr in the subse-

quent level,

β) aP II
(r,j)b, for all j ∈ C1,

γ) aIII(r,j)b, for all j ∈ C2,

then aP II
r b,
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3. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aIII(r,j)b for all j = 1, . . . , n(r),

then aIIIr b,

Proof. See Appendix A.

3.2.5 Hierarchical PROMETHEEGKS

In this section we extend the principles of PROMETHEEGKS to the case of the hierarchy of criteria.

As stated already above, the only information the DM can obtain from the evaluation matrix is

the dominance relation in the set of alternatives. In general, this information is very poor and

leaves many alternatives incomparable. To enrich this information, the DM has to introduce some

preference information which reveals her/his value system. In this context, we take into account both

PROMETHEE I and PROMETHEE II methods, noting that the new Hierarchical PROMETHEE

method, so obtained, contains PROMETHEEGKS [76], as a particular case.

Given a subset AR of A, whose elements are called reference alternatives, and a criterion Gr, r ∈

IG \ EL, we suppose that the DM can give two types of preference information regarding a, b ∈ AR

(we consider BR = AR × AR):

• local relations (denoted by a %πr
b, a ≻πr

b, and a ∼πr
b), comparing directly the performance

of a and b on criterion Gr, and these comparisons are translated into constraints regarding

πr(a, b) and πr(b, a),

• global relations (denoted by a %Φr
b, a ≻Φr

b, and a ∼Φr
b), comparing a and b to all other

alternatives, taking into account their outranking flows, Φ+
r (a), Φ+

r (b), Φ−r (a) and Φ−r (b), in

case of PROMETHEE I or Φr(a) and Φr(b) in case of PROMETHEE II.

As in the Hierarchical ELECTREGKMS method, we assume moreover that the DM can give for each

elementary subcriterion information regarding indifference and preference thresholds directly, that

is provide intervals of possible values, or indirectly, that is provide information on some couples of

alternatives (s)he considers indifferent or not (EL1 and EL2 represent the sets of criteria for which

the DM gives information on the indifference and preference thresholds in a direct or indirect way,

respectively); besides, analogously to Hierarchical ELECTREGKMS, we assume that the DM could

provide some information regarding the weights of some elementary subcriterion (for a more detailed

description of these preference information and for the consistency constraints on the indifference
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and preference thresholds see Appendix B).

Given this preference information, a compatible outranking model is a set of preference indices

πt(a, b), (a, b) ∈ B, t ∈ EL, restoring the preference information provided by the DM and satisfying

so the following set of constraints (see [76] for a similar formulation in a non-hierarchical case and

Appendix B for a detailed description of these constraints):
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Pairwise comparisons (local relations), for (a, b) ∈ BR:

πr(a, b) ≥ πr(b, a) if a %πr
b,

πr(a, b) ≥ πr(b, a) + ε if a ≻πr
b,

πr(a, b) = πr(b, a) if a ∼πr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE II, for (a, b) ∈ BR:

Φr(a) ≥ Φr(b) if a %Φr
b,

Φr(a) ≥ Φr(b) + ε if a ≻Φr
b,

Φr(a) = Φr(b) if a ∼Φr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE I:

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b) if a %Φr
b, for (a, b) ∈ BR,

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b) and

Φ+
r (a)− Φ−r (a) ≥ Φ+

r (b)− Φ−r (b) + ε

}

if a ≻Φr
b, for (a, b) ∈ BR,

Φ+
r (a) = Φ+

r (b) and Φ−r (a) = Φ−r (b) if a ∼Φr
b, for (a, b) ∈ BR.

Values of inter-criteria parameters:
∑

t∈EL

πt(x
∗
t , xt,∗) = 1, where xt,∗, x

∗
t ∈ A for all t ∈ EL : gt(x

∗
t) = max

a∈A
gt(a), and gt(xt,∗) = min

a∈A
gt(a),

Values of marginal preference indices conditioned by intra-criterion preference information,
for all (a, b) ∈ B:

kt,∗ ≤ πt(x
∗
t , xt,∗) ≤ k∗t , t ∈ EL,

πt1(x
∗
t1
, xt1,∗) ≥ πt2(x

∗
t2
, xt2,∗) + ε, if elementary subcriterion gt1 is more important than

elementary subcriterion gt2 , t1, t2 ∈ EL,

πt1(x
∗
t1
, xt1,∗) = πt2(x

∗
t2
, xt2,∗), if elementary subcriteria gt1 and gt2

are equally important, t1, t2 ∈ EL,

πt(a, b) = 0 if gt(a)− gt(b) ≤ qt,∗, t ∈ EL1,

πt(a, b) ≥ ε if gt(a)− gt(b) > q∗t , t ∈ EL1,

πt(a, b) + ε ≤ πt(x
∗
t , xt,∗) if gt(a)− gt(b) < pt,∗, t ∈ EL1,

πt(a, b) = πt(x
∗
t , xt,∗) if gt(a)− gt(b) ≥ p∗t , t ∈ EL1,

πt(a, b) = 0, πt(b, a) = 0 if a ∼t b, t ∈ EL2,

πt(a, b) = πt(x
∗
t , xt,∗) if a ≻t b, t ∈ EL2.

Monotonicity of the functions of marginal preference indices, for all a, b, c, d ∈ A, t ∈ EL:

πt(a, b) ≥ πt(c, d) if gt(a)− gt(b) > gt(c)− gt(d),

πt(a, b) = πt(c, d) if gt(a)− gt(b) = gt(c)− gt(d).
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

EAR

If EAR

is feasible and ε∗ = max ε, subject to EAR

, is greater than 0, then there exists at least

one outranking model compatible with the preference information.
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Given a criterion/subcriterion Gr, r ∈ IG \ EL, and two alternatives a, b ∈ A, we can give the

following definitions:

Definition 3.2.2.

• Given a compatible outranking model S exploited in the way of PROMETHEE I, we say a

outranks b with respect to Gr, and we write a %r b, if:

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b).

• Given a compatible outranking model S exploited in the way of PROMETHEE II, we say that

a outranks b with respect to Gr, and we write a %r b, if:

Φr(a) ≥ Φr(b).

Note 3.2.7. Remark that given two alternatives a, b ∈ A, for each Gr ∈ IG \ EL, and for each

compatible outranking model S, if a outranks b with respect to criterion/subcriterion Gr in the sense

of PROMETHEE I, then a outranks b with respect to criterion/subcriterion Gr in the sense of

PROMETHEE II.

In the ROR context, considering a criterion/subcriterion Gr, r ∈ IG \ EL, and two alternatives

a, b ∈ A, we can give the following definitions:

Definition 3.2.3.

• a necessarily outranks b with respect to Gr, and we write a %N
r b, if a outranks b with respect

to Gr, for all compatible outranking models,

• a possibly outranks b with respect to Gr, and we write a %P
r b, if a outranks b with respect to

Gr, for at least one compatible outranking model.

Given a pair of alternatives (a, b) ∈ B, and a criterion/subcriterion Gr, r ∈ IG \ EL, necessary

and possible outranking relations (%N
r ,%

P
r ) can be computed as follows:

• To check whether a %N
r b, we assume that a does not outrank b with respect to Gr (not(a %r b)),

and we add the corresponding constraints to set EAR

shown below. Then, we verify whether

not(a %r b) is possible in the set of all outranking models compatible with the previously

provided preference information.
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EAR

if one verifies the truth of global outranking:

if exploited in the way of PROMETHEE II, then:

Φr(a) + ε ≤ Φr(b)

if exploited in the way of PROMETHEE I, then:

Φ+
r (a) + ε ≤ Φ+

r (b) + 2M r
1 and Φ−r (a) + 2M r

2 ≥ Φ−r (b) + ε

where M r
i ∈ {0, 1}, i = 1, 2, and

∑2
i=1M

r
i ≤ 1

if one verifies the truth of local outranking:

πr(a, b) + ε ≤ πr(b, a)
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

EN
r (a, b)

We say that:

a %N b if EN
r (a, b) is infeasible or εNr (a, b) ≤ 0, where εNr (a, b) = max ε, subject to EN

r (a, b).

Observe that in EN
r (a, b), the binary variables M0

r and M1
r are used in order to deny the

outranking of a over b. In fact, a does not outrank b if Φ+
r (a) < Φ+

r (b) or Φ−r (a) > Φ−r (b). If

M i
r = 0, i = 0, 1, then the corresponding constraint opposes a veto to the outranking of a over b

(in particular, if M0
r = 0 then Φ+

r (a) < Φ+
r (b) while if M1

r = 0 then Φ−r (a) > Φ−r (b)); instead, if

M i
r = 1, i = 0, 1, the corresponding constraint is always verified reminding that Φ+

r (a) ∈ [0, 1]

and Φ−r (a) ∈ [0, 1] for all a ∈ A. Besides, the constraint
∑1

i=0M
i
r ≤ 1 ensures that at least one

of the two variables has to be equal to zero.

• To check whether a %P
r b, we assume that a outranks b with respect to Gr (a %r b), and add

corresponding constraints to the set EAR

shown below. Then, we verify whether a %r b is

possible in the set of all compatible outranking models.
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EAR

if one verifies the truth of global outranking:

if exploited in the way of PROMETHEE II, then:

Φr(a) ≥ Φr(b)

if exploited in the way of PROMETHEE I, then:

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b)

if one verifies the truth of local outranking:

πr(a, b) ≥ πr(b, a)
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

EP
r (a, b)

We say that:

a %P
r b if EP

r (a, b) is feasible and εPr (a, b) > 0, where εPr (a, b) = max ε, subject to EP
r (a, b).

Note 3.2.8. The same observation made for ELECTRE about application of linear programming

within ROR is valid for PROMETHEE. More precisely, if the DM is able to give the marginal

function Pt(a, b) and the related thresholds, the ROR optimization problems can be formulated in

terms of linear programming, taking into account as variables the weights kt, t ∈ EL, only. This

amounts to substitute the set of constraints EAR

with the following:
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Pairwise comparisons (local relations), for (a, b) ∈ BR:

πr(a, b) ≥ πr(b, a) if a %πr
b,

πr(a, b) ≥ πr(b, a) + ε if a ≻πr
b,

πr(a, b) = πr(b, a) if a ∼πr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE II, for (a, b) ∈ BR:

Φr(a) ≥ Φr(b) if a %Φr
b,

Φr(a) ≥ Φr(b) + ε if a ≻Φr
b,

Φr(a) = Φr(b) if a ∼Φr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE I:

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b) if a %Φr
b, for (a, b) ∈ BR,

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b) and

Φ+
r (a)− Φ−r (a) ≥ Φ+

r (b)− Φ−r (b) + ε

}

if a ≻Φr
b, for (a, b) ∈ BR,

Φ+
r (a) = Φ+

r (b) and Φ−r (a) = Φ−r (b) if a ∼Φr
b, for (a, b) ∈ BR.

Values of marginal preference indices conditioned by intra-criterion preference information,
for all (a, b) ∈ B:

kt,∗ ≤ kt ≤ k∗t , t ∈ EL,

kt1 ≥ kt2 + ε, if elementary subcriterion gt1 is more important than
elementary subcriterion gt2 , t1, t2 ∈ EL,

kt1 = kt2 , if elementary subcriteria gt1 and gt2
are equally important, t1, t2 ∈ EL,
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

EAR

Properties of necessary and possible outranking relations in hierarchical PROMETHEEGKS

Proposition 3.2.7.

1. For all r ∈ IG \ EL, %
N
r ⊆ %P

r ,

2. For all r ∈ IG \ EL, %
P
r and %N

r are reflexive,

Proof. See Appendix A.

Proposition 3.2.8.

1. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that:

a %N
(r,j) b for all j = 1, . . . , n(r),

then a %N
r b.
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2. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that:

α) a %N
(r,j) b for all j = 1, . . . , n(r), j 6= w,

β) a %P
(r,w) b,

then a %P
r b.

Proof. See Appendix A.

An illustrative example

In this subsection we consider the same problem we have dealt with Hierarchical ELECTRE using

both PROMETHEE and PROMETHEEGKS methods extended to the case of a hierarchical family

of criteria.

At first, we suppose to have the same weights, as well as the same indifference and preference

thresholds as before: let us also choose for each elementary subcriterion gt, t ∈ EL, the following

preference function Pt(a, b), for any a, b ∈ A:

Pt(a, b) =



















0 if gt(a)− gt(b) ≤ qt,

gt(a)−gt(b)−qt
pt−qt

if qt < gt(a)− gt(b) < pt,

1 if gt(a)− gt(b) ≥ pt.

Table 3.10: Preference relations obtained using Hierarchical PROMETHEE I

Comprehensively s1 s2 s3 s4 s5
s1 I P P P P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P−1 P P I P
s5 P−1 P R R I

Maths s1 s2 s3 s4 s5
s1 I P P P R
s2 P−1 I P−1 P−1 R
s3 P−1 P I R R
s4 P−1 P R I R
s5 R R R R I

Algebra s1 s2 s3 s4 s5
s1 I P P P R
s2 P−1 I P−1 P−1 R
s3 P−1 P I R R
s4 P−1 P R I R
s5 P−1 P−1 P−1 P−1 I

Analysis s1 s2 s3 s4 s5
s1 I P P P P
s2 P−1 I P−1 P−1 P−1

s3 P−1 P I R R
s4 P−1 P R I R
s5 P−1 P R R I

Chemistry s1 s2 s3 s4 s5
s1 I P P P−1 P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P P P I P
s5 P−1 P−1 P−1 P−1 I

Anal. Chem. s1 s2 s3 s4 s5
s1 I P P P−1 P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P P P I P
s5 P−1 P−1 P−1 P−1 I

Org. Chem. s1 s2 s3 s4 s5
s1 I P P P−1 P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P P P I P
s5 P−1 P−1 P−1 P−1 I

In Table 3.10 we present the preference relations that PROMETHEE I states for any level of the

considered hierarchy of criteria. More precisely, considering Matrixr to be one of the seven matrices

presented in Table 3.10, we have:
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Matrixr(si, sj) =































P if si is preferred to sj with respect to criterion Gr,

I if si is indifferent to sj with respect to criterion Gr,

R if si is incomparable to sj with respect to criterion Gr,

P−1 if sj is preferred to si with respect to criterion Gr

In Table 3.10, MatrixComprehensively(s1, s5) = P is underlined in order to evidence that there exists

a couple of alternatives (si, sj) such that si is preferred to sj with respect to some criterion Gr, but

with respect to a subcriterion immediately descending from Gr, say G(r,w), si is not preferred to sj.

In our example, s1 is preferred to s5 with respect to the totality of criteria, but s1 is incomparable

to s5 with respect to Mathematics being a subcriterion of the totality of criteria. Note that the

underlined couple (s1, s5) is not the only example of such a situation in Table 3.10.

In Table 3.11, we can see the ranking obtained by Hierarchical PROMETHEE II for each crite-

rion/subcriterion of the hierarchy.

Table 3.11: Ranking of students at all levels of the hierarchy of criteria, obtained using Hierarchical
PROMETHEE II

Position/subject Comprehensive Maths Algebra Analysis Chemistry Analytical Chemistry Organic Chemistry
1 s1 (0.2000) s1 (0.0938) s1 (0.0417) s1 (0.0521) s4 (0.1250) s4 (0.0500) s4 (0.0750)
2 s4 (0.1062) s3 (0.0375) s3 (0.0125) s3 (0.0250) s1 (0.1063) s1 (0.0396) s1 (0.0667)
3 s2 (-0.0167) s4 (-0.0187) s5 (-0.0083) s4 (-0.0021) s2 (0.0688) s2 (0.0188) s2 (0.0500)
4 s3 (-0.0938) s5 (-0.0271) s4 (-0.0167) s5 (-0.0188) s3 (-0.1313) s3 (-0.0438) s3 (-0.0875)
5 s5 (-0.1958) s2 (-0.0854) s2 (-0.0292) s2 (-0.0563) s5 (-0.1688) s5 (-0.0646) s5 (-0.1042)

Now, let us suppose that the Dean decides to use the Hierarchical PROMETHEEGKS providing

some detailed outranking and non-outranking information with respect to all criteria considered

together, and with respect to particular subcriteria. At the same time, (s)he wishes to obtain

detailed information regarding the necessary and possible outranking relations. In order to use the

methodology presented above, we suppose that the Dean can give information regarding indifference

and preference thresholds on all elementary subcriteria, as shown in Table 3.12.

Let us first suppose, that the outranking relation is exploited in the way of PROMETHEE II, and

that the Dean gives the following preference information:

• with respect to Mathematics, student s4 is preferred to each other student more than student

s2 is preferred to each other student (s4 ≻Φ1
s2),

• with respect to Organic Chemistry, student s4 is preferred to each other student more than

student s3 is preferred to each other student (s4 ≻Φ(2,2)
s3).
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Table 3.12: Indifference and preference thresholds provided by the DM

Elementary subcriterion, gt qt,∗ q∗t pt,∗ p∗t
Group Theory 1 2 4 5
Linear Algebra 1 2 4 5

Calculus 1 2 4 5
Functions Theory 1 2 4 5

Analytical Chemistry I 1 2 4 5
Applied Analytical Chemistry 1 2 4 5

Organic Chemistry I 1 2 4 5
Organic Chemistry II 1 2 4 5

These two pieces of information are translated into the following constraints regarding the vari-

ables of the ordinal regression problem:

• s4 ≻Φ1
s2 is translated into:

Φ1(s4) =
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(x, s4)







≥

≥ Φ1(s2) =
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(s2, x)







−
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(x, s2)







+ ε

• s4 ≻Φ(2,2)
s3 is translated into:

Φ(2,2)(s4) =
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s4)







≥

≥ Φ(2,2)(s3) =
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(s3, x)







−
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s3)







+ ε

In Table 3.13, we show the necessary outranking relation with respect to some criteria and

subcriteria of the hierarchy. For other subcriteria the necessary outranking relation is empty.

Table 3.13: Necessary outranking relations obtained using Hierarchical PROMETHEEGKS and ex-
ploitation of the outranking relation in the way of PROMETHEE II

%N
(0) s1 s2 s3 s4 s5 %N

(1) s1 s2 s3 s4 s5 %N
(1,2) s1 s2 s3 s4 s5 %N

(2,2) s1 s2 s3 s4 s5
s1 1 0 0 0 0 s1 1 1 0 0 0 s1 1 0 0 0 0 s1 1 0 0 0 0
s2 0 1 0 0 0 s2 0 1 0 0 0 s2 0 1 0 0 0 s2 0 1 0 0 0
s3 0 0 1 0 0 s3 0 1 1 0 0 s3 0 0 1 0 0 s3 0 0 1 0 1
s4 0 0 0 1 0 s4 0 1 0 1 0 s4 0 0 0 1 0 s4 0 0 1 1 1
s5 0 0 0 0 1 s5 0 0 0 0 1 s5 0 1 0 0 1 s5 0 0 0 0 1
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In the first matrix of Table 3.13, we observe that preference information provided by the DM

does not imply any necessary outranking with respect to the totality of criteria. At the same time,

we obtain partial information that cannot be obtained by PROMETHEEGKS for a flat structure of

the set of criteria; for example, we can see that students s1, s3 and s4 are necessarily preferred to

student s2 with respect to Mathematics, so as student s4 is necessarily preferred to student s3 and

s5 with respect to Organic Chemistry, and so on.

Now, let us suppose that the outranking relation is exploited in the way of PROMETHHE I. We

are considering the same preference information provided by the Dean. It is translated, however, in

a different way than before:

• s4 ≻Φ1
s2 is translated into constraints:

1. Φ+
(1)(s4) ≥ Φ+

(1)(s2) ⇔

∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(s4, x)







≥
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(s2, x)







,

2. Φ−(1)(s4) ≤ Φ−1 (s2) ⇔

∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(x, s4)







≤
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(x, s2)







,

3. Φ+
(1)(s4)− Φ−(1)(s4) ≥ Φ+

(1)(s2)− Φ−(1)(s2) + ε⇔

∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(x, s4)







≥

≥
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(s2, x)







−
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(x, s2)







+ ε.

• s4 ≻Φ(2,2)
s3 is translated into constraints:

1. Φ+
(2,2)(s4) ≥ Φ+

(2,2)(s3) ⇔

∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(s4, x)







≥
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(s3, x)







,

2. Φ−(2,2)(s4) ≤ Φ−(2,2)(s3) ⇔

∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s4)







≤
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s3)







,

3. Φ+
(2,2)(s4)− Φ−(2,2)(s4) ≥ Φ+

(2,2)(s3)− Φ−(2,2)(s3) + ε⇔

∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s4)







≥
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≥
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(s3, x)







−
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s3)







+ ε.

In Table 3.14, we show the necessary outranking relation with respect to some subcriteria of the

hierarchy. Also in this case, the necessary outranking relation with respect to the totality of criteria is

empty, however, it is interesting to see some partial information at lower levels of the hierarchy, where

the necessary outranking relation is not empty; e.g: with respect to Analysis student s5 necessarily

outranks student s2, or with respect to Organic Chemistry, student s3 necessarily outranks student

s5, and so on.

Table 3.14: Necessary outranking relations obtained using Hierarchical PROMETHEEGKS and ex-
ploitation of the outranking relation in the way of PROMETHEE I

%N
(0) s1 s2 s3 s4 s5 %N

(1,2) s1 s2 s3 s4 s5 %N
(2,2) s1 s2 s3 s4 s5

s1 1 0 0 0 0 s1 1 0 0 0 0 s1 1 0 0 0 0
s2 0 1 0 0 0 s2 0 1 0 0 0 s2 0 1 0 0 0
s3 0 0 1 0 0 s3 0 0 1 0 0 s3 0 0 1 0 1
s4 0 0 0 1 0 s4 0 0 0 1 0 s4 0 0 0 1 0
s5 0 0 0 0 1 s5 0 1 0 0 1 s5 0 0 0 0 1

3.2.6 Conclusions

In this section, we proposed a new procedure aiming at extending the outranking methods to the

case of the hierarchy of criteria in the way introduced in [23]. The family of criteria is not considered

at the same level, but, instead, it has a hierarchical structure. Considering the hierarchical structure

of criteria, the Decision Maker (DM) can obtain not only comprehensive preference relation with

respect to all criteria, but also partial preference relation with respect to subcriteria at different

levels of the hierarchy. This is not possible when considering the flat structure of criteria.

Let us remark that the use of the hierarchy of criteria proposed by our approach is rather different

from other MCDA methodologies [111, 28]. In fact, while in general the hierarchy of criteria is used to

decompose and make easier the preference elicitation concerning pairwise comparisons of criteria with

respect to relative importance, in our approach, a preference relation in each node of the hierarchy

constitutes a base for discussion with the DM.

We wish to stress that this specific use of the hierarchy of criteria can be applied to any MCDA

methodology. In this section we have applied it to Robust Ordinal Regression (ROR) approach, but

it can be applied to any other MCDA methodology, even those which use the hierarchy to ask the

DM for pairwise comparisons of subcriteria with respect to their importance.
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Remark, moreover, that our hierarchical procedures boil down to the classical ELECTRE and

PROMETHEE methods when criteria are considered at one level only. This proves that our hierar-

chical procedures generalize the classical outranking methods.

We presented the hierarchical outranking methods for two types of preference information from

the part of the DM: direct, considered in classical outranking methods, and indirect, considered in

Robust Ordinal Regression for outranking methods. ROR takes into account all outranking models

compatible with preference information provided by the DM in terms of exemplary outranking and

non-outranking relations for some pairs of reference alternatives. It is producing two binary relations:

the necessary outranking relation (SN , %N), for which a outranks b for all compatible outranking

models, and the possible outranking relation (SP , %P ), for which a outranks b for at least one

compatible outranking model. When ROR is applied to hierarchical outranking methods, one gets

necessary (%N
r ) and possible (%P

r ) outranking relations for each criterion/subcriterion Gr belonging

to the hierarchy. In this way, the DM knows the necessary and possible preference relations for given

preference information, not only at the comprehensive level, for the totality of criteria, but also for any

criterion/subcriterion of the hierarchy. Such finer information about preferences has an advantage

over the comprehensive information because it permits to decompose the comprehensive preferences

into their constituent elements. The application of ROR to ELECTRE and PROMETHEE methods

was done in [47] and [76], but also in this case, our hierarchical procedures can be considered as

generalizations of both ELECTREGKMS and PROMETHEEGKS because the hierarchical procedures

boil down to these methods when all criteria are considered at the same level.

3.2.7 Appendix A

Proof of Proposition 3.2.1

1. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A, such that aS(r,j)b, for all j = 1, . . . , n(r).

This means that:

α) C(r,j)(a, b) ≥ λ(r,j), for all j = 1, . . . , n(r),

β) gt(b)− gt(a) < vt, for all t ∈ E(G(r,j)), for all j = 1, . . . , n(r).

Noting that we are considering the case in which each criterion belongs to only one of the

criteria from the upper level (see section 3.2.2), we have:

γ) ∪
n(r)
j=1E(G(r,j)) = E(Gr),
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δ) Cr(a, b) =

n(r)
∑

j=1

C(r,j)(a, b),

θ) λr =

n(r)
∑

j=1

λ(r,j),

thus

Cr(a, b) =

n(r)
∑

j=1

C(r,j)(a, b) ≥

n(r)
∑

j=1

λ(r,j) = λr by δ), α) and θ)

and

gt(b)− gt(a) < vt, for all t ∈ E(Gr) by β) and γ).

This implies that aSrb.

2. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A, such that not(aS(r,j)b), for all j =

1, . . . , n(r). This means that for all j = 1, . . . , n(r) we have:

α
′
) C(r,j)(a, b) < λ(r,j) or

β
′
) ∃t ∈ E(G(r,j)) : gt(b)− gt(a) ≥ vt.

We distinguish two cases:

• Let us suppose that not(aS(r,j)b) is satisfied because of β
′
); thus there exists one elementary

subcriterion gt ∈ E(G(r,j)) such that gt(b)− gt(a) ≥ vt; being E(G(r,j)) ⊆ E(Gr), gt is an

elementary subcriterion belonging also to E(Gr) and so it opposes veto to the outranking

of a over b with respect to criterion Gr; therefore not(aSrb).

• Let us suppose that for all j = 1, . . . , n(r), β
′
) is never satisfied, that is for all j =

1, . . . , n(r), for all t ∈ E(G(r,j)), gt(b)− gt(a) < vt. Thus, for all j = 1, . . . , n, not(aS(r,j)b)

holds because of α
′
), that is for all j = 1, . . . , n(r), C(r,j)(a, b) < λ(r,j). Reminding γ), δ)

and θ) of point 1. of this Proposition and by α
′
) we have:

Cr(a, b) =

n(r)
∑

j=1

C(r,j)(a, b) <

n(r)
∑

j=1

λ(r,j) = λr.

This opposes to outranking of a over b with respect to criterion Gr, and thus not(aSrb).

Proof of Proposition 3.2.2
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1. Let a, b ∈ A, and r ∈ IG \ EL such that aSN
r b. This means that aSrb for all compatible

outranking models, and thus there exists at least one compatible outranking model for which

aSrb, thus aSP
r b.

2. Let S an outranking relation, a ∈ A an alternative and Gr, with r ∈ IG \ EL a crite-

rion/subcriterion. We have that:

• for all t ∈ E(Gr), φt(a, a) = 1, and therefore by equation (3.5), Cr(a, b) = Kr,

• for all λr ∈
[

Kr

2
, Kr

]

, Cr(a, b) ≥ λr, (it follows by previous point),

• gt(a)− gt(a) = 0 < vt, for all t ∈ E(Gr).

The last two statements bring to aSra. Being S an arbitrary outranking relation, we obtain

that aSN
r a and by point 1. of this Proposition aSP

r a; being a an arbitrary alternative, we obtain

that SN
r and SP

r are reflexive relations.

3. Let Gr ∈ G with r ∈ IG \EL, and a, b ∈ A such that aSN
r b. This means that for all compatible

outranking models, a outranks b with respect to criterion Gr; thus there does not exist a

compatible outranking model for which a does not outrank b with respect to criterion Gr, that

is not(aSCP
r b).

Conversely, let Gr ∈ G with r ∈ IG \EL, and a, b ∈ A such that not(aSCP
r b). This means that

it is not true that there exists one compatible outranking model for which a does not outrank

b with respect to criterion Gr. Thus, for all compatible outranking models a outranks b with

respect to criterion Gr, that is aSN
r b.

4. Let Gr ∈ G with r ∈ IG \ EL, and a, b ∈ A such that aSP
r b. This means that there exists

at least one compatible outranking model for which a outranks b with respect to criterion Gr;

thus, it is not true that a does not outrank b with respect to criterion Gr for all compatible

outranking models, that is not(aSCN
r b).

Conversely, let Gr ∈ G with r ∈ IG \EL, and a, b ∈ A such that not(aSCN
r b). This means that

it is not true that for all compatible outranking models a does not outrank b with respect to

criterion Gr. Thus, there exists at least one compatible outranking model for which a outranks

b with respect to criterion Gr, that is aSP
r b.

5. Let Gr ∈ G with r ∈ IG \ EL, and a, b ∈ A such that aSCN
r b. This means that a does

not outrank b for all compatible outranking models; thus there exists at least one compatible

outranking model for which a does not outrank b, that is aSCP
r b.
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6. For all a ∈ A, by points 2. and 3. of this Proposition, we have:

aSN
r a⇔ not(aSCP

r a),

and thus SCP
r is an irreflexive binary relation.

Analogously, for all a ∈ A, by points 2. and 4. of this Proposition, we have:

aSP
r a⇔ not(aSCN

r a),

and thus SCN
r is an irreflexive binary relation.

Proof of Proposition 3.2.3

1. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A such that aSN
(r,j)b, for all j = 1, . . . , n(r).

This means that aS(r,j)b for all j = 1, . . . , n(r) and for all compatible outranking models. Let

M one of these compatible outranking models and S the outranking relation induced by M .

By point 1. of Proposition 3.2.1 we obtain aSrb. Being M an arbitrary compatible outranking

model, we have that a outranks b with respect to criterion Gr for all compatible outranking

models, and so aSN
r b.

2. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL} , and a, b ∈ A, such that

α) aSN
(r,j)b for all j = 1, . . . , n(r), j 6= w,

β) aSP
(r,w)b.

Hypothesis β) implies that there exists at least one compatible outranking model M inducing

the outranking relation S such that aS(r,w)b. But for the hypothesis α) we have also that

aS(r,j)b, for all j = 1, . . . , n(r) and j 6= w. Together, these considerations imply that aS(r,j)b

for all j = 1, . . . , n(r), and thus by point 1. of Proposition 3.2.1 we obtain that a outranks b

with respect to criterion Gr for outranking model M and thus aSP
r b.

3. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A such that aSCN
(r,j)b, for all j = 1, . . . , n(r).

This means that not(aS(r,j)b), for all j = 1, . . . , n(r) and for all compatible outranking models.

Considering M one of these compatible outranking models, and S the outranking relation

induced by M , by point 2. of Proposition 3.2.1 we obtain not(aSrb). Being M an arbitrary

compatible outranking model, we have not(aSrb) for all compatible outranking models and

thus aSCN
r b.
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4. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL} , and a, b ∈ A such that:

α) aSCN
(r,j)b, for all j = 1, . . . , n(r), j 6= w,

β) aSCP
(r,w)b,

β) implies that there exist at least one compatible outranking model M inducing the outranking

relation S, such that not(aS(r,w)b). By α) we have also that not(aS(r,j)b), for all j = 1, . . . , n(r)

and j 6= w. Together, these considerations imply that not(aS(r,j)b) for all j = 1, . . . , n(r), and

thus by point 2. of Proposition 3.2.1 we obtain not(aSrb). Therefore, aSCP
r b.

Proof of Proposition 3.2.4

1. Without loss of generality we have supposed that the hierarchy is structured in a way that each

subcriterion at level l descends from only one criterion of level l− 1 (see section 3.2.2). In this

way, considering criterion Gr and its subcriteria G(r,1), . . . , G(r,n(r)) we have:

• πr(a, b) =
∑

t∈E(Gr)

ktPt(a, b),

• π(r,j)(a, b) =
∑

t∈E(G(r,j))

ktPt(a, b), for all j = 1, . . . , n(r),

• E(Gr) = ∪
n(r)
j=1E(G(r,j)).

We can observe that each t ∈ E(Gr) belongs to only one of E(G(r,j)), j = 1, . . . , n, and thus:

πr(a, b) =
∑

t∈E(Gr)

ktPt(a, b) =

n(r)
∑

j=1





∑

t∈E(G(r,j))

ktPt(a, b)



 =

n(r)
∑

j=1

π(r,j)(a, b).

2. For each criterion/subcriterion Gr ∈ G, r ∈ IG \ EL, supposing that there exist n different

alternatives in A, we have for all a ∈ A:

• Φ+
r (a) =

1

n− 1

∑

x∈A\{a}

πr(a, x),

• Φ+
(r,j)(a) =

1

n− 1

∑

x∈A\{a}

π(r,j)(a, x), for all j = 1, . . . , n(r).

Thus, by point 1. of this Proposition and using the above expressions:

Φ+
r (a) =

1

n− 1

∑

x∈A\{a}

πr(a, x) =
1

n− 1

∑

x∈A\{a}





n(r)
∑

j=1

π(r,j)(a, x)



 =
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=

n(r)
∑

j=1





1

n− 1

∑

x∈A\{a}

π(r,j)(a, x)



 =

n(r)
∑

j=1

Φ+
(r,j)(a).

3. Analogous to proof of point 2.

4. By points 2. and 3. of this Proposition, for each a ∈ A, and for each Gr ∈ G, r ∈ IG \ EL,

Φr(a) = Φ+
r (a)− Φ−r (a) =

n(r)
∑

j=1

Φ+
(r,j)(a)−

n(r)
∑

j=1

Φ−(r,j)(a) =

=

n(r)
∑

j=1

[

Φ+
(r,j)(a)− Φ−(r,j)(a)

]

=

n(r)
∑

j=1

Φ(r,j)(a).

Proof of Proposition 3.2.5

1. Let a, b ∈ A and Gr ∈ G, r ∈ IG \EL, such that aP I
(r,j)b, for all j = 1, . . . , n(r). By hypothesis,

we have:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−(r,j)(a) ≤ Φ−(r,j)(b), for all j = 1, . . . , n(r),

and for each j at least one of the above inequalities is strict. Then adding up with respect to

j, we obtain:

n(r)
∑

j=1

Φ+
(r,j)(a) ≥

n(r)
∑

j=1

Φ+
(r,j)(b) and

n(r)
∑

j=1

Φ−(r,j)(a) ≤

n(r)
∑

j=1

Φ−(r,j)(b),

and thus by points 2. and 3. of Proposition 3.2.4,

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b)

with at least one of the two inequalities being strict; therefore aP I
r b.

2. Let a, b ∈ A, Gr ∈ G with r ∈ IG \ EL, and {C1, C2} a partition of {1, . . . , n(r)}, such that

aP I
(r,j)b, for all j ∈ C1 and aII(r,j)b, for all j ∈ C2. By the first hypothesis, we have:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−(r,j)(a) ≤ Φ−(r,j)(b), for all j ∈ C1 (3.7)

with at least one of the two inequalities strict; by the second hypothesis we have:

Φ+
(r,j)(a) = Φ+

(r,j)(b) and Φ−(r,j)(a) = Φ−(r,j)(b), for all j ∈ C2. (3.8)
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Thus, by points 2. and 3. of Proposition 3.2.4,

∑

j∈C1

Φ+
(r,j)(a) ≥

∑

j∈C1

Φ+
(r,j)(b) and

∑

j∈C1

Φ−(r,j)(a) ≤
∑

j∈C1

Φ−(r,j)(b)

with at least one of the two inequalities strict; by (3.7) and (3.8) we obtain:

n(r)
∑

j=1

Φ+
(r,j)(a) =

∑

j∈C1

Φ+
(r,j)(a) +

∑

j∈C2

Φ+
(r,j)(a) ≥

∑

j∈C1

Φ+
(r,j)(b) +

∑

j∈C2

Φ+
(r,j)(b) =

n(r)
∑

j=1

Φ+
(r,j)(b)

and

n(r)
∑

j=1

Φ−(r,j)(a) =
∑

j∈C1

Φ−(r,j)(a) +
∑

j∈C2

Φ−(r,j)(a) ≤
∑

j∈C1

Φ−(r,j)(b) +
∑

j∈C2

Φ−(r,j)(b) =

n(r)
∑

j=1

Φ−(r,j)(b);

therefore
n(r)
∑

j=1

Φ+
(r,j)(a) ≥

n(r)
∑

j=1

Φ+
(r,j)(b) and

n(r)
∑

j=1

Φ−(r,j)(a) ≤

n(r)
∑

j=1

Φ−(r,j)(b),

that is, by points 2. and 3. of Proposition 3.2.4,

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b)

with at least one of the two inequalities being strict. From this follows that aP I
r b.

3. Let a, b ∈ A and Gr ∈ G, r ∈ IG \EL such that aII(r,j)b, for all j = 1, . . . , n(r). This means that

Φ+
(r,j)(a) = Φ+

(r,j)(b) and Φ−(r,j)(a) = Φ−(r,j)(b), for all j = 1, . . . , n(r).

Adding up with respect to j we obtain:

n(r)
∑

j=1

Φ+
(r,j)(a) =

n(r)
∑

j=1

Φ+
(r,j)(b) and

n(r)
∑

j=1

Φ−(r,j)(a) =

n(r)
∑

j=1

Φ−(r,j)(b), for all j = 1, . . . , n(r),

that is, by points 2. and 3. of Proposition 3.2.4,

Φ+
r (a) = Φ+

r (b) and Φ−r (a) = Φ−r (b),

and therefore aIIr b.

Proof of Proposition 3.2.6

1. Let a, b ∈ A, Gr ∈ G, r ∈ IG \ EL such that aP II
(r,j)b, for all j = 1, . . . , n(r). By point 4. of
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Proposition 3.2.4,

Φ(r,j)(a) > Φ(r,j)(b), for all j = 1, . . . , n(r) ⇒

n(r)
∑

j=1

Φ(r,j)(a) >

n(r)
∑

j=1

Φ(r,j)(b) ⇔ Φr(a) > Φr(b),

and therefore aP II
r b.

2. Let a, b ∈ A, Gr ∈ G, r ∈ IG \ EL and {C1, C2} a partition of {1, . . . , n(r)} such that aP II
(r,j)b

for all j ∈ C1 and aIII(r,j)b for all j ∈ C2. By hypothesis we have:

Φ(r,j)(a) > Φ(r,j)(b), for all j ∈ C1 and Φ(r,j)(a) = Φ(r,j)(b), for all j ∈ C2.

Adding up with respect to j, by point 4. of Proposition 3.2.4, we obtain:

∑

j∈C1

Φ(r,j)(a) >
∑

j∈C1

Φ(r,j)(b) ⇒
∑

j∈C1

Φ(r,j)(a) +
∑

j∈C2

Φ(r,j)(a) >
∑

j∈C1

Φ(r,j)(b) +
∑

j∈C2

Φ(r,j)(b) ⇔

⇔

n(r)
∑

j=1

Φ(r,j)(a) >

n(r)
∑

j=1

Φ(r,j)(b) ⇔ Φr(a) > Φr(b),

and therefore aP II
r b.

3. Let a, b ∈ A, Gr ∈ G, r ∈ IG \ EL, such that aIII(r,j)b, for all j = 1, . . . , n(r). By point 4. of

Proposition 3.2.4,

Φ(r,j)(a) = Φ(r,j)(b), for all j = 1, . . . , n(r) ⇒

n(r)
∑

j=1

Φ(r,j)(a) =

n(r)
∑

j=1

Φ(r,j)(b) ⇔ Φr(a) = Φr(b),

and therefore aIIIr b.

Proof of Proposition 3.2.7

We prove this Proposition in case of PROMETHEE I because the proof in case of PROMETHEE II

is analogous.

1. Let be a, b ∈ A, and r ∈ IG \EL, such that a %N
r b. This means that a outranks b with respect

to criterion Gr for all compatible outranking models; thus, there exists at least one compatible

outranking model for which a outranks b with respect to criterion Gr, and therefore a %P
r b.

2. For each a ∈ A, for each criterion/subcriterion Gr, and for each compatible outranking model,

we have:

Φ+
r (a) ≥ Φ+

r (a) and Φ−r (a) ≤ Φ−r (a); (3.9)
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By equation (3.9) it follows that, for all compatible outranking models Φr(a) = Φ+
r (a)−Φ−r (a) ≥

Φr(a) and thus a %N
r a, for all a ∈ A proving that %N

r is a reflexive binary relation. Being

%N
r ⊆%

P
r , and %N

r a reflexive binary relation, also %P
r is a reflexive binary relation.

Proof of Proposition 3.2.8

We prove this Proposition in case of PROMETHEE I because the proof in case of PROMETHEE II

is analogous.

1. Let a, b ∈ A and r ∈ IG \ {LBO ∪ EL} , such that a %N
(r,j) b for all j = 1, . . . , n(r). This

means that a outranks b with respect to criteria/subcriteria G(r,j), for all j = 1, . . . , n(r), for

all compatible outranking models. Thus, for all compatible outranking models we have:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−(r,j)(a) ≤ Φ−(r,j)(b), for all j = 1, . . . , n(r). (3.10)

By points 2. and 3. of Proposition 3.2.4 and equation above, for all compatible outranking

models we have that:

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b),

implying that a %N
r b.

2. Let a, b ∈ A and r ∈ IG \ {LBO ∪ EL} , such that a %N
(r,j) b, for all j = 1, . . . , n(r), j 6= w

and a %P
(r,w) b. This means that a outranks b with respect to criteria G(r,j), for all j =

1, . . . , n(r), j 6= w for all compatible outranking models and a outranks b with respect to

criterion/subcriterion G(r,w) for at least one compatible outranking model. From this we have

that, for all compatible outranking models:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−(r,j)(a) ≤ Φ−(r,j)(b), for all j = 1, . . . , n(r), j 6= w, (3.11)

and for at least one compatible outranking model:

Φ+
(r,w)(a) ≥ Φ+

(r,w)(b) and Φ−(r,w)(a) ≤ Φ−(r,w)(b). (3.12)

Let us denote by M the outranking model satisfying equation (3.12). In particular, this com-

patible outranking model fulfills also equation (3.11). Thus, by points 2. and 3. of Proposition

3.2.4, and considering the compatible outranking model M , we have:
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Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b),

and therefore a outranks b with respect to criterion/subcriterion Gr for at least one compatible

outranking model, that is a %P
r b.

3.2.8 Appendix B

Ordinal regression constraints used in the Hierarchical ELECTREGKMS method

Supposing that the DM has given some preference information of the type described in section

3.2.3, compatible outranking models are the sets of variables ψt(a, b) for all (a, b) ∈ B, t ∈ EL, of

concordance indices Cr(a, b), concordance cutting levels λs, for all s ∈ LBO, and veto thresholds vt

for all t ∈ EL, satisfying the following set of conditions:

• Compatibility with all statements concerning the truth or falsity of the outranking relation for

some reference alternatives a, b ∈ AR:

– For all (a, b) ∈ BR such that aSrb, with r ∈ IG \ EL:

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) ≥ λr and gt(b)− gt(a) < vt, for all t ∈ E(Gr),

– For all (a, b) ∈ BR such that not(aSrb), with r ∈ IG \ EL:

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) < λr or there exists t ∈ E(Gr) : gt(b)− gt(a) ≥ vt,

which can be modeled as:

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) + ε ≤ λr +M r
0 (a, b) and gt(b)− gt(a) ≥ vt − δrMt(a, b),

where:

M r
0 (a, b),Mt(a, b) ∈ {0, 1}, for all t ∈ E(Gr),

M r
0 (a, b) +

∑

t∈E(Gr)

Mt(a, b) ≤ |E(Gr)| ,

δr is an auxiliary coefficient fixed on a big positive value (i.e. δr ≥ maxt∈E(Gr){βt−αt}

where αt = mina∈A gt(a) and βt = maxa∈A gt(a)).

Differently from [47], we have one binary variable M r
0 (a, b) for each criterion Gr, r ∈

IG \ EL, and for each couple (a, b) ∈ BR, because we need to distinguish the reasons
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for which the outranking of alternative a over alternative b is not true. In fact, let us

suppose, for example, that alternative a does not outrank alternative b with respect to

criteria Gr1 and Gr2 , and that in the first case, a does not outrank b because there is

an elementary subcriterion descending from Gr1 putting veto while the concordance test

is verified. At the same time, let us suppose that a does not outrank b with respect to

Gr2 because the concordance test is not verified. Then, in the first case M r1
0 (a, b) = 1,

because the concordance test is verified, and in the second case M r2
0 (a, b) = 0, because

the concordance test is not verified.

• Constraints on the values of λr, for all r ∈ IG \EL, inter-criteria parameters and of vt and kt,

for all t ∈ EL:

– Normalization of the marginal concordance indices for all elementary subcriteria, so that

the indices corresponding to the greatest difference in evaluations of two alternatives on

each elementary subcriterion (gt(x
∗
t)− gt(xt,∗) = βt − αt) sum up to 1:

∑

t∈EL

ψt(x
∗
t, xt,∗) = 1 with x∗t, xt,∗ ∈ A : gt(x

∗
t) = βt and gt(xt,∗) = αt, for all t ∈ EL.

As we normalize weights of the elementary subcriteria so that they sum up to 1, each weight

is understood as a maximal share of each elementary subcriterion in the comprehensive

concordance index. Consequently, kt = ψt(x
∗
t, xt,∗), for all t ∈ EL.

– Lower and upper bounds on concordance cutting level of a criterion belonging to last but

one level:

λs ∈

[

Ks

2
, Ks

]

, where Ks =
∑

t∈E(Gs)

kt.

In consequence of the above considerations, the concordance cutting levels of criteria

belonging to the last but one level have to verify:

∑

t∈E(Gs)

ψt(x
∗
t, xt,∗)

2
≤ λs ≤

∑

t∈E(Gs)

ψt(x
∗
t, xt,∗).

– The concordance cutting level for criterion Gr, r ∈ IG \ {LBO ∪ EL}, is equal to the

sum of the concordance cutting levels of subcriteria descending from it, that is G(r,j), j =

1, . . . , n(r) :
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λr =

n(r)
∑

j=1

λ(r,j).

– Constraints on veto thresholds vt, t ∈ EL,:

vt > p∗t, for each t ∈ EL1,

vt > gt(b)− gt(a), for each t ∈ EL2 such that a ∼t b.

• Constraints on the values of marginal concordance indices ψt(a, b), t ∈ EL conditioned by

intra-criterion and inter-criterion preference information, for all (a, b) ∈ B:

– kt,∗ ≤ ψt(x
∗
t, xt,∗) ≤ k∗t , t ∈ EL,

– ψt1(x∗t1 , xt1,∗) ≥ ψt2(x∗t2 , xt2,∗) + ε if elementary subcriterion gt1 is more important than

elementary subcriterion gt2 , t1, t2 ∈ EL,

– ψt1(x∗t1 , xt1,∗) = ψt2(x∗t2 , xt2,∗) if elementary subcriteria gt1 and gt2 are equally important,

t1, t2 ∈ EL,

– ψt(a, b) = 0 if gt(b)− gt(a) ≥ p∗t,

– ψt(a, b) > 0 if gt(a)− gt(b) > −pt,∗ ,

– ψt(a, b) = ψt(x
∗
t, xt,∗) if gt(a)− gt(b) ≥ −qt,∗,

– ψt(a, b) < ψt(x
∗
t, xt,∗) if gt(b)− gt(a) > q∗t ,

– ψt(a, b) = 0 if b ≻t a,

– ψt(a, b) = 0 and ψt(b, a) = 0 if a ∼t b.

• Monotonicity of the functions of marginal concordance indices ψt(a, b), t ∈ EL:

ψt(a, b) ≥ ψt(c, d) if gt(a)− gt(b) > gt(c)− gt(d),

ψt(a, b) = ψt(c, d) if gt(a)− gt(b) = gt(c)− gt(d),

Note that all strict inequalities are transformed into weak inequalities involving an auxiliary variable

ε in the set of constraints EAR

in the section 3.2.3.

For example, the constraint ψt(a, b) > 0 if gt(a)− gt(b) > −pt,∗ , becomes ψt(a, b) ≥ ε if gt(a)−

gt(b) > −pt,∗.

Ordinal regression constraints used in the Hierarchical PROMETHEEGKS method

174



Supposing that the DM has given some preference information of the type described in section 3.2.5,

compatible outranking models are the sets of preference indices πt(a, b) for all (a, b) ∈ B, t ∈ EL

satisfying the following conditions:

• Compatibility with local and global preference relations provided by the DM with respect to a

particular criterion Gr in the hierarchy:

– for all a, b ∈ AR, and Gr with r ∈ IG \ EL, such that a %πr
b,

πr(a, b) =
∑

t∈E(Gr)

πt(a, b) ≥ πr(b, a) =
∑

t∈E(Gr)

πt(b, a),

Relations ≻πr
and ∼πr

are translated analogously, using strict inequality and equality,

respectively.

– Considering PROMETHEE I:

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b), if a %Φr
b,

Φ+
r (a) ≥ Φ+

r (b) and Φ−r (a) ≤ Φ−r (b) and

Φ+
r (a)− Φ−r (a) ≥ Φ+

r (b)− Φ−r (b) + ε







if a ≻Φr
b

Φ+
r (a) = Φ+

r (b) and Φ−r (a) = Φ−r (b) if a ∼Φr
b.

– Considering PROMETHEE II:

Φr(a) = Φ+
r (a)− Φ−r (a) ≥ Φr(b) = Φ+

r (b)− Φ−r (b) if a %Φr
b.

Relations ≻Φr
, and ∼Φr

are treated analogously, using strict inequality and equality, re-

spectively.

• Normalization of the marginal preference indices for all criteria, so that the indices correspond-

ing to the greatest difference in evaluations of two alternatives on each elementary subcriterion

(gt(x
∗
t)− gt(xt,∗) = βt − αt) sum up to 1:

∑

t∈EL

πt(x
∗
t, xt,∗) = 1 with x∗t, xt,∗ ∈ A, for all t ∈ EL.

We normalize weights of the criteria, so that they sum up to 1. Therefore, each weight is now

understood as a maximal share of each elementary subcriterion in the aggregated preference

index. Consequently, kt = πt(x
∗
t, xt,∗), for all t ∈ EL.

• Restrictions concerning the value of marginal preference indices πt, t ∈ EL :
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– πt(a, b) needs to be equal 0 if a is not better than b on elementary subcriterion gt by more

than the least value of an indifference threshold qt,∗ allowed by the DM:

πt(a, b) = 0 if gt(a)− gt(b) ≤ qt,∗, for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) needs to be greater than 0 if a is better than b on elementary subcriterion gt by

more than the greatest value of an indifference threshold q∗t allowed by the DM:

πt(a, b) > 0 if gt(a)− gt(b) > q∗t , for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) needs to be less than the maximal value of the preference index on elementary

subcriterion gt if a is not better than b by more than the least value of a preference

threshold pt,∗ allowed by the DM;

πt(a, b) < πt(x
∗
t, xt,∗), if gt(a)− gt(b) < pt,∗, for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) needs to be equal to the maximal value of preference index on elementary subcri-

terion gt if a is better than b by more than the greatest value of a preference threshold p∗t

allowed by the DM:

πt(a, b) = πt(x
∗
t, xt,∗), if gt(a)− gt(b) ≥ p∗t, for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) and πt(b, a) need to be equal to 0 if the difference between gt(a) and gt(b) is

not-significant for the DM:

πt(a, b) = 0, πt(b, a) = 0 if a ∼t b, t ∈ EL2;

– πt(a, b) needs to be equal to the maximal value of the preference index on criterion gt if

the difference between gt(a) and gt(b) is significant for the DM:

πt(a, b) = πt(x
∗
t, xt,∗), if a ≻t b, t ∈ EL2.

• Monotonicity of the functions of marginal preference indices πt(a, b), for all t ∈ EL :

πt(a, b) ≥ πt(c, d) if gt(a)− gt(b) > gt(c)− gt(d),

πt(a, b) = πt(c, d) if gt(a)− gt(b) = gt(c)− gt(d).
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Note that all strict inequalities are transformed into weak inequalities involving an auxiliary variable

ε in the set of constraints EAR

in the section 3.2.5.
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3.3 Multiple Criteria Hierarchy Process for the Choquet

integral

3.3.1 Introduction

In a multiple criteria decision problem (see [29] for a comprehensive state of the art), an alternative

a, belonging to a finite set of m alternatives A = {a, b, c, . . .}, is evaluated on the basis of a consistent

family of n criteria G = {g1, g2, . . . , gn}. In our approach we make the assumption that each criterion

gi : A → R is an interval scale of measurement. From here on, we will use the terms criterion gi or

criterion i interchangeably (i = 1, 2, . . . , n). Without loss of generality, we assume that all the criteria

have to be maximized.

The purpose of Multi-Attribute Utility Theory (MAUT) [79] is to represent the preferences of

a Decision Maker (DM) on a set of alternatives A by an overall value function U : Rn → R with

U(g1(a), . . . , gn(a)) = U(a):

• a is indifferent to b ⇔ U(a) = U(b),

• a is preferred to b ⇔ U(a) > U(b).

The principal aggregation model of value function is the multiple attribute additive utility [79]:

U(a) = u1(g1(a)) + u2(g2(a)) + . . .+ un(gn(a)) for all a ∈ A, (3.13)

where ui are non-decreasing marginal value functions for i = 1, 2, . . . , n.

As it is well-known from the literature, the underlying assumption of the preference independence

of the multiple attribute additive utility is unrealistic since in real decision problems criteria often

interact. In a decision problem one usually distinguishes between positive and negative interaction

among criteria, corresponding to synergy and redundancy among criteria, respectively. In particular,

two criteria are synergic (redundant) when the comprehensive importance of these two criteria is

greater (smaller) than the sum of importances of the two criteria considered separately.

Within Multiple Criteria Decision Analysis (MCDA), the interaction of criteria has been con-

sidered in a decision model based upon a non-additive integral, i.e. the Choquet integral [21] (see

[39, 43] for a comprehensive survey on the use of non-additive integrals in MCDA, and [44] for a

state-of-the-art survey on Choquet and Sugeno integrals).

A great majority of methods designed for MCDA assume that all evaluation criteria are con-

sidered at the same level, however, it is often the case that a practical application is imposing a

178



hierarchical structure of criteria. For example, in economic ranking, alternatives may be evaluated

on indicators which aggregate evaluations on several sub-indicators, and these sub-indicators may

aggregate another set of sub-indicators, etc. In this case, the marginal value functions may refer to

all levels of the hierarchy, representing values of particular scores of the alternatives on indicators,

sub-indicators, sub-sub-indicators, etc. Considering hierarchical, instead of flat, structure of criteria,

permits decomposition of a complex decision problem into smaller problems involving less criteria. To

handle the hierarchy of criteria, the Multiple Criteria Hierarchy Process (MCHP) [23] can be applied.

The basic idea of the MCHP relies on consideration of preference relations at each node of the hier-

archy tree of criteria. This consideration concerns both the phase of eliciting preference information,

and the phase of analyzing a final recommendation by the DM. For example, in a decision problem

related to evaluation of students, one can say not only that student a is comprehensively preferred

to student b, i.e. a ≻ b, but also that a is comprehensively preferred to b because a is preferred to

b on the subset of subjects (subcriteria) related to Mathematics and Physics, i.e. a ≻Mathematics b

and a ≻Physics b, even if b is preferred to a on subjects related to Humanities, i.e. b ≻Humanities a.

Moreover, one can also say that, for example, a is preferred to b on the subset of subjects related to

Mathematics because, considering Analysis and Algebra as subjects (sub-criteria) related to Mathe-

matics, a is preferred to b on Analysis, i.e. a ≻Analysis b, and this is enough to compensate the fact

that b is preferred to a on Algebra, i.e. b ≻Algebra a.

In this section, we apply the MCHP to the Choquet integral. Let us remark that another approach

using the Choquet integral on a hierarchy of criteria has been presented in [120] (see also [128]), where

the evaluation of an alternative a with respect to a certain criterion Gr is based on the Choquet

integrals of a with respect to all subcriteria of Gr from the subsequent level. This means that the

Choquet integral of a with respect to Gr is computed as the Choquet integral of other Choquet

integrals, one for each subcriterion of Gr from the subsequent level. For example, let us consider

the evaluation of student a with respect to Science and Humanities, with Mathematics and Physics

as subcriteria of Science, and Literature and Philosophy as subcriteria of Humanities. In order to

compute the comprehensive Choquet integral of a, one has to compute first the Choquet integral

of a with respect to Science and the Choquet integral of a with respect to Humanities. Then, the

comprehensive Choquet integral of a is obtained as the Choquet integral of the two Choquet integrals

previously computed.

In our approach, we do not consider Choquet integrals resulting from aggregation of Choquet

integrals representing evaluations at the subsequent level of the hierarchy. Instead of this, we compute

the evaluation of an alternative on a certain criterion of the hierarchy as the Choquet integral of
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the evaluations of the alternative on all elementary criteria descending to the lowest level from that

criterion, using the capacity defined on the whole set of elementary criteria only. Coming back to

the above example, the comprehensive evaluation of a is calculated as the Choquet integral of the

evaluations of a on all considered elementary subjects, i.e. Mathematics, Physics, Literature and

Philosophy. The evaluation with respect to Sciences is obtained as the Choquet integral of the

evaluations on Mathematics and Physics only, as well as, the evaluation with respect to Humanities

is obtained as the Choquet integral of the evaluations on Literature and Philosophy only. In the

approach of [120], the evaluations on Humanities and Sciences are also Choquet integrals, but our

approach differs in two aspects: we do not need to define two different capacities to compute the

two Choquet integrals, one for Science and one for Humanities; we use the two Choquet integrals on

Science and Humanities to order students on the basis of Science and Humanities only, and not to

aggregate them in order to get the final comprehensive evaluation.

The section is organized as follows. In Section 3.3.2, we present the basic concepts relative to

interaction among criteria and to the Choquet integral. In Section 3.3.3, we describe the MCHP. In

Section 3.3.4, we put together the MCHP and the Choquet integral. Section 3.3.5 contains a didactic

example in which we describe the application of the new methodology, and we compare it with the

approach of [120]. Some conclusions and future directions of research are presented in Section 3.3.6.

3.3.2 The Choquet integral preference model

Let 2G be the power set of G (i.e. the set of all subsets of G); a fuzzy measure (capacity) on G is

defined as a set function µ : 2G → [0, 1] satisfying the following properties:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ T ⊆ R ⊆ G, µ(T ) ≤ µ(R) (monotonicity condition).

A fuzzy measure is said to be additive if µ(T ∪ R) = µ(T ) + µ(R), for any T,R ⊆ G such that

T ∩R = ∅. An additive fuzzy measure is determined uniquely by µ({1}), µ({2}) . . . , µ({n}). In fact,

in this case, ∀ T ⊆ G, µ(T ) =
∑

i∈T

µ({i}). In the other cases, we have to define a value µ(T ) for

every subset T of G, which are as many as 2|G|. Therefore, we have to calculate the values of 2|G|− 2

coefficients, since we know that µ(∅) = 0 and µ(G) = 1.

The Möbius representation of the fuzzy measure µ (see [99]) is defined by the function m : 2G → R

(see [112]) such that:
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µ(R) =
∑

T⊆R

m(T ). (3.14)

Let us observe that if R is a singleton, i.e. R = {i} with i = 1, . . . , n, then µ({i}) = m({i}). If R

is a couple (non-ordered pair) of criteria, i.e. R = {i, j}, then µ({i, j}) = m({i})+m({j})+m({i, j}).

In general, the Möbius representation m(R) is obtained by µ(R) in the following way:

m(R) =
∑

T⊆R

(−1)|R\T |µ(T ). (3.15)

In terms of Möbius representation (see [20]), properties 1a) and 2a) are, respectively, formulated as:

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} ,
∑

T⊆R

m(T ∪ {i}) ≥ 0.

Let us observe that in MCDA, the importance of any criterion gi ∈ G should be evaluated

considering all its global effects in the decision problem at hand; these effects can be “decomposed”

from both theoretical and operational points of view in effects of gi as single, and in combination

with all other criteria. Therefore, a criterion i ∈ G is important with respect to a fuzzy measure µ

not only when it is considered alone, i.e. for the value µ({i}) in itself, but also when it interacts with

other criteria from G, i.e. for every value µ(T ∪ {i}), T ⊆ G \ {i}.

Given a ∈ A and µ being a fuzzy measure on G, then the Choquet integral [21] is defined by:

Cµ(a) =
n

∑

i=1

[(

g(i)(a)
)

−
(

g(i−1) (a)
)]

µ (Ai) , (3.16)

where (·) stands for a permutation of the indices of criteria such that

g(1) (a) ≤ g(2) (a) ≤ ... ≤ g(n) (a) , with Ai = {(i), ...., (n)}, i = 1, .., n, and g(0) = 0.

The Choquet integral can be redefined in terms of the Möbius representation [37], without re-

ordering the criteria, as:

Cµ(a) =
∑

T⊆G

m(T ) min
i∈T

gi (a) . (3.17)

One of the main drawbacks of the Choquet integral is the necessity of eliciting and giving an

adequate interpretation of 2|G| − 2 parameters. In order to reduce the number of parameters to

be computed and to avoid the difficult description of the interactions among criteria, which is not

realistic in many applications, the concept of fuzzy k-additive measure has been considered [40].
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A fuzzy measure is called k-additive if m(T ) = 0 for T ⊆ G such that |T | > k and there exists

at least one T ⊆ G, with |T | = k, such that m(T ) > 0. We observe that a 1-additive measure

is the common additive fuzzy measure. In many real decision problems, it suffices to consider 2-

additive measures. In this case, positive and negative interactions between two criteria are modeled

without considering the interaction among any n-tuples (with n > 2) of criteria. From the point of

view of MCDA, the use of 2-additive measures is justified by observing that the information on the

importance of the single criteria and the interactions between two criteria are noteworthy. Moreover,

it could be not easy or not straightforward for the DM to provide information on the interactions

among three or more criteria during the decision procedure. From a computational point of view,

the interest in the 2-additive measures lies in the fact that any decision model needs to evaluate a

number n+
(

n
2

)

of parameters (in terms of Möbius representation, a value m({i}) for every criterion

i and a value m({i, j}) for every couple of distinct criteria {i, j}). With respect to a 2-additive fuzzy

measure, the inverse transformation to obtain the fuzzy measure µ(R) from the Möbius representation

is defined as:

µ(R) =
∑

i∈R

m ({i}) +
∑

{i,j}⊆R

m ({i, j}) , ∀R ⊆ G. (3.18)

With regard to 2-additive measures, properties 1b) and 2b) have, respectively, the following

formulations:

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

In this case, the representation of the Choquet integral of a ∈ A is given by:

Cµ(a) =
∑

{i}⊆G

m ({i}) (gi (a)) +
∑

{i,j}⊆G

m ({i, j}) min{gi (a) , gj (a)}. (3.19)

Finally, we recall the definitions of the importance and interaction indices for couples of criteria.

The Shapley value [113] expressing the importance of criterion i ∈ G, is given by:

ϕ({i}) =
∑

T⊆G: i/∈T

(|G \ T | − 1)!|T |!

|G|!
· [µ(T ∪ {i})− µ(T )], (3.20)
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while the interaction index [90] expressing the sign and the magnitude of the synergy in a couple of

criteria {i, j} ⊆ G, is given by

ϕ ({i, j}) =
∑

T⊆G: i,j /∈T

(|G \ T | − 2)!|T |!

(|G| − 1)!
· τ(T, i, j), (3.21)

where τ(T, i, j) = [µ(T ∪ {i, j})− µ(T ∪ {i})− µ(T ∪ {j}) + µ(T )].

In case of 2-additive capacities, the Shapley value and the interaction index can be expressed as

follows:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
, i ∈ G, (3.22)

ϕ ({i, j}) = m ({i, j}) . (3.23)

3.3.3 Multiple Criteria Hierarchy Process (MCHP)

In MCHP, a set G of hierarchically ordered criteria is considered, i.e. all criteria are not considered

at the same level, but they are distributed over l different levels (see Figure 3.13). At level 1, there

are first level criteria called root criteria. Each root criterion has its own hierarchy tree. The leaves

of each hierarchy tree are at the last level l and they are called elementary subcriteria. Thus, in

graph theory terms, the whole hierarchy is a forest. We will use the following notation:

• l is the number of levels in the hierarchy of criteria,

• G is the set of all criteria at all considered levels,

• IG is the set of indices of particular criteria representing position of criteria in the hierarchy,

• m is the number of the first level criteria, G1, . . . , Gm,

• Gr ∈ G, with r = (i1, . . . , ih) ∈ IG, denotes a subcriterion of the first level criterion Gi1 at level

h; the first level criteria are denoted by Gi1 , i1 = 1, . . . ,m,

• n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct subcriteria of Gr

are G(r,1), . . . , G(r,n(r)),

• gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion of the first level

criterion Gi1 , i.e. a criterion at level l of the hierarchy tree of Gi1 ,

183



• EL is the set of indices of all elementary subcriteria:

EL = {t = (i1, . . . , il) ∈ IG} where































i1 = 1, . . . ,m

i2 = 1, . . . , n(i1)

· · · · · ·

il = 1, . . . , n(i1, . . . , il−1)

• E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) = {(r, ih+1, . . . , il) ∈ IG} where



















ih+1 = 1, . . . , n(r)

· · · · · ·

il = 1, . . . , n(r, ih+1, . . . , il−1)

thus, E(Gr) ⊆ EL; in the case Gr ∈ EL, then E(Gr) = Gr,

• when r = 0, then by Gr = G0, we mean the entire set of criteria and not a particular criterion

or subcriterion; in this particular case, we have E(G0) = EL,

• given F ⊆ G, E(F) = ∪Gr∈FE(Gr), that is E(F) is composed by all elementary subcriteria

descending from at least one criterion in F ,

• given Gr ∈ G, r ∈ IG ∩ N
h (Gr is a criterion at level h), 1 ≤ h < l, and k ∈ {h+ 1, . . . , l}, we

define:

Gk
r =

{

G(r,w) ∈ G : (r, w) ∈ IG ∩ N
k
}

being the set of all subcriteria of criterion Gr at level k. (For example, in Figure 3.13, we have

that

G2
i1

=
{

G(i1,1), G(i1,2), G(i1,3)

}

and G3
(i1,2)

=
{

g(i1,2,1), g(i1,2,2)
})

Each alternative a ∈ A is evaluated directly on the elementary subcriteria only, such that to each

alternative a ∈ A there corresponds a vector of evaluations:

(gt1(a), . . . , gtn(a)) , n = |EL| .

Within MCHP, in each node Gr ∈ G of the hierarchy tree there exists a preference relation %r

on A, such that for all a, b ∈ A, a %r b means “a is at least as good as b on subcriterion Gr”. In the

particular case where Gr = gt, t ∈ EL, a %t b holds if gt(a) ≥ gt(b).
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Figure 3.13: Hierarchy of criteria for the first level (root) criterion Gi1

Gi1

G(i1,1) G(i1,2) G(i1,3)

g(i1,1,1) g(i1,1,2) g(i1,1,3) g(i1,2,1) g(i1,2,2) g(i1,3,1) g(i1,3,2) g(i1,3,3) g(i1,3,4)

3.3.4 Multiple Criteria Hierarchy Process for Choquet integral prefer-

ence model

In this article, we will aggregate the evaluations of alternative a ∈ A with respect to the elementary

subcriteria gt, t ∈ EL, using the Choquet integral as follows.

On the basis of a capacity µ defined on the power set of EL, for all a, b ∈ A, a % b if Cµ(a) ≥ Cµ(b),

where Cµ(a) and Cµ(b) are the Choquet integrals with respect to µ of the vectors [gt(a), t ∈ EL] and

[gt(b), t ∈ EL], respectively.

For all Gr ∈ G, r ∈ IG ∩N
h (Gr is a criterion at level h), h = 1, . . . , l− 1 and for all k = h+ 1, . . . , l,

we can define the following capacity:

µk
r : 2G

k
r → [0, 1]

such that, for all F ⊆ Gk
r , we have that

µk
r(F) =

µ(E(F))

µ(E(Gr))
(3.24)

In this way, µk
r is a capacity defined on the power set of Gk

r , that could be computed using the

capacity µ defined on the power set of EL.

In the following, we shall write µr instead of µl
r.

For all a, b ∈ A, a %r b if Cµr
(a) ≥ Cµr

(b), where Cµr
(a) and Cµr

(b) are the Choquet integrals

with respect to µr of the vectors [gt(a), t ∈ E(Gr)] and [gt(b), t ∈ E(Gr)], respectively. Observe that

for all a ∈ A,

Cµr
(a) =

Cµ(ar)

µ(E(Gr))
(3.25)
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where ar is a fictitious alternative having the same evaluations of a on elementary criteria from E(Gr)

and null evaluation on criteria from outside E(Gr), i.e. gs(ar) = gs(a) if s ∈ E(Gr) and gs(ar) = 0 if

s /∈ E(Gr).

The Shapley value expressing the importance of criterion G(r,w) ∈ G
k
r being thus a subcriterion

of Gr at level k is:

ϕk
r(G(r,w)) =

∑

T⊆Gk
r \{G(r,w)}

(|Gk
r \ T | − 1)!|T |!

|Gk
r |!

·
[

µk
r(T ∪

{

G(r,w)

}

)− µk
r(T )

]

(3.26)

while the interaction index expressing the sign and the magnitude of the synergy in a couple of

criteria G(r,w1), G(r,w2) ∈ G
k
r is given by:

ϕk
r(G(r,w1), G(r,w2)) =

∑

T⊆Gk
r \{G(r,w1)

,G(r,w2)}

(|Gk
r \ T | − 2)!|T |!

(|Gk
r | − 1)!

· τ kr (T,G(r,w1), G(r,w2)) (3.27)

where

τ kr (T,A,B) =
[

µk
r(T ∪ {A,B})− µk

r(T ∪ {A})− µk
r(T ∪ {B}) + µk

r(T )
]

.

In case the capacity µ on {gt, t ∈ EL} is 2-additive, the Shapley value ϕk
r(G(r,w)) and the interaction

index ϕk
r(G(r,w1), G(r,w2)), with G(r,w), G(r,w1), G(r,w2) ∈ G

k
r , can be expressed as follows:

ϕk
r(G(r,w)) =

=























∑

t∈E(G(r,w))

m(gt) +
∑

t1,t2∈E(G(r,w))

m(gt1 , gt2) +
∑

t1∈E(G(r,w))

t2∈E(G k
r
\{G(r,w)})

m(gt1 , gt2)

2























·
1

µ(E(Gr))
(3.28)

ϕk
r(G(r,w1), G(r,w2)) =



















∑

t1∈E(G(r,w1)
),

t2∈E(G(r,w2)
)

m(gt1 , gt2)



















·
1

µ(E(Gr))
. (3.29)

Taking into account the expression of the Shapley index in equation (3.26) andGs1 , Gs2 ∈ G
k
r1
∩Gk

r2

(that is Gs1 and Gs2 are subcriteria of both Gr1 and Gr2 located at level k), and supposing, without

loss of generality, that r2 = (r1, w) (that is Gr2 is a subcriterion of Gr1), it is worth noting that the

following inequalities could be verified:

ϕk
r1

(Gs1) > ϕk
r1

(Gs2) and ϕk
r2

(Gs1) < ϕk
r2

(Gs2) (or viceversa).
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This means that the importance of the criterion Gs1 is greater than the importance of the criterion

Gs2 if they are considered as subcriteria of Gr1 , but the importance of Gs2 is greater than importance

of Gs1 if they are considered as subcriteria of Gr2 . In fact, in the computation of ϕk
r1

(Gs1) we take into

account not only the interactions between the elementary criteria descending from Gs1 but also the

interactions between elementary criteria descending from Gs1 and elementary criteria descending from

Gr1 . Because we have supposed that Gr2 is a subcriterion of Gr1 , and consequently E (Gr2) ⊆ E (Gr1),

in the computation of ϕk
r1

(Gs1) we take into account more interactions than those considered in the

computation of ϕk
r2

(Gs1). For example, evaluating students with respect to Science according to

their scores on Mathematics and Physics, and with respect to Humanities according to their scores

on Literature and Philosophy, one could consider Mathematics more important than Physics whithin

Sciences and Literature more important than Philosophy within Humanities. However, taking into

consideration that there is a great synergy between Philosophy and Physics, at the comprehensive

level, Physics can be considered more important than Mathematics, as well as, at the same level,

Philosophy can be considered more important than Literature.

Another interesting situation that can happen with respect to preferences represented by the

Choquet integral in case of the hierarchy of criteria is the following. One can have that alternative a

is evaluated better than alternative b with respect to all the subcriteria G(r,1), . . . , G(r,n(r)) of criterion

Gr ∈ G from the subsequent level, and, nevertheless b can be evaluated better than a on criterion

Gr. For example, student a could be evaluated better than b on Science and Humanities but b could

be evaluated better than a at the comprehensive level. This is due to the fact that when evaluating

a student with respect to Science, we take into account only the interactions among subcriteria of

Science as well as in the evaluation of a student with respect to Humanities we take into account only

the interactions among subcriteria of Humanities. On the other hand, when evaluating a student

comprehensively, we take into account also the interactions among the subcriteria of Science and

subcriteria of Humanities. Thus, if there is a strong synergy between one subject from Science (for

example, Physics) and another subject from Humanities (for example, Philosophy), and b is better

evaluated than a in those subjects, this can result in the overall preference of b over a.

We shall show these situations in the didactic example presented in the next section.

3.3.5 A didactic example

Let us consider a set of nine students A = {a, b, c, d, e, f, g, h, k} evaluated on the basis of two macro-

subjects: Science and Humanities. Science has two sub-subjects: Mathematics and Physics, while

Humanities has two sub-subjects: Literature and Philosophy. The number of levels considered is
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two.

In terms of notation, we have G =
{

G1, G2, G(1,1), G(1,2), G(2,1), G(2,2)

}

, and the elements of G

denote respectively, Science, Humanities, Mathematics, Physics, Literature and Philosophy. The

students are evaluated on the basis of the elementary criteria only; such evaluations are shown in

Table 3.15(a).

Table 3.15: Matrix evaluation and Möbius measures

(a) Matrix evaluation

Science Humanities

Student Mathematics Physics Literature Philosophy

a 18 18 12 12

b 16 16 16 16

c 14 14 18 18

d 18 12 16 16

e 15 15 18 14

f 18 14 14 18

g 15 17 18 16

h 10 20 10 20

k 14 14 14 14

(b) Möbius measures

m(G(1,1)) 0.29

m(G(1,2)) 0.19

m(G(2,1)) 0.29

m(G(2,2)) 0.19

m(G(1,1), G(1,2)) −0.1

m(G(1,1), G(2,1)) 0

m(G(1,1), G(2,2)) 0

m(G(1,2), G(2,1)) 0

m(G(1,2), G(2,2)) 0.24

m(G(2,1), G(2,2)) −0.1

In the following, we shall consider a 2-additive capacity determined by the Möbius measures in

Table 3.15(b).

Applying the expression (3.25) of the hierarchical Choquet integral introduced in Section 3.3.4,

we can compute the evaluation of every student with respect to macro-subjects Science (G1) and

Humanities (G2), while using the expression (3.19) of the Choquet integral, we can compute the

evaluation of every student with respect to the whole hierarchy of criteria (see Table 3.16).

For example, looking at the first three rows in Table 3.16, we get:

• the Choquet integral of a with respect to Science is equal to 18 and it is computed consid-

ering the fictitious alternative a1 having the same evaluations of a on the elementary criteria

descending from Science, and null evaluations on all other elementary criteria,

• the Choquet integral of a with respect to Humanities is equal to 12 and it is computed consid-

ering the fictitious alternative a2 having the same evaluations of a on the elementary criteria

descending from Humanities, and null evaluations on all other elementary criteria,
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• the Choquet integral of a with respect to the whole hierarchy of criteria is equal to 14.28 and

it is computed considering the evaluations of a on all elementary criteria.

Hereafter we underline the very interesting inversion of preference regarding alternatives h and

k. In fact, looking at Table 3.16, we can observe that k is better than h with respect to both macro-

subjects Science and Humanities (Cµ1
(k) > Cµ1

(h) and Cµ2
(k) > Cµ2

(h)) but h is comprehensively

better than k (Cµ(h) > Cµ(k)). The reason of this inversion of preference is explained considering

that in the computation of Cµ1
(·) and Cµ2

(·) we take into account only the interaction between

elementary criteria descending from Science and Humanities respectively, while in the computation

of the comprehensive Choquet integral Cµ(·) we take into account the possible interactions between

all elementary criteria in the hierarchy.

Table 3.16: Choquet integrals with respect to the macro-subjects Science and Humanities and with
respect to the whole hierarchy of criteria

Science Humanities
Mathematics Physics Literature Philosophy Choquet integrals

a1 18 18 0 0 Cµ1
(a) 18

a2 0 0 12 12 Cµ2
(a) 12

a 18 18 12 12 Cµ(a) 14.28
b1 16 16 0 0 Cµ1

(b) 16
b2 0 0 16 16 Cµ2

(b) 16
b 16 16 16 16 Cµ(b) 16
c1 14 14 0 0 Cµ1

(c) 14
c2 0 0 18 18 Cµ2

(c) 18
c 14 14 18 18 Cµ(c) 15.52
d1 18 12 0 0 Cµ1

(d) 16.57
d2 0 0 16 16 Cµ2

(d) 16
d 18 12 16 16 Cµ(d) 15.26
e1 15 15 0 0 Cµ1

(e) 15
e2 0 0 18 14 Cµ2

(e) 17.05
e 15 15 18 14 Cµ(e) 15.54
f1 18 14 0 0 Cµ1

(f) 17.05
f2 0 0 14 18 Cµ2

(f) 16
f 18 14 14 18 Cµ(f) 15.92
g1 15 17 0 0 Cµ1

(g) 16
g2 0 0 18 16 Cµ2

(g) 17.52
g 15 17 18 16 Cµ(g) 16.58
h1 10 20 0 0 Cµ1

(h) 13.5
h2 0 0 10 20 Cµ2

(h) 13.5
h 10 20 10 20 Cµ(h) 15.06
k1 14 14 0 0 Cµ1

(k) 14
k2 0 0 14 14 Cµ2

(k) 14
k 14 14 14 14 Cµ(k) 14
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By considering the capacities on the elementary criteria displayed in Table 3.15(b) and adopting

the expression (3.28) defined in Section 3.3.4, we compute the Shapley values of the elementary

criteria G(r,i) with respect to their relative parent criterion Gr (see Table 3.17(a)). Then the overall

Shapley values of the elementary criteria (i.e. with respect to G0) are calculated and shown in

Table 3.17(b). Finally, the Shapley values of subcriteria G1 (Science) and G2 (Humanities) and their

interaction index (see the expression (3.29) introduced in Section 3.3.4) are computed and displayed

in Table 3.18.

As it has been announced in Section 3.3.4, in this example, Mathematics is more important

than Physics, when they are considered as subcriteria of Science (see Table 3.17(a)) and, conversely,

Physics is more important than Mathematics when they are considered as subcriteria of the whole

set of criteria G0 (see Table 3.17(b)).

Table 3.17: Shapley values

(a) Shapley values of every elementary criterion with respect to every
macro-subject Gr

Science Humanities

Mathematics Physics Literature Philosophy

ϕk
r(G(r,w)) 0.63 0.36 0.63 0.36

(b) Shapley values of the elemen-
tary criteria

ϕk
r(G(r,w))

Mathematics 0.24

Physics 0.26

Literature 0.24

Philosophy 0.26

Table 3.18: The Shapley values and interaction index of Science (G1) and Humanities (G2)

ϕk
r(G(r,w))

Science 0.5

Humanities 0.5

ϕk
r(G(r,w1), G(r,w2))

Science and Humanities 0.24

In order to illustrate the difference between our approach and that of [120], in the following we

shall compute the comprehensive evaluations of student g following the approach of [120]. At first,

we need to define a capacity for each node of the hierarchy of criteria, which is not an elementary

criterion. Because in our didactic example the hierarchy is composed of three nodes being different

from the elementary criteria, we need to define three capacities, µ{Sci}, µ{Hum}, and µ{Sci,Hum} on

{Math, Phy}, {Lit, Phi} and {Sci,Hum}, respectively. Let us suppose that the capacities are

190



defined using the Möbius measures shown in Table 3.19.

Table 3.19: Möbius measures

Science Humanities Science,Humanities

m({Math}) 0.7 m({Lit}) 0.5 m({Sci}) 0.4

m({Phy}) 0.5 m({Phi}) 0.6 m({Hum}) 0.4

m({Math, Phy}) -0.2 m({Lit, Phi}) -0.1 m({Sci,Hum}) 0.2

Computing the Choquet integral of g = (15, 17, 18, 16) with respect to criteria Science and Humanities

using the capacities µ{Sci} and µ{Hum}, we get:

C{Sci}(g) = 15m({Math}) + 17m({Phy}) + 15m({Math, Phys}) = 16

C{Hum}(g) = 18m({Lit}+ 16m({Phi}+ 16m({Lit, Phi} = 17

Then, the comprehensive Choquet integral of g is obtained by aggregating the evaluations

(C{Sci}(g), C{Hum}(g)) using the capacity µ{Sci,Hum} :

C{Sci,Hum}(g) = C{Sci}(g)m({Sci}) + C{Hum}(g)m({Hum})+

+min(C{Sci}(g), C{Hum}(g))m({Sci,Hum}) = 16.4.

The remarkable difference between the method presented in [120] and our approach, is that in the

first one, one capacity has to be defined with respect to each node of the hierarchy of criteria being

different from the elementary criteria (for example in the didactic example we have defined three

different capacities) while in our approach one needs to define only one capacity on the set of all

elementary criteria, and the capacities at higher levels are calculated according to formulas given in

Section 3.3.4.

3.3.6 Conclusions

We have proposed the application of the Multiple Criteria Hierarchy Process (MCHP) to a preference

model expressed in terms of Choquet integral, in order to deal with interaction among criteria. Ap-

plication of the MCHP to the Choquet integral permits the handling of importance and interactions

of criteria with respect to any subcriterion of the hierarchy. To apply the MCHP to the Choquet

integral in real world problems, it is necessary to elicit preference model parameters, which in this

case are the non-interactive weights represented by a capacity. The added value of the MCHP is

that it permits the DM expressing the preference information related to any criterion of the hierar-
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chy. When MCHP is combined with a disaggregation procedure, the DM can say, for example, that

student a is globally preferred to student b, but he can also say that student c is better than student

d in Humanities. DM can also say that criterion Science is more important than Humanities, or that

the interaction between Physics and Philosophy is greater than the interaction between Mathematics

and Literature. Many multicriteria disaggregation procedures have been proposed to infer a capacity

from those types of preference information, however, without considering the hierarchy of criteria

(see, for example, [86]). Recently, a new multicriteria disaggregation method has been proposed to

take into account that, in general, more than one capacity is able to represent the preference ex-

pressed by the DM: Non Additive Robust Ordinal Regression (NAROR) [7]. NAROR considers all

the capacities that are compatible with the preference information given by the DM, adopting the

concepts of possible and necessary preference introduced in [55]. In simple words, a is necessarily or

possibly preferred to b, if it is preferred for all compatible capacities or for at least one compatible

capacity, respectively. In our opinion, application of NAROR to MCHP for the Choquet integral will

permit to take into account interaction among hierarchically structured criteria in a very efficient

way, enabling the handling of many complex real world problems.
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Chapter 4

Final remarks

The objective of a Multiple Criteria Decision Aiding (MCDA) methodology is to provide a set of

useful recommendations to bring the Decision Maker (DM) to make the “best” decision. Looking at

the evaluations of the alternatives with respect to all considered criteria, the only information one

can obtain is the dominance relation but, generally, this is very poor. For this reason, in order to gain

a more insight into the problem at hand, the Multiple Attribute Utility Theory (MAUT) and the

outranking methods are generally used. Two techniques, direct and indirect, are known in literature

to get the parameters useful to implement the different methodologies. The direct one consists of

asking the DM to directly provide all of the information on the preferential parameters, while the

indirect one consists of asking the DM to provide preference information from which it is possible to

elicit the preferential parameters. Generally, more than one set of parameters is compatible with the

preference information provided by the DM. Robust Ordinal Regression (ROR) methodologies take

into account not only one but the whole family of sets of parameters compatible with the preference

information provided by the DM. On this basis ROR defines a necessary and a possible preference

relation. The necessary preference relation holds between alternatives a and b, if a is at least as

good as b for all sets of parameters compatible with the preferences provided by the DM while the

possible preference relation holds between a and b if a is at least as good as b for at least one set

of parameters. Another family of methodologies aiming to explore the whole set of parameters of

a preference model is the Stochastic Multiobjective Acceptability Analysis (SMAA) that takes into

account imprecision or lack of data considering probability distributions over the space of multiple

criteria evaluations and over the space of preferential parameters.

The contributions given by the thesis regard Hierarchy of Criteria, Interaction of Criteria and

Hierarchy of Criteria in case of interacting criteria:

• Regarding the first point, we observed that in more complex decision making problems, all
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evaluation criteria are not at the same level, but they are organized in a hierarchical way. This

means that it is possible to define some root criteria, some subcriteria descending from each

root criterion, other subsubcriteria descending from each subcriterion and so on. Basing on

the hierarchy of criteria, we have introduced the Multiple Criteria Hierarchy Process (MCHP).

MCHP has been applied both to MAUT and to outranking methods, in two papers: MCHP in

Robust Ordinal Regression [23] and MCHP with ELECTRE and PROMETHEE [24].

• MAUT and outranking methods are based on the independence between criteria. In the case

the criteria are not independent because there is a positive or a negative interaction between

them, multicriteria evaluations can be aggregated using non-additive integrals or an enriched

utility function, as that one used in UTAGMS-INT method [58], in which, beyond the marginal

utilities related to each criterion, there are components representing a bonus or a malus for

synergetic or redundant criteria. In the thesis we have considered two very well known non-

additive integrals: the Choquet integral and its extension to a bipolar scale that is the bipolar

Choquet integral.

Two contributions are based on non-additive integrals: the SMAA-Choquet method [3] putting

together the Choquet integral and the SMAA family, and the Bipolar PROMETHEE method

[22] extending the PROMETHEE I and II methods in case of interacting criteria on a bipolar

scale.

Based on a utility function taking into account interaction of criteria using bonus and malus,

is instead the MUSA-int method [5] that extends the customer satisfaction analysis method

MUSA.

• Putting together the two key points of the thesis, that is the hierarchy of criteria and the

interaction between criteria, we developed the MCHP for the Choquet integral [4] in which we

extended the Choquet integral to the case of a hierarchy of interacting criteria.
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satisfaction analysis with interacting criteria. OMEGA. Submitted, 2012.

[6] S. Angilella, S. Greco, F. Lamantia, and B. Matarazzo. Assessing non-additive utility for

multicriteria decision aid. European Journal of Operational Research, 158(3):734–744, 2004.

[7] S. Angilella, S. Greco, and B. Matarazzo. Non-additive robust ordinal regression: A multi-

ple criteria decision model based on the Choquet integral. European Journal of Operational

Research, 201(1):277–288, 2010.

[8] C.A. Bana E Costa. A multicriteria decision aid methodology to deal with conflicting situations

on the weights. European Journal of Operational Research, 26(1):22–34, 1986.

[9] C.A. Bana E Costa. A methodology for sensitivity analysis in three-criteria problems: A case

study in municipal management. European Journal of Operational Research, 33(2):159–173,

1988.

195



[10] S. Barba Romero and J.C. Pomerol. Choix multicritère dans l’enterprise. Heres. Collection

Informatique, 1993.

[11] M. Behzadian, R.B. Kazemzadeh, A. Albadvi, and M. Aghdasi. PROMETHEE: A compre-

hensive literature review on methodologies and applications. European Journal of Operational

Research, 200(1):198–215, 2010.

[12] V. Belton and T.J. Stewart. Multiple criteria decision analysis: an integrated approach.

Springer, 2002.

[13] M. Beuthe and G. Scannella. Comparative analysis of UTA multicriteria methods. European

Journal of Operational Research, 130(2):246–262, 2001.

[14] G. Bous, P. Fortemps, F. Glineur, and M. Pirlot. ACUTA: A novel method for eliciting additive

value functions on the basis of holistic preference statements. European Journal of Operational

Research, 206(2):435–444, 2010.

[15] J.P. Brans and B. Mareschal. PROMETHEE Methods. In J. Figueira, S. Greco, and

M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages

163–196. Springer, Berlin, 2005.

[16] J.P. Brans, B. Mareschal, and Ph. Vincke. PROMETHEE: a new family of outranking methods

in multicriteria analysis. In J.P. Brans, editor, Operational Research, IFORS 84, pages 477–490.

North Holland, Amsterdam, 1984.

[17] J.P. Brans and Ph. Vincke. A preference ranking organisation method: The PROMETHEE

method for MCDM. Management Science, 31(6):647–656, 1985.

[18] J.D. Carroll and P.E. Green. Guest editorial: Psychometric methods in marketing research:

Part I, conjoint analysis. J. Marketing Res., 32:385–391, 1995.

[19] A. Charnes, W.W. Cooper, and R.O. Ferguson. Optimal estimation of executive compensation

by linear programming. Management Science, 1(2):138–151, 1955.

[20] A. Chateauneuf and J.Y. Jaffray. Some characterizations of lower probabilities and other mono-
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[53] S. Greco, B. Matarazzo, and R. S lowiński. Customer satisfaction analysis based on rough set

approach. Zeitschrift für Betriebswirtschaft, 77:325–339, 2007.
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[107] B. Roy and J. Hugonnard. Classement des prolongements de lignes de métro en banlieu parisi-
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