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Chapter 1

Cluster Weighted Models

1.1 Introduction

Linear systems theory has produced a many results which can be used in practically

all engineering and scientific disciplines. Most signal processing, system engineering,

control and characterization techniques rely on linear assumptions and apply the results

produced by decades of research in this field. However the limitations is the fact that

non-linear behaviour of any kind can not be handled.

Cluster Weighted Modeling (CWM) is a modeling tool that allows to characterize sys-

tems of arbitrary character. In the original formulation, ClusterWeightedModels (CWM)

have been proposed by Gershenfeld (1997) under Gaussian and linear assumptions in

the context of media technology to build a digital violin with traditional inputs and real-

istic sound (Gershenfeld (1997), Gershenfeld et al. (1999), Gershenfeld (1998), Schöner

and Gershenfeld (2001)).

The use of CWM has also been propsed for evaluating the quality of public sector ac-

tivities(Minotti and Vittadini (2010), Minotti S.C. (2011)). The framework is based on

density estimation around Gaussian kernels which contain simple local models describ-
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ing the system behaviour of data subspace. In the extreme case where only one kernel is

used the framework collapses to a simple model that is linear in the coefficients. In the

opposite extreme it allows one to embed and forecast data that may be non-Gaussian,

discontinuous, high dimensional, and chaotic. In between CWM covers a multitude of

models, each of which is characterized by linear models with transparent local structures

through the embedding of past practice and mature techniques in the general non-linear

framework.

The limitations of Artificial Neural Networks (ANNs) have become apparent almost as

quickly as their modeling power: networks take long to converge, coefficients are only

meaningful in the context of the entire model and failure and success of an architecture

are unpredictable beforehand.

More recently a new family of networks has been developed, which interpret data proba-

bilistically and are often represented in graphical networks (Buntine (1996),Heckerman

and Wellman (1995), Jordan (1999)). As a meta-class of models, graphical models

are conceptually unbounded. They unify existing network architectures, for example

classical ANNs in a single theory Neal (1995), provide new insights and extensions

to conventional networks and open up new application domains. Graphical models

are also referred to as independence networks, since the graphical representation re-

ally describes dependence and independence among random variables. They are called

Bayesian belief networks since dependencies between variables are expressed in terms

of conditional probability functions that have implicit or explicit prior beliefs built into

them. They are furthermore named influence diagrams since causal dependences be-

tween variables are clearly illustrated. "Influence" is meant probabilistically, which

contains deterministic causality as a special case.

Unfortunately graphical models lack a systematic search algorithm that maps a given
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problem into a network architecture. Instead, before the networks parameters can be

trained on new data, the architecture needs to be redesigned node by node from scratch.

Cluster Weighted Modeling is a special case of a probabilistic model that gives up some

of the generality of graphical models in favour of ease of use, a minimal number of

hyper-parameters and a fast parameter search. It has been designed as an architecture

that is as general as reasonably possible, but as specific to a particular application as

necessary. As opposed to ANNs it provides transparent local structures and meaningful

parameters, it allows one to identify and analyse data subspaces and converges quickly.

1.2 Architecture

Cluster-Weighted Modeling (CWM) is an input-output inference frame-work based on

probability density estimation of a joint set of input feature and output target data. It is

similar to mixture-of-experts type architectures (Jordan and Jacobs (1994)) and can be

interpreted as a flexible and transparent technique to approximate an arbitrary function.

Unlike conventional Kernel based techniques, CWM requires only one hyper-parameter

to be fixed beforehand, and provides data parameters such as the length scale (band-

width) of the local approximation as an output rather than an input of the algorithm

(Cleveland and Devlin (1988)).

Let us consider the general framework of CWM.

Let (X, Y )be the pair of random vector X and random varaible Y defined on Ω with

joint probability distribution p(x, y),where X is a d-dimensional input vector with val-

ues in some space X and Y is a response variable having values in Y ⊆ R. Therefore

we have:

(x, y) ∈ R
d+1 (1.1)
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Let us assume that Ω can be partitioned into G disjoint groups, say Ω1, . . . ,ΩG, that is:

Ω = Ω1 ∪ · · · ∪ ΩG (1.2)

Given the joint density p(x, y) we can expand it in terms of explanatory clusters con-

taining three terms:

• a weight p(Ωg)

• a domain of influence in the input space p(x|Ωg)

• a dependence in the output space p(y|x,Ωg)

More specifically CWM decomposes the joint probability as follows:

p(x, y;θ) =
M∑

m=1

p(x, y,Ωg)

=
M∑

m=1

p(x, y|Ωg)πg

=
G∑

g=1

p(y|x,Ωg)p(x|Ωg)πg

(1.3)

where p(y|x,Ωg) is the conditional density of the response variable Y given the predictor

vector x and Ωg, πg = p(Ωg) is the mixing weight of Ωg, (πg > 0 and
∑G

n=1 πg = 1),

g = 1, . . . , G, and θ denotes the set of all parameters of the model. Hence, the joint

density of (X, Y ) can be viewed as a mixture of local models p(y|x,Ωg) weighted ( in

a broader sense) on both local densities p(x|Ωg) and mixing weights πg. In the spirit

of Titterington et al. (1985), we can distinguish three types of applicaton for CWM in

(1.3):

1. Direct application of type A. We assume that each group Ωg is characterized by

an input-output relation that can be written as

Y |x = µ(x; βg) + ǫg (1.4)
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where ǫg is a random variable with zero mean and finite variance σǫ,g, and βg

denotes the set of parameters of the µ(·) function, g = 1, . . . , G.

2. Direct application of type B. We assume that a random vector Z is defined on

Ω = Ω1 ∪ · · · ∪ ΩG with values in R
d+1 belongs to one of these groups. Further,

vector z is partitioned as z = (x′, y)′ and we assume that within each group we

write:

p(z; Ωg) = p((x′, y)′; Ωg) = p(y|x,Ωg)p(x|Ωg). (1.5)

In other words, CWM in (1.3) is another form of density of FMD given by:

p(z;θ) =
G∑

g=1

p(z|Ωg)πg =
G∑

g=1

p(y|x,Ωg)p(x|Ωg)πg. (1.6)

3. Indirect application. In this case, CWM in (1.3) is simply used as a mathematical

tool for density estimation.

In this thesis we will concentrate on direct applications that essentially have classi-

fication purposes. In this case, posterior probability p(Ωg|x, y) of unit (x, y) belonging

to the g-th group (g = 1, . . . , G) is given by;

p(Ωg|x, y) =
p(x, y,Ωg)

p(x, y)
=

p(y|x,Ωg)p(x|Ωg)πg∑G
j=1 p(y|x,Ωj)p(x|Ωj)πj

, g = 1, . . . , G (1.7)

that is, the classification of each unit depends on both marginal and conditional densities.

Because p(x|Ωg)πg = p(Ωg|x)p(x), from (1.7) we get:

p(Ωg|x, y) =
p(y|x,Ωg)p(Ωg|x)p(x)∑G
j=1 p(y|x,Ωj)p(Ωj|x)p(x)

=
p(y|x,Ωg)p(Ωg|x)∑G
j=1 p(y|x,Ωj)p(Ωj|x)

(1.8)

with

p(Ωg|x) =
p(x|Ωg)πg∑G
j=1 p(x|Ωj)πj

=
p(x|Ωg)πg
p(x)

(1.9)
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1.3 Gaussian CWM

In the first approach of CWM, both marginal and conditional densities are assumed to

be Gaussian, with X|Ωg ∼ Nd(µg,Σg) and Y |x,Ωg ∼ N(µ(x, βg), σǫ,g), so that we shall

write:

p(x|Ωg) = φd(x;µg,Σg)

=
|Σ−1g |

1/2

(2π)d/2
e−(x−µg)′Σ̇

−1
g (̇x−µg)/2

(1.10)

and

p(y|x,Ωg) = φ(y;µ(x;βg), σ
2
ǫ,g)

=
1√
2πσ2

ǫ,g

e−[y−µ(x;βg)]2/2σ2
ǫ,g

(1.11)

with g = 1, . . . , G.

Let us observe that in (1.11) the mean value of the Gaussian output is replaced by the

function µ(x,βg) with unknown parameters βg.

With this assumption, the conditional forecast 〈y|x〉 will be:

〈y|x〉 =

∫
yp(y|x)dy

=

∫
y
p(x, y)

p(x)
dy

=

∑G
j=1

∫
yp(y|x,Ωj)dy p(x|Ωj)πj
∑G

j=1 p(x|Ωj)πj

=

∑G
j=1 µ(x,βj)p(x|Ωj)πj∑G

j=1 p(x|Ωj)πj
.

(1.12)

Let us observe that the predicted y is a superposition of all the local functionals, where

the weight of each contribution depends on the posterior probability that an input point

was generated by a particular cluster. The denominator assures that the sum of the

weights of all contributions equals unity.
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Similarly the conditional error in terms of the expected covariance of y given x will be:

〈σ2
y|x〉 =

∫
(y − 〈y|x〉)2p(y|x)dy

=

∫
(y2 − 〈y|x〉2)p(y|x)dy

=

∑G
j=1[σ

2
ǫ,j + µ(x,βj)

2]p(x|Ωj)πj
∑G

j=1 p(x|Ωj)πj
− 〈y|x〉2.

(1.13)

Finally the posterior probability in (1.7) specializes as:

p(Ωg|x, y) =
p(x, y,Ωg)

p(x, y)

=
p(y|x,Ωg)p(x|Ωg)πg∑G

j=1 p(x, y,Ωj)

=
p(y|x,Ωg)p(x|Ωg)πg∑G
j=1 p(x|y,Ωj)p(x|Ωj)πj

=
φ(y;µ(x;βg), σ

2
ǫ,g)φd(x;µg,Σg)πg∑G

j=1 φ(y;µ(x;βj), σ
2
ǫ,j)φd(x;µj,Σj)πj

g = 1, . . . , G.

(1.14)

There are two parameters to be determined beforehand: the number of clusters G and

the form of the local models µ which together control the model resources and hence

under versus over-fitting. We trade off the complexity of the local models against the

complexity of the global architecture, which is nicely illustrated in the case of a local

polynomial expansion: if we use locally constant models together with a large number

of clusters, the predictive power is determined by the number of Gaussian kernels. If,

alternatively, we use a high-order polynomial model and a single kernel, the model

reduces to a global polynomial model.

The choice of local models depends on the application. In general µ expresses prior

beliefs about the nature of the data or insights in the mechanics of a system an thus

functions as a regularizer of the model. Machine learning architectures and estimation

algorithms typically depend on global regularizers that handle prior beliefs about what

is a good model. This is problematic since global statements may not apply locally. For
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example, the maximum entropy principle is good at handling discontinuities, but has

no notion of local smoothness, whereas integrated curvature is good in enforcing local

smoothness but rounds out discontinuities. In our approach the model is constrained

only by the local architecture which may enforce local smoothness but at the same time

allows for discontinuities where needed.

1.4 Linear Gaussian CWM and relationships with Tra-

ditional Mixture Models

In this section and in the following one we will assume that the conditional densities are

based on linear mappings, so that µ(x;βg) = b
′

gx + bg0, for some βg = (b′g, bg0)
′, with

b ∈ R
d and bg0 ∈ R. Thus we get:

p(x, y,θ) =
G∑

g=1

φ(y; b′gx + bg,0, σ
2
ǫ,g)φd(x;µg,Σg)πg (1.15)

with φ(·) denoting the probability density of Gaussian distributions. The approach in

(1.15) will be referred to as linear Gaussian CWM.

We will now consider the relationships between linear Gaussian CWM and traditional

Gaussian-based mixture models, considering both probability density functions and

posterior probabilities (Ingrassia et al. (2012b)). In particular we will prove that, un-

der suitable assumptions, linear Gaussian CWM in (1.15) leads to the same posterior

probability of such mixture models. In this sense we say that CWM contains other gaus-

sian mixture models. In particular, linear Gaussian CWM leads to the same family of

probability distributions generated by FMG.
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1.4.1 Finite Mixtures of Gaussian Distributions

Let Z be a random vector defined onΩ = Ω1∪· · ·∪ΩG with joint probability distribution

p(z), where Z assumes values in some space Z ⊂ R
d+1. Assume that the density p(z)

of Z has the form of a mixture of Gaussian distribution (FMG), i.e.

p(z) =
G∑

g=1

p(z|Ωg)πg (1.16)

where p(z|Ωg) is the probability density of Z|Ωg and πg = p(Ωg) is the mixing weight

of group Ωg, g = 1, . . . , G. Finally, denote with µ
(z)
g and Σ

(z)
g the mean vector and

the covariance matrix of Z|Ωg, respectively. Now let us set Z = (X′, Y ), where X is a

random vector with values in Rd and Y is a random variable. Thus, we can write

µ(z)
g =


µ

(x)
g

µ
(y)
g


 and Σ(z)

g =


Σ

(xx)
g Σ

(xy)
g

Σ
(yx)
g σ

2(y)
g


 (1.17)

Further, the posterior probability in the g-group is given by:

p(Ωg|z) =
p(z|Ωg)πg∑G
j=1 p(z|Ωj)πj

g = 1, . . . , G. (1.18)

Proposition 1. Let Z be a random vector defined on Ω = Ω1 ∪ · · · ∪ ΩG with values in

R
d+1, and assume that Z|Ωg ∼ Nd+1(µg,Σg)(g = 1, . . . , G). In particular, the density

p(z) of Z is a FMG:

p(z) =
G∑

g=1

φd+1(z;µg,Σg)πg. (1.19)

Then p(z) can be written similar to (1.15), that is as a linear Gaussian CWM.

Proof. Let us set Z = (X′, Y )′, where X is a d-dimensianl random vector and Y is a

random variable. According to well-known results of multivariate statistics (eg. Kent
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et al. (1979)), from (1.19) we get:

p(z) =
G∑

g=1

φd+1(z;µg,Σg)πg =
G∑

g=1

φd+1((x
′, y)′;µg,Σg)πg

=
G∑

g=1

φd(x;µ
(x)
g ,Σ(xx)

g )φ(y;µ(y|x)
g , σ2(y|x)

g )πg,

(1.20)

where µ
(y|x)
g = µ

(y)
g +Σ

(yx)
g Σ

(xx)−1

g (x− µ
(x)
g ) and σ

2(y|x)
g = Σ

(yy)
g .

If we set bg = Σ
(yx)
g Σ

(xx)−1

g , bg0 = µ
(y)
g − Σ

(yx)
g Σ

(xx)−1

g µ
(x)
g and σ2

ǫ,g = σ
2(y|x)
g , the (1.19)

can be written in the form of (1.15).

Using similar arguments, FMG can be shown to lead to the same distribution of

posterior probabilities and, thus, CWM contains FMG.

We remark that the equivalence between FMG and CWMholds only for linear mappings

µ(x;βg) = b′gx + bg0 (g = 1, . . . , G), while, more generally, Gaussian CWM

p(x, y;θ) =
G∑

g=1

φ(y;µ(x;βg), σ
2
ǫ,g)φd(x;µg,Σg)πg (1.21)

includes a quite wide family of models.

1.4.2 Finite Mixtures of Regression Models

Let us consider Mixtures of Regression Models (FMR) (DeSarbo and Cron (1988),

McLachlan and Peel (2000), Frühwirth-Schnatter (2006)):

f(y|x;ψ) =
G∑

g=1

φ(y; b′gx + bg0, σ
2
ǫ,g)πg, (1.22)

where vector ψ denotes the overall parameters of the model. Posterior probability

p(Ωg|x, y) of the g-th group (g = 1, . . . , G) for FMR is:

p(Ωg|x, y) =
f(y|x;ψ,Ωg)

f(y|x;ψ)

=
φ(y; b′gx + bg0, σ

2
ǫ,g)πg∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)πj

(1.23)
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that is the classification of each observation depends on the local model and the mixing

weight. We have the following result:

Proposition 2. Let us consider linear Gaussian CWM in (1.15), with X|Ωg ∼ Nd(µg,Σg)

for g = 1, . . . , G. If the probability density of X|Ωg does not depend on group g, i.e.,

φd(x;µg,Σg) = φd(x;µ,Σ) for every g = 1, . . . , G, then it follows:

p(x, y,θ) = φd(x,µ,Σ)f(y|x;ψ). (1.24)

where f(y|x;ψ) is the FMR model in (1.22).

Proof. Assume that φd(x;µg,Σg) = φd(x;µ,Σ), g = 1, . . . , G. Then (1.15) yields:

p(x, y,θ) =
G∑

g=1

φ(y; b′gx + bg0, σ
2
ǫ,g)φd(x;µ,Σ)πg

= φd(x;µ,Σ)
G∑

g=1

φ(y; b′gx + bg0, σ
2
ǫ,g)πg

= φd(x;µ,Σ)f(y|x;ψ),

(1.25)

where f(y|x;ψ) is the FMR model in (1.22)

The second result of this section shows that, under the same hypothesis, CWM con-

tains FMR.

Corollary 3. If the probability density of X|Ωg ∼ Nd(µg,Σg) in (1.15) does not depend

on the g-th group, i.e., φd(x;µg,Σg) = φd(x;µ,Σ) for every g = 1, . . . , G, then the

posterior probability in (1.14) coincides with (1.23)

Proof. Assume that φd(x;µgΣg) = φd(x;µ,Σ), g = 1, . . . , G. Thus from (1.14) we

13



get:

p(Ωg|x, y) =
φ(y; b′gx + bg0, σ

2
ǫ,g)φd(x;µ,Σ)πg∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)φd(x;µ,Σ)πj

=
φ(y; b′gx + bg0, σ

2
ǫ,g)φd(x;µ,Σ)πg

φd(x;µ,Σ)
∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)πj

=
φ(y; b′gx + bg0, σ

2
ǫ,g)πg∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)πj

(1.26)

for g = 1, . . . , G which coincides with (1.23)

1.4.3 Finite Mixtures of Regression Models with Concomitant Vari-

ables

Mixture of RegressionModels with Concomitant Variables(FMRC) (Dayton andMacready

(1988), Wedel and DeSarbo (2002)) are extension of FMR:

f ∗(y|x;ψ∗) =
G∑

g=1

φ(y; b′gx + bg0, σ
2
ǫ,g)p(Ωg|x, ξ), (1.27)

where the mixing weight p(Ωg|x, ξ) is a function depending on x through some param-

eters ξ, and ψ∗ is the augmented set of all parameters of the model.

Probability p(Ωg|x, ξ) is usually modeled by a multinomial logistic distribution with the

first component as baseline, that is:

p(Ωg|x, ξ) =
exp(w′gx + wg0)∑G
j=1 exp(w

′
jx + wj0)

(1.28)

Equation (1.28) is satisfied if local densities p(x|Ωg), g = 1, . . . , G are assumed to be

multivariate Gaussian with the same covariance matrices (Anderson (1972)). Posterior

probability p(Ωg|x, y) of the g-th group (g = 1, . . . , G) for FMRC is:

p(Ωg|x, y) =
f ∗(y|x;ψ∗,Ωg)

f ∗(y|x;ψ∗)
=

φ(y; b′gx + bg0, σ
2
ǫ,g)p(Ωg|x, ξ)∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)p(Ωj|x, ξ)
(1.29)
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Under suitable assumptions, linear Gaussian CWM leads to the same estimates of

bg, bg0(g = 1, . . . , G) in (1.27).

Proposition 4. Let us consider linear Gaussian CWM in (1.15), with X|Ωg ∼ Nd(µg,Σg)(g =

1, . . . , G). If Σg = Σ and πg = π = 1/G for every g = 1, . . . , G, then it follows that

p(x, y;θ) = p(x)f ∗(y|x;ψ∗), (1.30)

where f ∗(y|x;ψ∗) is the FMRC model in (1.27) based on the multinomial logistic in

(1.28) and p(x) =
∑G

g=1 p(x|Ωg)πg

Proof. Assume Σg = Σ and πg = π = 1/G for every g = 1, . . . , G; thus, the density

in (1.15) yields:

p(x, y; θ)

=
G∑

g=1

φ(b′gx + bg0, σ
2
ǫ,g)φd(x;µg,Σ)π

= p(x)
G∑

g=1

φ(b′gx + bg0, σ
2
ǫ,g)

φd(x;µg,Σ)π

p(x)

= p(x)
G∑

g=1

φ(b′gx + bg0, σ
2
ǫ,g)

exp
[
−1

2
(x− µg)

′Σ−1(x− µg)
]

∑G
j=1 exp

[
−1

2
(x− µj)′Σ−1(x− µj)

]

(1.31)

where

exp
[
−1

2
(x− µg)

′Σ−1(x− µg)
]

∑G
j=1 exp

[
−1

2
(x− µj)′Σ−1(x− µj)

]

=
1

1 +
∑

j 6=g exp
[
−1

2
(x− µj)′Σ−1(x− µj) +

1
2
(x− µg)′Σ−1(x− µg)

]

=
1

1 +
∑

j 6=g exp
[
(µj − µg)′Σ−1x− 1

2
(µj + µg)′Σ−1(µj − µg)

]

(1.32)

and we recognize that (1.32) can be written in form (1.28) for suitable constants wg, wg0 (g =

1, . . . , G).
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Based on similar arguments, we can immediately prove that, under the same hy-

potheses, CWM contains FMRC.

Corollary 5. Let us consider the linear Gaussian CWM in 1.15. If Σg = Σ and πg =

π = 1/G for every g = 1, . . . , G, then the posterior probability in (1.14) coincides with

(1.29).

Proof. First, based on (1.28), let us rewrite (1.29) as

p(Ωg|x, y) =
φ(y; b′gx + bg0, σ

2
ǫ,g)exp(w

′
gx + wg0)∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)exp(w
′
jx + wj0)

(1.33)

Assume Σg = Σ and πg = π = 1/G for every g = 1, . . . , G. Thus (1.14) reduces to

p(Ωg|x, y) =
φ(y; b′gx + bg0, σ

2
ǫ,g)φd(x;µg,Σ)∑G

j=1 φ(y; b
′
jx + bj0, σ2

ǫ,j)φd(x;µj,Σ)
(1.34)

and after some algebra we find a quantity similar to (1.33).

As for the relation between FMRC and linear Gaussian CWM, consider that joint

density p(x,Ωg) can be written in either form:

p(x,Ωg) = p(x|Ωg)p(Ωg) or p(x,Ωg) = p(Ωg|x)p(x), (1.35)

where quantity p(x|Ωg) is involved in CWM (left-hand side), while FMRC contains

conditional probability p(Ωg|x) (right-hand side). In other words, CWM is a Ωg-to-x

model, while FMRC is a x-to-Ωg model. According to Jordan et al. (1995), they are

called the generative direction model and the diagnostic direction model, respectively,

in the framework of neural networks.

The results of this section are provided in Table 1.1, which summarizes the relationships

between linear Gaussian CWM and traditional Gaussian mixture models.
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model p(x|Ωg) p(y|x,Ωg) parameterisation of πg assumptions

FMG Gaussian Gaussian none

FMR none Gaussian none (µg,Σg) = (µ,Σ), g=1,. . . ,G

FMRC none Gaussian logistic Σg = Σ and πg = π, g=1,. . . ,G

Table 1.1: Relationships between linear Gaussian CWM and traditional Gaussian mix-

tures.

Finally, we remark that if conditional distributions

p(y|x,Ωg) = φ(y; b′gx + bg0, σ
2
ε,g) (g = 1, . . . , G) (1.36)

do not depend on group g, that is

φ(y; b′gx + bg0, σ
2
ε,g) = φ(y; b′x + b0, σ

2
ε) (g = 1, . . . , G), (1.37)

then (1.15) specializes as:

p(x, y, θ) =
G∑

g=1

φ(y; b′x + b0, σ
2
ε)φd(x,µg,Σg)πg

= φ(y; b′x + b0, σ
2
ε)

G∑

g=1

φd(x,µg,Σg)πg,

(1.38)

and this implies, from (1.22) and (1.27), that FMR and FMRC are reduced to a single

straight line:

f(y|x;ψ) = f ∗(y|x, ψ∗) = φ(y; b′x + b0), (1.39)

because
∑G

g=1 πg =
∑G

g=1 p(Ωg|x, ξ) = 1.

1.5 Decision surfaces of linear Gaussian CWM

The potential of CWM as a general and flexible framework for classification purposes

can also be illustrated from a geometrical point of view, by considering the decision
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surfaces that separate the groups. In the following we will discuss the binary case and

will prove that these decision surfaces belong to the family of quadrics.

In the specific case of two groups, a decision surface is the set of (x, y) ∈ R
d+1 such that

p(Ω0|x, y) = p(Ω1|x, y) = 0.5. Given that p(x|Ωg)πg = p(Ωg|x)p(x), we can rewrite

p(Ω1|x, y) as:

p(Ω1|x, y) =
p(y|x,Ω1)p(Ω1|x)

p(y|x,Ω0)p(Ω0|x) + p(y|x,Ω1)p(Ω1|x)

=
1

1 +
p(y|x,Ω0)p(Ω0|x)

p(y|x,Ω1)p(Ω1|x)

=
1

1 + exp




−ln

p(y|x,Ω1)

p(y|x,Ω0)
− ln

p(Ω1|x)

p(Ω0|x)





.

(1.40)

Thus it results that p(Ω1|x, y) = 0.5 when

ln
p(y|x,Ω1)

p(y|x,Ω0)
+ ln

p(Ω1|x)

p(Ω0|x)
= 0, (1.41)

which may be rewritten as:

ln
p(y|x,Ω1)

p(y|x,Ω0)
+ ln

p(x|Ω1)

p(x|Ω0)
+ ln

π1
π0

= 0. (1.42)

In the linear Gaussian-CWM, the first and the second term in (1.42) are, respectively:

ln
p(y|x,Ω1)

p(y|x,Ω0)
= ln

√
2πσ2

ǫ,0
√
2πσ2

ǫ,1

+
(y − b′

0
x− b00)

2

2σ2
ǫ,0

−
(y − b′

1
x− b10)

2

2σ2
ǫ,1

ln
p(x|Ω1)

p(x|Ω0)
=
1

2
ln
|Σ0|

|Σ1|

+
1

2
[(x− µ0)

′Σ−10 (x− µ0)− (x− µ1)
′Σ−11 (x− µ1)].

(1.43)
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Then, equation (1.42) is satisfied for (x, y) ∈ R
d+1 such that:

ln
σǫ,0
σǫ,1

+
(y − b′

0
x− b00)

2

2σ2
ǫ,0

−
(y − b′

1
x− b10)

2

2σ2
ǫ,1

+
1

2
ln
|Σ0|

|Σ1|
+

1

2
[(x− µ0)

′Σ−10 (x− µ0)− (x− µ1)
′Σ−11 (x− µ1)] + ln

π1
π0

= 0

(1.44)

which defines quadratic surfaces, i.e., quadrics. Examples of quadrics are spheres, cir-

cular cylinders, and circular cones. (Se possibile inserire le figure) In the homoschedas-

tic case Σ0 = Σ1 = Σ, it is well known that:

ln
p(x|Ω1)

p(x|Ω0)
=
1

2
[(x− µ0)

′Σ−1(x− µ0)− (x− µ1)
′Σ−1(x− µ1)]

= w’x + w0

(1.45)

where

w = Σ−1(µ1 − µ0) and w0 =
1

2
(µ0 + µ1)

′Σ−1(µ0 − µ1). (1.46)

In this case, according to (1.45) equation (1.42) yields:

ln
p(y|x,Ω1)

p(y|x,Ω0)
+ w′x + w0 + ln

π1
π0

= 0 (1.47)

(see Figure 1.1).

1.6 Parameter Estimation of CWM via the EM algo-

rithm - Gaussian case

Given a sample (x1, y1), . . . , (xN , yN) of N independent observation pairs, the cluster-

weighted likelihood function is

L0(ψ;X
∼
,Y) =

N∏

n=1

p(xn, yn;ψ) =
n∏

n=1

[
G∑

g=1

φ(yn|xn;βg)φd(xn;θg)πg

]
. (1.48)
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Figure 1.1: Examples of decision surfaces for linear Gaussian CWM (homoscedastic

case).

Maximization of L0(ψ;X
∼
,Y) with respect to ψ, for given data (X

∼
,Y), yields the

maximum likelihood estimate of ψ. Equivalently the quantity maximized is the log-

likelihood L0 = lnL0(ψ;X
∼
,Y).

If we consider fully categorized data:

{wn : n = 1, . . . , N} = {(xn, yn, zn) : n = 1, . . . , N},

then the likelihood corresponding toW = (w1, . . . ,wN) can be written in the form

Lc(ψ;X
∼
,Y) =

N∏

n=1

G∏

g=1

φ(yn|xn;βg)
zngφd(xn;θg)

zngπzng

g , (1.49)

where zng = 1 if (X
∼ n
, Yn) comes from the g-th population and zng = 0 elsewhere.
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Consider the logarithm

Lc(ψ;X
∼
,Y) = ln

N∏

n=1

G∏

g=1

φ(yn|xn;βg)
zngφd(xn;θg)

zngπzng

g =

=
N∑

n=1

G∑

g=1

[lnφ(yn|xn;βg)
zng + lnφd(xn;θg)

zng + ln πzng

g ] =

=
N∑

n=1

G∑

g=1

[zng lnφ(yn|xn;βg) + zng lnφd(xn;θg) + zng ln πg] =

=
N∑

n=1

[z′nlnφ(yn|xn;B) + z′nlnφd(xn;Θ) + z′nlnπ] =

=
N∑

n=1

z′nWn(B) +
n∑

n=1

z′nUn(Θ) +
n∑

n=1

z′nV(π), (1.50)

where Wn(B) is a G-component vector having the g-th component lnφ(yn|xn;βg),

Un(Θ) is a G-component vector having the g-th component lnφd(xn;θg) and V(π) is

a G-component vector having the g-th component ln πg.

The form of the cluster-weighted likelihood function in (1.48) corresponds to the

marginal density of x1, . . . ,xN obtained summing (1.49) over z1, . . . , zN . This empha-

sizes the interpretation of cluster-weighted data as incomplete data with the indicator

vectors as missing values. In this formulation, maximum likelihood fitting of CWM can

be performed by the EM algorithm.

Remembering that in this case, z1, . . . , zn are the missing quantities, from (1.50) the
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E-step can be described as follows:

Q(ψ;ψ(k)) = Eψ(k){Lc(ψ;X
∼
,Y)} =

= E
ψ

(k){

N∑

n=1

Z′nWn(B) +
n∑

n=1

Z′nUn(Θ) +
n∑

n=1

Z′nV(π)} =

=
N∑

n=1

E
ψ

(k){Zn|xn, yn;ψ
(k)}[Wn(B) +Un(Θ) +V(π)] =

=
N∑

n=1

τ (k)′

n Wn(B) + τ
(k)′

n Un(Θ) + τ
(k)′

n Vn(π), (1.51)

where

τ (k)
n = τ n(ψ

(k)) = Eψ(k){Zn|xn, yn;ψ
(k)},

that is

τ (k)ng =
π
(k)
g φ(yn|xn,β

(k)
g )φd(xn|θ

(k)
g )

∑G
j=1 π

(k)
j φ(yn|xn,β

(k)
j )φd(xn|θ

(k)
j )

n = 1, . . . , N, g = 1, . . . , G.

These weights are the posterior probabilities of group membership for the n-th observa-

tion, conditional on (xn, yn) and given the current parameter estimates ψ(k)
g .

If the zng were observable, then the MLE of πg would be simply given by

π̂g =
1

n

N∑

n=1

zng g = 1, . . . , G.

The M-step on the (k+1)-th iteration simply requires replacing each zng in the previous

relation by τ
(k)
ng to give

π(k+1)
g =

1

N

N∑

n=1

τ (k)ng g = 1, . . . , G. (1.52)

The estimates of the mean vectors µ1, . . . ,µG and covariance matrices Σ1, . . . ,ΣG

for the local input densities φg(xn|θg) at the (k + 1)-th iteration are then given by:

µ(k+1)
g =

∑N
n=1 τ

(k)
ng xn∑N

n=1 τ
(k)
ng

g = 1, . . . , G (1.53)

Σ(k+1)
g =

∑N
n=1 τ

(k)
ng (xn − µ

(k+1)
g )(xn − µ

(k+1)
g )′

∑N
n=1 τ

(k)
ng

g = 1, . . . , G. (1.54)
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Thus, the current estimates of the mean vectors and covariance matrices coincide

with the estimates obtained in the case of Mixtures of multivariate Gaussian distribu-

tions.

Now we compute the estimates of parameters b10, . . . , bG0 and b1, . . . ,bG and vari-

ances σ2
ǫ,1, . . . , σ

2
ǫ,G, for the local models φg(yn|xn,βg), at the (k + 1)-th iteration, by

means of the usual statistical approach introduced for Mixtures of distributions.

The M-step computes the solutions of the equations

∂Eψ(k){Lc(ψ|xn, yn)}

∂bg0
= 0 g = 1, . . . , G (1.55)

∂Eψ(k){Lc(ψ|xn, yn)}

∂bg
= 0 g = 1, . . . , G (1.56)

∂Eψ(k){Lc(ψ|xn, yn)}

∂σǫ,g
= 0 g = 1, . . . , G (1.57)

where Eψ(k) is defined in (1.51).

From equation (1.55), for b
(k+1)
g0 (g = 1, . . . , G) we obtain:

N∑

n=1

τ (k)ng

∂ lnφ(yn|xn,β
(k)
g )

∂bg0
= 0

N∑

n=1

τ (k)ng

yn − (b
′(k)
g xn + b

(k)
g0 )

σ
2(k)
yg

= 0

N∑

n=1

τ (k)ng (yn − b
′(k)
g xn) = b

(k)
g0

N∑

n=1

τ (k)ng

and then we get

b
(k+1)
g0 =

∑N
n=1 τ

(k)
ng (yn − b

′(k)
g xn)∑N

n=1 τ
(k)
ng

= ȳg − b
′(k)
g x̄g, (1.58)

where

ȳg =

∑N
n=1 τ

(k)
ng yn∑N

n=1 τ
(k)
ng

and x̄g =

∑N
n=1 τ

(k)
ng xn∑N

n=1 τ
(k)
ng

.
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For b
(k+1)
g (g = 1, . . . , G), equation (1.56) yields:

N∑

n=1

τ (k)ng

∂ lnφ(yn|xn,β
(k)
g )

∂b′g
= 0′

N∑

n=1

τ (k)ng [yn − (b′gxn + b
(k)
g0 )]x

′
n = 0′

N∑

n=1

τ (k)ng [ynx
′
n − b′gxnx

′
n − b

(k)
g0 x

′
n] = 0′

N∑

n=1

τ (k)ng (ynx
′
n − b′gxnx

′
n − ȳgx

′
n − b′gx̄gx

′
n)

N∑

n=1

τ (k)ng ynx
′
n −

N∑

n=1

τ (k)ng ȳgx
′
n = b′g

[
N∑

n=1

τ (k)ng xnx
′
n −

N∑

n=1

τ (k)ng xnx̄
′
g

]

yx′g − ȳgx̄
′
g = b′g(xx

′
g − x̄gx̄

′
g)

that is

b
′(k+1)
g = (yx′g − ȳgx̄

′
g)(xx

′
g − x̄gx̄

′
g)
−1, (1.59)

where

yx′g =

∑N
n=1 τ

(k)
ng ynx

′
n∑N

n=1 τ
(k)
ng

and xx′g =

∑N
n=1 τ

(k)
ng xnx

′
n∑N

n=1 τ
(k)
ng

.

It can be demonstrated that (1.59) can be written as:

b
′(k+1)
g =

[
N∑

n=1

τ (k)ng yn(xn − x̄g)
′

][
N∑

n=1

τ (k)ng (xn − x̄g)(xn − x̄g)
′

]−1
. (1.60)

Finally, equation (1.57) leads to the current estimate of the variance σ
(k)
ǫ,g (g =

1, . . . , G):

N∑

n=1

τ (k)ng

∂ lnφ(yn|xn,β
(k)
g )

∂σ
(k)
ǫ,g

= 0

N∑

n=1

τ (k)ng {−
1

σ
2(k)
ǫ,g

+
1

σ
4(k)
ǫ,g

[yn − (b
′(k)
g xn + b

(k)
g0 )]

2} = 0
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and solving the above equation we get

σ(k+1)
ǫ,g =

∑N
n=1 τ

(k)
ng [yn − (b

′(k)
g xn + b

(k)
g0 )]

2

∑N
n=1 τ

(k)
ng

. (1.61)

Analogously, for the multivariate case, we have:

b
(k+1)
g0 =

∑N
n=1 τ

(k)
ng (yn − b

′(k)
g xn)∑N

n=1 τ
(k)
ng

= ȳg − b
′(k)
g x̄g. (1.62)

B(k+1)
g =

[
N∑

n=1

τ (k)ng yn(xn − x̄g)
′

][
N∑

n=1

τ (k)ng (xn − x̄g)(xn − x̄g)
′

]−1
. (1.63)

Σ(k+1)
ǫ,g =

∑N
n=1 τ

(k)
ng [yn − (B

′(k)
g xn +B

(k+1)
g0 )][yn − (B

′(k+1)
g xn +B

(k+1)
g0 )]−1

∑N
n=1 τ

(k)
ng

.

(1.64)
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Chapter 2

Student-t CWM

2.1 Introduction

Let us introduce CWM based on another important type of elliptical distribution: the

Student-t distribution. This type of data modeling has been proposed to provide more

robust fitting for groups of observations with no longer than normal tails or noise data

(e.g. Zellner (1976),Lange et al. (1989),Bernardo and Girón (1992),McLachlan and

Peel (1998),McLachlan and Peel (2000),Peel and McLachlan (2000),Nadarajah and

Kotz (2005),Andrews and McNicholas (2011),Baek and McLachlan (2011)). Recent

applications also include analysis of orthodontic data via linear effect models (Pinheiro

et al. (2001)), marketing data analysis (Andrews et al. (2002)), and asset pricing (Kan

and Zhou (2003)). In particular, and different from the Gaussian case, we prove that

linear Student-t CWM defines a wide family of probability distributions, which, un-

der suitable assumptions, strictly includes Mixture of t-distributions (FMT) as a special

case.

To begin with, we recall that a q variate random vector Z has a multivariate t distribution

with degrees of freedom ν ∈ (0,∞), location parameter µ ∈ R
q, and q × q positive
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definite inner product matrix Σ if it has density

p(z;µ,Σ, ν) =
Γ((ν + q)/2)νν/2

Γ(ν/2)|πΣ|1/2[ν + δ(z;µ,Σ)](ν+q)/2
(2.1)

where δ(z;µ,Σ) = (z − µ)′Σ−1(z − µ) denotes the squared Mahalonobis distance

between z andµ, with respect to matrixΣ, and Γ(·) is the Gamma function. In this case,

we write Z ∼ tq(µ,Σ, ν), and then E(Z) = µ for (ν > 1) and cov(Z) = νΣ/(ν − 2)

(for ν > 2).

If U is a random variable, independent of Z, such that νU has a chi-squared distribution

with ν degrees of freedom, that is νU ∼ χ2
ν , then it is well known that Z|(U = u) ∼

Nq(µ,Σ/u).

Assume that X|Ωg has a multivariate t distribution with location parameter µg, inner

product matrix Σg, and degrees of freedom νg, that is, X|Ωg ∼ td(µg,Σg, νg), and that

Y |x,Ωg has a t distribution with location parameter µ(x;βg), scale parameter σ2
ǫ,g and

degrees of freedom ζg, that is Y |x,Ωg ∼ t(µ(x;βg), σ
2
ǫ,g.ζg), g = 1, . . . , G. Thus

(1.3) specializes as:

p(x, y;θ) =
G∑

g=1

t(y;µ(x;βg), σ
2
ǫ,g, ζg)td(x;µg,Σg, νg)πg, (2.2)

and this model will be referred to as t-CWM (Ingrassia et al. (2012a)).

The special case in which µ(x;βg) is a linear mapping will be called linear t-CWM:

p(x, y;θ) =
G∑

g=1

t(y; b′gx + bg0, σ
2
ǫ,g, ζg)td(x;µg,Σg, νg)πg, (2.3)

where, according to (2.1), for g = 1, . . . , G, we have

t(y; b′gx + bg0, σ
2
ǫ,g, ζg) =

Γ((ζg + 1)/2)ζ
ζg/2
g

Γ(ζg/2)
√
πσ2

ǫ,g{ζg + [y − (b′gx + bg0)]2/σ2
ǫ,g}

(ζg+1)/2

(2.4)

td(x;µg,Σg, νg) =
Γ((νg + d)/2)ν

νg/2
g

Γ(νg/2)|πΣg|1/2{νg + δ(x,µg,Σg)}(νg+d)/2
. (2.5)
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Moreover, the posterior probability in (1.8) specializes as:

p(Ωg|x, y) =
t(y; b′gx + bg0, σ

2
ǫ,g, ζg)td(x;µg,Σg, νg)πg∑G

j=1 t(y; b
′
jx + bj0, σ2

ǫ,j, ζg)td(x;µj ,Σj , νj)πj
g = 1, . . . , G (2.6)

and the decision surfaces that separate the groups are elliptical (see section 2.2)

The result in the following implies that, different from the Gaussian case, linear t-

CWM defines a larger family of probability distributions than FMT; in fact, the family

of distributions generated by linear t-CWM strictly includes the family of distributions

generated by FMT.

Proposition 6. Let Z be a random vector defined on Ω = Ω1 ∪ · · · ∪ ΩG with values in

R
d+1 and set Z = (X′, Y )′, where X is a d-dimensional input vector and Y is a random

variable defined on Ω. Assume that the density of Z = (X′, Y ) can be written in the

form of a linear t-CWM (2.3), where X|Ωg ∼ td(µg,Σg, νg) and Y |x,Ωg ∼ t(b′gx +

bg0, σ
2
ǫ,g, ζg), g = 1, . . . , G. If ζg = νg+d and σ2∗

ǫ,g = σ2
ǫ,g[νg+ δ(x,µg,Σg)]/(νg+d),

then linear t-CWM (2.3) coincides with FMT for suitable parameters bg,bg0, and σ2
ǫ,g,

g = 1, . . . , G.

Proof. Let Z be a q-variate random vector having multivariate t distribution (2.1) with

degrees of freedom ν ∈ (0,∞), location parameter µ, and positive definite inner prod-

uct matrix Σ. If Z is partitioned as Z = (Z′1,Z
′
2)
′, where Z1 takes values in R

q1 and Z2

in R
q2 = R

q−q1 , then Z con be written as

µ =


µ1

µ2


 and Σ =


Σ11 Σ12

Σ21 Σ22


 (2.7)

hence, based on properties of multivariate t distribution (e.g. Dickey (1967); Liu and

Rubin (1995)), it can be proven that:

Z1 ∼ tq1(µ1,Σ11, ν) and Z2|z1 ∼ tq2(µ2|1,Σ
∗
2|1, ν + q1), (2.8)
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where

µ2|1 = µ2|1(z1) = µ2 +Σ21Σ
−1
11 (z1 − µ1) (2.9)

Σ∗2|1 = Σ∗2|1(z1) =
ν + δ(z1;µ1,Σ11)

ν + q1
Σ2|1, (2.10)

with Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12 and δ(z1;µ1,Σ11) = (z1 − µ1)

′Σ−111 (z1 − µ1). In

particular, if we set Z = (X′, Y )′, then (2.3) coincides with FMT when ζg = νg + d and

σ∗2ǫ,g = σ2
ǫ,g[νg + δ(x;µ,Σg)]/(νg + d).

Thus, the linear t-CWM in (2.3) defines a wide family of densities, which strictly

includes FMT as special case but is able to model more general cases.

Analogous to Gaussian case, the linear t-CWM in (2.3) also includes finite mixtures of

regression models with Student-t errors (FMR-t):

f(y|x;ψ) =
G∑

g=1

t(y; b′gx + bg0, σ
2
ǫ,g, ζg)πg, (2.11)

where vector ψ denotes the overall parameters of the model.

Moreover, because the Gaussian distribution can be regarded as the limit of the Student-

t distribution, as the number of degrees of freedom tends to infinity, the linear t-CWM

contains FMRC as a limiting special case. The relationships among linear t-CWM,

FMT, FMR-t and FMRC are summarized in Table 2.1. However, the analysis of finite

mixtures of regressions under Student-t distribution assumptions, which have not been

proposed in the literature yet (as far as the authors know), provides ideas for further

research.

Finally in Table 2.2 we summarize all the models discussed in these chapters to show

that linear CWM based on elliptical distributions is a general and flexible family of

mixture models, which includes well-known models as special cases. We remark that

if the degrees of freedom become large, linear Gaussian CWM can be seen as limiting

special case of linear t-CWM
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model p(x|Ωg) p(y|x,Ωg) parameterisation of πg assumptions

FMT Student-t Student-t none ζg = νg + d and σ2∗
ǫ,g = σ2

ǫ,g[νg + δ(x;µg,Σg)]/(νg + d)

FMR-t none Student-t none (µg,Σg, νg) = (µ,Σ, ν), g = 1, . . . , G

FMRC none Student-t logistic νg →∞, Σg = Σ and πg = π, g = 1, . . . , G

Table 2.1: Relationships between linear Student-t CWM and Student-t mixtures.

3
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model p(x|Ωg) p(y|x,Ωg) parameterisation of πg assumptions

CWM-t td(µg,Σg, νg) t(y;b′gx+ bg0, σ
2
ε,g, ζg) none

CWM-G td(µg,Σg, νg) t(y;b′gx+ bg0, σ
2
ε,g, ζg) none νg →∞, ζg →∞, g = 1, . . . , G

FMG td(µg,Σg, νg) t(y;b′gx+ bg0, σ
2
ε,g, ζg) none νg →∞, ζg →∞, g = 1, . . . , G

FMT td(µg,Σg, νg) t(y;b′gx+ bg0, σ
2
ε,g, ζg) none ζg = νg + d and σ∗2g = σ2

g [νg + δ(x;µg,Σg)]/(νg + d)

FMR-t none t(y;b′gx+ bg0, σ
2
ε,g, ζg) none (µg,Σg, νg) = (µ,Σ, ν), g = 1, . . . , G

FMR none t(y;b′gx+ bg0, σ
2
ε,g, ζg) none ζg →∞, νg →∞, (µg,Σg) = (µ,Σ), g = 1, . . . , G

FMRC none t(y;b′gx+ bg0, σ
2
ε,g, ζg) logistic νg →∞, Σg = Σ and πg = π, g = 1, . . . , G

Table 2.2: Overview of models included in linear CWM based on elliptical distributions.
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2.2 Decision surfaces of linear-t CWM

In the formula (1.40) in chapter 1 we have shown that in the case of two groups, the

posterior probability p(Ω1|x, y) of CWM is:

p(Ω1|x, y) =
1

1 + exp




−ln

p(y|x,Ω1)

p(y|x,Ω0)
− ln

p(Ω1|x)

p(Ω0|x)





. (2.12)

and that p(Ω1|x, y) = 0.5 when

ln
p(y|x,Ω1)

p(y|x,Ω0)
+ ln

p(Ω1|x)

p(Ω0|x)
= 0, (2.13)

which may be rewritten as:

ln
p(y|x,Ω1)

p(y|x,Ω0)
+ ln

p(x|Ω1)

p(x|Ω0)
+ ln

π1
π0

= 0. (2.14)

In the linear t-CWM, the first and the second term in (2.14) are respectively:

ln
p(x|Ω1)

p(x|Ω0)
= ln

[
Γ((ν1 + d)/2)Γ(ν0/2)

Γ((ν0 + d)/2)Γ(ν1/2)

]
+
1

2
ln
|Σ0|

|Σ1|
+

+
ν0 + d

2
ln{ν0 + δ(x;µ0,Σ0)}

−
ν1 + d

2
ln{ν1 + δ(x;µ1,Σ1)}

(2.15)

ln
p(y|x,Ω1)

p(y|x,Ω0)
= ln

[
Γ((ζ1 + 1)/2)Γ(ζ0/2)

Γ((ζ0 + 1)/2)Γ(ζ1/2)

]
+ ln

σǫ,0
σǫ,1

+

+
ζ0 + 1

2
ln

[
ζ0 +

(
y − b′0x− b00

σǫ,0

)2
]

−
ζ1 + 1

2
ln

[
ζ1 +

(
y − b′1x− b10

σǫ,1

)2
]

(2.16)
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Then equation (2.14) is satisfied for (x, y) ∈ R
d+1 such that:

c(ν0, ν1, ζ0, ζ1) + ln
σǫ,0
σǫ,1

+
ζ0 + 1

2
ln

[
ζ0 +

(
y − b′0x− b00

σǫ,0

)2
]
+

−
ζ1 + 1

2
ln

[
ζ1 +

(
y − b′1x− b10

σǫ,1

)2
]
+
1

2
ln
|Σ0|

|Σ1|

+
ν0 + d

2
ln{ν0 + δ(x;µ0,Σ0)} −

ν1 + d

2
ln{ν1 + δ(x;µ1,Σ1)}+ ln

π1
π0

= 0, (2.17)

where

c(ν0, ν1, ζ0, ζ1) = ln

[
Γ((ζ1 + 1)/2)Γ(ζ0/2)

Γ((ζ0 + 1)/2)Γ(ζ1/2)

]
+ ln

[
Γ((ν1 + d)/2)Γ(ν0/2)

Γ((ν0 + d)/2)Γ(ν1/2)

]
. (2.18)

We remark that, in this case, the decision surfaces are elliptical.

2.3 Parameter Estimation of CWM via the EM algo-

rithm - Student-t case

Given a sample (x1, y1), . . . , (xN , yN) of N independent observation pairs, the cluster-

weighted likelihood function is

L0(ψ;X
∼
,Y) =

N∏

n=1

p(xn, yn;ψ) =

n∏

n=1

[
G∑

g=1

φ(yn|xn;βg, ζg)φd(xn;θg, νg)fg(u; ζg)fg(w; νg)πg

]
.

Maximization of L0(ψ;X
∼
,Y) with respect to ψ, for given data (X

∼
,Y), yields the

maximum likelihood estimate of ψ. Equivalently the quantity maximized is the log-

likelihood L0 = lnL0(ψ;X
∼
,Y).

If we consider fully categorized data:

{wn : n = 1, . . . , N} = {(xn, yn, zn) : n = 1, . . . , N},
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then the likelihood corresponding toW = (w1, . . . ,wN) can be written in the form

Lc(ψ;X
∼
,Y) =

N∏

n=1

G∏

g=1

φ(yn|xn;βg, ζg)
zngφd(xn;θg, νg)

zngfg(u; ζg)
zngfg(w; νg)

zngπzng

g ,

(2.19)

where zng = 1 if (X
∼ n
, Yn) comes from the g-th population and zng = 0 elsewhere.

Consider the logarithm

Lc(ψ;X
∼
,Y) =

= ln
N∏

n=1

G∏

g=1

φ(yn|xn;βg, ζg)
zngφd(xn;θg, νg)

zngfg(u; ζg)
zngfg(w; νg)

zngπzng

g

=
N∑

n=1

G∑

g=1

[lnφ(yn|xn;βg, ζg)
zng + lnφd(xn;θg, νg)

zng + ln fg(u; ζg)
zng+

+ ln fg(w; νg)
zng + ln πzng

g ] =

=
N∑

n=1

G∑

g=1

[zng lnφ(yn|xn;βg, ζg) + zng lnφd(xn;θg, νg) + zng ln fg(u; ζg)

+ zng ln fg(w; νg) + zng ln πg] =

=
N∑

n=1

[z′nlnφ(yn|xn;B) + z′nlnφd(xn;Θ) + z′nlnfg(u; ζ) + z′nlnfg(w;ν)+

+ z′nlnπ] =

=
N∑

n=1

z′nA
(1)
n (B) +

n∑

n=1

z′nA
(2)
n (Θ) +

n∑

n=1

z′nA
(3)
n (ζ) +

n∑

n=1

z′nA
(4)
n (ν)+

+
n∑

n=1

z′nA
(5)
n (π), (2.20)

whereA
(1)
n (B) is aG-component vector having the g-th component lnφ(yn|xn;βg, ζg),

A
(2)
n (Θ) is a G-component vector having the g-th component lnφd(xn;θg, νg),A

(3)
n (ζ)
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is aG-component vector having the g-th component ln fg(u; ζ),A
(4)
n (ν) is aG-component

vector having the g-th component ln fg(w;ν) and A
(5)
n (π) is a G-component vector

having the g-th component ln πg.

The form of the cluster-weighted likelihood function corresponds to the marginal

density of x1, . . . ,xN obtained summing (2.19) over z1, . . . , zN . This emphasizes the

interpretation of cluster-weighted data as incomplete data with the indicator vectors

as missing values. In this formulation, maximum likelihood fitting of CWM can be

performed by the EM algorithm.

Remembering that in this case, z1, . . . , zn are the missing quantities, from (2.20) the

E-step can be described as follows:

Q(ψ;ψ(k)) = Eψ(k){Lc(ψ;X
∼
,Y)} =

= E
ψ

(k){

N∑

n=1

Z′nA
(1)
n (B) +

n∑

n=1

Z′nA
(2)
n (Θ) +

n∑

n=1

Z′nA
(3)
n (ζ)+

+
n∑

n=1

Z′nA
(4)
n (ν) +

n∑

n=1

Z′nA
(5)
n (π)} =

=
N∑

n=1

E
ψ

(k){Zn|xn, yn;ψ
(k)}[A(1)

n (B) +A(2)
n (Θ) +A(3)

n (ζ) +A(4)
n (ν)+

+V(π)] =

=
N∑

n=1

τ (k)′

n A(1)
n (B) + τ (k)′

n A(2)
n (Θ) + τ (k)′

n A(3)
n (ζ) + τ (k)′

n A(4)
n (ν)+

+ τ (k)′

n Vn(π), (2.21)

where

τ (k)
n = τ n(ψ

(k)) = Eψ(k){Zn|xn, yn;ψ
(k)},

that is

τ (k)ng =
π
(k)
g φ(yn|xn,β

(k)
g )φd(xn|θ

(k)
g )

∑G
j=1 π

(k)
j φ(yn|xn,β

(k)
j )φd(xn|θ

(k)
j )

n = 1, . . . , N, g = 1, . . . , G.
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These weights are the posterior probabilities of group membership for the n-th observa-

tion, conditional on (xn, yn) and given the current parameter estimates ψ(k)
g .

If the zng were observable, then the MLE of πg would be simply given by

π̂g =
1

n

N∑

n=1

zng g = 1, . . . , G.

The M-step on the (k+1)-th iteration simply requires replacing each zng in the previous

relation by τ
(k)
ng to give

π(k+1)
g =

1

N

N∑

n=1

τ (k)ng g = 1, . . . , G. (2.22)

The estimates of the mean vectors µ1, . . . ,µG and covariance matrices Σ1, . . . ,ΣG

for the local input densities φg(xn|θg) at the (k + 1)-th iteration are then given by:

µ(k+1)
g =

∑N
n=1 τ

(k)
ng xn∑N

n=1 τ
(k)
ng

g = 1, . . . , G (2.23)

Σ(k+1)
g =

∑N
n=1 τ

(k)
ng (xn − µ

(k+1)
g )(xn − µ

(k+1)
g )′

∑N
n=1 τ

(k)
ng

g = 1, . . . , G. (2.24)

Thus, the current estimates of the mean vectors and covariance matrices coincide

with the estimates obtained in the case of Mixtures of multivariate Gaussian distribu-

tions.

Now we compute the estimates of parameters b10, . . . , bG0 and b1, . . . ,bG and vari-

ances σ2
ǫ,1, . . . , σ

2
ǫ,G, for the local models φg(yn|xn,βg), at the (k + 1)-th iteration, by

means of the usual statistical approach introduced for Mixtures of distributions.

The M-step computes the solutions of the equations

∂Eψ(k){Lc(ψ|xn, yn)}

∂bg0
= 0 g = 1, . . . , G (2.25)

∂Eψ(k){Lc(ψ|xn, yn)}

∂bg
= 0 g = 1, . . . , G (2.26)

∂Eψ(k){Lc(ψ|xn, yn)}

∂σǫ,g
= 0 g = 1, . . . , G (2.27)
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where Eψ(k) is defined in (2.21).

From equation (2.25), for b
(k+1)
g0 (g = 1, . . . , G) we obtain:

N∑

n=1

τ (k)ng

∂ lnφ(yn|xn,β
(k)
g )

∂bg0
= 0

N∑

n=1

τ (k)ng

yn − (b
′(k)
g xn + b

(k)
g0 )

σ
2(k)
yg

= 0

N∑

n=1

τ (k)ng (yn − b
′(k)
g xn) = b

(k)
g0

N∑

n=1

τ (k)ng

and then we get

b
(k+1)
g0 =

∑N
n=1 τ

(k)
ng (yn − b

′(k)
g xn)∑N

n=1 τ
(k)
ng

= ȳg − b
′(k)
g x̄g, (2.28)

where

ȳg =

∑N
n=1 τ

(k)
ng yn∑N

n=1 τ
(k)
ng

and x̄g =

∑N
n=1 τ

(k)
ng xn∑N

n=1 τ
(k)
ng

.

For b
(k+1)
g (g = 1, . . . , G), equation (2.26) yields:

N∑

n=1

τ (k)ng

∂ lnφ(yn|xn,β
(k)
g )

∂b′g
= 0′

N∑

n=1

τ (k)ng [yn − (b′gxn + b
(k)
g0 )]x

′
n = 0′

N∑

n=1

τ (k)ng [ynx
′
n − b′gxnx

′
n − b

(k)
g0 x

′
n] = 0′

N∑

n=1

τ (k)ng (ynx
′
n − b′gxnx

′
n − ȳgx

′
n − b′gx̄gx

′
n)

N∑

n=1

τ (k)ng ynx
′
n −

N∑

n=1

τ (k)ng ȳgx
′
n = b′g

[
N∑

n=1

τ (k)ng xnx
′
n −

N∑

n=1

τ (k)ng xnx̄
′
g

]

yx′g − ȳgx̄
′
g = b′g(xx

′
g − x̄gx̄

′
g)

that is

b
′(k+1)
g = (yx′g − ȳgx̄

′
g)(xx

′
g − x̄gx̄

′
g)
−1, (2.29)
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where

yx′g =

∑N
n=1 τ

(k)
ng ynx

′
n∑N

n=1 τ
(k)
ng

and xx′g =

∑N
n=1 τ

(k)
ng xnx

′
n∑N

n=1 τ
(k)
ng

.

It can be demonstrated that (2.29) can be written as:

b
′(k+1)
g =

[
N∑

n=1

τ (k)ng yn(xn − x̄g)
′

][
N∑

n=1

τ (k)ng (xn − x̄g)(xn − x̄g)
′

]−1
. (2.30)

Finally, equation (2.27) leads to the current estimate of the variance σ
(k)
ǫ,g (g =

1, . . . , G):

N∑

n=1

τ (k)ng

∂ lnφ(yn|xn,β
(k)
g )

∂σ
(k)
ǫ,g

= 0

N∑

n=1

τ (k)ng {−
1

σ
2(k)
ǫ,g

+
1

σ
4(k)
ǫ,g

[yn − (b
′(k)
g xn + b

(k)
g0 )]

2} = 0

and solving the above equation we get

σ(k+1)
ǫ,g =

∑N
n=1 τ

(k)
ng [yn − (b

′(k)
g xn + b

(k)
g0 )]

2

∑N
n=1 τ

(k)
ng

. (2.31)

Analogously, for the multivariate case, we have:

b
(k+1)
g0 =

∑N
n=1 τ

(k)
ng (yn − b

′(k)
g xn)∑N

n=1 τ
(k)
ng

= ȳg − b
′(k)
g x̄g. (2.32)

B(k+1)
g =

[
N∑

n=1

τ (k)ng yn(xn − x̄g)
′

][
N∑

n=1

τ (k)ng (xn − x̄g)(xn − x̄g)
′

]−1
. (2.33)

Σ(k+1)
ǫ,g =

∑N
n=1 τ

(k)
ng [yn − (B

′(k)
g xn +B

(k+1)
g0 )][yn − (B

′(k+1)
g xn +B

(k+1)
g0 )]−1

∑N
n=1 τ

(k)
ng

.

(2.34)
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Chapter 3

Model Based clustering via Elliptical

CWM

3.1 Introduction

Let us consider a real-valued random vector (Y,X′)′ : Ω → R
d+1, having joint density

p(y, x) where Ω can be partitioned into G groups Ω1, . . . ,ΩG. Let us also assume that,

for each Ωg, the dependence of Y on x can be modeled by:

Y = µ(x,βg) + ǫg = β0g + β1gx + ǫg (3.1)

where βg = (β0g,β
′
1g)

′, µ(x;βg) = E(Y |X = x,Ωg) is the linear regression function

and εg is the error variable, independent with respect to X, with zero mean and finite

constant variance σ2
g , g = 1, . . . , G.

Let us consider the class of cluster weighted models with density:

p(y, x) =
G∑

g=1

πgp(y, x|Ωg) =
G∑

g=1

πgp(y|x,Ωg)p(x,Ωg). (3.2)
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Let us assume t distributions for this model. In particular we will consider:

p(y|x,Ωg) = ht(y|x; ξg, ζg) =
Γ( ζg+1

2
)

(πζgσ2
g)

1
2{1 + δ[y, µ(x;βg); σ2

g ]}
ζg+1

2

(3.3)

p(x|Ωg) = htd(x;θg, νg) =
Γ(νg+d

2
)|Σg|

− 1
2

(πνg)
d
2 [1 + δ(x, µg; Σg)]

νg+d

2

, (3.4)

with ξg = {βg, σ
2
g}, θg = {µg,Σg},δ[y, µ(x;βg); σ

2
g ] = [y − µ(x;βg)

2]/σ2
g , and

δ(x,µg;Σg) = (x− µg)
′Σ−1g (x− µg). If we plug-in (3.3) and (3.4) in (3.2), we obtain

the linear t CWM

p(y, x;ψ
˜
) =

G∑

g=1

πght(y|x; ξg, ζg)htd(x;θg, νg), (3.5)

where the set of all unknown parameters is denoted by ψ
˜
= {ψ1, . . . , ψG}, with ψg =

{πg, ξg, ζg,θg, νg}.

We will now introduce a family of twelve linear CWMs obtained from (3.5) by imposing

convenient component distributional constraints. If ζg, νg →∞, the more famous linear

Gaussian (normal) CWM is obtained as special case. The resulting models are easily

interpretable and appropriate for describing various practical situations. In particular,

they also allow one to infer if the group structure of the data is due to the contribution

of X, Y |X, or both.

3.2 Preliminary results

We will now recall some basic ideas on model-based clustering according to the CWM

approach and we will provide some preliminary results that will be useful for our family

of models. Let (y1, x1)
′, . . . , (yN , x

′
N)
′ be a sample of size N from (3.5). The posterior

probability that a generic unit (yn, x
′
n)
′, n = 1, . . . , N , comes from component Ωg is

40



given by

τng = P (Ωg|yn, xn;ψ
˜
) =

πght(y|x; ξg, ζg)htd(x;θg, νg)

p(y, x;ψ
˜
)

, g = 1, . . . , G. (3.6)

In the following propositions we will require the preliminary definition of:

p(y|x; π
˜
, ξ

˜
, ζ

˜
) =

G∑

g=1

πght(y|x, ξg, ζg) (3.7)

p(x; π
˜
,θ
˜
, ν
˜
) =

G∑

g=1

πghtd(x,θg, νg) (3.8)

which respectively correspond to a finite mixture of linear t regressions and a finite

mixture of multivariate t distributions (π
˜
= {π1, . . . , πG−1}, ξ

˜
= {ξ1, . . . , ξG}, ζ

˜
=

{ζ1, . . . , ζG},θ˜
= {θ1, . . . ,θG}, ν˜

= {ν1, . . . , νG}).

Proposition 7. Given π
˜
,θ
˜

and ν
˜

, if ht(y|x; ξ1, ζ1) = · · · = ht(y|x; ξG, ζG) = ht(y|x; ξ, ζ),

then models (3.5) and (3.8) generate the same posterior probabilities.

Proof. If the component conditional densities do not depend on Ωg, then the posterior

probabilities for the linear t CWM in (3.5) can be written as

τng =
πg✭✭

✭
✭
✭

✭
✭✭

ht (yn|xn; ξ, ζ)htd (xn;θg, νg)
G∑

j=1

πj✭✭
✭

✭
✭

✭
✭✭

ht (yn|xn; ξ, ζ)htd (xn;θj, νj)

=
πghtd (xn;θg, νg)
G∑

j=1

πjhtd (xn;θj, νj)

,

(3.9)

which correspond to the posterior probabilities for model (3.8).

Proposition 8. Given π
˜
, ξ
˜

and ζ
˜

, if htd(x;θ1, ν1) = · · · = htd(x;θG, νG) = htd(x;θ, ν),

then models (3.5) and (3.7) generate the same posterior probabilities.
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Proof. If the component marginal densities do not depend on Ωg, then the posterior

probabilities for the linear t CWM in (3.5) can be written as

τng =
πght (yn|xn; ξg, ζg)

✘
✘

✘
✘

✘
✘✘

htd (xn; θ, ν)
G∑

j=1

πjht (yn|xn; ξj, ζj)
✘

✘
✘

✘
✘

✘✘

htd (xn; θ, ν)

=
πght (yn|xn; ξg, ζg)
G∑

j=1

πjht (yn|xn; ξj, ζj)

,

(3.10)

which correspond to the posterior probabilities for model (3.7).

Let us obsere that the results in propositions 7 and 8 can be easily extended to the

general CWM in (3.2).

3.3 The family of linear CWMs

In this section we will introduce the novel family of mixture models obtained from

linear t CWM. More specifically in (3.5) we will consider the following conditions:

• the component conditional densities ht have the same parameters for all Ωg

• the component marginal densities htd have the same parameters for all Ωg

• the degrees of freedom ζg tend to infinity for each Ωg

• the degrees of freedom νg tend to infinity for each Ωg

By combining such constraints, we obtain twelve parsimonious and easily interpretable

linear CWMs that are appropriate for describing various practical situations; they are

schematically presented in Table 3.1 along with the number of parameters characteriz-

ing each component of the CW decomposition. For instance, if νg, ζg → ∞ for each
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Ωg, we are assuming a normal distribution for the component conditional and marginal

densities; furthermore, we can assume different linear models (in terms of βg and σ
2
g) in

each cluster while keeping the density of X equal between clusters. From a notational

viewpoint, this leads to a linear CWM that we have simply denote as NN-EV: the first

two letters represent the distribution of X|Ωg and Y |X,Ωg (N ≡ Normal and t ≡ t),

respectively, while the second two denote the distribution constraint between clusters

(E ≡ Equal and V ≡ Variable) for X|Ωg and Y |X,Ωg, respectively.

In principle there are sixteen models arising form the combination of the aforemen-

tioned constraints; nevertheless, four of them - those which shoulld be denoted as EE

- do not make sense. Indeed, they lead to a single cluster regardless of the value of

G. Finally, we remark that when G = 1, V V ≡ V E ≡ EV regardless of the chosen

distribution.

3.4 Estimation via the EM algorithm

In this section we will describe the estimation of the parameters for all linear CWMs

in Table 3.1 using the EM algorithm. In the EM framework, the generic observation

(yn,x
′
n)
′ is viewed as being incomplete; its complete counterpart is given by

(yn,x
′
n, z

′
n, un, wn)

′, where zn is the component-label vector in which zng = 1 if

(yn,x
′
n)
′ comes from the gth component and zng = 0 otherwise. In other words, it

is convenient to view the observation augmented by zn as still being incomplete and

introduce into the complete observation the additional missing values un and vn, which

are defined so that zng = 1. In particular, from the standard theory of the (multivariate)

t distribution, N independent draws from t(µ(x;βg),σ
2
g , ζg) and td(µg,Σg, νg) can be
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Model X|Ωg Y |x,Ωg Number of free parameters

Identifier Density Constraint Density Constraint X Y |x weights

tt-VV t Variable t Variable G
(
d+ d(d+1)

2
+ 1

)
+ G (d+ 3) + G− 1

tt-VE t Variable t Equal G
(
d+ d(d+1)

2
+ 1

)
+ d+ 3 + G− 1

tt-EV t Equal t Variable d+ d(d+1)
2

+ 1 + G (d+ 3) + G− 1

NN -VV Normal Variable Normal Variable G
(
d+ d(d+1)

2

)
+ G (d+ 2) + G− 1

NN -VE Normal Variable Normal Equal G
(
d+ d(d+1)

2

)
+ d+ 2 + G− 1

NN -EV Normal Equal Normal Variable d+ d(d+1)
2

+ G (d+ 2) + G− 1

tN -VV t Variable Normal Variable G
(
d+ d(d+1)

2
+ 1

)
+ G (d+ 2) + G− 1

tN -VE t Variable Normal Equal G
(
d+ d(d+1)

2
+ 1

)
+ d+ 2 + G− 1

tN -EV t Equal Normal Variable d+ d(d+1)
2

+ 1 + G (d+ 2) + G− 1

Nt-VV Normal Variable t Variable G
(
d+ d(d+1)

2

)
+ G (d+ 3) + G− 1

Nt-VE Normal Variable t Equal G
(
d+ d(d+1)

2

)
+ d+ 3 + G− 1

Nt-EV Normal Equal t Variable d+ d(d+1)
2

+ G (d+ 3) + G− 1

Table 3.1: Overview of linear CWMs. In “model identifier”, the first and second letters represent, respectively, the density

of X|Ωg and Y |x,Ωg (here N ≡Normal), while the third and fourth letters indicate, respectively, if htd (x;ϑg, νg) and

ht
(
y|x; ξg, ζg

)
are assumed to be Equal≡E or Variable≡V between groups.

4
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respectively described, by compounding as

Yn|xn, vn, zng = 1
ind.
∼ N

(
µ(xn;βg),

σ2
g

vn

)
(3.11)

Vn|zng = 1
i.i.d.
∼ Gamma

(
ζg
2
,
ζg
2

)
(3.12)

for n = 1, . . . , N and

Xn|un, zng = 1
ind.
∼ N

(
µg,

Σg

un

)
(3.13)

Un|zng = 1
i.i.d.
∼ Gamma

(νg
2
,
νg
2

)
(3.14)

for n = 1, . . . , N . Because of the conditional structure of the complete-data model

given by distributions (3.11),(3.12),(3.13) and (3.14), the complete-data loglikelihhod

can be decomposed as

lc(
˜
ψ) = l1c(

˜
π) + l2c(

˜
ξ) + l3c(

˜
ζ) + l4c(

˜
θ) + l5c(

˜
ν) (3.15)

where

l1c(
˜
π) =

N∑

n=1

G∑

g=1

znglnπg (3.16)

l2c(
˜
ξ) =

1

2

N∑

n=1

G∑

g=1

zng
{
−ln(2π) + lnvn − lnσ2

g − vnδ[yn, µ(xn;βg); σ
2
g ]
}

(3.17)

l3c(
˜
ζ) =

N∑

n=1

G∑

g=1

zng

[
−lnΓ

(
ζg
2

)
+
ζg
2
ln
ζg
2
+
ζg
2
(lnvn − vn)− lnvn

]
(3.18)

l4c(
˜
θ) =

1

2

N∑

n=1

G∑

g=1

zng[−dln(2π) + dlnun − ln|Σg| − unδ(xn,µg;Σg)] (3.19)

l5c(
˜
ν) =

N∑

n=1

G∑

g=1

zng[−lnΓ
(νg
2

)
+
νg
2
ln
νg
2
+
νg
2
(lnun − un)− lnun]. (3.20)
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3.4.1 E-step

The E-step, on the (k + 1)th iteration, requires the calculation of

Q
(
ψ
˜

;ψ
˜

(k)
)
= Eψ

˜

(k)

[
lc

(
ψ
˜

) ∣∣(y1, x′1)
′
, . . . , (yn, x

′
n)
′
]
. (3.21)

In order to do this, we need to calculate Eψ
˜

(k) (Zng |yn, xn ), Eψ
˜

(k) (Vn |yn, xn, zn ),

Eψ
˜

(k)

(
Ṽn |yn, xn, zn

)
, Eψ

˜

(k) (Un |xn, zn ), and Eψ
˜

(k)

(
Ũn |xn, zn

)
, for n = 1, . . . , N

and g = 1, . . . , G, where Ũn = lnUn and Ṽn = lnVn.

It follows that

Eψ
˜

(k) (Zng |yn, xn ) = τ (k)ng

=
π
(k)
g ht

(
yn|xn; ξ

(k)
g , ζ

(k)
g

)
htd

(
xn;ϑ

(k)
g , ν

(k)
g

)

p
(
yn, xn;ψ

˜

(k)
) , (3.22)

Eψ
˜

(k) (Vn |yn, xn, zng = 1) = v(k)ng

=
ζ
(k)
g + 1

ζ
(k)
g + δ

[
yn, µ

(
xn;β

(k)
g

)
; σ

2(r)
g

] (3.23)

and

Eψ
˜

(k) (Un |yn, xn, zng = 1) = u(k)ng

=
ν
(k)
g + d

ν
(k)
g + δ

(
xn,µ

(k)
g ;Σ

(k)
g

) , (3.24)

where the expectations are affected using the current fit ψ
˜

(k) for ψ
˜

(n = 1, . . . , N and

g = 1, . . . , G). Regarding the last two expectations, from the standard theory on the

gamma distribution, we have that

Eψ
˜

(k)

(
Ṽn |yn, xn, zng = 1

)
= ṽ(k)ng

= ln v(k)ng + ψ

(
ζ
(k)
g + 1

2

)
− ln

(
ζ
(k)
g + 1

2

)
(3.25)
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and

Eψ
˜

(k)

(
Ũn |xn, zng = 1

)
= ũ(k)ng

= lnu(k)ng + ψ

(
ν
(k)
g + d

2

)
− ln

(
ν
(k)
g + d

2

)
, (3.26)

where ψ (s) = [∂Γ (s) /∂s] /Γ (s) is the Digamma function. Using the results from

(3.22) to (3.25) to calculate (3.21), we have that

Q
(
ψ
˜

;ψ
˜

(k)
)
= Q1

(
π
˜
;ψ

˜

(k)
)
+Q2

(
ξ
˜

;ψ
˜

(k)
)
+Q3

(
ζ
˜

;ψ
˜

(k)
)
+Q4

(
ϑ
˜
;ψ

˜

(k)
)
+Q5

(
ν
˜
;ψ

˜

(k)
)
,

(3.27)

where

Q1

(
π
˜
;ψ

˜

(k)
)
=

N∑

n=1

G∑

g=1

τ (k)ng ln πg, (3.28)

Q2

(
ξ
˜

;ψ
˜

(k)
)
=

N∑

n=1

G∑

g=1

τ (k)ng Q2n

(
ξg;ψ

˜

(k)
)
, (3.29)

Q3

(
ζ
˜

;ψ
˜

(k)
)
=

N∑

n=1

G∑

g=1

τ (k)ng Q3n

(
ζg;ψ

˜

(k)
)
, (3.30)

Q4

(
ϑ
˜
;ψ

˜

(k)
)
=

N∑

n=1

G∑

g=1

τ (k)ng Q4n

(
ϑg;ψ

˜

(k)
)

(3.31)

and

Q5

(
ν
˜
;ψ

˜

(k)
)
=

N∑

n=1

G∑

g=1

τ (k)ng Q5n

(
νg;ψ

˜

(k)
)
, (3.32)

with

Q2n

(
ξg;ψ

˜

(k)
)
=
1

2

{
− ln (2π) + ṽ(k)ng − ln σ2

g − vngδ
[
yn, µ (xn;βg) ; σ

2
g

]}
(3.33)

and

Q4n

(
ϑg;ψ

˜

(k)
)
=
1

2

[
−d ln (2π) + dũ(k)ng − ln |Σg| − ungδ (xn,µg;Σg)

]
, (3.34)
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and where, on ignoring terms not involving ζg and νg, respectively,

Q3n

(
ζg;ψ

˜

(k)
)
= − ln Γ

(
ζg
2

)
+
ζg
2
ln
ζg
2
+
ζg
2

[
ṽ(k)ng − ln v(k)ng +

N∑

n=1

(
ln v(k)ng − v(k)ng

)
]

(3.35)

and

Q5n

(
νg;ψ

˜

(k)
)
= − ln Γ

(νg
2

)
+
νg
2
ln
νg
2
+
νg
2

[
ũ(k)ng − ln u(k)ng +

N∑

n=1

(
ln u(k)ng − u(k)ng

)
]
.

(3.36)

3.4.2 M-step

On the M-step, at the (k + 1)th iteration, it follows from (3.27) that π
˜

(k+1), ξ
˜

(k+1),

ζ
˜

(k+1), ϑ
˜

(k+1), and ν
˜

(k+1) can be computed independently of each other, by separate

consideration of (3.28), (3.29), (3.30), (3.31), and (3.32), respectively. The solutions for

π
(k+1)
g , ξ

(k+1)
g , and ϑ

(k+1)
g exist in closed form. Only the updates ζ

(k+1)
g and ν

(k+1)
g need

to be computed iteratively. Regarding the mixture weights, maximization ofQ1

(
π
˜
;ψ

˜

(k)
)

in (3.28) with respect to π
˜
, subject to the constraints on those parameters, is obtained by

maximizing the augmented function

N∑

n=1

G∑

g=1

τ (k)ng ln πg − λ

(
G∑

g=1

πg − 1

)
, (3.37)

where λ is a Lagrangian multiplier.

Setting the derivative of equation (3.37) with respect to πg equal to zero and solving for

pig yields

π(k+1)
g =

N∑

n=1

τ (k)ng

/
n, (3.38)

The updated estimates of ϑg, g = 1, . . . , G, result

µ(k+1)
g =

N∑

n=1

τ (k)ng u
(k)
ng xn

/ N∑

n=1

τ (k)ng u
(k)
ng (3.39)
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and

Σ(k+1)
g =

N∑

n=1

τ (k)ng u
(k)
ng

(
xn − µ

(k+1)
g

) (
xn − µ

(k+1)
g

)′/ N∑

n=1

τ (k)ng u
(k)
ng , (3.40)

where, as motivated for example in Shoham (2002) the true denominator
∑

n τ
(k)
ng of

(3.40) has been changed to yield a significantly faster convergence for the EM algorithm.

Regarding the updated estimates of ξg, g = 1, . . . , G, maximization of (3.29), after some

algebra, yields

β
(k+1)
1g =




N∑

n=1

τ (k)ng v
(k)
ng xnx′n

N∑

n=1

τ (k)ng v
(k)
ng

−

N∑

n=1

τ (k)ng v
(k)
ng xn

N∑

n=1

τ (k)ng v
(k)
ng

N∑

n=1

τ (k)ng v
(k)
ng x′n

N∑

n=1

τ (k)ng v
(k)
ng




−1

·

·




N∑

n=1

τ (k)ng v
(k)
ng ynxn

N∑

n=1

τ (k)ng v
(k)
ng

−

N∑

n=1

τ (k)ng v
(k)
ng yn

N∑

n=1

τ (k)ng v
(k)
ng

N∑

n=1

τ (k)ng v
(k)
ng xn

N∑

n=1

τ (k)ng v
(k)
ng



, (3.41)

β
(k+1)
0g =

N∑

n=1

τ (k)ng v
(k)
ng yn

N∑

n=1

τ (k)ng v
(k)
ng

− β
(k+1)′

1g

N∑

n=1

τ (k)ng v
(k)
ng xn

N∑

n=1

τ (k)ng v
(k)
ng

(3.42)

and

σ2(k+1)
g =

N∑

n=1

τ (k)ng v
(k)
ng

[
yn −

(
β
(k+1)
0g + β

(k+1)′

1g xn

)]2 / N∑

n=1

τ (k)ng v
(k)
ng , (3.43)

where the denominator of (3.43) has been modified in line with what was explained for

equation (3.40).

As said before, because we are acting in the most general case in which the degrees of

freedom ζg and νg are inferred from the data, we need to numerically solve the equations

N∑

n=1

∂

∂ζg
Q3n

(
ζg;ψ

˜

(k)
)
= 0 (3.44)
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and
N∑

n=1

∂

∂νg
Q5n

(
νg;ψ

˜

(k)
)
= 0, (3.45)

which correspond to finding ζ
(k+1)
g and ν

(k+1)
g as the respective solutions of

−ψ

(
ζg
2

)
+ ln

ζg
2
+ 1 +

1

N
(k)
g

N∑

n=1

τ (k)ng

(
ln v(k)ng − v(k)ng

)
+

ψ

(
ζ
(k)
g + 1

2

)
− ln

(
ζ
(k)
g + 1

2

)
= 0 (3.46)

and

−ψ
(νg
2

)
+ ln

νg
2
+ 1 +

1

N
(k)
g

N∑

n=1

τ (k)ng

(
ln u(k)ng − u(k)ng

)
+

ψ

(
ν
(k)
g + d

2

)
− ln

(
ν
(k)
g + d

2

)
= 0, (3.47)

where N
(k)
g =

∑
n τ

(k)
ng , g = 1, . . . , G.

3.4.3 EM-constraints for parsimonious models

In the following we describe how to impose constraints on the EM algorithm, described

above for the most general model tt-VV, to obtain parameter estimates for all the other

models in Table 3.1. To this end, the itemization given at the beginning of Section 3.3

will be considered as a benchmark scheme.

Common t for the component marginal densities

When we constrain all the groups to have a common t distribution for X, we have

µ1 = · · · = µG = µ, Σ1 = · · · = ΣG = Σ, and ν1 = · · · = νG = ν. Thus, in the

(k + 1)th iteration of the EM algorithm, equations (3.24) and (3.26) must be replaced

by

u(k)n =
ν(k) + d

ν(k) + δ (xn,µ(k);Σ(k))
(3.48)
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and

ũ(k)n = ln u(k)n + ψ

(
ν(k) + d

2

)
− ln

(
ν(k) + d

2

)
, (3.49)

respectively.

Furthermore, noting that
∑

g τng = 1, equations (3.31) and (3.32) can be rewritten

as

Q4

(
ϑ;ψ

˜

(k)
)
=

N∑

n=1

Q4n

(
ϑ;ψ

˜

(k)
)

(3.50)

and

Q5

(
ν;ψ

˜

(k)
)
=

N∑

n=1

Q5n

(
ν;ψ

˜

(k)
)
, (3.51)

respectively, where

Q4n

(
ϑ;ψ

˜

(k)
)
=
1

2

[
−d ln (2π) + dũ(k)n − ln |Σ| − unδ (xn,µ;Σ)

]
(3.52)

and

Q5n

(
ν;ψ

˜

(k)
)
= − ln Γ

(ν
2

)
+
ν

2
ln
ν

2
+
ν

2

[
ũ(k)n − ln u(k)n +

N∑

n=1

(
ln u(k)n − u(k)n

)
]
.

(3.53)

Maximization of (3.50), with respect to ϑ, leads to

µ(k+1) =
N∑

n=1

u(k)n xn

/ N∑

n=1

u(k)n (3.54)

and

Σ(k+1) =
N∑

n=1

u(k)n

(
xn − µ

(k+1)
) (

xn − µ
(k+1)

)′/ N∑

n=1

u(k)n . (3.55)

For the updating of ν, we need to numerically solve the equation

N∑

n=1

∂

∂ν
Q5n

(
ν;ψ

˜

(k)
)
= 0, (3.56)

which corresponds to finding ν(k+1) as the solution of

−ψ
(ν
2

)
+ln

ν

2
+1+

N∑

n=1

(
ln u(k)n − u(k)n

)
+ψ

(
ν(k) + d

2

)
−ln

(
ν(k) + d

2

)
= 0. (3.57)
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Common t for the component conditional densities

Similarly, when we constrain all the groups to have a common t distribution for Y |x,

we have β11 = · · · = β1G = β1, β01 = · · · = β0G = β0, σ
2
1 = · · · = σ2

G = σ2, and

ζ1 = · · · = ζG = ζ . Thus, in the (k + 1)th iteration of the EM algorithm, equations

(3.23) and (3.25) must be replaced by

v(k)n =
ζ(k) + 1

ζ
(k)
g + δ

[
yn, µ

(
xn;β

(k)
)
; σ2(r)

] (3.58)

and

ṽ(k)n = ln v(k)n + ψ

(
ζ(k) + 1

2

)
− ln

(
ζ(k) + 1

2

)
, (3.59)

respectively.

Also, equations (3.29) and (3.30) can be rewritten as

Q2

(
ξ;ψ

˜

(k)
)
=

N∑

n=1

Q2n

(
ξ;ψ

˜

(k)
)

(3.60)

and

Q3

(
ζ;ψ

˜

(k)
)
=

N∑

n=1

Q3n

(
ζ;ψ

˜

(k)
)
, (3.61)

respectively, where

Q2n

(
ξ;ψ

˜

(k)
)
=
1

2

{
− ln (2π) + ṽ(k)n − ln σ2 − vnδ

[
yn, µ (xn;β) ; σ

2
]}

(3.62)

and

Q3n

(
ζ;ψ

˜

(k)
)
= − ln Γ

(
ζ

2

)
+
ζ

2
ln
ζ

2
+
ζ

2

[
ṽ(k)n − ln v(k)n +

N∑

n=1

(
ln v(k)n − v(k)n

)
]
.

(3.63)
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Maximization of (3.60), with respect to ξ, leads to the updates

β
(k+1)
1 =




N∑

n=1

v(k)n xnx
′
n

N∑

n=1

v(k)n

−

N∑

n=1

v(k)n xn

N∑

n=1

v(k)n

N∑

n=1

v(k)n x′n

N∑

n=1

v(k)n




−1

·

·




N∑

n=1

v(k)n ynxn

N∑

n=1

v(k)n

−

N∑

n=1

v(k)n yn

N∑

n=1

v(k)n

N∑

n=1

v(k)n xn

N∑

n=1

v(k)n



, (3.64)

β
(k+1)
0 =

N∑

n=1

v(k)n yn

N∑

n=1

v(k)n

− β
(k+1)′

1

N∑

n=1

v(k)n xn

N∑

n=1

v(k)n

and

σ2(k+1) =
N∑

n=1

v(k)n

[
yn −

(
β
(k+1)
0 + β

(k+1)′

1 xn

)]2 / N∑

n=1

v(k)n .

For the updating of ζ , we need to numerically solve the equation

N∑

n=1

∂

∂ν
Q3n

(
ζ;ψ

˜

(k)
)
= 0, (3.65)

which corresponds to finding ζ(k+1) as the solution of

−ψ

(
ζ

2

)
+ln

ζ

2
+1+

N∑

n=1

(
ln v(k)n − v(k)n

)
+ψ

(
ζ(k) + 1

2

)
−ln

(
ζ(k) + 1

2

)
= 0. (3.66)

Normal component marginal densities

The normal case for the component distributions of X can be obtained, as stated previ-

ously, as a limiting case when νg →∞, g = 1, . . . , G. Then, in (3.24), u
(k)
ng → 1.

Substituting this value into (3.39) and (3.40), we obtain

µ(k+1)
g =

N∑

n=1

τ (k)ng xn

/ N∑

n=1

τ (k)ng
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and

Σ(k+1)
g =

N∑

n=1

τ (k)ng

(
xn − µ

(k+1)
g

) (
xn − µ

(k+1)
g

)′/ N∑

n=1

τ (k)ng .

Naturally, in this case, we do not compute the additionalM -step maximizingQ5

(
ν
˜
;ψ

˜

(k)
)

in (3.32). Accordingly, for the sub-case µ1 = · · · = µG = µ andΣ1 = · · · = ΣG = Σ,

in equation (3.48) we have u
(k)
n → 1 and the updated estimates of µ and Σ become

µ =
1

n

N∑

n=1

xn

and

Σ =
1

n

N∑

n=1

(xn − µ) (xn − µ)
′ ,

which do not depend on the EM-iterations.

Normal component conditional densities

The normal case for the component distributions of Y |X can be obtained as a limiting

case when ζg →∞, g = 1, . . . , G. Then, in (3.23), v
(k)
ng → 1.

Substituting this value into (3.41) and (3.42), we obtain

β
(k+1)
1g =




N∑

n=1

τ (k)ng xnx
′
n

N∑

n=1

τ (k)ng

−

N∑

n=1

τ (k)ng xn

N∑

n=1

τ (k)ng

N∑

n=1

τ (k)ng x
′
n

N∑

n=1

τ (k)ng




−1

·

·




N∑

n=1

τ (k)ng ynxn

N∑

n=1

τ (k)ng

−

N∑

n=1

τ (k)ng yn

N∑

n=1

τ (k)ng

N∑

n=1

τ (k)ng xn

N∑

n=1

τ (k)ng



, (3.67)

β
(k+1)
0g =

N∑

n=1

τ (k)ng yn

N∑

n=1

τ (k)ng

− β
(k+1)′

1g

N∑

n=1

τ (k)ng xn

N∑

n=1

τ (k)ng

(3.68)
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and

σ2(k+1)
g =

N∑

n=1

τ (k)ng

[
yn −

(
β
(k+1)
0g + β

(k+1)′

1g xn

)]2 / N∑

n=1

τ (k)ng . (3.69)

We again do not compute the additionalM -step maximizing Q3

(
ζ
˜

;ψ
˜

(k)
)
in (3.30).

Accordingly, for the sub-case β11 = · · · = β1G = β1, β01 = · · · = β0G = β0, and

σ2
1 = · · · = σ2

G = σ2, in equation (3.58) we have v
(k)
n → 1 and the updated estimates of

β1, β0, and σ
2 become

β1 =

(
1

n

N∑

n=1

xnx
′
n −

1

n2

N∑

n=1

xn

N∑

n=1

x′n

)−1(
1

n

N∑

n=1

ynxn −
1

n2

N∑

n=1

yn

N∑

n=1

xn

)
,

(3.70)

β0 =
1

n

N∑

n=1

yn −
1

n
β′1

N∑

n=1

xn (3.71)

and

σ2 =
1

n

N∑

n=1

[yn − (β0 + β
′
1xn)]

2
, (3.72)

which do not depend on the EM-iterations.
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Chapter 4

An R package for Cluster Weighted

Modeling

4.1 Introduction

In order to implement the procedure described in chapter 3 we implemented an R pack-

age that makes the optimal clustering of data among the models specified in Table 3.1.

4.1.1 The CWM function

The core of the package consists of the function cwm which returns an object of class

cwm. This function, besides the data, permits to specify the models and the number of

groups where the optimal result should be found. It permits also to specify the criterion

used to find the optimal clustering of the data. From this point of view, two criteria

can be chosen: BIC or ICL. Finally the function cwm permits to specify the maximum

number of iteration before stopping the algorithm described previously in chapter 3.
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The function cwm uses an internal function .MS which makes the initialization of the

algorithm and the parameter fitting for each selected model.

The initialization process is implemented by using a hierarchical scheme which will be

described below, see 4.1.1.

After the initialization of each model with this scheme, the texttt.MS tries to fit the

parameters of each model through the internal function .tCWM. Given the the initial

clustering of the observations, this function first makes an approximate estimation of

the parameters for each group by using the function mst.mle. More specifically we

assume that the observations of each group have a multivariate student-t distribution

and then we use the function mst.mle to evaluate the parameters of this distribution

from the observations that initially belong to the group. Then, starting from this initial

estimates, the function .tCWM applies the algorithm of chapter 3 until it converges. A

numerical search for the estimates of the degrees of freedom was carried out using the

uniroot command in the stats package. This command is based on the Fortran sub-

routine zeroin described by Brent (2002). In order to expedite convergence, the range

of values for νg, ζg, ν, and ζ was restricted to (2, 200]. Previous work in the context

of model-based clustering (Andrews and McNicholas (2011)) and some experiments

whose results are not reported here suggest that these restrictions do not hamper classi-

fication performance and show that the upper limit of 200 does not thwart the recovery

of an underlying normal structure.

Finally .tCWM evaluates the BIC or the ICL coefficient for the considered model

with the parameters fitted in the previous step. These coefficients, together with the

fitted parameters, are returned to the function .MS. The function .tCWM also returns an

estimate of classification of the observations for the fitted model.

Once the function .MS has obtained from .tCWM the values of the BIC or of the ICL
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for the set of models and the set of groups specified in the call to the function cwm, it

chooses the optimal solution and returns it to this function together with the relative

fitted parameters and the classification of the observations.

Model initialization

As for the initialization, it is well known that the choice of starting values represents

an important issue in the EM algorithm. The standard initialization consists of select-

ing a value for ψ
˜

(0). An alternative approach, more natural in the authors’ opinion, is

to specify a value for z
(0)
n , n = 1, . . . , N (McLachlan and Peel (2000)). Within this

approach, and due to the structure of our family of linear CWMs, we propose a random-

hierarchical initialization procedure that helps in obtaining the natural ranking among

the likelihoods.

For a fixed G, we start by considering NN -VE and NN -EV, because the former is

nested in all of the VE-models, the latter is nested in all of the EV models, and both

are nested in all of the VV-models. For NN -VE and NN -EV only, a random initializa-

tion is repeated 10 times, from different random positions, and the solution maximizing

the likelihood among these 10 runs is selected. Note that, as underlined by Andrews

et al. (2011), mixtures based on the multivariate t distribution are more sensitive to bad

starting values than their Gaussian counterparts. Thus, by considering random initial-

ization only for the above models of type NN , we prevent the possible failure of the

algorithm due to poor starting values for models of typeNt, tN , and tt. In each run, the

N vectors z
(0)
n are randomly drawn from a multinomial distribution with probabilities

(1/G, . . . , 1/G). Once the EM-estimates τ̂NN -VE
ng and τ̂NN -EV

ng of the posterior probabil-

ities have been obtained for these models, we can compute the maximum a posteriori

(MAP) classification, say MAP
(
τ̂NN -VE
ng

)
= ẑNN -VE

ng and MAP
(
τ̂NN -EV
ng

)
= ẑNN -EV

ng ,
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where

MAP (τ̂ng) = ẑng =





1 if max
j
{τ̂nj} occurs in component g

0 otherwise.

Then, the hierarchical initialization procedure proceeds according to the scheme in Fig-

ure 4.1, where each arrow is directed from the model used for initialization to the model

to be estimated. Thus, ẑNN -VE
ng is used to initialize the EM of both tN -VE and Nt-VE,

NN−VE

NN−EV

NN−VV

tN−VE

tN−EV

tN−VV

Nt−VE

Nt−EV

Nt−VV

tt−VE

tt−EV

tt−VV

Figure 4.1: Relationships among the models in the hierarchical initialization strategy.

Arrows are oriented from the model used for initialization to the model to be estimated.

obtaining ẑtN -VE
ng and ẑNt-VEng , respectively, while ẑNN -EV

ng is used to initialize the EM of
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both tN -EV and Nt-EV, leading to ẑtN -EV
ng and ẑNt-EVng , respectively. Also, following

the same principle, the model between NN -VE and NN -EV leading to the maximum

likelihood is used to initialize the EM forNN -VV. Without going into further details on

this hierarchical procedure, in the last step the model between Nt-VV, tN -VV, tt-VE,

and tt-EV leading to the maximum likelihood is used to initialize the EM of tt-VV.

4.1.2 Output interface

The object of class cwm returned by the function cwm, contains information about the

optimal model found for the specified options.

This information can be retrieved through the summary function. More specifically

this function returns the label of the optimal model, the optimal number of groups, the

criterion used to find the optimal model and the value of its related parameter, and the

number of observations associated with each group.

The summary function has also the following options which permit to show further

information about the optimal model:

• if the parameters option is set to TRUE the parameters of the optimal model will

be shown

• if the classification option is set to TRUE the group of each observation will

be shown

• if the designMatrix option is set to TRUE the values of the BIC or ICL parameters

for each model specified in the options of the cwm function will be shown

• if the posterior option is set to TRUE posterior probabilities of each observation

in the optimal model will be shown
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• if the indicator option is set to TRUE an indicator matrix of the group of each

observation in the optimal model will be shown

The package cwm contains also a plot function for objects of class cwm, which plots

the values of the BIC or of the ICL for all the models considered during the search for

the optimal model.

Finally the package has also the function cwmModelNames which gives a small explana-

tion of the models presented in Table 3.1

In the following sections we will show a detailed explanation of the behaviour of each

function.

61



R documentation

of ‘cwm’

cwm Linear Cluster-Weighted Models

Description

Select the optimal model, in a family of linear cluster-weighted models, according

to a (chosen by the user) likelihood-based selection criteria. The EM-algorithm is

used to obtain maximum likelihood estimates of the parameters for the models.

Usage

cwm(X, Y, G = NULL, modelNames = NULL, method = "BIC", iter.max = 500)

Arguments

X A numeric design matrix (or data frame) of covariates. Rows corre-

spond to observations and columns correspond to variables.

Y Vector of (unidimensional) observations for the response variable.

Its length must coincide with the number of rows of X.
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G An integer vector specifying the numbers of clusters among which

the choice of the optimal model is to be done. The default is G=1:3.

modelNames A vector of character strings indicating the models to be fitted in the

EM phase of clustering. The help file for cwmModelNames describes

the available models. The default is:

c("NN-VE","NN-EV","NN-VV","tN-VE","tN-EV","tN-VV","Nt-VE",

"Nt-EV","Nt-VV","tt-VE","tt-EV","tt-VV")

method Adopted model selection criterion. Possible choices are "BIC" or

"ICL".

iter.max Maximum number of iterations for each fitted model.

Value

An object of class "cwm" providing the optimal model estimation (according to the

selected method).

The details of the output components are as follows:

call The matched call

n The number of observations in the data.

d The dimension of the data.

X The matrix of covariates data.

Y The vector of responses.

loglik The loglikelihoods of the entire set of models.

BIC All BIC values.

ICL All BIC values.
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method The method used to select the best model.

G The optimal number of components.

model A character string denoting the selected model.

bestLoglik The loglikelihood corresponding to the optimal model.

method.value The value of the prarameter used to select the best model

parameters A list with the following components:

pi A vector whose kth component is the mixing proportion for the

kth component of the cluster weighted model.

MX The mean of the covariates variables for each component in case

of normal distribution of the covariates; otherwise it is the MX

paramater of the t-student distribution of the covariates.

SX The covariance matrix of the covariates for each component in

case of normal distribution of the covariates; otherwise it is the

SX parameter of the t-student distribution of the covariates.

nu The degrees of freedom of the covariate variables (Inf for the

normal case)

SY The covariance matrix of the conditionale responce for each

component in case of normal distribution of the response; oth-

erwise it is the SY parameter or the t-student distribution of the

repsonse.

zeta The degrees of freedom of the response variable (Inf for the

normal case)

B The regression coefficients for each component

B0 The intercept for each component
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group The classification of each observation.

z An n x g indicator matrix of 0 and 1 of the group of each observa-

tion.

tau A matrix whose [i,k]th entry is the probability that observation i in

the test data belongs to the kth group.

Author(s)

G. Incarbone, A. Punzo, S. Ingrassia.

References

Ingrassia, S., Minotti, S. C., and Vittadini, G. (2012). Local Statistical Modeling

via a Cluster-Weighted Approach with Elliptical Distributions. Journal of Classifi-

cation. 29 (3), 363-401.

Ingrassia, S., Minotti, S. C., and Punzo, A. (2012). Model-based clustering via

linear cluster-weighted models. arXiv.org e-print 1206.3974, available at:

http://arxiv.org/abs/1206.3974.

Examples

library(Flury)

data(m.twins)

Y <- m.twins[,5]

X <- m.twins[,c(2,3,4,6,7)]

res<-cwm(X=X,Y=Y,G=1:2,modelNames=c("NN-EV","NN-VV","tN-EV","tN-VV","Nt-VE"),

method="ICL")
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R documentation

of ‘cwmModelNames’

cwmModelNames Names of the Linear Cluster-Weighted Models

Description

Description of model names (modelNames) used in the CWM package.

Usage

cwmModelNames(model)

Arguments

model A string specifying the model.

Details

The following models are available:

"NN-VE" normal (N) distribution for the component density of X, normal (N) dis-

tribution for the component density of Y|x, variable (V) component densities
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of X between clusters, and equal (E) component regression models between

clusters.

"NN-EV" normal (N) distribution for the component density of X, normal (N) dis-

tribution for the component density of Y|x, equal (E) component densities of

X between clusters, and variable (V) component regression models between

clusters.

"NN-VV" normal (N) distribution for the component density of X, normal (N) dis-

tribution for the component density of Y|x, variable (V) component densities

of X between clusters, and variable (V) component regression models between

clusters.

"tN-VE" t (t) distribution for the component density of X, normal (N) distribution

for the component density of Y|x, variable (V) component densities of X be-

tween clusters, and equal (E) component regression models between clusters.

"tN-EV" t (t) distribution for the component density of X, normal (N) distribution

for the component density of Y|x, equal (E) component densities of X between

clusters, and variable (V) component regression models between clusters.

"tN-VV" t (t) distribution for the component density of X, normal (N) distribu-

tion for the component density of Y|x, variable (V) component densities of

X between clusters, and variable (V) component regression models between

clusters.

"Nt-VE" normal (N) distribution for the component density of X, normal (N) dis-

tribution for the component density of Y|x, variable (V) component densities

of X between clusters, and equal (E) component regression models between

clusters.
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"Nt-EV" normal (N) distribution for the component density of X, t (t) distribution

for the component density of Y|x, equal (E) component densities of X between

clusters, and variable (V) component regression models between clusters.

"Nt-VV" normal (N) distribution for the component density of X, t (t) distribu-

tion for the component density of Y|x, variable (V) component densities of

X between clusters, and variable (V) component regression models between

clusters.

"tt-VE" t (t) distribution for the component density of X, t (t) distribution for the

component density of Y|x, variable (V) component densities of X between

clusters, and equal (E) component regression models between clusters.

"tt-EV" t (t) distribution for the component density of X, t (t) distribution for the

component density of Y|x, equal (E) component densities of X between clus-

ters, and variable (V) component regression models between clusters.

"tt-VV" t (t) distribution for the component density of X, t (t) distribution for the

component density of Y|x, variable (V) component densities of X between

clusters, and variable (V) component regression models between clusters.

Value

model A character string indicating the model (as in input).

type The description of the indicated model (see details).

Author(s)

G. Incarbone, A. Punzo, S. Ingrassia.
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References

Ingrassia, S., Minotti, S. C., and Vittadini, G. (2012). Local Statistical Modeling

via a Cluster-Weighted Approach with Elliptical Distributions. Journal of Classifi-

cation. 29 (3), 363-401.

Ingrassia, S., Minotti, S. C., and Punzo, A. (2012). Model-based clustering via

linear cluster-weighted models. arXiv.org e-print 1206.3974, available at:

http://arxiv.org/abs/1206.3974.

See Also

cwm

Examples

cwmModelNames("NN-VE")

cwmModelNames("NN-EV")

cwmModelNames("Nt-EV")
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R documentation

of ‘plot.cwm’

plot.cwm Plot of BIC or ICL

Description

This function plots the BIC or the ICL versus the number of considered groups and

for all the considered linear cluster-weighted models.

Usage

plot.cwm(object, G = NULL, modelNames = NULL, symbols = NULL,

colors = NULL, xlab = NULL, ylim = NULL, legendArgs = list(x = "bottomright",

ncol = 2, cex = 1), ...)

Arguments

object An object of class cwm resulting from a call to cwm.

G One or more numbers of components corresponding to models fitted

in object. The default is to plot the BIC or the ICL for all of the

numbers of components fitted.
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modelNames One or more model names corresponding to models fitted in object.

The default is to plot the BIC or the ICL for all of the models fitted.

symbols Either an integer or character vector assigning a plotting symbol to

each model.

colors Either an integer or character vector assigning a plotting symbol to

each model.

xlab Optional label for the horizontal axis of the plot.

ylim Optional limits for the vertical axis of the plot.

legendArgs Arguments to pass to the legend function. Set to NULL for no leg-

end.

... Other graphics parameters.

Value

A plot of the BIC or the ICL values for the models specified in the modelNames

argument.

Author(s)

G. Incarbone, A. Punzo, S. Ingrassia.

References

Ingrassia, S., Minotti, S. C., and Vittadini, G. (2012). Local Statistical Modeling

via a Cluster-Weighted Approach with Elliptical Distributions. Journal of Classifi-

cation. 29 (3), 363-401.
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Ingrassia, S., Minotti, S. C., and Punzo, A. (2012). Model-based clustering via

linear cluster-weighted models. arXiv.org e-print 1206.3974, available at:

http://arxiv.org/abs/1206.3974.

Examples

library(Flury)

data(m.twins)

Y <- m.twins[,5] # response variable

X <- m.twins[,c(2,3,4,6,7)] # covariates

res<-cwm(X=X,Y=Y,G=1:2,modelNames=c("NN-EV","NN-VV","tN-EV","tN-VV","Nt-VE"),

method="ICL")

summary(res)
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R documentation

of ‘summary.cwm’

summary.cwm Summarizing Cluster-Weighted Model Fits

Description

Summary method for class "CWM".

Usage

summary.cwm(object, parameters = FALSE, classification = FALSE,

designMatrix = FALSE, posterior = FALSE, indicator = FALSE...)

Arguments

object An object of class "CWM" resulting from a call to cwm.

parameters Logical; if TRUE, the parameters of the selected linear cluster-weighted

model are printed.

classification

Logical; if TRUE, the maximum a posteriori (MAP) classification of

the observations is printed.
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designMatrix Logical; if TRUE, the BIC or the ICL for the specified linear cluster

weighted models and the numbers of clusters are printed.

posterior if TRUE, the posterior probabilities of group are printed.

indicator if TRUE, the MAP classification is printed using an indication ma-

trix.

Author(s)

G. Incarbone, A. Punzo, S. Ingrassia.

References

Ingrassia, S., Minotti, S. C., and Vittadini, G. (2012). Local Statistical Modeling
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Examples

library(Flury)

data(m.twins)

Y <- m.twins[,5] # response variable

X <- m.twins[,c(2,3,4,6,7)] # covariates

res<-cwm(X=X,Y=Y,G=1:2,modelNames=c("NN-EV","NN-VV","tN-EV","tN-VV","Nt-VE"),

method="ICL")

summary(res)
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summary(res,parameters=TRUE, classification=TRUE, designMatrix=TRUE,

posterior=TRUE, indicator = TRUE)
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