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Introduction 

 

The application of exact and heuristic optimization techniques to scheduling problems 

pertaining to production processes has been widely investigated over the last decades by the 

relevant scientific literature in the field of industrial systems design and analysis. In general, 

the term scheduling is used with reference to the allocation of resources to tasks over time, so 

to execute all planned activities according to a given performance objective (minimization of 

costs, minimization of production time, due dates fulfilment, etc.). Even though basic 

scheduling problems have been effectively solved long time ago, this topic still remains 

attractive for expert and practitioners, as the technological innovation of production processes 

and the need for effective planning activities emerging from new sectors still set new frontiers 

to the scheduling optimization research. 

The aim of the present Thesis is to investigate three scheduling problems that have not been 

addressed yet by the literature, even though they have a clear correspondence to real-world 

manufacturing environments. After an introduction to the purpose and the main practical  

aspects connected to the scheduling activity reported in Chapter 1, the outcomes of the 

research conducted are reported in Chapters 2 to 4. 

In Chapter 2 the minimization of makespan in an unrelated parallel machine system with 

sequence-dependent setup times and limited human resources is addressed. Workers are 

needed to perform setup operations before each job is processed; they are supposed to be a 

critical resource as their number is assumed to be lower than the number of workstations 

available in the production shop. In addition, each worker is characterized by a provided skill 

level, which affects the time required for completing setup operations. Firstly, a Mixed Integer 

Linear Programming (MILP) model suitable for tackling small instances of the problem in 

hand is illustrated. Then, an optimization framework based on Genetic Algorithms (GAs) is 

presented with the aim of effectively addressing larger test cases. Three different procedures 

are proposed, namely a permutation based GA, a multi-encoding GA, and a hybrid GA which 

exploits both the former methods in two successive steps, changing the encoding scheme when 

a fixed number of evaluations is reached. An extensive benchmark including both small-and 

large-sized instances is taken as reference for both calibration and comparison of the proposed 
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methods, which have been performed by means of ANOVA analysis. Comparison conducted 

with reference to small-sized instances reveals the superiority of the hybrid approach  using an 

encoding switch threshold equal to the 25% of the total evaluations. This  outcome becomes 

more evident with respect to large-sized test cases, where such hybrid algorithm outperforms 

all other procedures in a statistically significant manner. Finally, a remark on the effect of 

multi skilled human resources on the performance of the investigated production system in 

comparison with three scenarios involving homogeneous workforce is proposed. 

Chapter 3 is dedicated to the minimization of makespan in a  Flow Shop Sequence Dependent 

Group Scheduling (FSDGS) problem entailing the worker allocation issue. As first, a Mixed 

Integer Linear Programming (MILP) formulation for the problem is given. Then, a well-

known benchmark arisen from literature is adopted for carrying out an extensive comparison 

campaign among three specifically developed metaheuristic methods based on a GA 

framework. Afterwards, the best procedure among those tested is compared with a well-

performing algorithm recently proposed in the field of FSDGS problems, properly adapted to 

manage the Skilled Workforce Assignment (SWA) issue. Finally, a further analysis dealing 

with the trade-off between manpower cost and makespan improvement is proposed.  

In Chapter 4, the research conducted with reference to the minimization of makespan in a 

hybrid flow shop inspired to a truly observed micro-electronics manufacturing environment, is 

illustrated. Overlap between jobs of the same type, waiting time limit of jobs within inter-stage 

buffers as well as machine unavailability time intervals represent just a part of the constraints 

which characterize the problem here investigated. A MILP model of the problem in hand has 

been developed with the aim to validate the performance concerning the proposed 

optimization technique, based on a two-phase metaheuristics (MEs). In the first phase the 

proposed ME algorithm evolves similarly to a genetic algorithm equipped with a regular 

permutation encoding. Subsequently, since the permutation encoding is not able to investigate 

the overall space of solutions, a random search algorithm equipped with an m-stage 

permutation encoding is launched for improving the algorithm strength in terms of both 

exploration and exploitation. Extensive numerical studies on a benchmark of problems, along 

with a properly arranged ANOVA analysis, demonstrate the statistical outperformance of the 

proposed approach with respect to the traditional optimization approach based on a single 

encoding. Finally, a comprehensive comparative analysis involving the proposed algorithm 
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and several metaheuristics developed by literature demonstrates the effectiveness of the dual 

encoding based approach for solving HFS scheduling problems. 
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Chapter 1 

The problem of scheduling and sequencing 

 

1.1 Preliminaries 

It has been a long time ago since the role of scheduling  was recognized to be crucial in most 

of manufacturing and service industries. The scheduling issue has been constantly attracting 

the attention of researchers and practitioners and still represents one of the most active field of 

research connected to industrial systems design and analysis. 

Of course the word scheduling deals with the allocation of tasks to resources over time, but 

what is the concrete purpose of the scheduling activity? Baker and Trietsch (2009) provided an 

answer to such a question through an exhaustive dissertation. According to the authors, it is 

actually not scheduling that is a common concept in our everyday life, rather it is schedules. A 

schedule is a plan that tells us when things are supposed to happen, i.e., the time at which 

certain activities should start and end according to the most likely scenario. Typical examples 

of schedules are bus or flights timetables. That being stated, the scheduling process in 

industrial environments involves considerations about the set of activities or tasks to be 

performed and the set of resource available to fulfill them; in addition to resource 

requirements, each task may be described in terms of information such as its expected 

duration, the earliest time at which it may start and the time at which it is due to complete. The 

aim of the scheduling activity consists thus in determining the timing of the tasks while 

recognizing the capability of the resources, so to effectively fulfill all the activities according 

to a given performance measure. It can be easily argued that the scheduling process entails 

sequencing decisions, as the existence of limited resources implies the determination of the 

order by which activities have to be executed.  

As far as performance objectives are concerned, three kinds of decision-making goals are 

common to be found in the industrial context: turnaround, timeliness and throughput. 

Turnaround refers to the time required to complete a task. Timeliness measures the 
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conformance of a particular task’s completion to a given deadline. Throughput is related to the 

amount of work completed during a fixed period of time. In the following Section, an 

overview of the most commonly used indicators which put such goals into quantitative 

measure will be provided. 

One of the most important conditions influencing the reliability of the scheduling process is 

uncertainty. Although information characterizing each task to be performed are often exactly 

retrievable, there exist many industrial processes in which a some uncertainty has to be taken 

into account. In such cases, a probability distribution model describing the expected variability 

of data needs to be employed, and the scheduling process is called stochastic. On the other 

hand, when conditions are assumed to be known with certainty, the problem is known as 

deterministic. Another important distinction needs to be made between static and dynamic 

scheduling, the former referring to a set of activities which are all known in advance, the latter 

involving timing and sequencing decisions for tasks that appear over time. 

One of the simplest and most widely used tools for supporting the scheduling process is the 

Gantt chart, which visually depicts a solution to a given scheduling problem, showing 

resource allocation to activities over time. In a classical Gantt chart, the horizontal axis reports 

the time scale, while resources available are shown along the vertical axis (see Figure 1.1). 

Activities are displayed as rectangles, whose positions denote the time at which tasks should 

be performed through a given resource. A fundamental assumptions of the Gantt chart is that 

processing times are known with certainty. 

 

 

Figure 1.1. A Gantt Chart. 
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The execution of the scheduling activity in real-world industrial environments often needs to 

cope with the computational complexity of the solution algorithms that have to be employed 

when approaching the scheduling issue. This topic has been extensively analyzed in the well-

known work of Garey and Johnson (1979). According to the authors, the time complexity 

function for a solution algorithm is a useful metric for selecting the most effective way to 

approach an optimization problem. Given a solution algorithm, the time complexity function 

expresses its time requirements by giving, for each possible input length, the largest amount of 

time needed by the algorithm to solve a problem instance of that size. A polynomial time 

algorithm has a complexity function whose order of magnitude is polynomial as n increases, 

being n the input length. Any algorithm whose time complexity function cannot be so bounded 

is called an exponential time algorithm. For instance, if the time complexity function is 

bounded by n2 for each value of n, the algorithm is polynomial. If the function is bounded by 

2n the algorithm is exponential. Of course, polynomial algorithms are to be preferred, being 

ultimately faster than exponential ones. Nevertheless, there exists many optimization problems 

for which no polynomial time solution algorithms have been found, to the point that they are 

not supposed to exist. Such problems are known as NP hard. Most of the common scheduling 

problems pertain to such a class, as it will hereinafter be shown. When medium to large-sized 

NP hard problems have to be addressed, the chance of finding the optimal solution through an 

exact algorithm is quite unlikely. Thus, the best approach consists in employing heuristic or 

metaheuristic algorithms which do not guarantee the convergence towards the global 

optimality, but may be completed within a reasonable amount of time. A brief overview of the 

most common heuristic and metaheuristic procedures employed in the field of scheduling 

problems will hereinafter be presented. 

1.2 Classification of scheduling problems 

Although sequencing and allocation issues are frequently dealt with in many economic areas, 

the need for an effective scheduling activity basically arises for the manufacturing sector. The 

number of scheduling problems pertaining to real or theoretical manufacturing situations that 

have been studied by the relevant literature over the last decades is impressive. For this reason, 

the vocabulary of manufacturing is universally employed when addressing scheduling 
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problems. Activities or tasks are called jobs and resources are usually called machines. The 

environment in which jobs are processed is called the production shop, or simply the shop. 

A comprehensive notation to be used for describing most of the deterministic scheduling 

models that have been considered so far has been provided by Pinedo (2012). Following such 

scheme, the number of jobs should be denoted by n and the number of machines by m. The 

subscript j refers to a job (j = 1,2,…,n), while the subscript i is used with reference to 

machines (i = 1,2,…,m). The following data are associated with job j. 

 Processing time (pij). The symbol pij denotes the time required for processing job j on 

machine i. Whether exists one only machine, or processing times are not machine-

dependent, subscript i  is omitted. 

 Release date (rj). The release date denotes the time at which job j is ready to undergo 

the first processing operation, i.e., the time at which it arrives at the system. 

 Due date (dj). The due date is the time at which job j is due to be completed. If any 

deviation from the due date occurs, a penalty is incurred (e.g., holding, inventory or 

delivery costs). 

 Weight (wj). The weight expresses the relative priority of job j compared to the other 

jobs. Whether weights are defined in a scheduling problem, the objective function must 

be primarily met for the highest-weighted jobs. 

According to Graham, Lawler, Lenstra and Rinnooy Kan (1979) a three-field problem 

classification  |  |  may be used for describing the characteristic of a scheduling problem. 

The field  specifies the machine environment. It may contain one of the following entries. 

 Single machine (1). The production shop is made by one only machine that has to 

process all jobs. Of course, this is the simplest machine environment to cope with. 

 Identical parallel machines (Pm). Each job needs to be processed by only one of the m 

machines belonging to the manufacturing environment. Since machines are supposed 

to be identical, processing times only depend on jobs. 

 Uniform parallel machines (Qm). The m parallel machines of the system have different 

speeds. Denoting by vi the speed of machine i, processing time of job j on machine i is 



8 
 

equal to pj/vi, being pj the standard processing time of job j, i.e., the time required for 

processing the job on a machine having speed equal to 1. 

 Unrelated parallel machines (Rm). In this case, the speed at which machine i can 

process job j depends on the job itself, and is denoted as vij. Thus, processing time pji 

of job j on machine i is calculated as pj/vij. 

 Flow shop (Fm). A flow shop manufacturing system is made of m machines in series. 

Each job has to be processed on each machine. All jobs follow the same processing 

order, i.e., from the first to the last machine. 

 Flexible flow shop (FFc). The flexible flow shop is a more general case of the flow 

shop environment. Instead of m machines, there are c production stages in series. Each 

production stage is made of a bank of identical parallel machines. All jobs visit the 

production stages according to the same order. 

 Job shop (Jm). A job shop manufacturing system entails m different machines. 

Differently from the flow shop manufacturing environment, each job follows its own 

predetermined route. 

 Flexible job shop (FJc). The flexible job shop is a more general case of the job shop 

environment. Instead of m machines, there are c production stages, each one made of a 

bank of identical parallel machines. Each job visits the production stages according to 

its own predetermined route.  

 Open shop (Om). In an open shop environment there are m machines, even though 

some jobs are allowed to skip one or more of them. The processing route of each job 

has to be determined by the scheduler, as no predetermined processing order exists.  

The  field holds data describing job characteristics or particular scheduling constraints. It 

may contain a single entry, multiple entries or no entry at all. Possible symbols to be found in 

such field are as follows. 

 Release dates (rj). Whether release dates are defined, each job cannot start to be 

processed prior  to its arrival at the system. If the symbol rj is not specified in the  

field, all jobs are ready to be processed as the manufacturing session starts. 
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 Preemptions (prmp). If preemptions are allowed, a given job processing operation may 

be interrupted and the job moved to another machine, where it will be completed later. 

 Precedence constraints (prec). Precedence relationships imply that some jobs have to 

wait for other jobs to be completed before their processing can start. 

 Sequence dependent setup times (sjk). The symbol sjk denotes the time required for 

performing setup operations of job k immediately after job j has been completed on the 

same machine. If sjk does not appear in the  field, setup times are assumed not to exist 

or to be sequence independent and included in processing times. 

 Job families (fmls). The jobs to be processed belong to different groups or families. 

Setup operations are required only when switching from one family to another, and not 

between jobs of the same group. Setup times between families may be sequence 

dependent. In this case, the symbol sgh will appear in the  field to denote the time 

required for performing setup operations between families g and h. 

 Batch processing (batch(b)). Whether batch processing is allowed, a machine can 

process up to b jobs simultaneously. The batch processing time corresponds to the 

processing time of the longest job pertaining to that batch. 

 Breakdowns (brkdwn). Machines are supposed not to be continuously available during 

the whole manufacturing session, as they may undergo maintenance operations or 

failures. 

 Machine eligibility restrictions (Mj). This constraint arises in parallel machine 

manufacturing environments. The symbol Mj denotes the subset of machines capable 

to process job j. All machines not belonging to Mj cannot be selected for working that 

job. 

 Permutation (prmu). In many flow shop manufacturing environments it is required to 

leave unaltered the order in which jobs go through each machine, thus following a 

First In First Out (FIFO) rule to manage the queues between successive workstations.  

 Blocking (block). The blocking constraint often arises in permutation flow shop 

manufacturing environments. Whether such restriction exists, the capacity of buffers 

located between consecutive machines is limited. When a buffer is full, the upstream 

machine is not allowed to release a completed job. The job will have to wait on the 
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machine until one position on the buffer has been cleared, i.e. until the downstream 

machine has accepted a new job. 

 No-wait (nwt). In no-wait flow shop manufacturing systems jobs are not allowed to 

wait between two consecutive machines. Therefore, they have to be scheduled so as to 

let each processing operation start immediately after that job has been completed on 

the previous machine. 

 Recirculation (rcrc). Recirculation condition may be found in job shop or flexible job 

shop manufacturing environments. It occurs when some jobs visit certain machines or 

production stages more than once. 

The field reports the function to be minimized in a scheduling problem. As observed by 

Leung (2004) the objective is always connected to the completion times of the jobs. With 

respect to a given schedule, let Cj denote the completion time of job j, i.e. the time at which 

the job exits the system. The lateness of job j is calculated as: 

Lj = Cj - dj (1.1) 

The tardiness of job j is defined as: 

Tj = max (Cj - dj, 0) = max (Lj, 0) (1.2) 

The unit penalty of job j is defined as  

1 if 
 

0 otherwise

j j

j

C d
U  (1.3) 

Possible entries for the  field are the following. 

 Makespan (Cmax). The makespan is the highest among the completion times of all jobs, 

i.e., Cmax = max (C1, C2, …, Cn). 

 Maximum lateness (Lmax). The maximum lateness is defined as the highest among the 

lateness of all jobs, i.e., Lmax = max (L1, L2, …, Ln). 
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 Total weighted completion time ( j jw C ). Such indicator is also known as the total 

weighted flow time. The unweighted sum of completion times is usually referred to as 

the total completion time or the total flow time. 

 Total weighted tardiness ( j jw T ). 

 Weighted number of tardy jobs ( j jw U ). This function sums the weights of all jobs 

completed after their due dates. 

1.3 Solution methods for scheduling problems 

As it has been already pointed out, the resolution of scheduling issues often implies high 

computational burdens. Most of the scheduling problems analyzed by the relevant literature 

are NP hard, even in the case of single machine manufacturing environments. Therefore, 

exact solution algorithms are suitable to be employed only in case of small-sized instances. 

The linear programming technique is one of the most used approach for exactly solving 

scheduling problems involving a small number of variables and constraints. A linear program 

models an optimization problem in which the objective and the constraints are linear function 

of variables (Lopez & Roubellat, 2008). The two most important types of algorithms able to 

solve linear programs in continuous variables are the simplex method and the interior point 

method. The former is powerful, yet characterized by an exponential time complexity 

function. The latter owns a class of methods among which the algorithm proposed by 

Karmakar (1984) has been proved to solve linear programming models within a polynomial 

time. Nevertheless, the linear programs which describe scheduling problems involve integer 

variables (e.g., binary decision variables) in addition to continuous ones. Such Mixed-Integer 

Linear Programming (MILP) models entail a large number of constraints and no polynomial 

algorithm has been found to solve them. 

When the complexity of a scheduling problem is too high to find an exact solution within a 

polynomial time, heuristic methods should be employed. Differently from exact procedures, 

heuristics do not guarantee the convergence towards optimality, although they can provide 

valid solutions in a reasonable amount of time. Heuristic methods elaborate data 

characterizing each job to generate a feasible solution to a given scheduling problem, i.e., a 
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sequence of jobs together with machine assignment rules if parallel workstations exist. Several 

heuristic methods have been presented in literature over the last decades. Those proposed by  

Nawaz, Enscore and Ham (1983), by Campbell, Dudek and Smith (1970) and by Palmer 

(1965) for the flow shop scheduling problem have been widely employed over years, also 

being adapted to cope with many other scheduling problems than the regular flow shop. 

Although heuristic methods may deal with complex scheduling problems by quickly providing 

a solution without affecting the computational burden, there are two main disadvantages 

connected to the use of such methods. Firstly, each heuristic procedure needs to be properly 

adapted to the specific problem it is applied to, or results may be very poor. Secondly, 

heuristics provide unique solutions, while scheduling problems usually involve wide solution 

spaces (Jarboui, Siarry & Teghem, 2013). Thus, the chances of being dramatically far for the 

global optimum are quite high, even if the solution obtained can be considered satisfactory. To 

overcome these shortcomings, independent problem research strategies, called metaheuristics 

have been proposed. Metaheuristic search methods can be defined as upper level general 

methodologies that can be used as guiding strategies in designing underlying heuristics to 

solve specific optimization problems (Talbi, 2009). Similarly to heuristic methods, 

metaheuristics do not guarantee the convergence towards optimality. Nevertheless, instead of 

creating unique solutions, each metaheuristic method explores a part of the global solution 

space pertaining to a given optimization problem, employing specific criteria to drive the 

search. The most commonly used metaheuristic in the field of scheduling problems are 

simulated annealing, tabu search and genetic algorithms. 

Since its introduction by Kirkpatrick, Gelatt and Vecchi (1983), the Simulated Annealing (SA) 

algorithm has been successfully employed for addressing a huge number of discrete 

optimization problems. The SA takes its name from the process of physical annealing with 

solids, in which a crystalline solid is heated and then allowed to cool very slowly until it 

achieves its most regular possible crystal lattice configuration. At each iteration, the algorithm 

compares the current solution with a newly generated one. Improving solutions are always 

accepted, while non-improving ones may be accepted according to a probability based on a 

parameter called temperature, which is typically non-increasing with each iteration of the 

algorithm (Nikolaev and Jacobson, 2010). The acceptance of worse solutions, which is called 

a hill-climbing move, may allow to skip from local optima in search of the global optima. As 
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the temperature decreases to zero, hill climbing moves occur less frequently, and the 

procedure tends to converge to the final solution. 

The tabu search (TS) algorithm proposed by Glover (1986) is an extension of the classical 

local search (LS) method. A LS procedure iteratively tries to improve the current solution by 

performing small local modifications. Whether the new solution leads to a better objective 

function value, it replaces the current one and is used for the next iteration. Differently from 

LS, tabu search allows non-improving moves. At each iteration, all the local transformations 

that can be applied to the current solution, denoted S, define a set of neighboring solutions, 

called N(S). The algorithm selects the best-performing neighbor as the new current solution, 

even if it is worse than S. Such strategy allows to escape from the local optima on which  

classical LS methods quickly converge, thus allowing a wider exploration of the solution 

space. One of the distinctive elements of TS compared to LS are the tabu moves, which are 

used to prevent cycling when moving away from local optima through non-improving moves. 

When such a situation occurs, something needs to be done to prevent the search from tracing 

back its steps to where it came from. Therefore, the moves that reverse the effect of the most 

recent ones are declared tabu, and then disallowed. Tabus are stored in a short-term memory 

of the search and usually only a limited amount of information is recorded (Gendreau and 

Potvin, 2010). 

Genetic algorithms (Holland, 1975) are search methods inspired by the process of natural 

evolution, that have largely been used to solve scheduling problems. Differently from SA and 

TS, which handle single solutions, a GA works with a set of solutions to the problem, called 

population. At every iteration, a new population is generated from the previous one by means 

of two operators, crossover and mutation, applied to solutions (chromosomes) selected on the 

basis of their fitness, which is derived from the objective function value; thus, best solutions 

have greater chances of being selected. Crossover operator generates new solutions (offspring) 

by coalescing the structures of a couple of existing ones (parents), while mutation operator 

brings a change into the scheme of selected chromosomes, with the aim to avoid the procedure 

to remain trapped into local optima. Through such method, a GA performs a multi-directional 

search by maintaining a population of potential solutions and encourages information 

formation exchange between these directions. The evolutionary process of a GA allows to let 



14 
 

die relatively “bad” solutions, favoring survival and reproduction of the “good” ones 

(Michalewicz, 1994).  
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Chapter 2 

The parallel machine scheduling problem with 

limited human resources 

 

2.1 Preliminaries 

During the last few decades, the parallel machine problem has encountered an increasing 

interest in literature, as many real-world manufacturing systems can be described by means of 

such theoretical model (Sule, 2008). According to the regular parallel machine production 

environment, each job j = 1,…,N has to be processed by only one machine m = 1,…,M; each 

workstation cannot process more than one job at a time; in addition, pre-emption is not 

allowed, i.e., each job cannot leave a given machine until its processing is finished.  

A pioneer study concerning the identical parallel machine scheduling problem has been 

carried out by Lenstra, Rinnooy Kan and Brucker (1977) who demonstrated as makespan 

minimization in such a kind of production system is a NP-hard problem, even in the case of 

only two machines. Since then, various studies involving the use of heuristic techniques for 

tackling this scheduling issue have been presented. Cheng and Gen (1997) proposed a 

Memetic Algorithm (MA) for minimizing the maximum weighted absolute lateness. Cochran, 

Horng and Fowler (2003) developed a two-stage Multi Population Genetic Algorithm 

(MPGA) with reference to various concurrent objectives: makespan, total weighted tardiness 

and total weighted completion time. Anghinolfi and Paolucci (2007) presented a hybrid 

metaheuristic integrating features from Tabu Search (TS), Simulated Annealing (SA) and 

Variable Neighborhood Search (VNS) with the aim of minimizing the total tardiness. 

Recently, Gokhale and Mathirajan (2012) proposed five different heuristic techniques for 

minimizing the total weighted flowtime for a production system with identical parallel 

machines operating within an automotive manufacturing firm. 
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As concerns the most of recent literature focusing on unrelated parallel machines scheduling 

problem, job processing times are supposed to be machine-dependent. In such kind of 

problems, assignment of jobs to workstations represents a crucial issue for determining the 

overall performances of the production system along with job sequencing issue. Thus, the 

degree of complexity gets considerably higher in respect of the identical machine case. Kim, 

Na and Chen (2003) coped with a batch-scheduling problem for an unrelated parallel machine 

system observed within a semiconductor-manufacturing environment. They developed a two-

level heuristic (TH) and a SA for minimizing the total weighted tardiness, and compared those 

methods with two dispatching rules, namely the Earliest Weighted Due Date (EWDD) and the 

Shortest Weighted Processing Time (SWPT). Pereira Lopes and Valério de Carvalho (2007) 

studied an unrelated parallel machine system with sequence-dependent setup times, machine 

availability dates and jobs release dates with the aim of minimizing the total weighted 

tardiness. They followed a branch-and-price approach elaborating a proper procedure able to 

solve instances up to 50 machines and 150 jobs within a reasonable computational time. An 

unrelated parallel machine scheduling problem with sequence-dependent setup times was 

tackled by Tavakkoli-Moghaddam, Taheri, Bazzazi, Izadi and Sassani (2009) as well. Also, 

they considered precedence constraints among jobs, and developed a two-step linear 

programming model, together with a Genetic Algorithm (GA) for minimizing the number of 

tardy jobs primarily, and the total completion time secondly. A GA-based approach has also 

been adopted by Vallada and Ruiz (2011) with the aim of minimizing makespan for an 

unrelated parallel machine scheduling problem with sequence-dependent setup times. After a 

proper calibration phase, they carried out an extensive comparison campaign involving both 

small and large instances in order to assess performances of the proposed metaheuristic 

against a Mixed Integer Linear Programing (MILP) model and other algorithms arisen from 

literature, for small-sized and large-sized problems respectively. The use of a GA approach for 

minimizing makespan in an unrelated parallel machine production system has also been 

investigated by Balin (2011), who developed a specific crossover operator along with a new 

optimality criterion and assessed the performance of the obtained algorithm against the 

Longest Processing Time (LPT) rule. A new approach for the resolution of the unrelated 

parallel machine scheduling issue, though not involving sequence dependent setup times, has 

been recently given by Fanjul-Peyro and Ruiz (2011), who developed several hybrid heuristic 
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methods and algorithms for reducing the size of a given problem before solving it through a 

linear programming model. Fanjul-Peyro and Ruiz (2012) have also studied two 

generalizations of the unrelated parallel machine model, namely the Not All Machine (NAM) 

and Not All Jobs (NAJ) variants; the former model allows one or more machines to be 

excluded by the production shop, while the latter handles as unnecessary some jobs to be 

processed. In both cases, a MILP model is given. In addition, three different algorithms are 

presented for the NAM model, as the complexity of the problem makes it difficult finding an 

exact solution within a polynomial time. 

In order to make the parallel machine theoretical model suitable for describing real-world 

manufacturing environments in an accurate way, the effect of human factors on the 

performance of the production shop should be taken into account as well. Indeed, a well-

established trend in literature has been focusing on the study of production systems known as 

Dual Resource Constrained (DRC), i.e., in which capacity constraints arise from both 

machines and human operators. DRC systems have received many attentions over the years 

since the seminal work of Nelson (1967). Treleven (1989) and Hottenstein and Bowman 

(1998) have thoroughly categorized the main topics and issues concerned with such 

manufacturing models. Recently, Xu, Xu and Xie (2011) provided a comprehensive review 

regarding the research works dealing with DRC systems presented during the last two decades. 

The effect of human workers on DRC systems may be basically studied under two different 

viewpoints, i.e., the worker flexibility and the worker assignment issues. As far as the worker 

flexibility is concerned, the existence of differences among technical skills and abilities of 

each operator should be taken into account. Part of the relevant literature embodied the 

concept of worker flexibility in manufacturing situations by means of the flexibility level, i.e., 

a numerical index representing the number of machines on which a worker is capable of 

operating (ElMaraghy, Patel & Ben Abdallah, 2000; Kher & Fry, 2001). Another research 

trend considered the so-called skill levels, i.e., numerical parameters assessing the efficiency 

of workers in processing jobs with respect to quality or productivity. This latter topic appears 

to be extremely relevant, as when one or more operation concerning the production phase 

should be manually executed, e.g. setups or removals, it could be crucial to take into account 

the impact of the different technical abilities pertaining to each worker on the global 

performances of the production system. Kim and Bobrowsky (1997) considered the crew skills 
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as a random factor affecting setup times on a job-shop production system. Askin and Huang 

(2001) proposed a mixed integer goal programming model for creating worker teams with 

high team synergy and proper technical and administrative skills in a cellular manufacturing 

environment. The same kind of production system was addressed by Norman, 

Tharmmaphornphilas, Lascola Needy, Bidanda, Colosimo Warner and Worker (2002), who 

developed a mixed integer programming problem for assigning workers to manufacturing cells 

in order to maximize the effectiveness of the organization, and emphasized the possibility of 

enhancing skill levels through additional training. Pan, Suganthan, Chua and Cai (2010) 

tackled a job-shop scheduling problem pertaining to the precision engineering industry, in 

which each job requires specific technical skills and a certain grade of experience and 

seniority to be performed. 

With respect to DRC systems entailing the worker assignment issue, two main trends may be 

noticed in the relevant literature as well. A first research area is concerned with the study of 

manufacturing configurations where the processing time of each job depends on the number of 

operators assigned to the machines where it is actually processed. Hu (2004, 2005, 2006), 

Chaudhry and Drake (2009) and Chaudhry (2010) addressed this kind of topic with respect to 

the identical parallel machine manufacturing environment. Celano, Costa, Fichera and Perrone 

(2004) studied a mixed-model assembly line sequencing problem in which workers are 

allowed to help their colleagues in completing operations with the aim of reducing the 

conveyor stoppage time. A further trend arisen from literature involves the study of production 

systems where workers represent a critical resource, i.e., where the number of operators is 

significantly lower than the number of available workstations. Celano, Costa and Fichera 

studied the effect of reducing the human resource capacity on unrelated parallel manufacturing 

cells through an integrated simulation framework, taking into account several performance 

measures. Zouba, Baptistea and Rebaineb (2009) addressed the problem of scheduling jobs on 

an identical parallel machine manufacturing environment having less workers than machines, 

i.e., wherein operators may have to supervise simultaneously several machines. 

To the best of our knowledge, the study of the unrelated parallel machine scheduling problem 

with sequence dependent setup times along with limited and multi-skilled human resource has 

not been taken into account yet. The present chapter addresses such topic under the makespan 

minimization viewpoint. Making use of the well-known three-field notation proposed 
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by Pinedo (2012), it may be classified as Rm | Sikjl | Cmax wherein setup time of each job l 

depends on the machine i, on the skills of the operator k and on the preceding job j. It is worth 

pointing out that in the proposed sequencing-allocation problem each worker is not assigned to 

a given machine once and for all but, on the contrary, he may visit different machines along 

the production time horizon as the final schedule allocates each workers to a set of jobs and 

then jobs to machines. 

A GA-based optimization framework has been developed for investigating the problem in 

hand. Genetic algorithms represent a well-performing approach for solving combinatorial 

scheduling problems, as it has been widely recognized by the literature over the past decades. 

The aforementioned research works dealing with the parallel machine scheduling issue 

demonstrate as GAs have been extensively employed for tackling such kind of topic. 

Furthermore, as reported by Xu, Xu and Xie (2011), the use of GA-based optimization 

procedures to solve problems pertaining to DRC systems is a well-established trend as well. In 

the present chapter, three different hybrid GAs, each one involving two distinct encodings 

have been compared with two regular single-encoding GAs in terms of makespan 

minimization. Performance evaluation of the proposed metaheuristics was carried out by 

means of an ANOVA analysis (Montgomery, 2007) over a wide set of test cases. A further 

step of analysis has then been performed in order to highlight the impact of the multi skilled 

human resources on the performance of the production system under investigation. 

The remainder of the chapter is organized as follows: in Section 2.2 a brief introduction to the 

proposed issue is presented; Section 2.3 deals with the MILP model describing the problem; in 

Section 2.4 all proposed GAs are discussed; Section 2.5 illustrates the calibration procedure 

applied to such metaheuristics, while in Section 2.6 numerical results arisen from an extensive 

experimental campaign are presented; in Section 2.7, the results obtained by taking into 

account multi skilled human resources are compared with those pertaining to three different 

scenarios featured by workers having identical skills. 

2.2 Problem description 

The proposed unrelated parallel machine problem with limited human resources can be stated 

as follows. Let us consider a set of j = 1,…,N jobs that has to be processed in a single 

production stage composed by m = 1,…,M unrelated workstations, aiming at minimizing the 
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makespan, i.e. the maximum completion time among the scheduled jobs. Each job has to be 

processed by only one machine before it leaves the production system, and each machine 

cannot process more than one job at a time.  

Setup operations performed on a given workstation by a single worker must precede each job 

processing on the same workstation. Setup times are sequence and machine-dependent. 

Furthermore, a team w = 1,…,W workers being w m  is assumed to be involved just to setup 

operations. As a consequence, workers represent a critical resource as each setup operation to 

be executed for a given job on a given machine needs a worker that could be employed in 

another workstation for the setup task required by a different job. In addition, each worker is 

featured by a certain skill level, on the basis of which he is able to perform setup operations 

slower or faster than his colleagues. Thoroughly, setup time of a job l to be processed after a 

job j, on a given machine i,  by a worker k, may be defined as follows: 

ikjl k ijlS S , (2.1) 

where Sijl is the standard setup time required by an average-skilled worker and k [0.5,1.5] is 

a coefficient reflecting the skill level of operator k-th. Expert workers are supposed to have k 

lower than 1 while novice workers are characterized by k greater than 1. It is worth pointing 

out that the way the skill levels have been modelled arises from the observation of a real 

manufacturing environment populated by different transforming technologies like injection 

moulding, compression moulding and PE pipe extrusion. In order to optimize the workforce 

utilization and, at the same time, to be more flexible towards the changing customer demands, 

the observed firm adopts a sort of flexible labour management strategy. Instead of employing 

a number of workers equal to the total amount of production resources, the firm’s policy aims 

to use a lower number of operators characterized by different skills, conforming to the 

different technologies installed in the shop-floor. 

2.3 MILP model 

A first goal of the proposed research was the development of a Mixed Integer Linear 

Programming (MILP) model aiming at both optimally solving a set of small-instances of the 

aforementioned problem and validating the performance of the provided GAs. The reported 
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mathematical model includes a dummy job (denoted as job 0) which is assumed to be 

processed by all machines, and to be always processed as first, though it has a processing time 

equal to zero. Such approach is necessary to run setup times of jobs which are processed as 

first in a given machine; thus, job 0 precedes each job processed as first in a each machine. 

The aforementioned mathematical model is reported as follows. 

Indices  

, , 0,1, ,h j l n  Jobs; 

1,2, ,i m  Machines; 

1,2, ,k w  Workers; 

  

Parameters  

ilT  processing time of job l on machine i; 

ikjlS  setup time of job l performed by worker k on machine i, after machine i has processed 
job j; 

B a big number; 

  

Binary variables  

ikjlX

 

1 if job  is processed on machine  after job  and setup is performed by worker 

0 otherwise                                                                                                          

l i j k

      
 

jlQ  auxiliary variable for either-or constraint; 

  

Continuous variables  

lCS  setup completion time of job l; 

lC  processing completion time of job l; 

maxC  Makespan; 

  

Model  

minimize maxC   

subject to:  

1 1 0

1
m w n

ikjl

i k j

X   1,2,..., .l n  (2.2) 
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1 1 1

1
m w n

ikjl

i k l

X   1,2,..., .j n  (2.3) 

0
1 1

1
w n

ik l

k l

X   1,2,..., .i m  (2.4) 

1 1 1

0
m w n

ikll

i k l

X   (2.5) 

1 0 1 1

w n w n

ikjl iklh

k j k h

X X   1,2,..., ;  1,2,..., .i m l n  (2.6) 

1 1 0

m w n

l l il ikjl

i k j

C CS T X   1,2,..., .l n  (2.7) 

1 1 1 1

(1 )
m w m w

l j ikjl ikjl ikjl

i k i k

CS C S X B X   0,1,..., ;  1,2,..., .j n l n  (2.8) 

1 0 1 0

1 0 1 0

(2 ( ) )    

(2 ( ) 1 )

m n m n

l j ikhl ikhl ikhl ikhj jl

i h i h

m n m n

j l ikhj ikhj ikhl ikhj jl

i h i h

CS CS S X B X X Q

CS CS S X B X X Q

  

(2.9) 

 

 1,2,... ;   1,2,..., ;

     1, 2,..., .

k w j n

l j j n  

0 0C   (2.10) 

max jC C   1,2,..., .j n  (2.11) 

0;1ikjlX   1,2,..., ;  1,2,..., ;   0,1,..., ;  1,2,..., .i m k w j n l n  (2.12) 

0;1jlQ   1,2,..., ;  1, 2,..., ;j n l j j n  (2.13) 

Constraint (2.2) ensures that each job is assigned to one and only one machine, one and only 

one worker performs its setup, and such job is preceded by one and one only job. Constraint 

(2.3) states that each job must precede at most one other job. Constraint (2.4) forces job 0 to 

precede at most one other job in each given machine. Constraint (2.5) denotes that each job 

cannot precede itself. Constraint (2.6) ensures the feasibility of a job sequence for each 

machine: if job l precedes some other job, it must have a predecessor on the same machine. 

Constraint (2.7) states as, for a given job, the minimum time lag between the end of a setup 

task and the end of the corresponding processing task must be equal to the processing time 

required by the job itself. Constraint (2.8) ensures that if job l is processed immediately after 
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job j on a given machine, the end of the processing task of job j and the end of the setup task 

of job l must be separated by a time interval equal to the setup time of job l, at least. The 

twofold constraints (2.9) handles the limited human resources: if setups of jobs j and l are 

performed by the same worker k, then setup of job j must be completed before setup of job l 

starts, or vice versa. Constraint (2.10) assigns a null completion time to job 0. Constraint 

(2.11) forces makespan to be equal to or greater than any job completion time. Finally, 

constraints (2.12) and (2.13) define the corresponding binary variables. 

2.4 The proposed genetic algorithms 

Three kinds of different metaheuristic procedures based on genetic algorithms (GAs) have 

been developed in order to address the large-sized instances of the proposed problem. 

Genetic algorithms (Holland 1975) are computational methods inspired by the process of 

natural evolution, which have largely been used to solve scheduling problems. Generally, a 

GA works with a set of solutions to the problem, called population. At every iteration, a new 

population is generated from the previous one by means of two operators, crossover and 

mutation, applied to solutions (chromosomes) selected on the basis of their fitness, which is 

derived from the objective function value; thus, best solutions have greater chances of being 

selected. Crossover operator generates new solutions (offspring) by combining structures of a 

couple of existing ones (parents), while mutation operator brings a change into the scheme of 

selected chromosomes, with the aim to avoid the procedure to remain trapped into local 

optima. The algorithm proceeds in letting population evolve through successive generations 

until some stopping criterion is reached. 

Whenever an optimization problem is addressed through evolutionary algorithms, the choice 

of a proper encoding scheme (i.e., the way a solution is represented by a string of genes) plays 

a key role under both the effectiveness and the efficiency viewpoints (Costa, Celano, Fichera 

& Trovato, 2010). In addition, a valid decoding procedure to be applied to every encoded 

solution needs to be provided.  

In the following subsections, a detailed description of the GAs developed for solving the 

aforementioned unrelated parallel machine scheduling problem is reported. 
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Permutation-based GA 

A first approach towards the resolution of the scheduling problem here investigated consisted 

in the development of a genetic algorithm equipped with a permutation-based encoding 

scheme, hereinafter called PGA. In such optimization procedure each chromosome directly 

describes the order in which jobs have to be processed in the manufacturing stage, while both 

the jobs and the workers assignment issue are performed by means of proper decoding 

procedure, on the basis of a time-saving (also known as list-scheduling) rule.  

In PGA, each solution is represented by a permutation string of n elements, where n is the 

number of jobs to be scheduled. In detail, let l  = (r) be the job in the r-th position (r = 

1,2,…,n) of the considered permutation string to be scheduled within an unrelated parallel 

machine production system with m machines and w workers, with w  m; 
ikj l

S denotes the time 

required by worker k (k  = 1,2,…,w) to perform setup of job l on machine i (i = 1,2,…m), after 

machine i has processed job j (j = 0,1,…,n); 
i l

T is the processing time of job l on machine i. 

The decoding procedure considers jobs in the order they appear in the permutation and assigns 

them to the couple machine-worker that can complete them earlier than any other, according 

to a list-scheduling procedure. Thus, let us assume to have completed all decoding steps for 

scheduling jobs preceding l in the permutation . TMi indicates the time at which machine i is 

ready to accept a new job;  is the current job processed by machine i; TWk denotes the time at 

which worker k is ready to start a new setup operation. At first decoding iteration: TMi = 0;  

= 0; TWk = 0. Completion time 
l

C of job l  = (r) is calculated as follows: 

l
C = 

,
min

ik li k
E  (2.14) 

where 
ik l

E indicates the estimated completion time of job l = (r) whether it is processed on 

machine i and its setup is performed by worker k. Hence: 

max ;i kik l ik l il
E TM TW S T  (2.15) 
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Then, denoting with i* and k* respectively, the machine and the worker to which job l  is 

assigned (i.e., those able to minimize 
ik l

E ), quantities TMi* and TWk* are updated as follows: 

TMi*= 
l

C  (2.16) 

TWk*= *l i l
C T  (2.17) 

Finally, after the aforementioned procedure has been performed for all jobs in the permutation, 

the makespan is calculated according to the following formula: 

max
(1),..., ( )
max

l
l n

C C  (2.18) 

In order to provide a clear insight into the aforementioned encoding/decoding procedure, let us 

consider a brief example consisting of four jobs (n = 4) to be scheduled on an unrelated 

parallel machine manufacturing system composed by three workstations (m = 3) and 

characterized by having a workforce team with two workers (w = 2) to be employed for setup 

operations. For sake of simplicity, setup times are assumed to be sequence-independent. For 

each job j, Table 2.1 illustrates processing times as i (index of machine) changes, as well as 

setup times as i and k (index of worker) change. 

Table 2.1. Processing and setup times for an example with n = 4, m = 3, w = 2. 

   j=1  j=2  j=3  j=4 

 i=1  4  2  1  5 

Tij i=2  3  5  8  2 

 i=3  1  5  4  4 

   k=1 k=2  k=1 k=2  k=1 k=2  k=1 k=2 

 i=1  3 6  5 10  2 4  2 4 

Sikj i=2  1 2  1 2  5 10  3 6 

 i=3  1 2  5 10  2 4  3 6 

As the reader can notice, setup times concerning the first operator are always half of the 

corresponding times concerning the second one, as the two workers are supposed to be 

differently skilled and, in particular, the first worker has a greater level of expertise with 



26 
 

respect to the second worker. Furthermore, it is worth highlighting that job processing times 

do not depend on the workers, as in the proposed model the human factor affects only setup 

operations. With reference to the reported example, let us suppose to take into account the 

solution = {4,1,2,3}. Table 2.2 summarizes the proposed decoding procedure applied to . 

At each iteration r (r = 1,2,…,n), the minimum value of 
ik l

E , calculated according to equation 

(2.15), is denoted in bold type. Both the corresponding machine and worker, denoted as i* and 

k* respectively, are selected for processing job l  = (r), and both TMi* and TWk* are updated 

as well, according to equations (2.16) and (2.17). Finally, a makespan equal to 11 is obtained 

for the given solution, according to equation (2.18). Figure 2.1 shows the Gantt chart obtained 

by applying such decoding procedure. 

Table 2.2. PGA decoding procedure for = {4,1,2,3}. 

r 
 

l  

 
ik l

E   i*  k*  TMi  TWk 

   k=1 k=2      i=1 i=2 i=3  k=1 k=2 

1 

 

4 

 i=1 7 9  

2 

 

1 

 

0 5 0 

 

3 0   i=2 5 8     

  i=3 7 10     

2 

 

1 

 i=1 10 10  

3 

 

2 

 

0 5 3 

 

3 2   i=2 9 10     

  i=3 5 3     

3 

 

2 

 i=1 10 14  

1 

 

1 

 

10 5 3 

 

8 2   i=2 11 12     

  i=3 13 18     

4 

 

3 

 i=1 13 15  

3 

 

2 

 

10 5 11 

 

8 7   i=2 21 23     

  i=3 14 11     
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Figure 2.1. Gantt chart obtained by PGA decoding procedure for ={4,1,2,3}. 

With regards to the selection mechanism, the well-known roulette-wheel scheme 

(Michalewicz 1994) has been considered, thus assigning to each solution a probability of 

being selected inversely proportional to makespan value. A position-based crossover 

(Syswerda 1991) has been employed for generating new offspring from a couple of selected 

parents. In such procedure all selected genes from a parent are copied in the offspring, just 

preserving corresponding position and relative order; unselected genes are instead copied in 

the order they appear in the other parent, thus completing the structure of the new generated 

individual. For sake of brevity, Figure 2.2 shows an example of position-based crossover for 

an instance with n = 10. 

 

Figure 2.2. Position-based crossover. 
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As far as the mutation procedure is concerned, a simple swap operator (Oliver, 1987) has been 

chosen. According to this technique, two genes randomly selected from the chromosome are 

mutually exchanged. However, the proposed algorithm has also been equipped with an elitism 

procedure, aiming to preserve the best two individuals of each generation from any alteration 

caused by crossover and mutation operators. Finally, a fixed number of makespan evaluations 

has been chosen as stopping criterion. 

Multi-encoding GA 

The main characteristic of the proposed PGA is reducing the computational burden by means 

of a basic problem encoding. Nevertheless such algorithm moves over a search space that 

cannot embrace the overall set of solutions, due to the corresponding decoding procedure that, 

for each permutation, adopts a rigid criterion for assigning jobs to machines and workers. 

Hence, an alternative approach towards the resolution of the proposed sequencing-allocation 

problem by means of metaheuristics, consisted in the development of a genetic algorithm 

(hereinafter called MGA) equipped with a multi-stage encoding able to investigate a wider 

space of solution if compared to PGA. Three substrings compose such multi-stage encoding, 

the former being a regular permutation string to manage the job sequencing issue and two 

adding strings necessary to drive the assignment of jobs to machines and workers, 

respectively.  

In order to illustrate the encoding procedure exploited by MGA, the same nomenclature 

already defined for PGA may be adopted. Thus, assuming to have n jobs to be scheduled on an 

unrelated parallel machine system with m workstations and w workers (w  m), each 

chromosome is represented by the following substrings: 

 a permutation string of n elements;  

 a string  of n integers ranging from 0 to m, driving the assignment of jobs to 

machines; 

 a string f n integers ranging from 0 to w, driving the assignment of jobs to workers. 

As concerns the initial population, it is worth highlighting that the maximum number of non-

zero genes within each assignment substring (i.e.,  and ) is fixed a-priori, and equal to a 
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fraction pnz of the total amount of genes every substring holds, i.e. n. In case the fraction of 

non-zero values is a real number, such number must be rounded up to the next integer. As for 

example, for a problem with ten machines, if pnz is equal to 10% just one digit may assume a 

non-zero value within the  substring. Before introducing the decoding procedure, let l  = (r) 

be the job on the r-th position of the permutation (r = 1,2,…,n);   ( )i l  indicates the digit 

at position l of string ;   ( )k l  indicates the digit at position l of array . 
ikj l

S  denotes the 

time required by worker k (k = 1,2,…,w) to perform setup of job l on machine i (i = 1,2,…m), 

after machine i has processed job j (j = 0,1,…,n); 
i l

T  indicates processing time of job l on 

machine i. The decoding procedure considers jobs in the order they appear in the permutation 

string  and uses corresponding information from arrays  and  to perform the assignment of 

jobs to machines and workers; if no information is given by one or both arrays (i.e. if  i  = 0 

and/or k  = 0), the same time-saving rule of PGA is used. Thus, let us assume to have 

completed all decoding steps for scheduling jobs preceding l  in the permutation . TMi 

indicates the time at which machine i is ready to accept a new job;  is the last job processed 

by machine i; TWk denotes the time at which worker k is ready to start a new setup operation; 

first iteration states: TMi  = 0;   = 0; TWk  = 0. Completion time 
l

C  of job (r)  is calculated as 

follows: 

l
C = 

,

              if  0 and 0

min     if  0 and 0

min     if  0 and 0

min     if  0 and 0

ik l

ik lk

ik ji

ik li k

E i k

E i k

E i k

E i k

 (2.19) 

where  
ik l

E  indicates the estimated completion time of job l  if processed on machine i with 

setup performed by worker k. Its value is calculated according to the following formula: 

max ;i kik l ik l il
E TM TW S T  (2.20) 
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According to the decoding procedure above described, the job is assigned to machine i  if 0i  

and to worker k if 0;k  in case either or do not hold any specific value, job l  allocation 

to machines and workers is managed by minimizing the estimated completion time calculated 

through equation (2.20). Whether i* and k* denote machine and worker to which job l  have to 

be assigned respectively, TMi* and TWk* can be updated as follows: 

TMi*= 
l

C  (2.21) 

  

TWk*= *l i l
C T  (2.22) 

Finally, after the aforementioned procedure has been performed for all jobs, the makespan is 

computed as follows: 

max
(1),..., ( )
max

l
l n

C C  (2.23) 

To better explain the proposed decoding procedure, the same example reported in Section 

4.1.1 (see Table 2.1) can be taken into account. Supposing the solution to be decoded is 

={4,1,2,3|1,0,0,3|0,1,0,0}, Table 2.3 summarizes the proposed decoding procedure. For each 

iteration r the corresponding values of 
ik l

E  are reported; among these, the actual value of 
l

C , 

calculated according to equations (2.19), is highlighted by a bold type; i* and k* are the 

selected machine and worker to process job l  = (r) so that TMi and TWk can be updated 

conforming to equations (2.21) and (2.22), respectively. Finally, a makespan equal to 10 is 

obtained by applying equation (2.23). Figure 2.3 shows the Gantt chart obtained by the 

proposed decoding procedure. 
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Table 2.3. MGA decoding procedure for ={4,1,2,3|1,0,0,3|0,1,0,0}. 

r 
 

l = (r) 

 

i  

 

k  

 
ik l

E   i*  k*  TMi  TWk 

     k=1 k=2      i=1 i=2 i=3  k=1 k=2 

1 

 

4 

 

1 

 

0 

 i=1 7 9  

1 

 

1 

 

7 0 0 

 

2 0     i=2 5 8     

    i=3 7 10     

2 

 

1 

 

0 

 

1 

 i=1 14 17  

3 

 

1 

 

7 0 4 

 

3 0     i=2 6 5     

    i=3 4 3     

3 

 

2 

 

0 

 

0 

 i=1 14 19  

2 

 

2 

 

7 7 4 

 

3 2     i=2 9 7     

    i=3 14 19     

4 

 

3 

 

3 

 

0 

 i=1 10 16  

3 

 

1 

 

7 7 10 

 

6 2     i=2 20 25     

    i=3 10 12     

 

 

Figure 2.3. Gantt chart obtained by MGA decoding procedure for ={4,1,2,3|1,0,0,3|0,1,0,0}. 

This quantitative example puts in evidence the potential improvements that could arise from a 

more structured encoding scheme with respect to PGA. In fact, the same sequence of jobs 

elaborated by PGA encoding/decoding generates makespan equal to 11 (see Figure 2.1) while 

MGA encoding/decoding yields a makespan equal to 10 time units. For a given sequence of 

jobs  there exist a total number of alternative solutions equal to (m+1)n (w+1)n , thus 
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emphasizing the wider solution space that can be investigated by MGA encoding with respect 

to PGA. 

Similarly being done by PGA, the same roulette wheel-based mechanism has been adopted as 

selection operator which assigns to each solution a probability of being selected inversely 

proportional to its makespan value. On the other hand, crossover operator has been developed 

to separately run the mating between the three distinct parts composing the parents’ structures 

(i.e.,  , ), with three distinct probabilities p cross, p cross, p cross. Crossover between two 

parent -substrings has been executed through a regular position-based operator conforming 

to PGA. As far as assignment substrings  and  are concerned, a simple uniform crossover 

operator (Syswerda 1989) has been employed. Such technique generates a couple of offspring 

by choosing, for each position, if the parents’ genes will be swapped or not. Without loss of 

generality, Figure 2.4 illustrates the application of such genetic operator for the -substrings of 

two parents; bold-bordering genes are those to be swapped. 

 

Figure 2.4. Uniform crossover operator. 

Similarly to crossover, mutation procedure has been performed by separately managing the 

three parts of the chromosome, using three distinct probabilities p mut, p mut, p mut. Mutation 

of the permutational substring has been performed through the same swap operator used in the 

PGA procedure. With reference to assignment arrays, a simple uniform mutation operator 

(Michalewicz 1994) has been adopted. This technique randomly picks a gene and replaces it 

with a random value drawn from a uniform distribution in the provided domain (i.e., [0, m] for 

the first array, [0, w] for the second one). The same elitism procedure employed in PGA was 
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embedded into the MGA so that, for each generation, the best two individuals are copied 

within the new population. The total number of makespan evaluations represents again the 

stopping criterion of the proposed MGA. 

Hybrid GA 

A hybrid genetic algorithm, hereinafter named HGA, which combines both the 

aforementioned metaheuristics was developed as an alternative approach for solving the 

proposed unrelated parallel machine problem with limited human resources. In words, a 

twofold encoding-based GA has been arranged with the aim of combining the computational 

rapidity of PGA in the first phase and the ability of MGA in investigating a wider space of 

solutions. PGA performs the first optimization phase then, after a provided threshold is 

achieved and a proper encoding conversion procedure is executed, MGA is launched until the 

stopping criterion is encountered. The encoding conversion procedure operates by adding the 

two assignment substrings to the chromosomes characterizing the last population. Firstly, all 

values of new added assignment substring are set equal to zero; then, a fraction pnz of genes 

for each substring are replaced by elements drawn from an uniform distribution in the interval 

[1, m] or [1, w] for the first and the second substring, respectively. Figure 2.5 shows an 

example of such procedure for an instance having n=10, m=5, w=2. 

 

Figure 2.5. Encoding conversion procedure. 

An elitism mechanism has been ensured whenever the population based on single-stage 

encoding must be converted into a multi-stage encoding based population. In fact, the best two 

individuals included in the PGA final population are copied and updated into the new MGA 

population just by adding them two null assignment substrings (i.e. substring with only zeros). 
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Once the encoding conversion procedure is completed, MGA cope with the second part of the 

optimization process, until the total number of makespan evaluations is achieved. 

2.5 Experimental calibration and test cases 

Before carrying out an extensive comparison among the metaheuristics above discussed, a 

comprehensive calibration phase has been fulfilled, with the aim of properly defining the best 

genetic parameters of the proposed algorithms. To this end, a benchmark of 100 problems has 

been created, combining number n of jobs, number m of machines and number w of workers in 

a full factorial design as illustrated in Table 2.4. The benchmark is characterized by 4 x 2 x 2 

= 16 small problems (with n  10) and 7 x 4 x 3 = 84 large problems (with n  20), as to 

ensure the effectiveness of the tuned parameters over a wide range of test cases. 

Table 2.4. Proposed benchmark of test problems. 

Scenario Factor Indices Values 

Small-sized problems 

Number of jobs n (7; 8; 9; 10) 

Number of machines m (4; 5) 

Number of workers w (2; 3) 

Large-sized problems 

Number of jobs n (20; 40; 60; 80; 100; 150; 200) 

Number of machines m (10; 12; 16; 20) 

Number of workers w (6; 8; 10) 

For each problem one instance has been generated, by extracting processing times from a 

uniform distribution in the range [1, 99]. Setup times have been obtained by a two-steps 

procedure; first, a matrix Sijl of both sequence-dependent and machine-dependent setup times 

was randomly generated by an uniform distribution U[1, 99]. Then, for each worker k 

(k=1,2,…,w), setup times have been multiplied by a factor k representing the skill weights of 

the operator itself, randomly extracted from the set {0.5; 0.75; 1; 1.25; 1.5}, thus obtaining the 

input parameters Sikjl. A so configured set of skill weights is due to the observed real 

manufacturing environment wherein a highly skilled worker is able, on the average, to carry 

out a setup task in one third time with respect to a weakly skilled one. Two separate 

calibration campaigns have been conducted for PGA and MGA respectively. Table 2.5 
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illustrates parameters tested for each algorithm, and denotes in bold type the best combination 

of values, chosen after an ANOVA analysis (Montgomery, 2007) at 95% confidence level 

performed by means of Stat-Ease® Design-Expert® 7.0.0 commercial tool. The employed 

response variable was the Relative Percentage Deviation (RPD), calculated according to the 

following formula: 

GA BEST
100

BEST
sol sol

sol

RPD  (2.24) 

Where GAsol is the solution found by a given GA setting (i.e., a GA characterized by a specific 

combination of genetic parameters), and BESTsol is the best solution among those provided by 

the other differently set GAs for the same instance. GAs have been coded in MATLAB® 

language and executed on a 2GB RAM PC powered by a dual-core 2,39 GHz processor. 

Stopping criterion was set to a total of 10,000 makespan evaluations. A preliminary 

experimental analysis has shown a substantial convergence of all proposed GAs within this 

limit. Furthermore, the use of such a stopping criterion allows to reach a good compromise 

between quality of solutions and computational burden. 

Table 2.5. Experimental calibration of PGA and MGA. 

Algorithm Parameter Notation Values 

PGA 

Population size Psize (20; 50; 100) 

Crossover probability pcross (0.2; 0.5; 0.8) 

Mutation probability pmut (0.05; 0.1; 0.2) 

MGA 

Population size Psize (20; 50; 100) 

Percentage of non-zero genes of substrings  and 
(initial population) 

pnz (1%; 5%; 10%) 

Crossover probability (permutation substring ) p cross (0.5; 0.8) 

Crossover probability (substring ) p cross (0.5; 0.8) 

Crossover probability (substring ) p cross (0.5; 0.8) 

Mutation probability (permutation substring ) p mut (0.05; 0.2) 

Mutation probability (substring ) p mut (0.05; 0.2) 

Mutation probability (substring ) p mut (0.05; 0.2) 
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As far as the HGA procedure is concerned, no calibration has been provided since it consists 

of the combination of PGA with MGA; for such a reason, the same best parameters identified 

for the two distinct single-encoding algorithms (i.e. PGA and MGA) have been used for the 

two-phases hybrid metaheuristic. ANOVA outputs reported in Table 2.5 shows that MGA 

would require a smaller population than PGA; thus, the encoding conversion procedure 

exploited by HGA works by selecting the best performing 50 individuals of the final PGA 

population and by adding them the two further assignment substrings. 

2.6 Numerical examples and computational results 

Once the calibration phase is completed, an extensive test campaign has been performed to 

compare the proposed GAs. In words, such comparison entails PGA, MGA and three variants 

of HGA, hereinafter HGA25, HGA50, HGA75, whose encoding switch threshold pconv was set to 

25%, 50% and 75% of the total number of makespan evaluations chosen as stopping criterion, 

respectively. The same benchmark arrangement exploited for the tuning parameters analysis 

has been used. In particular, a total amount of 10 different instances per each problem has 

been generated, using the same method employed in the calibration phase for defining both 

setup and processing times. Thus, comparison analysis has been fulfilled over a total amount 

of 1,000 different instances. Indeed, as five runs characterized by five different random seeds 

have been considered for each metaheuristic algorithm, the effective number of investigated 

numerical instances is equal to 5,000. 

Stopping criterion of each algorithm was set to 10,000 makespan evaluations and the same 

ICT computational equipment as described in Section 5 was employed for all metaheuristics. 

The following subsections reports the obtained results concerning small and large instances, 

respectively. 

Small instances comparison analysis 

Conforming to the calibration phase debated in Section 2.5, small-sized instances (i.e., those 

having n  10) have been arranged in 4 scenario problems depending on the number of jobs 

(n = 7, 8, 9, 10). Each scenario problem includes 4 classes of problems, each one involving a 

different number of both machines (m = 4, 5) and workers (w = 3, 4). Since each class of 

problems holds 10 instances and each instance was replicated 5 times with different random 
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seeds, 160 x 5 = 800 different runs have been considered. Both job and worker descriptors, 

e.g. processing times and setup times for each machine, have been randomly generated 

according to the same criteria discussed in Section 2.5. 

The overall set of instances was optimally solved by means of the proposed MILP model, 

executed on an IBM® ILOG CPLEX Optimization Studio 12.0 64 bit platform installed 

within a workstation powered by two quad-core 2,39 GHz processors with 24 Gb RAM. The 

response variable used for the comparison analysis was the Relative Percentage Deviation 

(RPD) calculated according to equation (2.24). Due to the optimality of the MILP-based 

approach BESTsol relates to the global optimum found by CPLEX® tool. In Table 2.6, the 

average value of RPD obtained by each GA for a given class of problems (encompassing 10 

different instances replicated 5 times) is reported, together with the average computational 

time required, expressed in seconds. In parenthesis is reported the number of times out of 50 

each algorithm hits the global optimum provided by the CPLEX® optimizer. Final row of 

Table 2.6 reports the grand averages (g_ave) in terms of RPD and number of optimal solutions 

concerning each metaheuristic. 

Table 2.6. Average performances of GAs on small-sized instances 

Problem 
(n x m x w) 

Average RPD 
 

Average CPU time (s) 

PGA MGA HGA25 HGA50 HGA75 
 

PGA MGA HGA25 HGA50 HGA75 

(7 x 4 x 2) 3.25 (18) 1.50 (31) 1.30 (35) 1.92 (29) 2.28 (27)  2.3 3.4 3.1 2.9 2.5 

(7 x 4 x 3) 1.98 (27) 0.89 (38) 0.84 (33) 0.96 (37) 1.61 (33)  2.3 3.4 3.1 2.9 2.6 

(7 x 5 x 2) 3.12 (18) 1.56 (27) 1.15 (32) 2.36 (21) 2.66 (22)  2.3 3.4 3.1 2.9 2.5 

(7 x 5 x 3) 2.47 (21) 1.33 (30) 1.15 (32) 1.26 (27) 2.05 (22)  2.4 3.4 3.1 2.9 2.6 

(8 x 4 x 2) 4.05 (16) 2.65 (25) 2.85 (20) 2.72 (21) 3.96 (16)  2.5 3.6 3.3 3.0 2.7 

(8 x 4 x 3) 3.00 (22) 1.94 (31) 1.59 (35) 2.14 (29) 2.60 (26)  2.5 3.7 3.3 3.1 2.7 

(8 x 5 x 2) 4.99 (15) 3.68 (18) 2.62 (21) 3.97 (19) 4.60 (16)  2.5 3.7 3.3 3.1 2.8 

(8 x 5 x 3) 3.20 (22) 1.84 (28) 2.18 (26) 2.63 (26) 2.67 (25)  2.6 3.7 3.4 3.1 2.8 

(9 x 4 x 2) 4.59 (13) 3.30 (19) 3.12 (20) 3.36 (18) 4.47 (14)  2.7 3.9 3.5 3.3 2.9 

(9 x 4 x 3) 3.01 (15) 1.91 (26) 2.16 (19) 2.23 (23) 2.87 (16)  2.7 3.9 3.6 3.3 2.9 

(9 x 5 x 2) 3.93 (18) 2.42 (29) 2.24 (30) 2.98 (25) 3.26 (20)  2.7 3.9 3.6 3.3 2.9 

(9 x 5 x 3) 3.79 (13) 2.30 (24) 2.62 (19) 3.05 (17) 3.14 (14)  2.7 4.0 3.6 3.3 3.0 
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Table 2.6. (Continued) 

Problem 
(n x m x w) 

Average RPD 
 

Average CPU time (s) 

PGA MGA HGA25 HGA50 HGA75 
 

PGA MGA HGA25 HGA50 HGA75 

(10 x 4 x 2) 4.39 (10) 3.67 (12) 3.50 (12) 3.34 (14) 3.97 (13)  2.8 4.1 3.8 3.5 3.1 

(10 x 4 x 3) 3.55 (18) 2.92 (23) 2.53 (29) 2.65 (23) 3.11 (22)  2.8 4.2 3.8 3.5 3.1 

(10 x 5 x 2) 4.51 (12) 4.64 (12) 5.09 (15) 3.35 (16) 4.34 (14)  2.9 4.2 3.8 3.5 3.1 

(10 x 5 x 3) 3.92 (12) 2.47 (23) 3.01 (19) 3.44 (17) 3.57 (14)  2.9 4.2 3.8 3.5 3.18 

g_ave 
3.61 

(16.8) 

2.44 

(24.75) 

2.37 

(24.81) 

2.65 

(24.23) 

3.20 

(19.62) 

 
2.6 3.5 3.2 2.9 3.8 

Obtained results show all the proposed metaheuristics are able to achieve a high level of 

performance in terms of both quality of solution and computational time. HGA25 seems to be 

very effective if compared with the other algorithms, although the difference of performance 

appears to be very narrow. In order to infer some statistical conclusion about the 

aforementioned difference of performance, a proper ANOVA analysis has been performed. 

Figure 2.6 reports the means plot with LSD intervals ( = 0.05) obtained through Design-

Expert® 7.0 platform. 

 

Figure 2.6. Means plot and LSD intervals for small instances 
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The graph shows how MGA, HGA25 and HGA50 significantly outperform PGA and HGA75 

under a statistical viewpoint, as LSD intervals of the winner algorithms are not overlapped 

with those of the looser ones. Nevertheless, ANOVA results do not allow drawing any 

conclusion with regards to the difference among the three best performing metaheuristics. 

However, this is an expected outcome due to the small size of problems addressed by the 

optimization procedures. Larger-sized problems surely may highlight a significant 

performance difference among the genetic algorithms under examination. 

Large instances comparison analysis 

In this subsection a comparison among the proposed metaheuristics has been performed on the 

basis of an extended benchmark of larger-sized problems. Conforming to the calibration 

benchmark dealt with in Section 2.5, seven scenario problems depending on the number of 

jobs (n = 20, 40, 60 , 80, 100, 150, 200) to be scheduled have been arranged. Each scenario 

problem includes four classes of problem at varying number of machines (m = 10, 12, 16, 20). 

As far as the number of worker is concerned, it was varied according to three levels per each 

class of problems (w = 6, 8, 10). Since ten randomly generated instances have been provided 

for class of problems and 5 replications with different random seeds have been arranged for 

each instance, a total amount of 840 x 5 = 4,200 runs have been taken into account for the 

proposed comparison analysis. Both job and worker descriptors, e.g. processing times and 

setup times for each machine, have been randomly generated according to the same criteria 

discussed in Section 2.5. Due to the size of the problems included within this benchmark, 

MILP cannot achieve any global optimum. The Relative Percentage Deviation (see eq. 2.24) 

has been taken into account as performance indicator for the comparison in hand, the only 

difference being that BESTsol is the best solution among those obtained by the proposed 

metaheuristics for each instance. Table 2.7 reports the average RPD numerical results for each 

class of problems along with the related CPU time average percentage deviation with respect 

to PGA ( CPU%PGA). Each row encompasses the averages results of 50 different runs (i.e., 10 

instances replicated 5 times). Last row shows the grand average of both RPD and CPU%PGA 

over the entire set of investigated instances. 
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Table 2.7. Average performances of GAs on large-sized instances 

 

Problem 
(n x m x w) 

 Average RPD  Average CPU%PGA 
 PGA MGA HGA25 HGA50 HGA75  MGA HGA25 HGA50 HGA75 

(20 x 10 x 6)  4.56 4.37 2.82 3.24 3.80  40% 28% 19% 8% 

(20 x 10 x 8)  
3.87 3.14 3.15 3.63 3.13  38% 27% 18% 8% 

(20 x 10 x 10)  
1.81 3.47 2.05 1.79 1.95  36% 26% 18% 6% 

(20 x 12 x 6) 
 

3.01 2.83 2.35 1.71 2.70  38% 27% 18% 7% 

(20 x 12 x 8) 
 

2.38 3.87 2.74 1.60 2.21  36% 26% 17% 7% 

(20 x 12 x 10) 
 

2.24 2.07 1.54 1.76 1.89  34% 25% 17% 8% 

(20 x 16 x 6) 
 

1.72 4.13 1.94 2.16 1.51  35% 25% 18% 8% 

(20 x 16 x 8) 
 

2.07 2.09 1.31 2.00 1.74  33% 24% 16% 8% 

(20 x 16 x 10) 
 

2.66 2.63 2.57 3.80 2.38  31% 23% 15% 7% 

(20 x 20 x 6) 
 

2.22 3.76 2.23 1.75 1.76  33% 24% 16% 7% 

(20 x 20 x 8) 
 

1.96 1.59 1.47 2.91 1.63  31% 22% 15% 6% 

(20 x 20 x 10) 
 

2.47 1.74 1.74 1.76 2.83  29% 21% 14% 6% 

(40 x 10 x 6)  
5.58 7.34 4.31 5.66 5.61  42% 30% 20% 9% 

(40 x 10 x 8)  
6.19 5.77 4.70 3.99 5.19  40% 28% 19% 9% 

(40 x 10 x 10)  
4.54 5.60 3.37 5.74 4.64  38% 27% 19% 8% 

(40 x 12 x 6) 
 

6.60 2.74 5.71 5.33 6.11  39% 27% 19% 8% 

(40 x 12 x 8) 
 

5.30 6.16 4.39 5.22 5.22  37% 26% 19% 8% 

(40 x 12 x 10) 
 

5.54 3.79 4.45 4.58 5.16  36% 25% 17% 8% 

(40 x 16 x 6) 
 

5.02 8.22 4.23 4.57 3.72  36% 25% 18% 8% 

(40 x 16 x 8) 
 

5.42 5.31 5.18 5.36 4.38  34% 24% 17% 7% 

(40 x 16 x 10) 
 

3.47 5.10 3.06 2.91 2.79  32% 22% 16% 7% 

(40 x 20 x 6) 
 

5.39 4.24 4.93 5.00 5.30  34% 24% 16% 7% 

(40 x 20 x 8) 
 

6.67 2.86 4.09 4.88 6.09  31% 22% 15% 7% 

(40 x 20 x 10) 
 

5.33 3.11 4.94 5.77 4.61  29% 21% 14% 6% 

(60 x 10 x 6)  
4.48 4.63 3.33 3.02 4.35  42% 29% 20% 9% 

(60 x 10 x 8)  
5.61 4.96 2.79 3.60 5.52  40% 28% 20% 8% 

(60 x 10 x 10)  
3.68 6.05 2.77 2.75 3.42  37% 26% 18% 8% 

(60 x 12 x 6) 
 

3.78 2.93 3.46 4.36 3.45  40% 27% 19% 9% 

(60 x 12 x 8) 
 

4.50 3.02 4.94 3.79 4.93  37% 26% 19% 8% 

(60 x 12 x 10) 
 

4.25 4.82 3.83 3.43 3.90  36% 25% 17% 8% 

(60 x 16 x 6) 
 

5.68 5.16 5.85 5.93 5.00  36% 25% 17% 7% 

(60 x 16 x 8) 
 

3.56 4.35 2.88 3.08 4.00  34% 23% 17% 8% 

(60 x 16 x 10) 
 

4.27 7.27 4.08 3.75 3.42  33% 23% 16% 8% 

(60 x 20 x 6) 
 

4.85 6.75 3.18 4.56 4.14  35% 23% 16% 8% 
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Table 2.7. (continued) 

Problem 
(n x m x w) 

 Average RPD  Average CPU%PGA 

 PGA MGA HGA25 HGA50 HGA75  MGA HGA25 HGA50 HGA75 

(60 x 20 x 8) 
 

4.69 5.21 3.85 4.96 4.38  31% 21% 15% 7% 

(60 x 20 x 10) 
 

4.42 4.79 3.75 4.11 4.28  30% 21% 15% 8% 

(80 x 10 x 6)  
3.87 2.75 3.62 2.92 3.57  43% 29% 20% 10% 

(80 x 10 x 8)  
4.61 4.71 2.96 4.52 3.01  41% 28% 19% 9% 

(80 x 10 x 10)  
4.33 4.20 2.83 3.88 3.69  39% 27% 19% 9% 

(80 x 12 x 6) 
 

4.43 3.03 3.84 3.87 3.49  41% 27% 19% 9% 

(80 x 12 x 8) 
 

4.93 3.40 3.70 4.18 5.10  38% 25% 18% 9% 

(80 x 12 x 10) 
 

4.09 3.32 2.10 3.08 4.32  36% 25% 18% 9% 

(80 x 16 x 6) 
 

6.44 4.25 3.69 3.73 5.71  36% 25% 18% 8% 

(80 x 16 x 8) 
 

4.71 4.59 4.28 3.08 3.98  34% 24% 16% 8% 

(80 x 16 x 10) 
 

4.48 2.97 2.72 4.05 4.51  32% 22% 15% 8% 

(80 x 20 x 6) 
 

3.72 4.64 3.99 3.91 3.09  34% 24% 17% 9% 

(80 x 20 x 8) 
 

3.62 3.38 2.85 3.18 2.75  31% 22% 15% 8% 

(80 x 20 x 10) 
 

3.33 3.46 2.76 2.88 3.27  29% 19% 14% 8% 

(100 x 10 x 6)  
3.11 3.11 3.42 2.40 3.18  44% 30% 22% 10% 

(100 x 10 x 8)  
3.00 2.84 2.65 2.49 2.76  43% 29% 21% 10% 

(100 x 10 x 10)  
3.12 2.23 2.27 2.25 3.00  40% 26% 20% 10% 

(100 x 12 x 6) 
 

3.59 3.81 3.02 2.62 3.78  43% 27% 20% 9% 

(100 x 12 x 8) 
 

3.68 3.62 2.21 2.50 3.23  39% 25% 18% 9% 

(100 x 12 x 10) 
 

3.62 3.65 3.03 3.23 2.82  37% 24% 17% 9% 

(100 x 16 x 6) 
 

4.03 2.94 3.26 3.75 3.51  37% 24% 18% 8% 

(100 x 16 x 8) 
 

4.13 2.43 3.46 3.26 4.04  34% 23% 17% 8% 

(100 x 16 x 10) 
 

3.77 3.61 2.93 3.13 3.02  32% 22% 15% 8% 

(100 x 20 x 6) 
 

3.59 2.98 3.68 3.67 3.72  33% 23% 16% 8% 

(100 x 20 x 8) 
 

3.42 5.17 2.54 3.25 3.01  30% 21% 16% 8% 

(100 x 20 x 10) 
 

4.37 3.42 3.26 2.99 3.90  28% 20% 15% 9% 

(150 x 10 x 6)  
1.94 2.45 2.13 1.27 1.75  41% 28% 20% 10% 

(150 x 10 x 8)  
2.76 2.65 1.40 1.85 2.75  38% 25% 18% 10% 

(150 x 10 x 10)  
2.42 3.38 1.58 2.75 2.45  34% 22% 16% 8% 

(150 x 12 x 6) 
 

2.42 3.04 1.70 2.32 2.61  36% 25% 18% 9% 

(150 x 12 x 8) 
 

2.49 2.92 2.36 1.67 2.20  32% 23% 17% 9% 

(150 x 12 x 10) 
 

2.26 2.53 1.62 1.86 1.69  30% 22% 16% 9% 

(150 x 16 x 6) 
 

2.75 4.17 2.29 2.31 2.38  32% 22% 16% 9% 

(150 x 16 x 8) 
 

2.46 3.22 2.18 1.45 2.19  29% 21% 16% 10% 
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Table 2.7. (continued) 

Problem 
(n x m x w) 

 Average RPD  Average CPU%PGA 

 PGA MGA HGA25 HGA50 HGA75  MGA HGA25 HGA50 HGA75 

(150 x 16 x 10) 
 

2.50 3.14 1.61 1.50 1.89  26% 18% 14% 8% 

(150 x 20 x 6) 
 

3.48 3.03 2.67 2.94 3.09  28% 19% 14% 8% 

(150 x 20 x 8) 
 

2.35 3.07 1.64 1.50 1.77  23% 16% 12% 7% 

(150 x 20 x 10) 
 

2.11 3.38 2.53 1.97 2.29  21% 15% 11% 7% 

(200 x 10 x 6)  
1.72 1.68 1.70 1.40 1.58  43% 27% 20% 11% 

(200 x 10 x 8)  
2.37 1.96 2.16 1.78 2.15  36% 24% 18% 9% 

(200 x 10 x 10)  
2.20 2.58 0.98 1.65 2.04  33% 22% 17% 9% 

(200 x 12 x 6) 
 

1.94 2.18 1.70 0.98 1.78  36% 25% 19% 10% 

(200 x 12 x 8) 
 

1.73 1.22 1.60 1.96 1.54  31% 22% 17% 8% 

(200 x 12 x 10) 
 

1.68 1.73 1.39 1.33 1.95  29% 20% 15% 9% 

(200 x 16 x 6) 
 

2.50 2.14 2.07 2.19 1.80  30% 21% 16% 9% 

(200 x 16 x 8) 
 

2.05 2.67 1.79 1.76 1.84  26% 19% 14% 8% 

(200 x 16 x 10) 
 

2.55 2.50 2.11 1.96 2.34  24% 17% 13% 7% 

(200 x 20 x 6) 
 

2.14 2.35 1.50 1.61 1.64  27% 19% 15% 8% 

(200 x 20 x 8) 
 

1.74 2.85 1.39 1.47 1.91  22% 17% 13% 7% 

(200 x 20 x 10)  
1.91 2.54 1.34 1.94 2.07  22% 17% 11% 5% 

g_ave  3.57 3.62 2.89 3.06 3.25  34% 24% 17% 8% 

HGA25 outperforms on the average the other competitors for optimizing the proposed 

sequencing/allocation problem. This time, the advantage of using a hybrid approach clearly 

emerges, as all the three HGAs outperform both PGA and MGA. Of course PGA remains the 

best method under the computational time viewpoint because of the basic encoding scheme it 

adopts; however, average CPU times required by all other metaheuristics remain acceptable, 

especially in view of the complexity of problems solved. Figure 2.7 reports the means plot 

with confidence level LSD intervals. 
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Figure 2.7. Means plot and LSD intervals for the large instances campaign. 

 
Differently from the analysis concerning the small-sized scenario problems, it can be seen how 

the difference between HGA25 and other algorithms is statistically significant. MGA 

performance sensibly decreases if compared with the small-sized instances case, and gets even 

worse than those obtained by PGA.  

Without loss of generality, Figure 2.7 shows as all the three versions of HGA significantly 

outperform the two single encoding-based GAs (i.e. PGA and MGA). The reason for such an 

outcome can be explained if the differences among exploration and exploitation power of the 

proposed approaches are considered. 

The encoding scheme employed by PGA generates a high exploration pressure. In fact, since 

job sequencing and assignment policies of jobs to machines and workers are all driven by the 

same permutation string, every chromosome modification introduced by crossover or mutation 

operators generates substantial changes in individuals. As a consequence, the search process if 

often pushed towards new areas of the solution space. On the other hand, the multi-encoding 

scheme adopted by MGA allows a higher exploitation power. In fact, whenever mutation or 

crossover operators are applied, new solutions may be generated by singularly changing the 

sequence of jobs, or the assignment of jobs to machines, or the allocation of workers to setup 

operations. Thus, the ability of visiting new solutions in the immediate neighborhood of the 

previously generated ones gets considerably higher, at the point of being excessive for coping 
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with large-sized instances, where an extensive search over different regions of the search 

space is required. The hybrid approach employed by HGA allows to fairly combine 

exploration and exploitation power, following the principle that the exploration process should 

be performed first in order to discover the potential search zones, then exploitation should 

fine-tune in order to reach a valid final solution. The 25% encoding switch threshold seems to 

be the one that provides the best balance between the two phases. 

2.7 How the multi skilled workforce affects productivity 

The aim of this section is to assess the way the difference of technical skills among workers 

may influence the performance of the unrelated parallel machine production system under 

investigation. To this end, the results obtained by the best optimization algorithm among those 

tested, i.e. HGA25, have been selected for a further step of analysis. The benchmark employed 

for evaluating the performances of such metaheuristic involved a set of instances wherein the 

skill level of each worker was assumed to randomly range between 0.5 and 1.5. Such 

configuration will be hereinafter denoted as the Multi Skill (MS) scenario. 

In order to highlight the effect of the non-homogeneous workforce on the makespan 

minimization objective, the following three further configurations, each one featured by 

workers having identical skill levels, have been taken into account: 

- High Skill scenario (HS): each worker k has skill level k = 0.5; 

- Average Skill scenario (AS): each worker k has skill level k = 1; 

- Low Skill scenario (LS): each worker k has skill level k = 1.5;. 

For each one of the 840 large-sized instances generated within the reference benchmark, three 

more variants have thus been created, the only difference being in the matrix of setup times, 

generated according to the skill level pertaining to each scenario, respectively. Small sized 

instances have not been taken into account, as the effect of workforce teams having different 

skill levels is negligible in such kind of test cases, due to the short number of setup operations 

required. 

Each new instance has been solved 5 times by HGA25 optimization procedure. Since the three 

new scenarios do not involve multi skilled human resources, the substring driving the 
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assignment of jobs to workers has been removed from the encoding scheme of the 

metaheuristic. A simple “first available worker” rule has been coded for selecting the operator 

to be assigned to each setup operation. 

The average makespan values obtained for HS, AS, LS and MS scenarios are reported in 

Table 2.8, along with the relative percentage increment of completion times calculated for AS, 

LS and MS configurations with respect to the high skill scenario ( Cmax%HS). 

Table 2.8. Average performances of HGA25 at varying of workforce scenarios. 
 

Problem 
(n x m x w) 

 Average makespan  Average Cmax%HS 
 HS AS LS MS  AS LS MS 

(20 x 10 x 6)  63.46 85.52 104.78 78.16  34.9% 65.6% 23.3% 

(20 x 10 x 8)  62.4 84.62 102.12 75.32  35.8% 64.0% 20.9% 

(20 x 10 x 10)  65.38 86.94 103.7 74.74  33.2% 59.4% 14.6% 

(20 x 12 x 6) 
 56.2 75.56 92.72 67.56  34.9% 65.5% 20.2% 

(20 x 12 x 8) 
 55.76 73.16 90.82 67.24  31.8% 64.0% 21.0% 

(20 x 12 x 10) 
 54.58 72.54 89.98 64.72  33.5% 65.9% 19.2% 

(20 x 16 x 6) 
 47.52 65.16 80.12 58.3  37.3% 69.2% 23.1% 

(20 x 16 x 8) 
 45.74 61.24 73.84 53.7  34.9% 63.0% 18.1% 

(20 x 16 x 10) 
 43.7 59.52 73.64 54.18  36.9% 69.7% 24.6% 

(20 x 20 x 6) 
 42.78 58.08 73.2 53.1  36.2% 72.3% 25.2% 

(20 x 20 x 8) 
 39.42 54.82 67.3 49.06  39.9% 72.5% 24.8% 

(20 x 20 x 10) 
 42.36 57.12 68.62 48.94  35.6% 63.1% 16.3% 

(40 x 10 x 6)  120.98 164.9 203.3 151.52  36.9% 68.7% 25.8% 

(40 x 10 x 8)  114.96 158.28 189.32 139.94  37.9% 65.2% 22.1% 

(40 x 10 x 10)  115.9 154.64 191.2 137.18  33.7% 65.4% 18.8% 

(40 x 12 x 6) 
 100.76 135.74 166.64 128.46  35.3% 66.5% 28.5% 

(40 x 12 x 8) 
 94.22 127.2 156.78 114.3  35.3% 66.9% 21.5% 

(40 x 12 x 10) 
 90.78 124.8 151.7 111.98  37.7% 67.9% 23.8% 

(40 x 16 x 6) 
 77.4 103.82 131.1 101.78  34.3% 69.6% 31.8% 

(40 x 16 x 8) 
 68.3 93.86 116.96 90.06  37.7% 71.5% 32.1% 

(40 x 16 x 10) 
 67.82 94.62 112.54 83.68  40.1% 66.5% 23.5% 

(40 x 20 x 6) 
 65.86 91.3 115.42 85.42  39.0% 75.6% 30.1% 

(40 x 20 x 8) 
 57.4 78.98 99.2 76.28  38.0% 73.5% 33.6% 

(40 x 20 x 10) 
 55.72 75.36 92.94 71.64  35.7% 67.1% 28.6% 

(60 x 10 x 6)  187.28 259.7 323.4 236.94  39.0% 73.2% 26.8% 

(60 x 10 x 8)  179.2 245.76 297.18 219.14  37.4% 66.2% 22.5% 
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Table 2.8. (continued) 

Problem 
(n x m x w) 

 Average makespan  Average Cmax%HS 

 HS AS LS MS  HS AS LS 

(60 x 10 x 10)  177.44 242.94 297.04 212.22  37.1% 67.6% 19.6% 

(60 x 12 x 6) 
 155.54 213.54 266.44 197.74  37.5% 71.6% 27.4% 

(60 x 12 x 8) 
 142.06 196.8 240.14 183.9  38.8% 69.4% 29.7% 

(60 x 12 x 10) 
 139.7 190.94 235.48 172.38  37.0% 68.9% 23.6% 

(60 x 16 x 6) 
 116.72 163.12 197.24 151.7  40.1% 69.7% 30.4% 

(60 x 16 x 8) 
 104.3 143.68 179.5 137.32  37.9% 72.5% 31.9% 

(60 x 16 x 10) 
 96.56 135.94 166.92 125.12  41.0% 73.4% 29.9% 

(60 x 20 x 6) 
 96.9 135.42 166.9 124.64  40.2% 72.8% 28.8% 

(60 x 20 x 8) 
 85.54 116.98 147.42 114.48  37.0% 72.6% 34.0% 

(60 x 20 x 10) 
 79.02 111.6 137 103.88  41.5% 73.7% 31.7% 

(80 x 10 x 6)  252 354.04 434.78 337.14  40.7% 72.8% 33.9% 

(80 x 10 x 8)  240.16 326.56 404.2 296.38  36.3% 68.7% 23.5% 

(80 x 10 x 10)  238.76 327.72 401.86 292.08  37.6% 68.7% 22.7% 

(80 x 12 x 6) 
 209.12 292.2 362.18 268.72  39.9% 73.4% 28.7% 

(80 x 12 x 8) 
 191.5 264.12 327.24 247.66  38.1% 71.1% 29.5% 

(80 x 12 x 10) 
 189.26 260.5 318.4 235.7  37.8% 68.5% 24.7% 

(80 x 16 x 6) 
 160.24 223.14 276 216.1  39.4% 72.4% 34.9% 

(80 x 16 x 8) 
 140.08 196.18 242.66 184.36  40.3% 73.6% 31.9% 

(80 x 16 x 10) 
 133.1 184.76 227.88 168.1  39.0% 71.5% 26.5% 

(80 x 20 x 6) 
 131.82 183.22 230.06 176.18  39.4% 75.0% 34.1% 

(80 x 20 x 8) 
 115.68 160.08 201.28 151.08  38.6% 74.3% 30.7% 

(80 x 20 x 10) 
 106.9 147.88 183.56 135.3  38.6% 72.2% 26.8% 

(100 x 10 x 6)  320.92 447.42 551.2 422.5  39.5% 71.9% 31.8% 

(100 x 10 x 8)  304.68 423.18 520.92 392.04  39.1% 71.2% 28.9% 

(100 x 10 x10)  308.66 420.36 511.48 374.62  36.3% 65.9% 21.5% 

(100 x 12 x 6) 
 269.58 375.48 464.26 344.12  39.4% 72.3% 27.7% 

(100 x 12 x 8) 
 242.44 341.62 415.04 306.72  41.0% 71.4% 26.7% 

(100 x 12 x10) 
 236.24 331.44 401.34 297.04  40.4% 70.0% 26.0% 

(100 x 16 x 6) 
 205.74 289.54 353.36 276.72  40.9% 71.9% 34.7% 

(100 x 16 x 8) 
 178.76 248.62 307.66 234.06  39.2% 72.3% 31.0% 

(100 x 16 x10) 
 165.88 231.34 285.66 213.38  39.6% 72.3% 28.7% 

(100 x 20 x 6) 
 169.5 241.74 300.28 235.98  42.8% 77.4% 39.4% 

(100 x 20 x 8) 
 144.78 203.72 253.46 192.36  40.9% 75.3% 33.0% 

(100 x 20 x10) 
 131.34 184.408

2 
229.68 171.6  38.0% 75.0% 30.8% 
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Table 2.8. (continued) 

Problem 
(n x m x w) 

 Average makespan  Average Cmax%HS 

 HS AS LS MS  HS AS LS 

(150 x 10 x 6)  495.34 689.68 856.18 647.12  39.3% 73.0% 30.7% 

(150 x 10 x 8)  469.94 648.96 807.64 599.56  38.2% 72.0% 27.7% 

(150 x 10 x10)  465.44 639.4 790.16 572.36  37.5% 69.9% 23.0% 

(150 x 12 x 6) 
 407.22 571.48 711.84 531.6  40.5% 75.0% 30.7% 

(150 x 12 x 8) 
 369.72 518.56 640.4 477.94  40.3% 73.3% 29.3% 

(150 x 12 x10) 
 363.44 506.78 615.74 454  39.5% 69.5% 25.0% 

(150 x 16 x 6) 
 314.2 438.9 548.7 413.24  39.8% 74.8% 31.7% 

(150 x 16 x 8) 
 273.44 381.78 469.82 360.4  39.7% 72.0% 31.9% 

(150 x 16 x10) 
 251.94 350.16 435.04 319.44  39.1% 72.8% 26.8% 

(150 x 20 x 6) 
 265.12 366.64 461.52 351.54  38.4% 74.2% 32.7% 

(150 x 20 x 8) 
 222.94 311.06 390.02 298.96  39.6% 75.0% 34.1% 

(150 x 20 x10) 
 198.3 277.56 345.88 258.04  40.0% 74.5% 30.2% 

(200 x 10 x 6)  666.48 935.04 1152.72 862.58  40.3% 73.0% 29.5% 

(200 x 10 x 8)  636.34 883.04 1084.52 807.34  38.9% 70.6% 26.9% 

(200 x 10 x10)  630.58 873.98 1073.8 778.6  38.7% 70.4% 23.5% 

(200 x 12 x 6) 
 554.42 784.5 966.68 729.9  41.5% 74.5% 31.7% 

(200 x 12 x 8) 
 500.7 703.7 872.02 637.46  40.6% 74.3% 27.4% 

(200 x 12 x10) 
 487.76 680.3 833.1 618.98  39.5% 70.8% 26.9% 

(200 x 16 x 6) 
 431.56 607.48 753.12 559.34  40.8% 74.6% 29.7% 

(200 x 16 x 8) 
 366.78 515.7 634.38 477.58  40.7% 73.1% 30.3% 

(200 x 16 x10) 
 339.22 473.58 585.82 431.62  39.7% 72.8% 27.2% 

(200 x 20 x 6) 
 360.78 505.88 630 471.58  40.3% 74.7% 30.8% 

(200 x 20 x 8) 
 300.68 420.12 522.52 404.52  39.8% 73.9% 34.6% 

(200 x 20 x 10)  268.52 373.54 465.26 349.56  39.2% 73.4% 30.2% 

g_ave  190.80 264.07 325.70 243.89  37.4% 69.5% 27.2% 

A trivial remark concerning the effect of workforce teams having different skill levels over the 

performances of the production system is that the HS scenario yields the lowest average 

makespan values for each class of problems. On the other hand, LS configuration 

systematically provides the highest completion times. A more significant conclusion can be 

drawn from comparing AS and MS scenarios. The multi skilled configuration involves teams 

of workers whose skill levels are randomly extracted from the range {0.5; 0.75; 1; 1.25; 1.5}. 

Thus, the average skill level of workforce teams generated for each problem is expected to be 
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approximately equal to 1. As the reader can notice, results obtained by the MS scenario always 

outperform those provided by the AS configuration, which entails workforce teams with the 

same average skill level, but does not assume any difference among technical abilities 

featuring each operator. This outcome is visually presented in Figure 2.8, which reports the 

average makespan value for each scenario as the number of jobs changes. 

 

Figure 2.8. Average makespan vs. number of jobs at varying of workforce scenarios 

The reason for such an effect lies in the fact that the optimization strategy embedded within the 

proposed metaheuristic procedure allows to reach a fair balance between the workload assigned to each 

operator and his own technical abilities. As a consequence, the most experienced workers are 

committed in performing the majority of setup operations, and this eventually leads to a substantial 

improvement of performances compared with the homogeneous workforce scenario. In conclusion, the 

impact of a multi skilled workforce on the unrelated parallel machine system under investigation may 

be significantly positive if a proper strategy for optimally managing human resources is adopted. 
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Chapter 3 

The flow shop sequence dependent group scheduling 

problem with skilled workforce assignment 

 

3.1 Preliminaries 

Flow Shop Group Scheduling (FSGS) problems have attracted several researchers due to their 

frequent industrial implications. Similarly to classical flow shop manufacturing environments, 

FSGS systems  are made of serial machines that have to be visited by all jobs following the 

same pre-determined path. Moreover, FSGS models entail Group Technology (GT) 

manufacturing principles, according to which the total set of jobs may be divided into different 

subsets, called families or groups, wherein each set of jobs have similar technological 

requirements in terms of tooling and setups. Since different groups of jobs need different 

tooling, a setup is often necessary whenever a job of a new group has to be produced. If such 

setup time depends on the technological features of the previously processed group, the issue 

may be classified as a Flow Shop Sequence-Dependent Group Scheduling (FSDGS) problem. 

As jobs belonging to the same group have the same technological requirements, setup times 

from one part to another are often negligible, as in this study. On the other hand, since there 

exists a major setup change between part families, there is an advantage to process together 

parts belonging to the same group. This is the key difference between the flow shop group 

scheduling model and regular flow shops. Nevertheless, FSGS problems still are permutation 

scheduling issues, as each feasible solution may be described as a simple sequence of jobs 

passing through each machine belonging to the shop floor. 

As far as group technology is concerned, production planning involves short-term operational 

decisions which entail both job sequencing within each group and group sequencing, in order 

to achieve a specific goal fixed by the company’s management. Though it is well-known as 

production scheduling based on job sequencing constitutes a driver towards cost saving and 

productivity growth as well, workforce management in terms of worker allocation to machines 
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may represent a further competitive leverage for manufacturing companies. In fact, whether 

job setup times are sequence-dependent, and setup operations must be performed by human 

resources having different skills, the worker allocation issue strongly may influence both the 

performance of the overall production system and the resources exploitation along the 

provided planning horizon.  

Typical examples of manufacturing environments where human resource is critical for the set-

up activities are the flexible manufacturing cells, where mechanical parts (hereinafter called 

jobs) are produced by CNC work centres: jobs to be processed are grouped into families due 

their similarity, (e.g. same/similar morphology, same/similar technological features), so that 

those jobs have to visit the working machines in the same order. Setup time of a single job is 

negligible, but setup time of a group may be significant and depends on the technological 

requirements of the previously processed group, i.e. setup times among groups are sequence-

dependent. In addition, as mentioned before, each worker assigned to a machine, (according to 

his specific skills) manually performs the setup operations required by a given group of jobs 

(e.g. job fixing on the pallet, tool path and machining parameters programming). The 

completion time of a given job within a given machine arises from the sum of a fixed 

processing time and a variable setup time. Job setup time depends on the order of the groups 

and on the ability of the worker performing the set-up of those groups. Decision problems to 

be faced are: sequencing of jobs within each group, sequencing of groups and assignment of 

each worker with specific skills to a given machine. 

It is worth noting as both flow shop and workforce assignment problems separately have been 

studied by literature so far, also due to the high level of complexity characterizing the mixed 

problem.  

Both FSGS and FSDGS problems have been extensively dealt with in the recent literature, as 

confirmed by the reviews performed by Allahverdi, Gupta and Aldowaisian (1999), Cheng, 

Gupta and Wang (2000), and Zhu and Wilhelm (2006), respectively. Schaller, Gupta and 

Vakharia (2000) proposed a heuristic algorithm and a lower bound aiming to test the 

efficiency of their procedure. França, Gupta, Mendes, Moscato and Veltink (2005) developed 

a Genetic Algorithm (GA) and a Memetic Algorithm (MA) to solve the FSDGS problem; they 

also emphasized the performance of their optimization techniques with respect to the 

heuristics proposed by Schaller, Gupta and Vakharia (2000). Hendizadeh, Faramarzi, 
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Mansouri, Gupta and Elmekkawy (2008) and Salmasi and Logedran (2008), proposed a 

metaheuristic algorithm based on a Tabu Search (TS) optimization procedure. Celano, Costa 

and Fichera (2010) developed an evolutionary algorithm to solve a real group scheduling 

problem which pertains to the inspection department of a semiconductors company; the issue 

was handled as a permutation flow shop group scheduling problem with sequence-dependent 

setup times and limited inter-operational buffer capacity. Salmasi, Logendran and Skandari 

(2010) studied a FSDGS problem by proposing a MILP formulation and two metaheuristic 

procedures, namely a TS and a Hybrid Ant Colony Optimization (HACO) algorithm, which 

were compared over an extensive benchmark of test cases. Obtained results revealed the 

superiority of the latter procedure with respect to the total flow time minimization objective. 

One year later, Salmasi, Logendran and Skandari (2011) adopted the HACO approach for 

minimizing makespan in a similar production environment; such algorithm was also taken as 

reference by Hajinejad, Salmasi and Mokhtari (2011) who succeeded in getting superior 

performances through the use of a fast hybrid Particle Swarm Optimization (PSO) algorithm. 

Finally, Naderi and Salmasi (2012) proposed a comprehensive study regarding the 

employment of different MILP modelling techniques to cope with the FSDGS issue; their best 

performing mathematical model revealed its effectiveness in tackling problems up to 10 

groups and almost 60 jobs in total. 

With reference to the impact of human workers on the global performances of a production 

system, it can be noticed that the study of such a field is establishing a new trend in both 

operational and production research. Nevertheless, a wide literature addressed this kind of 

issue for a lot of years. A pioneer research was carried out by Hunter (1986) who proposed a 

model to measure worker ability in learning and obtaining information from the process. This 

model allows a classification of the workers on the basis of individual differences, called 

skills, and evaluates the potential of cross-training and productivity. Fitzpatrick, Askin and 

Ronald (2005) presented a mathematical model that exploits labour skill pools for arranging 

any team of workers; performance of such a team depends on individual behaviours and 

interpersonal interactions of workers as well as on their technical competences. Lodree, 

Christofer, Geiger and Xiaochun (2009) presented a survey on the human factor literature and 

constructed a framework for scheduling human tasks accounting for physical and/or cognitive 

human characteristics and behaviours; workers were characterised by specific skills and 
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assigned to tasks or to teams. Askin and Huang (2001) proposed a heuristic algorithm to solve 

the team formation and worker assignment problem minimising a multi-objective model 

consisting of training costs, the requirements of the task and the team synergy. Norman, 

Tharmmaphornphilas, Lascola Needy, Bidanda, Colosimo Warner and Worker (2002) 

proposed a mathematical model to assign each operation to each worker and to quantify the 

amount of training each worker should receive for enhancing his skill level for each ability. As 

far as profit maximization is concerned, McDonald, Ellis, Van Aken and Koelling (2009) 

developed a model that assigns workers to tasks within a lean manufacturing cell, thus 

minimizing the net present cost. In determining how to assign workers to tasks, the model 

matches production requirements with customer demand, skill level required by tasks, quality 

levels based on skill levels and job rotation to retain skills for a cross-trained workforce. In a 

labour intensive context like service centres where task scheduling and workforce assignment 

play a key role for increasing their efficiency, this kind of problem is denoted as the Skilled 

Workforce Project Scheduling (SWPS) problem and entails constraints on task times and 

variable task durations, depending on the worker efficiency. Valls, Perez and Quintanilla 

(2009) proposed a hybrid genetic algorithm to obtain a feasible scheduling plan and a balanced 

and efficient assignment of workforce to tasks for a SWPS problem. Corominas, Olivella and 

Pastor (2010) considered the problem of assigning and scheduling a set of tasks to a set of 

workers, according to which worker’s performance for a given task depends on the worker 

experience.  

Solving problems that mix both scheduling and planning is a tricky challenge as described by 

Perron (2010) who tried to solve the following problem: assembling teams of skilled workers 

to perform jobs that require these skills, breaking up these teams and then assembling new 

ones to perform more jobs. However, the joint problem involving both job sequencing and 

assignment of a set of workers with different skills to machines has not been discussed by the 

body of literature so far 

In this chapter, a m-machines, n-jobs flow shop is considered as the reference scheduling 

problem: different numbers of jobs are grouped into families accordingly to group technology 

principles and set-up time of each group is both sequence and human-skill dependent. The 

objective is to minimize the completion time of the last job of the last scheduled group on the 

last machine, i.e. the makespan. Thus, the optimization problem can be stated as minimizing 
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the makespan by selecting the optimal sequence of both jobs within groups and groups each 

other and by finding the most efficient assignment of the skilled workers to each machine. 

Once a worker is assigned to a machine he will work there for the overall set of groups/jobs to 

be performed. The problem in hand may be defined as a flow shop sequence-dependent group 

scheduling problem with Skilled Workforce Assignment (SWA). 

To the best of our knowledge, the integration of FSDGS and SWA has never been studied by 

literature; thus, this chapter has multiple goals: formalizing a mathematical model for the joint 

problem (FSDGS-SWA); evaluating a set of optimization strategies by comparing them over a 

well-known benchmark arisen from literature; assessing the effectiveness of the best-

performing method against a reference algorithm developed in the field of classical FSDGS 

problems. Finally, as different skills may affect both productivity and manpower cost, an 

extensive analysis concerning the trade-off between manpower cost and makespan 

improvement has been developed in order to chart the guidelines a decision maker should 

follow for identifying the best configuration of workforce to be employed in a serial 

production system. 

The remainder of the chpater is organized as follows: Section 3.2 presents the mixed integer 

linear programming mathematical model for the proposed FSDGS-SWA problem. Section 3.3 

shows the structure and the adopted operators of three proposed Genetic Algorithms, 

characterized by different ways to run the sequencing and the worker allocation problem, 

properly developed for the problem in hand. Section 3.4 reports the results of an extensive 

comparison among the three GAs carried over a reference benchmark arisen from literature. In 

Section 3.5 the best heuristic procedure among those proposed is tested against a well-

performing algorithm recently presented with reference to classical FSDGS problems. Finally, 

Section 3.6  shows how workforce skills may affect the productivity of a serial production 

system like a flow shop and illustrates the guidelines for selecting the best trade-off between 

makespan reduction and manpower skill upgrade cost. 

3.2 The FSDGS-SWA mathematical model 

The proposed mathematical model integrates multi-skilled workforce assignment with the 

flow shop sequence-dependent group scheduling problem by means of a Mixed Integer Linear 

Programming (MILP) approach. According to the formalization proposed in Pinedo (2012), 
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this problem can be denoted as Fm|fmls, Sigh, prmu|Cmax, where Fm indicates a flow-shop with 

m machines in series, fmls indicates that the jobs are assigned to different groups (or families), 

Sigh means that setup times of groups are machine and sequence-dependent, i.e., that setup 

time of group h on machine i depends on the preceding group g, prmu refers to a permutation 

type process (that is, all jobs and groups are processed by respecting the same order on each 

machine), while Cmax, i.e., the makespan, is the objective to be minimized.  

Workers are required to manually perform setup operations on each group of jobs to be 

processed on each machine. An anticipatory setup is allowed: that is, a worker can start the 

setup of a group, even if the first job of the group is not yet available on the machine. Workers 

do not constitute a limited resource; that is, a worker from the team is assigned to a machine 

and he is always available for setup operations, thus preventing that machine from starvation 

and consequently avoiding any makespan increase. Setup times between two jobs pertaining to 

the same group are included into their own processing time and are both sequence and worker 

independent. Workers have different skill levels, which may vary from one machine to 

another. Three levels of expertise are considered for a worker: senior, normal and junior. 

Senior level denotes a worker who is, on the average, more experienced than lower-level 

workers, thanks to his longer work experience. Senior worker can complete a setup task in a 

shorter time than his lower-level colleagues. Normal level concerns a worker enough 

experienced but with lacking skills with respect to a senior worker. Finally, the junior level 

can be associated to a not-experienced worker, e.g., a worker recently hired. Of course, a 

junior worker requires a longer time to complete a set-up. Multiple skill levels can be defined 

for each level of expertise: the larger is the skill level index (SLwm ≤ 1) of a worker w 

performing a set-up on machine m, the shorter is the required set-up time since SLwm is a 

divisor coefficient of set-up times. The optimization problem consists of assigning the set of 

workers to machines on one hand, and scheduling both groups of jobs and jobs within each 

group on the other hand. 

Mathematical model proposed in this chapter may be denoted as a development of the model 

proposed by Naderi and Salmasi (2012), the main difference being represented by the 

adaptation to the SWA issue. One of the key elements of the proposed model is the so-called 

“slot”. A slot is a position of the sequence of jobs within each group that should be occupied 

just by a single job. For this reason, a one-to-one correspondence between jobs of a given 
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group and slots of that group must be considered. In order to properly describe the partition of 

the total number of jobs into g different groups, the parameter Gk (k = 1,2,...,g) is employed, 

i.e., Gk denotes the set of jobs belonging to group k. 

The indices and parameters, the decision variables and the mathematical model are as follows: 

Indices/parameters:   

n0 number of jobs  

m number of machines  

g number of groups  

j = 1,2,…,n0 index of jobs  

i = 1,2,…,m index of machines  

q = 1,2,…,m index of workers  

k, t = 0,1,…,g index of groups  

Gk set of jobs belonging to group k  

nk = |Gk| number of jobs belonging to group k  

l = 1,2,…nk index of slots  

pji processing time of job j on machine i  

atkiq 
setup time of group k performed by worker q on machine i, if group k 

is processed immediately after group t, 

M a big number  

   
Decision variables:   

ljX  
1 if job  is assigned to slot  of group 

0 otherwise                                            

j l k
 

k = 1,2,…,g 

l = 1,2,…,nk 

j Gk 

tkU  
1 if group  is processed immediately after group 

0 otherwise                                                               

k t
 

t = 0,1,…,g 

k = 1,2,…,g 

t k 
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iqZ  
1 if worker  is assigned to machine 

0 otherwise                                          

q i
 i, q = 1,2,…,m 

kliC  completion time of job processed in slot l of group k on machine i  

kiF  finishing time of group k on machine i  

kiS  starting time of group k on machine i  

Cmax makespan  

   
Model   

minimize Cmax   

   
Subject to:   

1

1
k

n

jl
l

X  1,2,...,    kk g j G  (3.1) 

1

k

jl
j G

X  1,2,...,    1,2,... kk g l n  (3.2) 

( 1)

k

kli k l i jl ji
j G

C C X p  1,2,...,    2,3,...    1,2,...,kk g l n i m  (3.3) 

( 1)

k

kli kl i jl ji
j G

C C X p  1,2,...,    1,2,...    2,3,...,kk g l n i m     (3.4) 

1 1

k

k i ki j ji
j G

C S X p  1,2,...,    1,2,...,k g i m  (3.5) 

k
ki kn iF C  1,2,...,    1,2,...,k g i m  (3.6) 

1

(1 )
m

ki ti iq tkiq tk
q

S F Z a U M  0,1,...    1,2,...,       1,2,...,t g k g k t i m  (3.7) 

0

1
g

tk
t
t k

U  1,2,...,k g  (3.8) 

1

1
g

tk
k
k t

U  1,2,...,t g  (3.9) 
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0
1

1
g

k
k

U      (3.10) 

1

1
m

iq
i

Z  1,2,...,q m  (3.11) 

1

1
m

iq
q

Z  1,2,...,i m  (3.12) 

max kmC F  1,2,...,k g  (3.13) 

, , 0kli ki kiC S F   (3.14) 

, , 0;1lj tk iqX U Z   (3.15) 

Constraint (3.1) ensures that each job is assigned to exactly one slot within the group it 

belongs to. Constraint (3.2) states that each slot of any given group must be occupied by only 

one job. Through constraint (3.3) it is imposed that each job cannot start before the job 

assigned to the previous slot of the same group has been finished. Constraint (3.4) forces each 

job to start on a given machine after it has been completed on the previous one. Constraint 

(3.5) links the completion time of the job processed as first in each group to the starting time 

of the group itself, while constraint (3.6) links the completion time of the job processed as last 

in each group to the finishing time of the group itself. Constraint (3.7) states that each group 

can start to be processed on a given machine after the preceding group has been completed and 

the setup has been performed. Constraints (3.8), (3.9) and (3.10) define precedence 

relationships among groups: they ensure that each group is preceded by exactly one group, 

being followed by one other group at most, and that the dummy group 0 precedes only one 

group. Constraint (3.11) forces each machine to be assigned to one only worker; conversely, 

constraint (3.12) assigns each worker to only one machine. Through constraint (3.13), the 

makespan is set to be equal to the highest among finishing times of all groups. Constraints 

(3.14) establishes the non-negativity of continuous variables, while constraint (3.15) defines 

the binary variables. 
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3.3 The genetic algorithm approach 

On the basis of what stated by Schaller, Gupta and Vakharia (2000), makespan minimization 

of a FSDGS problem is NP hard. As a consequence, the proposed FSDGS-SWA problem 

may be denoted as NP hard too, due to the larger domain of solutions arising from the SWA 

issue. Whenever a NP hard combinatorial problem needs to be solved, metaheuristic 

algorithms may represent an effective and timesaving alternative to other exhaustive 

approaches. Since Costa, Celano, Fichera and Trovato (2010) demonstrated both efficacy and 

efficiency of Genetic Algorithms (GAs) for solving the FSDGS problem, this chapter focuses 

on three modified GAs fitting the group scheduling and multi-skilled workforce assignment 

joint problem.  

A GA is a metaheuristic optimization procedure that mimics the natural evolution of 

individuals. It starts with a set of feasible solutions (the initial population) and iteratively 

replaces the current population by a new population generation based on a mechanism that 

preserves the most promising solutions. It requires a suitable representation of the solution 

domain (chromosome encoding) and a fitness function that measures the quality of each 

possible solution. The population evolution proceeds by means of a reproduction mechanism 

called crossover, which selects one or more couples of chromosomes (the parents) and 

recombines them to generate the children (two new chromosomes). Children having higher 

fitness performance than parents replace them into the new population. Search towards 

unexplored areas of the solutions domain is assured by means of a mutation operator, which 

can randomly alter one or more chromosomes within a population. A termination condition 

allows the generational process to be stopped within a finite computational time. 

The first proposed algorithm for solving the FSDGS-SWA problem in hand is a hybrid genetic 

algorithm, hereinafter called GAI, which integrates the evolutionary optimization strategy with 

a local search mechanism aiming to enhance the overall performances of the procedure. A 

detailed description of the algorithm is reported in the following sub-sections. 

 

Problem encoding  

Problem encoding is the way a given problem to be optimized through metaheuristics is 

represented by a numerical chromosome. For the proposed GAI, each solution is a 
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combination of three distinct portions of chromosome and each chromosome is encoded by 

means of a properly arranged matrix. Making use of the same notation introduced in the MILP 

model Section, the first part of each chromosome comprises the sequences k
l  

(k = 1,2,...,g; l 

= 1,2,...,nk)  of jobs to be assigned to each slot within each group; the second portion entails 

the sequence of groups k (k = 1,2,...,g); finally, workers assignment to each machine is 

managed by the third portion named i (i = 1,2,...,m). Basically, the overall chromosome is 

encoded by means of a partitioned (g + 2) × nmax matrix where nmax= 
1

max
g

k
k

n : 

1

1 1
1

1

1

1

1

,....,

...

,....,

...

,....,

,....,

,....,

k

g

n

k k
n

g g
n

g

m

  (3.16) 

Each row r (r = 1,2,…,g) of the partitioned matrix codes a specific schedule concerning the 

problem in hand and it is worth pointing out that it is independent from the other sequences; 

hereinafter it will be denoted as sub-chromosome. Thus, a certain sub-chromosome r 

corresponds to the sequence of jobs scheduled within group r; sub-chromosome r = g + 1 

identifies the sequence of groups. Finally, sub-chromosome r = g + 2, namely , runs the 

workforce assignment to the provided m machines. For example, a feasible solution for a 

problem in which m = 5, g = 3 and nmax = 3 can be represented by the following chromosome 

[C1]: 

  (3.17) 

42513

00321

00012

00213

00021

1C
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Sub-chromosomes from 1 to 3 hold the schedules of jobs within each group (i.e., schedule 1-2 

for group 1, schedule 3-1-2 for group 2, schedule 2-1 for group 3); sub-chromosome r = g + 1 

fixes the sequence of groups = 1-2 -3, while sub-chromosome corresponding to the 

sequence  assigns worker 3 to machine1, worker 1 to machine 2 and so on. 

All the digits equal to zero neither take part to the solution decoding nor to the genetic 

evolutionary process. Once the problem encoding is defined, the fitness function of Ns 

individuals pertaining to the genetic population may be computed. 

Crossover operator 

Crossover works by recombining the genetic material of two parent chromosomes selected 

from the current population with a probability that is directly proportional to their own fitness 

value. Basically, a couple of sub-chromosomes is selected from the parents based on an a 

priori fixed probability, hereinafter called pcrosssel. Two methods of crossover operators have 

been adopted to recombine alleles within each couple of sub-chromosomes and to generate 

offsprings: they are denoted as Position Based Crossover (PBC) and Two Point Crossover 

(TPC), respectively. Both these two crossover operators have been largely adopted by 

literature within GAs applied to combinatorial problems; PBC generates offspring by 

considering the relative order in which some alleles are positioned within the parents. Indeed, 

it works on a couple of sub-chromosomes (P1) and (P2) as follows: 1) one or more alleles are 

randomly selected; 2) the alleles genetic information of parent 1 (P1) are reordered in the 

offspring 1 (O1) in the same order as their appear within the second parent 2 (P2); 3) 

remaining elements are positioned in the sequence by copying directly from the parent 1 the 

unselected alleles. The same procedure is followed in the second parent, i.e., parent 2, to 

obtain offspring (O2). Figure 3.1 shows the implementation of the PBC on a couple of parents 

where alleles in positions {2}, {3} and {6} have been selected.  
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Figure 3.1. Position Based Crossover (PBC). 

As far as is concerned with the TPC method, two positions are randomly selected and each 

sub-chromosome parent is divided into three blocks of alleles: both head and tail blocks are 

copied directly in the corresponding offspring, while the alleles belonging to the middle block 

are reordered within the offspring in the same order as they appear in the other parent sub-

chromosome (see Figure 3.2). Probability of selecting either PBC or TPC crossover is denoted 

as pcr. 

 

Figure 3.2. Two Point Crossover (TPC). 

Mutation operator 

Mutation may be applied with probability pm to a chromosome belonging to the current 

population; such a chromosome is randomly selected on the basis of its fitness and it is 
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substituted by a new chromosome generated by means of the mutation operator. Each sub-

chromosome of the selected solution is considered for mutation according to a probability 

pmutsel; two kind of operators have been adopted in the present research: an Allele Swapping 

Operator (ASO), which performs an exchange of two randomly selected alleles of the sub-

chromosome; and a Block Swapping Operator (BSO), which performs a block exchange (see 

Figure 3.3). To avoid any loss of the current best genetic information, the survival of the two 

current fittest individual within the population is ensured by an elitist strategy. Probability of 

selecting either ASO or BSO mutation operator has been denoted as pcm. 

 

Figure 3.3. (a) Allele Swapping (ASO) and (b) Block Swapping (BSO) mutation Operators. 

Diversity operator 

A population diversity control technique has been embedded within the proposed optimization 

procedure, in order to mutate those identical chromosomes exceeding a pre-selected value 

Dmax in the current population. 

Local search and termination rule 

In order to enhance the performances of the proposed genetic algorithm, a Group-based Local 

Search (GLS) scheme has been embedded within the evolutionary optimization strategy of 

GAI. Such procedure operates only on a fixed number (hereinafter called NGLS) of the best 

individuals obtained after each generation. For each selected chromosome Cs (s = 1,2,...,NGLS), 

it works by modifying the sequence Cs  of groups, i.e., the sub-chromosome r = g + 1, 

pertaining to that solution, through a gene-swapping operator. Whether the new obtained 

solution leads to a better makespan value, it is used for the next iteration. After a total number 
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of iterations (ItGLS) is reached, the last accepted solution is used for replacing solution Cs in the 

newly generated population. 

For sake of clarity, GLS pseudo-code is reported in detail in Procedure 3.1. 

Procedure 3.1. Group-based Local Search (GLS) pseudo-code. 

for s = 1 to NGLS 

 Cs  s-th best solution of last generated population; 

 for it = 1 to ItGLS 

  Cs sequence of groups pertaining to solution Cs; 

  randomly select k and t in {1;2;...;g}; 

  generate Cs’ from Cs by exchanging Cs
k

with Cs
t ; 

  calculate makespan(Cs’); 

  if makespan(Cs’) < makespan(Cs) then 

   Cs  Cs’ 

  end if 

 next it 

 update Cs in the last generated population; 

next s 

The termination rule of the proposed GAI consists in 30 s of CPU time. This is the same 

criterion adopted by Hajinejad, Salmasi and Mokhtari (2011) and can thus allow a fair 

comparison with the metaheuristic procedure presented in such reference paper, as it will 

hereinafter be enlightened; moreover, preliminary experimental tests, here not reported for 

sake of brevity, have shown a substantial convergence of GAI within such time limit. 

To sum up, the whole optimization procedure followed by GAI can be described through the 

steps reported in Procedure 3.2. 

Procedure 3.2. GAI optimization procedure 

Step 1: Initialization of parameters pcrosssel, pcr, pm, pmutsel, pcm, Dmax; 

Step 2: Generation of initial random population of chromosomes; 
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Step 3: Application of Crossover Operator, chosen between Position Based and Two Point 

Crossover, to a couple of chromosomes chosen on the basis of their fitness 

(makespan); 

Step 4: Generation of the new population after Crossover Operator through the insertion of 

the two best chromosomes individuated between parents and offspring: the two 

individuals with best values of fitness are introduced in the population; 

Step 5: Evaluation of pm. If it is verified go to Step 6 else go to Step 7; 

Step 6: Application of Mutation Operator, chosen among two different Operators: Allele 

Swapping and Block Swapping. The operator is applied randomly to a chromosome 

of the population; 

Step 7: Population Control: a mutation operator is applied on duplicates exceeding Dmax.; 

Step 8: Application of GLS procedure to the NGLS best individuals of the population; 

Step 9: Updating of the current population, then return to Step 3. 

Alternative optimization strategies 

A further step regarding the study of the genetic algorithm approach for tackling the FSDGS-

SWA problem in hand consisted in the comparison of the proposed GAI with two distinct 

modified GAs, each one characterized by a different way to run the SWA problem. It is worth 

pointing out that all the optimization procedures involved in such comparison analysis are 

subject to the same stopping criterion, namely 30 s of CPU time.  

The former modified GA, hereinafter coded as GAR, consists of a regular genetic algorithm, 

integrated with the same GLS procedure exploited by GAI, optimizing the FSDGS problem; 

as concerns the SWA problem, a random assignation of skilled workers to machines is 

provided once and for all before the evolutionary process starts. GAR flow chart is reported in 

Figure 3.4 a). 

The latter genetic technique works on the basis of a hierarchical optimization strategy; thus, 

from now on it will be defined as GAH. It consists of a regular GA combined with GLS as 

well as GAI that approaches the FSDGS problem at a first stage and then, once a threshold 

equal to half the time limit, i.e., 15 s of CPU time, is reached, it moves on the only SWA 

optimization problem for further 15 seconds. GAH flow chart is reported in Figure 3.4 b). 
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Read: Ns, Dmax, pcrosssel, pcr , pm,
pmutsel, pcm,, NGLS, ItGLS,

Workforce selection

GA
FSDGS optimization for 30 s

Random assignation of workers
to machines

SWA solution

FSDGS schedule

Exit

Read: Ns, Dmax, pcrosssel, pcr , pm,
pmutsel, pcm,, NGLS, ItGLS,

Workforce selection

GA
FSDGS optimization for 15 s

Random assignation of workers
to machines

FSDGS schedule

GA
SWA optimization for 15 s

SWA solution

Exit

Stage 1

Stage 2

a)

b)
 

Figure 3.4. a) GAR and b) GAH flow charts. 

3.4 Overview of the problem benchmark 

In order to perform a fair comparison among the three proposed GAs, an extensive set of 

instances has been generated according to the approach delineated by Salmasi, Logendran and 

Skandari (2010) with respect to the FSDGS problem. Then, an adding set of data related to the 

skilled workforce assignment has been arranged. Basically, three separate sub-benchmarks 

characterized by different numbers of machines, i.e., 2, 3 and 6, respectively, have been 

considered. Within each sub-benchmark, three distinct factors, namely number of groups, 

number of jobs within groups and setup times of groups on each machine  have been 

combined so to obtain a full factorial experimental plan as shown in Tables 3.1, 3.2 and 3.3. 
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Table 3.1. Benchmark of instances for the FDSGS problem with 2 machines. 

Factor Level Value 

Number of 
groups 
(g) 

1 U [1,5] 

2 U [6,10] 

3 U [11,16] 

Number of 
jobs in a 
group 
(n) 

1 U [2,4] 

2 U [5,7] 

3 U [8,10] 

Setup times 
of machine 
Mi 

(a) 

1 M1  U [1,50] M2  U [17,67] 

2 M1  U [1,50] M2  U [1,50] 

3 M1  U [17,67] M2  U [1,50] 

 

Table 3.2. Benchmark of instances for the FDSGS problem with 3 machines. 

Factor Level Value 

Number of 
groups 
(g) 

1 U [1,5] 

2 U [6,10] 

3 U [11,16] 

Number of 
jobs in a 
group 
(n) 

1 U [2,4] 

2 U [5,7] 

3 U [8,10] 

Setup times 
of machine 
Mi 

(a) 

1 M1  U [1,50] M2  U [17,67] M3  U [45,95] 

2 M1  U [17,67] M2  U [17,67] M3  U [17,67] 

3 M1  U [45,95] M2  U [17,67] M3  U [1,50] 

4 M1  U [1,50] M2  U [17,67] M3  U [17,67] 

5 M1  U [1,50]  M2  U [17,67] M3  U [1,50] 

6 M1  U [17,67] M2  U [17,67] M3  U [45,95] 

7 M1  U [17,67] M2  U [17,67] M3  U [1,50] 

8 M1  U [45,95] M2  U [17,67] M3  U [45,95] 

9 M1  U [45,95] M2  U [17,67] M3  U [17,67] 
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Table 3.3. Benchmark of instances for the FDSGS problem with 6 machines. 
 

Factor Level Value 

Number of 
groups 
(g) 

1 U [1,5] 

2 U [6,10] 

3 U [11,16] 

Number of 
jobs in a 
group 
(n) 

1 U [2,4] 

2 U [5,7] 

3 U [8,10] 

Setup times 
of machine 
Mi 

(a) 

1 
M1  U [1,50] M2  U [17,67] M3  U [45,95] 

M4  U [92,142] M5  U [170,220] M6  U [300,350] 

2 
M1  U [1,50] M2  U [1,50] M3  U [1,50] 

M4  U [1,50] M5  U [1,50] M6  U [1,50] 

3 
M1  U [300,350]  M2  U [170,220] M3  U [92,142] 

 M4  U [45,95] M5  U [17,67] M6  U [1,50] 

It can be noticed that a total of 27 + 81 + 27 = 135 separate instances describing a consistent 

data set for the FSDGS problem have been generated. With reference to the SWA issue, 

additional data have been obtained by considering the relationship between skill level and 

expertise level of each worker. Three distinct skill levels have been provided for each worker 

and, in addition, every skill level may assume further three values according to the expertise 

level characterizing such worker. As reported before, the skill level of each worker depends on 

the experience he has accumulated over time by using a given manufacturing equipment or a 

given technology; thus, a specific SLqi skill level out of three can be been assigned to each 

worker q for each machine i, once his level of expertise (senior, normal or junior) has been 

established. Skill levels of each worker allocated to a given machine may assume the 

following values: [1.0, 0.91, 0.83] for senior workers, [0.77, 0.71, 0.67] for normal workers 

and [0.63, 0.59, 0.56] for junior workers. The way the skill level affects the setup times 

consists of dividing such time atki of a given group k, following a group t in machine i, for the 

skill level SLqi of worker q assigned to the same machine i. As for example, whenever a setup 

task on a given machine i is performed by a fully experienced senior worker q, atkiq  atki as 

SLqi = 1; in alternative, whether the same task should be performed by a less skilled junior 

worker, setup time should get atki/0.56 as SLqi = 0.56. In order to associate the provided nine 
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skill levels with the corresponding level of performance a worker can ensure for setup 

operations, hereinafter a normalized range of values as reported in Table 3.4 should be taken 

into account. Thus, it could be said that a senior worker with a skill level equal to 1.0 has a 

Normalized Work Ability (NWA) in setup operations equal to 100%, while a Junior worker 

with skill level equal to 0.59 may also be considered as a worker whose NWA is equal to 

12.5% (see Table 3.4). In words, a further scale of normalized values may be adopted for 

emphasizing the ability level of each worker. 

Table 3.4. Relationship between skill level and normalized work ability. 

 Senior Normal Junior 

Skill levels 1.0 0.91 0.83 0.77 0.71 0.67 0.63 0.59 0.56 

Normalized Work Ability (NWA) %  100.0 87.5 75.0 62.5 50.0 37.5 25.0 12.5 0.0 

As the number of workers w employed on a flow-shop production system must be equal to the 

number of machines m, m workers compose each workforce team. For every one out of 135 

instances generated by the FSDGS benchmark, nine workforce teams have been randomly 

assembled, each one having an average NWA level, hereinafter called NWA , equal to one of 

the values presented in Table 3.4. Therefore, a workforce team with NWA  = 100.0 is 

composed by only m fully skilled senior workers with SLqi = 1.0, while a team having NWA  = 

25.0 is composed by m differently skilled workers whose average skill level, denoted as SL , is 

equal to 0.63. Due to the specific average value of skill levels a workforce team should get, a 

proper procedure named Workforce Team Generation (WTG) has been developed (see 

Procedure 3.3); it is worth noting that a tolerance  = 0.1% has been considered with reference 

to the absolute gap between the SL  value obtained through WTG method, and the average 

skill level considered as a target for each one out of the nine teams created. Since each FSDGS 

problem of the reference benchmark should be investigated at varying workforce teams, the 

benchmark concerning the proposed FSDGS-SWA problem holds a total amount of 135  9 = 

1,215 instances. 
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Procedure 3.3: Workforce Team Generation (WTG) procedure. 

for q = 1 to m 

 for i = 1 to m 

  SLqi = U [0,1]; 

 next i 

next q 

calculate SL ; 

= targetSL SL ; 

while targetSL  do 

 randomly select q and i; 

 if 0  then  

 U [0, min( ; 1 - qiSL )]; 

else  

 - U [0, min(- ; qiSL  - 0.56)]; 

endif 

SLqi = SLqi + 

calculate SL ; 

= targetSL SL ; 

end while 

3.5 Computational experiments and results 

After a comprehensive a set of experimental data has been generated, the proposed genetic 

algorithms have been thoroughly compared in order to identify the most appropriate 

optimization strategy for the FSDGS-SWA problem in hand. Then, the best metaheuristc 

method available in literature for the FSDGS problem, i.e. the fast Hybrid Particle Swarm 

Optimization (hereinafter HPSO) algorithm proposed by Hajinejad, Salmasi and Mokhtari 

(2011), has been taken as reference for assessing performances of the selected genetic 

algorithm. Computational details of such analysis are reported in the following sub-sections. 



70 
 

Selection of the best optimization strategy 

On the basis of the aforementioned FSDGS-SWA benchmark, an extensive comparison has 

been performed among GAI, GAH, and GAR, running the parameters reported in Table 3.5. It 

is worth noting that such parameters have been selected after a preliminary tuning analysis not 

reported here for sake of brevity. As the quality of solutions of the three algorithms cannot be 

affected by the skilled workforce profiles equal to NWA = 100 and NWA = 0, only the 

remaining 7 skill levels have been taken into account for the comparison analysis. Moreover, 2 

different test problems have been randomly generated for each instance of the considered 

benchmark drawing processing times of jobs in the range [1,20]. Therefore, 135  7  2 = 

1,890 problems have been created in all. All genetic algorithms have been coded in 

MATLAB® 7.6 and executed on a 2GB RAM virtual machine embedded on a workstation 

powered by two quad-core 2,39 GHz processors. 

Table 3.5. Parameters of proposed genetic algorithms. 

Parameter Notation Value 

Population size Ns 30 

Maximum number of duplicates at each generation Dmax 2 

Probability of selecting a sub-chromosome for crossover pcrosssel 0.85 

Probability of selecting either PBC or TPC crossover operator pcr 0.5 

Mutation probability pm 0.13 

Probability of selecting a sub-chromosome for crossover pmutsel 0.5 

Probability of selecting either ASO or BSO mutation operator pcm 0.5 

Number of individuals subject to GLS NGLS 10 

GLS iterations for each solution ItGLS 4 

In order to highlight the performance of each optimization strategy, let us denote with IR and 

IH the percentage deviation of completion times between the solutions provided by GAI vs. 

GAR and by GAI vs. GAH, respectively: 
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max max

max

(GAR) (GAI)
100

(GAI)

C C
IR

C
 (3.18) 

max max

max

(GAH) (GAI)
100

(GAI)

C C
IH

C
 (3.19) 

where max (GAX)C refers to the average completion time yielded by a given GA (GAI, GAR, 

GAH) over 2 different test problems generated for each instance of the considered benchmark. 

A large positive value of IR or IH  means that workforce allocation managed by the GAI, 

i.e. based on an integrated encoded strategy, may significantly affect the process performance 

in terms of makespan reduction. Tables 3.6, 3.7 and 3.8 show the average values of IR and 

IH  for problems with 2, 3 and 6 machines, respectively.  

Table 3.6. GAs percentage deviation analysis for 2-machine problems. 

 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

IH IR IH IR IH IR IH IR IH IR IH IR IH IR 

1 1 1 0.0% 4.4% 0.0% 6.4% 0.0% 7.8% 0.0% 8.7% 0.0% 9.9% 0.0% 11.3% 0.0% 6.1% 

1 1 2 0.0% 2.9% 0.0% 3.7% 0.0% 4.3% 0.0% 5.0% 0.0% 5.5% 0.0% 7.1% 4.0% 7.1% 

1 1 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 2.0% 0.0% 2.0% 0.2% 0.4% 0.0% 0.0% 

1 2 1 0.0% 0.7% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.8% 1.8% 4.0% 5.6% 1.2% 3.7% 

1 2 2 0.0% 1.8% 0.0% 1.6% 0.0% 1.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1 2 3 0.0% 0.9% 0.0% 0.0% 0.0% 2.3% 0.0% 6.0% 0.0% 9.5% 0.0% 8.2% 0.0% 4.9% 

1 3 1 0.0% 0.0% 0.0% 0.1% -0.2% 0.2% 0.2% 0.7% 0.1% 0.8% 1.2% 1.8% 0.0% 2.8% 

1 3 2 0.0% 0.8% 0.5% 2.5% 0.8% 3.1% 1.1% 3.7% 1.4% 3.2% 1.9% 2.5% 1.1% 2.0% 

1 3 3 0.0% 0.0% 0.0% 0.6% 0.2% 2.5% 0.1% 6.8% 0.0% 6.3% 0.0% 3.4% 0.0% 0.0% 

2 1 1 1.5% 1.4% 3.8% 2.9% 2.0% 3.1% 5.1% 5.1% 4.3% 4.3% 0.6% 2.7% 1.1% 1.5% 

2 1 2 0.0% 4.4% 0.0% 5.9% 0.2% 5.4% 0.0% 4.6% 0.5% 3.6% 0.2% 1.1% 0.0% 0.0% 

2 1 3 0.3% 8.9% 0.0% 9.3% 1.4% 8.5% 1.0% 8.5% -0.3% 4.2% 0.0% 0.1% 3.1% 0.4% 

2 2 1 -0.9% 3.9% 1.5% 8.6% 1.7% 11.0% -0.2% 10.3% 1.3% 10.1% 2.1% 7.9% -0.1% 4.5% 

2 2 2 0.9% 1.3% 2.3% 2.5% 1.0% 4.8% -0.6% 2.4% 0.4% 2.3% -0.3% 1.2% 0.4% 0.5% 

2 2 3 0.1% -0.6% 0.4% 0.0% 0.6% 0.4% 0.1% 0.0% 1.9% 1.9% 2.1% 3.5% 1.7% 1.3% 

2 3 1 0.0% 3.3% 2.4% 5.6% 0.5% 6.1% -0.3% 5.7% -0.5% 5.9% 0.3% 4.7% -0.2% 2.5% 

2 3 2 0.0% 0.5% 0.0% 1.0% 0.1% 1.8% 0.2% 1.6% 0.0% 1.7% 0.4% 1.3% 0.6% 1.0% 

2 3 3 0.4% 0.5% 0.5% 0.0% 0.5% 0.5% 1.5% 1.1% 0.2% 0.2% 0.8% 0.0% 0.0% 0.0% 

3 1 1 3.1% 2.1% 0.1% 0.1% 2.9% 4.0% 1.9% 3.2% 5.8% 6.1% 4.2% 4.3% 2.7% 4.3% 

3 1 2 -0.2% -0.2% -0.5% 0.8% 5.8% 4.8% 6.1% 6.1% 2.1% 2.1% 2.3% 4.1% -1.1% 0.8% 

3 1 3 2.8% 2.8% -3.5% -3.5% -0.6% -1.1% -3.9% -3.9% -0.1% -0.1% -1.5% -1.5% 3.5% 1.2% 

3 2 1 1.0% 0.5% 1.0% 0.9% 2.3% 1.0% 0.6% 1.9% 2.4% 5.0% 1.7% 2.1% 1.7% 2.7% 

3 2 2 3.5% 4.4% 2.3% 4.6% 2.8% 4.5% 1.8% 5.6% 2.7% 8.5% 2.7% 5.0% 4.1% 4.8% 

3 2 3 0.4% 3.9% 0.7% 6.0% 3.4% 9.1% 2.7% 9.0% 0.6% 5.9% -1.5% 2.6% -0.1% 2.6% 

3 3 1 1.0% 3.1% 1.6% 3.3% 5.1% 4.5% 5.7% 5.2% 2.1% 3.0% 2.9% 4.5% 2.2% 2.3% 

3 3 2 -0.4% -1.2% -0.5% -0.5% 2.0% 1.7% 2.6% 2.2% -0.8% -1.0% -0.6% 0.0% 0.7% 1.4% 

3 3 3 -0.2% 2.4% 1.6% 2.9% 0.4% 2.0% -1.2% 2.0% 0.6% 3.0% -0.1% 0.5% 2.7% 2.7% 

 
average 0.5% 2.0% 0.5% 2.4% 1.2% 3.5% 0.9% 3.8% 0.9% 3.9% 0.9% 3.1% 1.1% 2.3% 

  
min -0.9% -1.2% -3.5% -3.5% -0.6% -1.1% -3.9% -3.9% -0.8% -1.0% -1.5% -1.5% -1.1% 0.0% 

    max 3.5% 8.9% 3.8% 9.3% 5.8% 11.0% 6.1% 10.3% 5.8% 10.1% 4.2% 11.3% 4.1% 7.1% 
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Table 3.7. GAs percentage deviation analysis for 3-machine problems. 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

IH IR IH IR IH IR IH IR IH IR IH IR IH IR 

1 1 1 0.0% 0.0% 0.6% 1.8% 0.0% 4.3% 0.0% 11.3% 0.3% 12.3% 0.0% 1.6% 0.1% 3.7% 

1 1 2 1.3% 1.3% 0.0% 1.5% 0.7% 1.8% 1.1% 2.5% 0.0% 1.3% 0.6% 1.4% 0.0% 1.5% 

1 1 3 0.0% 2.9% 0.0% 1.7% 0.0% 1.5% 0.0% 2.8% 0.0% 2.7% 0.0% 0.9% 0.0% 0.0% 

1 1 4 3.5% 8.2% 4.3% 8.1% 3.1% 6.4% 3.7% 5.1% 2.8% 4.5% 0.1% 1.8% 0.0% 0.0% 

1 1 5 0.0% 3.0% 0.0% 3.3% 0.0% 2.8% 0.0% 3.1% 0.2% 2.5% 0.0% 0.8% 0.0% 0.0% 

1 1 6 0.0% 5.3% 0.0% 7.1% 0.0% 6.1% 0.0% 6.4% 0.0% 4.4% 0.0% 4.1% 0.0% 3.5% 

1 1 7 1.1% 3.6% 0.0% 4.4% 1.3% 1.6% 1.0% 1.0% 0.0% 0.0% 0.0% 2.8% 0.2% 0.7% 

1 1 8 6.8% 11.4% 3.3% 9.0% 9.4% 9.4% 3.3% 9.9% 5.1% 8.4% 5.8% 6.8% 6.1% 6.1% 

1 1 9 0.0% 0.0% 0.0% 1.6% 0.0% 3.0% 0.0% 4.6% 0.0% 7.7% 0.0% 2.7% 0.0% 0.0% 

1 2 1 0.0% 1.8% 0.0% 11.8% 0.0% 19.3% 0.0% 21.9% 0.0% 17.2% 0.0% 11.7% 0.0% 4.5% 

1 2 2 0.0% 3.3% 0.0% 3.4% 0.0% 2.3% 1.1% 1.7% 0.4% 0.7% 0.0% 0.0% 0.0% 0.0% 

1 2 3 0.0% 3.5% 1.2% 8.5% -0.2% 11.8% 0.1% 17.7% 1.6% 18.2% 0.1% 10.2% 0.0% 0.6% 

1 2 4 0.8% 1.6% 0.0% 0.0% 0.1% 0.1% 0.0% -0.1% 0.1% 0.1% 0.7% 0.7% 2.3% 2.3% 

1 2 5 0.0% 1.7% 0.8% 4.0% 0.6% 6.6% 1.5% 9.5% 4.2% 11.5% 2.7% 8.5% 1.7% 3.2% 

1 2 6 5.7% 8.3% 2.5% 8.1% 5.6% 10.0% 4.8% 10.5% 3.6% 9.4% 3.1% 5.6% 0.0% 4.2% 

1 2 7 3.4% 6.0% 2.2% 5.5% 2.0% 3.5% 0.0% 1.6% 0.0% 2.3% 2.3% 4.8% 0.0% 1.8% 

1 2 8 0.0% 4.5% 0.0% 1.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1 2 9 0.2% 1.4% 1.2% 3.5% 1.0% 3.5% 0.0% 4.0% 0.0% 4.2% 0.1% 5.1% 0.3% 0.9% 

1 3 1 0.0% 2.8% 0.0% 4.9% 0.0% 4.2% 0.0% 6.2% 0.0% 7.8% 0.0% 6.1% 0.0% 3.6% 

1 3 2 -0.1% -0.1% 0.9% 1.0% 0.8% 2.9% 4.8% 5.0% 2.1% 6.3% 1.7% 6.8% 2.0% 4.1% 

1 3 3 1.5% 6.1% 1.5% 6.7% 1.4% 7.2% 0.4% 5.7% 0.0% 3.8% 0.0% 0.4% 0.0% 0.0% 

1 3 4 0.1% 4.0% 1.5% 8.4% 4.6% 8.6% 5.2% 9.7% 4.7% 9.4% 3.3% 7.9% -1.1% 2.8% 

1 3 5 0.4% 1.5% 2.5% 3.8% 2.9% 5.1% 2.3% 4.7% 1.2% 6.4% 0.9% 7.3% 1.1% 4.3% 

1 3 6 1.3% 7.8% 0.0% 7.9% 0.2% 9.7% 0.5% 9.9% 0.1% 9.0% 0.0% 7.4% 0.0% 3.2% 

1 3 7 0.0% 1.6% 0.1% 2.0% 0.0% 1.4% 0.3% 2.1% 0.6% 1.9% 0.0% 0.7% 0.0% 0.5% 

1 3 8 1.3% 1.5% 1.9% 1.9% 3.0% 3.0% 3.6% 3.6% 1.0% 2.7% 2.4% 2.4% 0.9% 0.9% 

1 3 9 2.9% 7.3% 3.6% 9.8% 2.7% 10.1% 0.7% 11.4% 0.7% 11.6% 1.3% 10.9% 2.6% 6.6% 

2 1 1 0.0% 7.9% 1.6% 10.2% 1.8% 11.3% 2.2% 13.6% 2.3% 13.3% 1.0% 10.3% 1.6% 5.2% 

2 1 2 4.1% 4.1% 5.8% 5.8% 2.1% 3.1% 2.5% 2.8% 2.0% 2.0% 2.0% 2.0% 0.8% 0.8% 

2 1 3 0.0% 9.3% -0.6% 17.7% 1.8% 23.6% 4.7% 24.0% 1.5% 20.8% 5.0% 18.9% 6.5% 14.0% 

2 1 4 0.4% 0.8% 4.3% 4.3% 2.9% 2.7% 5.0% 5.6% 2.7% 2.2% 0.2% 0.7% 2.1% 1.1% 

2 1 5 5.3% 7.8% 3.2% 9.7% 2.4% 6.1% 0.1% 3.3% 0.0% 1.7% -0.3% -0.3% 0.2% 0.6% 

2 1 6 0.0% 29.7% 0.0% 31.9% 0.9% 28.6% 1.6% 22.6% 2.9% 18.0% 2.2% 13.2% 0.6% 6.1% 

2 1 7 1.4% 6.1% 0.7% 10.1% -0.5% 8.2% 0.1% 10.3% 0.0% 8.9% 0.0% 4.7% -1.2% 1.6% 

2 1 8 0.9% 4.8% 5.2% 11.9% 6.0% 18.8% 3.1% 14.9% 1.9% 12.6% 0.1% 11.8% 0.0% 6.9% 

2 1 9 2.9% 7.8% 3.8% 13.1% 3.5% 15.2% 5.0% 13.8% 0.5% 9.5% 1.9% 3.9% 0.6% 0.6% 

2 2 1 0.8% 9.2% 1.8% 14.9% 4.6% 18.8% 11.3% 24.6% 10.0% 24.5% 7.7% 22.1% 3.3% 15.5% 

2 2 2 1.1% 2.8% 2.2% 4.5% -0.1% 3.1% 0.9% 4.7% 1.8% 5.5% 4.7% 7.4% 5.4% 5.9% 

2 2 3 0.2% 2.1% 0.1% 0.3% 0.0% 1.4% 1.4% 2.3% 0.9% 4.1% 0.7% 5.0% -0.1% 1.0% 

2 2 4 0.6% 1.9% 2.1% 2.8% 2.0% 3.5% 3.2% 4.7% 0.8% 2.1% 2.8% 3.4% -0.4% 0.1% 

2 2 5 -0.8% 2.6% 1.0% 3.6% 1.0% 4.6% 0.4% 4.8% 1.4% 5.7% 2.0% 4.1% -0.2% 1.3% 

2 2 6 1.1% 2.9% 2.9% 8.2% 1.8% 8.2% 2.2% 9.7% 0.8% 9.0% 0.9% 9.3% 0.3% 5.5% 

2 2 7 3.1% 2.9% 2.7% 3.4% 6.6% 6.3% 3.2% 6.6% 0.5% 5.0% 1.5% 4.4% 2.8% 2.7% 

2 2 8 4.2% 8.0% 6.5% 11.2% 5.8% 14.5% 3.2% 14.7% 2.1% 11.6% 2.8% 9.7% 2.7% 3.3% 

2 2 9 1.3% 0.9% 1.6% 2.4% 1.3% 1.3% 0.9% 0.9% 0.9% 2.7% 0.5% 4.8% 0.1% 0.4% 

2 3 1 -0.5% 2.5% 0.6% 2.9% 1.4% 2.5% 1.1% 1.1% 0.4% 0.7% -0.4% -0.4% 0.5% 0.5% 

2 3 2 0.5% 3.1% 4.8% 5.6% 2.0% 3.7% 3.1% 5.8% 2.0% 3.9% 0.2% 3.9% 2.1% 2.8% 

2 3 3 -0.1% -0.1% -0.1% 3.0% 1.0% 2.4% 0.0% 3.4% -0.1% 3.9% -0.1% 4.8% 0.0% 3.1% 

2 3 4 0.4% 5.2% 1.5% 8.7% 1.9% 7.2% 0.8% 7.5% 2.2% 8.1% 1.4% 3.9% 2.7% 2.4% 

2 3 5 -0.1% 0.3% 0.4% 0.8% -0.4% 1.4% 1.4% 3.9% 0.3% 4.2% 0.8% 3.0% -0.1% 1.0% 

2 3 6 0.3% 3.1% 0.5% 5.9% 0.7% 6.3% 3.6% 6.1% 3.4% 6.1% 2.5% 7.4% -0.3% 4.5% 
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Table 3.7. (continued) 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

IH IR IH IR IH IR IH IR IH IR IH IR IH IR 

2 3 7 -0.1% 0.7% 3.5% 3.5% 2.7% 2.7% 0.9% 2.8% 2.5% 3.7% 0.7% 2.7% 0.7% 0.9% 

2 3 8 1.7% 6.4% 2.9% 9.0% 3.2% 11.8% 1.9% 10.9% 2.3% 12.6% 1.1% 10.0% 0.3% 4.3% 

2 3 9 0.1% 2.0% 0.8% 2.8% -0.2% 2.5% 0.1% 3.9% -0.1% 4.9% 0.4% 4.8% 0.0% 2.7% 

3 1 1 1.2% 2.7% 1.0% 3.9% 0.7% 10.7% 1.7% 8.8% 1.4% 5.1% -0.4% 0.2% 0.2% 0.2% 

3 1 2 4.5% 3.5% 7.8% 7.8% 6.9% 7.9% 6.7% 7.3% 8.1% 8.8% 3.5% 0.5% 3.0% 0.0% 

3 1 3 0.3% 14.8% -0.5% 24.5% 2.8% 31.5% -0.3% 27.6% 1.4% 19.9% 2.0% 13.0% -0.3% -0.4% 

3 1 4 5.4% 6.1% 3.5% 9.4% 5.7% 9.3% 7.9% 9.1% 9.1% 10.6% 8.5% 9.1% 2.8% 3.9% 

3 1 5 -3.4% -3.4% 3.8% 5.3% 8.0% 9.4% 6.1% 7.8% 6.5% 9.9% 2.9% 3.2% 4.1% 5.3% 

3 1 6 0.4% 22.6% 2.0% 21.0% 4.6% 25.8% 3.2% 24.1% 11.8% 25.3% 13.2% 24.1% 10.5% 16.6% 

3 1 7 4.0% 8.3% 10.0% 10.3% 6.8% 8.5% 9.6% 8.6% 6.0% 4.8% 4.7% 4.6% 0.7% 0.7% 

3 1 8 1.3% 10.3% 6.8% 17.9% 8.2% 18.9% 5.0% 15.8% 9.1% 13.6% 10.4% 15.1% 3.0% 8.6% 

3 1 9 2.7% 4.3% 2.2% 7.5% 0.0% 7.5% 0.7% 8.4% 4.9% 12.3% 6.2% 18.3% 5.8% 9.9% 

3 2 1 1.1% 2.1% 2.8% 9.0% 0.4% 16.2% -0.7% 21.7% 1.3% 21.1% 1.3% 16.0% 1.0% 3.7% 

3 2 2 0.7% 0.5% 1.7% -0.8% 0.1% -0.7% 2.9% 4.6% 4.9% 4.6% 2.0% 2.2% 5.5% 5.0% 

3 2 3 2.0% 7.8% 0.8% 12.1% 2.1% 13.4% 2.0% 15.8% 4.9% 14.8% 6.0% 11.8% 4.3% 8.4% 

3 2 4 3.5% 4.0% 4.1% 5.5% 1.2% 2.8% 3.0% 5.4% 5.3% 3.9% -0.9% -0.6% -1.5% -1.8% 

3 2 5 -1.4% 0.1% 0.0% 4.0% -3.2% -0.1% 1.2% 3.9% 2.5% 4.9% -0.5% -0.7% 2.3% 2.3% 

3 2 6 2.4% 7.0% 3.1% 7.3% 5.1% 7.8% 7.8% 11.2% 8.0% 12.0% 2.3% 7.3% 0.6% 2.7% 

3 2 7 1.5% 1.8% 1.1% 1.6% 2.2% 2.5% 3.2% 3.4% 2.1% 3.8% 0.4% 1.6% 2.0% 3.8% 

3 2 8 0.3% -0.4% 1.3% 0.8% 2.7% 1.5% 1.2% 0.6% 1.3% 2.2% 2.9% 2.5% 0.4% -0.3% 

3 2 9 1.7% 12.1% 2.8% 14.0% 3.0% 16.8% 1.8% 18.2% 5.2% 19.2% -1.5% 12.9% -0.3% 7.7% 

3 3 1 0.2% 1.4% 3.6% 3.5% -0.2% 4.1% 0.0% 3.4% 1.4% 5.8% 0.9% 4.7% 0.9% 2.1% 

3 3 2 3.7% 3.7% 0.8% -0.1% 0.5% 0.5% 0.7% 0.2% -0.9% -1.0% -0.8% -1.6% 2.1% 0.3% 

3 3 3 1.9% 7.2% -1.3% 4.9% 0.1% 5.7% 3.1% 7.5% -0.4% 7.0% -0.8% 6.3% 2.9% 6.1% 

3 3 4 1.3% 0.9% 0.5% 0.5% -0.2% -0.4% 0.2% 0.0% -1.0% -1.2% 0.8% 0.2% -1.8% -2.3% 

3 3 5 2.2% 1.4% 3.2% 2.8% 1.2% 1.4% -0.4% 0.4% 2.5% 2.4% 3.7% 2.4% 2.9% 3.6% 

3 3 6 1.4% -0.1% 0.0% 0.0% 2.0% 5.2% 3.9% 10.7% 2.7% 9.0% 1.2% 8.0% 1.8% 5.5% 

3 3 7 1.2% 4.0% 3.0% 3.2% 0.5% 1.3% 2.4% 3.1% 1.2% 0.9% -1.2% -1.5% 0.8% 0.3% 

3 3 8 0.6% 0.1% -0.5% -0.9% 1.4% 1.7% 1.8% 4.4% -0.8% 3.4% 1.9% 6.9% 2.3% 5.9% 

3 3 9 0.9% 3.4% 1.4% 3.7% 2.4% 6.0% 2.2% 7.6% 0.8% 10.7% 0.4% 8.8% 1.6% 6.9% 

 
average 1.2% 4.5% 1.9% 6.4% 2.0% 7.2% 2.2% 7.9% 2.1% 7.5% 1.7% 5.8% 1.3% 3.2% 

  
min -3.4% -3.4% -1.3% -0.9% -3.2% -0.7% -0.7% -0.1% -1.0% -1.2% -1.5% -1.6% -1.8% -2.3% 

    max 6.8% 29.7% 10.0% 31.9% 9.4% 31.5% 11.3% 27.6% 11.8% 25.3% 13.2% 24.1% 10.5% 16.6% 

 

Table 3.8. GAs percentage deviation analysis for 6-machine problems. 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

IH IR IH IR IH IR IH IR IH IR IH IR IH IR 

1 1 1 0.0% 7.8% 0.0% 20.0% 0.0% 22.3% 0.0% 21.4% 0.0% 20.2% 0.0% 18.6% 0.0% 0.0% 

1 1 2 0.0% 0.1% 2.6% 3.0% 2.5% 3.2% 1.9% 7.5% 5.4% 9.8% 3.4% 8.7% 1.6% 7.2% 

1 1 3 0.0% 30.8% 0.0% 40.5% 0.0% 40.8% 0.0% 39.1% 0.0% 36.2% 0.0% 31.2% 0.0% 18.9% 

1 2 1 0.0% 7.1% 0.0% 18.6% 0.0% 27.2% 0.0% 40.2% 0.0% 38.7% 0.0% 35.5% 0.0% 30.0% 

1 2 2 -0.6% -0.6% 0.3% 1.2% 0.3% 1.3% 0.1% 1.1% 0.5% 0.9% 2.9% 2.9% -0.2% 1.5% 

1 2 3 0.0% 9.9% 0.0% 18.4% 0.0% 18.7% 0.0% 17.0% 0.0% 17.6% 0.0% 17.7% 0.0% 10.8% 

1 3 1 0.0% 0.0% 0.5% 0.5% 0.5% 0.7% 0.3% 1.8% 0.0% 4.9% 0.0% 10.0% 0.0% 9.7% 

1 3 2 1.6% 2.0% 1.2% 3.4% 0.2% 4.4% 1.4% 6.0% -0.3% 5.1% 0.4% 4.1% 2.5% 4.9% 
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Table 3.8. (continued) 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

IH IR IH IR IH IR IH IR IH IR IH IR IH IR 

1 3 3 0.0% 3.4% -0.1% 17.7% 0.0% 27.3% -0.1% 34.3% 0.0% 34.0% 0.1% 32.2% 0.2% 16.6% 

2 1 1 0.0% 11.7% 0.0% 15.6% 0.0% 23.3% 0.0% 23.2% 0.0% 19.7% 0.0% 15.4% 0.0% 8.7% 

2 1 2 0.0% 2.4% 1.0% 5.7% 0.8% 9.2% -0.8% 8.9% 0.4% 8.9% 5.8% 9.3% 0.7% 5.6% 

2 1 3 0.2% 6.9% 0.1% 19.4% 0.2% 26.1% -0.1% 18.5% -0.1% 16.8% -0.2% 16.8% 0.1% 17.5% 

2 2 1 0.1% 7.2% 0.0% 13.5% 0.1% 15.7% -0.4% 12.1% -0.1% 12.5% -0.1% 12.8% 0.2% 6.3% 

2 2 2 5.3% 5.2% 3.9% 9.3% 0.3% 7.9% 2.5% 8.6% 1.8% 8.3% -0.6% 3.5% -1.6% 1.8% 

2 2 3 0.4% 25.6% 0.1% 37.6% -0.2% 44.1% 0.0% 44.7% -0.1% 43.1% 0.3% 32.4% 0.2% 13.1% 

2 3 1 0.0% 0.7% -0.1% 9.7% -0.4% 9.1% 0.0% 9.2% 0.1% 10.5% 0.1% 12.3% 0.0% 5.3% 

2 3 2 0.4% 1.5% 0.1% 2.1% 1.8% 3.4% 0.6% 3.0% 0.3% 2.9% 1.0% 3.0% 2.8% 3.2% 

2 3 3 0.9% 14.9% 0.0% 19.1% 0.5% 23.1% -0.1% 23.6% 0.8% 22.8% 0.4% 23.1% -0.1% 18.5% 

3 1 1 0.1% 12.4% 0.3% 35.0% 0.3% 46.2% 0.4% 53.3% 0.2% 47.2% -0.2% 38.8% 0.4% 23.2% 

3 1 2 2.3% 3.4% 1.6% 4.6% 0.2% 5.2% 1.1% 8.5% 2.7% 6.3% 0.8% 3.8% 1.7% 2.3% 

3 1 3 -0.7% -0.7% 0.1% 6.7% 0.1% 10.9% -0.3% 18.2% 0.2% 16.7% 0.1% 10.8% 0.5% 7.6% 

3 2 1 0.1% 9.1% -0.1% 23.7% 0.2% 31.5% -0.2% 36.9% -0.4% 38.6% 0.0% 31.1% 0.0% 16.8% 

3 2 2 1.8% 2.8% 2.0% 4.3% 3.8% 6.4% 3.5% 8.5% 0.1% 5.2% 0.4% 6.6% 0.2% 2.5% 

3 2 3 -0.1% -0.2% 0.4% 3.2% -0.1% 0.5% 0.7% 0.3% 0.2% -0.3% -0.2% -0.3% 0.1% -0.3% 

3 3 1 0.1% 5.6% -0.2% 11.0% 0.0% 14.5% -0.2% 18.9% 0.1% 24.5% 0.1% 21.7% 0.0% 15.1% 

3 3 2 1.1% 1.2% 3.2% 3.9% 1.5% 2.9% 1.7% 1.4% 3.3% 4.7% 2.6% 4.4% 1.4% 2.8% 

3 3 3 -0.3% 1.9% 0.2% 3.2% 0.3% 3.2% 0.3% 4.4% 0.1% 6.6% 0.2% 10.8% 0.1% 16.0% 

 
average 0.5% 6.4% 0.6% 13.0% 0.5% 15.9% 0.5% 17.4% 0.6% 17.1% 0.6% 15.5% 0.4% 9.8% 

   

-0.7% -0.7% -0.2% 0.5% -0.4% 0.5% -0.8% 0.3% -0.4% -0.3% -0.6% -0.3% -1.6% -0.3% 

    
 

5.3% 30.8% 3.9% 40.5% 3.8% 46.2% 3.5% 53.3% 5.4% 47.2% 5.8% 38.8% 2.8% 30.0% 

As the reader can notice GAI on the average outperforms the two alternative metaheuristics 

regardless of the number of machines. In terms of average results, as concerns the comparison 

between GAI and GAH ( IH) the minimum value is equal to 0.4% (6-machine problems with 

NWA  = 12.5) while the biggest value is 2.2% for problems with 3 machines and NWA  = 50. 

As regards IR, it puts in evidence a larger deviation as the smallest value is equal to 2.0% (2-

machine problems with NWA  = 87.5) while the largest difference (17.4%) arises from the 

scenario problems with 6 machines and NWA  = 50. Numerical results also reveal as GAH 

outperforms GAR as well, since the average IH is always lower than the corresponding IR. 

Moreover, IR reaches a maximum punctual value equal to 53.3% (6-machine problems with 

NWA  = 50, Level 3 of g, Level 1 of n, Level 1 of a), while IH is never higher than 13.2% (3-

machine problems with NWA  = 25, Level 3 of g, Level 1 of n, Level 6 of a). Further remarks 

may regard the way IR deviations reported in Tables 3.7, 3.8 and 3.9 vary from a lower to a 

higher NWA  value; it may be noticed that a low skill diversification on the workforce team 

(which coincided with NWA  = 87.5 and NWA  = 12.5) reduces the performance gap between 
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GAI and GAR, regardless of the number of machines. As for example, IR achieves an 

average value equal to 6.4% and 9.8% in case NWA  = 87.5 and NWA  = 12.5, respectively, for 

6-machine problems. On the other hand, if NWA  assumes values from 25 to 75, the average 

deviation varies from 13% to 17.4%. A similar trend can be noticed for problems with 2 and 3 

machines, as well. The reason of such an outcome could be justified by the way the different 

skills of a given workforce affect the space of solutions. In fact, whether the workforce team is 

characterized by a roughly uniform skill level (most workers have high skills, most worker 

have low skills) a random assignation of worker to machines, as performed by GAR, may just 

yield to slightly worse performances. On the contrary, whenever a workforce team is typified 

by workers with so different skills, exploring the space of solution with reference to worker 

allocation policies in addition to the sequence of jobs and groups, becomes crucial for 

effectively solving the problem in hand.  

Comparison with HPSO algorithm 

Since GAI proved its superiority in tackling the FSDGS-SWA problem in hand, a multiple 

comparative analysis between such procedure and the HPSO procedure proposed by 

Hajinejad, Salmasi and Mokhtari (2011) has been performed. HPSO algorithm employs a real-

number encoding scheme able to separately manage the sequence of groups and the sequences 

of jobs within each group. Moreover, it integrates the standard particle swarm optimization 

strategy with an Individual Enhancement (IE) neighbourhood search technique, aimed at 

improving performances in terms of both exploration and exploitation. In order to adapt the 

HPSO algorithm to the combined FSDGS-SWA problem in hand, a further substring of real 

numbers allocating workers to machines has been added to the encoding scheme proposed by 

the authors. HPSO has been coded on the same computational platform used for GAI, and the 

same stopping criterion, i.e., 30 s of CPU time, has been adopted. 

A first comparison between GAI and HPSO has been executed through the assessment of their 

performances against the optimal results given by the MILP model reported in Section 3.2. To 

this aim, a set of experimental data has been generated by considering 90 out of 135 instances 

belonging to the FSDGS benchmark, i.e., only those with Level 1 or Level 2 for the number of 

groups. In fact, according to what stated by Naderi and Salmasi (2012), the proposed MILP 

model can be used for solving problems with 10 groups at most. For each instance, two test 
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problems have been randomly generated. Moreover, 3 different levels of NWA , i.e., 12.5, 50 

and 87.5, respectively, have been considered for each problem. Therefore, a total of 90  3  

2 = 540 experimental test cases have been taken into account for such analysis. The MILP 

model has been implemented on an IBM® ILOG CPLEX 12.0 64 bit platform installed within 

a workstation powered by two quad-core 2.39 GHz processors with 24 GB RAM. All 

considered problems have been optimally solved by the mathematical model within a 

computational time of 180 s. Performances of both metaheuristics have been measured by 

means of the average percentage deviations GAI and HPSO reported by GAI and HPSO, 

respectively, vs. the global optimum: 

max max

max

(GAI) (MILP)
100

(MILP)

C C
GAI

C
 (3.20) 

max max

max

(HPSO) (MILP)
100

(MILP)

C C
HPSO

C
 (3.21) 

where max (GAI)C , max (HPSO)C  and max (MILP)C  refers to the average completion time yielded 

by GAI HPSO, and the mathematical model, respectively, over the 2 different test problems 

randomly generated for each instance of the considered benchmark. Also, the number of times 

each algorithm reached the global optimum given by the MILP model, denoted as opt_GAI 

and opt_HPSO, has been computed. Results obtained are shown in Tables 3.9, 3.10 and 3.11 

for problems with 2, 3 and 6 machines, respectively. 

Table 3.9. Comparison of metaheuristics with MILP model for problems with 2 machines. 
 

Level 
of g 

Level 
of n 

Level 
of a 

            NWA            

 
87.5 

 
50 

 
12.5 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 
 

GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 
 

GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

1 1 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 1 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 1 3 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 2 1 
 

0.00% 0.25% 2 1 
 

0.00% 0.18% 2 1 
 

0.00% 0.00% 2 2 

1 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 2 3 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 3 1 
 

0.00% 0.00% 2 2 
 

0.09% 0.00% 1 2 
 

0.00% 0.00% 2 2 

1 3 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 3 3 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

2 1 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.14% 2 1 
 

0.31% 0.31% 1 1 

2 1 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

2 1 3 
 

0.11% 0.11% 1 1 
 

0.00% 0.20% 2 1 
 

0.00% 0.00% 2 2 
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Table 3.9. (continued) 

Level 
of g 

Level 
of n 

Level 
of a 

            NWA            

 
87.5 

 
50 

 
12.5 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

2 2 1 
 

1.05% 1.05% 1 1 
 

0.21% 0.17% 1 1 
 

0.96% 0.66% 1 1 

2 2 2 
 

0.00% 0.16% 2 1 
 

0.96% 0.30% 0 0 
 

0.18% 0.18% 1 1 

2 2 3 
 

1.24% 0.57% 0 1 
 

0.74% 0.55% 0 0 
 

0.27% 1.32% 1 0 

2 3 1 
 

0.00% 0.73% 2 1 
 

0.24% 0.19% 1 1 
 

0.25% 0.47% 1 1 

2 3 2 
 

0.00% 0.07% 2 1 
 

0.13% 0.21% 1 0 
 

0.00% 0.00% 2 2 

2 3 3 
 

0.44% 0.39% 1 1 
 

0.00% 0.87% 1 0 
 

0.18% 0.51% 1 0 

average/TOT    0.16% 0.18% 31 28 

 

0.13% 0.16% 27 23   0.12% 0.19% 30 28 

 

Table 3.10. Comparison of metaheuristics with MILP model for problems with 3 machines. 

Level 
of g 

Level 
of n 

Level 
of a 

            NWA            

 
87.5 

 
50 

 
12.5 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 
 

GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 
 

GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

1 1 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 1 2 

 
0.00% 2.08% 2 1 

 
0.00% 0.99% 2 1 

 
0.00% 0.00% 2 2 

1 1 3 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 1 4 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 1 5 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 1 6 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 1 7 
 

0.00% 0.43% 2 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 1 8 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 1 9 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 2 1 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 2 3 

 
0.00% 0.77% 2 1 

 
0.02% 0.02% 1 1 

 
0.00% 0.82% 2 1 

1 2 4 
 

0.00% 0.00% 2 2 
 

0.09% 0.13% 1 1 
 

0.00% 0.00% 2 2 
1 2 5 

 
0.00% 0.13% 2 1 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 2 6 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 2 7 

 
0.24% 0.24% 1 1 

 
0.09% 0.29% 1 1 

 
0.00% 0.00% 2 2 

1 2 8 
 

0.00% 0.10% 2 1 
 

0.00% 0.18% 2 1 
 

0.00% 0.00% 2 2 
1 2 9 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

 
0.00% 0.25% 2 1 

1 3 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
1 3 2 

 
0.10% 0.10% 1 1 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 3 3 
 

0.00% 0.22% 2 1 
 

0.15% 0.28% 1 0 
 

0.12% 0.12% 1 1 
1 3 4 

 
0.16% 0.00% 1 2 

 
0.00% 0.00% 2 2 

 
0.89% 0.89% 1 1 

1 3 5 
 

0.13% 0.56% 1 0 
 

0.58% 1.33% 0 0 
 

0.00% 0.00% 2 2 
1 3 6 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

 
0.00% 0.00% 2 2 

1 3 7 
 

0.00% 0.00% 2 2 
 

0.00% 0.02% 2 1 
 

0.35% 0.36% 1 1 
1 3 8 

 
0.51% 0.52% 0 0 

 
0.00% 0.76% 2 1 

 
0.10% 0.02% 1 1 

1 3 9 
 

0.00% 0.47% 2 0 
 

0.38% 0.01% 1 1 
 

0.00% 0.06% 2 1 
2 1 1 

 
0.59% 0.00% 1 2 

 
1.20% 1.36% 1 1 

 
0.22% 0.29% 1 1 

2 1 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.62% 2 1 
 

0.00% 0.71% 2 1 
2 1 3 

 
0.12% 0.74% 1 1 

 
0.73% 0.25% 1 1 

 
0.12% 0.00% 1 2 

2 1 4 
 

0.00% 0.98% 2 1 
 

0.82% 0.00% 1 2 
 

0.21% 0.71% 1 1 
2 1 5 

 
0.00% 0.00% 2 2 

 
0.00% 0.04% 2 1 

 
0.00% 0.69% 2 1 

2 1 6 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.38% 2 1 
2 1 7 

 
1.06% 0.00% 1 2 

 
0.00% 0.16% 2 1 

 
1.22% 1.46% 1 1 

2 1 8 
 

0.85% 0.62% 1 1 
 

0.05% 0.38% 1 1 
 

0.37% 0.34% 1 1 
2 1 9 

 
0.00% 0.00% 2 2 

 
0.00% 0.08% 2 1 

 
0.00% 0.16% 2 1 

2 2 1 
 

0.27% 0.16% 1 1 
 

0.00% 0.00% 2 2 
 

0.12% 0.52% 1 1 
2 2 2 

 
0.48% 1.73% 1 0 

 
0.75% 1.05% 0 0 

 
1.08% 1.08% 0 0 

2 2 3 
 

0.14% 0.51% 1 0 
 

0.06% 0.00% 1 2 
 

0.27% 0.61% 1 0 
2 2 4 

 
0.25% 0.25% 1 1 

 
0.05% 1.78% 1 0 

 
1.00% 0.09% 0 1 

2 2 5 
 

1.01% 0.00% 1 2 
 

1.14% 0.74% 0 0 
 

1.43% 0.69% 0 0 
2 2 6 

 
0.00% 0.07% 2 1 

 
0.00% 0.74% 2 1 

 
0.79% 0.79% 1 1 

2 2 7 
 

0.73% 0.65% 1 0 
 

0.15% 1.41% 0 0 
 

0.00% 0.20% 2 1 



78 
 

Table 3.10. (continued) 

Level 
of g 

Level 
of n 

Level 
of a 

            NWA            

 
87.5 

 
50 

 
12.5 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

 
GAI HPSO 

opt_ 

GAI 

opt_ 

HPSO 

2 2 8 
 

0.27% 0.80% 0 0 
 

1.46% 0.84% 1 0 
 

0.58% 1.10% 1 0 
2 2 9 

 
0.71% 0.47% 0 0 

 
1.42% 0.79% 1 1 

 
0.44% 0.92% 1 0 

2 3 1 
 

1.40% 0.64% 1 1 
 

0.05% 0.37% 1 1 
 

0.29% 0.65% 1 1 
2 3 2 

 
1.60% 1.24% 0 0 

 
0.85% 1.31% 0 0 

 
1.34% 1.41% 0 0 

2 3 3 
 

0.14% 0.18% 1 0 
 

0.00% 0.38% 2 0 
 

0.12% 0.34% 1 1 
2 3 4 

 
1.15% 0.96% 0 0 

 
0.62% 0.43% 0 0 

 
0.54% 0.32% 0 1 

2 3 5 
 

0.66% 0.43% 0 0 
 

0.52% 1.25% 0 0 
 

1.09% 0.79% 0 1 
2 3 6 

 
0.41% 0.65% 0 1 

 
0.24% 0.35% 1 0 

 
1.01% 0.93% 1 0 

2 3 7 
 

0.85% 0.46% 1 1 
 

1.14% 0.50% 0 1 
 

0.49% 1.15% 0 0 
2 3 8 

 
0.01% 0.82% 1 0 

 
0.64% 0.14% 1 1 

 
0.28% 0.00% 1 2 

2 3 9 
 

0.09% 0.00% 1 2 
 

0.22% 0.38% 1 1 
 

0.00% 0.04% 2 1 
 average/TOT  

ave 

  0.26% 0.33% 75 65   0.25% 0.36% 75 63   0.27% 0.35% 76 68 

 

Table 11. Comparison of metaheuristics with MILP model for problems with 6 machines. 

Level 
of g 

Level 
of n 

Level 
of a 

            NWA            

 
87.5 

 
50 

 
12.5 

 
GAI HPSO 

opt_ 
GAI 

opt_ 
HPSO 

 
GAI HPSO 

opt_ 
GAI 

opt_ 
HPSO 

 
GAI HPSO 

opt_ 
GAI 

opt_ 
HPSO 

1 1 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 1 2 
 

0.00% 0.06% 2 1 
 

0.11% 0.16% 1 1 
 

0.00% 0.66% 2 0 

1 1 3 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 2 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 2 2 
 

1.20% 1.39% 1 0 
 

0.27% 1.86% 0 1 
 

1.48% 2.61% 0 0 

1 2 3 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 3 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

1 3 2 
 

0.87% 1.48% 1 1 
 

1.01% 2.68% 1 0 
 

0.21% 1.80% 1 1 

1 3 3 
 

0.13% 0.06% 0 1 
 

0.25% 0.04% 0 1 
 

0.02% 0.06% 1 1 

2 1 1 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 
 

0.00% 0.00% 2 2 

2 1 2 
 

0.32% 1.20% 1 1 
 

1.39% 2.24% 1 0 
 

0.96% 1.00% 0 0 

2 1 3 
 

0.00% 0.22% 2 0 
 

0.23% 0.13% 0 0 
 

0.00% 0.16% 2 0 

2 2 1 
 

0.00% 0.05% 2 1 
 

0.34% 0.04% 1 1 
 

0.00% 0.17% 2 1 

2 2 2 
 

1.95% 3.71% 0 0 
 

2.46% 3.40% 0 0 
 

4.35% 5.47% 0 0 

2 2 3 
 

0.14% 0.16% 0 0 
 

0.07% 0.59% 0 0 
 

0.07% 0.11% 1 0 

2 3 1 
 

0.13% 0.16% 1 1 
 

0.12% 0.01% 1 1 
 

0.04% 0.04% 1 1 

2 3 2 
 

1.75% 3.18% 0 0 
 

2.22% 3.85% 0 0 
 

2.12% 2.71% 0 0 

2 3 3 
 

0.27% 0.17% 0 0 
 

0.46% 0.53% 1 0 
 

0.53% 0.76% 0 0 

average/TOT    0.38% 0.66% 22 18 

 

0.50% 0.86% 18 17   0.54% 0.86% 22 16 

It can be noticed that GAI shows a higher effectiveness in approaching the global optimum 

compared to HPSO, since the average gap from the MILP solution obtained through GAI is 

always lower or equal than the corresponding average value of HPSO. Moreover, the 

proposed genetic algorithm reaches the global optimum in a higher number of cases than the 

particle swarm procedure.  
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In addition to the assessment of GAI and HPSO performances against the global optima 

provided by the MILP model, a more comprehensive comparison between the two procedures 

has been fulfilled by taking into account the same benchmark adopted in the GAs evaluation 

Section, composed by 1,890 test cases. In this case the Relative Percentage Deviation (RPD) 

from the best metaheuristic solution has been calculated with respect to each problem for both 

GAI and HPSO, according to the following formula: 

max max
GAI

max

(GAI)
RPD 100

C BestC

BestC
 (3.22) 

max max
HPSO

max

(HPSO)
RPD 100

C BestC

BestC
 (3.23) 

where max (GAI)C  and max (HPSO)C are the makespan values obtained by the two metaheuristics with 

reference to each test problem and maxBestC is the lowest among them, i.e., the best metaheuristic 

solution available for a given test case. Tables 3.12, 3.13 and 3.14 illustrate the average results 

obtained. for 2-, 3- and 6-machine problems, respectively. Each main row reports the average RPD 

calculated over the two randomly generated problems pertaining to a given instance, while bold 

numbers represent the grand average RPDs for a given value of NWA . 

Table 3.12. Comparison between GAI and HPSO for problems with 2 machines. 

 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO 

1 1 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 1 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 3 1 0.00% 0.00% 0.00% 0.08% 0.03% 0.00% 0.10% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 

1 3 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 3 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2 1 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.23% 0.00% 0.00% 

2 1 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.93% 0.00% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00% 0.00% 

2 1 3 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.20% 0.28% 0.19% 0.00% 0.00% 0.00% 0.00% 

2 2 1 0.00% 0.00% 0.00% 1.07% 0.00% 0.58% 0.03% 0.00% 0.00% 0.63% 0.23% 0.00% 0.29% 0.00% 

2 2 2 0.00% 0.16% 0.20% 0.07% 0.50% 0.25% 0.66% 0.00% 0.91% 0.42% 0.00% 0.43% 0.00% 0.00% 

2 2 3 0.79% 0.12% 0.14% 0.31% 0.00% 0.59% 0.22% 0.03% 0.00% 1.70% 0.00% 1.36% 0.00% 1.05% 

2 3 1 0.00% 0.72% 0.00% 0.00% 0.31% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.80% 0.25% 0.48% 

2 3 2 0.00% 0.07% 0.00% 0.07% 0.00% 0.03% 0.00% 0.09% 0.00% 0.06% 0.00% 0.03% 0.00% 0.00% 

2 3 3 0.05% 0.00% 0.30% 0.56% 0.00% 0.66% 0.00% 0.86% 0.44% 0.13% 0.00% 0.55% 0.00% 0.34% 

3 1 1 0.00% 3.80% 0.71% 2.82% 0.00% 2.51% 0.00% 4.84% 0.63% 0.72% 0.00% 2.69% 0.00% 3.51% 
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Table 3.12. (continued) 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO 

3 1 2 0.00% 2.83% 0.00% 3.90% 0.00% 6.19% 0.00% 3.82% 0.00% 1.36% 0.00% 5.49% 1.64% 3.16% 

3 1 3 0.09% 2.72% 1.04% 0.43% 1.68% 0.00% 0.65% 1.12% 0.00% 3.19% 0.66% 4.06% 0.10% 2.35% 

3 2 1 0.17% 1.98% 0.00% 3.27% 0.00% 2.35% 0.25% 1.73% 0.12% 3.49% 0.00% 2.53% 0.00% 4.88% 

3 2 2 0.00% 4.32% 0.00% 4.54% 0.00% 3.35% 0.00% 3.31% 0.00% 5.05% 0.00% 1.39% 0.00% 3.27% 

3 2 3 0.45% 0.71% 0.21% 0.50% 0.54% 0.86% 0.09% 0.34% 1.02% 1.07% 0.27% 0.31% 0.41% 1.03% 

3 3 1 0.00% 1.51% 0.20% 0.00% 0.61% 1.08% 0.20% 0.94% 0.32% 0.48% 0.00% 0.81% 1.40% 2.41% 

3 3 2 0.00% 1.82% 0.00% 2.58% 0.00% 1.80% 0.00% 3.82% 0.00% 1.76% 0.00% 1.24% 0.00% 3.86% 

3 3 3 0.00% 3.13% 0.00% 2.11% 0.00% 1.76% 0.00% 2.97% 0.00% 3.03% 0.00% 2.15% 0.00% 5.04% 

grand average 0.06% 0.89% 0.11% 0.83% 0.14% 0.85% 0.08% 0.90% 0.14% 0.86% 0.05% 0.89% 0.15% 1.16% 

 

Table 3.13. Comparison between GAI and HPSO for problems with 3 machines. 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO 

1 1 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 2 0.00% 2.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 7 0.00% 0.43% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.57% 0.00% 0.00% 0.00% 0.00% 

1 1 8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 1 9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 3 0.00% 0.77% 0.00% 0.52% 0.00% 0.06% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.82% 

1 2 4 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.03% 0.00% 0.22% 0.00% 0.00% 0.00% 0.00% 

1 2 5 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.39% 0.00% 0.00% 

1 2 6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 2 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 0.02% 0.00% 0.72% 0.00% 0.00% 

1 2 8 0.00% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.40% 0.00% 0.00% 

1 2 9 0.00% 0.00% 0.00% 0.11% 0.00% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.25% 

1 3 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 3 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.55% 0.00% 0.00% 

1 3 3 0.00% 0.22% 0.00% 0.52% 0.00% 0.10% 0.00% 0.12% 0.00% 0.55% 0.00% 0.18% 0.00% 0.00% 

1 3 4 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 3 5 0.00% 0.42% 0.00% 0.25% 0.00% 0.16% 0.00% 0.75% 0.63% 0.02% 0.05% 0.00% 0.00% 0.00% 

1 3 6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1 3 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 

1 3 8 0.00% 0.01% 0.00% 0.12% 0.00% 0.54% 0.00% 0.76% 0.00% 0.00% 0.00% 0.16% 0.08% 0.00% 

1 3 9 0.00% 0.47% 0.00% 1.86% 0.00% 0.31% 0.38% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.06% 

2 1 1 0.58% 0.00% 0.00% 0.05% 1.33% 0.00% 0.00% 0.16% 0.96% 0.00% 0.50% 0.07% 0.00% 0.07% 

2 1 2 0.00% 0.00% 0.29% 0.00% 1.56% 0.00% 0.00% 0.61% 0.14% 2.05% 0.00% 0.00% 0.00% 0.71% 

2 1 3 0.00% 0.62% 0.00% 0.27% 0.23% 0.59% 0.47% 0.00% 0.90% 0.00% 0.00% 0.02% 0.12% 0.00% 

2 1 4 0.00% 0.98% 0.00% 0.04% 0.45% 0.00% 0.81% 0.00% 0.00% 0.87% 0.00% 0.14% 0.00% 0.49% 

2 1 5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.26% 0.00% 0.00% 0.69% 
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Table 3.13. (continued) 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO 

2 1 6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 

2 1 7 1.06% 0.00% 0.21% 0.59% 1.25% 0.63% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 

2 1 8 0.23% 0.00% 0.27% 0.00% 0.44% 0.00% 0.00% 0.32% 0.00% 0.31% 0.09% 0.00% 0.02% 0.00% 

2 1 9 0.00% 0.00% 0.00% 0.03% 0.00% 0.23% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 

2 2 1 0.11% 0.00% 0.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.57% 0.00% 0.71% 0.00% 0.00% 0.41% 

2 2 2 0.00% 1.25% 0.00% 1.28% 0.95% 0.00% 0.02% 0.33% 0.51% 0.00% 0.63% 0.35% 0.10% 0.10% 

2 2 3 0.00% 0.36% 0.00% 0.80% 0.00% 0.10% 0.06% 0.00% 0.09% 0.00% 0.26% 0.06% 0.09% 0.43% 

2 2 4 0.00% 0.00% 0.43% 0.64% 0.18% 0.78% 0.00% 1.73% 0.00% 0.79% 0.00% 0.25% 0.92% 0.01% 

2 2 5 1.00% 0.00% 0.00% 0.03% 0.00% 0.38% 0.41% 0.00% 0.00% 1.43% 0.00% 0.88% 0.74% 0.00% 

2 2 6 0.00% 0.07% 0.00% 0.55% 0.77% 0.00% 0.00% 0.74% 0.00% 0.62% 0.00% 0.00% 0.00% 0.00% 

2 2 7 0.54% 0.45% 1.01% 0.00% 0.04% 0.74% 0.00% 1.27% 0.26% 0.14% 0.10% 0.21% 0.00% 0.20% 

2 2 8 0.00% 0.53% 0.06% 0.57% 0.00% 1.31% 1.37% 0.75% 0.49% 0.32% 0.26% 0.00% 0.00% 0.51% 

2 2 9 0.24% 0.00% 0.00% 0.61% 0.98% 0.00% 0.62% 0.00% 1.01% 0.00% 0.00% 0.26% 0.00% 0.48% 

2 3 1 0.76% 0.00% 0.00% 0.40% 0.69% 0.00% 0.00% 0.32% 0.00% 0.07% 0.37% 0.00% 0.00% 0.36% 

2 3 2 1.23% 0.88% 0.00% 1.79% 1.38% 0.00% 0.00% 0.45% 0.33% 0.00% 1.18% 0.20% 0.04% 0.11% 

2 3 3 0.00% 0.05% 0.18% 0.23% 0.00% 0.44% 0.00% 0.38% 0.01% 0.26% 0.00% 0.00% 0.00% 0.22% 

2 3 4 0.22% 0.05% 0.00% 1.00% 0.07% 0.34% 0.23% 0.04% 0.25% 0.55% 0.28% 0.17% 0.21% 0.00% 

2 3 5 0.24% 0.00% 0.32% 0.86% 0.00% 1.07% 0.00% 0.73% 0.78% 1.73% 0.90% 0.17% 0.91% 0.61% 

2 3 6 0.16% 0.41% 0.07% 0.56% 0.16% 0.12% 0.00% 0.12% 0.00% 0.51% 0.00% 0.53% 0.69% 0.62% 

2 3 7 0.38% 0.00% 0.00% 0.28% 0.66% 0.06% 1.01% 0.37% 0.50% 0.19% 0.12% 0.06% 0.00% 0.66% 

2 3 8 0.00% 0.81% 0.00% 0.05% 0.00% 0.76% 0.49% 0.00% 0.00% 0.18% 0.00% 0.74% 0.28% 0.00% 

2 3 9 0.09% 0.00% 0.05% 0.50% 0.48% 0.00% 0.00% 0.15% 0.26% 0.00% 0.00% 0.37% 0.00% 0.04% 

3 1 1 0.00% 3.38% 0.53% 1.86% 0.17% 0.96% 0.35% 1.15% 0.00% 0.85% 0.15% 1.64% 0.00% 0.96% 

3 1 2 0.00% 2.59% 0.44% 0.69% 0.00% 1.61% 0.01% 1.81% 0.00% 5.94% 1.16% 2.16% 0.00% 2.65% 

3 1 3 0.00% 2.01% 0.00% 2.15% 0.00% 3.04% 0.00% 1.01% 1.04% 1.03% 0.32% 3.32% 0.00% 3.80% 

3 1 4 1.18% 0.41% 0.38% 1.37% 2.45% 1.23% 0.70% 0.24% 0.18% 1.87% 0.00% 4.30% 0.00% 2.39% 

3 1 5 1.53% 1.20% 0.00% 6.47% 0.00% 5.32% 0.15% 1.39% 0.00% 2.06% 0.00% 3.78% 0.00% 3.40% 

3 1 6 0.00% 5.39% 0.36% 0.12% 1.40% 0.00% 0.00% 2.26% 0.00% 2.34% 0.00% 4.35% 0.00% 1.86% 

3 1 7 0.00% 1.28% 0.00% 0.62% 0.97% 2.57% 0.33% 1.57% 0.00% 0.58% 0.45% 1.04% 0.00% 0.53% 

3 1 8 0.48% 0.21% 0.35% 0.87% 0.00% 0.85% 0.32% 0.11% 0.00% 0.91% 0.22% 2.69% 0.00% 0.24% 

3 1 9 0.00% 1.03% 0.00% 1.40% 1.14% 1.70% 0.00% 1.33% 0.57% 0.87% 0.00% 0.50% 0.00% 1.51% 

3 2 1 0.00% 2.87% 0.01% 0.65% 0.00% 1.67% 0.00% 1.58% 0.00% 4.41% 0.00% 1.26% 0.37% 2.00% 

3 2 2 0.75% 0.00% 1.32% 0.96% 1.95% 0.93% 0.00% 0.46% 0.00% 2.14% 2.60% 1.80% 0.00% 3.28% 

3 2 3 0.00% 2.30% 0.00% 2.40% 0.00% 1.98% 0.00% 1.30% 0.00% 3.81% 0.00% 2.67% 0.30% 1.35% 

3 2 4 0.00% 2.06% 0.00% 3.05% 1.44% 0.64% 0.60% 0.40% 0.00% 2.97% 0.00% 0.35% 0.00% 1.28% 

3 2 5 0.00% 2.16% 0.00% 1.50% 1.70% 0.00% 0.00% 1.97% 0.13% 0.18% 1.63% 3.76% 0.00% 3.75% 

3 2 6 0.00% 2.54% 0.00% 2.04% 0.00% 3.29% 0.00% 2.88% 0.00% 3.15% 0.00% 2.58% 0.00% 3.33% 

3 2 7 0.00% 4.53% 0.96% 0.00% 0.30% 1.99% 0.00% 1.60% 0.00% 2.09% 0.00% 1.93% 0.00% 3.34% 

3 2 8 0.00% 2.42% 0.00% 3.24% 0.00% 3.26% 0.74% 2.17% 0.00% 2.44% 0.00% 2.24% 0.00% 5.01% 

3 2 9 0.00% 2.28% 0.00% 2.70% 0.42% 0.18% 0.00% 1.28% 0.55% 2.17% 0.87% 0.48% 0.39% 0.23% 

3 3 1 0.00% 1.40% 0.91% 0.31% 0.00% 1.64% 0.00% 1.20% 0.15% 0.87% 0.00% 2.20% 0.00% 2.23% 

3 3 2 0.00% 3.02% 0.36% 1.24% 0.03% 2.11% 0.31% 1.98% 0.00% 0.91% 0.28% 0.90% 0.00% 3.48% 

3 3 3 0.00% 2.23% 0.00% 2.79% 0.00% 1.54% 0.00% 2.41% 0.00% 2.85% 0.00% 2.34% 0.00% 2.59% 

3 3 4 0.00% 3.86% 0.00% 0.81% 0.00% 1.81% 0.00% 2.89% 0.44% 1.41% 0.00% 2.87% 0.00% 3.38% 

3 3 5 0.00% 1.96% 0.00% 1.67% 0.00% 1.39% 0.00% 0.60% 0.00% 3.95% 0.00% 3.70% 0.00% 3.60% 

3 3 6 0.00% 0.89% 0.79% 0.00% 0.00% 1.51% 0.00% 2.94% 0.00% 0.94% 0.00% 0.55% 0.37% 1.12% 

3 3 7 0.00% 2.14% 0.00% 2.15% 0.00% 2.23% 0.00% 1.88% 0.00% 1.64% 0.00% 0.80% 0.00% 2.18% 

3 3 8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

3 3 9 0.00% 2.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

grand average 0.14% 0.87% 0.12% 0.72% 0.29% 0.75% 0.12% 0.67% 0.13% 0.82% 0.17% 0.78% 0.07% 0.90% 
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Table 3.14. Comparison between GAI and HPSO for problems with 6 machines. 

 

Level 
of g 

Level 
of n 

Level  
of a 

NWA  

87.5 75 62.5 50 37.5 25 12.5 

RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO RPDGAI RPDHPSO 

1 1 1 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1 1 2 0,00% 0,06% 0,00% 0,63% 0,44% 0,00% 0,00% 0,05% 0,28% 0,25% 0,00% 0,82% 0,00% 0,67% 

1 1 3 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1 2 1 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1 2 2 0,00% 0,19% 0,00% 0,43% 0,10% 0,18% 0,18% 1,77% 0,00% 0,18% 0,00% 2,63% 0,00% 1,12% 

1 2 3 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1 3 1 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

1 3 2 0,00% 0,60% 0,00% 0,81% 0,00% 1,56% 0,00% 1,64% 0,00% 0,25% 0,40% 0,41% 0,00% 1,59% 

1 3 3 0,07% 0,00% 0,10% 0,00% 0,00% 0,00% 0,22% 0,00% 0,09% 0,00% 0,00% 0,08% 0,00% 0,04% 

2 1 1 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

2 1 2 0,00% 0,87% 0,44% 0,82% 0,57% 1,38% 0,00% 0,83% 0,00% 3,18% 0,00% 3,81% 0,12% 0,16% 

2 1 3 0,00% 0,22% 0,09% 0,02% 0,00% 0,10% 0,09% 0,00% 0,09% 0,05% 0,00% 0,12% 0,00% 0,16% 

2 2 1 0,00% 0,05% 0,00% 0,05% 0,00% 0,05% 0,30% 0,00% 0,00% 0,04% 0,23% 0,00% 0,00% 0,17% 

2 2 2 0,00% 1,74% 0,00% 1,81% 0,48% 0,06% 1,59% 2,52% 0,36% 1,72% 0,76% 0,23% 0,00% 1,06% 

2 2 3 0,04% 0,07% 0,03% 0,20% 0,05% 0,15% 0,00% 0,52% 0,22% 0,13% 0,00% 0,21% 0,03% 0,07% 

2 3 1 0,00% 0,04% 0,18% 0,00% 0,20% 0,00% 0,10% 0,00% 0,01% 0,00% 0,00% 0,05% 0,00% 0,00% 

2 3 2 0,00% 1,40% 0,00% 0,81% 0,00% 0,69% 0,00% 1,60% 0,00% 0,55% 0,89% 0,09% 0,00% 0,58% 

2 3 3 0,10% 0,00% 0,36% 0,27% 0,00% 0,23% 0,18% 0,25% 0,00% 0,36% 0,08% 0,53% 0,06% 0,28% 

3 1 1 0,00% 1,15% 0,00% 1,07% 0,00% 0,71% 0,00% 0,84% 0,00% 1,18% 0,00% 1,05% 0,00% 0,74% 

3 1 2 0,00% 5,17% 0,00% 5,32% 0,00% 6,61% 0,00% 4,22% 0,00% 2,90% 0,00% 3,99% 0,00% 2,01% 

3 1 3 0,49% 0,19% 0,00% 0,45% 0,00% 0,22% 0,00% 0,10% 0,00% 0,12% 0,01% 0,22% 0,00% 0,39% 

3 2 1 0,00% 0,81% 0,00% 0,38% 0,00% 0,50% 0,01% 0,29% 0,00% 0,28% 0,09% 0,22% 0,00% 0,74% 

3 2 2 0,00% 1,50% 0,00% 2,83% 0,00% 4,26% 0,00% 4,79% 0,00% 2,69% 0,00% 3,66% 0,00% 6,48% 

3 2 3 0,00% 0,51% 0,00% 0,15% 0,55% 0,42% 0,00% 0,43% 0,03% 0,22% 0,41% 0,25% 0,12% 0,51% 

3 3 1 0,00% 0,26% 0,00% 0,42% 0,00% 0,60% 0,00% 0,50% 0,00% 0,31% 0,14% 0,25% 0,02% 0,39% 

3 3 2 0,00% 2,25% 0,00% 3,04% 0,00% 2,40% 0,00% 1,75% 0,00% 4,92% 0,00% 4,16% 0,00% 2,67% 

3 3 3 0,00% 0,39% 0,00% 1,18% 0,00% 1,44% 0,00% 1,17% 0,00% 1,03% 0,00% 1,10% 0,00% 1,18% 

grand average 0.03% 0.65% 0.04% 0.77% 0.09% 0.80% 0.10% 0.86% 0.04% 0.75% 0.11% 0.88% 0.01% 0.78% 

As the reader can notice, GAI algorithm confirms its superior performances with respect to 

HPSO in tackling the FSDGS-SWA problem in hand regardless to the number of machines 

considered. In fact, the grand average RPDs obtained by the former procedure are always 

lower than the corresponding values yield by latter one. More in detail, the proposed genetic 

algorithm reports a grand average RPD ranging from 0.01% (6-machine problems with NWA  

= 12.5) to 0.29% (problems with 3 machines and NWA= 62.5), while the particle swarm 

optimization procedure arisen from literature gives a grand average deviation between 0.65% 

(6-machine problems with NWA  = 12.5) and 1.16% (problems with 2 machines and NWA= 

12.5).  A further comparison between GAI and HPSO has been performed through an 

ANOVA analysis (Montgomery, 2007) executed on Stat-Ease® Design Expert 7.0.0. 

commercial tool. More in detail, LSD plots at 95% confidence level have been drawn for each 
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sub-benchmark considered, i.e., for 2-, 3- and 6-machines problems, as reported in Figures 

3.5, 3.6 and 3.7, respectively. 

 

Figure 3.5. LSD plot for 2-machine problems. 

 

 

Figure 3.6. LSD plot for 3-machine problems. 
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Figure 3.7. LSD plot for 6-machine problems. 

The obtained graphs show how GAI systematically outperforms HPSO in a statically 

significant manner, as the LSD bar related to the proposed genetic algorithm always lies below 

the one regarding the particle swarm procedure without any overlapping. Therefore, on the 

basis of the multiple analysis performed, it can be concluded that the developed GAI is more 

effective than the HPSO method taken as reference for approaching the proposed FSDGS-

SWA problem. 

3.6 How manpower skills affect productivity 

The aim of this section is to investigate the way different workforce teams featured by 

different average NWA may influence the performance of a given serial production system. In 

order to make this analysis as much comprehensive as possible, numerical results concerning 

both workforce configurations with NWA   = 0 and NWA= 100 have here been included. Of 

course, as workforce teams with an average NWA equal to 0 or equal to 100 are composed 

only by identical workers, a simple GAI missing of the SWA encoding/decoding structure has 

been adopted for obtaining the corresponding near optimal solutions.  
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A trivial remark concerning the effect of the average skill level over the performances of the 

production system consists of the relation between makespan reduction and average NWA 

increase. In words, whenever the average NWA characterizing a give workforce team is 

improved the makespan decreases, despite the selected number of machines. Table 3.15 

illustrates the average numerical results obtained by an indicator hereinafter named Scenario 

Makespan Percentage Reduction (SMPR). It refers to the percentage deviation between the 

average makespan related to a given NWA  value and the reference value represented by the 

makespan obtained by NWA  = 0. For each test problem, index SMPR can be computed as: 

0
max max

0
max

100
NWAC C

SMPR
C

 (3.24) 

Table 3.15. Average values for SMPR index. 

Nr of 
machines 

         NWA        

 12.5 25 37.5 50 62.5 75 87.5 100 

2 

 

-3.29% -5.84% -8.55% -10.75% -13.35% -15.02% -17.33% -18.15% 

3 

 

-5.50% -10.34% -13.81% -16.43% -19.15% -21.64% -24.03% -24.68% 

6   -10.93% -18.18% -22.01% -24.89% -28.49% -30.63% -31.72% -31.95% 

What the reader should notice is that, for each sub-benchmark corresponding to a given 

number of machines, makespan reduction enlarges whenever the average NWA increase. 

Moreover, Figure 3.8 puts in evidence as the average makespan reduction due to the NWA 

increase is strongly influenced by the number of machines pertaining to the considered sub-

benchmark. As higher is the number of machine, as stronger is the percentage makespan 

reduction. 
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Figure 3.8. Average values for SMPR index. 

With reference to the relationship between the average skill level and the global performance 

of the production system, the way a decision maker should take advantage by the 

aforementioned findings should be dealt with. Thus, in the following the answers to the 

following questions are provided: 

a) How the decision maker can assess the NWA of the workforce currently employed 

within a given shop floor? 

b) Once the NWA  index of the working team has been established, how much the 

makespan of a flow-shop production system may be reduced by means of skills 

improvement? 

c) Whether the decision maker knows how much the NWA of the workforce should be 

improved for achieving a given makespan reduction, how much the workforce skill 

upgrade would cost? 

 According to the procedure proposed in this research, evaluating the NWA of a given 

workforce team should arise from a cost analysis based on the difference between the 

maximum salary and the basic wage. Thus, for example, if a new inexperienced worker to be 

employed in a manufacturing company would receive a basic wage equal to 1,000$ per month, 

while the most experienced skilled worker would receive about 1,800$ per month, then the 

NWA concerning a worker paid 1,600$ should be equal to 75. Once the NWA has been 

computed for each worker, the average NWA characterizing a workforce team may be easily 

obtained. Table 3.16 reports the corresponding salary percentage increment with respect to the 
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basic wage as the average NWA changes. A Salary Step percentage increment (SSi%) equal to 

10% arises by dividing by 8 the percentage difference between level nine related salary and 

level zero related salary. 

Table 3.16. Relation NWA vs. salary. 

Levels 1 2 3 4 5 6 7 8 9 

NWA 0 12.5 25 37.5 50 62.5 75 87.5 100 

Salary per month 1000$ 1100$ 1200$ 1300$ 1400$ 1500$ 1600$ 1700$ 1800$ 

Steady salary % increment 
(SSi% = 10%) 

- 10% 20% 30% 40% 50% 60% 70% 80% 

In order to relate the Makespan percentage reduction (MKr%) and the corresponding 

manpower percentage cost increment (MPc%) three decision making Tables have been 

properly designed. Each table refers to a given number of machines and makes the reader able 

to quantify the cost investment in terms of  workforce skills upgrade to reach a given 

percentage makespan reduction. It is worth pointing out that each table should be read in the 

following way. Once the current average NWA of the workforce team is assessed, 

individuating the corresponding value on the left side of the Table should represent the first 

thing to do. Then, the decision maker should move to right until the target makespan reduction 

MKr% is met while the corresponding NWA value on the upper side of the Table denotes the 

required average NWA to ensure such a makespan improvement. Finally in order to quantify 

the manpower cost increment (MPc%) with respect to the current workforce configuration, a 

match between the SSi% value (four reference levels have been considered: 5%, 10%, 15% 

and 20%) and the MPc% value located in the same line must be detected. As for example, 

looking at Table 3.18 (3 machines), if the average skill level of the current workforce team is 

equal to 25 and the decision maker would reach a 13% makespan percentage reduction 

(MKr%), a workforce team with an average NWA equal to 75 should be arranged. The 

percentage cost increment to ensure such a makespan reduction depends on the so-called 

salary step increment (SSi%); thus, if the salary step increment is equal to 10% (i.e. the 

maximum salary is 80% higher than basic wage) then the manpower cost percentage 

increment (MPc%) is equal to 33%. On the other hand, if SSi% is equal to 5% (i.e., the 

maximum salary is 40% higher than basic wage) the cost increment to ensure a 13% makespan 

reduction is equal to 18%. 
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Table 3.17. Decision making table for a 2-machine production system. 

    

future ASL 

  

    

100 87.5 75 62.5 50 37.5 25 12.5 

current 
ASL 

SSi 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

0 

5% 

-18% 

40% 

-17% 

35% 

-15% 

30% 

-13% 

25% 

-11% 

20% 

-8% 

15% 

-6% 

10% 

-3% 

5% 

10% 80% 70% 60% 50% 40% 30% 20% 10% 

15% 120% 105% 90% 75% 60% 45% 30% 15% 

20% 160% 140% 120% 100% 80% 60% 40% 20% 

12.5 

5% 

-15% 

33% 

-14% 

29% 

-12% 

24% 

-10% 

19% 

-8% 

14% 

-5% 

10% 

-3% 

5% 
  

10% 64% 55% 45% 36% 27% 18% 9% 
  

15% 91% 78% 65% 52% 39% 26% 13% 
  

20% 117% 100% 83% 67% 50% 33% 17% 
  

25 

5% 

-13% 

27% 

-12% 

23% 

-10% 

18% 

-8% 

14% 

-5% 

9% 

-3% 

5% 
 

   
10% 50% 42% 33% 25% 17% 8% 

 
   

15% 69% 58% 46% 35% 23% 12% 
 

   
20% 86% 71% 57% 43% 29% 14% 

 
   

37.5 

5% 

-10% 

22% 

-10% 

17% 

-7% 

13% 

-5% 

9% 

-2% 

4% 
   

   
10% 38% 31% 23% 15% 8% 

   
   

15% 52% 41% 31% 21% 10% 
   

   
20% 63% 50% 38% 25% 13% 

   
   

50 

5% 

-8% 

17% 

-7% 

13% 

-5% 

8% 

-3% 

4% 
     

   
10% 29% 21% 14% 7% 

     
   

15% 38% 28% 19% 9% 
     

   
20% 44% 33% 22% 11% 

     
   

62.5 

5% 

-6% 

12% 

-5% 

8% 

-2% 

4% 
       

   
10% 20% 13% 7% 

       
   

15% 26% 17% 9% 
       

   
20% 30% 20% 10% 

       
   

75 

5% 

-4% 

8% 

-3% 

4% 
         

   
10% 13% 6% 

         
   

15% 16% 8% 
         

   
20% 18% 9% 

         
   

87.5 

5% 

-1% 

4% 
              

10% 6% 
              

15% 7% 
              

20% 8%                             
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Table 3.18. Decision making table for a 3-machine production system. 

    

future ASL 

  

  100 87.5 75 62.5 50 37.5 25 12.5 

current 
ASL 

SSi % 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 
MKr 

% 
MPc 

% 

0 

5% 

-25% 

40% 

-24% 

35% 

-22% 

30% 

-19% 

25% 

-16% 

20% 

-14% 

15% 

-10% 

10% 

-6% 

5% 

10% 80% 70% 60% 50% 40% 30% 20% 10% 

15% 120% 105% 90% 75% 60% 45% 30% 15% 

20% 160% 140% 120% 100% 80% 60% 40% 20% 

12.5 

5% 

-20% 

33% 

-19% 

29% 

-17% 

24% 

-14% 

19% 

-12% 

14% 

-9% 

10% 

-5% 

5% 
  

10% 64% 55% 45% 36% 27% 18% 9% 
  

15% 91% 78% 65% 52% 39% 26% 13% 
  

20% 117% 100% 83% 67% 50% 33% 17% 
  

25 

5% 

-16% 

27% 

-15% 

23% 

-13% 

18% 

-10% 

14% 

-7% 

9% 

-4% 

5% 
 

   
10% 50% 42% 33% 25% 17% 8% 

 
   

15% 69% 58% 46% 35% 23% 12% 
 

   
20% 86% 71% 57% 43% 29% 14% 

 
   

37.5 

5% 

-13% 

22% 

-12% 

17% 

-9% 

13% 

-6% 

9% 

-3% 

4% 
   

   
10% 38% 31% 23% 15% 8% 

   
   

15% 52% 41% 31% 21% 10% 
   

   
20% 63% 50% 38% 25% 13% 

   
   

50 

5% 

-10% 

17% 

-9% 

13% 

-6% 

8% 

-3% 

4% 
     

   
10% 29% 21% 14% 7% 

     
   

15% 38% 28% 19% 9% 
     

   
20% 44% 33% 22% 11% 

     
   

62.5 

5% 

-7% 

12% 

-6% 

8% 

-3% 

4% 
       

   
10% 20% 13% 7% 

       
   

15% 26% 17% 9% 
       

   
20% 30% 20% 10% 

       
   

75 

5% 

-4% 

8% 

-3% 

4% 
         

   
10% 13% 6% 

         
   

15% 16% 8% 
         

   
20% 18% 9% 

         
   

87.5 

5% 

-1% 

4% 
              

10% 6% 
              

15% 7% 
              

20% 8%                             
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Table 3.19. Decision making table for a 6-machine production system. 

    

future ASL 

  

    

100 87.5 75 62.5 50 37.5 25 12.5 

current 
ASL 

SSi 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

MKr 
% 

MPc 
% 

0 

5% 

-32% 

40% 

-32% 

35% 

-31% 

30% 

-29% 

25% 

-25% 

20% 

-22% 

15% 

-18% 

10% 

-11% 

5% 

10% 80% 70% 60% 50% 40% 30% 20% 10% 

15% 120% 105% 90% 75% 60% 45% 30% 15% 

20% 160% 140% 120% 100% 80% 60% 40% 20% 

12.5 

5% 

-24% 

33% 

-23% 

29% 

-22% 

24% 

-20% 

19% 

-16% 

14% 

-13% 

10% 

-8% 

5% 
  

10% 64% 55% 45% 36% 27% 18% 9% 
  

15% 91% 78% 65% 52% 39% 26% 13% 
  

20% 117% 100% 83% 67% 50% 33% 17% 
  

25 

5% 

-17% 

27% 

-17% 

23% 

-15% 

18% 

-13% 

14% 

-8% 

9% 

-5% 

5% 
 

   
10% 50% 42% 33% 25% 17% 8% 

 
   

15% 69% 58% 46% 35% 23% 12% 
 

   
20% 86% 71% 57% 43% 29% 14% 

 
   

37.5 

5% 

-13% 

22% 

-13% 

17% 

-11% 

13% 

-8% 

9% 

-4% 

4% 
   

   
10% 38% 31% 23% 15% 8% 

   
   

15% 52% 41% 31% 21% 10% 
   

   
20% 63% 50% 38% 25% 13% 

   
   

50 

5% 

-9% 

17% 

-9% 

13% 

-8% 

8% 

-5% 

4% 
     

   
10% 29% 21% 14% 7% 

     
   

15% 38% 28% 19% 9% 
     

   
20% 44% 33% 22% 11% 

     
   

62.5 

5% 

-5% 

12% 

-5% 

8% 

-3% 

4% 
       

   
10% 20% 13% 7% 

       
   

15% 26% 17% 9% 
       

   
20% 30% 20% 10% 

       
   

75 

5% 

-2% 

8% 

-1% 

4% 
         

   
10% 13% 6% 

         
   

15% 16% 8% 
         

   
20% 18% 9% 

         
   

87.5 

5% 

0% 

4% 
              

10% 6% 
              

15% 7% 
              

20% 8%                             
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Chapter 4 

The hybrid flow shop scheduling problem with job 

overlapping and availability constraints 

 

4.1 Preliminaries 

In the last fifty years a huge amount of literature addressed the traditional scheduling problems 

as flow shop, flow lines, job shop, and parallel machines shop. This field of research has been 

investigated over the years by means of several optimization techniques entailing both exact 

approaches and heuristic techniques, also in relation to the degree of complexity of the 

problem in hand (Blazewicz, Ecker, Shmidt & Weglarz, 1992). However, the scheduling topic 

still represents a very active branch of research which recently got benefit from the study of 

several production environments strictly connected to the classical scheduling problems. As 

for example, scheduling optimization of hybrid or flexible configurations of the regular flow 

shop problem has been met with a great acceptance within the research community, basically 

due to the affinity between the way the theoretical problem is addressed and the real needs of 

the industrial practice. On the basis of what stated by Ruiz and Maroto (2006) there is a clear 

difference among Flexible Flow Line (FFL), Flow Shop with Multi-Processor (FSMP), Hybrid 

Flow Shop (HFS) and, finally, between Hybrid Flexible Flow Line (HFFL) and Hybrid 

Flexible Flow Shop (HFFS), even though all these production configurations may be 

considered as a variant of the traditional Flow Shop (FS) wherein one stage may hold more 

than one machine, at least. Both in the FFL and in the FSMP the machines available at each 

stage are identical. In addition, in the FSMP a given task of a job can be performed 

simultaneously by a set of parallel machines pertaining to a given stage. The HFS is 

significantly more complex than regular flow shop; each job must be processed by only one 

machine per stage, the production flow is unidirectional and machines within a given stage are 

unrelated. HFFS as well as HFFL are identical to the aforementioned HFS and FFL, the only 

difference being that jobs may skip some stages. An earlier research performed by Gupta 
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(1988) demonstrated as the FFL problem with just two stages is NP Hard, though one of the 

two stages holds only one machine. One year later Gourgand, Grangeon and Norre (1999) 

stated that the HFS problem involves a total number of potential solutions equal to 

1
!

n
m

ii
n m . Making full use of the criterion introduced by Linn and Zhang (1999) literary 

research on HFS can be roughly classified into three categories: (1) two-stage HFS; (2) three-

stage HFS; (3) m-stage (m>3) HFS. Since the level of complexity considerably increases in 

relation to the number of stages, the earliest studies have addressed the two- and three-stages 

problems. Arthanary and Ramaswamy (1971) developed a pioneer research aiming to cope 

with a two-stage HFS scheduling problem through a Branch and Bound algorithm. A couple 

of years later, Salvador (1973) addressed a more complicated no-wait flowshop with multi-

processors and m-stages by means of a dynamic programming algorithm.  

More recently, several studies focused on the m-stage HFS problem have been elaborated. A 

comprehensive outline of the more relevant studies on the m-stage HFS has been provided by 

Linn and Zhang (1999) and Riane and Ariba (1999). Although optimal solutions of multi-stage 

HFS can be obtained via exact methods (Rajendran & Chaundhuri, 1992; Vignier, Billaut, 

Proust & T’Kindt, 1996; Vignier, Commandeur & Proust, 1997) when the problem size is 

small, the complexity connected to issues involving three or more stages justifies the 

employment of heuristic approaches (Ying & Lin, 2009; Jungwattanakit, Reodecha, 

Chaovalitwongse & Werner, 2008). Actually, heuristic methods able to address a HFS 

problem should be distinguished between constructive heuristics and metaheuristics. The 

former, traditionally characterized by the drawback of the non-robustness, are able to yield a 

fast response but the provided solution may result drastically far from the global optimum. 

Brah and Loo (1999) selected five better performing flow shop heuristics and evaluated their 

performances for a flow shop with multiple processors problem both in terms of makespan and 

flow time. They found that two well-known heuristics were comparable in performance in a 

flow shop with multi processors and that one of those was more consistent and robust than the 

other one for both optimization criteria. Ruiz, Serifoglu and Urlings (2008) proposed a mixed 

integer modelling and a set of constructive heuristics for the HFFS scheduling problem. 

Instances up to 15 jobs exhaustively have been solved by the MIP model while larger 

instances have been investigated by an adaptation of the NEH (Nawaz, Enscore & Ham, 1983) 
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algorithm as well as by means of a set of well-known despatching rules. Ying and Lin (2009) 

proposed an effective and efficient heuristic named Heuristic for the Multistage Hybrid 

Flowshop (HMHF) whose performance was properly compared with that of 10 heuristics and 

a tabu search based metaheuristic from the relevant literature. On the other hand, metaheuristic 

(ME) algorithms can be used for solving various NP-hard optimization problems, according to 

a proper adaptation to the structure of the problem to be tackled. MEs can reach near-optimal 

solutions of a large sized problem in a relatively narrow computational time than exact 

methods, but their implementation could result really sophisticated, also requiring arduous 

both coding and decoding tasks in relation to the kind of problem to be optimized. Tavakkoli-

Moghddam, Sfaei and Sassoni (2009) introduced an efficient Memetic Algorithm (MA), i.e. a 

metaheuristic algorithm which mimics the cultural evolution, combined with a novel local 

search engine, named Nested Variable Neighbourhood Search (NVNS), for solving the 

flexible flow line scheduling problem with processor blocking and without intermediate 

buffers. It is worth pointing out that they adopted a structure of the chromosome for the 

problem representation composed by a matrix along with a vector, the former being used for 

job assignment to machines and the latter being used for the job permutation. The FSMP has 

been widely dealt with by the recent literature and several authors decided to use ME 

algorithms. Oguz, Zinder, Van Ha, Janiak and Lichtenstein (2004) demonstrated as the 

introduction of precedence constraints in the FSMP problem makes even the simplest version 

of this problem NP  hard and, in addition, elaborated an approximation algorithm based on 

the idea of tabu search in order to address that kind of issue. Genetic Algorithms efficacy and 

efficiency for solving FSMP problems has been documented by Sivrikaya Serifoglu and 

Ulusoy (2004). Allaoui and Artiba (2004) deal with the hybrid flow shop scheduling problem 

under maintenance constraints to optimize several objectives based on flow time and due date. 

Setup, cleaning and transportation times have been take into account and a proper Simulated 

Annealing was implemented for optimizing the aforementioned problem. Ying and Lin (2006) 

developed a novel ant colony system for solving the hybrid flow shop with multiprocessor 

problem. To verify the proposed optimization technique, a thorough comparison with a genetic 

algorithm and a tabu search from the relevant literature has been carried out on the basis of 

two well-known benchmark problem sets. Tseng and Liao (2008) developed a Particle Swarm 

Optimization (PSO) algorithm, a novel metaheuristic inspired by the flocking behaviour of the 
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birds, powered by a new encoding scheme, namely a new way to represent in terms of string 

the studied problem, i.e. a flow shop with multiprocessor tasks. To assess the effectiveness of 

the proposed encoding embedded within the PSO, several computational experiments have 

been carried out, also to make a comparison with a genetic algorithm and an Ant Colony 

System proposed by the relevant literature. The leading role of the problem encoding has been 

emphasized in the research work of Gholami, Zandieh and Alem-Tabriz (2009) where a flow 

shop problem with multiprocessor, also including sequence-dependent setup times and 

machine breakdowns has been optimized. A parallel greedy algorithm approach to the hybrid 

flow shop with multiprocessor task scheduling problem recently has been carried out by 

Kaharaman, Engin, Kaya and Elif Öztürk (2010). They considered a set of 240 numerical 

examples divided into 24 groups and compared the performance of their technique with a tabu 

search and a genetic algorithm based metaheuristic, both arisen from the literature. A 

matching between simulation and optimization has been utilized by Rathinasamy and R (2010) 

for addressing the scheduling problem of an automotive vibration dampers manufacturing 

system arranged as a hybrid flow shop with multiprocessor. Recently a Particle Swarm 

Optimization PSO algorithm has been implemented for addressing a flexible flow shop with 

multi processors tasks (Singh & Mahapatra, 2012). Mutation, a commonly used operator in 

genetic algorithm, has been introduced in PSO so that trapping of solutions at local minima or 

premature convergence can be avoided. 

With exception of the earliest researches, several papers recently dealt with the HFS 

scheduling problem through metaheuristics and a lot of them highlight the key role of the 

problem encoding for enhancing both the efficiency and the efficacy of such optimization 

algorithms. Ruiz and Maroto (2006) studied the makespan minimization of a HFS with 

sequence dependant setup times and machine eligibility scheduling problem through a genetic 

algorithm. They adopted a simple permutation problem encoding able to reach a good 

compromise between quality of solutions and computational time efficiency. A so-called 

rational problem encoding, basically a real number-based encoding different form the regular 

permutation one, has been embedded within an Immune Algorithm (IA) for solving a HFS 

scheduling problem with sequence dependent setup times (Zandieh, Fatemi Ghomi & Moattar 

Husseini, 2006). The obtained results have been compared with a random key genetic 

algorithm. The same kind of approach inspired by theoretical immunology has been adopted 
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by Engin and Döyen (2004) who showed as the Immune system technique is an effective and 

efficient method for solving HFS problems.  A dual criteria optimization of a HFS with both 

machine and sequence dependent setup times scheduling problem has been performed by 

Jungwattanakit, Reodecha, Chaovalitwongse and Werner, 2008. Firstly, they developed a 0-1 

mixed integer programming of the problem in hand and then a set of well-known constructive 

heuristics has been used to generate the initial populations of several genetic algorithms to be 

compared. The problem representation retrieved by the authors is concerned with the most 

popular encoding, i.e. simple permutation encoding. A similar issue involving a HFS 

scheduling problem with both availability and limited buffer constraints has been addressed by 

Yaurima, Burteseva and Tchemykh (2009). On the basis of a real printed circuit-board 

production environment, they extended and improved a well-known genetic algorithm 

equipped with a simple permutation encoding in order to enhance the scheduling strategy of 

the observed company. A novel Simulated Annealing (SA) algorithm to produce a reasonable 

manufacturing schedule in an acceptable computational time has been developed by Mirsanei, 

Zandieh, Moayed and Khabbazi, who used the SPTCH greedy heuristic proposed by Kurz and 

Askin (2004) for generating the initial solution. Hence, the SA evolutionary mechanism has 

been run by means of a regular permutation encoding and according to the following 

allocation rule: at each stage each job is assigned to the machine that allows it to be completed 

at the earliest time.  

The hybrid flow shop can be found in many types of industries as the parallel machines at 

each stage can ensure both productivity and flexibility to the manufacturing functions. Adler, 

Fraiman, Kobacher, Pinedo, Plotnicoff and Wu (1993) used a set of priority rules to tackle a 

real manufacturing system for paper bags production wherein a set of unrelated parallel 

machines have been taken into account in some stages. Aghezzaf, Artiba, Moursli and Tahon 

(1995) integrated problem decomposition, heuristics and mixed-integer linear programming 

for solving a three stage and sequence dependent setup times HFS problem related to a carpet 

manufacturing firm. The most representative environment is concerned with the electronic 

industry, such as semiconductor wafer fabrication, printed circuit board manufacturing, thin 

film transistor-liquid crystal display (TFT-LCD) manufacturing, etc. With the aim to support 

what stated before, Choi, Kim and Lee (2011) studied the real-time scheduling problem of a 
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HFS with re-entrant product flow, called reentran hybrid flow shop, in a TFT-LCD 

manufacturing company.  

The present chapter focuses on the optimization of a specific hybrid flow shop scheduling 

problem inspired to a real micro-electronics manufacturing environment. The aim of this 

chapter is presenting a new optimization approach based on a metaheuristic (ME) algorithm 

powered by a dual search mechanism based on two different problem encodings. The first part 

of the proposed MEs is arranged as a regular genetic algorithm which works by means of a 

regular problem representation scheme (i.e., the encoding). Once a given number of 

generations are reached, a properly designed random search based on a different problem 

encoding able to investigate a wider space of solutions is launched. A mixed-integer linear 

programming (MILP) model concerning the studied problem has been developed and a set of 

experimental analysis have been carried out in order to highlight the effectiveness of the 

proposed optimization approach.  

The remainder of this chapter is organized as follows: in the next section a brief introduction 

to the problem is presented; in Section 4.3 the MILP model is reported; the problem encoding 

and its related decoding procedure are explained in Section 4.4, along with the help of an 

illustrative numerical example; in Section 4.5 the structure of the proposed metaheuristics are 

discussed while in Section 4.6 numerical results arisen from an extensive experimental 

campaign are discussed. 

4.2 Problem description 

A production problem characterized by a flow shop including a set of unrelated parallel 

machines for each stage, usually known as Hybrid Flow Shop scheduling (HFS) problem, is 

presented in this section. Conforming to most of the literature, the HFS problem here 

addressed consists of a set of independent jobs 1,2,..,i n
 
which has to be processed 

through 1,2,..,j m  stages; each stage entails a set of unrelated parallel machines 

1,2,.., jk k  and between two subsequent stages exists a proper inter-stage buffer whose 

capacity, in terms of number of jobs to be stored, is unlimited. 

The problem in hand should be considered as a both static and deterministic scheduling issue 

and, in addition, it is subject to the following further limitations. There are no precedence 
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relationships among jobs. Preemption is not allowed, thus avoiding that once an operation 

starts it could be subject to any interruption. Job splitting is not permitted. The product flow is 

unidirectional, i.e. a job starts at the first stage and finishes at the last stage, so that a given 

stage cannot be visited more than one time by the same job. Unlike the multi-processor flow 

shop problems, in a HFS a given job must be processed by only one machine per stage. The 

ready time of each job is zero, namely all the jobs are available at the beginning of the 

scheduling period. Machines within each stage are unrelated and set-up times have to be 

considered included into processing times and sequence independent. 

Differently from other similar issues addressed by literature, and conforming to an observed 

real semi-conductor manufacturing problem, the proposed HFS problem is characterized by 

the following three restrictions.  

1) Overlap of jobs of the same type on a given machine is allowed. Each machine is 

characterized by a manufacturing capacity according to which a limited number of 

“identical” jobs, i.e. jobs of the same type, can be processed at the same time on that 

machine, without leading to any machine processing time increase.  

2) Waiting time limit concerning the jobs staying within any inter-stage buffer is 

provided. Whenever a job has been completed on a given stage, its waiting time on the 

inter-stage buffer before being processed on the subsequent stage must be lower than 

or equal to a provided time limit. 

3) Machine unavailability time intervals. During the planning horizon each machine 

included within the HFS production system may be subject to one or more 

unavailability time intervals, similarly being done in case of machine maintenance 

inspections. It is worth pointing out as the unavailability time intervals are a-priori 

known by the decision maker for each machine pertaining to each stage. 

Figure 4.1 shows the product flow concerning the aforementioned HFS scheduling problem. 

As the reader can notice, the job overlapping is allowed according to the machine 

manufacturing capacity, which is a-priori known. Then, job storage within each inter-stage 

buffer cannot exceed a provided time limit and each machine can get unavailable in relation to 

a well-known inspection time window.  
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Figure 4.1. The product flow through the proposed HFS. 

4.3 MILP formulation 

In the present section the mathematical model of the proposed HFS problem is formalized. 

Indices/parameters:   

J number of stages  

Kj number of machines at stage j  

I number of real jobs  

U 
number of dummy jobs corresponding to machines unavailability 
intervals 

R I U  total amount of jobs including dummy jobs  

Si number of jobs identical to job i  

T(j-1)j maximum waiting time for every job between stage j – 1 and stage j 

SUujk start time of u-th unavailability time interval of machine k at stage j 

EUujk 
completion time of u-th unavailability time interval of machine k at 
stage j 
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Dijk 

processing time of job i on machine k at stage j; if i is a dummy job 
which runs the u-th unavailability time interval of machine k at stage j 
Dijk =EUujk - SUujk 

 
Njk 

machine manufacturing capacity, i.e. maximum number of identical 
jobs that can be worked simultaneously on machine k at stage j 

M a big number 

   
Decision variables:   

Yijk 
1 if job  is worked on machine  at stage 

0 otherwise                                                

i k j
 ,    ,    ji R j J k K  

Wiljk 

1 if job  and job  are worked simultaneously

 on machine  at stage 

0 otherwise                                                      

i l

k j  , ,    ,    ,     ,    i ji l I l S l i j J k K  

Ziljk 

1 if job  is completed before job  is started

on machine  at stage                            

0 if job  is completed before job  is started

on machine  at stage                            

i l

k j

l i

k j

 , ,    ,    ,     ,    i ji l I l S l i j J k K  

Hiljk 

1 if job  is completed before job  is started on 

machine  at stage                                        

0 if job  starts at a time equal or greater than 

starting time of job  on machine  at s

i l

k j

i

l k tage j
 

, ,    ,     ,    i ji l I l S j J k K  

Qiljk auxiliary variable for either-or constraint 
 

, ,    ,    ,     ,    i ji l I l S l i j J k K  

Xijk start time of job i on machine k at stage j ,    ,    ji R j J k K  

Cmax makespan  

   
Model   

minimize Cmax   

   
Subject to:   

1
j

ijk

k K

Y     i I j J  (4.1) 

ijk ijkX M Y        ji I j J k K  (4.2) 
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1

( 1) ( 1) ( 1)( )
j j

ijk i j q i j q i j q

k K q K

X X D Y        2i I j J j  (4.3) 

1

( 1) ( 1) ( 1) ( 1)( )
j j

ijk i j q i j q i j q j j

k K q K

X X D Y T

 
      2i I j J j  (4.4) 

ujk ujkX SU

 

      ju U j J k K  (4.5) 

       

(1 )
ljk ljk ljk ijk iljk

ijk ijk ijk ljk iljk

X D Y X M Z

X D Y X M Z
 

,          i ji l R l S l i j J k K  (4.6) 

                         

(1 )
ijk ljk iljk

ijk ijk ijk ljk iljk

X X M H

X D Y X M H
 

,           i ji l I l S j J k K  (4.7) 

(1 ) 2        

(1 ) 2 (1 )
iljk ijk ljk ijk ljk iljk

iljk ijk ljk ijk ljk iljk

W X X Y Y M Q

W X X Y Y M Q
 

 
(4.8) 

 ,              i ji l I l S l i j J k K  

1
i i

lijk iljk jk
l S l S

l i l i

W W N

 
      ji I j J k K  (4.9) 

max ( )
j

i jk i jk i jk
k K

C X D Y

 
i I  (4.10) 

0ijkX 0

 

      ji I j J k K  (4.11) 

Constraint (4.1) ensures that a given job can be processed just by one machine. Constraint 

(4.2) states that the start time of job i on machine k of stage j must be set to zero ( 0ijkX ) 

whenever that job is not processed on that machine. Job processing on a given stage (different 

from stage 1) cannot start before the same job has been processed on the previous stage. Such 

a condition is determined by constraint (4.3). Constraint (4.4) implies that a given job in a 

given stage must be processed before the inter-stage buffer time limit is reached. Thus, the 

difference between a job start time on stage (j+1) and its completion time on stage j must be 

lower or equal to the inter-stage buffer time limit T1,2. In order to manage each unavailability 

time of machine k on stage j, a proper dummy job is employed; thus, constraint (4.5) states 

that the starting time of a given machine unavailability time u coincides with start processing 
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time of a given dummy job i. Constraint (4.6) avoids any overlap between two non-identical 

jobs on machine k of stage j. Actually, this condition is ensured by a couple of distinct 

constraints which also work both in case only one job out of two is processed in machine k, 

and in case none of the two jobs is processed on machine k. Overlap of two identical jobs on 

the same machine k of stage j is run by constraint (4.7). This constraint operates as a 

combination of two distinct constraints which also manage the case in which only one out of 

two jobs is processed on machine k or, in alternative, both the two jobs are not processed by 

machine k. Constraint (4.8) is complementary to constraint (4.9), the former being necessary 

to manage the contemporary processing of several jobs on the same machine, the latter being 

useful for avoiding to exceed the maximum processing capacity of a given machine. 

Whenever job j and job l are worked together on machine k, iljkW is equal to one; variable iljkW

makes constraint 4.9 able to control the total number of jobs simultaneously worked on 

machine k within stage j, in relation to the machine capacity limit. As constraint (4.8) consists 

of a combination of two constraints, it can manage also the following alternative conditions: a) 

only one job is processed on machine k of stage j; b) none of the two jobs are processed by 

machine k on stage j. The makespan computation is ensured by constraint (4.10) where the 

total completion time is equal to the maximum job completing time on a machine of the last 

stage. 

4.4 The proposed problem encoding and the related decoding procedure 

A new trend well-established in literature consists of investigating the impact of different 

problem representations, i.e. the so called problem encodings, in the performance of 

metaheuristic algorithms. Indeed, the performance of genetic algorithms as well as other 

evolutionary algorithms, both in terms of quality of solution and computational burden, can be 

strongly affected by the way a given problem can be formalized by means of a numerical 

string. On the other hand, every problem encoding needs a proper decoding procedure which 

aims to assign a given performance to a given string. In fact, once the sequence of jobs, i.e. the 

priority according to which they have to be processed, has been established, a proper decoding 

procedure can be run to compute a given KPI. Most of literature tackles the makespan 

minimization for the HFS problem by adopting a traditional permutation encoding wherein the 

problem representation string includes the overall set of jobs to be processed. Hence, in case 
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of makespan minimization, the most popular decoding procedure works stage by stage, by 

allocating a given job ready to be processed to the machine which can finish such a job at the 

earliest time. Though this “smart” encoding/decoding approach demonstrated its effectiveness 

in running simultaneously both the permutation and the assignation of jobs to the machines, it 

worth noticing as such technique could result lacking in exploring the overall space of feasible 

solutions. Due to the high number of constraints which characterize the proposed HFS 

problem and due to the inability of any smart encoding in investigating the entire domain of 

solutions, a proper two-encoding based metaheuristics has been developed. The proposed 

optimization technique exploits two different encodings in order to overcome the weakness 

arising from the employment of a single smart encoding approach. According to the high level 

of constraint which characterizes the proposed HFS problem, both penalty functions and repair 

algorithms have been properly embedded within the decoding procedures, aiming to probe 

into a as wide as possible space of feasible solutions. The following sub-sections make full use 

of a numerical example to deal with both the adopted encoding schemes and the related 

decoding procedures. 

Problem encoding 

Usually, the hybrid flowshop needs a problem encoding which separately runs both the job 

permutation and the assignment of jobs to machines at every stage. However, several 

approaches which used such a complex technique reached unsatisfying results. Recently, Ruiz 

and Maroto (2006) demonstrated the effectiveness of a simple permutation encoding linked to 

a proper decoding criterion wherein each job is assigned to the machine that can finish that job 

at the earliest time in a given stage. 

As reported in the previous paragraph, the proposed optimization technique makes full use of 

a dual problem encoding. The first part of the evolutionary mechanism which consists of GA-

based metaheuristics exploits the regular permutation encoding, i.e. the proposed HFS 

problem is managed by means of a permutation string containing a number of digits equal to 

the number of jobs to be scheduled, conforming to the regular flow shop. Then, in order to 

thoroughly investigate a wider space of solutions, a multi-stage encoding, hereinafter named 

m-stage encoding, has been adopted. While the permutation encoding forces the same 

sequencing of jobs for each distinct stage, the m-stage encoding allows to run a different job 
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sequencing for each stage, thus enhancing the capacity of meta-heuristics in exploring new 

solutions’ domains. Of course, since the m-stage encoding should require a computational 

burden which increases with the number of stages, its employment should be confined to the 

final phase of the overall evolutionary mechanism. 

Solution decoding 

In order to explain the way the decoding algorithm works, a proper 2-stage (m = 2) HFS 

scheduling example, with 3 jobs (n = 3) and two machines per stage (K1 = 2, K2 = 2) here has 

been approached. Table 4.1 shows the computational data concerning processing times for 

each job (Dijk) as well as machine unavailability starting times (SUujk) and completing times 

(EUujk) of each machine for each stage. The job waiting time limit within inter-stage buffer 

Tj,j+1 is T1,2 = 2, and the solution, i.e. the sequence of jobs to be scheduled is π = {2, 3, 1}. Job 

1 and 2 are identical, namely of the same type. Manufacturing capacity Njk of all machines is 

two, with exception of machine 1 of stage 1 that has a capacity N11 equal to one (hereinafter 

see values in parenthesis on the Gantt diagrams). 

Table 4.1. Set of data for the proposed numerical example. 

Dijk 
j=1  j=2 

k=1 k=2  k=1 k=2 

i=1 4 2  2 10 

i=2 4 2  2 10 

i=3 3 2  1 5 

SUujk 
j=1  j=2 

k=1 k=2  k=1 k=2 

u=1 5 0  3 3 

EUujk 
j=1  j=2 

k=1 k=2  k=1 k=2 

u=1 6 3  8 5 
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The overall decoding procedure is composed by three distinct parts. First part entails the 

Scheduling and Job Allocation (SJA) procedure. Then, in order to handle the inter-stage buffer 

job waiting time constraint, a proper Penalty Function Computation procedure (PFC) has been 

introduced. Finally, with the aim to enhance the performance of the evolutionary computation, 

thus driving the search mechanism towards feasible solutions domains, a Solution Repairing 

(SR) algorithm has been embedded within the overall decoding procedure. With regard to the 

proposed example, Figure 4.2 shows the Gantt diagram obtained by applying the SJA 

procedure, while Table 4.2 makes the reader able to understand the proposed decoding 

strategy whose corresponding pseudo-code is reported below. 

Procedure 4.1. Sequencing and job allocation (SJA) 

Input 

ijkD : processing time of job i in machine k {1,..., }jK  in stage j; 

ujkEU :completing time of u-th unavailability interval of machine k at stage j; 

Output 

ijkEt :  matrix of completing time of job i on machine k at stage j; 

ijtr : time at which job i leaves stage j; 

jktrm : time at which machine k at stage j is ready for job processing; 

ijSST : matrix of “entrance” time of job i in stage j; 

ijESt : matrix “exit” time of job i from stage j; 

Obj: objective function; 

Step 0: Initialization 

 
0,  {1,..., },  {1,..., }ijk jEt i n k K ; 

 
0,  {1,..., },  {1,..., }ijtr i n j J ; 

 
0,  {1,..., },  {1,..., }jk jtrm j J k K ; 

Step 1: 

j=1; 

Step 2:  
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i=1; 

Step 3: 

 selection of the job to be scheduled: i-th job of the solution vector; 

if j 1 then compute the time when the job  leaves the previous stage j-1: 

1
, 1 , 1,

1,...,
max

j

j j k
k K

tr Et ; 

 k=1; 

Step 4: 

 
, , ,

1,...,
maxj k i j k
i n

trm Et : time at which machine k at stage j is free from the previous operations; 

if the last job processed by machine k is identical to  and machine k  has a residual 

production capacity then , ,j k j k jktrm trm D , machine k is ready again to process 

another job; 

, 1max{ ; }jk j jkpst tr trm : expected initial working time weather job  is processed on 

machine k; 

if there is an overlap between the processing of job  and the u-th machine k unavailability 

then jk ujkpst EU : expected initial working time of job g is equal to the end of the u-th 

unavailability. 

 jk jk jkpet pst D :expected finish working time; 

 if k<Kj then k=k+1 goto Step 4; 

* arg min{ , 1,..., }jk jk pet k K : selection of the machine able to finish the job 

processing before the other machines; 

 * *jk jkEt pet  : job  is allocated to machine k* and finish processing times are updated; 

 * *j jk jkSSt pet D : updating of the stage entrance time matrix; 

 *j jkESt pet : updating of the stage exit time matrix; 

 if i < n then i i+1, goto Step 3; 

 if j < J then j j+1, goto Step 2; 

Step 6: Penalty evaluation 

 compute pty:  evaluate the penalty, i.e. the level of unfeasibility, of a given solution; 

Step 7:Objective function computation 



106 
 

 Obj= , ,
1,..., , 1,...,

max ( )
J

i J k
i n k K

Et pty : objective function computation. 

Table 4.2. Step-by-step JSA decoding procedure 

It j i tri,j 
jktmr  

jkpst  
jkpet  

k* *jkEt  
SStij EStij 

k=1 k=2 k=1 k=2 k=1 k=2 Eti1k* Eti2k* 

1 1 1 2 0 0 0 0 (0)3 4 (2)5 1 

0 0

4 0

0 0

0 0

0 0

0 0

 

0 0

0 0

0 0

 

0 0

4 0

0 0

 

2 1 2 3 0 4 0 (4)6 (0)3 (7)9 (2)5 2 

0 0

4 0

0 5

0 0

0 0

0 0

 

0 0

0 0

3 0

 

0 0

4 0

5 0

 

3 1 3 1 0 4 5 (4)6 5 (8)10 7 2 

0 7

4 0

0 5

0 0

0 0

0 0

 

5 0

0 0

3 0

 

7 0

4 0

5 0

 

4 2 1 2 4 0 0 (4)8 (4)5 (6)10 (14)15 1 

0 7

4 0

0 5

0 0

10 0

0 0

 

5 0

0 8

3 0

 

7 0

4 10

5 0

 

5 2 2 3 5 10 0 10 5 11 10 2 

0 7

4 0

0 5

0 0

10 0

0 10

 

5 0

0 8

3 5

 

7 0

4 10

5 10

 

6 2 3 1 7 (10)8 10 8 10 10 20 1 

0 7

4 0

0 5

10 0

10 0

0 10

 

5 8

0 8

3 5

 

7 10

4 10

5 10

 

It is worth pointing out that each value in parenthesis reported in the table refers to the 

temporary value assumed by a given variable during the pseudo-code step-by-step application.  

The basic idea which drives the proposed SJA decoding procedure concerns a priority-based 

criterion according to which the first job in the sequence is the first job to be scheduled, and so 

on for the other jobs. Once the job is selected, for each stage it takes priority to be assigned to 

the machine able to release it at the earliest time. Job overlapping may play a key role for 

makespan reduction while machine unavailability can affect the feasibility of the 

aforementioned priority-based decoding strategy. For that reason the SJA pseudo-code 
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includes several additional instructions necessary to run both the job overlapping and the 

machine unavailability issues. 

 

Figure 4.2. Gantt diagram obtained by SJA procedure. 

As regards stage 1, numerical results concerning the first iteration in Table 4.2 show as job 2 

profitably must be processed in machine 1 as it can be completed at time 4 (pet211 = 4). In fact, 

despite job 2 has a shorter processing time in machine 2 (D112 = 2), that machine is unavailable 

until time 3, thus constraining job 2 to be started at that time (pst212 = 3) and completed at time 

5 (pet212 = 5).  Job 3 can be processed on machine 2 after the provided unavailability time is 

finished; thus, job 3 can be completed at time 5 (pet312 = 5).  Job 1 processing cannot be 

overlapped to job 2 on machine 1 as N1,1 = 1. Due to the unavailability time interval on 

machine 1, job 1 would start at time 6 (pst111 = 6) and it would be completed at time 10 (pet111 

= 10). Instead, job 1 processing on machine 2 is more profitable under the completing time 

viewpoint (pet112 = 7). With regards to stage 2 (see iterations from 4 to 6 in Table 4.2), though 

a long unavailability time is provided for machine 1, the prior job to be scheduled, i.e. job 2, 

has to be processed on that machine, as its completing time on machine 2 would be (pet222 = 

15). Job 3 processing on machine 2 (pet322 = 10) is better than machine 1 (pet321 = 11). Finally, 

as N2,1 = 2,  processing of job 1 can be overlapped to that of job 2 on machine 1 and makespan 

is equal to 10. 

After the makespan of a given solution is determined by the SJA algorithm, the feasibility of 

such a decoded solution with respect to the inter-stage waiting time limit must be evaluated. 
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Table 4.3 along with the PFC pseudo-code reported below can make the reader able to 

understand the way the penalty arising from the aforementioned constraint violation is 

computed.  

Procedure 4.2. Penalty function computation (PFC). 

Input 

ijSST : “entrance” time of job i within stage j; 

ijESt : “exit” time of job i from stage j; 

1,j jT , 1,..., | 2j J j : Maximum allowed waiting time between stage j-1 and stage j; 

c = 5: penalty function exponent; 

Output 

pty: penalty coefficient; 

for j=1 to J-1 

for i=1 to n 

compute percentage deviation between the actual waiting time and the maximum 

allowed waiting time of job i in stage j+1: 

  

, 1 , , 1

, 1

( )i j i j j j

ij

j j

SST ESt T
WPt

T
; 

 if 0ijWPt  then 0ijWPt : negative percentage differences are neglected;   

  next i 

next  j 

1

1 1

(1 )
n J

c

ij
i j

pty WPt  

As reported in Figure 4.2, the time interval between the completing time of job 2 in stage 1 

and its starting time on stage 2 is equal to 4 time units, thus overstepping the provided 

limitation of T1,2 = 2. Looking at both Table 4.3 and the PFC pseudo-code, the penalty 

function computation is equal to pty = 25 = 32, thus increasing the final solution evaluation to 

10*32 = 320 time units.  
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Table 4.3. Steb-by-step PFC procedure. 

Iter j i , 1i jSSt  ijESt  , 1i j ijSSt ESt  Tj,(j+1) ijWPt  

1 1 1 8 7 1 2 

0 0

0 0

0 0

 

2 1 2 8 4 4 2 

0 0

1 0

0 0

 

3 1 3 5 5 0 2 

0 0

1 0

0 0

 

Whenever the unfeasibility of a given solution has been recognized by the PFC algorithm, the 

third part of the overall decoding procedure, i.e. the repairing algorithm, has to be employed. 

The SR procedure (see pseudo-code below) makes full use of a late-start scheduling criterion 

and tries to repair the current unfeasible solution, also at the expense of the total completion 

time. In particular, a maximum number of 21 repairing attempts (p = 0,..., 20) can be provided 

by the SR algorithm. With exception of the first attempt (p = 0), each attempt yields a 

makespan increment equal to 1% with respect to the current value. As a consequence, the 

maximum makespan increment (inc) performed by the SR algorithm may be equal to 20%. 

Table 4.4 and Figure 4.3 report both the step-by-step numerical trace and the Gantt diagram 

corresponding to a repairing attempt whose provided makespan increment is equal to zero (p = 

0). Conforming to the provided SR pseudo-code, in Table 4.4 a backward scheduling repair 

has been performed. Since the makespan increment is equal to zero, the completion time as 

well the time scheduling of the jobs on stage two remains the same, ensuring a makespan 

equal to 10 (compare Figure 4.3 with Figure 4.2). On the basis of a backward investigation of 

the stages, on stage one both job 1 and job 2 have been shifted according to a late-start 

approach. Of course, due to the unavailability on machine 1, job 2 cannot be further shifted 

forward without generating a delay of the overall production. The result of the analyzed repair 

attempt generates a reduction of the inter-stage time interval of one time unit, going from four 

to three time units. Nevertheless, as the repaired schedule is not still able to fulfil the required 
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limit on the inter-stage waiting time, the related penalty function can be computed by means of 

the PFC procedure (see Table 4.5). In particular, the pty value for this solution is equal to 7.59 

and the corresponding solution yields an increased makespan equal to 7.59*10 = 75.9 time 

units. Since the current solution is not yet feasible the SR procedure should try again a repair 

attempt by means of an additional 1% makespan increasing. 

Table 4.4. Step-by-step SR procedure for p = 0 (inc = 0). 

Iter j i k* tssij
 , *tsp j k

 
*pet jk  *pst jk  

 *Et jk  *St jk  SStij EStij 

Eti1k Eti2k Sti1k Sti2k   

1 1 3 1 2 8 ∞ 8 6 

0 8

0 0

0 0

10 0

10 0

0 10

 

6 8

8

5

 

6 8

0 8

0 5

 

8 10

0 10

0 10

 

2 1 2 3 2 5 6 5 3 

0 8

0 0

0 5

10 0

10 0

0 10

 

6

3

8

8

5

 

6 8

0 8

3 5

 

8 10

0 10

5 10

 

3 1 1 2 1 8 ∞ (8)5 (4)1 

0 8

5 0

0 5

10 0

10 0

0 10

 

6

1

3

8

8

5

 

6 8

1 8

3 5

 

8 10

5 10
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Figure 4.3. Gantt diagram after the SR procedure execution (p = 0). 
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Procedure 4.3. Solution repair (SR) algorithm. 

Input 

ijk
D : processing time of job i in machine {1,..., }

j
k K in stage j; 

ujk
SU : starting time of u-th unavailability interval of machine k at stage j; 

ijk
St : matrix of starting time of job i on machine k at stage j; 

ijk
Et :  matrix of completing time of job i on machine k at stage j; 

Output 

Obj : new objective function value after the repairing attempt; 

Step 0: initialization; 

p=0; 

j=J; 

Step 1:  

1,..., , 1,..., , 1,...,
max /100

j

ijk
i n j J k K

inc p Et  percentage makespan increase computation; 

  1,..., ,  1,..., ,  1,...,ijk jSt i n j J k K : start processing time initialization; 

Step 2: 

if p = 0 then no repairs will be performed on the last stage J, goto step 4; 

if p 0 then for each machine of the last stage all jobs are shifted ahead, i.e.,,a late 

scheduling of jobs according to an increase of makespan equal to inc is performed, thus: 

ijk ijkET Et inc : finish processing time increase of job i on machine k of stage j; 

ijk ijk ijkSt Et D : start processing time update; 

Step 3: 

if the job shifting caused an overlap with any machine unavailability interval then p = p + 

1, a new repairing attempt is needed; 

if p < 20 then goto Step 1; 

Step 4: 

0 1,..., ,  1,..., ( 1),  1,...,
ijk j

Et i n j J k K : finish processing times initialization of 

earlier stages; 
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Step 5: 

j j - 1; 

Step 6: 

i = n; 

Step7: 

selection of the job to be scheduled: i-th job of the solution vector; 

if  is the selected job to be scheduled and k* is the machine of stage j wherein it was 

allocated then tss j , 1,
1,..., 1
min ( )j k

k K j
St : computation of the start processing time of job  

on the subsequent stage j+1; 

tspjk* , , *
( 1),...,
min ( )w j k

w i n
St : computation of the start processing time of job which follows 

job on machine k*;

if  is identical to  and machine k* has enough capacity then job  may be overlapped to 

job ; 

* *min{ ,  }jk j jkpet tss tsp : expected finish processing time computation;  

* * *jk jk jkpst pet D : expected start processing time computation; 

endif 

if there is an overlap between the processing of job  and the u-th machine k* unavailability 

then 

* *jk ujkpet SU :finish  job processing time turns to the start of the u-th machine 

unavailability; 

* * *jk jk jkpst pet D : new expected starting processing time computation; 

endif 

* *jk jkEt pet , * *jk jkSt pst , *j jkESt pet , *j jkSSt pst ; 

endif 

if i > 1 then i i - 1, goto Step 7; 

if j > 1 then j j - 1, goto Step 5; 

Step 8: penalty computation; 

If there is no penalty (pty = 1) OR p = 20 then 



113 
 

, ,
1,..., , 1,...,

max
J

i J k
i n k K

Obj Et : new objective function computation; 

else 

p = p + 1 goto Step 1; 

endif 

Table 4.5. Step-by-step PFC procedure. 

Iter j i   -  Tj,(j+1) ,i jWPt  

1 1 1 8 8 0 2 

0 0

0 0

0 0

 

2 1 2 8 5 3 2 

0 0

0.5 0

0 0

 

3 1 3 5 5 0 2 

0 0

0.5 0

0 0

 

For sake of simplicity a 20% makespan increment, which corresponds to the last attempt, has 

been considered as decisive. Hence, whether makespan is increased of two times units (which 

correspond to a 20% increase) by means of a forward shift of the jobs processed on stage two 

(as shown in Figure 4.4), the inter-stage time interval of job 2 turns to zero. The step-by-step 

SR procedure for p = 20 is reported on Table 4.6, while by Table 4.7 the PFC procedure 

applied to the repaired schedule does not generate any penalty, thus ensuring a feasible 

makespan equal to 12 time units. Switching to the m-stage encoding does not involve any 

change in the decoding strategy, the only difference being that both SJA and SR procedures 

are applied several times to a number of sequences equal to the number of stages. PFC 

procedure is job dependent and is not influenced by the type of encoding. The advantage 

arising from the use of a so called m-stage encoding easily can be explained by the diagram 

reported in Figure 4.5 which refers to the following 2-stage solution: (3,2,1|2,3,1). As the 

reader can verify, both (3,2,1) and (2,3,1) generate a makespan equal to 12 units. if managed 

as single encoding-based solutions. Instead, the aforementioned m-stage string, working 

, 1i j
SSt

ij
ESt , 1i j

SSt
ij

ESt
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separately for each stage, can explore an outperforming feasible solution that the single 

permutation encoding is not able to reach. 

 

Figure 4.4 Gantt diagram after the execution of the SR procedure (p = 20). 

Table 4.6 Table 4.4. Step-by-step SR procedure for p = 20 (inc = 20%). 

Iter j i k* tssij
 , *tsp j k

 *pet jk  *pst jk  
 *Et jk  *St jk  

SStij EStij 
Eti1k Eti2k Sti1k Sti2k 

1 1 3 1 2 10 ∞ 10 8 

0 10

0 0

0 0

12 0

12 0

0 12

 

8 10

10

7

 

8 10

0 10

0 7

 

10 12

0 12

0 12

 

2 1 2 3 2 7 8 7 5 
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Figure 4.5. Gantt diagram concerning the m-stage encoding solution. 
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Table 4.7. Step-by-step PFC procedure for repaired solution. 

Iter j i   -  Tj,(j+1) ,i jWPt  

1 1 1 10 10 0 2 

0 0

0 0

0 0

 

2 1 2 10 10 0 2 

0 0

0 0

0 0

 

3 1 3 7 7 0 2 

0 0

0 0

0 0

 

 

4.5 The proposed metaheuristic algorithm 

In computer science, metaheuristics (MEs) consists of stochastic computational methods able 

to optimize a given problem by iteratively trying to improve a candidate solution with regard 

to a given measure of quality. Metaheuristics disregard the specific nature of the problem to be 

optimized and can search very large spaces of candidate solutions also over a discrete search 

space. However, metaheuristics do not ensure an optimal solution is ever found. In this paper a 

metaheuristic optimization framework based on a Genetic Algorithm (GA) has been 

implemented for addressing the proposed HFS problem. In particular, two metaheuristics have 

been considered, the former being a regular Single Encoding Genetic Algorithm (SEGA) and 

the latter being a Dual Encoding Metaheuristic (DEME) consisting of a single permutation 

encoding-based GA that, once a given threshold is reached, switches to an m-stage encoding-

based local search. It is worth pointing out as both SEGA and DEME algorithms are equipped 

with the same SJS, PFC, SR decoding procedures the only difference being that DEMEs 

exploit an m-stage encoding form a certain threshold on.  At each generation a population 

having dimension equal to Psize = 100 chromosomes is evolved. Initial population is randomly 

generated. A position-based crossover has been adopted for exchanging the genetic material 

, 1i j
SSt

ij
ESt , 1i j

SSt
ij

ESt
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between two chromosomes; according to a random criterion the number of genes subject to the 

crossover operator may vary from two to n/2; probability of crossover crossp = 0.5 has been 

considered for all the experiments. Mutation is based on a regular pairwise interchange 

mechanism whose probability is pm = 0.05. Selection mechanism is a regular roulette based 

method while, for avoiding a premature convergence, an elitism strategy working on the best 

two individuals of each population has been embedded within the proposed GA. The total 

number of fitness evaluations evN  = 10,000 has been taken into account as exit criterion of the 

proposed SEGA optimization technique. Since a parameter 100%t  represents the threshold 

value according to which the single permutation encoding switches to the m-stage encoding, 

DEMEt identifies a dual encoding metaheuristic algorithm wherein t* evN  is the exit criterion 

of the single encoding-based optimization phase, while (1-t)* evN represents the number of 

evaluations carried out by the subsequent dual encoding-based local search. Both probabilities 

of crossover and mutation, as well as population size, were selected after a preliminarily 

tuning analysis not here reported for sake of brevity. 

Actually, the local search consists of a random search applied on the best individual generated 

by the previous optimization phase. A Smart Shift Insertion (SSI) method has been adopted as 

perturbation operator to explore the neighborhood of a given individual. Such a method 

includes a mechanism aiming to avoid any breaking of groups of identical jobs, thus 

preserving the benefits which may result by overlapping jobs of the same type. An example of 

SSI application for three type of jobs is reported in Figure 6 where pos1 and pos2 are two 

randomly selected positions. A regular shift insertion procedure would yield the new 

chromosome 3-4-1-6-2-5 while the SSI, through a check on the neighborhood of the selected 

positions, aims to preserve block of identical jobs (i.e., 1-6-5), thus getting more chances of 

maskespan reduction by exploiting overlap of identical jobs on machines. 

3 2 4 1 6 5

1 2 3 4 5 6

pos1

pos2

3 4 1 6 5 2

1 2 3 4 5 6SSI

 

Figure 5.6. Smart shift insertion. 
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4.6 Computational experiments and results 

To test the efficiency of the proposed dual encoding-based optimization procedure, an 

extensive numerical analysis has been performed on a large number of randomly generated 

HFS scheduling problems arranged within several scenarios where the number of jobs to be 

worked n, as well as the number of stages m, number of machine per stage Kj, machine 

overlapping capacity Njk, maximum waiting time within inter-stage buffers T(j-1)j, and the 

number of machine unavailability intervals Ujk have been assumed as environmental 

influencing factors. With exception of the number of jobs, all the other factors were varied 

between two levels, according to a low level and a high level respectively, as reported in Table 

8. In fact, both the number of stages and the number of machines per stages vary on two 

levels: 3 and 5; the maximum overlapping capacity can assume a “low” value if it is extracted 

from a uniform distribution in the range [1, 3] or, in alternative, a “high” value whether it 

arises from a uniform distribution in the range [3, 5]. At the same time, further two factors, i.e. 

maximum waiting time within the inter-stage buffers and number of machine unavailability 

intervals, were varied on two levels with uniform distributions: U [400, 500], U [500, 600] and 

U [0, 2], U [2, 4], respectively. Totally, 5*25*10=1600 runs have been carried out for each 

optimization technique. 

Table 4.8. Scenario Problems 

Parameter Notation Value 

Number of jobs n (10, 30, 50, 70, 100) 

Parameter Notation 
Value 

Low level High level 

Number of stages  J 3 5 

Number of machines per stage Kj 3 5 

Machine overlapping capacity Njk U [1, 3] U [3, 5] 

Maximum waiting time within inter-stage buffers T(j-1)j U [400, 500] U [500, 600] 

Number of machine unavailability intervals Ujk U [0, 2] U [2, 4] 

The effect of the aforementioned parameters varying between two levels, also including their 

interactions, were statistically investigated through a two-factor design and a successive 

multiple comparison analyses (Montgomery, 2007), performed on the unique response 
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variable represented by the makespan. Five classes of problems have been considered, 

according to the five levels of number of jobs adopted for this study. Each class includes 25 

scenario problems generated by the permutation of the five factors reported in Table 4.8, each 

one varying between two levels. For each scenario a set of 10 randomly generated instances 

has been considered for the proposed experimental analysis. Since the performances of a 

regular SEGA along with 3 distinct DEMEs have been investigated, a total number of 

5*25*10*4 = 6400 instances have been investigated in this study. For each problem, 

processing times have been randomly extracted by a uniform distribution U(1,99). In 

particular, the three proposed DEME algorithms (DEME70, DEME80, DEME90) are 

characterized by three different thresholds according to which the single permutation encoding 

switches to a m-stage encoding. For each unavailability time interval u, two values have been 

drawn out of a uniform distribution U(1,99*n/Kj), being the lower SUujk and the higher EUujk, 

respectively. To get more insight about the proposed MEs efficacy in detecting high quality 

near-optimal solutions, a comparison of these solutions with the true global optima has been 

performed. This step of numerical analysis has been carried out by running within ILOG 

CPlex® 12.1 64bit version software environment a mathematical linear programming model 

for optimizing the class I subset of problems which involves 10 jobs. Looking at Table 4.9, for 

each scenario the MK_opt column reports the average makespan computed on the 10 instances 

pertaining to that scenario problem. Columns whose name is %_DEXX show the average 

percentage difference between each DEME algorithm and the corresponding MK_opt. 

Columns coded as opt_DEXX show the number of instances out of ten whose makespan is 

equal to the global optimum. DEME70 and DEME80 confirm their effectiveness since they are 

able to reach the same results obtained by the exact procedure for about 80% of the overall set 

of instances, also ensuring an average percentage deviation from the true optima slightly 

higher than 1%. Similarly,  DEME90 is able to match the global optima 228 times out of 320 

with an average makespan increase equal to 1,81%. Finally, the regular GA with single 

permutation encoding, namely SEGA, matches the global optima results for about one out of 

every two instances. 
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Table 4.9. Comparison with the global optima obtained by ILOG CPLEX® 12.1. 

Sc. J Kj Njk T(j-1)j Ujk MK_opt %_DE70 opt_DE70 %_DE80 opt_DE80 %_DE90 opt_DE90 %_ SEGA Opt_SEGA 

1 3 3 1 1 1 234,1 2,67% 6 2,67% 6 4,58% 7 5,46% 6 

2 3 3 1 1 2 400,8 0,20% 9 0,20% 9 0,20% 9 0,27% 8 

3 3 3 1 2 1 222,7 1,11% 4 1,33% 5 3,42% 4 4,82% 4 

4 3 3 1 2 2 405,3 1,02% 9 1,02% 9 1,13% 8 1,75% 7 

5 3 3 2 1 1 165,9 1,05% 7 1,05% 7 2,68% 6 2,82% 6 

6 3 3 2 1 2 352,5 0,00% 10 0,00% 10 0,00% 10 0,31% 8 

7 3 3 2 2 1 144,0 2,61% 6 2,61% 6 2,61% 6 5,22% 3 

8 3 3 2 2 2 314,2 0,35% 8 0,35% 8 0,35% 8 2,36% 5 

9 3 5 1 1 1 112,4 0,43% 8 0,66% 7 0,87% 8 4,01% 5 

10 3 5 1 1 2 166,4 1,66% 8 1,66% 8 4,44% 6 9,29% 4 

11 3 5 1 2 1 112,0 0,52% 9 0,52% 9 0,83% 8 4,06% 3 

12 3 5 1 2 2 147,8 0,32% 9 0,74% 8 2,60% 4 8,06% 3 

13 3 5 2 1 1 106,3 0,86% 9 1,61% 8 0,86% 9 4,11% 4 

14 3 5 2 1 2 102,3 0,00% 10 0,00% 10 0,00% 10 1,08% 8 

15 3 5 2 2 1 99,4 2,39% 9 2,39% 9 2,39% 9 3,06% 8 

16 3 5 2 2 2 156,6 0,00% 10 0,00% 10 0,36% 9 2,73% 5 

17 5 3 1 1 1 268,8 6,67% 2 6,52% 2 9,63% 1 10,58% 1 

18 5 3 1 1 2 432,1 1,05% 6 1,14% 7 0,44% 7 1,75% 6 

19 5 3 1 2 1 333,0 6,51% 4 5,62% 4 7,78% 4 9,68% 4 

20 5 3 1 2 2 420,6 0,81% 7 0,76% 7 0,81% 7 0,81% 7 

21 5 3 2 1 1 239,5 0,98% 9 0,98% 9 1,69% 8 4,09% 4 

22 5 3 2 1 2 310,6 0,95% 8 0,66% 9 0,95% 8 2,56% 5 

23 5 3 2 2 1 239,5 0,00% 10 0,53% 8 1,27% 6 3,86% 5 

24 5 3 2 2 2 348,1 0,98% 7 0,98% 7 1,56% 5 1,78% 4 

25 5 5 1 1 1 161,1 0,74% 8 0,05% 9 2,42% 3 7,25% 0 

26 5 5 1 1 2 256,3 0,50% 9 0,50% 9 0,50% 9 1,86% 6 

27 5 5 1 2 1 165,7 0,16% 9 0,16% 9 1,07% 6 5,36% 2 

28 5 5 1 2 2 314,8 0,09% 9 0,09% 9 0,97% 8 3,45% 6 

29 5 5 2 1 1 146,3 0,00% 10 0,00% 10 0,93% 7 4,86% 3 

30 5 5 2 1 2 180,4 0,00% 10 0,00% 10 0,32% 9 1,88% 5 

31 5 5 2 2 1 149,4 0,00% 10 0,00% 10 0,33% 9 3,83% 4 

32 5 5 2 2 2 245,2 0,00% 10 0,00% 10 0,00% 10 4,19% 7 

 ave/tot   1,08% 259 1,09% 258 1,81% 228 3,98% 156 

In order to highlight the results of the comparison between each configuration of DEME with 

respect to the simple SEGA, for each class of problems a thorough numerical analysis has 

been reported in the following tables. Table 4.10 illustrates the numerical performance yielded 

by each DEME algorithm along with the SEGA algorithm for class I of problems. In 
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particular, for each scenario, is reported the average makespan and the average percentage 

deviation ( MK%) of each DEME from the regular SEGA. With exception of a single scenario 

where DEME70 and DEME90 do not lead to any average improvement, all the other results 

confirm the efficacy of the DEMEs in terms of quality of solutions. 

Table 4.10. Class I: average makespan solutions and comparisons. 

Sc. n J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 SEGA  MK% 
DEME70/SEGA 

MK% 
DEME80/SEGA 

MK% 
DEME90/SEGA 

1 

10 

3 3 1 1 1  239,5 239,5 243,4 245,4  -2,40% -2,40% -0,81% 

2 3 3 1 1 2  401,6 401,6 401,6 401,8  -0,05% -0,05% -0,05% 

3 3 3 1 2 1  224,6 225,5 229,0 231,9  -3,15% -2,76% -1,25% 

4 3 3 1 2 2  409,1 409,1 409,6 412,5  -0,82% -0,82% -0,70% 

5 3 3 2 1 1  167,8 167,8 170,2 170,5  -1,58% -1,58% -0,18% 

6 3 3 2 1 2  352,5 352,5 352,5 353,4  -0,25% -0,25% -0,25% 

7 3 3 2 2 1  148,2 148,2 148,2 151,0  -1,85% -1,85% -1,85% 

8 3 3 2 2 2  315,3 315,3 315,3 321,3  -1,87% -1,87% -1,87% 

9 3 5 1 1 1  112,9 113,2 113,4 117,6  -4,00% -3,74% -3,57% 

10 3 5 1 1 2  168,2 168,2 171,9 179,2  -6,14% -6,14% -4,07% 

11 3 5 1 2 1  112,5 112,5 112,8 117,3  -4,09% -4,09% -3,84% 

12 3 5 1 2 2  148,2 149,0 152,1 160,8  -7,84% -7,34% -5,41% 

13 3 5 2 1 1  107,3 108,0 107,3 111,1  -3,42% -2,79% -3,42% 

14 3 5 2 1 2  102,3 102,3 102,3 103,5  -1,16% -1,16% -1,16% 

15 3 5 2 2 1  101,6 101,6 101,6 102,1  -0,49% -0,49% -0,49% 

16 3 5 2 2 2  156,6 156,6 156,9 159,8  -2,00% -2,00% -1,81% 

17 5 3 1 1 1  285,9 285,6 293,1 295,2  -3,15% -3,25% -0,71% 

18 5 3 1 1 2  436,3 436,6 434,1 439,0  -0,62% -0,55% -1,12% 

19 5 3 1 2 1  349,8 347,9 352,7 357,2  -2,07% -2,60% -1,26% 

20 5 3 1 2 2  423,8 423,6 423,8 423,8  0,00% -0,05% 0,00% 

21 5 3 2 1 1  241,4 241,4 242,8 248,2  -2,74% -2,74% -2,18% 

22 5 3 2 1 2  314,1 313,2 314,1 320,1  -1,87% -2,16% -1,87% 

23 5 3 2 2 1  239,5 240,8 242,5 248,5  -3,62% -3,10% -2,41% 

24 5 3 2 2 2  350,9 350,9 352,8 353,6  -0,76% -0,76% -0,23% 

25 5 5 1 1 1  161,9 161,2 164,7 173,8  -6,85% -7,25% -5,24% 

26 5 5 1 1 2  257,7 257,7 257,7 260,2  -0,96% -0,96% -0,96% 

27 5 5 1 2 1  165,9 165,9 167,2 173,1  -4,16% -4,16% -3,41% 

28 5 5 1 2 2  315,2 315,2 318,3 326,4  -3,43% -3,43% -2,48% 

29 5 5 2 1 1  146,3 146,3 147,5 152,5  -4,07% -4,07% -3,28% 

30 5 5 2 1 2  180,4 180,4 181,4 185,7  -2,85% -2,85% -2,32% 

31 5 5 2 2 1  149,4 149,4 149,8 154,9  -3,55% -3,55% -3,29% 

32 5 5 2 2 2  245,2 245,2 245,2 256,2  -4,29% -4,29% -4,29% 

Ave  235,4 235,4 236,7 240,9  -2,69% -2,66% -2,06% 

St.dev.       1,93% 1,89% 1,54% 

Similarly to what provided by class I numerical analysis, class II related numerical results 

reported in Table 4.11 confirm again the quality of solutions of the DEME algorithms. All the 

average results obtained for DEME90 outperform those yielded by the SEGA algorithm. Only 

three scenarios out of 32 for DEME70, and two scenarios out of 32 for DEME80 result 
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unsatisfactory on the average. Despite of a different standard deviation, the grand averages at 

the end of the table confirm again the effectiveness of the proposed DEMEs. 

Table 4.11. Class II: average makespan solutions and comparisons. 

Sc. n J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 SEGA  MK% 
DEME70/SEGA 

MK% 
SEME80/SEGA 

MK% 
DEME90/SEGA 

1 

30 

3 3 1 1 1  366,2 357,6 376,2 380,6  -3,78% -6,04% -1,16% 

2 3 3 1 1 2  813,3 803,5 811,2 812,2  0,14% -1,07% -0,12% 

3 3 3 1 2 1  371,7 396,5 398,9 404,3  -8,06% -1,93% -1,34% 

4 3 3 1 2 2  790,2 786,7 793,9 797,1  -0,87% -1,30% -0,40% 

5 3 3 2 1 1  239,1 245,7 253,6 261  -8,39% -5,86% -2,84% 

6 3 3 2 1 2  496,1 486,7 526,8 537,2  -7,65% -9,40% -1,94% 

7 3 3 2 2 1  234,7 245,4 239,8 252,6  -7,09% -2,85% -5,07% 

8 3 3 2 2 2  488,5 513,0 526,9 545,6  -10,47% -5,98% -3,43% 

9 3 5 1 1 1  193,8 196,3 197,3 199,7  -2,95% -1,70% -1,20% 

10 3 5 1 1 2  205,8 210,3 213,0 215,1  -4,32% -2,23% -0,98% 

11 3 5 1 2 1  187,4 184,0 186,5 189,5  -1,11% -2,90% -1,58% 

12 3 5 1 2 2  195,0 198,5 200,9 202,6  -3,75% -2,02% -0,84% 

13 3 5 2 1 1  133,6 134,1 135,0 137,2  -2,62% -2,26% -1,60% 

14 3 5 2 1 2  151,7 153,0 155,8 159,6  -4,95% -4,14% -2,38% 

15 3 5 2 2 1  125,5 125,2 126,4 127,9  -1,88% -2,11% -1,17% 

16 3 5 2 2 2  158,8 160,3 169,2 174,8  -9,15% -8,30% -3,20% 

17 5 3 1 1 1  548,3 552,3 550,2 552,3  -0,72% 0,00% -0,38% 

18 5 3 1 1 2  941,1 923,8 919,8 923,1  1,95% 0,08% -0,36% 

19 5 3 1 2 1  573,3 571,4 566,5 569,9  0,60% 0,26% -0,60% 

20 5 3 1 2 2  882,8 890,1 886,4 892,7  -1,11% -0,29% -0,71% 

21 5 3 2 1 1  402,8 410,1 421,1 428,1  -5,91% -4,20% -1,64% 

22 5 3 2 1 2  655,4 663,7 669,6 679,6  -3,56% -2,34% -1,47% 

23 5 3 2 2 1  438,7 434,1 450,1 458,5  -4,32% -5,32% -1,83% 

24 5 3 2 2 2  647,8 660,1 661,0 676,6  -4,26% -2,44% -2,31% 

25 5 5 1 1 1  240,4 241,2 247,4 248,7  -3,34% -3,02% -0,52% 

26 5 5 1 1 2  305,9 303,4 305,2 306,8  -0,29% -1,11% -0,52% 

27 5 5 1 2 1  223,7 228,9 229,9 231,4  -3,33% -1,08% -0,65% 

28 5 5 1 2 2  343,2 341,2 344,2 347,3  -1,18% -1,76% -0,89% 

29 5 5 2 1 1  179,9 177,0 183,0 184,5  -2,49% -4,07% -0,81% 

30 5 5 2 1 2  203,0 208,8 211,0 214,7  -5,45% -2,75% -1,72% 

31 5 5 2 2 1  179,4 179,3 182,1 185,3  -3,18% -3,24% -1,73% 

32 5 5 2 2 2  231,0 232,3 233,6 232,9  -0,82% -0,26% 0,30% 

Ave  379,6 381,7 386,6 391,5  -3,57% -2,86% -1,41% 

St.dev.       3,02% 2,34% 1,10% 

With regards to class III scenario problems, looking at Table 4.12 it can be observed as some 

scenarios penalize the DEME algorithms (see bold values) while other scenarios provide an 
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average percentage makespan reduction higher than 11%. DEME70 and DEME80 ensure a 

higher grand average makespan reduction than DEME90 and the same trend is confirmed by 

analyzing class IV and class V scenario problems reported in Table 4.13 and Table 4.14, 

respectively. 

Table 4.12. Class III: average makespan solutions and comparisons. 

Sc. n J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 SEGA  MK% 
DEME70/SEGA 

MK% 
DEME80/SEGA 

MK% 
DEME90/SEGA 

1 

50 

3 3 1 1 1  601,6 631,1 643,0 650,7  -7,55% -3,01% -1,18% 

2 3 3 1 1 2  1369,9 1373,7 1377,9 1374,9  -0,36% -0,09% 0,22% 

3 3 3 1 2 1  674,3 669,4 704,4 712,9  -5,41% -6,10% -1,19% 

4 3 3 1 2 2  1370,5 1379,2 1374,1 1378,4  -0,57% 0,06% -0,31% 

5 3 3 2 1 1  470,1 473,4 488,1 511,6  -8,11% -7,47% -4,59% 

6 3 3 2 1 2  1087,5 1069,2 1091,9 1107,4  -1,80% -3,45% -1,40% 

7 3 3 2 2 1  424,0 448,6 456,2 485,8  -12,72% -7,66% -6,09% 

8 3 3 2 2 2  1124,9 1110,1 1149,2 1173,1  -4,11% -5,37% -2,04% 

9 3 5 1 1 1  320,0 319,0 320,4 328,3  -2,53% -2,83% -2,41% 

10 3 5 1 1 2  324,4 318,9 322,2 330,9  -1,96% -3,63% -2,63% 

11 3 5 1 2 1  304,0 300,4 307,1 312,0  -2,56% -3,72% -1,57% 

12 3 5 1 2 2  322,3 317,6 328,0 331,0  -2,63% -4,05% -0,91% 

13 3 5 2 1 1  186,3 182,1 190,5 197,7  -5,77% -7,89% -3,64% 

14 3 5 2 1 2  245,6 244,3 247,6 259,1  -5,21% -5,71% -4,44% 

15 3 5 2 2 1  189,1 186,6 196,3 198,0  -4,49% -5,76% -0,86% 

16 3 5 2 2 2  244,6 257,5 264,4 277,1  -11,73% -7,07% -4,58% 

17 5 3 1 1 1  867,6 865,3 871,6 873,3  -0,65% -0,92% -0,19% 

18 5 3 1 1 2  1474,6 1456,8 1469,3 1481,6  -0,47% -1,67% -0,83% 

19 5 3 1 2 1  905,2 894,8 896,1 895,6  1,07% -0,09% 0,06% 

20 5 3 1 2 2  1434,4 1437,3 1437,5 1460,4  -1,78% -1,58% -1,57% 

21 5 3 2 1 1  621,2 615,7 638,7 652,6  -4,81% -5,65% -2,13% 

22 5 3 2 1 2  1100,1 1109,3 1097,0 1117,3  -1,54% -0,72% -1,82% 

23 5 3 2 2 1  735,1 736,4 736,1 744,5  -1,26% -1,09% -1,13% 

24 5 3 2 2 2  1095,1 1068,7 1075,4 1094,4  0,06% -2,35% -1,74% 

25 5 5 1 1 1  350,9 349,6 350,3 353,9  -0,85% -1,22% -1,02% 

26 5 5 1 1 2  500,2 495,4 499,5 517,9  -3,42% -4,34% -3,55% 

27 5 5 1 2 1  346,4 340,5 339,5 344,4  0,58% -1,13% -1,42% 

28 5 5 1 2 2  523,7 518,2 525,5 532,4  -1,63% -2,67% -1,30% 

29 5 5 2 1 1  272,8 279,7 279,6 289,1  -5,64% -3,25% -3,29% 

30 5 5 2 1 2  333,0 336,6 335,2 339,9  -2,03% -0,97% -1,38% 

31 5 5 2 2 1  280,0 279,3 288,8 294,5  -4,92% -5,16% -1,94% 

32 5 5 2 2 2  367,7 358,2 362,8 368,4  -0,19% -2,77% -1,52% 

Ave  639,6 638,2 645,8 655,9  -3,28% -3,42% -1,95% 

St.dev.       3,31% 2,39% 1,48% 
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Table 4.13. Class IV: average makespan solutions and comparisons. 

Sc. n J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 SEGA  MK% 
DEME70/SEGA 

MK% 
DEME80/SEGA 

MK% 
DEME90/SEGA 

1 

70 

3 3 1 1 1  921,9 925,7 933,6 952,4  -3,20% -2,80% -1,97% 

2 3 3 1 1 2  1945,2 1958,6 1960,4 1971,0  -1,31% -0,63% -0,54% 

3 3 3 1 2 1  1005,8 1002,3 1015,5 1035,6  -2,88% -3,22% -1,94% 

4 3 3 1 2 2  1960,0 1958,3 1943,8 1961,0  -0,05% -0,14% -0,88% 

5 3 3 2 1 1  838,1 824,4 857,2 885,0  -5,30% -6,85% -3,14% 

6 3 3 2 1 2  1622,5 1632,3 1624,7 1655,4  -1,99% -1,40% -1,85% 

7 3 3 2 2 1  787,6 788,2 819,3 846,4  -6,95% -6,88% -3,20% 

8 3 3 2 2 2  1873,9 1855,4 1842 1878,4  -0,24% -1,22% -1,94% 

9 3 5 1 1 1  462,0 457,7 472,4 482,8  -4,31% -5,20% -2,15% 

10 3 5 1 1 2  439,8 440,1 446,3 451,2  -2,53% -2,46% -1,09% 

11 3 5 1 2 1  462,6 453 455,4 466,2  -0,77% -2,83% -2,32% 

12 3 5 1 2 2  457,3 456,5 461,2 468,3  -2,35% -2,52% -1,52% 

13 3 5 2 1 1  295,2 305,1 314,3 325,0  -9,17% -6,12% -3,29% 

14 3 5 2 1 2  367,1 355,3 366,3 378,1  -2,91% -6,03% -3,12% 

15 3 5 2 2 1  300,1 295 303,5 314,6  -4,61% -6,23% -3,53% 

16 3 5 2 2 2  358,5 367,4 380,4 390,8  -8,27% -5,99% -2,66% 

17 5 3 1 1 1  1276,9 1273,9 1351,8 1357,2  -5,92% -6,14% -0,40% 

18 5 3 1 1 2  2056,6 2049,7 2034,7 2035,1  1,06% 0,72% -0,02% 

19 5 3 1 2 1  1396,8 1386,7 1340,5 1351,3  3,37% 2,62% -0,80% 

20 5 3 1 2 2  2031,2 2019,7 2044,6 2051,3  -0,98% -1,54% -0,33% 

21 5 3 2 1 1  931,3 939,8 942 963,5  -3,34% -2,46% -2,23% 

22 5 3 2 1 2  1772,7 1754 1779 1786,9  -0,80% -1,84% -0,44% 

23 5 3 2 2 1  1015,8 1010,8 1013,1 1040,8  -2,40% -2,88% -2,66% 

24 5 3 2 2 2  1639,8 1645 1628,1 1648,8  -0,55% -0,23% -1,26% 

25 5 5 1 1 1  460,1 457,2 458,9 467,2  -1,52% -2,14% -1,78% 

26 5 5 1 1 2  735,1 752 730,8 758,7  -3,11% -0,88% -3,68% 

27 5 5 1 2 1  446,2 444,1 447,2 453,5  -1,61% -2,07% -1,39% 

28 5 5 1 2 2  728,5 733,1 730,1 749,4  -2,79% -2,18% -2,58% 

29 5 5 2 1 1  401,2 396,5 406,7 417,8  -3,97% -5,10% -2,66% 

30 5 5 2 1 2  527,3 524,3 525,7 537,3  -1,86% -2,42% -2,16% 

31 5 5 2 2 1  402,6 403,6 408,7 413,3  -2,59% -2,35% -1,11% 

32 5 5 2 2 2  507,5 507,1 513,1 520,2  -2,44% -2,52% -1,36% 

Ave  950,9 949,2 954,7 969,2  -2,70% -2,87% -1,87% 

St.dev.       2,55% 2,35% 1,02% 
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Table 4.14. Class V: average makespan solutions and comparisons. 

Sc n J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 SEGA  MK% 
DEME70/SEGA 

MK% 
DEME80/SEGA 

MK% 
DEME90/SEGA 

1 

100 

3 3 1 1 1  1442,2 1444,7 1442,8 1476,1  -2,30% -2,13% -2,26% 

2 3 3 1 1 2  3285,5 3285,4 3290,5 3293,2  -0,23% -0,24% -0,08% 

3 3 3 1 2 1  1445,4 1457,9 1486,1 1519,6  -4,88% -4,06% -2,20% 

4 3 3 1 2 2  2750,3 2760,3 2746,2 2756,7  -0,23% 0,13% -0,38% 

5 3 3 2 1 1  1266,8 1261,5 1256,8 1329,0  -4,68% -5,08% -5,43% 

6 3 3 2 1 2  2725 2723,7 2740,2 2738,2  -0,48% -0,53% 0,07% 

7 3 3 2 2 1  1219,8 1210,2 1253,7 1292,1  -5,60% -6,34% -2,97% 

8 3 3 2 2 2  2764,8 2774,8 2770,7 2802,8  -1,36% -1,00% -1,15% 

9 3 5 1 1 1  666,4 671,1 684,5 694,1  -3,99% -3,31% -1,38% 

10 3 5 1 1 2  629,8 635,3 641,6 656,2  -4,02% -3,19% -2,22% 

11 3 5 1 2 1  660,3 671,3 672,9 683,7  -3,42% -1,81% -1,58% 

12 3 5 1 2 2  627,2 629,1 633,2 649,6  -3,45% -3,16% -2,52% 

13 3 5 2 1 1  489,2 482,7 497,3 507,8  -3,66% -4,94% -2,07% 

14 3 5 2 1 2  524,0 529,3 544,9 561,2  -6,63% -5,68% -2,90% 

15 3 5 2 2 1  488,3 492,1 513,5 531,0  -8,04% -7,33% -3,30% 

16 3 5 2 2 2  565,9 567,1 569,1 586,1  -3,45% -3,24% -2,90% 

17 5 3 1 1 1  2437,6 2316,2 2437,6 2460,1  -0,91% -5,85% -0,91% 

18 5 3 1 1 2  3435,2 3441,7 3422,9 3437,9  -0,08% 0,11% -0,44% 

19 5 3 1 2 1  2635,1 2614,5 2608,1 2620,9  0,54% -0,24% -0,49% 

20 5 3 1 2 2  3114,4 3112,5 3098,4 3116,3  -0,06% -0,12% -0,57% 

21 5 3 2 1 1  1521,0 1545,2 1534,2 1543,9  -1,48% 0,08% -0,63% 

22 5 3 2 1 2  3344,2 3359,8 3354,6 3360,6  -0,49% -0,02% -0,19% 

23 5 3 2 2 1  1938,4 1920,4 1914,1 1930,9  0,39% -0,54% -0,87% 

24 5 3 2 2 2  2983,3 3003,9 3006,2 3028,1  -1,48% -0,80% -0,72% 

25 5 5 1 1 1  671,3 673,9 676,9 682,5  -1,64% -1,26% -0,82% 

26 5 5 1 1 2  1115,3 1097,5 1101,2 1112,8  0,22% -1,37% -1,04% 

27 5 5 1 2 1  630,3 629,7 634,6 642,4  -1,88% -1,98% -1,21% 

28 5 5 1 2 2  1108,5 1102,6 1107,7 1112,8  -0,39% -0,92% -0,46% 

29 5 5 2 1 1  556,7 551,4 558,3 569,8  -2,30% -3,23% -2,02% 

30 5 5 2 1 2  777,0 775,9 778,3 802,1  -3,13% -3,27% -2,97% 

31 5 5 2 2 1  568,4 569,1 577,3 587,7  -3,28% -3,16% -1,77% 

32 5 5 2 2 2  778,0 775,8 782,2 801,0  -2,87% -3,15% -2,35% 

Ave  1536,4 1534,0 1541,8 1559,0  -2,35% -2,43% -1,59% 

St.dev.       2,15% 2,12% 1,21% 
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The final step of the experimental study is concerned with an ANOVA-based statistical 

analysis which aims to confirm a significant efficacy of the proposed dual-encoding 

metaheuristic algorithm. In particular a full factorial design has been carried out wherein the 

response variable coincides with the makespan Cmax; the total amount of runs needed for 

performing the overall experimental plan is equal to 6,400. Table 4.15 represents the summary 

of the full-factorial ANOVA table obtained by means of Design Expert® 7.0.0 version 

commercial tool. For sake of simplicity, only the second level interactions among factors have 

been included in Table 4.15. The random blocking factor named as “Block” in Table 4.15 

coincides with the problem and is varied at 10 levels since ten different instances have been 

generated for each scenario problem. In the full plan blocking was necessary to eliminate the 

variability which otherwise could altered the statistical analysis. The fixed factor A coincides 

with the DEME threshold, i.e. the percentage of fitness evaluations corresponding to which 

both the encoding switch and the local search take place; it is varied at 4 levels as follows: 

DEME70, DEME80, DEME90, SEGA. As stated before, according to the role of the threshold, 

the SEGA algorithm could be considered as a DEME100 algorithm. The obtained results from 

the experimental plan show that: 

- The Model F-value of 203.055 implies the model is significant. 

- The "Pred R-Squared" of 0.9412 is in reasonable agreement with the "Adj R-Squared" 

of 0.9465. "Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 

is desirable.  Ratio equal to 66.087 indicates an adequate signal.  This model can be 

used to navigate the design space. 

- Factor A depending on the algorithms’ threshold configuration is always statistically 

influent on makespan response variable as confirmed by the associated p-value lower 

than 0.05; thus, this means that the threshold factor is a key factor for improving the 

optimization performance of the dual encoding-based MEs. 

- With the exception of influencing factor C, namely the limited waiting time of jobs 

within the inter-stage buffers, all the other factor result statistically influent. On the 

other hand, the interactions between factors C-E and C-F, as well as interaction B-D, 

are not statistically significant. 
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Table 4.15. ANOVA results. 

 Response variable  Makespan 

Source df Mean square  F p-Value 

Block 9 279935,166    

  A-Threshold 3 2,732  2,732 0.0422 

  B-UnavIntervals 1 7026,262  7026,262 < 0.0001 

  C-BufferWaiting 1 0,069  0,069 0.7923 

  D-Capacity 1 1394,453  1394,453 < 0.0001 

  E-Ws/Stage 1 31063,163  31063,163 < 0.0001 

  F-Stages 1 1320,262  1320,262 < 0.0001 

  G-Job 4 11349,975  11349,975 < 0.0001 

  AB 3 0,099  0,099 0.9603 

  AC 3 0,020  0,020 0.9963 

  AD 3 0,155  0,155 0.9264 

  AE 3 0,146  0,146 0.9325 

  AF 3 0,233  0,233 0.8731 

  AG 12 0,134  0,134 0.9998 

  BC 1 24,876  24,876 < 0.0001 

  BD 1 3,331  3,331 0.0680 

  BE 1 3877,842  3877,842 < 0.0001 

  BF 1 11,651  11,651 0.0006 

  BG 4 681,846  681,846 < 0.0001 

  CD 1 7,669  7,669 0.0056 

  CE 1 0,910  0,910 0.3403 

  CF 1 1,404  1,404 0.2361 

  CG 4 4,625  4,625 0.0010 

  DE 1 210,145  210,145 < 0.0001 

  DF 1 44,028  44,028 < 0.0001 

  DG 4 56,343  56,343 < 0.0001 

  EF 1 107,297  107,297 < 0.0001 

  EG 4 3998,266  3998,266 < 0.0001 

  FG 4 151,743  151,743 < 0.0001 

Pred R-Sq 94,12%     

Adj R-Sq 94,65%     

Model 560 6173925,055   203,055 < 0.0001 

Though the multi-stage encoding involves a higher number of digits to be used for the problem 

representation, computational time evaluations reported in Table 4.16 show as DEME algorithms still 

keep a satisfying efficiency, thus avoiding an excessive increase of computational burden. As a result 

of a preliminary analysis on the computational times it has been noticed that the only influencing 

factors affecting the time of convergence are confined to both the number of stages and the number of 

machines per stage, along with the number of jobs. As a consequence, for sake of simplicity, in Table 
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4.16 for each class of problems and for each couple of influencing factors the average computational 

times needed by each ME algorithm has been reported. Without loss of generality, with regard to 

DEME90 it could be said that the multi-stage encoding based local search, on the average, yields a 

slight computational time saving with respect to SEGA. The local search threshold along with the 

number of machines per stage may affect the computational times performance of the proposed 

DEMEs if compared with the SEGA algorithm. In fact, with exception of class I problems, the average 

percentage deviations involving DEME70 ( MK% DEME70/SEGA) result higher than the 

corresponding values obtained by DEME80 ( MK% DEME80/SEGA), especially for the scenario 

problems characterized by a lower (i.e., equal to three) number of machines per stage.  

Table 4.16. Computational time evaluations. 

Job Stages WS/Stage DEME70 DEME80 DEME90 SEGA MK% 
DEME70/SEGA 

MK% 
DEME80/SEGA 

MK% 
DEME90/SEGA 

10 

3 3 42,8 43,3 42,4 42,4 0,87% 2,06% -0,06% 

3 5 54,2 54,9 53,7 53,8 0,77% 2,18% -0,08% 

5 3 68,3 68,9 67,5 67,5 1,14% 2,09% -0,06% 

5 5 87,6 88,2 86,8 86,8 0,93% 1,67% -0,03% 

          

30 

3 3 131,3 131,1 125,8 125,4 4,71% 4,52% 0,32% 

3 5 156,1 158,6 155,1 155,3 0,55% 2,14% -0,10% 

5 3 223,3 216,6 213,4 212,7 5,00% 1,82% 0,35% 

5 5 257,6 254,5 255,8 255,3 0,90% -0,28% 0,20% 

          

50 

3 3 239,1 231,8 227,8 227,3 5,21% 2,01% 0,26% 

3 5 260,0 257,7 258,0 258,3 0,67% -0,23% -0,11% 

5 3 442,0 435,0 426,3 426,7 3,58% 1,96% -0,09% 

5 5 443,8 439,2 439,4 439,7 0,95% -0,12% -0,07% 

          

70 

3 3 383,3 359,2 357,8 357,8 7,12% 0,39% -0,01% 

3 5 381,2 359,8 367,6 367,9 3,62% -2,19% -0,08% 

5 3 739,1 685,9 689,8 692,1 6,80% -0,90% -0,33% 

5 5 679,4 662,8 662,4 664,2 2,29% -0,20% -0,27% 

          

100 
 

3 3 578,7 576,4 575,0 577,0 0,29% -0,10% -0,35% 

3 5 585,7 579,5 587,1 589,3 -0,62% -1,66% -0,38% 

5 3 1114,3 1097,6 1092,1 1094,4 1,81% 0,29% -0,21% 

5 5 1011,8 1007,3 1008,5 1033,2 -2,06% -2,50% -2,38% 
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Finally, it worth remembering as the MILP numerical examples have been solved by ILOG 

CPLEX® 12.0 64bit version installed within a workstation powered by two quad-core 2,39 

GHz processors with 24 GB RAM. Metaheuristics have been launched within a virtual 

machine embedded within the same workstation with 2 GB RAM. 

4.7. Comparison with other metaheuristics 

Despite the proposed HFS problem including the specific constraints discussed in section 4.2 

has never been studied by literature, in order to evaluate the effectiveness of the proposed dual 

encoding metaheuristics an extended comparison with a set of alternative metaheuristics has 

been carried out. In particular, performances of the so-called DEME and SEGA algorithms 

have been evaluated in relation to the following alternative metaheuristics per formed by 

literature. A brief description is reported for each one. 

- Genetic Algorithm hereinafter coded as GAR developed by Ruiz and Maroto (2006), 

for minimizing the total completion time (makespan) of a HFS problem with sequence 

dependent setup times and machine eligibility. It exploits a single permutation 

encoding and an early finish machine decoding policy. Conforming to what suggested 

by the authors, similar block 2-point cross over and shift insertion have been employed 

as cross-over and mutation operator respectively. 

- Artificial Immune System algorithm named AIE (Engine & Döyen, 2004), used by 

authors for solving a FFL scheduling problem as all the machines pertaining to each 

stage are identical. Encoding and decoding strategies used for makespan minimization 

are similar to what discussed before for GAR. 

- Particle Swarm Optimization from now on defined as PSOS developed by Singh and 

Mahapatra (2012) with the aim of minimizing the makespan of a HFS scheduling 

problem with unrelated machines. It worth pointing out as this optimization technique 

adopts a string with n*J digits and a real-number based encoding/decoding strategy 

according to which the integer par of each digit runs the job allocation to machines. 

- Genetic Algorithm here coded as GAK (Kurz & Askin, 2004) devised for FFL 

optimization problems with sequence dependent setup times and allowed stage 

skipping thus further reducing the makespan. Similarly being done by PSOS authors 
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adopted a real-number based encoding for the first stage job allocation to machines. 

Then, for the subsequent stages, an early finish machine job allocation policy has been 

adopted. 

- Simulated Annealing elaborated by Allaoui and Artiba (2004), hereinafter defined as 

SAA, used for a HFS with sequence dependent setup times and machine unavailability. 

Adopted encoding is based on a regular single permutation string while the decoding 

strategy make full use of a commercial simulation tool. For such a reason, in the 

present research the SAA was equipped with a regular early finish machine decoding 

strategy, similarly being done by the most techniques here evaluated. 

Conforming to what discussed in Section 4.6, Tables 4.17 and 4.18 refers to Class I problems, 

i.e. HFS problem with 10 jobs. For each scenario problem composed by ten instances the 

average values of makespan (ave), its percentage difference with respect to the average global 

optimum obtained by ILOG CPLEX ( %) as well as opt, i.e. the number of instances out of 

ten whose makepsan is equal to the exact solution, are reported. At the end of each table are 

located the grand average concerned with the percentage difference and the number of found 

optimal solution, along with the number of times (wins) the ave performance indicator of a 

given metaheuristics reaches the minimum value among the other techniques (see also 

underling values in Table 4.17 and 4.18). As the reader can notice all the three DEMEs 

strongly outperforms the other optimization techniques. In Table 4.17 DEME80 reaches an 

average deviation equal to 1.02% from the average optimal solution provided by ILOG 

CPLEX. On the contrary, the best competitor, with exception of SEGA is the AIE algorithm 

with a 4.20% deviation. Table 4.18 shows as DEME70 ensures a deviation of the average 

makespan lower than 1%. While both SEGA and AIE obtain similar performances with an 

average deviation equal to 3.59% and 3.55%, respectively. Also in terms of opt_ave and wins 

the provided DEMEs confirm their leadership with respect to the other optimization 

procedures.  

As far as the other classes of problems are concerned, the PSOS algorithm has been excluded 

from the comparison due to the extremely weak results obtained for the Class I test cases. 

Remaining sets of comparison involving Classes from II to V have been addressed in Tables 

from 4.19 to 4.22, respectively. Average values of makespan (AVE) and its own percentage 
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deviation ( %) from the best result among the other competitors has been reported for each 

scenario problem. At the end of each Table the grand average concerning the aforementioned 

deviations has been included. Then, the number of times (wins)  a given metaheuristics gets 

the best result for a given scenario has been retrieved. It is worth pointing out that, especially 

in case of a large number jobs to be scheduled, some metaheuristics may not find any feasible 

solution, thus reaching a penalized solution. Therefore, the following Tables refer only to the 

provided feasible solutions and reports a bold number in parenthesis aiming to put in evidence 

the number of instances out of ten for which a feasible solution has been reached. As for 

example, for one instance of scenario problem 18 in Table 4.21, both GAR and SAA do not 

get any feasible solution; thus, their respective % have been computed on the basis of the 

provided feasible solutions. Finally, the following superscript symbol (*) on a given %_AVE 

result indicates a kind of average performance disregarding any unfeasible instance.  

Table 4.19 shows as the proposed DEMEs ensure an average deviation ranging from 0.74% of 

DEME70 to 3.06% of DEME90. DEME70 gets 16 best results out of 32 while AIE and SEGA 

reach a number of wins equal to 3 and an average deviation equal to 4.55% respectively.  

In Table 4.20 DEME80 has the best average deviation equal to 0.98%. The other DEMEs do 

not exceed a 3% deviation while, in terms of wins, both AIE and GAK achieve the best AVE 6 

and two times respectively, in spite of the weak results in terms of average deviation. 

Tables 4.21 and 4.22 highlight the leading performance of the proposed dual encoding 

metaheuristics. Both in terms of average deviation and wins. Table 4.21 shows as scenario 

problems 18, 20, 22 result critical for Gar and SAA as several instances have not met a 

feasible solution. In Table 22 several scenario problems affected the capability of both GAR 

and SAA in finding feasible solutions. Even no feasible solutions (NFS) have been obtained 

by GAR for each instance of scenario problem 22 (see Table 4.22). 
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Table 4.17. Metaheuristics comparison - Class I, 10 jobs, 3 stations problems. 

Sc J Kj Njk T(j-

1)j 
Ujk  DEME70 DEME80 DEME90 GAR AIE PSOS GAK SAA SEGA CPLEX 

1 3 3 1 1 1 
ave 239.5 239.5 239.7 262.0 247.2 439.4 258.8 248.8 245.4 234.1 

% 2.31% 2.31% 2.39% 11.92% 5.60% 87.70% 10.55% 6.28% 4.83%  
opt 6 6 6 3 6 0 2 3 0  

                 

2 3 3 1 1 2 
ave 401.6 401.6 401.6 414.2 401.8 784.2 403.4 401.8 401.8 400.8 

% 0.20% 0.20% 0.20% 3.34% 0.25% 95.66% 0.65% 0.25% 0.25%  
opt 9 9 9 7 8 0 7 8 0  

                 

3 3 3 1 2 1 
ave 224.6 225.5 231.7 255.5 229.9 416.4 262.5 236.8 231.9 222.7 

% 0.85% 1.26% 4.04% 14.73% 3.23% 86.98% 17.87% 6.33% 4.13%  
opt 4 5 4 1 6 0 0 4 0  

                 

4 3 3 1 2 2 
ave 409.1 409.1 409.1 418.7 412.5 736.3 413.4 413.2 412.5 405.3 

% 0.94% 0.94% 0.94% 3.31% 1.78% 81.67% 2.00% 1.95% 1.78%  
opt 9 9 9 6 7 0 6 7 0  

                 

5 3 3 2 1 1 
ave 167.8 167.8 167.8 183.2 170.5 368.6 186.6 178.0 170.5 165.9 

% 1.15% 1.15% 1.15% 10.43% 2.77% 122.18% 12.48% 7.29% 2.77%  
opt 7 7 7 2 6 0 5 4 0  

                 

6 3 3 2 1 2 
ave 352.5 352.5 352.5 366.3 353.4 641.8 357.2 357.9 353.4 352.5 

% 0.0% 0.0% 0.0% 3.9% 0.3% 82.1% 1.3% 1.5% 0.3%  
opt 10 10 10 7 8 0 7 8 0  

                 

7 3 3 2 2 1 
ave 148.2 148.2 148.2 158.5 150.8 378.2 153.4 151.8 151.0 144.0 

% 2.9% 2.9% 2.9% 10.1% 4.7% 162.6% 6.5% 5.4% 4.9%  
opt 6 6 6 1 4 0 4 3 0  

                 

8 3 3 2 2 2 
ave 315.3 315.3 315.2 324.7 321.3 643.5 330.1 321.3 321.3 314.2 

% 0.4% 0.4% 0.3% 3.3% 2.3% 104.8% 5.1% 2.3% 2.3%  
opt 8 8 9 5 5 0 4 5 0  

                 

9 3 5 1 1 1 
ave 112.9 113.2 113.0 118.0 117.6 266.2 122.8 117.6 117.6 112.4 

% 0.4% 0.7% 0.5% 5.0% 4.6% 136.8% 9.3% 4.6% 4.6%  
opt 8 7 8 5 5 0 2 5 0  

                 

10 3 5 1 1 2 
ave 168.2 168.2 171.2 188.6 179.2 488.4 205.7 189.0 179.2 166.4 

 1.1% 1.1% 2.9% 13.3% 7.7% 193.5% 23.6% 13.6% 7.7%  
opt 8 8 6 3 4 0 1 2 0  

                 

11 3 5 1 2 1 
ave 112.5 112.5 112.5 119.7 117.3 265.7 124.1 117.3 117.3 112.0 

 0.4% 0.4% 0.4% 6.9% 4.7% 137.2% 10.8% 4.7% 4.7%  
opt 9 9 9 1 3 0 0 3 0  

                 

12 3 5 1 2 2 
ave 148.2 149.0 151.0 168.0 160.3 512.6 170.9 160.3 160.8 147.8 

 0.3% 0.8% 2.2% 13.7% 8.5% 246.8% 15.6% 8.5% 8.8%  
opt 9 8 7 1 3 0 1 3 0  

                 

13 3 5 2 1 1 
ave 107.3 108.0 108.0 111.6 111.1 228.9 115.7 111.1 111.1 106.3 

 0.9% 1.6% 1.6% 5.0% 4.5% 115.3% 8.8% 4.5% 4.5%  
opt 9 8 8 4 4 0 3 4 0  

                 

14 3 5 2 1 2 
ave 102.3 102.3 102.3 104.8 103.5 471.7 115.2 103.5 103.5 102.3 

 0.0% 0.0% 0.0% 2.4% 1.2% 361.1% 12.6% 1.2% 1.2%  
opt 10 10 10 6 8 0 3 8 0  

                 

15 3 5 2 2 1 
ave 101.6 101.6 101.6 102.8 102.1 227.6 108.6 102.2 102.1 99.4 

 2.2% 2.2% 2.2% 3.4% 2.7% 129.0% 9.3% 2.8% 2.7%  
opt 9 9 9 8 8 0 3 8 0  

                 

16 3 5 2 2 2 
ave 156.6 156.6 157.3 159.8 159.8 504.9 163.6 159.8 159.8 156.6 

 0.0% 0.0% 0.4% 2.0% 2.0% 222.4% 4.5% 2.0% 2.0%  
opt 10 10 9 5 5 0 3 5 0  

                       %_ave 1.07% 1.02% 1.48% 7.33% 4.20% 187.7% 8.72% 5.18% 4.02%  

      opt_ave 8.0 8.1 6.9 3.1 4.3 0 2.7 3.3 0  
      wins 15 11 9 0 0 0 0 0 0  
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Table 4.18. Metaheuristics comparison - Class I, 10 jobs, 5 stations problems. 

Sc J Kj Njk T(j-

1)j 
Ujk  DEME70 DEME80 DEME90 GAR AIE PSOS GAK SAA SEGA CPLEX 

17 5 3 1 1 1 
ave 285.9 285.6 285.9 309.6 300.8 825.2 317.1 309.5 295.2 268.8 

% 6.4% 6.3% 6.4% 15.2% 11.9% 207.0% 18.0% 15.1% 9.8%  
opt 2 2 1 1 1 0 1 1 0  

                 

18 5 3 1 1 2 
ave 436.3 436.6 437.1 456.5 440.6 879.3 463.4 446.7 439.0 432.1 

% 1.0% 1.0% 1.2% 5.6% 2.0% 103.5% 7.2% 3.4% 1.6%  
opt 6 7 6 2 5 0 1 2 0  

                 

19 5 3 1 2 1 
ave 349.8 347.9 350.4 395.7 353.5 802.1 361.4 366.4 357.2 333.0 

% 5.0% 4.5% 5.2% 18.8% 6.2% 140.9% 8.5% 10.0% 7.3%  
opt 4 4 4 2 5 0 2 1 0  

                 

20 5 3 1 2 2 
ave 423.8 423.6 423.8 437.3 427.6 832.4 435.7 425.2 423.8 420.6 

% 0.8% 0.7% 0.8% 4.0% 1.7% 97.9% 3.6% 1.1% 0.8%  
opt 7 7 7 3 5 0 5 5 0  

                 

21 5 3 2 1 1 
ave 241.4 241.4 241.7 258.4 248.2 836.9 263.1 248.2 248.2 239.5 

% 0.8% 0.8% 0.9% 7.9% 3.6% 249.4% 9.9% 3.6% 3.6%  
opt 9 9 8 3 4 0 3 4 0  

                 

22 5 3 2 1 2 
ave 314.1 313.2 314.4 337.6 322.8 707.5 330.6 326.4 320.1 310.6 

% 1.1% 0.8% 1.2% 8.7% 3.9% 127.8% 6.4% 5.1% 3.1%  
opt 8 9 8 3 5 0 5 3 0  

                 

23 5 3 2 2 1 
ave 239.5 240.8 243.7 255.2 247.3 641.1 262.7 249.4 248.5 239.5 

% 0.0% 0.5% 1.8% 6.6% 3.3% 167.7% 9.7% 4.1% 3.8%  
opt 10 8 7 4 6 0 3 3 0  

                 

24 5 3 2 2 2 
ave 350.9 350.9 352.8 388.1 354.7 800.8 373.9 367.2 353.6 348.1 

% 0.8% 0.8% 1.4% 11.5% 1.9% 130.0% 7.4% 5.5% 1.6%  
opt 7 7 5 2 4 0 3 2 0  

                 

25 5 5 1 1 1 
ave 161.9 161.2 162.9 174.6 174.0 593.1 175.9 174.2 173.8 161.1 

% 0.5% 0.1% 1.1% 8.4% 8.0% 268.2% 9.2% 8.1% 7.9%  
opt 8 9 5 0 0 0 0 0 0  

                 

26 5 5 1 1 2 
ave 257.7 257.7 257.7 260.2 260.2 682.1 263.0 260.2 260.2 256.3 

 0.5% 0.5% 0.5% 1.5% 1.5% 166.1% 2.6% 1.5% 1.5%  
opt 9 9 9 6 6 0 4 6 0  

                 

27 5 5 1 2 1 
ave 165.9 165.9 166.6 178.8 173.1 557.0 178.8 173.5 173.1 165.7 

 0.1% 0.1% 0.5% 7.9% 4.5% 236.1% 7.9% 4.7% 4.5%  
opt 9 9 7 1 2 0 2 2 0  

                 

28 5 5 1 2 2 
ave 315.2 315.2 319.1 328.8 326.4 694.4 334.8 326.4 326.4 314.8 

 0.1% 0.1% 1.4% 4.4% 3.7% 120.6% 6.4% 3.7% 3.7%  
opt 9 9 7 5 6 0 5 6 0  

                 

29 5 5 2 1 1 
ave 146.3 146.3 148.2 153.0 152.2 551.8 160.3 153.0 152.5 146.3 

 0.0% 0.0% 1.3% 4.6% 4.0% 277.2% 9.6% 4.6% 4.2%  
opt 10 10 8 3 3 0 1 3 0  

                 

30 5 5 2 1 2 
ave 180.4 180.4 180.4 186.8 185.7 669.4 200.3 187.9 185.7 180.4 

 0.0% 0.0% 0.0% 3.5% 2.9% 271.1% 11.0% 4.2% 2.9%  
opt 10 10 10 5 5 0 3 4 0  

                 

31 5 5 2 2 1 
ave 149.4 149.4 149.5 155.5 154.9 547.0 169.4 154.9 154.9 149.4 

 0.0% 0.0% 0.1% 4.1% 3.7% 266.1% 13.4% 3.7% 3.7%  
opt 10 10 9 4 4 0 2 4 0  

                 

32 5 5 2 2 2 
ave 245.2 245.2 245.2 256.5 256.2 671.8 266.5 256.2 256.2 245.2 

 0.0% 0.0% 0.0% 4.6% 4.5% 174.0% 8.7% 4.5% 4.5%  
opt 10 10 10 6 7 0 3 7 0  

                       %_ave 0.88% 1.00% 1.39% 7.05% 3.55% 147.87% 9.43% 4.58% 3.59%  

      opt_ave 8.2 8.1 7.9 4.1 5.6 0.0 3.2 5.0 0.0  
      wins 10 16 1 0 0 0 0 0 0  
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Table 4.19. Metaheuristics comparison - Class II, 30 jobs. 

Sc J Kj Njk T(j-

1)j 

Ujk  DEME70 DEME80 DEME90 GAR AIE GAK SAA SEGA 

1 3 3 1 1 1 AVE 366.2 357.6 376.2 488.9 389.9 455.3 405.2 380.6 
 2.4% 0.0% 5.2% 36.7% 9.0% 27.3% 13.3% 6.4% 

2 3 3 1 1 2 AVE 813.3 803.5 811.2 1013.6 819.6 891 823.1 812.2 
 1.2% 0.0% 1.0% 26.1% 2.0% 10.9% 2.4% 1.1% 

3 3 3 1 2 1 AVE 371.7 396.5 398.9 552.7 388.4 482.3 431.3 404.3 
 0.0% 6.7% 7.3% 48.7% 4.5% 29.8% 16.0% 8.8% 

4 3 3 1 2 2 AVE 790.2 786.7 793.9 968 806.6 854.8 818.2 797.1 
 0.4% 0.0% 0.9% 23.0% 2.5% 8.7% 4.0% 1.3% 

5 3 3 2 1 1 AVE 239.1 245.7 253.6 364.6 270.8 398 278.9 261 
 0.0% 2.8% 6.1% 52.5% 13.3% 66.5% 16.6% 9.2% 

6 3 3 2 1 1 AVE 496.1 486.7 526.8 735.1 555.6 782.8 506.6 537.2 
 1.9% 0.0% 8.2% 51.0% 14.2% 60.8% 4.1% 10.4% 

7 3 3 2 2 1 AVE 234.7 245.4 239.8 358.1 254.5 431.6 255.7 252.6 
 0.0% 4.6% 2.2% 52.6% 8.4% 83.9% 8.9% 7.6% 

8 3 3 2 2 2 AVE 488.5 513 526.9 743.9 540.6 772.9 507.2 545.6 
 0.0% 5.0% 7.9% 52.3% 10.7% 58.2% 3.8% 11.7% 

9 3 5 1 1 1 AVE 193.8 196.3 197.3 228.9 198 271.5 215.4 199.7 
 0.0% 1.3% 1.8% 18.1% 2.2% 40.1% 11.1% 3.0% 

10 3 5 1 1 2 AVE 205.8 210.3 213 247.8 217.7 244.4 229.7 215.1 
 0.0% 2.2% 3.5% 20.4% 5.8% 18.8% 11.6% 4.5% 

11 3 5 1 2 1 AVE 187.4 184 186.5 225.8 193.5 270.4 203.9 189.5 
 1.8% 0.0% 1.4% 22.7% 5.2% 47.0% 10.8% 3.0% 

12 3 5 1 2 2 AVE 195 198.5 200.9 241 208.5 240.9 221.5 202.6 
 0.0% 1.8% 3.0% 23.6% 6.9% 23.5% 13.6% 3.9% 

13 3 5 2 1 1 AVE 133.6 134.1 135 155.7 137.4 229.5 145.5 137.2 
 0.0% 0.4% 1.0% 16.5% 2.8% 71.8% 8.9% 2.7% 

14 3 5 2 1 2 AVE 151.7 153 155.8 184 165.7 179 172.7 159.6 
 0.0% 0.9% 2.7% 21.3% 9.2% 18.0% 13.8% 5.2% 

15 3 5 2 2 1 AVE 125.5 125.2 126.4 160 138.3 260.6 138.3 127.9 
 0.2% 0.0% 1.0% 27.8% 10.5% 108.1% 10.5% 2.2% 

16 3 5 2 2 2 AVE 158.8 160.3 169.2 204.2 176.6 199.5 183.6 174.8 
 0.0% 0.9% 6.5% 28.6% 11.2% 25.6% 15.6% 10.1% 

17 5 3 1 1 1 AVE 548.3 552.3 550.2 636.5 579.3 563.8 588.5 552.3 
 0.0% 0.7% 0.3% 16.1% 5.7% 2.8% 7.3% 0.7% 

18 5 3 1 1 2 AVE 941.1 923.8 919.8 1123.1 935.3 932.8 963.8 923.1 
 2.3% 0.4% 0.0% 22.1% 1.7% 1.4% 4.8% 0.4% 

19 5 3 1 2 1 AVE 573.3 571.4 566.5 738 592.3 649.4 627.4 569.9 
 1.2% 0.9% 0.0% 30.3% 4.6% 14.6% 10.8% 0.6% 

20 5 3 1 2 2 AVE 882.8 890.1 886.4 1077.5 855.5 881.3 897.3 892.7 
 3.2% 4.0% 3.6% 25.9% 0.0% 3.0% 4.9% 4.3% 

21 5 3 2 1 1 AVE 402.8 410.1 421.1 528.8 440.2 423.1 446.6 428.1 
 0.0% 1.8% 4.5% 31.3% 9.3% 5.0% 10.9% 6.3% 

22 5 3 2 1 2 AVE 655.4 663.7 669.6 883.9 658.2 675.8 678.7 679.6 
 0.0% 1.3% 2.2% 34.9% 0.4% 3.1% 3.6% 3.7% 

23 5 3 2 2 1 AVE 438.7 434.1 450.1 562.5 469.3 455.1 465.1 458.5 
 1.1% 0.0% 3.7% 29.6% 8.1% 4.8% 7.1% 5.6% 

24 5 3 2 2 2 AVE 647.8 660.1 661 935.7 647.4 675.2 732.8 676.6 
 0.1% 2.0% 2.1% 44.5% 0.0% 4.3% 13.2% 4.5% 

25 5 5 1 1 1 AVE 240.4 241.2 247.4 277.3 241.2 301 257.6 248.7 
 0.0% 0.3% 2.9% 15.3% 0.3% 25.2% 7.2% 3.5% 

26 5 5 1 1 2 AVE 305.9 303.4 305.2 372 312 442.3 331.5 306.8 
 0.8% 0.0% 0.6% 22.6% 2.8% 45.8% 9.3% 1.1% 

27 5 5 1 2 1 AVE 223.7 228.9 229.9 253.1 229.3 284 248.8 231.4 
 0.0% 2.3% 2.8% 13.1% 2.5% 27.0% 11.2% 3.4% 

28 5 5 1 2 2 AVE 343.2 341.2 344.2 411.0 349.5 491.4 376 347.3 
 0.6% 0.0% 0.9% 20.5% 2.4% 44.0% 10.2% 1.8% 

29 5 5 2 1 1 AVE 179.9 177 183 224.4 189.5 243 189.1 184.5 
 1.6% 0.0% 3.4% 26.8% 7.1% 37.3% 6.8% 4.2% 

30 5 5 2 1 2 AVE 203 208.8 211 236.7 207.8 337.1 216.6 214.7 
 0.0% 2.9% 3.9% 16.6% 2.4% 66.1% 6.7% 5.8% 

31 5 5 2 2 1 AVE 179.4 179.3 182.1 215.6 188.4 245.1 202.6 185.3 
 0.1% 0.0% 1.6% 20.2% 5.1% 36.7% 13.0% 3.3% 

32 5 5 2 2 2 AVE 231 232.3 233.6 271.9 221 422 228.6 232.9 
 4.5% 5.1% 5.7% 23.0% 0.0% 91.0% 3.4% 5.4% 

      _ave 0.74% 1.51% 3.06% 28.59% 5.33% 34.72% 9.24% 4.55% 

      wins 16 11 2 0 3 0 0 0 
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Table 4.20. Metaheuristics comparison - Class III, 50 jobs. 

Sc J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 GAR AIE RKGA SAA SEGA 

1 3 3 1 1 1 AVE 601.6 631.1 643 790.2 641.6 754.5 697.2 650.7 
 0.0% 4.9% 6.9% 31.3% 6.6% 25.4% 15.9% 8.2% 

2 3 3 1 1 2 AVE 1369.9 1373.7 1377.9 1626.6 1421.2 1386.6 1430.4 1374.9 
 0.0% 0.3% 0.6% 18.7% 3.7% 1.2% 4.4% 0.4% 

3 3 3 1 2 1 AVE 674.3 669.4 704.4 845.8 670.3 810.8 735 712.9 
 0.7% 0.0% 5.2% 26.4% 0.1% 21.1% 9.8% 6.5% 

4 3 3 1 2 2 AVE 1370.5 1379.2 1374.1 1588.3 1359.5 1373.5 1400.1 1378.4 
 0.8% 1.4% 1.1% 16.8% 0.0% 1.0% 3.0% 1.4% 

5 3 3 2 1 1 AVE 470.1 473.4 488.1 736.5 562.5 741.4 522.6 511.6 
 0.0% 0.7% 3.8% 56.7% 19.7% 57.7% 11.2% 8.8% 

6 3 3 2 1 1 AVE 1087.5 1069.2 1091.9 1387.5 1197.4 1331.3 1193.2 1107.4 
 1.7% 0.0% 2.1% 29.8% 12.0% 24.5% 11.6% 3.6% 

7 3 3 2 2 1 AVE 424 448.6 456.2 616.8 421.2 693.9 509.4 485.8 
 0.7% 6.5% 8.3% 46.4% 0.0% 64.7% 20.9% 15.3% 

8 3 3 2 2 2 AVE 1124.9 1110.1 1149.2 1448.2 1221.1 1396.3 1200.4 1173.1 
 1.3% 0.0% 3.5% 30.5% 10.0% 25.8% 8.1% 5.7% 

9 3 5 1 1 1 AVE 320 319 320.4 363.3 314.9 463 339.3 328.3 
 1.6% 1.3% 1.7% 15.4% 0.0% 47.0% 7.7% 4.3% 

10 3 5 1 1 2 AVE 324.4 318.9 322.2 383.9 326.4 399.4 341.3 330.9 
 1.7% 0.0% 1.0% 20.4% 2.4% 25.2% 7.0% 3.8% 

11 3 5 1 2 1 AVE 304 300.4 307.1 362.1 312.8 444.3 345.6 312 
 1.2% 0.0% 2.2% 20.5% 4.1% 47.9% 15.0% 3.9% 

12 3 5 1 2 2 AVE 322.3 317.6 328 365.3 334.7 382.9 359.4 331 
 1.5% 0.0% 3.3% 15.0% 5.4% 20.6% 13.2% 4.2% 

13 3 5 2 1 1 AVE 186.3 182.1 190.5 241.9 199.8 398 224.4 197.7 
 2.3% 0.0% 4.6% 32.8% 9.7% 118.6% 23.2% 8.6% 

14 3 5 2 1 2 AVE 245.6 244.3 247.6 301.9 248.5 298.6 279.1 259.1 
 0.5% 0.0% 1.4% 23.6% 1.7% 22.2% 14.2% 6.1% 

15 3 5 2 2 1 AVE 189.1 186.6 196.3 252.8 202 437.1 227.5 198 
 1.3% 0.0% 5.2% 35.5% 8.3% 134.2% 21.9% 6.1% 

16 3 5 2 2 2 AVE 244.6 257.5 264.4 329.2 253.4 311.3 299.1 277.1 
 0.0% 5.3% 8.1% 34.6% 3.6% 27.3% 22.3% 13.3% 

17 5 3 1 1 1 AVE 867.6 865.3 871.6 1082.5 928.3 1363.3 976.4 873.3 
 0.3% 0.0% 0.7% 25.1% 7.3% 57.6% 12.8% 0.9% 

18 5 3 1 1 2 AVE 1474.6 1456.8 1469.3 1939.5 1629.7 1463.7 1579.7 1481.6 
 1.2% 0.0% 0.9% 33.1% 11.9% 0.5% 8.4% 1.7% 

19 5 3 1 2 1 AVE 905.2 894.8 896.1 1287.401 939.7 1341.2 1076.2 895.6 
 1.2% 0.0% 0.1% 43.9% 5.0% 49.9% 20.3% 0.1% 

20 5 3 1 2 2 AVE 1434.4 1437.3 1437.5 1819.6 1584.2 1436.7 1509.2 1460.4 
 0.0% 0.2% 0.2% 26.9% 10.4% 0.2% 5.2% 1.8% 

21 5 3 2 1 1 AVE 621.2 615.7 638.7 804.8 699.3 896.5 705.8 652.6 
 0.9% 0.0% 3.7% 30.7% 13.6% 45.6% 14.6% 6.0% 

22 5 3 2 1 2 AVE 1100.1 1109.3 1097 1507.6 1210.4 1073.8 1227.9 1117.3 
 2.4% 3.3% 2.2% 40.4% 12.7% 0.0% 14.4% 4.1% 

23 5 3 2 2 1 AVE 735.1 736.4 736.1 892.8 783.9 1177.1 763.2 744.5 
 0.0% 0.2% 0.1% 21.5% 6.6% 60.1% 3.8% 1.3% 

24 5 3 2 2 2 AVE 1095.1 1068.7 1075.4 1464.4 1223.3 1050.5 1176.4 1094.4 
 4.2% 1.7% 2.4% 39.4% 16.4% 0.0% 12.0% 4.2% 

25 5 5 1 1 1 AVE 350.9 349.6 350.3 386.6 347.7 467 365.6 353.9 
 0.9% 0.5% 0.7% 11.2% 0.0% 34.3% 5.1% 1.8% 

26 5 5 1 1 2 AVE 500.2 495.4 499.5 635.4 505.8 749.6 538.1 517.9 
 1.0% 0.0% 0.8% 28.3% 2.1% 51.3% 8.6% 4.5% 

27 5 5 1 2 1 AVE 346.4 340.5 339.5 391.5 346.2 462.3 371.5 344.4 
 2.0% 0.3% 0.0% 15.3% 2.0% 36.2% 9.4% 1.4% 

28 5 5 1 2 2 AVE 523.7 518.2 525.5 651.7 534.2 781.3 562.3 532.4 
 1.1% 0.0% 1.4% 25.8% 3.1% 50.8% 8.5% 2.7% 

29 5 5 2 1 1 AVE 272.8 279.7 279.6 327.6 270.4 368 299.2 289.1 
 0.9% 3.4% 3.4% 21.2% 0.0% 36.1% 10.7% 6.9% 

30 5 5 2 1 2 AVE 333 336.6 335.2 426.7 349.4 618.7 378.1 339.9 
 0.0% 1.1% 0.7% 28.1% 4.9% 85.8% 13.5% 2.1% 

31 5 5 2 2 1 AVE 280 279.3 288.8 336.9 278.7 381.2 299.7 294.5 
 0.5% 0.2% 3.6% 20.9% 0.0% 36.8% 7.5% 5.7% 

32 5 5 2 2 2 AVE 367.7 358.2 362.8 473.6 358.9 708.8 400.1 368.4 
 2.7% 0.0% 1.3% 32.2% 0.2% 97.9% 11.7% 2.8% 

      _ave 1.08% 0.98% 2.54% 28.07% 5.74% 40.86% 11.76% 4.62% 
      wins 7 16 1 0 6 2 0 0 
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Table 4.21. Metaheuristics comparison - Class IV, 70 jobs. 

Sc J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 GAR AIE RKGA SAA SEGA 

1 3 3 1 1 1 AVE 921.9 925.7 933.6 1221.5 1047.7 1108.9 1090.5 952.4 
 0.0% 0.4% 1.3% 32.5% 13.6% 20.3% 18.3% 3.3% 

2 3 3 1 1 2 AVE 1945.2 1958.6 1960.4 2376 2030.8 2029.7 2057.4 1971 
 0.0% 0.7% 0.8% 22.1% 4.4% 4.3% 5.8% 1.3% 

3 3 3 1 2 1 AVE 1005.8 1002.3 1015.5 1276.1 1067.8 1115 1084.9 1035.6 
 0.3% 0.0% 1.3% 27.3% 6.5% 11.2% 8.2% 3.3% 

4 3 3 1 2 2 AVE 1960 1958.3 1943.8 2195.9 2053.9 1985.5 2023.3 1961 
 0.8% 0.7% 0.0% 13.0% 5.7% 2.1% 4.1% 0.9% 

5 3 3 2 1 1 AVE 838.1 824.4 857.2 1200.2 892.9 1067.9 1030.4 885 
 1.7% 0.0% 4.0% 45.6% 8.3% 29.5% 25.0% 7.4% 

6 3 3 2 1 1 AVE 1622.5 1632.3 1624.7 2044.5 1785.5 1799.6 1892.9 1655.4 
 0.0% 0.6% 0.1% 26.0% 10.0% 10.9% 16.7% 2.0% 

7 3 3 2 2 1 AVE 787.6 788.2 819.3 1028.3 873.9 1112.5 850.4 846.4 
 0.0% 0.1% 4.0% 30.6% 11.0% 41.3% 8.0% 7.5% 

8 3 3 2 2 2 AVE 1873.9 1855.4 1842 2140.4 1971.2 1902.7 1914.1 1878.4 
 1.7% 0.7% 0.0% 16.2% 7.0% 3.3% 3.9% 2.0% 

9 3 5 1 1 1 AVE 462 457.7 472.4 529.2 437.7 653.6 492.4 482.8 
 5.6% 4.6% 7.9% 20.9% 0.0% 49.3% 12.5% 10.3% 

10 3 5 1 1 2 AVE 439.8 440.1 446.3 517.5 450.6 533.1 485.7 451.2 
 0.0% 0.1% 1.5% 17.7% 2.5% 21.2% 10.4% 2.6% 

11 3 5 1 2 1 AVE 462.6 453 455.4 524.1 441.1 632.8 493.7 466.2 
 4.9% 2.7% 3.2% 18.8% 0.0% 43.5% 11.9% 5.7% 

12 3 5 1 2 2 AVE 457.3 456.5 461.2 512.1 443 532.9 476.8 468.3 
 3.2% 3.0% 4.1% 15.6% 0.0% 20.3% 7.6% 5.7% 

13 3 5 2 1 1 AVE 295.2 305.1 314.3 378.8 283.6 604.5 324.7 325 
 4.1% 7.6% 10.8% 33.6% 0.0% 113.2% 14.5% 14.6% 

14 3 5 2 1 2 AVE 367.1 355.3 366.3 443 363.1 437.4 413.3 378.1 
 3.3% 0.0% 3.1% 24.7% 2.2% 23.1% 16.3% 6.4% 

15 3 5 2 2 1 AVE 300.1 295 303.5 384.8 280.4 626.5 341.7 314.6 
 7.0% 5.2% 8.2% 37.2% 0.0% 123.4% 21.9% 12.2% 

16 3 5 2 2 2 AVE 358.5 367.4 380.4 445.5 381.7 469.8 424.6 390.8 
 0.0% 2.5% 6.1% 24.3% 6.5% 31.0% 18.4% 9.0% 

17 5 3 1 1 1 AVE 1276.9 1273.9 1351.8 1786.7 1271.1 2063.5 1537.4 1357.2 
 0.5% 0.2% 6.3% 40.6% 0.0% 62.3% 21.0% 6.8% 

18 5 3 1 1 2 AVE 2056.6 2049.7 2034.7 2729.8(8) 2315.2 1992 2479.3(9) 2035.1 
 3.2% 2.9% 2.1% 37.0% 16.2% 0.0% 24.5% 2.2% 

19 5 3 1 2 1 AVE 1396.8 1386.7 1340.5 1662.8 1274.5 2224.8 1624.2 1351.3 
 9.6% 8.8% 5.2% 30.5% 0.0% 74.6% 27.4% 6.0% 

20 5 3 1 2 2 AVE 2031.2 2019.7 2044.6 2497.6(9) 2246 2049.7 2213.0(9) 2051.3 
 0.6% 0.0% 1.2% 23.7% 11.2% 1.5% 9.6% 1.6% 

21 5 3 2 1 1 AVE 931.3 939.8 942 1187.8 1056.5 1526.4 1032.1 963.5 
 0.0% 0.9% 1.1% 27.5% 13.4% 63.9% 10.8% 3.5% 

22 5 3 2 1 2 AVE 1772.7 1754 1779 2512.9(7) 2107 1670.6 2035.4(9) 1786.9 
 6.1% 5.0% 6.5% 50.4% 26.1% 0.0% 21.8% 7.0% 

23 5 3 2 2 1 AVE 1015.8 1010.8 1013.1 1407.7 1100.4 1721.4 1080.3 1040.8 
 0.5% 0.0% 0.2% 39.3% 8.9% 70.3% 6.9% 3.0% 

24 5 3 2 2 2 AVE 1639.8 1645 1628.1 2229.4 1920.4 1573.1 1900.8 1648.8 
 4.2% 4.6% 3.5% 41.7% 22.1% 0.0% 20.8% 4.8% 

25 5 5 1 1 1 AVE 460.1 457.2 458.9 515.8 462.5 704.9 485.3 467.2 
 0.6% 0.0% 0.4% 12.8% 1.2% 54.2% 6.1% 2.2% 

26 5 5 1 1 2 AVE 735.1 752 730.8 953.3 763.7 1085.8 829.3 758.7 
 0.6% 2.9% 0.0% 30.4% 4.5% 48.6% 13.5% 3.8% 

27 5 5 1 2 1 AVE 446.2 444.1 447.2 501.5 444.9 678.1 465.9 453.5 
 0.5% 0.0% 0.7% 12.9% 0.2% 52.7% 4.9% 2.1% 

28 5 5 1 2 2 AVE 728.5 733.1 730.1 911 782.2 1074.2 826.8 749.4 
 0.0% 0.6% 0.2% 25.1% 7.4% 47.5% 13.5% 2.9% 

29 5 5 2 1 1 AVE 401.2 396.5 406.7 445.5 386.4 615 427.3 417.8 
 3.8% 2.6% 5.3% 15.3% 0.0% 59.2% 10.6% 8.1% 

30 5 5 2 1 2 AVE 527.3 524.3 525.7 692.2 568.5 979.7 607.1 537.3 
 0.6% 0.0% 0.3% 32.0% 8.4% 86.9% 15.8% 2.5% 

31 5 5 2 2 1 AVE 402.6 403.6 408.7 463.2 391 677.6 440.5 413.3 
 3.0% 3.2% 4.5% 18.5% 0.0% 73.3% 12.7% 5.7% 

32 5 5 2 2 2 AVE 507.5 507.1 513.1 751.9 557.5 1032.9 623.7 520.2 
 0.1% 0.0% 1.2% 48.3% 9.9% 103.7% 23.0% 2.6% 

      _ave 2.08% 1.90% 2.98% 27.87%(*) 6.48% 42.08% 13.95%(*) 4.96% 
      wins 8 9 3 0 9 3 0 0 
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Table 4.22. Metaheuristics comparison - Class V, 100 jobs. 

Sc J Kj Njk T(j-1)j Ujk  DEME70 DEME80 DEME90 GAR AIE RKGA SAA SEGA 

1 3 3 1 1 1 AVE 1442.2 1444.7 1442.8 1891.8 1599.9 1744.4 1593.9 1476.1 
 0.0% 0.2% 0.0% 31.2% 10.9% 21.0% 10.5% 2.4% 

2 3 3 1 1 2 AVE 3285.5 3285.4 3290.5 3357.0(4) 3139.9 3060.5 3305.8(8) 3293.2 
 7.4% 7.3% 7.5% 9.7% 2.6% 0.0% 8.0% 7.6% 

3 3 3 1 2 1 AVE 1445.4 1457.9 1486.1 1871.4 1622.7 1719.6 1684.2 1519.6 
 0.0% 0.9% 2.8% 29.5% 12.3% 19.0% 16.5% 5.1% 

4 3 3 1 2 2 AVE 2750.3 2760.3 2746.2 3473.2 2956.7 2809.9 3136.1 2756.7 
 0.1% 0.5% 0.0% 26.5% 7.7% 2.3% 14.2% 0.4% 

5 3 3 2 1 1 AVE 1266.8 1261.5 1256.8 1676.9 1437.4 1614.3 1574.7 1329.0 
 0.8% 0.4% 0.0% 33.4% 14.4% 28.4% 25.3% 5.7% 

6 3 3 2 1 1 AVE 2725.0 2723.7 2740.2 3159.1(9) 2933.4 2801.6 2979.6(9) 2738.2 
 0.0% 0.0% 0.6% 16.6% 7.7% 2.9% 9.4% 0.5% 

7 3 3 2 2 1 AVE 1219.8 1210.2 1253.7 1616.5 1407.4 1651.2 1375.8 1292.1 
 0.8% 0.0% 3.6% 33.6% 16.3% 36.4% 13.7% 6.8% 

8 3 3 2 2 2 AVE 2764.8 2774.8 2770.7 3271.3 2997.5 2861.8 3148.8 2802.8 
 0.0% 0.4% 0.2% 18.3% 8.4% 3.5% 13.9% 1.4% 

9 3 5 1 1 1 AVE 666.4 671.1 684.5 765.4 702.7 949.1 721.5 694.1 
 0.0% 0.7% 2.7% 14.9% 5.4% 42.4% 8.3% 4.2% 

10 3 5 1 1 2 AVE 629.8 635.3 641.6 705.4 660.5 814.0 681.0 656.2 
 0.0% 0.9% 1.9% 12.0% 4.9% 29.2% 8.1% 4.2% 

11 3 5 1 2 1 AVE 660.3 671.3 672.9 741.3 656.0 937.9 715.7 683.7 
 0.7% 2.3% 2.6% 13.0% 0.0% 43.0% 9.1% 4.2% 

12 3 5 1 2 2 AVE 627.2 629.1 633.2 709.8 642.2 756.5 661.2 649.6 
 0.0% 0.3% 1.0% 13.2% 2.4% 20.6% 5.4% 3.6% 

13 3 5 2 1 1 AVE 489.2 482.7 497.3 626.6 513.9 895.0 533.4 507.8 
 1.3% 0.0% 3.0% 29.8% 6.5% 85.4% 10.5% 5.2% 

14 3 5 2 1 2 AVE 524.0 529.3 544.9 640.5 568.4 709.5 591.9 561.2 
 0.0% 1.0% 4.0% 22.2% 8.5% 35.4% 13.0% 7.1% 

15 3 5 2 2 1 AVE 488.3 492.1 513.5 621.8 509.4 904.2 544.3 531.0 
 0.0% 0.8% 5.2% 27.3% 4.3% 85.2% 11.5% 8.7% 

16 3 5 2 2 2 AVE 565.9 567.1 569.1 656.1 572.9 764.4 610.3 586.1 
 0.0% 0.2% 0.6% 15.9% 1.2% 35.1% 7.8% 3.6% 

17 5 3 1 1 1 AVE 2437.6 2316.2 2437.6 2448.3(6) 2283.7 3435.0 2531.2(8) 2460.1 
 6.7% 1.4% 6.7% 7.2% 0.0% 50.4% 10.8% 7.7% 

18 5 3 1 1 2 AVE 3435.2 3441.7 3422.9 3868.0(1) 9796.9 3119.1 3923.3(3) 3437.9 
 10.1% 10.3% 9.7% 24% 214.1% 0.0% 25.8% 10.2% 

19 5 3 1 2 1 AVE 2635.1 2614.5 2608.1 2618.9(8) 2309.7 3364.8 2490.1(9) 2620.9 
 14.1% 13.2% 12.9% 13.4% 0.0% 45.7% 7.8% 13.5% 

20 5 3 1 2 2 AVE 3114.4 3112.5 3098.4 3887.6(7) 3455.1 3015.2 3294.1(8) 3116.3 
 3.3% 3.2% 2.8% 28.9% 14.6% 0.0% 9.3% 3.4% 

21 5 3 2 1 1 AVE 1521.0 1545.2 1534.2 1819.2 1623.9 2744.9 1672.6 1543.9 
 0.0% 1.6% 0.9% 19.6% 6.8% 80.5% 10.0% 1.5% 

22 5 3 2 1 2 AVE 3344.2 3359.8 3354.3 NFS(0) 3749.7 2896.1 3387.8(4) 3360.6 
 15.5% 16.0% 15.8% - 29.5% 0.0% 17% 16.0% 

23 5 3 2 2 1 AVE 1938.4 1920.4 1914.1 2158.1 1949.0 3170.7 2170.4 1930.9 
 1.3% 0.3% 0.0% 12.7% 1.8% 65.6% 13.4% 0.9% 

24 5 3 2 2 2 AVE 2983.3 3003.9 3006.2 3568.0(7) 3315.8 2614.9 3427.3(9) 3028.1 
 14.1% 14.9% 15.0% 36.5% 26.8% 0.0% 31.1% 15.8% 

25 5 5 1 1 1 AVE 671.3 673.9 676.9 743.7 678.2 1194.1 711.2 682.5 
 0.0% 0.4% 0.8% 10.8% 1.0% 77.9% 5.9% 1.7% 

26 5 5 1 1 2 AVE 1115.3 1097.5 1101.2 1443.7 1255.6 1627.1 1312 1112.8 
 1.6% 0.0% 0.3% 31.5% 14.4% 48.3% 19.5% 1.4% 

27 5 5 1 2 1 AVE 630.3 629.7 634.6 687.9 644.3 1217.9 667.2 642.4 
 0.1% 0.0% 0.8% 9.2% 2.3% 93.4% 6.0% 2.0% 

28 5 5 1 2 2 AVE 1108.5 1102.6 1107.7 1407.7 1243.4 1607.4 1336.0 1112.8 
 0.5% 0.0% 0.5% 27.7% 12.8% 45.8% 21.2% 0.9% 

29 5 5 2 1 1 AVE 556.7 551.4 558.3 627.3 569.2 946.2 593.7 569.8 
 1.0% 0.0% 1.3% 13.8% 3.2% 71.6% 7.7% 3.3% 

30 5 5 2 1 2 AVE 777.0 775.9 778.3 1094.6 953.3 1553.8 971.4 802.1 
 0.1% 0.0% 0.3% 41.1% 22.9% 100.3% 25.2% 3.4% 

31 5 5 2 2 1 AVE 568.4 569.1 577.3 628.7 560.4 1044.6 594.0 587.7 
 1.4% 1.6% 3.0% 12.2% 0.0% 86.4% 6.0% 4.9% 

32 5 5 2 2 2 AVE 778.0 775.8 782.2 1231.4 1010.6 1527.4 1129.5 801.0 
 0.3% 0.0% 0.8% 58.7% 30.3% 96.9% 45.6% 3.2% 

      _ave 2.54% 2.46% 3.35% 21.68%(*) 15.43% 42.27% 13.98%(*) 5.02% 
      wins 12 9 2 0 4 5 0 0 
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Conclusions 

 

The aim of the present Thesis was to investigate the use of exact and heuristic approaches for 

solving three novel scheduling problems arising from real-world manufacturing processes. 

Each problem has been firstly formulated by means of an MILP model, so to optimally solve 

small-instances within a reasonable time through the use of commercial solvers. The, in order 

to effectively manage larger instances of the problems addressed, heuristic optimization 

algorithms, mainly based on GAs have been adopted.  

With  reference to the unrelated parallel machine scheduling problem with limited and multi-

skilled human resources, three different GA-based metaheuristic procedures have been 

developed: a GA equipped with a single-stage permutation encoding, a GA powered by a 

multi-stage encoding, and a hybrid GA which encompasses both the single-stage and the 

multi-stage encodings. A calibration campaign has been carried out with the aim of selecting 

the best setting parameters of the proposed optimization procedures; to this end, a benchmark 

of 100 classes of problem entailing 1,000 instances differing for number of jobs, workers and 

machines has been arranged. The proposed metaheuristics extensively have been compared by 

taking into account both small-sized and large-sized problems. In addition, a statistical 

analysis based on the ANOVA method has been fulfilled to evaluate the effects of the two 

kinds of encoding on the metaheuristics performance. Results obtained have shown the 

superiority of performance of the algorithm called HGA25, which starts with the single-stage 

encoding and moves to the multi-stage encoding after 25% of total makespan evaluations. 

After the best optimization procedure was selected, obtained results have been compared with 

those deriving from production scenarios in which workforce is not assumed to be multi-

skilled. It has been shown that the differences of technical abilities among workers may yield 

better results than the case in which operators are all identically featured by an average skill 

level. 

As far as the flow shop sequence dependent group scheduling problem with skilled workforce 

is concerned, a new metaheuristic based on a genetic  algorithm, namely GAI, has been 

developed to properly address both the sequencing and the worker allocation problem under 

an integrated viewpoint. Such procedure has been compared with two distinct genetic 
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algorithms, each one exploiting a different way to manage the worker allocation issue. After 

the numerical results confirmed the efficacy of the provided GAI, this optimization strategy 

has been assessed against the best available metaheuristic in literature for the FDSGS problem, 

i.e., the HPSO proposed by Hajinejad, Salmasi and Mokhtaria (2011). A multiple analysis 

confirmed the superiority of the proposed genetic approach for tackling the problem in hand. 

A subsequent study performed on the numerical results achieved by the GAI highlighted as the 

higher is the problem size (in terms of number of machines) and the higher is impact of the 

worker skill under the makespan reduction viewpoint. Of course, a makespan reduction may 

be determined by an increase of the average worker ability of a given workforce team but, at 

the same time, that skill improvement surely would lead to a cost investment in terms of 

training or manpower replacement. As a consequence of the aforementioned remarks, a set of 

tables has been developed in this paper whose ultimate objective is providing specific 

guidelines for decision makers in case a trade-off between makespan reduction and manpower 

improvement must be fulfilled.  

With regards to the constrained hybrid flow shop scheduling problem, a GA-based 

metaheuristic combining two different problem encodings for improving both exploration and 

exploitation within the overall discrete space of solutions has been proposed. The first phase 

of the proposed dual encoding metaheuristics, called DEME, uses a simple permutation 

encoding while, from a provided threshold on, an encoding switch is performed and a specific 

local search equipped with a multiple stage encoding is launched in order to investigate 

solutions that the previous encoding is not able to evaluate. The dual encoding metaheuristic 

algorithms featured by different values of threshold have been compared with a regular 

genetic algorithm-based metaheuristics named SEGA equipped with a regular permutation 

encoding. An extensive experimental analysis has been carried out for demonstrating the 

superiority of the proposed optimization approach. Then, in order to emphasize the 

effectiveness of the proposed approach, an extensive comparison with other metaheuristics 

arisen from literature has been carried out. 

Further research perspectives should include the study of the aforementioned problems under 

performance objectives different from the makespan (i.e., total weighted completion time, 

total tardiness, etc.). Bi-objective optimization analysis could also be carried out through the 

use of theoretical framework such as Pareto fronts. With respect to the GA-based algorithms 



 

139 
 

adopted, their effectiveness could be tested with reference to well-known problems already 

addressed in literature, in order to explore their performances against the best procedures 

available. Of course the two-step approach here adopted (i.e., the MILP formulation followed 

by a properly developed metaheuristic procedure able to cope with larger-sized instances) 

could be replicate to investigate other scheduling problems arising from real-world 

manufacturing environments. 
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