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Abstract

The huge volume of images shared in the web sites and on personal archives has pro-
vided us challenges on massive multimedia management. Due to the well-known semantic
gap between human-understandable high-level semantics and machine generated low-level
features, recent years have witnessed plenty of research effort on multimedia content un-
derstanding and indexing. Computer vision algorithms for individual tasks such as object
recognition, detection and segmentation have reached impressive results. The next chal-
lenge is to integrate all these algorithms and address the problem of the complete scene
understanding, which involves explaining the image by recognizing all the objects of in-
terest and their spatial extent or shape. True semantic understanding of an image mainly
involves the scene classification and the semantic segmentation. The former has the aim to
determinate the categories to which an image belongs. The later instead, provide for each
pixel a semantic label, which describes the category of object where it appears. Solutions
for the semantic interpretation and understanding of images will enable and enhance large
variety of computer vision applications. While a human can do these tasks easily, it is
laborious and the sheer quantity of data involved can make it prohibitive for a computer.
This thesis proposes novel approaches for semantic scene categorization, segmentation and
retrieval that enable a device with a limited amount of resources to understand images au-
tomatically. The proposed computer vision solutions use machine-learning algorithms to
build robust and reusable systems. Since learning is a key component of biological vision
systems, the design of automatic artificial systems that are capable to learn, is one of the
most important trends in modern computer vision research.
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Chapter 1

Introduction

Vision consists of processing images of scenes so as to make explicit what needs to be
known about them [101]. Visual categorization is a fundamental cognitive process that
refers to the ability to group visual stimuli into meaningful categories. This aptitude al-
lows humans to efficiently and rapidly analyse their surroundings. Humans Vision System
(HVS) is able to understand complex visual scenes at a single glance, despite the number
of objects with different poses, colours, shadows and textures that may be contained in the
scenes. The reason of the robustness and rapidness of this human ability has been a focus
of investigation for the cognitive sciences community over many years [135].

In this thesis, we investigate the image understanding process from three different
points of view. The first one is the basic "scene classification" that has the aim to un-
derstand the context (selected from a predefined set of classes) of a query image. The
second one is the "semantic segmentation" that has the aim to understand the object classes
for each individual pixels (or group of pixels) of a query image. The last one is the "image
indexing" that has the aim to extract from a predefined database all the images containing
the same scene represented in the query (see Fig. 1-1).

The Human Visual System and related studies of Cognitive Sciences community have
stimulated researches in Computer Vision to build artificial image understanding systems.
Motivations beyond that of pure scientific curiosity are provided by several important
applications: content-based image retrieval (CBIR) [150], object detection and recogni-

tion [138], semantic organization of image databases [88], place recognition for robot nav-
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Figure 1-1: Three different points of view for the image understanding process

igation systems [139], direct marketing on multimedia messaging services domain (MMS)

[17,19].

The rest of this thesis is organized as follows: sections 1.1, 1.2 and 1.3 introduce

fundamental concepts and state of the art in Computer Vision for the image categoriza-

tion, semantic segmentation and image-indexing problems, respectively. The publications

achieved and the work plans followed during my Phd carrier are listed in section 1.5. In

chapter 2, 3 and 4 we focus on describing the proposed solutions for the three aforemen-

tioned problems. Finally, conclusions and avenues for further research are given in chapter

5.

1.1 Scene Classification

Scene recognition is a key process of human vision which is exploited to efficiently and

rapidly understand the context and objects in front of us. Humans are able to recognize
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complex visual scenes at a single glance, despite the number of objects with different poses,
colors, shadows and textures that may be contained in the scenes. Seminal studies in com-
putational vision [101] have portrayed scene recognition as a progressive reconstruction of
the input from local measurements (e.g., edges, surfaces). In contrast, some experimen-
tal studies have suggested that recognition of real-world scenes may be initiated from the
encoding of the global configuration, bypassing most of the details about local concepts
and object information [27]. This ability is achieved mainly by exploiting the holistic cues
of scenes that can be processed as single entity over the entire human visual field without
requiring attention to local features [113]. Successive studies suggest that the humans rely

on local as much as on global information to recognise the scene category [151].

The recognition of the scene is a useful task for many relevant computer vision ap-
plications: robot navigation systems [139], semantic organization of databases of digital
pictures [88], content-based image retrieval (CBIR) [150], context driven focus attention
and object priming [138, 142], scene depths estimation [143]. To build a scene recognition
system, consideration about the spatial envelope properties (e.g., degree of naturalness, de-
gree of openness, etc.) and the level of description of the scene (e.g., subordinate, basic,

superordinate) should be taken into account [112].

The results reported in [26] demonstrate that a context recognition engine is important
for the tuning of color constancy algorithms used in the Imaging Generation Pipeline (IGP)
to improve the quality of the final generated image. More in general, in the research area
of single sensor imaging devices [9], the scene context information can be used to drive
different tasks performed in the IGP during both acquisition time (e.g., autofocus, auto-
exposure, white balance, etc.) and post-acquisition time (e.g., image enhancement, image
coding). For example, the auto-scene mode within cameras could allow to automatically
set the acquisition parameters and hence to improve the perceived quality of the captured
image according to the recognised scene (e.g., Landscape, Portrait, etc.). Furthermore, con-
text recognition could be functional for the automatic setting of surveillance cameras which
can be usually placed in different scene contexts (e.g., Indoor vs Outdoor scenes, Open vs
Closed scenes, etc.), as well as in the application domain of assistive technologies for vi-

sually impaired and blind people (e.g., indoor vs outdoor). The need for the development
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of effective solution for scene recognition systems to be embedded in consumer imaging
devices (e.g., consumer digital cameras, smartphones, etc.) is confirmed by the growing in-
terest of consumer devices industry which are including those capabilities in their products
(e.g., Nikon, Canon, etc.). Different constraints should be considered in transferring the
ability of scene recognition into the IGP of a single sensor imaging devices [56]: memory
limitation, low computational power, as well as the input data format to be used in scene
recognition task (e.g., JPEG images).

The visual content of the scene can be described with local or global representation
models. A local based representation of the image describes the context of the scene as a
collection of previously recognized objects/concepts within the scene, whereas a global (or
holistic) representation of the scene context considers the scene as a single entity, bypass-
ing the recognition of the constituting concepts (e.g., objects) in the final representation.
The representation models can significantly differ for their capability of extracting and rep-
resenting important information for the context description.

Many Computer Vision researchers have proved that holistic approaches can be effec-
tively used to solve the problem of rapid and automatic context recognition. Most of the
holistic approaches share the same basic structure that can be schematically summarized as

follows:

1. A suitable features space is considered (e.g., textons vocabularies [10]). This space
must emphasize specific image cues such as, for example, corners, oriented edges,

textures, etc.

2. Each image under consideration is projected into the considered feature space. A
descriptor is built considering the image as a whole entity (e.g., textons distribu-

tions [10]).

3. Context recognition is obtained by using Pattern Recognition and Machine Learning
algorithms on the computed representation of the images (e.g., by using K-nearest

neighbours, SVM, etc.).

A wide class of techniques based on the above scheme, works extracting features on per-

ceptually uniform color spaces (e.g., CIELab). Typically, filter banks [18, 119] or local
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invariant descriptors [29,91] are employed to capture image cues and to build the visual
vocabulary to be used in a bag of visual words model [45]. An image is considered as a dis-
tribution of visual words and this holistic representation is used for classification purposes.
Spatial information have been also exploited in order to capture the layout of the visual
words within images [18,91]. A review of some other state-of-the-art methods working

with features extracted on spatial domain can be found in [30].

On the other hand, different approaches have considered the frequency domain as an
useful and effective source of information to holistically encode an image for scene clas-
sification. The statistics of natural images on frequency domain [141] reveal that there
are different spectral signatures for different image categories. In particular by consid-
ering the shape of the FFT spectrum of an image it is possible to address scene cate-
gory [112, 140, 141], scene depth [143], and object priming such as identity, scale and
location [142].

As suggested by different studies in computational vision, scene recognition may be
initiated from the encoding of the global configuration of the scene, disregarding details
and object information. Inspired by this knowledge, Torralba and Oliva [140] have intro-
duced computational procedures to extract the global structural information of complex
natural scenes looking at the frequency domain [112, 140, 141]. The computational model
presented in [140] works in the Fourier domain where Discriminant Structural Templates
(DSTs) are built using the power spectrum. A DST is a weighting scheme over the power
spectrum that assigns positive values to the frequencies that are representative for one class
and negative for the others. In particular the sign of the DST values indicates the corre-
lation between the spectral components and the “spatial envelope” properties of the two
groups to be distinguished. When the task is to discriminate between two kinds of scenes
(e.g., Natural vs. Artificial) a suitable DST is built and used for the classification. A DST
is learned in a supervised way using Linear Discriminant Analysis. The classification of a
new image is hence performed by the sign of the correlation between the power spectrum
of the considered image and the DST. A relevant issue in building a DST is the sampling
of the power spectrum both at the learning and classification stages (a bank of Gabor filters

with different frequencies and orientation is used in [140]). The final classification is per-
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formed on the Principal Component of the sampled frequencies. The improved version of
the DST descriptor is called GIST [112,141]. Oliva and Torralba [112] performed test using
GIST on a dataset containing pictures of 8 different environmental scenes covering a large
variety of outdoor places. The GIST descriptor is nowadays one of the most used represen-
tation to encode the scene as whole. It has been used in many computer vision application
domains, such as robot navigation [139], visual interestingness [66], image retrieval [50],
video summarization [97], etc.

Luo and Boutell [98] built on previous works of Torralba and Oliva [140] and proposed
to use Independent Component Analysis rather than PCA for features extraction. In addi-
tion they have combined the camera metadata related to the image capture conditions with
the information provided by the power spectra to perform the final classification.

Farinella et al. [59] proposed to exploit features extracted by ordering the Discrete
Fourier Power Spectra (DFPS) to capture the naturalness of scenes. By ordering the DFPS
the overall “shape” of the scene in frequency domain is captured. In particular the frequen-
cies that better capture the differences in the energy “shapes” related to Natural and Arti-
ficial categories are selected and ordered by their response values in the Discrete Fourier
power spectrum. In this way a “ranking number” (corresponding to the relative position
in the ordering) is assigned to each discriminative frequency. The vector of the response
values and the vector of the relative positions in the ordering of the discriminative frequen-
cies are then used singularly or in combination to provide a holistic representation of the
scene. The representation was used with a probabilistic model for Natural vs Artificial
scene classification.

The Discrete Cosine Transform (DCT) domain was explored by Farinella et al. [56]
to build histograms of local dominant orientations to be used as scene representation at
the abstract level of description (e.g., Natural vs Artificial, Indoor vs Outdoor, etc.). The
representation is built collecting the information about orientation and strength of the edges
related to the JPEG image blocks [88]. This representation was coupled with a logistic
classifier to discriminate between the different scene contexts.

The aforementioned techniques disregard the spatial layout of the discriminative fre-

quencies. Seminal studies proposed by Torralba et al. [138, 142, 143] have proposed to
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further look at the spatial frequency layout to address more specific vision tasks by exploit-
ing contextual information (e.g., object detection and recognition, scene depth estimation,

etc.).

1.2 Semantic Segmentation

Semantic segmentation and scene classification can be considered vision tasks with a di-
rect link. The semantic segmentation, is an extension of the scene classification problem
where the entity to classify is not anymore the whole image but single pixel or group of
pixels. Moreover, usually the scene classification is required as a subsystem in the semantic
segmentation solution.

Semantic segmentation aims at pixel-wise classification of images according to seman-
tically meaningful regions (e.g., objects). Semantic interpretation and understanding of
images is an important goal in visual recognition and a solution for this task will enable
or enhance a large variety of applications such as visual search, scene classification, object
detection and recognition. A precise automated image segmentation is still a challenging
and an open problem. Local structures, shape, colour and texture are the common features
deployed in the semantic segmentation task. Colour or gray level information are essential
core features used to segment image into regions [3,32]. An efficient and computation-
ally light descriptor to build on colour features is the colour histogram. The histogram
ignores the spatial organization of the pixels, which is generally an advantage as it sup-
port rotation and scale invariance. When spatial organization is required a second order
statistic can be used. The most common second order statistical measures are based on
the correlation function between the image pixels. Image correlogram [74] describes the
correlation of the image colours as a function of their spatial distance. Local structures
(i.e., edges, corners, and T-Junctions) are also useful features that are detected by differ-
ential operators commonly applied to the luminance information. The shape is one of the
most important characteristic of an object; an outline or boundary contour. It allows to
discriminate different objects. Texture is finally a visual cue that describe the luminosity

fluctuations in the image, which let us interpret a surface as a whole part. Textures can
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Figure 1-2: Example of different objects with similar low level features.

be characterized using properties such as regularity, coarseness, contrast and directionality.
Textures contains important information about the structural arrangement of the surface. It
also describes the relationship of the surface to the surrounding environment. One immedi-
ate application of image texture is the recognition of image regions using texture properties.
Texture features can be extracted by using various methods. Gray-level occurrence matri-
ces (GLCMs) [106], Gabor Filter [94], and Local binary pattern (LBP) [110] are examples
of popular methods to extract texture features. Other method to obtain texture features are
the fractals representation [146].

The key step to obtain a reliable semantic segmentation system is the selection and
design of robust and efficient features that are capable of distinguishing the predefined
pixels’ classes, such as grass, car, human, etc. The following criteria should be taken
into account while considering the design of the overall system and the features extraction

method for the considered problem:

e Similar low-lavel features response, can represent different objects (see Fig. 1-2).
Each feature alone is hence not adequate for segmenting the object that they belong
to. A spatial arrangement of low-level features can be used to increase the object

discrimination.

e A semantic segmentation approach is strongly dependent of the nature of the ap-
plication and each application may have different requirements including different

input data type. For example, there are some applications aim to segment images ob-
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tained from fluorescence microscope, some other applications use images from video
surveillance camera and others use normal photos. Another important parameter that
is application dependent is the detail coarseness of required segmentation as shown

in Fig. 1-3.

e The information needed for the labelling of a given pixel may come from very distant
pixels. The category of a pixel may depend on relatively short-range information
(e.g. the presence of a human face generally indicates the presence of a human body

nearby), as well as on very long-range dependencies [55].

e The hardware miniaturization has reach impressive levels stimulating the deployment
of new devices such as smartphones and tablets. These devices, though powerful, do
not have yet the performance of a typical desktop computer. These devices require
algorithms that perform on board, complex vision tasks including the semantic seg-
mentation. For these reasons, the segmentation algorithms and associated features

should be designed to ensure good performance for computationally limited devices.

Different methods were proposed to address these challenges. Some approaches are
region-based as in [25,28,36,52,69,85,86,99,118] other approaches use a multiscale scan-
ning window detector such as Viola-Jones [148] or Dalal-Triggs [46], possible augmented
with part detectors as in Felszenszwalb et al. [60] or Bourdev et al. [31]. Other approaches
as in [7, 136] unify these paradigms into a single recognition architecture, and leverage on
their strengths by designing region-based specific object detectors and combining their out-
puts. Most of the methods proposed in literature are based on probabilistic models such as
the Markov Random Field (MRF) and the Conditional Random Fields (CRF) models. For
example, a nonparametric model is proposed in [137]. This approach requires no training
and it can easily scaled to datasets with tens of thousands of images and hundreds of labels.
It works by scene-level matching with global image descriptors, followed by superpixel-
level matching with local features and efficient MRF based optimization for incorporating
neighbourhood context. In [162], instead, a framework is presented for semantic scene
parsing and object recognition based on dense depth maps. Five view independent 3D fea-

tures that vary with object class are extracted from dense depth maps at a superpixel level
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Input image

Coarse Segmentation Fine Segmentation

Figure 1-3: Example of image segmentation output with different coarse level. In the left
a coarse segmentation reveals a unified object. In the right a fine segmentation reveals
multiple sub-region for the same object.

for training a classifier using randomized decision forest technique. The formulation can
integrates multiple features in the MRF framework to segment and recognize different ob-
ject classes in the query street scene images. The result shows that only using dense depth
information, results in more accurate segmentation and recognition than that obtained from
sparse 3D features or appearance separately, or even the combination of sparse 3D features
and appearance. In the Texton boost technique [129] the segmentation is obtained by im-
plementing a CRF and features that automatically learn layout and context information.
Similar features were also proposed in [49], although textons were not used, and responses
were not aggregated over a spatial region. In contrast with these techniques, the shape con-
text technique in [25] uses a hand-picked descriptor. In [132] a framework is presented for
pixel-wise object segmentation of road scenes that combines motion and appearance fea-
tures. It is designed to handle street-level imagery such as that on Google Street View and

Microsoft Bing Maps. The authors formulate the problem in the CRF framework in order
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to probabilistically model the label likelihoods and the a priori knowledge. An extended
set of appearance-based features is used, which consists of textons, colour, location and
HOG descriptors. A novel boosting approach is then applied to combine the motion and
appearance-based features. The authors also incorporate higher order potentials in the CRF
model, which produce segmentations with precise object boundaries. In [65] a novel for-
mulation is proposed for the scene-labelling problem capable to combine object detections
with pixel-level information in the CRF framework. Since object detection and multi-class
image labelling are mutually informative dependent problems, pixel-wise segmentation can
benefit from the powerful object detectors and vice versa. The main contribution of [65] lies
in the incorporation of top-down object segmentations as generalized robust potentials into
the CRF formulation. These potentials present a principled manner to convey soft object
segmentations into a unified energy minimization framework, enabling joint optimization
and thus mutual benefit for both problems. A probabilistic framework is presented in [87]
for reasoning about regions, objects, and their attributes such as object class, location, and
spatial extent. The proposed CRF is defined on pixels, segments and objects. The authors
define a global energy function for the model, which combines results from sliding window
detectors and low-level pixel-based unary and pairwise relations. It addresses the problems
of what, where, and how many by recognizing objects, finding their locations and spatial
extent and segmenting them. Although the MRF and the CRF are adequate models to deal
with the semantic segmentation problem in terms of performance, they represent a bottle-
neck in the computation, because the inference is a highly resources consuming process.
A better approach with good performance while preserving high efficiency is based on the
random forest. For example in the semantic texton forests [128], the authors show that one
can build powerful texton codebooks without computing expensive filter-banks or descrip-
tors, and without performing costly k-means clustering and nearest-neighbour assignment.
Specifically, the authors propose the bag of Semantic Textons that is an extension of the
bag of word model obtained by combining a histogram of the hierarchical visual word with
a region prior category. Fine details of this approach are explained in section 3.1. The STF
exploits features that are capable to describe very simple textures obtained in the colour

channels. In chapter 3, we extend the STF approach and improve the semantic segmenta-
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tion performance by adding selected DCT features. These features are aimed to describe

more complex textures represented in the frequency domain.

1.3 Image Indexing

In this section and in chapter 4 we focus on the image indexing problem under a forensics
context. Image Forensics is a science which, among the other questions, aims to answer
the following one during investigation: is the image under consideration contained in a spe-
cific digital archive? The increasing use of low cost imaging devices and the availability
of large databases of digital photos makes the near duplicate image retrieval (NDIR) task
a common activity for a number of applications. In particular, NDIR in large databases
(such as popular social networks, collections of surveillance images and videos, or digital
investigation archives) is a key ingredient for different forensics activities. During digital
investigation (e.g., for copyright violation, child abuse, etc.), classic hashing techniques
(e.g., MDS5 [120], SHA1 [48], etc.) are commonly used to index large quantities of im-
ages in order to detect copies in different archives. However, these methods are unsuitable
to find altered copies, even in case of slight modifications (e.g., near duplicates). Indeed,
classic hashing techniques usually fail because just a small change in the image (even a
single bit) will, with overwhelming probability, results in a completely different hash code.
For example, two images depicting a scene of crime are perceptually identical under small
viewpoint changes, partial occlusion, and/or low photometric distortions, but their hash
code is completely different when a classic hashing approach is used to check their similar-
ity. In order to cope with all related problems, robust hashing techniques based on image
content must be developed: perceptually identical images in terms of content should have
the same (or at least very similar) hash value with high probability, while perceptually dif-
ferent images should have independent hash values. Most of the near duplicate detection
techniques based on image content exploit the bag of visual word approach to build the im-
age signature [21,73, 156, 164, 165]. A problem of the bag-of-visual-word based methods
is related to the ambiguity of some generated visual words [130, 145]. On the other hand,

since different descriptors represent different aspects of a local region, there is no single
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descriptor which is superior to the others [105]. Recently, some commercial approaches for
robust content based hashing methods have been proposed for photos (PhotoDNA [1]) and
videos (Videntifier [93]). These techniques make use of the recent developments in the field
of Near Duplicate Image (NDI) retrieval. Note that there is no agreement on the technical
definition of near-duplicates (see [47] for an in-depth discussion). The definition of near du-
plicate depends on the degree of variability (photometric and geometric) that is considered
acceptable for each particular application. Some approaches [82] consider as NDI, images
obtained by slightly modifying the original ones through common transformations such as
changing contrast or saturation, scaling, cropping, etc. Other techniques [73] consider as
NDI, images of the same scene but with different viewpoint and illumination. A drawback
in testing near duplicate retrieval approaches is that usually near duplicate images used in
the experiments are synthetically generated from a set of images or correspond to different
frames of a video, hence there is an high correlation in terms of visual content, and there is
no variability in terms of resolution and compression. To better evaluate the different algo-
rithms it is needed a database composed by images depicting the same scene and/or subject
whose have been acquired by different cameras, with different viewpoint, luminance condi-
tion, and variability in terms of background. In the last few years, different image hashing
techniques have been proposed in literature to cope with image retrieval and near-duplicate
image detection problems. Most of these techniques are based on the Bags of Visual Words
paradigm (BoVW) [95, 134] to build a holistic representation of the images. Ke et al. [82]
detected near-duplicate images by employing local descriptors [105] extracted on interest
points [104] to represent and match images under several transformations. They used a
hash-based indexing technique to efficiently search into the image databases, and also ap-
plied an optimized storage layout to further improve efficiency. Chum et al. [42] proposed
two novel image similarity measures for image indexing through local feature descriptors
and enhanced min-Hash techniques. The authors of [43] introduced a method to combine
visual words with geometric information to improve hashing-based image retrieval and
object detection, obtaining a novel algorithm (called Geometric min-Hash) which shows
significant advantages against geometrical deformations and occlusions. Cheng et al. [40]

considered local dependencies among descriptors both in scale and space, and encoded
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not only visual appearance but also their scale and space co-occurrence. Moreover they
built SuperNodes that embody the neighbor information to speed up the retrieval execu-
tion time. Wu et al. [156] proposed a novel scheme to exploit geometrical constraints by
spatially grouping features to improve the retrieval precision. Spatial verification stage to
re-rank the results with the bag of-words model have been also exploited by Philbin et
al. in [115]. Wang et al. [155] combined appearance-based and keypoint-based methods.
The algorithm is able to extract and match keypoints from images by discarding outliers
through a voting procedure based on the affine invariant ratio of normalized lengths. Later,
to further validate the correspondences, the algorithm compares the color histograms of the
corresponding areas which have been previously identified by the matched points. In [158],
Xu et al. proposed a two stage method based on the Spatial Pyramid Matching (SPM) tech-
nique [91] and image blocks alignment through linear programming [159]. The aim of the
cascade is to deal with spatial shifts and scale variation; both transformations frequently
occur between frames of a video. Since there is an increasing interest in the scalability
of the Bag-of-Words based near duplicate visual search paradigm, a method to parallelize
the near duplicate visual search architecture to index images over multiple servers have
been proposed by Rongrong et al. in [78]. Near duplicate image retrieval based on BoVW
paradigm has been also exploited for the annotation of web videos as addressed by Zhao
et al. in [152,165]. Taking into account their previous work [164], the authors extract
keypoints from keyframes and generate a visual dictionary by using a clustering algorithm.
Each keyframe is then described by a BoVW representation. Moreover, to speed up the
keyframe retrieval, inverted file indexing plus Hamming embedding is employed. A re-
rank strategy based on a weak geometric consistency checking is also proposed to improve
the overall performance of the system. The final similarity of a video is obtained consider-
ing both the scores of keyframes and their temporal consistency with respect to the query
video. The memory usage and query-response time are two of the main issues in the re-
trieval task. The problem of compressing the visual codebook to better handle with storage
and retrieval complexity has been studied by Rongrong et a. in [79]. In a recent study of Hu
et al. [73], the BoVW paradigm has been augmented by using multiple descriptors (Bags

of Visual Phrases) to exploit the coherence between different feature spaces in which local
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image regions are described. Specifically, to reduce the amount of false matchings in the
BoVW model the authors of [73] introduced the coherent phrase model. In this model, a
local image region (i.e., the patch surrounding the local interest point [104]) is described by
a visual phrase of multiple descriptors instead of a visual word of a single descriptor. In the
Bags of Visual Phrases approach, both feature (local regions are described by descriptors
of different types) and spatial coherence (multiple descriptors are obtained from local areas
at different sizes) are taken into account. To further improve the Bags of Visual Phrases
model, taking into account our preliminary work [20], we propose to exploit the coherence
between feature spaces not only in the image representation, but also during the generation
of codebooks. This is obtained by aligning the codebooks of different descriptors to pro-
duce a more significant quantization of the involved spaces of descriptors, which leads to
a more distinctive representation. In particular, to reduce the amount of false matchings,
instead of separately obtain the codebooks corresponding to the different feature spaces as
proposed in [73], we generate the final codebooks taking into account the correspondence
of the clusters of the involved spaces of descriptors to further enforce feature correspon-
dence. To properly perform tests, a new image database of near duplicate images has been
built by collecting images from Flickr [61] and private collections. The dataset contains
3148 images of 525 different scenes which have from 3 to 34 real near duplicates. Finally,
a method to compress the image representation to be stored for near duplicate purposes is
suggested. The experiments performed on the aforementioned dataset show the effective-
ness of the proposed approach, which obtains a good margin of performances with respect

to the approach described in [73].

1.4 Content-aware image resizing

Content-aware image resizing techniques allow to take into account the visual content of
images during the resizing process. The basic idea beyond these algorithms is the removal
of vertical and/or horizontal paths of pixels (i.e., seams) containing low salient information.
In appendix A we present a method which exploits the Gradient Vector Flow (GVF) of the

image to establish the paths to be considered during the resizing. The relevance of each
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GVF path is straightforward derived from an energy map related to the magnitude of the
GVF associated to the image to be resized. To make more relevant the visual content
of the images during the content-aware resizing, we also propose to select the generated
GVF paths based on their visual saliency properties. In this way visually important image
regions are better preserved in the final resized image. The proposed technique has been
tested, both qualitatively and quantitatively, by considering a representative dataset of 1000
images labeled with corresponding salient objects (i.e., ground-truth maps). Experimental
results demonstrate that our method preserves crucial salient regions better than other state-

of-the-art algorithms.

1.5 Work plans and achieved publications

I developed my PhD experience through an academic/industrial research. Just before start-
ing my PhD, I worked in the AST lab of STMicroelectronics as a consultant. Implementing
a Red-eye removal algorithm using machine learning and computer vision techniques was
the project that I have been assigned to. The results achieved are concluded in different
papers and journals. Noteworthy are the chapter book [12] and the patent [103].

By the end of my project, my supervisors, Eng. M. Guarnera, commended me for
my communication and creative problem solving skills, and for my ability to work well
with different people within a development team. In November 2010, I started my PhD
with the topic of "developing machine learning and computer vision algorithms for image
understanding". The PhD became a great opportunity for learning new techniques and fun-
damental mathematics in this field. All this happen thanks to numerous summer schools
(VISMAC 2010, ICVSS 2011, ISSPR 2011 and ICVSS 2012), course and seminars, which
I attended, following helpful advices of my well-known supervisors G.M. Farinella, S.
Battiato (University supervisor) and V. Tomaselli (Industrial supervisor). During my PhD,
several works have been completed and published. The first work is related to the imple-
mentation of a scene classification algorithm for mobile phone. There, we defined a novel
set of fast features for the problem of image classification using DCT coefficients. We

obtained good performance in terms of accuracy and low time complexity allowing the al-

30



gorithm being runnable on a low power system like a smartphones. The software has been
released for different platform (based on Windows, Maemo/Meego and Android Os) and

the results of this work are published in [13, 14,22,57,58].

The second work that I was assigned is related to the implementation of a system for de-
tection near duplicate images in large databases. Specifically we propose to further improve
the Bags of Visual Phrases approach considering the coherence between feature spaces not
only at the level of image representation, but also during the codebook generation phase.
Finally, we suggest also a method to compress the proposed image representation for stor-
age purposes. Experiments show the effectiveness of the proposed near duplicate retrieval
technique, which outperforms the original Bags of Visual Phrases approach. The results of

this work are published in [23].

The third project is related to the implementation of a content-aware image resizing
framework. The basic idea beyond this algorithm is the resizing of an image by con-
sidering vertical and/or horizontal paths of pixels (i.e., seams) which contain low salient
information. In this work we exploit the Gradient Vector Flow (GVF) of the image to es-
tablish the paths to be considered during the resizing. The relevance of each path is derived
from a saliency map obtained by considering the magnitude of the GVF associated to the
image under consideration. The proposed technique has been tested, both qualitatively and
quantitatively, by considering a representative set of images labelled with corresponding
salient objects (i.e., ground-truth maps). Experimental results demonstrate that our method
preserves crucial salient regions better than other state-of-the-art algorithms. The results of

this work are published in [15, 16].

In the last year of my PhD, I had the possibility to carry on the research as a visitor
researcher at the Centre for Vision, Speech and Signal Processing (CVSSP) of the Univer-
sity of Surrey, supervised by the prof. M. Bober. Here another task has been successfully
completed. Specifically we implemented an extension of the Semantic Texton Forest ap-
proach that includes novel texture features. The results of this work will be submitted soon
in a journal. Other academic works was also accomplished through my PhD. For example,
I have taken part on several external projects for image/video forensic analysis (notewor-

thy is the project aimed to verify the image tampering of scientific results within medical
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imaging papers), I also carried out reviews for different conferences (Oxford Journal, JEI,
TCSVT, IPMU, JET, TCSVT, ICIAP and VISAPP) and presented my works in seminars
and in tutoring activities. The following list briefly reports all the achieved publications

organized by topic:

e Red-Eye Removal

— G. Messina, D. Ravi, M. Guarnera, G. M. Farinella, Method and apparatus for
filtering red and/or golden eye artifact, US Application number 12969252, 30
June 2011

— S. Battiato, G. M. Farinella, M. Guarnera, G. Messina, D. Ravi, "A Cluster-
Based Boosting Strategy for Red-Eyes Removal" - Chapter in Modern Im-
age Processing Algorithms Employing Computational Intelligence Techniques

- Patrick Siarry, Amitava Chatterjee Eds. - Springer (2012) (INPRESS)

e Scene Classification

— G. M. Farinella, D. Ravi, V. Tomaselli, M. Guarnera, S. Battiato "Represent-
ing Scenes For Real-Time Context Classification on Mobile Devices" Journal

Pattern Recognition 2013 (SUBMITTED)

— S. Battiato, G. M. Farinella, M. Guarnera, D. Ravi, V. Tomaselli, "Instant Scene

Recognition on Mobile Platform" European Conference on Computer Vision

(ECCV) 2012

— S.Battiato,G. M. Farinella, E. Messina, G. Puglisi, D. Ravi, V. Tomaselli, A.
Capra - "On the performances of computer vision algorithms on mobile plat-
forms" IS&T/SPIEElectronic Imaging 22-26 January 2012 Burlingame, Cali-

fornia United States

- S. Battiato, G. M. Farinella, E. Messina, G. Puglisi, D. Ravi - "Computer Vision
on Mobile Devices: A few case studies" STDAY 2011 September 30, 2011 -

Torino - Italy
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— G. M. Farinella, D. Ravi, "Image Categorization", Chapter in Image Process-
ing for Embedded Devices, Applied Digital Imaging ebook series - Bentham
Science Publisher, ISSN: 1879-7458, 2010.

e Indexing

— S. Battiato, G. M. Farinella, G. Puglisi, Member, D. Ravi: "Aligning Code-
books for Near Duplicate Image Detection" Multimedia Tools and Applications

2013
e Content Aware Image Resizing

— S. Battiato, G. M. Farinella, G. Puglisi, D. Ravi: "Saliency Based Selection of
Gradient Vector Flow Paths for Content Aware Image Resizing" IEEE Transac-
tions on Image Processing 2013 (SUBMITTED)

- S. Battiato, G. M. Farinella, G. Puglisi and D. Ravi, "Content-Aware Image
Resizing With Seam Selection Based on Gradient Vector Flow", International

Conference on Image Processing. (ICIP) 2012

33



34



Chapter 2

Scene Classification

This chapter presents a new computational model to represent the context of the scene based
on the image statistics collected in the Discrete Cosine Transform (DCT) domain. Since the
DCT of the image acquired by a device is always computed for JPEG conversion/storage’,
the feature extraction process, useful to compute the signature of the scene context, is “free
of charge” for the IGP and can be performed in real-time independently from the computa-
tional power of the device. The rationale beyond the proposed image representation is that
the distributions of the AC DCT coefficients (with respect to the different AC DCT basis)
differ from one class of context to another and can be used to discriminate the content. The
statistics of the AC DCT coefficients can be approximated by a Laplacian distribution [89]
almost centered at zero; we extract an image signature which encodes the statistics of the
scene by considering the scales of Laplacian models fitted over the distribution of AC DCT
coefficients of the image under consideration (See Fig. 2-1). This signature computed on a
spatial pyramid [10,91], together with the information on colors obtained considering the
DC components, is then used for the automatic scene context categorization.

To reduce the computational complexity involved in the image representation extrac-
tion, only a subset of the DCT frequencies (summarizing edges and textures) are con-
sidered. To this purpose a supervised greedy based selection of the most discriminative
frequencies is performed. To improve the discrimination power, the spatial envelope of the

scene is encoded by a spatial hierarchy approach useful to collect the AC DCT statistics

1JPEG is the most common used format for images and videos.
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Figure 2-1: Given the luminance channel of an image (a), the feature vector associated
to the context of the scene is obtained considering the statistics of the AC coefficients
corresponding to the different AC DCT basis (b). For each AC frequency, the coefficients
distribution is computed (c¢) and fitted with a Laplacian model (d). Each fitted Laplacian
is characterized by a scale parameter (i.e., related to the slope). The final image signature
is obtained collecting the scale parameters of the fitted Laplacians among the different AC
DCT coefficient distributions. As specified in Section 2.2, information on colors (i.e., DC
components) as well as on the spatial arrangement of the DCT feature can be included to
obtain a more discriminative representation.
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on image sub-regions [10,91]. We have coupled the proposed image representation with a
Support Vector Machine classifier for final context recognition purpose. The experiments
performed on the 8 Scene Context Dataset demonstrate that the proposed image repre-
sentation achieves better results with respect to the popular GIST scene descriptor [112].
Moreover, the novel image signature outperforms GIST in terms of computational costs.
Finally, with the proposed image descriptor we obtain results comparable with other more
complex state-of-the-art methods exploiting spatial pyramids [10].

The primary contribution of this work is related to the new descriptor for scene context
classification purpose. We emphasise once again the fact that the proposed descriptor is
built on information already available in the IGP of single sensor devices as well as in any
image coded in JPEG format. Compared to many other scene descriptors extracted starting
from RGB images [10, 26, 29,91, 112, 119, 151], the proposed model has the following

peculiarities/advantages:

the decoding/decompression of JPEG is no needed to extract the scene signature;

e visual vocabularies are not necessary to be computed and maintained in memory to

represent training and test images;

e the extraction of the scene descriptor does not need complex operation such as con-

volutions with bank of filters or domain transformations (e.g., FFT);

e there is no need of a supervised/unsupervised learning process to build the scene

descriptor (e.g., there is no need of pre-labeled data and/or clustering procedure);
e it can be extracted directly into an IGP with low computational resources;

e the recognition results closely match state-of-the-art methods cutting down the com-
putational resources (e.g., computational time needed to compute the image repre-

sentation).

The remainder of this chapter is organized as follows: Section 2.1 gives the background
about the AC DCT coefficients distributions for different image categories. Section 2.2

presents the proposed image representation, whereas the new Image Generation Pipeline
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architecture is described in Section 2.3. Section 2.4 reports the details about the experi-

mental settings and discusses the obtained results.

2.1 The Statistics of Natural Image Categories in DCT do-
main

One of the most popular standard for lossy compression of images is the JPEG [153]. The
JPEG compression is available in every IGP of single sensor consumer devices such as
digital cameras and smartphones. Moreover, most of the images on Internet (e.g., in social
networks, websites) are stored in JPEG format. Nowadays, around 70% of the total images
on the top 10 million websites are in JPEG format?. Taking into account these facts, a scene
context descriptor that can be efficiently extracted in the IGP and/or directly in the JPEG
compressed domain is desirable.

The JPEG algorithm divides the image into non-overlapping blocks of size 8 x 8 pix-
els and each block is then processed with the Discrete Cosine Transform (DCT) before
quantization and entropy coding. The DCT has been studied by many researchers which
have proposed different models for the distributions of the DCT coefficients. One of the
first conjecture was that the AC coefficients have Gaussian distributions [116]. Different
other possible distributions of the coefficients have also been proposed, including Cauchy,
generalized Gaussian, as well as a sum of Gaussians [51,53,107,131,160]. The knowledge
about the mathematical form of the statistical distribution of the DCT coefficient is useful in
quantizer design and noise mitigation for image enhancement. Although methods to extract
features directly from JPEG compressed domain have been presented in literature for the
application context of image retrieval [37, 126], for the best of our knowledge, there aren’t
works in literature where the DCT coefficients distributions are exploited for scene classifi-
cation. The proposed image representation is inspired by the works of Lam [89,90], where
the semantic content of the images has been characterised in terms of DCT distributions

modelled with Laplacian and generalized Gaussian models.

2Source: http://w3techs.com/technologies/overview/image_format/all. The
statistics is computed on the top 10 million websites according to the Amazon.com company (Nov 2013).
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Figure 2-2: Laplacian distribution at varying of x and b.

After performing the DCT on each of the blocks of an image and collecting the cor-
responding coefficients to the different AC basis of the DCT, a simple observation of the
distribution indicates that they resemble a Laplacian (see Fig. 2-1(c)). This guess has been
demonstrated through a rigorous mathematical analysis in [89]. The probability density

function of a Laplacian distribution can be written as:

flx|u, b) = %be:cp (— v~ ,u|> (2.1)
where 1 is a location parameter and b > 0 is a scale parameter. Fig. 2-2 reports the exam-
ples of Laplacian distributions. At varying of the scale parameter, the Laplacian distribution
changes its shape. Given N samples {x1,...,xx}, the parameters p and b can be simply

estimated with the maximum likelihood estimator [109]. Specifically, i corresponds to the

median of the samples®, whereas b is computed as follows:

1 N

The rationale beyond the proposed representation for scene context classification is that
the context of different classes of scenes differs in the scales of the AC DCT coefficient
distributions. Hence, to represent the context of the scene we can use the feature vector of
the scales of the AC DCT coefficients distributions of an image after a simple Laplacian

fitting. Fig. 2-3 reports the average “shapes” of the AC DCT coefficient Laplacian dis-

3Note that for the different AC DCT distributions the y value is not equal to zero.
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tributions related to the 8 Scene Context Dataset [112]. The dataset contains 2600 color
images (256x256 pixels) belonging to the following 8 outdoor scene categories: coast,
mountain, forest, open country, street, inside city, tall buildings and highways. The Lapla-
cian shapes in Fig. 2-3 are computed by fitting the Laplacian distributions for the differ-
ent AC DCT coefficient of the luminance channel of each image and then averaging the
Laplacians parameters with respect to the 8 different classes (color coded in Fig. 2-3). A
simple observation of the slopes of the different Laplacian distributions (corresponding to
the b parameter) is useful to better understand the rationale beyond the proposed scene de-
scriptor. The slopes related to the different classes can be captured by the b parameters
computed (with low computational cost) from the images directly encoded in the DCT do-
main (i.e., JPEG format). The guess is that the multidimensional space of the b parameters
is discriminative enough for scene context recognition. Although it is difficult to visualize
the N-dimensional distributions of the b parameters, a simple intuition of the discrimina-
tiveness of the space can be obtained considering two AC DCT frequencies and plotting
the 2-dimensional distributions of the related Laplacian parameters. Fig. 2-4 shows the
2-dimensional distributions obtained by considering two DCT frequencies corresponding
to the DCT basis (0,1) and (1,0) which are useful to reconstruct the vertical/horizontal
edges of each image block (see Fig. 2-1(b)). As the figure points out, already considering
only two AC DCT frequencies there is a good separation among the different classes. The

experiments reported in Section 2.4 quantitatively confirm our rationale.

2.2 Proposed Image Representation

In this section we formalize the proposed image representation which builds on the main
rationale that different scene classes have different AC DCT coefficient distributions (see
Section 2.1). Fig. 2-3 shows the average of the AC DCT coefficient distributions after a
Laplacian fitting on images belonging to different scene contexts. Differences in the slopes
of the Laplacian distributions are evident and are related to the different classes. As a
consequence of this observation, we propose to encode the scene context by concatenating

all the Laplacian parameters related to the median and slope (u and b) which are computed
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Forest

Figure 2-3: Average Laplacian distributions of the AC DCT coefficients considering the 8
Scene Context Dataset [112]. The different scene classes are color coded.

by considering the different AC DCT coefficients distributions of the luminance channel of
the image *. In addition to these information, the mean and variance of the DC coefficients
can be also included into the feature vector to capture the color information, as well as the
AC DCT Laplacian distributions parameters obtained considering the C}, and C,. channels’.
In Section 2.4 we show the contribution of each component involved in the proposed image

descriptor.

The aforementioned image features are extracted in the IGP just after the image acqui-

“Note that in the JPEG format the image is converted in the Y C,,C,. color model as first step.
5The DCT chrominance exhibits the same distribution as for the luminance channel [89].
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context representation can be directly collected in the compressed domain without any fur-
ther processing. Indeed, to build the scene descriptor in the DCT compressed domain, only
simple operations (i.e., the median and the mean absolute deviations from the median) are
needed to compute p and b for the different image channels, as well as to compute the mean
and variance on the DC components. This cuts down the computational complexity with
respect to other descriptors which usually involve convolution operations (e.g., with bank
of filters [10] or Gaussian Kernels [112]) or other more complex pipelines (e.g., Bag of

Words representation [91]) to build the final scene context representation.

It is well-known that some of the DCT basis are related to the reconstruction of edges
of an 8 x 8 image block (i.e., first row and first column of Fig. 2-1 (b)), whereas the
others are more related to the reconstruction of the textured blocks. As shown in [161]
the most prominent patterns composing natural images are the edges. High frequencies
are usually affected by noise and could be not really useful for discriminating the context.
For this reason we have performed an analysis to understand which of the AC DCT basis
can give a real contribution to discriminate between different classes of scenes. One more
motivation to select only the most discriminative AC DCT frequencies is the reduction of

the complexity of the overall system.

To properly select the AC DCT frequencies to be employed in the final image repre-
sentation, we have collected (from Flickr) and labelled a set of 847 uncompressed images
to be used as validation set. These images belong to the 8 different classes of scene con-
text [112] (see Fig. 2-3) and have variable size (max size 6000 x 4000, min size 800 x 600).
We used uncompressed images to avoid that the selection processes of the most discrimi-
native frequencies could be biased by the JPEG quantization step. On this dataset we have
performed scene context classification by representing images through the Laplacian fitting
of a single AC DCT basis. This step has been repeated for each AC DCT basis. A greedy
fashion approach has been hence employed to select the most discriminative frequencies.
This means that as first round the classification has been performed for all the AC DCT
basis separately. The images have been hence classified after performing the learning of
a support vector machine. A leave one out modality has been used to evaluate the dis-

criminativeness of each AC DCT basis. Then we have selected the most discriminative
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Figure 2-5: Final AC DCT frequencies considered for representing the context of the scene
(marked in red).

frequency and we have performed another round of learning and classification considering
the selected frequency coupled with one of the remaining in order to jointly consider two
AC DCT basis. This procedure has been recursively repeated to greedily select frequencies.
The experiments on the validation set suggested that a good trade-off between context clas-
sification accuracy and computational complexity (i.e., the number of AC DCT frequencies
to be included in a real IGP to fit with required computational time and memory resources)
is the one which considers the AC DCT frequencies marked in red in Fig. 2-5. Let D(i, j)
,i=1,...,7,7=1,...,7, be the DCT components corresponding to the 2D DCT basis
(1, 7) in Fig. 2-1(b). The final set of the selected AC DCT basis in Fig. 2-5 is defined as

F={60i=1,..., 7 J{GD)i=1..., sHULO ) =1, H@ )i =1,..., UG )Ni=0...,75 =7~}
(2.3)

Table 2.1 reports the accuracy obtained on the aforementioned validation dataset con-
sidering the Laplacian fitting of all the 63 AC DCT basis, as well as the results obtained
considering the 25 selected basis in Eq. 2.3 (see Fig. 2-5). Notice that the overall accu-
racy obtained with the only 25 selected AC DCT basis is higher than the one obtained by
considering all the 63 AC DCT basis. This is due to the fact that high frequencies (i.e., the
ones below the diagonal in Fig. 2-5) could contain more noise information than the other
frequencies, making confusion into the feature space.

The scene context descriptor proposed so far, uses a global feature vector for describing

an image leaving out the information about the spatial layout of the local features. The
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Table 2.1: Accuracy of scene context classification on the validation dataset.

Approach Accuracy
All Frequencies (63 AC DCT basis) 0.7410
Selected AC DCT basis (Eq. 2.3) 0.7549
Selected AC DCT basis (Eq. 2.3) and spatial hierarchy | 0.8233

relative position of a local descriptor can help to disambiguate concepts that are similar in
terms of local descriptor. For instance, the visual concepts “sky” and “sea” could be similar
in terms of local descriptor, but they are typically different in terms of position within the
scene. The relative position can be thought as the context in which a feature takes part with
respect to the other features within an image. To encode information of the spatial layout
of the scene, different pooling strategies have been proposed in literature [10,91]. Building
on our previous work [10] we have augmented the image representation discussed above
by collecting the AC DCT distributions over a hierarchy of sub-regions. Specifically, the
image is partitioned using three different modalities: horizontal, vertical and regular grid.
These schemes are recursively applied to obtain a hierarchy of sub-regions as shown in
Fig. 2-6. For each sub-region at each resolution level, the Laplacian parameters (¢ and
b) over the selected AC DCT coefficients are computed and concatenated to compose the
feature vector, thus introducing spatial information. As in [10] we have used three levels in
the hierarchy. The integral imaging approach [10, 149] is exploited to efficiently compute
the Laplacian parameters of the different AC DCT coefficients. The accuracy obtained on
the validation set, by considering the spatial hierarchy based representation was 0.8233%,

improving the previous result of more than 6% (see Table 2.1).

We can formalize the proposed scene descriptor as following. Let r"* be a sub-region
of the image under consideration at level [ € {0,1,2} of the subdivision scheme s €
S = {Horizontal,Vertical, Grid} (see Fig. 2-6)°. Let H%* and W* be the number of
8 x 8 blocks of pixel with respect to the height and width of the region r%*. We indicate
h=1,...,H" w=1,...,W", an 8 x 8 block of pixels of

’

with the notation B“*

h,w,c’

the region 7 considering the color channel ¢ € {V,Cy,C,}. Let D-° be the DCT

h,w,c

components obtained from B,llsw . through a 2-dimensional DCT processing. We indicate

®Note that we define % as the entire image under consideration for every s € S.
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with Dﬁfw Ji,j),i=1,...,7,7=1,...,7, the DCT components corresponding to the 2D
DCT base (i, j) of Fig. 2-1(b). Let F be the set of the selected AC DCT basis defined above

(Eq. 2.3). Then, the scene context descriptor of the region 7-° is computed as follows:

Hl s WI s
/’LC (0 0 Hl sz s Z Z Dﬁlsw C (2.4)
h=1 w=1
Hl s Wl s
b*(0,0) HZSWH D (D55,0(0,0) = 4i(0,0))° (2.5)
h=1 w=1

where Eq. 2.4 and 2.5 are evaluated for each ¢ € {Y, C, C, }. The features in Egs. 2.4 and

2.5 are related to the DC components of the DCT.

13 (i, §) = Median ({thc(z Dh=1,... H*w= 1,...,Wl’s}) (2.6)
Hbs wihs
h=1 w=1

where Eq. 2.6 and 2.7 are evaluated for each (c,7,j) € {c € {Y,C},C.}; (i,7) € F'}. The
features in Egs. 2.6 and 2.7 are related to the 25 selected AC components of the DCT.

Let [p"*, b"*] be the feature vector related to the region r* computed considering the
Egs. 2.4, 2.5, 2.6 and 2.7. The final image representation is obtained concatenating the
representations [pb®, b"*] of all the sub-regions in the spatial hierarchy. The computa-
tional complexity to compute the proposed image representation is linear with respect to

the number of 8 x 8 blocks composing the image region under consideration.

2.3 The image generation pipeline architecture

In this section we describe the system architecture to embed the scene context classification
engine into an Image Generation Pipeline. The overall scheme is shown in Fig. 2-7. The
“Scene Context Classification” module is connected to the “DCT” module. The “High

resolution Pipe” block represents a group of algorithms devoted to the generation of high
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scheme 1: scheme 2: scheme 3:
Vertical Horizontal Grid

Figure 2-6: Hierarchical subdivision of the image.
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Figure 2-7: Architecture of the IGP including the proposed scene context classification
engine.

resolution images. This block is linked to the “Acquisition Information” block devoted to
collect different information related to the image (e.g., exposure, gain, focus, white balance,
etc.). These information are used to capture and process the image itself. The “Viewfinder
Pipe” block represents a group of algorithms which usually work on downscaled images to
be shown in the viewfinder of a camera. The “Scene Context Classification” block works
taking the input from the viewfinder pipe to determine the scene class of the image. The
recognized class of the scene influence both the “Acquisition Information” and the “High
resolution pipe” blocks in setting the parameters for the image acquisition. Moreover,
the information obtained by the “Scene Context Classification” block can be exploited

by the “Application Engine” block which can perform different operations according to
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the detected scene category. The “Memory lines” and “DMA” blocks provide the data
arranged in 8 x 8 blocks to the “DCT” module for each image channel (Y, C,, (). The
sub-blocks, composing the “Scene Context Classification” module, are described in the

next subsections.

2.3.1 DCT Coefficients Accumulator

This block is directly linked to the “DCT” block, and thus it receives the DCT coeffi-
cients for the luminance and both chrominance channels. With reference to the hierarchical
scheme shown in Fig. 2-6, this block accumulates DCT coefficients in histograms starting
from the configuration having the smallest region size (e.g., level 2 of grid subdivision).
For all the larger regions in the hierarchy, the computations can be performed by merging
corresponding histogram bins previously computed at fine resolution level (e.g., the infor-
mation already computed at level 2 can be exploited to compute the table at level 1 of grid

subdivision).

2.3.2 Scene Context Representation

Starting from the histograms obtained by the “DCT Coefficients Accumulator” block, all
the pair of Laplacian parameters (x4 and b) are computed by using the Laplacian fitting
equations presented in Section 2.2. The scene context representation is then obtained by
concatenating all the computed Laplacian parameters related to the selected DCT frequen-
cies of all the sub-regions in the hierarchy for the three channels composing the image.
In addition to this information, the mean and variance of the DC coefficients upon the

hierarchy are computed exploiting the equations presented in Section 2.2.

2.3.3 Classifier

The “Classifier” block takes the feature vector (i.e., the scene context representation) as
input to perform the final scene context classification. It takes into account a classifier
learned offline (i.e., the block “Model” in Fig. 2-7 which is learned out of the device). A

Support Vector Machine is employed in our system architecture.
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2.4 Experimental Settings and Results

In this section we report the experiments performed to quantitatively assess the effective-
ness of the proposed scene context descriptor with respect to other related approaches. In
particular, we compare the performances obtained by the proposed representation model
with respect to the ones achieved by the popular GIST descriptor [112]. Moreover, since
the proposed representation is obtained collecting information on a spatial hierarchy, we
have compared it with respect to the one which use bags of textons on the same spatial
hierarchy [10]. Finally, we describe how the architecture presented in Section 2.3 has been
implemented on an IGP of a mobile device to demonstrate the effectiveness and the real-
time performances of the proposed method. Experiments have been done by using a SVM
and a 10-fold cross-validation protocol on each considered dataset. The images are first
partitioned into 10 folds by making a random reshuffling of the dataset. Subsequently, 10
iterations of training and testing are performed such that within each iteration a different
fold of the data is held-out for testing while the remaining folds are used for learning. The

final results are obtained by averaging over the 10 runs.

2.4.1 Proposed Representation vs GIST

To perform this comparison we have taken into account the scene dataset used in the paper
introducing the GIST descriptor [112]. The dataset is composed by 2688 color images with
resolution of 256 x 256 pixels (JPEG format) belonging to 8 scene categories: Tall Build-
ing, Inside City, Street, Highway, Coast, Open Country, Mountain, Forest. This dataset,
together with the original code for computing the GIST descriptor are available on the
web [111]. To better highlight the contribution of the different components involved in the
proposed representation (see Section 2.2) we have considered the following configurations

in representing the images (Table 2.2):

(A) Laplacian parameters of the 63 AC DCT components computed on Y channel;

(B) Laplacian parameters of the 25 selected AC DCT components computed on Y chan-

nel;
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Table 2.2: Configurations of the proposed image representation.

Representation Configuration DCT Frequencies Image Channels | Spatial Hierarchy
(A) All 63 AC components Y No
B) Selected 25 AC components Y No
©) Selected 25 AC components Y Yes
D) Selected 25 AC components + DC component Y Yes
(E) Selected 25 AC components + DC component YC,C, No
® Selected 25 AC components + DC component YC,C, Yes

(C) Laplacian parameters of the 25 selected AC DCT components computed on Y chan-

nel and spatial hierarchy with 3 levels (I = 0,1, 2);

(D) Laplacian parameters of the 25 selected AC DCT components computed on Y chan-
nel, mean and variance of the DC DCT components computed on Y channel, and

spatial hierarchy with 3 levels (I = 0, 1, 2);

(E) Laplacian parameters of the 25 selected AC DCT components computed on Y C},C..
channels, mean and variance of the DC DCT components computed on Y C,C). chan-

nels;

(F) Laplacian parameters of the 25 selected AC DCT components computed on Y C,C).
channels, mean and variance of the DC DCT components computed on Y Cy,C),. chan-

nels, and spatial hierarchy with 3 levels (I = 0, 1, 2)).

Fig. 2-8 reports the average per class accuracy obtained considering all the above repre-
sentation configurations together with the results obtained employing the GIST descriptor.
The results show that the scene representation which considers only the Laplacian param-
eters of the 25 selected AC DCT frequencies fitted on the Y/, i.e., the configuration (B),
already obtains an accuracy of 75.20%. Encoding the information on the spatial hierar-
chy, i.e., configuration (C), is useful to improve the results of more than 6%. A small,
but still useful, contribution is given by the color information obtained considering the DC
DCT components, i.e., configuration (D). Table 2.3 reports the confusion matrix related to
the proposed representation with configuration (F), whereas Table 2.4 shows the confusion
matrix obtained by employing the GIST descriptor. The proposed representation obtains
better results with respect to the GIST descriptor in both cases with and without spatial hi-

erarchy (our with spatial hierarchy: 85.25%, our without spatial hierarchy: 84.60%, GIST:
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B (A) Laplacian parameters of the 63 AC
DCT components of Y color channel
0,84
H (B) Laplacian parameters of the 25 selected
0.82 AC DCT components of Y color channel
0,8 u (C) Laplacian parameters of the 25 selected
AC DCT components of Y color channel and
spatial hierarchy
0,78
® (D) Laplacian parameters of the 25 selected
AC DCT components of Y color channel,
0.76 mean and variance of DC DTC Component of
’ Y color channel, and spatial hierarchy
® (E) Laplacian parameters of the 25 selected
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channels, mean and variance of DC DTC
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0,72 u (F) Laplacian parameters of the 25 selected AC
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mean and variance of DC DTC Component of
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0,7
5 GIST Descriptor [11]
0,68

Accuracy

Figure 2-8: Contribution of each component involved in the proposed image representation
and comparison with respect to the GIST descriptor [112].

84.28%). One should not overlook that the proposed representation has a very limited com-
putational overhead for the image signature generation because it is directly computed on
DCT coefficients already available from the JPEG encoder/format. Specifically, the com-
putation of the image representation (F) requires about 1 operation per pixel (i.e., it is linear
with respect to the image size). This highly reduces the complexity of a scene recognition
system. Moreover, differently than GIST descriptor, the proposed representation is suitable
for mobile platforms since the DCT is already embedded in the Image Generation Pipeline,
whereas the GIST descriptor needs extra overhead in computing the signature of the im-
age and it employs operations which are not present in the current IGP of single sensors

imaging devices (e.g., FFT on the overall image).

Further tests have been done to demonstrate the effectiveness of the proposed repre-
sentation in discriminating the Naturalness and Openness of the scene [112]. Specifically,
taking into account of the definition given in [112], the Naturalness of the scene is related

to the structure of a scene which strongly differs between man-made and natural environ-
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Table 2.3: Results obtained by exploiting the proposed image representation (F) on the 8
Scene Context Dataset [112]. Columns correspond to the inferred classes.

Confusion Matrix | Tall Building | Inside City | Street | Highway | Coast | Open Country | Mountain | Forest
Tall Building 0.88 0.07 0.00 0.01 0.01 0.00 0.01 0.02
Inside City 0.07 0.87 0.04 0.02 0.00 0.00 0.00 0.00
Street 0.03 0.04 0.89 0.02 0.00 0.01 0.01 0.01
Highway 0.00 0.03 0.02 0.82 0.07 0.03 0.03 0.00
Coast 0.00 0.00 0.00 0.02 0.85 0.11 0.01 0.01
Open Country 0.00 0.00 0.01 0.02 0.15 0.74 0.05 0.03
Mountain 0.01 0.00 0.00 0.01 0.02 0.05 0.85 0.06
Forest 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.93

Table 2.4: Results obtained exploiting the GIST representation on the 8 Scene Context
Dataset [112]. Columns correspond to the inferred classes.

Confusion Matrix | 7all Building | Inside City | Street | Highway | Coast | Open Country | Mountain | Forest

Tall Building 0.83 0.01 0.03 0.00 0.00 0.13 0.00 0.00
Inside City 0.00 0.94 0.00 0.00 0.05 0.01 0.00 0.01
Street 0.07 0.00 0.82 0.03 0.03 0.03 0.02 0.00
Highway 0.02 0.01 0.01 0.84 0.00 0.01 0.04 0.08
Coast 0.01 0.05 0.01 0.00 0.86 0.05 0.00 0.02

Open Country 0.14 0.04 0.02 0.00 0.05 0.73 0.01 0.00
Mountain 0.00 0.01 0.03 0.05 0.01 0.02 0.87 0.02
Forest 0.00 0.01 0.00 0.08 0.02 0.00 0.00 0.88

ments. The notion of Openness is related to the open vs closed-enclosed environment,
scenes with horizon vs no horizon, a vast or empty space vs a full, filled-in space [112].
A closed scene is a scene with small perceived depth, whereas an open scene is a scene
with a big perceived depth. Information about Naturalness and/or Openness of the scene
can be very useful in setting parameters of the algorithms involved in the image generation
pipeline [26].

For the Naturalness experiment we have split the 8 scene dataset as in [56, 112] by
considering the classes Coast, Open Country, Mountain and Forest as Natural environ-
ments, whereas the classes Tall Building, Inside City, Street and Highway as belonging to
the Man-Made environments. For the Openness experiment, the images belonging to the
classes Coast, Open Country, Street and Highway have been considered as Open scenes,
whereas the images of the classes Forest, Mountain, Tall Building and Inside City have been
considered as Closed scenes. The results obtained employing the proposed representation
(F) are reported in Table 2.5 and 2.6. The obtained results closely match the performances

of other state-of-the-art methods [10,56, 140] by employing less computational resources.
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Table 2.5: Natural vs Man-Made classification performances of the proposed image repre-

sentation (F). Columns correspond to the inferred classes.

Table 2.6: Open vs Closed classification performances considering the proposed image

Natural | Man-Made
Natural 97.88 2.12
Man-Made 4.75 95.25

representation (F). Columns correspond to the inferred classes.

Table 2.7: Results obtained by the proposed representation (F) on four classes usually used

Open | Closed
Open | 94.17 | 5.83
Closed | 4.63 | 95.37

in the auto-scene mode of consumer digital cameras.

Landscape | Man-Made Outdoor | Portrait | Snow

Landscape 87.76 1.22 0.61 10.41
Man-Made Outdoor 3.78 91.33 2.22 2.67
Portrait 1.02 1.84 94.29 2.86

Snow 9.62 1.13 3.02 86.23

Table 2.8: Results obtained by GIST [112] on four classes usually used in the auto-scene

mode of consumer digital cameras.

Landscape | Man-Made Outdoor | Portrait | Snow

Landscape 84.69 3.27 0.20 11.84
Man-Made Outdoor 4.44 87.78 2.44 5.33
Portrait 0.41 3.47 91.84 4.29

Snow 11.70 3.40 4.34 80.57

Finally, we have considered the problem of recognizing four scene context usually
available in the auto-scene mode of digital consumer cameras: Landscape, Man-Made Out-
door, Portrait, Snow. To this purpose we have collected 2000 colour images (i.e., 500 per
class) with resolution 640 x 480 pixels from Flickr . This dataset has been used to perform
a comparative test of the proposed image representation with configuration (F) with respect
to the GIST descriptor. The results are reported on Table 2.7 and 2.8. The proposed image

representation obtained an average accuracy of 89.80%, whereas GIST achieved 86.07%.
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Table 2.9: Results obtained on the 15 Scene Dataset [91]
Bags of Textons with spatial hierarchy [10] | 79.43%
Proposed representation (D) 78.45%

GIST [112] 73.25%

2.4.2 Proposed Representation vs Bags of Textons on Spatial Hierar-

chy

Since the proposed scene context representation works exploiting information collected
on spatial hierarchy, we have compared it with respect to the method presented in [10],
where Bags of Textons are collected for each region in the spatial hierarchy to represent the
images for scene classification purposes. For this comparison we have considered the 15
Scene Classes Dataset introduced in [91]. The dataset is composed by 4485 images of the
following fifteen categories: highway, inside of cities, tall buildings, streets, forest, coast,
mountain, open country, suburb residence, bedroom, kitchen, living room, office, industrial
and store. Since a subset of the images of the dataset does not have color information, this
test has been performed taking into account only the ¥ channel and using the scene descrip-
tor with configuration (D) reported in Table 2.2. The results obtained on this dataset are
reported in Table 2.9. The average per class accuracy achieved by the proposed approach is
78.45%, whereas the method which exploit textons distributions on spatial hierarchy [10]
obtained an accuracy of 79.43%. Both representations outperform the GIST one, which
obtains 73.25% of accuracy on this dataset. Although the results are slightly in favour for
the method proposed in [10] (of less than 1%), one should not forget that the proposed
method is suitable for an implementation on the image generation pipeline of single sensor
devices, whereas the method in [10] requires extra memory to store textons vocabularies
(i.e., hardware costs for industry) as well as a bigger computational overhead to represent
the image to be classified (e.g., convolution with bank of filters, Textons distributions for

every sub-regions, ecc.).

We have performed one more test to assess the ability of the proposed representation in
discriminating among Indoor vs Outdoor scenes. This prior can be very useful for autofo-

cus, auto-exposure and white balance algorithms. To this aim we have divided the images

54



Table 2.10: Indoor vs Outdoor classification performances considering the proposed image

representation (D). Columns correspond to the inferred classes.

Indoor | Outdoor
Indoor 89.75 10.25

Outdoor | 3.86 96.14

of the 15 Scene Classes Dataset as indoor or outdoor images. The classification results are
reported in Table 2.10. Again the results confirm that the proposed representation can be

employed to distinguish classes of scenes at superordinate level of description [112].

2.4.3 Instant Scene Context Classification on Mobile Device

The experiments presented in Sections 2.4.1 and 2.4.2 have been performed on representa-
tive datasets used as benchmark in the literature. For those tests the scene context represen-
tation has been obtained directly by extracting the DCT information from the compressed
domain (JPEG format). The main contribution of this work is related to the possibility
to obtain a signature for the scene context directly into the image generation pipeline of
a mobile platform, taking into account the architecture presented in Section 2.3. To this
aim we have implemented the proposed architecture on a Nokia N900 smartphone [22].
This mobile platform has been chosen because it has less computational power of the other
smartphones (i.e., the scene context classification engine should able to classify in real-
time independently of the computational power of the device). Moreover, with the chosen
mobile platform, the FCam API can be employed to work within the Image Generation
Pipeline of the device [5,64]. This allows to effectively build the proposed architecture and
test it with real settings. Although the limited resources of the hand-held device, the imple-
mented system works in real-time as demonstrated by the video available at the following
URL:

http://iplab.dmi.unict.it/SceneClassificationMobile.wnmv.

For the implemented system, we have used a SVM model learned offline on the 8 Scene
Context Dataset (see Section 2.4.1) and the configuration (F) for the image representation
(see Table 2.2). The scene context representation is computed on the fly during the genera-

tion of the image to be displayed in the viewfinder. The implemented architecture can also
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Figure 2-9: Example scene context classification of the system implemented on the Nokia
N900.

perform classification of images already stored in the mobile (Fig. 2-9).

The proposed scene context classifier has been also tested on a NovaThor U9500 with
Android OS. The board mounts a 1 GHz Dual-core ARM Cortex-A9 CPU. The computa-
tional time performances have been evaluated by considering the average latencies of the
different scene classification blocks on a set of QVGA images. We have measured the
computational time of all the steps involved in the scene classification: DCT computation,
image representation with configuration (F) (see Table 2.2) and the SVM classification.
The DCT computation required 15.6 ms on the average (this value could be disregarded
when DCT coefficients are directly provided by the integrated JPEG encoder or by work-
ing directly on compressed domain). The overally computational time to build the image
signature with configuration (F) (i.e., the one with spatial hierarchy and all the three image
channels of the image) was only 0.3 ms. Finally, the SVM classification required 117.4 ms.
This test confirmed that the proposed image signature can be computed in realtime within

a mobile platform.
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Chapter 3

Semantic Segmentation

In this chapter we present a new approach for generating class-specific image segmen-
tation. Two novel features that use quantized DCT data are introduced in the Semantic
Texton Forest system [128] with the aim to combined colour and texture information. The
combination of multiple features in a segmentation system is not a straightforward process.
The proposed system is designed to exploit complementary features in a computationally
efficient manner. Our DCT features describe complex textures represented in the frequency
domain and not just textures obtained using simple differences between intensity of pix-
els. Current approaches usually computes texture features using filter-bank responses that
drastically increases the execution time of the segmentation system. Our approach, instead,
uses a limited amount of resources. The proposed method has been tested on the popular
CAMVID database [34,35]. Comparison with respect to the recent approaches available in
this field shows improvement in term of semantic classifications. The rest of this chapter is
organized as follows: section 3.1 describe the random forest algorithm and how to integrate
the novel features in the STF system. Section 3.2 presents the pipeline to segment the im-
age whereas section 3.3 introduces the extraction pipelines for each of the novel features.

Section 3.4 describe the experimental settings and the results.
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Figure 3-1: Integration of texture features in the STF system

3.1 Random Forests and Semantic Texton Forest

Before presenting our approach, we will briefly review the randomized decision forest.
Random forests are an ensemble of separately trained binary decision trees. These decision
trees are trained to solve a problem together and the results are predicted combining all the
partial results obtained by each tree. This process leads to a significantly better generaliza-
tion and avoids over fitting to the data. Maximizing the information gain and minimizing
the information entropy are the goals of the training to optimally separate the data points
for classification problems or to predict a continuous variable. The decision tree concept
was described for the first time in [33] and sub sequentially more and more applications
used an ensemble of randomly trained decision trees for machine learning. [127] used an
ensemble to solve machine-learning tasks with the Boosting algorithm. As result of this
work, the authors found out that an ensemble of (weak) learners achieved a significantly
better generalization. More complex applications were implemented in [6] for a shape
classification system, in [72] for an automatic handwriting recognition and in [44] for a
medical imaging applications. A Random Forests can solve divers problems like the pre-
diction of class for specific data, the predicting of a continuous variable, the learning of a

probability density function or the learning of manifolds. The Random Forest uses weak
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classifiers to solve its tasks. A weak classifier is specialized on a sub problem and signif-
icantly faster compared to a strong classifier, which is usually designed to tackle complex
problems. Every Random Forest can be described by the number of the trees used 7', the
maximum depth D and the type of weak learner model that contributes to the correspond-
ing energy function. The STF model is a complex system that ensembles 2 randomized
decision forests and an image categorization block. The randomized decision forests ob-
tains semantic segmentation acting directly on image pixels, and therefore do not need the
expensive computation of filter-bank responses or local descriptors. They are extremely
fast to both train and test. Specifically, the first randomized decision forest in the STF uses
only simple pixel comparisons on local image patches of size dxd pixels. The split func-
tions f; in this forest can directly take the value p(x,y,b) at pixel location (z,y) in the
colour channel b or some other function defined on two different location py(x1, 31, by ) and
pa(22, Yo, by) relieved within the square patches dxd. Given for each pixel i the leaf nodes
L; = (I3, ...,Ir); and inferred class distribution P(c|L;), one can compute over an image
region r a non-normalized histogram 1,.(n) that concatenates the occurrences of tree nodes
n across the different T trees, and a prior over the region given by the average class distri-

bution P(c|r) = > ... P(c|L;) (see Fig. 3-1). The second randomized decision forest in

ier
the STF uses the category region prior P(c|r) and the semantic texton histogram H,(n) to
achieves efficient and accurate segmentation. Specifically, the split node functions f, of the
second forest evaluate either the numbers ,,1(n = n’) of a generic semantic textons n’
or the probability P(c = ¢/|r + i) within a rectangle r translated relative to the pixel i that
we want to classify. The categorization module determine finally the image categories to
which an image belongs. This categorization is obtained by exploiting again the semantic
texton histogram 7,.(n) computed on the whole image using a non-linear support vector
machine (SVM) with a pyramid match kernel. The STF runs separately the categorization
and the segmentation steps, producing an image-level prior (ILP) distribution P(c) and a

per-pixel segmentation distribution P(cli) respectively. The ILP is used to emphasize the

likely categories and discourage unlikely categories:

P'(c|i) = P(c|i)P(c)* using parameter a to soften the prior (3.1)
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Figure 3-2: Pipeline to integrate the novel DCT features in the STF system.

As previous mentioned, our approach combines texture and colour clues within a STF (see
Fig. 3-1). Adding the texture features in the first random forest allow us either to catch the
semantic segmentation output after performing entirely the STF system (point B in the Fig.
3-1) or after perform just the first random forest (point A in the Fig. 3-1). The last solution
is preferred for real time applications, when the execution time is more important respect
to the accuracy. In the experimental section 3.4, we show that including the proposed DCT

features increase the accuracy in both the semantic segmentation output 3-13.

3.2 Proposed approach

The workflow of our method is shown in fig 3-2. Each image is first converted into a
grayscale channel and then up-scaled by a variable factor. Sub sequentially, the DCT trans-
formation is applied and the most discriminative DCT coefficients are selected. The DCT
coefficients are suitably quantized and combined with a subsampled version of the colour
data to generate input features to the STF system. Next sections explain the functionality

of each of the introduced block.
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Figure 3-3: Laplacian distributions of DCT coefficients for natural images. Top: im-
age under consideration; bottom-left: the 64 basis related to the 8 x 8 DCT transforma-
tion; bottom-right: the different DCT distributions related to the 64 DCT basis reported at
bottom-left, obtained considering the image at top.

3.2.1 DCT Transform e DCT Selection

One of the most popular standard for lossy compression of images is JPEG. JPEG is an
hardware/software codec engine virtually present in all the consumer devices such as digital
cameras, smartphones etc. Moreover, the great majority of the images on Internet are stored
in JPEG format. Image segmentation features that can be extracted directly in the JPEG
compressed domain are hence desirable. The JPEG algorithm, divide the image into non-
overlapping blocks typically 8x8 pixels in size and each block is transformed using the
discrete cosine transform (DCT) followed by quantization and entropy coding. The DCT
has been extensively studied and hence there is a very good understanding of the statistical

distributions of the DCT coefficients and their quantization. Different statistical models
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for AC coefficients were proposed including Gaussian [116], Cauchy, generalize Gaussian
and sum of Gaussian distributions [51,53, 107,131, 160]. The knowledge of the statistical
distribution of the DCT coefficient is useful in quantizer design and noise mitigation for
image enhancement. In our model we assume that the distribution of the AC coefficients
resemble the Laplacian distribution. (See Fig. 3-3(c)). This guess has been demonstrated
through a rigorous mathematical analysis in [89,90]. The probability density function of a
Laplacian distribution can be written as:

1 _
Flo | b) = - exp (—'”“"—b“') (32)

where p and b are the parameters of the Laplacian model. Given N independent and iden-
tically distributed samples x1, xo, ..., Ty, (i.e., the DCT coefficient related a specific fre-
quency in our case) an estimator f of j is the sample median and the maximum likelihood

estimator of the slope b is:
N
1
b=+ Z_lj s — 4 (3.3)

In a recent work [22] describes how to use these parameters to classify the scene in real
time. In section 3.2.2, instead, we show how to use the Laplacian model to quantize prop-
erly the DCT coefficient and use them to extract texture features for the image segmenta-
tion problem. As shown in [33] the most prominent patterns composing images are edges.
Some of the DCT basis are related to the reconstruction of edges of an 8x8 image block
(i.e., first row and first column of Fig. 3-3(c) ), whereas the other are more related to the
reconstruction of the textured blocks. Moreover, high frequencies are usually affected by
noise and could be not useful for segment the image. For this reason, we have performed
an analysis to understand which of the AC DCT basis really can contribute in our pipeline.
One more motivation to look only for the most important frequencies is that we can re-
ducing the complexity of the overall system. To select the most important frequencies we
used a greedy fashion approach. Our analysis suggested that a good compromise between
segmentation accuracy and computational complexity (i.e., the number of AC DCT fre-

quencies to be included in the pipeline to fit with required computational time and memory
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Figure 3-4: Schema used to select the DCT frequencies

resources) is the one which considers the AC DCT components related the DCT basis of
Fig. 3-4. According this schema only 25 frequencies out of 64 are selected. We will refer

to this set of frequencies as selDCTfreqs and the related number as Nyejpreq-

3.2.2 Quantization

Two important observations regarding the DCT data should be taken into account when

these data are used inside a pipeline.

e [st observation: It is a common knowledge that in the real world, the human vision

is more sensitive to some frequencies rather than others.

e 2nd observation: The distribution of the DCT data is not a normal distribution (as
described in the previous section the DCT coefficient distributions for natural images

indicates that they resemble to the Laplacian distributions).

These observations convey the fact that before using the DCT data, they need to be properly

processed. In our process, the first condition is obtained replacing the uniform random

Table 3.1: Quantization matrix, specified in the original JPEG process
16 |11 110 16| 24 | 40 | 51 | 61
12112114 (19| 26 | 58 | 60 | 55
1413|1624 | 40 | 57 | 69 | 56
14117 122(29| 51 | 87 | 80 | 62
18 |22 137 |56| 68 | 109 | 103 | 77
24 135|155 |54| 81 | 104 | 113 | 92
49 | 64 | 78 | 87 | 103 | 121 | 120 | 101
721929598 | 112|100 | 103 | 99
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function used to select the features in each node of the 1st random forest (see Fig. 3-1),
with a weighted selection function which steers the learning process towards using more
frequently the DCT coefficient that are more important. So, each weight in the quantization

table 3.1 is transformed in a probability selection value according to the following function:

ﬁ if i € selDCTfreqs
p= gt (3.4)

0 otherwise

Where ¢; are the quantization values, j € selDCT freqs and N preq is the number of
selected DCT frequencies. The standard quantization table 3.1 is then transformed in a
probability table that we refer with the symbol pt (see table 3.2). This table speed up the
learning increasing the probability to discover good features that maximize the information

gain of the data, in each node of the 1st random forest of the STF system. In order to

Table 3.2: Probability table pt obtained from the standard Jpeg quantization table

0 0.078 | 0.086 | 0.054 | 0.036 | 0.022 | 0.017 | 0.014
0.072 | 0.072 | 0.061 | 0.045 0 0 0.014 0
0.061 | 0.066 0 0 0 0.015 0 0
0.061 | 0.051 0 0 0.017 0 0 0
0.0]148 0 0 0.015 0 0 0 0
0.036 0 0.016 0 0 0 0 0
0.018 | 0.013 0 0 0 0 0 0
0.012 0 0 0 0 0 0 0

consider the second observation, we proposed a quantization step that is capable to gen-
erate more centroids in the DCT space where the data distribution is denser (all the value
that are near to the center of the Laplacian) and less in the areas where only a few DCT
data fall in. This process produces centroids that are conforming to the natural distribution
of the considered DCT data. Classical k-means works well for data having uniform dis-
tribution. In the case of non-uniform distribution the k-means devotes most of its centres
in a marginal area where only few elements occurs, and the final coding suffers (see Fig.
3-5). For this reason, a non-uniformity clustering is essential to quantize the DCT data.
To obtain the quantization with the aforementioned non-uniform property, we propose an
analytic solution. An uncompressed training database of images is used to obtain the two

Laplacian parameters (median and slop) of each DCT coefficient. The cluster centroids are

64



Figure 3-5: Difference between uniform k-mean and non-uniform k-means: the two images
represent a 2D space where the samples are represented in black and the obtained centroids
in green. In the left, the k-means produce centroids uniformly distributed, in the right
a non-uniform quantization produces cluster having approximately the same number of
sample.

then computed performing an integration on the area of each Laplacian model. The points
that divide this area in k equal spaces (starting from the minimum of this distribution and
arriving to the maximum) are the proposed quantization points. Fig. 3-6 shows an example
for one of the DCT coefficient. This process is repeated for all the DCT coefficients, sepa-
rately and it produces a table tT'ex with k X N pye, entries. In each column of this table,
the values are arranged in an ascending order to be used later as stopping criteria during
the clustering process. When the segmentation process is performed, each DCT coefficient
extracted from the image, is converted in a quantized value and saved in a specific channel
according to the corresponding DCT index. In the experimental section we use clustering
with 8, 16, 32 and 64 centroids. Table 3.8 shows that increasing the number of the clusters
will not provide substantial improvement to the system. For this reason, the clustering with
8 centroids is the one that we propose in the final configuration. With 8 cluster for each
frequency we can represent 8X N, rre, different textons (in our case with 25 frequencies
selected there are 200 textons). Furthermore, with this configuration, each quantized DCT

data, occurred in the DCT layers, can be saved in memory, employing only 3 bits.
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Figure 3-6: Laplacian model representing one of the sel DC'T freqs frequencies. The red
points represent the clusters obtained using the proposed analytical process for quantize
this DCT frequency.

3.2.3 Up-Scaling and down-sampling

In the original STF approach [128] only 3 colour channels are used to generate the features
in each node of the 1st random forest. In the proposed approach, other Ny pre, channels
containing quantized DCT data are added to the system. The DCT data are obtained using
a block base process, which means that this information is not pixel specific. In order to
reach the same size of the colour layers, we enlarge the input image before the DCT trans-
formation is applied (see Fig. 3-2). Furthermore, one should also consider that generally,
the semantic segmentation is not required for each pixel and hence a down sampling step is
also considered in another section of the pipeline. In order to have consistent size between
the texture layers and the colour layers, the product between the up-scaling and down sam-
pling factor must be equal to the size of the DCT transformation block (that in our solution
is 8).

up_scalingract x down_sampling_fact = black_size (3.5)

Compatible colour and texture channels data are now available to generating features for

the STF system.
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3.3 Proposed features

After quantizing the DCT data, we are ready to define our semantic segmentation features.
In our system, we propose two new features. The first one, that we call feature f1, has the
purpose to compute statistics of frequencies on a specific region of the image with respect
to the pixel 7 that we want classify. The aim of the proposed statistics is to recognize
objects occurred in the images. For example, the system will be capable to distinguish an
area with many trees (that contains high distribution of the DCT coefficients related to the
high frequencies) from an area representing a road (that instead contains a low distribution
of the same DCT coefficients). The features f1, is defined as a triplet [r(z,y, h, w),t, 5|
of an image region, r, on the DCT layer ¢, using a statistics operator with parameter s that
represent a random quantized value. The region r is defined in coordinates relative to the
pixel © which we need to classify. For efficiency, we only investigate rectangular regions
and for simplicity, a set R of candidate rectangles are chosen at random, such that their top-

left and bottom-right corners lie within a fixed bounding box that we define as 5. Fine

Consider the region r(x, y, h,w)
respect to the current pixel i

Select the layer t using the
probability table pt

| vias vi2s B via2s

Perform the statistic operation
using the parameters

Figure 3-7: Extraction pipeline for feature f1
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details of the extract process used to obtain this feature is explained in Fig. 3-7. One of
the sel DC'T freqs available is first selected using the probability table pt. Each layer has
a different probability of selection according the table 3.2. After that, only the region r
is taken into account and a statistical measurement is performed on this region. Fixed the
value s as one of the quantized value (selected randomly when the features is generate) and

the region r, we propose the following 3 types of statistics evaluation:

Zscanér |SC(ITZ B 8|

statl (r,s) = ] (3.6)

r
2

scan — s

Sta/tQ <7ﬁ7 S) — Zscan€r|(| || ) (37)
T
scan == s

stat3 (r,s) = ZSC“”ETH T (3.8)
T

where ||r|| represent the area of the region r. The performance of each statistic measures
are included in the table 3.8. Although these statistic measures can be efficiently computed
over a whole image exploiting the integral histogram [147], its use is not always granted.
Using the integral histogram is a system design choice that depends on the industry man-
ufacturer constraints. If the available memory is enough to contain the integral histogram
(Nseirreq new layers of integer), the features f1 can be computed in constant time exploit-
ing this integral. Otherwise, a specific number of operations are computed each time that
the feature f1 is required in the system. It is important know the precise number of op-
erations required to compute f1 when the integral histogram is not available because this
feature can drastically reduce the system performances. According to how this feature is
defined, the bounding box of the region r have a maximum size B, and all the sizes are
distributed uniformly in the range 0 — ;. According to this fact, the formula that describe

the average number of operations required to compute f1 is:

SSP 2% s0p  (By+1)(2% By + 1) % sOp
By N 6

(3.9)

where sOp is a value that depend on the statistic measures and specifically is 2 for statl,

3 for stat2 and 1 for stat3. Table 3.9 summarizes the number of required operations when
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Figure 3-8: Example of features f2. The feature f2 is performed in two different points
specified by yellow crosses. The points represent respectively a bicyclist and a pedestrian
pixel class. Thanks to the vertical high frequencies correlated to the wheel under the human
the features f2 is capable to classify properly the under considerate classes.

different statistics and different up-scaling factors Us are used. Table 3.9 is obtained using
an input image of 640x480 pixels and running the system with the bounding box B; equal

to width/3 (best value according to the table 3.9 in the experimental section). The second

Table 3.3: Number of operations required to compute f1 for an image of 640x480 pixels
Us=4 | Us=2 | Us=1
Statl | 7692 | 1950 | 501
Stat2 | 11538 | 2924 | 751
Stat3 | 3846 | 974 | 250

proposed feature called feature f2, is designed to compare two generic points P1 and P2
with respect to the pixel 7 that we want to classify. Fine details of the extract process used to
obtain this feature is explained in Fig. 3-9. The channel W and 7 are respectively selected
and the two value w and z are combined through some operations listed in the "Available
Operations" of Fig. 3-9. These operations are first analysed one by one in the validation
step described in the experimental section 3.4 and then the outperforming operations are
selected in the final configuration. The first 4 rows of table 3.5 shows the classification
results obtained by the system when each of the proposed features f1 and f2 are included
in the STF system. Some tests use also a feature called "unary" that is obtained when the
point P1 and P2 are the same and the selected DCT channels W and 7 are equal. The next

6 rows of table 3.5 shows, instead, the results obtained using the different type of operations
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Figure 3-9: Extraction pipeline for feature f2

to compute feature f2.

The feature f2, despite being very simple, allows to recognize complex structures inside
the image. For example, it is possible to combine the value of the high frequencies in the
point P1 with the low frequencies in the point 2 or even combine the high frequencies in

P1 and in P2 (see Fig. 3-8) that allow to describe sophisticated visual cues.

3.4 Experimental setting and results

3.4.1 Database

To analyse the proposed solution we have used the Cambridge-driving Labeled Video
Database (CamVid) [35], [34]. This is a collection of videos captured on road driving
scenes. It consists of more than 10 minutes of high quality (970 x 720), 30 Hz footage

and is divided into four sequences. Three sequences were taken during daylight and one at
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dusk. A subset of 711 images is almost entirely annotated into 32 categories, but we used
only the 11 object categories, forming a majority of the overall labelled pixels (89.16%)
While most videos are filmed with fixed-position CCTV-style cameras, this data was cap-
tured from the perspective of a driving automobile. The driving scenario increases the

number and heterogeneity of the observed object classes.

Void

Sidewalk

Tree

Bicyclist

Building

Road

Pedestrian

Figure 3-10: Camvid database

3.4.2 Parameters optimization

The parameters of the system are summarized in table 3.4. Our system has been exten-

Table 3.4: System parameters

Related to Name Description
M Modality for different features setting
Us Up scaling factor used to enlarge the image
S Type of statistic used to generate the feature f1
Proposed features Qp Number of quantization points used to quantize the Laplacian area
B Box size used to generate the feature f1
By Box size used to generate the feature f2
Dy Depth for the 1st forest
Dy Depth for the 2nd forest

STF system N; | Number of the features randomly chosen to generate the nodes in the 1st forest

Ny | Number of the features randomly chosen to generate the nodes in the 2st forest

sively evaluated with the purpose to optimize these parameters. The database is split into

468 training images and 233 test images. A validation step is applied to obtain the best
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configuration for each parameter. In the test phase, the configuration set that obtains the
best performance is used to training the final system. The semantic segmentation accuracy
is computed by comparing the ground truth pixels to the inferred segmentation. We report
per-class accuracies (the normalized diagonal of the pixel-wise confusion matrix), the class
average accuracy, and the global segmentation accuracy.

Table 3.5 shows the results obtained when the novel features are introduced in the STF
system and when different operations are used to compute the features f2. From the re-
sults, we can see that adding both the features f1 and f2 to the STF system, improves the
classification performance. Specifically the best results are obtained when the "division"

and the "sum" operations are considered to generate the feature f2.

Table 3.5: Results for different configuration of M

M Overall | MeanClass
MI1=STF 74.40 68.99
M2= STF & f2 unary 74.86 69.90
M3=STF & f1 75.55 70.46
M4=STF & f1 & f2 unary 74.84 70.42
M5=STF & f1& f2 unary & f2 Idiffl | 75.12 70.52
M6=STF & f1 & f2 unary & f2sum | 75.51 71.01
M7=STF & f1 & f2 unary & f2 diff | 75.24 70.94
M8=STF & f1 & f2unary & f2div | 75.50 71.21
M9=STF & f1 & f2unary & f2mol | 75.19 70.75
M10=STF & f1 & f2 unary & f2log | 75.00 70.75

Tables 3.6(a),3.6(b) and 3.6(c) analyze the performance related to the forest parameters,
specifically the depths Dy and Ds of the 2 random forests and the number of the features
N7 and N, randomly selected to generate each node.

Table 3.7 analyze the behaviours of the system when different up-scaling factor Us are
used. The best results are obtained when the image is up-scaled by a factor of 4. To have
good efficiency, it is recommended to use an up-scaling factor of 4 only when the integral
histogram is used in the system, otherwise, reminding the computational analysis proposed
in section 3.3 and according to the table 3.3, a good trade-off between performance and
high efficiency is obtained using an up-scaling factor equal to 2.

Table 3.8 shows the system accuracy obtained using each of the proposed statistics

when different number of clusters are computed for quantize the DCT data. The best results
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Table 3.6: Analisys of the parameters related to the STF system
(b) Results for different values of

(a) Results for different values of

N1 N2
N; | Overall | MeanClass Ny | Overall | MeanClass
400 75.12 70.52 400 75.12 70.52
600 75.59 70.83 600 74.96 71.39
800 75.16 70.90 800 75.29 71.38
1000 | 75.36 71.19 1000 | 75.49 71.76
(¢) Results for different values of Dy & Do
D, & Dy Overall | MeanClass
D=12 & Dy=15| 75.15 70.42
Di=13 & Dy=14 | 74.19 70.25
D=13 & Dy=15| 75.12 70.52
D=13 & Dy=16 | 75.68 70.71
Di=14 & Dy=15| 75.44 71.40

Table 3.7: Results for different values of Us

Us | Overall | MeanClass
4 75.32 71.91
2 75.12 70.52
1 74.46 69.43

are obtained when the statistic type 2 is selected. Moreover, only 8 clusters are enough to

quantize the DCT data.

Table 3.8: Results for different values of Qp and for different type of statistic

Qp=8 Qp=16 Qp=32 Qp=64 Average
Overall | MeanClass | Overall | MeanClass | Overall | MeanClass | Overall | MeanClass | Overall | MeanClass
Statl 75.12 70.52 75.57 70.99 74.43 71.00 74.46 71.30 74.90 70.95
Stat2 75.48 71.21 75.41 71.11 74.89 71.63 74.90 71.06 75.17 71.25
Stat3 75.46 71.15 74.67 69.80 74.66 70.16 74.64 69.98 74.86 70.27
Average | 75.35 70.96 75.22 70.63 74.66 70.93 74.67 70.78

Table 3.9 and 3.10 show the performance obtained using different sizes for the bounding

box B; and By. The best results are obtained when a bounding box equal to wth * Us/(3 %

DCTblocSize) pixels is used for the feature f1 and equal to DCTblocSizex15/U s pixels

is used for the feature f2 (where wth is the width of the image, U's is the up-scaling factor

and DC'TblocSize is the size of the DCT transformation block).
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Table 3.9: Results for different values of By. W is wth x Us/DCTblocSize where wth is
the width of the image, Us is the up-scaling factor and DCTblocSize is the size of the DCT
transformation block

B; | Overall | MeanClass
w/2 | 75.08 70.92
w/3 | 75.12 71.13
w/4 | 75.00 70.52
w/5 | 74.78 70.12

Table 3.10: Results for different values of By. ResF is DCTblocSize/U s where DCTbloc-
Size is the size of the DCT transformation block and Us the up-scaling factor

B, Overall | MeanClass
resF*17 | 74.86 70.58
resF*15 | 75.06 71.21
resF*13 | 74.98 71.12

3.4.3 Experimental results

Table 3.11 compares the results obtained by the state of the art approaches with our ap-

proach when the best configuration set is used. Instead, Table 3.12, shows the confusion

matrix obtained by our solution. Although on this database, our approach does not over-

Table 3.11: Comparison to state of the art on the CamVid dataset

Classification for each class

N .§ = %
i Z o = | 3
Approach m = 7 |} 7} [ ~ o ~ () m Overall | Mean-class

Proposed 49.16 | 77.14 | 93.51 | 80.84 | 63.92 | 88.05 | 75.00 | 76.28 | 28.62 | 88.54 | 76.16 | 76.35 72.47
Shot. [128] | 44.83 | 75.31 | 93.39 | 80.53 | 59.96 | 88.99 | 71.15 | 70.40 | 27.90 | 89.27 | 73.89 | 74.90 70.51
Tighe [136] | 83.10 | 73.50 | 94.60 | 78.10 | 48.00 | 96.00 | 58.60 | 32.80 | 5.30 | 71.20 | 45.90 | 83.90 62.50
Tighe [137] | 87.00 | 67.10 | 96.90 | 62.70 | 30.10 | 95.90 | 14.70 | 17.90 | 1.70 | 70.00 | 19.40 | 83.30 51.20
Brostow [35] | 46.20 | 61.90 | 89.70 | 68.60 | 42.90 | 89.50 | 53.60 | 46.60 | 0.70 | 60.50 | 22.50 | 69.10 53.00
Sturgess [132] | 84.50 | 72.60 | 97.50 | 72.70 | 34.10 | 95.30 | 34.20 | 45.70 | 8.10 | 77.60 | 28.50 | 83.80 59.20
Zhang [162] | 85.30 | 57.30 | 95.40 | 69.20 | 46.50 | 98.50 | 23.80 | 44.30 | 22.00 | 38.10 | 28.70 | 82.10 55.40
Floros [65] | 80.40 | 76.10 | 96.10 | 86.70 | 20.40 | 95.10 | 47.10 | 47.30 | 8.30 | 79.10 | 19.50 | 83.20 59.60
Ladicky [87] | 81.50 | 76.60 | 96.20 | 78.70 | 40.20 | 93.90 | 43.00 | 47.60 | 14.30 | 81.50 | 33.90 | 83.80 62.50

came the performance related to the overall accuracy, it shows a significant improvement

in the per-class accuracy. The per-class measure applies equal importance to all 11 classes,

despite the widely varying class prevalence, and is thus a much harder performance met-

ric than the global accuracy measure, especially in this database that contain unbalanced

classes.

In Fig. 3-11 are shown some classification errors obtained when our approach is used.
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In the first case a region containing a bicycle is confused with a pedestrian; instead in the
second case an area belonging to a building is confused with the class pedestrian. The
reason behind these errors can be explained as follows: in the first case, the long distance
between the subject and the camera, does not allow to distinguish whether the high fre-
quency under each person is relative to the wheel’s bike or to the legs of the subjects. In
the second case, the low brightness makes difficult even for a human to distinguish whether

the textures in that area belong to a group of people or to the structure of the building.

Table 3.12: 11x11 Confusion Matric obtained on the CamVid

Building | Tree | Sky | Car | Sign | Road | Pedestian | Fance | Pole | Sidewalk | Bycyclist
Building | 49.16 | 476 | 1.49 | 524 | 11.54| 0.12 10.56 6.79 | 6.80 2.66 0.87
Tree 3.18 | 7714 | 291 | 149 | 3.29 | 0.07 2.67 6.81 | 1.64 0.69 0.11
Sky 0.45 434 |93.51| 0.06 | 0.23 | 0.00 0.00 0.01 | 1.40 0.00 0.00
Car 2.07 094 | 031 | 80.84 | 1.60 | 0.71 6.85 1.70 | 1.14 1.65 2.21
Sign 9.77 6.53 | 0.24 | 3.55 | 63.92 | 0.00 5.11 5.04 | 5.14 0.27 0.42
Road 0.01 0.01 | 0.00 | 2.19 | 0.01 | 88.05 0.33 0.16 | 0.22 8.17 0.85
Pedestian 1.57 0.32 | 0.00 | 5.19 | 2.21 | 0.22 75.00 4.51 | 3.30 2.94 4.73
Fance 0.68 3.10 | 0.00 | 3.36 | 0.76 | 0.35 8.31 76.28 | 1.82 5.07 0.27
Pole 9.71 11.45| 4.06 | 2.33 | 996 | 0.49 16.66 9.65 | 28.62 5.98 1.10
Sidewalk | 0.03 0.02 | 0.00 | 095 | 0.01 | 3.93 3.38 1.11 | 1.02 88.54 1.02
Bycyclist | 0.11 0.37 | 0.00 | 3.66 | 0.50 | 1.03 13.05 268 | 1.13 1.30 76.16

In Fig. 3-12 is showed an example of visual segmentation outputs, obtained using our

approach and the STF. In this case, our approach has the ability to segment more properly

an area containing a bicyclist that with the STF approach is not recognized at all.

0001TP_008520
o "

(b)

Figure 3-11: Examples of classification error obtained using our approach. In 3-11(a) a
region containing a bicycle is confused with a pedestrian; in 3-11(b) an area belonging to a
building is confused with the class pedestrian.

In Fig. 3-13 are compared the computation time obtained by our approach and the

STF during the two semantic segmentation levels. These tests are performed on a pc with
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Figure 3-12: Example of visual segmentation improvement, obtained using our approach
with respect to the STF.

a processor 173930k 3.20 Ghz (6 cores) and with 32 Gb of memory RAM. Both the ap-
proaches use the best parameters configuration (number of trees, depth, number of features
analysed, bounding box, etc. ). Moreover, features f1 are computed without the support
of the integral image. As we can see from the image 3-13, the proposed features increases
significantly the accuracy obtained on the first level (+8%) while are just slightly better on
the second level (+2%). On the other hand, the complexity of our features have a negligi-
ble impact on the execution time. Hence, for real-time systems that cannot perform both
the semantic segmentation levels, the introduction of our features is crucial to have a good

classification improvement with a reduced amount of resources.
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Time Vs Performance

1st Level 2nd Level
0.43(sec) 0.47(sec) 1.28(sec) 1.97(sec)

m Overall m MeanClass

Figure 3-13: Computational time obtained by our approach and the STF during the two
segmentation phases
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Chapter 4

Image Indexing

In this chapter we present a computer vision application for image indexing applied in the
forensic context. We believe that the detection of near duplicate images in large databases,
such as the ones of popular social networks, digital investigation archives, and surveillance
systems, is an important task for a number of vision applications. In digital investigation,
hashing techniques are commonly used to index large quantities of images belonging to
different archives. In the last few years, different image hashing techniques based on the
Bags of Visual Features paradigm appeared in literature for the detection of copies belong-
ing to different archives. Recently, this paradigm has been augmented by using multiple
descriptors (e.g., Bags of Visual Phrases) in order to exploit the coherence between dif-
ferent feature spaces. In our solution, we propose to further improve the Bags of Visual
Phrases approach considering the coherence between feature spaces not only at the level of
image representation, but also during the codebook generation phase outperforms the other
state of the art approaches. The advantage of the proposed codebook alignment method
is related to the enforcement of the coherence across multiple descriptors in order to cap-
ture different aspects of the considered local region (e.g., shape, texture, etc.) and hence
reduce both, the visual word ambiguity and the quantization error in the visual codebook
generation [73,92]. The different aspects of a local regions are captured by the alignment
during the codebook generation in the sense that the local regions falling in the intersection
of two aligned clusters agree with respect to both descriptors, whereas the others agree just

with one descriptor and not with the other. Taking into account such peculiarity, we split
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the clusters of each feature domain obtaining new codebook prototypes which consider the
intersecting part of the aligned clusters, as well as the part which not intersect. Since, by
using multiple descriptors there is an overhead in terms of storage of the representations of
the images, and considering that image datasets are becoming more and more popular and
huge (i.e., Facebook proceeds at a rate of about 22,000 uploads per minute), we also pro-
pose a method to compress the image representation by maintaining performances in terms
of near duplicate image detection accuracy. The remainder of this chapter is organized as
follows: Section 4.1 describes the proposed model. In Section 4.2 the method to compress
the image descriptors is suggested. The dataset built for testing purposes is described in
Section 4.3, whereas Section 4.4 details the experimental settings and reports the obtained

results.

4.1 Proposed Model

Most of the image hashing techniques for near-duplicate image detection problems typi-
cally represent images through feature vectors encoding color, texture, and/or other visual
cues such as corners, edges or local interest points [24,25,62,80,84,96,102,104,105,121].
These information are automatically extracted using several algorithms and then repre-
sented by many different local descriptors. Most of these techniques are based on the Bags
of Visual Words paradigm (BoVW) [134] to build a global representation of the visual
content within the images. The basic idea is to consider images as visual documents com-
posed of repeatable and distinctive visual elements, which are comparable to the words in
texts. Indeed, the BoVW originates in the text categorization community [125] where it
was used to describe documents by how many words (belonging to a pre-built vocabulary)
occur within them. Each word embracing a semantic meaning, has an inherent set of topics
where it is used more often than others. To exploit this model in computer vision and mul-
timedia, a vocabulary of distinctive patterns, usually called “visual words”, is built through
a clustering approach from a set of local descriptors [25, 62, 80, 84, 96, 105] extracted in
correspondence of interest points [24, 102, 104, 121] which have been previously detected

on images of a training database. A local descriptor encodes properties of the region sur-
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Aligned Codebooks

Intersection
Distance

Figure 4-1: Proposed Bags of Visual Phrases with codebooks alignment. First a set of key-
points are extracted from a training dataset of images by using a local detector (Hessian-
Laplace in our experiments). Each local keypoints is then described by two different de-
scriptors (SIFT [96], SPIN [80] in our experiments) and clustering is performed separately
in these two feature spaces. A similarity matrix between pairs of clusters belonging to
the two partitions is obtained counting the number of elements (local image regions) they
share. The Hungarian algorithm is then used to find the best assignment for the cluster
correspondence problem which is encoded in the similarity matrix. The obtained cluster
correspondences are then used to create two novel vocabularies where visual words are gen-
erated considering the centroids relative to both common and uncommon elements between
aligned clusters. The training set images are then represented by using 2D histograms of co-
occurrence of visual words related to the generated codebooks. When a query is performed
on the training dataset, the test image is represented by using the codebooks obtained in
the training phase. Test image representation is compared with those of the training images
by using the intersection distance. Finally, the training image corresponding to the lowest
distance is selected as the output of the query.

rounding the interest point in the image from which have been generated. Hence, the
“visual words” obtained by clustering the training set of local descriptor are used to iden-
tify properties, structures and textures present in the images whose are finally described
as an unordered set (a bag) of “visual words”. Specifically, each image is represented as

a normalized histogram whose bins correspond to “visual words” of the built codebook.
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Since the bag of visual words description is compact, it is suitable to represent huge image
databases. The proposed approach is built by taking into account the coherent phrase model
introduced in [73], where the BoVW paradigm has been augmented by using multiple de-
scriptors (called Bags of Visual Phrases Model) to exploit the coherence between different
feature spaces (i.e., local descriptors) in which the local image regions corresponding to
interest points are described. To further improve the Bags of Visual Phrases model, we
propose to exploit the coherence between feature spaces (i.e., local descriptors) not only in
the image representation step (e.g., using a two dimensional distribution of co-occurrence
of visual words of codebooks corresponding to two different feature spaces), but also dur-
ing the generation of codebooks. This is obtained by aligning the codebooks of different
descriptors to produce a more significant quantization of the involved spaces of descriptors,
which leads to a more distinctive image representation. Differently than Hu et al. [73], we
do not obtain the final codebooks corresponding to the different feature spaces separately,
but we generate the final codebooks taking into account the correspondence of the clusters
of the involved spaces of descriptors to further enforce feature correspondence. Specifi-
cally, the partitions obtained through the clustering procedure on each descriptor space are
further analyzed with respect to the involved local regions in order to find correspondence
between clusters of different features spaces. This alignment allows to further improve
the Bag of Visual Phrases Model by adding the coherence of different feature spaces also
during codebooks generation phase. The approach is formalized in the following. Let [
an image, and M the number of local regions extracted by making use of a local detec-
tor [104] or through dense sampling [10,91]. Each extracted local region r;, ¢ = 1, ..., M,
is described by H different local descriptors ¢;,, h = 1,..., H. Each region r; is then
associated to a set of local descriptors [105] ¢; = {di1, iz, ..., Pim}. A vocabulary V},
is built for each type of local descriptor, and the different local descriptors ¢;, of a re-
gion r; are hence associated to visual words v, belonging to the codebook V}, as in the
classic BOVW paradigm [134]. This produces a H-tuple p; = {vn|h € [1,2,..., H|},
called “visual phrase”, which contains visual words of different feature spaces for each ¢;,
1 =1,..., M, corresponding to the M local regions detected into the considered image /.

Each image is then described by the frequency distribution of visual phrases, called “Bags
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of Visual Phrases”. This model, called “coherent phrase model” [73], incorporates the co-
herence across multiple descriptors in order to describe different aspects of the appearance
of a local region detected within an image. Our approach augments the coherent phrase
model by improving the vocabulary generation step. In [73], H codebooks (one per local
descriptor type) are generated separately and independently by using a classical cluster-
ing approach on each descriptor space. Then the images are described with a normalized
multidimensional histogram in which each bin is related to a visual phrase (e.g., a 2-D dis-
tribution by considering two different local descriptors). The underlying rationale is that,
although different descriptors encode different properties of a local region, they represent
the same local region, hence the clustering, and the visual words belonging to different
feature spaces, are in “some way” related. Hence, the coherence among different local
descriptors should be exploited also in the vocabulary generation step. The main schema
of the proposed approach is summarized in Fig. 4-1. First, the [ different local descrip-
tor spaces are clustered separately and K visual words (cluster centroids) are obtained for
each vocabulary V}, (one visual vocabulary per local descriptor) as in the classic BoOVW
paradigm [134]. The relative ordering of cluster labels in all of the clustering are hence
rearranged according to the first one. A K x K similarity matrix between pairs of clusters
belonging to the two partitions is obtained by counting the number of elements (local image
regions) they share. The Hungarian algorithm [114] is then used to find the best assignment
for the cluster correspondence problem which is encoded in the computed similarity matrix.
Therefore, the alignment between clusters of different partitions is thought as a classical
resources assignment problem to be solved by a combinatorial optimization algorithm. We
choose to exploit Hungarian algorithm since it has been successfully used in Computer Vi-
sion to solve different problems which can be seen as a resources assignment problem (e.g.,
cluster correspondence [123], feature matching [25]). By using the Hungarian method the
alignment of the different vocabularies can be done in O(K?) time. Despite we have used
the Hungarian algorithm in our experiments, there are more efficient algorithms that can
be used to solve the same problem [81]. The obtained cluster correspondences are used to
create H novel vocabularies where visual words are generated considering the centroids rel-

ative to both common and uncommon elements between aligned clusters (Fig. 4-1). Hence
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three new visual words (cluster means) per descriptor space are generated from two aligned
clusters considering the operations of intersection (shared local image regions belonging to
the overlap among aligned clusters) and difference (local image regions belonging to the
non-overlapped parts of the aligned clusters). Notice that, although Hungarian algorithm
aligns all the clusters, some of them can have no common elements (Fig. 4-1). If two
clusters are fully separated, only two new cluster centers will be computed from individual
ones. In this last case the two obtained visual words are equal to the original ones. After
building the vocabularies separately on each feature space, these are aligned (as described
above) to find coherence between the different spaces based on shared keypoints. After
that, each cluster of each vocabulary (which define a visual word in the considered feature
space) is splitted in subclusters (defining more than one visual word if the overlap of the
aligned clusters is not empty). In this way, the quantization of a descriptor space is refined
by taking into account of the quantization obtained in the other feature space. So, the re-
finement of each vocabulary encodes also information induced from the other vocabulary.
This allows to make stronger the discriminativeness of the original Bags of Visual Phrases
approach [73] as empirically demonstrated by the experimental results reported in Section
4.4. The algorithm described above generates a multidimensional representation of the im-
age under analysis. In particular, starting from the original image, it extracts a set of local
feature points, associates them to different descriptors and, by using a pre-computed set of
vocabularies, creates the final multidimensional normalized histogram. Considering two
descriptors with the associated codebooks consisting of K; and K5 elements respectively,

the final image representation is a matrix (2 normalized histogram) of K; x K, values'.

4.2 Image Representation Compression

The compactness of the image representation impacts both in terms of memory storage and
computational complexity of the near duplicate detection task [79]. The cost per single
image query becomes a critical feature of the overall system as the number of the images

stored in the dataset increases. It is then extremely useful to study some approximations of

'Note that at this stage other encoding methods can be used starting from the aligned vocabulary [39].
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the original representation able to reduce the amount of data to be stored and used during
retrieval, without considerably reduce the performance of the overall system. The analysis
of the 2D histogram representations of the training images shows that the K x Ky matrices
are pretty sparse (see Section 4.4), hence only a limited set of elements (visual phrases) are
actually used to describe the image content. Based on this analysis, we propose a simple
and effective compression technique. The most representative and discriminative 7' visual
phrases (i.e., T" bins of the K; x K, matrix, with 7" < K; x K5), together with their
IDs (i.e., the number of row and column they belong into the matrix), can be selected to
represent the image under analysis. This selection considers all the images of the training
dataset on which image queries are performed. To sum up, when a query is performed
on the selected training dataset considering a generic test image [, the following steps are

performed:

1) generate the multidimensional histogram W; of the image [;

ii) for each image J of the training dataset, select its matrix coordinates C'; relative to

its most representative and discriminative 7' visual phrases;
iii) select the elements of the histogram W; at the coordinates C/y;

iv) for each image J compute the similarity between the compact representation of im-

ages [ and J;

v) provide as output of the query the image J belonging to the training dataset with the

lowest distance from the image /.

It is worth noting that the effectiveness of the proposed approximation depends on the
number of selected bins 7. To obtain a satisfactory improvement in terms of memory
storage and computational load this number should be considerably lower than K; x Ko,
where K, is the dimension of the vocabulary Vj,. On the other hand few visual phrases
(i.e., bins) could be not able to properly discriminate the images belonging to the dataset.
A smart selection strategy of the best 7" bins can be then useful in finding a good trade-
off between compression and retrieval performance. Specifically, we employ the statistical

measure TF-IDF (term frequency-inverse document frequency) [124] for the selection of
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the most representative and discriminative visual phrases (i.e., to select the best 7' bins
within the representation matrix). In this way, the importance of the bin is not only related
to its frequency in the image representation but also consider the frequency of the bin (i.e.,
the discriminativeness of the visual phrase composed by a pair of descriptors) with respect
to the entire training dataset. In other words, for each image of the training dataset, we
select the most representative and discriminative 7" visual phrases (e.g., bins) as indicated
by the TF-IDF measure. During a comparison of an query image / with an image of the
training dataset .J only the 7' visual phrases of the image .J which have been selected taking

into account the TF-IDF measure are considered.

4.3 The Experimental Datasets

An image [ is considered a near-duplicate of another image J if its content is “similar”,
according to some defined similarity measures, to the image J. So, the definition of a near
duplicate image changes accordingly with the allowed photometric and geometric varia-
tions. As in [42], we consider an image / a near-duplicate of another image J if it contains
the same scene of J with possibly different photometric and/or geometric variations (e.g.,
viewpoints changes, illumination and color variations, partial scene, occlusion, different
compression and camera acquisition, etc.). The problem addressed here is hence the one to
enumerate all the near duplicates of a given query image in a dataset. In order to test and
compare different algorithms for near duplicate image retrieval, a representative dataset
should be used. Despite different datasets have been employed in literature for testing
purposes, most of them are synthetic > [82] or obtained taking into account keyframes of
videos [73]. Although synthetic datasets are compliant with the definition of near dupli-
cate given above, they aren’t representative of the real variation that can be observed in

real near duplicate images (see Fig. 4-2). On the other hand, datasets built by collecting

2We consider a dataset as synthetic when the near duplicates are generated from a set of images (or frames
of videos) by using transformations typically available on image manipulation software (e.g., ImageMag-
ick [68]), such as colorizing, contrast changing, cropping, despeckling, downsampling, format changing,
framing, rotating, scaling, saturation changing, intensity changing, shearing. To generate near duplicates the
basic transformations are usually applied changing the different involved parameters and/or making combi-
nation of them.
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Figure 4-2: Examples of 26 different scenes belonging to the considered dataset. For each
scene three near duplicates are shown.

frames of videos contain near duplicates with no variability in terms of resolution and com-
pression factor. The classic datasets used for image retrieval testing purposes (e.g., CBIR
task), such as the one introduced in [75], are not compliant with the aim of near duplicate
image retrieval, where the problem is to search for the same scene with possibly different
photometric and/or geometric variations, given an image as query. The above motivations
induced us in building and using a new representative dataset for the problem under con-

sideration. In this way we can properly test and compare the proposed augmented version
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of Bag of Visual Phrase model with respect to the original one [73]. Specifically, a dataset
with images acquired by different cameras, in different conditions (e.g., viewpoint, scale,
illumination, distance from the subjects, etc.), and high content variability (indoor, out-
door, object, natural scenes, etc.), has been collected from Flickr [61] and from private
collections. To this aim, 525 different keywords (e.g., New York, Animal, Car, Church,
Computer, Mountains, Landscape, etc.) have been chosen. Each keyword has been then
used to retrieve images from Flickr. From the retrieved images a set of near duplicates
have been hence manually sampled. Each specific set corresponding to a keyword contains
from 3 to 34 near duplicates. The whole dataset contains 3148 images. In Fig. 4-2 some of
the images belonging to the built dataset are shown. Specifically, in the figure are reported
three near duplicates of 26 different scenes. As evident by visual inspection, there is a high
variability in terms of scenes (outdoor, indoor, close up objects, portraits, archeological
sites, buildings, animals, open scenes, etc.) as well as a high variability in terms of geo-
metric and photometric characteristics among near duplicates of the same scene (different
point of view, luminance and color variation, zoom, rotation, background variation, etc.).
Moreover, different scenes have regions with similar appearances, such as in the case of the
scenes with animals (see images of the scenes with number 12 and 25 in Fig. 4-2) and the
ones with Japanese buildings (see images of the scenes with number 9 and 22 in Fig. 4-2).
Differently than classic content based image retrieval task in which, for instance, given an
image of the scene numbered as 9 in Fig. 4-2 all the images of the the scene numbered as
22 are acceptable in terms of visual similarity, in the context of near duplicate image detec-
tion this become an unacceptable error. The database was hence built to properly test the
challenging task under consideration. Since near duplicate image detection techniques are
usually tested on datasets used in the context of object recognition [73], we have performed
tests also considering the UKBench dataset which contains a total of 10200 images of 2550
different objects with four near duplicate images (photometric and/or geometric variations)

for each object [108].
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4.4 Experimental Results

In this section the effectiveness of the proposed approach is demonstrated through a number
of experiments and comparisons. A first test, conducted on the dataset we built (see pre-
vious section), compares our method with respect to the coherent visual phrase model de-
scribed in [73] and the technique proposed by Zhao et al. in [152, 165]. Note that both [73]
and the classic BoOVW approaches have been reimplemented at the best of our knowledge
whereas the original code provided by the related authors has been used for [152, 165]. To
properly evaluate the different methods, the experiments have been repeated three times.
At each run the different approaches are executed on the same training and test sets. To
this purpose, at each run we have built training and test sets by selecting images at random.
Specifically, we have randomly selected one image per each set of near duplicates to build
a training set with 525 different scenes, whereas two images per each set of near duplicates
have been randomly selected to build the test set. All the parameters involved in the experi-
ments have been learned from the corresponding training sets for each method. The results
presented in the following are obtained by averaging the results of all three runs. For every
run, training images have been used for the generation of codebooks. First, local interest
points have been detected (Hessian-Laplace [104]). Afterward, two different descriptors
have been extracted on each interest point: SIFT [96] and SPIN [80]. Since these descrip-
tors are extracted considering different image properties (gradient orientation (SIFT) and
intensity distribution at different distance from the center (SPIN)), they are somewhat com-
plementary, hence can be fruitfully combined. K-means algorithm (K=500 in our tests)
has been then used to produce the two independent codebooks corresponding to the two
involved descriptors. The two obtained partitions have been aligned with the Hungarian
algorithm to generate the new codebooks (see Section 4.1). Finally, training images have
been represented by visual phrases (with a 2D histogram) by considering the new aligned
codebooks. It is worth noting that the proposed procedure for codebook generation creates
two novel vocabularies (one for each type of descriptor involved in the experiment) with a
higher number of elements with respect to the original ones. Considering, as example, two

codebooks of 500 elements, the alignment procedure will produce, in the worst case, two
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Figure 4-3: Sorted dissimilarity of aligned vocabularies. The first 150 aligned pairs of
clusters can be considered “similar” in terms of shared keypoints, whereas the others are
“dissimilar”.

novel vocabularies of 1500 elements for each type of descriptor. In order to reduce the di-
mension of the final image representation maintaining at the same time good performance,
analysis and tests have been performed. In particular, useful hint can be derived from the
analysis of the degree of similarity between the clusters associated in the alignment pro-
cedure performed through the Hungarian algorithm. As reported in Fig. 4-3, which have
been obtained sorting the aligned clusters with respect to their dissimilarity, after a certain
threshold, the aligned clusters cannot be considered “similar”. This means that after a given
value the aligned clusters share only few keypoints (or nothing at all) and hence there is
not too much coherence among these aligned clusters. The threshold imposed on cluster
dissimilarity is chosen taking into account the gradient of the dissimilarity curve. At some
point, the gradient of the curve starts to be very small and this fact can be used to set the
threshold. Moreover, given a threshold, the number of elements of the aligned vocabulary
is propery established. For example, in the case reported in Fig. 3, where a threshold

which consider 150 aligned cluster is selected in correspondence of a small gradient, the
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final number of employed centroids is equal to 150 x 3 4 350 for each feature space. The
cluster intersections produce 150 x 3 new visual words for each feature space, whereas the
other not aligned 350 clusters produce 350 visual word for each feature space. So consid-
ering both, the gradient of the curve and the dimension of the final codebook, the threshold
can be fixed. Taking into account the previous analysis, a more compact vocabulary can
be hence generated performing the procedure for the generation of aligned codebooks (see
Section 4.1) only for the aligned clusters having a high degree of similarity; for all other
“dissimilar” clusters will be retained only the original centroids on the corresponding fea-
ture space. The analysis of the dissimilarity curves related to the different three training
set considered in our tests, pointed out that the first 150 aligned pairs of clusters can be
considered properly aligned (i.e., “similar” in terms of shared keypoints). In this way a
final codebook of 800 visual words per descriptor (SIFT and SPIN) has been generated in-
stead of one of 1500. To be fair, the comparisons with the other approaches (Hu et al. [73],
BoVW SIFT and BoVW SPIN) have been performed considering codebooks with 800 el-

ements per descriptor independently generated through K-means clustering. At each run,
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Figure 4-4: Top-n NDI retrieval performances comparison on the proposed dataset.
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test images are used to perform queries on the related training dataset. Each test image is
represented by a visual phrase histogram obtained considering the aligned codebooks (see
Fig. 4-1). This representation is then used to retrieve images in the training dataset, by
means of a similarity function between Bag of Phrases histograms. To cope with partial

matching, we use the intersection distance 7 defined as follows [67, 133]:

T(W, Uy) = min(W,(1), ¥,(J)) (4.1)

where U;, W are two visual phrase histograms and W, (.) is the p* bin of the histogram.
Both representation, with and without TF-IDF weighting scheme have been considered and
compared. Each query image has been associated to a list of training images. The retrieval
performance has been evaluated with the probability of the successful retrieval P(n) in a

number of test queries [73, 163,166, 167]:

P(n) =— 4.2)

where @), is the number of successful queries according to top-n criterion, i.e., the correct
NDI is among the first n retrieved images, and () is the total number of queries. The pro-
posed approach has been compared with the original Bags of Phrases approach [73], with
the approach proposed in [152,165], as well as with respect to the classic BOVW approach
considering both SIFT and SPIN descriptors. The obtained results are reported in Fig. 4-4.

Both proposed strategy, with and without TF-IDF, outperforms the original Bags of Vi-
sual Phrases, the approach proposed in [152, 165], and the classic BoVW model. We also
show the precision/recall values at top-n=1 in Table 4.1. Note that the precision and recall
for top-n=1 are equivalent because there is only one correct match for each query. Some
visual examples of the first retrieved image on a specific query are reported in Fig. 4-5.
Specifically, for some query images reported in the first column of Fig. 4-5, the first re-

trieved images obtained with the proposed approach and the method described in [73] are
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Table 4.1: Precision/Recall values on the proposed dataset.

Method Precision/Recall
Proposed approach with TF-IDF 0.4622
Proposed approach 0.4505
Hu et al. [73] 0.4406
Zhao et al. [152,165] 0.3660
SIFT 0.3641
SPIN 0.2679

shown respectively in the second and third columns of Fig. 4-5. The proposed method is
able to detect the corresponding near duplicate within the training set, whereas the tech-
nique proposed in [73] retrieves images which aren’t a near duplicate of the queries and
hence fail the aim. For completeness, further visual examples in which both approaches
fail, as well as some examples in which the method of Hu et al. [73] outperforms our ap-
proach are reported respectively in Fig. 4-6 and Fig. 4-7. As evident from Fig. 4-6, often
both approaches fail in the same way (i.e. selecting the same wrong image). As already
stated in Section 4.2, some analysis and tests have been performed to compress the image
representation in order to speed up the retrieval process and to reduce the amount of data to
be stored. Although the image representation is based on a 2D histogram of 800 x 800 ele-
ments, only a limited number of bins are actually different from zero. Specifically, from the
performed analysis we have observed that the training images are described, on average, by
1700 non-zero elements (with a standard deviation of 1039). This analysis motivated the
compression strategy described in Section 4.2. Taking into account the number of non-zero
elements it is possible to guess the number of bins to be used in the image representation.
Several tests have been performed to validate the proposed compression strategy and to find
a good trade-off between compression and retrieval performance. As shown by Fig. 4-8, the
retrieval performance increases at increasing of the elements used for image representation.
Moreover, the results obtained considering 1600 elements are comparable with the ones of
the proposed approach without compression in which the overall 800 x 800 elements are
involved. The considered number of bins (i.e., 1600) is very close to the number of the non-
zero element computed during the aforementioned analysis (i.e., 1700). In this way we are

able to obtain a compact image representation without sacrificing the retrieval performance.
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It is worth noting that the built dataset is really challenging; in some cases even an human
observer could have some difficulties in finding the correct near duplicate image (e.g., com-
pare the scenes marked with number 9 and 22 in Fig. 4-2). Moreover, in the described near
duplicate image retrieval system each of the 525 classes are described by only one image, a
design choice that could limit the overall performance of the proposed method, but is realis-
tic, for instance, in the context of forensic science where investigators have only one image
example of a criminal scene. To further confirm the effectiveness of the proposed approach,
additional experiments have been performed on the UKBench dataset [108]. This dataset,
usually used for object recognition tasks, contains 10200 images of 2550 different objects.
Specifically, there are four near duplicate images with photometric and/or geometric vari-
ations for each object. In our test, the training dataset has been built randomly selecting
one image per class. The remaining images have been then used for testing purposes. The
test has been repeated three times and the final results are obtained by averaging the results
obtained on each test. As can be easily seen from Fig. 4-9 and Table 4.2, also considering
this dataset, the proposed approach obtains satisfactory results. Also in this case the pro-
posed approach outperforms the original Bag of Phrases approach [73] obtaining a good
margin in terms of performances. The approach proposed in [152, 165] results worst than
the original Bag of Phrases method and it is not reported in Fig. 4-9. As pointed out in
Section 4.1, in terms of computational complexity the proposed approach has an additional
cost due to the alignment of clusters during the codebook generation. On the other hand,
this allows a richer description of the images which is reflected in the increasing of the per-
formances with respect to the original Bag of Visual Phrases paradigm [73]. Moreover, the
alignment procedure is performed just once during the vocabulary generation and it does
not affect the retrieval step in terms of extra costs. Considering the computational complex-
ity during the retrieval task, the description compression proposed in Section 4.2 helps to
reduce both, space and time with to respect the original paradigm [73] by maintaining the
performances of the proposed codebooks alignment framework. Moreover, regarding the
retrieval task, the proposed technique is comparable with the one proposed in [152, 165]
in terms of computational complexity. Indeed, considering vocabularies with size K for

the different descriptors, the mapping of each image with M local regions to the related
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Table 4.2: Precision/Recall values on the UKBench dataset.

Method Precision/Recall
Proposed approach with TF-IDF (1600 bins) 0.7342
Hu et al. [73] 0.7003

visual vocabularies has computational complexity O(MK). The time needed to build the
visual phrases distribution is O(M), whereas the compression of the image representation
described in Section 4.2 takes time O(T). Finally, the similarity between the query and
an image belonging to the training dataset has computational complexity O(7). Hence the
overall computational complexity to represent and check a query image with to respect an
image into the training dataset is O(MK)+O(M)+O(T). It is worth noting that by employing
the compression strategy the complexity in terms of computational power as well as the one
related to the memory usage, have been considerably reduced. Specifically, considering a
simple 2D matrix representation (without optimized data structure such as sparse matrix)
the complexity of the comparisons is O(K?) instead of O(T) where K? > T. Hence the
final complexity of the algorithm without compression is O(MK)+O(M)+O(K?).
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First Retrieved Image

Query Image Proposed approach Hu et al. [15]

Figure 4-5: Some visual examples of the first retrieved image on a specific query. In these
examples the proposed approach outperforms the method proposed by Hu et al. [73].
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First Retrieved Image

Query Image Proposed approach Hu et al. [15]

Figure 4-6: Some visual examples of the first retrieved image on a specific query. In these
examples both, the proposed approaches and the one described in [73] fail.
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First Retrieved Image

Query Image Proposed approach Hu et al.[15]

Figure 4-7: Some visual examples of the first retrieved image on a specific query. In these
examples the method proposed by Hu et al. [73] outperforms the proposed approach.

=0—Hu et al. [15] —o—Proposed approach with TF-IDF
~#=Proposed approach with TF-IDF and compression (400 bins) —#—Proposed approach with TF-IDF and compression (800 bins)
~#=Proposed approach with TF-IDF and compression (1600 bins) =#&=Zhao et al. [50, 51]
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Figure 4-8: Top-n NDI retrieval performances of proposed approach with compression on
the built dataset. Results are reported at varying of the number of elements involved into
the image representation.
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Figure 4-9: Top-n NDI retrieval performances of the proposed approach with compression
on the UKBench dataset.

99



100



Chapter 5

Findings, Limitations and Perspective

In this thesis, we investigate the image understanding process from three different points
of view.

Specifically, chapter 2 introduces an image representation to be exploited for scene
context classification on mobile platforms. The proposed scene descriptor is based on the
statistics of the DCT coefficients. Starting from the knowledge that the distribution of the
AC DCT coefficients can be approximated by Laplacian distributions, and from the obser-
vation that different scene context present differences in the Laplacian scales, we proposed
a signature of the scene that can be efficiently computed directly in the compressed domain
(from JPEG format) as well as in the image generation pipeline of single sensor devices
(e.g., smartphones, consumer digital cameras, etc.). The effectiveness of the proposed
scene context descriptor has been demonstrated on representative datasets by comparing it
with respect to the popular GIST descriptor [112] and the representation based on textons
distributions on spatial hierarchy [10]. Moreover, the proposed scene context recognition
architecture has been implemented and tested on a real acquisition pipeline of a mobile
phone to demonstrate the real-time performances of the overall system. Differently than
other state-of-the-art scene descriptors, the computation of the proposed signature does not
need extra information to be stored in memory (e.g., visual vocabulary) or complex opera-
tion (e.g., convolutions, FFT, learning phase). The proposed holistic scene representation
provides an efficient way to obtain information about the context of the scene which can be

extremely useful as first step for object detection and context driven focus attention algo-
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rithms by priming typical objects, scales and locations [138, 142]. It can be also exploited
to have priors for setting the parameters of the algorithm involved in the IGP (e.g., white
balance) to improve the quality of the final acquired image [26].

Chapter 3 describes an approach for semantic segmentation of images. Two novel tex-
ture features based on DCT data are introduced in the Semantic Texton Forest model [128].
The proposed DCT features describe complex textures capable to recognize object and
region with different frequencies characteristics. Our approach uses a limited amount of
resources that allow good accuracy for real time applications. The effectiveness of the
proposed semantic segmentation system has been demonstrated by comparing it with the
STF and other state of the art approaches. In most of the case, our approach shows better
performance overcoming the per-classes accuracy in the CAMVID database. Moreover, in
a real scenario our system could shows further improvements since usually a large version
of the image is available in the pipeline. This avoid to perform the proposed up-scaling
block in the pipeline and generating a more reliable DCT data that are not affected by the
interpolation.

In chapter 4, we propose an improvement of the coherent phrase model (Bags of Phrases)
originally proposed in [73]. The main contribution of the presented approach is in aug-
menting the original paradigm by exploiting coherence between different feature spaces
also during the codebook generation step. This is achieved through alignment of the fea-
ture space partitions obtained from independent clustering. Moreover, a method based on
TF-IDF statistical measure to compress the proposed image representation for storage pur-
poses is suggested. Experiments show the effectiveness of the described method on both, a
novel and challenging near duplicate image database and a classic benchmark one. Future
works will be devoted to extend the proposed alignment methodology to consider multiple

(h > 2) types of descriptors.
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Appendix A

Saliency Based Selection for Content

Aware Image Resizing

The extensive use of display devices with different resolution (e.g., on pc, tablet, smart-
phone, etc.) increases the demand of image resizing techniques which consider the visual
content during the scaling process. Standard resizing techniques considering only geo-
metric constraints, such as scaling, can be used only to change the image size (width and
height) of a fixed percentage with respect to the original one. Scaling does not take into
account the visual importance of pixels during image resizing (i.e., a resizing with respect
to only one dimension introduce artifacts and distortions). Other standard operations in
which outer parts of an image are removed (e.g., cropping), could produce images with
loss of salient information (e.g., removal of objects or part of them).

In the last years, several techniques for content-aware image resizing (or content-based
visual retargeting) have been proposed [4,8,11,41,63,117,122]. The main aim of a content-
aware image resizing is the preservation of relevant visual information into the resized
image. Intuitively, the goal is to remove unnoticeable paths of pixels that blend well with
their surroundings, and retain the salient pixels which are important to generate the needed
visual stimuli useful to correctly perceive the visual content. The algorithms should avoid
distortion and changes of perspective of the image. Moreover, they should preserve edges,
important textured areas belonging to the objects, size of the objects, and relevant details

of the scene.
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The Seam Carving, proposed by Avidan et al. in [8], is probably the most popular
content-aware resizing approach. Such a technique reduces the image by removing con-
nected path of pixels (called seams) having low-energy in the map related to the image to
be resized. The authors of [8] compared different strategies to compute the energy map to
be considered during the resizing process (e.g., the entropy energy computed for each pixel
taking into account a fixed window, the magnitude of the gradient computed on each pixel,
a saliency measure of each pixel computed as in [76], etc.). An interesting and powerful ex-
tension of standard resizing operators (i.e., scaling, cropping, etc.) and content-aware based
algorithms (i.e., seam carving) can be obtained by their combination, as proposed by Ru-
binstein et al. in [122]. They propose an algorithm able to search for the optimal sequence
of operators to be applied at each step of the resizing to get better results in terms of visual
quality of the final reduced image. A drawback of this approach is that the computational
complexity increases due to the use of different operators. Among others, patch-based
methods have been also proposed for image retargeting or summarization. In particular,
Cho et al. [41] suggested an algorithm to find an arrangement of patches of the original
image that well fit in the resized image, whereas Pritch et al. [117] introduced a method to
find the best Shift-Map which defines the pixel displacement useful to produce the output
image. Gallea et al. [63] proposed a fast method for image retargeting based on the solu-
tion of a linear system. This model aims to find shift values for each line (row/column)
preserving the distance among the relevant ones. The linearity of the considered model
allows them to elaborate even large images in reasonable computational time. Building on
this last technique, in our previous work [11] we have described different strategies to be

employed for content-aware image resizing on mobile devices.

In this work we introduce a novel algorithm for content aware image resizing. The tech-
nique exploits the properties of Gradient Vector Flow (GVF) [157] to properly detect the
seams to be removed, without introducing artifacts in the resized image. Specifically, GVF
is used to produce a vector field useful to preserve objects by enhancing edges information
during the generation of the possible paths to be removed. The vector field produced by
GVF is also coupled with a visual saliency map [2] in order to refine the final selection of

the paths to be removed. The proposed approach has been tested and compared, both qual-
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itatively and quantitatively, with respect to state-of-the-art approaches on a representative
dataset [2,54]. Experimental results confirm the effectiveness of the proposed approach in
terms of preservation of salient regions.

The rest of the appendix is organized as follows: Section A.1 and Section A.2 detail
the proposed image resizing method with and without saliency exploitation. In Section A.3
the experimental phase and the results are detailed. Section A.4 discusses implementations

details useful to speed up the proposed method during the resizing.

A.1 Proposed Method

One of the main issues of the content aware image resizing is the preservation of the salient
information contained in the image under analysis. To this aim, our algorithm makes use
of the properties of the Gradient Vector Flow (GVF) [157].

GVF s a dense force field [157] useful to solve the classical problems that affect snakes:
sensitivity to initialization and poor convergence to boundary concavity. Starting from the
gradient of an image, this field is computed through diffusion equations. Formally, GVF is

the field F of vectors v. = [u, v| that minimizes the following energy function:

E_//ﬂ(ui+u§+vi+v§)+|Vf|2|V—Vf|2 (A.1)

where the subscripts represent partial derivatives along x and y axes respectively, u is
a regularization parameter, and |V f| is the gradient computed from the intensity of the
input image. Due to the above formulation, GVF field values are close to |V f| values
in those areas where this quantity is large (energy F/, to be minimized, is dominated by
|V f2|v—V f|?), and are slow-varying in homogeneous regions (the energy F is dominated
by the sum of the squares of the partial derivatives of GVF field). Hence, GVF is stronger
close to the edges of objects within the image. An example of GVF field is shown in Fig.
A-1. We exploit this vector field to effectively build the set of pixel paths (i.e., the seams) to
be considered as candidate in the removal process. The relevance of each GVF path can be

straightforward derived from the energy map obtained by the GVF magnitude associated
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Figure A-1: Input image with its corresponding GVF field overimposed. GVF values
are higher in correspondence of the edges information. The seam derived by the proposed
resizing approach is shown in red. The gradient vector field forces the seams far from main
contours of the objects.

Algorithm 1: Image Resizing Based on GVF
Input: I, N R
Output: The resized image
begin
for iteration < 1 to N do
GVF < ComputeGV F(I)
{s1,...,8K} + SeamsComputation(GV F')
{c1,... ek} < SeamsCost({s1, ..., sk}, GVF)

k < argmin;{ci,...,ck}
I + RemoveSeam(I, s,)
T« 1

end

to the image under consideration.

The proposed algorithm works as follows (see Algorithm 1). Let / be an image with
H rows and W columns to be resized with respect to the width, and 0 < N < W the
number of seams to be removed. First the GVF and its normalized version GV F,,,m,
(i.e., each vector with norm one) are computed from the input image [ considering the
luminance channel (i.e., ComputeGVF). Several seams {sy, Sg, ..., Sk} are then built
starting from the top of the image making use of the directions of the already computed
GV Foorm (€., SeamsComputation). It is worth noting that the directions suggested by

GV F,orm cannot be always followed. Specifically, considering a generic pixel p of co-
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GVF,

norm

s 4

Figure A-2: An example of seam generation. Among the three possible directions (in red)
the one with angle closest to the GV F},,,.,,, orientation (in blue) is chosen.

ordinates (i, j) belonging to a seam s, the next element of s, has to be chosen among
(i+1,7—1),(i+1,4), (i+ 1,7+ 1). These pixels can be related to the following unit vec-
tors (—v/2/2,—v/2/2), (0,1), (v/2/2,—+/2/2). Among the aforementioned unit vectors
associated to a specific direction, the one making the smallest angle with GV F,, ., (i, 7) is
hence considered during the seam generation (see Fig. A-2). To this aim, a simple dot prod-
uct between GV F,,,,., (1, 7) and the three considered unit vectors is employed. To sum up a
generic seam sy, 1S built repeating /1 — 1 times the aforementioned direction selection algo-
rithm starting from a pixel p with coordinates (1, w) at the top of the image (w = 1,..., W
at the first iteration of the resizing). The proposed algorithm works similarly for the resizing
with respect to the height.

After that the set of candidate seams {s1, so, . . ., Sk } are computed, a cost is associated
to each of them by considering the sum of the GVF magnitude |G'V F| related to the pixels
belonging to the seam. Specifically the cost ¢ of a seam s, is computed as follows (i.e.,

SeamsCost in Algorithm 1):

=Y |GVF(ij) (A2)

(,5)Esk
The seam with the lower cost ¢ is hence removed from the image at each iteration (i.e.,

RemoveSeam). The GVF map is then updated and a new iteration of the seam removal
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algorithm is performed for each seam to be removed.

A.2 Saliency Based Selection of GVF Paths

The visual salience (or visual saliency) refers to the properties of the visual stimuli which
are exploited by the human visual system in the tasks of visual attention [144] and rapid
scene analysis [77]. The automatic detection of salient regions in images can be used in
a broad scope of computer vision applications such as image segmentation [70], content-
based image retrieval [100], object detection [38] and recognition [154].

Several saliency estimation methods have been proposed in literature. Some of them,
such as the algorithm proposed by Itti et al. [77], originate from the biologically plausible
visual architecture proposed by Koch and Ullman [83], whereas others, such as the method
presented by Achanta et al. in [2], are purely computational and do not make any assump-
tion on biological architecture. Finally, techniques based on combining both paradigms,
biological and computational, have also been published, as in the work of Harel et al. [71].
All previously mentioned approaches estimate the visual importance of image pixels start-
ing from information extracted in the uncompressed domain. Since most images (e.g., over
internet) are stored in the compressed domain of joint photographic expert group (JPEG),
Fang et al. [54] have proposed a method to extract saliency directly in the JPEG domain
by exploiting information of intensity, color, and texture encoded by the discrete cosine
transform (DCT) coefficients on each 8 x 8 block.

Visual saliency estimation algorithms have straightforward application in content based
visual retargeting. Indeed, all the state-of-the-art retargeting algorithms (i.e., [8]) detect the
paths to be removed (i.e., the seams) taking into account of an energy map which encodes
the importance of each pixel in terms of content. A successful seam carving algorithm
should ensure that the most important image regions pointed out by the energy map should
not be removed. The algorithm we presented in Section A.1 makes use of the magnitude
of the GVF as energy map to drive the selection of the seams to be removed. Despite this
information is useful to take care of the saliency of the edges, it does not consider other

saliency information.
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In Achanta et al. [4] a visual saliency map able to uniformly highlight salient regions
with well-defined boundaries [2] has been used for content aware image resizing purpose;
the classic seam carving algorithm proposed by Avidan et al. [8] has been employed by
replacing the energy map computed using the L;-norm of the image intensity gradient,
with the saliency map computed as proposed in [2]. Results presented in [4] and [54]
emphasized the fact that by using the visual saliency better performances, with respect
to the state-of-the-art methods, are achieved. This strongly motivated us to couple the
proposed GVF based approach with saliency information for retargeting purpose.

Differently than [4] and [54] we propose to use visual saliency only for the selection of
seams to be removed after that these paths are generated by exploiting the gradient vector
flow as detailed in previous section. In this way we are able to combine different kinds of
saliency information; the one related to the edges given by the GVF and the one related
to the saliency objects within the image encoded by the saliency map. In our experiments
we used the saliency map estimator proposed by Achanta et al. [4]. To include visual
saliency information, we first generate the seams exploiting the GVF, and then perform the
selection based on saliency. Referring to the Algorithm 1 in previous section, we need to
simply replacing the function SeamsCost defined by the equation (A.2) with the following

one:

CL = Z Saliency(i, j) (A.3)

(3.9)€Esk
where Saliency(i, j) is the value of visual saliency of the pixel (i, j) computed as described
in [2]. The new resizing procedure is summarised in Algorithm 2. It is important to note
that in our Algorithm 2 the saliency map related to the image is computed just one time

independently from the seams to be removed.

A.3 Experimental Results

As pointed out in [4, 8, 54], the performance of a content-aware image resizing algorithm

strongly depends on the adopted energy map which captures the salient regions of an im-
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Algorithm 2: Image Resizing Based on Saliency Selection of GVF Paths
Input: I, N N
Output: The resized image
begin
Saliency < ComputeSaliency(I)
for iteration <— 1 to N do
GVF < ComputeGV F(I)
{s1,..., 8K} + SeamsComputation(GV F)
{c1,...,¢ck} < SeamsCost({s1,..., sk}, Saliency)
k « argmin,{c1,...,cx}
I + RemoveSeam(I, s;)

T«1

end

age. As described in previous sections, we propose to use GVF to build the seams during
the resizing. The selection of the seams to be removed is then driven by GVF magnitude
or by the saliency map. As estimation approach to build the visual saliency map we used
the one proposed in [2]'. In order to evaluate the results of our basic approach (i.e., the Al-
gorithm 1 which exploits the equation (A.2)) and do not consider saliency information, we
have compared it with respect to the classic Seam Carving algorithm proposed by Avidan
et al. [8], and the approach recently proposed by Gallea et al. [63]. The approach in [8] has
been re-implemented, whereas the original code of the method in [63] has been provided by
the authors. While [8] proposes a local-based approach which takes into account the gradi-
ent of the image to select the seams to be removed, the approach in [63] is a global-based
approach in which an objective function is considered to solve an optimization problem.
In [63] the product of the gradient of the image and the saliency map proposed by Itti et
al. [77] is taken into account as energy map during the resizing. Moreover, to underline
the contribution of coupling GVF path extraction with saliency based selection (i.e., the
Algorithm 2 in which equation (A.3) is employed and saliency map is computed as in [2]),
we have compared the proposed saliency based selection approach with respect to the one
proposed in [4]. Similarly to our approach, the one in [4] uses the saliency map proposed

in [2] allowing a fair comparison.

'Note that other visual saliency maps can be used, such as the one proposed in [77] or in [54]. In our
experiments we have used the map proposed in [2] since this has obtained good results both, in terms of
saliency estimation and computational cost. The original code useful to compute this saliency map is available
at the website of the authors.
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(b)

(k)

Figure A-3: Visual assessment of the involved algorithms by resizing the input image at
70% of the width. (a) Original image. (b) Saliency map [2] related to the image in (a).
(c) Gradient Vector Flow map [157] of the image in (a). (d) Zoomed version of the zone
marked with the red bounding box in the image in (c¢). (e) Ground-truth saliency mask
related to the image in (a). (f), (g), (h), (i), (j) show in red the seams removed employing
respectively the proposed Algorithm 2, the Algorithm 1, Avidan et al. [8], Achanta et al.
[4] and Gallea et al. [63]. In (k), (1), (m), (n), (0) are shown the final maps obtained by
combining the ground-truth mask shown in (g) and the maps of the removed seams which
are reported in red in (f), (g), (h), (i), (j) respectively. These maps indicate the importance of
the removed seams in terms of saliency. The values of these last maps are used to compute
the corresponding saliency costs (i.e., the sum of values for each map) and hence employed
to compare the different algorithms. As can be assessed by visual inspection of the image
in (b), the saliency map alone is not able to capture some information about the edges (e.g.,
in correspondence of the shadow). On the other hand the GVF gives its contribution around
the edges (see image in (c) and (d)). The combination of Saliency and GVF is hence able
to exploits information from both sources.
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In order to objectively assess the performances of the aforementioned methods, we have
compared the different approaches on the dataset used in [2,54] for saliency detection. This
dataset is composed by 1000 images labeled with corresponding accurate object-contour
based ground-truth saliency segmentation. The dataset contains enough varieties of scenes
and objects which also appear in multiple instances and in different locations (not only
centered). For each image [ of the dataset, the ground-truth map G; denotes which pixels
of the image are important in term of saliency. In Fig. A-3(a) and Fig. A-3(e) are shown
respectively an image considered in the experiments and its corresponding ground-truth
map (i.e., Gy). Since the aim of content-aware image resizing is to preserve salient regions,
we used the following cost function in order to objectively evaluate the performances of a

specific algorithm A involved in the comparison:

Cost(I, A\ d)= Y Gilp) (A4)

p€Yan(l)
where 14 ,(7) is the final set of pixels removed by employing the algorithm A during
the resizing of the image I of a scale factor A € {95%, 90%, 85%, 80%, 75%, 70%} with
respect to the maximum dimension of the image (as defined by equation (A.5)), and G (p)

indicates the importance of the removed pixel p in the image .

d= argmax Size(I,d) (A.5)

de{width,height}
This cost can be used to fairly compare the performances of the different algorithms at
varying of the scale factor. A lower cost value indicates better performances (i.e., more
salient pixels are preserved in the resizing). We have measured the performances of the
different algorithms on the aforementioned dataset at varying of the scale factor. The final

results are obtained by averaging the results of all the executions for a specific scale factor

A.

Fig. A-3 reports an example of the seams removed by the different algorithms when
resizing the original image at A = 70% of the width. Red lines in Fig. A-3(f), (g), (h),

(i), (j) correspond to the ones in the maps 14 (1) (i.e., the removed seams) obtained with
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the different algorithms, whereas Fig. A-3(k), (1), (m), (n), (o) depict the values G(p)
used to compute the cost function in equation (A.4) taking into account of one of the five
compared algorithms. In this simple example containing a single object with non uniform
illumination, it is clearly visible that the proposed approaches (Algorithm 1 and 2) are
really powerful in preserving edges of objects and their original size. Fig. A-3(d) shows
a zoomed area related to the GVF of the image in Fig. A-3(a) devoted to highlight the
information exploited into the seam removal process in order to better preserve edges.

In Fig. A-4 are reported the results obtained by the three different algorithms which
exploit the magnitude of the image gradient to select seams to be removed during the resiz-
ing: our Algorithm 1, the one proposed by Gallea et al. [63], and the original Seam Carving
algorithm proposed by Avidan et al. [8]. The results are shown at varying of the percentage
of the resizing.

Further experiments to test the robustness of the GVF based approach with respect to
noisy input have been performed. Specifically, each image within the considered dataset
has been corrupted with Gaussian noise N (0, o) and then the resizing has been performed
considering a scale factor A\ = 80% with respect to the maximum dimension of the input
image. The results obtained by the three different algorithms which exploit the magnitude
of the image gradient at varying of o € {0, 5, 10, 15, 20, 25,30} are reported in Fig. A-5.
In all cases, the proposed approach outperforms the other content-aware based algorithms.

The proposed method based just on GVF information (i.e., Algorithm 1) achieves the
best results demonstrating that the process of building seams by exploiting GVF more ef-
fectively preserves salient areas and hence removes less crucial pixels. Some visual results
obtained with the aforementioned algorithms are shown in Fig. A-6.

By coupling the Algorithm 1 with a saliency estimator (i.e., the one in [2,4] in our ex-
periments) the proposed strategy summarized by Algorithm 2 outperforms the approaches
from which the solution originates. Fig. A-7 shows the results of the proposed approach
based on saliency selection (i.e., Algorithm 2) with respect to the approach proposed in [4].
The results obtained by the Algorithm 1 are also reported as baseline. Although both ap-
proach based on saliency selection outperform the Algorithms 1, our proposal achieve the

best margin in terms of saliency preservation performances.
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Figure A-4: Average cost computed over 1000 test images at varying of percentage of
resizing. A lower value indicates that more salient pixels are preserved (i.e., better perfor-
mances).

To visually assess the results obtained with the five compared algorithms, some visual
results obtained by resizing images with a scale factor of 70% with respect to their origi-
nal dimension (width or height) are shown in Fig. A-8 and Fig. A-9. A visual comparison
reveals that the proposed approach with saliency based selection of GVF paths better pre-

serves the main salient regions (i.e., the areas with objects).

In Fig A-10 and Fig. A-11 some examples of progressive resizing are shown with
respect to the different compared algorithms. As can be easy assessed by visual inspection
(Fig. A-10), already at 5% of the resizing some approaches remove information from the
object (e.g., see the results at 4" and 5 rows), whereas the proposed Algorithm 2 works
well in almost all cases. Comparing the results of 1%, 2" and 4" rows in Fig. A-11 it is
straightforward to figure out that the exploitation of both, the GVF for seams generation
and visual saliency for seams selection (as done by our Algorithm 2), more information

about the salient object is retained.

To better highlight the peculiarities of the proposed approach, more visual examples

are shown in Fig. A-12 and Fig. A-13. Specifically, first and second rows show examples

116



~#—Gallea et al. [6] —&—Avidan et al. [1] —@—Proposed approach: Resizing through magnitude based selection of GVF paths
0,24

— = - L O
0,22 L= =

0,20

0,18

0,16

=3
=
'

Average cost
=
]

\
|

0,06

0,04

0,02

0,00

Figure A-5: Average cost computed at varying of noise by considering the 1000 test images
resized at 80% of the maximum dimension. A lower value indicates that more salient pixels
are preserved (i.e., better performances).

of scenes with edges and textures (i.e., the wall) and one saliency object. Our Algorithm
2 clearly preserves the visual content of the scene by maintaining both size of the object
and the details related the visual stimuli of textures and edges. In the images in rows three
and four, scenes with evident edges are shown. Also in this case the proposed algorithm
produces the best results by maintaining the principal salient region (i.e., the plate with text)
and the overall context (e.g., the fence and the background information). The example
in the fifth row shows the preservation of perspective in the resizing, whereas the other
examples are useful to assess the maintenance of size and details of objects as well as the

other information which define the context of the scene.

All the aforementioned experiments clearly demonstrate that our proposal based on
saliency selection of gradient vector flow paths outperforms both, the proposed basic strat-
egy summarized by Algorithm 1 in which paths are selected just considering the GVF
magnitude (i.e., equation (A.2)), as well as the method presented by Achanta et al. in [4],
where the classic seam carving algorithm [8] is modified to consider the visual saliency of

images.
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Figure A-6: Examples of content-aware image resizing. 1°¢ column: original image. 2"¢
column: our Algorithm 1. 37 column: Gallea et al. [63]. 4" column: Avidan et al. [8].

A.4 Implementation Details and Computational Complex-
ity

In almost all approaches for content-based image resizing the computing of a seam consists
in building the path of minimum cost from the top row (left column) of the image to the
bottom (right) one. Typically state-of-the-art approaches use dynamic programming to
this aim [4, 8, 11, 54, 122]; the algorithms consider all the possible row (column) paths to
choose the seam to be removed at each iteration with computational time O(HW) for an
image with size W x H. Although the proposed approach has the same computational cost
per iteration, we have exploited the properties of the GVF to reduce the number of paths
to be considered. Indeed, the GVF is a vector field which is used by our algorithm to keep
away the seams from the edges (see Fig. A-1). The rationale to reduce the number of paths

to be considered at each iteration is that paths starting from neighbouring pixels (at the first
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Figure A-7: Average cost computed over 1000 test images at varying of percentage of
resizing. A lower value indicates that more salient pixels are preserved (i.e., better perfor-
mances).

Table A.1: Average time in seconds needed to perform a resizing at 70% of the image
dimension.

Method Time
Proposed approach - all seams | 92.937

Proposed approach - % seams | 58.832

1

Proposed approach -  seams | 41.909

Proposed approach - 3 seams | 33.357

Proposed approach - % seams | 28.971

Proposed approach - é seams | 26.858

Proposed approach - é seams | 25.594
Proposed approach - ﬁ seams | 25.136
Avidan et al. [8] 21.587
Achanta et al. [4] 21.464
Gallea et al. [63] 0.385

row or column) follow similar GVF flow in building the corresponding seams. Hence we
have tested the proposed approach considering 5~ * W (or 5= * i), n = 1,2, ...,7, equally
spaced starting pixels at each iteration during the resizing of the width (or height).

We report the experimental results obtained by reducing the number of seams to be

considered on each iteration in order to decrease the computational cost of our algorithm
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as described above. The experiments have been done on a notebook equipped with a CPU
intel core 17-2670QM 2.20GH with 8 Gb of Ram by using a Matlab implementation. To
perform the test we have run the proposed algorithm by considering just 5 * W (or o *
H) equally spaced starting pixels at each iteration during the resizing of the width (or
height). In Fig. A-14 the average cost indicating the accuracy of the resizing is reported
at varying of the number of paths considered at each iteration, whereas in Table A.1 the
average computational time in seconds is reported. The experimental results demonstrate
the effectiveness of the proposal which reduces the computational cost during the resizing
by maintaining almost the same performances in terms of saliency preservation (see also

Fig. A-15).
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Figure A-8: Examples of content-aware image resizing at 70% of the height. 1%¢ column:
original image. 2" column: our Algorithm 2. 3™ column: our Algorithm 1. 4% column:
Avidan et al. [8]. 5" column: Achanta et al. [4]. 6" column: Gallea et al. [63].
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Figure A-9: Examples of content-aware image resizing at 70% of the width. 1% column:
original image. 2" column: our Algorithm 2. 37 column: our Algorithm 1. 4** column:
Avidan et al. [8]. 5" column: Achanta et al. [4]. 6" column: Gallea et al. [63].
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Figure A-10: Example of progressive resizing with respect to the width. Rows are related
to the different algorithms: 1% our Algorithm 2, 2nd our Algorithm 1, 374 Avidan et al. [8],
4™ Achanta et al. [4], 5" Gallea et al. [63]. Columns are related to the resizing factor with
respect to the width: 1°¢ original image, 2" 5%, 3™ 10%, 4"* 15%, 5" 20%, 6"* 25%, 7*"
30%.
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Figure A-11: Example of progressive resizing with respect to the height. Rows are related
to the different algorithms: 1% our Algorithm 2, 2nd our Algorithm 1, 374 Avidan et al. [8],
4™ Achanta et al. [4], 5" Gallea et al. [63]. Columns are related to the resizing factor with
respect to the height: 1°¢ original image, 2% 5%, 37 10%, 4" 15%, 5" 20%, 6" 25%, 7*"
30%.
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Figure A-12: Examples of content-aware image resizing of scenes containing objects and
contexts with edges, textures, and different prospective. Images are resized at 70% of
width/height. 1°¢ column: original image. 2" column: our Algorithm 2. 3"¢ column: our
Algorithm 1. 4 column: Avidan et al. [8]. 5 column: Achanta et al. [4]. 6" column:
Gallea et al. [63].
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Figure A-13: Examples of content-aware image resizing of scenes containing objects and
contexts with edges, textures, and different prospective. Images are resized at 70% of
width/height. 1°¢ column: original image. 2"? column: our Algorithm 2. 3" column: our
Algorithm 1. 4% column: Avidan et al. [8]. 5" column: Achanta et al. [4]. 6"¢ column:
Gallea et al. [63].
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Figure A-14: Average cost of Algorithm 1 computed over 1000 test images at varying of
the number of seams considered during the resizing.
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Figure A-15: Resizing images at 30% of the width by considering a reduced number of
seams. Top: original images. 1% row: resizing with all seams. From the 2" to the 9%
row are shown the results by considering respectively £, 1, 1 1 L L and L of the total

) >t 2> 4> 8 16” 32° 64 128
seams during the resizing.
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