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Abstract

In this thesis, will be presented BioCAD, a novel computational tool able to design

optimal and robust biological circuits. In BioCAD, the main idea is to use Pareto

optimality and the Electronic Design Automation methods for Systems and Synthetic

Biology. However, BioCAD is a general purpose tool and can be seen as well as a black

box able to receive in input a generic model and analyze its components and submodules,

estimate its parameters, or optimize specific functions. BioCAD implements novel and

state-of-the-art algorithms performing: (i) Optimization, by analyzing continuous, dis-

crete or hybrid (continuous and discrete) variable spaces, for Single- and Multi-objective

optimization problems and for local or global search; (ii) Sensitivity Analysis, for evalu-

ating the importance of the parameters by ranking them according to their influence on

the model; (iii) Robustness Analysis, for estimating the global and local fragility and ro-

bustness of optimal synthetic circuits; (iv) Identifiability Analysis, that finds functional

relations among parameters, by analyzing the values of the decision variables after and

before the optimization. Additionally, BioCAD implements the ǫ-dominance analysis,

able to relax the Pareto condition and expand the solution space to neighborhood region

of the Pareto surface. Optimization core contains novel tools for engineering enzymes,

genes and fluxes in biological systems, while Sensitivity Analysis can reveal the main

genes, enzymes, species or pathways. BioCAD can be adopted and used with various

modeling techniques: flux balance analysis with or without the gene protein reaction

mappings, ordinary differential equations, differential algebraic equations and partial

differential equations. In this thesis will be reported several experiments applied on

Synthetic Biology, such as the design of the novel 1,4-butanediol synthetic pathway.
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Chapter 1

Prologue

In the last decade, computational methods have been revealed very useful for under-

standing the metabolic precesses inside biological systems. With the advent of high-

throughput technologies, scientists have used computational tools in order to menage

big mole of data, therefore disciplines like Mathematics and Computer Science have

quite changed the study of biology. Additionally, by means of biological models, we

can understand the behavior of biological systems and for instance to reconstruct the

metabolic network of biochemical reactions or the gene regulatory networks for the

study of pathologies. A System is an object that interacts with the external environ-

ment and/or with other systems. Biological Systems are systems which components are

biological entities, as well as genes, metabolites, enzymes and so on.

In the book “Systems Biology: Properties of Reconstructed Networks” [1], the author

Bernhard Palsson, the father of the Flux Balance Analysis mathematical approach [2],

states that Systems Biology is not focused on the biological components themselves,

but on the nature of the links that connect them and the functional states of the

networks that result from the assembly of all such links. Furthermore, the advent of

high-throughput experimental technologies is forcing biologists to view cells as systems,

rather than focusing their attention on individual cellular components. Not only are

high-throughput technologies forcing the systems point of view, but they also enable us

to study cells as systems [1]. The delineation of the chemical interactions of these com-

ponents gives rise to reconstructed biochemical reaction networks that underlie various

cellular functions.

Since Systems Biology does not investigate individual genes or proteins one at a time

and investigates the behavior and relationships of all of the elements, data have to be

integrated, graphically displayed, and ultimately modeled computationally. Together

with colleagues in computer science, mathematics, statistics and biologists, researchers

1
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are developing the necessary tools to acquire, store, analyze, graphically display, model,

and distribute this information. An enormous challenge for the future is how to integrate

the different levels of information pertaining to genes, mRNAs, proteins, and pathways

[3].

Systems Biology stems from advances in technology, particularly in genome sequenc-

ing, computing and in analytical platforms such as mass spectrometry. In order to

study a large system in its entirety, one requires the ability to model and measure it

in its entirety. Until the advent of whole genome sequencing, this was an insurmount-

able experimental challenge for biologists. With the advancements in computing power,

genomics, transcriptomics, proteomics, metabolomics and fluxomics, it is becoming pos-

sible to profile and model a complete biological system [4]. The last year, the group of

Markus W. Covert published the first in silico whole cell [5]. Their model is based on a

synthesis of over 900 publications and includes more than 1,900 experimentally observed

parameters. They implemented 28 different submodules to represent the entire cell of

the human pathogen Mycoplasma genitalium. Additionally, the most important feature

is that each module was modeled using the most appropriate mathematical represen-

tation. For example, metabolism was modeled using flux balance analysis [2], whereas

RNA and protein degradation were modeled as Poisson processes. Furthermore, the

whole cell model provided insights into many previously unobserved cellular behaviors,

including in vivo rates of protein-DNA association and an inverse relationship between

the durations of DNA replication initiation and replication. As a result, comprehensive

whole-cell models can be used to facilitate biological discovery.

Then, understanding biological systems requires the integration of experimental and

computational research. Computational biology, through pragmatic modeling and theo-

retical exploration, provides a powerful foundation from which to address critical scien-

tific questions head-on. Computational Systems Biology addresses questions fundamen-

tal to our understanding of life, yet progress here will lead to practical innovations in

medicine, drug discovery and engineering [6].

Computational Biology has two distinct branches: (i) knowledge discovery, or data-

mining and (ii) simulation-based analysis, which tests hypotheses with in silico exper-

iments, providing predictions to be tested by in vitro and in vivo studies. Knowledge

discovery is used extensively within bioinformatics for such tasks as the inference of gene

regulatory networks from gene expression profile. These methods typically use predic-

tions based on sophisticated statistical discriminators. Instead, simulation attempts to

predict the dynamics of systems so that the validity of the underlying assumptions can

be tested. Models must be validated by means experimental observations. Inconsistency
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at this stage means that the assumptions that we are adapting on the system under con-

sideration are incomplete or incorrect. Models that overpass initial validation can then

be used to make predictions to be tested by experiments, as well as to explore ques-

tions that are not amenable to experimental inquiry. Combined with rapid progress of

genome and proteome projects, simulation-based research is convincing increasing num-

bers of researchers of the importance of a system-level approach. Additionally, advances

in computational power have enabled the creation and analysis of reasonably realistic

intricate biological models. There are still issues to be resolved that computational

modeling and analysis are now able to provide useful biological insights and predictions

for well understood targets [6]. The main task that Computational Systems Biology is

facing is the development of efficient algorithms, tools for the visualization and com-

munication, data structures and data bases with the target of computer modeling of

biological systems. To date, a vast number of biological databases are used to collect a

big mole of information; for example KEGG PATHWAY Database [7], used to cluster

metabolic pathway information, Gene Expression Omnibus for microarray collection and

EcoCyc database, dedicated to describe the genome and the biochemical machinery of

the model organism E. coli K-12 and so on. Additionally, a new research topic con-

cerns the integration of all the information stored in the biological databases, such as

Meta-Base [8], the wiki-database containing more than 2000 commonly used biological

databases.

In this thesis, will be presented BioCAD, a novel computational framework able to design

Biological Systems. Studying a biological system is more complicated than a physical or

technological system due to the biological complexity and the limitation of experimen-

tal data. But in the other side, modeling a biological system is very important since

allows to predict the system behavior in function of other stimuli, without doing again

experiments or when experiments are not allowable. In BioCAD, the main idea is to use

Pareto optimality and the Electronic Design Automation [9] methods for Systems Biol-

ogy. However, BioCAD is a general purpose tool and can be seen as well as a black box

able to receive in input a generic model and analyze its components and submodules,

estimate its parameters, or optimize specific functions. BioCAD implements novel and

state-of-the-art algorithms performing: (i) Optimization, by analyzing continuous, dis-

crete or hybrid (continuous and discrete) variable spaces, for Single and Multi-objective

optimization problems and for local or global search; (ii) Sensitivity Analysis, for evalu-

ating the importance of the parameters by ranking them according to their influence on

the model; (iii) Robustness Analysis, for estimating the global and local fragility and ro-

bustness of optimal synthetic circuits; (iv) Identifiability Analysis, that finds functional

relations among parameters, by analyzing the values of the decision variables after and

before the optimization. Additionally, BioCAD implements the ǫ-dominance Analysis,
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able to relax the Pareto condition and expand the solution space to neighborhood re-

gion of the Pareto surface. Optimization core contains tools for engineer enzymes, genes

and fluxes in optimized organisms, while Sensitivity Analysis can reveal the main genes,

enzymes, species or pathways.

BioCAD can be adopted and used with various modeling techniques: Flux Balance

Analysis [2] with or without the gene protein reaction (GPR) mappings [10], Ordinary

Differential Equations (ODEs), Differential Algebraic Equations (DAEs) and Partial

Differential Equations (PDEs). More details about BioCAD and algorithms are reported

in Chapter 2. Multi-objective optimization has been revealed very useful when coupled

with flux balance analysis. I have optimized bacterial Escherichia coli strains in order to

overproduce specific and important metabolites, as well as acetate and succinate natural

metabolites (and other substances, such as ethanol, 1,2-propanediol, lactate, formate)

or industrial synthetic chemicals such as 1,4-butanediol by inferring optimal genetic

manipulations. The Genetic Design through Multi-objective Optimization (GDMO)

method here used, has been compared with previous and recent methods. Results show

that GDMO algorithm outperforms the GDLS [11], OptKnock [12], OptFlux [13] and

OptGene [14] heuristics. Details can be found in Chapter 3 and 4. In Chapter 5 I

report a detailed analysis about the study on three important metabolic networks for

the Artificial Photosynthesis. In particular, I analyzed the metabolic capability of the

photosynthetic carbon metabolism pathway in a general leaf, the Rhodobacter spheroides

bacterium, and the Chlamydomonas reinhardtii alga. I used single and multi-objective

optimization algorithm to maximize the CO2 uptake rate from organisms in order to

sequester atmospheric or industrially produced CO2. Comparing states before and after

optimization provides also attractive highlights on enzymatic variation. Additionally,

I investigated the bioenergetic behavior in mitochondria in different conditions, since

these organelles have a pivotal role in human diseases and pathologies. I evaluated

the changing in ATP and NADH concentrations (that constitute the energy in a cell)

in monogenic pathologies such as fumarate deficiency, when calcium concentration is

disrupted and in cancer conditions. In this way, the BioCAD sampling has individuated

and distinguished the pathological and healthy states (Chapter 6).

BioCAD and Pareto Optimality have been revealed appealing for the analysis of meta-

bolism and for Synthetic biology applications for the design and construction of new bi-

ological parts and the re-design of natural biological systems for useful purposes. Pareto

Optimality is useful to obtain not only a vast range of Pareto optimal solutions, but

also the best trade-off design. Each feasible solution represents a particular optimal

biological system, so the user can choose between several candidate optimal solutions.

Additionally, the area underlying the Pareto curve and the first derivative, and in par-

ticular the presence of jumps (i.e., quick variations in the objective functions during



Chapter 1. Prologue 5

the optimization procedure), carry valuable biotechnological information. Remarkably,

BioCAD can be used for each CAD problem, linked to biology but also to electronic

devices design.
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Calcium Trade-offs in the Mitochondrial Bioenergetics, the 12th Interna-

tional Conference on Systems Biology - ICSB 2011, Heidelberg/Mannheim,Germany

August 28 - September 1, 2011



Chapter 1. Prologue 9
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Chapter 2

CAD for the Design of Biological

Circuits

In this Chapter of my thesis, I will present BioCAD, a new computational framework

able to analyze, optimize and re-design biological systems. BioCAD faces Computational

Systems Biology problems, by designing new modified and robustness metabolic systems

and by providing comprehensive information about the structure or composition of the

biological system or of its subsystems. The BioCAD framework includes many novel and

state-of-the-art tools and in particular the (i) Single and Multi-Objective Optimization

coupled with the novel ǫ-dominance Analysis, (ii) Sensitivity, (iii) Identifiability and

(iv) Robustness analysis. BioCAD takes as input a general biological network (that

can be modeled by means different mathematical approaches) and gives in output an

other biological network, derived from the input network, but optimized according to the

chosen targets. By means of the optimization core is possible, for instance, to perform the

genetic design in order to recreate organisms that produce biodiesel or other interesting

substances. In the work titled Robust Design of Microbial Strains [15], BioCAD was

tested for the first time on the genome-scale metabolic network of the Escherichia coli

bacterium for searching the best genetic manipulations in order to lead the bacterium

to overproduce chemicals or biochemicals. In this case, I have used the Flux Balance

Analysis (FBA) [2] mathematical approach to simulate the bacterium metabolism.

In the following sections, the general framework of BioCAD and its potentiality are

described in details.

10



Chapter 2. BioCAD for Biological Circuits 11

� �������� ��	
� ���
���	����

�������������	�
�����


��

��
�

��������������	�����	���

�����������������������������
����������	��	
�
������������	
��	�����	
�	����	
������������
�����	��	
������������	�����	
������	���
�	��	������	
�	���������������	���������	
��
���������������	����� ���������!
��������
����	
�������	
�����������������	��
	
������	���������	
������	������	�	
�	���������
�����	�	
���	
���	
��

����������	��	
�
����
�	�	�	����
����	��	
����������������������������������	
������	 �!����	
�������������
���	��� ����	����"���	�����	��"��������"���	
����!����	���������������������	
����	��	 �!
�����
�	�	��	�	����
����	��	
������������������	
������	����������	�������	�����	
������	�����
�����������������	
������	����	��������������������


���������

�����������������

�����������������
��������������	���


���������
�����������������

������������
�����
 ����������������

������ ����������������

Figure 2.1: BioCAD flowchart. In the first step, a general Input Metabolic network is analyzed
according to the Sensitivity Analysis that ranks the components of the circuit (reactions, species
or pathways) according to their influence on the output(s) of the model. This first step does not
change the conformation of the network, but only evaluates the importance of its components in
the model. In the optimization procedure (single- or multi-objective), the algorithm optimizes
the decision variables to maximize or minimize one or more objectives (in the flowchart, two
objectives f1, f2 are being optimized). The method tunes the variables in an appropriate way
(described in the text) for optimizing the objectives (chosen by the user). The result of the multi-
objective optimization is the Pareto front (blue points). Each point of the front represents a
particular conformation of the network. Additionally, by investigating the variables space of the
Pareto front, BioCAD calculates the Identifiability relationships, i.e., the functional relations
between the decision variables. The Pareto optimality is also coupled with the Robustness
Analysis. For each Pareto point, the Global, Local and the Pathway-oriented Robustness is
calculated (in the flowchart, the size of the Pareto point represents the robustness associated to
the particular optimal network). The output of the method is therefore a modified network.

2.1 The Biological Computer-Aided Design Tool

BioCAD is composed of different parts, each of them performs a specific task. Specifi-

cally, there are three main parts: the pre-processing step, the optimization core and the

post-processing step. The three parts can work together or in a separately procedure.

BioCAD can be considered such as a black box, which receives a generic biologic circuit

in input and returns the optimal and robust one(s). In the work “Robust Design of

Microbial Strain” [15] BioCAD was tested on the genome-scale metabolic of Escherichia

coli bacterium [16] and used to find the best genetic strategies in terms of knockout that

lead the overproduction of succinate and acetate. The candidate optimal solutions was

also analyzed by using Robustness Analysis and the new Pathway-oriented Sensitivity

analysis (PoSA) was presented and applied for the first time. Details on this work can

be found in section 2.5.2.

In Figure 2.1, the pipeline of BioCAD is shown. The computational method takes in in-

put a metabolic network, which can be modeled by using ordinary differential equations

(ODEs), differential algebraic equations (DAEs), partial differential equations (PDEs)

or by using the Flux Balance Analysis framework (FBA) [2] containing or not the gene
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protein reaction (GPR) mappings [10]. Models can be also uploaded by using systems

biology markup language (SBML) [17]. In this way, the method is able to menage differ-

ent mathematical models and to perform different analysis. Additionally, the framework

here presented can be used in different areas, as in Electronic Design Automation (EDA),

making it suitable for general purposes. The method can perform Single and Multi-

Objective Optimizations to reach desired targets. The aim is to find the values of the

decision variables in order to obtain one (single-objective) or more (multi-objectives)

phenotypes. The user can analyze or optimize different components of the biological

model. For instance, (i) perturbing enzymatic concentrations, (ii) turning off genes

(genetic design), or (iii) searching for the optimal nutrients (fluxes design). Enzymes

concentrations, genes and nutrients represent the decision variables of the optimization

problem.

As above introduced, the framework is composed of three blocks. The first is constituted

by the Sensitivity Analysis block, able to find the most sensitive parameters of the model.

The reactions and the species can be analyzed in terms of sensitivity by using the

Reaction-oriented Sensitivity Analysis (RoSA) and Species-oriented Sensitivity Analysis

(SoSA) methods. Furthermore, the novel PoSA is able to identify the most sensitive

metabolic pathways by ranking them according to gene knockouts or fluxes through

each metabolic pathway. We can consider a single pathway as an input/parameter of

the model. Each pathway (that is a set of reactions converting particular substrates

in specific final products) is perturbed by deleting genes that control its biochemical

reactions or by changing fluxes that occur in its reactions. PoSA ranks the pathways

according to their influence on the outputs of the model. Moreover, the Sensitivity

results can be coupled with Optimization process since the set of the decision variables

can be resized and reduced by considering only the most sensitive parameters. As a

matter of fact, in the photosynthetic carbon metabolism analysis, described in Chapter

5, I have considered only the most sensitive parameters/enzymes and optimized them

for minimize the carbon dioxide uptake rate.

The second and the main part of BioCAD is the Optimization core. In Figure 2.1,

it’s reported the result of the Multi-Objective Optimization when the function f1 and

f2 are maximized. The results of a Multi-Objective Optimization (MOO) problem is

not a single solution (such as in a Single Optimization problem), but a set of non-

dominated points, which form the Pareto front (the blue points of the central plot of

Figure 2.1). A point is called “non-dominated” if there are no points that outperform

it in all the objective functions. Instead, the dominated points (represented in red) are

feasible points, but are less good with respect to the blue points of the graph, then not

optimal. All the dominated points and the non-dominated points, that satisfy all of

the constraints, and all of the variable bounds, constitute the observed feasible region.
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Pareto optimality is useful to obtain not only a vast range of Pareto optimal solutions,

but also the best trade-off design. Each feasible point represents a particular network, so

the user can choose between several candidate optimal solutions. Pareto Optimality has

been revealed appealing for the analysis of metabolism, as reported in the previous works

[18, 19], where the authors used deterministic multi-objective approaches to evaluate the

fluxes distributions in the E. coli wild-type network. In this thesis, I want to remark

the usefulness of Pareto optimality and adopt effective and state-of-the-art algorithms

to investigate the knockout space. After the optimization, the ǫ-dominance Analysis

relaxes the Pareto constraints and can search accurately near the edge of the Pareto-

optimal region. The ǫ-dominance Analysis and the Multi-Objective Optimization core

are crossed together. In the section 2.3 definitions and many details about the Multi-

Objective Optimization can be found . In addition, the shape of the front and the

number of Pareto solutions give an idea of the behavior of the biological circuit with

respect to a particular phenotype optimization.

One of the novelty is the genetic design, where each strain (a particular phenotype)

is identified by a binary “knockout vector” (which represents the genotype), whose

elements are 1 when the corresponding gene set is turned off. The importance of the

knocked out genes can be evaluated by means of the ranking provided by Gene sets-

PoSA. A gene set can be composed of a single gene, when it synthesizes for an enzyme,

or can be associated with more genes, that synthesize for enzymes to form enzyme

complexes and enzyme subunits. The relation between genes in a gene set is regulated

by means of a Boolean relationship. When all the genes are necessary to catalyze

the corresponding reactions (a single gene set can regulate more reactions), genes are

linked by the “AND” operator; otherwise, if at least a gene is necessary to catalyze the

reactions, genes are linked by the “OR” operator. For more details about the modeling

and the managing of knockout strategies, the reader is reported to the sections 2.2.3 and

2.4. In addition, through the Multi-Objective Optimization, BioCAD is also able to find

the favorable nutrients set (Flux Design) to optimize the wild-type or strains yield and

evaluate the over/under investment of nutrients (uptake rate of fluxes) or the metabolic

changing.

The Robustness Analysis is the third task of the BioCAD. For each phenotype (strain

or wild type), in a post-processing step, BioCAD evaluates the fragility of the metabolic

network when it is subjected to small perturbations, which can be exogen (for instance

small perturbation of the external environment) or endogen (for instance small pertur-

bation of the enzymatic concentrations). From the Pareto front, interesting solutions

can be selected by using decision-making methods: for instance, by choosing points

with suitable features or the solutions near to the ideal solution, the knee points, the
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end points or by using the robustness analysis. For each solution, the Global Robust-

ness (GR), the Local Robustness (LR) and the Pathway-oriented Robustness (PoRA)

indexes values are calculated. These indexes indicate respectively the robustness of the

whole network, the robustness of each single reaction and of each metabolic pathway.

The introduction of robustness in the analysis should hence result in more reliable and

realistic targets for biotechnology.

The computational analysis framework is extended also with the Identifiability Analysis

that finds functional relations among enzymes, by analyzing the values of the decision

variables after and before the optimization.

The output of the method is one or more biological circuits. In Figure 2.1, the output

is chosen from the Pareto front according to trade-off and robustness values. Vertices

of the network, figured as a graph, represent the metabolites and the edges are the

relationships between metabolites, such as the biochemical and transport reactions. An

edge represents a reversible reaction, while an oriented edge represents an irreversible

reaction. The dashed line represents a modified reaction, for instance an intervention in

the regulatory factors of the reaction or in the gene knockout array. The blue color of

the vertex represents a change in the uptake rate, i.e., a different nutrient feed.

As introduced, BioCAD can be adopted and used with several modeling techniques and

aims. In Table 2.1, have been showed advantages and limitations linked to the methods

and models used in BioCAD. In particular, by using FBA and GPR associations, it

is not possible to predict metabolite concentrations, since this method does not use

kinetic parameters. However, it can determine fluxes at steady state. Additionally,

FBA does not account for regulatory effects such as activation of enzymes or regulation

of gene expression. Therefore, its predictions may not always be accurate. However,

since FBA does not require kinetic parameters, it can be computed very quickly even

for large networks. This makes it well suited to studies that characterize many different

perturbations such as different substrates or genetic manipulations [2].

On the other hand, by using ODEs-DAEs-PDEs, the time to solve the system increases,

though the metabolic system is not large and the precision depends on the computa-

tional solver. Instead, FBA uses a linear programming approach to find the solution of

the problem, therefore the solution is equal using also different libraries (glpk, Gurobi

Optimizer, LINDO Systems and so on). The advantage of ODEs-DAEs-PDEs models

lies on the use of kinetic parameters, allowing to investigate several features, such as the

regulatory effect, the variation on time of the metabolite concentrations, and in some

cases, thermodynamic constraints.
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Table 2.1: Advantages and limitations of methods and models used in BioCAD.

Features ODEs-DAEs-PDEs FBA

Kinetic parameters considered not considered
Regulatory effects modeled not modeled
Metabolite concentrations prediction allowable steady state
Accuracy not always accurate not always accurate
Simulation time long short
Size small network large network
Precision low good

Remarkably, the general sensitivity- and robustness-based framework allows a detailed

understanding and comparison of the roles played by each component in the models

taken into account. The main goal of this work is proposing a pipeline for model-based

in silico design based on the state-of-the-art Multi-Objective Optimization approaches.

BioCAD is implemented in Matlab in a parallel computing version.

2.2 The Flux Balance Analysis

BioCAD is able to menage metabolic networks modeled by using Flux Balance Analysis

(FBA). FBA is a widely used approach for studying biochemical networks, in particular

the genome-scale metabolic network reconstructions that have been built in the past

decade. These network reconstructions contain all of the known metabolic reactions in an

organism and the genes that encode each enzyme. FBA calculates the flow of metabolites

through the metabolic network e.g., their formation and degradation, transport and

cellular utilization, thereby making it possible to predict the growth rate of an organism

or the rate of production of a biotechnologically important metabolite.

The first step in FBA is to mathematically represent metabolic reactions: for every

metabolite Xi, i = 1, . . . ,m a material balance is derived as dXi

dt
=

∑n
j=1 Sijvj , where

Sij is the stoichiometric coefficient associated with each reaction flux vj , j = 1, . . . , n. If

we consider this material balance under steady state conditions, we have
∑n

j=1 Sijvj = 0.

By considering all the intermediates simultaneously at steady states the balance equation

can be written in matrix form S×v = 0, where S is the stoichiometric matrix of m rows

and n columns and v is the vector of the metabolic and transport fluxes. In any realistic

large-scale metabolic model, the matrix S is not square and n > m, so we have a plurality

of solutions. That is, there can be a number of feasible flux distributions satisfying these

stoichiometric constraints, each representing a particular metabolic state. Therefore, the

null space, or the set of all feasible flux distributions, represents the capabilities of the

metabolic genotype. The transport fluxes represent environmental conditions that, along

with the genotype, define the metabolic state.
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The FBA approach finds the metabolic state in order to optimize a particular objective

function, such as the maximization of growth rate or ATP production. Consequently,

the problem can be formulated as a linear programming problem:

maximise (or minimise) f ′v,

such that Sv = 0

vLj ≤ vj ≤ vUj , j = 1, . . . , n,

(2.1)

where f is a vector of weights (n dimensional) that are either costs of or benefits derived

from the fluxes. vLj and vUj are the lower and upper bound values (thermodynamic con-

straints) of the flux vj . The output of FBA is a particular distribution of fluxes, denoted

by v, that optimizes the objective function. Remarkably, FBA does not describe how

a certain flux distribution is realized (by kinetics or enzyme regulation), but which flux

distribution is optimal for the cell. Grown rate, also called biomass can be defined in

terms of the biosynthetic requirement for the cell, and is represented by a dummy reac-

tion formulated according to experiments found in literature. Simulating the generation

of cellular biomass products from available inputs using the biomass objective function

allows for the prediction of allowable growth rates for given substrate uptake rates and

maintenance requirements.

2.2.1 The biomass function

The formulation of a detailed biomass objective function for use in examining metabolic

networks is dependent on knowing the composition of the cell and energetic require-

ments necessary to generate biomass content from metabolic precursors. In this work,

the advanced biomass objective function [20] is used and it is formed by detailing the

necessary vitamins, elements, and cofactors required for growth as well as determining

core components necessary for cellular viability. Inclusion of vitamins, elements, and

cofactors allow for the analysis of a broader coverage of network functionality and re-

quired network activity. Another advanced approach is to not only define the wild-type

biomass content of the cell, but to generate a separate biomass objective function that

contains the minimally functional content of the cell. This objective function, referred to

as the core biomass objective function, can result in increased accuracy when predicting

gene, reaction, and metabolite essentiality and is formulated using experimental data

from genetic mutants and knockout strains. For this reason in this work, for the genetic

design is used the core biomass instead of the wild-type biomass [20]. It should be noted

that with full reconstructions of the entire protein synthesis machinery, that the level

and detail in biomass objective functions can continue to grow.
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Figure 2.2: In figure have been showed the steps for the formulation of a FBA problem. Firstly,
(a) the metabolic network reconstruction is performed by clustering the list of stoichiometrically
balanced biochemical reactions. These information are extracted from data of literature or for
data base on line, such as KEGG. (b) This reconstruction is converted into a mathematical model
by forming the matrix S, in which each row represents a metabolite and each column represents
a reaction. Growth is incorporated into the reconstruction with a biomass reaction, which simu-
lates metabolites consumed during biomass production. Biomass production is mathematically
represented by adding an artificial biomass reaction that consumes precursor metabolites at sto-
ichiometries that simulate biomass production. Also exchange reactions are used to represent
the flow of metabolites, such as glucose and oxygen, in and out of the cell. (c) At steady state,
the flux through each reaction is given by S × v = 0, which defines a system of linear equations.
As large models contain more reactions than metabolites, there is more than one possible so-
lution to these equations, therefore (d) a natural objective function (maximum growth rate) is
chosen to predict the metabolite flow throughout the network. (e) Linear programming is used
to identify a flux distribution that maximizes or minimizes the objective function within the
space of allowable fluxes (blue region) defined by the constraints imposed by the mass balance
equations and reaction bounds. The thin red arrows depict the process of linear programming,
which identifies an optimal point at an edge or corner of the solution space. The output of FBA
is a particular flux distribution, v, which maximizes or minimizes the objective function. Figure
extracted from Palsson paper [2].
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FBA can be used to perform simulations under different conditions by altering the

constraints on a model. To change the environmental conditions (such as substrate

availability), we can change the bounds on exchange reactions (that is, reactions repre-

senting metabolites flowing into and out of the system). Substrates that are not available

are constrained to an uptake rate of 0 mmolh−1 gdW−1 (millimoles per gram dry cell

weight per hour). Constraints can also be tailored to the organism being studied, with

lower bounds of 0 mmolh−1 gdW−1 used to simulate reactions that are irreversible in

some organisms. Nonzero lower bounds can also force a minimal flux through artificial

reactions such as the ATP maintenance reaction, which is a balanced ATP hydrolysis

reaction used to simulate energy demands not associated with growth [21]. Constraints

can even be used to simulate gene knockouts by limiting reactions to zero flux. The main

advantage of FBA method is the capability to menage large networks and in a faster

way. However, FBA has limitations. Because it does not use kinetic parameters, it

cannot predict metabolite concentrations. It is also only suitable for determining fluxes

at steady state. Except in some modified forms, FBA does not account for regulatory

effects such as activation of enzymes by protein kinases or regulation of gene expression.

Therefore, its predictions may not always be accurate [2].

2.2.2 Gene Protein Reaction (GPR) associations

In order to allow BioCAD algorithms to work at the genetic level, I employ the Gene-

Protein-Reaction (GPR) association, that indicates which gene has what function by

means of a list of Boolean rules that dictate which genes are connected with each reaction

in the model. When a reaction is catalyzed by isozymes (two different enzymes that

catalyze the same reaction), the associated GPR contains an “OR” rule, where either

of two or more genes may be knocked out but the reaction will not be constrained.

The verification and refinement necessary in this step includes determining: (i) if the

functional protein is a heteromeric (composed of two distinct gene products) enzyme

complex; (ii) if the enzyme (complex) can carry out more than one reaction and (iii) if

more than one protein can carry out the same function (i.e., isozymes exist). For the first

case (i), the genome annotation often has refined information, which indicates that there

is at least one more subunit needed for the function of the protein complex. Furthermore,

KEGG (Kyoto Encyclopedia Genes and Genomes) [7] database lists subunits in some

cases. Often, a more comprehensive database and/or literature search is required. Also,

the protein-complex composition may differ between organisms. The second case (ii) can

also be identified from biochemical databases and/or literature. Multitasking of enzymes

may also differ between organisms [10]. Therefore, GPR associations distinguish between

single and multi-functional enzymes, isoenzymes, enzyme complexes, enzyme subunits,
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so that they capture the complexity and diversity of the biological relationships through

the Boolean model above described [22].

2.2.3 Genetic Strategies modeling

Once constructed, GPR associations can be used to relate various data types, including

transcriptomic, proteomic and flux data. In this thesis, the GPR mappings provide

the links between each gene set and the reactions vj that depend on it and define how

certain genetic manipulations affect reactions in the metabolic network. For a set of L

genetic manipulations, the GPR mappings are represented by a L× n matrix G, where

the (l,j)-th element is 1 if the l-th genetic manipulation maps onto the reaction j, and

is 0 otherwise.

Knockouts are modeled in terms of gene sets that can affect one or more reduced reac-

tions using GPR mappings, which give a many-to-many mapping of genes to reactions.

The knockout cost is defined according to the Boolean relationship between genes mod-

eled by means of GPR map. If a gene set is composed of two genes linked by “AND”,

the cost to ensure the turning off of the corresponding reactions (knockout cost) is 1.

Instead, the cost to ensure the catalysis of the corresponding reactions is 2, since both

genes are necessary to turn on the reactions associated with that gene set. For exam-

ple, the GPR for phosphofructokinase (PFK) is “b1723 (pfkB) or b3916 (pfkA)”, where

“b1723” and “b3916” are the gene IDs, “pfkB” and “pfkA” are the gene names. So

according to this Boolean rule, both pfkB and pfkA must be knocked out to restrict this

reaction. When a reaction is catalyzed by a protein with multiple essential subunits,

the GPR contains an “AND” rule, and if any gene of the set is knocked out the corre-

sponding reactions will be constrained to 0 flux. Succinyl-CoA synthetase (SUCOAS),

for example, has the GPR “b0728 (sucC) and b0729 (sucD)” so knocking out either of

these genes will restrict this reaction. Some reactions are catalyzed by a single gene

product, while others may be associated with ten or more genes in complex associations

[2].

I used the approach implemented in OptKnock method [12] to find the fluxes distribution

that reproduces the desired productions (synthetic objectives) and achieves the maximal

growth. The bi-level problem is mathematically formulated as:
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max g′v

such that
L
∑

l=1

yl ≤ C

yl ∈ {0, 1}

max f ′v

such that Sv = 0

(1− y)′Gjv
L
j ≤ vj ≤ (1− y)′Gjv

U
j ,

j = 1, . . . , n,

(2.2)

where g is a vector of weights (n dimensional) associated with the synthetic objectives,

and g′ is its transpose. For example, when the synthetic objectives vj and vh have to

be maximized, the weights gj and gh are equal to 1. The genetic strategies searching

consists in finding the best knockout strain. I used the y knockout vector of L integers.

If there are no impaired reactions in the metabolic network, y contains only zeros and

the metabolic network is “wild-type”. Conversely, when yl = 1, the gene set embroiled

in the l-th manipulation is turned off, and the corresponding reactions are in the absent

status (the lower and upper bounds are set to zero, resulting in a modified metabolic

network). C is an integer representing the maximum number of knockout allowed.

The bi-level problem can be converted to a mixed integer linear programming (MILP)

problem (for a detailed description, see the original work [12]). I implemented and solved

the problem using Matlab and the glpk (Gnu linear programming kit) solver 1.

2.3 BioCAD: the Multi-Optimization core

Multi-objective optimization is with no doubt a very important research topic both

for scientists and engineers because of the multi-objective nature of most real-world

problems.

Multi-objective optimization can be defined as the problem of finding a vector of decision

variables which satisfies constraints and optimizes a vector function whose elements

represent the objective functions [23]. These functions form a mathematical description

of performance criteria which are usually in conflict with each other. Hence, the term

“optimize” means finding such a solution which would give the values of all the objective

functions acceptable to the designer.

Formally, we can state it as follows:

1Gnu linear programming kit, version 4.47. http://www.test.org/doe/
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Find the vector x∗ = [x∗1, x
∗
2, . . . , x

∗
n]

T which will satisfy the m inequality constraints:

gi(x) ≥ 0, i = 1, 2, . . . ,m (2.3)

the p equality constraints

hi(x) = 0, i = 1, 2, . . . , p (2.4)

and optimizes the vector function

f(x) = [f1(x), f2(x), . . . , fk(x)]
T (2.5)

where x = [x1, x2, . . . , xn]
T is the vector of decision variables.

In other words, we wish to determine from among the set F of all numbers which satisfy

2.3 and 2.4 the particular set x∗1, x
∗
2, . . . , x

∗
n which yields the optimum values of all the

objectives functions.

The constraints given by 2.3 and 2.4 define the feasible region F and any point x in F
defines a feasible solution. The vector function f(x) is a function which maps the set

in F in the set X which represents all possible values of the objective functions. The

k components of the vector f(x) represent the non-commensurable criteria which must

be considered. The constraints gi(x) and hi(x) represent the restriction imposed on the

decision variables. The vector x∗ will be reserved to denote the optimal solutions. The

problem is that the meaning of optimum is not well defined in this context, since we

rarely have an x∗ such that for all i = 1, 2, . . . , k

∀x ∈ F , fi(x
∗) ≥ fi(x). (2.6)

If this was the case, then x∗ would be a desirable solution, but in real-world problems

we never have a solution like this, in which all the fi(x) have a maximum in F at a

common point x. Therefore, we have to establish a certain criteria to determine what

would be considered as an optimal solution.

As above introduced, when we have to perform a multi-objective optimization problem,

the solution is not a single point (such as in the case of a single-objective optimization

problem), but is a set of optimal points. This set of solutions is called Pareto Optimal

Set. The concept of Pareto optimum was formulated by the Italian economist Vilfredo

Pareto and constitutes by itself the origin of research in multi-objective optimization.
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Figure 2.3: Pareto-optimal solutions are marked with continuous curves for four combinations
of two type of objectives. Figure extracted from Kalyanmoy Deb book [24].

We say a point x∗ ∈ F is Pareto optimal if for every x ∈ F either ∀i ∈ I, fi(x
∗) = fi(x)

or, there is at least one i ∈ I such that fi(x
∗) > fi(x).

In world, this definition says that x∗ is Pareto optimal if there exists no feasible vector x

which would increase some criterion without causing a simultaneous decrease in at least

one other criterion [23]. Unfortunately, the Pareto optimum almost always gives not a

single solution, but rather a set of solutions called non-dominated solutions.

In a maximization problem, the maxima in the Pareto sense are going to be in the

boundary of the design region, or in the locus of the tangent points of the objective

functions. In Figure 2.3, a bold line is used to mark this boundary for a bi-objective

problem in four cases: to minimize both the objective functions, to minimize and max-

imize respectively the two objective functions, to maximize and minimize respectively

the two objective functions and to maximize both the objective functions. The region

of points defined by this bold line is called the Pareto Front.

Most real-world search and optimization problems involve multiple objectives. The ex-

tremist principle of finding the optimum solution cannot be applied to one objective

alone when the rest of the objectives are also important. The presence of multiple

conflicting objectives gives rise to a set of trade-off optimal solutions, i.e., the Pareto-

optimal solutions. Different Pareto-optimal solutions produce a trade-off (conflicting

scenarios) among different objectives. A solution that is better with respect to one ob-

jective requires a compromise in at least one other objective. Since many such solutions

are targets here, clearly, there are two goals of multi-objective optimization: find a set
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Figure 2.4: Solution space and variable space mapping. In the solution space we can observe
the Local versus Global Pareto-optimal Fronts when we have the maximization of two objectives.
Figure extracted from Kalyanmoy Deb book [24].

of solutions close to the Pareto-optimal solutions and find a set of solutions which are

diverse enough to represent the entire spread of the Pareto-optimal front.

2.4 Genetic Design through Multi-objective Optimization

Algorithm

Genetic Design through Multi-objective Optimization (GDMO) algorithm [15] is a com-

binatorial global search method that finds the genetic manipulation strategies to si-

multaneously optimize multiple cellular functions. As described in the section 2.3, the

simultaneous optimization of multiple objectives differs from the single-objective opti-

mization because the solution is not unique when the objectives are in conflict with

each other. For instance, the knockout strategy able to improve the production of a

metabolite alters the biomass formation and the ability of the organism to reproduce

itself. Therefore, metabolite production and biomass formation are strongly in conflict.

GDMO implements a genetic algorithm inspired by the Non Dominated sorting Ge-

netic Algorithm II (NSGA-II) [25]. A genetic algorithm is a search technique used in

computing to find exact or approximate solutions to optimization and search problems.

Genetic algorithm are categorized as global search heuristics and are a particular class of

evolutionary algorithms that use techniques inspired by evolutionary biology such as in-

heritance, mutation, selection and crossover. In contrast to local search methods, genetic

algorithms are based on a set of independent computations controlled by a probabilistic

strategy. This is a simulation of natural selection of best individuals inside successive

generations. Following the classical terminology, a solution for a problem under consid-

eration is called an individual. The set of considered individuals is called a population.

Each individual has one chromosome string encoding its data characteristics [26].
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GDMO is composed of four key steps. It starts with the initialization of the population

Pop. The population can be initialized in different ways: randomly, or assigning present

status to all genes, or selecting a set of knocked out genes. In my work, I do not remove

genes from the possible knockout list based on experimental predictions of lethality, as

the lethality of a single knockout may not hold when combined with other knockouts.

The possible knockout list is, however, easily set by the user. The population Pop is

represented by a I × (L+K + 2) matrix, where I is the number of individuals, L is the

number of the decision variables andK is the number of the objective functions. The last

two columns are used to store two parameters of the algorithm linked to each individual:

the fitness or rank, and the crowding distance [25]. The values of the objective functions

are calculated solving the combinatorial problem 2.2 of the section 2.2.3.

Once the population is initialized the population is sorted based on non-domination into

each front. The first front being completely non-dominant set in the current population

and the second front being dominated by the individuals in the first front only and the

front goes so on. Each individual in the each front are assigned rank or fitness values

based on front in which they belong to. Individuals in first front are given a fitness value

of 1 and individuals in second are assigned fitness value as 2 and so on. In addition to

fitness value the crowding distance is calculated for each individual. The crowding dis-

tance is a measure of how close an individual is to its neighbors. The crowding distance

computation requires sorting the population according to each objective function value

in ascending order of magnitude. Thereafter, for each objective function, the boundary

solutions (solutions with smaller and largest function values) are assigned an infinite

distance value. All other intermediate solutions are assigned a distance value equal to

the absolute normalized difference in the function values of two adjacent solutions. This

calculation is continued with other objective functions. The overall crowding-distance

is calculated as the sum of individual distance values corresponding to each objective.

Each objective function is normalized before calculating the crowding-distance. Large

average crowding distance will result in better diversity in the population.

Each individual represents a feasible solution, composed of the proposed ỹ knockout

strategy array. Successively, three steps are iteratively carried out. In a binary tour-

nament selection process, two individuals are selected at random, and their fitness is

compared. The individual with the best fitness is selected as a parent. GDMO algorithm

selects by default a number of parents (i.e., the best individuals) equal to I
2 .

Parents are mutated using a combinatorial mutation operator to create an offspring

population. Mutation represents a switch, from 0 to 1, or from 1 to 0. The process is

randomly executed; for each parent individual, ten offspring are created and only the

best one is chosen. Mutations can achieve the maximum knockout number equal to
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the parameter C (equal to 50 by default). A new population of I individuals is formed

selecting the best individuals from the set of parents of the previous generation and the

novel offspring. The new population undergoes a new round of evaluation. Finally, a

selection operator is performed in order to reach the last front. For each generation of

the algorithm, the Pareto optimal solutions are provided.

This cycle is repeated until the solutions set does not improve, or until an individual

with a desired phenotype is achieved or when the number of generations reaches its

upper bound. The number of generations D and individuals I are parameters chosen

by the user. After calculating the Pareto-optimal solutions, a post-processing filtering

is performing in order to eliminate redundant knockout that are not, in fact, necessary

for the achievement of the selected production and biomass level. The time-complexity

of the genetic algorithm is O(KDI2), where K is the number of the objectives, D is the

number of generations and I the population size.

2.5 Sensitivity Analysis

The Sensitivity Analysis (SA) is an indispensable tool for the analysis of complex sys-

tems used to discover which parameters are the most important and the most likely to

affect predictions of the model, that is the parameters/inputs that have a substantial

influence on the output(s) of the model. Following a sensitivity analysis, values of criti-

cal parameters can be refined while parameters that have little effect can be simplified

or even ignored. In order to decide which parameters can be discarded in models with

redundant parameters the importance of the parameters given by a ranking based on

the overall sensitivity can be used. Therefore, in the contest of numerical modeling,

sensitivity indices play an important role in uncertainty analysis, parameter estimation,

optimization, experimental data analysis and model discrimination.

Local sensitivity indices are computed at the nominal values used for the parameters

and the behavior of the response function is described only locally in the input space.

More in details, local sensitivity coefficients are the partial derivatives of the model state

variables to the model parameters evaluated at the nominal operating point where all

the parameters have their nominal values. There are several numerical methods for the

calculation of local sensitivities but, these methods are linear thus they are not sufficient

for dealing with complex models, especially those in which there are nonlinear interac-

tions between parameters. In contrast, global sensitivity analysis methods evaluate the

effect of a parameter while all other parameters are varied simultaneously, accounting

for interactions between parameters without depending on the stipulation of a nominal

point (they explore the entire range of each parameter) [27]. Global sensitivity indices
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Algorithm 1 GDMO Algorithm pseudo-code

Require: [f, y, I,D,C, ]
/* f output of the model */
/* y knockout vector */
/* I is the number of the individuals */
/* C is the maximum knockout number allowed*/

1: Generate Initial Population P(y) with random binary vector ỹ or null wild type
vector y

2: Evaluate the rank (fitness) of all individuals
3: for i← 1 to D do

/* Define pi(y) selecting the best I/2 individuals of population Pi(y) according Tour-
nament selection (lower rank and higher crowding distance)*/

4: pi(y)← Tournament Selection(Pi(y))
5: pi(y)← best I/2 individuals from pi(y)
6: for h← 1 to I/2 do

/* perform Mutation Operator for the single parent pi,h(y) */
7: ỹi,h,1 ← Mutation(yi,h, C)
8: for j ← 2 to 10 do

/* perform Mutation Operator for each child ỹi,h,j*/
9: ỹi,h,j ← Mutation(ỹi,h,j−1, C)

10: end for

11: Evaluate the rank (fitness) of the K children pi,h,j(ỹ))
12: Select the best child pi,h(ỹ)) from pi,h,j(ỹ))

/* p̃i,h(y) is the mutation of pi,h(y)*/
13: end for

14: Merge Pi(y) with p̃i(y) in Ppi(y)
/* Perform Selection on Ppi(y) and obtain the new Pi(y) */

15: Pi(y)← Tournament Selection(Ppi(y))
16: Pi(y)← best I individuals from Pi(y)
17:

18: if finds desired solutions then
19: return Pi(y)
20: end if

21: end for

22: return Pi(y)

should be regarded as a tool for studying the mathematical model rather then its speci-

fied solution. The most widely used methods in global sensitivity analysis are the Morris

method [28] and the Sobol’ method [29].

In 1991, Morris published a method that perturbs in a random way the input(s) of

a model in order to obtain for each input a distribution of elementary effects of the

perturbation. An elementary effect is calculated by comparing (for instance by means

of Euclidian distance) the output(s) of the model when the input is perturbed with

the output(s) of the model without perturbation. The plot of the distribution gives

an idea of how the perturbation of the input affects the output(s) of the model. If

the curve has a large spread, the input has an high influence dependent on the values
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of the other inputs; instead, if the mean of the distribution is large, the input has an

important overall influence on the output(s) [28]. SA is frequently used for the in-silico

design of electronic devices, and in the last decade it has been also used in Systems

Biology. While for electronic design automation, input(s) of the model can be gain and

tension, or resistance and conductance, in a biological model the input(s) of the model

can be: (i) nutritive substances of a cell (for instance the uptake rate of glucose or

oxygen); (ii) gene knockouts in the genome of a bacterium (for instance the knockout of

pyruvate dehydrogenase complex); (iii) enzyme concentrations in a metabolic pathway

(for instance the concentration of RuBisCO in a plant cell). According to the modeling

technique and the parameters included in the model, SA provides a ranking of selected

input(s), based on their importance.

SA indices have been adopted for interrogating the reactions space (RoSA - Reactions

oriented Sensitivity Analysis) [30] and species space (SoSA - Species oriented Sensitivity

Analysis) to find their influence on the response of the system [31]. Moreover, in or-

der to associate biochemical pathways with sensitivity values, BioCAD implements the

novel Pathway-oriented Sensitivity Analysis (PoSA) methods [15], able to evaluate the

importance of a pathway in terms of genetic knockout or fluxes through the pathway.

BioCAD framework includes Morris [28], Sobol’ [29] and the PoSA methods.

2.5.1 Morris method

The Morris method [28] is traditionally used as a screening method for problems with

high number of variables and for which function evaluations are CPU-time consuming. It

is composed of individually randomized “one-factor-at-a-time” experiments. Each input

factor may assume a discrete number of values, called levels, which are chosen within

the factor range of variation. Consider a computational model for which the output is

a deterministic function of k inputs denoted by x = [x1, x2, . . . , xk]. The range of each

input variable xi (called region of interest Ω) is divided into p levels, then the region

of experimentation ω is a k-dimensional p-level grid. Each xi may take on values from

{0, 1/(p− 1), 2/(p− 1), . . . , 1}, assuming that each xi is scaled to take on values in the

interval [0,1]. The sensitivity measures are based on what is called an elementary effect.

The elementary effects method is a simple but effective screening strategy. Starting from

a number of initial points, the method creates random trajectories to then estimate factor

effects. In turn, those estimates are used for factor screening. For a given value of x∗,

the elementary effect of the i-th input is defined as:

EEi(x
∗) =

[

f(x∗1, ..., x
∗
i−1, x

∗
i +∆, x∗j+1, ..., x

∗
k)− f(x∗)

]

∆
, (2.7)
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where ∆ is a predetermined multiple of 1/(p−1) and point x∗ ∈ ω is such that x∗+∆ is

still in ω. The distribution of elementary effects Fi is obtained by randomly sampling n

points from ω. The mean µi and the standard deviation σi are the two sensitive indexes

for the input xi. When the output of a system is non-monotonic function, that has

regions of positive and negative values of partial derivatives EEi(x
∗), µi can be very

small or even zero. For this reason, in Campolongo et al. [32] has been considered

another sensitivity measure µ∗i , which is an estimate of the mean of the distribution of

the absolute values of the elementary effects and has been showed that µ∗i gives a better

estimate of the order of importance than µi.

By using Morris method [28], we can calculate the distribution of elementary effects for

each metabolite or enzyme of a biological system. In SoSA and RoSA the analyzed in-

puts/parameters are real-valued variables. For instance, in FBA models the parameters

I take into account are the uptake rate and the metabolic fluxes of the network.

A large (absolute) central tendency µ∗ indicates an input with an important overall

influence on the output. A large spread σ∗ indicates an input whose influence is highly

dependent on the values of the inputs [28].

2.5.2 Pathway-oriented Sensitivity Analysis

BioCAD includes two different version of PoSA: the Gene sets-Posa and Fluxes-PoSA.

Unlike other SA methods applied in biological modeling, whose inputs (reactions or

species) are valued in a continuous region of interest, Gene sets-PoSA is applied when

inputs are valued in a discrete region of interest and finds the genetic manipulations

that have the largest influence on the response of the system.

Gene sets-PoSA investigates the knockout solution space and determines the influence of

a pathway on the output(s) of a FBA model. Since GDMO algorithm provides a set of

feasible solutions with different genetic manipulations, it is worth seeking a relationship

between the sensitivity indices and the proposed manipulations. This way, we can select

only the best manipulations after GDMO searching (section 2.4). In particular, thanks to

the information provided by PoSA, we can prefer that knockout strategies (between the

Pareto-optimal candidate solutions) that affect genes belonging to insensitive pathways.

In Gene sets-PoSA, the knockout vector y used to represent the genetic manipulations

is partitioned in p subsets of bits {b1, b2, . . . , bs, . . . , bp}. Each subset bs represents a

pathway and includes the genetic manipulations linked to the reactions involved in the

s-th metabolic pathway of the network. Each subset bs has a cardinalityWs, whereWs <

L, ∀ s = 1, . . . , p. Each pathway performs a particular task in the metabolism, e.g.,
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the Citric Acid Cycle, the Oxidative Phosphorylation, the Pentose Phosphate Pathway,

and so on. Gene sets-PoSA takes also into account the eventuality that a reaction could

belong to different pathways: when the gene responsible for that reaction is knocked

out, the reaction is impaired in all its pathways. The gene-pathway mappings (GP)

is implemented and is defined by the L × p matrix P , where the (l,s)-th element of

P is 1 if the l-th genetic manipulation is linked to the reactions involved in the s-th

functional pathway, and 0 otherwise. I also adopted the reaction-pathway mappings

(RP), mathematically described by the n× p matrix R, where the (j,s)-th element of R

is 1 if the j-th reaction belongs to the s-th functional pathway, and 0 otherwise. For the

combinatorial problem described in equation 2.2, the elementary effect (EEs) [28] for

the input bs is defined as:

EEs =
[

F (b1, b2, . . . , bs−1, b̃s, bs+1, . . . , bp)− F (ỹ)
]

/∆s, (2.8)

where b̃s is the mutation on the input bs, and consists of the switching of bits chosen

randomly in bs: if a bit is equal to 0 (or 1), the permutation turns it into 1 (or 0). ∆s

is a scale factor defined as:

∆s =
1

Ws

Ws
∑

i=1

b̃s(i), s = 1, . . . , p. (2.9)

The output F (y) considered in Gene sets-PoSA is the vector v of fluxes. ỹ is the global

mutation carried out on the knockout vector y defined in the Boolean region of interest

Ω = {0, 1}L = {(y1, . . . , yl, . . . , yL)|yl ∈ {0, 1}}.

The distribution of effects EEs is obtained by permuting y through a random sampling

of KQ points from Ω and permuting bs by randomly sampling KQN points from Ω.

If the procedure was performed for each input, the result would be a random sample

at a total cost of KQ for calculating F (ỹ) and KQN for F (b1, b2, . . . , b̃s, . . . , bp), with

a total cost of pKQ(N + 1) evaluates of function. As regards the details, following the

pseudo-code of the algorithm is reported.

The estimation of the mean µ∗ and the standard deviation σ∗ of the distribution of the

elementary effects will be used to detect those inputs that should be considered influent

in the model.

In Fluxes-PoSA method, the perturbation is applied on the value of fluxes through the

metabolic pathway. For each pathway of the system, a global random perturbation is

performed. The global perturbation consists on applying a random noise on the exchange

fluxes. After that, FBA is processed and the fluxes distribution F (ṽex) is obtained, where

ṽex represents the random perturbation on the exchange fluxes vex. The response F (ṽex)
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Algorithm 2 Gene-sets PoSA Algorithm

Require: [f, y,Q,N,K, α, β]
/* f output of the model */
/* y knockout vector */
/* [Q,N,K, α, β] parameters of PoSA*/

1: Given Y = {b1, b2, . . . , bs, . . . , bp}
2: for s← 1 to p do

3: Select the pathway bs

4: for q ← 1 to Q do

5: for α← 1 to K do

/* perform Mutation Operator on y */
6: ỹ(q, α)← Mutation(y, β ·Ws)

7: for h← 1 to N do

/* perform Mutation Operator on bs */

8: b̃s(α, q, h)← Mutation
(

bs,
α

K
·Ws

)

/* evaluate scale factor ∆ */

9: ∆s(h, α, q) =

∑

b̃s(α, q, h)

Ws

/* evaluate an elementary effect on pathway bs */

10: EEs(h, α, q) =
f(ỹ(q, α))− f(b1, b2, . . . , b̃s, . . . , bp)

∆s(h, α, i)
11: end for

12: end for

13: end for

14: µs* ← mean(EEs) /* evaluate the µs* sensitivity index */
15: σs* ← var(EEs) /* evaluate the σs* sensitivity index */
16: end for

17: return [µ∗ , σ∗ ]

Algorithm 3 Mutation Operator

Require: [x, a ·Wx]
/* a ∈ {0, 1} is a real constant and defines the percentage of mutations in the
Boolean vector x of Wx elements*/

/* Select randomly an integer value A in [1, a ·Wx] */
1: A← random (1, aWx)

/* Select randomly A bits on x vector */
2: ind← random (1,Wx, A)

3: x̃ ← not(x [ind] )
4: return x̃
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gives us the new distribution of all the fluxes vj , j = 1, . . . , n of the systems. From these,

a random perturbation is applied on the values of fluxes vs, s = 1, . . . , p where vs is

the vector of fluxes belonging to the pathway bs. For perturbing fluxes, a ∆ uniformly

noise is added to the nominal values of the set vs, obtaining the modified vector ṽs. For

Fluxes-PoSA, the elementary effect for the generic pathway bs is calculated as:

EEs =
[

F (v1, v2, . . . , vs−1, ṽs, vs+1, . . . , vp)− F (ṽex)
]

/∆. (2.10)

By sampling EEs several times, the distribution of elementary effect for the pathway

bs is estimated. The ∆ noise is randomly chosen for each evaluation of the elementary

effect.

2.5.3 Sobol’ method

The method of global sensitivity indices developed by Sobol’ is based on ANOVA de-

composition. Assume that the model under study is described by the function f(x),

where the input x = (x1, . . . , xn) and x ∈ In, where I is the unit interval [0,1], and In

the n-dimensional unit hypercube. Consider an integrable function f(x) defined in In

and its representation in the form

f(x) = f0 +

n
∑

s=1

n
∑

i1<...<is

fi1,...,is(xi1 , . . . , xis), (2.11)

where 1 ≤ i1 < . . . < is ≤ n. Equation 2.11 can be also written as

f(x) = f0 +
∑

i

fi(xi) +
∑

i<j

fij(xi, xj) + . . .+ f12...n(x1, x2, . . . , xn), (2.12)

and the number of summands is 2n. Equation 2.11 is called ANOVA (Analysis Of

Variances) representation of f(x) if

∫ 1

0
fi1,...,is(xi1 , . . . , xis) dxk = 0, for k = i1, . . . , is. (2.13)

It follows from Equation 2.12 that the member in 2.11 are orthogonal and can be ex-

pressed as integrals of f(x) and:

∫ 1

0
f(x) dx = f0. (2.14)
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Assume now that f(x) is square integrable. Then all the fi1,...,is in Equation 2.11 are

square integrable also, therefore we get:

∫ 1

0
f2(x) dx− f0 =

n
∑

s=1

n
∑

i1<...<is

∫ 1

0
f2
i1,...,is

, dxi1 , . . . dxis . (2.15)

The constants D =
∫ 1
0 f2 dx − f0, and Di1,...,is =

∫ 1
0 f2

i1,...,is
, dxi1 , . . . , dxis are called

variances and D =
∑n

s=1

∑n
i1<...<is

Di1,...,is . The ratios

Si1,...,is =
Di1,...,is

D
(2.16)

are called global sensitivity indices and all the Si1,...,is are nonnegative and their sum is
∑n

s=1

∑n
i1<...<is

Si1,...,is = 1.

Consider two complementary subsets of variables y = (xk1 , . . . , xkm) of m variables and

z of n−m variables, thus x = (y, z). Let K = (k1, . . . , km). The variance corresponding

to the subset y can be defined as

Dy =

m
∑

s=1

∑

(i1<...<is)∈K

Di1,...,is . (2.17)

The sum in Equation 2.17 is extended over all groups (i1, . . . , is) where all the i1, . . . , is

belong to K. Similarly, the variance Dz can be introduced. Then the total variance

corresponding to the subset y is Dtot
y = D −Dz. The two global sensitivity indices for

the subset y are

Sy =
Dy

D
and Stot

y =
Dtot

y

D
. (2.18)

Clearly, Stot
y = 1 − Sz and always 0 ≤ Sy ≤ Stot

y ≤ 1. The most informative are

the extreme situations: Sy = Stot
y = 0 means that f(x) does not depend on y and

Sy = Stot
y = 1 means that f(x) depend on y only.

Sobol’ [29] found an elegant way of computing these indices directly from the model

f(x):

Sy =

∫ 1
0 f(x)f(y, z′) dx dz′ − f2

0
∫ 1
0 f2(x) dx− f2

0

(2.19)
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Stot
y =

1

2

∫ 1
0 [f(y, z)− f(y′, z)]2 dx dy′

∫ 1
0 f2(x) dx− f2

0

. (2.20)

Sy and Stot
y can be used as sensitivity indices and to provide a parameter ranking.

2.6 ǫ-dominance Analysis

The ǫ-dominance Analysis, inspired by Laumanns et al. [33], is a technique that improves

the diversity of the solutions and the convergence of the optimization algorithm. This

method, together with the Identifiability analysis and the Robustness analysis, is part

of the post-processing core of BioCAD framework. The aim of the ǫ-dominance analysis

is to extend the solutions space and search for other interesting solutions.

In section 2.3, I highlighted that a point x∗ in the solution space is said to be Pareto

optimal if there does not exist a point x such that fi(x) > fi(x
∗), ∀ i = 1, ..., k, where f is

the vector of k objective functions to optimize in the objective space. The ǫ-dominance

technique applies a “relaxed” condition of dominance. That is, a point x∗ in the solution

space is said to be ǫ-non-dominated if there does not exist a point x such that f(x)

dominates f(x∗) of a value higher than ǫ. Formally, x∗ is said to be ǫ-non-dominated if

∄ x : fi(x) > fi(x
∗) + ǫi, ǫi > 0, ∀i = 1, ..., k. This “relaxed” condition captures both

the “ǫ-non-dominate” solutions and the non-dominated ones (Pareto-optimal). This

technique allows inferior solutions to remain in the population, increasing diversity and

helping obtain multi-modal solutions also in single objective optimization problems.

In my works, I use this method in multi-objective optimization problems to seek solutions

that may have been discarded because they are dominated by a small amount ǫ that, for

biological purposes, can be considered negligible. After the optimization, I perform an ǫ-

dominance analysis to search accurately near the edge of the Pareto-optimal region. For-

mally, let f be the array of the k objective functions, and suppose that all the objective

functions are positive and must be maximized. Let ǫi > 0 be the tolerance of the relaxed

condition. For each objective function fi(x), there are different ǫi tolerances. I seek all

points (solutions) x∗ belonging to the set {x∗ : fi(x
∗) + ǫ ≥ fi(x), ∀ i = 1, ..., k} ,where

f is the vector of the k objective functions and x represents all the others sampled points.

The “ǫ-non-dominated” solutions can be considered suboptimal solutions because they

are close to the Pareto-optimal region.
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2.7 Identifiability Analysis

A biological model is made up of many components (e.g., parameters, variables) esti-

mated through fitting to experiments. The Identifiability Analysis (IA) seeks the func-

tional relations underlying the components of a given system, and can be used after the

multi-objective optimization. Coupled with the sensitivity analysis, it gives insight into

the model under investigation.

A component is said to be non-identifiable if there is no unique solution for its estimation.

The non-identifiability can be (i) structural, when there are relations among components

and therefore they cannot be determined unambiguously; (ii) practical, when the low

amount or quality of data available does not allow to have a good estimate for the

component. Using repeated fitting to data and estimations of components, the IA is

aimed at finding the structural non-identifiable components of a model.

Specifically, let m be the number of decision variables {x1, ..., xm} of the model, which

are related by unknown linear or non-linear functional relations. Let n be the number of

estimates available for each variable. These estimates are usually organized into a table

K = [v1, ..., vm] ∈ Rn×m, where each column vi ∈ Rn consists of the n estimates for the

i-th variable

Let us denote by α and βj the true transformations that linearize the relations among

variables:

α(xi) =

m
∑

j 6=i

βj(xj) + ξ, (2.21)

where ξ is a Gaussian noise. The alternating conditional expectation (ACE) algorithm

[34] estimates the optimal transformations α̂(xi) and β̂j(xj), j 6= i, such that

α̂(xi) =

m
∑

j 6=i

β̂j(xj), (2.22)

where xi is the response, while all the other variables are the predictors.

The process of repeating estimates in the matrix K is replaced by taking into account all

the non-dominated points of the Pareto front. In other words, a single fitting sequenceK

is obtained by considering the entire front. Thus, the problem of identifiability analysis

is mapped onto the problem of detecting groups of the functionally related decision

variables that produce that Pareto front.



Chapter 2. BioCAD for Biological Circuits 35

Specifically, the connection between the identifiability analysis and a constraint structure

stems from the fact that a non-identifiable constraint involving decision variables causes

them to be functionally related.

2.8 Robustness Analysis

The ability of a system to adapt to perturbations due to internal or external agents,

aging, temperature, environmental changes and, in our case, also due to molecular noise

and mutation is one of evolutionism guidelines and should also be a fundamental design

principle. After the optimization, the validity of the biological system, designed in-silico,

must be tested, and this is performed by the robustness analysis post-processing step. In

this way, we can assess the ability of a system to adapt to small perturbations that can

occur at any stage of the biochemical processes, either within the metabolic network or

caused by the external environment. As we shall see, by the term “adaptive capacity” we

can indicate the ability to maintain “acceptable” the performances previously optimized.

There are numerous methods that can be used to fulfil this task. Among these, in

Callaway et al. [35] the authors consider a big network (in this case the Internet network)

and use the theory of percolation on random graphs to test the robustness of the network

in case of random or targeted node deletion, or in case of random link deletion. In another

work [36], the relationship between the general characteristics of a chemical reactions

network and the sensitivity of its equilibrium is investigated according to changes in the

overall supply of reagents. The authors define the sensitivity of a species as the variation

of it with respect to the element concentration one, and they find a lower bound to such

sensitivity that depends on the network structure alone. In particular, they argue that a

strong robustness of the equilibrium against element variations is likely only if the various

species are constructed from building block highly gregarious (i.e., each one binds with

many others) or present in some species with high multiplicity. Finally, in Wagner et

al. [37] the authors use a combined approach of global and local robustness that they

call Glocal Robustness. The global analysis investigates the parameter space with the

aim of finding where a circuit cell shows experimental observed features (global), while

the local one determines the robustness of parameter sets sampled during the previous

phase. Similar works making use of the robustness analysis for parameter estimation are

also present in Gilbert works [38, 39]. In my works, however, I have used very simple

robustness analysis that shows a high degree of transversality because easily applicable

in other fields, as was done in Nicosia et al. works [40, 41].

The basic principle of this analysis is as follows. Firstly, the perturbation is defined as a

function τ = γ (Ψ, σ) where γ applies a stochastic noise σ to the system Ψ and generates
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a trial sample τ . The γ-function is called γ-perturbation. Without loss of generality,

assume the noise is defined by a random distribution. In order to make statistically

meaningful the calculation of robustness, a set T of trial samples τ is generated. Each

element τ of the set T is considered robust to the perturbation, due to stochastic noise

σ, for a given property (or metric) φ if the following condition is verified:

ρ (Ψ, τ, φ, ǫ) =







1, if |φ (Ψ)− φ (τ) | ≤ ǫ

0, otherwise
(2.23)

where Ψ is the reference system, φ is a metric (or property), τ is a trial sample of the

set T and ǫ is a robustness threshold. The definition of this condition makes no assump-

tions about the function φ. It can be anything (not necessarily related to properties or

characteristics of the system); however, it is implicitly assumed that it is quantifiable.

The robustness of a system Ψ is the number of robust trials of T, with respect to the

property φ, over the total number of trials (|T |). In formal terms:

Γ (Ψ, T, φ, ǫ) =

∑

τ∈T ρ (Ψ, τ, φ, ǫ)

|T | (2.24)

where Γ is a dimensionless quantity that states, in general, the robustness of a biological

system.

Robustness index is a function of ǫ, so the choice of this parameter is crucial and not

a trivial task. Since I am interested in the behavior of the system when it is subjected

to small perturbations and because the behavior is acceptable when the deviation from

the original value is as small as possible, I choose the values of epsilon equal to 1% of

the metric and sigma equal 1% of the perturbed variable. In Figure A.5 of Appendix A

I report the study conducted on bacterial strains and the analysis for choosing ǫ and σ.

More tests have been also conducted in [42].

Based on this principle, in BioCAD three robustness methods are implemented, each

of them evaluate respectively the Global Robustness (GR), the Local Robustness (LR)

and the Pathway-oriented Robustness (PoRA) indexes. Additionally, in BioCAD is

implemented the Normalized Feasible parameter Volume also called Glocal Analysis [37],

a global robustness technique, for giving a comparison between Glocal results and the

GR/LR values.

The first three values only differ in the perturbation kind, in particular, chosen σ, it will

differ the set of variables that will be perturbed. For a FBA model, the values of the

fluxes vj , j = 1, . . . , n of the metabolic fluxes are perturbed. In particular, in GR the

perturbation is carried out simultaneously for all the fluxes of the network to evaluate

the fragility of the complete organism. In LR, the perturbation is carried out for each
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flux (hence I have a robustness index for each flux), whereas in PoRA the perturbation is

carried out simultaneously for all the fluxes clustered in a metabolic pathway obtaining

a robustness index for each pathway.

Regarding the Global Robustness of a strain [15], I chosen δ equal to 1% of φ(Ψ) and I

performed the perturbation with Gaussian noise with zero mean and standard deviation

equal to 1% of the perturbed variable. In particular, I perturbed the metabolic fluxes.

Hence, a trial τ is created by perturbing all the vj , j = 1, . . . , n of the metabolic fluxes.

In order to satisfy the constraints of the FBA model I choose to apply the perturbation

to subsets of parameters chosen randomly for each iteration. At the end of the analysis

all the parameters/fluxes underwent to perturbation. A set T of trials is created and for

each of them, the fluxes are perturbed in order to evaluate the property φ(τ) (by means

of flux balance analysis [2]), and calculate the function ρ. Once a value of ρ is obtained

for each of the trials, the value of robustness (Equation 2.24) is calculated. This value

indicates the Global Robustness index.

For the Local Robustness, I perturb again the vj fluxes, j = 1, . . . , n, but in this case I

create a sample trial perturbing a single flux, evaluate the property φ(τ) and calculate

the function ρ. For each flux I have a set T of trials and the robustness (Equation 2.24)

is calculated. Therefore, in this case, we can obtain the LR value for each metabolic

flux. In Pathway-oriented Robustness Analysis, since the reactions are clustered in many

pathways, all the flows belonging to a pathway are perturbed and ρ is calculated. Such

as in the previously GR and LR, a set T of trials is obtained and the Pathway-oriented

Robustness Analysis is performed.

2.8.1 Normalized Feasible parameter Volume: the Glocal Analysis

BioCAD also implements the analysis described in the work of Andreas Wagner et

al. [37]. In the Glocal Analysis, the authors implement a procedure that calculates

the volume occupied by those parameters such that the system maintains the desired

characteristics. The volume is computed in the n-dimensional parameter space. In

our case, the volume is such that Equation 2.23 holds. Since this research requires

a huge computational effort, given the high number of dimensions (for FBA models,

Rn, where n is the number of parameters), it is guided by an iterative procedure that

involves the Principal Component Analysis (PCA). In the second part, they calculate

local coefficients, and from these they derive which parameters are influential on the

robustness (by Spearman’s partial correlation coefficient).

In particular, the first part requires two steps. The first is a Monte Carlo sampling

obtained with n-dimensional Gaussian random variations centered around a parameter
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vector (known in advance). In this case this vector is represented by the n parameters:

vj . Then a set T
(1)
τ , n × K is created, that contains K parameter vectors. Among

these, only a fraction will satisfy the Equation 2.23, the set comprising this fraction is

the set of the feasible parameter vectors V (1). The second step begins with a principal

component analysis of V (1); this analysis allows to identify statistical linear structures

within high-dimension data sets. Here, instead, it is used to guide the sampling of the

parameter vectors in subsequent iterations. In particular, T
(2)
τ and the subsequent sets

T
(h)
τ are generated from V (1) and, in general, from V (h−1), where h = 1, . . . , H, and H is

the number of iterations. In particular the generic element τj,k of T
(h)
τ is generated as:

τj,k =

T ∗
∑

t∗=1
V

(h−1)
j,t∗

|T ∗|
+ λ(h−1) · ξj,k,

(2.25)

where j = 1, . . . , n, since the columns of T
(h)
τ contain the perturbed values of the fluxes

vj , j = 1, . . . , n; k = 1, . . . ,K is the cardinality of T
(h)
τ ; the first term, on the right

side, is the average of the elements for each perturbed parameter (that is the average for

each row) of the set V (h−1) obtained in the previous iteration; ξj,k is a Gaussian noise

with zero mean and standard deviation equals to the (j, k)th−element of the covariance
matrix Σ(h−1), i.e., the pair wise covariance calculated for all vectors τa and τb of V

(h−1)

(the eigenvectors of this matrix are the principal axes of the V (h−1) set by PCA); finally,

the real value λ(h−1) guides the hth Gaussian process by scaling the standard deviations

of the distribution along the PCA directions. The purpose of Equation 2.25 is to avoid

unnecessary sampling in a parameter space region where there are no probably feasible

vectors. At the end of this procedure, a hyper-box B is constructed in the parameter

space, whose axes are parallel to the PCA axes of the last iteration. The bounds of this

box, for each direction, are given by the more extreme elements in the set V H of the last

iteration. Then B is uniformly sampled constructing the final set Tτ ; a subset V of Tτ

will verify the Equation 2.23. Finally, the feasible parameter volume will be calculated as

Rn = (|V |\|Tτ |)∗V ol(B), where |.| determines the cardinality. The logic of this measure
is that as the value of Rn increases, the likelihood to generate another feasible robust

parameters vector increases. Finally, for comparing systems with different number of

parameters the normalized feasible parameter volume R is defined as R =
√nRn. R can

be considered as the permissible average variation per-parameter that leaves intact the

system performance.

The second part of this analysis is connected to the global part. The authors take into

account the final set of the feasible parameter vectors V and for each parameter vector

produces Q sample trials perturbing the n parameters by Gaussian noise with zero mean

and standard deviation equal to 0.2; then, they calculate the fraction of robust trials;
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after that, they repeat the calculations for all vectors. Finally, for the n-parameters,

they calculate the Spearman partial correlation coefficient with respect to the robust

trial fraction values and the different values assumed by the parameters δj(V (j), X),

where j = 1, . . . , n; V (j) is the jth row of V (containing the observations of the jth-

parameter) and X is a vector (containing the values of the robust trial fractions).



Chapter 3

Robust Design of Microbial

Strains

In this Chapter, I will report the work titled “Robust Design of Microbial Strains” [15],

where BioCAD was applied for the Genetic Design in Escherichia coli bacteria. Genetic

Design stands for searching for the best genetic manipulations in terms of knockout.

The aim is to find the optimal knockout strategy able to outperform the production

of specific chemical and biochemicals from the bacterium, as well as identifying novel

and non-native synthesis pathways. By engineering bacteria, we can obtain substances

suitable for industrial or biotechnology purposes, such as biofuel or vitamins and drugs.

Metabolic engineering is becoming central in basic and applied biological fields and re-

quires mathematical models for accurate design purposes. Many organisms are used

to analyze the metabolite production potential and identify the metabolic interventions

needed to produce the metabolite of interest. Thus, strains have been systematically

designed through in silico analysis to overproduce target metabolites, such as lycopene

[43], ethanol [44], isobutanol [45]. The efforts are particularly focused on predicting flux

distributions and network capabilities, most notably Flux Balance Analysis (FBA) [2].

Recent FBA models incorporate also information on enzymes and genome, integrating

the relationships among genes, enzymes and reactions. This makes it well suited to stud-

ies that characterize many different perturbations such as different substrates or genetic

manipulations (knockouts). By using computational metabolic engineering methods, it

is possible to explore the reaction network and search for the solutions that satisfy the

objectives.

In the past years, a variety of methods has been implemented to search for the genetic

manipulations that optimize a cellular function of interest. These methods, such as

OptKnock [12], OptFlux [14], OptGene [13] and GDLS [11], have been tested in FBA

40
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organism models. However, all these methods require high computational efforts: the

execution times grow exponentially [12–14] or linearly [11] as the number of manipula-

tions allowed in the final designs increases. Because of the large number of reactions

occurring in the cellular metabolism, the dimension of the solution space is very large

and finding genetic manipulations is quite expensive.

In this work, a multi-objective optimization algorithm has been implemented to seek

the genetic manipulations that optimize multiple cellular functions. The algorithm im-

plements a global search with a heuristic and combinatorial method called Genetic De-

sign through Multi-objective Optimization (GDMO). The idea is to use and improve the

Pareto optimal solutions. Pareto optimality is important to obtain not only a wide range

of Pareto optimal solutions, but also the best trade-off design, as reported in [46] for the

protein structure prediction problem. Moreover, the multi-objective optimization turns

out to aid in the automatic design in several biological problems [30].

The area underlying the Pareto curve and the first derivative, and in particular the

presence of jumps (i.e., quick variations in the objective functions during the optimiza-

tion procedure), carry valuable biotechnological information. For the first time, the

ǫ-dominance analysis has been used in systems biology so as to consider all the solu-

tions obtained by GDMO that are dominated with a tolerance ǫ by the Pareto-optimal

solutions. Multi-objective optimization provides more insights than single-objective

optimization on the capability of these organisms to adapt to the simultaneous pres-

ence of different conditions and constraints. By combining multiple-target optimization

with knockout parameter space we are able to investigate the most complete available

metabolic data and search for the optimal nutrients in strains that allow the maximiza-

tion or minimization of metabolic targets.

Additionally, I relate pathways to Sensitivity Analysis. In modeling, Sensitivity Analysis

(SA) is a method used to discover the main inputs, that is the inputs that have a

substantial influence on the outputs of the model. In the last years, SA indices have

been adopted in systems biology interrogating the reactions space (RoSA - Reactions

oriented Sensitivity Analysis) [30] and species space (SoSA - Species oriented Sensitivity

Analysis) to find their influence on the outputs of the system [31]. In this work, I perform

SA to find the most sensitive pathways in the FBA model of E. coli. In particular, I

present the novel Gene sets Pathway-oriented Sensitivity Analysis (Gene sets-PoSA),

to find the genetic manipulations that have the largest influence on the output of the

model. Unlike other SA methods applied in biological modeling, whose inputs (reactions

or species) are valued in a real region of interest, Gene sets-PoSA is applied when inputs

are valued in a binary region of interest. Each input of the model is represented through a

set of binary variables whose values can assume only two values: 0 or 1. Gene sets-PoSA
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Figure 3.1: A schematic representation of the automatic framework for optimal bacterial
metabolism. In the pre-processing step the Species (SoSA), Reaction (RoSA) and Pathway-
oriented Sensitivity Analysis (PoSA) are applied to the metabolic model. Then, the Multi-
objective Optimisation allows genetic and flux design. In the post-processing step, suitable
solutions (selected from the Pareto front) are subjected to Global, Local and Pathway-oriented
Robustness Analysis. The ǫ-dominance Analysis is performed to investigate the neighbourhood
of the suitable genetic designs.

investigates the knockout solution space and determines the influence of the pathways on

the outputs of an FBA model. Since this search-and-optimize algorithm provides a set of

feasible solutions with different genetic manipulations, it is worth seeking a relationship

between the sensitivity indices and the proposed manipulations. This way, we are able

to select only the best manipulations. In particular, thanks to the information provided

by Gene sets-PoSA, we can choose the GDMO knockout strategies that affect genes

belonging to insensitive pathways.

Each point of the Pareto front represents a strain, i.e., an E. coli with specific genetic

manipulations, and it is also associated with three Robustness Analysis (RA) indices that

BioCAD computes. The Robustness estimates how much is robust a strain obtained by

GDMO when it undergoes small perturbations, which can be external (changes in the

nutrients) or internal (changes in the metabolism). Among the strains proposed by

GDMO, we are able to choose the most robust one. In particular, BioCAD implements

three robustness methods to evaluate different components of the model. For more

details on BioCAD structure and Multi-objective optimization, definitions, Sensitivity

and other methods please see the previously Chapter 2.

3.1 BioCAD for the Metabolic Engineering of Robust strains

In Figure 3.1 it’s shown the layout of BioCAD computational framework applied to

organisms modeled through FBA. The framework is composed of three blocks. The first

is constituted by the Sensitivity Analysis, able to find the most sensitive parameters of
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the model. We can investigate the reactions and the species in the metabolic model in

terms of sensitivity, using the RoSA and PoSA methods. Furthermore, the novel Gene

sets-PoSA is able to identify the most sensitive metabolic pathways by ranking them

according to knockouts. We can consider a single pathway as an input of the system.

Each pathway (that is a set of reactions converting particular substrates in specific final

products) is perturbed by mutating genes that control its biochemical reactions. PoSA

ranks the pathways according to their influence on the outputs of the model. Pathways

with important influence have large sensitivity index (µ∗ and σ∗), as reported in the

pre-processing part of Figure 3.1. Each pathway in the graph is represented by a circle

and its size indicates the number of genes belonging to it.

The multi-objective optimization algorithm searches both for the genetic manipulations

(through gene deletions) and for nutrients with respect to defined target functions. In

this Chapter, I will show both the genetic design and the flux design in microbial strains.

The result of the multi-objective optimization is a set of non-dominated points, called

Pareto front (or Pareto surface). The non-dominated points are shown in red in Figure

3.1, while all the dominated points are shown in blue. All the dominated points and the

non-dominated points, that satisfy all of the inequality and equality constraints, and all

of the variable bounds, constitute the observed feasible region.

In the genetic design, each strain (a particular phenotype) is identified by a binary

y “knockout vector” (which represents the genotype), whose elements are 1 when the

corresponding gene set is turned off. The importance of the knocked out genes can

be evaluated by means of the ranking provided by Gene sets-PoSA. A gene set can be

composed of a single gene, when it synthesizes for an enzyme, or can be associated with

more genes, that synthesize for enzymes to form enzymatic complexes and enzymatic

subunits. The relation between genes in a gene set is regulated by means of a Boolean

relationship. When all the genes are necessary to catalyze the corresponding reactions

(a single gene set can regulate more reactions), genes are linked by the “AND” operator;

otherwise, if at least a gene is necessary, genes are linked by the “OR” operator. Details

about the genetic modeling in FBA can be found in section 2.2.3 in Chapter 2. In

addition, through the multi-objective optimization we are also able to find the favorable

nutrients set (Flux Design) to optimize the wild-type/strains yield and evaluate the

over/under investment of nutrients (uptake rate of fluxes). After the optimization, we

can perform the ǫ-dominance analysis to search accurately near the edge of the Pareto-

optimal region.

The Robustness Analysis is the third task of BioCAD computational framework. For

each phenotype (strain or wild type), in a post-processing step BioCAD processes the

fragility of the metabolic network when it is subjected to small perturbations, which can
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be exogen or endogen. From the Pareto fronts we can select interesting solutions using

decision-making methods: for instance, solutions near to the ideal solution, the knee

points, the end points, or points with suitable features. For each solution, I calculate

the Global Robustness (GR), the Local Robustness (LR) and the Pathway-oriented

Robustness (PoRA) values, indicating respectively the robustness of the whole network,

of each single reaction and of each metabolic pathway.

Here, BioCAD is tested on the genome-metabolic network of E. coli iAF1260 [47],

composed of 2382 reactions, in order to maximize one or more metabolites of interest

and simultaneously ensure the biomass formation, with the minimum knockout cost.

The knockout cost is defined according to the Boolean relationship between genes. For

example, if a gene set is composed of two genes linked by “AND”, the cost to ensure the

catalysis of the corresponding reactions is 2, since both genes are necessary to turn on

the reactions associated with that gene set. Instead, the cost to ensure the turning off

of the corresponding reactions (knockout cost) is 1.

3.1.1 Implementation

PoSA, GDMO and the Robustness Analysis are implemented in MATLAB and GLPK

(GNU Linear Programming Kit). Here, have been illustrated the capabilities of GDMO

by applying it to several overproduction problems in iAF1260 E. coli [47]. In a pre-

processing analysis, a reduction of the FBA network has been performed to remove du-

plicate and dead-end reactions as described in [48, 49]. After the reduction, the resulting

metabolic network is mathematically identical to the original network. In addition, the

reduction in terms of reactions, metabolites and genes improves the numerical stability.

Initially, in iAF1260, there are n=2382 reactions, m=1668 metabolites and L=913 gene

sets; after the reduction, the network changes in n=959, m=483 and L=632 in anaer-

obic conditions, and n=1019, m=506 and L=663 in aerobic conditions. In particular,

for acetate and succinate production, I carried out experiments in both anaerobic and

aerobic conditions, with 10 and 5 mmolh−1gDW−1 of available glucose (GLC).

3.2 Results

Taking into account that each gene in the iAF1260 E. coli is assigned to at least one

of the 36 different pathways, (e.g., all the genes involved in Krebs cycle, in Pentose

Phosphate Pathway, and so on), PoSA (from here referred to Gene-sets PoSA) evaluates

the importance of a pathway on the basis of the knockouts that are involved in its
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Figure 3.2: Pathway-oriented Sensitivity Analysis (PoSA) for the model of E. coli iAF1260. In
y and x axes I report the sensitive indexes found through PoSA. The higher are indexes, higher
is the sensitivity associated to the parameter. The model is composed of 36 pathways whose
reactions and genes are clustered according to the functionality of the pathway they belong. The
size of a sign is proportional to the number of genes involved in the pathway.

metabolism and indicates a ranking of the metabolic pathways in the (µ∗,σ∗) space

reported in Figure 3.2.

Moreover, the study of the variance-to-mean ratio (VMR) is a good measure of the

degree of randomness of a given phenomenon. In the E. coli analysis, PoSA µ∗ and σ∗

indices are linked with a linear relationship and the VMR is larger than 1; thus, the

elementary effects set is said to be over-dispersed, highlighting the presence of great

variability. We can deduce that the elementary effects of the 36 pathways are sampled

from a negative binomial distribution. The VMR is linked to the Pareto front and can

be harnessed to explore the solution space, since it describes the probability distribution

of the phenomenon.

In general, highly networked cell components (such as those for nucleic acids, amino acid,

cofactors and energetic metabolism) are in top right corner, while specific, often single

reaction very abundant components (such as those for bacterial walls, nitrogen, glutamic

and carbohydrates) are in a bottom left position. tRNA changing pathway results to

have a sensitivity equal to zero. This is because it is not associated to any gene in the

model. By exploiting clusters positioning of pathways we can deduce some metabolic

relevancy. Although Glycolisis/Gluconeogenesis should be considered the central core

of bacterial biomass and energetic storage, five of these pathways are localized in the
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same cluster: 1) Alanine and Aspartate Metabolism, 2) Pentose Phosphate Pathway, 3)

Glutamate Metabolism, 4) Folate Metabolism, and 5) Pyruvate Metabolism (Figure 3.2).

All these pathways are conceptually connected to Citric Acid Cycle and to Purine and

Pyrimidine Biosynthesis, which are two of the pathways occupying the top of the (µ∗,σ∗)

space. PoSA automatically generates biological information locating these pathways

in same area, and indicating them as components of an unique metabolic mechanism.

These results are also confirmed by literature, since there are biochemical evidences that

Pyruvate and Folate metabolism must be considered strictly connected with the Purine

metabolism. Moreover, the Pyrimidine metabolism becomes the principal collector of

Alanine and Aspartate Metabolism. Results in Figure 3.2 were obtained by evaluating

more 3 million calls to the function F of Equation 2.8.

After SA, GDMO algorithm was initialized by setting the E. coli network with an empty

set of knockout, i.e., in wild type configuration, and setting the population size I = 1000

and the number of generations D = 1500. Table 3.3 reports the best solutions in terms

of acetate and succinate obtained by the previous methods, along with GDMO proposed

solutions extracted from the Pareto front. Details of the genetic strategies, the knockout

cost, the genes, reactions names are reported in Table 3.1 and Table 3.2.

The multi-objective optimization method is used to maximize the production of acetate

(or succinate) and biomass, with the smaller knockout cost. Table 3.3 also reports the

robustness indices for the wild type organism and strains. The effect of the knockouts

on the robustness of the network can be noticed by comparing the GR, LR and PORA

values of strains with those of the wild type. The values of GR and LR are of the same

order of magnitude probably because the robustness of the network is strongly linked to

the glucose uptake rate.

As described in previous sections, the result of a multi-objective optimization problem

is a set of optimal points that form the Pareto front. For succinate and acetate max-

imization, I have conducted several experiments by setting different initial conditions.

Experiments have been conducted in anaerobic and aerobic conditions and with different

glucose feed. Pareto fronts obtained by GDMO are shown in Figure 3.3. We can also

see that for each Pareto front, the wild type point corresponds with the right end point.

Indeed, the deletion of a gene in a metabolic circuit leads to a decrement of biomass

formation. The maximization of a synthetic objective is strongly in conflict with the

grown rate, therefore a multi-objective optimization technique is suitable to solve this

kind of problem. Pareto optimality is also suitable to evaluate the behavior of the or-

ganism when it is in different environment conditions. In Figure 3.3-A-B we can see

how the area under the front grows when oxygen and glucose increase. Additionally, the

number of points gives an idea of the capabilities of an organism to produce a specific
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Table 3.1: Knockout strategies obtained through GDMO for maximizing acetate production
[mmolh−1 gDW−1] in iAF1260 E. coli. For each strategy (Str), I have the biomass (Biom)
formation [h−1], the knockout cost (kcost) and the genes and reactions switched off. The variation
of acetate (Ac) and biomass in comparison with the wild type is enclosed in brackets. In Table
is provided a comparison between the robustness analysis methods. The Glocal R value [37]
and GR value are the global robustness indexes. The strain is more robust when R and GR are
high values. For PoRA and LR, it’s reported the minimum values found, which are respectively
associated with the less robust flux (glucose uptake rate) and the less robust pathway (energy
metabolism). *In the table, due to space limitation, I report the the enzymatic complex 1)
“(FdhF AND Hyd4) OR (FdhF AND HycB)” associated with the gene set (b4079 AND (b2481
AND b2482 AND b2483 AND b2484 AND b2485 AND b2486 AND b2487 AND b2488 AND
b2489 AND b2490) OR (b4079 AND (b2719 AND b2720 AND b2721 AND b2722 AND b2723
AND b2724))) and the protein 2) “Nuo” associated with the gene set (b2276 AND b2277 AND
b2278 AND b2279 AND b2280 AND b2281 AND b2282 AND b2283 AND b2284 AND b2285
AND b2286 AND b2287 AND b2288).

Str Ac Biom kcost GR LR PoRA R Genes Reactions

A1 13.791 0.130 3 45.32% 39.33% 81.33% 0.78 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(66.13%) (-43.72%) (b1539) L-allo-threonine dehydrogenase

D-serine dehydrogenase
L-serine dehydrogenase

A2 19.150 0.053 10 27.60% 24.00% 43.33% 0.44 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(130.7%) (-77.10%) (b3945) aldose reductase (acetol)

Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

(b4381) deoxyribose-phosphate aldolase
(FdhF AND Hyd4) ORFormate-hydrogen lyase
(FdhF AND HycB)*
(b3617) glycine C-acetyltransferase
(b1380) OR (b2133) D-lactate dehydrogenase
(b3236) malate dehydrogenase

A3 18.532 0.096 9 40.72% 35.33% 72% 1.27 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(123.2%) (-58.6%) (b0910) cytidylate kinase (CMP)

cytidylate kinase (dCMP)
(b2975) OR (b3603) D-lactate transport via proton symport

glycolate transport via proton symport
L-lactate transport via proton symport

(b4381) deoxyribose-phosphate aldolase
(b3617) glycine C-acetyltransferase
(b0963) methylglyoxal synthase
Nuo* NADH dehydrogenase

A4 14.046 0.104 5 41.52% 36.0% 75.33% 1.74 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(69.20%) (-55.14%) (b3617) glycine C-acetyltransferase

(b4025) glucose-6-phosphate isomerase
(b3708) Tryptophanase (L-tryptophan)

metabolite. For example, E. coli seems more able to produce acetate than succinate.

For succinate maximization (Figure 3.3-B), Pareto points are less than acetate points.

It’s also important to evaluate the presence of essential genes, i.e., genes that lead the

biomass formation to zero. By analyzing the variables space and the knocked out gene

sets, BioCAD also provides a list of (i) essential genes, also called destructive genes, of

(ii) neutral genes and of (iii) trade off genes. Neutral genes include all that genes that

do not improve any objective functions, instead trade off genes include all genes that

improves at least one objective function (for more details see the section 3.5).

In order to compare GDMO performance with previous methods, I have considered

GDLS [11], OptFlux [13], OptGene [14], OptKnock [12] algorithms, where the goal is to
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Table 3.2: Knockout strategies obtained through GDMO for maximizing succinate production
[mmolh−1 gDW−1] in iAF1260 E. coli. For each strategy (Str), I have the biomass (biom)
formation [h−1], the knockout cost (kcost) and the genes and reactions switched off. The variation
of succinate (Succ) and biomass compared with the wild type is enclosed in brackets. I also
provide a comparison between the robustness analysis methods. The Glocal R value [37] and
GR value are the global robustness indexes. The strain is more robust when R and GR are high
values. For PoRA and LR I report the minimum values found, which are respectively associated
with the less robust flux (glucose uptake rate) and the less robust pathway (energy metabolism).

Str Succ Biom kcost GR LR PoRA R Genes Reactions

B1 12.012 0.055 15 44.60% 44.67% 84.67% 0.15 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)

(15476%) (-76.33%) (b2587) 2-oxoglutarate reversible transport via symport

(b0870) OR (b2551) D-alanine transaminase

alanine transaminase

L-allo-Threonine Aldolase

Threonine aldolase

(b1852) glucose 6-phosphate dehydrogenase

(b1849) GAR transformylase-T

(b1380) OR (b2133) D-lactate dehydrogenase

(b2463) malic enzyme (NADP)

(b0963) methylglyoxal synthase

(b4388) phosphoserine phosphatase (L-serine)

(b2661) succinate-semialdehyde dehydrogenase (NADP)

(b1602 AND b1603) NAD(P) transhydrogenase (periplasm)

(b3708) Tryptophanase (L-tryptophan)

B2 11.530 0.070 10 43.48% 42.0% 80.67% 0.92 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)

(14875%) (-69.3%) (b2587) 2-oxoglutarate transport via symport

(b3945) aldose reductase (acetol)

Glycerol dehydrogenase

D-Lactaldehyde:NAD+ 1-oxidoreductase

(b1852) glucose 6-phosphate dehydrogenase

(b1380) OR (b2133) D-lactate dehydrogenase

(b2463) malic enzyme (NADP)

(b2661) succinate-semialdehyde dehydrogenase (NADP)

(b1602 AND b1603) NAD(P) transhydrogenase

B3 10.610 0.087 8 40.40% 46.0% 83.33% 1.32 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)

(13659%) (-62%) (b3945) aldose reductase (acetol)

Glycerol dehydrogenase

D-Lactaldehyde:NAD+ 1-oxidoreductase

(b1380) OR (b2133) D-lactate dehydrogenase

(b2463) malic enzyme (NADP)

(b0767) 6-phosphogluconolactonase

(b1602 AND b1603) NAD(P) transhydrogenase

B4 9.037 0.123 3 44.64% 44.0% 84.0% 1.25 (b0356) OR (b1241) alcohol dehydrogenase (ethanol)

(11619%) (-46.7%) OR (b1478)

optimize succinate and acetate productions in the iAF1260 E. coli metabolic network.

Results are reported in Table 3.3.

In Figure 3.5 we can show the comparison between the results obtained by the method

proposed by Lun et al. [11], and the Pareto solutions for optimizing acetate and succinate

production. The solutions provided by GDLS do not outperform Pareto fronts, since

they occupy positions in the area under the Pareto curves. In the best cases, they lie on

the Pareto fronts. Other experiments are reported in Appendix A.
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Figure 3.3: In A and B, respectively the Pareto fronts for the maximization of the biomass
[h−1] and the acetate production rate and succinate production rate [mmolh−1 gdW−1] in the
recent genome-scale model of E. coli, iAF1260, in four different environmental conditions: aerobic
condition (O2 = 10 mmolh−1 gDW−1) with glucose uptake rate 10 mmolh−1 gDW−1 (blue signs),
anaerobic condition with glucose uptake rate 10 mmolh−1 gDW−1 (black signs), aerobic condition
(O2 = 10 mmolh−1 gDW−1) with glucose uptake rate 5 mmolh−1 gDW−1 (purple signs) and
anaerobic condition with glucose uptake rate 5 mmolh−1 gDW−1 (green signs). Figures C and
D refer to A and B respectively, and show the number of knockouts associated with acetate and
succinate production rates.

In addition, the ǫ-dominance analysis reveals other interesting points. For instance, I

have found 14.05 mmolh−1 gDW−1 of acetate with a knockout cost equal to 5, and 9.26

mmolh−1 gDW−1 of succinate (biomass = 0.096 h−1) with a knockout cost equal to 4.

Such as we can see in Figure 3.4-D, the Pareto point in purple of succinate (9.94 mmolh−1

gDW−1 with a biomass equal to 0.1 h−1) has a greater knockout cost corresponding to

12. In this case, ǫ-dominance analysis was useful to explore the solutions and variables

space highlighting better solutions in terms of knockout. ǫ-succinate level is less than

Pareto point succinate level, but the variables space is clearly more suitable (ǫ-dominance

point in red).

3.2.1 Flux Design in iAF1260 E. coli

In order to study the favorable environmental conditions (flux design), i.e., nutrients for

E. coli, I performed the simultaneous optimization of acetate, succinate and biomass on

the complete circuit, i.e., without knockouts. I considered the anaerobic and aerobic

condition (O2 uptake rate = 10 mmolh−1gDW−1) and maintained fixed the glucose
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Table 3.3: Comparison between GDMO and previous genetic design methods: OptFlux [13],
OptGene [14], GDLS [11], OptKnock [12] to maximize acetate (Ac) and succinate (Succ) pro-
duction [mmolh−1 gdW−1]. The third and fourth rows show the biomass (biom) [h−1] and the
knockout cost (kc). The last four rows show a comparison between the robustness analysis meth-
ods: Global (GR), Local (LR), Glocal (R) and Pathway-oriented (PoRA) Robustness analysis.
The two values reported for wild type are referred respectively to the productions of Ac and Succ.
For PoRA and LR, I report the minimum value found, which is associated with the less robust
flux (glucose uptake rate) and the less robust pathway (energy metabolism). “n.a.” stands for
not applicable.

Wild type OptFlux OptGene GDLS GDLS OptKnockOptKnock GDMO GDMO GDMO

Ac 8.30 15.129 15.138 15.914 n.a. n.a. 12.565 13.791 19.150 n.a.
(+82.3%) (+82.4%) (+91.7%) n.a. n.a. (+51.4%) (+66.13%) (+130.7%) n.a.

Succ 0.077 10.007 9.874 n.a. 9.727 9.069 n.a. n.a. n.a. 10.610
(+12877%) (+12704%) n.a. (+12514%) (+12362%) n.a. n.a. n.a. (+13659%)

Biom 0.23 n.a. n.a. 0.0500 0.0500 0.1181 0.1165 0.130 0.053 0.087
n.a. n.a. (-78.4%) (-78.4%) (-77.9%) (-49.6%) (-43.72%) (-77.10%) (-62%)

kc n.a. n.a. n.a. 14 26 54 53 3 10 8

GR (%) 54.76/53.68 n.a. n.a. 13.76 16.6 43.24 43.08 45.32 27.6 40.40

LR (%) 54.0/54.67 n.a. n.a. 16.0 21.33 40.0 40.60 39.33 24.0 46.0

R 1.30/1.34 n.a. n.a. 1.45 1.45 1.18 1.02 0.78 0.44 1.32

PoRA (%) 100.0/99.33 n.a. n.a. 19.33 28.67 87.33 76.67 81.33 43.33 83.33

uptake rate at 10 mmolh−1gDW−1. I used NSGA-II [25] to perform the optimization

by exploring the continuous space of exchange fluxes. For this design, I perturbed the

thermodynamics constrains vLex, where vex is vector of nex exchange fluxes. The decision

variables are real values from 0 to −100 (0 when the uptake is not allowed, −100 when

the potential uptake rate is 100 mmolh−1 gDW−1). Only glucose and oxygen were

kept constant. Setting the population size at 100, I ran NSGA-II for 500 generations. In

Figure 3.6 it is shown the results of the optimization in aerobic and anaerobic conditions

(Pareto fronts and feasible points). In anaerobic condition, I have found 100 mmolh−1

gDW−1 of acetate, 42.918 mmolh−1 gDW−1 of succinate and 3.6204 h−1 of biomass

(the trade-off point). In this condition, I have noticed a significant increment in the L-

Aspartate, Citrate, Lactose, Fumarate and Malate uptake rates. In aerobic condition, I

have found 100 mmolh−1 gDW−1 of acetate, 21.889 mmolh−1 gDW−1 of succinate, 4.16

h−1 of biomass, and a significant increment in the L-Asparagine, 1, 4-alpha-D-glucan,

Fe(III)dicitrate, 2-Oxoglutarate uptake rates. Here, I perturbed simultaneously almost

all the exchange fluxes, but it is possible to select a smaller set of nutrients according to

experimental requirements.

3.3 FBA using experimental conditions

The gene expression data provide several information on the activation of genes when the

organism undergoes specific external stimuli. In a first approximation we may transform

microarray data matrix in a Boolean matrix, where 0 represents the knockout condition

for a gene, and 1 represents the activation. BioCAD framework is able to read gene

expression data, transfer them to a metabolic model, and evaluate in silico the metabolic
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Figure 3.4: ǫ-dominance analysis results in iAF1260 E. coli network for acetate (A) and
succinate (C) multi-objective optimization for different ǫ values. In blues Pareto points (PF).
Figures (B) and (D) report the knockout cost associated with the solutions points. The size of
the circle is proportional to the knockout cost of the solution.
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[11] results.
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Figure 3.6: Three-objective optimization for maximizing acetate, succinate (y axis) and
biomass (x axis). I considered the wild-type bacteria (i.e., knockout zero) and performed the
maximization in aerobic (blue signs, O2 = 10 mmolh−1 gDW−1) and anaerobic conditions (black
signs) on a basis of 10 mmolh−1 gDW−1 glucose fed to identify favorable nutrients (input fluxes).
The algorithm reaches the maximum production of acetate (100 mmolh−1 gDW−1). In red, the
Pareto fronts.

fluxes distribution using FBA. In this way, it is possible to investigate the behavior

of an organism, as well as to compare different experimental conditions. It could be

interesting, in future developments, extending the exploration analysis from a binary

domain to a continuous domain, evaluating the gene expression in the metabolic network.

In addition, through the optimization method, we can deduce how the growth of the

organism improves in a given experimental condition, when additional genes are turned

off (or on).

3.4 Quantitative and Qualitative Knockout Analysis

Pareto optimality gives information about the trend of organisms in their ability to

produce particular metabolites, as reported in the previous sections. In addition, we can

color the Pareto points in order to obtain a map of the knockout cost dispersion (Figure

3.4-B-D). In this way, each point characterizes both the phenotype of an organism (for

instance, the amount of acetate and biomass) and the genotype (in terms of how many

genes are knocked out). Nevertheless, it is also important to give a qualitative score

for each knockout strategy. This can be calculated by means of the two sensitivity

measures: µ∗ (mean), σ∗ (standard deviation) obtained from Gene Sets-PoSA (Figure

3.2). Large µ∗ indicates high overall influence, high linear effect, while large σ∗ indicates
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that either the specific input is involved with other inputs, or its effect is nonlinear or

non-additive. According to the µ∗ sensitive index obtained by PoSA, I assign a quality

score (QS) for each strain. Strains that have genetic manipulations involved in pathways

with low µ∗ values are preferred, and thus get a high score. The score ranges from 0

to 1; 0 when the genetic strategy involves gene sets linked to the pathway with the

largest µ∗ index, that is the most sensitive, and 1 when the genetic strategy involves

gene sets linked to the pathway with the lowest µ∗ index. The score is normalized by

the square root of the number of samples, since manipulations involve different knocked

out genes. Consequently, if I find two Pareto solutions through GDMO that have the

same phenotype and different knockout manipulations, we are able to choose the best

solution in terms of knockout, according to the QS calculated using PoSA. The greater

is QS, better is the associated strain. For strains reported in Table 3.3, I obtained from

left to right respectively a QS equal to 0.285, 0.063 and 0.223.

3.5 Inferring neutral, trade off and destructive strategies

By using the Pareto solutions obtained from the multi-objective optimization, a statisti-

cal analysis has been performed in order to cluster genetic strategies in three groups: (i)

neutral, (ii) trade-off and (iii) destructive strategies. A genetic strategy can be considered

neutral when the objective functions do not improve (in terms of increment or decre-

ment, in the maximization or minimization problem respectively) with respect to the

nominal value. Here, the nominal value is the wild type configuration of the metabolic

network, i.e., when all genes are working.

The trade-off genetic strategies are knockout combinations that improve an objective

function and disadvantage the others one. The destructive genetic strategies are those

involving the essential genes, i.e., all the genes that are key to the biomass formation. In

the knockout optimization, constructive genetic strategies do not exist, since a knockout

cannot improve the wild type biomass. Conversely, when the decision variables are the

uptake rates (nutrients optimization) I also have constructive solutions, since all the

objective functions can be improved.

3.5.1 Case study 1: iAF1260 E. coli model.

The network of the E. coli model of Feist et al. [47] contains 1260 genes and 913 gene

sets. In wild type, in anaerobic condition and with a glucose feed of 10 mmol h−1

gDW−1, the bacterium grows at 0.231 h−1. When I maximize the production of acetate
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Figure 3.7: GDMO results for acetate and succinate maximization in different conditions by
using the iAF1260 [47] and iJO1366 [50] E. coli genome-scale metabolic networks.

(or succinate) searching for best knockout strategy, the biomass rate always decreases,

as shown in Figure 3.7-C, Pareto front in green.

The maximum level of acetate in anaerobic conditions, is 14.519 mmol h−1 gDW−1, cor-

responding to the minimum value of biomass (0.057 h−1). The corresponding knockout

cost, namely the minimum number of genes to be turned off, is 19. In wild type, acetate

production is 8.301 mmol h−1 gDW−1.

By considering the point (0.1303; 13.7911) of the Pareto front in green of Figure 3.7-C

that has a knockout cost 3 (YdfG; MhpF OR AdhE), I have found that 88 gene sets

can be considered neutral genetic strategies, i.e., if I turn off these gene sets, the level

of acetate and biomass do not change. For instance, Aas; rffT; AtoB; rfe; Acs; Lpd

and SucA and SucB; Amn; and AdiA are just some of the neutral genetic strategies.

Instead, (YdfG; MhpF OR AdhE) is the trade-off strategy. I have also discovered that

the genes MraY and murG are essential (destructive strategies), i.e., turning them off

causes a null biomass, and the organism dies. Moreover, I have found the gene tnaA is

involved in 796 Pareto manipulations (out of 1000) when the acetate is maximized in

anaerobic conditions. Moreover, this gene is also involved in most genetic manipulations

in aerobic conditions (721 out of 1000 strategies).

As regards the succinate versus biomass optimization, the maximum synthetic produc-

tion is equal to 10.757 mmol h−1 gDW−1, with a biomass 0.076 h−1 and a knockout
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cost equal to 15. A suitable solution can be obtained knocking out the gene set (isoen-

zymes) “AdhP OR AdhE OR FrmA”, reaching 9.0373 mmol h−1 gDW−1 of succinate

and 0.1231 h−1 of biomass.

An interesting result is that in anaerobic conditions the gene set “(SapD AND TrkA

AND TrkH) OR (Kch) OR (SapD AND TrkA AND TrkG) OR (Kup)” is the most

frequent both for maximizing acetate and for maximizing succinate. In Table 3.4, I

report the most significant results.

Table 3.4: Frequency of gene sets in the knockout genetic strategies for acetate maximization
and succinate maximization in the iAF1260 E. coli metabolic network [47]. The values reported
in the second and third columns, between 0 and 1, represent the percentage of occurrences of
the gene set (first column) in all the Pareto manipulations obtained with GDMO method.

Acetate Anaerobic Aerobic

tnaA 0.796 0.721
GuaB 0.728 0.310
SurE 0.568 0.077

Succinate Anaerobic Aerobic

Apt 0.950 0.510
DeoD 0.610 0.230
DeoD or DeoA 0.260 0.320

3.5.2 Case study 2: iJO1366 E. coli model.

The last FBA E. coli model was published in [50] by Palsson group in October 2011.

The new metabolic network contains 1366 genes, 1041 gene sets, 2251 reactions and 1136

metabolites. In the wild type configuration, the organism grows at 1.033 h−1.

By using GDMO algorithm, the maximum level of acetate in anaerobic conditions is

19.789 mmol h−1 gDW−1, corresponding to the minimum value of biomass (0.016 h−1).

The knockout cost is 19. Instead, if we consider a trade-off between biomass and acetate,

I suggest the solution with a knockout cost equal to 1 (Mdh, malate dehydrogenase) that

reaches 16.209 mmol h−1 gDW−1 of acetate and 0.252 h−1 of biomass.

Although the organism modeled in the two flux balancing networks is the same and the

environmental conditions are identical, the Pareto fronts are different. There are signif-

icant differences in aerobic conditions, especially for succinate. In wild type conditions,

in iJO1366 E. coli network, the larger and more recent network, the succinate in the cy-

toplasm compartment is involved in 26 metabolic reactions, and in anaerobic conditions

only five reactions are activated. In particular, succinate is produced by the reactions

succinyl-diaminopimelate desuccinylase, O-succinylhomoserine lyase and Fumarate de-

pended Dihydroorotate, and consumed by succinate dehydrogenase and succinyl-CoA

synthetase. The succinate can be transferred in the periplasm and in the extracellular



Chapter 3. Robust Design of Microbial Strains 56

space through ten transport fluxes. In anaerobic conditions, succinate is transported out

via proton antiport. In this case, succinate production is equal to zero. Additionally,

the search of knocked out genes for maximizing succinate production gives only four

Pareto solutions (showed in Figure 3.7-A in blue): the maximum level of succinate is

17.142 mmol h−1 gDW−1, but the biomass formation is null (the bacterium dies). So

this solution cannot be considered biologically feasible. Another solution is equal to

the wild type condition: succinate is zero, and biomass 1.033 h−1. The third solution

reaches 1.071 mmol h−1 gDW−1 of succinate and 1.027 h−1 of biomass, knocking out

the gene set “FumA OR FumB OR FumC”, linked to the reaction “Fumarase” of the

Citric Acid Cycle. The forty solution reaches succinate equal to 0.34 mmol h−1 gDW−1

and biomass equal to 1.03 h−1 with 2 knockout.

Instead, for the E. coli network of Feist et al. [47], succinate in cytoplasm is involved

in 22 reactions, and in anaerobic conditions five reactions are activated: fumarate re-

ductase, succinyl-diaminopimelate desuccinylase, O-succinylhomoserine lyase, succinate

transport out via proton antiport and succinyl-CoA synthetase. In this model, the re-

action Fumarate depended Dihydroorotate is missing and the succinate production in

the wild type condition is equal to 0.077 mmol h−1 gDW−1. Unlike the iJO1366 E.

coli network, the maximization of succinate and biomass produces a Pareto front with

a high number of non-dominated solutions (see Figure 3.7-A in black). The two mod-

els represent the same organism, the environmental conditions are identical and ATP

maintenance requirement flux is set for both networks to 8.39, but Pareto fronts depict

apparently two different behaviors. The most recent network contains additional reac-

tions with respect to the older model, and a glucose feed equal to 10 mmol h−1 gDW−1 is

not sufficient for producing succinate; indeed, by incrementing glucose feed, the Pareto

front contains more points and it is more dense. Unlike the acetate production, which

depends mostly on the oxygen provision, the succinate production is sensitive to the

glucose feed.

In this experimental protocol, I have obtained only one acceptable solution that max-

imizes succinate in anaerobic conditions. Analyzing all genetic strategies obtained by

the front in purple in Figure 3.7-C, the gene set SerA results the most involved in the

knockout manipulations (554 manipulations out of 1000). In the iAF1260 E. coli model,

this gene has a frequency equal to 510 out of 1000. Additional details about the solutions

are reported in Table A.1 in Appendix A.
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3.6 Discussion

Pareto fronts provide significant information in metabolic design automation. The num-

ber of non-dominated solutions, the first derivative and the area under the curve are

important markers for the best design within the same organism or between different

organisms. Jumps correspond to sudden decreases in the availability of entire path-

ways and sub-networks when a crucial hub is eliminated, for instance the elimination of

Krebs cycle or other key biosynthetic hubs. They result in decreasing the area under

the Pareto front. The area under the Pareto front provides an estimate of number of

intermediates which may be exploited for biotechnology purposes (optimization of an

additional objective) or to build synthetic pathways (synthetic biology). Given two bac-

teria or two conditions for the same bacterium, the highest Pareto front would probably

represent the best conditions for adding or optimizing pathways leading to new biotech-

nology products. Pareto optimality is useful to compare the ability of different organisms

for optimizing specific metabolites (Figures 3.8 and Figure A.6 in Appendix A). I ran

GDMO to compare the behavior of E. coli, Y. pestis [51], G. sulfurreducens [52] and

M. barkeri models [53] for the maximization of acetate/succinate and biomass. For Y.

pestis I analyzed its behavior in two different temperature conditions: in environment

and in a human host.
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Figure 3.8: Pareto fronts obtained by optimizing the acetate production [mmolh−1 gDW−1]
and the biomass formation [h−1] using GDMO in four organisms in the same environmental
conditions : E. coli [47], M. barkeri [53], G. sulfurreducens [52] and Y. Pestis [51]. For Y.
Pestis I consider two biomass compositions: at 24-28❽ and 37❽. The significance of these two
temperatures stems from the two types of hosts that Y. Pestis infects in the natural environ-
ment, namely insect vectors at ambient temperature and mammalian hosts with regulated body
temperatures of about 37❽.

Through the framework here discussed we can program bacteria in order to obtain de-

sired outputs, thus framing them as living computers [54]. The goal is to provide a
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simple tool to search and propose to the biotechnologist the best and suitable solutions

in silico, so as to reproduce them in vivo. BioCAD framework investigates nutrients, re-

actions, metabolic pathways and knockouts for bacteria in an efficient automatic design.

We are able to present several proposals, and indicate the best in terms of environmental

conditions, knockout cost, robustness and sensitivity. Knockout strategies are useful in

synthetic biology, while simulating the flux balance analysis in a particular experimental

condition using the gene expression values is important for providing an optimization of

bacteria in a given environment and biotechnological/medical condition.

The slope of the Pareto front reflects the progressive lack of pathways able to sustain

the production of one component when we are optimizing the metabolism to maximize

the other.

Therefore, the area, the slope and the position of jumps are meaningful parameters to

characterize a Pareto front. It is noteworthy that the Pareto optimality could act as

a parameter describing the improvement of a model for a bacterium with respect to a

previous model for the same species. Indeed, the incompleteness of the model (number of

reactions) may be identified by the reduced size of the Pareto front. The first derivative in

the Pareto front, and in particular its discontinuity, indicates the preferable conditions

for metabolite production. The multi-objective optimization method here presented

provides a set of optimal candidate solutions, thus PoSA and RA allow us to choose the

best genetic design.

GDMO scales effectively as the size of the metabolic system and the number of genetic

manipulations increase. GDMO considerably outperforms the GDLS heuristic, OptFlux,

OptGene and other heuristics, search methods, global and local optimization algorithms.

For sake of simplicity I have considered double target optimization. The methodology

and the software implementation could be easily extended to optimize simultaneously

several biotechnological targets. Optimizing two or more properties is of interest because

all organisms experience oscillating conditions ranging from starvation to food richness.

In particular, environmental changes present the availability of different sources of food.

Therefore, the simultaneous optimization allows to evaluate the capability of the organ-

ism to cope with these changes.
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Multi-objective optimization for

the production of 1,4-butanediol

In the last 20 years, using of microorganisms, microbes and algae for the synthesis of

natural or synthetic substances is increased and revealed crucial for industrial, biotech-

nological and natural processes. The synthesis of pharmaceutical molecules is usually

very costly, therefore their production by means of genetic and metabolic engineering

of microorganisms could be cost effective [55]. Additionally, the decrease of oil reserves

and the request of new sources of energy have moved the interest of many researchers

to the study of biofuels production techniques and other petroleum-derived chemicals

from biological systems. Many microorganisms have been used to produce alcohols such

as ethanol and butanol. In the last years, the study on the optimization of production

of specific substances has widely expanded. Moreover, through metabolic engineering,

many strains have been systematically designed for producing natural and synthetic

products. Synthetic products are obtained by inserting in an organism enzymes that

naturally the organism does not own. The addition of new genes and enzymes allows the

activation of new reactions and then new synthetic pathways. Many researcher groups

have realized in vitro strains of Escherichia coli able to overproduce lycopene [56] and

lactic acid [57]. Others have engineered E. coli strains through synthetic pathways to

produce isobutanol [45]. In the recent work of Yim et al. [58], the authors have en-

gineered the E. coli in order to produce 1,4-butanediol (BDO), a chemical compound

industrially used and not produced naturally by any organisms. BDO is currently man-

ufactured entirely from petroleum-based feedstocks such as acetylene, butane, propylene

and butadiene.

In an in-silico step, strains are designed by computational techniques and successively

59
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realized in vitro. Genome-scale metabolic networks are useful to investigate the capabil-

ity of organisms, since they include information about metabolite interactions, reactions,

genes and enzymes control.

In this Chapter, will be reported the genetic strategies optimization in order to maximize

BDO production from the genome-scale metabolic network of E. coli. Genetic strategy

stands for knockout manipulation, i.e., turning off one or more genes. Searching for the

optimal knockout set is a hard problem, since an organism such as a bacterium, con-

tains more than 4000 genes. Importantly, a knockout strategy must also guarantee the

survival of the organism. By using Pareto optimality and multi-objective optimization,

I simultaneously ensure the biomass formation and find several solutions that represent

trade-offs [15]. Knockout manipulations are represented in the model by means of a

Boolean string y, where the lth element is 1 if the corresponding gene set is turned off.

The aim is to find the optimal Boolean string y that maximizes or minimizes simul-

taneously two or more biological functions (in this case, BDO production and biomass

formation). The E. coli model is optimized by using GDMO algorithm and the metabolic

network is analyzed with flux balance methos, as described in details in the sections 2.2

and 2.4.

4.1 Synthesis of BDO from glucose in E. coli

The authors of Yim et al. [58] used the iJR904 E. coli model and added the BDO

synthetic pathway obtaining a network composed of 904 genes, 941 biochemical reac-

tions and 625 metabolites. BDO is a non-natural compound not synthesized by any

known organism. Therefore, by using SimPheny Biopathway Predictor software, Yim et

al. authors studied and analyzed all potential pathways from E. coli central metabo-

lites to BDO. SimPheny Biopathway Predictor is a computational tool implemented in

Genomatica’s SimPheny platform for enumerating and evaluating metabolic networks,

with the goal of identifying novel pathways for producing a chemical of interest. This

software found over 10,000 pathways for the synthesis of BDO from common central

metabolites such as acetyl-CoA, α-ketoglutarate, succinyl-CoA and glutamate. Among

all pathways, authors selected the BDO production pathways proceeding through the

4-hydroxybutyrate (4HB) intermediate. Researchers at Genomatica report on their

metabolic engineering of E. coli for the direct production of 1,4-butanediol in a pa-

per in the journal Nature Chemical Biology.

The resulted BDO designed pathway starts from the tricarboxylic acid cycle intermedi-

ate succinate, which is activated as succinyl-CoA by the E. coli enzyme succinyl-CoA

synthetase (SucCD). After two sequential reduction steps catalyzed by CoA-dependent
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succinate semialdehyde dehydrogenase (SucD) and 4HB dehydrogenase (4HBd), respec-

tively, the CoA derivative converts to 4HB via succinate semialdehyde. To synthesize

4HB, Yim et al., consider also the forming from α-ketoglutarate.

The conversion of 4HB to BDO requires two reduction steps, catalyzed by dehydroge-

nases. Alcohol and aldehyde dehydrogenases (ADH and ALD, respectively) are NADH-

and/or NADPH-dependent enzymes that together can reduce a carboxylic acid group

(derivatized with Coenzyme A) to an alcohol group.

Authors show the results conducted in in-vivo experiments after engineering the bac-

terium with knockout strategies found in silico by OptKnock algorithm [12]. I want

to remark that this is the first industrial application of FBA in-silico analysis, and the

positive results confirm the success of this method to investigate big metabolic networks.

The resulted BDO synthetic pathway is figured in 4.1.

Figure 4.1: The BDO synthetic pathway included in E. coli organism. Figure extracted from
[58].

Evaluation of the OptKnock results proposes a knockout strategy removing alcohol dehy-

drogenase (adhE), pyruvate formate lyase (pfl), lactate dehydrogenase (ldh), and malate

dehydrogenase (mdh) genes.

The Genetic Design through Multi-objective Optimization method is used here to inves-

tigate other suitable knockout strategies. The original iJR904 E. coli model contains

also the GTP amine hydrolysis (GTHP) reaction, that authors do not consider in their

in-silico model. In my experiments, I performed simulations both including and ex-

cluding the GTHP reaction. Additionally, for each experiment I used two value of the

parameter C (section 2.2.3 in Chapter 2). C indicates the maximum knockout number

allowable and was set to 50 and 10.
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4.2 Overproduction of BDO in E. coli

In a first phase of my study on BDO overproduction, I have considered the complete

metabolic network published in [59] that includes the engineered synthetic pathway. I

have used BioCAD in order to perform the maximization of BDO via facilitated diffusion

and search for the optimal genetic manipulations. Results are shown in Figure 4.2-A. The

two Pareto fronts have been obtained by GDMO with a population composed of 1000

individuals. After 3000 generations, by analyzing the whole solutions space, therefore

all the 3,000,000 feasible points, in anaerobic conditions I have selected 6,757 Pareto

strains, i.e., Pareto points, when C is 10. Instead, if the search space is expanded by

setting C=50, the Pareto strains increment to 19,152. Moreover, by fixing C=50, the

Pareto front on the left section owns better solutions in terms of BDO with respect to

Pareto front obtained with C=10. BioCAD does not limit the Pareto analysis to the

last population, but extract all the Pareto solutions through non-dominated sorting. In

Figure 4.2-A, the points in red represent solutions proposed in [58], conversely in green

and black results obtained from GDMO. In Figure 4.2-B-C the knockout cost associated

to each synthetic production in the Pareto fronts are reported. In the first case, with

C=10, we can observe that a good maximum approximation level of BDO is reached with

a knockout cost equal to 10, when BDO results 15.176 mmolh−1gDW−1 and biomass =

0.332 h−1. Indeed, with a knockout cost from 11 to 16, we can see that the BDO level is

almost stationary. After, the BDO production decreases. A good trade off could be the

point with a knockout cost equal to 8, that reaches BDO = 14.625 mmolh−1gDW−1

and biomass=0.504 h−1.

In a second stage of my study on BDO overproduction, in order to compare GDMO

results with Yim et al. ones, I have considered the same E. coli network, that does

not consider the GTP amine hydrolysis (GTHP) reaction. I performed GDMO and also

in this case I used the same previously experimental protocol. Results are reported in

Figure 4.3-A. Here, I have found 12,836 Pareto strains with C=10 and 49,876 Pareto

strains with C=50. Each of this point is an optimal strain able to outperform BDO

production. The decision-maker can select one or more of these solutions according to

its interests. For example, one can choose solutions that have a particular knockout

cost, due to biotechnological difficulties; or one can choose that particular strain that

reaches the highest BDO level with the maximum robustness. Figures 4.3-B-C help the

decision-maker to select best and suitable points. In Figure 4.3-B we can examine that

with a cost of 6 knockout, GDMO finds 15.168 mmolh−1 gDW−1 of BDO removing

Acetaldehyde dehydrogenase (ADHer), lactaldehyde dehydrogenase (LCADi), malate

dehydrogenase (Mdh), D-lactate, glycolate and formate transport. Instead, in Figure
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Table 4.1: Maximum BDO production in the modified iJR904 E. coli for each knockout cost
resulted from GDMO by considering 50 maximum allowable knockout (Figure 4.3-C in red). In
bold the best trade-off designs. In particular, GDMO finds the same solution proposed in [58]
with a minor knockout cost, that is 6. In bold the best trade-off designs. Details can be found
in Table 4.4.

BDO Biomass Knockout cost
(mmolh−1 gDW−1) (h−1)
16.229 0.105 12

16.222 0.105 15
16.222 0.105 13
16.221 0.105 11
16.219 0.105 16
16.121 0.111 10
16.079 0.115 19
16.079 0.115 17
16.077 0.115 18
16.074 0.115 9

15.974 0.117 26
15.974 0.117 23
15.974 0.117 25
15.974 0.118 22
15.974 0.118 20
15.974 0.118 21
15.586 0.120 29
15.586 0.120 27
15.586 0.120 28
15.586 0.120 24
15.523 0.133 8
15.521 0.133 7

15.168 0.140 6

10.938 0.231 32
10.938 0.231 30
10.936 0.232 31
10.933 0.234 35
10.930 0.235 33
10.925 0.237 34
10.765 0.292 5
10.294 0.299 4
7.882 0.336 3
6.945 0.350 2
5.716 0.378 1
0.000 0.418 0 (Wild type)

4.3-C, an interesting point is obtained by deleting 9 genes, reaching 16.073 mmolh−1

gDW−1 of BDO production.

After optimization and post-processing analysis, BioCAD software provides a detailed

list of genetic strategies, with information about pathways and reactions associated to.
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In Figure 4.3-A, we can notice that some points in green overcome Pareto fronts in red

and blue. This is because OptKnock algorithm [12] used by Yim et al. authors, does

not take into account the GPR mappings and it apply knockout directly on the fluxes

of the metabolic network. Instead, in GDMO we can consider isoenzymes, enzymatic

complexes and remove reactions starting from the genome level (for details, reader is

remanded to section 2.2.2). Indeed, a reaction can be catalyzed by an enzyme linked

to other reactions. Therefore, the single removing is not correct and the resulting flux

distribution can be unreal. Yim et al. solutions that overcome Pareto fronts are ob-

tained turning off reactions that in the FBA model are not linked to any gene, therefore

not included on the variable space. On the contrary, GDMO considers gene sets and

implements GPR relationship. In Table 4.4 reader can find supplementary information

and detailed information on knockout strategies.

BioCAD software implements also a method able to infer how many times a gene is

involved in Pareto genetic manipulations. An interesting result is that the gene set b1241

(adhE), associated to acetaldehyde dehydrogenase is present in almost all knockout

solutions. In Table 4.2, I report the most involved genes (on 101) turned off in GDMO

points for C=50. I want to remark that Pareto optimality is a good tool in biological

design automation and allows to find a big mole of solutions to propose to biologists or

biotechnologists. As a matter of fact, In Yim et al. work, authors provide 203 solutions

against 49,876 Pareto strains if we consider C=50.

The method in Yim et al. does not consider the GPR map and turns off the flux of

the reactions. In order to compare GDMO method with Yim et al. results, I have

also performed knockout research in the reaction space. In Figure 4.4 we can see the

results obtained by GDMO and in this case green points belong to the underlying Pareto

front area. GDMO finds several interesting solutions (Table 4.3). With a four-reaction

knockout GDMO finds the same strategy proposed in [58]: BDO equal to 15.166 mmol

h−1 gdW−1 and biomass 0.140 h−1. The real knockout cost associated to this genetic

manipulation is 7. GDMO reveals points reaching the same level of BDO and biomass

with better knockout cost (Tables 4.3 and 4.4.) ǫ-dominance analysis and experiments

in aerobic conditions are shown in Appendix A.
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Table 4.2: Knocked out gene sets occurrences for maximizing BDO production in the modified
iJR904 E. coli with respect to 49,876 Pareto strains (front in green, C=50, Figure 4.3).

Gene sets ID Occurrences Frequency
b1241 49824 0.999%
b2975, b3603 46167 0.926%
b3708 31242 0.626%
b1602+b1603 30289 0.607%
b0507 28322 0.568%
b2276+b2277+b2278+b2279+b2280+ 25019 0.502%
+b2281+b2282+b2283+b2284+
b2285+b2286+b2287+b2288
b3926 24000 0.481%
b2492, b0904 23174 0.465%
b2965, b0693 20413 0.409%
b4384, b2407 17807 0.357%
b0004 17085 0.343%
b0003 15004 0.301%
b0429+b0430+b0431+b0432 14551 0.291%
b4301, b3386 12595 0.253%
b3236 12161 0.244%
b0171 11541 0.231%
b1091 11492 0.230%
b0469 11339 0.227%
b1849 11304 0.227%
b1232 10980 0.220%
b0910 10927 0.219%
b3942, b1732 10432 0.209%
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Figure 4.2: (A) Genetic strategies optimization to maximize BDO and biomass in anaerobic
conditions and glucose feed equal to 20 mmolh−1 gDW−1 in original iJR904 E. coli by using
C=10 and C=50, a population I=1000 and gen=3000. Knockout cost versus BDO production
for Pareto strategies with C=10 (B) and C=50 (C).
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Figure 4.3: (A) Genetic strategies optimization to maximize BDO and biomass in anaerobic
conditions and glucose feed equal to 20 mmolh−1 gDW−1 in the modified iJR904 E. coli (without
the reaction GTHP such as in Yim et al. [58] simulations) by using C=10 and C=50, a population
I=1000 and gen=6000. Knockout cost versus BDO production for Pareto strategies with C=10
(B) and C=50 (C).



Chapter 4. MOO of E. coli for the production of BDO 68

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

1
,4

 B
u
ta

n
e
d
io

l 
[m

m
o
lh

-1
g
D

W
-1

]

Biomass formation [h
-1

]

GDMO in iJR904 E. coli model without GTHP reaction, C=10
Yim et al. Nat. Chem. Biol. 2011

A)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

1
,4

 B
u
ta

n
e
d
io

l 
[m

m
o
lh

-1
g
D

W
-1

]

Biomass formation [h
-1

]

GDMO in iJR904 E. coli model without GTHP reaction, C=50
Yim et al. Nat. Chem. Biol. 2011

B)

Figure 4.4: Genetic strategies optimization by deleting reactions to maximize BDO and
biomass in anaerobic conditions and glucose feed equal to 20 mmolh−1 gDW−1 in the modi-
fied iJR904 E. coli (without the reaction GTHP such as in Yim et al. [58] simulations) by using
a population I=1000 and gen=6000, C=10 in (A) and C=50 in (B).
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Table 4.3: Maximum BDO production in the modified iJR904 E. coli for each knocked out
reaction resulted from GDMO by considering 50 maximum allowable knockout (Figure 4.4-B in
green). In bold the best trade-off designs.

BDO Biomass Reaction cost
(mmolh−1 gDW−1) (h−1)
16.223 0.105 11

16.222 0.105 10
16.220 0.105 9
16.219 0.105 13
16.215 0.106 8
16.072 0.116 7
15.969 0.118 18
15.969 0.118 17
15.968 0.118 15
15.968 0.118 16
15.968 0.118 14
15.924 0.119 21
15.924 0.119 20
15.924 0.119 19
15.584 0.121 22
15.522 0.133 6
15.518 0.133 5
15.166 0.140 4

13.193 0.215 27
10.886 0.256 23
10.865 0.266 25
10.864 0.266 24
10.853 0.272 26
10.220 0.318 3
6.882 0.363 2
5.716 0.378 1
0.000 0.419 0 (Wild type)
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To consider more genes, I also take into account of the most recent genome-scale

metabolic network of E. coli [50]. I have added the synthetic pathway composed of

10 new reactions that forms BDO (Figure 4.1), starting form Succinyl-CoA and α-

ketoglutarate, produced naturally in E. coli metabolism. The iJO1366 E. coli model

is composed of 1366 genes, 1041 gene sets, 1136 metabolites and 2261 reactions. By

maintaining the same environment conditions used by Yim et al. [58] (a glucose uptake

rate equal to 20 mmol h−1 gdW−1), I have maximized BDO production and biomass for-

mation in anaerobic and aerobic conditions. With a knockout cost equal to 6, I have ob-

tained an overproduction of +662.669% of BDO (from 1.425 mmol h−1 gdW−1 to 10.869

mmol h−1 gdW−1). This genetic strategy represents the best trade off design. The genes

knocked out are: (i) the set (PflBec) or (TdcEec) or (PflDec) or (PflBec and YfiD) be-

longing to the Pyruvate Metabolism (pyruvate formate lyase reaction), (ii) the gene YgiN

belonging to the Oxidative Phosphorylation (quinol monooxygenase reactions) and (ii)

the gene Tpi belonging to the Glycolysis/Gluconeogenesis (triose-phosphate isomerase

reaction). The maximum BDO production is reached with a knockout cost equal to 10,

providing 10.933 mmol h−1 gdW−1 BDO production and 0.134 h−1 biomass formation.

Figure A.11 in Appendix A shows the evolution of BDO and biomass maximization

during the optimization of the environment conditions. In blue the dominated solutions,

and in black the final Pareto front. Environment conditions are represented by 330

uptake rate fluxes. In this experiment, I have maintained glucose and oxygen uptake

rates respectively fixed at 20 mmol h−1 gdW−1 and 0 mmol h−1 gdW−1. Changing

uptake rates is a crucial element and can significantly improve the production.

In Figures 4.6 and 4.7, have been reported the results obtained from Pathway oriented

sensitivity analysis in terms of knockout and exchange fluxes respectively for iJR904

and iJO1366 networks. The higher are the sensitive indexes, higher is the influence of

the pathway/parameter on the outputs of the model.
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Table 4.4: Knockout strategies obtained through GDMO for maximizing BDO production by
using C=50 in the modified iJR904 E. coli [mmolh−1 gDW−1].

Str BDO Biom kcostGenes Pathways Reactions

A1 16.2228 0.10519
(-74.8873%) 12 b1241 Alternate Carbon Metab., Pyruvate Metab., LCADi

ADHEr
b2661 Arginine and Proline Metab., SSALy
b3236 Citrate Cycle (TCA), MDH
b2551 Cofactor and Prosthetic Group Biosynthesis, ALATA-D2

Glycine and Serine Metab.
ALATA-L2
GHMT2

b3708 Cysteine Metab., Tyrosine, Tryptophan, TRPAS1
and Phenylalanine Metab.

TRPAS2
b1602+b1603Oxidative Phosphorylation, THD2
b0767 Pentose Phosphate Pathway, PGL
b1849 Purine and Pyrimidine Biosynthesis, GART
b2975, b3603 Transport, Extracellular, D-LACt2

GLYCLTt2r
L-LACt2

b2492, b0904 Transport, Extracellular, FORt

A2 16.0736 0.11551
(-72.4245%) 9 b1241 Alternate Carbon Metab., Pyruvate Metab., LCADi

ADHEr
b2661 Arginine and Proline Metab., SSALy
b3236 Citrate Cycle (TCA), MDH
b1602+b1603Oxidative Phosphorylation, THD2
b0767 Pentose Phosphate Pathway, PGL
b2975, b3603 Transport, Extracellular, D-LACt2

GLYCLTt2r
L-LACt2

b2492, b0904 Transport, Extracellular, FORt

A3 16.0736 0.11551
(-72.4245%) 9 b1241 Alternate Carbon Metab., Pyruvate Metab., LCADi

ADHEr
b2661 Arginine and Proline Metab., SSALy
b3236 Citrate Cycle (TCA), MDH
b1602+b1603Oxidative Phosphorylation, THD2
b1852 Pentose Phosphate Pathway, G6PDHy
b2975, b3603 Transport, Extracellular, D-LACt2

GLYCLTt2r
L-LACt2

b2492, b0904 Transport, Extracellular, FORt

A4 15.5209 0.13277
(-68.3043%) 7 b1241 Alternate Carbon Metab., Pyruvate Metab., LCADi

ADHEr
b3236 Citrate Cycle (TCA), MDH
b1602+b1603Oxidative Phosphorylation, THD2
b2975, b3603 Transport, Extracellular, D-LACt2

GLYCLTt2r
L-LACt2

b2492, b0904 Transport, Extracellular, FORt
b2492, b0904 Transport, Extracellular, FORt

A5 15.1683 0.13977
(-66.6334%) 6 b1241 Alternate Carbon Metab., Pyruvate Metab., LCADi

ADHEr
b3236 Citrate Cycle (TCA), MDH
b2975, b3603 Transport, Extracellular, D-LACt2

GLYCLTt2r
L-LACt2

b2492, b0904 Transport, Extracellular, FORt
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Figure 4.5: (A) Genetic strategies optimization to maximize BDO and biomass in anaerobic
conditions and glucose feed equal to 20 mmolh−1 gDW−1 in iJO1366 E. coli by using C=10 and
C=50, a population I=1000 and gen=6000. Knockout cost versus BDO production for Pareto
strategies with C=10 (B) and C=50 (C).
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Table 4.5: Maximum BDO production in iJO1366 E. coli for each knockout cost resulted from
GDMO by considering 10 maximum allowable knockout (Figure 4.5-B in red). In bold the best
trade-off designs. Details can be found in Table A.3 of Appendix A.

BDO Biomass Knockout cost
(mmolh−1 gDW−1) (h−1)
10.933 0.134 10
10.923 0.136 8
10.922 0.137 7
10.912 0.148 9
10.869 0.151 6

10.063 0.392 14
10.063 0.392 12
9.978 0.416 16
9.937 0.428 13
9.829 0.431 15
9.750 0.526 18
9.746 0.527 17
8.319 1.220 5

6.809 1.246 4
3.367 1.298 3
3.358 1.301 2
1.425 1.367 0 (Wild type)



Chapter 4. MOO of E. coli for the production of BDO 74

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  20  40  60  80 100 120 140 160 180 200

σ
*

µ
*

Oxidative Phosphorylation
Exchange Reaction

Pentose Phosphate Pathway
Cofactor and Prosthetic Group Biosynthesis

Histidine Metabolism
Alternate Carbon Metabolism

Cysteine Metabolism
Methionine Metabolism
Asparagine metabolism
Glutamine Metabolism

Membrane Lipid Metabolism
Alanine Metabolism

Alanine and Aspartate Metabolism
Glycine and Serine Metabolism

Other
Glutamate Metabolism

Tyrosine, Tryptophan, and Phenylalanine Metabolism
Threonine and Lysine Metabolism

Biomass Synthesis
Purine and Pyrimidine Biosynthesis

Proline Metabolism
Arginine and Proline Metabolism

Cell Envelope Biosynthesis
Macromolecule Synthesis

Citrate Cycle (TCA)
Transport, Extracellular

Glycolysis/Gluconeogenesis
Valine, Leucine, and Isoleucine Metabolism

Unassigned
Nucleotide Salvage Pathways

Putative
Pyruvate Metabolism

Folate Metabolism
Glyoxylate Metabolism

Anaplerotic reactions

A)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  10  20  30  40  50  60  70  80

σ
*

µ
*

Cysteine Metabolism
Methionine Metabolism

Nucleotide Salvage Pathways
Membrane Lipid Metabolism

Arginine and Proline Metabolism
Cofactor and Prosthetic Group Biosynthesis

Threonine and Lysine Metabolism
Purine and Pyrimidine Biosynthesis

Tyrosine, Tryptophan, and Phenylalanine Metab.
Transport, Extracellular

Glycine and Serine Metabolism
Glutamate Metabolism

Glycolysis/Gluconeogenesis
Pentose Phosphate Pathway

Histidine Metabolism
Cell Envelope Biosynthesis

Citrate Cycle (TCA)
Oxidative Phosphorylation

Valine, Leucine, and Isoleucine Metabolism
Alanine and Aspartate Metabolism

Folate Metabolism
Alternate Carbon Metabolism

Unassigned
Pyruvate Metabolism
Anaplerotic reactions

Glyoxylate Metabolism
Putative Transporters

Glutamine Metabolism
Asparagine metabolism

Macromolecule Synthesis
Other

Alanine Metabolism
Proline Metabolism

Amino Acid Metabolism
Putative
Nitrogen

Nitrogen Metabolism
BDO Synthesis

Biomass Synthesis
Carbohydrate Metabolism

Carbohydrates and related molecules
Energy Metabolism
Exchange Reaction

Fatty Acid Degradation
Lipid Cell Wall Metabolism
Methylglyoxal Metabolism

Nucleotide Metabolism
Phosphate and sulfur

B)

Figure 4.6: (A) Fluxes-PoSA and (B) Gene set-PoSA simulations in iJR904 E. coli obtained
with respectively 104 and 1.5 × 106 function evaluations.
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Figure 4.7: (A) Fluxes-PoSA and (B) Gene set-PoSA simulations in iJO1366 E. coli obtained
with respectively 104 and 1.5 × 106 function evaluations



Chapter 5

Artificial Photosynthetic

Organisms

Developing models to simulate and predict the dynamic responses of metabolic networks

has always been a challenging aim of systems biology. This goal is reached through the

analysis of the main pathways involved in the metabolism of an organism. In particular,

photosynthetic organisms perform many important functions for the planet, e.g. absorb-

ing atmospheric CO2, harvesting solar energy and generating O2 instead of processing

oxygen.

In this work, I focused my studies on the investigation of three metabolic networks: (i)

the photosynthetic carbon metabolism pathway [60] of a generic leaf, (ii) the Rhodobacter

spheroides [61] and (iii) the light-driven algal metabolism of Chlamydomonas reinhardtii

[62].

The carbon metabolism is a process that takes place in chloroplasts, which are organelles

present in the cells of plants and eukaryotic algae and represents the site of the photo-

synthesis. The energy from light is captured by chlorophyll pigments and is converted

into chemical energy (ATP and NADH). Chloroplasts produce glucose from sunlight

energy. The glucose then transfers to the mitochondrion for aerobic respiration. The

function of chloroplasts is basically to make food through the photosynthesis, i.e., by

trapping light energy to convert water and carbon dioxide to form oxygen and glucose.

During the photosynthesis, carbon is used for growth and some excess carbon can be

fixed and stored in compact polymers as starch. The latter is stored in the constitute of

granules made up of both linear and branched polymers of glucose [63].

76
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The R. sphaeroides system by Imam et al. [61] models all the most interesting features

of photosynthesis, as well as the metabolic capabilities of this kind of organisms. In-

terestingly, when the R. sphaeroides lacks oxygen intake, it can process light energy

through a photosynthetic electron transport chain, whose features are similar to those

found in plants [64]. Moreover, during its photosynthetic growth, R. sphaeroides uses

either CO2 as the sole carbon source or other organic carbon sources in order to grow

autotrophically or heterotrophically. The autotrophic metabolism of R. sphaeroides

makes it a potential organism for use in the synthesis of chemicals or polymers that

can serve as raw materials in the production of biofuels, or as a means of sequestering

atmospheric or industrially produced CO2. Therefore, a comprehensive analysis of the

R. sphaeroides model may prove very useful for the understanding of both the lifestyle

and the mechanisms underlying transitions between these different metabolic states.

The model of the Chlamydomonas reinhardtii metabolism [62] allows the investigation

of photosynthesis in algae, and in particular of light regulation. The advantages of this

model and its optimization are evident from the perspective of the biofuel production.

The organisms and pathways above mentioned cover an important task by using pho-

tosynthesis process. Increasing the ability of these organisms to consume CO2 can be

very interesting. For this reason, in this work I investigated the photosynthesis process

and optimized it.

5.1 Photosynthetic carbon metabolism

The concept of robustness is extremely pervasive in nature, and seems to be one of

the driving force of evolution [42]; moreover, the ability of a system to preserve its

behavior, despite internal or external perturbations, is a crucial design principle for

any biological and synthetic system [42, 65–67]. Applying the concept of robustness

to the Calvin Cycle and to the pathways involved in photosynthesis process allows

BioCAD method to calculate the limits of enzymes perturbation at which the system

property of interest (a given level of CO2 uptake) is maintained. The estimation of the

robustness of in silico designed pathways has been performed using the methodology

proposed by Stracquadanio et al. [42] and described in details in section 2.8 of Chapter

2. A Monte-Carlo algorithm applies a Gaussian noise to the enzyme concentrations and

then estimates the variation of CO2 uptake. A robust system is characterized by small

fluctuations of its quantitative behavior under investigation, which means that a robust

pathway will ensure the same uptake rate even if the enzyme concentrations differ from

the nominal values.
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Although it is possible to perform the in-silico design and verification of a biological

system, it is still impracticable to edit long regions of a genome in an arbitrary way; the

intrinsic structure of the genetic information introduces a number of constraints that

must hold in order not to decrease the fitness of a living organism. From this point

of view, it is extremely important to focus the design on a set of restricted significant

parameters, in order to decrease the complexity of a biological implementation. However,

identifying a set of crucial genes encoding for important enzymes is an open problem.

The sensitivity analysis tries to correlate the uncertainty in the output of a model

with the uncertainty in the input; it is important to note that while the robustness

analysis performs a local estimation of the output variation in a limited input range, the

sensitivity analysis aims to study the output variation at a global level by investigating

all the parameter space [30]. CO2 uptake was simulated as the solution of the complete

set of linked differential equations representing concentration change of the substrates of

each reaction of the Calvin Cycle and related cycles related to the carbon metabolism.

The model and the chosen algorithms allow to find the optimized concentration of the

enzymes in order to obtain the highest increase in CO2 uptake, keeping constant the total

amount of protein nitrogen. The Parallel optimization algorithm (PAO) [30], a single-

objective optimization algorithm described in depth in section 5.5, allows to identify

solutions consisting in an optimized set of enzymatic concentration capable of reaching

a theoretical CO2 uptake rate of 36.382 µmol m−2 s−1 at a level of carbonate ions (ci)

of 270 µmoles moles−1 (fourth column in Table 5.1). The CO2 uptake at the initial

enzyme concentrations was 15.486 µmol m−2 s−1 (second column in Table 5.1). This

solution showed that six enzymes were particularly enhanced: cytosolic FBP aldolase,

cytosolic FBPase, UDPGPP , SBPase, RuBisCO and ADPGPP (Figure 5.1). The com-

plete name of enzymes is reported in Table A.6 in Appendix A. The method obtains a

theoretical CO2 uptake increase corresponding to +134% with respect to the initial en-

zymes concentration. An increase in theoretical CO2 fixation rates obtained by varying

the enzyme concentrations of the Calvin Cycle starting from the current experimentally

determined values was shown already by various authors as Zhu et al. [60] and Strac-

quadanio et al. [30]. The PAO algorithm allowed to obtain a theoretical CO2 uptake

increase corresponding to 134% with respect to the initial enzymes concentration. This

result is even higher with respect to Zhu et al. [60] solutions based on an evolutionary

algorithm, that leads to an increase of 76% (from about 16 to 28 µmol m−2 s−1). By

analyzing the enzymatic variation in Figure 5.1, when all enzymes are perturbed, we

can see that three enzymes are particularly involved in the maximization process and

change much more with respect to their initial nominal values: cytosolic FBP aldolase,

cytosolic FBPase and UDP-Glc pyrophosphorylase. Therefore in another simulation,
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Table 5.1: Photosynthetic carbon metabolism results. Concentrations of the enzymes, individ-
ual robustness, CO2 uptake rate (at ci = 270 µmol mol−1, reflecting current CO2 atmospheric
concentration), global and local robustness values. The second column reports the touchstone
concentrations used in simulations: the initial/natural leaf (modeled by Zhu et al.[60]). The
third column reports the results of the optimization in which only the eleven sensitive enzymes
are altered, while all of the others are kept at their nominal values. The fourth column reports
the best-known leaf design, in terms of CO2 uptake and robustness. The fifth column reports the
results of a simulation where the enzymes cytosolic FBP aldolase, cytosolic FBPase and UDP-
Glc pyrophosphorylase have been maintained to their initial values. The last column reports the
most efficient known point in terms of CO2, but corresponds to a highly instable solution.

Enzyme Name Initial
Conc.
mg N m−1

(the natural
leaf)

Optimal
Conc. of 11
Sensitive Enz.
mg N m−1

Optimal and
Robust Conc.
mg N m−1

Optimal
and Ro-
bust Conc.
mg N m−1

(3 fixed enz.)

Optimal but
Not Ro-
bust Conc.
mg N m−1

RuBisCO 517.00 (100) 784.27 (84.5) 860.226 (100) 856.44 (100) 861.93 (39)
PGA kinase 12.20 (100) 4.66 (100) 3.989 (100) 3.63 (100) 3.98 (0)
GAP DH 68.80 (100) 69.03 (81.5) 64.483 (100) 65.08 (100) 63.55 (17)
FBP aldolase 6.42 (100) 10.40 (100) 9.050 (100) 10.86 (100) 9.29 (30.5)
FBPase 25.50 (100) 29.44 (100) 26.889 (100) 32.24 (100) 27.03 (0)
Transketolase 34.90 (100) 34.90 (100) 8.247 (100) 16.93 (100) 16.98 (100)
SBP aldolase 6.21 (100) 5.55 (100) 6.661 (100) 5.75 (100) 5.94 (0)
SBPase 1.29 (100) 4.70 (100) 4.397 (100) 4.43 (100) 4.31 (1)
PRK 7.64 (100) 7.04 (100) 7.007 (100) 6.38 (100) 7.99 (22.5)
ADPGPP 0.49 (100) 2.12 (100) 0.721 (100) 5.09 (100) 1.22 (0)
PGCA Pase 85.20 (100) 0.95 (100) 0.325 (100) 0.20 (100) 0.00 (0)
Glycerate kinase 6.36 (100) 6.36 (100) 0.005 (100) 0.00 (100) 0.00 (100)
Glycolate oxidase 4.77 (100) 4.77 (100) 0.019 (100) 0.16 (100) 0.00 (100)
GSAT 17.30 (100) 17.30 (100) 0.027 (100) 0.00 (100) 0.00 (100)
Glycer. dehyd. 2.64 (100) 2.64 (100) 0.003 (100) 0.00 (100) 0.00 (100)
GGAT 21.80 (100) 21.80 (100) 0.00005 (100) 0.00 (100) 0.00 (100)
GDC 179.00 (100) 0.02 (100) 0.00003 (100) 0.00 (100) 0.00 (100)
Cyt. FBP ald. 0.57 (100) 0.57 (100) 2.127 (100) 0.57 (100) 2.03 (0.5)
Cyt. FBPase 2.24 (100) 2.24 (100) 5.554 (100) 2.24 (100) 5.27 (30.5)
UDPGPP 0.07 (100) 0.07 (100) 0.531 (100) 0.07 (100) 0.50 (0)
SPS 0.20 (100) 0.20 (100) 0.034 (100) 0.01 (100) 0.03 (30.5)
SPP 0.13 (100) 0.13 (100) 0.031 (100) 0.01 (100) 0.03 (0)
F26BPase 0.02 (100) 0.02 (100) 0.00 (100) 0.00 (100) 0.00 (100)
CO2 Uptake
µmol

m2s

15.486 33.317 36.382 36.197 36.495

(Local R. %,
Global R. %)

(100, 81.80) (81.5, 78.3) (100, 97.2) (100, 92.6) (0, 39.18)

CO2 uptake is maximized by perturbing all the enzymatic concentration and maintain-

ing fixed the three involved enzymes. Results are reported on the fifth column of Table

5.1. The perturbation of parameters (concentrations) allows to understand the level of

sensitivity of each of the considered enzymes involved in CO2 fixation. By means of

Morris method, eleven enzymes are found to be sensitive and two of them fragile (Table

A.4 in Appendix A). For this reason, PAO algorithm was processed in order to find the

maximum CO2 level by perturbing only the sensitive eleven enzymatic concentration.

This designed optimization reached a level of 33.317 µmol m−2 s−1 of CO2 (third column

in Table 5.1).

Since biotechnological techniques are currently incapable of treating many enzymes at

the same time, I have simulated the effect of perturbing six enzymes only (RuBisCO,
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Figure 5.1: Optimization in photosynthetic carbon metabolism. The ratio of the enzyme
concentrations optimized by the PAO algorithm (36.382 µmol m−2 s−1) at ci = 270 µmol mol−1
compared to the initial concentrations (15.486 µmol m−2 s−1)

FBP aldolase, SBPase, ADPGPP, Phosphoglycolate phosphatase, and Gly decarboxy-

lase (GDC)) while the remaining nineteen enzymes are maintained at their initial con-

centrations. I have chosen the sensitive enzymes which values change out of the range

0.2x-1.5x. For this set of six enzymes, I have defined the following constraint: the con-

centration must be ≥ 0.02 mg N m−1. RuBisCO, FBP aldolase, SBPase, ADPGPP

resulted overexpressed, while Phosphoglycolate phosphatase and GDC resulted almost

switched off. Nitrogen is kept constant. This configuration obtained CO2 uptake rate

of 32.828 µmol m−2 s−1 (that is only 3.492 µmol m−2 s−1 less than the best solution),

perturbing only six enzymes.

A still more refined analysis used always the same set of enzymes but allowing RuBisCO

to increase up to a maximum of 15% with respect to the initial values. This con-

straint has been inserted in order to have more feasible biotechnological results, since a

higher RuBisCO concentration increase is quite unlikely to be obtained in vivo. Much

higher increase in expression level are known (40 fold for codon biased sequences in

E. coli [68]). However RuBisCO is already the most expressed enzyme in plants. FBP

aldolase, SBPase, and particularly ADPGPP resulted overexpressed, while phosphogly-

colate phosphatase was switched off and GDC was kept close to its initial value. This

configuration obtained a CO2 uptake rate of 31.819 µmol m−2 s−1 (that is only 4.501

µmol m−2 s−1 less than the best solution).



Chapter 5. Artificial Photosynthetic Organisms 81

A further simulation attempted an optimization of the CO2 uptake rate perturbing four

enzymes only (FBP aldolase, SBPase, PGCAPase, and GDC) while the remaining 21

enzymes were maintained at their initial concentrations. This configuration obtained

a CO2 uptake rate of 22.4202 µmol m−2 s−1 with respect to the initial concentration

of about 16 µmol m−2 s−1. In a combinatorial approach, I have performed another

optimization with a different set of four enzymes, which are FBP aldolase, ADPGPP,

PGCAPase, and GDC. This configuration obtained a CO2 uptake rate of 20.626 µmol

m−2 s−1 (Table A.5 in Appendix A).

Another important biotechnological target is to check the possible increase of CO2 uptake

leaving RuBisCO constant. This limitation is appropriate: given that RuBisCO is the

most abundant protein in nature, it has been considered also a nitrogen reservoir for

the plant metabolism [69, 70]. For instance, in an experiment on the haptophyte alga

Isochrysis galbana on the effects of nitrogen limitation, as cells became more nitrogen

limited, the fraction of total cell nitrogen contained in RuBisCO decreased from 21.3%

to 6.7%, whereas that of the light harvesting complex remained relatively constant.

That means that RuBisCO quantity is not only linked to the CO2 uptake, but it has a

secondary function as nitrogen storage. Moreover, after some studies, the enzyme might

already be naturally optimized under an evolutionary point of view [71]. Hence, further

optimization of RuBisCO may prove difficult and lead to only marginal improvements

[72]. Therefore, it is quite unlikely that models allowing free further increase of RuBisCO

concentration, would be really feasible. The optimization of CO2 uptake rate perturbing

24 enzymes leaving RuBisCO at its initial concentration leads to a theoretical optimized

uptake rate of 22.2698 µmol m−2 s−1 with respect to the initial about 16 µmol m−2 s−1

of the natural leaf. The most influential enzyme in this analysis was ADPGPP showing

a very high increase in concentration.

The results summarized in Table A.4, showed that eleven enzymes are found to be sensi-

tive and two of them fragile. A first conclusion is that the six most sensitive enzymes are

key enzymes that can strongly influence the CO2 uptake with slight concentration varia-

tion. The fact that these enzymes are mostly light controlled confirms the strict control

of light availability on the Calvin Cycle. Highly and moderately sensitive enzymes found

by Sun et al.[73], on the basis of microarrays expression patterns, largely correspond with

those indicated in this analysis, with the exception of tranketolase (moderately sensitive

in [73] and at low sensitivity in this analysis). The proposed solution has a high level

of robustness (third column of Table 5.1). GAPDH and PRK did not vary much their

concentration during the optimization analysis. This result would fit well with the fact

that the expression of these two enzymes is controlled by light, while specific chloroplast

proteins as CP12 are capable of controlling their activity forming with them a complex

PRK/GAPDH/CP12 with high molecular weight [74]. Such a refined control appears
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Figure 5.2: ǫ-dominance analysis for the photosynthetic carbon metabolism. In blue dots the
Pareto fronts. In black the ǫ-dominance results choosing ǫ = 10−6, in red the ǫ-dominance results
choosing ǫ = 10−3. Similarly, green points for ǫ = 10−1. Conversely, the yellow points are all
the feasible points observed by the optimization algorithm, while the black square represents the
initial/natural leaf (as modeled by Zhu et al.[60])

to be appropriate for sensitive enzymes and similar controls may be widespread for sen-

sitive enzymes in vivo. RuBisCo also resulted the most sensitive enzyme confirmed also

by Sobol’ analysis (Figure A.13). Figure A.14 in Appendix A shows the interdependence

between the enzymes.

The simple finding of an optimal solution with ideal concentrations could be not a suffi-

cient task, since the transcription process of the genes and other control systems linked

to changing environmental conditions and/or feedbacks coming from other biochemical

pathways could vary the enzymes concentration or their activity with time. Moreover,

biotechnological insertion of new promoters sequence is not able to produce an exact

and foreseen amount of transcripts. Therefore it is clear that it is important to esti-

mate how well the achieved CO2 uptake is preserved under perturbation at the enzymes

concentration level. Robustness can be defined as the persistence of a system property

with respect to perturbations [42]. Such a property can be assessed in this analysis and

can be fundamental to foresee the effect of a biotechnological genetic modification. The

results of this analysis are shown in Tables 5.1 and Table A.5.

The analysis based on the evaluation of the nitrogen limitation effect showed that the

minimal amount of nitrogen [75] allowed still a CO2 uptake rate of 5.7. Such an amount

could be taken into consideration as an assessment of the biomass growth limit of plants
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the multi-objective optimization using the eleven most sensitive enzymes of the model. The three
resulting Pareto Fronts have been dominated by the multi-objective optimization over all the
enzymes of the model. This trade-off search has been carried out for the three ci concentrations
referring to the environmental conditions of 25 million years ago, nowadays and in 2100.

living in nitrogen limitations. The second result was shown as a result of the Pareto-

Optimality analysis that should lead to the closest-to-ideal solution: in this case the CO2

uptake rate is 21.213 (Figure A.15 of Appendix A). This value represents a theoretical

limit for biotechnological targets leading to maximizing productivity with the minimum

amount of nitrogen supply, which is the value close to the economical optimum. It is

interesting to observe that, even in this case, the total CO2 uptake resulted over 30%

higher with respect to the natural CO2 uptake rate at the natural enzymes concentration.

Maximal CO2 Uptake is 39.968. Figure 5.2 reports the ǫ-dominance analysis for the

multi-objective optimization of CO2 and nitrogen in photosynthetic carbon metabolism

when the most sensitive eleven enzymes are considered in the optimization problem.

The model was used also to calculate the maximum CO2 uptake rate at different at-

mospheric CO2 concentrations: ci of 270 µmol mol−1 corresponding to nowadays con-

centration of CO2 in the atmosphere, ci of 490 µmol mol−1 corresponding to a future

concentration of CO2 in the atmosphere and 165 µmol mol−1, that is the CO2 con-

centration estimated for 25M years ago ca. Results are report in Figure 5.3, where

multi-objective optimization is performed to maximize CO2 uptake rate and minimize
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the nitrogen consumption, by perturbing all enzymes in carbon metabolism and by per-

turbing only the most eleven sensitive enzymes. Results showed that the main difference

between the current CO2 atmospheric concentration and that of the past regarded the

optimization of ADPGPP, PGA kinase, HPR reductase, all much higher in the opti-

mization at lower CO2 concentration, and GCEA kinase, SPS and F26BPase, all much

higher in the situation of high CO2. These three last enzymes were not among the

sensitive enzymes in the optimization at the current atmospheric CO2 concentration.

The results indicated that changing atmospheric conditions, particularly with respect to

CO2 amount, would produce very different evolutionary pressure on the enzymes. Con-

centration enhancement or reduction would affect one or the other enzyme, depending

on the environmental conditions (at least relatively to CO2).

5.1.1 Identifiability analysis for the carbon metabolism pathway

Here I considered the chloroplast model by Zhu et al. [60] and the 25 decision variables

of the C3 cycle, namely the concentrations of its enzymes. I adopted the method pro-

posed by Hengl et al. [76] to detect automatically structural identifiability consisting of

functional relations between decision variables. These relations are detected by applying

the alternating conditional expectation algorithm (ACE) [34].

I adopted the Mean Optimal Transformation Approach (MOTA) [76], by fixing at 5 the

maximal number of parameters allowed to enclose a functional relation. The results are

shown in Table 5.2. The “Groups” column indicates the functional relations between

variables. For instance, RuBisCO and GAPDH are functionally related. In other words,

the response variable x1 is strongly related to the predictors x3 and x5. Conversely, the

enzymes Transketolase type 1 and SBPase do not have any functional relation with any

other enzyme (Table 5.2). The r2 column indicates how much variance of the response

can be explained by the predictors. A high amount of variance of the response that can be

explained by the predictors indicates a large effect of the fixation of the predictors on the

standard deviations of the response. The cv(x) = std(x)/mean(x) helps to distinguish

practical identifiable from non-identifiable parameters [76]. In case of practical non-

identifiability, the choice of the parameter to fix depends on the experiments and on

reference values found in the literature.

In Figure 5.4 has been shown the functional relations among RuBisCO, GAPDH and

FBPase detected by the identifiability analysis applied to GAPDH.

It is noteworthy that, according to Table 5.2, RuBisCO belongs to the same functional

group except for the presence of x5 (FBPase). Indeed, Figure 5.5 shows that the optimal

transformation β found for x5 is different from the transformations found for x1 and x3,
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Table 5.2: Identifiability Analysis applied on the 1903 non dominated points of the CO2-
nitrogen Pareto front. The enzymes are grouped according to functional relations. The r2

column indicates how much variance of the response can be explained by the predictors. A high
ratio cv(x) = std(x)/mean(x) suggests that the data are scattered, and therefore there may be
practical non-identifiability. The asterisk denotes the cases such that r2 > 0.9 and cv > 0.1.

Variable Enzyme Groups Enzyme groups r2 cv

x1 RuBisCO x1, x3∗ RuBisCO, GAPDH * 1.000 0.517
x2 PGA kinase x2, x10∗ PGA kinase, PRK * 0.930 0.340
x3 GAPDH x1, x3, x5∗ RuBisCO, GAPDH, FBPase * 0.999 0.502
x4 FBP aldolase x1, x4∗ RuBisCO, FBP aldolase * 0.981 0.365
x5 FBPase x1, x5∗ RuBisCO, FBPase * 0.995 0.553
x6 Transketolase type 1 x6∗ Transketolase type 1 * 0.982 0.536
x7 SBP aldolase x1, x7∗ RuBisCO, SBP aldolase * 0.961 0.354
x8 SBPase x8 SBPase 0.981 0.053
x9 Transketolase type 2 x1, x9∗ RuBisCO, Transketolase type 2 * 0.991 0.597
x10 PRK x1, x10∗ RuBisCO, PRK * 0.970 0.464
x11 ATP x11∗ ATP * 0.979 0.678
x12 ADPGPP x12∗ ADPGPP * 0.983 0.315
x13 PGCA Pase x13∗ PGCA Pase * 0.982 0.535
x14 Glycerate kinase x14∗ Glycerate kinase * 0.975 0.804
x15 Glycolate oxidase x15 Glycolate oxidase 0.976 0.020
x16 GSAT x16∗ GSAT * 0.974 0.351
x17 Glycerol dehydrogenase x17∗ Glycerol dehydrogenase * 0.975 0.999
x18 GGAT x18∗ GGAT * 0.968 0.469
x19 GDC x19 GDC 0.987 0.039
x20 Cytosolic FBP aldolase x20∗ Cytosolic FBP aldolase * 0.972 0.369
x21 Cytosolic FBPase x9, x21∗ Transketolase type 2, Cytosolic FBPase * 0.909 0.445
x22 UDPGPP x22 UDPGPP 0.983 0.050
x23 SPS x23∗ SPS * 0.969 0.208
x24 SPP x24∗ SPP * 0.969 0.584
x25 F26BPase x25∗ F26BPase * 0.974 0.690

although the IA applied to GAPDH has assigned x5 to the same functional group of x1

and x3. This can happen when the variables taken into account are also practically non-

identifiable (which is the case of these three enzymes, since their coefficient of variation

(cv) is high).

The interdependent decision variables, which are non-identifiable, may be fixed at an

arbitrary value in order to improve identifiability. Since the variables functionally re-

lated to the fixed variable change accordingly, the model’s dynamical properties are not

changed or restricted by the fixation.

5.2 Photosynthesis in Chlamydomonas reinhardtii

In order to analyze the photosynthetic capability of C. reinhardtii, a multi-objective

optimization has been performed. Instead of the concentration values considered in

the carbon metabolism work discussed in the previous section, in this case I took into

account the genes as decision variables to optimize, and in particular their presence or

not in the metabolic network.
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GAPDH and FBPase, thus highlighting the structural non-identifiability of these variables. This
group has been detected for the GAPDH enzyme.

The model of C. reinhardtii is represented by using FBA framework. I set the maximum

number of knockout allowed equal to 10 and considered both light and dark conditions.

In Chang et al.[62], eleven windows of light spectrum can be chosen. Here, I used Solar

lithosphere spectrum, that is the result of a composite analysis from several measurements

taken from different locations under cloudless conditions in the 48 contiguous U.S. states

and multiple data normalization procedures. In light conditions, I chose to minimize

the CO2 production (dual of maximization of CO2 uptake rate) and the autotrophic

biomass; then I performed the ǫ-dominance analysis. Figure 5.6 shows the results. In

these conditions, the minimal CO2 production is equal to −6.7331mmolh−1gDW−1

(that corresponds to a maximal CO2 uptake of 6.7331mmolh−1gDW−1) with a biomass

formation equals to 0.1381h−1 (Figure 5.6-C, red points). The organism is not able to

absorb CO2 from the atmosphere in dark conditions, indeed the CO2 values in Figure

5.6-C in black points are positive, meaning only a production. The first two Figures

(A,B) show the Pareto fronts and the related ǫ-dominance analysis in light and dark

conditions, respectively. The ǫ-dominance analysis is a relaxed condition of dominance

to select the Pareto optimal points observed by the optimization algorithm. In fact, if

I consider the non-relaxed condition of dominance, some interesting solutions may be
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Table 5.3: Global (GR) and Local (LR) Robustness Analysis in C. reinhardtii for two- and
three-objective optimizations in light and dark conditions. For the LR values I report only the
minimum and the related reactions.

Strain CO2 Biom H2O GR (%) LR (%)

Wild type (light) 285 6.15 n.a. 44.2 98(pyruvate transport by free diffusion, chloroplast)
72 (ammonia exchange)
54 (nitrate exchange)

Strain (light) -6.733 0.138 n.a. 37.4 42 (na1 exchange)

Wild type (dark) 282 6.15 n.a. 43.52 69.23 (ammonia exchange)
61.53 (nitrate exchange)

Strain (dark) 0.286 2.492 n.a. 37.71 61.53 (nitrate exchange)

Wild type (light) 285 6.15 -10 43.8 98 (pyruvate transport by free diffusion, chloroplast)
72 (ammonia exchange)
70 (nitrate exchange)

Strain (light) 5.402 0.179 0.545 37.2 36 (nitrate exchange)

discarded although dominated by a small amount. The blue points belong to the Pareto

optimal points obtained from a non-relaxed condition of dominance. With a relaxed

condition, other acceptable solutions are added (in purple, red and green points).

Furthermore, Table 5.3 presents the robustness analysis results. I perturbed the metabolic

fluxes. In particular, in the global robustness (GR) the perturbation is carried out si-

multaneously for all fluxes (rates of the reactions) of the network to evaluate the fragility
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Figure 5.6: Minimization of CO2 production (corresponding to a maximization of CO2 uptake)
and biomass formation in C. reinhardtii in light and dark condition and ǫ-dominance analysis
with different ǫ values. The last Figure (C) shows a comparison between the Pareto fronts in A
and B.
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of the complete organism with respect to the metrics that are, in this case, the two ob-

jective functions. In the local robustness (LR), the perturbation is carried out for each

flux (so, to have a robustness index for each flux). I selected from the Pareto front only

one strain (one non-dominated solution), and compared it to the wild type (without

knockout). I chose the strain that minimize the CO2 production. If we consider the

robustness index for each flux, the strain has one minimum, while the wild types in light

and dark conditions have three and two minima, respectively, and the related fluxes are:

the pyruvate transport by free diffusion (chloroplast), the nitrate exchange and the am-

monia exchange in light condition and the nitrate exchange and the ammonia exchange

in dark condition. In the same environmental conditions, but in light condition, in Fig-

ure 5.7 I chose to minimize the CO2 production and simultaneously maximizing the H2O

production and autotrophic biomass. In this case, the algorithm found a minimum CO2

production equal to 5.6268 mmolh−1 gDW−1 with a biomass formation equal to 0.195

h−1 and the H2O production equals to 9.8360 mmolh−1 gDW−1. A more interesting

result is the good trade-off between the minimization of CO2 and the maximization of

H2O production. In this case, a CO2 production equal to 5.4024 mmolh
−1 gDW−1 has

been obtained with a biomass formation equal to 0.179 h−1, while the H2O production

is equals to 0.5455 mmolh−1 gDW−1. Furthermore, I performed the robustness analysis

considering the three metrics (the three objective functions). The results are reported

in Table 5.3. I chose the strain that obtains a good trade-off between the minimization

of CO2 production and the maximization of H2O production and compare it to the wild

type. The results are similar to those of two-objective optimization, so adding H2O

production does not causes variation in the global and local robustness.

5.3 Photosynthesis in Rhodobacter spheroides

In order to maximize the CO2 uptake rate and biomass formation in R. spheroides [61],

I used BioCAD method to find the best knockout strategies with the minimum knock-

out cost. I considered the photoautotrophic condition, i.e., a poor environment, where

the only carbon source is CO2. The exchange allowable fluxes are: sulfate, phosphate,

ammonia, CO2, magnesium, hydrogen, nicotinate and photon (light). Figure 5.8 shows

the results of the multi-objective optimization. In wild type, R. spheroides grows with

a biomass rate equal to 0.986 h−1, and absorbing CO2 to 44.705 mmolh
−1 gDW−1. R.

spheroides is able to absorb 57.452 mmolh−1 gDW−1, but reducing its growing to 0.418

h−1, with a knockout cost equal to 14. The strain that absorbs until 44.7048 mmolh−1

gDW−1 of CO2 represents the tradeoff design, with a knockout cost equal to 8, turn-

ing off the following gene sets: RSP2138, RSP0361 or RSP2252, RSP0359, RSP0829,
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Figure 5.7: Simultaneous maximization of CO2 uptake (corresponding to minimize CO2 pro-
duction), biomass formation and H2O production in C. reinhardtii. I considered the photoau-
totrophic condition using the combinatorial optimization for searching gene knockout strategies.
In (A) Pareto Front (blue points) obtained by the three-multi objective optimization. The re-
sults for each pair of two objective functions are shown in (B)-(C)-(D). Points in black indicate
the amount of CO2, H2O production and biomass in wild type, i.e., without gene knockouts.

RSP3330 or RSP0656, RSP3142. In this configuration, six reactions are deleted: fu-

marate hydratase, L-serine ammonia-lyase, ribose-5-phosphate isomerase A, lactate de-

hydrogenase, sodium/sulfate symporter and acetate via Na+ symport. I performed

other simulations and optimizations for R. spheroides in various photoautotrophic con-

ditions. I optimized (i) biomass vs. H2O production, (ii) biomass vs. O2 production

and (iii) biomass vs. ethanol production. For all these experiments, the multi-objective

optimization has identified only a Pareto solution very close to the wild type solutions.

This could mean that in photoautotrophic conditions, the organism uses a metabolic

pathway that is essential for its growth, and knockout genes are not feasible. I found

H2O production of 184.589 mmolh−1 gDW−1 with a biomass formation of 0.986 h−1, and

O2 production of 1.2265×10
−13 mmolh−1 gDW−1 and biomass 0.0099 h−1. Conversely,

in photoautotrophic conditions, R. spheroides does not produce ethanol, and even if I

turn off genes, the result is always equal to zero for ethanol production. This means

that ethanol is completely consumed in the metabolic network of the organism during

its growth.
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Figure 5.8: Results obtained by Sensitivity and optimization for R. spheroides. (A) Pareto
front obtained maximizing biomass formation and minimizing CO2 production (equivalent to
maximize the CO2 uptake rate) in R. spheroides using the multi-objective optimization to search
for genetic knockout strategies in photoautotrophic conditions. Negative value of production
correspond to positive values for uptake rate. (B) Pathway-oriented Sensitivity analysis for R.
spheroides. The model includes 63 pathways, and only 14 pathways result to have sensitivity
indexes greater than zero.

Figure 5.8-B reports the results of the Gene sets Pathway-oriented sensitivity analysis

(PoSA), and the pathways which have sensitivity indexes greater than zero. Only 14

pathways (out of 63 pathways) are found to be sensitive, probably because in photoau-

totrophic conditions only the genes in these pathways have influence on the growth and

metabolism of R. spheroides.

Furthermore, in Table 5.4 are reported the robustness analysis results. Similarly as in

C. reinhardtii, the method acts perturbing the metabolic fluxes and calculating both

the global and local robustness. I selected two strains from the Pareto front, and I

compared them with the wild type. I chose the strains with good trade-off between the

maximization of biomass formation and CO2 uptake rate.

Table 5.4: Global (GR) and Local (LR) Robustness Analysis for R. spheroides.

CO2 Biom GR (%) LR (%)

Wild type -44.705 0.986 38.65 53.84(Ammonia exchange)
53,84(Hydrogen exchange)

Rb1 -57.452 0.418 36.77 46.15(Hydrogen exchange)

Rb2 -44.708 0.9861 37.11 38.46(Hydrogen exchange)

5.4 Discussion

In this work, I used BioCAD methodologies for analyzing and cross comparing metabolic

models. I analyzed in particular three metabolic networks because of their biotechno-

logical and basic science importance. I adopted single and multi-objective optimization
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Figure 5.9: Pareto optimality results for R. spheroides and C. reinhardtii. Pareto fronts allow
us to understand the behavior of a biological system by linking variables and responses. For
instance, Genetic design provides different fronts according to the phenotypic response when
genotype is mutated. In Figure we can observe that the genetic design in R. Spheroides does
not provide a large Pareto front, probably due to the small network or unfavorable external
conditions.

algorithms and I focused both on finding optimal knockout strategies, external envi-

ronments or concentration enzymes for biotechnological or basic science purposes. The

Pareto-optimality analysis is a useful tool for simulating biochemical pathways when

contrasting objectives have to be considered simultaneously. By using this analysis, I

found that R. spheroides is able to absorb an amount of CO2 until 57.452 mmolh
−1

gDW−1 with a knockout cost equal to fourteen, deleting six reactions, while C. rein-

hardtii obtains only a CO2 uptake rate value equal to 6.7331 in light condition.

The application of this analysis to the Calvin Cycle provided the best solution for the

maximization of the CO2 uptake rate and the minimization of the total nitrogen. The

analysis was also used in order to understand which enzymes are the most important

in CO2 uptake rate and those whose modification is more robust, that is less prone to

concentration fluctuation. This target is a fundamental biotechnological target, since it

is not possible to engineer all the enzymes levels simultaneously and it is not currently

possible even to work on transcription promoters so finely to obtain a completely definite

final enzyme concentration in vivo. The finding of a limited number of targets (enzymes)

sufficiently robust to obtain a working solution even in case of concentration fluctuations

could lead to modified organisms whose activity could be better predicted. Furthermore,

the optimization allowed to analyze the scenario foreseen for the end of the century,
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when the atmospheric CO2 will be much higher than nowadays, with an esteemed ci

of 490 µmol mol−1. This simulation was carried out considering a case with minimal

nitrogen availability and that with highest CO2 uptake. Such simulation could foresee

the response of the photosynthetic organisms to the increase in CO2 concentration and

the increase on agriculture productivity even with lower amount of available nitrogen.

This approach is also useful to compare the genetic and metabolic ability of the organisms

to absorb carbon dioxide by analyzing the Pareto features (Figure 5.9).

By using the sensitivity and robustness analysis, I have identified the most sensitive

and fragile components of the biological systems I took into account. In R. spheroides I

show that only fourteen pathways are sensitive, probably because in photoautotrophic

conditions only the genes in these pathways have influence on the growth and metabo-

lism. In Chlamydomonas reinhardtii alga, the method found that a flux perturbation of

the reactions pyruvate transport by free diffusion (chloroplast), nitrate exchange or to

ammonia exchange highlights the fragility of the organism with respect to the metrics

chosen (CO2 and biomass formation). The same behavior is shown by the Rhodobacter

spheroides with respect to the ammonia or hydrogen exchange reactions.

In order to group enzymes according to functional relations, I applied the identifiabil-

ity analysis (IA) to the chloroplast model. This approach allows to detect structural

non-identifiability, i.e., some components of the model that cannot be determined un-

ambiguously. The IA showed that RuBisCO, GAPDH and FBPase belong to the same

functional group, i.e., they are interdependent decision variables. Interestingly, this

bears out the results of the sensitivity analysis, which positioned these three enzymes in

the most sensitive group of enzymes for the maximization of CO2 consumption and the

minimization of nitrogen consumption.

5.5 Material and Methods

The algorithms presented in this work include single and multi-objective optimization

in a continuous or discrete research space. The algorithms are based on the evolutionary

concept, where the solutions are calculated, compared and selected in each iteration/-

generation of the algorithm. In particular, for the single-objective optimization the Dif-

ferential Evolution (DE) Algorithm [77] was implemented, while for the multi-objective

optimization I used two algorithms inspired by the Non-dominated Sorting Genetic Al-

gorithm II (NSGA-II) [25]: the Parallel optimization Algorithm (PAO), which performs

optimization for continuous variables, and the Genetic Design through Multi-objective

optimization (GDMO), which performs a combinatorial optimization search (described

in section 2.4 in Chapter 2). NSGA-II [25] is a multi-objective evolutionary algorithm
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(MOEA) designed to assure an efficient and effective approximation of the Pareto opti-

mal set; NSGA-II belongs to the class of the evolutionary algorithms, which has been ex-

ploited by introducing the concept of non-dominated sorting and diversity preservation.

The NSGA-II has been extended using an island-based model for parallel optimization;

the new algorithm, called Parallel Algorithm for optimization (PAO) [78] performs par-

allel optimizations and swaps non-dominated solutions every given number of iterations.

Decision variables have a continuous domain and, in this work, I considered the enzyme

concentrations or the uptake rate of same metabolites that enter in biological systems.

In a multi-objective optimization problem, when the objectives functions are in conflict

with each other, the output is a set of non-dominated solutions, called Pareto Front

(section 2.3, Chapter 2). Pareto optimality proves very useful for bio-design automation,

because it allows our method to obtain a wide range of optimal solutions and also the

best trade-off design.

NSGA-II is characterized of four main steps. In a first step, a starting population is

initialized. A population is formed by a set of individuals, each of which is represented

by a decision variables set (whose values are chosen randomly or by the user) and the

objective functions values obtained by using the corresponding decision variables. Deci-

sion variables are parameters of the system that we want to optimize. The value of the

objective functions is strictly linked to the decision variables values. An individual rep-

resents a feasible solution. Once the first population is initialized, the algorithm enters

in an evolutionary loop. A new population is created and updated for each iteration

of the algorithm. Each iteration, called also generation, has the aim to improve the

solution set and optimize the decision variables values, incorporating the evolutionary

concept of Darwin. According to Darwin, the individuals of the population, from gen-

eration to generation evolve and only the best individuals survive. The same concept is

incorporated in the evolutionary/genetic algorithm. By using the crossover and muta-

tion operators new individuals are formed, and only the best individual are selected and

inherited. An individual is better than another if the latter is dominated with respect

to the first one. The loop terminates when a maximum generation number is reached,

or when a particular solution is found.

Parallel Algorithms for optimization (PAO) are algorithms that exploit coarse-grained

parallelism to let a pool of solutions exchange promising candidate solutions in an

archipelago fashion. Using evolutionary operators such as recombination, mutation and

selection, the framework completes with migration its approach based on islands. Each

island is a virtual place where a pool of solutions is let evolve with a specific optimization

algorithm; communications among islands in terms of solutions evolved by potentially

different algorithms are arranged through a chosen archipelago topology. The island
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Table 5.5: Methods and characteristics of the metabolic networks used for the analysis of the
artificial photosynthetic organisms.

Photosynthetic CM [60] R. sphaeroides [61] C. reinhardtii [62]

Modeling ODEs FBA-GPR FBA-GPR
Reactions 39 1158 2190
Metabolites 38 796 1068
Enzymes 38 595 718
Genes n.a. 1095 1080
Pathways 3 63 93

Optimization PAO – NSGA II GDMO GDMO
Sensitivity Morris [28] and Sobol’ [28] PoSA Morris [28]
Robustness GR/LR GR/LR GR/LR

model outlines an optimization environment in which different niches containing dif-

ferent populations are evolved by different algorithms and periodically some candidate

solutions migrate in another niche to spread their building block. In this archipelago

approach different topologies choices can raise to completely different overall solution

introducing then another parameter that has to be chosen for each algorithm on each

island. The PAO framework actually encloses two optimization algorithms and many

archipelago topologies. The adopted configuration has two islands with two optimization

algorithms, the Advanced CMA-ES algorithm (A-CMA-ES) and Differential Evolution

algorithm (DE) [77], that exchange candidate solutions every 200 generations with an

all-to-all (broadcast) migration scheme at a 0.5 probability rate. Even in its simplest

configuration, this approach has shown enhanced optimization capabilities and an opti-

mal convergence. After this phase, the NSGA-II multi-objective optimization algorithm

has been used to tackle the problem relaxing the natural constraint about the fixed

amount of protein-nitrogen. The goal is now to optimize two conflicting objectives,

that are, to maximize the CO2 uptake and at the same time to minimize the total

amount of protein-nitrogen. A-CMA-ES introduces a set of cut-off criteria to CMA-ES

[79] and ensures with a constraint, a lower bound, for each enzyme concentration to be

compatible with the smallest concentration observed in the natural leaf. In the case of

biological networks modeled with ODEs, that is the case of photosynthetic carbon meta-

bolism [60], the enzyme concentration values are optimized in each iteration/generation

of PAO until a fixed number of generations is reached. The model is implemented in

Matlab and the ODEs set is solved through the Matlab function ode15s. In the case

of biological networks solved with FBA (R. spheroides and C. reinhardtii), the optimal

genetic manipulations are searched through GDMO (section 2.4, Chapter 2) and models

are implemented in Matlab and the FBA problem is solved by means of glpk 1.

1Gnu linear programming kit, version 4.47. http://www.test.org/doe/
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In Table 5.5 the mathematical modeling approaches adopted for each biological systems

here discussed are reported together with the number of reactions, metabolites, enzymes

and genes. The photosynthetic carbon metabolism is modeled through a set of ODEs.

I considered the model proposed by Zhu et al. [60]. The model takes into account

rate equations for each discrete step in photosynthetic metabolism, equations for con-

served quantities (i.e., nitrogen concentration) and a set of ODEs to describe the rate

of concentration change in time for each metabolite (for a total of 31 differential equa-

tions). The reactions introduced in the model were categorized into equilibrium and non-

equilibrium reactions; equilibrium reactions were inter-conversion between Glyceralde-

hyde 3-P (GAP) and Dihydroxyacetone-P (DHAP) in stroma and cytosol, xylulose-5-P

(XuP5), Rib-5-P (Ri5P), ribulose-5-P (Ru5P) and Fru-6-P (F6P), Glc-6-P (G6P), and

Glc-1-P (G1P). All non-equilibrium reactions were assumed to obey Michaelis-Menten

kinetics, modified as necessary for the presence of inhibitors or activators.

R. spheroides, C. reinhardtii genome-scale metabolic networks were investigated through

FBA, that is a widely used approach for studying biochemical networks. These network

reconstructions contain all of the known metabolic reactions in an organism and the

genes that encode each enzyme. FBA calculates the flow of metabolites through this

metabolic network, thereby making it possible to predict the growth rate of an organism

or the rate of production of a desired metabolite.



Chapter 6

Comparative Analysis and Design

of Mitochondrial Metabolism

The bioenergetic activity of mitochondria can be thoroughly investigated by using com-

putational methods. In particular, in this work I focus on ATP and NADH, namely

the metabolites representing the production of energy in the cell. I used the BioCAD

computational framework to perform an exhaustive investigation at the level of species,

reactions, genes and metabolic pathways. I have considered three case studies related to

the human mitochondria modeled by using different mathematical approaches, formally

described with algebraic differential equations or flux balance analysis. Additionally,

studies on fumarate deficiency, Ca2+ variation and cancer condition in mitochondria

have been also conducted revealing interesting results.

6.1 Role of mitochondria in energy production and their

influence in human diseases

Mitochondria are the organelles of the eukaryotic cells that play a pivotal role in the

bioenergetics and regulation of many signaling pathways. They are fundamental also for

the evolution of complex organisms. Specifically, mitochondria are optimized symbiotic

cells useful to produce energy while simultaneously being energy-saving organelles. As

a result, eukaryotic cells are able to synthesize more proteins than the prokaryotic cells

(such as bacteria). Recent studies confirmed that mitochondria descend from bacteria,

and indeed they lived outside the cell [80]. During the evolution, mitochondria entered

in the animal and plant cells [81].

97
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Mitochondria are important firstly for their energy productivity: they are the energy

source of the cell, since they synthesize adenosine triphosphate (ATP), the chemical

energy in the cell. Moreover, the mitochondrion is the site of other metabolic processes

as well as carbohydrates metabolism, fatty acid oxidation and urea cycle.

The expansion of the fields of mitochondria and other mitochondrion-like organelles is

mainly due to the identification of the pivotal role that mitochondria play in human

disease and ageing [82], to the synergy showed by chloroplasts and mitochondria in

energy output [83], and to the discovery of novel factors involved in organelle division,

movement, signaling and adaptation to varying environmental conditions [84].

In the carbohydrates metabolism, the pyruvate produced from glycolysis undergoes ox-

idative decarboxylation to acetyl CoA, which is then oxidized in an eight-step process

known as the tricarboxylic acid (TCA) cycle. The respiratory substrates NADH and

FADH2 generated through the TCA cycle are then oxidized in a process coupled with

ATP synthesis. Electrons are transferred from NADH and FADH2 to oxygen via enzyme

complexes located on the inner mitochondrial membrane. Three of the electron carriers

(complexes I, III and IV) are proton pumps, and couple the energy released by electron

transfer with the translocation of protons from the matrix side to the external side of the

inner mitochondrial membrane. The energy stored in the resulting proton gradient (i.e.,

the proton-motive force) is used to drive the synthesis of ATP via the mitochondrial en-

zyme ATP synthetase (complex V). Under certain conditions (e.g., fasting), acetyl CoA

molecules are converted into ketones for use as an alternative energy source (fatty acid

oxidation). In the urea cycle, amino acid degradation resulting in excretion of nitrogen

as urea occurs partly in the mitochondrion.

Additionally, mitochondrion is also essential for several other processes, including the

regulation of calcium homeostasis and other inorganic ions, cellular differentiation, cell

death (apoptosis), as well as the control of the cell cycle and cell growth [85]. According

to the tissue, the number, the size and the shape of mitochondrion in a cell change. For

example, in the cardiac muscle, where the primary role of the heart is to pump blood

that requires an intensive aerobic activity, the cells have a large number of mitochondria

and a large size. Mitochondria have been also detected as responsible for several human

diseases, including mitochondrial disorders, cardiac dysfunction, and type 2 diabetes

[86]. The mitochondrion plays a crucial role also in cancer and in neurodegenerative

disorders (as Parkinson, Alzheimer or ALS).

For these reasons, many researchers focused their attention on mitochondrion study,

developing mathematical models that can simulate its metabolism, and in particular the

oxidative phosphorylation. In the recent work by Bazil et al. [87], 73 algebraic differ-

ential equations are implemented to model the mitochondrial bioenergetics, including
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34 biochemical reactions. Here, I used this model to in silico analyze and find the

metabolites that are the most important for optimizing the energy productivity, i.e.,

for maximizing ATP and NADH production in matrix space. I also conducted five dif-

ferent studies with five different matrix calcium concentrations. As introduced above,

mitochondria regulate calcium homeostasis, that is strictly linked to ATP and NADH

production [88]. Additionally, calcium is an important ion inside mitochondria and its

concentration is fundamental to regulate functions and acts at several levels during the

ATP synthesis. The dysregulation of the mitochondrial Ca2+ homeostasis is involved

in many pathologies. For example, an accumulation of Ca2+ ions in the mitochondrial

space can lead to an increased generation of ROS (reactive oxygen species) that alters

the permeability of the inner membrane leading the cell to apoptosis. Additionally, the

dysregulation of the Ca2+ homeostasis is involved in neurodegenerative diseases [89].

Data from literature demonstrate that mitochondria play a crucial role in neuronal cell

survival [90]. ATP metabolism, Ca2+ homeostasis, NAD+, NADH and ROS are key

players in the cellular mechanisms, and their alteration can lead to the cell death.

The mitochondrial model was also set to simulate the cancer state. Specifically, I modi-

fied three features that have been found to vary between healthy and cancer conditions:

(i) hexokinase activity, (ii) membrane potential differential, and (iii) concentration of

hydrogen ions. The model includes kinetic parameters useful to mimic regulatory effects

such as activation of enzymes by protein kinases. Therefore, it describes in a detailed

way many features of the biochemical reaction and enzymatic action. On the other

hand, this complex mathematical description introduces some limits: (i) the number

of reactions is weak, therefore the complexity of the network is not captured; (ii) solv-

ing the set of DAEs requires more computational effort, and solvers can only compute

approximations that may not fully agree with the real behavior of the system.

For these reasons, in this work I take also into account a mitochondrial network solved

through flux balance analysis (FBA), where the system is described considering a steady

state for the metabolites involved in the mitochondrial metabolism [2]. The model

is composed of a set of algebraic equations and does not contain kinetic parameters.

This approach permits to handle large metabolic networks (also in some cases more

than 2500 reactions, 2000 metabolites and 1400 genes). The FBA mitochondrial model

here considered is composed of 423 reactions (including transformation and transport

reactions) and 228 metabolites. The computational time to solve the problem with FBA

is highly reduced.
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6.2 Computational Bioenergetics in mitochondrial meta-

bolism

The FBA mitochondrion model [91] contains 423 reactions and 228 metabolites. By

using a multi-objective optimization algorithm I maximized ATP and NADH production.

In order to measure the matrix NADH productivity, I added a reaction that represents

the transport of NADH from the matrix to the external environment. The aim is to find

the optimal environment and the optimal metabolism for mitochondria so as to increase

their bioenergetic yield.

6.2.1 Optimization of the external environment

In this experiment, the decision variables I took into account are the 73 uptake fluxes.

I searched for the best values of uptake rate fluxes, which can assume a maximum value

of 1000 mmolh−1 gDW−1. The optimization finds a single Pareto point that reaches

the maximum amount of ATP (1000 mmolh−1 gDW−1), without NADH production.

In another optimization experiment, I maximized ATP production and simultaneously

minimized NADH production. Results are shown in Figure 6.1. We can observe that

ATP production grows more rapidly than NADH consumption. I initialized the input

fluxes of mitochondrial model as described in the work by Smith et al. [91]. In these

conditions (before the optimization), the ATP production is equal to 139.4264 mmolh−1

gDW−1, while NADH is totally consumed in the metabolism, and the productivity is

equal to 0. After the optimization, the maximum ATP production is equal to the

maximum value, 1000 mmolh−1 gDW−1 corresponding to a NADH consumption of about

211 mmolh−1 gDW−1 (Figure 6.1).

In this experiment, the optimization does not consider the limitation of substrates (as

glucose or oxygen) in the biological environment, so we can consider this analysis as an

asymptotic study for investigating the potentiality of mitochondria. Indeed, the opti-

mization algorithm searches for the optimal environmental conditions without consider-

ing that the glucose and the other elements of the environment in a real cellular context,

can be limited. Each uptake flux can reach the upper bound value, i.e., 1000, that is

usually not feasible. Indeed in a real context, such as that of a cell, glucose availability is

limited. In a second experiment, in order to include the limited availability of elements

of the environment, I changed the upper bound of each uptake flux. In this way, a real

context is modeled, i.e., an environment where glucose, lactate and other elements are

present in a limited amount. In the original work [91], the maximum uptake rate of the

fluxes was limited as follows: oxygen to 19.8, arginine to 0.0068, lysine to 0.0298, proline
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Figure 6.1: Maximization of ATP production and minimization of NADH production in the
FBA mitochondrial model [91], carried out with 1000 individuals and halted at the 1500th

generation. The algorithm optimizes the uptake rate fluxes (73 exchange fluxes) to analyze the
energy state of the mitochondrion. In blue the dominated feasible points, in black the wild type
conditions, i.e., before optimization. The non-dominated Pareto points in red are also reported
in the inset plot.

to 0.0044, aspartate to 0.1524, alpha-D-glucose to 0.9000, (R)-3-hydroxybutanoate to

0.7000, isoleucine to 0.0039, valine to 0.0106, hexadecanoic acid to 1.0000, (S)-lactate

to 0.5750, HCO3- to 0.0198. These values have been validated using experimental data

[91]. Therefore, in this experiment only the twelve fluxes cited above are optimized.

Additionally, for each variable the domain space is constrained between 0 and +33%

of the maximum uptake rate used by the authors and reported above. In this condi-

tion, NADH production does not increase. Specifically, I observed a consumption of

NADH. ATP increases and, by considering only the solutions where NADH is positive,

I found ATP= 185.4299 mmolh−1 gDW−1. The optimization algorithm here used is the

Non-dominated Sorting Genetic Algorithm II, also known as NSGA-II [25].

6.2.2 Optimization of the internal environment

The optimization of the metabolic reactions in the FBA mitochondrial model has been

performed using a genetic algorithm and a novel mutation operator. The genetic algo-

rithm is inspired toNSGA-II with a new mutation heuristic. Since perturbing metabolic

reactions (i.e., transformation fluxes) in FBA models may lead to unfeasible solutions, I

have created a mutation operator that takes into account this issue. I have introduced

two parameters, C and N . C is the maximum number of fluxes that can be perturbed

and constrained. If the mutation results in unfeasible solutions due to the constraints
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operating in the network, the procedure is repeated until a maximum number of N

trials is reached, otherwise the current solution is maintained. Here, I have considered

C equals to 5 and N to 10. I have performed the optimization of 229 transformation

fluxes and conducted two experiments: (i) the simultaneous maximization of ATP and

NADH production and (ii) the simultaneous maximization of ATP production and the

minimization of NADH production. For both the experiments I have used a population

of 1000 individuals. Each individual contains a vector of 229 values, and each value

represents the rate of the corresponding metabolic flux. The mutation operator takes

also into account the reversibility of the reactions. The algorithm has been performed

until 300 generations. The results are shown in Figure 6.2. For both the experiments,

the algorithm finds a set of non-dominated Pareto solutions, showed in red. Dominated

and feasible solutions are shown in blue, while the point in black represents the wild

type condition, i.e., the condition before the optimization.

6.2.3 Identifiability Analysis to characterize mitochondrial monogenic

diseases

The idea is that by performing the IA in healthy, pathological and disease conditions, we

can characterize the onset of a disease by looking at the functional relations among fluxes.

When taking into account a specific disease, I constrained the reaction responsible for

that disease to various values and I evaluated the amount of ATP and NADH as outputs

of the model. Starting from the work of Smith et al.[91] I defined a model condition

as disease status if the ATP production is less or equal to 33% of the production under

normal conditions, and inflammation status if the ATP production is less or equal to

66% but more than 33% of the production under normal conditions.

In this study, Identifiability Analysis (IA) is coupled with the flux balance analysis

model of the mitochondrion [91]. In particular, flux balance analysis is performed to

obtain optimal production of ATP and NADH while varying the flux of the fumarate

hydratase, responsible for the fumarase deficiency, a monogenic disorder in the TCA

cycle. I considered the fluxes of the 135 reactions occurring in the mitochondrial matrix

space as functions of the fumarase flux, and inferred functionally related reactions using

the alternating conditional expectation algorithm (ACE) [34]. The connection between

the identifiability analysis and a constraint-based structure stems from the fact that a

non-identifiable constraint involving decision variables causes them to be functionally

related. Given the space of the feasible fluxes, IA has been applied in the regions

with maximum ATP (healthy condition) and low ATP (pathological condition). The

IA detects structural non-identifiable components of a model by fitting it repeatedly
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Figure 6.2: (A) Simultaneous maximization of ATP and minimization of NADH and (B)
maximization of ATP and NADH in mitochondrial metabolism in the FBA approach [91]. In
blue feasible solutions and in black the wild type condition (before optimization). In red Pareto
optimal solutions after optimizing internal fluxes.

to experimental data and by analyzing the estimates of each component. Details are

reported in Chapter 2.

I chose the ATP and NADH productions as the objective functions to evaluate the

distribution of fluxes in the network. The mitochondrial FBA model is composed of

423 reactions: 73 exchange reactions between the external environment and the mito-

chondrion, 135 reactions in the matrix compartment (e.g., the reactions of the Krebs

cycle and beta-oxidation), and finally all the reactions that take place in the intermem-

brane space. Without constraining the fumarate flux, the maximum ATP production is

reached when the fumarate flux is equal to 6.9721 mmolh−1gDW−1, as shown in Figure

6.3.
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Figure 6.3: Maximum ATP and NADH production against different fumarate flux values.

As described by Smith et al. [91], in the fumarase deficiency conditions the ATP produc-

tion is reduced until 75% of the maximum value. To evaluate the effect of the fumarate

deficiency, I constrained the fumarate flux in the FBA model. I computed 2000 states of

flux balance by adding constrains on the fumarase flux. In particular I constrained the

reaction “Fumarate + H2O −→ (S)-Malate”, firstly by imposing the knockout condition

(i.e., forcing the flux of the reaction to be zero), and then increasing the flux by 0.014

mmolh−1gDW−1, until 13.986 mmolh−1gDW−1. Therefore, I obtained a 135 × 2000

matrix V containing all the matrix fluxes in the model corresponding to fixed fluxes of

fumarase.

For the fumarase deficiency, I identified these intervals of the fumarase flux: healthy state

[10, 5.69], inflammation state [5.69, 3.69[, pathological state [3.69, 0] mmolh−1 gDW−1.

The process of repeating estimates in the matrix K is replaced by taking into account all

the points given as output by the FBA run in different fumarase conditions. I adopted

the Mean Optimal Transformation Approach (MOTA) [76], by fixing at 10 the maximal

number of parameters allowed to enclose a functional relation. There are fluxes showing

functional relations in a group of more than two elements, although in this case it is

less likely to find strong relations among variables. A variable is detected in a group

depending on the contribution strength of a predictor to the response. Each variable

is considered once as response variable. As a result, if a functional relation is among

k variables, it is tested k times, although it is unlikely that the same functional group

is really detected all the k times. The r2 column indicates how much variance of the

response can be explained by the predictors. A high amount of explained variance of the

response indicates a significant effect of the fixation of the predictors on the standard

deviations of the response. The cv(x) = std(x)/mean(x) helps to distinguish practical
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identifiable from non-identifiable variables [76]. In case of practical non-identifiability,

the choice of the value that needs to be fixed strongly depends on the experiments, also

considering reference values in the literature. The interdependent fluxes, which are non-

identifiable, may be fixed at an arbitrary value in order to improve identifiability. This

would not affect the model’s dynamical properties, as the variables functionally related

to the fixed variable change accordingly.

I first applied the IA to detect global relations between two or more variables, allowing

the fumarase flux to span all the interval [0, 13.986] mmolh−1 gDW−1. In the table

summarizing the results (Table 6.1), the “flux groups” column indicates the functional

relations between variables. For instance, R01361MM and R01978MM are functionally

related. In other words, the response variable x47 is strongly related to the predictor

x62. In Figure 6.4 I plot the optimal transformations β found for these two reactions.

We notice that the transformations are similar to each other, indicating the structural

non identifiability of both variables. The functional relation between these two reactions

(x47 and x62) has been detected by the identifiability analysis applied to both reactions.

This is therefore a strong relation, marked by a double asterisk in Table 6.1.

In Table 6.2, Table 6.3 and Table 6.4 have been shown the results of the IA applied to

the metabolic network with various values of the fumarase flux. The (x28, x50) group is

detected both in the healthy and in the pathological state, but not in the inflammation

state. In the pathological state only four different functional relations are detected,

which means that variables are mostly unrelated to one another.
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Figure 6.4: Optimal transformations β (y axis) found for the two fluxes R01361MM, repre-
senting the 3hydroxybutyrate dehydrogenase (top) and R01978MM, representing the hydroxy
methylglutaryl–CoA synthase (bottom) (x axis) [mmolh−1 gDW−1] in the mitochondrial FBA
model [91]. This plot proves that there is a strong relation between these two fluxes, with slightly
different and noisier behavior in the neighborhood of 0 and 0.7.

Variable Flux Flux groups r2 cv

x1 R00004MM x1, x8, x12, x27∗ 1.000 2.056

x2 R00014MM x2, x16, x45, x58, x72, x82, x98 n.a. 0.047

x3 R00081MM x3, x64∗∗ 1.000 0.423

x4 R00086MM x4, x13, x57, x65, x73∗ 1.000 0.404

x5 R00127MM x5, x19, x87, x117, x118∗ 1.000 1.233

x6 R00157MM x6, x14, x85, x117, x118 n.a. 1.233

x7 R00205MM x7, x21, x91, x109, x128 n.a. 0.869

x8 R00238MM x8, x21, x37, x57, x73∗ 1.000 0.884

x9 R00243MM x9, x40, x75, x94, x131∗ 1.000 5.136

x10 R00245MM x10, x16, x57, x61, x78∗ 1.000 0.489

x11 R00256MM x11, x68, x86, x90, x98, x109 n.a. 1.271

x12 R00258MM x2, x12, x13, x43, x78, x98 n.a. 0.190

x13 R00275MM x4, x8, x13, x52, x65∗ 1.000 0.383

x14 R00330MM x8, x14, x86, x88, x91∗ 0.999 3.909

x15 R00342MM x12, x15, x52, x66, x108, x134∗ 0.998 0.420

x16 R00351MM x8, x16, x21, x57, x73∗ 1.000 0.556

x17 R00355MM x2, x17, x72, x82 0.999 0.051

x18 R00371MM x18, x91, x105, x128∗ 1.000 0.869

x19 R00388MM x19, x77, x108, x109, x110, x128 n.a. 0.304

x20 R00430MM x14, x20, x134∗ 0.999 3.780

x21 R00432MM x8, x21, x37, x73, x77, x105 n.a. 0.558
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Variable Flux Flux groups r2 cv

x22 R00512MM x22, x129∗∗ 0.999 2.648

x23 R00551MM x23, x88, x107, x111 1.000 0.000

x24 R00572MM x4, x13, x24, x65, x73∗ 0.999 1.996

x25 R00667MM x19, x25, x98, x108, x112 1.000 0.000

x26 R00705MM x26, x94∗ 1.000 41.821

x27 R00709MM x12, x15, x27, x45, x57, x108∗ 0.998 0.556

x28 R00713MM x4, x12, x28∗ 0.981 2.246

x29 R00716MM x8, x29, x45, x90, x98∗ 1.000 0.847

x30 R00740MM x30, x40∗ 1.000 41.821

x31 R00830MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. n.a.

x32 R00833MM x32, x61, x128∗ 1.000 0.157

x33 R00851MM x33, x66, x91, x109∗ 1.000 2.648

x34 R00927MM x34, x81, x93∗ 1.000 1.152

x35 R00941MM x35, x51∗∗ 1.000 0.867

x36 R00945MM x19, x29, x36, x88, x105, x111 n.a. 0.867

x37 R01082MM x16, x21, x37, x57, x73∗ 1.000 0.578

x38 R01175MM x38, x68, x98, x104, x108, x110 n.a. 0.728

x39 R01177MM x39, x88, x90, x114, x115∗ 1.000 0.841

x40 R01214MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

x41 R01218MM x8, x41, x58, x73, x78∗ 1.000 1.196

x42 R01253MM x2, x12, x13, x42, x58, x65, x82, x134 0.999 0.000

x43 R01279MM x43, x90, x104, x106, x108∗ 1.000 0.726

x44 R01280MM x44, x53∗∗ 1.000 1.582

x45 R01325MM x4, x27, x45, x57, x134∗ 1.000 0.556

x46 R01360MM x8, x19, x46, x115, x128∗ 1.000 1.112

x47 R01361MM x47, x62∗∗ 1.000 1.112

x48 R01624MM x48, x97∗∗ 1.000 1.582

x49 R01626MM x49, x53∗ 1.000 1.582

x50 R01648MM x16, x21, x50, x52∗ 0.987 2.956

x51 R01655MM x35, x51∗∗ 1.000 0.867

x52 R01700MM x11, x27, x45, x52, x66, x73 n.a. 0.558

x53 R01706MM x44, x53∗∗ 1.000 1.582

x54 R01799MM x24, x54∗ 0.999 2.648

x55 R01801MM x43, x55, x117, x118∗ 1.000 61.209

x56 R01859MM x56, x67∗ 1.000 1.152

x57 R01900MM x8, x16, x27, x45, x57∗ 1.000 0.556

x58 R01923MM x39, x58, x109, x111∗ 1.000 0.726

x59 R01939MM x39, x45, x59, x79, x108, x112, x128 n.a. 0.847

x60 R01940MM x60, x70∗ 1.000 0.798

x61 R01975MM x8, x61, x66, x78, x104∗ 1.000 0.803

x62 R01978MM x47, x62∗∗ 1.000 1.112

x63 R02030MM x15, x63, x105, x114, x116 n.a. 2.648

x64 R02161MM x3, x64∗∗ 1.000 0.423

x65 R02163MM x4, x13, x21, x65, x66∗ 1.000 0.383

x66 R02164MM x8, x27, x45, x52, x66∗ 1.000 0.558

x67 R02199MM x67, x133∗∗ 1.000 1.152

x68 R02241MM x24, x68∗ 0.999 2.648
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Variable Flux Flux groups r2 cv

x69 R02313MM x69, x104, x107, x112, x128∗ 1.000 0.847

x70 R02487MM x19, x70, x90, x113∗ 1.000 0.798

x71 R02529MM x71, x88, x114, x128∗ 0.999 0.869

x72 R02569MM x2, x12, x15, x37, x58, x65, x72, x82, x98 n.a. 0.047

x73 R02570MM x8, x21, x37, x73, x77, x88 n.a. 0.558

x74 R02571MM x8, x74, x78, x109∗ 1.000 0.798

x75 R02661MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

x76 R02662MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

x77 R02765MM x43, x77, x91, x111, x128∗ 0.999 1.152

x78 R03026MM x21, x37, x52, x61, x62, x78 n.a. 0.803

x79 R03102MM x59, x79, x104, x105, x108, x128 n.a. 0.847

x80 R03172MM x19, x39, x80, x98, x112∗ 1.000 1.152

x81 R03174MM x34, x81∗ 1.000 1.152

x82 R03270MM x2, x16, x45, x58, x72, x82, x85 n.a. 0.047

x83 R03314MM x83, x86, x88, x109 1.000 0.000

x84 R03381MM x84, x135 1.000 0.000

x85 R03777MM x85, x104, x112, x114, x115∗ 1.000 0.726

x86 R03778MM x86, x90, x107, x114, x116∗ 1.000 0.841

x87 R03857MM x87, x104, x106, x110, x116∗ 1.000 0.726

x88 R03858MM x88, x106, x107, x109, x113∗ 1.000 0.841

x89 R03990MM x89, x110, x112, x114, x115∗ 1.000 0.726

x90 R03991MM x90, x107, x109, x111, x113∗ 1.000 0.841

x91 R04170MM x91, x105, x109, x111, x113∗ 1.000 0.841

x92 R04203MM x92, x132∗∗ 1.000 1.152

x93 R04204MM x34, x93∗ 1.000 1.152

x94 R04224MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

x95 R04355MM x49, x95∗ 1.000 1.582

x96 R04428MM x96, x99∗∗ 1.000 1.582

x97 R04430MM x48, x97∗∗ 1.000 1.582

x98 R04433MM x98, x108, x112, x113∗ 1.000 0.720

x99 R04533MM x96, x99∗∗ 1.000 1.582

x100 R04536MM x49, x100∗ 0.999 1.582

x101 R04537MM x101, x123∗∗ 1.000 1.582

x102 R04543MM x102, x103∗ 1.000 1.582

x103 R04544MM x103, x125∗∗ 1.000 1.582

x104 R04737MM x104, x110, x112, x113, x115∗ 1.000 0.841

x105 R04738MM x91, x105, x108, x111, x116∗ 1.000 0.841

x106 R04739MM x104, x106, x108, x112, x115∗ 1.000 0.841

x107 R04740MM x39, x88, x105, x107, x114∗ 1.000 0.841

x108 R04741MM x104, x108, x110, x112, x115∗ 1.000 0.841

x109 R04742MM x88, x91, x107, x109, x114∗ 1.000 0.841

x110 R04743MM x90, x106, x110, x112, x115∗ 1.000 0.841

x111 R04744MM x86, x88, x109, x111, x116∗ 1.000 0.841

x112 R04745MM x91, x108, x110, x112, x115∗ 1.000 0.841

x113 R04746MM x39, x88, x111, x113, x115∗ 1.000 0.841

x114 R04747MM x88, x91, x107, x111, x114∗ 1.000 0.841

x115 R04748MM x90, x106, x108, x112, x115∗ 1.000 0.841
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Variable Flux Flux groups r2 cv

x116 R04749MM x107, x109, x114, x115, x116∗ 1.000 0.841

x117 R04751MM x90, x110, x112, x115, x117∗ 1.000 0.726

x118 R04754MM x91, x106, x108, x110, x118∗ 1.000 0.726

x119 R04952MM x95, x119∗ 1.000 1.582

x120 R04953MM x100, x120∗ 1.000 1.582

x121 R04954MM x121, x122∗∗ 1.000 1.582

x122 R04956MM x121, x122∗∗ 1.000 1.582

x123 R04959MM x101, x123∗∗ 1.000 1.582

x124 R04968MM x102, x124∗ 1.000 1.582

x125 R04970MM x103, x125∗∗ 1.000 1.582

x126 R05064MM x40, x126 1.000 0.000

x127 R05066MM x76, x127 1.000 0.000

x128 R07162MM x19, x86, x112, x114, x128∗ 1.000 0.304

x129 R07390MM x22, x129∗∗ 0.999 2.648

x130 R07599MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

x131 R07600MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

x132 R07603MM x92, x132∗∗ 1.000 1.152

x133 R07604MM x67, x133∗∗ 1.000 1.152

x134 R07618MM x11, x15, x27, x45, x52, x134 n.a. 0.424

x135 R08157MM x31, x40, x75, x76, x94, x130, x131, x135 n.a. 0.000

Table 6.1: Identifiability analysis applied to the FBA model of the mitochondrion with var-
ious fumarate conditions. The 135 matricial fluxes are grouped according to functional rela-
tions. r2 indicates the amount of variance of the response explained by the predictors. A large
cv(x) = std(x)/mean(x) indicates that the data are scattered (practical non-identifiability).
“n.a.” stands for “not available”, indicating that the metabolite is not significantly affected.
An asterisk is added when r2 > 0.9 and cv > 0.1, while another asterisk is added if the same
functional group with r2 > 0.9 and cv > 0.1 has been detected even if the role of response and
predictors is switched, thus highlighting a strong interdependence between the variables involved.
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Variable Flux Flux groups r2 cv

x1 R00004MM x1, x5, x19, x128∗ 1.000 0.539

x2 R00014MM x2, x72, x82 1.000 0.029

x3 R00081MM x3 0.999 0.027

x4 R00086MM x4, x13, x37, x52, x65 1.000 0.061

x5 R00127MM x5∗ 1.000 3.923

x6 R00157MM x6∗ 1.000 3.922

x7 R00205MM x7, x18, x71∗∗ 1.000 2.040

x8 R00238MM x8, x21, x57, x66, x73∗ 1.000 0.302

x9 R00243MM x9, x31, x76, x131, x135∗ 1.000 3.689

x10 R00245MM x10, x16, x110, x117, x118∗ 1.000 0.387

x11 R00256MM x7, x11, x18, x71∗ 1.000 2.581

x12 R00258MM x12, x18∗ 0.999 0.261

x13 R00275MM x4, x13, x57, x65∗∗ 1.000 0.110

x14 R00330MM x14, x16, x21, x53, x66, x73∗ 1.000 2.982

x15 R00342MM x15, x45, x52, x66, x134∗ 1.000 0.166

x16 R00351MM x8, x16, x57, x105, x109∗ 1.000 0.204

x17 R00355MM x17, x60, x70, x74 0.997 0.030

x18 R00371MM x7, x18∗ 1.000 2.040

x19 R00388MM x19, x89, x106, x114, x128∗ 1.000 0.373

x20 R00430MM x14, x16, x20, x134∗ 1.000 3.143

x21 R00432MM x8, x21, x37, x57, x73∗ 1.000 0.205

x22 R00512MM x22∗ 0.999 4.183

x23 R00551MM x23, x31, x76, x130, x135 1.000 0.000

x24 R00572MM x15, x21, x24, x57, x73 n.a. 1.862

x25 R00667MM x25, x31, x40, x94, x131 1.000 0.000

x26 R00705MM x26, x31∗ 1.000 30.545

x27 R00709MM x15, x16, x27, x45, x134∗ 1.000 0.204

x28 R00713MM x28, x50∗∗ 1.000 4.004

x29 R00716MM x29∗ 0.998 1.903

x30 R00740MM x30, x131∗ 1.000 30.545

x31 R00830MM x31, x40, x75, x76, x94, x130 1.000 n.a.

x32 R00833MM x15, x21, x32, x37, x73, x92∗ 1.000 0.112

x33 R00851MM x16, x33, x57∗ 1.000 4.642

x34 R00927MM x34, x75, x76, x130∗ 0.999 0.491

x35 R00941MM x35, x40, x75, x131, x135∗ 0.999 2.024

x36 R00945MM x36, x75, x76, x94, x130∗ 0.999 2.024

x37 R01082MM x21, x37, x57, x73, x134∗ 1.000 0.210

x38 R01175MM x38, x104, x108, x110∗ 1.000 0.281

x39 R01177MM x39, x58, x107, x111, x113∗ 1.000 0.281

x40 R01214MM x31, x40, x75, x76, x94, x130 1.000 0.000

x41 R01218MM x41, x51∗∗ 1.000 2.024

x42 R01253MM x31, x42, x75, x131, x135 1.000 0.000

x43 R01279MM x43, x85, x86, x115, x118∗ 1.000 0.281

x44 R01280MM x44, x49∗ 1.000 0.932

x45 R01325MM x8, x16, x27, x45, x57∗ 1.000 0.204

x46 R01360MM x46∗ 0.996 0.439

x47 R01361MM x47∗ 1.000 0.439
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Variable Flux Flux groups r2 cv

x48 R01624MM x48, x97, x121∗ 1.000 0.932

x49 R01626MM x49, x53, x100∗ 1.000 0.932

x50 R01648MM x28, x50∗∗ 1.000 3.995

x51 R01655MM x41, x51∗∗ 1.000 2.024

x52 R01700MM x15, x27, x52, x73, x134∗ 1.000 0.205

x53 R01706MM x53, x125∗ 0.999 0.932

x54 R01799MM x8, x21, x54, x73∗ 1.000 4.383

x55 R01801MM x55 n.a. 46.807

x56 R01859MM x56, x94∗ 1.000 0.491

x57 R01900MM x13, x16, x37, x57, x65∗ 1.000 0.204

x58 R01923MM x58, x86, x90, x91, x105∗ 1.000 0.281

x59 R01939MM x59∗ 0.998 1.903

x60 R01940MM x60, x70, x74∗∗ 1.000 0.421

x61 R01975MM x16, x27, x57, x61, x78∗ 1.000 0.273

x62 R01978MM x62∗ 0.999 0.440

x63 R02030MM x63∗ 0.999 4.179

x64 R02161MM x64 n.a. 0.027

x65 R02163MM x4, x13, x57, x65∗∗ 1.000 0.110

x66 R02164MM x15, x27, x52, x66, x134∗ 1.000 0.206

x67 R02199MM x67, x130∗ 1.000 0.491

x68 R02241MM x68∗ 0.998 4.237

x69 R02313MM x69∗ 0.999 1.903

x70 R02487MM x60, x70, x74∗∗ 1.000 0.421

x71 R02529MM x7, x18, x71∗∗ 1.000 2.040

x72 R02569MM x2, x72, x82 1.000 0.029

x73 R02570MM x8, x21, x37, x52, x73∗ 1.000 0.205

x74 R02571MM x60, x70, x74∗∗ 1.000 0.421

x75 R02661MM x31, x40, x75, x76, x94, x130 1.000 0.000

x76 R02662MM x31, x40, x75, x76, x94, x130 1.000 0.000

x77 R02765MM x40, x76, x77, x94, x135∗ 0.998 0.491

x78 R03026MM x8, x61, x78, x91, x113∗ 1.000 0.273

x79 R03102MM x31, x75, x79, x94∗ 0.999 1.903

x80 R03172MM x80, x133∗ 1.000 0.491

x81 R03174MM x31, x81, x130, x135∗ 0.999 0.491

x82 R03270MM x2, x72, x82 1.000 0.029

x83 R03314MM x31, x75, x76, x83, x94 n.a. 0.000

x84 R03381MM x84, x130 1.000 0.000

x85 R03777MM x39, x85, x115, x117, x118∗ 1.000 0.281

x86 R03778MM x86, x90, x108, x114, x116∗ 1.000 0.281

x87 R03857MM x43, x87, x108, x111, x117∗ 1.000 0.281

x88 R03858MM x88, x91, x111, x113, x114∗ 1.000 0.281

x89 R03990MM x85, x89, x106, x112, x115∗ 1.000 0.281

x90 R03991MM x58, x88, x90, x105, x113∗ 1.000 0.281

x91 R04170MM x91, x108, x111, x113, x116∗ 1.000 0.281

x92 R04203MM x92∗ 0.999 0.491

x93 R04204MM x93, x94∗ 1.000 0.491

x94 R04224MM x31, x40, x75, x76, x94, x130 1.000 0.000
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Variable Flux Flux groups r2 cv

x95 R04355MM x49, x95∗ 1.000 0.932

x96 R04428MM x96, x100, x121∗ 1.000 0.932

x97 R04430MM x97, x122∗ 1.000 0.932

x98 R04433MM x38, x39, x58, x98, x116∗ 1.000 0.277

x99 R04533MM x99, x120∗∗ 1.000 0.932

x100 R04536MM x49, x100, x120∗ 1.000 0.932

x101 R04537MM x101, x121, x122∗ 1.000 0.932

x102 R04543MM x53, x102∗ 0.999 0.932

x103 R04544MM x49, x103, x125∗ 1.000 0.932

x104 R04737MM x85, x87, x91, x104, x110∗ 1.000 0.281

x105 R04738MM x86, x90, x105, x107, x109∗ 1.000 0.281

x106 R04739MM x39, x85, x87, x106, x117∗ 1.000 0.281

x107 R04740MM x58, x86, x88, x107, x111∗ 1.000 0.281

x108 R04741MM x85, x108, x110, x112, x115∗ 1.000 0.281

x109 R04742MM x105, x109, x111, x114, x116∗ 1.000 0.281

x110 R04743MM x43, x87, x110, x112, x116∗ 1.000 0.281

x111 R04744MM x43, x91, x111, x113, x114∗ 1.000 0.281

x112 R04745MM x91, x106, x108, x112, x117∗ 1.000 0.281

x113 R04746MM x39, x107, x109, x111, x113∗ 1.000 0.281

x114 R04747MM x58, x91, x111, x113, x114∗ 1.000 0.281

x115 R04748MM x43, x85, x112, x115, x117∗ 1.000 0.281

x116 R04749MM x39, x86, x87, x114, x116∗ 1.000 0.281

x117 R04751MM x85, x104, x106, x110, x117∗ 1.000 0.281

x118 R04754MM x85, x104, x108, x112, x118∗ 1.000 0.281

x119 R04952MM x95, x119∗ 1.000 0.932

x120 R04953MM x99, x120∗∗ 1.000 0.932

x121 R04954MM x101, x121∗ 1.000 0.932

x122 R04956MM x97, x101, x122, x123∗ 1.000 0.932

x123 R04959MM x121, x122, x123∗ 1.000 0.932

x124 R04968MM x49, x124∗ 1.000 0.932

x125 R04970MM x103, x125∗ 1.000 0.932

x126 R05064MM x94, x126 1.000 0.000

x127 R05066MM x127, x130 1.000 0.000

x128 R07162MM x19, x107, x113, x114, x128∗ 1.000 0.373

x129 R07390MM x129∗ 0.999 4.177

x130 R07599MM x31, x40, x75, x76, x94, x130 1.000 0.000

x131 R07600MM x31, x40, x75, x76, x94, x131 1.000 0.000

x132 R07603MM x76, x132∗ 1.000 0.491

x133 R07604MM x31, x40, x76, x133∗ 1.000 0.491

x134 R07618MM x15, x21, x27, x52, x134∗ 1.000 0.168

x135 R08157MM x31, x40, x75, x76, x94, x135 1.000 0.000

Table 6.2: Identifiability Analysis results in Healthy state for FBA mitochondria model.
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Variable Flux Flux groups r2 cv

x1 R00004MM x1, x44, x54∗ 0.995 2.135

x2 R00014MM x2, x72, x82 1.000 0.000

x3 R00081MM x3, x15, x16, x50, x64, x98∗ 1.000 0.115

x4 R00086MM x4, x13, x108, x117∗ 1.000 0.113

x5 R00127MM x5∗ 0.912 0.267

x6 R00157MM x6 n.a. 0.267

x7 R00205MM x7 n.a. 0.000

x8 R00238MM x8, x50, x78, x91, x111, x114∗ 1.000 0.199

x9 R00243MM x9, x23, x25, x26, x29, x30 1.000 n.a.

x10 R00245MM x10, x43, x108, x110, x128 1.000 0.032

x11 R00256MM x11 n.a. 0.000

x12 R00258MM x12 n.a. 0.000

x13 R00275MM x13, x27, x85, x89∗ 1.000 0.104

x14 R00330MM x14, x73, x91∗ 1.000 0.268

x15 R00342MM x10, x15, x64, x98 1.000 0.082

x16 R00351MM x16, x19, x88, x90, x91∗ 1.000 0.119

x17 R00355MM x17 0.985 0.000

x18 R00371MM x18 0.997 0.000

x19 R00388MM x16, x19, x39, x107 1.000 0.048

x20 R00430MM x20∗ 1.000 0.267

x21 R00432MM x8, x16, x21, x50, x112, x134∗ 1.000 0.119

x22 R00512MM x22, x63, x129∗∗ 0.997 0.649

x23 R00551MM x9, x23, x25, x26, x29, x30 1.000 0.000

x24 R00572MM x24, x54∗∗ 0.997 0.654

x25 R00667MM x9, x23, x25, x26, x29, x30 1.000 0.000

x26 R00705MM x9, x23, x25, x26, x29, x30 1.000 n.a.

x27 R00709MM x10, x27, x38, x85∗ 1.000 0.119

x28 R00713MM x28∗ 0.952 0.466

x29 R00716MM x9, x23, x25, x26, x29, x30 1.000 0.000

x30 R00740MM x9, x23, x25, x26, x29, x30 1.000 n.a.

x31 R00830MM x9, x23, x25, x26, x29, x31 1.000 n.a.

x32 R00833MM x32 0.995 0.000

x33 R00851MM x33, x68∗∗ 0.965 0.691

x34 R00927MM x9, x23, x25, x26, x29, x34 1.000 n.a.

x35 R00941MM x9, x23, x25, x26, x29, x35 1.000 0.000

x36 R00945MM x9, x23, x25, x26, x29, x36 1.000 0.000

x37 R01082MM x8, x37, x111, x114∗ 1.000 0.123

x38 R01175MM x3, x13, x27, x38, x108∗ 1.000 0.217

x39 R01177MM x10, x21, x39, x58∗ 1.000 0.217

x40 R01214MM x9, x23, x25, x26, x29, x40 1.000 0.000

x41 R01218MM x9, x23, x25, x26, x29, x41 1.000 0.000

x42 R01253MM x42 0.999 0.000

x43 R01279MM x13, x21, x38, x43, x50, x85∗ 1.000 0.217

x44 R01280MM x1, x24, x44∗ 0.994 2.733

x45 R01325MM x45, x50, x65, x98, x114, x118∗ 1.000 0.119

x46 R01360MM x9, x23, x25, x26, x29, x46 1.000 n.a.

x47 R01361MM x9, x23, x25, x26, x29, x47 1.000 n.a.
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Variable Flux Flux groups r2 cv

x48 R01624MM x48, x97∗∗ 0.999 5.268

x49 R01626MM x49∗ 0.982 1.322

x50 R01648MM x50, x104∗ 0.983 1.137

x51 R01655MM x9, x23, x25, x26, x29, x51 1.000 0.000

x52 R01700MM x52, x61, x65, x108, x110∗ 1.000 0.119

x53 R01706MM x53∗ 0.983 5.271

x54 R01799MM x24, x54∗∗ 0.997 0.657

x55 R01801MM x55 n.a. 15.905

x56 R01859MM x9, x23, x25, x26, x29, x56 1.000 n.a.

x57 R01900MM x39, x50, x57, x58, x88, x90∗ 1.000 0.119

x58 R01923MM x50, x58, x107, x109, x115, x128∗ 1.000 0.217

x59 R01939MM x9, x23, x25, x26, x29, x59 1.000 0.000

x60 R01940MM x9, x23, x25, x26, x29, x60 1.000 0.000

x61 R01975MM x50, x52, x61, x86, x107, x117∗ 1.000 0.199

x62 R01978MM x9, x23, x25, x26, x29, x62 1.000 n.a.

x63 R02030MM x22, x63, x129∗∗ 0.999 0.655

x64 R02161MM x27, x52, x64, x134∗ 1.000 0.115

x65 R02163MM x65, x117, x118, x134∗ 1.000 0.104

x66 R02164MM x50, x66, x87, x98, x117, x118∗ 1.000 0.119

x67 R02199MM x9, x23, x25, x26, x29, x67 1.000 n.a.

x68 R02241MM x33, x68∗∗ 0.965 0.676

x69 R02313MM x9, x23, x25, x26, x29, x69 1.000 0.000

x70 R02487MM x9, x23, x25, x26, x29, x70 1.000 0.000

x71 R02529MM x71 n.a. 0.000

x72 R02569MM x2, x72, x82 1.000 0.000

x73 R02570MM x73, x107, x109, x111, x114∗ 1.000 0.119

x74 R02571MM x9, x23, x25, x26, x29, x74 1.000 0.000

x75 R02661MM x9, x23, x25, x26, x29, x75 1.000 0.000

x76 R02662MM x9, x23, x25, x26, x29, x76 1.000 0.000

x77 R02765MM x77∗ 1.000 33.161

x78 R03026MM x58, x73, x78, x91∗ 1.000 0.199

x79 R03102MM x9, x23, x25, x26, x29, x79 1.000 0.000

x80 R03172MM x80 0.836 3.329

x81 R03174MM x9, x23, x25, x26, x29, x81 1.000 n.a.

x82 R03270MM x2, x72, x82 1.000 0.000

x83 R03314MM x83 0.995 0.000

x84 R03381MM x84 0.974 0.000

x85 R03777MM x19, x64, x65, x85, x118∗ 1.000 0.217

x86 R03778MM x19, x50, x58, x78, x86, x104∗ 1.000 0.217

x87 R03857MM x3, x65, x87, x110, x114∗ 1.000 0.217

x88 R03858MM x39, x43, x73, x88, x114∗ 1.000 0.217

x89 R03990MM x4, x89, x98, x110∗ 1.000 0.217

x90 R03991MM x16, x90, x91, x109, x114∗ 1.000 0.217

x91 R04170MM x13, x19, x91, x105, x109∗ 1.000 0.217

x92 R04203MM x9, x23, x25, x26, x29, x92 1.000 n.a.

x93 R04204MM x9, x23, x25, x26, x29, x93 1.000 n.a.

x94 R04224MM x9, x23, x25, x26, x29, x94 1.000 0.000
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Variable Flux Flux groups r2 cv

x95 R04355MM x95∗ 0.990 3.729

x96 R04428MM x96, x99∗∗ 0.999 2.360

x97 R04430MM x48, x97∗∗ 0.999 5.124

x98 R04433MM x4, x38, x50, x98, x108, x112∗ 1.000 0.213

x99 R04533MM x96, x99∗∗ 0.999 2.359

x100 R04536MM x100, x102∗ 0.992 2.531

x101 R04537MM x101, x123∗∗ 0.999 6.143

x102 R04543MM x102, x120∗∗ 0.992 1.294

x103 R04544MM x103, x125∗∗ 0.999 2.141

x104 R04737MM x3, x15, x52, x104∗ 1.000 0.217

x105 R04738MM x37, x50, x87, x90, x105, x111∗ 1.000 0.217

x106 R04739MM x50, x61, x85, x106, x112, x115∗ 1.000 0.217

x107 R04740MM x4, x39, x88, x107∗ 1.000 0.217

x108 R04741MM x45, x50, x52, x106, x108, x128∗ 1.000 0.217

x109 R04742MM x8, x50, x88, x90, x107, x109∗ 1.000 0.217

x110 R04743MM x3, x89, x110, x134∗ 1.000 0.217

x111 R04744MM x19, x50, x52, x58, x88, x111∗ 1.000 0.217

x112 R04745MM x13, x64, x89, x112, x114∗ 1.000 0.217

x113 R04746MM x37, x50, x88, x98, x113, x114∗ 1.000 0.217

x114 R04747MM x4, x50, x89, x91, x113, x114∗ 1.000 0.217

x115 R04748MM x85, x89, x104, x115∗ 1.000 0.217

x116 R04749MM x50, x86, x91, x107, x113, x116∗ 1.000 0.217

x117 R04751MM x10, x64, x87, x117∗ 1.000 0.217

x118 R04754MM x4, x50, x104, x114, x118, x128∗ 1.000 0.217

x119 R04952MM x119∗ 1.000 2.929

x120 R04953MM x102, x120∗∗ 0.992 2.379

x121 R04954MM x121, x122∗∗ 0.999 5.189

x122 R04956MM x121, x122∗∗ 0.999 5.189

x123 R04959MM x101, x123∗∗ 0.999 6.143

x124 R04968MM x121, x124∗ 0.979 1.594

x125 R04970MM x103, x125∗∗ 0.999 2.141

x126 R05064MM x47, x126 0.999 0.000

x127 R05066MM x31, x127 0.999 0.000

x128 R07162MM x38, x50, x85, x98, x118, x128 1.000 0.048

x129 R07390MM x22, x63, x129∗∗ 0.998 0.655

x130 R07599MM x9, x23, x25, x26, x29, x130 1.000 0.000

x131 R07600MM x9, x23, x25, x26, x29, x131 1.000 0.000

x132 R07603MM x9, x23, x25, x26, x29, x132 1.000 n.a.

x133 R07604MM x9, x23, x25, x26, x29, x133 1.000 n.a.

x134 R07618MM x4, x10, x61, x118, x134 1.000 0.082

x135 R08157MM x9, x23, x25, x26, x29, x135 1.000 0.000

Table 6.3: Identifiability Analysis results in Inflammation state in fumarase deficiency.
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Variable Flux Flux groups r2 cv

x1 R00004MM x1, x22, x33, x54, x112∗ 1.000 1.196

x2 R00014MM x2, x57, x58, x72, x82, x112 1.000 0.018

x3 R00081MM x3, x27, x52, x64, x134∗ 1.000 0.502

x4 R00086MM x4, x61, x108, x115, x134∗ 1.000 0.503

x5 R00127MM x5, x21, x45, x78, x113 n.a. 0.658

x6 R00157MM x6, x68∗ 0.992 0.658

x7 R00205MM x7, x36, x51, x94, x127 n.a. 0.000

x8 R00238MM x8, x105, x109, x111, x116∗ 1.000 11.664

x9 R00243MM x9, x26, x31, x35, x36, x40 1.000 n.a.

x10 R00245MM x10, x104, x110∗ 1.000 0.736

x11 R00256MM x11, x75, x126, x131 0.998 0.000

x12 R00258MM x12, x42 1.000 0.000

x13 R00275MM x13, x15, x45, x65, x128∗ 1.000 0.476

x14 R00330MM x14, x19, x39∗ 1.000 2.063

x15 R00342MM x13, x15, x52, x90, x106∗ 1.000 0.275

x16 R00351MM x16, x57, x86, x109, x114∗ 1.000 0.530

x17 R00355MM x1, x17, x22, x33, x54 1.000 0.036

x18 R00371MM x18 n.a. 0.000

x19 R00388MM x16, x19, x57, x106, x116∗ 1.000 0.134

x20 R00430MM x20∗ 1.000 2.055

x21 R00432MM x8, x21, x57, x105, x116∗ 1.000 0.531

x22 R00512MM x1, x22, x33, x54, x58, x105∗ 1.000 1.196

x23 R00551MM x9, x23, x40, x69, x94 0.999 0.000

x24 R00572MM x15, x19, x24, x65, x128∗ 0.999 1.655

x25 R00667MM x17, x25, x78, x90 1.000 0.000

x26 R00705MM x9, x26, x31, x35, x36, x40 1.000 n.a.

x27 R00709MM x3, x15, x27, x104, x115∗ 1.000 0.530

x28 R00713MM x28, x50∗∗ 0.999 4.942

x29 R00716MM x29, x35 1.000 0.000

x30 R00740MM x30, x31∗ 1.000 11.478

x31 R00830MM x9, x26, x31, x35, x36, x40 1.000 n.a.

x32 R00833MM x32 1.000 0.000

x33 R00851MM x1, x22, x33, x54, x78∗ 1.000 1.196

x34 R00927MM x34, x81, x93∗∗ 1.000 824.829

x35 R00941MM x9, x26, x31, x35, x36, x40 1.000 0.000

x36 R00945MM x9, x26, x31, x35, x36, x40 1.000 0.000

x37 R01082MM x19, x37, x66, x73, x78∗ 1.000 0.579

x38 R01175MM x38, x85, x89∗ 1.000 1.401

x39 R01177MM x13, x19, x21, x39, x114∗ 1.000 6.885

x40 R01214MM x9, x26, x31, x35, x36, x40 1.000 0.000

x41 R01218MM x41, x58, x105, x107, x109∗ 1.000 1.056

x42 R01253MM x12, x42 1.000 0.000

x43 R01279MM x38, x43, x87∗ 1.000 1.401

x44 R01280MM x44, x49, x95∗ 1.000 0.624

x45 R01325MM x13, x15, x45, x112, x128∗ 1.000 0.530

x46 R01360MM x46, x62∗ 1.000 16.699

x47 R01361MM x47, x62∗∗ 1.000 17.001
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Variable Flux Flux groups r2 cv

x48 R01624MM x48, x103∗ 1.000 1.532

x49 R01626MM x44, x48, x49∗ 1.000 1.574

x50 R01648MM x28, x50∗∗ 0.999 4.829

x51 R01655MM x9, x26, x31, x35, x36, x51 1.000 0.000

x52 R01700MM x52, x64, x65, x104, x115∗ 1.000 0.533

x53 R01706MM x53, x121∗ 1.000 0.624

x54 R01799MM x1, x19, x22, x33, x54∗ 1.000 1.196

x55 R01801MM x55 n.a. n.a.

x56 R01859MM x9, x26, x31, x35, x36, x56 1.000 n.a.

x57 R01900MM x16, x57, x78, x91, x107∗ 1.000 0.530

x58 R01923MM x8, x21, x58, x90, x115 n.a. 1.401

x59 R01939MM x9, x36, x59, x94, x126 n.a. 0.000

x60 R01940MM x31, x35, x36, x60, x76 n.a. 0.000

x61 R01975MM x27, x61, x104, x110, x128∗ 1.000 11.664

x62 R01978MM x47, x62∗∗ 1.000 16.699

x63 R02030MM x4, x22, x63, x68, x98, x129∗ 1.000 1.196

x64 R02161MM x4, x45, x57, x64, x66∗ 1.000 0.502

x65 R02163MM x65, x110, x115, x116, x128∗ 1.000 0.476

x66 R02164MM x3, x27, x61, x66, x108∗ 1.000 0.531

x67 R02199MM x67, x92, x132, x133∗∗ 1.000 n.a.

x68 R02241MM x66, x68, x108, x134∗ 1.000 1.196

x69 R02313MM x69, x126 1.000 0.000

x70 R02487MM x26, x40, x51, x70, x76 n.a. 0.000

x71 R02529MM x71 n.a. 0.000

x72 R02569MM x2, x8, x58, x72, x82, x91 1.000 0.018

x73 R02570MM x21, x73, x88, x107, x111∗ 1.000 0.533

x74 R02571MM x35, x51, x56, x74, x76 n.a. 0.000

x75 R02661MM x9, x26, x31, x35, x36, x75 1.000 0.000

x76 R02662MM x9, x26, x31, x35, x36, x76 1.000 0.000

x77 R02765MM x77, x105, x107∗ 0.999 n.a.

x78 R03026MM x16, x73, x78, x88, x111∗ 1.000 11.664

x79 R03102MM x79, x131 0.999 0.000

x80 R03172MM x80 n.a. 5.398

x81 R03174MM x34, x81, x93∗∗ 1.000 n.a.

x82 R03270MM x2, x72, x82, x98, x104, x112 1.000 0.018

x83 R03314MM x12, x83 1.000 0.000

x84 R03381MM x9, x26, x31, x35, x36, x84 1.000 0.000

x85 R03777MM x85, x117∗ 1.000 1.401

x86 R03778MM x19, x86, x105, x109, x115∗ 1.000 6.885

x87 R03857MM x85, x87∗ 1.000 1.401

x88 R03858MM x78, x88, x90, x105, x115∗ 1.000 6.885

x89 R03990MM x89, x118∗ 1.000 1.401

x90 R03991MM x19, x21, x78, x90, x111∗ 1.000 6.885

x91 R04170MM x39, x86, x90, x91, x113∗ 1.000 6.885

x92 R04203MM x67, x92, x132, x133∗∗ 1.000 n.a.

x93 R04204MM x34, x81, x93∗∗ 1.000 n.a.

x94 R04224MM x9, x26, x31, x35, x36, x94 1.000 0.000
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Variable Flux Flux groups r2 cv

x95 R04355MM x48, x95∗ 1.000 1.532

x96 R04428MM x49, x96∗ 1.000 1.532

x97 R04430MM x97, x123∗ 1.000 1.532

x98 R04433MM x3, x98, x108∗ 1.000 1.233

x99 R04533MM x99, x120∗ 1.000 1.532

x100 R04536MM x100, x125∗ 1.000 1.532

x101 R04537MM x53, x101, x103∗ 1.000 1.532

x102 R04543MM x97, x102∗ 1.000 0.624

x103 R04544MM x53, x103∗ 1.000 0.624

x104 R04737MM x61, x64, x66, x104, x115∗ 1.000 6.885

x105 R04738MM x39, x78, x86, x105, x116∗ 1.000 6.885

x106 R04739MM x3, x65, x106, x108, x110∗ 1.000 6.885

x107 R04740MM x39, x86, x107, x114, x116∗ 1.000 6.885

x108 R04741MM x4, x52, x65, x108, x115∗ 1.000 6.885

x109 R04742MM x8, x91, x105, x109, x114∗ 1.000 6.885

x110 R04743MM x65, x78, x106, x110, x115∗ 1.000 6.885

x111 R04744MM x73, x78, x105, x109, x111∗ 1.000 6.885

x112 R04745MM x3, x4, x104, x110, x112∗ 1.000 6.885

x113 R04746MM x73, x90, x107, x113, x116∗ 1.000 6.885

x114 R04747MM x21, x105, x109, x114, x116∗ 1.000 6.885

x115 R04748MM x61, x65, x66, x112, x115∗ 1.000 6.885

x116 R04749MM x8, x19, x86, x91, x116∗ 1.000 6.885

x117 R04751MM x117, x118∗ 1.000 1.401

x118 R04754MM x43, x118∗ 1.000 1.401

x119 R04952MM x119, x124∗ 1.000 1.532

x120 R04953MM x97, x120∗ 1.000 1.532

x121 R04954MM x95, x96, x121∗ 1.000 1.532

x122 R04956MM x100, x122∗ 1.000 1.532

x123 R04959MM x100, x102, x120, x122, x123∗ 1.000 1.532

x124 R04968MM x49, x53, x124∗ 1.000 0.624

x125 R04970MM x120, x125∗ 1.000 0.624

x126 R05064MM x9, x26, x31, x35, x36, x126 1.000 0.000

x127 R05066MM x9, x26, x31, x35, x36, x127 1.000 0.000

x128 R07162MM x64, x66, x108, x112, x128∗ 1.000 0.134

x129 R07390MM x3, x4, x63, x64, x129∗ 1.000 1.196

x130 R07599MM x9, x26, x31, x35, x36, x130 1.000 0.000

x131 R07600MM x9, x26, x31, x35, x36, x131 1.000 0.000

x132 R07603MM x67, x92, x132, x133∗∗ 1.000 n.a.

x133 R07604MM x67, x92, x132, x133∗∗ 1.000 n.a.

x134 R07618MM x3, x52, x64, x110, x134∗ 1.000 0.264

x135 R08157MM x9, x26, x31, x35, x36, x135 1.000 0.000

Table 6.4: Identifiability Analysis results in Pathological state in fumarase deficiency.
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6.2.4 Sensitivity and Local Robustness

For the FBAmitochondrial model I have also analyzed the sensitivity of the 135 metabolic

fluxes implementing a novel perturbation that takes into account of thermodynamics

constraints. Indeed, forcing a metabolic flux to a specific value in FBA approach could

lead to unfeasible configuration and the FBA cannot be solved. The global sensitivity is

carried out by applying a random noise on exchange fluxes. To calculate the elementary

effect of the j-th metabolic flux, the vj flux is constrained to a value obtained by adding

the ∆ random noise. The distribution of the elementary effect is calculated by sampling

until 100 times. This perturbation considers the reversibility of the fluxes and if after

perturbation the network is unfeasible, the sensitivity indexes cannot be calculated. We

can see the results related to the mitochondrion network in Figure 6.5. The most sen-

sitive reaction is the Saccharopine dehydrogenase (R001716MM), associated to the EC

number 1.5.1.8, followed by ornithine aminotransferase (R00667MM) associated to the

EC 2.6.1.13 and 5-aminolevulinate synthase (R00371MM) associated to EC 2.3.1.37.

In Table 6.5 I report the results of the local robustness for mitochondrial fluxes for the

energy production. In particular have been shown the values obtained for the fragile

metabolic fluxes, i.e., fluxes with a robustness less than 100%. In particular, in Figure

6.6 has been plotted the response in terms of ATP and NADH production after varying

the metabolic fluxes whose robustness is zero. Indeed, we can see that ATP and NADH

change mostly by varying values in x axis. Instead, in Figure 6.7 have been reported

the most robust metabolic fluxes.
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Figure 6.5: Sensitivity analysis results for the FBA mitochondrial model [91]. I report the
two sensitivity indices for each of the 135 internal reactions. The larger is the value of the two
indices, larger is the influence of the corresponding reaction on output of the model. On the key,
only the most sensitive reaction IDs are reported. The labels on the key are sorted according to
sensitivity ranking. For a detailed description of the key, see the work by Smith et al. [91].
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Reaction name LR

1) R00014MM Pyruvate+Thiamindiphosphate→ 84.7

2-(alpha-Hydroxyethyl)thiaminediphosphate+CO2

2) R00081MM COMPLEX IV Oxygen+4Ferrocytochromec→4Ferricytochromec+2H2O 41.2

3) R00086MM ATP SYNTHASE ADP+Orthophosphate+4H+→ATP+H2O 39.3

4) R00127MM ATP+AMP→2ADP 45.8

5) R00157MM UTP+AMP→UDP+ADP 49.4

6) R00243MM L-Glutamate+NAD++H2O→2-Oxoglutarate+NH3+NADH+H+ 99.9

7) R00275MM 2O2.-+2H+→H2O2+Oxygen 51.7

8) R00342MM (S)-Malate+NAD+→Oxaloacetate+NADH+H+ 89.6

9) R00351MM Citrate+CoA→Acetyl-CoA+H2O+Oxaloacetate 72.7

10) R00430MM GTP+Pyruvate→GDP+Phosphoenolpyruvate 52.3

11) R00432MM GTP+Succinate+CoA→GDP+Orthophosphate+Succinyl-CoA 93.5

12) R00551MM L-Arginine+H2O→L-Ornithine+Urea 51.8

13) R00667MM L-Ornithine+2-Oxoglutarate→L-Glutamate5-semialdehyde+L-Glutamate 49.5

14) R00709MM Isocitrate+NAD+→2-Oxoglutarate+CO2+NADH+H+ 57

15) R00716MM N6-(L-1,3-Dicarboxypropyl)-L-lysine+NADP++H2O→ 50.2

L-Lysine+2-Oxoglutarate+NADPH+H+

16) R00833MM (R)-2-Methyl-3-oxopropanoyl-CoA→Succinyl-CoA 50.3

17) R01082MM (S)-Malate→Fumarate+H2O 0

18) R01175MM Butanoyl-CoA+FAD→FADH2+Crotonoyl-CoA 57.5

19) R01177MM Acetyl-CoA+Butanoyl-CoA→CoA+3-Oxohexanoyl-CoA 0

20) R01279MM Palmitoyl-CoA+FAD→trans-Hexadec-2-enoyl-CoA+FADH2 54.8

21) R01325MM Citrate→cis-Aconitate+H2O 73.4

22) R01361MM (R)-3-Hydroxybutanoate+NAD+→Acetoacetate+NADH+H+ 53.3

23) R01700MM 2-Oxoglutarate+EnzymeN6-(lipoyl)lysine→ 94.5

S-succinyldihydrolipoyllysine+CO2

24) R01900MM Isocitrate→cis-Aconitate+H2O 0

25) R01923MM Palmitoyl-CoA+L-Carnitine→CoA+L-Palmitoylcarnitine 0

26) R01978MM (S)-3-Hydroxy-3-methylglutaryl-CoA+CoA→Acetyl-CoA+H2O+Acetoacetyl-CoA 98.9

27) R02161MM COMPLEX III Ubiquinol+2Ferricytochromec→Ubiquinone+2Ferrocytochromec 44.7

28) R02163MM COMPLEX I Ubiquinone+NADH→Ubiquinol+NAD+4H+0.002O2.- 53.6

29) R02164MM COMPLEX II Ubiquinone+Succinate→Ubiquinol+Fumarate 97.5

30) R02313MM N6-(L-1,3-Dicarboxypropyl)-L-lysine+NAD++H2O→ 48

L-Glutamate+L-2-Aminoadipate6-semialdehyde+NADH+H+

31) R02569MM Acetyl-CoA+EnzymeN6-(dihydrolipoyl)lysine→CoA+S-acetyldihydrolipoyllysine 0

32) R02570MM Succinyl-CoA+EnzymeN6-(dihydrolipoyl)lysine→ 0

CoA+S-succinyldihydrolipoyllysine

33) R02661MM 2-Methylpropanoyl-CoA+FAD→2-Methylprop-2-enoyl-CoA+FADH2 49.2

34) R03026MM (S)-3-Hydroxybutanoyl-CoA→Crotonoyl-CoA+H2O 0

35) R03102MM L-2-Aminoadipate6-semialdehyde+NAD++H2O→L-2-Aminoadipate+NADH+H+ 47.6

36) R03172MM (S)-2-Methylbutanoyl-CoA+FAD→2-Methylbut-2-enoyl-CoA+FADH2 48.5

37) R03270MM 2-(alpha-Hydroxyethyl)thiaminediphosphate+EnzymeN6-(lipoyl)lysine→ 85.3

S-acetyldihydrolipoyllysine+Thiamindiphosphate

38) R03381MM (S)-Methylmalonatesemialdehyde+CoA+NAD+→ 49.5

(R)-2-Methyl-3-oxopropanoyl-CoA+NADH+H+

39) R03777MM Octanoyl-CoA+FAD→trans-Oct-2-enoyl-CoA+FADH2 56.1

40) R03778MM Octanoyl-CoA+Acetyl-CoA→CoA+3-Oxodecanoyl-CoA 0

41) R03857MM Lauroyl-CoA+FAD→2-trans-Dodecenoyl-CoA+FADH2 55.1

42) R03858MM Lauroyl-CoA+Acetyl-CoA→CoA+3-Oxotetradecanoyl-CoA 0

43) R03990MM Tetradecanoyl-CoA+FAD→trans-Tetradec-2-enoyl-CoA+FADH2 58.1

44) R03991MM Tetradecanoyl-CoA+Acetyl-CoA→CoA+3-Oxopalmitoyl-CoA 0

45) R04170MM (S)-3-Hydroxydodecanoyl-CoA→2-trans-Dodecenoyl-CoA+H2O 0

46) R04203MM (2S,3S)-3-Hydroxy-2-methylbutanoyl-CoA+NAD+→ 49.2

2-Methylacetoacetyl-CoA+NADH+H+
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Reaction name LR

47) R04224MM 2-Methylprop-2-enoyl-CoA+H2O→(S)-3-Hydroxyisobutyryl-CoA 51.4

48) R04433MM Ubiquinone+FADH2→Ubiquinol+FAD+ 55.3

49) R04737MM (S)-3-Hydroxyhexadecanoyl-CoA+NAD+→3-Oxopalmitoyl-CoA+NADH+H+ 58.8

50) R04738MM (S)-3-Hydroxyhexadecanoyl-CoA→trans-Hexadec-2-enoyl-CoA+H2O 0

51) R04739MM (S)-3-Hydroxytetradecanoyl-CoA+NAD+→3-Oxotetradecanoyl-CoA+NADH 56.5

52) R04740MM (S)-3-Hydroxytetradecanoyl-CoA→trans-Tetradec-2-enoyl-CoA+H2O 0

53) R04741MM (S)-3-Hydroxydodecanoyl-CoA+NAD+→3-Oxododecanoyl-CoA+NADH+H+ 54.7

54) R04742MM Decanoyl-CoA+Acetyl-CoA→CoA+3-Oxododecanoyl-CoA 0

55) R04743MM (S)-Hydroxydecanoyl-CoA+NAD+→3-Oxodecanoyl-CoA+NADH+H+ 56.8

56) R04744MM (S)-Hydroxydecanoyl-CoA→trans-Dec-2-enoyl-CoA+H2O 0

57) R04745MM (S)-Hydroxyoctanoyl-CoA+NAD+→3-Oxooctanoyl-CoA+NADH+H+ 55.6

58) R04746MM (S)-Hydroxyoctanoyl-CoA→trans-Oct-2-enoyl-CoA+H2O 0

59) R04747MM Hexanoyl-CoA+Acetyl-CoA→CoA+3-Oxooctanoyl-CoA 0

60) R04748MM (S)-Hydroxyhexanoyl-CoA+NAD+→3-Oxohexanoyl-CoA+NADH+H+ 54.5

61) R04749MM (S)-Hydroxyhexanoyl-CoA→trans-Hex-2-enoyl-CoA+H2O 0

62) R04751MM Hexanoyl-CoA+FAD→trans-Hex-2-enoyl-CoA+FADH2 55.2

63) R04754MM Decanoyl-CoA+FAD→trans-Dec-2-enoyl-CoA+FADH2 58.2

64) R05064MM (S)-3-Hydroxyisobutyryl-CoA+H2O→CoA+(S)-3-Hydroxyisobutyrate 50.6

65) R05066MM (S)-3-Hydroxyisobutyrate+NAD+→(S)-Methylmalonatesemialdehyde+NADH+H+ 51.1

66) R07599MM 3-Methyl-2-oxobutanoicacid+Thiamindiphosphate→ 50.2

2-Methyl-1-hydroxypropyl-ThPP+CO2

67) R07600MM 2-Methyl-1-hydroxypropyl-ThPP+EnzymeN6-(lipoyl)lysine→ 51.3

S-(2-methylpropanoyl)dihydrolipoyllysine+Thiamindiphosphate

68) R07603MM (S)-3-Methyl-2-oxopentanoicacid+Thiamindiphosphate→ 48.4

2-Methyl-1-hydroxybutyl-ThPP+CO2

69) R07604MM 2-Methyl-1-hydroxybutyl-ThPP+EnzymeN6-(lipoyl)lysine → 48.9

S-(2-methylbutanoyl)dihydrolipoyllysine+Thiamindiphosphate

70) R07618MM EnzymeN6-(dihydrolipoyl)lysine+NAD+→EnzymeN6-(lipoyl)lysine+NADH+H+ 46.1

Table 6.5: Local Robustness (%) for metabolic fluxes in mitochondria. In Table the name and
the ID of the metabolic reactions whose robustness value is less than 100%.
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Figure 6.6: Response in mitochondria after perturbing metabolic fluxes, in particular in fig-
ure has been shown the ATP and NADH production for all the metabolic fluxes with a local
robustness indexes equal to 0 (Table 6.5).
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Figure 6.7: Response in mitochondria after perturbing metabolic fluxes, in particular in figure
has been shown the ATP and NADH production for the most robust metabolic fluxes reported
in Table 6.5: R00243MM=99.9%, R01978MM=98.9%, R02164MM=97.5%, R01700MM=98.8%,
R00432MM=93.5%, R00014MM=84.7%, R00342MM=89.6%, R03270MM=95.3%.

6.3 Identification of Healthy and Pathological States in

mitochondrial metabolism

By using NSGA-II [25], I optimized multiple energy-related objectives. The model I

adopt here consists of 73 differential-algebraic equations (DAEs) to model the mitochon-

drial bioenergetics [87]. In particular, the model accounts for 35 biochemical reactions,

including the oxidative phosphorylation, the electron transport system, the tricarboxylic
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acid cycle and related reactions, the Na+/Ca2+ cycle and the K+-cycle. As in the pre-

vious case studies, I maximized the production of adenosine triphosphate (ATP) and

nicotinamide adenine dinucleotide (NADH).

The variable space is defined as the space of feasible initial concentrations of 50 metabo-

lites and the population is initialized in a random way.

I simultaneously maximized ATP and NADH production varying the initial conditions

(the initial metabolites contents) used to solve the DAEs system. In particular, I varied

the initial conditions for 50 metabolites (the decision variables), while maintaining fixed

the following: 1) matrix water volume, 2) inner membrane space water volume, 3)

matrix free chloride, 4) total matrix ATP, 5) total matrix ADP, 6) total matrix GTP, 7)

total matrix GDP, 8) total matrix NADH, 9) total matrix NAD, 10) total mitochondrial

ubiquinol, 11) total mitochondrial ubiquinone, 12) total CO2 matrix, 13) total O2 matrix,

14) inter membrane space (IMS) free proton, 15) IMS free potassium, 16) IMS free

magnesium, 17) IMS free calcium, 18) IMS free sodium, 19) total IMS cytochrome

c2+, 20) total IMS cytochrome c3+. Before the optimization, at the fully oxidized

state NADH is equal to 1.5987 · 10−10 nmol/mg and ATP −0.0014 nmol/mg. After the
optimization, we have the Pareto-optimal points in black shown in Figure 6.8.

If the matrix calcium content is increased from 10−5 to 10−4 nmol/mg, the ATP synthesis

and NADH formation decrease (see Figure 6.8, red signs). Experiments in the figure

have been conducted by incrementing calcium to 10−4 and 1.5 · 10−5, and by reducing
calcium to 10−6 and 10−5/1.5. These experiments can demonstrate that a perturbation

in mitochondrial Ca2+ homeostasis has major implications for cell function at the level

of ATP synthesis and NADH generation. Labels in the figure reports the maximum

ATP value for each Pareto front.

For the cancer studies, I focused the analysis on mitochondrial activity and its role on

cancer diseases. To simulate the cancer environment, I changed the initial condition for

i) the mitochondrial membrane potential ∆Φ, ii) the total extra-mitochondrial glucose-

6-phosphate content (G6P) and iii) the extra-mitochondrial free proton content (H+).

I fixed ∆Φ = 2 mV, G6P = Vcyt×106 nmol/mg and H+ = Vcyt×10−5 nmol/mg. In-
stead, in healthy state, ∆Φ = 1 mV, G6P = Vcyt×1012 nmol/mg and H+ = Vcyt×107

nmol/mg, where Vcyt is the water volume in cytosolic space. In a second step, I used

the same design to minimize ATP and NADH when the mitochondrion is in a cancer

condition in order to find the variables playing a crucial role to kill the cancer cell. The

results of the optimization are shown in Figure 6.9. In this way, I can distinguish be-

tween healthy and pathological state. The red and green regions represent respectively

the pathological and healthy state in mitochondria during the production of ATP and

NADH. The purple region represents the apoptosis state of a cell in cancer conditions,



Chapter 6. Comparative Analysis and Design of Mitochondrial Metabolism 126

 1e-011

 1e-010

 1e-009

 1e-008

 1e-007

-2e-005 -1.5e-005 -1e-005 -5e-006  0

N
A

D
H

 [
n
m

o
l/
m

g
]

ATP [nmol/mg]

(-2.22
-6

 8.95
-11

)

(-1.56
-5

 7.37
-11

)

(-1.26
-6

 2.17
-9

)

(-1.51
-4

 1.85
-10

)

(-1.45
-4

 7.69
-11

)

Ca
2+

 = 10
-6

Ca
2+

 = 10
-5

Ca
2+

 = 10
-4

Ca
2+

 = 10
-5

*1.5
Ca

2+
 = 10

-5
/1.5

Figure 6.8: ATP and NADH production maximization in the mitochondrial DAEs model [87].
I varied the initial concentrations of 50 metabolites and solved the system of DAEs. I simu-
lated five differential states based on the concentration of calcium in the matrix: the standard
concentration (10−5 nmol/mg), two increments of the standard concentration (10−4 nmol/mg
and 1.5 · 10−5 nmol/mg) and two decrements of the standard concentration (10−6 nmol/mg and
10−5/1.5 nmol/mg).

i.e., when mitochondria are not able to produce bioenergy. The black line marks the

Pareto optimal solutions. In the cancer experiments, the initial Ca2+ concentration used

in all the simulations is 10−5 nmol/mg.
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Chapter 7

Conclusion

After the advent of the genomic and proteomic sciences, scientists started to consider a

cell as a system. From the reductionistic point of view of the 20th century we have passed

to the integrative approach with the coming of bioinformatics, systems science, modeling

and simulation to study how biological entities interact to form complex systems. With

the Human Genome Project’s completion, and with increasing amounts of expression

data becoming available, growing attention is being paid to in silico biology. The term in

silico biology refers to the use of computers to perform biological studies. Computations

of the structures of complex biomolecules are currently routinely performed. Now, the

mathematical description and computer simulation of the simultaneous action of multiple

gene products is growing in importance, and in the view of many, will take center stage

in biology in the coming decades [92]. With the advancements in computing power it is

becoming possible to profile and model a complete biological system [4]. A big challenge

was reached the last year, when the group of Markus W. Covert published the first in

silico whole cell [5]. Conversely, this year is started the Human Brain Project, which aims

to simulate the complete human brain network on supercomputers to better understand

how it functions. The project is grouping many research groups of the most important

European university and research centers.

With this thesis, I contribute on Systems Biology studies through the development of

computational tools able to design biological systems. BioCAD software is a general

purpose framework and can be seen as a black box able to analyze any type of cir-

cuit, that can be modeled with different mathematic approaches. BioCAD can be used

also for other applications, such as electronic design automation for the design of elec-

tronic circuits. In this thesis, I considered biological circuits modeled through ordinary
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differential equations, differential algebraic equations or by means the flux balance ana-

lysis approach. The methodology is also suitable for any simulator (e.g., SBML, Mat-

lab, C/C++ program and NEURON). BioCAD re-designs natural biological systems

for useful purposes and analyzes components and submodules. It is formed by three

parts, each of them performs respectively the pre-processing analysis, optimization and

post-processing analysis. The optimization is the main part and implements novel and

state-of-art algorithms. It faces single- and multi-objective optimization problems, by

menage continuous or discrete variable spaces. The optimization core implements also

the novel Genetic Design through Multi-objective Optimization (GDMO) algorithm that

finds the optimal genetic manipulation in terms of knockout in bacteria or other organ-

isms to outperform specific biological functions. The results is a set of Pareto optimal

bacterial strains. Pareto optimality has resulted to be very suited for metabolic analysis

and for cross-comparing the behavior of different organisms, for example for synthetic

biology targets. GDMO was also compared with previous methods, such as the most

recent GDLS [11]. Performances have revealed better results and suitable genetic manip-

ulations: for example GDMO found an acetate production that increments more than

130% in Escherichia coli bacterium when undergoes anaerobic conditions versus an ac-

etate production of 91,8% obtained by GDLS. The computational time depends on the

parameters of the model and of the algorithms. Time to perform FBA depends on the

size of the biological circuit: for example for the Escherichia coli bacterium, by using a

3,4 GHz processor and 32 Gb RAM, the elapsed time is (i) 0.0629 seconds in the iJR904

model (931 reactions, 624 metabolites, 904 genes), (ii) 0.0759 seconds in the iAF1260

model (2382 reactions, 1039 metabolites, 1260 genes) and (iii) 0.1305 seconds in the

iJO1366 model (2251 reactions, 1136 metabolites, 1366 genes). The performance of the

optimization algorithm depends by the number of individuals and iterations: for the big-

ger Escherichia coli circuit, by using a population of 1000 individuals, GDMO reaches

1000 generations after four days. In the example above illustrated, the decision variables

are genes, but BioCAD can menage also other elements of the metabolic circuit as well

as enzymes, metabolites and reaction fluxes. At this stage can be found diverse novelty,

for example the new mutation operator used in the evolutionary algorithm for optimiz-

ing the metabolic capabilities and that takes into account of constraints in flux balance

approach. For instance, by analyzing the enzymes of the carbon metabolism pathway,

RuBisCO has resulted the most sensitive enzyme and the UDP-glucose pyrophospho-

rylase (UDPGP) the most important for optimizing carbon dioxide consumption. The

pre-processing step and in particular the sensitivity analysis ranks species, reactions,

pathways of metabolic networks. The new Gene sets-PoSA and Fluxes-PoSA are able

to find the most sensitive pathways in terms of genes and fluxes in flux balance ana-

lysis. Through the sensitivity, we can resize the set of decision variables and optimize

only the most important ones. This could improve the analysis in terms of time and
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computational efforts. The results revealed BioCAD overcoming previous methods and

gave interesting highlights. The future directions foresee the extension of BioCAD by

adding novel parts for the model checking, model order reduction, the implementation

of methods for the reverse engineering of gene regulatory networks and the integration

of models from data bases such as Biomodels DataBase.
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Figure A.1: Species-oriented Sensitivity Analysis in iAF1260 E. coli. I investigate the input
fluxes of the model (299 nutrients) and evaluate their sensitivity with respect to all the fluxes
of the model using the Morris method [28]. I find that only 70 fluxes (reported in the key) are
influent, while the other fluxes have sensitivity indices equal to zero.
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Figure A.2: Pareto fronts for six experiments using GDMO in iAF1260 E. coli. I simultane-
ously maximize the biomass formation [h−1] against ATP synthase rate (A), 1,2-propanediol pro-
duction rate (B), CO2 (C), ethanol (D), formate (E), and lactate (F) production rates [mmolh

−1
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Figure A.3: Pareto fronts for six experiments using GDMO in iAF1260 E. coli. I simulta-
neously maximize the production rates of acetate and CO2 (A), ATP synthase rate and CO2
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(D), succinate and glycerol production rates (E), glycerol production rate and biomass formation
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−1 gDW−1) conditions.
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Table A.1: Results of the Global Robustness (GR), Local Robustness (LR) and the normalized
volume of the robust parameters (R) related to acetate and succinate optimization in iJO1366
E. coli. Points have been selected from Pareto fronts of Figure 3.7-A-C. “W” indicates the wild
type configuration

Strains of GR LR R Acetate Biomass KC
iJO1366 E. coli (%) (%) (mmolh−1· (h−1)

gDW−1)

W 22.88 17.29 1.36 4.446 1.033 0
A 12.81 15.03 1.29 19.790 0.016 19
B 25.56 38.35 1.79 10.644 0.702 8
C 54.61 56.39 1.90 16.208 0.252 1

Strains of GR LR R Succinate Biomass KC
iJO1366 E. coli (%) (%) (mmolh−1· (h−1)

gDW−1)

W 4.46 0 1 0 1.033 0
A 94.58 98.49 1.23 1.072 1.028 3
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Figure A.8: ǫ-dominance and Pareto front in the original iJR904 E. coli obtained for maxi-
mizing BDO production.
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Figure A.9: (A) Genetic strategies optimization to maximize 1-4 butanediol (BDO) and
biomass in the original iJR904 E. coli in anaerobic/aerobic conditions and glucose feed equal to
20 mmolh−1 gDW−1 by using C=10, I=1000 gen=3000. Knockout cost versus BDO production
for genetic strategies optimization with C=10 in anaerobic (B) and aerobic conditions (C).
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Figure A.10: (A) Genetic strategies optimization to maximize 1-4 butanediol (BDO) and
biomass in iJO1366 E. coli in anaerobic/aerobic conditions and glucose feed equal to 20 mmolh−1

gDW−1 by using C=10, I=1000 gen=3000. Knockout cost versus BDO production for genetic
strategies optimization with C=10 in anaerobic (B) and aerobic conditions (C).
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Table A.2: Knocked out gene sets occurrences for maximizing BDO production in iJO1366 E.
coli [50] with respect to 726 Pareto strains (front in black, C=50, Figure 4.5).

Gene sets ID Occurrences Frequency
((b0902 and b0903) or (b0902 and 450 0.619%
b3114) or (b3951 and b3952)
or ((b0902 and b0903) and b2579))
(b3640 or b2251) 190 0.26%
b3029 179 0.246%
b3844 128 0.176%
b3867 125 0.172%
b2529 121 0.167%
((b4079 and (b2481 and b2482 118 0.163%
and b2483 and b2484 and b2485
and b2486 and b2487 and b2488
and b2489 and b2490)) or (b4079
and (b2719 and b2720 and b2721
and b2722 and b2723 and b2724)))
b0221 111 0.153%
(b2528 and b2529) 102 0.140%
b3236 102 0.140%
b0243 96 0.132%
(b3417 or b3428) 91 0.126%
(b3161 or b3709 or b1473 or b0112) 89 0.123%
b1855 85 0.117%
(b1602 and b1603) 81 0.112%
(b2530 and b2529) 79 0.109%
b2508 77 0.106%
b0511 76 0.105%
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Table A.3: Knockout strategies obtained through GDMO for maximizing BDO production by
using C=50 in the iJO1366 E. coli [mmolh−1 gDW−1].

Str BDO Biom kcostGenes Pathways Reactions

A1 10.8692 0.15085
662.67% -88.96% 6 ((b0902 and b0903) or (b0902 and b3114) or. . . Pyruvate Metab. PFL

. . .(b3951 and b3952) or ((b0902 and b0903) and b2579))
b3029 Oxidative Phosphorylation QMO2

Oxidative Phosphorylation QMO3
b3919 Glycolysis/Gluconeogenesis TPI

Transport, Inner MembraneGLYCLTt2r
Transport, Inner Membrane L-LACt2

b2492, b0904 Transport, Inner Membrane FORt

A2 8.3188 1.2205
483.71% -10.70% 5 ((b0902 and b0903) or (b0902 and b3114) or . . . Pyruvate Metab. PFL

. . .(b3951 and b3952) or ((b0902 and b0903) and b2579))
(b1602 and b1603) Oxidative Phosphorylation THD2pp

A3 6.8094 1.2457
377.80% -8.85% 4 ((b0902 and b0903) or (b0902 and b3114) or . . . Pyruvate Metab. PFL

. . .(b3951 and b3952) or ((b0902 and b0903) and b2579))

A4 3.3581 1.3011 2
135.63% -4.80%

((b4079 and (b2481 and b2482 and b2483 and b2484 and . . .Pyruvate Metab. FHL
. . . b2485 and b2486 and b2487 and b2488 and b2489 . . .
. . . and b2490)) or (b4079 and (b2719 and b2720 and . . .
. . . b2721 and b2722 and b2723 and b2724)))
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Figure A.11: Environmental optimization to maximize Biomass versus 1-4 butanediol synthetic
production in iJR904 E. coli, in anaerobic conditions and maintaining glucose feed fixed to
20 mmolh−1 gDW−1. In blues, I show the feasible solutions found each 100 iterations of the
algorithm.
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Figure A.13: Sensitive enzymes in photosynthetic carbon metabolism obtained by the Sobol’
method. SI and SItot are the sensitive indexes calculated by the Sobol’ method [29], and are
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Figure A.14: Enzyme correlation matrix in the photosynthetic carbon metabolism. The cor-
relation matrix measures the interdependence between the parameters and gives an idea of the
compensation effects of change in the parameter values on the model output. We perform the
derivative-based Global Sensitivity Measures (DGSM) with the toolbox SensSB [27]. The matrix
shows that RuBisCO has a high correlation with the following enzymes: PGA kinase, GAPDH,
cyt-Transketolase, PRK.The enzyme PGA kinase shows a high correlation with GAPDH and
PRK. GAPDH is correlated with PRK and FBA aldolase is correlated with FBPase.
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Figure A.15: Changes in the concentrations of carbon metabolism enzymes with respect to
their natural values when three alternative strategic leaf designs are considered: (i) maximal
CO2 uptake: CO2 uptake rate is 39.968 (Top plot); (ii) minimal nitrogen consumption: CO2

uptake rate is 5.7 (middle plot); (iii) closest-to-ideal solution: CO2 uptake rate is 21.213 (bottom
plot). The maximal rate of triose-P (PGA, GAP, and DHAP) export is kept fixed at 1 mmol
L−1 s−1 and the ci is 270 µmol mol−1 to reflect nowadays condition.
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Enzyme Name Sensitive
Enzymes

Fragile En-
zymes

Important for
maximizing
CO2 uptake
rate

Light con-
trol. Energy
convert

Best solution

RuBisCO X X X X 860.226
(100)

PGA kinase X X 3.989 (100)
GAP DH X X X 64.483 (100)
FBP aldolase X X 9.05 (100)
FBPase X X 26.889 (100)
Transketolase 8.247 (100)
SBP aldolase X 6.661 (100)
SBPase X X X 4.397 (100)
PRK X X 7.007 (100)
ADPGPP X X 0.721 (100)
PGCA Pase X 0.325 (100)
Glycerate kinase 0.005 (100)
Glycolate oxidase 0.019 (100)
GSAT 0.027 (100)
Glycer. dehyd. 0.003 (100)
GGAT 0.00005

(100)
GDC X 0.00003

(100)
Cyt. FBP ald. 2.127 (100)
Cyt. FBPase 5.554 (100)
UDPGPP 0.531 (100)
SPS 0.034 (100)
SPP 0.031 (100)
F26BPase 0.00 (100)
CO2 Uptake
µmol

m2s

36.382

(Local R. %,
Global R. %)

(100, 97.2)

Table A.4: Sensitivity and Fragility in photosynthetic carbon metabolism. Eleven enzymes
resulted sensitive and two of them fragile (RuBisCO and GAP dehydrogenase). Six of the
sensitive enzymes were coincident with the known light controlled enzymes of the cycles. Both
fragile enzymes were light controlled. A first conclusion is that most sensitive enzymes are key
enzymes that can strongly influence the CO2 uptake with slight concentration variation. The
fact that these enzymes are mostly light controlled confirms the strict control of light availability
on the Calvin Cycle.
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Enzyme Name Initial Conc.
mg N m−1 (the
natural leaf)

Optimal Conc.
of Var4-1 Sen-
sitive Enz.
mg N m−1

Optimal Conc.
of Var4-2 Sen-
sitive Enz.
mg N m−1

Optimal Conc.
of Var4-3 Sen-
sitive Enz.
mg N m−1

RuBisCO 517.00 (100) 517.00 (99.5) 517.00 (100) 517.00 (98.5)
PGA kinase 12.20 (100) 12.20 (100) 12.20 (100) 12.20 (100)
GAP DH 68.80 (100) 68.80 (100) 68.80 (100) 68.80 (100)
FBP aldolase 6.42 (100) 14.76 (100) 10.40 (100) 6.42 (100)
FBPase 25.50 (100) 25.50 (100) 25.50 (100) 25.50 (100)
Transketolase 34.90 (100) 34.90 (100) 34.90 (100) 34.90 (100)
SBP aldolase 6.21 (100) 6.21 (100) 6.21 (100) 6.21 (100)
SBPase 1.29 (100) 198.05 (100) 1.29 (70) 91.13 (100)
PRK 7.64 (100) 7.64 (100) 7.64 (100) 7.64 (100)
ADPGPP 0.49 (100) 0.49 (100) 43.52 (100) 46.52 (100)
PGCA Pase 85.20 (100) 63.30 (100) 220.93 (100) 131.79 (100)
Glycerate kinase 6.36 (100) 6.36 (100) 6.36 (100) 6.36 (100)
Glycolate oxidase 4.77 (100) 4.77 (100) 4.77 (100) 4.77 (100)
GSAT 17.30 (100) 17.30 (100) 17.30 (100) 17.30 (100)
Glycer. dehyd. 2.64 (100) 2.64 (100) 2.64 (100) 2.64 (100)
GGAT 21.80 (100) 21.80 (100) 21.80 (100) 21.80 (100)
GDC 179.00 (100) 0.02 (100) 0.49 (100) 22.19 (100)
Cyt. FBP ald. 0.57 (100) 0.57 (100) 0.57 (100) 0.57 (100)
Cyt. FBPase 2.24 (100) 2.24 (100) 2.24 (100) 2.24 (100)
UDPGPP 0.07 (100) 0.07 (100) 0.07 (100) 0.07 (100)
SPS 0.20 (100) 0.20 (100) 0.20 (100) 0.20 (100)
SPP 0.13 (100) 0.13 (100) 0.13 (100) 0.13 (100)
F26BPase 0.02 (100) 0.02 (100) 0.02 (100) 0.02 (100)
CO2 Uptake
µmol

m2s

15.486 22.420 20.626 22.156

(Local R. %,
Global R. %)

(100, 81.80) (99.5, 91.8) (70, 69.4) (98.5, 92.9)

Table A.5: Optimization and Robustness in photosynthetic carbon metabolism. Concentra-
tions of the enzymes, individual robustness, CO2 uptake rate (at ci = 270 µmol mol−1, reflecting
current CO2 atmospheric concentration), global and local robustness values. The second column
reports touchstone concentrations used in simulations, i.e. the initial/natural leaf (modeled by
Zhu et al.[60]). Columns 3-5 present enzyme values obtained as result of simulations (varying
three different set of 4 sensitive enzymes), and the robustness values associated with each leaf
engineering.
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Table A.6: Enzyme abbreviations defined in the text or used in the tables and figures for the
photosynthetic carbon metabolism are listed below.

Rubisco ribulose bisphosphate carboxylase EC 4.1.1.39
= Ribulose-1,5-bisphosphate carboxylase/oxygenase

PGA Kinase phosphoglycerate kinase = 3-Phosphoglycerate kinase EC 2.7.2.3
GAPDH Glyceraldehyde 3-phosphate dehydrogenase = GAP dehydrogenase EC 1.2.1.12
Phosphoribulose kinase Ribulose-5-phosphate kinase=PRK EC 2.7.1.19
FBP aldolase FBP Fructose 1,6bisphosphate aldolase EC 4.1.2.13
FBPase FBP Fructose 1,6bisphosphate phosphatase EC 3.1.3.11
Transketolase Transketolase EC 2.2.1.1
SBP aldolase Sedoheptulosebisphosphate aldolase EC 4.1.2.13 (see FBP aldolase)
SBPase Sedoheptulosebisphosphatase EC 3.1.3.37
ADPGPP ADP glucose pyrophosphorylase EC 2.7.7.27
Cytosolic FBP Aldolase Fructose 1,6bisphosphate aldolase EC see the chloroplast isoform
Cytosolic FBP Cytosolic FBP ase 6 Fructose 1,6bisphosphate phosphatase EC see the chloroplast isoform
UDP-Glc pyrophosphorylase UDPGP = UDP glucose pyrophosphorylase EC 2.7.7.9
Suc-P synthetase SPS Sucrose phosphate synthetase EC 2.4.1.14
Suc-P phosphatase SPP Sucrose phosphate phosphatase EC 3.1.3.24
F26BPase Fructose 2,6bisphosphatase EC 3.1.3.46
Phosphoglycolate phosphatase PGCA phosphatase EC 3.1.3.18
Glycerate kinase GCEA kinase EC 2.7.1.31
Glycolate oxydase Glycollate GCA oxydase EC 1.1.1.79
Ser Glyoxylate aminotransferase Glyoxylate:serine aminotransferase = GSAT EC 2.6.1.45
Glycerate dehydrogenase GCEA dehydrogenase EC 1.1.1.29
Glu glyoxylate aminotransferase GGAT = Glutamate:Glyoxylate aminotransferase EC 2.6.1.44
GDC Glycine decarboxylase = Gly decarboxylase EC 1.4.4.2



Abbreviations

MOO Multi Objective Ooptimization

GDMO Genetic Design through Multi-objective Optmization

GDLS Genetic Design through Local Search

SA Sensitivity Analysis

PoSA Pathway-oriented Sensitivity Analysis

SoSA Species-oriented Sensitivity Analysis

RoSA Reaction-oriented Sensitivity Analysis

RA Robustness Analysis

GR Global Robustness

LR Local Robustness

R Glocal Robustness

PoRA Pathway-oriented Robustness Analysis

FBA Flux Balance Analysis

ODE Ordinary Differential Equation

DAE Differential Algebraic Equation

PDE Partial Differential Equation

NSGA II Non-dominated Sorting Genetic Algorithm 2

BioCAD Biological Computer-aided Design

GPR Gene-Protein-Reaction

EDA Electronic Design Automation

IA Identifiability Analysis

glpk GNU Linear Programming Kit

ATP Adenosine triphosphate

NADH Nicotinamide adenine dinucleotide

KEGG Kyoto Encyclopedia Genes and Genomes
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MILP Mixed Integer Linear and Programming

mmolh−1 gdW−1 millimoles per gram dry cell weight per hour

GP Gene-Pathway

RP Reaction-Pathway

ACE Alternating Conditional Expectation

EE Elementary Effect

PCA Principal Component Analysis

VMR Variance-toMean Ratio

BDO 1,4-Butanediol

ci carbonate ions
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