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Preface 

 

Thanks to faster and better integrated processing units, as well as increasingly 

miniaturized and precise sensors, Robotics is experiencing a period of significant 

development. 

 

New technology is making robots increasingly more autonomous. Data from 

different sensors can be fused and processed in real time by on-board processing 

units in order to make the robot perform either more or less complicated tasks. 

 

Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAV) 

equipped with sensors and microprocessors/microcontrollers can be remotely 

piloted. They can also move autonomously with the help of different navigation 

and localization methods. 

 

Power electronics is contributing to a transformation in many fields such as 

robotics, automotive and consumer devices. 

 

Some new applications of power electronics are discussed in the first chapter 

of this thesis. One of these describes how new power electronics devices allow 

the use of distributed instead of centralized control in industrial robotics. 

 

Multi-sensor data fusion theory is presented in the second chapter; the 

Kalman Filter and Particle Filter are described. 

 

Inertial sensors and magnetometers are introduced in the third chapter with 

the description of a calibration procedure for each sensor. 

 

Two new methods of multi-sensor data fusion, based on low-cost Micro 

Electro-Mechanical Systems (MEMS) Inertial Sensors, to estimate joint angles of 

industrial manipulators are described in the fourth chapter. The results of two 

experimental tests are also presented to evaluate and to compare the 

performances of the two methods. 
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A method to estimate the attitude and heading of an UAV is described in the 

fifth chapter. In order to check the performance of the developed method, at the 

end of the fifth chapter, a comparison test with a high accuracy system is 

presented. 

 

A localization algorithm for a wheeled UGV equipped with a GPS and an 

inertial platform is described in the sixth chapter. Simulation tests and 

experimental results are also presented at the end of the sixth chapter. 
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1 Power Electronics  

1.1 Introduction 

 

In recent years, energy saving has become an increasingly important topic for 

many reasons such as: 

 

 The economic crisis has led the governments of many countries to adopt 

energy saving policies with the view to becoming self-sufficient. 

 Due to of the economic crisis people are more sensitive about energy 

saving in order to reduce the costs. 

 People have become aware of the fact that main energy sources like oil, 

gas and coal are limited and often pollutant. 

 International agreements in order to reduce pollution and global 

warming. 

 

In this context, technologies that allow energy savings have become more 

widespread. 

Nowadays is easy to see solar panels in the roof of a house, or being 

overtaken by an electric car. 

At the basis of most of the technologies that lead to energy savings that are 

spreading, there is the power electronics. 

Power electronics is one of the technologies that has spread lately even thanks 

to the big progresses of the engineering science, and that is contributing most to 

energy savings. 

For example, a cooling system that uses a power electronic system, consumes 

30% less energy than a normal one. 

Power electronics is a branch of  electronics that is responsible for managing 

the electric energy instead of dealing with the information. 
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1.2 Automotive applications 

 

In the automotive field, examples of power electronic applications are the 

drive by wire and the kinetic energy recovery system (KERS). 

 

The drive-by-wire technology in the automotive industry refers to the use of 

electrical or electromechanical systems for performing vehicle functions, like 

steering or braking, instead of hydraulic or mechanical systems. 

 

Substituting mechanical parts with electronics systems, makes cars lighter but 

even more complex. 

In a modern car it is possible to find tens of microcontrollers and several 

electronic control units (ECUs) that control all the electronics devices and 

communicate to each other in order to ensure a safe and enjoyable drive. 

 

 

 

Figure 1: drive-by-wire 

 

The kinetic energy recovery system (KERS) is an automotive system for 

recovering the kinetic energy of moving vehicle during braking. 

To accomplish this goal is necessary a sophisticated control system that, for 

example, allows the power electronics devices to store this energy in a battery or 

in a super-capacitor. 
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Figure 2: kers 

 

1.3 Mechatronics applications 

 

In the mechatronics field, an application of the power electronics is the 

distributed control. 

A distributed control system (DCS) is a control system wherein control 

elements are distributed throughout the system. 

 

 

 
Figure 3: industrial robot 

 

 



Power Electronics | 11 
 

Typical mechatronics systems, use a single controller at a central location. 

 

In an industrial manipulator with centralized control, the cabinet contains all 

the hardware for the control ( such as the motor drives), and it is large, expensive 

and inflexible. 

 

 
Figure 4: cabinet of an industrial robot 

 

   
Figure 5: centralized control 
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An example of power electronics device for distributed control is represented 

by the SPIMD20 of STMicroelectronics. 

 

 

 
Figure 6: distributed solution 

 

 

SPIMD20 is an 2 kW integrated motor drive for decentralized control; it can 

be installed directly on the motor case [1]. 

 

 

 
Figure 7: SPIMD20 integrated motor drive 
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With this module it is possible to obtain the following advantages: 

 

- Minimizing cabling systems and installation cost; 

- Control panel optimization from rack to the equipment; 

- Flexibility of automation architecture; 

 

SPIMD20 is a complete compact motor drive solution in a single, robust and 

reliable module, including full bridge IGBT inverter, control unit and 

communication interface based on real-time industrial Ethernet. 

 

It is ideal for applications with high number of 3-phase Brushless motors and 

real-time constraints: 

 

- Packaging machines; 

- Process machines; 

- Multi-axial controls; 

- Robotics. 

 

1.4 Power Electronics for Robotics Application 

 

As described in the previous paragraph, the development of power electronics 

has made many interesting scenarios, such as industrial robotics and mobile 

robotics, possible in Robotics application. 

 

New families of inverter, for example, allow the use of decentralized control. 

Thanks to the small dimensions of new inverter, indeed, it is possible to move the 

controllers of a robot directly on its axes, with advantages in terms of cable costs 

and flexibility. 
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Decentralized control in industrial robotics needs the knowledge of the state 

of each link; this is possible by means multi-sensor data fusion techniques that 

fuse together measurements coming from different sensors such as 

accelerometers, gyroscopes and encoders.      

 

Power electronics devices, like inverter, can be very useful also in mobile 

robotics application, such as the control of unmanned ground vehicles (UGV) or 

unmanned aerial vehicles. In order to control the movements of an UGV, 

inverters allow the transformation of the control commands into the appropriate 

signals for the motors. Therefore, it is very important to know the right position 

of the motors axes. By using multi-sensor data fusion techniques, is also possible 

to localize the UGV, as is described in the sixth chapter of this thesis. 
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2 Multi-sensor data fusion  

2.1 Introduction 

 

The knowledge of the state of a dynamic system like an industrial robot is 

necessary in order to understand its dynamic behavior and to solve many control 

problems.  

Theoretically the dynamics of a linear system can be determined from a 

complete knowledge of its mathematical model. 

The discrete-time model of a linear system is: 

 

𝒙𝒌 = 𝑨 𝒙𝒌−𝟏 +𝑩 𝒖𝒌                                               (𝟏)                                           

 

Where 𝑥𝑘 ∈ ℜ
𝑛 is the state vector of the system at the current step k , xk-1 is 

the state of the system at the previous step k-1, 𝑢𝑘 ∈ ℜ
𝑙

 is the input of the 

system, 𝐴 ∈ ℜ𝑛𝑥𝑛  is the state matrix that relates the state at the previous time 

step to the state at the current step, 𝐵 ∈ ℜ𝑛𝑥𝑙is the output matrix that relates the 

optional control input u to the state x. 

However, unfortunately, the model of the system often is not enough accurate 

and is subject to the process noise w. 

 

𝒙𝒌 = 𝑨 𝒙𝒌−𝟏 +𝑩 𝒖𝒌 +  𝒘𝒌−𝟏                                      (𝟐)                 

 

Another way to determine the state of the system could be by knowing the 

relation between the sensor measurements 𝑧𝑘 ∈ ℜ
𝑚 and the state: 

 

𝒛𝒌 = 𝑯 𝒙𝒌                                                            (𝟑)                 

 

Where the matrix  𝐻 ∈ ℜ𝑚𝑥𝑛  relates the state 𝑥𝑘 to the measurement 𝑧𝑘. 
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But usually the sensor measurements are noisy and the relation with the state 

is inaccurate: 

 

𝒛𝒌 = 𝑯 𝒙𝒌 + 𝒗𝒌                                                      (𝟒) 

 

where v is the measurement noise. 

 

Multi-sensor data fusion: 

 

 allows to overcome these problems in order to get a better 

estimation of the state of the system, indeed it permits to exploit the 

advantages and to compensate the disadvantages of different sensors. 

 is the process of combining observations from a number of different 

sensors to provide a robust and complete description of an 

environment or process of interest. 

 finds wide application in many areas of robotics such as object 

recognition, environment mapping, and localization. 

 method based on the Recursive Bayesian Filtering techniques, allows 

to integrate measurements from inertial sensors with measurements 

from different kind of sensors. 

 

Recursive Bayesian Filtering techniques, are widely used for estimating the 

state of a dynamic system, because allow to overcome problems caused by 

uncertainty and noise. 

 

Given the state space model of a dynamic system, composed by the state 

transition function and the measurement function, 

 

{
𝒙𝒌 = 𝒇( 𝒙𝒌−𝟏,  𝒖𝒌, 𝒘𝒌−𝟏)                                    (𝟓)

𝒛𝒌 = 𝒉( 𝒙𝒌, 𝒗𝒌)                                                     (𝟔)
  

 

 where f and h can be both linear or non-linear, the goal of the Recursive 

Bayesian Filtering is to estimate the evolution of the system state using all the 

measurements collected until the current time [2]. 
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As the state of the system is a random variable, all the information about the 

state provided by the measurements are contained in the posterior probability 

density function (pdf) p(x), therefore the Recursive Bayesian Filtering has to 

provide an estimation of the posterior pdf. 

 

𝒑(𝒙) = 𝒑(𝒙𝟎:𝒌|𝒛𝟏:𝒌)                                               (𝟕)                 

 

 

 
Figure 8: Steps of Recursive Bayesian filter 

 

2.2 The Kalman Filter 

 

In the case in which both the transition and the measurement functions are 

linear and either the process and the measurement noise are Gaussian and 

additive, the optimal solution is given by the Kalman Filter (KF) [3]. 

 

The Kalman filter is essentially a set of mathematical equations that 

implement a predictor-corrector type estimator that is optimal in the sense that it 

minimizes the estimated error covariance when the previously cited conditions 

are met [3]. 

 

Given the linear dynamic state-space model of a system: 

 

{
𝒙𝒌 = 𝑨 𝒙𝒌−𝟏 +𝑩 𝒖𝒌 +  𝒘𝒌−𝟏                                    (𝟖)
𝒛𝒌 = 𝑯 𝒙𝒌 + 𝒗𝒌                                                             (𝟗)
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where the process and measurement noise wk and vk have a normal probability 

distributions: 

 

𝒑(𝒘)~𝑵(𝟎,𝑸)                                                             (𝟏𝟎) 

𝒑(𝒗)~𝑵(𝟎,𝑹)                                                             (𝟏𝟏) 

 

the Kalman filter provides an a posteriori state estimate �̂�𝒌  as a linear 

combination of an a priori estimate �̂�𝒌
−  and a weighted difference between an 

actual measurement 𝒛𝒌 and a measurement prediction 𝑯 �̂�𝒌
−: 

 

 

�̂�𝒌 = �̂�𝒌
− +𝑲𝒌(𝒛𝒌 −𝑯 �̂�𝒌

−)                                       (𝟏𝟐) 

 

The difference (𝒛𝒌 −𝑯 �̂�𝒌
−) in equation 12  is called measurement innovation, or 

residual. The residual reflects the discrepancy between the predicted and the actual 

measurements . A residual of zero means that the two are in complete agreement. 

 

𝑲𝒌 is the Kalman gain or blending factor that minimizes the covariance 𝑷𝒌 of the 

posteriori error 𝒆𝒌 : 

 

𝑷𝒌 = 𝑬[𝒆𝒌𝒆𝒌
𝑻]                                                 (𝟏𝟑) 

𝒆𝒌 = 𝒙𝒌 − �̂�𝒌                                                 (𝟏𝟒) 

 

One form of K that minimizes the posteriori error covariance is given by: 

 

𝑲𝒌 =  𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻 + 𝑹)−𝟏                              (𝟏𝟓) 

 

Finally, the equations of the Kalman filter are: 
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Table 1 

 Initial estimates for �̂�𝒌−𝟏and 𝑷𝒌−𝟏 

Time Update (“Predict”)  

Project the state ahead �̂�𝒌
− = 𝑨 �̂�𝒌−𝟏 +𝑩 𝒖𝒌 

Project the error covariance ahead 𝑷𝒌
− = 𝑨𝑷𝒌−𝟏𝑨

𝑻 +𝑸 

Measurement Update (“Correct”)  

Compute the Kalman gain 𝑲𝒌 = 𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻 + 𝑹)−𝟏 

Update estimate with measurement zk �̂�𝒌 = �̂�𝒌
− +𝑲𝒌(𝒛𝒌 −𝑯 �̂�𝒌

−) 

Update the error covariance 𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯) 𝑷𝒌
− 

 

2.3 The Extended Kalman Filter 

 

In the real world, the previously mentioned hypotheses are rarely encountered 

and therefore you have to cope with nonlinearities. 

Generally, for nonlinear filtering, no exact optimal solutions can be obtained, 

however, under the assumption that the process and the measurement noise are 

Gaussian and additive, a classical method to solve the nonlinear filtering problem 

is the Extended Kalman Filter (EKF). In the EKF a linearization around the 

current estimate is applied to the system and the conventional Kalman filtering 

technique is further employed. 

 

Let us consider a process governed by the non-linear equations: 

 

 

{
𝒙𝒌 = 𝒇( 𝒙𝒌−𝟏,  𝒖𝒌, 𝒘𝒌−𝟏)                                            (𝟏𝟔)

𝒛𝒌 = 𝒉( 𝒙𝒌, 𝒗𝒌)                                                             (𝟏𝟕)
 

 

 

with f and h non-linear functions, to estimate the state we need first to 

linearize the system around the current estimate by means of the following 

Jacobians [3]: 
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𝑊[𝑖,𝑗] = 
𝜕𝑓[𝑖]

𝜕𝑤[𝑗]
(𝑥𝑘 , 𝑢𝑘 , 0)                                          (𝟏𝟕) 

𝐴[𝑖,𝑗] = 
𝜕𝑓[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘 , 𝑢𝑘 , 0)                                          (𝟏𝟖) 

𝐻[𝑖,𝑗] = 
𝜕ℎ[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘 , 0)                                             (𝟏𝟗) 

𝑉[𝑖,𝑗] = 
𝜕ℎ[𝑖]

𝜕𝑣[𝑗]
(𝑥𝑘 , 0)                                             (𝟐𝟎) 

 

 

Finally, the equations of the extended Kalman filter are: 

 

Table 2 

 Initial estimates for �̂�𝒌−𝟏and 𝑷𝒌−𝟏 

Time Update (“Predict”)  

Project the state ahead �̂�𝒌
− = 𝒇(�̂�𝒌−𝟏,  𝒖𝒌, 0) 

Project the error covariance ahead 𝑷𝒌
− = 𝑨𝒌𝑷𝒌−𝟏𝑨𝒌

𝑻 +𝑾𝒌𝑸𝒌−𝟏𝑾𝒌
𝑻 

Measurement Update (“Correct”)  

Compute the Kalman gain 𝑲𝒌 = 𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻 + 𝑽𝒌𝑹𝒌−𝟏𝑽𝒌
𝑻)−𝟏 

Update estimate with measurement zk �̂�𝒌 = �̂�𝒌
− +𝑲𝒌(𝒛𝒌 − 𝒉( �̂�𝒌

−, 𝟎)) 

Update the error covariance 𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯) 𝑷𝒌
− 

 

 

 

 

2.4 Particle Filter 

 

Because EKF always approximates the posterior pdf as a Gaussian, it works 

well for some types of nonlinear problems, but it may provide a poor 

performance in some cases when the true  posterior pdf is non-Gaussian (e.g. 

heavily skewed or multi-modal). 
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When the model is highly nonlinear or the noise is non-Gaussian, KF and its 

variants are no longer suited for estimating the state of a dynamic system. 

The alternative to the Gaussian filters to which KF belong, is represented by 

the nonparametric filters. 

The main difference between Gaussian filters and nonparametric filters is the 

different representation of  the posterior pdf. The first class represents this pdf 

with a fixed function, the Gaussian function, while, on the other hand, the 

nonparametric filters represents the posterior pdf through a finite number of 

values, each of which roughly corresponds to a portion of the state space. 

Among the nonparametric filters, the PF represent the posterior pdf through 

a high number of samples or particles. The aim of PF, as the  Recursive Bayesian 

Filtering technique, is to estimate the posterior pdf but, since it is generally 

impossible to sample from it, the Monte Carlo Importance Sampling method is used 

[4]. The key idea of the Monte Carlo Importance Sampling method is to generate 

samples from a different pdf with particular characteristics called importance function 

instead of sampling from the posterior pdf directly and for each generated sample 

use a weighting factor to account for the mismatch between functions. 

Therefore, ultimately the PF represents the required posterior pdf by a set of 

random samples or particles, generated as aforementioned, with associated 

weights. 

In order to avoid the divergence of the estimation, a resampling step is 

executed by replicating the samples with high importance weights and removing 

samples with low weights. 

 

 

 

Let us consider a process governed by the non-linear equations: 

 

 

{
𝒙𝒌 = 𝒇( 𝒙𝒌−𝟏,  𝒖𝒌, 𝒘𝒌−𝟏)                                      (𝟐𝟏)
𝒛𝒌 = 𝒉( 𝒙𝒌, 𝒗𝒌)                                                        (𝟐𝟐)

 

 

 

with f and h non-linear functions, the equations of the particle filter are: 
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Table 3 

𝑓𝑜𝑟 𝑖 = 1: 𝑁𝑠 

𝑥𝑘 
𝑖 ~𝑞(𝑥𝑘|𝑥𝑘−1 

𝑖 , 𝑧𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1 
𝑖  ) 

   𝑤
𝑘 
𝑖 = 𝑤

𝑘−1 
𝑖 𝑝𝑣(𝑧𝑘|𝑥𝑘

𝑖 ) 

End for 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 
𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒 

�̂�𝒌 = �̂�𝒌−𝟏 +∑𝑤𝑘 
𝑖

𝑁𝑠

𝑖=1

𝑥𝑘 
𝑖  

 

 

A comparison between the equations of the extended Kalman filter and the 

equations of the particle filter is shown in the following figure: 

 

 
Figure 9: comparison between EKF and PF 
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3 Inertial Sensors 

3.1 Introduction 

 

Inertial sensors are particular sensors that exploit the inertia of a mass 

contained inside them, to measure angular rates (gyroscopes) or linear 

accelerations (accelerometers). 

 

In recent years the performances of MEMS inertial sensors have improved 

and their cost has decreased and thus they have been used successfully in many 

applications such as virtual reality, autonomous vehicle navigation and robotics. 

 

As described in the following pages of this chapter, the accelerometers and 

gyroscopes measures are not sufficient for those applications where is necessary 

to have complete information about the attitude and the orientation of a rigid 

body like a robot. 

 

In this chapter, indeed, the magnetometers are described as well. 

 

Moreover, in addition to the main features and the principles of operation, for 

each sensor a calibration procedure is described. 

 

For the calibration of the inertial sensors, a Kuka robot manipulator was used 

as a precision instrument to move the gyroscopes at known angular velocities and 

to let accelerometers assume known orientations. 

 

 

 

3.2 Gyroscopes 

 

A Gyroscope is a device that measures the angular velocity. 
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The first gyroscope was a mechanical device (Fig.10) composed by a rotor and 

a Cardan suspension (gimbal) that, due to the law of conservation of angular 

momentum, when the rotor rotates at a fixed angular velocity, tends to maintain 

its rotation axis (spin axis) oriented in a fixed direction. 

 

 

 

 
Figure 10: gyroscope 

 

Each torque applied to the spin axis, due to the rotation of the gyroscope 

frame, causes a momentum orthogonal to the torque. The measure of the action 

of a servomotor that maintains the spin axes parallel to itself, provides the 

measure of the angular velocity of the initial rotation. 

 

Today in precise application the optical gyroscopes are widely diffused and in 

particular the optical fiber gyroscopes that have high precision, are very simple 

and are not expensive since not require high precision mechanical parts.  

 

Inexpensive vibrating structure gyroscopes manufactured with MEMS 

technology have become widely available. Internally, MEMS gyroscopes use 

lithographically constructed versions of one or more of the following 

mechanisms: piezoelectric, tuning forks, vibrating wheels, or resonant solids of 

various designs. MEMS gyroscopes are used in automotive roll-over prevention 

and airbag systems, image stabilization, and have many other potential 

applications. 
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The angular velocity measured by a gyroscope ωm [rad/sec] differs from the 

expected one ω, due to the not unitary scale factors s, the constant component of 

the bias b and a random process n(t) that models the noise and the variable 

component of the bias. 

 

𝝎𝒎 = 𝒔𝝎+ 𝒃 + 𝒏(𝒕)                                         (𝟐𝟑) 

 

The performance of the different types of gyroscopes are usually described by 

the stability of the bias and by the stability of the scale factor. 

 

Nowadays gyroscopes are mainly used to get the angular velocity and the 

orientation in applications such as compasses, aircraft, mobile robots, computer 

pointing devices, consumer electronics, etc. 

 

 

By integrating, with a processing unit, the angular velocity measured by a 

gyroscope, it is possible to get the tilt angle of the device. 

 

Therefore, in addition to the angular velocity, gyroscopes allow to get 

information about the orientation of an object like for example an aircraft 

(fig.11): 

 

 

 
Figure 11: Euler angles from gyroscope measures 
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However the integration of the measured angular velocity causes an 

accumulation of the noise over time that brings to the drift problem. 

 

 

To contrast the drift problem of the gyroscopes measurements integration, it 

can be occasionally subtracted from the measurement or, as in this work is 

explained, it is possible to use a multi-sensor fusion method. 

 

 

3.2.1 CALIBRATION 

 

To convert the gyroscope's raw measurements to meaningful angular 

velocities a calibration procedure could be necessary, in particular for highly 

sensitive applications [5]. 

 

Considering a triaxial gyroscope, the relationship between the raw 

measurements and the meaningful angular velocity, can be written in the 

following way: 

 

 

 
Figure 12: relationship between raw and calibrated measures 

 

Where Rx, Ry, Rz are the calibrated angular velocity of each axis, G_m is the 

misalignment matrix between the gyro sensing axes and the device body axes, 

SCx, SCy, SCz are the scale factors caused by the mismatch of the sensitivity of 

each axis, Rx’, Ry’, Rz’  are the raw measurement of the gyroscope and Rx0, Ry0, 

Rz0  are the zero-rate level or bias for each axis. 
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One possible calibration procedure consists in the calculation of 12 

parameters (G11…G30) by means of the least square method. 

 

In particular the steps of the procedure are: 

 

- Measure the zero-rate level Rx0, Ry0, Rz0 of each axis; 

- Rotate the board around each axis at different known angular velocity and 

collect the measurements;     

- Construct the known applied angular velocity matrix (Y); 

- Construct the gyroscope’s raw measurements matrix (w); 

- Apply the Least Squares method to determine the 12 calibration 

parameters (X); 

 

 

𝐘 = 𝐰 ∙  𝐗                 𝐗 =  [𝐰𝐓𝐰]−𝟏𝐰𝐓𝐘                     (𝟐𝟒) 

 

 

3.3 Accelerometers 

 

An accelerometer is a device that measures linear accelerations. 

 

Conceptually, an accelerometer behaves as a damped mass on a spring; it is 

composed of a mass m constrained to two guides that can move only along a 

specific direction. The mass is also connected to the frame by a spring (with 

stiffness k) that acts parallel to the guides.  

By measuring the displacement of the mass it is possible to get the 

acceleration to which the mass is subjected. 
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Figure 13: scheme of an accelerometer 

 

 

Similarly to the case of the gyroscopes, the acceleration am [m/s^2] measured 

by an accelerometer differs from the expected one, due to the not unitary  scale 

factor, the constant component of the bias b and due to a random process n(t) 

that models the noise and the variable component of the bias. 

 

𝒂𝒎 = 𝒔𝒂 + 𝒃 + 𝒏(𝒕)                                          (𝟐𝟓) 

 

The various types of accelerometers can differ for the materials used, 

manufacturing technology, principle of operation (pendulum, quartz resonant, 

floated mechanical), the operating range, bandwidth, etc.  

Therefore important performance parameters are the stability of the bias and 

the stability of the scale factor. 

Accelerometers can be heavily miniaturized and represent the reference 

product for the MEMS industries.  

 

 

3.3.1 STATIC CONDITIONS 

 

The accelerometers, in static conditions, are sensitive only to the acceleration 

of gravity g, and then can be used to partially reconstruct the orientation of a 

body [6].  
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Figure 14: pitch angle 

 

 

 

𝐑𝐎𝐋𝐋 𝐀𝐍𝐆𝐋𝐄   𝜸 = 𝒂𝒕𝒂𝒏𝟐(𝑨𝒚, 𝑨𝒛)                                          (𝟐𝟔) 

𝐏𝐈𝐓𝐂𝐇 𝐀𝐍𝐆𝐋𝐄  𝜽 = 𝒂𝒕𝒂𝒏𝟐(𝑨𝒙, 𝑨𝒛)                                          (𝟐𝟕) 

 

 

Where 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 are the components of gravity vector, that are measured in 

static conditions.  

 

The reconstruction of the attitude of a body is partial because accelerometers 

are insensitive to rotations about an axis parallel to the vector g.  

 
Figure 15: heading angle 

 

 

𝒀𝑨𝑾 𝑨𝑵𝑮𝑳𝑬 = 𝒂𝒕𝒂𝒏𝟐(𝑨𝒚, 𝑨𝒙) = 𝒂𝒕𝒂𝒏𝟐(𝟎, 𝟎)                  (𝟐𝟖) 
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For this reason, in many applications, where it is necessary reconstruct the 

complete orientation of a body, magnetometers are used as well. 

 

3.3.2 DYNAMIC CONDITIONS 

In dynamic conditions accelerometers sense also the external inertial accelerations 

to which it is subjected: 

For movements on linear paths, accelerometers in addition to gravity detect the 

component of the linear acceleration too: 

 

Figure 16: linear path 

 

For movements on curved paths, accelerometers detect centripetal (acp) and 

tangential acceleration (at) in addition to gravity: 

 

 

Figure 17: curved path 

 

Nowadays, accelerometers are also used to help the GNSS (Global Navigation 

Satellite Systems) as the GPS to evaluate the speed or the position of an object 

when a satellite signal is not available, for example inside buildings or in tunnels. 

However, the speed provided by the accelerometer is increasingly unreliable over 

time due to the drift of integration and to the noise.  
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𝑎(𝑡) =
𝑑𝑣(𝑡)

𝑑𝑡
=
𝑑2𝑝(𝑡)

𝑑𝑡2
                                           (𝟐𝟗) 

𝑣(𝑡) =  𝑣0 +∫ 𝑎(𝑡)𝑑𝑡
𝑡

𝑡0

                                          (𝟑𝟎) 

𝑝(𝑡) = 𝑝0 + 𝑣0(𝑡 − 𝑡0) + ∫∫ 𝑎(𝑡)𝑑𝑡
𝑡

𝑡0

                            (𝟑𝟏) 

 

3.3.3 CALIBRATION 

 

To convert the accelerometer’s raw data to meaningful angular accelerations, a 

calibration procedure could be necessary, in particular for highly sensitive 

applications [6]. 

 

Considering a tri-axial accelerometer, the relationship between the raw 

measurements and the meaningful acceleration, can be written in the following 

way: 

 

 

Figure 18: relationship between raw and calibrated measures 

 

Where: 
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Ax1, Ay1, Az1 are the normalized acceleration of each axis; 

A_m is the misalignment matrix between the accelerometer sensing axes and 

the device body axes; 

A_SCx, A_SCy, A_SCz are the scale factors of each axis that represent the 

mismatch of the sensitivity; 

Ax, Ay, Az are the accelerometer raw measurements of each axis; 

A_OSx, A_OSy, A_Osz are the offsets of each axis; 

The previously relation can be rewritten in the following way: 

 

 

Figure 19: matrix form of the relationship 

 

One possible calibration procedure consists in the calculation of 12 

parameters (ACC11…ACC30) by means of the least square method. 

 

In particular the steps of the procedure are: 

 

1. Collect accelerometer raw data at 6 known stationary positions; 

2. Construct the matrix of sensor raw data (w); 

3. Construct the known earth gravity vector (Y); 

4. Then apply the Least Squares method to determine the 12 calibration 

parameters (X); 

 

𝐘 = 𝐰 ∙  𝐗                 𝐗 =  [𝐰𝐓𝐰]−𝟏𝐰𝐓𝐘                            (𝟑𝟐) 
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3.4 Magnetometers 

 

Magnetometers are measurement instruments that measure magnetic fields 

such as the geomagnetic field.  

 

Local earth magnetic field H has a component Hh(Xh,Yh) on the horizontal 

plane pointing to the earth’s magnetic north. 

 

 

 
Figure 20: magnetic and geographic poles 

 
Figure 21: geomagnetic field 
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As it is possible to notice in the figures 19 and 20, magnetic poles are not 

aligned with the Geographic poles, and the angle D takes into account this 

misalignment.  

 

The projection of the geomagnetic field on the 3 axes allows the heading angle 

to be computed.  

 

Heading is defined as the angle between the X axis (northward) and 

Hh(Xh,Yh) [6]. 

 

YAW ANGLE = 𝒂𝒓𝒄𝒕𝒂𝒏(
𝒀𝒉

𝑿𝒉
)                              (𝟑𝟑) 

 

 
Figure 18: heading angle 

 

 

In order to get correct heading information from the magnetic measurements, 

it is necessary to consider two different cases: 

 

1. Leveled position: 

 

If Roll and Pitch angles are both equal to zero, no compensation is necessary 

and Xh and Yh are equal to the magnetic measurements. 

 

2. Tilted position: 

 

If Roll and/or Pitch angles are not equal to zero, a tilt compensation is 

necessary.  
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Xh = Xmcos(Pitch) + Zmsin(Pitch)                         (34) 

Yh = Xmsin(Roll)sin(Pitch) + Ymcos(Roll)- Zmsin(Roll)cos(Pitch)   (35) 

 

Where pitch and roll angle can be computed using the accelerometer  

measurements. 

 

 

3.4.1 CALIBRATION 

 

To convert the magnetometer’s raw data to a meaningful magnetic 

information a calibration procedure could be necessary, in particular for highly 

sensitive applications [6]. 

 

 

Considering a tri-axial magnetometer, the relationship between the raw 

measurements and the meaningful acceleration can be written in the following 

way: 

 

 

 
Figure 19: relationship between raw and calibrated measures 

 

 

where Mx1, My1 and Mz1 are the normalized magnetic measurements of each 

axis, M_m is the misalignment matrix between the magnetic sensor sensing axes 

and the device body axes, M_SCx, M_SCy and M_SCz are the scale factors of 

each axis (mismatch of the sensitivity of the sensor sensing axes), M_si is the 

alignment matrix to compensate the soft-iron distortion, Mx, My and Mz are the 
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magnetometer raw measurements of each axis, M_OSx, M_OSy and M_Osz  are 

the offsets of each axis caused by hard-iron distortion [6]. 

 

Hard-iron interference magnetic field is normally generated by ferromagnetic 

materials with permanent magnetic fields that are part of the handheld device 

structure. These materials could be permanent magnets or magnetized iron or 

steel. They are time invariant. These unwanted magnetic fields are superimposed 

on the output of the magnetic sensor measurements of the earth's magnetic field. 

The effect of this superposition is to bias the magnetic sensor outputs.  

 

A soft-iron interference magnetic field is generated by the items inside the 

handheld device [6]. They could be current carrying traces on the PCB or 

magnetically soft materials. They generate a time varying magnetic field that is 

superimposed on the magnetic sensor output in response to the earth's magnetic 

field. The effect of the soft-iron distortion is to make a full round rotation circle 

become a tilted ellipse. 

 

 

Figure 20: hard and soft iron distortions 

 

Without hard-iron and soft-iron distortions the magnetic measures should be 

in a sphere of radius equal to the earth’s magnetic field strength, but actually they 

draw a tilt ellipsoid which can be described by the following equation: 
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Figure 21: magnetic measures ellipsoid equation 

 

where x0, y0 and z0 are the offsets M_OSi (i = x, y, z) caused by hard-iron 

distortion, x, y and z are the magnetic sensor raw data Mx, My and Mz, a, b and c 

are the semi-axes lengths, d, e and f are the cross axis effect to make the ellipsoid 

tilted, R is the earth’s magnetic field strength. 

 

If there is no soft-iron distortion inside the device, or the soft-iron effect is 

very small and can be ignored: 

 

 
Figure 22: simplified ellipsoid equation 

 

Therefore, the least square fitting ellipsoid method can be used to discover the 

parameters of M_SCi, M_OSi (i = x, y, z) and [M_si]. 

 

Let's assume there is no soft-iron distortion. The soft-iron matrix [M_si] is a 

3x3 identity matrix. Then above equation can be rewritten as: 

 

 
Figure 237:calibration equation  
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After three full round rotations magnetic sensor raw data have been collected, 

it is possible to combine Mx, My, and Mz as column vector and row vector. Then 

the above equation becomes: 

 

 
 

The least square method can be applied to determine the parameters X vector 

as: 

 

 
Then, 

 

 
Let, 

 
 

Then obtain: 

 

 
Therefore, 
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Let, 

 

 
 

Then, 

 

 
 

 

The scale factor M_SCi (i = x, y, z), the offset caused by hard-iron distortion 

M_OSi, and the 3x3 matrix [M_si] caused by soft-iron distortion have been 

determined. Applying these parameters to the measurements of the rotations, we 

obtain a centered unit sphere. 

Similarly, the least square method can be used to determine the [M_si] 3x3 

matrix when there is soft-iron distortion. 
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4 Industrial Robotics 

4.1 Introduction 

Current efforts of research activity in Industrial Robotics are mainly focused 

on improving the performance of the robot, reducing the cost, improving the 

safety, introducing new features (plug and play , modularity, redundancy, human 

robot interaction) [7][8]. 

Nowadays the most common sensors to measure the joints angles of an 

industrial manipulator are the encoders. Through the joints angles by using 

kinematic equations you can get the position and the orientation of every link of 

the manipulator. 

High precision and accuracy are necessary in many robotics applications such 

as manufacturing [8][9], welding [9], and increasingly medical applications [10]. 

The encoders, in particular the high resolution ones, have the advantage of 

being very accurate, but unfortunately they suffer of some weaknesses such as the 

high cost and the need of a tight mechanical coupling [11] with the motor shaft. 

Therefore, measurements from the encoders of the robot joints do not always 

suffice to provide the accurate position of the joints, since the motor angle does 

not exactly coincide with the joint angle, due to gear backlash and joint flexibility. 

MEMS Inertial sensors overcome these problems since they are low cost and 

do not need mechanical coupling; thus, they can represent another way to 

measure the joints angles of an industrial manipulator. 
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The aim of this work is to estimate the joints angles of a 6-DOF manipulator 

by integrating inertial sensors measurements by means of Recursive Bayesian 

Filtering techniques such as the Kalman Filter (KF) and the Particle Filter (PF). 

A brief state of the art of the use of inertial sensors in the estimation of joint 

angle is now presented. 

Regarding to the use of the MEMS inertial sensors to measure the joints 

angles of a robotic arm, some methods with different configuration of sensors 

based on the rigid-body kinematics are analyzed in [12]. Experimental results 

show that after calibration, it is possible to get good estimation of joints angles 

and angular rates. 

MEMS inertial sensors need a calibration procedure to ensure meaningful 

measurements. Two calibration procedures are described in [11]. The proposed 

techniques allow detecting the joint angles of a mini-excavator that works in 

harsh working environment, by using accelerometers. 

Low cost MEMS inertial sensors can be even used in combination with low 

resolution encoders in order to exploit the advantages and to compensate the 

disadvantages of both and eventually, obtain a sensor fusion approach as 

proposed in [13], to estimate angle and angular rate. 

In order to get good and reliable results in the estimation of the joints angles 

of a manipulator, it is essential to know both the mounting position and the 

orientation of the sensors; a method to estimate the orientation and the mounting 

position of the accelerometer on the robot is proposed in [14]. 

 

In [15] measurements from an optical sensor and inertial sensors are fused 

together by means of a KF to estimate the end effector position. 

In [16] there are some experiments of applying of the EKF to estimate the 

joints angles of a robotic manipulator by using low-cost MEMS accelerometer in 

order to control the manipulator. Two calibration accelerometer approaches are 

illustrated. 

 

In [17] another useful application of the PFs which allow to estimate position 

and orientation of an object using a position sensor and an inertial measurement 

unit is shown. In this paper, a PF is used to estimate the orientation and a KF is 

used to estimate the position and the velocity. The presented experimental results 

show that this hybrid method is able to find a good estimation of the orientation 
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even when the initial orientation is completely unknown. Moreover, factors like 

number of particles and position sensor noise are demonstrated to affect the 

orientation error. 

 

Recursive Bayesian Filtering based on inertial sensors have been used to track 

the movements of the human hand and control a robot manipulator in [18]. 

There are not many publications regarding the application of the PF to 

industrial robotics. Nevertheless it is very interesting to investigate on this topic, 

because PFs can offer many advantages compared to the EKF. 

In [19] a PF is used to estimate the joints positions and the joints angular 

velocities of three DOF industrial robot, using measurements that come from an 

accelerometer, mounted on the end effector of the robotic manipulator, and from 

the encoders of the joints motors. In addition, the dynamic model of the robot is 

used and no process noise is considered, moreover a comparison with the EKF is 

performed. 

An efficient approach that incorporates the Kalman filter (KF) and particle 

filter (PF) to estimate the position and orientation of the manipulator is proposed 

in [20]. 

The angle, the angular velocity and the angular acceleration of the first three 

joints of a 6 DOF robot are instead estimated in the works [21] and [22] using 

both a PF and an EKF, still through information from an accelerometer on the 

tool and motor angle measurements. In this case, a laser positioning system is 

also used to evaluate the performance. In the case of the EKF a Gaussian 

distribution of the noise is assumed, and a linearization only in the measurement 

relation is performed. 

In order to obtain a high accuracy for positioning and orientation of the end-

effector of industrial robots, in [23] the PF and the EKF are compared with the 

results indirectly obtained by a PD controller. Starting from the differential 

equation of a dynamic model of a two-link flexible manipulator and using 

Gamma noise (non-Gaussian) as both system noise and observation noise, the 

results show that PF and EKF have better performance (lower error variances) 

than PD controllers. 

Similarly, in [24] the PF and the EKF are applied to a standard industrial 

manipulator as sensor fusion techniques and, moreover, the Cramer Rao Lower 

Bound is used to evaluate the performance of the angular position estimation. 
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Also in this case motor angle measurements and accelerometer measurements are 

used in the filters and the result is evaluated with respect to the tracking 

performance and in terms of position accuracy of the tool. 

Measurements from a 3-axis gyroscope mounted on the end-effector is also 

used in [25] for estimating the end-effector position. A double weighting system 

is used to weigh the fusion of the sensors measurements and then to evaluate the 

particle weight for each sensor. Experiments are performed on a 3-DOF robotic 

manipulator and the results show that the approach improves the position 

estimate accuracy. 

A method to estimate joints angles of a manipulator arm using one MEMS 

accelerometer and gyroscope pair instead of one optical encoder for each link is 

presented in [26]. 

In this work the kinematic model of the manipulator has been used and, 

unlike most of the cited works, in the methods proposed in this work, the 

encoders have not been used.   

 

 

 

 

4.2 Model of the Manipulator 

 

The aim of this work is to estimate the joints angles of an anthropomorphic 

manipulator using inertial sensors measurements combined together by means of 

a new Recursive Bayesian Filtering based multi-sensor fusion method. 
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Figure 28: pose estimation scheme 

 

 

In particular both KF and PF have been used. In order to use both KF and 

PF, the knowledge of the model of the anthropomorphic manipulator is needed. 

 

The robot can be considered as a multi-body system, composed by 6 joints 

and the angle of each single joint is considered as state variable. 

 

Regarding to the use of the sensors measurements into the model equations, 

for each joint, the gyroscope measurements have been used in the transition 

equation to obtain the derivative of the joint angles, while the accelerometer 

measurements have been used in the measurements equation. 

The equations of the dynamic state-space model that characterize the 

manipulator are the following: 
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{
𝒒𝒋(𝒌 + 𝟏) = 𝒒𝒋(𝒌) + ∆𝒕 ∗ �̇�𝒋(𝒌) + 𝒓𝒌−𝟏                (𝟑𝟔)

𝒈𝒋 = 𝑹𝟎 
𝒋
∗ 𝒈𝟎 + 𝒗𝒌                                                      (𝟑𝟕)

 

 

Where g0, gj are the accelerations of gravity expressed in the base reference 

system of the manipulator and in the reference system of the j-th joint 

respectively,  while  𝑅
0 

𝑗
 is the rotation matrix between the base reference system 

and the reference system of the j-th joint. 

 

All the reference systems have been chosen according to the Denavit-

Hartenberg convention (Fig. 31) that is the standard approach [27]. 

 

 

 

 
Figure 29: reference systems  

 

The proposed multi-sensor fusion method is based on Recursive Bayesian 

Filtering, and it is composed by two main steps, prediction and correction. In 

particular gyroscopes measurements are used for the prediction step in the state 

transition equation while the accelerometers measurements in the measurement 

function for the correction of the estimation. 
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The state transition equation is obtained by discretizing the time, with 

sampling step Δt, and approximating the derivative of the joint angle with the 

Euler method for numerical integration: 

 

𝒒𝒋(𝒌 + 𝟏) = 𝒒𝒋(𝒌) + ∆𝒕 �̇�𝒋(𝒌)                                    (𝟑𝟖) 

 

The derivative of the joint angle �̇�𝑗  is obtained using the gyroscopes 

measurements ω with the following relation: 

 

{𝝎𝒋}
(𝟎) = {𝝎𝒋−𝟏}

(𝟎) + �̇�𝒋{𝒉𝒋−𝟏}
(𝟎)                                    (𝟑𝟗) 

 

 

 

Where {ωj}(0) is the angular velocity of the j-th arm expressed in the base 

reference system of the manipulator and hj-1 is the rotation versor of the j-th arm 

joint. 

In this relation the angular velocity {ωj}(0) of the j-th arm is expressed in the 

base reference system of the manipulator, however we are interested in evaluating 

the angular velocity in the reference system of the joint, therefore the following 

transformation for the j-th joint should be applied: 

 

𝝎𝒋
(𝒋)
= 𝑹𝟎

𝒋
∗ 𝝎𝒋

(𝟎)                                                  (𝟒𝟎) 

 

 

By substituting: 

 

𝝎𝒋
(𝒋)
= 𝑹𝟎

𝒋
∗ {𝝎𝒋−𝟏}

(𝟎) + �̇�𝒋 ∗ 𝑹𝟎
𝒋
∗ {𝒉𝒋−𝟏}

(𝟎)                    (𝟒𝟏) 

 

 

Finally, the state transition equation is: 

 

�̇�𝒋 = (𝑹𝟎
𝒋
∗ 𝒉𝒋−𝟏)

†
∗ (𝝎𝒋

(𝒋)
− 𝑹𝟎

𝒋
𝝎𝒋−𝟏
(𝟎) )                                    (𝟒𝟐) 
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𝒒𝒋(𝒌 + 𝟏) = 𝒒𝒋(𝒌) + ∆𝒕 ∗ (𝑹𝟎
𝒋
∗ 𝒉𝒋−𝟏)

†
∗ (𝝎𝒋

(𝒋)
−     𝑹𝟎

𝒋
𝝎𝒋−𝟏
(𝟎)
) + 𝒓𝒌     (𝟒𝟑) 

 

Where the symbol † indicate the pseudoinverse (left inverse in this case) 

matrix, that is the generalization of the inverse matrix for the case in which the 

matrix is not a square matrix . 

Both 𝑅
0 

𝑗
 and hj-1 depends on the state at the previous step qj(k), hence, 

considering the angular velocities as input,  the relation between the current state 

and the state at previous step is nonlinear and the process noise is additive. 

The prediction of the angle is obtained by integrating the gyroscopes 

measurements, but it carries to the drift problem. 

The drift of the estimation is because of the accumulation of the white noise 

of the reading in the integration. 

To contrast the drift problem of the gyroscopes measurements integration, a 

new state variable, the bias, is introduced for each gyroscope. 

The equations for the biases are slightly different for the EKF and for PF and 

will be presented in the next sections. 

 

As regards the measurement function, during slow movements, the 3-axis 

accelerometer senses the components of the acceleration of gravity g expressed in 

the reference system of the j-th joint and therefore it is possible to exploit the 

acceleration of gravity in the base system as reference in order to obtain the joint 

angle: 

 

𝒈𝒋 = 𝑹𝟎 
𝒋
∗ 𝒈𝟎 + 𝒗𝒌                                       (𝟒𝟒) 

 

In the measurement function, that is nonlinear, the rotation matrix 𝑅
0 

𝑗 depends 

on the predicted state qj(k+1) , obtained at the previous step with the state 

transition equation, and, therefore, as it is possible to see in the previous 

equation, also the measurement function is nonlinear. 

 

However, in our considered manipulator configuration, the axis of the first a 

joint is always parallel to the gravity acceleration vector, then in this case it is 

impossible to use the accelerometers measures to correct the estimation of the 

angle of the first joint. 
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Figure 24: joint estimation scheme 

 

 

4.3 Methodology 

 

Analyzing the structure of an anthropomorphic manipulator it is possible to 

notice that in order to reduce costs and to avoid redundancy, the minimum 

number of inertial platforms needed is three.  

As it is possible to see in Fig. 31, the three inertial platforms are mounted on 

the 2nd, on the 4th, and on the 6th  joint, respectively. 
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Figure 25: IMU boards 

 

 

 
Figure 26: joint angles 

 

With this choice it is possible to decouple the general estimation problem in three 

sub problems, hence three cascaded Filters may be considered (Fig. 35). 
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Figure 27: cascaded filters 

 

 

Each Filter will estimate two joint angles, and in particular the first filter will 

estimate the angles of the first and the second joint, the second filter will estimate 

the angles of the third and the fourth joint and finally the third filter will estimate 

the angles of the fifth and sixth joint. 

 

In addition, each filter will estimate the related three gyroscopes biases: 

 

[𝒙𝒏] =

[
 
 
 
 
𝒒𝟐𝒏−𝟏
𝒒𝟐𝒏

𝒃𝒙_𝝎𝟐𝒏
𝒃𝒚_𝝎𝟐𝒏
𝒃𝒛_𝝎𝟐𝒏]

 
 
 
 

                                                      (𝟒𝟓) 

 

 

Therefore the equations of the derivative of joints angles become: 

 

{
�̇�𝟏(𝒌)
�̇�𝟐(𝒌)

} = [
𝐬𝐢𝐧𝒒𝟐(𝒌) 𝟎
𝐜𝐨𝐬𝒒𝟐(𝒌)

𝟎
𝟎
𝟏
]

†

{𝝎𝟐}
(𝟐)                          (𝟒𝟔) 
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{
�̇�𝟑(𝒌)
�̇�𝟒(𝒌)

} = [
𝐬𝐢𝐧𝒒𝟒(𝒌) 𝟎

𝟎
𝐜𝐨𝐬𝒒𝟒(𝒌)

−𝟏
𝟎
]

†

({𝝎𝟒}
(𝟒) − 𝑹𝟐 

𝟒 {𝝎𝟐}
(𝟐))          (𝟒𝟕) 

 

 

{
�̇�𝟓(𝒌)
�̇�𝟔(𝒌)

} = [
𝐬𝐢𝐧𝒒𝟔(𝒌) 𝟎
𝐜𝐨𝐬 𝒒𝟔(𝒌)

𝟎
𝟎
𝟏
]

†

({𝝎𝟔}
(𝟔) − 𝑹𝟒 

𝟔 {𝝎𝟒}
(𝟒))            (𝟒𝟖) 

 

In the equations (47) and (48) it is possible to notice that, in order to estimate 

the proper joint angles, for the second and the third filter it is necessary to 

subtract the gyroscopes measurements of the previous arms. 

 

 

4.4 Kalman Filter 

 

Since the equations of the model are nonlinear, the Extended version of the 

KF has been used in this work. 

Prediction of the state is realized with the following equations: 

 

{𝒙𝒌+𝟏|𝒌
𝒏 } = [Ф]{𝒙𝒌

𝒏} + [Г]{�̇�𝒌
𝒏} + 𝒓𝒌                               (𝟒𝟗) 

[𝑷𝒌+𝟏|𝒌
𝒏 ] = [𝑨𝒌+𝟏|𝒌][𝑷𝒌

𝒏][𝑨𝒌+𝟏|𝒌]
𝑻
+ [𝑾𝒌+𝟏|𝒌][𝑸][𝑾𝒌+𝟏|𝒌]

𝑻
          (𝟓𝟎) 

 

Where [Ф] = [
1 0
0 1

], [Г] = [
∆t 0
0 ∆t

] since ∆𝑡 is the sampling time of the 

filter and 𝑟𝑘 is the process noise. 

 

𝑃𝑘+1|𝑘
𝑛  is the matrix of the error covariance, the matrices 𝐴𝑘+1|𝑘  and 𝑊𝑘+1|𝑘 

are the Jacobian of the state equations:  
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[𝐴𝑘+1|𝑘] =
𝜕𝑓(𝑥𝑘+1|𝑘

𝑛 )

𝜕𝑥
                                       (51) 

[𝑊𝑘+1|𝑘] =
𝜕𝑓(𝑥𝑘+1|𝑘

𝑛 )

𝜕𝑟
                                       (52) 

 

and the matrix Q is the covariance matrix of the process noise r. 

 

In the EKF the biases are supposed constant during the prediction phase and 

in each step they are added to the gyroscopes measurements. 

 

Therefore, in the prediction phase, the predicted gyroscopes biases have been 

added to the gyroscopes measurements, before they are integrated: 

 

 

{𝑏𝜔𝑗
(𝑗)(𝑘 + 1)} = {𝑏𝜔𝑗

(𝑗)(𝑘)}                                       (53) 

 

{𝜔𝑗
(𝑗)(𝑘 + 1)} = {𝜔𝑗

(𝑗)(𝑘 + 1)} + {𝑏𝜔𝑗
(𝑗)(𝑘 + 1)}                    (54) 

 

After the prediction step, accelerometers measurements are used to correct 

the state estimation; in the EKF the correction is obtained using the following 

equations: 

 

[𝐾𝑘+1
𝑛 ] =  [𝑃𝑘+1|𝑘

𝑛 ][𝐻𝑘+1|𝑘]
𝑇
([𝐻𝑘+1|𝑘][𝑃𝑘+1|𝑘

𝑛 ][𝐻𝑘+1|𝑘]
𝑇

+   [𝑉𝑘+1|𝑘][𝑆][𝑉𝑘+1|𝑘]
𝑇
)
−1
                                         

(55) 

 

{𝑥𝑘+1
𝑛 } =     {𝑥𝑘+1|𝑘

𝑛 } + [𝐾𝑘+1
𝑛 ] ({𝑧𝑘+1

𝑛 } − [𝑅({𝑥𝑘+1|𝑘
𝑛 })]

2𝑛−2

2𝑛
{𝑔𝑘+1}

2𝑛−2) 

(56) 

[𝑃𝑘+1
𝑛 ] = (𝐼 − [𝐾𝑘+1

𝑛 ][𝐻𝑘+1|𝑘])[𝑃𝑘+1|𝑘
𝑛 ]                                       (57) 
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Where 𝐾𝑘+1
𝑛  is the Kalman gain, 𝐻𝑘+1|𝑘  and 𝑉𝑘+1|𝑘  are the Jacobian of the 

measurement equation and S is the covariance matrix of the accelerometers noise 

v. 

[𝐻𝑘+1|𝑘] =
𝜕ℎ(𝑥𝑘+1|𝑘

𝑛 )

𝜕𝑥
                                       (58) 

[𝑉𝑘+1|𝑘] =
𝜕ℎ(𝑥𝑘+1|𝑘

𝑛 )

𝜕𝑣
                                       (59) 

 

Both the Jacobian, related to the process noise and accelerometers noise 

respectively, are identity matrices, because the noises are additive. 

For the second and the third filter, to be able to calculate the Jacobian (58) it 

is necessary to use the joint angles estimated by the previous filters. 

Therefore, the second filter will have as inputs the gyroscopes measurements 

of the first board and the estimation of the first and the second joint angle; 

finally, the third filter will have as input the gyroscopes measurements of the 

second board and the estimation of the first, the second, the third and the fourth 

joint angles. 

 

 

4.5 Particle Filter 

 

In the PF, for each particle i, the prediction step is realized with the prior pdf: 

 

𝑥𝑘 
𝑖 ~𝑝(𝑥𝑘|𝑥𝑘−1 

𝑖  ) = 𝑓( 𝑥𝑘−1,  𝑢𝑘)                                       (60) 

 

It is possible to notice that it consists of evaluating the state transition 

equation of the model of the manipulator, like for the EKF, many times as the 

particle number. 

As regards the gyroscopes biases, they have been modelled through a 

Gaussian distribution, with the same standard deviation of the gyroscope 
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measurements and have been accumulated step by step; two non-linear weighting 

factors, the sine and cosine functions, have been used for the x and y 

components, to weigh more the bias of the axis involved in the rotation. 

 

{𝑛𝑜𝑖𝑠𝑒−𝜔𝑗
𝑗
(𝑘)} =  𝑛𝑜𝑟𝑚𝑟𝑛𝑑 (0, 𝑠𝑡𝑑 {𝜔𝑗

𝑗
} )                       (61) 

 

𝑏𝜔𝑗𝑥
(𝑗)(𝑘 + 1) = 𝑏𝜔𝑗𝑥

(𝑗)(𝑘) +   𝑠𝑖𝑛(𝑞𝑘 
𝑖 ) ∗ 𝑛𝑜𝑖𝑠𝑒−𝜔𝑗𝑥

𝑗 (𝑘)               (62) 

 

𝑏𝜔𝑗𝑦
(𝑗)(𝑘 + 1) = 𝑏𝜔𝑗𝑦

(𝑗)(𝑘) + 𝑐𝑜𝑠(𝑞𝑘 
𝑖 ) ∗ 𝑛𝑜𝑖𝑠𝑒−𝜔𝑗𝑦

𝑗 (𝑘)             (63) 

 

𝑏𝜔𝑗𝑧
(𝑗)(𝑘 + 1) = 𝑏𝜔𝑗𝑧

(𝑗)(𝑘) + 𝑛𝑜𝑖𝑠𝑒−𝜔𝑗𝑧
𝑗 (𝑘)             (64) 

 

{𝜔𝑗
(𝑗)
(𝑘)} = {𝜔𝑗

(𝑗)(𝑘 + 1)} + {𝑏𝜔𝑗
(𝑗)(𝑘 + 1)}                 (65) 

 

Where {𝑛𝑜𝑖𝑠𝑒−𝜔𝑗
𝑗
(𝑘)} is the Gaussian noise accumulated step by step, 𝑏𝜔𝑗

(𝑗)
  

is the gyroscopes bias and normrnd is the MATLAB function for Gaussian 

distribution. 

In the PF, a weight is associated to each particle to give more importance to 

the best particles by means of the accelerometers measurements: 

 

𝑤𝑘 
𝑖 = 𝑤𝑘−1 

𝑖 𝑝(𝑧𝑘|𝑥𝑘 
𝑖 )                                           (66) 

 

𝑤𝑘 
𝑖 = 𝑤𝑘−1 

𝑖 𝑝𝑣(𝑧𝑘 − ℎ( 𝑥𝑘))                                      (67) 

 

Where 𝑤
𝑘 
𝑖  is the particle weight index and 𝑝𝑣 is the pdf of the accelerometers 

noise that in this case is Gaussian. 

 

Even for the PFs, like the EKFs, the second filter needs the estimation of the 

first and the second joint angles, while, the third filter needs the estimation of the 

first, the second, the third and the fourth joint angles. 



Industrial Robotics | 55 
 

In order to avoid the divergence of the estimation, a resampling step is 

executed by replicating the samples with high importance weights and removing 

samples with low weights. 

 

Finally the state estimation is: 

 

𝑥𝑘 =  𝑥𝑘−1 + ∑ 𝑤𝑘 
𝑖 ∗

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑖=1

𝑥𝑘 
𝑖                                       (68) 

 

In both techniques the initialization of the state is performed by using the 

accelerometers measurements in static conditions, but in the EKF the initial state 

corresponds to the angle obtained from the accelerometers measurements while 

in the PF the particles are initialized with a Gaussian distribution centered in the 

angle obtained from the accelerometers measurements. 

 

4.6 Experimental Setup 

 

The robot used for the experiments is a KUKA KR 5 sixx R850 that is a six 

degrees-of-freedom anthropomorphic robot. 
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Figure 28: Kuka KR 5 sixx R850 

 

 

 The inertial platform used in this work is the MTi by Xsens that includes a 

triaxial accelerometer and a triaxial gyroscope. 

 In the experiments that have been conducted, the three IMUs mounted on 

the arms send the raw data to a PC for offline processing to get the estimation of 

the angles of the joints. The estimation of the state can be compared with the 

joint angles measured by the high-resolution encoders of the robot. In the first 

part of the experiments the robot is maintained in static conditions in order to 

initialize the state of the system and to compensate the offset of the gyroscopes. 

 

4.7 Experimental Results 

 

About fifty experimental tests have been performed to assess the real 

performance and limitations of the method. 

The results of two tests are presented.  

The sample time ∆t used for both filtering techniques is 0.012 s and the 

number of particles is 2000. The estimation of the joints angles obtained with the 

simple gyroscopes integration is also presented. 
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4.7.1 First Experiment 

 

The first test is composed by single joint movements. 

In order to evaluate the performance of the proposed methods, the encoders 

have been used as reference precision system. 

 

 
Figure 29: joint angles 

 

As it is possible to notice from the images below, in the first experiment, the 

first board has the best performance while the last one has the worst performance 

for both methods. 

The error on the estimation of the angles of the two first joints is very low and 

is, in both methods, between +1° and -1°. 
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Figure 30: angle error on the first joint  

 

 

Figure 31: : angle error on the second joint 

 

As regard the estimation of the angles of the third and the fourth joint, the 

two methods have almost the same performances and the maximum error is for 

both almost 1.5°. 

 

 

Figure 38: : angle error on the third joint 
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Figure 39: : angle error on the fourth joint  

 

 

As it is easy to see in the tables 1,2 and 3 , the error in the estimation of the 

angles of the fifth and sixth joints is higher than that of the other joints,  because 

the last board feels the inaccuracy of the previous estimations and because in the 

last joint there are more vibrations. 

 

 
Figure 32: : angle error on the fifth joint  

 

 
Figure 33: : angle error on the sixth joint  
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The maximum error in the fifth joint is about 4.5° with PF and about 1° with 

EKF, while in the sixth joint is almost 4° with EKF and almost 6° with PF. 

In the estimation of the angles of the last two joints, the two methods have 

different performance and in particular the EKF has better performance than the 

PF because the EKF is able to compensate the noise caused by the vibrations. 

 

 

 

 

Table 4: joints estimation error (EKF) [°] 

joint mean standard 
deviation 

root mean 
square 

max 

1 0.01 0.16 0.16 0.37 

2 -0.08 0.11 0.13 0.66 

3 0.22 0.20 0.30 1.22 

4 -0.01 0.17 0.17 0.99 

5 -0.21 0.27 0.35 1.16 

6 0.25 0.85 0.89 3.91 

 

 

Table 5: joints estimation error (PF) [°] 

joint mean standard 
deviation 

root mean 
square 

max 

1 -0.34 0.16 0.37 0.69 

2 -0.06 0.13 0.14 0.59 

3 0.18 0.54 0.57 1.39 

4 -0.14 0.60 0.62 1.59 

5 0.31 0.83 0.88 4.41 

6 2.85 1.78 3.36 5.59 
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Table 6: joints estimation error (Gyros integration) [°] 

joint mean standard 
deviation 

root mean 
square 

max 

1 0.02 0.16 0.16 0.37 

2 0.39 0.20 0.44 0.90 

3 -1.04 0.65 1.23 2.02 

4 0.11 0.28 0.30 0.99 

5 0.23 1.38 1.40 7.11 

6 4.72 3.20 5.71 10.58 

 

In order to understand if the proposed methods are valid alternatives to the 

classic encoder, is important to analyze the performance in positioning of the end 

effector. 

The position of the end-effector of the manipulator is shown in the following 

figure: 

 

 

Figure 34: end effector position  
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Figure 35: end effector position error 

Although each joint angle estimation has a small error, these errors lead to an 

error in the position of the end effector that is less than 1 cm in both methods. 

As it is possible to notice from the tables 4, 5 and 6, the simple integration of the 

gyroscopes has worse performance than the two proposed methods. 

 

Table 7: end-effector position error (EKF) [cm] 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.03 0.11 0.12 0.70 

Y 0.02 0.13 0.14 0.46 

Z 0.10 0.15 0.18 0.81 
 

Table 8: end-effector position error (PF) [cm] 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.08 0.17 0.23 0.76 
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Y -0.21 0.18 0.19 0.65 

Z 0.23 0.25 0.32 0.88 
 

Table 9: end-effector position error (Gyros integration) [cm] 

Axis Mean standard 
deviation 

root mean 
square 

max 

X -0.17 0.23 0.29 1.07 

Y 0.03 0.15 0.16 0.39 

Z -0.40 0.50 0.64 1.29 

 

 

 

 

4.7.2 Second Experiment 

 

In the second experiment reported in this paper, the robot performs 

movements that simulate a possible realistic industrial application like grasping an 

object that lies in a given position , in this case at the lower right of the robot, and 

then it moves in another position that in this case is in the upper left. These 

movements involve all the joints in combination (Fig.45). 
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Figure 36: second experiment path 

 

 

Figure 37: joint angles 

As shown in the figures below, the joints that have the rotation axis parallel to 

the gravity suffer of a bigger error with respect to the other joints, because it is 

not possible to correct their estimation by means of the accelerometers 

measurements. 
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The estimation of the angle of the first joint , that as previously said is always 

parallel to the gravity, has a maximum error of about 2° in both EKF and PF 

cases. 

From the results of the estimation of the angle of the first joint it is possible 

to see that there is a small offset between the two methods because, for its own 

intrinsic characteristics, the PF suffers the unfeasibility to be able to correct the 

estimation with the accelerometers measurements, more than the EKF. 

As it is possible to see in the tables 7, 8 and 9, the estimation of the angle of 

the second joint has always an error approximately equal to zero with both 

methods. 

 

 

Figure 38: angle error on the first joint 

 

Figure 39: angle error on the second joint 

 

Even for the angles of the third and fourth joints, that are never parallel to the 

gravity, the error of the estimation is very low with both methods. 
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Figure 48: angle error on the third joint 

 

Figure 40: angle error on the fourth joint 

 

Figure 41: angle error on the fifth joint 

 

Figure 42: angle error on the sixth joint 

 

The results of the estimation of the angles of the last two joints are the most 

interesting because, like for the second joint, it is possible to notice that the PF 
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suffer the presence of more vibrations and the parallelism with the gravity more 

than the EKF. 

By using the PF the estimation error of the angle of the fifth and the sixth 

joints has a maximum value of about 4°. 

As it was said before, the EKF has better performance than the PF, and  in 

fact the estimation error of the angle of the last two joints is always below 1°. 

 

 

Table 10: joints estimation error (EKF) 

joint mean standard 
deviation 

root mean 
square 

max 

1 0.93 0.43 1.02 1.79 

2 -0.01 0.07 0.07 0.26 

3 0.05 0.12 0.14 0.40 

4 -0.06 0.14 0.15 0.47 

5 -0.15 0.24 0.28 1.22 

6 0.04 0.36 0.36 0.98 

 

Table 11: joints estimation error (PF) 

joint mean standard 
deviation 

root mean 
square 

max 

1 -1.34 0.42 1.41 2.19 

2 -0.01 0.08 0.08 0.29 

3 0.05 0.17 0.18 0.81 

4 0.02 0.23 0.23 1.03 

5 -0.04 1.46 1.46 3.75 

6 0.43 1.46 1.52 3.78 

 

Table 12: joints estimation error (Gyros integration) 

joint mean standard 
deviation 

root mean 
square 

 a 
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1 -0.97 0.46 1.16 1.85 

2 -2.46 1.50 8.34 4.81 

3 1.23 2.42 7.43 7.68 

4 5.54 3.60 4.71 11.2
9 

5 -0.88 1.42 2.82 4.37 

6 1.83 1.42 5.39 5.11 

 

The trend of the position error of the end effector of the two methods is very 

similar, but even in this case it is possible to see that EKF has a better 

performance than the PF (see tables 10,11 and 12). 

 

 

Figure 43: end effector position 

 

For the X axis, EKF has a maximum position error markedly below  1 cm  

while the PF over 1.5 cm. Even for the Y axis EKF has better results and the 

error is below 1.5 cm while for PF, it is higher than 1.5 cm. Finally, with both 

methods, the error in the Z axis is very low and always smaller than 0.3 cm. Even 

in the second experiment, as it is possible to notice from the figure 15, the simple 

integration of the gyroscopes has worse performance than the two proposed 

methods. 
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Figure 44: end effector position error 

 

Table 13: end-effector position error (EKF) 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.12 0.34 0.36 1.01 

Y -0.78 0.36 0.86 1.51 

Z 0.02 0.09 0.09 0.24 

 

Table 14: end-effector position error (PF) 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.17 0.59 0.62 1.66 

Y -1.11 0.34 1.16 1.88 

Z 0.03 0.12 0.12 0.66 
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Table 15: end-effector position error (Gyros integration) 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.91 1.34 0.62 1.62 

Y -0.24 0.23 1.16 0.33 

Z 0.50 1.80 0.12 1.86 

 

 

4.8 Dynamic Acceleration 

 

In the previous paragraphs only slow movements have been considered. 

Consequently, only the gravitational acceleration has been used in the correction 

step of the multi-sensor data fusion algorithms. The dynamic accelerations have 

not been taken into account because during slow movements these are negligible. 

However, it is very important to study fast movements as well, because in 

these the dynamic accelerations are significant. 

To take the dynamic acceleration into account it is possible to subtract it from 

the measured acceleration in the correction step of the multi-sensor data fusion 

algorithm. 

 

To calculate the dynamic acceleration it is possible to use the predicted joints 

angles in the following way: 

 

 

- Calculate the position of the j-th arm (j = 2,4,6) by means of the kinematic 

function       

                            

𝑃�̅�(𝑡) = 𝑓(�̅�)                                                       (69) 

 

- Calculate the derivative of the position in order to obtain the velocity of 

the j-th arm (j = 2,4,6)        
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𝑃�̅�
′
(𝑡) =

𝑑𝑓(�̅�)

𝑑�̅�
                                            (70) 

 

 

- Calculate the derivative of the velocity in order to obtain the dynamic 

acceleration of the j-th arm (j = 2,4,6)    

-  

 

𝑃�̅�
′′
(𝑡) =

𝑑2𝑓(�̅�)

𝑑�̅�2
                                          (71) 

 

 

 

Since the dynamic acceleration will be subtracted from the measurements 

of the accelerometers, it is necessary to calculate the dynamic acceleration 

of the arms considering the position of the boards.  

 

 

 

 
Figure 45: joint estimation scheme 
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In order to assess the real performance and limitations of the method, the 

results of an experiment is presented: 

 

 

 
Figure 46: angle error on the first joint 

 
Figure 47: angle error on the second joint 

 
Figure 48: angle error on the third joint 
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Figure 58: angle error on the fourth joint 

 

 

Figure 59: angle error on the fifth joint 

 

 
Figure 49: angle error on the sixth joint 
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Table 16: joints estimation error (EKF) with Acc dyn compensation 

joint mean standard 
deviation 

root mean 
square 

max 

1 -1.06 0.64 1.54 2.46 

2 0.01 0.12 0.01 0.59 

3 -0.03 0.50 0.25 3.67 

4 0.04 0.54 0.29 1.8 

5 -0.40 1.00 1.17 4.04 

6 0.13 0.83 0.71 2.68 

 

 

Table 17: joints estimation error (EKF) without Acc dyn compensation 

joint mean standard 
deviation 

root mean 
square 

max 

1 -1.06 0.64 1.54 2.46 

2 0.05 0.30 0.09 2.14 

3 -0.02 0.66 0.44 2.94 

4 0.08 0.82 0.68 2.66 

5 1.00 2.10 5.44 8.66 

6 1.16 2.19 6.19 7.45 
 

 

Figure 50: end effector position 
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Figure 51: end effector position error 

 

Table 18: end-effector position error (EKF) with Acc dyn compensation 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.15 0.47 0.49 1.32 

Y -0.88 0.54 1.03 2.20 

Z -0.01 0.39 0.39 2.78 

0 20 40 60 80 100 120 140

-1

0

1

2

3

time [s]

E
n

d
 e

ff
e
c
to

r 
X

 P
O

S
 e

rr
 [

c
m

]

 

 
Acc dyn compensation

no compensation

0 50 100 150
-3

-2

-1

0

1

time [s]

E
n

d
 e

ff
e
c
to

r 
Y

 P
O

S
 e

rr
 [

c
m

]

 

 

Acc dyn compensation

no compensation

0 50 100 150

-2

0

2

4

time [s]

E
n

d
 e

ff
e
c
to

r 
Z

 P
O

S
 e

rr
 [

c
m

]

 

 

Acc dyn compensation

no compensation



PhD Thesis of Davide Spina | 76 
 

 

Table 19: end-effector position error (EKF) without Acc dyn compensation 

Axis Mean standard 
deviation 

root mean 
square 

max 

X 0.37 0.62 0.72 2.14 

Y -0.88 0.54 1.04 2.28 

Z  0.05 0.50 0.51 2.25 
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5 UAV Attitude Heading 

Reference System 

5.1 Introduction 

 

In this chapter the development of an attitude heading reference system 

(AHRS) for an UAV is described. 

This work is part of a bigger project for the development of an autopilot for 

an UAV. 

Data from a inertial platform and a 3D magnetometer are fused together by 

an Extended Kalman Filter in order to obtain the Euler angles of the drone.  

The EKF algorithm has been tested both in simulation and in the real flying 

robot. 

 

5.2 CANaerospace 

 

In order to manage and communicate with the Attitude and Heading 

Reference System (AHRS) of an UAV, the CANaerospace protocol has been 

developed for the iNEMO M1 microcontroller. 

 

CANaerospace is a lightweight protocol developed by Stock Flight Systems in 

1998 for avionic and aeronautical applications, which provides a highly reliable 

communication via Controller Area Network (CAN) [28]. 

 

The definition of the CANaerospace protocol is kept widely open to allow 

implementation of user-defined message types and protocols. 
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5.2.1 Main features 

 

- Democratic network: CANaerospace does not require any 

master/slave relationships between LRUs or a "bus controller", 

thereby avoiding a potential single source of failure. Every node in 

the network has the same rights for participation in the bus traffic. 

- Self-identifying message format: Each CANaerospace message 

contains information about the type of the data and the transmitting 

node. This allows the data to be unambiguously recognized at each 

receiving node.  

- Continuous Message Numbering: Each CANaerospace message 

contains a continuously incremented number which allows coherent 

processing of messages in the receiving stations.  

- Message Status Code: Each CANaerospace message contains 

information about the integrity of the data is conveying. This allows 

receiving stations to evaluate the quality of the received data and to 

react accordingly. 

- Emergency Event Signaling: CANaerospace defines a mechanism 

that allows each node to transmit information about exception or 

error situations. This information can be used by other stations to 

determine the network health. 

- Node Service Interface: As an enhancement to CAN, 

CANaerospace provides a means for individual stations on the 

network to communicate with each other using connection-oriented 

and connectionless services. 

- Predefined CAN Identifier Assignment: CANaerospace offers a 

predefined identifier assignment list for normal operation data. In 

addition to the predefined list, user-defined identifier assignment lists 

may be used. 

- Ease of Implementation: The amount of code to implement 

CANaerospace is very small by design in order to minimize the effort 

for testing and certification of flight safety critical systems. 
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- Openness to Extensions: All CANaerospace definitions are 

extendable to provide flexibility for future enhancements and to allow 

adaptions to the requirements of specific applications. 

- Free Availability: No cost whatsoever applies for the use of 

CANaerospace. The specification can be downloaded from the 

Internet. 

 

 

 

 

 

5.2.2 Frame Format 

 

The format of the messages of the CANaerospace protocol [29] is shown in 

the following figure: 

 

 
Figure 52: format of CAN frame 

 

 CAN messages have an identifier (ID) that specifies the type of the message; 

there are two different version of identifier: standard identifier of 11 bit or 

extended identifier of 32 bit. CANaerospace protocol uses the standard identifier. 

 

In order to enable both Anyone-to-Many (ATM) and Peer-to-Peer (PTP) 

communication for CAN, CANaerospace defines different groups of messages: 
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Figure 53: CANaerospace identifiers 

 

- Emergency Event Data Channel (EED): This communication 

channel is used for messages which require immediate action (i.e. 

system degradation or reconFiguretion) and have to be transmitted 

with very high priority. Emergency Event Data uses ATM 

communication exclusively. 

- High/Low Priority Node Service Data Channel (NSH/NSL): 

These communication channels are used for client/server interactions 

using PTP communication. The corresponding services may be of the 

connection-oriented as well as the connectionless type. NSH/NSL 

may also be used to support test and maintenance functions. 

- Normal Operation Data Channel (NOD): This communication 

channel is used for the transmission of the data which is generated 

during normal system operation and described in the CANaerospace 

identifier assignment list. These messages may be transmitted 

periodically or aperiodically as well as synchronously or 

asynchronously. All messages which cannot be assigned to other 

communication channels shall use this channel. 

- High/Low Priority User-Defined Data Channel (UDH/UDL): 

This channel is dedicated to communication which cannot, due to 

their specific characteristics, be assigned other channels without 

violating the CANaerospace specification. As long as the defined 

identifier range is used, the message content and the communication 

type (ATM, PTP) for these channels may be specified by the system 

designer. To ensure interoperability it is highly recommended that the 

use of these channels is minimized.  
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- Debug Service Data Channel (DSD): This channel is dedicated to 

messages which are used temporarily for development and test 

purposes only and are not transmitted during normal operation. As 

long as the defined identifier range is used, the message content and 

the communication type (ATM, PTP) for these channels may be 

specified by the system designer. 

 

In our application we used the channels NSH, NOD and DSD. 

 

A CANaerospace message basically consists of an header of 4 byte and a 

data field up to 4 byte. 

 

The header includes the following fields: 

 

- Node ID: indicates the identifier of the receiver node in the case of 

NSH messages and the identifier of the transmitter node in the case 

of NOD messages. 

- Data type: specifies the data type of the payload and can be float, 

long, ulong, short, ushort, char or a data type specified by the user. 

- Service Code: it defines the type of the service in the case of 

NSH/NSL messages, or is reserved for particular aims of the 

application in the case of NOD/EED messages. 

- Message Code: includes further specifications in the case of 

NSH/NSL messages, or represents a message counter for debugging 

purposes in the case of  NOD/EED messages. 

 

5.2.3 Frame NSH 

 

The following services have been implemented: 

 

IDS: Identification service 

 

This frame is used to identify both the hardware and the software of the 

AHRS board. 
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HMI -> M1 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
    

5 
AS_NODATA 

(0x0) 
IDS (0x0) 0 0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
    

5 
AS_UCHAR_2 

(0x13) 
IDS (0x0) ErrorFlag 

iNemo 
Hw 
rev 

iNemo 
Sw 
rev 

0 0 

 

DTS: Data Transfer Service 

 

This frame configures the AHRS data transfer mode. 

 

HMI -> M1 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node 
ID 

Data type 
Service 

code 
Message 

code 
  DataSelection 

5 
AS_UCHAR_4 

(0x10) 
DTS 

(0xD4) 
0 TransferMode Datarate MSB LSB 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node 
ID 

Data type 
Service 

code 
Message 

code 
  DataSelection 

5 
AS_UCHAR_4 

(0x10) 
DTS 

(0xD4) 
ErrorFlag TransferMode Datarate MSB LSB 

 

Data[4]: 

 

TransferMode = 0 indicates a streaming mode transmission. 

TransferMode = 1 indicates a remote request transmission. 

 

Data[5]: 
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In the case of streaming mode transmission, Datarate indicates the frequency 

of the transmission in Hz. 

 

Data[6]: 

 

DataSelection indicates the data that the AHRS has to transmit (bit = 1 

transmit, bit  = 0 no transmit). 

 

 

 
 

Table 20: variable selection 

DataSelection Variable 
Bit 0 Roll 

Bit 1 Pitch 

Bit 2 Yaw 

Bit 3 Quat-Q0 

Bit 4 Quat-Q1 

Bit 5 Quat-Q2 

Bit 6 Quat-Q3 

Bit 7 AccX 

Bit 8 AccY 

Bit 9 AccZ 

Bit 10 GyrX 

Bit 11 GyrY 

Bit 12 GyrZ 

Bit 13 MagX 

Bit 14 MagY 

Bit 15 MagZ 

 

 

RTS: Raw Data Transfer Service 

 

This frame configures the AHRS raw data transfer mode. 

 

HMI -> M1 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node 
ID 

Data type 
Service 

code 
Message 

code 
  

Raw 
DataSelection 

5 
AS_UCHAR_3 

(0x1B) 
RTS 

(0xD8) 
0 

Raw 
TransferMode 

Raw 
Datarate 

MSB LSB 

 

M1 ->HMI 
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ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node 
ID 

Data type 
Service 

code 
Message 

code 
  

Raw 
DataSelection 

5 
AS_UCHAR_3 

(0x1B) 
RTS 

(0xD8) 
ErrorFlag 

Raw 
TransferMode 

Raw 
Datarate 

MSB LSB 

 

Data[4]: 

 

RawTransferMode = 0 indicates a streaming mode transmission. 

RawTransferMode = 1 indicates a remote request transmission. 

 

 

Data[5]: 

 

In the case of streaming mode transmission, RawDatarate indicates the 

frequency of the transmission in Hz. 

 

Data[6]: 

 

RawDataSelection indicates the data that the AHRS has to transmit (bit = 1  

transmit, bit  = 0 no transmit). 

 
 

Table 21: debug frame selection 

DataSelection Variable 
Bit 0 Degub Frame 1 

Bit 1 Degub Frame 2 

Bit 2 Degub Frame 3 

Bit 3 Degub Frame 4 

Bit 4 Degub Frame 5 

 

 

 

SSS: Start and Stop Data Transfer Service 

 

This frame indicates the start and the stop of the data transfer of the iNEMO 

M1. There are two different flags for the two different flows data, one for DTS 

command and one for RTS command. 
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HMI -> M1 

ID 
Data[0

] 
Data[1] 

Data[2
] 

Data[3] 
Data[4

] 
Data[5

] 
Data[6] Data[7] 

NS_REQ_1_I
D 

dec:130 
hex:0x82 

Node 
ID 

Data type 
Service 

code 

Messag
e 

code 
    

5 
AS_UCHAR_

2 
(0x13) 

SSS 
(0xD5) 

0 0 0 
StartStopDat

a 
StartStopRawDa

ta 

 

 

M1 ->HMI 

ID 
Data[0

] 
Data[1] 

Data[2
] 

Data[3] 
Data[4

] 
Data[5

] 
Data[6] Data[7] 

NS_RSP_1_I
D 

dec:131 
hex:0x83 

Node 
ID 

Data type 
Service 

code 

Messag
e 

code 
    

5 
AS_UCHAR_

2 
(0x13) 

SSS 
(0xD5) 

ErrorFla
g 

0 0 
StartStopDat

a 
StartStopRawDa

ta 

 

Data[6]: 

 

StartStopData = 1 starts the data transmission; in the case of remote request 

mode transfer it is necessary to send this command every time you want receive 

data. 

StartStopData = 2 stops the data transmission in the case of streaming mode 

transfer. 

StartStopData = 0 does not change the flow data. 

 

CDS: Control Parameters Download Service 

 

This frame is used to download the conFiguretion parameters to the iNEMO 

M1. 
 

HMI -> M1 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Param_x 

5 
AS_FLOAT_2 

(0x02) 
CDS (0xA3) 

Parameter 
identifier 

FloatMSB Float2 Float3 FloatLSB 
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M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Param_x 

5 
AS_FLOAT_2 

(0x02) 
CDS (0xA3) 

Parameter 
identifier 

FloatMSB Float2 Float3 FloatLSB 

 

 

 

The configuration parameters are selected through the bits of the 

parameter_identifier variable as shown in the following table: 
 

Table 22: parameters list 

parameter_identifier Description 
Parameter 

Name 

0 Ellipsoid X axis eccentricity EccX 

1 Ellipsoid Y axis eccentricity EccY 

2 Ellipsoid Z axis eccentricity EccZ 

3 Ellipsoid X axis radius ErX 

4 Ellipsoid Y axis radius ErY 

5 Ellipsoid Z axis radius ErZ 

6 
Earth magnetic field X axis 

component 
EmfX 

7 
Earth magnetic field Y axis 

component 
EmfY 

8 Earth magnetic field Z axis component EmfZ 

9 Gravity vector X axis component GX 

10 Gravity vector Y axis component GY 

11 Gravity vector Z axis component GZ 

12 Roll Offset offset_Roll 

13 Pitch Offset offset_Pitch 

14 Yaw Offset offset_Yaw 
 

 

CUS: Control Parameters Upload Service 

 

This frame is used to upload the configuration parameters from the iNEMO 

M1. 
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HMI -> M1 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
 

5 
AS_NODATA 

(0x0) 
CUS (0xA5) 

Parameter 
identifier 

0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Param_x 

5 
AS_FLOAT_2 

(0x02) 
CUS (0xA5) 

Parameter 
identifier 

FloatMSB Float2 Float3 FloatLSB 

 

 

 

 

PRS: Parameters Reset Service 

 

This frame is used to set the conFiguretion parameters to a default value: 

 

HMI -> M1 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
 

5 
AS_NODATA 

(0x0) 
CUS (0xA5) 

Parameter 
identifier 

0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Param_x 

5 
AS_FLOAT_2 

(0x02) 
CUS (0xA5) 

Parameter 
identifier 

FloatMSB Float2 Float3 FloatLSB 

 

The default values of the different conFiguretion parameters are shown in the 

following table: 
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Table 23: default conFiguretion parameters 

parameter_identifier Parameter Name Default value 

0 EccX -0.1152 

1 EccY -0.0234 

2 EccZ 0.0179 

3 ErX 0.3851 

4 ErY 0.3636 

5 ErZ 0.4150 

6 EmfX 0.82 

7 EmfY 0.0 

8 EmfZ 0.73 

9 GX 0.0 

10 GY 0.0 

11 GZ -9.8 

12 offset_Roll 0.0 

13 offset_Pitch 0.0 

14 offset_Yaw 0.0 
 

 

 

CMU: Change Measurement Unit 

 

This frame changes the measurement unit of the Euler angles: 
 

 

HMI -> M1 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
 

5 AS_UCHAR (0x0A) CUM(0xD3) 0 0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
    

5 AS_UCHAR (0x0A) CUM(0xD3) ErrorFlag 0 0 0 Unit 

 

Data[7]: 

 

Unit = 0 indicates that Euler angles are in radiant. 
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Unit = 1 indicates that Euler angles are in degree. 

 

ROS: Reset Orientation Service 

 

This frame is used to reset the roll and pitch angles of the iNEMO M1. 

 

 

HMI -> M1 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
 

5 AS_NODATA(0x0) ROS(0xD6) 0 0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
    

5 AS_NODATA(0x0) ROS(0xD6) ErrorFlag 0 0 0 0 

 

 

 

RHS: Reset Heading Service 

 

This frame is used to reset the yaw angle of the iNEMO M1. 

 

HMI -> M1 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 
hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
 

5 AS_NODATA(0x0) RHS(0xD7) 0 0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
    

5 AS_NODATA(0x0) RHS(0xD7) ErrorFlag 0 0 0 0 

 

RCS: Reset CPU Service 
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This frame is used to reset the iNEMO M1. 

 

HMI -> M1 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_REQ_1_ID 
dec:130 

hex:0x82 

Node ID Data type 
Service 

code 
Message 

code 
 

5 AS_NODATA(0x0) RCS(0xD2) 0 0 0 0 0 

 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

NS_RSP_1_ID 
dec:131 

hex:0x83 

Node ID Data type 
Service 

code 
Message 

code 
    

5 AS_NODATA(0x0) RCS(0xD2) ErrorFlag 0 0 0 0 

 

 

 

5.2.4 Frame NOD 

 

The following Normal Operation Data frames have been implemented: 

 

PITCH 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_PITCH_ANGLE_ID 
dec:311 

hex:0x137 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Pitch 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

ROLL 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_ROLL_ANGLE_ID 
dec:312 

hex:0x138 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Roll 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

YAW 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

HEADING_ANGLE_ID 
dec:321 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Heading 
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hex:0x141 
5 

AS_FLOAT_2 
(0x02) 

0 0 FloatMSB Float2 Float3 FloatLSB 

 

Longitudinal Acceleration (X axis) 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_LONG_ACC_ID  
dec:300 

hex:0x12C 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

acc_X 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Lateral Acceleration (Y axis) 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_LAT_ACC_ID  
dec:301 

hex:0x12D 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

acc_Y 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

Normal Acceleration (Z axis) 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_NORM_ACC_ID  
dec:302 

hex:0x12E 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

acc_Z 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Unit Quaternion component Q0 
 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_QUAT_Q0_ID 
dec:1500 

hex:0x5DC 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Quat_q0 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Unit Quaternion component Q1 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_QUAT_Q1_ID 
dec:1501 

hex:0x5DD 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Quat_q1 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 
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Unit Quaternion component Q2 
 

M1 ->HMI 
ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_QUAT_Q2_ID 
dec:1500 

hex:0x5DE 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Quat_q2 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Unit Quaternion component Q3 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_QUAT_Q3_ID 
dec:1503 

hex:0x5DF 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Quat_q3 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

 

Gyroscope X 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_GYR_X_ID 
dec:1504 
hex:0x5E0 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

gyr_X  

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Gyroscope Y 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_GYR_X_ID 
dec:1505 
hex:0x5E1 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

gyr_Y 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Gyroscope Z 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_GYR_X_ID 
dec:1506 
hex:0x5E2 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

gyr_Z  

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 
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Magnetometer X 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_MAGN_X_ID 
dec:1507 
hex:0x5E3 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Magn _X  

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Magnetometer Y 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_MAGN_Y_ID 
dec:1508 
hex:0x5E4 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Magn _Y 

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

Magnetometer Z 

 
M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

BODY_MAGN_Y_ID 
dec:1509 
hex:0x5E5 

Node ID Data type 
Service 

code 
Message 

code 
Variable name: 

Magn _Z  

5 
AS_FLOAT_2 

(0x02) 
0 0 FloatMSB Float2 Float3 FloatLSB 

 

 

5.2.5 Frame DSD 

 

The following Debug Service frames have been implemented: 

 

Degub Frame 1 – accelerometer x and y raw data 
 

M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

DEBUG_FRAME_1_ID 
dec:1920 
hex:0x780 

Node 
ID 

Data type 
Service 

code 
Message 

code 
raw_Acc_X raw_Acc_Y 

5 
AS_USHORT_2 

 (0x0D) 
0 0 MSB LSB MSB LSB 
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Degub Frame 2 – accelerometer z and gyroscope y raw data 
 

M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

DEBUG_FRAME_2_ID 
dec:1921 
hex:0x781 

Node 
ID 

Data type 
Service 

code 
Message 

code 
raw_Acc_Z raw_Gyr_X 

5 
AS_USHORT_2 

 (0x0D) 
0 0 MSB LSB MSB LSB 

 

 

Degub Frame 3 – gyroscope y and z raw data 
 

M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

DEBUG_FRAME_3_ID 
dec:1922 
hex:0x782 

Node 
ID 

Data type 
Service 

code 
Message 

code 
raw_Gyr_Y raw_Gyr_Z 

5 
AS_USHORT_2 

 (0x0D) 
0 0 MSB LSB MSB LSB 

 

 

Degub Frame 4 – magnetomer x and y raw data 
 

M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

DEBUG_FRAME_4_ID 
dec:1923 
hex:0x783 

Node 
ID 

Data type 
Service 

code 
Message 

code 
raw_Mag_X raw_Mag_Y 

5 
AS_USHORT_2 

 (0x0D) 
0 0 MSB LSB MSB LSB 

 

Degub Frame 4 – magnetomer z raw data and temperature 
 

M1 ->HMI 

ID Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

DEBUG_FRAME_5_ID 
dec:1924 
hex:0x784 

Node 
ID 

Data type 
Service 

code 
Message 

code 
 raw_Mag_Z 

5 
AS_USHORT_2 

 (0x0D) 
0 0 MSB LSB MSB LSB 
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5.2.6 Errors Management 

 

The management of the errors refers only the NSH frames. The errors are 

managed by means the flag ErrorFlag in the Message Code field of the frames 

that the iNEMO M1 sends to the HMI: 

 

ErrorFlag = 0 no errors, message received correctly. 

ErrorFlag = -1 service code is wrong. 

ErrorFlag = -2 the data of the frame is in a wrong form or is out of range. 

 

 

 

5.3 EKF UAV 

 

The Attitude and Heading Reference System is a combined hard- and 

software system that provides an estimation of the attitude and the orientation of 

an aircraft. 

From the hardware point of view, AHRS consist of either solid-state or 

MEMS gyroscopes, accelerometers and magnetometers on all three axes and of 

an on-board processing system (MCU). 

 

In order to estimate the attitude and the orientation of the UAV we developed 

an extended Kalman filter for the microcontroller of the AHRS. 

 

The attitude and the orientation of an UAV are fully described by the Euler 

angles roll, pitch and yaw that are a minimal representation of the spatial 

orientation of a rigid body, usually adopted in aerospace, navigation, and robotics. 

 

Roll, pitch and yaw angles in the aircraft convention are: 
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Figure 54: Euler angles aircraft convention 

 

 

 

The overall rotation represented by RPY angles respects the following order 

of rotations (fixed axis) [27]: 

 

• 𝑅𝑧(𝜑) rotation through an angle 𝜑 (𝑦𝑎𝑤) about z axis; 

• 𝑅𝑦(𝜃) rotation through an angle 𝜃(𝑝𝑖𝑡𝑐ℎ) about y axis; 

• 𝑅𝑥(𝛾) rotation through an angle 𝛾(𝑟𝑜𝑙𝑙) about x axis; 

 

𝑅 =  𝑅𝑥(𝛾)𝑅𝑦(𝜃)𝑅𝑧(𝜑) =  [

𝑐𝜃𝑐𝜑 𝑐𝜃𝑠𝜑 −𝑠𝜃
𝑠𝛾𝑠𝜃𝑐𝜑 − 𝑐𝛾𝑠𝜑 𝑠𝛾𝑠𝜃𝑠𝜑 + 𝑐𝛾𝑐𝜑 𝑠𝛾𝑐𝜃
𝑐𝛾𝑠𝜃𝑐𝜑 + 𝑠𝛾𝑠𝜑 𝑐𝛾𝑠𝜃𝑐𝜑 − 𝑠𝛾𝑐𝜑 𝑐𝛾𝑐𝜃

]     

(72) 

 

 

In the range (–
𝜋

2
< 𝑎𝑛𝑔𝑙𝑒 <

𝜋

2
) , the Euler angles are: 
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{
 
 

 
 𝛾 = 𝑎𝑡𝑎𝑛2(𝑟23, 𝑟33);   

𝜃 = 𝑎𝑡𝑎𝑛2 (−𝑟13, √𝑟12
2 + 𝑟11

2 )   

𝜑 = 𝑎𝑡𝑎𝑛2(𝑟12, 𝑟11);  }
 
 

 
 

                                    (73) 

 

While in the range  (
𝜋

2
< 𝑎𝑛𝑔𝑙𝑒 < 3𝜋/2) , the Euler angles are: 

 

{
 
 

 
 𝛾 = 𝑎𝑡𝑎𝑛2(−𝑟23, −𝑟33);   

𝜃 = 𝑎𝑡𝑎𝑛2 (−𝑟13, −√𝑟12
2 + 𝑟11

2 )   

𝜑 = 𝑎𝑡𝑎𝑛2(−𝑟12, −𝑟11);  }
 
 

 
 

                                 (74) 

 

5.3.1 QUATERNIONS 

 

The Euler angles suffer from some weaknesses such as: 

 

- Gimbal lock: the loss of one dof (degree of freedom) in a 3D space 

that occurs when 2 axes are parallel. 

- Mathematical singularities: caused by the trigonometric function 

atan2 when both argument are zero. 

 

In order to overcome these problems of the Euler angles, another 

representation of spatial orientation of a rigid body has been used, the unit 

quaternion. 

 

Unit quaternions are an efficient and non‐singular description of spatial 

orientation used in particular for calculations involving three-dimensional 

rotations such as in three-dimensional computer graphics and computer vision. 
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Quaternion Algebra is a number system that extends the complex numbers [30]: 

 

𝑞 = (𝑞0, 𝑞1, 𝑞2, 𝑞3)                                                (75) 

𝑞 = 𝑞0 + 𝒒 = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3                             (76) 

 

Multiplication of the basis elements is illustrated in the following table: 

 

Table 24: multiplication of quaternion basis elements 

 
 

 

5.3.1.1 Main properties 

 

 

Conjugate: 

  �̅� = 𝑞0 − 𝒒                                                              (77) 

 

Norm: 

 𝑁(𝑞) =  |𝑞| = √𝑞�̅� =  √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2                              (78) 

 

Reciprocal: 
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 𝑞−1 =  
�̅�

|𝑞|2
                                                               (79) 

 

Addition: 

 𝑞 + 𝑝 = (𝑞0 + 𝑝0, −𝒒 + 𝒑)                                               (80) 

 

Multiplication: 

 𝑞 ∗ 𝑝 = (𝑞0𝑝0 − 𝒒 ∙ 𝒑, 𝑞0𝒑 + 𝑝0𝒒 + 𝒒 × 𝒑)                            (81) 

 

Matrix representation [31]:  

 

𝑄(𝑞) =  [

𝑞0 −𝑞1
𝑞1 𝑞0

    
−𝑞2 −𝑞3
−𝑞3 𝑞2

𝑞2 𝑞3
𝑞3 −𝑞2

    
𝑞0 −𝑞1
𝑞1 𝑞0

]                                    (82) 

From which follows a more useful quaternions multiplication form: 

 

𝑞 ∗ 𝑝 = 𝑄(𝑞)𝑝 =   [

𝑞0 −𝑞1
𝑞1 𝑞0

    
−𝑞2 −𝑞3
−𝑞3 𝑞2

𝑞2 𝑞3
𝑞3 −𝑞2

    
𝑞0 −𝑞1
𝑞1 𝑞0

] [

𝑝0
𝑝1
𝑝2
𝑝3

] = �̅�(𝑝)𝑞 = 

=   [

𝑝0 −𝑝1
𝑝1 𝑝0

    
−𝑝2 −𝑝3
𝑝3 −𝑝2

𝑝2 −𝑝3
𝑝3 𝑝2

    
𝑝0 𝑝1
−𝑝1 𝑝0

] [

𝑝0
𝑝1
𝑝2
𝑝3

]     

   (83) 

 

5.3.1.2 Unit Quaternions 

 



PhD Thesis of Davide Spina | 100 
 

Quaternions with norm 1 are called unit quaternions: 

 

|𝑞| =  |𝑞0 + 𝒒| = 1                                           (84)    

 

Starting from the fundamental trigonometric identity: 

 

  𝑐𝑜𝑠2
𝜃

2
+ 𝑠𝑖𝑛2

𝜃

2
= 1                                           (85)   

it is possible to write: 

𝑞0
2 +  |𝒒|2 = 1                                                (86)   

  𝑐𝑜𝑠2
𝜃

2
= 𝑞0

2,     𝑠𝑖𝑛2
𝜃

2
= |𝒒|2                                    (87)      

  𝑞 = 𝒄𝒐𝒔
𝜽

𝟐
+ 𝒖𝒔𝒊𝒏

𝜽

𝟐
, 𝑤𝑖𝑡ℎ 𝒖 =

𝒒

|𝒒|
                               (88) 

 

For unit quaternions the following condition must always be satisfied: 

 

𝑞0
2 +  𝑞1

2 +  𝑞2
2 +  𝑞3

2 = 1                                         (89) 

 

Using the unit quaternion q we can define the following operator [32]: 

 

𝐿𝑞(𝑣) = 𝑞 ∗ 𝒗 ∗ �̅� = (𝑞0
2 − 𝒒 ∙ 𝒒)𝒗 + 2𝑞0(𝒒 × 𝒗) + 2(𝒒 ∙ 𝒗)𝒒 = 𝑹(𝜃)𝒗 

(90) 

that represents a rotation of a vector 𝒗 of an angle θ about q.  
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From the unit quaternion it is easy to get the corresponding Euler angles [31]: 

 

 

𝑟𝑜𝑙𝑙 = 𝑎𝑡𝑎𝑛2(2 ∗ (𝑞0 ∗ 𝑞1 + 𝑞2 ∗ 𝑞3), 1 − 2 ∗ (𝑞1 ∗ 𝑞1 + 𝑞2 ∗ 𝑞2))     (91) 

𝑝𝑖𝑡𝑐ℎ = asin(−2 ∗ (𝑞1 ∗ 𝑞3 − 𝑞0 ∗ 𝑞2))                      (92) 

𝑦𝑎𝑤 = 𝑎𝑡𝑎𝑛2 (2 ∗ (𝑞1 ∗ 𝑞2 + 𝑞0 ∗ 𝑞3), 1 − 2 ∗ (𝑞2 ∗ 𝑞2 + 𝑞3 ∗ 𝑞3))       (93) 

 

From the Euler angles to the corresponding unit quaternion exist the 

following relationships: 

 

 

𝑞0 = cos (
𝑟𝑜𝑙𝑙

2
) ∗ cos (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ cos (

𝑦𝑎𝑤

2
) + sin (

𝑟𝑜𝑙𝑙

2
) ∗ sin (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ sin (

𝑦𝑎𝑤

2
) ; 

𝑞1 = sin (
𝑟𝑜𝑙𝑙

2
) ∗ cos (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ cos (

𝑦𝑎𝑤

2
) − cos (

𝑟𝑜𝑙𝑙

2
) ∗ sin (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ sin (

𝑦𝑎𝑤

2
) ; 

𝑞2 = cos (
𝑟𝑜𝑙𝑙

2
) ∗ sin (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ cos (

𝑦𝑎𝑤

2
) + sin (

𝑟𝑜𝑙𝑙

2
) ∗ cos (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ sin (

𝑦𝑎𝑤

2
) ; 

𝑞3 = cos (
𝑟𝑜𝑙𝑙

2
) ∗ cos (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ sin (

𝑦𝑎𝑤

2
) − sin (

𝑟𝑜𝑙𝑙

2
) ∗ sin (

𝑝𝑖𝑡𝑐ℎ

2
) ∗ cos (

𝑦𝑎𝑤

2
) ; 

(94) 

 

The rotation matrix associated to a unit quaternion is: 

 

𝑅(𝑞) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞2𝑞1 + 𝑞0𝑞3) 𝑞0
1 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞3𝑞1 − 𝑞0𝑞2) 2(𝑞3𝑞2 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

]      (95) 
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The time derivative of the unit quaternion is related to the angular velocity by 

the following function: 

 

�̇� =
1

2
𝑄(𝑞) [

0
𝜔
] =

1

2
[

𝑞0 −𝑞1
𝑞1 𝑞0

    
−𝑞2 −𝑞3
−𝑞3 𝑞2

𝑞2 𝑞3
𝑞3 −𝑞2

    
𝑞0 −𝑞1
𝑞1 𝑞0

] [

0
𝜔𝑥
𝜔𝑦
𝜔𝑧

]             (96) 

 

 

 

5.3.2 UAV MODEL AND STATE PREDICTION 

 

In order to estimate the dynamic behaviour of a system, the extended Kalman 

filter needs the complete knowledge of the model of the system: 

 

 

{
𝑥𝑘 = 𝑓( 𝑥𝑘−1,  𝑢𝑘 , 𝑤𝑘−1)                                              (97)

𝑧𝑘 = ℎ( 𝑥𝑘 , 𝑣𝑘)                                                                (98)
 

 

In this application we want to estimate the attitude and the orientation of the 

UAV, then we chose the unit quaternion that represents the spatial orientation of 

the UAV as state vector. 

 

Furthermore, in order to overcome the gyroscope drift problem, we chose the 

biases of the gyroscope as state variables as well: 

 

𝑥 = [𝑞0 𝑞1 𝑞2 𝑞3 𝑏𝜔𝑥 𝑏𝜔𝑦 𝑏𝜔𝑧] 𝑇                                 (99) 

 

In the discrete time and using the Euler integration method it is possible to 

write: 

 

𝑥𝑘 = 𝑥𝑘−1 + �̇�𝑘−1∆𝑡                                                 (100) 
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Considering the gyroscope measurements ω as inputs u and using the 

relationship that exists between the derivative of the unit quaternion �̇� and the 

angular velocity ω, it is possible to write: 
 

 

�̇�𝑘−1 =
1

2
𝑄(𝑞𝑘−1) [

0
𝜔𝑘−1

] =  
1

2
[

𝑞0𝑘−1 −𝑞1𝑘−1
𝑞1𝑘−1 𝑞0𝑘−1

    
−𝑞2𝑘−1 −𝑞3𝑘−1
−𝑞3𝑘−1 𝑞2𝑘−1

𝑞2𝑘−1 𝑞3𝑘−1
𝑞3𝑘−1 −𝑞2𝑘−1

    
𝑞0𝑘−1 −𝑞1𝑘−1
𝑞1𝑘−1 𝑞0𝑘−1

]

[
 
 
 

0
𝜔𝑥𝑘−1 − 𝑏𝜔𝑥𝑘−1
𝜔𝑦𝑘−1

− 𝑏𝜔𝑦𝑘−1
𝜔𝑧𝑘−1 − 𝑏𝜔𝑧𝑘−1 ]

 
 
 

  

(101) 

 

And substituting in the Euler integration formula, we obtain: 
 

 

𝑥𝑘 = 

[
 
 
 
 
 
 
 
𝑞0𝑘
𝑞1𝑘
𝑞2𝑘
𝑞3𝑘
𝑏𝜔𝑥𝑘
𝑏𝜔𝑦𝑘
𝑏𝜔𝑧𝑘 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑞0𝑘−1
𝑞1𝑘−1
𝑞2𝑘−1
𝑞3𝑘−1
𝑏𝜔𝑥𝑘−1
𝑏𝜔𝑦𝑘−1
𝑏𝜔𝑧𝑘−1]

 
 
 
 
 
 
 

+
1

2
[

𝑞0𝑘−1 −𝑞1𝑘−1
𝑞1𝑘−1 𝑞0𝑘−1

    
−𝑞2𝑘−1 −𝑞3𝑘−1
−𝑞3𝑘−1 𝑞2𝑘−1

𝑞2𝑘−1 𝑞3𝑘−1
𝑞3𝑘−1 −𝑞2𝑘−1

    
𝑞0𝑘−1 −𝑞1𝑘−1
𝑞1𝑘−1 𝑞0𝑘−1

]

[
 
 
 

0
𝜔𝑥𝑘−1 − 𝑏𝜔𝑥𝑘−1
𝜔𝑦𝑘−1

− 𝑏𝜔𝑦𝑘−1
𝜔𝑧𝑘−1 − 𝑏𝜔𝑧𝑘−1 ]

 
 
 

∆𝑡  

(102) 

 

 

 

 

 

 

that in extended form become: 

 

{
 
 
 
 
 

 
 
 
 
 𝑞0𝑘 = 𝑞0𝑘−1  − 

1

2
(𝜔𝑥𝑘−1 − 𝑏𝜔𝑥𝑘−1)𝑞1𝑘−1∆𝑡 − 

1

2
(𝜔𝑦𝑘−1 − 𝑏𝜔𝑦𝑘−1) 𝑞2𝑘−1∆𝑡 − 

1

2
(𝜔𝑧𝑘−1 − 𝑏𝜔𝑧𝑘−1)𝑞3𝑘−1∆𝑡;

𝑞1𝑘 =  𝑞1𝑘−1 + 
1

2
(𝜔𝑥𝑘−1 − 𝑏𝜔𝑥𝑘−1)𝑞0𝑘−1∆𝑡 − 

1

2
(𝜔𝑦𝑘−1 − 𝑏𝜔𝑦𝑘−1) 𝑞3𝑘−1∆𝑡 + 

1

2
(𝜔𝑧𝑘−1 − 𝑏𝜔𝑧𝑘−1)𝑞2𝑘−1∆𝑡;

𝑞2𝑘 = 𝑞2𝑘−1 + 
1

2
(𝜔𝑥𝑘−1 − 𝑏𝜔𝑥𝑘−1)𝑞3𝑘−1∆𝑡 + 

1

2
(𝜔𝑦𝑘−1 − 𝑏𝜔𝑦𝑘−1) 𝑞0𝑘−1∆𝑡 − 

1

2
(𝜔𝑧𝑘−1 − 𝑏𝜔𝑧𝑘−1)𝑞1𝑘−1∆𝑡;

𝑞3𝑘 = 𝑞3𝑘−1  −  
1

2
(𝜔𝑥𝑘−1 − 𝑏𝜔𝑥𝑘−1)𝑞2𝑘−1∆𝑡 + 

1

2
(𝜔𝑦𝑘−1 − 𝑏𝜔𝑦𝑘−1) 𝑞1𝑘−1∆𝑡 + 

1

2
(𝜔𝑧𝑘−1 − 𝑏𝜔𝑧𝑘−1)𝑞0𝑘−1∆𝑡;

𝑏𝜔𝑥𝑘 = 𝑏𝜔𝑥𝑘−1;

𝑏𝜔𝑦𝑘 = 𝑏𝜔𝑦𝑘−1;

𝑏𝜔𝑧𝑘 = 𝑏𝜔𝑧𝑘−1;
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(103) 
 

These are the equations for the prediction of the estimation of the extended 

Kalman filter. 

 

In order to project the error covariance P_k ahead it is necessary calculate the 

Jacobian matrix A of partial derivatives of the state transition function with 

respect to x and the Jacobian matrix W of partial derivatives of the state 

transition function with respect to the noise w : 

 

 

𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 +𝑊𝑘𝑄𝑘−1𝑊𝑘
𝑇                                   (104)  

𝐴[𝑖,𝑗] = 
𝜕𝑓[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘 , 𝑢𝑘 , 0)                                         (105) 

𝑊[𝑖,𝑗] = 
𝜕𝑓[𝑖]

𝜕𝑤[𝑗]
(𝑥𝑘 , 𝑢𝑘, 0)                                          (106) 

 

 

Where Q is the diagonal matrix of the variance of the gyroscopes. 

 
 

 

 

5.3.3 STATE CORRECTION 

 

After the prediction phase, it is possible to use the accelerometers and 

magnetometers measurements to correct the predicted estimate.  

The correction phase can be split in two independent steps, one step in which 

only the accelerometers measurements are used and one in which the correction 

is performed using only the magnetometers measurements. 

 



UAV Attitude Heading Reference System | 105 
 

The measurement function that links together the accelerometers 

measurements with the state vector, is: 

 

 

ℎ𝑎𝑐𝑐 = 𝑅(𝑞) ∗ 𝐴𝑐𝑐̅̅ ̅̅ ̅ = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞2𝑞1 + 𝑞0𝑞3) 𝑞0
1 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞3𝑞1 − 𝑞0𝑞2) 2(𝑞3𝑞2 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] [

𝐴𝑐𝑐𝑥
𝐴𝑐𝑐𝑦
𝐴𝑐𝑐𝑧

]  

(107) 

 

The measurement function that links together the magnetometers 

measurements with the state vector is: 

 

ℎ𝑚𝑎𝑔 = 𝑅(𝑞) ∗ 𝑀𝑎𝑔̅̅ ̅̅ ̅̅  = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞2𝑞1 + 𝑞0𝑞3) 𝑞0
1 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞3𝑞1 − 𝑞0𝑞2) 2(𝑞3𝑞2 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] [

𝑀𝑎𝑔𝑥
𝑀𝑎𝑔𝑦
𝑀𝑎𝑔𝑧

]  

(108) 

 

In order to evaluate the Kalman gain 𝐾𝑘 it is necessary calculate the Jacobian 

matrix H of partial derivatives of the measurement function with respect to x: 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1                                    (109) 

𝐻[𝑖,𝑗] = 
𝜕ℎ[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘 , 0)                                         (110)   

 

Finally, it is possible to correct the estimate with the sensors measurements: 

 

𝑥𝑘 = 𝑥𝑘−1 + 𝐾𝑘(𝑧𝑘 − ℎ( 𝑥𝑘
−, 0))                           (111) 
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and to update the error covariance: 

 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−                                         (112) 

 

 

 

 

 

 

5.4 Chebyshev Filtering 

 

One of the main difficulties found the test phase, was represented by the 

vibrations introduced by the brushless engine to the whole airframe. In particular, 

the measures of the accelerometers were completely distorted, causing a 

malfunction of the EKF algorithm. A comparison between the Z component of 

the accelerometer raw measures, when the motor is off (red) and when the motor 

is running (blue), is shown in figure 68 . This comparison test has been 

performed maintaining the airframe locked to the workbench. 
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Figure 55: accelerometer measures comparison 

 

 

In order to identify the frequency region of the noise caused by the engine 

vibrations, an analysis of the vibrations in the frequency domain has been 

performed.  

 

 
Figure 56: frequency analysis of accelerometer measures 

 

Once the noise region has been identified, the noise has been removed by 

means of a filter. 
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 In order to catch the widest range of frequencies, the Output Data Rate 

(ODR) of the accelerometer has been set to 1344Hz, whereas the sample rate is 

1kHz.  

 In Figure 69 the same comparison is shown in the frequency domain.  

 

It is clear that the main harmonic corresponds to approximately 110Hz. 

Therefore, to cut out the noise, the accelerometer measures were filtered with a 

low pass fourth-order Chebyshev filter, with a cutoff frequency of 25Hz.  

 

The results are shown in Figure 70 . In order to ensure that the Chebyshev 

filter does not remove part of the dynamics of the aircraft, in this test the 

airframe is moving.  

 

Moreover, in addition to the comparison between the filtered (black) and 

unfiltered data (green), a comparison is executed with a commercial IMU (red), in 

particular an MTi by Xsens[34]. 

 
 

 
Figure 68: Euler angles comparison 
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5.5 Dynamic compensation 

 

So far, only the gravitational acceleration has been considered, but when the 

aircraft is flying, the accelerometer measures also its dynamic acceleration that 

affects the performance of the EKF as well.  

Without a dynamic compensation the EKF algorithm for the IMU works 

properly only when the system rotates and performs slow linear movements.  

For the EKF algorithm only the gravity vector is useful.  

Considering that to identify separately the static and dynamic component is 

not possible without other devices, the only way to compensate the dynamic 

acceleration is represented by trusting less on the accelerometer measures. 

 

As previously described, the measures of the accelerometer act in the 

correction phase of the EKF algorithm.  

The Kalman gain for the correction by means of the measures of the 

accelerometer is: 
 

 

 

𝐾𝑘 = 𝑃𝐾𝐻
𝑇(𝐻𝑃𝐾𝐻

𝑇 + 𝑅)−1                               (113) 
 

The R matrix, is a diagonal matrix that contains the variances of the X,Y and 

Z axis of the accelerometer. 

𝑅 = [
𝑣𝑎𝑟_𝐴𝑐𝑐𝑋 0 0

0 𝑣𝑎𝑟_𝐴𝑐𝑐𝑌 0
0 0 𝑣𝑎𝑟_𝐴𝑐𝑐𝑍

]                     (114) 

 

The lower is the value of such variance, the more reliable are the measures of 

the accelerometers. In order to relate the R matrix to the dynamic acceleration, 

the following modification is made to the matrix: 

 

𝑅𝑑𝑦𝑛 = [
𝑣𝑎𝑟_𝐴𝑐𝑐𝑋 0 0

0 𝑣𝑎𝑟_𝐴𝑐𝑐𝑌 0
0 0 𝑣𝑎𝑟_𝐴𝑐𝑐𝑍

] ∙ 𝐷𝑦𝑛𝑐𝑜𝑚𝑝        (115) 
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Where Dyn_comp is a variable related to the dynamic acceleration, as it is 

shown in the following formula: 

 

𝐷𝑦𝑛𝑐𝑜𝑚𝑝 = 𝑠𝑎𝑡0.1 {|
𝑛𝑜𝑟𝑚(𝐴𝑐𝑐𝑋, 𝐴𝑐𝑐𝑌, 𝐴𝑐𝑐𝑍)

9.81
− 1|}          (116) 

 

 

In absence of dynamic acceleration, Dyn_comp is zero, conversely the value of 

Dyn_comp (saturated to 0.1) increases the unreliability of the accelerometers.  
 

5.6 Firmware Development and Optimization 

 

In order to make the UAV more suitable to work in unstructured 

environments, it is important to compensate the disturbances as quickly as 

possible. The IMU is used to make the feedback for the low level control of the 

aircraft, in order to ensure its stability and therefore it is important to maximize 

the frequency of the EKF. However, the EKF is a very complex algorithm, and 

to increase its frequency inside a 32bit microcontroller represents a hard 

challenge. A solution to this problem consists in optimizing the code, replacing 

the libraries for the matrix calculation with normal sums of products.  

 

5.6.1 Firmware Block Scheme 

 

The EKF timing is managed by an interrupt of a timer that runs with a 

frequency equal to 500 Hz. At each interrupt the accelerometer measurements are 

acquired, calibrated and filtered. The acquisition and calibration of the gyroscope 

and the magnetometer is executed every two interrupts, i.e. every 4ms. 

 The yellow wave in Figure 70 indicates the time necessary to execute the 

timer and it is possible to see that there are positive half-waves longer (where the 

sensors measures are acquired), alternating with positive half-waves shorter 

(where only accelerometer is acquired).  

The reason to acquire the accelerometer at 500Hz is because in this way a 

better filtering can be performed.  
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Once all sensors data are ready, a flag is set and the EKF algorithm is 

executed in the main loop (Fig. 69). According to the tests, once executed the 

prediction phase (green wave of Figure 70), the best performance are obtained 

executing the correction phase (blue wave of Figure 70) one time with the 

accelerometer measures and one time with the magnetometer measures. 

 The last step are represented by a rotation of the resulting quaternion, if a 

ROS (reset orientation service) or a RHS (reset heading service) request is 

received, and the conversion of the unit quaternion in Euler angles. 

 

 
Figure 69: AHRS firmware scheme 
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Figure 57: EKF timing analysis 
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5.7 Results 

 

In order to assess the performances of the extended Kalman filter developed 

for estimating the Euler angles of an UAV, a comparison with a high quality 

AHRS is presented in this chapter. 

The main features [33] [34] of the iNEMO M1 and the other AHRS used for 

the comparison are illustrated in the following table: 

 

 

 

Table 25: main features AHRS comparison 

AHRS STMicroelectronics iNEMO M1 Xsens MTi 

Gyroscopes 3-axis digital gyroscope,   
±250°/s, ±500°/s, ±2000°/s full 

scales,  
0.03 deg/s/√Hz Noise,  

100 Hz Bandwidth 
760 Hz max update rate 

3-axis gyroscope,  
±300°/s Full Scale,  

0.05 deg/s/√Hz Noise,  
40 Hz Bandwidth, 

512 Hz max update rate 

Accelerometers 3-axis digital accelerometer,  
±2g, ±4g, ±8g, ±16g full scales,  

220 ug/√Hz, 
149,3 Hz Bandwidth, 

1.344 kHz max update rate 

3-axis accelerometer,  
±50 m/s^2 Full Scale,  

0.002 m/s^2/√Hz, 
30 Hz Bandwidth, 

512 Hz max update rate 

Magnetometers 3-axis digital magnetometer, 
from ±1.3 gauss to ±8.1 gauss, 

0.05 mGauss, 
220 Hz max update rate 

3-axis accelerometer,  
±750 mGauss Full Scale,  

0.05 mGauss, 
10 Hz Bandwidth, 

512 Hz max update rate 

Maximum update rate 
processing 

250 Hz 512 Hz 

 

 

 

To perform the comparison the two AHRS boards were aligned and fixed in a 

rigid support as shown in the fig. 71. 
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Figure 58: AHRS comparison test 

 

 

Single and combined movements with slow and fast dynamics along each axis 

were performed and the data from the two boards were collected. 

 

 
Figure 59: roll angle comparison 
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Figure 60: pitch angle comparison 

 
Figure 61: yaw angle comparison 

 

As it is possible to notice in the figures of the comparison , the performances 

of the two AHRS boards are comparable.  
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The performances of the Xsens MTi  AHRS [34] are shown in the following 

table: 

 

AHRS Xsens MTi 

Static accuracy (roll/pitch) <0.5 deg 

Static accuracy (heading) <1 deg 

Dynamic accuracy 2 deg RMS 

Angular resolution 0.05 deg 
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6 UGV Localization 

6.1 Introduction 

 

In this chapter a multi-sensor data fusion algorithm for the localization and 

self-calibration of a tracked mobile robot is described. 

In order to calculate the absolute position of the robot and to estimate the 

values of the parameters used by the odometry (wheels radii and wheelbase), data 

from a GPS, two optical encoders and an inertial platform are fused together by 

an Extended Kalman Filter. The inertial platform allows the mobile robot to be 

localized even when the quality of the GPS signal is low for example near high 

buildings or trees. 

The EKF algorithm has been tested both on a simulator and on a tracked 

mobile robot. 

  

 

6.2 The model of the robot 

 

 

Odometry is the classical technique to calculate the position of a wheeled 

robot. It allows the robot to be tracked through integration of the measurements 

of wheels movements. 

 

The tracked mobile robot can be schematically represented as in Fig. 75: 
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Figure 62: tracked robot representation 

 

 

 

The robot is characterized by a position (x,y) and an orientation θ(t). The 

kinematic model of the robot is: 

 

 

{

�̇�(𝑡) = 𝑉(𝑡) cos 𝜃(𝑡)                                 (117)

�̇�(𝑡) = 𝑉(𝑡)sinθ(𝑡)                                    (118)

�̇�(𝑡) = 𝜔(𝑡)                                                 (119)

  

 

 

Where V(t) is the linear velocity of the mobile robot while ω(t) is its angular 

velocity. 

 

The kinematic model of the mobile robot transforms the measurements of the 

wheels movements into measures of the vehicle motion. 

 

Unfortunately odometry is affected by many inaccuracies, such as wheel 

slipping, uncertainty in the odometry parameters (wheel radii and wheelbase), 

misalignment of the wheels and finite encoder resolution and sampling frequency 

[35]. 
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The errors caused by the wheels slipping cannot be estimated by the encoders 

and hence cannot be compensated. On the other hand the error caused by the 

uncertainty on the odometry parameters could be reduced if a good calibration is 

performed. 

 

Calibration is the problem of estimating the parameters of the robot model 

from sensors measures. This estimation can be very difficult because it depends 

on the conditions and the environment where the robot has to move; therefore, 

to perform the calibration of the robot parameters periodically, is useful. 

 

If the measures from the GPS are not available, for example when a big rock 

or a building reduce the number of visible satellites of the GPS, and the robot is 

using wrong parameters, the robot can get lost very quickly. 

 

The EKF can concurrently localize the robot and estimate the odometry 

parameters-. 

 

 

The discrete-time kinematic model is:  

 

 

{

𝑥(𝑘) = 𝑥(𝑘 − 1) + 𝑉(𝑘 − 1) cos𝜃(𝑘 − 1)               (120)

𝑦(𝑘) = 𝑦(𝑘 − 1) + 𝑉(𝑘 − 1) sin 𝜃(𝑘 − 1)               (121)

θ(𝑘) = θ(𝑘 − 1) + 𝑇ω(𝑘 − 1)                                     (122)

 

 

Where T is the sampling time. 

 

Two optical encoders are used to measure the angular displacement of the 

robot wheels.  

 

 

V(k) and ω(k) are calculated by the following equations: 
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{
𝑉(𝑘 − 1) =

𝑅1∆𝜃1(𝑘 − 1) + 𝑅2∆𝜃2(𝑘 − 1)

2𝑇
                 (123)

𝜔(𝑘 − 1) =
𝑅1∆𝜃1(𝑘 − 1) − 𝑅2∆𝜃2(𝑘 − 1)

𝐿𝑇
                 (124)

 

 

 

Where ∆𝜃1(𝑘 − 1)  and ∆𝜃2(𝑘 − 1)  are respectively the angular 

displacements of the right and left wheels during the interval [T(k-1),T(k)]; 𝑅1 

and 𝑅2 represent the radii of the right and left wheels; L denotes the wheelbase. 

 

Replacing the equations (123) (124) in (120-122), the mathematical model of 

the robot becomes: 

 

 

{
 
 

 
 𝑥(𝑘) = 𝑥(𝑘 − 1) +

𝑅1∆𝜃1(𝑘 − 1) + 𝑅2∆𝜃2(𝑘 − 1)

2𝑇
cos 𝜃(𝑘 − 1)      (125)

𝑦(𝑘) = 𝑦(𝑘 − 1) +
𝑅1∆𝜃1(𝑘 − 1) + 𝑅2∆𝜃2(𝑘 − 1)

2𝑇
sin𝜃(𝑘 − 1)      (126)

θ(𝑘) = θ(𝑘 − 1) + 𝑇
𝑅1∆𝜃1(𝑘 − 1) − 𝑅2∆𝜃2(𝑘 − 1)

𝐿𝑇
                           (127)

 

 

 

6.3 The Localization algorithm 

 

 

In order to estimates the position and orientation of the mobile robot the 

extended Kalman filter algorithm uses the encoder measurements in the 

predictive phase and the GPS and IMU measurements in the corrective phase. 

 

The odometry parameters are considered as state variables in the EKF and are 

estimated together with the localization variables. Therefore the state vector is 

defined as it follows: 
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𝑋(𝑘) = [𝑥(𝑘)𝑦(𝑘)𝜃(𝑘)𝑅1(𝑘)𝑅2(𝑘) 𝐿(𝑘)]
𝑇                        (128) 

 

 

 

The mathematical model becomes: 

 

{
 
 
 
 

 
 
 
 𝑥(𝑘) = 𝑥(𝑘 − 1) +

𝑅1(𝑘 − 1)∆𝜃1(𝑘 − 1) + 𝑅2(𝑘 − 1)∆𝜃2(𝑘 − 1)

2𝑇
cos θ(𝑘 − 1)

𝑦(𝑘) = 𝑦(𝑘 − 1) +
𝑅1(𝑘 − 1)∆𝜃1(𝑘 − 1) + 𝑅2(𝑘 − 1)∆𝜃2(𝑘 − 1)

2𝑇
sin θ(𝑘 − 1)

θ(𝑘) = θ(𝑘 − 1) + 𝑇
𝑅1(𝑘 − 1)∆𝜃1(𝑘 − 1) − 𝑅2(𝑘 − 1)∆𝜃2(𝑘 − 1)

𝐿(𝑘 − 1)𝑇
𝑅1(𝑘) = 𝑅1(𝑘 − 1)

𝑅2(𝑘) = 𝑅2(𝑘 − 1)

𝐿(𝑘) = 𝐿(𝑘 − 1)

 

(129) 

 

 

The encoder measurements are considered as input variables of the kinematic 

model: 

 

𝑈(𝑘) = [∆𝜃1(𝑘) ∆𝜃2(𝑘)]
𝑇                                     (130) 

 

while the position and the orientation of the robot represent the output 

vector: 

 

𝑍(𝑘) = 𝐻𝑋(𝑘) = [𝑥(𝑘)    𝑦(𝑘)   θ(𝑘)  ]𝑇                         (131) 

 

where H is the following matrix: 

 

 

𝐻 = [
1 0 0 0 0 0
0 1 0
0 0 1

0 0 0
0 0 0

]                                 (132) 
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Finally, the kinematic model of the robot can be simply written as: 

 

 

{
𝑋(𝑘) = 𝑓(𝑋(𝑘 − 1), 𝑈(𝑘))                           (133)

𝑍(𝑘) = 𝐻𝑋(𝑘)                                                  (134)
 

 

After the prediction of the state, the predicted covariance matrix of the state 

error is calculated as follows: 

 

 

𝑃𝑘
− = 𝐽𝑥𝑘𝑃𝑘−1𝐽𝑥𝑘

𝑇 + 𝐽𝑢𝑘𝐶𝑢𝐽𝑢𝑘
𝑇 + 𝑄                  (135) 

 

And represents the uncertainty of the estimated state; 𝐶𝑢  is the covariance 

matrix of the noise that corrupts the input; Q is a diagonal matrix that represents 

the uncertainty of the model; 𝐽𝑥𝑘 and 𝐽𝑢𝑘 are the Jacobians of the system: 

 

𝐽𝑥[𝑖,𝑗] = 
𝜕𝑓[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘 , 𝑢𝑘 , 0)                                      (136) 

𝐽𝑢[𝑖,𝑗] = 
𝜕𝑓[𝑖]

𝜕𝑢[𝑗]
(𝑥𝑘 , 𝑢𝑘, 0)                                    (137) 

 

In the matrix Q the terms related to 𝑅1  and 𝑅2  and L are equal to zero 

because the estimated parameters have not to change when the GPS is not 

available. 

 

The Kalman gain is calculated as follows: 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅𝑘)
−1                                (138) 

 

Where 𝑅𝑘 is the covariance matrix of the noise of the GPS and the IMU at 

time k obtained from the datasheet and from the GPS string: 
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𝑅𝑘 = [

𝑣𝑎𝑟_𝑥_𝑔𝑝𝑠 0 0
0 𝑣𝑎𝑟_𝑦_𝑔𝑝𝑠 0
0 0 𝑣𝑎𝑟_𝑦𝑎𝑤_𝑖𝑚𝑢

]                  (139) 

 

 

 

 

The measurement vector is also obtained directly from the GPS and IMU 

measurements: 

 

𝑍(𝑘) =  [

𝑧1(𝑘)
𝑧2(𝑘)
𝑧3(𝑘)

] = [

𝑥𝐺𝑃𝑆(𝑘)
𝑌𝐺𝑃𝑆(𝑘)
𝜃𝐼𝑀𝑈(𝑘)

]                                      (140) 

 

The predicted measurement vector is: 

 

𝑍(𝑘) = 𝐻𝑋−(𝑘)                                                  (141) 

 

The measurement vector is compared to the predicted measurement vector in 

order to obtain the estimated state 𝑋(𝑘) using the Kalman Gain: 

 

𝑋(𝑘) = 𝑋(𝑘 − 1) + 𝐾𝑘(𝑍(𝑘) − 𝐻𝑋
−(𝑘))                         (142) 

 

Finally the state covariance matrix 𝑃 is updated. 

 

6.4 GPS Accuracy and Precision 

 

Accuracy and precision are often used to describe how good is the position 

acquired by the GPS receiver. A distinction should be made between accuracy 

and precision [36].  

Accuracy is the degree of closeness of an estimate to its true, but unknown 

value while the precision is the degree of closeness of observations to their 

means. Figure 76 illustrates various relationships between these two parameters. 

The true value is located at the intersection of the crosshairs, the center of the 
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shaded area is the location of the mean estimate, and the radius of the shaded 

area is a measure of the uncertainty contained in the estimate. 

 

 
Figure 63: GPS accuracy and precision 

 

 

 

The most common measures of 2D accuracy are the Distance Root Mean 

Squared (DRMS) and the Circular Error Probability CEP. 

 

 

6.4.1 Distance Root Mean Squared (DRMS) 

 

DRMS is a single number that expresses 2D accuracy. In order to compute 

the DRMS of horizontal position errors, the standard errors (σ) from the known 

position in the directions of the coordinate axis are required. 

DRMS is the square root of the average of the square errors which is defined 

as follows: 

 

𝐷𝑅𝑀𝑆 =  √𝜎𝑥
2 + 𝜎𝑦

2                                               (143) 
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Standard errors (σ) of estimated coordinates (x, y) of each point being 

positioned can be predicted from the corresponding variances on the diagonal of 

the covariance matrix. 

 

 

6.4.2 Circular Error Probability (CEP) 

 

CEP refers to the radius of a circle in which 50% of the values occurs, i.e. if a 

CEP of 5 meters is quoted then 50% of horizontal point positions should be 

within 5 meters of the true position. The radius of the 95% is often quoted and 

the term R95 used. R95 is CEP with the radius of the 95% probability circle. 

 

Table 1 describes the most commonly used position accuracy measures and 

their probability. 

 

 

Table 26: common position measures 
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6.4.3 Dilution of Precision (DOP) 

 

The DOPs provide a simple characterization of the user-satellite geometry. 

DOP is related to the volume formed by the intersection points of the user-

satellite vectors, with the unit sphere centered on the user. Larger volumes give 

smaller DOPs. Lower DOP values generally represent better position accuracy. 

The role of DOP in GPS positioning, however, is often misunderstood. A lower 

DOP value does not automatically mean a low position error. The quality of a 

GPS-derived position estimate depends upon both the measurement geometry as 

represented by DOP values, and range errors caused by signal strength, 

ionospheric effects, multipath etc. 

 

DOP is the ratio of the positioning accuracy to the measurement accuracy: 

 

𝜎 = 𝐷𝑂𝑃 ∙ 𝜎0                                             (144) 

 

Where: 

 

𝜎0 is  the measurement accuracy, and 

𝜎 is the position accuracy. 

 

6.4.4 Variance of the GPS noise 

 

Manuals of receivers include static and RTK specifications. The datasheet of 

the Leica Viva GNSS - GS10 Receiver reports [37]: 

 

 
Figure 64: datasheet of GPS Leica 
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Baseline is the distance from the rover to the reference station and “ppm” 

indicates  part-per-million (1E-6) of the baseline. 

 

If, for example, the baseline is 1.500 meters, as it is likely at the Cittadella 

Universitaria di Catania, the static accuracy 𝜎0 is: 

 

 

𝑺𝒕𝒂𝒕𝒊𝒄 𝑷𝒉𝒂𝒔𝒆 𝒘𝒊𝒕𝒉 𝑳𝒐𝒏𝒈 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑟𝑚𝑠)

= 0.003 + 0.1𝐸(−6) ∗ 1,500 =  0.0032 𝑚𝑒𝑡𝑒𝑟𝑠  

(145) 

 

𝑹𝒂𝒑𝒊𝒅 𝑺𝒕𝒂𝒕𝒊𝒄 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑟𝑚𝑠) = 0.003 + 0.5𝐸(−6) ∗ 1,500

=  0.0037 𝑚𝑒𝑡𝑒𝑟𝑠 

(146) 

 

𝑲𝒊𝒏𝒆𝒎𝒂𝒕𝒊𝒄 𝑷𝒉𝒂𝒔𝒆 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑟𝑚𝑠) = 0.008 + 1𝐸(−6) ∗ 1,500

=  0.0095 𝑚𝑒𝑡𝑒𝑟𝑠 

(147) 

 

𝑺𝒊𝒏𝒈𝒍𝒆 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑟𝑚𝑠) = 0.008 + 1𝐸(−6) ∗ 1,500

=  0.0095 𝑚𝑒𝑡𝑒𝑟𝑠 

(148) 

 

𝑹𝑻𝑲 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑟𝑚𝑠) = 0.008 + 0.5𝐸(−6) ∗ 1,500 =  0.0088 𝑚𝑒𝑡𝑒𝑟𝑠 

(149) 

 

 

The accuracy with which positions can be determined is not just a function of 

the measurement precision, and the appropriate modelling of biases. It is also a 

function of the satellite(s) - receiver(s) geometry. 
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Finally the variance of the noise of the GPS in the extended Kalman filter is 

chosen in the following way: 

 

 

𝒔𝒘𝒊𝒕𝒄𝒉 𝑓𝑖𝑥_𝑞𝑢𝑎𝑙𝑖𝑡𝑦_𝐺𝑃𝑆  

𝑐𝑎𝑠𝑒 0: 

          𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1000; 

𝑐𝑎𝑠𝑒 1: 

          𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎0 ∗ 𝐺𝑃𝑆𝐷𝑂𝑃(𝑘); 

𝑐𝑎𝑠𝑒 2: 

          𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎0 ∗ 𝐺𝑃𝑆𝐷𝑂𝑃(𝑘); 

𝑐𝑎𝑠𝑒 4: 

          𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎0 ∗ 𝐺𝑃𝑆𝐷𝑂𝑃(𝑘); 
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6.5 Results 

 

In order to assess the performance of the localization algorithm developed, 

the results of an experiment with the tracked robot are presented. 

 

In the two first figures both the two coordinates of the position of the robot 

during the experiment are illustrated, the measured one in red and the estimated 

one in blue respectively: 

 

 

Figure 78: X position comparison 

  

Figure 79: Y position comparison 
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As it is possible to notice in the figures 78 79, the extended Kalman filter is 

able to localize the robot pretty well, apart from some samples in which the 

quality  of the GPS signal (Fig. 80) is low. 

 

 
Figure 65: GPS signal quality 

 

The difference between the position measured by the GPS and the position 

estimated by the EKF is: 

 

 
Figure 66: position error 
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It is possible to notice that in the range time in which the quality of the GPS 

signal is good the error is in the order of a few meters. 

 

The comparison between the estimated heading angle and the one measured 

by means of the IMU, is illustrated in the following figure: 

 

 

  

Figure 67: YAW angle comparison 

The difference between the yaw angle measured by the IMU and the yaw 

angle estimated by the EKF, is: 

 

 
Figure 68: YAW error 
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It is possible to notice that in the range time in which the quality of the GPS 

signal is good the error is in the order of a few degrees. 

 

The extended Kalman filter developed estimates also some parameters such as 

the lengths of the radii of the left and the right wheels of the robot. 

  

 

Figure 69: left and right wheel radii 

In addition to the radii of the left and the right wheels of the robot, the 

algorithm estimates also the length of the wheelbase of the robot. 

 

  

Figure 70: wheelbase  
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7 Conclusion 

 

In this thesis, multi-sensor data fusion, and in particular its application in 

robotics, is discussed. 

 

Thanks to technology progresses such as faster and better integrated 

processing units and increasingly miniaturized and precise sensors, Robotics is 

experiencing a period of significant development.  

 

Power electronics is also contributing to a transformation in the field of 

robotics. In order to present Power electronics implications in robotics, its usage 

is first presented in this thesis. As it is described in the first chapter, power 

electronics devices allow the use of distributed instead of centralized control in 

industrial robotics. 

 

In the second chapter, multi-sensor data fusion and Recursive Bayesian 

Filtering techniques such as Kalman Filter and Particle filter are described. These 

techniques allow the estimation of the state of a dynamic system like a robot. 

 

The multi-sensor data fusion applications on which this thesis is focused on 

are the estimation of the pose of industrial robots, the attitude and heading 

reference system of an UAV and the localization of a UGV. 

 

In all the applications presented, inertial sensors are used in combination with 

other kind of sensors such as magnetometers, GPS and encoders. 

 

In order to convert the sensors raw data to meaningful information, inertial 

sensors and magnetometers need a calibration procedure, as described in the 

third chapter. 

 

In the fourth chapter, two new methods, based on low-cost Micro Electro-

Mechanical Systems (MEMS) Inertial Sensors, to estimate joint angles of a 

manipulator are presented. 
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In one method an Extended Kalman Filter is used, while in the second a 

Particle Filter. The experimental results presented show that, with both methods, 

the positioning error of the end effector of manipulator never reaches 2 cm and 

then it is possible to say that, in non-precision applications, both methods can be 

used instead or in parallel to the encoder, as system for sensing the joints angles. 

Despite some clues of possible advantages of the Particle Filter over the 

Extended Kalman Filter, such as the possibility to work with not only Gaussian 

systems, for this application the Extended Kalman filter has always shown better 

performance than the Particle Filter. 

 

In order to estimate the attitude and the heading of an UAV, a multi-sensor 

data fusion method based on the Extended Kalman Filter is described in the fifth 

chapter. The EKF estimates the Unit Quaternion associated to the Euler angles 

of the aircraft and the biases of the gyroscopes to compensate the drift of the 

measurement integration. Experimental results show that the performance of the 

AHRS developed are comparable with the performance of a high quality 

commercial AHRS. 

 

The last application described in this thesis is the localization of an Unmanned 

Ground Vehicles when the quality of the GPS signal is low for example near high 

buildings or trees. The experimental results show that by using an inertial 

platform it is possible to localize an UGV even when the GPS data are not 

reliable.  
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