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Chapter 1

Introduction

1.1 Corporate Distress Analysis

Corporate distress analysis is a matter of interest for many parties: lending institutions,

regulatory authorities and investors in general. Research on financial distress prediction

models has relevance to lending institutions both in deciding whether to grant or not a

loan (and its related conditions) and in devising policies to monitor exiting loans.

Furthermore, distress prediction models may provide earlier warnings of financial prob-

lems and assess the likelihood of a company experiencing problems in principal repay-

ments. Corporate distress could be consider in the more general framework of credit

scoring, referring to every kind of evaluation on credit recovery at a fixed period of time

(consumer loans, mortgages, and so on) where a financial institution needs to distinguish

between good risk and bad risk applicants for credit. In reality there are not well-defined

classes of good and bad risks. Accurate models assign each applicants (consumer or com-

pany) a probability of defaulting on repayment. Furthermore, there are complex issues of

what is meant by ”default”. If we focus on the case of corporate loans, there is a big

issue if considering the bankruptcy criterion an appropriate proxy for considering a com-

pany reliable (in terms of solvency) or not, or if the strictly legal limitation of a filing for

bankrupt could be replaced by other proxy criteria.

The problem stands largely on the data available to implement a model, because if we

1



2 CHAPTER 1. INTRODUCTION

consider a bank data-warehouse it could provide us all sort of information connected both

to the financial statement data and to the loan-repayments referred to the applicant. But,

if we refer to a new applicant without a credit ”history” on debt-recovery or if we simply

have no such information, we could only refer to quantitative data (financial or economic

ratios) comparable to the industry sector and to previous financial default data used as

learning sample to implement forecasting models.

In the past decades, classification into these two classes (good and bad risks) was made by

human judgement on the basis of past experience. The scale ofthe current credit industry,

the advance in computer technology along with the development of classification meth-

ods and then the legislation that aimed at preventing subjective prejudice from influencing

decision have modified the decision process towards more objective analysis models.

Financial institutions such as banks, insurance and loan companies are subject to overview

by regulatory bodies for solvency and stability, in particular in Europe they are under

Basel II regulation framework.1

Basel II requires banks to assess appropriate internal credit risk measurement and man-

agement systems, compelling banks to improve their risk rating systems. The estimation

of risk parameters, namely probability of default, loss given default and exposure at de-

fault, is the basis for the regulatory capital calculation,because these risk parameters

determine the minimum capital requirements for a bank. Credit model scores are key

inputs for pooling retail portfolios and estimating the risk components. According to the

first pillar of Basel II accord: minimum capital requirementsconsider that ”for corporate

and bank exposures, the PD is the greater of the one-year PD associated with the internal

borrower grade to which that exposure is assigned, or 0.03%”, [130].

Consequently, monitoring the performance of the underlyingrating systems is a key com-

1The Basel Committee on Banking Supervision (BCBS), that maintains its secretariat at the Bank of
International Settlements (BIS) in Basel, is implementinga new revision of the Basel Accords,Basel III,
a comprehensive set of reform measures to strengthen the regulation, supervision and risk management of
the banking sector. The update aims at 1) improving the banking sector’s ability to absorb shocks arising
from financial and economic stress, whatever the source, 2) improving risk management and governance, 3)
strengthening banks’ transparency and disclosures. The reforms target are: bank-level, or micro-prudential,
regulation, which will help raise the resilience of individual banking institutions to periods of stress; macro-
prudential, system wide risks that can build up across the banking sector as well as the pro-cyclical ampli-
fication of these risks over time.
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ponent of the supervisory review process.

Regulators expect that a Basel II implementation leads to better risk management and,

ultimately, produces tangible benefits for the business.

Some authors, [127], created the binomial dependent variable (default/no default) by ob-

serving the situation of each firm at the end of the next financial year and (following

Basel II definition, only if the company is ninety or more days past it is considered as

a default). In order to apply the Basel II formulas for the A-IRBapproach, we had to

provide four inputs: probability of default (PD), loss given default (LGD), exposure at

default (EAD) and maturity (M). The default (distress) prediction models are aimed at

estimating PD, in particular the one year PD required under Basel II. In their sample,they

observed an high variability in the distributions of the financial ratios for the two de-

pendent variable groups. They interpreted it as due to the different sectors in which the

companies operate (for example real estate firms have financial data completely different

from agricultural companies). After processing the default prediction models, they create

seven rating classes and the probability of default (PD) foreach rating class is calculated

by dividing the number of default by the total number of enterprises in each class. Rating

classes have been created in order to obtain the value of PD closest to the one showed by

bond equivalent PD distribution.

The response in a prediction problem could be quantitative or qualitative; in a quantita-

tive problem the key standard variable is numerical, whereas in a qualitative problem the

key standard is categorical. Typically, in credit applications a qualitative response has

two categories (default or not, for example) though there are exceptions (8-class market

segmentation system in [132]). So as above-mentioned, because of its ubiquity and im-

portance, most of the works refer to the two-class case. In the two-class case, predictive

models can be though of as yielding estimated probabilities(or monotonic transforma-

tions of these) that the applicant will belong to each of the classes- and as a classification

(prediction to the qualitative category) is made by comparing the prediction with a thresh-

old, [128]. If the predicted probability of belonging to class 0 is greater than the threshold,

the point is classified into class 0, and otherwise into class1. The threshold thus defines a

(decision) surface, with new points which fall on one side being classified into class 0 and
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those which fall on the other side being classified into class1. (the relationship between

the underlying continuum and the probabilities of predicting the memberships of each of

the two classes has been explored in [131]). A subtlety, arising in both quantitative and

qualitative predictive situations, is that the response variable is often a proxy for some-

thing else of real interest. For example, default might be aneasily measured alternative

standing in for creditworthiness or profitability, both of which are difficult to define, let

alone measure (and this is were the measurement approach canbe valued, yielding more

appropriate response variables based on and derived from those that can be easily mea-

sured). The generic two-class prediction problem in creditscoring begins a set of data

describing previous customers, among with a class variableindicating the outcome (good

or bad). The aim is to use this information to construct a model relating the descriptive

data to the outcome indicator so that new customers, for whomone has the only descrip-

tive data, can be allocated to a likely class. In the retail banking context such a model

is called ascorecard, after the early pre-computer system, and this is the generic term

usually adopted in literature and industry.2

Neural networks are complex models and they can be highly effective, at least in those

problems where the decision surface is complex and also wellseparates the classes. On

one hand, the complexity of such models means that they defy simple interpretation.

Moreover, if the classes are not well separated, if there is class overlapping in the predic-

tors space, neural networks could better perform in the decision surface being non linear.

This is often the case in application scoring situations where the predictor variables sim-

ply do not permit highly accurate separation of the classes.

Improving the accuracy of a credit risk model is likely to have beneficial effects on the

Basel II capital requirement when the Advanced Internal Rating (A-IRB) approach is

used, [126]. Indeed, applying a model with higher accuracy will result in lower capital

requirement regardless the companies are classified as retail customers or corporates. The

new Basel Capital permits banks the possibility to choose whether to classify firms (with

2The earliest form of predictive model assigned a numerical weight to each category of each variable
and calculated a score for a new applicant by summing its weights over the variables. The result was
displayed in the form of a table showing the weights for each category of each variable, hence the term
scorecard, essentially assigning larger weights to less risky applicants.
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sales less thanC. 50 million and exposure less than thatC. 1 million) as corporate or as

retail. In Pillar 1 of Basel II Accord, the rules to calculate bank capital requirements for

each of the different segments are clearly explained. All formulas (both for Non-SME’s

and SME’s)3 follow the same calculation steps involving inputs for correlation (R), capital

requirement (K) and risk-weighted assets (RWA). The most important input variables to

be provided by the banks are three: PDs, LGDs and exposure at default EAD; while the

asset correlation (R) is implicitly given by the Basel formulas.4.

Banks, in particular, and most financial institutions worldwide, have either recently devel-

oped or modified existing internal credit risk systems or arecurrently developing methods

to conform with best practice systems and processes for assessing the probability of de-

fault (PD), and, possibly, loss-given-default (LGD) on credit assets of all types.

As well defined by Altman, [124], the assignment of appropriate default probabilities on

corporate credit assets is a three-step process involving from the development of:

1. credit scoring models;

2. capital market risk equivalents- usually bond ratings;

3. assignment of PD and possibly LGDs on the credit portfolio.

It is important to notice that a statical methodology (such as logit-regression or neural

networks) can combine steps 1) and 2) where the output from 1)automatically provides

estimates of PD. This is one of the reasons why logit-regression approaches has been pre-

ferred by some consultancy modellers developers rather than the discriminant model.

Financial distress is used to mean severe liquidity problems that cannot be resolved with-

out a sizeable rescaling of the entity’s operations or structure.

Filing for bankruptcyis the criterion used in most studies, even if this event is a legal

one that could be heavily influenced by the actions of bankersor other creditors. Ambi-

guity caused by the presence of a non financially distressed company but bankrupt and

3SME stands for Small Medium Enterprise.
4Asset correlation (R) represents the correlation between the assets in the specific portfolio (retail,

corporate, equity, etc.) and in the Accord different formulas are given to calculate this value based on the
nature of the assets, [130]



6 CHAPTER 1. INTRODUCTION

vice versa is an inherent limitation connected with bankruptcy research studies. Even so,

we may observe that prior to bankruptcy companies strongly tend to pass common and

preferred dividends, go into technical defaults and engagein forced sales of assets, all to

the detriment of securities values.

The evaluation of a firm financial status depends on many factors, financial and economic,

that could be predictive of a weak level of solvency or a pre-condition for a liquidation

proceeding, stating the inability of the firm to pay its financial obligations.

There are several indicators of, or information sources about, the likelihood of financial

distress:cash flowanalysis,corporate strategyof the firm in relation to the referring

industry,financial statementsandexternal variables(such as security returns and bond

rating potentially encoding information about cash flows and financial statements items).

The estimate of cash flow analysis is critically dependent onthe assumptions underlying

the preparation of the budget. The financial statements analysis of the firm and those of a

comparison set of firms could focus on a single financial variable (univariate analysis) or

on a combination of financial variables (multivariate analysis). Moreover, the information

about the financial status of a firm and its positioning in the belonging industry-sector is

crucial for investors, stockholders, loan-analysts or creditors, taking into concern the de-

scription and the representative characteristics of the analysed sector.

In the industry, objective statistical methods of allocating applicants to risk classes are

known as credit scoring methods. This term derives from summated rating scale with a

threshold methods, very widespread in the industry, a sort of application score.

In the literature, several estimation methods have been suggested to predict financial dis-

tress, from the simple univariate analysis [1], to multiplediscriminant analysis (MDA)

[2], [3], logit [4] and probit models [5], artificial neural network models (ANN) [6], [7],

rough set theory [8], Bayesian network (BN) models [9], and genetic programming [10].

The above-mentioned methodologies are considered as supervised classification methods,

where a collection of labelled patterns are provided and theproblem is to label a new unla-

belled item. The historical training patterns are used to learn and to derive rules of classes

[11]. Some authors, [125], compared the performance of different methodologies applied

on corporate distress diagnosis. Even if their work could not be said to disclose that a
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clear dominance5 of neural network (NN) compared to traditional statisticaltechniques

(in their work, linear discriminant analysis, LDA), they concluded in a more balanced

way considering both advantages and shortcomings of the black-box NN technique.6 The

results of their work are near or superior to the ones obtained by LDA, so finally, tak-

ing into consideration the not transparent economic interpretation of NN coefficient, they

suggest to use the two techniques in tandem.

Supervised learning can, usually, achieve high predictionaccuracy if the training data and

the analysed data have similar characteristics. The disadvantage emerges if there are no

data records with known class labels.

Otherwise, in bankruptcy studies, samples tend to be small or the information about the

failure status may not be readily available for training a supervised methodology.

Differently, data mining techniques and clustering methods belong to the unsupervised

classification methods dealing with the problem of predicting unobserved features (clus-

ter labels) from observed ones, so category labels are data driven.

Recent researches have proposed the application of clustering analysis and data mining in

the field of the performance evaluation of industrial organization [12], [13] and financial

distress prediction, [14], [15].

In the literature, the variables generally considered in the analysis concerning distress pre-

diction models consist of financial ratios or of a set of financial and economic ratios, or

sometimes of different variable classes composed of both ratios and balance-sheet items.

Rules for classifying applicants into good or bad classes would develop from a design

set; the speed of developing and implementing these rules isimportant and they probably

need to be changed quite frequently (depending on the precise application area).

There are important issues to be considered when we refer to credit scoring or corporate

distress analysis, that are: the quality of the data, regional and macroeconomic effects, in-

dividual factors, default probability dynamic, default events correlation, monitoring pro-

cess and scoring overrides.

The data quality refers to many aspects. Firstly, the correct formulation of the object

5On the contrary, several works in the same period, concludedconsidering NN approach in financial
distress classification superior to the other methodologies.

6It should be underlined that their work was conducted on a induced50% balanced sample.
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population in order to set the learning and the control sample. Very often, the scarcity of

data induces to collect information belonging different institutions in a single data-base,

so risking to have bias factors that could affect the resultsof the model.7 Secondly, the

quality of the data is related to the variable taken into consideration in the model. In cor-

porate credit scoring, financial and economic ratios are generally considered and the issue

refers to the correct indicators to be selected, and their capability to provide information

in relation to the problem and the industrial belonging sector.

In the model implementation, the effect of macroeconomic scenario is generally ignored.

Several works, [123], confirmed that the omission of these factors tend to create biased

estimations on the individual characteristics. The more isthe time considered and the data

geographically dispersed, the more the bias effects increase.

Generally, models do not include complete information referred to an applicant because

of not observed or the observation refers to a previous period.

One of the principal criticism on the scoring model is that they do not consider the time

dynamic of the default probability of an applicant.

In the corporate credit, it is possible that the default probability of a company is correlated

to other companies default in the economic system they operate. So we are in presence of

correlation between units to be considered in the model.

The issue of monitoring the scoring model is current and related to the capability to re-

main accurate and updated.

Scoring overrides issue relates to the operating problem tochange or modify a pre-existing

risk-analysis system in a bank or financial institution.

In part I of the work, we present an overview of the unsupervised statistical methodolo-

gies that could be applied for the industrial sector analysis, in the segmentation perspec-

tive and potential distress level classification. In particular, we delve into the model-based

clustering methodology and its application as an unsupervised classification methodology

for sector segmentation. We present a case-studyA concerning an industry sector analy-

sis focused on clustering two industrial segments into sub-groups according to financial

and operating characteristics by using the above-mentioned classification procedure, the

7For further details, see [103]
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model-based clustering, operating in a multivariate.

The part II of the work, is focused on the supervised statistical methodologies applied

on credit scoring or corporate distress analysis, latu sensu, by drawing the outlines of two

methodologies:Logistic regressionandNeural Networks.

Moreover, an overview is presented of theEvaluating rulesconsidered for selecting and

evaluating the performance of a model.

We report a case-studyB focused on a comparison of the two above-mentioned super-

vised methodologies for predicting financial distress:Logit andNeural Networks, and

to the problem ofclass imbalance. Furthermore, theclass imbalanceproblem, generally

faced in credit scoring model, is analysed and the related literature presented.

A case-studyC is reported, analysing the effect of different unbalance levels in a neural

network distress prediction model.
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Unsupervised statistical methodologies
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Chapter 2

Unsupervised methods

Unsupervised methods are statical models used when no classes are defined or assigneda

priori and aiming at finding structure or identifying specific patterns in the data by the use

of data mining techniques. They are generally implemented in biological and diagnosis

studies, marketing and data warehouse analysis.

The main characteristic of unsupervised methods is to detect a common structure and dif-

ferentiation elements in the data, and are generally used toorganize, to classify and to

visualize data. The exploratory data analysis methods could be divided into two main ty-

pologies:clusteringmethods, consisting in grouping elements into clusters according to

specific distance measures;projectionmethods, focused on reducing data dimensionality

in lower dimensional space maintaining some initial features as to preserve the core of the

information.

If we consider a set D = ((x1),(x2), ..., (xn)) of independent variables (xi) ∈ R
m, we de-

note anunsupervised estimation problemthe one concerning the subdivision of the set

D into disjoint subsets as that thex vectors, belonging to the same subset, are similar

according to a similarity measure.

The importance of implementingdata-drivenmethodologies of analysis rely both due to

the problem of havinga priori information about a phenomenon or because it could be a

latent one and to the presence of a wide set of informations stored in data warehouse in

a variety of sectors: finance, banking, retail sales, manufacturing, marketing and medical

diagnosis, to be exploited to derive association rules. Data may be investigated to find

13
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functional dependencies and to search for patterns considered as representations of a pro-

cess, trying to extract information from the data as intended in the general definition of

knowledge discovery analysis.

In the following chapter, we analyse in the section 2.1 a projection method, theprincipal

component analysisand in section 2.2 a clustering methodology, themodel based clus-

tering. Section 2.3 presents a case study onindustry sector analysisprocessed by the

use of a model based clustering.
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2.1 Principal component analysis

In exploring high-dimensional data sets for group structure, it is typical to rely on ”second-

order” multivariate techniques, in particular,principal component analysis(PCA) in or-

der to reduce dimensionality.1 As a first objective principal component analysis seeks the

standardized linear combination of the original variable which has maximal variance.2

Let x be a random vector with meanµ and covariance matrixΣ, than the principal com-

ponent transformation is the transformation

x → y = Γ′(x − µ) (2.1)

whereΓ is orthogonal,Γ′ΣΓ = Λ 3 is diagonal andλ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. The strict

positivity of the eigenvaluesλi is guaranteed ifΣ is positive definite. Theith principal

componentof x may be defined as the ith element of the vectory:

yi = γ′(i)(x − µ) (2.2)

Hereγ(i) is the ith column ofΓ, and may be called the ith vector ofprincipal component

loadings. If x ∼ (µ,Σ) and y is defined in (2.1), then some properties of principal

components:

E(yi) = 0; V ar(yi) = λi;

Cov(yi, yj) = 0 for i 6= j; V ar(y1) ≥ V ar(y2) ≥ · · · ≥ V ar(yp) ≥ 0;
p∑

i=1

V ar(yi) = trΣ;

p∏

i=1

V ar(yi) = |Σ| .

The sum of the first k eigenvalues divided by the sum of all the eigenvalues represents the

proportion of total variation explained by the first k components,

(λ1 + · · · + λk)/(λ1 + · · · + λp) (2.3)

1Principal component analysis was developed by Hotelling (1993) after the former work by Karl Pear-
son (1901).

2This attempt to reduce dimensionality can be described as ”parsimonious summarization” of the data.
3The representation ofΣ follows from the spectral decomposition.
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One disadvantage of principal component analysis is that the principal components are

not scale-invariant. The correlation between the ith variablexi and the jth principal com-

ponentyj,

ρij = γij(λj/σii)
1/2 (2.4)

WhenΣ is a correlation matrix,σii = 1 soρij = γij(λj)
1/2.

If we consider the p standardized variables Z, the score of the jth principal component on

the hth individual unit is expressed by

yhj = γj1zh1 + γj2zh2 + · · · + γjpzhp; forh = 1, ..., n (2.5)

whereγji is the coefficient of the jth principal component and ith variable.
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2.2 Model based clustering

Cluster analysis consists in the identification of groups of observations that are cohesive

and separated from other groups. Most clustering methodologies are based on heuris-

tic procedures, as hierarchical agglomerative clusteringor iterative partitioning methods

such as k-means method. The statistical properties of thesemethods are generally un-

known, precluding the possibility of formal inference. Recently in literature clustering

procedure has been related to probability models, [117], and it has also been shown that

most popular heuristic methods are approximate estimationfor certain probability meth-

ods. For example, standard k-means clustering and Ward’s method have been considered

equivalent to known procedures for approximately maximizing the multivariate normal

classification likelihood when the covariance matrix is thesame for each component and

proportional to the identity matrix.

In literature, finite mixture models have been proposed in the context of clustering by sev-

eral authors ([118], [119], [120], [121], [122]) but only recently these models have been

recognized to provide a principled statistical approach tothe problems arising in applying

clustering methods ([17], [108]).

In finite mixture models, each component probability distribution corresponds to a clus-

ter. The problem of determining the number of clusters and ofchoosing an appropriate

clustering method can be recast as statistical model choiceproblems and models that dif-

fer in numbers of components and/or in component distributions can be compared.

Fraley and Raftery (2002), [19], presented a clustering strategy combining model-based

hierarchical agglomeration and the EM algorithm for maximum likelihood estimation of

multivariate mixture models. So they exploit the capability of the first one, hierarchical

agglomeration, of producing reasonably good partitions even when started without any

information about groupings, whereas in EM initializationrepresents a critical point for

the optimization process in presence of local minima.

Then, by initializing EM with reasonable starting partitions from hierarchical agglomera-

tion, they obtain improved estimated partitions.

The Bayesian Information Criterion (BIC) approximation was proposed to determine the
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number of group in the data, firstly in a work by [115], and thenextended by [108] to

select simultaneously the parametrization of the model andthe number of clusters.

Given datay with independent multivariate observationsy1, · · · ,yn, the likelihood for a

mixture model with g components is

LMIX(θ1, · · · , θg|y) =
n∏

j=1

g∑

i=1

πifi(yj, θi) (2.6)

wherefi andθi are the density and parameters of the ith component in the mixture andπi

is the probability that an observation belongs to the ith component (πi ≥ 0;
g∑

i=1

πi = 1).

In model based clustering, each cluster is, generally, represented by a Gaussian model.

Let fi be a multivariate normal densityφi, parametrized by its meanµi and covariance

matrixΣi, the model is

φi(y|µi,Σi) = (2π)−
p

2 |Σi|
−

1
2 exp

{
−

1

2
(yj − µi)

T Σ−1
i (yj − µi)

}
, (2.7)

wherey represents the data, andi is an integer subscript specifying a particular cluster.

Formerly, the mixture models for clustering analysis considered only equal covariance

matrix Σ. Model-based clustering offers different modelization ofthe covariance matrix

Σ, that could be parametrized by spectral decomposition, in the form:

Σi = λiDiAiD
′

i , (2.8)

whereλi = |Σi|
1
d is a scalar,Di is the orthogonal matrix of eigenvectors ofΣi andAi

is a diagonal matrix whose elements are proportional to the eigenvalues ofΣi, [17]. The

orientation of the principal components ofΣi is determined byDi, whileAi determines

the shape of the density contours;λi specifies the volume of the corresponding ellipsoid,

which is proportional toλd
i |Ai|, whered is the data dimension.

Characteristics (orientation, volume and shape) can vary between clusters, or be con-

strained to be the same across clusters.

Data generated by mixture of multivariate Gaussian densityare characterized by compo-

nents or clusters that are ellipsoidal and centred at the meansµi, whereas the covariances

Σi determine their other geometric features.
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Model-based clusteringprocedure was introduced by Banfield and Raftery (1993), [17],

that proposed a general framework for geometric cross-cluster constraints in multivariate

normal mixtures by parametrizing covariance matrices through eigenvalue decomposi-

tion. By allowing some but not all of the three featuresλi, Di andAi to vary between

clusters, parsimonious and easily interpreted models could be obtained which are appro-

priate to describe various clustering situations, [112].

Their idea was to treatλi, Di andAi as independent sets of parameters and either con-

strain them to be the same for each cluster or allow them to vary among clusters. When

parameters are fixed, clusters will share certain geometricproperties. This approach gen-

eralize the work of Murtagh and Raftery (1984), [116], who used the equal shape/equal

volume model for clustering in character recognition. It also subsumes the three most

common models:λI, equal variance and unconstrained variance;Σi = λiI, where the

clusters are spherical but have different volumes;Σi = λiAi, where all covariances are

diagonal but otherwise their shapes, sizes and orientationare allowed to vary.

This parametrization includes well-known models such as uniform spherical variance

(Σi = λI) which gives the sum of squares criterion, constant variance and unconstrained

variance. In one dimension, there are just two models: E for equal variance and V for

varying variance. For more than one dimension, inMCLUST, the model identifiers code

geometric characteristics of the model (volume, shape, orientation) with an (E) if equal,

(I) identity and (V) variable, as shown in Table 2.1. In the first two columns, there are

specified the identifier and the name of the model. Then, the third column reports the

correspondent distribution and the other columns indicatevolume, shape and orientation.

The last column indicates the cost of the model, in terms of number of parameters to es-

timate. Parameters associated with characteristics designated by E or V are determined

from the data. The first family of models is referred to spherical shapes, asAi = I

where I is the identity matrix. This parametrization leads to two models:λI;λiI. The

second family of modelizations consists in assuming that the covariance matricesΣi are

diagonal, it means that in the parametrization the orientation matricesDI are permutation

matrices. In such a case variations on the shape matrices seem to be of any particular

interest, and the models arising are four:λA;λiA;λAi andλiAi. In the third case, the
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Id Model Distribution Volume Shape Orientation Number of parameters
E (univariate) equal 1
V (univariate) variable g
EII λI Spherical equal equal NA α + 1
VII λiI Spherical variable equal NA α + d

EEI λA Diagonal equal equal coordinates axesα + d

VEI λiA Diagonal variable equal coordinates axesα + d + g − 1
EVI λAi Diagonal equal variable coordinates axesα + dg − g + 1
VVI λiAi Diagonal variable variable coordinates axesα + dg

EEE λDADT Ellipsoidal equal equal equal α + β

EEV λDiADT
i Ellipsoidal equal equal variable α + gβ − (g − 1)d

VEV λiDiADT
i Ellipsoidal variable equal variable α + gβ − (g − 1)(d − 1)

VVV λiDiAiD
T
i Ellipsoidal variable variable variable α + gβ

Table 2.1: Parametrizations of the covariance matrixΣi, available inMCLUST. In the
analysed unrestricted case (mixture)α = gd+ g − 1, whereasβ = (d(d+ 1)/2).

ellipsoidal family (the more expensive in terms of number ofparameters), it is possible to

assume variable volume, equal shape and variable orientation (VEV model,λiDiAD
T
i ),

or the other three ellipsoidal models by varying the assumptions on the geometric features

(λDADT ;λDiAD
T
i ;λiDiAiD

T
i ).

In model-based clustering, we assume a mixture model with incomplete data and we use

the EM algorithm, Dempster et al. (1977). EM algorithm maximizes the likelihood func-

tion L (ψ|y1, ..., yn) indirectly by proceeding iteratively in two steps, E-step and M-step,

applied on the complete data log likelihood function,log Lc (ψ). EM is strongly sensitive

to initialization, being a local maximizer seeker, and also, because of the unboundiness of

the likelihood function, the optimization could fail, converging to some singularities, [18]

for constrained ML formulations. A procedure is to initialize EM with the model based

hierarchical results and to use approximate Bayes factors with the BIC (Bayes Informa-

tion Criterion) to determine the number of clusters, see [19].

The EM algorithm procedure for mixture model is considered in details inSubsection

2.2.1.. For further details onMCLUST programming procedure, seeAppendix A.

Model selectionThere is a trade-off between the choice of the number of clusters and

that of the clustering model. If a simpler model is chosen, then more clusters may be

needed to provide a good representation of the data. If a morecomplex model is used,
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then fewer clusters may be considered. As regards model based clustering, we notice

that mixture-model approach to clustering allows the use ofapproximate Bayes factors

to compare models so we select both the parametrization of the model and the number

of clusters. The Bayes factor is the posterior odds for one model against another assum-

ing neither is favoured a priori. InMCLUST, EM algorithm is used to find the maximum

mixture likelihood, and the criterion used for selection corresponds to the BIC4 equals to

twice the log Bayes factor:

2 log(p(x|M)) + constant ≈ 2lM(x, θ̂) −mM log(n) ≡ BIC (2.9)

wherep(x|M) is the likelihood of the data for the modelM, lM(x, θ̂) is the maximized

mixture log-likelihood for the model andmM is the number of independent parameters

to be estimated in each model. The number of clusters is not considered an independent

parameter in computing BIC. If each model is equally likely a priori, thep(x|M) is pro-

portional to the posterior probability that the data conform to the modelM. The larger

the value of the BIC, the stronger the evidence for the model. Kass and Raftery, see [106],

define the BIC to have opposite sign to that given here, in whichthe smaller (more nega-

tive) the BIC, the stronger the evidence for the model.

Fraley and Raftery, see [108], chose to reverse this convention considering easier the in-

terpretation of the BIC values plots.5

Likelihood cannot be used directly in the evaluation of models for cluster analysis, be-

cause the fit of a mixture model can only improve as more terms are added to the model.

This explains the reason why in BIC, it is added a term to the likelihood to penalize the

complexity of the model, in order to maximize for more parsimonious parametrizations

and smaller numbers of groups. The BIC can be used to compare models with differ-

ent parametrizations, different number of components or both. The R statistical pack-

ageMCLUST provides a function to compute the Bayesian Information Criterion (BIC)

given the maximized log-likelihood for model, the data dimensions, and the number of

components in the model, and allows comparison of models with differing parametriza-

tions and/or differing numbers of clusters. In general, thelarger the value of the BIC the

4Schwarz 1978, see [107].
5Fraley and Raftery use that convention inMCLUST R Statistical Package, see [109].
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stronger the evidence for the model and number of clusters, see [109].

2.2.1 EM algorithm

The Expectation-Maximization (EM) algorithm6 is a broadly applicable iterative proce-

dure for computing MLEs in the context of incomplete-data problems. On each iteration

of the EM algorithm, there are two steps, called theexpectation stepor E-step and the

maximization stepor M-step.

Let Y denote the random vector corresponding to the observed datay, having p.d.f. pos-

tulated asf(y; Ψ), whereΨ = (Ψ1, ...,Ψd)
T is a vector of unknown parameters with

parameter spaceΩ.

The observed data vectory is viewed as being incomplete and is regarded as an observable

function of of the so-called complete function. The notion of incomplete data includes the

conventional sense of missing data, but it also applies to situations where the complete

data represent what would be available from some hypothetical experiment. In the latter

case, the complete data may contain some variables that are never observable in a data

sense. Within this framework, letx denote the vector containing the augmented or so-

called complete data, and letz denote the vector containing the additional data, referred

to as the unobservable or missing data.

Let fc(x; Ψ) denote the p.d.f. of the random vectorX corresponding to the complete-data

vectorx, X = (Y,Z). Then the complete-data log likelihood function that couldbe

formed forΨ if x were fully observable is given by:

logLc(Ψ) = log fc(x; Ψ) (2.10)

Formally, we have two samples spacesχ andY and a many-to-one mapping fromχ to

Y. Instead of observing the complete-data vectorx in χ, we observe the incomplete-data

6The name EM was given by Dempster, Laird and Rubin (1977), fora complete overview on the topic
see [99].
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vectory = y(x) in Y. It follows that:

f(y; Ψ) =

∫

χ(y)

fc(x; Ψ)dx (2.11)

whereχ(y) is the subset ofχ determined by the equationy = y(x).

The EM algorithm approaches the problem of solving the incomplete-data likelihood

equation,∂ logL(Ψ)/∂Ψ = 0, indirectly by proceeding iteratively in terms of the complete-

data log likelihood function,logLc(Ψ). As it is unobservable, it is replaced by its condi-

tional expectation giveny, using the current fit forΨ. More specifically, letΨ(0) be some

initial value forΨ. Then on the first iteration, the E-step requires the calculation of

Q(Ψ; Ψ(0)) = EΨ(0) {logLc(Ψ)|y} (2.12)

The M-step requires the maximization ofQ(Ψ; Ψ(0)) with respect toΨ over the parameter

spaceΩ. That is, we chooseΨ(1) such that

Q(Ψ(1),Ψ(0)) ≥ Q(Ψ; Ψ(0)) (2.13)

for all Ψ ∈ Ω. The E- and M-step are then carried out again, but this time with Ψ(0) re-

placed by the current fitΨ(1). On the (k+1)th iteration, the E- and M-steps are defined as

follows:

E-Step CalculateQ(Ψ; Ψ(k)), where

Q(Ψ; Ψ(k)) = EΨ(k) {logLc(Ψ)|y} (2.14)

M-Step ChooseΨ(k+1) to be any value ofΨ ∈ Ω that maximizesQ(Ψ; Ψ(k)); that is

Q(Ψ(k+1),Ψ(k)) ≥ Q(Ψ; Ψ(k)) (2.15)

for all Ψ ∈ Ω.

The E- and M-steps are alternated repeatedly until the difference

L(Ψ(k+1)) − L(Ψ(k)) (2.16)
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changes by an arbitrarily small amount in the case of convergence of the sequence of

likelihood values
{
L(Ψ(k))

}
. It is demonstrated the monotony of EM algorithm, that is

the (incomplete-data) likelihood functionL(Ψ) is not decreased after an EM iteration,

that is

L(Ψ(k+1)) ≥ L(Ψ(k)) (2.17)

for k=0,1,2,....Hence, convergence must be obtained with asequence of likelihood values

that are bounded above.

Another way of expressing (2.8) is to say thatΨ(k+1) belongs to

M(Ψ(k)) = arg max
Ψ

Q(Ψ; Ψ(k)) (2.18)

which is the set of points that maximizesQ(Ψ; Ψ(k)).

EM algorithm for estimation of mixture model parameters We now consider the

application of the EM algorithm for the ML fitting of the parametric mixture model,

f(yj; Ψ) =

g∑

i=1

πifi(yj; θi) (2.19)

to an observed random sample,y = (y1, · · · ,yn), where

Ψ = (π1, · · · , πg−1, ξ
T )T (2.20)

is the vector containing all the unknown parameters in the mixture model andξ is the

vector containing all the parameters inθ1, · · · , θg known a priori to be distinct. In detail,

ξ = (µi,Σi) consists of the elements of the mixture components means,µ1, · · · , µg,

and the distinct elements of the component covariance matrices,Σ1, · · · ,Σg. The log

likelihood forΨ that can be formed from the observed data is given by,

logL(Ψ) =
n∑

j=1

logf(yi; Ψ) =
n∑

j=1

log

g∑

i=1

πifi(yj; θi) (2.21)

Computation of MLE ofΨ requires solving the above-mentioned likelihood equation,

∂ logL(Ψ)/∂Ψ = 0, so that the MLE ofΨ, Ψ̂, satisfies,

π̂i =
n∑

j=1

τi(yj; Ψ̂)/n; (i = 1, · · · , g) (2.22)
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and
g∑

g=1

n∑

j=1

τi(yj; Ψ̂)∂logfi; θ̂i/∂ξ = 0 (2.23)

where

τi(yj; Ψ) = πifi(yj; θi)/

g∑

h=1

πhfh(yj; θh) (2.24)

is the posterior probability thatyj belongs to the ith component of the mixture.

If we consider the mixture problem in the EM framework, the observed-data vectory is

viewed as being incomplete, as the associated component-label g-dimensional vectorszj,

are not available. Eachyj is conceptualized as having arisen from one of the components

of the mixture model being fitted, wherezij = (zj)i = 1or0, according to whetheryj

arises or not from the ith component of the mixture(i = 1, · · · , g; j = 1, · · · , n). The

complete-data vector is expressed as

x = (y, z) (2.25)

where

z = (z1, · · · , zn) (2.26)

The component-label vectorszj are taken to be realized values of the random vectorsZj

that are assumed to be distributed unconditionally according to the multinomial distribu-

tion. The complete-data log likelihood forΨ is given by

logLc(Ψ) =

g∑

i=1

n∑

j=1

zij {log πi + log fi(yj; θi)} (2.27)

The EM algorithm is applied to the mixture problem by treating thezij as missing data.

The addition of the unobservable data to the problem, thezj, is handled by the E-step,

which takes the conditional expectation of the complete-data log likelihood,logLc(Ψ),

given the observed datay, using the current fit forΨ. On the (k+1)th iteration of the EM

algorithm, the E-step requires the computation ofQ(Ψ; Ψ(k)), whereΨ(k) is the value of

Ψ after the kth EM iteration. The E-step, on the (k+1)th iteration, requires the calculation

of the current conditional expectation ofZig given the the observed datay,

EΨ(k)(Zij|y) = prΨk
{Zij = 1|y} = τi(yj; Ψ

(k)) (2.28)
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where

τi(yj; Ψ
(k)) = πk

i fi(yj; θ
k
i )/f(yj; Ψ

k) = πk
i fi(yj; θ

k
i )/

g∑

h=1

πk
hfh(yj; θ

k
h) (2.29)

corresponds to the posterior probability that the jth observation belongs to the ith com-

ponent of the mixture, given observed valueyj and the parameter estimateΨk at the kth

iteration, fori = 1, · · · , g andj = 1, · · · , n.

After these premises, the E-step could be described as

Q(Ψ; Ψ(k)) = EΨ(k) {logLc(Ψ)|y} =

g∑

i=1

n∑

j=1

τi(yj; Ψ
(k)) {log πi + log fi(yj; θi)}

(2.30)

If the zij were observable, then the complete-data MLE ofπi would be given by

π̂i =
n∑

j=1

zij/n for (i = 1, · · · , g) (2.31)

As the E-step simply involves replacing eachzij with its current conditional expectation

τi(yj; Ψ
(k)) in the complete-data likelihood, the update estimate of themixing proportions

πi is given by replacing eachzij by τi(yj; Ψ
(k)) to give

π
(k+1)
i =

n∑

j=1

τi(yj; Ψ
(k))/n for (i = 1, · · · , g) (2.32)

As concerns the updating of the parametersξ estimate on the M-step at the (k+1) iteration,

ξk+1 is obtained as an appropriate root of

g∑

i=1

n∑

j=1

τi(yj; Ψ
(k))∂ log fi(yj; θi)/∂ξ = 0 (2.33)

whose solution often exists in closed form, obtaining the estimates of the component

meansµi and component covariance matricesΣi at the (k+1)th iteration. Considering

that,

µ
(k+1)
i =

n∑

j=1

z
(k)
ij yj/z

(k)
ij (2.34)
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and

Σ
(k+1)
i =

n∑

j=1

z
(k)
ij (yj − µ

(k+1)
i )(yj − µ

(k+1)
i )T/z

(k)
ij (2.35)

are the MLE’s estimates ofµi andΣi, if the zij were observable. AslogLc(Ψ) is linear

in the zij, it follows that thezij are replaced by their current conditional expectations

estimatesτ (k)
ij = τi(yj; Ψ

(k)), so that

µ
(k+1)
i =

n∑

j=1

τ
(k)
ij yj/τ

(k)
ij (2.36)

and

Σ
(k+1)
i =

n∑

j=1

τ
(k)
ij (yj − µ

(k+1)
i )(yj − µ

(k+1)
i )T/τ

(k)
ij (2.37)

for i = 1, · · · , g andj = 1, · · · , n.

In model-based clustering, for the M-step, estimates of the means and probabilities have

closed form, as above-exposed, involving the data from the E-step, see [108], [19].

Whereas, it is important to underline that, in the model-based framework, the computa-

tion of the covariance estimatêΣ(k)
i depends on its specific parametrization, according

to the model considered. Details of the M-step forΣ(k) parametrized by the eigenvalue

decomposition have been implemented in Celeux and Govaert (1995), see [112].
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2.3 Case studyA: Sector analysis via model based clus-
tering

2.3.1 Outlines

The work presents an unsupervised procedure for the evaluation of the firm financial sta-

tus, aiming at identifying a potentially weak level of solvency of a company through its

positioning in a segmented sector. Model Based Clustering is,here, used to segment

real datasets concerning sectoral samples of industrial companies listed in five European

stock exchange markets. The analysis does not forecast failure or non-failure, rather it

compares company’s operating and financial characteristics mean and median of the dif-

ferent groups identified by the clustering process.

The underlying idea in this work is that the financial and economic features, defining the

financial structure level, are strictly connected with the industry sector the firm belongs to

[16], and that seeking for industry-sector key indicators levels may lead to a more appro-

priate evaluation of the firm financial profile.

In the case-study, an unsupervised procedure of classification analysis is presented, aim-

ing at identifying the position of a company in a segmented sector. The choice of a data-

driven methodology of analysis is due to the consideration that the information about a

liquidation proceeding does not identify potential failure pre-condition because it refers

to a stated insolvency status.

The time period considered in the evaluation process is from2005 to 2007, in order to

verify the classification dynamic of a firm in the sectoral segmented framework.

The procedure presented starts from the assessment of the financial and economic indica-

tors that influence the specific industry sector, by a principal component analysis (PCA),

and then it proceeds with operating the segmentation, in a financial and economic per-

spective, of the sector by clustering methodology.

We propose the use of the model based clustering because it allows the modelization of

the covariance matrix and because of its capability to assign every unit to a n-group with

a probability of belonging. The model based methodology is compared to another clus-
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tering method, the K-means clustering. In model based clustering, it is assumed that the

data are generated by a mixture of underlying distributionsin which each component rep-

resents a different group or cluster and the problem of determining the number of clusters

and of choosing an appropriate clustering method can be recast as statistical model choice

problems, [17],[19].

The rest of the paper is organized as follows, a brief review about the model based cluster-

ing methodology, then the presentation of two industrial sector analysis, as Constructions

and Technology Hardware sector, and the reported results ofthe proposed procedure.

2.3.2 Two sector analysis

We consider two datasets of yearly financial statement data of companies, selected accord-

ing to the Industry Classification Benchmark (ICB), listed on Frankfurt, Madrid, Paris,

London and Milan stock exchange markets, for the period 2005-2007. The first sample

refers to the Technology Hardware sector and consists of 92 units for the period 2005-

2007. The second sample refers to the Constructions sector and consists of 105 units for

2005, 107 units for 2006 and 113 units for 2007. We calculate aset of 13 financial and

economic ratios: Quick ratio, Current ratio, Leverage, DebtCoverage, Cost of Debt, Eq-

uity to liabilities, Asset turnover, Expected time of liabilities refunding indicator, Ebitda

to Sales ratio, Return on Asset (Roa), Return on Investment (Roi), Return on Sales (Ros)

and Return on Equity (Roe).

The Statistical Analysis and Results

Firstly, we process a principal component analysis (PCA), asa pre-step examination on

the variables and their influence on the data variability, then we run a model based clus-

tering on the scores obtained by the PCA, in order to classify the companies into groups

related to different financial structure levels. The variables (financial and economic ra-

tios) are calculated by operating transformations of accounting data measured in the same

unit. We do not standardize the variables to compute the principal components because

measurements are on comparable scale, see [20], [21]. The clustering analysis has been
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Table 2.2: Model and number of clusters selected
Year Constructions Sector Technology Hardware Sector

2005 VVI,3 VEV,3
2006 VEI,4 VEV,4
2007 VEV,3 VEV,4

processed by using the packageMCLUST vers.3.3.1 (Fraley and Raftery, 2009) of the sta-

tistical software R. We select the best model according to theBIC corresponding to the

different parametrisation of the covariance matrixΣj, and indicating the number of the

component of the mixture.

Each unit is assigned to the component to which it has the highest estimated posterior

probability of belonging and each distribution component of the mixture may correspond

to a cluster and thus, in our analysis, to a group of companies, [19].

By examining the cluster centroids, mean and median, of the ratios, we may define differ-

ent financial and economic structure levels in each component of the mixture.

For the first dataset, Technology Hardware sector, we select, by the PCA, three compo-

nents explaining about the 72% of variance in 2005, 66% in 2006 and 68% in 2007. In all

the three years, 2005-2007, the components extracted are strongly influenced by the eval-

uation of working capital, as expressed by the operating return and the relation between

short-term debts and current assets, and also by the evaluation of the weight of net equity.

In 2005 and 2007, we found a strong influence on the evaluationof the economic return

for investors (or the ownership), expressed by the Roe, less strong in 2006. The evaluation

of the firm’s ability to refund financial debts and on the expense on debts, expressed by

Debt Coverage and Cost of Debt, is, strongly, captured by the components extracted in the

whole period. The asset turnover is relevant in 2005 and 2006, less in 2007. The operating

return evaluation, is strongly captured in the whole period. In 2005, by the application

of the model based clustering on the scores, as shown in Fig.1a and Fig.1b, the data have

been fitted by a three-components mixture of Gaussian distributions, connected with a

VEV,3 model, thus a ellipsoidal, equal shape model, presenting cluster 1 with about 53%

of the observations, cluster 2 with 36% and cluster 3 with 11%, also see Table 1. Cluster 1
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presents high levels of turnover, economic returns and indebtedness, see Table 2. Cluster

2 shows a medium level of indebtedness, low operating returns and asset turnover. Clus-

ter 3, a marginal group, presents high level of indebtednessand low operating returns. In

2006, the data have been fitted by a four-components mixture of Gaussian distributions,

connected with a VEV,4 model, thus an ellipsoidal, equal shape model. Cluster 1 with

about 37% of the observations, cluster 2 with 23%, cluster 3 with 28%, and cluster 4 with

11%. Cluster 1 presents high economic return levels and quitehigh level of indebtedness.

Cluster 2 presents a lower level of indebtedness, compared togroup 1, but a very low

level of operating economic return. Cluster 3 is highly indebted, not very high economic

return levels, even if with a current financial management better than cluster 2. Cluster

4, a residual group. In 2007, the data have been fitted by a four-components mixture of

Gaussian distributions, connected with a VEV,4 model, thusan ellipsoidal, equal shape

model. Cluster 1 with about 48% of the observations, cluster 2with 27%, cluster 3 with

17 %, and cluster 4 with 7%. Cluster 1 presents an average levelof indebtedness and asset

turnover, with economic return levels not very high, connected with a quite high level of

cost of debt. Cluster 2 shows low economic return levels, low indebtedness, medium lev-

els of asset turnover, and a quite good current financial situation. Cluster 3 presents good

levels of asset turnover, but quite high levels of indebtedness and low economic return

levels. Cluster 4 is a marginal group, presenting group centroids not very coherent from

the economic point of view.

For the second dataset, Construction sector, we select, by the PCA, three components

explaining about the 69% of variance in 2005, 76% in 2006 and 79% in 2007. In all the

three years, 2005-2007, the components extracted are, strongly, influenced by the eval-

uation of working capital, as expressed by the operating return and the relation between

short-term debts and current assets, and also by the evaluation of the weight of net equity.

In 2006 and 2007, we found a strong influence on the evaluationof the economic return

for investors, expressed by the Roe, less strong in 2005.
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Figure 2.1: Model based clustering for Technology HardwareSector, year 2005: BIC
values and model selection.

The evaluation of the firm’s ability to refund financial debts, expressed by Debt

Coverage and Cost of Debt, is captured by the components extracted in the whole period.

The asset turnover is relevant in 2005, less in 2006 and 2007.In 2005, the data have

been fitted by a three-components mixture of Gaussian distributions, connected with a

VVI,3 model, thus a diagonal, varying volume and shape model. Cluster 1 with about

56% of the observations, cluster 2 with 13 % and cluster 3 with31%. Cluster 1 presents

low Asset Turnover and an high indebtedness, even if better levels of economic return.

Cluster 2 shows an high level of indebtedness with low level ofturnover and economic

return. Cluster 3 presents average levels of economic returnand a good level of turnover,
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Figure 2.2: Model based clustering for Technology HardwareSector, year 2005: Pairs
plot of model based classification of the data.

even if characterized by high indebtedness level. In 2006, the data have been fitted by a

four-components mixture of Gaussian distributions, connected with a VEI,4 model, thus

a diagonal, equal shape model. Cluster 1 with about 23% of the observations, cluster 2

with 63 %, cluster 3 with 7%, and cluster 4 with 7%. Cluster 1 presents good levels of

economic return and an average level of indebtedness. Cluster 2 shows economic returns

and indebtedness levels on average. Both cluster 3 and cluster 4 represent marginal groups

with few elements. In 2007, the data have been fitted by a three-components mixture of

Gaussian distributions, connected with a VEV,3 model, thusan ellipsoidal, equal shape

model. Cluster 1 with about 5% of the observations, cluster 2 with 41 % and cluster 3
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Table 2.3: Industry sector analysis

Technology
Hardware

Cluster 1 Cluster 2 Cluster 3 Cluster 4

2005 High econ.
returns

Low econ.
returns-

Low econ.
returns- -

High
indebtedness

Medium
indebt.

High
indebtedness+

High
turnover

Low
turnover

Low
turnover

2006 High econ.
returns

Low
econ.returns-

Low econ.
returns

Low econ.
returns-

High
indebtedness

Medium
indebt.

High
indebtedness

High
indebtedness

High
turnover

Medium
turnover

Medium
turnover

Low
turnover

2007 Medium econ.
ret.

Medium
econ. ret.

Low econ.
returns-

Low econ.
returns- -

Medium
indebt.

Low
indebtedness

High
indebtedness

Not
coherent

Medium
turnover

Medium
turnover

High
turnover

Constructions Cluster 1 Cluster 2 Cluster 3 Cluster 4

2005 High econ.
returns

Low econ.
returns

Medium
econ. ret.

High
indebtedness--

High
indebt.++

High
indebtedness

2006 High econ.
returns

Medium
econ. ret.

Low econ.
returns

Low econ.
returns--

Medium
indebt.

Medium
indebt.

High
indebtedness

High
indebt.++

2007 Low
econ.returns

High econ.
returns

Medium
econ. ret.

High
indebt.++

Medium
indebt.

Medium
indebt.

Low refund.
capab.-

Medium ref.
capab.

Low refund.
capab.
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with 54 %. Cluster 1, a marginal group, with high leverage. Cluster 2 shows

medium level of indebtedness and high economic returns. Cluster 3 presents an aver-

age economic and financial situation. The identification, inboth three years, of marginal

groups with dispersed elements, could be interpreted as a signal of the presence of poten-

tial outliers. These findings have been detected both in the first and the second dataset.

In order to compare the methodology presented in the paper, we have processed on the

two datasets for the three years, 2005-2007, a K-means clustering, and we found, for all

the runs, classifications dissimilar to the ones obtained inthe model based clustering. We

observed that the model based methodology detects more clusters and one or two resid-

ual clusters compared to the K-means procedure that often tends to identify fewer larger

cluster and some singletons.

2.3.3 Results and comments

In this part of a more extended company analysis framework, we have considered a two-

ways data, and we have followed a sequential procedure by applying firstly the PCA and

then the clustering to the scores, a procedure usually used in literature.

The results provided by our analysis show that a clustering procedure applied on a spe-

cific industrial sector could report a segmentation according to the financial and economic

level of the companies providing a ”‘scenario”’ analysis.

By applying this procedure, it would be possible to have ”‘financial level”’ information on

the analysed sector and a segmentation of it with the correspondent average key-indicators

values. Next analysis could be processed according to the reported classification of the

companies belonging to a specific level-class. For example,a supervised analysis could

be applied taking into consideration the specific segmentation of the industrial sector to

be analysed, by considering the presence of a specified number of classes to be predicted

according to the financial-level classes.

Our intent is both to extend the analysis to other industrialsectors and to consider a dif-

ferent procedure, consisting in the simultaneous combination of dimensionality reduction

and clustering operation, see [22].
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The results may suggest that model based clustering is a moreflexible methodology, com-

pared to the other clustering methods, because every unit isassigned to every of the n-

group with a probability of belonging (the posterior probability), giving the possibility to

better identify borderline unit. In our application, on average, we found that model based

clustering tends to detect more clusters than K-means. Similar findings have been, also,

found in previous papers, see [23], whereMCLUST is compared to another robust cluster-

ing method. The identification of the number of the Gaussian components of the mixture

with the number of clusters may need further analysis in order to verify possible mis-

leading association, signalled by the presence of components with few elements, or units

with not very high posterior probability of belonging and not very well separated groups,

that could be connected with the merging problem of normal distributions or not Gaus-

sian distributions. Moreover, both dispersed few elementsgroup or very low probability

of belonging of an element to a cohesive group could indicatethe presence of potential

outliers. We intend to proceed with further research in order to provide a more robust

model based approach for clustering, by considering mixture of t distributions instead of

Gaussian mixture, see [24] or other robust clustering methodology.



Part II

Supervised statical methodologies
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Chapter 3

Supervised methods

3.1 Introduction

Supervised methodologies belong to the confirmatory data analysis procedures, whereas

unsupervised methods belong to exploratory procedures.

In supervised estimation we are provided a collection of outputs with given class (classifi-

cation) or given values (continuous outputs, regression) patterns, and the problem consist

in assigning a predicted label or value to a new pattern. The given labelled or valued

patterns are used to learn the underlying data structure andthe functional dependencies

between the output variablet and the inputs/predictors setx. So, each object is described

in terms of a feature vectorX, belonging to a suitable space and has a true unknown class

or valuet apart from alearning or training setD = ((x1, t1),(x2, t2), ..., (xn,tn)) where

these outputs are known and from whom we derive association rules.

If we consider the feature vectorsX of i.i.d. random vectors according to a probability law

f(x), the learning process could be summarized as the estimation of an outputt according

to a conditional probabilityf(t|x), fixed but unknown, where x belongs to the classt.

Supervised methods are applied to banking application for credit scoring, fraud detection,

medical diagnosis and speech recognition.

The following chapter presents two supervised methodologies, in Section 3.2 theLogistic

regressionmodel and in Section 3.3 theNeural networks.

39
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Section 3.4 concerns theevaluating rulesregarding both a presentation of the model se-

lection criteria and of the accuracy measures used for evaluating classifier performance.

In Section 3.5, it is presented a case study on a comparative analysis betweenPredic-

tion models: Logit versus Neural Networks. Section 3.6 refers to theClass imbalance

problem connected with bankruptcy prediction analysis, and in Section 3.7 it is presented

a case study onNeural Networks distress prediction model on unbalanced dataset.
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3.2 Logistic regression

Over the last decades, in many fields and in particular in credit scoring procedures, the

logistic regression model has been considered a reliable method of analysis when the

outcome variable is discrete (binary or dichotomous).

The specific form of the logistic regression model is:

π(x) =
exp(x′β)

1 + exp(x′β)
(3.1)

whereπ(x) = E[Y |x
¯
] represents the conditional mean of output response vector Ygiven

the predictor variables vectorx. We express the value of the outcome variable, coded as

0 or 1, givenx, asY = π(x) + ε. Here, the quantityε may assume one of two possible

values. If y=1 thenε = 1 − π(x) with probabilityπ(x), and ify = 0 thenε = −π(x)

with probability 1 -π(x). Thus,ε has a distribution with mean zero and variance equal

to π(x)(1 − π(x)). That is, the conditional distribution of the outcome variable follows a

binomial distribution with probability given by the conditional mean,π(x) and maximum-

likelihood methods are required for the parameters estimation. Furthermore, assume that

the outcome variable has been coded as 0 or 1, representing the absence or the presence of

the characteristic, respectively. Consider a collection ofp independent variables denoted

by the vectorx′ = (x1, x2, · · · , xp). Let the conditional probability that the outcome is

present be denoted byP (Y = 1|x) = π(x).

A transformation ofπ(x) is the logit transformation1 defined as:

g(x) = ln
π(x)

1 − π(x)
= x′β = β0 + β1x1 + β2x2 + · · · + βpxp (3.2)

The importance of this transformation is thatg(x) has many of the desirable properties of

a linear regression model.2

Assume that we have a sample of n independent observations(xi, yi), i = 1, 2, · · · , n.

Fitting the model requires that we obtain estimates of the vector β′ = (β0, β1, · · · , βp).

The method of estimation used is the maximum likelihood.
1In the logistic regression model the link function is the logit transformation.
2The logitg(x) is linear in its parameter, may be continuous and may range from−∞ to+∞ depending

on the range ofx.
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The likelihood function expresses the probability of the observed data as a function of the

unknown parameters,

l(β) =
n∏

i=1

π(xi)
yi(1 − π(xi))

1−yi (3.3)

Or expressed as log likelihood, it is defined as

L(β) = ln(l(β)) =
n∑

i=1

{yiln [π(xi)] + (1 − yi)ln [1 − π(xi)]} (3.4)

To find the value ofβ that maximizesL(β), we differentiateL(β) with respect toβ and

set the resulting expressions equal to zero. There will be p+1 likelihood equations that are

obtained by differentiating the log likelihood function with respect to the p+1 coefficients.

The likelihood equations that result may be expressed as follows:

n∑

i=1

[yi − π(xi)] = 0 (3.5)

and
n∑

i=1

xij [yi − π(xi)] = 0 (3.6)

for j = 1, 2, · · · , p.

Let β̂ denotes the solution to these equations, thus the fitted values for the multiple logistic

regression model arêπ(xi), computed usinĝβ andxi.
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3.3 Neural networks

An artificial neural network (ANN) is a statistical model forestimation of non-linear de-

pendencies between input variables and output response vector.3

The original research in neural networks was inspired and motivated by biological studies

focused on understanding and modelling the structure of thebrain functions. The first

structure of learning machine was theperceptronproposed by Rosenblatt (1962) for pat-

tern recognition, [133].4

The first result that links the generalization properties ofthe perceptron and the error min-

imization on the training sample was provided by Novikoff (1962), [135].

Afterwards, Vapnik (1982), [136], formulated an inferential paradigm based on the induc-

tive principle of theempirical risk minimization.5

Neural network architecture is based on the linear combination of activation functions,

and could be represented by a graph where patterns are m-dimensional vectors assigned

to graphs nodes (input and output) and the transformations between patterns are operated

by means of optimization algorithms. The choice of the activation functionτ(.) depends

on the choice of the output distribution (theτ(.) function codomain).

For example, theidentity activation function:

τ(z) = z (3.7)

does not operate any transformation to the input values.

It is appropriate for output variable not constrained.

When referring to sigmoid activation functions6, we generally considered thelogistic ac-

3For further details see [30], [31].
4The Rosenblatt perceptron consists in an architecture, according to McCulloch-Pitts model (1943),

[134], with a single neuron which takes m inputs,x = (x1, · · · , xm) and delivers one output y∈ {−1, 1}.
The input-output relation is given byg(x) = sign(w′

x− w0) wherew ∈ Rm andw0 ∈ R are the neuron
coefficients named weights and threshold, respectively. The sign(.) is a function as sign(u)=1 ifu>0 and
sign(u) = −1 if u<0.

5Subsequently, Vapnik& Chervonenkis (1991) demonstrated the necessary and sufficient conditions
for the consistency of the principle of empirical risk minimization, [137].

6Another sigmoid function isτ(z) = tanh(z) = ez

−e−z

ez+e−z
, assuming values in (-1, 1).
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tivation function:

τ(z) =
1

1 + e−z
(3.8)

assuming values in (0,1). It is appropriate for dichotomous(0/1) output variables where

the expected value is a probability.

Neural networks are families of models with large but not unlimited flexibility given by

a large number of parameters.7 The two most widely used neural networks architectures,

belonging to this family, aremulti-layer perceptrons(MLP) and radial basis functions

(RBF).8 Multi-layer perceptron is used in supervised learning for forecasting and classi-

fication. A feed-forward network is a network in which vertices can be numbered so that

all connections go from a vertex to one with a higher number. The vertices are arranged in

layers, with connections only to higher layers. In feed-forward networks the information

moves towards only one direction, from a level to the following one, without feedback

loops. If the connections are bi-directional, we refer to feedback networks.

Let (X, Y ) be a pair of random vectorX and a random variable Y with joint probability

distributionp(x, y), whereX is the m-dimensional input vector (predictor variables) as-

suming values in some spaceX ⊆ R
m and Y is a response variable with values inY ⊆ R.

We assume that the input-output relation can be written asY = φ(x
¯
) + ε, whereε is a

random variable with zero mean and finite variance. We then assume that the unknown

functional dependencyφ(x
¯
) = E[Y |x

¯
] is estimated by means of the functionfp(x) re-

alized by an MLP withm inputs,p neurons in the hidden layer and one neuron in the

output,

fp(x) =

p∑

k=1

ckτ(a
′

kx + bk) + c0 (3.9)

wherea1, . . . , ap ∈ R
m, b1, . . . , bp, cp+1, c1, . . . , cp ∈ R andτ(.) is a sigmoidal function.9

We denote byA the p x m matrix with rowsa′
1, . . . , a

′
p and setb = (b1, . . . , bp) and

7The traditional methods of statistics and pattern recognition are eitherparametricbased on a family of
models with a small number of parameters, ornon parametricin which the models used are totally flexible.

8The main difference between RBF and MLP relates to the activation function in the hidden nodes. In
MLP, the activation function is a linear combination of inputs and node-weights. In RBF, it is a function of
the distance between the input vector and the reference vector of the jth node.

9Logistic activation function or hyperbolic tangent.



3.3. NEURAL NETWORKS 45

c = (c1, . . . , cp),. Such quantities are calledweightsand we denoted them byw, so that

w ∈ R
p(m+2)+1.

Let Fp be the set of all functions of type (3.9) for a fixed p, for1 ≤ p ≤ N , referring to

F for simplicity of notation. The problem is to find the function f (0) = f(w(0)) in the set

F such that thegeneralization error(or expected risk),

Ê(f) =

∫
[y − f(x)]2 p(x, y)dxdy (3.10)

where the integral is overX x Y, attains its minimum,

f 0 = arg min
f∈F

Ê(f) (3.11)

andw0 denotes the weights off 0. The distributionp(x, y) is unknown, so we compute,

from the sampleL={(x1, y1), . . . , (xN , yN)} (called the learning set: ofN i.i.d. realiza-

tions of(X, Y )), theempirical error:

Ê(f,L) =
∑

(xn,yn)∈L

(yn − f(xn))2 (3.12)

and estimate the least squares parameters by minimizing (3.12).10 If a sum-of-squares

error is used, however, the quantities which can be determined are the x-dependent mean

of the distribution (given by the outputs of the trained network) and a global average

variance (given by the residual value of the error function at its minimum).11 The sum-

of-squares error does not represent the only one error function. There exist other error

functions (for example, entropy for classification problem, [30]).

If we consider a sampleD, generally the procedure consists in partitioning it in three

independent sub-samples: alearning set(or training set)L, avalidation setV and atest

set T . The learning setL is a set of examples used to fit the parameters of the model.

To estimate the parameters of the model, we refer to thelearning error. Thevalidation

10We refer to the principle ofempirical risk minimization. The sum-of-squares error function is derived
from the principle of maximum likelihood on the assumption of Gaussian distributed target data. Otherwise,
the use of a sum-of-squares error does not require the targetdata to have a Gaussian distribution, [30].

11If we consider the conditional distributionp(y|x), and we specify the hypothesis of normality, ho-
moskedasticity and not correlation, then the minimizationof the sum-of-squares error conducts to the max-
imum likelihood estimation for the network weights.
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set V is a set of examples used to tune the parameters of the model (e.g., to choose

the number of hidden nodes of the neural network). To select the model with the best

generalization properties, the approach would consist in evaluating the error function on

the validation set (validation error). The test setT is a set of examples used only to

assess the performance of a fully specified model, by referring to thetest error. However,

very often the sampleD is split into only two sub-groups, the learning setL and the test

setT .12 Both the learning and test set are used to estimate parametersŵ(0), because

Ê∗(f ;L) is the function to be minimized and̂E∗(f ; T ) is the function used to control

overfitting. As the learning process proceeds, at the beginning both the learning and the

test errors generally decrease, but at a certain point the test error begins to increase even

thought the learning error is still decreasing. It is judgedthe point in which the overfitting

occurs. The learning process is then stopped, and the current estimate of the weights

is chosen to bêw(0). This technique is namedearly stopping. If the test error never

decreases during the training process then the network is considered under-parametrized.

Otherwise, a local minimum is achieved by the optimization algorithm and initialization

parameters should be changed. Theearly stoppingtechnique represents a regularization

method, because if starting values are small in magnitude and the weight increase as

the learning process proceeds, then stopping the training before convergence force the

weights to remain small. When the data are not split into threedifferent sets and validation

error cannot be computed for estimating the generalizationerror, model selection criteria

are used to compare different networks.

Neural network models can suffer from either underfitting oroverfitting. A network that is

not sufficiently complex can fail to detect fully the signal in a complicated data set, leading

to underfitting. A network that is too complex may fit the noise, leading to overfitting.

The complexity of a network is related to both the number of weights and the size of the

weights. The generalization performance depends more on the size of the weights than

on the size of the networks (number of parameters). Large weights cause the sigmoids to

saturate, and this leads to quite irregular surfaces. A regularisation method to smooth the

size of the weights is theweight decay, where a penalty term is added to the error function

12For further details about the procedure implemented inNNET R statistical package, see Appendix B.
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to be minimized during the learning process over the sum of all weights of the network:

Ê∗(f ;L) = Ê(f ;L) + λ
∑

w2
i

whereλ is thedecayor smoothingparameter. An approach consists in processing net-

works with differentλ values and estimating the correspondent generalization error, so to

select theλ parameter related to the minimum error value.

Optimization algorithm From the numeric point of view, the problem of learning

in neural networks consists in finding a weight vectorw(opt) that minimize the error func-

tion Ê(w). For neural networks in general form, in particular those with more than one

layer of adaptive weights, the error function will typically be a highly non-linear function

of the weights, and there may exist many local minima. As a condition of the non-linearity

of the error function, it is not in general possible to find a closed-form solutions for the

minima, and iterative optimization algorithms are required. These algorithms involve a

search through weight space consisting of a succession of steps of the form

w(s+1) = w(s) + δw(s) (3.13)

where s labels the iteration step. Different algorithms involve different choices for the

weight vector incrementδws. For some algorithms, such as conjugate gradients and the

quasi-Newton algorithms, the error function is guaranteednot to increase as a result of a

change to the weights. One potential disadvantage of such algorithms is that if they reach

a local minimum they will remain there. The choice of initialweights for the algorithm

then determines which minimum the algorithm will converge to. The majority of initial-

ization procedures involve setting the weights to randomlychosen small values.13

The simplest network training algorithm is thegradient descent(also known assteep-

est descent). This method and theback-propagationalgorithm are currently considered

13The initial weights values are chosen to be small so that sigmoid activation functions are not driven
into the saturation regions but not too small in order not to lead to slow training. In literature, it has been
suggested that the summed inputs to the sigmoid functions should be of order unity. The weights in the
hidden layer are generated by a normal distribution having zero mean and andσ2. The choice of variance
σ2 is important. It is generally suggested that the standard deviation of the distribution used to generate the
initial weights should scale likeσ ∝ m1/2, [30].
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inefficient at some extent and, at the moment current, momentanalysed also from the

theoretical perspective. There are other currently processed optimization methods. If

we consider a small number of parameters, we refer toNewton andGauss-Newton, in-

cludedLevenberg-Marquandt. If we consider a large number of parameters, we refer to

theconjugate gradientalgorithm. In the intermediate case, we refer to the Quasi-Newton

methods. Then, we provide an overview referring only to the above-mentioned currently

used algorithms.

In theConjugate gradient algorithm, the search directions are orthogonal to each other

with respect to the scalar product(Hd(s), d(s+1)), or H-conjugate, that is

d(s+1)Hd(s) = 0 (3.14)

where H is the Hessian matrix evaluated at the pointw(s+1).14 Search directions which

satisfy (3.14) are said to be conjugate. It is possible to construct a sequence of successive

search directionsd(s) such that each direction is conjugate to all previous directions, up to

dimensionality W of the search space.

In the Newton’s method, if we refer to local quadratic approximation, we consider a

search direction based on the inverse of the Hessian of the error function,

d(s) = −H−1∇Ê(s) (3.15)

where the vectorH−1∇Ê(s) is known asNewton directionor Newton step.15

The weight vectorw∗ corresponding to the minimum of the error function satisfies,

w∗ = w −H−1∇Ê (3.16)

The exact evaluation of the Hessian for non-linear networksis computationally demand-

ing, since it requiresO(NW 2) steps andO(W 3) steps for the computation of its inverse.

TheQuasi-Newton’s methodsare based on the Newton direction and involve generating

a sequence of matricesG(s) which represent increasingly accurate approximations to the

inverse HessianH−1, using information on the first derivatives of the error function. The

14The successive search directiond(s) are chosen such that, at each step of the algorithm, the component
of the gradient parallel to the previous search direction isunaltered.

15TheNewton directionforms the basis of a variety of optimization strategies.
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problems arising from Hessian matrices which are not positive definite are solved by star-

ing from a positive-definite matrix and ensuring that the update procedure is such that the

approximation to the inverse Hessian is guaranteed to remain positive definite.

If we express,

g = ∇Ê = H(w − w∗) (3.17)

with w∗ corresponding to the minimum of the error function.

From the Newton direction formula (3.16), we consider that the weight vectors at step s

and s+1 are related to the corresponding gradients by

w(s+1) − w(s) = −H−1(g(s+1) − g(s)) (3.18)

which is known as the Quasi-Newton condition. The approximation G of the inverse

Hessian is constructed so as to satisfy this condition also.

The two most commonly used update formulae are theDavidson-Fletcher-Powell(DFP)

and theBroyden-Fletcher-Goldfarb-Shanno(BFGS) procedures. Here, we give only the

BFGS expression,16

G(s+1) = G(s) +
ppT

pTv
−

(G(s)v)vTG(s)

vTG(s)v
+ (vTG(s)v)uuT (3.19)

where we define the following vectors:

p = w(s+1) − w(s) (3.20)

v = g(s+1) − g(s) (3.21)

u =
p

pTv
−

G(s)v

vTG(s)v
(3.22)

At each step of the algorithm, the direction -Gg is guaranteed to be a descent direction,

since the matrix G is positive definite. However, the weight vector is updated using,

w(s+1) = w(s) + α(s)G(s)g(s) (3.23)

whereα(s) is found by line minimization.

An advantage of the Quasi-Newton method approach over the Conjugate gradient is that

16BFGS method is generally regarded as superior. In NNET R Statistical package, BFGS is the method
implemented for optimization.
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the line search does not need to be performed with great accuracy since it does not form

a critical factor in the algorithm. The disadvantage standson the computational storage

requirement.

The Levenberg-Marquardt algorithm is specifically designed for minimizing a sum-of-

squares error.

Consider the sum-of-squares error function,

E(w) =
1

2

N∑

n=1

ǫ2n =
1

2
‖ǫ‖2 (3.24)

whereǫn is the error for the nth pattern, and e is a vector with elements ǫn. The elements

of the Hessian matrix take the form,

(H)ik =
∂2E

∂wi∂wk

=
N∑

n=1

{
∂ǫn∂ǫn
∂wi∂wk

+ ǫn
∂2ǫn

∂wi∂wk

}
(3.25)

If we neglect the second term, the Hessian can be written in the form

H = ZTZ (3.26)

where we have defined the matrixZ with elements,

(Z)ni =
∂ǫn
∂wi

(3.27)

In the Levemberg-Marquand algorithm, the variation∆w, at each step, is expressed by

w(s+1) = w(s+1) − (ZTZ + λI)−1ZT ǫ(s) (3.28)

whereZ is computed on the basis of the errorsǫ(s) at s-th step, the parameterλ governs

the step size, andI is the unit matrix.

Interpretive methods Artificial neural networks (ANNs) are generally referred as

”black box” procedures, not disclosing the relation between the explicative variables and

the dependent variable and the interpretation of the weights of the network or the activa-

tion values in the hidden layers with respect to the set of data analysed. In ANNs field, a
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particular research direction is focused to the implementation of procedures dedicated to

understand the nature of the internal mechanism to transpose information in the activation

process and to interpret the effect of the inputs variables on the output.

These methods can be principally grouped into two main groups: magnitude of weights

anssensitivity analysis.17

Analysis based on themagnitude of the weightsrefers to those procedures based on the

values stored in the static matrix of weights to determine the relative influence of each

input variable on each one of the network outputs.

The equations proposed for weights magnitude analysis are characterized by the calcu-

lation of the product of the weightswij (connection weight between input neuron i and

hidden neuron j) andvjk (connection weight between hidden neuron j and output neuron

k) for each hidden neurons, obtaining the sum of the calculated product. For example,

Garson (1991), [138], proposed

Qik =

L∑
j=1



 wij

N∑
r=1

wrj

vjk





N∑
i=1




L∑

j=1



 wij

N∑
r=1

wrj

vjk









(3.29)

where
N∑

r=1

wrj is the sum of the connection weights between the N input neurons and the

hidden neuron j, andQik represents the percentage of influence of the input variablexi

on the outputyk, in relation to the rest of the input variables, so that the sum of this index

returns the100% for all the input variables.18

Tchaban et al. (1998), [141], proposed another sensitivitymeasure,

ST
ik =

xi

yk

L∑

j=1

wijvjk (3.30)

17Montano et al. (2003) defined a different procedure NSA(Numeric sensitivity analysis) to analyse the
effect of input variable on output, based on the calculationof the slopes that are formed between the inputs
and the outputs, without assumptions about the nature of thevariables included (quantitative or qualitative),
[32].

18But Garson’s formula does not take into account the signs of the weights, so weights with opposite
signs can cancel each other out.
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representing a variant to the Garson’s equation.

However, in literature the analysis based on the magnitude of weight is not considered

effective whereassensitivity analysisprocedures have been more implemented.

Sensitivity analysiscould be split into two directions:analysis based on the network

outputandanalysis based on the error function.

Sensitivity analysis is based on the measurement of the effect that is observed in the

outputyk due to the change produced in the inputxi. The analytical version of sensitivity

analysis starts from theJacobian matrix, whose elements are given by the derivatives of

the network outputs with respect to the inputs,Jki ≡
∂yk

∂xi
, where each such derivatives is

evaluated with all other inputs held fixed.19 The Jacobian matrix could provide a measure

of the localsensitivityof the outputs to changes in each of the inputs variables, [30].

Zurada et al. (1997), [139], proposed a measure for sensitivity Sik of the outputyk due to

changes in the input variableyk, based on Jacobian matrix, expressed as,

Sik =
∂yk

∂xi

= f ′(netk)
L∑

j=1

vikf
′(netj)wij (3.31)

wheref ′(netk) andf ′(netj) are the derivative of the activation function of the hidden

neuron j and the output neuron k, respectively.20

As above-mentioned, sensitivity analysis could be appliedto the effect observed in the

error function, provoking a perturbation in the input. Wanget al. (2000), [140], consisting

of comparing the error made by the network from the original patterns with the error made

when restricting the input to a fixed value (in general the average value) for all patterns.

Thus, the greater the increase in the error function upon restricting the input the greater

the importance of the input on the output.

19The term Jacobian matrix is also used to refer to the derivatives of the error function with respect to
the network weights, as calculated using back-propagation.

20This method is limited to networks presenting quantitativevariables.
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3.4 Evaluating rules

Classifier performance may be assessed for two basic reasons:to compareclassifiers, in

order to select the best one, or to determine anabsolute measure of qualityof perfor-

mance, in order to verify the adequacy of the classifier to theproblem.

In this chapter, inSub-section 1the commonly criteria used for selecting a model over

another are depicted and inSub-section 2an overview of main evaluating metrics for

goodness of classifier is presented, in particular considering the performance evaluation

in the case of unbalanced datasets.

3.4.1 Model selection criteria

It is presented an overview of the selection criteria used inliterature to compare statistical

models and select the optimal one. It is important to notice that when using these model

selection criteria in the case of a MLP (Multilayer perceptron), the number of K degree

of freedom is set equal to the number W of weights, that means W=p(m+2)+1, wherep

indicated the hidden nodes andm the input vector dimensionality.21

Recalling the functional dependencyφ(x) = E[Y |x], for a fixedp and1 ≤ p ≤ N , letF

be the set of all functions of kind:

fp(xn) =

p∑

i=1

ciτ(a
′

ixn + bi) + cp+1 (3.32)

wherei = 1, ..., N , a1, . . . , ap ∈ R
m, b1, . . . , bp, cp+1, c1, . . . , cp ∈ R andτ is a sigmoidal

function. The problem is to find the functionf (0) = f(w(0)) in the setF such that the

generalization error:

E(f) =

∫
[y − f(x)]2 p(x, y) dx dy , (3.33)

where the integral is overX ×Y, attains its minimum, that isf (0) = arg minf∈F E(f) and

w(0) denotes the weights off (0). In practice, the distributionp(x, y) is unknown, but we

21S. Ingrassia et I. Morlini investigated the case of a neural network for small dataset, in which W> N.
They referred to theequivalent number of degree of freedomby setting K=p+1, see [98].
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have a sampleL = {(x1, y1), . . . , (xN , yN)}, called learning set, ofN i.i.d. realizations

of (X, Y ) so that we can compute theempirical error:

Ê(f,L) =
∑

(xn,yn)∈L

(yn − f(xn))2 (3.34)

In the general framework of model selection, we suppose there arefp1 , . . . , fpK
models of

the form (3.6). As the estimation in statistical models may be thought of as the choice of

a single value of the parameter chosen (according to some criterion) to represent the dis-

tribution, model selection may be thought of in this framework as the estimation applied

to the modelfph
, with h = 1, . . . , K. The only special issue is that the set of models is

discrete and has finite range. There may be occasions when onemodel clearly dominates

the others and the choice is unobjectionable, and other occasions when there are several

competing models that are supported in some sense by the data. Due to theunidentifi-

ability of the parameters, there may be no particular reasons for choosing a single best

model over the others according to some criterion. On the contrary, it make more sense to

”deselect” models that are obviously poor, maintaining a subset for further considerations

regarding, for example, the computational costs.

Let fk be a statistical model based on K degrees of freedom, N denoting the size of the

learning (training) set. Some of the model selection criteria derive from the maximum

likelihood and could be referred, generally, to the form:

Π = Ê(fk) + Ck (3.35)

where the termÊ(fk) = Ê(fk,L) is the empirical error of the modelfk based on the

learning set andCk represents a complexity term expressing the penalty connected to the

number of the degree of freedom K of the model. The complexityterm increases as the

number K of degree of freedom grows, so compensating the effect on the selection criteria

given by a decrease in the empirical error term.

As follows, an overview of indexes generally used for model selection is presented. They

are expressed in a general form so to handle with different kind of problems and be inter-

preted in several application cases. One of them is the AIC (Akaike 1974):
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AIC = log(Ê(fk)) +
2K

N

where N is the size of the learning set. Another criterion is the BIC (Bayesian information

criterion), according to the minimum value of:

BIC = log(Ê(fk)) +
K log(N)

N

Then the GCV error,

GCV = Ê(fk)

(
1 −

K

N

)−2

the UEV criterion

UEV =
Ê(fK)

N −K

and finally the FPE (Akaike, 1970),

FPE = 6Ê(fk)

(
1 +K/N

1 −K/N

)
.

whereK denotes the number of degrees of freedom of the modelfk. For AIC and BIC

there are different forms in literature; here we follow Raftery, see [110]. Some of these

criteria obey the likelihood principle, that is they have some frequentist asymptotic justi-

fication; some others correspond to a Bayesian decision problem.

In the case-studies presented, we used both AIC, BIC and GCV in order to select the

optimal neural network structure.

3.4.2 Evaluation metrics

Classifier performance evaluation is a crucial stage in assessing and developing learning

techniques. To evaluate the performance of a classifier different metrics can be applied,

each one referring to a part of information in respect to another.
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Furthermore, evaluation procedure should be applied to several domains, presenting dif-

ferent characteristics such as dimensionality, type of features, data complexity, to under-

stand the classifier’s general behaviour.

Clearly, the main objective of constructing a classificationmodel is to correctly classify

as many future instances as possible. The most popular measure of performance a clas-

sifier is oferror rateor misclassification rate, and it represents the proportion of objects

misclassified by the rule. It will refer to future objects to be classified.Error rateis the

commonest assessment criterion, probably because it is a default criterion, but it is not

necessarily the most appropriate one. In particular, the main weakness of error rate is

that it implicitly assumes that the cost of different types of misclassification are equal,

and this is unlikely to be in most real applications. Furthermore, error rate does not in-

form about the misclassification level because it does not distinguish between different

instances misclassified in relation to their distance from the threshold chosen. Moreover,

error rate gives no information about accuracy of the probability estimate in the classifier.

If the threshold is not determined a priori then it would be important to have accurate

estimation over a range of potential threshold, by considering the fact of setting different

thresholds connected to implicitly varying misclassification costs. In classifier perfor-

mance evaluation, the most common case is the two-class situation, whereπ0 represents

the prior probability of class 0,π1 = 1 − π0 is the prior probability of class 1,p0 is the

proportion predicted to have come from class 0,p1 = 1 − p0 the predicted proportion

from class 1, and n=a+b+c+d is the overall sample size, as shown in table 3.1.

When the performance criterion is error rate, aconfusion matrixis the cross-classification

True class
Positive class Negative class

0 1
Predicted Positive prediction 0 True positive (a) False positive (b) p0

Class Negative prediction 1 False negative (c) True negative (d) p1

π0 π1 n

Table 3.1: Confusion matrix for a two-class problem. Different types of errors and hits.

of the predicted class by the true class. The off-diagonal elements show where the main
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misclassification occur. The confusion matrix, based on error rate, is asymmetric because

error rate is an asymmetric measure, as the number of elements from classi misclassified

into classj could not equal the number from classj misclassified into classi. Confu-

sion matrix generally refer to error-rate, even if any measure of the distance between two

classes can be used as the basis of confusion matrix.

Theerror rateand theaccuracyare widely used metrics for measuring the performance of

learning systems. However, when the prior probabilities ofthe classes are very different,

such metrics might be misleading.

Error rate = E =
c+ b

a+ b+ c+ d
(3.36)

Accuracy = Acc =
a+ d

a+ b+ c+ d
= 1 − E (3.37)

Maybe,accuracyis the most common evaluation metric but it is not suitable toevaluate

imbalanced datasets since the minority class has much lowerprecision and recall than

the majority class. For instance, it is straightforward to create a classifier having99%

accuracy (or1% error rate( if the data set has a majority class with99% of the total

number of cases, by simply labelling every new case as belonging to the majority class.

Furthermore, these metrics consider different classification errors as equally important.

Additional metrics have been proposed from other domains. They are ROC and AUC,

F-value, maximum geometric mean (MGM) of the accuracy on themajority class and the

minority class, maximum sum (MS) of the accuracy. All the metrics can be divided in

two categories: metrics based on confusion matrix directlyand that based on accuracy

of binary classes or precision and recall directly. Accuracy, precision and recall, FP rate,

TP rate, ROC and AUC fall into the first, while F-value and other more complex metrics,

such as MGM of the accuracy on the majority class and the minority class, MS, fall into

the other.

False negative rate:

FN =
c

a+ c
(3.38)
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is the percentage of positive cases misclassified as belonging to the negative class;

False positive rate:

FP =
b

b+ d
(3.39)

is the percentage of negative cases misclassified as belonging to the positive class;

True negative rate:

TN =
d

b+ d
= 1 − FP (3.40)

is the percentage of negative cases correctly classified as belonging to the negative class,

also reported asspecificity;

True positive rate:

TP =
a

a+ c
= 1 − FN (3.41)

is the percentage of positive cases correctly classified as belonging to the positive class,

also reported assensitivityor recall.

These four class performance measures have the advantage ofbeing independent of class

costs and prior probabilities. It is obvious that the main objective of a classifier is to

minimize the false positive and negative rates or, similarly to maximize the true negative

and positive rates. In particular, if class 0 representscasesand class 1 representsnon

cases, sensitivity(Se) andspecificity(Sp) define performance in terms of predicted classi-

fications within each true classes.

Then, let us underline the two above mentioned measuresrecall andprecision:

Precision=
a

a+ b
(3.42)

Recall =
a

a+ c
(3.43)

Precisionof a classification rule is the percentage of times the predictions associated with

the rule are correct. As above-mentioned,recall is the percentage of all examples belong

to class X that are covered by a rule.

For the purpose of comparison, it is convenient to combineprecisionand recall into a

single measure of performance, theF-measure

F-Measure=
(1 + β2) ∗ recall ∗ precision

β2 ∗ recall + precision
(3.44)
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The value ofβ, a non-negative real, is adjusted according to the importance between pre-

cision and recall.

F-value (or F-measure) is high when both recall and precision are high and can be ad-

justed through changing the value ofβ, where, in details,β corresponds to the relative

importance of precision versus recall.

The more common F-measure (F1) fixes theβ value to 1:

F1= (2*recall*precision)/(recall+precision).

TheF1 measure lies between zero and one, with values close to one indicating better per-

formance. It is a useful performance metric because it giveslow scores to methods that

obtain high precision by sacrificing recall or vice versa.

Furthermore, on domains where misclassification cost is relevant, a cost matrix could be

used. A cost metrics defines the misclassification cost, and in this case the objective of

the classifier is to minimize classification cost instead of error rate.

Perhaps, the most common metric to assess overall classification performance is ROC

analysis and the associated use of the area under the ROC curve (AUC). ROC curve

is a two-dimensional graph in which TP rate(benefits) is plotted on the y-axis and FP

rate(costs) is plotted on the x-axis. To produce a 2x2 confusion matrix as in Table ? it

is necessary to settle on a specific threshold, whereas with areceiver operating character-

istic (ROC) curve the performance is shown at each threshold.In particular, ROC curve

presents simultaneously, for a range of possible classification thresholds for the classi-

fier, the true positive rate(sensitivity) on the vertical axis against false positive rate(1-

specificity) on the horizontal axis. Different points in thecurve correspond to different

thresholds used in the classifier. If we consider the 45° lineas a benchmark, the closer

the ROC curve is to that line the worse the performance is, because it would mean that it

classify the same proportion of the cases and the non-case into the case class at each value

of the threshold, that is it would not separate the class at all. On the contrary, the best clas-

sifier performance is associated to a ROC curve following thetwo axis, because it would

classify 100% of the cases into the case class and 0% of the non-case into the case class

for some threshold points. For most real world applications, there is a trade-off between

FN and FP and similarly between TN and TP. Some classifiers have parameters for which
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different settings produce different ROC points. A classifier that produces probabilities of

an instance to be in each class (for example, neural networksproduce continuous outputs

that can be mapped to probability estimate) can have a threshold parameter biasing the fi-

nal class selection. The ROC methodology allows for rankingof examples based on their

class memberships, whether a randomly chosen majority class example has a higher ma-

jority class membership than a randomly chosen minority class, see [28]. Plotting all the

ROC points that can be produced by varying these parameters produces a ROC curve for

the specific classifier. Generally, this is a discrete set of points, including (0,0) and (1,1),

which are connected by line segments. The lower left point (0,0) represents a strategy that

classifies every example as belonging to the negative class and the upper right point rep-

resents a strategy that classifies every example as belonging to the positive class. As said

before, the point (0,1) represents the perfect classification, and the line x=y represents the

strategy of random guessing the class. We would study classifiers dominance relationship

by comparing the associated ROC curves. So, if a curve, for a given specificity, has a

greater sensitivity the associated classifier provide a superior performance, and vice versa

for a given sensitivity. ROC curves obtained by data are not smooth but step functions.

There is a strong connection between the prior probability of a class and its error cost.

If the costs of misclassifying class 0 (c0) and class 1 (c1) are known, it is possible to

compute theTotal cost,

π0c0(1 − Sensitivity) + π1c1(1 − Specificity) (3.45)

It could be found the threshold on the ROC curve that minimizes this cost, where the

curve slope equalss = (π1c1)/(π0c0).

Alternatively, if error costs are unequal and known, then wecan adjust the decision thresh-

old to minimize the overall cost of errors. Two curves could have the same performance

if they intersect in a point, corresponding to a specific threshold. Generally, one curve

dominates in some intervals of thresholds and another dominates in other intervals. Just

in few situations, one classifier curve results superior to another at all thresholds values.

The curve is plotted by connecting points at intervals on thethreshold scale so that sev-

eral instances change classes between each threshold level. An alternative is to smooth
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the curve by fitting some parametric form. There is a series ofmethods for estimating the

ROC curve for a continuous test. A fully parametric approachthat results in a smooth

curve models the constituent distribution function parametrically in order to arrive at the

induced estimator of the ROC curve. A non-parametric methodthat results in a step

function is to use the empirical estimate whose properties have been derived, see [38].

An intermediate strategy between these two is a semi-parametric approach. A more com-

monly taken strategy to semi-parametric estimation of the ROC curve is to model the ROC

curve parametrically, but avoid making additional assumptions about the distribution of

the tests results. They produce smooth estimated curves while requiring less stringent

assumptions than a fully parametric approach. The bi-normal ROC curve is perhaps the

most popular of these intermediate strategies. ParametricROC analysis is based on a bi-

normal assumption, meaning that the actually positive cases are normally distributed and

the actually negative cases are normally distributed. It isthe overlap between these two

distribution that results in the Bayes error rate. Once we have characterized in some way

the training examples drawn from these two distributions, then we are free to set a deci-

sion threshold that minimizes the Bayes error rate. Other approaches have used logistic

and negative exponential distributions. Sampling variability of ROC plots can be anal-

ysed by plotting confidence bands instead of single curves. When comparing two ROC

curves it could be applied a statical test. To conduct a statistical analysis of ROC curves

and their area, one can use traditional tests, such as t-testor analysis of variance (Anova),

[39], but these procedures do not take into account the case-sample variance. To produce

an average ROC-curve, some authors fit the curve of maximum likelihood to case ratings

under a bi-normal assumption, averaged the ROC-curve parameters a and b (or a and∆

m) in the ROC estimation function, and produced an ROC curve using these averaged

parameters, [40].

A major disadvantage of ROC analysis is that it does not deliver a single performance

measure. If we would reduce the information about performance on a single criterion, we

could choose a particular threshold or using another singlemeasure as the area under the

ROC curve (AUC). AUC, calculated from a ROC graph, is an overallmeasure of accuracy

that considers the curve in its entirety. AUC does not place more emphasis on one class
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over the other, so it is not biased against the minority class. In contrast to error rate, AUC

is invariant to the prior probabilities. Area under the ROC curve is most appropriate when

each curve dominates another. The limit of AUC occurs when there is no one curve dom-

inating another overall (if one curve is superior in some regions and the other elsewhere),

resulting difficult to identify which curve is superior to the other. If multiple curves dom-

inate in different parts of the ROC space, then it could be used the ROC Convex Hull

method to select the optimal classifier, see [33]. There are also analysis for when only a

portion of the ROC curve is of interest. Cost curves are equivalent to ROC curves, but

plot expected cost explicitly, [41].

There is a three-way equivalence between AUC, the Wilcoxon-Mann-Whitney statistic

and the probability of a correct ranking of randomly chosen (negative and positive) pair.

The AUC is equivalent to the two independent sample Wilcoxon-Mann-Whitney non

parametric test statistic, expressing the probability that a randomly selected class 0 ex-

ample will be consider to belong to class 0 than a random class1 example. Furthermore,

theGini coefficientis defined as twice the area between the ROC curve and the 45% line.

Other measures reporting the information on performance toan unique criterion are the

sensitivity/specificity ratio, expressed by:

a(b+ d)

b/(a+ c)
= (a/(a+ c)) ÷ (b/(b+ d)) (3.46)

Another single degree of freedom criterion is theodds ratioor cross-product, expressed

by
a

c
÷
b

d
=
ad

cb
=

Se ∗ Sp

(1 − Se)(1 − Sp)
(3.47)

defining the ratio of the odds of being classified into class 0 given that the example actually

belongs to class 0 and class 1 respectively.

The performance evaluation criteria of learning procedures from imbalanced datasets is

an outstanding problem. Metrics are used to evaluate the data learning results, so if they

do not adequately value rarity or minority class then the learning process, in general, is

not likely to handle rare classes and rare cases very well. Soparticular mention should

be made on research focused onrare classes22 emphasizing that they have less impact on
22Rare cases correspond to a meaningful but relatively small subset of the data, or equivalently, define a

small region of the instance space. Much of the research on rarity relates to rare classes, or, more generally,
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accuracy than common classes (classification accuracy computes the fraction of examples

that are correctly classified), that is, the minority class has much lower precision and recall

than majority class. In literature, different approaches and measures have been proposed

and evaluated in relation to the learning process of unbalanced data. Accuracy places

more weight on the common classes than on rare classes, whichmakes it difficult for a

classifier to perform well on the rare classes. Additional metrics that could result more

appropriate are: the above mentioned ROC analysis and the associated use of the area

under the ROC curve (AUC)to assess overall classification performance. In fact, AUC

does not place more emphasis on one class over the other, so itis not biased against

the minority class. ROC curves, like precision-recall curves, can also be used to assess

different trade-off.

With rare cases/small disjuncts different metrics have been managed in literature. One of

these measures is theLaplace estimator,

La =
N − n+K − 1

N + k
(3.48)

k: is the number of classes

N: is the number of instances

n: number of N example belonging to the majority class

in the case of two classes the formula becomes,La2= (N-n+1)/(N+2).

A more sophisticated error-estimation metric for handlingrare cases and small disjuncts

was proposed by Quinlan, [37]. This method improves the accuracy estimates of the small

disjuncts by taking the class distribution (class priors) into account. Rather than using the

entire training set to estimate the class priors, a more representative (local) set of examples

is used, relating to training examples close to the small disjunct.

Quinlan modifies the laplace formula this way,

QLa =
N − n+ I

N + I
(3.49)

where I=1/(1-C) and C represents the disjunct context error C=e’ /n’, with e’ representing

the examples that do not belong to the class associated with the disjunct andn’ the num-

ber of examples in the context of a disjunct.

class imbalance. [36]
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Quinlan’s experimental results report that, in presence ofhighly skewed class distribu-

tions, applying this modified metric to the learning process, improves classification per-

formance. To summarize, RMSE could be considered as reflecting the classifier’s ability

to estimate posterior probability, AUC with information about its ranking capabilities and

Error Rate metric as a threshold metric.

Recent literature is moving towards classifiers spatial comparison. Some authors studied

the issue of selecting appropriate metrics through a visualization method or focused on

aggregating the results obtained by different classifiers on different domains by visualiza-

tion, [42] [43]. In the extreme case, all the performance data are expressed in a single

number (projection to one dimension) and the classifiers arecompared on the basis of

a single quantity, i.e. a scalar metric. However, this involves the maximum amount of

information loss and single value indicators of classifier performance are most likely to

be unsatisfactory in conveying information about classifier performance.

Finally, to complete the overview we consider classifiers comparison on an exploratory

basis rather than through standard evaluation. Different tools may be useful, according to

the data available, that could vary from simple approaches to plotting the results in a con-

venient way (such as histograms, scatter graphics) to dimensionality reduction techniques

such as multidimensional scaling or self organizing maps.
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3.5 Case studyB: Prediction models: Logit Vs. Neural
Networks

3.5.1 Outlines

Corporate distress prediction models have been introduced,in literature, to classify com-

panies according to the failure forecast. Here, we propose acomparative analysis of two

classifiers: logit and neural networks, on aggregate datasets of Italian companies, referred

to the period 2004-2008. We compare the accuracy of these twomethodologies and ver-

ify the capability of the chosen distress prediction model.Results are expected to provide

information on the degree of forecast accuracy of the different methodologies and on the

predictive power of proxy variables. The present work attempts to provide evidence of

neural networks models outperforming accuracy over logit for predicting the potential fi-

nancial distress of a company. Corporate distress consists in the inability of a company to

refund its financial obligations. An insolvency or a liquidation proceeding implies costs

connected with the credit recovery. Thus, increasing the accuracy of a company distress

prediction is crucial for banks or investors in relation to the decision process to grant or

not a bank-loan or a credit line. In particular, according tothe provisions of the First Pillar

of the Basel II framework, the increasing quality of the credit risk assessment will result

in a reduction of capital allocation. The methodologies considered for corporate distress

prediction are supervised classification methods, where a collection of labelled patterns

are provided and the problem is to label a new unlabelled itemby learning and deriving

rules of classification from historical training patterns.In the following work, we compare

the predictive accuracy of two different classifiers: a logit model and a neural network,

for a corporate distress model [25].

3.5.2 Analysis on balanced dataset

The analysis has been carried out on a sample of 570 large industrial Italian companies,

where the related financial data referred to the period 2004-2008 (Source Amadeus). We

started from an unbalanced sample of 774 failed companies and 38,480 healthy ones. We
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randomly downsized the larger class [27] of healthy units toobtain a balanced sample of

50% failed and50% healthy companies. Then, we reduced the sample by selectingonly

firms having complete financial data for three consecutive years, in order to calculate all

the six indicators. We considered two datasets in order to analyse the prediction at two

different time lags: T1, referred to one-year prior to failure financial statement data and

T2, referred to two-years prior to failure ones. We proceeded with the analysis by split-

ting the data into two sub-samples: a training dataset (402 units, about70%), to estimate

the model parameters of the classifier, and a control dataset(168 units, about30%), to

evaluate the ability of the estimated model in predicting different cases not in the training

sample. Further, the related ROC curve area is considered asan accuracy evaluation cri-

terion of the obtained prediction [28].

We considered six input variables, consisting of financial and economic ratios to capture

both the financial and the economic perspective, see Table 3.2.

These variables have been chosen because commonly regardedboth by banks and schol-

ars [29] as the key indicators to set up their failure prediction models. They are related to

two principal company investigation areas:financial status, concerning the relationship

between positive cash-flows and liabilities, andperformance, relating to the company ef-

ficiency expressed by profitability indicators.

In details, theRefunding capability, expressing the potentiality of the company to gen-

erate positive cash flows to cover financial obligations, is investigated by the Financial

debt coverage ratio. TheGrowth, indicating an increasing economic dynamic, is investi-

gated by the Sales variation ratio. TheDebt cost, expressing the degree of the economic

incidence of the debt exposure, is investigated by the Interest paid on sales ratio. The

Indebtedness, indicating the debt exposure level, is investigated by theLeverage. The

Efficiency, expressing the capability to generate operating returns,is investigated by the

Ebit on sales ratio. The logarithm of Sales represents a sizecontrol variable.
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PROXY VARIABLE COMMENT FORMULA
Refunding
Capability

FDebtCovt Financial Debt Cov-
erage

cashflowt/financialDebtt

Growth SalesV art Sales Variation ∆(sales)/salest−1

Debt cost IPSalest Interest paid on Sales interestpaidt/salest

IndebtednessLeveraget Leverage shareholdersfundst/TotAssett
Efficiency EbitSalest Ebit on Sales Ebitt/Salest

Size SIZEt Size variable Log(salest)

Table 3.2: Description of the input variables in the distress prediction model

3.5.3 Numerical results for balanced data

The output variable value 1 corresponds to a not-failed company whereas the value 0 is

related to a failed one. Thus, positive coefficients are associated with decrease in the

probability of failure while negative ones correspond to increase in the probability of

bankruptcy. As concerns the logistic regression processed, both in T1 and T2 lag peri-

ods, the model coefficients estimated that result significant at 5% level areleverageand

ebitsale, in T2 alsoipsalesis significant. The other estimated coefficients do not result

significant in both two lag periods, even if these ratios are commonly considered by banks

and loan analysts in credit scoring evaluations.

A plausible economic explanation could be connected with the disclosure accounting

rules for the Financial statement items in Italy and their weak capability to render the

financial dimension. In particular, we refer to informationregarding the cash-flows dy-

namics and the correct distinction between long and short-term debt exposure. As regards

the growth dimension, the generally used item: sales, couldnot result always appropri-

ate to describe different sector characteristics that instead could be better investigated by

other economic revenue items. In T1, the logistic regression results, see Table 3.3, show

that the log odds of healthy (versus failed) increases by 7.41 for a one unit increase in

leverageand it is enhanced by 5.02 for a one unit increase inebitsales. In T2, the logistic

regression results, see Table 3.4, indicate that the log odds of healthy (versus failed) in-

creases by 6.56 for a one unit increase inleverageand it is enhanced by 6.73 for a one unit
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No. of obs = 402
LR chi2(6) = 178.00
Prob >
chi2

= 0.0000

PseudoR2 = 0.3194
Log likelihood = -189.64759
y Coef. Std. Err. z P > |z| [95% Conf. In-

terval]
fdebtcovt1 .3143562 .2541972 1.24 0.216 -.1838611 .8125735
salesvart1 -.0086909 .2370037 -0.04 0.971 -.4732095 .4558278
ipsalest1 -1.246083 1.378483 -0.90 0.366 -3.94786 1.455695
leveraget1 7.410037 1.127743 6.57 0.000 5.199701 9.620373
ebitsalest1 5.019519 1.433156 3.50 0.000 2.210584 7.828454
sizet1 .1516105 .1323923 1.15 0.252 -.1078737 .4110947
cons -2.406548 1.320317 -1.82 0.068 -4.994321 .1812255

Table 3.3: Logistic regression results: one-year prior to failure (T1).

increase inebitsales. For a one unit increase inipsales, the log odds of being not-failed

decreases by 7.28.

The coefficients ofleverageandebitsalesare always positive and significant at the 5 %

level in both two periods, T1 and T2, indicating that the indebtedness and efficiency di-

mensions are strongly related to failure events. The coefficient of ipsalesresults negative

and significant only in T2.

As regards the neural network, we iterated the estimation process on the training dataset

for combinations of hidden nodes from 2 to 10 and values of thedecay parameter: 0.1,

0.01, 0.05, 0.005. The optimization process is done via a quasi-Newton method. The

initial parameter vector has been chosen at random but setting the same random seed for

every combination. We obtained 36 models and we computed theempirical erroron the

training set for each model estimated. We calculated the related goodness-of-fit criteria

AIC, BIC and GCV, by considering the number of degree of freedom equals to the number

of weights of the model. Then, we selected three best models according to each selection

criterion for both the two lag periods. Thus the training process is completed, the best

NN models selected were used for prediction applied to the control dataset. From the
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No. of obs = 402
LR chi2(6) = 108.34
Prob >
chi2

= 0.0000

PseudoR2 = 0.1944
Log likelihood = -224.47624
y Coef. Std. Err. z P > |z| [95% Conf. In-

terval]
fdebtcovt2 -.2836873 .339502 -0.84 0.403 -.949099 .3817244
salesvart2 .099439 .1683394 0.59 0.555 -.2305002 .4293783
ipsalest2 -7.2858 2.914459 -2.50 0.012 -12.99803 -1.573565
leveraget2 6.556056 1.039662 6.31 0.000 4.518357 8.593755
ebitsalest2 6.730001 1.890963 3.56 0.000 3.023782 10.43622
sizet2 .0354015 .1175283 0.30 0.763 -.1949497 .2657527
cons -1.377883 1.17262 -1.18 0.240 -3.676175 .920409

Table 3.4: Logistic regression results: two years prior to failure (T2).

bestvalue nodes decay Area p-value binorm.area
LOGIT 0.8605 3.5e-16 0.8608
AIC 4.086 3 0.005 0.8968 3.3e-19 0.8927
BIC 106.048 2 0.005 0.8634 2.1e-16 0.8755
GCV 59.756 3 0.005 0.8968 3.3e-19 0.8927

Table 3.5: T1 (one-year prior to failure). Area under the ROCcurve for Logit and best
selected Neural Networks. The first column contains the selection criteria best values. The
p-value addresses to the null hypothesisH0: ROC Area=0.5. The sixth column contains
the binormal curve area.
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ROC curve comparison − T1
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Logit: ROC curve area = 0.8605
NN: ROC curve area = 0.8968

Figure 3.1: T1- ROC curve comparison between Logit and selected NN (3 hidden nodes,
decay=0.005).
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bestvalue nodes decay Area p-value binorm.area
LOGIT 0.7728 5.1e-10 0.7325
AIC 4.313 4 0.005 0.8202 3.9e-13 0.8151
BIC 106.2 2 0.010 0.7684 9.5e-10 0.7446
GCV 75.219 4 0.005 0.8202 3.9e-13 0.8151

Table 3.6: T2 (two-years prior to failure). Area under the ROC curve for Logit and best
selected Neural Networks. The first column contains the selection criteria best values. The
p-value addresses to the null hypothesisH0: ROC Area=0.5. The sixth column contains
the binormal curve area.

predictions of both logit and NN models, we traced the ROC curve in order to compare

the forecasting performance of the two models, as shown in Fig. 3.1 and Fig. 3.2, and the

dominance of a curve on the other. Furthermore, we calculated the area under the ROC

curve, as an alternative forecast accuracy criterion considering the curve in its entirety, to

objectively compare the two classifiers.

For T1, the AIC and GCV criteria selected the same best model with three hidden nodes

and decay equals to 0.005, presenting an higher value of the area under the ROC curve

than the model selected by the BIC criterion, see Table 3.5.

In the same way for T2, the AIC and GCV criteria selected the same best model, in

this case with four hidden nodes and decay factor equals to 0.005, presenting an higher

value of the area under the ROC curve than the model selected by the BIC criterion, see

Table 3.6. For both two lag periods, neural network models, selected with the criteria AIC

and GCV, presented dominant ROC curves and higher ROC area values over the logistic

model, indicating a better forecast accuracy, see Figures 3.1 and 3.2.
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ROC curve comparison − T2
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Logit: ROC curve area = 0.7728
NN: ROC curve area = 0.8202

Figure 3.2: T2- ROC curve comparison between Logit and selected NN (4 hidden nodes,
decay=0.005).
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3.5.4 Comments

The comparative analysis underlines a superior predictionaccuracy of the neural networks

models over the logistic model for both two failure lag periods.

The neural networks more accurate fitting is important for the costs of wrong prediction

in credit scoring. Otherwise, the logistic regression offers a more readable economic in-

terpretation of the predictor variables influence on the output response vector.

In the case study, leverage and ebitsales in T1 (also ipsalesin T2) result strongly signif-

icant whereas the other variables not, maybe due to the Italian disclosure rules for the

Financial statement items.

From the economic point of view, further research may be carried on aiming at setting a

more significance stable predictors frame, also for other European countries.

Further investigations may focus on input variables sensitivity analysis to interpret the

impact of predictors on the output vector in neural networks[32].

As concerns the methodological procedure, further developments may be conducted aim-

ing at improving the tuning in the neural network optimization process and in managing

with unbalanced data.
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3.6 Class Imbalance

3.6.1 The problem and the literature

Learning with skewed23 class distributions is an important issue in supervised24 learning

because for a number of application domains, a huge disproportion in the number of cases

belonging to each class is common.

Working with unbalanced dataset is still a major obstacle inclassifier learning and many

traditional learning systems are not prepared to induce a classifier that accurately classifies

the minority class under such situation. Frequently, the classifier has good classification

accuracy for the majority class but its accuracy for the minority class is unacceptable. The

problem arises when the misclassification cost for the minority class is much higher than

the misclassification cost for the majority one.

The class imbalance problem is encountered by inductive learning system on skewed

datasets where one class is represented by a large number of instances while the other

is heavily under-represented, presenting only few instances, and that class unbalance

could affect the performance compared to the one attainableby standard learning methods

which assume a balanced class distribution.

Several domains present the class imbalance problem, such as text categorization, infor-

mation retrieval, fraud detection, rare medical diagnosis, financial risk models and image

recognition.25

23The class imbalance problem occurs when there is a large discrepancy between the prior probabilities
of the individual classes, that is one class is represented by a greater number of training examples than the
other.

24Supervised learning is the process of creating a classification model from a set of examples, called
the training set, which belong to a set of classes. Once a model is created, it can be used to automatically
predict the class of other unclassified examples. In supervised learning, a set of n training examples is
given to an inducer. Each example X is an element of the set F1*F2*..Fj where Fj is the domain of thejth
feature. Training examples are tuples (X,Y) where Y is the label, output or class. The Y values are typically
drawn from a discrete set of classes 1,...,K in the case of classification. Given a set of training examples,
the learning algorithm (inducer) outputs a classifier such that, given a new example, it accurately predicts
the label Y, [88].

25In many applications, such as medical diagnosis, fraud detection, intrusion prevention and risk man-
agement, the primary interest is in fact the small classes. In these applications, it is only the data distribu-
tions that are skewed, but so are the misclassification costs. Most classical learning algorithms assume that
all misclassification errors cost equally, and ignore the difference between types of misclassification errors.
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In corporate distress prediction analysis, we would refer to a two-classes problem, in-

dicating the failure event and the non-failure one. Even if we will consider the case of

two-classes problems, the discussion could be extended also to multi-class problems.

In literature, there have been various attempts at dealing with the class imbalance prob-

lem, [26], [44], [27], [45]), [46], [47], at the beginning mostly sparse, and recently several

studies and research are conducted aiming at connecting specific types of imbalances to

the degree of inadequacy of standard classifiers and to test and compare the various meth-

ods proposed to remedy the problem and the response on accuracy of different classifiers.

Some early studies attempted to systematize research on theclass imbalance problem,

in one of them [48] different degrees of imbalances are linked to the performance of a

decision tree learning system on a large number of real-world data sets, in another [49] a

number of specific approaches are proposed to deal with classimbalances in the context

of neural networks and on a few real-world datasets.

Several methods have previously been proposed to deal with this problem including prior

scaling, probabilistic sampling, post-scaling and equalizing class membership, [52].

Class imbalance impacts on classifiers like Decision tree andMulti-layer perceptrons de-

signed to optimize overall accuracy without taking into account the relative distribution

of each class, [84]. These classifiers tend to ignore small classes while concentrating on

classifying the large one accurately, [83].

The imbalance in the data can be more characteristics of ”sparseness” in feature space

than the class imbalance, [61]. In addition to the problem ofinter-class distribution, an-

other problem arising due to the ”sparsity” in the data is thedistribution of data within

each class. This problem was also linked to the issue of smalldisjuncts.

A large number of approaches have been proposed to deal with the class imbalance prob-

lem: internal approach, consisting in creating algorithm ad hoc for the problem, [85] [26],

or external approach consisting in re-sampling the data so to diminish the effect, [86], in-

dependently of the classifier used.

Recent research has shown that using an uneven distribution of class examples in the

learning (training) process can leave the learning algorithm with a performance bias: poor

accuracy on the minority class but high accuracy on the majority class; even if some au-



76 CHAPTER 3. SUPERVISED METHODS

thors confirm only partly this assumption and connected it tocertain conditions, [48] [34].

In literature, major research directions on class imbalance have, principally, focused on:

• Re-sampling methods for balancing the dataset;

• Modification of existing learning algorithms;

• Measuring the classifier performance in imbalance domains;

• Relationships between class imbalance and other data complexity features.

An important area of research, related to the learning bias deriving from unbalance, con-

cerns finding classifiers that are accurate on both classes and adopting metrics that are

insensitive to the learning bias such as the area under the ROC curve (AUC) or the aver-

age accuracy of each class. As mentioned inSubsection 3.4.2, the AUC (area under the

ROC curve) is generally chosen as the primary evaluation measure because it is known to

be a good estimator of classification ability in class imbalance learning. The AUC is in-

sensitive to the class imbalance learning bias and considers the classification performance

across varying classification thresholds. It is important to notice that particular attention

must be kept on the trade-off between different class accuracy, while the techniques ap-

plied to deal with the unbalanced problem to improve classifier performance are often

focused on increasing minority class accuracy without controlling the effects of the over-

all classification ability of the classifier. As said before,increasing the performance of one

class might result in a trade-off in performance for the other. Analysis of learning bias

is usually conducted by computing individual class performances, that is majority class

accuracy and minority class accuracy, in order to analyse ifas the level of class imbalance

increases more instances are classified as belonging to the majority class. The main aim

would be to adapt the learning function managing to maintaingood overall classification
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ability across both the minority and the majority classes using the AUC, as well as in-

creasing individual class accuracy.

The unbalanced class problem could be framed according to different directions:

• What is the nature of the class imbalance problem?

• How do different approaches proposed for dealing with the class imbalance prob-

lem compare?

• Does the class imbalance problem hinder the accuracy performance of classifier?

As concerns the nature of class imbalance problem, some authors [27] provided evidence

that the imbalance problem is a relative problem depending on both the complexity of the

concept (corresponding to the number of sub-clusters into which the classes are subdi-

vided) represented by the data in which the imbalance occursand the overall size of the

training, in addition to the degree of class imbalance present in the simulated data. In

particular, [27] concentrated on explaining both the relationship between concept com-

plexity, size of the training set and the class imbalance level, to identify the class imbal-

ance situations that are most damaging for a standard classifier that expect balanced class

distributions and how to deal with the class imbalance problem.

For imbalanced datasets, the decision boundary established by standard machine learn-

ing algorithm tends to be biased towards the majority class;therefore, the minority class

instances are more likely to be misclassified. There are manyproblems that arise from

learning with imbalanced datasets. The first problem concerns with measures of perfor-

mance. If the evaluation metrics does not take the minority class into consideration, the

learning algorithm will not be able to cope with class imbalance very well. With standard

evaluation metrics, such as the overall classification accuracy, the minority class has less

impact compared to the majority class. The second problem isrelated to the lack of data.

For a class consisting of multiple clusters, some clusters may contain a small number of
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samples compared to other clusters; therefore the lack of data can occur within the class

itself. The third problem is noise. Noisy data have a seriousimpact on minority classes

than on majority classes. Furthermore, standard machine learning tend to treat samples

from a minority class as noise.

In learning estimation, imbalances in the distribution of the data can occur either between

the classes (inter-class) or within a single class (intra-class), that is the case where a single

class is composed of various sub-clusters of different sizes, some of them being tiny. A

between-classimbalance corresponds to the case where the number of examples repre-

senting the positive class differs from the number of examples representing the negative

class; whereas awithin-class imbalance corresponds to the case where a class is com-

posed of a number of different sub-clusters and these sub-clusters do not contain the same

number of examples.26 In the inter-class imbalance, the degree of imbalance can berepre-

sented by the ratio of sample size of the minority class to that of the majority class. Most

classification techniques such as decision tree, discriminant analysis and neural networks

assume that the training samples are evenly distributed amongst different classes. In real-

world applications, the ratio of minority to majority samples can be as low as 1 to 100, 1

to 1000 or 1 to 10,000. Hence, the standard classifiers are effected by the prevalent class

and tend to ignore or treat the small classes as noise. When theperformance is measured

using classification accuracy, the best ratio is near to the natural ratio; on the other hand,

when the AUC measure is used, the best ratio is near the balanced ratio [34]. Although

both types of imbalances are known to affect negatively the performance of classifiers, in

general only methods for dealing with between class imbalance have been implemented.

Deepening the analysis, the imbalance ratio between classes should not be considered

as the only factor causing reduction in classifier performance and that other factors such

as training size and concept complexity also affect performance. In literature, some au-

thors delved the within-class unbalance by referring to theproblem of small disjuncts27

26The within-class imbalance problem occurs when a class consists of several sub-clusters or sub-
concepts and these sub-clusters do not have the same number of samples, [51].

27The within-class along with the between-class imbalance problem are expressions of the general prob-
lem known as the problem of small disjuncts, in which classifiers are biased towards recognizing large
disjuncts correctly, but over-fitting and misclassifying samples represented by small disjuncts, [50]
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and concept complexity in learning estimation, [50] [51] [52] [53]. Systems that learn

from examples do not usually succeed in creating a purely conjunctive definition for each

concept. Instead, they create a definition that consists of several disjuncts, where each dis-

junct is a conjunctive definition of a sub-concept of the original concept. The coverage of

a disjunct is defined as the number of training examples it correctly classifies. A disjunct

is called small if its coverage is low. In literature, rare cases are considered to cause small

disjuncts to occur, which are known to be more error prone than large disjuncts. Learning

system usually create concept definitions that consist of several disjuncts. The learned

decision boundary much approximates more closely the true decision boundaries when

more data is available. One study, [36], which employed synthetically generated datasets,

showed that rare cases have a much higher misclassification rate than common cases, be-

cause the associated lack of data where the number of samplesis small affects the estima-

tion of the true decision boundary. We refer to this as the problem with rare cases. Rare

cases cause small disjuncts in the learned classifier. The problem with small disjuncts,

observed in many empirical studies, is that small disjunctsgenerally have a much higher

error than large disjuncts. One explanation is that some small disjuncts may not represent

rare, or exceptional, cases, but rather something else-such as noisy data. Each disjunct,

in turn, is a conjunctive definition of a sub-concept of the original concept. The coverage

of a disjunct corresponds to the number of training examplesit correctly classifies, and a

disjunct is considered a small disjunct if the coverage is low. What makes small disjuncts

more error prone are the bias of the classifiers as well as the effect of attribute noise, miss-

ing attribute, class noise and training set size on the rare cases which cause them. Within a

class, the data could be distributed according to a mixture density whose components have

relative densities that may vary greatly. Some authors, [52], underlined that techniques

usually used while decreasing the difference between the prior probabilities of the classes

(between-class imbalance), they would probably increase the difference between the rel-

ative densities of the sub-components within each class (within-class imbalance). In most

classification tasks, the presence of within-class imbalance is implicit. It is known to have

negative effects on the performance of standard classifiersand increases the complexity

of concept learning. Although both types of imbalances are known to affect negatively
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the performance of classifiers, most existing methods for class imbalance focused mainly

on dealing with between class imbalance have been implemented consisting in rectifying

the between-class imbalance and ignoring the case where imbalance occurs within each

class. As concerns the concept complexity in data, it corresponds to the level of separa-

bility of classes within the data. Some authors, [27], reported that for simple data sets

that are linearly separable, classifier performances are not susceptible to any amount of

imbalance. Indeed, as the degree of data complexity increases, the class imbalance in-

creases, the class imbalances factor starts impacting the classifier generalization ability.

High complexity refers to inseparable datasets with highlyoverlapped classes, complex

boundaries and high noise level. When samples of different classes overlap in the feature

space, finding the optimum class boundary becomes hard. In fact, most accuracy-driven

algorithms bias toward the prevalent class.

That is, they improve the overall accuracy by assigning the overlapped area to the major-

ity class, and ignore or treat the small class as noise.

We will examine in more detail the small-disjuncts problem and data complexity after a

general literature overview coping with the class imbalance problem.

In literature, different solutions to the class imbalance problem have been proposed both

at the data and the algorithmic level.28

Different methods have been proposed to deal with class imbalance

1. Random re-sampling methods;

2. Focused re-sampling methods;

3. Cost-learning methods;

28For a comprehensive quite updated review of the ”state of theart” for the class imbalance research
area and for the applied techniques, see [54]
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In details, at thedata level, different forms of re-sampling have been proposed such as ran-

dom oversampling with replacement, random under-sampling, directed oversampling (in

which no new examples are created, but the choice of samples to replace is informed rather

than random), directed under-sampling(where again the choice of examples to eliminate

is informed), oversampling with informed generation of newsamples, and combination of

the above techniques. At thealgorithmic level, applied procedures include adjusting the

costs of the various classes so as to counter the class imbalance (by altering the relative

costs of misclassifying the small and the large classes), adjusting the probabilistic esti-

mate at the tree leaf (when working with decision tree), adjusting the decision threshold,

and recognition-based (learning from one class) rather than discrimination based (two

class) learning. The random over-sampling method consistsof oversampling the small

class at random until it contains as many examples as the other class. The random under-

sampling method consists of eliminating, at random, elements of the over-sized class until

it matches the size of the other class. The cost-modifying methods consist of modifying

the relative cost associated to misclassifying the positive and the negative class so that it

compensates for the imbalance ratio of the two classes.

External approaches could be divided into two groups: one focused on the best data for

inclusion in a training set, [86], and the other focused on studying the best proportion of

positive and negative examples to include in a training set:

1. Oversampling or under-sampling?

2. At what rate oversampling or under-sampling?

3. Can combination of re-sampling improve classification accuracy?

The simplest way to balance a dataset is by under-sampling (randomly or selectively) the

majority class while keeping the original population of theminority class.

Random under-sampling aims at balancing the data through therandom removal of nega-

tive examples. The major problem of this technique is that itcan discard data potentially
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important for the classification process and could result ininformation loss for the ma-

jority class, [27]. Unlike the random method, it has been proposed to remove only those

negative instances that are redundant or that border minority class examples, [59].

Experimental results show that under-sampling produces better results than over-sampling

in many cases. Instead, other authors, [58] [65], considered oversampling a correct

method in datasets with a a very high majority/minority ratio.

In another work, [89], the authors tested a C4.5 decision treeclassifier and they found

under-sampling more effective for sensitivity than oversampling (duplication method) be-

cause of the reduction in pruning n case of oversampling. Under-sampling often renders

pruning unnecessary. Oversampling tends to reduce the amount of pruning that occurs. In

the best classifier seeking they define the curve of the expected cost of a classifier across

all possible choices of misclassification costs and class distributions by considering the

normalized error rate. They include the misclassification cost in the probability distribu-

tion (the x in the cost function) by multiplying the originalvalue of probability of positive

events by the cost of misclassifying a positive instance as negative and then normalizing

so that x ranges from 0 to 1. The process tend to exactly balancing the misclassifica-

tion costs to the class distribution. They generally found that using under-sampling es-

tablished a reasonable baseline for algorithm comparison.However, one problem with

under-sampling is that introduces non-determinism into what is otherwise a deterministic

learning process. The values obtained from cross-validation estimate the mean perfor-

mance of a classifier based on a random sub-sample of the dataset. With a deterministic

learning process any variance in the expected performance is largely due to testing on a

limited sample. But for under-sampling, there is also variance due to the non-determinism

of the under-sampling process. If our measure of success is purely the difference between

the means then this is not important. But the choice between two classifiers might also

depend on the variance and then using under-sampling might be less desirable.

Above all, the belief is that although over-sampling does not lose any information about

the majority class, it introduces an unnatural bias in favour of the minority class.

The simplest oversampling method is the random over-sampling that consists in increas-

ing the size of the minority class by randomly replicating positive examples. Some
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authors,[56], proposed to oversample the minority class bygenerating new instances by

interpolating between several positive examples that lie close together, (method called

SMOTE) that allows the classifier to build larger decision regions that contain nearby in-

stances from the minority class.

Using synthetic examples to augment the minority class is believed better than oversam-

pling with replacement, even if it creates noise which couldresult in a loss of performance.

SMOTE stands for Synthetic Minority over-sampling Technique.

In additional works, [45], they continue not using oversampling with replication, by con-

sidering this procedure not always results to improve minority class prediction and could

lead to over-fitting. They interpret the underlying effect in terms of decision regions in

feature space.29 So, they generate synthetic examples by operating in the ”feature space”

rather than the data space, causing the classifier to create larger and less specific decision

regions, rather than smaller and more specific regions. Synthetic samples are generated

by taking the difference between the feature vector (sample) under consideration and its

nearest neighbour. Then this difference is multiplied by a random number between 0 and

1, and added to feature vector under consideration. In otherwords, neighbours from the

k nearest neighbours are randomly chosen and added.

Their results show that, on average, under-sampling is usually better than oversampling

with replication; SMOTE in better than under-sampling; pruning is detrimental to learn-

ing from imbalanced datasets. A modification of this method is Borderline SMOTE [57],

that consists in using only positive examples close to the decision boundary, since they

are more likely to be misclassified.

In other works,30 external and internal cross-validation are used to guide sampling, [60].

In details, it is used a wrapper-based algorithm to select under-sampling percentages, a

down-step procedure by controlling a performance threshold to be not violated and de-

termining the sampling levels which maximize the classifier’s (a decision tree) f-measure

(calculated from precision and recall to summarize the effects of the two types of errors)

29The imbalance in the data can be more characteristic of ”sparseness” in feature space than the class
imbalance, [45].

30For a complete overview of the re-sampling strategy: randomoversampling with replacement, random
under-sampling, focused oversampling, focused under-sampling, oversampling with smote, see [61].
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or the AUC (area under the ROC curve).

Other authors, [52], proposed a ”guided re-sampling”, by firstly processing an unsuper-

vised clustering algorithm on each class of the training data in an attempt to find any

within-class imbalances and then the clusters are found they use them to guide the re-

sampling. The elements in each sub-components within each class can then be re-sampled

until each subcomponent has the same number of examples as the largest sub-component.

Then the between-class imbalance can be eliminated by randomly selecting and duplicat-

ing members of the under-represented class (equalizing class membership). Their results

show improvements by using guided re-sampling on ”very imbalanced” (between and

within) datasets when methods of blind re-sampling fail in allowing a classifier to be

trained to recognize members of the under-represented class.31

To summarize, in literature, part of research has focused inovercoming the drawbacks of

both random under-sampling and over-sampling. If we could know beforehand the condi-

tional probabilities which make the construction of a true bayes classifier possible, class

distribution should not be a problem. Conversely, classifierit is likely to suffer from poor

estimates due to few data available for the minority class. Nevertheless, due to low over-

lapping between the classes, the effect of class imbalance in this case is lower than when

there is a high overlapping. In some cases, the over-fitting problem is avoided in over-

sampling forming new minority classes by interpolating between several minority class

examples that lie together, in order to cause the decision boundaries for the minority class

to spread further into the majority class space. Other methods for reducing the training

set size are based on k-nearest neighbour. To cite one work, [58], in the procedure two

controlled parameters are considered: the first one is the clusters centroids distance and

the second one the imbalance degree (so the overlapping degree), in order to verify if the

degree of imbalance is an element by itself for degrading performance or if it also due

to the degree of the overlapping between the two class distributions. They found that the

more the overlapping degree (the smaller centroids distance) is high the more the decrease

in prediction accuracy (AUC). Their results show that oversampling methods in general

31These results are subject to the assumption to know the correct number of sub-components per class
as well as their nature, [52].
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and SMOTE-based methods in particular, are very effective even with highly imbalanced

and overlapped datasets. Furthermore, when they apply SMOTE + ENN methods in high

degree of overlapping they reach the better results becauseof the cleaning effect of the

sampling method.32

Other re-sampling procedures have been proposed taking into account the small disjuncts

problem, see [62]. In the work, it is suggested the followingre-sampling strategy:

a) using a clustering algorithm on each class to identify thesub-clusters that constitute it;

b) each sub-cluster of the large class is re-sampled until itreaches the size of the biggest

sub-cluster in that class. At this point, the overall size ofthe large will be max-classized

and there will be no within-class imbalance in the large class.

In order to prevent a between-class imbalance as well as within class imbalances in the

smaller class, each sub-cluster of the small class is re-sampled until it reaches size max-

classize/Nsmallclasses, where Nsmallclasses represents the number of sub-clusters in

the small class. In many real-world domains, the class distribution where the data is

skewed the cost of misclassifying the minority class could be substantially greater than

the cost of misclassifying the majority class. Typical classifiers such as decision tree in-

duction system or multilayer perceptions are designed to optimize overall accuracy with-

out taking the relative distribution of each class. These classifiers tend to ignore small

classes while concentrating on classifying the large ones accurately, [53].

The reason that altering, by sampling, the class distribution of the training sets aids learn-

ing with highly-skewed data sets is that it effectively imposes non-uniform misclassifi-

cation costs. This equivalence between altering the class distribution of the training data

and altering the misclassification cost ratio was formally established by [46].

There are three regular approaches for feature selection:filter-based, wrapper-basedand

embedded-basedones. The filter-based selects relevant features before theclassification

algorithm is applied. The wrapper approach assumes to perform many times the learners

on candidate feature subsets to choose relevant features. In the embedded approach, the

feature selection is occurred as a part of the learners.

32ENN stands for Wilson’s Edited Nearest Neighbour Rule. ENN removes any example whose class
label differs from the class of at least two of its three nearest neighbours. ENN is applied to the oversampled
training set, as a data cleaning method, [58].
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Sampling methods modify the prior distributions of the majority and minority class in the

training set to obtain a more balanced number of instances ineach class, and, finally, we

could classify them in three categories:

Basic sample methodsThe two basic methods of reducing class imbalance in training

data are under-sampling and oversampling. Cost-sensitivity is obtained by altering

the ratio of positive to negative examples in the training data, or, equivalently, by

adjusting the probability threshold using to assign class labels. Both of the sampling

techniques decrease the overall level of class imbalance, thereby by making the rare

class less rare. These sampling methods have several drawbacks. Under-sampling

discards potentially useful majority-class examples, andthus can degrade classifier

performance. Because oversampling introduces additional training cases often by

making exact copies of examples, it may lead to over-fitting.More importantly,

oversampling introduces no new data, so it does not address the fundamental ”lack

of data”. This explains why some studies have shown simple over-sampling to be

ineffective at improving recognition of the minority classand why under-sampling

may be a better choice.

Advanced sampling methodsThey may combine under-sampling and over-sampling

techniques. One of the popular oversampling approaches is SMOTE [56], which

attempts to add information to the training set by introducing new, non replicated

minority class examples. A probability distribution is selected to model the avail-

able minority class examples. In an under-sampling scheme,instead of eliminating

instances randomly ([90]) proposed to use vector quantization, which is a loss com-

pression method on the majority class to build a set of representative local models

and use them for training SVM. An alternative method would beto use clustering

to identify possible rare cases and then sample to equalize these cluster sizes. The

informative re-sampling is a cluster-based under-sampling, where clustering is em-

ployed for selecting the representative samples to improvethe predictive accuracy

for the minority class. Some authors,[91], also proposed touse clustering to reduce

the imbalance ratio, called CLass purity maximization (CPM),by partitioning the
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data space into clusters and filtering out regions of high majority class, in order

to use only regions containing minority samples to build a predictive model. In a

work, [92], proposed an active learning query technique that creates query instances

near the classification boundary rather than selecting randomly.

Ensamble-learning methodsIn which multiple classifiers are trained from the original

data and their predictions are combined to classify new instances.

BOOSTING ([72]) and BAGGING ([93]) are the two widely known ensemble-

based approaches. Boosting is an iterative algorithm that places different weights

on the training distributions each iteration. After each iteration boosting increases

the weights associated with the incorrectly classified examples and decreases the

weights associated with the correctly classified examples separately. This forces

the learner to focus more on the incorrectly classified examples in the next itera-

tion. Note that boosting effectively alters the distributions of the training data. At

each boosting iteration, the distribution of training datais altered by updating the

weight associated with each sample. When the datasets are severely skewed, under-

sampling and oversampling methods are often combined to improve generalization

of the learner, [71].

Boosting has been analysed from a theoretical perspective todetermine whether it

is guaranteed to improve the classification performance of any base learner for the

rare class([95]). This analysis shows that no such guarantee exists. Rather, the per-

formance improvement from boosting is shown to be strongly tied to the choice of

the base learning algorithm.

Examples of algorithms that use boosting approach are SMOteBoost ([56]), Ad-

aBoost ([72]), DataBoost-IM that balances not only the class distribution but also

the total weight within the class ([94]), and cost-sensitive boosting. Most bagging

methods use a similar learning procedure that consists in re-sampling subsets from

a given training set, building multiple base classifiers on those subsets and combin-

ing their predictions to make final prediction ([93]). In Under-bagging, each subset

from the training set is created by under-sampling the majority class randomly.



88 CHAPTER 3. SUPERVISED METHODS

Re-sampling methods have mainly been criticized because of altering the original class

distribution. Sampling is a ”wrapper-based method” that can make any learning algorithm

cost-sensitive, whereas the ”‘cost-sensitive learning algorithm”’ is not a wrapper-based

method since the cost-sensitivity is embedded in the algorithm.

In a cost-sensitive learning, no cost is assigned to correctclassifications. Since the posi-

tive (minority) class is often more interesting than the negative (majority) class, typically

(cost of false negative)Cfn > Cfp (cost of false positive), (Note that a false negative

means that a positive example has been misclassified).

As concern the solutions at the algorithm level, we can definethree main directions:

• Cost-sensitive learning

• One-class classifiers

• Classifier ensembles

As regardscost-sensitive learning, traditional learning models implicitly assume the same

misclassification costs for all classes. In some domains thecost of a particular kind of

error can be different from others. Some works assign distinct costs to the classification

errors for positive and negative examples. In a work, [27], it has been proposed the use of

non-uniform error costs defined by means of the class imbalance ratio.

As concernsone-class classifiers, the minority class can be viewed as the target class,

whereas the majority class will be the outlier class. Some authors, [63], show that one-

class learning is particularly useful on extremely unbalanced data sets with high dimen-

sional noisy feature space.

As regardsclassifier ensembles, several studies, [64], [65], have been proposed consist-

ing in generating multiple training samples in order to cover all the elements and then

combining the results of different classifiers. Other data complexity characteristics have
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been investigated in many studies focused on the effect of other complexity features in

imbalanced domains causing loss of performance as distribution of the data within each

class, small disjunct [53], density and overlap complexity[66].

A cost-sensitivity learning technique takes costs, such asmisclassification cost, into con-

sideration during model construction and produces a classifier that has the lowest cost. In

a two class problem, C(+,-) signifies the cost of misclassifying a positive sample as the

negative sample, and C(-,+) denotes the cost of the contrary case. Cost-sensitive learning

methods take advantage of the fact that it is more expensive to misclassify a true positive

instance than a true negative instance, that is C(+,-)> C(-,+). For a two-class problem, a

cost-sensitive learning method assigns a greater cost to false negative than to false posi-

tives, hence resulting in a performance improvement with respect to the positive class.

Existing cost-sensitive learning for dealing with imbalances datasets can be divided into

two different categories. The first category consists of learning algorithms that are de-

signed to optimize a cost-sensitive function directly (cost-sensitive decision tree, [67] ,

that directly takes costs into model building). The second category is a collection of exist-

ing cost-insensitive learning algorithms that are converted into cost-sensitive ones. This

category, also known as cost-sensitive meta-learning, canbe further divided into sam-

pling, weighting, thresholding and ensemble learning. Methods in the weighting group

[68], convert sample-dependent costs into sample weights by assigning heavier weights to

the minority training instances. Different weighting strategies have been proposed, [70],

to weight samples of the minority class based on the local data distributions, and others

suggested to weigh training samples based on posterior probability [69].

Cost-sensitive learning approach assumes the misclassification costs are known. In prac-

tice, specific cost information is often unavailable because costs often depend on a number

of factors that are not easily compared. Moreover, [36] found that cost-sensitive classi-

fiers may lead to over-fitting during training.

Learners can implement cost-sensitive learning in a variety of ways. One common method

is to alter the class probability thresholds used to assign the classification value. In this

case, no data is discarded or replicated.

Cost sensitive learning, besides changing the class distributions they incorporate costs in
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decision making is another way to improve classifier’s performance when learning from

imbalance datasets.

Cost models takes the form of a cost matrix where the cost of classifying an example

from true classi to classj corresponds to the matrix entryλij and vice versa, see table

3.7. This matrix is usually expressed in terms of average misclassification costs for the

True class
Positive (classi ) Negative (classj )

Predicted Positive prediction (classi ) 0 λij

Class Negative prediction (classj ) λji 0

Table 3.7: Cost matrix for a two-class problem.

problem. The diagonal elements are usually set to zero, meaning correct classification has

no cost. The aim in cost-sensitive classification is to minimize the cost of misclassifica-

tion, which can be realized by choosing the class with the minimum conditional risk, [71]

Metacost[47] begins to learn an internal cost-sensitive model then estimates class prob-

abilities using bagging and then re-labels the training examples with their minimum ex-

pected cost classes, and finally relearns a model using the modified training set.

In Adaboost, [72], an ensemble learning method, initially all weights are set equally, but

on each round the weights of incorrectly classified examplesare increased so that the

weak learner is forced to focus on the hard examples in the training set.

Some authors, [41], proposedCost-curves, where the x-axis represents the fraction of the

positive class in the training set, and the y-axis represents the expected error rate grown

on each of the training sets. The training sets generated by over(under)sampling. The

error rate not represented are constructed by interpolation. They define two cost-sensitive

components for a machine learning algorithm: firstly by producing different classifiers for

different distributions and secondly by choosing the most appropriate classifier for right

distribution. however, when the misclassification costs are known, the x-axis can repre-

sent the ”probability cost function”, which is the normalized product ofC(−|+) ∗ P (+);

the y-axis represents the expected cost. In Boosting, the classifiers in the ensemble are

trained serially with the weights on the training instancesadjusted adaptively according
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to the performance of the previous classifiers. As above-mentioned, AdaBoost updates

the weights of examples according to the misclassification costs. SMOTEboost embeds

SMOTE procedure during boosting iterations.

To summarize, when misclassification cost are known, the best metric for evaluating clas-

sifier performance is total cost., Total cost=(fn*Cfn) + (fp*Cfp), [74].

Oversampling and under-sampling can be used to alter the class distribution of the train-

ing data. The disadvantage with under-sampling is that it discards potentially useful data.

The main disadvantage with oversampling is that by making exact copies of existing ex-

amples, it makes over-fitting likely.

A reason that may have contributed to the use of sampling rather than a cost-sensitive

algorithm is that misclassification costs are often unknown.

Some authors, [74], cannot conclude that the degree of classimbalance favours one

method over another(comparison between cost-sensitive, oversampling and under-sampling).

Oversampling appears to be the best for small datasets, cost-sensitive for datasets more

than 10,000 examples. They found that which sampling methodperforms best is highly

dependent on the dataset, with neither method a clear winnerover the other.

Other researchers, [53], stated that while cost-based methods are, in some cases, reported

to perform better than random re-sampling approaches, theydo not have the flexibility

offered by the sampling methods.

In a work, [76], internal approaches are considered to have the disadvantage of being al-

gorithm specific and it might be quite difficult to transport the modification proposed for

the class imbalance problem from one classifier to the other.On the contrary, external

approaches are independent of the classifier used and are, thus, more versatile, . Similar

conclusions in [75], where they found that there is no general support for considering

cost-sensitive learners to outperform sampling for obtaining the best classifier perfor-

mance (calculated by the lower total cost), but that it is verified in presence of larger

datasets where it is possible to generate accurate probability estimates.

Another school of thought is arecognition based approachin the form of aone-class

learner. In a Recognition-based or one-class learning approach, theclassifier is modelled

on the examples of the target class (the small class) in the absence of examples of the non-
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target class. One of the early systems that utilizes this recognition-based approach was

proposed in [26]. It uses neural networks and attempts to learn only from the target class

examples and thus recognizing the target concept, rather than differentiating between ma-

jority and minority instances of a concept. Theone-classlearners provide an interesting

alternative to the traditional discriminative approach, where in the classifier is learned on

the target class alone ([77], [63], [78]). In particular, [63], focused on extreme imbalance

where the minority class consists of around 1-3% of the data.

They considered the possibility of single class learning with support vector machine and

they found that positive one-class learners (SVM, linear kernel) perform significantly bet-

ter than two-class learners.

One-class learning approach has been also applied to auto-encoder-based classifiers ([87])

and ensemble one-class classifiers. Similar patterns from positive instances of a concept

are learnt, classifiers are then presented with unseen samples and classification is accom-

plished by imposing a threshold on the similarity value.

Since threshold draws the boundaries that separate the two classes, choosing an effective

threshold is crucial in one-class learners.

Coming back to a general overview on results provided by research works for assessing

the class imbalance problems, in their experimental analysis, [27], concluded with the

result that it is the class imbalance and not the decrease in overall training set size that

caused a decrease in classification accuracy. Furthermore,from other experiments they

sorted out that rather than being a problem because of the relative size of the large and the

small class, the class imbalance becomes a problem only whenthe size of its small class

is very small with respect to the concept complexity, that iswhen it contains very small

sub-clusters. They concluded that in very large domains in which there is a good chance

that the sub-clusters of each class are represented by a reasonable number of examples,

the class imbalance will be of no consequence and contrarilyif considering smaller do-

mains in which small sub-clusters will be present. In their work they found, on simulated

datasets, that under-sampling is by far the least effectivemethod, but in their work the

role of the positive and the negative class is symmetrical and no example are irrelevant.

They found oversampling appears to be quite effective ways of dealing with the problem,
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because the false positive rate decreases (the oversampledone) and the false negative does

not significantly increase indicating that the oversampling does not shift the error distri-

bution and preserve a low false negative error rate while learning the false positive error

rate. They found that modifying the relative cost of misclassifying each class allows to

achieve the same results of oversampling without increasing the training set size. They

also found that MLPs (multilayer perceptron) do not seem to suffer from the class im-

balance problem in the same way classification trees do, and that are affected both by

oversampling and under-sampling, and under-sampling results less effectiveness.

Other authors [47] stated the contrary, that means under-sampling results a more effective

strategy than over-sampling. In those works, the authors considered the minority class as

the class of interest(as in distress corporate model) and the under-sampling was applied

on the majority class, that included a lot of data irrelevantto the classification task that

are worth eliminating by under-sampling techniques.

As concerns the effect of class distribution on classifier learning, there are different works

focused on the correct class distribution to adopt in learning process and on verifying the

effectiveness of using natural data distribution.33 Some authors [48] stated that the natu-

rally occurring class distribution often is not the best forlearning and often substantially

better performance can be achieved by using a different class distribution.

According to them, minority-labelled classification rulesperform worse than their major-

ity labelled counterparts in part because the test set contains more majority-class examples

than minority-class ones. A second reason that classifiers perform worse on the minority-

class test examples is that, all else being equal, a classifier is less likely to fully flesh

out the boundaries of the minority concept in the concept space because there are fewer

examples of that class to learn from. When learning from the balanced versions of the

unbalanced datasets, the induction algorithm generally produces fewer but more accurate

classification rules for the minority class than for the majority class. They evaluated 12

minority class distributions at different percentage: 2%,5%, 10% 20%...80% 90% 95%,

evaluating the performance additionally compared to the naturally occurring class distri-

33”It has been a tacit assumption in much machine learning research that the naturally occurring class
distribution is best for learning. However, this assumption has been coming under increased scrutiny, partly
because many of the data sets now being learned from have highdegree of class imbalance.” [48]
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bution, in terms of error rate and AUC. Rather than trying to determine the optimal class

distribution, they try to identify an optimal range of classdistributions. They expected

classifier performance to be unimodal with respect to changing class distribution and that

an optimal distribution exists and that as we move further away from this optimal distri-

bution, in either direction, classifier performance will degrade progressively. Their results

confirmed that hypothesis generally for AUC. They performed t-tests to compare, for each

dataset, the performance of the classifiers. If a t-test yields a probability of≤ .10 then

they concluded that the best distribution is statisticallydifferent from the other distribu-

tion, otherwise they cannot conclude that and therefore group the distributions together

to form an optimum range, within which they were confident that the true optimum class

distribution fell. They were interested in whether the optimum range included the natu-

ral distribution. In general they found that, for AUC, the optimum ranges appear to be

centred to the right of the 50:50 class distribution, so between 50% and 90%. In this

situation, the strategy of always allocating half of the training examples to the minority

class, while it will not always yield optimal results, will generally lead to results which

are not worse than, and often superior to, those which use thenatural class distribution.

Thus, if one does not know the true misclassification costs and is unwilling to determine

experimentally the optimal training distribution, they suggest that for maximizing AUC

the training set be formed from equal numbers of examples of each class.

However, their work does not examine the effect of concept complexity nor training set

size in the context of their relationship with class imbalances, nor does it look at ways to

remedy the class imbalance problem or the effect of class imbalances on classifier other

than the decision tree classifier.

From further analysis, [34], it results that, in same cases the best distribution does not dif-

fer from the natural one in any consistent manner and that, insome case, a balanced class

distribution also is not the best class distribution for training, to minimize undifferentiated

error rate. They also found that, in some case, the error ratevalues curve (according to

different percentage of unbalancing) usually form a unimodal, or nearly unimodal, dis-

tribution and that the best distribution that minimizes errors is not balanced, since the

classifiers induced from class distributions deviating from the naturally occurring distri-



3.6. CLASS IMBALANCE 95

bution would be improperly biased. Then they consider AUC, instead of accuracy, and

they found that a balanced class distribution generally performs well although it does not

always performs optimally. AUC, unlike error rate, is unaffected by the class distribution

of the test set. So, the curve generated using the balanced class distribution almost always

outperforms the curve associated with the natural distribution.

Moreover, they found that the performance curves tend to flatten out as the size of the

dataset grows, indicating that the choice of class distribution may become less important

as the training-set size increases.

Other authors, [34], proposed a method for adjusting the posterior probabilities to account

for the difference between rtrain (the fraction of positive examples) and p (the true prior

probability). Larger AUC values indicate generally betterclassifier performance and, in

particular, a better ability to rank cases by likelihood of class membership. More gener-

ally, induction algorithms that maximize accuracy should be biased to perform better at

classifying majority-class examples than minority-classexamples, since the former com-

ponent is weighted more heavily when calculating accuracy.Therefore, the training data

are less likely to include enough instances of all of the minority-class sub-concepts in the

concept space, and the learner may not have the opportunity to represent all truly positive

regions. Because of this, some minority-class test exampleswill be mistakenly classified

as belonging to the majority class.

As concerns the above-mentioned data concept complexity34 and small disjuncts, there

are several works related and focused on it. Small disjunctsare those disjuncts in the

learned classifier that cover few training examples.

Some authors [79]investigated the problem of over-fitting in case of sparse data, whereas

others [44] linked the relationship between the problem of over-fitting the data and deal-

ing with class imbalances. In a work, [62], the author found that no matter what the size

of the training set is, linearly separable domains (conceptcomplexity level c=1) do not

appear sensitive to any amount of imbalance and as the degreeof concept complexity

increases so does the system’s sensitivity to imbalances. Furthermore, as the size of the

34The concept complexity corresponds to the number of sub-clusters into which the classes are subdi-
vided.
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training set increases, the degree of imbalance yielding a large error rate decreases. This

suggests that in very large domains the class imbalance problem may not be a hindrance

to a classification system. Her study suggests that the imbalance problem is a relative

problem depending on both the concept complexity represented by the data in which the

imbalance occurs and the overall size of the training set, inaddition to the degree of class

imbalance present in the data. Briefly, a huge class imbalancewill not hinder classification

of a domain whose concept is very easy to learn nor will we see aproblem if the training

set is very large. On the contrary, a small class imbalance could greatly harm a very small

dataset or one representing a very complex concept. According to her results, rather than

being a problem because of the relative size of the large and the small class, the class

imbalance problem is only a problem when the size of its smallclass is very small with

respect to the concept complexity, when it contains very small sub-clusters-that means

that in very large domains in which the sub-clusters of each class are represented by a

reasonable number of examples, the class imbalance will be of no consequence.

In other works, [83], the authors found that class imbalancecauses a sharp decrease in

accuracy given a single target concept complexity. The morecomplex the target the more

negative the effect class imbalance is.

When we cope with the topic of concept learning and small disjuncts, we have to consider

that, firstly, many concepts include rare or exceptional cases and it is desirable for induced

definitions to cover these cases, even if they can only be covered by augmenting the def-

initions with small disjuncts. Secondly, small disjuncts constitute a significant portion of

an induced definition.

As depicted by some authors, [50], there exist three kinds ofapproach to the problem of

small disjunct:35

Approach 1: The most direct means of eliminating error-prone small disjunct is to elimi-

nate all small disjuncts by explicitly refusing to create disjuncts whose coverage is below

a certain threshold. The first objection to this method is that it has the undesirable effect

of creating definitions that do not include the unusual casesof a concept (represented by

35Classification methods have a tendency to over-fit and misclassify the examples represented by small
disjuncts, [50].
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small but significant disjuncts). Secondly, eliminating small disjuncts from a definition

may significantly increase the definition’s error rate.

Approach 2: Significance testing and error rate estimation to determine whether or not

including a disjunct in a definition. Disjuncts whose coverage is too low do not pass

significance tests. Error rate can only be estimated and suffers from the same problem.

But mixed procedure is desirable, if we consider that for small disjuncts error rate is not

related to significance in any simple way.

Approach 3: To select among disjuncts that are indistinguishable on the basis of the train-

ing set, it is possible to use different bias for large (maximum generality-the opposite of

specificity) and small (a selective specificity bias) disjuncts.

Rare cases, like rare classes, can be considered the result ofa form of data imbalance and

have in fact been referred to as within-class imbalances.

Much of the research on rarity relates to rare classes, or, more generally, class imbalance.

This type of rarity requires labelled examples and is associated with classification prob-

lems. A second type of rarity concerns rare cases. Rare cases correspond to a meaningful

but relatively small subset of the data, or equivalently, define a small region of the instance

space. Rare cases depend only on the distribution of the data and therefore are defined for

both labelled and unlabelled data, and for supervised and unsupervised data mining tasks.

In the case of labelled data, a rare case corresponds to a sub-concept, or sub-class, that

occurs infrequently. Unfortunately, except for artificially generated domains, rare cases

are not easily identified. However, unsupervised learning techniques such as clustering

may help to identify, and they also manifest themselves, as small disjuncts in classifiers

induced from the data.

There have been several attempts, [36], to improve the performance of data-mining sys-

tems with respect to rarity by choosing a more appropriate bias. The simplest approach

involves modifying existing systems to eliminate some small disjuncts based on tests of

statistical significance or using error estimation techniques. The hope is that these will

remove only improperly learned disjuncts. Unfortunately,this approach was shown not

only to degrade performance with respect to rarity, but alsoto degrade overall classifica-

tion performance. More sophisticated approaches have beendeveloped and to judge their
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efficacy on rare cases it is considered whether they improve the performance of the small

disjuncts-based on the assumption that rare cases manifestthemselves as small disjuncts.

Segmenting the data is one way to deal with rarity, by separating the problem into sep-

arate sub-problems and analysing them separately. In many data mining tasks, it is the

rare classes/cases that are of primary interest. One solution is to use cost-sensitive learn-

ing methods. These methods can exploit the fact that the value of correctly identifying

the positive (rare) class outweighs the value of correctly identifying the common class.

For two-class problems this is done by associating a greatercost with false negative than

with false positives. Assigning a greater cost to false negatives than to false positives

will improve performance with respect to the positive (rare) class. One problem with this

approach is that specific cost information is rarely available. Thus, without specific cost

information, it may be more practical to only predict the rare class and generate an or-

dered list of the best positive-predicting rules. Then one can decide where to place the

threshold after data-mining is complete.

Some authors, [53], proposed to approximate the rare cases,using an unsupervised method

(k-means clustering) and assuming that ,firstly, the small disjuncts constructed by their

unsupervised method do correspond fully to the unknown rarecases of the domain and,

secondly, there is a correspondence between the small disjuncts learned by the unsuper-

vised method and those subsequently learned by the supervised method.

In their work, [53], the re-sampling strategy they propose consists of clustering the train-

ing data of each class separately and performing random oversampling cluster by cluster.

They found that it is the small disjunct problem more than theclass imbalance problem

responsible for the decrease in accuracy, and the cluster-based oversampling is shown to

outperform the other methods.

Induction techniques that deal with rare classes must try tomaximize precision and recall.

Most induction techniques try to optimize these two competing measures, PNrule, [95],

uses two-phase rule induction to focus on each measure separately. In the first phase, if

high precision rules cannot be found then lower precision rules are accepted, as long as

they have relatively high recall. So, the first phase focuseson recall. In the second phase

precision is optimized. This is accomplished by learning toidentify false positives within
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the rules from phase one. The presence of the second phase permits the first phase to

be sensitive to the problem of small disjuncts, while the second phase allows the false

positives to be grouped together addressing the problem of data fragmentation. Different

rare cases may have little in common between them, making it difficult for one learner to

assign the same class value to all of them.

One possible solution is to reformulate the original problem so that rare cases are viewed

as separate classes. In their work, [53], the re-sampling strategy they propose consists of

clustering the training data of each class separately and performing random oversampling

cluster by cluster. Their implemented approach consists in: 1) separating each class into

subclasses using clustering, 2) relabelling the training examples based on the subclasses

(clusters) and then 3) re-learning on the revised training set. They found that it is the small

disjunct problem more than the class imbalance problem responsible for the decrease in

accuracy, and the cluster-based oversampling is shown to outperform the other methods.

The class imbalance problem is more significant when the datasets have a high level

of noise. Noise in datasets can emerge from various sources,such as data samples are

poorly acquired or incorrectly labelled, or extracted features are not sufficient for classi-

fication. In particular, one of the sources could be a set of features used for classification

not sufficient to draw class boundaries. Data noise in classification problems can be gen-

erally described as data examples on different classes inseparable in the feature space. If

a dataset is considered noisy, the class boundary to separate different class examples in

the feature space is almost impossible to draw.

It is known that noisy data affect many machine learning algorithms; however, it has been

showed that noise has even more serious impact when learningwith imbalanced data

[36]. The problem occurs when samples from the small class are mistakenly included

in the training data for the majority class and vice versa. For the prevalent class, noise

samples have less impact on the learning process. In contrast, for the small class it takes

only a few noise samples to influence the learned sub-concept.

In literature, different approaches have been used for measuring noise levels based, gen-

erally, on inter and intra class distances. In a work, [55], the authors tested three different

neural networks BP, RBF and Fuzzy ARtmap, and they found that classifiers performance
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on unbalanced data very much depends on how well the two classes are separated, and

that when data is noisy, none of the three networks performs well without any additional

processes over unbalanced data, by generating artificial noisy data examples along the

classification boundaries.

To cope with the within-class imbalance, other procedure, including clustering have been

proposed. In a work, [97], it is presented a procedure that considers no re-sampling by

focusing on sub-clustering analysis. The procedure consists in:

1) separating each class into a number of sub-classes, usingan unsupervised learning

technique (clustering) and re-labelling each training example as a function of these new

subclasses;

2) applying supervised learning to various versions of these new problems;

3) the results obtained on each version are combined in a decisive vote.

In another work, [51], the author attempted to set procedures for dealing simultaneously

with both types of unbalances with stratification methods (re-sampling or downsizing ap-

proaches) and the misclassification rate of multi-layer perceptrons classifier in case of

symmetrical and asymmetrical sub-clusters composition. The optimal procedure con-

sisted in creating both between-class than within-class balanced data.

Other authors, [82], proposed a learning approach for imbalanced dataset consisting in

a under-sampling method based on clustering. They applied aclustering technique to

partition the training instances of each class independently into a smaller set of training

prototype patterns. Then a weight is assigned to each prototype to address the class im-

balance problem. The weighting strategy is introduced in the cost function such that the

class distributions become even. After clustering, the dataset is reduced to K exemplars;

each represented by a cluster centroid and same cluster sizefor all the sub-clusters. In

other words, they chose to select the cluster centroids as representative samples. Then

they apply a feed-forward neural networks for the supervised classification.

In another work, [96], the authors proposed a selection procedure MFMP involving se-

lective sampling and random sampling of the majority class according to the minority

clusters and test four learners. They found that for moderately unbalanced datasets where

minority class exhibits cluster nature their approach outperforms random under-sampling.
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Recently, connected to the topic of within-class unbalance Elkan pointed out that ROC

curves could result unable to deal with within-class imbalances and different within-class

misclassification, suggesting for a revision.36

It was argued that the reason why class imbalances and overlapping classes are related is

that misclassification often occurs near class boundaries where overlap usually occurs as

well. It is important to select features that can capture thehigh skew in the class distribu-

tion, [81], [80].

There are not comprehensive empirical studies that evaluate all of the existing methods.

Sampling techniques have generated the most research in this area and there are a few

studies that compare sampling methods. Unfortunately, even in this case the conclu-

sions are not consistent. One study, ([48]) on class distribution shows that by altering the

class distribution of the training data so that it deviates from the natural, underlying dis-

tribution, improved classifier performance is possible. However, classifier performance

was improved more when the bias just described was removed byadjusting the decision

thresholds within the classifier.

36For a detailed overview of the literature debate on class unbalance problem, see [54].
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3.7 Case studyC: Neural networks distress model on un-
balanced data

3.7.1 Outlines

Distress prediction analysis is characterized by the presence of an outstanding unbalance

between a minority class of failed firms and a larger class of not-failed ones.

In the previous literature on class imbalance problem, applied to several real-world do-

mains, the majority of research has been focused on testing and analysing effects of im-

balance on Decision tree classifier and only few works referred specifically to neural

networks, see [26] [77] [27] [55][82].

The following work attempts to verify the effect of the classimbalance problem on the

accuracy of a neural network classifier. In specific, the predictive accuracy is tested on a

neural network model for a distress analysis prediction, atdifferent imbalance levels.

Some previous works concern on evaluating classifiers’ performance at different imbal-

ance degrees compared to the natural class distribution, [48] [34].

The present work aims at verifying the effect of imbalance onneural network model’s

accuracy, in term of AUC, as we move from a resized balanced distribution towards the

naturally occurring distribution.

3.7.2 Analysis on unbalanced dataset

The analysis starts from the original unbalanced sample of of 774 failed companies and

38,480 healthy ones large industrial Italian companies, period 2004-2008 (Source Amadeus),

used in the previous case studyB. The aim of the analysis is to test the effects of different

imbalance levels on overall classifier performance.

The imbalance levels compared to the balanced benchmark onewill be:

• level A: 40% minor class (failed) and 60% larger class (not-failed)

• level B: 30% minor class (failed) and 70% larger class (not-failed)
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We would analyse the presence of an increase/decrease in accuracy in the case of aug-

mented imbalance levels. In the previous case-studyB, we have processed a neural net-

work model on a balanced dataset, composed of 570 companies.In the following work,

we will resize the original sample at different imbalance degrees by increasing the size of

the balanced sample by maintaining the minor class size invariant and applying a random

under-sampling on the larger natural class (the not-failedone) to obtain the two chosen

imbalance levelsA and B. As in the balanced case analysis, for both imbalance levels

we considered two datasets in order to analyse the prediction at two different time lags:

T1, referred to one-year prior to failure financial statement data and T2, referred to two-

years prior to failure ones. We proceeded with the analysis by splitting the data into two

sub-samples: a training dataset, to estimate the model parameters of the classifier, and a

control dataset, to evaluate the ability of the estimated model in predicting different cases

not in the training sample. The training dataset is made up ofthe70% of the entire sam-

ple, whereas the control dataset covers the30%.

Further, the related ROC curve area is considered as an accuracy evaluation criterion

of the obtained prediction [28] and to evaluate the influenceof imbalance on classifier

performance compared to the benchmark balanced dataset. The dataset referred to the

unbalance levelA is composed of 713 units, corresponding to an unbalance sample of

40% of failed companies and60% of healthy ones. Whereas, the dataset referred to the

unbalance levelB is composed of 950 units, corresponding to an unbalance sample of

30% of failed companies and of70% of healthy ones.

As in the case studyB, we considered six input variables, consisting of financialand eco-

nomic ratios, commonly regarded both by banks and scholars as distress key-indicators,

to capture both the financial and the economic perspective, see Table 3.2.

To recall the economic interpretation of the selected variables, theRefunding capabil-

ity expresses the potentiality of the company to generate positive cash flows to cover

financial obligations, (Financial debt coverage ratio). TheGrowth indicates an increasing

economic dynamic, (Sales variation ratio). TheDebt costexpresses the degree of the
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economic incidence of the debt exposure, (Interest paid on sales ratio). TheIndebtedness

indicates the debt exposure level, (Leverage). TheEfficiency expresses the capability to

generate operating returns, (Ebit on sales ratio). The logarithm of Sales represents a size

control variable. The output variable value 1 corresponds to an healthy company whereas

the value 0 is related to a failed one.

3.7.3 Numerical results for unbalanced data

We iterated the estimation process on the training dataset for combinations of hidden

nodes from 2 to 10 and values of the decay parameter: 0.1, 0.01, 0.05, 0.005. The op-

timization process is done via a quasi-Newton method. The initial parameter vector has

been chosen at random but setting the same random seed for every combination. We ob-

tained 36 models and we computed theempirical erroron the training set for each model

estimated, for both unbalance levelA andB datasets in period T1 and T2. We calculated

the related goodness-of-fit criteria AIC, BIC and GCV, by considering the number of de-

gree of freedom equals to the number of weights of the model.

We selected three best models according to each above-mentioned selection criterion.

Once the training process is run, the best NN models selectedwere used for prediction

applied to the control dataset. By considering the NN models prediction vectors and the

output variable, we traced the ROC curve in order to compare the forecasting performance

of the three models at the different unbalance levels (50%, 40% and30% of minor class

elements) and the dominance of a curve on the others in T1 lag period, as shown in Fig.

3.3. The same procedure has been applied to the T2 lag period data, see Fig. 3.4.

Furthermore, we calculated the area under the ROC curve, to objectively compare the

models by considering the curve in its entirety.

As regards the balanced model in T1, the AIC and GCV criteria selected the same best

model with three hidden nodes and decay equals to 0.005, presenting an higher value of

the area under the ROC curve than the model selected by the BIC criterion, see Table 3.8.

In the same way, as concerns the unbalance levelA model (40% minor class) in T1, the

AIC and GCV criteria selected the same best model with three hidden nodes and decay
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bestvalue nodes decay Area p-value binorm.area
AIC50 4.086 3 0.005 0.8968 3.3e-19 0.8927
BIC50 106.048 2 0.005 0.8634 2.1e-16 0.8755
GCV50 59.756 3 0.005 0.8968 3.3e-19 0.8927
AIC40 4.18 3 0.005 0.8903 4.4e-22 0.8917
BIC40 109.975 2 0.005 0.854 1.7e-18 0.8688
GV C40 65.559 3 0.005 0.8903 4.4e-22 0.8917
AIC30 4.346 4 0.005 0.887 4.2e-25 0.8888
BIC30 114.944 2 0.005 0.8593 6.6e-22 0.874
GV C30 77.395 4 0.005 0.887 4.2e-25 0.8888

Table 3.8: T1 (one-year prior to failure). Area under the ROCcurve for best selected
Neural Networks in 50, 40 and 30 unbalance levels. The first column contains the selec-
tion criteria best values. Thep-value addresses to the null hypothesisH0: ROC Area=0.5.
The sixth column contains the binormal curve area.

equals to 0.005, with higher AUC value than the one selected by the BIC criterion.

As concerns the unbalance levelB model (30% minor class) in T1, the AIC and GCV

criteria selected the same best model with four hidden nodesand decay equals to 0.005.

As regards the balanced model in T2, the AIC and GCV criteria selected the same best

model with four hidden nodes and decay equals to 0.005, presenting an higher value of

the area under the ROC curve than the model selected by the BIC criterion, see Table 3.9.

Whereas as concerns the unbalance levelA model (40% minor class) in T2, the AIC, BIC

and GCV criteria both selected a best model with two hidden nodes and decay equals to

0.005. As concerns the unbalance levelB model (30% minor class) in T2, the AIC and

GCV criteria selected the same best model with six hidden nodes and decay equals to

0.005, with higher AUC value than the one selected by the BIC criterion.

For both two lag periods, in all the considered models, the criteria AIC and GCV tend on

average to select neural networks presenting dominant ROC curves and higher AUC.

A classifier A performs better than a classifier B if it is located to the north-west area of

B in ROC space. The overall quality of classifier is measured by the AUC.

Based on the AUC values, we notice that, in period T1, the balanced class distribution

generates a slightly superior overall classifier compared to both the other two ones. The

superiority is more evident if we consider the curves in the ROC space, whereNN50
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bestvalue nodes decay Area p-value binorm.area
AIC50 4.313 4 0.005 0.8202 3.9e-13 0.8151
BIC50 106.2 2 0.010 0.7684 9.5e-10 0.7446
GCV50 75.219 4 0.005 0.8202 3.9e-13 0.8151
AIC40 4.459 2 0.005 0.7909 4.4e-13 0.7794
BIC40 110.108 2 0.005 0.7909 4.4e-13 0.7794
GV C40 86.535 2 0.005 0.7909 4.4e-13 0.7794
AIC30 4.635 6 0.005 0.8047 2.8e-16 0.8052
BIC30 115.147 2 0.005 0.8003 7.4e-16 0.7975
GV C30 103.576 6 0.005 0.8047 2.8e-16 0.8052

Table 3.9: T2 (two-years prior to failure). Area under the ROC curve for best selected
Neural Networks in 50, 40 and 30 unbalance levels. The first column contains the selec-
tion criteria best values. Thep-value addresses to the null hypothesisH0: ROC Area=0.5.
The sixth column contains the binormal curve area.

curve outperforms both theNN40 andNN30 curves in the north-west area associated to

cut-off (thresholds) values up to 0.5, see Fig. 3.3.37 The hierarchy betweenNN40 and

NN30 curves, as regards the AUC values, results towards the superiority of the NN40

(less unbalanced), even if in a part of the north-west ROC spaceNN30 is outperforming,

probably due to the trade-off between unbalance level and increasing number of elements

in the training process. It is important to underline that the natural distribution of the mi-

nor class, in the original real-world dataset, is strongly more unbalanced (about2%), so

our analysis simply is aimed at detecting the tendential effect on classifier performance of

an increase in the unbalance level.

The results in T1 (one-year prior to failure) are likely to confirm a tendency of the clas-

sifier accuracy to decrease when we move towards the natural distribution even if this

effect seems to be smoothed over by the counter-effect of thebenefit of an augmented

number of units in the training process. Based on the AUC values, we notice that, also

in period T2, the balanced class distribution generates a quite slightly superior overall

classifier compared to both the other two ones. As a premise, it is not secondary to un-

37NN50, NN40 andNN30 correspond, respectively, to the neural network model processed on the bal-
anced dataset, the dataset with an unbalance level of40% in the minor class and the one with an unbalance
level of30% in the minor class.
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Figure 3.3: T1- ROC curve comparison between NN50 (3 hidden nodes and decay=0.005,
balanced), NN40 (3 hidden nodes and decay=0.005, unbalancelevel=40% minority class)
and NN30 (4 hidden nodes and decay=0.005, unbalance level=30% minority class). The
cutoff values are indicated along the curve at the corresponding curve positions.
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ROC curve comparison − T2
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Figure 3.4: T2- ROC curve comparison between NN50 (4 hidden nodes and decay=0.005,
balanced), NN40 (4 hidden nodes and decay=0.005, unbalancelevel=40% minority class)
and NN30 (6 hidden nodes and decay=0.005, unbalance level=30% minority class). The
cutoff values are indicated along the curve at the corresponding curve positions.
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derline that, from the economic perspective, the information connected to more delayed

lag-period (two-years prior to failure) are less worthy than the information immediately

close to the ”event” into consideration (one-year prior to failure). As a consequence, the

results related to the second order lag could be less reliable and partly unstable. If we con-

sider the curves in the ROC space,NN50 curve outperforms both theNN40 andNN30

curves in the majority of the north-west area associated to cut-off (thresholds) values up

to 0.5, see Fig. 3.4. In few parts of the the north-west area, the superiority of one curve

on the others is not clear, and the curves tend to overlap. Thehierarchy betweenNN40

andNN30 curves, as regards the AUC values, results towards a slightly superiority of the

NN30 (more unbalanced), probably influenced by the increasing number of elements in

the training process.

The results in T2 (two-years prior to failure) are likely to confirm a tendency of the classi-

fier accuracy to decrease when we move towards the natural distribution even if this case

the counter-effect of the benefit of an augmented number of units in the training process

seems to more affect the performance of the classifier.

3.7.4 Comments

In the work, we investigated the effect of the unbalance in the performance of a neural

network model for distress prediction. The real-world dataset provided had a natural

distribution of the minor class (failed companies) of about2%; and the analysis processed

aimed at finding a tendency (increase/decrease) on classifier performance when moving

from a balanced benchmark,50% of elements belonging to the minor class, to40% and

30% minor class units. The results provided evidence of a tendency of the classifier

accuracy to slightly decrease when we move towards the natural distribution even if this

effect seems to be smoothed over by the counter-effect of thebenefit of an augmented

number of units in the training process. The balanced procedure superiority are likely to

be verified more in T1 (one-year prior to failure) lag period than in T2 (two-years prior to

failure) one. In T1 the results are confirmed both according to the AUC accuracy criterion

than from the analysis of the curve in the ROC space. In T2,NN50 is outperforming
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according to AUC criterion, but at certain points the ROC curves are overlapping. Similar

results have been obtained by Weiss et al. (2001), [48].38

Further research would focus on investigating the effect ofthe natural unbalance degree on

the performance of the classifier, aiming at finding the optimal distribution for the minor

class in problem, like corporate distress, where the costs associated with the incorrect

classification of the minor class elements are relevant.

38They investigated the effect of unbalance on a decision treeclassifier’s performance and concluded
that ”..the strategy of allocating half of the training examples to the minority, while it will not always yield
optimal results, will generally lead to results that are no worse than, and often superior to, those which use
the natural class distribution”.



Chapter 4

Conclusion and further research

In the first part of the work, we focused on unsupervised methodologies for corporate

analysis, in particular a classification method, model-based clustering, and its application

on a industry sector segmentation.

In corporate analysis framework, this preliminary procedure may result relevant in a ”sce-

nario” analysis because of the fragmentation of information1 and moreover key-variables

used for distress analysis differ from a sector to another.

In case-studyA, we have followed a procedure by applying the model-based clustering to

the scores of a PCA on a set of financial and economic ratios, a procedure usually used

in literature. The results provided by our analysis have shown that a clustering procedure

applied on a specific industrial sector reports a segmentation according to the financial

and economic level of the companies. By applying this procedure, it would be possi-

ble to have ”financial level” information on the analysed sector and a segmentation of it,

also providing correspondent key-indicators average values. Model based clustering is a

more flexible methodology, compared to the other clusteringmethods, because every unit

is assigned to every of the n-group with a posterior probability, so for each company it

is provided a probability of belonging to a specific ”financial level” class (for example:

weak, average, strong). Furthermore, we found that model based clustering tends to de-

1Often there are not only two groups of companies: failed and not failed, but also intermediate stages,
but data about them are not provide or easily disclosed. Bankruptcy is a legal procedure, formally regulated,
but sometimes delayed with respect to the solvency event occurrence.
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tect more clusters than K-means. Similar findings have been provided by Atkinson et al.

(2010), see [23]. According to the reported classification of the companies belonging to a

specific level-class, further analysis could be conducted.For example, a supervised anal-

ysis could be applied taking into consideration the specificsegmentation of the industrial

sector to be analysed, by considering the presence of a specified number of classes to be

predicted according to the financial-level classes. Moreover, if we consider the problem

of class imbalance, and in specific the within-class unbalance, it would be possible to

apply re-sampling methods on the clusters obtained, see [52]. Our intent is both to extend

the analysis to other industrial sectors and to consider a different procedure, consisting in

the simultaneous combination of dimensionality reductionand clustering operation, see

[22]. Further analysis may focus on verifying misleading association, signalled by the

presence of components with few elements, or units with not very high posterior proba-

bility of belonging and not very well separated groups, thatcould be connected with the

merging problem of normal distributions or not Gaussian distributions. Moreover, both

dispersed few elements group or very low probability of belonging of an element to a co-

hesive group could indicate the presence of potential outliers. We intend to proceed with

further research in order to provide a more robust model based approach for clustering,

by considering mixture oft distributions instead of Gaussian mixture, see [24] or other

robust clustering methodology.

In the second part, we focused on the supervised methodologies for corporate distress

analysis with the case-studyB, aiming at comparing the forecasting accuracy of two clas-

sifiers, Logit and Neural Networks, and the case-studyC, focused on the problem of class

unbalance effect on classifier (Neural network) performance.

The comparative analysis carried on in case-studyB, showed the superiority of the neural

networks models over the logistic model, in term of prediction accuracy.

The neural networks over-performing is relevant for the costs of wrong prediction in credit

scoring model, otherwise, the logistic regression offers amore readable economic inter-

pretation of the input variables effect on the output vector. Leverage and Ebit/Sales vari-

ables resulted strongly significant, differently the otherkey-variables, maybe due to the

Italian disclosure rules for the Financial statement items.
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Further research may be conducted aiming at implementing a more stable predictors

frame, also for other European countries.

Further investigations may focus on input variables sensitivity analysis to interpret the

impact of predictors on the output vector in neural networks, [139] [32]. As concerns the

methodological procedure, further developments may be conducted aiming at improving

the tuning in the neural network optimization process and inmanaging with unbalanced

data. As concern the case studyC, the work focused on analysing the effect of the un-

balance in the performance of a neural network model for distress prediction aiming at

finding a tendency (increase/decrease) on classifier performance when considering un-

balance levels differing from the balanced benchmark,50% of elements belonging to the

minor class. The unbalance levels considere have been:40% and30% minor class units.

The results showed a tendency of the classifier accuracy to slightly decrease when we

move towards the natural distribution even if this effect seems to be equilized by the ben-

efit, in the training process, connected to an increase in thenumber of units for the larger

class. Similar results have been obtained by Weiss et al. (2001), [48]. Further research

may focus on finding an optimal distribution for the minor class in particular for real-

world application, like credit scoring, because of the costs associated with an incorrect

classification of the minor class elements.
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Appendix A

MCLUST : an R function for model
based clustering

MCLUST Version 3 contributed R statistical package by Chris Fraley and Adrian Raftery

(2006), [109], provides functionality for model-based clustering.MCLUST provides iter-

ative EM methods for parameter maximum likelihood estimation in parametrized, with

a variety of covariance structures, Gaussian mixture models. At each EM iteration, the

E-step computes a matrixz such thatzik is an estimate of the conditional probability that

observationi belongs to groupk given the current parameter estimates, and the M-step

computes parameter estimates given z.MCLUST functionsemandmeimplement the EM

algorithm for parametrized Gaussian mixtures. Functionsemstarts with E-step; besides

the data and model specification, the model parameters (means, covariances and mixing

proportions) proportions must be provided. Functionmestarts with the M-step; besides

the data and model specification, the conditional probabilitiesz must be provided. The

output for both are the maximum-likelihood estimates of themodel parameters andz.

Below, an overview of whatMCLUST function does is shown:

Mclust(data, G=NULL, modelNames=NULL, prior=NULL,

control=emControl(), initialization=NULL, warn=FALSE, · · ·)
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Such function allows:

• to specify the numbers of mixture components (clusters) for which the BIC is to be

calculated, in the option G. The default is G=1:9.

• to specify the models to be fitted in the EM phase of clustering, in the option model-

Names. The default is c(”E”, ”V”) for univariate data and mclustOptions() emMod-

elNames for multivariate data (n>d), the spherical and diagonal models c(”EII”,

”VII”, ”EEI”, ”EVI”, ”VEI”, ”VVI”) for multivariate data ( n ≤ d);

• to specify a conjugate prior on the means and variances through the function prior-

Control. The default assumes no prior;

• to indicate a list of control parameters for EM. The defaults are set by the call em-

Control();

• to initialize the EM process. It consists of a list containing zero or more of the fol-

lowing components: a) hcPairs: A matrix of merge pairs for hierarchical clustering

such as produced by function hc. For multivariate data, the default is to compute a

hierarchical clustering tree by applying function hc with modelName = ”VVV” to

the data or a subset as indicated by the subset argument. The hierarchical clustering

results are to start EM. For univariate data, the default is to use quantiles to start

EM; b)subset: A logical or numeric vector specifying a subset of the data to be

used in the initial hierarchical clustering phase;

• to set a logical value indicating whether or not certain warnings (usually related to

singularity) should be issued. The default is to suppress these warnings.



117

The function MCLUST is used to obtain the optimal model according to BIC for EM ini-

tialized by hierarchical clustering for parametrized Gaussian mixture models.

The function returns a list giving the optimal (according toBIC) parameters, conditional

probabilities z, and log-likelihood, together with the associated classification and its un-

certainty. In particular, the details of the output components are stored in specific objects:

BIC, containing all BIC values referred to the different models, giving the possibility to

evaluate the model selection according both to the BIC value and also to the more parsi-

monious model in terms of number of parameters/complexity of the model and number

of components; z, a matrix whose [i,k]th entry is the probability that observation i in the

test data belongs to the kth class; classification map(z), the classification corresponding

to z; uncertainty, the uncertainty associated with the classification.

The functionplot() returns the model-based clustering plots: BIC values used for

choosing the number of clusters. For data in more than two dimensions, a pairs plot of

the showing the classification, a coordinate projections ofthe data showing location of the

mixture components, classification, and uncertainty. For one- and two- dimensional data,

plots showing location of the mixture components, classification, uncertainty, and density.
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Appendix B

NNET: an R function for neural
networks

TheNNET R statistical package by Brian Ripley (2009) implements a procedure for fitting

feed-forward neural networks.

Below, an overview of whatNNET function does is shown:

nnet(x, y, weights, size, Wts, mask, linout = FALSE,

entropy = FALSE, softmax = FALSE, censored = FALSE,

skip = FALSE, rang = 0.7, decay = 0, maxit = 100,

Hess = FALSE, trace = TRUE, MaxNWts = 1000,

abstol = 1.0e-4, reltol = 1.0e-8, ...)

Such function allows:

• to specify the number of units in the hidden layer, in the option size. It can be zero

if there are skip-layer units;

• to specify the initial parameter vector, in the option Wts. If missing chosen at

random;
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• to switch for linear output units, in the option linout. Default logistic output units.

The activation function in the hidden layer of nnet() function is logistic, it is possible

to specify the activation function in the output layer (for example to be linear using

linout=T, in case of continuous variable forecasting) but in the analysed case, for

binary output variable where the expected value is a probability, it is set as by

default logistic;

• to switch for entropy (maximum conditional likelihood) fitting, in the option en-

tropy. Default by least-squares;

• to switch to add skip-layer connections from input to output, in the option skip;

• to set a range for the initial random weights on [-rang, rang], in the option rang;

• to specify a value for weight decay, in the option decay. Default is zero;

• to indicate a maximum number of iterations, in the option maxit. Default is 100.

Optimization is done via the BFGS, a quasi-Newton method.

The function returns an object of class ”nnet”, a structure containing several objects: wts,

a vector of the best set of weights found; the value of fitting criterion plus weight decay

term; the fitted values for the training data; convergence 1 if the maximum number of

iterations was reached, otherwise 0; the residuals for the training data.

NNET is a wrapper for other functions so it is possible to construct a net, where specifying

more than one layer of neurons and setting other parameters.

If we consider a procedure in which we estimate different neural net, in terms of number

of hidden layers and weight decay values, we proceed to compare them according to the

selection criteria BIC-AIC-GCV computing from the residuals obtained. Once we select

the best neural net structure, we proceed to evaluate its accuracy on a test set.

In NNET package, it is not possible to specify a validation set as well as a training set, as

the neural net methodology would consider: learning set (toestimate the net parameters),

validation set (to tune the net parameters) and test set (to evaluate the net performance).

NNET function just trains, so the procedure to test the fitted model (the nnet object) against
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new data consists in predicting new data, using the functionpredict.nnet().

It consists in using the fitted model on a test sample and computing, from the resid-

uals, the related performance criteria to evaluate the generalization properties of the

net (ROC curve and AUC). The ROC curve and AUC are computed by the function

performance() in the R package ROCR by T. Sing, O. Sander, N. Beerenwinkel,

T. Lengauer (2009).
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