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Chapter 1

Introduction

1.1 Corporate Distress Analysis

Corporate distress analysis is a matter of interest for mamtygs: lending institutions,
regulatory authorities and investors in general. Reseandimancial distress prediction
models has relevance to lending institutions both in dagidvhether to grant or not a
loan (and its related conditions) and in devising policembnitor exiting loans.
Furthermore, distress prediction models may provide eaniarnings of financial prob-
lems and assess the likelihood of a company experiencingems in principal repay-
ments. Corporate distress could be consider in the more gefneamework of credit
scoring, referring to every kind of evaluation on creditaeery at a fixed period of time
(consumer loans, mortgages, and so on) where a financiaitrest needs to distinguish
between good risk and bad risk applicants for credit. Iniyettiere are not well-defined
classes of good and bad risks. Accurate models assign epliteays (consumer or com-
pany) a probability of defaulting on repayment. Furtherepdinere are complex issues of
what is meant by "default”. If we focus on the case of corpeiagans, there is a big
issue if considering the bankruptcy criterion an apprdpnaoxy for considering a com-
pany reliable (in terms of solvency) or not, or if the stiydggal limitation of a filing for
bankrupt could be replaced by other proxy criteria.

The problem stands largely on the data available to implérmenodel, because if we

1



2 CHAPTER 1. INTRODUCTION

consider a bank data-warehouse it could provide us all $arfarmation connected both
to the financial statement data and to the loan-repaymeieised to the applicant. But,
if we refer to a new applicant without a credit "history” ontdeecovery or if we simply
have no such information, we could only refer to quantimatiata (financial or economic
ratios) comparable to the industry sector and to previowmnial default data used as
learning sample to implement forecasting models.

In the past decades, classification into these two classes @nd bad risks) was made by
human judgement on the basis of past experience. The sdale ofirrent credit industry,
the advance in computer technology along with the developmeclassification meth-
ods and then the legislation that aimed at preventing stiggarejudice from influencing
decision have modified the decision process towards moeetg analysis models.
Financial institutions such as banks, insurance and loampaaies are subject to overview
by regulatory bodies for solvency and stability, in par@un Europe they are under
Basel Il regulation framework.

Basel Il requires banks to assess appropriate internaltcrsklimeasurement and man-
agement systems, compelling banks to improve their riskgatystems. The estimation
of risk parameters, namely probability of default, lossegidefault and exposure at de-
fault, is the basis for the regulatory capital calculatibecause these risk parameters
determine the minimum capital requirements for a bank. €mddel scores are key
inputs for pooling retail portfolios and estimating thekriomponents. According to the
first pillar of Basel Il accord: minimum capital requirementmsider that "for corporate
and bank exposures, the PD is the greater of the one-yeardeiated with the internal
borrower grade to which that exposure is assigned, or 0.0BE80].

Consequently, monitoring the performance of the underlyatigg systems is a key com-

1The Basel Committee on Banking Supervision (BCBS), thaintaais its secretariat at the Bank of
International Settlements (BIS) in Basel, is implemen@ngew revision of the Basel AccordBasel 1],
a comprehensive set of reform measures to strengthen thiatieg, supervision and risk management of
the banking sector. The update aims at 1) improving the Ingngector’s ability to absorb shocks arising
from financial and economic stress, whatever the sourceyf@yiving risk management and governance, 3)
strengthening banks’ transparency and disclosures. Toemne target are: bank-level, or micro-prudential,
regulation, which will help raise the resilience of indival banking institutions to periods of stress; macro-
prudential, system wide risks that can build up across tin&ihg sector as well as the pro-cyclical ampli-
fication of these risks over time.
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ponent of the supervisory review process.

Regulators expect that a Basel 1l implementation leads t@batk management and,
ultimately, produces tangible benefits for the business.

Some authors, [127], created the binomial dependent \ar{dbfault/no default) by ob-
serving the situation of each firm at the end of the next firengar and (following
Basel Il definition, only if the company is ninety or more dayspit is considered as
a default). In order to apply the Basel Il formulas for the A-IRBproach, we had to
provide four inputs: probability of default (PD), loss giveefault (LGD), exposure at
default (EAD) and maturity (M). The default (distress) po#idn models are aimed at
estimating PD, in particular the one year PD required undeeB& In their sample,they
observed an high variability in the distributions of the finel ratios for the two de-
pendent variable groups. They interpreted it as due to tifereint sectors in which the
companies operate (for example real estate firms have faladata completely different
from agricultural companies). After processing the ddfarediction models, they create
seven rating classes and the probability of default (PDg#mh rating class is calculated
by dividing the number of default by the total number of eptises in each class. Rating
classes have been created in order to obtain the value ofd3Bstlto the one showed by
bond equivalent PD distribution.

The response in a prediction problem could be quantitativgualitative; in a quantita-
tive problem the key standard variable is numerical, whenea qualitative problem the
key standard is categorical. Typically, in credit applicas a qualitative response has
two categories (default or not, for example) though theesexiceptions (8-class market
segmentation system in [132]). So as above-mentionedubeaat its ubiquity and im-
portance, most of the works refer to the two-class case.dmnvwb-class case, predictive
models can be though of as yielding estimated probabil{besnonotonic transforma-
tions of these) that the applicant will belong to each of thsses- and as a classification
(prediction to the qualitative category) is made by commathe prediction with a thresh-
old, [128]. If the predicted probability of belonging to sk0 is greater than the threshold,
the point is classified into class 0, and otherwise into clagdhe threshold thus defines a

(decision) surface, with new points which fall on one sidmpelassified into class 0 and
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those which fall on the other side being classified into clas@&he relationship between
the underlying continuum and the probabilities of predigtihe memberships of each of
the two classes has been explored in [131]). A subtletyingris both quantitative and
gualitative predictive situations, is that the respons#ate is often a proxy for some-
thing else of real interest. For example, default might beasily measured alternative
standing in for creditworthiness or profitability, both ohigh are difficult to define, let
alone measure (and this is were the measurement approatie eatued, yielding more
appropriate response variables based on and derived frose that can be easily mea-
sured). The generic two-class prediction problem in crediring begins a set of data
describing previous customers, among with a class variatlieating the outcome (good
or bad). The aim is to use this information to construct a rhoelating the descriptive
data to the outcome indicator so that new customers, for wiroerhas the only descrip-
tive data, can be allocated to a likely class. In the retaikib®y context such a model
is called ascorecardafter the early pre-computer system, and this is the gernenm
usually adopted in literature and industry.

Neural networks are complex models and they can be highgcefe, at least in those
problems where the decision surface is complex and alsosgpHrates the classes. On
one hand, the complexity of such models means that they deiyles interpretation.
Moreover, if the classes are not well separated, if therasswverlapping in the predic-
tors space, neural networks could better perform in thesa@tsurface being non linear.
This is often the case in application scoring situationsreltlee predictor variables sim-
ply do not permit highly accurate separation of the classes.

Improving the accuracy of a credit risk model is likely to baseneficial effects on the
Basel Il capital requirement when the Advanced Internal Raf&-IRB) approach is
used, [126]. Indeed, applying a model with higher accuraityresult in lower capital
requirement regardless the companies are classified d<tsti@mers or corporates. The
new Basel Capital permits banks the possibility to choose aneb classify firms (with

2The earliest form of predictive model assigned a numeriatit to each category of each variable
and calculated a score for a new applicant by summing its M®igver the variables. The result was
displayed in the form of a table showing the weights for eaategory of each variable, hence the term
scorecard, essentially assigning larger weights to Iekyg dpplicants.
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sales less thaf. 50 million and exposure less than tl&t 1 million) as corporate or as
retail. In Pillar 1 of Basel Il Accord, the rules to calculateni capital requirements for
each of the different segments are clearly explained. Athtdas (both for Non-SME'’s
and SME’s§ follow the same calculation steps involving inputs for etation (R), capital
requirement (K) and risk-weighted assets (RWA). The mogioirtant input variables to
be provided by the banks are three: PDs, LGDs and exposusfaildEAD; while the
asset correlation (R) is implicitly given by the Basel formafla

Banks, in particular, and most financial institutions woridey have either recently devel-
oped or modified existing internal credit risk systems orcameently developing methods
to conform with best practice systems and processes fossiagethe probability of de-
fault (PD), and, possibly, loss-given-default (LGD) onditessets of all types.

As well defined by Altman, [124], the assignment of appradpridefault probabilities on
corporate credit assets is a three-step process involkang the development of:

1. credit scoring models;
2. capital market risk equivalents- usually bond ratings;

3. assignment of PD and possibly LGDs on the credit portfolio

It is important to notice that a statical methodology (susHamit-regression or neural
networks) can combine steps 1) and 2) where the output froautbmatically provides
estimates of PD. This is one of the reasons why logit-regrasgpproaches has been pre-
ferred by some consultancy modellers developers ratharttigadiscriminant model.
Financial distress is used to mean severe liquidity problérat cannot be resolved with-
out a sizeable rescaling of the entity’s operations or siinec

Filing for bankruptcyis the criterion used in most studies, even if this event isgall
one that could be heavily influenced by the actions of ban&ecther creditors. Ambi-
guity caused by the presence of a non financially distressetgbany but bankrupt and

3SME stands for Small Medium Enterprise.

4Asset correlation (R) represents the correlation betwbenassets in the specific portfolio (retail,
corporate, equity, etc.) and in the Accord different forasuare given to calculate this value based on the
nature of the assets, [130]
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vice versa is an inherent limitation connected with banteypesearch studies. Even so,
we may observe that prior to bankruptcy companies stroregig to pass common and
preferred dividends, go into technical defaults and engad®@rced sales of assets, all to
the detriment of securities values.

The evaluation of a firm financial status depends on manyfgdioancial and economic,
that could be predictive of a weak level of solvency or a pyeetition for a liquidation
proceeding, stating the inability of the firm to pay its fineshobligations.

There are several indicators of, or information sourcesiglibe likelihood of financial
distress: cash flowanalysis,corporate strategpf the firm in relation to the referring
industry, financial statementand external variablegsuch as security returns and bond
rating potentially encoding information about cash flowd &inancial statements items).
The estimate of cash flow analysis is critically dependertherassumptions underlying
the preparation of the budget. The financial statementysisalf the firm and those of a
comparison set of firms could focus on a single financial giéunivariate analysis) or
on a combination of financial variables (multivariate asay. Moreover, the information
about the financial status of a firm and its positioning in tekbging industry-sector is
crucial for investors, stockholders, loan-analysts oditogs, taking into concern the de-
scription and the representative characteristics of tiaéyaad sector.

In the industry, objective statistical methods of alloogtapplicants to risk classes are
known as credit scoring methods. This term derives from satachrating scale with a
threshold methods, very widespread in the industry, a $@pplication score.

In the literature, several estimation methods have beegestigd to predict financial dis-
tress, from the simple univariate analysis [1], to multidlecriminant analysis (MDA)
[2], [3], logit [4] and probit models [5], artificial neuraletwork models (ANN) [6], [7],
rough set theory [8], Bayesian network (BN) models [9], andegierprogramming [10].
The above-mentioned methodologies are considered as/isgrbclassification methods,
where a collection of labelled patterns are provided angtbblem is to label a new unla-
belled item. The historical training patterns are usedaoi@nd to derive rules of classes
[11]. Some authors, [125], compared the performance oéfit methodologies applied
on corporate distress diagnosis. Even if their work coultlbesaid to disclose that a
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clear dominanceof neural network (NN) compared to traditional statistitadhniques
(in their work, linear discriminant analysis, LDA), theyraduded in a more balanced
way considering both advantages and shortcomings of tlklax NN techniqué.The
results of their work are near or superior to the ones obtaimelL DA, so finally, tak-
ing into consideration the not transparent economic imgtghion of NN coefficient, they
suggest to use the two techniques in tandem.

Supervised learning can, usually, achieve high predi@amuracy if the training data and
the analysed data have similar characteristics. The disadge emerges if there are no
data records with known class labels.

Otherwise, in bankruptcy studies, samples tend to be smé#tieoinformation about the
failure status may not be readily available for training peswised methodology.
Differently, data mining techniques and clustering methbdlong to the unsupervised
classification methods dealing with the problem of predgtinobserved features (clus-
ter labels) from observed ones, so category labels are deéand

Recent researches have proposed the application of chgsaralysis and data mining in
the field of the performance evaluation of industrial orgation [12], [13] and financial
distress prediction, [14], [15].

In the literature, the variables generally consideredérathalysis concerning distress pre-
diction models consist of financial ratios or of a set of finahand economic ratios, or
sometimes of different variable classes composed of bditbsrand balance-sheet items.
Rules for classifying applicants into good or bad classesldvdavelop from a design
set; the speed of developing and implementing these rulegisrtant and they probably
need to be changed quite frequently (depending on the prapiglication area).

There are important issues to be considered when we refeedit scoring or corporate
distress analysis, that are: the quality of the data, redi@md macroeconomic effects, in-
dividual factors, default probability dynamic, defaulieets correlation, monitoring pro-
cess and scoring overrides.

The data quality refers to many aspects. Firstly, the cof@enulation of the object

50n the contrary, several works in the same period, conclededidering NN approach in financial
distress classification superior to the other methodofogie
8It should be underlined that their work was conducted on aded50% balanced sample.
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population in order to set the learning and the control samyry often, the scarcity of
data induces to collect information belonging differergtitutions in a single data-base,
so risking to have bias factors that could affect the resflthe model. Secondly, the
quality of the data is related to the variable taken into mersition in the model. In cor-
porate credit scoring, financial and economic ratios areiggly considered and the issue
refers to the correct indicators to be selected, and thealwéty to provide information
in relation to the problem and the industrial belonging sect

In the model implementation, the effect of macroeconomenacio is generally ignored.
Several works, [123], confirmed that the omission of thesé&fa tend to create biased
estimations on the individual characteristics. The motlkaedime considered and the data
geographically dispersed, the more the bias effects iserea

Generally, models do not include complete information nrei@ to an applicant because
of not observed or the observation refers to a previous g@erio

One of the principal criticism on the scoring model is thaytllo not consider the time
dynamic of the default probability of an applicant.

In the corporate credit, it is possible that the default pholity of a company is correlated
to other companies default in the economic system they tgeBa we are in presence of
correlation between units to be considered in the model.

The issue of monitoring the scoring model is current andeél#o the capability to re-
main accurate and updated.

Scoring overrides issue relates to the operating problerhange or modify a pre-existing
risk-analysis system in a bank or financial institution.

In part| of the work, we present an overview of the unsupervisedssizdi methodolo-
gies that could be applied for the industrial sector ana)ysithe segmentation perspec-
tive and potential distress level classification. In paifac, we delve into the model-based
clustering methodology and its application as an unsupedvlassification methodology
for sector segmentation. We present a case-sfuclyncerning an industry sector analy-
sis focused on clustering two industrial segments intogualips according to financial
and operating characteristics by using the above-mertiolassification procedure, the

For further details, see [103]
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model-based clusteringperating in a multivariate.

Thepart Il of the work, is focused on the supervised statistical medlugies applied
on credit scoring or corporate distress analysis, latusdnsdrawing the outlines of two
methodologiesLogistic regressioand Neural Networks

Moreover, an overview is presented of thealuating rulesonsidered for selecting and
evaluating the performance of a model.

We report a case-study focused on a comparison of the two above-mentioned super-
vised methodologies for predicting financial distretsygit and Neural Networksand
to the problem ottlass imbalanceFurthermore, thelass imbalanceroblem, generally
faced in credit scoring model, is analysed and the relatedhture presented.

A case-studyC is reported, analysing the effect of different unbalaneelkin a neural

network distress prediction model.
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Unsupervised statistical methodologies
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Chapter 2

Unsupervised methods

Unsupervised methods are statical models used when neslassdefined or assignad
priori and aiming at finding structure or identifying specific patsein the data by the use
of data mining techniques. They are generally implememeulalogical and diagnosis
studies, marketing and data warehouse analysis.

The main characteristic of unsupervised methods is to tateemmon structure and dif-
ferentiation elements in the data, and are generally usedginize, to classify and to
visualize data. The exploratory data analysis methodgideeidivided into two main ty-
pologies:clusteringmethods, consisting in grouping elements into clustersraoag to
specific distance measurgspjectionmethods, focused on reducing data dimensionality
in lower dimensional space maintaining some initial feasLas to preserve the core of the
information.

If we consider a set D = {{),(z2), ..., (r,,)) of independent variables{) € R™, we de-
note anunsupervised estimation probletme one concerning the subdivision of the set
D into disjoint subsets as that tixevectors, belonging to the same subset, are similar
according to a similarity measure.

The importance of implementingata-drivermethodologies of analysis rely both due to
the problem of havin@ priori information about a phenomenon or because it could be a
latent one and to the presence of a wide set of informatimredtn data warehouse in

a variety of sectors: finance, banking, retail sales, manufeng, marketing and medical
diagnosis, to be exploited to derive association rules.aDady be investigated to find

13
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functional dependencies and to search for patterns carsides representations of a pro-
cess, trying to extract information from the data as intenidethe general definition of
knowledge discovery analysis

In the following chapter, we analyse in the section 2.1 aqmiipn method, therincipal
component analysisand in section 2.2 a clustering methodology, thedel based clus-
tering. Section 2.3 presents a case studyiratustry sector analysisprocessed by the
use of a model based clustering.
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2.1 Principal component analysis

In exploring high-dimensional data sets for group strugtitiis typical to rely on "second-
order” multivariate techniques, in particulgrincipal component analys{®CA) in or-

der to reduce dimensionalityAs a first objective principal component analysis seeks the
standardized linear combination of the original variabléals has maximal variance.

Let x be a random vector with meanand covariance matriX, than the principal com-
ponent transformation is the transformation

x—y=T"(x—p) (2.1)

wherel is orthogonal[’~I" = A % is diagonal anc\; > Xy > --- > Ap > 0. The strict
positivity of the eigenvalues; is guaranteed it is positive definite. Theth principal
componenbf x may be defined as the ith element of the vegtor

Yi = Vo) (X — 1) (2.2)

Herev, is the ith column of’, and may be called the ith vector pfincipal component
loadings If x ~ (u,Y) andy is defined in (2.1), then some properties of principal
components:

E(yz) = 0; Vm’(?/i) =\
Cov(y;,y;) =0 fori#j; Var(yp) > Var(y.) > -+ > Var(y,) > 0;

p p
Z Var(y;) = try; H Var(y;) = |X].
i=1 i=1
The sum of the first k eigenvalues divided by the sum of all igerazalues represents the
proportion of total variation explained by the first k compats

A+ M)/ A+ Ay) (2.3)

IPrincipal component analysis was developed by Hotelli®9g) after the former work by Karl Pear-
son (1901).

2This attempt to reduce dimensionality can be described asiponious summarization” of the data.

3The representation af follows from the spectral decomposition.
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One disadvantage of principal component analysis is theapticipal components are
not scale-invariant. The correlation between the ith \deia; and the jth principal com-
ponenty;,

pij = vij(Nj /o) ? (2.4)
WhenY: is a correlation matrixg;; = 150 p;; = vi;(\;) /2.
If we consider the p standardized variables Z, the scoreepjttthprincipal component on

the hth individual unit is expressed by
Ynj = Vj12h1 + Vj2zn2 + -+ Yip2np: forh =1,....n (2.5)

wherey;; is the coefficient of the jth principal component and ith aate.
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2.2 Model based clustering

Cluster analysis consists in the identification of groupshidfesvations that are cohesive
and separated from other groups. Most clustering methgaesaare based on heuris-
tic procedures, as hierarchical agglomerative clustesimigerative partitioning methods
such as k-means method. The statistical properties of timesleods are generally un-
known, precluding the possibility of formal inference. Reitg in literature clustering
procedure has been related to probability models, [117d,iemas also been shown that
most popular heuristic methods are approximate estim#piocertain probability meth-
ods. For example, standard k-means clustering and Wardisothéave been considered
equivalent to known procedures for approximately maxingzihe multivariate normal
classification likelihood when the covariance matrix is shene for each component and
proportional to the identity matrix.

In literature, finite mixture models have been proposedearctntext of clustering by sev-
eral authors ([118], [119], [120], [121], [122]) but onlycently these models have been
recognized to provide a principled statistical approadhégoroblems arising in applying
clustering methods ([17], [108]).

In finite mixture models, each component probability disition corresponds to a clus-
ter. The problem of determining the number of clusters anchobsing an appropriate
clustering method can be recast as statistical model clpoad#@ems and models that dif-
fer in numbers of components and/or in component distiamgtican be compared.
Fraley and Raftery (2002), [19], presented a clusteringesisacombining model-based
hierarchical agglomeration and the EM algorithm for maximlikelihood estimation of
multivariate mixture models. So they exploit the capapitit the first one, hierarchical
agglomeration, of producing reasonably good partitiorenewhen started without any
information about groupings, whereas in EM initializati@presents a critical point for
the optimization process in presence of local minima.

Then, by initializing EM with reasonable starting partitgofrom hierarchical agglomera-
tion, they obtain improved estimated partitions.

The Bayesian Information Criterion (BIC) approximation wasgaeed to determine the
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number of group in the data, firstly in a work by [115], and tleemended by [108] to
select simultaneously the parametrization of the modelta@shumber of clusters.
Given datay with independent multivariate observations - - - .y, the likelihood for a
mixture model with g components is

n g
£1\41){(917“ .0 |y :Hzﬂzfz y], (2.6)

7j=11=1

where f; andd; are the density and parameters of the ith component in thieeireiandr;

is the probability that an observation belongs to the ith jgonent {; > 0; zgj i = 1).

In model based clusteringach cluster is, generally, represented by ailzclaaussianlmode
Let f; be a multivariate normal density,, parametrized by its mean and covariance
matrix X2;, the model is

oi(y |1, i) = (QW)_§|21|_% exp {—%(yj — )"y — Mz)} ) (2.7)

wherey represents the data, ant an integer subscript specifying a particular cluster.
Formerly, the mixture models for clustering analysis cdased only equal covariance
matrix >. Model-based clustering offers different modelizatiortlad covariance matrix
Y, that could be parametrized by spectral decompositiomearidrm:

Y, = ND;AD; (2.8)

where); = |37 is a scalar,D; is the orthogonal matrix of eigenvectors Bf and A;

is a diagonal matrix whose elements are proportional to idengalues ob;, [17]. The
orientation of the principal components Bf is determined byD;, while A; determines
the shape of the density contouss;specifies the volume of the corresponding ellipsoid,
which is proportional to\{| A;|, whered is the data dimension.

Characteristics (orientation, volume and shape) can vaiydan clusters, or be con-
strained to be the same across clusters.

Data generated by mixture of multivariate Gaussian dem@s#éycharacterized by compo-
nents or clusters that are ellipsoidal and centred at th@spgeawhereas the covariances
Y); determine their other geometric features.
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Model-based clusteringrocedure was introduced by Banfield and Raftery (1993), [17],
that proposed a general framework for geometric crosgesigenstraints in multivariate
normal mixtures by parametrizing covariance matricesughoeigenvalue decomposi-
tion. By allowing some but not all of the three features D; and A; to vary between
clusters, parsimonious and easily interpreted modelsddoeilobtained which are appro-
priate to describe various clustering situations, [112].

Their idea was to treat;, D; and A; as independent sets of parameters and either con-
strain them to be the same for each cluster or allow them tpamuong clusters. When
parameters are fixed, clusters will share certain geomatoijgerties. This approach gen-
eralize the work of Murtagh and Raftery (1984), [116], whodiige equal shape/equal
volume model for clustering in character recognition. Baakubsumes the three most
common modelsA/, equal variance and unconstrained variarice= \;/, where the
clusters are spherical but have different volumes;= \; A;, where all covariances are
diagonal but otherwise their shapes, sizes and orientat@allowed to vary.

This parametrization includes well-known models such agoun spherical variance
(3; = AI) which gives the sum of squares criterion, constant vaegamzl unconstrained
variance. In one dimension, there are just two models: E dolakvariance and V for
varying variance. For more than one dimensionmtLUST, the model identifiers code
geometric characteristics of the model (volume, shapentation) with an (E) if equal,
() identity and (V) variable, as shown in Table 2.1. In thetfiwo columns, there are
specified the identifier and the name of the model. Then, tiné dolumn reports the
correspondent distribution and the other columns indicakeme, shape and orientation.
The last column indicates the cost of the model, in terms ailver of parameters to es-
timate. Parameters associated with characteristics rikgsid by E or V are determined
from the data. The first family of models is referred to sptedrshapes, asl;, = I
where | is the identity matrix. This parametrization leadswo models:\/; \;I. The
second family of modelizations consists in assuming thatcthvariance matrices,; are
diagonal, it means that in the parametrization the ori@rahatricesD; are permutation
matrices. In such a case variations on the shape matrices teelbe of any particular
interest, and the models arising are foard; \; A; AA; and A\; A;. In the third case, the
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Id Model Distribution | Volume  Shape Orientation Number of parameters
E (univariate) | equal 1

V (univariate) | variable g

Ell A Spherical | equal equal NA a+1

VI Al Spherical | variable  equal NA a+d

EEI AA Diagonal | equal equal  coordinates axesy + d

VEI A A Diagonal | variable equal coordinates axesy+d+g—1

EVI AA; Diagonal | equal variable coordinates axesy + dg — g + 1

VVI N A; Diagonal variable variable coordinates axesy + dg

EEE | ADADT Ellipsoidal | equal equal equal o +

EEV | AD;ADT Ellipsoidal | equal equal variable o + g5 — (g — 1)d
VEV | \;D;ADY | Ellipsoidal | variable  equal variable a + g8 — (g — 1)(d — 1)
VW | \;D;A; DT | Ellipsoidal | variable variable variable o + g3

Table 2.1: Parametrizations of the covariance mailjixavailable inmcLUST. In the
analysed unrestricted case (mixtuse)- gd + g — 1, whereasi = (d(d + 1)/2).

ellipsoidal family (the more expensive in terms of numbepafameters), it is possible to
assume variable volume, equal shape and variable orient@fEV model,\; D; ADYT),

or the other three ellipsoidal models by varying the assionpton the geometric features
(ADADT: A\D;ADT; \;D;A;DT).

In model-based clustering, we assume a mixture model withnplete data and we use
the EM algorithm, Dempster et al. (1977). EM algorithm maxes the likelihood func-
tion £ (¢|y1, ..., v, ) indirectly by proceeding iteratively in two steps, E-steyl -step,
applied on the complete data log likelihood functitig L. (/). EM is strongly sensitive
to initialization, being a local maximizer seeker, and alserause of the unboundiness of
the likelihood function, the optimization could fail, carging to some singularities, [18]
for constrained ML formulations. A procedure is to initidi EM with the model based
hierarchical results and to use approximate Bayes factdlstive BIC (Bayes Informa-
tion Criterion) to determine the number of clusters, see.[19]

The EM algorithm procedure for mixture model is considemedletails inSubsection
2.2.1. For further details omcLUST programming procedure, sé@pendix A.

Model selectionThere is a trade-off between the choice of the number of elssind
that of the clustering model. If a simpler model is choseentmore clusters may be
needed to provide a good representation of the data. If a owrplex model is used,
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then fewer clusters may be considered. As regards modetl lihisstering, we notice
that mixture-model approach to clustering allows the usapgroximate Bayes factors
to compare models so we select both the parametrizationeomibdel and the number
of clusters. The Bayes factor is the posterior odds for oneenaghinst another assum-
ing neither is favoured a priori. ImcLUST, EM algorithm is used to find the maximum
mixture likelihood, and the criterion used for selectiomresponds to the Blequals to
twice the log Bayes factor:

~

2log(p(x|M)) + constant = 2l (x,0) — mMlog(n) = BIC (2.9)

~

wherep(z| M) is the likelihood of the data for the modeéM, [(x,#) is the maximized
mixture log-likelihood for the model aneh.M is the number of independent parameters
to be estimated in each model. The number of clusters is ms#idered an independent
parameter in computing BIC. If each model is equally likely emgpythe p(z| M) is pro-
portional to the posterior probability that the data confdo the modelM. The larger
the value of the BIC, the stronger the evidence for the modedskaad Raftery, see [106],
define the BIC to have opposite sign to that given here, in wtiietsmaller (more nega-
tive) the BIC, the stronger the evidence for the model.

Fraley and Raftery, see [108], chose to reverse this comrenbnsidering easier the in-
terpretation of the BIC values plots.

Likelihood cannot be used directly in the evaluation of misder cluster analysis, be-
cause the fit of a mixture model can only improve as more temmsadded to the model.
This explains the reason why in BIC, it is added a term to thdiliked to penalize the
complexity of the model, in order to maximize for more parsmous parametrizations
and smaller numbers of groups. The BIC can be used to compatelsnwith differ-
ent parametrizations, different number of components éh.bdhe R statistical pack-
ageMCLUST provides a function to compute the Bayesian Information Gate(BIC)
given the maximized log-likelihood for model, the data dimsiens, and the number of
components in the model, and allows comparison of models avitering parametriza-
tions and/or differing numbers of clusters. In general,léinger the value of the BIC the

4Schwarz 1978, see [107].
SFraley and Raftery use that conventionviaLUST R Statistical Package, see [109].
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stronger the evidence for the model and number of clustees|199].

2.2.1 EM algorithm

The Expectation-Maximization (EM) algorittfis a broadly applicable iterative proce-
dure for computing MLEs in the context of incomplete-dataljpems. On each iteration
of the EM algorithm, there are two steps, called tpectation stepr E-step and the
maximization ste@r M-step.

Let Y denote the random vector corresponding to the observed,daeving p.d.f. pos-
tulated asf(y; V), whereV = (¥,,...,¥,)T is a vector of unknown parameters with
parameter space.

The observed data vectgiis viewed as being incomplete and is regarded as an observabl
function of of the so-called complete function. The notibincomplete data includes the
conventional sense of missing data, but it also appliestt@atsons where the complete
data represent what would be available from some hypotietiperiment. In the latter
case, the complete data may contain some variables thataee observable in a data
sense. Within this framework, let denote the vector containing the augmented or so-
called complete data, and ledenote the vector containing the additional data, referred
to as the unobservable or missing data.

Let f.(x; V) denote the p.d.f. of the random vecXrcorresponding to the complete-data
vectorx, X = (Y,Z). Then the complete-data log likelihood function that colbél
formed forV if x were fully observable is given by:

log (V) = log f.(x; ¥) (2.10)

Formally, we have two samples spageand)’ and a many-to-one mapping frognto
Y. Instead of observing the complete-data vegtan y, we observe the incomplete-data

5The name EM was given by Dempster, Laird and Rubin (1977)a ftmplete overview on the topic
see [99].
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vectory = y(x) in ). It follows that:
fri0) = [ flxsvyax (2.11)
x(v)

wherex(y) is the subset of determined by the equatign= y(x).

The EM algorithm approaches the problem of solving the ingete-data likelihood
equationglog L(V) /0¥ = 0, indirectly by proceeding iteratively in terms of the coete-
data log likelihood functionlog £.(¥). As it is unobservable, it is replaced by its condi-
tional expectation gives, using the current fit fol. More specifically, letr®) be some
initial value forW. Then on the first iteration, the E-step requires the calicuiaf

QT T) = £40) {log L(V)|y} (2.12)

The M-step requires the maximization@f ¥; ¥(*)) with respect tal over the parameter
space). That is, we choos& (") such that

QU vy > o(w; w®) (2.13)

for all ¥ € Q. The E- and M-step are then carried out again, but this tinte ¥i®) re-
placed by the current fit(). On the (k+1)th iteration, the E- and M-steps are defined as
follows:

E-Step CalculateQ(¥; ¥¥)), where
Q(W; ¥W) = By {log L.(V)|y} (2.14)
M-Step Choosel **1) to be any value o € ) that maximizeQ(¥; ¥*)); that is
QUMD gy > Q(w; ¥ (2.15)
forall ¥ € Q.

The E- and M-steps are alternated repeatedly until therdifize

LWEDY — £(p®) (2.16)
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changes by an arbitrarily small amount in the case of comverg of the sequence of
likelihood values{ £(¥*))}. It is demonstrated the monotony of EM algorithm, that is
the (incomplete-data) likelihood functiofi( V) is not decreased after an EM iteration,
that is

LUE) > £(p®) (2.17)

for k=0,1,2,....Hence, convergence must be obtained wstaence of likelihood values
that are bounded above.
Another way of expressing (2.8) is to say thgt ! belongs to

M(TW®)) = arg max Q(T; wM) (2.18)

which is the set of points that maximizeg¥; ¥*)).

EM algorithm for estimation of mixture model parameters We now consider the
application of the EM algorithm for the ML fitting of the paratnic mixture model,

g
fly;; V) = Zm’fi(yJ‘; 0;) (2.19)
=1
to an observed random sampye= (y1,- - ,yn), Where
U= (my, w1, )0 (2.20)

is the vector containing all the unknown parameters in theture model and is the
vector containing all the parameterstin - - - , 6, known a priori to be distinct. In detail,
¢ = (i, ;) consists of the elements of the mixture components means; - , 1,
and the distinct elements of the component covariance ceatiL,, --- ,%X,. The log
likelihood for ¥ that can be formed from the observed data is given by,

logL(¥) = > logf(y; W) =Y logy mifily;;0:) (2.21)
j=1 j=1 =1

Computation of MLE of¥ requires solving the above-mentioned likelihood equation
dlog L(W)/0W = 0, so that the MLE of, ¥, satisfies,

n

=Y mly;pW)/n(i=1,---,9) (2.22)

j=1
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and .
> > wilys; W)alogfi; 6:/0¢ = 0 (2.23)
g=1 j=1
where ,
7i(y;: 0) = 7 fi(y5:0:)/ Y mnfu(ysi On) (2.24)
h=1

is the posterior probability that; belongs to the ith component of the mixture.

If we consider the mixture problem in the EM framework, the@lyed-data vectgy is
viewed as being incomplete, as the associated comportagitgadimensional vectots;,

are not available. Eacjy is conceptualized as having arisen from one of the compenent
of the mixture model being fitted, wheeg; = (z;); = lor0, according to whethey,
arises or not from the ith component of the mixtgie= 1,--- ,g;j = 1,--- ,n). The
complete-data vector is expressed as

x = (y,z) (2.25)

where

Z= (Z17 e 7Zn> (226)

The component-label vectozs are taken to be realized values of the random vedogrs
that are assumed to be distributed unconditionally acogrth the multinomial distribu-
tion. The complete-data log likelihood fdr is given by

log Le(¥) =Y > "z {log m; +log fily;: 6:)} (2.27)

i=1 j=1
The EM algorithm is applied to the mixture problem by tregtthe z;; as missing data.
The addition of the unobservable data to the problemzthés handled by the E-step,
which takes the conditional expectation of the complet-dlag likelihood,log L.(V),
given the observed dagg using the current fit fo. On the (k+1)th iteration of the EM
algorithm, the E-step requires the computatiorQgfl; %)), where¥®) is the value of
U after the kth EM iteration. The E-step, on the (k+1)th itematrequires the calculation
of the current conditional expectation Bf, given the the observed daya

Eyw (Zijly) = pro, {Zi; = 1y} = 7:(y; ¥¥) (2.28)
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where
7y OO = ) fiy ;3 08)) F s W) = 7 fily;:00)) D mhfalysi0F)  (2.29)
h=1

corresponds to the posterior probability that the jth olestson belongs to the ith com-
ponent of the mixture, given observed valieand the parameter estimabé at the kth
iteration, fori =1,--- ;gandj =1,--- ,n.

After these premises, the E-step could be described as

g n
QT; W) = By {log L(V)[y} =Y Y 7ily;; ¥¥) {log m; + log fi(y;; 6:)}

i=1 j=1

(2.30)
If the z;; were observable, then the complete-data MLE;ofould be given by
ﬁizzzij/n for (i=1,---g) (2.31)
j=1

As the E-step simply involves replacing eaghwith its current conditional expectation
7i(y;; ¥®)) in the complete-data likelihood, the update estimate ofrithéng proportions
; is given by replacing each; by 7;(y;; ¥®) to give

n

7T£k+1) = Zn(yj; o) /n for (i=1,---,9) (2.32)

Jj=1

As concerns the updating of the parametegstimate on the M-step at the (k+1) iteration,
£++1 is obtained as an appropriate root of

Zin(w\I'(k))f?logfi(yj;&)/aé =0 (2.33)

i=1 j=1

whose solution often exists in closed form, obtaining thineses of the component
meansy; and component covariance matricésat the (k+1)th iteration. Considering
that,

w =2yl (2.34)
j=1
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and

S = sz — 1) g = T Y (2.35)

are the MLE'’s estimates QJ‘Z» andy;, if the z;; were observable. Abg L.(¥) is linear
in the z;;, it follows that thez;; are replaced by their current conditional expectations
estimateSri(f) = 7,(y;; V), so that

k+1 Z Tii yj/Ti(f) (2.36)

and

k+1) Z k+1))(yj _ MZ(kH))T/Ti(Jk) (2.37)

fori=1,--- ,gandj = 1,--‘ N

In model-based clusterinfpr the M-step, estimates of the means and probabilitige ha
closed form, as above-exposed, involving the data from tetep, see [108], [19].
Whereas, it is important to underline that, in the model-ddsemework, the computa-
tion of the covariance estimaﬁﬁ’“) depends on its specific parametrization, according
to the model considered. Details of the M-step ff) parametrized by the eigenvalue
decomposition have been implemented in Celeux and Gova95f1see [112].
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2.3 Case studyA: Sector analysis via model based clus-
tering

2.3.1 Outlines

The work presents an unsupervised procedure for the ei@iuatthe firm financial sta-
tus, aiming at identifying a potentially weak level of sateg of a company through its
positioning in a segmented sector. Model Based Clusteringerg, used to segment
real datasets concerning sectoral samples of industnmapaaies listed in five European
stock exchange markets. The analysis does not forecastefail non-failure, rather it
compares company’s operating and financial characteyistean and median of the dif-
ferent groups identified by the clustering process.

The underlying idea in this work is that the financial and exoit features, defining the
financial structure level, are strictly connected with theustry sector the firm belongs to
[16], and that seeking for industry-sector key indicatexsels may lead to a more appro-
priate evaluation of the firm financial profile.

In the case-study, an unsupervised procedure of clasgficanalysis is presented, aim-
ing at identifying the position of a company in a segmentedose The choice of a data-
driven methodology of analysis is due to the consideratiat the information about a
liquidation proceeding does not identify potential fadpre-condition because it refers
to a stated insolvency status.

The time period considered in the evaluation process is 2606 to 2007, in order to
verify the classification dynamic of a firm in the sectoralreegted framework.

The procedure presented starts from the assessment ofaheifihand economic indica-
tors that influence the specific industry sector, by a praagomponent analysis (PCA),
and then it proceeds with operating the segmentation, inaadial and economic per-
spective, of the sector by clustering methodology.

We propose the use of the model based clustering becausewsdhe modelization of
the covariance matrix and because of its capability to assigry unit to a n-group with
a probability of belonging. The model based methodologyispgared to another clus-
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tering method, the K-means clustering. In model basedeing, it is assumed that the
data are generated by a mixture of underlying distributiorghich each component rep-
resents a different group or cluster and the problem of deteng the number of clusters
and of choosing an appropriate clustering method can betrasatatistical model choice
problems, [17],[19].

The rest of the paper is organized as follows, a brief reviesuathe model based cluster-
ing methodology, then the presentation of two industriat@eanalysis, as Constructions
and Technology Hardware sector, and the reported resulitee gfroposed procedure.

2.3.2 Two sector analysis

We consider two datasets of yearly financial statement dat@nopanies, selected accord-
ing to the Industry Classification Benchmark (ICB), listed onrikfart, Madrid, Paris,
London and Milan stock exchange markets, for the period ZL’. The first sample
refers to the Technology Hardware sector and consists ohé2 for the period 2005-
2007. The second sample refers to the Constructions seataramsists of 105 units for
2005, 107 units for 2006 and 113 units for 2007. We calculagetaf 13 financial and
economic ratios: Quick ratio, Current ratio, Leverage, Detwerage, Cost of Debt, Eq-
uity to liabilities, Asset turnover, Expected time of liities refunding indicator, Ebitda
to Sales ratio, Return on Asset (Roa), Return on Investment,(Return on Sales (Ros)
and Return on Equity (Roe).

The Statistical Analysis and Results

Firstly, we process a principal component analysis (PCAp pge-step examination on

the variables and their influence on the data variabilitgntive run a model based clus
tering on the scores obtained by the PCA, in order to clasBdycbmpanies into groups
related to different financial structure levels. The vaeal(financial and economic ra-
tios) are calculated by operating transformations of asting data measured in the same
unit. We do not standardize the variables to compute thecipah components because
measurements are on comparable scale, see [20], [21]. TkeKGhg analysis has been



30 CHAPTER 2. UNSUPERVISED METHODS

Table 2.2: Model and number of clusters selected

Year Constructions Sector Technology Hardware Sector
2005 VVI,3 VEV,3
2006 VEI,4 VEV,4
2007 VEV,3 VEV,4

processed by using the packageLusT vers.3.3.1 (Fraley and Raftery, 2009) of the sta-
tistical software R. We select the best model according tdilzcorresponding to the
different parametrisation of the covariance matty and indicating the number of the
component of the mixture.

Each unit is assigned to the component to which it has theeligbstimated posterior
probability of belonging and each distribution compondrthe mixture may correspond
to a cluster and thus, in our analysis, to a group of compafiies

By examining the cluster centroids, mean and median, of tiwsrave may define differ-
ent financial and economic structure levels in each compgarfeéhe mixture.

For the first dataset, Technology Hardware sector, we sddgdhe PCA, three compo-
nents explaining about the 72% of variance in 2005, 66% ir620@ 68% in 2007. In all
the three years, 2005-2007, the components extractedranglstinfluenced by the eval-
uation of working capital, as expressed by the operatingrmeand the relation between
short-term debts and current assets, and also by the eevala@the weight of net equity.
In 2005 and 2007, we found a strong influence on the evaluafitime economic return
for investors (or the ownership), expressed by the Roe, tessgsin 2006. The evaluation
of the firm’s ability to refund financial debts and on the exgepn debts, expressed by
Debt Coverage and Cost of Debt, is, strongly, captured by thpoaents extracted in the
whole period. The asset turnover is relevant in 2005 and, 2668 in 2007. The operating
return evaluation, is strongly captured in the whole peribd2005, by the application
of the model based clustering on the scores, as shown inaFignd Fig.1b, the data have
been fitted by a three-components mixture of Gaussian laigions, connected with a
VEV,3 model, thus a ellipsoidal, equal shape model, présgictuster 1 with about 53%
of the observations, cluster 2 with 36% and cluster 3 with 14%® see Table 1. Cluster 1
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presents high levels of turnover, economic returns andotedimess, see Table 2. Cluster
2 shows a medium level of indebtedness, low operating retamnad asset turnover. Clus-
ter 3, a marginal group, presents high level of indebtedarddow operating returns. In
2006, the data have been fitted by a four-components mixfuBaossian distributions,
connected with a VEV,4 model, thus an ellipsoidal, equapshaodel. Cluster 1 with
about 37% of the observations, cluster 2 with 23%, clusteitl3 28%, and cluster 4 with
11%. Cluster 1 presents high economic return levels and higitelevel of indebtedness.
Cluster 2 presents a lower level of indebtedness, compargdotgp 1, but a very low
level of operating economic return. Cluster 3 is highly in@el not very high economic
return levels, even if with a current financial managemetiebéhan cluster 2. Cluster
4, aresidual group. In 2007, the data have been fitted by aclmmponents mixture of
Gaussian distributions, connected with a VEV,4 model, gnu®llipsoidal, equal shape
model. Cluster 1 with about 48% of the observations, clusteitl2 27%, cluster 3 with
17 %, and cluster 4 with 7%. Cluster 1 presents an averagedéivalebtedness and asset
turnover, with economic return levels not very high, coriadavith a quite high level of
cost of debt. Cluster 2 shows low economic return levels, la¥ebtedness, medium lev-
els of asset turnover, and a quite good current financiadtsin. Cluster 3 presents good
levels of asset turnover, but quite high levels of indebésdnand low economic return
levels. Cluster 4 is a marginal group, presenting group o&gmot very coherent from
the economic point of view.

For the second dataset, Construction sector, we select,eb @A, three components
explaining about the 69% of variance in 2005, 76% in 2006 &% ih 2007. In all the
three years, 2005-2007, the components extracted aregbtrinfluenced by the eval-
uation of working capital, as expressed by the operatingmednd the relation between
short-term debts and current assets, and also by the evaladthe weight of net equity.
In 2006 and 2007, we found a strong influence on the evaluafitime economic return
for investors, expressed by the Roe, less strong in 2005.
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Figure 2.1: Model based clustering for Technology Hardwaeetor, year 2005: BIC
values and model selection.

The evaluation of the firm’s ability to refund financial debéxpressed by Debt
Coverage and Cost of Debt, is captured by the components edriacthe whole period.
The asset turnover is relevant in 2005, less in 2006 and 2002005, the data have
been fitted by a three-components mixture of Gaussian laigions, connected with a
VVI,3 model, thus a diagonal, varying volume and shape mo@dlister 1 with about
56% of the observations, cluster 2 with 13 % and cluster 3 @4i%. Cluster 1 presents
low Asset Turnover and an high indebtedness, even if bedt@ld of economic return.
Cluster 2 shows an high level of indebtedness with low levalafover and economic
return. Cluster 3 presents average levels of economic rahdra good level of turnover,
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Figure 2.2: Model based clustering for Technology Hardw&eetor, year 2005: Pairs
plot of model based classification of the data.

even if characterized by high indebtedness level. In 2d@6data have been fitted by a
four-components mixture of Gaussian distributions, cateetwith a VEI,4 model, thus
a diagonal, equal shape model. Cluster 1 with about 23% oflisergations, cluster 2
with 63 %, cluster 3 with 7%, and cluster 4 with 7%. Cluster 1spras good levels of
economic return and an average level of indebtedness. CRisteows economic returns
and indebtedness levels on average. Both cluster 3 andralugieresent marginal groups
with few elements. In 2007, the data have been fitted by a-ttwegonents mixture of
Gaussian distributions, connected with a VEV,3 model, gnu®llipsoidal, equal shape

model. Cluster 1 with about 5% of the observations, clusteit2 & % and cluster 3
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Table 2.3: Industry sector analysis

Technol ogy Cluster 1 Cluster 2 Cluster 3 Cluster 4
Har dwar e
2005 Hi gh econ. Low econ. Low econ.
returns r et urns- returns- -
Hi gh Medi um Hi gh
i ndebt edness i ndebt. i ndebt edness+
H gh Low Low
turnover turnover tur nover
2006 H gh econ. Low Low econ. Low econ.
returns econ.returns- returns returns-
H gh Medi um Hi gh Hi gh
i ndebt edness i ndebt. i ndebt edness i ndebt edness
Hi gh Medi um Medi um Low
t ur nover t ur nover t ur nover t ur nover
2007 Medi um econ.  Medi um Low econ. Low econ.
ret. econ. ret. returns- returns- -
Medi um Low Hi gh Not
i ndebt . i ndebt edness i ndebt edness coherent
Medi um Medi um Hi gh
t ur nover t ur nover t ur nover
Constructions Cluster 1 Cluster 2 Cluster 3 Cluster 4
2005 Hi gh econ. Low econ. Medi um
returns returns econ. ret.
Hi gh Hi gh H gh
i ndebt edness- - i ndebt . ++ i ndebt edness
2006 Hi gh econ. Medi um Low econ. Low econ.
returns econ. ret. returns returns--
Medi um Medi um Hi gh Hi gh
i ndebt . i ndebt . i ndebt edness i ndebt. ++
2007 Low H gh econ. Medi um
econ.returns returns econ. ret.
Hi gh Medi um Medi um
i ndebt . ++ i ndebt . i ndebt .
Low refund. Medi um ref . Low refund.
capab. - capab. capab.
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with 54 %. Cluster 1, a marginal group, with high leverage. @u2 shows

medium level of indebtedness and high economic returns. t&l@spresents an aver-
age economic and financial situation. The identificatiorhath three years, of marginal
groups with dispersed elements, could be interpreted agalf the presence of poten-
tial outliers. These findings have been detected both in thednd the second dataset.
In order to compare the methodology presented in the pamehawve processed on the
two datasets for the three years, 2005-2007, a K-mean®dhgt and we found, for all
the runs, classifications dissimilar to the ones obtaingdermodel based clustering. We
observed that the model based methodology detects mortersd#sd one or two resid-
ual clusters compared to the K-means procedure that oftels i identify fewer larger
cluster and some singletons.

2.3.3 Results and comments

In this part of a more extended company analysis framewoekha&ve considered a two-
ways data, and we have followed a sequential procedure dyiagfirstly the PCA and
then the clustering to the scores, a procedure usually ndédrature.

The results provided by our analysis show that a clusterimogg@ure applied on a spe-
cific industrial sector could report a segmentation acewyth the financial and economic

”e "

level of the companies providing a "'scenario” analysis.

By applying this procedure, it would be possible to have "ficial level” information on
the analysed sector and a segmentation of it with the caynelgmt average key-indicators
values. Next analysis could be processed according to gwtesl classification of the
companies belonging to a specific level-class. For exanapdeipervised analysis could
be applied taking into consideration the specific segmemtaif the industrial sector to
be analysed, by considering the presence of a specified mwhblasses to be predicted
according to the financial-level classes.

Our intent is both to extend the analysis to other indusse&tors and to consider a dif-
ferent procedure, consisting in the simultaneous comioinaif dimensionality reduction

and clustering operation, see [22].
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The results may suggest that model based clustering is afferitde methodology, com-
pared to the other clustering methods, because every uassigned to every of the n-
group with a probability of belonging (the posterior proti&}), giving the possibility to
better identify borderline unit. In our application, on eage, we found that model based
clustering tends to detect more clusters than K-means.|&@8ifimdings have been, also,
found in previous papers, see [23], whereLusST is compared to another robust cluster-
ing method. The identification of the number of the Gauss@nponents of the mixture
with the number of clusters may need further analysis in rotdeverify possible mis-
leading association, signalled by the presence of compgsnath few elements, or units
with not very high posterior probability of belonging and nery well separated groups,
that could be connected with the merging problem of normstrithutions or not Gaus-
sian distributions. Moreover, both dispersed few elemgrasip or very low probability
of belonging of an element to a cohesive group could inditagepresence of potential
outliers. We intend to proceed with further research in ptdeprovide a more robust
model based approach for clustering, by considering mextdit distributions instead of
Gaussian mixture, see [24] or other robust clustering nuztiogy.
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Chapter 3

Supervised methods

3.1 Introduction

Supervised methodologies belong to the confirmatory daadysis procedures, whereas
unsupervised methods belong to exploratory procedures.

In supervised estimation we are provided a collection gbotgtwith given class (classifi-
cation) or given values (continuous outputs, regressiattems, and the problem consist
in assigning a predicted label or value to a new pattern. Tivendabelled or valued
patterns are used to learn the underlying data structuréhenfiinctional dependencies
between the output variabteand the inputs/predictors setSo, each object is described
in terms of a feature vectot, belonging to a suitable space and has a true unknown class
or valuet apart from dearning or training setD = ((x1, t1),(z2, t2), ..., @,,t,)) Where
these outputs are known and from whom we derive associatles.r

If we consider the feature vectaxsof i.i.d. random vectors according to a probability law
f(x), the learning process could be summarized as the esbimaf an output according

to a conditional probability (¢|x), fixed but unknown, where x belongs to the class
Supervised methods are applied to banking applicationréaticscoring, fraud detection,
medical diagnosis and speech recognition.

The following chapter presents two supervised methode&gn Section 3.2 thieogistic
regressionmodel and in Section 3.3 tideural networks.

39
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Section 3.4 concerns tlevaluating rulesregarding both a presentation of the model se-
lection criteria and of the accuracy measures used for atratyclassifier performance.
In Section 3.5, it is presented a case study on a comparaislgsas betweerPredic-
tion models: Logit versus Neural Networks Section 3.6 refers to thélass imbalance
problem connected with bankruptcy prediction analysid,iarSection 3.7 it is presented
a case study oNeural Networks distress prediction model on unbalanced d@aset
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3.2 Logistic regression

Over the last decades, in many fields and in particular inicsegring procedures, the
logistic regression model has been considered a reliabtbadeof analysis when the
outcome variable is discrete (binary or dichotomous).

The specific form of the logistic regression model is:

r) — LD

1 +exp(x'P) &1

wherer(x) = E[Y|X] represents the conditional mean of output response vecativen

the predictor variables vectar. We express the value of the outcome variable, coded as
0 or 1, givenx, asY = m(x) + €. Here, the quantity may assume one of two possible
values. If y=1 therr = 1 — 7(x) with probability 7(z), and ify = 0 thene = —n(z)
with probability 1 -7(z). Thus,e has a distribution with mean zero and variance equal
tow(z)(1 — w(x)). Thatis, the conditional distribution of the outcome vhkéfollows a
binomial distribution with probability given by the conidibal means(x) and maximum-
likelihood methods are required for the parameters estimaFurthermore, assume that
the outcome variable has been coded as 0 or 1, represergiaf$knce or the presence of
the characteristic, respectively. Consider a collectiop mfdependent variables denoted
by the vectorx’ = (21,22, -+ ,1,). Let the conditional probability that the outcome is
present be denoted by(Y = 1|x) = m(x).

A transformation ofr(z) is the logit transformatiohdefined as:

(%)

1 =xX'03 = [y + Biwy + Bowy + - + By (3.2)
— 7(x)

g(x) =1In

The importance of this transformation is tlgék) has many of the desirable properties of
a linear regression model.

Assume that we have a sample of n independent observdtong), i = 1,2, ,n.
Fitting the model requires that we obtain estimates of tretored’ = (5o, 51, -, Op).
The method of estimation used is the maximum likelihood.

1In the logistic regression model the link function is theitagansformation.
2The logitg(x) is linear in its parameter, may be continuous and may raege-froo to +co depending
on the range ok.
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The likelihood function expresses the probability of the@tved data as a function of the
unknown parameters,
1(B) = [ [ ()" (1 = m(xi)) (3.3)
=1
Or expressed as log likelihood, it is defined as

L(3) = n(U(B) = 3 _Awin [rCe)] + (L —y)in[1 = 7(x)]}  (34)

To find the value ofs that maximizesC(3), we differentiateC(3) with respect to5 and
set the resulting expressions equal to zero. There will idigelihood equations that are
obtained by differentiating the log likelihood functiontivrespect to the p+1 coefficients.
The likelihood equations that result may be expressed bs\vgil

n

Z [yi — 7(x;)] = 0 (3.5)
and .
Z Tij [yz - W(Xz’)] =0 (3.6)

forj=1,2,---,p.
Let 3 denotes the solution to these equations, thus the fitteév#&bu the multiple logistic
regression model ar&(x; ), computed using andx;.
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3.3 Neural networks

An artificial neural network (ANN) is a statistical model festimation of non-linear de-
pendencies between input variables and output responsar.¥ec

The original research in neural networks was inspired anivated by biological studies
focused on understanding and modelling the structure obthi functions. The first
structure of learning machine was therceptrorproposed by Rosenblatt (1962) for pat-
tern recognition, [133}.

The first result that links the generalization propertiethefperceptron and the error min-
imization on the training sample was provided by Noviko®62), [135].

Afterwards, Vapnik (1982), [136], formulated an inferahparadigm based on the induc-
tive principle of theempirical risk minimizatior?

Neural network architecture is based on the linear cominnaif activation functions,
and could be represented by a graph where patterns are nmslonal vectors assigned
to graphs nodes (input and output) and the transformatietvgden patterns are operated
by means of optimization algorithms. The choice of the atibn functionr(.) depends
on the choice of the output distribution (thé ) function codomain).

For example, th&dentity activation function

T(z) =z (3.7)

does not operate any transformation to the input values.
It is appropriate for output variable not constrained.
When referring to sigmoid activation functichsve generally considered tiegistic ac-

3For further details see [30], [31].

4The Rosenblatt perceptron consists in an architectur@rdiog to McCulloch-Pitts model (1943),
[134], with a single neuron which takes m inputs= (z1, - - - , ,,,) and delivers one outputg {—1,1}.
The input-output relation is given hy(x) = sign(w’'x — wp) wherew € R™ andw, € R are the neuron
coefficients named weights and threshold, respectivelg sitin(.) is a function as sign(u)=1f>0 and
sign(u) = —1if u<0.

SSubsequently, Vapnik Chervonenkis (1991) demonstrated the necessary and enffimnditions
for the consistency of the principle of empirical risk miraation, [137].

6Another sigmoid function is(z) = tanh(z) = <=¢—, assuming values in (-1, 1).

e*te—="!
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tivation function
(2) !
T(2) =
1+e*

assuming values in (0,1). It is appropriate for dichotom(@4%) output variables where

(3.8)

the expected value is a probability.

Neural networks are families of models with large but noiraried flexibility given by

a large number of parametérd.he two most widely used neural networks architectures,
belonging to this family, arenulti-layer perceptron§MLP) and radial basis functions
(RBF)& Multi-layer perceptron is used in supervised learning foetasting and classi-
fication. A feed-forward network is a network in which veetsccan be numbered so that
all connections go from a vertex to one with a higher numbke Vertices are arranged in
layers, with connections only to higher layers. In feedaard networks the information
moves towards only one direction, from a level to the follogvione, without feedback
loops. If the connections are bi-directional, we refer tedigack networks.

Let (X,Y") be a pair of random vectdX and a random variable Y with joint probability
distributionp(x, y), whereX is the m-dimensional input vector (predictor variables) as
suming values in some spadeC R™ and Y is a response variable with valuegirC R.

We assume that the input-output relation can be writteli as ¢(x) + ¢, wherec is a
random variable with zero mean and finite variance. We thenras that the unknown
functional dependency(x) = E[Y|x] is estimated by means of the functigp(x) re-
alized by an MLP withm inputs, p neurons in the hidden layer and one neuron in the

output,
p
fr(x) = cp7(@)x + br) + o (3.9
k=1
whereay, ... ,a, € R™, by,... b, cpr1,01,...,c, € Randr(.) is a sigmoidal function.
We denote byA the p x m matrix with rowsa}, ..., a; and setb = (b,...,b,) and

"The traditional methods of statistics and pattern recagmére eitheparametridoased on a family of
models with a small number of parameterspon parametrién which the models used are totally flexible.

8The main difference between RBF and MLP relates to the ditiivdunction in the hidden nodes. In
MLP, the activation function is a linear combination of itpand node-weights. In RBF, it is a function of
the distance between the input vector and the referencenifcthe jth node.

SLogistic activation function or hyperbolic tangent.
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c = (c1,...,¢),. Such quantities are callegeightsand we denoted them by, so that
w € Rp(m+2)+1

Let 7, be the set of all functions of type (3.9) for a fixed p, fox p < N, referring to
F for simplicity of notation. The problem is to find the funatig(® = f(w(®) in the set
F such that thggeneralization errofor expected risk,

&) = [ lo= 760 i)y (3.10)
where the integral is ovet x ), attains its minimum,
0 _ s g
f°=arg rfneljrrl E(f) (3.11)

andw, denotes the weights gf°. The distributionp(x, y) is unknown, so we compute,
from the sampleC={(x1, 1), ..., (Xn,yn)} (called the learning set: a¥ i.i.d. realiza-
tions of (X, Y")), theempirical error.

EfL) = > (= f(xn) (3.12)
(xn,yn)€EL

and estimate the least squares parameters by minimiziag)®. If a sum-of-squares
error is used, however, the quantities which can be detexirane the x-dependent mean
of the distribution (given by the outputs of the trained naty and a global average
variance (given by the residual value of the error functibitsaminimum)! The sum-
of-squares error does not represent the only one errorifumcthere exist other error
functions (for example, entropy for classification prob)¢&0]).
If we consider a sampl®, generally the procedure consists in partitioning it inetr
independent sub-samplesiearning sefor training set)C, a validation sety and atest
set7T. Thelearning setC is a set of examples used to fit the parameters of the model.
To estimate the parameters of the model, we refer tdgasing error The validation

0we refer to the principle oémpirical risk minimizationThe sum-of-squares error function is derived
from the principle of maximum likelihood on the assumptid©aussian distributed target data. Otherwise,
the use of a sum-of-squares error does not require the @atgeto have a Gaussian distribution, [30].

14 we consider the conditional distributigny|x), and we specify the hypothesis of normality, ho-
moskedasticity and not correlation, then the minimizatibthe sum-of-squares error conducts to the max-
imum likelihood estimation for the network weights.
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setV is a set of examples used to tune the parameters of the madel {@ choose
the number of hidden nodes of the neural network). To selexiriodel with the best
generalization properties, the approach would consistafuating the error function on
the validation set\Validation errof. The test set7 is a set of examples used only to
assess the performance of a fully specified model, by refgta thetest error However,
very often the sampl® is split into only two sub-groups, the learning geaind the test
set7.? Both the learning and test set are used to estimate paranvet8rsbecause
E*(f; L) is the function to be minimized ang*(f;7) is the function used to control
overfitting. As the learning process proceeds, at the beginooth the learning and the
test errors generally decrease, but at a certain point gieteor begins to increase even
thought the learning error is still decreasing. It is judgfeelpoint in which the overfitting
occurs. The learning process is then stopped, and the twsémate of the weights
is chosen to bav(?). This technique is nameearly stopping If the test error never
decreases during the training process then the networlsdered under-parametrized.
Otherwise, a local minimum is achieved by the optimizatitgoathm and initialization
parameters should be changed. Hazly stoppingechnique represents a regularization
method, because if starting values are small in magnitudetla® weight increase as
the learning process proceeds, then stopping the trairefgyd convergence force the
weights to remain small. When the data are not split into ttitberent sets and validation
error cannot be computed for estimating the generalizatioor, model selection criteria
are used to compare different networks.

Neural network models can suffer from either underfitting\eerfitting. A network that is
not sufficiently complex can fail to detect fully the signaki complicated data set, leading
to underfitting. A network that is too complex may fit the noi=ading to overfitting.
The complexity of a network is related to both the number ofgivts and the size of the
weights. The generalization performance depends moreesitle of the weights than
on the size of the networks (number of parameters). Largghtgcause the sigmoids to
saturate, and this leads to quite irregular surfaces. Alaegation method to smooth the
size of the weights is theveight decaywhere a penalty term is added to the error function

L2For further details about the procedure implementedNET R statistical package, see Appendix B.
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to be minimized during the learning process over the suml efaghts of the network:
EfiL) =E(fi L)+ Ay w}

where\ is the decayor smoothingparameter. An approach consists in processing net-
works with different\ values and estimating the correspondent generalization o to
select the\ parameter related to the minimum error value.

Optimization algorithm From the numeric point of view, the problem of learning
in neural networks consists in finding a weight veatqy,,,) that minimize the error func-
tion E’(w). For neural networks in general form, in particular thosthvmore than one
layer of adaptive weights, the error function will typigabie a highly non-linear function
of the weights, and there may exist many local minima. As alitmm of the non-linearity
of the error function, it is not in general possible to find aseld-form solutions for the
minima, and iterative optimization algorithms are reqdird hese algorithms involve a
search through weight space consisting of a successiord sf the form

wit) = wl) 4 sw® (3.13)

where s labels the iteration step. Different algorithmsiwe different choices for the
weight vector incremeniw?®. For some algorithms, such as conjugate gradients and the
guasi-Newton algorithms, the error function is guaranteatto increase as a result of a
change to the weights. One potential disadvantage of sgohitiims is that if they reach

a local minimum they will remain there. The choice of initve¢ights for the algorithm
then determines which minimum the algorithm will converge The majority of initial-
ization procedures involve setting the weights to randarhlysen small valu€e's.

The simplest network training algorithm is tlgeadient descenfalso known assteep-

est descent This method and thback-propagatiorlgorithm are currently considered

BThe initial weights values are chosen to be small so that sigimactivation functions are not driven
into the saturation regions but not too small in order noetdlto slow training. In literature, it has been
suggested that the summed inputs to the sigmoid functiomslégHtoe of order unity. The weights in the
hidden layer are generated by a normal distribution havérg mean and andg”. The choice of variance
o? is important. It is generally suggested that the standavéhtien of the distribution used to generate the
initial weights should scale like o m'/2, [30].
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inefficient at some extent and, at the moment current, moraealysed also from the
theoretical perspective. There are other currently pse®ptimization methods. If
we consider a small number of parameters, we refé¥éaton and Gauss-Newtonin-
cludedLevenberg-Marquandif we consider a large number of parameters, we refer to
the conjugate gradierdlgorithm. In the intermediate case, we refer to the Quasiddn
methods. Then, we provide an overview referring only to theva-mentioned currently
used algorithms.

In the Conjugate gradient algorithm, the search directions are orthogonal to eacéroth
with respect to the scalar produdid®), d**1), or H-conjugate, that is

AtV HI® =0 (3.14)

where H is the Hessian matrix evaluated at the puaifit™)).24 Search directions which
satisfy (3.14) are said to be conjugate. It is possible t@tant a sequence of successive
search directiong®) such that each direction is conjugate to all previous divast up to
dimensionality W of the search space.

In the Newton’s method, if we refer to local quadratic approximation, we consider a
search direction based on the inverse of the Hessian of thefanction,

d®) = —H'VE, (3.15)

where the vectoH ~' V&, is known asNewton directioror Newton step’
The weight vectow™ corresponding to the minimum of the error function satisfies

w'=w— H'VE (3.16)

The exact evaluation of the Hessian for non-linear netw@k®mputationally demand-
ing, since it require® (N1V/?) steps and) (1W?) steps for the computation of its inverse.
The Quasi-Newton’s methodsare based on the Newton direction and involve generating
a sequence of matric&s®) which represent increasingly accurate approximationbeto t
inverse Hessiai/ ~, using information on the first derivatives of the error ftiog. The

14The successive search directidif) are chosen such that, at each step of the algorithm, the ezenpo
of the gradient parallel to the previous search directiamaltered.
15The Newton directiorforms the basis of a variety of optimization strategies.
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problems arising from Hessian matrices which are not p@siefinite are solved by star-
ing from a positive-definite matrix and ensuring that theatpgrocedure is such that the
approximation to the inverse Hessian is guaranteed to reptaitive definite.
If we express,

g=VE=H(w—w" (3.17)
with w* corresponding to the minimum of the error function.

From the Newton direction formula (3.16), we consider thatweight vectors at step s

and s+1 are related to the corresponding gradients by
W(s+1) . W(s) _ _Hfl(g(erl) . g(s)> (318)

which is known as the Quasi-Newton condition. The approxiomaG of the inverse
Hessian is constructed so as to satisfy this condition also.

The two most commonly used update formulae areRheidson-Fletcher-Powe(DFP)
and theBroyden-Fletcher-Goldfarb-ShanfBFGS) procedures. Here, we give only the
BFGS expressiotf,

T G TG
Gt :G“Wigv = UTUC);()s)U + (" Gv)un” (3.19)

where we define the following vectors:

p=wtt —w® (3.20)

v =gt —g(s) (3.21)
(s)

we Lo G (3.22)

pTv  vTGG
At each step of the algorithm, the direction -Gg is guarahteebe a descent direction,
since the matrix G is positive definite. However, the weigitter is updated using,

W) = w(s) + oG ¢® (3.23)

wherea!® is found by line minimization.
An advantage of the Quasi-Newton method approach over thgi@ate gradient is that

18BFGS method is generally regarded as superior. In NNET Rs8tal package, BFGS is the method
implemented for optimization.
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the line search does not need to be performed with greatamcsmce it does not form
a critical factor in the algorithm. The disadvantage stamshe computational storage
requirement.

The Levenberg-Marquardt algorithm is specifically designed for minimizing a sum-of-
squares error.

Consider the sum-of-squares error function,

N

Ew) =536 =5l (3.24)

n=1
wheree, is the error for the nth pattern, and e is a vector with elesentThe elements
of the Hessian matrix take the form,

2 N 2
(Hy = 05— Z{ Ocnden | _O%én } (3.25)

T Ow, 0w, | Ow;Owy, En@wzﬁwk

If we neglect the second term, the Hessian can be writtereifoim
H=27"Z (3.26)

where we have defined the mati#xwith elements,

_ Oey

Z —
( )’m awl

(3.27)
In the Levemberg-Marquand algorithm, the variatidw, at each step, is expressed by
wit) = Wt _(ZTZ 4 A\TI) 12Tl (3.28)

whereZ is computed on the basis of the erref8 at s-th step, the paramet®igoverns
the step size, antlis the unit matrix.

Interpretive methods Atrtificial neural networks (ANNSs) are generally referred as
"black box” procedures, not disclosing the relation betwte explicative variables and
the dependent variable and the interpretation of the weighthe network or the activa-
tion values in the hidden layers with respect to the set ad datlysed. In ANNSs field, a
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particular research direction is focused to the implententaf procedures dedicated to
understand the nature of the internal mechanism to tragspfmsymation in the activation
process and to interpret the effect of the inputs variahtethe output.

These methods can be principally grouped into two main ggoamagnitude of weights
anssensitivity analysis’

Analysis based on theagnitude of the weightsefers to those procedures based on the
values stored in the static matrix of weights to determireertiative influence of each
input variable on each one of the network outputs.

The equations proposed for weights magnitude analysistaeacterized by the calcu-
lation of the product of the weights;; (connection weight between input neuron i and
hidden neuron j) and;;, (connection weight between hidden neuron j and output meuro
k) for each hidden neurons, obtaining the sum of the caledlatoduct. For example,
Garson (1991), [138], proposed

L7 (3.29)

Wheregj w,; is the sum of the connection weights between the N input msuaod the
hiddeﬁ:r%euron ], an@);; represents the percentage of influence of the input varigble
on the outputy, in relation to the rest of the input variables, so that tha sdithis index
returns thel00% for all the input variable$®

Tchaban et al. (1998), [141], proposed another sensitwggsure,

L
€T
Sik = U Z WijVjk (3.30)
ki

Y"Montano et al. (2003) defined a different procedure NSA(Niereznsitivity analysis) to analyse the
effect of input variable on output, based on the calculatibiine slopes that are formed between the inputs
and the outputs, without assumptions about the nature ofitigbles included (quantitative or qualitative),
[32].

8Byt Garson’s formula does not take into account the signsefiteights, so weights with opposite
signs can cancel each other out.
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representing a variant to the Garson’s equation.

However, in literature the analysis based on the magnitdideeaht is not considered
effective whereasensitivity analysiprocedures have been more implemented.
Sensitivity analysiscould be split into two directionsanalysis based on the network
outputandanalysis based on the error function

Sensitivity analysis is based on the measurement of theteffiat is observed in the
outputy,, due to the change produced in the inputThe analytical version of sensitivity
analysis starts from thdacobian matrixwhose elements are given by the derivatives of
the network outputs with respect to the inpuis, = g—g];, where each such derivatives is
evaluated with all other inputs held fixé¥The Jacobian matrix could provide a measure
of the localsensitivity of the outputs to changes in each of the inputs variable$, [30
Zurada et al. (1997), [139], proposed a measure for semgifiy, of the outputy, due to
changes in the input variablg, based on Jacobian matrix, expressed as,

L

= D plet) S v (et o (3.31)

Sik = 9z,

j=1

where f’(net) and f'(net;) are the derivative of the activation function of the hidden
neuron j and the output neuron k, respectivély.

As above-mentioned, sensitivity analysis could be appiethe effect observed in the
error function, provoking a perturbation in the input. Wamgl. (2000), [140], consisting
of comparing the error made by the network from the origirzdlgrns with the error made
when restricting the input to a fixed value (in general theaye value) for all patterns.
Thus, the greater the increase in the error function updnieesg the input the greater
the importance of the input on the output.

19The term Jacobian matrix is also used to refer to the devamidf the error function with respect to
the network weights, as calculated using back-propagation
20This method is limited to networks presenting quantitatisgables.
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3.4 Evaluating rules

Classifier performance may be assessed for two basic reasar@npareclassifiers, in
order to select the best one, or to determineasolute measure of qualityf perfor-
mance, in order to verify the adequacy of the classifier tqtioblem.

In this chapter, irSub-section 1the commonly criteria used for selecting a model over
another are depicted and 8ub-section 2an overview of main evaluating metrics for
goodness of classifier is presented, in particular consig¢he performance evaluation
in the case of unbalanced datasets.

3.4.1 Model selection criteria

It is presented an overview of the selection criteria usdidérature to compare statistical
models and select the optimal one. It is important to notiee¢ when using these model
selection criteria in the case of a MLP (Multilayer percep); the number of K degree
of freedom is set equal to the number W of weights, that meang(Wv=2)+1, wherep
indicated the hidden nodes antthe input vector dimensionalify.

Recalling the functional dependengyx) = E[Y |x], for a fixedp and1l < p < N, let F
be the set of all functions of kind:

Folxn) = > em(aix, +b) + cpr (3.32)

=1
wherei =1,...,N,a;,...,a, € R™, by,...,b,,cpt1,01, ..., ¢, € Randr is a sigmoidal
function. The problem is to find the functiofi® = f(w(®) in the setF such that the

generalization error
&) = [ly= 167 plx.g) dxdy. (3.39

where the integral is ovet x ), attains its minimum, that i§® = arg min <+ £(f) and
w(® denotes the weights gf?). In practice, the distributiop(x, ) is unknown, but we

213, Ingrassia et I. Morlini investigated the case of a neugalork for small dataset, in which \W N.
They referred to thequivalent number of degree of freedtiy setting K=p+1, see [98].
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have a sampl€ = {(x1,v1), ..., (xn,yn)}, called learning set, oW i.i.d. realizations
of (X,Y") so that we can compute tleenpirical error.

EF.L) = D (o= fxa)) (3.34)
(Xn,yn)EL
In the general framework of model selection, we supposetheyf,,, . .., f,, models of

the form (3.6). As the estimation in statistical models mayhought of as the choice of
a single value of the parameter chosen (according to sortegion) to represent the dis-
tribution, model selection may be thought of in this framewas the estimation applied
to the modelf,,, with h = 1,..., K. The only special issue is that the set of models is
discrete and has finite range. There may be occasions whenaute clearly dominates
the others and the choice is unobjectionable, and otheismrtawhen there are several
competing models that are supported in some sense by the Datato theunidentifi-
ability of the parameters, there may be no particular reasons farsgip a single best
model over the others according to some criterion. On th&aonn it make more sense to
"deselect” models that are obviously poor, maintainingtasetifor further considerations
regarding, for example, the computational costs.

Let f, be a statistical model based on K degrees of freedom, N aentite size of the
learning (training) set. Some of the model selection dateerive from the maximum
likelihood and could be referred, generally, to the form:

I = E(fu)+Ch (3.35)

where the tern€(f,) = E(fx, L) is the empirical error of the modg}, based on the
learning set and’, represents a complexity term expressing the penalty coediéc the
number of the degree of freedom K of the model. The complegityn increases as the
number K of degree of freedom grows, so compensating theteffethe selection criteria
given by a decrease in the empirical error term.

As follows, an overview of indexes generally used for mo@étstion is presented. They
are expressed in a general form so to handle with differemt &f problems and be inter-
preted in several application cases. One of them is the AKai{ge 1974):
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AIC = log(E(fi)) + -

where N is the size of the learning set. Another criterioh&BIC (Bayesian information
criterion), according to the minimum value of:

Klog(N)

BIC = log(£(fi) + ——

Then the GCV error,

GCV = &(fi) (1 - %) -

the UEV criterion

E(fx)

E:
UEV N oK

and finally the FPE (Akaike, 1970),

FPE = 6 (f3) <1+K/N).

T—K/N

where K denotes the number of degrees of freedom of the mfdefFor AIC and BIC
there are different forms in literature; here we follow Raftesee [110]. Some of these
criteria obey the likelihood principle, that is they haversofrequentist asymptotic justi-
fication; some others correspond to a Bayesian decisiongmobl

In the case-studies presented, we used both AIC, BIC and GCVder ¢o select the
optimal neural network structure.

3.4.2 Evaluation metrics

Classifier performance evaluation is a crucial stage in asggand developing learning
techniques. To evaluate the performance of a classifiegrdifit metrics can be applied,
each one referring to a part of information in respect to la@ot
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Furthermore, evaluation procedure should be applied teraedomains, presenting dif-
ferent characteristics such as dimensionality, type dlfes, data complexity, to under-
stand the classifier’'s general behaviour.

Clearly, the main objective of constructing a classificatiodel is to correctly classify
as many future instances as possible. The most popular neeafsperformance a clas-
sifier is of error rateor misclassification rateand it represents the proportion of objects
misclassified by the rule. It will refer to future objects te tlassified.Error rateis the
commonest assessment criterion, probably because it ifaalderiterion, but it is not
necessarily the most appropriate one. In particular, thim mwaakness of error rate is
that it implicitly assumes that the cost of different typdsyosclassification are equal,
and this is unlikely to be in most real applications. Funthere, error rate does not in-
form about the misclassification level because it does riingjuish between different
instances misclassified in relation to their distance froenthreshold chosen. Moreover,
error rate gives no information about accuracy of the proitabkstimate in the classifier.
If the threshold is not determined a priori then it would beartant to have accurate
estimation over a range of potential threshold, by considahe fact of setting different
thresholds connected to implicitly varying misclassificatcosts. In classifier perfor-
mance evaluation, the most common case is the two-clasgisitywherer, represents
the prior probability of class Or; = 1 — 7 is the prior probability of class I, is the
proportion predicted to have come from clase0,= 1 — py the predicted proportion
from class 1, and n=a+b+c+d is the overall sample size, agrshotable 3.1.

When the performance criterion is error ratepafusion matrixs the cross-classification

True class
Positive class Negative class
0 1

Predicted| Positive prediction| 0 | True positive (a)| False positive (b) po
Class | Negative prediction) 1 | False negative (c) True negative (d) p;
o T n

Table 3.1: Confusion matrix for a two-class problem. Diffargypes of errors and hits.

of the predicted class by the true class. The off-diagoreahehts show where the main
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misclassification occur. The confusion matrix, based ooreate, is asymmetric because
error rate is an asymmetric measure, as the number of elsiinent class misclassified
into classj could not equal the number from clagsnisclassified into class Confu-
sion matrix generally refer to error-rate, even if any measid the distance between two
classes can be used as the basis of confusion matrix.

Theerror rateand theaccuracyare widely used metrics for measuring the performance of
learning systems. However, when the prior probabilitiethefclasses are very different,

such metrics might be misleading.

c+b
E te == — — — 3.36
rror rate P (3.36)
Accuracy = Acc = & =1—-F (3.37)
y= Ca+b+e+d '

Maybe,accuracyis the most common evaluation metric but it is not suitablevaluate
imbalanced datasets since the minority class has much lpreersion and recall than
the majority class. For instance, it is straightforward teate a classifier havingd%
accuracy (orl% error rate( if the data set has a majority class wi#y, of the total
number of cases, by simply labelling every new case as bilgrig the majority class.
Furthermore, these metrics consider different classifinagrrors as equally important.
Additional metrics have been proposed from other domairsyTare ROC and AUC,
F-value, maximum geometric mean (MGM) of the accuracy omtbgority class and the
minority class, maximum sum (MS) of the accuracy. All the mestcan be divided in
two categories: metrics based on confusion matrix direstlgt that based on accuracy
of binary classes or precision and recall directly. Accyracecision and recall, FP rate,
TP rate, ROC and AUC fall into the first, while F-value and ottm®re complex metrics,
such as MGM of the accuracy on the majority class and the ntyndass, MS, fall into
the other.

False negative rate

FN = (3.38)

a—+c
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is the percentage of positive cases misclassified as belpngithe negative class;

False positive rate
b

b+d
is the percentage of negative cases misclassified as begptagihe positive class;

FP = (3.39)

True negative rate
d

b+d
is the percentage of negative cases correctly classifiedlaading to the negative class,

TN = —1-FP (3.40)

also reported aspecificity,

True positive rate:

Tp ="

=1—FN (3.41)
a—+c

is the percentage of positive cases correctly classifieclmging to the positive class,
also reported asensitivityor recall

These four class performance measures have the advantag@gindependent of class
costs and prior probabilities. It is obvious that the maifeotive of a classifier is to
minimize the false positive and negative rates or, sinyilaslmaximize the true negative
and positive rates. In particular, if class O represeatsesand class 1 represent®n
casessensitivit(Se) andspecificitSp) define performance in terms of predicted classi-
fications within each true classes.

Then, let us underline the two above mentioned mease=s/ andprecision

Precision=

a
3.42
a+b ( )

Recall = (3.43)

a+c
Precisionof a classification rule is the percentage of times the ptiediis associated with
the rule are correct. As above-mentionestallis the percentage of all examples belong
to class X that are covered by a rule.
For the purpose of comparison, it is convenient to comlprexisionand recall into a
single measure of performance, theneasure

F-Measure = (1+ 52) x recall * precision

3.44
(G2 * recall + precision ( )
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The value of3, a non-negative real, is adjusted according to the impoet&etween pre-
cision and recall.

F-value (or F-measure) is high when both recall and preciai@ high and can be ad-
justed through changing the value @f where, in detailsg corresponds to the relative
importance of precision versus recall.

The more common F-measurg | fixes thes value to 1:

F1= (2*recall*precision)/(recall+precision).

The F; measure lies between zero and one, with values close to divaiimg better per-
formance. It is a useful performance metric because it Jowsscores to methods that
obtain high precision by sacrificing recall or vice versa.

Furthermore, on domains where misclassification cost évagit, a cost matrix could be
used. A cost metrics defines the misclassification cost, @ulkis case the objective of
the classifier is to minimize classification cost insteadrodrerate.

Perhaps, the most common metric to assess overall classifigeerformance is ROC
analysis and the associated use of the area under the ROE @WC). ROC curve
is a two-dimensional graph in which TP rate(benefits) istptbton the y-axis and FP
rate(costs) is plotted on the x-axis. To produce a 2x2 camfusiatrix as in Table ? it
is necessary to settle on a specific threshold, whereas weitedver operating character-
istic (ROC) curve the performance is shown at each thresholgarticular, ROC curve
presents simultaneously, for a range of possible classdicshresholds for the classi-
fier, the true positive rate(sensitivity) on the verticalsaagainst false positive rate(1-
specificity) on the horizontal axis. Different points in tberve correspond to different
thresholds used in the classifier. If we consider the 45°dim@ benchmark, the closer
the ROC curve is to that line the worse the performance isaimeit would mean that it
classify the same proportion of the cases and the non-ctsthancase class at each value
of the threshold, that is it would not separate the clasd.aDalthe contrary, the best clas-
sifier performance is associated to a ROC curve followingweeaxis, because it would
classify 100% of the cases into the case class and 0% of theasminto the case class
for some threshold points. For most real world applicatidnere is a trade-off between
FN and FP and similarly between TN and TP. Some classifiers parameters for which
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different settings produce different ROC points. A classifihat produces probabilities of
an instance to be in each class (for example, neural netyodkiice continuous outputs
that can be mapped to probability estimate) can have a thiceparameter biasing the fi-
nal class selection. The ROC methodology allows for rankiihgxkamples based on their
class memberships, whether a randomly chosen majoritg ebemple has a higher ma-
jority class membership than a randomly chosen minoritgs;laee [28]. Plotting all the
ROC points that can be produced by varying these parameatatages a ROC curve for
the specific classifier. Generally, this is a discrete sebafitp, including (0,0) and (1,1),
which are connected by line segments. The lower left poi) (@presents a strategy that
classifies every example as belonging to the negative ctaktha upper right point rep-
resents a strategy that classifies every example as betptggihe positive class. As said
before, the point (0,1) represents the perfect classificaiind the line x=y represents the
strategy of random guessing the class. We would study GilErssiiominance relationship
by comparing the associated ROC curves. So, if a curve, favem gpecificity, has a
greater sensitivity the associated classifier provide arsoipperformance, and vice versa
for a given sensitivity. ROC curves obtained by data are naath but step functions.
There is a strong connection between the prior probabifitydass and its error cost.

If the costs of misclassifying class @,f and class 1«;) are known, it is possible to
compute th&otal cost,

moco(1 — Sensitivity) + mci (1 — Speci ficity) (3.45)

It could be found the threshold on the ROC curve that minisiitgs cost, where the
curve slope equals = (m¢1)/(moco).

Alternatively, if error costs are unequal and known, therceue adjust the decision thresh-
old to minimize the overall cost of errors. Two curves coudttdrthe same performance
if they intersect in a point, corresponding to a specificshodd. Generally, one curve
dominates in some intervals of thresholds and another dassrin other intervals. Just
in few situations, one classifier curve results superionttl@er at all thresholds values.
The curve is plotted by connecting points at intervals ontlineshold scale so that sev-
eral instances change classes between each threshold Agvelternative is to smooth
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the curve by fitting some parametric form. There is a serigsethods for estimating the
ROC curve for a continuous test. A fully parametric approtet results in a smooth
curve models the constituent distribution function paraicaly in order to arrive at the
induced estimator of the ROC curve. A non-parametric metihad results in a step
function is to use the empirical estimate whose propertee® tbeen derived, see [38].
An intermediate strategy between these two is a semi-paramapproach. A more com-
monly taken strategy to semi-parametric estimation of tB€Rurve is to model the ROC
curve parametrically, but avoid making additional assuomst about the distribution of
the tests results. They produce smooth estimated curvde véguiring less stringent
assumptions than a fully parametric approach. The bi-nbR@¥C curve is perhaps the
most popular of these intermediate strategies. ParanR@I{C analysis is based on a bi-
normal assumption, meaning that the actually positivease normally distributed and
the actually negative cases are normally distributed. tlhésoverlap between these two
distribution that results in the Bayes error rate. Once we lténaracterized in some way
the training examples drawn from these two distributiohentwe are free to set a deci-
sion threshold that minimizes the Bayes error rate. Otheragmhes have used logistic
and negative exponential distributions. Sampling valiighof ROC plots can be anal-
ysed by plotting confidence bands instead of single curvesendlomparing two ROC
curves it could be applied a statical test. To conduct assizdi analysis of ROC curves
and their area, one can use traditional tests, such asdrtastlysis of variance (Anova),
[39], but these procedures do not take into account the sasgle variance. To produce
an average ROC-curve, some authors fit the curve of maximweiihdod to case ratings
under a bi-normal assumption, averaged the ROC-curve pteereeand b (or a and
m) in the ROC estimation function, and produced an ROC cusieguthese averaged
parameters, [40].

A major disadvantage of ROC analysis is that it does not delvsingle performance
measure. If we would reduce the information about perfoceam a single criterion, we
could choose a particular threshold or using another simglasure as the area under the
ROC curve (AUC). AUC, calculated from a ROC graph, is an ovenal&sure of accuracy
that considers the curve in its entirety. AUC does not placeenemphasis on one class



62 CHAPTER 3. SUPERVISED METHODS

over the other, so it is not biased against the minority classontrast to error rate, AUC
is invariant to the prior probabilities. Area under the RQ@ve is most appropriate when
each curve dominates another. The limit of AUC occurs wheretis no one curve dom-
inating another overall (if one curve is superior in somearg and the other elsewhere),
resulting difficult to identify which curve is superior togtother. If multiple curves dom-
inate in different parts of the ROC space, then it could beluke ROC Convex Hull
method to select the optimal classifier, see [33]. There lapeanalysis for when only a
portion of the ROC curve is of interest. Cost curves are edgiivao ROC curves, but
plot expected cost explicitly, [41].

There is a three-way equivalence between AUC, the WilcoxamhWhitney statistic
and the probability of a correct ranking of randomly choseggétive and positive) pair.
The AUC is equivalent to the two independent sample Wilcektann-Whitney non
parametric test statistic, expressing the probability theandomly selected class 0 ex-
ample will be consider to belong to class 0 than a random dlassample. Furthermore,
the Gini coefficientis defined as twice the area between the ROC curve and the A8% i
Other measures reporting the information on performan@ntanique criterion are the

sensitivity/specificity ratipexpressed by:
a(b+d) )

Another single degree of freedom criterion is th#ds ratioor cross-product, expressed
by

a b ad Se x Sp

2.l A7

c d ¢ (1-Se)(l—Sp) (3:47)
defining the ratio of the odds of being classified into clasw@rgthat the example actually

belongs to class 0 and class 1 respectively.

The performance evaluation criteria of learning procesddrem imbalanced datasets is
an outstanding problem. Metrics are used to evaluate tlzeléatning results, so if they
do not adequately value rarity or minority class then theneg process, in general, is
not likely to handle rare classes and rare cases very welpatcular mention should
be made on research focusedrare classe$’ emphasizing that they have less impact on

2?Rare cases correspond to a meaningful but relatively smiadles of the data, or equivalently, define a
small region of the instance space. Much of the researchrin relates to rare classes, or, more generally,
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accuracy than common classes (classification accuracyuesfhe fraction of examples
that are correctly classified), that is, the minority claags much lower precision and recall
than majority class. In literature, different approached measures have been proposed
and evaluated in relation to the learning process of unbathmata. Accuracy places
more weight on the common classes than on rare classes, wiaikés it difficult for a
classifier to perform well on the rare classes. Additionatrioe that could result more
appropriate are: the above mentioned ROC analysis and Hoeiated use of the area
under the ROC curve (AUC)to assess overall classificatiofopeance. In fact, AUC
does not place more emphasis on one class over the otherjssadt biased against
the minority class. ROC curves, like precision-recall @svcan also be used to assess
different trade-off.

With rare cases/small disjuncts different metrics havenlmeanaged in literature. One of

these measures is tthaplace estimator

N-n+K-1
La = 3.48
a Ntk (3.48)

k: is the number of classes
N: is the number of instances
n: number of N example belonging to the majority class
in the case of two classes the formula beconies= (N-n+1)/(N+2).
A more sophisticated error-estimation metric for handliage cases and small disjuncts
was proposed by Quinlan, [37]. This method improves theraogestimates of the small
disjuncts by taking the class distribution (class priongd iaccount. Rather than using the
entire training set to estimate the class priors, a moresgmtative (local) set of examples
is used, relating to training examples close to the smglhac.
Quinlan modifies the laplace formula this way,
N—-n+1

N+1T
where I=1/(1-C) and C represents the disjunct context err@’f@% with e’ representing

Qla = (3.49)

the examples that do not belong to the class associatedvettiisjunct andr’ the num-
ber of examples in the context of a disjunct.

class imbalance. [36]
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Quinlan’s experimental results report that, in presenchiglily skewed class distribu-
tions, applying this modified metric to the learning procésgproves classification per-
formance. To summarize, RMSE could be considered as refigitteclassifier’s ability
to estimate posterior probability, AUC with informationaalt its ranking capabilities and
Error Rate metric as a threshold metric.

Recent literature is moving towards classifiers spatial ampn. Some authors studied
the issue of selecting appropriate metrics through a vigat&dn method or focused on
aggregating the results obtained by different classifiarditferent domains by visualiza-
tion, [42] [43]. In the extreme case, all the performanceadate expressed in a single
number (projection to one dimension) and the classifierscangpared on the basis of
a single quantity, i.e. a scalar metric. However, this imeslthe maximum amount of
information loss and single value indicators of classifierfprmance are most likely to
be unsatisfactory in conveying information about classgerformance.

Finally, to complete the overview we consider classifiermparison on an exploratory
basis rather than through standard evaluation. Diffexistmay be useful, according to
the data available, that could vary from simple approachesotting the results in a con-
venient way (such as histograms, scatter graphics) to difmeality reduction techniques
such as multidimensional scaling or self organizing maps.
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3.5 Case studyB: Prediction models: Logit Vs. Neural
Networks

3.5.1 Outlines

Corporate distress prediction models have been introducditerature, to classify com-
panies according to the failure forecast. Here, we propasergarative analysis of two
classifiers: logit and neural networks, on aggregate distaséalian companies, referred
to the period 2004-2008. We compare the accuracy of thesenwtbodologies and ver-
ify the capability of the chosen distress prediction mo&esults are expected to provide
information on the degree of forecast accuracy of the diffemethodologies and on the
predictive power of proxy variables. The present work afiesno provide evidence of
neural networks models outperforming accuracy over |lagipfedicting the potential fi-
nancial distress of a company. Corporate distress consitie inability of a company to
refund its financial obligations. An insolvency or a liquida proceeding implies costs
connected with the credit recovery. Thus, increasing tleir@acy of a company distress
prediction is crucial for banks or investors in relation e decision process to grant or
not a bank-loan or a credit line. In particular, accordinth®provisions of the First Pillar
of the Basel Il framework, the increasing quality of the cteidk assessment will result
in a reduction of capital allocation. The methodologiessidered for corporate distress
prediction are supervised classification methods, whemlaction of labelled patterns
are provided and the problem is to label a new unlabelled bgnearning and deriving
rules of classification from historical training patteristhe following work, we compare
the predictive accuracy of two different classifiers: atagodel and a neural network,
for a corporate distress model [25].

3.5.2 Analysis on balanced dataset

The analysis has been carried out on a sample of 570 largstmalutalian companies,
where the related financial data referred to the period ZIM8 (Source Amadeus). We
started from an unbalanced sample of 774 failed compane8&480 healthy ones. We
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randomly downsized the larger class [27] of healthy unitslitain a balanced sample of
50% failed and50% healthy companies. Then, we reduced the sample by selemtlgg
firms having complete financial data for three consecutia¥g;en order to calculate all
the six indicators. We considered two datasets in order édyae the prediction at two
different time lags: T1, referred to one-year prior to fegldinancial statement data and
T2, referred to two-years prior to failure ones. We proceedih the analysis by split-
ting the data into two sub-samples: a training dataset (4@2,uabout’0%), to estimate
the model parameters of the classifier, and a control data68tunits, abous0%), to
evaluate the ability of the estimated model in predictirféedent cases not in the training
sample. Further, the related ROC curve area is considerad ascuracy evaluation cri-
terion of the obtained prediction [28].

We considered six input variables, consisting of finanamal economic ratios to capture
both the financial and the economic perspective, see Table 3.

These variables have been chosen because commonly regpattidaly banks and schol-
ars [29] as the key indicators to set up their failure prediictnodels. They are related to
two principal company investigation area®ancial statusconcerning the relationship
between positive cash-flows and liabilities, gretformancerelating to the company ef-
ficiency expressed by profitability indicators.

In details, theRefunding capabilityexpressing the potentiality of the company to gen-
erate positive cash flows to cover financial obligationsniestigated by the Financial
debt coverage ratio. Th8rowth indicating an increasing economic dynamic, is investi-
gated by the Sales variation ratio. Thebt costexpressing the degree of the economic
incidence of the debt exposure, is investigated by the éstgpaid on sales ratio. The
Indebtednessndicating the debt exposure level, is investigated bylieeerage. The
Efficiency, expressing the capability to generate operating retisrnsyestigated by the
Ebit on sales ratio. The logarithm of Sales represents acsiatol variable.
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PROXY VARIABLE COMMENT FORMULA
Refunding FDebtCov, Financial Debt Cov- cashflow;/ financial Debt,
Capability erage

Growth SalesVar,  Sales Variation A(sales)/sales; 4

Debtcost IPSales, Interest paid on Sales interestpaid, /sales;
Indebtednesd.cverage;  Leverage shareholders funds,/Tot Asset,
Efficiency  EbitSales; Ebiton Sales Ebit,/Sales;

Size SIZFE, Size variable Log(sales;)

Table 3.2: Description of the input variables in the distrpsediction model

3.5.3 Numerical results for balanced data

The output variable value 1 corresponds to a not-failed @ypvhereas the value 0 is
related to a failed one. Thus, positive coefficients are @assd with decrease in the
probability of failure while negative ones correspond tor@ase in the probability of
bankruptcy. As concerns the logistic regression procedsati in T1 and T2 lag peri-
ods, the model coefficients estimated that result signifiaab% level ardeverageand
ebitsale in T2 alsoipsalesis significant. The other estimated coefficients do not tesul
significant in both two lag periods, even if these ratios ammonly considered by banks
and loan analysts in credit scoring evaluations.

A plausible economic explanation could be connected withdisclosure accounting
rules for the Financial statement items in Italy and theiakveapability to render the
financial dimension. In particular, we refer to informatie@garding the cash-flows dy-
namics and the correct distinction between long and skont-tiebt exposure. As regards
the growth dimension, the generally used item: sales, cooldesult always appropri-
ate to describe different sector characteristics thaeadstould be better investigated by
other economic revenue items. In T1, the logistic regressesults, see Table 3.3, show
that the log odds of healthy (versus failed) increases by ##a one unit increase in
leverageand it is enhanced by 5.02 for a one unit increasebitsales In T2, the logistic
regression results, see Table 3.4, indicate that the log ofitlealthy (versus failed) in-
creases by 6.56 for a one unit increaskeirerageand it is enhanced by 6.73 for a one unit
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No. of obs =402

LR chi2(6) =178.00
Prob > =0.0000
chi2

PseudoR2 =0.3194

Log likelihood = -189.64759

y Coef. Std. Err. z P>z [95% Conf. In-
terval]

fdebtcovtl .3143562 2541972 1.24 0.216 -.1838611  .812573

salesvartl -.0086909 .2370037 -0.04 0971 -4732095 24458

ipsalestl  -1.246083 1.378483 -0.90 0.366 -3.94786 1.45569
leveragetl 7.410037 1.127743 6.57 0.000 5.199701 9.620373
ebitsalestl 5.019519 1.433156 3.50 0.000 2.210584 7.82845
sizetl 1516105 1323923 1.15 0.252 -.1078737  .4110947
cons -2.406548 1.320317 -1.82  0.068 -4.994321  .1812255

Table 3.3: Logistic regression results: one-year prioatlufe (T1).

increase irebitsales For a one unit increase ipsales the log odds of being not-failed
decreases by 7.28.

The coefficients ofeverageandebitsalesare always positive and significant at the 5 %
level in both two periods, T1 and T2, indicating that the in@einess and efficiency di-
mensions are strongly related to failure events. The cosfiof ipsalesresults negative
and significant only in T2.

As regards the neural network, we iterated the estimationgss on the training dataset
for combinations of hidden nodes from 2 to 10 and values ofileay parameter: 0.1,
0.01, 0.05, 0.005. The optimization process is done via aigdewton method. The
initial parameter vector has been chosen at random butgétie same random seed for
every combination. We obtained 36 models and we computedrtirical erroron the
training set for each model estimated. We calculated treta@lgoodness-of-fit criteria
AIC, BIC and GCV, by considering the number of degree of freedquaés to the number
of weights of the model. Then, we selected three best modetg@ing to each selection
criterion for both the two lag periods. Thus the traininggass is completed, the best
NN models selected were used for prediction applied to thgrobdataset. From the
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No. of obs =402
LR chi2(6) =108.34
Prob > =0.0000

chi2

PseudoR2  =0.1944
Log likelihood = -224.47624
y Coef. Std. Err. z P>z [95% Conf. In-

terval]

fdebtcovt2 -.2836873 .339502 -0.84  0.403 -.949099 384724
salesvart2 .099439 1683394 0.59 0.555 -.2305002  .4293783
ipsalest2  -7.2858 2.914459 -250 0.012 -12.99803  -1.57356
leveraget2 6.556056 1.039662 6.31 0.000 4.518357 8.593755
ebitsalest2 6.730001 1.890963 3.56 0.000 3.023782 1024362
sizet2 .0354015 1175283 0.30 0.763 -.1949497  .2657527
cons -1.377883 1.17262 -1.18  0.240 -3.676175  .920409

Table 3.4: Logistic regression results: two years prioritufe (T2).

bestvalue nodes decay Area  p-value binorm.area

LOGIT 0.8605 3.5e-16  0.8608

AIC 4.086 3 0.005 0.8968 3.3e-19  0.8927
BIC 106.048 2 0.005 0.8634 2.1e-16  0.8755
GCV  59.756 3 0.005 0.8968 3.3e-19  0.8927

Table 3.5: T1 (one-year prior to failure). Area under the R&@ve for Logit and best
selected Neural Networks. The first column contains thetielecriteria best values. The
p-value addresses to the null hypothelis ROC Area=0.5. The sixth column contains

the binormal curve area.
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ROC curve comparison - T1
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B NN: ROC curve area = 0.8968
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Figure 3.1: T1- ROC curve comparison between Logit and ssdieldN (3 hidden nodes,
decay=0.005).
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bestvalue nodes decay Area p-value binorm.area

LOGIT 0.7728 5.1e-10  0.7325
AIC 4.313 4 0.005 0.8202 3.9e-13  0.8151
BIC 106.2 2 0.010 0.7684 9.5e-10  0.7446

GCV  75.219 4 0.005 0.8202 3.9e-13  0.8151

Table 3.6: T2 (two-years prior to failure). Area under the@RQurve for Logit and best
selected Neural Networks. The first column contains thetelecriteria best values. The
p-value addresses to the null hypotheSjs ROC Area=0.5. The sixth column contains
the binormal curve area.

predictions of both logit and NN models, we traced the ROGeum order to compare
the forecasting performance of the two models, as showrgn3-1 and Fig. 3.2, and the
dominance of a curve on the other. Furthermore, we caladithie area under the ROC
curve, as an alternative forecast accuracy criterion denisig the curve in its entirety, to
objectively compare the two classifiers.

For T1, the AIC and GCV criteria selected the same best modgltiwee hidden nodes
and decay equals to 0.005, presenting an higher value ofréi@eusder the ROC curve
than the model selected by the BIC criterion, see Table 3.5.

In the same way for T2, the AIC and GCV criteria selected theeshest model, in
this case with four hidden nodes and decay factor equal@bQpresenting an higher
value of the area under the ROC curve than the model selegtdwBIC criterion, see
Table 3.6. For both two lag periods, neural network modelgcted with the criteria AIC
and GCV, presented dominant ROC curves and higher ROC angesvaVer the logistic
model, indicating a better forecast accuracy, see Figufiear8l 3.2.
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ROC curve comparison — T2
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Figure 3.2: T2- ROC curve comparison between Logit and tslieldN (4 hidden nodes,
decay=0.005).
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3.5.4 Comments

The comparative analysis underlines a superior predietwonracy of the neural networks
models over the logistic model for both two failure lag peeo

The neural networks more accurate fitting is important fer¢bsts of wrong prediction
in credit scoring. Otherwise, the logistic regression iaff@ more readable economic in-
terpretation of the predictor variables influence on th@outesponse vector.

In the case study, leverage and ebitsales in T1 (also ipsalE®) result strongly signif-
icant whereas the other variables not, maybe due to thartalisclosure rules for the
Financial statement items.

From the economic point of view, further research may be@adwn aiming at setting a
more significance stable predictors frame, also for otheojgean countries.

Further investigations may focus on input variables sifitgitanalysis to interpret the
impact of predictors on the output vector in neural netw¢§8&3.

As concerns the methodological procedure, further devedoiis may be conducted aim-
ing at improving the tuning in the neural network optimipatiprocess and in managing

with unbalanced data.
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3.6 Class Imbalance

3.6.1 The problem and the literature

Learning with skewe® class distributions is an important issue in supenfStghrning
because for a number of application domains, a huge disgiopan the number of cases
belonging to each class is common.

Working with unbalanced dataset is still a major obstaclelassifier learning and many
traditional learning systems are not prepared to inducassifler that accurately classifies
the minority class under such situation. Frequently, thssifier has good classification
accuracy for the majority class but its accuracy for the mipelass is unacceptable. The
problem arises when the misclassification cost for the nitynolass is much higher than
the misclassification cost for the majority one.

The class imbalance problem is encountered by inductivenileg system on skewed
datasets where one class is represented by a large numbestarficges while the other
is heavily under-represented, presenting only few ingsnand that class unbalance
could affect the performance compared to the one attaitgidtandard learning methods
which assume a balanced class distribution.

Several domains present the class imbalance problem, sueixtecategorization, infor-
mation retrieval, fraud detection, rare medical diagndsiancial risk models and image

recognition?®

23The class imbalance problem occurs when there is a largeegisecy between the prior probabilities
of the individual classes, that is one class is representedgseater number of training examples than the
other.

24Supervised learning is the process of creating a classificatodel from a set of examples, called
the training set, which belong to a set of classes. Once aln®deeated, it can be used to automatically
predict the class of other unclassified examples. In supedviearning, a set of n training examples is
given to an inducer. Each example X is an element of the sefZ1¥j where F is the domain of thgth
feature. Training examples are tuples (X,Y) where Y is tihelgoutput or class. The Y values are typically
drawn from a discrete set of classes 1,...,K in the case e§ifleation. Given a set of training examples,
the learning algorithm (inducer) outputs a classifier stett, tgiven a new example, it accurately predicts
the label Y, [88].

25In many applications, such as medical diagnosis, fraudctlete intrusion prevention and risk man-
agement, the primary interest is in fact the small classeghdse applications, it is only the data distribu-
tions that are skewed, but so are the misclassification.cilkgtst classical learning algorithms assume that
all misclassification errors cost equally, and ignore tliledince between types of misclassification errors.



3.6. CLASS IMBALANCE 75

In corporate distress prediction analysis, we would redea two-classes problem, in-
dicating the failure event and the non-failure one. Evenefwill consider the case of
two-classes problems, the discussion could be extendedaaisulti-class problems.

In literature, there have been various attempts at dealitigthe class imbalance prob-
lem, [26], [44], [27], [45]), [46], [47], at the beginning Bty sparse, and recently several
studies and research are conducted aiming at connecticgispgpes of imbalances to
the degree of inadequacy of standard classifiers and tortéstaampare the various meth-
ods proposed to remedy the problem and the response on egofigifferent classifiers.
Some early studies attempted to systematize research arlatbeimbalance problem,
in one of them [48] different degrees of imbalances are linteethe performance of a
decision tree learning system on a large number of realdnata sets, in another [49] a
number of specific approaches are proposed to deal with icdances in the context
of neural networks and on a few real-world datasets.

Several methods have previously been proposed to dealistprtoblem including prior
scaling, probabilistic sampling, post-scaling and equradj class membership, [52].
Class imbalance impacts on classifiers like Decision treeMurdt-layer perceptrons de-
signed to optimize overall accuracy without taking into@att the relative distribution
of each class, [84]. These classifiers tend to ignore snmadkels while concentrating on
classifying the large one accurately, [83].

The imbalance in the data can be more characteristics ofsepass” in feature space
than the class imbalance, [61]. In addition to the problenmt&r-class distribution, an-
other problem arising due to the "sparsity” in the data isdistribution of data within
each class. This problem was also linked to the issue of shsflincts.

A large number of approaches have been proposed to dealheittiass imbalance prob-
lem: internal approach, consisting in creating algoritithinac for the problem, [85] [26],
or external approach consisting in re-sampling the data gdaninish the effect, [86], in-
dependently of the classifier used.

Recent research has shown that using an uneven distributiolass examples in the
learning (training) process can leave the learning allgorivith a performance bias: poor
accuracy on the minority class but high accuracy on the ntgjdiass; even if some au-
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thors confirm only partly this assumption and connectedgettain conditions, [48] [34].

In literature, major research directions on class imbaddrave, principally, focused on:

Re-sampling methods for balancing the dataset;

Modification of existing learning algorithms;

Measuring the classifier performance in imbalance domains

Relationships between class imbalance and other data egitydfleatures.

An important area of research, related to the learning keaisidg from unbalance, con-
cerns finding classifiers that are accurate on both classka@wpting metrics that are
insensitive to the learning bias such as the area under tli d@re (AUC) or the aver-
age accuracy of each class. As mentione8ubsection 3.4.2the AUC (area under the
ROC curve) is generally chosen as the primary evaluatiorsaredbecause it is known to
be a good estimator of classification ability in class imha&learning. The AUC is in-
sensitive to the class imbalance learning bias and corssilderclassification performance
across varying classification thresholds. It is importamatice that particular attention
must be kept on the trade-off between different class acguvehile the techniques ap-
plied to deal with the unbalanced problem to improve clamsgierformance are often
focused on increasing minority class accuracy withoutradlitig the effects of the over-
all classification ability of the classifier. As said befdregreasing the performance of one
class might result in a trade-off in performance for the pthnalysis of learning bias
is usually conducted by computing individual class perfances, that is majority class
accuracy and minority class accuracy, in order to analyagifie level of class imbalance
increases more instances are classified as belonging toajogityr class. The main aim
would be to adapt the learning function managing to mairgaiod overall classification
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ability across both the minority and the majority classasgishe AUC, as well as in-
creasing individual class accuracy.

The unbalanced class problem could be framed accordindfévett directions:

* What is the nature of the class imbalance problem?

* How do different approaches proposed for dealing with thescimbalance prob-
lem compare?

» Does the class imbalance problem hinder the accuracyrpeaifce of classifier?

As concerns the nature of class imbalance problem, somera&v] provided evidence
that the imbalance problem is a relative problem dependinigooh the complexity of the
concept (corresponding to the number of sub-clusters itticiwthe classes are subdi-
vided) represented by the data in which the imbalance o@nadhe overall size of the
training, in addition to the degree of class imbalance presethe simulated data. In
particular, [27] concentrated on explaining both the retathip between concept com-
plexity, size of the training set and the class imbalancel)awe identify the class imbal-
ance situations that are most damaging for a standardfeaskat expect balanced class
distributions and how to deal with the class imbalance bl

For imbalanced datasets, the decision boundary estathllshstandard machine learn-
ing algorithm tends to be biased towards the majority cldessefore, the minority class
instances are more likely to be misclassified. There are mawlylems that arise from
learning with imbalanced datasets. The first problem caorscesith measures of perfor-
mance. If the evaluation metrics does not take the minofégscinto consideration, the
learning algorithm will not be able to cope with class iminala very well. With standard
evaluation metrics, such as the overall classification oyt the minority class has less
impact compared to the majority class. The second problesiased to the lack of data.
For a class consisting of multiple clusters, some clustexg contain a small number of
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samples compared to other clusters; therefore the lacktafada occur within the class
itself. The third problem is noise. Noisy data have a serioysct on minority classes
than on majority classes. Furthermore, standard macharaifey tend to treat samples
from a minority class as noise.

In learning estimation, imbalances in the distributionte tata can occur either between
the classes (inter-class) or within a single class (inkaas), that is the case where a single
class is composed of various sub-clusters of differentssigeme of them being tiny. A
between-clasgmbalance corresponds to the case where the number of examggre-
senting the positive class differs from the number of exasipépresenting the negative
class; whereas within-classimbalance corresponds to the case where a class is com-
posed of a number of different sub-clusters and these sidteck do not contain the same
number of example®. In the inter-class imbalance, the degree of imbalance caegdve-
sented by the ratio of sample size of the minority class tbdhthe majority class. Most
classification techniques such as decision tree, discamianalysis and neural networks
assume that the training samples are evenly distributechgstdifferent classes. In real-
world applications, the ratio of minority to majority saraplcan be as low as 1 to 100, 1
to 1000 or 1 to 10,000. Hence, the standard classifiers areteff by the prevalent class
and tend to ignore or treat the small classes as noise. Wheretfeemance is measured
using classification accuracy, the best ratio is near to &beral ratio; on the other hand,
when the AUC measure is used, the best ratio is near the lealaato [34]. Although
both types of imbalances are known to affect negatively #réopmance of classifiers, in
general only methods for dealing with between class imlz@dmave been implemented.
Deepening the analysis, the imbalance ratio between clads®uld not be considered
as the only factor causing reduction in classifier perforceaand that other factors such
as training size and concept complexity also affect peréoree. In literature, some au-
thors delved the within-class unbalance by referring toptublem of small disjunct$

26The within-class imbalance problem occurs when a classistsnsf several sub-clusters or sub-
concepts and these sub-clusters do not have the same nuhshenmes, [51].

2'The within-class along with the between-class imbalanoblpm are expressions of the general prob-
lem known as the problem of small disjuncts, in which classifiare biased towards recognizing large
disjuncts correctly, but over-fitting and misclassifyiragrgples represented by small disjuncts, [50]
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and concept complexity in learning estimation, [50] [512]$53]. Systems that learn
from examples do not usually succeed in creating a pureljuoctive definition for each
concept. Instead, they create a definition that consisewvafral disjuncts, where each dis-
junct is a conjunctive definition of a sub-concept of the imadconcept. The coverage of
a disjunct is defined as the number of training examples rectly classifies. A disjunct
is called small if its coverage is low. In literature, rarses are considered to cause small
disjuncts to occur, which are known to be more error prone thge disjuncts. Learning
system usually create concept definitions that consistwdraeédisjuncts. The learned
decision boundary much approximates more closely the teeesidn boundaries when
more data is available. One study, [36], which employedisstitally generated datasets,
showed that rare cases have a much higher misclassificat®than common cases, be-
cause the associated lack of data where the number of saisiplesll affects the estima-
tion of the true decision boundary. We refer to this as thélerm with rare cases. Rare
cases cause small disjuncts in the learned classifier. Tdit#gon with small disjuncts,
observed in many empirical studies, is that small disjugetserally have a much higher
error than large disjuncts. One explanation is that somd! sispuncts may not represent
rare, or exceptional, cases, but rather something eldeauooisy data. Each disjunct,
in turn, is a conjunctive definition of a sub-concept of thigioal concept. The coverage
of a disjunct corresponds to the number of training examplesrectly classifies, and a
disjunct is considered a small disjunct if the coveragews Mhat makes small disjuncts
more error prone are the bias of the classifiers as well adfew of attribute noise, miss-
ing attribute, class noise and training set size on the @exwhich cause them. Within a
class, the data could be distributed according to a mixtensity whose components have
relative densities that may vary greatly. Some authord, derlined that techniques
usually used while decreasing the difference between ibe mobabilities of the classes
(between-class imbalance), they would probably increaselifference between the rel-
ative densities of the sub-components within each claghifwclass imbalance). In most
classification tasks, the presence of within-class imlzaasimplicit. It is known to have
negative effects on the performance of standard classdmiancreases the complexity
of concept learning. Although both types of imbalances a@nn to affect negatively
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the performance of classifiers, most existing methods scimbalance focused mainly
on dealing with between class imbalance have been impledeonsisting in rectifying
the between-class imbalance and ignoring the case whemdamd® occurs within each
class. As concerns the concept complexity in data, it cpordgs to the level of separa-
bility of classes within the data. Some authors, [27], regobthat for simple data sets
that are linearly separable, classifier performances arsusteptible to any amount of
imbalance. Indeed, as the degree of data complexity inesedlse class imbalance in-
creases, the class imbalances factor starts impactingahsifeer generalization ability.
High complexity refers to inseparable datasets with higivgrlapped classes, complex
boundaries and high noise level. When samples of differastsels overlap in the feature
space, finding the optimum class boundary becomes hardctipnfest accuracy-driven
algorithms bias toward the prevalent class.

That is, they improve the overall accuracy by assigning tlelapped area to the major-
ity class, and ignore or treat the small class as noise.

We will examine in more detail the small-disjuncts problend @ata complexity after a
general literature overview coping with the class imbatapmblem.

In literature, different solutions to the class imbalanoebtem have been proposed both
at the data and the algorithmic levél.

Different methods have been proposed to deal with classlanba

1. Random re-sampling methods;

2. Focused re-sampling methods;

3. Cost-learning methods;

28For a comprehensive quite updated review of the "state ofttiefor the class imbalance research
area and for the applied techniques, see [54]
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In details, at thelata leveldifferent forms of re-sampling have been proposed sucaras r
dom oversampling with replacement, random under-samptiimgcted oversampling (in
which no new examples are created, but the choice of sangpleplace is informed rather
than random), directed under-sampling(where again theeelod examples to eliminate
is informed), oversampling with informed generation of reamples, and combination of
the above techniques. At ttadgorithmic leve] applied procedures include adjusting the
costs of the various classes so as to counter the class intealay altering the relative
costs of misclassifying the small and the large classe§)stwg the probabilistic esti-
mate at the tree leaf (when working with decision tree), stiljig the decision threshold,
and recognition-based (learning from one class) rather thscrimination based (two
class) learning. The random over-sampling method consfstsersampling the small
class at random until it contains as many examples as the dtss. The random under-
sampling method consists of eliminating, at random, eléesefrthe over-sized class until
it matches the size of the other class. The cost-modifyinthots consist of modifying
the relative cost associated to misclassifying the pasaivd the negative class so that it
compensates for the imbalance ratio of the two classes.

External approaches could be divided into two groups: onaded on the best data for
inclusion in a training set, [86], and the other focused ailwing the best proportion of
positive and negative examples to include in a training set:

1. Oversampling or under-sampling?

2. At what rate oversampling or under-sampling?

3. Can combination of re-sampling improve classificatioruaacy?

The simplest way to balance a dataset is by under-samphmglémly or selectively) the
majority class while keeping the original population of thaority class.

Random under-sampling aims at balancing the data througiatitem removal of nega-
tive examples. The major problem of this technique is theaiit discard data potentially
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important for the classification process and could resuibfiormation loss for the ma-
jority class, [27]. Unlike the random method, it has beerppsed to remove only those
negative instances that are redundant or that border ryjradaiss examples, [59].
Experimental results show that under-sampling produciesrtyesults than over-sampling
in many cases. Instead, other authors, [58] [65], consilerersampling a correct
method in datasets with a a very high majority/minorityaati

In another work, [89], the authors tested a C4.5 decisiondlassifier and they found
under-sampling more effective for sensitivity than overpling (duplication method) be-
cause of the reduction in pruning n case of oversampling.ededmpling often renders
pruning unnecessary. Oversampling tends to reduce thergrobpruning that occurs. In
the best classifier seeking they define the curve of the exgecist of a classifier across
all possible choices of misclassification costs and classillitions by considering the
normalized error rate. They include the misclassificatiost in the probability distribu-
tion (the x in the cost function) by multiplying the originalue of probability of positive
events by the cost of misclassifying a positive instanceegstive and then normalizing
so that x ranges from 0 to 1. The process tend to exactly balgtice misclassifica-
tion costs to the class distribution. They generally foumat using under-sampling es-
tablished a reasonable baseline for algorithm comparistowever, one problem with
under-sampling is that introduces non-determinism intatvighotherwise a deterministic
learning process. The values obtained from cross-vatidagstimate the mean perfor-
mance of a classifier based on a random sub-sample of theetlafdiish a deterministic
learning process any variance in the expected performaneggely due to testing on a
limited sample. But for under-sampling, there is also varéadue to the non-determinism
of the under-sampling process. If our measure of successeétythe difference between
the means then this is not important. But the choice betweerctassifiers might also
depend on the variance and then using under-sampling maglesk desirable.

Above all, the belief is that although over-sampling doesloge any information about
the majority class, it introduces an unnatural bias in fawfuhe minority class.

The simplest oversampling method is the random over-sagiiat consists in increas-
ing the size of the minority class by randomly replicatingsiige examples. Some
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authors,[56], proposed to oversample the minority clasgdnerating new instances by
interpolating between several positive examples thatlbeectogether, (method called
SMOTE) that allows the classifier to build larger decisiogioas that contain nearby in-
stances from the minority class.

Using synthetic examples to augment the minority classlis\ed better than oversam-
pling with replacement, even if it creates noise which coakllt in a loss of performance.
SMOTE stands for Synthetic Minority over-sampling Teclugq

In additional works, [45], they continue not using overséngpwith replication, by con-
sidering this procedure not always results to improve niiypatass prediction and could
lead to over-fitting. They interpret the underlying effectterms of decision regions in
feature spacé So, they generate synthetic examples by operating in tlauife space”
rather than the data space, causing the classifier to cergtr and less specific decision
regions, rather than smaller and more specific regions. h8tintsamples are generated
by taking the difference between the feature vector (sampider consideration and its
nearest neighbour. Then this difference is multiplied bgtradom number between 0 and
1, and added to feature vector under consideration. In etbeis, neighbours from the
k nearest neighbours are randomly chosen and added.

Their results show that, on average, under-sampling isllydoetter than oversampling
with replication; SMOTE in better than under-sampling;mng is detrimental to learn-
ing from imbalanced datasets. A modification of this metreoBarderline SMOTE [57],
that consists in using only positive examples close to thlesamn boundary, since they
are more likely to be misclassified.

In other works3® external and internal cross-validation are used to guidg#$ag, [60].

In details, it is used a wrapper-based algorithm to seledesampling percentages, a
down-step procedure by controlling a performance threstmbe not violated and de-
termining the sampling levels which maximize the classsig decision tree) f-measure
(calculated from precision and recall to summarize thecesfef the two types of errors)

29The imbalance in the data can be more characteristic of égpass” in feature space than the class
imbalance, [45].

30For a complete overview of the re-sampling strategy: randeensampling with replacement, random
under-sampling, focused oversampling, focused undepiagn oversampling with smote, see [61].
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or the AUC (area under the ROC curve).

Other authors, [52], proposed a "guided re-sampling”, bstlfirprocessing an unsuper-
vised clustering algorithm on each class of the trainingadatan attempt to find any
within-class imbalances and then the clusters are foungduke them to guide the re-
sampling. The elements in each sub-components within dast can then be re-sampled
until each subcomponent has the same number of examples lasgast sub-component.
Then the between-class imbalance can be eliminated by magdelecting and duplicat-
ing members of the under-represented class (equalizisg ai@mbership). Their results
show improvements by using guided re-sampling on "very iar@ed” (between and
within) datasets when methods of blind re-sampling fail lloveing a classifier to be
trained to recognize members of the under-representesi®las

To summarize, in literature, part of research has focusegencoming the drawbacks of
both random under-sampling and over-sampling. If we conlakkbeforehand the condi-
tional probabilities which make the construction of a tragés classifier possible, class
distribution should not be a problem. Conversely, classifisrlikely to suffer from poor
estimates due to few data available for the minority class/eitheless, due to low over-
lapping between the classes, the effect of class imbalanttési case is lower than when
there is a high overlapping. In some cases, the over-fitthoplpm is avoided in over-
sampling forming new minority classes by interpolatingwesgn several minority class
examples that lie together, in order to cause the decisianduries for the minority class
to spread further into the majority class space. Other nusthor reducing the training
set size are based on k-nearest neighbour. To cite one vi&8k,ip the procedure two
controlled parameters are considered: the first one is tisterk centroids distance and
the second one the imbalance degree (so the overlappinga)eagr order to verify if the
degree of imbalance is an element by itself for degradinfppmance or if it also due
to the degree of the overlapping between the two classlisions. They found that the
more the overlapping degree (the smaller centroids disjastiigh the more the decrease
in prediction accuracy (AUC). Their results show that overgbng methods in general

31These results are subject to the assumption to know theatamuenber of sub-components per class
as well as their nature, [52].
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and SMOTE-based methods in particular, are very effectrea avith highly imbalanced
and overlapped datasets. Furthermore, when they apply SVWCHNN methods in high
degree of overlapping they reach the better results beaHube cleaning effect of the
sampling method?

Other re-sampling procedures have been proposed takmgaabunt the small disjuncts
problem, see [62]. In the work, it is suggested the followiegsampling strategy:

a) using a clustering algorithm on each class to identifysthie-clusters that constitute it;
b) each sub-cluster of the large class is re-sampled uméhithes the size of the biggest
sub-cluster in that class. At this point, the overall siz¢hef large will be max-classized
and there will be no within-class imbalance in the largeslas

In order to prevent a between-class imbalance as well asnwdthss imbalances in the
smaller class, each sub-cluster of the small class is replgahuntil it reaches size max-
classize/Nsmallclasses, where_Bimallclasses represents the number of sub-clusters in
the small class. In many real-world domains, the classidigton where the data is
skewed the cost of misclassifying the minority class cowddsbbstantially greater than
the cost of misclassifying the majority class. Typical slésrs such as decision tree in-
duction system or multilayer perceptions are designed tionige overall accuracy with-
out taking the relative distribution of each class. Thesedgifiers tend to ignore small
classes while concentrating on classifying the large onegrately, [53].

The reason that altering, by sampling, the class distobutf the training sets aids learn-
ing with highly-skewed data sets is that it effectively inspe non-uniform misclassifi-
cation costs. This equivalence between altering the cliagshbdition of the training data
and altering the misclassification cost ratio was formadiablished by [46].

There are three regular approaches for feature selediltar:basedwrapper-baseadnd
embedded-baseohes. The filter-based selects relevant features befordahsification
algorithm is applied. The wrapper approach assumes tonperftany times the learners
on candidate feature subsets to choose relevant featuréise Embedded approach, the
feature selection is occurred as a part of the learners.

32ENN stands for Wilson’s Edited Nearest Neighbour Rule. ENNoves any example whose class
label differs from the class of at least two of its three nsamneighbours. ENN is applied to the oversampled
training set, as a data cleaning method, [58].
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Sampling methods modify the prior distributions of the méyoand minority class in the
training set to obtain a more balanced number of instanceach class, and, finally, we
could classify them in three categories:

Basic sample methodsThe two basic methods of reducing class imbalance in trginin
data are under-sampling and oversampling. Cost-sengitsvibtained by altering
the ratio of positive to negative examples in the trainintadar, equivalently, by
adjusting the probability threshold using to assign clabsls. Both of the sampling
techniques decrease the overall level of class imbalanegslly by making the rare
class less rare. These sampling methods have several aiesviidnder-sampling
discards potentially useful majority-class examples, thng can degrade classifier
performance. Because oversampling introduces additiomaing cases often by
making exact copies of examples, it may lead to over-fittiMpre importantly,
oversampling introduces no new data, so it does not addredshndamental "lack
of data”. This explains why some studies have shown simpée-sampling to be
ineffective at improving recognition of the minority classd why under-sampling
may be a better choice.

Advanced sampling methodsThey may combine under-sampling and over-sampling
techniques. One of the popular oversampling approacheBI@TE [56], which
attempts to add information to the training set by introdganew, non replicated
minority class examples. A probability distribution iseetied to model the avail-
able minority class examples. In an under-sampling schersiead of eliminating
instances randomly ([90]) proposed to use vector quaitizawhich is a loss com-
pression method on the majority class to build a set of remtasive local models
and use them for training SVM. An alternative method woulddese clustering
to identify possible rare cases and then sample to equakzsetcluster sizes. The
informative re-sampling is a cluster-based under-sargpiihere clustering is em-
ployed for selecting the representative samples to imptloegredictive accuracy
for the minority class. Some authors,[91], also proposadtoclustering to reduce
the imbalance ratio, called CLass purity maximization (CPb§) partitioning the
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data space into clusters and filtering out regions of highonitgj class, in order
to use only regions containing minority samples to build edptive model. In a
work, [92], proposed an active learning query techniquedteates query instances
near the classification boundary rather than selectingorahd

Ensamble-learning methodsIn which multiple classifiers are trained from the original
data and their predictions are combined to classify nevantss.
BOOSTING ([72]) and BAGGING ([93]) are the two widely known samble-
based approaches. Boosting is an iterative algorithm tlaaepl different weights
on the training distributions each iteration. After ea@ration boosting increases
the weights associated with the incorrectly classified gptamand decreases the
weights associated with the correctly classified exampdpamtely. This forces
the learner to focus more on the incorrectly classified exasim the next itera-
tion. Note that boosting effectively alters the distrilout of the training data. At
each boosting iteration, the distribution of training dstaltered by updating the
weight associated with each sample. When the datasets arelyeskewed, under-
sampling and oversampling methods are often combined toowvepgeneralization
of the learner, [71].
Boosting has been analysed from a theoretical perspectitetevmine whether it
is guaranteed to improve the classification performancepbase learner for the
rare class([95]). This analysis shows that no such guagantists. Rather, the per-
formance improvement from boosting is shown to be strongly to the choice of
the base learning algorithm.
Examples of algorithms that use boosting approach are SBtot ([56]), Ad-
aBoost ([72]), DataBoost-IM that balances not only the classibdution but also
the total weight within the class ([94]), and cost-sensitdoosting. Most bagging
methods use a similar learning procedure that consistssamgpling subsets from
a given training set, building multiple base classifiersturse subsets and combin-
ing their predictions to make final prediction ([93]). In Wsrebagging, each subset
from the training set is created by under-sampling the nitgjolass randomly.
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Re-sampling methods have mainly been criticized becauskesing the original class
distribution. Sampling is a "wrapper-based method” thatiweke any learning algorithm
cost-sensitive, whereas the "cost-sensitive learniggr@thm™ is not a wrapper-based
method since the cost-sensitivity is embedded in the dlguri

In a cost-sensitive learning, no cost is assigned to codtassifications. Since the posi-
tive (minority) class is often more interesting than theatag (majority) class, typically
(cost of false negativeffn > Cfp (cost of false positive), (Note that a false negative
means that a positive example has been misclassified).

As concern the solutions at the algorithm level, we can défireee main directions:

» Cost-sensitive learning

* One-class classifiers

» Classifier ensembles

As regardsost-sensitive learningraditional learning models implicitly assume the same
misclassification costs for all classes. In some domaingdisé of a particular kind of
error can be different from others. Some works assign distasts to the classification
errors for positive and negative examples. In a work, [2#]as been proposed the use of
non-uniform error costs defined by means of the class imbaleatio.

As concernsone-class classifiershe minority class can be viewed as the target class,
whereas the majority class will be the outlier class. Sontkas, [63], show that one-
class learning is particularly useful on extremely unbe¢ahdata sets with high dimen-
sional noisy feature space.

As regardsclassifier ensembleseveral studies, [64], [65], have been proposed consist-
ing in generating multiple training samples in order to goak the elements and then
combining the results of different classifiers. Other datmplexity characteristics have
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been investigated in many studies focused on the effecthar atomplexity features in
imbalanced domains causing loss of performance as distrbaf the data within each
class, small disjunct [53], density and overlap complej6ty.

A cost-sensitivity learning technique takes costs, suahiaslassification cost, into con-
sideration during model construction and produces a ¢ies#iat has the lowest cost. In
a two class problem, C(+,-) signifies the cost of misclassgya positive sample as the
negative sample, and C(-,+) denotes the cost of the contaase. €ost-sensitive learning
methods take advantage of the fact that it is more expensinadclassify a true positive
instance than a true negative instance, that is C(+€)-,+). For a two-class problem, a
cost-sensitive learning method assigns a greater coslksi® fi@gative than to false posi-
tives, hence resulting in a performance improvement wispeet to the positive class.
Existing cost-sensitive learning for dealing with imbalaa datasets can be divided into
two different categories. The first category consists offieg algorithms that are de-
signed to optimize a cost-sensitive function directly {ezensitive decision tree, [67] ,
that directly takes costs into model building). The secaateégory is a collection of exist-
ing cost-insensitive learning algorithms that are corgerhto cost-sensitive ones. This
category, also known as cost-sensitive meta-learning,beafurther divided into sam-
pling, weighting, thresholding and ensemble learning. dds in the weighting group
[68], convert sample-dependent costs into sample weighas&igning heavier weights to
the minority training instances. Different weighting $égies have been proposed, [70],
to weight samples of the minority class based on the loca destributions, and others
suggested to weigh training samples based on posterioapildi [69].

Cost-sensitive learning approach assumes the misclasisificasts are known. In prac-
tice, specific cost information is often unavailable beeassts often depend on a number
of factors that are not easily compared. Moreover, [36] tbtirat cost-sensitive classi-
fiers may lead to over-fitting during training.

Learners can implement cost-sensitive learning in a waoieivays. One common method
is to alter the class probability thresholds used to assigrclassification value. In this
case, no data is discarded or replicated.

Cost sensitive learning, besides changing the class distits they incorporate costs in
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decision making is another way to improve classifier's panance when learning from
imbalance datasets.

Cost models takes the form of a cost matrix where the cost skifjang an example

from true clasg to classj corresponds to the matrix entdy; and vice versa, see table
3.7. This matrix is usually expressed in terms of averagelassification costs for the

True class
Positive (class) | Negative (clasg)
Predicted| Positive prediction (clasy 0 Aij
Class | Negative prediction (clag9 Aji 0

Table 3.7: Cost matrix for a two-class problem.

problem. The diagonal elements are usually set to zero, imgaarrect classification has
no cost. The aim in cost-sensitive classification is to min@rthe cost of misclassifica-
tion, which can be realized by choosing the class with themum conditional risk, [71]
Metacostf{47] begins to learn an internal cost-sensitive model tretimates class prob-
abilities using bagging and then re-labels the trainingrgdas with their minimum ex-
pected cost classes, and finally relearns a model using thdietbtraining set.

In Adaboost[72], an ensemble learning method, initially all weights aet equally, but
on each round the weights of incorrectly classified examatesincreased so that the
weak learner is forced to focus on the hard examples in tir@raset.

Some authors, [41], proposé&bst-curveswhere the x-axis represents the fraction of the
positive class in the training set, and the y-axis represt@ expected error rate grown
on each of the training sets. The training sets generatedsésfunder)sampling. The
error rate not represented are constructed by interpalafibey define two cost-sensitive
components for a machine learning algorithm: firstly by pi@dg different classifiers for
different distributions and secondly by choosing the megtrapriate classifier for right
distribution. however, when the misclassification coséskarown, the x-axis can repre-
sent the "probability cost function”, which is the normaizproduct of'(—|+) * P(+);
the y-axis represents the expected cost. In Boosting, tlesifirs in the ensemble are
trained serially with the weights on the training instanadpisted adaptively according



3.6. CLASS IMBALANCE 91

to the performance of the previous classifiers. As abovetioreed, AdaBoost updates
the weights of examples according to the misclassificatasisc SMOTEboost embeds
SMOTE procedure during boosting iterations.

To summarize, when misclassification cost are known, therbesic for evaluating clas-
sifier performance is total cost., Total cost=(fry;,) + (fp*C/,), [74].

Oversampling and under-sampling can be used to alter te dlatribution of the train-
ing data. The disadvantage with under-sampling is thastatids potentially useful data.
The main disadvantage with oversampling is that by makiragesgopies of existing ex-
amples, it makes over-fitting likely.

A reason that may have contributed to the use of samplingrdttfan a cost-sensitive
algorithm is that misclassification costs are often unknown

Some authors, [74], cannot conclude that the degree of aiassslance favours one
method over another(comparison between cost-sensitieesampling and under-sampling).
Oversampling appears to be the best for small datasetssensitive for datasets more
than 10,000 examples. They found that which sampling megreotibrms best is highly
dependent on the dataset, with neither method a clear woweeithe other.

Other researchers, [53], stated that while cost-basedaugtire, in some cases, reported
to perform better than random re-sampling approaches,dbayot have the flexibility
offered by the sampling methods.

In a work, [76], internal approaches are considered to Hagelisadvantage of being al-
gorithm specific and it might be quite difficult to transpdrétmodification proposed for
the class imbalance problem from one classifier to the ot@er.the contrary, external
approaches are independent of the classifier used and asentbre versatile, . Similar
conclusions in [75], where they found that there is no gdrmrpport for considering
cost-sensitive learners to outperform sampling for oligirthe best classifier perfor-
mance (calculated by the lower total cost), but that it isfst in presence of larger
datasets where it is possible to generate accurate prapasilimates.

Another school of thought is eecognition based approacdh the form of aone-class
learner In a Recognition-based or one-class learning approacle)dlsifier is modelled
on the examples of the target class (the small class) in thenale of examples of the non-
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target class. One of the early systems that utilizes thisgmition-based approach was
proposed in [26]. It uses neural networks and attempts to lealy from the target class
examples and thus recognizing the target concept, ratardifferentiating between ma-
jority and minority instances of a concept. There-clasdearners provide an interesting
alternative to the traditional discriminative approachgne in the classifier is learned on
the target class alone ([77], [63], [78]). In particular3[6focused on extreme imbalance
where the minority class consists of around 1-3% of the data.

They considered the possibility of single class learnintpwupport vector machine and
they found that positive one-class learners (SVM, linean&® perform significantly bet-
ter than two-class learners.

One-class learning approach has been also applied to actaler-based classifiers ([87])
and ensemble one-class classifiers. Similar patterns fasitiye instances of a concept
are learnt, classifiers are then presented with unseen ssiapdl classification is accom-
plished by imposing a threshold on the similarity value.

Since threshold draws the boundaries that separate thdasges, choosing an effective
threshold is crucial in one-class learners.

Coming back to a general overview on results provided by rekeaorks for assessing
the class imbalance problems, in their experimental arsaly&7], concluded with the
result that it is the class imbalance and not the decreaseeiralbtraining set size that
caused a decrease in classification accuracy. Furtheriinone,other experiments they
sorted out that rather than being a problem because of thigvestize of the large and the
small class, the class imbalance becomes a problem only thiesize of its small class
is very small with respect to the concept complexity, thatieen it contains very small
sub-clusters. They concluded that in very large domainshitchvthere is a good chance
that the sub-clusters of each class are represented byanedds number of examples,
the class imbalance will be of no consequence and contifglynsidering smaller do-
mains in which small sub-clusters will be present. In theirkithey found, on simulated
datasets, that under-sampling is by far the least effectgthod, but in their work the
role of the positive and the negative class is symmetricdlranexample are irrelevant.
They found oversampling appears to be quite effective waggaling with the problem,
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because the false positive rate decreases (the oversaoma@gdnd the false negative does
not significantly increase indicating that the oversangplimes not shift the error distri-
bution and preserve a low false negative error rate whilmieg the false positive error
rate. They found that modifying the relative cost of missigsng each class allows to
achieve the same results of oversampling without increeatia training set size. They
also found that MLPs (multilayer perceptron) do not seemufites from the class im-
balance problem in the same way classification trees do, latdate affected both by
oversampling and under-sampling, and under-samplindtsdess effectiveness.

Other authors [47] stated the contrary, that means unaeplgag results a more effective
strategy than over-sampling. In those works, the authansidered the minority class as
the class of interest(as in distress corporate model) andnlder-sampling was applied
on the majority class, that included a lot of data irrelevianthe classification task that
are worth eliminating by under-sampling techniques.

As concerns the effect of class distribution on classifiameng, there are different works
focused on the correct class distribution to adopt in lewprrocess and on verifying the
effectiveness of using natural data distributfdrSome authors [48] stated that the natu-
rally occurring class distribution often is not the bestl&arning and often substantially
better performance can be achieved by using a differens diasribution.

According to them, minority-labelled classification rufesform worse than their major-
ity labelled counterparts in part because the test setic@mm@ore majority-class examples
than minority-class ones. A second reason that classifegfenon worse on the minority-
class test examples is that, all else being equal, a classifless likely to fully flesh
out the boundaries of the minority concept in the conceptemecause there are fewer
examples of that class to learn from. When learning from tHaricad versions of the
unbalanced datasets, the induction algorithm generadigymes fewer but more accurate
classification rules for the minority class than for the migjoclass. They evaluated 12
minority class distributions at different percentage: 2%, 10% 20%...80% 90% 95%,
evaluating the performance additionally compared to tharally occurring class distri-

33|t has been a tacit assumption in much machine learningarebethat the naturally occurring class
distribution is best for learning. However, this assumptias been coming under increased scrutiny, partly
because many of the data sets now being learned from haveldighe of class imbalance.” [48]
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bution, in terms of error rate and AUC. Rather than trying tedatne the optimal class
distribution, they try to identify an optimal range of cladistributions. They expected
classifier performance to be unimodal with respect to chrangiass distribution and that
an optimal distribution exists and that as we move furthemyafsom this optimal distri-
bution, in either direction, classifier performance wilgdade progressively. Their results
confirmed that hypothesis generally for AUC. They performezsts to compare, for each
dataset, the performance of the classifiers. If a t-testigial probability of< .10 then
they concluded that the best distribution is statisticdlfferent from the other distribu-
tion, otherwise they cannot conclude that and thereforemtbe distributions together
to form an optimum range, within which they were confident tha true optimum class
distribution fell. They were interested in whether the optm range included the natu-
ral distribution. In general they found that, for AUC, the iopim ranges appear to be
centred to the right of the 50:50 class distribution, so leetw50% and 90%. In this
situation, the strategy of always allocating half of thenirsg examples to the minority
class, while it will not always yield optimal results, wilegerally lead to results which
are not worse than, and often superior to, those which useatwal class distribution.
Thus, if one does not know the true misclassification costisisanwilling to determine
experimentally the optimal training distribution, theyggest that for maximizing AUC
the training set be formed from equal numbers of exampleadt elass.

However, their work does not examine the effect of conceptaexity nor training set
size in the context of their relationship with class imbakesy nor does it look at ways to
remedy the class imbalance problem or the effect of clasalenioes on classifier other
than the decision tree classifier.

From further analysis, [34], it results that, in same caledest distribution does not dif-
fer from the natural one in any consistent manner and thagnme case, a balanced class
distribution also is not the best class distribution foirtirag, to minimize undifferentiated
error rate. They also found that, in some case, the errowvedies curve (according to
different percentage of unbalancing) usually form a uniailpdr nearly unimodal, dis-
tribution and that the best distribution that minimizesoesris not balanced, since the
classifiers induced from class distributions deviatingririne naturally occurring distri-
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bution would be improperly biased. Then they consider AUGtdad of accuracy, and
they found that a balanced class distribution generalljopes well although it does not
always performs optimally. AUC, unlike error rate, is unafél by the class distribution
of the test set. So, the curve generated using the balareesidiktribution almost always
outperforms the curve associated with the natural didichu

Moreover, they found that the performance curves tend ttefladut as the size of the
dataset grows, indicating that the choice of class diginbhumay become less important
as the training-set size increases.

Other authors, [34], proposed a method for adjusting théepios probabilities to account
for the difference betweentrain (the fraction of positive examples) and p (the trueipri
probability). Larger AUC values indicate generally bettissifier performance and, in
particular, a better ability to rank cases by likelihood laiss membership. More gener-
ally, induction algorithms that maximize accuracy shoutddiased to perform better at
classifying majority-class examples than minority-clagamples, since the former com-
ponent is weighted more heavily when calculating accurdbgrefore, the training data
are less likely to include enough instances of all of the mipaclass sub-concepts in the
concept space, and the learner may not have the opportanigptesent all truly positive
regions. Because of this, some minority-class test examylelse mistakenly classified
as belonging to the majority class.

As concerns the above-mentioned data concept compigsitd small disjuncts, there
are several works related and focused on it. Small disjumeshose disjuncts in the
learned classifier that cover few training examples.

Some authors [79]investigated the problem of over-fittimgase of sparse data, whereas
others [44] linked the relationship between the problemvarditting the data and deal-
ing with class imbalances. In a work, [62], the author foumat iho matter what the size
of the training set is, linearly separable domains (conceptplexity level c=1) do not
appear sensitive to any amount of imbalance and as the def@ncept complexity
increases so does the system’s sensitivity to imbalanagshdfmore, as the size of the

34The concept complexity corresponds to the number of susters into which the classes are subdi-
vided.
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training set increases, the degree of imbalance yieldiggelerror rate decreases. This
suggests that in very large domains the class imbalancégonainay not be a hindrance
to a classification system. Her study suggests that the anbalproblem is a relative
problem depending on both the concept complexity represdny the data in which the
imbalance occurs and the overall size of the training setddition to the degree of class
imbalance present in the data. Briefly, a huge class imbalaitiget hinder classification
of a domain whose concept is very easy to learn nor will we sgelalem if the training
setis very large. On the contrary, a small class imbalanaklgyeatly harm a very small
dataset or one representing a very complex concept. Acgptdiher results, rather than
being a problem because of the relative size of the large lmmdmall class, the class
imbalance problem is only a problem when the size of its soiafls is very small with
respect to the concept complexity, when it contains veryllssod-clusters-that means
that in very large domains in which the sub-clusters of edabscare represented by a
reasonable number of examples, the class imbalance will be consequence.

In other works, [83], the authors found that class imbalacegses a sharp decrease in
accuracy given a single target concept complexity. The roongplex the target the more
negative the effect class imbalance is.

When we cope with the topic of concept learning and small didg we have to consider
that, firstly, many concepts include rare or exceptiona¢sasd it is desirable for induced
definitions to cover these cases, even if they can only beredusy augmenting the def-
initions with small disjuncts. Secondly, small disjunctsstitute a significant portion of
an induced definition.

As depicted by some authors, [50], there exist three kindgpfoach to the problem of
small disjunct®®

Approach 1 The most direct means of eliminating error-prone smajldist is to elimi-
nate all small disjuncts by explicitly refusing to creatsjdncts whose coverage is below
a certain threshold. The first objection to this method i$ ithaas the undesirable effect
of creating definitions that do not include the unusual ca$@sconcept (represented by

35Classification methods have a tendency to over-fit and nsisiflathe examples represented by small
disjuncts, [50].
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small but significant disjuncts). Secondly, eliminatingatindisjuncts from a definition
may significantly increase the definition’s error rate.

Approach 2 Significance testing and error rate estimation to deteznathether or not
including a disjunct in a definition. Disjuncts whose cogsas too low do not pass
significance tests. Error rate can only be estimated anérsufifom the same problem.
But mixed procedure is desirable, if we consider that for $nfigjuncts error rate is not
related to significance in any simple way.

Approach 3 To select among disjuncts that are indistinguishable erb#sis of the train-
ing set, it is possible to use different bias for large (maximgenerality-the opposite of
specificity) and small (a selective specificity bias) disjisn

Rare cases, like rare classes, can be considered the readtirai of data imbalance and
have in fact been referred to as within-class imbalances.

Much of the research on rarity relates to rare classes, oe generally, class imbalance.
This type of rarity requires labelled examples and is asgediwith classification prob-
lems. A second type of rarity concerns rare cases. Rare casesgond to a meaningful
but relatively small subset of the data, or equivalentlfijreiea small region of the instance
space. Rare cases depend only on the distribution of the datharefore are defined for
both labelled and unlabelled data, and for supervised asdpanvised data mining tasks.
In the case of labelled data, a rare case corresponds to eosgbpt, or sub-class, that
occurs infrequently. Unfortunately, except for artifityaenerated domains, rare cases
are not easily identified. However, unsupervised learngapiiiques such as clustering
may help to identify, and they also manifest themselvesyad|glisjuncts in classifiers
induced from the data.

There have been several attempts, [36], to improve the pe&ioce of data-mining sys-
tems with respect to rarity by choosing a more appropriaas.bi he simplest approach
involves modifying existing systems to eliminate some $miagjuncts based on tests of
statistical significance or using error estimation techag The hope is that these will
remove only improperly learned disjuncts. Unfortunatétys approach was shown not
only to degrade performance with respect to rarity, but tdstegrade overall classifica-
tion performance. More sophisticated approaches havedmetoped and to judge their
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efficacy on rare cases it is considered whether they imptw@érformance of the small
disjuncts-based on the assumption that rare cases mahiéesselves as small disjuncts.
Segmenting the data is one way to deal with rarity, by sejpardihe problem into sep-
arate sub-problems and analysing them separately. In matayndining tasks, it is the
rare classes/cases that are of primary interest. One®olistio use cost-sensitive learn-
ing methods. These methods can exploit the fact that theeaflgorrectly identifying
the positive (rare) class outweighs the value of correctfntifying the common class.
For two-class problems this is done by associating a greastwith false negative than
with false positives. Assigning a greater cost to false tregm than to false positives
will improve performance with respect to the positive (Jarkass. One problem with this
approach is that specific cost information is rarely avédlafihus, without specific cost
information, it may be more practical to only predict theeratass and generate an or-
dered list of the best positive-predicting rules. Then oae decide where to place the
threshold after data-mining is complete.

Some authors, [53], proposed to approximate the rare aasiag,an unsupervised method
(k-means clustering) and assuming that ,firstly, the smgjudcts constructed by their
unsupervised method do correspond fully to the unknowncases of the domain and,
secondly, there is a correspondence between the smalhdisjlearned by the unsuper-
vised method and those subsequently learned by the supevisthod.

In their work, [53], the re-sampling strategy they proposesists of clustering the train-
ing data of each class separately and performing randonsawgaling cluster by cluster.
They found that it is the small disjunct problem more thandlass imbalance problem
responsible for the decrease in accuracy, and the cluatsdboversampling is shown to
outperform the other methods.

Induction techniques that deal with rare classes must tnyaimize precision and recall.
Most induction techniques try to optimize these two comqetneasures, PNrule, [95],
uses two-phase rule induction to focus on each measureaselyarn the first phase, if
high precision rules cannot be found then lower precisidesrare accepted, as long as
they have relatively high recall. So, the first phase focuserecall. In the second phase
precision is optimized. This is accomplished by learninglemtify false positives within
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the rules from phase one. The presence of the second phasésptre first phase to
be sensitive to the problem of small disjuncts, while theosecphase allows the false
positives to be grouped together addressing the probleratafftagmentation. Different
rare cases may have little in common between them, makinfjidgudt for one learner to
assign the same class value to all of them.

One possible solution is to reformulate the original prabk®o that rare cases are viewed
as separate classes. In their work, [53], the re-sampliagesty they propose consists of
clustering the training data of each class separately aridrpgng random oversampling
cluster by cluster. Their implemented approach consist$)iseparating each class into
subclasses using clustering, 2) relabelling the trainkagrgles based on the subclasses
(clusters) and then 3) re-learning on the revised traingtgEhey found that it is the small
disjunct problem more than the class imbalance problenoresple for the decrease in
accuracy, and the cluster-based oversampling is shownpedarm the other methods.
The class imbalance problem is more significant when the sktahave a high level
of noise. Noise in datasets can emerge from various sousaeh, as data samples are
poorly acquired or incorrectly labelled, or extracted feas are not sufficient for classi-
fication. In particular, one of the sources could be a setatifes used for classification
not sufficient to draw class boundaries. Data noise in dlaabn problems can be gen-
erally described as data examples on different classepara@le in the feature space. If
a dataset is considered noisy, the class boundary to sephffarent class examples in
the feature space is almost impossible to draw.

It is known that noisy data affect many machine learning @lgos; however, it has been
showed that noise has even more serious impact when leawiihgmbalanced data
[36]. The problem occurs when samples from the small classrastakenly included
in the training data for the majority class and vice versar tRe prevalent class, noise
samples have less impact on the learning process. In cgrfoathe small class it takes
only a few noise samples to influence the learned sub-concept

In literature, different approaches have been used for ung@snoise levels based, gen-
erally, on inter and intra class distances. In a work, [9%4,duthors tested three different
neural networks BP, RBF and Fuzzy ARtmap, and they found thaititxs performance
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on unbalanced data very much depends on how well the twoedlase separated, and
that when data is noisy, none of the three networks perforglswithout any additional
processes over unbalanced data, by generating artificisy wata examples along the
classification boundaries.

To cope with the within-class imbalance, other procedun@yiding clustering have been
proposed. In a work, [97], it is presented a procedure thasiders no re-sampling by
focusing on sub-clustering analysis. The procedure ctaisis

1) separating each class into a number of sub-classes, asingsupervised learning
technique (clustering) and re-labelling each trainingnegie as a function of these new
subclasses;

2) applying supervised learning to various versions ofelresny problems;

3) the results obtained on each version are combined in gideiote.

In another work, [51], the author attempted to set procesifoedealing simultaneously
with both types of unbalances with stratification methodss@mpling or downsizing ap-
proaches) and the misclassification rate of multi-layecgetrons classifier in case of
symmetrical and asymmetrical sub-clusters compositiohe @ptimal procedure con-
sisted in creating both between-class than within-claksoad data.

Other authors, [82], proposed a learning approach for iemzad dataset consisting in
a under-sampling method based on clustering. They appliddstering technique to
partition the training instances of each class indepetyé@rib a smaller set of training
prototype patterns. Then a weight is assigned to each gpEdbd address the class im-
balance problem. The weighting strategy is introduced encibst function such that the
class distributions become even. After clustering, thaskttis reduced to K exemplars;
each represented by a cluster centroid and same clustefosia# the sub-clusters. In
other words, they chose to select the cluster centroidspsgentative samples. Then
they apply a feed-forward neural networks for the supedvidassification.

In another work, [96], the authors proposed a selectiongmioe MFMP involving se-
lective sampling and random sampling of the majority clagsoeding to the minority
clusters and test four learners. They found that for modbranbalanced datasets where
minority class exhibits cluster nature their approach edtpms random under-sampling.
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Recently, connected to the topic of within-class unbalankarEpointed out that ROC

curves could result unable to deal with within-class imbe&s and different within-class

misclassification, suggesting for a revisitn.

It was argued that the reason why class imbalances and ppertaclasses are related is
that misclassification often occurs near class boundaresewverlap usually occurs as
well. It is important to select features that can capturehilga skew in the class distribu-

tion, [81], [80].

There are not comprehensive empirical studies that ewahlbof the existing methods.

Sampling techniques have generated the most researchsiaréa and there are a few
studies that compare sampling methods. Unfortunatelyn @vehis case the conclu-

sions are not consistent. One study, ([48]) on class digtab shows that by altering the
class distribution of the training data so that it deviatesithe natural, underlying dis-

tribution, improved classifier performance is possible wideer, classifier performance
was improved more when the bias just described was removedjbgting the decision

thresholds within the classifier.

36For a detailed overview of the literature debate on classiamge problem, see [54].
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3.7 Case studyC: Neural networks distress model on un-
balanced data

3.7.1 Outlines

Distress prediction analysis is characterized by the pi@sef an outstanding unbalance
between a minority class of failed firms and a larger clasbtfailed ones.

In the previous literature on class imbalance problem,iegpb several real-world do-
mains, the majority of research has been focused on testih@@alysing effects of im-
balance on Decision tree classifier and only few works retespecifically to neural
networks, see [26] [77] [27] [55][82].

The following work attempts to verify the effect of the classhalance problem on the
accuracy of a neural network classifier. In specific, the ipte@ accuracy is tested on a
neural network model for a distress analysis predictiodjfégrent imbalance levels.
Some previous works concern on evaluating classifiersoperdnce at different imbal-
ance degrees compared to the natural class distributi8h[34].

The present work aims at verifying the effect of imbalancenenral network model’s
accuracy, in term of AUC, as we move from a resized balanceadkdison towards the
naturally occurring distribution.

3.7.2 Analysis on unbalanced dataset

The analysis starts from the original unbalanced sampld @74 failed companies and
38,480 healthy ones large industrial Italian companiespg004-2008 (Source Amadeus),
used in the previous case studyThe aim of the analysis is to test the effects of different
imbalance levels on overall classifier performance.

The imbalance levels compared to the balanced benchmankities:

* level A: 40% minor class (failed) and 60% larger class (not-failed)

* level B: 30% minor class (failed) and 70% larger class (not-failed)
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We would analyse the presence of an increase/decreaseuraagan the case of aug-
mented imbalance levels. In the previous case-sBjdye have processed a neural net-
work model on a balanced dataset, composed of 570 compadni#te following work,
we will resize the original sample at different imbalancgrées by increasing the size of
the balanced sample by maintaining the minor class sizeianzand applying a random
under-sampling on the larger natural class (the not-faoiegl) to obtain the two chosen
imbalance levela» andB. As in the balanced case analysis, for both imbalance levels
we considered two datasets in order to analyse the prediatibwo different time lags:
T1, referred to one-year prior to failure financial statetrdata and T2, referred to two-
years prior to failure ones. We proceeded with the analysisplitting the data into two
sub-samples: a training dataset, to estimate the modaineéees of the classifier, and a
control dataset, to evaluate the ability of the estimatedehm predicting different cases
not in the training sample. The training dataset is made upesf0% of the entire sam-
ple, whereas the control dataset covers3ihi&.

Further, the related ROC curve area is considered as anaagcavaluation criterion
of the obtained prediction [28] and to evaluate the influeoicembalance on classifier
performance compared to the benchmark balanced datasetddtaset referred to the
unbalance leveh is composed of 713 units, corresponding to an unbalance lsawhp
40% of failed companies an@0% of healthy ones. Whereas, the dataset referred to the
unbalance leveb is composed of 950 units, corresponding to an unbalancelsawhp
30% of failed companies and a©)% of healthy ones.

As in the case studi, we considered six input variables, consisting of finaraial eco-
nomic ratios, commonly regarded both by banks and schotadéss&ress key-indicators,
to capture both the financial and the economic perspecteTable 3.2.

To recall the economic interpretation of the selected Wem theRefunding capabil-
ity expresses the potentiality of the company to generateipmsiash flows to cover
financial obligations, (Financial debt coverage ratio)e Growth indicates an increasing
economic dynamic, (Sales variation ratio). TBebt costexpresses the degree of the
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economic incidence of the debt exposure, (Interest paidilas satio). Théndebtedness
indicates the debt exposure level, (Leverage). Efficiency expresses the capability to
generate operating returns, (Ebit on sales ratio). Theikbga of Sales represents a size
control variable. The output variable value 1 correspondsithealthy company whereas
the value O is related to a failed one.

3.7.3 Numerical results for unbalanced data

We iterated the estimation process on the training datasetdmbinations of hidden
nodes from 2 to 10 and values of the decay parameter: 0.1, 0.03, 0.005. The op-
timization process is done via a quasi-Newton method. Thialiparameter vector has
been chosen at random but setting the same random seed fpicevebination. We ob-
tained 36 models and we computed #grspirical erroron the training set for each model
estimated, for both unbalance levebndB datasets in period T1 and T2. We calculated
the related goodness-of-fit criteria AIC, BIC and GCV, by coasity the number of de-
gree of freedom equals to the number of weights of the model.

We selected three best models according to each aboveemedtselection criterion.
Once the training process is run, the best NN models seleateel used for prediction
applied to the control dataset. By considering the NN modeddiption vectors and the
output variable, we traced the ROC curve in order to comearéarecasting performance
of the three models at the different unbalance levalsy 40% and30% of minor class
elements) and the dominance of a curve on the others in Tldagdy as shown in Fig.
3.3. The same procedure has been applied to the T2 lag periadsge Fig. 3.4.
Furthermore, we calculated the area under the ROC curvehjeztorely compare the
models by considering the curve in its entirety.

As regards the balanced model in T1, the AIC and GCV critefiecsed the same best
model with three hidden nodes and decay equals to 0.00%mireg an higher value of
the area under the ROC curve than the model selected by therBé@Gan, see Table 3.8.
In the same way, as concerns the unbalance levabdel ¢0% minor class) in T1, the
AIC and GCV criteria selected the same best model with thrddem nodes and decay
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bestvalue  nodes decay Area p-value binorm.area
AlIC5  4.086 3 0.005 0.8968 3.3e-19 0.8927
BICsy 106.048 2 0.005 0.8634 2.1e-16  0.8755
GCVs 59.756 3 0.005 0.8968 3.3e-19 0.8927
AlCy 4.18 3 0.005 0.8903 4.4e-22 0.8917
BICy 109.975 2 0.005 0.854 1.7e-18  0.8688
3
4
2
4

GV (Cy 65.559 0.005 0.8903 4.4e-22  0.8917
AICs) 4.346 0.005 0.887 4.2e-25  0.8888
BICs, 114.944 0.005 0.8593 6.6e-22  0.874
GV 77.395 0.005 0.887 4.2e-25  0.8888

Table 3.8: T1 (one-year prior to failure). Area under the RQ@ve for best selected
Neural Networks in 50, 40 and 30 unbalance levels. The fidsingo contains the selec-
tion criteria best values. Thevalue addresses to the null hypothe&is ROC Area=0.5.
The sixth column contains the binormal curve area.

equals to 0.005, with higher AUC value than the one selecyefdoBIC criterion.
As concerns the unbalance leveimodel 0% minor class) in T1, the AIC and GCV
criteria selected the same best model with four hidden naddslecay equals to 0.005.
As regards the balanced model in T2, the AIC and GCV critelliecsed the same best
model with four hidden nodes and decay equals to 0.005, ptiagean higher value of
the area under the ROC curve than the model selected by therBé@Gan, see Table 3.9.
Whereas as concerns the unbalance levelodel (0% minor class) in T2, the AIC, BIC
and GCV criteria both selected a best model with two hidderes@hd decay equals to
0.005. As concerns the unbalance leseghodel 0% minor class) in T2, the AIC and
GCV criteria selected the same best model with six hidden satel decay equals to
0.005, with higher AUC value than the one selected by the Bi@roon.
For both two lag periods, in all the considered models, titerea AIC and GCV tend on
average to select neural networks presenting dominant R@@< and higher AUC.
A classifier A performs better than a classifier B if it is lato the north-west area of
B in ROC space. The overall quality of classifier is measurethb AUC.
Based on the AUC values, we notice that, in period T1, the loalhwlass distribution
generates a slightly superior overall classifier compaodabth the other two ones. The
superiority is more evident if we consider the curves in tl@CRspace, wherév N5



106 CHAPTER 3. SUPERVISED METHODS

bestvalue nodes decay Area p-value binorm.area

AICsy 4.313 0.005 0.8202 3.9e-13 0.8151
BICs;y 106.2 0.010 0.7684 9.5e-10  0.7446
GCVs  75.219 0.005 0.8202 3.9e-13  0.8151
AICyy 4.459 0.005 0.7909 4.4e-13 0.7794

BICy 110.108
GV(y 86.535
AICsy  4.635
BIC;y 115.147
GV (5 103.576

0.005 0.7909 4.4e-13 0.7794
0.005 0.7909 4.4e-13 0.7794
0.005 0.8047 2.8e-16  0.8052
0.005 0.8003 7.4e-16  0.7975
0.005 0.8047 2.8e-16  0.8052

ONONNNANN

Table 3.9: T2 (two-years prior to failure). Area under the@@urve for best selected
Neural Networks in 50, 40 and 30 unbalance levels. The fidsineo contains the selec-
tion criteria best values. Thevalue addresses to the null hypothe&is ROC Area=0.5.
The sixth column contains the binormal curve area.

curve outperforms both th& N4, and N N3, curves in the north-west area associated to
cut-off (thresholds) values up to 0.5, see Fig. 3.3 he hierarchy betweev Ny, and
N N3, curves, as regards the AUC values, results towards theistpenof the N Ny
(less unbalanced), even if in a part of the north-west ROCespaVs, is outperforming,
probably due to the trade-off between unbalance level arr@@asing number of elements
in the training process. It is important to underline that tiatural distribution of the mi-
nor class, in the original real-world dataset, is stronglyrenunbalanced (abo@tt), so
our analysis simply is aimed at detecting the tendentialethn classifier performance of
an increase in the unbalance level.

The results in T1 (one-year prior to failure) are likely taniom a tendency of the clas-
sifier accuracy to decrease when we move towards the natistabdtion even if this
effect seems to be smoothed over by the counter-effect obenefit of an augmented
number of units in the training process. Based on the AUC galwe notice that, also
in period T2, the balanced class distribution generatesite glightly superior overall
classifier compared to both the other two ones. As a prentigendt secondary to un-

87N N5, N N4 and N N3, correspond, respectively, to the neural network modelgssed on the bal-
anced dataset, the dataset with an unbalance levé@%fn the minor class and the one with an unbalance
level of 30% in the minor class.
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ROC curve comparison — T1
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Figure 3.3: T1- ROC curve comparison between NN50 (3 hidadeles and decay=0.005,
balanced), NN40 (3 hidden nodes and decay=0.005, unbdkretel0% minority class)
and NN30 (4 hidden nodes and decay=0.005, unbalance B®felminority class). The
cutoff values are indicated along the curve at the corredipgrcurve positions.
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ROC curve comparison — T2
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Figure 3.4: T2- ROC curve comparison between NN50 (4 hidadeles and decay=0.005,
balanced), NN40 (4 hidden nodes and decay=0.005, unbdkrete40% minority class)
and NN30 (6 hidden nodes and decay=0.005, unbalance B®felminority class). The
cutoff values are indicated along the curve at the corredipgrcurve positions.
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derline that, from the economic perspective, the inforarattonnected to more delayed
lag-period (two-years prior to failure) are less worthyrtlihe information immediately
close to the "event” into consideration (one-year priorditure). As a consequence, the
results related to the second order lag could be less relaatd partly unstable. If we con-
sider the curves in the ROC spacé/V;, curve outperforms both th& N, and N N3
curves in the majority of the north-west area associatedit@ft (thresholds) values up
to 0.5, see Fig. 3.4. In few parts of the the north-west ateastiperiority of one curve
on the others is not clear, and the curves tend to overlap.higrarchy betwee N,
and N N3, curves, as regards the AUC values, results towards a slighgleriority of the
N N3 (more unbalanced), probably influenced by the increasimgleu of elements in
the training process.

The results in T2 (two-years prior to failure) are likely mngirm a tendency of the classi-
fier accuracy to decrease when we move towards the natutabdi®n even if this case
the counter-effect of the benefit of an augmented number itd imthe training process
seems to more affect the performance of the classifier.

3.7.4 Comments

In the work, we investigated the effect of the unbalance enghrformance of a neural
network model for distress prediction. The real-world datgprovided had a natural
distribution of the minor class (failed companies) of aki#fidt and the analysis processed
aimed at finding a tendency (increase/decrease) on clagsfitormance when moving
from a balanced benchmark)% of elements belonging to the minor class4t¥ and
30% minor class units. The results provided evidence of a tenydenh the classifier
accuracy to slightly decrease when we move towards thealatistribution even if this
effect seems to be smoothed over by the counter-effect obenefit of an augmented
number of units in the training process. The balanced praeesuperiority are likely to
be verified more in T1 (one-year prior to failure) lag peribdr in T2 (two-years prior to
failure) one. In T1 the results are confirmed both accorditye AUC accuracy criterion
than from the analysis of the curve in the ROC space. InN2;, is outperforming
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according to AUC criterion, but at certain points the ROGvegrare overlapping. Similar
results have been obtained by Weiss et al. (2001),348].

Further research would focus on investigating the effeti@hatural unbalance degree on
the performance of the classifier, aiming at finding the ogtidistribution for the minor
class in problem, like corporate distress, where the casteciated with the incorrect
classification of the minor class elements are relevant.

38They investigated the effect of unbalance on a decisiondiassifier's performance and concluded
that ”..the strategy of allocating half of the training exaes to the minority, while it will not always yield
optimal results, will generally lead to results that are rayse than, and often superior to, those which use
the natural class distribution”.



Chapter 4

Conclusion and further research

In thefirst part of the work, we focused on unsupervised methodologies fggarate
analysis, in particular a classification method, modekdadustering, and its application
on a industry sector segmentation.

In corporate analysis framework, this preliminary proaeduay result relevant in a "sce-
nario” analysis because of the fragmentation of infornrétand moreover key-variables
used for distress analysis differ from a sector to another.

In case-study, we have followed a procedure by applying the model-basgsteling to
the scores of a PCA on a set of financial and economic ratiogy@egure usually used
in literature. The results provided by our analysis havewhihat a clustering procedure
applied on a specific industrial sector reports a segmentatcording to the financial
and economic level of the companies. By applying this prosgditi would be possi-
ble to have "financial level” information on the analysedteeand a segmentation of it,
also providing correspondent key-indicators averageegliModel based clustering is a
more flexible methodology, compared to the other clustemethods, because every unit
is assigned to every of the n-group with a posterior proligbgo for each company it
is provided a probability of belonging to a specific "finandevel” class (for example:
weak, average, strong). Furthermore, we found that modsdalustering tends to de-

10ften there are not only two groups of companies: failed asidailed, but also intermediate stages,
but data about them are not provide or easily disclosed. Baidy is a legal procedure, formally regulated,
but sometimes delayed with respect to the solvency eventrigate.
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tect more clusters than K-means. Similar findings have beariged by Atkinson et al.
(2010), see [23]. According to the reported classificatibtme companies belonging to a
specific level-class, further analysis could be condudted.example, a supervised anal-
ysis could be applied taking into consideration the spesdgmentation of the industrial
sector to be analysed, by considering the presence of diggetumber of classes to be
predicted according to the financial-level classes. Mageat’we consider the problem
of class imbalance, and in specific the within-class unlzaait would be possible to
apply re-sampling methods on the clusters obtained, sée@&g intent is both to extend
the analysis to other industrial sectors and to consideffereint procedure, consisting in
the simultaneous combination of dimensionality reductod clustering operation, see
[22]. Further analysis may focus on verifying misleadingaasation, signalled by the
presence of components with few elements, or units with o liigh posterior proba-
bility of belonging and not very well separated groups, tt@ild be connected with the
merging problem of normal distributions or not Gaussiarritistions. Moreover, both
dispersed few elements group or very low probability of bgiag of an element to a co-
hesive group could indicate the presence of potentialerstliWe intend to proceed with
further research in order to provide a more robust modeldaperoach for clustering,
by considering mixture of distributions instead of Gaussian mixture, see [24] or othe
robust clustering methodology.

In the second part we focused on the supervised methodologies for corpoiateess
analysis with the case-stuy aiming at comparing the forecasting accuracy of two clas-
sifiers, Logit and Neural Networks, and the case-st0dycused on the problem of class
unbalance effect on classifier (Neural network) perforneanc

The comparative analysis carried on in case-sBidshowed the superiority of the neural
networks models over the logistic model, in term of predictaccuracy.

The neural networks over-performing is relevant for theasoswrong prediction in credit
scoring model, otherwise, the logistic regression offensosie readable economic inter-
pretation of the input variables effect on the output vedieverage and Ebit/Sales vari-
ables resulted strongly significant, differently the otkey-variables, maybe due to the
Italian disclosure rules for the Financial statement items
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Further research may be conducted aiming at implementing@ stable predictors
frame, also for other European countries.

Further investigations may focus on input variables sititgitanalysis to interpret the
impact of predictors on the output vector in neural netwpjk39] [32]. As concerns the
methodological procedure, further developments may bdwded aiming at improving
the tuning in the neural network optimization process anch@maging with unbalanced
data. As concern the case studythe work focused on analysing the effect of the un-
balance in the performance of a neural network model forefistprediction aiming at
finding a tendency (increase/decrease) on classifier peaface when considering un-
balance levels differing from the balanced benchmabk; of elements belonging to the
minor class. The unbalance levels considere have bE8h:and30% minor class units.
The results showed a tendency of the classifier accuracyditlgl decrease when we
move towards the natural distribution even if this effe@me to be equilized by the ben-
efit, in the training process, connected to an increase indh&er of units for the larger
class. Similar results have been obtained by Weiss et aD1§2(48]. Further research
may focus on finding an optimal distribution for the minorsdan particular for real-
world application, like credit scoring, because of the s@ssociated with an incorrect

classification of the minor class elements.
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Appendix A

MCLUST: an R function for model
based clustering

MCLUST Version 3 contributed R statistical package by Chris Fratey Aadrian Raftery
(2006), [109], provides functionality for model-basedstkring. MCLUST provides iter-
ative EM methods for parameter maximum likelihood estiorain parametrized, with
a variety of covariance structures, Gaussian mixture nsod&t each EM iteration, the
E-step computes a matrixsuch that;;, is an estimate of the conditional probability that
observation belongs to grougk given the current parameter estimates, and the M-step
computes parameter estimates givemezLUST functionsemandmeimplement the EM
algorithm for parametrized Gaussian mixtures. Functemstarts with E-step; besides
the data and model specification, the model parameters @neavariances and mixing
proportions) proportions must be provided. Functioestarts with the M-step; besides
the data and model specification, the conditional proltadslz must be provided. The
output for both are the maximum-likelihood estimates ofrtialel parameters ard
Below, an overview of whaticLUST function does is shown:

Mcl ust (data, G=NULL, nodel Names=NULL, prior=NULL,
control =enControl (), initialization=NULL, warn=FALSE, ---)
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Such function allows:

* to specify the numbers of mixture components (clustensivfach the BIC is to be
calculated, in the option G. The default is G=1:9.

* to specify the models to be fitted in the EM phase of clustgiimthe option model-
Names. The defaultis c("E”, "V") for univariate data and msiOptions() emMod-
elNames for multivariate data fd), the spherical and diagonal models c("EIl”,
"VII, "EEI”, "EVI”, "VEI”, "VVI”) for multivariate data ( n < d);

* to specify a conjugate prior on the means and variancesghrthe function prior-
Control. The default assumes no prior;

* to indicate a list of control parameters for EM. The defaualte set by the call em-
Control();

* to initialize the EM process. It consists of a list contagizero or more of the fol-
lowing components: a) hcPairs: A matrix of merge pairs ferdichical clustering
such as produced by function hc. For multivariate data, #fault is to compute a
hierarchical clustering tree by applying function hc witlodelName = "VVV” to
the data or a subset as indicated by the subset argumentiérhechical clustering
results are to start EM. For univariate data, the defaulb isse quantiles to start
EM; b)subset: A logical or numeric vector specifying a suhlfethe data to be
used in the initial hierarchical clustering phase;

* to set a logical value indicating whether or not certainnirggs (usually related to
singularity) should be issued. The default is to suppressethvarnings.
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The function McLUST is used to obtain the optimal model according to BIC for EM ini-
tialized by hierarchical clustering for parametrized Gaais mixture models.

The function returns a list giving the optimal (accordingBi&) parameters, conditional
probabilities z, and log-likelihood, together with the @gated classification and its un-
certainty. In particular, the details of the output compusere stored in specific objects:
BIC, containing all BIC values referred to the different modelising the possibility to
evaluate the model selection according both to the BIC vahgeadso to the more parsi-
monious model in terms of number of parameters/compleXith® model and number
of components; z, a matrix whose [i,k]th entry is the probghihat observation i in the
test data belongs to the kth class; classification map(e)¢issification corresponding
to z; uncertainty, the uncertainty associated with thesdfigation.

The functionpl ot () returns the model-based clustering plots: BIC values used fo
choosing the number of clusters. For data in more than twedsions, a pairs plot of
the showing the classification, a coordinate projectiorth®flata showing location of the
mixture components, classification, and uncertainty. e @nd two- dimensional data,
plots showing location of the mixture components, classiior, uncertainty, and density.
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Appendix B

NNET: an R function for neural
networks

TheNNET R statistical package by Brian Ripley (2009) implements agulace for fitting
feed-forward neural networks.
Below, an overview of whatiNET function does is shown:

nnet (x, y, weights, size, Ws, nask, |inout = FALSE,
entropy = FALSE, softmax = FALSE, censored = FALSE,
skip = FALSE, rang = 0.7, decay = 0, maxit = 100,
Hess = FALSE, trace = TRUE, MaxNWs = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)

Such function allows:

* to specify the number of units in the hidden layer, in thempsize. It can be zero
if there are skip-layer units;

* to specify the initial parameter vector, in the option Wt$.missing chosen at
random;

119



120 APPENDIX B. NNET: AN R FUNCTION FOR NEURAL NETWORKS

* to switch for linear output units, in the option linout. @eft logistic output units.
The activation function in the hidden layer of nnet() fupatis logistic, it is possible
to specify the activation function in the output layer (faaeple to be linear using
linout=T, in case of continuous variable forecasting) uthe analysed case, for
binary output variable where the expected value is a prdibalt is set as by
default logistic;

* to switch for entropy (maximum conditional likelihood)tiiitg, in the option en-
tropy. Default by least-squares;

* to switch to add skip-layer connections from input to oatjputhe option skip;
* to set a range for the initial random weights on [-rang, faimgthe option rang;
* to specify a value for weight decay, in the option decay.abéfis zero;

* to indicate a maximum number of iterations, in the optiorxindefault is 100.

Optimization is done via the BFGS, a quasi-Newton method.

The function returns an object of class "nnet”, a structunetaining several objects: wts,
a vector of the best set of weights found; the value of fittingedon plus weight decay
term; the fitted values for the training data; convergenckethd maximum number of
iterations was reached, otherwise 0; the residuals for#ieing data.

NNET is a wrapper for other functions so it is possible to constautet, where specifying
more than one layer of neurons and setting other parameters.

If we consider a procedure in which we estimate differentralenet, in terms of number
of hidden layers and weight decay values, we proceed to cantbam according to the
selection criteria BIC-AIC-GCV computing from the residual¢aabed. Once we select
the best neural net structure, we proceed to evaluate itsawcon a test set.

In NNET package, it is not possible to specify a validation set a$ ageh training set, as
the neural net methodology would consider: learning setgtonate the net parameters),
validation set (to tune the net parameters) and test sev@loae the net performance).
NNET function just trains, so the procedure to test the fitted rhglde nnet object) against
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new data consists in predicting new data, using the fungtraedi ct . nnet ().

It consists in using the fitted model on a test sample and ctngyufrom the resid-
uals, the related performance criteria to evaluate the rgépation properties of the
net (ROC curve and AUC). The ROC curve and AUC are computed &yfuthction
per formance() in the R package ROCR by T. Sing, O. Sander, N. Beerenwinkel,
T. Lengauer (2009).
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