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TABLE 4-8 Parameters related to the linear interpolation of the peaks of 

the PSD shown in Figure 4-50. 

Frequency 

[Hz] 

Charge 
collector 

Parameter 
CC1 CC2 CC3 

10 
α [m/V] 5.2e-5 1.5e-4 2.6e-4 

β [ ]HzV  7.1e-5 1.6e-4 7.6e-5 

100 
α [m/V] 3.3e-5 9.3e-5 1.7e-4 

β [ ]HzV  1.4e-4 -5.1e-5 -2.0e-4 

500 
α [m/V] 2.2e-5 8.2e-5 1.5e-4 

β [ ]HzV  1.6e-3 1.5e-3 1.4e-3 

6. THE COUPLED CIRCUIT AND THE EXPERIMENTAL 

RESULTS 

Theory underpinning the coupled configuration has been introduced in 

the first section of this chapter. In section 4 a schematic of the circuit 

(Figure 4-7) and the related circuital equations have been given. 

A detailed description of the circuital implementation of the coupled 

system will be given in the first part of this section. 

In the second part, experimental results showing the suitability of the 

coupled configuration to sense external target E-fields will be discussed. 

6.1 THE COUPLED CIRCUIT IMPLEMENTATION AND ITS 

BEHAVIOR WITHOUT TARGET E-FIELD 

Figure 4.53 shows the schematic of the electronic implementing the 

coupled circuit. It consist on a ring connection of N = 3 elementary cells, 

discussed in section 3, consisting in a ferroelectric capacitor (the non 

linear dynamic element) and the Sawyer-Tower conditioning circuit. 

The unidirectional coupling between contiguous cells is obtained by gain  
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FIGURE 4-53 Schematic of the electronic implementing the coupled c

blocks implemented by simple non inverting amplifiers. Figure 4

shows the schematic of the electronic implementing the elementary cell 

with the gain block. Electronic employs TL082 operational amplifiers 

and discrete resistances and capacitors a

capacitors. A picture of

capacitors (yellow caps) are easily recognizable in the upper part of the 

picture. The circuit has been designed with a modular structure to allow 

to use the single elementary cell to investigate the behavior of the single 

capacitor and giving the possibility to add further coupling blocks 

between two contiguous cells.

The output voltage of the gain block of the elementary cell 

where 
1−i

outV  represents the output voltage of the cell before the coupling 

block or rather the input of this latter block, while the factor 

K = 
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



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R
 determines the gain of the block. 

Schematic of the electronic implementing the coupled c

blocks implemented by simple non inverting amplifiers. Figure 4

shows the schematic of the electronic implementing the elementary cell 

with the gain block. Electronic employs TL082 operational amplifiers 

and discrete resistances and capacitors apart the ferroelectric 

capacitors. A picture of the PCB is given in Figure 4-55. Ferroelectric 

capacitors (yellow caps) are easily recognizable in the upper part of the 

picture. The circuit has been designed with a modular structure to allow 

gle elementary cell to investigate the behavior of the single 

capacitor and giving the possibility to add further coupling blocks 

between two contiguous cells. 

The output voltage of the gain block of the elementary cell i is given by
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represents the output voltage of the cell before the coupling 

block or rather the input of this latter block, while the factor 

determines the gain of the block.  
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Schematic of the electronic implementing the coupled circuit. 

blocks implemented by simple non inverting amplifiers. Figure 4-54 

shows the schematic of the electronic implementing the elementary cell 

with the gain block. Electronic employs TL082 operational amplifiers 

part the ferroelectric 

. Ferroelectric 

capacitors (yellow caps) are easily recognizable in the upper part of the 

picture. The circuit has been designed with a modular structure to allow 

gle elementary cell to investigate the behavior of the single 

capacitor and giving the possibility to add further coupling blocks 

is given by 

(4.34) 

represents the output voltage of the cell before the coupling 

block or rather the input of this latter block, while the factor 



208 

 

FIGURE 4-54 Schematic of 

and the coupling gain block.

In the circuit the resistance 

replaced by a potentiometer to the purpose to change the gain of this 

block. 

This allows us to investigate

values of the gain. 

FIGURE 4-55 PCB implementing the coupled circuit with 

Ferroelectric capacitors (yellow caps) are easy to recognize in 

the upper part of the picture.

COUPLED FERROELECTRIC E-FIELD SENSOR

Schematic of the electronic implementing the elementary cell 

and the coupling gain block. 

In the circuit the resistance R1 has been fixed to 1kΩ while R2

replaced by a potentiometer to the purpose to change the gain of this 

This allows us to investigate the behavior of the circuit with different 

 

PCB implementing the coupled circuit with 

Ferroelectric capacitors (yellow caps) are easy to recognize in 

the upper part of the picture. 

FIELD SENSOR 

 

the electronic implementing the elementary cell 

2 has been 

replaced by a potentiometer to the purpose to change the gain of this 

the behavior of the circuit with different 

 

PCB implementing the coupled circuit with N=3 cells. 

Ferroelectric capacitors (yellow caps) are easy to recognize in 
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From (4.34) and remembering equation (4.18) which explicates the 

value of the coupling coefficient between contiguous cells it readily 

follows 









+=

1

2
1

R

R

dC

A
c

f

FEλ     (4.35) 

Then changing the gain of the coupling blocks implies changing the 

value of the coupling coefficient and then the strength of coupling 

between contiguous cells. The coupled circuit starts to oscillate when 

the coupling coefficient exceeds the critical value (λ > λc) in (4.20). Above 

the critical coupling the system is in the self oscillating or supercritical 

regime. 

The frequency of the oscillations depends on the coupling strength and 

then in last analysis on the gain of the coupling blocks. Changing the 

gain factor in (4.34) the frequency of oscillations change. This has been 

experimentally confirmed. Figure 4-56 shows examples of experimental 

results for different values of the gain factor K in (4.34) obtained 

changing the value of the resistance R2 in all the three coupling blocks. 

Figure 4-56 shows the output voltage signals of the three cells (output 

voltage of the ST) in the circuit. 

A decrease of the frequency is observed increasing the gain K. A 

comparison of the main peaks of the PSD at the frequency of the 

oscillation for five values of the gain K is shown in Figure 4-57: a shift 

in the frequency is clearly visible. 

The trend of the frequency of the oscillations as a function of the gain K 

is shown in Figure 4-58. 
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FIGURE 4-56 Examples of experimental signals for different values of the 

gain K. A decrease of the frequency of oscillation is observed 

increasing the gain. 
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FIGURE 4-57 Comparison of the main peaks of the PSD at the frequency of 

the oscillation for five values of the gain 

frequency is clearly visible.

FIGURE 4-58 Trend of the frequency of the oscillations as a function of the 

gain 

Comparison of the main peaks of the PSD at the frequency of 

the oscillation for five values of the gain K. A s

frequency is clearly visible. 

Trend of the frequency of the oscillations as a function of the 

gain K = [1+(R2/R1)]. 
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6.2 THE COUPLED CIRCUIT AS E-FIELD SENSOR 

In the previous section the behavior of the coupled circuit as an 

oscillator has been discussed. The relationship between the frequency of 

oscillation and the coupling strength (which depends on the gain of the 

coupling blocks) has been investigated and experimentally 

demonstrated. Now the possibility to use the oscillating coupled circuit 

to sense external static or quasi-static E-field will be discussed 

hereinafter with experimental evidences. 

Experiments have been performed with the setup, already described in 

section 5.3.3, consisting in two sheet electrodes of 50cm x 50cm and a 

guard chamber to shield the sensor in order to avoid a direct (i.e., 

bypassing the charge collector) polarization of the ferroelectric. The two 

electrodes, separated by 10cm, are used to generate a uniform electric 

field (distance between electrodes can be regulated as you need). An AC 

voltage is applied to these parallel plates producing the target electric 

field which, in turn, produces a perturbation of the polarization of the 

ferroelectric capacitor. As previously discussed AC E-fields are 

employed to mimic the effect of a field-mill which converts a static or 

quasi-static target field in a AC voltage. Then the frequency of the 

target E-field could be fixed once and for all, anyway experiments for 

different frequencies of the target E-field have been carried out to the 

purpose to investigate the behavior of the circuit. 

The experiments involve subjecting one of the capacitors in the coupled 

circuit to a target E-field having different intensities and frequencies, 

while also varying the dimensions of the charge collector. Specifically, 

the voltage (producing the target E-field across the capacitor) applied to 

the electrodes has been varied in amplitude from 100mVpp to 20Vpp and 

its frequency varied from 100Hz to 1kHz. Treating the two large 

electrodes as a parallel plate capacitor, the target electric field 

amplitudes were 1V/m, 5V/m, 10V/m, 50V/m, 100V/m and 200V/m. 

All the experiments have been repeated with three charge collectors, 

CC1, CC2 and CC3 having dimensions 9cm x 9cm, 20,5cm x 16cm and 

25,5cm x 25,5cm, respectively, and for different values of the coupling 

gain. 
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6.3 EXPERIMENTAL RESULTS 

To start with, the benefit of the charge collector strategy will be 

immediately demonstrated by experimental evidences. Figure 4-59a 

shows a zoom in the range 0 -200 Hz of the PSD of the output voltage of 

a cell of the coupled circuit with and without the charge collector linked 

to the sensing electrode of the ferroelectric capacitor. No external target 

E-fields was generated. A peak in the PSD at 50Hz, due to 

environmental electromagnetic fields, appears when the charge collector 

is connected. Figure 4-59a refers to the case of a set gain K = 2. A 

comparison of the peak of the PSD at 50 Hz for five values of the gain K 

and for the same charge collector CC3 is given in Figure 4-59b. 

Essentially the comparison highlights that there is no evident 

advantage choosing one or the other value of gain. Anyway the main 

results in this first evaluation is that the charge collector makes the 

circuit sensitive to an external target E-field producing a perturbation 

on its dynamic by perturbing the polarization state of the ferroelectric. 

Established that the system is sensitive to external E-fields an analysis 

of the circuit response for different amplitudes and frequencies of the 

target E-field has been performed. Figure 4-60 shows some examples of 

the output signals of a cell of the circuit for two values of the amplitude 

(50V/m and 100V/m) and of the frequency (500Hz and 1kHz) of the 

target electric field. Superimposed to the main oscillations of the circuit 

a low frequency perturbation is clearly visible. The frequency of this 

perturbation is that of the target E-field and the amplitude of this 

perturbation (which resemble an amplitude modulation) is proportional 

to the E-field intensity. In addition to the target E-field another field at 

50Hz is always detected and its effect is visible in Figure 4-60 as a 

second order low frequency perturbation. This latter component can be 

easily removed by filtering the voltage signal. Signals shown in Figure 

4-60 have been obtained with a gain K=2 and the small charge collector 

CC1. A comparison of the peaks of the PSD at 500Hz for all the 

amplitudes of the E-field is shown in Figure 4-61 with the charge 

collectors CC1 and CC2 and a coupling gain K=2. The value of the peak 

of the PSD at the frequency of the target E-field is proportional to the 

amplitude of the E-field.  
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FIGURE 4-59 Effect of the charge collector. (a)

of the PSD of the output volt

circuit with and without the charge collector. No external 

target E

due to environmental electromagnetic fields, appears when 

the charge collector is connected. (b) comparison of

of the PSD at 50 Hz for five values of the gain 

same charge collector CC3.

COUPLED FERROELECTRIC E-FIELD SENSOR

 

(a) 

 

(b) 

Effect of the charge collector. (a) zoom in the range 0 

of the PSD of the output voltage of a cell of the coupled 

circuit with and without the charge collector. No external 

target E-fields was generated. A peak in the PSD at 50Hz, 

due to environmental electromagnetic fields, appears when 

the charge collector is connected. (b) comparison of

of the PSD at 50 Hz for five values of the gain K 

same charge collector CC3. 

FIELD SENSOR 

zoom in the range 0 -200 Hz 

age of a cell of the coupled 

circuit with and without the charge collector. No external 

fields was generated. A peak in the PSD at 50Hz, 

due to environmental electromagnetic fields, appears when 

the charge collector is connected. (b) comparison of the peak 

and for the 
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(a) 

(c) 

FIGURE 4-60 Examples of the output signals of a cell of the circuit for two 

values of the amplitude 50 V/m (a) and (b) and 100 V/m 

and (d) and two values of the frequency 500Hz (a) and (c) 

and 1kHz (b) and (d) of the target electric field. 

Superimposed to the main oscillations of the circuit (high 

frequency) a low frequency perturbation at the frequency of 

the target E

perturbation (which resemble an amplitude modulation) is 

proportional to the E

E-field another field at 50Hz is always detected and its effect 

is visible as a second order low 

latter component can be easily removed by filtering the 

voltage signal

 

(b) 

 

(d) 

Examples of the output signals of a cell of the circuit for two 

values of the amplitude 50 V/m (a) and (b) and 100 V/m 

and (d) and two values of the frequency 500Hz (a) and (c) 

and 1kHz (b) and (d) of the target electric field. 

Superimposed to the main oscillations of the circuit (high 

frequency) a low frequency perturbation at the frequency of 

the target E-field is clearly visible. The amplitude of this 

perturbation (which resemble an amplitude modulation) is 

proportional to the E-field intensity. In addition to the target 

field another field at 50Hz is always detected and its effect 

is visible as a second order low frequency perturbation. This 

latter component can be easily removed by filtering the 

voltage signal 

215 

 

 

Examples of the output signals of a cell of the circuit for two 

values of the amplitude 50 V/m (a) and (b) and 100 V/m (c) 

and (d) and two values of the frequency 500Hz (a) and (c) 

and 1kHz (b) and (d) of the target electric field. 

Superimposed to the main oscillations of the circuit (high 

frequency) a low frequency perturbation at the frequency of 

early visible. The amplitude of this 

perturbation (which resemble an amplitude modulation) is 

field intensity. In addition to the target 

field another field at 50Hz is always detected and its effect 

frequency perturbation. This 

latter component can be easily removed by filtering the 
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FIGURE 4-61 A comparison of the peaks of the PSD at 500Hz for all the 

amplitudes of the target E

CC1 (a) and 

COUPLED FERROELECTRIC E-FIELD SENSOR

 

(a) 

 

(b) 

A comparison of the peaks of the PSD at 500Hz for all the 

amplitudes of the target E-field with the charge collectors 

CC1 (a) and CC2 (b) and K = 2. 

FIELD SENSOR 

A comparison of the peaks of the PSD at 500Hz for all the 

field with the charge collectors 
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A reliance on the size of the charge collector is also evident. A large 

charge collector enhances the perturbation on the polarization of the 

ferroelectric and then the sensitivity of the coupled system. As a 

consequence it is possible to enlarge the operating field of the system 

toward weak electric field by choosing a large charge collector. 

A linear relationship between the amplitude of the target E-field and 

the peaks of the PSD (converted in V/√Hz) of the voltage output signals 

at the frequency of the target E-field can be arose from. Figure 4-62 

shows the comparison of the peaks of the PSD for two frequencies of the 

target E-field (100Hz and 500Hz) with the three charge collector for 

K = 2. The enhancement due to the increasing size of the charge 

collector is highlighted. A linear interpolation of the values of the peaks 

of the PSD leads to the value of the parameters (α, β) reported in 

Table 4-9. 

In addition, a reliance between the sensitivity and the coupling gain K 

can be arose from observing the linear interpolation of the values of the 

peaks of the PSD for increasing values of K. Figure 4-63 shows the 

comparison of the peaks of the PSD for a target E-field at 100Hz with 

the three charge collector and for two values of the coupling gain K (K = 

3, and K =5). A linear interpolation of the values of the peaks of the PSD 

leads to the value of the parameters (α, β) reported in Table 4-10. An 

increasing on the sensitivity can be observed at increasing the coupling 

gain K. 

A further information arise from Figure 4-63: increasing the coupling 

gain K the system reaches a saturation state over that no particular 

benefits derive from increasing the size of charge collector. This 

statement is demonstrated by the fact that the linear interpolation for 

the charge collectors CC2 and CC3 are close together. 

This leads us to concluded that increasing the gain K makes the system 

more sensitive to lower electric fields and a modulation of the sensitivity 

can be further produced by increasing the size of the charge collector 

until the system reaches a saturation state. 
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FIGURE 4-62 Comparison of the peaks of the PSD for two fre

the target E

charge collector for 

amplitude of the target E

(converted in V/

frequency of the target E

of the parameters (

reported in Table 4
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(a) 

 

(b) 

Comparison of the peaks of the PSD for two frequencies of 

the target E-field 100Hz (a) and 500Hz (b) with the three 

charge collector for K = 2. A linear relationship between the 

amplitude of the target E-field and the peaks of the PSD 

(converted in V/√Hz) of the voltage output signals at the 

frequency of the target E-field can be arose from. The values 

of the parameters (α, β) of the linear interpolation are 

reported in Table 4-9. 

FIELD SENSOR 

quencies of 

field 100Hz (a) and 500Hz (b) with the three 

= 2. A linear relationship between the 

field and the peaks of the PSD 

Hz) of the voltage output signals at the 

field can be arose from. The values 

) of the linear interpolation are 
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FIGURE 4-63 Comparison of the peaks of the PSD at 100Hz wi

charge co

(a) 

(b) 

Comparison of the peaks of the PSD at 100Hz with the three 

charge collector and for K = 3 (a), K = 5 (b). 
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TABLE 4-9 Parameters related to the linear interpolation of the peaks of 

the PSD at 100 Hz, 500 Hz and 1kHz for the three charge 

collector CC1, CC2, CC3 and a coupling gain K = 2. 

Frequency 

[Hz] 

Charge 
collector 

Parameter 
CC1 CC2 CC3 

100 
α [ ]Hzm  1.0e-5 2.6e-5 3.6e-5 

β [ ]HzV  1.0e-4 1.4e-4 2.3e-4 

500 

α [ ]Hzm  1.5e-5 2.6e-5 3.7e-5 

β [ ]HzV  2.5e-5 9.4e-5 1.5e-4 

1000 

α [ ]Hzm  5.9e-6 9.4e-6 1.4e-5 

β [ ]HzV  2.1e-6 5.3e-5 5.5e-5 

TABLE 4-10 Parameters related to the linear interpolation of the peaks of 

the PSD at 100 Hz for the three charge collector CC1, CC2, 

CC3 and for K = 3, K = 4 and K = 5. 

K 

Charge 
collector 

Parameter 
CC1 CC2 CC3 

3 
α [ ]Hzm  2.0e-5 3.2e-5 4.4e-5 

β [ ]HzV  5.0e-5 3.7e-4 5.0e-4 

4 

α [ ]Hzm  1.4e-5 4.9e-5 5.5e-5 

β [ ]HzV  1.4e-4 3.2e-5 1.3e-4 

5 

α [ ]Hzm  1.8e-5 4.7e-5 5.8e-5 

β [ ]HzV  3.2e-5 1.3e-4 1.0e-4 
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6.4 CONCLUSIONS 

In this chapter two systems employing the charge collector strategy to 

perturb the polarization state of a ferroelectric capacitors have been 

presented together with experimental evidences. Experimental results 

show the suitability of both the investigated systems to sense external 

target electric fields. 

A comparison of the performances of both the single capacitor device 

and the coupled system in the actual operating conditions does not 

make sense. Actually, the ferroelectric capacitor in the two systems is 

forced by different dynamics, in the single device the capacitor is driven 

@ 1kHz while in the coupled system the driving frequency is around 

200kHz. As it can be observed by Figures 4-48 and 4-60 also the forcing 

term amplitude is quite different in the two cases. 

Being the hysteresis loop in the two cases very different, the effect of a 

target field on the two devices (single and coupled) will be different. 

Anyway the coupled circuit presents more freedom of tuning its 

performance than the single capacitor by changing either, or both, the 

size of the charge collector and the coupling gain of the cells. 
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CONCLUSIONS 
 

It is a paradox typical of the 

human mind to catch the 

elements without being able to 

embrace the summary: an 

epistemological paradox of a 

science certain in the facts, but 

anyway insufficient. 

- Albert Camus 

This thesis deals with the exploitation of ferroelectric material 

properties and nonlinear dynamics behavior with emphasis on the 

realization of an innovative transducer. 

The focused approach is based on the exploitation of circuits made up by 

the ring connection of an odd number of elements containing a 

ferroelectric capacitor, which under particular conditions exhibits an 

oscillating regime of behavior. For such a device, an external target 

electric field interacts with the system thus inducing perturbation of the 

polarization of the ferroelectric material; the target signal can be 

indirectly detected and quantified via its effect on the system response. 

The conceived devices exploit the synergetic use of bistable ferroelectric 

materials, micromachining technologies that allow us to address charge 

density amplification, and implement novel sensing strategies based on 

coupling non-linear elemental cells. 

An experimental characterization of the circuit, including three cells 

coupled in a ring configuration has also been carried out with and 

without the target E-field. 
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The results confirm the reliance of the circuit oscillation frequency on 

the coupling factor, as expected from the mathematical and numerical 

models. 

Experimental results with external target E-fields have been presented 

and discussed. A relationship between the sensitivity of the coupled 

circuit and the size of the charge collector as been demonstrated. In 

addition a reliance with the coupling gain has been observed. Both the 

two factors allow to enhance the sensitivity making it sensitive to lower 

electric fields.  

A comparison between the coupled circuit and the single elemental cell 

containing a single ferroelectric capacitor, used as E-field sensor has 

been carried out to the purpose to show the benefits of the coupled 

circuit. 

Of course, this activity needs further investigations and validations. A 

more accurate validation of the models and of the underpinning theory 

by simulations and comparisons with the experimental results is 

mandatory. Moreover further experiments are necessary to re-validate 

the results here presented and to investigate the behavior of the system 

with lower electric fields. Experiments should be performed to observe 

the response of the system to static target electric fields with and 

without a field mill device. 

Finally, further analysis of the output voltage signals of the cells of the 

coupled circuit to investigate possible relationships between the target 

electric field and other properties of the signals, such as the duty cycle, 

could be carried out. 
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APPENDIX 

A summary of all the ferroelectric capacitors designed together with the 

list of groups and the number of replica of capacitors in the group 

given in the following.

For the sake of convenience an example of the layout of the designed 

capacitor is reported in Figure A

electrodes: the top and the bottom driving electrodes and the central 

sensing electrode. T

part of the die and the geometrical features

FIGURE A-1 Example of layout of the designed capacitors
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given in the following. 

For the sake of convenience an example of the layout of the designed 

tor is reported in Figure A-1 with highlighted the three 

electrodes: the top and the bottom driving electrodes and the central 

he relation between the sizes indicated in the upper 

part of the die and the geometrical features is also shown. 
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Code Group N° of elements Total 

110:150:25 

0001 10 

40 
0010 6 

0011 8 

0100 6 

0101 10 

135:100:10 

0001 15 

58 
0010 10 

0011 8 

0100 15 

0101 10 

135:100:25 

0001 10 

48 
0010 10 

0011 8 

0100 10 

0101 10 

135:150:100 

0001 10 

44 
0010 8 

0011 8 

0100 8 

0101 10 

160:50:25 

0001 10 

42 
0010 7 

0011 8 

0100 7 

0101 10 

160:50:10 

0001 10 

53 
0010 12 

0011 9 

0100 10 

0101 10 
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Code Group N° of elements Total 

160:100:100 

0001 10 

51 
0010 11 

0011 9 

0100 11 

0101 10 

170:150:15 

0001 10 

48 
0010 10 

0011 8 

0100 10 

0101 10 

185:50:25 

0001 10 

41 
0010 13 

0011 4 

0100 4 

0101 10 

185:50:100 

0001 10 

48 
0010 10 

0011 10 

0100 8 

0101 10 

195:100:15 

0001 10 

48 
0010 10 

0011 8 

0100 10 

0101 10 

220:50:15 

0001 10 

42 
0010 7 

0011 8 

0100 7 

0101 10 
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Code Group N° of elements Total 

225:150:10 

0001 10 

48 
0010 10 

0011 8 

0100 10 

0101 10 

235:150:50 

0001 10 

47 

0010 6 

0011 5 

0100 6 

0101 10 

0110 10 

250:100:10 

0001 10 

44 
0010 8 

0011 8 

0100 8 

0101 10 

250:100:20 

0001 10 

46 
0010 10 

0011 8 

0100 8 

0101 10 

260:100:50 

0001 10 

42 
0010 7 

0011 8 

0100 7 

0101 10 

280:150:5 

0001 10 

48 
0010 10 

0011 8 

0100 10 

0101 10 
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Code Group N° of elements Total 

275:50:10 

0001 10 

51 

0010 6 

0011 6 

0100 6 

0101 10 

0110 13 

285:50:50 

0001 10 

47 

0010 11 

0011 5 

0100 11 

0101 10 

305:100:55 

0001 10 

46 

0010 10 

0011 6 

0100 10 

0101 10 

330:50:5 

0001 10 

52 

0010 12 

0011 8 

0100 10 

0101 12 

 


