UNIVERSITA DEGLI STUDI DI CATANIA
DIPARTIMENTO DI MATEMATICA E INFORMATICA
DOTTORATO DI RICERCA IN MATEMATICA E INFORMATICA XXIX CicLO

Antonino Furnari

Context Awareness in First Person Vision

TESI DI DOTTORATO DI RICERCA

Tutor: Prof. Sebastiano Battiato

Anno Accademico 2015 - 2016



“I consider it a challenge before the whole human race, and I ain’t gonna loose.”

F. Bulsara
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Abstract

The First Person Vision (FPV) paradigm allows to seamlessly acquire images of
the world from the user’s perspective. Compared to standard Third Person Vision,
FPV is advantageous for building intelligent wearable systems able to assist the
user and augment his abilities. Given their intrinsic mobility and the ability to
acquire user-related information, FPV systems have to deal with a continuously
evolving environment. Moving from the observation that data acquired from a
first person perspective is highly personal, we investigate contextual awareness for
First Person Vision systems. We first focus on the task of recognizing personal
locations of interest from egocentric videos. We consider personal locations at the
instance level and address the problem of rejecting locations not of interest for
the user. To challenge the problem, we introduce three datasets of 10 personal
locations which we make publicly available, and perform a benchmark of different
wearable devices and state-of-the-art representations. Moreover, we propose and
evaluate methods to reject negative locations and perform personal location-based
temporal segmentation of egocentric videos. As a second aspect, we investigate
the anticipation of object interaction. We propose and define the task of next-
active-object prediction as recognizing which objects are going to be interacted with,
before the actual interaction begins. Even if recognizing next-active-objects is in
general not trivial in unconstrained settings, we show that the First Person Vision
paradigm provides useful cues to address the challenge. We propose a next-active-
object prediction method based on the analysis of egocentric object trajectories and
assess its superior performances with respect to other cues such as object appearance,
distance from the center of the frame, presence of hands and visual saliency. In
appendix, we also report some investigations on extraction features directly from

wide angle images.
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Chapter 1

Introduction

1.1 Motivation

Visual perception is the primary means by which humans sense and understand
the world they live in. Thus, it is not surprising how the research community
has invested considerable efforts in trying to understand and replicate the amazing
abilities of our visual system. Since vision is a form of intelligence itself, we should
expect that building the intelligent systems which are likely to characterize our
future will require the development of advanced forms of artificial visual intelligence.
While the sensing technologies needed to obtain a suitable visual representation of
the world are already available and ready to use, much work is still to be done to
enable the design of truly intelligent systems capable of making a real difference in

our lives.

1.1.1 Prevalence of the Third Person Vision Paradigm and
its Limits
In the past decades, Computer Vision has had a tremendous impact in many sce-
narios which made its application feasible, albeit constrained under given circum-
stances. Some success examples include (but are not limited to) face detection [1],
visual object tracking [2, 3, 4, 5], 2D image stitching [6, 7], 3D reconstruction [8]
and content-based image retrieval [9]. Most of these results assumed the “Third Per-
son Vision” (TPV) paradigm, according to which the scene is acquired by a static
camera which remains neutral to the observed events. Even in the case of automo-

tive and autonomous vehicles, which are obviously moving, the camera is relatively
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stable and the layout of the acquired scene is generally constrained. One of the mo-
tivations behind the TPV paradigm is to remove some nuances such as fast camera
movements and blur from the acquired images. This makes perfect sense since our
visual system is able to remove the very same nuances in a transparent way, making
our cognition system somewhat coherent with the TPV paradigm. While simpli-
fying the visual perception paradigm and enabling powerful applications, however,
the TPV design runs the risk of limiting the visual intelligence of the developed
systems, making them mere observers of the world, while human beings are not.
Indeed, while static cameras can sense the world from a limited number of per-
spectives, humans are able to look around and select their favorite view of the scene;
while static cameras are bound to a limited number of physical locations, humans
can explore the world and acquire an incredible variety of visual stimuli; while static
cameras can make few assumptions on the observed actors, humans sense the world
from their unique perspective and can make strong assumptions on the observed
scene. In practice, while the TPV design is clearly appropriate in many cases in
which a specific task needs to be accomplished (e.g., in the surveillance domain), it
might not be adequate when the system is designed in support to an active agent
interacting with the environment. This is, for instance, the case of wearable intel-
ligent systems designed to assist the user and augment his abilities [10, 11]. Other
examples include autonomous robots which, apart from being able to observe and
understand the environment, are supposed to move and interact with it. In the
aforementioned scenarios, in fact, a “First Person Vision” (FPV) paradigm is more

convenient [10].

1.1.2 Advantages of the First Person Vision Paradigm

While the TPV paradigm assumes that images are acquired by a fixed camera placed
in some convenient location with respect to the considered task (e.g., attached to
the ceiling for indoor surveillance), according to the FPV paradigm, images are
seamlessly acquired by means of a wearable camera which is carried by the user at
all times. Figure 1.1 shows an example of fixed camera used in the TPV scenario
and an example of wearable camera used in the FPV scenario. One of the main
differences between a wearable camera and a standard fixed one is the intrinsic

mobility of the former. On one hand, this introduces new challenges due to the lack
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(a) fixed camera (TPV) (b) wearable camera (FPV)

Figure 1.1: An example of (a) fixed camera used in a standard Third Person Vision
scenario and (b) wearable camera used in a First Person Vision scenario.!

of stability which can entail artifacts such as motion blur. On the other hand, the
content acquired from FPV cameras always “tells something” about the user, the
location in which he is operating, the activities he is involved in and, ultimately
his true intent and goals [10]. An example of the advantages of First Person Vision
systems is shown in Figure 1.2, which compares images of the same human activity
acquired according to the two discussed paradigms. The clear advantage of FPV
systems lies in the ability to be carried by the user and observe the world from his
perspective. Moreover, the continuous nature of the acquired information enables
easy acquisition of huge quantities of data, which can be useful for both off-line and

on-line learning.

1.1.3 Context Awareness in First Person Vision

As the user moves and interacts with the scene, many factors related to the sur-
rounding environment are deemed to change. These include the location in which
the user operates, the performed activities, objects and people present on the scene,
the time in which activities take place and the goals the user is trying to achieve.
The ensemble of all such factors is broadly referred to as “context” in the liter-
ature [12, 13]. As pointed out by Dey and Abowd [14], context is important to

improve human-machine interaction. Indeed, humans use context as an implicit

Tmage (a) by M.O. Stevens, licensed under Creative Commons and acquired from this URL.
Image (b) by A. Zugaldia, licensed under Creative Commons and acquired from this URL.


https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Fixed_outdoor_security_camera_-_Hillsboro,_Oregon.JPG
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/azugaldia/7457645618/in/photostream/
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(a) Third Person Vision (TPV) image (b)First Person Vision (FPV) image

Figure 1.2: Examples of (a) Third Person Vision (TPV) and (b) First Person Vision (FPV)
images. The two images are synchronized frames acquired by different cameras recording
the same human activity. The TPV perspective is neutral to the observed events, while
the FPV one allows to capture information about what the user is doing.”

means of additional information to effectively communicate with each other and re-
act appropriately. Given their intrinsic mobility, FPV systems have to deal with a
continuously changing environment [11]. Therefore, they need to be able to sense
and correctly understand context in order to adapt their behavior to the differ-
ent situations in which the user may be involved and, ultimately, to improve their
intelligence.

As discussed in Section 1.1, due to their intrinsic mobility, First Person Vision
systems have to deal with a continuously changing context. Even if it is difficult
to formalize the concept of context, different authors have attempted to formulate
suitable working definitions [12, 13, 14]. Among such efforts, Dey and Abowd [14]
debated that context-aware systems look at the “who”, “where”, “when”, “what”
of entities and use this information to determine “why” the situation is occurring.
The authors hence introduce four context categories which are deemed to be more
important than others: “location”, “identity”, “activity” and “time”. We comple-
ment the list by adding the “intent” category, which we find of crucial importance
for the development of intelligent systems. The complete list of fundamental context

categories is as follows:

2Frames from the Carnegie Mellon University Multimodal Aativity (CMU-MMAC) dataset [15].
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e Location: provides information about “where” the current situation is hap-
pening. This kind of contextual information is useful to design systems able

to adapt their behavior on the basis of the sensed location (see Figure 1.3(a));

e Identity: provides information about “who” is present on the scene. This
kind of information allows to build “socially intelligent” systems which can
adapt their behavior and address their communication on the basis of the
social context [16] (see Figure 1.3(b));

e Activity: provides information about “what” is happening. Such information
is essential to gain knowledge of what the user is doing, for instance to monitor

his behavior or assist him (see Figure 1.3(c));

e Time: provides information about “when” the current situation is taking
place. Time can be trivially exploited to correct contextual prediction (e.g.,
it is unlikely to be at the office at 4 A.M.) and issue time-triggered reminders

or alerts;

e Intent: provides information about “why” the user is performing the current
activity and relates to “what” he wants to achieve in the long run. Being able
to understand the future intentions of the user or anticipate object interactions
is important for human-machine interaction and to provide tailored assistance
(see Figure 1.3(d)).

1.2 Aims and Approach

The aim of this thesis is to investigate context awareness in First Person Vision.
Specifically, we concentrate on two of the five aforementioned context categories,
which are location and intent. We move from the assumption that information
acquired by First Person Vision systems is very personal for the user. Hence, we
study how such information can be leveraged to model the personal environment in
which the user operates and to predict his short term goals by anticipating future

object interactions.
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(a) location (b) identity

(c) activity (d) intent

Figure 1.3: Some visual examples of four context categories. (a) First Person Vision
systems acquire visual content related to different locations. (b) First Person Vision
systems should be aware of the social context (i.e., people present in the scene). (c) First
Person Vision systems should be able to recognize the action performed by the user. (d)
First Person Vision systems should be able to understand user’s intent and predict what
the user is going to do next. Image (b) is part of the dataset proposed in [17]. Image (c)
is part of the dataset proposed in [18]. Image (d) is part of the dataset proposed in [19].
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Car C.V.M. Office Lab Office Living Room

|

Studio

Figure 1.4: Some sample frames from the proposed dataset. C.V.M. stands for coffee vending
machine.

We consider locations at the instance level (e.g., my office) rather than at the
category level (e.g., an office) and investigate methods to recognize personal loca-
tions specified by the user from first person videos. We assume a supervised scenario
in which the user indicates the locations he wants to monitor by providing minimal
training data. To account for the huge variability in terms of visual content that
FPV systems can acquire, we design methods to perform the rejection of negative
locations (i.e., locations not of interest for the user). We benchmark different image
representation techniques and provide methods to perform temporal segmentation of
personal locations from videos. To support our analysis, we collected three datasets
of first person videos acquired by a user while performing his daily activities in dif-
ferent locations: car, coffee vending machine, office, lab office, living room, piano,
kitchen, sink, studio and garage. Figure 1.4 shows some visual examples of the con-
sidered locations. We made the datasets publicly available to foster future research
on the topic.

We further explore the contextual insights given by the First Person Vision
paradigm addressing the task of anticipating object interactions by predicting “next-
active-objects”, i.e., objects which are going to be manipulated by the user in a
short time. In particular, we analyze the role of egocentric object trajectories in
the proposed task of next-active-object prediction and compare them to other cues
which might be available on the scene. Figure 1.5 shows some examples of next-

active-objects, as compared to passive ones.
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v afuds

Figure 1.5: A sequence illustrating next-active-objects (in red) and passive ones (in cyan)
along with their egocentric trajectories.

We also report complementary investigations on methods to perform direct fea-
ture extraction from images acquired using wide-angular sensors. Wide-angular
sensors provide a representation of the scene which allows to increase the Field Of
View and include more information about the environment than regular sensors.

3

Therefore, they are usually employed in the design of wearable cameras.” Since

these topics are not directly related to the main aim of this thesis, they are reported

in appendix.

1.3 Contributions

The main contributions of this thesis are the following:

e The definition of the task of recognizing personal locations from first person

videos;

e The introduction of three labeled datasets of first person videos acquired by a

user in 10 different locations of interest;

e A benchmark of different state-of-the-art methods for scene and object classi-

fication on the proposed task of personal location recognition;

e The formulation and investigation of methods to perform the rejection of neg-

ative locations to extend multi-class classification to work in real scenarios;

e A system for the temporal segmentation of first person videos to highlight

personal locations of interest;

3Some examples include GoPro (http://gopro.com), Authographer (http://www.
autographer.com/) and Narrative Clip 2 (http://getnarrative.com/).


http://gopro.com
http://www.autographer.com/
http://www.autographer.com/
http://getnarrative.com/
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e The formulation of new the task of predicting next-active-objects from first
person videos and the investigation of the role of object trajectories in the

proposed task;
Other contributions include:

e A study of the applicability of affine covariant region detectors directly on

wind angle images;

e The derivation of a novel family of generalized Sobel filters for the direct

estimation of the gradient of wide angle images;

e The definition of Distortion Adaptive Descriptors, a new paradigm for the

computation of gradient-based descriptors directly on wide angle images.

The contribution of this thesis have been published in international journals and
conferences:

International Journals:

e A. Furnari, G. M. Farinella, and S. Battiato. “Recognizing Personal Loca-
tions From Egocentric Videos”. In: [EEE Transactions on Human-Machine
Systems 47.1 (2017), pp. 6-18. DOI: 10.1109/THMS.2016.2612002

e A. Furnari, G. M. Farinella, R. Bruna, and S. Battiato. “Affine Covariant
Features for Fisheye Distortion Local Modeling”. In: IEEE Transactions on
Image Processing 26.2 (2017), pp. 696-710. DOT: 10.1109/TIP.2016.2627816

e A. Furnari, G. M. Farinella, R. Bruna, and S. Battiato. “Distortion Adaptive
Sobel Filters for the Gradient Estimation of Wide Angle Images”. In: under

review in Journal of Visual Communication and Image Representation (2017)
International Conferences:

e A. Furnari, G. M. Farinella, and S. Battiato. “Temporal segmentation of
egocentric videos to highlight personal locations of interest”. In: International
Workshop on Egocentric Perception, Interaction and Computing (EPIC) in
congunction with ECCV. 2016, pp. 474-489


http://dx.doi.org/10.1109/THMS.2016.2612002
http://dx.doi.org/10.1109/TIP.2016.2627816
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e A. Furnari, G. M. Farinella, and S. Battiato. “Recognizing Personal Contexts
from Egocentric Images”. In: Workshop on Assistive Computer Vision and
Robotics (ACVR) in conjunction with ICCV. 2015

e A. Furnari, G. M. Farinella, A. R. Bruna, and S. Battiato. “Distortion Adap-
tive Descriptors: Extending Gradient-Based Descriptors to Wide Angle Im-
ages”. In: Image Analysis and Processing (ICIAP). vol. 9280. Lecture Notes
in Computer Science. Springer, 2015, pp. 205-215

e A. Furnari, G. M. Farinella, A. R. Bruna, and S. Battiato. “Generalized Sobel
filters for gradient estimation of distorted images”. In: IEEFE International

Conference on Image Processing. 2015, pp. 3250-3254

e A. Furnari, G. M. Farinella, G. Puglisi, A. R. Bruna, and S. Battiato. “Affine
region detectors on the fisheye domain”. In: 2014 IEEE International Con-
ference on Image Processing (ICIP). 2014, pp. 5681-5685

Appendix B reports a list of other works not directly related to this thesis published
during my Ph.D.

1.4 Overview of First Person Vision

First Person Vision has been investigated since the 90s. Of particular importance
is the work by Steve Mann, who designed and developed many wearable computers
equipped with visual processing capabilities [28, 29]. The main applications pro-
posed by Mann in the mid 90s were targeted towards improving visual perception,
augmenting memory and assisting the visually impaired [28, 30]. In the early years
of FPV, other researchers investigated topics related to context awareness [11, 31],

interaction [32] and augmented reality [33].
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The appearance on the market of commercial wearable cameras featuring small
dimensions and long battery life* has subsequently renewed the interest of the re-
search community [34]. Moreover, the potential of modern computer vision tech-
nologies has promoted the development of important topics such as activity recog-
nition [18, 19, 35, 36], video indexing and summarization [37, 38, 39, 40, 41] and
visual attention modeling [42, 43, 44, 45].

1.4.1 Terminology

Over the last 20 years, First Person Vision has gone under different names. The first
works on the topic referred to First Person Vision with the term “wearable vision” to
underline the different design of such systems [11, 31, 28, 37, 46]. Unlike traditional
TPV cameras, wearable systems are worn by the user and hence are able to acquire
images from his viewpoint. Some researchers investigated the benefits of applying
active vision to wearable systems and used the term “wearable active vision” [46,
47]. More recently, the term “egocentric vision” has been consistently used to put
the emphasis on the personal nature (i.e., “related to me”) of the acquired data [18,
38, 40, 45, 48, 49]. Similarly, other authors have adopted the term “First Person
Vision” to highlight the different acquisition paradigm and the non-neutrality of
the observations with respect to the standard TPV paradigm [10, 19, 34, 50, 51].
While we find the term “First Person Vision” more specific for the computer vision
community, the other terms will be also adopted in this thesis. Specifically, we will
adopt the term “wearable” when it will be appropriate to highlight the possibility
to wear such systems and the term “egocentric” to highlight the personal nature of

the acquired data.

1.4.2 Context Awareness

Context awareness in First Person Vision has been investigated since the early days.
Starner et al. [11] introduced an assistant for playing the “Patrol” game. The pro-
posed wearable system was able to track the location of the user and understand

the current task without using off-body infrastructure. Aoki et al. [52] designed a

4GoPro (https://gopro.com/), Narrative Clip (http://getnarrative.com/) and Google
Glass (https://www.google.com/glass/start/) are some examples.


https://gopro.com/
http://getnarrative.com/
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dynamic programming algorithm to recognize previously visited places on the ba-
sis of image sequences acquired by the user while approaching to the considered
locations. Schiele et al. [33] proposed DyPERS, the “Dynamic Personal Enhanced
Reality System”. The system allowed to record audio-visual clips and associate
them with specific visual objects. Recorded “media memories” were retrieved and
played back to the user when the specific visual object was detected on the scene.
Schiele et al. [53] present a wearable system which can be used as a museum’s guide.
The system was able to recognize objects in the user’s field of view and display
multimedia information that the user previously identified as being relevant to the
object. Torralba et al. [54] propose a context-based wearable vision system which is
able to identify familiar locations, categorize new environments and provide contex-
tual priors for object recognition. Templeman et al [51] design a system to detect
images of sensible spaces automatically acquired by always-on wearable cameras.
Detected sensitive spaces (like bathrooms and bedrooms) can be blacklisted in or-
der to preserve privacy. Sundaram and Mayol-Cuevas [55] classify actions from an
egocentric field of view. The system also recognizes the user’s location using a SLAM
system and refine action classification using pre-learned action-location priors. Sun-
daram and Mayol-Cuevas [56] investigate a method that recognizes human activity
observed from a moving camera and references such information to a previously
mapped environment. Rhinehart and Kitani [57] learn a predict action maps of
large environments. Action maps encode the ability of the user to perform activities

in specific locations.

1.4.3 Activity and Action Recognition

Activity and action recognition are among the most investigated problems in First
Person Vision. Activity and action recognition are different objectives: action recog-
nition concerns the detection and correct classification of atomic actions and interac-
tions with objects [50, 58|, while activities are defined as complex sequences and in-
teractions with objects to achieve a given goal. Examples of actions are, for instance,
“beating eggs” or “opening the box”, while examples of activities are “preparing a
meal” or “doing the laundry” [18, 19]. Even if they are different objectives, the
tasks of action and activity recognition have been often investigated together [19,

36, 50]. Spriggs et al. [50] used Intertial Measurement Units and a wearable camera
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to segment human motion into actions and perform activity recognition. Kitani
et al. [59] investigated methods to segment egocentric videos of sports into action
categories. The approach assumed an unsupervised scenario where labeled train-
ing videos are not available and the number of action categories is not known in
advance. Fathi et al. [18] presented a method to analyze daily activities such as
meal preparation. The method performed inference about activities, actions, hands,
and objects. Doherty et al. [60] investigated methods to recognize human activities
from visual life-logs. Fathi et al. [43] designed a method to predict gaze and action
labels jointly. Pirsiavash and Ramanan [19] investigated the recognition of daily
activities from egocentric videos using an object-centric representation. Ryoo and
Matthies [61, 62] considered a robot-centric scenario and proposed to recognize or
predict actions performed by other subjects during their interaction with the robot.
Li et al. [35] benchmarked different egocentric cues in the context of activity recog-
nition. Yan et al. [48] designed a multi-task clustering algorithm to learn egocentric
activities from multiple subjects in an unsupervised way. Castro et al. [63] pre-
sented a method to analyze egocentric images to recognize the egocentric activities
of an individual. Singh et al. [64] proposed a Convolutional Neural Network for end
to end learning and classification of egocentric actions. The method incorporated
egocentric cues such as hand pose, head motion and saliency map. Ma et al [30]
designed an activity recognition method which integrated hand segmentation, detec-
tion of objects of interest and action detection. Zhou et al [65] introduced cascaded
interactional targeting deep neural networks to infer both hand and active object

regions.

1.4.4 Indexing and Summarization

Long egocentric videos and egocentric photo streams are difficult to browse. To
improve accessibility to such content, researchers have investigated method to in-
dex, summarize and extract egocentric visual data. Among the first researchers on
this topic, Aizawa et al. [37] proposed an approach to automatic structuring and
summarization of egocentric video. The approach used a sensor of brain waves and
video features to automatically extract events of interest for the subject. Doherty et

al. [66] investigated automatic segmentation of egocentric photo streams into events.
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The proposed approach exploited the concept of novelty and a face-to-face conver-
sation detector to help determine the importance of events in a lifelog. Jojic et
al. [67] designed an unsupervised algorithm to create a visual summary from ego-
centric photo streams by discovering recurrent scenes, familiar faces and common
actions. Aghazadeh et al. [68] demonstrated a system for the automatic extraction
of novelty in egocentric images based on image sequence alignment. Lee et al. [69]
introduced an approach to summarize egocentric videos focusing on the most im-
portant objects and people with which the user interacts. Lu and Grauman [38]
designed a summarization approach that discovers the story of an egocentric videos
by selecting a short chain of video subshots depicting the essential events. Poleg et
al. [40, 41] investigated methods to segment egocentric videos according to long term
activities such as standing, walking and biking, by analyzing user’s motion. Bolanos
et al. [70] surveyed methods to summarize egocentric photo streams arising from
visual lifelogs. Xu et al. [71] formulated a gaze-enabled egocentric summarization
method. Bo et al. [72] proposed a storyline representation of egocentric videos with
an application story-based search using AND-OR graphs. Battadapura et al. [73]
presented an approach for identifying highlights from large amount of egocentric

vacation videos.

1.4.5 Attention Modeling

Other researches investigated the problem of modeling the user’s visual attention
from wearable devices. Yamada et al. [42] proposed a method for predicting egocen-
tric attention combining bottom-up visual saliency and egomotion. Fathi et al. [43]
introduced a probabilistic generative model for simultaneously recognizing daily ac-
tions and predicting gaze locations in egocentric video. Li et al. [44] presented a
model for gaze prediction in egocentric video by exploiting different egocentric cues
such as the wearer’s head motion and hand location. Leelasawassuk et al. [74] inves-
tigated methods for the estimation of the user’s visual attention from a head-worn
Inertial Measurement Unit (IMU). Other authors argued that the availability of a

gaze tracker can be beneficial for first person vision systems [10, 75, 76].
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1.5 Thesis Outline

The thesis is divided into 4 chapters, plus two appendices. Each chapter treats a

specific aspect of the investigated topics.
Chapter 2 investigates personal location recognition from first person videos.

Chapter 3 defines the task of next-active-object recognition and investigates the

role of object trajectories.
Chapter 4 concludes the thesis and gives insights for future directions.

Appendix A reports complementary investigations on feature extraction from wide

angle images.

Appendix B reports a list of works published during my Ph.D not directly inherent
to this thesis.
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Chapter 2

Recognizing Locations of Interest

from Egocentric Videos

Contextual awareness is a desirable property in wearable computing [11, 12]. Context-
aware systems can leverage the knowledge of the user’s context to provide a more
natural behavior and a richer human-machine interaction. Although different factors
contribute to define the context in which the user operates, two important aspects

seem to emerge from past research [12, 13]:

1. context is a dynamic construct and hence it is usually infeasible to enumer-
ate a set of canonical contextual states independently from the user or the

application;

2. even if context cannot be simply reduced to location, the latter still plays an

important role in the definition and understanding of the user’s context.

In particular, we argue that being able to recognize the locations in which the user
performs his daily activities at the instance level (i.e., recognizing a particular envi-
ronment such as “my office”), rather than at the category-level, (e.g., “an office”),
can provide important information on the user, and help understanding his behavior

and current objectives. Specifically, we define a personal location as:

a fized, distinguishable, spatial environment in which the user can per-
form one or more activities which may or may not be specific to the

considered location.

An example of personal location may be the personal office desk in which the user

can perform a number of activities, such as surfing the Web or writing e-mails.
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Differently from the concept of scene category (as intended in [77]) personal locations
are bound to the specific user and hence carry information related to his behavior
and objectives. This relates to different applications in the domains of life-logging
and personal information retrieval [78, 40], as well as to the domain of assistive
technologies [79, 80].

For instance, a personal location aware system would allow to organize and access
the acquired visual information on the basis of the detected personal locations and
provide statistics on the behavior of the user (e.g., for stress monitoring), answering
questions such as “how much time did I spend in my office last week?”, “how many
coffees did I have today?”, “how many hours per-week do I usually spend driving?”.
The system could also be programmed to trigger specific behaviors or alerts accord-
ing to the sensed location. This could include turning off unessential notifications
when the user enters his office, assisting elder users in the interaction with a par-
ticular environment (e.g., reminding how to operate the TV or the microwave) or
notifying the user that it’s time to have a break after a long working session.

In this Chapter, we study how personal locations can be recognized from egocen-
tric videos. Specifically, in Section 2.1 we discuss the related works. In Section 2.2
we discuss the specific challenges related to the recognition of personal locations from
egocentric videos. In Section 2.5 we present a benchmark of the most popular visual
representation techniques for scene and object recognition on the considered task.
The benchmark is performed with respect to different wearable devices character-
ized by heterogeneous Fields of View (FOV) and wearing modalities. The analysis
is extended in Section 2.6 with the introduction of a novel method for the rejection
of negative locations (i.e., locations not of interest for the user) and with the aug-
mentation of the preliminary benchmark dataset to a larger number of locations.
In Section 2.7 we propose a method that further exploits temporal coherence to

improve negative rejection as well as location recognition.

2.1 Related Work

Mobile and wearable cameras have been widely used in a variety of tasks, such as
place and action recognition [11, 52], health and food intake monitoring [81, 82,

83], human-activity recognition and understanding [32, 18, 43, 75, 63, 48], video
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indexing and summarization [40, 38, 84|, as well as assistive-related technologies
[79, 80]. The problem of recognizing personal locations from egocentric images, in
particular, has already been investigated for different purposes and different meth-
ods have been proposed in the literature. The first investigations relevant to the
considered problem date back to the late 90s. Starner et al. [11] proposed a context-
aware system for assisting the users while playing the “patrol” game. The system
proposed in [11] comprises a component able to recognize the room in which the
player is operating combining RGB features and a Hidden Markov Model (HMM).
Aoki et al. [52] proposed an image matching technique for the recognition of previ-
ously visited places. In this case, locations are not represented by a single frame,
but rather by an image sequence of the approaching trajectory. Place recognition is
implemented by computing the distance between a newly recorded trajectory and a
dictionary of trajectories to known places. Torralba et al. [54] proposed a wearable
system able to recognize familiar locations as well as categorize new environments.
A low-dimension global representation based on a wavelet image decomposition is
proposed in order to include textural properties of the image as well as their spatial
layout. Familiar location recognition and new environment categorization are ob-
tained separately training two distinct HMM models. More recently, in the wake of
the popularity that always-on wearable cameras have recently gained, Templeman
et al. [51] have proposed a system for “blacklisting” sensitive spaces (like bathrooms
and bedrooms) to protect the privacy of the user when passively acquiring images
of the environment. The system combines contextual information like GPS location
and time with an image classifier based on local and global features and a HMM
to take advantage of the temporal constraint on human motion. Images and short-
video-based localization strategies have been already investigated in [85], where short
videos are used to compute 3D-to-3D correspondences. The authors of [86] propose
to model and recognize activity-related locations of interest to facilitate navigation
in a visual lifelog. While the discussed approaches generally concentrate on video,
some researchers have also investigated the use of low temporal-resolution devices.
Such devices generally allow to acquire a few images per minute, but are character-
ized by a larger autonomy both in terms of memory and battery-life, which makes
them particularly suited to acquire large amounts of visual data. In [63], daily ac-

tivities are recognized from static images within a low temporal-resolution lifelog.
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In [87], a method for semantic indexing and segmentation of photo streams is pro-
posed. The reader is referred to the work by Bolafios et al. [70] for a review of the
advances in egocentric data analysis.

As highlighted in [54], location recognition and place categorization are two
related tasks and hence they are likely to share similar features in real-world appli-
cations. In this regard, much work has been devoted to designing suitable image
representation for place categorization. Torralba and Oliva described a procedure for
organizing real world scenes along semantic axes in [88], while in [89] they proposed a
computational model for classifying real world scenes. Efficient computational meth-
ods for scene categorization have been proposed for mobile and embedded devices
by Farinella et al. [90, 91]. More recently, Zhou et al. [92] have successfully applied
Convolutional Neural Networks (CNNs) to the problem of scene classification.

Please note that, while past literature primarily focused on classification, we pay
special attention to the problem of rejecting negative locations (i.e., locations not of
interest for the user) which is an essential component for building real, robust and

effective systems.

2.2 Challenges

Recognizing personal locations from egocentric videos poses some challenges due
to the user-specific nature of the acquired visual information. In a real system
the user should be able to specify a set of personal locations which he wishes to
monitor. Since the locations are not known in advance by the system and they
must be recognized at the instance-level, the user needs to provide training data
for each location in order to “instruct” the system about what is meaningful for
him. The data collection procedure should be simple enough to be performed by
the inexperienced user. Moreover, relying on the acquired set of user-specified data,
at run time the system should be able to: 1) detect the considered locations and
2) reject negative frames, i.e., frames not depicting any of the locations interesting
for the user. Negative frames, in particular, naturally arise from two factors: 1) the
user is likely to spend time in locations which he does not want to monitor (e.g.,
his colleague’s office) and 2) as the user moves from a location to another, samples

not related to a specific location may be acquired (e.g., the corridor). Considering
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Challenge Constraints Desired Feature

negative samples no training negatives  negative rejection abilities
user-gathered data few training samples  learning from few samples
similar personal locations scene recognition instance-level recognition

methods not suitable

Table 2.1: Main challenges of a personal location recognition system.

possible real scenarios as above, in addition to the general issues which may be
associated with egocentric data (e.g., camera blur and non-intentionality of the

framing), recognizing personal locations involves some unique challenges:

e rcal-world systems must be able to correctly detect and manage negative sam-
ples, i.e., images depicting scenes not belonging to any of the desired locations

of interest;

e given that an always-on wearable camera is likely to acquire a great variabil-
ity of different scenes, gathering representative negative samples for modeling
purposes is not always possible. In a real scenario, a system able to reject neg-
atives given only user-specific positive samples for learning purposes is hence

desirable;

e since personal locations are user-specific, few labeled samples are generally
available as hence it is not feasible to ask the user to collect and annotate

huge amounts of data for learning purposes;

e large intra-class variability usually characterizes the appearance of the different

views related to a given location of interest;

e personal locations belonging to the same high level category (e.g., two different
offices) tend to be characterized by similar scene shape and objects, making

the discrimination challenging.

Table 2.1 summarizes the most important challenges of a personal location recogni-
tion system. Figure 2.1(a) shows some sample images acquired in different personal
locations using a wearable camera. Figure 2.1(b) also reports some negative samples.
Note that, since we define personal locations at the instance level, negative samples

can be very similar to positive ones. For instance, a different coffee vending machine
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living room home office
[ I | —

(b) negative samples

Figure 2.1: Some egocentric images of possible personal locations of interest for the user. (a)
Positive samples: each column reports two different shots of the same location acquired using a
wearable camera. The following abbreviation holds: coffee v. machine - coffee vending machine.

(b) Some negative samples.
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(a) smart glasses ) ear-mounted (¢) chest-mounted

Figure 2.2: Three devices involving different wearing modalities: (a) smart glasses, (b)
ear-mounted wearable camera, (c) chest-mounted wearable camera

or a different office should be classified as negatives. The figure illustrates the main
variabilities described above. To take into account the discussed challenges, we will
consider the following scenario: The user defines a number of locations of interest by
providing minimal training data in the form of short videos (e.g., a 10 seconds video
per location). The user is just asked to wear his camera and briefly look around
while he is in the considered location. The user only provides positive samples and

is not asked to acquire negative samples for training purposes.

2.3 Wearable Devices

The market proposes different wearable cameras, each with its distinctive features.
We considered three main factors to characterize such devices: resolution, wearing
modality and Field Of View (FOV). The resolution influences the amount of details
that a given device is able to capture. While the first generation of wearable devices
was characterized by very small resolutions (in the order of 0.1 mega-pixels), recent
devices tend to adhere to the HD and 4K standards. The wearing modality influ-
ences the way in which the visual information is actually acquired. In particular,
we identify three classes of devices characterized by different wearing modalities:
smart glasses, ear mounted cameras and chest mounted cameras. Smart glasses are
designed to substitute the user’s glasses. Ear mounted cameras are worn similarly
to bluetooth earphones and are a little more obtrusive than smart glasses. Both
smart glasses and ear mounted devices have the advantage to capture the environ-
ment from the user’s point of view. Chest mounted cameras are the least obtrusive
since they are clipped to the user’s clothes rather than mounted on his head (and
easily ignored by both the wearer and the people he interacts with). However, the

FOV captured by chest mounted cameras does not usually achieve much overlap
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Resolution Wearing Modality Field Of View
Medium  Large | Glasses Ear  Chest | Narrow  Wide
RJ v v v
LX2P v v v
LX2W v v v
LX3 v v v

Table 2.2: A summary of the main features of the considered devices. The following
abbreviations hold: RJ - Recon Jet smart glasses, LX2P - Looxcie LX2 without wide-
angular converter, LX2W - Looxcie LX2 with wideangular converter, LX3 - Looxcie LX3.

with the user’s FOV. The Field Of View affects the quantity of visual information
which is acquired by the device. A larger FOV allows to acquire more information
in a similar way to the human visual system at the cost of the introduction of radial
distortion. Figure 2.2 depicts three devices involving the aforementioned wearing
modalities.

In order to assess the influence of the aforementioned device-specific factors for
the problem of personal location recognition, we consider four different devices: the
smart glasses Recon Jet (RJ)!, two ear-mounted Looxcie LX2?, and a wide-angular
chest-mounted Looxcie LX3?. The Recon Jet and Looxcie LX3 devices produce
images at the HD resolution (1280 x 720 pixels), while the Looxcie LX2 devices
have a smaller resolution of 640 x 480 pixels. The Recon Jet and the Looxcie LX2
devices are characterized by narrow FOVs (70° and 65, 5° respectively), while the
FOV of the Looxcie LX3 is considerably larger (100°). One of the two ear-mounted
Looxcie LX2 is equipped with a wide-angular converter in order to achieve a large
FOV (approximatively 100°). The wide-angular LX2 camera will be indicated with
the acronym LX2W, while the regular (perspective) LX2 camera will be indicated
as LX2P. Table 2.2 summarizes the main features of the cameras used to acquire
the data.

http://www.reconinstruments.com/products/jet/
2http://www.looxcie.com
3http://www.looxcie.com
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Dataset #L Device Overlap

5-LOCATIONS 5 RJ, LX2P, LX2W, LX3 —

8-LOCATIONS 8 RJ, LX2P, LX2W, LX3 car, cvi, office, tv, h.office are
taken from 5-LOCATIONS

10-LOCATIONS 10 LX2W car, cvm, office, tv, h.office, lab

office, garage are taken from 8-
LOCATIONS

Table 2.3: Summary of the content of the three considered datasets. The table reports
the number of locations in each dataset (#L), the devices used to acquire the data and
the overlap with other datasets.

2.4 Datasets

For our analysis, we have collected three distinct datasets of egocentric videos ac-
quired in different personal locations. The datasets have been collected in an in-
cremental fashion (i.e., each dataset extends the previous one) by the same single
user using the hardware described in the previous section. Therefore, the datasets
share some footage and similar acquisition settings. The datasets contain videos of
5, 8 and 10 locations respectively, and hence they will be referred using three unique
names: 5-LOCATIONS, 8-LOCATIONS and 10-LOCATIONS. The following sec-
tions discuss the details of each of the considered datasets. To help understand the

differences and similarities between the datasets, a summary is reported in Table 2.3.

2.4.1 5-LOCATIONS

This dataset has been acquired by a single user in five different personal locations
using the four devices discussed in Section 2.3. The considered five personal locations
arise from the daily activities of the user and are relevant to assistive applications
such as quality of life assessment and daily routine monitoring: car, coffee vending
machine, office, TV and home office. Figure 2.3(a) shows some samples from the
dataset with respect to the considered wearable devices. Since each of the considered
location involves one or more static activities, we assume that the user is free to turn
his head and move his body when interacting with the environment, but he does
not change his position in the room. In line with the considerations discussed in
Section 2.2, our training set is composed of very short videos (= 10 seconds) of

the locations of interest for a person (just one video per location) to be monitored.
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During the acquisition of the training videos, the user is asked to turn his head (or
chest, in the case of chest-mounted devices) in order to capture a few different views
of the environment. Please note that, in the training stage, the user is assumed
to be static and only one training video from a single position is acquired for each
class. The test set consists in medium length (8 to 10 minutes) videos of normal
activity in the given personal locations with the different devices. Three to five
testing videos have been acquired for each location. We also acquired several short
videos containing likely negative samples, such as indoor and outdoor scenes, other
desks and other vending machines. Please note that the negative samples contained
in this dataset are mainly related to the first of the two sources of negative samples
discussed in Section 2.2, i.e., locations not of interest form the user. Few negatives
related to transitions between different locations (e.g., corridors) are also included.
Figure 2.3(b) shows some negative samples. Most of the negative-videos are used
solely for testing purposes, while a small part of them is used to extract a fixed
number (200 in our experiments) of frames which will be used as “optimization
negative samples” in order to optimize the performances of the compared methods.
At training time, all the frames contained in the “10-seconds” video shots are used,
while at test time, only about 1000 frames per-class uniformly sampled from the
testing videos are used. In order to perform fair comparisons across the different
devices, we built four independent, yet compliant, device-specific datasets. Each
dataset comprises data acquired by a single device and is provided with its own
training and test sets. The device-specific datasets are available for download at the
URL: http://iplab.dmi.unict.it/PersonalLocations/.

2.4.2 8-LOCATIONS

This dataset extends 5-LOCATIONS and contains about 7 more hours of new video.
The material has been acquired by the same subject using the four considered de-
vices. Specifically, three more locations have been included: Kitchen Top, Sink
and Garage. This dataset also reuses the same negative samples included in the
5-LOCATIONS dataset. The full set of 8 personal locations arises from possible
daily activities of a user: Car, Coffee Vending Machine (C. V. M.), Office, Living
Room (L. R.), Home Office (H. Office), Kitchen Top (K. Top), Sink, Garage. The

dataset includes similar looking locations (e.g., Office vs Home Office) and locations


http://iplab.dmi.unict.it/PersonalLocations/

Chapter 2. Recognizing Locations of Interest from Egocentric Videos 26

office home office

(b) negative samples

Figure 2.3: (a) Some sample images of the five personal locations of the 5-LOCATIONS dataset.
Images from the same locations are grouped by columns, while images acquired using the same
device are grouped by rows. The following abbreviation holds: coffee v. machine - coffee vending
machine. (b) Some negative samples used for testing purposes.
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characterized by large intra-class variability (e.g., Garage). Figure 2.4 shows some
sample frames belonging to the dataset.

This overall dataset amounts to more than 20 hours of video and more than one
million frames in total. In order to facilitate the analysis of such a huge quantity
of collected data, we extract each frame in the training videos and temporally sub-
sample the testing videos. To reduce the amount of frames to be processed, for each
location in the test sets, we extract 200 subsequences of 15 contiguous frames. This
sub-sampling still allows to consider temporal coherence. The starting frames of the
subsequences are uniformly sampled from the 5 videos available for each class. The
same sub-sampling strategy is applied to the test negatives. We also extract 300
frames form the optimization negative videos. This amounts to a total of 133770
extracted frames to be used for experimental purposes. The dataset is available at
the following URL: http://iplab.dmi.unict.it/Personallocations/.

2.4.3 10-LOCATIONS

This dataset has been acquired using only the LX2W camera (Looxcie LX2 +
wideangular converter). It partially extends 8-LOCATIONS, and introduces some
new footage related to two new location: Piano and Studio. Please note that footage
related to the Sink, Kitchen and Living Room locations is not the same contained
in 8-LOCATIONS and 5-LOCATIONS. The overall dataset contains video related
to 10 different personal locations, plus various negative ones. The negative samples
included in the 5-LOCATIONS and 10-LOCATIONS datasets are also included in
this dataset. The full list of location is related to a possible daily routine: Car,
Coffee Vending Machine (C.V.M.), Office, Lab Office (L.O.), Living Room (L.R.),
Piano, Kitchen Top (K.T.), Sink, Studio, Garage. Similarly to the previously dis-
cussed datasets, the 10-LOCATIONS dataset exhibits a high degree of intra-class
variability (e.g., Car and Garage classes) and small inter-class variability in some
cases (e.g., Office, Lab Office and Studio classes).

Coherently with what discuss earlier in this section, we assume that the user is
required to provide only minimal data to define his personal locations of interest.
Therefore, the training set consists in 10 short videos (one per each location) with
an average length of 10 seconds per video. Differently from previous datasets, the

test set consists in 10 video sequences covering the considered personal locations of
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LX2P LX2W

Sink K. Top H. Office L. R. Office C. V.M. Car

Garage

a) positive samples

”‘SI@IHW-”E

b) negative samples

Figure 2.4: (a) Some sample images from the 8-LOCATIONS dataset. Images related to
the same locations are on the same row, while images acquired using a specific device are
on the same column. (b) Some negative samples used for testing purposes.
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Sequence Context transitions Length
1 Car — N — Office & N — Lab Office 00:11:27
2 Office -+ N — Lab Office 00:05:55
3 Lab Office - N — Office - N — C.V.M. 00:07:24
4 TV — N — Piano — N — Sink 00:11:40
5 Kitchen — N — Sink — N — Piano 00:10:41
6 Kitchen - N — Sink - N — TV 00:11:18
7 Piano -+ N — Sink - N — TV 00:04:57
8 Studio - N — Car — N — Garage 00:06:51
9 Car - N — Garage — N — Studio 00:05:17
10 Car —+ N — Studio -+ N — Garage 00:06:05

Total length 01:21:35

Table 2.4: A summary of the location transitions contained in the test sequences of the 10-
LOCATIONS dataset. “N” represents a negative segment (to be rejected by the final system).

interest, negative locations and transitions among locations. Each frame in the test
sequences has been manually labeled as either one of the 10 locations of interest
or as a negative. Table 2.4 summarizes the content of the test sequences with the
related transitions. Figure 2.5 shows some samples from the acquired dataset. We
also report the total time spent by the user in each of the considered locations in
Table 2.5. As can be noted, some locations (e.g., C.V.M.) tend to be less visited
than others (e.g., Sink). It should be noted that such information is not available
at training time and hence it cannot directly be used to improve recognition perfor-
mances (for instance, by weighting classes differently on the basis of their natural
occurrence in real scenarios).

The dataset is also provided with an independent validation set which can be
used for optimize the hyper-parameters. The validation set contains 10 medium
length (approximately 5 to 10 minutes) videos of activities performed in the con-
sidered locations (one video per location). Validation videos have been temporally
subsampled in order to extract exactly 200 frames per-location, while all frames are
considered for training and test videos. We have also acquired 10 medium length
videos containing negative samples from which we uniformly extract 300 frames for
training and 200 frames for validation. Negative samples are provided in order to
allow comparisons with methods which explicitly learn from negatives. Please note
that the proposed method does not need to learn from negatives and hence it dis-

cards them at training time. Please note that both of the sources of negative samples



Chapter 2. Recognizing Locations of Interest from Egocentric Videos

30

Office Lab Office Living Room
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Figure 2.5: Some sample frames from the 10-LOCATIONS dataset.
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Location  Time (seconds)

Car 293
C.V.M. 35
Garage 269

Kitchen Top 392
Lab Office 478
Office 228
Piano 459

Sink 700
Studio 409

Living Room 459
Negatives 680

Table 2.5: Total time spent by the user in each location (including negatives) in the whole
dataset.

discussed in Section 2.2 (i.e., locations not of interest and transitions between lo-
cations). The overall dataset contains 2142 positive, plus 300 negative frames for
training, 2000 positive, plus 200 negative frames for validation and 132234 mixed
(both positive and negative) frames for testing purposes. The dataset is publicly

available at the web page http://iplab.dmi.unict.it/Personallocations/.

2.5 Benchmark of Representations and Wearable

Devices

We begin to study the problem of recognizing personal locations of interest from
egocentric images performing a benchmark of different state-of-the-art methods for
scene and object classification. In order to assess the influence of device-specific
factors, such as the wearing modality and the Field Of View (FOV), we consider the
5-LOCATIONS dataset, which contains egocentric videos of 5 different personal lo-
cations acquired using 4 wearable cameras. To make the analysis worth in real-world
scenarios where personal locations of interest need to be discriminated from negative
samples, we consider a simple classification pipeline which includes a mechanism for

the rejection of negative samples.


http://iplab.dmi.unict.it/PersonalLocations/
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Figure 2.6: The considered classification pipeline combining a one-class with a multi-class
classifier.

2.5.1 Classification Pipeline

As already discussed, a personal location recognition system should be able to dis-
criminate among different personal locations specified by the user and reject negative
frames (i.e., frames not related to any of the considered locations). Therefore, we
consider a baseline classification pipeline made up of two main components: a lin-
ear one-class classifier to reject negative samples and a linear multiclass classifier to
discriminate among different personal locations. Figure 2.6 depicts the considered
pipeline. The classification into the n+ 1 different classes (the “negative” class, plus
n location-related classes) is obtained using a cascade of a one-class SVM (OCSVM)
and a regular multi-class SVM (MCSVM). The OCSVM detects the negative sam-
ples and assigns them to the negative class. All the other samples are fed to the
MCSVM for location discrimination. Since the input to this pipeline is a single
image, no temporal coherence is leveraged to perform the predictions. This aspect
will be investigated in Section 2.6 and Section 2.7. Please note that the proposed

classification pipeline is to be considered a baseline. At this stage, our main focus is
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on performing a benchmark of representations/devices, and not on the recognition

system itself.

2.5.2 Representations

We assume that the input image I can be mapped to a feature vector x € R?
through a representation function. Specifically, we consider three different classes
of representation functions: holistic, shallow and deep. All of these representations
have been used in the literature for different tasks related to scene understanding [89,
92] and object detection [93, 94]. In the following subsections we discuss the details

of the considered representations and the related parameters.

Holistic Representations

Holistic feature representations have been widely used in tasks related to scene
understanding [89, 91]. Their aim is to provide an image description encoding dis-
tinctive scene-related features like global edge orientations (the so called “spatial
envelope” [89]), while discarding instance-specific variabilities (e.g., the location of
specific objects). As a popular representative of this class, we consider the GIST
descriptor proposed in [89] and use the standard implementation and parameters
provided by the authors®. According to the standard implementation, all input im-
ages are resized to the normalized resolution of 128 x 128 pixels prior to computing
the descriptor. In this configuration, the output GIST descriptors have dimension-
ality d = 512.

Shallow Representations

With deep feature representations and Convolutional Neural Networks (CNNs) be-
coming mainstream in the Computer Vision literature, classic representation schemes
based on the encoding of local features (e.g., Bag of Visual Word models) have been
recently referred to as shallow feature representations [94]. The term “shallow” is
used to highlight that features are not extracted hierarchically as in deep learning
models. On the contrary, there is a single feature extraction layer where local feature

are extracted (e.g., SIFT descriptors) and a description one where some encoding

“http://people.csail.mit.edu/torralba/code/spatialenvelope/
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strategy is used to summarize the visual content of the image. Among the differ-
ent Bag of Visual Word models, we consider Improved Fisher Vectors (IFV) [95] to
encode densely-sampled SIFT features. This schema generally outperforms other
encoding paradigms and can be considered the state-of-the-art in shallow represen-
tations for object classification [93, 94].

The IFV features are extracted following the procedures described in [93, 94].
As a first step, SIFT descriptors are densely extracted from each training and test
image. As it is suggested in [93], we use the vl_phow function of the VLFeat li-
brary [96] to densely sample SIFT features at multiple scales. To make computation
tractable on a large number of frames, each input image is resized to a normalized
height of 300 pixels keeping the original aspect ratio. This produces images of res-
olutions 400 x 300 pixels and 533 x 300 pixels in our dataset. Afterwards, SIFT
descriptors are component-wise square-rooted and their dimensionality is reduced
to 80 components using Principal Component Analysis (PCA) [97]. Apart from the
standard SIFT descriptors, we also consider the spatially-enhanced local descriptors
discussed in [94]. Such descriptors are obtained concatenating the coordinates of
the location from which the SIFT descriptor is extracted to the PCA-reduced SIFT
features, obtaining a 82-dimensional vector as detailed in [94]. Gaussian Mixture
Model (GMM) with K = 256 centroids are trained on the PCA-decorrelated SIFT
descriptors extracted from all images in the training set (negatives are excluded)
in order to build a visual codebook. We also consider large codebooks (K = 512)
in our experiments. The IFV feature vectors are obtained concatenating the aver-
age first and second order differences between the local descriptors and the centers
of the learned GMM [93]. The dimensionality d of IFV descriptors depends on the
number of clusters K of the GMM codebook and the number of dimensions D of the
local feature descriptors (i.e., SIFT) according to the formula: d = 2K D. Using the
aforementioned parameters, the number of dimensions of our IFV representations
ranges from a minimum of 40960 to a maximum of 83968 components. The VLFeat
library [96] has been used to perform all the operations involved in the computation

of the IF'V representations.
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Deep Representations

Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art perfor-
mances in a series of tasks including object and scene classification [92, 94, 98]. They
allow to learn multi-layer representations of the input images which are optimal for
a selected task (e.g., object classification). CNNs have also demonstrated excellent
transfer properties, allowing to “reuse” a representation learned for a given task in a
slightly different one. This is generally done extracting the representation contained
in the penultimate layer of the network and reusing it in a classifier (e.g., SVM)
or finetuning the pre-trained network with new data and labels. We consider three
publicly available networks which have demonstrated state-of-the-art performances
in the tasks of object and scene classification, namely AlexNet [98], VGG [94] and
Places205 [92]. AlexNet and VGG have different architectures but they have been
trained on the same data (the ImageNet dataset). Places205 has the same archi-
tecture as AlexNet, but it has been trained to discriminate locations on a dataset
containing 205 different scene categories. The different network architectures allow
us to assess the influence of both network architectures and original training data
in our transfer learning settings. To build our deep representations, we extract for
each network model the values contained in the penultimate layer when the input
image (rescaled to the dimensions of the first layer) is propagated into the network.
This consists in a compact 4096-dimensional vector which corresponds to the repre-
sentation contained in the hidden layer of the final Multilayer Perceptron included

in the network.

2.5.3 Experimental Settings

Experiments are performed on the 5-LOCATIONS dataset. The aim of the ex-
periments is to study the performances of the state-of-the-art representations and
acquisition devices discussed in the previous Section on the considered task. Follow-
ing [93, 94], input feature vectors are transformed using the Hellinger’s kernel prior
to feed them to the linear SVM classifier. Since the Hellinger’s kernel is additive
homogeneous, its application can be efficiently implemented as detailed in [93]. Dif-
ferently from [93, 94], we do not apply the L2 normalization to the feature vectors,

but instead we independently scale each component of the vectors in the range [—1, 1]
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subtracting the minimum and dividing by the difference between the maximum and
minimum values. Minima and maxima for each component are computed from the
training set and reported on the test set. This overall preprocessing procedure out-
performs or gives similar results to the combination of other kernels (i.e., gaussian,
sigmoidal) and normalization schemes (i.e., L1, L2) in preliminary experiments.

To implement the OCSVM component, we consider the method proposed in [99].
Its optimization procedure depends on a single parameter v which is a lower bound
on the fraction of outliers in the training set. In our settings, the training set
consists in all the positive samples from the different locations and hence it does not
contain outliers by design. Nevertheless, since the performances of the OCSVM are
sensitive to the value of parameter v, we use the small subset of negative samples
available along with the training set, to choose the value of v which maximizes
the accuracy on the training-plus-negatives samples. It should be noted that the
negative samples are only used to optimize the value of the v parameter and they
are not used to train the OCSVM. The multiclass component has been implemented
with a multiclass SVM classifier. Its optimization procedure depends only on the
cost parameter C. At training time, we choose the value of C' which maximizes the
accuracy on the training set using cross-validation similarly to what has been done
in other works [93, 94].

The outlined training and testing pipeline is applied to different combinations
of devices and representations/parameters in order to assess the influence of using
different devices to acquire the data and different state-of-the-art representations.
It should be noted that all the parameters involved in the classification pipeline are
computed independently in each experiment in order to yield fair comparisons. We

use LibSVM library in all our experiments [100].

2.5.4 Experimental Results

In order to assess the performances of each component of the considered baseline
classification pipeline, we report the overall accuracy of the system, as well as the
performance measures for the one-class and multi-class components working inde-
pendently. The overall accuracy of the system (ACC) is computed simply counting

the fraction of the input images correctly classified by the cascade pipeline into one
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of the possible six classes (five locations, plus the “negative” class). The perfor-
mances of the OCSVM component, are assessed reporting the True Positive Rate
(TPR) and the True Negative Rate (TNR). Since the accuracy of the one-class clas-
sifier can be biased by the large number of positive samples (about 5000), versus the
small number of negatives (about 1000), we report the average between TPR and
TNR, which we refer to as True Average Rate (TAR):

TPR+TNR

TAR =
R 2

(2.1)

The performances of the MCSVM are assessed bypassing the OCSVM component
and running the MCSVM only on the positive samples of the test set. We report the
Multi-Class Accuracy (MCA), i.e., the fraction of samples correctly discriminated
into the 5 locations, and the per-class True Positive Rates. Table 2.6 reports the
results of all the experiments. Each row of the table corresponds to a different
experiment and is denoted by a unique identifier in brackets (e.g., [a1]). The GMM
used for the IFV representations have been trained on all the descriptors extracted
from the training set (excluding the negatives) using the settings specified in the
table. The table is organized as follows: the first column reports the unique identifier
of the experiment and the used representation; the second column reports the device
used to acquire the pair of training and test sets; the third column reports the options
of the representation, if any; the fourth column reports the dimensionality of the
feature vectors; the fifth column reports the overall accuracy of the cascade (one-class
and multi-class classifier) classifier on the six classes; the sixth column reports the
One-Class Average Ratio (OAR) of the OCSVM classifier; the seventh and eighth
columns report the TPR and TNR values for the OCSVM; the ninth column reports
the accuracy of the MCSVM classifier (MCA) working independently from OCSVM
on the five locations classes. The remaining columns report the true positive rates for
the five different personal locations classes. To improve the readability of the table,

the per-column maximum performance indicators among the experiments related to

a given device are reported as ’ boxed numbers |, while the global per-column maxima

are reported as underlined numbers.

In the reported results the performance indicators of the MCSVM are in average
better than the ones of the OCSVM. This difference is partly due to the fact that

one-class classification is usually “harder” than multi-class classification due to the



Chapter 2. Recognizing Locations of Interest from Egocentric Videos 38

MEeTHOD DEV. OPTIONS Dmm. |ACC | TAR TPR TNR |MCA CAR C.V.M. OFFICE TV H. OFF.
[a1] GIST RJ — 512 |38,96 | 50,52 91,54 9,50 | 49,85 43,76 90,84 14,20 76,26 46,78
[b1] IFV  RJ KS 256 40960 42,17 | 46,70 91,20 2,20 | 51,25 62,28 53,82 34,69 98,69 38,37
[c1] IFV  RJ KS 512 81920|42,16 | 46,61 90,82 2,40 | 51,21 62,21 53,85 34,55 98,90 38,58
[di] IFV RJ KS SE 256 41984(43,24 | 45,42 85,14 5,70 | 53,73 69,08 50,22 34,65 (99,11 46,62
[e1] IFV  RJ KS SE 512 83968 |36,06 | 45,68 89,66 1,70 | 44,03 77,80 46,41 29,65 97,00 21,88
[f1] IFV RJ DS 256 40960 43,77 | 52,35 [93,50| 11,20 | 52,63 65,58 49,50 27,98 91,51 86,92
[g1] IFV  RJ DS 512 81920|47,46 | 48,82 88,74 8,90 | 60,33 84,34 55,51 37,79 78,09 52,10
[h1] IFV  RJ DS SE 256 41984(47,91 | 49,37 91,74 7,00 | 59,83 78,92 70,49 40,73 66,96 (88,15
[t1] IFV  RJ DS SE 512 83968(49,51 | 45,77 81,34 10,20 | 67,51 83,80 65,75 41,78 78,73 67,77
[71] CNN RJ AlexNet 4096 |49,26 | 48,17 67,03 29,30 | 79,50 93,07 97,10 57,25 94,00 62,10
[k1] CNN RJ Places205 4096 |55,19|| 53,02 80,14 25,90 | 78,02 98,43| 69,69 96,14 50,86
[[1] CNN RJ VGG 4096 |54,54 m 63,35 [W] [85,—26] 94,54 89,83 (77,10 90,54 73,27
[ag] GIST LX2P — 512 |48,62 [m] 96,56 26,50 | 54,15 74,15 [m] 30,41 82,68 32,02
[b2] IFV  LX2P KS 256 40960| 51,19 | 55,68 79,26 32,10 | 70,93 60,17 98,40 56,65 98,97 55,16
[c2] IFV  LX2P KS 512 81920 [63,83]| 54,97 95,64 14,30 | 76,90 59,84 97,23 68,39 96,92 72,17
[d2] IFV  LX2P KS SE 256 41984|50,66 | 56,43 79,16 33,70 | 69,75 58,80 98,29 54,87 98,96 53,10
[e2] IFV  LX2P KS SE 512 83968|59,08 | 50,54 [97,48] 3,60 | 71,99 58,29 98,03 60,93 98,44 62,11
[f2] IFV  LX2P DS 256 40960 | 46,62 | 52,10 88,10 16,10 | 61,73 71,33 75,65 26,08 62,62 56,10
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

g2) IFV  LX2P DS 512  81920|50,59 | 52,20 90,00 14,40 | 65,15 77,70 68,41 3121 72,75 66,59
ho] IFV  LX2P DS SE 256 41984 |41,79 | 47,22 80,64 13,80 | 57,61 74,62 76,88 32,42 71,65 39,86
io] IFV  LX2P DS SE 512 83968 56,24 | 55,85 94,00 17,70 | 68,29 77,34 8429 37,44 8829 52,78
jo] CNN LX2P AlexNet 4096 |48,16 | 51,31 66,31 36,30 | 76,10 80,564 78,98 50,45 70,66
k2] CNN LX2P Places205 4096 |54,84 | 57,30 60,89 53,70 99,19] 92,20 63,38 99,88 [06,45

I2] CNN LX2P VGG 4096 |50,74 | 57,40 56,39 |58,40|| 86,02 98,60 81,04 |[74,11] 99,75 80,21
az] GIST LX2W — 512 |61,27| 60,02 93,66 26,37 | 73,91 87,51 |100,0] 80,05 83,84 48,29

bs] IFV LX2W KS 256 40960 | 55,47 | 61,89 89,92 33,87 | 67,27 55,46 99,30 38,77 98,78 61,73
es] IFV  LX2W KS 512 81920|54,82 | 63,41 8846 38,36 | 66,93 57,55 99,30 40,58 99,26 57,14
d3] IFV  LX2W KS SE 256 41984 49,73 | 50,08 88,38 11,79 | 66,53 63,29 99,69 42,45 99,28 47,94
es] IFV  LX2W KS SE 512 83968 |55,08 | 54,90 91,52 18,28 | 67,95 53,43 99,80 46,75 55,86
fs] IFV  LX2W DS 256 40960 |59,62 | 52,77 94,36 11,19 | 72,81 87,40 9528 66,94 97,33 4822
g3] IFV  LX2W DS 512 81920|60,50 | 52,77 95,86 9,69 | 73,15 7552 90,04 73,72 99,81 53,60
hs] IFV LX2W DS SE 256 41984 |57,88 | 49,01 87,84 10,19 | 74,33 82,26 93,71 74,33 99,60 51,99
i3] IFV  LX2W DS SE 512 83968 |62,65 | 54,59 [96,40] 12,79 | 75,74 69,61 97,51 79,32 98,85 58,93
js] CNN LX2W AlexNet 4096 |[71,23|| 70,00 81,46 58,54 | 91,34 99,70 96,23 90,36 99,03 76,50
k3] CNN LX2W Places205 4096 |61,63 | 63,77 66,49 61,04 | 94,02 99,90 99,90 [93,00] 99,65 80,17

Is] CNN LX2W VGG 4096 | 66,02 |[T1,91] 69,29 [74,53]|[94,42] [100,0] 99,60 93,79 99,64 [B1,91
as] GIST LX3 512 42,08 | 65,23 77,86 52,59 | 53,07 65,16 9524 31,91 5836 26,55

[ S

[b4) IFV LX3 KS 256  40960|40,51 | 49,88 82,50 17,27 | 62,07 67,21 90,19 46,31 99,15 20,47
[ca] IFV  LX3 KS512  81920|40,21 | 47,23 83,38 11,08 | 62,13 67,33 90,19 46,37 99,15 20,74
[ds IFV LX3 KS SE 256 41984[41,48 | 47,61 8564 958 | 61,49 66,07 89,35 47,04 9887 16,61
[e4] IFV  LX3 KS SE 512 83968 /40,49 | 51,34 81,92 20,76 | 61,35 66,19 89,23 45,58 99,15 19,17
[f4] IFV  LX3 DS 256 40960 59,07 | 61,20 [03,46] 28,94 | 68,81 78,72 83,11 47,00 92,49 73,08
[94] IFV LX3 DS512  81920(63,31 | 50,69 89,50 11,88 [ 81,92 90,82 92,61 59,97 99,81 86,23
[ha] IFV  LX3 DS SE 256 41984 [67,54]| 58,78 92,32 2525 | 82,70 88,61 84,00 [66,67] 99,29 89,39
[ia IFV  LX3 DS SE 512 83968|66,02 | 57,83 91,80 23,85 | 81,08 91,42 90,55 58,93 [99,84] 78,23
[ja] CNN LX3 AlexNet 4096 |54,49 | 67,42 75,16 59,68 | 76,32 99,90 50,85 97,88 20,23
[ks] CNN LX3 Places205 4096 |52,87 55,19 95,97 98,21 62,36 97,47
[

1) CNN LX3 VGG 4096 |59,12 | 69,68 74,59 64,77 | 80,74 99,60 [100,0] 51,31 99,01 77,63

Table 2.6: The results related to experiments performed on the 5-LOCATION dataset.
Per-column maximum performance indicators among the experiments related to a given
device are reported as [boxed numbers], while the global per-column maxima are reported
as underlined numbers.
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limited availability of representative counterexamples. Furthermore, it can be noted
that many of the considered representations yield inconsistent one-class classifiers
characterized by large TPR values and very low TNR values. This effect is in general
mitigated when deep features are used, which suggests that better performances
could be achieved with suitable representations. Moreover, the performances of the
one-class classifier have a large influence on the performances of the overall system,
even in the presence of excellent MCA values as in the case of [js], [ks] and [l5].
For example, while the [/3] method reaches an MCA accuracy equal to 94,42% when
only discrimination between the five different locations is considered, it scores a OAR
accuracy as low as 71,91% on the one-class classification problem, which results in
the overall system accuracy (ACC) of 66,02%.

The results related to the MCSVM are more consistent. In particular, the deep
features systematically outperform any other representation methods, which sug-
gests that the considered task can take advantage of transfer learning techniques,
given the availability of a small amount of labeled data (i.e., we can use models al-
ready trained for similar tasks to build the representations). Interestingly, the simple
GIST descriptor, gives remarkable performances when used on wide angle images
acquired by the LX2W device (i.e., experiment [as]), where an MCA value of 73,91%
is achieved. The different experiments with the IF'V-based representations highlight
that the keypoint-based extraction scheme (KS) has an advantage over the dense-
based (DS) extraction scheme only when the narrow FOV LX2P device is used,
while dense-based extraction significantly outperforms the keypoints-based extrac-
tion scheme when the field of view is larger, i.e., for the LX2W and LX3 devices.
Moreover, when a dense-based extraction scheme is employed, spatially-enhanced
descriptors (SE) outperform their non-spatially-enhanced counterparts. The use of
larger GMM codebooks (i.e., K = 512 clusters) often (but not always, as in the
cases of [e1] vs [d1] and [i4] vs [hy]) allows to obtain better performances. However,
this come at the cost of dealing with very large representation vectors (in the order
of 80K vs 40K dimensions).

As a general remark, devices characterized by larger FOVs tend to have a sig-
nificant advantage over the narrow-FOV devices. This is highlighted in Figure 2.7
which reports the minima, maxima and average ACC values (accuracy of the overall

system) for all the experiments related to a given device. These statistics clearly
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Figure 2.7: Minimum, average and maximum accuracies per device related to experiments
performed on the 5-LOCATIONS dataset. As can be noted, all the statistics are higher
for the LX2W-related experiments. This suggests that the task of recognizing personal
locations is easier for images acquired using such device.

indicate that the LX2W camera is the most appropriate (among the ones we tested)
for modelling the personal locations of the user. The success of such camera is
probably due to the combination of the large FOV and the wearing modality, which
allows to gather the data from a point of view very alike to the one of the user.
Indeed, the LX3 camera, which has a similar FOV, but is worn differently, achieve
the top-2 average and maximum results.

We conclude our analysis reporting the confusion matrices (Figure 2.8) and some
success/failure examples (Figure 2.9 and Figure 2.10) for the best performing meth-
ods with respect to the four considered devices. These are: [k;] CNN Places205
for the RJ device, [cp] IFV KS 512 for the LX2P device, [j3] CNN AlexNet for the
LX2W device and [hy] IFV DS SE 256 for the LX3 device. The confusion matrices
reported in Figure 2.8 show that the most part of the error is introduced by the neg-
atives, while there is usually less confusion among the 5 locations, especially in the
case of [jz]. This confirms our earlier considerations on the influence on the whole
system of the low performances of the one-class component used for the rejection of
locations not of interest for the user. It should be noted that a rejection mechanism

(implemented in our case by the one-class component - see Section 2.5.1) is crucial
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Figure 2.8: Confusion matrices of the four the best performing methods on the considered devices.
Columns represent the ground truth classes, while rows represent the predicted labels. The original
confusion matrices have been row-normalized (i.e., each value has been divided by the sum of all
the values in the same row) so that each element on the diagonal represents the per-class True
Positive Rate. Each matrix is related to the row of Table 2.6 specified by the identifier in brackets.
Please note that all methods have been tested on a balanced test set. The following abbreviations
are used: c.v.m - coffee vending machine, h.off - home office, neg. - negatives.
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coffee v. machine

Figure 2.9: Some success (green) and failure (red) examples according to the best performing
methods on the RJ and LX2P. Samples belonging to the same class are grouped by columns, while
samples related to the same experiment are grouped by rows.
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Figure 2.10: Some success (green) and failure (red) examples according to the best performing
methods on the LX2W and LX3 devices. Samples belonging to the same class are grouped by
columns, while samples related to the same experiment are grouped by rows.
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for building effective systems, not only able to discriminate among a small set of
known locations, but also able to reject outliers and that building such component
can usually rely only on a small number of positive samples with few or no repre-
sentative negative examples. Moreover, there is usually some degree of confusion
between the office, home office and TV classes. This is not surprising, since all these
classes are characterized by the presence of similar objects (e.g., a screen) and by
similar user-location interaction paradigms. Such considerations suggest that dis-
crimination among similar locations should be considered as a fine-grade problem
and that the considered task could probably benefit from coarse-to-fine classification
paradigms. All the considerations above are more evident looking at the samples

reported in Figure 2.9 and Figure 2.10.

2.5.5 Discussion

The aim of this benchmark was to assess the performances of many state-of-the-art
representations and acquisition devices on the task of recognizing personal locations
of interest for the user. All experiments have been conducted on a dataset of 5
personal locations using 4 different devices. This dataset is available online for
research purposes. The results revealed that, while the discrimination among a
limited number of personal locations is an easier task, detecting the negative samples,
which is a required step in real applications, is a hard one. The best results have
been achieved considering deep representations and a wide angular, ear mounted
wearable camera (LX2W). This highlights that the considered task can effectively
take advantage of the transfer learning properties of CNNs and that wide FOV, head
mounted cameras are the most appropriate to model the user’s personal locations.
Moreover, despite the good performances of the multiclass component, there is still
some degree of confusion among personal locations belonging to the same, or similar
categories (e.g., office, home office, tv). This suggests that better performances could
be achieved fine-tuning the CNN-based representation to the required instance-level

granularity.
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2.6 Entropy-Based Negative Rejection and 8 Per-

sonal Locations

To overcome the main limitations discussed in the prevision Section, we have extend

our analysis in the following ways:

1. the proposed dataset (5-LOCATIONS) has been augmented to 8 personal lo-
cations by introducing about 7 hours of new video (8-LOCATIONS dataset);

2. an entropy-based negative rejection method exploiting temporal coherence of
neighboring predictions is proposed. The proposed method is compared to the

baseline pipeline discussed in the previous benchmark;

3. fine-tuned CNNs have been considered in the analysis and are compared to
models based on off-the-shelf CNN features.

We consider a classification pipeline similar to the baseline classification pipeline
discussed in Section 2.5.1 and depicted in Figure 2.6. The pipeline is made up
of two main components: 1) a multi-class location classifier, and 2) a mechanism
for rejecting negative samples. The multi-class component is implemented using
a number of standard supervised learning techniques (e.g., an SVM classifier or
a fine-tuned CNN). In order to tackle negative rejection, we propose an entropy-
based negative rejection mechanism which leverages the temporal coherence of class
predictions within a small temporal window. The input to our system is a small
sequence of neighboring frames. For each frame, the multi-class classifier estimates
a posterior probability distribution on the considered personal locations. Posterior
probabilities are hence smoothed to perform multi-class classification on the input
sequence. The input sequence is either classified as a given location or rejected
depending on how much the different predictions agree. The proposed pipeline is
depicted in Figure 2.11 and detailed in the following.

We assume that very close frames in an egocentric video (e.g., less than 0.5
seconds apart) share the same class. This assumption is of course imprecise whenever
there is a transition from a given location to another. This phenomenon however
mostly affects the accuracy related to the localization of the exact transition frame

between two different locations and it does not impact much (in average) the overall
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Figure 2.11: The proposed classification pipeline combining a multi-class classifier and an
entropy-based negative rejection method.

recognition performances. According to this assumption, n subsequent observations
x1,...,x, share the same class c¢. As it is depicted in Figure 2.12, this implies the

conditional independence between the observations given class c:
z; AL xile, Vi,j € {1,2,...,n}. (2.2)

Given the property reported in Equation (2.2), the posterior probability p(cg|z1, . . ., z,)

for the generic class ¢, can be expressed as:
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Figure 2.12: A graphical model depicting the conditional independence of a small number
of subsequent frames x1,...,z,, given their class c.

If we assume that all the considered locations of interest have equal probabilities
pler) = +,Vk € {1,--- K} (with K being the total number of classes), then
Equation (2.3) simplifies to:

e ) = Hzp(ck|xz)
ekt 2 = 5 T plend) 20

where p(c|z;) denotes the posterior probability distribution on class ¢ estimated by
the multi-class classifier, given observation x;.

Equation (2.4) is used to smooth the predictions of the multi-class classifier on
multiple, contiguous frames of the input sequence for which we assume conditional
independence as reported in Eq (2.2). The predicted class for the input sequence is
determined as the one which maximizes the probability reported in Equation (2.4).
When the samples are positive and hence they belong to a given class, we expect
Equation (2.4) to produce a resulting posterior distribution which strongly agrees on
the identity of the considered samples. On the contrary, when the sequence contains
negative samples, we expect the resulting posterior distribution to exhibit a high
degree of uncertainty. We propose to measure the uncertainty of the distribution
reported in Equation (2.4) (i.e., entropy) to quantify the “outlierness” of the con-
sidered samples. Given a posterior distribution p, we measure the uncertainty as

the entropy:

e(p; 1, ,xp) = — Zp(ck|:v1, ...,xk)log(p(ck]ajl, ,wk)) (2.5)
k
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Figure 2.13: A visual example of the transformation operated by Equation (2.6).

The entropy reported in Equation (2.5) can be used to discriminate negative se-
quences (i.e., locations not of interest for the user) from positive ones using a thresh-
old t.. Sequences are classified as negative if e(p; x1,- -+, x,) > t., whereas they are
classified as positive if e(p; 1, ,z,) < t.. The optimal threshold ¢, can be se-
lected as the one which of best separates the training set from a small number of
negatives used for optimization purposes.

In practice, instead of measuring the uncertainty directly from the distribution

reported in Equation (2.4), we log-transform the original distribution p as follows:

~ lo Crlry, -, x
pleklzy, - xp) = g(p(ck|z1 k)

The proposed transformation has the effect of “inverting” the degree of uncertainty
carried by the distribution. Therefore, negative samples will be characterized by a
high e(p;x1, - ,z,) value and a low e(p;xy,- - ,z,) value. Figure 2.13 depicts a
visual example of such transformation. In Section 2.6.2, we experimentally show
that working with the log-transformed distribution shown in Equation (2.6), allows
to compute the separation threshold ¢, from the training/optimization-negatives set
in a more robust way.

Please note that the maximum length n of the input sequence in our system
should be carefully selected. Indeed, too small values would cause the rejection
mechanism to fail for lack of data, while excessively large values would break the
assumption reported in Equation (2.2) and would greatly affect the localization of

the transition frame between two different locations.
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2.6.1 Representations

Similarly to what done in our preliminary analysis, we consider three categories of
image representations: holistic, shallow and deep representations. In particular, we
consider the same representations for the holistic and shallow categories, i.e., GIST
and IFV computed on dense SIFT descriptors. Such representations are extracted
with the same modalities and parameters as the ones discussed in Section 2.5.2.
We update the considered representations including more recent CNN architec-
tures and exploitation modalities. In particular, we consider two popular CNN
architectures and two different transfer learning approaches. The considered archi-
tectures are AlexNet [98] and VGG16 [101]. Such models have been pre-trained
by their authors on the ImageNet dataset [102] to discriminate among 1000 object
categories. We also consider two models proposed by Zhou et al. [92], who train the
same CNN architectures (AlexNet and VGG16) on the Places205 dataset, which
contains images from 205 different place categories. Considering four different mod-
els allow us to assess the influence of both the network architectures (AlexNet and
VGG16) and the original training data (ImageNet and Places205) in our transfer
learning experiments. The considered transfer learning approaches are the follow-
ing: extracting the feature representation contained in the penultimate layer of the
network and reusing it in a classifier (e.g., SVM), and fine-tuning the pre-trained

network with new data and labels

Reuse of pre-trained CNNs

We obtain the deep feature representations extracting the values contained in the
penultimate layer of the network when the input image, appropriately rescaled to
the dimensions of the data layer, is propagated into the network. Such feature
representation is the one contained in the hidden layer of the multilayer perceptron
in the terminal part of the network. For all the considered CNN models, these

representations are compact 4096-dimensional vectors.

Fine-tuning of pre-trained CNNs

The pre-trained network is fine-tuned using the data contained in the training set.

Fine-tuning is performed substituting the last layer of the network (the one carrying
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the final probabilities) with a new layer containing 8 units (one per each personal
location to be recognized) which is initialized with random weights. The training
set is divided into two parts: 85% for training and 15% for validation. Optimization
of the network is resumed starting from the pre-trained weights. We set a larger
learning rate for the randomly initialized layer, and a smaller learning rate for pre-
learned layers. The training procedure is stopped when a high validation accuracy
is reached or when it is not able to grow any more and the model with maximum
validation accuracy is selected. In this case the networks are not used to explicitly

extract the representation but directly to predict posterior probabilities.

2.6.2 Experimental Settings

Experiments are performed on the 8-LOCATIONS dataset. The experiments aim
at assessing the performances of the classification pipeline including the proposed
negative rejection method. The proposed classification method will be compared
with respect to the baseline classification discussed in the previous benchmark (Sec-
tion 2.5.1). Jointly, we extend our benchmark to new CNN architectures and transfer
learning methods, as well as to the larger dataset on 8 personal locations.

We adopt experimental settings conform to the ones adopted in the previous
analysis (Section 2.5.3). Specifically, all experiments are performed considering dif-
ferent combinations of device and representations. The considered classification
pipelines and all related parameters are independently trained and tested on the
training/testing sets related to the different devices. In the following, we discuss the
experiments designed to assess the performances of the considered representations
with respect to 1) the overall location recognition system, 2) the negative rejection

mechanism alone, and 3) the multi-class classifier alone.

Overall Personal Location Recognition System

The performances of the overall system are assessed considering the proposed clas-
sification pipeline and the baseline considered in the previous benchmark. When
the proposed method including the entropy-based negative rejection mechanism is
considered (Figure 2.11), the short sequences of 15 subsequent frames included in
the dataset are used as inputs. Posterior probabilities estimated by the multi-

class component for each of the 15 input frames are smoothed using Eq (2.4). The
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smoothed posterior probability is used to reject the input sequence or classify it
among the different locations. When the baseline classification pipeline proposed
in [24] is considered (Figure 2.11), the first image of each sequence is used as input.
Input frames are whether rejected by the one-class classifier or discriminated into

the positive classes by the multi-class classifier.

Rejection of Negative Samples

Rejection of negative samples is known as a hard problem and it can be tackled
in different ways. Since all our experiments are performed on unbalanced datasets
(the number of positive samples is larger than the number of negative ones — see
Section A.3), we don’t use the accuracy to assess the performances of the methods
under analysis. When the number of negative samples is low with respect to the
positives one, a method with a high True Positive Rate (TPR) and a low True
Negative Rate (TNR) still retains a high accuracy. Therefore, the performances of
the proposed methods are assessed using the True Average Rate (average between
the TPR and the TNR) defined in Equation (2.1).

The optimization procedure of the one-class SVM classifier involved in the bench-
mark classification pipeline discussed in Section 2.5.1 depends on a single parameter
v which is a lower bound on the fraction of outliers in the training set. We train the
one-class component considering all the positive samples (the entire training set)
and use the optimization negatives to choose the value of v which maximizes the
TAR value on the set of training samples plus optimization negatives. It should be
noted that the classifier is learned solely from positive data, while the small amount

of negatives is only used to optimize the value of the v hyperparameter.

Entropy-Based Rejection Option

We apply the proposed entropy-based rejection method to discriminate negative
from positive samples. For the experiments, we consider the short sequences of 15
subsequent frames contained in the proposed dataset. It should be noted that, given
the standard rate of 30 fps, the length of each sequence is 0.5s long and hence the
conditional independence assumption reported in Equation (2.2) of Section 2.6 is
satisfied. For each experiment, we choose t. as the threshold which best separates

the training set from the optimization negative samples included in the dataset. All
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thresholds are computed independently for each experiment (i.e., for each device-
representation combination). Since the training set does not comprise 15-frames
sequences, no temporal smoothing is performed on the training predictions and
entropy is measured on the posterior probabilities predicted for each training sample.

In Section 2.6 we proposed to log-transform the smoothed posterior distribution
(Equation (2.6)) in order to compute the entropy-based score (Equation (2.5)) used
for negative rejection. To show that the considered log-transformation helps find-
ing threshold ¢, more reliably, in Figure 2.14 we report the Threshold-TAR curves
for some representative experiments. The curves plot thresholds ¢, against the True
Average Rate (TAR) scores obtained using such thresholds. The depicted curves are
used to effectively find the best discrimination threshold ¢, (i.e., the x-value corre-
sponding to the curve peak). The figure reports the curves computed on the training
sets plus optimization negatives, as well as the ones computed on the test sets. As
can be noted, the curves computed using the log-transformation are almost totally
overlapped, while there is far less overlap between the curves computed avoiding
the log-transformation. To assess the robustness of the estimated thresholds, we
also report the True Average Rate (TAR) results for all performed experiments in
Figure 2.15. The figure compares results obtained using the proposed method (i.e.,
thresholds ¢, are computed from the training/optimization-negatives set) to those
obtained with the optimal threshold computed directly on the test set using the
ground truth labels. The average absolute difference between obtained and optimal

results amounts to 0.06.

2.6.3 Multiclass Discrimination

To assess the performances of the considered representations with respect to the
task of discriminating among the 8 personal locations, we train linear SVM classi-
fiers on the training sets and test them on the corresponding test sets. Similarly
to [93, 94], the input feature vectors are transformed using the Hellinger’s kernel
prior to using them in the linear SVM classifier. Differently from [93, 94|, we do
not apply L2 normalization to the feature vectors, but instead we independently
scale each component of the vectors subtracting the minimum and dividing by the
difference between the maximum and minimum values. Minima and maxima for

each component are computed from the training set and reported on the test set.
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Figure 2.14: Threshold-TAR (True Average Rate) curves obtained without (left) and with
(right) log-transformation. All plots are obtained from posterior probabilities estimated by
an SVM model trained extracting VGG-ImageNet features from data acquired using three
different devices: the LX2P camera (perspective Looxcie LX2 - first row), the LX2W
camera (wideangular Looxcie LX2 - second row), and the LX3 device (chest mounted
Looxcie LX3 - third row).
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The optimization procedure of the linear SVM classifier depends only on the cost
parameter C', which is chosen in order to maximize the accuracy on the training set
using cross-validation techniques [93, 94]. It should be noted that, in the case of
fine-tuning, Convolutional Neural Networks are jointly used for feature extraction
and classification. Therefore, in such cases, we do not rely on a SVM classifier for
multi-class classification. When fine-tuned models are employed within the baseline
pipeline, they are used both to extract features (on top of which the SVM One-Class
classifier can be learned) and to directly perform multi-class classification. We would
like to emphasize that in our experiments the multi-class classifier is learned using

only positive samples.

2.6.4 Experimental Results

In this Section, we report the performances of the overall system implemented ac-
cording to the two considered pipelines, as well as detailed performances of the

discrimination and negative rejection components individually.

Overall System

Table 2.7 reports the accuracies of the overall system according to the proposed
method and the baseline classification pipeline. Each row of the table corresponds
to a different experiment and is denoted by a unique identifier in brackets (e.g., [a1]).
The first column (Method) reports the unique identifier and the representation
method used in the experiment. The second column (Dev.) reports the device used
to acquire the data. The third column (Options) reports the options related to the
considered representation method. Specifically, in the case of representations based
on the Improved Fisher Vectors (IFV), the values 256 or 512 represent the number
of centroids used to train the GMMs, while “SE” indicates that the SIF'T descriptors
have been Spatially Enhanced. In the CNN-related experiments, “I” denotes that
the considered model has been pre-trained on the ImageNet dataset, “P” denotes
that the considered model has been pre-trained on the Places205 dataset, “F'T”
indicates that the network has been fine-tuned, while, when no “FT” tag is reported,
the pre-trained network is only used to extract the representation vectors. The
fourth column (Dim.) reports the dimensionality of the feature vectors. The fifth

and sixth columns report the accuracies of the model according to the two compared
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methods. To improve readability, for each method, the maximum accuracies among
the experiments related to a given device are reported in bold numbers, while the
global maximum accuracy is reported in |boxed bold numbers|.

The proposed entropy-based negative rejection method generally allows to obtain

better results with respect to the baseline method when deep representations are
used. Comparable or worse performances are generally obtained when using other
representations. The holistic GIST representation is usually unable to model the
personal locations with the appropriate level of detail (compare the methods [a],
las], las] and [a4] to others). Improved Fisher Vectors (IFV) generally work better
than GIST, but provide inconsistent results in some cases (e.g., [b1] to [e1] and [bo]
to [es]). Using larger codebooks allows to obtain better results in some cases (e.g.,
when smart glasses Recon Jet (RJ) and narrow-angle ear-mounted LX2P camera are
used) at the cost of a significantly larger representation (80k vs 40k dimensions).
The Spatially Enhancement option (SE) does not in general result in significant
improvements. The best performances are given by deep representations. Fine-
tuning the model often, but not always (e.g., compare [h{] to [l1], [f3] to [js] and
[h4] to [l4]) results in a significant performance improvement.

One important fact emerging from the analysis of the results in Table 2.7, consists
in the superior performances obtained on the data acquired using the LX2W device.
This observation is supported by Figure 2.16, which reports the minimum, maximum
and average accuracies of the overall system for all the experiments related to a given
device when the proposed method is considered. All three indicators are higher in
the case of the LX2W camera, which suggest that, among the ones being tested, such
device is the most appropriate for modelling the user’s personal location. Such result
is probably due to the combination of the large FOV which allows to capture a larger
quantity of information and the wearing modality, which enables the acquisition of
the data from the user’s point of view.

In Figure 2.17 and Figure 2.18-2.19, we report confusion matrices and some
success/failure examples (true/false positive) for the best performing methods on
each device. All confusion matrices point out how the most part of the error is due to
the need to handle negative samples. In fact, most false positive errors are due to the
misclassification of negative samples as shown in Figure 2.18-2.19. Moreover, there

is usually confusion between pairs of similar looking locations, e.g., Office - Home
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Accuracy
| Method Dev Options Dim. Proposed Baseline
ay] GIST RJ — 512 22,44 25,67
b1] IFV RJ 256 40960 25,11 56,39
c1] IFV RJ 256 SE 41984 26,28 58,56
di] IFV RJ 512 81920 31,67 55,78
e1] IFV RJ 512 SE 83968 31,33 56,61
fi] CNN RJ AlexNet T 4096 58,11 58,94
g1] CNN RJ AlexNet P 4096 67,00 62,33
hi] CNN RJ VGG161 4096 71,61 43,83
i1] CNN RJ VGG16 P 4096 61,17 60,00
j1] CNN RJ AlexNet T FT 4096 65,94 60,00
k1] CNN RJ AlexNet P FT 4096 76,83 76,72
;] CNN RJ VGGI6 I FT 4096 64,11 76,89
mq] CNN RJ VGG16 P FT 4096 75,06 70,78
az] GIST LX2P — 512 29,44 22,61
bo| IFV LX2P 256 40960 17,50 51,39
co] IFV LX2P 256 SE 41984 12,56 55,11
ds] IFV LX2P 512 81920 18,50 48,17
es] IFV LX2P 512 SE 83968 18,00 48,33
f2] CNN LX2P AlexNet 1 4096 70,06 61,28
ga] CNN LX2P AlexNet P 4096 64,11 49,89
hs] CNN LX2P VGG16 1 4096 67,28 52,44
iz]) CNN LX2P VGG16 P 4096 63,33 44,83
jo] CNN LX2P AlexNet I FT 4096 74,83 63,72
ko] CNN LX2P AlexNet P FT 4096 69,94 72,00
5] CNN LX2P VGGI6 I FT 4096 68,28 75,89
mz] CNN LX2P VGG16 P FT 4096 80,06 70,50
as] GIST LX2W — 512 39,83 23,22
b3] IFV LX2W 256 40960 37,50 59,17
cg] IFV LX2W 256 SE 41984 42,83 58,44
ds] IFV LX2W 512 81920 39,50 52,06
es] IFV LX2W 512 SE 83968 37,06 51,50
f3] CNN LX2W AlexNet T 4096 75,22 65,61
g3] CNN LX2W AlexNet P 4096 73,89 55,06
hs] CNN LX2W VGG161 4096 70,89 54,06
i3] CNN LX2W VGG16 P 4096 81,67 50,06
j3] CNN LX2W AlexNet I FT 4096 73,89 65,44
ks3] CNN LX2W AlexNet P FT 4096 76,22 73,78
3] CNN LX2W VGGI6 I FT 4096 76,78 73,78
ms] CNN LX2W VGG16 P FT 4096 87,28 80,11
4] GIST LX3 — 512 29,50 29,22
ba] IFV LX3 256 40960 39,94 29,11
cq] IFV LX3 256 SE 41984 40,44 37,00
dy4) IFV LX3 512 81920 39,50 27,56
eq] IFV LX3 512 SE 83968 39,89 27,28
fa] CNN LX3 AlexNet 1 4096 65,39 51,39
gs] CNN LX3 AlexNet P 4096 76,50 55,72
hs] CNN LX3 VGG16 1 4096 73,22 34,17
iy) CNN LX3 VGG16 P 4096 76,11 51,94
ja] CNN LX3 AlexNet I FT 4096 73,06 66,94
k4] CNN LX3 AlexNet P FT 4096 67,61 56,28
4] CNN LX3 VGGI6 I FT 4096 61,94 60,65
my] CNN LX3 VGG16 P FT 4096 71,39 44,00

Table 2.7: Performances of the overall system. Results are related to experiments per-
formed on the 8-LOCATIONS dataset.
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Figure 2.16: Minimum, average and maximum accuracies of the overall system with the different
representations per device. Statistics are related to experiments performed on the 8-LOCATIONS
dataset. All the statistics are higher for the LX2W-related experiments. This suggests that the
task of recognizing personal locations is easier on images acquired using a head mounted, wide-FOV
device.

Office, Sink - Kitchen Top, Living Room - Home Office (see Figure 2.18-2.19 for some
examples). The confusion matrices shown in Figure 2.17(b) and Figure 2.17(c) use
similar models (a fine-tuned VGG16 network pre-trained on the ImageNet dataset)
trained on data acquired using similar devices, differing mainly in their Field Of
View (FOV): a narrow-angle Looxcie LX2 (LX2P) and a wide-angle Looxcie LX2
(LX2W). This allows to make direct considerations on the influence of the Field Of
View (FOV) in the task of detecting locations of interest. In particular, the use of a
wide-angle camera (Figure 2.17(b)) allows to acquire a larger portion of the Field Of
View, which is useful to reduce the confusion between similar locations (e.g., Sink
vs Kitchen Top).

Rejection of Negative Samples

Table 2.8 reports the results related to the two rejection methods considered in
our analysis: the proposed Entropy Based method (EB) and the One-Class SVM
method proposed in [24] (OCSVM). The table is organized similarly to Table 2.7,

except for the performance indicators used in this case. Columns 4 to 6 are related
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Figure 2.17: Confusion matrices of the best performing methods on data acquired by each
of the considered devices. Rows represent ground truth classes, while columns represent
the predicted labels. Each element of the confusion matrix is normalized by the sum of
the elements in the corresponding row. Hence, values along the principal diagonal are
class-related true positive rates. Confusion matrices are related to the following methods:
(a) AlexNet pre-trained on Places205 and fine-tuned on data acquired using the Recon Jet
(RJ) smart glasses, (b) VGG16 pre-trained on Places205 and fine-tuned on data acquired
using the ear-mounted perspective Looxcie LX2 camera (LX2P), (¢) VGG16 pre-trained
on Places205 and fine-tuned on data acquired using the ear-mounted wideangular Looxcie
LX2 camera (LX2W), (d) SVM trained on features exacted by AlexNet pre-trained on the
Places205 with data acquired using the chest mounted Looxcie LX3 camera. Best seen in
color.



Chapter 2. Recognizing Locations of Interest from Egocentric Videos 60

(a) AlexNet-Places-FT/RJ ([k1]) (b) VGG-Places-FT/LX2P ([mz2])

R

Figure 2.18: True positive (green) and false positive (red) samples related to the best
performing methods on the RJ and LX2P devices. Rows represent the ground truth labels,
while the predicted label is shown in yellow, in case of a failure. The shown samples are
related to the the same methods considered in Figure 2.17. Best seen in color.
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(¢) VGG-Places-FT/LX2W ([ms]) (d) AlexNet-Places/LX3 ([g4])

H. O ICE
s

Figure 2.19: True positive (green) and false positive (red) samples related to the best
performing methods on the LX2W and LX3 devices. Rows represent the ground truth
labels, while the predicted label is shown in yellow, in case of a failure. The shown samples
are related to the the same methods considered in Figure 2.17. Best seen in color.
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to the proposed Entropy-Based method (EB), while columns 7 to 9 are related to
the baseline One-Class SVM component (OCSVM). Columns 4 and 7 report the
True Average Rate (TAR). Columns {5,8} and {7,9} report respectively the True
Positive Rate (TPR) and True Negative Rate (TNR) scores related to the considered
methods. The proposed entropy-based method systematically outperforms the one-
class SVM baseline, with some exceptions, e.g., the GIST-related methods [as], [as],
[a4], plus method [my]. Consistently with the observations made earlier, the best

performing methods are in all cases related to the deep representations.

Multiclass Discrimination

Table 2.9 reports the results related to the multi-class discrimination component. It
should be noted that, in these experiments, negative rejection is not considered and
methods are evaluated ignoring negative samples. The structure of Table 2.9 follows
the one of Table 2.7, with the following differences: column 5 reports the accuracy of
the multi-class discrimination component when negative samples are removed from
the test sets, columns 6 to 13 report the True Positive Rates related to each of the
considered classes. It should be noted that the reported results are related to the
proposed method and hence they have been obtained using the smoothed posterior
probabilities. As noted for Table 2.7, the holistic GIST representations are unable
to model the personal locations with the appropriate level of detail. Even if the
accuracy values related to the GIST representations are always low, in some cases
they are still able to model some classes like for instance Coffee Vending Machine
(e.g., [as],[as] and [a4]), Living Room (e.g., [as]) and Sink (e.g., [a4]) which are char-
acterized by distinctive spatial layouts. Interestingly, the shallow representations,
albeit consistently outperformed by CNN, give remarkable performances in some
cases (e.g., [b1] and [c;]). Using larger codebooks (i.e., 512 centroids in the GMM)
does not improve the performances of the IFV-related methods. In fact, in addition
to providing a larger representation (80k vs 40k dimensions), large codebooks sys-
tematically involve worse performances. The Spatially Enhancement option (SE)
allows to achieve better performances in some cases (e.g., [c1] vs [b1]), while it leads
to worse performances other cases (e.g., [c4] vs [bg]). The best performances (bold
numbers) are given again by the deep representations. However, in contrast to what

one could expect, fine-tuned models do not always outperform the correspondent
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EB OCSVM
l Method Dev. Options TAR TPR TNR TAR TPR TNR
[a] GIST  RJ — 58,31 37,63 79,00 53,72 5544 52,00
[b1] IFV RJ 256 57,88 15,75 100,00 53,00 70,00 36,00
[e1] TRV RJ 256 SE 58,53 17,06 100,00 54,00 72,00 36,00
[d1] IFV RJ 512 61,56 23,13 100,00 53,97 71,94 36,00
e1] TV RJ 512 SE 61,38 22,75 100,00 54,38 71,75 37,00
[f1] CNN RJ AlexNet T 56,00 6550 46,50 55,06 86,63 23,50
[91] CNN RJ AlexNet P 65,19 70,88 59,50 53,28 80,56 26,00
[h1] CNN  RJ VGG16 1 67,59 73,69 61,50 48,06 46,63 49,50
[i1] CNN RJ VGG16 P 68,44 66,88 70,00 57,09 8419 30,00
[j1] CNN RJ AlexNet T FT 49,97 99,94 00,00 52,53 88,56 16,50
[k1] CNN RJ AlexNet P FT 58,94 86,88 31,00 56,97 96,94 17,00
[l1] CNN RJ VGG16 T FT 72,31 62,13 82,50 48,59 96,19 1,00
[mi] CNN  RJ VGG16 P FT 54,75 92,00 17,50 49,78 93,56 6,00
[a] GIST  LX2P 50,25 63,00 37,50 59,16 3481 83,50
[bo] TFV LX2P 256 53,38 07,25 99,50 43,03 71,56 14,50
[ca] TFV LX2P 256 SE 50,81 01,63 100,00 43,25 76,00 10,50
[do] TRV LX2P 512 53,94 08,38 99,50 41,94 75,38 08,50
[e2] TFV LX2P 512 SE 53,88 07,75 100,00 41,41 74,81 08,00
[f2] CNN LX2P AlexNet 1 66,59 74,19 59,00 52,03 75,06 29,00
[g2] CNN LX2P AlexNet P 65,03 71,56 58,50 52,88 57,25 48,50
[h2] CNN  LX2P VGG16 1 71,44 67,88 75,00 54,69 59,38 50,00
li2] CNN LX2P VGG16 P 69,59 70,19 69,00 56,28 56,56 56,00
[j2] CNN LX2P AlexNet I FT 59,22 90,44 28,00 53,09 75,69 30,50
[ka] CNN LX2P AlexNet P FT 60,63 87,75 33,50 54,00 96,50 11,50
[ls] CNN LX2P VGG16 1 FT 76,34 68,69 84.00 52,50 96,00 9,00
[mo] CNN  LX2P VGG16 P FT 58,06 96,63 19,50 71,94 80,38 63,50
[a] GIST  LX2W  — 56,97 66,44 47,50 64,25 50,50 78,00
[b3] TFV LX2W 256 62,66 30,31 95,00 51,47 79,44 23,50
[c3] TRV LX2W 256 SE 65,66 36,31 95,00 51,63 79,25 24,00
[d3] TFV LX2W 512 64,00 32,50 95,50 47,22 70,94 23,50
[e3] TFV LX2W 512 SE 62,84 29,69 96,00 47,25 72,50 22,00
[f3] CNN LX2W  AlexNet [ 68,75 80,00 57,50 67,19 7438 60,00
[g3] CNN LX2W  AlexNet P 70,75 77,00 64,50 57,28 60,56 54,00
[h3] CNN  LX2W  VGGI61 68,84 73,69 64,00 63,06 59,13 67,00
i3] CNN LX2W  VGG16 P 76,97 84,44 69,50 59,41 50,31 68,50
[js] CNN LX2W  AlexNet I FT 61,03 90,56 31,50 57,22 85,94 28,50
[k3] CNN LX2W  AlexNet P FT 61,03 90,56 31,50 62,56 88,63 36,50
i3] CNN LX2W  VGGI6TFT 76,19 77,38 75,00 51,06 86,13 16,00
[m3] CNN  LX2W  VGGI16 P FT 67,16 97,31 37,00 59,03 91,06 27,00
[as] GIST  LX3 — 47,13 50,75 43,50 67,16 4481 89,50
[ba] TEV LX3 256 65,34 32,69 98,00 31,94 40,88 23,00
[ca] TRV LX3 256 SE 65,44 33,38 97,50 34,59 53,19 16,00
[da] TRV LX3 512 65,56 32,63 98,50 30,75 41,50 20,00
ea] TFV LX3 512 SE 66,50 34,00 99,00 30,44 41,38 19,50
[f1) CNN LX3 AlexNet 71,06 81,63 60,50 54,66 72,81 36,50
[94] CNN LX3 AlexNet P 80,44 76,00 70,06) 57,13 83,00
[ha] CNN  LX3 VGG16 1 72,34 85,19 59,50 57,63 37,25 78.00
li4] CNN LX3 VGG16 P 71,06 82,13 60,00 64,50 53,00 76,00
[ja] CNN LX3 AlexNet T FT 62,19 92,88 31,50 51,38 90,75 12,00
[ks] CNN LX3 AlexNet P FT 54,69 92,88 16,50 52,53 72,06 33,00
[l4] CNN LX3 VGG16 1 FT 66,22 73,44 59,00 56,59 82,69 30,50
[m4) CNN  1X3 VGG16 P FT 53,50 93,00 14,00 53,69 53,38 54,00

Table 2.8: Results related to the negative rejection methods.
periments performed on the 8-LOCATIONS dataset.

Results are related to ex-
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pre-trained networks when they are just used for feature extraction. This is the
case of methods [j1] vs [fi], [l2] vs [ha], [ms] vs [i3] and [m4] vs [ig]. Nevertheless,
fine-tuned models significantly outperform their pre-trained counterparts in other
cases, e.g., [k1] vs [g1], [ma] vs [ia], [l3] vs [hs] and [j4] vs [f4]. One of the possible rea-
sons of the difficulty to further improve the internal representation of the networks
with respect to the given problem is the availability of very few training data. The
considered networks have been fine-tuned on a very small training sets containing

about 2000 samples.

2.6.5 Discussion

The experimental results presented in the previous sections highlight the robustness
of the proposed negative rejection method with respect to the baseline classification
pipeline based on a one-class SVM classifier. Results also show how the considered
problem is a challenging one. As discussed earlier, the performances of all the
considered methods are dominated by the limits of the negative rejection module,
while the multi-class discrimination remains an “easier” sub-task. This suggests
that more efforts should be devoted to the design of efficient and robust negative
rejection methods. The systematic emergence of deep representations as the best
performing methods, not only indicates the higher representational power of such
methods, but also suggests that the considered problem can take great advantage of
transfer learning techniques. All the CNN-based representations have been obtained
using models pre-trained on a large number of images, which compensates for the
scarce quantity of training data assumed in this study. As already pointed out in our
previous analysis, the LX2W device is the one collecting the highest performance
indicators. This suggests that head-mounted wide-angular cameras are probably the
best option when modeling the user’s location. This is not surprising since such a
configuration allows to better replicate the user’s point of view and provides a FOV

similar to the one characterizing the human visual system.

2.7 Temporal Coherence

In the previous Sections, we have benchmarked the main image representation tech-

niques and acquisition devices on the problem of recognizing personal locations.
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’Method Dev. Options ‘Acc ‘ Car C.V.M. Office L.R. H. Office K. Top Sink Garage‘
[a1] GIST RJ  — 37,56 | 62,86 98,59 48,65 0,00 32,79 4872 2500 29,06
[b1] IFV  RJ 256 80,13 | 96,43 85,37 88,38 100,00 97,09 59,86 95,00 59,70
[1] IFV  RJ 256 SE 82,94 | 9550 88,83 89,23 100,00 97,86 6842 9583 59,70
[di] ITFV  RJ 512 75,94 | 90,28 97,16 9524 100,00 96,36 44,78 9500 5848
[e1] IFV  RJ 512 SE 77,44 | 88,69 97,75 9581 100,00 96,92 48,10 94,26 59,17
[/i] CONN RJ  AlexNet I 76,19 | 86,30 97,92 57,10 100,00 43,10 71,56 91,11 83,76
[1) CNN RJ  AlexNet P 85,13 | 90,41 98,92 84,17 100,00 5745 8271 9516 95,00
[h] CNN RJ  VGGI161 93,50 100,00 99,49 97,37 100,00 81,48 84,00 97,24 94,03
[i1]] CNN RJ  VGGI16 P 76,25 | 97,11 88,73 4548 9725 3523 74,34 86,78 83,33
[j1]] CNN RJ  AlexNet I FT [74,19 | 89,53 97,86 72,73 97,03 60,43 84,47 9459 47,71
[k1] CNN RJ  AlexNet P FT |88,81 |9947 9641 81,54 93,53 9363 70,11 93,62 90,64
[1]CNN RJ  VGGI6IFT [90,00 | 74,19 76,92 100,00 9845 97,50 87,00 9524 96,08
[mi] CNN RJ  VGG16 P FT [85,06 | 69,77 59,63 9896 89,67 79,28 96,94 9538 99,43
[as] GIST LX2P — 42,69 [ 42,25 99,29 17,18 6528 4481 3741 8333 24,22
[b2] IFV  LX2P 256 73,63 | 60,75 100,00 32,56 100,00 69,23 70,22 100,00 85,41
[c2] IFV  LX2P 256 SE 74,44 | 64,47 100,00 36,28 100,00 60,14 72,97 100,00 86,15
[do] IFV  LX2P 512 67,81 | 63,79 100,00 29,70 100,00 71,17 50,52 100,00 75,09
[e2] TFV  LX2P 512 SE 68,44 | 67,73 100,00 37,21 100,00 81,73 46,30 100,00 76,25
[f2] CNN LX2P AlexNet I 87,60 | 91,55 84,75 73,91 100,00 77,88 81,20 9425 97,52
[92] CNN LX2P AlexNet P 83,19 | 97,50 99,01 51,17 100,00 9242 73,41 9597 93,63
[h2] CNN LX2P VGGI16 1 90,00 (100,00 96,14 72,17 100,00 83,03 77,65 99,34 98,98
liz) CNN  LX2P VGGI6 P 76,50 | 99,40 86,28 51,55 100,00 54,55 5821 96,33  86.57
[jz] CNN LX2P AlexNet I FT [84,75 | 9892 73,80 67,72 99,00 68,72 80,52 9521 97,92
[ke] CNN LX2P AlexNet P FT |81,38 | 9497 90,23 52,65 100,00 9744 89,14 98,31 67,92
[l CNN LX2P VGGI61FT |[88,06 |96,80 77,27 100,00 92,23 9802 62,50 93,88 100,00
[ms] CNN LX2P VGG16 P FT |88,94 |86,86 77,78 100,00 96,84 9517 87,11 74,71 97,5
[as] GIST LX2W — 51,75 | 57,97 94,74 48,36 9348 30,32 33,95 9250 31,48
[bs] IFV  LX2W 256 73,94 | 52,36 100,00 100,00 100,00 83,33 53,50 100,00 81,97
[c3] IFV  LX2W 256 SE 74,06 | 53,76 100,00 97,50 100,00 83,78 53,04 100,00 80,97
[d3] IFV  LX2W 512 69,69 | 46,51 100,00 100,00 100,00 87,70 53,11 100,00 72,99
[es] IFV  LX2W 512 SE 68,94 | 46,08 100,00 100,00 100,00 94,92 51,49 100,00 71,94
[f3) CNN LX2W AlexNet I 90,31 [ 97,99 100,00 85,71 100,00 84,24 70,18 100,00 98,99
[93) CNN LX2W AlexNet P 90,75 | 99,49 100,00 73,78 100,00 91,67 76,63 100,00 98,01
[h3] CNN LX2W VGG16 1 90,06 | 99,50 100,00 99,44 100,00 80,00 65,15 100,00 100,00
lis) CNN  LX2W VGGI6 P [05,44]| 99,40 99,00 85,97 100,00 96,05 89,45 100,00 95,67
[js] CNN LX2W AlexNet [ FT [83,19 [100,00 97,04 5587 9830 74,83 71,48 100,00 90,09
[k3] CNN LX2W AlexNet P FT |86,94 100,00 100,00 64,19 100,00 100,00 72,10 96,90 92,13
[l3) CNN  LX2W VGGI16 1 FT |94,81 |99,01 100,00 100,00 100,00 96,62 97,55 73,86 100,00
[m3] CNN LX2W VGG16 P FT |94,88 | 83,76 83,48 100,00 100,00 99,50 99,49 9522 99,50
[as] GIST LX3 — 46,31 | 42,41 84,07 3556 4560 33,33 56,05 83,52 23,26
[ba] IFV  LX3 256 69,31 100,00 100,00 85,39 100,00 100,00 31,34 96,85 83,97
[ca] IFV  LX3 256 SE 68,31 100,00 100,00 81,52 100,00 100,00 31,24 97,69 80,24
[di] TPV LX3 512 62,88 100,00 100,00 100,00 100,00 100,00 26,75 97,76 81,22
[ea] IFV  LX3 512 SE 63,00 100,00 100,00 100,00 100,00 100,00 26,76 98,47 80,57
[f4) CNN LX3  AlexNet I 76,38 | 99,49 100,00 52,53 100,00 6,67 6091 9091 94,71
[94) CNN LX3  AlexNet P 85,44 [100,00 100,00 54,87 97,56 96,97 79,28 98,17 95,05
[ha) CNN LX3 VGG16 1 84,38 100,00 100,00 51,71 100,00 80,00 78,26 98,27 97,83
li) CNN  LX3  VGGI6 P 87,63 [100,00 9948 62,26 91,28 96,77 8821 92,93 92,02
[js] CNN LX3 AlexNet I FT [81,88 (100,00 100,00 49,75 98,96 0,00 90,29 90,82 80,25
[ka] CNN LX3  AlexNet P FT |77,38 [100,00 100,00 49,01 100,00 7500 63,38 96,46 86,92
[l4) CNN LX3 VGGI6IFT [81,56 | 18,92 50,89 100,00 97,16 92,09 100,00 79,68 100,00
[ms] CNN LX3 VGGI16 P FT |81,81 | 60,00 49,62 9944 97,55 93,75 100,00 76,89 97,04

Table 2.9: Results related to the multi-class component. Results are related to experiments
performed on the 8-LOCATIONS dataset.
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Personal Location
Recognition System

indexed video 1

\ \ car n kitchen top

reject reject reject reject reject

Figure 2.20: Overall schema of the proposed method.

Since the rejection of negative locations is one of the main challenges for the con-
sidered task, we have investigated a negative rejection method based on the entropy
of neighboring predictions. When an egocentric video is to be analyzed, temporal
coherence can be further exploited. Depending on the considered goal, long egocen-
tric videos tend to contain much uninformative content like, for instance, transiting
through a corridor, walking, or driving to the office. Therefore, as pointed out
in [40], automated tools are needed to enable faster access to the information stored
in such videos and index their visual content. Towards this direction, researches
have investigated methods to produce short informative video summaries from long
egocentric videos [38, 37, 71], recognize the actions performed by the wearer [18, 59,
103, 35, 50], and segment the videos according to detected ego-motion patterns [40,
41]. While current literature focuses on providing general-purpose methods which
are usually optimized using data acquired by many users, we argue that, given the
subjective nature of egocentric videos, more attention should be devoted to user-
specific methods.

In this Section, we propose a system for personal location recognition which
furthers exploits temporal coherence. Figure 2.20 shows a schema of the investigated
method. Similarly to what assumed in the previous analysis, we consider a scenario
where the user defines a number of locations of interest by providing minimal training
data in the form of short videos (i.e., a 10 seconds video per location). Given the

input egocentric video and the user-defined set of locations, the task is to establish
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for each frame in the video if it is related to either one of the considered personal
locations or none of them (i.e., it is a negative sample). As hypothesized before, we
assume that the system is set up by the end user himself, hence training must be
simple and achievable with few training data. Moreover, given the large variability
exhibited by egocentric videos, it is unfeasible to ask the user to acquire a significant
quantity of negative samples. Therefore, we assume that only positive samples of
different locations are provided by the user and propose a method to detect negative
samples automatically, without training on them.

Building on the results of analysis presented in Section 2.5 and Section 2.6, we
have acquired a dataset of 10 personal locations using the head-mounted wideangu-
lar camera LX2W (which was the best performing in our benchmarks). We employ
a fine-tuned Convolutional Neural Network (CNN) to discriminate among differ-
ent locations and a Hidden Markov Model (HMM) to enforce temporal coherence
among neighbouring predictions. To handle negative locations, we introduce a non-
parametric method for the rejection of negative frames. Being non-parametric, the
proposed method does not need any negative samples at training time. Considering
possible real-time application of the proposed system, we analyze the computational
performances of the proposed method and also suggest a simplified system which is

efficient enough to run in real-time.

2.7.1 Proposed Method

Given an egocentric video as an ordered collection of image frames V = {I3, ..., I, },

our system must be able to:
1. correctly classify each frame [; as one of the considered locations;
2. reject negative frames;
3. enforce temporal coherence among neighboring predictions.

The system eventually returns the labeling S = {C1, ..., C,}, where C; € {0,..., M—
1} is the class label associated to frame I; (C; = 0 representing the negative class
label) and M is the total number of classes including negatives (M = 11 in our
case - 10 locations, plus the negative class). Rejection of negative samples is usually

tackled increasing the number of classes by one and explicitly learning to recognize
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negative samples. However, this procedure requires a number of training negative
samples which may not be easily acquirable in our scenario. Indeed, given the large
variability of visual content acquired by wearable devices, it would be infeasible
to ask the user to acquire a sufficient number of representative negative samples.
Therefore, we propose to treat negative rejection separately from classification and
introduce a non-parametric rejection mechanism which does not need negative sam-
ples at training time.

We first consider a multi-class component which is trained solely on positive
samples to discriminate among the considered positive M — 1 classes. Since the
multi-class model ignores the presence of negative frames, it only allows to estimate
the posterior probability:

p(CilL;, C; # 0). (2.7)

The probability reported in Equation (2.7) is the posterior probability over the 10
positive classes estimated by the classifier (the CNN model in our case), assuming
that the input sample is not a negative. It should be noted that it sums to 1 over

the positive classes, i.e.,
10
> (G =1, Ci #0) = 1, (2.8)
j=1

while it does not say anything about the possibility of having a negative sample.
Since we wish to correctly discriminate among the positive classes (the 10 locations
of interest), as well as rejecting the negative samples, we want to model the following
probability distribution:

p(CilL). (2.9)

To this end, we propose to quantify the probability p(C; = 0]/;) to be a negative
sample of a given frame I;, as the uncertainty of the discriminative model in pre-
dicting the class labels related to the previous k frames (in our experiments we use
k = 30, which is equivalent to one second at 30 fps). Specifically, considering that
both the visual content and class label are deemed to change slowly in egocentric
videos, we assume that the past k frames ZF = {I;, I;_1, . .. ,Imax(i_k_i_l’l)} are related
to the same class. The notation “max(i — k + 1,1)” is used to prevent including

frames with negative indexes in the first k frames. Such assumption is of course
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imprecise when ZF contains the boundary between two personal locations. However,
such cases are rather rare and if k spans one second or less, the assumption only
affects the boundary localization accuracy and does not have a huge impact on the
overall accuracy. Since the discriminative model has been tuned only on positive
samples, we expect it to exhibit low uncertainty when the frames in ZF are related to
a positive class, while we expect a large amount of uncertainty in the case of negative
samples. As suggested in [104], we measure the uncertainty of the model computing
the variation ratio of the distribution of the labels V¥ = {y;, ... s Ymaz(i—k+1,1)} Dre-
dicted within ZF by maximizing the posterior probability reported in Equation (2.7):
y; = argmax; p(C; = j|1;,C; #0),5 =1,..., M — 1. We finally assign the probabil-

ity of I; being a negative as the following expression:

>, Ly = V)

He = 7]

(2.10)

where 1(-) denotes the indicator function and J}f represents the mode of Y¥. Tt
should be noted that the definition reported in Equation (2.10) is totally arbitrary
and encodes the belief that the model should agree on similar inputs if they are
positive samples. In practice, given a number of predictions computed within a
small temporal window, we quantify the probability of having a negative sample as
the fraction of labels disagreeing with the mode.

Given that C; = 0 and C; # 0 are disjoint events and marginalizing, Equa-

tion (2.9) can be written in the following form:

p(Cill;) = p(C;, Cy = 0|L;) + p(C;, C; # O|I;) =
= p(Gi|L;, C; = 0)p(C; = 0[1;) + p(Ci|L;, C; # 0)p(C; # 0|1;). (2.11)

Considering that p(C; = 0|;,C; = 0) = 1, p(C; = 0|;,C; # 0) = 0, and p(C; #

0|1;,C; = 0) = 0, the expression in Equation (2.11) can be written as follows:

p(Cill;) = : (2.12)
p(C; # 0|L;) - p(Cy|1;, C; # 0)  otherwise

Equation (2.12) allows to combine the probabilities in Equation (2.7) and (2.10).
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The final class prediction for frame I; (including the rejection of negative samples)

can be obtained maximizing Eq (2.12) as follows:
Cr = argmax p(C; = j|1;) (2.13)
j

Given the nature of egocentric videos, it is likely that subsequent frames are
related to the same location of interest, while a change of location is a rare event.
Such prior can be taken into account in the computation of the final labeling, using
a Hidden Markov Model. We consider the probability p(S|V), which, according to

the Bayes’ rule, can be expressed as follows:
p(S|V) < p(VIS)p(S). (2.14)

Assuming conditional independence of the frames with respect to each other given
their classes (1; 1L ;|C;, Vi, j € {1,2,...,n},i # j), and applying the Markovian as-
sumption on the conditional probability distribution of the class labels (p(C;|Ci—1 ... C}) =
p(C;|Ci-1)), Equation (2.14) can be written as:

n n

p(SIV) o p(Ch) [ [ p(CilCiz) T (£ C). (2.15)

=2 =1

Probability p(C}) is assumed to be constant over the different classes and can be
ignored when maximizing Equation (2.14). Probability p(I;|C;) can be inverted

using the Bayes law:
p(Li|Cs) o< p(Ci| L) p(1;).- (2.16)

Since I; is observed, term p(I;) can be ignored, while p(C;|1;) is estimated using

Equation (2.12). Equation (2.14) can be hence written as:

n n

p(SV) Hp<ci|ci—1) HP(CHL')- (2.17)

=2 i=1
Term p(C;|C;—1) is the HMM state transition probability. Transition probabilities
in Hidden Markov Models can generally be learned from the data as done in [54],
or defined ad hoc to express a prior belief as done in [51]. Since we assume that few

training data should be provided by the user and no labeled sequences are available
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at training time, we define an ad-hoc transition probability as suggested by [51]:

£, if C; # Cia
p(CilCi1) = (2.18)
1 — (M —1)e, otherwise

where ¢ is a small constant (we use the machine accuracy in double precision 2.22 x
1071% in our experiments). The probability in Equation (2.18) enforces coherence
between subsequent states and penalizes random state changes. The final labeling
of the input egocentric video is obtained choosing the one which maximizes the
probability in Equation (2.14) using the Viterbi algorithm [97]:

S = argmgxp(SW). (2.19)

2.7.2 Experimental Settings and Results

Experiments are performed on the 10-LOCATIONS dataset. All compared methods
are trained on the whole training set and evaluated on the test sequences. The vali-
dation set is used to tune hyper-parameters and select the best performing iteration
in the case of CNNs. In the following sections, we study the performances of the
proposed method, paying particular attention to the optimization. Specifically, we
evaluate different architectural tweaks which help reducing over-fitting when fine-
tuning Convolutional Neural Networks on our small realistic dataset (=~ 200 samples
per class) and reduce computational requirements. Moreover, we discuss the influ-
ence of the different components included in our method (i.e., multiclass classifier,
rejection mechanism, and HMM). After studying the performances of the proposed
method, we compare it with respect to some baselines, including the benchmark

classification pipeline proposed in Section 2.5.1.

Proposed Method: Optimization and Performances Evaluation

The multi-class classifier employed in the proposed method could be implemented
using any algorithm able to output posterior probabilities in the form of Equa-
tion (2.7). We consider Convolutional Neural Networks given their compactness
and the superior performances shown on many tasks including personal location

recognition [24]. We fine-tune the VGG-S network proposed in [94] on our training
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Accuracy Comp. Performances
Id | Settings Discrim. | +Rejection | +HMM || Dimensions Time
[a] 76.90 69.60 73.83 378 MB 13.23 ms
0] 83.30 76.06 83.22 378 MB 13.13 ms
[c] 94.53 85.00 88.63 378 MB 13.10 ms
[d] 83.07 77.49 82.84 34 MB 10.32 ms
[€] 77.09 71.99 73.59 34 MB 10.28 ms
[f] 92.31 81.00 85.37 26 MB 10.23 ms

Table 2.10: Optimization of the multi-class classifier. All results are related to experiments
performed on the 10-LOCATIONS dataset. Architectural settings: the convolutional
layers are locked, dropout is disabled, fully connected layers are reduced to 128
units and reinitialized, fully connected layers are replaced by a single logistic regression
layer. Reported times are average per-image processing times. Maxima per column are
reported in underlined bold digits, while second maxima are reported in bold digits.

set. Since the VGG network has been trained on the ImageNet dataset, we ex-
pect the learned features to be related to objects and hence relevant to the task of

location recognition, as highlighted in [92].

Optimization of the Multi-Class Classifier

Fine-tuning a large CNN using a small training set (~ 200 samples per class) is not
trivial and some architectural details can be tuned in order to optimize performances.

Specifically, we assess the impact of the following architectural settings:

1. locking the convolutional layers (i.e., setting their relative learning rate to

Z€ero);
2. disabling dropout in the fully connected layers;
3. reducing the number of units in the fully connected layers from 4096 to 128;

4. removing the fully connected layers and attaching a logistic regression (soft-

max) layer directly to the last convolutional layer.

In the following, we discuss different combinations of the aforementioned architec-
tural settings in order to assess the influence of each considered setting. Results for

these experiments are reported in Table 2.10 and Table 2.11.
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Table 2.10 is organized as follows. Each row of the table is related to a different
experiment. The first column (Id) reports unique identifiers for the considered meth-
ods. The second column (Settings) summarizes the architectural settings related to
the specific method. The third column (Discrimination) reports the accuracy of
the multi-class model alone (i.e., class labels are directly computed using Equa-
tion (2.7)). Note that such accuracy values are computed removing all negative
samples from the test set. The fourth column (+Rejection) reports the accuracy of
the models after applying the proposed rejection method (i.e., labels are obtained
using Equation (2.13)). The fifth column (+HMM) reports the accuracy of the
complete method including the Hidden Markov Model (i.e., final labels are obtained
using Equation (2.19)). Column 6 (Dimensions) reports the size of the models in
megabytes. Finally column 7 (Time) reports the average time needed to predict the
class label of a single frame’. Table 2.11 reports per-class true positive rates for the
considered configurations.

The reported results highlight the importance of tuning the considered archi-
tectural settings to improve both computational performances and accuracy. In
particular, locking the convolutional layers allows to significantly improve the per-
formances of the fine-tuned model (compare [b] to [a] in Table 2.10)°. Significant
performance improvements are observable when the CNN is evaluated alone (Dis-
crimination column) as well as when the model is integrated in the proposed system
(columns +Rejection and +HMM). This result highlights how the unlocked network
suffers from over-fitting, due to the high number of parameters to optimize with
relatively few training data. It should be noted that, in our experiments, only con-
volutional layers are locked, while fully connected ones are still optimized. Locking
convolutional layers, hence, allows to use part of the network as a bank of object-
related feature extractors (the pre-trained convolutional layers), while optimizing
the way such features are combined in the fully connected layers.

Disabling dropout has a positive impact when convolutional layers are locked
and fully connected layers are fine-tuned ([c] vs [b]). This indicates that dropout
is causing the model to underfit due to the scarcity of training data. Interestingly,

when fully connected layers are reduced to 128 units and hence reinitialized with

5Times have been estimated running the CNN models on a NVIDIA GeForce GTX 480 GPU using the Caffe
framework [105]. They include the rejection of negative frames but do not take into account the application of the
Hidden Markov Model.

6SVM models are tested on a Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz with LIBSVM [100].
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Per-Class True Positive Rate (TPR)

Id |Settings Car |C.V.M.| Gar. | K.T. |L.Off.| Off. |Piano| Sink |Stud.| L.R. | Neg.
[a] 91.28 | 98.73 |98.71|100.0|95.87|94.81|98.52(100.0| 99.40 |99.20| 36.91
[b] 90.71| 98.53 |98.41|99.60 | 93.83 |93.57| 98.48 | 99.00 | 98.50 | 98.91 | 47.77
[c] 75.57 | 92.42 | 87.60|97.95| 84.08 | 71.67 | 93.32 | 96.69 | 94.09 | 89.73 |82.34
[d] 99.09| 94.36 | 74.90 | 89.46 | 93.51 | 84.66 | 98.16 | 98.90 |99.72| 99.09 | 51.22
[e] |[L][IND] [128]//99.57| 95.43 |98.31{100.0|98.54 | 90.25 | 98.68 |99.51|99.82|99.14| 36.51
[f] 94.53 | 78.93 |85.88|78.39| 89.91 | 60.28 | 93.57 | 96.91 | 97.46 | 98.20 |61.66

Table 2.11: Per-class true positive rates for the considered configurations. Results are related to
experiments performed on the 10-LOCATIONS dataset. See Table 2.10 for a legend.

Gaussian noise, disabling dropout seems to favor overfitting as one would generally
expect (compare [e] to [d]). This behavior is probably due to the inclination of
randomly reinitialized layers to easily co-adapt [106]. Reducing the dimensionality
of the fully connected layers to 128 units helps reducing the dimensions of the
network and improving its speed, but results in a substantial loss in accuracy due
to the needed reinitialization of the weights (compare [d] to [c]).

In order to devise a more compact model, we finally consider replacing the fully
connected layers with a logistic regressor (i.e., a layer with 10 units followed by
softmax). In this case, the locked convolutional layers of the VGG-S network are
used as feature extractors, while predictions are performed combining them using
a simple logistic regressor classifier. This configuration allows to greatly reduce
memory and time requirements at the cost of a modest loss in terms of accuracy
(compare [f] to [c], [d], [e]).

Among all compared method, the most accurate is [¢], followed by the com-
putationally efficient [f]. Both methods outperform the others by a good margin.
Moreover, it is worth noting that [f] is more than 90% smaller and 20% faster
than [c] while only about 3% less accurate. Such result is particularly interesting
in real-time scenarios involving low-resources and embedded devices (e.g., in smart
glasses or in a drone). Finally, as can be noted from Table 2.11, only the two best
configurations (methods [¢] and [f]) succeed in correctly rejecting negative samples,

while other methods yield lower true positive rates.
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Performances of the proposed method

As discussed above, columns 3 to 5 in Table 2.10 report performances related to
the main components involved in the proposed method, i.e., multi-class classifier,
rejection mechanism and Hidden Markov Model. As can be noted, high accuracies
can be achieved when discriminating among a finite number of possible locations
(column Discrimination). The need for a rejection mechanism in real-world scenarios
makes the problem much harder, decreasing classification accuracy by 10% in average
(compare Discrimination with +Rejection columns). These results suggest that
more efforts should be devoted to effective rejection mechanisms in order to make
current classification systems useful in real world applications. Indeed, any real
system devoted to distinguish among a number of classes must be able to deal with
the negative ones. KEnforcing temporal coherence using a Hidden Markov Model
generally helps reducing the gap between simple discrimination and discrimination
+ rejection (consider for instance methods [¢] and [f]). The effects of the rejection
and HMM modules are qualitatively illustrated in Figure 2.21. As can be noted,
simple class discrimination (top row) yields noisy predictions when ground truth
frames are negative. The rejection mechanism (second row) successfully detects
negative samples. The use of a HMM (third row) finally helps reducing sudden
changes in the predicted labels.

Comparison with the State of the Art

To assess the effectiveness of the proposed method, we compare it with respect to
two baselines and an existing method for personal location recognition [24]. The
first baseline tackles the location recognition problem through feature matching.
The system is initialized extracting SIFT feature points from each test image and
storing them for later use. Given the current frame, SIFT features are extracted
and matched with all images in the training set. To reduce the influence of outlier
feature points, for each considered image pair, we perform a geometric verification
using the MSAC algorithm [107] based on an affine model. Classification is hence
performed considering the training set image presenting the highest number of inliers
and selecting the class to which it belongs. In this case, the most straightforward
way to perform rejection probably consists in setting a threshold on the number of

inliers: if an image is a positive, it is expected to yield a good match with some
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Figure 2.21: Graphical representation of the labels produced by the proposed method
(method [c] in Table 2.10). Each row reports the concatenation of labels produced for
all test sequences. Boundaries between sequences are highlighted with black dashed lines
and “S1” ... “S10” labels. The visualization is intended to qualitatively assess the influ-
ence of the rejection and HMM components on the performances of the overall system.
Specifically, the first three rows report labels obtained using the multi-class classifier, the
proposed rejection mechanism and the HMM, similarly to what discussed for Table 2.10.
The last row reports the ground truth. Best seen in color.

example in the dataset, otherwise only weak matches should be obtained. Since it is
not clear how such a threshold should be arbitrarily set, we learn it from data. To do
so, we first normalize the number of inliers by the number of features extracted from
the current frame. We then select the threshold which best separates the validation
set from the training negatives. To speed up computation, input images are rescaled
in order to have a standard height of 256 pixels (the same size to which images are
resized when fed to CNN models), keeping the original aspect ratio.

The second considered baseline consists in a CNN trained to discriminate directly
between locations of interest and negatives. In contrast with the proposed method,
the baseline explicitly learns from negative samples. Hence, in our settings, the
model is trained on 11 classes comprising 10 locations of interest, plus the negative
class. This baseline is implemented adopting the same architecture as the one of
method [¢], which is the best performing configuration in our experiments. It should
be noted that training negatives are independent from validation and test negatives.

We also compare our method with respect to the baseline introduced in Section 2.5.1,
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Accuracy Comp. Performances
Id Settings Discrim. +Rejection +HMM Dimensions Time
[c] (ND] 94.53 85.00 88.63 378 MB 13.10 ms
[f] 92.31 81.00 85.37 26 MB 10.23 ms
[g] | SIET 34.64 33.16 - 71 MB 5170.1 ms
[h] 73.84 76.42 79.69 378 MB 12.82 ms
[4] SVM 87.76 74.14 79.64 423 MB 97.83 ms

Table 2.12: Comparisons with the state of the art. Results are related to experiments performed
on the 10-LOCATIONS dataset. Methods [c] and [f] are reported from Table 2.10 for convenience.
Architectural settings: [L] the convolutional layers are locked, dropout is disabled, fully
connected layers are replaced by a single logistic regression layer, the SIFT feature matching
baseline, the model is trained on both positive and negative samples, [SVM]| classification based
on one-class and multiclass SVM classifiers.

Per-Class True Positive Rate (TPR)
Id\Settings Car \C.V.M.\ Gar. \ K.T. \L.Oﬁ'.\ Off. \Piano\ Sink \Stud.\ L.R. \ Neg.

[] [LIIND 75.57| 92.42 |87.60[97.95] 84.08 [71.67]93.32[96.69] 94.09 | 89.73 [82.34
[f] 94.53| 78.93 |85.88|78.39 |89.91|60.28 | 93.57 |96.91|97.46 |98.20| 61.66
[g] [SIET 490 | 555 | 0.02 [71.45] 15.37 | 16.62 | 84.98 | 22.21 | 12.80 | 79.77 | 24.22
[h] 78.16| 95.23 |71.48|97.53 | 73.54 | 50.03 | 71.95 | 93.43 |95.70| 73.49 |95.72
[i] [SVM] [24] ||74.97 | 98.16 |97.63|98.45|88.60|92.27| 79.13 | 69.25 | 59.16 |99.13| 06.58

Table 2.13:  Per-class true positive rates of the compared methods. Results are related to
experiments performed on the 10-LOCATIONS dataset. See Table 2.12 for a legend.

which performs negative rejection and location recognition using a cascade of One-
Class and multiclass SVM classifiers trained on features extracted employing the
VGG network [94].

Table 2.12 and Table 2.13 compare the performances of the considered methods.
As can be noted, the proposed methods [¢] and [f] retain the highest accuracies in
Table 2.12. Requiring about 5 seconds to process each frame, the SIFT matching
method ([g] in Table 2.12) is the slowest among the compared ones. Moreover,
SIFT matching achieves poor results on the considered task, which indicates that it
is not able to generalize to new views of the same scene and to cope with the many
variabilities typical of egocentric videos. It should be noted that, since the SIFT
baseline does not output any probability values, the HMM cannot be applied in this
case.

The baseline [h] retains a high TPR on negative samples (see Neg. column in

Table 2.13). However TPRs related to other classes and the accuracy of the overall
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Figure 2.22: Graphical representation of the results produced by the considered methods
(see Table 2.12). Detailed visualizations for each sequence are available in the supplemen-
tary material.

system are lower when compared to the proposed approaches. This indicates how
learning from negative samples is not trivial in the proposed problem. The method
introduced in [24] is outperformed by the proposed methods (compare [i] to [c]-[f])
and gives inconsistent results in the rejection of negative frames (see column Neg.
in Table 2.13). Moreover, the proposed approaches are significantly faster and have
smaller size. Figure 2.22 reports the results of all compared methods for qualitative
assessment. Figures 2.33 - 2.42, report detailed diagrams for all methods compared
in Table 2.10. As can be noted, the proposed methods ([¢] and [f] in Table2.10)
in average outperform the competitors and reach remarkable performances in some
cases (e.g., Figures 2.36, 2.37, 2.39, 2.41).

2.7.3 Discussion

The work discussed in this Section complements the analysis presented in Section 2.5
and Section 2.6 proposing a method to further exploit temporal coherence. Coher-
ently with the premises made throughout this Chapter, the system can be trained
with few positive samples provided by the user. The proposed system addresses
some of the challenges identified in the benchmarks. This is done by providing a

robust, non-parametric negative rejection component, tuning the employed CNN
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Figure 2.23: Results obtained with the proposed method [c] in Table 2.10 related to
Sequencel.

models to reduce overfitting due to scarce training data, and enforcing temporal
coherence among neighboring predictions using a Hidden Markov Model.

While evaluations show that the proposed method compares positively against
baselines and state of the art methods, they also highlight the two main challenges
of the considered task: the scarcity of training data and the challenging problem of
negative location rejection. Among the possible ways to deal with such challenges,
we identify at least two possible paths which may be pursued in future works. The
former consists in leveraging data acquired by multiple users in order to exploit
the commonalities of the training samples (i.e., multiple users might select similar
locations). The latter consists in considering unsupervised or reinforcement learn-
ing techniques to leverage the huge quantity of data acquired by first person vision
system in order to improve personal location recognition models. Moreover, future
works will concentrate on complementing the analysis in order to assess the gen-
erality of the found results. In particular, the analysis will be extended to data
acquired from multiple users to evaluate the generality of the methods with respect

to different users and locations.
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Figure 2.24: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 2.
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Figure 2.25: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 3.
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Figure 2.26: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 4.
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Figure 2.27: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 5.
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Figure 2.28: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 6.
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Figure 2.29: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 7.
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Figure 2.30: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 8.
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Figure 2.31: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 9.
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Figure 2.32: Results obtained with the proposed method [c] in Table 2.10 related to

Sequence 10.
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Figure 2.33: Comparative results of the methods reported in Table 2.10 related to Sequence
1.
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Figure 2.34: Comparative results of the methods reported in Table 2.10 related to Sequence
2.
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Figure 2.35: Comparative results of the methods reported in Table 2.10 related to Sequence
3.
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Figure 2.36: Comparative results of the methods reported in Table 2.10 related to Sequence
4.
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Figure 2.37: Comparative results of the methods reported in Table 2.10 related to Sequence
5.
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Chapter 3

Next-Active-Object Prediction

from Egocentric Videos!

One of the main advantages of First Person Vision systems is their ability to acquire
information which is inherently meaningful for the user. Therefore, as pointed out
by Kanade and Herbert [10], one of the main goals of a First Person Vision System
is understanding the user’s environments, behavior and intent. In Chapter 2, we
discussed the importance of context and location awareness in First Person Vision
systems and investigated methods to tackle the main challenges which originate
from real scenarios. We also discussed that personal location awareness can be
directly leveraged to infer behavioral information which can guide the construction
of intelligent systems able to assist the user. While personal locations can help
define context, the ability to understand and possibly anticipate the user’s short
and long term goals is still a key component for First Person Vision systems [10].
As claimed in previous works [108, 109, 110], the ability to anticipate the future is
an essential property that humans exploit on a daily basis in order to communicate
and interact with each other. For instance, predicting object interactions before
they actually occur can be useful to provide guidance on object usage [76] or issue
notifications [111]. Anticipated object interactions can tell us something more about
the user’s long term goals, as well as the intended activities. Indeed, as observed
in [19, 36, 65], it is advantageous to decompose long term egocentric activities in
terms of “atomic actions” and interactions with objects to improve the final activity

recognition task. Taking advantage of the First Person Vision paradigm, in this

!The work presented in this chapter has been partially done while I was a visiting Scholar at
the University of Texas at Austin, under the supervision of Professor Kristen Grauman.
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chapter, we introduce the novel task of predicting which objects the user is going to
interact with from egocentric videos. Following recent literature which claims the
importance of “active objects” for activity understanding [19], we refer to our task
as “next-active-object prediction”.

The rest of this chapter is organized as follows. In Section 3.1 we define the
next-active-object prediction task. Section 3.2 reviews the literature related to our
investigation. In Section 3.3 we propose a next-active-prediction method based
on the analysis of egocentric object trajectories. In Section 3.4 we present the
experimental settings, whereas in Section 3.5 we discuss the results. Section 3.6

concludes the chapter.

3.1 Next-Active-Object Prediction

We consider a scenario in which the user is wearing a First Person Vision system
(e.g., smart glasses) while performing his daily activities. As the user performs
the intended activities, he will move through the environment and interact with
specific objects. For instance, the activity of making tea will involve interactions
with objects such as the kettle, tea bag and mug. We assume that the First Person
Vision system is equipped with an object detector trained on a number of task-
relevant object classes. Given a number of observed frames, our aim is to predict
which objects are going to become active in order to distinguish them from the
ones which will likely remain passive. Figure 3.1 shows a sketch of the considered
problem. As the user moves through the environment, we aim at predicting the next
interacted object (e.g., the fridge), while all other passive objects (in gray) should
be discarded. Please note that next-active-object prediction needs to be performed
before the interaction actually begins.

Predicting next-active-objects in unconstrained settings is hard since humans
interact with objects on the basis of their final goal and the responses gathered
from the environment. Nevertheless, we argue that the FPV paradigm can provide
important cues related to the dynamic of the motion of the user with respect to the
objects present in the scene. Our main intuition is that, when a user is performing
a specific task, the way he moves and interacts with the environment is influenced

by his goals and intended interactions with objects. According to this assumption,
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time

Figure 3.1: A sketch of the next-active-object prediction problem.

in an egocentric scenario, the relative motion of an object in the frame will vary
depending on whether the user is willing to interact with that object or not. For
instance, the user is expected to move towards an object before interacting with it.
Figure 3.2 shows three sequences illustrating next-active-objects (in red) and passive
ones (in cyan) along with their egocentric object trajectories. Our insight is that
the shape of trajectories, as well as the positions in which they occur in the frame
can help to predict the next-active-objects discriminating them from passive ones.
In this chapter, we investigate the relevance of egocentric object trajectories in
the task of next-active-object prediction. Provided that an object detector/tracker
is available, we propose to analyze object trajectories observed in a small tempo-
ral window to predict next-active-objects before the object-interaction is actually
started. We investigate what properties of object motion are most discriminative
and the temporal support with respect to which such motion should be analyzed.
The proposed method compares favorably with respect to different baselines exploit-
ing other cues which might be available in the scene, such as the distance of the
objects from the center [19], the presence of hands [18, 43, 35, 36], changes in the

object appearance [19] and the predictability of the user’s visual attention [76].
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Figure 3.2: Three sequences illustrating next-active-objects (in red) and passive ones (in
cyan) along with their egocentric trajectories.

3.2 Related Work

Our work is related to different topics concerning activity recognition from egocentric

videos, future prediction and active objects.

3.2.1 Activity Recognition in First Person Vision

Activity recognition from egocentric videos is an active area of research. Through
the years, many approaches have been proposed to leverage specific egocentric cues.
Spriggs et al. [50] proposed to use Inertial Measurement Units (IMU) and a wear-
able camera to perform activity classification and to segment the video into specific
actions. Kitani et al. [59] addressed the problem of discovering egocentric action
categories from first person sports videos in an unsupervised scenario. Fathi et
al. [18] proposed to analyze egocentric activities to jointly infer activities, hands
and objects. Fathi et al. [43] concentrated on activities requiring eye-hand coordi-
nation and proposed to predict graze sequences and action labels jointly. Pirsiavash

and Ramanan [19] investigated an object-centric representation for recognizing daily
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activities from first person camera views. McCandless and Grauman [112] proposed
to learn the spatio-temporal partitions which were most discriminative for a set of
egocentric activities. Ryoo and Matthies [61] considered videos acquired from a
robot-centric perspective and proposed to recognize egocentric activities performed
by other subjects while interacting with the robot. Li et al. [35] proposed a bench-
mark of different egocentric cues for action recognition. Ryoo et al. [103] proposed
a feature pooling method to recognize egocentric activities. The authors of [36,
65] proposed to integrate different egocentric cues to recognize activities using deep
learning. The aforementioned works assume that the activities can be fully ob-
served before performing the recognition process and do not concentrate on future

prediction from the observed data.

3.2.2 Future Prediction in Third Person Vision

Previous works have investigated the problem of early action recognition and future
action prediction from a standard third person perspective. Even if such works
do not consider egocentric scenarios, the main motivation behind them is related
to ours: building systems which are able to recognize ongoing events from partial
observations and react in a timely way. The considered application scenarios range
from video surveillance to human-robot interaction. Ryoo [113] proposed a method
to recognize ongoing activities from streaming videos. Huang et al. [114] introduced
a system which copes with the ambiguity of partial observations by sequentially
discarding classes until only one class is identified as the detected one. Hoai and
De la Torre [115] exploited Structured Output SVM to recognize partial events
and enable early recognition. Kong and Fu [116] designed compositional kernels to
hierarchically capture the relationship between partial observations. Ma et al. [117]
investigated a method to improve training of temporal deep models to learn activity
progression for activity detection and early recognition tasks.

Beyond early action recognition, other methods have concentrated on the predic-
tion of future actions before they actually occur. In particular, Kitani [118] modeled
the effect of the physical environment on the choice of human actions in the scenario
of trajectory-based activity analysis from visual input. Koppula et al. [108], stud-
ied how to enable robots to anticipate human-object interactions from visual input

in order to provide adequate assistance to the user. Lan et al. [109] exploited a
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hierarchical representation of human movements to infer future actions from a still
image or a short video clip. Vondrick et al. [119] proposed to predict future image

representations in order to forecast human actions from video.

3.2.3 Future Prediction in First Person Vision

Future prediction has been investigated also in the first person vision domain. The
main application scenario related to such works concerns user assistance and aiding
human-machine interaction. Zhou et al. [110] concentrated on the task of inferring
temporal ordering from egocentric videos. Singh et al. [49] and Soo Park et al. [120]
presented methods to predict future human trajectories from egocentric images.
Soran et al. [111] proposed a system which analyzes complex activities and notifies
the user when he forgets to perform an important action. Su and Grauman [121]
proposed to predict the next object detector to run on streaming videos to perform
activity recognition. Ryoo et al. [62] proposed a method for early detection of actions
performed by humans on a robot from a first person, robot-centric perspective.
Vondrick et al. [119] proposed to forecast the presence of objects in egocentric videos
from anticipated visual representations. Our investigation is related to this line of
works but, rather than considering prediction at the activity level, we focus on the
granularity of user-object interaction and exploit the information provided by object

motion dynamics in egocentric videos.

3.2.4 Active Objects

Our interest in next-active-object prediction has also been fostered by the impor-
tance of active objects in tasks such as egocentric activity recognition. In particular,
Pirsiavash and Ramanan [19] proposed to distinguish active objects from passive
ones. Active objects are objects being manipulated by the user and provide impor-
tant information about the action being performed (e.g., using the kettle to boil
water). Passive objects are non-manipulated objects and provide context informa-
tion (e.g., a room with a fridge and a stove is probably a kitchen). The primary
assumption made by Pirsiavash and Ramanan [19] is that active and passive objects
can be discriminated by their appearance (e.g., an active fridge is probably open

and looks different from a passive one) and the position in which they appear in the
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frame (i.e., active objects tend to appear near the center). Active objects have also
been been considered in recent research on egocentric activity recognition. Fathi
et al. [18] suggested to pay special attention to objects manipulated by hands for
egocentric activity recognition. Li et al. [35] used Improved Dense Trajectories to ex-
tract features from the objects the user is interacting with. Ma et al. [36] designed a
deep learning framework which integrates different egocentric cues including optical
flow, hand segmentation and objects of interest for egocentric activity recognition.
Zhou et al. [65] presented a cascade neural network to collaboratively infer the hand
segmentation maps and manipulated foreground objects.

The general idea that some objects are more important than others has been
investigated also in other scenarios related to First Person Vision. Lee and Grau-
man [39] designed methods to summarize egocentric video by predicting important
objects the user interacts with during the day. Bertasius et al. [122] designed a
method for detecting action-objects, i.e., objects associated with seeing and touch-
ing actions. Damen et al. [76] proposed an unsupervised approach to detect task-
relevant objects and provide gaze-triggered video guidance when the user intends to

interact with the object.

3.3 Method

We propose to predict next-active-objects from egocentric videos by analyzing ego-
centric object trajectories. We assume that an object detector trained on a set of
N object categories is available. A tracker is used to associate detections related to
the same object instance in order to generate object tracks. At each time step, the
system analyses the trajectories observed in the last h frames in order to recognize

the next-active-objects before interaction actually takes place.

3.3.1 Object Tracks

For training purposes, we first assume that a set of egocentric videos is provided
along with ground truth object annotations related to N different object classes. We
also assume that each annotated object is labeled as active if the user is interacting
with it or passive otherwise. Annotations related to the same object instance are

grouped into tracks. We consider an object track as a sequence of bounding boxes
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Figure 3.3: Passive (a) and mixed (b) tracks. Activation points are indicated by black
arrows. The figure also illustrates the process of extracting passive and active trajectories
discussed in Section 3.3.2.

annotated (or detected) across multiple subsequent frames of a video. All bounding
boxes are related to the same object instance. Each bounding box is labeled as
“active” if the user interacts with it or “passive” otherwise. We denote an object
track as a tuple T; = (C;, B;, A;, F;), where C; € {1,..., N} is the object class
label, B; = {b1,ba,...,b,},b; € R* is the sequence of annotated bounding boxes,
A; = {a1,a9,...,a,},a; € {0,1} is the sequence of active/passive flags related to
the bounding boxes in B;, and F; = {fi, fo,..., fu}, f; € N are the IDs of the
frames to which the bounding boxes B; are related. Each bounding box b; € #*
is represented by the four coordinates of the top-left and bottom-right corners. To
generalize over different image sizes and aspect ratios, all coordinates are divided
by frame width and height in order to be normalized between 0 and 1 and then
centered around the normalized center point (0.5,0.5). Bounding boxes b € R* are
represented by the four coordinates of the top-left and bottom-right corners. To
generalize over different image sizes and aspect ratios, all coordinates are divided by
the frame dimensions in order to be normalized in the interval [0, 1]. Coordinates are
then centered around the normalized center point (0.5,0.5). This let all coordinates
range in the interval [—0.5,0.5]. We divide object tracks into two categories: passive

and mixed. Figure 3.3 illustrates the two considered types of object tracks. Tracks
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7; composed only by passive bounding boxes (i.e., a; = 0 Va; € A;) are denoted as
passive tracks. Tracks containing 7; both passive and active bounding boxes (i.e.,
3 ap,ar € Ajlan, # ai) are denoted as mixed tracks. In this case, we refer to the
points in which an object changes its status from passive to active as “activation
points” (see Figure 3.3). Since we are interested in predicting next-active-objects,
i.e., objects which are going to change their status from passive to active, we discard

all tracks containing only active bounding boxes.

3.3.2 Active vs Passive Trajectory Classifier

We hypothesize that next-active-objects can be discriminated from passive ones by
analyzing the egocentric object trajectories leading to the activation point. There-
fore, we propose to train an active vs passive trajectory classifier in order to recognize
next-active-objects by discriminating them from objects which will keep their passive
status. We define a trajectory as a sequence of bounding boxes T; = {by,bs,...,bn}
related to video frames F; = {f1, fa, ..., fn}. We consider two classes of trajectories:
active and passive. Active trajectories are those leading to a change of status from
passive to active. Passive trajectories are related to passive objects that will main-
tain their passive status and hence they do not lead to any status change. While
in principle we would like to predict next-active-objects arbitrarily in advance, we
claim that the most discriminative part of active trajectories is the one immedi-
ately preceding the status change. Therefore, in order to train an active vs passive
trajectory classifier, we consider fixed length trajectories of h-frames. Parameter h
should be chosen carefully in order to include enough information for the discrim-
ination while avoiding the noise due to long trajectories including data far away
from the activation point. To compose a suitable training set, we extract passive
and active trajectories from the aforementioned object tracks. Passive trajectories
are randomly sampled from all passive tracks (we extract one trajectory per track).
Active trajectories are sampled from mixed tracks by considering the last h frames
preceding the activation point. Please note that, if possible, multiple trajectories
are extracted from the same mixed tracks. Figure 3.3 illustrates the extraction of
active (red) and passive (cyan) trajectories from object tracks.

We propose to describe trajectories including 1) the absolute positions in which

bounding boxes appear in the frame, 2) differential information about positions, 3)
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scale and differential information about scale. The main motivations behind point
1) is the observation that absolute position can help discriminate active from passive
objects [19]. Point 2) is derived from the trajectory shape descriptor used within
Dense Trajectories [123]. Point 3) is inspired by [124], where the derivative of the
bounding box area is used to estimate Time to Contact. Each trajectory T; is hence

described as follows:

D(T;) = (xc1,YC1y -« oy TCHy YChy STy -« 5 Shy

Axcy, Aycs, ..., Axcy, Aycy, Asy, ..., Asy) (3.1)

where xc; and yc; are the coordinates of the centers of the bounding box b;, s;
is its area, Axc; = (x¢; — x¢j_q), Ayc; = (ye; — ycj—1) and As; = (s; — sj-1)
encode differential information about position and scale. If the length of T; is h, the
dimension of the descriptor is |D(T;)| = 6h — 3.

3.3.3 Sliding Window Prediction

In order to predict which objects are going to become active and which are not over
time, we use a sliding window approach. At each time step, the system analyzes
the last h frames of the trajectories of each tracked object and classifies them as
either active or passive. If an object has been tracked for less than h frames, it is
discarded. For each analyzed object, the system draws a bounding box and assigns
to it a confidence score equal to the probability given by the classifier. This way,
likely next-active-objects will get a high score, while passive ones will retain a lower

one. Figure 3.4 illustrates the proposed sliding window approach.

3.4 Experimental Settings

3.4.1 Dataset

We consider the ADL dataset for our experiments [19]. The ADL dataset contains
several egocentric videos acquired using a chest-worn camera by 20 different subjects
performing daily activities. Each video has been acquired at 30 fps. Each video

is provided with annotations for 18 performed activities and 45 different object
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Figure 3.4: Sliding window processing of object tracks. At each time step, the trained
binary classifier is ran over the trajectories observed in the last h frames and a confidence
score is computed. We expect next-active-objects to be easier to detect when closer to the
activation point.

classes (in the form of bounding boxes). Each object annotation is labeled as active
if the user is interacting with it or as passive otherwise. Annotations related to
the same object instance are grouped in object tracks. Figure 3.5 shows some
annotated frames from the ADL dataset. We carry out our evaluations on the ADL
dataset since it is the only publicly available dataset featuring untrimmed egocentric
videos of object interactions “in the wild”, including annotations for both active and
passive objects. The main shortcomings of using the ADL dataset for the evaluations
is that it contains data acquired using a chest-worn camera. While performing
experiments also on a dataset acquired using a head-mounted camera would be
useful to generalize our findings, it should be noted that acquiring and labeling such

data is not trivial mainly because of the need for frame-wise annotations and the
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Figure 3.5: Some sample frames from the ADL dataset. Active object annotations are
indicated in red. Passive object annotations are indicated in cyan.

difficulty in interpolating bounding boxes among neighboring frames due to head
motion.

Unluckily, in the ADL dataset, objects are annotated every 30 frames, which
makes reasoning about object trajectories difficult. To overcome this limitation, we
temporally augment the original annotations by tracking objects in those frames
which are not annotated. The tracker is always initialized using original ground
truth object annotations and tracking is carried on until the next annotation is
reached. Active/passive flags are interpolated accordingly. Note that tracking has
to be performed only for a short time (1 second). To this aim, in our experiments,
we use the short term tracker CMT proposed by Nebehay and Plugfelder in [125].
In order to account for objects which temporally disappear from the scene, object

tracks are split into two parts every time the tracker is not able to track the object.

3.4.2 Object Detection and Tracking

To perform object detection, we consider the state of the art Faster R-CNN method [126]
based on the VGG-16 network [127]. We follow the authors of [19], who consider
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26 object classes including 21 passive objects and 5 active ones. Since in our work
we propose to detect next-active-objects on the basis of their trajectories and not of
their appearance, we don’t train our object detector to distinguish between active
and passive objects. Therefore we consider a corresponding dataset of 23 object
classes. In this dataset, corresponding active and passive classes (e.g., active fridge
and passive fridge) are merged into a single class (e.g., fridge). Considering that
many samples are required in order to fine-tune the Faster-RCNN model, we re-
move 4 classes which are represented by less than 1000 images in the training set
(the average number of annotated instances per object class in the dataset is around
4000). The final dataset contains 19 object classes: “book”, “bottle”, “cell phone”,
“detergent”, “dish”, “door”, “fridge”, “kettle”, “laptop”, “microwave”, “mug/cup”,
“oven/stove”, “pan”, “pitcher”, “soap/liquid”, “tap”, “tooth paste”, “tv”, “tv re-
mote”. As in [19], we train the object detector on images extracted from the first
6 videos, while the remaining 14 videos are used to train/test the proposed next-
active-object prediction method. Note that, in order to train the object detector,
we consider only the object annotations originally contained in the dataset, while
tracked bounding boxes are discarded at this stage. The Faster R-CNN model is
trained using the “end2end” procedure proposed in [126]. The trained detector
achieves a mAP of 27.72 on the test set of 14 videos, which compares favorably with
respect to the 15.15 mAP scored by the deformable part models employed in [19].
Please note that, as pointed out in [19], even performing object detection on the ADL
dataset is hard due to the presence of small objects and non-iconic views. To obtain
object tracks from detection, we use the lightweight SORT tracker proposed in [128].
The SORT tracker assumes that good object detections are available for each frame
and performs object tracking by associating predicted bounding boxes into object
tracks. Instead of using appearance-based features, the SORT tracker relies on the
predicted bounding boxes and a simple motion model. The SORT tracker is highly

real-time (260 Hz) and adds minimum overhead to the object detector component.

3.4.3 Trajectory Classification

We train Random Decision Forests to discriminate between passive and active ob-
ject trajectories. In the considered dataset, the number of negative trajectories is

usually far larger than the number of active ones. To mitigate such imbalance, at
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training time, the number of passive trajectories is randomly subsampled to match
the number of active ones, in order to obtain a balanced training set. Testing is al-
ways performed on the original unbalanced data. We assess the performances of the
trained classifiers with respect to different factors, including the temporal support
with respect to which trajectories are analyzed, the employed trajectory descriptor,
the generalization to unseen object classes and the robustness of the classifier with
respect to the distance from the activation point. All results are reported in terms
of Precision-Recall curves and related Average Precision (AP) values. Please note
that our trajectory classifier is trained independently from the object class, that is,
a single classifier is learning from trajectories related to all object classes. The main
reason of this choice, is that not enough data is contained in the considered dataset

to train class-specific classifiers.

3.5 Results

We perform all our experiments in a leave-one-person-out fashion on the set of 14
videos which have not been used to train object detectors (as done in [19]). At
each leave-one-out iteration, trajectory classifiers are learned on videos acquired
by 13 subjects and tested on the remaining data. This makes sure that training
and testing data are always acquired by different subjects. All reported results are

averaged across the 14 leave-one-out iterations.

3.5.1 Performances of the Trajectory Classifier

The proposed trajectory classifier based on the descriptor introduced in Eq. (3.1)
achieves best results setting h = 30 (which corresponds to 1 second in the considered
dataset). Specifically, in the leave one out evaluation, our method scores an AP of
0.28, while the chance level is 0.09. In the following, we perform comparisons to
motivate the design of the proposed system based on fixed-length trajectories and
the selection of parameter h. All comparisons are based on the descriptor introduced
in Eq. (3.1).

In Section 3.3.2, we assumed that the last part of an active trajectory is the most
discriminative for our task. Therefore, we proposed a sliding window approach which

analyzes fixed-length trajectories within a temporal window of size h. To support
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Figure 3.6: Precision-recall curves related to different trajectory description schemes. Av-
erage precision values are reported in parenthesis the legend. Elements in the legend are
sorted by average precision in descending order.

that analyzing trajectories within a fixed-length temporal window is optimal, we
compared the proposed method to a different schema which, at each time step, ana-
lyzes the whole trajectory observed up to that point. In this second schema, in order
to obtain a fixed-length descriptor, trajectories are represented with a multiscale ap-
proach. Using a temporal pyramid with [ levels, each trajectory is divided into 2! —1
segments. Bounding boxes within the same segment are averaged and the results
concatenated. This leads to fixed-length trajectories which are hence represented
using the descriptor introduced in Eq. (3.1). Note that the maximum number of
splits operated by the temporal pyramid is equal to 20—V, therefore, trajectories
shorter than this number are discarded in our experiments.

Figure 3.6 reports precision-recall curves of the classifiers learned on trajectories
exacted according to the two considered schemes. The proposed fixed-length trajec-
tory approach has been evaluated considering different lengths h = {15, 30,45, 60}.
Similarly, the multiscale approach has been evaluated considering different number
of levels | = {4,5,6,7}. Please note that the minimum trajectory lengths associ-

ated to the considered numbers of levels are respectively {8, 16,32,64}. The random
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baseline is obtained performing classification with a binary random decision. As can
be observed in Figure 3.6, classifiers based on fixed-length trajectories tend to out-
perform methods based on multiscale trajectories. This suggests that the last part
of active trajectories is the most discriminative and that motion information too
far away from the activation point introduces noise in the observations. Among the
methods based on fixed-length trajectories, the best performing scheme is the one
analyzing trajectories of length h = 30. This value will be used in all the following

experiments.

3.5.2 Trajectory Descriptors

As discussed in Section 3.3.2, the proposed trajectory descriptor introduced in
Eq. (3.1) includes information about absolute positions and scales, as well as dif-
ferential information about position and scale. We analyze the impact of each of
these kinds of information comparing the proposed descriptors against the following

baselines:

e Motion Magnitude: we consider discriminating active trajectories from pas-
sive ones on the basis of the amount of motion characterizing the trajectory
T; under analysis. The amount of motion is measured as the sum of the mag-
nitudes of the displacement vectors: M (T;) = 2?12 \/Axc? + Aycs. Classi-
fication is hence performed by thresholding on M. The optimal threshold is
selected at training time as the best discriminating active from passive trajec-

tories in the training set;

e Relative Trajectories: are the descriptors proposed by Wang et al. in

their work on Dense Trajectories [123]: D(T;) = (A“;?iyigggfgigch). These

descriptors encode only the “shape” of the trajectory and do not include any

information about absolute positions;

e Absolute Trajectories: described as the concatenation of the centers of all
bounding boxes: D(T;) = (zcy,ycy, ..., xch, yep). Such descriptors include

positional information but do not encode scale and differential information;

e Absolute Trajectories + Differential Positions: described as the con-

catenation of positions and differential information about position: D(7;) =
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Figure 3.7: Precision-recall curves related to the proposed method and compared baselines.
Average precision values are reported in parenthesis the legend. Elements in the legend
are sorted by average precision in descending order.

(xey,ycq, ..., xen, yon, Axce, Aycs, . .., Azcy, Aycy,). These descriptors encode

location and trajectory shape but do not include scale information;

e Absolute Trajectories + Scale: described as the concatenation of positions
and bounding box scales: D(T;) = (xcy,ycr, ..., TCh, YCh, S1, - - -, S2). These de-

scriptors encode location and scale but do not include differential information.

Figure 3.7 shows precision-recall curves for the proposed method and the compared
baselines. As can be observed, relative trajectories (AP: 0.10) are less discriminative
than absolute trajectories (AP: 0.12) for the next-active-object prediction task. This
confirms the observation according to which position can help discriminate active
and passive objects [19]. Combining absolute and differential positional information
improves performances marginally (AP: 0.13). Adding scale (AP: 0.20) and above
all, combining with differential information as we propose (AP: 0.28), allows to
obtain the best results. Interestingly the motion magnitude baseline performs better

than some competitors (AP: 0.12).
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AP AP
Object w/o with Object w/o with
oven/stove 0.60  0.82 fridge 0.47 0.73
tap 0.47 0.59 book 1.00 1.00
door 0.19 0.18 microwave 0.67  0.40
tv remote  0.58  0.73 kettle 0.33 0.75
bottle 0.50  1.00 mug/cup  0.52  0.62
pan 0.56 0.83 dish 0.51 0.32
tv 1.00 1.00 laptop 0.63 0.65

Table 3.1: Average precision results related to the leave-one-object-out experiment.

3.5.3 Generalization to Unseen Object Classes

We have trained a single active vs passive classifier including data from all con-
sidered object classes. While training object-specific trajectory classifiers might be
advantageous, the limited number of samples related to a single object class could
pose a challenge. Moreover, a real system needs to be able to handle situations in
which previously unseen objects may become active. We find that next-active-object
trajectory classification can generalize to previously unseen object classes. To as-
sess this property, we performed a leave-one-object-out experiment. For each object
class, we trained trajectory classifiers on data related to all other object classes.
Classifiers have been hence tested on data including only the object class which was
removed from the training set.

Table 3.1 reports the results for the considered object classes. Classes missing
from Table 3.1 are those which were not represented by any sufficiently long tra-
jectory (at least h frames) in the dataset. Classifiers learned from training sets not
containing the target object class (“w/0” column) are compared to classifiers learned
from training sets containing also instances from the target object class (“with” col-
umn). Similar performances are achieved for many object classes (e.g., door, tv,
book, mug/cup, laptop), whereas for others the learning from the instances of the
same object class is more beneficial. On average, removing the object class from the

training set implies a reasonable performance loss of 0.11 AP.
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Figure 3.8: Performances of trajectory classifiers as a function of the distance from the
activation point. Average precision values are reported in parenthesis the legend. Elements
in the legend are sorted by average precision in descending order.

3.5.4 Robustness to Distance from Activation Point

In the proposed system, next-active-objects are predicted using a sliding window
which analyzes the last h frames of each observed object trajectory. However, tra-
jectory classifiers have been trained on the h frames immediately preceding the
activation point. We perform experiments to assess how many frames before the ac-
tivation point we can predict next-active-objects from egocentric video. Figure 3.8
shows the Average Precision of the considered trajectory classifiers as a function
of the distance from the activation point at which the sliding window is placed to
perform predictions. All trajectory classifiers work best when they analyze trajecto-
ries which are close in time to the activation point, while performances decay when
they analyze trajectories which are observed far from it. All methods keep rea-
sonable performances when the distance from the activation point is less than one
second, while performances decay afterwards. The proposed trajectory descriptor

outperforms the others and is generally above chance level.
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3.5.5 Comparative Experiments

In order to compare different methods in a common evaluation scheme, we frame
next-active-object prediction as an object detection task. We assume that, at each
time step, each method produces a series of bounding boxes around predicted next-
active-objects and assigns a confidence score to them. We define our ground truth
starting from the object annotations of the ADL dataset augmented by tracking as
described in Section 3.4.1. Since we wish to predict next-active-objects as soon as
possible, all annotations which are on the passive segments of a mixed track (see
Figure 3.3) are considered as valid detections. All other annotations, namely, the
ones which are on passive tracks and the ones which are in the active part of mixed
tracks are not considered valid detections. The performances of the investigated
methods are measured computing precision-recall curves and Average Precision (AP)
values as defined in [129]. A prediction is considered correct if there is a significant
overlap (area of intersection over union (IOU) > 0.5) with an annotation of the same

object class. We compare the proposed method with respect to a series of baselines:

e Motion Magnitude: the same baseline discussed in Section 3.5.2 based on

thresholding over motion magnitude;

e Relative Trajectories: the same baseline discussed in Section 3.5.2 based

on the trajectory descriptors introduced by Wang et al. [123];

e Center Bias: this baseline considers the assumption made by Pirsiavash and
Ramanan [19], according to which active objects tend to appear near the
center of the frame. The baseline analyzes the object detections produced by
the Faster-RCNN detector and takes into account the confidence score assigned
to each predicted bounding box s,. For each detected object, we compute a
score s, which is inversely proportional to its distance from the center of the

frame. The final confidence score is obtained as s = s, - S,;

e Hand Bias: the presence of hands is a cue often considered for detecting
active objects [18, 43, 35, 36]. To leverage this cue, we detect hands from the
input videos by using the models proposed in [130]. Similarly to the center
bias baseline, for each object detection we compute two scores s;, and s,

which are inversely proportional to the distances of the object from the left
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and right hand respectively. If one of the two hands is missing, a score equal

to zero is assigned. The final confidence score is obtained by s = s+ (s, + S,1);

e Active/Passive Objects: a method inspired by the work of [19]. Predictions
are obtained using a Faster R-CNN object detector trained to detect active
and passive objects separately. The detector is hence trained on 38 classes (19

active objects and the corresponding 19 passive ones);

e Saliency-Based Models: this set of baselines follow Damen et al. [76], who
propose to detect task relevant objects using a gaze tracker, exploiting the an-
ticipatory nature of eye gaze fixation [131]. Since we do not assume the avail-
ability of a gaze tracker, we implement such baselines using saliency predic-
tion models. The baseline works as follows. Saliency maps are first extracted
from each frame. Starting from the Faster-RCNN detections, each predicted
bounding box is assigned a score equal to the mean saliency value within the
bounding box. Given the different levels at which saliency is defined [132], we
consider the model proposed by Vig et al. [133] for eye fixation prediction, the
model proposed by Seo et al. [134] for dynamic saliency from videos, and the

model proposed by Zhang et al. [135] for salient object segmentation;

e Random: starting from the Faster-RCNN detection, each bounding box is

assigned a random score in the interval [0, 1].

Figure 3.9 reports the precision-recall curves scored by our method and all base-

“*7 gymbol

lines. To reduce computational burden, the methods indicated by the
have been evaluated on a subset of the data obtained taking one frame every 30
frames. The proposed method is the best performing one (AP: 0.0680), followed by
the motion magnitude (AP: 0.0478) and relative trajectory baselines (AP: 0.0437).
It is worth noting that, the best performing methods are all based on egocentric
object motion. The method based on center bias outperforms the appearance-based
baseline derived from [19] (0.0412 vs 0.0298 AP values). Our main insight about
this behavior is that object appearance is likely to change while the object is be-
ing manipulated rather than before. The baseline based on hand bias does not
achieve good performances (AP: 0.0200). This is probably due to different factors.

First, detecting hands in unconstrained egocentric videos is not trivial [130]. Second,
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Figure 3.9: Precision-recall curves of the compared methods. Average precision values are
reported in parenthesis the legend. Elements in the legend are sorted by average precision
in descending order. Methods indicated by “*” have been evaluated on a subset of the
data obtained taking one frame every 30 frames.

hands are not always visible until the object manipulation actually begins. Saliency-
based baselines perform worse than others. It should be noted that such methods
have been designed to predict current and not future visual attention mechanisms
and that such methods have not been specifically designed for the egocentric sce-
nario. Moreover, while we perform our evaluations on the ADL dataset, which have
been acquired using a chest-worn camera, the state-of-the-art has been designed for
head-mounted cameras. In particular, attention-based methods, might be unable to
leverage head-motion cues as expected.

Figure 3.10 and Figure 3.11 report some visual examples of success/failure se-
quences related to the proposed method. Positive model predictions are indicated
in green, while negative predictions are indicated in cyan. The examples also report
the observed egocentric object trajectories, the predicted class and the confidence
score. Ground truth next-active-objects are reported in red. In the examples of
correct predictions (Figure 3.10), the model correctly assigns a hight score (positive
prediction) to next-active-objects and a low score (negative prediction) to passive

ones. In the failure examples (Figure 3.11), the model predicts the wrong object or
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Figure 3.10: Some success examples of the proposed method. Red bounding boxes repre-
sent ground truth next-active-objects. Positive predictions are indicated in green, while
negative predictions are indicated in cyan. For each prediction, the object class and con-
fidence scores are reported.
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Figure 3.11: Some failure examples of the proposed method. Red bounding boxes repre-
sent ground truth next-active-objects. Positive predictions are indicated in green, while
negative predictions are indicated in cyan. For each prediction, the object class and con-
fidence scores are reported.
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Figure 3.12: A frame from one of the two demo videos included in the supplementary
material. The videos show several sequences along with he predicted next-active-objects.
Ground truth next-active-objects are indicated in red. Positive model predictions are
indicated in green, while negative predictions are reported in cyan. For each detected
next-active-object we report the predicted class, the observed trajectory and the computed
confidence score.

fails to detect all next-active-objects.
We also provide demo videos of correct predictions and failure examples which
can be downloaded at the URL http://iplab.dmi.unict.it/N-A-0/. Figure 3.12

reports a sample frame from one of the videos.

3.6 Discussion

In this chapter, we have introduced and investigated the problem of next-active-
object prediction from egocentric videos. While the task is not trivial in uncon-
strained settings, we have shown that egocentric object trajectories provide a useful
cue to address the challenge. Experiments have highlighted that 1) the last part
of active egocentric object trajectories is the most suitable to predict next-active-

objects, 2) active trajectory classifiers can generalize to unseen object classes up
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to a given extent, 3) egocentric cues based on object motion outperform baselines
based on static observations on the considered dataset. In future works, we will
investigate how the task of next-active-object prediction can be exploited for early

action prediction and how such integration can be beneficial for both tasks.
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Chapter 4
Conclusion

The main contributions of this thesis are related to context awareness in First Per-
son Vision. Our investigation has been driven by the observation that, differently
from traditional Third Person Vision, data acquired by First Person Vision sys-
tems is very related to the user and hence it can be used to provide assistance in
a “personal way” and predict the intent of the user [10]. Within the broad scope
of context awareness in First Person Vision, we have investigated two of the five
context categories discussed in Section 1.1.3, namely location and intent.

Chapter 2 investigated personal location recognition from egocentric videos. Dif-
ferently from previous works, we considered personal locations at the instance level
(e.g., my office), rather than at the category level (e.g., an office). We considered
a real scenario in which the user is willing to monitor a selected set of personal
locations of interest and proposed a suitable definition of the task. Our definition
involves that 1) the user provides minimum training data for the locations he wants
to monitor, 2) the system has to deal with the rejection of negative locations. To
investigate the problem, we proposed three datasets of egocentric videos acquired
in 10 personal locations and performed a benchmark of different wearable cameras
and representation techniques.

Our investigation pointed out the following:

e Recognizing personal locations of interest from egocentric videos involves some
specific challenges. The two main challenges are: 1) supervised learning can
rely only on few training data provided by the user, 2) the system has to

correctly reject negative locations learning only from positive samples;

e Head mounted, wide angle cameras have a significant advantage over other

camera designs on the personal location recognition task;
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e Representations based on deep learning outperform other representation meth-
ods due to their transfer learning abilities. However, fine-tuning Convolutional
Neural Networks is not trivial with small datasets and many architectural set-

tings can be tuned to improve performances;

e The assumption of temporal coherence between neighboring predictions arising
from egocentric data can be used to 1) formulate affective negative rejection

methods, 2) improve location recognition in neighboring frames;

e Due to the large variability in terms of visual content that wearable cameras
are likely to acquire, learning a policy for the rejection of negative locations
directly from negative samples is not trivial. Specifically, we show that de-
signing a robust rejection option is advantageous over explicitly learning the

“negative location class” from negative samples.

Chapter 3 proposed the problem of predicting next-active-objects from egocentric
videos. While predicting the future is in general hard, we argued that the First Per-
son Vision paradigm can provide important cues to address the challenge. Specif-
ically, we investigated the predictive power of egocentric object trajectories as a
means for encoding information about the dynamic of the scene and proposed a sys-

tem to perform next-active-object prediction. Our investigation pointed out that:

e Predicting next-active-objects from egocentric videos is not trivial. However,

egocentric object trajectories provide a useful cue to address the challenge;

e Describing the shape of egocentric object trajectories without including infor-
mation on absolute positions is not enough for next-active-object prediction.
Better results are obtained including 1) absolute positions, 2) differential in-

formation about position and scale;

e The last part of an active egocentric trajectory is the most discriminative for
the task of next-active-object prediction. Including trajectory information too

far away from the activation point seems to add only noise to the observations;

e Active vs passive trajectory classifiers can be trained independently from ob-

ject classes;
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e Cues based on appearance of objects, their distance from the center of the
frame, presence of hands and saliency models are not effective for the con-
sidered task. Our main insight into these results is that such factors are not

relevant until the object interaction actually takes place.

4.1 Future Directions

First Person Vision systems are characterized by their intrinsic mobility and their
ability to acquire visual information which is very personal for the user. Therefore,
we argue that context awareness constitutes a big challenge and opportunity for
such systems. In this thesis, we have investigated some aspects related to context
awareness in FPV systems. Our investigation has been guided by the assumption
that context can be more than mere location sensing and it can encode many other
aspects related to the user such as, for instance, his intent.

Many challenges still need to be faced both in location sensing and intent un-
derstanding. Location sensing methods need to be improved in terms of accuracy
and usability. This can be achieved designing better negative rejection methods and
algorithms able to learn from few samples and with little supervision. With modern
data-hungry methods such as those related to Deep Learning, a promising direction
would be to leverage data from multiple users to improve both location detection
and negative rejection.

The ability to predict the intent of the user is likely to be an important feature
for modern wearable systems. While anticipating interactions with objects is an
important feature, advanced system should be able to take into account different as-
pects, including location sensing, anticipation of object interactions, and forecasting
of future goals.

In conclusion, our main insight is that context is complex and its understanding
can allow for the construction of more sophisticated human-interaction mechanisms.
In this sense, modeling context can serve as an occasion to improve the intelligence of
First Person Vision systems. To build better models of context, future investigations
should take into account, not only the study, but also the integration of different
aspects such as location, user behaviors, object and scene accordances, attention

and future anticipation.
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Appendix A

Wide-Angle Sensors and Feature

Extraction'

First Person Vision systems are deemed to be able to “see what the actor sees” in
order to sense the world from his perspective [10]. To conform the human visual sys-
tem, they should be able to acquire a large enough quantity of visual information re-
lated to the surrounding environment. This is usually done employing wide-angular
cameras which can acquire a large part of the scene at the cost of introducing radial
distortion. Many wearable cameras such as GoPro”, Authographer® and Narrative
Clip 2* employ wide-angle cameras to achieve this result. In [24, 20] we show that
wide-angular cameras have a clear advantage over standard narrow-angle ones when
modeling the visual context of the user in a First Person Vision application. De-
pending on the extent of radial distortion characterizing the acquired images, it is
usually necessary to explicitly account for the geometric distortion introduced by
wide-angle sensors during the feature extraction process [136]. While the standard
way to deal with such distortion is to explicitly compensate for it [137], direct ap-
proaches not requiring any specific coordinate remapping and interpolation process
are preferable in many cases [136].

In this chapter, we investigate how feature extraction can be performed directly
on wide-angular images. We review wide-angle cameras in Appendix A.1 and fisheye

camera models (which are a specific class of wide-angle sensors) in Appendix A.2. We

TAll the work presented in this Chapter has been performed in collaboration with ST-
Microelectronics Catania within the project PANORAMA, co-funded by grants from Belgium,
Italy, France, the Netherlands, the United Kingdom, and the ENTAC Joint Undertaking.

2http://gopro.com

3http://www.autographer.com/

‘http://getnarrative.com/
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Figure A.1: Field Of View (FOV) of an image acquisition system. FOVs can be measured
horizontally, vertically and diagonally.

present the experimental datasets used in the rest of this chapter in Appendix A.3.
In Appendix A.4 we analyze how affine covariant region detectors can be applied
efficiently directly on wide-angular images when the source camera is unknown and
hence it cannot be calibrated. In Appendix A.5 we introduce a family of distortion
adaptive Sobel filters for the direct estimation of the gradient of distorted images.
In Appendix A.6 we present the Distortion Adaptive Descriptors which allow to
compute gradient-based descriptors, such as SIFT [7] and HOG [138], directly on
fisheye images. Finally Appendix A.7 summarizes the findings of this chapter.

A.1 Wide Angle Sensors

Each image acquisition system can be characterized by its Field Of View (FOV),
which is defined as the solid angle through which the system is sensible to the incom-
ing light. FOVs can be measured horizontally, vertically or diagonally. Figure A.1
shows an illustration of how the Field Of View can be measured. The normal human
binocular FOV is about 180° horizontally and 120° vertically [139]. Most regular
cameras are designed to follow the perspective projection, which characterizes the

ideal model of the pinhole camera. Such model has the convenient property to map
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Figure A.2: From left to right: examples of images characterized by different FOVs and
increasing rates of radial distortion. As can be noted, larger FOVs allow to acquire a larger
portion of the scene at the cost of larger degrees of radial distortion. The examples have
been obtained artificially adding different degrees of radial distortion to a high resolution
source rectilinear image. More details on this process will be discussed in Appendix A.2.3.

lines that appear to be straight in the real world, to straight lines in the final im-
age, thus producing a representation of the scene which is coherent with our visual
perception. Due to the adherence to the perspective model, most regular cameras
available on the market cannot achieve large FOVs (the FOV of most perspective
cameras cannot exceed 140°) [139]. This shortcoming has motivated the design of
a different class of sensors usually referred to as wide-angular or omni-directional
visual systems [140]. Such systems are available in different designs and allow to
obtain wider FOVs up to 180° and 360°. However, as pointed out in [141], this
flexibility comes at the cost of the introduction of noticeable radial distortion, as it
is depicted in Figure A.2. Since it is not possible to project an hemisphere on a fi-
nite plane using the perspective projection, different projection functions are usually
considered when designing such systems. Wide-angle cameras can be built following
two main designs: catadioptric [140, 142, 143] and dioptric [137, 141]. Figure A.3
illustrates the two camera designs for wide-angular cameras. Catadioptric systems
employ a concave mirror to project a large FOV representation of the scene to a reg-
ular camera following the perspective projection. In this case the introduced radial
distortion is determined by the specific geometry of the mirror. Dioptric systems
simply substitute the regular lens of perspective cameras with lenses following a dif-
ferent design, generally referred to as “fisheye lenses”. In this case, radial distortion
is determined by the different projection function that the lens is designed to follow.

Characterizing the radial distortion introduced by wide-angle cameras, in order
to be able to map points on the scene to points on the image, can be useful to
remove radial distortion [144, 145, 146], extract features [136, 147, 148], and perform
higher level tasks such as human and object detection [149, 150]. For this reason,

different camera models and calibration techniques have been proposed to establish a
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Figure A.3: Two main designs for wide-angular cameras: (a) catadioptric system combin-
ing a mirror and with regular camera and (b) dioptric systems using a fisheye lens.

mapping between the distorted wide angle images and their ideal purely perspective
counterparts. Some calibration techniques require a special pattern to be present
in the scene [151, 152] while others just require a few images of the scene and no
other information [144, 145]. In the following sections, we discuss camera designs
and the main mathematical models which can be used to describe the related image

formation processes.

A.1.1 Catadioptric Systems
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