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“I consider it a challenge before the whole human race, and I ain’t gonna loose.”

F. Bulsara
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Abstract

The First Person Vision (FPV) paradigm allows to seamlessly acquire images of

the world from the user’s perspective. Compared to standard Third Person Vision,

FPV is advantageous for building intelligent wearable systems able to assist the

user and augment his abilities. Given their intrinsic mobility and the ability to

acquire user-related information, FPV systems have to deal with a continuously

evolving environment. Moving from the observation that data acquired from a

first person perspective is highly personal, we investigate contextual awareness for

First Person Vision systems. We first focus on the task of recognizing personal

locations of interest from egocentric videos. We consider personal locations at the

instance level and address the problem of rejecting locations not of interest for

the user. To challenge the problem, we introduce three datasets of 10 personal

locations which we make publicly available, and perform a benchmark of different

wearable devices and state-of-the-art representations. Moreover, we propose and

evaluate methods to reject negative locations and perform personal location-based

temporal segmentation of egocentric videos. As a second aspect, we investigate

the anticipation of object interaction. We propose and define the task of next-

active-object prediction as recognizing which objects are going to be interacted with,

before the actual interaction begins. Even if recognizing next-active-objects is in

general not trivial in unconstrained settings, we show that the First Person Vision

paradigm provides useful cues to address the challenge. We propose a next-active-

object prediction method based on the analysis of egocentric object trajectories and

assess its superior performances with respect to other cues such as object appearance,

distance from the center of the frame, presence of hands and visual saliency. In

appendix, we also report some investigations on extraction features directly from

wide angle images.
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Chapter 1

Introduction

1.1 Motivation

Visual perception is the primary means by which humans sense and understand

the world they live in. Thus, it is not surprising how the research community

has invested considerable efforts in trying to understand and replicate the amazing

abilities of our visual system. Since vision is a form of intelligence itself, we should

expect that building the intelligent systems which are likely to characterize our

future will require the development of advanced forms of artificial visual intelligence.

While the sensing technologies needed to obtain a suitable visual representation of

the world are already available and ready to use, much work is still to be done to

enable the design of truly intelligent systems capable of making a real difference in

our lives.

1.1.1 Prevalence of the Third Person Vision Paradigm and

its Limits

In the past decades, Computer Vision has had a tremendous impact in many sce-

narios which made its application feasible, albeit constrained under given circum-

stances. Some success examples include (but are not limited to) face detection [1],

visual object tracking [2, 3, 4, 5], 2D image stitching [6, 7], 3D reconstruction [8]

and content-based image retrieval [9]. Most of these results assumed the “Third Per-

son Vision” (TPV) paradigm, according to which the scene is acquired by a static

camera which remains neutral to the observed events. Even in the case of automo-

tive and autonomous vehicles, which are obviously moving, the camera is relatively
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stable and the layout of the acquired scene is generally constrained. One of the mo-

tivations behind the TPV paradigm is to remove some nuances such as fast camera

movements and blur from the acquired images. This makes perfect sense since our

visual system is able to remove the very same nuances in a transparent way, making

our cognition system somewhat coherent with the TPV paradigm. While simpli-

fying the visual perception paradigm and enabling powerful applications, however,

the TPV design runs the risk of limiting the visual intelligence of the developed

systems, making them mere observers of the world, while human beings are not.

Indeed, while static cameras can sense the world from a limited number of per-

spectives, humans are able to look around and select their favorite view of the scene;

while static cameras are bound to a limited number of physical locations, humans

can explore the world and acquire an incredible variety of visual stimuli; while static

cameras can make few assumptions on the observed actors, humans sense the world

from their unique perspective and can make strong assumptions on the observed

scene. In practice, while the TPV design is clearly appropriate in many cases in

which a specific task needs to be accomplished (e.g., in the surveillance domain), it

might not be adequate when the system is designed in support to an active agent

interacting with the environment. This is, for instance, the case of wearable intel-

ligent systems designed to assist the user and augment his abilities [10, 11]. Other

examples include autonomous robots which, apart from being able to observe and

understand the environment, are supposed to move and interact with it. In the

aforementioned scenarios, in fact, a “First Person Vision” (FPV) paradigm is more

convenient [10].

1.1.2 Advantages of the First Person Vision Paradigm

While the TPV paradigm assumes that images are acquired by a fixed camera placed

in some convenient location with respect to the considered task (e.g., attached to

the ceiling for indoor surveillance), according to the FPV paradigm, images are

seamlessly acquired by means of a wearable camera which is carried by the user at

all times. Figure 1.1 shows an example of fixed camera used in the TPV scenario

and an example of wearable camera used in the FPV scenario. One of the main

differences between a wearable camera and a standard fixed one is the intrinsic

mobility of the former. On one hand, this introduces new challenges due to the lack
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(a) fixed camera (TPV) (b) wearable camera (FPV)

Figure 1.1: An example of (a) fixed camera used in a standard Third Person Vision
scenario and (b) wearable camera used in a First Person Vision scenario.1

of stability which can entail artifacts such as motion blur. On the other hand, the

content acquired from FPV cameras always “tells something” about the user, the

location in which he is operating, the activities he is involved in and, ultimately

his true intent and goals [10]. An example of the advantages of First Person Vision

systems is shown in Figure 1.2, which compares images of the same human activity

acquired according to the two discussed paradigms. The clear advantage of FPV

systems lies in the ability to be carried by the user and observe the world from his

perspective. Moreover, the continuous nature of the acquired information enables

easy acquisition of huge quantities of data, which can be useful for both off-line and

on-line learning.

1.1.3 Context Awareness in First Person Vision

As the user moves and interacts with the scene, many factors related to the sur-

rounding environment are deemed to change. These include the location in which

the user operates, the performed activities, objects and people present on the scene,

the time in which activities take place and the goals the user is trying to achieve.

The ensemble of all such factors is broadly referred to as “context” in the liter-

ature [12, 13]. As pointed out by Dey and Abowd [14], context is important to

improve human-machine interaction. Indeed, humans use context as an implicit

1Image (a) by M.O. Stevens, licensed under Creative Commons and acquired from this URL.
Image (b) by A. Zugaldia, licensed under Creative Commons and acquired from this URL.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Fixed_outdoor_security_camera_-_Hillsboro,_Oregon.JPG
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/azugaldia/7457645618/in/photostream/
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(a) Third Person Vision (TPV) image (b)First Person Vision (FPV) image

Figure 1.2: Examples of (a) Third Person Vision (TPV) and (b) First Person Vision (FPV)
images. The two images are synchronized frames acquired by different cameras recording
the same human activity. The TPV perspective is neutral to the observed events, while
the FPV one allows to capture information about what the user is doing.2

means of additional information to effectively communicate with each other and re-

act appropriately. Given their intrinsic mobility, FPV systems have to deal with a

continuously changing environment [11]. Therefore, they need to be able to sense

and correctly understand context in order to adapt their behavior to the differ-

ent situations in which the user may be involved and, ultimately, to improve their

intelligence.

As discussed in Section 1.1, due to their intrinsic mobility, First Person Vision

systems have to deal with a continuously changing context. Even if it is difficult

to formalize the concept of context, different authors have attempted to formulate

suitable working definitions [12, 13, 14]. Among such efforts, Dey and Abowd [14]

debated that context-aware systems look at the “who”, “where”, “when”, “what”

of entities and use this information to determine “why” the situation is occurring.

The authors hence introduce four context categories which are deemed to be more

important than others: “location”, “identity”, “activity” and “time”. We comple-

ment the list by adding the “intent” category, which we find of crucial importance

for the development of intelligent systems. The complete list of fundamental context

categories is as follows:

2Frames from the Carnegie Mellon University Multimodal Aativity (CMU-MMAC) dataset [15].
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• Location: provides information about “where” the current situation is hap-

pening. This kind of contextual information is useful to design systems able

to adapt their behavior on the basis of the sensed location (see Figure 1.3(a));

• Identity: provides information about “who” is present on the scene. This

kind of information allows to build “socially intelligent” systems which can

adapt their behavior and address their communication on the basis of the

social context [16] (see Figure 1.3(b));

• Activity: provides information about “what” is happening. Such information

is essential to gain knowledge of what the user is doing, for instance to monitor

his behavior or assist him (see Figure 1.3(c));

• Time: provides information about “when” the current situation is taking

place. Time can be trivially exploited to correct contextual prediction (e.g.,

it is unlikely to be at the office at 4 A.M.) and issue time-triggered reminders

or alerts;

• Intent: provides information about “why” the user is performing the current

activity and relates to “what” he wants to achieve in the long run. Being able

to understand the future intentions of the user or anticipate object interactions

is important for human-machine interaction and to provide tailored assistance

(see Figure 1.3(d)).

1.2 Aims and Approach

The aim of this thesis is to investigate context awareness in First Person Vision.

Specifically, we concentrate on two of the five aforementioned context categories,

which are location and intent. We move from the assumption that information

acquired by First Person Vision systems is very personal for the user. Hence, we

study how such information can be leveraged to model the personal environment in

which the user operates and to predict his short term goals by anticipating future

object interactions.
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(a) location (b) identity

(c) activity (d) intent

Figure 1.3: Some visual examples of four context categories. (a) First Person Vision
systems acquire visual content related to different locations. (b) First Person Vision
systems should be aware of the social context (i.e., people present in the scene). (c) First
Person Vision systems should be able to recognize the action performed by the user. (d)
First Person Vision systems should be able to understand user’s intent and predict what
the user is going to do next. Image (b) is part of the dataset proposed in [17]. Image (c)
is part of the dataset proposed in [18]. Image (d) is part of the dataset proposed in [19].
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Car C.V.M. Office Lab Office Living Room

Piano Kitchen Sink Studio Garage

Figure 1.4: Some sample frames from the proposed dataset. C.V.M. stands for coffee vending
machine.

We consider locations at the instance level (e.g., my office) rather than at the

category level (e.g., an office) and investigate methods to recognize personal loca-

tions specified by the user from first person videos. We assume a supervised scenario

in which the user indicates the locations he wants to monitor by providing minimal

training data. To account for the huge variability in terms of visual content that

FPV systems can acquire, we design methods to perform the rejection of negative

locations (i.e., locations not of interest for the user). We benchmark different image

representation techniques and provide methods to perform temporal segmentation of

personal locations from videos. To support our analysis, we collected three datasets

of first person videos acquired by a user while performing his daily activities in dif-

ferent locations: car, coffee vending machine, office, lab office, living room, piano,

kitchen, sink, studio and garage. Figure 1.4 shows some visual examples of the con-

sidered locations. We made the datasets publicly available to foster future research

on the topic.

We further explore the contextual insights given by the First Person Vision

paradigm addressing the task of anticipating object interactions by predicting “next-

active-objects”, i.e., objects which are going to be manipulated by the user in a

short time. In particular, we analyze the role of egocentric object trajectories in

the proposed task of next-active-object prediction and compare them to other cues

which might be available on the scene. Figure 1.5 shows some examples of next-

active-objects, as compared to passive ones.
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Figure 1.5: A sequence illustrating next-active-objects (in red) and passive ones (in cyan)
along with their egocentric trajectories.

We also report complementary investigations on methods to perform direct fea-

ture extraction from images acquired using wide-angular sensors. Wide-angular

sensors provide a representation of the scene which allows to increase the Field Of

View and include more information about the environment than regular sensors.

Therefore, they are usually employed in the design of wearable cameras.3 Since

these topics are not directly related to the main aim of this thesis, they are reported

in appendix.

1.3 Contributions

The main contributions of this thesis are the following:

• The definition of the task of recognizing personal locations from first person

videos;

• The introduction of three labeled datasets of first person videos acquired by a

user in 10 different locations of interest;

• A benchmark of different state-of-the-art methods for scene and object classi-

fication on the proposed task of personal location recognition;

• The formulation and investigation of methods to perform the rejection of neg-

ative locations to extend multi-class classification to work in real scenarios;

• A system for the temporal segmentation of first person videos to highlight

personal locations of interest;

3Some examples include GoPro (http://gopro.com), Authographer (http://www.
autographer.com/) and Narrative Clip 2 (http://getnarrative.com/).

http://gopro.com
http://www.autographer.com/
http://www.autographer.com/
http://getnarrative.com/
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• The formulation of new the task of predicting next-active-objects from first

person videos and the investigation of the role of object trajectories in the

proposed task;

Other contributions include:

• A study of the applicability of affine covariant region detectors directly on

wind angle images;

• The derivation of a novel family of generalized Sobel filters for the direct

estimation of the gradient of wide angle images;

• The definition of Distortion Adaptive Descriptors, a new paradigm for the

computation of gradient-based descriptors directly on wide angle images.

The contribution of this thesis have been published in international journals and

conferences:

International Journals:

• A. Furnari, G. M. Farinella, and S. Battiato. “Recognizing Personal Loca-

tions From Egocentric Videos”. In: IEEE Transactions on Human-Machine

Systems 47.1 (2017), pp. 6–18. doi: 10.1109/THMS.2016.2612002

• A. Furnari, G. M. Farinella, R. Bruna, and S. Battiato. “Affine Covariant

Features for Fisheye Distortion Local Modeling”. In: IEEE Transactions on

Image Processing 26.2 (2017), pp. 696–710. doi: 10.1109/TIP.2016.2627816

• A. Furnari, G. M. Farinella, R. Bruna, and S. Battiato. “Distortion Adaptive

Sobel Filters for the Gradient Estimation of Wide Angle Images”. In: under

review in Journal of Visual Communication and Image Representation (2017)

International Conferences:

• A. Furnari, G. M. Farinella, and S. Battiato. “Temporal segmentation of

egocentric videos to highlight personal locations of interest”. In: International

Workshop on Egocentric Perception, Interaction and Computing (EPIC) in

conjunction with ECCV. 2016, pp. 474–489

http://dx.doi.org/10.1109/THMS.2016.2612002
http://dx.doi.org/10.1109/TIP.2016.2627816
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• A. Furnari, G. M. Farinella, and S. Battiato. “Recognizing Personal Contexts

from Egocentric Images”. In: Workshop on Assistive Computer Vision and

Robotics (ACVR) in conjunction with ICCV. 2015

• A. Furnari, G. M. Farinella, A. R. Bruna, and S. Battiato. “Distortion Adap-

tive Descriptors: Extending Gradient-Based Descriptors to Wide Angle Im-

ages”. In: Image Analysis and Processing (ICIAP). vol. 9280. Lecture Notes

in Computer Science. Springer, 2015, pp. 205–215

• A. Furnari, G. M. Farinella, A. R. Bruna, and S. Battiato. “Generalized Sobel

filters for gradient estimation of distorted images”. In: IEEE International

Conference on Image Processing. 2015, pp. 3250–3254

• A. Furnari, G. M. Farinella, G. Puglisi, A. R. Bruna, and S. Battiato. “Affine

region detectors on the fisheye domain”. In: 2014 IEEE International Con-

ference on Image Processing (ICIP). 2014, pp. 5681–5685

Appendix B reports a list of other works not directly related to this thesis published

during my Ph.D.

1.4 Overview of First Person Vision

First Person Vision has been investigated since the 90s. Of particular importance

is the work by Steve Mann, who designed and developed many wearable computers

equipped with visual processing capabilities [28, 29]. The main applications pro-

posed by Mann in the mid 90s were targeted towards improving visual perception,

augmenting memory and assisting the visually impaired [28, 30]. In the early years

of FPV, other researchers investigated topics related to context awareness [11, 31],

interaction [32] and augmented reality [33].
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The appearance on the market of commercial wearable cameras featuring small

dimensions and long battery life4 has subsequently renewed the interest of the re-

search community [34]. Moreover, the potential of modern computer vision tech-

nologies has promoted the development of important topics such as activity recog-

nition [18, 19, 35, 36], video indexing and summarization [37, 38, 39, 40, 41] and

visual attention modeling [42, 43, 44, 45].

1.4.1 Terminology

Over the last 20 years, First Person Vision has gone under different names. The first

works on the topic referred to First Person Vision with the term “wearable vision” to

underline the different design of such systems [11, 31, 28, 37, 46]. Unlike traditional

TPV cameras, wearable systems are worn by the user and hence are able to acquire

images from his viewpoint. Some researchers investigated the benefits of applying

active vision to wearable systems and used the term “wearable active vision” [46,

47]. More recently, the term “egocentric vision” has been consistently used to put

the emphasis on the personal nature (i.e., “related to me”) of the acquired data [18,

38, 40, 45, 48, 49]. Similarly, other authors have adopted the term “First Person

Vision” to highlight the different acquisition paradigm and the non-neutrality of

the observations with respect to the standard TPV paradigm [10, 19, 34, 50, 51].

While we find the term “First Person Vision” more specific for the computer vision

community, the other terms will be also adopted in this thesis. Specifically, we will

adopt the term “wearable” when it will be appropriate to highlight the possibility

to wear such systems and the term “egocentric” to highlight the personal nature of

the acquired data.

1.4.2 Context Awareness

Context awareness in First Person Vision has been investigated since the early days.

Starner et al. [11] introduced an assistant for playing the “Patrol” game. The pro-

posed wearable system was able to track the location of the user and understand

the current task without using off-body infrastructure. Aoki et al. [52] designed a

4GoPro (https://gopro.com/), Narrative Clip (http://getnarrative.com/) and Google
Glass (https://www.google.com/glass/start/) are some examples.

https://gopro.com/
http://getnarrative.com/
https://www.google.com/glass/start/


Chapter 1. Introduction 12

dynamic programming algorithm to recognize previously visited places on the ba-

sis of image sequences acquired by the user while approaching to the considered

locations. Schiele et al. [33] proposed DyPERS, the “Dynamic Personal Enhanced

Reality System”. The system allowed to record audio-visual clips and associate

them with specific visual objects. Recorded “media memories” were retrieved and

played back to the user when the specific visual object was detected on the scene.

Schiele et al. [53] present a wearable system which can be used as a museum’s guide.

The system was able to recognize objects in the user’s field of view and display

multimedia information that the user previously identified as being relevant to the

object. Torralba et al. [54] propose a context-based wearable vision system which is

able to identify familiar locations, categorize new environments and provide contex-

tual priors for object recognition. Templeman et al [51] design a system to detect

images of sensible spaces automatically acquired by always-on wearable cameras.

Detected sensitive spaces (like bathrooms and bedrooms) can be blacklisted in or-

der to preserve privacy. Sundaram and Mayol-Cuevas [55] classify actions from an

egocentric field of view. The system also recognizes the user’s location using a SLAM

system and refine action classification using pre-learned action-location priors. Sun-

daram and Mayol-Cuevas [56] investigate a method that recognizes human activity

observed from a moving camera and references such information to a previously

mapped environment. Rhinehart and Kitani [57] learn a predict action maps of

large environments. Action maps encode the ability of the user to perform activities

in specific locations.

1.4.3 Activity and Action Recognition

Activity and action recognition are among the most investigated problems in First

Person Vision. Activity and action recognition are different objectives: action recog-

nition concerns the detection and correct classification of atomic actions and interac-

tions with objects [50, 58], while activities are defined as complex sequences and in-

teractions with objects to achieve a given goal. Examples of actions are, for instance,

“beating eggs” or “opening the box”, while examples of activities are “preparing a

meal” or “doing the laundry” [18, 19]. Even if they are different objectives, the

tasks of action and activity recognition have been often investigated together [19,

36, 50]. Spriggs et al. [50] used Intertial Measurement Units and a wearable camera
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to segment human motion into actions and perform activity recognition. Kitani

et al. [59] investigated methods to segment egocentric videos of sports into action

categories. The approach assumed an unsupervised scenario where labeled train-

ing videos are not available and the number of action categories is not known in

advance. Fathi et al. [18] presented a method to analyze daily activities such as

meal preparation. The method performed inference about activities, actions, hands,

and objects. Doherty et al. [60] investigated methods to recognize human activities

from visual life-logs. Fathi et al. [43] designed a method to predict gaze and action

labels jointly. Pirsiavash and Ramanan [19] investigated the recognition of daily

activities from egocentric videos using an object-centric representation. Ryoo and

Matthies [61, 62] considered a robot-centric scenario and proposed to recognize or

predict actions performed by other subjects during their interaction with the robot.

Li et al. [35] benchmarked different egocentric cues in the context of activity recog-

nition. Yan et al. [48] designed a multi-task clustering algorithm to learn egocentric

activities from multiple subjects in an unsupervised way. Castro et al. [63] pre-

sented a method to analyze egocentric images to recognize the egocentric activities

of an individual. Singh et al. [64] proposed a Convolutional Neural Network for end

to end learning and classification of egocentric actions. The method incorporated

egocentric cues such as hand pose, head motion and saliency map. Ma et al [36]

designed an activity recognition method which integrated hand segmentation, detec-

tion of objects of interest and action detection. Zhou et al [65] introduced cascaded

interactional targeting deep neural networks to infer both hand and active object

regions.

1.4.4 Indexing and Summarization

Long egocentric videos and egocentric photo streams are difficult to browse. To

improve accessibility to such content, researchers have investigated method to in-

dex, summarize and extract egocentric visual data. Among the first researchers on

this topic, Aizawa et al. [37] proposed an approach to automatic structuring and

summarization of egocentric video. The approach used a sensor of brain waves and

video features to automatically extract events of interest for the subject. Doherty et

al. [66] investigated automatic segmentation of egocentric photo streams into events.
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The proposed approach exploited the concept of novelty and a face-to-face conver-

sation detector to help determine the importance of events in a lifelog. Jojic et

al. [67] designed an unsupervised algorithm to create a visual summary from ego-

centric photo streams by discovering recurrent scenes, familiar faces and common

actions. Aghazadeh et al. [68] demonstrated a system for the automatic extraction

of novelty in egocentric images based on image sequence alignment. Lee et al. [69]

introduced an approach to summarize egocentric videos focusing on the most im-

portant objects and people with which the user interacts. Lu and Grauman [38]

designed a summarization approach that discovers the story of an egocentric videos

by selecting a short chain of video subshots depicting the essential events. Poleg et

al. [40, 41] investigated methods to segment egocentric videos according to long term

activities such as standing, walking and biking, by analyzing user’s motion. Bolaños

et al. [70] surveyed methods to summarize egocentric photo streams arising from

visual lifelogs. Xu et al. [71] formulated a gaze-enabled egocentric summarization

method. Bo et al. [72] proposed a storyline representation of egocentric videos with

an application story-based search using AND-OR graphs. Battadapura et al. [73]

presented an approach for identifying highlights from large amount of egocentric

vacation videos.

1.4.5 Attention Modeling

Other researches investigated the problem of modeling the user’s visual attention

from wearable devices. Yamada et al. [42] proposed a method for predicting egocen-

tric attention combining bottom-up visual saliency and egomotion. Fathi et al. [43]

introduced a probabilistic generative model for simultaneously recognizing daily ac-

tions and predicting gaze locations in egocentric video. Li et al. [44] presented a

model for gaze prediction in egocentric video by exploiting different egocentric cues

such as the wearer’s head motion and hand location. Leelasawassuk et al. [74] inves-

tigated methods for the estimation of the user’s visual attention from a head-worn

Inertial Measurement Unit (IMU). Other authors argued that the availability of a

gaze tracker can be beneficial for first person vision systems [10, 75, 76].
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1.5 Thesis Outline

The thesis is divided into 4 chapters, plus two appendices. Each chapter treats a

specific aspect of the investigated topics.

Chapter 2 investigates personal location recognition from first person videos.

Chapter 3 defines the task of next-active-object recognition and investigates the

role of object trajectories.

Chapter 4 concludes the thesis and gives insights for future directions.

Appendix A reports complementary investigations on feature extraction from wide

angle images.

Appendix B reports a list of works published during my Ph.D not directly inherent

to this thesis.
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Chapter 2

Recognizing Locations of Interest

from Egocentric Videos

Contextual awareness is a desirable property in wearable computing [11, 12]. Context-

aware systems can leverage the knowledge of the user’s context to provide a more

natural behavior and a richer human-machine interaction. Although different factors

contribute to define the context in which the user operates, two important aspects

seem to emerge from past research [12, 13]:

1. context is a dynamic construct and hence it is usually infeasible to enumer-

ate a set of canonical contextual states independently from the user or the

application;

2. even if context cannot be simply reduced to location, the latter still plays an

important role in the definition and understanding of the user’s context.

In particular, we argue that being able to recognize the locations in which the user

performs his daily activities at the instance level (i.e., recognizing a particular envi-

ronment such as “my office”), rather than at the category-level, (e.g., “an office”),

can provide important information on the user, and help understanding his behavior

and current objectives. Specifically, we define a personal location as:

a fixed, distinguishable, spatial environment in which the user can per-

form one or more activities which may or may not be specific to the

considered location.

An example of personal location may be the personal office desk in which the user

can perform a number of activities, such as surfing the Web or writing e-mails.
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Differently from the concept of scene category (as intended in [77]) personal locations

are bound to the specific user and hence carry information related to his behavior

and objectives. This relates to different applications in the domains of life-logging

and personal information retrieval [78, 40], as well as to the domain of assistive

technologies [79, 80].

For instance, a personal location aware system would allow to organize and access

the acquired visual information on the basis of the detected personal locations and

provide statistics on the behavior of the user (e.g., for stress monitoring), answering

questions such as “how much time did I spend in my office last week?”, “how many

coffees did I have today?”, “how many hours per-week do I usually spend driving?”.

The system could also be programmed to trigger specific behaviors or alerts accord-

ing to the sensed location. This could include turning off unessential notifications

when the user enters his office, assisting elder users in the interaction with a par-

ticular environment (e.g., reminding how to operate the TV or the microwave) or

notifying the user that it’s time to have a break after a long working session.

In this Chapter, we study how personal locations can be recognized from egocen-

tric videos. Specifically, in Section 2.1 we discuss the related works. In Section 2.2

we discuss the specific challenges related to the recognition of personal locations from

egocentric videos. In Section 2.5 we present a benchmark of the most popular visual

representation techniques for scene and object recognition on the considered task.

The benchmark is performed with respect to different wearable devices character-

ized by heterogeneous Fields of View (FOV) and wearing modalities. The analysis

is extended in Section 2.6 with the introduction of a novel method for the rejection

of negative locations (i.e., locations not of interest for the user) and with the aug-

mentation of the preliminary benchmark dataset to a larger number of locations.

In Section 2.7 we propose a method that further exploits temporal coherence to

improve negative rejection as well as location recognition.

2.1 Related Work

Mobile and wearable cameras have been widely used in a variety of tasks, such as

place and action recognition [11, 52], health and food intake monitoring [81, 82,

83], human-activity recognition and understanding [32, 18, 43, 75, 63, 48], video
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indexing and summarization [40, 38, 84], as well as assistive-related technologies

[79, 80]. The problem of recognizing personal locations from egocentric images, in

particular, has already been investigated for different purposes and different meth-

ods have been proposed in the literature. The first investigations relevant to the

considered problem date back to the late 90s. Starner et al. [11] proposed a context-

aware system for assisting the users while playing the “patrol” game. The system

proposed in [11] comprises a component able to recognize the room in which the

player is operating combining RGB features and a Hidden Markov Model (HMM).

Aoki et al. [52] proposed an image matching technique for the recognition of previ-

ously visited places. In this case, locations are not represented by a single frame,

but rather by an image sequence of the approaching trajectory. Place recognition is

implemented by computing the distance between a newly recorded trajectory and a

dictionary of trajectories to known places. Torralba et al. [54] proposed a wearable

system able to recognize familiar locations as well as categorize new environments.

A low-dimension global representation based on a wavelet image decomposition is

proposed in order to include textural properties of the image as well as their spatial

layout. Familiar location recognition and new environment categorization are ob-

tained separately training two distinct HMM models. More recently, in the wake of

the popularity that always-on wearable cameras have recently gained, Templeman

et al. [51] have proposed a system for “blacklisting” sensitive spaces (like bathrooms

and bedrooms) to protect the privacy of the user when passively acquiring images

of the environment. The system combines contextual information like GPS location

and time with an image classifier based on local and global features and a HMM

to take advantage of the temporal constraint on human motion. Images and short-

video-based localization strategies have been already investigated in [85], where short

videos are used to compute 3D-to-3D correspondences. The authors of [86] propose

to model and recognize activity-related locations of interest to facilitate navigation

in a visual lifelog. While the discussed approaches generally concentrate on video,

some researchers have also investigated the use of low temporal-resolution devices.

Such devices generally allow to acquire a few images per minute, but are character-

ized by a larger autonomy both in terms of memory and battery-life, which makes

them particularly suited to acquire large amounts of visual data. In [63], daily ac-

tivities are recognized from static images within a low temporal-resolution lifelog.
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In [87], a method for semantic indexing and segmentation of photo streams is pro-

posed. The reader is referred to the work by Bolaños et al. [70] for a review of the

advances in egocentric data analysis.

As highlighted in [54], location recognition and place categorization are two

related tasks and hence they are likely to share similar features in real-world appli-

cations. In this regard, much work has been devoted to designing suitable image

representation for place categorization. Torralba and Oliva described a procedure for

organizing real world scenes along semantic axes in [88], while in [89] they proposed a

computational model for classifying real world scenes. Efficient computational meth-

ods for scene categorization have been proposed for mobile and embedded devices

by Farinella et al. [90, 91]. More recently, Zhou et al. [92] have successfully applied

Convolutional Neural Networks (CNNs) to the problem of scene classification.

Please note that, while past literature primarily focused on classification, we pay

special attention to the problem of rejecting negative locations (i.e., locations not of

interest for the user) which is an essential component for building real, robust and

effective systems.

2.2 Challenges

Recognizing personal locations from egocentric videos poses some challenges due

to the user-specific nature of the acquired visual information. In a real system

the user should be able to specify a set of personal locations which he wishes to

monitor. Since the locations are not known in advance by the system and they

must be recognized at the instance-level, the user needs to provide training data

for each location in order to “instruct” the system about what is meaningful for

him. The data collection procedure should be simple enough to be performed by

the inexperienced user. Moreover, relying on the acquired set of user-specified data,

at run time the system should be able to: 1) detect the considered locations and

2) reject negative frames, i.e., frames not depicting any of the locations interesting

for the user. Negative frames, in particular, naturally arise from two factors: 1) the

user is likely to spend time in locations which he does not want to monitor (e.g.,

his colleague’s office) and 2) as the user moves from a location to another, samples

not related to a specific location may be acquired (e.g., the corridor). Considering
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Challenge Constraints Desired Feature
negative samples no training negatives negative rejection abilities
user-gathered data few training samples learning from few samples
similar personal locations scene recognition

methods not suitable
instance-level recognition

Table 2.1: Main challenges of a personal location recognition system.

possible real scenarios as above, in addition to the general issues which may be

associated with egocentric data (e.g., camera blur and non-intentionality of the

framing), recognizing personal locations involves some unique challenges:

• real-world systems must be able to correctly detect and manage negative sam-

ples, i.e., images depicting scenes not belonging to any of the desired locations

of interest;

• given that an always-on wearable camera is likely to acquire a great variabil-

ity of different scenes, gathering representative negative samples for modeling

purposes is not always possible. In a real scenario, a system able to reject neg-

atives given only user-specific positive samples for learning purposes is hence

desirable;

• since personal locations are user-specific, few labeled samples are generally

available as hence it is not feasible to ask the user to collect and annotate

huge amounts of data for learning purposes;

• large intra-class variability usually characterizes the appearance of the different

views related to a given location of interest;

• personal locations belonging to the same high level category (e.g., two different

offices) tend to be characterized by similar scene shape and objects, making

the discrimination challenging.

Table 2.1 summarizes the most important challenges of a personal location recogni-

tion system. Figure 2.1(a) shows some sample images acquired in different personal

locations using a wearable camera. Figure 2.1(b) also reports some negative samples.

Note that, since we define personal locations at the instance level, negative samples

can be very similar to positive ones. For instance, a different coffee vending machine
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car coffee v. machine office living room home office

(a) positive samples

(b) negative samples

Figure 2.1: Some egocentric images of possible personal locations of interest for the user. (a)
Positive samples: each column reports two different shots of the same location acquired using a
wearable camera. The following abbreviation holds: coffee v. machine - coffee vending machine.
(b) Some negative samples.
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(a) smart glasses (b) ear-mounted (c) chest-mounted

Figure 2.2: Three devices involving different wearing modalities: (a) smart glasses, (b)
ear-mounted wearable camera, (c) chest-mounted wearable camera

or a different office should be classified as negatives. The figure illustrates the main

variabilities described above. To take into account the discussed challenges, we will

consider the following scenario: The user defines a number of locations of interest by

providing minimal training data in the form of short videos (e.g., a 10 seconds video

per location). The user is just asked to wear his camera and briefly look around

while he is in the considered location. The user only provides positive samples and

is not asked to acquire negative samples for training purposes.

2.3 Wearable Devices

The market proposes different wearable cameras, each with its distinctive features.

We considered three main factors to characterize such devices: resolution, wearing

modality and Field Of View (FOV). The resolution influences the amount of details

that a given device is able to capture. While the first generation of wearable devices

was characterized by very small resolutions (in the order of 0.1 mega-pixels), recent

devices tend to adhere to the HD and 4K standards. The wearing modality influ-

ences the way in which the visual information is actually acquired. In particular,

we identify three classes of devices characterized by different wearing modalities:

smart glasses, ear mounted cameras and chest mounted cameras. Smart glasses are

designed to substitute the user’s glasses. Ear mounted cameras are worn similarly

to bluetooth earphones and are a little more obtrusive than smart glasses. Both

smart glasses and ear mounted devices have the advantage to capture the environ-

ment from the user’s point of view. Chest mounted cameras are the least obtrusive

since they are clipped to the user’s clothes rather than mounted on his head (and

easily ignored by both the wearer and the people he interacts with). However, the

FOV captured by chest mounted cameras does not usually achieve much overlap
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Resolution Wearing Modality Field Of View
Medium Large Glasses Ear Chest Narrow Wide

RJ X X X
LX2P X X X
LX2W X X X
LX3 X X X

Table 2.2: A summary of the main features of the considered devices. The following
abbreviations hold: RJ - Recon Jet smart glasses, LX2P - Looxcie LX2 without wide-
angular converter, LX2W - Looxcie LX2 with wideangular converter, LX3 - Looxcie LX3.

with the user’s FOV. The Field Of View affects the quantity of visual information

which is acquired by the device. A larger FOV allows to acquire more information

in a similar way to the human visual system at the cost of the introduction of radial

distortion. Figure 2.2 depicts three devices involving the aforementioned wearing

modalities.

In order to assess the influence of the aforementioned device-specific factors for

the problem of personal location recognition, we consider four different devices: the

smart glasses Recon Jet (RJ)1, two ear-mounted Looxcie LX22, and a wide-angular

chest-mounted Looxcie LX33. The Recon Jet and Looxcie LX3 devices produce

images at the HD resolution (1280 × 720 pixels), while the Looxcie LX2 devices

have a smaller resolution of 640× 480 pixels. The Recon Jet and the Looxcie LX2

devices are characterized by narrow FOVs (70◦ and 65, 5◦ respectively), while the

FOV of the Looxcie LX3 is considerably larger (100◦). One of the two ear-mounted

Looxcie LX2 is equipped with a wide-angular converter in order to achieve a large

FOV (approximatively 100◦). The wide-angular LX2 camera will be indicated with

the acronym LX2W, while the regular (perspective) LX2 camera will be indicated

as LX2P. Table 2.2 summarizes the main features of the cameras used to acquire

the data.

1http://www.reconinstruments.com/products/jet/
2http://www.looxcie.com
3http://www.looxcie.com

http://www.reconinstruments.com/products/jet/
http://www.looxcie.com
http://www.looxcie.com
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Dataset #L Device Overlap
5-LOCATIONS 5 RJ, LX2P, LX2W, LX3 —
8-LOCATIONS 8 RJ, LX2P, LX2W, LX3 car, cvm, office, tv, h.office are

taken from 5-LOCATIONS
10-LOCATIONS 10 LX2W car, cvm, office, tv, h.office, lab

office, garage are taken from 8-
LOCATIONS

Table 2.3: Summary of the content of the three considered datasets. The table reports
the number of locations in each dataset (#L), the devices used to acquire the data and
the overlap with other datasets.

2.4 Datasets

For our analysis, we have collected three distinct datasets of egocentric videos ac-

quired in different personal locations. The datasets have been collected in an in-

cremental fashion (i.e., each dataset extends the previous one) by the same single

user using the hardware described in the previous section. Therefore, the datasets

share some footage and similar acquisition settings. The datasets contain videos of

5, 8 and 10 locations respectively, and hence they will be referred using three unique

names: 5-LOCATIONS, 8-LOCATIONS and 10-LOCATIONS. The following sec-

tions discuss the details of each of the considered datasets. To help understand the

differences and similarities between the datasets, a summary is reported in Table 2.3.

2.4.1 5-LOCATIONS

This dataset has been acquired by a single user in five different personal locations

using the four devices discussed in Section 2.3. The considered five personal locations

arise from the daily activities of the user and are relevant to assistive applications

such as quality of life assessment and daily routine monitoring: car, coffee vending

machine, office, TV and home office. Figure 2.3(a) shows some samples from the

dataset with respect to the considered wearable devices. Since each of the considered

location involves one or more static activities, we assume that the user is free to turn

his head and move his body when interacting with the environment, but he does

not change his position in the room. In line with the considerations discussed in

Section 2.2, our training set is composed of very short videos (≈ 10 seconds) of

the locations of interest for a person (just one video per location) to be monitored.
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During the acquisition of the training videos, the user is asked to turn his head (or

chest, in the case of chest-mounted devices) in order to capture a few different views

of the environment. Please note that, in the training stage, the user is assumed

to be static and only one training video from a single position is acquired for each

class. The test set consists in medium length (8 to 10 minutes) videos of normal

activity in the given personal locations with the different devices. Three to five

testing videos have been acquired for each location. We also acquired several short

videos containing likely negative samples, such as indoor and outdoor scenes, other

desks and other vending machines. Please note that the negative samples contained

in this dataset are mainly related to the first of the two sources of negative samples

discussed in Section 2.2, i.e., locations not of interest form the user. Few negatives

related to transitions between different locations (e.g., corridors) are also included.

Figure 2.3(b) shows some negative samples. Most of the negative-videos are used

solely for testing purposes, while a small part of them is used to extract a fixed

number (200 in our experiments) of frames which will be used as “optimization

negative samples” in order to optimize the performances of the compared methods.

At training time, all the frames contained in the “10-seconds” video shots are used,

while at test time, only about 1000 frames per-class uniformly sampled from the

testing videos are used. In order to perform fair comparisons across the different

devices, we built four independent, yet compliant, device-specific datasets. Each

dataset comprises data acquired by a single device and is provided with its own

training and test sets. The device-specific datasets are available for download at the

URL: http://iplab.dmi.unict.it/PersonalLocations/.

2.4.2 8-LOCATIONS

This dataset extends 5-LOCATIONS and contains about 7 more hours of new video.

The material has been acquired by the same subject using the four considered de-

vices. Specifically, three more locations have been included: Kitchen Top, Sink

and Garage. This dataset also reuses the same negative samples included in the

5-LOCATIONS dataset. The full set of 8 personal locations arises from possible

daily activities of a user: Car, Coffee Vending Machine (C. V. M.), Office, Living

Room (L. R.), Home Office (H. Office), Kitchen Top (K. Top), Sink, Garage. The

dataset includes similar looking locations (e.g., Office vs Home Office) and locations

http://iplab.dmi.unict.it/PersonalLocations/


Chapter 2. Recognizing Locations of Interest from Egocentric Videos 26
L
X
3

L
X
2W

L
X
2P

R
J

car coffee v. machine office TV home office

(a) positive samples

(b) negative samples

Figure 2.3: (a) Some sample images of the five personal locations of the 5-LOCATIONS dataset.
Images from the same locations are grouped by columns, while images acquired using the same
device are grouped by rows. The following abbreviation holds: coffee v. machine - coffee vending
machine. (b) Some negative samples used for testing purposes.
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characterized by large intra-class variability (e.g., Garage). Figure 2.4 shows some

sample frames belonging to the dataset.

This overall dataset amounts to more than 20 hours of video and more than one

million frames in total. In order to facilitate the analysis of such a huge quantity

of collected data, we extract each frame in the training videos and temporally sub-

sample the testing videos. To reduce the amount of frames to be processed, for each

location in the test sets, we extract 200 subsequences of 15 contiguous frames. This

sub-sampling still allows to consider temporal coherence. The starting frames of the

subsequences are uniformly sampled from the 5 videos available for each class. The

same sub-sampling strategy is applied to the test negatives. We also extract 300

frames form the optimization negative videos. This amounts to a total of 133770

extracted frames to be used for experimental purposes. The dataset is available at

the following URL: http://iplab.dmi.unict.it/PersonalLocations/.

2.4.3 10-LOCATIONS

This dataset has been acquired using only the LX2W camera (Looxcie LX2 +

wideangular converter). It partially extends 8-LOCATIONS, and introduces some

new footage related to two new location: Piano and Studio. Please note that footage

related to the Sink, Kitchen and Living Room locations is not the same contained

in 8-LOCATIONS and 5-LOCATIONS. The overall dataset contains video related

to 10 different personal locations, plus various negative ones. The negative samples

included in the 5-LOCATIONS and 10-LOCATIONS datasets are also included in

this dataset. The full list of location is related to a possible daily routine: Car,

Coffee Vending Machine (C.V.M.), Office, Lab Office (L.O.), Living Room (L.R.),

Piano, Kitchen Top (K.T.), Sink, Studio, Garage. Similarly to the previously dis-

cussed datasets, the 10-LOCATIONS dataset exhibits a high degree of intra-class

variability (e.g., Car and Garage classes) and small inter-class variability in some

cases (e.g., Office, Lab Office and Studio classes).

Coherently with what discuss earlier in this section, we assume that the user is

required to provide only minimal data to define his personal locations of interest.

Therefore, the training set consists in 10 short videos (one per each location) with

an average length of 10 seconds per video. Differently from previous datasets, the

test set consists in 10 video sequences covering the considered personal locations of

http://iplab.dmi.unict.it/PersonalLocations/
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Figure 2.4: (a) Some sample images from the 8-LOCATIONS dataset. Images related to
the same locations are on the same row, while images acquired using a specific device are
on the same column. (b) Some negative samples used for testing purposes.
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Sequence Context transitions Length

1 Car → N → Office → N → Lab Office 00:11:27
2 Office → N → Lab Office 00:05:55
3 Lab Office → N → Office → N → C.V.M. 00:07:24
4 TV → N → Piano → N → Sink 00:11:40
5 Kitchen → N → Sink → N → Piano 00:10:41
6 Kitchen → N → Sink → N → TV 00:11:18
7 Piano → N → Sink → N → TV 00:04:57
8 Studio → N → Car → N → Garage 00:06:51
9 Car → N → Garage → N → Studio 00:05:17
10 Car → N → Studio → N → Garage 00:06:05

Total length 01:21:35

Table 2.4: A summary of the location transitions contained in the test sequences of the 10-
LOCATIONS dataset. “N” represents a negative segment (to be rejected by the final system).

interest, negative locations and transitions among locations. Each frame in the test

sequences has been manually labeled as either one of the 10 locations of interest

or as a negative. Table 2.4 summarizes the content of the test sequences with the

related transitions. Figure 2.5 shows some samples from the acquired dataset. We

also report the total time spent by the user in each of the considered locations in

Table 2.5. As can be noted, some locations (e.g., C.V.M.) tend to be less visited

than others (e.g., Sink). It should be noted that such information is not available

at training time and hence it cannot directly be used to improve recognition perfor-

mances (for instance, by weighting classes differently on the basis of their natural

occurrence in real scenarios).

The dataset is also provided with an independent validation set which can be

used for optimize the hyper-parameters. The validation set contains 10 medium

length (approximately 5 to 10 minutes) videos of activities performed in the con-

sidered locations (one video per location). Validation videos have been temporally

subsampled in order to extract exactly 200 frames per-location, while all frames are

considered for training and test videos. We have also acquired 10 medium length

videos containing negative samples from which we uniformly extract 300 frames for

training and 200 frames for validation. Negative samples are provided in order to

allow comparisons with methods which explicitly learn from negatives. Please note

that the proposed method does not need to learn from negatives and hence it dis-

cards them at training time. Please note that both of the sources of negative samples
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(a) positive samples

(b) negative samples

Figure 2.5: Some sample frames from the 10-LOCATIONS dataset.
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Location Time (seconds)
Car 293

C.V.M. 35
Garage 269

Kitchen Top 392
Lab Office 478
Office 228
Piano 459
Sink 700
Studio 409

Living Room 459
Negatives 680

Table 2.5: Total time spent by the user in each location (including negatives) in the whole
dataset.

discussed in Section 2.2 (i.e., locations not of interest and transitions between lo-

cations). The overall dataset contains 2142 positive, plus 300 negative frames for

training, 2000 positive, plus 200 negative frames for validation and 132234 mixed

(both positive and negative) frames for testing purposes. The dataset is publicly

available at the web page http://iplab.dmi.unict.it/PersonalLocations/.

2.5 Benchmark of Representations and Wearable

Devices

We begin to study the problem of recognizing personal locations of interest from

egocentric images performing a benchmark of different state-of-the-art methods for

scene and object classification. In order to assess the influence of device-specific

factors, such as the wearing modality and the Field Of View (FOV), we consider the

5-LOCATIONS dataset, which contains egocentric videos of 5 different personal lo-

cations acquired using 4 wearable cameras. To make the analysis worth in real-world

scenarios where personal locations of interest need to be discriminated from negative

samples, we consider a simple classification pipeline which includes a mechanism for

the rejection of negative samples.

http://iplab.dmi.unict.it/PersonalLocations/
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Figure 2.6: The considered classification pipeline combining a one-class with a multi-class
classifier.

2.5.1 Classification Pipeline

As already discussed, a personal location recognition system should be able to dis-

criminate among different personal locations specified by the user and reject negative

frames (i.e., frames not related to any of the considered locations). Therefore, we

consider a baseline classification pipeline made up of two main components: a lin-

ear one-class classifier to reject negative samples and a linear multiclass classifier to

discriminate among different personal locations. Figure 2.6 depicts the considered

pipeline. The classification into the n+1 different classes (the “negative” class, plus

n location-related classes) is obtained using a cascade of a one-class SVM (OCSVM)

and a regular multi-class SVM (MCSVM). The OCSVM detects the negative sam-

ples and assigns them to the negative class. All the other samples are fed to the

MCSVM for location discrimination. Since the input to this pipeline is a single

image, no temporal coherence is leveraged to perform the predictions. This aspect

will be investigated in Section 2.6 and Section 2.7. Please note that the proposed

classification pipeline is to be considered a baseline. At this stage, our main focus is
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on performing a benchmark of representations/devices, and not on the recognition

system itself.

2.5.2 Representations

We assume that the input image I can be mapped to a feature vector x ∈ ℜd

through a representation function. Specifically, we consider three different classes

of representation functions: holistic, shallow and deep. All of these representations

have been used in the literature for different tasks related to scene understanding [89,

92] and object detection [93, 94]. In the following subsections we discuss the details

of the considered representations and the related parameters.

Holistic Representations

Holistic feature representations have been widely used in tasks related to scene

understanding [89, 91]. Their aim is to provide an image description encoding dis-

tinctive scene-related features like global edge orientations (the so called “spatial

envelope” [89]), while discarding instance-specific variabilities (e.g., the location of

specific objects). As a popular representative of this class, we consider the GIST

descriptor proposed in [89] and use the standard implementation and parameters

provided by the authors4. According to the standard implementation, all input im-

ages are resized to the normalized resolution of 128× 128 pixels prior to computing

the descriptor. In this configuration, the output GIST descriptors have dimension-

ality d = 512.

Shallow Representations

With deep feature representations and Convolutional Neural Networks (CNNs) be-

coming mainstream in the Computer Vision literature, classic representation schemes

based on the encoding of local features (e.g., Bag of Visual Word models) have been

recently referred to as shallow feature representations [94]. The term “shallow” is

used to highlight that features are not extracted hierarchically as in deep learning

models. On the contrary, there is a single feature extraction layer where local feature

are extracted (e.g., SIFT descriptors) and a description one where some encoding

4http://people.csail.mit.edu/torralba/code/spatialenvelope/

http://people.csail.mit.edu/torralba/code/spatialenvelope/
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strategy is used to summarize the visual content of the image. Among the differ-

ent Bag of Visual Word models, we consider Improved Fisher Vectors (IFV) [95] to

encode densely-sampled SIFT features. This schema generally outperforms other

encoding paradigms and can be considered the state-of-the-art in shallow represen-

tations for object classification [93, 94].

The IFV features are extracted following the procedures described in [93, 94].

As a first step, SIFT descriptors are densely extracted from each training and test

image. As it is suggested in [93], we use the vl phow function of the VLFeat li-

brary [96] to densely sample SIFT features at multiple scales. To make computation

tractable on a large number of frames, each input image is resized to a normalized

height of 300 pixels keeping the original aspect ratio. This produces images of res-

olutions 400 × 300 pixels and 533 × 300 pixels in our dataset. Afterwards, SIFT

descriptors are component-wise square-rooted and their dimensionality is reduced

to 80 components using Principal Component Analysis (PCA) [97]. Apart from the

standard SIFT descriptors, we also consider the spatially-enhanced local descriptors

discussed in [94]. Such descriptors are obtained concatenating the coordinates of

the location from which the SIFT descriptor is extracted to the PCA-reduced SIFT

features, obtaining a 82-dimensional vector as detailed in [94]. Gaussian Mixture

Model (GMM) with K = 256 centroids are trained on the PCA-decorrelated SIFT

descriptors extracted from all images in the training set (negatives are excluded)

in order to build a visual codebook. We also consider large codebooks (K = 512)

in our experiments. The IFV feature vectors are obtained concatenating the aver-

age first and second order differences between the local descriptors and the centers

of the learned GMM [93]. The dimensionality d of IFV descriptors depends on the

number of clusters K of the GMM codebook and the number of dimensions D of the

local feature descriptors (i.e., SIFT) according to the formula: d = 2KD. Using the

aforementioned parameters, the number of dimensions of our IFV representations

ranges from a minimum of 40960 to a maximum of 83968 components. The VLFeat

library [96] has been used to perform all the operations involved in the computation

of the IFV representations.
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Deep Representations

Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art perfor-

mances in a series of tasks including object and scene classification [92, 94, 98]. They

allow to learn multi-layer representations of the input images which are optimal for

a selected task (e.g., object classification). CNNs have also demonstrated excellent

transfer properties, allowing to “reuse” a representation learned for a given task in a

slightly different one. This is generally done extracting the representation contained

in the penultimate layer of the network and reusing it in a classifier (e.g., SVM)

or finetuning the pre-trained network with new data and labels. We consider three

publicly available networks which have demonstrated state-of-the-art performances

in the tasks of object and scene classification, namely AlexNet [98], VGG [94] and

Places205 [92]. AlexNet and VGG have different architectures but they have been

trained on the same data (the ImageNet dataset). Places205 has the same archi-

tecture as AlexNet, but it has been trained to discriminate locations on a dataset

containing 205 different scene categories. The different network architectures allow

us to assess the influence of both network architectures and original training data

in our transfer learning settings. To build our deep representations, we extract for

each network model the values contained in the penultimate layer when the input

image (rescaled to the dimensions of the first layer) is propagated into the network.

This consists in a compact 4096-dimensional vector which corresponds to the repre-

sentation contained in the hidden layer of the final Multilayer Perceptron included

in the network.

2.5.3 Experimental Settings

Experiments are performed on the 5-LOCATIONS dataset. The aim of the ex-

periments is to study the performances of the state-of-the-art representations and

acquisition devices discussed in the previous Section on the considered task. Follow-

ing [93, 94], input feature vectors are transformed using the Hellinger’s kernel prior

to feed them to the linear SVM classifier. Since the Hellinger’s kernel is additive

homogeneous, its application can be efficiently implemented as detailed in [93]. Dif-

ferently from [93, 94], we do not apply the L2 normalization to the feature vectors,

but instead we independently scale each component of the vectors in the range [−1, 1]
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subtracting the minimum and dividing by the difference between the maximum and

minimum values. Minima and maxima for each component are computed from the

training set and reported on the test set. This overall preprocessing procedure out-

performs or gives similar results to the combination of other kernels (i.e., gaussian,

sigmoidal) and normalization schemes (i.e., L1, L2) in preliminary experiments.

To implement the OCSVM component, we consider the method proposed in [99].

Its optimization procedure depends on a single parameter ν which is a lower bound

on the fraction of outliers in the training set. In our settings, the training set

consists in all the positive samples from the different locations and hence it does not

contain outliers by design. Nevertheless, since the performances of the OCSVM are

sensitive to the value of parameter ν, we use the small subset of negative samples

available along with the training set, to choose the value of ν which maximizes

the accuracy on the training-plus-negatives samples. It should be noted that the

negative samples are only used to optimize the value of the ν parameter and they

are not used to train the OCSVM. The multiclass component has been implemented

with a multiclass SVM classifier. Its optimization procedure depends only on the

cost parameter C. At training time, we choose the value of C which maximizes the

accuracy on the training set using cross-validation similarly to what has been done

in other works [93, 94].

The outlined training and testing pipeline is applied to different combinations

of devices and representations/parameters in order to assess the influence of using

different devices to acquire the data and different state-of-the-art representations.

It should be noted that all the parameters involved in the classification pipeline are

computed independently in each experiment in order to yield fair comparisons. We

use LibSVM library in all our experiments [100].

2.5.4 Experimental Results

In order to assess the performances of each component of the considered baseline

classification pipeline, we report the overall accuracy of the system, as well as the

performance measures for the one-class and multi-class components working inde-

pendently. The overall accuracy of the system (ACC) is computed simply counting

the fraction of the input images correctly classified by the cascade pipeline into one
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of the possible six classes (five locations, plus the “negative” class). The perfor-

mances of the OCSVM component, are assessed reporting the True Positive Rate

(TPR) and the True Negative Rate (TNR). Since the accuracy of the one-class clas-

sifier can be biased by the large number of positive samples (about 5000), versus the

small number of negatives (about 1000), we report the average between TPR and

TNR, which we refer to as True Average Rate (TAR):

TAR =
TPR + TNR

2
. (2.1)

The performances of the MCSVM are assessed bypassing the OCSVM component

and running the MCSVM only on the positive samples of the test set. We report the

Multi-Class Accuracy (MCA), i.e., the fraction of samples correctly discriminated

into the 5 locations, and the per-class True Positive Rates. Table 2.6 reports the

results of all the experiments. Each row of the table corresponds to a different

experiment and is denoted by a unique identifier in brackets (e.g., [a1]). The GMM

used for the IFV representations have been trained on all the descriptors extracted

from the training set (excluding the negatives) using the settings specified in the

table. The table is organized as follows: the first column reports the unique identifier

of the experiment and the used representation; the second column reports the device

used to acquire the pair of training and test sets; the third column reports the options

of the representation, if any; the fourth column reports the dimensionality of the

feature vectors; the fifth column reports the overall accuracy of the cascade (one-class

and multi-class classifier) classifier on the six classes; the sixth column reports the

One-Class Average Ratio (OAR) of the OCSVM classifier; the seventh and eighth

columns report the TPR and TNR values for the OCSVM; the ninth column reports

the accuracy of the MCSVM classifier (MCA) working independently from OCSVM

on the five locations classes. The remaining columns report the true positive rates for

the five different personal locations classes. To improve the readability of the table,

the per-column maximum performance indicators among the experiments related to

a given device are reported as boxed numbers , while the global per-column maxima

are reported as underlined numbers.

In the reported results the performance indicators of the MCSVM are in average

better than the ones of the OCSVM. This difference is partly due to the fact that

one-class classification is usually “harder” than multi-class classification due to the
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Method Dev. Options Dim. ACC TAR TPR TNR MCA car c.v.m. office TV h. off.

[a1] GIST RJ — 512 38,96 50,52 91,54 9,50 49,85 43,76 90,84 14,20 76,26 46,78

[b1] IFV RJ KS 256 40960 42,17 46,70 91,20 2,20 51,25 62,28 53,82 34,69 98,69 38,37

[c1] IFV RJ KS 512 81920 42,16 46,61 90,82 2,40 51,21 62,21 53,85 34,55 98,90 38,58

[d1] IFV RJ KS SE 256 41984 43,24 45,42 85,14 5,70 53,73 69,08 50,22 34,65 99,11 46,62

[e1] IFV RJ KS SE 512 83968 36,06 45,68 89,66 1,70 44,03 77,80 46,41 29,65 97,00 21,88

[f1] IFV RJ DS 256 40960 43,77 52,35 93,50 11,20 52,63 65,58 49,50 27,98 91,51 86,92

[g1] IFV RJ DS 512 81920 47,46 48,82 88,74 8,90 60,33 84,34 55,51 37,79 78,09 52,10

[h1] IFV RJ DS SE 256 41984 47,91 49,37 91,74 7,00 59,83 78,92 70,49 40,73 66,96 88,15

[i1] IFV RJ DS SE 512 83968 49,51 45,77 81,34 10,20 67,51 83,80 65,75 41,78 78,73 67,77

[j1] CNN RJ AlexNet 4096 49,26 48,17 67,03 29,30 79,50 93,07 97,10 57,25 94,00 62,10

[k1] CNN RJ Places205 4096 55,19 53,02 80,14 25,90 78,02 97,29 98,43 69,69 96,14 50,86

[l1] CNN RJ VGG 4096 54,54 53,78 63,35 44,20 85,26 94,54 89,83 77,10 90,54 73,27

[a2] GIST LX2P — 512 48,62 61,53 96,56 26,50 54,15 74,15 99,81 30,41 82,68 32,02

[b2] IFV LX2P KS 256 40960 51,19 55,68 79,26 32,10 70,93 60,17 98,40 56,65 98,97 55,16

[c2] IFV LX2P KS 512 81920 63,83 54,97 95,64 14,30 76,90 59,84 97,23 68,39 96,92 72,17

[d2] IFV LX2P KS SE 256 41984 50,66 56,43 79,16 33,70 69,75 58,80 98,29 54,87 98,96 53,10

[e2] IFV LX2P KS SE 512 83968 59,08 50,54 97,48 3,60 71,99 58,29 98,03 60,93 98,44 62,11

[f2] IFV LX2P DS 256 40960 46,62 52,10 88,10 16,10 61,73 71,33 75,65 26,08 62,62 56,10

[g2] IFV LX2P DS 512 81920 50,59 52,20 90,00 14,40 65,15 77,70 68,41 31,21 72,75 66,59

[h2] IFV LX2P DS SE 256 41984 41,79 47,22 80,64 13,80 57,61 74,62 76,88 32,42 71,65 39,86

[i2] IFV LX2P DS SE 512 83968 56,24 55,85 94,00 17,70 68,29 77,34 84,29 37,44 88,29 52,78

[j2] CNN LX2P AlexNet 4096 48,16 51,31 66,31 36,30 76,10 80,54 78,98 50,45 100,0 70,66

[k2] CNN LX2P Places205 4096 54,84 57,30 60,89 53,70 87,14 99,19 92,20 63,38 99,88 96,45

[l2] CNN LX2P VGG 4096 50,74 57,40 56,39 58,40 86,02 98,60 81,04 74,11 99,75 80,21

[a3] GIST LX2W — 512 61,27 60,02 93,66 26,37 73,91 87,51 100,0 80,05 83,84 48,29

[b3] IFV LX2W KS 256 40960 55,47 61,89 89,92 33,87 67,27 55,46 99,30 38,77 98,78 61,73

[c3] IFV LX2W KS 512 81920 54,82 63,41 88,46 38,36 66,93 57,55 99,30 40,58 99,26 57,14

[d3] IFV LX2W KS SE 256 41984 49,73 50,08 88,38 11,79 66,53 63,29 99,69 42,45 99,28 47,94

[e3] IFV LX2W KS SE 512 83968 55,08 54,90 91,52 18,28 67,95 53,43 99,80 46,75 100,0 55,86

[f3] IFV LX2W DS 256 40960 59,62 52,77 94,36 11,19 72,81 87,40 95,28 66,94 97,33 48,22

[g3] IFV LX2W DS 512 81920 60,50 52,77 95,86 9,69 73,15 75,52 90,04 73,72 99,81 53,60

[h3] IFV LX2W DS SE 256 41984 57,88 49,01 87,84 10,19 74,33 82,26 93,71 74,33 99,60 51,99

[i3] IFV LX2W DS SE 512 83968 62,65 54,59 96,40 12,79 75,74 69,61 97,51 79,32 98,85 58,93

[j3] CNN LX2W AlexNet 4096 71,23 70,00 81,46 58,54 91,34 99,70 96,23 90,36 99,03 76,50

[k3] CNN LX2W Places205 4096 61,63 63,77 66,49 61,04 94,02 99,90 99,90 93,90 99,65 80,17

[l3] CNN LX2W VGG 4096 66,02 71,91 69,29 74,53 94,42 100,0 99,60 93,79 99,64 81,91

[a4] GIST LX3 — 512 42,08 65,23 77,86 52,59 53,07 65,16 95,24 31,91 58,36 26,55

[b4] IFV LX3 KS 256 40960 40,51 49,88 82,50 17,27 62,07 67,21 90,19 46,31 99,15 20,47

[c4] IFV LX3 KS 512 81920 40,21 47,23 83,38 11,08 62,13 67,33 90,19 46,37 99,15 20,74

[d4] IFV LX3 KS SE 256 41984 41,48 47,61 85,64 9,58 61,49 66,07 89,35 47,04 98,87 16,61

[e4] IFV LX3 KS SE 512 83968 40,49 51,34 81,92 20,76 61,35 66,19 89,23 45,58 99,15 19,17

[f4] IFV LX3 DS 256 40960 59,07 61,20 93,46 28,94 68,81 78,72 83,11 47,00 92,49 73,08

[g4] IFV LX3 DS 512 81920 63,31 50,69 89,50 11,88 81,92 90,82 92,61 59,97 99,81 86,23

[h4] IFV LX3 DS SE 256 41984 67,54 58,78 92,32 25,25 82,70 88,61 84,00 66,67 99,29 89,39

[i4] IFV LX3 DS SE 512 83968 66,02 57,83 91,80 23,85 81,08 91,42 90,55 58,93 99,84 78,23

[j4] CNN LX3 AlexNet 4096 54,49 67,42 75,16 59,68 76,32 99,80 99,90 50,85 97,88 20,23

[k4] CNN LX3 Places205 4096 52,87 72,01 55,19 88,82 86,28 95,97 98,21 62,36 97,47 99,12

[l4] CNN LX3 VGG 4096 59,12 69,68 74,59 64,77 80,74 99,60 100,0 51,31 99,01 77,63

Table 2.6: The results related to experiments performed on the 5-LOCATION dataset.
Per-column maximum performance indicators among the experiments related to a given
device are reported as boxed numbers , while the global per-column maxima are reported
as underlined numbers.
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limited availability of representative counterexamples. Furthermore, it can be noted

that many of the considered representations yield inconsistent one-class classifiers

characterized by large TPR values and very low TNR values. This effect is in general

mitigated when deep features are used, which suggests that better performances

could be achieved with suitable representations. Moreover, the performances of the

one-class classifier have a large influence on the performances of the overall system,

even in the presence of excellent MCA values as in the case of [j3], [k3] and [l3].

For example, while the [l3] method reaches an MCA accuracy equal to 94, 42% when

only discrimination between the five different locations is considered, it scores a OAR

accuracy as low as 71, 91% on the one-class classification problem, which results in

the overall system accuracy (ACC) of 66, 02%.

The results related to the MCSVM are more consistent. In particular, the deep

features systematically outperform any other representation methods, which sug-

gests that the considered task can take advantage of transfer learning techniques,

given the availability of a small amount of labeled data (i.e., we can use models al-

ready trained for similar tasks to build the representations). Interestingly, the simple

GIST descriptor, gives remarkable performances when used on wide angle images

acquired by the LX2W device (i.e., experiment [a3]), where an MCA value of 73, 91%

is achieved. The different experiments with the IFV-based representations highlight

that the keypoint-based extraction scheme (KS) has an advantage over the dense-

based (DS) extraction scheme only when the narrow FOV LX2P device is used,

while dense-based extraction significantly outperforms the keypoints-based extrac-

tion scheme when the field of view is larger, i.e., for the LX2W and LX3 devices.

Moreover, when a dense-based extraction scheme is employed, spatially-enhanced

descriptors (SE) outperform their non-spatially-enhanced counterparts. The use of

larger GMM codebooks (i.e., K = 512 clusters) often (but not always, as in the

cases of [e1] vs [d1] and [i4] vs [h4]) allows to obtain better performances. However,

this come at the cost of dealing with very large representation vectors (in the order

of 80K vs 40K dimensions).

As a general remark, devices characterized by larger FOVs tend to have a sig-

nificant advantage over the narrow-FOV devices. This is highlighted in Figure 2.7

which reports the minima, maxima and average ACC values (accuracy of the overall

system) for all the experiments related to a given device. These statistics clearly
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Figure 2.7: Minimum, average and maximum accuracies per device related to experiments
performed on the 5-LOCATIONS dataset. As can be noted, all the statistics are higher
for the LX2W-related experiments. This suggests that the task of recognizing personal
locations is easier for images acquired using such device.

indicate that the LX2W camera is the most appropriate (among the ones we tested)

for modelling the personal locations of the user. The success of such camera is

probably due to the combination of the large FOV and the wearing modality, which

allows to gather the data from a point of view very alike to the one of the user.

Indeed, the LX3 camera, which has a similar FOV, but is worn differently, achieve

the top-2 average and maximum results.

We conclude our analysis reporting the confusion matrices (Figure 2.8) and some

success/failure examples (Figure 2.9 and Figure 2.10) for the best performing meth-

ods with respect to the four considered devices. These are: [k1] CNN Places205

for the RJ device, [c2] IFV KS 512 for the LX2P device, [j3] CNN AlexNet for the

LX2W device and [h4] IFV DS SE 256 for the LX3 device. The confusion matrices

reported in Figure 2.8 show that the most part of the error is introduced by the neg-

atives, while there is usually less confusion among the 5 locations, especially in the

case of [j3]. This confirms our earlier considerations on the influence on the whole

system of the low performances of the one-class component used for the rejection of

locations not of interest for the user. It should be noted that a rejection mechanism

(implemented in our case by the one-class component - see Section 2.5.1) is crucial
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Figure 2.8: Confusion matrices of the four the best performing methods on the considered devices.
Columns represent the ground truth classes, while rows represent the predicted labels. The original
confusion matrices have been row-normalized (i.e., each value has been divided by the sum of all
the values in the same row) so that each element on the diagonal represents the per-class True
Positive Rate. Each matrix is related to the row of Table 2.6 specified by the identifier in brackets.
Please note that all methods have been tested on a balanced test set. The following abbreviations
are used: c.v.m - coffee vending machine, h.off - home office, neg. - negatives.
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Figure 2.9: Some success (green) and failure (red) examples according to the best performing
methods on the RJ and LX2P. Samples belonging to the same class are grouped by columns, while
samples related to the same experiment are grouped by rows.
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Figure 2.10: Some success (green) and failure (red) examples according to the best performing
methods on the LX2W and LX3 devices. Samples belonging to the same class are grouped by
columns, while samples related to the same experiment are grouped by rows.
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for building effective systems, not only able to discriminate among a small set of

known locations, but also able to reject outliers and that building such component

can usually rely only on a small number of positive samples with few or no repre-

sentative negative examples. Moreover, there is usually some degree of confusion

between the office, home office and TV classes. This is not surprising, since all these

classes are characterized by the presence of similar objects (e.g., a screen) and by

similar user-location interaction paradigms. Such considerations suggest that dis-

crimination among similar locations should be considered as a fine-grade problem

and that the considered task could probably benefit from coarse-to-fine classification

paradigms. All the considerations above are more evident looking at the samples

reported in Figure 2.9 and Figure 2.10.

2.5.5 Discussion

The aim of this benchmark was to assess the performances of many state-of-the-art

representations and acquisition devices on the task of recognizing personal locations

of interest for the user. All experiments have been conducted on a dataset of 5

personal locations using 4 different devices. This dataset is available online for

research purposes. The results revealed that, while the discrimination among a

limited number of personal locations is an easier task, detecting the negative samples,

which is a required step in real applications, is a hard one. The best results have

been achieved considering deep representations and a wide angular, ear mounted

wearable camera (LX2W). This highlights that the considered task can effectively

take advantage of the transfer learning properties of CNNs and that wide FOV, head

mounted cameras are the most appropriate to model the user’s personal locations.

Moreover, despite the good performances of the multiclass component, there is still

some degree of confusion among personal locations belonging to the same, or similar

categories (e.g., office, home office, tv). This suggests that better performances could

be achieved fine-tuning the CNN-based representation to the required instance-level

granularity.
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2.6 Entropy-Based Negative Rejection and 8 Per-

sonal Locations

To overcome the main limitations discussed in the prevision Section, we have extend

our analysis in the following ways:

1. the proposed dataset (5-LOCATIONS) has been augmented to 8 personal lo-

cations by introducing about 7 hours of new video (8-LOCATIONS dataset);

2. an entropy-based negative rejection method exploiting temporal coherence of

neighboring predictions is proposed. The proposed method is compared to the

baseline pipeline discussed in the previous benchmark;

3. fine-tuned CNNs have been considered in the analysis and are compared to

models based on off-the-shelf CNN features.

We consider a classification pipeline similar to the baseline classification pipeline

discussed in Section 2.5.1 and depicted in Figure 2.6. The pipeline is made up

of two main components: 1) a multi-class location classifier, and 2) a mechanism

for rejecting negative samples. The multi-class component is implemented using

a number of standard supervised learning techniques (e.g., an SVM classifier or

a fine-tuned CNN). In order to tackle negative rejection, we propose an entropy-

based negative rejection mechanism which leverages the temporal coherence of class

predictions within a small temporal window. The input to our system is a small

sequence of neighboring frames. For each frame, the multi-class classifier estimates

a posterior probability distribution on the considered personal locations. Posterior

probabilities are hence smoothed to perform multi-class classification on the input

sequence. The input sequence is either classified as a given location or rejected

depending on how much the different predictions agree. The proposed pipeline is

depicted in Figure 2.11 and detailed in the following.

We assume that very close frames in an egocentric video (e.g., less than 0.5

seconds apart) share the same class. This assumption is of course imprecise whenever

there is a transition from a given location to another. This phenomenon however

mostly affects the accuracy related to the localization of the exact transition frame

between two different locations and it does not impact much (in average) the overall
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Figure 2.11: The proposed classification pipeline combining a multi-class classifier and an
entropy-based negative rejection method.

recognition performances. According to this assumption, n subsequent observations

x1, . . . , xn share the same class c. As it is depicted in Figure 2.12, this implies the

conditional independence between the observations given class c:

xi ⊥⊥ xj|c, ∀i, j ∈ {1, 2, . . . , n}. (2.2)

Given the property reported in Equation (2.2), the posterior probability p(ck|x1, . . . , xn)
for the generic class ck, can be expressed as:

p(ck|x1, · · · , xn) =
p(x1, · · · , xn|ck) · p(ck)

p(x1, · · · , xn)
=

=
∏

1≤i≤n

p(xi|ck)
p(ck)

p(x1, . . . , xn)
=

=
∏

1≤i≤n

p(ck|xi)p(xi)
p(ck)

p(ck)

p(x1, · · · , xn)
=

=
∏

1≤i≤n

p(ck|xi)
p(ck)

1−n
∏

1≤i≤n p(xi)

p(x1, · · · , xn)
. (2.3)
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…

Figure 2.12: A graphical model depicting the conditional independence of a small number
of subsequent frames x1, . . . , xn, given their class c.

If we assume that all the considered locations of interest have equal probabilities

p(ck) = 1
K
,∀k ∈ {1, · · · , K} (with K being the total number of classes), then

Equation (2.3) simplifies to:

p(ck|x1, · · · , xn) =
∏

i p(ck|xi)∑
k

∏
i p(ck|xi)

(2.4)

where p(c|xi) denotes the posterior probability distribution on class c estimated by

the multi-class classifier, given observation xi.

Equation (2.4) is used to smooth the predictions of the multi-class classifier on

multiple, contiguous frames of the input sequence for which we assume conditional

independence as reported in Eq (2.2). The predicted class for the input sequence is

determined as the one which maximizes the probability reported in Equation (2.4).

When the samples are positive and hence they belong to a given class, we expect

Equation (2.4) to produce a resulting posterior distribution which strongly agrees on

the identity of the considered samples. On the contrary, when the sequence contains

negative samples, we expect the resulting posterior distribution to exhibit a high

degree of uncertainty. We propose to measure the uncertainty of the distribution

reported in Equation (2.4) (i.e., entropy) to quantify the “outlierness” of the con-

sidered samples. Given a posterior distribution p, we measure the uncertainty as

the entropy:

e(p;x1, · · · , xn) = −
∑
k

p(ck|x1, ..., xk)log
(
p(ck|x1, ..., xk)

)
. (2.5)
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Figure 2.13: A visual example of the transformation operated by Equation (2.6).

The entropy reported in Equation (2.5) can be used to discriminate negative se-

quences (i.e., locations not of interest for the user) from positive ones using a thresh-

old te. Sequences are classified as negative if e(p;x1, · · · , xn) > te, whereas they are

classified as positive if e(p;x1, · · · , xn) ≤ te. The optimal threshold te can be se-

lected as the one which of best separates the training set from a small number of

negatives used for optimization purposes.

In practice, instead of measuring the uncertainty directly from the distribution

reported in Equation (2.4), we log-transform the original distribution p as follows:

p̃(ck|x1, · · · , xk) =
log(p(ck|x1, · · · , xk))∑
k log(p(ck|x1, · · · , xk))

. (2.6)

The proposed transformation has the effect of “inverting” the degree of uncertainty

carried by the distribution. Therefore, negative samples will be characterized by a

high e(p;x1, · · · , xn) value and a low e(p̃;x1, · · · , xn) value. Figure 2.13 depicts a

visual example of such transformation. In Section 2.6.2, we experimentally show

that working with the log-transformed distribution shown in Equation (2.6), allows

to compute the separation threshold te from the training/optimization-negatives set

in a more robust way.

Please note that the maximum length n of the input sequence in our system

should be carefully selected. Indeed, too small values would cause the rejection

mechanism to fail for lack of data, while excessively large values would break the

assumption reported in Equation (2.2) and would greatly affect the localization of

the transition frame between two different locations.
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2.6.1 Representations

Similarly to what done in our preliminary analysis, we consider three categories of

image representations: holistic, shallow and deep representations. In particular, we

consider the same representations for the holistic and shallow categories, i.e., GIST

and IFV computed on dense SIFT descriptors. Such representations are extracted

with the same modalities and parameters as the ones discussed in Section 2.5.2.

We update the considered representations including more recent CNN architec-

tures and exploitation modalities. In particular, we consider two popular CNN

architectures and two different transfer learning approaches. The considered archi-

tectures are AlexNet [98] and VGG16 [101]. Such models have been pre-trained

by their authors on the ImageNet dataset [102] to discriminate among 1000 object

categories. We also consider two models proposed by Zhou et al. [92], who train the

same CNN architectures (AlexNet and VGG16) on the Places205 dataset, which

contains images from 205 different place categories. Considering four different mod-

els allow us to assess the influence of both the network architectures (AlexNet and

VGG16) and the original training data (ImageNet and Places205) in our transfer

learning experiments. The considered transfer learning approaches are the follow-

ing: extracting the feature representation contained in the penultimate layer of the

network and reusing it in a classifier (e.g., SVM), and fine-tuning the pre-trained

network with new data and labels

Reuse of pre-trained CNNs

We obtain the deep feature representations extracting the values contained in the

penultimate layer of the network when the input image, appropriately rescaled to

the dimensions of the data layer, is propagated into the network. Such feature

representation is the one contained in the hidden layer of the multilayer perceptron

in the terminal part of the network. For all the considered CNN models, these

representations are compact 4096-dimensional vectors.

Fine-tuning of pre-trained CNNs

The pre-trained network is fine-tuned using the data contained in the training set.

Fine-tuning is performed substituting the last layer of the network (the one carrying
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the final probabilities) with a new layer containing 8 units (one per each personal

location to be recognized) which is initialized with random weights. The training

set is divided into two parts: 85% for training and 15% for validation. Optimization

of the network is resumed starting from the pre-trained weights. We set a larger

learning rate for the randomly initialized layer, and a smaller learning rate for pre-

learned layers. The training procedure is stopped when a high validation accuracy

is reached or when it is not able to grow any more and the model with maximum

validation accuracy is selected. In this case the networks are not used to explicitly

extract the representation but directly to predict posterior probabilities.

2.6.2 Experimental Settings

Experiments are performed on the 8-LOCATIONS dataset. The experiments aim

at assessing the performances of the classification pipeline including the proposed

negative rejection method. The proposed classification method will be compared

with respect to the baseline classification discussed in the previous benchmark (Sec-

tion 2.5.1). Jointly, we extend our benchmark to new CNN architectures and transfer

learning methods, as well as to the larger dataset on 8 personal locations.

We adopt experimental settings conform to the ones adopted in the previous

analysis (Section 2.5.3). Specifically, all experiments are performed considering dif-

ferent combinations of device and representations. The considered classification

pipelines and all related parameters are independently trained and tested on the

training/testing sets related to the different devices. In the following, we discuss the

experiments designed to assess the performances of the considered representations

with respect to 1) the overall location recognition system, 2) the negative rejection

mechanism alone, and 3) the multi-class classifier alone.

Overall Personal Location Recognition System

The performances of the overall system are assessed considering the proposed clas-

sification pipeline and the baseline considered in the previous benchmark. When

the proposed method including the entropy-based negative rejection mechanism is

considered (Figure 2.11), the short sequences of 15 subsequent frames included in

the dataset are used as inputs. Posterior probabilities estimated by the multi-

class component for each of the 15 input frames are smoothed using Eq (2.4). The
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smoothed posterior probability is used to reject the input sequence or classify it

among the different locations. When the baseline classification pipeline proposed

in [24] is considered (Figure 2.11), the first image of each sequence is used as input.

Input frames are whether rejected by the one-class classifier or discriminated into

the positive classes by the multi-class classifier.

Rejection of Negative Samples

Rejection of negative samples is known as a hard problem and it can be tackled

in different ways. Since all our experiments are performed on unbalanced datasets

(the number of positive samples is larger than the number of negative ones – see

Section A.3), we don’t use the accuracy to assess the performances of the methods

under analysis. When the number of negative samples is low with respect to the

positives one, a method with a high True Positive Rate (TPR) and a low True

Negative Rate (TNR) still retains a high accuracy. Therefore, the performances of

the proposed methods are assessed using the True Average Rate (average between

the TPR and the TNR) defined in Equation (2.1).

The optimization procedure of the one-class SVM classifier involved in the bench-

mark classification pipeline discussed in Section 2.5.1 depends on a single parameter

ν which is a lower bound on the fraction of outliers in the training set. We train the

one-class component considering all the positive samples (the entire training set)

and use the optimization negatives to choose the value of ν which maximizes the

TAR value on the set of training samples plus optimization negatives. It should be

noted that the classifier is learned solely from positive data, while the small amount

of negatives is only used to optimize the value of the ν hyperparameter.

Entropy-Based Rejection Option

We apply the proposed entropy-based rejection method to discriminate negative

from positive samples. For the experiments, we consider the short sequences of 15

subsequent frames contained in the proposed dataset. It should be noted that, given

the standard rate of 30 fps, the length of each sequence is 0.5s long and hence the

conditional independence assumption reported in Equation (2.2) of Section 2.6 is

satisfied. For each experiment, we choose te as the threshold which best separates

the training set from the optimization negative samples included in the dataset. All
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thresholds are computed independently for each experiment (i.e., for each device-

representation combination). Since the training set does not comprise 15-frames

sequences, no temporal smoothing is performed on the training predictions and

entropy is measured on the posterior probabilities predicted for each training sample.

In Section 2.6 we proposed to log-transform the smoothed posterior distribution

(Equation (2.6)) in order to compute the entropy-based score (Equation (2.5)) used

for negative rejection. To show that the considered log-transformation helps find-

ing threshold te more reliably, in Figure 2.14 we report the Threshold-TAR curves

for some representative experiments. The curves plot thresholds te against the True

Average Rate (TAR) scores obtained using such thresholds. The depicted curves are

used to effectively find the best discrimination threshold te (i.e., the x-value corre-

sponding to the curve peak). The figure reports the curves computed on the training

sets plus optimization negatives, as well as the ones computed on the test sets. As

can be noted, the curves computed using the log-transformation are almost totally

overlapped, while there is far less overlap between the curves computed avoiding

the log-transformation. To assess the robustness of the estimated thresholds, we

also report the True Average Rate (TAR) results for all performed experiments in

Figure 2.15. The figure compares results obtained using the proposed method (i.e.,

thresholds te are computed from the training/optimization-negatives set) to those

obtained with the optimal threshold computed directly on the test set using the

ground truth labels. The average absolute difference between obtained and optimal

results amounts to 0.06.

2.6.3 Multiclass Discrimination

To assess the performances of the considered representations with respect to the

task of discriminating among the 8 personal locations, we train linear SVM classi-

fiers on the training sets and test them on the corresponding test sets. Similarly

to [93, 94], the input feature vectors are transformed using the Hellinger’s kernel

prior to using them in the linear SVM classifier. Differently from [93, 94], we do

not apply L2 normalization to the feature vectors, but instead we independently

scale each component of the vectors subtracting the minimum and dividing by the

difference between the maximum and minimum values. Minima and maxima for

each component are computed from the training set and reported on the test set.
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Figure 2.14: Threshold-TAR (True Average Rate) curves obtained without (left) and with
(right) log-transformation. All plots are obtained from posterior probabilities estimated by
an SVM model trained extracting VGG-ImageNet features from data acquired using three
different devices: the LX2P camera (perspective Looxcie LX2 - first row), the LX2W
camera (wideangular Looxcie LX2 - second row), and the LX3 device (chest mounted
Looxcie LX3 - third row).
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Figure 2.15: True Average Rate (TAR) scores obtained on the test sets considering dif-
ferent combinations of devices and representations. The figure reports results obtained
using thresholds computed on the training/optimization-negatives sets. Results obtained
using the ground truth optimal thresholds computed on the test set are also reported for
reference. As can be noted, estimated thresholds often reach close-to-optimal results. The
average absolute difference between obtained and optimal results amounts to 0.06.
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The optimization procedure of the linear SVM classifier depends only on the cost

parameter C, which is chosen in order to maximize the accuracy on the training set

using cross-validation techniques [93, 94]. It should be noted that, in the case of

fine-tuning, Convolutional Neural Networks are jointly used for feature extraction

and classification. Therefore, in such cases, we do not rely on a SVM classifier for

multi-class classification. When fine-tuned models are employed within the baseline

pipeline, they are used both to extract features (on top of which the SVM One-Class

classifier can be learned) and to directly perform multi-class classification. We would

like to emphasize that in our experiments the multi-class classifier is learned using

only positive samples.

2.6.4 Experimental Results

In this Section, we report the performances of the overall system implemented ac-

cording to the two considered pipelines, as well as detailed performances of the

discrimination and negative rejection components individually.

Overall System

Table 2.7 reports the accuracies of the overall system according to the proposed

method and the baseline classification pipeline. Each row of the table corresponds

to a different experiment and is denoted by a unique identifier in brackets (e.g., [a1]).

The first column (Method) reports the unique identifier and the representation

method used in the experiment. The second column (Dev.) reports the device used

to acquire the data. The third column (Options) reports the options related to the

considered representation method. Specifically, in the case of representations based

on the Improved Fisher Vectors (IFV), the values 256 or 512 represent the number

of centroids used to train the GMMs, while “SE” indicates that the SIFT descriptors

have been Spatially Enhanced. In the CNN-related experiments, “I” denotes that

the considered model has been pre-trained on the ImageNet dataset, “P” denotes

that the considered model has been pre-trained on the Places205 dataset, “FT”

indicates that the network has been fine-tuned, while, when no “FT” tag is reported,

the pre-trained network is only used to extract the representation vectors. The

fourth column (Dim.) reports the dimensionality of the feature vectors. The fifth

and sixth columns report the accuracies of the model according to the two compared
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methods. To improve readability, for each method, the maximum accuracies among

the experiments related to a given device are reported in bold numbers, while the

global maximum accuracy is reported in boxed bold numbers .

The proposed entropy-based negative rejection method generally allows to obtain

better results with respect to the baseline method when deep representations are

used. Comparable or worse performances are generally obtained when using other

representations. The holistic GIST representation is usually unable to model the

personal locations with the appropriate level of detail (compare the methods [a1],

[a2], [a3] and [a4] to others). Improved Fisher Vectors (IFV) generally work better

than GIST, but provide inconsistent results in some cases (e.g., [b1] to [e1] and [b2]

to [e2]). Using larger codebooks allows to obtain better results in some cases (e.g.,

when smart glasses Recon Jet (RJ) and narrow-angle ear-mounted LX2P camera are

used) at the cost of a significantly larger representation (80k vs 40k dimensions).

The Spatially Enhancement option (SE) does not in general result in significant

improvements. The best performances are given by deep representations. Fine-

tuning the model often, but not always (e.g., compare [h1] to [l1], [f3] to [j3] and

[h4] to [l4]) results in a significant performance improvement.

One important fact emerging from the analysis of the results in Table 2.7, consists

in the superior performances obtained on the data acquired using the LX2W device.

This observation is supported by Figure 2.16, which reports the minimum, maximum

and average accuracies of the overall system for all the experiments related to a given

device when the proposed method is considered. All three indicators are higher in

the case of the LX2W camera, which suggest that, among the ones being tested, such

device is the most appropriate for modelling the user’s personal location. Such result

is probably due to the combination of the large FOV which allows to capture a larger

quantity of information and the wearing modality, which enables the acquisition of

the data from the user’s point of view.

In Figure 2.17 and Figure 2.18-2.19, we report confusion matrices and some

success/failure examples (true/false positive) for the best performing methods on

each device. All confusion matrices point out how the most part of the error is due to

the need to handle negative samples. In fact, most false positive errors are due to the

misclassification of negative samples as shown in Figure 2.18-2.19. Moreover, there

is usually confusion between pairs of similar looking locations, e.g., Office - Home
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Accuracy
Method Dev. Options Dim. Proposed Baseline

[a1] GIST RJ — 512 22,44 25,67
[b1] IFV RJ 256 40960 25,11 56,39
[c1] IFV RJ 256 SE 41984 26,28 58,56
[d1] IFV RJ 512 81920 31,67 55,78
[e1] IFV RJ 512 SE 83968 31,33 56,61
[f1] CNN RJ AlexNet I 4096 58,11 58,94
[g1] CNN RJ AlexNet P 4096 67,00 62,33
[h1] CNN RJ VGG16 I 4096 71,61 43,83
[i1] CNN RJ VGG16 P 4096 61,17 60,00
[j1] CNN RJ AlexNet I FT 4096 65,94 60,00
[k1] CNN RJ AlexNet P FT 4096 76,83 76,72
[l1] CNN RJ VGG16 I FT 4096 64,11 76,89
[m1] CNN RJ VGG16 P FT 4096 75,06 70,78

[a2] GIST LX2P — 512 29,44 22,61
[b2] IFV LX2P 256 40960 17,50 51,39
[c2] IFV LX2P 256 SE 41984 12,56 55,11
[d2] IFV LX2P 512 81920 18,50 48,17
[e2] IFV LX2P 512 SE 83968 18,00 48,33
[f2] CNN LX2P AlexNet I 4096 70,06 61,28
[g2] CNN LX2P AlexNet P 4096 64,11 49,89
[h2] CNN LX2P VGG16 I 4096 67,28 52,44
[i2] CNN LX2P VGG16 P 4096 63,33 44,83
[j2] CNN LX2P AlexNet I FT 4096 74,83 63,72
[k2] CNN LX2P AlexNet P FT 4096 69,94 72,00
[l2] CNN LX2P VGG16 I FT 4096 68,28 75,89
[m2] CNN LX2P VGG16 P FT 4096 80,06 70,50

[a3] GIST LX2W — 512 39,83 23,22
[b3] IFV LX2W 256 40960 37,50 59,17
[c3] IFV LX2W 256 SE 41984 42,83 58,44
[d3] IFV LX2W 512 81920 39,50 52,06
[e3] IFV LX2W 512 SE 83968 37,06 51,50
[f3] CNN LX2W AlexNet I 4096 75,22 65,61
[g3] CNN LX2W AlexNet P 4096 73,89 55,06
[h3] CNN LX2W VGG16 I 4096 70,89 54,06
[i3] CNN LX2W VGG16 P 4096 81,67 50,06
[j3] CNN LX2W AlexNet I FT 4096 73,89 65,44
[k3] CNN LX2W AlexNet P FT 4096 76,22 73,78
[l3] CNN LX2W VGG16 I FT 4096 76,78 73,78
[m3] CNN LX2W VGG16 P FT 4096 87,28 80,11

[a4] GIST LX3 — 512 29,50 29,22
[b4] IFV LX3 256 40960 39,94 29,11
[c4] IFV LX3 256 SE 41984 40,44 37,00
[d4] IFV LX3 512 81920 39,50 27,56
[e4] IFV LX3 512 SE 83968 39,89 27,28
[f4] CNN LX3 AlexNet I 4096 65,39 51,39
[g4] CNN LX3 AlexNet P 4096 76,50 55,72
[h4] CNN LX3 VGG16 I 4096 73,22 34,17
[i4] CNN LX3 VGG16 P 4096 76,11 51,94
[j4] CNN LX3 AlexNet I FT 4096 73,06 66,94
[k4] CNN LX3 AlexNet P FT 4096 67,61 56,28
[l4] CNN LX3 VGG16 I FT 4096 61,94 60,65
[m4] CNN LX3 VGG16 P FT 4096 71,39 44,00

Table 2.7: Performances of the overall system. Results are related to experiments per-
formed on the 8-LOCATIONS dataset.
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Figure 2.16: Minimum, average and maximum accuracies of the overall system with the different
representations per device. Statistics are related to experiments performed on the 8-LOCATIONS
dataset. All the statistics are higher for the LX2W-related experiments. This suggests that the
task of recognizing personal locations is easier on images acquired using a head mounted, wide-FOV
device.

Office, Sink - Kitchen Top, Living Room - Home Office (see Figure 2.18-2.19 for some

examples). The confusion matrices shown in Figure 2.17(b) and Figure 2.17(c) use

similar models (a fine-tuned VGG16 network pre-trained on the ImageNet dataset)

trained on data acquired using similar devices, differing mainly in their Field Of

View (FOV): a narrow-angle Looxcie LX2 (LX2P) and a wide-angle Looxcie LX2

(LX2W). This allows to make direct considerations on the influence of the Field Of

View (FOV) in the task of detecting locations of interest. In particular, the use of a

wide-angle camera (Figure 2.17(b)) allows to acquire a larger portion of the Field Of

View, which is useful to reduce the confusion between similar locations (e.g., Sink

vs Kitchen Top).

Rejection of Negative Samples

Table 2.8 reports the results related to the two rejection methods considered in

our analysis: the proposed Entropy Based method (EB) and the One-Class SVM

method proposed in [24] (OCSVM). The table is organized similarly to Table 2.7,

except for the performance indicators used in this case. Columns 4 to 6 are related
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(b) VGG-Places-FT/LX2P ([m2])
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(c) VGG-Places-FT/LX2W ([m3])
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(d) AlexNet-Places/LX3 ([g4])

Figure 2.17: Confusion matrices of the best performing methods on data acquired by each
of the considered devices. Rows represent ground truth classes, while columns represent
the predicted labels. Each element of the confusion matrix is normalized by the sum of
the elements in the corresponding row. Hence, values along the principal diagonal are
class-related true positive rates. Confusion matrices are related to the following methods:
(a) AlexNet pre-trained on Places205 and fine-tuned on data acquired using the Recon Jet
(RJ) smart glasses, (b) VGG16 pre-trained on Places205 and fine-tuned on data acquired
using the ear-mounted perspective Looxcie LX2 camera (LX2P), (c) VGG16 pre-trained
on Places205 and fine-tuned on data acquired using the ear-mounted wideangular Looxcie
LX2 camera (LX2W), (d) SVM trained on features exacted by AlexNet pre-trained on the
Places205 with data acquired using the chest mounted Looxcie LX3 camera. Best seen in
color.
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(a) AlexNet-Places-FT/RJ ([k1]) (b) VGG-Places-FT/LX2P ([m2])
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Figure 2.18: True positive (green) and false positive (red) samples related to the best
performing methods on the RJ and LX2P devices. Rows represent the ground truth labels,
while the predicted label is shown in yellow, in case of a failure. The shown samples are
related to the the same methods considered in Figure 2.17. Best seen in color.
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(c) VGG-Places-FT/LX2W ([m3]) (d) AlexNet-Places/LX3 ([g4])
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Figure 2.19: True positive (green) and false positive (red) samples related to the best
performing methods on the LX2W and LX3 devices. Rows represent the ground truth
labels, while the predicted label is shown in yellow, in case of a failure. The shown samples
are related to the the same methods considered in Figure 2.17. Best seen in color.
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to the proposed Entropy-Based method (EB), while columns 7 to 9 are related to

the baseline One-Class SVM component (OCSVM). Columns 4 and 7 report the

True Average Rate (TAR). Columns {5, 8} and {7, 9} report respectively the True

Positive Rate (TPR) and True Negative Rate (TNR) scores related to the considered

methods. The proposed entropy-based method systematically outperforms the one-

class SVM baseline, with some exceptions, e.g., the GIST-related methods [a2], [a3],

[a4], plus method [m2]. Consistently with the observations made earlier, the best

performing methods are in all cases related to the deep representations.

Multiclass Discrimination

Table 2.9 reports the results related to the multi-class discrimination component. It

should be noted that, in these experiments, negative rejection is not considered and

methods are evaluated ignoring negative samples. The structure of Table 2.9 follows

the one of Table 2.7, with the following differences: column 5 reports the accuracy of

the multi-class discrimination component when negative samples are removed from

the test sets, columns 6 to 13 report the True Positive Rates related to each of the

considered classes. It should be noted that the reported results are related to the

proposed method and hence they have been obtained using the smoothed posterior

probabilities. As noted for Table 2.7, the holistic GIST representations are unable

to model the personal locations with the appropriate level of detail. Even if the

accuracy values related to the GIST representations are always low, in some cases

they are still able to model some classes like for instance Coffee Vending Machine

(e.g., [a2],[a3] and [a4]), Living Room (e.g., [a3]) and Sink (e.g., [a4]) which are char-

acterized by distinctive spatial layouts. Interestingly, the shallow representations,

albeit consistently outperformed by CNN, give remarkable performances in some

cases (e.g., [b1] and [c1]). Using larger codebooks (i.e., 512 centroids in the GMM)

does not improve the performances of the IFV-related methods. In fact, in addition

to providing a larger representation (80k vs 40k dimensions), large codebooks sys-

tematically involve worse performances. The Spatially Enhancement option (SE)

allows to achieve better performances in some cases (e.g., [c1] vs [b1]), while it leads

to worse performances other cases (e.g., [c4] vs [b4]). The best performances (bold

numbers) are given again by the deep representations. However, in contrast to what

one could expect, fine-tuned models do not always outperform the correspondent
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EB OCSVM

Method Dev. Options TAR TPR TNR TAR TPR TNR

[a1] GIST RJ — 58,31 37,63 79,00 53,72 55,44 52,00

[b1] IFV RJ 256 57,88 15,75 100,00 53,00 70,00 36,00

[c1] IFV RJ 256 SE 58,53 17,06 100,00 54,00 72,00 36,00

[d1] IFV RJ 512 61,56 23,13 100,00 53,97 71,94 36,00

[e1] IFV RJ 512 SE 61,38 22,75 100,00 54,38 71,75 37,00

[f1] CNN RJ AlexNet I 56,00 65,50 46,50 55,06 86,63 23,50

[g1] CNN RJ AlexNet P 65,19 70,88 59,50 53,28 80,56 26,00

[h1] CNN RJ VGG16 I 67,59 73,69 61,50 48,06 46,63 49,50

[i1] CNN RJ VGG16 P 68,44 66,88 70,00 57,09 84,19 30,00

[j1] CNN RJ AlexNet I FT 49,97 99,94 00,00 52,53 88,56 16,50

[k1] CNN RJ AlexNet P FT 58,94 86,88 31,00 56,97 96,94 17,00

[l1] CNN RJ VGG16 I FT 72,31 62,13 82,50 48,59 96,19 1,00

[m1] CNN RJ VGG16 P FT 54,75 92,00 17,50 49,78 93,56 6,00

[a2] GIST LX2P — 50,25 63,00 37,50 59,16 34,81 83,50

[b2] IFV LX2P 256 53,38 07,25 99,50 43,03 71,56 14,50

[c2] IFV LX2P 256 SE 50,81 01,63 100,00 43,25 76,00 10,50

[d2] IFV LX2P 512 53,94 08,38 99,50 41,94 75,38 08,50

[e2] IFV LX2P 512 SE 53,88 07,75 100,00 41,41 74,81 08,00

[f2] CNN LX2P AlexNet I 66,59 74,19 59,00 52,03 75,06 29,00

[g2] CNN LX2P AlexNet P 65,03 71,56 58,50 52,88 57,25 48,50

[h2] CNN LX2P VGG16 I 71,44 67,88 75,00 54,69 59,38 50,00

[i2] CNN LX2P VGG16 P 69,59 70,19 69,00 56,28 56,56 56,00

[j2] CNN LX2P AlexNet I FT 59,22 90,44 28,00 53,09 75,69 30,50

[k2] CNN LX2P AlexNet P FT 60,63 87,75 33,50 54,00 96,50 11,50

[l2] CNN LX2P VGG16 I FT 76,34 68,69 84.00 52,50 96,00 9,00

[m2] CNN LX2P VGG16 P FT 58,06 96,63 19,50 71,94 80,38 63,50

[a3] GIST LX2W — 56,97 66,44 47,50 64,25 50,50 78,00

[b3] IFV LX2W 256 62,66 30,31 95,00 51,47 79,44 23,50

[c3] IFV LX2W 256 SE 65,66 36,31 95,00 51,63 79,25 24,00

[d3] IFV LX2W 512 64,00 32,50 95,50 47,22 70,94 23,50

[e3] IFV LX2W 512 SE 62,84 29,69 96,00 47,25 72,50 22,00

[f3] CNN LX2W AlexNet I 68,75 80,00 57,50 67,19 74,38 60,00

[g3] CNN LX2W AlexNet P 70,75 77,00 64,50 57,28 60,56 54,00

[h3] CNN LX2W VGG16 I 68,84 73,69 64,00 63,06 59,13 67,00

[i3] CNN LX2W VGG16 P 76,97 84,44 69,50 59,41 50,31 68,50

[j3] CNN LX2W AlexNet I FT 61,03 90,56 31,50 57,22 85,94 28,50

[k3] CNN LX2W AlexNet P FT 61,03 90,56 31,50 62,56 88,63 36,50

[l3] CNN LX2W VGG16 I FT 76,19 77,38 75,00 51,06 86,13 16,00

[m3] CNN LX2W VGG16 P FT 67,16 97,31 37,00 59,03 91,06 27,00

[a4] GIST LX3 — 47,13 50,75 43,50 67,16 44,81 89,50

[b4] IFV LX3 256 65,34 32,69 98,00 31,94 40,88 23,00

[c4] IFV LX3 256 SE 65,44 33,38 97,50 34,59 53,19 16,00

[d4] IFV LX3 512 65,56 32,63 98,50 30,75 41,50 20,00

[e4] IFV LX3 512 SE 66,50 34,00 99,00 30,44 41,38 19,50

[f4] CNN LX3 AlexNet I 71,06 81,63 60,50 54,66 72,81 36,50

[g4] CNN LX3 AlexNet P 78,22 80,44 76,00 70,06 57,13 83,00

[h4] CNN LX3 VGG16 I 72,34 85,19 59,50 57,63 37,25 78.00

[i4] CNN LX3 VGG16 P 71,06 82,13 60,00 64,50 53,00 76,00

[j4] CNN LX3 AlexNet I FT 62,19 92,88 31,50 51,38 90,75 12,00

[k4] CNN LX3 AlexNet P FT 54,69 92,88 16,50 52,53 72,06 33,00

[l4] CNN LX3 VGG16 I FT 66,22 73,44 59,00 56,59 82,69 30,50

[m4] CNN LX3 VGG16 P FT 53,50 93,00 14,00 53,69 53,38 54,00

Table 2.8: Results related to the negative rejection methods. Results are related to ex-
periments performed on the 8-LOCATIONS dataset.



Chapter 2. Recognizing Locations of Interest from Egocentric Videos 64

pre-trained networks when they are just used for feature extraction. This is the

case of methods [j1] vs [f1], [l2] vs [h2], [m3] vs [i3] and [m4] vs [i4]. Nevertheless,

fine-tuned models significantly outperform their pre-trained counterparts in other

cases, e.g., [k1] vs [g1], [m2] vs [i2], [l3] vs [h3] and [j4] vs [f4]. One of the possible rea-

sons of the difficulty to further improve the internal representation of the networks

with respect to the given problem is the availability of very few training data. The

considered networks have been fine-tuned on a very small training sets containing

about 2000 samples.

2.6.5 Discussion

The experimental results presented in the previous sections highlight the robustness

of the proposed negative rejection method with respect to the baseline classification

pipeline based on a one-class SVM classifier. Results also show how the considered

problem is a challenging one. As discussed earlier, the performances of all the

considered methods are dominated by the limits of the negative rejection module,

while the multi-class discrimination remains an “easier” sub-task. This suggests

that more efforts should be devoted to the design of efficient and robust negative

rejection methods. The systematic emergence of deep representations as the best

performing methods, not only indicates the higher representational power of such

methods, but also suggests that the considered problem can take great advantage of

transfer learning techniques. All the CNN-based representations have been obtained

using models pre-trained on a large number of images, which compensates for the

scarce quantity of training data assumed in this study. As already pointed out in our

previous analysis, the LX2W device is the one collecting the highest performance

indicators. This suggests that head-mounted wide-angular cameras are probably the

best option when modeling the user’s location. This is not surprising since such a

configuration allows to better replicate the user’s point of view and provides a FOV

similar to the one characterizing the human visual system.

2.7 Temporal Coherence

In the previous Sections, we have benchmarked the main image representation tech-

niques and acquisition devices on the problem of recognizing personal locations.
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Method Dev. Options Acc Car C.V.M. Office L.R. H. Office K. Top Sink Garage

[a1] GIST RJ — 37,56 62,86 98,59 48,65 0,00 32,79 48,72 25,00 29,06

[b1] IFV RJ 256 80,13 96,43 85,37 88,38 100,00 97,09 59,86 95,00 59,70

[c1] IFV RJ 256 SE 82,94 95,50 88,83 89,23 100,00 97,86 68,42 95,83 59,70

[d1] IFV RJ 512 75,94 90,28 97,16 95,24 100,00 96,36 44,78 95,00 58,48

[e1] IFV RJ 512 SE 77,44 88,69 97,75 95,81 100,00 96,92 48,10 94,26 59,17

[f1] CNN RJ AlexNet I 76,19 86,30 97,92 57,10 100,00 43,10 71,56 91,11 83,76

[g1] CNN RJ AlexNet P 85,13 90,41 98,92 84,17 100,00 57,45 82,71 95,16 95,00

[h1] CNN RJ VGG16 I 93,50 100,00 99,49 97,37 100,00 81,48 84,00 97,24 94,03

[i1] CNN RJ VGG16 P 76,25 97,11 88,73 45,48 97,25 35,23 74,34 86,78 83,33

[j1] CNN RJ AlexNet I FT 74,19 89,53 97,86 72,73 97,03 60,43 84,47 94,59 47,71

[k1] CNN RJ AlexNet P FT 88,81 99,47 96,41 81,54 93,53 93,63 70,11 93,62 90,64

[l1] CNN RJ VGG16 I FT 90,00 74,19 76,92 100,00 98,45 97,50 87,00 95,24 96,08

[m1] CNN RJ VGG16 P FT 85,06 69,77 59,63 98,96 89,67 79,28 96,94 95,38 99,43

[a2] GIST LX2P — 42,69 42,25 99,29 17,18 65,28 44,81 37,41 83,33 24,22

[b2] IFV LX2P 256 73,63 60,75 100,00 32,56 100,00 69,23 70,22 100,00 85,41

[c2] IFV LX2P 256 SE 74,44 64,47 100,00 36,28 100,00 60,14 72,97 100,00 86,15

[d2] IFV LX2P 512 67,81 63,79 100,00 29,70 100,00 71,17 50,52 100,00 75,09

[e2] IFV LX2P 512 SE 68,44 67,73 100,00 37,21 100,00 81,73 46,30 100,00 76,25

[f2] CNN LX2P AlexNet I 87,69 91,55 84,75 73,91 100,00 77,88 81,20 94,25 97,52

[g2] CNN LX2P AlexNet P 83,19 97,50 99,01 51,17 100,00 92,42 73,41 95,97 93,63

[h2] CNN LX2P VGG16 I 90,00 100,00 96,14 72,17 100,00 83,03 77,65 99,34 98,98

[i2] CNN LX2P VGG16 P 76,50 99,40 86,28 51,55 100,00 54,55 58,21 96,33 86.57

[j2] CNN LX2P AlexNet I FT 84,75 98,92 73,80 67,72 99,00 68,72 80,52 95,21 97,92

[k2] CNN LX2P AlexNet P FT 81,38 94,97 90,23 52,65 100,00 97,44 89,14 98,31 67,92

[l2] CNN LX2P VGG16 I FT 88,06 96,80 77,27 100,00 92,23 98,02 62,50 93,88 100,00

[m2] CNN LX2P VGG16 P FT 88,94 86,86 77,78 100,00 96,84 95,17 87,11 74,71 97,5

[a3] GIST LX2W — 51,75 57,97 94,74 48,36 93,48 30,32 33,95 92,50 31,48

[b3] IFV LX2W 256 73,94 52,36 100,00 100,00 100,00 83,33 53,50 100,00 81,97

[c3] IFV LX2W 256 SE 74,06 53,76 100,00 97,50 100,00 83,78 53,04 100,00 80,97

[d3] IFV LX2W 512 69,69 46,51 100,00 100,00 100,00 87,70 53,11 100,00 72,99

[e3] IFV LX2W 512 SE 68,94 46,08 100,00 100,00 100,00 94,92 51,49 100,00 71,94

[f3] CNN LX2W AlexNet I 90,31 97,99 100,00 85,71 100,00 84,24 70,18 100,00 98,99

[g3] CNN LX2W AlexNet P 90,75 99,49 100,00 73,78 100,00 91,67 76,63 100,00 98,01

[h3] CNN LX2W VGG16 I 90,06 99,50 100,00 99,44 100,00 80,00 65,15 100,00 100,00

[i3] CNN LX2W VGG16 P 95,44 99,49 99,00 85,97 100,00 96,05 89,45 100,00 95,67

[j3] CNN LX2W AlexNet I FT 83,19 100,00 97,04 55,87 98,30 74,83 71,48 100,00 90,09

[k3] CNN LX2W AlexNet P FT 86,94 100,00 100,00 64,19 100,00 100,00 72,10 96,90 92,13

[l3] CNN LX2W VGG16 I FT 94,81 99,01 100,00 100,00 100,00 96,62 97,55 73,86 100,00

[m3] CNN LX2W VGG16 P FT 94,88 83,76 83,48 100,00 100,00 99,50 99,49 95,22 99,50

[a4] GIST LX3 — 46,31 42,41 84,07 35,56 45,60 33,33 56,05 83,52 23,26

[b4] IFV LX3 256 69,31 100,00 100,00 85,39 100,00 100,00 31,34 96,85 83,97

[c4] IFV LX3 256 SE 68,31 100,00 100,00 81,52 100,00 100,00 31,24 97,69 80,24

[d4] IFV LX3 512 62,88 100,00 100,00 100,00 100,00 100,00 26,75 97,76 81,22

[e4] IFV LX3 512 SE 63,00 100,00 100,00 100,00 100,00 100,00 26,76 98,47 80,57

[f4] CNN LX3 AlexNet I 76,38 99,49 100,00 52,53 100,00 6,67 60,91 90,91 94,71

[g4] CNN LX3 AlexNet P 85,44 100,00 100,00 54,87 97,56 96,97 79,28 98,17 95,05

[h4] CNN LX3 VGG16 I 84,38 100,00 100,00 51,71 100,00 80,00 78,26 98,27 97,83

[i4] CNN LX3 VGG16 P 87,63 100,00 99,48 62,26 91,28 96,77 88,21 92,93 92,02

[j4] CNN LX3 AlexNet I FT 81,88 100,00 100,00 49,75 98,96 0,00 90,29 90,82 80,25

[k4] CNN LX3 AlexNet P FT 77,38 100,00 100,00 49,01 100,00 75,00 63,38 96,46 86,92

[l4] CNN LX3 VGG16 I FT 81,56 18,92 50,89 100,00 97,16 92,09 100,00 79,68 100,00

[m4] CNN LX3 VGG16 P FT 81,81 60,00 49,62 99,44 97,55 93,75 100,00 76,89 97,04

Table 2.9: Results related to the multi-class component. Results are related to experiments
performed on the 8-LOCATIONS dataset.
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Figure 2.20: Overall schema of the proposed method.

Since the rejection of negative locations is one of the main challenges for the con-

sidered task, we have investigated a negative rejection method based on the entropy

of neighboring predictions. When an egocentric video is to be analyzed, temporal

coherence can be further exploited. Depending on the considered goal, long egocen-

tric videos tend to contain much uninformative content like, for instance, transiting

through a corridor, walking, or driving to the office. Therefore, as pointed out

in [40], automated tools are needed to enable faster access to the information stored

in such videos and index their visual content. Towards this direction, researches

have investigated methods to produce short informative video summaries from long

egocentric videos [38, 37, 71], recognize the actions performed by the wearer [18, 59,

103, 35, 50], and segment the videos according to detected ego-motion patterns [40,

41]. While current literature focuses on providing general-purpose methods which

are usually optimized using data acquired by many users, we argue that, given the

subjective nature of egocentric videos, more attention should be devoted to user-

specific methods.

In this Section, we propose a system for personal location recognition which

furthers exploits temporal coherence. Figure 2.20 shows a schema of the investigated

method. Similarly to what assumed in the previous analysis, we consider a scenario

where the user defines a number of locations of interest by providing minimal training

data in the form of short videos (i.e., a 10 seconds video per location). Given the

input egocentric video and the user-defined set of locations, the task is to establish
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for each frame in the video if it is related to either one of the considered personal

locations or none of them (i.e., it is a negative sample). As hypothesized before, we

assume that the system is set up by the end user himself, hence training must be

simple and achievable with few training data. Moreover, given the large variability

exhibited by egocentric videos, it is unfeasible to ask the user to acquire a significant

quantity of negative samples. Therefore, we assume that only positive samples of

different locations are provided by the user and propose a method to detect negative

samples automatically, without training on them.

Building on the results of analysis presented in Section 2.5 and Section 2.6, we

have acquired a dataset of 10 personal locations using the head-mounted wideangu-

lar camera LX2W (which was the best performing in our benchmarks). We employ

a fine-tuned Convolutional Neural Network (CNN) to discriminate among differ-

ent locations and a Hidden Markov Model (HMM) to enforce temporal coherence

among neighbouring predictions. To handle negative locations, we introduce a non-

parametric method for the rejection of negative frames. Being non-parametric, the

proposed method does not need any negative samples at training time. Considering

possible real-time application of the proposed system, we analyze the computational

performances of the proposed method and also suggest a simplified system which is

efficient enough to run in real-time.

2.7.1 Proposed Method

Given an egocentric video as an ordered collection of image frames V = {I1, . . . , In},
our system must be able to:

1. correctly classify each frame Ii as one of the considered locations;

2. reject negative frames;

3. enforce temporal coherence among neighboring predictions.

The system eventually returns the labeling S = {C1, . . . , Cn}, where Ci ∈ {0, . . . ,M−
1} is the class label associated to frame Ii (Ci = 0 representing the negative class

label) and M is the total number of classes including negatives (M = 11 in our

case - 10 locations, plus the negative class). Rejection of negative samples is usually

tackled increasing the number of classes by one and explicitly learning to recognize
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negative samples. However, this procedure requires a number of training negative

samples which may not be easily acquirable in our scenario. Indeed, given the large

variability of visual content acquired by wearable devices, it would be infeasible

to ask the user to acquire a sufficient number of representative negative samples.

Therefore, we propose to treat negative rejection separately from classification and

introduce a non-parametric rejection mechanism which does not need negative sam-

ples at training time.

We first consider a multi-class component which is trained solely on positive

samples to discriminate among the considered positive M − 1 classes. Since the

multi-class model ignores the presence of negative frames, it only allows to estimate

the posterior probability:

p(Ci|Ii, Ci ̸= 0). (2.7)

The probability reported in Equation (2.7) is the posterior probability over the 10

positive classes estimated by the classifier (the CNN model in our case), assuming

that the input sample is not a negative. It should be noted that it sums to 1 over

the positive classes, i.e.,

10∑
j=1

p(Ci = j|Ii, Ci ̸= 0) = 1, (2.8)

while it does not say anything about the possibility of having a negative sample.

Since we wish to correctly discriminate among the positive classes (the 10 locations

of interest), as well as rejecting the negative samples, we want to model the following

probability distribution:

p(Ci|Ii). (2.9)

To this end, we propose to quantify the probability p(Ci = 0|Ii) to be a negative

sample of a given frame Ii, as the uncertainty of the discriminative model in pre-

dicting the class labels related to the previous k frames (in our experiments we use

k = 30, which is equivalent to one second at 30 fps). Specifically, considering that

both the visual content and class label are deemed to change slowly in egocentric

videos, we assume that the past k frames Ik
i = {Ii, Ii−1, . . . , Imax(i−k+1,1)} are related

to the same class. The notation “max(i − k + 1, 1)” is used to prevent including

frames with negative indexes in the first k frames. Such assumption is of course
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imprecise when Ik
i contains the boundary between two personal locations. However,

such cases are rather rare and if k spans one second or less, the assumption only

affects the boundary localization accuracy and does not have a huge impact on the

overall accuracy. Since the discriminative model has been tuned only on positive

samples, we expect it to exhibit low uncertainty when the frames in Ik
i are related to

a positive class, while we expect a large amount of uncertainty in the case of negative

samples. As suggested in [104], we measure the uncertainty of the model computing

the variation ratio of the distribution of the labels Yk
i = {yi, . . . , ymax(i−k+1,1)} pre-

dicted within Ik
i by maximizing the posterior probability reported in Equation (2.7):

yi = argmaxj p(Ci = j|Ii, Ci ̸= 0), j = 1, . . . ,M − 1. We finally assign the probabil-

ity of Ii being a negative as the following expression:

p(Ci = 0|Ii) = 1−
∑

j 1(yj = Ỹk
i )

|Yk
i |

(2.10)

where 1(·) denotes the indicator function and Ỹk
i represents the mode of Yk

i . It

should be noted that the definition reported in Equation (2.10) is totally arbitrary

and encodes the belief that the model should agree on similar inputs if they are

positive samples. In practice, given a number of predictions computed within a

small temporal window, we quantify the probability of having a negative sample as

the fraction of labels disagreeing with the mode.

Given that Ci = 0 and Ci ̸= 0 are disjoint events and marginalizing, Equa-

tion (2.9) can be written in the following form:

p(Ci|Ii) = p(Ci, Ci = 0|Ii) + p(Ci, Ci ̸= 0|Ii) =

= p(Ci|Ii, Ci = 0)p(Ci = 0|Ii) + p(Ci|Ii, Ci ̸= 0)p(Ci ̸= 0|Ii). (2.11)

Considering that p(Ci = 0|Ii, Ci = 0) = 1, p(Ci = 0|Ii, Ci ̸= 0) = 0, and p(Ci ̸=
0|Ii, Ci = 0) = 0, the expression in Equation (2.11) can be written as follows:

p(Ci|Ii) =

⎧⎨⎩p(Ci = 0|Ii) if Ci = 0

p(Ci ̸= 0|Ii) · p(Ci|Ii, Ci ̸= 0) otherwise
. (2.12)

Equation (2.12) allows to combine the probabilities in Equation (2.7) and (2.10).



Chapter 2. Recognizing Locations of Interest from Egocentric Videos 70

The final class prediction for frame Ii (including the rejection of negative samples)

can be obtained maximizing Eq (2.12) as follows:

C∗
i = argmax

j
p(Ci = j|Ii) (2.13)

Given the nature of egocentric videos, it is likely that subsequent frames are

related to the same location of interest, while a change of location is a rare event.

Such prior can be taken into account in the computation of the final labeling, using

a Hidden Markov Model. We consider the probability p(S|V), which, according to

the Bayes’ rule, can be expressed as follows:

p(S|V) ∝ p(V|S)p(S). (2.14)

Assuming conditional independence of the frames with respect to each other given

their classes (Ii ⊥⊥ Ij|Ci, ∀i, j ∈ {1, 2, . . . , n}, i ̸= j), and applying the Markovian as-

sumption on the conditional probability distribution of the class labels (p(Ci|Ci−1 . . . C1) =

p(Ci|Ci−1)), Equation (2.14) can be written as:

p(S|V) ∝ p(C1)
n∏

i=2

p(Ci|Ci−1)
n∏

i=1

p(Ii|Ci). (2.15)

Probability p(C1) is assumed to be constant over the different classes and can be

ignored when maximizing Equation (2.14). Probability p(Ii|Ci) can be inverted

using the Bayes law:

p(Ii|Ci) ∝ p(Ci|Ii)p(Ii). (2.16)

Since Ii is observed, term p(Ii) can be ignored, while p(Ci|Ii) is estimated using

Equation (2.12). Equation (2.14) can be hence written as:

p(S|V) ∝
n∏

i=2

p(Ci|Ci−1)
n∏

i=1

p(Ci|Ii). (2.17)

Term p(Ci|Ci−1) is the HMM state transition probability. Transition probabilities

in Hidden Markov Models can generally be learned from the data as done in [54],

or defined ad hoc to express a prior belief as done in [51]. Since we assume that few

training data should be provided by the user and no labeled sequences are available
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at training time, we define an ad-hoc transition probability as suggested by [51]:

p(Ci|Ci−1) =

⎧⎨⎩ε, if Ci ̸= Ci−1

1− (M − 1)ε, otherwise
(2.18)

where ε is a small constant (we use the machine accuracy in double precision 2.22×
10−16 in our experiments). The probability in Equation (2.18) enforces coherence

between subsequent states and penalizes random state changes. The final labeling

of the input egocentric video is obtained choosing the one which maximizes the

probability in Equation (2.14) using the Viterbi algorithm [97]:

S∗ = argmax
S

p(S|V). (2.19)

2.7.2 Experimental Settings and Results

Experiments are performed on the 10-LOCATIONS dataset. All compared methods

are trained on the whole training set and evaluated on the test sequences. The vali-

dation set is used to tune hyper-parameters and select the best performing iteration

in the case of CNNs. In the following sections, we study the performances of the

proposed method, paying particular attention to the optimization. Specifically, we

evaluate different architectural tweaks which help reducing over-fitting when fine-

tuning Convolutional Neural Networks on our small realistic dataset (≈ 200 samples

per class) and reduce computational requirements. Moreover, we discuss the influ-

ence of the different components included in our method (i.e., multiclass classifier,

rejection mechanism, and HMM). After studying the performances of the proposed

method, we compare it with respect to some baselines, including the benchmark

classification pipeline proposed in Section 2.5.1.

Proposed Method: Optimization and Performances Evaluation

The multi-class classifier employed in the proposed method could be implemented

using any algorithm able to output posterior probabilities in the form of Equa-

tion (2.7). We consider Convolutional Neural Networks given their compactness

and the superior performances shown on many tasks including personal location

recognition [24]. We fine-tune the VGG-S network proposed in [94] on our training
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Accuracy Comp. Performances

Id Settings Discrim. +Rejection +HMM Dimensions Time

[a] 76.90 69.60 73.83 378 MB 13.23 ms
[b] L 83.30 76.06 83.22 378 MB 13.13 ms
[c] L ND 94.53 85.00 88.63 378 MB 13.10 ms
[d] L 128 83.07 77.49 82.84 34 MB 10.32 ms
[e] L ND 128 77.09 71.99 73.59 34 MB 10.28 ms
[f ] L LR 92.31 81.00 85.37 26 MB 10.23 ms

Table 2.10: Optimization of the multi-class classifier. All results are related to experiments
performed on the 10-LOCATIONS dataset. Architectural settings: L the convolutional
layers are locked, ND dropout is disabled, 128 fully connected layers are reduced to 128
units and reinitialized, LR fully connected layers are replaced by a single logistic regression
layer. Reported times are average per-image processing times. Maxima per column are
reported in underlined bold digits, while second maxima are reported in bold digits.

set. Since the VGG network has been trained on the ImageNet dataset, we ex-

pect the learned features to be related to objects and hence relevant to the task of

location recognition, as highlighted in [92].

Optimization of the Multi-Class Classifier

Fine-tuning a large CNN using a small training set (≈ 200 samples per class) is not

trivial and some architectural details can be tuned in order to optimize performances.

Specifically, we assess the impact of the following architectural settings:

1. locking the convolutional layers (i.e., setting their relative learning rate to

zero);

2. disabling dropout in the fully connected layers;

3. reducing the number of units in the fully connected layers from 4096 to 128;

4. removing the fully connected layers and attaching a logistic regression (soft-

max) layer directly to the last convolutional layer.

In the following, we discuss different combinations of the aforementioned architec-

tural settings in order to assess the influence of each considered setting. Results for

these experiments are reported in Table 2.10 and Table 2.11.
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Table 2.10 is organized as follows. Each row of the table is related to a different

experiment. The first column (Id) reports unique identifiers for the considered meth-

ods. The second column (Settings) summarizes the architectural settings related to

the specific method. The third column (Discrimination) reports the accuracy of

the multi-class model alone (i.e., class labels are directly computed using Equa-

tion (2.7)). Note that such accuracy values are computed removing all negative

samples from the test set. The fourth column (+Rejection) reports the accuracy of

the models after applying the proposed rejection method (i.e., labels are obtained

using Equation (2.13)). The fifth column (+HMM) reports the accuracy of the

complete method including the Hidden Markov Model (i.e., final labels are obtained

using Equation (2.19)). Column 6 (Dimensions) reports the size of the models in

megabytes. Finally column 7 (Time) reports the average time needed to predict the

class label of a single frame5. Table 2.11 reports per-class true positive rates for the

considered configurations.

The reported results highlight the importance of tuning the considered archi-

tectural settings to improve both computational performances and accuracy. In

particular, locking the convolutional layers allows to significantly improve the per-

formances of the fine-tuned model (compare [b] to [a] in Table 2.10)6. Significant

performance improvements are observable when the CNN is evaluated alone (Dis-

crimination column) as well as when the model is integrated in the proposed system

(columns +Rejection and +HMM). This result highlights how the unlocked network

suffers from over-fitting, due to the high number of parameters to optimize with

relatively few training data. It should be noted that, in our experiments, only con-

volutional layers are locked, while fully connected ones are still optimized. Locking

convolutional layers, hence, allows to use part of the network as a bank of object-

related feature extractors (the pre-trained convolutional layers), while optimizing

the way such features are combined in the fully connected layers.

Disabling dropout has a positive impact when convolutional layers are locked

and fully connected layers are fine-tuned ([c] vs [b]). This indicates that dropout

is causing the model to underfit due to the scarcity of training data. Interestingly,

when fully connected layers are reduced to 128 units and hence reinitialized with

5Times have been estimated running the CNN models on a NVIDIA GeForce GTX 480 GPU using the Caffe
framework [105]. They include the rejection of negative frames but do not take into account the application of the
Hidden Markov Model.

6SVM models are tested on a Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz with LIBSVM [100].
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Per-Class True Positive Rate (TPR)
Id Settings Car C.V.M. Gar. K.T. L.Off. Off. Piano Sink Stud. L.R. Neg.
[a] 91.28 98.73 98.71 100.0 95.87 94.81 98.52 100.0 99.40 99.20 36.91
[b] L 90.71 98.53 98.41 99.60 93.83 93.57 98.48 99.00 98.50 98.91 47.77
[c] L ND 75.57 92.42 87.60 97.95 84.08 71.67 93.32 96.69 94.09 89.73 82.34
[d] L 128 99.09 94.36 74.90 89.46 93.51 84.66 98.16 98.90 99.72 99.09 51.22
[e] L ND 128 99.57 95.43 98.31 100.0 98.54 90.25 98.68 99.51 99.82 99.14 36.51
[f ] L LR 94.53 78.93 85.88 78.39 89.91 60.28 93.57 96.91 97.46 98.20 61.66

Table 2.11: Per-class true positive rates for the considered configurations. Results are related to
experiments performed on the 10-LOCATIONS dataset. See Table 2.10 for a legend.

Gaussian noise, disabling dropout seems to favor overfitting as one would generally

expect (compare [e] to [d]). This behavior is probably due to the inclination of

randomly reinitialized layers to easily co-adapt [106]. Reducing the dimensionality

of the fully connected layers to 128 units helps reducing the dimensions of the

network and improving its speed, but results in a substantial loss in accuracy due

to the needed reinitialization of the weights (compare [d] to [c]).

In order to devise a more compact model, we finally consider replacing the fully

connected layers with a logistic regressor (i.e., a layer with 10 units followed by

softmax). In this case, the locked convolutional layers of the VGG-S network are

used as feature extractors, while predictions are performed combining them using

a simple logistic regressor classifier. This configuration allows to greatly reduce

memory and time requirements at the cost of a modest loss in terms of accuracy

(compare [f ] to [c], [d], [e]).

Among all compared method, the most accurate is [c], followed by the com-

putationally efficient [f ]. Both methods outperform the others by a good margin.

Moreover, it is worth noting that [f ] is more than 90% smaller and 20% faster

than [c] while only about 3% less accurate. Such result is particularly interesting

in real-time scenarios involving low-resources and embedded devices (e.g., in smart

glasses or in a drone). Finally, as can be noted from Table 2.11, only the two best

configurations (methods [c] and [f ]) succeed in correctly rejecting negative samples,

while other methods yield lower true positive rates.
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Performances of the proposed method

As discussed above, columns 3 to 5 in Table 2.10 report performances related to

the main components involved in the proposed method, i.e., multi-class classifier,

rejection mechanism and Hidden Markov Model. As can be noted, high accuracies

can be achieved when discriminating among a finite number of possible locations

(column Discrimination). The need for a rejection mechanism in real-world scenarios

makes the problem much harder, decreasing classification accuracy by 10% in average

(compare Discrimination with +Rejection columns). These results suggest that

more efforts should be devoted to effective rejection mechanisms in order to make

current classification systems useful in real world applications. Indeed, any real

system devoted to distinguish among a number of classes must be able to deal with

the negative ones. Enforcing temporal coherence using a Hidden Markov Model

generally helps reducing the gap between simple discrimination and discrimination

+ rejection (consider for instance methods [c] and [f ]). The effects of the rejection

and HMM modules are qualitatively illustrated in Figure 2.21. As can be noted,

simple class discrimination (top row) yields noisy predictions when ground truth

frames are negative. The rejection mechanism (second row) successfully detects

negative samples. The use of a HMM (third row) finally helps reducing sudden

changes in the predicted labels.

Comparison with the State of the Art

To assess the effectiveness of the proposed method, we compare it with respect to

two baselines and an existing method for personal location recognition [24]. The

first baseline tackles the location recognition problem through feature matching.

The system is initialized extracting SIFT feature points from each test image and

storing them for later use. Given the current frame, SIFT features are extracted

and matched with all images in the training set. To reduce the influence of outlier

feature points, for each considered image pair, we perform a geometric verification

using the MSAC algorithm [107] based on an affine model. Classification is hence

performed considering the training set image presenting the highest number of inliers

and selecting the class to which it belongs. In this case, the most straightforward

way to perform rejection probably consists in setting a threshold on the number of

inliers: if an image is a positive, it is expected to yield a good match with some
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All sequences

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Discr.

+Rej.

+HMM

GT

Figure 2.21: Graphical representation of the labels produced by the proposed method
(method [c] in Table 2.10). Each row reports the concatenation of labels produced for
all test sequences. Boundaries between sequences are highlighted with black dashed lines
and “S1” . . . “S10” labels. The visualization is intended to qualitatively assess the influ-
ence of the rejection and HMM components on the performances of the overall system.
Specifically, the first three rows report labels obtained using the multi-class classifier, the
proposed rejection mechanism and the HMM, similarly to what discussed for Table 2.10.
The last row reports the ground truth. Best seen in color.

example in the dataset, otherwise only weak matches should be obtained. Since it is

not clear how such a threshold should be arbitrarily set, we learn it from data. To do

so, we first normalize the number of inliers by the number of features extracted from

the current frame. We then select the threshold which best separates the validation

set from the training negatives. To speed up computation, input images are rescaled

in order to have a standard height of 256 pixels (the same size to which images are

resized when fed to CNN models), keeping the original aspect ratio.

The second considered baseline consists in a CNN trained to discriminate directly

between locations of interest and negatives. In contrast with the proposed method,

the baseline explicitly learns from negative samples. Hence, in our settings, the

model is trained on 11 classes comprising 10 locations of interest, plus the negative

class. This baseline is implemented adopting the same architecture as the one of

method [c], which is the best performing configuration in our experiments. It should

be noted that training negatives are independent from validation and test negatives.

We also compare our method with respect to the baseline introduced in Section 2.5.1,
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Accuracy Comp. Performances
Id Settings Discrim. +Rejection +HMM Dimensions Time
[c] L ND 94.53 85.00 88.63 378 MB 13.10 ms
[f ] L LR 92.31 81.00 85.37 26 MB 10.23 ms

[g] SIFT 34.64 33.16 – 71 MB 5170.1 ms
[h] L ND NE 73.84 76.42 79.69 378 MB 12.82 ms
[i] SVM 87.76 74.14 79.64 423 MB 97.83 ms

Table 2.12: Comparisons with the state of the art. Results are related to experiments performed
on the 10-LOCATIONS dataset. Methods [c] and [f ] are reported from Table 2.10 for convenience.
Architectural settings: L the convolutional layers are locked, ND dropout is disabled, LR fully
connected layers are replaced by a single logistic regression layer, SIFT the SIFT feature matching
baseline, NE the model is trained on both positive and negative samples, SVM classification based
on one-class and multiclass SVM classifiers.

Per-Class True Positive Rate (TPR)
Id Settings Car C.V.M. Gar. K.T. L.Off. Off. Piano Sink Stud. L.R. Neg.

[c] L ND 75.57 92.42 87.60 97.95 84.08 71.67 93.32 96.69 94.09 89.73 82.34
[f ] L LR 94.53 78.93 85.88 78.39 89.91 60.28 93.57 96.91 97.46 98.20 61.66

[g] SIFT 4.90 5.55 0.02 71.45 15.37 16.62 84.98 22.21 12.80 79.77 24.22
[h] L ND NE 78.16 95.23 71.48 97.53 73.54 50.03 71.95 93.43 95.70 73.49 95.72
[i] SVM [24] 74.97 98.16 97.63 98.45 88.60 92.27 79.13 69.25 59.16 99.13 06.58

Table 2.13: Per-class true positive rates of the compared methods. Results are related to
experiments performed on the 10-LOCATIONS dataset. See Table 2.12 for a legend.

which performs negative rejection and location recognition using a cascade of One-

Class and multiclass SVM classifiers trained on features extracted employing the

VGG network [94].

Table 2.12 and Table 2.13 compare the performances of the considered methods.

As can be noted, the proposed methods [c] and [f ] retain the highest accuracies in

Table 2.12. Requiring about 5 seconds to process each frame, the SIFT matching

method ([g] in Table 2.12) is the slowest among the compared ones. Moreover,

SIFT matching achieves poor results on the considered task, which indicates that it

is not able to generalize to new views of the same scene and to cope with the many

variabilities typical of egocentric videos. It should be noted that, since the SIFT

baseline does not output any probability values, the HMM cannot be applied in this

case.

The baseline [h] retains a high TPR on negative samples (see Neg. column in

Table 2.13). However TPRs related to other classes and the accuracy of the overall
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All sequences

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.22: Graphical representation of the results produced by the considered methods
(see Table 2.12). Detailed visualizations for each sequence are available in the supplemen-
tary material.

system are lower when compared to the proposed approaches. This indicates how

learning from negative samples is not trivial in the proposed problem. The method

introduced in [24] is outperformed by the proposed methods (compare [i] to [c]-[f ])

and gives inconsistent results in the rejection of negative frames (see column Neg.

in Table 2.13). Moreover, the proposed approaches are significantly faster and have

smaller size. Figure 2.22 reports the results of all compared methods for qualitative

assessment. Figures 2.33 - 2.42, report detailed diagrams for all methods compared

in Table 2.10. As can be noted, the proposed methods ([c] and [f ] in Table2.10)

in average outperform the competitors and reach remarkable performances in some

cases (e.g., Figures 2.36, 2.37, 2.39, 2.41).

2.7.3 Discussion

The work discussed in this Section complements the analysis presented in Section 2.5

and Section 2.6 proposing a method to further exploit temporal coherence. Coher-

ently with the premises made throughout this Chapter, the system can be trained

with few positive samples provided by the user. The proposed system addresses

some of the challenges identified in the benchmarks. This is done by providing a

robust, non-parametric negative rejection component, tuning the employed CNN
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Sequence 1

Discr.

+Rej.

+HMM

GT

Figure 2.23: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence1.

models to reduce overfitting due to scarce training data, and enforcing temporal

coherence among neighboring predictions using a Hidden Markov Model.

While evaluations show that the proposed method compares positively against

baselines and state of the art methods, they also highlight the two main challenges

of the considered task: the scarcity of training data and the challenging problem of

negative location rejection. Among the possible ways to deal with such challenges,

we identify at least two possible paths which may be pursued in future works. The

former consists in leveraging data acquired by multiple users in order to exploit

the commonalities of the training samples (i.e., multiple users might select similar

locations). The latter consists in considering unsupervised or reinforcement learn-

ing techniques to leverage the huge quantity of data acquired by first person vision

system in order to improve personal location recognition models. Moreover, future

works will concentrate on complementing the analysis in order to assess the gen-

erality of the found results. In particular, the analysis will be extended to data

acquired from multiple users to evaluate the generality of the methods with respect

to different users and locations.
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Sequence 2

Discr.

+Rej.

+HMM

GT

Figure 2.24: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 2.

Sequence 3

Discr.

+Rej.

+HMM

GT

Figure 2.25: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 3.
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Sequence 4

Discr.

+Rej.

+HMM

GT

Figure 2.26: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 4.

Sequence 5

Discr.

+Rej.

+HMM

GT

Figure 2.27: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 5.
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Sequence 6

Discr.

+Rej.

+HMM

GT

Figure 2.28: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 6.

Sequence 7

Discr.

+Rej.

+HMM

GT

Figure 2.29: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 7.
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Sequence 8

Discr.

+Rej.

+HMM

GT

Figure 2.30: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 8.

Sequence 9

Discr.

+Rej.

+HMM

GT

Figure 2.31: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 9.
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Sequence 10

Discr.

+Rej.

+HMM

GT

Figure 2.32: Results obtained with the proposed method [c] in Table 2.10 related to
Sequence 10.

Sequence 1

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.33: Comparative results of the methods reported in Table 2.10 related to Sequence
1.
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Sequence 2

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.34: Comparative results of the methods reported in Table 2.10 related to Sequence
2.

Sequence 3

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.35: Comparative results of the methods reported in Table 2.10 related to Sequence
3.
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Sequence 4

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.36: Comparative results of the methods reported in Table 2.10 related to Sequence
4.

Sequence 5

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.37: Comparative results of the methods reported in Table 2.10 related to Sequence
5.
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Sequence 6

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.38: Comparative results of the methods reported in Table 2.10 related to Sequence
6.

Sequence 7

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.39: Comparative results of the methods reported in Table 2.10 related to Sequence
7.
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Sequence 8

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.40: Comparative results of the methods reported in Table 2.10 related to Sequence
8.

Sequence 9

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.41: Comparative results of the methods reported in Table 2.10 related to Sequence
9.
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Sequence 10

[c]

[f]

[g]

[h]

[i]

GT

Figure 2.42: Comparative results of the methods reported in Table 2.10 related to Sequence
10.
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Chapter 3

Next-Active-Object Prediction

from Egocentric Videos1

One of the main advantages of First Person Vision systems is their ability to acquire

information which is inherently meaningful for the user. Therefore, as pointed out

by Kanade and Herbert [10], one of the main goals of a First Person Vision System

is understanding the user’s environments, behavior and intent. In Chapter 2, we

discussed the importance of context and location awareness in First Person Vision

systems and investigated methods to tackle the main challenges which originate

from real scenarios. We also discussed that personal location awareness can be

directly leveraged to infer behavioral information which can guide the construction

of intelligent systems able to assist the user. While personal locations can help

define context, the ability to understand and possibly anticipate the user’s short

and long term goals is still a key component for First Person Vision systems [10].

As claimed in previous works [108, 109, 110], the ability to anticipate the future is

an essential property that humans exploit on a daily basis in order to communicate

and interact with each other. For instance, predicting object interactions before

they actually occur can be useful to provide guidance on object usage [76] or issue

notifications [111]. Anticipated object interactions can tell us something more about

the user’s long term goals, as well as the intended activities. Indeed, as observed

in [19, 36, 65], it is advantageous to decompose long term egocentric activities in

terms of “atomic actions” and interactions with objects to improve the final activity

recognition task. Taking advantage of the First Person Vision paradigm, in this

1The work presented in this chapter has been partially done while I was a visiting Scholar at
the University of Texas at Austin, under the supervision of Professor Kristen Grauman.
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chapter, we introduce the novel task of predicting which objects the user is going to

interact with from egocentric videos. Following recent literature which claims the

importance of “active objects” for activity understanding [19], we refer to our task

as “next-active-object prediction”.

The rest of this chapter is organized as follows. In Section 3.1 we define the

next-active-object prediction task. Section 3.2 reviews the literature related to our

investigation. In Section 3.3 we propose a next-active-prediction method based

on the analysis of egocentric object trajectories. In Section 3.4 we present the

experimental settings, whereas in Section 3.5 we discuss the results. Section 3.6

concludes the chapter.

3.1 Next-Active-Object Prediction

We consider a scenario in which the user is wearing a First Person Vision system

(e.g., smart glasses) while performing his daily activities. As the user performs

the intended activities, he will move through the environment and interact with

specific objects. For instance, the activity of making tea will involve interactions

with objects such as the kettle, tea bag and mug. We assume that the First Person

Vision system is equipped with an object detector trained on a number of task-

relevant object classes. Given a number of observed frames, our aim is to predict

which objects are going to become active in order to distinguish them from the

ones which will likely remain passive. Figure 3.1 shows a sketch of the considered

problem. As the user moves through the environment, we aim at predicting the next

interacted object (e.g., the fridge), while all other passive objects (in gray) should

be discarded. Please note that next-active-object prediction needs to be performed

before the interaction actually begins.

Predicting next-active-objects in unconstrained settings is hard since humans

interact with objects on the basis of their final goal and the responses gathered

from the environment. Nevertheless, we argue that the FPV paradigm can provide

important cues related to the dynamic of the motion of the user with respect to the

objects present in the scene. Our main intuition is that, when a user is performing

a specific task, the way he moves and interacts with the environment is influenced

by his goals and intended interactions with objects. According to this assumption,
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time

Figure 3.1: A sketch of the next-active-object prediction problem.

in an egocentric scenario, the relative motion of an object in the frame will vary

depending on whether the user is willing to interact with that object or not. For

instance, the user is expected to move towards an object before interacting with it.

Figure 3.2 shows three sequences illustrating next-active-objects (in red) and passive

ones (in cyan) along with their egocentric object trajectories. Our insight is that

the shape of trajectories, as well as the positions in which they occur in the frame

can help to predict the next-active-objects discriminating them from passive ones.

In this chapter, we investigate the relevance of egocentric object trajectories in

the task of next-active-object prediction. Provided that an object detector/tracker

is available, we propose to analyze object trajectories observed in a small tempo-

ral window to predict next-active-objects before the object-interaction is actually

started. We investigate what properties of object motion are most discriminative

and the temporal support with respect to which such motion should be analyzed.

The proposed method compares favorably with respect to different baselines exploit-

ing other cues which might be available in the scene, such as the distance of the

objects from the center [19], the presence of hands [18, 43, 35, 36], changes in the

object appearance [19] and the predictability of the user’s visual attention [76].
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Figure 3.2: Three sequences illustrating next-active-objects (in red) and passive ones (in
cyan) along with their egocentric trajectories.

3.2 Related Work

Our work is related to different topics concerning activity recognition from egocentric

videos, future prediction and active objects.

3.2.1 Activity Recognition in First Person Vision

Activity recognition from egocentric videos is an active area of research. Through

the years, many approaches have been proposed to leverage specific egocentric cues.

Spriggs et al. [50] proposed to use Inertial Measurement Units (IMU) and a wear-

able camera to perform activity classification and to segment the video into specific

actions. Kitani et al. [59] addressed the problem of discovering egocentric action

categories from first person sports videos in an unsupervised scenario. Fathi et

al. [18] proposed to analyze egocentric activities to jointly infer activities, hands

and objects. Fathi et al. [43] concentrated on activities requiring eye-hand coordi-

nation and proposed to predict graze sequences and action labels jointly. Pirsiavash

and Ramanan [19] investigated an object-centric representation for recognizing daily
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activities from first person camera views. McCandless and Grauman [112] proposed

to learn the spatio-temporal partitions which were most discriminative for a set of

egocentric activities. Ryoo and Matthies [61] considered videos acquired from a

robot-centric perspective and proposed to recognize egocentric activities performed

by other subjects while interacting with the robot. Li et al. [35] proposed a bench-

mark of different egocentric cues for action recognition. Ryoo et al. [103] proposed

a feature pooling method to recognize egocentric activities. The authors of [36,

65] proposed to integrate different egocentric cues to recognize activities using deep

learning. The aforementioned works assume that the activities can be fully ob-

served before performing the recognition process and do not concentrate on future

prediction from the observed data.

3.2.2 Future Prediction in Third Person Vision

Previous works have investigated the problem of early action recognition and future

action prediction from a standard third person perspective. Even if such works

do not consider egocentric scenarios, the main motivation behind them is related

to ours: building systems which are able to recognize ongoing events from partial

observations and react in a timely way. The considered application scenarios range

from video surveillance to human-robot interaction. Ryoo [113] proposed a method

to recognize ongoing activities from streaming videos. Huang et al. [114] introduced

a system which copes with the ambiguity of partial observations by sequentially

discarding classes until only one class is identified as the detected one. Hoai and

De la Torre [115] exploited Structured Output SVM to recognize partial events

and enable early recognition. Kong and Fu [116] designed compositional kernels to

hierarchically capture the relationship between partial observations. Ma et al. [117]

investigated a method to improve training of temporal deep models to learn activity

progression for activity detection and early recognition tasks.

Beyond early action recognition, other methods have concentrated on the predic-

tion of future actions before they actually occur. In particular, Kitani [118] modeled

the effect of the physical environment on the choice of human actions in the scenario

of trajectory-based activity analysis from visual input. Koppula et al. [108], stud-

ied how to enable robots to anticipate human-object interactions from visual input

in order to provide adequate assistance to the user. Lan et al. [109] exploited a
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hierarchical representation of human movements to infer future actions from a still

image or a short video clip. Vondrick et al. [119] proposed to predict future image

representations in order to forecast human actions from video.

3.2.3 Future Prediction in First Person Vision

Future prediction has been investigated also in the first person vision domain. The

main application scenario related to such works concerns user assistance and aiding

human-machine interaction. Zhou et al. [110] concentrated on the task of inferring

temporal ordering from egocentric videos. Singh et al. [49] and Soo Park et al. [120]

presented methods to predict future human trajectories from egocentric images.

Soran et al. [111] proposed a system which analyzes complex activities and notifies

the user when he forgets to perform an important action. Su and Grauman [121]

proposed to predict the next object detector to run on streaming videos to perform

activity recognition. Ryoo et al. [62] proposed a method for early detection of actions

performed by humans on a robot from a first person, robot-centric perspective.

Vondrick et al. [119] proposed to forecast the presence of objects in egocentric videos

from anticipated visual representations. Our investigation is related to this line of

works but, rather than considering prediction at the activity level, we focus on the

granularity of user-object interaction and exploit the information provided by object

motion dynamics in egocentric videos.

3.2.4 Active Objects

Our interest in next-active-object prediction has also been fostered by the impor-

tance of active objects in tasks such as egocentric activity recognition. In particular,

Pirsiavash and Ramanan [19] proposed to distinguish active objects from passive

ones. Active objects are objects being manipulated by the user and provide impor-

tant information about the action being performed (e.g., using the kettle to boil

water). Passive objects are non-manipulated objects and provide context informa-

tion (e.g., a room with a fridge and a stove is probably a kitchen). The primary

assumption made by Pirsiavash and Ramanan [19] is that active and passive objects

can be discriminated by their appearance (e.g., an active fridge is probably open

and looks different from a passive one) and the position in which they appear in the
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frame (i.e., active objects tend to appear near the center). Active objects have also

been been considered in recent research on egocentric activity recognition. Fathi

et al. [18] suggested to pay special attention to objects manipulated by hands for

egocentric activity recognition. Li et al. [35] used Improved Dense Trajectories to ex-

tract features from the objects the user is interacting with. Ma et al. [36] designed a

deep learning framework which integrates different egocentric cues including optical

flow, hand segmentation and objects of interest for egocentric activity recognition.

Zhou et al. [65] presented a cascade neural network to collaboratively infer the hand

segmentation maps and manipulated foreground objects.

The general idea that some objects are more important than others has been

investigated also in other scenarios related to First Person Vision. Lee and Grau-

man [39] designed methods to summarize egocentric video by predicting important

objects the user interacts with during the day. Bertasius et al. [122] designed a

method for detecting action-objects, i.e., objects associated with seeing and touch-

ing actions. Damen et al. [76] proposed an unsupervised approach to detect task-

relevant objects and provide gaze-triggered video guidance when the user intends to

interact with the object.

3.3 Method

We propose to predict next-active-objects from egocentric videos by analyzing ego-

centric object trajectories. We assume that an object detector trained on a set of

N object categories is available. A tracker is used to associate detections related to

the same object instance in order to generate object tracks. At each time step, the

system analyses the trajectories observed in the last h frames in order to recognize

the next-active-objects before interaction actually takes place.

3.3.1 Object Tracks

For training purposes, we first assume that a set of egocentric videos is provided

along with ground truth object annotations related to N different object classes. We

also assume that each annotated object is labeled as active if the user is interacting

with it or passive otherwise. Annotations related to the same object instance are

grouped into tracks. We consider an object track as a sequence of bounding boxes
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Figure 3.3: Passive (a) and mixed (b) tracks. Activation points are indicated by black
arrows. The figure also illustrates the process of extracting passive and active trajectories
discussed in Section 3.3.2.

annotated (or detected) across multiple subsequent frames of a video. All bounding

boxes are related to the same object instance. Each bounding box is labeled as

“active” if the user interacts with it or “passive” otherwise. We denote an object

track as a tuple Ti = (Ci,Bi,Ai,Fi), where Ci ∈ {1, . . . , N} is the object class

label, Bi = {b1, b2, . . . , bn}, bj ∈ ℜ4 is the sequence of annotated bounding boxes,

Ai = {a1, a2, . . . , an}, aj ∈ {0, 1} is the sequence of active/passive flags related to

the bounding boxes in Bi, and Fi = {f1, f2, . . . , fn}, fj ∈ N are the IDs of the

frames to which the bounding boxes Bi are related. Each bounding box bj ∈ ℜ4

is represented by the four coordinates of the top-left and bottom-right corners. To

generalize over different image sizes and aspect ratios, all coordinates are divided

by frame width and height in order to be normalized between 0 and 1 and then

centered around the normalized center point (0.5, 0.5). Bounding boxes b ∈ ℜ4 are

represented by the four coordinates of the top-left and bottom-right corners. To

generalize over different image sizes and aspect ratios, all coordinates are divided by

the frame dimensions in order to be normalized in the interval [0, 1]. Coordinates are

then centered around the normalized center point (0.5, 0.5). This let all coordinates

range in the interval [−0.5, 0.5]. We divide object tracks into two categories: passive

and mixed. Figure 3.3 illustrates the two considered types of object tracks. Tracks
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Ti composed only by passive bounding boxes (i.e., aj = 0 ∀aj ∈ Ai) are denoted as

passive tracks. Tracks containing Ti both passive and active bounding boxes (i.e.,

∃ ah, ak ∈ Ai|ah ̸= ak) are denoted as mixed tracks. In this case, we refer to the

points in which an object changes its status from passive to active as “activation

points” (see Figure 3.3). Since we are interested in predicting next-active-objects,

i.e., objects which are going to change their status from passive to active, we discard

all tracks containing only active bounding boxes.

3.3.2 Active vs Passive Trajectory Classifier

We hypothesize that next-active-objects can be discriminated from passive ones by

analyzing the egocentric object trajectories leading to the activation point. There-

fore, we propose to train an active vs passive trajectory classifier in order to recognize

next-active-objects by discriminating them from objects which will keep their passive

status. We define a trajectory as a sequence of bounding boxes Ti = {b1, b2, . . . , bh}
related to video frames Fi = {f1, f2, . . . , fh}. We consider two classes of trajectories:

active and passive. Active trajectories are those leading to a change of status from

passive to active. Passive trajectories are related to passive objects that will main-

tain their passive status and hence they do not lead to any status change. While

in principle we would like to predict next-active-objects arbitrarily in advance, we

claim that the most discriminative part of active trajectories is the one immedi-

ately preceding the status change. Therefore, in order to train an active vs passive

trajectory classifier, we consider fixed length trajectories of h-frames. Parameter h

should be chosen carefully in order to include enough information for the discrim-

ination while avoiding the noise due to long trajectories including data far away

from the activation point. To compose a suitable training set, we extract passive

and active trajectories from the aforementioned object tracks. Passive trajectories

are randomly sampled from all passive tracks (we extract one trajectory per track).

Active trajectories are sampled from mixed tracks by considering the last h frames

preceding the activation point. Please note that, if possible, multiple trajectories

are extracted from the same mixed tracks. Figure 3.3 illustrates the extraction of

active (red) and passive (cyan) trajectories from object tracks.

We propose to describe trajectories including 1) the absolute positions in which

bounding boxes appear in the frame, 2) differential information about positions, 3)
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scale and differential information about scale. The main motivations behind point

1) is the observation that absolute position can help discriminate active from passive

objects [19]. Point 2) is derived from the trajectory shape descriptor used within

Dense Trajectories [123]. Point 3) is inspired by [124], where the derivative of the

bounding box area is used to estimate Time to Contact. Each trajectory Ti is hence

described as follows:

D(Ti) = (xc1, yc1, . . . , xch, ych, s1, . . . , sh,

∆xc2,∆yc2, . . . ,∆xch,∆ych,∆s2, . . . ,∆sh) (3.1)

where xcj and ycj are the coordinates of the centers of the bounding box bj, sj

is its area, ∆xcj = (xcj − xcj−1), ∆ycj = (ycj − ycj−1) and ∆sj = (sj − sj−1)

encode differential information about position and scale. If the length of Ti is h, the

dimension of the descriptor is |D(Ti)| = 6h− 3.

3.3.3 Sliding Window Prediction

In order to predict which objects are going to become active and which are not over

time, we use a sliding window approach. At each time step, the system analyzes

the last h frames of the trajectories of each tracked object and classifies them as

either active or passive. If an object has been tracked for less than h frames, it is

discarded. For each analyzed object, the system draws a bounding box and assigns

to it a confidence score equal to the probability given by the classifier. This way,

likely next-active-objects will get a high score, while passive ones will retain a lower

one. Figure 3.4 illustrates the proposed sliding window approach.

3.4 Experimental Settings

3.4.1 Dataset

We consider the ADL dataset for our experiments [19]. The ADL dataset contains

several egocentric videos acquired using a chest-worn camera by 20 different subjects

performing daily activities. Each video has been acquired at 30 fps. Each video

is provided with annotations for 18 performed activities and 45 different object
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Figure 3.4: Sliding window processing of object tracks. At each time step, the trained
binary classifier is ran over the trajectories observed in the last h frames and a confidence
score is computed. We expect next-active-objects to be easier to detect when closer to the
activation point.

classes (in the form of bounding boxes). Each object annotation is labeled as active

if the user is interacting with it or as passive otherwise. Annotations related to

the same object instance are grouped in object tracks. Figure 3.5 shows some

annotated frames from the ADL dataset. We carry out our evaluations on the ADL

dataset since it is the only publicly available dataset featuring untrimmed egocentric

videos of object interactions “in the wild”, including annotations for both active and

passive objects. The main shortcomings of using the ADL dataset for the evaluations

is that it contains data acquired using a chest-worn camera. While performing

experiments also on a dataset acquired using a head-mounted camera would be

useful to generalize our findings, it should be noted that acquiring and labeling such

data is not trivial mainly because of the need for frame-wise annotations and the
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Figure 3.5: Some sample frames from the ADL dataset. Active object annotations are
indicated in red. Passive object annotations are indicated in cyan.

difficulty in interpolating bounding boxes among neighboring frames due to head

motion.

Unluckily, in the ADL dataset, objects are annotated every 30 frames, which

makes reasoning about object trajectories difficult. To overcome this limitation, we

temporally augment the original annotations by tracking objects in those frames

which are not annotated. The tracker is always initialized using original ground

truth object annotations and tracking is carried on until the next annotation is

reached. Active/passive flags are interpolated accordingly. Note that tracking has

to be performed only for a short time (1 second). To this aim, in our experiments,

we use the short term tracker CMT proposed by Nebehay and Plugfelder in [125].

In order to account for objects which temporally disappear from the scene, object

tracks are split into two parts every time the tracker is not able to track the object.

3.4.2 Object Detection and Tracking

To perform object detection, we consider the state of the art Faster R-CNNmethod [126]

based on the VGG-16 network [127]. We follow the authors of [19], who consider
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26 object classes including 21 passive objects and 5 active ones. Since in our work

we propose to detect next-active-objects on the basis of their trajectories and not of

their appearance, we don’t train our object detector to distinguish between active

and passive objects. Therefore we consider a corresponding dataset of 23 object

classes. In this dataset, corresponding active and passive classes (e.g., active fridge

and passive fridge) are merged into a single class (e.g., fridge). Considering that

many samples are required in order to fine-tune the Faster-RCNN model, we re-

move 4 classes which are represented by less than 1000 images in the training set

(the average number of annotated instances per object class in the dataset is around

4000). The final dataset contains 19 object classes: “book”, “bottle”, “cell phone”,

“detergent”, “dish”, “door”, “fridge”, “kettle”, “laptop”, “microwave”, “mug/cup”,

“oven/stove”, “pan”, “pitcher”, “soap/liquid”, “tap”, “tooth paste”, “tv”, “tv re-

mote”. As in [19], we train the object detector on images extracted from the first

6 videos, while the remaining 14 videos are used to train/test the proposed next-

active-object prediction method. Note that, in order to train the object detector,

we consider only the object annotations originally contained in the dataset, while

tracked bounding boxes are discarded at this stage. The Faster R-CNN model is

trained using the “end2end” procedure proposed in [126]. The trained detector

achieves a mAP of 27.72 on the test set of 14 videos, which compares favorably with

respect to the 15.15 mAP scored by the deformable part models employed in [19].

Please note that, as pointed out in [19], even performing object detection on the ADL

dataset is hard due to the presence of small objects and non-iconic views. To obtain

object tracks from detection, we use the lightweight SORT tracker proposed in [128].

The SORT tracker assumes that good object detections are available for each frame

and performs object tracking by associating predicted bounding boxes into object

tracks. Instead of using appearance-based features, the SORT tracker relies on the

predicted bounding boxes and a simple motion model. The SORT tracker is highly

real-time (260 Hz) and adds minimum overhead to the object detector component.

3.4.3 Trajectory Classification

We train Random Decision Forests to discriminate between passive and active ob-

ject trajectories. In the considered dataset, the number of negative trajectories is

usually far larger than the number of active ones. To mitigate such imbalance, at
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training time, the number of passive trajectories is randomly subsampled to match

the number of active ones, in order to obtain a balanced training set. Testing is al-

ways performed on the original unbalanced data. We assess the performances of the

trained classifiers with respect to different factors, including the temporal support

with respect to which trajectories are analyzed, the employed trajectory descriptor,

the generalization to unseen object classes and the robustness of the classifier with

respect to the distance from the activation point. All results are reported in terms

of Precision-Recall curves and related Average Precision (AP) values. Please note

that our trajectory classifier is trained independently from the object class, that is,

a single classifier is learning from trajectories related to all object classes. The main

reason of this choice, is that not enough data is contained in the considered dataset

to train class-specific classifiers.

3.5 Results

We perform all our experiments in a leave-one-person-out fashion on the set of 14

videos which have not been used to train object detectors (as done in [19]). At

each leave-one-out iteration, trajectory classifiers are learned on videos acquired

by 13 subjects and tested on the remaining data. This makes sure that training

and testing data are always acquired by different subjects. All reported results are

averaged across the 14 leave-one-out iterations.

3.5.1 Performances of the Trajectory Classifier

The proposed trajectory classifier based on the descriptor introduced in Eq. (3.1)

achieves best results setting h = 30 (which corresponds to 1 second in the considered

dataset). Specifically, in the leave one out evaluation, our method scores an AP of

0.28, while the chance level is 0.09. In the following, we perform comparisons to

motivate the design of the proposed system based on fixed-length trajectories and

the selection of parameter h. All comparisons are based on the descriptor introduced

in Eq. (3.1).

In Section 3.3.2, we assumed that the last part of an active trajectory is the most

discriminative for our task. Therefore, we proposed a sliding window approach which

analyzes fixed-length trajectories within a temporal window of size h. To support
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Figure 3.6: Precision-recall curves related to different trajectory description schemes. Av-
erage precision values are reported in parenthesis the legend. Elements in the legend are
sorted by average precision in descending order.

that analyzing trajectories within a fixed-length temporal window is optimal, we

compared the proposed method to a different schema which, at each time step, ana-

lyzes the whole trajectory observed up to that point. In this second schema, in order

to obtain a fixed-length descriptor, trajectories are represented with a multiscale ap-

proach. Using a temporal pyramid with l levels, each trajectory is divided into 2l−1

segments. Bounding boxes within the same segment are averaged and the results

concatenated. This leads to fixed-length trajectories which are hence represented

using the descriptor introduced in Eq. (3.1). Note that the maximum number of

splits operated by the temporal pyramid is equal to 2(l−1), therefore, trajectories

shorter than this number are discarded in our experiments.

Figure 3.6 reports precision-recall curves of the classifiers learned on trajectories

exacted according to the two considered schemes. The proposed fixed-length trajec-

tory approach has been evaluated considering different lengths h = {15, 30, 45, 60}.
Similarly, the multiscale approach has been evaluated considering different number

of levels l = {4, 5, 6, 7}. Please note that the minimum trajectory lengths associ-

ated to the considered numbers of levels are respectively {8, 16, 32, 64}. The random
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baseline is obtained performing classification with a binary random decision. As can

be observed in Figure 3.6, classifiers based on fixed-length trajectories tend to out-

perform methods based on multiscale trajectories. This suggests that the last part

of active trajectories is the most discriminative and that motion information too

far away from the activation point introduces noise in the observations. Among the

methods based on fixed-length trajectories, the best performing scheme is the one

analyzing trajectories of length h = 30. This value will be used in all the following

experiments.

3.5.2 Trajectory Descriptors

As discussed in Section 3.3.2, the proposed trajectory descriptor introduced in

Eq. (3.1) includes information about absolute positions and scales, as well as dif-

ferential information about position and scale. We analyze the impact of each of

these kinds of information comparing the proposed descriptors against the following

baselines:

• Motion Magnitude: we consider discriminating active trajectories from pas-

sive ones on the basis of the amount of motion characterizing the trajectory

Ti under analysis. The amount of motion is measured as the sum of the mag-

nitudes of the displacement vectors: M(Ti) =
∑h

j=2

√
∆xc2j +∆yc2j . Classi-

fication is hence performed by thresholding on M . The optimal threshold is

selected at training time as the best discriminating active from passive trajec-

tories in the training set;

• Relative Trajectories: are the descriptors proposed by Wang et al. in

their work on Dense Trajectories [123]: D(Ti) =
(∆xc2,∆yc2,...,∆xch,∆ych)∑h

j=2

√
∆xc2j+∆yc2j

. These

descriptors encode only the “shape” of the trajectory and do not include any

information about absolute positions;

• Absolute Trajectories: described as the concatenation of the centers of all

bounding boxes: D(Ti) = (xc1, yc1, . . . , xch, ych). Such descriptors include

positional information but do not encode scale and differential information;

• Absolute Trajectories + Differential Positions: described as the con-

catenation of positions and differential information about position: D(Ti) =
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Figure 3.7: Precision-recall curves related to the proposed method and compared baselines.
Average precision values are reported in parenthesis the legend. Elements in the legend
are sorted by average precision in descending order.

(xc1, yc1, . . . , xch, ych,∆xc2,∆yc2, . . . ,∆xch,∆ych). These descriptors encode

location and trajectory shape but do not include scale information;

• Absolute Trajectories + Scale: described as the concatenation of positions

and bounding box scales: D(Ti) = (xc1, yc1, . . . , xch, ych, s1, . . . , s2). These de-

scriptors encode location and scale but do not include differential information.

Figure 3.7 shows precision-recall curves for the proposed method and the compared

baselines. As can be observed, relative trajectories (AP: 0.10) are less discriminative

than absolute trajectories (AP: 0.12) for the next-active-object prediction task. This

confirms the observation according to which position can help discriminate active

and passive objects [19]. Combining absolute and differential positional information

improves performances marginally (AP: 0.13). Adding scale (AP: 0.20) and above

all, combining with differential information as we propose (AP: 0.28), allows to

obtain the best results. Interestingly the motion magnitude baseline performs better

than some competitors (AP: 0.12).
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AP
Object w/o with

oven/stove 0.60 0.82
tap 0.47 0.59
door 0.19 0.18
tv remote 0.58 0.73
bottle 0.50 1.00
pan 0.56 0.83
tv 1.00 1.00

AP
Object w/o with

fridge 0.47 0.73
book 1.00 1.00
microwave 0.67 0.40
kettle 0.33 0.75
mug/cup 0.52 0.62
dish 0.51 0.32
laptop 0.63 0.65

Table 3.1: Average precision results related to the leave-one-object-out experiment.

3.5.3 Generalization to Unseen Object Classes

We have trained a single active vs passive classifier including data from all con-

sidered object classes. While training object-specific trajectory classifiers might be

advantageous, the limited number of samples related to a single object class could

pose a challenge. Moreover, a real system needs to be able to handle situations in

which previously unseen objects may become active. We find that next-active-object

trajectory classification can generalize to previously unseen object classes. To as-

sess this property, we performed a leave-one-object-out experiment. For each object

class, we trained trajectory classifiers on data related to all other object classes.

Classifiers have been hence tested on data including only the object class which was

removed from the training set.

Table 3.1 reports the results for the considered object classes. Classes missing

from Table 3.1 are those which were not represented by any sufficiently long tra-

jectory (at least h frames) in the dataset. Classifiers learned from training sets not

containing the target object class (“w/o” column) are compared to classifiers learned

from training sets containing also instances from the target object class (“with” col-

umn). Similar performances are achieved for many object classes (e.g., door, tv,

book, mug/cup, laptop), whereas for others the learning from the instances of the

same object class is more beneficial. On average, removing the object class from the

training set implies a reasonable performance loss of 0.11 AP.
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Figure 3.8: Performances of trajectory classifiers as a function of the distance from the
activation point. Average precision values are reported in parenthesis the legend. Elements
in the legend are sorted by average precision in descending order.

3.5.4 Robustness to Distance from Activation Point

In the proposed system, next-active-objects are predicted using a sliding window

which analyzes the last h frames of each observed object trajectory. However, tra-

jectory classifiers have been trained on the h frames immediately preceding the

activation point. We perform experiments to assess how many frames before the ac-

tivation point we can predict next-active-objects from egocentric video. Figure 3.8

shows the Average Precision of the considered trajectory classifiers as a function

of the distance from the activation point at which the sliding window is placed to

perform predictions. All trajectory classifiers work best when they analyze trajecto-

ries which are close in time to the activation point, while performances decay when

they analyze trajectories which are observed far from it. All methods keep rea-

sonable performances when the distance from the activation point is less than one

second, while performances decay afterwards. The proposed trajectory descriptor

outperforms the others and is generally above chance level.
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3.5.5 Comparative Experiments

In order to compare different methods in a common evaluation scheme, we frame

next-active-object prediction as an object detection task. We assume that, at each

time step, each method produces a series of bounding boxes around predicted next-

active-objects and assigns a confidence score to them. We define our ground truth

starting from the object annotations of the ADL dataset augmented by tracking as

described in Section 3.4.1. Since we wish to predict next-active-objects as soon as

possible, all annotations which are on the passive segments of a mixed track (see

Figure 3.3) are considered as valid detections. All other annotations, namely, the

ones which are on passive tracks and the ones which are in the active part of mixed

tracks are not considered valid detections. The performances of the investigated

methods are measured computing precision-recall curves and Average Precision (AP)

values as defined in [129]. A prediction is considered correct if there is a significant

overlap (area of intersection over union (IOU) ≥ 0.5) with an annotation of the same

object class. We compare the proposed method with respect to a series of baselines:

• Motion Magnitude: the same baseline discussed in Section 3.5.2 based on

thresholding over motion magnitude;

• Relative Trajectories: the same baseline discussed in Section 3.5.2 based

on the trajectory descriptors introduced by Wang et al. [123];

• Center Bias: this baseline considers the assumption made by Pirsiavash and

Ramanan [19], according to which active objects tend to appear near the

center of the frame. The baseline analyzes the object detections produced by

the Faster-RCNN detector and takes into account the confidence score assigned

to each predicted bounding box so. For each detected object, we compute a

score sc which is inversely proportional to its distance from the center of the

frame. The final confidence score is obtained as s = sc · so;

• Hand Bias: the presence of hands is a cue often considered for detecting

active objects [18, 43, 35, 36]. To leverage this cue, we detect hands from the

input videos by using the models proposed in [130]. Similarly to the center

bias baseline, for each object detection we compute two scores slh and srh

which are inversely proportional to the distances of the object from the left
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and right hand respectively. If one of the two hands is missing, a score equal

to zero is assigned. The final confidence score is obtained by s = s · (slh+ srh);

• Active/Passive Objects: a method inspired by the work of [19]. Predictions

are obtained using a Faster R-CNN object detector trained to detect active

and passive objects separately. The detector is hence trained on 38 classes (19

active objects and the corresponding 19 passive ones);

• Saliency-Based Models: this set of baselines follow Damen et al. [76], who

propose to detect task relevant objects using a gaze tracker, exploiting the an-

ticipatory nature of eye gaze fixation [131]. Since we do not assume the avail-

ability of a gaze tracker, we implement such baselines using saliency predic-

tion models. The baseline works as follows. Saliency maps are first extracted

from each frame. Starting from the Faster-RCNN detections, each predicted

bounding box is assigned a score equal to the mean saliency value within the

bounding box. Given the different levels at which saliency is defined [132], we

consider the model proposed by Vig et al. [133] for eye fixation prediction, the

model proposed by Seo et al. [134] for dynamic saliency from videos, and the

model proposed by Zhang et al. [135] for salient object segmentation;

• Random: starting from the Faster-RCNN detection, each bounding box is

assigned a random score in the interval [0, 1].

Figure 3.9 reports the precision-recall curves scored by our method and all base-

lines. To reduce computational burden, the methods indicated by the “*” symbol

have been evaluated on a subset of the data obtained taking one frame every 30

frames. The proposed method is the best performing one (AP: 0.0680), followed by

the motion magnitude (AP: 0.0478) and relative trajectory baselines (AP: 0.0437).

It is worth noting that, the best performing methods are all based on egocentric

object motion. The method based on center bias outperforms the appearance-based

baseline derived from [19] (0.0412 vs 0.0298 AP values). Our main insight about

this behavior is that object appearance is likely to change while the object is be-

ing manipulated rather than before. The baseline based on hand bias does not

achieve good performances (AP: 0.0200). This is probably due to different factors.

First, detecting hands in unconstrained egocentric videos is not trivial [130]. Second,
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Figure 3.9: Precision-recall curves of the compared methods. Average precision values are
reported in parenthesis the legend. Elements in the legend are sorted by average precision
in descending order. Methods indicated by “*” have been evaluated on a subset of the
data obtained taking one frame every 30 frames.

hands are not always visible until the object manipulation actually begins. Saliency-

based baselines perform worse than others. It should be noted that such methods

have been designed to predict current and not future visual attention mechanisms

and that such methods have not been specifically designed for the egocentric sce-

nario. Moreover, while we perform our evaluations on the ADL dataset, which have

been acquired using a chest-worn camera, the state-of-the-art has been designed for

head-mounted cameras. In particular, attention-based methods, might be unable to

leverage head-motion cues as expected.

Figure 3.10 and Figure 3.11 report some visual examples of success/failure se-

quences related to the proposed method. Positive model predictions are indicated

in green, while negative predictions are indicated in cyan. The examples also report

the observed egocentric object trajectories, the predicted class and the confidence

score. Ground truth next-active-objects are reported in red. In the examples of

correct predictions (Figure 3.10), the model correctly assigns a hight score (positive

prediction) to next-active-objects and a low score (negative prediction) to passive

ones. In the failure examples (Figure 3.11), the model predicts the wrong object or
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Figure 3.10: Some success examples of the proposed method. Red bounding boxes repre-
sent ground truth next-active-objects. Positive predictions are indicated in green, while
negative predictions are indicated in cyan. For each prediction, the object class and con-
fidence scores are reported.
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Figure 3.11: Some failure examples of the proposed method. Red bounding boxes repre-
sent ground truth next-active-objects. Positive predictions are indicated in green, while
negative predictions are indicated in cyan. For each prediction, the object class and con-
fidence scores are reported.
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Figure 3.12: A frame from one of the two demo videos included in the supplementary
material. The videos show several sequences along with he predicted next-active-objects.
Ground truth next-active-objects are indicated in red. Positive model predictions are
indicated in green, while negative predictions are reported in cyan. For each detected
next-active-object we report the predicted class, the observed trajectory and the computed
confidence score.

fails to detect all next-active-objects.

We also provide demo videos of correct predictions and failure examples which

can be downloaded at the URL http://iplab.dmi.unict.it/N-A-O/. Figure 3.12

reports a sample frame from one of the videos.

3.6 Discussion

In this chapter, we have introduced and investigated the problem of next-active-

object prediction from egocentric videos. While the task is not trivial in uncon-

strained settings, we have shown that egocentric object trajectories provide a useful

cue to address the challenge. Experiments have highlighted that 1) the last part

of active egocentric object trajectories is the most suitable to predict next-active-

objects, 2) active trajectory classifiers can generalize to unseen object classes up

http://iplab.dmi.unict.it/N-A-O/
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to a given extent, 3) egocentric cues based on object motion outperform baselines

based on static observations on the considered dataset. In future works, we will

investigate how the task of next-active-object prediction can be exploited for early

action prediction and how such integration can be beneficial for both tasks.
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Chapter 4

Conclusion

The main contributions of this thesis are related to context awareness in First Per-

son Vision. Our investigation has been driven by the observation that, differently

from traditional Third Person Vision, data acquired by First Person Vision sys-

tems is very related to the user and hence it can be used to provide assistance in

a “personal way” and predict the intent of the user [10]. Within the broad scope

of context awareness in First Person Vision, we have investigated two of the five

context categories discussed in Section 1.1.3, namely location and intent.

Chapter 2 investigated personal location recognition from egocentric videos. Dif-

ferently from previous works, we considered personal locations at the instance level

(e.g., my office), rather than at the category level (e.g., an office). We considered

a real scenario in which the user is willing to monitor a selected set of personal

locations of interest and proposed a suitable definition of the task. Our definition

involves that 1) the user provides minimum training data for the locations he wants

to monitor, 2) the system has to deal with the rejection of negative locations. To

investigate the problem, we proposed three datasets of egocentric videos acquired

in 10 personal locations and performed a benchmark of different wearable cameras

and representation techniques.

Our investigation pointed out the following:

• Recognizing personal locations of interest from egocentric videos involves some

specific challenges. The two main challenges are: 1) supervised learning can

rely only on few training data provided by the user, 2) the system has to

correctly reject negative locations learning only from positive samples;

• Head mounted, wide angle cameras have a significant advantage over other

camera designs on the personal location recognition task;
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• Representations based on deep learning outperform other representation meth-

ods due to their transfer learning abilities. However, fine-tuning Convolutional

Neural Networks is not trivial with small datasets and many architectural set-

tings can be tuned to improve performances;

• The assumption of temporal coherence between neighboring predictions arising

from egocentric data can be used to 1) formulate affective negative rejection

methods, 2) improve location recognition in neighboring frames;

• Due to the large variability in terms of visual content that wearable cameras

are likely to acquire, learning a policy for the rejection of negative locations

directly from negative samples is not trivial. Specifically, we show that de-

signing a robust rejection option is advantageous over explicitly learning the

“negative location class” from negative samples.

Chapter 3 proposed the problem of predicting next-active-objects from egocentric

videos. While predicting the future is in general hard, we argued that the First Per-

son Vision paradigm can provide important cues to address the challenge. Specif-

ically, we investigated the predictive power of egocentric object trajectories as a

means for encoding information about the dynamic of the scene and proposed a sys-

tem to perform next-active-object prediction. Our investigation pointed out that:

• Predicting next-active-objects from egocentric videos is not trivial. However,

egocentric object trajectories provide a useful cue to address the challenge;

• Describing the shape of egocentric object trajectories without including infor-

mation on absolute positions is not enough for next-active-object prediction.

Better results are obtained including 1) absolute positions, 2) differential in-

formation about position and scale;

• The last part of an active egocentric trajectory is the most discriminative for

the task of next-active-object prediction. Including trajectory information too

far away from the activation point seems to add only noise to the observations;

• Active vs passive trajectory classifiers can be trained independently from ob-

ject classes;
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• Cues based on appearance of objects, their distance from the center of the

frame, presence of hands and saliency models are not effective for the con-

sidered task. Our main insight into these results is that such factors are not

relevant until the object interaction actually takes place.

4.1 Future Directions

First Person Vision systems are characterized by their intrinsic mobility and their

ability to acquire visual information which is very personal for the user. Therefore,

we argue that context awareness constitutes a big challenge and opportunity for

such systems. In this thesis, we have investigated some aspects related to context

awareness in FPV systems. Our investigation has been guided by the assumption

that context can be more than mere location sensing and it can encode many other

aspects related to the user such as, for instance, his intent.

Many challenges still need to be faced both in location sensing and intent un-

derstanding. Location sensing methods need to be improved in terms of accuracy

and usability. This can be achieved designing better negative rejection methods and

algorithms able to learn from few samples and with little supervision. With modern

data-hungry methods such as those related to Deep Learning, a promising direction

would be to leverage data from multiple users to improve both location detection

and negative rejection.

The ability to predict the intent of the user is likely to be an important feature

for modern wearable systems. While anticipating interactions with objects is an

important feature, advanced system should be able to take into account different as-

pects, including location sensing, anticipation of object interactions, and forecasting

of future goals.

In conclusion, our main insight is that context is complex and its understanding

can allow for the construction of more sophisticated human-interaction mechanisms.

In this sense, modeling context can serve as an occasion to improve the intelligence of

First Person Vision systems. To build better models of context, future investigations

should take into account, not only the study, but also the integration of different

aspects such as location, user behaviors, object and scene accordances, attention

and future anticipation.
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Appendix A

Wide-Angle Sensors and Feature

Extraction1

First Person Vision systems are deemed to be able to “see what the actor sees” in

order to sense the world from his perspective [10]. To conform the human visual sys-

tem, they should be able to acquire a large enough quantity of visual information re-

lated to the surrounding environment. This is usually done employing wide-angular

cameras which can acquire a large part of the scene at the cost of introducing radial

distortion. Many wearable cameras such as GoPro2, Authographer3 and Narrative

Clip 24 employ wide-angle cameras to achieve this result. In [24, 20] we show that

wide-angular cameras have a clear advantage over standard narrow-angle ones when

modeling the visual context of the user in a First Person Vision application. De-

pending on the extent of radial distortion characterizing the acquired images, it is

usually necessary to explicitly account for the geometric distortion introduced by

wide-angle sensors during the feature extraction process [136]. While the standard

way to deal with such distortion is to explicitly compensate for it [137], direct ap-

proaches not requiring any specific coordinate remapping and interpolation process

are preferable in many cases [136].

In this chapter, we investigate how feature extraction can be performed directly

on wide-angular images. We review wide-angle cameras in Appendix A.1 and fisheye

camera models (which are a specific class of wide-angle sensors) in Appendix A.2. We

1All the work presented in this Chapter has been performed in collaboration with ST-
Microelectronics Catania within the project PANORAMA, co-funded by grants from Belgium,
Italy, France, the Netherlands, the United Kingdom, and the ENIAC Joint Undertaking.

2http://gopro.com
3http://www.autographer.com/
4http://getnarrative.com/

http://gopro.com
http://www.autographer.com/
http://getnarrative.com/
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Figure A.1: Field Of View (FOV) of an image acquisition system. FOVs can be measured
horizontally, vertically and diagonally.

present the experimental datasets used in the rest of this chapter in Appendix A.3.

In Appendix A.4 we analyze how affine covariant region detectors can be applied

efficiently directly on wide-angular images when the source camera is unknown and

hence it cannot be calibrated. In Appendix A.5 we introduce a family of distortion

adaptive Sobel filters for the direct estimation of the gradient of distorted images.

In Appendix A.6 we present the Distortion Adaptive Descriptors which allow to

compute gradient-based descriptors, such as SIFT [7] and HOG [138], directly on

fisheye images. Finally Appendix A.7 summarizes the findings of this chapter.

A.1 Wide Angle Sensors

Each image acquisition system can be characterized by its Field Of View (FOV),

which is defined as the solid angle through which the system is sensible to the incom-

ing light. FOVs can be measured horizontally, vertically or diagonally. Figure A.1

shows an illustration of how the Field Of View can be measured. The normal human

binocular FOV is about 180◦ horizontally and 120◦ vertically [139]. Most regular

cameras are designed to follow the perspective projection, which characterizes the

ideal model of the pinhole camera. Such model has the convenient property to map
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Figure A.2: From left to right: examples of images characterized by different FOVs and
increasing rates of radial distortion. As can be noted, larger FOVs allow to acquire a larger
portion of the scene at the cost of larger degrees of radial distortion. The examples have
been obtained artificially adding different degrees of radial distortion to a high resolution
source rectilinear image. More details on this process will be discussed in Appendix A.2.3.

lines that appear to be straight in the real world, to straight lines in the final im-

age, thus producing a representation of the scene which is coherent with our visual

perception. Due to the adherence to the perspective model, most regular cameras

available on the market cannot achieve large FOVs (the FOV of most perspective

cameras cannot exceed 140◦) [139]. This shortcoming has motivated the design of

a different class of sensors usually referred to as wide-angular or omni-directional

visual systems [140]. Such systems are available in different designs and allow to

obtain wider FOVs up to 180◦ and 360◦. However, as pointed out in [141], this

flexibility comes at the cost of the introduction of noticeable radial distortion, as it

is depicted in Figure A.2. Since it is not possible to project an hemisphere on a fi-

nite plane using the perspective projection, different projection functions are usually

considered when designing such systems. Wide-angle cameras can be built following

two main designs: catadioptric [140, 142, 143] and dioptric [137, 141]. Figure A.3

illustrates the two camera designs for wide-angular cameras. Catadioptric systems

employ a concave mirror to project a large FOV representation of the scene to a reg-

ular camera following the perspective projection. In this case the introduced radial

distortion is determined by the specific geometry of the mirror. Dioptric systems

simply substitute the regular lens of perspective cameras with lenses following a dif-

ferent design, generally referred to as “fisheye lenses”. In this case, radial distortion

is determined by the different projection function that the lens is designed to follow.

Characterizing the radial distortion introduced by wide-angle cameras, in order

to be able to map points on the scene to points on the image, can be useful to

remove radial distortion [144, 145, 146], extract features [136, 147, 148], and perform

higher level tasks such as human and object detection [149, 150]. For this reason,

different camera models and calibration techniques have been proposed to establish a
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Figure A.3: Two main designs for wide-angular cameras: (a) catadioptric system combin-
ing a mirror and with regular camera and (b) dioptric systems using a fisheye lens.

mapping between the distorted wide angle images and their ideal purely perspective

counterparts. Some calibration techniques require a special pattern to be present

in the scene [151, 152] while others just require a few images of the scene and no

other information [144, 145]. In the following sections, we discuss camera designs

and the main mathematical models which can be used to describe the related image

formation processes.

A.1.1 Catadioptric Systems

Catadioptric systems combine a concave mirror and a regular camera to achieve

large FOVs. According to this design, the mirror diverts light rays coming from

the scene to a regular camera, which acquires them. Figure A.3(a) illustrates the

operation of such a design, while Figure A.4(a) shows a sample image obtained using

a catadioptric system. The shape of the mirror allows to obtain the desired FOV

deviating light rays non-linearly as a function of the angle formed with the optical

axis [140, 142]. Even if different mirror shapes can be employed when designing cata-

dioptric sensors, a few classes of mirrors are commonly used: parabolic, hyperbolic

and elliptic mirrors. Camera models for catadioptric sensors generally have to take

into account the geometry of the mirror. Nevertheless, under given circumstances

(i.e., for central systems), unified models can be defined [143]. The sphere camera

model [140, 143], in particular, allows to describe standard perspective cameras as

well as catadioptric systems making use of hyperbolic, parabolic and elliptic mirrors.
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(a) catadioptric systems (b) dioptric systems

Figure A.4: Sample images obtained using: (a) a catadioptric and (b) a dioptric system.

According to such model, central catadioptric systems (i.e., those characterized by

a single effective viewpoint [143, 153]) are isomorphic to a projective mapping from

the unit sphere to the plane. Figure A.5 illustrates the sphere camera model. The

image formation process is hence modeled by the following projection:

• A 3D point Q of the scene is projected to two antipodal points on the unit

sphere s+ and s−;

• Given a projection center situated on a sphere diameter at a distance ξ from

the center of the sphere, the antipodal points are projected to an image plane

placed at the focal distance f from the projection center. The two projected

points are denoted by q+ and q−.

The model is characterized by the parameter ξ, which defines the geometry of the

mirror. While catadioptric systems are mainstream in the robotic literature, their

cumbersome design and the presence of a non-illuminated spot in the center of the

image, make them unsuitable for FPV applications.

A.1.2 Dioptric Systems

Dioptric systems are obtained replacing the standard lens of a perspective camera

with a fisheye lens. While standard lenses are designed to adhere to the perspective

projection, fisheye lenses divert rays non-linearly with respect to the angle formed
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Figure A.5: Sphere camera model.

with the optical axis. The result of such projection are images characterized by

a wider Field Of View and noticeable radial distortion. Figure A.3(b) depicts the

image formation process of a dioptric system, while Figure A.4(b) shows a sample

image obtained using a dioptric system. The Field Of View characterizing a given

fisheye camera depends on the design of the lens, its focal length and the sensor size.

Two configurations are particularly relevant: full frame and full circle [146]. Full

frame images are characterized by a diagonal FOV equal to 180◦. Such configuration

is convenient since it allows to get the largest FOV which still allows to cover the

full sensor. This means that the whole sensor is illuminated and the image does not

contain dark non-illuminated areas. Full circle images are characterized by a vertical

FOV equal to 180◦. Such configuration does not allow full coverage of the sensor

(the image is formed on a circular region in the center of the sensor), but allows to

obtain the projection of the full hemispheric field on the final image. Figure A.6

shows some synthetic examples of the two configurations. Fisheye cameras are

usually more compact than catadioptric systems and therefore they are more suited

to be used in many application scenarios including First Person Vision systems.

Moreover, images acquired using these cameras do not exhibit a dead spot in the

center as happens for catadioptric systems (see Figure A.4). Therefore, in the rest

of this chapter, we will focus mainly on dioptric systems. This type of systems are

usually referred in literature as fisheye cameras.



Appendix A. Wide-Angle Sensors and Feature Extraction 125

(a) rectilinear (b) full frame (c) full circle

Figure A.6: Examples of perspective (a), full frame (b) and full circle (c) images. The two
fisheye images are obtained by artificially adding different amounts of radial distortion to
the rectilinear image (a).

A.2 Fisheye Camera Models

As discussed earlier, fisheye cameras allow to achieve a large Field Of View (FOV) by

performing a non-uniform spatial sampling of the incoming light, which introduces

radial distortion. The result is a non-Euclidean representation of the environment

such that straight lines in the scene are not mapped to straight lines in the im-

age [139, 141]. Since many applications assume that the input images are the result

of the perspective projection of the scene to a finite plane, geometrical considera-

tions are often needed when processing wide angle images [136, 137, 139]. A number

of methods have been proposed in the literature to establish a mapping between the

distorted wide angle images and their ideal purely perspective counterparts [144,

145, 151, 153]. When such a mapping is known and invertible, the most straight-

forward way to deal with wide angle images consists in explicitly compensating for

radial distortion through a rectification process [137]. In the following Sections we

review the main theoretical and practical fisheye camera models which will be used

for our experimental analysis.

A.2.1 Theoretical Projection Functions

Cameras are designed to adhere to a specific projection function which allows to map

points P on the 3D scene to their 2D counterparts p on the sensor. To describe

the possible projection functions in a unified framework, we will consider a scheme

similar to sphere camera model discussed in Appendix A.1.1. According to this

scheme, 3D points of the scene are first projected to the unit sphere centered at the
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optical center of the lens, then to the image plane situated at at a distance equal to

the focal length f of the lens. Points of the scene P ≡ (X, Y, Z) can be projected

to the unit sphere and so expressed in spherical coordinates P ≡ (1, θ, ϕ) through

the following Equations5:

θ = arccos
( Z√

X2 + Y 2 + Z2

)
(A.1)

ϕ = arctan
(Y
X

)
. (A.2)

Point P is hence mapped to the 2D point on the image plane p ≡ (x, y) expressed

in polar coordinates as follows:

p ≡ (ρ = π(θ), ϕ) (A.3)

where π is referred to as the projection function. According to this model, θ is

the angle formed between the incoming light ray and the principal axis of the lens.

Figure A.7 illustrates the considered camera model.

For regular cameras (i.e., the so called perspective cameras), the projection func-

tion π in Equation (A.3) has the form of a perspective projection [141]:

ρ = fP tan θ (A.4)

where ρ is the radial coordinate of the 2D projected point and fP is the focal length

of the perspective lens. Fisheye lenses, instead, are designed to approximatively

obey one of the following projection functions [141, 151]:

ρ̂ = 2fF tan(θ/2) (stereographic projection) (A.5)

ρ̂ = fF θ (equidistance projection) (A.6)

ρ̂ = 2fF sin(θ/2) (equisolid angle projection) (A.7)

ρ̂ = fF sin θ (orthogonal projection) (A.8)

5It should be noted that the arctan function denoted in Equation (A.2) should be defined taking
into account the correct (x, y) quadrant in which the point lies. Such function is best implemented
using the standard function “atan2” available in the standard libraries of the main programming
languages.
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Figure A.7: Camera model considered to describe the image formation process of fisheye
cameras. The point from the scene P is first mapped to the unit sphere, then projected
to the image plane. In the illustration, p is the projection of the scene point P according
to some fisheye projection (one among Equations (A.5) - (A.8)), while it would have been
p′ according to a perspective projection (Equation (A.4)).

where ρ̂ is the radial coordinate of the distorted 2D point projected on the sensor

and fF is the focal length of the fisheye lens.

Given a fisheye camera, a mapping between the rectilinear (i.e., perspective)

space and the distorted (i.e., fisheye) one, can be established observing how incoming

light rays forming an angle with the principal axis equal to θ are projected by the

different projection functions reported in Equations (A.4) - (A.8). The mapping

function hence can be derived by considering one of the fisheye projection functions

reported in Equations (A.5) - (A.8) (the one which best describes the considered

fisheye camera) and the perspective projection reported in Equation (A.4), solving
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in terms of θ and equating [137]. Considering all Equations (A.5) - (A.8), we obtain:

ρ̂ = 2fF tan
(arctan ( ρ

fP

)
2

)
(stereographic projection) (A.9)

ρ̂ = fF arctan
( ρ

fP

)
(equidistance projection) (A.10)

ρ̂ = 2fF sin
(arctan( ρ

fP
)

2

)
(equisolid angle projection) (A.11)

ρ̂ = fF sin
(
arctan

( ρ
fP

))
(orthogonal projection) (A.12)

which allow to derive the distortion function Ψ mapping a point belonging to the

undistorted space u ≡ (ρ, ϕ) to its counterpart in the distorted space x ≡ (ρ̂, ϕ)

which will be denoted as follows:

x = Ψ(u) (A.13)

The distortion function characterizes the lens and can be used to simulate the image

formation process of a fisheye camera, given an image acquired with a standard

camera. The effect is the artificial introduction of radial distortion. With similar

considerations, we can derive the following inverse mappings [137]:

ρ = fP tan
(
2 arctan

( ρ̂
2f

))
(stereographic projection) (A.14)

ρ = fP arctan
( ρ̂
fF

)
(equidistance projection) (A.15)

ρ = fP tan
(
2 arcsin

( ρ̂

2fF

))
(equisolid angle projection) (A.16)

ρ = fP tan
(
arcsin

( ρ̂
fF

))
(orthogonal projection) (A.17)

and the related distortion function will be denoted as follows:

u = Ψ−1(x) (A.18)

The inverse distortion function Ψ−1 can be used to remove the radial distortion from

an image acquired using a fisheye camera in order to make it look like a standard

image acquired using a perspective camera. This process is usually referred to as
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“rectification” because it has the effect to correct the appearance of curved lines

which should correspond to straight contours in the scene.

It should be noted that, since the design of real fisheye lenses can be quite

complex [154], a deviation from the ideal models reported in Equations (A.5) -

(A.8) is usually expected. Therefore, more generic camera models and calibration

techniques, as the one proposed in [145] and reviewed in Appendix A.2.2, are usually

preferable when modeling fisheye cameras.

A.2.2 Division Model

The Division Model [145] establishes a relationship between the image point x in the

distorted space and its undistorted counterpart u in the rectilinear one as follows:

u = Ψ−1(x) =
x

1 + ξ||x||2
(A.19)

where the distortion parameter ξ < 0 regulates the amount of radial distortion in the

image, and point coordinates are referred to the principal point. It should be noted

that the Division Model is characterized by a single parameter ξ, which makes its

employment and calibration very convenient. The relationship reported in Equation

(A.19) can be inverted in order to derive the distortion function Ψ which maps an

undistorted point u in the rectilinear space to the distorted point x in the image:

x = Ψ(u) =
2u

1 +
√

1− 4 · ξ||u||2
. (A.20)

According to Equations (A.19) and (A.20), a point of radial coordinate r in the

undistorted space is related to a point of radial coordinate r̂ in the distorted image

by the following expressions:

r = g−1(r̂) =
r̂

1 + ξr̂2
(A.21)

r̂ = g(r) =
2r

1 +
√
1− 4 · ξr2

(A.22)

where function g maps undistorted rays r to distorted rays r̂. As shown in [146],

despite its simplicity, the Division Model can effectively model real fisheye lenses.
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Extending the Division Model

Unfortunately, the interpretation of the values assumed by ξ is not intuitive and

the effects of setting a specific value for ξ clearly depend on the size of the input

image. This makes the characterization of a given amount of distortion difficult,

since setting the same value of ξ for two images of different sizes will result in per-

ceptually different amounts of distortion. To overcome these limitations, we propose

to characterize the amount of distortion present in an image with the distortion rate

d, which we define as follows:

d = 1− r̂M
rM

(A.23)

where rM represents the distance from the center of the distortion to the corner of

the distorted output image and r̂M represents its distorted counterpart. It should be

noted that such a definition is perceptually coherent and independent from the image

size. Considering that between rM and r̂M holds the relationship in Equation (A.22),

the parameter ξ can be straightforwardly computed from a given distortion rate d

using the following formula:

ξ = − d

[rM(1− d)]2
. (A.24)

Even if no direct relationship between the Field Of View of a given image and

parameter ξ is provided by the Division Model, the exact values of ξ can be derived

for the full frame and full circle configurations discussed above. In both cases we

want the distortion function in Equation (A.20) to project points at infinity to

points on the image having a specific radius r. In the case of full frame images, we

set r = rM to obtain a diagonal FOV equal to 180◦. In the case of full circle images,

we set r = h/2 where h is equal to the image height in order to obtain a vertical

FOV equal to 180◦. Let us consider the limit of expression in Equation (A.22) as r

approaches +∞:

lim
r→+∞

2r

1 +
√

1− 4 · ξr2
=

2√
−4ξ

. (A.25)

Equating such expression to r, we get:

ξ = − 1

r2
. (A.26)
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input image d = 0.2 d = 0.29 d = 0.38∗ d = 0.47 d = 0.56∗∗

(a) simulation of fisheye images with variable FOV

input image d = 0.2 d = 0.29 d = 0.38∗ d = 0.47 d = 0.56∗∗

(b) simulation of fisheye images with static FOV

Figure A.8: Some examples of synthetic fisheye images obtained adding different amounts
of radial distortion to input rectilinear images by using the Division Model. (a) The
input image is a high resolution image (5204 × 3472 pixels). (b) The input image is a
low resolution image (1024× 768 pixels). All the output distorted images have resolution
equal to 1024 × 768 pixels. The * and ** symbols denote the full frame and full circle
distortion rates respectively.

Equation (A.26) can be used to compute the distortion parameter ξ allowing the pro-

jection of a point at infinity in the rectilinear space to a point with radial coordinate

r in the fisheye space. Combining Equations (A.23) and (A.26) and considering the

values which r assumes in the case of full frame and full circle images, it is possible

to obtain the following expressions:

dfull−frame ≈ 0.38 (A.27)

dfull−circle =
2α2 −

√
4α2 + 5 + 3

2α2 + 2
(A.28)

where α = w
h
is the image aspect ratio and w is the image width. For a square

image (i.e., α = 1), the distortion rate inherent to a full circle image would be

exactly 0.5. For a standard aspect ratio of α = 4
3
, the distortion rate inherent to

full circle configurations is dfull−circle ≈ 0.56. Figure A.8(a) shows some synthetic

images obtained adding different amounts of radial distortion to a source rectilinear

image.
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A.2.3 Image Rectification and Camera Simulation

Radial distortion affects the way objects appear in wide-angle images and therefore

it can deceive the feature extraction process usually employed by computer vision

algorithms [148]. In order to avoid the influence of radial distortion, a rectification

process is usually applied to wide-angle images as a preprocessing step. If the

inverse distortion function Ψ−1 is known, rectification can be performed operating a

coordinate remapping and interpolating where needed. Let Î be the source distorted

image, its rectified counterpart I will be denoted by:

I(Ψ−1(x)) = Î(x). (A.29)

Similarly, it is possible to artificially simulate the radial distortion of a lens for

which the distortion function Ψ is known. In this case, the distorted image I will

be denoted by:

Î(Ψ(u)) = I(u). (A.30)

Simulating radial distortion using Equation (A.30) can be convenient for experimen-

tal purposes as discussed in [136]. In these settings indeed, it is possible to model

radial distortion independently from the more complex image formation process.

This allows to control the exact amount of radial distortion present in the image

and establish a precise mapping with the undistorted space, which can be used to

create a reference ground truth. When the FOV is large, the distortion function Ψ is

generally designed to project an infinite rectilinear image I to a finite fisheye image

Î. In practice the resolution of the input image I should be sufficiently larger than

the one of the output image Î to achieve consistent results. Mapping high resolution

input images to low resolution ones allows to cover a larger part of the artificially

distorted image, which is a preferable result. Figure A.8 shows some examples of

synthetic fisheye images obtained using input rectilinear images of variable sizes.

Note that the full frame image shown in Figure A.8(a) still exhibits black corners.

This is due to the fact that the input image is finite while an infinite image would

be required in principle. For the same reason the full circle image shown in Fig-

ure A.8(a) is not perfectly circular and slightly smaller than what a real full circle

image should look like. Despite such considerations, the synthetic images are worth

to be considered since they are characterized by the amounts of radial distortion
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inherent to the full frame and full circle configurations and still cover most of the

related Field Of View. Finally, it should be noted that distorting rectilinear images

using Equation (A.30) or rectifying wide-angle images using Equation (A.29) is not

totally accurate since the the image formation process cannot be modeled in its

totality due to the lack of depth information of the acquired scene.

A.3 Experimental Datasets

As denoted at the beginning of the chapter, we are investigating how feature ex-

traction can be performed directly on wide angle images. In this Section, we review

the three datasets used in the experimental analysis. Two of the three considered

datasets comprise rectilinear images to which radial distortion has been artificially

added following the methodologies discussed in Appendix A.2.3. Working in these

settings is convenient since it allows to control the exact amount of distortion present

in the images used for the experiments. The third dataset comprises real images

acquired using three different fisheye cameras.

A.3.1 OXFORD-48

To analyze the performances of feature extraction methods on wide-angle images,

we consider the popular dataset proposed in [155]. It provides 8 image series, each

characterized by different variabilities: change of viewpoint angle, scale changes, im-

age blur, JPEG compression, light changes. The dataset comprises both structured

and textured scenes. Each series consists of a reference image, containing the least

amount of the specified variability (i.e., the zero-variability) and 5 test images char-

acterized by increasing amounts of the specified variability. The dataset contains

48 images in total. To assess the influence of the combination of radial distortion

with the aforementioned variabilities, we artificially add radial distortion to each

test image in the dataset. It should be noted that no distortion is added to the

reference images. Depending on the experiment, we consider different camera mod-

els to artificially add radial distortion to the images. In particular, we consider the

division model to generate series characterized by the amounts of distortion inherent

to the full frame and full circle configurations, as well as camera models based on

the theoretical projection functions discussed in Appendix A.2.1. For the division
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model, the exact distortion rates are computed using Equations (A.27) and (A.28)

in order to account for the different aspect ratios characterizing the input images.

Since the resolution of the images in the OXFORD-48 dataset is not high (640×480

pixels), we have to keep the resolution of the output distorted image equal to the

one of the input image. Unfortunately, images generated in this way present black

borders for the reasons discussed in Appendix A.2.3 which have to be considered

to properly conduct the experiments. We refer to this dataset as OXFORD-48.

Figure A.9 shows some samples from the considered series.

A.3.2 DASF-HIRES-100 and DASF-HIRES-50

In order to perform experiments with respect to varying rates of distortion, we

collected a dataset of 100 high resolution images belonging to the following scene

categories: indoor, outdoor, natural, handmade, urban, car, pedestrian, street. The

considered categories are relevant to the main application domains where the image

gradients are usually employed [7, 138], and consistent with the scene categorization

proposed by Torralba & Oliva [77]. Each image is provided with one or more tags

related to the above specified scene categories. All images have been acquired using

a Canon 650D camera mounting a Canon EF-24mm lens and have resolution equal

to 5204 × 3472 pixels. We have first introduced this dataset in [26] and extended

it with scene-based tags in [22]. The dataset will be referred to as DASF-HIRES-

100. Figure A.10 shows some examples of the input images used for the evaluations,

whereas Table A.1 reports some statistics about the scene-related tags present in the

dataset. High resolution images are mapped to low resolution distorted counterparts

using the Division Model in order to simulate increasing degrees of radial distortion

according to the modalities discussed in Appendix A.2.3. This way, it is possible

to create image series similar to the ones of the OXFORD-48 dataset, containing

a reference image (the high resolution undistorted image) and a number of test

images characterized by increasing degrees of radial distortion. Please note that,

in these settings, the mapping between the reference image and each test image

is known by design. In all experiments, the test distorted images have resolution

1024×768 pixels, while the exact distortion rates (and related ξ parameters) used to

produce the distorted images depend on the experiment (and will be discussed in the

appropriate sections). Figure A.11 shows some sample series of 6 images consisting of
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(a) Graffiti Series (b) Wall Series

(c) Boat Series (d) Bark Series

(e) Bikes Series (f) Trees Series

(g) UBC Series (h) Leuven Series

Figure A.9: Some examples from OXFORD-48 dataset. The leftmost image in each pair
is always the reference image, while the rightmost image is one of the test images in the
series characterized by a given amount of distortion. The distortion is coupled with the
variabilities considered in [155]: (a) Change of viewpoint angle for a structured scene
(full frame distortion). (b) Change of viewpoint angle for a textured scene (full circle
distortion). (c) Scale changes for a structured scene (full frame distortion). (d) Scale
changes for a textured scene (full frame distortion). (e) Image blur for a structured scene
(full circle distortion). (f) Image blur for a textured scene (full frame distortion). (g)
JPEG compression (full circle distortion). (e) Light change (full frame distortion).

the reference full resolution rectilinear image, plus 5 test images affected by different

rates of radial distortion. In our experiments [21], we have considered also a smaller

dataset obtained by randomly sampling 50 images from DASF-HIRES-100. We will

refer to this sub-dataset as DASF-HIRES-50. Both datasets are publicly available to
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Indoor Outdoor Natural Handmade Urban Car Pedestrian Street

Figure A.10: Some randomly chosen images from the dataset, for each considered scene-
based tag.

Scene Indoor Outdoor Natural Handmade Urban Car Pedestrian Street

Count 13 87 44 93 51 49 19 50

Table A.1: Numbers of images containing a specific scene-tag.

the research community and can be downloaded from the following URLs: http://

iplab.dmi.unict.it/DASF/ and http://iplab.dmi.unict.it/FisheyeAffine/.

A.3.3 RDSIFT-39

In order to perform tests with real fisheye images, we consider the benchmark dataset

introduced in [136]. It comprises three image series acquired using fisheye cameras

characterized by different amounts of radial distortion. Calibration images and di-

vision model parameters for each camera are included in the dataset. Figure A.12

shows some sample images from the considered dataset. For each image series, we

report the distortion rates computed according to our model: 0.13, 0.19 and 0.54.

http://iplab.dmi.unict.it/DASF/
http://iplab.dmi.unict.it/DASF/
http://iplab.dmi.unict.it/FisheyeAffine/
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Amount of Distortion
input image d = 0.2 d = 0.29 d = 0.38∗ d = 0.47 d = 0.56∗∗

Figure A.11: Four image series from DASF-HIRES-100. The * and ** symbols denote the
full frame and full circle distortion rates respectively.

(a) Series 1 (S1) - d = 0.13

(a) Series 2 (S2) - d = 0.19

(a) Series 3 (S3) - d = 0.54

Figure A.12: Some sample images from the three image series in RDSIFT-39.
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Each series consists of 13 images related by different transformations including view-

point change, rotation and scale. The dataset contains 39 images in total. Images

within a series represent a scene containing the same planar object acquired from

different positions. All image pairs within a series are provided with an homography

relating their undistorted counterparts. Differently from the OXFORD-48 dataset,

the amount of variability present in each image (e.g., viewpoint angle, or scaling

factor) is not quantified with respect to a given reference image. Hence, instead

of considering only reference-test image pairs, all possible 78 image pairs within a

series are considered in the experiments. We refer to this dataset as RDSIFT-39.

A.4 Affine Covariant Region Detectors on Fish-

eye Images

As discussed earlier, the most straightforward approach to deal with wide-angle im-

ages consists in explicitly removing radial distortion through a rectification process.

Such process however has some major limitations:

1. it can be computationally expensive (especially in mobile and embedded set-

tings) due to the need of interpolation to account for the spatially non-uniform

sampling performed by wide angle cameras;

2. interpolation introduces artifacts in the image which can affect the feature

extraction process;

3. it requires the camera to be calibrated (and hence known in advance) in order

to establish a mapping between the distorted points and their positions in the

rectilinear image plane.

As many authors claim [136, 149, 150, 156], it would be advantageous to be able

to perform feature extraction directly on wide-angle images, without performing any

rectification. Some works assume that the camera is known in advance and hence it

can be calibrated. The authors of [156, 157] studied how to compute the scale space

of omnidirectional images, in [136, 158, 159] the Scale Invariant Feature Transform

(SIFT) pipeline [7] is modified in order to be used directly on wide angle images.

In [147] scale invariant features are derived from wide angle images mapping them
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to a sphere. A direct approach to detect people using omnidirectional cameras is

proposed in [149, 150]. In [160] an algorithm to extract straight edges from distorted

images is presented, whereas in [136, 26, 160] methods to estimate geometrically

correct gradients of distorted images are investigated.

A second category of algorithms works directly on the distorted images. In this

case, the camera does not need to be calibrated and radial distortion is treated as an

additional variability affecting the images. For instance, in [161] the Perspectively

Invariant Normal features (PIN) are computed using a depth map in order to be

independent from the acquisition point of view and from the employed camera. PIN

can be successfully used to match regions between rectilinear and wide angle images

as pointed out by the authors of [161]. In [162] an approach to match features

between uncalibrated omnidirectional images (not rectified) and perspective images

is presented. People detection and tracking are performed directly on fisheye images

using a probabilistic appearance model in [163]. The authors of [164] perform feature

matching on omnidirectional images through descriptor learning.

In this Section, we concentrate on this second category of approaches which do

not require calibration in order to perform feature extraction. Such approaches can

be particularly advantageous in applications in which the input images are acquired

by different cameras which are not generally known in advance and hence difficult

to calibrate. Examples of such applications include image retrieval (e.g., images

on the web), object detection on generic cameras, and registration (e.g., camera

networks in surveillance applications). In particular, we study how the detection,

description and retrieval of local features can be reliably performed on uncalibrated

wide angle images acquired by an unknown device. Considering the amount of work

already done by the research community in the field of affine covariant detectors

and descriptors in the undistorted domain [155, 165, 166], we investigate whether

the state-of-the-art affine detectors are suitable to be used directly on wide angle

images. We support our analysis by theoretically showing that, even if the radial

distortion introduced by fisheye cameras is not an affine transformation, it can be

locally approximated as a linear function with a small error. We consider three

state-of-the-art affine region detectors [155], namely the Maximally Stable Extremal

Regions (MSER) [167], the Harris affine region detector and the Hessian affine region
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detector [168, 169]. We assess experimentally how the aforementioned detectors be-

have under the influence of increasing radial distortion and the variabilities included

in the OXFORD-48 dataset [155], i.e., change of viewpoint angle, scale changes,

blur, JPEG compression and light changes. The analysis presented in this Section

has been first published in [27], then extended in [21].

A.4.1 Theoretical Camera Models

We consider a class of camera models directly derived from the theoretical projection

functions of fisheye cameras discussed in Appendix A.2.1. For our baseline camera

model, we consider a 1/2.5′′ sensor (5.76mm×4.29mm)6 and a fisheye lens following

the one of the projection functions reported in Equations (A.5) - (A.8), with its

principal point corresponding to the center of the sensor. The fisheye distortion

is simulated by mapping the pixel coordinates of a rectilinear image to a fisheye

image of the same resolution as described in Appendix A.2.3. We let f = fF =

fP , to avoid the scale change effects due to projecting images with different focal

lengths. The conversion between the millimeters world coordinates and the pixel

image coordinates is performed with respect to the chosen sensor and the resolutions

of images considered for the experiments. To analyze the behavior of the models with

respect to different amount of distortion, different focal lengths are considered. We

set the smallest focal length to the one giving a full-circle image (i.e., a vertical FOV

equals to 180◦) when the equidistance projection function is considered (Equation

(A.6)). The exact focal length is computed considering the following formula:

FOV =
l

f
(A.31)

where FOV is the Field Of View of the camera in radiants, f is the focal length,

and l is the length of the dimension of the sensor with respect to which the FOV is

computed (i.e., vertical, horizontal or diagonal). To impose a full-circle geometry,

we consider FOV = π and l = 4.29 mm (which is the height in millimeters of a

1/2.5′′ sensor). The focal length f can be obtained using the inverse relationship

6We choose the dimension of a 1/2.5′′ sensor, because it is widely used in the manufacturing of
commercial 180◦ fisheye cameras.
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rectilinear f1 = 5.72 f2 = 3.59 f3 = 2.55 f4 = 1.87 f5 = 1.37

(a) relationship between focal lengths and projected sensor diagonal

(b) synthetic fisheye images

Figure A.13: (a) Relationship between focal lengths and projected sensor diagonal. (b)
Synthetic images obtained artificially adding radial distortion to a rectilinear image con-
sidering the described camera model and the equidistance projection.

derived from Equation (A.31):

f =
l

FOV
=

4.29 mm

π
≈ 1.37 mm. (A.32)

The remaining four focal lengths are set in order to obtain perceptively uniform

degrees of distortion by imposing that the projection of the diagonal vary at a

uniform step. Figure A.13(a) shows the relationship between focal lengths and

projected sensor diagonals. Figure A.13(a) reports some synthetic images obtained

artificially adding radial distortion to a rectilinear image considering the described

camera model and an equidistance projection function. The focal lengths considered

for the analysis are: f1 = 5.72 mm, f2 = 3.59 mm, f3 = 2.55 mm, f4 = 1.87 mm,

f5 = 1.37 mm.

A.4.2 Local Linearity of Fisheye Distortion Functions

In order to provide theoretical evidence to support the applicability of affine co-

variant region detectors on fisheye images, in this Section we show that, even if

the radial distortion introduced by fisheye cameras is not an affine transformation,

it can be modeled as a linear function in small local neighborhoods. This is done

both for the ideal projection functions discussed in Appendix A.2.1 and for the more

practical Division Model discussed in Appendix A.2.2.
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Theoretical Distortion Functions

While the distortion mappings reported in Equations (A.10) - (A.12) are not affine

transformations, it can be assessed that locally (i.e., in regions with small radii) they

can be approximated as linear functions. Without loss of generality, we consider

the equidistance projection reported in Equation (A.6), and the related distortion

mapping reported in Equation (A.20). We then consider the first order Taylor

polynomial approximation of Equation (A.20), where we set f = fF = fP assuming

two equivalent perspective and fisheye cameras:

ρ̂(ρ, ρ0) ≈
ρ− ρ0

1 + (ρ0
f
)2

+ f · arctan ρ0
f
. (A.33)

The approximation reported in Equation (A.33) gives small errors in sufficiently

small neighborhoods of ρ0. The mapping reported in Equation (A.20) can hence

be approximated by a number of local linear approximations which takes the form

of Equation (A.33). In particular, we select a number of ρi0 points at a step of 2ε

(ε > 0) and define the approximation as follows:

ρ̂ ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ̂(ρ, ρ10) if ρ ∈ (ρ10 − ε, ρ10 + ε)

ρ̂(ρ, ρ20) if ρ ∈ (ρ20 − ε, ρ20 + ε)

. . .

ρ̂(ρ, ρn0 ) if ρ ∈ (ρn0 − ε, ρn0 + ε)

(A.34)

Figure A.14 shows the mean reprojection error for the radial coordinates when the

mappings in Equations (A.9) - (A.12) are approximated using Equation (A.34) for

different step values ε and for the two extremal focal lengths (f1 = 1.37, f5 = 5.72).

It should be noted that, for regions with radii below 26 pixels, the reprojection error

is under 0.1 pixels and for regions with radii up to 70 pixels, the reprojection error

is below 0.67 pixel. Please note that both errors are negligible for most applications,

where only sub-pixel precision is required [145].

Division Model Distortion Function

The considerations made in the previous section are based on the theoretical pro-

jection functions discussed in Appendix A.4.2. For sake of generality, we extend our
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Figure A.14: Reprojection errors for the linear approximations of mappings reported in
Equations (A.9) - (A.12). The results are reported in millimeters (bottom and left axes)
and pixels (top and right axes). The pixel values are obtained considering a medium
resolution of 1000× 700 pixels.

analysis to the Division Model, which has proved to be able to model real fisheye

cameras [146]. Specifically, in this section we show that the radial distortion function

of the division model (Equation (A.22)) can be linearly approximated locally and

that if the neighborhood is sufficiently small, the approximation error is negligible.

Let us consider the first order Taylor polynomial approximation of the mapping

function reported in Equation (A.22), centered at an arbitrary point r̂0 and restricted

to the local neighborhood of radius ε centered at r̂0 denoted by N (r0, ε) = (r̂0 −
ε, r̂0 + ε):

g(r̂)|N (r0,ε) ≈ g̃(r̂, r̂0) = g(r0) + (r − r0)g
′(r0). (A.35)

We expect the error given by such an approximation to be proportional to the extent

of the chosen radius ε. To measure such error, we define the Mean Reprojection Error

of expression (A.35) in a given point r0 and for a chosen radius ε as follows:

MRE(r0, ε) =

∫
r∈N (r0,ε)

|g(r)− g̃(r, r0)|dr∫
r∈N (r0,ε)

dr
. (A.36)
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Figure A.15: (a) The plot of the division model projection function (Equation (A.22)) for
different distortion rates. (b) The Mean Reprojection Error curves for fixed values of ε.
(c) The average Mean Reprojection Error for varying neighborhood radii ε.

Moreover, for a fixed value of ε, we define the average MRE value as follows:

MRE(ε) =

∫ rmax

r=0
MRE(r, ε)dr∫ rmax

r=0
dr

. (A.37)

In Equation (A.37), rmax is introduced in order to avoid to carry the integration up

to infinity, where the curves related to Equation (A.22) tend to become rectilinear

as shown in Figure A.15(a) and the MRE value would be close to zero. In particular,

we set rmax to the half diagonal of the distorted images of resolution 1024×768 pixels

which will be considered in the experiments, i.e., rmax = 1
2

√
(10242 + 7682) = 640

pixels. Figure A.15(b) shows the MRE curves for two selected values of ε (i.e., 45 and

60 pixels) and different amounts of distortion, while Figure A.15(c) shows the average

MRE for varying values of ε and different amounts of distortion. In particular

Figure A.15(c) shows that the fisheye distortion of local regions having radii smaller

than ε = 60 pixels can be approximated as a linear function with average subpixel

precision (see points marked with the symbol “*” in Figure A.15(c)). The average

error drops to about 0.6 pixels for radii smaller than 45 pixels (see points marked

with the symbol “◦” in Figure A.15(c)) and to about 0.03 pixels for radii smaller than

10 pixels (see points marked with the symbol “+” in Figure A.15(c)). Figure A.15(b)

shows how the MRE values vary in the different parts of the image. Specifically,

the error is small in the central and peripheral areas of the image and higher in

between. It is worth noting that for regions with radii smaller than 45 pixels, the

MRE is always under 1 pixel for all distortion rates.

Our analysis points out that, up to a given extent, circular regions can be mapped
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from a reference non-distorted space to its distorted counterpart in the fisheye image

using an appropriate linear function with a small projection error. If the error is low

enough, an affine covariant region detector should be able to correctly extract both

the reference and distorted regions modeling the latter as an affine transformation of

the former. Moreover, in the description stage, the distorted region will be mapped

to its undistorted counterpart with a small error using the inverse of the affine

transformation estimated by the region detector. Hence we expect small linear

approximation errors to be beneficial for both the feature detection and description

steps.

Analysis of Region Size for DASF-HIHRES-50 and Discussion

To assess the applicability of affine covariant region detectors on distorted images,

we have performed an analysis of the distribution of sizes of regions extracted using

the detectors under analysis. In particular, we extracted regions using the consid-

ered three detectors on all images present in DASF-HIRES-50. An average radius is

computed for each elliptical region as the average between the lengths of semi-major

and semi-minor axes. Interestingly, all the considered detectors tend to extract re-

gions characterized by a strong locality. This is summarized in Figure A.16, which

shows the normalized histograms of average radii for all rectilinear and distorted

images in DASF-HIRES-50. In particular, normalized histograms reported in Fig-

ure A.16(a) to (c) and Figure A.16(g) to (i) show how the majority of regions have

average radii around 10 pixels. Moreover, the cumulative histograms reported in

Figure A.16(d) to (f) and Figure A.16(l) to (n), show how in any case more than

90% of the detected regions have an average radius smaller than 45 pixels. As it has

been pointed out in the previous sections, the linear approximation errors for both

the theoretical distortion functions and the division model are low for regions with

average radii below 45 pixels and negligible for regions with average radii below 10

pixels. These results suggest that affine covariant features are able to model the

radial distortion introduced by fisheye images as a local variability.

A.4.3 Experimental Protocol

We evaluate the performances of the three affine regions detectors which best per-

formed in the benchmark by Mikolajczyk et al. [165], namely Harris Affine [169],
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(a) Harris Affine (rectilinear)
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(b) Hessian Affine (rectilinear)
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(c) MSER (rectilinear)
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(d) Harris Affine (rectilinear)
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(e) Hessian Affine (rectilinear)
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(f) MSER (rectilinear)
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(g) Harris Affine (distorted)
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(h) Hessian Affine (distorted)
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(i) MSER (distorted)
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(l) Harris Affine (distorted)
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(m) Hessian Affine (distorted)
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Figure A.16: (a) to (c) Normalized histograms of average radii of regions extracted by the
three detectors on the rectilinear images of dataset DASF-HIRES-50. (d) to (f) Normalized
cumulative histograms of average radii of regions extracted by the three detectors on the
rectilinear images of dataset DASF-HIRES-50. (g) to (i) Normalized histograms of the
average radii of the regions extracted by the three detectors on the distorted images of
dataset DASF-HIRES-50. (l) to (n) Normalized cumulative histograms of the average
radii of the regions extracted by the three detectors on the distorted images of dataset
DASF-HIRES-50.
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Hessian Affine [169] and MSER [167]. All the considered region detectors extract

affine covariant regions in the form of ellipses as described in [165]. Following the pro-

tocol in [155], all experiments are performed on series of 6 images S = {I0, I1, . . . , I5}
affected by a specific variability. The first image in the series I0 is affected by the

least amount of the considered variability (the zero-variability) and is referred to

as the reference image, while the remaining five images {Ii}1≤i≤5 are affected by

increasing amounts of the considered variability and are referred to as test images.

Given an image series S, we assess the performances of the detectors on each of the

5 image pairs {(I0, Ii)}1≤i≤5 using the reference image to define the ground truth.

We assume that for each image pair it is possible to establish a mapping ψi0 between

the points of the test image Ii and the ones of the reference image I0. Specifically,

for the images in the dataset DASF-HIRES-50, such mapping is given by the inverse

of the distortion function f0i used to generate the test image from the reference one:

ψA
i0 = f−1

0i . (A.38)

The OXFORD-48 dataset provides homographies h0i relating the reference image I0

to the test images Ii. Hence, for the undistorted series contained in OXFORD-48,

we define:

ψB1
i0 = h−1

0i . (A.39)

In the case of the distorted series of OXFORD-48, instead, the projection from the

distorted test image Ii to the undistorted reference image I0 is carried through the

following composition:

ψB2
i0 = f−1

i ◦ h−1
0i (A.40)

where fi is the distortion function used to generate the distorted test image Ii. As

proposed by Mikolajczyk [155], we measure two important properties of the affine

detectors under analysis:

1. the repeatability, i.e., the ability to extract regions which correspond to the

same geometrical areas under the considered variabilities;

2. the matching ability, which is the ability to extract distinctive regions that,

given a suitable descriptor, can be matched reliably under the considered vari-

abilities.
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Repeatability

Let be D the affine region detector under analysis and let be Fi = D(Ii) the set of

elliptical features extracted from the generic image Ii using detector D. Since the

projection of an ellipse using a distortion function in the form of Equation (A.20)

is not an ellipse in general, we sample the elliptical features at an angular step of
π
30

in order to obtain the set of polygonal regions Ri. The repeatability of detector

D is assessed counting how many test regions in Ri overlap significantly with the

reference regions in R0. In order to measure the overlap, the test regions are first

mapped to the reference space using the mapping function ψi0:

Ri0 = {r′ = ψi0(r),∀r ∈ Ri} (A.41)

where r is a polygon and ψi0(r) is the point-wise projection of r through the mapping

function ψi0. It should be noted that, even if the reference and test images I0 and

Ii are related by the mapping ψi0, in general they don’t cover the same physical

areas and hence not all the regions in the sets R0 and Ri0 are guaranteed to lay

in the part of the scene present in both images. Given the generic set of regions

R, we denote with the notation R(0,i) the subset of regions of R entirely contained

in the common part of the scene of images I0 and Ii. For each pair of regions

(rh, rk) : rh ∈ R(0,i)
0 , rk ∈ R(0,i)

i0 , we compute the overlap error as following:

errhk = 1− area(α · rh ∩ α · rk)
area(α · rh ∪ α · rk)

(A.42)

where α is a scaling factor such that area(α · rh) = πr2 and r is a normalized

radius. Following the protocol of [155], we set r = 30 pixels. Unions, intersections

and areas are computed numerically. In order to compute the set of most likely

correspondences xhk between regions rh ∈ R(0,i)
0 and rk ∈ R(0,i)

i , such that the

overlap error in Equation (A.42) between rh and rk is under a given overlap threshold

ot, we solve the following assignment problem using the Hungarian algorithm [170]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(
∑

hk ehkxhk)∑
k xhk ≤ 1 ∀h : 1 ≤ h ≤ |R(0,i)

0 |∑
h xhk ≤ 1 ∀k : 1 ≤ k ≤ |R(0,i)

i0 |

xhk ∈ {0, 1} ∀h, ∀k : 1 ≤ h ≤ |R(0,i)
0 |

∧1 ≤ k ≤ |R(0,i)
i0 |

(A.43)

where:

ehk =

⎧⎨⎩errhk if errhk ≤ ot

+∞ otherwise
. (A.44)

Threshold ot is set to ot = 0.4 as discussed and justified̀ı in [155]. The repeatabil-

ity score is defined as the number of correspondences normalized by the minimum

number of regions detected in the two images (excluding the regions not entirely

contained in the common part):

repeatability score =

∑
hk xhk

min(|R(I0)(i,0)|, |R(Ii0)(i,0)|)
. (A.45)

The repeatability score measures the ability of the detector to extract features cor-

responding to the same geometrical regions under varying amounts of a given vari-

ability.

Matching Ability

In order to measure the matching ability of the detectors, we count how many

test features in Fi are correctly matched to the reference features in F0 given a

suitable descriptor. The ground truth matchings are given by the correspondences

xhk computed solving the assignment problem in Equation (A.43). Each elliptical

feature is normalized to a circular region of dimensions 20× 20 pixels and the Local

Intensity Order Pattern (LIOP) descriptor is computed over that region [166]. We

compute the nearest neighbour matchings between the reference and test descriptors

and denote them by mhk, where mhk = 1 if fh matches fk in the nearest neighbour

sense and mhk = 0 otherwise. The matching ability is defined as the number of

correct nearest neighbour matchings normalized by the minimum number of regions

detected in the two reference and test images (excluding the regions not entirely
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contained in the common part):

matching score =

∑
hk(mhk · xhk)

min(|R(I0)(i,0)|, |R(Ii0)(i,0)|)
. (A.46)

The matching score measures the ability of the detector to extract distinctive fea-

tures, i.e., regions which can be reliably described and matched under different

variabilities. As pointed out in [155], the matching results should follow the re-

peatability scores if the regions extracted are distinctive. It should be noted that

we use the LIOP descriptor to compute the matching ability instead of using the

standard SIFT algorithm as proposed by Mikolajczyk et al. in [155]. Our choice is

motivated by recent studies [166] in which the LIOP descriptor outperforms SIFT

on the OXFORD-48 dataset and supplementary image pairs with complex illumi-

nation changes. Since we are benchmarking the ability of the detectors to extract

highly distinctive features and we are not interested in assessing the performances

of the descriptors themselves, we choose LIOP as the best performing algorithm

up-to-date for our evaluations.

Precision-Recall Curves

To better assess the matching ability of the detectors with respect to increasing

radial distortion, we also compute 1-precision vs recall curves following the scheme

proposed in [165]. According to such scheme, two descriptors match if their euclidean

distance is smaller than a given threshold t. Each test descriptor is compared with

each reference descriptor and the number of false and correct matchings is counted

in order to compute the precision and recall values corresponding to threshold t

using the following formulas:

precision =
#correct matchings

#matchings
(A.47)

recall =
#correct matchings

#correspondences
. (A.48)

The curves are obtained varying the threshold t. An ideal 1-precision vs recall

curve would have recall equal to 1 for any precision, while in practice the recall

increases as the precision decreases. A steep curve denotes a detector able to produce

distinctive regions with a reduced amount of non-distinctive regions. We also report
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the threshold vs F-measure curves, where the F-measure is computed as follows [171]:

Fβ =
(1 + β2)precision× recall

β2 × precision+ recall
(A.49)

where β2 = 0.3 to weigh precision more than recall. The threshold vs F-measure

curves have a retrieval-based interpretation: a good curve would have a high peak

for a small threshold, indicating that a high number of regions can be retrieved with

little noise.

Note on the Normalization Scheme

The repeatability and matching scores reported in Equations (A.45) and (A.46) are

defined normalizing the number of correspondences and matchings by the minimum

number of regions detected in the test and reference images. Such normalization

scheme, proposed in [155] and fully recognized by the Computer Vision community,

is based on the observation that the chosen normalization value is the maximum

number of correspondences or matchings which it is possible to achieve. This nor-

malization scheme accounts for those situations in which, due to an extreme amount

of the considered variability (e.g., increasing radial distortion, change of viewpoint

angle), most of the regions extracted from the reference image are unlikely to be

detected by any algorithm in the test image since they are represented by just a

few pixels. Nevertheless, it should be noted that, according to such definitions, the

scores referring to the same image series but different test images are not in general

normalized by the same number. As it shall be clearer later on in our analysis, for

this reason, the scores related to different test images of the same series are not

directly comparable in a quantitatively fashion and the reported results should be

considered indicative instead as pointed out in [155].

A.4.4 Experimental Results and Analysis

We have performed experiments using both the theoretical camera models based on

the ideal projection functions and the division model. For the theoretical camera

models, we have used only the OXFORD-48 dataset, while the analysis with the

Division Model has been extended to all considered three datasets: OXFORD-48,

DASF-HIRES-50 and RDSIFT-39.
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Experiments related to Theoretical Distortion Functions

Experiments with the theoretical distortion functions have been performed consid-

ering the fisheye camera model and focal lengths discussed in Appendix A.2 and

the OXFORD-48 dataset. We employ the equidistance projection reported in Equa-

tion (A.6), which is one of the most common for fisheye lenses [151]. We perform

two experiments: 1) to evaluate the robustness of the detectors with respect to

increasing degrees of fisheye distortion; 2) to evaluate the robustness of the detec-

tors with respect to geometric and photometric variabilities (i.e., viewpoint changes,

zoom and rotation, image blur, JPEG compression, light changes) combined with a

medium fisheye distortion.

In order to evaluate the robustness of the detectors with respect to the fish-

eye distortion, two image series (one structured and one textured) characterized

by increasing degrees of fisheye distortion are built from the reference images of

the “Graffiti” and “Wall” series of OXFORD-48 dataset. Figure A.17(a) and Fig-

ure A.17(b) show the image series used to test the robustness of the detectors with

respect to increasing degrees of fisheye distortion. Figure A.17(c) shows the results

related to the robustness of the detectors with respect to the increasing fisheye dis-

tortion. It can be noted that the repeatability performances of the detectors decline

slowly, with overall better performances on the structured scene. The MSER ex-

tractor performs slightly better on both the structured scene and the textured one.

MSER has a more discriminative power (i.e., it is able to detect regions which are

more distinctive) both on the structured scene and on the textured one, while the

other detectors have similar matching performances. These results show that all the

compared detectors are robust to the variability introduced by increasing degrees of

fisheye distortion.

Figure A.18(a,b) - A.20(a,b) and Figure A.21(a) - A.22(a) show the image se-

ries used to test the robustness of the detectors with respect to the combination

of fisheye distortion and a specific photometric or geometric variability. The image

series are obtained distorting the images of the OXFORD-48 dataset with the the-

oretical camera model considering a medium focal length equal to f = 2.55 mm.

Figure A.18(c) - A.20(c) and Figure A.21(b) - A.22(b) show the related repeatabil-

ity and matching results, as well as the number of correspondences and number of

matches. The relative ordering of the detectors and the decay of the performances in
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rectilinear f=5.72 f=3.59 f=2.55 f=1.87 f=1.37

(a) “Graffiti” series used to test the performances of the descriptors against increas-
ing degrees of fisheye distortion.

rectilinear f=5.72 f=3.59 f=2.55 f=1.87 f=1.37

(b) “Wall” series used to test the performances of the descriptors against increasing
degrees of fisheye distortion.
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(c) Performances of the descriptors with respect to increasing degrees of fisheye
distortion.

Figure A.17: Experiments performed using a theoretical fisheye camera model (Ap-
pendix A.4.1) making use of the equidistance projection function reported in Equa-
tion (A.6). Data (a) - (b) and results (c) related to the experiments to evaluate the
performances of the detectors with respect to the increasing fisheye distortion.
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reference angle=20◦ angle=30◦ angle=40◦ angle=50◦ angle=60◦

(a) “Graffiti” series: fisheye distortion + viewpoint change on a structured scene.

reference angle=20◦ angle=30◦ angle=40◦ angle=50◦ angle=60◦

(b) “Wall” series: fisheye distortion + viewpoint change on a textured scene.
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(c) results related to the performances of the descriptors with respect to fisheye
distortion + viewpoint change.

Figure A.18: Experiments performed using a theoretical fisheye camera model (Ap-
pendix A.4.1) making use of the equidistance projection reported in Equation (A.6). Data
(a) - (b) and results (c) related to the experiments to evaluate the performances of the
detectors with respect to the combination of a medium fisheye distortion (f = 2.55 mm)
and the change of viewpoint.
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reference scale=1.1 scale=1.3 scale=1.9 scale=2.3 scale=2.8

(a) “Boat” series: fisheye distortion + scale change on a structured scene.

reference scale=1.1 scale=1.3 scale=1.9 scale=2.3 scale=2.8

(b) “Bark” series: fisheye distortion + scale change on a textured scene.
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(c) results related to the performances of the descriptors with respect to the fisheye
distortion + zoom and rotation.

Figure A.19: Experiments performed using a theoretical fisheye camera model (Ap-
pendix A.4.1) making use of the equidistance projection reported in Equation (A.6). Data
(a) - (b) and results (c) related to the experiments to evaluate the performances of the
detectors with respect to the combination of a medium fisheye distortion (f = 2.55 mm)
and zoom + rotation.
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reference img2 img3 img4 img5 img6

(a) “Bikes” series: fisheye distortion + increasing blur on a structured scene.

reference img2 img3 img4 img5 img6

(b) “Trees” series: fisheye distortion + increasing blur on a textured scene.
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(c) results related to the performances of the descriptors with respect to the fisheye
distortion + increasing blur.

Figure A.20: Experiments performed using a theoretical fisheye camera model (Ap-
pendix A.4.1) making use of the equidistance projection reported in Equation (A.6). Data
(a) - (b) and results (c) related to the experiments to evaluate the performances of the
detectors with respect to the combination of a medium fisheye distortion (f = 2.55 mm)
and increasing blur.
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reference 60% 80% 90% 95% 98%

(a) “Ubc” series: fisheye distortion + increasing jpeg compression.
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(b) results related to the performances of the descriptors with respect to the fisheye
distortion + increasing jpeg compression.

Figure A.21: Experiments performed using a theoretical fisheye camera model (Ap-
pendix A.4.1) making use of the equidistance projection reported in Equation (A.6). Data
(a) and results (b) related to the experiments to evaluate the performances of the detec-
tors with respect to the combination of a medium fisheye distortion (f = 2.55 mm) and
increasing jpeg compression.
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reference img2 img3 img4 img5 img6

(a) “Leuven” series: fisheye distortion + decreasing light.
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(b) results related to the performances of the descriptors with respect to the fisheye
distortion + decreasing light.

Figure A.22: Experiments performed using a theoretical fisheye camera model (Ap-
pendix A.4.1) making use of the equidistance projection reported in Equation (A.6). Data
(a) and results (b) related to the experiments to evaluate the performances of the detec-
tors with respect to the combination of a medium fisheye distortion (f = 2.55 mm) and
decreasing light.
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reference 20% 29% 38%∗ 47% 56%∗∗

(a) Sample Image Series from DASF-HIRES-50 (Increasing Radial Distortion)

0.20 0.29 0.38 (full frame) 0.47 0.56 (full circle)

distortion rate

0

10

20

30

40

50

60

70

80

90

100

re
pe

at
ab

ili
ty

 %

Repeatability Score

Harris Affine
Hessian Affine
MSER

(b) Repeatability Scores
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(c) Matching Scores

Figure A.23: Results performed using the division model on the DASF-HIRES-50 dataset
to assess the robustness of affine detectors with respect to increasing degrees of radial
distortion. All numbers are obtained averaging the results for all the image series contained
in DASF-HIRES-50. (a) Sample image series from DASF-HIRES-50. (b) Repeatability
scores for different amounts of radial distortion. (c) Matching scores for different amounts
of radial distortion.

the fisheye domain are in agreement with the results of similar tests in the rectilinear

one reported in [165]. This underlines that the selected detectors behave similarly

in both the fisheye domain and the rectilinear one, and suggests that, according to

theoretical projection functions, affine covariant region detectors can still be used

for real applications directly in the fisheye domain.

Experiments related to the Division Model Distortion Function

Similar experiments have been performed using the division model. Specifically, we

have performed three sets of experiments using all three datasets discussed in Ap-

pendix A.3. The first set of experiments is aimed at assessing the robustness of the

detectors to increasing amounts of radial distortion and is performed on the DASF-

HIRES-50 dataset. To perform tests on different degrees of distortion, we consider

the following distortion rates: 0.2, 0.29, 0.38 (full frame configuration), 0.47 and 0.56
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(full circle configuration). The reference high resolution images of DASF-HIRES-

50 are mapped to distorted images of resolution 1024 × 768 pixels employing the

division model and using the methods discussed in Appendix A.2.3. The second

set of experiments is aimed at assessing the performances of the considered detec-

tors when the variabilities present in the OXFORD-48 dataset are combined with

radial distortion. These experiments have been performed on OXFORD-48. The

third set of experiments is performed on the RDSIFT-39 dataset and is intended

to extend the analysis to images acquired using real fisheye lenses. Figure A.23

to A.32 report the results of the performed experiments. It should be noted that,

due to the normalization scheme discussed in Appendix A.4.3, the curves related to

the repeatability and matching scores are not guaranteed to be strictly monoton-

ically decreasing with respect to increasing amounts of a considered variability as

the reader could expect. As pointed out earlier and in [155], such results have an

indicative rather than quantitative value and the reader is advised to focus more on

the general trends of the presented curves rather than on local configurations. In

the following, we present and discuss the results related to the three considered sets

of experiments.

Figure A.23 and Figure A.24 report the results performed on the DASF-HIRES-

50 dataset to assess the robustness of affine detectors with respect to increasing

degrees of radial distortion. All the reported scores have been obtained by averaging

the results for the different image series contained in the dataset. This allows us

to draw general conclusions on the performances of the detectors under analysis.

Figure A.23(a) reports a sample image series from the dataset. Figure A.23(b)

and Figure A.23(c) show that all detectors retain good performances for increasing

degrees of fisheye distortion. Interestingly, MSER clearly outperforms the other

detectors on both the repeatability and matching tests. In particular, the superior

performances of MSER in the matching test highlight that the regions extracted by

MSER tend to be more distinctive than the ones extracted by the competitors under

the influence of radial distortion. This observation is strengthen by the 1-precision vs

recall and threshold vs F-measure curves shown in Figure A.24. Moreover, the decays

of the curves shown in Figure A.23(b) and Figure A.23(c) are reminiscent of the

results related to the robustness of the detectors with respect to affine variabilities

such as the change of viewpoint angle (solid lines in Figure A.25). This observation
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Figure A.24: Results performed using the division model on the DASF-HIRES-50 dataset
to assess the robustness of affine detectors with respect to increasing degrees of radial
distortion. All numbers are obtained averaging the results for all the image series contained
in DASF-HIRES-50. (a), (c) and (e) 1-precision vs recall curves for different amounts of
radial distortion. (b), (d) and (f) threshold vs F-measure curves for different amounts of
radial distortion.
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supports our premise that affine covariant region detectors can locally model the

radial distortion introduced by a fisheye camera as an affine variability.

Figure A.25 to A.32 show the results of the experiments performed on the

OXFORD-48 dataset to assess the performances of affine detectors with respect to

the combination of fisheye distortion and a specific variability. Each figure reports

the original image series on which experiments are performed, the repeatability and

matching scores related to a specific variability (i.e., change of viewpoint angle, scale

change, increasing blur, JPEG compression, decreasing light). Specifically, each fig-

ure reports the results related to the original image series when no radial distortion

is introduced (solid lines), the results related to the series to which a full frame dis-

tortion has been added (dashed lines) and the results related to the series to which

a full circle distortion has been added (dot-dashed lines). It should be noted that,

since the reference image is never distorted in OXFORD-48, in each plot all the

data series are related to the same reference image. The results are in line with the

ones reported in the benchmark of [155] also when radial distortion is added. No

detector performs systematically better than the competitors on all considered im-

age series and the relative ordering of the curves tends to change for the structured

and textured scenes even when the variability under analysis is the same. However,

some general considerations can be made. The combination of radial distortion and

the variabilities present in the OXFORD-48 dataset (dashed and dot-dashed lines)

degrades the performances of the detectors. Nevertheless, the curves related to the

distorted series are often characterized by decays and relative ordering similar to

the ones of the original series not affected by distortion (solid lines). This is es-

pecially true for the structured scenes both for repeatability and matching scores.

This observation is a further evidence of how the introduction of the fisheye distor-

tion is in most of the cases handled by the detectors as an additional variability to

cope with. As general remarks, moreover, the Hessian Affine detector achieves the

best repeatability results in most of the configurations, while the MSER detector

extracts highly distinctive regions in all the cases (i.e., the matching results follow

the repeatability results).

Table A.2 finally reports the results of the experiments performed on the RDSIFT-

39 dataset comprising real fisheye images. For each image series and feature detector,

we report the average repeatability and matching ability scores over the 78 image
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reference angle=20◦ angle=30◦ angle=40◦ angle=50◦ angle=60◦

(a) Graffiti Image Series (Structured - Viewpoint Change)
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(c) Matching Scores - Graffiti (structured)

Figure A.25: Results of the experiments performed using the division model on the
OXFORD-48 dataset to assess the robustness of affine detectors with respect to the com-
bination of fisheye distortion and change of viewpoint angle for a structured scene. (a)
Graffiti image series (structured scene). (b) Repeatability scores for the graffiti image
series. (c) Matching scores for the graffiti image series.
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reference angle=20◦ angle=30◦ angle=40◦ angle=50◦ angle=60◦

(a) Wall Image Series (Textured - Viewpoint Change)
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(b) Repeatability Scores - Wall (textured)
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(c) Matching Scores - Wall (textured)

Figure A.26: Results of the experiments performed using the division model on the
OXFORD-48 dataset to assess the robustness of affine detectors with respect to the com-
bination of fisheye distortion and change of viewpoint angle for both a textured scene. (a)
Wall image series (textured scene). (b) Repeatability scores for the wall image series. (c)
Matching scores for the wall image series.



Appendix A. Wide-Angle Sensors and Feature Extraction 165

reference scale=1.15 scale=1.35 scale=1.9 scale=2.38 scale=2.8

(a) Boat Image Series (Scale Changes - Structured)
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(c) Matching Scores - Boat (structured)

Figure A.27: Results of the experiments performed using the division model on the
OXFORD-48 dataset to assess the robustness of affine detectors with respect to the com-
bination of fisheye distortion and scale changes for a structured scene. (a) Boat image
series (structured scene). (b) Repeatability scores for the boat image series. (c) Matching
scores for the boat image series.
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reference scale=1.15 scale=1.35 scale=1.9 scale=2.38 scale=2.8

(a) Bark Image Series (Scale Changes - Textured)
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(b) Repeatability Scores - Bark (textured)
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(c) Matching Scores - Bark (textured)

Figure A.28: Results of the experiments performed using the division model on the
OXFORD-48 dataset to assess the robustness of affine detectors with respect to the com-
bination of fisheye distortion and scale changes for a textured scene. (a) Bark image series
(b) Repeatability scores for the bark image series. (c) Matching scores for the bark image
series. The legend of (b) applies to (c) as well.
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reference image 2 image 3 image 4 image 5 image 6

(a) Bikes Image Series (Increasing Blur - Structured)
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(c) Matching Scores - Bikes (structured)

Figure A.29: Results of the experiments performed using the division model on the
OXFORD-48 dataset to assess the robustness of affine detectors with respect to the com-
bination of fisheye distortion and increasing blur for a structured scene. (a) Bikes Image
Series. (b) Repeatability scores for the bikes image series. (c) Matching scores for the
bikes image series.
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reference image 2 image 3 image 4 image 5 image 6

(a) Trees Image Series (Increasing Blur - Textured)
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(b) Repeatability Scores - Trees (textured)
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(c) Matching Scores - Trees (textured)

Figure A.30: Results of the experiments performed using the division model on the
OXFORD-48 dataset to assess the robustness of affine detectors with respect to the com-
bination of fisheye distortion and increasing blur for a textured scene. (a) Trees Image
Series (textured scene). (b) Repeatability scores for the trees image series. (c) Matching
scores for the trees image series.
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reference 60% 80% 90% 95% 98%

(a) UBC image series (JPEG compression)
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(c) Matching Scores - UBC

Figure A.31: Results performed using the division model on the OXFORD-48 dataset
to assess the robustness of affine detectors with respect to the combination of fisheye
distortion and increasing JPEG compression. (a) UBC Image Series. (b) Repeatability
scores for the UBC image series. (c) Matching scores for the UBC image series.
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reference image 2 image 3 image 4 image 5 image 6

(a) Leuven Image Series (Decreasing Light)
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(c) Matching Scores - Leuven

Figure A.32: Results performed using the division model on the OXFORD-48 dataset
to assess the robustness of affine detectors with respect to the combination of fisheye
distortion and decreasing light. (a) Leuven image series. (b) Repeatability scores for the
leuven image series. (c) Matching scores for the leuven image series. The legend of (b)
applies to (c) as well.
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Series Repeatability % Matching ability %
Affine Detector Harris Hessian MSER Harris Hessian MSER
S1 (d = 0.13) 61.94 69.34 74.73 36.09 39.14 59.20
S2 (d = 0.19) 60.14 71.00 72.24 32.32 37.33 54.23
S3 (d = 0.54) 23.54 27.97 32.88 12.80 13.65 25.68

S1 (d = 0.13), rect 68.00 75.47 77.22 40.28 41.73 62.29
S2 (d = 0.19), rect 63.10 73.88 73.97 33.55 38.74 53.53
S3 (d = 0.54), rect 43.41 52.91 57.32 26.87 24.99 44.37

Table A.2: Results related to the RDSIFT-39 dataset of images acquired using real fisheye
lenses. The dataset contains three series (S1 to S3) acquired using three different cameras.
For each series, experiments have been performed on all 78 available image pairs.

pairs. The last three rows report results obtained performing rectifying the image

prior to extracting affine covariant features. The results reported in Table A.2 con-

firm the general findings discussed in the previous sections. In particular, repeatabil-

ity and matching scores computed on real fisheye images are generally lower, but still

consistent with the ones reported in Figure A.25-A.26 (viewpoint change + radial

distortion) and Figure A.27-A.28 (scale and rotation transformations + radial dis-

tortion). As observed in the previous experiments, regions extracted by the MSER

detector are highly distinctive (matching scores marked in bold in Table A.2 follow

the trend of repeatability scores). In agreement with the experiments performed on

DASF-HIRES-50, the MSER detector systematically outperforms the competitors

both in terms of repeatability and matching ability. Moreover, when the distortion

rate is low (i.e., S1 and S2 in Table A.2), affine covariant feature detectors perform

reasonably well directly on fisheye images as compared to employing rectification.

In the case of low distortion, in fact, using affine covariant region detectors directly

implies an average performance drop under the 3% with respect to both repeatabil-

ity and matching ability scores, which suggests that radial distortion is successfully

modeled as an additional affine variability. When distortion is severe (i.e., S3 in Ta-

ble A.2), performing rectification allows to improve both repeatability and matching

ability by a good margin, leading to average gains of about 23% for repeatability

and 15% for matching ability. It should be noted that, even in the case of severe

distortion, results obtained on RDSIFT-39 are still coherent with those obtained on

OXFORD-48, suggesting that direct employment of affine covariant region detectors

on fisheye images is able to produce usable results. This can be particularly useful
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when rectification is not a viable option, e.g., when the camera is not known (and

hence cannot be calibrated) in advance.

A.4.5 Discussion

The proposed analysis was carried to investigate the direct applicability of affine

covariant region detectors on fisheye images. Relying on both theoretical fisheye

camera models and the Division Model for modeling radial distortion, we have pro-

vided both theoretical and experimental evidence that affine region detectors can

successfully deal with radial distortion as a local affine transformation. Specifically,

inspired by the work of Mikolajczyk et al. [155], we have designed a series of exper-

iments aimed at assessing the performances of three popular region detectors, i.e.,

MSER, Hessian Affine, Harris Affine, with respect to increasing radial distortion.

We have also tested the combination of the variabilities included in the OXFORD-48

dataset with two different degrees of radial distortion and performed testes on images

acquired using three real fish-eye lenses. Interestingly, MSER outperformed the Hes-

sian and Harris affine region detectors in both the repeatability and matching tests

in the experiments related to the increasing radial distortion and on images acquired

using real fisheye lenses. The evaluations carried on the OXFORD-48 dataset have

shown that the detectors behave consistently when the scene variability is combined

with radial distortion, providing further evidence that radial distortion is effectively

modeled as an additional affine variability by the detectors. Tests on images ac-

quired using real fisheye lenses show that affine region detectors are able to handle

low levels of radial distortion making rectification avoidable. When distortion is

severe, affine region detectors yield results consistent with the ones obtained in the

presence of strong scale and rotation transformation with artificially distorted im-

ages. The proposed analysis can be exploited in all the application domains where

the input images are acquired by unknown, non-calibrated cameras (both fisheye

and rectilinear).
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A.5 Direct Estimation of the Gradient of Dis-

torted Images

Image gradients are fundamental features commonly used in a number of applica-

tions including image enhancement and edge extraction [172, 173], object, scene

and key-point representation [7, 138, 174, 90], and gradient-domain-based image

processing [175, 176, 177, 178]. As it is shown in Figure A.33, a conventional com-

putation of the gradients directly on wide angle images would be deceived by the

presence of radial distortion, while in practice many applications require a result

similar to the ideal gradients depicted in Figure A.33(b) [136, 150]. While images

could be rectified in order to compute correct gradients, this approach is not desir-

able for motivations similar to the ones discussed earlier in Appendix A.4. Hence,

we focus on the direct (i.e., without rectification) geometrically-correct estimation

of the gradients of distorted images.

Some methods for estimating the gradients of wide angle images without per-

forming the rectification have already been investigated by the researchers. In [136,

160] the gradient estimated in the distorted domain with standard Sobel filters is

corrected using an adaptive Jacobian correction matrix derived from the differential

chain rule. Authors of [150] propose to estimate the gradients of catadioptric images

by using an operator defined according to the geometry of the catadioptric mirror.

We derive a family of adaptive kernels for the geometrically-correct estimation

of the gradients of wide angle images. The proposed kernels aim to be invariant

to radial distortion and hence they are designed to be beneficial for a number of

gradient-based applications (such as key-point matching, object and people detec-

tion [7, 138]), when they are deployed to wide angle camera systems. The derivation

of our method is obtained by generalizing the standard Sobel operator to the case of

non-Euclidean surfaces in order to take into account the geometrical transformation

affecting the image. The derived filters adapt their shape according to the location

on which they are computed in order to unevenly weighting the contributes of the

estimated directional derivatives to compensate for distortion. The only require-

ment to compute the proposed filters is that the distortion function is known and

invertible. The distortion function can be obtained by calibration when the cam-

era is known, as usually happens in surveillance, automotive and robotics. In the
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(a) Rectilinear Image

(b) Wide Angle Image

Figure A.33: Gradient estimation of not-distorted and wide angle images. (a) A not-
distorted image along with the gradient directions (solid red arrows) of some sample edges.
(b) Wide angle counterpart of (a) along with the gradient directions (solid red arrows)
of some sample edges deceived by the radial distortion. The ideal gradient directions are
reported as dashed blue arrows.
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Figure A.34: A diagram of Sobel’s rationale. (a) The 4 main directions in a 3× 3 neigh-
borhood of a given point. (b) The 8 simple directional derivative estimates along with
the appropriate unit vectors. (c) An example of distorted neighborhood along with its
directional derivative estimates.

following, we present two formulations for the proposed filters. The first formula-

tion has been proposed in [26], it will be referred to as “Generalized Sobel Filters

(GSF)” and is discussed in Appendix A.5.1. The second formulation has been pre-

sented in [22] and extends the Generalized Sobel Filters with the introduction of a

normalization factor. It is discussed in Appendix A.5.2 and will be referred to as

“Distortion Adpative Sobel Filters (DASF)”.

A.5.1 Generalized Sobel Filters (GSF)

The Sobel operator was originally proposed by Irwin Sobel in 1968 to estimate

the gradient of a digital image [173, 179, 180]. Sobel proposed to estimate the

gradient of the image at a given point performing the vector summation of the simple

central gradient estimates along the 4 main directions in a 3× 3 neighborhood (see

Figure A.34(a)). According to Sobel, each of the 4 simple central gradient estimates

can be expressed as a vector sum of a pair of orthogonal vectors. Each vector is a

directional derivative estimate multiplied by a unit vector specifying the derivative’s

direction. The value of the directional derivative estimate for a pair of antipodal

pixels in a 3× 3 neighborhood is defined as:

density difference

distance to neighbour
. (A.50)
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The direction associated to the derivative estimate is given by the unit vector to the

appropriate neighbour. Figure A.34(b) shows a schema of the directional derivative

estimates. The reader is referred to [180] for a review of Sobel’s rationale. The

gradient estimation defined by Sobel can be formulated as the average of the eight

oriented derivative vectors as follows:

∇I(x, y) = 1

8

∑
(s,t)∈S

(
Is,tx,y − I−s,−t

x,y

δs,tx,y

· (s, t)√
s2 + t2

)
(A.51)

where I is the considered image, S = {(s, t) : −1 ≤ s, t ≤ 1}, Is,tx,y = I(x+ s, y + t),

δs,tx,y = δ((x+ s, y+ t), (x− s, y− t)), (s, t) denotes the vector of components s, t and

magnitude
√
s2 + t2 and δ is a given metric (e.g., Euclidean).

We start from Equation (A.51) to build the distortion adaptive Sobel filters.

Considering the symmetry of Equation (A.51) with respect to the sign of s and t, it

is convenient to define:

{S1, S2} partition of S \ {(0, 0)} s.t. p ∈ S1 ⇔ −p ∈ S2. (A.52)

Given the definition in Equation (A.52), Equation (A.51) can be rewritten in the

following form:

∇I(x, y) = 1

8

∑
(s,t)∈S1

[
Is,tx,y − I−s,−t

x,y

δs,tx,y

· (s, t)√
s2 + t2

]
+

+
1

8

∑
(s,t)∈S2

[
Is,tx,y − I−s,−t

x,y

δs,tx,y

· (s, t)√
s2 + t2

]
. (A.53)

Given the definition in Equation (A.52), it is possible to substitute the set S2 with

S1 changing the signs of s and t in the second summation:

∇I(x, y) =1

8

∑
(s,t)∈S1

[
Is,tx,y − I−s,−t

x,y

δs,tx,y

· (s, t)√
s2 + t2

]
+

+
1

8

∑
(s,t)∈S1

[
I−s,−t
x,y − Is,tx,y

δ−s,−t
x,y

· (−s,−t)√
s2 + t2

]
. (A.54)

Grouping the terms related to I and considering that δ is a metric (and hence
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δ((x1, y1), (x2, y2)) = δ((x2, y2), (x1, y1)), ∀ (x1, y1), (x2, y2) ∈ ℜ2), we obtain Equa-

tion (A.55):

∇I(x, y) =1

8

∑
(s,t)∈S1

[
Is,tx,y − I−s,−t

x,y

δs,tx,y

(
(s, t)√
s2 + t2

− (−s,−t)√
s2 + t2

)]

=
1

8

∑
(s,t)∈S1

[
Is,tx,y

δs,tx,y

(
(s, t)√
s2 + t2

− (−s,−t)√
s2 + t2

)]
+

+
1

8

∑
(s,t)∈S1

[
I−s,−t
x,y

δs,tx,y

(
(−s,−t)√
s2 + t2

− (s, t)√
s2 + t2

)]
. (A.55)

Leveraging the definition in Equation (A.52), we obtain:

∇I(x, y) =1

8

∑
(s,t)∈S1

[
Is,tx,y

δs,tx,y

(
(s, t)√
s2 + t2

− (−s,−t)√
s2 + t2

)]
+

+
1

8

∑
(s,t)∈S2

[
Is,tx,y

δ−s,−t
x,y

(
(s, t)√
s2 + t2

− (−s,−t)√
s2 + t2

)]
. (A.56)

Considering again the symmetric property of δ and considering the definition in

Equation (A.52), the Equation (A.56) can be finally written as:

∇I(x, y) =1

8

∑
(s,t)∈S

[
Is,tx,y

δs,tx,y

(
(s, t)√
s2 + t2

+
(s, t)√
s2 + t2

)]
. (A.57)

Let be h1(x, y, s, t) and h2(x, y, s, t) defined as follows:

h1(x, y, s, t) =

⎧⎨⎩0 if(s, t) = (0, 0)

1
4
· 1

δs,tx,y

s√
(s2+t2)

otherwise
(A.58)

h2(x, y, s, t) =

⎧⎨⎩0 if(s, t) = (0, 0)

1
4
· 1

δs,tx,y

t√
(s2+t2)

otherwise.
(A.59)
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Considering the equations above, the gradient estimation can be expressed as follows:

∇xI(x, y) =
∑

(s,t)∈S

I(x+ s, y + t) · h1(x, y, s, t) (A.60)

∇yI(x, y) =
∑

(s,t)∈S

I(x+ s, y + t) · h2(x, y, s, t). (A.61)

Note that if the image has a planar geometry, the neighborhood is not-distorted, sim-

ilarly to what is shown in Figure A.34(b) and δ is naturally chosen as the Euclidean

distance. In this case, the filters defined in Equation (A.58) and Equation (A.59)

are independent from the location of point (x, y) on which they are applied and

Equation (A.60) and Equation (A.61) are equivalent to standard convolutions with

Sobel filters (up to a factor of 16 in the estimation of the gradient magnitudes as

discussed below). If the neighborhood is not Euclidean (i.e., it is distorted) as in

the case of wide angle images (see Figure A.34(c)), the δ function should be cho-

sen according to the underlying geometrical model. In particular, if the distortion

function Ψ : ℜ2 → ℜ2 which maps the not-distorted point of coordinates (u, v) to

the distorted point (x, y) is known and invertible, the easiest way to choose a geo-

metrically correct distance metric is to compose the Euclidean distance d with the

inverse distortion function Ψ−1 as follows:

δ((x1, y1), (x2, y2)) = d(Ψ−1(x1, y1),Ψ
−1(x2, y2)), ∀(x1, y1) ∈ ℜ2, (x2, y2) ∈ ℜ2. (A.62)

Since Ψ−1 is an inverse function, it is also bijective and hence the function δ defined

above is a metric. The exploitation of Equation (A.62) corresponds to the projection

of the coordinates of the neighborhood points into the Euclidean space prior to

computing the distances in the classic way. In this general case, the terms related to

δ in Equation (A.58) and Equation (A.59) depend on the considered point (x, y) and

hence the kernels are adaptive. Figure A.36 shows some graphical examples of the

proposed distortion adaptive Sobel filters by considering the position in the image to

which they are applied. Figure A.35 shows some sample GSF computed in the center,

top left and top right corners. As it can be noted, the proposed formulation yields

kernels which adapt their shape in order to compensate for the radial distortion

intrinsic to the different locations of the image. In this case, the computation defined

in Equation (A.60) and Equation (A.61) is not strictly a convolution since the signals

defined in Equation (A.58) and Equation (A.59) also depend on variables s and t.
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Figure A.35: Some examples of Generalized Sobel Filters for a fisheye camera. The filters
are computed on the center of the image, top left and top right corners.

We refer to this computation as “adaptive convolution” of image I with the adaptive

kernels h1 and h2 as it is intended in [136]. It should be noted that the Sobel filters

overestimate the magnitude of the gradients by a scaling factor of 16 [180], thus a

totally compatible formulation of the proposed filters can be achieved multiplying

Equation (A.58) and Equation (A.59) by a factor of 16. As discussed above, the

just derived filters will be referred to as Generalized Sobel Filters (GSF).

A.5.2 Distortion Adaptive Sobel Filters (DASF)

Given the spatially non-uniform sampling of the incoming light operated by wide

angle sensors, wide angle images are intrinsically multi-scale, which implies that

the corresponding distance between neighboring pixels in real world coordinates in-

creases with the distance from the center of the image. Considering that Generalized

Sobel Filters have been are derived using the corresponding distances between neigh-

boring pixels by means of Equation (A.62), filters computed in the peripheral areas

of the image will have smaller coefficients in absolute values. This observation is

illustrated in Figure A.36 where filters computed near the borders of the hemispher-

ical image tend to have a lower magnitude in average. As a result, the magnitudes
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Figure A.36: Some graphical examples of the proposed kernels related to specific positions
in the image on which they are computed. The shape of the kernels adapts to compensate
the distortion characterizing a particular image location.

of the estimated gradients decay in the peripheral areas of the image as it is de-

picted in Figure A.37(a,b,c). It should be noted that such problem is not specific to

our method, but is common to other direct gradient estimation techniques like for

instance, the Gradient Correction Jacobian (GCJ) method proposed in [136, 160].

To overcome this limit and produce gradients with uniform magnitudes, we propose

to locally normalize the derived GSF filters by the sum of the distances (computed

according to the metric defined in Equation (A.62)) between the antipodal pairs in

the 3× 3 neighborhood:

h1(x, y, s, t) =

⎧⎨⎩0 if(s, t) = (0, 0)

1
4
· 1
∆x,y

· 1

δs,tx,y

s√
(s2+t2)

otherwise
(A.63)

h2(x, y, s, t) =

⎧⎨⎩0 if(s, t) = (0, 0)

1
4
· 1
∆x,y

· 1

δs,tx,y

t√
(s2+t2)

otherwise
(A.64)
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(a) Distorted Image (b) Generalized Sobel Filters [26]

(c) JGC [136, 160] (d) Proposed DASF

Figure A.37: An example distorted image (a) along with the magnitudes of gradients
estimated using (b) the Generalized Sobel Filters (GSF) defined in Equation (A.58)-(A.59),
(c) the Jacobian Gradient Correction (JCG) method proposed in [136, 160], and (d) the
proposed Distortion Adaptive Sobel Filters (DASF).

where the normalization factor is defined as follows:

∆x,y =
∑

(s,t)∈S

1

δs,tx,y

. (A.65)

Figure A.37(d) shows the magnitudes of the gradients of the image depicted in Fig-

ure A.37(a) as computed using the filters defined in Equation (A.63) and Equa-

tion (A.64). It should be noted that computing the gradients using the proposed lo-

cally normalized filters, allows to recover a huge quantity of details in the peripheral

areas of the wide angle image. As discussed in the previous sections, this normalized
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formulation of the proposed filters will be referred to as Distortion Adaptive Sobel

Filters (DASF).

A.5.3 Experimental Evaluation of the Proposed Filters

We evaluate the performances of the proposed filters on the high resolution images

of the DASF-HIRES-100 dataset. To assess the performances of the algorithms with

respect to fisheye distortion, we artificially add different degrees of radial distortion

to the reference rectilinear images employing the division model and following the

methodologies described in Appendix A.2.3. This experimental approach allows to

control the exact amount of distortion characterizing the target images. Moreover,

the source (not-distorted) images are used to compute the reference gradients which

serve as a ground truth for the evaluations. Specifically, the rectilinear input images

of resolution 5204×3472 pixels are mapped to distorted images of resolution 1024×
768 pixels considering 21 different degrees of radial distortion ranging from d = 0.1

to d = 0.5. This leads to the creation of 100 image series of 22 images comprising

one reference high resolution non-distorted image and 21 low resolution distorted

ones.

We perform two experiments to assess the performances of the proposed method.

The former experiment aims at measuring the error committed by the compared

methods in estimating the image gradients, independently from any specific appli-

cation. The latter experiment aims at assessing the impact of the proposed method

on real-world applications. In particular, considering the importance of local feature

description and matching [136, 7, 25], we assess the impact of the considered method

when the computed gradients are used to compute and match densely sampled SIFT

features.

Evaluation of Gradient Estimation Error

The image gradients are usually exploited separating the magnitudes from the ori-

entations. The orientations carry important information about the distribution of

edges in the scene, while the magnitudes give insights on the importance of each

orientation. For this reason, many algorithms rely on the weighted histograms of

gradient orientations [7, 138]. We define an error measure by considering the average

distance between the local populations (i.e., weighted histograms) of the gradient
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orientations in the reference image I and in its distorted counterpart Î. Let S denote

the Sobel operator, G the gradient estimator under analysis and let the distorted im-

age Î be divided into n non overlapping regular tiles of size k×k covering the entire

surface: {T̂i}1≤i≤n. For each tile T̂i in the distorted image Î, we consider the related

not-distorted tile Ti in the reference image I, which contains the not-distorted coun-

terparts of all the points in T̂i. The error related to the gradient estimator G given

the image pair (Î , I) is defined as:

ϵ(G, Î , I) = 1

n

n∑
i=1

ρ(H(GT̂i),H(STi)) (A.66)

where H(GT̂i) and H(STi) denote the weighted histograms of the estimated and

reference gradient orientations (i.e. Sobel on the reference image) of tiles T̂i and Ti,

and ρ is the metric based on the Bhattacharyya coefficient as defined in [4]:

ρ(H1, H2) =

√1−
m∑

u=1

√
Hu

1 ·Hu
2 . (A.67)

In Equation (A.67), m is the number of bins of histograms H1 and H2 and Hu

denotes the u − th component of H. Figure A.38 illustrates the computation of

the Bhattacharyya distance for two corresponding non-overlapping tiles. In our

experiments, the following parameters have been used: 1) each image is divided into

tiles of size 24 × 24 pixels and 2) the histograms have 18 bins evenly spacing the

interval [−180◦, 180◦].

Figure A.39 shows the mean error committed by the considered methods with

respect to different amounts of radial distortion. Each curve is obtained averag-

ing the error scores related to the 100 images in the dataset and computed using

Equation (A.66). The legend of Figure A.39 reports in parenthesis the average

value of each curve, which should reflect the average performances of the methods

with respect to all the considered amounts of distortion. The rectification method

allows to achieve good results for low distortion rates (where the lost information

can still be “guessed” by the rectification process), whereas the error gets higher

as the distortion rate increases. The proposed filters perform better than the com-

petitors for distortion rates over the 35%. Table A.3 summarizes the average errors
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Bhattacharyya Metric

𝜌 𝐻1, 𝐻2 = 1 −෍

𝑢=1

𝑚

𝐻1
𝑢 ⋅ 𝐻2

𝑢

reference image (standard Sobel Filters)

test image (methods under analysis)

Figure A.38: Computation of the Bhattacharyya distance for two corresponding non-
overlapping regular tiles.

related to the subset of images characterized by a specific scene-based tag. The re-

ported results suggest that the proposed filters, the GSF and the GCJ methods offer

significant improvements over the distorted gradients. In particular, the proposed

method is the best performing when all scene categories are considered (top row of

Table A.3) and it is always among the two best performing methods for each of the

scene categories. As it appears clear from Figure A.39 and Table A.3, the DASF

method closely matches the performances of the GSF method in this experiment.

This is due to the fact that, considering regular tiles as small as 24× 24 pixels, the

effect of the local normalization introduced in Appendix A.5.2 is negligible with re-

spect to the normalization operated by the computation of the weighted histogram

of gradient orientations.

Evaluation of Impact on SIFT Matching Ability

The aim of this second experiment is to assess the performances of the considered

methods on the task of local feature description and matching. To this aim, we con-

sider the popular gradient-based SIFT descriptor [7], computed using the estimated
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Figure A.39: Mean error curves for different gradient estimators on the GSF-HIRES-100
dataset for varying percentages of distortion. The average value of each curve is reported
in parenthesis in the legend.

Scene Distorted Rectified GCJ GSF Proposed

All 0.1250 0.0819 0.0958 0.0790 0.0789

Indoor 0.1172 0.0885 0.1049 0.0826 0.0826
Outdoor 0.1262 0.0809 0.0945 0.0785 0.0784
Natural 0.1129 0.0816 0.0980 0.0736 0.0736

Handmade 0.1280 0.0819 0.0952 0.0801 0.0800
Urban 0.1358 0.0796 0.0910 0.0816 0.0813
Car 0.1366 0.0807 0.0919 0.0827 0.0824

Pedestrian 0.1417 0.0748 0.0846 0.0807 0.0805
Street 0.1357 0.0807 0.0921 0.0823 0.0821

Table A.3: Average errors for different methods and scene types. In each row, the two
smallest values are underlined, while the minimum is reported in bold letters.
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Figure A.40: (a) A schema of a support region and (b) an example of projecting support
regions from the undistorted space to the distorted one.

gradients. In order to cope with radial distortion, we consider DAD-SIFT, a dis-

tortion adaptive variant of the popular gradient-based SIFT descriptor [7] which we

proposed in [25]. As it will be discussed in Appendix A.6, where the computation

of the DAD-SIFT descriptor is detailed, Distortion Adaptive Descriptors (DAD)

provide a way to compute regular gradient-based descriptors directly on the dis-

torted images accounting for radial distortion. In the following, we summarize the

evaluation protocol considered for the experiments.

Given a reference-target image pair (I, Î), square support regions are considered

at multiple scales on the reference image I. In particular, we sample support regions

of radii: 32, 64, 128 and 256 pixels at a regular step equal to 50 pixels. We

consider a support region as an entity R(u, r) composed of two elements: a center

u and a radius r (see Figure A.40(a)). Each support region R(u, r) is mapped to a

corresponding region R̂(x, r̂) in the distorted space using Equation (A.20) to map

the not-distorted point u to its distorted counterpart x. The radius of the distorted

support region r̂ is computed using Equation (A.22):

r̂ = g(r) =
2r

1 +
√

1− 4 · ξr2
. (A.22)

Figure A.40(b) shows an example of such projection. All the projected regions not

entirely contained in the distorted image Î or with projected radii under 16 pixels

are discarded along with their not-distorted counterparts.

Standard SIFT descriptors D are computed on the reference support regions
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Figure A.41: Results related to Experiment 2. The matching ability for different gradient
estimators on the considered dataset at varying of the percentage of distortion.

R using the reference gradient estimated with the Sobel operator. DAD-SIFT de-

scriptors D̂ are computed from the projected support regions R̂ using the generic

estimator G as detailed later in Appendix A.6. Matchings between the reference

D and target D̂ descriptors are computed using the nearest neighbor criterion, i.e.,

descriptor d ∈ D is matched to its nearest neighbor d̂ ∈ D̂. Given the known corre-

spondences between the reference and target descriptors, the matching ability score

is measured as follows:

matching ability score =
#correct matches

#matches
(A.68)

where parameter ξ allows to control the amount of distortion in the image.

Figure A.41 shows the matching ability achieved by the considered methods with

respect to different amounts of radial distortion. Each curve is obtained averaging

the matching ability scores related to the 100 images in the dataset. As in Fig-

ure A.39, the legend of Figure A.41 reports the average value of each curve which

should reflect the average performances of the methods with respect to all the con-

sidered amounts of distortion. The proposed method retains the highest matching
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Scene Distorted Rectified GCJ GSF Proposed

All 0.7310 0.7922 0.7430 0.8065 0.8303

Indoor 0.6394 0.7434 0.6685 0.7091 0.7366
Outdoor 0.7447 0.7995 0.7541 0.8210 0.8444
Natural 0.6958 0.7594 0.6885 0.7600 0.7911

Handmade 0.7472 0.8027 0.7601 0.8236 0.8452
Urban 0.7776 0.8260 0.8010 0.8644 0.8813
Car 0.7779 0.8248 0.7990 0.8601 0.8768

Pedestrian 0.7890 0.8403 0.8252 0.8834 0.8993
Street 0.7780 0.8235 0.7974 0.8591 0.8758

Table A.4: Results related to Experiment 2. Average matching ability scores for different
methods and scene types. In each row, the two largest values are underlined, while the
maximum is reported in bold letters.

ability for amounts of distortion over the 30%, while it performs comparably to the

rectification methods for distortion rates below the 30%. The evident improvement

of DASF over GSF is due to the introduced normalization mechanism. Normal-

ization is particularly effective in the case of large support region. When support

regions are large indeed, the magnitude normalization mechanism of the SIFT de-

scriptor cannot cope with non-uniform gradient magnitudes. This observation also

explains the little difference between DASF and GSF in the previous experiment,

where support regions where small (24 × 24 pixels). Similarly to Table A.3, Ta-

ble A.4 reports the average matching abilities related to images characterized by

specific image tags. The proposed method is always the best performing (highest

score), except in the case of indoor images, where, probably due to the regularity

of straight edges, the standard baseline employing rectification performs slightly

better.

A.5.4 Discussion

Distortion Adaptive Sobel filters can be used to correctly estimate the gradient of

distorted images. The proposed filters are independent from the adopted distortion

model and only require the distortion function Ψ to be known and invertible. We

have assessed the performances defining an evaluation protocol which measures the
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error between estimated and reference gradients and allows to compare the per-

formances on the task of local feature matching. The experiments show that our

method outperforms the competitors.

A.6 Distortion Adaptive Descriptors

The presented techniques allow to compute more geometrically-correct gradients di-

rectly from distorted images. However, radial distortion can severely affect the way

local feature descriptors are computed due to the non-Euclidean representation of

the scene as discussed in [148]. In this Section, we study how gradient-based de-

scriptors such as SIFT [7] and Histogram of Oriented Gradients (HOG) [138] can

be modified in order to be computed directly in the distorted domain. We propose

the Distortion Adaptive Descriptors (DAD), a new paradigm for computing local

descriptors directly on the distorted images. The proposed adaptive descriptors as-

sume that the camera is calibrated and hence the distortion function Ψ is known and

invertible. We combine the DAD paradigm with existing methods for the correct

estimation of the gradient of distorted images in order to derive distortion adaptive

variants of the SIFT [7] and Histogram of Oriented Gradients (HOG) [138] descrip-

tors. The adaptation of such descriptors to the distorted domain virtually enables

a number of applications in which they have proven to be successful, such as object

and people detection [7, 138], video stabilization [181], object class recognition [182]

and panorama stitching [183]. Experiments show that the DAD variants signifi-

cantly outperform the regular SIFT and HOG descriptors when they are applied

directly in the distorted domain. Moreover, we show that there is still space for

improving direct gradient estimation techniques.

A.6.1 Formulation of Distortion Adaptive Descriptors

In this Section, we introduce the Distortion Adaptive Descriptors (DAD). Rather

than a new set of descriptors, the DAD constitute a paradigm for correctly comput-

ing existing local descriptors directly on the distorted images. For sake of generality

we consider a generic descriptor D(N ,M(I,N )) computed on a rectangular neigh-

borhood N using some measurements M = M(I,N ) performed in the locations of

the input image I specified by the neighborhood N . The measurements can be of
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Figure A.42: (a) A rectilinear neighborhood and (b) its distorted counterpart. (c) Exam-
ples of rectilinear neighborhoods along with their distorted counterparts.

any kind and are related to the feature extraction process required by the specific

descriptor. In the SIFT descriptor, for instance, the measurements M are the image

gradients estimated at the relevant locations. The rectangular neighborhood cen-

tered at point (u0, v0) with radii r1 and r2 is naturally defined as the set of points:

N (u0, v0, r1, r2) = {(u, v) : |u− u0| ≤ r1 ∧ |v − v0| ≤ r2} (A.69)

Figure A.42(a) shows an example of rectangular local neighborhood. When the

descriptor has to be computed on a distorted image, the shape of the neighborhood

N depends on its position in the image. Some examples of such assertion are

illustrated in Figure A.42(c). The rectilinear neighborhood in Equation (A.69) is

easily mapped to its distorted counterpart centered at point (x0, y0) with radii r̂1

and r̂2 using the inverse distortion function Ψ and the radial distortion function g:

N̂ (x0, y0, r̂1, r̂2) = {(x, y) : |Ψ−1(x)−Ψ−1(x0)| ≤ g−1
x0,y0

(r̂1) ∧

|Ψ−1(y)−Ψ−1(y0)| ≤ g−1
x0,y0

(r̂2)} (A.70)

where (x0, y0) = Ψ(u0, v0) and r̂1 and r̂2 are obtained from r1 and r2 using Equa-

tion (A.22). Figure A.42(b) shows an example of distorted neighborhood. Let be

M̂(Î , N̂ ) the geometrically correct measurement performed in the locations of the

distorted image Î specified by the distorted neighborhood N̂ . The Distortion Adap-

tive Descriptor related to D is hence defined as:

D̂ = D(Ψ−1(N̂ ),M̂(Î , N̂ )) (A.71)

where Ψ−1(N̂ ) = {Ψ−1(x, y) : (x, y) ∈ N̂}.
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projected points descriptor weighting

distorted image

Figure A.43: A scheme of the computation of the Distortion Adaptive Descriptors. 1)
The distorted neighborhood is extracted from the input image. 2) The measurements are
projected to the rectilinear space. As it can be noted, this yields to samples of non uniform
density. 3) The regular descriptor is computed accounting for the correct arrangement of
the measurements in the rectilinear space.

The computation defined above is carried in three key steps: 1) given a point

(x0, y0) in the distorted space and two radii r̂1, r̂2, the distorted neighborhood

N̂ (x0, y0, r̂1, r̂2) is considered; 2) all the coordinates of the points in N̂ are projected

back to the rectilinear space (Ψ−1(N̂ )); 3) the regular descriptor is computed us-

ing the geometrically correct measurements M̂(Î , N̂ ) and the projected coordinates

Ψ−1(N̂ ). It should be noted that step 2) is important since it allows the descriptor

to weigh the measurements according to their position in the undistorted space.

Specifically, the projection leads to samples of non-uniform density which are cor-

rectly dislocated in the undistorted circular neighborhood. The new locations for the

considered measurements ensure a correct isotropic spatial weighting. Figure A.43

shows a scheme of the computation of the Distortion Adaptive Descriptors.
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A.6.2 Experimental Evaluation of Distortion Adaptive De-

scriptors

We argue that a combination of gradient estimation techniques, such as the one

introduced in Appendix A.5, and the DAD scheme proposed in Appendix A.6.1

can improve the matching ability of gradient based local descriptors on distorted

images. What we want to evaluate is the invariance of the descriptors with respect

to radial distortion, i. e., the ability to produce similar descriptors for two image

regions representing the same physical area of the scene despite they are affected by

different amounts of distortion. An ideal descriptor, for instance, would give identical

results when computed on the matching neighborhoods shown in Figure A.42(c). In

the following we discuss the experimental settings including the images used for the

evaluations, the considered descriptors and the evaluation pipeline. Experiments

are performed on the DASF-HIRES-100 dataset introduced in Appendix A.3.2.

We apply the DAD scheme to the SIFT and HOG descriptors using different

gradient estimation techniques to obtain the measurements. To assess the improve-

ment due to the DAD scheme independently from the employed gradient estimation

technique, we also consider an ideal estimator by wrapping the ground truth gra-

dients to the distorted locations. Moreover, we consider the standard SIFT and

HOG descriptors computed directly in the distorted domain (without adaptation)

combined with the different gradient estimation techniques. Hence we derive the

18 descriptors summarized in Table A.5. The SIFT-based descriptors are computed

using the implementation provided by the VLFeat library [96], which produces stan-

dard 128-dimensional descriptors. For the HOG-based descriptors we consider the

variant of HOG proposed in [184] as implemented by the VLFeat library [96]. More-

over, in our settings, the HOG-based descriptors are computed dividing the support

region into 4 × 4 cells and the gradients are computed using 3 × 3 filters (in place

of the non-smoothing [−1 0 1] and [−1 0 1]T filters originally proposed by the au-

thors [138]) in order to allow the gradient estimation techniques to compensate for

the distortion exploiting neighborhood information. This configuration returns a

496-dimensional HOG descriptor for input support region of any size.
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Acronym Description

SIFTDIST

HOGDIST

Regular SIFT/HOG descriptor computed on the distorted
images using the distorted gradients as measurements.

SIFTRECT

HOGRECT

Regular SIFT/HOG descriptor computed on the rectified
images using the Sobel filters to estimate the gradients.

SIFTGCJ

HOGGCJ

Regular SIFT/HOG descriptor computed on the distorted
images using the GCJ gradients as measurements.

SIFTGSF

HOGGSF

Regular SIFT/HOG descriptor computed on the distorted
images using the GSF gradients as measurements.

SIFTIDEAL

HOGIDEAL

Regular SIFT/HOG descriptor computed on the distorted
images using the ground truth gradients as measurements.

DAD-SIFTDIST

DAD-HOGDIST

SIFT/HOG descriptor computed with the DAD scheme on
the distorted images using the distorted gradients as mea-
surements.

DAD-SIFTGCJ

DAD-HOGGCJ

SIFT/HOG descriptor computed with the DAD scheme on
the distorted images using the GCJ gradients as measure-
ments.

DAD-SIFTGSF

DAD-HOGGSF

SIFT/HOG descriptor computed with the DAD scheme on
the distorted images using the GSF gradients as measure-
ments.

DAD-SIFTIDEAL

DAD-HOGIDEAL

SIFT/HOG descriptor computed with the DAD scheme on
distorted images using the ground truth gradients as mea-
surements.

Table A.5: The descriptors considered in the experiments.
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Experimental Results

Figure A.44 shows the 1-precision vs recall and the threshold vs F-Measure curves

of the considered descriptors for different amounts of distortion. As it can be noted,

all the DAD variants systematically outperform their non-adaptive counterparts

independently from the employed gradient estimation technique. Moreover, using

the GCJ [160, 136] and GSF techniques for the measurements allows to improve

the performances of all the descriptors over the distorted gradients. Interestingly

such techniques, combined with the DAD paradigm, allow to reach the performances

obtained through the rectification process for low amounts of distortion (15%). In

general, however, the rectification provides better results for higher distortion rates

at the cost of the computational time required by the unwrap. The GCJ and GSF

techniques have similar performances when used both in the HOG-based and SIFT-

based descriptors. The descriptors based on the ground truth gradients always have

the best performances, which confirms the power of the DAD paradigm. Moreover,

the gap between the performances given by the ground truth gradients and the ones

given by the considered gradient estimation techniques suggests that there is still

space for improvement for such techniques.

Experimental Protocol

For our evaluations, we measure the matching ability of the considered descriptors

when they are densely extracted from the test images. Dense descriptors are appro-

priate for our analysis since they allow us to draw conclusions which are independent

from any interest point detector. Moreover dense descriptors have proven powerful

in a variety of tasks [185, 186, 187]. Given the reference-distorted image pair (I, Î),

we densely extract square support regions from the reference image at a regular

step of 50 pixels. To account for multiscale features, different layers of overlapping

support regions are extracted considering radii ranging from 32 to 256 pixels. In

this context, a support region is an entity S(u, r) made of two elements: a center

u and a radius r. Each support region S is mapped to the corresponding support

region Ŝ in the distorted image using Equations (A.20) and (A.22): Ŝ(Ψ(u), g(r)).

All projected support regions which are not entirely contained in the distorted im-

age Î or which projected radius is under 16 pixels are discarded together with their

undistorted counterparts. This settings lead to support regions of variable sizes
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Figure A.44: The 1-precision vs recall curves (rows 1 and 3) and the threshold vs F-
Measure curves (rows 2 and 4) for the SIFT-based and the HOG-based descriptors.

ranging from 32 × 32 pixels to 512 × 512 pixels which cover the entire FOV of the

distorted images. The number of support regions per image ranges from 887 to 3881

depending on the distortion rate. We refer to the set of reference support regions

as S = {Si} and to the set of projected support regions as Ŝ = {Ŝi}. The reference

support regions S are used to compute the standard SIFT and HOG descriptors,
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while the projected support regions Ŝ are used to compute the descriptors under

evaluation. For instance, let be D̂ one of the SIFT-based descriptors in Table A.5,

we define the set of reference descriptors as D = SIFT (S) and the set of test de-

scriptors D̂ = D̂(Ŝ). Similar definitions hold for the HOG-based descriptors. To

evaluate the matching ability of descriptor D̂, we follow an evaluation protocol simi-

lar to the one discussed in Appendix A.4.3. Specifically, we assume that two support

regions S and Ŝ match if the distance between their descriptors is below a threshold

t. Each descriptor from the reference image is compared to each descriptor from

the distorted one and the numbers of correct and false matches are counted. The

threshold t is varied to obtain the curves. A matching between two descriptors is

considered correct only if they have been computed on corresponding support re-

gions. For each threshold t, the precision and recall values are computed using the

formulas introduced in Appendix A.4.3 and reported in the following:

Precision =
#correct matches

#matches
(A.47)

Recall =
#correct matches

#support regions
. (A.48)

The 1-precision vs recall curves have a straightforward interpretation: a perfect

descriptor would give a recall equal to 1 for any precision. In practice increasing

the value of threshold t increases the recall and decreases the precision. The rate at

which those values vary with respect to the threshold tells how an algorithm is able

to produce distinctive descriptors, which are similar for corresponding regions. As

reported in [165], this kind of evaluation is independent from the matching scheme

one could adopt (e.g., nearest neighbor with or without rejection of ambiguous

matches) and respect the distribution of the descriptors in the space. We also

report the threshold vs F-Measure curves. The F-Measure values are computed as

already discussed in Appendix A.4.3:

Fβ =
(1 + β2)Precision×Recall

β2 × Precision+Recall
(A.49)

where β2 = 0.3 to weigh precision more than recall. The threshold vs F-Measures

curves can be interpreted from a retrieval point of view: a good descriptor allows
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to get a high number of positives with a small amount of noise. This situation is

represented by a F-Measure curve with a high peak for a low threshold value.

A.6.3 Discussion

We have tackled the problem of improving the matching ability of gradient-based de-

scriptors when they are directly computed on wide angle images. We have proposed

the Distortion Adaptive Descriptors, a new paradigm for the correct computation

of local descriptors in the distorted domain. Combining the DAD paradigm with

existing techniques for estimating the gradient of distorted images, we show that it

is possible to improve the matching ability of the SIFT and HOG descriptors. Even

if the proposed descriptors can be computed directly on the wide angle images, the

performances obtained through the rectification process are not matched yet. The

results convey that improving the gradient estimation techniques would allow to

significantly improve the performances of gradient-based local descriptors on wide

angle images.

A.7 Findings

In this chapter, we have investigated direct feature extraction from distorted wide

angle images. This investigation has been carried on in three stages. First, we

studied the performances of affine covariant region detectors directly on distorted

images. Second, we proposed methods for the direct estimation of the gradient

of distorted images. Third, we formulated a paradigm for the direct computation

of gradient-based local descriptors on distorted images. The main finding of this

investigation are as follow:

• While the radial distortion introduced by wide angle sensors is not a linear

transformation, locally it can be approximated as an affine mapping. Affine

covariant region detectors can model such distortion reasonably up to a certain

degree of radial distortion;

• Gradients of distorted images can be estimated by convolution filters derived

generalizing Sobel filters to non-Euclidean manifolds;
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• The computation of gradient-based local descriptors directly on distorted im-

ages can be improved combining the simple DAD paradigm with direct gradi-

ent estimation methods.
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[60] A. R. Doherty, N. Caprani, C. Ó. Conaire, V. Kalnikaite, C. Gurrin, A. F.

Smeaton, and N. E. O’Connor. “Passively recognising human activities through

lifelogging”. In: Computers in Human Behavior 27.5 (2011), pp. 1948–1958.



BIBLIOGRAPHY 207

[61] M. S. Ryoo and L. Matthies. “First-person activity recognition: What are

they doing to me?” In: The IEEE Conference on Computer Vision and Pat-

tern Recognition. 2013, pp. 2730–2737.

[62] M. S. Ryoo, T. J. Fuchs, L. Xia, J. K. Aggarwal, and L. Matthies. “Robot-

Centric Activity Prediction from First-Person Videos: What Will They Do

to Me?” In: Annual ACM/IEEE International Conference on Human-Robot

Interaction. 2015, pp. 295–302.

[63] D. Castro, S. Hickson, V. Bettadapura, E. Thomaz, G. Abowd, H. Chris-

tensen, and I. Essa. “Predicting Daily Activities from Egocentric Images

Using Deep Learning”. In: International Symposium on Wearable Computing

(2015).

[64] S. Singh, C. Arora, and C. V. Jawahar. “First Person Action Recognition

Using Deep Learned Descriptors”. In: The IEEE Conference on Computer

Vision and Pattern Recognition. June 2016.

[65] Y. Zhou, B. Ni, R. Hong, X. Yang, and Q. Tian. “Cascaded Interactional

Targeting Network for Egocentric Video Analysis”. In: The IEEE Conference

on Computer Vision and Pattern Recognition. 2016, pp. 1904–1913.

[66] A. R. Doherty and A. F. Smeaton. “Combining face detection and novelty to

identify important events in a visual lifelog”. In: The IEE International Con-

ference on Computer and Information Technology Workshops. 2008, pp. 348–

353.

[67] N. Jojic, A. Perina, and V. Murino. “Structural epitome: a way to summa-

rize one’s visual experience”. In: Advances in neural information processing

systems. 2010, pp. 1027–1035.

[68] O. Aghazadeh, J. Sullivan, and S. Carlsson. “Novelty detection from an ego-

centric perspective”. In: The IEEE Conference on Computer Vision and Pat-

tern Recognition. 2011, pp. 3297–3304.

[69] Y. J. Lee, J. Ghosh, and K. Grauman. “Discovering important people and

objects for egocentric video summarization.” In: The IEEE Conference on

Computer Vision and Pattern Recognition. Vol. 2. 6. 2012, p. 7.



BIBLIOGRAPHY 208

[70] M. Bolaños, M. Dimiccoli, and P. Radeva. “Towards storytelling from vi-

sual lifelogging: An overview”. In: Transactions on Human-Machine Systems

(2015).

[71] J. Xu, L. Mukherjee, Y. Li, J. Warner, J. M. Rehg, and V. Singh. “Gaze-

enabled Egocentric Video Summarization via Constrained Submodular Maxi-

mization”. In: The IEEE Conference on Computer Vision and Pattern Recog-

nition. 2015, pp. 2235–2244.

[72] B. Xiong, G. Kim, and L. Sigal. “Storyline representation of egocentric videos

with an applications to story-based search”. In: The IEEE International Con-

ference on Computer Vision. 2015, pp. 4525–4533.

[73] V. Bettadapura, D. Castro, and I. Essa. “Discovering picturesque highlights

from egocentric vacation videos”. In: Winter Conference on Applications of

Computer Vision. IEEE. 2016, pp. 1–9.

[74] T. Leelasawassuk, D. Damen, and W. W. Mayol-Cuevas. “Estimating visual

attention from a head mounted IMU”. In: Proceedings of the 2015 ACM

International Symposium on Wearable Computers. 2015, pp. 147–150.

[75] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and W. Mayol-Cuevas.

“You-Do, I-Learn: Discovering Task Relevant Objects and their Modes of

Interaction from Multi-User Egocentric Video”. In: British Machine Vision

Conference. 2014.

[76] D. Damen, T. Leelasawassuk, and W. Mayol-Cuevas. “You-Do, I-Learn: Ego-

centric unsupervised discovery of objects and their modes of interaction to-

wards video-based guidance”. In: Computer Vision and Image Understanding

149 (2015), pp. 98–112.

[77] A. Torralba and A. Oliva. “Statistics of natural image categories”. In: Net-

work: computation in neural systems 14.3 (2003), pp. 391–412.

[78] C. Gurrin, A. F. Smeaton, and A. R. Doherty. “Lifelogging: Personal big

data”. In: Foundations and trends in information retrieval 8.1 (2014), pp. 1–

125.



BIBLIOGRAPHY 209

[79] M. L. Lee and A. K. Dey. “Capture & Access Lifelogging Assistive Technology

for People with Episodic Memory Impairment Non-technical Solutions”. In:

Workshop on Intelligent Systems for Assisted Cognition. 2007, pp. 1–9.

[80] P. Wu, H.-K. Peng, J. Zhu, and Y. Zhang. “Senscare: Semi-automatic activ-

ity summarization system for elderly care”. In: International Conference on

Mobile Computing, Applications, and Services. 2011, pp. 1–19.

[81] E. Thomaz, A. Parnami, I. Essa, and G. D. Abowd. “Feasibility of Identi-

fying Eating Moments from First-person Images Leveraging Human Com-

putation”. In: SenseCam and Pervasive Imaging Conference. 2013, pp. 26–

33.

[82] J. Hernandez, L. Yin, J. M. Rehg, and R. W. Picard. “BioGlass: Physiological

parameter estimation using a head-mounted wearable device”. In: Wireless

Mobile Communication and Healthcare. 2014.

[83] D. Rav̀ı, B. Lo, and G. Yang. “Real-Time Food Intake Classification and En-

ergy Expenditure Estimation on a Mobile Device”. In: Body Sensor Network,

MIT, Boston, MA, USA (2015).

[84] A. Ortis, G. M. Farinella, V. D’Amico, L. Addesso, G. Torrisi, and S. Battiato.

“RECfusion: Automatic Video Curation Driven by Visual Content Popular-

ity”. In: ACM Multimedia. 2015.

[85] G. Lu, Y. Yan, L. Ren, J. Song, N. Sebe, and C. Kambhamettu. “Localize

Me Anywhere, Anytime: A Multi-Task Point-Retrieval Approach”. In: The

IEEE International Conference on Computer Vision. 2015.

[86] H. Wannous, V. Dovgalecs, R. Mégret, and M. Daoudi. “Place recognition

via 3d modeling for personal activity lifelog using wearable camera”. In: In-

ternational Conference on Multimedia Modeling. 2012, pp. 244–254.

[87] M. Dimiccoli, M. Bolaños, E. Talavera, M. Aghaei, S. G. Nikolov, and P.

Radeva. “SR-Clustering: Semantic Regularized Clustering for Egocentric Photo

Streams Segmentation”. In: arXiv preprint arXiv:1512.07143 (2015).

[88] A. Torralba and A. Oliva. “Semantic organization of scenes using discrimi-

nant structural templates”. In: The IEEE International Conference on Com-

puter Vision 2 (1999), pp. 1253–1258.



BIBLIOGRAPHY 210

[89] A. Oliva and A. Torralba. “Modeling the shape of the scene: A holistic rep-

resentation of the spatial envelope”. In: International Journal of Computer

Vision 42.3 (2001), pp. 145–175.

[90] G. M. Farinella and S. Battiato. “Scene classification in compressed and

constrained domain”. In: IET Computer Vision 5.5 (2011), pp. 320–334.

[91] G. M. Farinella, D. Rav̀ı, V. Tomaselli, M. Guarnera, and S. Battiato. “Rep-

resenting Scenes for Real–Time Context Classification on Mobile Devices”.

In: Pattern Recognition 48.4 (2015), pp. 1086–1100.

[92] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. “Learning deep

features for scene recognition using places database”. In: Advances in Neural

Information Processing Systems. 2014, pp. 487–495.

[93] K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman. “The devil is

in the details: an evaluation of recent feature encoding methods.” In: British

Machine Vision Conference. Vol. 2. 2011, p. 8.

[94] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. “Return of the

Devil in the Details: Delving Deep into Convolutional Nets”. In: British Ma-

chine Vision Conference. 2014.

[95] F. Perronnin, J. Sánchez, and T. Mensink. “Improving the fisher kernel for

large-scale image classification”. In: The IEEE International Conference on

Computer Vision. 2010, pp. 143–156.

[96] A. Vedaldi and B. Fulkerson. “VLFeat: An open and portable library of com-

puter vision algorithms”. In: ACM international conference on Multimedia.

2010, pp. 1469–1472.

[97] C. M. Bishop. Pattern recognition and Machine Learning. Springer, 2006.

[98] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information pro-

cessing systems. 2012, pp. 1097–1105.

[99] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.

“Estimating the support of a high-dimensional distribution”. In: Neural com-

putation 13.7 (2001), pp. 1443–1471.



BIBLIOGRAPHY 211

[100] C. Chang and C. Lin. “LIBSVM: A library for support vector machines”.

In: ACM Transactions on Intelligent Systems and Technology 2 (3 2011),

pp. 271–2727.

[101] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014).

[102] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-

scale hierarchical image database”. In: The IEEE Conference on Computer

Vision and Pattern Recognition. 2009, pp. 248–255.

[103] M. S. Ryoo, B. Rothrock, and L. Matthies. “Pooled motion features for first-

person videos”. In: The IEEE Conference on Computer Vision and Pattern

Recognition. 2014.

[104] Y. Gal and Z. Ghahramani. “Dropout as a Bayesian Approximation: Repre-

senting Model Uncertainty in Deep Learning”. In: arXiv:1506.02142 (2015).

[105] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S.

Guadarrama, and T. Darrell. “Caffe: Convolutional Architecture for Fast

Feature Embedding.” In: ACM Multimedia. Vol. 2. 2014, p. 4.

[106] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:

The Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[107] P. H. S. Torr and A. Zisserman. “MLESAC: A new robust estimator with

application to estimating image geometry”. In: Computer Vision and Image

Understanding 78.1 (2000), pp. 138–156.

[108] H. S. Koppula and A. Saxena. “Anticipating human activities using object

affordances for reactive robotic response”. In: IEEE Transcations on Pattern

Analysis and Machine Intelligence 38.1 (2013), pp. 14–29.

[109] T. Lan, T.-C. Chen, and S. Savarese. “A hierarchical representation for fu-

ture action prediction”. In: European Conference on Computer Vision. 2014,

pp. 689–704.

[110] Y. Zhou and T. L. Berg. “Temporal Perception and Prediction in Ego-Centric

Video”. In: The IEEE International Conference on Computer Vision. 2015,

pp. 4498–4506.



BIBLIOGRAPHY 212

[111] B. Soran, A. Farhadi, and L. Shapiro. “Generating Notifications for Missing

Actions: Don’t forget to turn the lights off!” In: The IEEE International

Conference on Computer Vision. 2015, pp. 4669–4677.

[112] T. McCandless and K. Grauman. “Object-Centric Spatio-Temporal Pyramids

for Egocentric Activity Recognition”. In: British Machine Vision Conference

(BMVA). 2013, pp. 301–3011.

[113] M. S. Ryoo. “Human activity prediction: Early recognition of ongoing ac-

tivities from streaming videos”. In: The IEEE International Conference on

Computer Vision. 2011, pp. 1036–1043.

[114] D. Huang, S. Yao, Y. Wang, and F. De La Torre. “Sequential max-margin

event detectors”. In: European conference on computer vision. 2014, pp. 410–

424.

[115] M. Hoai and F. De La Torre. “Max-margin early event detectors”. In: Inter-

national Journal of Computer Vision 107.2 (2014), pp. 191–202.

[116] Y. Kong and Y. Fu. “Max-Margin Action Prediction Machine”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 38.9 (2016), pp. 1844–

1858.

[117] S. Ma, L. Sigal, and S. Sclaroff. “Learning Activity Progression in LSTMs

for Activity Detection and Early Detection”. In: The IEEE Conference on

Computer Vision and Pattern Recognition. 2016.

[118] K. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. “Activity Forecast-

ing”. In: European Conference on Computer Vision. 2012, pp. 201–214.

[119] C. Vondrick, H. Pirsiavash, and A. Torralba. “Anticipating Visual Repre-

sentations with Unlabeled Video”. In: The IEEE Conference on Computer

Vision and Pattern Recognition. 2016.

[120] H. Soo Park, J.-j. Hwang, Y. Niu, and J. Shi. “Egocentric Future Localiza-

tion”. In: The IEEE Conference on Computer Vision and Pattern Recogni-

tion. 2016, pp. 4697–4705.

[121] Y.-C. Su and K. Grauman. “Leaving Some Stones Unturned: Dynamic Fea-

ture Prioritization for Activity Detection in Streaming Video”. In: European

Conference on Computer Vision. 2016.



BIBLIOGRAPHY 213

[122] G. Bertasius, H. S. Park, S. X. Yu, and J. Shi. “First Person Action-Object

Detection with EgoNet”. In: ArXiv 1 (2016).
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