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ABSTRACT

In recent years, it has become established the idea of a novel medicine where a patient is the
center around which multidisciplinary teams (made up of physicians, statisticians and bioin-
formaticians) sew targeted treatments. Precision medicine involves the use of detailed patient-
specific molecular information for diagnosing, categorizing and guiding treatment of a disease,
with the main purpose of improving the clinical outcome compared to a more classical approach.
In precision medicine it is supposed that the cause of a disease is at least partially attributable to
specific genetic or epigenetic characteristics of a patient. Therefore, identifying these specificities
helps building the best treatment for each individual. Next-generation sequencing techniques
are massively employed, giving the ability to quickly and at relatively low cost analyze whole
genomes, epigenomes and transcriptomes. This ability is clinically important since the predic-
tion of treatment effectiveness is usually affected by many factors. A fundamental function in
this new medicine is played by bioinformatics. It has a crucial role in every aspect of precision
medicine, such as the accurate classification of patients, the prediction of new therapies based
on current knowledge, the identification of possible outcomes of a disease or therapy, and the
enrichment of current knowledge on pathogenic processes or on pharmaceuticals.

The aim of this thesis is the development of an integrated framework, based on synergistically
operating tools, models and algorithms, which help to fill some of the major gaps in each step
of the production of highly customized therapies, overcoming, if possible, the limitations of

currently employed techniques, defining a new standard for precision medicine informatics.
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Introduction

In recent years, with the increasing knowledge on genetic diseases, such as cancer, it has become
established the idea of a novel medicine where a patient is the center around which multidis-
ciplinary teams (made up of physicians, statisticians and bioinformaticians) sew targeted treat-
ments. Precision medicine involves the use of detailed patient-specific molecular information
for diagnosing, categorizing and guiding treatment of a disease, with the main purpose of im-
proving the clinical outcome compared to a more classical approach [1]. In precision medicine
it is supposed that the cause of a disease is at least partially attributable to specific genetic or
epigenetic characteristics of a patient. Therefore, identifying these specificities helps building
the best treatment for each individual. However, at present precision treatments rely mainly on
the identification of specific biomarkers, that is molecular events, which are connected in some

way with the response to the treatment but may be completely unrelated to the disease [2—4].



In precision medicine, Next-generation Sequencing (NGS) techniques are massively em-
ployed. This implies the ability to quickly and at relatively low cost analyze the whole genome,
epigenome and transcriptome of a single sample. This ability is clinically important since the
prediction of treatment effectiveness is usually affected by many factors.

A fundamental function in this novel medicine is played by bioinformatics. It has a crucial
role in every aspect of precision medicine, such as the accurate classification of patients, the pre-
diction of new therapies based on current knowledge, the identification of possible outcomes
of a disease or therapy, and the enrichment of current knowledge on pathogenic processes or
on pharmaceuticals. Indeed, precision medicine heavily depends on the ability to collect, man-
age, and process complex information [5]. All data collected from each individual patient data
must be integrated and summarized in order to simplify the final decision-making process of the
therapies.

In the medical field, a large volume of patient data is scattered across a wide variety of databases
that increase in size at an extraordinary velocity. The extraction of the hidden value of this data
is confronting us with specific challenges at the technical level, in the implementation of com-
putational infrastructures, at organizational and managerial level, in the collection and storage
of data, and at scientific level, creating sophisticated algorithmic models for extracting as much
value as possible from the data. All this must provide support for the real-time therapeutic deci-
sion process, allowing physicians to propose therapies tailored to each patient in the shortest time
possible. For that bioinformatics is simultaneously the most important enabler and detractor to
the application of personalized medicine, due to the many challenges that must be addressed to

make it reality [0]:
* the development of systems that enable data integration, traceability and sharing;

* the development of bioinformatics pipelines to extract the most relevant biological infor-

mation from large amounts of data;



* the reproducibility of results.

Many recent publication pointed out the key role of bioinformatics in precision medicine [7].
In addition, many tools have been developed to promote the sharing and analysis of genomic
data in translational research [8].

Nevertheless, these tools have some major shortcomings. The aim of this thesis is the develop-
ment of an integrated framework, based on inter-operating tools, models and algorithms, which
help to fill some of the major gaps in each step of the production of highly customized thera-
pies, overcoming, if possible, the limitations of currently employed techniques. A summarized
workflow is illustrated in Figure 1.1.

In order to predict possible personalized therapies a correct classification of patients, based
on their unique biological characteristics, is needed [9]. To date, this process is accomplished
through the use of biomarkers, which as mentioned previously may not be at all related to the
pathology. One class of techniques, pathway analysis, summarizes genetic and transcriptomic
data of a patient in order to obtain a functional assessment of his biological processes [10-10].
This can be used to realize a novel class of functional biomarkers that not only identify the
state of each patient, but also provide synthesized information on his physiological processes
[17]. Despite this proves promising, currently available methods are not accurate enough and
present significant limitations [10]. For this purpose, we developed a new approach, which, by
introducing further biological knowledge in current models, tries to obtain more accurate results,
making possible its use in the classification of disease states [17].

The correct classification of patients is a step around which we can build a personalized ther-
apy. In order to properly construct a treatment, the knowledge of the inner workings of each
drug is necessary to properly select the most appropriate ones, based on current treatment stan-
dards and patient data. However this stage is currently limited due to incomplete knowledge on
drugs mode of action [18-20] . This led to the development of a novel class of chemoinformatics

techniques dealing with the predictions of drug-target interactions (DTT), therefore increasing



their understanding [21-29]. Such methods are complex but a class of techniques, the recom-
mender systems, due to their simplicity are easily applied in this context [30]. Nevertheless, at
present, no biological information, other than current known interactions, is introduced in the
model. For this reason we decided to fill this important gap by devising a recommendation tech-
nique that introduce biological information in the model, making it more accurate and useful
[31]. This allowed us to fill another major gap, the lack of an algorithmic methodology for the
prediction of drug combinations. A drug combination consists of putting together two or more
drugs whose synergistic action potentiates their final effect or reduces side effects. This practice is,
therefore, crucial in the realization of personalized therapies. However, no automated methodol-
ogy was available to support such activity. We have, therefore, taken advantage of this deficiency
to develop a novel methodology that automatically predicts drug combinations, helping further
investigations [32].

The methods outlined above are fundamental to the correct classification of patients and,
therefore, personalization of therapies. However, a lot of information on the functioning of some
complex biological processes is still missing. For example, long non-coding RNAs (IncRNA),
long RNA molecules correlated with the onset and progression of pathological phenomena [33—
371, have mostly unclear functions [38—40]. At time, only one algorithmic model was available
for the prediction of associations between IncRNAs and diseases [41]. The model used a rec-
ommendation algorithm, in conjunction with known associations, to predict novel ones. Such
method is not sufficiently accurate due to their reduced number. For this reason, we chose to em-
ploy the larger knowledge on IncRNAs-target-disease interactions to build a novel recommenda-
tion model, which uses tripartite network to predict associations [42]. The model using a greater
number of known interactions can achieve better results, facilitating experimentations. Another
biological process of fundamental importance is RNA editing [43—47], a post-translational mod-
ification of RNA nucleotides whose malfunction can lead to serious consequences [48, 49]. At

present little is known about the phenomenon and reliable methods to predict putative editing



sites are needed. In this sense, a prediction model based on logistic regression has been designed
to accurately predict possible sites subject to editing [50]. Finally, as part of more general process
of novel hypotheses production for further experimental testing, we developed a methodology,
which analyzes current knowledge in the form of scientific publications, identifying new latent
hypotheses directing the experimental process.

Despite the above algorithms are necessary to enhance existing biological knowledge and en-
able the development of customized therapies, confirmation of their hypotheses always requires
an accurate and expensive phase of experimental validation. Considering the huge number of
predictions that these methods usually generate, it is necessary to be able to simulate some of
these assumptions in silico, thus reducing the experimental part only in the most promising ones.
At present many methods have been proposed to perform simulations [51-55]. Such method-
ologies typically predict the concentration of molecular elements (eg. RNA, proteins) assuming a
certain interaction network, or pathway, between them. However, their results are not always re-
liable due to the incompleteness of our knowledge of biological processes. Therefore, we decided
to develop a simulation algorithm that estimate the activity of biological processes, representing
them by the state (activated or inhibited) of their endpoints. This led to the production of a
randomized algorithm that uses synthetic expression values and pathway analysis to obtain high
precise simulations on the state of pathways representing biological processes, filling in part the
inaccuracy of currently available methods.

Some results illustrated in this thesis have been published in several peer-reviewed journals in

the field of bioinformatics:

* Salvatore Alaimo, Alfredo Pulvirenti, Rosalba Giugno, and Alfredo Ferro. Drug—target
interaction prediction through domain-tuned network-based inference. Bioinformatics,

29(16):2004-2008, 2013 [31];

* Salvatore Alaimo, Rosalba Giugno, and Alfredo Pulvirenti. ncpred: ncrna-disease asso-

ciation prediction through tripartite network-based inference. Frontiers in bioengineering



and biotechnology, 2, 2014 [42];

Salvatore Alaimo, Vincenzo Bonnici, Damiano Cancemi, Alfredo Ferro, Rosalba Giugno,
and Alfredo Pulvirenti. Dt-web: a web-based application for drug-target interaction and
drug combination prediction through domain-tuned network-based inference. BMC

systems biology, 9(Suppl 3):54, 2015 [32];

Giovanni Nigita, Salvatore Alaimo, Alfredo Ferro, Rosalba Giugno, and Alfredo Pul-
virenti. Knowledge in the investigation of a-to-i rna editing signals. Frontiers in bioengi-

neering and biotechnology, 3, 2015 [50];

Federica Eduati, Lara M Mangravite, Tao Wang, Hao Tang, ] Christopher Bare, Ruili
Huang, Thea Norman, Mike Kellen, Michael P Menden, Jichen Yang, etal. Prediction of
human population responses to toxic compounds by a collaborative competition. Nazure

biotechnology 2015 [50];

Salvatore Alaimo, Rosalba Giugno, Mario Acunzo, Dario Veneziano, Alfredo Ferro, and
Alfredo Pulvirenti. Post-transcriptional knowledge in pathway analysis increases the ac-

curacy of phenotypes classification. arXiv preprint arXiv:1510.08237, 2015 [17].
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Figure 1.1: Overview of the workflow presented in this thesis. Starting from patient clinical, genetic and transcriptomic
data, through pathway analysis we determine functional biomarkers, which are used to classify the patient with respect
to areference and determine his specific characteristics. These characteristics are used together with the predicted
and validated information about drugs to define possible therapies, which are subsequently filtered by an in silico
simulation. The most promising ones are validated in laboratory. The treatment thus generated can be administered

to the patient, and the process continues until his remission. Pathway analysis is further empowered with information
coming from text-mining or predictions of non-coding RNAs interaction, or RNA editing events.



Prerequisites

2.1 MATHEMATICAL AND ALGORITHMIC PREREQUISITES

This section is a brief introduction to probability, classification and recommendation algorithms.

2.1.1 FUNDAMENTALS OF PROBABILITY AND STATISTICS

In this section I will illustrate the fundamental concepts of probability and statistics. The first
part will describe the basics of probability theory and the concept of random variables. Later,
the basic concepts of statistics (such as mean, variance) and a brief description on the normal

and hypergeometric distributions will be presented.

FuNDAMENTALS OF PrOBABILITY The probability is a concept used everyday. Taking a card

from a deck of playing cards, flipping a coin represent classic examples. The process of tossing a



coin is called an experiment. The set of all possible experiments is defined population or sample
space. The probability theory deals with experiments which may have different sets of outcomes.
For simplicity we will consider only events whose sample space is finite. Any subset of a sample
space is called an event. An event containing exactly one element is called elementary event.
The elements contained in an event is the subset of possible outcomes of an experiment. The
degree of certainty that an event contains the actual result of the experiment is indicated with
a real number between 0 and 1 called the probability of the event. A value of 0 means the
certainty that the event does not contain the result of the experiment, 1 means that we are sure
of the opposite. Intermediate values represent the different degrees of belief. A more formal

definition of probability is as follows:

Definition 2.1. Suppose we have a sample space 2 = {ej, e2,..., ey} containing n distinct
elements, and let P (§2) denote the power set of €2, or the set of events. A functionp : P (2) —
[0, 1] that assigns a real number to each event £ C () is called a probability function on the

events of {1 if it satisfies the following conditions:
1. 0<p({e}) <1 forl<i<n
2 Y0 p({e)) = 1
3.VECQ: p(E)=3.cpp{e})
4. p({}) =0
Definition 2.2. The pair (€2, p) is called a probability space.

In probability theory the principle of indifference assumes fundamental importance. It states
that the outcomes are to be considered equiprobable if there is no reason to expect one over the
other. This implies that if there are n elements in a sample space, each will have a probability

equal to 1/n.
Axiom 2.1. Given a probability space (2, p), some axioms are:

9



2.0<p(E)<1 VECQ,
3. VE,F C Qsuchtha ENF =0, p(EUF)=p(E)+p(F),
4. VE,F CQsuchthaa ENF #0, p(EUF) =p(E)+p(F)-p(EUF).

Suppose we want to determine the probability of an event £ assuming that another event F
happened. This quantity is called the conditional probability of E given F' and is denoted by

p (E|F). It can be estimated as:

p(ENF)

p(BIF) = P

(2.1)

We say that two events E and F are independent if p (E|F') = p(FE). This implies that if
two events are independent then p(ENF) = p(E)p(F). If two events are independent
once we know the outcome of a third event, we are in the presence of conditional indepen-
dence. More formally we say that two events £ and F' are conditionally independent given G
ifp(E|FNG)=p(E|G).

Now, given two events £ and F such that p (E) # 0 and p (F') # 0, the Bayes Theorem

affirms that:
p(FIE)p(E)

p(BIF) = 7=

(2.2)

RanDoM VariaBLEs  Given a probability space (2, p), we call random variable X a function
whose domain is 2. The range of values taken by X is called the space of X. When dealing with
random variables, we denote with X = x the event {e € Q|X (e) = z}. We call the values of
p (X = )" for all values  of X the probability distribution (or probability mass function or
pmf) of the random variable X. When we are referring to the probability distribution of X, we

write p (X). Let X and Y be two random variables defined on the same sample space §2. We

"For simplicity, we will use the notation p () instead of p (X = z).

10



call p (X = x,Y = y) the joint probability distribution of X and Y. Then the following two

equations holds:

p(X:IL‘):Zp(X:l',Y:y), (2.3)
p(X=2)=> p(X=2Y =y)p(Y =y). (2.4)
Yy

In equation 2.3, the probability distribution p (X = x) is also called the marginal probability
distribution of X relative to the joint distribution p (X = z,Y = y).
Given a set of n random variables X1, ..., X, defined on the same sample space (2, we call

chain rule the following equation:

p(x1,...,xn) =p(Tp|Tn_1,Tn—2,...,21) X ... X p(x2]21) X P(271). (2.5)

Another special function associated with any discrete random variable is called cumulative
distribution function (or cdf). This function is defined for any real number x as the probability
that the random variable will be less than or equal to . The function notation F' is often used

to represent the cdf of a random variable. By definition, we can write

Fx(z)=p(X <x).

The above arguments assumes that the set of possible values of a random variable is finite
and countable. If the set of possible values is uncountably infinite (i.e. real numbers), we
speak instead of continuous random variables. Unlike their discrete counterparts, the associ-
ated probability function, called probability density function (or pdf), is a continuous function
that describes the relative likelihood for the random variable to take on a given value. Given a
continuous random variable X, its probability density function is typically indicated by fx (z).

The area defined by the function in a precise range of values corresponds to the probability of

11



observing such values. More formally:

b
p(aSXSb):/ fo () dz.

This implies that p (a) = [ f, (2) dz = 0 for each x in the space of the variable.

In order for the area of a pdf to correspond with a probability, some restrictions are necessary:
1. fX (.T) >0 Va
+o00o
2. [[ 2 fo(x)de=1

The cumulative distribution function for a continuous random variable is the continuous
function defined by

Fx (z)=p(X <),

for any real number x. Since the function F' is defined as a probability, it only returns values
in the range [0, 1]. Plugging any real number x into F'x (x) returns the probability that the
random variable X will have a value less than or equal to the number z. Note that Fx (x) and

fx (z) are closely related by this definition:

Be@= [

=—00

where ¢ has been used as the dummy variable of integration to be perfectly correct from a calculus

standpoint. From the other direction, we have

dFX (x)
dx

fx (z) =

and so it is clear that given one of these functions, we can determine the other.
Now, suppose we have two random variables X and Y defined on the same probability

space 2. If for all values  of X and y of Y, the events X = x and Y = y are inde-

12



pendent, p (X = z|Y =y) = p(X = x), then we say that X and Y are independent, and
write I (X,Y). If we have a third random variable Z, and whenever p (z) # 0 the events
X =z andY = y are conditionally independent given Z = z,p (X =z|Y =yNZ =2) =
p (X = z|Z = z), then we say that X and Y are conditionally independent given Z, and write
1(X,Y|2).

FUNDAMENTALS OF STATISTICS A pmf gives all the information we need about a discrete ran-
dom variable, while a pdf does the same for a continuous random variable. We can calculate
the probability of any event we want from them. However, to summarize the distribution more
concisely, two common calculations can be made for a random variable: the expected value (or
mean), and the variance.

The mean of a random variable is defined as the average value that would be observed for the

random variable if it could be observed over and over again an infinite number of times. It is

defined as
E [X] :Zx-p(X:a;)

for a discrete random variable, and

E[X]—/x-f(m)dx

for a continuous random variable. The sum or integral is taken over all possible values of X.
In either case, it is reasonable to interpret this calculation as taking the weighted average of the
possible values of X, where the weights are the probabilities.

The variance of a random variable is a measure of how spread out its possible values are. A
random variable will have a small variance if its possible values all fall in a small, tight range with
high probability. It will have a large variance if its possible values are very spread out over a wide

range and there is a reasonable chance than any of those values could be observed. The variance

13



calculation is

VIX] =) a’p(X =x)- E[X].

For a continuous random variable, we just replace summation with integration. Another equiv-

alent formula for the variance which is sometimes easier to deal with is
V[X]=E[X?] - (E[X])

A calculation related to the variance is called the standard deviation of a random variable. It is
simply defined as the positive square root of the variance. This is actually used more often in
practice than the variance because the units of the standard deviation calculation are the same as
the units of the original variable, while the units of the variance are the square of the units of the

original variable.

ox =V I[X]

Suppose now we have two random variables X and Y. Their relationship can be obtained

through a measure called covariance, or Cov (X,Y). It is defined as
Cow(X,)Y)=E[(X-EX])(Y-E[Y]))]=E[XY]-E[X]E[Y].

The covariance itself does not convey much meaning concerning the relationship between X
and Y. To accomplish this we compute the correlation coefficient from it. Suppose we have
two discrete numeric random variables X and Y. Then the correlation coefficient p (X,Y") of

X and Y is given by:
Cov (X,Y)

VIRV

The correlation coefficient is always between —1 and +1. A value greater than 0 indicates the
variables are positively correlated, and a value less than 0 indicates they are negatively correlated.

By positively correlated we mean as one increases the other increases, while by negatively corre-
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Figure 2.1: Examples of normal distributions with different values of 4 and 2. Inred the standard normal distribution
is highlited.
lated we mean as one increases the other decreases. Finally if the two variables are independent

then their correlation coeflicient will be 0.

Tue HypERGEOMETRIC DisTRIBUTION The hypergeometric distribution is a discrete proba-
bility distribution that describes the probability of k successes in n draws, without replacement,
from a finite population of size IV that contains exactly K successes, wherein each draw is either
a success or a failure.

A random variable X follows the hypergeometric distribution if its pmf" is given by

p(X =k)=

The pmf is positive when max (0,n + K — N) < k < min (K, n).

Tae NorMAL DisTriBuTiON  The normal distribution (Figure 2.1) is a very common continu-
ous probability distribution often used in the natural and social sciences to represent real-valued
random variables whose distributions are not known [57].

The importance of the normal distribution is given by the central limit theorem that, in its
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most general form, states the averages of random variables independently drawn from indepen-
dent distributions converge in distribution to the normal. Since physical quantities are expected
to be the sum of many independent processes often they have distributions that are nearly normal
[58].

The probability density function of the normal distribution is:

1 _mw?

f(@lp, o) = v - 207
Here, 1 is the expectation of the distribution. The parameter o is its standard deviation with
its variance then 02, A random variable with a Gaussian distribution is said to be normally
distributed. When ;1 = 0 and 0 = 1, the distribution is called standard normal distribution
(Figure 2.1), N (0, 1). The normal distribution is also often denoted by N (11, 0%). Thus when
a random variable X is distributed normally with mean j and variance 02, we write X ~
N (M,O‘Q).

The distribution has the following properties:

* Itis symmetric around its mean, which is at the same time its median, and it divides the

data in half [59].

* It is unimodal: its first derivative is positive for < p, negative for x > 11, and zero only

atx = p [59].

* Its density has two inflection points (where the second derivative of f is zero and changes

sign), located one standard deviation away from the mean [59].

2.1.2 INTRODUCTION TO CLASSIFICATION

Data classification has applications in a wide variety of fields. The problem attempts to learn

relationship between sets of feature variables and targets variable. Many practical problems can
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be expressed as associations between feature and target variables, this provides a broad range of

applicability. The problem can be stated as follows:

Definition 2.3. Given a set of training data points along with associated training labels, deter-

mine the class label for an unlabeled test instance.
Classification algorithms typically contain two phases:
1. Training Phase: a model is constructed from the training data.
2. Testing Phase: the model is used to assign a label to an unlabeled test instance.

In some cases the training phase is omitted entirely, and the classification is performed directly
from the relationship between a test instance and the set of training instances. Examples of such
a scenario are the nearest neighbor classifiers, where the class of an instance is assigned by looking
at its neighborhood.

The classification problem segments unseen test instances into groups, as defined by the class
label. While the segmentation of examples into groups is also done by clustering, there is a key
difference between the two problems. In the case of clustering, the segmentation is done by using
similarities between feature variables, with no prior knowledge. In classification, segmentation
is done on the basis of a training data set. As a result, the classification problem is referred to as

supervised learning, while clustering as unsupervised learning.

Logistic ReGressioN Typically data classification algorithms use statistical inference tech-
niques to find the best class to which assign one instance, giving at the same time its assignment
probability p (Y| X), where Y is the class to which the instance is assigned and X are its features.
Classification algorithms that probabilistically classify instances are called probabilistic methods.
Logistic regression is a probabilistic approach used to determine p (Y'|X'), when Y is a discrete
value and X = {Xj,..., Xy} is a vector containing both discrete and continuous variables.

For simplicity, here we will describe only the case in which Y € {0, 1}. Formally, the logistic
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regression model is defined as:

p(Y =1X) =g (07 X), (2.6)
where
1
g(z) = 15 o7 (2.7)
and
d
0T X = 0y + Z 0; X;. (2.8)
=1

g (2) is called the logistic function. As the sum of probabilities must be equal to 1, p (Y = 0| X)
can be calculated as 1 — p (Y = 1]|X). Because logistic regression predicts probabilities, rather

than just classes, we can use the log-likelihood as:

_ T
Iog< p(Y =1]X) > =lo g (0 X) —9TX. (2.9)

I—p(Y=1]X)) ~ *®1-¢(0Tx)
When classifying using logistic regression, the training phase consists in determining the pa-
rameters f which minimizes classification error (eg. rate of incorrectly classified data points).

Therefore, this parameter vector can be used to classify unlabeled instances.

NEAREST SHRUNKEN CENTROIDS ALGORITHM A different approach to classification is the
nearest shrunken centroid methodology [60]. It represents the data points in a class through a
centroid, to which de-noising procedure is applied to improve the predictive value of the method.

Let x;; be the value of i-th feature (1 = 1,2, ..., p) of sample j (j = 1,2,...,n). Suppose,
also, to have K classes and to indicate with C}, and nj, respectively the set and the number of
samples in class k. The i-th component of class k centroid is calculated as the average value of
the i-th feature for all elements of class k, Z;;, = jeCy ij/ny, while the overall centroid is the
mean of the i-th feature for all values, z; = Z?:l ij/n.

The method consists in shrinking class centroids toward overall centroid after a standardizing
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by the standard deviation of each feature of a class. Standardization has the effect of giving greater

weight to those components whose intra-class values are more stable. Let

Tik — X;
dijp = ——— 2 | 2.10
ik my - (Si + 80) ( )

where

si= - _1 =2 > (i — 7). (2.11)

my = /1/nx — L/n, and s is equal to the median value of s; over the set of features.
Thus d;j, can be interpreted as a # statistic that compares class k to the overall centroid for

feature 7. We can therefore rewrite equation 2.10 as:
Tip = Ty + my (8i + s0) di, (2.12)

The method shrinks d;j, toward zero, giving d;,. and yielding shrunken centroids or proto-

types:
Tip = Ty + my (s + s0) diy,. (2.13)

Such a shrinkage is obtained through a process of soft thresholding as:
iy = sign (dig) (|dix| — A) (2.14)

where t4 = ¢ if t > 0 and zero otherwise, and A is set so as to reduce classification error.
The method just described has the property to eliminate many irrelevant components from class
prediction by increasing A parameter.

Suppose now we have an unclassified sample 2* = {z},23,..., x;} Authors define a
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discriminant score for class & as:

,,2

p
Z ‘T“c — 2log (2.15)
im1 (si + so

where T, = nk/n is the class prior probability, which gives the overall frequency of class k. A

sample is then classified as the class ¢ which minimizes §; ().

2.1.3 INTRODUCTION TO RECOMMENDATION SYSTEMS

FUNDAMENTALS OF RECOMMENDATION SYSTEMS Recommendation algorithms are a class of
systems for information filtering whose main objective is the prediction of users’ preferences for
some objects. In recent years, they have become commonly used and applied in various fields.
Their main application lies in e-commerce in the form of web-based software. However, they
have been successfully employed in other areas related, for example, to bioinformatics [30, 61].

A recommendation system consists of users and objects. Each user collects some objects, for
which he can also express a degree of preference. The purpose of the algorithm is to infer the
user’s preferences and provide scores to objects not yet owned, so that the ones, which most likely
will appeal the user, will be rated higher than the others.

In a recommendation system, we denote the set of objects as O = {01, 02, ...,0,} and the
set of users as U = {ui,ug,...,un}. The whole system can be fully described by a sparse
matrix 7' = {t;;}, . . called utility matrix. In such a matrix, ¢;; has a value if and only if the
user u; has collected and provided feedback on the object 0;. In the event that users can only
collect objects without providing any rating, the system can be described by a bipartite graph
G (0,U, E) where E = {e;j : 0; € O,u;j € U} is the set of edges. Each edge indicates that a
user has collected an object. This graph can be described in a more compact form by means of
an adjacency matrix A = {a;},..,., where a;; = 1 if u; collected 0;, and a;; = 0 otherwise.
A reasonable assumption in this case is that the objects collected by a user corresponds to his

preferences, and the recommendation algorithm aims to predict users’ views on other items.
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Up to now, the algorithm mostly applied in this context is collaborative filtering (CF) [62, 63].
It is based on a similarity measure between users. Consequently, the prediction for a particular
user is computed employing information provided by similar ones. A Pearson-like evaluation is

typically employed to evaluate similarity between two users:

D11 ity
min {k (u;) , k (uj)}’

Sij = (2.16)

where k (u;) is the number of items collected by the user u;. For any user-object pair (u; — 0;),

if not already collected (a;; = 0), a predicted score v;; can be computed as:

m . .
212171# Sl

(2.17)
Zﬁu# Sli

Vij =

Two factors influence positively v;;: objects collected from a large number of users, objects
collected frequently from users very similar to u;. The latter correspond to the most significant
predictions. All items are then sorted in descending order using their prediction score, and only

those at the top will be recommended.

EVALUATING RECOMMENDATION SYSTEMS Verifying the reliability of a recommender system
result is typically a complex phase. A basic evaluation strategy considers it as a classification al-
gorithm that distinguishes, for each user, liked objects from un-liked ones. We can then apply
traditional metrics such as mean squared error or receiver operating characteristic curves to evalu-
ate results. Another strategy is to define new metrics specifically designed to assess performances
of a recommendation system [64].

In common between the two approaches is the application of a k-fold cross-validation to
obtain a more accurate estimate of methods reliability. The set of all user-object preferences is
randomly partitioned into k disjoint subsets. One is selected as a test set, and the recommenda-

tion algorithm is applied to the others. Evaluation metrics are, then, computed, using the test
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set as a reference. The process is repeated until all the partitions have been selected as test set,
and the results of each metric are averaged in order to obtain an unbiased estimate of the quality
of the methodology.

Four metrics have been specifically developed to assess the quality of a recommender algo-
rithm. Two measure performances in terms of predictions accuracy, by measuring the capability

of recovering interactions in the test set, while two measures recommendation diversity:

RECOVERY OF DELETED LINKS, 7. An accurate method typically will place potentially prefer-
able objects higher than non-preferable ones. Assuming that a user has collected only liked items,
the pairs present in the test set, in principle, should have a higher score than the others. There-
fore, by applying the recommendation algorithm and computing the sorted set of predictions
for a user u;, we can compute a relative rank for an uncollected object 0;, whose position in the

list is p, as:

p

_— 2.18
o (2.18)

Tij =

Such a rank should be smaller if the pair u; —o; is part of the test set. The recovery (1) corresponds
to the average of such relative ranking for all user-object pairs in the test set. The lower its value,
the greater is the ability of the algorithm to recover deleted interactions, and therefore to achieve

accurate results.

PRECISION AND RECALL ENHANCEMENT, €p (L) AND ep (L). Typically, only the highest
portion of the recommendation list of a user is employed for further purposes, which is why
a more practical measure of the reliability of a reccommendation system may consider only the
Top-L predictions. For a user u;, let D; be the number of deleted object for user u;, and d; (L)
the ones predicted in the Top-L places. An average of the ratios d; (L)/L and d; (L)/D; for all
users with at least one object in the test set, correspond, respectively, to the precision P (L) and
recall R (L) for the recommendation process [63, 65].

We can get a better perspective by considering these values with respect to random model.
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Let Prgng (L) and Ryqnd (L) be, respectively, the precision and the recall of a recommendation
algorithm that randomly assign scores to user-object pairs. If the user u; has a total of D; objects

in the test set, then P! (L) = Di/(o—k;) & Di/o, since the total number of objects is much

and
greater than the number of collected ones. Averaging for all users, we obtain P4 (L) = D/ou,
where D is the size of the test set. By contrast, the average number of deleted objects in the

Top-L positions is given by L-Di/(o—k;) &~ L-Di/o and, therefore, R;qnq (L) = L/o. We can now

define precision and recall enhancement as:

ep (L) = Pj n(dL()L) —P(L)- %, (2.19)
er (L) = ng()m = R(L)- 7. (2.20)

A high value of precision enhancement indicates that the fraction of relevant predictions made by
the algorithm is substantially higher than a completely random one. A high recall enhancement

indicates that the percentage of correct predictions is significantly higher than the null model.

PERSONALIZATION, h (L). A first measure of diversity to consider when evaluating a recom-
mendation algorithm is the uniqueness of the predictions made for different users, namely the
inter-user diversity. Given two users u; and 1, a measure of inter-list distance can be computed
as:

4 (L)

hij (L) = 1= =222, (2.21)

where g;; (L) is the number of common Top-L predictions between the two users. It follows
immediately that this distance has a value 0 if the two users have the same prediction, 1 in the
case of completely different lists. The average distance calculated for all possible pairs of users
corresponds to the personalization metric. Higher, or lower, values correspond, respectively, to

a greater, or lesser, diversity of recommendations.
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SURPRISAL/NOVELTY, [ (L). Evaluating the ability of a reccommendation system to generate
novel and unexpected predictions is a key measure. In this context, we define as unpredictabil-
ity of results, the ability to suggest items for which it is very unlikely that a user may already
know them. To measure this, we use the concept of self-information or surprisal [66], which
determines how unexpected is an object with respect to its global popularity. Given an object
0j, the probability that a user has collected it is given by #(j)/m. Its self-information is therefore
I; = log, (™/k()). The average of such values for the Top-L predictions of a user u; correspond
to its self-information, I; (L). By averaging for all users, we get a measure of the global surprisal
I(L).

In classical applications, a value L equal to 30 is chosen a priori. In any case, no variations in
the relative performances of the algorithms can be observed by varying L, as long as its value is

significantly smaller than the number of objects in the system.

2.1.4 TexT ANNOTATORS: TAGME

A typical paradigm used to simplify the representation in information retrieval (IR) problems is
the bag-of-words model. A text is represented as a multi-set of his words, ignoring grammar and
arrangement, but keeping the multiplicity. Recently, much work has been done to overcome
such simplistic model with the aim to improve the search of information within textual data. In
this sense, the identification of sequences of words (spots, anchors) in an input text and their
annotation with unambiguous entities that describe their meaning is a fundamental step. Two
main approaches have been used to annotate texts with such information.

The first approach extends the traditional topic-based vector-space model, which consists of
a space with d dimensions where each one is a key topic, with additional dimensions from an
external knowledge base, such as Wikipedia or the entire Web. This approach extends bag-
of-words model with more concepts, but a big problem is posed by the contamination with

unrelated concepts.
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To overcome these limitations, a second approach tries to annotate only text fragments that
contain salient concepts without using a vector-space model. The basic idea is to identify in the
text sequences of short and meaningful terms and connect them to a concept unambiguously
obtained from a catalog. The catalog can be either a limited set of concepts or a knowledge base
such as Wikipedia. TAGME [67, 68] leverages this idea to obtain a fast and accurate annotation
of a short text.

To speed up the processing of texts, ZAGME indexes some information taken from Wikipedia.

* Anchor dictionary: an index of all anchors present in the Wikipedia pages, augmented

with the titles of redirect pages plus some variants of the page titles.

* Page catalog: an index of all Wikipedia pages, without disambiguation pages, list pages,

and redirect pages.

* In-link graph: a directed graph whose nodes are the pages in the Page Catalog, and whose

edges are the links among these pages.

TAGME uses these data structures to annotate a short text via three main steps: (i) anchor
parsing, (ii) disambiguation and (iii) pruning.

Anchor parsing The algorithm first receives a short text in input, tokenizes it, and then de-
tects the anchors by querying the Anchor dictionary for sequences of up to 6 words. Anchor
disambiguation Then the algorithm cross-references each of these anchors with one pertinent
sense drawn from the Page catalog. This is done by means of a simple and fast disambiguation
score that take into account the sparseness of the anchors and the possible lack of unambiguous
anchors in short texts. Anchor pruning The disambiguation phase produces a set of candidate
annotations, one per anchor detected in the input text. This set is pruned in order to discard the
un-meaningful annotations. These annotations are detected by means of a scoring function that

takes into account two features: the link probability of an anchor and the coherence between a
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Figure 2.2: A typical animal cell with its organelles. Eukaryotic cells are typically much larger than prokaryotic ones.
They have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton composed of micro-
tubules, microfilaments, and intermediate filaments, which play an important role in defining the cell’s organization and
shape. The most notable organelles are: the nucleus, surrounded by a double membrane with pores, that contains all
the genetic material of the cell; the ribosomes involved in making protein; the mitochondria which are the powerhouse
of the cell as they provide energy to the cell in the form of ATP. Image courtesy of [69].

candidate annotation and the others. The resulting annotations are returned by the algorithm

along with scores that identify their reliability.

2.2 BioLoGIicaL PREREQUISITES

This section is a brief introduction to the necessary background in biology and genetics.

2.2.1 GENES, PROTEINS AND THE CENTRAL DOGMA OF BIOLOGY

The cell is the basic structural and functional unit of all organisms. A single cell is the lowest
form of life thought to be possible. Most organisms consist of more than one cell, each of which
becomes specialised into particular functions towards the cause of the entire organism (such as
liver cells, skin cells, etc). Cells possess many membrane-bound structures inside them, called
organelles. Figure 2.2 shows an overview of the various structures inside an animal cell.

In the cell, which is surrounded by an outer membrane, we find the nucleus. It contains DNA

(Figure 2.3), a biomolecule where all instructions for building Proteins are deposited. Proteins
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are the main actuators of a cell. Portions of DNA that encode for proteins are also called genes.
The production of a protein occurs in a two step process. First the DNA is transcribed into
RNA, a molecule that is responsible to transfer the instructions to the ribosomes. Subsequently,
in a process called translation, an RNA molecule is used as a mold by ribosomes to assemble
a protein. An active gene is said to be expressed, and this process is called gene expression.
The central dogma of molecular biology defines precisely the flow of genetic information in a

biological system (Figure 2.4). Citing Crick, who stated it first in 1956 [70, 71]:

The central dogma of molecular biology deals with the detailed residue-by-residue
transfer of sequential information. It states that such information cannot be trans-

ferred back from protein to either protein or nucleic acid. — Francis Crick

The central dogma has also been described as DNA makes RNA and RNA makes protein [72]
a positive statement which was originally termed #he sequence hypothesis by Crick. However, this
simplification does not make it clear that the central dogma as stated by Crick does not preclude

the reverse flow of information from RNA to DNA, only ruling out the flow from protein to

RNA or DNA (Figure 2.4).

DNA The DNA (deoxyribonucleic acid) is the molecule that carries most of the genetic instruc-
tions used in the development, functioning and reproduction of all living organisms. A typical
DNA molecule consists of two paired filaments (st7ands) that coil forming a double helix struc-
ture (Figure 2.5) [75]. Each DNA strand is composed of simpler structures called nucleotides.
Each nucleotide consists of a nitrogenous base, a pentose sugar (called deoxyribose), and at least
one phosphate group. The nitrogenous bases, which characterize each nucleotide, are of four
types: cytosine (C), guanine (G), adenine (A), and thymine (7). Each nucleotide is linked to
the next via a chain of covalent bonds between its sugar and the phosphate group of the next
one, forming the so-called backbone of the DNA molecule. The nitrogenous bases of a strand

form hydrogen bonds with those of the adjacent one by following precise rules of pairing, called
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Figure 2.3: The DNA in an eukaryotic cell. DNA usually occurs as linear chromosomes in eukaryotes, and circular chromo-
somes in prokaryotes. The set of chromosomes in a cell makes up its genome; the human genome has approximately 3
billion base pairs of DNA arranged into 46 chromosomes[/3]. Image courtesy of [74].
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Figure 2.4: Information flow in biological systems.
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canonical pairings or Watson-Crick pairings. The rules of pairing states that A binds with 7°
and C with G. The latter pairing is more stable because of the greater strength of the bond.

The main task of a DNA molecule is storing biological information. For this reason, the back-
bone is resistant to cuts, and both strands of the molecule, thanks to the rules of base pairing,
contain a copy of the same information.

In the cell nucleus, the DNA is organized into long structures called chromosomes (Figure
2.6). Typically eukaryotic cells contain rwo copies of the same linear chromosome (diploid cells),
each coming from one of the two parents. During cell replication (mitosis), the chromosomes
are duplicated in a copying process, which gives each cell its own set of genetic material. Some
organelles, such as mitochondria and chloroplasts have their own DNA inside. Special struc-
tures called histones (Figure 2.7) are used to compact and organize the genetic material. DA,
packaged inside the nucleus by histones, forms a unit called nucleosome. Packed and condensed
DNA forms the chromatin.

In prokaryotes, the genome is typically stored in a single circular chromosome, although small
circular chromosomes (plasmids) are used as a complement, and are transferable between species.

DNA was isolated for the first time by Friedrich Miescher in 1869 and its molecular structure

was identified by James Watson and Francis Crick in 1953 [75].

RNA RNA (ribonucleic acid) is a molecule involved in the encoding, decoding, adjustment,
and expression of the information contained in the DNA of an organism (Figure 2.8). Like DIVA,
RNA is formed by a chain of nucleotides. Some RNA molecules also have an active role within
the cell helping to catalyze biological reactions, or by identifying and communicating cellular
signals.

The chemical structure of RNVA is very similar to that of DNA, but some major differences are

observable:

* RNA is a single stranded molecule typically much shorter than DNA. However, it can fold

back on itself to form very complex structures (secondary structure) [78], which unlike
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Figure 2.5: The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the
detailed structure of two base pairs are shown in the bottom right. Image courtesy of [76].
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Figure 2.6: Fluorescent microscopy image of a human female karyotype, showing 23 pairs of chromosomes. Marked in
yellow, we can see some genes. The largest chromosomes are around 10 times the size of the smallest. Chromosomes
typically have a linear form. In this particular image the cell is preparing to divide so for each chromosome a copy was
produced forming the classic X-shape. Image from Bolzer et al. [77].
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Figure 2.7: A nucleosome that is, a complex of histones with the DNA molecule coiled around them.
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Figure 2.8: Bases in an RNA molecule.



Figure 2.9: An example of RNA secondary structure. Highlighted are the bases (green) and the ribose-phosphate back-
bone (blue). Image courtesy of [80].

DNA can also carry out very complex functions [79] (Figure 2.9).

* 'The sugar that forms the nucleotides of RNA is a ribose, instead of a deoxyribose in DNA.

This makes RIVA less stable and easier to degrade.
* Thymine is replaced by wuracil (U) of which it is a modified form.

In one cell there are many types of RNA, each processed differently, depending on the use made

of it.

GENEs A gene is a DNA region encoding a functional RNA or protein, and it is the molecular
unit of heredity [81, 82] (Figure 2.10). The transmission of a gene to the offspring of an organism
is the basis of the inheritance of phenotypic traits. Some traits are immediately visible, such as
eye color, others are not, such as blood type. Genes can acquire mutations in the sequence, called
alleles.

The set of genes in an eukaryotic organism or cell is known as its genome. It can be stored in

one or more chromosomes (Figure 2.6). A chromosome is a long double-stranded DNA filament
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Figure 2.10: A gene is a segment of DNA that encodes function. A chromosome consists of a long strand of DNA con-
taining many genes. A human chromosome can have up to 500 million base pairs of DNA with thousands of genes.
Image courtesy of [83].

in which thousands genes are packed. The region of chromosome in which a specific gene is
located is called its locus. Each locus contains an allele of the gene. Changes to the structure of
chromatin affect gene activity, making genes more or less accessible to cell machinery.
Eukaryotes typically have many regions of DNA that have no apparent function (junk DNA)
although recently many of such regions have been associated with the processes of gene activ-
ity regulation. In humans, only 2% of the genome is constituted by genes [84]. Differently
from eukaryotes, prokaryotes chromosomes, probably due to the shorter genome, are typically

extremely dense in genes, containing only a few regions that have no apparent function.

ProTEINS Proteins are large molecules that consist of one or more chains of amino acids (or
residues). Proteins are the functional units of living organisms, and are responsible for conduct-
ing the majority of biological functions. A protein mainly differ from another in amino acidic
sequence, which is typically folded to form a specific three-dimensional shape that determines its

activity (Figure 2.11). A linear chain of amino acids is called a polypeptide. A protein consists
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Figure 2.11: A representation of the 3D structure of the protein myoglobin. This protein was the first to have its struc-
ture solved by X-ray crystallography. Towards the right-center among the coils, a prosthetic group called a heme group
(shown in gray) with a bound oxygen molecule (red).

of a long polypeptide chain.

The sequence of amino acids that makes up a protein is defined by the sequence of a par-
ticular gene. Typically there are 20 amino acids (A complete list is available in figure 2.12).
Shortly after or even during synthesis, the residues in a protein are often chemically modified by
post-translational modification, which alters its function. Sometimes proteins have non-peptide
groups attached, which can be called prosthetic groups or cofactors (Figure 2.11). Proteins
mainly work together to achieve a particular function, forming protein complexes.

Once formed, proteins only exist for a certain period of time, and are then degraded and
recycled by the cell machinery through the process of protein turnover. A protein’s lifespan is
measured in terms of its half-life and covers a wide range (from minutes to years). Abnormal
or mis-folded proteins, typically, are degraded more rapidly either due to being targeted for

destruction or due to being unstable.

TraNscRIPTION AND TRaNsLATION The protein production process, or expression of a gene,
is composed of three phases: transcription, mRNA maturation, and translation (Figure 2.13).
However, before talking about such a process, more details on the structure of a gene must be

given.
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Figure 2.12: A complete list of the 20 amino acids grouped by their chemical properties.
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A gene consists of many parts (see Figure 2.13), of which the portion used to produce a pro-
tein is typically small. A gene is enclosed between a promoter and a terminator. The promoter
is the region in which the enzymes involved in the transcription bind to begin the process. The
terminator is the portion in which the RNA synthesis process ends. An RNA, which provides in-
structions to build a protein, is called messenger RNA or mRNA. Downstream and upstream of
a gene special sequences called enhancer, or silencer, may be present. They are used to facilitate
or prevent the transcription process when bound to special proteins called Transcription Factors.
Upstream and downstream of the region that contains the instructions for protein production
there are two portions which are also transcribed, but not translated, called 5’ untranslated re-
gion (5’ UTR) and 3’ untranslated region (3" UTR). The first has an important role in the
regulation of the protein production process. The latter also has the task of regulating the trans-
lation efliciency, the stability of the messenger, and its location. Finally, the region coding for
the protein is composed of portions that contain instructions, called exons, and unused portions,
called introns, which may also contain other elements, such as other genes.

As mentioned previously, the DNA consists of two complementary and antiparallel strands.
We denote each end of a strand with the symbols 5" and 3’, respectively. Therefore a strand will
have direction 5" — 3, while the other 3’ — 5'. A gene is typically present in one strand, or the
coding strand. The opposite one is called the template strand, because it is used as a prototype
for mRNA transcription.

The transcription is done in the nucleus by a particular family of molecular machinery called
RNA polymerase. RNA polymerase binds to a promoter to begin the RNA production process,
which continues by adding one nucleotide at a time up to the terminator. In this phase thymine
are converted into uracils.

The RNA thus obtained is processed in a maturing phase. Initially the 5 UTR region is
amended by adding molecules that serve to stabilize it (5’ capping). So the 3’ UTR is cut in the

terminal portion removing some nucleotides, and adding a long tail of adenine (poly-A tail) in

36



Regulatory sequence Regulatory sequence

Enhancer Enhancer
/silencer Promoter 5'UTR Open reading frame 3’'UTR /silencer

Proximal Core Start Stop  Terminator

NS ——— S & R —m

Transcription

Exon Exon Exon
_ =
Intron Intron

Biies
mMRNA Post-transcription
modification Protein coding region
+5'cap—i°'v+\m“
Translation
Protein

Figure 2.13: The structure of an eukaryotic protein-coding gene. Regulatory sequence controls when and where ex-
pression occurs for the protein coding region (red). Promoter and enhancer regions (yellow) regulate the transcription
of the gene into a pre-mRNA which is modified to add a 5 cap and poly-A tail (grey) and remove introns. The mRNA 5
and 3’ untranslated regions (blue) regulate translation into the final protein product.

a process called polyadenylation. Finally, introns are removed in the messenger (RNA splicing),
and the mature mRNA is transported into the cytoplasm where the translation process begins.
Translation, operated by ribosomes, uses mRNA as a mold to produce a polypeptidic se-
quence. A ribosome is composed of two subunits (large and small). When the ribosome is not
acting the two subunits are detached. The translation process itself is accomplished by particular
RNA molecules called transfer RNA (or tRNA). Each tRNA associates a precise amino acid to
a specific sequence of three nucleotides, called codon. The code that is thus formed is called the
genetic code (Figure 2.14) and is universal to all organisms, with some small variations.

In short, the translation is made up of four stages:

1. Initiation: The ribosome is assembled around an mRNA and the first tRNA is attached

to the start codon.

2. Elongation: The tRNA transfers an amino acid to the tRNA corresponding to the next

codon.
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Figure 2.14: This figure shows the genetic code for translating each nucleotide triplet in mMRNA into an amino acid or a
termination signal in a nascent protein. Highlighted in red is the start codon that encodes always for methionine.

3. Translocation: The ribosome moves to the next codon of the mRNA to continue the

process, creating a chain of amino acids.

4. Termination: When a stop codon is reached, the ribosome releases the polypeptide.

2.2.2 NonN-Cobing RNAs

A non-coding RNA (7cRNA) is an RNA molecule that is not translated into a protein. The
types of ncRINAs are very abundant and functionally important. These include the transfer RNA,
which we discussed in the previous section, the microRNA, core post-transcriptional regulators
of gene expression, and long ncRNAs, whose function is not yet fully understood, although
today some of them were associated with the onset or progression of diseases.

The first ncRINA to be discovered was a tRNA in yeast, and its structure was published in 1965
[85]. To date, the number of known 7cRNA has exceeded one hundred thousand in human.

The biological roles assumed by these molecules are varied, and affect processes of fundamental
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importance for the cell. ncRNAs have been associated to processes such as translation of proteins,
RNA splicing, cell replication, regulation of gene expression, genome defense, and chromosomal

structure maintenance.

LonG Non-copING RNAS

Long non-coding RNA (/zcRNA) are RNA molecules typically longer than 200 nucleotides. A
recent study showed that only one fifth of human genome transcription activity is linked to
protein-coding genes. Many studies also suggest that the brain and the central nervous system
express many more /ncRNA than any other type of tissue.

IncRNAs have been associated with many cellular processes, although still the way in which
they act are not completely clear. Some /ncRNAs regulate the transcription process by serving
as activators of transcription factors, or by remodeling the chromatin structure and, therefore,
making areas of DINA more accessible for transcription. By pairing with 72RNA molecules, some
IncRNAs can post-transcriptionally adjust expression, by masking certain parts of mRINA unac-
cessible for cellular machinery, causing, therefore, its degradation.

Many other features and roles in various diseases have been associated with these molecules.
However the knowledge on /zcRNAEs is still incomplete and numerous studies are underway to

determine their exact number and function.

Micro RNAs

MicroRNAs (miRINAs) are small non-coding RNA molecules of about 22 nucleotides found in
plants, animals, and some viruses. Their main function is the regulation of gene expression by
post-transcriptional silencing [86, 87]. They act through base pairing with the complementary
sequence of a mRNA molecule (Figure 2.15). As a result of such pairing, the molecule can
be silenced by one of the following processes: cutting the mRNA in pieces, destabilization of
the molecule by shortening of the poly-A tail, reduction in the efficiency of translation process

[88, 89]. Classical characteristic of DINA regions that encodes for 7iRNA is their hairpin shape
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Figure 2.15: Diagram of miRNA action with mRNA. Image courtesy of [90].

after the transcription [87]. The human genome encodes about 1, 800 miRNAs. An aberrated
expression of these molecules was related to the onset of many disease states, and miRNA-based
therapies are being studied.

MiRNAs are produced by specific genes or by introns of other genes. Sometimes a m:RNA
gene is transcribed together with its target, in a form of co-regulation [91]. Other miRNAs have
instead a common promoter and arise from a single unit containing more hairpins.

Once transcribed by RNA polymerase, the primary miRNA (pri-miRNA) is processed by the
Drosha enzyme to free the hairpin from a pri-miRNA, which can contain more than one [92].
The transcript obtained is called precursor miRNA, or pre-miRNA (Figure 2.16). The precur-
sor is, therefore, exported from the nucleus through the nucleocytoplasmic protein Exportin-5
[93]. In the cytoplasm the hairpin is cut by the Dicer enzyme, and the miRNA is released [94].
Such matured miRNA, along with Dicer and other protein, forms the RNA-induced silencing
complex, or RISC [95]. Members of the Ago protein family are critical to the function of RISC.

They are capable of binding with the 7/RNA and orient the interaction with its target [96]. The
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Figure 2.16: Overview of microRNA processing in animals, from transcription to the formation of the effector complex.
There are two pathways, one for microRNAs from independent genes and one for intronic microRNAs. Image courtesy
of [97].

human genome encodes eight kinds of Ago proteins.

2.2.3 RNA Ebrring

RNA editing is a type of post-transcriptional modification, taking place in eukaryotes, which
alters the sequence of primary RNA transcripts by deleting, inserting, or modifying residues.
Despite the discovery of several distinct types of RNA editing over the years, adenosine-to-
inosine (A-t0-I) RNA editing is now considered the most predominant in mammalians [47].
Through the deamination process, adenosine (A) is converted into inosine (I), which in turn
is interpreted as guanosine (G) by both splicing and translation machineries [43]. Enzymes

members of the adenosine deaminase acting on RNA (ADAR) family catalyze this biological
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phenomenon only on double-stranded RNA structures [44, 46, 47]. The activity of RNA editing
is higher in mammalian brain than in other tissues [98], hinting that editing may play a crucial
role in the central nervous system [45]. Therefore, malfunctions of RNA editing machineries
could lead to serious consequences [48, 49].

Adenosine-to-inosine RNA sites abundantly occur in intronic regions as well as in 3’ UTRs.
RNA editing events can modify RNA molecules in several cellular contexts causing: the creation
and/or destruction of splicing sites [43]; the modulation of gene expression pathways [99] during
translation [47]; the gain or loss of miRNA binding sites during mRNA targeting [45, 100]. As
it has been reported in the last few years, RNA editing sites can be found in non-coding RNA
molecules, especially within pri-miRNA [101, 102], IncRNA [103], and precursor-tRNA [104],
the latter deaminated by adenosine deaminases acting on tRNA (ADAT) enzymes.

It is possible to distinguish two forms of A-to-I RNA editing, promiscuous and specific.
Promiscuous A-to-I editing occurs within longer duplexes of hundreds of nucleotides, as in
the case of stem—loops that are formed by the pairing of repetitive elements (e.g., Alu elements).
In those cases, up to 60% of adenosines could be edited [99, 105]. Specific A-to-I RNA edit-
ing occurs in short and/or unstable duplex RNA regions [106], in which at least 10% of their
adenosines selectively could undergo deamination. A-to-I RNA editing events in small non-
coding RNAs, such as microRNAs, are perfect examples of specific editing [47].

One of the main challenges in the study of the RNA editing phenomenon is certainly RNA
editing occurrence. The detection of editing sites in RNA molecules in particular cellular con-
ditions is very difficult considering that RNA editing is a dynamic spatial-temporal process.
Despite the enormous efforts made in recent years, the real biological function underlying such

a phenomenon, as well as ADAR’s substrate features still remain unknown.
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2.2.4 EPIGENETICS

Epigenetics studies the factors that modify gene expression in response to environmental and
internal phenomena without causing changes to the DNA sequence (Figure 2.17) [107]. Classic
example of epigenetic modifications is DNA methylation, which changes how genes are ex-
pressed, without altering the DNA sequence. Such changes can last for the entire life of the cell,
or be spread to other generations without involving any change in the organism’s genome.
DNA methylation is a process by which a methyl group is added to DNA. The methylation,
by modifying how the DNA works, typically suppress the transcription of a gene. Two of the
four nucleotides can be methylated (C and A). DNA methylation can permanently alter the
expression of genes in cells, while the cells divide and differentiate from embryonic stem cells
in specific tissues. The resulting change is normally permanent and unidirectional. However,
DNA methylation can be removed either passively, by dilution as a result of cell division, or
with an active process, by hydroxylation of the methyl groups that need to be removed [108,
109]. In mammals, DNA methylation is typically performed by two classes of enzyme activities:
maintenance methylation and de novo methylation. Aberrations in the methylation process are
associated with various pathologies. In cancer for example, very often a hyper-methylation is

detectable for tumor suppressor genes, and a hypo-methylation for oncogenes [110].

2.2.5 Paraways

A pathway is a representation in the form of a graph of actions among molecules in a cell that
lead to a certain product, or change in phenotype. A pathway can describe the processes that
lead to the assembly of new molecules, such as fat or protein. They may also describe how, in
response to external events, the cell changes the activity of its genes. Pathways play a major role
in advanced genomic studies. Crucial elements in a pathway are its endpoints. They correspond
to those molecules that directly affect the phenotype, depending on the current knowledge of

the phenomenon.
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Figure 2.17: Epigenetic mechanisms are affected by several factors and processes including development in utero and
in childhood, environmental chemicals, drugs and pharmaceuticals, aging, and diet. DNA methylation is what occurs
when methyl groups, an epigenetic factor found in some dietary sources, can tag DNA and activate or repress genes.
Histones are proteins around which DNA can wind for compaction and gene regulation. Histone modification occurs
when the binding of epigenetic factors to histone “tails” alters the extent to which DNA is wrapped around histones and
the availability of genes in the DNA to be activated. All of these factors and processes can have an effect on people’s
health and influence their health possibly resulting in cancer, autoimmune disease, mental disorders, or diabetes among

other illnesses. Image courtesy of [111].
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The most common types of pathway are:

* Metabolic Pathway: illustrate the chains of chemical reactions, possibly catalyzed by en-

zymes, that lead to the synthesis of molecules;

* Genetic Pathway: a collection of genes that interact with each other and with other

substances in the cell in order to govern gene expression and protein activity;

* Signal transduction pathway: indicate the chain of reactions that occur within the cell

when an external signal or molecule interacts with it.

2.2.6 DNA SeqQuenciNGg: From SANGER TO NGS

DNA sequencing is the process by which the sequence of nucleotides in a DNA molecule is
determined. The knowledge of the DNA sequence is essential for every basic biological research
and in medical diagnosis and preparation of highly precise therapies. Nowadays, sequencing is
obtained with highly parallelized and performing machines that are able in a few days to sequence
an entire human genome.

The foundations for DNA sequencing have been laid by the work of Frederick Sanger in 1955.
He completed the sequence of all the amino acids in insulin, providing the first experimental
evidence that biological entities were composed by specific molecular patterns, rather than a
mixture random elements. This discovery allowed Crick in October 1954 to speculate that it was
precisely the arrangement of nucleotides in DNA to determine a protein amino acid sequence.

The first method to determine DNA sequence was designed in 1970 at Cornell University
[112—114]. The foundations laid by this work allowed the definition in 1977 of the methodology
that today is still considered the gold standard for sequencing: the Sanger method [115].

In the Sanger method defective nucleotides (ddNTPs) linked to a fluorescent are exploited to
determine, which nucleotide is present at a certain position of a DNA molecule (Figure 2.18).

The sample to be sequenced is placed in a solution containing: regular nucleotides (ZNT7%),
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ddNTPs, and a DNA polymerase. The ratio of dNTPs and ddNTPs is typically of 100 to 1. At one
end of the DNA sequence a primer is placed, so that once activated, the DNA polymerase can
begin to add complementary nucleotides to the sequence reconstructing the opposite strand. In
such a process, when the DNA polymerase incorporates a ddNTP the reaction will cease. In the
solution thousands of copies of the same DNA filament are introduced. When for each of them
the reaction has stopped, through a process called capillary electrophoresis, each one is separated
according to its length, and by means of a laser light the nucleotide in each position can be then
estimated. The Sanger method is highly accurate and can read DNA segments up to 1Kb (1
Kilobase = 1000 bases). Despite this, the phases of preparation and processing require a lot of
time and its costs are high. For example, the human genome project took about 13 years to
complete and a funding of abut $3 billion.

The high cost and low efficiency of Sanger methodology, coupled with the necessity of having
the sequences of many genomes because of the new direction taken by biomedical and biologi-
cal research, have prompted the development of new methods for high throughput sequencing.
Technologies that parallelize the sequencing process, producing thousands or millions of se-
quences simultaneously (reads) were developed. The strategy applied in Sanger method was no
longer sufhcient to meet the current demands.

The first technology of next generation sequencing (NGS) was developed in the 1990s at
Lynx Therapeutics. Their method MPSS (massively parallel signature sequencing) used a complex
approach to sequence four nucleotides at a time. Their extremely complex methodology led in
2004 to the development of easier and less expensive technologies. Either way the properties
of the output of MPSS have become typical of all NGS technologies, such as the hundreds
of thousands of small reads. This common feature led to the development of a series of new
computational tools which allow the analysis of such massive data. It is no longer possible to
exclude computer analysis from biological experiments, because of the large quantity of generated

data.
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Figure 2.18: The Sanger (chain-termination) method for DNA sequencing. (1) A primer is annealed to a sequence,

(2) Reagents are added to the primer and template, including: DNA polymerase, dNTPs, and a small amount of all four

dideoxynucleotides (ddNTPs) labeled with fluorophores. During primer elongation, the random insertion of a ddNTP

instead of a dNTP terminates synthesis of the chain because DNA polymerase cannot react with the missing hydroxyl.

This produces all possible lengths of chains. (3) The products are separated on a single lane capillary gel, where the

resulting bands are read by a imaging system. (4) This produces several hundred thousand nucleotides a day, data which

require storage and subsequent computational analysis. Image courtesy of [116].
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Nowadays there are many different strategies for NGS using various techniques (see figure

2.19). However, the common goal is to achieve sequencing of entire genomes at less than

$1,000.

ExTtrACTING RNA EXPRESSIONS

Quantifying RNA is a key tool in the analysis of biological and pathological processes. Deter-
mining the expression of an RNA involves understanding its activity, and the differences that
emerge in the presence of pathological phenomena. Such information can be used not only to
study the onset of diseases, but also for establishing new forms of objective laboratory tests, or
to create more precise therapies with fewer side effects.

Among the techniques available to date to sample gene expression there are microarrays (Fig-
ure 2.20). A microarray is a collection of small DNA strands (or probes) attached to a solid
surface, or chip. Scientists used such chips to be able to measure the level of expression of vari-
ous RNA simultaneously. Each probe has a specific sequence of DNA of about 10-12 moles.

The principle behind microarray is hybridization between two strands of DNA, or the prop-
erty of complementary nucleic acids to pair naturally forming hydrogen bonds between pairs of
complementary bases. A greater number of complementary base pairs implies a greater strength
in the bond. After washing the surface of a microarray, only the strongest bonds will remain
intact. Through the use of dyes the spots where sequences are hybridized can be identified, and
by comparing the color intensity between two different conditions an estimate of the expression
can be determined. In order to be able to use microarrays with RNA molecules, they must first
be converted in coding DNA (¢DNA) by a process of reverse transcriptase.

Despite microarrays are widely used and relatively cheap, they present some substantial de-
fects. The processes of synthesis, purification, and storage of the solutions necessary for manufac-
turing microarrays are extremely complex and expensive. In addition, in presence of very similar

RNA families, the technique is quite imprecise due to the fact that molecules can hybridize in
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Figure 2.19: Schematic presentation of the library preparation and sequencing process of the most commonly used
next generation sequencing platforms. All different types of starting molecules are converted into double stranded
DNA molecules that are flanked by adapters. Adapters are sequencing platform specific and enable the binding of
the library molecules to surfaces, either beads or a flow cell, where they are amplified prior to sequencing. Clonal
amplicons are spatially separated on the glass slides, chips, or picotiterplate. Sequencing is either a sequencing by
ligation process with fluorescently labeled oligonucleotides of known sequence (SOLID) or a sequencing by synthesis
process. During lllumina sequencing, four differently labeled nucleotides are flushed over the flow cell in multiple
cycles, depending on the desired read length. During 454 and lon PGM sequencing unlabeled nucleotides are flushed
in a sequential order over the flow cell. Incorporation is detected via a coupled light reaction (454) or the detection of
proton release during nucleotide incorporation. Image from Knief [117].
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obtained and, therefore, placed in a microarray chip where the hybridization process will naturally occur with the
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and after a normalization procedure, expression values will be available.

spots designed for other RIVAs of the same family. This is known as cross-hybridization prob-
lem. Scanning the microarray to determine the intensity of colors can also introduce biases in
presence of overlapping spots or poorly expressed RNAs, where the intensity may be insufficient,
causing a failure in expression detecting. All these issues and the reduction of costs of NGS
technologies led to the emergence of such techniques also for the detection of gene expression.
NGS applied for the analysis of RNAs, also called RNA-Seq (Figure 2.21), present a consid-
erable number of advantages compared to microarrays. First they are able to capture virtually
any transcrip, also currently unknown. Any poorly expressed transcripts can also be recognized
and properly quantified. RNA families can be separated, and the costs of the technology are
continuously decreasing. RNA-Seq has also uncovered post-transcriptional alterations of RNA
before unknown. Nevertheless, in order to properly analyze the results obtained by RNA-Seq,
new tools for the quantification of expression values from NGS reads needed to be developed.
These instruments, even though very effective, do not have the same precision than older tech-
nologies. This implies the need to validate results with more accurate techniques once post-NGS

analysis have been carried out.

2.2.7 Druas

A drug is a chemical compound used to diagnose, treat, cure, or prevent diseases. Pharmacother-

apy is one of the most important processes in the medical field. Continuous developments in
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reads with the reference genome to identify nucleotide variants that are either genomic variants or candidates for
RNA editing. RPKM (Reads Per Kilobase per Million mapped reads) is a method of quantifying gene expression from RNA
sequencing data by normalizing for total read length and the number of sequencing reads. Image from Zeng and Mor-

tazavi[118].
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the science of drugs have allowed the creation of molecules ever more precise and with fewer
side effects. However, the process of discovering and developing new drugs is very complex,
expensive, and requires extremely long time.

Traditional medicines are typically small molecules usually derived from chemical synthesis.
New types of drug therapies include recombinant proteins, vaccines, gene therapies and cell
therapies (eg stem cells).

Drugs act by interacting with cellular products, by modifying the activity of genes, by altering
the reactivity of DNA, or by modifying the activity of enzymes. However not all interactions of
a drug are known. This implies the occurrence of possible side effects, or the ability to use the

molecule for purposes originally unexpected.

2.3 FUNDAMENTALS ON THE ANALYSIS OF BIOLOGICAL DATA

This section is a brief introduction to the analysis of biological data.

2.3.1 FUNDAMENTALS ON ENRICHMENT ANALYSIS

The enrichment analysis is a technique used in order to assign a meaning to a group of some bio-
logical elements, typically genes. In the past, each gene was studied individually, and a function,
or role in a biological process, were associated after extensive experiments. Such a knowledge,
gained through the years, has allowed the construction of large databases such as the Gene On-
tology[119], cataloging our experience in a very precise and standard format. This gave use the
opportunity to develop a number of novel techniques that automate the discovery process of bio-
logical function and role, using statistical techniques to determine unexpected attributes (Figure
2.22).

A typical enrichment procedure starts from the results arising from some experiment. The
elements found in such assessment are first grouped together in some way, for example by using

prior knowledge, then a statistical test is applied to determine which group that shows a signifi-
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Figure 2.22: Example of enrichment analysis. The results of an experiment were analyzed and grouped into clusters.
Two clusters showed a statistically significant association for two different biological processes. Image from Cho et al.
[120].
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cant over-representation of some biological characteristic, and such feature is a starting point for

future investigation.

Tue GENE ONTOLOGY Among the most pressing problems in modern biology is the lack of
a universal terminology standard. Many similar terms differ from species to species, and some-
times also from laboratory to laboratory. The Gene Ontology (GO) is one of the most impor-
tant bioinformatic initiative which objective is to unify and standardize the representation of
attributes (terminologies) associated with genes and their products of all sorts[121], in order
to simplify the process of communication and sharing data. The project aims to maintain and
develop a controlled vocabulary, annotate genes and their products, and provide tools for a sim-
plified access. GO is part of the wider Open Biomedical Ontologies (OBO) project, which aims
to unify the terminology in the biomedical and clinical field.

The terms in GO are organized in a hierarchy so that the high level terms are more general,
and therefore assigned to more genes. The terms descendants are connected to their relatives by
their relationship type, typically is a or part of. For example, the nucleus is parz of a cell, while a
neuron #s & cell. These relationships form a directed acyclic graph (DAG), where each term can
have one or more parents, and zero or more children (Figure 2.23). Users can then choose the
level of specificity that they want to capture by selecting a level on the DAG.

The GO covers three different domains:

* Cellular components: parts of a cell or its external environment;

* Molecular functions: the primary activity of a gene product at the molecular level, such

as binding or catalysis

* Biological processes: operations or sets of molecular events with a defined beginning and

end, relevant to the functioning of cells, tissues, organs and organisms.

Each term in the ontology has a name that can be a word or a phrase, a unique identifier, a source

(as a citation), and a domain where it belongs. There can also be synonymous terms. Finally,
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Figure 2.23: Example of Gene Ontology DAG. Image from Clark et al.[122].
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the vocabulary is designed to be species neutral by including terms applicable to each type of

of the simplest forms of functional enrichment. The algorithm tests for the significance of a
subset of genes through the use of a hypergeometric distribution. Suppose you have a set of n
genes of which m are annotated with a certain function (we call this the set A). Of the whole
set of genes, a subset T (cardinality m/) shows a property we are interested in. 7" and A overlaps

for k genes. The probability that the set A is not over-represented given 7" is
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Since the test is performed on many groups, a correction is necessary in order to limit false
positives. TANGO, given the set A, defines random sets of the same size of 7" and calculates the
likelihood of over-representation. From these probabilities it estimates, therefore, an empirical
distribution that is used to assess whether the cluster A is really significant, or was obtained by

chance.

GENE-SET ENRICHMENT ANALYsis  Gene-Set Enrichment Analysis[124] (GSEA) is a tool that
identifies groups of functionally related genes from laboratory experiments that determine their
expression. Reference gene sets can be obtained from various libraries, such as Gene Ontology.
The basic idea of GSEA is that the differences observed in a gene set will stand out more in the
data than individual genes.

GSEA starts from a set D of expression data from two groups of samples, and an initial set of
genes .S, obtained for example by selecting from the GO all elements associated with a particular
biological process. In the first place the genes in D are ranked in accordance with their difference
in expression between the two groups. A Enrichment score (E.S) is then calculated for S on the
basis of their position, and their importance in D. Finally, a statistical significance is computed
by rearranging the samples in D, and repeating the same test several times in order to estimate a
distribution used to determine the probability that S is not significant. The greater the observed
probability the less significant will be the result, and therefore they will be discarded. An example
of GSEA is illustrated in figure 2.24.

Let 7; be the rank of a gene j in D according to its difference in expression, the enrichment

score can be computed as:

; 1

(A
gi€S<i " g;¢8,5<i

where 7 is the i-th gene in S, accounting for the position, N, = > g;E8 7|, and N is the

number of genes in D. The above formula also takes into account the genes that are excluded
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Figure 2.24: Example of GSEA. Starting from the left the expression profiles of genes selected by the analysis, then the
screen of the GSEA application, with enrichment score in the top right corner and the list of all the genes sorted by rank
in the bottom right one. Image from Vallanat et al. [125].

from S.

2.3.2  NEXT-GENERATION SEQUENCING DATA ANALYSIS

The new generation of sequencing technologies have revolutionized the analysis of genomes
[126]. Compared to the classical methods, NGS platforms provide much more data at a lower
cost. This represents a challenge both for their storage and analysis. Consequently, the usage of
efhicient algorithms and powerful computational facilities are often involved.

All current NGS technologies provide as output large text files (tens of millions of lines)
containing fragments of all nucleotidic sequences in a sample. To each sequence, a quality value
is assigned. The format most commonly used is FASTQ. Designed originally to store the results
obtained by Sanger Sequencing, FASTQ is the de facto standard for all NGS equipment [127].
Each file is divided into blocks of four lines: the first identifies the sequence, the second contains
the nuclotidic sequence, the third is a separator, and finally the fourth encodes quality of each

nucleotide in the sequence through an ASCII character (greater ASCII code of a character implies
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higher quality of the corresponding nucleotide).
The analysis of NGS reads in order to extract some feature of interest (i.e. expressions, variants)
usually requires a preprocessing step. In such a phase, reads are first filtered (quality filtering),

then mapped to a reference genome.

Quarrty FirteriNG  During quality filtering, low quality portions of each read are removed.
This is critical to increase the reliability of subsequent analysis, gaining both in terms of execution
time and computational resources. A typical instrument used for this purpose is ERNE-FILTER
[128]. Given a threshold @, the algorithm works in two steps. In the first step, for each reads it
calculates the first position where the quality is greater than (). In the second phase, starting from
such position, it selects the subsequence which maintains a quality higher than ). Finally, if the
result has length smaller than min-size, or average quality lower than min-mean-phred-qualizy,
then the read is discarded. Other tools are available for quality filtering such as AdapterRemoval
[129], Cutadapt [130], Fastx-Toolkit (nttp://hannonlab.cshl.edu/fastx_toolkit), Sickle

[131], or Trimmomatic [132].

BowTik 2 After the quality filtering process, starting from all reads, it is necessary to rebuild
the genome, or transcriptome, of the sample in order to continue with other analysis. To do so,
a reference genome can be used and each read could be aligned onto it, finding its most likely
location. This problem is not exhaustively tractable. This implies the necessity of having clever
strategies to address such issue. A common technique is Bowtie 2 [133]. The algorithm has

essentially four steps:

1. Seed substrings, which are short segments that are likely to have unique matches in the

genome, are extracted from each read;
2. Seeds are aligned to the reference genome using and index to speed-up the process;

3. Seed placements in the genome are prioritized to find the most likely map location(s);
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4. Seeds are extended into full alignments with a hardware-accelerated dynamic program-

ming algorithm.

The results of such an algorithm are stored in SAM files. SAM stands for Sequence Align-
ment/Map format. It is a TAB-delimited text file consisting of a header section, which is op-
tional, and an alignment section. In the header section there are general information about the
alignment, such as reads sorting and grouping, and other information specific of the alignment
algorithm. In the alignment section, each line represents an aligned segment. It contains an
unique identifier, the position in the reference genome, a value proportional to the probability

that the alignment is wrong, and other information related to its quality. Other similar tools are

BWA [134], MOM [135], SeqgMap [136] or SOAP [137].

TorHat RNA-seq experiments must be analyzed with robust, efficient and statistically prin-
cipled algorithms. By properly analyzing the data obtained from an RNA-Seq experiment two

major objectives can be achieved:

1. identification of novel transcripts from the locations of regions covered in the mapping

to the reference genome;

2. estimation of the abundance of each transcript from their depth of coverage.

TopHat [138] aligns reads to the genome and discovers transcript splice sites without a reference
annotation. First, by mapping RNA-Seq reads to the genome employing Bowtie 2, it identifies
potential exons, since many RNA-Seq reads will contiguously align to the genome. Using this
initial mapping information, TopHat builds a database of possible splice junctions, and then
maps the reads against these junctions to confirm them. In the past people have built splice
junctions based on known references, such as RefSeq. TopHat allows a user to find potentially
new splice variants.

TopHat is also able to identify the type of transcript by using a set of annotations. Therefore

trascripts can be mapped in different functional groups such as exons, introns, or rRNA. On
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the basis of this classification an expression level for each mapped transcript can be estimated by
dividing the number of reads by their length and total number of mapped reads. Such a value is

called RPKM (reads per kilobase of transcript per million mapped reads).

VARIANT CaLLING Alignment to a reference genome allows the reconstruction of the entire
genome, or transcriptome, of a sample. This enables simultaneously a variety of analysis, such
as the detection of variants.

Detecting variants in the genome requires different tools according to the type of sequencing
and the analysis strategy. To track single nucleotide variations (SVV5), those bases that vary with
respect to a reference genome must be found. Given such bases, with high probability many of
them will be due to sequencing errors. More reads, aligned in the same DNA region, present
the same variation and more statistically significant it will be.

Finding structural variations (SV%) instead require a more complex procedure. First, a se-
quencing from both ends of the same DNA fragment (paired-end sequencing) should be per-
formed. Having thus mapped each read to the reference genome, it is necessary to estimate the
distribution of fragment lengths, and look for pairs that are mapped to different chromosomes or
have an abnormal distance, or ordering or orientation (see figure 2.25). More discordant reads
pairs can be explained by the same variant, more significant and precise will be the identification

of its breaking point.
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Figure 2.25: Different variant types detected by paired-end sequencing [139]. (1) Deletion: The reference contains a
sequence that is not present in the sample. (2-3) Insertion and Long Insertion: The sample contains a sequence that
does not exist in the reference. (4) Inversion: A part of the sample is reverse compared to the reference. (5) Duplica-
tion: A part of the reference occurs twice in the sample (tandem repeat). (6) Translocation: The sample is a combination
of sequences coming from different chromosomes in the reference. Image courtesy of Gogol-Déring and Chen [140].
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Related Works

The in silico development of personalized therapies is a complex process that requires the use
of algorithmic techniques of different nature. A key instrument are biological pathway analysis
algorithms. They may be used to classify phenotypes and on the basis of this information highly
precise therapies can be determined for a single patient.

Nevertheless, the functioning of many biological elements is still unknown, and the use of
laboratory experiments is impractical because of the high cost and time requirements. For this
reason, techniques that analyze current biological knowledge in order to extract only the most
promising hypotheses for experimentation is essential. In this sense, recommendation algorithms

play a key role for their simplicity and flexibility.
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3.1 RECOMMENDATION SYSTEMS TO MINE BIOLOGICAL DATA

A recommender system is an algorithm for information filtering which aims to predict a user’s
preferences for some objects. Although developed mainly in e-commerce, they are currently
being applied in other fields such as biology. In particular, two problems are better suited to
be tackled with the tools offered by recommendation systems: the prediction of drug-target
interactions (D77s) and the prediction of associations between 7cRNAs and diseases.

This section will briefly outline algorithmic methodologies currently employed for the afore-

mentioned problems.

3.1.1 DRUG-TARGET INTERACTION PREDICTION

Historically, some proteins have been chosen as druggable [18] and it has been shown that drugs
with very different chemical structures target the same proteins and the same protein is affected
by different drugs. This provides evidence that drugs are not specifically designed to diseases [19].
Recently the trend in pharmaceutical industry changed due to novel bioinformatic prediction
methods. New experimental drugs have a wider variety of target proteins. In addition, the
analysis of drug-target and gene-disease networks showed that only a few targets are essential,
and correlated with tissue specificity to the disease [20].

Following this trend, an attractive drug discovery technique is drug repositioning [141]. The
usage of known drugs for novel therapeutic scopes represents a fast and cost-effective strategy for
drug discovery. Numerous studies raised a wide variety of models and computational methods
to identify new therapeutic purposes for drugs already on the market and sometimes even in
disuse. Such computational methods employ an high level knowledge integration in order to
discover unknown mechanisms. In Gonzdlez-Diaz et al. [27] a compressive survey on the tech-
niques and models is given. Such models using tools available in chemoinformatics [18, 21, 22],
bioinformatics [23-20], network and system biology [18] allow the development of strategies

that can speed up drug design. Following Gonzdlez-Diaz et al. [27], repositioning methods can
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be grouped into 6 categories: blinded, target-based, knowledge-based, signature-based, pathway-
or network-based, and targeted-mechanism-based.

The basic approach to repositioning is known as blinded. Blind methods do not include any
biological information or pharmaceutical discovery. They commonly rely on serendipity and
depend on random tests on specific diseases [28, 29].

Target-based repositioning includes high-throughput experiments on drug and biomarkers
of interest in connection with in silico screening for the extraction of compounds from libraries
based, for example, on docking [19, 20, 141] or on comparisons of the molecular structures
(21, 27]. 'This approach compared to the blind one is more effective as different targets link
directly to the mechanisms of the disease. Therefore, these methods in a short time (i.e. a few
days) are used to screen all molecules for which the chemical structure is known. In Iskar et al.
[18], authors designed a framework for drug repositioning based on the functional role of novel
drug targets. They proceeded by detecting and annotating drug-induced transcriptional modules
in cell specific contexts, which allowed also to detect novel mechanisms of action. In silico results
were confirmed by an in vitro validation of several predicted genes as modulators of cholesterol
homeostasis.

Knowledge-based drug repositioning takes into account information concerning drugs, drug-
target interaction networks [22-24], drug chemical structure, target structure (including also
their similarity), side-effects and affected metabolic pathways [25]. This knowledge enables the
development of integrated high-performance predictive models [26]. In Yildirim et al. [23], a
bipartite graph linking US Food and Drug Administration-approved drugs to proteins by drug
target binary associations is exploited. Campillos et al. [25] identified new drug target interac-
tions (DTI) using side effect similarity. lorio et al. [142] make use of transcriptional responses,
predicted and validated drug modes of action and drug repositioning. Furthermore, Yamanishi
etal. [143] presented a bipartite graph learning method to predict DTI by integrating chemical

and genomic data. Chengetal. [30] presenta technique based on network-based inference (NBI)
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implementing a naive version of the algorithm proposed by Zhou et al. [144]. van Laarhoven
et al. [145] used a machine learning method to predict novel DTIs with high accuracy. Chen
et al. [28] introduced a Network-based Random Walk with Restart on the Heterogeneous net-
work (NRWRH) algorithm predicting new interactions between drugs and targets by means of
a model dealing with an «heterogeneous» network. Mei et al. [29] proposed the Bipartite Lo-
cal Model-Interaction-profile Inferring (BLM-NII) algorithm. Interactions between drugs and
targets are deduced by training a classifier.

Signature-based methods use expression data to discover off-target related to known molecules
for the treatment of other pathologies [146]. Some of these methods also incorporate time-course
quantitative data showing that a drug can give the survival outcome in connection to the clinical
conditions [147]. This allows to stratify patients. Furthermore, such methods by integrating
quantitative information are able to discover additional mechanisms of action not yet known to
molecules and known compounds. In Dudley et al. [148] authors predicted therapeutic drug-
disease relationship so far not yet described, by combining publicly available disease microarray
data of human cell lines treated with drugs or small molecules obtained from Gene Expression
Omnibus (GEO) of the National Center for Biotechnology Information (NCBI). With this ap-
proach they identified about 16, 000 possible drug-disease pairs, in which 2, 664 are statistically
significant and more than half suggests a therapeutic relationship. To validate the hypothesis,
authors tested the cimetidine as a therapeutic approach for lung adenocarcinoma (LA). Cancer
cells exposed to cimetidine showed a dose-dependent reduction in growth and proliferation (ex-
periments performed on mice implanted with human cell lines of LA). Furthermore, to test
the specificity of this proposal, a similar experiment was carried out in mice with cell lines of
ACHN renal cell carcinoma (the score of such signature was not significant for cimetidine), and
in agreement with their computational analysis no effect has been observed. In Sirota et al.
[149] by integrating publicly available gene expression data, they discovered that anticonvulsant

topiramate is a hypothetical new therapeutic agent for inflammatory bowel diseases (IBD). They
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experimentally validated zopiramate’s efficacy even though the exact pharmacodynamics mecha-
nism of action is not yet known.

Pathway/network based approaches use omic data, signaling pathways and protein-protein
interaction networks to build disease-specific pathways containing end-points targets of reposi-
tioned drugs [150—152]. These methods have the advantage of identifying signaling mechanisms
hidden within the pathway and the signatures of its genes. The above approaches together with
large-scale drug sensitivity screening led to predict combinations of drugs for therapeutically
aims. In Tang et al. [153] the idea behind their inference model consists of using druggable
targets resulting from taking into account drug treatment efficacies and drug-target binding
affinities information. They validated the model in breast and pancreatic cancers data by us-
ing siRNA-mediated target silencing, highlighting also the drug mechanism of action in cancer
cell survival pathways.

More recently, the development of multi-target drugs or drug combinations has been con-
sidered crucial to deal with complex diseases [154, 155]. Effective methods to improve the
combinations prediction include, choke point analysis [156, 157], a reaction that either uniquely
consumes a specific substrate or produces a specific product in a metabolic network, and compar-
ison of metabolic networks of pathogenic and non-pathogenic strains [158]. These approaches
commonly share the identification of nodes having a high ratio of incident k-shortest paths
[158, 159]. On the other hand, it has been shown that the co-targeting of crucial pathway
points [160, 161] is efficient against drug resistances both in anti-infective [162] and anti-cancer
[163, 164] strategies. Two relevant examples are RAS [165, 166] and Survivin [167] associated
diseases.

In practice, a fundamental question is if the chosen drug is effective to the treated patient.
A large amount of money is spent on drugs that have no beneficial effects on patients caus-
ing dangerous side effects. It is known that this is due to the genetic variants of individuals

that influence metabolism, drug absorption, and pharmacodynamics. Although this, frequently
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GWAS for drugs are not replicated in either the same or different populations. Genomic and
epigenomic profiling of individuals should be investigated before prescription, and a database of
such profiling should be maintained to design new drugs and understand the correct use of the
existing ones for the specific individual. Such profiling should exist for each individual and not
as in the current era related only to publications which are sample-case specific and results are in

some case difficult to replicate [168].

3.1.2 NON-CODING RNA-DISEASE ASSOCIATION PREDICTION

As stated in early chapters, functions of non-coding RNAs (2cRNAs) are mostly unknown, which
implies that great efforts is been employed in their study, due to their involvement in a wide
variety of biological functions. Small ncRNAs, such as siRNA, miRNA and piRNA, are highly
conserved in different species and have a key role in transcriptional and post-transcriptional
silencing of genes. Long ncRNA instead are poorly preserved and have the task of regulating
gene expression through mechanisms still largely unknown [38—40]. It has been shown that
these molecules are involved in the regulation of gene expression by acting as controllers of
processes such as RNA maturation or transportation, or altering chromatin structure. 7cRNAs
have great variety in structure and in gene regulation outcomes, however, several similarities can
be identified in the way they act [33].

The connection between diseases and de-regulation of small 7¢RNAs has been established for
years. However, recent studies show that mutations and de-regulations of /zcRINAs are heavily in-
volved in the onset or progression of several diseases [169]. Alterations in the structure, or in the
expression levels, are the main underlying causes of diseases, from cancer to neurodegenerative
disorders [169].

Pasmant et al. [35] highlight how the expression of /ncRNA ANRIL, antisense transcript
to INK4b gene, is correlated with the epigenetic silencing of INK4a, or p16 protein, which is

involved in the regulation of cell cycle. High levels of ANRIL were found in prostate cancer
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tissues [34]. Yap et al. [34], also, hypothesizes that this transcript is an initiating factor in tu-
mor formation due to its silencing action on the INK4b/ARF/INK4a locus. Other experimental
evidence link ANVRIL de-regulation to a number of pathologies, including coronary disease, in-
tracranial aneurysm, and type II diabetes [35].

Another example of correlation between /zcRNAs and diseases is the HOTAIR transcript,
which is involved in the progression of breast cancer by chromatin landscape remodeling [36].
In particular, increased expression of HOTAIR is an index of poor prognosis and tumor metas-
tasis. Gupta et al. [37] show that HOTAIR is also responsible for invasiveness and metasta-
sis in epithelial cancer cells and its inhibition may lead to a reduction of invasiveness in cells
where PRC2 complex is highly activated.

Therefore, despite the enormous importance that 7n¢RNAs are showing in connection with
several diseases, the number of entities, which somehow have been functionally characterized
and associated to pathologies, is extremely small [169]. For this purpose, developing a method-
ology that is able to predict ncRNA-disease interactions is crucial in order to formulate new
hypotheses on the molecular mechanisms underlying complex diseases, and to identify potential
new biomarkers for their diagnosis, treatment and prevention.

In this direction, Yang et al. [41] developed a method, which exploits a bipartite network and
a propagation algorithm to predict new associations that can be evaluated through appropriate
in vitro experiments. Yang et al. [41] based their method on the database assembled by Chen
etal. [170]: a collection of approximately 1028 experimentally validated interactions among 322
IncRNAs and 221 diseases. The database has been further extended, through deep literature min-
ing, to include additional interactions. The database includes also 478 experimentally validated
interactions among 126 /ncRNAs and 236 protein coding genes. For such genes a modulation
in expression values is known to be carried out by such 7cRINAs.

Another network-based approach has been devised in Liu et al. [171]. The authors built from

transcriptome microarray data a co-expression network to identify ncRNA-mRNA interactions.
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The network was then filtered through the use of differentially expressed transcripts, and for each
ncRNA-mRINA pair a pearson correlation was computed. Only pairs with significant correlation
were preserved. Then, by means of functional enrichment, /2cRNAs that showed correlations
with genes enriched in a pathology were returned. The authors were able to identify circulating
IncRNAs whose aberrated expression is found in major depressive disorder. Their association
with mRNAs also suggested a contribution to the molecular pathogenesis of the disease.

A similar method (RWR/ncD) was developed by Sun etal. [172]. The proposed algorithm uses
a random walk with restart in order to identify possible associations between functional /ncRNAs
and disease. The performance was verified using a leave-one-out cross-validation, obtaining an
area under the receiver operating characteristic (ROC) curve of 0.822.

An additional method that exploits random walk technique has been developed by Ganegoda
etal. [173]. Authors use a gaussian kernel interaction profile for estimating similarity between
IncRNAs. A similarity between disease is also built using a text mining approach on the On-
line Mendelian Inheritance in Man (OMIM) database. This information is then combined with
an input ncRNA-disease network, and a random walk is applied for the final predictions. The
method was validated using a leave-one-out cross-validation and the results have shown the ef-
fectiveness of the approach.

A completely different strategy exploits known interactions between /ncRNAs and miRNAs
[174]. First a miRNA-disease network is built from the HMDD database [175]. So, a list of
IncRNA-miRNA associations was obtained by taking the information contained in Starbase v2.0
[176]. Finally a hypergeometric test is implemented for each /ncRNA-disease pair by examining
whether the number of shared common miRINAs is statistically significant. Although the method
does not rely on any validated /ncRNA-disease association, the results show an average area under

the ROC curve equal to 0.7621.
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3.2 PATHWAY ENRICHMENT AND ANALYSIS

Prediction of phenotypes, such as diseases, or of responses to therapies from the large amount
of high-dimensional data obtained through Next-Generation Sequencing techniques is an ex-
tremely important task in translational biology and precision medicine. However, the gap be-
tween current analysis techniques and the ability to obtain precise and accurate knowledge is
broad.

High-throughput sequencing and gene profiling techniques are radically transforming med-
ical research, allowing the full monitoring of a biological system. The use of these technologies
typically generates a list of differentially expressed transcripts (i.e. genes, microRNAs, IncRNAs,
etc.) whose behavior varies significantly among the phenotypes under examination.

Furthermore, compared to traditional gene expression extraction techniques, deep sequencing
methods, such as RNA-Seq, provide much larger lists of differentially expressed transcripts, in-
creasing, therefore, the complexity of their analysis. A common approach to simplify and make
the analysis of such data more fruitful consisted in grouping genes into smaller sub-sets accord-
ing to some relationship, leveraging on existing knowledge bases such as ontologies or pathways.
The analysis of this data at the functional level is crucial since it allows a strong reduction of
dimensionality, thus providing greater insights on the biology of the phenomenon under study
[177].

An extensive class of techniques known as Pathway Analysis [178] goes in this direction. In
the past, such term had been associated to the analysis of ontological terms, protein-protein in-
teraction (PPI) networks, or to the inference of gene regulatory networks from expression data.
More recently, great interest has shifted toward a class of methods called Knowledge base-driven
pathway analysis [10]. Such methods leverage on existing databases, such as the Kyoto Encyclo-
pedia of Gene and Genomes (KEGG) [179, 180] or Pathway Commons [181], to identify those
pathways that may be affected by the expression changes in the observed phenotype. Following

Khatri et al. [10], knowledge base-driven pathway analysis techniques can be grouped into three
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generations of approaches: i) over-representation analysis (ORA), ii) functional class scoring
(FCS), and iii) pathway topology-based (PT).

Over-representation analysis methods statistically evaluate the number of altered genes in
a pathway with respect to the set of all analyzed genes. After filtering the resulting gene set
of an expression assessment experiment, ORA strategies [182—188] typically divide the list of
genes according to the pathway each gene belongs to. By applying an hypothesis test (i.e. hy-
pergeometric, chi-square, or binomial) they are able to determine if the number of such genes
is over- or under-represented. These methods, however, have some major limitations. Firstly,
considering only the number of differentially expressed genes, while omitting their expression,
implies that the magnitude of their change be unimportant for pathway activity. Furthermore,
considering only statistically significant differential expression may exclude those genes whose
coordinated alteration may lead to remarkable effects, although their differential expression may
not be statistically significant. Finally, they consider individual genes and pathways, respectively,
in a manner independent of the surrounding biological context, eluding what truly happens in
reality.

Functional class scoring methods compensated some of the disadvantages of ORA approaches.
Typically FCS methods compute a gene-level statistics from their expression levels, by means of
a statistical approach (i.e. ANOVA, Q-statistic, signal-to-noise ratio, t-test, or Z-score). Such
statistic is calculated for all genes in a pathway [189-195] and its statistical significance is es-
timated through an appropriate null hypothesis [190, 196-198]. FCS methods avoid some of
the limitations of the ORA approaches by ranking all genes through their expression level and
by considering the dependencies within a pathway. However, they do not take into account
the fact that a gene can be simultaneously active in multiple pathways, utilizing the expression
magnitude only to sort genes.

In order to overcome the disadvantages of FCS methods, the third class of techniques models

a pathway as a graph, considering its topology when computing scores. A thorough analysis of
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all PT-based approaches has been provided in [16].

The first PT-based algorithm is ScorePAGE [11]. As FCS methods do, it computes a gene-
level statistic by applying a similarity between their expression values. Rahnenfiihrer et al. [11]
evaluated four different measures: correlation, covariance, cosine distance, and dot product.
They stated that an exclusive choice among these measures is impossible, the best approach being
an adaptive one, namely, selecting the measure best suited to the data in question. Such similarity
is, therefore, combined to build a pathway-level score. For each pair of elements in a pathway,
ScorePAGE averages their similarity weighting it on the basis of the distance between the nodes
in the pathway. Finally, by means of a non-parametric permutation test, the authors are able to
establish the significance of each pathway-level score. However, ScorePAGE has been designed
to analyze only metabolic pathways.

In Draghici et al. [12], an analytical technique called impact factor (/F) was introduced. The
impact factor is a pathway-level score that takes into account biological factors such as the mag-
nitude of change in genes expression, the type of interactions between genes, and their location
in the pathway. In Draghici et al. [12], each pathway is modeled as a graph in which nodes rep-
resent genes, while edges represent interactions between them. Authors also define a gene-level
statistic (called perturbation factor, PF) as a linear function of the change in gene expression
and the perturbation of its neighborhood. Such a statistic is then combined for each element in
a pathway, and a p-value is computed by means of exponential distribution.

The analysis method presented by Draghici et al. [12], has been further improved by the
SPIA algorithm [13] which attenuates the dominant effect exercised by the change in expression
within PFs computation, while reducing the high rate of false positives when the input list of
genes is small. SPIA uses a bootstrap procedure to evaluate the significance of the observed
perturbation in a pathway. All this is combined with a p-value computed in ORA style to make
a full assessment of the statistical significance of the perturbation of each pathway.

To reduce the number of false positives, and to obtain a more significant analysis, Vaske et al.
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[14] presented the PARADIGM algorithm, which has been further improved by Sedgewick et al.
[15]. PARADIGM is a method to infer patient-specific genetic activity by incorporating infor-
mation regarding interactions between genes provided in a pathway. The method predicts the
degree of alteration in the activity of a pathway by employing a probabilistic inference algorithm.
The authors show that their model obtains significantly more reliable results than SPIA. How-
ever, Mitrea et al. [10] stated they could not reproduce the results reported in Vaske et al. [14],
despite the full cooperation of its authors.

In Martin et al. [199], a method that quantifies the response of a network in an interpretable
way was implemented. It exploits the structure of a cause-and-effect network to integrate and
mine transcriptomic data, extracting signatures also to predict the phenotype of interest. The
main disadvantage of this method is the assumption that the underlying network is strongly
connected. Finally, in Vasilyev et al. [200], an algorithm called sampling of spanning trees (557"
has been devised to analyze networks. The algorithm is based on spanning trees and a sampling
procedure that uses a random walk in the graph. SS7" provides a practical way to aggregate the

values of the nodes in a network and evaluate its efficacy in discriminating phenotypes.
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From diagnosis to prognosis

The purpose of this chapter is to illustrate the bioinformatic framework, based on synergistically
working instruments, that has been built to help in every step necessary for the development of
highly precise therapies, going, where possible, beyond the limits imposed by currently employed
techniques. First, amethod for a precise classification of samples, which goes beyond biomarkers,
will be introduced. Following, two algorithms will be presented as a potential guide to the
experimental activity with the aim to fully understand how drugs act, allowing the prediction
of more accurate combinations. Next, algorithms for the enrichment of pathways, improving
therefore the reliability of previous phases, will be illustrated. Finally, the need to guide the
experimental activity reducing associated cost and time requirement led to the development of
a technique for simulating the action of endogenous and exogenous elements in a biological

system.
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4.1 Hi1GH-PRECISION SAMPLE CLASSIFICATION: PATHWAY ANALYSIS

As already pointed out in previous chapters, the accurate classification of samples is a critical step
in precision medicine. Indeed, it is the identification of specific molecular patterns of a patient
that allows an accurate definition of therapies. In common practice this process is done through
the use of biomarkers. They are measurable indicators typical of some biological state or condi-
tion. Genetic biomarkers (specific alterations in gene sequences) or transcriptomic ones (specific
alterations in gene expressions) are currently used in common medical practice to identify disease
states or possible responses to therapies. However, their main problem is the lack in most cases
of a correlation with the origin of the disease state. This makes impossible to use them directly
to understand the molecular mechanisms related to the pathology or to define novel therapeutic
targets.

Pathway analysis shows all the characteristics needed to identify a novel category of functional
biomarkers that not only can be used to understand the molecular processes at the origin of a
pathological condition, but also employed for possible new therapies. However, at present, this
type of analysis has not been used due of the unreliability of their results.

In what follows it will be shown MITHTrIL (miRNA enriched pathway impact analysis) [17],
a technique that extends Draghici et al. [12] and SPIA [13], and improves the reliability of the
results. The strength of MITHrIL lies in the enrichment of pathways with information regarding
miRNAs. Our method, starting from expression values of genes and/or miRNAs, returns a list of
pathways sorted according to the degree of their de-regulation, together with the corresponding

statistical significance (p-values), and a predicted degree of alteration for each endpoint.

Paraway ENricHMENT MITHIIL distinguishes itself from other pathway analysis techniques
primarily for the use of KEGG [179, 180] pathways enriched with miRNAs and their interactions
with genes. In order to achieve this, we downloaded all validated interactions between miRNA

and targets from miRTarBase [201, 202] and miRecords [203]. We also obtained interactions
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between transcription factors (TFs) and miRNAs from TransmiR [204]. By taking into account
TFs activating miRNA genes we are able to increase the knowledge stored within each pathway.
We then standardized all identifiers in their respective databases to avoid duplicates. The map-
ping of miRNA identifiers was performed by using miRBase release 20 [205-209] as reference
database. For each target, we performed a twofold mapping procedure: firstly, each gene iden-
tifier has been converted to its Entrez one; then, by taking advantage of KEGG REST API, we
mapped each Entrez Id to the corresponding KEGG Id. This standardized interactions list was,
lastly, filtered to remove all duplicates. Such a procedure allowed us to build a knowledge base of
10, 537 experimentally validated interactions between 385 miRNAs and 3, 080 genes. Pathway
enrichment was performed by defining a new type of node representing miRNAs in the path-
way notation, along with two types of directed edges, for miRNA-target inhibition interactions
and TF-miRNA interactions, respectively. The enrichment is thus performed automatically by
adding to each pathway only miRNAs that interact with at least one element within it. Finally,
in order to acquire information on which endpoints are contained in each pathway, we employed
a depth-first search algorithm [210] to automatically mark which genes are located at the end of

the chains of reactions in each pathway.

ArcoriTHM  MITHEIrIL consists in an extension of Draghici et al. [12] and Tarca etal. [13]. It
requires a case/control expression data set from which statistically differentially expressed features
have been extracted (genes, miRNAs, or both). For such elements, the computation of their Log-
Fold-Change is also needed. Starting from such information, MITHrIL computes, for each gene
in a pathway, a Perturbation Factor (P F)), which is an estimate of how much its activity is altered
considering its expression and 1-neighborhood. Positive (negative) values of PF' indicate that
the gene is likely activated (inhibited). By appropriately combining each PF’ of a pathway, the
algorithm is, therefore, able to calculate an Impact Factor (/F) and an Accumulator (Acc).
The IF of a pathway is a metric expressing how important are the changes detected in the

pathway, the greater the value, the most significant are the changes. The Acc indicates the total
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level of perturbation in the pathway and the general tendency of its genes: positive Acc values
indicate a majority of activated genes (or inhibited miRNAs), while negative ones corresponds
to an abundance of inhibited genes (or activated miRNAs). To the Acc is also assigned a p-
value which is an estimate of the probability of getting such accumulator by chance. Finally,
by applying the Benjamini and Yekutieli [211] method, we estimate the false discovery rate and
p-values are adjusted on multiple hypotheses.

More precisely, let n be a node in pathway P;. Its perturbation factor, PF (n, P;) can be

defined as:

PF(n.P)=AB(m)+ 3 flun) s Pr (“’|?()u !

WU ) deD(u,P;) )
where AF (n) is the Log-Fold-Change computed for the node n, U (n, P;) and D (n, P;) are the
set of upstream and downstream nodes of 1 in pathway P, respectively, and /3 (u, n) is a function
that indicates the strength and type of interaction between genes v and n. In particular, negative
values of 3 indicate an inhibitory effect, while positive values an activating one. By exploiting
the methodology described in Draghici et al. [12] we compute an impact factor, I F' (F;), which

reflects the importance of the changes observed in a pathway, as:

> N 2nep, [PF (n, B)|

IF (P;) = log ( |AE[ - N (P)

4.2
p(F) ’ (4.2

where p (P;) is the probability, calculated using an hyper-geometric distribution, of obtaining
a number of differentially expressed nodes at least equal to the observed one in P;, |AE] s the
mean Log-Fold-Change in P;; finally, Ny, (P;) represents the number of differentially expressed
nodes in the pathway.

Our methodology takes also advantage of the accumulation (or accumulator) as described
by Tarca et al. [13]. Such a methodology has been revised to take into account the addition of

miRNAs. In order to do so, first we need to compute two partial accumulators, Accp, (P;) and
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Accgene (P;), which take into account the perturbation, respectively, of miRNAs and genes:

Acemir (P)) = > [PF (m,P) — AE (m)], (4.3)
mepP™

Accgene (P;) = > [PF (9,P) — AE (9)], (4.4)
gepP!

where P/ and P/ are the sets of miRNAs and genes present in P; respectively.

In equations 4.3 and 4.4 we sum the perturbations of all miRNAs (P/") and genes (Pig ) in
pathway F;, addressing the dominant effect of the expression change in the PF' computation by
subtracting such values. We can now compute total perturbation accumulation, Acc (P;), which
measures whether the pathway is likely activated or inhibited. The introduction of miRNAs in
our model addresses the necessity to take into account the fact that an increased (decreased)
expression of such elements results in an inhibition (activation) of the pathway. Acc (P;) is

computed as:

Acc (Py) = Accgene (P;) — Acemir (P;) — E [Ace (F;)], (4.5)

where E'[Acc (P;)] is an estimate of the expected value of the distribution of all accumulators
computed for pathway P;, as explained below.

P-value estimation is then performed by combining the Z-scores, computed through an in-
verse Standardized Normal distribution, associated to two probabilistic terms: the first is the
probability of obtaining by chance a number of differentially expressed genes in the pathway
at least equal to the observed one, while the second consists in the probability of observing by
chance an accumulator higher than the computed one. The first term corresponds to p (F;) in-
troduced in equation 4.2. The second term, instead, has to be estimated through a bootstrapping
procedure. In such a procedure, we assign to a random group of genes in the pathway a Log-

Fold-Change selected randomly from the input ones, so as to compute a random accumulator.
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The procedure is repeated several times and the final probability is estimated as the ratio be-
tween the number of random accumulators greater than Acc (P;) and the number of repetitions
performed. In our experiments, the repetitions were set to 2, 000 in order to obtain maximum
precision up to two decimal places.

At this stage we are also able to estimate expected value E [Acc (P;)] as the median value of
the random accumulators.

Therefore, the final result of our algorithm consists of a list of pathways along with their

impact factor, accumulator and adjusted p-values. Such list is sorted by p-value and Acc.

PERFORMANCE ASSESSMENT AND DATA SOURCEs  To perform a comprehensive test of MITHrIL,
we exploited expression data provided by The Cancer Genome Atlas (beginning of 2014). We
downloaded all patient expression profiles of genes (RNASeqV2 obtained through platforms
[lumina Genome Analyzer and Illumina HiSeq) and miRNAs (miRNASeq obtained through
platforms Illumina Genome Analyzer and Illumina HiSeq). The initial dataset was then filtered
by removing all patients for which one of the two types of expression was unavailable. We then
eliminated all tumor samples for which no healthy controls were present. By applying such a
procedure, we built a dataset of 3, 053 expression profiles (2, 721 case samples and 332 control
samples) of patients affected by 10 distinct tumor pathologies (see Table 4.1 for more details).
Case samples were further divided by disease stage.

To run our algorithm, we performed a differentially expressed genes analysis by using the
RNASeq pipeline based on Limma [212]. The expression matrices for each disease were firstly
normalized by using the Voom algorithm [213], then a linear model was trained with Limma
and differentially expressed genes for each stage of the disease were extracted along with their
Log-Fold-Change. In our analysis we considered as differentially expressed only those genes for
which an adjusted p-value was lower than 0.01 as computed by Limma. For each tumor sample
we also downloaded and processed copy number variation (CNV') as shown in Vaske et al. [14].

To compare MITHIrIL with other methodologies, PARADIGM [14] and SPIA [13], we used
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Table 4.1: List of cancer types extracted from The Cancer Genome Atlas (TCGA) with their codes, number of case and
control samples, and Subcategories.

Code  Cancer Type Controls Cases Samples Categories
BLCA Bladder Urothelial Carcinoma 19 193 Stage I, I1, III, IV
BRCA  Breast invasive carcinoma 86 642 Stage I, 11, IIL, IV, X
COAD Colon adenocarcinoma 8 389  Stage L, IL, 111, IV
KICH Kidney Chromophobe 25 66  Stage I, IT, IIL, IV
KIRC  Kidney renal clear cell carcinoma 71 224 Stage I, IL, 111, IV
LUAD Lung adenocarcinoma 19 388  Stage I, IL IIL, IV
LUSC  Lung squamous cell carcinoma 37 247 Stage L, 11, IIL, IV
PRAD Prostate adenocarcinoma 50 191  Category 6,7, 8,9, 10
READ Rectum adenocarcinoma 3 150  Stage I, II, 111, IV

UCEC  Uterine Corpus Endometrial Carcinoma 14 231 Stage I, IL, II1, IV
All Samples 332 2721

the decoy pathway technique introduced in Vaske et al. [14]. For each pathway, a decoy one
has been built by using the same structure and substituting each gene (or miRNA) with one
randomly chosen from the set of all possible genes. After the execution of the three algorithms,
the pathways were classified by each method and the fraction of real pathways versus the total
number of pathways considered was computed. The higher the fraction of real pathways, the
better the ability of an algorithm to extract biologically sound results. Lastly, to achieve a fair
comparison with SPIA, we chose the same 3 function as Tarca et al. [13]: § (u,n) = 1 for all
interactions that increase node expression level, 5 (u,n) = —1 for those that have the effect
of decreasing node expression level, 3 (u,g) = 0 for irrelevant ones. However, the § function
introduces a huge concealed potential in MITHrIL, which paves the way for possible future

extensions.

Resurrs  As stated before, MITHrIL has been compared with PARADIGM [14] and SPIA
[13] by employing the technique defined in Vaske et al. [14]. The aim is to establish whether the
ranking computed with a pathway analysis algorithm is biologically significant. This is achieved
by defining random pathways (called decoy pathways) with the same topology as the real ones
but randomly selected nodes. All pathways are then evaluated by each algorithm, estimating the

ability of each method to properly separate decoy pathway from real ones by means of a receiver

80



Table 4.2: Average areas under the curves (AUC) of 4.1 computed for all cancer dataset. Best results are in bold. In the
table A represents MITHrIL, B SPIA, and C PARADIGM.

Dataset
BLCA BRCA COAD KICH KIRC LUAD LUSC PRAD READ UCEC
A 0.6980 0.6145 0.7047 0.6208 0.6782 0.6821 0.5746 0.6714 0.6852 0.6930
B 0.4884 0.5393 0.5275 0.5259 0.5873 0.4464 0.5273 0.4884 0.4884 0.5340
C 0.4974 0.5162 0.5062 0.5098 0.5287 0.4835 0.5081 0.4983 0.4789 0.5103

operating characteristic (ROC) curve. In principle, a method that can correctly distinguish real
pathways from decoys should yield biologically significant results.

The results of the three methodologies were ranked as follows: PARADIGM according to the
average number of significant scores, as described in Vaske et al. [14]; SPIA according to the
adjusted p-value as obtained through their software implementation; MITHTrIL according to
the adjusted p-value and the accumulator. Figure 4.1 shows the results of the comparison which
clearly highlight that MITHTrIL gives the best performances. As further proof of the goodness
of the methodology, the average area under each ROC curve (AUC) has been computed. The
results were summarized in Table 4.2.

An additional validation of the methodology has been obtained by verifying the percentage of
endpoints for which a correct prediction of the deregulation is obtained. Initially, MITHrIL has
been applied with and without miRNA enrichment to estimate the perturbations for each end-
point of each sample (excluding the expression values of the endpoints in order to avoid in-
troducing a bias in the evaluation). Subsequently, the percentage of endpoints for which the
sign of perturbation coincides with that of the log-Fold Change was computed. This validation
estimates the reliability of the predictions in terms of biological accuracy and the importance
of the addition of miRNA knowledge to our model. The results (Figure 4.2) demonstrate that
the incorporation of quantitative information on miRNAs is crucial to obtain valid predictions.
This is also supported by tumoral pathologies not influenced by miRNA alterations, in which
no improvement is observed when adding such elements.

Through the enrichment with miRNA information, MITHrIL can greatly improve predic-
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Figure 4.1: Comparison between MITHFrIL, SPIA [13] and PARADIGM [14] by means of decoy pathways. Each line shows
the receiver operating characteristic (ROC) curves for distinguishing real from decoy pathways using the pathway

ranking.
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Figure 4.2: Significance of the addition of miRNA in our model by means of a comparison of the percentages of cor-
rectly predicted endpoints for each sample between our method with and without miRNAs. Each box in the figure
represents the variability range of the percentage of correctly predicted endpoints for the patients of a specific tumor
type. A prediction is correct when the deregulation observed in the original data correspond to the one inferred by our
algorithm. Namely, the sign of an endpoint Log-Fold-Change corresponds to the sign of its perturbation value.
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tions over SPIA and PARADIGM. Indeed, while SPIA and PARADIGM cannot properly dis-
tinguish between decoy pathways and real ones, MITHIrIL is capable of obtaining much better
results. Even our worst case had superior results than our two competitors. From a biological
standpoint, the ability to distinguish decoy pathways from real ones addresses the fundamental
necessity to be able to properly interpret the actual cellular mechanisms as possessing a biological
criterion which is crucial to the life of the cell and not the result of random phenomena.

Finally, to evaluate classification performances we elected to train PAMR [60] algorithm and
evaluate its performance by means of a 10-fold cross validation procedure. PAMR is an approach
devised to predict cancer class from gene expression profiling, based on an enhancement of the
nearest shrunken centroid classifier. The algorithm is able to identify subsets of genes that best
characterize each class.

A reference classification was established by applying such a procedure to the Log-Fold-Change
of differentially expressed genes of our cancer cases. First we computed all differentially expressed
genes for each tumor type, obtaining a total of 17, 326 genes that appear to be de-regulated in at
least one disease. Next, we calculated their Log-Fold-Change in each sample, trained a classifier
and verified its performance. The results (Table 4.3) demonstrate that such a classification is
quite reliable since it yields a very small error. We then ran the three algorithms on all samples
of our set of selected cancer types, and trained three classification models using their scores. As
before, we performed a 10-fold cross validation and evaluated errors in each class (Table 4.3).
Furthermore, leveraging the ability of our algorithm to return the perturbation for each pathway
endpoint, we trained an additional classifier based on such values.

The analysis clearly shows that performances can be considerably improved over reference
classification, by taking into account endpoint perturbations (Table 4.3). Table 4.3 also reports
the classifications based on MITHrIL pathway accumulators. Accumulator summarizes, with a
single value, the general perturbation observed within a pathway. Hence, as a further effect this

yields a strong dimensionality reduction, although a slight increase in misclassification error can
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Table 4.3: Classification results of tumor samples in our dataset obtained training PAMR algorithm by means of Log-
Fold-Change, SPIA total accumulation, Paradigm scores, MITHrIL accumulators, and MITHrIL endpoint perturbations. Each
element in the table corresponds to the classification error for a specific cancer type using one algorithm. Despite the
reference classification based on Log-Fold-Change yields a low average error (2.90%), the employment of perturba-
tions computed for each endpoint provides a significant improvement in the classification accuracy.

MITHrIL
Dataset Log-Fold-Change Perturbations Accumulators SPIA  Paradigm
BLCA 3.11% 1.55% 12.95% 49.74% 82.38%
BRCA 1.86% 1.09% 13.08% 8.25%  73.05%
COAD 2.31% 0.00% 0.77% 0.00% 32.90%
KICH 3.03% 0.00% 4.54% 3.03% 31.81%
KIRC 3.12% 1.79% 5.80% 2.67%  35.26%
LUAD 4.89% 1.80% 4.38% 2.83%  64.43%
LUSC 6.07% 1.21% 5.26% 4.04%  71.54%
PRAD 0.00% 0.00% 2.61% 30.89% 18.94%
READ 3.33% 0.00% 0.66% 0.00% 96.66%
UCEC 1.73% 0.00% 4.32% 1.29%  46.32%
Total 2.90% 0.90% 6.40% 8.80%  57.60%

be noticed, compared to reference classification. The last two columns of Table 4.3 report the
classification performances obtained by SPIA accumulators and PARADIGM scores. All of this
shows that the addition of miRNA information is crucial in order to obtain more reliable results.
Leveraging on the potential provided by miRNA enrichment in pathway analysis, MITHrIL rep-
resents a bioinformatic resource capable of a far more precise evaluation of pathway deregulation
in cancer. This can provide a decisive contribution to cancer research in terms of directing re-
searchers more effectively, reducing costs and time requirements. Specifically, MITHrIL can
contribute to an earlier diagnosis, an early and more accurate drug resistance assessment, as well

as to more precise prognosis in terms of predicting future disease development.

4.2  ENHANCING DRUGS KNOWLEDGE: DTI PREDICTION

In the past, the classical drugs development approach consisted in producing chemical com-
pounds that would act against specific families of proteins associated in some way to a pathology
[23]. However, drugs work by binding to protein and modifying their biochemical and bio-

physical properties, consequently altering their activity. A protein operates as part of a highly
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interconnected cellular network (interactome). This implies that a small change can have great
effects, even unthinkable. Furthermore it was shown that drugs developed to act on specific pro-
teins can interact with other even if during their development such an eventuality was avoided
[214]. This has shown that the paradigm one gene, one drug, one disease is too restrictive in most
cases [141]. Therefore fully understand the activities that drugs play within the cell is of funda-
mental importance to develop highly precise therapies, which minimize side effects. However,
a comprehensive laboratory approach is unthinkable given the high cost of the experimentation
process. For this purpose, drug-target interaction (DTI) prediction techniques are playing a cru-
cial role by reducing the number of laboratory experiments selecting only the most promising
candidates.

In this sense, the DT-Hybrid (domain-tuned hybrid) algorithm was conceived [31]. It ex-
tends /VB, an algorithm proposed in Zhou et al. [144] and applied by Chen et al. [28], adding
application domain-specific knowledge to its model. Despite its simplicity, the technique pro-
vides a comprehensive and practical framework for in silico prediction of relationships between

biological entities including drug and targets.

ArcoriTHM DT-Hybrid is a recommendation algorithm that uses domain-specific knowledge
to obtain accurate in silico predictions of DTIs. Let D = {dj,ds,...,d;} be a set of small
molecules (i.e. biological compounds, biotech drugs), and 7' = {t1,ta,...,ts} a set of tar-
gets (i.e. genes, proteins), the network of D-T interactions can be described as a bipartite graph
G (D,T,E) where E = {e;; : d; € D,t; € T}. A link between d; and ¢; is drawn in the
graph when the small-molecule d; is associated with the target ¢;. Such a network can be sum-
marized by an adjacency matrix A = {aj;}, ., ,whereaj; = 1ifd; is connected to t;, otherwise
aj; = 0.

In Zhou et al. [64, 144], authors proposed a recommendation method based on the bipartite
network projection technique implementing the concept of resources transfer within such a net-

work. Given the bipartite graph defined above, a two phase resource transfer is associated with
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Table 4.4: List of Algorithms with the associated I functions.

Algorithm I" function
(1) NBI [144] I'(,5) =k (t;)
(2) HeatS [64] r,j
(3) Hybrid N+H [64]
(4) DT-Hybrid

one of its projections: at the beginning a resource is transferred from nodes belonging to 7" to
those in D, subsequently the resource is transferred back to 7" nodes. This process allows us to

define a technique for the computation of a weight matrix (W = {w;;}, . ), which represents

nxn

the projection, as follows:
m
1 ailajl

4.6
TG, J) 2 k() “o

wij =

where I' determines how the distribution of resources takes place in the second phase, and & (z)
is the degree of node z in the bipartite graph. By varying the I' function we obrtain the following

algorithms (see Table 4.4 for more details):

* NBI, introduced in Zhou et al. [144], and used in Cheng et al. [30] for the prediction of

DTIs;
e HeatS, introduced in Zhou et al. [64];

* Hybrid N+H, introduced in Zhou et al. [64], in which the functions defined in NBI and

HeatS are combined in connection with a parameter called .

Finally, given the weight matrix W and the adjacency matrix A of the bipartite network, it is

possible to compute the prediction matrix R = {r;;} by the product:

nxm

R=W x A. 4.7)

For each d; in D, its recommendation list is given by the set R; = {(¢;,7;;) | aji = 0} wherer;;

is the score of recommending ¢ to d;. This list is sorted in a descending order with respect to the
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score, since the higher elements are expected to have a better interaction with the corresponding
structure.

DT-Hybrid is an enhanced version of the Hybrid N+H algorithm in which prior domain-
dependent biological knowledge is plugged into the model through (i) a similarity matrix be-
tween small molecules, and (ii) a sequence similarity matrix between targets.

Let S = {s;5} be the targets similarity matrix (i.e. either BLAST bits scores [215], or

nxn
Smith-Waterman local alignment scores [216]). This information can be taken into account by
using equation 4.6 with I (7, j) defined as in row 4 of table 4.4.

Including structural similarity requires more effort. Therefore, it is necessary to manipulate
such information in order to obtain a variant of the S matrix, and simplify the computation
of the equation 4.6. Let S = {S;J}me be the structure similarity matrix (i.e. SIMCOMP
similarity score [217] in the case of small molecules). It is possible to obtain a matrix So =
{s;/] }nxn, where each element s7; describes the similarity between two targets #; and ; based
on the common interactions in the network, weighting each one by drugs similarity. In other

words, if two targets ¢; and ¢; are linked by many highly similar drugs than s7; will be high. S»

can be computed as:
§ — Z?zl eril (ailajk"s;k) (4.8)
m m ' .
v 2 k=1 21 (aqagi)

Such a matrix can be linearly combined with the target similarity matrix S,

SW =1+aS+(1—a)ss, (4.9)

where « is a tuning parameter. This additional biological knowledge yields faster computation
together with higher numerical precision. The matrix defined by equation 4.9 in connection
with equations 4.6 and 4.7 allows the prediction of recommendation lists, which are used to

select the most promising interaction for further laboratory experimentations.
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Table 4.5: Description of the dataset: number of biological structures, targets and interactions together with a measure
of sparsity. The sparsity is obtained as the ratio between the number of known interactions and the number of all
possible interactions.

Data set Structures  Targets Interactions Sparsity
Enzymes 445 664 2926 0.0099
Ion Channels 210 204 1476 0.0344
GPCRs 223 95 635 0.0299
Nuclear Receptors 54 26 90 0.0641
Complete Drugbank 4398 3784 12446 0.0007

PERFORMANCE ASSESSMENT AND DATA SOURCES In order to correctly evaluate DT-Hybrid,
the four datasets used in Cheng et al. [30] containing experimentally verified DTIs were used.
The datasets were built by grouping known DTTs based on their main gene types: enzymes, ion
channels, GPCRs and nuclear receptors (see Table 4.5 for the details). The following similarity
measures have been used: (i) SIMCOMP 2D chemical similarity for small molecules [217],
and (ii) Smith-Waterman sequence similarity of genes [216]. Similarities have been normalized
according to Yamanishi et al. [143]:
S (i,J)

Srnorm ,]) = . 4.
= 56056 0

Results are evaluated by combining the methods presented in [64] and [30]. More precisely
a 10-fold cross-validation has been applied and the experiments were repeated 30 times. Notice
that, the random partition used in the cross validation could cause isolation of nodes in the
network on which the test is performed. Since all the tested algorithm are capable to predict
new interactions only for drugs and targets for which we already have some information, we
compute each partition so that for each node, at least one link remains to the other nodes in the
test set. Consistent with Zhou et al. [64] the comparison between methods was performed by

applying also Precision and Recall Enhancement computed as described in section 2.1.3.

Resurrs  The evaluation of results obtained by comparing DT-Hybrid with competing method-

ologies shows that adding domain-related knowledge improves the algorithms in terms of predic-
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Table 4.6: Optimal values of A and cx parameters for the data sets used in the experiments (Enzymes, lon Channels,
GPCRs, Nuclear Receptors, Complete Drugbank).

Data set A «

Enzymes 0.5 04
Ion Channels 0.5 0.3
GPCRs 0.5 0.2

Nuclear Receptors 05 0.4
Complete Drugbank 0.8 0.7

Table 4.7: Comparison of DT-Hybrid, Hybrid and NBI through the precision and recall enhancement metric computed
for each dataset listed in Table 4.5. The results were obtained using the optimal values for A and «v parameters as
shown in table 4.6.

ep (20) €R (20)
Data set NBI Hybrid DT-Hybrid NBI Hybrid DT-Hybrid
Enzymes 103.3 104.6 228.3 199 209 32.9
Ion Channels 228 254 37.0 9.1 9.7 10.1
GPCRs 27.9 337 50.4 7.5 8.8 5.0
Nuclear Receptors 289 315 70.2 0.3 1.3 1.3
Complete Drugbank 538.7  861.3 1141.8 55.0 85.7 113.6

tion of novel biologically significant interactions. Table 4.6 reports the optimal values found for
parameters A and «. Such values were obtained by computing the quality of results by varying
each parameter and selecting those which achieved better biological significance.

Table 4.7 illustrates the result of comparing NBI, Hybrid and DT-Hybrid in terms of precision
and recall enhancement. DT-Hybrid clearly outperforms both NBI and Hybrid, in recoverying
of deleted links. It is important to point out that hybrid algorithms are able to significantly im-
prove recall (eg) measuring the prediction ability of recovering existing interactions in a complex
network.

Figure 4.3 illustrates the receiver operating characteristic (ROC) curves calculated over the
complete drugbank data set. Simulations were executed 30 times and the results were averaged
to obtain a performance evaluation.

Experiments show that all of the three techniques have high 7rue-Positive Rate (TPR) against
a low False-Positive Rate (FPR). However, hybrid algorithms provided better performance than

NBI. In particular Table 4.8 clearly shows an increase of the average areas under the ROC
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Figure 4.3: Comparison between DT-Hybrid, Hybrid and NBI by means of receiver operating characteristic curves

(ROC), computed for the top-L places of the recommendation lists, which were built upon the complete drugbank data
set.
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Table 4.8: Comparison of DT-Hybrid, Hybrid and NBI through the average area under ROC curve (AUC) calculated for
each dataset listed in Table 4.5. The results were obtained using the optimal values for X and «v parameters as shown in

table 4.6.
AUC (30)
Data set NBI Hybrid DT-Hybrid
Enzymes 0.9789+0.0007  0.9982+0.0002 0.999540.0001
Ion Channels 0.9320+£0.0046  0.9929+0.0008 0.997340.0006
GPCRs 0.9690+0.0015  0.9961+0.0007 0.99954-0.0006
Nuclear Receptors 0.9944+0.0007 0.9986+0.0004 1.0000+0.0000
Complete Drugbank  0.9619£0.0005 0.9976+0.0003 0.9989+0.0002

curves (AUC) in the complete data set. This indicates that hybrid algorithms improve the abil-
ity of discriminating known links from predicted ones. The increase of AUC values for DT-
Hybrid demonstrates that adding biological information to prediction is a key choice to achieve
significant results. Figure 4.4 illustrates the receiver operating characteristic (ROC) curves calcu-
lated on the Enzymes, lon Channels, GPCRs, and Nuclear Receptors data sets using the Top-30
predictions. Finally it can be asserted that adding similarity makes prediction more reliable than

an algorithm, such as VBI, which applies only network topology to score computation.

4.3 NEw THERAPIES: DRUG COMBINATION PREDICTION

In recent years, due to the complexity of pathologies, it has become necessary the development
of multi-target drugs and drug combinations. The latter, despite the complexity, is the most
promising approach. Indeed, by combining multiple drugs it is possible to enhance their effect
reducing or removing side effects. For example, the RAS oncogene mutation, very frequent
phenomenon in many human cancers [218], has no effective therapeutic approaches due to
their high toxicity, and, even if viable, a high level of resistance can be observed. To overcome
such deficiencies many different approaches have been proposed, based for example on drug
combinations operating on parallel pathways [165, 166].

Already researches can relay on public-domain databases of drug combination references, such

as Liu et al. [219]. However there is still a lack of systematic computational approaches, and
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Figure 4.4: Comparison between DT-Hybrid, Hybrid and NBI by means of receiver operating characteristic curves
(ROC), computed for the top-30 places of the recommendation lists, which were built upon the four data sets (En-

zymes, lon Channels, GPCRs, and Nuclear Receptors).
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often several possible drug combinations are disclaimed by expert knowledge and verified via
clinical trials. Motivated by the success of network-based approaches, a multi-purpose pathway
analysis, which relies on a multi-drug, multi-target, multi-pathway approach, has been developed
to provide a limited set of candidate drugs both for drug repositioning and combination, that
can be directly evaluated by the experts or combined with other methods. The algorithm has

been implemented as part of the DT-Web database [32].

ArcoriTHM  The aim of the multi-purpose pathway analysis is to discover the minimal set of
drug targets that are able to affect a user-specified set of genes in a multi-pathway environment.
The distances among such targets and user genes are limited to a given range in order to minimize
drug side effects. The set of validated drug targets is extended with DT-Hybrid predictions, along
with their score to give a measure of confidence on each prediction.

The implemented pipeline has been divided into two main phases. The first phase is performed
off-line and kept up-to-date whenever the DT-Web database is synchronized with the latest
version of Drugbank [220-222]. The second one is performed on-line and responds to the

request of an user passed through a submission form.

OF¥F-LINE DATABASE BUILDING PIPELINE  The calculation of a multi-pathway environment
requires huge computational resources and it is a time-consuming task. Because of this, the con-
struction of such an environment, consisting of merging all Homo sapiens metabolic and signaling
pathways contained in Reactome [223] and PID [224], is done off-line through a proprietary Java
module, and stored in a database. The steps are the following.

Step 1. All pathways are retrieved by downloading BioPax [225] level 3 XML files from
the Pathway Commons [181] web service, using PC2 for the remote connection to the public
database.

Step 2. For each pathway, first entity names are normalized if these exist (i.e. symbolic names

for proteins, such as BRCAL1), otherwise we consider the BioPax entity reference IDs.

94



Step 3. Subsequently, we collapse all nodes representing the same biological entity (protein
sub-units or the same protein in different cell locations) in a single node, and we map them to
the Drugbank database. Edge directions are kept as they are in the input network, except for
those which connect a complex to a constituent protein that are made undirected.

Step 4. The entire set of retrieved pathways is merged into a single global network by mapping
nodes and edges using their names and interaction types, respectively.

Step 5. Finally, to control the combinatorial explosion of such data, we store only directed
shortest paths between proteins that lie at a distance of, at most, 9 edges. Moreover, since a path
could contain edges belonging to different pathways, we decided to store for each edge the list
of pathways where it appears. We, also, store the mapping to Drugbank database computed at

step 3.

ReAL-TIME PREDICTION PIPELINE  The multi-pathway environment computed and indexed
as described above can be easily queried to perform predictions. From a set of genes altered in
some way by a disease, a list of druggable proteins can be traced back. Such proteins should not
be too far away from the genes affected by the disease in order to reduce the cascading impact
of drugs on other proteins, thus avoiding side effects (Direct-Indirect Range). Further-
more, such proteins should be as close as possible between them to ensure the a synergistic effect
(Pair Range). Finally, the resulting set of proteins should be as small as possible to minimize
the number of drugs. The steps that implement this algorithm are as follows.

Step 1. 'The user provides a list of genes (names in HGNC format, or Uniprot Accession
Number, or Entrez Gene Id, or HGNC Id, or Ensembl Gene Id) through a web interface. He
can also set the ranges (min/max) for distances between drug targets and user-provided genes
Direct-Indirect Range, or between each pair of drug targets Pair Range.

Step 2. Users data are thus filtered to remove all proteins that are not present in our database.
If the filtered list is not empty, a search is performed in our multi-pathway environment. The

task selects all proteins which are at distance within the Direct-Indirect Range specified by
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the user.

Step 3. Each protein is then mapped in Drugbank, and those targeted by at least one drug
are selected as a preliminary list of targets. Such a list is further filtered by removing all pairs of
targets which are outside of the user-specified Pair Range.

Step 4. Next, by applying Chvatal [220], an approximation of the minimum list of targets
needed to reach all the user-specified genes can be quickly computed.

Step 5. Finally, the list of all targets calculated in step 3, and each associated drug (experi-
mentally validated or predicted), is returned to the user, along with the minimum set computed

in step 4.

Case Stupy The multi-purpose pipeline, being a new software, has not yet been used for
the intended studies. That is why we used such a methodology to predict the combination
of Propofol and Sevoflurane whose additive action produces consciousness and movement to
skin incision during general anesthesia [227]. Both drugs interact with the GAB A4 receptor.
Propofol is a potentiator of the 2 subunit (GABRB2) of GABA 4, while Sevoflurane is an
agonist of the a1l subunit (GABRA1) of GABA 4 with its binding site between both subunits
[228]. Probably is such a location which hinders agonist activity, thereby producing mutually

substitutable actions [229].

4.4 ENHANCING PATHWAYS: MINING OF BIOLOGICAL DATA

Although in the previous sections the merits, and untapped potential, of pathway analysis algo-
rithms have been highlighted, such methodologies are not yet fully reliable as can be seen from
the ROC curves shown in section 4.1. This is mainly due to phenomena that biological pathway
do not account for several reasons.

For example, long non-coding RNA are long RNA molecules not translated into proteins
which to date are not fully functionally characterized but showed different correlations with the

regulation of gene expression, and consequently are also involved in the onset and progression of

96



diseases. Another important phenomena is RNA editing, which by altering a single nucleotide
in an RNA molecule can cause important alterations.

This has led to the development of several algorithmic methodologies that try to fill some gaps
in current knowledge, or at least try to highlight some unclear correlations. These techniques are
based on disparate, and have the ultimate goal of bringing to a further enrichment of pathways,

making their analysis more fruitful and reliable. In this section some of such algorithms will be

described.

4.4.1  PrEDICTION OF NCRNA-DISEASE ASSOCIATION

As stated above, long non-coding RNAs (IncRNAs) are RNA molecules not translated into pro-
teins, whose function is mostly unknown. They compose the majority of transcribed RNA se-
quences in a human cell, and have been associated with gene expression regulation mechanisms,
such as chromatin remodeling. This implies that the study of such molecules is of fundamental
importance. For this purpose, the development of a methodology that is able to predict ncRNA-
disease interactions in silico is crucial in order to formulate new hypotheses on the molecular
mechanisms underlying complex diseases, and to identify potential new biomarkers for their
diagnosis, treatment and prevention.

In this direction, ncPred [42], a resource propagation methodology, uses a tripartite network
to guide the inference process of novel ncRNA-disease associations. The tripartite network allows
the introduction of two levels of interaction: ncRNA-target and target-disease. Here, we call
targets a group of biomolecules (i.e., genes, microRNAs, proteins) whose activity is modulated
by a ncRNA (e.g., regulation of expression, binding to improve the efficiency of its activity, or
binding to help the formation of complexes). In this way, we can exploit the greater quantity of
known interactions between targets and diseases to build a wider knowledge base and obtain a

greater number of high quality predictions.
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ArcoritaM  Let O = {01,09,...,0,} be a set of IncRNAs, T = {t1,t9,...,tm} a set of
targets, and D = {d1,dy, ..., dp} aset of diseases. The ncRNA-target and target-disease inter-
actions can be represented in a tripartite graph G (O, T, D, E), where E is the set of interactions
(edges) between nodes in O and T" and nodes in 7" and D. Such a graph, can be represented
by using a a pair of adjacency matrices A9T = {agT}nxm and ATP = {alP mxp where
agD = 1if 0; is connected to ¢; in G, and a?sD = 1ift, is connected to dg in G.

ncPred, in the same way as Alaimo et al. [31], is based on the concept of resources transfer
within a network. Due to the tripartite network, we developed a multi-level transfer approach
that at each step takes into account the resource transferred in the previous one (see figure 4.5 for
an example). In the first level of the transfer, the resource is moved from the nodes in 7" (targets)
to nodes in O (ncRNAs) and vice versa. In the second level, the resource is moved from D

nodes to 7" nodes and it is combined with the resource of the previous step. Then the resources

is moved back to the D nodes. In this way, we define a methodology for the computation of a

C

C

i; corresponds to the likelihood allowing

combined weight matrix w¢ = {w } , where w
mxp

us to claim that if a ncRNA interacts with a target ¢; then it may be associated with the pathology
d;.

To compute such a matrix, we start by defining two partial weight matrices corresponding
to the intermediate levels of transfer. These two matrices are then used to obtain the combined
weight matrix and, therefore, compute the recommendations.

Let k' () be the degree of node x in the ncRNA-target sub-network and £ (y) the degree
of node y in the target-disease sub-network.

The matrix W1 = {wz;} , associated with the first level of transfer, can be defined as:
mXxXm

Wl — 1 i aly (4.11)
R ¥ (ti)(l_h) % (tj))\l = K (o) ’

where wg;- corresponds to the likelihood that given a ncRNA interacting with target ¢;, then it

98



/

Figure 4.5: Operating principle of ncPred in a tripartite network. Here we represent ncRNAs in blue, targets in orange,
and diseases in red. Without loss of generality, and in order to simplify the reading of the image we decided to put A1
and A5 to 1, 50 as to obtain a uniform distribution of resources in the network. In the first step, a resource is assigned
to each target and disease node (1). Thereafter two separate transfer process are launched to compute the resource
in target nodes (2a, 2b) and disease nodes (3a, 3b). Finally, resources are combined to obtain the total quantity in each
disease node (4). In (4), the literals are used only for example purposes due to lack of space. They are to be replaced
with the values computed in steps (2b) and (3b).
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may also interact with target ;. By using such an equation, we assign higher weights to the pairs

of targets that share many ncRNAs, rather than those who share only a few.

D

The same applies to WP = {wi ; } , matrix associated with the second level of the transfer,
PXp

where:

m _TD_TD
Qyag;

1
D _
wzj - k! (di)(lf)\g) L/ (dj))\2 lz; k! (tl)

(4.12)

In equation 4.12, wg indicates whether we can assert that given a target associated with the
disease d;, it may also be linked to the disease d;. wz-? is higher for the disease pairs which are
associated to many common targets with respect to those with fewer common targets.

In equations 4.11 and 4.12, the A\; € [0,1] and Ay € [0, 1] parameters are used to tune the
quality of the predictions. Parameter values close to zero indicate that the resource of a node is
computed as the average of those in its neighborhood, while values close to one indicate that the
resource is uniformly distributed among the nodes of its neighborhood. In terms of predictions,
lambda values close to zero correspond to conservative predictions, while values close to one
correspond to a larger number of predictions.

c

Therefore, the combined weight matrix w¢ = {w» .

w} can be obtained as:
mxp

m p

wi = (wh Y (ah” - wh) | (4.13)
t=1

r=1

In equation 4.13, the weight of a target-disease pair is computed by taking into account both the
targets with a similar neighborhood and the diseases with a similar neighborhood. In this way,
a larger weight is assigned to those pairs for which more frequently there is a path which passes
through them.

Given the above weights, it is now possible to compute a prediction matrix R = {T,;j}nxp

as:

R = AT . w¢, (4.14)
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We call each 75 prediction score for the pair (4, j). For each ncRNA o;;, its list of predictions R;
can be obtained by selecting those disease-prediction score pairs for which there is no path with
0; in the tripartite network. Such a list is sorted in descending order with respect to the value
of r;, as the higher the score, the greater the belief that the ncRNA will have some connection

with that particular disease.

PERFORMANCE ASSESSMENT AND DATa SOURCES In order to evaluate ncPred , two datasets
containing experimentally verified interactions between ncRNAs, targets, and diseases have been
used. The first data set was built by collecting from [170] 478 interactions between IncRNAs
and genes. These interactions were mapped by converting each target identifier to its Entrez Id.
This allowed removing about 230 duplicates or superseded interactions. From the remaining
targets, we then extracted 1005 experimentally validated gene-disease associations by searching
in DisGeNET [230].

The second data set was obtained by collecting about 4000 IncRNA-miRNA interactions
found in [231] by applying the CLASH methodology [232]. Each association indicates that a
IncRNA contains one or more binding sites for miRNAs. From such a list, we removed all tar-
gets not present in miR2Disease database [233], obtaining 1699 IncRNA-miRNA associations.
Finally, using Jiang et al. [233], we recovered 1572 miRNA-disease associations. Table 4.9 pro-
vides a summary of the two datasets together with some metrics that can further elucidate their
characteristics.

For the evaluation of ncPred, a 10-fold cross-validation procedure repeated 30 times has been
applied to obtain more reliable results. Each fold is built in the the following way. Given the
tripartite graph, we selected all possible pairs of ncRNA-disease interactions. Then, we ran-
domly partitioned them into each fold. We make sure that the tripartite network generated
from each fold is not disconnected. ncPred makes predictions only on connected networks. The
four metrics of Alaimo et al. [31] have been used to assess performances: precision and recall

enhancement, recovery, personalization, and Surprisal. The first two establish the ability of the
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Table 4.9: Description of the datasets: number of ncRNAs, targets and diseases together with the count of interactions,
average degree, density, modularity, number of connected components, and average path length.

Metrics Chen etal.  Helwak et al.

ncRNAs 119 338

Targets 110 179

Diseases 514 134

ncRNAs-Targets Interactions 247 1699
Targets-Diseases Interactions 1005 1572
Average Degree 1.572 5.025
Density 0.002 0.008
Modularity 0.609 0.274

Number of Connected Components 24 1

Average Path Length 1.572 1.734

method to recover the interactions of the test set, therefore obtaining biologically relevant pre-
dictions. The other two measure the ability of the method to propose unexpected interactions,
which may lead to novel insights onto ncRNA functions. Special care should be given to the pre-
cision and recall enhancement metrics. They measure the reliability of the prediction algorithm
by comparing the standard precision and recall with a null model. Such a model is defined as a
methodology that randomly assigns ncRNA-disease pairs. This implies that values greater than

one are to be considered synonymous of higher quality and, therefore, reliability.

Resurrs In Table 4.10, we illustrate the behavior of ncPred, comparing it with Yang et al.
[41], in terms of precision and recall enhancement. The results demonstrate that ncPred clearly
outperforms its competitor. In particular we can see that while Yang et al. [41] obtains a recall
close to the null model, ncPred has much better results. This is crucial since the recall measures
the ability of the algorithm to recover existing interactions in the network, and is therefore a sign
of their reliability, namely their biological relevance.

In Figure 4.6, we report the receiver operating characteristic (ROC) curves computed on
both datasets. The simulations were repeated 30 times and their results were averaged to obtain
a more accurate evaluation. Both methods show a high true positive rate against low false positive

rate, although ncPred is clearly able to achieve better results. This is also shown in Table 4.10,
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Table 4.10: Comparison of ncPred and Yang et al. [41] through the precision and recall enhancement metric, and the
average area under ROC curve (AUC) calculated for each of the two datasets listed in Table 4.9. The results were ob-
tained using the optimal values for A1 and Ao parameters as shown in Table 4.12.

ep (20) er (20) AUC (20)
Dataset Yang ctal.  ncPred Yang et al.  ncPred Yang et al. ncPred
Chen et al. 5.5113  12.3290 0.7297  1.6636 0.6217+0.0178 0.7566+0.0218
Helwak et al. 1.8654 5.8197 1.6509 5.6572 0.70694+0.0084 0.7669+0.0093

Table 4.11: Friedman rank sum test applied to establish the statistical significance in the performance improvement of
ncPred compared to [41].

Dataset Friedman > p-Value
Chen et al. 1026.315 < 2.2-10716
Helwak ecal.  6537.915 < 2.2.10716

where we can see a significant increase in the average area under the ROC curve (AUC). Such
a significance is further proved by the results shown in Table 4.11. By applying the Friedman
rank sum test, we determined that the performance improvement achieved by our algorithm is
statistically significant (i.e. the p-value is close to zero on both datasets).

Regarding the parameters A; and A2 , the peculiar characteristics of each dataset greatly affect
the performances and, consequently, the parameters. It is, therefore, necessary to perform an 4
priori analysis in order to determine which values give the best results. In our experiments, we
used such an analysis to determine the best parameters in terms of precision and recall enhance-
ment (see Table 4.12 for details on their values). By looking at the characteristics of our data
sets, the values obtained from such an analysis allowed us to suppose that the two parameters are
close to zero in Helwak et al. [231] dataset because of the greater density. This implies that to
maintain high quality predictions it is necessary to reduce their number to avoid the introduction
of noise. On the other hand, the Chen et al. [170] dataset has a lower density. This allows us to
produce a higher number of predictions before they start losing quality. Therefore, this explains
the lambda values closer to one. It is important to point out that in order to determine the best
parameters an analysis was performed considering only precision and recall enhancement, since

they are closely related to the biological significance of the predictions.
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Figure 4.6: Comparison between ncPred and Yang et al. [41] by means of receiver operating characteristic (ROC)
curves, computed for the recommendation lists built on the two datasets. Such curves measure the quality of the algo-
rithms in terms of false positives rate against true positives rate. (A) and (B) are independent since computed on two
separate datasets. The significance of the difference highlighted between ncPred and Yang et al. [4 1] was measured by
applying the Friedman rank sum test as assessed in Table 4.11.

Table 4.12: Optimal values of A1 and Ao parameters for the datasets used in ncPred experiments.

Dataset A Ao
Chen et al. 05 1
Helwak etal. 0.2 0.2
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4.4.2  DETECTING POSSIBLE A-TO-I RNA EDITING SIGNALS

RNA editing is an important post-transcriptional change in RNA sequence. The most common
alteration, carried out by a specific family of proteins called ADARYs, is the A-to-I editing where
an adenosine is converted in an inosine, which is treated as a guanosine by the translation machin-
ery. This change albeit minimal can have profound changes both on the structure of proteins,
where even a modification of a single amino acid can affect significantly its functioning, and on
the expression of mRNA, where miRNA or binding sites editing can destroy or create interac-
tions with mRNA, indirectly changing their expression. This phenomenon has a major impact
on cellular pathway by altering or enhancing their functions. Moreover alterations of the editing
mechanism have been associated with various diseases, such as neurodegenerative ones.

This shows the crucial importance of understanding such mechanisms. However due to their
dynamic nature, laboratory experiment are difficult and costly. To this end, an insilico prediction
of possible editing sites to restrict experiments is crucial. Moreover, it has been demonstrated
that albeit the activity of ADAR is not random, virtually the entire genome can be edited. In this
context fits AIRIINER [50], an algorithmic approach for the prediction of A-to-I RNA editing
sites in non-repetitive regions. The method has been compared with InosinePredict [234], a
similar technique, which analyzes the nucleotides flanking the editing site. /nosinePredict assumes
a multiplicative relationship between the coefficients necessary to compute the percentage of
editing. The comparisons clearly show that AIRIINER improves the quality of predictions with

respect to [nosinePredict and suggest further research directions.

ALGORITHM, DATA SOURCES AND PERFORMANCE ASSESSMENT Starting from the idea pro-
posed by Pinto et al. [235], we used a logistic regression technique to determine a model from
which we can compute the probability that an adenosine in a non-repetitive region of the genome
is affected by the A-ro-I editing phenomenon. AIRIINER determines the editing probability of

an adenosine by analyzing its flanking region of 10 nucleotides. Such pattern is then combined
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Figure 4.7: Neighborhood preferences computed for experimentally verified editing sites in non-repetitive regions (A)
and random sites chosen among those for which no editing is reported (B). Neighborhood preferences are coherent
with the upstream nucleotide distribution of editing site sequence contexts reported in Eggington et al. [234].

with a similar model calculated from un-edited sequences, resulting in the estimation of an un-
biased editing probability.

In order to train the method, we built a dataset composed of 30, 280 sequences of 21 nu-
cleotides centered on an adenosine, from the human genome (hg19). According to their prove-
nance, our dataset can be divided equally into two sets: known editing sites and random sites.
For the purpose of retrieving known editing sites in non-repetitive regions, only human sites
which do not have any repetitive elements in their flanking regions of 2, 000 nucleotides were
selected from the RADAR database [236]. Random sites were chosen by randomly selecting a
number of sequences equal to that of the known editing sites. From such a selection we excluded
known editing sites in both repetitive and non-repetitive regions.

From such a dataset, two probabilities P (j, i) and P’ (j,4) can be estimated: the first one
corresponds to the probability of finding nucleotide j in position i of a region affected by editing,
while the second one represents the probability of finding nucleotide j in position i of an un-
edited region. Starting from these probabilities, we computed the graphs in Figure 4.7, which
represent the distributions of nucleotides for the two types of regions.

Therefore, let s be a nucleotide sequence and P (s) its editing probability, using the previously
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defined probabilities we are able to train a logistic regression model such as:

21 21
o8 <1_P(1f()s)> = Bo+ ;&-P (s[i],7) - ;BZP’ (s[i],2), (4.15)

where s [7] is the i-th nucleotide in a sequence. Now we can use this model to estimate the editing
probability of any sequence of 21 nucleotides centered on an adenosine, and if such probability
is greater than 0.5, we can say that such a sequence may be affected by editing.

To tune and validate AIRIINER, a 10-fold cross validation procedure has been applied and
mean error computed. To compare our method with InosinePredict, we used a threshold to
establish the presence or absence of editing in a specific sequence. Such a threshold was set
to 9.6% for InosinePredict, as shown in Eggington et al. [234]. For our algorithm, we choose
all sites for which an editing probability > 0.5 is computed. We also took into account the
fact that InosinePredict can produce predictions for both types of ADAR enzymes. We do not
have this information in our dataset, so we chose to select the maximum score produced by
InosinePredict for editing sites, and the minimum score for random sequences. Consequently,

we are able to ensure a fair comparison with our method despite the absence of information on

which ADAR affects each editing site.

Resurrs In Tables 4.13 and 4.14, we show the confusion matrices computed using the pre-
viously described procedure. The two algorithms were applied to the dataset and the values
computed for the central adenosines in each sequence were used to determine the presence or
absence of editing. AIRIINER significantly reduces the number of false negatives compared to
InosinePredict, thus resulting in a better editing sites prediction quality. AIRIINER is also able
to achieve a substantial reduction of false positives, even if nothing can be stated with certainty
about them, as the absence of editing in these sites can also be determined by lack of experi-
mental tests. The best quality in predicting editing sites, however, may reflect the fact that the

random sequences classified as non-edited could be with high probability considered as such.
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Table 4.13: Confusion matrix computed by applying InosinePredict [234] to our dataset. Editing percentages for each
site have been divided into two classes (editing/non-editing) using the thresholds defined in Eggington et al. [234]

Prediction Outcome

Editing site  Random site
Actual Value Editing sites 58.48 41.52
Random sites 60.18 39.82

Table 4.14: Confusion matrix computed by applying AIRIINER to our dataset. All editing sites for which editing proba-
bility > 0.5 were classified as editing while the remaining as non-editing.

Prediction Outcome

Editing sitt  Random site
Actual Value Editing sites 71.18 28.82
Random sites 34.05 65.95

Further confirmation of the quality of our methodology is represented by the receiver oper-
ating characteristic curves (ROCs), Figure 4.8, computed from the results produced by the two
algorithms. The curves demonstrate a significant improvement in performance. Such curves also
show that the threshold chosen to distinguish editing sites from non-editing ones does not affect
the performance difference between the two algorithms. As a confirmation of this, /nosinePre-
dict obtains an average area under the ROC curve (AUC) of 0.5072, while AIRIINER reaches
0.7466. In Figure 4.8, we also compare a variant of the method, AIRIINER 4 nt, with /n-
osinePredict. Such a variant computes the editing probability of an adenosine by considering its
flanking region of 4 nt. This comparison shows that our strategy is superior to nosinePredict even
when the prediction is calculated from this same region around an adenosine.

Furthermore, we investigated that ADAR acts on each editing site in our training set by build-
ing an additional data set from editing sites experimentally identified in Bahn et al. [237]. Using
human cell lines U87MG in which the gene expression of ADARI was repressed, the authors
were able to identify about 4, 000 ADARI-specific editing sites. Four hundreds of such sites were
identified in non-repetitive regions. From the latter, we have built a training set using the same
procedure described above and trained our model. In Figure 4.8b, we show the results of this

experiment by means of ROC curves. Even in this case, AIRIINER is significantly better than
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Figure 4.8: Receiver operating characteristic curve (ROC) computed for the AIRIINER and InosinePredict . We also pro-
vide a ROC curve for a variant of our algorithm (AIRIINER 4 nt), which takes into account only the flanking region of 4
nt around an adenosine. Such a curve is useful to compare the performance with our algorithm using the same flanking
region. In 4.8a AIRIINER shows an average area under the ROC curve (AUC) equal to 0.7466, while InosinePredict gets
an AUC of 0.5072, and AIRIINER 4 nt has an AUC of .7464. In 4.8b AIRIINER shows an AUC equal to 0.6763, while
InosinePredict gets an AUC of 0.4498, and AIRIINER 4 nt has an AUC of 0.6435.

InosinePredict. As further confirmation, we also computed the AUC, which amounts to 0.6763
for AIRIINER, and 0.4498 for InosinePredict.

Finally, to verify the quality of the editing sites predicted by AIRIINER, we selected from
the literature 52 experimentally validated sites by Sanger method and 7 sites validated as non-
edited. We then applied the two methodologies and checked how many of them are correctly
identified. AIRIINER is able to predict 42 of 52 editing sites and 5 of 7 non-editing sites while

InosinePredict identifies 26 editing sites and 4 non-editing ones.

4.4.3 UPPERCUT

The development of in silico predictive models of cell lines cytotoxic response to environmental
toxicants and drugs exposure is an extremely important task. It allows a better understanding

of the underlying mechanisms such as prediction of responses to new compounds under devel-
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opment. As part of the NIEHS-NCATS-UNC DREAM Toxicogenetics Challenge [50], a dataset
containing estimates measuring cytotoxicity in lymphoblastoid cell lines (derived from 884 in-
dividuals following in vitro exposure to 156 chemical compounds) was provided, together with
genotypic information (presence/absence of about 1.3 million of SNPs) and expression profiles
obtained with RNA-seq (about 40,000 genes). These data have been used to develop an ap-
proach, which combines different techniques for dimensionality reduction, Locality-Sensitive
Hashing (LSH) [238, 239] and Singular Value Decomposition (SVD) [240, 241], with a versa-
tile and efficient technique for cytotoxicity values approximation, Conditional Inference Trees
(242, 243]. 'The resulting pipeline produces fast and efficient predictive models when a high
number of independent variables are present. An important point was the use of random pro-
jections based on LSH functions to build a profile of the patient’s genotypic information. This
allows mapping onto a smaller space producing a better approximation of the original data high-
lighting the latent correlations that are hard to identify in a classical analysis.

uPPeRCUT (a Pipeline for the PRediction of Cytotoxicity valUes in lymphoblasToid cell)
predicts cytotoxicity values in response to the administration of compounds in cell lines for which
genotypic and RNA-seq information are available. Given the high dimensionality of such input
data, our approach consists of combining techniques that allow dimensionality reduction, aiming
to maintain the properties of the data. The method has three main stages: (i) dimensionality
reduction, (ii) construction of the regression model, and (iii) prediction of the new values.

Let S; (|Si] = Ns) be the vector that contains information about the presence or absence
of SNPs for the i-th cell line. We perform a first dimensionality reduction based on Locality-
Sensitive Hashing (LSH), so as to compute new vectors S’ (with |.S]| < N;). S/ is calculated
by applying Vg times the random projection method of LSH, by approximating the cosine
similarity between vectors. The method consists of defining in the original space Ny random
planes: the distance between the i-th plane and a point in that space corresponds to the value

to assign to the i-th dimension of the point in the reduced space. In particular, since the values
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for each dimension in the original space are discrete (i.e. 0, 1, or 2), we chose to assign O if the
distance from the random plane is negative, 1 otherwise.

Subsequently, on the vectors defined above, the SVD algorithm is applied, mapping them to
a concepts space of N,1 dimensions (with IV;; < Ng), thereby obtaining a matrix where each
row corresponds to the reduced genotypic profile for each cell line.

Let E; (|E;| = Ny) be the vector that contains information about the normalized RNA-seq
counts of the i-th cell line. Using the SVD algorithm, as previously described, we can map these
vectors into a concepts space of N2 dimensions (with N2 < Ny), obtaining a matrix where
each row corresponds to the reduced expression profile of each cell line.

Starting from those two profiles, we can now compute a combined profile of N1 + Ny2
dimensions, putting together the rows of the two profiles matrices. If, for some reason, some
expression values are missing, zeroes will replace them in the combined profile vector. These
profiles are now the independent variables of our problem and we use them to build a regression
model based on the Conditional Based Inference-Tree (C-7ree) algorithm. The choice of this
algorithm was done after a comparative analysis of the performance of different methods (includ-
ing linear regression, Random Forest based regression, CART Tree based Regression, Non-linear
least squares regression and Bayesian regression models).

First, for each cell line we extract the K most similar profiles, using the cosine distance as a
similarity measure. Next, for each compound under investigation, a regression model is trained
based on the C-Tree algorithm. At the end of the training procedure, all predictors are used to
compute the cytotoxicity values associated with each cell line.

The parameters of our algorithm have been obtained through an exhaustive search of the space
of all possible values. The optimal combination of parameters has been selected as the one that
yields the minimum RMSE (root-mean-square error) score, according to a 10-fold cross vali-
dation procedure. Furthermore, to optimize the performances of our prediction pipeline, we

selected the parameters with minimum values yielding the best performances. The combination
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of optimal values found is: Nz = 50000, N1 = 10, Ny = 2, K = 30. To conclude our analy-
sis, we have validated our method on the data published at the closure of the Leaderboard of the
NIEHS-NCATS-UNC DREAM Toxicogenetics Challenge, yielding a better RMSE score compared

to the others (mean RMSE 0.269, minimum RMSE 0.18, and maximum RMSE 0.30).

4.4.4 A TEXT-MINING APPROACH TO INFER OF NOVEL HYPOTHESES

The inference of novel knowledge and the generation of new hypotheses from the analysis of
current literature is a fundamental process in making new scientific discoveries. Especially in
biomedicine, given the enormous amount of literature and knowledge bases available, this pro-
cess is often complex, and researchers may focus too much on aspects already widely investigated
due to poor literature mining. The automatic extraction of information in the form of semanti-
cally related terms (or tags) is becoming an aspect of great importance and extensive investigation
(Kilicoglu et al., 2012; Stewart et al., 2012).

In this context, BioTAGME, a combination of TagMmE [67, 68] and DT-Hybrid [31], is a
technique designed to extract novel knowledge using a text-mining approach on PubMed. Such
knowledge is returned as a set of tags, or annotations, whose topic is highly related to the input

text one.

ArcoriTHM  Given an input set of texts annotated with terms characterizing each document,
the aim of BioTAGME consists of computing a new set of annotation terms as much as possible
related to the input set but having no synonyms among the old annotations. This is achieved by
defining a semantic similarity between pairs of terms, which is properly combined over all terms
extracted from each input text. All this is enriched with a statistical test supporting that the set
of predictions obtained by our algorithm cannot be achieved by chance. Our method consists of
the following steps: (i) the user performs a query on PubMed and the set of matched abstracts
are downloaded; (ii) TAGME annotates each abstract with entities drawn from Wikipedia (here

an entity is modeled as a Wikipedia page); (iii) then, we build an unweighted bipartite network
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consisting of two types of nodes: abstracts and entities, with edges denoting whether an entity
occurs in an abstract; (iv) we apply DT-Hybrid over this graph in order to recommend more
entities to each abstract; (v) a correlation score is estimated for each pair of annotations (i.e.
entity-entity), by means of a semantic similarity measure, which is built by annotating with
TaGME each entity’s Wikipedia page, and computing for each pair of entities a cosine distance
between their annotations; finally, (vi) based upon such correlation measure, we compute a set

of highly correlated entities along with a p-value that expresses its quality.

NOTATION AND TERMINOLOGY Given a set of n texts T' = {t1,%2,...,t,} and a set of
m terms S = {s1,82,...,Sm}, we call an annotation of T with terms in S a function f7 :
T — P (S) that associates, for each text in 7', a non-empty subset of terms in S. A term
which annotates a document of 7' is called a tag of T'. Moreover, given a set S of terms, a
glossary Gg : S — S is a function associating to each term s; a text 5; describing its semantics
(S ={51,52,...,8m}).

Given a glossary G'g, a set of texts T', and an annotation f7, we can build a matrix M =
{mij},, > called tags matrix of T', where m;; = 1if s; is a tag of t;, m;; = 0 otherwise.

Given a similarity measure Sim defined on a glossary Gg, atextt,andaterm s’ € S\ fr (),
we can define a correlation score C' as:

C (S/,t) = s”ren]?TX(t) Sim (s’, s") . (4.16)

'This notation can be casily extended to subsets of terms S € S\ fr (t) in the following way:

C (S’,t) = minC (sl,t) ) (4.17)
s'eS
BUILDING THE TAG MATRIX Let 7' = {t1,t9,...,t,} be the set of input texts. For each

ti, the TaGME algorithm is applied in order to obtain a list of anchors to Wikipedia pages
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(L; for i = 1,...,n). These lists are, then, combined to obtain a set of terms S = L1 U
Ly U...L, = {s1,52,...,5m}, together with an annotation fr, where fr (t;) = L;. Next,
we build a glossary G'g describing each term by its corresponding Wikipedia page.

The similarity among terms is defined by a suitable semantic distance among the correspond-
ing pages. For example one could define this distance in terms of the number of common anchors
generated by TaGME for each Wikipedia page.

Finally, using the set of terms S, and the annotation f7, we can build a tags matrix M =

{mi i}, m> Where my j is 1 if the term s is a tag of ¢;, 0 otherwise.

RECOMMENDATION AND CANDIDATE TERMS MATRIX The tags matrix M built at the end
of the previous step can be viewed as an user-object utility matrix used in a recommendation
system, where users and objects correspond to text documents and terms respectively. For this
purpose any recommendation algorithm may be used to generate new candidate terms. Our
approach uses the DT-Hybrid algorithm as a prediction method. DT-Hybrid produces sets
R; = {(sj,7ji) | mi; = 0}, where r; is a score expressing our confidence in the association of
term s; to document ¢;. DT-Hybrid selects only the top-L predictions for each document, where
L is a user-defined parameter. This information can be used to generate a candidate terms matrix

irj irj

Meand — {m‘?’md} , where m¢%? is 1 if and only if the term s; has been predicted for the
nxm

document ¢;.

SIMILARITY AND CORRELATION COMPUTATION In order to build the final sets of tags and
the associated p-values, it is crucial to choose a suitable semantic similarity measure among terms,
from which the correlation values will be computed. We achieved this by designing a similarity
function which combines the TaGME algorithm with the cosine similarity. Let G'g be a glossary.
We apply the TagME algorithm to build an anchor vector V; for each text 5; associated with
the term s; in the glossary G'g. These vectors are then used to compute the cosine similarity

among all pairs of terms, where each term s; is represented by its corresponding anchor vector
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V;. Finally, The correlation values linking each text to each recommended term can be computed

by equation 4.16.

FINAL SETS OF TAGS AND P-VALUES COMPUTATION In order to refine the knowledge extracted
from the input documents, we filter the above results by providing a sort of quality degree for
this collection. Our approach consists of computing subsets of terms with increasing minimum
correlation. Next, for each subset, we compute the probability of obtaining by chance a subset of
terms whose correlation is greater than the proposed one. Such probability is our quality degree
that can be assigned to each subset. The lower is this value, the more appropriate will be said
set of tags. More precisely, for each text t; € T, let Mf“"d be the set of its candidate terms
produced by the recommendation system, and suppose that the terms are sorted by correlation
C (M1, t;) < O (Memd[2],t;) < ... < C(Mf™4[L],t;). The subsets of terms
with increasing minimum score can be generated by choosing each term from M as the
minimum threshold and selecting all terms that have a value greater than it, that is fjnd =
{z € M4 | C (z,t;) > C (M4 [4],t;) }. Now for each Mg?"d, using equation 4.17, we
can compute a correlation score, and, with that value, a p-value p; j, where p; ; is the probability

terms whose correlation is greater than the threshold from the set of all

of extracting ’ M f?”d

terms S. Let

cand
Mz7j

= k; jand Hx eS|C(x,t;) >C (Mfg"d,ti) H = @;,j, the p-value

can be computed by using an hypergeometric distribution as:

qi,j m—qi,j qi,j

(ki) (ki)

Obtained these values, we can now find the index x;, which maximizes the correlation, and at
the same time, minimizes the probability p. The final result of the algorithm is composed by the

sets Mf‘;ﬁd for each text t;, along with their correlation and probability.
b 1
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Table 4.15: Description of the datasets: for each one, we specified the topic which has been searched in PubMed,
the number of abstracts downloaded, and the number of terms which have found by applying the first step of our

methodology.
Search Term # of abstracts  # of terms
MicroRNA 490 1364
Adenocarcinoma 494 1475
BRAF 163 459
EGFR 493 1345
Colorectal Cancer 490 1178
Thyroid Cancer 272 840
Prostate Cancer 465 1131
Malaria 469 1250

Data sources To evaluate BioTAGME, we used eight data sets (table 4.15) composed of ab-
stracts extracted from PubMed. For each one we have applied our methodology and checked
the quality of the results. To build these data sets we applied the following procedure: first, we
selected eight terms,and (i) for each one a search was performed in PubMed, (ii) subsequently,
the results of each search were downloaded, and, (iii) for each found paper, we collected the
abstracts, so as to obtain all documents which composes each data set. We choose eight terms
to evaluate our method with heterogeneous texts. These terms are: “MicroRNA”, “adenocarci-
noma’, “BRAF”, and “EGFR”, “Colorectal Cancer”, “Thyroid Cancer”, “Prostate Cancer”, and

“Malaria”.

Resurrs  Finding new and interesting latent associations between texts and topics is a very
important practice, which allows the identification of possible novel hidden knowledge. The
main purpose of BioTAGME is to provide a tool that allows the algorithmic analysis of texts
and the extraction therefrom of latent interesting associations, in order to enrich our biological
insight.

To verify the results produced by our method, we focused on two fronts: First, we analyzed,
using the procedure described in [31], the quality of the predictions provided by DT-Hybrid.
This has been done in order to determine the reliability of our approach with the similarity

measures we defined. Next, we have applied our methodology to find new sets of terms, that,
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subsequently, have been manually analyzed to determine their biological soundness. Our analysis
showed that its results are highly unexpected and surprising from a biological point of view, and
this allows us to gain a novel biological insight of phenomena described in the examined texts.

Here, we will focus only on a single case study regarding the results of the verification stage.

DT-Hysrip evaruatioN Verifying DT-Hybrid predictions is a critical step to understand how
our method will behaves, and, above all, if it has the characteristicswe are looking for: the ability
to find new sets of highly correlated terms, which, at the same time, are sufficiently innovative
to provide new biological insight. In order to perform such assessment, we used the method-
ology proposed in [31]. More precisely, for each dataset, we applied a 10-fold cross-validation
which has been repeated 30 times. For each fold, a random group of interactions between texts
and terms have been removed from the tags matrix and the DT-Hybrid algorithm was applied.
Afterwards, the four metrics (Recovery, Precision and Recall Enhancement, Personalization,and
Surprisal) were computed as described in [31], and the worst values were chosen as the overall
results of the experiments.

In Table 4.16, we illustrate each result: the first two metrics represent the capability of the
algorithm to predict new sets of terms as much as possible related to the source ones, while
the other metrics represent how innovative are those terms. For this reason, the ability of DT-
Hybrid to achieve high values (low for Recovery) for all metrics is a strong indicator of the quality
and reliability of the final results. What has been obtained, in fact, shows that the algorithm is
able to find many new highly related terms for each text in the data set, although the presence
of completely uncorrelated terms can not be avoided. This latter aspect is, however, crucial in

order to obtain novel biological insight.

“MicrRORNA” Case Stuby As stated earlier, the ultimate goal of our methodology is to ob-
tain new biological insight from the input documents, so as to get new latent associations from

them. For this reason we have developed a method that can do this as automatically as possible.
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Table 4.16: The four metrics (Recovery, Precision and Recall Enhancement, Personalization, and Surprisal) computed
for our datasets using DT-Hybrid . As suggested in [31], the top-30 predictions where chosen to perform this analysis.

Data set T ep(20) er(20) h(20) T(20)
MicroRNA 0.1024  30.33 13.74 0.8209 5.0114
Adenocarcinoma  0.0657  89.51 48.12  0.7790 5.1985
BRAF 0.0694 34.43 18.94 0.7434 4.1291
EGFR 0.0606  66.85 46.38 0.6813 3.7854

Colorectal Cancer 0.0630  85.35 44.69  0.7389 4.9993
Thyroid Cancer 0.0964 5042  24.83 0.8306 5.3598
Prostate Cancer 0.0783 7991 41.12  0.7226 4.8177
Malaria 0.0653 100.04 46.61 0.7008 4.9042

However the final analysis of each result is a complex process: it requires a manual checking of
all new terms, even if the use of filtering based on correlation and p-value help us to remove all
uninteresting results.

In order to illustrate the quality of our approach, we show here a case study. First of all, we
built a data set by extracting 500 PubMed abstracts that have some relationship with the topic
“MicroRNA”. On this dataset, we applied BioTAGME and calculated new sets of terms. For
all those terms, we then checked manually if each new term had some relation to the original
texts. We show here two of them as an example of how well our method behaves. In Table 4.17,
we indicate for each item the number of original terms, the number of new terms, the global
correlation score, and the p-value computed by our method. In table 4.18, we present the list of
source and new terms. To complete the results, on table 4.18, we associate to each new term the
correlation value and a citation confirming the discovered association. Our results shows that
the terms computed by our method are highly related to the topics in the paper to which they
refer. Papers with such information were not present in our data set, this proves, therefore, the
validity of our methodology. In addition, it is important to emphasize, that for two terms we
were not able to find any experimental confirmation. This result is important because it shows

that our approach is able to find possible novel associations to experiment with.
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Table 4.17: General information for the two papers we chose: number of source terms, number of new terms, correla-
tion, and p-value.

# Citation Source terms  New terms  Correlation  p-Value
1 Kuhlmann et al. [244] 4 5 0.90 < 0.01
2 Renetal. [245] 5 6 0.80 < 0.01

Table 4.18: List of source and new terms of the two papers in table 4.17. For each new term, we provided the correla-
tion value and the citation to an article that experimentally confirms the association between each new term and the
main topic of the source paper.

Paper Source Terms New Terms
Correlation Citation
. messenger rna 0.90 -
microrna .
. non-coding 1.00 -
1 u2 spliceosomal rna na
Al e inhibior 091 [240)
mucl 0.98 [247]
xiap 0.93 [248]
Correlation  Citation
guangzhou ezh2 1.00 [249]
senescence pdgtb 0.80 [250]
2 e2f3 coldal 1.00 -
hefei ctgf 1.00 [251]
mir-449 microrna sox4 1.00 -
mcll 1.00 [252]
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4.5 TOWARDS AN INTUITIVE PATHWAY BASED SIMULATION METHOD: NEW CLUES AND

PRELIMINARY RESULTS

The techniques discussed in previous sections are useful to formulate novel hypotheses and guide
the experimental process with the aim of enhancing current knowledge of patho-physiological
phenomena. This would make the classification and proposition of personalized therapy much
more reliable than currently possible. Despite the subsequent reduction in number of laboratory
experiments that these methods can archive, the time and cost associated therewith appear mostly
prohibitive.

With the aim to reduce the candidates for further experimentation, the development of an
in silico simulation methodology which allows the prediction of experimental outcomes on the
basis of present knowledge is necessary. Recently several simulation models have been proposed
and evaluated by using biological observational data [51-55], in order to understand the dy-
namic behavior of biological systems by estimating changes of concentration of some elements.
Such methods usually represents biological phenomena described by pathways with differen-
tial equations. Their parameters are therefore estimated by some computational method, and
their ability to predict data is measured. However, their results are typically incompatible with
the observational data due to missing or wrong interactions. Even when accurate enough, the
evaluation of such algorithms is computationally expensive, due to high number of parameters
to estimate and variables to predict. In this sense MITHIrIL offers great untapped potential,
shifting the point of view from the prediction of single gene concentration, to the prediction of
biological functions activity, which are represented by the state (activated or inhibited) of their
pathway endpoint. From expression data, in fact, the algorithm is able to evaluate with high
precision the state of pathways which are representations of biological functions. Simulating,
therefore, the deregulation obtained by the introduction of exogenous or endogenous elements
in a pathway it is possible to estimate their impact on biological functions and, consequently,

formulate more accurate hypotheses.
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SIMPATHY (SIMulations on PATHwaY') is a probabilistic algorithm that exploits MITHrIL to
infer the most likely state of pathway endpoints when an alteration of some endogenous or ex-
ogenous factors happens. To do so, random expression values are computed, and MITHrIL is
applied repeatedly in order to obtain an Activity Score for each endpoint, that is an assessment

of how likely it is to observe a specific state compared to a null model.

ALGcoriTHM. Let e be an endpoint of a pathway. Suppose we want to estimate its alteration
when a deregulation can be observed in ny, . .., ny, independent nodes of its pathway. In order
to evaluate such alteration, a probability of activation, P4 (€), and a probability of inhibition,
Py (e), could be estimated.

By assigning synthetic expression values to n, . . .,y and applying MITHIrIL , it is possible
to assess whether the endpoint e is activated or inhibited by its perturbation (positive values
indicate activation, negative inhibition). By repeating this procedure N times and counting the
number of times it appears activated, N4 (€), and inhibited, Ny (e), it is possible to estimate

such probabilities as:

Pa(e) = N’}‘V(e), (4.19)
Py (e) = Néve). (4.20)

Moreover, by repeating such a procedure to a set of randomly chosen nodes it is possible to
estimate an a priori probability of activation, P (e), and inhibition, P (¢). We can now

estimate an activation log-likelihood, L 4 (€), and an inhibition one, Ly (e), as:

_ Pa(e) _,  Pi(e)
Lale)=lee 7= 8 T PR (o) (.21
Li(e) =1lo L@—lo ﬂ (4.22)
=81 Pr(e) ~ ¥ 1= PR (e)’ :

The activity score, As (€), summarizes both previous values. The sign indicates the type of
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more likely deregulation (negative inhibition, positive activation) while the value is indicative of

the probability of such an eventuality. It can be calculated as:

Ly(e) ifLa(e) > Ly(e)
As(e) = —Lr(e) ifL;(e)> Lale)- (4.23)

0 otherwise

\

The above procedure works only when deregulated nodes are independent. If such an event
does not occur, a meta-node, connected to the ones that should be simulated, can be added
to the pathway. This will make it possible to apply SIMPATHY on that node while avoiding
significant changes to the model. In order to simulate exogenous factors in the pathways we can
take advantage of the enrichment procedure of MITHIIL to introduce them in the pathway and

therefore simulate their action.

CASE STUDY: SIMULATING EPSTEIN-BARR VIRAL MIRNAs. SIMPATHY is still under devel-
opment. Extensive testing to assess the accuracy and compare it with the competitors have not
yet been executed. However, a preliminary validation of the quality of the results was performed
trying to simulate the consequences of the introduction in human of viral miRNAs due to an
infection.

Since 2004, many miRNAs have been discovered in double-stranded DNA viruses [253]. This
discovery opened a new field of virology, indeed, the possibility that such molecules can simul-
taneously regulate hundreds of genes suggested a novel and complex mechanism of host-virus
interaction. Viral miRNAs can directly alter the physiology of the host, including components
of the immune system. In particular, the expression of viral miRNAs has been demonstrated for
many pathogenic human herpesviruses such as Epstein-Barr virus (EBV).

As a first validation of our approach, we simulated the action of viral miRNAs expressed by

EBV on the following human signaling pathways:
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* B Cell Receptor Signaling Pathway, which is activated when antigen binds to the receptor

present on the surface of a B Cell leading to proliferation and antibody production;

* mRNA Surveillance Pathway, a mechanism of quality control which finds and degrades

abnormal mRNAs;

* p53 Signalling Pathway, activated by a cellular stress, which leads to programmed cell

death, or apoptosis.

Our choices are linked to the idea of simulating how EBV tries to act against human cells defense
mechanisms. In particular we also wanted to highlight the viral oncogenic action by looking at
the p53 pathway, whose inhibition causes failure to reply to an aberrated activation of oncogenes,
thus progression of cancer.

The role of EBV miRNAs in the transformation of B-Cell has been characterized for some
time [254, 255]. These molecules are responsible for B Cell proliferation and repression of
apoptosis [254, 255], resulting in an increased viral load [2506]. Figure 4.9 illustrates graphically
the results of our simulation on the B Cell Receptor Signaling pathway. In blue we highlight
endpoints probably inhibited, in red those activated. As we can see, all paths leading to activation
of the immune response are inhibited. In particular, our predicted inhibition of trascription
factor AP1I is responsible for the lack of differentiation, activation of the inflammation process,
and productions of immunoglobulins. Such event, although not yet demonstrated for EBV,
has already been shown in another virus, the Kaposi’s sarcoma-associated herpesvirus, or KSHV
[257]. Our predictions also show the inhibition of factor NFAT and inhibitors /KK« and IKKp,
which lead to the inhibition of apoptosis. This conclusion is also supported by the activation of
GSK3B kinase, which leads to uncontrolled cell duplication independent of its substrate [258,
259]. This assumption is reinforced by the results shown in Figure 4.10 where an arrest of
apoptosis and a strengthening of the cell cycle can be observed, resulting in increased mitotic

process [255]. Finally, our predictions in Figure 4.11 illustrates the state of protein complexes
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Figure 4.9: Simulating action of EBV viral miRNA on B Cell Receptor Signalling Pathway. In red we highlight positive ac-
tivity score values for an endpoint, negative ones in blue. A positive (negative) score implies that after the introduction
of exogenous elements we predict an activation (inhibition) of the endpoint.

that are employed to control and degrade aberrant mRNAs. An inhibition of such complexes is
consistent with aim of the virus to lead to its replication. At the same time, such inhibition can
cause the onset of cancer due to the formation of misfolded proteins which are not degraded by

such quality control mechanisms.
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Conclusions

Precision medicine is the new frontier of the twenty first century. A key assumption in precision
medicine is that the cause of a disease is at least partially attributable to specific genetic or epige-
netic characteristics of a patient. Therefore, identifying these specificities helps building the best
treatment for each individual. However, in order to develop personalized therapies, highly inter-
disciplinary teams are required. Such medicine depends heavily on Next-generation Sequencing
techniques, and information sharing to ensure optimal results. The amount of data generated is
too large to be analyzed with a classical approach, in which a physician examines such data to
formulate hypotheses therefore prescribing a treatment. That is why bioinformatics has taken a
prominent role in precision medicine, returning highly accurate therapies based on the unique
characteristics of each patient. Naturally, this involves a significant effort to coordinate and train

heterogeneous groups, providing at the same time high-precision tools.
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The aim of this thesis has been the development of an integrated framework, based synergistic
tools, models and algorithms, which help to fill some of the major gaps in each step of the
production of highly customized therapies, overcoming, if possible, the limitations of currently
employed techniques.

Classifying patients is a key step in the development of personalized therapy. It allows us
to determine his unique characteristics and help diagnosis. However, the use of biomarkers is
not always enough. That is why we have proposed the use of functional biomarkers determined
through a pathway analysis algorithm. Despite the results demonstrate the accuracy of our tech-
nique, many factors are not yet taken into account. Future developments of our methodology
should consider important genetic factors that alter the action of proteins, such as mutations
and editing, and epigenetic factors such as methylation or chromatin remodeling. In this sense,
some methods have already been proposed in this thesis, but an integration work is still needed
to make the most out of them.

To predict possible treatments, we need to know the full functioning of drugs, and the cyto-
toxic response that each tissue shows, in order to predict suitable drugs combinations. In this
regard, we developed several methodologies. Despite this, our cytotoxicity prediction technique
still lacks precision, and our DTI prediction methodology has some important shortcomings.
One major deficiency is the inability to predict any target for completely novel drugs. A vari-
ation of our tripartite recommendation technique might be used to fill this gap and provide a
set of initial predictions to extend. Moreover, our drug combinations prediction methodology
still does not take into account genetic or epigenetic characteristics of a patient, and is not able
to exploit cytotoxicity knowledge to remove poisonous combinations. These processes are still
delegated to a manual assessment, but by crossing all informations we are able to predict, we
could automate such process by filtering out predictions.

Finally, our simulation technique still needs accurate tests, and improvements in the under-

lying pathway analysis algorithm. However, our current findings are promising, showing that

128



the prediction of macroscopic biological processes alterations is more reliable than predicting the
concentration of single biological elements due to the many gaps in our knowledge of low level

phenomena.
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