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ABSTRACT

The massive diffusion of smartphones we are seeing in the last years,
the growing interest for everything related to wearable devices and
Internet of Things (IoT), the exponential rise of Location Based Ser-
vices (LBS: services based on the position of the users and accessible
through the device) has meant that technologies capable of determin-
ing the position of the user inside a specific context have taken a
crucial role in the consumer sector. In outdoor environments, GPS
(Global Positioning System) can be considered today as a ”standard
de facto”, while the localization and navigation in indoor environments
still remains one of the technological challenges of the next years.
Indoor Positioning Systems (IPS) have a remarkable importance in
a lot of important market segments such as the retail sectors for con-
textual advertising (commercial centers, supermarkets), touristic and
transportation sectors (airports, museums), healthcare sectors (hospi-
tals). Sometimes, in emergency situations they can make the differ-
ence between life and death. Even if actually doesn’t exist a definitive
solution as efficient and precise as GPS and with all its advantages,

various approaches and methodologies has been proposed in the last
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years in scientific literature, and several technologies are appearing
into the market. The researches have focused, rather than on real-
izing a "general purpose” IPS with high performances everywhere,
on the development of a variety of solutions suitable for the specific
place of deployment and which meet the specifics precision, security,
invasiveness and cost requirements.

In the first part of this doctoral dissertation, after an overview on
the main methodologies used for locating a user in an indoor envi-
ronment, we will analyze the state of the art and present some of the
most interesting cases. We will focus particularly on approaches which
utilize the smartphone’s inertial sensors and 2D visual markers based
computer vision techniques. In the second part of the dissertation we
will propose our own solution to the indoor localization problem. Such
solution consists in a visual markers system deployed onto the area of
interest’s floor and a step detection algorithm. We will compare the
performances of three types of markers, taken from the scientific lit-
erature, from the point of view of the specifications required by the
suggested solution, and choose the most better performing one. We
will then propose a client - server architecture for managing the whole
process of tracking the user inside a building, and present an imple-
mentation of the client, on the iOS platform. Finally in the last part
of the dissertation, we will show the obtained results, and talk about

the possible future works.
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CHAPTER
ONE

INTRODUCTION

During the last 5-10 years two new kinds of technologies - the smart-
phone, and the World Wide Web - have radically changed our way of
live, communicate, have social relationships, interact with the world
around us. The ubiquitous internet connectivity, the smartphone
which is always with us, with its computation capabilities increas-
ing year by year and with a lot of embedded sensors in every new
released device, have made this "object” the perfect gateway between
the physical world and the digital world, giving to developers and star-
tups the perfect instruments for creating innovative applications and
services that use new paradigms to achieve what we think should be
the main purpose of the scientific research: make better the citizen
quality of life.

Most of these application and services are strictly related to the
position of the user and to the context-related information so become

fundamentals - as they are enablers - technologies and solutions for
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the user localization. In outdoor environments, the GPS technology
(Global Positioning System), integrated nowadays in every kind of
smartphone, is almost a standard de facto : it is available in every
moment, with an high level of efficiency and precision (around few
meters). In indoor environments however it can’t be used because,
due to the existent physical barriers (roofs, walls etc.) and potential
sources of interferences, the signal can’t reach the device. There is thus
the necessity of finding alternative smartphone-based methodologies
for integrating localization and navigation inside buildings and closed

spaces.

1.1 Motivations

Motivations which have led me to the development of this project come
from various general considerations about the primary role that tech-
nology has (and will have) in our life. Smartphone (and the ecosystem
around it) in particular, was the main object of my considerations:
in fact today, users increasingly rely on its apps to solve the most
common problems of daily life such as accessing their bank accounts,
looking for the closest restaurant, booking something, reading news.
Most of these apps need to know the user position and the informa-
tion related to the context in which the user is. These apps fall in
the Location Based Services category (LBS), provide information and
functionality related to the proximity of the device to a specific point
of interest (POI) or geographic area, and in the last years they are dif-
fusing in sectors such as tourism, restoration, contextual advertising.

In outdoor environments Location Based Services are very common,
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especially in the consumer category. They exploit the geographic po-
sition, calculated by using the GPS technology, to provide specific
functionality for the service. In indoor environments instead, due to
the lack of a low cost and better performing localization technology,
Location Based Services are not very common. Another category of
apps - often working in synergy with LBS - which is recently growing
in popularity is the indoor navigators category. Navigators let the
user to orientate himself inside an unknown building, reach a partic-
ular point of interest, track assets etc. These kind of apps are useful
(sometimes fundamentals) in airports, museums, hospitals, emergency
situations.

In summary, our analysis has led us to affirm that it is really im-
portant, in the actual technological landscape, the study and the de-
velopment of solutions, possibly accurate, non-invasive and low costs,
capable to fill the existing gap between outdoor and indoor localiza-

tion/navigation systems.

1.2 Objectives

The goal of the present PhD dissertation is the in-depth study of the
state of the art for what concern methodologies and technologies for
indoor localization, and the implementation of a smartphone-based

solution which meets the following criteria:

e Low Cost: the system must not require the installation of com-
plex and expensive hardware infrastructures inside the building.
In fact, this would lead to a strong resistance in the adoption

of the solution, due to the high financial investment and also to
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the need of infrastructure maintenance, which should be made

by experienced personnel.

e Low invasiveness: the system must change as little as possible
the environment in which it operate, from a purely aesthetic
point of view but also from an electromagnetic (or sound) wave

emissions point of view.

e Ease of installation: the system must let its deployment inside
an environment also to a non-experienced personnel in an easy

way.

e Ease of use for the final user: the app for the final user
must have an intuitive Ul (user interface). It must not need any
cognitive workload for the user to auto-locate himself. Moreover,
it must let the user to reach the desired area inside the building,

easily.

e Accuracy: the system must have an high level of accuracy,

according to the specific requirements.

e Scalability: the general system architecture must be scalable

and simple to integrate into commercial solutions.

Even if there are a lot of solutions for indoor localization /navigation
using smartphones, our researches have shown that actually none of
them is capable to integrate all the previously seen requirements in an
effective manner.
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1.3 Contributions

The smartphone-based solution which will be proposed (in order to
let the user to auto-locate himself inside a building), will be based
on a combination of (a) computer vision techniques and (b) inertial
navigation using the device’s motion sensors.

Specifically, a 2D visual markers system will be deployed onto the
target building’s floor, and each marker will have an associated posi-
tion on the building’s map. The developed app, by using the smart-
phone’s camera, will decode the marker ID and use that information
to obtain the user position. Dead reckoning algorithms will be applied
to track the user between two markers (due to accuracy reasons, a pe-
dometer will be used). Every time a marker will be encountered, the
cumulative dead reckoning error will be reset.

A server side part of the system will be responsible for managing
the download of the indoor maps (and all the associated information,
such as layers, associations between marker ID and position, GPS
coordinates of the building etc.) on the client. The development of

the whole architecture will pass through the following phases:

1. Analysis of the intrinsic features which the place of deploy
(the floor) has, for what concerns the used indoor localization’s

methodology.

2. Analysis of the 2D visual markers systems’ state of the art. Ac-
cording to (1) the results of the analysis, (2) the deployment
place’s required requirements and (3) the availability of free,
open source, cross platform and well-maintained libraries, a spe-

cific marker will be chosen.
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Figure 1.1: Owverview of the indoor localization and navigation sys-

tem based on 2D wvisual markers and Dead Reckoning

3. Analysis of the inertial navigation systems present in the scien-
tific literature, and of the frameworks provided by the chosen

development platform (iOS’s Apple platform).

4. Integration of (1) the software library for marker decoding, and
(2) dead reckoning algorithm in an indoor localization/naviga-

tion client app.

5. Design of the server architecture and data structures which will

be exchanged with the client.

The Figure 1.1 give an overview of the whole system we worked

on.
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1.4 Report outline

This dissertation is organised in 9 chapters (including this introduc-
tion) as follows:

Chapter 2 presents an overview on the main methodologies and
technologies actually used for localization/navigation in indoor en-
vironment, and tries to explain why the smartphone was chosen as
preferred developing platform.

Chapter 3 presents a deep scientific literature analysis, focusing on
few related works which are more significant from a scientific point of
view.

Chapter 4 presents the proposed indoor localization /navigation ap-
proach, which use dead reckoning and a visual markers system de-
ployed onto the floor. A list of some of the most important visual
markers is presented.

Chapter 5 give an overview on the most known visual markers in
scientific literature, and focus on three of them from the point of view
of our approach.

Chapter 6 presents the server side structure of the proposed indoor
localization system.

Chapter 7 presents the client side structure of the proposed indoor
localization system.

Chapter 8 summarizes the results.

Chapter 9 gives some conclusions and proposes future works.



Chapter 1. Introduction




CHAPTER
TWO

BACKGROUND

In this chapter we will present the motivations which have led us to
choose the smartphone as preferred development platform (particu-
larly, the Apple operating system, iOS) instead of focusing on ded-
icated hardware-based solutions, and give an overview on the main
methodologies and technologies actually used in the indoor localiza-

tion/navigation field.

2.1 Smartphone-based IPS

Even if, currently, the indoor positioning systems (IPSs) market is
quite wide and proposes often, especially in industrial sector, solutions
which use dedicated hardware and technologies specifically designed
for indoor localization, in consumer sector we can affirm that smart-
phone has become the main platform on which the researchers and

startuppers efforts have focused. The reasons are various, some more
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obvious because of practical issues, other more ”technical” but not
less important.

The main one, is undoubtedly the fact that the smartphone is be-
come in the modern society an essential tool which we bring always
with us, everywhere we go. It contains a certain number of sensors
which let to sense the context and turn the simple information about
the indoor position in something else, capable of enabling a lot of
functionality and services (augmented reality, LBS, smart navigation,
pathfinding) which considerably enhance the user experience. More-
over, these kind of devices in the next years will be further enhanced
and enriched with new typologies of sensors, new features and func-
tionality: this guarantee to the IPS designer, without any cost, the
availability of increasingly powerful hardware, new directions in terms
of development of the system, efficiency.

Today in the mobile field, there are two big players which together
cover almost all the smartphones market: Apple, with its mobile op-
erating system iOS, and Google, with the mobile operating system
Android (Microsoft recently is starting to conquer a small slice of the
mobile market thanks to the operating system Windows Phone). Both
of them have worked, and are still working (with huge financial invest-
ments) on the indoor positioning field, as further proof of the fact that
it is a strategic and extremely interesting sector.

In the present dissertation we choose to use iOS as development
platform, both because we already developed for the platform before,
so the learning curve was not so steep, and for the specific device’s fea-
tures: less fragmentation than Android, users usually tend to update
soon their operating system to the last release, camera and sensors

are top quality. In addition, the Integrated Development Environment
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Figure 2.1: Overview of the main indoor localization techniques

(IDE) is developer-friendly, there are easy to use APIs (Application
programming interfaces), and a huge and very active online commu-
nity. Our prototype was thus developed and tested on an iOS based

device, particularly on an iPhone 5S.

2.2 Overview of IPSs

Thanks to its importance from an economic point of view, nowadays,
indoor navigation is a very hot topic. Various approaches and solutions
have been proposed in literature to address the challenge in a simple
and scalable way, and also a lot of commercial solutions are appearing
into the market. In Figure 2.1 we give a brief and non-exhaustive
summary of the main techniques used to locate the user inside an

environment.
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2.2.1 Dead Reckoning systems

They use accelerometer, magnetometer and gyroscope sensors embed-
ded into the smartphones to provide fast estimation of the user posi-
tion, starting from a known position. Even if the Dead Reckoning can
theoretically track precisely the user, practically the system is sub-
ject to an high drift error introduced by the sensors, which make it
unusable after few seconds. For this reason, usually a step counter
algorithm is used to calculate the covered distance, the gyroscope and
the compass are used to determine the orientation of the motion and a
periodical recalibration is performed in order to reset the cumulative
drift error [1], [2], [3], [4], [5].

Typically, dead reckoning systems are used in combination with
other indoor localization technologies to improve the accuracy of the

whole system.

2.2.2 RSSI systems

Received Signal Strength Indication (RSSI) systems exploit the RSSI
of the radio signals present in the environment, typically Wi-Fi sig-
nals, available for free in public buildings, or, recently, Bluetooth Low
Energy (BLE) signals.

They can use triangulation/trilateration (a minimum of three radio
emitters, placed in known positions, are needed) to detect the posi-
tion of the device or, more frequently, information from a previously
generated RSSI fingerprint database of the environment to estimate
the position of the user. Triangulation/trilateration techniques rely
on geometry and the fact that the RSS is inversely proportionate to

the square of the distance between the emitters and the target device,



2.2. Overview of IPSs 13

to estimate the position of the user. However, due to the interferences
from the environments, the multipath effect etc., these systems are
complex and not very reliable.

Fingerprinting techniques rely on the comparison between the RSS
measured by the smartphone in an unknown position and the pre-
recorded RSS value measured in a small range around that position.
They usually are splitted into two phases: an Offline phase of mea-
suring the signal strength at selected measure points in the analyzed
area in order to build the fingerprint database, and an Online phase
which uses the values stored in that database, plus the RSS values
collected during runtime, to estimate the position of a user [6], [7], [8],
9], [5]. Fingerprinting techniques are more accurate than triangula-
tion/trilateration techniques, even if, due to the fact that they need
a pre-mapping phase, are very susceptible to strong changes in the

environment.

2.2.3 Audio systems and Magnetic systems

Audio systems exploit controlled (usually malls, consumer stores and
museums are equipped with loudspeakers) or uncontrolled (for exam-
ple acoustic background fingerprint) ambient sounds to allow a simple
smartphone to cheaply determine its location [10], [11]. Depending on
the particular adopted approach, they can be used both for localizing
the user in a precise way or as add-on to increase the accuracy of some
other indoor technology.

Magnetic field systems use the indoor ambient magnetic fields
(caused, for example, by elevators, escalators, doors, pillars, and oth-

ers ferromagnetic structures) to build a magnetic map of the environ-
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ment. The uniqueness magnetic signatures from this map (magnetic
fingerprint) are exploited by the smartphone to solve the indoor lo-
calization problem [12], [13]. The interest from both researchers and
startup around this approach is increased in the last years; one of
these startups in particular, IndoorAtlas[14], inspired by the capabil-
ity of some animals to use the earth’s magnetic fields for orientation
detection and navigation, proposed a commercial indoor positioning

solution based on a similar principle.

2.2.4 Visible Light Communication Systems

Visible Light Communication (VLC) systems exploit the susceptibility
of LEDs to the amplitude modulation at high frequencies to transmit
information into the environment. If the frequency is greater than a
flicker fusion threshold, the lighting functionality is preserved because
the modulation is unperceivable for the human eyes, while it is possible
to perform accurate indoor positioning.

The transmitter modulates the LEDs light with the data signals
(these data are strictly related to the position of the specific LED). The
receiver contains a photodiode which receives such signals, elaborates
them and extracts the information about the position of the device.

Thanks to the fact that the sensors inside the smartphone cameras
are array of photodiodes, it is possible to use the smartphone as device
for VLC-based indoor localization [15], [16].
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2.2.5 Computer Vision Based Systems

Recently, thanks to the high performances cameras and high computa-
tional capabilities of the last generation smartphones, researchers are
focusing on Computer Vision systems which rely on complex, CPU-
intensive marker-based or markerless computer vision algorithms to
determine the position of the user [17], [18], [19].

In marker-based approaches, usually a set of easily detectable, pre-
defined 2D visual markers are deployed into the environment, and
computer vision techniques are used to decode the ID which them con-
tain. Each marker ID has an associated known position on an indoor
map, which let to position the user in the correct coordinates with an
high precision. Markerless-based approaches rely on image analysis:
the position of the user is obtained from what the smartphone sees in
the environment. Usually there is an offline phase where a database of
the features is created. A subsequent online phase, performs (a) image
acquisition through the smartphone camera, (b) image segmentation
and relevant features extraction through computer vision algorithms
and (c) matching between the detected features and the pre-generated
database of features.

Beside this, a lot of other different computer vision approaches
are studied in scientific literature, each one with its strengths and

weaknesses.

2.2.6 Hybrid Systems

Usually, Hybrid techniques and technologies are used to improve the
accuracy, reduce costs and enhance the performances of the whole

indoor positioning system [20], [21]. This is particularly true for indoor



16 Chapter 2. Background

positioning systems based on the smartphone, thanks to the fact that
it embeds sensors (such as inertial sensors and magnetic sensors), it
integrates two cameras, it has multiple antennas, integrates Bluetooth

Low Energy etc.



CHAPTER
THREE

RELATED WORKS

In this chapter we will go deeper on the scientific literature analysis,
focusing on few related works which, in our opinion, are more signifi-

cant and interesting from a scientific point of view.

3.1 UNLOC

Researchers from Duke University in 2012 proposed UNLOC (Un-
supervised Indoor Localization) [20], [22]. Their solution (actually

patent pending) started from the following considerations:

(a) All the indoor localization solutions which have a good level of
accuracy require a pre-mapping of the environment. Usually, this
procedure is complex to perform and more or less expensive, de-
pending on the approach. Moreover, if the environment condi-

tions change, a new pre-mapping phase is necessary, to preserve

17
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the same level of accuracy.

(b) It is possible to calculate the motion trajectory of a smartphone by
using its accelerometer, gyroscope and compass (Dead Reckoning).
Even if at the beginning the trajectory is pretty accurate, due to
the drift error generated by the sensors, it diverges after few meters

so, a periodic recalibration of the position is needed.

(¢) Certain locations in indoor environments presents in the sensor
domains identifiable signatures (which they call Landmarks) gen-

erated by elevators, escalators, Wi-Fi etc..

According to what the authors say, is therefore possible to use
dead reckoning (step counter, gyroscopes and compass) to track the
user, and periodically reset the error when the user encounters a land-
mark. This theoretically lets him to navigate inside a building without
any previous knowledge of it. Regarding the landmarks, the scientific
paper distinguishes between seed landmarks and organic landmarks.
Seed landmarks are structures in the buildings such as stairs or el-
evators that force the users to behave in a predictable way so they
impress an identifiable signature in the sensors domain. Organic land-
marks are ambient signatures which are not known a priori so they
must be dynamically recognized (Wi-Fi or 3G/GSM deadspots, mag-
netic signatures in specific areas etc.). The Figures 3.1a, 3.1b and
3.2 explain better the concepts.

The density of landmarks is obviously fundamental. The tests
conducted by the authors showed that big buildings such as airports
and malls are rich of landmarks coming from the environment: lights,

sounds, magnetic fields, 3G and Wi-Fi, escalators, elevators, stairs
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Figure 3.1: Seed landmarks examples: (a) elevator, (b) pattern im-

pressed in the inertial sensors domain.

Figure 3.2: Organic landmark example: a small area where there is

not Wi-F1 coverage.
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etc. Moreover, the landmarks don’t need to be unique in all the build-
ing, because it is possible to perform a Wi-Fi based partition of the
whole area into sub-areas, so the landmarks must be unique in only
in each sub-area. The estimation of the landmarks positions (initially
unknown) and the identification of new ones, are performed by elab-
orating data which come from all the users: every new user improves
the previous measurements. The Figure 3.3 shows the recursive algo-
rithm.

The diagram in Figure 3.4 shows the accuracy of the algorithm,
which the authors say is around 1.2 mt. As we can see, the drift error

is periodically reset when a landmark is encountered.
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3.2 LED based infrastructure for Indoor

Positioning

In “Visible Light Communication: Opportunities, Challenges and the
path to the Market” [15], the authors of the paper suggest the use of
LEDs and Visible Light Communications (VLC) to localize the user
inside an environment in an accurate way.

On the transmitter side, the modification to the LED lighting in-
frastructure is cheap and simple (power efficient switch-mode ampli-
fiers are already present on the LED lamps, so the only cost comes from
the programmable logic devices which drive the amplifier). Moreover,
actually the use of LEDs as light sources in the commercial /industrial
markets is increasing, so the basic LEDs infrastructure already exists
in a lot of buildings.

On the receiver side, Harald Haas (one of the pioneers on this
field) [16] shows that it is possible to exploit the rolling shutter effect
of CMOS-based camera sensors [23] to let a mobile phone to decode
the information transmitted by the LEDs infrastructure (based on the
fact that during the normal use of the phone, while the user is watching
the screen of the device, the front camera is directed toward the roof,
so it can perceive the LED light). The information is captured in the
camera in the form of light and dark bands which are then decoded
by the smartphone.

Thanks to VLC the congestion of the 2.4GHz ISM (Industrial,
Scientific and Medical) band could be alleviated because it operates
in a different band. In addition, till today the visible spectrum doesn’t

need licenses, and is actually unused. Moreover, it is possible spatial



3.2. LED based infrastructure for Indoor Positioning 23
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Figure 3.5: Overview of the ByteLight system

reuse thanks to the fact that the light doesn’t cross the walls. Of
course, there are some disadvantages: these systems need to have a
line of sight to work properly; moreover, if the indoor space doesn’t
have a LEDs infrastructure, the whole system could be expensive to
install. Also, if we use the smartphone as receiver, the approach, due
to the fact that is based on the camera, consumes a lot of energy.
Several startups, in recent years are proposing indoor navigation
commercial solutions based on VLC. The most known, ByteLight [24]
(we can see an overview of their system on Figure 3.5), combines VLC,
BLE and inertial device sensors to transform LED lights into indoor

location waypoints. Its platform promises an accuracy of 1 meter.
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Figure 3.6: Magnetic fingerprint of an environment. Different colors

represent different magnetics intensity levels.

3.3 IndoorAtlas

The interest from both researchers and startups around the magnetic
fields approach is increased a lot in the last years; the finnish startup
IndoorAtlas [14], inspired by the capability of some animals to use the
carths magnetic fields for orientation detection and navigation, pro-
posed a commercial indoor positioning solution based on that princi-
ple. In their white paper they suppose that modern buildings often
contain steel structures, which create a sort of magnetic fingerprint of
the environment (Figure 3.6), and exploit these anomalies to localize
the user.

The indoorAtlas platform provides a cloud-based location service

and an API set to communicate with this service. The location service
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connects to the map database, which hosts the magnetic field data
collected from the building using the IndoorAtlas Map CreatorTM
application [14].

3.4 Apple IPSs

Apple (and Google too) has included APIs for indoor positioning in the
last released SDK. It provided an enhancement on its Core Location
framework [25] to let developers an easy transition between outdoor
and indoor navigation. Moreover, it provided for free a new portal to
add or edit local business listings (with some features such as public
access in the building, one million or more of visitors per year, Wi-Fi
enabled, etc.): Apple Maps Connect [26]. The listings (or corrected
listings) appear on Apple Maps on the PC and on the mobile, so the
user can track himself inside them. Behind the scene, Apple (and
Google, which has a similar feature) uses mixed technologies such as
Wi-Fi fingerprint, BLE (Bluetooth Low Energy) iBeacons and dead

reckoning to perform the indoor localization task.

3.5 ArtoolKit based indoor localization

As we stated before, marker based approaches rely on 2D visual mark-
ers, which can be easily decoded even by a low-cost smartphone, to
let the user to track his position inside buildings. B. L. Ecklbauer, in
his thesis [27], proposes the recognition of multiple custom ArtoolKit
visual markers [28] inside an image captured by the camera to de-

duce the position of an Android smartphone, with no additional data
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Figure 3.7: ArtoolKit based indoor positioning system scheme

sources, except for the knowledge of the markers positions. In the first
part of his thesis, he compares the detection/decoding performances of
QR-Code against ArtoolKit markers, showing some interesting mea-
surements about speed detection and detection rate under different
light conditions and for different sizes of the markers. Then he pro-
posed a prototype of ArtoolKit based indoor positioning system. The
architecture of the prototype is illustrated in Figure 3.7.

As we can see, the process of localization start with a marker’s
recognition and identification phase: the camera image is analyzed
using ArtoolKit library, and the marker IDs are extracted. The
data related to the marker ID are loaded in the application. By a
data interpretation phase (which uses the retrieved information about
marker position and the marker distance and pose), the localization
approaches can be triggered. The single marker polar point localiza-
tion calculates the position of the user by mean of only one recognized
marker. The TULIP localization (Trilateration utility for locating
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internet protocol addresses) calculates a 2D position using 3D infor-
mation and at least three markers, recognized at once. The final eval-
uation phase compare the localization approaches to the previously

entered correct position.

3.6 Custom Marker-based IPS

In the report “An Indoor Navigation System For Smartphones” [17]
the authors propose a simple, custom, color-based 2D visual marker,
to obtain the user position and orientation, and a step detection al-
gorithm to track the user between two markers. The system relies on
the robust OpenCV library for the marker detection and for avoid-
ing the obstacles along the path. It does not require any expensive
alterations to the infrastructure or any prior knowledge of the sites
layout. The Figures 3.8a, 3.8b show the custom, coloured marker.
The marker encodes both information about its position and its ori-
entation respect to the camera and can be scanned from any angle.
The authors suggest to print the marker such that it fill an A4 paper.
The Figure 3.9 shows the angular shift that let to calculate the ori-
entation of the marker. To detect the free walkable space around the
user, the authors implemented a simple obstacle detection algorithm
based on boundary detection through Hough Transform and Canny
Edge Detector.

In the absence of custom markers, the user is tracked by using a
simple pedometer and multiplying the number of steps for the users
stride length (of course, by considering also the orientation). Despite

of the simplicity and scalability of the last two marker based tech-
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(a) (b)

Figure 3.8: (a) Coloured custom marker (b) Custom marker de-

ployed onto the floor

Figure 3.9: Angular shift that lets to calculate the orientation
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niques, there are some drawbacks such as (a) the need of a line of
sight, (b) the sensitivity to light changes, (c¢) the size of the marker,
which must be as smaller as possible in order to be minimally invasive,
(d) the fact that the app does not work in real-time, and (e) the cog-
nitive workload for the user who has to look for the marker in order to
auto-locate himself (these procedures, if could be annoying for normal

people, can become very difficult for people with visual deficits).

3.7 Conclusions

The solutions and approaches showed in this chapter, are only a small
part of the whole indoor localization world. In the next chapters, we
will introduce a computer vision based approach which aim at solve
some of the drawbacks of this category of techniques, and propose a

server/client architecture.
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CHAPTER
FOUR

[PS WITH VISUAL MARKERS DEPLOYED
ONTO THE FLOOR

As we have seen in the previous chapters, even if there are some draw-
backs, computer vision based indoor localization systems are becoming
more interesting recently, mainly for three reasons: (1) the smartphone
camera is becoming more powerful in every new release of the device,
(2) the approach works well even without internet connection, and (3)
it is low cost. Markerless approaches are used when visual markers
are undesirable due to aesthetic reasons. Because they are complex
to realize, really CPU intensive, often require a considerable workload
before they can start to work and also need frequent re-calibrations,
they are less common than marker based approaches.

In the next paragraphs we will focus on marker based approaches
(a visual marker can be considered as a mark, which can be detected

on camera image in the visible spectrum of light). Our analysis showed

31
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that, in these kind of systems, usually the visual markers are placed on
different parts of the buildings, such as walls, doors, pillars etc. This
results in a feeling of discomfort for the final user who has to con-
sciously search for the marker each time he want to know his position:
the user experience gets worse and it is not possible to use the system
as a navigator. Moreover, it is not possible to deploy the system in

indoor open spaces.

4.1 Why onto the floor?

In order to let the user to auto-locate himself without any cogni-
tive workload, and starting from the observation that when the user
launches the app in navigation mode, the camera is in the palm of his
hand and will be necessarily directed towards some part of the floor,
we have proposed in this dissertation an hybrid approach to the indoor
localization /navigation through smartphone, which uses a 2D visual
markers system deployed onto the floor to estimate the position with
a good level of accuracy (depending on the density of markers), and
dead reckoning to track the user between two markers. Each marker
has an associated 2D position on a previously generated indoor map
of the building.

Place the 2D visual marker system onto the floor makes the local-
ization process through computer vision algorithms, almost transpar-
ent for the final user: the smartphone, during the normal functioning
of the app in navigation mode, by running its camera in background
analyzes each frame, looking for a visual marker (the user doesn’t need

to consciously look for the marker.) Moreover, the floor has some in-
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trinsic features which can be exploited to improve the performances:

e Almost uniform, prior-known background pattern of the floor,
as shown in Figure 4.1a. It is possible to use this feature to
improve the speed of the decoding algorithm and to reduce the

physical size of the marker.

e Almost fixed, prior-known size of the marker inside the frame,
as shown in Figure 4.1b. It depends on the distance between
the camera - which is on the palm of the hand - and the floor,
and makes easier and faster to find the marker inside the frame,

which brings to a detection speed improvement.

e Major probability for the marker to be in the upper part of the
frame as shown in Figure 4.1c, due to the fact that when the
user launches the app to navigate inside a building, he moves
forward. Relying on this, it is possible to first analyze a sub-
portion of the frame in order to further improve the detection
speed, or use the saved time to apply some filters to such sub-

portion in order to enhance the quality of the image.

e Prior-known markers positions, so it is possible to reduce the
errors by considering that each decoded marker must necessarily
be one of the markers in the boundary of the previously decoded

marker.

4.2 Visual marker required features

To realize an efficient indoor navigation system based on 2D visual

markers deployed onto the floor, a critical point is the choice of the
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(b) (©)

Figure 4.1: (a) Uniform background pattern of the floor. (b) Max
size of the marker inside the frame. (c) Major probability for the
marker to be in the upper part of the frame

visual marker which best fits the particular place of deployment. The
characteristics that the chosen marker must have, considering that
when the user uses the system he is moving (usually with low speed),

are:

1. Small size: this feature is required to reduce the invasiveness of
the system. We have to find the best compromise between size,

speed of detection/decoding and robustness of the algorithm.

2. Real-time detection: To make the auto-localization process
through visual markers transparent for the final user, the de-

tection must be as fast as possible.

3. Robustness to changes in light conditions: this feature is re-
quired because typically the marker will be deployed in high
dynamic environments, characterized by the presence of other

people, on/off switching of lights, shadows etc.

4. Robustness in detecting blurred or out-of-focus markers, caused
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by too fast movements.

In the next sections, we will talk about dead reckoning techniques
to track the user between two markers, give a brief overview on the
most famous markers and introduce three 2D visual markers which
best fit our requirements: Vuforia (created by Qualcomm Technolo-
gies), ArUco marker (created by A.V.A. group from University of
Cordoba), and AprilTag (created by Edwin Olson from University of
Michigan). We chose these markers because they are well-documented,
opensource (AprilTag and ArUco) or with a free-to-use available SDK

(Vuforia), and have good global performances.

4.3 Dead Reckoning

Dead Reckoning is the name of the process which estimates the posi-
tion of a user by exploiting a previously known position (the starting
point) and the measurements made by an inertial sensors system. Ge-
ometrically speaking, if we know a point, the distance covered by the
user (calculated by using speed and time) gives us a circle of possi-
ble new positions. The motion direction, lets to determine on which
point in that circle is located the user. Modern smartphones are usu-
ally equipped with accelerometers (Figure 4.2) which theoretically let
to apply a double integration on the measured acceleration in order to
estimate the traveled distance, and gyroscopes/compasses to estimate
the motion direction. Unfortunately, due to the cumulative errors gen-
erated by these sensors (which strongly deteriorate the accuracy after
just a couple of seconds) this approach is completely useless for indoor

localization. Instead, a better approach is using inertial sensors mea-
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Figure 4.2: The three axes of the device. The accelerometers mea-

sure the linear accelerations along these axes.

surements to count the number of steps of the user: if we can know
some information about the user (age, sex, height), it is possible to
estimate the step length and then, by multiplying the number of steps
for the step length, we obtain the required distance. By exploiting gy-
roscope and compass, then, we can estimate the trajectory. Such kind
of systems are usually called Pedometers. There are a lots of scientific
papers about how to realize an accurate pedometer, and also, a lots
of real applications which are based on those principles.

In “A Reliable and Accurate Indoor Localization Method Using
Phone Inertial Sensors”, [2] the authors - from Microsoft Research
Asia - developed a reliable algorithm for step detection and dynamic
step length estimation (which is adapted on the specific user, and
estimated for each step), together with a way to calculate the head-

ing direction for each step. The scheme on Figure 4.3 shows such
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system. The step detector module uses the data collected from the
accelerometers: it considers the magnitude of 3-axis accelerometer
reading, applies on it a low pass FIR digital filter, and then searches
for the peaks and valleys of the waveform, in order to identify a single
step. Heuristic constraints and a validation phase (which exploit the
Dynamic Time Warping algorithm) refine the results and avoid the
false positives. The heading estimator module uses the data collected
from the compass, gyroscopes and accelerometers to estimate the user
motion direction at each step, in any position of the phone, with high
reliability. To get an accurate step model, the authors start from a
generic one, provided at the beginning, and then collect the data gen-
erated by the specific user to learn a personal model. This phase is
very important because the generic step model is inaccurate due to
the fact that the real step length is influenced by various factors such
as the height and weight of the user, the ground types, the shoes etc.
The particle filter algorithm, combines information coming from the
step length estimator and the heading estimator, together with the
constraints coming from the floor map, to continuously adapt the per-
sonal step model and estimate the position of the user on the map
step by step.

Quite recently, both Samsung and Apple have added hardware to
their devices, to better support the step counter applications. Apple
in particular, starting from the iPhone 5S, have introduced in their
smartphones a dedicated motion coprocessor called M7 (with iPhone
6/6 plus and iPhone 6S/6S plus new version of such chip, M8 and M9
were used). The coprocessors collect, store and elaborate data (in a
power-efficient way) coming from the inertial sensors even if the device

is in background mode and lets the applications to retrieve such data
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Figure 4.3: Pedometer architecture

through the CoreMotion Framework.

4.4 Visual markers in scientific literature

A visual marker system is composed by a set of 2D visual markers
and a computer vision algorithm capable to detect and decode each
marker using a smartphone camera or other computer vision tech-
nologies. Today, thanks to their low cost, flexibility and simplicity (a
normal smartphone is able to generate and read most of them) there
are several visual markers in the market. In the following subsections

we show some of them.
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Figure 4.4: An example of Quick Response Code

4.4.1 Quick Response Code (QR-Code)

The most known and used visual marker is probably the QR-Code
(Figure 4.4) [29]. QR-Code is a bidimensional barcode invented in
1994 by the japanese company Denso Wave to track assets [30]. In
1999 Denso Wave released QR-Code under a free license (it was defined
and published as ISO standard), which made QR-~Code very popular,
in Japan at the beginning and few time later, in all over the world.
Today we can see QR-Codes almost in any commercial product,
in websites, mobile applications, for assets tracking, mobile payments
etc. Also, it is very well documented and there are hundreds of free
software libraries (Apple, natively includes the support for QR-Code
scanning and decoding) for almost all the platforms, which make it
very easy to incorporate. There are several standards for encoding
the data inside the QR-Code. In Figure 4.5 is shown an example of
QR-Code structure. As we can see, there is a grey area with small

black dots which contains the data, three larger squares (4.1) used to
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Figure 4.5: (QR-Code structure example

determine the correct position of the QR-Code, and several smaller
squares (4.2) to detect the alignment. Around the QR-Code, there
is a (usually white) quiet zone, to help its detection. The version
information fields (1) contain the symbol version of the QR-Code. It
can range from Version 1 to Version 40. Each version has a different
module configuration or number of modules (the module refers to the
black and white dots that make up QR-Code) and a maximum data
capacity, according to the amount of data, character type and error
correction level. Figure 4.6 and Figure 4.7 show versions range from
1 to 4.

The QR-Code has a Reed-Solomon based error correction algo-
rithm capable of restoring data if the QR-Code is dirty or damaged.
The third row of the table in Figure 4.6 shows the four correction

levels:

1. Level L: approximatively 7% of data restoration rate for total
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codewords.

2. Level M: approximatively 15% of data restoration rate for total

codewords.

3. Level Q: approximatively 25% of data restoration rate for total

codewords.

4. Level H: approximatively 30% of data restoration rate for total

codewords.

(NOTE: codeword is a unit that constructs the data area. One code-
word of QR-Code is equal to 8 bits).

A single QR-Code can theoretically store 7089 numeric characters
or up to 4296 alphanumeric characters even if the more characters it
stores, the harder is the decoding process through a simple smart-
phone. Due to the fact that QR-Code was designed for storing a large
amount of data, it has not good real-time performances, even if we use
the symbol version 1 (the less dense version). For this reason, it is not
good for our purposes. To guarantee real-time performances, usually

a visual marker which stores just a simple binary code is used.

4.4.2 ArtoolKit

ArtoolKit is a software library for building Augmented Reality appli-
cations, which is capable of determine the pose of the camera respect
to a physical marker (ArtoolKit marker), almost in real time. It was
developed and released in 1999 by dr. Hirozaku Kato in the Human
Interface Technology Laboratory (HIT Lab) at the University of Wash-
ington. After a lot of years, finally On may 13, 2015 it was released
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Figure 4.8: ArtoolKit sample markers

opensource with all the professional features enabled [28], [31]. On
Figure 4.8 two examples of possible ArtoolKit markers are shown.

The shape of an ArtoolKit marker can be, in theory, any image
surrounded by a black square (even if, for performance reasons, usually
the marker consists in a very simple black and white image). In fact,
ArtoolKit algorithms are based on the more general template matching
approach: the detected marker is unwarped and adapted to the marker
templates (same size and scale), and a similarity value is calculated;
the template with the highest similarity value is the correct marker,
while all the recognized markers with a similarity value lower than
a threshold are rejected (to speed and improve the process, before
applying the template matching, the greyscale image is converted in
black and white image).

The Figure 4.9, taken from the official ArtoolKit website, explains
the basic principles on which the library is based. The scheme fo-
cuses on using the library for augmented reality, but for our indoor
localization purposes with visual markers deployed onto the floor, we

can simply use each marker as a beacon for identifying a position on
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map, and augment such information with visual information (such

as arrows for turn-by-turn navigation etc.). In the following, a brief

description of the various steps.

1. The smartphone camera captures video of the real world.

2. The library searches through each video frame for any square

shapes.

3. If a square is found, the library uses some mathematics to cal-

culate the position of the camera relative to the black square.

4. Once the position of the camera is known, a computer graphics

model is drawn from that same position.

5. This model is drawn on top of the video of the real world and

so appears stuck on the square marker.

6. The final output is shown back in the display, so when the user
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Pattern size (cm) Usable range (cm)

6,985 40,64
8,89 63,5
10,795 86,36
18,7198 127

Table 4.1: different marker sizes for different distance marker-

camera

looks through the display he see graphics overlaid on the real

world.

Similarly to all the other visual markers, even ArtoolKit marker has
some limitations. As stated in the Artoolkit official website, results are
affected by lighting conditions: overhead lights may create reflections
and glare spots on a paper marker and so make it more difficult to
find the marker square. To reduce the glare, markers can be made by
more non-reflective material. Moreover, detection/decoding depends
also on the marker orientation respect to the camera; as the markers
become more tilted and horizontal, less and less of the center patterns
are visible and so the recognition becomes more unreliable. Also,
sometimes markers are confused one with another or falsely detected
in the background. Finally, for small markers, we have a small possible
distance marker-camera, as we can see in Table 4.1. (These results
were obtained, by the authors, by making markers of different sizes,
placing them perpendicular to the camera and moving the camera

back until the markers were decoded).
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4.4.3 Bokode

On Figure 4.10 is shown Bokode, an innovative (and patent-covered)
marker invented by the MIT (Massachusetts Institute of Technology)
Media Lab [32]. It may be read by a simple camera from a distance of
over 4 meters, it is circular and very small (only 3mm of diameter).
According to what the authors say, it works by exploiting the Bokeh
effect [33] of ordinary camera lenses, which maps a cone of rays exiting
from an out of focus scene point into a disk shaped blur on the camera
sensor. From a diffuse point, all these rays have roughly the same
radiance, so the bokeh takes the shape of the round aperture. The
Media Lab team created a directionally varying set of encoded rays by
placing a small diameter (3mm), short focal length (8 mm) lenslet over
a printed binary code. The imaged bokeh has a much wider diameter
and it shows a magnified view of the binary code allowing the decoding
of thousands of bits. As we can see in Figure 4.10 a bokode is just a
tiny dot for the human eye and for a camera in sharp focus. But the
binary code inside it appear very clearly when the camera is out of
focus (it is possible to observe features as small as 2,51um). Bokode
can be used to decode an ID, to store a lot of information (lot more
than QR-Code), and also to estimate the camera pose with respect to
the marker. The one in Figure is an active bokode which uses a red
LED as light source, but MIT Media Lab has created also a passive
Bokode which can work without any LED and power source. Passive
Bokode substitutes the LED with a retroreflector and uses the camera
flash as the illumination source. Despite its really good performances
and its innovativeness, it is clear that this marker is not suitable for

our indoor localization system with visual markers deployed onto the
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Figure 4.10: In focus and out of focus bokode
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floor.

4.4.4 Other visual markers

The list of 2D visual markers, both patented and used for commer-
cial purposes, or opensource, is actually very long, and required an
accurate state of the art study. In fact, today visual markers are a
consolidated and widely used technology and each marker has its own
features which best suits to specific places of deploy, its strengths and
its weaknesses. Understand deeply these characteristics was funda-
mental for choosing the correct visual marker for my specific situation.

I will close this chapter by briefly listing some other markers:

o Aztec code (Figure 4.12a) [34] is a barcode invented by Andrew
Longacre Jr. and Robert Hussey in 1995. It is similar to the QR-
Code (large amount of stored data, Reed-Solomon error correc-
tion algorithm, public domain) but, differently from it, does not
need a white border to be correctly decoded, so has the potential

to use less space than other matrix barcodes.

o ARTag [35],36] (Figure 4.12b) is a 2D marker (based on Ar-
toolkit) which was invented in 2004 by Mark Fiala (Computa-
tional Video Group Institute for Information Technologies, Na-
tional Research Council Canada) to robustify the original Ar-
toolKit marker system for what concern false positive detections
and inter-marker confusion. It did this by replacing the correla-
tion step with a digital symbol method. ARTag has a low and
quantifiable error rate, reduced processing time, and can encode
up to 2046 different IDs (it doesn’t use patterns as in Artoolkit).
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(a) Aztec Code (c) Intersense

Figure 4.12: Aztec code, ARTuag, Intersense

ARTag is supported by the open source Goblin XNA software
[37].

e Other than the classical square markers we have also circular
markers, which are stronger to perspective distortion and more
precise; Intersense [38] (Figure 4.12c¢), is a commercial, patented,

circular marker with high performances.

In the next chapter we will focus on three visual markers which
best fit the requirements of our indoor localization system: Vuforia

Marker, ArUco marker and AprilTag marker.
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CHAPTER
FIVE

REAL TIME VISUAL MARKERS

The analysis of the visual markers state of the art brings us to re-
strict the choice of the best one that fits our requirements (first of all,
the detection speed) to three possible candidates, which are shown in
Figure 5.1. We have chosen these markers also because they can be
freely used through opensource, well-documented libraries (AprilTag
and ArUco) or free SDKs (Vuforia) and they are portable to all the
major platforms. In this chapter, we give an overview of their features,
strengths and weaknesses.

For what concerns our solution, the accuracy of the markers system
is directly related to the number of times the marker is correctly de-
coded, under different conditions. We tested the markers in light (Fig-
ure 5.2a), medium (Figure 5.2b) and dark floor pattern (Figure 5.2¢),
in various light conditions, and for various distances camera-device
and angle of scanning. In order to facilitate the detection we added

a little white border around the markers. The tests were performed

ol
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(a) Vuforia Marker (b) AprilTag (c) ArUco Marker

Figure 5.1: Vuforia Frame marker, AprilTag, ArUco Marker

~
-~

(c)

(a)
Figure 5.2: (a) Light floor pattern, (b) Medium floor pattern, (c)

Dark floor pattern

with an iPhone 5S.

5.1 Vuforia Marker

Vuforia [39] is an augmented reality multi-platform SDK developed
and maintained by Qualcomm. It is very powerful and offers to the
developers a lot of functionality such as objects recognition, images

recognition, shapes and text recognition. Moreover, the Vuforia SDK
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can detect and estimate the pose (respect to the camera) of a special
visual marker called Frame Marker (Figure 5.1a), which we can use for
our indoor localization purposes. There are 512 frame markers, which
are not generated by the application but are distributed as an archive.
Each one encodes an ID (an integer between 0 and 511) on the binary
pattern along the border, and needs an area around it (at least twice
as wide as the thickness of the frame marker border), free of graphical
elements, with a good contrast respect to the black frame. It needs
to be entirely visible on camera image to be detectable, so it has not
any tolerance to partial occlusions. The internal part of the marker
is not used by the algorithm so it is possible to put inside an image
or a logo, which makes the marker more esthetically good looking
than other ones (but it is important that the internal design uses a
contrasting, bright images or patterns in order to not deteriorate the
performances of the detection phase). Due to the fact that we cannot
have access to the source code, it is impossible to go deeper on the
algorithms used by the SDK. However, by analyzing the APIs, we
can deduce that (1) it is possible to set the size of the marker in
the scene, (2) the markers are defined in the native code so, through
a special class called MarkerTracker, the developer can create and
destroy frame markers dynamically, and (3) there are three settings

regarding the performances of the marker detection/decoding:

e Mode-Optimize-Speed: this provides a lower resolution (often
640 x 480, depending on the device) in order to achieve a higher

frame rate and faster detection.

e Mode-Optimize-Quality: this provides a significantly higher res-

olution but a lower frame rate and a slower detection.
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Figure 5.3: Different marker sizes used for tests

e Mode-Default: typically is equivalent to Mode-Optimize-Speed.

We performed some detection/decoding tests for different sizes of
the marker: (6.5 x 6.5)cem?, (5.0 x 5.0)cm?; (3.2 x 3.2)em? and dif-
ferent distances marker-camera (80cm, 100cm, 120e¢m), in movement
and with the smartphone in the palm of the hand, by set the Mode-
Optimize-Quality option (Figure 5.3 and Figure 5.4). We repeated the

tests in several lighting conditions.

5.1.1 Tests results

Table 5.1, 5.2 and 5.3 show the results of our tests for a distance
marker-camera of respectively, 80, 100 and 120cm. We tried to de-
tect/decode the marker, 30 times for each size, light condition and
distance marker-camera. Table 5.4 gives a qualitative overview on
the obtained results.

Our analysis shows that a marker size of (6.5 x 6.5)cm? and
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Figure 5.4: Different distances marker-camera, used for tests

30 Scans Marker size | Marker size | Marker size
Dist. 80cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq

LIGHT Yes No Yes No Yes No
Good 30 0 30 0 30 0

Average 30 0 30 0 26 4
Poor 26 4 22 8 0 30

Table 5.1: Tests results on 30 total scans and 80cm distance marker-

camera, 1 different light conditions, for different sizes of the Vuforia

marker. ’Yes” means the marker was correctly decoded, 'No’ means

the marker was not decoded or incorrectly decoded.
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30 Scans Marker size | Marker size | Marker size
Dist. 100cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq
LIGHT Yes No Yes No Yes No
Good 30 0 30 0 24 6
Average 30 30 0 22 8
Poor 26 22 8 0 30
Table 5.2: Tests results on 30 total scans and 100cm distance

marker-camera, in different light conditions, for different sizes of the
Vuforia marker. ’Yes’ means the marker was correctly decoded, 'No’

means the marker was not decoded or incorrectly decoded.

30 Scans Marker size | Marker size | Marker size
Dist. 120cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq
LIGHT Yes No Yes No Yes No
Good 30 30 0 19 11
Average 30 30 0 0 30
Poor 26 22 8 0 30
Table 5.3: Tests results on 30 total scans and 120cm distance

marker-camera, in different light conditions, for different sizes of the
Vuforia marker. ’Yes’ means the marker was correctly decoded, 'No’

means the marker was not decoded or incorrectly decoded.
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Marker size 6.5 % 6.5cm? | 5.0%5.0cm? | 3.2 x 3.2cm?
Distance (cm) | 80 | 100 | 120 | 80 | 100 | 120 | 80 | 100 | 120
Good light + !+ |+ |+ + |+ | +] - -
Average light | + | + | + | + | + | + | - -

Poor light - - - - X X | x| X

Table 5.4: Qualitative evaluation of Vuforia Marker performances:

"+ indicates that the marker is always decoded. -’ indicates that
sometimes the marker is not decoded. 'z’ indicates that the marker is

never decoded in the specified conditions.

(5.0%5.0)cm?, give good real-time performances for light (Figure 5.2a),
medium (Figure 5.2b) and dark floor pattern (Figure 5.2¢) in good
and average light conditions. The performances gradually get worse
for poor light conditions and if we reduce the size of the marker to
(3.2 x 3.2)cm? (and increase the distance marker-camera).

In conclusion, despite of the quite good overall performances and
the fact that the SDK is well-maintained by a big company such as
Qualcomm, the system has some drawbacks: (1) the source code is
not accessible, so it is impossible to modify the algorithms in order to
exploit the features of the floor, (2) the number of markers is fixed,
which brings to a low flexibility, and (3) it is not possible to reduce a

lot the size of the marker.

5.2 ArUco Marker

ArUco is a square visual marker realized by the AVA group from the
University of Cordoba [40]. It can be decoded through the ArUco
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library, which is cross platform (because openCV based), and open-
source (BSD license). The library is written in C+4++, but it has a
Java version and Python version available. Moreover, it seems to be
well-maintained by the research group (last update was in 30-10-2014).
Differently from other similar systems, ArUco does not provide a pre-
defined set of markers: it is possible to generate the desired number
of markers, with the desired number of bits n encoded inside each of
them. The library maximizes the inter-marker distance (in order to
avoid that few erroneous bits in the detection lead to a wrong, but
valid, marker), the number of bit transitions (so there is less proba-
bility to confuse the marker with objects inside environments) and -
based on the dictionary of generated markers - proposes an error cor-
rection algorithm which lets to correct a number of errors greater than
the current state of the art. It is also possible to estimate the pose of
the marker with respect to the camera. To be detectable, an ArUco
marker must be entirely visible on camera image, but it is possible to
manage the occlusion by using ArUco markers board. Since ArUco
does not have a fixed number of bits, the performances of the detec-
tion/decoding algorithm vary depending on this parameter, which can
be set according to the requirements of our use case: small areas can
be covered with few markers, which means that the n can be reduced,
which in turn brings to a faster detection/decoding phase.

As before for Vuforia, we performed some detection/decoding tests
for different sizes of the markers (same sizes of Vuforia markers) and
different distances marker-camera, under the same conditions. We
chose to generate 512 AruCo markers, with n = 4. We also set the
capture resolution to 640 x 480, and the focus mode to an optimal

value. We repeated the tests in several lighting conditions, and in
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30 Scans Marker size | Marker size | Marker size

Dist. 80cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq

LIGHT Yes No Yes No Yes No
Good 30 0 30 0 30 0

Average 30 0 30 0 30 0
Poor 30 0 30 0 26 4

Table 5.5: Tests results on 30 total scans and 80cm distance marker-
camera, in different light conditions, for different sizes of the ArUco
marker. ’'Yes” means the marker was correctly decoded, 'No’ means

the marker was not decoded or incorrectly decoded.

three types of floor: light floor pattern (Figure 5.2a), medium floor
pattern (Figure 5.2b) and dark floor pattern (Figure 5.2¢).

5.2.1 Tests results

Table 5.5, 5.6 and 5.7 shows the results of our tests for a distance
marker-camera respectively of 80, 100 and 120cm. We tried to de-
tect/decode the marker, 30 times for each size, light condition and
distance marker-camera. Table 5.8 gives a qualitative overview on the
obtained results.

Our tests show that ArUco works very well, in any light conditions
for a marker size of (6.5 x 6.5)cm? and (5.0 x 5.0)cm? with a distance
marker-camera of 80cm, 100cm and 120cm in any type of floor pat-
tern. The performances get a little bit worse (but better than Vuforia)
if we reduce the size of the marker to (3.2 x 3.2)cm? or increase the

distance marker-camera to 120cm?, for average and poor light condi-
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30 Scans Marker size | Marker size | Marker size
Dist. 100cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq
LIGHT Yes No Yes No Yes No
Good 30 0 30 0 30 0
Average 30 30 0 30 0

Poor 30 0 30 0 24 6

Table 5.6: Tests results on 30 total scans and 100cm distance

marker-camera, in different light conditions, for different sizes of the

ArUco marker. ’Yes’ means the marker was correctly decoded, 'No’

means the marker was not decoded or incorrectly decoded.

30 Scans Marker size | Marker size | Marker size
Dist. 120cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq
LIGHT Yes No Yes No Yes No
Good 30 30 0 30 0
Average 30 30 0 19 11

Poor 30 30 0 0 30

Table 5.7: Tests results on 30 total scans and 120cm distance

marker-camera, in different light conditions, for different sizes of the

ArUco marker. ’Yes’ means the marker was correctly decoded, 'No’

means the marker was not decoded or incorrectly decoded.
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Marker size 6.5 % 6.5cm? | 5.0%5.0cm? | 3.2 x 3.2cm?
Distance (cm) | 80 | 100 | 120 | 80 | 100 | 120 | 80 | 100 | 120
Good light + |+ |+ |+ + |+ ]+ + ]+
Averagelight | + | + | + |+ | + | + | + | + -
Poor light + | + + |+ | + + | - - X

Table 5.8: Qualitative evaluation of ArUco Marker performances:

"+ indicates that the marker is always decoded. -’ indicates that
sometimes the marker is not decoded. 'z’ indicates that the marker is

never decoded in the specified conditions.

tions. ArUco source code is accessible for the developer: thanks to
this, it is possible to modify the algorithms in order to adapt them
to the scenario described in Chapter 4. Also the possibility to set the
number of markers and bits increases a lot the flexibility of the system.
In conclusion, ArUco is a good choice for an indoor localization system
with visual markers deployed onto the floor, when the requirements

are flexibility and real-time performances.

5.3 AprilTag

AprilTag is a square visual marker developed for robotic applications
by Edwin Olson, in the April Robotic Laboratory at University of
Michigan [41]. The opensource library lets to detect an AprilTag in
an image, decode the ID of the marker, and estimate its 3D pose and
orientation respect to the camera. The library is written in pure C
with no external dependencies, and appears to be well-documented

and well-maintained (last version update was 20-10-2014), robust to
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changes in light conditions and view angle, and with real-time perfor-
mances.

We performed some detection/decoding tests by choosing the rec-
ommended pre-generated markers family 36h11 (36 bit markers with
minimum hamming distance between codes of 11), which consists of
518 different markers, and by using the same marker sizes, marker-
camera distances and conditions of the previous Vuforia and ArUco
cases. For the initial tests, we used the AprilTag iOS application, de-
veloped by Edwin Olson and available on the US Apple Store for free.

The application lets the user to set some parameters:

Decimation (1-4): it lets to reduce the resolution of the analyzed

image.

e Refine Tag Positions (On/Off): if it is set to On, the algorithm

spends more time trying to precisely localize tags.

e Refine Tag Decodes (On/Off): if it is set to On, the algorithm

spends more time trying to decode tags.

e Camera Focus (from 0 to 1): it lets to arbitrarily set the focus

to a given value.

Since the most important requirement for our scenario is the de-
tection/decoding speed, we set both Refine Tag Positions and Refine
Tag Decodes options to Off value, the Camera Focus to the optimal

value for our scenario and the decimation to the maximum value.
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30 Scans Marker size | Marker size | Marker size

Dist. 80cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq

LIGHT Yes No Yes No Yes No
Good 30 0 30 0 30 0

Average 30 0 30 0 30 0
Poor 30 0 30 0 30 0

Table 5.9: Tests results on 30 total scans and 80cm distance marker-
camera, in different light conditions, for different sizes of the AprilTag
marker. 'Yes’ means the marker was correctly decoded, 'No’ means the

marker was not decoded or incorrectly decoded.

5.3.1 Tests results

Table 5.9, 5.10 and 5.11 show the results of our tests for a distance
marker-camera of, respectively 80, 100 and 120cm. We tried to de-
tect /decode the marker, 30 times for each size, light condition and
distance marker-camera. Table 5.12 gives a qualitative overview on
the obtained results.

The results show that AprilTag works very well in all tested light
conditions and for almost all tested sizes and marker-camera distances,
in any type of floor. The availability of the source code (which lets
the developer to modify the algorithms in order to adapt them to
the floor features), the speed of the system and the small marker size
make AprilTag the best choice for an indoor, marker-based localiza-
tion system when the flexibility about the number of markers is not

required.
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30 Scans Marker size | Marker size | Marker size
Dist. 100cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq
LIGHT Yes No Yes No Yes No
Good 30 0 30 0 30 0
Average 30 30 0 30 0
Poor 30 0 30 0 30 0

Table 5.10: Tests results on 30 total scans and 100cm distance
marker-camera, in different light conditions, for different sizes of the
AprilTag marker. 'Yes’ means the marker was correctly decoded, 'No’

means the marker was not decoded or incorrectly decoded.

30 Scans Marker size | Marker size | Marker size
Dist. 120cm | 6.5x6.5 cmq 5x5 cmq 3.2x3.2 cmq
LIGHT Yes No Yes No Yes No
Good 30 30 0 30 0

Average 30 30 0 30
Poor 30 30 0 25 5)
Table 5.11: Tests results on 30 total scans and 120cm distance

marker-camera, in different light conditions, for different sizes of the
AprilTag marker. 'Yes’ means the marker was correctly decoded, 'No’

means the marker was not decoded or incorrectly decoded.
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Marker size 6.5%6.5cm? | 5.0%5.0cm? | 3.2 % 3.2cm?
Distance (cm) | 80 | 100 | 120 | 80 | 100 | 120 | 80 | 100 | 120
Good light +| + |+ |+ + |+ | +] + |+
Average light | + | + | + |+ | + | + |+ | + | +
Poor light +| + |+ |+ + ]+ | +] + -

Table 5.12: Qualitative evaluation of AprilTag Marker perfor-

mances: '+ indicates that the marker is always decoded. -’ indicates
that sometimes the marker is not decoded. 'z’ indicates that the marker

is never decoded in the specified conditions.
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CHAPTER
SIX

LOCALIZATION SYSTEM: SERVER SIDE

The final step of our study was the design of an indoor localization
architecture as simple as possible (but flexible enough to guarantee fu-
ture updates) both for the person who will deploy the system, and for
the final users as well. In order to guarantee these requirements, we
split the architecture in a Server side and Client side. The Server side
is mainly responsible for presenting an easy-to-use Ul to the indoor
system administrator, which lets him to make the whole system work-
ing. Moreover, it exposes Rest APIs to the client, in order to exchange
data with it. The Client side (among other things) is responsible for:
(a) communicating with the Server side in order to download data
about a specific building, and (b) letting the user to navigate inside
that building by running indoor localization algorithms, and orienting
himself through pathfinding algorithm.

In the following, after introducing some concepts related to the

system, we will present the server side of the architecture. In the next
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chapter we will show the client side.

6.1 Path-Points

If we look at the most of the indoor maps of buildings, we can see
that usually the user is forced to walk in predefined paths such as
corridors, aisles etc. Considering this, and the fact that each indoor
localization system is affected by errors, is pretty useless (and also, not
good from a user experience point of view) to track the user’s path,
point by point. Figure 6.1 (which represents the ground floor’s indoor
map of the building 13 in our academic campus in Catania) shows
this condition. Tracking the user, point by point, leads to an irregular
path without adding any information content: the user is walking
along the corridor, and probably he just wants to reach a specific
room. Moreover, it leads to an higher computational complexity due
to the big space of the possible positions.

In the proposed approach the indoor system administrator
(through the user interface) must set on the map a certain number
of points that we define path-points: these points, which can be rep-
resented by an array of coordinates (z,y) as in 6.1, discretize the

walk-over area.

(0, 90), (@1, 41)5 (@0, Yn)] (6.1)

Any user location on the map will be converted to one of these points.
In particular, the chosen path-point will be the one with the minimum

euclidean distance (equation 6.2) from the estimated point.

d = /(x = 20)> + (y — v0)?] (6.2)
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Figure 6.1: ground floor’s indoor map of the building 13 in academic
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campus in Catania. Example of irreqular path caused by the errors in

the localization process.

To be more clear, if the path-points array is [(30, 30), (30, 40), (30, 50)]
and the calculated position is (30, 33), by applying the equation 6.2
we obtain d = 3 for the path-point (30,30), d = 7 for the path-
point (30,40), and d = 17 for the path-point (30,50). The chosen
path-point will be thus (30,30). The Figure 6.2 explains better the
concept. The set of path-points is packaged in a JSON structure and
sent to the client, together with other data.

Listing 6.1: JSON structure sent to the client for what concerns the
set of path-points

PathPoints: [

{
x: 30,y: 30,
layers:{

ProfessorsRooms :"Mario Rossi"



70 Chapter 6. Localization System: Server Side

x: 30,y: 40,
layers :{

ProfessorsRooms :"Mario Rossi"

The JSON structure in Listing 6.1 shows the details of what it is sent
to the client. Specifically, we sent to the client the coordinates of
all the path-points; To each path-point we can associate one or more
informative layers (the layer ProfessorsRooms in the case on Listing
6.1) and the area (in the correspondent layer) the path-point belong
to (The Mario Rossi room). The concept will be more clear in the

next paragraph, where we will explain more about the layers.

6.2 Informative Layers

During the design of the indoor localization app, we tried to think
about what the user wants from an indoor navigation system. Of
course he needs his position in an indoor map, but probably he needs
also a way to reach a specific point of interest. And, often, he has
only partial information about the place he wants to reach, sometimes
not directly connected to the physical place: for example, he wants

to meet the Professor X, or, in a shopping center, finds where are the
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Figure 6.2: ground floor’s indoor map of the building 13 in academic

campus in Catania. Example of discretized path using path-points.

computers. In order to make the system flexible enough to support

these use cases, we introduced the layers:

e The Basic Layer is essentially the planimetric of the building.
It is composed by the rooms (identified by names), the corridors
and the walls. Using this layer, the user can navigate from a

point A = (zg,yo) to a point B = (z1,y1).

e The Informative Layers are additional layers that we can super-
impose on the basic layer to have more information about the
specific building’s floorplan. For example, it is possible to have
the layer ProfessorsRooms which superimposes the names of the
professors who work in all the rooms plus a list of associated
metadata for each professor, which can be used by the pathfind-
ing algorithm in the client side to help the user reaching the

desired location.

The set of informative layers associated to a specific building’s floor
is packaged in a JSON structure and sent to the client, together with
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other data.

Listing 6.2: JSON structure sent to the client for what concerns the

set of informative layers

layers :{
ProfessorsRooms: {
"Mario Rossi" :{
phone: 095112233

subject: "computer science"

b

"Giuseppe Verdi" :{
phone: 095445566

subject: "electronic"

The JSON structure in Listing 6.2 shows what it is sent to the client.
Specifically, we sent to the client the list of all the informative layers
associated with the building’s floor (in the structure 6.2 we only have
one informative layer, named ProfessorsRooms, with two rooms, Mario
Rossi’s room and Giuseppe Verdi’s room. Two type of metadata are
added in each room: phone and subject). Of course, the indoor system
administrator through the user interface can easily add/remove as
much informative layers as he needs.

The Figure 6.3 shows the basic layer of the building 13 in academic

campus in Catania (the rooms are named with the letters of the al-
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Figure 6.3: ground floor’s indoor map of the building 13 in academ-

tcal campus in Catania with the informative layer “ProfessorsRooms”

superimposed on it.

phabet), with, superimposed, the informative layer ProfessorsRooms
which shows that in room A works the professor Mario Rossi and
in room U works the professor Sara Verdi (we omitted all the other
professors’ names).

It is thus possible for the user of the app, to search for professor
Mario Rossi and navigate from his position to Mario Rossi’s room
without any previous information about the room name of the profes-

sor Mario Rossi.

6.3 Markers deployment

Based on the analysis we made on Chapter 5, we chose AprilTag as
preferred marker: it has excellent real time performances even in poor
light conditions and for small size of the marker. The indoor system
administrator has the responsibility to place a set of AprilTag markers

both virtually onto the indoor map, and physically onto the floor of
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the building, in correspondent positions (with the constrain that each
marker must be coincident with one of the path-points). Each marker
has an associated ID which can be decoded by the client through the
AprilTag library. The association between the ID and the coordinates
on the map lets to perform the indoor localization.

The JSON structure in Listing 6.3 shows what is sent to the client.
Specifically, we sent to the client the list of all the aprilTag markers

IDs, and the associated coordinates on the map.

Listing 6.3: JSON structure sent to the client for what concerns the
list of aprilTag markers

"tags-coordinates": [{

"idTag":0,
x: 40,
y: 50

}s
{

"idTag":1,
x: 40,
y: 70

}s
{

"idTag":2,
x: 40,
y: 100

}s
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{

"idTag":30,
x: 200,

y: 150

}

]

6.4 Serve side structure

The Figure 6.4 shows how we logically split the server side part of
the system.

e The User Interface Logic block is responsible for managing ev-
erything related to the UL It gets the input from the indoor lo-
calization system administrator and sends it to the Server Side
Logic. In particular, the User Interface Logic lets the adminis-
trator to: (a) insert a new building in an outdoor map (name,
address, brief description); insert building floors data (name,
floor’s level, description, indoor floor map, scale); (c) add or
edit floor’s information (path-points, AprilTag markers, layers
data etc.).

e The Server Side Logic block is responsible for managing all the
data coming from the administrator’s input. It elaborates the
input information and generates all the data structures which
the client needs. These data structures are then sent to the

Data Exchange Logic.
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Figure 6.4: Overview of the server side structure

e The Data Fxchange Logic block is responsible for exchanging
data with the client through REST APIs. We will see more in

detail the client side in the next chapter.



CHAPTER
SEVEN

LOCALIZATION SYSTEM: CLIENT SIDE

As we stated in the previous chapters, our smartphone-based indoor
localization system relies on a simple hypothesis: when the user wants
to navigate inside an unknown building, he has the phone in the palm
of the hand and with the back camera directed toward some part of
the floor. Given this, the first basic idea was to deploy onto the floor a
visual markers system and use computer vision algorithms to decode
such markers and estimate the position of a user. We performed some
simple tests using QRCodes, and started thinking to the disadvantages
of this approach. One of the main problems was the invasiveness of the
system, under different points of view: too many markers to deploy
onto the floor (in order to have a good accuracy), and too big marker’s
size needed for a properly detection. Moreover, the non real time
performances, made the approach too complicated from a user point
of view. These observations led us to the study of the state of the

art for what concerns the visual markers. Our purpose was to find a

7
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visual markers system which was: (a) opensource, (b) with real time
performances and (c) capable to decode markers with a small size. We
evaluated a lot of these markers, and, finally, for the reasons we saw
on chapter 5, we chose the AprilTag marker. This kind of marker
solved two of the problems we found, but still, the system was quite
invasive, due to the high number of markers that we needed to deploy
onto the floor.

The second idea was then to use the inertial navigation for tracking
the user (dead reckoning): even if this kind of approach produce an
high drift error introduced by the sensors (which made it unusable
after few seconds), we could track the user by using it, and rely on the
aprilTag markers for resetting such cumulative error before it becomes
too high. To improve the final result, we opted for using a pedometer
instead of the raw data coming from accelerometers. Moreover in order
to make simpler the prototype, and focus on the approach, we avoided
to integrate the motion direction estimation through gyroscope and
compass in the final app. Instead, we manually indicate the direction
of motion by tapping on the screen.

The preliminary raw results were quite good so we started to design
a client-server prototype in order to better test the approach.

In the previous chapter we saw the server side of the system. In
this chapter we will see the more important client side, where the

indoor localization logic is implemented.
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7.1 Swift

For the development of the prototype we chose the Apple platform,
with operating system iOS7 or higher. In particular, the device used
for tests was an iPhone 5S. During the prototype’s development phase,
we encountered some problems due to the introduction by Apple of a
completely new programming language called Swift (it is still under
development) in substitution of the “old” Objective-C language, and
to the upgrade of the IDE XCode from version 6 to version 7, which
have forced us to several “fixes” on the code to let the application
working properly.

Swift is a modern programming language (which has required years
of work) with:

e A very clear syntax which makes the code easy to write, flexible,
safer than Objective-C and with an high readability.

e A totally object oriented model: everything in Swift is an object.

e Support for the frameworks Cocoa and Cocoa Touch, enhance-

ment on the compiler and the debugger.
e Strongly typed.

e Automatic memory management (ARC, automatic Reference
Counting).

These are only some of its main features, which make it perfect for
developers who come from another programming language. Moreover,
thanks to the “mix and match” feature, Swift is fully compatible with

Objective-C, which means that is possible (through a special bridging
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header file) to write apps that have a mixed-language codebase, and
thus guarantee the compatibility with (a) old libraries written before
the Swift introduction and (b) new libraries written in C language,
such as the aprilTag library we used in our project. By looking the
attention Apple is reserving to Swift, it is clear that Objective-C will
be gradually abandoned: because it is a subset of the C language, it
is just partially object oriented (it has both objects and scalar types,
and objects must be inserted inside C pointers). In addition, it has
a complex syntax and is less typed than Swift (which often lead to
errors).

For these reasons, the indoor localization prototype was developed
in Swift, with some Objective-C libraries incorporated in the project,
and some Objective-C code integrations (using the bridging header

file) when they are needed.

7.2 Used Libraries

To not reinvent the wheel, before we started coding we searched for
opensource libraries which could be useful for our project. In the

following, we briefly talk about these libraries.

1. SwiftyJSON: because the data exchange between server and
client is made through JSON structures, we searched for a library
capable to manage these structures in an easy way, on the client
side. SwiftyJSON has been the perfect one: it makes easy to
deal with JSON in Swift. It is released under the permissive
MIT license [42].

2. PathFindingForObjC: this library is used to let the user



7.2. Used Libraries 81

searching for a specific path. It implements a lot of pathfind-
ing algorithms such as A*, First Search, Dijkstra, Jump Point
Search etc [43]. As specified in the library name, it is written in
Objective-C so we used the bridging header file for integrating
it in the Swift project. It is released under the permissive MIT
license [44].

3. Alamofire: it is a very powerful HT'TP networking library writ-
ten in Swift which leverages the iOS NSURLSession and URL
Loading System in order to provide a simpler interface for net-
working operations. For example, to get a JSON object you just

need to write the following code:

Listing 7.1: get JSON object using Alamofire

Alamofire.request(.GET, "http://address_of_server")
.responseJSON {(request, response, JSON, error) in
println(JSON)

The library is released under the permissive MIT license [45].

4. Progress HUD: just a lightweight and easy-to-use HUD to
inform the user when a specific view is loading, or send him

other messages in a clean and user-friendly way[46].

5. AprilTag: this is the library used for decoding the aprilTag

markers. It is the core part of the client side application.
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Figure 7.1: Blocks diagram of the client side application.

7.3 Structure of the app

In order to (1) build an iOS application, as modular as possible, which
lets to add into the system other indoor localization technologies in an
easy way; (2) maintain the code clean; (3) permit to reuse/modify the
code with a little effort, we applied during the code development, the
classical design patterns (Model-View-Controller, delegation, single-
ton) and designed the whole client application according to the blocks
diagram in Figure 7.1.

In such diagram we can see that the structure is logically split into

three main parts:
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e Managers: these blocks are responsibles for dispatching infor-
mation to the viewControllers. They manage the data exchange
between client and server, collect data from device’s hardware
(GPS, CoreMotion chip and camera) and send it to the applica-

tion.

e ViewControllers: these blocks, are responsible for the logic of
the whole application. They get data from the managers and

elaborate it in order to obtain the desired result.

e User Interface: this block is responsible for organizing the in-

teraction between the user and the system.

7.3.1 Outdoor position manager

It Manages the outdoor position of the user. It uses the iOS Core-
Location framework’s APIs to get the location fix from the device
(typically, from the GPS chip or, if the GPS signal is not available
for some reason, from the WiFi system or from the cell towers) and
dispatch it to the outdoor viewControllers block. We embedded the
code for doing this in the class PositionManagerSingleton which is a
singleton: it means that there will be one and only one instance of
the class, which can be accessible from various parts of the code. In

Listing 7.2 we show the code for creating the singleton instance.

Listing 7.2: Code for creating the singleton instance of Position-

ManagerSingleton class

class var sharedInstance: PositionManagerSingleton {
struct Static {

static var instance: PositionManagerSingleton?
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static var token: dispatch_once_t = 0O

dispatch_once(&Static.token) {

Static.instance = PositionManagerSingleton()

3

return Static.instance!

}

Two methods inside the aforementioned class let to start/stop the
CoreLocation CLLocationManager object, which dispatches location
fix and notifies it to the objects which need such information through
the i0S notification center. The information about the user position

is used by the Qutdoor ViewControllers.

7.3.2 Data communication manager

It is the block which manages the communication with the server
through REST APIs. For what concerns the “outdoor side” of the
app, it downloads from the server the list of buildings (in a specific
area) with an available indoor map, and passes it to the Outdoor
ViewControllers. For what concerns the “indoor side” of the app, it is
responsible for exchanging the JSON structures we saw in Chapter 6.
We used Alamofire library for exchanging JSON structures with the

server side of our indoor localization platform.

7.3.3 Pedometer manager

This block relies on the iPhone 5S M7 coprocessor (M8 and M9 for
iPhone 6 and iPhone 6S) to get the number of steps the user did in a
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time interval and dispatch these data to Indoor ViewControllers. M7
coprocessor is accessible to the applications through the CoreMotion
APIs which were introduced with iOS7 version of the Apple operating
system. CoreMotion makes available the CMPedometer class which
provide properties and methods to interface with the chip and gives
very accurate motion data. We embedded the code for managing the
user steps in the class DeadReckoningSingleton which is a singleton.
The code for creating the singleton instance is almost the same as on
listing 7.2. In listing 7.3 we show the methods to start/stop acquiring
the pedometer data.

Listing 7.3: Code to start/stop of the pedometer

let pedometer: CMPedometer=CMPedometer ()
typealias AAPLStepUpdateHandler=(pData:CMPedometerData)->Void

//MARK: 1 - start pedometer
func startStepUpdates(handler:AAPLStepUpdateHandler) {
pedometer.startPedometerUpdatesFromDate (NSDate (),
withHandler: { pedometerData, error in
if (error != nil) {

self .handleError (error)

}

else {

dispatch_async(dispatch_get_main_queue(), {
handler(pData: pedometerData!)
b

D
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}

//MARK: 2 - stop pedometer

func stopStepUpdates() {
pedometer.stopPedometerUpdates ()

After starting the pedometer, the app receives data (number of
steps) from the device as it becomes available, approximately every 2.5
seconds. The singleton object dispatches the number of steps to the
objects which need such information using the handler AAPLStepUp-
dateHandler. The information about the user position is used by the

Indoor ViewControllers.

7.3.4 Camera Manager

This block manages the start and stop of the smartphone camera,
in order to acquire the frames from it and pass such frames to the
Indoor ViewControllers for the elaboration. We embedded the code
for managing the camera in the class VideSessionSingleton which is
a singleton. The code for creating the singleton instance is almost
the same as on listing 7.2. The class, basically has three methods,
setup CaptureSession(), startRunning(), stopRunning(). The first one
is used to set some important parameters for acquiring frames in a
proper way: choose the back camera, set the resolution and the output

format of the frames, set the focus mode ete. (listing 7.4).

Listing 7.4: Setup of the capture session: mains blocks of code

func setupCaptureSession() {
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//set the resolution of the acquired frames
captureSession.sessionPreset=AVCaptureSessionPreset1920x1080
//video frames are dropped if they arrive late.
videoDatalutput.alwaysDiscardsLateVideoFrames = true

//set the pixel format type
videoDataOutput.videoSettings=[kCVPixelBufferPixelFormatTypeKey:
Int (kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange) ]
//Restricts the autofocus to Far range
tempVideoDevice.autoFocusRangeRestriction =

AVCaptureAutoFocusRangeRestriction.Far

The second and third ones are simply used to launch the camera

session and stop it when the app is not being used (listing 7.5).

Listing 7.5: Setup of the capture session: main blocks of code

//Boolean variable to save the state of the capture session
var _running = false
//MARK: start Running
func startRunning() {
//if the session is already in running you don’t need to
//run the startRunning

if _running == true{

return
3
captureSession.startRunning()

_running = true
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//MARK: stop Running
func stopRunning() {
//if the session is already in stop you don’t need to
//run the stopRunning
if !_running {
return

}
captureSession.stopRunning()

_running=false

¥

The singleton object dispatches the frames to the Indoor ViewCon-

troller using the iOS delegation mechanism.

7.3.5 Outdoor View Controllers

The main purposes of these controllers are to: (1) elaborate everything
related to the outdoor position of the user; (2) send the results to the
user interface block for display. Specifically when the app is launched,
the class Main ViewController receives the user position from the out-
door position manager. It uses this position to make a query on the
server (through the data communication manager) and gets the list of
all buildings (in a specific range) which have an available indoor map.
The listing 7.6 shows the result of the query. The Figure 7.2a shows

this result on the user interface.

Listing 7.6: JSON structure which represents the list of buildings in

a specific range

{"buildings": [{
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"id": 1,

"name": "building 13",

"mapURL": "http://address_of_image_map",
"scale_px_mt": 20,

"coordinates": [37.525664, 15.074474],

3,

{

other building....

The class SearchBuilding ViewController lets to search for a specific
building by name and send the results to the user interface (Figure
7.2b, 7.2c). We don’t go deeper in this class.

7.3.6 Settings View Controllers

The main purposes of these controllers are: getting the user inputs
for what concerns the settings of the app, and update these settings.
Through these controllers is possible to set the range around the user
position (in meters) where to search for buildings with an available
indoor map, calculate the path to go from the current position of
the user to a specific point of interest through the A* pathfinding
algorithm, set the step length of the user, choose the informative layers
which the app can download from the server etc. Moreover, it is
possible to adjust some parameters about the aprilTag library in order

to obtain an optimal performance of the aprilTag decoding algorithm.
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Figure 7.2: Screenshots of the app. (a) View which contains the
outdoor map of the area where the user is located. The pins represent
the buildings which have an available indoor map. (b),(c) Views which
let the user to search for a specific building.
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7.3.7 Indoor View Controller

After choosing the building of interest on the outdoor map by clicking
on a specific pin, the indoor View controller block, through the data
manager block, downloads the indoor map of the building with all the
related data (path-points, layers, list of markers) in a JSON format,
and loads it on the user interface (We already saw the JSON structures
related to a building, which the server sends to the client, in chapter
6). Moreover, the pedometer manager block starts counting the steps
of the user, and the camera manager block starts sending frames to
the indoor view controller (which is registered as its delegate). The
“job” of this controller, is to elaborate each frame which comes from
camera using the aprilTag library; if an aprilTag marker is found,
the controller converts its ID in a (x,y) position on the map, resets
the number of steps, and sends such position to the user interface.
Between two aprilTag markers, the user is tracked by using the data
coming from the pedometer: the number of steps is multiplied for the
step length and, using the information about the scale of the map,
converted in an (x,y) position.

The listing 7.7 shows the initial setup for the aprilTag library: the
aprilTag function tag36h11_create() lets to select the pre-generated
36h11 family of markers (composed by 6x6 bits and an Hamming
distance of 11; on Figure 7.3 we can see some example of markers
belonging to this family, and other two families, 25h9 and 16h5). The
aprilTag function apriltag_detector_create() creates the detector object
and sets the default parameters for detecting/decoding the markers
(as we saw in chapter 5). Of course it is possible to modify these

parameters in order to get the optimal results for our situation of
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Figure 7.3: Fxamples of markers belonging to the aprilTag families
36h11, 25h9, 16h5.

deploy. The aprilTag function apriltag-detector_add_family() adds the
previously created family to the aprilTag detector.

Listing 7.7: Setup of the capture session: main blocks of code

let family: UnsafeMutablePointer <apriltag_family_t>
let detector: UnsafeMutablePointer <apriltag_detector_t>

required init?(coder aDecoder: NSCoder) {

//1 - choosing the 36h11l family of aprilTag markers
family = tag36hll_create()

//2 - creation of the detector

detector = apriltag_detector_create()

//3 - add the chosen family to the detector
apriltag_detector_add_family(detector, family)
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super.init(coder: aDecoder)

The listing 7.8 shows the signature of the delegate method (which is
located inside the indoor View Controller) where the camera manager

dispatches the frames coming from the camera:

Listing 7.8: method signature for video capture delegate

func captureOutput (captureOutput: AVCaptureQutput!,
didOutputSampleBuffer sampleBuffer: CMSampleBuffer!,

fromConnection connection: AVCaptureConnection!) {

Inside this method, we perform the frame’s elaboration and inte-
grate the results with the data coming from the pedometer. The first
step is to convert the frame in the format the aprilTag library needs

in order to work properly (listing 7.9):
Listing 7.9: The frame is converted in the format which the aprilTag

library needs

let imgToDecode: UnsafeMutablePointer<image_u8_t>
= image_u8_create(width, height)
imgToDecode.memory.stride = strideGray

imgToDecode.memory.buf = baseAddressInt8Gray
The second step (listing 7.10) consists in: (a) searching for a marker

inside each frame and if we found it, decoding its ID. (b) Converting
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the ID in a couple of coordinates (x,y) on the reference system of
the map. (c) Getting the closest path-point to such coordinates: this
point represents the estimated position of the user. (e) Resetting the
collected number of steps. If there is not a marker inside the frame,
we continue to look for markers in the subsequent frames, and in the
meantime we track the user by converting the number of steps from the
last time we reset it, in a couple of coordinates (z,y) on the reference
system of the map and, as before, by getting the closest path-point
to such coordinates which will represent the estimated position of the

user.

Listing 7.10: Conversion of the information coming from camera

and pedometer in a position on the indoor map

var nTags:CInt = 0
let arrayOfTags =
apriltag_detector_detectTAGS (detector,imgToDecode,&nTags)

//There is at least one marker
if number0fTags>0 {
//take the first tag
let idTag = Int(arrayOfTags[0] .memory.id)
CGFloat ()
CGFloat ()

var x,x_pathPoint

var y,y_pathPoint

//searching in the array of markers for the correct ID
for var tag = 0; tag<building.tagsList.count; tag++ {
let idTagOnList = building.tagsList[tag] ["idTag"]!

if idTagOnList == idTag {
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//get the coordinates associated with the IDs
x = CGFloat(building.tagsList[tag] ["x"]!)

y = CGFloat(building.tagsList[tag] ["y"]!)
x_pathPoint = getClosestPathpointX()

y_pathPoint = getClosestPathpointX()

//reset the number of steps
stepsBetweenMarkers = 0
prevNumberQ0fSteps = currNumberOfSteps
X

else {

stepsBetweenMarkers=

currNumberOfSteps-prevNumber0fSteps

currentNumberOfSteps = getDataFromPedometer ()

x = getXPositionFrom(currentNumberOfSteps,scale)
y = getYPositionFrom(currentNumberOfSteps,scale)
getClosestPathpointX ()

x_pathPoint
y_pathPoint = getClosestPathpointX()
}

}
//UI updated with the estimated position

//(x_pathpoint,y_pathpoint)

The Figure 7.4 shows how the results of the whole indoor localization
process are displayed on the user interface. The blue circle on the
screenshot 7.4ais placed in a (x, y) position on the map correspondent
to a specific aprilTag marker ID. With the green circles (screenshot
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Figure 7.4: Screenshots of the app. (a) Position correspondent to a
specific marker ID. (b) Position estimated through the pedometer. (c)
Calculated path, to go from the current user position to the exit of the

building

7.4b) we track the user between a couple of aprilTag markers using
the pedometer. The screenshot 7.4c shows the path (calculated using
the A* pathfinding algorithm and by considering the path-points) to

go from the current user position to the exit of the building.
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EIGHT

RESULTS

We tested our prototype in the building 13 in academic campus in
Catania. The Figure 8.1 shows the GPS coordinates on the map,
where the building is located. We placed on the site and on the indoor
map of the building, 9 aprilTag markers, from ID = 0 to ID = 8; in
the process of deploying the visual marker system, we chose strategic
points onto the floor (such as in correspondence of doors), with a
maximum distance between markers of about 8 meters. The Figures
8.2a, 8.2b show the floor with some markers deployed on it, while
the Figures 8.3a, 8.3b show the test path and the indoor map of the
building with the markers deployed on top of it.

According to what we said in Chapter 6, we also positioned on
the indoor map, a set of path-points along our test path which are
superimposed on the visual markers system, at a maximum distance
from each other of about 2 meters. We can see the result of this

process in Figure 8.4.
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Figure 8.1: GPS coordinates of the Building 13, academic campus

in Catania.
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Figure 8.2: Floor with the markers on top of it.
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8.1 IPS evaluation without Pedometer

Firstly we tested the prototype in the building 13, under good light
conditions, using an iPhone 5S as testing device, and with the pedome-
ter disabled. At the beginning we chose as size of the printed marker
(3.2 x 3.2)cm?: we experimented that the detector sometimes failed
in the detection of marker, especially when (1) there was a lot of light
falling on it and (2) the user didn’t walk slowly. We expected this:
even if in the tests made on Chapter 5 (in a controlled environment)
we saw that in good light conditions aprilTag works well for any tested
size, in the real situations there are a lot of external variables that can
reduce the performances. Another important factor that influenced a
lot the performances was the quality of the printed marker and the
material on which we printed it. Higher quality printed markers were
easily detected than lower quality ones.

We made several tests in order to find the best trade-off between
size of the marker, printing quality and performances. After these
tests, we chose to print the marker in a standard quality and with a
size of (6.0 x 6.0)cm? in order to guarantee that almost all markers
were correctly decoded. We didn’t quantitatively measured the speed
of the detection/decoding: even if this is an important factor in our
prototype, due to the highly dynamic environments where the system
were deployed, it didn’t make any sense. Instead, we verified that
the detection/decoding speed were less than 250 milliseconds under
all light conditions, which is the value that gives us almost real time
performances. The table 8.1 shows the qualitative results we obtained,
by repeating the test path five times under different light conditions

and by calculating the average percentages. In poor light conditions,
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Light Less than | More than
coiditions 250 ms 250 ms Not decoded
Good Light 100% 0% 0%
Average Light 100% 0% 0%

Poor Light 73% 13% 14%

Table 8.1: Qualitative evaluation of the AprilTag detection/decoding
speed.

14% of markers were not decoded while the decoding time was higher
than 250 milliseconds for 13% of markers.

The Figures 8.5a, 8.5b, show the results of navigation: as we
can see, in good and average light conditions the test path is followed
perfectly. In poor light condition, three markers are not decoded: low

lights and shadows projected on them make them undetectable.

8.2 evaluation of the IPS using both

AprilTag markers and Pedometer

We repeated the previous tests (in good light conditions) by inte-
grating the pedometer provided by the Apple CoreMotion framework
which, according to what we experimented, is accurate enough (it lose
about a couple of steps every one hundred steps, in our tests). The
error increases a little when the number of steps grew. Every position
estimated using the pedometer is reconducted to one of the path-points
through a distance calculation; two kind of pedometer-related errors

can happen:
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1. due to the fact that the Apple pedometer APIs return the lo-
cation fix more or less every 2.5 seconds, and depending on the
density of the path-points, the speed of the user and his step
length, the algorithm can miss one or more path-points between

two markers.

2. considering two aprilTag markers, and considering the path-
points between such markers, the algorithm fails if it places the

user in the wrong path-point.

The Figure 8.6a shows the results of one of our tests. For the test
we forced an almost constant step length (100cm), and a controlled,
slow, way of walk. Three path-points are missed by using the Apple
pedometer. This uncertainty happens especially at the beginning of
the test path, and corresponds to the bootstrap of the pedometer.
Anyway, the user is always placed in the correct path-point. The Fig-
ure 8.6b shows the results for an uncontrolled (not too fast) walks: We
didn’t forced the step length. In this case, we have three missed path-
points and occasionally the algorithm places the user in the wrong
path-point, due to the error in the step length.

The Table 8.2 resumes the qualitative results we obtained, by
repeating the test path five times both by walking in a controlled and

uncontrolled way.
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Controlled | Uncontrolled
Walks Walks
Missed path-points (%) | 21% 19,3%
Wrong positions (%) 2,2% 14,2%

Table 8.2: Missed path-points percentage and wrong positions per-
centage for a controlled and uncontrolled walk.



CHAPTER
NINE

CONCLUSION AND FUTURE WORKS

In this dissertation, we addressed the problem of realizing an hybrid
indoor localization/navigation system with three fundamental charac-
teristics: scalability, low costs, and absence of any complex infrastruc-
ture to deploy into the environment. We achieved these objectives by
deploying a visual markers system onto the floor (based on the idea
that when the user launches the application to navigate inside the
building, his camera is necessarily directed towards the floor) and by
integrating into the system a pedometer.

In the first part of the dissertation, after an overview on the state
of the art, we focused on choosing the best marker for an indoor navi-
gation system with visual markers deployed onto the floor. The anal-
ysis led us to choose three visual markers which have features that
match with our scenario: Vuforia marker, ArUco marker and April-
Tag marker. A deep analysis of these markers has conducted us to

choose for our prototype, AprilTag. The second part of the disser-
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tation was focused on the description of our approach to the indoor
localization. We presented a server-client architecture and described
both the server side and the client side. Also, we gave some details
about our client prototype. The approach can be successfully used in
a lot of applicative scenarios such as in the hospitals to let the visi-
tors move toward the correct medical department, in the airports to
drive the user to the gates and to send him context-based offers, in

the museum, etc.

9.1 Future Works

There is a great amount of enhancements to do in our work, both on
the server-side and the client-side. On the server side we are planning
to go beyond the server structure description and realize a fully func-
tional server-side web application which can let us to test other indoor
localization technologies with less effort. In fact, we experimented that
a lot of time is wasted, during the development and testing of a new
indoor localization technology, on managing everything related to the
indoor maps such as downloading it, add/remove layers, considering
floors and transitions between them, ecc. From the client point of view
we are planning to increase the speed of the aprilTag detection/decod-
ing algorithm and to reduce the marker size by exploiting some feature
of our scenarios such as the uniform pattern of the floor, the fixed size
of the marker inside the captured frame, the different probabilities for
the marker to be in different parts of the frame. Also, we want to
increase the modularity of the mobile application, in order to connect

new technologies to it in an easier way, and try to use the bluetooth
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low energy technology to (1) perform a raw localization when there
is not a line of sight and (2) segment big areas in smaller areas in
order to reuse the same set of markers. Also, we are working on the
realization of a set of tools for rapid and accurate benchmarking of
marker-based indoor localization technologies. Finally, from a prati-
cal point of view, we are investigating the opportunity to embed the

tags into the tiles.
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