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The problem of predicting weather variables, such as solar radi-

ation and wind speed, is of great interest for integrating renewable

energies plants, into the electric grid. Indeed, since renewable en-

ergy sources are intermittent in nature, predicting future values is

important to allow the grid to dispatching generators, in order to

satisfy the demand. There are essentially two ways to address the

issue of weather variables prediction. One is by using Numerical

Weather Forecasting (NWF) models, which are reliable, but also

quite complex and requires real time information, usually avail-

able from Meteorological Agencies only. Furthermore, very powerful

computers are required to solve the differential equations involved.

The other kinds of methods are represented by the so-called statis-

tical modeling approaches, which are based on the use of past data

recorded at the site of interest. These latter kinds of methods, com-

pared to the former ones, require less computational efforts, but are

appropriate only for short time horizons.

This PhD Thesis was devoted to study short-term prediction mod-

els for solar radiation and wind speed time series and assessing their

performance in the range [1, 24] hours.

It was also studied the predictability of the daily average values,

which for obvious reasons, is much more difficult than that of pre-

dicting the hourly averages. To mitigate, as far as possible, the

difficulties, the prediction was reformulated in terms of a classifica-

tion problem. In such a way, instead of predicting 1-day ahead the

average value, the target was to predict the class. In this framework,

of course, the prediction is as far difficult as large is the number of

considered classes. The accuracy of 1-day ahead prediction models

of the wind speed class was studied, for various frameworks.
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The structure of the Thesis is the following. Some background about

solar radiation and wind speed energy is presented in Chap. 1. Anal-

ysis of solar radiation and wind speed time series, recorded in differ-

ent areas are presented in Chap. 2 and 3, respectively. Some litera-

ture references dealing with techniques for modeling wind speed and

solar radiation time series are given in Chap. 4, focusing essentially

on NAR (Nonlinear Auto Regressive) and EPS (Embedded Phase

Space) models, since are the ones considered in this work. Results

obtained by modeling solar radiation and wind speed time series

are reported in Chap. 5 and 6 respectively. Clustering approaches

of daily pattern of solar radiation and wind speed time series are

given in Chap 7 and 8, respectively, while concluding remarks are

sketched in Chap. 9.
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1

Background

Several form of alternative sources of energy are present in nature

almost in unlimited quantities, referred to as renewable, since are

continuously regenerated. The main renewable sources are based

on solar energy, on thermal energy contained in the Earth interior

and on gravitational energy. From the Sun naturally derives accu-

mulations of water to produce hydroelectric power, wind for aeolic

turbine generators, electric energy by photovoltaics plants and solar

thermal. Furthermore from the photosynthesis process it is possi-

ble to derive energy from biomass. The following sections focuses

essentially on solar radiation and wind speed energy, since are the

ones considered in this work. Most of information reported in this

chapter refers to [1] and [2].

1.1 Energy from the Sun

The Sun is certainly the main source of renewable energy. Just to

have an idea it is possible to say that the Sun delivers towards the

surface of the terrestrial hemisphere exposed a power exceeding 50
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thousand Tera Watt which is about 10 thousand times the energy

used all over the world [1]. A part of this energy reaches the outer

part of the Earths atmosphere with an average irradiance of about

1367 W/m2, a value which varies as a function of the Earth-to-Sun

distance and of the solar activity (sunspots). The problem of

estimating the average hourly global solar radiation I(h, d), for any

hour h of a day d of the year, at any site, has been addressed in

literature by several authors such as [3]. It depends on a quite large

number of parameters which, roughly speaking, can be summarized

as follows: the distance from the sun, the duration of the daily

sunlight period, the inclinations of solar rays to the horizon, the

transparency of the atmosphere towards heat radiation and the

output of solar radiation. Some of these factors are connected

with mechanical parameters which describes the revolution of

Earth around the Sun and on the Earth spinning about itself.

Others factors depend on the properties of the atmosphere and are

stochastic in nature, such as the cloud cover features (size, speed

and number) and the degree of pollution.

The average annual irradance in European Countries is shown in

Figure 1.1. In particular in Italy the average annual irradiance

varies from 3.6 KWh/m2 a day of the Po Valley to the 4.7

KWh/m2 a day in the South and Centre and to the 5.4 KWh/m2

a day of Sicily. When passing through the atmosphere, the solar

radiation decreases in intensity because it is partially reflected

and absorbed (above all by the water vapor and by the other

atmospheric gases). The radiation which passes through is partially

diffused by the air and by the solid particles suspended in the

air, as shown in Figure 1.2. Therefore the radiation falling on a



1.1 Energy from the Sun 3

Fig. 1.1. Solar Radiation in Europe

Fig. 1.2. Energy flow from the Sun.
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horizontal surface is constituted by a direct radiation, associated

to the direct irradiance on the surface, by a diffuse radiation which

strikes the surface from the whole sky and not from a specific

part of it and by a radiation reflected on a given surface by the

ground and by the surrounding environment. In winter the sky

is overcast and the diffuse component is greater than the direct one.

1.2 Energy from the Wind

The Earth continuously releases into the atmosphere the heat re-

ceived by the sun, but unevenly. In the areas where less heat is re-

leased (cool air zones) the pressure of atmospheric gases increases,

whereas where more heat is released, air warms up and gas pres-

sure decreases. As a consequence, a macro-circulation due to the

convective motions is created as shown in Figure 1.3. Air masses

get warm, reduce their density and rise, thus drawing cooler air

flowing over the earth surface. This motion of warm and cool air

masses generates high pressure and low pressure areas permanently

present in the atmosphere and also influenced by the rotation of

the earth. Since the atmosphere tends to constantly re-establish

the pressure balance, the air moves from the areas where the pres-

sure is higher towards those where it is lower; therefore, wind is

the movement of an air mass, more or less quick, between zones at

different pressure. The greater the pressure difference, the quicker

the air flow and consequently the stronger the wind. In reality, the

wind does not blow in the direction joining the center of the high

pressure with that of the low pressure, but in the northern hemi-
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Fig. 1.3. Air mass circulation due to Solar Radiation.

sphere it veers to the right, circulating around the high pressure

centers with clockwise rotation and around the low pressure ones

in the opposite direction. In the practice, who keeps his back to

the wind has on his left the low pressure area B and on his right

the high pressure area A, as shown in Figure 1.4. In the southern

hemisphere the opposite occurs.

On a large scale, at different latitudes, a circulation of air masses

can be noticed, which is cyclically influenced by the seasons. On a

smaller scale, there is a different heating between the dry land and

the water masses, with the consequent formation of the daily sea

and earth breezes. The profile and unevenness of the surface of the

dry land or of the sea deeply affect the wind and its local charac-

teristics; in fact the wind blows with higher intensity on large and

flat surfaces, such as the sea: this represents the main element of
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Fig. 1.4. Wind rotation around high and low pressure centers.

interest for wind plants on-and off shore. Moreover, the wind gets

stronger on the top of the rises or in the valleys oriented parallel

to the direction of the dominant wind, whereas it slows down on

uneven surfaces, such as towns or forests, and its speed with re-

spect to the height above ground is influenced by the conditions of

atmospheric stability.

The average wind speed in Italy, measured at 25 m a.s.l., ranges

from 6−7 m/s from the South Eastern to the 3 m/s of the Northern

part of Italy, but the largest areas are featured by 4− 5 and 5− 6.

m/s, as shown in Figure 1.5. In order to exploit wind energy, it

is very important to take into account the strong speed variations

between different places: sites separated by few kilometers may be

subject to very different wind conditions and have different impli-

cation for the installation purposes of wind turbines. The strength

of the wind changes on a daily, hour or minute scale, according
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Fig. 1.5. Average wind speed map in m/s in Italy as results from

http://atlanteeolico.rse-web.it/viewer.htm.

to the weather conditions. Moreover, the direction and intensity of

the wind fluctuate rapidly around the average value: it is the tur-

bulence, which represents an important characteristic of wind since

it causes fluctuations of the strength exerted on the blades of the

turbines, thus increasing wear and tear and reducing their mean

life. On complex terrain, the turbulence level may vary between

15% and 20%, whereas in open sea this value can be comprised in

the range from 10% to 14%. Variability and uncertainty of winds
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represent the main disadvantages of the electrical energy derived

from the wind source. In fact, as far as the amount of power pro-

duced by the wind plant is small in comparison with the size of the

grid to which it is connected, the variability of energy production

from wind source does not destabilize the grid itself and can be

considered as a change in the demand for conventional generators.

Instead, in some countries, large-size wind plants are being con-

sidered, prevailingly offshore groups of turbines. Such wind farms

shall have a power of hundreds of MW, equivalent to that of conven-

tional plants, and therefore their variability cannot be considered as

a noise on the demand of energy and becomes important to foresee

their energy production in advance.

1.3 Conclusions

The aim of this section was to describe the essential background of

the two forms of renewable energy considered in this work. From

this description, although not exhaustive, it should be possible to

understanding that the solar and wind energies are governed by

spatially distributed phenomena. Indeed, solar radiation is greatly

influenced by the clouds cover features (size, speed and number) and

to others variables including atmospheric transmittance, sky turbid-

ity and pollution level. Similarly wind speed depends by pressure

differences that occur in various areas but, it is strongly influenced

also by quite complex phenomena occurring into the atmospheric

boundary layer, i.e. the lower part of the atmosphere. Nevertheless,

in this work all such phenomena will be ignored, since our model-

ing approach is based on taking into account time series recorded
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at the ground, in the site of interest only. Indeed this is normally

the situation in which a plant manager operates, unless he wants

to use more complex meteorological information, usually available

from Meteorological Agencies only. The goal is that of assessing

to what extent short term predictions of solar radiation and wind

speed are reliable based on past data recorded at the site of interest

only.
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Analysis of Solar Radiation Time Series

The topic of solar radiation time series analysis has been addressed

in literature by various authors such as [4], [5] and [6]. Nevertheless,

as the results available in the literature are sometimes fragmented,

in this chapter I will try to provide a picture as comprehensive as

possible of properties of this kind of time series. For the purposes of

this analysis data set recorded in various geographic locations were

considered in order to preserve the generality of the results. Analysis

performed refer to aspects such as stationarity, power spectrum, au-

tocorrelation, fractal and multifractal properties and features such

as the embedding state space dimension and the Lyapunov spec-

trum.

Solar radiation time series, at various time scales are shown in Fig-

ure (2.1). According with the basic knowledge about solar radiation,

the Figure confirms that the considered time series are fluctuating

at any time scale. In the Figure the same time series is shown at

hourly, daily, monthly and yearly time scales. Fluctuations observed

in solar radiation time series is a feature shared with other mete-

orological time series, such as wind speed. These fluctuations are
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Fig. 2.1. Solar Radiation time series recorded at Lambrate

superimposed with deterministic variation due to the Earth spin-

ning around itself and to the revolution of Earth around the Sun.

The Earth spinning determines the typical bell shape curves that

are visible at hourly scale while the revolution around the Sun de-

termines and the fluctuations that are visible at monthly scales.

However fluctuations occurs also from year to year, as shown in

lower rightmost sub Figure (2.1).

2.1 Stationarity Analysis

One of the early questions that one would like to know is if solar

radiation time series are stationary or not. This is not a simple

task. Usually, available tests are based on the search for existent of

a unit root, such as the Dicky-Fuller, the Phillips-Perron tests and
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the Kwiatkowski-Phillips-Schmidt-Shin test or the Variance Ratio

test which is based on assessing if time series are random walks. The

application of all these tests indicate that the null-hypothesis, i.e.

that the considered time series are non stationary, is false. I have

also searched for nonstationary evidences in solar radiation time

series by using recurrent plots as shown in Figure (2.2). The Fig-

(a) (b)

Fig. 2.2. Recurrent plots of Solar Radiation for two different embedding dimensions.

(a) m=2 (b) m=8

ure shows recurrent plots for two different embedding dimensions

(m = 2) and (m = 8). Since we know that in an ergodic situa-

tion, the dots of a recurrent plot should cover the plane uniformly

on average, whereas non-stationarity expresses itself by an overall

tendency of dots to be close to the diagonal, we can say that there

are not evidences to conclude that solar radiation time series are

non stationary, at least for time interval of 10 years, as in the case

study here described.
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2.2 Space-time plots

The space-time plot computed from hourly average solar radiation

time series, computed for m = 12 is shown in Figure (2.3). The

Fig. 2.3. pace-time separation plot of Solar Radiation (m=12, d=2).

Figure shows lines of constant probability density of a point to

be an neighbor of the current point if its temporal distance is δt.

Probability densities are from 0.25 to 1 with increments of 0.25

from bottom to top. Clear correlations are visible. It is possible

to see that for δt ≤ 6 there space variation as larger as allowed.

This results can be interpreted in the sense that 6 hours can be

assumed as the temporal distance between independent samples,

as further confirmed by autocorrelation analysis performed in the

next section. Furthermore, the obtained value can be assumed as a
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good candidate for the delay parameter τ in the embedding phase-

space modeling approach, that will be considered in Chap. 5 for

modeling purposes.

2.3 Autocorrelation and Mutual Information

The autocorrelation functions computed for hourly and daily av-

erage solar radiation time series are reported in Figure (2.4). As

Fig. 2.4. Autocorrelation of hourly and daily average solar radiation time series at

Lambrate.

it is possible to see at hourly scale the autocorrelation function is

strongly periodic with period 24 hours, as it was expected, due to

the marked daily component which features solar radiation time

series (see Figure (2.1) at hourly scale). Furthermore, the autocor-
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relation function computed at hourly scale decays at values lower

than 0.37 (the so-called correlation time τc, in about 5 lags (hours),

which is close to the δt ≃ 6, estimated from the time-space plot.

At daily scale the autocorrelation reaches a minimum after a few

(say 2 lags), but how it is possible to appreciate it decays very

slowly.

However it is to bearing in mind that autocorrelation is a linear

feature of time series. Since it is highly probable that solar radia-

tion is generated by non linear processes, it is more appropriately

to estimate also the mutual information, as shown in Figure (2.5).

The Figure, in essence, confirms that at hourly scale the correlation

Fig. 2.5. Autocorrelation of hourly and daily average solar radiation time series at

Lambrate.

time τc, is about 5 ÷ 6 lags at hourly scale and 1 ÷ 2 lags at daily
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scale. This is a first assessment of the time horizon within which

it is possible to make reliable predictions by using autoregressive

models. However in this work, I have studied the prediction error

in the overall range h ∈ [1, 24] for hourly average time series, as it

will be described in Chap. 5.

2.4 Power Spectra

The power spectra of hourly and daily solar radiation time series are

shown in Figure (2.6). It is possible to observe that at hourly scale

Fig. 2.6. Power spectrum densities of hourly and daily average solar radiation time

series at Lambrate.

there are marked components with periods: T1 = 1/0.0001143 ≃

8748 hours ≃ 1 year, T2 = 1/0.04167 ≃ 24 hours. The others com-
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ponents of the spectrum computed at hourly scale corresponding

to periods of 12 hours, 6 hours etc, are well known effects of the

considered Fast Fourier Transform (FFT) computing algorithm. At

daily scale only one marked component is evident, corresponding

to a period of T3 = 1/0.002743 ≃ 365 days, i.e. 1 year.

Further, Figure (2.6) shows that the slope of the power spectrum is

about −1.33 at hourly scale and −0.54 at daily scale. The difference

among these slopes can be easily explained bearing in mind that

daily average solar radiation time series are less autocorrelated then

the corresponding hourly average time series, and thus more similar

to a white noise. Based on slopes of power spectra, it is possible to

say that solar radiation time series belongs to the ubiquitous 1/f

noise.

2.5 Hurst Exponent and Fractal dimension

The Hurst exponents and the fractal dimensions of hourly average

time series computed for ten years at one of the considered record-

ing stations are shown in Figure (2.7). The Hurst exponent was

computed by using the R/S algorithm while the fractal dimension

was computed by using the boxcounting algorithm. It is possible to

see that, H and D, computed on windows of 1 year, gives on average

H = 0.75 and D = 1.3. Thus the Hurst exponent is close to the

range 0.73± 0.09 observed for several natural time series. Further-

more it is possible observe that the theoretical relation H = 2−D

approximately holds.
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Fig. 2.7. Hurst exponent and Fractal dimension of hourly average solar radiation

time series at Lambrate.

2.6 Multifractal spectrum of solar radiation

Results of multifractal analysis performed on solar radiation time

series is shown in Figure (2.8). In more detail, the left-upper sub

Figure shows, in a log-log scale, the scaling function Fq versus the

scale (from 64 to 4096 samples), for various values of the q (the

local order of the local fluctuation exponent). Here it is to bear-

ing in mind that negative q-order, e.g. (q = −5), amplifies the

segments in the multifractal time series with extreme small fluctu-

ations, whereas positive q-order e.g. (q = 5), amplifies the segments

with extreme large fluctuations. The midpoint q = 0 is neutral to

influence of segments with small and large fluctuation. Finally ob-

serve that the slope of the regression lines, is the Hurst exponent



20 2 Analysis of Solar Radiation Time Series

Fig. 2.8. Multifractal spectrum at Lambrate (Milan) (hourly average from 2012 to

2014)

H corresponding to the considered q, also referred to as the gen-

eralized Hurst exponent H(q). Here it is to be stressed that while

a mono-fractal time series exhibits regression lines with the same

slope for various q, this is not the case of solar radiation time series.

Indeed, in the considered example (see the top rightmost sub Fig-

ure (2.8)) the q-order Hurst exponent varies from 1.26 to 0.84 when

q varies from -5 to 5. In more detail, it should be stressed that for

q = 2 the generalized hurst exponent gives the Hurst exponent on

the ordinary (i.e. mono fractal) fluctuation analysis. Such a value

is usually a little different from the Hurst exponent obtained by

using the R/S algorithm considered in section 2.5. The so-called

mass exponent τq versus q, which is related to the q-order Hurst

exponent, H(q), by expression (2.1)
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τ(q) = qH(q)− 1 (2.1)

is shown in the leftmost bottom sub Figure (2.8). This curve, in

case of a mono-fractal time series is exactly a straight line, since in

this case the q-order Hurst exponent is independent on q. As it is

possible to observe this is not the case of solar radiation, since in

this case we have a curve with the concavity facing down. Finally

the multi fractal spectrum (also referred to as singularity spectrum)

is shown in the lower rightmost sub Figure (2.8). As in general the

multi fractal spectrum assume an asymmetric bell shape with the

maximum obtained for q = 0, in the example shown in Figure the

spectrum is left truncated. This simply means that while large fluc-

tuation scales within a limited range of Lipshitz-Holder exponents

in the range (α ∈ [0.8, 0.9]), the small fluctuation scales following

a winder range of exponents (α ∈ [0.9, 1.5]). This feature, seems to

be shared by solar radiation time series recorded in different areas,

as shown in Figure (2.9.b). In the Figure the singularity spectrum

of solar radiation at five stations is shown. Four of the stations, re-

ferred to as Lamb (Lambrate, Milano), Casa (Casatenovo, Lecco),

Stez (Stezzano, Bergamo) and Como (Como), respectively are lo-

cated in Lombardia while Aber is located at Aberdeen (Ohio,USA).

While the four recording stations located in Lombardia are all in

the Po Valley at low altitude, Aberdeen is located in USA at 1433

m a.s.l. Probably the different altitude of the recording station may

explain why singularity spectrum at Aberdeen is less wide, i.e. more

close to be monofractal, with respect to the others.
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(a)

(b)

Fig. 2.9. Generalized Hurst exponent and singularity spectrum at four solar radiation

recording stations (a) Generalized Hurst (b) Multifractal Spectrum.
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2.7 Estimation of the embedding dimension

In order to determine the embedding dimensionm of solar radiation

time series, I have evaluated the fraction of false nearest neighbors

versus m, as shown in Figure (2.10). The Figure shows that the

Fig. 2.10. Fraction of false nearest neighbors of solar radiation at Lambrate at

different years-

fraction of false nearest neighbors decays very slowly with the em-

bedding dimension, without reaching the zero value in the range

m ∈ [1, 30]. This results could means that the supposed non-linear

dynamical system, underlaying the solar radiation process in not

low dimensional; however, it could also be interpreted as the effect

of noise in the considered time series.
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2.8 Maximal Lyapunov exponent

Lyapunov exponents are an important means of quantification for

unstable systems. They are however difficult to estimate from time

series. Unless the underlying dynamical system is low dimensional

and high quality data are available, it is non recommended to com-

pute the full spectrum and at most it is recommended try to com-

pute the maximal exponent only. To this purpose, I have consid-

ered the lyapk function which is part of the TISEAN package. Re-

sults obtained by using this algorithm on hourly average time series

recorded at different stations indicate the existence of positive max-

imal exponents in the range [0.6, 1].

2.9 Conclusions

Analysis presented in this chapter, performed on both hourly and

daily average solar radiation time series allow to draw some conclu-

sions about their nature. Stationary analysis, carried out by differ-

ent approaches, has not pointed out evidences that they are nonsta-

tionary, at least for time intervals of ten years, which is the largest

considered in this study. The power spectrum analysis showed, in

addition to the obvious presence of seasonal (mainly the daily and

yearly) components, also that the slopes of the solar radiation time

series power spectra are in the range [0.5, 1.5], which, according

with claims existing in literature, means that solar radiation time

series belong to the wide class of 1/f noise. Correlation analysis,

carried out by using linear and non linear approaches, pointed out

that solar radiation time series exhibits a correlation time of about
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τc = 5 lags at hourly time scale and of about τc = 1 lag at daily

scale, which means that prediction models, based on autocorrela-

tion only, have limited chances to be reliable, unless that for very

short horizons. Fractal analysis pointed out that these kind of time

series are fractal exhibiting, on average, fractal dimension D = 1.3

and Hurst exponent of H = 0.75. Furthermore, the Multi-Fractal

Detrended Fluctuation Analysis (MFDFA) has pointed out that

solar radiation time series are multi-fractal, exhibiting singularity

spectra, computed for different recording stations and geographic

areas, that are usually left-truncated, which means that while large

fluctuation scales within a limited range of Lipshitz-Holder expo-

nents (α ∈ [0.8, 0.9]), the small fluctuation scales following a wider

range of exponents (α ∈ [0.9, 1.5]). Analysis carried out in order to

see if there are evidences of deterministic chaos give controversial

results. Indeed, the search for an embedding dimension pointed out

that there is still a limited (i.e. ≤ 0.1) fraction of false nearest neigh-

bors at high, dimension (e.g.m = 24). This results can be explained

in different ways: the high embedding dimension is the effect of un-

avoidable noise in the time series or simply a low dimension chaotic

attractor does not exists. On the other hand the computation of the

maximal Lyapunov exponent has pointed out that there is at least a

positive exponent in the range [0.6, 1], thus meaning that a chaotic

attractor could be hypothesized. In conclusion, since as well-known

the computation of Lyapunov exponents from time series is quite

difficult, at the present stage of this research, it is possible to affirm

that while there are enough evidences to say that solar radiation

time series belong to the large class of multifractal 1/f noises, there
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are not enough evidences to assess that a low dimensional chaotic

attractor underlies the considered solar radiation time series.
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Analysis of Wind Speed Time Series

The purpose of this chapter is to analyze a representative

data set of wind speed time series recorded both in Italy and

USA. The considered recording stations in Italy are mainly lo-

cated in Lombardia and were provided both by the Politec-

nico di Milano (Como Campus) and by the ARPA Lombardia

(see http://ita.arpalombardia.it/ita/index.asp). The sta-

tions located in USA are a subset of the Western Wind Resource

(WWR) Dataset, modeled in the framework of the Western Wind

and Solar Integration Study (see http://wind.nrel.gov/). Origi-

nal time series were available with different sampling time: 5 min for

the Como Campus data set, 10 min, for the WWR data set and 1

hour for the ARPA Lombardia data set. Data of the Como Campus

station was recorded from 2011 to 2013, while the WWR dataset

was recorded from 2004 to 2006; finally, data of the ARPA Lombar-

dia is in general available since 2004. As for solar radiation, analysis

performed on wind speed time series was devoted to assess general

features such as stationarity, power spectrum, autocorrelation and

mutual information, fractal and multifractal features, as suggested
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by [7]). Furthermore, some kind of analysis were performed in or-

der to assess the hypothesis of low dimensional chaos in wind speed

time series, as claimed by ([8]). Some of the ideas described in this

section were proposed in [9].

Description in this Chapter starts showing (see Figure (3.1)) that

wind speed, such as solar radiation, are fluctuating time series at

any time scale. However, of course, this not automatically implies

Fig. 3.1. Wind speed time series recorded at station ID2257

that they are nonstationary, as shown in the next section.

3.1 Stationary analysis

Stationary analysis was performed by various techniques, including

the Augmented Dicky-Fuller (ADF) test, the Phillips-Pearson (PP)
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test, and the variance ratio (VR) test. All test rejected the null

hypothesis, thus meaning that there are not enough evidences to

assess that the considered time series are nonstationary, at least

for time scale of three years. I tried also to assess stationarity by

considering the recurrence plots. Recurrent plots of hourly wind

speed time series, for different embedding dimensions, are shown

in Figure (3.2). The uniform distribution of dots in the recurrent

plots indicates that there are not particular structures that could

be related with non stationarity, thus confirming achievement of

the ADF, PP and VR tests.

3.2 Autocorrelation and Mutual Information

The power spectrum and autocorrelation function computed on

hourly average wind speed time series are reported in Figure (3.3).

As it is possible to see at hourly scale the autocorrelation function

exhibits a slow decaying behavior, which is typical of 1/f noise.

Indeed autocorrelation at daily scale decays at meaningless lev-

els in about 3 lags. Autocorrelation of wind speed time series was

also estimated in terms of mutual information, as shown in Figure

(3.4). The Figure, in essence, confirms that the correlation time τc

is about 6 lags at hourly scale and 2 lags at daily scale. This is a

first assessment of the time horizon within which it is possible to

make reliable predictions by using autoregressive models. However,

in this work, I have studied the prediction error in the overall range

h ∈ [1, 24].
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(a)

(b)

Fig. 3.2. Recurrence plots of hourly wind speed at station ID 2257 during 2004 for

different embedding dimensions (a) m=1 (b) m=2
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Fig. 3.3. Autocorrelation of hourly and daily average solar radiation time series at

the ID2257 station.

3.3 Power Spectra

Typical power spectra of hourly and daily average wind speed

time series are shown in Figure (3.5). It is possible to observe

that at hourly scale there are components with periods: T1 =

1/0.0001143 ≃ 8748 hours ≃ 1 year, T2 = 1/0.04167 ≃ 24 hours. At

daily scale only a component is evident corresponding to a period

of T3 = 1/0.002743 ≃ 365 days, i.e. 1 year. The absolute slopes of

hourly and daily average wind speed power spectra computed for

some of the considered stations are reported in Table 3.3. As it is

possible to see for the stations referred as Aberdeen, Chiari, Como,

Lambrate and Vercana the slopes both at hourly and daily scale

are in the range β ∈ [0.51.5], thus meaning that performs as 1/f
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Fig. 3.4. Mutual information of hourly and daily average wind speed time series at

the ID2257 station.

station β(hourly) β(Daily)

Aberdeen 1.50 0.80

ID2257 2.01 0.96

ID2300 2.03 0.92

ID6435 1.87 0.74

ID9004 1.84 0.78

Chiari 1.44 0.62

Como 1.26 0.67

Lambrate 1.34 0.71

Vercana 1.55 0.74

Table 3.1. Absolute slopes of hourly and daily average power spectra at various

stations in USA and Italy

noise. Instead, for the stations referred to as ID2257, ID2300,ID6435

and ID9004, the time series exhibit absolute slopes almost close to
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Fig. 3.5. Power spectrum densities of hourly and daily average solar radiation time

series at the station ID2257.

2, thus behaving as random walks. The peculiarity of these latter

stations is that wind is recorded at 100 m above sea level.

3.4 Hurst Exponent and Fractal dimension

The Hurst exponents and the fractal dimensions of hourly average

wind speed computed for each year during 2004 to 2006 is shown

in Figure (3.6). The Hurst exponent was computed by using the

R/S algorithm while the fractal dimension was computed by using

the boxcounting algorithm. It is possible to see that on average the

Hurst exponent is 0.74 while the fractal dimension is 1.38. Thus

the Hurst exponent is almost in the range 0.73 ± 0.09, observed

for several natural systems. The Hurst exponent computed at nine
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Fig. 3.6. Hurst exponent and Fractal dimension of hourly average wind speed at the

station ID2257.

different recording stations by using three different algorithms [10],

namely the R/S, the DFA and GPH, are given in Figure (3.7).

As it possible to see there are clear differences among different

algorithms. However all algorithms confirms that, independently

from the considered recording stations and algorithm, wind speed

time series are fractal and long range correlated, since the Hurst

exponent are in the range 0.5 < H ≤ 1.

3.5 Multifractal Spectrum

Results of multifractal detrended fluctuation analysis performed on

hourly average wind speed time series are shown in Figure (3.8).

Roughly speaking this Figure shows that wind speed time series,
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Fig. 3.7. Hurst exponent computed at nine recording stations by three different ap-

proaches. The nine recording stations are: 1 = Aberdeen,2 = ID2257,3 = ID2300,4 =

ID6435,5 = ID9004,6 = ID9004,7 = Chiari,8 = Como,9 = V ercana

similarly to solar radiation time series, are multifractal. A detailed

interpretation of this Figure is similar to that given in section 2.6

for the multifractal spectrum of solar radiation time series.

The generalized Hurst exponent and the corresponding multi frac-

tal spectrum at various wind speed recording stations in USA and

in Italy are shown in Figure (3.9) and Figure (3.10), respectively.

Figure (3.9a) and (3.10.a) show that the generalized Hurst ex-

ponent H(q) significantly varies versus q, thus meaning the clear

multifractal nature of wind speed time series at all the considered

stations, independently on the geographical area and altitude. In

particular, bearing in mind that H(2), i.e. the generalized Hurst

exponent obtained for q = 2, represents the Hurst exponent given
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Fig. 3.8. Multifractal spectrum at station ID2257

by the traditional monofractal DFA (Detrended Fluctuation Anal-

ysis), it is possible to see that such particular values are in the

range H ∈ [0.65, 0.75] and H ∈ [0.7, 0.75] for the USA and Italy

stations, respectively. Such a difference can be explained looking

at the altitude (from the ground, or from the sea) at which wind

speed is sampled and at the different altitude above sea level of the

recording stations. Indeed stations referred to as ID2257, ID2300,

ID6435 and ID9400 samples wind speed at 100 m from the ground

(or form the sea, in case of offshore plants), while the remaining

stations samples wind speed at 10 m from the ground. Furthermore

stations ID2257, ID2300 belongs to offshore plants while stations

ID6435, ID9400 and Aberdeen are located at about 1700, 2100 and

1437 a.s.l., respectively.

Figures (3.9b) and (3.10.b) show the singularity spectra computed
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(a)

(b)

Fig. 3.9. Generalized Hurst exponent and multifractal spectrum at various record-

ing wind speed recording stations in USA (a) Generalized Hurst (b) Multifractal

Spectrum
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(a)

(b)

Fig. 3.10. Generalized Hurst exponent and multifractal spectrum at various record-

ing wind speed recording stations in Lombardia (Italy) (a) Generalized Hurst (b)

Multifractal Spectrum
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for the recording stations in USA and in Italy, respectively. From

these Figures it is evident that the features of the singularity spec-

tra are significantly affected by the different operating conditions

of wind speed recording stations. This aspect, which seems to me

quite intriguing, is leaved for future developments of this research.

3.6 Estimation of the embedding dimension

In order to determine the embedding dimension m of wind speed

time series, I have evaluated the fraction of false nearest neighbors

versus m, as shown in Figure (3.11). The Figure shows that, simi-

Fig. 3.11. Fraction of false nearest neighbors of solar radiation at Lambrate during

2012

larly to what observed for solar radiation time series, the fraction
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of false nearest neighbors decays slowly with the embedding dimen-

sion and a small fraction is computed also for m = 24. This results

may be due to noise effecting the data.

3.7 Maximal Lyapunov exponent

I have estimated the maximal Lyapunov exponent of hourly average

wind speed by using the approach described in [11]. Computation

performed with the Lyap spec program, which is part of the Tisean

package gives a value of 0.121. It is interesting to observe that

similar values was observed for all considered recording stations.

Furthermore, not only the largest Lyapunov exponent are almost

equal but the overall Lyapunov spectrum, as shown in Figure (3.12).

3.8 Conclusions

Analysis presented in this chapter, performed on both hourly and

daily average wind speed time series allow to draw some conclu-

sions about their nature. Stationary analysis, carried out by using

different approaches, has not pointed out evidences that they are

non stationary, at least in time interval of a few years, as analyzed

in this work. Fractal analysis pointed out that these kind of time

series are fractal and, in more detail, multi-fractal. Some kind of

analysis carried out in order to see if there are evidences of low

dimensional deterministic chaos in wind speed in time series, as

claimed by ([8]), is not clear to me. Indeed, the search for an em-

bedding dimension, performed in the range [1, 24], pointed out that
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Fig. 3.12. Lyapunov spectrum of hourly average wind speed at 4 different recording

stations

there is a fraction of false nearest neighbors also for high embed-

ding values (e.g. m = 24), thus meaning that the supposed low

dimensional chaotic attractor is not realistic. However, this results

can also be explained as the effect of random noise which affect

the dataset. On the other hand the computation of the maximal

Lyapunov exponent and of the whole Lyapunov spectrum pointed

out the presence of one or more positive exponents. However, the

spectral analysis show that wind speed time series, belongs to the

class of 1/f noise or in same case to random walks.
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Time series models for wind speed and

solar radiation

Research efforts in the area of wind speed and solar radiation time

series forecasting started in the eighties and has becoming contin-

uously increasing and nowadays some hundred thousand of scien-

tific papers are available. However, since standard protocols are not

considered to assess the features of the proposed models, it is very

difficult, or even impossible, to inter-compare different techniques

from literature results.

Referring to the subject of wind speed time series forecasting several

review papers have been published such as [12],[13],[14],[15],[16],

and [17]. Nevertheless, most of the paper agree to indicate that sta-

tistical models perform well when the forecasting horizon is only a

few hours.

After the earliest attempt to predict wind speed time series by using

Kalman models [18], a huge number of techniques have been con-

sidered such as ARMA (Auto Regressive Moving Average) models

[19],[20],[21], ARMA-GARCH (Generalized Autoregressive Condi-

tional Heteroskedasticity) [22], ARIMA and ANN (Artificial Neu-

ral Networks) [23],[24], Hybrid models ARMA and TDNN (Time
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Delay Neural Networks) [25], ANN (Artificial Neural Networks)

[26],[27],[28], Soft-Computing models [29], ANFIS (Adaptive Neural

Fuzzy Systems) [30], Generalized mapping regressors [31], Marcov

chains [32], Principal Component Phase Space Reconstruction [33],

Multiple architecture system [34] and Spatial Correlation models

[35]. However such a list of modeling techniques is not exhaustive.

Referring to the modeling of solar radiation time series, techniques

similar to those referenced above for wind speed have been pro-

posed. For instance, ARMA-GARCH models have been considered

by [36], ARMA and TDNN by [37] and [38], Recurrent Neural Net-

works by [39], ANFIS and ANN by [40] and [41], Statistical time

series models by [42], Decomposition models by [43], Fuzzy with

Genetic Algorithms models by [44], Empirical mode decomposition

by [45], Bayesian statistical models by [46], Machine learning by

[47], Particle swarm optimization and evolutionary algorithm, us-

ing recurrent neural networks by [48]. Also in this case this list is

far to be exhaustive.

In my PhD work, after trials with several of the approaches pro-

posed in literature, I have decided to focus on the use of the NAR

(Non-linear Auto Regressive) and EPS (Embedding Phase Space)

model structures, identified by using ANFIS (Adaptive Neuro-

Fuzzy Inference Systems) and ANN (Artificial Neural Networks)

approaches, as described in the following section.

4.1 NAR and EPS time series models

A time series can be considered as a sequence of measurements y(t)

of an observable y performed at equal time intervals. The Takens
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theorem implies that for a wide class of deterministic systems, there

exists a diffeomorphism (i.e. a one-to-one differential mapping) be-

tween a finite window of the time series (y(t), y(t−1), ..., y(t−d+1)

and the state of the dynamic system underlying the series. This im-

plies that in theory there exist a MISO (Multi-Input Single-Output)

mapping f : Rn → R such that

y(t+ 1) = f(y(t), y(t− 1), ..., y(t− d+ 1)) (4.1)

where d (dimension) is the number of considered past values. This

formulation returns a state space description where, in the d di-

mensional state space, the time series evolution is a trajectory and

each point represents a temporal pattern of length d. Prediction

models of the kind (4.1) are usually referred as NAR (Nonlinear

Auto-Regressive) models. These kind of models generalize into the

so-called NARX (acronym of Nonlinear Auto-Regressive with eX-

ogenous, i.e. external, inputs) model represented by expression (4.2)

y(t+ 1) = f(y(t), ..., y(t− d+ 1), u(t), ..., u(t− q + 1)) (4.2)

in presence of a vector u(t) of explaining variables, i.e. variables

that are in some way correlated with y(t). NAR and NARX have a

linear counterpart into AR and ARX which however are not usually

appropriate to describe natural phenomena. Mapping of the kind

(4.1) or (4.2) can be used in two ways: one-step prediction and

iterated prediction. In the first case, the d previous values of the se-

ries are assumed to be available and the problem is equivalent to a

function estimation. In the case of iterated prediction, the predicted

output is feedback as an input to the following prediction. Hence,
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the inputs consist of predicted values as opposed to actual obser-

vations of the original time series. A prediction iterated for k times

returns a k-step-ahead forecasting. The task of forecasting a time

series over a long horizon is commonly tackled by iterating one-

step-ahead predictors. Despite the popularity that this approach

gained in the prediction community, its design is still affected by a

number of important unresolved issues, the most important being

the accumulation of prediction errors. In my experience, iterated

forecasting does not work after a very few steps. Another prob-

lem dealing with NAR (and NARX) models is that the regressors

(y(t), y(t − 1), ..., y(t − d + 1) of the output variable are the most

recent past variables, which very often are correlated each other,

i.e. are not really independent variables. To avoid using consecu-

tive regressors of y(t) it is possible to modify the regressor vector

as (y(t), y(t − τ), ..., y(t − (d − 1)τ)), i.e. the regressors are time-

spaced by τ steps and thus expression ((4.1)) could be modified as

in expression (4.3).

y(t+ 1) = f(y(t), y(t− τ), ..., y(t− (d− 1)τ)) (4.3)

The τ parameter is usually chosen with the criterion of the first

minimum of the mutual information, which assures that two con-

secutive regressors of the f function are few correlated and thus

almost independent. These ideas are inspired by the so-called Em-

bedded Phase-Space (EPS) representation of dynamical systems

which are largely considered in non-linear modeling of chaotic time

series. Of course expression (4.3) reduces to the traditional NAR

form (4.1) when τ = 1. In the framework of EPS models the param-

eter τ is referred to as delay while d is referred to as the embedded
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dimension and can be chosen by using various criteria such as, for

instance, evaluating the fraction of false neighbors.

4.2 Multi-step ahead prediction models

The MISO map (4.3) can be appropriately extended for multi-step

prediction according with expression (4.4).

y(t+ h) =f(y(t), y(t− τ), ..., y(t− (d− 1)τ)

h = 1, 2, ...24
(4.4)

In other terms, in order to perform multi-step prediction avoiding

to use iteratively expression (4.2), which as mentioned fails after a

few step due to accumulation error, it is proposed to directly map-

ping the input vector [y(t), y(t− τ), ..., y(t− (d−1)τ ] to the output

scalar y(t + h) by using two different neural network based ap-

proach, namely the Neuro-Fuzzy (NF) and the Feedforward Neural

Network (NN) approaches. The mapping will be performed for pre-

diction horizon h in the range 1 ≤ h ≤ 24 hours. The two mapping

approaches are shortly outlines in the next sections.

4.3 Mapping approximation

Neural Networks based approaches are among the most popular

and efficient tools to approximating a map f of the kind consid-

ered in this work. In particular, I have considered two kinds of

approaches namely the Neuro-Fuzzy and the Feedforward Neural

Networks approaches, respectively. One of the main advantages of
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these approaches is that, roughly speaking, they allow to approx-

imate nonlinear maps by various kinds of basis function, such as,

sigmoidal, gaussian, wavelet and so on. In particular the gaussian

basis functions seems particularly appropriate for solar radiation

time series modeling, due to the gaussian shape of daily solar time

series.

4.3.1 The Neuro Fuzzy approach

One of the most interesting aspects of the NeuroFuzzy approach

is that once the neural network has been trained by using auto-

matic learning algorithms, the obtained model can be interpreted

in terms of a base of if ... then rules. The resulting models can be

represented both in linguistic form, or as multidimensional surfaces,

whose coordinates are the arguments of the f function. In partic-

ular, if the rules are expressed in the so-called Takagi-Sugeno form

[49], i.e with the consequent part expressed as a linear combination

of the input mapping, often the model surfaces are iperplanes and

thus the rule base can be approximated by simple mathematical ex-

pressions. Identification of the model rule base can be obtained in

several ways. In particular I have considered the genfis3.m function

which is part of the Maltab fuzzy toolbox. This function generates

a FIS (Fuzzy Inference System) by using the fuzzy c-means (FCM)

clustering algorithm. Gaussian type functions were considered to

represent the membership functions. For each of the argument that

appears in the f function, three membership functions were consid-

ered to describe what is usually referred the universe of discourse.

In this work, the combination of the Embedded Phase Space model
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structure and the Neuro-Fuzzy neural networks for approximating

the f map, will be referred, to as the EPSNF approach.

4.3.2 The FeedForward Neural Network Approach

Feedforward networks consist of a number of simple artificial neu-

rons, organized in layers. The first layer has a connection from the

network input. Each subsequent layer has a connection from the

previous layer. The final layer produces the network’s output. Such

a kind of networks can be used for many kinds of input to output

mapping. A feedforward network with at least one hidden layer and

enough neurons can fit any finite input-output mapping problems.

Several kind of different training algorithm can be used to training

the network, such as for instance the popular Levenberg-Marquardt

optimization algorithm which was taken into account in this work.

Since in this case feedforward neural networks are considered for

approximating the f map, the approach will be referred to as EP-

SNN.

4.4 Conclusions

A huge number of techniques have been proposed in literature to

model solar radiation and wind speed time series and thus it is al-

most impossible to be exhaustive dealing with this subject. For this

reason, the description was limited to the NARX and to the Em-

bedded Phase-Space approaches, which were considered the most

appropriate for the purposes of this work.
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Modeling hourly average solar radiation

time series

In this section results obtained by applying the modeling ap-

proaches described in Chap. 4 to a data set of hourly average time

series recorded from 2011 to 2013 are reported. For all modeling tri-

als, data recorded during 2011 and 2012 was considered to identify

the model parameters while remaining data was reserved to test the

model. Model performances have been evaluated by considering the

traditional mae and rmse error indices.

5.1 Performances of the NARX Neuro-Fuzzy

modeling approach

One of the interesting aspects of applying the Neuro-Fuzzy tech-

nique to the considered problem is that it is often possible to obtain

quite simple approximated models which relate the solar radiation

at some time (t + h) and others meteorological variables recorded

at the same station until time t. The description starts showing

results obtained by the simple model of the form (5.1), where the

prediction horizon has been set to h = 0, which means a pure
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static input-output model, with the aim of evaluating to what ex-

tent the hourly average solar radiation at time t can be explained

as a function of the hourly average values of temperature, pressure

and relative humidity recorded at the same hour.

sr(t) = f(ws(t), te(t), pr(t), hum(t)) (5.1)

The Neuro-Fuzzy model obtained, graphically represented in terms

of surfaces in three dimensional spaces, consists of planes, as shown

in Figure (5.1) and thus a simple mathematical representation of

the model is possible, as expressed by equation (5.2).

sr(t) =13.8 · ws(t) + 7.3 · te(t) + 1.74 · pr(t)

− 2.5 · hum(t)− 1615
(5.2)

The time behavior of such a model, represented in Figure (5.2),

shows that it perform poorly, i.e. it is only partially able to capture

the true relation among solar radiation and the other considered

explaining variables. On the other hand the hourly averages of

solar radiation are weekly correlated with the explaining variables

considered in equation (5.2). For short time horizons, such a be-

havior can be significantly improved, by adding and autoregressive

term, i.e. considering, in the simplest case, a model of the form (5.3).

sr(t+ h) =f(sr(t), ws(t), te(t), pr(t), hum(t)),

h = 1, 2, ...
(5.3)

as shown in Figure (5.3) for h = 1. It is evident that adding at

least one regression of the output into the list of the f arguments

improves the capability of the model to predict future values (com-
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Fig. 5.1. Surfaces of the NF model (a) sr-ws-te (b) sr-hum-ws (c) sr-pr-ws.
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Fig. 5.2. True and modeled time series by a NARX NF model expressed by equation

5.1 (h=0).

pare the behavior shown in Figure (5.2) with that shown in Fig-

ure(5.3). In order to objectively evaluate the performance of NF

models of the form (5.3) for the whole range 1 ≤ h ≤ 24 of pre-

diction horizon, two error indices were computed: the mae (mean

absolute error) and the rmse (root square mean error), defined as

expressed in (5.4) and (5.5), respectively.

mae =
1

n

n
∑

i=1

|y(i)− ŷ(i)| (5.4)

rmse =

√

√

√

√

1

n

n
∑

i=1

(y(i)− ŷ(i))2 (5.5)

where n is the number of samples considered to compute the er-

ror indices and the symbol ŷ indicates the estimated sample. Fur-
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Fig. 5.3. True and modeled time series by a NARX NF model expressed by equation

(5.3) (h=1).

thermore the NF model performance was compared with that of a

persistent model, i.e. a model characterized by the simple equation

(5.6), which is often considered as a reference model.

ŷ(t+ h) = y(t) (5.6)

From results shown in Figure (5.4) it is possible to see that:

1. for 1 ≤ h ≤ 4, the model (5.3) performs exactly as the persistent

model and thus there is not convenience on using it.

2. Themae and rmse, increases faster for the persistent model with

respect to the NF model. Furthermore, while for the NF model

the error reaches a maximum value for h = 5, for the persistent

model the error curve is almost symmetric and reaches a max-

imum for h = 12, i.e. half of a day. For h > 12 the persistent
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model error start decreasing and for h = 24 again approaches

values comparable to that of the NF model.

3. for 21 ≤ h ≤ 24 again the NF model performs as the persistent.

4. Although the NF model outperform the persistent model for

prediction horizon in the range 5 ≤ h ≤ 20, this does not imply

that its performance are acceptable for forecasting purpose, even

at short time horizon. For instance, its time behavior for h = 3

is shown in Figure (5.5), which reveals that the model is not

reliable to predict the peak values of the true time series.

5.2 Performances of the NARNF approach

In this section models of the form 4.1, for different values of the

delay d in the range [3, 24] are considered. The mae and rmse errors

obtained for this kind of models are shown in Figure (5.6). It is

possible to see that NARNF models featured by τ = 1 do not

exhibits a uniform error versus h in the overall explored range,

unless the dimension d is set to d = 24. Instead, the NARNF model

with an embedding dimension d = 24 perform quite well, not only

for short prediction horizons but in the whole range [1, 24] since the

mae and rmse curves are flat. In terms of performance indices, it is

possible to say that mae ≤ 50W/m2 and rmse ≤ 90W/m2 in the

whole explored range.
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Fig. 5.4. Performance of the NARX NF model (a) MAE (b) rmse.
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Fig. 5.5. True and modeled time series by a NARX NF model (h=3).

5.3 Performances of the EPS Neuro-Fuzzy

modeling approach

In this section I show results obtained considering embedding

phase-space models of the form (5.7),

sr(t+ h) =f(sr(t), sr(t− τ), ..., sr(t− (d− 1)τ)

h = 1, 2, ...24
(5.7)

where, again, the unknown mapping function f is identified by the

neuro fuzzy approach. In the rest of the work this kind of models

will be referred to as EPSNF (acronym of Embedded Phase-Space

Neuro-Fuzzy). Since the most appropriate value for the embedding

dimensions is unknown, a series of trials were performed assuming

that d is an integer value in the range 3 ≤ d ≤ 24. As concerning the
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Fig. 5.6. Performances of the NARNF model for d ∈ [3, 8, 12, 24] (a) mae (b)rmse.
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delay τ , two series of trials were performed. The first trial assumes

τ = 1, since this is the case when the EPS model reduces to the

popular NAR model. The second series of trial refers to different

values τ > 1.

5.4 Performances of the EPSNF approach

In this section prediction models of the form (4.3) identified by us-

ing the NF mapping approach are considered by setting the time

delay parameter τ = 2 and for various values of d in the range

[3, 24]. The performance in terms of mae and rmse are shown in

Figure (5.7). It is possible to see that NAR NF models do not ex-

hibits a uniform error versus h in the overall explored range, unless

the dimension d is set to d = 12. Thus it was experimentally found

that an EPS model with 12 regressors perform as a NAR model

with 24 regressors, provided that the 12 regressors are chosen as-

suming τ = 2. This results can be explained bearing in mind that

hourly average solar radiation time series exhibits a strongly peri-

odic behavior with a 24 hours period and that by using 12 regressors

delayed by τ = 2 it is possible to cover the whole 24 hours time

interval. Furthermore, it is to stress here that the search for an em-

bedding dimension for hourly average solar radiation time series,

by using the false-neighbors algorithm suggested an embedding di-

mension ≥ 24. This result allows to conjecture that to implement a

prediction model with flat mae and rmse errors in the whole range

[1, 24], it is required, that d · τ ≥ 24. Such a conjecture was experi-

mentally verified to be true as shown in Figure (5.8). It is possible

to observe that the error curves, obtained assuming d ·τ = 8 ·3 = 24
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Fig. 5.7. Performances of the EPSNF τ = 2 and d ∈ [3, 8, 12, 24] (a) mae (b)rmse.
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Fig. 5.8. mae versus the horizon for an EPSNF model (d · τ = 24).

works as well as the model featured by d · τ = 12 · 2 = 24. However

the figure shows that there is a minimum value for the number of

regressors. Indeed, for instance choosing d = 8 and τ = 3 or d = 6

and τ = 4 do not give flat error over the explored range. Thus the

rules should be modified as follow: to obtain an almost flat error it

is necessary that both these to relations hold: d · τ ≥ 24 and τ ≤ 3.

To further stress the convenience of using the NF approach in con-

junction with the EPS model structure it is reported in equation

(5.8), the mathematical representation of an EPSNF model having

(d = 8, τ = 3) and h = 5.
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sr(t+ 5) =0.0510sr(t) + 0.7866sr(t− 3) + 0.0796sr(t− 6)+

− 0.0383sr(t− 9)− 0.0144sr(t− 12)− 0.0041sr(t− 15)+

− 0.0342sr(t− 18)− 0.0008sr(t− 21) + 16.1475

(5.8)

which is quite simple to implement.

5.5 Performances of the NARNN approach

In this section performance of EPSNN, here considered as the

acronym of Embedded Phase-Space Neural Network models will be

shortly reported. For the lack of brevity, it is possible to say that

considerations already expressed in the previous section for models

EPSNF can also be applied to models EPSNN. For instance, the

performance of the EPSNN model (5.7), in terms of mae and rmse

errors are synthesized in Figure (5.9) for various embedding dimen-

sion d and also in comparison with the persistent model. The Figure

shows that the EPSNN models significantly outperform the persis-

tent model for any value for the embedding in the range considered

(3 ≤ d ≤ 24). It is worth nothing that the performance for d = 12

and d = 24 are almost identical, thus demonstrating experimentally

that, as already shown for models EPSNF d = 12 is probably the

most appropriate size of the embedding for the considered problem,

when using the NAR model structure. Another interesting aspect

is that performance of this kind of models are almost independent

on the prediction horizon in the range 1 ≤ h ≤ 24.
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Fig. 5.9. Performances of the EPSNN models for τ = 1 and d ∈ [3, 8, 12, 24](a) mae

(b)rmse.
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5.6 A direct comparison between the EPSNF

and EPSNN approaches

A direct comparison between EPSNF and EPSNN models, working

on the same data set, limited to embedding dimension of d = 12

and d = 24, is reported in Figure (5.10). The Figure shows that

the EPSNN model with d = 12 is slightly more accurate than cor-

responding EPSNF model and therefore may be preferred, in this

respect. However this small advantage may not be decisive since

the EPSNF models allow a simple external representation with re-

spect to EPSNN model. Further insights concerning the goodness

of EPSNN models can be obtained from the analysis of the resid-

ual, i.e. the difference between the actual and the predicted time

series. To this purpose, as an example, the autocorrelation of the

true and residual time series corresponding the prediction with a

time horizon of h = 5 is shown in Figure (5.11). It is possible to see

that both the autocorrelation and the mutual information of the

residual decay faster than that of the true time series and periodic

behavior is strongly attenuated in the residual time series. The his-

togram of residual generated by the considered EPSNN model is

shown in Figure (5.12). The Figure shows that the residue of so-

lar radiation generated by the model considered is symmetrically

distributed around zero. In more detail, the central bin is centered

at the value −24.04 and almost 80% of residual samples are in

the central bin, while the remaining 20% is distributed around two

bins: one with the center around the −136.11 value and the other

centered at 88.02 -value.



66 5 Modeling hourly average solar radiation time series

Fig. 5.10. Performances of EPSNF and EPSNN models for different embedding

dimension (a) mae (b)rmse.
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Fig. 5.11. Autocorrealtion and mutual information of the true and residual time

series (h=5).

Fig. 5.12. Histogram of the residual generated by the EPSNNmodel (h = 5, d = 12)).
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5.7 Conclusions

Results discussed in this chapter can be summarized as follows.

Accuracy estimation of the prediction models, assessed in terms of

mae and rmse gives mae ≤ 50Watt/m2 and rmse ≤ 80Watt/m2,

for the whole explored prediction horizon h ∈ [1, 24]. For very short

prediction horizon, (h ≤ 3), the performances are better since it

has been found mae ≤ 40Watt/m2 and rmse ≤ 60Watt/m2. The

studied models significantly outperform the persistent model in the

whole explored prediction horizon h ∈ [1, 24]. The residue of solar

radiation generated by the studied models is symmetrically dis-

tributed around zero and almost 80% of residual samples are in the

central bin. The NF and NN approaches considered to identify the

non-linear map underlying NARX and/or EPS models are compa-

rable in terms of accuracy. However, NF prediction models could

be preferred since allow a relative simple external representation.



6

Modeling hourly average wind speed

time series

In this section results obtained by applying the modeling ap-

proaches described in Chap. 4 to the data set of hourly average

time series recorded at Como (Italy) from 2011 to 2013, are dis-

cussed as a case of study. For all modeling trials, data recorded

during 2011 and 2012 was considered to identify the model param-

eters while data recorded on 2013 was reserved to test the model.

Model performances have been evaluated by considering the tra-

ditional mae and rmse error indices expressed by (5.4) and (5.5),

respectively.

6.1 Performances of the NARNF approach

Following the same scheme adopted in the previous chapter devoted

to solar radiation, I start the description of results obtained for wind

speed time series from the simplest kind of NARX models, with the

aim of evaluating to what extent solar radiation, temperature, air

pressure and relative humidity may contribute to explain the wind

speed dynamic at the considered recording site. Thus I have test
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the model described by (6.1)

ws(t+ h) = f(sr(t), te(t), pr(t), hum(t)), h = 1, 2, ... (6.1)

which relate the wind speed, ws(t+h), at the time t+h, with solar

radiation, sr(t), air temperature, te(t), air pressure, pr(t) and rela-

tive humidity hum(t) at time t. For each input variable three Gaus-

sian membership functions were considered, generically indicated

as low, medium end high, whose best parameters were obtained by

the fuzzy c-means algorithm. The distribution of these membership

functions in the so-called universe of discourse is shown in Figure

(6.1), for each model input considered. The obtained model rule

base is represented by three rules whose consequent part assumes,

for h = 1, the form (6.2)

y(t+ 1) =0.0023sr(t) + 0.0061te(t)− 0.0761pr(t)

− 0.0575hum(t) + 83.6348
(6.2)

Thus the model surfaces for h = 1 are the iper-planes shown also

in Figure (6.2). The model surfaces obtained for h = 4 are shown

in Figure (6.3). They are quite similar to those shown in Figure

(6.2), thus meaning that for short prediction horizons the model

parameters follows similar rules. The comparison between the true

and the corresponding predicted time series, obtained by using the

model (6.1), for h = 1, is shown in Figure (6.4).

It is possible to see that, although the true time series is more

irregular than the computed one, the described model is able to

explain the essential features of the input-output dynamics. It is

to stress here that the output variable is not included as argument

of the f model function and thus it not possible to attribute the
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(a) (b)

(c) (d)

Fig. 6.1. Gaussian type membership function computed by the fuzzy c-means algo-

rithm in the framework of the genfis3 algorithm (a) Solar Radiation , (b) Temperature,

(c) Pressure, (d) Relative Humidity.

model behavior to persistence of the output variable.

Simple prediction models as that expressed by (6.2) confirms what

we know from analysis of daily patterns: the solar radiation and the

air temperature are positive correlated with wind speed while the

pressure and the relative humidity are negative correlated.

Since it is not reasonable the use of Neuro-Fuzzy models with a large
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(a)

(b)

(c)

Fig. 6.2. Approximated linear relation between ws(t+1) and (a) sr(t), te(t) (b)

sr(t),pr(t) (c) sr(t), hum(t).
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(a)

(b)

(c)

Fig. 6.3. Approximated linear relation between ws(t+4) and (a) sr(t), te(t) (b)

sr(t),pr(t) (c) sr(t), hum(t).
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Fig. 6.4. True and predicted hourly average wind speed time series.

number of input variables, I report now the results concerning a

NARX Neuro-Fuzzy model, a bit more complex than that described

above, represented, with reference to expression (4.2), by d = q = 2.

The performance of this model, evaluated in terms of mae and

rmse error indices, for prediction horizon in the range 1 ≤ h ≤

24, are reported in Figure (6.5), where the comparison with the

persistent model it is also shown. Results indicate that for 1 ≤

h ≤ 24 the Neuro-Fuzzy model widely outperform the persistent

model. In a nutshell, the maximum value of the mae and rmse

errors are obtained for h = 10 and their values are about 1.65m/s

and 2.25m/s respectively.
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(a)

(b)

Fig. 6.5. Performances of the NeuroFuzzy model expressed by (4.2) with d = q = 2(a)

mae (b) rmse.
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6.2 Performances of the ARX and NARX NN

approach

In this section I report, as the first result, a comparison among

a NARX model obtained by using the sigmoid net approach and

a linear version of the auto-regressive model, i.e. an ARX model.

Of course the data set and the delays for both the models are the

same. In particular, with reference to the general structure (4.2),

the model structure is represented by d = q = 2. The performances

of these two kind of models, in terms of mae and rmse, are shown in

Figure (6.6). In the same Figure, the performance of the persistent

model, considered as a low level reference, are reported. As it is

possible to see both the NARX and ARX models are significantly

more accurate than the persistent model, even at small prediction

horizons. This is of course mainly due to the effects of exogenous

inputs which are considered for both the ARX and NARX mod-

els. Furthermore, Figure (6.6) shows that, as expected, the NARX

model encompasses the ARX model.

To conclude this section devoted to models comparison, I report in

Figure (6.7) the direct comparison between a Neuro-Fuzzy model

and the sigmoid net model with the same degree of complexity

(d = q = 2). The comparison refer, as usual, the mae and rmse

errors for a range of prediction horizon 1 ≤ h ≤ 24. As it is pos-

sible to see the sigmoid net model encompasses the corresponding

Neuro-Fuzzy model. One reason for the higher accuracy of the sig-

moid net model compared to Neuro-Fuzzy model could be found in

the different training algorithm considered, but probably the main

reason is that the output of the considered Neuro-Fuzzy model is
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(a)

(b)

Fig. 6.6. Comparison among NARX, ARX and Persistent model. The NARX and

ARX model have 1 output, (the wind speed), 4 inputs (solar radiation, tempera-

ture,Pressure,relative humidity, and d = q = 2 (a) mae (b) rmse.
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(a)

(b)

Fig. 6.7. Comparison between a NeuroFuzzy model and a NARX model with the

same complexity (d = q = 2) (a) mae (b) rmse.
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constrained to be a linear combination of the f arguments. This,

on one hand makes easy the model interpretation but, on other

hand, decreases the accuracy. The sigmoid net 1-step-ahead pre-

diction model surfaces are reported in Figure (6.8). It is possible

to see that, compared with the analogous Neuro-Fuzzy prediction

model, these surface are more irregular and also more difficult to

be interpreted in terms of simple rules.

6.3 Performances of the EPS approach

In this section results obtained by applying the EPS model struc-

ture, identified by using both NF and NN mapping approaches are

reported.

6.3.1 Performances of the EPSNF approach

Results obtained by using the NF mapping are reported in Figure

(6.9). The Figure shows that among the inter-compared models, the

best is the one whose structure is characterized by d = 12 and τ = 2.

However, for very short prediction horizons (say h ≤ 3) the model

performs almost as the persistent model while for higher prediction

horizons significantly outperform persistent model. Furthermore it

is possible to observe that the error rate is higher for prediction

horizon h ≤ 10, while for higher horizon the error reach almost a

regime value which is about 1.5 m/s in terms of mae and 2.3 in

terms of rmse.
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(a)

(b)

(c)

Fig. 6.8. Surfaces of the 1 step ahead prediction model (a) ws(t+1),sr(t),te(t) (b)

ws(t+1),sr(t),pr(t) (c) ws(t+1),sr(t),hum(t).



6.3 Performances of the EPS approach 81

Fig. 6.9. Performances of the EPSNF model for different embedding dimension (a)

mae (b) rmse.
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6.3.2 Performances of the EPSNN approach

Results obtained by using the NN mapping are reported in Figure

(6.10). Roughly speaking to EPSNN model applies similar consid-

erations already expressed for NF models. Indeed, also in this case

the best model is the one whose structure is characterized by d = 12

and τ = 2. Furthermore the accuracy is almost comparable.

6.4 A direct comparison among NARX and

EPS models

Comparing results of all approaches described in this chapter it

seems that the NARX (d = q = 2) models, whose performance

are shown in Figure (6.6, perform slightly better then the EPS

models, whose performances are shown in Figure (6.9) and (6.10).

This could be explained bearing in mind that the former kinds of

models take into account the solar radiation, the air temperature,

the atmospheric pressure and the relative humidity, measured at the

same station, as exogenous model inputs, while for the latter kinds

of models these exogenous were not considered, even, of course, this

if this is technically possible.

6.5 Conclusions

The main achievements can be synthesized as follows:

• The accuracy of the studied NARX prediction models, assessed

in terms of mae and rmse is expressed by mae ≤ 1.2m/s and
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Fig. 6.10. Performances of the EPSNN model for different embedding dimension (a)

mae (b) rmse.
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rmse ≤ 2.0m/s, for the whole explored prediction horizon h ∈

[1, 24].

• for horizons h ≤ 3 hours the performance of NARX models are

mae ≤ 1.0m/s and rmse ≤ 1.2m/s which can be considered ac-

ceptable for applications. Indeed 3 hours ahead reliable predic-

tions can be useful for plant managers to dispatch conventional

generators in order to satisfy the electricity demand from the

users.



7

Clustering Daily Solar Radiation Time

Series

This chapter deals with classification of solar radiation daily pat-

terns into four classes, referred to as clear sky, intermittent clear

sky, completely cloud sky and intermittent cloud sky, by using an

original features-based classification strategy. The problem is rele-

vant both for analysis and modeling purposes of this kind of time

series. Indeed, once classes have been attributed to solar radia-

tion time series, some useful statistics can be carried out, such as

computing the permanence in days in each class or computing the

weight of each class during a predefined time interval (usually one

year). Furthermore, the prediction of some 1-day ahead feature of

solar radiation time series can be reformulated in terms of a classi-

fication problem. In such a way, instead of predicting 1-day ahead

the average value, of solar radiation, the target is that of predicting

1-day ahead the class. To this purpose, an original pair of indices

is introduced, referred to as the area ratio Ar and intermittency

I. Extraction of these features from solar radiation time series is

based on an original strategy, based on the so-called Typical Day,

which allows the estimation of the solar radiation that is expected
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to be measured in a given recording site, avoiding the use of compli-

cate expressions requiring solar altitude, albedo, atmospheric trans-

parency and cloudiness.

7.1 Problem statement

In this chapter it is proposed a new strategy to classify solar radia-

tion daily patterns into to four classes, referred to as clear sky, inter-

mittent clear sky, cloudy sky and intermittent cloudy, as recognized

in [50]. An heuristic description of these classes is the following:

• class C1: the class of clear sky conditions days of solar radiation

with very few clouds. An example is reported in Figure (7.1.a).

• class C2: the class of days characterized by an important so-

lar radiation with some clouds corresponding to a medium level

dynamic as shown in Figure (7.1.b).

• class C3: the class of completely cloudy sky days with big size

clouds having a slow speed so that both the intensity of so-

lar radiation and the dynamical level is weak, as shown in Fig-

ure(7.1.c).

• class C4: the class of days with significant sunshine combined

with a large number of small clouds with high speed of passages

and thus with high dynamic levels. An example is given in Figure

(7.1.d).

To discriminate between these four classes may have some draw-

back. First of all, from the linguistic description given above it is

easy to understand that the boundaries between these classes are

not clearly distinct since terms as few clouds, some clouds, impor-
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(a) (b)

(c) (d)

Fig. 7.1. Examples of solar radiation daily patterns (a) class C1 (b) class C2 (c) class

C3 (d) class C4.

tant solar radiation, and so on, which are obvious in natural lan-

guages are not so clear when dealing with computing systems. This

aspect, which lead Zadeh ([51]) to introduce the concept of fuzzy

set, is an indication that boundaries of the described classes are

not clear definite. Thus, clustering daily solar radiation patterns

it is realistic to expect that each individual pattern may belong

to more than on class with different degree of membership. Fur-

thermore patterns of each individual class are time varying, since

they exhibits different geometric features (e.g. width and height of

the envelop curve) through the year due seasonal effects. As an ex-
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ample in Figure (7.2) class C1 and C2 patterns of solar radiation

recorded at Aberdeen (Ohio, USA) at different seasons during year

2000 are shown. It is possible to see that despite the pattern shapes

are similar, the geometrical features are quite different. In order to

overcome this shortcoming, a strategy, based on the Typical Day

(TD) model ([52]), was considered to handle the time variance in-

trinsic with solar radiation data. The aim is to demonstrate that

(a) (b)

Fig. 7.2. Solar Radiation Daily patterns recorded at different seasons at the Aberdeen

station. (a) class C1 (b) class C2.

the four described patterns can be efficiently discriminated by us-

ing two indices, referred to as area ratio, Ar and intermittency, I

respectively, whose formal description follows.

7.2 The area ratio Ar index

The Ar index is formally represented by expression (7.1)

Ar(d) =
Apat(d)

Atyp(d)
(7.1)
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where Apat(d) and Atyp(d) represent the area under the true and

the average daily solar radiation pattern at the generic Julian day,

d, respectively. In the rest of this chapter, the average daily so-

lar radiation pattern will be referred as TD(d) and thus Atyp(d) is

the area under TD(d). The procedure to compute TD(d), for sim-

plicity, will be explained in detail in [52]. Of course the Ar index

is always positive but can be greater or less than 1. For example,

in a day featured by favorable weather conditions (eg. absence of

cloud cover and good atmospheric transmittance) Ar will be greater

than 1; conversely under thick cloud cover and adverse propagation

conditions it may be significantly less than 1. As an example, the

behavior of the Ar(d) index computed for solar radiation recorded

at Aberdeen during year 2000 is reported in Figure (7.3).

Fig. 7.3. Daily values of the Ar index computed for the Aberdeen station during

year 2000
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7.3 The I index

In order to evaluate the dynamic level which may affect daily solar

radiation patterns, it was thought to act as is explained below. The

basic observation is that while TD patterns are always represented

by smooth bell curves, true daily solar radiation patterns may be

featured by a significant intermittency. This certainly occurs for

patterns belonging to class C2 and C4. For instance in Figure (7.4.a)

an example of true daily solar radiation pattern belonging to class

C2 (see the scattered curve) and the corresponding TD pattern

(the bell smooth curve) are shown. The power spectral densities

corresponding to these two curves are shown in Figure (7.4.b). It

is possible to observe that while in the frequency range [100, 101],

corresponding to [1/300, 1/30] Hz, the two spectra are quite similar,

they appear significantly different for higher frequencies, say in the

range [1/30, 1/3] Hz. In more detail the smooth bell curve, i.e. the

TD pattern, exhibits a lower power spectrum density with respect

the true pattern. Thus it is reasonable to appropriately consider this

feature to point out the presence of intermittency in solar radiation

daily patterns. To such a purpose, it is introduced the I(d) index,

here referred to as Intermittency, formally expressed by (7.2)

I(d) =
log(Pwpat(d))− log(Pwtyp(d))

log(Pwpat(d)) + log(Pwtyp(d))
(7.2)

where Pwpat(d) and Pwtyp(d) are the areas under the density power

spectrum, in the range [1/30, 1/3] Hz, of the true and TD solar

radiation patterns, respectively. To be more clear, with reference

at Figure (7.4.b), I(d) is the normalized difference between the

log areas under the true and TD curves, respectively, delimited by
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(a) (b)

Fig. 7.4. (a) Example of a true solar radiation daily pattern of class C2 and cor-

responding Typical Day (b) Power spectrum densities of the two curves above. The

frequency scale is (5min)−1 = 1/300Hz.

the abscissa 101 and 102. An example of intermittency computed

Fig. 7.5. Daily values of the I index computed for the Aberdeen station during year

2000
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for the Aberdeen station is shown in Figure (7.5). It can be seen

that such a feature takes values in the range [0, 1]. In more detail,

expression (7.2) shows that when the areas under the spectrum of

the true and TD patterns, respectively, are approximately equal,

then I(d) → 0, while when the difference of these areas is large, as

for instance in the example shown in Figure (7.4.b), then I(d) → 1.

7.4 The proposed classification strategy

In section 7.1 it was conjectured that solar radiation daily pat-

terns can be classified into four classes. The consistency of this

hypothesis was preliminary assessed by using an unsupervised

learning approach, carried out on 5 min sampled data recorded

at the Aberdeen station. To this purpose Self-Organized Maps

(SOM) ([53]), implemented in the Matlab c© framework have been

considered. As it is known, a SOM consists of neurons organized

on a regular low-dimensional grid. The SOM can be thought as

a network which is spread to space of input data. The network

training algorithm moves the SOM weight vectors so that they

span across the data such that neighboring neurons on the grid get

similar weight vectors. Training a SOM by using solar radiation

daily patterns recorded during one year, gives a hits map of the

kind shown in Figure (7.6.a). As it is possible to see the SOM

neurons can roughly be clustered into four groups, thus confirming

the conjecture. The map of the corresponding SOM neighbor

weight distances is shown in Figure (7.6.b), which allows to

appreciate significant distances among the four groups of neurons.
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The feature based classification approach proposed in this work

(a) (b)

Fig. 7.6. Unsupervised clustering by using a 10 by 10 Self-Organized Maps (a) SOM

hits (b) SOM neighbor weighted distance.

consists of the following two steps:

1. In the first step daily solar radiation patterns are mapped into

pairs (Ar(d), I(d)) by using expressions (7.1) and (7.2).

2. In the second step the pairs (Ar(d), I(d)) are clustered into the

four described classes by using the fuzzy c-means (fcm) algo-

rithm.

In the next section 7.5 results obtained by using the proposed fea-

ture based strategy and the fcm clustering approach are reported.

Furthermore performances are inter-compared with those obtained

by using a neural network classifier trained to work directly with

row data.
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Fig. 7.7. Clusters obtained by using the fcm algorithm on data set recorded during

year 2000. The centers corresponding to class C1, C2, C3, C4 are indicated with the

symbols ×, ∗,◦, and +, respectively.

7.5 Numerical Results

The application of the fcm algorithm on the features extracted from

the Aberdeen solar radiation daily patterns provide the four clusters

shown in Figure (7.7). Of course, from this it is not evident to what

extent the classification is effective. In order to objectively evaluate

the goodness of the proposed features-based classification strategy,

it was asked a human expert to classify the raw solar daily radia-

tion patterns, who carried out this task on the basis of the patterns

shape, supported, whenever necessary, by other available informa-

tion such as air temperature, relative humidity, rainfall and wind

speed, recorded by the same meteorological station. At the end of

the process, it was possible to compute a confusion matrix assum-

ing classes indicated by the human expert as the target classes and
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classes attributed by the features-based algorithm as output. Such

a confusion matrix and the corresponding ROC curves are shown in

Figure (7.8). The Figure shows that there is a high agreement be-

(a) (b)

Fig. 7.8. Performances of the features-based fcm classifier versus the human expert

classification (a) Confusion Matrix (b) ROC Curve.

tween the proposed features-based classifier and the human expert

classification. In more detail the confusion matrix (Figure (7.8.a))

shows, for instance, that the human expert has indicated a total of

95 patterns as belong to the class C1. Of these 83 were correctly as-

signed by the features-based classifier to the class C1, accounting for

87.4%, while 12, corresponding to the 12.6% have been attributed

to the class C2 and therefore misclassified. Similarly, it is possible to

see that of a total of 120 patterns classified by the human expert as

belonging to the class C2 only 4 were classified by the features-based

classifier as belonging to the class C1, and therefore misclassified.

This means that the discrimination between patterns of the classes
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C1 and C2 works quite well. Discrimination between patterns be-

longing to the classes C3 and C4 also works quite well since of a

total of 58 pattern classified by the human expert as belonging to

class C3, only 2 were assigned by the features-based classifier to the

class C4 and vice-versa, of a total of 92 pattern assigned by the hu-

man expert to the class C4, only 11 were classified as belonging to

the class C3. A fortiori, the misclassification between classes which

are well distinct in the heuristic description, such as C1 and C3, is

very limited: none of the patterns classified by the human expert

as belonging to C1 were misclassified as belonging to classes C3 and

only 2 patterns assigned by the human expert to class C3, where

classified as belonging to C1. In overall percentages it is possible

to say that 87.4%, 90.0%, 93.1% and 87.0% of events attributed

by the human expert to the classes C1, C2, C3 and C4 respectively

have been classified according with the human expert classification.

Patterns belonging to class C3 are those best classified among the

four considered classes, as confirmed by the ROC curves shown in

Figure (7.8.b). In a very summary, 89% of the total number of solar

radiation patterns recorded during the testing year were correctly

classified by the proposed features-based classifier.

To further appreciate the convenience of using this classifier, com-

pared with a classifier which works directly with the high dimen-

sional row data, a neural network classifier was trained by using

as input the raw high dimensional patterns (each consisting of 288

samples) and as target the four target classes recognized by the hu-

man expert. The performance of this classifier are shown in Figure

(7.9).

In more detail, from the confusion matrix (Figure (7.9.a)) it is pos-
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sible to see that the neural network classifier was able to correctly

classify about 65.3%, 82.5%, 81.4% and 70.7% of events attributed

by the human expert as belonging to the classes C1, C2, C3 and

C4 respectively. Thus, the percentage of patterns correctly classi-

fied, compared with the ones shown in Figure (7.8.a), demonstrate

that the proposed features-based classifier outperform the neural

network classifier operating directly on high dimension row data.

This conclusion agrees with [54] who observed that in general, in

time series clustering applications, it is not desirable to work di-

rectly with raw data. Furthermore, is to be stressed that even for

the neural network classifier, class C3 is that best recognized.

(a) (b)

Fig. 7.9. Performances of a neural network classifier trained by using the original

high dimensional solar radiation daily patters and classes recognized by an human

expert (a) Confusion Matrix (b) ROC Curves.
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7.6 Conclusions

In this work the problem of classify daily solar radiation patterns

into four classes by using a features-based classifier, making use of

the fuzzy c-means algorithm has been addressed. Results, objec-

tively evaluated in comparison with the classification performed by

a human expert, demonstrate that the proposed pair of features al-

low an effective discrimination among similar classes such as C1 and

C2 and C3 and C4. A fortiori, the misclassification between classes

which are well distinct such as C1 and C3 is very limited. Further-

more the proposed classifier significantly outperforms a classifier

trained to work on raw data, thus justifying the computation effort

needed to extract the features. Classification of solar radiation daily

patterns is a preliminary step for analysis and modeling purposes

of solar radiation time series. Indeed, once daily patterns have been

correctly classified, a time series of classes can be associated to the

original one, thus allowing the application of alternative analysis

and modeling techniques.



8

Clustering Daily Wind Speed Time

Series

This chapter deals with the problem of clustering daily wind speed

time series based on two features referred to as Wr and H, repre-

senting a measure of the relative average wind speed and the Hurst

exponent, respectively. Daily values of the pairs (Wr, H) are first

classified by means of the fuzzy c-means unsupervised clustering al-

gorithm and then results are used to train a supervised MLP neural

network classifier. Further, the problem of predicting 1-step ahead

the class of daily wind speed is addressed by introducing NAR

sigmoidal neural models into the classification process. The per-

formance of the prediction model is finally assessed. The approach

described in this chapter was proposed in [55].

8.1 Introduction

As I have extensively discussed in Chap. 6, hourly average wind

speed can be predicted with some accuracy only at very short time

horizon. For this reason, the availability of alternative analysis and

modeling techniques, such as those that refer to data mining and
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machine learning, may play a significant role. Indeed to alleviate

the problem of predicting future values assumed by a given time

series, one might think to associate a series of classes and then

trying to predict the class. Of course the prediction problem will

be as difficult as higher is the number of considered classes. Time

series clustering approaches can be organized into three major cat-

egories, depending upon whether they work directly with raw data,

indirectly with features extracted from the raw data, or indirectly

with models built from the raw data. A survey about time series

clustering approaches can be found in [54], while others most re-

cent references can be found in [56]. In the specific field of wind

speed time series, some recent papers dealing with application of

such a kind of techniques have been proposed for instance by [32],

who suggested to classifying wind speed time series according to

their intensity and consider the Markov chains for their modeling.

Decision trees based on if − then rules, which are one of the most

popular methods used in machine learning for classification, have

been proposed by [57] with the aim of implementing short term

wind speed prediction models. In related renewable energy source

fields, such as solar radiation time series, classification of daily time

series has been proposed by [50]. Data mining techniques and clus-

tering approaches to classify wind speed data in different cities of

Turkey have been adopted by [58].

This chapter proposes to clustering daily wind speed time series

based on two features which will be introduced in section 8.2.

The data set considered for the present work was taken from the

Western Wind Resource Dataset, modeled in the framework of the
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Western Wind and Solar Integration Study, freely downloaded from

http://wind.nrel.gov/.

8.2 Two features of daily wind speed time series

The purpose of this section is to introduce two features of daily

wind speed time series, in order to be able to perform their classi-

fication. Such features were chosen based on the idea that one of

the two indices should represent a normalized measure of the daily

average wind speed while the other should represent the correlation

properties. The two features, referred to as Wr and H respectively

are formally defined as described below.

8.3 The Wr index

As it is known, one of the main features of wind speed is its irreg-

ular fluctuating nature which occurs at any time scale [59]. Thus,

for instance, 10 m average samples fluctuate with respect to the

corresponding hourly average, hourly averages with respect their

daily average and, again, daily averages with respect their weekly

or monthly averages. As an example, fluctuations of daily average

wind speed with respect to the corresponding monthly averages

are shown in Figure (8.1). which suggests that the monthly average

could be considered, among other possible choices, as a normalizing

factor for daily average wind speed. Thus the Wr index, formally

defined as in expression (8.1)
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Fig. 8.1. Daily and monthly average wind speed

Wr(d) =
W̄(d)

W̄m

d = 1, ..., gg(m),

(8.1)

where:

• W̄(d) is the daily average wind speed at the generic day d,

• W̄m is the monthly average wind speed at the month m to which

d belongs.

• gg(m) is the number of days in the mth month.

Thus, the Wr index, expresses a relative measure of the daily wind

speed intensity. An example of Wr daily time series is shown in

Figure (8.2).
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Fig. 8.2. Wr index computed during one year at the station ID2257.

8.4 The Hurst exponent of daily wind speed

In order to represent the correlation properties of daily wind speed

time series it was decided to consider the Hurst exponent, H, which

can be efficiently computed by several approaches [10]. In partic-

ular in this work the Hurst exponent was estimated by using the

technique, proposed by Geweke and Porter-Hudak (GPH), as de-

scribed in the referred paper. The Hurst exponent computed for the

average 10-m daily wind speed time series recorded at the station

ID2257, which means over time series of 144 values each, is shown

in Figure (8.3).

8.5 Wind speed time series classification

The classification approach described in this section consists of the

two following steps:
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Fig. 8.3. H index computed during one year at the station ID2257.

1. Daily wind speed time series, are mapped into pairs (Wr(d),

H(d)).

2. The pairs (Wr(d), H(d)) are clustered into a pre-defined num-

ber of classes by using the fuzzy c-means unsupervised (fcm)

algorithm [60].

As regarding the choice of the number of classes, a parameter re-

quired to run the fcm algorithm, classification into two and three

clusters have been taken into account, bearing in mind that in view

of predicting the class, the problem is as much difficult as higher

is the number of considered classes. Clustering examples of (Wr(d),

H(d)) pairs into 2 and 3 classes are shown in Figure (8.4). As it is

possible to see, when clustering into 2 classes (see Figure (8.4.a)),

patterns essentially distributed following the Wr index, which thus

plays the role of dominant feature. Roughly speaking it is possi-

ble to say that in a 2-class framework, class C1 is represented by
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(a) 2 classes

(b) 3 classes

Fig. 8.4. fcm classification of daily wind speed time series.

daily patterns featured by Wr ≤ 1, while, of course, class C2 by

Wr > 1. For the 3-class framework (see Figure (8.4.b)), the fcm al-
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gorithm takes into account the H index. Roughly speaking in this

framework, class C1 is featured by Wr ≤ 1, class C3 is featured by

Wr > 1 and H < 2 while the remaining patterns belong to class

C2. For practical reasons, in this work, once a representative set of

patterns was classified by using the unsupervised fcm algorithm,

a supervised MLP classifier was trained to classify new incoming

patterns.

8.6 Some applications

Once classes have been attributed to daily wind speed time series,

some useful statistics can be carried out, such as computing the per-

manence in days in each class or computing the weight of each class

during a predefined time interval (usually one year). For instance,

Figure (8.5.a) shows that at the station ID2255, during 2004, about

130 daily patterns persists at least 2 days in class C1, but less than

20 persist at least 5 days. Similarly, from Figure (8.5.b) it is possi-

ble to see that in a 3-class framework about 50 patterns persist in

class C3 at least 2 days, but less than 20 persist at least 3 days. It is

trivial to observe that indicating as ni(p) the number of patterns in

a year that persist at least p days and as nc the number of classes,

it is possible to compute the weight of each class Wi as indicated

in expression (8.2).

Wi% =
ni(1)

∑nc

i=1
ni(1)

100 (8.2)

Thus, for instance, evaluating from Figure (8.5.a) that n1(1) = 195

and n2(1) = 170 the weight of class C1 and C2 at the station ID2257,

in a 2-class framework are W1% = 53 and W1% = 47, respectively.
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(a)

(b)

Fig. 8.5. Permanence (in days) in the same class at the station ID2257. (a) 2-class

framework (b) 3-class framework
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8.7 Predicting the class

In this section the problem of predicting 1-day ahead the class of

daily wind speed time series, will be addressed. The strategy con-

sists of the following two steps:

1. identify prediction models for Wr(d) and H(d), in order to com-

pute the corresponding predicted pairs (Ŵr(d) and Ĥ(d)),

2. use a supervised classifier to associate a class to the predicted

pairs (Ŵr(d), Ĥ(d)).

8.8 Identify NAR models for Wr(d) and H(d)

Dealing with step 1, NAR models, expressed by 4.1, were taken

into account. Of course, in the considered application the discrete

time t is evaluated in days while the model oreder d was evaluated

by using the mutual information, as shown in Figure (8.6). As it is

possible to see the mutual information of the individual Wr(d) and

H(d) time series decays very sharply, reaching the lowest level, for

the first time, after 2 or 3 lags. Based on this result the number of

considered delays for the considered NAR model (4.1) can be set

equal to 2 or 3. Nevertheless, in this work, trials were carried out

also by considering a larger number of delays. As concerning the

problem of estimating the non-linear function f in expression (4.1),

sigmoidal neural networks were considered, for all trials shown in

this work. The number of sigmoid was heuristically set, after some

trials, on the order of 15. The available data set was divided, as

usual in good practice, into a training and a testing data set, in

order to avoid polarization of the identified models.
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Fig. 8.6. Mutual Information of Wr and H daily values, respectively.

The time behavior of two independent 1-step ahead neural networks

based NAR models, to predict Wr and H daily values, respectively,

are shown in Figure (8.7). However, it is to bearing in mind that

in the considered application, the predicted pairs Ŵr(d) and Ĥ(d)

are not the final target, since they are the input for a MLP clas-

sifier, which was appropriately trained to associate a class to each

predicted pair. Thus, in the final instance, the model evaluation

must be performed by comparing the class assigned by the fcm

classifier (assumed as target) to the (Wr(d),H(d)) pairs, computed

directly from true time series, and that assigned by the MLP classi-

fier to the corresponding predicted (Ŵr(d),Ĥ(d)) pairs. A strategy

to objectively perform such a comparison and results obtained are

described in the next section 8.9.
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(a) Wr daily values

(b) H daily values

Fig. 8.7. 1-step ahead prediction of Wr and H by using a NAR model.
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8.9 Assessing the performance

The problem of objectively compare a true and a predicted time

series of classes can be performed in several ways. In this work

performance was assessed in terms of True Positive Rate (TPR),

True Negative Rate (TNR), and Confusion Rate (CR). In simple

terms,

• the True Positive Rate (TPR), is the pattern proportion in a

given class which are correctly classified,

• the True Negative Rate (TNR), is the proportion of patterns

which are correctly identified as not belonging to a given class.

• the Confusion Rate (CR), is the fraction of samples misclassified,

considering the overall number of class.

In literature the TPR and the TNR are also referred to as Sensi-

tivity and Specificity, so these terms will be interchangeable used

in the rest of this work. It is worth nothing that a good predictor

would be characterized by values of Sensitivity and Specificity both

close to 1, while small values of CR (close to zero) are best. For the

2-class framework, the TPR and CR indices computed for the sta-

tion ID2257 by using NAR models, with model order in the range

d ∈ [2, 30], are shown in Figure (8.8). The TNR rate is not reported

since for a 2-class framework relations (8.3) hold

TNR(1) =TPR(2)

TNR(2) =TPR(1)
(8.3)

where the integer number in brackets represents the class. The hor-

izontal lines in Figure (8.8) refer to the TPR, and CR indices com-

puted for the persistent model which, of course, are not affected by
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(a)

(b)

Fig. 8.8. TPR and CR for the station 2257 computed by NAR models with order

ranging from 2 to 30(a) TPR (b) CR
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the model order d. Figure (8.8.a) shows that for the 2-class frame-

work it is always TPR(1) ≥ 0.7 and TPR(2) ≥ 0.5, respectively.

Furthermore it seems that the TPR(1) could improve, reaching a

maximum close to 0.8, for model order of about d = 13, but unfortu-

nately an equivalent improvement is not observed for the TPR(2)

index, which slightly oscillates around the value 0.57. The over-

all performance are well represented by the CR rate (see Figure

(8.8.b)) which seems to oscillate around the level of 0.36, obtained

for d = 2. This is also the level reached by the persistent model.

Thus, as expected, there is not a real convenience, in terms of model

performance, in choosing NAR models of order higher than d = 2.

Furthermore, it is possible to conclude that there is non any conve-

nience in using a NAR models with respect to the simple persistent

model. Indeed for d = 2 the two kinds of models exhibits almost

identical performances. Nevertheless, results show that 1-day ahead

prediction of the wind speed class could be helpful, in a 2-class

framework, since the overall confusion rate is about 0.36.

The performances for the 3-class framework obtained for station

ID2257 are reported in Figure (8.9). In short, it seems that 0.3 ≤

TPR ≤ 0.5 and 0.6 ≤ TNR ≤ 0.8 for all classes, resulting in

a Confusion Rate (see Figure (8.9.c) larger than 0.6 for all NAR

model orders. Furthermore, in this framework, the persistent model

slightly outperform the NAR model since exhibits a level of CR of

about 0.54. However, it is possible to conclude that in a 3-class

framework, 1-day ahead of wind speed class prediction is not reli-

able nor with the NAR model nor with the persistent model.

In order to see, if conclusions reached for the station ID2257 can be

extended, the data set of 3 others stations, referred to as ID2300,
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(a)

(b)

(c)

Fig. 8.9. Sensitivity and Specificity rates for station 3357 for model order ranging

from 2 to 30 (a) TPR (b) TNR (c) CR
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ID6435 and ID9400 are reported in this work. The peculiarity of

stations ID6435 and ID9400of with respect to stations ID2257 and

ID2300 is that they are installed at 1782 m and 2201 m above sea

level, respectively, while station ID2257 and ID2300 are offshore.

For simplicity, here only the CR are (see Figure (8.10) and limited

to the 2-class framework. Results shows that, in the 2-class frame-

Fig. 8.10. Confusion rate at different recording stations.

work, the overall CR is better than 0.38, for all considered stations,

provided to use NAR low order models (i.e. d = 2). However, similar

performances could be obtained also by using the simple persistent

model.
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8.10 Conclusions

In this chapter, a feature based strategy to classify daily wind speed

time series, based on a couple of indices referred to as Wr and H,

has been proposed. The classification allows to compute some useful

statistical property such as the permanence of patterns in a given

class. The problem of predicting 1-step ahead the class of daily

wind speed time series has also been addressed by using NAR neu-

ral network models, with sigmoidal activation functions. Results

shows that limited to a 2-class framework, there could be some

benefit in using the proposed 1-day ahead class prediction model.

Nevertheless, in principle, the 1-day ahead prediction of the wind

speed class by means of NAR models does not provide outstanding

results, CR being a little lower than the 40% only for the clas-

sification into two classes. However, it must be said that others

approaches are possible to perform the class prediction, that were

not taken into account in this work and could represent one of the

future development of the Thesis.
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Concluding remarks

In this work the problem of analyze and model solar radiation and

wind speed time series was addressed. This issues, as well as being

a fascinating research topic, may have practical consequences in the

problem of prediction in the short term, which is of great interest

for managers of power plants. The studied prediction models,

in agreement with the initial choice, are based on information

that can be gathered from time series recorded at the site of

interest only, thus excluding in the modeling process any other

information, including the fact that, as discussed in Chap. 1, the

processes involved are spatial distributed. This radical choice of

field was carried out since the main aim of the studied prediction

models, is that of being agile, in contrast with the prediction

models of type NWP (Numerical Weather Prediction), which are

undoubtedly more accurate, but complex and thus not appropriate

for several reasons. On the other hand a huge effort has been

devoted in literature to prediction models based on time series

only. Although such a considerable interest, it seems that contours

of the considered prediction problems are not fully understood
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and often the authors consider that processes underlying solar

radiation and wind speed as simply not linear.

For this reason, the first part of this Thesis was devoted to

perform a deeply analysis of solar radiation and wind speed time

series, not limited to the traditional stationary, spectral and

autocorrelation analysis. Indeed analysis carried out in chapters

2 and 3, was addressed to clarify several concerns of considered

time series, including the hypothesis that the considered processes

could be chaotic. However, the interpretation of chaos analysis

results is at the present controversial. Indeed, unless analysis

point out the presence of positive Lyapunov exponents, in both

wind speed and solar radiation time series, it was not possible to

determine a reasonable low dimension for the supposed chaotic

attractors. A better understanding of these issues could lead

to better prediction results than those presented in this work.

Nevertheless, the modeling technique adopted (i.e. the Embedding

Phase Space representation) is the one most widely used for

modeling of complex systems and therefore considered appropriate

for the purposes of this work. Furthermore identification of model

parameters was performed with both Neuro-Fuzzy and Artificial

Neural Networks which are among the most powerful nonlinear

identification techniques available. The modeling work allowed the

estimation, on an experimental basis, of bounds for the prediction

error, in terms of mae and rmse, in the whole explored horizon.

In a nutshell (see Chapters 5 and 6 for details) it can be said that

while the proposed models are effective for the prediction of solar

radiation throughout the time horizon explored h ∈ [1, 24], are

less effective for the prediction of wind speed. Indeed for wind
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speed the studied models are reliable for short time horizon (3 to

5 hours), only. Furthermore in this case their performance slightly

outperforms the simple persistent model.

Another result of this work is the formulation of the prediction

problem, at daily scale, in terms of class prediction which provides

new modeling opportunities, that at the present are almost

unexplored. Indeed in the Thesis only classification with the

fcm algorithm and class prediction by using NAR models was

carried out, leaving unexplored a plethora of techniques, which

currently are referred to as machine learning techniques, which

may provide some further benefits. To explore more deeply these

new opportunities could be another intriguing future developments

of this work.

As mentioned above, the major limitations of the work carried out

was undoubtedly that the modeling was performed by considering

time series recorded at individual recording stations, while the

physical processes underling the formation of wind speed and

solar radiation are distributed processes. This limitation is often

not overcoming for the lack of recording stations in a given area.

However, nowadays since large distributed plants are available,

it could be taken in to account the possibility to involve, in

the modeling process, correlation among time series recorded at

different stations. To explore these aspects is leaved as another of

the future developments of the undertaken research.
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