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Introduction

The work of this thesis is devoted to the elliptic solvers in arbitrary regions

on a regular Cartesian grid. In particular, the thesis concerns the analysis

and the application to Gas Dynamics, of the Coco-Russo method [9, 10],

which represents a generalization of the finite-difference method for the el-

liptic equations on arbitrary domains.

We are interested in the numerical study of elliptic equations in arbitrary

domains because they arise in a wide variety of applications, such as diffu-

sion phenomena, fluid dynamics, charge transport in semiconductors, crystal

growth, electromagnetism.

Depending on the elliptic problem we want to solve it is possible to impose

several kind of boundary conditions (Dirichlet, Neumann, mixed). Because

of the arbitrariness of the domain, if it is immersed in a grid, the border may

not be aligned with the grid itself. Special treatment is therefore required to

impose at discrete level the boundary conditions and in this regard several

techniques have been developed.

In the Finite Element Methods (FEM) [25], discretization is carried out

through the creation of a grid composed of finite elements of coded form

(triangles and quadrilaterals for 2D domains, tetrahedra and hexahedrons

for 3D domains) to fit better the boundary. However, this method has disad-

vantages. In the case in which we consider moving boundary, a regeneration

of the grid is necessary in each temporal phase, which makes the method

expensive. For this reason a Cartesian grid method is preferred along with a

10
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level-set approach [23, 27] to keep track of the boundary in each time step.

There are methods that make use of irregular Cartesian grids. For example,

in the Shortley-Weller discretization [30], the authors discretize the Laplacian

operator with the usual central difference, which makes use of a symmetrical

stencil, for the internal points away from the border. For internal points

near the boundary, the symmetrical stencil is replaced by a non-symmetrical

stencil. In this case the boundary conditions are imposed on the points

coming from the intersection of the grid with the boundary of the domain.

The Shortley-Weller method produces second-order accurate solutions for

the Dirichlet problem, but it has a limit. Indeed, it cannot be immediately

applied in presence of Neumann boundary conditions. In [13] the author

develop a second-order method for the variable coefficient Poisson equation

on an irregular domain with a simple discretization that leads a symmetric

matrix. The value at the ghost nodes is assigned by linear extrapolation.

This method, however, is valid only for Dirichlet problems.

We present the method in [9, 10], in which the authors, who use a moving

boundary, propose a technique that makes use of a regular Cartesian grid, in

order to overcome the limits present in [25]. Unlike the method of Shortley-

Weller, to maintain the symmetry of the stencil even for internal points close

to the boundary, they use extra grid points, called ghost points because they

do not belong to the domain but are involved in the discretization of the

elliptic equation in question. For each ghost point we consider its projection

f on the border of the domain. It is precisely in the point f that we impose

the boundary conditions through a polynomial interpolation procedure [22],

whose interpolation error can influence the accuracy order of the method in

the case in which we impose mixed boundary conditions. Various numerical

tests confirm the convergence of the numerical method in one, two and three

dimensional cases. Hence the idea of applying the method to the numerical

schemes of Gas Dynamics to solve Euler equations in domains with obstacles

with complex geometries.

Already, in [8] the authors construct a explicit finite-difference shock-capturing

scheme for the numerical solution of the Euler equation of gas dynamics on

domain with circular obstacle. The method is based on discretizing the Euler

equation on a regular Cartesian grid. However, this method is affected by the

spatial restriction imposed by the CFL condition to guarantee the stability

of the numerical method.

In [3] the authors propose a family of simple second order accurate semi-
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implicit schemes for the numerical solution of Euler equations of gas dynam-

ics on bidimensional domains in absence of obstacles. These methods are

(linearly) implicit in the acoustic waves and thus they eliminate the acous-

tic CFL restriction on the time step. The idea leading to the construction

of these semi-implicit schemes is that in the low Mach number regimes the

acoustic waves carry a negligible amount of energy and thus have a negligi-

ble influence on the solution, but impose a very restrictive CFL condition if

one uses an explicit scheme to solve them. A implicit scheme to solve the

system would be more difficult to solve and would have the drawback to intro-

duce an excessive dissipation on the slow waves. Therefore, a semi-implicit

scheme avoids the CFL condition for the acoustic waves and maintains a

good accuracy on the more important features of the flow. In this method

the differential operators in space relative to convective or material fluxes are

explicitely discretized with Lax-Friedrichs fluxes and the operators relative

to acoustic waves are discretized implicitely with central differences.

These two works [3, 8] have suggested us the construction of a semi-implicit

method for Euler equations on bidimensional domain in presence of obstacles

with complex geometries, eliminating the restriction on the time step present

in [8]. We have also provided an alternative technique to the iterative method

proposed in [8], which allows us to impose the boundary conditions of the

obstacle by solving a linear system.

As already mentioned, in both applications (elliptic problems and Gas Dy-

namics) the spatial discretization is performed on a uniform Cartesian grid,

while the boundaries can have an arbitrary shape.

The thesis is therefore divided into two parts. In the first part (Chapter

1, Chapter 2 and Chapter 3) there is an analysis of the convergence of the

method applied to the Poisson equation, while in the second part (Chapter 4

and Chapter 5) the method is applied at the Semi-Implicit schemes for Gas

dynamics on domains with obstacles.

The structure of the thesis is as follows.

Chapter 1 is a description of the Coco-Russo method in one, two and three

spatial dimensions. To impose the boundary conditions on the projection of

the Ghost points we use the interpolation procedures, which can be linear or
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quadratic. We have impose several kinds of boundary conditions: Dirichlet

boundary conditions or mixed boundary conditions. The interpolation error

is computed in all cases. At the end of this first chapter, we also presented

how it is possible to symmetrize the discretization matrix and how the sym-

metrized matrix can somehow influence the stability of the numerical method.

In Chapter 2 we present the numerical results both for the Dirichlet problem

and for the mixed problem, whose aim is to highlight the stability and conver-

gence characteristics of the numerical method. For each problem (Dirichlet

or mixed) were compared the numerical results obtained by performing linear

interpolations and quadratic interpolations to impose the boundary condi-

tions. Therefore, several features are studied with different norms (L1, L2

and L∞): the asymptotic behavior of the norm of the inverse matrix of the

method, of its spectral radius and of the inverse of the Schur complement

of the matrix to highlight the stability characteristics of the Coco-Russo

method, the asymptotic behavior of the consistency error τh and of the error

eh to highlight the characteristics of consistency and convergence of the nu-

merical method, respectively. For Dirichlet problems the Coco-Russo method

is second-order accurate. Depending on the discretization of the boundary

conditions for mixed problems (linear or quadratic interpolation) the Coco-

Russo method can be first or second-order accurate.

In 2D we have chosen two different arbitrary domains: a square, that repre-

sents a simple extension of the one-dimensional case and a circular domain.

In 3D we have chosen only a spherical domain, that it is an extension of the

2D circular domain.

The Chapter 3 consists in a theoretical convergence analysis of the Coco-

Russo method. The consistency error are computed both for Dirichlet prob-

lems and mixed problems with linear and quadratic interpolations in one,

two and three spatial dimensions. In one-dimensional space we present two

convergence proofs of the numerical method for the Dirichlet problem, one

of which makes use of M-matrices, which confirm the second order accu-

racy, and a proof which makes use of Toeplitz matrices which confirms the

stability of the Coco-Russo method in ∞-norm, already highlighted by the

numerical results presented in Chapter 2. We have proved instead that in 2D

the discretization matrix is not a M-matrix as in the one-dimensional case.

Thus the stability and convergence of the Coco-Russo method in 2D is still
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an open problem.

Chapter 4 is devoted to a review on numerical methods for hyperbolic

systems of conservation laws. In particular, we stressed the importance of

constructing non-oscillatory semi-discrete schemes for Isentropic and Com-

pressible Gas Dynamics. At the end of this chapter we also present an appli-

cation of the Coco-Russo method for the construction of a finite-difference

semi-discrete scheme for Euler equations on a two-dimensional domain with

obstacle [8]. However, these schemes are explicit and therefore suffer from

the restriction on the time step imposed by the CFL condition to guarantee

the stability of the numerical method.

In Chapter 5 we present the idea of [3] for the construction of Semi-Implicit

Methods for the Gas Dynamics that do not suffer the usual CFL stability

restriction of explicit schemes. Various numerical tests present in [6, 8, 20]

have been presented to highlight the characteristics of the method. Further-

more, we have implemented a semi-implicit version of the method proposed

in [8] and we presented numerical results first considering the simplest case

of a square obstacle and then the more complex case of a circular obstacle.



1
Coco-Russo method for the Poisson Equation

In this Chapter we deal with the description of the Coco-Russo method in ar-

bitrary regions on a regular Cartesian grid in one, two and three-dimensional

cases. As we will see, this method uses a polynomial interpolation technique

to impose the boundary conditions. For each problem (Dirichlet or mixed) we

describe the Coco-Russo method both by performing the linear interpolation

procedure and by performing the quadratic interpolation procedure, calcu-

lating the interpolation errors, which will help us, as we will see in Chapter

3, to evaluate the consistency of the numerical method.

One of the advantages of using Cartesian grids lies in the fact that second-

order accuracy can be achieved in a simple way. In the case of a moving

domain is very useful to use regular Cartesian grids. Indeed, for example,

in the Finite Element Methods the discretization is carried out through the

creation of a grid composed of finite elements of coded form to fit better

the boundary. But, in presence of moving boundaries, a grid regeneration

is needed at each temporal phase, which makes the method expensive. For

this reason a Cartesian grid method is preferred together with a level-set

approach to keep track of the boundary at each time step. However, in this

work we have considered the case of a fixed domain.

We introduce the theory for the elliptic operators [15].

Elliptic operators

Let L be a linear real second order partial differential operator defined on a

bounded and connected open subset Ω of Rd (d = 1, 2, . . .) with boundary

15
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Γ = ∂Ω. For any u ∈ C2(Ω), we define

Lu(x) = −
d
∑

i,j=1

aij(x)
∂2u

∂xi∂xj

(x) +
d
∑

i=1

ai(x)
∂u

∂xi

(x) + a(x)u(x), for all x ∈ Ω, (1.1)

for some real-valued functions aij (1 ≤ i, j ≤ d), ai (1 ≤ i ≤ d) and a defined

over Ω.

In the case in which L is the elliptic operator: Lu(x) = −∆u(x), and thus

in (1.1) we assume: aij(x) = 0 (i 6= j), ai(x) = 0 and a(x) = 0.

To guarantee the uniqueness of the solution of the Dirichlet elliptic prob-

lems






Lu(x) = f(x) x ∈ Ω,

u(x) = g(x) x ∈ Γ
,

with f and g assigned functions over Ω, it is necessary that L satisfies the

maximum principle: given any φ ∈ C0(Ω̄)∩C2(Ω) with Lφ ≤ 0, for all x ∈ Ω,

it follows that

max
{

φ(x);x ∈ Ω̄
}

≤ max {0,max {φ(x);x ∈ Γ}} ,

and the solution, if it exists, is the function φ ∈ C0(Γ) ∩ C2(Ω) given by

φ(x) =
∫

Ω
G(x, ξ)f(ξ)dξ +

∫

Γ
G∂(x, ξ)g(ξ)dσξ, x ∈ Ω̄,

where G e G∂ are the associated Green’s functions.

There is a discrete analogue of the maximum principle, known as the dis-

crete maximum principle, which ensures the stability of the finite-difference

method for the Dirichlet elliptic problems on non-arbitrary two-dimensional

domains. For more details see [21].

We present now the Coco-Russo method suitable for arbitrary domains.

Coco-Russo method

Let d ≥ 1 an integer, the prototype of elliptic equations is the Poisson

equation:

−∆u = f in Ω ⊂ R
d,
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where u : Ω −→ R and f : Ω −→ R are the unknown function and the source

respectively, and in which we can impose several boundary conditions:







−∆u = f in Ω

Bu = g in Γ
, (1.2)

where g : Γ −→ R is an assigned function and B is an operator that depends

on the boundary conditions we impose.

We are interested in studying the numerical solution uh of the problem

(1.2), applying the Coco-Russo method. The Coco-Russo method is a finite-

difference method modified in the case of an arbitrary domain. We describe

the numerical method below.

We discretize the domain Ω with a regular grid consisting of the point pi1i2...id

called grid points and characterized by a spatial step h along each axis of Rd.

We assume that Ω ⊂ [0, 1]d. The following figure (Figure 1.1) shows the

discretization of a domain Ω in two spatial dimensions. The black points are

the grid points.

Figure 1.1: Discretization of a domain Ω ⊂ [0, 1]2, choosing h = 0.1250. The

grid consisting of the point pij = (xi, yj) and h = xi+1 − xi = yj+1 − yj, for

all i, j
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Each grid point inside the domain Ω is called internal point. For each internal

points we consider its 2d neighbors. For example in the Figure 1.1 the inter-

nal point pij = (xi, yj) has 4 neighbors: pi−1j = (xi−1, yj), pi+1j = (xi+1, yj),

pij−1 = (xi, yj−1) and pij+1 = (xi, yj+1). Each internal point pij = (xi, yj)

with its neighbors consitutes a 5-point stencil. In general in d spatial dimen-

sion we have 2d+ 1-point stencil. The following figure shows, in the left the

3-point stencil (in one spatial dimension) centered in the point pi, and in the

right the 5-point stencil (in two spatial dimension) centered in the point pij.

If a neighbor does not belong to the domain Ω it is called ghost point. Thus a

ghost point is a grid point that it belongs to a stencil centered in an internal

point. We highlight in previous figure the internal and the ghost points. The

black dots are the internal points and the red dots are the ghost points. We

call Ωi
h the set of internal points and Ωg

h the set of ghost points.

To discretize the problem (1.2) we proceed in two different ways.

In the internal points we use the usual finite difference method that appro-

ximates the second derivative of the solution u considering the Taylor Series

expansion. The approximation of the Laplacian operator (second derivative

of u) in pi1,...,id
involves the value of the numerical solution in the nodes that

they belong to the stencil centered in pi1,...,id
.

We use the notation ui1,...,id
and fi1,...,id

to denote the numeric value of the

functions u and f calculated at the grid point pi1,...,id
.
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If we consider only the equations for the internal points, we obtain a lin-

ear system of |Ωi
h| equations and |Ωi

h| + |Ωg
h| unknowns.

To close the linear system we must write |Ωg
h| equations for the ghost points.

For each ghost point g we consider its projection f on the border and a

polynomial interpolation procedure at the node g and at its neighbors that

depending on the accuracy we want to obtain and also on the dimension d.

We will describe the problem of polynomial interpolation in more detail in

the following chapters.

The following figure (Figure 1.2) shows the projection of each ghost point on

the border; in this case the domain is a circumference (d = 2).

Figure 1.2: Projection of the ghost point g on the border (in 2D)

We call Ωf
h the set of points f which are the projections of the ghost points

g along the border of the domain Ω. In particular, we call ΩfD

h the set of

points f in which we impose Dirichlet conditions and we call ΩfN

h the set of

points f in which we impose Neumann conditions.

Proceeding as described we obtain the discretization of the problem (1.2):






−∆huh = fh in Ωi
h

Bhuh = gh in Ωf
h

,

or in compact form Ahuh = Fh.

The aim is to prove that the numerical method is consistent, stable and con-
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vergent. In this regard, we recall the following result:

Given a linear problem with initial conditions, well-posed; a necessary and

sufficient condition so that a consistent finite difference problem is convergent

is that it is stable.
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1.1 Coco-Russo method in 1D

In order to study some properties of the discretization we start to analyze

the easier 1D problem.

The elliptic problem in 1D is:
{

−uxx = f in ]a, b[⊂ [0, 1]

Bu = g in Γ
. (1.3)

1.1.1 Dirichlet boundary conditions

We solve numerically the problem (1.3) imposing Dirichlet boundary condi-

tions. The problem becomes:














−uxx = f in ]a, b[

u(a) = ūa

u(b) = ūb

. (1.4)

Discretization of the domain

First, we discretize the domain [a,b] ⊂ [0, 1]. We discretize the interval [0, 1]

with n + 1 grid points; we call x0, x1, . . . , xn the grid points and h = 1
n

the

spatial step. We place the bottom extremity a between x0 and x1. We can

choose to place the upper extremity b between xn−1 and xn or fix it equal to

1 = xn. In the first case we have two ghost points x0 and xn. In the second

case we have only a ghost point x0, because b is a grid point. The following

figure (Figure 1.3) shows the discretization of the domain [0, 1] and hence

the discretization of the domain [a,b] in the case in which b is a grid point.

Figure 1.3: Discretization of the domain [a,b] with n = 5: the black dots

are the internal points, the red dot is the only ghost point. We impose the

Dirichlet boundary conditions in the blue dots a and b=x5=1
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Discretization of the problem

Now, we discretize the problem (1.4), starting with the case in which b is a

grid point.

In the internal points we use the finite-difference approximation for −uxx

using the 3-point stencil:

−uxx(xi) ≈ −ui−1 − 2ui + ui+1

h2
, i = 1, . . . , n− 1, (1.5)

where ui indicates the value that the numerical solution assumes at the point

xi. In this way we obtain a linear system of n− 1 equations and n unknowns

u0, u1, . . . , un−1 (in xn we know the exact solution u(xn) = ūb). To close the

system we impose the Dirichlet boundary condition in the point a.

Discretization of boundary conditions Since the point a isn’t a grid

point we perform a linear interpolation procedure at the nodes x0 and x1

or a quadratic interpolation procedure at the nodes x0, x1 and x2 and we

impose that in the point a the numerical solution (obtained through the linear

interpolation procedure or the quadratic interpolation procedure) coincides

with exact solution.

Second order accuracy on the border

Linear interpolation

Figure 1.4: Given the two red dots, the blue

line is the linear interpolant between the two

dots

The linear interpolation is

a polynomial interpolation

procedure in the case in

which the interpolating nodes

are two. If the two known

data points are (x1, y1),

(x2, y2), the linear inter-

polant is the straight line

passing through these points.

Another way to obtain the

formula of linear interpola-

tion, apart from the method

that consider the straight
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line through the two points,

is the Lagrange interpola-

tion procedure to approxi-

mate the value that assumes a given function y = y(x) in a generic node

x ∈]x1, x2[:

y = y1
x− x2

x1 − x2

+ y2
x− x1

x2 − x1

.

Applying the previous formula to our case (we want approximate the value

that assumes the function u at the point a; we can observe the position of

the nodes in the Figure 1.3), we have:

u(a) ≈ a − x1

x0 − x1

u0 +
a − x0

x1 − x0

u1 =
x1 − a

h
u0 +

a − x0

h
u1

= θau0 + (1 − θa)u1, (1.6)

where 0 < θa = x1−a
h

< 1.

The formula (1.6) represents the formula of the linear interpolation at the

nodes x0 and x1, to approximate the value that the function u assumes at

the point a.

Linear interpolation error

If the function u to be interpolated admits at least derivative of order two

(u ∈ C2([x0, x1])), the error that is made in linear interpolation satisfies, for

all x, the following equation:

u(x) = P (x) +
1

2
(x− x0)(x− x1)u

′′

(ξ), (1.7)

where ξ ∈ [min{x0, x1, x},max{x0, x1, x}] and P (x) is the interpolation poly-

nomial.

In particular on point a the formula (1.7) becomes:

u(a) = P (a) +
1

2
(1 − θa)(−θa)h

2u
′′

(ξ).

Therefore, the error E = −1
2
(1 − θa)θah

2u
′′

(ξ) ∼ O(h2).
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The numerical problem of the problem (1.4), in the case we impose the

Dirichlet boundary condition through a linear interpolation procedure, is:


















θau0 + (1 − θa)u1 = ūa

−ui−1−2ui+ui+1

h2 = fi i = 1, . . . , n− 1

u(b) = u(xn) = ūb

, (1.8)

that in matrix form becomes Ahuh = Fh, where:

Ah =





















θa 1 − θa

− 1
h2

2
h2 − 1

h2

. . . . . . . . .

− 1
h2

2
h2 − 1

h2

− 1
h2

2
h2





















∈ R
n×n

is the matrix of coefficients,

uh =















u0

u1

...

un−1















∈ R
n

is the vector of the unknowns (numerical solution),

Fh =





















ūa

f1

...

...

fn−1 + u(xn)
h2





















∈ R
n

is the vector of the known terms.

Symmetry of the matrix Ah

We can transform the system (1.8) into an equivalent system in which the

matrix Ah is symmetric. To do this we divide the first equation of the system

by −(1 − θa)h
2:

θau0 + (1 − θa)u1 = ūa =⇒ − θa

(1 − θa)h2
u0 − 1

h2
u1 = − ūa

(1 − θa)h2
. (1.9)
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Third order accuracy on the border

Quadratic interpolation

Figure 1.5: Given the three red dots, the blue

line is the quadratic interpolant between the

dots

If we want a third order ac-

curacy on the border, we

use a quadratic interpola-

tion procedure instead of

a linear interpolation proce-

dure. The quadratic inter-

polation is a polynomial in-

terpolation procedure in the

case in which the interpo-

lating nodes are three. If

the three known data points

are (x1, y1), (x2, y2), (x3, y3)

and they are not aligned,

the quadratic interpolant is

the parabola that passes

through these points. To obtain the formula of quadratic interpolation we

consider the Lagrange interpolation procedure:

y = y1
x− x2

x1 − x2

x− x3

x1 − x3

+ y2
x− x1

x2 − x1

x− x3

x2 − x3

+ y3
x− x1

x3 − x1

x− x2

x3 − x2

.

Applying the previous formula to our case (we want approximate the value

that assumes the function u at the point a if we know (x0, u0), (x1, u1),

(x2, u2); we can observe the position of the nodes in the Figure 1.3), we have:

u(a) ≈ 1

2
θa(1 + θa)u0 + (1 − θa)(1 + θa)u1 − 1

2
θa(1 − θa)u2, (1.10)

where 0 < θa = x1−a
h

< 1.

The formula (1.10) represents the formula of the quadratic interpolation

at the nodes x0, x1 and x2, to approximate the value that the function u

assumes in the point a.
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Quadratic interpolation error

If the function u to be interpolated admits at least derivative of order three

(u ∈ C3([x0, x2])), the error that is made in quadratic interpolation satisfies,

for all x, the following equation:

u(x) = P (x) +
1

6
(x− x0)(x− x1)(x− x2)u

′′′

(ξ), (1.11)

where ξ ∈ [min{x0, x1, x2, x},max{x0, x1, x2, x}] and P (x) is the interpola-

tion polynomial.

In particular on point a the formula (1.11) becomes:

u(a) = P (a) +
1

6
(1 − θa)(−θa)(−(1 + θa))h

3u
′′′

(ξ).

Therefore, the error E = 1
6
(1 − θa)(θa)(1 + θa)h

3u
′′′

(ξ) ∼ O(h3).

The numerical problem of the problem (1.4), in the case we impose the Dirich-

let boundary condition through a quadratic interpolation procedure, is:



















θa(1+θa)
2

u0 + (1 − θa)(1 + θa)u1 − θa(1−θa)
2

u2 = ūa

−ui−1−2ui+ui+1

h2 = fi i = 1, . . . , n− 1

u(xn) = ūb

,

(1.12)

and the matrix Ah of the coefficients is:

Ah =





































θa(1+θa)
2

(1 − θa)(1 + θa)
−θa(1−θa)

2

− 1
h2

2
h2 − 1

h2

. . . . . . . . .

− 1
h2

2
h2 − 1

h2

− 1
h2

2
h2





































∈ R
n×n.
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We proceed with the case in which b is not a grid point. The following figure

(Figure 1.6) shows the discretization of the domain [a,b] in this case.

Figure 1.6: Discretization of the domain [a,b] with n = 5: the black dots

are the internal points, the red dots are the two ghost points. We impose the

Dirichlet boundary conditions in the blue dots a and b

We discretize the problem (1.4). In the internal points we use the finite-

difference approximation for −uxx using the 3-point stencil (see formula

(1.5)). In this way we obtain a linear system of n − 1 equations and n + 1

unknowns u0, u1, . . . , un. To close the system we impose the Dirichlet bound-

ary conditions in the points a and b. Since the two points aren’t grid points

we perform a linear interpolation procedure at the nodes x0 and x1 or a

quadratic interpolation procedure at the nodes x0, x1 and x2 and we impose

that in the point a the numerical solution coincides with exact solution and

a linear interpolation procedure at the nodes xn−1 and xn or a quadratic

interpolation procedure at the nodes xn−2, xn−1 and xn and we impose that

in the point b the numerical solution coincides with exact solution.

If we use a linear interpolation procedure, the numerical problem of the prob-

lem (1.4) is:


















θau0 + (1 − θa)u1 = ūa

−ui−1−2ui+ui+1

h2 = fi i = 1, . . . , n− 1

(1 − θb)un−1 + θbun = ūb

, (1.13)

with 0 < θa = x1−a
h
, θb = b−xn−1

h
< 1.

The system (1.13) in matrix form becomes Ahuh = Fh, where:

Ah =





















θa 1 − θa

− 1
h2

2
h2 − 1

h2

. . . . . . . . .

− 1
h2

2
h2 − 1

h2

1 − θb θb





















∈ R
(n+1)×(n+1)
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is the matrix of coefficients,

uh =





















u0

u1

...

un−1

un





















∈ R
n+1

is the vector of the unknowns (numerical solution),

Fh =





















ūa

f1

...

fn−1

ūb





















∈ R
n+1

is the vector of the known terms.

Also in this case it is possible to symmetrize the matrix Ah by applying the

formula (1.9) to both the first and last rows.

We can observe that in this case we have an approximation of the second

order in the internal points and on the border. If we want to obtain an

approximation of the third order on the border we use, to close the linear

system, a quadratic interpolation procedure. The numerical problem of the

problem (1.4), in this case, is:


















θa(1+θa)
2

u0 + (1 − θa)(1 + θa)u1 − θa(1−θa)
2

u2 = ūa

−ui−1−2ui+ui+1

h2 = fi i = 1, . . . , n− 1

− θb(1−θb)
2

un−2 + (1 − θb)(1 + θb)un−1 + θb(1+θb)
2

un = ūb

,

(1.14)

and the matrix Ah of coefficients is:

Ah =































θa(1+θa)
2 (1 − θa)(1 + θa) −θa(1−θa)

2

− 1
h2

2
h2 − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 − 1

h2

−θb(1−θb)
2 (1 − θb)(1 + θb) θb(1+θb)

2































∈ R
(n+1)×(n+1).
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1.1.2 Mixed boundary conditions

Now, we solve numerically the problem (1.3) imposing mixed boundary

conditions. In particular, we impose Dirichlet boundary condition in a

(x0 < a < x1) and Neumann boundary condition in b (xn−1 < b < xn).

The problem becomes:














−uxx = f in ]a, b[

u(a) = ūa

∂u
∂n

(b) = ḡb

, (1.15)

where n is the outward unit normal.

The discretization of the domain [a,b] and of the problem (1.15) are done

as in Section 1.1.1, except in point b in which we impose the Neumann con-

dition. We can see the Figure 1.6 to see the discretization of the domain

[a,b] ⊂ [0, 1].

Discretization of boundary conditions

First order accuracy on the border

If we use a linear interpolation procedure to impose Neumann boundary

condition in b, since we know that u(x) ≈ (1 − θx)un−1 + θxun, where θx =
x−xn−1

h
, we have

u′(b) ≈ −1

h
un−1 +

1

h
un. (1.16)

It’s obvious that, if in the formula (1.6) of the linear interpolation procedure

the error E ∼ O(h2), in the formula (1.16) we have E ∼ O(h).

Therefore, the numerical problem of the problem (1.15) in the case in which

we impose the boundary conditions through a linear interpolation procedure

both in a and in b is:


















θau0 + (1 − θa)u1 = ūa

−ui−1−2ui+ui+1

h2 = fi i = 1, . . . , n− 1

− 1
h
un−1 + 1

h
un = ḡb

, (1.17)



CHAPTER 1. COCO-RUSSO METHOD 30

that in matrix form becomes Ahuh = Fh, where:

Ah =





















θa 1 − θa

− 1
h2

2
h2 − 1

h2

. . . . . . . . .

− 1
h2

2
h2 − 1

h2

− 1
h

1
h





















∈ R
(n+1)×(n+1)

is the matrix of coefficients,

uh =















u0

u1

...

un















∈ R
n+1

is the vector of the unknowns (numerical solution),

Fh =



























ūa

f1

...

...

fn−1

ḡb



























∈ R
n+1

is the vector of the known terms.

Symmetry of the matrix Ah

We can transform the system (1.17) into an equivalent system in which the

matrix Ah is symmetric. To do this we divide the first equation of the system

by −(1 − θa)h
2 as in the Dirichlet problem (see formula (1.9)) and the last

equation of the system by h:

−1

h
un−1 +

1

h
un = ḡb =⇒ − 1

h2
un−1 +

1

h2
un =

ḡb

h
. (1.18)
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Second order accuracy on the border

Instead, if we use a quadratic interpolation procedure to impose Neumann

boundary condition in b, from the formula (1.10) we have:

u′(b) ≈ 1

2h
(2θb − 1)un−2 − 2

h
θbun−1 +

1

2h
(2θb + 1)un.

In this case E ∼ O(h2).

Remark 1.1: We can observe that if we use a quadratic interpolation pro-

cedure to impose the Neumann boundary condition in b we obtain a second

order accuracy also on the border as well as on internal points.
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1.2 Coco-Russo method in 2D

In this Section we show the discretization in two-dimensional case.

The elliptic problem is:







−(uxx + uyy) = f in Ω ⊂ R
2

Bu = g in Γ
, (1.19)

where the domain Ω has a particular geometry in a two-dimensional space.

1.2.1 Dirichlet boundary conditions

We solve numerically the problem (1.19) imposing Dirichlet boundary con-

ditions.

First, we discretize the domain Ω (for simplicity, we suppose that Ω ⊂ [0, 1]2)

determining internal points and ghost points.

Now, we discretize the problem (1.19).

In the internal points we use the finite-difference approximation for −(uxx +

uyy) using the 5-point stencil:

−uxx(xi, yj)−uyy(xi, yj) ≈ −ui−1,j + ui+1,j − 4ui,j + ui,j+1 + ui,j−1

h2
, ∀(i, j) : (xi, yj) ∈ Ωi

h.

(1.20)

Discretization of boundary conditions To close the linear system, for

each ghost point g we perform the projection f(xf, yf) of the point g on the

border of the domain Ω. In this point f we impose the Dirichlet conditions

through a bilinear interpolation procedure (if we want obtain a second-order

accuracy on the border) or through a biquadratic interpolation procedure (if

we want obtain a third-order accuracy on the border).
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Second order accuracy on the border

Bilinear interpolation

The bilinear interpolation is an extension of linear interpolation for interpo-

lating functions of two variables (x and y) on a square 2D grid.

Figure 1.7: The four red circles are the points

used to perform the bilinear interpolation and

the green circle is the point at which we want

to interpolate

The left figure (Figure 1.7)

represents the position of the

four nodes (the red circles

vi = v(xi, yi), i = 1, . . . , 4)

used to perform the bilinear

interpolation to approximate

the value that a given func-

tion u assumes at green point

p = (xp, yp).

To obtain the formula of bi-

linear interpolation we first

perform two linear interpo-

lations in one direction and

then one linear interpolation

in the other direction. The

formula of bilinear interpo-

lation does not depend of

the order of the interpolation

steps along the two axes (x or y).

For example, if we indicate by

θx =
x4 − xp

h
and θy =

y3 − yp

h
,

we can perfom:

• the linear interpolation at the nodes v1 and v2:

u(xp, y1) ≈ θxu(x1, y1) + (1 − θx)u(x2, y2),
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• the linear interpolation at the nodes v3 and v4:

u(xp, y3) ≈ θxu(x3, y3) + (1 − θx)u(x4, y4),

• the linear interpolation at the nodes (xp, y1) and (xp, y3) (the blue cir-

cles in Figure 1.7) to approximate the value that the function u assumes

in the green point p:

u(xp, yp) ≈ θyu(xp, y1) + (1 − θy)u(xp, y3) = θxθyu(v1) +

(1 − θx)θyu(v2) + θx(1 − θy)u(v3) + (1 − θx)(1 − θy)u(v4). (1.21)

The formula (1.21) represents the formula of the bilinear interpolation at

the nodes v1, v2, v3 and v4 to approximate the value that the function u

assumes in the point p.

Bilinear interpolation error

To calculate the bilinear interpolation error we must note that the bilin-

ear interpolation polynomial was constructed using three linear interpolation

polynomials and thus we must consider the errors associated with these in-

terpolation polynomials.

Based on the formula (1.7), if u ∈ C2,

u(xp, y1) = P (xp, y1) +
1

2
h2(1 − θxp)(−θxp)u

′′(ξ1, µ̄1),

for some ξ1 ∈ [min{x1, x2, xp},max{x1, x2, xp}],

u(xp, y3) = P (xp, y3) +
1

2
h2(1 − θxp)(−θxp)u

′′(ξ2, µ̄2),

for some ξ2 ∈ [min{x1, x2, xp},max{x1, x2, xp}], and

u(xp, yp) = θypu(xp, y1) + (1 − θyp)u(xp, y3) +
1

2
h2(1 − θyp)(−θyp)u

′′(ξ̄, µ)

= P (xp, yp) +
1

2
h2 [θyp(1 − θxp)(−θxp)u

′′(ξ1, µ̄1) +

(1 − θyp)(1 − θxp)(−θxp)u
′′(ξ2, µ̄2) + (1 − θyp)(−θyP

)u′′(ξ̄, µ)
]

, (1.22)

for some µ ∈ [min{y1, y3, yp},max{y1, y3, yp}].

Therefore, the error E ∼ O(h2).
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Third order accuracy on the border

Biquadratic interpolation

In the biquadratic interpolation to calculate the value that the function u

assumes in the point on the border f we involving 9 nodes rather than 4

nodes. The following figure (Figure 1.8) shows the position of the nine nodes

(the red circles vi,j = v(xi, yj), i, j = 1, . . . , 9) used to perfom the biquadratic

interpolation to approximate the value that the function u assumes at green

point p = (xp, yp).

Figure 1.8: The nine red circles are the points used to perform the biquadratic

interpolation and the green circle is the point at which we want to interpolate

If we indicate by

θx =
x8 − xp

h
and θy =

yp − y4

h
,

proceeding as in the case of bilinear interpolation we obtain:

u(xp, yp) ≈ 1

4
θx(1 + θx)θy(θy − 1)u(v1) − 1

2
(θx − 1)(1 + θx)θy(θy − 1)u(v2) +

1

4
(θx − 1)θxθy(θy − 1)u(v3) − 1

2
θx(1 + θx)(θy − 1)(1 + θy)u(v4) +

(θx − 1)(1 + θx)(θy − 1)(1 + θy)u(v5) − 1

2
(θx − 1)θx(θy − 1)(1 + θy)u(v6) +

1

4
θx(1 + θx)(θy + 1)θyu(v7) − 1

2
(θx − 1)(1 + θx)(θy + 1)θyu(v8) +
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1

4
(θx − 1)θx(θy + 1)θyu(v9). (1.23)

The formula (1.23) represents the formula of the biquadratic interpolation

at the nodes vi, i = 1, . . . , 9, to approximate the value that the function u

assumes in the point p.

Biquadratic interpolation error

To calculate the biquadratic interpolation error we must note that the bi-

quadratic interpolation polynomial was constructed using four linear inter-

polation polynomials and thus we must consider the errors associated with

these interpolation polynomials.

Based on the formula (1.11), if u ∈ C3,

u(xp, y1) = P (xp, y1) − 1

6
h3(θxp − 1)θxp(1 + θxp)u

′′′(ξ1, µ̄1),

for some ξ1 ∈ [min{x1, x2, x3, xp},max{x1, x2, x3, xp}],

u(xp, y4) = P (xp, y4) − 1

6
h3(θxp − 1)θxp(1 + θxp)u

′′′(ξ2, µ̄2),

for some ξ2 ∈ [min{x1, x2, x3, xp},max{x1, x2, x3, xp}],

u(xp, y7) = P (xp, y7) − 1

6
h3(θxp − 1)θxp(1 + θxp)u

′′′(ξ3, µ̄3),

for some ξ3 ∈ [min{x1, x2, x3, xp},max{x1, x2, x3, xp}], and

u(xp, yp) =
1

2
θyp(θyp − 1)u(xp, y1) − (θyp − 1)(1 + θyp)u(xp, y4) +

1

2
(θyp + 1)θypu(xp, y7) +

1

6
h3(θyp − 1)θyp(1 + θyp)u

′′′(ξ̄, µ)

= P (xp, yp) + h3
[

− 1

12
(θxp − 1)θxp(1 + θxp)θyp(θyp − 1)u′′′(ξ1, µ̄1)

+
1

6
(θxp − 1)θxp(1 + θxp)(θyp − 1)(1 + θyp)u

′′′(ξ2, µ̄2)

− 1

12
(θxp − 1)θxp(1 + θxp)(θyp + 1)θypu

′′′(ξ3, µ̄3)

+
1

6
(θyp − 1)θyp(1 + θyp)u

′′′(ξ̄, µ)
]

,

for some µ ∈ [min{y1, y4, y7, yp},max{y1, y4, y7, yp}].

Therefore, the error E ∼ O(h3).
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The numerical problem of the problem (1.19), in the case we impose Dirichlet

conditions, is:







−ui−1j+uij−1−4uij+ui+1j+uij+1

h2 = fij in Ωi
h

u(f) = gD(f) in ΩfD

h

, (1.24)

where the value of u(f) is approximated with the formula (1.21) of the bilin-

ear interpolation or with the formula (1.23) of the biquadratic interpolation

and gD is the value of exact solution in f.

We choose two different domains. We begin choosing a simple domain like

a square, which represents a simple extension of the one-dimensional case.

Then, we continued our analysis with a more complex domain, that is a

circumference.

Square domain

Figure 1.9: Discretization of the square: in the blue

dots we impose the boundary conditions

We discretize the unit

square with a regular

grid of size h along

the two axes respec-

tively. We indicate

by N + 1 the num-

ber of grid points

along the two axes

respectively and let

h = 1
N

is the spa-

tial step along the

two axes. In to-

tal we have (N +

1)2 grid points. In

this way, the square

of vertices a(xa, ya),

b(xb, yb), c(xc, yc),

d(xd, yd) is also dis-

cretized. We indi-

cate by n the total

number of unknowns
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(internal points + ghost points).

The figure above (Figure 1.9) represents the discretization of the unit square

with N = 4 and so the discretization of the square, showing the internal

points (black dots) and the ghost points (red dots) (n = 21).

We denote by gs and is, respectively, the ghost points and the internal points

gs = (ih, 0) , is = (ih, h) , i = 1, . . . , N − 1.

We denote by gn and in, respectively, the ghost points and the internal points

gn = (ih, 1) , in = (ih, 1 − h) , i = 1, . . . , N − 1.

We denote by gw and iw, respectively, the ghost points and the internal

points

gw = (0, jh) , iw = (h, jh) , j = 1, . . . , N − 1.

We denote by ge and ie, respectively, the ghost points and the internal points

ge = (1, jh) , ie = (1 − h, jh) , j = 1, . . . , N − 1.

In the case of the square the bilinear (or biquadratic) interpolations are re-

placed by linear (or quadratic) interpolations. We show now the structure

of the matrix of the coefficients in the easier case in which we use the linear

interpolation procedures on the nodes ik and gk, k = s,n,w,e.

We denote by θs = h−yb

h
and 1−θs the linear interpolation coefficients on the

nodes gs and is, thus:

θsugs + (1 − θs)uis = u(ih, yb), i = 1, . . . , N − 1.

In the same way, we denote by θn = yd−(1−h)
h

and 1−θn the linear interpolation

coefficients on the nodes gn and in, thus:

θnugn + (1 − θn)uin = u(ih, yd), i = 1, . . . , N − 1.

We denote by θw = h−xa

h
and 1 − θw the linear interpolation coefficients on

the nodes gw and iw, thus:

θwugw + (1 − θw)uiw = u(xa, jh), j = 1, . . . , N − 1.
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We denote by θe = xb−(1−h)
h

and 1 − θe the linear interpolation coefficients

on the nodes ge and ie, thus:

θeuge + (1 − θe)uie = u(xb, jh), j = 1, . . . , N − 1.

Using a total lexicographical order the matrix of coefficients that we obtain

is a block matrix with the following structure:

Ah =































θsIN−1 Is

B̃ G B

B G B
.. . . . . . . .

B G B

B G B̃

In θnIN−1































∈ R
n×n,

where

θsIN−1 ∈ R
(N−1)×(N−1), θnIN−1 ∈ R

(N−1)×(N−1),

Is =
(

0N−1 (1 − θs)IN−1 0N−1

)

∈ R
(N−1)×(N+1),

In =
(

0N−1 (1 − θn)IN−1 0N−1

)

∈ R
(N−1)×(N+1),

with 0N−1 column vector of size N − 1,

B̃ =









0t
N−1

− IN−1

h2

0t
N−1









∈ R
(N+1)×(N−1), B =









0 0t
N−1 0

0N−1 − IN−1

h2 0N−1

0 0t
N−1 0









∈ R
(N+1)×(N+1),

with 0t
N−1 row vector of size N − 1,

G =





















θw 1 − θw

− 1
h2

4
h2 − 1

h2

. . . . . . . . .

− 1
h2

4
h2 − 1

h2

1 − θe θe





















∈ R
(N+1)×(N+1).

The number of matrices G is N − 1.
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Circular domain

A circumference of radius R and center c = (xc, yc) is contained in the unit

square. The value of the radius and the position of the center can change.

Figure 1.10: Discretization of the circumfer-

ence

We discretize the unit square

with a regular grid of size

h along the two axes re-

spectively. We indicate by

N + 1
(

h = 1
N

)

the num-

ber of grid points along the

two axes respectively. In to-

tal we have (N + 1)2 grid

points. In this way, the

circumference is also dis-

cretized. We indicate by

n the total number of un-

knowns (internal points +

ghost points).

The right figure (Figure

1.10) represents the dis-

cretization of the unit square

with N = 10 and thus the

discretization of the circumference, showing the internal points (black dots)

and the ghost points (red dots) (n = 32).

In this case there is not a well-defined structure of the matrix Ah as in the

case of the square domain. It is enough to change the center or the radius

of the circumference or the value of N , to change internal points and ghost

points and therefore the structure of the matrix.

The following figure (Figure 1.11) highlights (with red circles) the nodes

used in bilinear interpolation (left panel) and in biquadratic interpolation

(right panel) to impose boundary condition at point f.



CHAPTER 1. COCO-RUSSO METHOD 41

Figure 1.11: Bilinear interpolation (left panel) and biquadratic interpolation

(right panel)

1.2.2 Mixed boundary conditions

Now, we solve numerically the problem (1.19) imposing mixed boundary con-

ditions.

The discretization of the domain Ω, of the problem in the internal points

and of the boundary conditions in the points in which we impose Dirichlet

conditions are done as in Section 1.2.1.

Discretization of boundary conditions

First order accuracy on the border

If we use a bilinear interpolation procedure to impose Neumann boundary

conditions, from the formula (1.21), in each point f = (xf, yf) we have:

∂u

∂n
(xf, yf) ≈

(

−1

h
θyu(v1) +

1

h
θyu(v2) − 1

h
(1 − θy)u(v3) +

1

h
(1 − θy)u(v4)

)

nx

+

(

− 1

h
θxu(v1) − 1

h
(1 − θx)u(v2) +

1

h
θxu(v3) +

1

h
(1 − θx)u(v4)

)

ny, (1.25)

where n = (nx, ny) is the outward unit normal, θx = x4−xf

h
and θy = y3−yf

h

(see Figure 1.7).

It’s obvious that, if in the formula (1.21) of the bilinear interpolation proce-

dure the error E ∼ O(h2), in the formula (1.25) we have E ∼ O(h).
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Second order accuracy on the border

If we use a biquadratic interpolation procedure to impose Neumann boundary

conditions, from the formula (1.23), in each point f = (xf, yf) we have:

∂u

∂n
(xf, yf) ≈

(

− 1

4h
(2θx + 1)θy(θy − 1)u(v1) +

1

h
θxθy(θy − 1)u(v2) −

1

4h
(2θx − 1)θy(θy − 1)u(v3) +

1

2h
(1 + 2θx)(θy − 1)(1 + θy)u(v4) −

2

h
θx(θy − 1)(1 + θy)u(v5) +

1

2h
(2θx − 1)(θy − 1)(1 + θy)u(v6) −

1

4h
(1 + 2θx)(θy + 1)θyu(v7) +

1

h
θx(θy + 1)θyu(v8) −

1

4h
(2θx − 1)(θy + 1)θyu(v9)

)

nx +
(

− 1

4h
θx(1 + θx)(1 − 2θy)u(v1) +

1

2h
(θx − 1)(1 + θx)(1 − 2θy)u(v2) − 1

4h
(θx − 1)θx(1 − 2θy)u(v3) −

1

h
θx(1 + θx)θyu(v4) +

2

h
(θx − 1)(1 + θx)θyu(v5) − 1

h
(θx − 1)θxθyu(v6) +

1

4h
θx(1 + θx)(2θy + 1)u(v7) − 1

2h
(θx − 1)(1 + θx)(2θy + 1)u(v8) +

1

4h
(θx − 1)θx(2θy + 1)u(v9)

)

ny, (1.26)

where θx = x8−xp

h
and θy = yp−y4

h
(see Figure 1.8).

It’s obvious that, if in the formula (1.23) of the bilinear interpolation proce-

dure the error E ∼ O(h3), in the formula (1.26) we have E ∼ O(h2).

The numerical problem of the problem (1.19), in the case we impose mixed

conditions, is:


















−ui−1j+uij−1−4uij+ui+1j+uij+1

h2 = fij in Ωi
h

u(f) = gD(f) in ΩfD

h

∂u
∂n

(f) = gN(f) in ΩfN

h

, (1.27)

where the values of u(f) and ∂u
∂n

(f) are approximated respectively with the

formulas (1.21) and (1.25) of the bilinear interpolation or with the formulas

(1.23) and (1.26) of the biquadratic interpolation.
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1.3 Coco-Russo method in 3D

Finally, we present the most complex three-dimensional case.

The elliptic problem is:
{

−(uxx + uyy + uzz) = f in Ω ⊂ R
3

Bu = g in Γ
, (1.28)

where the domain Ω has a particular geometry in a three-dimensional space.

1.3.1 Dirichlet boundary conditions

We begin to study the case in which we impose Dirichlet boundary conditions.

Discretization of the problem

First, we discretize the domain Ω (for simplicity, we suppose that Ω ⊂ [0, 1]3)

determining internal points and ghost points.

Now, we discretize the problem (1.28).

Figure 1.12: 7-point stencil

In the internal points we use

the finite-difference approx-

imation for −(uxx + uyy +

uzz) using the 7-point sten-

cil.

The left figure (Figure 1.12)

shows a 7-point stencil for

the approximation of the

second derivative −∆uijk

in the black internal point

(xi, yj, zk). cccccccccc

cccccccccccccccc

cccccccccccccccc

cccccccccccccccc

cccccccccccccccc

ccccc



CHAPTER 1. COCO-RUSSO METHOD 44

ccccc

For each internal point (xi, yj, zk), we have:

−uxx(xi, yj, zk) − uyy(xi, yj, zk) − uzz(xi, yj, zk) ≈

−ui−1jk + uij−1k + uijk−1 − 6uijk + ui+1jk + uij+1k + uijk+1

h2

Discretization of boundary conditions For each ghost point g we per-

fom the projection f(xF, yF, zF) of the point g on the border of the domain

Ω. In this point f we impose the Dirichlet condition through a trilinear

interpolation procedure.

Second order accuracy on the border

Trilinear interpolation

The following figure (Figure 1.13) represents the position of the eight nodes

(the blue circles vi = vi(xi, yi, zi), i = 1, . . . , 8) used to perfom the trilinear

interpolation to approximate the value that a given function u assumes at

red point c(xc, yc, zc).

Figure 1.13: The eight blue circles are the points used to perform the trilinear

interpolation and the red point c is the point at which we want to interpolate

To obtain the formula of trilinear interpolation we consider two bilinear in-

terpolations combined with a linear interpolation. The formula of trilinear
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interpolation does not depend of the order of the interpolation steps along

the three axes.

If we indicate by

θx =
x2 − xc

h
, θy =

y3 − yc

h
and θz =

z7 − zc

h
,

we can perfom:

• the bilinear interpolation at the nodes v1, v2, v3 and v4:

u(xc, yc, z1) ≈ θxθyu(v1) + (1 − θx)θyu(v2) +

θx(1 − θy)u(v3) + (1 − θx)(1 − θy)u(v4),

• the bilinear interpolation at the nodes v5, v6, v7 and v8:

u(xc, yc, z5) ≈ θxθyu(v5) + (1 − θx)θyu(v6) +

θx(1 − θy)u(v7) + (1 − θx)(1 − θy)u(v8),

• the linear interpolation at the nodes (xc, yc, z1) and (xc, yc, z5) (the

green nodes in the right panel of the Figure 1.13) to approximate the

value that the function u assumes in the red point c:

u(xc, yc, zc) ≈ θzu(xc, yc, z1) + (1 − θz)u(xc, yc, z5) =

θxθyθzu(v1) + (1 − θx)θyθzu(v2) + θx(1 − θy)θzu(v3) +

(1 − θx)(1 − θy)θzu(v4) + θxθy(1 − θz)u(v5) +

(1 − θx)θy(1 − θz)u(v6) + θx(1 − θy)(1 − θz)u(v7) +

(1 − θx)(1 − θy)(1 − θz)u(v8). (1.29)

The formula (1.29) represents the formula of the trilinear interpolation at

the nodes v1, v2, v3, v4, v5, v6, v7 and v8 to approximate the value that

the function u assumes in the point c.
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Trilinear interpolation error

To calculate the trilinear interpolation error we must note that the trilinear

interpolation polynomial was constructed using two bilinear interpolation

polynomials and one linear interpolation and thus we must consider the er-

rors associated with these interpolation polynomials.

Based on the formula (1.22), if u ∈ C2,

u(xc, yc, z1) = P (xc, yc, z1) +
1

2
h2
[

θyp(1 − θxp)(−θxp)u
′′(ξ1, µ̄1, ζ̄1) +

(1 − θyp)(1 − θxp)(−θxp)u
′′(ξ2, µ̄2, ζ̄2) + (1 − θyp)(−θyP

)u′′(ξ̄3, µ3, ζ̄3)
]

,

for some ξ1, ξ2 ∈ [min{x1, x2, xc},max{x1, x2, xc}],

µ3 ∈ [min{y1, y3, yc},max{y1, y3, yc}],

u(xc, yc, z5) = P (xc, yc, z5) +
1

2
h2
[

θyp(1 − θxp)(−θxp)u
′′(ξ4, µ̄4, ζ̄4) +

(1 − θyp)(1 − θxp)(−θxp)u
′′(ξ5, µ̄5, ζ̄5) + (1 − θyp)(−θyP

)u′′(ξ̄6, µ6, ζ̄6)
]

,

for some ξ4, ξ5 ∈ [min{x5, x6, xc},max{x5, x6, xc}],

µ6 ∈ [min{y5, y7, yc},max{y5, y7, yc}],

u(xc, yc, zc) ≈ θzu(xc, yc, z1)+(1−θz)u(xc, yc, z5)−
1

2
(1−θz)θzh

2u′′(ξ̄, µ̄, ζ) =

P (xc, yc, zc) + O(h2),

for some ζ ∈ [min{z1, z5, zc},max{z1, z5, zc}].

Therefore, the error E ∼ O(h2).

The numerical problem of the problem (1.28), in the case we impose Dirichlet

conditions, is:







−ui−1jk+uij−1k+uijk−1−6uijk+ui+1jk+uij+1k+uijk+1

h2 = fijk in Ωi
h

u(f) = gD(f) in ΩfD

h

, (1.30)

where the value of u(f) is approximated with the formula (1.29) of the tri-

linear interpolation and gD is the value of exact solution in f.
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1.3.2 Mixed boundary conditions

Now, we solve numerically the problem (1.28) imposing mixed boundary con-

ditions.

The discretization of the domain Ω, of the problem in the internal points

and of the boundary conditions in the points in which we impose Dirichlet

conditions are done as in Section 1.3.1.

Discretization of boundary conditions

First order accuracy on the border

If we use a trilinear interpolation procedure to impose Neumann boundary

conditions, from the formula (1.29), in each point f = (xf, yf) we have:

∂u

∂n
(f) ≈

(

−1

h
θyθzu(v1) +

1

h
θyθzu(v2) − 1

h
(1 − θy)θzu(v3) +

1

h
(1 − θy)θzu(v4)

− 1

h
θy(1 − θz)u(v5) +

1

h
θy(1 − θz)u(v6) − 1

h
(1 − θy)(1 − θz)u(v7)

+
1

h
(1 − θy)(1 − θz)u(v8)

)

nx +
(

−1

h
θxθzu(v1) − 1

h
(1 − θx)θzu(v2)

+
1

h
θxθzu(v3)+

1

h
(1−θx)θzu(v4)− 1

h
θx(1−θz)u(v5)− 1

h
(1−θx)(1−θz)u(v6)

− 1

h
(1 − θx)(1 − θz)u(v6) +

1

h
θx(1 − θz)u(v7) +

1

h
(1 − θx)(1 − θz)u(v8)

)

ny

+
(

−1

h
θxθyu(v1) − 1

h
(1 − θx)θyu(v2) − 1

h
θx(1 − θy)u(v3)

− 1

h
(1 − θx)(1 − θy)u(v4) + θxθyu(v5) +

1

h
(1 − θx)θyu(v6)

+
1

h
θx(1 − θy)u(v7) +

1

h
(1 − θx)(1 − θy)u(v8)

)

nz, (1.31)

where n = (nx, ny, nz) is the outward unit normal, θx = x2−xc

h
, θy = y3−yc

h

and θz = z7−zc

h
(see Figure 1.13).

It’s obvious that, if in the formula (1.29) of the trilinear interpolation proce-

dure the error E ∼ O(h2), in the formula (1.31) we have E ∼ O(h).
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The numerical problem of the problem (1.28), in the case we impose mixed

conditions, is:



















−ui−1jk+uij−1k+uijk−1−6uijk+ui+1jk+uij+1k+uijk+1

h2 = fijk in Ωi
h

u(f) = gD(f) in ΩfD

h

∂u
∂n

(f) = gN(f) in ΩfN

h

, (1.32)

where the values of u(f) and ∂u
∂n

(f) are approximated with the formulas (1.29)

and (1.31) respectively.

As in 1D and 2D, also in 3D it is possible to perform the triquadratic inter-

polation procedures on the ghost points which allow a third-order accuracy

at the border in the case in which we impose the Dirichlet conditions and a

second-order accuracy at the border in the case in which we impose Neumann

boundary conditions. Such interpolations are used in the next Chapter.
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Symmetrization method

Let Ah be the matrix in 1D, 2D or 3D. It is possible to symmetrize the matrix

and observe the behaviors of the inverse matrix and of the consistency error.

It is clear that the behavior of the error in the case in which the matrix Ah is

symmetric coincides with the behavior of the error in the case in which the

matrix Ah is not symmetric.

We provide below a generally valid symmetrization method for the matrices

Ah in 1D, 2D or 3D.

We write the linear system in this way:

Ahuh =

(

Aii Aig

Agi Agg

)(

ui

ug

)

=

(

fi

fg

)

= f, (1.33)

where ug and ui are the vectors of numerical solution related to ghost points

and to internal points respectively.

We look for a matrix C such that CAh is symmetric. Choosing:

C =

(

I b

at c

)

,

the system (1.33) becomes:

CAhuh =

(

Aii + bAgi Aig + bAgg

atAii + cAgi atAig + cAgg

)(

ui

ug

)

=

(

fi + bfg

atfi + cfg

)

= Cf.

(1.34)

For CAh to be symmetrical it is necessary that:

• Aii + bAgi must be symmetric ⇒ b = αAt
gi;

• atAii + cAgi and Aig + bAgg must be the one transposing the other,

thus you must have Aig + αAt
giAgg = (atAii + cAgi)

t ⇒ c = αAt
gg and

a = (At
ii)

−1Aig;

• atAig + cAgg must be symmetric. With these choices of a and c also

the matrix atAig + cAgg is symmetric.
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Remark 1.2: Our aim is now to verify if the numerical results about the

convergence, the consistency and the stability of the method can depend on

the symmetry of the matrix Ah.

In 1D in the case in which we impose the boundary conditions by perform-

ing the linear interpolations it is possible to symmetrize the matrix Ah both

with the symmetrization method (1.34) just described and using formulas

(1.9) and (1.18). If we perform the quadratic interpolations it is possible to

symmetrize the matrix Ah only with the symmetrization method (1.34) for

different values of the parameter α = hm (m = . . . ,−1, 0, 1, . . .).

We can observe that the convergence results of the Coco-Russo method do

not depend on the symmetrization of the matrix Ah, since the numerical

solution obtained by performing the symmetrization of the matrix coincides

with the solution of the system in which the matrix Ah is not symmetric.

Instead, since the consistency error is given by τh = Aheh it is clear that the

consistency of the method may depend on the symmetrization of the matrix

Ah. Depends on the symmetrization of the matrix Ah also the stability being

connected to the behavior of the inverse matrix of Ah.

In both cases (symmetrization method (1.34) and formulas (1.9) and (1.18))

is not convenient to symmetrize the matrix Ah.

If we symmetrize the matrix with the formulas (1.9) and (1.18) in the ma-

trix Ah the term − θa

(1−θa)h2 (and/or − θb

(1−θb)h2 ) appears. It is clear that when

θa ∼ 1 (or θb ∼ 1) we have consistency problems. The stability of the nu-

merical method is guaranteed, indeed, the norm of the inverse matrix of Ah

tends to a constant for large values of n.

If we use the symmetrization method (1.34) there are consistency problems

for values of m less than a certain threshold that is around −1, −2, −3.

Above these values we haven’t consistency problems not even for large val-

ues of θa (or of θb), but the accuracy of the second-order for the consistency

error is not assured. Moreover, in this case the stability is not always guar-

anteed because there is values of the parameter m for which the norm of the

inverse matrix of Ah grows for large value of n.

On the basis of this observation we did not apply this symmetrization meth-
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ods to two-dimensional and three-dimensional cases. We will go into more

detail on this topic in the next chapter, applying it to various problems

(Dirichlet or mixed) in 1D.



2
Numerical tests for the Coco-Russo method

This Chapter provides numerical tests in 1D, 2D and 3D. Our aim is to

prove numerically the convergence and the consistency of the method and

obtaining numerical evidence on the stability in different norms.

From inequality

‖eh‖Lp ≤ ‖A−1
h ‖p‖τh‖Lp , p = 1, 2,∞

we can observe that to test the convergence and the consistency of the method

is sufficient to study the behaviors of ‖eh‖Lp and ‖τh‖Lp respectively. But in

this way we do not get any information on the stability of the method, thus

we must also study ‖A−1
h ‖p .

For each spatial dimension, we will present numerical tests for both Dirich-

let problem and mixed problem, performing both linear interpolations and

quadratic interpolations to impose boundary conditions on points f that be-

longs to the border but they are not grid points.

We will see that in the Dirichlet problem both the linear interpolations and

the quadratic interpolations provide a second-order accuracy, while in mixed

problem only the quadratic interpolations provide such accuracy. This is

because the linear interpolations give us a first-order accuracy at the border

in the case we impose Neumann conditions.

In all the following figures for any quantity g(n) the red line is the straight

best-fit line in logarithmic scale; we indicate with sl(g) ≈ d log(g)
dN

, so that, for

example, the norm of the inverse matrix of Ah is approximated by ‖A−1
h ‖ ≈

c N sl(‖A−1
h

‖). For error and truncation errors we expect negative values of

sl(g).

52
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2.1 Numerical tests in 1D

We start with the one-dimensional case. For each example we will compare

the numerical results obtained performing the linear interpolations with those

obtained performing the quadratic interpolations, both for Dirichlet problem

and mixed problem.

2.1.1 Dirichlet boundary conditions - Only one ghost

point

We start showing the numerical results in the case in which only the extreme

a is not a grid point (b=1) imposing Dirichlet boundary conditions both in

a and in b.

Behavior of the inverse matrix of Ah

Figure 2.1: p - Norm of the inverse matrix of Ah as a function of the number

of the grid points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left),

θa = 0.5

The Figure 2.1 shows the behavior of the norm of A−1
h as a function of the

number of the grid points in the case in which we perform the linear inter-
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polation procedure to impose the boundary condition in a and the domain is

[a, π] ⊂ [0, π]. We can read the values of the best-fit slope in the table below:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

0.9923 0.4892 0.3429 10−2

The position of the extremity a is a = h
2
, but the same accuracy is confirmed

also for different positions of a in ]0, h[.

The following tables show the numerical results in the following cases:

• the domain is [a, 1] ⊂ [0, 1] and we have performed the linear interpo-

lation procedure to impose the boundary condition in a:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2

0.9923 0.4935 −0.3876 10−2

• the domain is [a, π] ⊂ [0, π] and we have performed the quadratic

interpolation procedure to impose the boundary condition in a:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2

0.9923 0.4892 0.3463 10−2

• the domain is [a, 1] ⊂ [0, 1] and we have performed the quadratic in-

terpolation procedure to impose the boundary condition in a:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2

0.9923 0.4935 −0.3885 10−2

In all cases, the numerical results show that ‖A−1
h ‖p ∼ O(n

1
p ), p = 1, 2,∞,

thus we have stability in the ∞-norm.

Behavior of the spectral radius of A−1
h

Now we show the behavior of the spectral radius of the matrix A−1
h . The

study of the spectral radius of A−1
h combined with the study of the inverse

matrix of Ah gives us information on the stability of the numerical method.
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The figure on the left shows the behavior of the reciprocal of the eigen-

value of minimum module of the matrix Ah as a function of n. The figure is

obtained choosing a = h
2
, but we have the same result also with a different

choice of the position of a in ]0, h[. The figure on the right shows the be-

havior of the reciprocal of the eigenvalue of minimum module of the matrix

Ah as a function of the position of a, in the case in which we perform the

linear interpolation procedure to impose the boundary condition in a and

the domain is [a, π] ⊂ [0, π].

Figure 2.2: Dependence of the reciprocal of the eigenvalue of minimum mod-

ule of the matrix Ah (|λmin|) on the number n of the grid points (θa = 0.5)

(left panel) and on the parameter 1 − θa (n = 100) (right panel)

The two figures are in agreement and they show that the reciprocal of the

eigenvalue of minimum module of the matrix Ah essentially does not depend

on the position of a in ]0, h[ and it tends to a constant for large values of n.

In particular, the figures show that this constant is 1.

We have proved that we have the same result (ρ(A−1
h ) → 1)) even in cases

in which:

• the domain is [a, 1] ⊂ [0, 1] and we have performed the linear interpo-

lation procedure to impose the boundary condition in a;

• the domain is [a, π] ⊂ [0, π] and we have performed the quadratic

interpolation procedure to impose the boundary condition in a;

• the domain is [a, 1] ⊂ [0, 1] and we have performed the quadratic in-

terpolation procedure to impose the boundary condition in a.
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Now, we evaluate the behaviors of the consistency error τh and of the error

eh on different functions f .

We have approximated ‖τh‖Lp and ‖eh‖Lp (p = 1, 2,∞) in this way:

‖ah‖L1 = h
n−1
∑

i=0

|ah(xi)|, ‖ah‖L2 =

√

√

√

√h
n−1
∑

i=0

|ah(xi)|2, ‖ah‖L∞ = max
i=0,...,n−1

|ah(xi)|,

where ah is τh or eh.

First example

We solve numerically the equation

−uxx = sin(x) in ]a, π[⊂ [0, π], (2.1)

in which we impose Dirichlet boundary conditions in a and in b = π. We

known the exact solution of (2.1) that it is u = sin(x). Therefore, the problem

to be solved numerically is:














−uxx = sin(x) in ]a, π[⊂ [0, π]

u(a) = sin(a)

u(π) = sin(π)

. (2.2)

We discretize the interval [0, π] and the problem (2.2) as we have described in

the Section 1.1.1. Thus, we have n+ 1 grid points that we call x0, x1, . . . , xn

and we suppose that a isn’t a grid point but it is placed between x0 and x1.

The spatial step is h = π
n
.

Behavior of the consistency error τh

Linear interpolation procedure

The following figure (Figure 2.3) shows the behavior of the norm of the

consistency error τh as a function of the number of the grid points, in the

case we perform the linear interpolation procedure. We can read the values

of the best-fit slope in the table below, which shows that ‖τh‖Lp ∼ O(h2),

p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0012 -1.9996 -1.9910
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Figure 2.3: p - Norm of the consistency error τh as a function of the number

of the grid points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Quadratic interpolation procedure

The following table reports the values of the best-fit slope in the case we

perform the quadratic interpolation procedure, which shows that ‖τh‖Lp ∼
O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0009 -1.9996 -1.9916

In both cases (linear and quadratic interpolations), the position of the ex-

tremity a is not fixed but varies in ]0, h[. The results show that the norm of

τh does not depend on the position of a.

Behavior of the error eh

Linear interpolation procedure

The following figure (Figure 2.4) shows the behavior of the norm of the

error eh as a function of the number of the grid points in the case in which
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we perform the linear interpolation procedure. We can read the values of

the best-fit slope in the table below, which shows that ‖eh‖Lp ∼ O(h2),

p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9920 -1.9925 -1.9930

Figure 2.4: p - Norm of the error eh as a function of the number of the grid

points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Quadratic interpolation procedure

Also in the case in which we perform the quadratic interpolation procedure

we obtain that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9755 -1.9766 -1.9792

In both cases, the position of the extremity a is not fixed but varies in ]0, h[.

The results show that the norm of eh does not depend clearly on the position

of a.
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Second example

We solve numerically the equation

−uxx = ex in ]a, 1[⊂ [0, 1], (2.3)

in which we impose Dirichlet boundary conditions in a and in b = 1. We

known the exact solution of (2.3) that it is u = −ex. Therefore, the problem

to be solved numerically is:














−uxx = ex in ]a, 1[⊂ [0, 1]

u(a) = −ea

u(1) = −e

. (2.4)

We discretize the interval [0, 1] and the problem (2.4) as we have described

in the Section 1.1.1. The spatial step is h = 1
n
.

Behavior of the consistency error τh

In the following tables we can read the values of the best-fit slope of the

norm of τh as a function of the number of the grid points. They show that

‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

Linear interpolation procedure

nmin = 7, nmax = 2980 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9975 -1.9954 -1.9653

Quadratic interpolation procedure

nmin = 7, nmax = 2980 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9824 -1.9885 -1.9685

In both cases, the results about the norm of the consistency error were ob-

tained varying the position of a in ]0, h[. The norm of the consistency error

does not depend on the position of a.
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Remark 2.1 - on the behavior of the consistency error: We can

observe, if we perform the linear interpolation procedure, in both First ex-

ample and Second example, the consistency error is constant as a function

of the position of a in ]0, h[. It is clear that these are particular examples,

since is possible to prove that in general the L∞-norm of the consistency

error depends on the position of a. For example if we consider the Dirichlet

problem −uxx = cos(x) in [a, π], the L∞-norm of τh is smaller if θa ∼ 0 or

θa ∼ 1 and it is larger if θa ∼ 0.5. Only in the case in which θa = 0.5 also the

L∞-norm is constant as a function of the position of a. Instead, if we per-

form the quadratic interpolation procedure, the Lp-norm of τh (p = 1, 2,∞)

is constant as a function of the position of a.

Thus in general the behavior of the consistency error is as follows: L1- and

L2-norms are constant as a function of the position of a, L∞-norm depends

instead on the position of a in ]0, h[ if we perform the linear interpolation.

We can justify this result. The consistency error is a local error (it depends

only on the values of the solution at that specific grid point and on the

neighbors, unlike the numerical error eh that depends globally on all grid

values). This means that the consistency error is the same inside the grid

(3-point finite difference of the second derivative) instead it is represented

by the consistency error of the interpolation error on the ghost points. This

is why L1- and L2-norms are almost constants (they are a kind of average

on all grid points, and the number of ghost points is negligible with respect

to the number of internal grid points) and L∞ is not (it is the highest error

between internal points and ghost points). The reason why L∞-norm of the

consistency error does not depends on a in the case of quadratic interpola-

tions is because in this case the consistency error on the ghost points is much

smaller (O(h3)) than the interior consistency error (O(h2)), so the maximum

error is always the inner consistency error, which is almost constant overall.

Behavior of the error eh

In the following tables we can read the values of the best-fit slope concerning

the norm of eh as a function of the number of the grid points. They show

that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:
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Linear interpolation procedure

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0338 -2.0294 -2.0156

Figure 2.5: p - Norm of the error eh as a function of the position of a

(n = 100): p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Quadratic interpolation procedure

nmin = 7, nmax = 2980 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0107 -2.0086 -2.0056

In both cases, the results about the norm of the error were obtained varying

the position of a in ]0, h[. In the case in which we perform the quadratic

interpolation procedure, the norm of the error does not depend clearly on

the position of a. Instead, if we perform the linear interpolation procedure,

the norm of the error is smaller if θa ∼ 0 or θa ∼ 1 and it is larger if θa = 0.5,

as we can observe in Figure 2.5, which shows how ‖eh‖Lp varies as a function

of the position of a. We have chosen n = 100.
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Conclusions

We itemize the numerical results on the Dirichlet problems (1.8) and (1.12)

in [a, 1]. We have chosen not to fix the position of a, but to move a in ]0, h[,

so as to see if the results may or may not depend on its position. We consider

two distinct cases: Ah not symmetric and Ah symmetric.

Ah not symmetric

In the case in which Ah is not symmetric, the numerical results are the

following:

• ‖A−1
h ‖p ∼ O(n

1
p ), p = 1, 2,∞;

• ρ(A−1
h ) → 1;

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

The norm of the consistency error and the norm of the error can depend on

the position of a in the case in which we perform the linear interpolation to

impose the boundary condition in a, which provides a second-order accuracy

at the border as on the internal points.

In particular we have observed that L1- and L2-norms of the consistency er-

ror are constant as a function of a, while L∞-norm of the consistency error

is not. In Remark 2.1 we have provided an explanation for this behavior

of the consistency error.

Instead, the norm of the consistency error and the norm of the error do

not depend on the position of a in the case in which we perform the

quadratic interpolation to impose the boundary condition in a, which pro-

vides a third-order accuracy at the border.

Ah symmetric

In the case in which the matrix Ah is symmetric the behaviors of the norms

of the consistency error and of the inverse matrix of Ah depend on the sym-

metrization method used.
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If we symmetrize the matrix Ah through the symmetrization method (1.34)

the norm of τh does not depends on the position of a and

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h),

thus we haven’t consistency problems. However, there is a threshold of neg-

ative values of m below which problems of consistency are starting to be

verified. These values are around −1, −2, −3, depending on the test exam-

ined.

The spectral radius of A−1
h and ‖A−1

h ‖p grow as a function of n for values of

m ≥ 0 and tend to a constant for values m < 0. Therefore, we have stability

problems in the case in which m ≥ 0.

Based on the above, is not convenient to symmetrize the matrix Ah.

If we symmetrize the matrix Ah through the formula (1.9) (thus only in

the case in which we perform the linear interpolation procedure to impose

the boundary condition in a) the order of accuracy of τh depends on the

position of a. Performing various numerical tests we have observed that

‖τh‖L1 ∼ O(h), ‖τh‖L2 ∼ O(h
1
2 ), ‖τh‖L∞ ∼ O(h0),

therefore the consistency of the method is not guaranteed in L∞-norm.

Only if θa → 0, ‖τh‖Lp ∼ O(h2), p = 1, 2,∞. While, if θa → 1 we have

consistency problems.

The spectral radius of A−1
h and ‖A−1

h ‖p tend to a constant for large values of

n.

Therefore, also in this case is not convenient to symmetrize the matrix Ah.



CHAPTER 2. NUMERICAL TESTS 64

2.1.2 Dirichlet boundary conditions - Two ghost points

We proceed providing the same numerical tests in the case in which both

extremes a and b aren’t grid points imposing Dirichlet boundary conditions

both in a and in b.

Behavior of the inverse matrix of Ah and of the spectral radius of

A−1
h

The behaviors of the inverse matrix of Ah and of its the spectral radius

coincide with the case in which b is a grid point, that is ‖A−1
h ‖p ∼ O(n

1
p )

(p = 1, 2,∞) and ρ(A−1
h ) → 1, both in the case in which we perform the linear

interpolation procedures and in the case in which we perform the quadratic

interpolation procedures. The following tables show the numerical results

about the norm of the inverse matrix in the following cases:

• the domain is [a,b] ⊂ [0, π] and we have performed the linear inter-

polation procedures to impose the boundary conditions in a and in

b:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2
, b = π − h

2
0.9947 0.4937 0.5699 10−2

• the domain is [a,b] ⊂ [0, 1] and we have performed the linear inter-

polation procedures to impose the boundary conditions in a and in

b:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2
, b = 1 − h

2
0.9947 0.4974 0.1139 10−2

• the domain is [a,b] ⊂ [0, π] and we have performed the quadratic

interpolation procedures to impose the boundary conditions in a and

in b:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2
, b = π − h

2
0.9947 0.4937 0.5744 10−2

• the domain is [a,b] ⊂ [0, 1] and we have performed the quadratic in-

terpolation procedures to impose the boundary conditions in a and in

b:
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nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2
, b = 1 − h

2
0.9947 0.4974 0.1148 10−2

First example

We solve numerically the equation

−uxx = sin(x) in ]a,b[⊂ [0, π],

in which we impose Dirichlet boundary conditions in a and in b. The problem

to be solved numerically is:














−uxx = sin(x) in ]a, b[⊂ [0, π]

u(a) = sin(a)

u(b) = sin(b)

.

We place b = π − a.

Behavior of the consistency error τh

The following tables report the values of the best-fit slope concerning the

norm of τh as a function of the number of the grid points, and they show

that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

Linear interpolation procedure

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0061 -2.0006 -1.9922

Quadratic interpolation procedure

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9985 -1.9993 -1.9908

In both cases, the position of the extremity a is not fixed but varies in ]0, h[,

thus the position of b varies in ]π− h, π[. The results show that the norm of

τh does not depend on the position of a and on the position of b.
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Behavior of the error eh

The following tables report the values of the best-fit slope concerning the

norm of eh as a function of the number of the grid points, and they show

that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

Linear interpolation procedure

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9926 -1.9914 -1.9915

Quadratic interpolation procedure

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9437 -1.9434 -1.9446

In both cases, the positions of the extremes a and b are not fixed but varies

in ]0, h[ and in ]π − h, π[ respectively. The results show that the norm of eh

does not depend on the position of a and on the position of b.

Second example

We solve numerically the equation

−uxx = ex in ]a,b[⊂ [0, 1],

in which we impose Dirichlet boundary conditions in a and in b. The problem

to be solved numerically is:














−uxx = ex in ]a, b[⊂ [0, 1]

u(a) = −ea

u(b) = −eb

.

We place b = 1 − a.
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Behavior of the consistency error τh

Linear interpolation procedure

The norm of τh depends only on the position of b. Indeed, if we fix the

position of b in ]1 − h, 1[, ‖τh‖Lp (p = 1, 2,∞) is constant as a function of

the position of a in ]0, h[. This does not happen if we fix the position of a

in ]0, h[ and varies only the position of b in ]1 − h, 1[. In particular, the L1-

and L2-norms of τh are constant, the L∞-norm is smaller if θb ∼ 0 or θb ∼ 1,

as the following figures (Figure 2.6, Figure 2.7) show:

Figure 2.6: p - Norm of the consistency error τh as a function of the number

of the grid points: p = 1 (left), p = 2 (center), p = ∞ (right)

We can read the values of the best-fit slope in the table below, which shows

that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 2980 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0156 -2.0101 -1.9538

The numerical results (and the figures) were obtained varying the position

of a in ]0, h[ and thus the position of b in ]1 − h, 1[.
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Figure 2.7: L∞-norm of the consistency error τh as a function of the position

of b (n = 100)

Quadratic interpolation procedure

nmin = 7, nmax = 2980 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9833 -1.9886 -1.9687

In these numerical results the position of a varies in ]0, h[ and thus the posi-

tion of b varies in ]1 −h, 1[. The norm of τh does not depend on the position

of a and on the position of b.

Remark 2.2 - on the behavior of the consistency error: We can

observe a behavior of the consistency error similar to that observed in the

previous section in which b is a grid point. In general, if we perform the

linear interpolation procedures to impose the boundary conditions in a and

in b the L1- and L2-norms of the consistency error are constant and the

L∞-norm depends on the position of a and on the position of b. Only if

θa = 0.5 or θb = 0.5 also the L∞-norm is constant. We can draw the same

conclusions of the previous case (see Remark 2.1).

Behavior of the error eh

Linear interpolation procedure

The norm of the error depends on the position of a and on the position of

b in the case in which we perform the linear interpolation procedures. It is

smaller if θa ∼ 0 or θa ∼ 1 and at the same time θb ∼ 0 or θb ∼ 1 (see Figure
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2.8). Only in the case in which b = 1 − h
2

we observe a different behavior

of ‖eh‖Lp : in ‖eh‖L1 and ‖eh‖L2 the dipendence from a is less evident, while

‖eh‖L∞ is constant to vary of the position of a.

Figure 2.8: p - Norm of the error eh as a function of the position of a

(n = 100): p = 1 (top left), p = 2 (top right), p = ∞ (bottom left). The

position of a varies in ]0, h[ and thus the position of b varies in ]1 − h, 1[

We can obtain a perfectly symmetrical figure with respect to that shown in

Figure (2.8) if we consider the norm of eh as a function of the position of b.

In any case, ‖eh‖Lp ∼ O(h2), p = 1, 2,∞. We can read the values of the

best-fit slope in the following table:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9797 -1.9735 -1.9715

These values were obtained varying the position of a in ]0, h[ and thus the

position of b in ]1 − h, 1[.
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Quadratic interpolation procedure

Also in the case in which we perform the quadratic interpolation procedures

we obtain that ‖eh‖Lp ∼ O(h2):

nmin = 7, nmax = 2980 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9590 -1.9533 -1.9594

These values were obtained varying the position of a in ]0, h[ and thus the

position of b in ]1 − h, 1[. The norm of eh does not depend on the position

of a and on the position of b.

Remark 2.3: It is interesting to underline the behaviors regarding the

consistency error and the error as a function of the positions of a and of

b. In general we can observe, both for the consistency error and for the

error that the behavior of the Lp-norm as a function of the position of a is

perfectly symmetric to the behavior as a function of the position of b. In

the First Example the problem is perfectly symmetric, because b = π − a

and f(x) = sin(x) is symmetric around π
2
. Thus the fact that we observe

a symmetric behavior in a and b is obvious. In the Second Example the

problem is not symmetric, because f(x) = ex is not symmetric, thus the fact

that we observe a symmetric behavior in a and b is an interesting result.

Conclusions

We itemize the numerical results on the Dirichlet problems (1.13) and (1.14)

in [a,b] ⊂ [0, 1]. We have chosen not to fix the position of a and the position

of b, but to move a in ]0, h[ and b in ]1 − h, 1[, so as to see if the results

may or may not depend on their positions. We obtained results similar to

the previous case, that is the case in which b is a grid point. We distinguish

two cases: Ah not symmetric and Ah symmetric.

Ah not symmetric

In the case in which Ah is not symmetric, the numerical results are the

following:
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• ‖A−1
h ‖p ∼ O(n

1
p ), p = 1, 2,∞;

• ρ(A−1
h ) → 1;

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

The norm of the consistency error and the norm of the error can depend

on the positions of a and of b in the case in which we perform the linear

interpolations to impose the boundary conditions in a and in b, which pro-

vide a second-order accuracy at the border as on the internal points.

In particular we have observed that L1- and L2-norms of the consistency

error are constant as a function of a and of b, while L∞-norm of the consis-

tency error is not. In Remark 2.1 we have provided an explanation for this

behavior of the consistency error.

Instead, the norm of the consistency error and the norm of the error do

not depend on the position of a and on the position of b in the case

in which we perform the quadratic interpolations to impose the boundary

conditions in a and in b, which provide a third-order accuracy at the border.

Ah symmetric

In the case in which the matrix Ah is symmetric the behaviors of the norms

of the consistency error and of the inverse matrix of Ah depend on the sym-

metrization method used.

If we symmetrize the matrix Ah through the symmetrization method (1.34)

the norm of τh does not depends on the position of a and on the position of

b and

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h),

thus we haven’t consistency problems. However, there is a threshold of neg-

ative values of m below which problems of consistency are starting to be

verified. These values are around −1, −2, −3, depending on the test exam-

ined.

The spectral radius of A−1
h and ‖A−1

h ‖p grow as a function of n for values of

m ≥ 0 and tend to a constant for values m < 0. Therefore, we have stability

problems in the case in which m ≥ 0.
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Based on the above, is not convenient to symmetrize the matrix Ah.

If we symmetrize the matrix Ah through the formula (1.9) (thus only in

the case in which we perform the linear interpolation procedures to impose

the boundary conditions in a and in b) the norm of τh depends on the posi-

tions of a and of b and for this reason the order of accuracy itself depends

on their positions. Performing various numerical tests we have observed that

‖τh‖L1 ∼ O(h), ‖τh‖L2 ∼ O(h
1
2 ), ‖τh‖L∞ ∼ O(h0),

therefore the consistency of the method is not guaranteed in L∞-norm.

Only if θa → 0 (or θb → 0) , ‖τh‖Lp ∼ O(h2), p = 1, 2,∞. Furthemore, if

θa → 1 (or θb → 1) we have consistency problems.

The spectral radius of A−1
h and ‖A−1

h ‖p tend to a constant for large values of

n.

Therefore, also in this case is not convenient to symmetrize the matrix Ah.
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2.1.3 Mixed boundary conditions

Now we consider the same numerical tests for the mixed problem.

We impose Dirichlet boundary condition in a and Neumann boundary con-

dition in b. We will consider the following cases:

• the case in which we perform the linear interpolation procedures to

impose the boundary conditions both in a and in b (2d 2n);

• the case in which we perform the linear interpolation procedure to

impose the boundary condition in a and the quadratic interpolation

procedure to impose the boundary condition in b (2d 3n);

• the case in which we perform the quadratic interpolation procedures to

impose the boundary conditions both in a and in b (3d 3n).

Behavior of the inverse matrix of Ah and of the spectral radius of

A−1
h

The spectral radius of A−1
h obviously does not depend on the position of b

in the case in which we perform the linear interpolation procedure to impose

the boundary condition in b. In all cases (2d 2n, 2d 3n, 3d 3n), the spectral

radius of A−1
h essentially does not depend on the position of a and on the

position of b; it tends to a constant for large values of n. The following figure

(Figure 2.9) shows the behavior of the spectral radius of A−1
h choosing a = h

2
,

b = π − h
2

and the case 2d 2n. In the left panel we have chosen n = 100.

The behavior of the norm of the inverse matrix coincides with that of the

Dirichlet Problems: ‖A−1
h ‖p ∼ O(n

1
p ), p = 1, 2,∞. The following table shows

the numerical results in the case 2d 2n, choosing a = h
2

and b = π − h
2
:

nmin = 54, nmax = 1096 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

a = h
2
, b = π − h

2
0.9999 0.4904 0.6554 10−2
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Figure 2.9: Dependence of the reciprocal of the eigenvalue of minimum

module of the matrix Ah (|λmin|) on the number n of the grid points

(θa = θb = 0.5) (left panel) and on the parameter 1 − θa for different values

of n: n = 10 (blue line), n = 30 (green line), n = 100 (red line), n = 1000

(cyan line) (right panel)

First example

We solve numerically the equation

−uxx = sin(x) in ]a,b[⊂ [0, π],

in which we impose Dirichlet boundary condition in a and Neumann bound-

ary condition in b. The problem to be solved numerically is:














−uxx = sin(x) in ]a, b[⊂ [0, π]

u(a) = sin(a)
∂u
∂n

(b) = cos(b)

.

We place b = π − a.

Behavior of the consistency error τh

2d 2n

The norm of the consistency error τh, in the case 2d 2n, depends only on

the position of b. Indeed, if we fix the position of b in ]π−h, π[ the norm of

the consistency error is constant as a function of the position of a in ]0, h[.

This does not happen if we fix the position of a and we observe its behavior

as a function of the position of b. In this latter case, the L1- and L2-norms

are constant, the L∞-norm is smaller if θb ∼ 0.5 and it is larger if θb ∼ 0 or

θb ∼ 1 (see Figure 2.10).
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Figure 2.10: L∞-norm of the consistency error τh as a function of the position

of b (n = 100). The position of a varies in ]0, h[ and b = π − a

Anyway ‖τh‖Lp ∼ O(h2), p = 1, 2,∞, as we can read in the table below:

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0307 -2.0354 -1.9963

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]π − h, π[.

2d 3n

Also in this case (2d 3n), the norm of the consistency error depends only

on the position of b. In particular, the L1- and L2-norms are constant, the

L∞-norm is larger if θb ∼ 0 or θb ∼ 1 and it is smaller if θb ∼ 0.5. The

following figure (Figure 2.11) shows this behavior. In the figure, the position

of a and the position of b vary in ]0, h[ and in ]π − h, π[ respectively.

Anyway ‖τh‖Lp ∼ O(h2), p = 1, 2,∞, as we can read in the table below:

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0290 -2.0302 -1.9863

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]π − h, π[.
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Figure 2.11: L∞-norm of the consistency error τh as a function of the position

of b (n = 100)

3d 3n

In this case (3d 3n), the behavior of the norm of τh coincides with that of

the previous case (case 2d 3n). We can read the values of the best-fit slope

in the table below, which shows that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0198 -2.0139 -1.9918

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]π − h, π[.

Behavior of the error eh

2d 2n

In the following table we show the numerical results about the norm of the

error as a function of the number of the grid points in the case in which we

impose boundary conditions both in a and in b performing linear interpola-

tions. The numerical results show that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0390 -2.0266 -2.0054

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]π − h, π[.
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The norm of the error depends only on the position of b in this example.

Indeed, if we fix the position of b in ]π − h, π[ the norm of the error is con-

stant as a function of the position of a in ]0, h[. This does not happen in

the case we fix the position of a and we observe its behavior as a function of

the position of b. In particular, it is larger if θb ∼ 0. This behavior can be

highlighted in the following figure (Figure 2.12), which shows how varies the

norm of the error as a function of the position of b. We have chosen n = 100.

The position of a varies in ]0, h[ and b = π − a.

Figure 2.12: p - Norm of the error eh as a function of the position of b

(n = 100): p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Remark 2.4 - on the behavior of the error: If we consider a mixed

problem (case 2d 2n) we expect a loss of accuracy on the error with re-

spect to the Dirichlet problem (First example in Subsection 2.1.2). This is

because when we impose the Neumann condition on the extreme b by per-

forming linear interpolation, from formula (1.16) we have E ∼ O(h), which

is going to influence the global error. In fact, on the various numerical tests

performed (just read the numerical results about the behavior of the er-

ror in the Second example of this Subsection), we obtain ‖eh‖Lp ∼ O(h)

(p = 1, 2,∞). We justify why in this case we obtain instead ‖eh‖Lp ∼ O(h2).
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If we consider the Taylor series of the function u(x) = sin(x) of center π

we have:

u(π − h) = u(π) − u′(π)h+
u′′(π)

2
h2 − u′′′(π)

6
h3 + O(h4),

from which

u(π) − u(π − h)

h
= u′(π) − u′′(π)

2
h+

u′′′(π)

6
h2 + O(h3),

and being u′′(π) = 0, we obtain u′(π) ∼ O(h2), as in the internal points.

The same happens when choosing center 0.

For the same reason, a loss of accuracy in the consistency error does not

occur, as instead happens in the Second example of this Subsection, in

which:

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h).

The reason why this loss of accuracy affects the L∞-norm most is in Remark

2.1.

2d 3n

Also in the case 2d 3n, the norm of the error depends only on the position

of b. In particular, it is larger if θb ∼ 1 (see Figure 2.13). Anyway, ‖eh‖Lp ∼
O(h2), p = 1, 2,∞, as we can read in the following table:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0775 -2.0748 -2.0698

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]π − h, π[.

3d 3n

In this latter case (3d 3n) the behavior of the norm of eh coincides with

that of the previous case (case 2d 3n). The following table shows that

‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0354 -2.0206 -2.0037

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]π − h, π[.
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Figure 2.13: p - Norm of the error eh as a function of the position of b

(n = 100): p = 1 (top left), p = 2 (top right), p = ∞ (bottom left). The

position of a varies in ]0, h[ and b = π − a

Second example

We solve numerically the equation

−uxx = ex in ]a,b[⊂ [0, 1],

in which we impose Dirichlet boundary condition in a and Neumann bound-

ary condition in b. The problem to be solved numerically is:














−uxx = ex in ]a, b[⊂ [0, 1]

u(a) = −ea

∂u
∂n

(b) = −eb

.

We place b = 1 − a.

Behavior of the consistency error τh

2d 2n

In the case 2d 2n the numerical results show:

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h);
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only in the case in which θb ∼ 0.5, ‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9790 -1.5353 -1.0154

nmin = 7, nmax = 8103 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

θb = 0.5 -2.0021 -2.0025 -2.0059

In the table on the top the position of a and the position of b vary in ]0, h[

and in ]1 − h, 1[ respectively, in the table on the bottom the position of a

varies in ]0, h[ and θb = 0.5.

The norm of the consistency error τh, in this example, depends only on the

position of b. Indeed, if we fix the position of b in ]1 − h, 1[ the norm of the

consistency error is constant as a function of the position of a in ]0, h[. This

does not happen if we fix the position of a and we observe its behavior as a

function of the position of b. It is larger if θb = 0 or θb = 1 and it is smaller

if θb = 0.5.

2d 3n

Also in the case 2d 3n, the norm of τh depends only on the position of b.

In particular the L1- and L2-norms are constant, the L∞-norm is larger if

θb ∼ 0 or θb ∼ 1 and it is smaller if θb ∼ 0.5. This behavior is shown in the

Figure 2.14.

Figure 2.14: L∞-norm of the consistency error τh as a function of the position

of b (n = 100). The position of a varies in ]0, h[ and b = 1 − a
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The numerical results show that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 2980 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0188 2.0212 -1.9281

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]1 − h, 1[.

3d 3n

In this latter case (3d 3n) the behavior of the norm of τh is equal to that of the

previous case (case 2d 3n). The numerical results show that ‖τh‖Lp ∼ O(h2),

p = 1, 2,∞:

nmin = 7, nmax = 2980 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0116 -2.0152 -1.9372

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]1 − h, 1[.

Behavior of the error eh

Now, we show the behavior of the norm of the error as a function of the

number of the grid points.

2d 2n

In the case 2d 2n the numerical results show:

‖eh‖Lp ∼ O(h), p = 1, 2,∞;

only in the case in which θb = 0.5, ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.0505 -1.0483 -1.0412

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

θb = 0.5 -2.1123 -2.0941 -2.0632
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In the table on the top the position of a and the position of b vary in ]0, h[

and in ]1 − h, 1[ respectively, in the table on the bottom the position of a

varies in ]0, h[ and θb = 0.5.

The norm of eh does not depend on the position of a. Indeed, if you fix

the position of b in ]1 − h, 1[ the norm of the error is constant as a function

of the position of a in ]0, h[. Only if b = 1 − h
2

the norm is smaller if θa ∼ 0

or θa ∼ 1 and it is larger if θa = 0.5. The norm of eh depends on the position

of b: it is larger if θb = 0 or θb = 1 and it is smaller if θb = 0.5.

2d 3n

In the case 2d 3n the numerical results show that ‖eh‖Lp ∼ O(h2), p =

1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9648 -1.9538 -1.9305

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]1 − h, 1[.

The behavior of the norm of the error is as follow:

• as a function of the position of a in ]0, h[, for each position of b (except

the case in which θb ∼ 1) the norm of the error is smaller if θa ∼ 0 or

θa ∼ 1 and it is larger if θa ∼ 0.5. In the case in which θb ∼ 1 the norm

of the error is constant as a function of the position of a;

• as a function of the position of b in ]1 − h, 1[, for each position of a,

the norm of the error is larger if θb ∼ 1. The following figure (Figure

2.15) shows the behavior of ‖eh‖Lp as a function of the position of b

(the position of a varies in ]0, h[).
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Figure 2.15: p - Norm of the error eh as a function of the position of b

(n = 100): p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

3d 3n

In the case 3d 3n the numerical results show that ‖eh‖Lp ∼ O(h2), p =

1, 2,∞:

nmin = 7, nmax = 8103 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9390 -1.9353 -1.9193

These results were obtained varying the position of a in ]0, h[ and thus the

position of b in ]1 − h, 1[.

The norm of the error depends only on the position of b. Indeed, if we

fix the position of b in ]1 − h, 1[ the norm of the error is constant as a func-

tion of the position of a in ]0, h[. This does not happen if we fix the position

of a and we observe its behavior as a function of the position of b. The

results on the dependence of the norm from the position of b are equal to

those of the previous case (case 2d 3n).
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Remark 2.5 - on the behavior of the consistency error: The norm

of the consistency error depends only on the position of b. Indeed, if we fix

the position of b in ]1 − h, 1[ the norm of the consistency error is constant

as a function of the position of a in ]0, h[. This does not happen if we fix the

position of a and we observe its behavior as a function of the position of b.

In particular, we can observe that, except for the 2d 2n case, the L1- and

L2-norms of τh are constant as a function of the position of b, while the L∞-

norm is not. In the 2d 2n case not even the L1- and L2-norms are constant.

The reason is similar to the explanation given in Remark 2.1.

Conclusions

We itemize the numerical results on the mixed problems in [a,b] ⊂ [0, 1]. We

have chosen not to fix the position of a and the position of b, but to move

a in ]0, h[ and b in ]1 − h, h[, so as to see if the results may or may not

depend on their positions. We distinguish two cases: Ah not symmetric and

Ah symmetric.

Ah not symmetric

In the case in which Ah is not symmetric, the numerical results are the

following:

• ‖A−1
h ‖p ∼ O(n

1
p ), p = 1, 2,∞;

• ρ(A−1
h ) → c, where c is a constant.

The accuracy orders of ‖τh‖Lp and of ‖eh‖Lp depend on the procedure with

which we impose the boundary condition in b.

If we perform the linear interpolation procedure (case 2d 2n) we have:

• ‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h);

• ‖eh‖Lp ∼ O(h), p = 1, 2,∞;

only if θb = 0.5 we have a second-order accuracy for both the error and the

consistency error. The loss of accuracy with respect to the Dirichlet problem

is due to the fact that the linear interpolation provides a first-order accuracy

in b in the case in which we impose Neumann condition.

If we perform the quadratic interpolation procedure (cases 2d 3n and 3d

3n), which provides a second-order accuracy on the border in the case in

which we impose Neumann condition, we have:
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• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

The norm of the consistency error can depend on the position of b and

the norm of the error can depend on the position of a and on the

position of b in the case in which we perform the linear interpolation to

impose the Dirichlet boundary condition in a (case 2d 2n and 2d 3n). They

depend only the position of b if we perform the quadratic interpolation

to impose the boundary condition in a (case 3d 3n). If we want that there

is not even dependence from b we need to perform a cubic interpolation

procedure to impose the Neumann condition in b, which provides a third-

order accuracy on the border.

Ah symmetric

In the case in which the matrix Ah is symmetric the behaviors of the norms

of the consistency error and of the inverse matrix of Ah depend on the sym-

metrization method used.

If we symmetrize the matrix Ah through the symmetrization method (1.34)

the norm of τh does not depends on the position of a and on the position of

b and

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h),

thus we haven’t consistency problems. However, for m ≤ 0 problems of con-

sistency are starting to be verified.

The spectral radius of A−1
h and ‖A−1

h ‖p grow as a function of n for all val-

ues of m. Based on the above, is not convenient to symmetrize the matrix Ah.

If we symmetrize the matrix Ah through the formulas (1.9) and (1.18) (thus

only in the case 2d 2n) the norm of τh depends on the positions of a and of

b. Performing various numerical tests we have observed that

‖τh‖L1 ∼ O(h), ‖τh‖L2 ∼ O(h
1
2 ), ‖τh‖L∞ ∼ O(h0),

therefore the consistency of the method is not guaranteed in L∞-norm.

Furthemore, if θa → 1 we have consistency problems.

The spectral radius of A−1
h and ‖A−1

h ‖p tend to a constant for large values

of n. Therefore, also in this case is not convenient to symmetrize the matrix

Ah.
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2.2 Numerical tests in 2D

We continue showing the numerical tests in two-dimensional case. We present

two several cases: the case in which the domain is a square and the case in

which the domain is a circumference.

2.2.1 Dirichlet boundary conditions - Square domain

We start to show the numerical results of the Dirichlet problem both in

the case in which we perform the linear interpolations and in the case in

which we perform the quadratic interpolations, choosing a square domain.

We have chosen a square because it represents a simple extension of the

one-dimensional case.

Behavior of the inverse matrix of Ah

We show the behavior of the norm of the inverse matrix of Ah as a function

of N . The norm of A−1
h depends on the position of the vertices a, b, c and d

(see Figure 1.9) of the square respect to the grid. The square domain within

the uniform grid, it is indeed circumscribed to a square whose vertices are

internal points and it is inscribed in a square whose vertices are ghost points.

Linear interpolation procedures

The numerical results in the case in which we perform the linear interpola-

tions are listed in the following table:

Nmin = 40, Nmax = 109 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

θs = θn = θe = θw = 0.5 0.9292 0.4811 −0.1641 10−3

θs = θn = θe = θw = 0.9990 0.9773 0.4864 0.3109 10−4

θs = θn = θw = 0.9990, θe = 0.001 0.7878 −0.1400 −0.2009 10−3

θs = θn = θe = 0.9990, θw = 0.001 0.7878 −0.1400 −0.2009 10−3

θn = θw = θe = 0.9990, θs = 0.001 0.7878 −0.1400 −0.2009 10−3

θs = θw = θe = 0.9990, θn = 0.001 0.7878 −0.1400 −0.2009 10−3

θs = θn = 0.9990, θw = θe = 0.001 0.7725 −0.1128 −0.2482 10−3

θs = θn = 0.001, θw = θe = 0.9990 0.7725 −0.1128 −0.2482 10−3

θs = θn = θw = θe = 0.001 0.6563 10−6 0.1032 10−11 −0.2585 10−6

θs = θn = θw = 0.001, θe = 0.9990 0.6518 10−6 0.1032 10−11 −0.2585 10−6

θs = θn = θe = 0.001, θw = 0.9990 0.6518 10−6 0.1032 10−11 −0.2585 10−6

θn = θw = θe = 0.001, θs = 0.9990 0.6518 10−6 0.1032 10−11 −0.2585 10−6

θs = θw = θe = 0.001, θn = 0.9990 0.6518 10−6 0.1032 10−11 −0.2585 10−6
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Quadratic interpolation procedures

The numerical results in the case in which we perform the quadratic inter-

polations are listed in the following table:

Nmin = 40, Nmax = 109 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

θs = θn = θe = θw = 0.5 0.9159 0.4805 −0.1359 10−3

θs = θn = θe = θw = 0.9990 0.9773 0.4863 0.3131 10−4

θs = θn = θw = 0.9990, θe = 0.001 0.7694 −0.1179 −0.2486 10−3

θs = θn = θe = 0.9990, θw = 0.001 0.7694 −0.1179 −0.2486 10−3

θn = θw = θe = 0.9990, θs = 0.001 0.7694 −0.1179 −0.2486 10−3

θs = θw = θe = 0.9990, θn = 0.001 0.7694 −0.1179 −0.2486 10−3

θs = θn = 0.9990, θw = θe = 0.001 0.7722 −0.1153 −0.2478 10−3

θs = θn = 0.001, θw = θe = 0.9990 0.7722 −0.1153 −0.2478 10−3

θs = θn = θe = θw = 0.001 0.1645 10−6 0.1032 10−11 −0.1295 10−6

θs = θn = θw = 0.001, θe = 0.9990 0.1634 10−6 0.729 10−12 −0.1295 10−6

θs = θn = θe = 0.001, θw = 0.9990 0.1634 10−6 0.1179 10−11 −0.1295 10−6

θn = θw = θe = 0.001, θs = 0.9990 0.1634 10−6 0.1188 10−11 −0.1295 10−6

θs = θw = θe = 0.001, θn = 0.9990 0.1634 10−6 0.742 10−12 −0.1295 10−6

It is possible to notice that when all the sides of the domain are close to

the ghost points the behavior coincides with that of the 1D case, that is,

‖A−1
h ‖p ∼ O(N

1
p ), p = 1, 2,∞. When the sides are close to the internal

points, we have:

• if one side or two sides are close to the internal points:

‖A−1
h ‖1 ∼ O(N), ‖A−1

h ‖2 ∼ O(N0), ‖A−1
h ‖∞ ∼ O(N0);

• if three or all sides are close to the internal points:

‖A−1
h ‖p ∼ O(N0), p = 1, 2,∞.

Thus, the stability is guaranteed in the ∞-norm whatever the position of the

vertices of the domain with respect to the grid.
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Behavior of the spectral radius of A−1
h

Now, we show the behavior of the spectral radius of the matrix A−1
h , in the

case in which we perform the linear interpolations to impose the Dirichlet

conditions:

Figure 2.16: Dependence of the reciprocal of the eigenvalue of minimum

module of the matrix Ah (|λmin|) on the number N of the grid points

These results were obtained choosing xa = ya = h
2

and xb = yd = 1 − h
2
. The

figure shows that the spectral radius of A−1
h is constant for large values of N .

This constant depends on the position of the vertices a, b, c and d of the

square. In this case is 2.

We have the same results (ρ(A−1
h ) → c) in the case in which we perform

the quadratic interpolation procedures to impose the boundary conditions.

Behavior of the Schur complement of Ah

We also show the behavior of the norm of the inverse of the Schur complement

of Ah:

Sh = Agg − AgiA
−1
ii Aig.

The study of Schur complement is fundamental for evaluate the stability of

the numerical method. We explain why.
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We write the linear system in this way:

AhV =

(

Agg Agi

Aig Aii

)(

Vg

Vi

)

=

(

zg

zi

)

,

where Vg and Vi are the vectors of the ghost points and of the internal points

respectively. Being:

AiiVi + AigVg = zi =⇒ Vi = A−1
ii (zi − AigVg), (2.5)

AgiVi + AggVg = zg, (2.6)

replacing (2.5) in (2.6) we have

zg = (Agg − AgiA
−1
ii Aig)Vg + AgiA

−1
ii zi.

The quantity AgiA
−1
ii zi is negligible, therefore we focus only on quantity

Sh = Agg − AgiA
−1
ii Aig which is precisely the Schur complement of Ah. We

have also verified that in the case of the square domain the Schur comple-

ment is a symmetric matrix. To get information on stability, we deal with

the study of the norm of the inverse matrix of Sh.

We can read the values of the best-fit slope in the table below in the case in

which we perform the linear interpolation procedures, choosing xa = ya = h
2

and xb = yd = 1 − h
2
, and it shows that the norm and the spectral radius of

S−1
h are constant for large values of N :

Nmin = 33, Nmax = 109 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

−0.5329 10−7 0.2937 10−3 −0.5329 10−7

We obtain the same accuracy in the case in which we perform the quadratic

interpolation procedures to impose the boundary conditions:

Nmin = 33, Nmax = 109 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

0.1506 10−6 −0.5049 10−8 −0.3079 10−7
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Now, we proceed showing some numerical results about the behaviors of the

consistency error and of the error.

We choose some functions f for our numerical tests:

• −uxx − uyy = 4x+x3+xy2

(x2+y2+1)2
√

x2+y2+1
=⇒ u = x√

x2+y2+1

• −uxx − uyy = −2ex2+y2
[2 + 2(x2 + y2)] =⇒ u = ex2+y2

• −uxx − uyy = 8π2 sin(2πy) cos(2πx) =⇒ u = 2 + sin(2πy) cos(2πx)

We have approximated ‖τh‖Lp and ‖eh‖Lp (p = 1, 2,∞) in this way:

‖ah‖L1 = h2
∑

i,j ∈ Ωi
h

∪Ωg
h

|ah(xi, yj)|,

‖ah‖L2 =
√

h2
∑

i,j ∈ Ωi
h

∪Ωg
h

|ah(xi, yj)|2,

‖ah‖L∞ = max
i,j ∈ Ωi

h
∪Ωg

h

|ah(xi, yj)|,

where ah is τh or eh.

Behavior of the consistency error τh

Through our numerical tests we want showing that ‖τh‖Lp ∼ O(h2), p =

1, 2,∞. We show below the numerical results obtained choosing xa = ya = h
2

and xb = yd = 1 − h
2
.

In each table related to a certain function, in the first row we inserted the

results obtained performing the linear interpolations, in the second row we

inserted the results obtained performing the quadratic interpolations.

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Linear interpolation procedures -1.9825 -1.9839 -1.9937

Quadratic interpolation procedures -1.9738 -1.9834 -1.9937
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The following figure (Figure 2.17) shows the behavior of the consistency error

as a function of the number of the grid points, in the case in which we perform

the linear interpolations. Moreover, we have verified that in this example the

norm of the consistency error does not depend on the position of the vertices

of the square, as well as in the case we perform the quadratic interpolations.

Figure 2.17: p - Norm of the consistency error τh as a function of the number

of the grid points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Linear interpolation procedures -1.9417 -1.9414 -1.8756

Quadratic interpolation procedures -1.9318 -1.9408 -1.8756

Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Linear interpolation procedures -1.9596 -1.9767 -1.9979

Quadratic interpolation procedures -1.9583 -1.9767 -1.9979
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We have verified that in all examples the norm of the consistency error does

not depend on the position of the vertices of the square both in the case we

perform the linear interpolations and in the case we perform the quadratic

interpolations.

Behavior of the error eh

Now we show that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞. We show below the results

obtained choosing xa = ya = h
2

and xb = yd = 1 − h
2
.

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

Linear interpolation procedures -2.0428 -2.0265 -2.0154

Quadratic interpolation procedures -1.8849 -1.8840 -1.9095

Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

Linear interpolation procedures -2.0358 -2.0265 -1.9469

Quadratic interpolation procedures -1.8420 -1.8301 -1.8360

Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

Linear interpolation procedures -2.0604 -2.0502 -2.0217

Quadratic interpolation procedures -1.9671 -1.9546 -1.9590

We have verified that in all examples the norm of the error depends on the

position of the vertices of the square in the case we perform the linear interpo-

lations. In the case we perform the quadratic interpolations the dependence

on the position of the vertices of the domain is less evident. The following

figure (Figure 2.18) shows the behavior of the norm of the error as a function
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of the number of the grid points related to the First example, in the case in

which we perform the linear interpolation procedures to impose the Dirichlet

conditions.

Figure 2.18: p - Norm of the error eh as a function of the number of the grid

points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

We conclude this Section showing a figure relative to the Third example

in which the numerical solution overlaps the exact solution. We have chosen

N = 50, the linear interpolations to impose the Dirichlet boundary conditions

and θk = 0.5 (k = s, n, w, e).
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Figure 2.19: Solution for the Third example with Dirichlet boundary con-

ditions

2.2.2 Mixed boundary conditions - Square domain

We proceed to show the numerical results of the mixed problem both in the

case in which we perform the linear interpolations and in the case in which we

perform the quadratic interpolations. In particular, we impose the Dirichlet

boundary conditions in the points of the south (s) and west (w) zones and

we impose the Neumann boundary conditions in the points of the nord (n)

and est (e) zones.

Behavior of the inverse matrix of Ah

We show the behavior of the norm of the inverse matrix of Ah as a function

of N . The norm of A−1
h depends on the position of the vertices a, b, c and

d (see Figure 1.9) of the square respect to the grid.
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Linear interpolation procedures

The numerical results in the case in which we perform the linear interpola-

tions are listed in the following table:

Nmin = 33, Nmax = 109 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

θs = θn = θe = θw = 0.5 0.9082 0.4762 0.1287 10−1

θs = θn = θe = θw = 0.9990 0.9334 0.4476 0.6506 10−2

θs = θn = θw = 0.9990, θe = 0.001 0.9334 0.4476 0.6506 10−2

θs = θn = θe = 0.9990, θw = 0.001 0.8290 0.3727 −0.5283 10−3

θn = θw = θe = 0.9990, θs = 0.001 0.8290 0.3727 −0.5283 10−3

θs = θw = θe = 0.9990, θn = 0.001 0.9334 0.4476 0.6506 10−2

θs = θn = 0.9990, θw = θe = 0.001 0.8290 0.3727 −0.5283 10−3

θs = θn = 0.001, θw = θe = 0.9990 0.8290 0.3727 −0.5283 10−3

θs, θn, θw, θe ∼ 0 0.6229 10−8 0.581 10−12 0.3284 10−7

θs, θn, θw ∼ 0, θe ∼ 1 0.6229 10−8 0.581 10−12 0.3284 10−7

θs = θn = θe = 0.001, θw = 0.9990 0.8290 0.3727 −0.5283 10−3

θn = θw = θe = 0.001, θs = 0.9990 0.8290 0.3727 −0.5283 10−3

θs, θw, θe ∼ 0, θn ∼ 1 0.6152 10−8 0.581 10−12 0.7692 10−7

Quadratic interpolation procedures

The numerical results in the case in which we perform the quadratic inter-

polations are listed in the following table:

Nmin = 33, Nmax = 109 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

θs = θn = θe = θw = 0.5 0.9031 0.4761 −0.2875 10−3

θs = θn = θe = θw = 0.9990 0.9631 0.4699 0.6589 10−2

θs = θn = θw = 0.9990, θe = 0.001 0.9552 0.4774 0.6622 10−2

θs = θn = θe = 0.9990, θw = 0.001 0.8950 0.3691 −0.5261 10−3

θn = θw = θe = 0.9990, θs = 0.001 0.8950 0.3691 −0.5261 10−3

θs = θw = θe = 0.9990, θn = 0.001 0.9552 0.4714 0.6622 10−2

θs = θn = 0.9990, θw = θe = 0.001 0.8881 0.3683 −0.5275 10−3

θs = θn = 0.001, θw = θe = 0.9990 0.8881 0.3683 −0.5275 10−3

θs = θn = θw = θe = 0.001 0.1531 10−6 0.35 10−13 −0.1655 10−6

θs = θn = θw = 0.001, θe = 0.9990 0.1559 10−6 0.35 10−13 −0.1655 10−6

θs = θn = θe = 0.001, θw = 0.9990 0.7783 0.3517 −0.4094 10−2

θn = θw = θe = 0.001, θs = 0.9990 0.7783 0.3517 −0.4094 10−2

θs = θw = θe = 0.001, θn = 0.9990 0.1559 10−6 0.35 10−13 −0.1655 10−6
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Based on the position of the vertices of the domain relative to the grid, the

numerical results show that the following cases can occur:

• ‖A−1
h ‖1 ∼ O(N), ‖A−1

h ‖2 ∼ O(N
1
2 ), ‖A−1

h ‖∞ ∼ O(N0)

• ‖A−1
h ‖1 ∼ O(N0), ‖A−1

h ‖2 ∼ O(N0), ‖A−1
h ‖∞ ∼ O(N0).

As in the Dirichlet problem, stability is guaranteed in the ∞-norm whatever

the position of the vertices of the domain with respect to the grid.

The behavior of the spectral radius of the matrix A−1
h is identical to that

of the Dirichlet problem, both in the case in which we perform the linear in-

terpolations and in the case in which we perform the quadratic interpolations,

that is, it tends to a constant for large values of N .

Behavior of the Schur complement of Ah

The norm of the inverse of the Schur complement of Ah and its spectral

radius tend to a constant for large values of N :

Nmin = 33, Nmax = 109 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

Linear interpolation procedures 0.1202 0.3093 10−2 0.1009 10−1

Quadratic interpolation procedures 0.1150 0.1951 10−7 −0.9570 10−4

These results were obtained choosing θs = θn = θw = θe = 0.5, but we have

the same accuracy also for different values of the positions of the vertices of

the square with respect to the grid.
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Behavior of the consistency error τh

We show the behavior of the norm of the consistency error as a function of

the number of the grid points, starting with the case in which we perform

the linear interpolations.

Linear interpolation procedures

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

The behavior of the consistency error in the case in which we perform the

linear interpolations coincides with that of the one-dimensional case:

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h).

Only in the case in which at least θn = θe = 0.5 we obtain ‖τh‖Lp ∼
O(h2), p = 1, 2,∞. We can read the values of the best-fit slope in the

tables below:

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9795 -1.9836 -1.9937

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9801 -1.5147 -1.0101

In the table on the top we have chosen θs = θn = θw = θe = 0.5 and in the

table on the bottom we have chosen θs = θn = θw = θe = 0.9990.

Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

θs = θn = θw = θe = 0.5 -1.9426 -1.9416 -1.8756

θs = θn = θw = θe = 0.9990 -1.9436 -1.4683 -0.9369
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Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

θs = θn = θw = θe = 0.5 -1.9603 -1.9767 -1.9979

θs = θn = θw = θe = 0.9990 -1.9665 -1.7848 -0.9964

In this last case there is a second-order accuracy also in the L2-norm and it

is enough that there is θe = 0.5 for it to occur the second-order accuracy:

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

θe = 0.5, θs = θn = θw = 0.9990 -1.9634 -1.9772 -1.9979

We have verified that in all examples the norm of the consistency error de-

pends on the position of the vertices of the square.

Quadratic interpolation procedures

In the case in which we perform the quadratic interpolations we show the

numerical results only in the case in which θs = θn = θw = θe = 0.5, because

‖τh‖Lp ∼ O(h2) (p = 1, 2,∞) whatever is the position of the vertices of the

domain with respect to the grid. Furthermore, ‖τh‖Lp does not depend on

the position of the vertices of the square.

First example

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9763 -1.9834 -1.9937

Second example

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9414 -1.9416 -1.8756

Third example

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-1.9597 -1.9767 -1.9979
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Behavior of the error eh

We now examine the behavior of the norm of the error as a function of N ,

starting with the case in which we perform the linear interpolations.

Linear interpolation procedures

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

The behavior of the error in the case in which we perform the linear inter-

polations coincides with that of the one-dimensional case:

‖eh‖Lp ∼ O(h), p = 1, 2,∞.

Only in the case in which at least θn = θe = 0.5 we obtain ‖eh‖Lp ∼
O(h2), p = 1, 2,∞. We can read the values of the best-fit slope in the

tables below:

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0348 -2.0165 -1.9969

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.0483 -1.0404 -1.0126

In the table on the top we have chosen θs = θn = θw = θe = 0.5 and in the

table on the bottom we have chosen θs = θn = θw = θe = 0.9990.

Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

θs = θn = θw = θe = 0.5 -1.9270 -1.9002 -1.8915

θs = θn = θw = θe = 0.9990 -1.0228 -1.0107 -0.9592
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Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

θs = θn = θw = θe = 0.5 -2.0505 -2.0359 -2.0215

θs = θn = θw = θe = 0.9990 -1.0712 -1.0664 -1.0322

In this last example it is enough that there is θe = 0.5 for it to occur the

second-order accuracy.

We have verified that in all examples the norm of the error depends on

the position of the vertices of the square with respect to the grid.

Quadratic interpolation procedures

In the case in which we perform the quadratic interpolations we show the

numerical results only in the case in which θs = θn = θw = θe = 0.5, because

‖eh‖Lp ∼ O(h2) (p = 1, 2,∞) whatever is the position of the vertices of the

domain. Furthermore, ‖eh‖Lp depends on the position of the vertices of the

square.

First example

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9046 -1.89704 -1.9139

Second example

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9280 -1.9196 -1.9102

Third example

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0285 -2.0235 -2.0357



CHAPTER 2. NUMERICAL TESTS 101

2.2.3 Dirichlet boundary conditions - Circular domain

To conclude the analysis in the 2D case, we present the numerical results

in the case of a circular domain. It is clear that in this case, unlike the

previous case, we can not choose the values of the θij (coefficients of bilinear

or biquadratic interpolations), but we can only fix the center and the radius

of the circumference. In fact, the values of the θij vary from ghost point to

ghost point. We start imposing the Dirichlet boundary conditions.

We performed various numerical tests on different functions changing the

position of the circumference with respect to the grid, to see if the accuracy

can depend on it or not.

Behavior of the inverse matrix of Ah

First, we show the behavior of the norm of the inverse matrix of Ah as

a function of N . We have verified that the accuracy does not depend on

the position of the circumference, therefore we present below the numerical

results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3.

We can read the values of the best-fit slope in the table below, both in the

case we perform the bilinear interpolations and in the case we perform the

biquadratic interpolations, which shows that

‖A−1
h ‖1 ∼ O(N), ‖A−1

h ‖2 ∼ O(N0), ‖A−1
h ‖∞ ∼ O(N0) :

Nmin = 49, Nmax = 181 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

Bilinear interpolation procedures 0.8737 0.1855 0.3240 10−1

Biquadratic interpolation procedures 0.8238 0.1102 0.7302 10−1

Also in the case of a circular domain, for the Dirichlet problem, the stability

is guaranteed in the ∞-norm.

The spectral radius of the inverse matrix basically remains constant, both in

the case we perform the bilinear interpolations and in the case we perform

the biquadratic interpolations. The following figure (Figure 2.20) shows the

spectral radius of A−1
h in the case in which we perform the bilinear interpo-

lations.
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Figure 2.20: Spectral radius of A−1
h as a function of N

Behavior of the Schur complement of Ah

The norm of the inverse of the Schur complement of Ah and its spectral

radius tend to a constant for large values of N . We have verified that the

accuracy does not depend on the position of the circumference, therefore we

present below the numerical results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3 :

Nmin = 49, Nmax = 181 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

Bilinear interpolation procedures 0.4428 10−1 0.2604 10−1 0.1078 10−1

Biquadratic interpolation procedures 0.7937 10−1 0.1111 0.7318 10−1

The following figure (Figure 2.21) shows the behavior of the norm of inverse

matrix of the Schur complement of Ah and of its spectral radius as a function

of N , in the case in which we perform the bilinear interpolations:
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Figure 2.21: p - Norm and spectral radius of the inverse of the Schur com-

plement of Ah as a function of the grid points: p = 1 (top left), p = 2 (top

right), p = ∞ (bottom left)

Behavior of the consistency error τh

We proceed showing the behavior of the consistency error as a function of the

number of the grid points. Also in this case the accuracy does not depend on

the position of the circumference, therefore we present below the numerical

results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3.

We can read the values of the best-fit slope in the tables below, which show

that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞.

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Bilinear interpolation procedures -2.0111 -1.9976 -1.9834

Biquadratic interpolation procedures -1.9966 -1.9966 -1.9834
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Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Bilinear interpolation procedures -2.0124 -1.9993 -1.9808

Biquadratic interpolation procedures -1.9976 -1.9981 -1.9808

Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 20, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Bilinear interpolation procedures -1.9911 -1.9966 -1.9979

Biquadratic interpolation procedures -1.9885 -1.9966 -1.9979

We have verified that in all examples the norm of the consistency error does

not depend on the values of the θij, both in the case we perform the bilinear

interpolations and in the case we perform the biquadratic interpolations.

Behavior of the error eh

Now, we show the behavior of the norm of the error as a function of N .

Bilinear interpolation procedures

First, we show the results in the case we perform the bilinear interpolation

procedures. We have verified that the accuracy does not depend on the po-

sition of the circumference, therefore we present below the numerical results

obtained choosing

xc = 0.4, yc = 0.4, R = 0.3.

We can read the values of the best-fit slope in the tables below, which show

that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.1149 -2.0942 -1.8843
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Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.1271 -2.1097 -1.7630

Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.1721 -2.1543 -1.9570

In all examples the numerical results depend on the values of the θij.

Biquadratic interpolation procedures

In the case in which we perform the biquadratic interpolations to impose

the Dirichlet conditions we show the numerical results choosing xc = yc =

0.50001 and R = 0.45.

First example

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9526 -1.9348 -1.9565

Second example

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9435 -1.9211 -2.0922

Third example

Nmin = 20, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0124 -1.9645 -1.9619

In all examples the numerical results do not depend on the values of the θij.
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2.2.4 Mixed boundary conditions - Circular domain

Once the analysis of the Dirichlet problem is concluded, we proceed showing

the numerical results of the mixed problem. In particular, we impose Dirich-

let boundary conditions in the area to the right of the center and Neumann

boundary conditions in the area to the left of the center.

Figure 2.22: Outward unit normal vec-

tor of the ghost point g

We impose the Neumann boundary

conditions in the point f = (xf, yf)

(projection of the ghost point g on

the border) through the formula:

∂u

∂n
(xf, yf) =

∂u

∂x
(xf, yf)nx+

∂u

∂y
(xf, yf)ny,

in which nx and ny are the compo-

nents of the outward unit normal nG

at the border in the point g (see Fig-

ure 2.22). We compute nx and ny in

this way:

nx =
xg − xc

d
, ny =

yg − yc

d
,

where d =
√

(xg − xc)2 + (yg − yc)2 is the usual Euclidean distance.

Behavior of the inverse matrix of Ah

We start showing the behavior of the norm of the inverse matrix of Ah as a

function of N . We present below the numerical results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3.

We can read the values of the best-fit slope in the tables below, which show

that

‖A−1
h ‖1 ∼ O(N

3
2 ), ‖A−1

h ‖2 ∼ O(N
1
2 ), ‖A−1

h ‖∞ ∼ O(N0).
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Bilinear interpolation procedures

Nmin = 49, Nmax = 181 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

1.3789 0.5180 0.3796 10−1

Biquadratic interpolation procedures

Nmin = 49, Nmax = 181 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

1.3906 0.3703 0.7253 10−1

Also in the case of a circular domain, for the mixed problem, the stability is

guaranteed in the ∞-norm.

The spectral radius of the inverse matrix basically remains constant, both in

the case we perform the bilinear interpolations and in the case we perform

the biquadratic interpolations.

Behavior of the Schur complement of Ah

Now, we show the behavior of the norm of the inverse of the Schur comple-

ment of Ah as a function of N .

Bilinear interpolation procedures

In the case in which we perform the bilinear interpolations, the numerical

results show that

‖S−1
h ‖1 ∼ O(N

1
2 ), ‖S−1

h ‖2 ∼ O(N0), ‖S−1
h ‖∞ ∼ O(N0).

We present below the numerical results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3 :

Nmin = 49, Nmax = 181 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

0.2960 0.3191 10−1 0.2183 10−1
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Biquadratic interpolation procedures

In the case in which we perform the biquadratic interpolations, the numerical

results show that

‖S−1
h ‖1 ∼ O(N

1
2 ), ‖S−1

h ‖2 ∼ O(N0), ‖S−1
h ‖∞ ∼ O(N0),

but there are cases (for small rays) in which ‖S−1
h ‖p ∼ O(N0), p = 1, 2,∞.

We can read the values of the best-fit slope in the table below:

Nmin = 49, Nmax = 181 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

C((0.4, 0.4), 0.3) 0.2786 0.8237 10−1 0.8445 10−1

C((0.77, 0.34), 0.1) 0.5901 10−1 0.7096 10−1 −0.8553 10−1

Behavior of the consistency error τh

We proceed showing the behavior of the norm of the consistency error as a

function of the number of the grid points. We have verified that the accuracy

does not depend on the position of the circumference, therefore we present

below the numerical results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3.

We can read the values of the best-fit slope in the tables below, which show

that

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h)

if we perform the bilinear interpolations, and ‖τh‖Lp ∼ O(h2) (p = 1, 2,∞)

if we perform the biquadratic interpolations.

First example

−uxx − uyy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

Nmin = 36, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Bilinear interpolation procedures -2.0251 -1.6064 -1.0061

Biquadratic interpolation procedures -1.9398 -1.9633 -1.9837
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Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 36, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Bilinear interpolation procedures -2.0415 -1.6445 -1.0098

Biquadratic interpolation procedures -1.9199 -1.9527 -1.9717

Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 36, Nmax = 148 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

Bilinear interpolation procedures -2.0014 -1.8859 -1.0061

Biquadratic interpolation procedures -1.9126 -1.9498 -1.9956

We have verified that in all examples the norm of the consistency error depend

on the values of the θij if we perform the bilinear interpolations and it does not

depend on the values of the θij if we perform the biquadratic interpolations.

Behavior of the error eh

Finally, we show the behavior of the norm of the error as a function of the

number of the grid points. We have verified that the accuracy does not

depend on the position of the circumference, therefore we present below the

numerical results obtained choosing

xc = 0.4, yc = 0.4, R = 0.3.

We can read the values of the best-fit slope in the tables below, which show

that ‖eh‖Lp ∼ O(h) (p = 1, 2,∞) if we perform the bilinear interpolations,

and ‖eh‖Lp ∼ O(h2) (p = 1, 2,∞), if we perform the biquadratic interpola-

tions.
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First example

−uxx − uy =
4x+ x3 + xy2

(x2 + y2 + 1)2
√
x2 + y2 + 1

Nmin = 44, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

Bilinear interpolation procedures -1.1369 -1.1174 -1.0476

Biquadratic interpolation procedures -1.9439 -1.9280 -1.913

Second example

−uxx − uyy = −2ex2+y2

[2 + 2(x2 + y2)]

Nmin = 44, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

Bilinear interpolation procedures -1.1851 -1.1646 -1.1424

Biquadratic interpolation procedures -1.9445 -1.9206 -1.9203

Third example

−uxx − uyy = 8π2 sin(2πy) cos(2πx)

Nmin = 44, Nmax = 148 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

Bilinear interpolation procedures -1.1090 -1.0498 -1.0440

Biquadratic interpolation procedures -1.9927 -1.9579 -1.9640

In this last example, a second-order accuracy also occurs in the L2-norm in

the case in which we perform the bilinear interpolations. This behavior also

occurred in the case of a square domain.

We have verified that in all examples the norm of the error depend on the

values of the θij if we perform the bilinear interpolations and it does not

depend on the values of the θij if we perform the biquadratic interpolations.
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Conclusions

Dirichlet problem

We itemize the numerical results on the Dirichlet problem (1.24). The nu-

merical results are the following:

• ‖A−1
h ‖∞ ∼ O(N0);

• ρ(A−1
h ) → c, where c is a constant;

• ‖S−1
h ‖∞ ∼ O(N0);

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

The norm of the consistency error and the norm of the error can depend on

the values of θij in the case in which we perform the bilinear interpolations

to impose the Dirichlet boundary conditions. They do not depend on the

values of θij in the case in which we perform the biquadratic interpolations.

Mixed problem

We itemize the numerical results on the mixed problem (1.27). The numerical

results are the following:

• ‖A−1
h ‖∞ ∼ O(N0);

• ρ(A−1
h ) → c, where c is a constant;

• ‖S−1
h ‖∞ ∼ O(N0).

The accuracy orders of ‖τh‖Lp and of ‖eh‖Lp depend on the procedure with

which we impose the Neumann boundary conditions. If we perform the

bilinear interpolation procedures we have:

• ‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h);

• ‖eh‖Lp ∼ O(h), p = 1, 2,∞,

because the Neumann conditions confers a first-order accuracy at the border

in the case in which we perform the bilinear interpolations. If we perform

the biquadratic interpolation procedures we have the second order accuracy

both in the consistency error and in the error:
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• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

The norm of the consistency error and the norm of the error can depend on

the values of θij in the case in which we perform the bilinear interpolations

to impose the boundary conditions. They do not depend on the values

of θij in the case in which we perform the biquadratic interpolations.
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2.3 Numerical tests in 3D

We conclude this Chapter showing some numerical simulations to highlight

the main features of the numerical method in three-dimensional case.

Figure 2.23: Spherical domain

We chose a spherical domain.

A sphere of radius R and

center c(xc, yc, zc) is con-

tained in the unit cube. The

value of the radius and the

position of the center can

change. We discretize the

unit cube with a regular grid

of size h along the three axes

respectively. We indicate by

N the number of intervals

with which we discretize the

interval [0, 1] along each axis
(

N = 1
h

)

. In total we have

(N + 1)3 grid points. In this

way, the sphere is also discretized. We indicate by n the total number of grid

points in the sphere. The figure above on the left (Figure 2.23) represents a

sphere of radius R = 0.3 and center c(0.42, 0.42, 0.43). It is for these values

of the center and of the radius that we will show the numerical results, unless

otherwise stated.

2.3.1 Dirichlet boundary conditions

We start showing the numerical tests on the Dirichlet problem. We start

showing the behaviors of the norm of the inverse matrix of Ah and its spectral

radius and the norm of the inverse of the Schur complement Sh as a function

of N .
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Behavior of the inverse matrix of Ah

In the following tables we report the values of the best-fit slope of the norm

of the inverse matrix as a function of N .

Trilinear interpolation procedures

Nmin = 33, Nmax = 49 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

0.4453 0.7380 10−1 0.5213 10−1

Triquadratic interpolation procedures

Nmin = 22, Nmax = 40 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

0.2705 −0.1672 10−1 −0.6804 10−1

In both cases, the numerical results show that

‖A−1
h ‖1 ∼ O(N

1
2 ), ‖A−1

h ‖2 ∼ O(N0), ‖A−1
h ‖∞ ∼ O(N0),

thus the stability is guaranteed in the ∞-norm, as in 1D and 2D cases.

The spectral radius of A−1
h substantially tends to a constant for large values

of N .

Behavior of the Schur complement of Ah

The norm of the inverse of the Schur complement of Ah tends to a constant

for large values of N . We can read the values of the best-fit slope in the

tables below:

Trilinear interpolation procedures

Nmin = 20, Nmax = 40 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

0.8045 10−1 0.4898 10−1 0.3268 10−1

Triquadratic interpolation procedures

Nmin = 20, Nmax = 40 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

-0.1973 −0.6547 10−1 −0.6950 10−1
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We proceed by showing the behaviors of the norm of the consistency error

and of the norm of the error as a function of N . We consider the following

equation:

−uxx − uyy − uzz = f,

with

f =
[(y2z2 + x2y2 + x2z2)(x+ y + z)2 + 6] sin(xyz) + 2(yz + xy + xz) cos(xyz)(x+ y + z)

(x+ y + z)3

and whose exact solution is u = sin(xyz)
x+y+z

.

We have approximated ‖τh‖Lp and ‖eh‖Lp (p = 1, 2,∞) in this way:

‖ah‖L1 = h3
∑

i,j,k ∈ Ωi
h

∪Ωg
h

|ah(xi, yj, zk)|,

‖ah‖L2 =
√

h3
∑

i,j,k ∈ Ωi
h

∪Ωg
h

|ah(xi, yj, zk)|2,

‖ah‖L∞ = max
i,j,k ∈ Ωi

h
∪Ωg

h

|ah(xi, yj, zk)|,

where ah is τh or eh.

Behavior of the consistency error τh

We start showing the results about the norm of the consistency error as a

function of N .

Trilinear interpolation procedures

The following figure (Figure 2.24) shows the behavior of the norm of τh as

a function of N in the case in which we perform the trilinear interpolation

procedures to impose the boundary conditions. We can read the values of

the best-fit slope in the table below, which shows that ‖τh‖Lp ∼ O(h2),

p = 1, 2,∞:

Nmin = 24, Nmax = 60 sl(‖τh‖L1) al(‖τh‖L2) sl(‖τh‖L∞)

-2.0252 -2.0020 -1.9549
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Figure 2.24: p - Norm of the consistency error τh as a function of the number

of the grid points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Triquadratic interpolation procedures

Also in the case in which we perform the triquadratic interpolations we obtain

‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

Nmin = 24, Nmax = 60 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0046 -2.0007 -1.9549
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Behavior of the error eh

We continue showing the results about the behavior of the norm of the error

as a function of N . The numerical results were obtained choosing xc = yc =

zc = 0.500001 and R = 0.3.

Trilinear interpolation procedures

The following figure (Figure 2.25) shows the behavior of the norm of eh as

a function of N in the case in which we perform the trilinear interpolation

procedures. We can read the values of the best-fit slope in the table below,

which shows that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

Nmin = 40, Nmax = 66 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.2942 -2.2248 -1.7875

Figure 2.25: p - Norm of the error eh as a function of the number of the grid

points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)
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Triquadratic interpolation procedures

The following figure (Figure 2.26) shows the behavior of the norm of eh as a

function of N in the case in which we perform the triquadratic interpolation

procedures. We can read the values of the best-fit slope in the table below,

which shows that ‖eh‖Lp ∼ O(h2), p = 1, 2,∞:

Nmin = 44, Nmax = 73 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-2.0961 -2.0017 -2.4117

Figure 2.26: p - Norm of the error eh as a function of the number of the grid

points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)
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2.3.2 Mixed boundary conditions

We proceed by showing the results of the mixed problem both in the case

in which we perform the trilinear interpolations and in the case in which we

perform the triquadratic interpolations.

Behavior of the inverse matrix of Ah

In the following tables we report the values of the best-fit slope of the norm

of the inverse matrix of Ah as a function of N :

Trilinear interpolation procedures

Nmin = 22, Nmax = 40 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

1.2511 0.5230 10−1 0.3182 10−1

Triquadratic interpolation procedures

Nmin = 22, Nmax = 40 sl(‖A−1
h ‖1) sl(‖A−1

h ‖2) sl(‖A−1
h ‖∞)

0.9881 0.6027 10−2 −0.7371 10−1

In both cases, the numerical results show that

‖A−1
h ‖1 ∼ O(N), ‖A−1

h ‖2 ∼ O(N0), ‖A−1
h ‖∞ ∼ O(N0),

thus the stability is guaranteed in the ∞-norm, as in 1D and 2D cases.

The spectral radius of A−1
h substantially tends to a constant for large values

of N .

Behavior of the Schur complement of Ah

The numerical results about the norm of the inverse of the Schur complement

of Ah as a function of N show that

‖S−1
h ‖1 ∼ O(N

1
2 ), ‖S−1

h ‖2 ∼ O(N0), ‖S−1
h ‖∞ ∼ O(N0),

in the case in which we perform the trilinear interpolations and it tend to a

constant if we perform the triquadratic interpolations, as we can read ih the

following tables:
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Trilinear interpolation procedures

Nmin = 20, Nmax = 40 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

0.3022 0.1041 0.4237 10−1

Triquadratic interpolation procedures

Nmin = 20, Nmax = 40 sl(‖S−1
h ‖1) sl(‖S−1

h ‖2) sl(‖S−1
h ‖∞)

s 0.4195 10−1 −0.2785 10−1 −0.4022 10−1

Finally we show the behaviors of the consistency error and of the error,

choosing the same equation of the Dirichlet problem, but imposing Dirichlet

boundary conditions in the area to the right of the center and Neumann

boundary conditions in the area to the left of the center.

Behavior of the consistency error τh

Trilinear interpolation procedures

The following figure (Figure 2.27) shows the behavior of the norm of τh as

a function of N in the case in which we perform the trilinear interpolation

procedures. We can read the values of the best-fit slope in the table below,

which shows that

‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h).

Nmin = 33, Nmax = 66 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0711 -1.7737 -0.8195

Triquadratic interpolation procedures

In the case in which we perform the triquadratic interpolation procedures

the table shows that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞:

Nmin = 24, Nmax = 60 sl(‖τh‖L1) sl(‖τh‖L2) sl(‖τh‖L∞)

-2.0080 -1.9981 -1.9194

These results were obtained choosing xc = yc = zc = 0.500001 and R = 0.3.
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Figure 2.27: p - Norm of the consistency error τh as a function of the number

of the grid points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Behavior of the error eh

We continue showing the numerical results on the norm of the error as a

function of N , choosing xc = yc = zc = 0.500001 and R = 0.3.

Trilinear interpolation procedures

The following figure (Figure 2.28) shows the behavior of the norm of eh as

a function of N in the case in which we perform the trilinear interpolation

procedures. We can read the values of the best-fit slope in the table below,

which shows that ‖eh‖Lp ∼ O(h), p = 1, 2,∞:

Nmin = 27, Nmax = 66 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.1307 -1.0496 -1.0444
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Figure 2.28: p - Norm of the error eh as a function of the number of the grid

points: p = 1 (top left), p = 2 (top right), p = ∞ (bottom left)

Triquadratic interpolation procedures

In the case we perform the triquadratic interpolation procedures we have

‖eh‖Lp ∼ O(h2) (p = 1, 2,∞), as we can read in the following table:

Nmin = 40, Nmax = 66 sl(‖eh‖L1) sl(‖eh‖L2) sl(‖eh‖L∞)

-1.9855 -1.9463 -2.0210
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Conclusions

Dirichlet problem

We itemize the numerical results on the Dirichlet problem (1.30). The nu-

merical results are similar to the 2D case and are the following:

• ‖A−1
h ‖∞ ∼ O(N0);

• ρ(A−1
h ) → c, where c is a constant;

• ‖S−1
h ‖∞ ∼ O(N0);

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

Mixed problem

We itemize the numerical results on the mixed problem (1.32). The numerical

results are the following:

• ‖A−1
h ‖∞ ∼ O(N0);

• ρ(A−1
h ) → c, where c is a constant;

• ‖S−1
h ‖∞ ∼ O(N0).

The accuracy orders of ‖τh‖Lp and of ‖eh‖Lp depend on the procedure with

which we impose the Neumann boundary conditions. If we perform the

trilinear interpolation procedures we have:

• ‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h);

• ‖eh‖Lp ∼ O(h), p = 1, 2,∞,

because the Neumann conditions confers a first-order accuracy at the border

in the case in which we perform the trilinear interpolations. If we perform

the triquadratic interpolation procedures we have:

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.



3
Convergence analysis for the Coco-Russo

method

We conclude the analysis of the Coco-Russo method addressing the question

of the stability and convergence of the numerical method.

The consistency errors for Dirichlet and mixed problems are computed in

one, two and three spatial dimensions. We have one proof of the stability and

one of the convergence of the numerical method only in the one-dimensional

case. We will see that the extension of the proofs to the two-dimensional

case is quite complex due to the arbitrary nature of the domain in 2D.

We start analyzing the consistency, the convergence and the stability of the

numerical method in the one-dimensional case.

3.1 Consistency for the Dirichlet problem in

1D

We consider the Dirichlet problems (1.8) and (1.12), in which the domain is

[a, 1].

We prove that the numerical method is consistent and we determine that

in the internal points the numerical solution is consistent with second-order

accuracy.

124



CHAPTER 3. CONVERGENCE ANALYSIS 125

We calculate the consistency error τh = Ahu− Au.

In the internal points, if u ∈ C4([x0, xn]), we have:

τi = τh(xi) = ∆hu(xi) − ∆u(xi) =
h2

12
uIV(ξi) i = 1, . . . , n− 1,

for some ξi ∈ [xi−1, xi+1]. Therefore,

‖τh‖L1 =
∫

|τh|dx ≈
n−1
∑

i=1

|τh(xi)|h =
h2

12

n−1
∑

i=1

|uIV(ξi)|h ≈ h2

12
‖uIV‖L1 ∼ O(h2),

‖τh‖L2 =
(∫

|τh|2dx
)

1
2 ≈

(

n−1
∑

i=1

|τh(xi)|2h
)

1
2

=
h2

12

(

n−1
∑

i=1

|uIV(ξi)|2h
)

1
2

≈ h2

12
‖uIV‖L2 ∼ O(h2),

‖τh‖L∞ = max
[x1,xn−1]

|τh| =
h2

12
max

[x1,xn−1]
|uIV(ξi)| =

h2

12
‖uIV‖L∞ ∼ O(h2).

In the only ghost point x0, if we impose the Dirichlet condition through the

linear interpolation procedure, we have:

τ0 = τ(x0) =
∣

∣

∣

∣

−1

2
θa(1 − θa)h

2u
′′

(ξ)
∣

∣

∣

∣

∼ O(h2),

for some ξ ∈ [min{x0, x1, a},max{x0, x1, a}], while if we impose the Dirichlet

condition through the quadratic interpolation procedure, we have:

τ0 = τ(x0) =
∣

∣

∣

∣

1

6
θa(1 − θa)(1 + θa)h

3u
′′′

(ξ)
∣

∣

∣

∣

∼ O(h3),

for some ξ ∈ [min{x0, x1, x2, a},max{x0, x1, x2, a}].

With the symmetry of the matrix Ah (through the formula (1.9)), in the

case in which we impose the Dirichlet condition in a through the linear in-

terpolation procedure, we have:

τ0 = τ(x0) =
1

2
θau

′′

(ξ) ∼ O(h0),

for some ξ ∈ [min{x0, x1, a},max{x0, x1, a}].
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If we consider the Dirichlet problems (1.13) and (1.14) in which the domain

is [a,b] ⊂ [0, 1], the consistency error in the ghost point xn is calculated in

a similar way to the consistency error in the ghost point x0.

To study the stability of the numerical method just try that ‖A−1
h ‖p has

an upper bound. We consider the simplest case in which the domain is [a, 1]

and we perform the linear interpolation to impose the boundary condition in

a (Problem (1.8)).

3.2 Stability for the Dirichlet problem in 1D

This proof will appear in the joint paper in preparation Spectral and norm

estimates for matrix sequences arising from a Finite Difference of approxima-

tion of elliptic operators with Stefano Serra-Capizzano, Sven-Erik Ekström

and Giovanni Russo. This is a proof of stability of the numerical method,

since an approximation of the norm of the inverse matrix of the numerical

method is given.

1. Introduction

Let Tn be a Toeplitz matrix of order n

Tn =



























a0 · · · a−α

...
. . .

. . .

aα

. . .
. . .

. . .
. . . a−α

. . .
. . .

...

aα · · · a0



























,

where the coefficients ak, k = −α, . . . , α, are complex numbers and let α < n

be a positive integer.

Let f ∈ L1(−π, π) and let Tn(f) be the Toeplitz matrix generated by f

that is (Tn(f))s,t = as−t(f), s, t = 1, . . . , n, with f indicated as generating

function of {Tn(f)} and with ak(f) being the k-th Fourier coefficient of f

that is

ak(f) =
1

2π

∫ π

−π
f(θ) e−ikθ dθ, i2 = −1, k ∈ Z.
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2. Problem formulation and notation in 1D

We can decompose Ah as follows:

Ah =
1

h2

















2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2

















+
1

h2



















θah2 − 2 (1 − θa)h2 + 1 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

...
...

...

0 0 0 . . . 0



















=
1

h2
Tn(2 − 2 cos(θ)) +

1

h2



















θah2 − 2 (1 − θa)h2 + 1 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

...
...

...

0 0 0 . . . 0



















=
1

h2
Tn(2 − 2 cos(θ)) +

1

h2











v
T
h

0

...

0











= Sn +
1

h2
e1v

T
h ,

where Tn(f) is the Toeplitz matrix generated by f according to (3.2), with

f(θ) = 2 − 2 cos(θ) so that, in the matrix in (3.2), we have α = 1, a0 =

2, a1 = a−1 = −1.

From the Sherman–Morrison–Woodbury formula [28, 29],we obtain an ex-

plicit expression of the inverse matrix of Ah:

A−1
h =

(

I +
1

h2
S−1

n e1v
T
h

)−1

S−1
n

= S−1
n −

1
h2 S−1

n e1v
T
h S−1

n

1 + 1
h2 vT

h S−1
n e1

= S−1
n − Rn.

We want to estimate quite accurately ‖A−1
h ‖p with p ∈ [1,∞] and with ‖ · ‖p

being the matrix norm induced by the vector norm ‖x‖p = (
∑ |xj|p)1/p. We

consider only the cases p = 1, 2,∞, since the other estimates can be obtained

via classical interpolation techniques.
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Being A−1
h = S−1

n −Rn, we start by estimating ‖S−1
n ‖1, ‖S−1

n ‖∞, ‖Rn‖1, ‖Rn‖∞,

that will be used to give quite precise bounds on ‖A−1
h ‖1 and ‖A−1

h ‖∞. From

the estimate on ‖A−1
h ‖1 and ‖A−1

h ‖∞ and from the inequality ‖A−1
h ‖2 ≤

√

‖A−1
h ‖1‖A−1

h ‖∞ we will give an estimate for ‖A−1
h ‖2.

2.1. Estimating ‖S−1
n ‖p with p = 1,∞

We have S−1
n = h2T−1

n where Tn = Tn(2 − 2 cos(θ)) and

T−1
n =















t
(1)
1 t

(2)
1 . . . t

(n)
1

t
(1)
2 t

(2)
2 . . . t

(n)
2

...
...

. . .
...

t(1)
n t(2)

n . . . t(n)
n















=
[

t(1) t(2) . . . t(n)
]

,

with

t
(r)
k =

(n+ 1 − r)k

n+ 1
, k = 1, . . . , r − 1, r > 1,

t
(r)
k =

(n+ 1 − k)r

n+ 1
, k = r, . . . , n,

and symmetrically

t
(r)
k =

(n+ 1 − k)r

n+ 1
, r = 1, . . . , k − 1, k > 1,

t
(r)
k =

(n+ 1 − r)k

n+ 1
, r = k, . . . , n.

Therefore

(

T−1
n

)

k,r
= t

(r)
k .

All terms of S−1
n (and T−1

n ) are positive and real, and they are symmetric.

Hence by using the explicit expressions of the considered norms, we find

‖S−1
n ‖∞ = max

k

{

n
∑

r=1

(

S−1
n

)

k,r

}

= max
k

{

h2
n
∑

r=1

(

T−1
n

)

k,r

}

= max
r

{

h2
n
∑

k=1

(

T−1
n

)

k,r

}

= max
r







n
∑

j=1

(

S−1
n

)

k,r







= ‖S−1
n ‖1,

so we limit ourselves only to obtain an estimate for ‖S−1
n ‖∞.
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Numerically it is obvious that the highest row sum for matrices T−1
n with n

even is for index n
2

(or n
2

+ 1, they are equal). For odd n, the highest row

sum is for row n+1
2

.

Thus for n even:

‖T−1
n ‖∞ =

n
∑

r=1

t
(r)
n/2 =

n/2−1
∑

r=1

(n+ 1 − n
2
)r

n+ 1
+

n
∑

r=n/2

(n+ 1 − r)n
2

n+ 1

=
n+ 2

2(n+ 1)

n/2−1
∑

r=1

r +
n

2

n
∑

r=n/2

1 − n

2(n+ 1)

n
∑

r=n/2

r

=
n+ 2

2(n+ 1)

(

n
2

− 1
)

n
2

2
+
n

2

(

n

2
+ 1

)

− n

2(n+ 1)





n(n+ 1)

2
−
(

n
2

− 1
)

n
2

2





=
n+ 2

2(n+ 1)

(n− 2)n

8
+
n(n+ 2)

4
− n

2(n+ 1)

(

4n(n+ 1)

8
− (n− 2)n

8

)

=
n+ 2

2(n+ 1)

(n− 2)n

8
+
n(n+ 2)

4
− n

2(n+ 1)

3n(n+ 2)

8

=
n(n+ 2)

16(n+ 1)
((n− 2) + 4(n+ 1) − 3n)

=
n(n+ 2)

16(n+ 1)
2(n+ 1)

=
n(n+ 2)

8

=
2h+ 1

8h2
,

from which:

‖S−1
n ‖∞ = h2‖T−1

n ‖∞

= h2 1 + 2h

8h2

=
1 + 2h

8
,

and as h → 0 we have ‖S−1
n ‖∞ → 1

8
.
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While for n odd:

‖T−1
n ‖∞ =

n
∑

r=1

t
(r)
(n+1)/2 =

(n−1)/2
∑

r=1

(

n+ 1 − n+1
2

)

r

n+ 1
+

n
∑

r=(n+1)/2

(n+ 1 − r)n+1
2

n+ 1

=
(n−1)/2
∑

r=1

n+1
2
r

n+ 1
+

n
∑

r=(n+1)/2

(n+ 1 − r)n+1
2

n+ 1

=
1

2

(n−1)/2
∑

r=1

r +
n+ 1

2

n
∑

r=(n+1)/2

1 − 1

2

n
∑

r=(n+1)/2

r

=
1

2

n−1
2

(

n−1
2

+ 1
)

2
+
n+ 1

2

(

n−
(

n+ 1

2
− 1

))

− 1

2





n(n+ 1)

2
−

n+1
2

(

n+1
2

− 1
)

2





=
(n− 1)(n+ 1)

16
+

(n+ 1)2

4
− 1

2

(

4n(n+ 1)

8
− (n+ 1)(n− 1)

8

)

=
(n− 1)(n+ 1)

16
+

(n+ 1)2

4
− (3n+ 1)(n+ 1)

16

=
(n+ 1)2

4
− 2(n+ 1)(n+ 1)

16

=
4(n+ 1)2

16
− 2(n+ 1)2

16

=
(n+ 1)2

8
=

(h+ 1)2

8h2
,

from which:

‖S−1
n ‖∞ = h2‖T−1

n ‖∞

= h2 (h+ 1)2

8h2

=
(h+ 1)2

8

and as h → 0 we have ‖S−1
n ‖∞ → 1

8
.

Therefore, from the symmetry, for all n we obtain:

lim
n→∞

‖S−1
n ‖∞ = lim

n→∞
‖S−1

n ‖1 =
1

8
.
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2.2. Estimating ‖Rn‖p for p = 1,∞

Since S−1
n = h2T−1

n and T−1
n e1 = t(1), we find that:

Rn =
1

h2 S−1
n e1v

T
h S−1

n

1 + 1
h2 vT

h S−1
n e1

=
T−1

n e1v
T
h S−1

n

1 + vT
h T−1

n e1

=
t(1)vT

h S−1
n

1 + vT
h t(1)

.

Moreover:

t
(1)
k =

n+ 1 − k

n+ 1
= 1 − k

n+ 1
, k = 1, . . . , n,

vT
h =

[

θah
2 − 2 (1 − θa)h

2 + 1 0 . . . 0
]

=
[

v1 v2 0 . . . 0
]

,

vT
h t(1) = v1t

(1)
1 + v2t

(1)
2

= (θah
2 − 2)

(

1 − 1

n+ 1

)

+
(

(1 − θa)h
2 + 1

)

(

1 − 2

n+ 1

)

= θah
2 − 2 − θah

2

n+ 1
+

2

n+ 1
+ (1 − θa)h

2 + 1

− 2

n+ 1
(1 − θa)h

2 − 2

n+ 1

= (−2 + 1) + (θa + 1 − θa)h
2 + (−θa − 2 + 2θa)

h2

n+ 1

= (θa − 2)
h2

n+ 1
+ h2 − 1,

1 + vT
h t(1) = 1 + v1t

(1)
1 + v2t

(1)
2

= (θa − 2)
h2

n+ 1
+ h2

=

(

θa − 2

n+ 1
+ 1

)

h2,
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vT
h S−1

n = h2vT
h T−1

n = h2zT
h ,

zT
h = [v1t

(1)
1 + v2t

(1)
2 v1t

(2)
1 + v2t

(2)
2 . . .

. . . v1t
(r)
1 + v2t

(r)
2 . . . v1t

(n)
1 + v2t

(n)
2 ],

(

vT
h S−1

n

)

r
= h2

(

v1t
(r)
1 + v2t

(r)
2

)

,
(

t(1)vT
h S−1

n

)

k,r
= t

(1)
k h2

(

v1t
(r)
1 + v2t

(r)
2

)

.

Being:

t
(1)
k = 1 − k

n+ 1
, k = 1, . . . , n, r = 1,

t
(r)
1 = 1 − r

n+ 1
, k = 1, r = 1, . . . , n,

t
(1)
2 = 1 − 2

n+ 1
, k = 2, r = 1,

t
(r)
2 = 2 − 2

r

n+ 1
, k = 2, r = 2, . . . , n,

we obtain, for r = 1:

(

t(1)vT
h S−1

n

)

k,1
= t

(1)
k h2

(

v1t
(1)
1 + v2t

(1)
2

)

= t
(1)
k vT

h t(1)

=

(

1 − k

n+ 1

)

h2
[

(θah
2 − 2)

(

1 − 1

n+ 1

)

+
(

(1 − θa)h
2 + 1

)

(

1 − 2

n+ 1

)]

=

(

1 − k

n+ 1

)

h2

(

(θa − 2)
h2

n+ 1
+ h2 − 1

)

,

and for r > 1:

(

t(1)vT
h S−1

n

)

k,r
= t

(1)
k h2

(

v1t
(r)
1 + v2t

(r)
2

)

=

(

1 − k

n+ 1

)

h2
[

(θah
2 − 2)

(

1 − r

n+ 1

)

+
(

(1 − θa)h
2 + 1

)

(

2 − 2r

n+ 1

)]

= −
(

1 − k

n+ 1

)

(

1 − r

n+ 1

)

h2(θa − 2)

= −
(

1 − k

n+ 1

)

h2(θa − 2)
n+ 1 − r

n
h2
(

1 − 1

n+ 1

)

.
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Thus:

(Rn)k,1 =

(

1 − k
n+1

)

h2
(

(θa − 2) h2

n+1
+ h2 − 1

)

(

θa−2
n+1

+ 1
)

h2
r = 1

=

(

1 − k
n+1

) (

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

=

(

1 − k

n+ 1

)(

h2 − 1
θa−2
n+1

+ 1

)

,

(Rn)k,r = −
h2
(

1 − k
n+1

)

(θa − 2)
(

1 − 1
n+1

)

θa−2
n+1

+ 1

n+ 1 − r

n
r > 1

= −
h2
(

1 − k
n+1

)

(θa − 2)
(

1 − 1
n+1

)

(n+ 1)
θa−2
n+1

+ 1

(

1 − r
n+1

)

n
.

Numerically it is obvious that ‖Rn‖1 and ‖Rn‖∞ are always for the first col-

umn and first row.

Now we compute ‖Rn‖1.

We have:

‖Rn‖1 =
n
∑

k=1

∣

∣

∣

∣

∣

∣

(

1 − k
n+1

) (

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

∣

∣

∣

∣

∣

∣

n
∑

k=1

(

1 − k

n+ 1

)

= −
(

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

(

n− n(n+ 1)

2(n+ 1)

)

= −n

2

(

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1
,
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because of

n

2
> 0,

(θa − 2)
h2

n+ 1
< 0,

h2 − 1 < 0,

θa − 2

n+ 1
+ 1 > 0.

Now we can compute ‖A−1
h ‖1.

Numerically it is obvious that ‖A−1
h ‖1 is computed on the first column. Being

A−1
h = S−1

n − Rn and since the first column of S−1
n has all positive elements

and the the first column of Rn has all negative elements, indeed, they are

respectively:

(S−1
n )k,1 =

(

1 − k

n+ 1

)

> 0, k = 1, . . . , n,

(Rn)k,1 =

(

1 − k
n+1

) (

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1
< 0,

we can compute the norm directly for A−1
h .

The sum of the positive elements of the first column of T−1
n is equal to n

2
,

and thus the sum for the first column of S−1
n is h2n

2
, therefore we have:

‖A−1
h ‖1 =

h2n

2
− n

2

(

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

=
n

2



h2 −
(

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1





=
n

2

1
θa−2
n+1

+ 1
=

n(n+ 1)

2(n+ θa − 1)
∼ O(n).

We now compute ‖Rn‖∞, by taking into consideration that all coefficients

are positive except the first in the first column.
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We have:

(Rn)1,1 =

(

1 − 1
n+1

) (

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1
,

(Rn)1,r =

(

1 − 1
n+1

) (

(θa − 2) h2

n+1
− h2θa + 2h2

)

θa−2
n+1

+ 1

n+ 1 − r

n
,

‖Rn‖∞ = −
(

1 − 1
n+1

) (

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

+

(

1 − 1
n+1

) (

(θa − 2) h2

n+1
− h2θa + 2h2

)

θa−2
n+1

+ 1

n
∑

r=2

n+ 1 − r

n

= −
(

1 − 1
n+1

) (

(θa − 2) h2

n+1
+ h2 − 1

)

θa−2
n+1

+ 1

+

(

1 − 1
n+1

) (

(θa − 2) h2

n+1
− h2θa + 2h2

)

θa−2
n+1

+ 1

[

(n+ 1)(n− 1)

n
− 1

n

(

n(n+ 1)

2
− 1

)]

= −
(

1 − 1

n+ 1

)

h2 +
1 − 1

n+1
θa−2
n+1

+ 1
+

(

1 − 1
n+1

) (

(θa − 2) h2

n+1
− h2θa + 2h2

)

θa−2
n+1

+ 1

(

n− 1

2

)

= −
(

1 − 1

n+ 1

)

h2 +
1 − 1

n+1
θa−2
n+1

+ 1
+

(

1 − 1
n+1

) (

(θa − 2) h2

n+1
+ h2

)

θa−2
n+1

+ 1

(

n− 1

2

)

+

(

1 − 1
n+1

)

h2(1 − θa)
θa−2
n+1

+ 1

(

n− 1

2

)

=
1 − 1

n+1
θa−2
n+1

+ 1
+
(

1 − 1

n+ 1

)

h2
(

n− 3

2

)

+

(

1 − 1
n+1

)

h2(1 − θa)
θa−2
n+1

+ 1

(

n− 1

2

)

=
(

1 − 1

n+ 1

)



h2
(

n− 3

2

)

+
2 + h2(1 − θa)(n− 1)

2
(

θa−2
n+1

+ 1
)





=
(

1 − 1

n+ 1

)





h2(n− 3)
(

θa−2
n+1

+ 1
)

2
(

θa−2
n+1

+ 1
) +

2 + h2(1 − θa)(n− 1)

2
(

θa−2
n+1

+ 1
)





=
1 − 1

n+1

2
(

θa−2
n+1

+ 1
)

[

h2(n− 3)

(

θa − 2

n+ 1
+ 1

)

+ 2 + h2(1 − θa)(n− 1)

]

.
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Now we can compute ‖A−1
h ‖∞.

We know A−1
h = S−1

n − Rn. Being:

t
(r)
1 = 1 − r

n+ 1
, r = 1, . . . , n,

(

S−1
n

)

1,r
= h2t

(r)
1 = h2

(

1 − r

n+ 1

)

,

(Rn)1,1 =
(

1 − 1

n+ 1

)

(

h2 − 1
θa−2
n+1

+ 1

)

, r = 1,

(Rn)1,r = −
h2(θa − 2)

(

1 − 1
n+1

)2

θa−2
n+1

+ 1

(

1 − r
n+1

)

n
(n+ 1), r = 2, . . . , n,

we have:

(

A−1
h

)

1,1
= h2t

(1)
1 − (Rn)1,1

= h2
(

1 − 1

n+ 1

)

−
(

1 − 1

n+ 1

)

(

h2 − 1
θa−2
n+1

+ 1

)

=
1 − 1

n+1
θa−2
n+1

+ 1
,

(

A−1
h

)

1,r
= h2t(1)

r − (Rn)1,r

= h2
(

1 − r

n+ 1

)

+
h2(n+ 1)(θa − 2)

(

1 − 1
n+1

)2

θa−2
n+1

+ 1

(

1 − r
n+1

)

n
,

from which:

‖A−1
h ‖∞ =

(

A−1
h

)

1,1
−

n
∑

r=2

(

A−1
h

)

1,r

=
1 − 1

n+1
θa−2
n+1

+ 1
−

n
∑

r=2





h2
(

1 − r

n+ 1

)

+
h2(n+ 1)(θa − 2)

(

1 − 1
n+1

)2

θa−2
n+1

+ 1

(

1 − r
n+1

)

n







=
1 − 1

n+1
θa−2
n+1

+ 1
−

n
∑

r=2

h2
(

1 − r

n+ 1

)



1 +
(θa − 2)

(

1 − 1
n+1

)

θa−2
n+1

+ 1





=
1 − 1

n+1
θa−2
n+1

+ 1
−

n
∑

r=2

h2
(

1 − r

n+ 1

)

θa − 1
θa−2
n+1

+ 1
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=
1 − 1

n+1
θa−2
n+1

+ 1
− h2(n− 1)

θa − 1
θa−2
n+1

+ 1
+

n
∑

r=2

r
h2

n+ 1

θa − 1
θa−2
n+1

+ 1

=
1 − 1

n+1
θa−2
n+1

+ 1
− h2(n− 1)

θa − 1
θa−2
n+1

+ 1
+

(

n(n+ 1)

2
− 1

)

h2

n+ 1

θa − 1
θa−2
n+1

+ 1

=
1

θa−2
n+1

+ 1



1 − 1

n+ 1
− h2(n− 1)(θa − 1) +

(

nh2 − 2 h2

n+1

)

(θa − 1)

2





=
1

θa−2
n+1

+ 1



1 − 1

n+ 1
+

(

2 − n− 2
n+1

)

h2(θa − 1)

2





=
1

2
(

θa−2
n+1

+ 1
)

{

2
(

1 − 1

n+ 1

)

+
[

2
(

1 − 1

n+ 1

)

− n
]

h2(θa − 1)
}

=
n

n+1

2
(

θa−2
n+1

+ 1
)

(

2 + (2 − n− 1)h2(θa − 1)
)

∼ O(n0).

Finally we have:

‖A−1
h ‖2 ≤

√

√

√

√

√

n

2
(

θa−2
n+1

+ 1
)

1 − 1
n+1

2
(

θa−2
n+1

+ 1
) (2 + (2 − n− 1)h2(θa − 1))

=
n

2
(

θa−2
n+1

+ 1
)

√

1

n+ 1
(2 + (2 − n− 1)h2(θa − 1))

=
n

2(θa − 1 + n)

√

2(n+ 1) + (2 − n− 1)(n+ 1)h2(θa − 1) ∼ O(n
1
2 ).

Remark 3.1: The estimates for ‖A−1
h ‖p are tight and the growth is like n

1
p .

Thus, if we refer to the numerical results on the norm of the inverse matrix,

we show a stability only in the infinite norm. However the numerical growth

of the error seems to be bounded by a constant independently of p. This

is because there are vectors, in our case eh, which guarantee convergence

despite ‖A−1
h ‖p grows.

Remark 3.2: These analytical results confirm the numerical results seen

in the previous Chapter.
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3.3 Convergence for the Dirichlet problem in

1D

We prove that the method is convergent and we determine that the numerical

solution converges with second-order accuracy to the exact solution.

We always consider the case in which the domain is [a, 1] and we perform the

linear interpolation to impose the boundary condition in a (Problem (1.8)).

We provide two different convergence proof.

First proof

This proof is due to Lisl Weynans 1 and it is based on the following steps:

1. Prove that the matrix Ah is "almost" monotonic. That is, we want to

prove that all coefficients of all the rows of A−1
h , except the first row

possibly, are positive.

2. Deduce from this "almost" monotonicity property a variant of a dis-

crete maximum principle, which will lead us to obtain estimates of the

coefficients of A−1
h .

Remark 3.3: We cannot simply prove that Ah is monotonic, because the

point x0 is located outside of the domain Ω where the elliptic problem is

defined, and thus no maximum principle related to this elliptic problem can

be applied on x0.

1. Ah is "almost" monotonic

We consider an array V such that AhV ≥ 0, coefficient by coefficient. We

define the index i0 such that Vi0 is the minimum of all coefficients Vi with

1 ≤ i ≤ n− 1 (Vi0 = mini=1,...,n−1 Vi).

• If 2 ≤ i0 ≤ n − 2 (indices relative at internal points that have internal

neighbors):

We have:

−Vi0−1 + 2Vi0 − Vi0+1

h2
≥ 0 =⇒ Vi0−1 + Vi0+1 ≥ 2Vi0 ≥ Vi0−1 + Vi0+1.

1IMB , INRIA Bordeaux Sud-Ouest, Bordeaux University, 351 cours de la Liberation,

33405 Talence
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This is possible only if Vi0−1 = Vi0 = Vi0+1. We apply the same

reasoning on Vi0−1, Vi0+1 and their successive neighbours and conclude

that all Vi are equal. It leads us to the next case.

• If i0 = n− 1:

We have:

−Vn−2 + 2Vn−1

h2
≥ 0 =⇒ 2Vn−2 ≥ 2Vn−1 ≥ Vn−2.

This is possible only if Vn−2 ≥ 0 and consequently Vn−1 ≥ 0.

• If i0 = 1:

We have:
−V0 + 2V1 − V2

h2
≥ 0 =⇒ 2V1 ≥ V0 + V2, (3.1)

θaV0 + (1 − θa)V1 ≥ 0 =⇒ V0 ≥ −1 − θa

θa

V1. (3.2)

If V1 ≤ 0 from (3.2) we have V0 ≥ 0. Being V0 ≥ V1, from (3.1) we

have 2V1 ≥ V1 + V2, so V1 ≥ V2, which is not possible.

We conclude that Vi0 ≥ 0, and consequently, all coefficients of V, except

maybe V0, are positive.

It means that all coefficients of all the rows of A−1
h , except possibly the first

row, are positive.

2. Discrete maximum principle

We denote by Gi the i − th column of A−1
h for 0 ≤ i ≤ n − 1. It satis-

fies:

AhGi =

































0
...

0

1

0
...

0

































,

where the element 1 is in i− th location.
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First, we define the array W such that Wj = yj(1−yj)

2
, for all j, with yj =

xj−x0

xn−x0
. We can observe that W ≥ 0 and it satisfies:

θaW0 + (1 − θa)W1 ≥ 0,

−Wj+1 + 2Wj − Wj−1

h2
= 1, 1 ≤ j ≤ n− 2,

2Wn−1 − Wn−2

h2
= 1.

Therefore:

AhW ≥















0

1
...

1















= Ah

(

n−1
∑

i=1

Gi

)

.

We have proven before that all the rows of A−1
h , except the first one, con-

tain only positive coefficients. Consequently, when we multiply the previous

inequality by A−1
h , we obtain for each row of the resulting array, except W0:

Wj ≥
n−1
∑

i=1

Gi
j, 1 ≤ j ≤ n− 1,

n−1
∑

i=1

Gi
j ≤ max

1≤k≤n−1
Wk ≤ 1

8
, 1 ≤ j ≤ n− 1.

To calculate max1≤k≤n−1 Wk:
∂Wk

∂yj
= 1−2yj

2
= 0 =⇒ yj = 1

2
so max1≤k≤n−1 Wk = 1

8
.

We define the local error ei = u(xi) − ui. It satisfies the same linear sys-

tem as the numerical solution uh, with the truncation error τ as a source

term:

Ahe = τ,

and therefore:

e = A−1
h τ.

If 1 ≤ i ≤ n− 1:

|ej| = |u(xj) − uj| =

∣

∣

∣

∣

∣

n−1
∑

i=0

Gi
jτj

∣

∣

∣

∣

∣

≤
n−1
∑

i=1

Gi
j |τj| ≤

n−1
∑

i=1

Gi
j(max

j
|τj|) ≤ 1

8
O(h2).

Therefore, the numerical solution converges with second-order accuracy to

the exact solution.
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Second proof

Based on the previous proof, we provide an alternative proof of point 1 of

the proof proposed by Lisl Weynans. This proof is based on the use of M-

matrices.

We consider an array V such that AhV ≥ 0, we want to prove that V ≥ 0.

We write the linear system in this way:

AhV =

(

Agg Agi

Aig Aii

)(

Vg

Vi

)

=

(

zg

zi

)

≥ 0,

where Vg and Vi are the vectors of the ghost points and of the internal points

respectively. We have:

Vi =

















V1

...

...

Vn−1

















∈ R
n−1, Vg = V0 ∈ R, Aig =















− 1
h2

0
...

0















∈ R
n−1,

Agg = θa ∈ R, Agi =
(

1 − θa 0 · · · 0
)

∈ R
1×(n−1),

Aii =





















2
h2 − 1

h2

− 1
h2

2
h2 − 1

h2

− 1
h2

2
h2

. . .
. . . . . . − 1

h2

− 1
h2

2
h2





















∈ R
(n−1)×(n−1).

Therefore:

AhV =





















θa 1 − θa

− 1
h2

2
h2 − 1

h2

. . . . . . . . .

− 1
h2

2
h2 − 1

h2

− 1
h2

2
h2









































V0

V1

...

...

Vn−1





















≥ 0.
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Being:

AiiVi + AigVg = zi ≥ 0, (3.3)

AgiVi + AggVg = zg ≥ 0 =⇒ Vg = A−1
gg (zg − AgiVi), (3.4)

replacing (3.4) in (3.3) we have

zi = (Aii − AigA
−1
gg Agi)Vi + AigA

−1
gg zg ≥ 0.

Since AigA
−1
gg zg =

(

− zg

θah2 0 · · · 0
)T

and − zg

θah2 ≤ 0, we have

(Aii − AigA
−1
gg Agi)Vi ≥ 0,

that is:






















1
h2

(

2 + 1−θa

θa

)

− 1
h2

− 1
h2

2
h2 − 1

h2

− 1
h2

2
h2

. . .
. . . . . . − 1

h2

− 1
h2

2
h2











































V1

...

...

Vn−2

Vn−1





















≥ 0.

We denote this matrix with A and we observe that it is a tridiagonal, sym-

metric and strictly diagonally dominant matrix.

We put Wi = AVi ≥ 0, whence Vi = A−1Wi, i = 2, . . . , n−1. Therefore, if we

prove that A is an invertible matrix and A−1 ≥ 0, we have the thesis (Vi ≥ 0).

To prove this we use the following theorem:

Theorem 1 Let A be a matrix ∈ R
n×n with positive diagonal elements and

let D = diag(a11, . . . ann). If B = D − A ≥ 0 and ρ(D−1B) < 1 then exists

A−1 and A−1 ≥ 0.

We apply this result to our matrix A:

1. a11 = 2 + 1−θa

θa
= θa+1

θa
> 0,

aii = 2
h2 > 0, i 6= 1;

2.

D =















1
h2

(

2 + 1−θa

θa

)

2
h2

. . .
2

h2















,
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B = D − A =





















0 1
h2

1
h2 0 1

h2

1
h2 0

. . .
. . . . . . 1

h2

1
h2 0





















≥ 0;

3.

D−1B =





















0 θa

θa+1
1
2

0 1
2

1
2

0
. . .

. . . . . . 1
2

1
2

0





















.

For the First and the Third Gershgorin’s Theorem we are sure that

ρ(D−1B) < 1. Indeed for the first theorem the eigenvalues of the matrix

D−1B are located in the region of the complex plane identified by the

intersection between the union of the row circles (which are circles

centered in the origin and radius 1, 1
2

and θa

θa+1
+ 1

2
) and the union of

the column circles (which are circles centered in the origin and radius

1, 1
2

and θa

θa+1
), with θa

θa+1
< 1

2
. Moreover, for the third Gershgorin

theorem, the eigenvalues can not be on the border, thus ρ(D−1B) < 1.

Therefore, we can conclude that A−1 ≥ 0, whence Vi ≥ 0.
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3.4 Consistency for the mixed problem in 1D

Now, we consider the mixed problems and we prove that the method is con-

sistent.

The consistent in the internal points and in the ghost point x0 has already

been described in the Section 3.1. Now we calculate the consistency error in

the ghost point xn.

In the case in which we perform the linear interpolation procedure to impose

the boundary condition in b, if u ∈ C2([xn−1, xn]):

τn = τ(xn) =
u(xn) − u(xn−1)

h
− u′(b) = hu′′(ξ)(1 − 2θb) ∼ O(h), (3.5)

for some ξ ∈ [xn−1, xn].

The formula (3.5) derived from:

u(xn) = u(b) + u′(b)(xn − b) +
u′′(ξ+)

2
(xn − b)2, (3.6)

for some ξ+ ∈ [b, xn], and

u(xn−1) = u(b) + u′(b)(xn−1 − b) +
u′′(ξ−)

2
(xn−1 − b)2,

for some ξ− ∈ [xn−1,b], thus

u(xn−1) = u(b) − u′(b)(b − xn−1) +
u′′(ξ−)

2
(b − xn−1)

2 (3.7)

= u(b) − u′(b)[h− (xn − b)] +
u′′(ξ−)

2
(b − xn−1)

2. (3.8)

Subtracting member to member (3.6) and (3.8) we obtain for some ξ ∈
[xn−1, xn]:

u(xn) − u(xn−1) = hu′(b) + u′′(ξ)
[

h2(1 − θb)2 − h2θ2
b

]

= hu′(b) + h2u′′(ξ)(1 − 2θb).

With the symmetry of the matrix Ah (through the formula (1.18)) in the
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case in which we impose the Neumann condition in b through the linear

interpolation procedure, we have:

τn = τ(xn) = u′′(ξ)(1 − 2θb) ∼ O(h0),

for some ξ ∈ [xn−1, xn].

Now, we calculate the consistency error τn in the case in which we perform

the quadratic interpolation procedure to impose the boundary condition in

b.

If u ∈ C3([xn−2, xn]):

u(xn−2) = u(b) + u′(b)(xn−2 − b) +
u′′(b)

2
(xn−2 − b)2 +

u′′′(ξ−)

6
(xn−2 − b)3

= u(b) − u′(b)(1 + θb)h+
u′′(b)

2
(1 + θb)2h2 − u′′′(ξ−)

6
(1 + θb)3h3,

for some ξ− ∈ [xn−2,b],

u(xn−1) = u(b) + u′(b)(xn−1 − b) +
u′′(b)

2
(xn−1 − b)2 +

u′′′(ξ+)

6
(xn−1 − b)3

= u(b) − u′(b)θbh+
u′′(b)

2
θ2

bh
2 − u′′′(ξ+)

6
θ3

bh
3,

for some ξ+ ∈ [xn−1,b], and

u(xn) = u(b) + u′(b)(xn − b) +
u′′(b)

2
(xn − b)2 +

u′′′(ξ)

6
(xn − b)3

= u(b) + u′(b)(1 − θb)h+
u′′(b)

2
(1 − θb)2h2 +

u′′′(ξ)

6
(1 − θb)3h3,

for some ξ ∈ [b, xn].

Thus we have:

τn =
1

2h
(2θb − 1)u(xn−2) − 2

h
θbu(xn−1) +

1

2h
(2θb + 1)u(xn) − u′(b)

= −u′′′(ξ)

12
(2θb − 1)(1 + θb)3h2 +

u′′′(ξ)

3
θ4

bh
2 +

u′′′(ξ)

12
(2θb + 1)(1 − θb)3h2

=
u′′′(ξ)

12

(

−(2θb − 1)(1 + θb)3 + 4θ4
b + (2θb + 1)(1 − θb)3

)

h2 ∼ O(h2),

for some ξ ∈ [xn−2, xn].
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3.5 Consistency for the Dirichlet problem in

2D

We consider the Dirichlet problems in two-dimensional case and we prove

that the method is consistent.

We calculate the consistency error τh = Ahu− Au.

In the internal points, if u ∈ C4(Ωi
h,Ω

g
h), we have:

τij = τh(xi, yj) = ∆hu(xi, yj) − ∆u(xi, yj) =
h2

12
uIV(ξi, µj), (i, j) ∈ Ωi

h,

for some ξi ∈ [xi−1, xi+1], µj ∈ [yj−1, yj+1].

Therefore,

‖τh‖L1 =
∫ ∫

|τh|dxdy ≈
∑

i,j∈Ωi
h

|τh(xi, yj)|h2 =
h2

12

∑

i,j∈Ωi
h

|uIV(ξi, µj)|h2

≈ h2

12
‖uIV‖L1 ∼ O(h2),

‖τh‖L2 =
(∫ ∫

|τh|2dxdy
)

1
2 ≈





∑

i,j∈Ωi
h

|τh(xi, yj)|2h2





1
2

=
h2

12





∑

i,j∈Ωi
h

|uIV(ξi, µj)|2h2





1
2

≈ h2

12
‖uIV‖L2 ∼ O(h2),

‖τh‖L∞ = max
i,j∈Ωi

h

|τh| =
h2

12
max
i,j∈Ωi

h

|uIV(ξi, µj)| =
h2

12
‖uIV‖L∞ ∼ O(h2).

Proceeding as in the one-dimensional case, in each ghost point, if we perform

the bilinear interpolation procedure, from the formula (1.22) of the interpo-

lation error, we obtain:

τg ∼ O(h2),

instead, if we perform the biquadratic interpolation procedure, from the for-

mula of the interpolation error, we obtain:

τg ∼ O(h3).
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3.6 Attempts to proof of convergence for the

Dirichlet problem in 2D

In this Section we show the attempts to proof the convergence of the numer-

ical method for the Dirichlet problems in 2D. However, the problem is still

open.

In a first attempt we tried to extend the proof of Lisl Weynans (Section

3.3) to two-dimensional case. As in the one-dimensional case, we consider

an array V such that AhV ≥ 0 and we want to prove that V ≥ 0. However,

unlike the one-dimensional case, in this case the equation (3.2) for the ghost

point is a system of coupled equations (because the equation for a ghost point

can involve other ghost points) too complex to resolve.

In a second attempt we have tried to extend the convergence proof of Sec-

tion 3.3 to two-dimensional case, which is based on the use of M-matrices.

However, as we will see, in 2D the matrix Ah is not a M-matrix.

A matrix B ∈ R
n×n is a M-matrix if bi,j ≤ 0 with i 6= j and B−1 ≥ 0.

Consider the simple case in which there is an only one ghost point g as shown

in the following figure (Figure 3.1)

Figure 3.1: Portion of a two-dimensional arbitrary domain with only one

ghost point (green dot)

and we write the system in this way:

(

Agg Agi

Aig Aii

)(

ug

ui

)

=

(

ūg

f

)

,
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or equivalently

Aggug + Agiui = ūg

that it is the equation for the ghost point and

Aigug + Aiiui = f

that are the equations for the internal points, where ūg is the exact value

that assumes the function u at the ghost point g.

In particular, the first of the two equations is equivalent to a linear combina-

tion of the values that the function u assumes at the points involved in the

bilinear interpolation:

αgug + α1u1 + α2u2 + α3u3 = ūg, with − 1 < αg, α1, α2, α3 < 1.

We have:

• Agg = (αg), therefore A−1
gg =

(

1
αg

)

• Agi =
(

α1 0 . . . 0 α2 α3 0 . . . . . .
)

• Aig =







































− 1
h2

0
...

0

− 1
h2

0
...
...







































• Aii is the classical block matrix obtained on a two-dimensional domain

in the absence of ghost points

• AigA
−1
gg Agi =







































− α1

αgh2 0 . . . 0 − α2

αgh2 − α3

αgh2 0 . . . . . .

0 0 0 . . . . . . . . . . . . . . . . . .
...

...
...

... . . . . . . . . . . . . . . .

0 0 0 . . . . . . . . . . . . . . . . . .

− α1

αgh2 0 . . . 0 − α2

αgh2 − α3

αgh2 0 . . . . . .

0 0 0 . . . . . . . . . . . . . . . . . .
...

...
...

... . . . . . . . . . . . . . . .
...

...
...

... . . . . . . . . . . . . . . .






































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• Aii −AigA
−1
gg Agi has the elements −αg+αi

αgh2 out of the main diagonal which

may not be negative. Thus Aii − AigA
−1
gg Agi isn’t a M-matrix.

3.7 Consistency for the mixed problem in 2D

We consider the mixed problems in two-dimensional case and we prove that

the method is consistent.

In the internal points we have already tried that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞.

We have already also studied the consistency error in the ghost points in

which we impose the Dirichlet boundary conditions.

For each ghost point g in which we impose the Neumann boundary condi-

tions, from the formulas of the errors in the bilinear and biquadratic inter-

polations, we obtain:

τg ∼ O(h)

if we perform the bilinear interpolation procedure, and

τg ∼ O(h2)

if we perform the biquadratic interpolation procedure.

3.8 Consistency for the Dirichlet problem in

3D

We proceed with the consistency of the method for the Dirichlet problems in

three-dimensional case.

We calculate the consistency error τh = Ahu− Au.

In the internal points, if u ∈ C4(Ωi
h,Ω

g
h), we have:

τijk = τh(xi, yj, zk) = ∆huijk − ∆uijk =
h2

12
uIV(ξi, µj, ζk), (i, j, k) ∈ Ωi

h,

for some ξi ∈ [xi−1, xi+1], µj ∈ [yj−1, yj+1], ζk ∈ [zk−1, zk+1].
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Therefore,

‖τh‖L1 =
∫ ∫ ∫

|τh|dxdydz ≈
∑

i,j,k∈Ωi
h

|τh(xi, yj, zk)|h3

=
h2

12

∑

i,j,k∈Ωi
h

|uIV(ξi, µj, ζk)|h3 ≈ h2

12
‖uIV‖L1 ∼ O(h2),

‖τh‖L2 =
(∫ ∫ ∫

|τh|2dxdydz
)

1
2 ≈





∑

i,j,k∈Ωi
h

|τh(xi, yj, zk)|2h3





1
2

=
h2

12





∑

i,j,k∈Ωi
h

|uIV(ξi, µj, ζk)|2h3





1
2

≈ h2

12
‖uIV‖L2 ∼ O(h2),

‖τh‖L∞ = max
i,j,k∈Ωi

h

|τh| =
h2

12
max

i,j,k∈Ωi
h

|uIV(ξi, µj, ζk)| =
h2

12
‖uIV‖L∞ ∼ O(h2).

Proceeding as in one-dimensional case, in each ghost point g, if we perform

the trilinear interpolation procedure, from the formula of the interpolation

error, we obtain:

τg ∼ O(h2);

if we perform the triquadratic interpolation procedure we obtain:

τg ∼ O(h3).

3.9 Consistency for the mixed problem in 3D

Finally, we prove the consistency of the method for the mixed problems in

three-dimensional case.

In the internal points we have already tried that ‖τh‖Lp ∼ O(h2), p = 1, 2,∞.

We have already also studied the consistency error in the ghost points in

which we impose the Dirichlet boundary conditions.

For each ghost point g in which we impose the Neumann boundary condi-

tion, from the formula of the interpolation error in the trilinear interpolation

procedure, we obtain:

τg ∼ O(h);

if we perform the triquadratic interpolation procedure, we have:

τg ∼ O(h2).



4
Shock capturing schemes for compressible Gas

Dynamics

In order to apply the Coco-Russo method to Full Euler equations of Gas

Dynamics on two-dimensional arbitrary domains, in this Chapter we present

explicit shock capturing schemes for the numerical resolution of hyperbolic

systems of conservation laws.

We introduce the theory on hyperbolic systems of conservation laws [14,

17, 18, 34].

Hyperbolic systems of conservation laws

Introduction

A system of conservation laws is a system of partial differential equations

which depends on time and which takes on a particular form.

In one spatial dimension the equations take the form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, (4.1)

in which u : R×R −→ R
m is an m-dimensional vector of conserved quantities

or state variables and f : Rm −→ R
m is the flux function or simply flux

for the system of conservation laws. This function is supposed to be known

and regular.

The particular form of the system (4.1) derives from physical considera-

tions. In fact, supposed that u is regular and that the various components uj

151
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represent the densities of certain quantities that are conserved, the integral
∫ b

a u(x, t)dx is the total quantity of this state variables in the interval [a, b]

at time t. The hypothesis that this quantity is conserved implies that its

temporal variation in [a, b] is governed by a flux function f which controls

the variation of u through the border. This translates into the formula:

d

dt

∫ b

a
u(x, t)dx = f(u(t, a)) − f(u(t, b)).

The system (4.1) is hyperbolic if, for each value of u, the eigenvalues of f ′(u)

are real and the matrix is diagonalizable, where f ′(u) is the m×m Jacobian

matrix of the flux function.

In two spatial dimensions a system of conservation laws takes the form

∂

∂t
u(x, y, t) +

∂

∂x
f(u(x, y, t)) +

∂

∂y
g(u(x, y, t)) = 0, (4.2)

in which u : R2 ×R −→ R
m is the vector of state variables and f, g : Rm −→

R
m are the two flux functions.

Applications

The hyperbolic systems of conservation laws are central in many applications

such as metereology, astrophysical modeling, the physics of the plasmas, mod-

els for the flow of traffic, aerodynamics.

A system that is of particular importance in the field of systems of conserva-

tion laws is the system of Euler equations of gas dynamics, concerning

the equations of the conservation of mass, energy and momentum in each

direction. This system is hyperbolic and the eigenvalues are: λ1 = u · n − cs

ε
,

λ2 = u · n and λ3 = u · n + cs

ε
, where ε and cs are the Mach number [6] and

the sound speed respectively and n is the normal unit vector to the boundary.

In one spatial dimension the system of the Euler equations takes the fol-

lowing form:

∂

∂t









ρ

ρu

E









+
∂

∂x









ρu

ρu2 + p

u(E + p)









= 0,
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where ρ = ρ(x, t) is the density, u is the velocity, ρu is the momentum, E is

the energy and p is the pressure. The pressure p is calculated as a function

of the other variables, according to the equation of state.

Much of the theory of conservation laws has been developed with such equa-

tions and many numerical methods have been developed specifically for this

system. Therefore, good knowledge of Euler equations is needed to read

much of the available literature and take advantage of these developments.

Analytical solution

The classical method for solving hyperbolic systems of conservation laws

is given by the method of characteristics. However, difficulties may arise:

discontinuities can be developed in finite time. Discontinuous solutions do

not satisfy the systems in the classical sense at all points, since the derivatives

are not defined at discontinuities. To overcome this problem is introduced

a "weak form" of the differential equations that will be fundamental in the

development of numerical methods. When are considered weak solutions,

however, the uniqueness is less. Among all the (infinite) weak solutions

possible for a given problem with initial conditions, the physically possible

one is the only one that satisfies the entropy condition, obtained as the limit

for ε → 0 of a family of solutions (uε) of the convection-diffusion equation
∂u
∂t

+ ∂f(u)
∂x

= ε∂2u
∂x2 .

Numerical solution

These problems can also occur on the numerical solution, for this reason

numerical methods have been developed that are increasingly adapted to re-

solve the presence of possible discontinuities.

Linear problem The classical finite difference methods for linear problems

(obtained by substituting the partial derivatives with the differences in the

punctual values of the approximate solution) do not take into consideration

the presence of possible discontinuity, therefore they can work well for smooth

solutions but they may not give excellent results not even on a particular fine

grid when the numerical method is applied to a linear problem with discon-

tinuous initial data, for example a Riemann problem. A Riemann problem

is a conservation law together with piecewise constant data having a single
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discontinuity. For example the Riemann problem for the scalar advection

equation [17] is:

ut + aux = 0, −∞ < x < +∞, t ≥ 0

u0(x) =







1 x < 0

0 x > 0
.

The typical behavior is as follows: the first order methods give very smeared

solutions while the second order methods give oscillations. For more details

see [17].

Nonlinear problem When trying to solve numerically the non-linear con-

servation laws, there are additional difficulties. However, for smooth solu-

tions to non-linear problems, the numerical method can often be linearized.

We focus therefore our attention instead on discontinuous solutions for non-

linear problems. The additional problem that occurs in the case of non-linear

problems is that the method might converge to a function that is not a weak

solution or this solution not satisfy the entropy condition. So that the nu-

merical solution converges to a weak solution of the problem, we consider a

conservative form that ensures convergence to a weak solution in the case in

which the scheme is consistent and convergent. However, it does not ensure

that this solution is the entropy solution, in fact there are many examples of

conservative numerical methods that converge to weak solutions but they do

not satisfy the entropy condition.

We discretize the x-t plane and we define the discrete mesh points (xj, t
n) by

xj = j∆x, j = . . . ,−1, 0, 1, . . .

t = n∆t, n = 0, 1, 2, . . . .

A numerical scheme is conservative if there is a function ĥ (called numerical

flux function and that depends both on the flux function f(u) and on the

type of discretization)

f̂n
j+ 1

2
= ĥ(Un

j−p+1, . . . , U
n
j+q),

such that it is possible to write the scheme of the differences in the form

(called conservative)

Un+1
j = Un

j − ∆t

∆x

(

f̂n
j+ 1

2
− f̂n

j− 1
2

)

, (4.3)
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where Un
j is the numerical solution at the time n in the point xj.

In general, for a first order scheme we choose f̂j+ 1
2

= ĥ(uj, uj+1).

This difference scheme is a non-linear, explicit and two-level scheme, where

the non-linearity is present in the function f(u) and/or in the numerical flux

function.

It is possible to show that, so that the scheme (4.3) is consistent, it is suffi-

cient that the following property is satisfied

ĥ(u, u, . . . , u) = f(u).

Conservative schemes are considered because it is proved that they tend to

capture any discontinuities present in the solution in an appropriate man-

ner, however, as already mentioned, they do not ensure convergence to the

entropy solution. Another problem of conservative methods is that the con-

vergence of the numerical scheme appears as a hypothesis of the theorem,

and therefore must be verified by other means. For more details about the

conservative schemes and the choice of the correct numerical flux function

see [17].

An alternative to the conservative methods is provided by the monotone

schemes [17]. The monotone methods for the conservation laws are TVD

(Total Variation Diminishing) [17]. This property allow the oscillations to

not grow over time and the non-oscillatory convergence to the entropy solu-

tion. However, monotone methods are at most first order accurate, giving

poor accuracy solutions in the smooth regions of the flow. Moreover, shocks

tend to be heavily smeared and poorly resolved on the grid. These effects

are due to the large amount of numerical dissipation in monotone methods.

Some dissipation is needed to give nonoscillatory shocks but monotone meth-

ods go overboard in this direction.

As already mentioned in the case of linear problems, the first order accu-

rate numerical methods have a large amount of "numerical viscosity" that

smoothes the solution (as physical viscosity). Thus, this methods give re-

sults that are smeared in the regions near the discontinuities. If instead we

use a second order method we eliminate this numerical viscosity but intro-

duce dispersive effects that lead to large oscillations in the numerical solution



CHAPTER 4. SHOCK CAPTURING SCHEMES 156

itself.

Therefore numerical methods have been developed that produce sharp ap-

proximations to discontinuous solutions automatically. These methods are

called "shock capturing" methods (or high resolution methods). These

methods use a high order method, at least second order accurate on the

smooth solutions, and increase the amount of numerical dissipation in the

neighborhood of a discontinuity to give nonoscillatory solutions. Further-

more, they present an appropriate form of consistency with the weak form of

the conservation law, required to converge to weak solutions, and a discrete

form of the entropy condition, to alows the convergence at the physically

correct weak solution.

We can define high order approximations to the flux at a cell boundary,

using a piecewise linear approximation in defining the flux f̂j+ 1
2

using slope

limiters: f̂j+ 1
2

= ĥ(uL
j+ 1

2

, uR
j+ 1

2

), where uL
j+ 1

2

and uR
j+ 1

2

are the values of u on

the right and left of xj+ 1
2

and are determined from the reconstruction in cells

j and j + 1, respectively. See [17] for a discussion on TVD slope limiters.

Semi-discrete schemes

The discretization of the equations can be done through fully discrete schemes

or semi-discrete schemes.

In the fully discrete schemes the discretizations of spatial and temporal

derivatives occur simultaneously. It is obtained a scheme of differences with

the following structure:

Un+1
j = H(Un

j−p, . . . , U
n
j+q),

where H depends on the particular numerical method with which we have

discretized the equations. These schemes allow to immediately calculate the

solution to the node (or cell) j in terms of the values known at the previous

time.

It is possible to consider the discretization process in two stages: first we

discretize only in space, leaving the problem continuous in time and obtain-

ing a system of ordinary differential equations (in time) and then we discretize

in time using any standard numerical method for systems of ordinary differ-

ential equations.
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The advantage in using semi-discrete methods lies in the fact that it is possi-

ble to obtain schemes with order of accuracy greater than 2, since it allows us

to decouple the issues of spatial and temporal accuracy. Indeed, to improve

the accuracy in time we can replaced the first order accurate Euler method

with a higher order method and to improve the accuracy in space we can

define high order approximations to the flux at a cell boundary. The classic

approach to avoiding the onset of oscillations in semi-discrete schemes is to

impose constraints on the reconstruction process to satisfy, for example, the

TVD condition. In recent years have been developed modern schemes such

as ENO (Essentially Non-Oscillatory) [17, 31] and WENO (Weighted Essen-

tially Non-Oscillatory) [31].

In this Chapter we present explicit shock-capturing semi-discrete schemes

for compressible Gas Dynamics, using first and second order accurate recon-

structions both in time and space.

Explicit time discretization Most schemes used to compute the numeri-

cal solution of the systems of conservation laws are obtained by explicit time

discretization, and the time step has to satisfy a stability condition, known

as CFL condition, which states that the time step should be limited by the

space step divided by the fastest wave speed:

∆t <
∆x

λmax

≈ O(ε∆x), (4.4)

where λmax = maxΩ

(

|u| + cs

ε

)

, u is the velocity wave, csi
=
√

γpi

ρi
is the sound

speed, ρi and pi are the density and pressure at the time step i respectively

and ε represents a global Mach number. For low Mach number in the Gas

Dynamics equations, the compressible case tends to a incompressible case.

We present two different approaches present in [17, 18, 24].

Methods for hyperbolic systems of conservation laws

There are schemes based on cell avarages (finite volume approach) and schemes

based on point values (finite difference approach).

For semplicity, we consider the case of the single scalar equation

ut + f(u)x = 0. (4.5)
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Let ∆x and ∆t be the mesh widths. We introduce the grid points xj = j∆x,

xj+ 1
2

= xj + 1
2
∆x, j = . . . ,−1, 0, 1, . . . , and we use the standard notations

un
j = u(xj, t

n), ūn
j =

1

∆x

∫ x
j+ 1

2

x
j−

1
2

u(x, tn)dx.

Finite volumes (FV) methods

One of the most widely used methods of solving these problems is that of

the finite volumes method in conservative form.

The inside of the domain is subdivided into many elementary volumes (called

cells) Ij =
[

xj− 1
2
, xj+ 1

2

]

, identifying with the index j the center of each cell.

Through the integral form of the equations of the problem considered, are

written the relationships between the various neighboring volumes.

There are two ways to discretize (4.5). The first way is to develop fully

discrete (one-step) schemes, which is obtained by integrating both in space

and in time.

Another way to discretize (4.5) is to keep the time variable t continuous

and consider semi-discrete schemes. Integrating (4.5) with respect to x only

we obtain the following system:

d

dt
ūj(t) = − 1

∆x

[

f(u(xj+ 1
2
, t)) − f(u(xj− 1

2
, t))

]

.

To convert this expression into a numerical scheme, it must be approximated

on right hand side with a function of the cell averages {ū(t)}j, which are the

unknowns of the problem.

As already stated in the previous paragraphs, it is necessary to carry out

a reconstruction of the unknown function u(x, t) by a piecewise polynomial

starting from cell averages ūj(t), and that must take into consider any discon-

tinuities of the function u(x, t). The accuracy order of the method depends

on the order of the polynomial. The higher the order of the polynomial, the

more accurate the numerical method is. For example, for first order schemes

the reconstruction is piecewise constant, while second order schemes can be

obtained by a piecewise linear reconstruction.
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A piecewise polynomial reconstruction is obtained as follows:

R(x) =
∑

j

Pj(x)χj(x),

where Pj(x) is a polynomial satisfying some accuracy and non-oscillatory

property and χj(x) is the indicator function of cell lj.

The flux function at the edge of the cell can be computed by using a suitable

numerical flux function, consistent with the analytical flux.

As already stated in the previous paragraphs, for a first order (in space)

semi-discrete scheme we choose:

f(u(xj+ 1
2
, t)) ≈ F (ūj, ūj+1),

and thus the scheme is:

d

dt
ūj = −F (ūj, ūj+1) − F (ūj−1, ūj)

∆x
.

An example of first order accurate numerical flux is the Local Lax-Friedrichs

flux [17], which we will discuss later.

For a second order (in space) scheme we choose:

f(u(xj+ 1
2
, t)) ≈ F (u−

j+ 1
2

, u+
j+ 1

2

),

where the quantities u±
j+ 1

2

are obtained from the reconstruction in this way

u±
j+ 1

2

= limx→x±

j+ 1
2

R(x). For example,

u−
j+ 1

2

= ūj +
∆x

2
u′

j,

where the slope u′
j is a first order approximation of the space derivative of

u(x, t), and can be computed by suitable slope limiters [17]. Later we will

introduce the generalized minmod limiter.

Thus, the scheme is:

d

dt
ūj = −

F (u−
j+ 1

2

, u+
j+ 1

2

) − F (u−
j− 1

2

, u+
j− 1

2

)

∆x
.
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Finite-difference (FD) methods

We consider now a finite difference scheme in which the unknown is the point-

wise value of the function, rather than its cell average.

We want to get a finite difference scheme in a conservative form (4.3). There-

fore, given the equation (4.5), we write:

∂f

∂x
(u(x, t)) =

f̂
(

u
(

x+ ∆x
2

)

, t
)

− f̂
(

u
(

x− ∆x
2

)

, t
)

∆x
.

To convert this expression into a numerical scheme we want to approximate

the quantity f̂
(

u
(

x+ ∆x
2

)

, t
)

− f̂
(

u
(

x− ∆x
2

)

, t
)

.

To do this, we find the relation between f and f̂ . In this regard, we consider

the average operator

ū(x, t) =
1

∆x

∫ x+ ∆x
2

x− ∆x
2

u(ξ, t)dξ

and differentiate it with respect to x, we obtain:

∂ū

∂x
=

1

∆x

((

u

(

x+
∆x

2

)

, t

)

−
(

u

(

x− ∆x

2

)

, t

))

.

From the previous expressions we can observe that the relation between f and

f̂ is the same relation that there is between ū(x, t) and u(x, t), namely, the

flux function f is the cell average of the function f̂ . Therefore to compute

f̂(u(xj+ 1
2
, t)) from f(u(xj, t)) we use the same technique used to compute

uj+ 1
2

from ūj.

In the finite difference method it is the flux function which is computed at

xj and then reconstructed at xj+ 1
2
. But the reconstruction at xj+ 1

2
may be

discontinuous. To solve this problem we consider flux functions that can be

split

f(u) = f+(u) + f−(u)

with the condition that

df+(u)

du
≥ 0,

df−(u)

du
≤ 0,

which defines a monotone consistent flux. For example, the local Lax-

Friedrichs flux satisfies this condition.
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A finite difference scheme therefore takes the following form

d

dt
uj = −

f̂j+ 1
2

− f̂j− 1
2

∆x
,

where f̂j+ 1
2

= f̂+(u−
j+ 1

2

) + f̂−(u+
j+ 1

2

).

The quantity f̂+(u−
j+ 1

2

) is obtained by

• computing f+(uj) and interpret it as cell average of f̂+;

• performing pointwise reconstruction of f̂+ in cell j, and evaluate it in

xj+ 1
2
;

and f̂−(u+
j+ 1

2

) is obtained by

• computing f−(uj) and interpret it as cell average of f̂−;

• performing pointwise reconstruction of f̂− in cell j, and evaluate it in

xj+ 1
2
.

Remark 4.1: Both methods, discussed for the scalar equation, can be ex-

tended to systems, and both present advantages. The finite volumes meth-

ods, unlike the finite difference methods, can also be applied in the case of

non-uniform grids. However, since the source is evaluated pointwise, finite

difference schemes do not couple the cells, unlike the finite volumes schemes.

This is a big advantage in the case we use a implicit step. Given these con-

siderations, because in the next chapter we will present the semi-implicit

methods on a regular Cartesian grid, we use the finite difference methods.

We apply the finite difference methods to the gas-dynamics equations both

for the Isentropic Euler Equations and for the Full Euler Equations.

We start considering the isentropic gas dynamics case and successively we

extend the results to the case of the full Euler system.
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4.1 Isentropic Euler Equations

The Isentropic Euler equations in a d-dimensional space, with x ∈ Ω ⊂ R
d

and t ≥ 0, are given by:






ρt + ∇ · (ρu) = 0

(ρu)t + ∇ · (ρu ⊗ u) + ∇p
ε2 = 0

, (4.6)

where ρ is the density of the fluid, u is the velocity of the fluid and p is the

pressure. To close the system we consider a equation of state, which in the

case of a polytropic gas is:

p = ργ,

where γ = Cp

Cv
> 1 is the polytropic constant.

The parameter ε is the dimensionless reference Mach number.

Let m = ρu be the momentum, the system (4.6) can be written in this

way:






ρt + ∇ · m = 0

mt + ∇ · (m ⊗ u) + ∇p
ε2 = 0

. (4.7)

4.1.1 Isentropic Euler Equations in 1D

In one-dimensional space the system (4.7) is:






ρt +mx = 0

mt +
(

m2

ρ
+ p

ε2

)

x
= 0

, (4.8)

and it is closed by the equation of state p = p(ρ) = ργ.

4.1.2 Isentropic Euler Equations in 2D

In two-dimensional space the system (4.7) is:


























ρt +m1
x +m2

y = 0

m1
t +

(

m1
2

ρ
+ p

ε2

)

x
+
(

m1 m2

ρ

)

y
= 0

m2
t +

(

m2 m1

ρ

)

x
+
(

m2
2

ρ
+ p

ε2

)

y
= 0

, (4.9)

where m1 and m2 are the momentum along the x-axis and the momentum

along the y-axis respectively, and it is closed by the equation of state p =

p(ρ) = ργ.
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4.2 Full Euler Equations

The Full Euler equations in a d-dimensional space, with x ∈ Ω ⊂ R
d and

t ≥ 0, are given by:


















ρt + ∇ · (ρu) = 0

(ρu)t + ∇ · (ρu ⊗ u) + ∇p
ε2 = 0

Et + ∇ · [(E + p)u] = 0

, (4.10)

where ρ is the density of the fluid, u is the velocity of the fluid, p is the

pressure and E is the energy. To close the system we consider the equation

of state, which for a polytropic gas is:

E =
p

γ − 1
+
ε2

2
ρ|u|2.

Placing m = ρu the momentum and h = E+p
ρ

the total enthalpy, the system

(4.10) can be written in this way:


















ρt + ∇ · m = 0

mt + ∇ · (m ⊗ u) + ∇p
ε2 = 0

Et + ∇ · (hm) = 0

. (4.11)

4.2.1 Full Euler Equations in 1D

In one-dimensional space the system (4.11) is:


















ρt +mx = 0

mt +
(

m2

ρ
+ p

ε2

)

x
= 0

Et + (hm)x = 0

, (4.12)

and it is closed by the equation of state p = (γ − 1)
(

E − 1
2
ε2 m2

ρ

)

.

4.2.2 Full Euler Equations in 2D

In two-dimensional space the system (4.11) is:






































ρt +m1
x +m2

y = 0

m1
t +

(

m1
2

ρ
+ p

ε2

)

x
+
(

m1 m2

ρ

)

y
= 0

m2
t +

(

m2 m1

ρ

)

x
+
(

m2
2

ρ
+ p

ε2

)

y
= 0

Et + (hm1)x + (hm2)y = 0

, (4.13)
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and it is closed by the equation of state p = (γ− 1)
(

E − 1
2
ε2

(

m1
2

ρ
+ m2

2

ρ

))

.

We apply the explicit finite-difference methods to the Euler gas-dynamics

equations, both in the one-dimensional case and in the two-dimensional case.

4.3 FD shock-capturing methods for Gas

Dynamics Equations in 1D

We discretize in 1D the Euler systems (4.8) and (4.12) of conservation laws,

that we can write in the following form:

Ut + F(U)x = 0.

with initial and boundary conditions. Here U(x, t) is the vector of unknown

conservative variables and F(U) is the physical flux vector.

In the system (4.8)

U =

(

ρ

m

)

and F(U) =

(

m
m2

ρ
+ p

ε2

)

,

while in the system (4.12)

U =









ρ

m

E









and F(U) =









m
m2

ρ
+ p

ε2

(E + p)u









.

Discretization in space

First we discretize the space Ω = [0, 1] through a uniform grid characterized

by a spatial step ∆x = xj+1 −xj, ∀j
(

∆x = 1
N

)

. At even time step n we have

N cells of size ∆x, with cell j centered at xj =
(

j − 1
2

)

∆x, j = 1, . . . , N .

The following figure (Figure 4.1) shows the discretization of the domain Ω:
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Figure 4.1: Discretization of the domain [0, 1] with N = 5: the blue dots are

the internal points, the red dots are the ghost points, in black diamonds we

evaluate the numerical fluxes

The values of the numerical solution on the internal points Ui(t) ≈ U(xi, t)

evolve in time using the following semi-discrete scheme:

dUi

dt
= −

f̂i+ 1
2

− f̂i− 1
2

∆x
, i = 1, 2, . . . , N.

The numerical fluxes {f̂i+ 1
2
} are computed as follows. We denote by D̂xf

the flux derivatives that will be discretized as the difference of the numerical

fluxes between i+ 1
2

and i− 1
2
.

First-order scheme

If we use a first-order scheme, to compute the numerical fluxes in D̂xf we

use the local Lax-Friedrichs fluxes. We first split the flux function F as

[31, 32, 33]

F(Ui) = F+
i + F−

i , F±
i =

1

2
(F(Ui) ± αiUi) ,

where αi = |ui| + ci

ε
is the spectral radius of the Jacobian matrix at x = xi,

ci =
√

γpi

ρi
is the sound speed and ε is the dimensionless reference Mach

number.

The numerical fluxes are given by: f̂i+ 1
2

= F+
i + F−

i+1, that is:

f̂i+ 1
2

=
F(Ui+1) + F(Ui)

2
− αi+ 1

2

Ui+1 − Ui

2
,

with

αi+ 1
2

= max {αi, αi+1} .
Then the discrete derivatives are given by:

D̂xf =
f̂i+ 1

2
− f̂i− 1

2

∆x
,

where ∆x is the space step discretization.
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Second-order scheme

Second-order schemes in space are obtained by using a piecewise conser-

vative linear reconstruction.

We refer to the scheme in [3, 8, 11].

For each conservative field u, we use the following reconstruction in cell j:

un
j (x) = ūn

j + u′
j(x− xj),

where the approximation of the derivative u′
j is computed using the general-

ized minmod limiter. The minmod function is defined by:

minmod(v1, v2, . . .) :=



















min(v1, v2, . . .), if vi > 0 ∀i
max(v1, v2, . . .), if vi < 0 ∀i
0 otherwise

.

Like in the previous case, we split the flux function F as [31, 32, 33]

F(Ui) = F+
i + F−

i , F±
i =

1

2
(F(Ui) ± αiUi) .

To compute the values of F+ and F− at the cell interfaces xi+ 1
2

we use, as

already mentioned, the non-oscillatory generalized minmod reconstruction,

that is:

Fe
i := F+

i +
∆x

2
(Fx)+

i , Fw
i := F−

i − ∆x

2
(Fx)−

i ,

where the slopes are computed using the generalized minmod limiter:

(Fx)±
i = minmod

(

θ
F±

i − F±
i−1

∆x
,
F±

i+1 − F±
i−1

2∆x
, θ

F±
i+1 − F±

i

∆x

)

.

Finally, the numerical fluxes are given by:

f̂i+ 1
2

= Fe
i + Fw

i+1.

Remark 4.2: In [8] the authors explain how the choice of the values of θ

and of αi is fundamental to prevent oscillations. It is convenient not to use

a high value of θ ∈ [1, 2], because it can control the amount of numerical

dissipation: larger values of θ allow sharper resolution of discontinuities, but

may cause some oscillations. In the same way, it is convenient replacing αi

with maxi αi, as this choice allows an increase in the quantity of numerical

diffusion.
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Discretization in time

First-order scheme

If we use a first-order scheme, to compute the numerical solutions at time

tn+1 we discretize time by a first order Euler method:

Un+1 = Un − ∆tF(Un)x.

Second-order scheme

High order schemes in time are obtained through use of suitable implicit-

explicit Runge-Kutta schemes. We use the technique described in [3, 5].

We define

Ui = S(U∗,Ue,∆t),

the function that is the solution of the problem

Ui = U∗ − ∆tF(Ue)x,

where Ue is the vector of the explicit variables of the system.

The method can be implemented in the following way:

U(1)
e = Un

U(1)
i = S(Un,Un, β∆t)

U(2)
e =

(

1 − ĉ

β

)

Un +
ĉ

β
U(1)

i

U(2)
∗ =

2β − 1

β
Un +

1 − β

β
U(1)

i

U(2)
i = S(U(2)

∗ ,U(2)
e , β∆t),

where β = 1 − 1√
2

and ĉ = 1
2β

.

Finally, the numerical solution is computed as Un+1 = U(2)
i .

We apply such discretizations to the Isentropic Euler equations and Full

Euler equations in 1D.
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Isentropic Euler Equations

Discretization of the system (4.8)

Finite-difference methods with a first-order scheme in time







ρn+1 = ρn − ∆tD̂xm
n

mn+1 = mn − ∆tD̂x

((

m2

ρ

)n
+ pn

ε2

) ,

pn+1 =
(

ρn+1
)γ
.

We can compute D̂xf using a first or a second-order scheme in space.

Full Euler Equations

Discretization of the system (4.12)

Finite-difference methods with a first-order scheme in time



















ρn+1 = ρn − ∆tD̂xm
n

mn+1 = mn − ∆tD̂x

((

m2

ρ

)n
+ pn

ε2

)

En+1 = En − ∆tD̂x (hnmn)

,

pn+1 = (γ − 1)



En+1 − 1

2
ε2

(

m2

ρ

)n+1


 .

We can compute D̂xf using a first or a second-order scheme in space.

Finite-difference methods with a second-order scheme in time

In the case of Full Euler Equations we also used a second-order discretization

in time.

First, we compute:

ρ(1)
e = ρn,

m(1)
e = mn,

E(1)
e = En,

p(1)
e = pn.
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Now, we can write the equations for the density:

ρ(1)
i = ρn − β∆tD̂xm

(1)
e ,

ρ(2)
e =

(

1 − ĉ

β

)

ρn +
ĉ

β
ρ(1)

i ,

ρ(2)
∗ =

2β − 1

β
ρn +

1 − β

β
ρ(1)

i ,

for the momentum:

m(1)
i = mn − β∆tD̂x





m
(1)
e

2

ρ
(1)
e

+
p

(1)
e

ε2



 ,

m(2)
e =

(

1 − ĉ

β

)

mn +
ĉ

β
m(1)

i ,

m(2)
∗ =

2β − 1

β
mn +

1 − β

β
m(1)

i ,

and for the energy:

E(1)
i = En − β∆tD̂x

(

h(1)
e m(1)

e

)

,

E(2)
e =

(

1 − ĉ

β

)

En +
ĉ

β
E(1)

i ,

E(2)
∗ =

2β − 1

β
En +

1 − β

β
E(1)

i .

Finally, we can compute:

ρ(2)
i = ρ(2)

∗ − β∆tD̂xm
(2)
e ,

m(2)
i = m(2)

∗ − β∆tD̂x





m
(2)
e

2

ρ
(2)
e

+
p

(2)
e

ε2



 ,

E(2)
i = E(2)

∗ − β∆tD̂x

(

h(2)
e m(2)

e

)

,

and thus: ρn+1 = ρ
(2)
i , mn+1 = m

(2)
i and En+1 = E

(2)
i .

We can compute D̂xf using a first or a second-order scheme in space.

Such methods can easily be extended to the two-dimensional case.
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4.4 FD shock-capturing methods for Gas

Dynamics Equations in 2D

We discretize in 2D the hyperbolic systems (4.9) and (4.13) of conservation

laws, that we can write in the following form:

Ut + F(U)x + G(U)y = 0.

In the system (4.9)

U =









ρ

m1

m2









, F(U) =









m1

m12

ρ
+ p

ε2

m2 m1

ρ









and G(U) =









m2

m1 m2

ρ
m22

ρ
+ p

ε2









,

while in the system (4.13)

U =













ρ

m1

m2

E













, F(U) =















m1

m12

ρ
+ p

ε2

m2 m1

ρ

hm1















and G(U) =















m2

m1 m2

ρ
m22

ρ
+ p

ε2

hm2















.

Discretization in space

We discretize the space Ω = [0, 1]2 through a uniform grid characterized by a

spatial step ∆x = xi+1 −xi, ∀i along ~x axis
(

∆x = 1
N1

)

and by a spatial step

∆y = yj+1 − yj, ∀j along ~y axis
(

∆y = 1
N2

)

. In general N1 = N2 = N . At

even time step n we have N2 cells, in which each cell is centered at (xi, yj),

with xi =
(

i− 1
2

)

∆x and yj =
(

j − 1
2

)

∆y, i, j = 1, . . . , N . The following

figure (Figure 4.2) shows the discretization of the domain Ω:



CHAPTER 4. SHOCK CAPTURING SCHEMES 171

Figure 4.2: Discretization of the domain [0, 1]2 with N = 5

The values of the numerical solution on the internal points Ui,j(t) ≈ U(xi, yj, t)

evolve in time using the following semi-discrete scheme:

dUi,j

dt
= −

f̂i+ 1
2

− f̂i− 1
2

∆x
−

ĝj+ 1
2

− ĝj− 1
2

∆y
, i, j = 1, 2, . . . , N.

The numerical fluxes {f̂i+ 1
2
} and {ĝj+ 1

2
} are computed as follows. We denote

by D̂xf the flux derivatives that will be discretized as the difference of the nu-

merical fluxes between i+ 1
2

and i− 1
2

and by D̂yg the flux derivatives that will

be discretized as the difference of the numerical fluxes between j+ 1
2

and j− 1
2
.

First-order scheme

To compute the numerical fluxes in D̂xf and in D̂yg we use the local Lax-

Friedrichs fluxes. We first split the flux functions F and G as

F(Ui,j) = F+
i,j + F−

i,j, F±
i,j =

1

2
(F(Ui,j) + αi,jUi,j) ,

G(Ui,j) = G+
i,j + G−

i,j, G±
i,j =

1

2
(G(Ui,j) + βi,jUi,j) ,

where αi,j = |uij| + cij

ε
and βi,j = |vij| + cij

ε
, u and v are the velocities of the

fluid along the x-axis and along the y-axis respectively, cij =
√

γpij

ρij
is the
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sound speed and ε is the dimensionless reference Mach number.

The numerical fluxes are given by:

f̂i+ 1
2

= F+
i + F−

i+1, ĝi+ 1
2

= G+
j + G−

j+1,

that are:

f̂i+ 1
2

,j =
F(Ui+1,j) + F(Ui,j)

2
− αi+ 1

2
,j

Ui+1,j − Ui,j

2
,

ĝi,j+ 1
2

=
G(Ui,j+1) + G(Ui,j)

2
− βi,j+ 1

2

Ui,j+1 − Ui,j

2
.

In classical explicit schemes are chosen:

αi+ 1
2

,j = max {αij, αi+1,j} ,

βi,j+ 1
2

= max {βij, βi,j+1} .
Then the discrete derivatives are given by:

D̂xf =
f̂i+ 1

2
,j − f̂i− 1

2
,j

∆x
, D̂yg =

ĝi,j+ 1
2

− ĝi,j− 1
2

∆y
,

where ∆x and ∆y are the space step discretization.

Second-order scheme

In the second order scheme the numerical fluxes f̂i+ 1
2

,j and ĝi,j+ 1
2

are com-

puted as follows.

Like in the first-order scheme, we split the flux functions F and G as

F(Ui,j) = F+
i,j + F−

i,j, F±
i,j =

1

2
(F(Ui,j) + αi,jUi,j) ,

G(Ui,j) = G+
i,j + G−

i,j, G±
i,j =

1

2
(G(Ui,j) + βi,jUi,j) .

To evaluate the values of F± and G± at the cell interfaces
(

xi+ 1
2
, yj

)

and
(

xi, yj+ 1
2

)

respectively, we use a non-oscillatory generalized minmod recon-

struction, that are:

Fe
i,j := F+

i,j +
∆x

2
(Fx)+

i,j, Fw
i,j := F−

i,j − ∆x

2
(Fx)−

i,j,
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Gn
i,j := G+

i,j +
∆y

2
(Gy)+

i,j, Gs
i,j := G−

i,j − ∆y

2
(Gy)−

i,j,

where the slopes are computed using the generalized minmod limiter:

(Fx)±
i,j = minmod

(

θ
F±

i,j − F±
i−1,j

∆x
,
F±

i+1,j − F±
i−1,j

2∆x
, θ

F±
i+1,j − F±

i,j

∆x

)

,

(Gy)±
i,j = minmod

(

θ
G±

i,j − G±
i,j−1

∆y
,
G±

i,j+1 − G±
i,j−1

2∆y
, θ

G±
i,j+1 − G±

i,j

∆y

)

.

The numerical fluxes are given by:

f̂i+ 1
2

,j = Fe
i,j + Fw

i+1,j, ĝi,j+ 1
2

= Gn
i,j + Gs

i,j+1.

Remark 4.3: As already discussed in the 1D case it is convenient to replace

αi,j with maxi,j αi,j and βi,j with maxi,j βi,j to prevent oscillations.

Discretization in time

First-order scheme

If we use a first-order scheme, to compute the numerical solutions at time

tn+1 we discretize time by a first order Euler method:

Un+1 = Un − ∆tF(Un)x − ∆tG(Un)y.

Second-order scheme

High order schemes in time can be constructed as follows, according to the

scheme present in [3, 5].

We define

Ui = S(U∗,Ue,∆t),

the function that is the solution of the problem

Ui = U∗ − ∆tF(Ue)x − ∆tG(Ue)y,

where Ue is the vector of explicit variables of the system.



CHAPTER 4. SHOCK CAPTURING SCHEMES 174

Then, the method can be implemented in the following way:

U(1)
e = Un

U(1)
i = S(Un,Un, β∆t)

U(2)
e =

(

1 − ĉ

β

)

Un +
ĉ

β
U(1)

i

U(2)
∗ =

2β − 1

β
Un +

1 − β

β
U(1)

i

U(2)
i = S(U(2)

∗ ,U(2)
e , β∆t),

where β = 1 − 1√
2

and ĉ = 1
2β

.

At the end, the numerical solution is computed as Un+1 = U(2)
i .

We apply such discretizations to the Isentropic Euler equations and Full

Euler equations in 2D.

Isentropic Euler Equations

Discretization of the system (4.9)

Finite-difference methods with a first-order scheme in time



























ρn+1 = ρn − ∆tD̂xm
1n − ∆tD̂ym

2n

m1n+1
= m1n − ∆tD̂x

((

m1
2

ρ

)n

+ pn

ε2

)

− ∆tD̂y

(

m1 m2

ρ

)n

m2n+1
= m2n − ∆tD̂x

(

m2 m1

ρ

)n − ∆tD̂y

((

m2
2

ρ

)n

+ pn

ε2

)

,

pn+1 =
(

ρn+1
)γ
.

We can compute D̂xf and D̂yg using a first or a second-order scheme in space.
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Full Euler Equations

Discretization of the system (4.13)

Finite-Difference methods with a first-order scheme in time

We proceed as in the 1D case:







































ρn+1 = ρn − ∆tD̂xm
1n − ∆tD̂ym

2n

m1n+1
= m1n − ∆tD̂x

((

m1
2

ρ

)n

+ pn

ε2

)

− ∆tD̂y

(

m1 m2

ρ

)n

m2n+1
= m2n − ∆tD̂x

(

m2 m1

ρ

)n − ∆tD̂y

((

m2
2

ρ

)n

+ pn

ε2

)

En+1 = En − ∆tD̂x

(

hnm1n
)

− ∆tD̂y

(

hnm2n
)

,

pn+1 = (γ − 1)



En+1 − 1

2
ε2

(

m12

ρ
+
m22

ρ

)n+1


 .

We can compute D̂xf and D̂yg using a first or a second-order scheme in space.

Finite-difference methods with a second-order scheme in time

First we compute:

ρ(1)
e = ρn,

m1(1)
e = m1n

,

m2(1)
e = m2n

,

E(1)
e = En,

p(1)
e = pn.

Now, we can write the equations for the density:

ρ(1)
i = ρn − β∆tD̂xm

1(1)
e − β∆tD̂ym

2(1)
e ,

ρ(2)
e =

(

1 − ĉ

β

)

ρn +
ĉ

β
ρ(1)

i ,

ρ(2)
∗ =

2β − 1

β
ρn +

1 − β

β
ρ(1)

i ,
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for the momentums:

m1(1)
i = m1n − β∆tD̂x





m
1(1)
e

2

ρ
(1)
e

+
p

(1)
e

ε2



− β∆tD̂y



m2(1)
e

m
1(1)
e

ρ
(1)
e



 ,

m2(1)
i = m2n − β∆tD̂x



m1(1)
e

m
2(1)
e

ρ
(1)
e



− β∆tD̂y





m
2(1)
e

2

ρ
(1)
e

+
p

(1)
e

ε2



 ,

m1(2)
e =

(

1 − ĉ

β

)

m1n

+
ĉ

β
m1(1)

i ,

m2(2)
e =

(

1 − ĉ

β

)

m2n

+
ĉ

β
m2(1)

i ,

m1(2)
∗ =

2β − 1

β
m1n

+
1 − β

β
m1(1)

i ,

m2(2)
∗ =

2β − 1

β
m2n

+
1 − β

β
m2(1)

i ,

and for the energy:

E(1)
i = En − β∆tD̂x

(

hnm1(1)
e

)

− β∆tD̂y

(

hnm2(1)
e

)

,

E(2)
e =

(

1 − ĉ

β

)

En +
ĉ

β
E(1)

i ,

E(2)
∗ =

2β − 1

β
En +

1 − β

β
E(1)

i .

Finally, we can compute:

ρ(2)
i = ρ(2)

∗ − β∆tD̂xm
1(2)
e − β∆tD̂ym

2(2)
e ,

m1(2)
i = m1(2)

∗ − β∆tD̂x





m
1(2)
e

2

ρ
(2)
e

+
p

(2)
e

ε2



− β∆tD̂y



m2(2)
e

m
1(2)
e

ρ
(2)
e



 ,

m2(2)
i = m2(2)

∗ − β∆tD̂x



m1(2)
e

m
2(2)
e

ρ
(2)
e



− β∆tD̂y





m
2(2)
e

2

ρ
(2)
e

+
p

(2)
e

ε2



 ,

E(2)
i = E(2)

∗ − β∆tD̂x

(

hnm1(2)
e

)

− β∆tD̂y

(

hnm2(2)
e

)

,

and thus: ρn+1 = ρ
(2)
i , m1n+1

= m
1(2)
i , m2n+1

= m
2(2)
i and En+1 = E

(2)
i .

We can compute D̂xf and D̂yg using a first or a second-order scheme in

space.



CHAPTER 4. SHOCK CAPTURING SCHEMES 177

Boundary conditions The boundary conditions depend on the particu-

lar test under consideration, and thus on the initial conditions. We have

dealt with the case in which there is the presence of a wall, that includes:

• Dirichlet boundary conditions: in general on the x component of the

momentum (because the fluid comes back as soon as it meets an ob-

stacle, like a wall)

• Neumann boundary conditions: in general on the density, on the pres-

sure (and thus on the energy) and on the y component of the momen-

tum (for the 2D problems - to prevent the fluid from leaking from the

duct in which it moves)

We close this Chapter dedicated to the finite-difference methods, applying it

to the case in which the domain is arbitrary. As already seen in Chapter 1,

in this case it is possible that the border does not adapt to the grid. It is

therefore necessary a particular discretization of the boundary conditions.

4.5 Coco-Russo method for the Full Euler

Equations on arbitrary domains

In this Section we present an application of the Coco-Russo method to the

Full Euler equations. This application is present in [8], in which the authors

describe how to construct a second-order finite-difference shock-capturing

method for the numerical solution of the Euler equations of gas dynamics on

arbitrary two dimensional domain Ω. This domain can be fixed or moving.

We limit ourselves to dealing the case of a fixed domain.

A similar work is presented in [4], in which the authors have developed a

finite difference method based on the discretization of the equations on a

normal Cartesian grid and on the application of Lagrange interpolation with

a filter for the detection of discontinuities that permits a data dependent

extrapolation, with higher order at smooth regions and essentially non os-

cillatory properties near discontinuities. In [8] the authors use a different

extrapolation technique, which is similar to that adopted in the context of
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elliptic problems [9, 10], and that we present below.

We discretize the domain Ω with a uniform Cartesian grid with a size mesh

h along the two axes respectively (N = 1
h
). We identify internal and ghost

points. We indicate with Ni and Ng the number of internal points and of

ghost points respectively. The following figure (Figure 4.3) shows the dis-

cretization of a square domain with a circular obstacle:

Figure 4.3: Discretization of a domain Ω ⊂ [0, 1]2 with N = 16: the blue

dots are the internal point, the red dots are the ghost points. We impose the

boundary conditions in the blue circles

We discretize the Full Euler equations for each internal point (see system

(4.13)). As already seen in Chapter 1 for the Poisson equation, the discretized

equations on the internal points involve the values of the numerical solution

on the neighboring ghost points. In this way we obtain a system of 4Ni

equations with 4(Ni + Ng) unknowns. To close the system we proceed as

in the Coco-Russo method, thus we write the 4Ng equations for the Ng

ghost points, which come from the discretization of the boundary conditions.

For each ghost point g we consider its projection f on the border of the

domain and in this point f we impose the boundary conditions appropriately

discretized on the density, on the momentums and on the energy.

• For each ghost point g outside the square domain (whose projection is

precisely on the border of the unit square) the boundary conditions are

imposed in the usual way:
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1. Dirichlet: U(xg, yg) = −U(xi, yi) (on the x component of the mo-

mentum),

2. Neumann: U(xg, yg) = U(xi, yi) (on the density, pressure, energy

and y component of the momentum),

where U(xg, yg) is the value of the numerical solution on the ghost

point g(xg, yg) and U(xi, yi) is the value of the numerical solution on

the neighbor internal point i(xi, yi).

• For each ghost point g inside the circular obstacle we describe how

the boundary conditions are set and discretized in the case of a fixed

boundary. For more details see [8].

We denote by n and τ the normal and tangential unit vectors to the boundary

∂Ω, respectively, and by κ the signed curvature of ∂Ω (see Figure 4.4). In

the case of a circular domain (our obstacle) κ = 1
R

, where R is the radius of

the circumference.

Figure 4.4: Normal and tangential

unit vectors to the boundary ∂Ω in the

projection of the ghost point

We denote by u := (u, v)t the

velocity vector and by un = u ·
n and uτ = u · τ its normal

and tangential components, respec-

tively.

We consider the simpler case of

a fixed boundary and set four

boundary conditions on the nor-

mal and tangential components of

the velocity, pressure and den-

sity.

1. Condition on the normal component of the velocity

un = 0

2. Condition on the pressure

∂p

∂n
= κρu2

τ
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3. Condition on the density

∂ρ

∂n
=

ρ

γp

∂p

∂n

4. Condition on the tangential component of the velocity

∂uτ

∂n
= −κuτ

We see now how it is possible to discretize numerically the boundary con-

ditions 1., 2., 3. and 4.. In [8] the authors indicated with Q[ψ; S] the

biquadratic interpolant (described in Chapter 1) of a grid function ψi,j in

the stencil S. The discretization of the boundary conditions is obtained by

approximating in the equations 1., 2., 3. and 4. the values of pressure,

density, normal and tangential components of the velocity at point f with

the corresponding biquadratic interpolants:

Q[un; Sg](f) = 0 (4.14)

∂Q[p; Sg]

∂n
(f) = κQ[ρ; Sg](f) (Q[uτ ; Sg](f))2 (4.15)

∂Q[ρ; Sg]

∂n
(f) =

Q[ρ; Sg](f)

γQ[p; Sg](f)

∂Q[p; Sg]

∂n
(f) (4.16)

∂Q[uτ ; Sg]

∂n
(f) = −κQ[uτ ; Sg](f) (4.17)

We can observe that we cannot solve separately the 4 × 4 systems obtained

from the equations (4.14), (4.15), (4.16) and (4.17) for each ghost point g,

since each 4×4 system may be coupled with the corresponding 4×4 systems

obtained at other ghost points.

To solve this problem, in [8], the authors use an iterative scheme. They first

transform the system of boundary conditions into a time-dependent problem

with a fictitious time σ:


































∂un

∂σ
= −un

∂uτ

∂σ
= −µ2

(

∂uτ

∂n
+ κuτ

)

∂p
∂σ

= −µ1

(

∂p
∂n

− κρu2
τ

)

∂ρ
∂σ

= −µ3

(

∂ρ
∂n

− 1
c2

s

∂p
∂n

)

, (4.18)



CHAPTER 4. SHOCK CAPTURING SCHEMES 181

where µ1, µ2 and µ3 are suitable constants. Then, to obtain the iterative

scheme, they discretize the system (4.18) in space and time. The partial

derivatives with respect to σ are discretized at the ghost point g using the

first-order forward Euler method. Therefore, the iterative scheme is:

u(m+1)
n (g) = u(m)

n (g) − ∆σQ[u(m)
n ; Sg](f),

u(m+1)
τ (g) = u(m)

τ (g) − µ2∆σ

(

∂Q[u(m)
τ ; Sg](f)

∂n
+ κQ[u(m)

τ ; Sg](f)

)

,

p(m+1)(g) = p(m)(g) − µ1∆σ

(

∂Q[p(m); Sg]

∂n
(f) − κQ[ρ(m); Sg](f)

(

Q[u(m)
τ ; Sg](f)

)2
)

,

ρ(m+1)(g) = ρ(m)(g) − µ3∆σ

(

∂Q[ρ(m); Sg]

∂n
(f) − Q[ρ(m); Sg](f)

γQ[p(m); Sg](f)

∂Q[p(m); Sg]

∂n
(f)

)

,

in which the time step ∆σ and the constants µi, i = 1, 2, 3, are chosen so as

to satisfy the CFL conditions:

∆σ < 1 and µi∆σ < min(∆x,∆y), i = 1, 2, 3.

However, the FD methods described in this Chapter have a limit: the time

step must satisfy the CFL condition. In the following Chapter we will present

a class of numerical methods for systems of conservation laws which, as we

shall see, will be stable also for larger time steps.



5
Semi-Implicit Methods for the Gas Dynamics

Equations

In this Chapter we present the idea of [3] for the construction of alternative

methods for the Gas Dynamics that do not suffer the usual CFL stability re-

striction of explicit schemes proposed in the previous Chapter. Such methods

are known as Semi-Implicit methods.

Semi-Implicit methods

All hyperbolic systems of conservation laws develop waves that propagate at

finite speeds. Therefore, if we want to accurately compute all the waves in a

hyperbolic system, is necessary to resolve all the space and time scales that

characterize it.

We have seen that in the explicit methods for the hyperbolic systems of

conservation laws the time step must satisfy the CFL condition (4.4). If

the order of accuracy in time is the same of the order of accuracy in space,

accuracy and stability restrictions are almost the same, and the systems are

not stiff. However, there are cases in which some of the waves are not par-

ticularly relevant and one is not interested in resolving them. For example,

if we consider the Euler equations of compressible gas dynamics, in the low

Mach number regimes the acoustic waves carry a negligible amount of energy

and thus have a negligible influence on the solution, but since classical CFL

condition on the time step is determined by the acoustic waves, they impose

a very restrictive CFL condition if one uses an explicit scheme to solve them.

182
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The system becomes stiff. This restriction on the time step results in an

increasingly large computational time for smaller and smaller ε.

Implicit time discretization To remedy the problem of stiffness, it can

possible consider implicit time discretizations, which avoid the acoustic CFL

restriction and allow the use of a much larger time step. However, the implicit

schemes to solve the systems present two problems.

• They are more difficult to solve because they are highly nonlinear.

• They may introduce an excessive numerical dissipation on the slow

wave, causing loss of accuracy.

To solve the problems given by both explicit and implicit techniques, the

strategy is to use semi-implicit methods. A semi-implicit scheme avoids the

CFL condition for the acoustic waves and maintains a good accuracy on the

more important features of the flow.

In [3] the authors propose a family of second-order accurate schemes for

the numerical solution of Euler equations of gas dynamics that are (linearly)

implicit in the acoustic waves, eliminating the acoustic CFL restriction on

the time step. In [3] the explicit differential operators in space relative to

convective or material speeds are discretized by local Lax-Friedrics fluxes and

the linear implicit operators, pertaining to acoustic waves, are discretized by

central differences. The results show that these schemes do not introduce

excessive numerical dissipation at low Mach number providing an accurate

solution in such regimes. They perform reasonably well also when the Mach

number are not too small.

Therefore, if for the standard explicit schemes is necessary that CFL ≤ 1
2
, for

these semi-implicit schemes CFL can be quite large than 1. However, since

the material wave is treated explicitly, we have a restriction on the material

CFL, that is, CFLu ≤ 1
2
, where

CFLu =
max |u|∆t

∆x
=

CFL max |u|
λmax

.
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5.1 Semi-Implicit methods for Gas Dynamics

Equations in 1D

We discretize in 1D the hyperbolic systems (4.8) and (4.12) of conservation

laws, that we can write in the following form:

Ut + F(U)x = 0.

We discretize the space as in the Section 4.3.

In the case of semi-implicit methods, we denote by D̂xf the flux derivatives

for non-stiff terms that will be discretized as the difference of the numerical

fluxes between i+ 1
2

and i− 1
2

and by Dxf the flux derivatives for stiff terms

discretized with a centered scheme. Both in the case of a first-order scheme

and in the case of a second-order scheme in space, for non-stiff terms, the

numerical fluxes {f̂i+ 1
2
} are computed as in the Section 4.3.

Therefore, for non-stiff terms, the discrete derivatives are given by:

D̂xf =
f̂i+ 1

2
− f̂i− 1

2

∆x
.

For stiff terms, instead, we have:

Dxf =
fi+ 1

2
− fi− 1

2

∆x
=

fi+1 − fi−1

2∆x
.

Since the acoustic waves are treated implicitly, we use α proportional to the

material speed. We expect that for very low Mach number, α ≈ |u| should

be sufficient, while for Mach number larger than one, the speed of sound is

bounded by the fluid speed. For this reason, we choose

αi = |ui|,

for low Mach number.
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Discretization in time

First-order scheme

If we use a first-order scheme, to compute the numerical solutions at time

tn+1 we discretize time by a first order Euler method: stiff terms are eval-

uated at time tn+1, while non-stiff terms are evaluated at time tn = n∆t,

n = 0, 1, . . .:

Un+1 = Un − ∆tF(Un
e ,U

n+1
i )x,

where Ue is the vector of non-stiff terms and Ui is the vector of stiff terms

of the system.

Second-order scheme

High order schemes in time are obtained with the same technique proposed

by [3, 5] and described in the previous chapter for explicit methods. Now, it

is only a question of adapting the technique to semi-implicit methods.

We define

Ui = S(U∗,Ue,∆t),

the function that is the solution of the problem

Ui = U∗ − ∆tF(Ue,Ui)x.

Then, the method can be implemented in the following way:

U(1)
e = Un

U(1)
i = S(Un,Un, β∆t)

U(2)
e =

(

1 − ĉ

β

)

Un +
ĉ

β
U(1)

i

U(2)
∗ =

2β − 1

β
Un +

1 − β

β
U(1)

i

U(2)
i = S(U(2)

∗ ,U(2)
e , β∆t),

where β = 1 − 1√
2

and ĉ = 1
2β

.

Finally, the numerical solution is computed as Un+1 = U(2)
i .
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We apply such discretizations to the Isentropic Euler equations and Full Eu-

ler equations in 1D.

Isentropic Euler Equations

Discretization of the system (4.8)

Semi-Implicit methods with a first-order scheme in time







ρn+1 = ρn − ∆tD̃xm
n+1 (a)

mn+1 = mn − ∆tD̃x

((

m2

ρ

)n
+ pn+1

ε2

)

(b)
,

pn+1 =
(

ρn+1
)γ
.

We consider the equation (b) on the momentum:

mn+1 = mn − ∆tD̃x

((

m2

ρ

)n

+
pn+1

ε2

)

= m∗ − ∆tDx
pn+1

ε2
,

with m∗ = mn − ∆tD̂x

(

m2

ρ

)n
.

Plugging this expression in the equation (a) on the density, we obtain:

ρn+1 = ρn − ∆tD̂xm
∗ +

∆t2

ε2
D2

xp
n+1 (5.1)

= ρ∗ +
∆t2

ε2
D2

xp
n+1, (5.2)

with ρ∗ = ρn − ∆tD̂xm
∗.

ρn+1 can now be computed by solving the non-linear tridiagonal system (5.2)

and plugged into the momentum equation to find mn+1. To solve the system,

we use a system linearization method:

D2
xp(ρ)

n+1 = Dx

(

∂pn

∂ρ
Dxρ

n+1

)

= Dx

(

γ (ρn)γ−1 Dxρ
n+1

)

= γDx

(

(ρn)γ−1 Dxρ
n+1

)

,
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and thus we have:

ρn+1
i − γ

ε2

∆t2

∆x2

(

(ρn)γ−1

i+ 1
2

(ρn+1
i+1 − ρn+1

i ) − (ρn)γ−1

i− 1
2

(ρn+1
i − ρn+1

i−1 )
)

= ρ∗
i ,

where (ρn)γ−1

i+ 1
2

=
(ρn)γ−1

i
+(ρn)γ−1

i+1

2
and (ρn)γ−1

i− 1
2

=
(ρn)γ−1

i−1 +(ρn)γ−1
i

2
are known terms

from the previous step (at time n).

Therefore, the algorithm is:

• Compute m∗ at time n

• Compute ρ∗ at time n

• Compute ρn+1

• Compute pn+1

• Compute mn+1

We can compute D̂xf using a first or a second-order scheme in space.

Full Euler Equations

Discretization of the system (4.12)

Semi-Implicit methods with a first-order scheme in time

We present an approach described in [3] called "Pressure splitting" and that

is based on an explicit treatment of the convective terms and an implicit

treatment of the pressure terms:



















ρn+1 = ρn − ∆tD̂xm
n (a)

mn+1 = mn − ∆tD̃x

((

m2

ρ

)n
+ pn+1

ε2

)

(b)

En+1 = En − ∆tD̃x (hnmn+1) (c)

,

pn+1 = (γ − 1)

(

En+1 − 1

2
ε2

(

m2

ρ

)n)

.

In this scheme ρn+1 is computed explicity, while En+1 and pn+1 are linearly
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linked through the equation of state, thus it is possible solve the system both

on the energy and on the pressure. In [3] the authors explored the use of

scheme obtained by solving the linear system on the pressure, and they found

it to be less accurate and more oscillatory.

First, we replace the equation of state pn+1 in the equation (b) of the mo-

mentum:

mn+1 = mn − 3 − γ

2
∆tD̂x

(

m2

ρ

)n

− γ − 1

ε2
∆tDxE

n+1

= m∗ − γ − 1

ε2
∆tDxE

n+1, (d)

with m∗ = mn − 3−γ
2

∆tD̂x

(

m2

ρ

)n
.

Plugging this expression in the equation (c) on the energy, we obtain:

En+1 = En − ∆tD̂x (hnm∗) +
γ − 1

ε2
∆t2Dx(hn(DxE

n+1)) (5.3)

= E∗ +
γ − 1

ε2
∆t2Dx(hn(DxE

n+1)), (5.4)

with E∗ = En − ∆tD̂x (hnm∗).

To compute En+1 we solve the tridiagonal system (5.4):

En+1
i − γ − 1

ε2

∆t2

∆x2

(

hn
i+ 1

2
(En+1

i+1 − En+1
i ) − hn

i− 1
2
(En+1

i − En+1
i−1 )

)

= E∗
i

En+1
i − γ − 1

ε2

∆t2

∆x2

(

hn
i + hn

i+1

2
(En+1

i+1 − En+1
i ) − hn

i−1 + hn
i

2
(En+1

i − En+1
i−1 )

)

= E∗
i .

We now insert En+1 into the momentum equation (d) to find mn+1.

Therefore the algorithm is:

• Compute m∗ at time n

• Compute E∗ at time n

• Compute En+1

• Compute pn+1
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• Compute ρn+1

• Compute mn+1

We can compute D̂xf using a first or a second-order scheme in space.

We also propose the case in which we solve the system on the pressure,

just do not replace the equation of state in the equation of the momentum.

The alghoritm in this case is:

• Compute m∗ = mn − ∆tD̂x

(

m2

ρ

)n
at time n

• Compute E∗ = En − ∆tD̂x (hnm∗) − 1
2
ε2
(

m2

ρ

)n
at time n

• Compute pn+1 solving the tridiagonal system pn+1

γ−1
− ∆t2

ε2 D
2
x (hnpn+1) =

E∗

• Compute En+1

• Compute ρn+1 = ρn − ∆tD̂xm
n

• Compute mn+1

This method can be extended to the two-dimensional case and also to the

case in which we use second-order reconstructions in time. However, unless

otherwise specified, in our numerical tests we will use the method based on

the energy.

Semi-Implicit methods with a second-order scheme in time

In the case of Full Euler Equations we also used a second-order discretization

in time.

First, we compute:

ρ(1)
e = ρn,

m(1)
e = mn,

E(1)
e = En.
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We can write the equations for the density:

ρ(1)
i = ρn − β∆tD̂xm

(1)
e ,

ρ(2)
e =

(

1 − ĉ

β

)

ρn +
ĉ

β
ρ(1)

i ,

ρ(2)
∗ =

2β − 1

β
ρn +

1 − β

β
ρ(1)

i .

We write now the equation for the momentum. As we have already described

for the first-order scheme replacing the equation of state in the equation of

the momentum we obtain:

m(1)
i = mn − β∆t

3 − γ

2
D̂x

m
(1)
e

2

ρ
(1)
e

− β∆t
γ − 1

ε2
DxE

(1)
i

= M (1)
e − β∆t

γ − 1

ε2
DxE

(1)
i ,

with M
(1)
e = mn − β∆t3−γ

2
D̂x

m
(1)
e

2

ρ
(1)
e

.

Plugging this expression in the equation on the energy, we obtain:

E(1)
i = En − β∆tD̂x

(

hM (1)
e

)

+ β2∆t2
γ − 1

ε2
Dx

(

h
(

DxE
(1)
i

))

(5.5)

= E∗ + β2∆t2
γ − 1

ε2
Dx

(

h
(

DxE
(1)
i

))

, (5.6)

with E∗ = En − β∆tD̂x

(

hM
(1)
e

)

.

E
(1)
i can now be computed by solving the tridiagonal system (5.6) and plugged

into the momentum equation to find m
(1)
i , and thus:

m(2)
e =

(

1 − ĉ

β

)

mn +
ĉ

β
m(1)

i ,

m(2)
∗ =

2β − 1

β
mn +

1 − β

β
m(1)

i ,

ρ(2)
i = ρ(2)

∗ − β∆tD̂xm
(2)
e ,

E(2)
e =

(

1 − ĉ

β

)

En +
ĉ

β
E(1)

i ,

E(2)
∗ =

2β − 1

β
En +

1 − β

β
E(1)

i .
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To compute m
(2)
i and E

(2)
i we use the same procedure used to compute m

(1)
i

and E
(1)
i . We have:

m(2)
i = m(2)

∗ − β∆t
3 − γ

2
D̂x

m
(2)
e

2

ρ
(2)
e

− β∆t
γ − 1

ε2
DxE

(2)
i

= M (2)
e − β∆t

γ − 1

ε2
DxE

(2)
i ,

with M
(2)
e = m

(2)
∗ − β∆t3−γ

2
D̂x

m
(2)
e

2

ρ
(2)
e

, and

E(2)
i = E(2)

∗ − β∆tD̂x

(

hM (2)
e

)

+ β2∆t2
γ − 1

ε2
Dx

(

h
(

DxE
(2)
i

))

= E∗∗ + β2∆t2
γ − 1

ε2
Dx

(

h
(

DxE
(2)
i

))

,

with E∗∗ = E
(2)
∗ − β∆tD̂x

(

hM
(2)
e

)

.

Therefore the algorithm is:

• Compute ρ
(1)
e , m

(1)
e , E

(1)
e

• Compute ρ
(1)
i , ρ

(2)
e , ρ

(2)
∗

• Compute M
(1)
e , E∗, E

(1)
i

• Compute m
(1)
i , m

(2)
e , m

(2)
∗ , ρ

(2)
i , E

(2)
e , E

(2)
∗

• Compute M
(2)
e , E∗∗, E

(2)
i , m

(2)
i

• Compute En+1 = E
(2)
i

• Compute pn+1

• Compute ρn+1 = ρ
(2)
i

• Compute mn+1 = m
(2)
i

We can compute D̂xf using a first or a second-order scheme in space.

Such methods can easily be extended to the two-dimensional case.
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5.2 Semi-Implicit methods for Gas Dynamics

Equations in 2D

We discretize in 2D the hyperbolic systems (4.9) and (4.13) of conservation

laws, that we can write in the following form:

Ut + F(U)x + G(U)y = 0.

We discretize the space as in the Section 4.4.

In the case of semi-implicit methods we denote by D̂xf and D̂yg the flux

derivatives for non-stiff terms that will be discretized as the difference of the

numerical fluxes between i+ 1
2

and i− 1
2

and by Dxf and Dyg the flux deriva-

tives for stiff terms discretized with a centered scheme. Both in the case of

a first-order scheme and in the case of a second-order scheme in space, for

non-stiff terms, the numerical fluxes {f̂i+ 1
2
} and {ĝj+ 1

2
} are computed as in

the Section 4.4.

Therefore, for non-stiff terms, the discrete derivatives are given by:

D̂xf =
f̂i+ 1

2
,j − f̂i− 1

2
,j

∆x
, D̂yg =

ĝi,j+ 1
2

− ĝi,j− 1
2

∆y
.

For stiff terms, instead, we have:

Dxf =
fi+ 1

2
,j − fi− 1

2
,j

∆x
=

fi+1,j − fi−1,j

2∆x
,

Dyg =
gi,j+ 1

2
− gi,j− 1

2

∆y
=

gi,j+1 − gi,j−1

2∆y
.

As in 1D case, for high Mach number we choose:

αi,j = |ui,j| +
ci,j

ε
,

βi,j = |vi,j| +
ci,j

ε
,

while, for low Mach number we have:

αi,j = |ui,j|,

βi,j = |vi,j|.
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Discretization in time

First-order scheme

If we use a first-order scheme, to compute the numerical solutions at time

tn+1 we discretize time by a first order Euler method: stiff terms are eval-

uated at time tn+1, while non-stiff terms are evaluated at time tn = n∆t,

n = 0, 1, . . .:

Un+1 = Un − ∆tF(Un
e ,U

n+1
i )x − ∆tG(Un

e ,U
n+1
i )y,

where Ue is the vector of non-stiff terms and Ui is the vector of stiff terms

of the system.

Second-order scheme

High order schemes in time are obtained like in 1D case.

We define

Ui = S(U∗,Ue,∆t),

the function that is the solution of the problem

Ui = U∗ − ∆tF(Ue,Ui)x − ∆tG(Ue,Ui)y;

Then, the method can be implemented in the following way:

U(1)
e = Un

U(1)
i = S(Un,Un, β∆t)

U(2)
e =

(

1 − ĉ

β

)

Un +
ĉ

β
U(1)

i

U(2)
∗ =

2β − 1

β
Un +

1 − β

β
U(1)

i

U(2)
i = S(U(2)

∗ ,U(2)
e , β∆t),

where β = 1 − 1√
2

and ĉ = 1
2β

.

Finally, the numerical solution is computed as Un+1 = U(2)
i .
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We apply such discretizations to the Isentropic Euler equations and Full Eu-

ler equations in 2D.

In 2D the CFL condition is CFL = λ1max

∆t
∆x

+ λ2max

∆t
∆y

, from which

∆t =
CFL

λ1max

∆x
+ λ2max

∆y

.

Isentropic Euler Equations

Discretization of the system (4.9)

Semi-Implicit methods with a first-order scheme in time



























ρn+1 = ρn − ∆tD̃xm
1n+1 − ∆tD̃ym

2n+1
(a)

m1n+1
= m1n − ∆tD̃x

((

m1
2

ρ

)n

+ pn+1

ε2

)

− ∆tD̂y

(

m1 m2

ρ

)n
(b)

m2n+1
= m2n − ∆tD̂x

(

m2 m1

ρ

)n − ∆tD̃y

((

m2
2

ρ

)n

+ pn+1

ε2

)

(c)

,

pn+1 =
(

ρn+1
)γ
.

First, we consider the equation (b) and (c) on the momentums:

m1n+1

= m1n − ∆tD̃x

((

m12

ρ

)n

+
pn+1

ε2

)

− ∆tD̂y

(

m1m
2

ρ

)n

= m1∗ − ∆tDx
pn+1

ε2
, (d)

m2n+1

= m2n − ∆tD̂x

(

m2m
1

ρ

)n

− ∆tD̃y

((

m22

ρ

)n

+
pn+1

ε2

)

= m2∗ − ∆tDy
pn+1

ε2
, (e)

with m1∗

= m1n − ∆tD̂x

(

m1
2

ρ

)n

− ∆tD̂y

(

m1 m2

ρ

)n

and m2∗

= m2n − ∆tD̂x

(

m2 m1

ρ

)n − ∆tD̂y

(

m2
2

ρ

)n

.
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Plugging these expressions in the equation (a) on the density, we obtain:

ρn+1 = ρn − ∆tD̂xm
1∗ − ∆tD̂ym

2∗

+
∆t2

ε2
D2

xp
n+1 +

∆t2

ε2
D2

yp
n+1 (5.7)

= ρ∗ +
∆t2

ε2
D2

xp
n+1 +

∆t2

ε2
D2

yp
n+1, (5.8)

with ρ∗ = ρn − ∆tD̂xm
1∗ − ∆tD̂ym

2∗

.

ρn+1 can now be computed by solving the tridiagonal system (5.8) and

plugged into the momentums equations to find m1n+1
and m2n+1

. As in

1D case, we use a system linearization method to solve the system (5.8).

Therefore, the algorithm is:

• Compute m1∗

and m2∗

at time n

• Compute ρ∗ at time n

• Compute ρn+1

• Compute pn+1

• Compute m1n+1
and m2n+1

We can compute D̂xf and D̂yg using a first or a second-order scheme in space.

Full Euler Equations

Discretization of the system (4.13)

Semi-Implicit methods with a first-order scheme in time

We proceed as in the 1D case:







































ρn+1 = ρn − ∆tD̂xm
1n − ∆tD̂ym

2n

(a)

m1n+1
= m1n − ∆tD̃x

((

m1
2

ρ

)n

+ pn+1

ε2

)

− ∆tD̂y

(

m1 m2

ρ

)n
(b)

m2n+1
= m2n − ∆tD̂x

(

m2 m1

ρ

)n − ∆tD̃y

((

m2
2

ρ

)n

+ pn+1

ε2

)

(c)

En+1 = En − ∆tD̃x

(

hnm1n+1
)

− ∆tD̃y

(

hnm2n+1
)

(d)

,



CHAPTER 5. SEMI-IMPLICIT METHODS 196

pn+1 = (γ − 1)

(

En+1 − 1

2
ε2

(

m12

ρ
+
m22

ρ

)n)

.

In this case ρn+1 is computed explicity. First, we replace the equation of

state pn+1 in the equations (b) and (c) of the momentums:

m1n+1

= m1n − ∆tD̂x

(

3 − γ

2

m12

ρ
+

1 − γ

2

m22

ρ

)n

− ∆tD̂y

(

m1m
2

ρ

)n

− ∆t
γ − 1

ε2
DxEn+1

= m1∗ − ∆t
γ − 1

ε2
DxE

n+1,

m2n+1

= m2n − ∆tD̂x

(

m2m
1

ρ

)n

− ∆tD̂y

(

3 − γ

2

m22

ρ
+

1 − γ

2

m12

ρ

)n

− ∆t
γ − 1

ε2
DyEn+1

= m2∗ − ∆t
γ − 1

ε2
DyE

n+1,

with m1∗

= m1n − ∆tD̂x

(

3−γ
2

m1
2

ρ
+ 1−γ

2
m2

2

ρ

)n

− ∆tD̂y

(

m1 m2

ρ

)n

and m2∗

= m2n − ∆tD̂x

(

m2 m1

ρ

)n − ∆tD̂y

(

3−γ
2

m2
2

ρ
+ 1−γ

2
m1

2

ρ

)n

.

Plugging these expressions in the equation (d) on the energy, we obtain:

En+1 =En − ∆tD̂x

(

hnm1∗
)

− ∆tD̂y

(

hnm2∗
)

+ (5.9)

γ − 1

ε2
∆t2

(

Dx(hn(DxE
n+1)) +Dy(hn(DyE

n+1))
)

(5.10)

=E∗ +
γ − 1

ε2
∆t2

(

Dx(hn(DxE
n+1)) +Dy(hn(DyE

n+1))
)

, (5.11)

with E∗ = En − ∆tD̂x

(

hnm1∗
)

− ∆tD̂y

(

hnm2∗
)

.

En+1 can now be computed by solving the tridiagonal system (5.11) and

plugged into the momentums equations to find m1n+1
and m2n+1

.

Therefore the algorithm is:

• Compute m1∗

and m2∗

at time n

• Compute E∗ at time n

• Compute En+1

• Compute pn+1
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• Compute ρn+1

• Compute m1n+1
and m2n+1

We can compute D̂xf and D̂yg using a first or a second-order scheme in space.

Semi-Implicit methods with a second-order scheme in time

First we compute:

ρ(1)
e = ρn,

m1(1)
e = m1n

,

m2(1)
e = m2n

,

E(1)
e = En.

We can write the equations for the density:

ρ(1)
i = ρn − β∆tD̂xm

1(1)
e − β∆tD̂ym

2(1)
e ,

ρ(2)
e =

(

1 − ĉ

β

)

ρn +
ĉ

β
ρ(1)

i ,

ρ(2)
∗ =

2β − 1

β
ρn +

1 − β

β
ρ(1)

i .

We write now the equations for the momentums. As we have already de-

scribed for the first-order scheme replacing the equation of state in the equa-

tions of the momentums we obtain:

m1(1)
i =m1n − β∆tD̂x





3 − γ

2

m
1(1)
e

2

ρ
(1)
e

+
1 − γ

2

m
2(1)
e

2

ρ
(1)
e



 −

β∆tD̂y



m1(1)
e

m
2(1)
e

ρ
(1)
e



− β∆t
γ − 1

ε2
DxE

(1)
i

=M1(1)
e − β∆t

γ − 1

ε2
DxE

(1)
i ,

m2(1)
i =m2n − β∆tD̂y





3 − γ

2

m
2(1)
e

2

ρ
(1)
e

+
1 − γ

2

m
1(1)
e

2

ρ
(1)
e



 −

β∆tD̂x



m2(1)
e

m
1(1)
e

ρ
(1)
e



− β∆t
γ − 1

ε2
DyE

(1)
i

=M2(1)
e − β∆t

γ − 1

ε2
DyE

(1)
i ,
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with M
1(1)
e = m1n − β∆tD̂x

(

3−γ
2

m
1(1)
e

2

ρ
(1)
e

+ 1−γ
2

m
2(1)
e

2

ρ
(1)
e

)

− β∆tD̂y

(

m
1(1)
e

m
2(1)
e

ρ
(1)
e

)

and M
2(1)
e = m2n − β∆tD̂y

(

3−γ
2

m
2(1)
e

2

ρ
(1)
e

+ 1−γ
2

m
1(1)
e

2

ρ
(1)
e

)

− β∆tD̂y

(

m
2(1)
e

m
1(1)
e

ρ
(1)
e

)

.

Plugging these expressions in the equation on the energy, we obtain:

E(1)
i =En − β∆tD̂x

(

hM1(1)
e

)

− β∆tD̂y

(

hM2(1)
e

)

+ (5.12)

β2∆t2
γ − 1

ε2

(

Dx

(

h
(

DxE
(1)
i

))

+Dy

(

h
(

DyE
(1)
i

)))

(5.13)

=E∗ + β2∆t2
γ − 1

ε2

(

Dx

(

h
(

DxE
(1)
i

))

+Dy

(

h
(

DyE
(1)
i

)))

, (5.14)

with E∗ = En − β∆tD̂x

(

hM
1(1)
e

)

− β∆tD̂y

(

hM
2(1)
e

)

.

E
(1)
i can now be computed by solving the tridiagonal system (5.14) and

plugged into the momentums equations to find m
1(1)
i and m

2(1)
i . Thus, we

can compute:

m1(2)
e =

(

1 − ĉ

β

)

m1n

+
ĉ

β
m1(1)

i ,

m2(2)
e =

(

1 − ĉ

β

)

m2n

+
ĉ

β
m2(1)

i ,

m1(2)
∗ =

2β − 1

β
m1n

+
1 − β

β
m1(1)

i ,

m2(2)
∗ =

2β − 1

β
m2n

+
1 − β

β
m2(1)

i ,

ρ(2)
i = ρ(2)

∗ − β∆tD̂xm
1(2)
e − β∆tD̂ym

2(2)
e ,

E(2)
e =

(

1 − ĉ

β

)

En +
ĉ

β
E(1)

i ,

E(2)
∗ =

2β − 1

β
En +

1 − β

β
E(1)

i .

To compute m
1(2)
i , m

2(2)
i and E

(2)
i we use the same procedure used to compute

m
1(1)
i , m

2(1)
i and E

(1)
i .
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We have:

m1(2)
i =m1(2)

∗ − β∆tD̂x





3 − γ

2

m
1(2)
e

2

ρ
(2)
e

+
1 − γ

2

m
2(2)
e

2

ρ
(2)
e



 −

β∆tD̂y



m1(2)
e

m
2(2)
e

ρ
(2)
e



− β∆t
γ − 1

ε2
DxE

(2)
i

=M1(2)
e − β∆t

γ − 1

ε2
DxE

(2)
i ,

m2(2)
i =m2(2)

∗ − β∆tD̂y





3 − γ

2

m
2(2)
e

2

ρ
(2)
e

+
1 − γ

2

m
1(2)
e

2

ρ
(2)
e



 −

β∆tD̂x



m2(2)
e

m
1(2)
e

ρ
(2)
e



− β∆t
γ − 1

ε2
DyE

(2)
i

=M2(2)
e − β∆t

γ − 1

ε2
DyE

(2)
i ,

with M
1(2)
e = m

1(2)
∗ −β∆tD̂x

(

3−γ
2

m
1(2)
e

2

ρ
(2)
e

+ 1−γ
2

m
2(2)
e

2

ρ
(2)
e

)

−β∆tD̂y

(

m
1(2)
e

m
2(2)
e

ρ
(2)
e

)

,

M
2(2)
e = m

2(2)
∗ − β∆tD̂y

(

3−γ
2

m
2(2)
e

2

ρ
(2)
e

+ 1−γ
2

m
1(2)
e

2

ρ
(2)
e

)

− β∆tD̂y

(

m
2(2)
e

m
1(2)
e

ρ
(2)
e

)

, and

E(2)
i =E(2)

∗ − β∆tD̂x

(

hM1(2)
e

)

− β∆tD̂y

(

hM2(2)
e

)

+

β2∆t2
γ − 1

ε2

(

Dx

(

h
(

DxE
(2)
i

))

+Dy

(

h
(

DyE
(2)
i

)))

=E∗∗ + β2∆t2
γ − 1

ε2

(

Dx

(

h
(

DxE
(2)
i

))

+Dy

(

h
(

DyE
(2)
i

)))

,

with E∗∗ = E
(2)
∗ − β∆tD̂x

(

hM
1(2)
e

)

− β∆tD̂y

(

hM
2(2)
e

)

.

Therefore the algorithm is:

• Compute ρ
(1)
e , m

1(1)
e , m

2(1)
e , E

(1)
e

• Compute ρ
(1)
i , ρ

(2)
e , ρ

(2)
∗

• Compute M
1(1)
e , M

2(1)
e , E∗, E

(1)
i

• Compute m
1(1)
i , m

1(2)
e , m

1(2)
∗ , m

2(1)
i , m

2(2)
e , m

2(2)
∗ , ρ

(2)
i , E

(2)
e , E

(2)
∗

• Compute M
1(2)
e , M

2(2)
e , E∗∗, E

(2)
i , m

1(2)
i , m

2(2)
i

• Compute En+1 = E
(2)
i
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• Compute pn+1

• Compute ρn+1 = ρ
(2)
i

• Compute m1n+1
= m

1(2)
i , m2n+1

= m
2(2)
i

We can compute D̂xf and D̂yg using a first or a second-order scheme in space.

Now, just as with the finite-difference methods, we want to apply the Semi-

Implicit methods at the Full Euler equations on a bidimensional arbitrary

domains. We will therefore eliminate the time step restriction present in [8].

5.3 Coco-Russo method for the Full Euler

Equations on arbitrary domains

In this last Section, we apply the semi-implicit methods, discussed in the

previous Section, to the Full Euler equations on bidimensional domains in

presence of obstacles, eliminating the restriction on the time step present in

[8], of which we have already spoken in the Section 4.5.

In addition to presenting the advantage of eliminating the restriction on

the time step, in this method we provide an alternative technique to that

proposed in [8] to impose the boundary conditions on the obstacle. Instead

of using the iterative method (4.18) we will solve a simple linear system,

which turns out to be computationally faster.

In this regard, we rewrite the equations (4.14), (4.15), (4.16) and (4.17)

so that only the quantities Q[u; Sg], Q[v; Sg], Q[ρ; Sg] and Q[p; Sg] appear.

Unlike the method proposed in [8], we have used bilinear interpolations,

which we indicate with B[ψij; Sg], rather than biquadratic interpolations.

To do this, we make the following considerations.

The condition (4.14) is equivalent to B[u; Sg](f)nx +B[v; Sg](f)ny = 0, where
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nx and ny are computed as follows. We define the level set function [23, 27]:

φ(x, y) =







−d((x, y), ∂Ω) (x, y) ∈ Ω

d((x, y), ∂Ω) (x, y) /∈ Ω
.

Given the two upwind close points to g, qx and qy (see Figure 5.1), we have:

Figure 5.1: Upwind close points to g

nx =
∂φ

∂x
=

φx
√

φ2
x + φ2

y

,

ny =
∂φ

∂y
=

φy
√

φ2
x + φ2

y

,

with

φx =
φg − φqx

h
sgn

(

g(x) − q(x)
x

)

,

φy =
φg − φqy

h
sgn

(

g(y) − q(y)
y

)

.

While τ =
(

∂φ
∂y
,−∂φ

∂x

)

and uτ = B[u; Sg]ny − B[v; Sg]nx.

In the condition (4.17) the term ∂B[uτ ;Sg]
∂n

(f) is approximated for simplicity

with the following formula which still ensures a first-order accuracy:

∂uτ

∂n
(f) =

1

h

((

uτg − uτqx

)

|nx| +
(

uτg − uτqy

)

|ny|
)

.

In the conditions (4.15) and (4.16) the non-linear terms (B[uτ ; Sg](f))2 and
B[ρ;Sg](f)

γB[p;Sg](f)
are approximated with the values they assume at the internal point

closest to the ghost point in question. That is, if i is the internal point clos-

est to ghost point g, the two quantities are approximated respectively with

uτ (i)2 and ρ(i)
γp(i)

.

In this way the equations, for each ghost point, become:

B[u; Sg](f)nx + B[v; Sg](f)ny = 0 (5.15)

∂B[p; Sg]

∂n
(f) = κB[ρ; Sg](f)uτ (i)2 (5.16)
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∂B[ρ; Sg]

∂n
(f) =

ρ(i)

γp(i)

∂B[p; Sg]

∂n
(f) (5.17)

∂uτ

∂n
(f) = −κ (B[u; Sg](f)ny − B[v; Sg](f)nx) (5.18)

which is a linear system with unknowns the values of tangential and normal

velocities, pressure and density on the ghost point g.

As already discussed in Section 4.5, we can observe that we cannot solve

separately the 4 × 4 systems obtained from the equations (5.15), (5.16),

(5.17) and (5.18) for each ghost point g, since each 4 × 4 system may be

coupled with the corresponding 4×4 systems obtained at other ghost points.

Thus, to extend the numerical solution on the ghost points, we solve a linear

system of 4Ng equations in 4Ng unknowns, whose unknowns are u, v, p and

ρ on the ghost points. While, the known terms are the values of normal

and tangential components of velocity, pressure and density on the internal

points involved in the stencils.

We denote with Ui and Ug the vectors of numerical solution on internal

points and on ghost points, respectively. The numerical method has the fol-

lowing form.

If we develop an explicit method, we have:

Un+1
i = Un

i − ∆tF(Un
i ,U

n
g) − ∆tG(Un

i ,U
n
g),

where Un
g as computed solving the linear system

AUn
g = b(Un

i ),

and A ∈ R
4Ng×4Ng is the matrix of coefficients, b(Un

i ) is the vector of known

terms.

If we develop a semi-implicit method, we have:

Un+1
i = Un

i − ∆tF(Un+1
i ,Un+1

g ) − ∆tG(Un+1
i ,Un+1

g ),

where Un+1
g as computed solving the linear system

AUn+1
g = b(Un+1

i ).
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We close this Chapter by showing some numerical results that highlight the

stability characteristics of Semi-Implicit methods.

5.4 Numerical tests for the Semi-Implicit

methods

In this Section we present some numerical tests to highlight the robust char-

acteristics of the Semi-Implicit method for the Gas Dynamics equations even

for low Mach number values. The schemes are accurate for a wide range of

values of the Mach number.

For each test we monitor the classical Courant number

CFL =
λmax∆t

∆x
. (5.19)

For all the numerical tests we give well prepared initial values and unlike the

texts proposed in [3] and [6] we will not adopt periodic boundary conditions

but we suppose there is a wall.

5.4.1 Numerical tests for the Isentropic Gas Dynamics

We start by presenting the numerical results for the Isentropic Gas Dynam-

ics, in which we use a first-order reconstruction in time and a second-order

reconstruction in space with θ = 1.5.

Example 1: Two colliding acoustic waves

Consider the evolution of two colliding acoustic waves, with the following

well prepared initial data:

p(ρε) = ργ
ε with γ = 1.4,

ρε(x, 0) = 0.955 +
ε

2
(1 − cos(2πx)) , uε(x, 0) = −sgn(x)

√
γ (1 − cos(2πx)) .
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Figure 5.2: Initial Conditions: density (left panel) and momentum (right

panel)

These acoustic pulses, one right-running and one left-running, collide and

superpose and then separate again and during the whole procedure no shock

forms. We present the numerical results choosing, as in [6], the spatial step

∆x = 1
50

, ε = 0.1 and the following boundary conditions:

1. void Neumann boundary conditions on the density and thus on the

pressure

2. void Dirichlet boundary conditions on the momentum

The time step is computed by (5.19) with CFL = 0.5.

In [6] the authors use a staggered grid, with which a second-order accu-

racy in space is automatically guaranteed.

The following figures show the numerical results on the density (left panel)

and on the momentum (right panel) for different final times T .
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Figure 5.3: Density (left panel) and momentum (right panel) at final time

T = 0.01, N = 50, ε = 0.1, CFL = 0.5

Figure 5.4: Density (left panel) and momentum (right panel) at final time

T = 0.02, N = 50, ε = 0.1, CFL = 0.5
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Figure 5.5: Density (left panel) and momentum (right panel) at final time

T = 0.04, N = 50, ε = 0.1, CFL = 0.5

Figure 5.6: Density (left panel) and momentum (right panel) at final time

T = 0.06, N = 50, ε = 0.1, CFL = 0.5
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Figure 5.7: Density (left panel) and momentum (right panel) at final time

T = 0.08, N = 50, ε = 0.1, CFL = 0.5

Example 2: 2D Isentropic Problem

We focus on a two dimensional case with p(ρ) = ρ2. The computational

domain is Ω = [0, 1]2. We consider the numerical test with initial conditions:























ρ(x, y, 0) = e
(x−0.5)2+(y−0.5)2

0.12

ρ(x, y, 0)u(x, y, 0) = 0

ρ(x, y, 0)v(x, y, 0) = 0

.

We present the numerical results by choosing the spatial step ∆x = ∆y = 1
100

,

CFL = 0.5, ε = 0.05, final time T = 0.002 and the following boundary

conditions:

1. void Neumann boundary conditions on the density and thus on the

pressure

2. void Dirichlet boundary conditions on the momentums
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Figure 5.8: Numerical results at final time T = 0.002, N = 100, ε = 0.05,

CFL = 0.5

5.4.2 Numerical tests for the Full Euler Equations

We proceed by presenting the numerical results for the Full Euler Equations,

in which we use a second-order reconstruction both in time and in space with

θ = 1.

Example 1: Two Colliding Acoustic Pulses

We consider two colliding acoustic pulses in a weakly compressible regime.

This test is present in [3] and [6]. The initial conditions are:

ρε(x, 0) = ρ0 +
ε

2
ρ1

(

1 − cos
(

4πx

L

))

, ρ0 = 0.955, ρ1 = 2,

uε(x, 0) = −1

2
u0sgn(x)

(

1 − cos
(

4πx

L

))

, u0 = 2
√
γ,

p(x, 0) = p0 +
ε

2
p1

(

1 − cos
(

4πx

L

))

, p0 = 1, p1 = 2γ,
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where L is the length of the domain, that in this case is
[

−2
ε
, 2

ε

]

.

We impose the following boundary conditions: void Neumann boundary con-

ditions on the density, on the energy and thus on the pressure and void

Dirichlet boundary conditions on the momentum.

We consider the numerical results obtained with N = 440 at different times

T = 0.815 and T = 1.63. We choose ε = 1
11

and ε = 10−4, γ = 1.4 and

CFL = 0.5.

Figure 5.9: Pressure at two different final times T = 0.815 (left panel) and

T = 1.63 (right panel), N = 440, ε = 1
11

, CFL = 0.5
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Figure 5.10: Pressure at two different final times T = 0.815 (left panel) and

T = 1.63 (right panel), N = 440, ε = 10−4, CFL = 0.5

In the case of a semi-implicit method we can choose a CFL higher than 1. If

we choose CFL = 3 which corresponds to a CFLu = 0.44 we obtain:
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where θb = b−xN+1

∆x
.

When θb = 0.5 we have the classic case that we discussed previously.

We can observe that in the condition (5.20) when θb is very small, stability

problems can occur. For example, if we choose θb = 0.005, N = 440, ε = 1
11

,

we have stability problems. To remedy this problem due to small values of

θb, we perform the linear interpolation at the nodes xN+2 and xN :

θ′
bUi,j(xN+2) + (1 − θ′

b)Ui,j(xN) = 0,

from which:

Ui,j(xN+2) = −1 − θ′
b

θ′
b

Ui,j(xN),

in which the new value of θb is θ′
b = b−xN

2∆x
, that it is bigger than θb, thus

eliminating the problem of stability.

For example, if θb = 0.005, θ′
b = 0.5025.

Example 2: 2D Sod Shock Tube Problem

Finally, we show the results obtained on a problem with radial symmetry

[20]. We consider a shock tube initial condition with radial symmetry, that

is

(ρ, u, v, p)(x, y, 0) =







(1, 0, 0, 1) (x− 0.5)2 + (y − 0.5)2 ≤ (0.2)2

(0.125, 0, 0, 0.1) otherwise
.

We have imposed the following boundary conditions:

• void Dirichlet boundary conditions on the momentums

• void Neumann boundary conditions on the density, energy end pressure

The computational domain is [0, 1]2. The Figure 5.13 shows the achieved

results at final time T = 0.1 choosing N = 100 (on the top) and N = 200

(on the bottom) grid points in each direction and CFL = 0.5. The scat-

ter plots are computed rewriting the solution (ρ, u, v, p) as a function of

r =
√

(x− 0.5)2 + (y − 0.5)2.

This numerical test has been proposed by [20], in which the authors present

a fourth-order central scheme for two-dimensional hyperbolic systems of con-

servation laws.
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Figure 5.13: Solution with circular symmetry at final time T = 0.1. Scatter

plots (left panels) and contour plots (right panels) for the density, forN = 100

(top panels) and N = 200 (bottom panels), CFL = 0.5, ε = 1. The contour

plots have 30 equally spaced contour lines

We performed all the numerical tests mentioned above also solving with

respect to the pressure. This is to make sure that numerical results are not

altered, bacause in the next Section, when working on arbitrary domains, it

is more convenient to work on pressure rather than energy. We obtained the

same behavior.
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5.5 Numerical tests for the Semi-Implicit

methods on arbitrary domains

In this last Section we show the numerical results for the Full Euler Equa-

tions on two-dimensional arbitrary domains, which we talked about in the

Section 5.3.

We consider the example present in [8], that is a simple wave that prop-

agates around a steady disk with xC = 0.6 and yC = 0.5.

Figure 5.14: Initial conditions with a circular obstacle. The first figure on

the upper left shows the contour plots of density

The initial conditions are given by:

(ρ, u, v, p)(x, y, 0) =







(ρ̃, ũ, 0, p̃)(x, y) |x− 0.35| < 0.25

(ρ0, 0, 0, p0) otherwise
, (5.21)

where

ũ(x, y) = 0.5e− (x−0.35)2

0.005 ,
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ρ̃(x, y) = ρ0

(

1 +
γ − 1

2

ũ(x, y)

c0

)
2

γ−1

,

p̃(x, y) = p0

(

ρ̃(x, y)

ρ0

)γ

.

We set ρ0 = p0 = 1 and c0 =
√

γp0

ρ0
=

√
1.4.

Absence of the obstacle

We have first solved the problem in the absence of the obstacle. We use

a second-order reconstruction both in time and in space with θ = 1. The

following figure shows the results obtained choosing N = 100 along each axis,

ε = 1, CFL = 0.5 and final time T = 0.1:

Figure 5.15: Solution at final time T = 0.1. The first figure on the upper left

shows the contour plots of density. The contour plots have 10 equally spaced

contour lines



CHAPTER 5. SEMI-IMPLICIT METHODS 216

We have imposed void Neumann boundary conditions on the momentums,

density, energy and pressure.

We now introduce an obstacle. We found the numerical results by first intro-

ducing a square obstacle and then a circular obstacle. In particular, we have

solved the problem on the pressure and not on the energy, to more easily

impose the boundary conditions (5.15), (5.16), (5.17) and (5.18). We have

imposed the following boundary conditions.

1. For the ghost points inside the obstacle we have imposed the conditions

(5.15), (5.16), (5.17) and (5.18)

2. For the ghost points outside the unit square we have imposed

• void Neumann boundary conditions on the energy, pressure, den-

sity and v (tangential velocity)

• void Dirichlet boundary conditions on u (normal velocity)

We use a second-order reconstruction both in time and in space, with θ = 1.

Square obstacle

We first solved the problem by considering a square obstacle. This is because

in the case of a square obstacle the conditions (5.15), (5.16), (5.17) and (5.18)

are much simpler (they coincide with the boundary conditions that we impose

on the border of the unitary square). This is an example of a square obstacle:

Figure 5.16: Square obstacle
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In the case of the square obstacle for the ghost points that we have indicated

with 1, 2, 3 and 4 we have two unknowns: one along the x axis and one

along the y axis.

We have verified that the explicit method and the semi-implicit method give

similar results.

The following figure shows the results obtained choosing N = 100 along each

axis, ε = 1, CFL = 0.5 and final time T = 0.2, in case we use a semi-implicit

method:

Figure 5.17: Numerical solution at final time T = 0.2 with a square obstacle,

N = 100, ε = 1, CFL = 0.5. The first figure on the upper left shows the

contour plots of density. The contour plots have 10 equally spaced contour

lines
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Circular obstacle

Finally, we have solved the problem in a domain with a circular obstacle

whose initial conditions are the (5.21).

We have verified that the explicit method and the semi-implicit method give

similar results.

The following figure shows the results obtained choosing N = 100 along each

axis, ε = 1, CFL = 0.5 and final time T = 0.2, in case we use a semi-implicit

method:

Figure 5.18: Numerical solution at final time T = 0.2 with a circular obstacle,

N = 100, ε = 1, CFL = 0.5. The first figure on the upper left shows the

contour plots of density. The contour plots have 10 equally spaced contour

lines
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We show that the method works well for CFL higher than one. In the

following figure we show a comparison between the results obtained with

CFL = 0.5 (left panel) and those obtained with CFL = 2 (right panel).

Figure 5.19: Density at final time T = 0.2 with CFL = 0.5 (left panel) and

CFL = 2 (right panel), N = 50, ε = 1

To compute the accuracy order of this method, we proceed as follows. We

first compute the solutions on 3 uniform grids with ∆x = 1
50

, ∆x = 1
100

and ∆x = 1
200

. Then we compute the L1- and L∞-norms of the differences

between the solutions computed on two consecutive grids. Thus, to compute

the experimental rates of convergence at the uniform grid of size ∆x we use

the Aitken’s formula [2]:

rp = log2

(

‖ρ2∆x − ρ4∆x‖Lp

‖ρ∆x − ρ2∆x‖Lp

)

, p = 1,∞.

In the following table we show the experimental rates of convergence at final

time T = 0.1, with ε = 1 and CFL = 0.5:

∆x = ∆y r1 r∞
1

100
- -

1
200

1.2010 0.6402

First, we can note that the L∞ convergence rate is lower with respect the L1

convergence rate. This can be explained by the clipping phenomenon typical

for the generalized minmod reconstruction.
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The table shows that the method is first-order accurate. Probably this loss of

accuracy compared to the method proposed in [8] is due to the use of bilinear

interpolations rather than biquadratic interpolations. Maybe increasing the

number of grid points to 400 (for each axis) we could get a value that is close

to 2 also with bilinear interpolations, but the method turns out to be slow

computationally due to the high number of grid points. For greater precision

on the accuracy order of the method it is therefore advisable to work using

biquadratic interpolations.

Remark 5.2: Thanks to d’Alembert’s solution we know the exact so-

lution in the case of an irrotational and stationary current of a perfect fluid

in uniform motion on an object immersed in this fluid, in the absence of

external forces. For simplicity we present the two-dimensional case with the

object of circular shape, but the results are independent of the shape of the

object.

Suppose we have a perfect two-dimensional incompressible fluid with the

boundary conditions:

v(x, y) → Ue1 if (x, y) → ∞,

v · n = 0 on the border of the obstacle.

Assuming the circular-shaped obstacle of radius R and introducing the polar

coordinates (centered in the center of the obstacle) we have:

lim
r→∞

v(r, ϑ) = U(cosϑer − sinϑeϑ), vr(R, ϑ) = 0.

The irrotationality of the motion leads us to introduce the kinetic potential

ϕ(r, ϑ) and for the incompressibility we have ∆ϕ = 0. The solution is

ϕ(r, ϑ) = U

(

R2

r
+ r

)

cosϑ.

From this the components of the velocity are derived:

vr(r, ϑ) = U

(

1 − R2

r2

)

cosϑ, vϑ(r, ϑ) = U

(

1 +
R2

r2

)

sinϑ.
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Now we want to find an approximation of exact solution (in Cartesian co-

ordinates) supposing that the solution repeats itself periodically (periodic

conditions).

We place ϕi,j(x, y) := ϕ(x−2πi, y−2πj) : [−πi, πj]2 −→ R and we consider,

fixed a certain value n, the following function:

Φn(x, y) =
∑

i,j=−n,...,n

ϕi,j(x, y) − [(2n+ 1)2 − 1]x. (5.22)

In doing so we have extended (periodically) the solution ϕ of the d’Alembert

Paradox in (2n + 1)2 squares of width 2π along each axis. The following

figure show the extension of d’Alembert’s solution on nine squares (n = 1):

Figure 5.20: Extension of d’Alembert’s solution on nine squares (n = 1)

We can suppose that the function Φn (n → ∞) is an approximation of exact

solution with periodic conditions. In the following figure (Figure 5.21), we

shows the velocity plot (quiver) with n = 50:
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Figure 5.21: Velocity plot with n = 50 (N = 30: number of grid points along

each axes on each square)

Our future aim is to prove that the the error given by the difference be-

tween Φn (which we think is an approximation of the exact solution) and the

numerical solution tends to zero as n increases.



Conclusions and future works

In this thesis we have presented a finite-difference ghost-point method to

solve elliptic and hyperbolic equations on arbitrary domains. The equations

are discretized on a uniform Cartesian grid.

At first we applied the Coco-Russo method, which represents a generalization

of the finite-difference method for the elliptic equations on arbitrary domains,

at the resolution of the Poisson equation. This method proposes a polyno-

mial interpolation technique to impose boundary conditions and therefore

the interpolation error can influence the accuracy order of the method it-

self. We have proposed linear and bilinear interpolation techniques. These

conditions are imposed on the projections of the ghost points on the bor-

der of the domain. We have also presented a rigorous proof of the stability

and convergence of the numerical method in the one-dimensional case. The

proof of the stability of the Coco-Russo method in the two-dimensional case

is instead a still open problem, since the matrix associated to the method

does not have a well-defined structure. Even the extension of the proofs seen

in the one-dimensional case to the two-dimensional case has not obtained

results because the matrix in the two-dimensional case is not a M-matrix as

is the matrix associated to the method in the one-dimensional case. How-

ever, the numerical tests performed on the behaviors of the inverse matrix of

the method, of the inverse of the Schur complement, of the error and of the

consistency error confirm the stability and convergence of the Coco-Russo

method in 1D, 2D and 3D, in the case of Dirichlet problems and in the case

of mixed problems. The results obtained suggest us to look for the stability

of the method in the ∞-norm, since we have obtained:

223
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• ‖A−1
h ‖∞ ∼ O(N0),

• ρ(A−1
h ) → c, where c is a constant,

• ‖S−1
h ‖∞ ∼ O(N0),

where Sh is the Schur complement and N = 1
h
. In particular in the one-

dimensional case numerical and theoretical results show that ‖A−1
h ‖∞ ∼

O(h− 1
p ), p = 1, 2,∞.

The results on the behaviors of the error and of the consistency error depend

instead on the problem (Dirichlet or mixed) and on the interpolation proce-

dures performed.

For the Dirichlet problems we have obtained:

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞,

both in the case of linear interpolations and in the case of quadratic interpo-

lations.

For the mixed problems the accuracy orders of ‖τh‖Lp and of ‖eh‖Lp depend

on the procedure with which we impose the Neumann boundary conditions.

If we perform the trilinear interpolation procedures we have:

• ‖τh‖L1 ∼ O(h2), ‖τh‖L2 ∼ O(h
3
2 ), ‖τh‖L∞ ∼ O(h);

• ‖eh‖Lp ∼ O(h), p = 1, 2,∞,

because the Neumann conditions confers a first-order accuracy at the border

in the case in which we perform the trilinear interpolations. If we perform

the triquadratic interpolation procedures we have:

• ‖τh‖Lp ∼ O(h2), p = 1, 2,∞;

• ‖eh‖Lp ∼ O(h2), p = 1, 2,∞.

Therefore, in the Dirichlet problem both the linear interpolations and the

quadratic interpolations provide a second-order accuracy, while in mixed

problem only the quadratic interpolations provide such accuracy.

Once we certain of the convergence and stability of the Coco-Russo method,
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our interest it has moved to the study of the Euler equations of the gas dy-

namic. This is because in the last decades many numerical methods have

been developed for the resolution of hyperbolic systems of conservation laws.

A recent work [3] we have referred to has presented semi-implicit methods for

the resolution of such systems, which have the advantage of eliminating the

restriction on the spatial step for the acoustic waves that suffer the explicit

methods. They also have advantages with respect implicit methods, since

the completely implicit methods are more complex to solve and introduce

excessive numerical dissipation. In the semi-implicit methods the differen-

tial operators in space relative to convective of material fluxes are explicitely

discretized with Lax-Friedrichs fluxes and the operators relative to acoustic

waves are discretized implicitely with central differences.

These methods have suggested the development of semi-implicit methods for

Euler equations on domains that have obstacles, in which the Coco-Russo

method is applied to impose boundary conditions in a manner similar to el-

liptic equations. This method being semi-implicit overcomes the problem of

spatial restriction present in [8], in which the authors apply the Coco-Russo

method for the resolution of Euler equations on domains with obstacles but

applying explicit methods.

Future works

The future developments of the present thesis are different.

As regards the first part of the thesis is concerned, as we have already said,

the problem of the stability of the Coco-Russo method in the two-dimensional

case is still open. A rigorous proof of the stability of the method is necessary

to confirm the numerical evidence.

As regards the second part of the thesis, it is possible to substitute the bi-

linear interpolations with the biquadratic interpolations in the semi-implicit

method for hyperbolic equations on arbitrary domains described in Section

5.3. We want also to prove that the solution (5.22) found as an extension of

d’Alembert’s solution is actually an approximation of the exact solution of

Euler equations on a domain with a circular obstacle in the incompressible

regime. That is to say, it must be proved, that for a sufficiently large value of

the final time, the error between numerical solution and exact solution tends
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to zero as the spatial step decreases.

It is also possible to find an application of the semi-implied methods in [1],

in which the author develops completely implicit methods for the simulation

of flows of compressible materials, both fluid and elastic solids. The author

discretize the equations on a regular Cartesian grid.

Finally, it is possible to further improve the stability and precision properties

of semi-implicit methods by performing an automatic step control technique

[2, 16], since the error committed in the discretization method primarily de-

pends on the time-step size, which is varied along the solution in order to

minimize the computational effort.
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