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Introduction

Operations Research is the field of mathematics that deals with solving vari-

ous application problems, the development and application of quantitative

methods for the solution of decision problems that arise in the management

of companies and organizations (production planning, optimal allocation of

resources), in logistics (scheduling difficulties, the optimization of warehouse

management), in the planning of service distribution, in the economic and

financial field (investment selection, portfolio choice, price determination of

financial derivatives), etc.

Operations Research is a relatively new discipline. The term Operations

Research was coined towards the end of the 1930s to describe a new branch of

applied sciences deriving from the term Operational Research, and is linked

to the first applications of the OR to increase the efficiency of the Second

World War military operations.

However, there are important examples of OR methods implemented before

this time. The most famous dates back to F. Taylor who in 1885 developed

a study on production methods; even earlier, in 1776, G. Monge had studied

a transport problem. However, the birth of the OR is linked to studies that

in the years immediately preceding the Second World War were conducted

in Britain to solve strategic and tactical problems in military operations.

It provides automatic decision-making tools which solve enormous problems

by means of mathematical modelling. The OR, therefore, is characterized

by the use of mathematical models defined and resolved in order to provide
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guidance to decision-makers in the act of choice. It is no coincidence that

OR is also known as management science.

In this thesis, we focus our attention on some mathematical models that

are decision problems and which are all based on networks and applied to

different real situations.

The network framework is usually associated with transportation prob-

lems, electrical power transmission, telecommunications, etc., that is with

physical networks, where nodes and links are tangible (see [26]). However,

networks can be applied also to a very large class of problems where these

concepts have no physical characteristics, such as problems arising from eco-

nomics, finance, information technologies, Internet, etc.

As stated in the book by Nagurney and Dong (see [102]), supernetworks

are networks that are above and beyond existing networks, which consist of

nodes, links, and flows, with nodes corresponding to the locations in space,

links to connections in the form of roads, cables, etc., and flows to vehicles,

data, etc.

Supply chain networks, consisting of different tiers of decision-makers

provide an effective framework for the production of goods, their distribution,

and their consumption in today’s globalized economies and societies. The

representatives of each level may have various objectives: they may aim at

maximizing their own profit, or minimizing the risk, or the environmental

emissions, or the total costs.

Constrained optimization problems are one of the most important and

useful fields of mathematics, particularly in operations research. In this

thesis we analyze different thematic areas such as Cloud Computing, Finan-

cial Market, Business Management and Cybersecurity and for each of them

we formulate the associated linear or nonlinear constrained problems which

allows us to solve the decision problems related to the specific applications.

Cloud Computing is a type of Internet-based computing, much used in

recent years, that relies on sharing computer processing resources and data

to computers and other devices on demand, from any location and at any
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time rather than having local servers or personal devices to handle applica-

tions. This shared IT infrastructure contains large pools of systems that are

linked together. Often, virtualization techniques are used to maximize the

power of cloud computing. In Chapter 2 we describe the global network of a

cloud computing environment with five different layers, represented by hard-

ware/datacenter, infrastructure, platform, application and end-users. Then,

we present the mathematical model of the network and study the behavior

of the typical IaaS provider in order to find the global optimization problem.

A computational procedure for the calculus of the global optimal solutions

is proposed, is applied to a numerical example and is compared with a lin-

earization.

In Chapter 3 we present two financial mathematical models, based on

networks, which firstly allows us to formulate a new multi-period portfolio

selection problem as a Markowitz mean-variance optimization problem with

intermediaries and the addition of transaction costs and taxes (on the capital

gain). Moreover, by means of the proposed Integer Nonlinear Programming

(INLP) Problem, it is possible to establish when it is suitable to buy and to

sell financial securities, not only while maximizing the profits but also while

minimizing the risk which is weighted by an aversion degree or risk inclination

value. In addition, we propose another model which is characterized by short

selling, which consists in the sale of non-owned financial instruments with

subsequent repurchase, and transfer of securities. We study some numerical

examples, whose solutions give us the optimal distributions of securities to

be purchased and sold.

In Chapter 4 we first present a supply chain network model with four

different tiers of decision makers (suppliers of raw materials, manufacturers,

retailers, demand markets), we derive the optimality conditions and the asso-

ciated variational inequality problem for the representatives of each level and

for the total supernetwork and focusing our attention on the behavior of the

manufacturers. Then, in a more detailed model, we introduce the distinction

by brand of the products of manufacturers and we add the e-commerce to the
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traditional physical links for the shipments from manufacturers to demand

markets. Moreover, to the forward chain we add a reverse chain model where

manufacturers, using the unsold product given back from retailers, after re-

working, produce a new commodity which will be sold to new retailers. Also

in this case we study the behavior of manufacturers obtaining their optimal-

ity conditions and the governing variational formulation. Finally, we apply

our model to a concrete company (Valle del Dittaino, Italy), obtaining, after

introducing additional constraints, the optimal amount of raw material, the

optimal shipment of new product as well as the optimal production periods.

In Chapter 5 we propose a new cybersecurity investment supply chain

game theory model, assuming that the demands for the product are known

and fixed and, hence, the conservation law of each demand market is fulfilled.

The model is a Generalized Nash equilibrium problem with nonlinear budget

constraints for which we define the variational equilibrium, which provides

us with a variational inequality formulation. We construct an equivalent

formulation, enabling the analysis of the influence of the conservation laws

and the importance of the associated Lagrange multipliers. We find that

the marginal expected transaction utility of each retailer depends on this

Lagrange multiplier and its sign. Finally, numerical examples with repor-

ted equilibrium product flows, cybersecurity investment levels, and Lagrange

multipliers, along with individual firm vulnerability and network vulnerabil-

ity, illustrate the obtained results.

Finally, in Chapter 6 we present the conclusions and the ideas for a future

work.
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Chapter 1

Theory and Fundamentals

Mathematical models are often applied to real phenomena or situations and

they are used in many fields, such as the natural sciences (physics, biology,

earth science, meteorology), the engineering disciplines (artificial intelligence,

mechanics, computer science), the social sciences (economics, psychology, so-

ciology, management science and political science) and other important areas.

This is because a model can be useful to explain what we are describing and

to make predictions about the future, allowing us to adopt the best strategy

and make the correct decision. Therefore, mathematical modelling is one of

the main approaches that mathematicians use to describe real situations.

Thus, the central contribution of Operations Research consists of the in-

troduction of the so-called model-optimizing approach for the solution of a

decision problem. In this approach, the analysis of a real problem is organized

into two phases:

• representation of the problem by means of a mathematical model that

should extract the essential aspects and outline the interrelations ex-

isting between the different aspects of the phenomenon under examin-

ation;

• development of efficient mathematical methods to determine an optimal

solution of the problem.
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Chapter 1. Theory and Fundamentals

To build a mathematical-optimizing model which represents a particular phe-

nomenon, the significant control parameters must be identified. Having de-

termined the correct model, the OR is responsible for providing an explicit

procedure to determine a solution to a problem. This procedure can be rep-

resented by analytical mathematical methods or numerical methods which

determine the solution of the problem through specific calculation algorithms.

The modeling approach is achieved through different phases:

• Problem analysis,

• Model construction,

• Model analysis,

• Numerical solution,

• Validation of the model.

The first phase consists in analyzing the structure of the problem to

identify the logical-functional links and objectives, to collect the data. In

the subsequent construction phase of the model, also called formulation, the

main characteristics of the problem are described in mathematical terms.

Then follows the analysis of the model which provides the analytical deduc-

tion of some important properties, such as the existence and uniqueness of

the optimal solution, the optimality conditions, that is: the analytical char-

acterization of the optimal solution and the stability of the solutions when

the data or any parameters change.

The next phase of numerical solution takes place by means of suitable cal-

culation algorithms and the numerical solution thus obtained must then be

interpreted from an applicative point of view. This model validation can be

carried out by experimental verification or simulation methods.

2



Chapter 1. Theory and Fundamentals

1.1 Optimization models

Many real problems, studied in different disciplines, consist in finding the

maximum or the minimum value of a determined function. The branch of

study dealing with such problems takes the name of Optimization Theory.

Among the various optimization problems there are those where it is neces-

sary to determine the optimal values of a function, whose decision-making

variables are subject to constraints expressed by equalities and/or inequal-

ities. Given a function f : Rn → R and the set K ⊆ Rn, an optimization

problem, called also mathematical programming problem (term introduced by

Robert Dorfman in 1949), can be formulated as follows:

min
x∈K

f(x).

Therefore, an optimization problem consists in determining, if it exists, a

minimum point of the function f among the points of the set K.

The function f is called objective function and K is the feasible set, that

is the set of all possible solutions to the problem. A point x ∈ K is called

feasible solution or candidate solution.

The feasible set K is a subset of Rn and therefore x = (x1, . . . , xn)
T is an

n-dimensional vector and the objective function f is a function of n real

variables.

We underline that it is possible to speak indifferently about problems of

maximum or minimum because the following relation is valid:

min
x∈K

f(x) = −max
x∈K

(−f(x)).

Definition 1. An optimization problem is said to be unfeasible if K = ∅.

Definition 2. It is said that the optimization problem admits an optimal

solution if there exists a point x∗ ∈ K such that it results to be f(x∗) ≤ f(x)

for all x ∈ K. Point x∗ is called optimal solution or global minimum and the

corresponding value f(x∗) is called optimal value.

A first classification of the optimization problems is based on the structure

of the feasible setK. IfK = Rn, then the problem is said to be unconstrained.

3



Chapter 1. Theory and Fundamentals

If the set K is described by a finite number of inequalities and/or equalities,

K = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}, then the problem is said to be

constrained and has the following formulation:







min f(x)

gi(x) ≤ 0 ∀i = 1, . . . ,m

hj(x) = 0 ∀j = 1, . . . , p

x ∈ Rn.

(1.1)

Moreover, the Mathematical Programming problems can be classified also

according to the nature of the functions that define them:

- Linear Programming Problem (LP) if the objective function f and all

the functions that define the constraints are linear;

- Nonlinear programming problem (NLP) if at least one of the functions

defining the problem is not linear.

Finally, depending upon the values permitted for the variables, optimization

problems can be classified as integer (if all the variables can only take integer

values), mixed integer (if only some of the variables are constrained to take

integer values) or real valued, and deterministic or stochastic.

Thanks to the generality of the models, an outsize number of real prob-

lems can be represented by programming models. Indeed in this thesis, we

present different thematic areas, such as Cloud Computing, Financial Mar-

kets, Business Management and Cybersecurity and for each of them we for-

mulate the associated linear or non linear constrained problems which allows

us to solve the decision-making problems related to the specific applications.

The kind of model that must be studied and the most suitable approach

shape the choice of the mathematical tools to be used, such as dynamic

systems, variational inequalities, game theory and many others.

Furthermore, the main role in the formulation of a mathematical model and

in decision-making processes is played by the definition of the network on

which the whole model is based. Indeed, the network allows the definition

4



Chapter 1. Theory and Fundamentals

of the different layers of decision-makers involved in the whole process. The

related flows and the methods of analysis are applicable not only to physical

networks, such as transport and energy networks, production and logistics,

but also to complex networks such as supply chains, financial, social and

economic networks.

1.2 A brief recall to Lagrange Theory and

Variational Inequalities

Modern optimization problems originated towards the end of the last cen-

tury, but the history of mathematical programming dates back the end of

the 1700s, although limited to the case of equality constraints. Indeed, in the

second half of the 18th century, G.L. Lagrange studied mathematical pro-

gramming problems which consisted in minimizing (or maximizing) a given

function, subject to a system of constraints expressed by equality.

The well known multiplier method was introduced by Lagrange in 1788, in

the first part of his book titled Mècanique Analytique, as a tool to determine

the stable equilibrium configuration in a specific issue of Mechanics. The Lag-

range multipliers were presented for general optimization problems, not re-

ferring to any mechanical system, in Thèorie de fonctions analytiques (1797).

Given the optimization problem (1.1), the function

L(x, λ, µ) = f(x) +
m∑

i=1

λigi(x) +

p
∑

j=1

µjhj(x)

is called the Lagrangian function of the problem.

Assume x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) minimizes f(x) subject to the constraints

gi(x) ≤ 0, for i = 1, 2, . . . ,m and hj(x) = 0, for j = 1, 2, . . . , p.

Then either:

(i) the vectors∇g1(x
∗), . . . ,∇gm(x

∗),∇h1(x
∗), . . . ,∇hp(x

∗) are linearly in-

dependent, or

5



Chapter 1. Theory and Fundamentals

(ii) there exists a vector λ∗ = (λ∗
1, . . . , λ

∗
m) and a vector µ∗ = (µ∗

1, . . . , µ
∗
p)

such that

∇f(x∗) +
m∑

i=1

λ∗
i∇gi(x

∗) +

p
∑

j=1

µ∗
j∇hj(x

∗) = 0,

gi(x
∗) ≤ 0 ∀i = 1, 2, . . . ,m,

hj(x
∗) = 0 ∀j = 1, 2, . . . , p,

λ∗
i gi(x

∗) = 0 ∀i = 1, 2, . . . ,m, (Complementarity),

λ∗
i ≥ 0 ∀i = 1, 2, . . . ,m.

The above conditions are called the Karush-Kuhn-Tucker conditions

(see [64] and [69]) and are the necessary conditions for the solution of a non-

linear programming problem.

This is a generalization of the Lagrange multiplier method, applied to prob-

lems in which there are also inequality constraints. The first condition is that

of the cancellation of the gradient of the Lagrangian function associated with

the problem. The second and third conditions are the constraints of the ad-

missibility of point x∗, while the fourth condition is called a complementarity

condition or a “complementary deviation”, since the multiplier of an inact-

ive constraint must be null. Finally, the last condition is the non-negativity

condition of the multiplier associated with the inequality constraints.

A great variety of problems in the real world can be traced back to vari-

ational models that are much closer to reality, when their equilibrium condi-

tion is expressed as a solution to a system of Variational Inequalities (VI).

The scientific life of the Variational Inequalities Theory has immediately

proved to be eventful and surprising. This theory was developed in the sev-

enties as an innovative and effective method to solve a series of equilibrium

problems. It was advanced by mathematical physicists to solve, for example,

the problem of Signorini (1959), the problem of the obstacle and that of

elasto-plastic torsion.

Therefore, the first variational inequality problem was the problem known

6



Chapter 1. Theory and Fundamentals

as the Signorini problem (see [129]). His student, Gaetano Fichera, dedic-

ated the name to him and resolved it in 1963. In 1964, Guido Stampacchia,

a 20th-century Italian mathematician, known for his work on the theory of

variational inequalities, generalized the Lax-Milgram theorem (see [132]) in

order to study the regularity problem for partial differential equations and

the name “variational inequality” was coined by him for all the problems

involving inequalities of this kind. Further in-depth analyses of previous

studies date back to 1966 by Hartman and Stampacchia (see [57]) and to

1967 by Stampacchia and Jacques-Louis Lions (see [74]).

An explanation of infinite-dimensional variational inequalities and numerous

references can be found in the text by Kinderlehrer and Stampacchia (see

[66]).

After an intense period of successes and fundamental results obtained with

the Variational Inequalities theory, the interest waned, perhaps because of

the early death of Stampacchia in 1979, and it seemed that this theory had

nothing more to communicate.

On the contrary, in 1980, the breakthrough in finite-dimensional theory oc-

curred when S. Dafermos recognized that the problem of traffic equilibrium,

as stated by M.J. Smith (1979), could be formulated in terms of a finite di-

mensional inequality and, moreover, in this way it is possible to study the

existence, uniqueness and stability of the traffic equilibrium problem and

calculate the solutions. So began the use of this methodology for the study

of problems in economics, management science/operations research, and also

in engineering, with a focus on transportation.

At the end of the nineties, researchers started to investigate optimiz-

ation problems, through a variational approach, by considering also time-

dependence. Daniele, Maugeri and Oettli, in [36] and [35] (see also [46]),

first studied and analyzed the traffic network equilibrium problem with feas-

ible path flows which have to satisfy capacity constraints dependent from

time and traffic demands.

As a result of this, the last decades have witnessed an exceptional interest

7



Chapter 1. Theory and Fundamentals

in Variational Inequalities both in the development of VI theory and its ap-

plication to equilibrium problems arising in many different contexts and an

enormous amount of papers and books have been dedicated to this topic.

For the analysis of economic phenomena, equilibrium is a central concept,

therefore, various problems from the world of economics, such as those of

spatially distributed economic and oligopolistic markets, migration, pollu-

tion and many other problems, have been formulated in terms of a finite

dimensional variational inequality and, by means of this theory, they have

been solved.

Recently, a lot of problems coming from fields of applied sciences such Op-

eration Reasearch, Physics, Engineering, Biology and Economics are studied

as optimization problems with a variational approach.

Now, we introduce the definition of Variational Inequality:

Definition 3 ( Variational Inequality Problem). The finite-dimensional vari-

ational inequality problem, V I(F,K), is the problem to find a vector x∗ ∈
K ⊂ Rn, such that

〈
F (x∗)T , x− x∗

〉
≥ 0, ∀x ∈ K, (1.2)

where F is a given continuous function from K to Rn, K is a given closed con-

vex nonempty set and 〈 . , . 〉 denotes the inner product in the n-dimensional

Euclidean space.

In geometric terms (see Figure 1.1), variational inequality (1.2) states

that F (x∗)T is “orthogonal” to the feasible set K at the point x∗.

We recall that, for two vectors u, v ∈ Rn, the inner product
〈
uT , v

〉
=

‖u‖ ‖v‖ cosθ, where θ is the angle between the vectors u and v. Hence,

for θ in the range: 0 ≤ θ ≤ 90◦, we have that
〈
uT , v

〉
≥ 0. Thus, one can

see from Figure 1.1 that x∗ is a solution of V I(F,K) if and only if the angle

between the vectors F (x∗)T and x− x∗, with x and x∗ both in K, is a non-

obtuse angle, that is: less than or equal to 90◦.

This formulation is particularly convenient because it permits a unified treat-

ment of equilibrium problems and optimization problems.

8



Chapter 1. Theory and Fundamentals

Figure 1.1: Geometric interpretation of V I(F,K)

We may formalize this observation using the concept of the normal cone.

Specifically, associated with the set K and any vector x′ belonging to K, we

define the normal cone to K at x′ as the following:

N (x′, K) = {d ∈ Rn : dT (x− x′) ≤ 0, ∀x ∈ K}.

Therefore, Variational Inequality (1.2) affirms that a vector x∗ ∈ K solves

the V I(F,K) if and only if −F (x∗) is a normal vector to K at x∗.

It is interesting to outline the relationships between variational inequal-

ities and optimization problems. Indeed, a variational inequality is related

to an optimization problem when the objective function is a primitive of the

operator involved in the inequality itself and optimization problems, con-

strained and not, can be formulated as VIPs.

The connections between minimum problems and the variational inequalities

have been widely studied in the case in which K is a convex set and the

objective function f : Rn → R, defined and differentiable on a open set con-

taining K, is a primitive of F , that is f ′(x) = F (x).

The precise connection between the V I(F,K) and the Optimization Problem

in described in the following results.

9



Chapter 1. Theory and Fundamentals

Proposition 1. Let x∗ be a solution to the optimization problem:

min f(x)
(1.3)

subject to: x ∈ K,

where f is continuously differentiable and K is closed and convex. Then x∗

is a solution to the variational inequality problem:

〈
∇f(x∗)T , x− x∗

〉
≥ 0, ∀x ∈ K. (1.4)

Proof. Let φ(t) = f(x∗ + t(x − x∗)), for t ∈ [0, 1]. Since φ(t) achieves its

minimum at t = 0, 0 ≤ φ′(0) = ∇f(x∗)T · (x− x∗), that is, x∗ is a solution to

(1.4).

Under the assumption of convexity for f , then also the viceversa holds.

Proposition 2. If f(x) is a convex function and x∗ is a solution to V I(∇f,K),

then x∗ is a solution to the optimization problem (1.3).

Proof. Since f(x) is convex,

f(x) ≥ f(x∗) +∇f(x∗)T · (x− x∗), ∀x ∈ K. (1.5)

But ∇f(x∗)T · (x− x∗) ≥ 0, since x∗ is a solution to V I(∇f,K). Therefore,

from (1.5) one concludes that

f(x) ≥ f(x∗), ∀x ∈ K,

that is, x∗ is a minimum point of the mathematical programming problem

(1.3).

1.3 Traffic Network

The study of networks and their applications has had a long tradition in en-

gineering, operational research / management and computer science. Indeed,
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Chapter 1. Theory and Fundamentals

network analysis is not only associated with problems of transport, transmis-

sion of electricity, telecommunications, etc. as is usually done, because its

methods are applied not only to physical networks, where nodes and links

have tangible embodiments, but also to a much wider class of problems where

these concepts do not need physical counterparts.

Recently, the computer science, finance and economy sectors have become

rich and fascinating sources of network-based problems and applications.

Global communication networks such as the Internet and cloud computing,

often do not have a central authority that regulates and monitors network

traffic. Most cooperation among network users is not possible, therefore, net-

work users may behave selfishly based on their private interests regardless of

the overall performance of the system. Therefore, while the optimization of

the traditional network has a central authority controlling the network, the

former mentioned are built and governed by a huge number of entities inter-

acting in an uncoordinated way and distributed according to their individual

interests.

Following this, it was interesting to study the result of the combination

of classical methods from traditional network optimization and concepts

provided by game theory techniques. For this reason, the network traffic

in the framework of non-cooperative game theory has been analyzed. The

main aspect of this theory is the notion of equilibrium that describes stable

results of a non-cooperative game.

The problem of sharing resources has a long history in transport science

and economy. Already in the middle of the nineteenth century Kohl, a Ger-

man geographer, analyzed the problem of spending time and money to move

people and goods between different places in the context of urban planning.

For users of a transport network, determining their travel routes from their

origins to their destinations at the lowest cost is a classic problem of network

balance.

The effects of congestion have been taken into account explicitly by Pigou in

11
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[118] (1920), where the author considers a two-node transport network, two

links (or routes) and was further developed by Knight in 1924 (see [68]), who

qualitatively described egoistic routing in transport networks and observed

that a selfish behavior does not necessarily maximize overall performance.

In 1952, Wardrop (see [142]) introduced a game-theoretic model for de-

scribing resource sharing problems in the context of road traffic systems. He

stated two principles that formalize different concepts of equilibrium.

First Principle: the travel times of all the routes actually used are the same

and less than those that would be experienced by a single vehicle on any

unused itinerary.

Second Principle: Average travel time is minimal.

Wardrop’s traffic model has attracted a lot of interest and inspired a great

deal of research, especially after the emergence of enormous non-cooperative

systems such as the Internet. It has been utilized to analyze many problems

in transportation and communication networks.

A rigorous mathematical formulation of Wardrop’s equilibria was provided

by Beckmann el al. in [7], in which the authors formulated the network equi-

librium problem as a convex optimization problem with a single objective

function. Therefore, they established the equivalence between an equilib-

rium problem and a mathematical programming problem. In this optimiz-

ation problem a potential function has to be minimized subject to natural

flow constraints.

The terms “user-optimized” and “system optimized” transportation networks

were invented by Dafermos and Sparrow in 1969 (see [25]) to differentiate

between the case where users act in a unilateral way, in their personal in-

terest and that where users choose optimal social paths, as the total costs

for the system are reduced to a minimum.

Now we will describe Wardrop’s traffic model formally.

Let N = {P1, . . . , Pp} be the nodes set and A = {ai, i = 1, . . . , n} ⊂
N ×N the links set, where ai = (Pl, Pm) is an unidirectional link from Pl to

12
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Pm.

Assume that W = {wj, j = 1, . . . , l} ⊆ N × N is the set of all Ori-

gin/Destination (O/D) pairs.

Therefore, a Traffic Network is identified by the tern (N,A,W ).

Given an O/D pair, wj = (Ph, Pk), we define Rj the set of all the paths Rr

which join Ph with Pk and R = ∪l
j=1Rj the set consisting of all the network

paths.

We consider the following hypotheses:

1. Rj 6= ∅, j = 1, . . . , l and

2. m > l.

The flow on a link ai is denoted by fi ≥ 0. We group the link flows into a

vector f ≡ (f1, . . . , fn) ∈ Rn
+. Similarly, the flow on a path Rr is denoted by

Fr ≥ 0 and we group the path flows into a vector F ≡ (F1, . . . , Fm) ∈ Rm
+ .

Introducing ∆, the link-path incidence matrix, of components:

δir =

{
1 if ai ∈ Rr

0 if ai /∈ Rr,

we obtain the following relation:

fi =
m∑

r=1

δirFr, i = 1, . . . , n ⇔ f = ∆F.

Now we consider the user cost associated with traveling on link ai that

is denoted by ci(f) ≥ 0. We group the link costs into a vector c(f) ∈
Rn

+. Similarly, we have the user cost associated with traveling on path Rr:

Cr(F ) ≥ 0 and the vector C(F ) ∈ Rm
+ .

Therefore, the correlation between c(f) and C(F ) is given by:

Cr(F ) =
n∑

i=1

δirci(f), r = 1, . . . ,m ⇔ C(F ) = ∆T c(∆F ).

The travel demand of potential users traveling between O/D pair wj is de-

noted by ρj ≥ 0. Group the demands into a vector ρ ∈ Rl
+ The conservation

13
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of flow equations are as follows. The demand for a O/D pair must be equal

to the sum of the flows on the paths joining the O/D pair, that is,

ρj =
∑

Rr∈Rj

Fr, ∀j = 1, . . . , l. (1.6)

Introducing Φ the pair-path incidence matrix, of components:

φjr =

{
1 if Rr ∈ Rj

0 otherwise,

the traffic conservation law become:

m∑

r=1

φjrFr = ρj, j = 1, . . . , l ⇔ ΦF = ρ.

We define

K = {F ∈ Rm : F ≥ 0 and ΦF = ρ}

= {F ∈ Rm : Fr ≥ 0, r = 1, . . . ,m and
m∑

r=1

φjrFr = ρj, j = 1, . . . , l}

the feasible flows set.

Definition 4 (Wardrop, 1952). H ∈ K is an equilibrium distribution if:

∀wj ∈ W and ∀Rq, Rs ∈ Rj if Cq(H) < Cs(H),

then Hs = 0.

It is easy to verify (see Smith [130] and Dafermos [24]) that such a defin-

ition is characterized by a VI through the subsequent theorem:

Theorem 1. H ∈ K is a Wardrop’s equilibrium distribution if and only if

H is a solution of the following VI:

Find H ∈ K such that

〈C(H), F −H〉 ≥ 0, ∀F ∈ K,

that is:
m∑

r=1

Cr(H)(Fr −Hr) ≥ 0, ∀F ∈ K.
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1.4 A brief introduction to supply chain net-

works

A supply chain system consists of organizations, companies, people, and

resources involved in moving a product or a service from a supplier (who

provides products, services, and information that add value for customers

and other stakeholders) to customers (the end-users).

The term supply-chain management (SCM) was coined in 1982 to refer to the

process of planning and controlling the business processes of the supply chain

with the scope of satisfying customer requirements as efficiently as possible

(see [111]).

Supply chain operations usually involve raw materials, and components that

are transformed into a finished good that is bought by end customers.

Because there was a rapid technological progress, organizations with a

basic supply chain needed to develop a chain with a more complex structure

implying a higher level of interdependence and connectivity between multiple

organizations. For this reason, evolution has led to the supply chain network

(SCN) that can be used to highlight the interactions between the diverse

organizations or companies that are part of the same supply chain network.

Indeed a SCN shows the links between organizations and how information

and materials flow between these links.

Supply chain networks are usually structured on five levels: external

suppliers, production centers, distribution centers (DC), demand areas and

transport activities.

The Supply chain network is sometimes also called Network Modeling be-

cause, as will be shown in the next chapters, a mathematical model can be

created to design the network strategically in order to optimize it, thereby

reducing the cost of the supply chain ([143]).

We underline that it is possible to investigate the impacts deriving from
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the addition or cancellation of various nodes in the network (or decision

makers) or links (or different transaction methods) and also different pro-

duction methods. This is possible thanks to the study of the supply chain

utilizing a network formalism.

In the next chapters of this thesis, we do this in the context of cloud ser-

vice supply chains, financial chains with intermediation, supply chain man-

agement, including reverse supply chains in the context of recycling and

e-commerce networks; and even networks related to cybersecurity. Since the

publication of the book Studies in the Economics of Transportation by Beck-

mann, McGuire, and Winsten in 1956, transportation networks have been

intensively studied by economists, engineers, as well as operations research-

ers and management experts.

For more information on the supply chain study, refer to the book by A.

Nagurney [99].

Caused by the environmental impact of end-of-life goods, the necessity to

create a new kind of network has arisen, the reverse supply chain network.

This particular network design addresses logistical issues such as collection,

processing and recycling of end-of-life goods. Companies that have had the

greatest success are those where forward and reverse supply chain processes

have been designed, also taking into account the recycling and the disposal

of said goods.

Through the reverse supply chain network, organizations can support products

from production to disposal creating a closed-loop system. This topic is dis-

cussed in detail in Chapter 4, where we also analyze a supply chain network

in the context of the Information Age with the innovations brought about

by electronic commerce.

1.5 Cloud Computing Overview

Cloud computing is rapidly becoming a widely used service in Internet com-

puting. It is a relatively new concept in information technology; indeed, for
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the first time, cloud computing was marketed in 2006 by Amazon, with the

EC2 service, followed by Cloud providers such as Microsoft, Google and nu-

merous other organizations. Figure 1.2, obtained through the Google Trends

tool, shows the interest gathered by the keywords Cloud Compunting over

time, from 2004 to today, by users all over the world. Clearly, interest in

cloud computing has grown over the last few years and cloud computing ser-

vices have grown in popularity, which brings great benefits to all types of

computing, including business support.

Cloud Computing offers a way to share distributed resources and services

Figure 1.2: Relative popularity of the search query: Cloud Computing

that belong to different organizations or sites. It has been used for web-

mail services, blogs, storage and web hosting and offers various services in

the forms of infrastructure, platform and software to meet consumer needs

(examples include Google Apps, Amazon Web Services, Microsoft Windows

Azure, IBM Smart Cloud, and Salesforce.com). Thanks to this, the way in

which the subtree and the IT services are provided has been modified, offering

unprecedented computing power and flexibility in the distributed computing

environment, providing more efficient computational resources for running

websites and web applications.

With the rapid developments in networking technologies and Cloud comput-

ing, many companies have adopted a wide variety of Cloud. Therefore, a

significant impact on the performance of the whole information infrastruc-

ture is the role played by Cloud providers who need to fully utilize their

infrastructures (available resources) while satisfying users’ performance re-

quirements.
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Cloud Computing provides scalable, dynamic, shared, and flexible re-

sources over the Internet from remote data centers to the users and has been

extensively studied in literature from different standpoints.

The Cloud infrastructure supports three types of service delivery models

which are studied: Software as a Service (SaaS) (see for examples [49], [40]),

Platform as a Service (PaaS) ([3]) and Infrastructure as a Service (IaaS) ([81],

[48]).

The most efficient way to manage the Cloud infrastructure and the develop-

ment of effective methods for evaluating the performance of Cloud services

have become very important research problems. Therefore, they have attrac-

ted the attention of both industry and academia.

Researchers have widely studied the problem from different perspectives, ad-

opting many types of approaches. For example, they analyzed system model-

ing (see for instance [39] where Network calculus was first applied to develop

a profile-based model for Cloud service performance analysis and [58]), sys-

tem design (see [112]) and network protocol (see [79]).

Recently, among the work on the assessment of the performance of the cloud,

the approaches from the point of view of the systems modeling have consti-

tuted an active area with much progress because they are beneficial for both

service providers and consumers (see for example [147] where authors ana-

lyzed Cloud Computing by formulating a mathematical model).

Cloud computing is also an infrastructure where users can have, on demand,

the availability of the pool of computing resources as well as the computing

power of their own in a network environment ([5], [146]).

Virtualization is one of the key technologies of Cloud computing services

which makes it different from Grid computing. Virtualization allows hosting

heterogeneous services on shared abstract infrastructures and for this reason

it is considered a fundamental element of the cloud network (in [145], au-

thors studied a resource management system with a power saving method
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for virtual machines). The practical aspects of virtualization related to con-

figuration, networking, and sizing of cloud systems are faced with challenges.

When a cloud provider accepts a request from a customer, it must create

the appropriate number of virtual machines (VMs) and allocate resources

to support them ([138]). Virtualization hides the complexity of managing

the physical computing platform and simplifies scalability of computing re-

sources.

In Chapter 2, we analyze a Cloud Computing framework and focus our at-

tention on resource management that is one of the most important issues in

Cloud Computing for IaaS, taking into account resource utilization, the cost

of turning a server on or off, resource wastage and energy consumption as

optimization objectives at the same time. To the best of our knowledge, des-

pite the importance of these matters in cloud environments, there does not

exist any work which holds these fields jointly, while most of the researchers

have dealt with them separately.

Over the years, numerous researchers have studied and surveyed the issues

of security and privacy (see for example [116], [120], [123], [124] and [144]).

Indeed in a cloud infrastructure, sensitive information for a customer is kept

on geographically dispersed cloud platforms. Cloud resources are vulnerable

to abuse, theft, unlawful distribution, harm, and/or compromise, therefore,

recurring users’ data in a cloud computing environment is one of the most

challenging tasks. In this thesis, we propose a new cybersecurity model (see

Chapter 5) that could be applied in a general case, indeed, Jensen et al.

presented the technical security issues in Cloud Computing (see [61]) which

are related more to the problems of web services and web browsers rather

than Cloud Computing.
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Chapter 2

A Cloud Computing Network and an

Optimization Algorithm for IaaS

Providers

2.1 Introduction

According to the National Institute of Standards and Technology (see [92]):

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction. This cloud model is composed of five essential characteristics,

three service models, and four deployment models.”

Therefore, cloud computing is a business model in which the user does not

buy the product, but purchases the possibility to use such a product, while he

does not hold it phisically. Essentially, cloud computing consists in obtaining

the services hosted on cloud, that is the storage and processing of data due

to hardware resources and localized software on the Internet.

In a cloud computing environment there are some essential characteristics

that can be elaborated as follows:
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• On-demand self-service: Users are able to provision cloud computing

resources without requiring human interaction, mostly done through

an online control panel or directly with a cloud host provider. The

payments vary with each software provider and typically, it is used a

pay-for-what-you-use scenario.

• Broad network access : Cloud computing resources are accessible over

the network, supporting heterogeneous client platforms. Users can ac-

cess using their smartphones, tablets, laptops, and office computers.

• Resource pooling : Cloud computing gives services to multiple customers

from the same physical resources, by securely separating the resources

on logical level. Physical and virtual resources are dynamically assigned

and reassigned according to consumer demand from any location, and

at any time.

• Rapid elasticity : Resources are provisioned and released on-demand

and/or automated based on triggers or parameters. Therefore, com-

panies sometimes can require additional resources in a small period of

time and this is where cloud computing comes in to play.

• Measured service: Resource usage are monitored, measured, and repor-

ted (billed) transparently based on utilization. In short, pay for use,

therefore, users and cloud provider can measure storage levels, pro-

cessing, bandwidth, and the number of user accounts and then users

are billed appropriately only paying for what they use.

Cloud Computing offers all the advantages of a cost-effective system, in terms

of convenience, flexibility, and proven delivery platform for providing busi-

ness or consumer IT services over the Internet. However, Cloud Computing

presents an added level of risk because essential services are often outsourced

to a third party so there are still some challenges to be solved, not least of

which are: privacy and cybersecurity (see [16], [97], [101], [115]).

According to NIST there are three Service Models (see [13], [77], [92], [146]):
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- Software as a Service (SaaS): a software distribution model in which

applications (for example e-mail, DropBox, Google Drive, . . . ) are not

distributed physically, but they are hosted by a vendor or a service pro-

vider and made instantaneously available to customers over a network,

typically the Internet. Users gain the access to application software

and databases but they do not manage or control the underlying cloud

infrastructure and platform where the application runs such as the net-

work, the servers, the operating systems, the storage. This eliminates

the expenses related to hardware acquisition, provisioning and main-

tenance, as well as software licensing, installation and support.

- Platform as a Service (PaaS): it can be defined as a computing plat-

form in which developers can build and deploy web applications quickly

and easily on a hosted infrastructure using programming languages, lib-

raries, services, and tools supported by the provider but without the

complexity of buying and maintaining the software and infrastructure

underneath it. In other words, PaaS allows them to leverage the seem-

ingly infinite compute resources of a cloud infrastructure.

- Infrastructure as a Service (IaaS): it is a way of delivering Cloud Com-

puting infrastructure such as servers, storage, network and operating

systems (usually in terms of virtual machines) that provides virtualized

computing resources over the Internet as an on-demand service. Rather

than purchasing servers, software, datacenter space or network equip-

ment, clients, on the contrary, buy those resources as a fully outsourced

service on demand. Customers pay on a per-use basis, typically by the

hour, week or month. Some providers also charge customers based on

the amount of virtual machine space they use (see [140] for a virtu-

alization architecture). Therefore, IaaS refers to online services that

abstract the user from the details of infrastructure like physical com-

puting resources, location, data partitioning, scaling, security, backup

etc.
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Virtualization is the essential technological characteristic of clouds, there-

fore, in this chapter, we focus our attention on resource management that is

one of the most important issues in Cloud Computing for IaaS (see [82]), in-

cluding allocation, provisioning, mapping and adaptation in a multi-tenancy

environment, where users share the same resource.

Analyzing the Cloud Computing network, we take into account resources

utilization, monetary cost and energy consumption as optimization object-

ives at the same time, while most of the researchers have dealt with them

separately (see [117]).

Virtualization consists of sharing computer hardware by partitioning the

computational resources; often many services need not the total available

resources but only a small portion of them. Energy consumption is playing

an increasing role in the Cloud Network because of its costs and, for this

reason, many researchers use the Server Consolidation (an approach accord-

ing to which it is better mapping Virtual Machines on fewest possible physical

servers) to prevent the wastage of resources (see [136]). In this thesis, taking

into account also the physical resources heterogeneity, we aim at optimizing

cost of running servers (cost of turning on or off a server, power consump-

tion) and resource wastage.

In [80], the author underlines that in the single-data centre problem, the

usual formulation used by researchers is about mapping Virtual Machines to

Physical Machines, while, in the multi-IaaS problem, it is more common to in-

vestigate the mapping of tasks (platform) to Virtual Machines. In the model

we present, the provider can accept or reject a platform execution request,

can establish the revenue and can make the decision about the allocation,

ensuring the quality of service (determined in a particular agreement).

The chapter is organized as follows. In Section 2.2 we present the math-

ematical model of cloud computing and we describe the role of the different

layers. Then, we analyze the behavior of the typical IaaS provider and de-

rive its optimality conditions given by the desire to maximize its profit while

minimizing its operational costs. In Section 2.3 we describe the computa-
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tional procedure for the calculus of the nonlinear model. We also present a

linearization of the constraints and of the objective function, in Section 2.4,

in order to compare the global optimal solutions as shown in Section 2.5 with

a numerical example. Section 2.6 is dedicated to the conclusions.

2.2 The Matematical Model

In this section we first introduce the global network of a cloud computing

environment with different layers (see [14], [18], [19], [26], [27] and [102] for

the study of other supply chain networks applied to different problems) and

then we present the mathematical model of the network from the perspective

of a typical IaaS provider in order to find the optimization problem.

The architecture of a cloud computing environment can be divided into 5

layers: the hardware/datacenter layer, the infrastructure layer, the platform

layer, the application layer and the end-users layer (see [13], [146]). We now

describe each of them in detail.

The hardware layer: At the highest level of the hierarchy, the hardware

layer is sometimes referred to as the server layer because it represents the

physical hardware that provides actual resources that make up the cloud.

It is responsible for managing the physical resources of the cloud, such as

physical servers, routers, switches, power and cooling systems.

The infrastructure layer: Often referred to as the virtualization layer and

built below the hardware layer, the infrastructure layer represents the res-

ult of various operating systems being installed as Virtual Machines (VMs).

Much of the scalability and flexibility of the cloud computing model is derived

by the inherent ability of virtual machines to be created and deleted at will.

Partitioning the physical resources using virtualization technologies, this

layer offers the virtual machines as a service to users. The decision-makers

of hardware and infrastructure tiers are IaaS providers : 1, · · · , i, · · · , I; they
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provide virtualized computing services such as storage, CPU and memory

packaged as VMs of different sizes, each one with a price per time, over the

Internet as an on-demand service (billing subprocess is incorporated into the

general information flow of the supply chain, see [75]).

The platform layer: Built below the infrastructure layer, the platform

layer consists of operating systems and application frameworks. The purpose

of the platform layer is to minimize the burden of deploying applications dir-

ectly into VM containers. Platforms provide programming and runtime en-

vironments to deploy cloud computing applications. The decision-makers of

this layer are PaaS providers : 1, · · · , f, · · · , F . They offer platform services,

such as web, application and database servers and an associated program-

ming model for dynamic and flexible application provisioning (see [2] for a

dynamic performance optimization framework). Users (/programmers) can

use this environment to develop, test and deploy applications. PaaS provider

consumes the services of IaaS providers by requesting VMs with performance

characteristics: memory, storage, processing capacity. We make the simpli-

fying assumption that each VM hosts a single platform. Multiple VMs im-

plementing the same platform can also run in parallel.

The application layer: This layer is the most used layer of cloud com-

puting and the most common from a public perspective. The vast majority

of consumers utilizes this layer of Cloud Computing because it is accessible

via a computer, tablet or smartphone through web-portals. Services at the

application level consist of complete applications that do not require devel-

opment. Such applications can be email, customer relationship management,

and other office productivity applications. Different from traditional applica-

tions, cloud applications can leverage the automatic-scaling feature to achieve

a better performance, availability and a lower operating cost. The decision-

makers of application layer are SaaS providers : 1, · · · , a, · · · , A. They offer

applications to the end-users. Those applications are deployed in PaaS’s
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platforms on topologies which are specific to each application. There can be

many applications sharing the same platform.

The end-users layer: At the lowest level of the hierarchy we found a

fundamental part of the model, namely the end-users layer, which is made

up by an active entity that utilizes the SaaS applications over the Inter-

net (see [62] for an information collaboration system; see [71] and [87] for

some descriptions of the roles in the cloud computing value network). While

this layer is not a cloud computing service, it is an essential part of the model.

Each layer is loosely coupled with the layers above and below, allowing

each layer to evolve separately.

Each decision-maker will have different optimization goals.

Each provider needs to comply with providers of lower tiers (or with end-

users) a Service Level Agreement (SLA) contract, and, at the same time, to

maximize its own revenue, while minimizing the cost associated with the use

of resources supplied by above providers.

Therefore, each provider signs with its customers a SLA contract that de-

termines the minimum throughput and penalties incurred on the basis of the

level of performance achieved (see [1]).

When we look at the security of data in the cloud computing, the vendor has

to provide some assurance in the SLA contract, so the SLA has to describe

different levels of security and their complexity based on the services to make

the customer understand the security policies that are being implemented.

Furthermore, each provider (or end-user) behaves selfishly and competes with

other providers of the same tier for the use of resources supplied by above pro-

viders and for maximizing the revenues obtained providing their resources.

We highlight that the aggregated demands for different resources or services

are dynamic over a time horizon. Therefore we present a multi-time period

optimization model. We divide the time horizon into T equal time slots. Let
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Figure 2.1: The Cloud Computing Network

T = {1, · · · , t, · · · , T} be the set of these slots.

We consider a global supply chain network with four tiers of decision-

makers; in Figure 2.1, the underlying network structure of the optimization

problem is depicted.

Let:

• I = {1, . . . , i, . . . , I} be the set of IaaS providers,

S = {1, . . . , j, . . . , J} be the set of all physical servers

and we consider a partition of S in S1, . . . ,Si, . . . ,SI where Si indicates

the set of the i provider’s servers,

V = {1, . . . , v, . . . , V } be the set of all VMs

and we consider a partition of V in V1, . . . ,Vi, . . . ,VI where Vi indicates

the set of the i provider’s VMs;
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• F = {1, . . . , f, . . . , F} be the set of PaaS providers,

P = {1, . . . , p, . . . , P} be the set of all platforms

and we consider a partition of P in P1, . . . ,Pf , . . . ,PF where Pf indic-

ates the set of the f provider’s platforms;

• A = {1, . . . , a, . . . , A} be the set of SaaS providers,

K = {1, . . . , k, . . . , K} be the set of all applications

and we consider a partition of K in K1, . . . ,Ka, . . . ,KA where Ka indic-

ates the set of the a provider’s applications;

• E = {1, . . . , e, . . . , E} be the set of the end-users.

2.2.1 The behavior of the IaaS provider

Now we analyze the behavior of the typical IaaS provider in order to find the

global optimization problem.

Let:

• C+
i , C

−
i be the wear-and-tear cost of turning a server on and off, re-

spectively (see [119]);

• ωi be the unit power cost (see [50]);

• 1
αi ∈ [0, 1] be the fraction such that

ωi

αi
is the unit cost of wasted

resources;

• C̄ be the upper bound of the capacity for each platform;

• C̄j be the threshold of capacity (that can be CPU, memory, storage

and so on) utilization associated with each server;

• Cvt be the capacity of VM v hosted by a physical server at time t;

• Di
pt be the capacity demand of each platform p by PaaS provider f to

IaaS provider i at time t;
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• qipt be the number of platforms of the kind p ∈ Pf requested by f in

the VMs of i at time t;

• ρ̄pt be the upper bound of the price for platform p ∈ Pf that f is willing

to pay at time t;

• δi be the penalty for rejecting a single platform.

Let also ρivt be the revenue variable for the IaaS provider i for a single request

execution in VM v at time t.

We use three binary variables xj
vt, yjt and zvp t, defined as follows:

xj
vt =

{

1 if VM v is assigned to server j at time t

0 otherwise;
(2.1)

yjt =

{

1 if server j is in use at time t

0 otherwise
(2.2)

and

zvp t =

{

1 if platform p is assigned to VM v at time t

0 otherwise.
(2.3)

Let Z̄i
f t

be the prediction demand of VMs made by PaaS provider f at time

t.

We assume that Z̄i
f t

=
∑

p∈Pf

qipt ∀f ∈ F , ∀t ∈ T .

In this context, IaaS provider i can make the decision of accepting or rejecting

a platform execution request in order to maximize its own revenue.

The resulting throughput (or acceptance rate) is denoted by:

Zi
f t =

∑

v∈Vi

∑

p∈Pf

zvp t ≤ Z̄i
f t

∀f ∈ F , ∀t ∈ T.

IaaS providers may possibly incur in penalties (see [3], [114]) upon rejection

of request executions of p ∈ Pf : δ
i · (Z̄i

f t
− Zi

f t) ∀f ∈ F , ∀t ∈ T .

In order to fix the rejection rate over a fixed threshold and to ensure a min-

imum availability, i may decide to guarantee a minimum throughput Zi
f t at
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time t established in SLA between i and f .

IaaS provider’s objective is to simultaneously maximize its profit and min-

imize the total operational cost of running servers (wear-and-tear cost and

power consumption) and the resource wastage over the entire time horizon.

The problem at time t can therefore be formulated as a global optimization

problem as follows (see [3], [4] and [114] for game formulation):

max
ρivt,z

v
pt,x

j
vt,yjt

{
∑

p∈P

∑

v∈Vi

ρivtz
v
pt −

F∑

f=1

δi(Z̄i
f t
− Zi

f t)

−
∑

j∈Si

[
C+ · yjt · (yjt − yj(t−1)) + (C− · yj(t−1) · (yj(t−1) − yjt))

]

−
∑

j∈Si

yjt
[
ωi
j · (
∑

v∈Vi

xj
vtCvt) +

ωi
j

αi
· (C̄j −

∑

v∈Vi

xj
vtCvt)

]

}

(2.4)

subject to:

Di
pt ≤ Cvtz

v
pt + C · (1− zvpt)∀p ∈ P , ∀v ∈ Vi (2.5)

∑

j∈Si

xj
vt ≤ 1, ∀v ∈ Vi (2.6)

∑

p∈P

zvpt =
∑

j∈Si

xj
vt, ∀v ∈ Vi (2.7)

∑

v∈Vi

zvpt ≤ qipt, ∀p ∈ P (2.8)

∑

v∈Vi

Cvt · xj
vt ≤ C̄j · yjt, ∀j ∈ Si (2.9)

Zi
ft ≤ Zi

ft ∀f = 1, . . . , F (2.10)

ρivtz
v
pt ≤ ρ̄pt ∀v ∈ Vi, ∀p ∈ P (2.11)

ρivt ≥ 0, yjt, x
j
vt, z

v
pt ∈ {0, 1}

∀j ∈ Si, ∀v ∈ Vi, ∀p ∈ P . (2.12)

The first constraint affirms that the capacity requested for platform p

cannot exceed the capacity of the VM which is assigned to (otherwise it res-

ults to be z = 0).
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Constraint (2.6) assigns a VM v at most to only one of the servers. Constraint

(2.7) necessarily assigns a used VM to only one of the platforms. Constraint

(2.8) establishes that the number of platforms of the kind p which are ac-

cepted by i for the execution (in its own VMs) is less than or equal to the

requested amount.

Constraint (2.9) models the capacity constraint of the servers and it also

establishes that:

- yjt = 0 ⇒
∑

v∈Vi

xj
vt = 0 ∀j ∈ Si; namely, if a server j is not in use at

time t, then there are not VMs assigned to such a server;

- if
∑

v∈Vi

xj
vt > 0 ⇒ yjt = 1 ∀j ∈ Si; namely, if some VMs are assigned

to server j at time t, then such a server must be in use.

Constraint family (2.10) establishes that Zi
ft cannot be smaller than the min-

imum throughput Zi
ft.

Constraint (2.11) states that the revenue ρivt for the IaaS provider i for a

single request execution in VM v at time t cannot exceed the maximum

price that f is willing to pay for the platform p which is hosted by v.

The latest constraint family defines the domain of the variables of the prob-

lem.

2.3 A Computational Procedure

The following algorithm describes a computational procedure which allows

us to calculate the solutions of the previous nonlinear model (2.4) subject to

(2.5)-(2.12) (see [56] for a particle swarm optimization algorithm).

The algorithm starts initializing the values of IaaS variables (step 1).

In step 2, for each PaaS provider, we order all platforms in increasing order

with respect to efficiency.

In steps 3-6 we assign the platforms to VMs in order to have the maximum
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revenue and to satisfy the minimum throughput; similarly, in steps 7-10, we

assign the remaining platforms to VMs in order to have the maximum rev-

enue.

Then, we allocate the used VMs into servers minimizing the power costs and

the resource wastage, by paying also attention to the state of the servers (on

or off) at previous time and to the respective wear-and-tear costs (step 12).

In step 13 we analyze the costs of running servers in order to establish if it is

convenient to turn on/off the servers minimizing the total operational costs.

Furthermore, in step 14, we evaluate if deleting a platform is suitable, by

taking into account the penalty for rejecting platform.

Finally, we estimate the total profit (step 15).

1. Initialization:

ρiv0 = 0, yj0 = xj
v0 = zvp0 = 0 ∀j ∈ Si, ∀v ∈ Vi, ∀p ∈ P ;

ρivt = 0, yjt = yj(t−1), x
j
vt = zvpt = 0 ∀j ∈ Si, ∀v ∈ Vi, ∀p ∈ P , ∀t ∈ T .

2. Sorting of platforms and partition of the set Pf :

∀f ∈ F we order platforms p ∈ Pf in increasing order with respect to

efficiency:
ρ̄i1f t

Di
1f t

≥ . . . ≥
ρ̄ipf t

Di
pf t

≥ . . . ≥
ρ̄iPf t

Di
Pf t

and we denote by PZ
f the set of the first platforms Zi

ft of f , by PL
f =

Pf \ PZ
f the set of the remaining platforms and P̃L

f = PL
f .

Remark: If qipt > 1, then we repeat platform p qipt times.

3. We denote by PZ =
⋃

f∈F

PZ
f , PL =

⋃

f∈F

PL
f and VL

i = Vi the set of VMs

which have to be assigned.

Let P̃Z = PZ .

4-6. Allocation of PZ
f ’s platforms to the VM:

Solve AllocationPZ (which will be detailed later).

∀p̄ ∈ PZ
f , we chose the VM v̄ with smaller capacity such that it contains
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the platform; if Di
p̄t = Cv̄, then we assign p̄ to v̄; otherwise, we search

for a platform, if any, with requested capacity smaller than that of VM

v̄ and with maximum ρ̄p; in both cases, we choose the maximal revenue:

ρivt = ρ̄p.

If all the platforms p ∈ PZ
f require a capacity which is greater than the

ones of the available VMs, then it is necessary to make a search in PL
f

in order to let the minimum throughput Zi
ft be satisfied ∀f ∈ F .

If all the VMs are engaged or all the PZ
f ’s platforms have been assigned,

then go to step 7.

7. Let P̃L = PL.

8-10. Allocation of PL
f ’s platforms to the VMs:

Solve: AllocationPL (which will be detailed later).

11. Let P− = PS = P \ P̃L \ PZ .

12. Allocation of the VMs:

We order servers j ∈ Si such that: ω1 ≤ . . . ≤ ωj ≤ . . . ≤ ω|Si|.

For j ∈ Si:

we consider VS
i = Vi \ VL

i ; we assign xj
vt ∈ {0, 1} with the method of

Branch and Bound (for a linear integer programming 0-1 problem) in

such a way as to most saturate the server with lower cost.

Here we pay attention to the status of the servers at time t− 1 :

consider every server ĵ which is used at time t and switched off at time

t − 1 such that its VMs can be allocated (according to the capacity

constraint) in the server j̄, if any, which is not in use at time t and was

switched on at time t− 1. We evaluate whether the sum of turning on,

energy and waste costs of ĵ plus the mimimum between the turning off

cost of the server j̄ and its waste cost is greater than the cost associated

with the use of j̄, then, in this case, it is convenient to allocate the VMs

to the server j̄ which is already turned on
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12.1 If ∃j̄ ∈ Si :
∑

v∈Vi

xj̄
vt = 0 && yj̄(t−1) = 1 ⇒

For ĵ ∈ Si such that yĵ(t−1) = 0 &&
∑

v∈Vi

xĵ
vt > 0 &&

∑

v∈Vi

xĵ
vtCv ≤

C̄j̄:

- if
[
C++ωi

ĵ
·(
∑

v∈Vi

xĵ
vtCv)+

ωi

ĵ

αi
·(C̄ĵ−(

∑

v∈Vi

xĵ
vtCv))

]
+min{C−,

ωi
j̄

αi
·

C̄j̄} > ωi
j̄ · (
∑

v∈Vi

xĵ
vtCv) +

ωi
j̄

αi
· (C̄j̄ − (

∑

v∈Vi

xĵ
vtCv)) ⇒

yj̄t = 1, xj̄
vt = xĵ

vt ∀v ∈ Vi,

yĵt = 0,
∑

v∈Vi

xĵ
vt = 0;

- otherwise go to step 13.

12.2 Otherwise (if all servers are used: ∀j̄ ∈ Si

∑

v∈Vi

xj̄
vt > 0 OR if they

are not used but they are off:
∑

v∈Vi

xj̄
vt = 0&&yj̄(t−1) = 0) go to

step 13.

13. Evaluation of the server:

For every server (which is not required for satisfying the minimum

throughput), we evaluate the turning on/off cost; specifically,

if, at time t, the server is not in use and it was turned on at time t− 1,

then we evaluate whether it is convenient to turn it off or to pay the

waste (namely, the inaction costs),

on the contrary, if, at time t, the server is in use and it was turned

off at time t− 1, then we evaluate whether the penalty cost is greater

than the profit. In this case, it is convenient to switch the server on,

otherwise it is better to keep it off and to pay the penalty.

For j ∈ Si:
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– If
∑

v∈Vi

xj
vt = 0 && yj(t−1) = 1 ⇒

ωi
j

αi
C̄j − C−







> 0 ⇒ yjt = 0

≤ 0 ⇒ yjt = 1.

– If
∑

v∈Vi

xj
vt > 0 && yj(t−1) = 0 &&

If ∀v̄ : xj
v̄t > 0 and ∀p̄ : zv̄p̄t > 0 we have that p̄ /∈ PZ ⇒

P − C+ =
[∑

v∈Vi

∑

p∈P

xj
vtρ

i
vt

−[ωi
j · (
∑

v∈Vi

xj
vtCv)

+
ωi
j

αi
· (C̄j − (

∑

v∈Vi

xj
vtCv))]

]

− C+,

P − C+







≥ 0 ⇒ yjt = 1

< 0 ⇒

⇒ C+ − P − δi(
∑

p∈P

∑

v∈Vi

xj
vtz

p
vt)







≤ 0 ⇒ yjt = 1

> 0 ⇒

⇒ yjt = 0,
∑

p∈P

zv̄pt = 0 ∀v̄ ∈ Vi : x
j
v̄t > 0,

∑

v∈Vi

xj
vt = 0.

Else yjt = 1.

14. Evaluation of the platforms:

For every platform which has been assigned and which is not required

for the minimum throughput, we evaluate whether it is convenient to

delete it:

if the profit P , given by the revenue minus the energy and the waste

costs, is negative, and if the penalty cost δi is less than such a loss,

then such a platform will be deleted and the VMs will be allocated to
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the servers.

∀p− ∈ P− let v− ∈ Vi such that zv
−

p−t = 1 and

we denote by P = ρiv−tz
v−

p−t −
∑

j∈Si

yjt(ω
i
jx

j

v−t
Cv− +

ωi
j

αi
(C̄j − xj

v−t
Cv−)).

– If P ≥ 0 we denote by P− = P− \ {p−} and

- if P− = ∅ ⇒ go to step 15;

- otherwise go to step 14.

– If P < 0 we estimate R = δi − |P | ,

. if R ≥ 0 go to step 15;

. if R < 0: zv−
p−t

= 0,
∑

j∈Si

xj

v−t
= 0, ρiv−t = 0 and return to step

12 with P− = P− \ {p−}.

15. We estimate:

R =
∑

p∈P

∑

v∈Vi

ρivtz
v
pt −

F∑

f=1

δi(Z̄i
f t
− Zi

f t)

−
∑

j∈Si

[
C+ · yjt · (yjt − yj(t−1)) + (C− · yj(t−1) · (yj(t−1) − yjt))

]

−
∑

j∈Si

yjt
[
ωi
j · (
∑

v∈Vi

xi
vtCv) +

ωi
j

αi
· (C̄j −

∑

v∈Vi

xi
vtCv)

]
.

Now we show in detail AllocationPZ and AllocationPL.

AllocationPZ:

4. Let p̄ ∈ P̃Z the first platform which has to be assigned such that

ρ̄ip̄t
Di

p̄t

= max
p∈P̃Z

ρ̄ipt
Di

pt

.

5. - If @v̄ ∈ VL
i such that Di

p̄t ≤ Cv̄ ⇒ p̃ = p̄, where p̄ ∈ Pf̄ go to step

6.1.
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- Otherwise: let v̄ ∈ VL
i such that

Cv̄ = min
v∈VL

i ,Di
p̄t≤Cv̄

Cv.

⊗ If Di
p̄t = Cv̄ ⇒ we assign p̄ to VM v̄: we define zv̄p̄t = 1,

ρiv̄t = ρ̄p̄, VL
i = VL

i \ {v̄}, P̃Z = P̃Z \ {p̄}.
⊗ Otherwise ⇒ we select ¯̄p ∈ P̃Z ∪PL

f̄
(where f̄ : p̄ ∈ Pf̄ ) such

that:

ρ̄ ¯̄p = max
Di

p̄t<Di
pt≤Cv̄

ρ̄p

and we define zv̄¯̄pt = 1, ρiv̄t = ρ̄ ¯̄p, VL
i = VL

i \ {v̄},
- if ¯̄p ∈ P̃Z ⇒ P̃Z = P̃Z \ { ¯̄p};
- if ¯̄p ∈ PL

f̄
⇒ P̃Z = P̃Z \ {p̄}, PZ = PZ \ {p̄}∪{ ¯̄p}, PL

f̄
=

PL
f̄
∪ {p̄} \ { ¯̄p}, PL = PL ∪ {p̄} \ { ¯̄p}.

6. – if VL
i = ∅ or P̃Z = ∅: go to step 7;

– if Di
pt > Cv, ∀p ∈ P̃Z , ∀v ∈ VL

i :

for p̃ ∈ P̃Z ∩ Pf̄ :

6.1 we select p̄ ∈ P̃L
f̄
such that

ρ̄ip̄t
Di

p̄t

= max
p∈P̃L

f̄

ρ̄ipt
Di

pt

,

P̃Z = P̃Z ∪ {p̄} \ {p̃}, PZ = PZ ∪ {p̄} \ {p̃}, PL
f̄
= PL

f̄
∪ {p̃} \

{p̄}, P̃L
f̄
= P̃L

f̄
\ {p̄}, PL = PL ∪ {p̃} \ {p̄} and go to step 5;

– otherwise: go to step 4.

AllocationPL:

8. Let p̄ ∈ P̃L the first platform which has to be assigned such that

ρ̄ip̄t
Di

p̄t

= max
p∈P̃L

ρ̄ipt
Di

pt

.

9. - If @v̄ ∈ VL
i such that Di

p̄t ≤ Cv̄ ⇒ P̃L = P̃L \ {p̄} and go to step

8.

37



Chapter 2. A Cloud Computing Network and an Optimization Algorithm
for IaaS Providers

- Otherwise: let v̄ ∈ VL
i such that:

Cv̄ = min
v∈VL

i ,Di
p̄t≤Cv̄

Cv.

⊗ If Di
p̄t = Cv̄ ⇒ we assign p̄ to VM v̄ : we define zv̄p̄t = 1,

ρiv̄t = ρ̄p̄, VL
i = VL

i \ {v̄}, P̃L = P̃L \ {p̄}.

Let p̄ ∈ P̃L
f̄

⇒ ∀p− ∈ PZ
f̄

: ρ̄p− = min
p∈PZ

f̄

ρ̄p and let v− ∈ V

t.c. zv
−

p−t = 1

we select p̃ ∈ P̃L∪{p−} such that ρp̃ = max{ max
p∈P̃L, Cp≤C

v−

ρ̄p; ρ̄p−}.
If ρ̄p̃ = ρ̄p− go to step 10,

Else zv
−

p−t = 0, zv
−

p̃t = 1, ρv− = ρ̄p̃, PZ = PZ \ {p−} ∪ {p̄}.
⊗ Otherwise: ⇒ we select ¯̄p ∈ P̃L such that:

ρ̄ ¯̄p = max
Di

p̄t≤Di
pt≤Cv̄

ρ̄p

and we define zv̄¯̄pt = 1, ρiv̄t = ρ̄ ¯̄p, VL
i = VL

i \{v̄}, P̃L = P̃L\{ ¯̄p}.
Let ¯̄p ∈ P̃L

f̄
⇒ ∀p− ∈ PZ

f̄
: ρ̄p− = min

p∈PZ
f̄

ρ̄p and let v− ∈ V s.t.

zv
−

p−t = 1

we choose p̃ ∈ P̃L∪{p−} such that ρp̃ = max{ max
p∈P̃L, Cp≤C

v−

ρ̄p; ρ̄p−}.
If ρ̄p̃ = ρ̄p− go to step 10,

Else zv
−

p−t = 0, zv
−

p̃t = 1, ρv− = ρ̄p̃, PZ = PZ \ {p−} ∪ { ¯̄p}.

10. – If VL
i = ∅ or P̃L = ∅ or Di

pt > Cv, ∀v ∈ VL
i , ∀p ∈ P̃L go to step

11;

– otherwise go to step 8.

2.4 Linearization

In section 2.2 we obtained a Mixed-Integer Nonlinear Programming Problem

(see [19] for another Integer Nonlinear programming problem, the related
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optimality conditions and the variational inequality formulation) which can

be solved by the above algorithm.

In this section we propose a mixed-integer linear programming problem that

is equivalent to the previous one in order to compare the solutions coming

from our algorithm with those obtained by standard methods.

Theorem 2. Problem (2.4) under constraints (2.5)-(2.12) is equivalent to

the following mixed-integer linear programming problem:

max
ρivt,z

v
pt,x

j
vt,yjt

{
∑

v∈Vi

ρivt −
F∑

f=1

δi(Z̄i
f t
− Zi

f t)

−
∑

j∈Si

[
C+ · y+jt + (C− · y−jt)

]

−
∑

j∈Si

[
ωi
j · (
∑

v∈Vi

xj
vtCvt) +

ωi
j

αi
· (C̄j · yjt −

∑

v∈Vi

xj
vtCvt)

]

}

(2.13)

subject to:

Di
pt ≤ Cvtz

v
pt + C · (1− zvpt)∀p ∈ P , ∀v ∈ Vi (2.14)

∑

j∈Si

xj
vt ≤ 1, ∀v ∈ Vi (2.15)

∑

p∈P

zvpt =
∑

j∈Si

xj
vt, ∀v ∈ Vi (2.16)

∑

v∈Vi

zvpt ≤ qipt, ∀p ∈ P (2.17)

∑

v∈Vi

Cvt · xj
vt ≤ C̄j · yjt, ∀j ∈ Si (2.18)

Zi
ft ≤ Zi

ft ∀f = 1, . . . , F (2.19)

ρivt ≤
∑

p∈P

ρ̄ptz
v
pt ∀v ∈ Vi (2.20)

ρivt ≥ 0, yjt, x
j
vt, z

v
pt ∈ {0, 1}

∀j ∈ Si, ∀v ∈ Vi, ∀p ∈ P (2.21)

y+jt + y−jt ≤ 1 ∀j ∈ Si (2.22)

yjt − yj(t−1) − y+jt + y−jt = 0 ∀j ∈ Si. (2.23)
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Proof. Problem (2.4) under constraints (2.5)-(2.12) can be linearized by mak-

ing use of the following procedure.

Constraint (2.11) can be replaced by:

ρivt ≤
∑

p∈P

ρ̄ptz
v
pt ∀v ∈ Vi;

therefore, the first term in the objective function becomes:

∑

v∈Vi

ρivt;

indeed, if
∑

p∈Pz
v
pt = 0 no transactions occur (no platform is assigned to VM

v), so the revenue is zero: ρivt = 0, otherwise: ρivt ≤ ρ̄pt where p s.t. zvpt = 1.

Taking into account constraint (2.9) which establishes that, if yjt = 0, then
∑

v∈Vi

xj
vt, we have that the term associated with the energy costs and with the

waste can be linearized as follows:

∑

j∈Si

[
ωi
j · (
∑

v∈Vi

xj
vtCvt) +

ωi
j

αi
· (C̄jyjt −

∑

v∈Vi

xj
vtCvt)

]
.

Finally, in order to linearize the term in the objective function which is

connected to turning on and off, we define two binary variables for every

server j:

y+jt =

{

1 if we turn server j on at time t

0 otherwise
(2.24)

and

y−jt =

{

1 if we turn server j off at time t

0 otherwise.
(2.25)

As a consequence, in the objective function the term becomes:

∑

j∈Si

[C+y+jt + C−y−jt]

and, further, it is necessary to add the following constraints:

• to avoid that the new variables are simultaneously equal to one:

y+jt + y−jt ≤ 1 ∀j ∈ Si;
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• to connect the new variables with yjt:

yjt − yj(t−1) − y+jt + y−jt = 0 ∀j ∈ Si,

indeed:

- if we turn server j on, then we have: yjt = 1, yj(t−1) = 0 ⇒
yjt − yj(t−1) = 1 = y+jt;

- if we turn server j off, then we have: yjt = 0, yj(t−1) = 1 ⇒
yjt − yj(t−1) = −1 = −y−jt;

- otherwise, if we do not change the state of server j, then we have:

yjt = 0, yj(t−1) = 0 or yjt = 1, yj(t−1) = 1 and in both cases

⇒ yjt − yj(t−1) = 0 = y+jt − y−jt from which we get: y+jt = y−jt = 0

(since they are binary variables).

Hence, we have proved that the Mixed-Integer Nonlinear Programming

Problem (2.4) subject to (2.5)-(2.12) can be reformulated as mixed-integer

linear programming problem (2.13) subject to (2.14)-(2.23).

2.5 A Numerical Example

In this section we apply the model to a numerical example.

Since we want to report all the results for transparency purposes, we select

the size of problems as reported. The numerical data are inspired by realistic

values (see Amazon Web Services that offers different VMs types) and are

constructed for easy interpretation purposes.

We consider the network at time t as depicted in Figure 2.2, consisting

of:

• 5 servers Si = {1, 2, 3, 4, 5},
where y1(t−1) = 1, y2(t−1) = 0, y3(t−1) = 1, y4(t−1) = 0, y5(t−1) = 1;

C̄1 = 35, C̄2 = 10, C̄3 = 30, C̄4 = 40, C̄5 = 20;

ω1 = 0.5, ω2 = 1, ω3 = 1.2, ω4 = 1.5, ω5 = 3;
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Figure 2.2: The Network of the numerical example

• 6 VMs Vi = {1, 2, 3, 4, 5, 6},
where C1 = 5, C2 = 8, C3 = 13, C4 = 20, C5 = 20, C6 = 20;

• 3 PaaS providers: P1 = {11, 12}, P2 = {12, 22, 32} e P3 = {13, 23}
where D11 = 5, D12 = 10, D22 = 13, D32 = 7, D13 = 18, D23 = 19;

ρ̄11 = 20, ρ̄12 = 35, ρ̄22 = 40, ρ̄32 = 21, ρ̄13 = 18, ρ̄23 = 18;

q11 = 2, q12 = 1, q22 = 1, q32 = 1, q13 = 1, q23 = 1;

Z1 = 1, Z2 = 2, Z3 = 1;

and let: α = 4, δ = 15, C+ = 15, C− = 5.

Figure 2.3 shows the global optimal solutions of the model solved by ap-

plying the algorithm presented in Section 4.

The optimal variables are the following ones:

y1 = 1, y2 = 1,y3 = 1,y4 = 0,y5 = 0;

x1
1 = 0, x1

2 = 0, x1
3 = 1, x1

4 = 1, x1
5 = 0, x1

6 = 0;

x2
1 = 0, x2

2 = 1, x2
3 = 0, x2

4 = 0, x2
5 = 0, x2

6 = 0;

x3
1 = 1, x3

2 = 0, x3
3 = 0, x3

4 = 0, x3
5 = 1, x3

6 = 0;

x4
1 = 0, x4

2 = 0, x4
3 = 0, x4

4 = 0, x4
5 = 0, x4

6 = 0;
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Figure 2.3: Optimal solution of the network

x5
1 = 0, x5

2 = 0, x5
3 = 0, x5

4 = 0, x5
5 = 0, x5

6 = 0;

z11 = 1, z12 = 0, z13 = 0, z14 = 0, z15 = 0, z16 = 0, z17 = 0;

z21 = 0, z22 = 0, z23 = 0, z24 = 0, z25 = 1, z26 = 0, z27 = 0;

z31 = 0, z32 = 0, z33 = 0, z34 = 1, z35 = 0, z36 = 0, z37 = 0;

z41 = 0, z42 = 0, z43 = 1, z44 = 0, z45 = 0, z46 = 0, z47 = 0;

z51 = 0, z52 = 0, z53 = 0, z54 = 0, z55 = 0, z45 = 1, z57 = 0;

z61 = 0, z62 = 0, z63 = 0, z64 = 0, z65 = 0, z66 = 0, z67 = 0;

ρ1 = 20e, ρ2 = 21e, ρ3 = 40e, ρ4 = 35e, ρ5 = 18e, ρ6 = 0e;

The maximum profit obtained by applying the algorithm shown in the pre-

vious section is:

R = 27.25e.

We underline that, at step 9, z62 = 1 and ρ6 = 20e, and, at step 12, x4
6 = 1

and y4 = 1, but by evaluating, in step 13, the profit, we observe that it is

suitable to delete platform 21, in fact the algorithm assigns z62 = 0, ρ6 = 0e

and x4
6 = 0.
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On the contrary, it is not suitable to delete platform 32 because its partial

profit is positive P > 0.

Then, in step 14, by analyzing the costs of running servers, the algorithm

assigns y4 = 0 and, furthermore, y5 = 0 (you note that in the previous time

server 5 was turned on), whereas, nevertheless in the previous instant server

2 was turned off, the algorithm assigns y2 = 1 in order to maximize the total

profit.

We wish to highlight that these global optimal solutions are the same

as the optimal solutions of the mixed-integer linear programming problem,

which has been solved by using Matlab and Lingo.

2.6 Conclusions

In recent years, interest in Cloud Computing increased mainly because there

is no doubt that businesses and people can reap huge benefits from it. Per-

haps, the most significant cloud computing benefit is in terms of IT cost

savings. Businesses, no matter what type or size is, and people can save

substantial capital costs with zero in-house server storage and application

requirements. Furthermore, the costs of cloud computing are much more

flexible than traditional methods, in fact customers pay for what they use.

Cloud computing is much more reliable and consistent than in-house IT in-

frastructure and it provides enhanced and simplified IT management and

maintenance capabilities through central administration of resources, vendor

managed infrastructure and SLA backed agreements. IT infrastructure up-

dates and maintenance are eliminated, as all resources are maintained by

the service provider. The SLA ensures the timely and guaranteed delivery,

management and maintenance of your IT services.

The cloud computing services are available on-demand, anywhere and in any

time; therefore, the providers of cloud services receive a lot of requests. In

this chapter we analyze the behavior of the IaaS provider who can make
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the decision of accepting or rejecting a platform execution request, can es-

tablish the revenue for a request execution in a VM, can make the decision

about the allocation of VMs in their servers and can decide if they need

to turn their servers on or off in order to maximize their own revenue. We

present a nonlinear mathematical model, based on networks, which allows us

to simultaneously maximize IaaS provider’s profit and minimize their total

operational cost of running servers (wear-and-tear cost and power consump-

tion) and the resource wastage.

Furthermore we propose a solution algorithm which describes a computa-

tional procedure which allows us to calculate the solutions of the mathemat-

ical model.

The theoretical framework is then further illustrated through a numerical

example for which the optimal IaaS provider’s variables are computed. Such

solutions are the same as the optimal global solutions of the linear model.
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Chapter 3

Financial Models for a Multi-Period

Portfolio Optimization Problem

3.1 Introduction

In financial literature, a portfolio is considered to be a set of financial assets

or investments which are owned by an individual (an investor) or a financial

institution and consist of various financial instruments such as shares of a

company (often referred as equities), government bonds, and so on.

Given a financial portfolio, it is possible to obtain different combinations

of expected returns and risks depending on the choices related to the place-

ment of their investments. So it is important to find the combination that

allows us to get the best possible strategy (i.e. the best performance for a

given level of risk). At this aim the principle of Dominance is introduced.

Let us assume to have two portfolios A and B, and denote by E[uA]

and E[uB] their expected yields, respectively and by r2A and r2B their risks.

Portfolio A is said to be efficient and dominant on B (A � B) if it satisfies

the following properties:

• E[uA] ≥ E[uB];
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• r2A ≤ r2B;

where at least one of the two inequalities must be strictly satisfied.

If both properties are satisfied as equalities, then the two portfolio are equi-

valent.

The foundation of portfolio optimization and asset allocation problem is

always attributed to the Markowitz’s Modern Portfolio Theory (MPT) (see

[85] and [86]) based on the mean-variance analysis.

The underlying principle behind Markowitz’s theory is that in order to

build an efficient portfolio, a combination of securities should be identified

to maximize the performance and minimize the total risk by choosing as

few correlated securities as possible. The fundamental assumptions of the

portfolio theory are as follows:

• investors intend to maximize their ultimate wealth and are at risk;

• the investment period is unique (for Markowitz model, time is not a

significant variable);

• transaction costs and taxes are zero and the assets are perfectly divis-

ible;

• expected value and standard deviation are the only parameters that

guide the choice;

• the market is perfectly competitive.

Ever since then, in numerous research papers, modifications, extensions and

alternatives to MPT have been introduced in order to simplify and reduce

the limitations of Markowitz’s model.

In [134] and [38] the authors present the inclusion of a risk-free asset in

the traditional Markowitz formulation and the optimal risk portfolio can be
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obtained without any knowledge of the investor’s preferences (this is also

known as Separation theorem), whereas, in [126] the author, taking into ac-

count the risk-free asset and the mean-variance analysis, develops the Capital

Asset Pricing Model (CAPM), studied also by Lintner in [76] and Mossin in

[95], in which he shows that not all the risk of an asset is rewarded by the

market in the form of a higher return, but only the part which can not be

reduced by diversification and also he describes how expected portfolios can

be calculated by summing the pure (risk-free) rate of interest and the mul-

tiplication between the price of risk reduction for efficient portfolios and the

portfolio standard deviation, known as Capital Market Line (see [127].

CAPM limits are:

• the investment horizon is one-period;

• you can negotiate any amount of securities (which is almost unrealistic);

• absence of taxes and transaction costs;

• all investors analyze securities in the same way with the same probab-

ility estimates;

• regular performance distribution.

It is precisely the existence of this risk-free title in the CAPM that is the

main and most significant difference with the Markowitz portfolio selection

model because the utility curves are eliminated and thus the strong sub-

jective component in the efficient portfolio selection; indeed, all individuals

invest in the same portfolio of tangency, while the weights inside it to the

various titles, and in particular to the risk-free title, change.

One of the newest models is the one for calculating optimal portfolio

weights developed by Black and Litterman (see [11] and [12]).

The innovative aspect of the Black-Litterman model lies in the fact that,
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thanks to the Bayes theorem, it is able to put together two types of in-

formation different from each other, namely the market equilibrium and the

investor’s views on the future trend of the market. The obtained results are

then used by the classic media-variance optimization approach to calculate

the mean, variance and consequently also the excellent portfolio composition.

Other extensions of the Markowitz model are studied, in which the vari-

ance has been replaced by the Value-at-Risk (with threshold) (see [8]) or with

the Conditional Value-at-Risk (CVaR) (see [121]).

In an Optimization Portfolio Problem, the multiperiod theory must be

taken into account and becomes crucial. A formulation neglecting this fea-

ture can easily become misleading.

Therefore, in this work Markovitz’s portfolio theory is reviewed for investors

with long-term horizons.

In 1969, Samuelson (see [125]) and Merton (see [93]), taking inspiration

from Mossin’s work (see [96]), formulate and solve a many-period general-

ization, corresponding to lifetime planning of consumption and investment

decisions.

Samuelson and Merton were therefore the first authors to study the prob-

lem with long-term horizons, but in their case the investment horizon was

irrelevant and the choice of portfolio was considered short-sighted because

investors ignored what was going to happen the next period and continued

to choose the same portfolio, as opposed to what is studied in this chapter,

in which we consider the predictable and variable returns (or profits) over

time.

In [133], multiperiod mean-variance models are analyzed and the final goal

consists in constructing an approximate downside risk minimization through

appropriate constraints.
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In financial markets buying and selling securities entail brokerage fees

and sometimes lump sum taxes are imposed on the investors.

In [10] the authors used Mixed Integer Programming (MIP) methods to

construct portfolios, reducing the number of different stocks and assuming

that it is desirable to have a portfolio with a small number of transactions

(considered as the processes of rebalancing the portfolio).

Mao (see [83]), Jacob (see [59]) and Levy (see [73]) have examined the

fixed transaction costs problem by placing restrictions on the number of se-

curities in the optimal portfolio.

In 2000 Kellerer, Mansini, and Speranza (see [65]) introduced some Mixed

Integer Linear Programming (MILP) problems with the presence of trans-

action costs and studied the problem of portfolio selection with fixed and

proportional costs and possibly with minimum transaction lots, but they

only allow linear objective function and linear and integer constraints on

transaction amounts, so nonlinear constraints cannot be managed.

In 2013, Greco, Matarazzo and Slowinski (see [55]), considering the quantiles

as evaluation criteria of the portfolios, solved a multiobjective optimization

problem by using a Multiple Criteria Decision Aiding method.

In some models, investors can negotiate any amount of securities, but

this hypothesis is unrealistic, as each investor has a maximum budget limit

available to invest.

In this work, however, we impose that the resources used are not greater

than the available ones, making the model more realistic.

The objective of this chapter is to formulate the multi-period portfolio
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selection problem as a Markowitz mean-variance optimization problem by

adding not only transaction costs and taxes (on the capital gain)and time-

length for some financial securities, but also the short selling and the transfer

of financial assets.

Short selling is the sale of a security that is not owned by the seller or that

the seller has borrowed. Short selling is motivated by the belief that a se-

curity’s price will decline, enabling it to be bought back at a lower price

to make a profit. Short selling may be prompted by speculation, or by the

desire to hedge the downside risk of a long position in the same security or

a related one. Since the risk of loss on a short sale is theoretically infinite,

short selling should only be used by experienced traders, who are familiar

with the risks. While short selling is frequently vilified and short sellers

viewed as ruthless operators out to destroy companies, the reality is that

short selling provides liquidity to markets and prevents stocks from being

bid up to ridiculously high levels. Although abusive short-selling practices,

such as rumor-mongering to drive a stock lower, are illegal, short selling,

when done properly, can be a good tool for portfolio risk management. The

transfer of financial securities consists in relocating one or more assets from

a bank, or a financial intermediary, to another one; in such a way, the in-

vestor can seize the opportunities offered by the commercial initiatives of the

various financial institutions.

Moreover, by means of the proposed Integer Nonlinear Programming

(INLP) Problems, it is possible to establish when it is convenient to buy

and to sell financial securities, while maximizing the profits and minimizing

the risk.

This chapter is organized as follows. In Section 3.2 we present the finan-

cial model consisting of financial securities, issuers, investors, and interme-

diaries. We derive the optimization problem of each investor based on the

maximization of his expected gain and the minimization of his risk portfolio.
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In Section 3.3, taking into account also the short selling and the transfer of

securities, we introduce another model. In Section 3.4 we apply the model to

some numerical examples consisting of a financial network with two issuers,

two financial securities and an investor. Section 3.5 summarizes the obtained

results.

3.2 A Financial Model with transaction costs,

taxes and time-length

We consider a financial network consisting of: n financial securities, and

the typical one is denoted by i; S issuers of financial securities, such as

companies, banks, countries, etc., and the typical one is denoted by s; K

investors (security purchasers) and the typical one is denoted by k;B financial

intermediaries, and the typical one is denoted by b. In addition, we consider a

partition of the financial securities by means of the sets A1, . . . ,As, . . . ,AS,

where As represents the set of financial securities made available by issuer s.

A representation of the financial network is depicted in Figure 1.

Figure 3.1: Financial Network

We can remark that in the network the financial intermediaries are de-

noted by parallel edges, since they are not decision makers. We analyze the
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model in a discrete time horizon: 1, . . . , j, . . . , t.

Every investor k aims at determining which securities he has to buy and

sell, which financial intermediary he has to choose and at what time it is

more convenient to buy and sell a security in order to maximize his own

profit and minimize his own risk.

For every security i, there is a purchase cost, Ci,j, which varies over time;

moreover, it is necessary to pay a commission to the chosen financial inter-

mediary (often the banks), which consists of a percentage of the purchase

cost, γb
k · Ci,j, and a flat fee Cb

k.

During the ownership time of the security, it is possible (not necessary)

to obtain funds (such as dividends in the case of shares, interests in the case

of bonds) Di,j or pay money (for example in the case of an increase in the

corporate capital) Pi,j. Obviously, in the event that one does not get or does

not have to pay anything until the expiration or sale of the security, these

quantities vanish.

Each investor has the opportunity to sell his own securities and, in this

case, he will receive the sum Ri,j, but he will have to pay a charge to the

chosen financial intermediary βb
k·Ri,j+F b

k (similar to purchase) and a taxation

on the capital gain or a percentage on the gain obtained from the title. In case

of loss, no taxation will be carried out, whereas, on the contrary, generally

you have the compensation, but such a situation is not examined in this

work. So, we have:

αk
i

( |E[ui,j]|+ E[ui,j]

2

)

,

where |E[ui,j]| denotes the absolute value of the expected gain, which coin-

cides with the capital gain.

We note that the tax treatment of the capital gain in Italy varies accord-

ing to the subject k making the gain (individual or individual company or
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company) and the type of financial security i.

In this work, we will refer to the declarative regime and, moreover, we

will assume that, for each security, the financial intermediary of the sale co-

incides with that of the purchase.

Therefore, we introduce the following binary variables:

xk
i,j =

{

1 if security i is purchased by k at time j

0 otherwise

∀i = 1, . . . , n, ∀j = 1, . . . , t, ∀k = 1, . . . , K;

yki,j =

{

1 if security i is sold by k at time j

0 otherwise

∀i = 1, . . . , n, ∀j = 1, . . . , t, ∀k = 1, . . . , K;

zbi =

{

1 if security i is purchased and sold byb

0 otherwise

∀i = 1, . . . , n, ∀b = 1, . . . , B.

Since at the initial time the values Pi,j, Di,j and Ri,j of the subsequent

times are unknown, we will use their expected values: E[Pi,j], E[Di,j] and

E[Ri,j].

Thus, the capital gain of a security i which has been purchased or sold,

E[ui,j], if positive, will be given by the difference between the selling price

E[Ri,j] and the purchasing price Ci,j̄ plus all the dividends (interests) and

minus all the paid fees (if any) E[Di,j]− E[Pi,j] while holding the title, that

is:

E[ui,j] = E[Ri,j]− Ci,j̄ +

j
∑

ĵ=j̄+1

(
E[Di,ĵ]− E[Pi,ĵ]

)
,

where j̄ and j indicate the purchase and selling time respectively, with

1 ≤ j̄ < j ≤ t.
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Some financial securities have a length which we denote by τi.

So S = j̄+ τi, which means the time given by the purchasing period plus the

length of the title, represents its expiration time.

In order to determine the optimal portfolio of securities, it is necessary

to establish the time interval such that t > τi ∀i = 1, . . . , n. Therefore, if a

title has not a pre-established length, we impose τi = t − 1; in such a way,

the time of their fictitious expiration coincides with t or will be greater than

t.

If a financial security i has not been sold before it expires, the investor

who owns this security, when it expires, will receive an amount equal to its

expected nominal value E[Ni,j̄+τi ] and will have to pay the tax on capital

gain, E[gi,j̄+τi ], if positive, as in the case of sale:

αk
i

(∣
∣E[gi,j̄+τi ]

∣
∣+ E[gi,j̄+τi ]

2

)

,

where, in this case, E[gi,j̄+τi ] = E[Ni,j̄+τi ]− Ci,j̄ +

j̄+τi∑

ĵ=j̄+1

(
E[Di,ĵ]− E[Pi,ĵ]

)
.

If the expiration time of the unsold security exceeds t, or in the case of

non-expiration securities, the investor at time t will own the security whose

expected value is E[Ni,t].

Every investor k aims at determining the decision variables xk
i,j, y

k
i,j, z

b
i ∈

{0, 1} ∀i = 1, . . . , n, ∀j = 1, . . . , t, ∀b = 1, . . . , B, which means decid-

ing, at every time, which securities is convenient to buy and to sell and

through which financial intermediary, in order to maximize the profit of each

security, which is obtained by taking into account:

- the purchase cost and the commission to be given to the chosen financial

intermediary (given by a percentage on the purchasing cost plus a fixed
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fee)

−Ci,j̄ −
B∑

b=1

zbi · (γb
kCi,j̄ + Cb

k),

if security i was purchased at time j̄;

- if security i was purchased at time j̄, the investor has the possibility to

sell it at time j (with j̄ + 1 ≤ j ≤ min{j̄ + τi, t}, where τi is the length
of the title);

if investor k sells his security, he will receive the selling price, but he

will have to pay the tax on the capital gain and the commission to the

chosen financial intermediary:

E[Ri,j]− αk
i

( |E[ui,j]|+ E[ui,j]

2

)

−
B∑

b=1

zbi · (βb
kE[Ri,j] + F b

k);

- during the period of ownership of his security, investor k may receive

dividends (or interests) and pay some amounts of money:

min{j̄+τi,t}∑

j=j̄+1

(

E[−Pi,j +Di,j]− yki,j

min{j̄+τi,t}∑

ĵ=j+1

(
E[−Pi,ĵ +Di,ĵ]

)

)

;

- if financial security i has not been sold and

– if the security expires before the final term t,

then investor k, at time j̄ + τi receives the nominal value of the

security and pays the tax αk
i in the event that there is a positive

capital gain

t−τi−1∑

j̄=1

xk
i,j̄

[

(1−
j̄+τi∑

j=j̄+1

yki,j)

(

E[Ni,j̄+τi ]

−αk
i

(∣
∣E[gi,j̄+τi ]

∣
∣+ E[gi,j̄+τi ]

2

))]

;
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– if the expiration of this security is such that Si = j̄+ τi ≥ t or the

title does not expire (we set τi = t− 1 ⇒ j̄ + τi = j̄ + t− 1 ≥ t),

then investor k, at time t, holds a security that has a certain

nominal value

t−1∑

j̄=t−τi

xk
i,j̄

[

(1−
t∑

j=j̄+1

yki,j)E[Ni,t]

]

.

Therefore, we are dealing with maximization of the expected gain of the

portfolio:

E[ekp] =
n∑

i=1

t−1∑

j̄=1

xk
i,j̄E[e

k
i,j̄] =

n∑

i=1

xk
iE[e

k
i ],

namely:

maxE[ekp] = max
n∑

i=1

t−1∑

j̄=1

xk
i,j̄E[e

k
i,j̄]

= max
n∑

i=1

{
t−1∑

j̄=1

xk
i,j̄

[

− Ci,j̄ −
B∑

b=1

zbi · (γb
kCi,j̄ + Cb

k)

+

min{j̄+τi,t}∑

j=j̄+1

(

E[−Pi,j +Di,j] + yki,j

(

E[Ri,j]− αk
i

( |E[ui,j]|+ E[ui,j]

2

)

−
B∑

b=1

zbi · (βb
kE[Ri,j] + F b

k)−
min{j̄+τi,t}∑

ĵ=j+1

(
E[−Pi,ĵ +Di,ĵ]

))
)]

+

t−τi−1∑

j̄=1

xk
i,j̄

[

(1−
j̄+τi∑

j=j̄+1

yki,j)

(

E[Ni,j̄+τi ]− αk
i

(∣
∣E[gi,j̄+τi ]

∣
∣+ E[gi,j̄+τi ]

2

))]

+
t−1∑

j̄=t−τi

xk
i,j̄

[

(1−
t∑

j=j̄+1

yki,j)E[Ni,t]

]}

.

Another objective of investor k is to minimize his risk portfolio. In [103]

also Nagurney and Ke assumed that the decision-makers seek not only to

increase their net revenues but also to minimize risk with the risk being

considered as the possibility of suffering losses compared to the expected

profit. It can be measured through the use of statistical indices such as the
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variance or standard deviation of the asset’s earnings distribution.

Given the aleatory gain on security i, eki , the risk of the security, as a variance,

will be given by:

(σk
i )

2 =

M∑

m=1

(ekm − E[eki ])
2

M − 1
.

The risk on the portfolio is given by:

(σk
p)

2 =
n∑

i=1

(xk
i )

2(σk
i )

2 + 2
n−1∑

i=1

n∑

h>i

xk
i x

k
hσ

k
ih,

where σk
ih is the covariance between securities i and h.

As it is well known, covariance lies in ]−∞,+∞[, hence, it is often more

useful to take into account correlation ρkih =
σk
ih

σk
i σ

k
h

since it lies in [−1, 1] and

it measures the correlation or discrepancy between the gains of the securities

i and h.

As a consequence, the minimization of the portfolio risk can be expressed

as:

min(σk
p)

2 = min

[
n∑

i=1

(xk
i )

2(σk
i )

2 + 2
n−1∑

i=1

n∑

h>i

xk
i x

k
hρ

k
ihσ

k
i σ

k
h

]

.

The overall objective of investor k is to maximize his profit and, at the

same time, to minimize his portfolio risk; therefore, we introduce the aversion

degree or risk inclination, ηk, which depends on subjective evaluations of

the single investor k and on the influences of the external environment that

surrounds it (see [63]), and add the term

−ηk(σ
k
p)

2

to the objective function to be maximized, obtaining:

max
n∑

i=1

{
t−1∑

j̄=1

xk
i,j̄

[

− Ci,j̄ −
B∑

b=1

zbi · (γb
kCi,j̄ + Cb

k)
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+

min{j̄+τi,t}∑

j=j̄+1

(

E[−Pi,j +Di,j] + yki,j

(

E[Ri,j]− αk
i

( |E[ui,j]|+ E[ui,j]

2

)

−
B∑

b=1

zbi · (βb
kE[Ri,j] + F b

k)−
min{j̄+τi,t}∑

ĵ=j+1

(
E[−Pi,ĵ +Di,ĵ]

))
)]

+

t−τi−1∑

j̄=1

xk
i,j̄

[

(1−
j̄+τi∑

j=j̄+1

yki,j)

(

E[Ni,j̄+τi ]− αk
i

(∣
∣E[gi,j̄+τi ]

∣
∣+ E[gi,j̄+τi ]

2

))]

+
t−1∑

j̄=t−τi

xk
i,j̄

[

(1−
t∑

j=j̄+1

yki,j)E[Ni,t]

]}

−ηk(σ
k
p)

2.

The problem formulation is as follows:







maxE[ekp]− ηk(σ
k
p)

2 (3.1)
n∑

k=1

t−1∑

j=1

xk
i,j ≤ 1 ∀i = 1, . . . , n (3.2)

yki,j ≤
j−1
∑

j̄=j−τi+1

xk
i,j̄ ∀i = 1, . . . , n, ∀j = 2, . . . , t (3.3)

yki,j ≤

j−1
∑

j̄=2

(1− yki,j̄)

j − 2
∀i = 1, . . . , n, ∀j = 3, . . . , t (3.4)

(σpk)
2 ≤ R̄k (3.5)

n∑

i=1

t−1∑

j=1

xk
i,jCi,j ≤ B̄k (3.6)

B∑

b=1

zbi =
t−1∑

j=1

xk
i,j ∀i = 1, . . . , n (3.7)

j̄
∑

max{j<j̄:

Di,j>0}

∑

z∈As

K∑

k=1

(xk
z,j − ykz,j) ≥ 1 ∀s ∈ S, Di,j̄ > 0 (3.8)

xk
i,j, y

k
i,j, z

b
i ∈ {0, 1}

∀i = 1, . . . , n, ∀j = 1, . . . , t, ∀b = 1, . . . , B. (3.9)
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It is interesting to note that:

(3.2) means that it is possible to buy the same security only once and it

can be purchased by a single investor (but there are numerous coincident

securities);

(3.3) means that it is possible to sell a security only if it has been purchased

previously and has not yet expired;

(3.4) means that you can sell a stock only if it has not yet been sold;

(3.5) means that there is a risk limit, R̄k, which represents the maximum risk

limit that the investor is willing to accept;

(3.6) means that there is a budget limit, B̄k, which represents the maximum

available budget for an investor;

(3.7) means that for each security, only one financial intermediary can be

chosen for purchasing and selling activities;

(3.8) means that each issuer must sell at least one security during the dividend

distribution periods, where the dividend Di,j̄ at time j̄ of security i ∈ As is

given by:

Di,j̄ =
U s
j̄
−Rs

j̄

j̄
∑

max{j<j̄:

Di,j>0}

∑

z∈As

K∑

k=1

(xk
z,j − ykz,j)

.

In some particular cases, additional constraints could be included in the

model, such as for example:

•
t∑

j=1

xk
i,j = 1, if security i must be purchased;

•
t∑

j=1

(xk
i,j + xk

h,j + xk
w,j) ≤ 1, if only one security among i, h and w can

be purchased;

•
t∑

j=1

(xk
i,j + xk

h,j + xk
w,j) ≥ 1, if only one security among i, h and w must

be purchased;
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•
t∑

j=1

xk
i,j ≤

t∑

j=1

xk
h,j, if security i can be purchased only whether security

h is purchased too;

• xk
i,j ≤

j
∑

j̄=1

xk
h,j̄, ∀j = 1, . . . , t, if security i can be purchased only

whether h has already been purchased too;

• xk
i,j ≤

j
∏

j̄=1

(1− xk
h,j̄), ∀j = 1, . . . , t, if security i can be purchased only

whether security h has not been yet purchased;

•
t∑

j=1

xk
i,j ≤

1

2

t∑

j=1

(
xk
h,j + xk

w,j

)
if security i can be purchased only if h and

w are purchased too.

Now, we consider the continuous relaxation of problem (3.1)-(3.9) related

to the binary variables which can be obtained with constraints (3.17) to-

gether with (3.18):
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





maxE[ekp]− ηk(σ
k
p)

2

n∑

k=1

t−1∑

j=1

xk
i,j ≤ 1 ∀i = 1, . . . , n (3.10)

yki,j ≤
j−1
∑

j̄=j−τi+1

xk
i,j̄ ∀i = 1, . . . , n, ∀j = 2, . . . , t (3.11)

yki,j ≤

j−1
∑

j̄=2

(1− yki,j̄)

j − 2
∀i = 1, . . . , n, ∀j = 3, . . . , t (3.12)

(σpk)
2 ≤ R̄k (3.13)

n∑

i=1

t−1∑

j=1

xk
i,jCi,j ≤ B̄k (3.14)

B∑

b=1

zbi =
t−1∑

j=1

xk
i,j ∀i = 1, . . . , n (3.15)

j̄
∑

max{j<j̄:

Di,j>0}

∑

z∈As

K∑

k=1

(xk
z,j − ykz,j) ≥ 1 ∀s ∈ S, Di,j̄ > 0 (3.16)

n∑

i=1

t−1∑

j=1

xk
i,j(1− xk

i,j) +
n∑

i=1

t∑

j=2

yki,j(1− yki,j) +
n∑

i=1

B∑

b=1

zbi (1− zbi ) ≤ 0(3.17)

xk
i,j, y

k
i,j, z

b
i ∈ [0, 1]

∀i = 1, . . . , n, ∀j = 1, . . . , t, ∀b = 1, . . . , B. (3.18)

Now, we group the variables xk
i,j̄
, i = 1, . . . , n, j̄ = 1, . . . , t − 1, k =

1, . . . , K into the vector x ∈ [0, 1]n(t−1)K , the variables yki,j, i = 1, . . . , n, j =

2, . . . , t, k = 1, . . . , K into the vector y ∈ [0, 1]n(t−1)K and the variables

zbi , i = 1, . . . , n, b = 1, . . . , B into the vector z ∈ [0, 1]nB.

62



Chapter 3. Financial Models for a Multi-Period Portfolio Optimization
Problem

3.3 Financial Model with short selling and

transfer of securities

In this section we consider the previous financial network and we make the

previous multi-period model (3.1-3.9) more realistic by adding not only trans-

action costs, taxes (on the capital gain) and time-length for some financial

securities, but also the short selling and the transfer of financial assets. We

take into account the previous binary variables xk
i,j and yki,j, but we introduce

the new following ones:

zb1i =

{

1 if security i is purchased by b

0 otherwise
∀i = 1, . . . , n, ∀b = 1, . . . , B;

zb2i =

{

1 if security i is sold by b

0 otherwise
∀i = 1, . . . , n, ∀b = 1, . . . , B.

Further, in order to take into account the short selling, we introduce the

following binary variables:

wk
i,j =

{

1 if security i is purchased by k at time j

0 otherwise

∀i = 1, . . . , n, ∀j = 2, . . . , t,

∀k = 1, . . . , K;

hk
i,j =

{

1 if security i is sold by k at time j

0 otherwise

∀i = 1, . . . , n, ∀j = 1, . . . , t− 1,

∀k = 1, . . . , K.

Let also T b
i denote the financial title transfer fee, Mb the maximum time

limit, fixed by financial intermediary b, within which investor k is obliged

to short covering (namely, he has to buy the not owned securities), E[pi,j̄] =

E[Ri,j]−E[Ci,j̄] the new capital gain, Ibi (j̄−j) the interest, which is a function

of time, to be paid to the broker who lends the security which has to be sold

in the short selling.

Then, the objective function to maximize is as follows:

E[ekp]− ηk(σ
k
p)

2 =
n∑

i=1

{
t−1∑

j̄=1

xk
i,j̄

[

− Ci,j̄ −
B∑

b=1

zb1i · (γb
kCi,j̄ + Cb

k)
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+

min{j̄+τi,t}∑

j=j̄+1

(

E[−Pi,j +Di,j] + yki,j

(

E[Ri,j]− αk
i

( |E[ui,j]|+ E[ui,j]

2

)

−
B∑

b=1

zb2i · (βb
kE[Ri,j] + F b

k)−
min{j̄+τi,t}∑

ĵ=j+1

(
E[−Pi,ĵ +Di,ĵ]

))
)]

+

t−τi−1∑

j̄=1

xk
i,j̄

[

(1−
j̄+τi∑

j=j̄+1

yki,j)

(

E[Ni,j̄+τi ]− αk
i

(∣
∣E[gi,j̄+τi ]

∣
∣+ E[gi,j̄+τi ]

2

))]

+
t−1∑

j̄=t−τi

xk
i,j̄

[

(1−
t∑

j=j̄+1

yki,j)E[Ni,t]

]

−
B∑

b=1

(

zb1i ·
∑

b̄ 6=b

zb̄2i · T b
i

)

+
t−1∑

j=1

hk
i,j

[

E[Ri,j] +
B∑

b=1

zb1i

[

− (βb
kE[Ri,j] + F b

k)−
min{j+Mb,t}∑

j̄=j+1

wk
i,j̄

(

E[Ci,j̄]

+(γb
kE[Ci,j̄] + Cb

k) + Ib(j̄ − j) + αk
i

(∣
∣E[pi,j̄]

∣
∣+ E[pi,j̄]

2

)
)
]]}

− ηk(σ
k
p)

2.
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The problem formulation is as follows:

max
{
E[ekp]− ηk(σ

k
p)

2
}

(3.19)
n∑

k=1

t−1∑

j=1

xk
i,j ≤ 1 ∀i = 1, . . . , n (3.20)

yki,j ≤
j−1
∑

j̄=j−τi+1

xk
i,j̄ ∀i = 1, . . . , n, ∀j = 2, . . . , t (3.21)

yki,j ≤

j−1
∑

j̄=2

(1− yki,j̄)

j − 2
∀i = 1, . . . , n, ∀j = 3, . . . , t (3.22)

(σpk)
2 ≤ R̄k (3.23)

n∑

i=1

t−1∑

j=1

xk
i,jCi,j ≤ B̄k (3.24)

B∑

b=1

zb1i =
t−1∑

j=1

xk
i,j ∀i = 1, . . . , n (3.25)

B∑

b=1

zb2i =
t∑

j̄=2

yki,j̄ ∀i = 1, . . . , n (3.26)

j̄
∑

max{j<j̄:

Di,j>0}

∑

z∈As

K∑

k=1

(xk
z,j − ykz,j) ≥ 1 ∀s ∈ S, Di,j̄ > 0 (3.27)

min{j+Mb,t}∑

j̄=j+1

wk
i,j̄ = hk

i,j ∀i = 1, . . . , n ∀j = 1, . . . , t− 1 (3.28)

K∑

k=1

t−1∑

j=1

hk
i,j ≤ 1 ∀i = 1, . . . , n (3.29)

j
∑

j̄=1

xk
i,j̄

( j
∑

ĵ=j̄+1

(

1− yk
i,ĵ

))

≤ 1− hk
i,j ∀i = 1, . . . , n ∀j = 1, . . . , t− 1(3.30)

xk
i,j, y

k
i,j, z

b
1i, z

b
2i, h

k
i,j, w

k
i,j ∈ {0, 1}

∀i = 1, . . . , n, ∀j = 1, . . . , t, ∀b = 1, . . . , B. (3.31)

We specify that the meaning of constraints (3.25) and (3.26) is that for
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each security, only one financial intermediary can be chosen for purchasing

and selling activities. Constraint (3.28) means that if investor k sells the

title i in the short selling market, he is obliged to buy back the same security

within the time established by the financial intermediary. Constraint (3.29)

states that it is possible to sell in the short selling market the same security

more than once. Finally, constraint (3.30) affirms that investor k cannot sell

security i in the short selling market, if he owns security i.

3.4 Numerical Examples

In this section we apply the model to some numerical examples that consist

of a financial network with two issuers, two financial securities and an in-

vestor, as depicted in Figure 2.

We consider also two financial intermediaries and we analyze the model in

the following time horizon: 1, . . . , 5.

Since we want to report all the results for transparency purposes, we select
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Figure 3.2: Network Topology for the Numerical Example

the size of problems as reported. The numerical data are inspired by realistic

values and are constructed for easy interpretation purposes.

To solve the examples we used Matlab on a laptop with an Intel Core2 Duo

processor and 4 GB RAM.
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3.4.1 Examples: basic model

We assume the following data are given:

Cij j = 1 j = 2 j = 3 j = 4

i = 1 5 6 6 7

i = 2 7 7 8 9

E[−Pij] j = 2 j = 3 j = 4 j = 5

i = 1 0 0 −2 0

i = 2 0 0 0 0

E[Uij −Rij] j = 2 j = 3 j = 4 j = 5

i = 1 0 3 0 15

i = 2 0 0 0 0

E[Rij] j = 2 j = 3 j = 4 j = 5

i = 1 7 7 8 1

i = 2 20 20 20 1

We also assume that τ1 = 2 and that the second financial security does not

expire, so we require τ2 = 4. Further, we assume that the nominal value of

each security at maturity or at time j = 5 coincides with its current value

(cost) E[Ni,j̄+τi ] = Ci,j̄+τi , E[Ni,5] = Ci,4, that the maximum budget and

risk values are B̄ = 25 and R̄ = 15 respectively, that the percentages of

taxation are α1 = 15% and α2 = 10%, that commission costs are given by

β1 = γ1 = 5%, β2 = γ2 = 15%, C1 = F 1 = 0.5 and C2 = F 2 = 2, that

η = 0.2 is the risk aversion index, (σ1j) = (2, 2, 2, 2, 2), (σ2j) = (1, 1, 1, 1, 1)

the variances of the titles and ρ12j = 0 ∀j = 1, . . . , 5 meaning that the two

titles are completely unrelated.
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The optimal solutions are calculated by solving the optimization problem,

the calculations are performed using the Matlab program.

We get the following optimal solutions:

x∗
14 = x∗

21 = 1; x∗
1j = 0 ∀j = 1, 2, 3; x∗

2j = 0 ∀j = 2, 3, 4;

y∗1j = 0 ∀j = 2, 3, 4, 5; y∗22 = 1, y∗2j = 0 ∀j = 3, 4, 5;

z1∗1 = z1∗2 = 1, z2∗1 = z2∗2 = 0.

These optimal solutions clearly show that the most convenient choice for the

investor is to buy security 1 at time 4 and security 2 at time 1, to sell security

2 at time 2 but never sell security 1.

For both securities, it is better to choose the financial intermediary 1, reach-

ing 22.5 as the total gain.

Now we consider a second example where the investor has a greater degree

of risk aversion than the previous one and the variance of the securities is

greater. We suppose, in this case, that η = 0.9 and (σ1j) = (4, 4, 3, 3, 2),

(σ2j) = (2, 2, 1, 1, 1).

Then, we get the following optimal solutions:

x∗
1j = 0 ∀j = 1, 2, 3, 4; y∗1j = 0 ∀j = 2, 3, 4, 5;

zb∗1 = 0 ∀b = 1, 2;

x∗
21 = 1; x∗

2j = 0 ∀j = 2, 3, 4;

y∗23 = 1, y∗2j = 0 ∀j = 2, 4, 5;

z1∗2 = 1, z2∗2 = 0.

Therefore, in this case, it is never convenient for the investor to buy security

1, but to buy security 2 at time 1 and sell it at time 3, through the financial

intermediary 1, thus obtaining a profit of 5.75.
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A third example refers to the case when the degree of risk aversion of the

investor is η = 0.2, as in the first example, but the maximum risk is smaller,

that is 4.

In this case we get the following optimal solutions:

x∗
1j = 0 ∀j = 1, 2, 3, 4; y∗1j = 0 ∀j = 2, 3, 4, 5;

zb∗1 = 0 ∀b = 1, 2;

x∗
21 = 1; x∗

2j = 0 ∀j = 2, 3, 4;

y∗23 = 1, y∗2j = 0 ∀j = 2, 4, 5;

z1∗2 = 1, z2∗2 = 0.

We remark that such solutions are the same as the ones of the second ex-

ample, but the total profit is now 8.55.

It is worth observing that not all the total budget is used.

3.4.2 Example: model with short selling and transfer

of securities

We assume the following data are given:
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Cij j = 1 j = 2 j = 3 j = 4

i = 1 5 6 6 7

i = 2 9 9 8 9

E[Rij] j = 2 j = 3 j = 4 j = 5

i = 1 7 7 8 1

i = 2 20 15 10 1

E[−Pij] j = 2 j = 3 j = 4 j = 5

i = 1 0 0 −2 0

i = 2 0 0 0 0

E[Uij −Rij] j = 2 j = 3 j = 4 j = 5

i = 1 0 3 0 15

i = 2 0 0 0 0

We also assume that τ1 = 2 and that the second financial security does not

expire, so we require τ2 = 4. Further, we assume that the nominal value of

each security at maturity or at time j = 5 coincides with its current value

(cost) E[Ni,j̄+τi ] = Ci,j̄+τi , E[Ni,5] = Ci,4, that the maximum budget and

risk values are B̄ = 25 and R̄ = 15 respectively, that the percentages of

taxation are α1 = 15% and α2 = 10%, that commission costs are given by

β1 = γ1 = 5%, β2 = γ2 = 15%, C1 = F 1 = 0.5 and C2 = F 2 = 2, that

η = 0.2 is the risk aversion index, (σ1j) = (2, 2, 2, 2, 2), (σ2j) = (1, 1, 1, 1, 1)

the variances of the titles and ρ12j = 0 ∀j = 1, . . . , 5 meaning that the two

titles are completely unrelated.

We get the following optimal solutions:

x∗
14 = 1; x∗

1j = 0 ∀j = 1, 2, 3; x∗
2j = 0 ∀j = 1, 2, 3, 4;

y∗1j = y∗2j = 0 ∀j = 2, 3, 4, 5;

h∗
1j = 0 ∀j = 1, 2, 3, 4; h∗

22 = 1, h∗
2j = 0 ∀j = 1, 3, 4;

w∗
1j = 0 ∀j = 2, 3, 4, 5; w∗

24 = 1, w∗
2j = 0 ∀j = 2, 3, 5;

z1∗11 = z1∗12 = z1∗22 = 1, z2∗11 = z2∗12 = z1∗21 = z2∗21 = z2∗22 = 0.
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These optimal solutions clearly show that the most convenient choice for

the investor is to buy security 1 at time 4 and never sell it; using the short

selling, to sell security 2 at time 2 and to buy it at time 4, through the

financial intermediary 1.

In this case the total gain is: 21.20.

If, now, we assume that the commission costs are given by β1 = γ2 = 5%,

β2 = γ1 = 15%, C1 = F 2 = 0.5 and C2 = F 1 = 2, we see that it is

more convenient to choose financial intermediary 1 for the selling and, after

a transfer of security 2, financial intermediary 2 for the buying. In this case

the total gain is: 19.7.

3.5 Conclusions

In this chapter, we focused our attention on an important problem which

is studied by many researchers, namely the Portfolio Optimization problem.

Specifically, the Markovitz’s portfolio theory is reviewed for investors with

long-term horizons.

We presented a financial model, taking into account that in financial mar-

kets buying and selling securities entail brokerage fees and sometimes lump

sum taxes are imposed on the investors.

Furthermore, in this work, we imposed that the used resources are not greater

than the available ones, making the model more realistic.

Therefore, the objective of this chapter was to formulate the multi-period

portfolio selection problem as a Markowitz mean-variance optimization prob-

lem firstly with the addition of transaction costs and taxes (on the capital

gain) and then also taking into account the short selling and the transfer of

financial assets.

The presented financial models determine which securities every investor has

to buy and sell, which financial intermediary he has to choose and at what

time it is more convenient to buy and sell a security in order to maximize his
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own profit and minimize his own risk.

For every security, we assumed that there is a purchase cost and it is also

necessary to pay a commission to the chosen financial intermediary (often

the banks), which consists of a percentage of the purchase cost, and a flat

fee. We also assumed that during the ownership time of the security, it is

possible to obtain funds (such as dividends in the case of shares, interests in

the case of bonds) or pay money (for example in the case of an increase in

the corporate capital).

Furthermore, each investor has the opportunity to sell his own securities and,

in this case, he will receive a sum, but he will have to pay a charge to the

chosen financial intermediary and a taxation on the capital gain or a per-

centage on the gain obtained from the title.

In this chapter we also took into account that some financial securities

have a length or a deadline.

Therefore, we supposed that if the security expires before the final term, then

the investor receives the nominal value of the security and pays the tax in

the event that there is a positive capital gain.

In the second part of this chapter, inspired by reality, we introduced short

selling or financial transactions that consist in the sale of non-owned finan-

cial instruments with subsequent repurchase. In addition, we examined the

case of transfer of financial assets and, finally, we studied some numerical

examples.

In a future work we intend to continue the study of this topic and, in par-

ticular, we could analyze the behavior of investors in the presence of the

secondary market.

The results in this work add to the growing literature of operations research

techniques for portfolio optimization modeling and analysis.

72



Chapter 4

A Convex Optimization Model for

Business Management

4.1 Introduction

A supply chain is a set of activities that includes purchasing, manufacturing,

logistics, distribution, marketing (see [113] and [27]). Since the interest in

sustainable economics has been growing in the last two decades, the theory

of closed-loop supply chains has been deeply developed. Closed-loop sup-

ply chains are designed and managed to explicitly consider the reverse and

forward supply chain activities over the entire life cycle of the product. A

traditional supply chain aims to lower the cost and to maximize the eco-

nomic benefits. A closed-loop supply chain also seeks to maximize economic

benefits, to decrease the consumption of resources and energy and to reduce

the emissions of pollutants, all in an effort to create a socially responsible

environment, and to balance the economic, social and environmental effects.

The traditional supply chain starts with suppliers and ends with users. In

the closed-loop supply chain thinking, product flow is circular and revers-

ible and all products must be managed throughout the entire life cycle, and

beyond so that waste finds a second life or becomes raw material available

for new production or other purposes (see [131]). Closed-loop supply chains
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have been deeply studied in the case of electronic waste (see [107] and the

references therein, [135], [113]), but we shall adapt them to an agribusiness

company.

In this chapter, we present a general supply chain network model with

four different tiers of decision makers, represented by suppliers of raw ma-

terials, manufacturers, retailers, demand markets. In particular, we study

a more comprehensive and extensive model than the one in [102] and [107],

since we complete the forward chain by adding a reverse chain model where

manufacturers, using the unsold product given back from retailers, after re-

working, produce a new commodity which will be sold to new retailers (some

of them could be the same as the retailers in the forward chain). Moreover, in

this new structure we also include electronic commerce. E-commerce has had

an enormous effect on the manner in which businesses as well as consumers

order goods and have them transported. The primary benefit of the Inter-

net for business is its open access to potential suppliers and customers both

within a particular country and beyond national boundaries. Consumers, on

the other hand, may obtain goods which they physically could not locate

otherwise. In order to derive the optimality conditions for the typical man-

ufacturer and the subsequent variational inequality problem governing the

equilibrium of all manufacturers simultaneously, we need to guarantee the

convexity of the constraint set and the convexity of the cost functions. An

existence result, based on the classical theory due to Stampacchia, is stated.

Finally, we apply our model to a concrete company (Valle del Dittaino,

Italy), obtaining, after introducing additional suitable constraints, the op-

timal amount of raw material, the optimal shipment of new product as well

as the optimal production periods.

The purpose of this chapter is to analyze the multiple features of busi-

ness management by improving existing networks models, where only a few

aspects have been taken under consideration.

The chapter is organized as follows. In Section 4.2 we present a model

where we allow for a distinction (by brand, small changes, ...) between a
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product of a manufacturer and the same good produced by other manufac-

turers. We introduce the reverse logistics and e-commerce and study the op-

timality conditions of the manufacturer. In Section 4.3 we apply our model

to a well-known agribusiness company, the Cooperativa Agricola Valle del

Dittaino (www.pandittaino.it), which is located in the heart of Sicily, Italy.

Taking into account the company reality, we add some suitable constraints

related to the capacity of a single tray and their number, as well as the pro-

duction time. After analyzing the optimization problem and determining the

sales forecast and the production periods, while minimizing the production

and the storing costs, we obtain the optimal amount of product that all re-

tailers must sell to all demand markets. We also establish, for every day, the

amount of raw materials needed for the products. Section 4.4 is dedicated

to the conclusions.

4.2 The Model

We consider a supply chain network with four tiers of decision-makers:

• H suppliers of raw materials;

• G manufacturers, who produce a new product using raw materials;

• S retailers;

• K demand markets.

We assume there are also V carriers, who are not decision-makers in our

network since they do not decide on the transactions, but only make the

shipment to retailers. Their role will be represented by parallel links con-

necting the nodes of the second tier with the ones of the third. Moreover, we

shall add a new arc representing the possibility for retailers to buy directly

the products, using no carriers. Further, it is also allowed to consumers at

demand markets to buy the products directly from manufacturers.
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Let L be the number of raw materials, I the number of new products.

We assume suppliers are spatially distributed in different parts of the world

and can be of different types (private suppliers, companies, institutions, local

governments, ...).

The framework of the network is depicted in Fig. 4.1: the first tier

represents the combination between suppliers and the kind of raw material

(see [88]), the second one is the combination between manufacturers and

products, in the third tier we represent retailers and, finally, in the last level

we depict the demand markets.

Figure 4.1: Network topology

The aim of suppliers, manufacturers and retailers is to maximize their

own profit, while consumers at demand markets aim at minimizing their

expenses.

In particular, in this section we shall focus only on the behavior of man-

ufacturers. A detailed presentation of the optimality conditions and the

characterization by means of variational inequality problems can be found in

[27], [88], [102], [107].
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s directly or throught the carrier v in e mode, where:

- e = 1 means physical link,

- e = 2 means Internet link

and let us group such quantities into the vector

Q1 = (qvgise) g=1,...,G i=1,...,I
s=1,...,S e=1,2 v=1,...,V +1

∈ RGIS2(V+1)
+ ;

• qgik ≥ 0 be the amount of product i sold by manufacturer g to demand

market k and let us group such quantities into the vector

Q2 = (qgik) g=1,...,G,
i=1,...,I, k=1,...,K

∈ RGIK
+ ;

• qgisk be the amount of product i, produced by manufacturer g, shipped

from retailer s to demand market k and let us group such quantities

into the vector

Q4 = (qgisk) s=1,...,S, k=1,...,K
g=1,...,G, i=1,...,I

∈ RSKGI
+ ;

When we are in the presence of supply excesses, we remark that the

amount of product i bought by retailer s is greater than or equal to

the sold amount, that is:

V+1∑

v=1

2∑

e=1

qvgise ≥
K∑

k=1

qgisk ∀i = 1, . . . , I, ∀s = 1, . . . , S.

Now, we present the parameters. Let:

• chlgi be the transaction cost of the materials from supplier h to manu-

facturer g for the product i (such costs could also be the same for every

i), and let us assume chlgi is a function of qhg = (qhlgi) l=1,...,L
i=1,...,I

∈ RLI
+ :

chlgi = chlgi(qhg) ∀h = 1, . . . , H; ∀l = 1, . . . , L;

∀g = 1, . . . , G; ∀i = 1, . . . , I;
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• ρ∗0hlgi be the price of raw material l in the transaction between supplier

h and manufacturer g;

• cvgise be the transaction costs of product i from manufacturer g to re-

tailer s directly or through the carrier v in e mode and let us assume

cvgise is a function of qvgise:

cvgise = cvgise(q
v
gise), ∀g = 1, . . . , G, ∀i = 1, . . . , I, ∀s = 1, . . . , S,

∀e = 1, 2, ∀v = 1, . . . , V + 1;

• ρv∗1gise be the price of product i charged by g in the transaction with s

in e mode, directly or through v;

• cgik be the transaction costs of product i from manufacturer g to de-

mand market k and let us assume cgik is a function of qgik:

cgik = cgik(qgik) ∀g = 1, . . . , G, ∀i = 1, . . . , I, ∀k = 1, . . . , K;

• ρ∗1gik be the price of product i charged by g in the transaction with k;

• cig be the handling cost, associated to product i, of manufacturer g and

let us assume:

cig = cig(Q0, Q1, Q2) ∀g = 1, . . . , G, ∀i = 1, . . . , I;

• C i be the fix costs, associated to product i, of manufacturer g, which

do not depend on the production, ∀i = 1, . . . , I;

• pgi be the production cost of i and let us assume:

pgi = pgi(Q1, Q2) ∀g = 1, . . . , G, ∀i = 1, . . . , I;

• αgi
hl be the transformation rate of raw material l bought by g from

supplier h to produce one unit of i;

• βli be the portion of raw material l which is transformed in one unit of

raw material needed to produce i;
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• τ be the unit tax charged to manufacturer g by the authorities in order

to produce a certain amount of product; so, the total taxes are given

by:

τ
[ S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise +
k∑

k=1

qgik

]

;

• r
(v)
isg be the amount of unsold product i that retailer s gives back to

manufacturer g, and let us assume r
(v)
isg is a function of Q1 and Q4:

r
(v)
isg = r

(v)
isg(Q1, Q4);

specifically the following estimate holds:

r
(v)
isg =

V+1∑

v=1

2∑

e=1

qvgise −
K∑

k=1

qgisk

∀i = 1, . . . , I, ∀s = 1, . . . , S, ∀g = 1, . . . , G,

which means that r
(v)
isg is given by the difference between the shipment

that retailers purchase from manufacturers and the shipment from re-

tailers to all demand markets;

• ĉ
(v)
isg be the transaction cost of product i from retailer s to manufacturer

g, via the chosen carrier v, and let us assume ĉ
(v)
isg is a function of r

(v)
isg :

ĉ
(v)
isg = ĉ

(v)
isg(r

(v)
isg) = ĉ

(v)
isg(Q1, Q4)

∀i = 1, . . . , I, ∀s = 1, . . . , S, ∀g = 1, . . . , G;

• p̂gi be the unit reworking cost of the unsold product i of manufacturer

g in order to get a new product;

• γi be the transformation rate of unsold product i needed to produce

one unit of a new product;

• βi be the portion of unsold product i which can be used to produce a

new product;
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• q̂gj be the amount of new product sold by manufacturer g to retailer j

and let us assume that the shipment of new products sold by g to all

retailers is the same as the quantity of new product obtained by the

goods given back by all retailers:

J∑

j=1

q̂gj =
I∑

i=1

γiβi

S∑

s=1

r
(v)
isg =

I∑

i=1

γiβi

( S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise −
S∑

s=1

K∑

k=1

qgisk

)

;

hence, q̂gj is a combination of Q1 and Q4.

We remark that, in order to obtain the actual amount of new product,

we have to sum the return and the scrap (caused by a wrong cut, a

wrong leavening, a wrong cooking, . . . ). Since, in our case, the scrap

is in a small amount, it will be neglected in this discussion.

• ρ̂∗1gj be the price charged to the new product by g in the transaction

with j;

• ĉgj be the transaction cost of the new product from manufacturer g to

retailer j and let us assume ĉgj is a function of q̂gj, that is Q1 and Q4:

ĉgj = ĉgj(Q1, Q4) ∀g = 1, . . . , G, ∀j = 1, . . . , J ;

• ρ be the unit waste cost, so the total waste cost is given by:

ρ

{
I∑

i=1

L∑

l=1

H∑

h=1

[(1− βli)qhlgi] +
I∑

i=1

S∑

s=1

[

(1− βi)r
(v)
isg

]
}

.

We assume there are no demand excesses or deficiencies, therefore the de-

mand at demand market k related to the product i of g is:

δgik =
S∑

s=1

qgisk + qgik ∀k = 1, . . . , K, ∀i = 1, . . . , I.

Moreover, the total demand of product i of g is less than or equal to the

produced amount:

K∑

k=1

δgik =
K∑

k=1

[ S∑

s=1

qgisk + qgik

]

=
K∑

k=1

S∑

s=1

qgisk +
K∑

k=1

qgik
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≤
S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise +
K∑

k=1

qgik, ∀i = 1, . . . , I.

Since the total demand is not actually determined, we denote by [λgi, µgi]

∀i = 1, . . . , I, the range of demand forecasting.

The aim of manufacturer g is to maximize his own profits. Therefore, g’s

optimality conditions are given by the following problem:







max

{ I∑

i=1

[ S∑

s=1

V+1∑

v=1

2∑

e=1

ρv∗1giseq
v
gise +

K∑

k=1

ρ∗1gikqgik − C i − cig(Q0, Q1, Q2)

−
H∑

h=1

L∑

l=1

ρ∗0hlgiqhlgi −
H∑

h=1

L∑

l=1

chlgi(qhg)− pgi(Q1, Q2)

−τ
[ S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise +
K∑

k=1

qgik

]

− ρ
L∑

l=1

H∑

h=1

(1− βli)qhlgi

−
S∑

s=1

V+1∑

v=1

2∑

e=1

cvgise(q
v
gise)−

K∑

k=1

cgik(qgik)
]

+
J∑

j=1

ρ̂∗1gj q̂gj(Q1, Q4)−
I∑

i=1

S∑

s=1

V+1∑

v=1

2∑

e=1

ρv∗1giser
(v)
isg(Q1, Q4)−

J∑

j=1

ĉgj(Q1, Q4)

−
i∑

i=1

p̂gir
(v)
isg(Q1, Q4)−

I∑

i=1

S∑

s=1

ĉ
(v)
isg(Q1, Q4)

−ρ

I∑

i=1

S∑

s=1

(1− βi)r
(v)
isg(Q1, Q4)

}

H∑

h=1

βli

αgi
hl

qhlgi =
S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise +
K∑

k=1

qgik, ∀l = 1, . . . , L; ∀i = 1, . . . , I

λgi ≤
K∑

k=1

qgik +
S∑

s=1

K∑

k=1

qgisk ≤ µgi ∀i = 1, . . . , I

V+1∑

v=1

2∑

e=1

qvgise ≥
K∑

k=1

qgisk ∀i = 1, . . . , I, ∀s = 1, . . . , S

qhlgi, q
v
gise, qgik, q

gi
sk ≥ 0 ∀h = 1, . . . , H, ∀l = 1, . . . , L, ∀s = 1, . . . , S,

∀v = 1, . . . , V + 1, ∀e = 1, 2, ∀k = 1, . . . , K, ∀i = 1, . . . , I.

(4.1)

We assume that the objective function is continuously differentiable and
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concave and this is guaranteed assuming that all the cost functions

cig(Q0, Q1, Q2), chlgi(qhg), pgi(Q1, Q2), cvgise(q
v
gise) and cgik(qgik)

are convex functions. Therefore, since the objective function is concave and

the feasible set is convex, it is easy to verify that the optimality conditions

for all manufacturers simultaneously are characterized by the following vari-

ational inequality (for the proof, see [6], Theorem 5):

“Find (Q∗
0, Q

∗
1, Q

∗
2, Q

∗
4) ∈ K :

G∑

g=1

H∑

h=1

L∑

l=1

I∑

i=1

[
∂cig(Q

∗
0, Q

∗
1, Q

∗
2)

∂qhlgi
+ ρ∗0hlg +

∂chlgi(q
∗
hg)

∂qhlgi
+ ρ(1− βli)

]

(
qhlgi − q∗hlgi

)

+
I∑

i=1

S∑

s=1

V+1∑

v=1

2∑

e=1

[
∂cig(Q

∗
0, Q

∗
1, Q

∗
2)

∂qvgise
− ρv∗1gise +

∂pgi(Q
∗
1, Q

∗
2)

∂qvgise
+ τ

+
∂cvgise(q

v∗
gise)

∂qvgise
−

J∑

j=1

ρ̂∗1gj
∂q̂gj(Q

∗
1, Q

∗
4)

∂qvgise
+ ρv∗1gise

∂r
(v)
isg(Q

∗
1, Q

∗
4)

∂qvgise

+
J∑

j=1

∂ĉgj(Q
∗
1, Q

∗
4)

∂qvgise
+ p̂gi

∂r
(v)
isg(Q

∗
1, Q

∗
4)

∂qvgise
+

∂ĉ
(v)
isg(Q

∗
1, Q

∗
4)

∂qvgise

+ρ(1− βi)
∂r

(v)
isg(Q

∗
1, Q

∗
4)

∂qvgise

]
(
qvgise − qv∗gise

)

+
I∑

i=1

K∑

k=1

[
∂cig(Q

∗
0, Q

∗
1, Q

∗
2)

∂qgik
− ρ∗1gik +

∂pgi(Q
∗
1, Q

∗
2)

∂qgik
+ τ

+
∂cgik(q

∗
gik)

∂qgik

]
(
qgik − q∗gik

)

+
S∑

s=1

K∑

k=1

I∑

i=1

[

−
J∑

j=1

ρ̂∗1gj
∂q̂gj(Q

∗
1, Q

∗
4)

∂qgisk
+

V+1∑

v=1

ρv∗1gis
∂r

(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk

+
J∑

j=1

∂ĉgj(Q
∗
1, Q

∗
4)

∂qgisk
+ p̂gi

∂r
(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk
+

∂ĉ
(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk

+ρ(1− βi)
∂r

(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk

]
(
qgisk − qgi∗sk

)
≥ 0

(4.2)

∀(Q0, Q1, Q2, Q4) ∈ K”
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where:

K =

{

(Q0, Q1, Q2, Q4) ∈ RHLGI+GIS2(V+1)+GIK+SGKI
+ :

H∑

h=1

βli

αgi
hl

qhlgi =
S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise +
K∑

k=1

qgik, ∀l = 1, . . . , L; ∀i = 1, . . . , I,

λgi ≤
K∑

k=1

qgik +
S∑

s=1

K∑

k=1

qgisk ≤ µgi ∀i = 1, . . . , I,

V+1∑

v=1

2∑

e=1

qvgise ≥
K∑

k=1

qgisk ∀i = 1, . . . , I, ∀s = 1, . . . , S

}

.

Variational inequality (4.2) represents the optimality conditions of man-

ufacturer g for all products simultaneously.

The solution of (4.2) gives the optimal amount of raw materials manufac-

turer g has to purchase from all suppliers (Q∗
0), the optimal amount of final

product g has to sell to all retailers (Q∗
1) and to all demand markets (Q∗

2) and

the optimal amount of products sold by all retailers to all demand markets,

in equilibrium.

We now provide an existence result for a solution to variational inequality

(4.2).

Theorem 3. A solution (Q∗
0, Q

∗
1, Q

∗
2, Q

∗
4) ∈ K to variational inequality (4.2)

is guaranteed to exist.

Proof. The result follows from the classical theory of variational inequalities

(see [66]), since the feasible set is compact and the function that enters the

variational inequality is continuous.

4.3 A case study

4.3.1 The Company

We have applied our model to a well-known agribusiness company, the Co-

operativa Agricola “Valle del Dittaino”, which is located in the heart of Sicily
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among huge expanses of wheat called Valle del Dittaino (Enna, Italy). It is

a cooperative of wheat producers founded in 1976 with the aim of enhancing

the precious raw material and of verticalizing the entire production process,

from the storage up to the grinding and bakery. The company is widely

distributed in the Sicilian (and not only) market with more than 900 stores

and thirteen types of bread, bread crumbs (plain and flavored), pastries and

snacks branded Pandittaino (see www.pandittaino.it). The cooperative of-

fers a highly competitive product from the point of view of quality and food

safety and these two powers are at the base of their marketing strategy. The

plant contains the storage silos as well as the mill for the production of flour

which is directly connected to the bakery.

4.3.2 The model

The Cooperativa Agricola “Valle del Dittaino” has the topology of the net-

work as shown in the previous sections, with four tiers of decision-makers:

suppliers of raw materials, the company, retailers, demand markets (and also

carriers).

We consider the production of the newest and developing line: the soft

wheat bread. From this production line you can get seven different types

of goods, which will be distinguished by shape (round or elongated) or dur-

ation (fresh or long-life). It is our goal to determine, with the help of the

model presented in Section 4.2.1, the optimal amount of raw material that

the manufacturer has to buy from all suppliers (Q∗
0), the optimal amount

of product that the manufacturer must sell to all retailers (Q∗
1) and to all

demand markets (Q∗
2) and the optimal amount of goods that all retailers sell

to all demand markets (Q∗
4), in equilibrium, in order to maximize the profits

(minimizing the amount of unsold product i that retailer s gives back to

manufacturer g).

Please note that, since the e-commerce has not yet been introduced in the

company, we will only consider the physical network.
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The topology of the network is shown in Fig. 4.3.

Since the production takes place daily, in a continuous fashion, it is neces-

Figure 4.3: Pandittaino’s network

sary to estimate the optimal amounts in advance and, therefore, we consider

a seven-day interval.

In Appendix A we shall determine the demand forecast of every good.

After obtaining the estimates, for the long-life goods, we shall make use of the

well-known (see [141]) Wagner-Whitin algorithm shown in Appendix B for

inventory management, in order to determine the production periods (days),

which satisfy the expected demand.

Later, we shall apply our model so to determine the optimal amounts we are

looking for.

4.3.3 Additional constraints

4.3.3.1 Worsening of the objective function

In our study case, an additional constraint is given by the maximum capacity

of every single tray and by the finite number of trays which can be used
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following one another.

We can distinguish two different types of sandwiches (type I and type II),

according to their format (round or elongated). Let:

• I be the number of products;

• xi be the amount of the packages to produce, ∀i = 1, . . . , j containing

type I sandwiches and ∀i = j + 1, . . . , I type II sandwiches; we have:

xi =
S∑

s=1

V+1∑

v=1

qvgis;

in the general case, we have: xi =
S∑

s=1

V+1∑

v=1

2∑

e=1

qvgise +
K∑

k=1

qgik;

• ni be the number of sandwiches in package i;

• tI be the number of trays for type I sandwiches;

• tII be the number of trays for type II sandwiches;

• pI the maximum number of type I sandwiches in every tray;

• pII the maximum number of type II sandwiches in every tray.

Once the trays used for each type of product are over, we need h
4
minutes

to experience the format change, during which there is a worsening of the

objective function given by the consumption of energy, labor and other com-

ponents, waiting for the time it takes to restart the production process.

The number of format changes turns out to be:

C =












j
∑

i=1

nixi

pI · tI












+












I∑

i=j+1

nixi

pII · tII












− 1.

We remark that the number of format changes is a function of xi and, hence,

of Q1.
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Therefore, we get: C = C(Q1). As a consequence, we have to add a new term

to the objective function, namely:

−C(Q1) · E,

where E is the price of all components of every format change.

4.3.3.2 Time

In the real situation, an important role is played by the production time,

which provides an additional constraint, since it is bounded.

Let:

• Ni be the number of sandwiches i produced in one hour;

• T be the total available hours (including also the lead-time).

Therefore, the new constraint is:

I∑

i=1

nixi

Ni

+ C · h
4
≤ T ;

namely the time needed to produce all sandwiches plus the time for format

changes must be less than or equal to the total available time (in hours).

4.3.4 Optimality conditions and Variational formula-

tion

The company aims at maximizing its profit. Hence, according with the model

in Section 4.2.1 and the additional constraints, the optimality conditions for
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the company are given by the following problem:







max

{ I∑

i=1

[ S∑

s=1

V+1∑

v=1

ρv∗1gisq
v
gis − C i − cig(Q0, Q1)−

H∑

h=1

L∑

l=1

ρ∗0hlgqhlgi

−
H∑

h=1

L∑

l=1

chlgi(qhg)− pgi(Q1)− τ

[
S∑

s=1

V+1∑

v=1

qvgis

]

−ρ

L∑

l=1

H∑

h=1

[(1− βli)qhlgi]−
S∑

s=1

V+1∑

v=1

cvgis(q
v
gis)

]

+
J∑

j=1

ρ̂∗1gj q̂gj(Q1, Q4)−
I∑

i=1

S∑

s=1

V+1∑

v=1

ρv∗1gisr
(v)
isg(Q1, Q4)

−
J∑

j=1

ĉgj(Q1, Q4)−
I∑

i=1

p̂gir
(v)
isg(Q1, Q4)−

I∑

i=1

S∑

s=1

ĉ
(v)
isg(Q1, Q4)

−ρ

I∑

i=1

S∑

s=1

[

(1− βi)r
(v)
isg(Q1, Q4)

]

− C(Q1)E

}

H∑

h=1

βli

αgi
hl

qhlgi =
S∑

s=1

V+1∑

v=1

qvgis +
K∑

k=1

qgik, ∀l = 1, . . . , L, ∀i = 1, . . . , I

I∑

i=1

nixi(Q1)

Ni

+ C(Q1)
h

4
≤ T

λgi ≤
S∑

s=1

K∑

k=1

qgisk ≤ µgi ∀i = 1, . . . , I

V+1∑

v=1

qvgis ≥
K∑

k=1

qgisk ∀i = 1, . . . , I, ∀s = 1, . . . , S

qhlgi, q
v
gis, qgik, q

gi
sk ≥ 0 ∀h = 1, . . . , H, ∀l = 1, . . . , L, ∀s = 1, . . . , S,

∀v = 1, . . . , V + 1, ∀k = 1, . . . , K, ∀i = 1, . . . , I.

We assume that the objective function is continuously differentiable and

concave and this is guaranteed assuming that all the cost functions

cig(Q0, Q1), chlgi(qhg), pgi(Q1), cvgis(q
v
gis) and C(Q1)E

are convex functions. Therefore, since the objective function is concave and

the feasible set is convex, it is easy to verify that the optimality conditions

for the manufacturer are characterized by the following variational inequality

89



Chapter 4. A Convex Optimization Model for Business Management

(where δgi does not appear):

“Find (Q∗
0, Q

∗
1, Q

∗
4) ∈ K such that:

H∑

h=1

L∑

l=1

I∑

i=1

[
∂cig(Q

∗
0, Q

∗
1)

∂qhlgi
+ ρ∗0hlg +

∂chlgi(q
∗
hg)

∂qhlgi
+ ρ(1− βli)

]
(
qhlgi − q∗hlgi

)

+
I∑

i=1

S∑

s=1

V+1∑

v=1

[
∂cig(Q

∗
0, Q

∗
1)

∂qvgis
− ρv∗1gis +

∂pgi(Q
∗
1)

∂qvgis
+ τ +

∂cvgis(q
v∗
gis)

∂qvgis

−
J∑

j=1

ρ̂∗1gj
∂q̂gj(Q

∗
1, Q

∗
4)

∂qvgis
+ ρv∗1gis

∂r
(v)
isg(Q

∗
1, Q

∗
4)

∂qvgis
+

J∑

j=1

∂ĉgj(Q
∗
1, Q

∗
4)

∂qvgis

+p̂gi
∂r

(v)
isg(Q

∗
1, Q

∗
4)

∂qvgis
+

∂ĉ
(v)
isg(Q

∗
1, Q

∗
4)

∂qvgis
+ ρ(1− βi)

∂r
(v)
isg(Q

∗
1, Q

∗
4)

∂qvgis

+E
∂C(Q∗

1)

∂qvgis

]
(
qvgis − qv∗gis

)

+
S∑

s=1

K∑

k=1

I∑

i=1

[

−
J∑

j=1

ρ̂∗1gj
∂q̂gj(Q

∗
1, Q

∗
4)

∂qgisk
+

V+1∑

v=1

ρv∗1gis
∂r

(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk

+
J∑

j=1

∂ĉgj(Q
∗
1, Q

∗
4)

∂qgisk
+ p̂gi

∂r
(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk
+

∂ĉ
(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk

+ρ(1− βi)
∂r

(v)
isg(Q

∗
1, Q

∗
4)

∂qgisk

]
(
qgisk − qgi∗sk

)
≥ 0,

∀(Q0, Q1, Q4) ∈ K”, (4.3)

where:

K =

{

(Q0, Q1, Q4) ∈ RHLGI+GIS2(V+1)+SKGI
+ :

H∑

h=1

βli

αgi
hl

qhlgi =
S∑

s=1

V+1∑

v=1

qvgis +
K∑

k=1

qgik, ∀l = 1, . . . , L; ∀i = 1, . . . , I,

I∑

i=1

nixi(Q1)

Ni

+ C(Q1)
h

4
≤ T,

λgi ≤
S∑

s=1

K∑

k=1

qgisk ≤ µgi ∀i = 1, . . . , I,
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and
V+1∑

v=1

qvgis ≥
K∑

k=1

qgisk ∀i = 1, . . . , I, ∀s = 1, . . . , S

}

.

Variational inequality (4.3) represents the optimality conditions for the com-

pany g related to all commodities simultaneously.

The solution to (4.3) gives the optimal amount of raw material that g has to

buy from all suppliers (Q∗
0), the optimal amount of product sold by g to all

retailers (Q∗
1) and the optimal amount of products sold by all retailers to all

demand markets (Q∗
4), in equilibrium.

4.3.5 Results

In this section we show the results of the optimization model. We will con-

sider as the discrete time interval the first 7 next days. For each of the

long-life products, we get the x1, . . . , x7 quantities to be produced and the

s1, . . . , s7 quantities to be stored in each period, so that the expected de-

mands d1, . . . , d7 (obtained in Appendix A) are met. We use the algorithm

shown in Appendix B, developed in C++ code, to determine the periods of

production, while minimizing the production and storing costs. By analyzing

product 807, as shown in Fig. 4.4, it turns out that the optimal production

periods are the days 1, 3, 5 and 6; in the remaining days, however, the de-

mands have to be met from stocks obtained from previous productive days

prior. By applying the same algorithm to products 808, 809 and 810, it turns

out that only the demand in day 7 must be satisfied by using stocks (Fig.

4.5).

Finally, using the optimal production periods previously obtained, we

calculate, for every day, the optimal amounts Q∗
1, by solving our model, that

is equivalent to the Variational inequality (4.3), through the mathematical

software Maple (and also the software Lingo).

The following table shows the results:
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market because that day coincides with Sunday; the others, namely those

related to product 807 and Day 7, are determined by the inventory man-

agement.

The model also gives us the optimal amount of product that all retailers

must sell to all demand markets (Q∗
4) and, as expected, they coincide with

the produced amount, so that there is the maximization of the objective

function.

Therefore, we note that the amount of unsold product i that retailer s gives

back to manufacturer g is equal to zero:

r
(v)
isg =

V+1∑

v=1

2∑

e=1

qvgise −
K∑

k=1

qgisk = 0,

∀i = 1, . . . , I, ∀s = 1, . . . , S, ∀g = 1, . . . , G.

Once we have the quantities to be produced, by means of the constraint:

H∑

h=1

βli

αgi
hl

qhlgi =
S∑

s=1

V+1∑

v=1

qvgis +
K∑

k=1

qgik, ∀l = 1, . . . , L; ∀i = 1, . . . , I,

we can establish, for every day, the amount of raw materials needed for the

products (Q∗
0).

For example, in the table below, we show a portion of the bill of material of

Day 3:

Day 3 Products Total

Raw material 302 303 807 808 809 810 811

Label 66105 2012 752 0 0 0 0 0 2764

Envelope 66287 2012 0 0 0 0 0 0 2012

Farina FAR3 577.14 104.72 484.37 15.41 89.92 1033.9 113.40 2418.86 kg

Salt 90101 13.84 2.512 10.656 0.338 1.976 22.764 2.490 54.576 kg
...

...
...

...
...

...
...

...
...

Water 64110 311.659 54.452 251.881 8.015 46.708 537.59 58.968 1269.273 lt
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4.4 Conclusions

In this chapter we initially studied a multilevel supply chain network to which

the variation of the different products of the company was added with respect

to those produced by competing companies. We also analyzed the chain in

a context where both e-commerce and production excesses are present, thus

introducing the reverse chain and presenting the optimality conditions and

the variational formulation of the single manufacturer. Therefore, we have

built the supernetwork structure for a business management with electronic

commerce in which suppliers of raw materials provide their commodities to

manufacturers who produce i different products and sell their goods to retail-

ers through V different carriers and directly to demand markets. Moreover,

we have assumed that the products unsold by retailers can be given back to

manufacturers who, after reworking such products, are now able to produce

new commodities which will be shipped to new retailers (some of them could

coincide with the previous ones). So we have extended the model including a

forward and a reverse chain network. We have obtained the optimality con-

ditions of the manufacturer which have been characterized by a variational

inequality. Existence results for solutions follow from the classical theory.

Then, we improved the problem by applying it to a company, the Valle

del Dittaino, considering a more complete model in which we not only the

production excess and reverse logistics were examined, but we also added

additional constraints arising from concrete and production limits.

Finally, we have applied such models to a real company, Valle del Dit-

taino, obtaining the optimal production and storage in a 7 days period. In

the case study, we have included some additional constraints related to pro-

duction and time.

Since every company aspiring to become a leader in the market has to

rely on an internal organization capable of managing its work, trying to re-

duce costs and to get maximum profits, in order to study the best production
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planning it is necessary to analyze all of the organizational, managerial and

strategic activities that govern the company’s flow of materials and related

information. Therefore, through the historical business series, we have also

dealt with the demand forecast analysis needed to solve the maximization

problem and a stock management model by implementing an algorithm that

enables us to obtain excellent production times, in addition to the optimal

amount of goods to be manufactured and sold and raw materials to be pur-

chased.

Given the importance and relevance of the optimization and network

models nowadays and the need to continuously create new and innovative

ways to exploit for achieving business goals, the most important result of

this chapter is the complete and concrete model, which can be applied to

many companies in order to improve their production and minimize their

waste or can be used in other fields that maintain a multilevel structure such

as the described one.
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Chapter 5

Cybersecurity Investments with

Nonlinear Budget Constraints and

Conservation Laws

5.1 Introduction

Supply chains have become increasingly complex as well as global and are

now highly dependent on information technology to enhance effectiveness

as well as efficiency and to support communications and coordination among

the network of suppliers, manufacturers, distributors, and even freight service

providers. At the same time, information technology, if not properly secured,

can increase the vulnerability of supply chains to cyberattacks. Many ex-

amples exist of cyber attacks infiltrating supply chains with a vivid example

consisting of the major US retailer Target cyber breach in which attackers

entered the system via a third party vendor, an HVAC subcontractor, with

an estimated 40 million payment cards stolen in late 2013 and upwards of 70

million other personal records compromised (see [67]). Not only did Target

incur financial damages but also reputational costs. Other highly publicized

examples have included breaches at the retailer Home Depot, the Sony media

company, and the financial services firm JP Morgan Chase. Energy compan-
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ies as well as healthcare organizations as well as defense companies have also

been subject to cyberattacks (cf. [105] and [106]). In addition, the Inter-

net of Things (IoT) has expanded the possible entry points for cyberattacks

([23]).

Of course, cyberattacks are not exclusively a US phenomenon. According

to Verizon’s 2016 Data Breach Investigations Report, there were 2,260 con-

firmed data breaches in the previous year at organizations in 82 countries.

Numerous other breaches, affecting small and medium-size businesses, have

gone unreported and unanalyzed (cf. [137]). In order to illustrate the scope

of the negative impacts associated with cybercrime, it has been estimated

that the world economy sustained $445 billion in losses from cyberattacks in

2014 (see [15]).

Numerous companies and organizations have now realized that investing

in cybersecurity is an imperative. Furthermore, because of the intercon-

nectivity through supply chains and even financial networks, the decisions of

an organization in terms of cybersecurity investments can affect the cyberse-

curity of others. For example, according to Kaspersky Lab, a multinational

gang of cybercriminals, known as “Carbanak,” infiltrated more than 100

banks across 30 countries and extracted as much as one billion dollars over a

period of roughly two years ([72]). Gartner ([94]) and Market Research ([84])

report that organizations in the US are spending $15 billion for security for

communications and information systems. Hence, research in cybersecur-

ity investment is garnering increased attention with one of the first research

studies on the topic being that of Gordon and Loeb (see [54]).

In this chapter we consider a recently studied cybersecurity investment

supply chain game theory model consisting of retailers and consumers at

demand markets with each retailer being faced with a nonlinear budget con-

straint on his security investments (see [101] and [34]). We present an al-

ternative to this model in which the demand for the product at each demand

market is known and fixed and, hence, the conservation law of each demand

market must be fulfilled. The reason for introducing such a satisfaction of
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the demands at the demand markets is because there are numerous products

in which demand is inelastic as in the case, for example, of infant formula,

certain medicines, etc.

The supply chain game theory model with cybersecurity investments in

the case of fixed, that is, inelastic, demands, unlike the models of [101] and

[34], is characterized by a feasible set such that the strategy of a given retailer

is affected by the strategies of the other retailers since the product can come

from any (or all) of them. Hence, the governing concept is no longer a Nash

equilibrium (cf. [109], [110]) but, rather, is a Generalized Nash equilibrium

(see, e.g., [139] and [45]). Recall that, in classical Nash equilibrium problems,

the strategies of the players, that is, the decision-makers in the noncooper-

ative game, affect the utility functions of the other players, but the feasible

set of each player depends only on his/her strategies. It is worth mentioning

that it was Rosen ([122]) who, in his seminal paper, studied a class of GNE

problems. In [41] the authors show that the Rosen’s class of GNE problems

can be solved by finding a solution of a variational inequality. Moreover,

the variational solution of a GNE problem with shared constraints has been

derived in a general Hilbert space in [44].

In this chapter, we make use of a variational equilibrium (cf. [42] and

[70]), which is a special kind of GNE. The variational equilibrium allows

for a variational inequality formulation of the Generalized Nash equilibrium

model. Notably, according to [78] and the references therein, the Lagrange

multipliers associated with the shared (that is, the common) constraints are

the same for all players in the game, which allows for an elegant economic

interpretation. In our model, the demand constraints faced by the retailers

are the shared ones, and we then fully investigate these and other relevant

Lagrange multipliers in this chapter.

We note that in the papers [101] and [34] the governing Nash equilibrium

conditions are formulated in terms of a variational inequality and an analysis

of the dual problem and its associated Lagrange multipliers is performed. In

particular, in this chapter, the influence of the conservation laws is analyzed
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and the importance of the associated Lagrange multipliers highlighted. The

marginal expected transaction utility for each retailer depends on this Lag-

range multiplier and its sign. For other papers on cybersecurity models see

also [37], [105], [106], [128], whereas for other studies on the Lagrange theory

and its application to variational models we refer to [32], [31], [33], [51], [53],

[52], and [135]. For recent research on Generalized Nash equilibrium models

in disaster relief supply chains and in commercial supply chains, respectively,

see [100] and [108].

In the paper [34] an analysis of the marginal expected cybersecurity in-

vestment utilities and their stability is performed and, hence, this work adds

to the literature on the study of marginal expected utilities, with a focus on

both supply chains and cybersecurity investments, but in the more challen-

ging setting of Generalized Nash equilibrium.

This chapter is organized as follows. In Section 5.2 we present the model,

along with such concepts and firm and network vulnerability, define the vari-

ational equilibrium, and provide the variational inequality formulation. In

Section 5.3 we construct an equivalent formulation by means of the Lagrange

multipliers associated with the constraints and the conservation law which

define the feasible set. Then we prove the existence of the Lagrange mul-

tipliers associated with the equality and inequality constraints by applying

the Karush-Kuhn-Tucker conditions (see Theorem 4). In Section 5.4 we ana-

lyze the marginal expected transaction utilities and we find that they depend

on the Lagrange multipliers and their signs. In Section 5.5 we present de-

tailed numerical examples which emphasize the importance of the Lagrange

multipliers and of the inelastic demands in order to maximize the expected

utilities. Finally, in Section 5.6, we present the conclusions and the projects

for future research.
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5.2 The Model

The supply chain network, consisting of retailers and consumers at demand

markets, is depicted in Figure 5.1. Each retailer i; i = 1, . . . ,m, can transact

with demand market j; j = 1, . . . , n, with Qij denoting the product trans-

action from i to j. We intend to study the cybersecurity by introducing for

each retailer i; i = 1, . . . ,m, his cybersecurity or, simply, security, level si;

i = 1, . . . ,m. We group the product transactions for retailer i; i = 1, . . . ,m,

into the n-dimensional vector Qi and then we group all such retailer trans-

action vectors into the mn-dimensional vector Q. The security levels of the

retailers are grouped into the m-dimensional vector s.

Then, the cybersecurity level in the supply chain network is the average

security and is denoted by s̄, where s̄ =
m∑

i=1

si
m
. Also, as in ([105]), a retailer’s

vulnerability vi = 1−si; i = 1, . . . ,m, and the network vulnerability v̄ = 1−s̄.
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Figure 5.1: The Bipartite Structure of the Supply Chain Network Game

Theory Model

The retailers seek to maximize their individual expected utilities, consist-

ing of expected profits, and compete in a noncooperative game in terms of

strategies consisting of their respective product transactions and security

levels.

The demand at each demand market j, dj, is assumed to be fixed and
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known, in contrast to the models in [34], [101], and [105]. The demand dj

must satisfy the following conservation law:

dj =
m∑

i=1

Qij, j = 1, . . . , n. (5.1)

The product transactions have to satisfy capacity constraints and must

be nonnegative, so that we have the following conditions:

0 ≤ Qij ≤ Q̄ij, with
m∑

i=1

Qij > dj i = 1, . . . ,m; j = 1, . . . , n. (5.2)

The cybersecurity level of each retailer i must satisfy the following con-

straint:

0 ≤ si ≤ usi , i = 1, . . . ,m, (5.3)

where usi < 1 for all i; i = 1, . . . ,m. The larger the value of si, the higher

the security level, with perfect security reflected in a value of 1. However,

since, as noted in [101], we do not expect perfect security to be attainable,

we have usi < 1; i = 1, . . . ,m. If si = 0 this means that retailer i has no

security.

The demand price of the product at demand market j, ρj(d, s); j =

1, . . . , n, is a function of the vector of demands and the network security.

We can expect consumers to be willing to pay more for higher network se-

curity. In view of the conservation of flow equations above, we can define

ρ̂j(Q, s) ≡ ρj(d, s); j = 1, . . . , n. We assume that the demand price functions

are continuously differentiable, monotone and concave.

There is an investment cost function hi; i = 1, . . . ,m, associated with

achieving a security level si with the function assumed to be increasing,

continuously differentiable and convex. For a given retailer i, hi(0) = 0

denotes an entirely insecure retailer and hi(1) = ∞ is the investment cost

associated with complete security for the retailer. An example of an hi(si)

function that satisfies these properties and that is utilized here (see also [101])

is

hi(si) = αi

(

1
√

(1− si)
− 1

)

with αi > 0.
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The term αi enables distinct retailers to have different investment cost func-

tions based on their size and needs. Such functions have been introduced by

[128] and also utilized by [105]. However, in those models, there are no cyber-

security budget constraints and the cybersecurity investment cost functions

only appear in the objective functions of the decision-makers.

In the model with nonlinear budget constraints as in [101] each retailer

is faced with a limited budget for cybersecurity investment. Hence, the

following nonlinear budget constraints must be satisfied:

αi

(

1
√

(1− si)
− 1

)

≤ Bi; i = 1, . . . ,m, (5.4)

that is, each retailer can’t exceed his allocated cybersecurity budget.

The profit fi of retailer i; i = 1, . . . ,m (in the absence of a cyberattack

and cybersecurity investment), is the difference between his revenue
n∑

j=1

ρ̂j(Q, s)Qij and his costs associated, respectively, with production and

transportation: ci

n∑

j=1

Qij +
n∑

j=1

cij(Qij), that is,

fi(Q, s) =
n∑

j=1

ρ̂j(Q, s)Qij − ci

n∑

j=1

Qij −
n∑

j=1

cij(Qij), (5.5)

where cij(Qij) are convex functions.

If there is a successful cyberattack on a retailer i; i = 1, . . . ,m, retailer i

incurs an expected financial damage given by

Dipi,

where Di, the damage incurred by retailer i, takes on a positive value, and

pi is the probability of a successful cyberattack on retailer i, where:

pi = (1− si)(1− s̄), i = 1, . . . ,m, (5.6)

with the term (1− s̄) denoting the probability of a cyberattack on the supply

chain network and the term (1 − si) denoting the probability of success of
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such an attack on retailer i. We assume that such a probability is a given

data on the basis of statistical observations.

Each retailer i; i = 1, . . . ,m, hence, seeks to maximize his expected utility,

E(Ui), corresponding to his expected profit given by:

E(Ui) = (1−pi)fi(Q, s)+pi(fi(Q, s)−Di)−hi(si) = fi(Q, s)−piDi−hi(si).

(5.7)

Let us remark that, because of the assumptions, −E(Ui) is a convex

function (see [89]).

Let Ki denote the feasible set corresponding to retailer i, where

Ki ≡ {(Qi, si)|0 ≤ Qij ≤ Q̄ij, ∀j, 0 ≤ si ≤ usi ,

and the budget constrainthi(si)− Bi ≤ 0, holds for i}.

We also define

K ≡
{

(Q, s) ∈ Rmn+m : −Qij ≤ 0, Qij −Qij ≤ 0, −si ≤ 0,

si − usi ≤ 0, h(si)− Bi ≤ 0, i = 1, . . . ,m, j = 1, . . . , n
}

.

In addition, we define the set of shared constraints S as follows:

S ≡ {Q|(4.1) holds}.

We now state the following definition.

Definition 5. (A Supply Chain Generalized Nash Equilibrium in

Product Transactions and Security Levels) A product transaction and

security level pattern (Q∗, s∗) ∈ K, Q∗ ∈ S, is said to constitute a supply

chain Generalized Nash equilibrium if for each retailer i; i = 1, . . . ,m,

E(Ui(Q
∗
i , s

∗
i , Q̂

∗
i , ŝ

∗
i )) ≥ E(Ui(Qi, si, Q̂∗

i , ŝ
∗
i )), ∀(Qi, si) ∈ Ki, ∀Q ∈ S,

(5.8)

where

Q̂∗
i ≡ (Q∗

1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m).
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Hence, according to the above definition, a supply chain Generalized Nash

equilibrium is established if no retailer can unilaterally improve upon his

expected utility (expected profit) by choosing an alternative vector of product

transactions and security level, given the product flow and security level

decisions of the other retailers and the demand constraints.

We now provide the linkage that allows us to analyze and determine

the equilibrium solution via a variational inequality through a variational

equilibrium ([70] and [78]).

Definition 6. (Variational Equilibrium) A product transaction and se-

curity level pattern (Q∗, s∗) is said to be a variational equilibrium of the above

Generalized Nash equilibrium if (Q∗, s∗) ∈ K, Q∗ ∈ S, is a solution of the

variational inequality

−
m∑

i=1

n∑

j=1

∂E(Ui(Q
∗, s∗))

∂Qij

×
(
Qij −Q∗

ij

)
−

m∑

i=1

∂E(Ui(Q
∗, s∗))

∂si
× (si − s∗i ) ≥ 0,

∀(Q, s) ∈ K, ∀Q ∈ S; (5.9)

namely, (Q∗, s∗) ∈ K, Q∗ ∈ S, is a supply chain Generalized Nash equilibrium

product transaction and security level pattern if and only if it satisfies the

variational inequality

m∑

i=1

n∑

j=1

[

ci +
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑

k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik

]

× (Qij −Q∗
ij)

+
m∑

i=1

[

∂hi(s
∗
i )

∂si
−
(

1−
m∑

k=1

s∗k
m

+
1− s∗i
m

)

Di −
n∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗

ik

]

×(si − s∗i ) ≥ 0, ∀(Q, s) ∈ K, ∀Q ∈ S. (5.10)

For convenience, we define now the feasible set K where

K ≡
{

(Q, s) ∈ Rmn+m : −Qij ≤ 0, Qij −Qij ≤ 0, −si ≤ 0,

si − usi ≤ 0, h(si)−Bi ≤ 0, i = 1, . . . ,m, j = 1, . . . , n, and Q|(4.1) holds
}

.
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Problem (5.10) admits a solution since the classical existence theorem,

which requires that the set K is closed, convex, and bounded and the function

entering the variational inequality is continuous, is satisfied (see also [90]).

5.3 Equivalent Formulation of the Variational

Inequality

The aim of this section is to find an alternative formulation of the variational

inequality (5.9) for the cybersecurity supply chain game theory model with

nonlinear budget constraints and conservation laws by means of the Lagrange

multipliers associated with the constraints defining the feasible set K. To this

end, we remark that K can be rewritten in the following way:

K =

{

(Q, s) ∈ Rmn+m : −Qij ≤ 0, Qij −Qij ≤ 0, −si ≤ 0, si − usi ≤ 0,

hi(si)− Bi ≤ 0,
m∑

i=1

Qij = dj, i = 1, . . . ,m, j = 1, . . . , n

}

, (5.11)

and that variational inequality (5.9) can be equivalently rewritten as a minimi-

zation problem. Indeed, by setting:

V (Q, s) = −
m∑

i=1

n∑

j=1

∂E(Ui(Q
∗, s∗))

∂Qij

(
Qij −Q∗

ij

)
−

m∑

i=1

∂E(Ui(Q
∗, s∗))

∂si
(si − s∗i ) ,

we have:

V (Q, s) ≥ 0 in K and min
K

V (Q, s) = V (Q∗, s∗) = 0. (5.12)
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Then, we can consider the following Lagrange function:

L(Q, s, λ1, λ2, µ1, µ2, λ, γ) = V (Q, s) +
m∑

i=1

n∑

j=1

λ1
ij(−Qij)

+
m∑

i=1

n∑

j=1

λ2
ij(Qij −Qij) +

m∑

i=1

µ1
i (−si)

+
m∑

i=1

µ2
i (si − usi) +

m∑

i=1

λi(hi(si)− Bi)

+
n∑

j=1

γj

(
m∑

i=1

Qij − dj

)

, (5.13)

where (Q, s) ∈ Rmn+m, λ1, λ2 ∈ Rmn
+ , µ1, µ2 ∈ Rm

+ , λ ∈ Rm
+ , γ ∈ Rn.

It is worth mentioning that Lagrange function (5.13) is different from the

one considered in [43].

Hence, we are able to prove the following result, which is interesting

in itself, namely, using the Mangasarian Fromowitz constraint qualification

condition, if (Q∗, s∗) is a solution of variational inequality (5.9), we are able to

prove that KKT conditions (5.14) hold and vice versa from KKT conditions

(5.14) variational inequality (5.9) follows. Moreover, for the first time, to the

best of our knowledge, we show that strong duality (5.17) holds.

Theorem 4. The Lagrange multipliers which appear in the Lagrange func-

tion (5.13) exist and, for all i = 1, . . . ,m, and j = 1, . . . , n, the following

conditions hold:

λ
1

ij(−Q∗
ij) = 0, λ

2

ij(Q
∗
ij −Qij) = 0,

(5.14)

µ1
i (−s∗i ) = 0, µ2

i (s
∗
i − usi) = 0, λi(hi(s

∗
i )− Bi) = 0,

−∂E(Ui(Q
∗, s∗))

∂Qij

− λ
1

ij + λ
2

ij + γj = 0, (5.15)

−∂E(Ui(Q
∗, s∗))

∂si
− µ1

i + µ2
i + λi

∂hi(s
∗
i )

∂si
= 0. (5.16)
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Moreover, also the strong duality holds true; namely:

V (Q∗, s∗) = minK V (Q, s) (5.17)

= maxλ1, λ2∈R
mn
+

, µ1,µ2∈R
m
+

λ∈R
m
+

, γ∈Rn

min(Q,s)∈Rmn+m L(Q, s, λ1, λ2, µ1, µ2, λ, γ).

Proof Since the existence of the solution to problem (5.10) has been guar-

anteed, by virtue of the presence of equality constraints, we must apply the

KKT theorem (see [60], Theorem 5.8) in order to obtain the existence of the

Lagrange multipliers.

Let us denote by (Q∗, s∗) the solution to (5.10) and let us set:

g′i(Q) = (−Qij)j=1,...,n ≤ 0, i = 1, . . . ,m;

I ′i(Q
∗) = {j ∈ {1, . . . , n} : Q∗

ij = 0}, i = 1, . . . ,m;

g′′i (Q) =
(
Qij −Qij

)

j=1,...,n
≤ 0, i = 1, . . . ,m;

I ′′i (Q
∗) = {j ∈ {1, . . . , n} : Q∗

ij −Qij = 0}, i = 1, . . . ,m;

s′i = −si ≤ 0, i = 1, . . . ,m and J ′
si
= {i ∈ {1, . . . ,m} : s∗i = 0} ,

s′′i = si − usi ≤ 0, i = 1, . . . ,m and J ′′
si
= {i ∈ {1, . . . ,m} : s∗i = usi} ,

s′′′i = h(si)− Bi ≤ 0, i = 1, . . . ,m and J ′′′
si
= {i ∈ {1, . . . ,m} : h(s∗i ) = Bi} ,

hj(Q) =
m∑

i=1

Qij − dj = 0, j = 1, . . . , n.

We remark that: I ′i(Q
∗) ∩ I ′′i (Q

∗) = ∅. Define also the matrix:

Q =












Q11 . . . Q1j . . . Q1n

. . .

Qi1 . . . Qij . . . Qin

. . .

Qm1 . . . Qmj . . . Qmn












.

For the Karush-Kuhn-Tucker theorem under the Mangasarian Fromowitz

constraint qualification condition, we must prove that, taking into account

that ∇g′Ti (Q∗) = (−1, . . . ,−1), there exists Q ∈ Rmn such that −Qij < 0,

i = 1, . . . ,m and j ∈ I ′i(Q
∗).
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Analogously, since ∇g′′Ti (Q∗) = (1, . . . , 1), we must also prove that there

exists Q ∈ Rmn such that Qij < 0, i = 1, . . . ,m and j ∈ I ′′i (Q
∗).

Such a Q does exist, because it is enough to choose Qij > 0 when

j ∈ I ′i(Q
∗) and Qij < 0 when j ∈ I ′′i (Q

∗).

For what concerns the equality constraints
m∑

i=1

Qij − dj = 0; j = 1, . . . , n,

we must prove that the matrix ∇hj(Q
∗), j = 1, . . . , n is linearly independent

and for some vector Q ∈ Rmn it must be : ∇Thj(Q
∗)Q < 0, j = 1, . . . , n.

We remark that:

∇hT
j (Q

∗) =

(
∂hj(Q

∗)

∂Q11

, . . . ,
∂hj(Q

∗)

∂Q1n

, . . . ,
∂hj(Q

∗)

∂Qm1

, . . . ,
∂hj(Q

∗)

∂Qmn

)

.

Hence:

∇hT
1 (Q

∗) = (1, 1, . . . , 1, 0, 0, . . . , 0, . . . , 0, 0, . . . , 0)

. . .

∇hT
n (Q

∗) = (0, 0, . . . , 0, 0, 0, . . . , 0, . . . , 1, 1, . . . , 1)

and their linear combination with constants c1, . . . , cn is given by:

n∑

j=1

cj∇hT
j (Q

∗) = (c1, . . . , c1, c2 . . . , c2, . . . , cn, . . . , cn) .

Such a linear combination is equal to zero if and only if all the coefficients

cj; j = 1, . . . , n, are zero.

As a consequence, ∇hT
j (Q

∗); j = 1, . . . , n, are linearly independent. Now

we have to prove that for a vector Q of the same type as before, we get:

∇hT
1 (Q

∗)Q =
n∑

j=1

Q1j = 0,

. . .

∇hT
n (Q

∗)Q =
n∑

j=1

Qmj = 0.

(5.18)

We note that Q1j > 0 if j ∈ I ′1j(Q
∗) and Q1j < 0 if j ∈ I ′′1j(Q

∗). Moreover,

all the components Qij cannot be simultaneously equal to zero; otherwise,
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the equality constraint
m∑

i=1

Qij = dj would be unsatisfied. At the same time,

it cannot be that Qij = Qij, since
m∑

i=1

Qij > dj. Therefore, some Qij are

arbitrarily positive and some Qij are arbitrarily negative and we can choose

them so that (5.18) is verified.

Now, we can proceed with si; i = 1, . . . ,m. We need to find s∗ ∈ Rm such

that:

∇s′i(s
∗
i )si < 0 i ∈ J ′

s(s
∗)

∇s′′i (s
∗
i )si < 0 i ∈ J ′′

s (s
∗),

namely,
si > 0 i ∈ J ′

s(s
∗)

si < 0 i ∈ J ′′
s (s

∗).
(5.19)

Moreover, we need: ∇ (hj(s
∗
i )− Bi) si < 0, i ∈ J ′′′

s (s∗). Since hj(si) is an

increasing function, then maxhj(si) = hj(usi). Hence, it must be that:

∂hj(usi)

∂si
si < 0, i ∈ J ′′′

s (s∗).

We recall that hj(si) = (1 − si)
− 1

2 , which implies
∂hj(usi)

∂si
=

1

2
(1 −

usi)
− 3

2 > 0 and that s∗i = usi implies si < 0, then

∂hj(usi)

∂si
si < 0, i ∈ J ′′′

s (s∗).

Then, the Lagrange multipliers λ
1
, λ

2 ∈ Rmn
+ , µ1, µ2, λ ∈ Rm

+ , γ ∈ Rn,

do exist and conditions (5.14), (5.15), and (5.16) hold true (see Th. 5.8 in

[60]). Since the inequality constraints are linear or convex and the equality

constraints are affine linear, the Lagrange function results to be convex on

the whole space R3mn+2n+3m. Then, by virtue of Theorem 3.8, part b in

[60], the point (Q∗, s∗) is the minimal solution of the Lagrange function

L(Q, s, λ
1
, λ

2
, µ1, µ2, λ, γ) in the whole space Rmn+n.

As a consequence, taking into account (5.14), we obtain:

min
(Q,s)∈Rmn+m

L(Q, s, λ
1
, λ

2
, µ1, µ2, λ, γ) = L(Q∗, s∗, λ

1
, λ

2
, µ1, µ2, λ, γ)

= V (Q∗, s∗) = min
K

V (Q, s),
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see also Theorem 5.17 in [60] for similar remarks.

Now, we want to prove the strong duality; namely:

V (Q∗, s∗) = min
K

V (Q, s) =

= max
λ1, λ2∈R

mn
+

, µ1,µ2∈R
m
+

λ∈R
m
+

, γ∈Rn

min
(Q,s)∈Rmn+m

L(Q, s, λ1, λ2, µ1, µ2, λ, γ).

Indeed, for every λ1, λ2 ∈ Rmn
+ , µ1, µ2 ∈ Rm

+ , λ ∈ Rm
+ , γ ∈ Rn, we have:

min
(Q,s)∈Rmn+m

L(Q, s, λ1, λ2, µ1, µ2, λ, γ) ≤ L(Q∗, s∗, λ1, λ2, µ1, µ2, λ, γ),

and

L(Q∗, s∗, λ1, λ2, µ1, µ2, λ, γ) ≤ V (Q∗, s∗)
︸ ︷︷ ︸

=0

,

since in the Lagrange function all the terms except V (Q∗, s∗) are less than

or equal to zero.

Moreover,

V (Q∗, s∗) = min
K

V (Q, s) = min
(Q,s)∈Rmn+m

L(Q, s, λ
1
, λ

2
, µ1, µ2, λ, γ).

Further, we also have:

max
λ1, λ2∈R

mn
+

, µ1,µ2∈R
m
+

λ∈R
m
+

, γ∈Rn

min
(Q,s)∈Rmn+m

L(Q, s, λ1, λ2, µ1, µ2, λ, γ) ≤ V (Q∗, s∗)

≤ min
(Q,s)∈Rmn+m

L(Q, s, λ
1
, λ

2
, µ1, µ2, λ, γ)

≤ max
λ1, λ2∈R

mn
+

, µ1,µ2∈R
m
+

λ∈R
m
+

, γ∈Rn

min
(Q,s)∈Rmn+m

L(Q, s, λ1, λ2, µ1, µ2, λ, γ),

which yields:

V (Q∗, s∗) = max
λ1, λ2∈R

mn
+

, µ1,µ2∈R
m
+

λ∈R
m
+

, γ∈Rn

min
(Q,s)∈Rmn+m

L(Q, s, λ1, λ2, µ1, µ2, λ, γ),

and the assertion is proved.
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Conditions (5.14)–(5.16) represent an equivalent formulation of variational

inequality (5.9) and it is easy to see that from (5.15) and (5.16) the variational

inequality (5.9) follows. Indeed, multiplying (5.15) by (Qij −Q∗
ij) we obtain:

−∂E(Ui(Q
∗, s∗))

∂Qij

(Qij−Q∗
ij)−λ

1

ij(Qij−Q∗
ij)+λ

2

ij(Qij−Q∗
ij)−γj(Qij−Q∗

ij) = 0

and, taking into account (5.14), we have:

−∂E(Ui(Q
∗, s∗))

∂Qij

(Qij −Q∗
ij) = λ

1

ijQij − λ
2

ij(Qij −Qij) + γj(Qij −Q∗
ij) ≥ 0.

Analogously, multiplying (5.16) by (si − s∗i ), we get:

−∂E(Ui(Q
∗, s∗))

∂si
(si− s∗i )−µ1

i (si− s∗i )+µ2
i (si− s∗i )+λi

∂hi(s
∗
i )

∂si
(si− s∗i ) = 0.

From (5.14), we have:

µ1
i (−s∗i ) = 0, µ2

i s
∗
i = µ2

iusi .

Moreover, if λi > 0, then hi(s
∗
i ) = Bi = maxhi(si), but hi(si) is a nonde-

creasing function; hence, it attains its maximum value at s∗i = usi . Therefore,

we get:

−∂E(Ui(Q
∗, s∗))

∂si
(si − s∗i ) = µ1

i si − µ2
i (si − usi)− λi

∂hi(s
∗
i )

∂si
(si − usi) ≥ 0

because hi(si) is a nonnegative convex function such that hi(0) = 0. Then

hi(si) attains the minimum value at 0. Hence,
∂hi(0)

∂si
≥ 0 and, since

∂hi(si)

∂si
is increasing, it results in:

0 ≤ ∂hi(0)

∂si
≤ ∂hi(si)

∂si
, ∀0 ≤ si ≤ usi .

For the above calculations variational inequality (5.9) easily follows. 2

The term
∂E(Ui(Q

∗, s∗))

∂Qij

is called the marginal expected transaction util-

ity, i = 1, . . . ,m; j = 1, . . . , n, and the term
∂E(Ui(Q

∗, s∗))

∂si
is called the

marginal expected cybersecurity investment utility, i = 1, . . . ,m. Our aim is

to study such marginal expected utilities by means of (5.14)–(5.16).
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5.4 Analysis of Marginal Expected Transac-

tion Utilities and of Marginal Expected

Cybersecurity Investment Utilities

From (5.15) we get

−∂E(Ui(Q
∗, s∗))

∂Qij

− λ
1

ij + λ
2

ij + γj = 0, i = 1, . . . ,m; j = 1, . . . , n.

So, if 0 < Q∗
ij < Qij, then we get (see also (5.10))

− ∂E(Ui(Q
∗, s∗))

∂Qij

= ci +
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

m∑

k=1

∂ρ̂k
∂Qij

×Q∗
ik + γj = 0,

(5.20)

i = 1, . . . ,m; j = 1, . . . , n,

whereas if λ
1

ij > 0, and, hence, Q∗
ij = 0, and λ

2

ij = 0, we get

− ∂E(Ui(Q
∗, s∗))

∂Qij

= ci +
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

m∑

k=1

k 6=i

∂ρ̂k
∂Qij

×Q∗
ik = λ

1

ij + γj,

(5.21)

i = 1, . . . ,m; j = 1, . . . , n,

and if λ
2

ij > 0, and, hence, Q∗
ij = Qij, and λ

1

ij = 0, we have

− ∂E(Ui(Q
∗, s∗))

∂Qij

= ci+
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

m∑

k=1

k 6=i

∂ρ̂k
∂Qij

×Q∗
ik = −λ

2

ij +γj,

(5.22)

i = 1, . . . ,m; j = 1, . . . , n.

Now let us analyze the meaning of equalities (5.20)–(5.22). From equality

(5.20), which holds when 0 < Q∗
ij < Qij, we see that for retailer i, who

transfers the product Q∗
ij to the demand market j, the marginal expected

transaction utility is −γj. We remark that −γj ∈ R, but its sign depends on

the difference between the marginal expected transaction cost ci +
∂cij(Q

∗
ij)

∂Qij
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and the marginal expected transaction revenue ρ̂j(Q
∗, s∗) +

m∑

k=1

k 6=i

∂ρ̂k
∂Qij

×Q∗
ik.

Then the positive situation is the one when γj > 0 so that the marginal

expected transaction revenues exceed the costs.

Equality (5.21) shows that, when there is no trade between retailer i

and demand market j; namely, λ
1

ij > 0 and equality (5.21) holds, then the

marginal expected transaction utility decreases, whereas if λ
2

ij > 0; namely,

Q∗
ij = Qij, then the marginal expected transaction utility increases.

In conclusion, we remark that the Lagrange variables γj, λ
1

ij, λ
2

ij, i =

1, . . . ,m; j = 1, . . . , n, give a precise evaluation of the behavior of the market

with respect to the supply chain product transactions.

The analysis of marginal expected cybersecurity investment utilities is the

same as the one performed in subsection 3.2 in [34] as well as the stability

of the marginal expected cybersecurity investment utilities is the same as

the one performed in subsection 3.3 in [34], but we report them here for the

reader’s convenience. From (5.16) we have:

− ∂E(Ui(Q
∗, s∗))

∂si
− µ1

i + µ2
i + λi

∂hi(s
∗)

∂si
= 0, i = 1, . . . ,m. (5.23)

If 0 < s∗i < usi , then µ1
i = µ2

i = 0 and we have (see also (5.10))

∂hi(s
∗
i )

∂si
+ λi

∂hi(s
∗
i )

∂si

=

(

1−
m∑

k=1

s∗k
m

+
1− s∗i
m

)

Di +
m∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗

ik. (5.24)

Since 0 < s∗i < usi , h(s
∗
i ) cannot be the upper bound Bi; hence, λi is zero

and (5.24) becomes:

∂hi(s
∗
i )

∂si
=

(

1−
m∑

k=1

s∗k
m

+
1− s∗i
m

)

Di +
m∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗

ik. (5.25)

Equality (5.25) shows that the marginal expected cybersecurity cost is equal

to the marginal expected cybersecurity investment revenue plus the term
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(

1−
m∑

k=1

s∗k
m

+
1− s∗i
m

)

Di; namely, the marginal expected cybersecurity in-

vestment revenue is equal to
∂hi(s

∗
i )

∂si
−
(

1−
m∑

k=1

s∗k
m

+
1− s∗i
m

)

Di. This is

reasonable because

(

1−
m∑

k=1

s∗k
m

+
1− s∗i
m

)

Di is the marginal expected dam-

age expense.

If µ1
i > 0 and, hence, s∗i = 0, and µ2

i = 0, we get:

−∂E(Ui(Q
∗, s∗))

∂si
=

∂hi(0)

∂si
−




1−

m∑

k=1

k 6=i

s∗k
m

+
1− s∗i
m




Di−

m∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
Q∗

ik = µ1
i .

(5.26)

In (5.26) minus the marginal expected cybersecurity investment utility is

equal to µ1
i ; hence, the marginal expected cybersecurity cost is greater than

the marginal expected cybersecurity investment revenue plus the marginal

damage expense. Then the marginal expected cybersecurity investment rev-

enue is less than the marginal expected cybersecurity cost minus the marginal

damage expense. We note that case (5.26) can occur if
∂hi(0)

∂si
is strictly pos-

itive.

In contrast, if µ2
i > 0 and, hence, s∗i = usi , retailer j has a marginal gain

given by µ2
i , because

−∂E(Ui(Q
∗, usi))

∂si
= −




1−

m∑

k=1

k 6=i

usk

m
+

1− usi

m




Di −

m∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗

ik

+
∂hi(usi)

∂si
+ λi

∂hi(usi)

∂si
= −µ2

i . (5.27)

We note that λi could also be positive, since, with s∗i = usi , hi(si) could reach

the upper bound Bi. In (5.27) minus the marginal expected cybersecurity in-

vestment utility is equal to −µ2
i . Hence, the marginal expected cybersecurity

cost is less than the marginal expected cybersecurity investment revenue plus

the marginal damage expense. Then the marginal expected cybersecurity in-

vestment revenue is greater than the marginal expected cybersecurity cost
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minus the marginal damage expense.

From (5.27) we see the importance of the Lagrange variables µ1
i , µ

2
i which

describe the effects of the marginal expected cybersecurity investment uti-

lities.

Now let us consider the three cases related to the studied marginal expec-

ted cybersecurity investment utilities. Each of these cases holds for certain

values of the damage Di. Let us consider the value Di for which the first case

(5.25) occurs. We see that in this case there is a unique value of Di for which

(5.25) holds and if we vary such a value, also the value s∗i in (5.25) varies.

Now let us consider the value Di for which (5.26) holds and let us call D∗
i

the value of Di for which we have

−∂E(Ui(Q
∗, s∗))

∂si
=

∂hi(0)

∂si
−




1−

m∑

k=1

k 6=i

s∗k
m

+
1− s∗i
m




D∗

i−
m∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
Q∗

ik = 0.

Then for 0 < Di < D∗
i the solution (Q∗, s∗) to variational inequality (5.9)

remains unchanged because (5.26) still holds for these new values of Di and

the marginal expected cybersecurity investment utility remains negative, but

it is increasing with respect to Di. Analogously, if we consider the value Di

for which (5.27) holds and call D∗
i the value such that

−∂E(Ui(Q
∗, usi))

∂si
= −




1−

m∑

k=1

k 6=i

usk

m
+

1− usi

m




D∗

i −
m∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si
×Q∗

ik

+
∂hi(usi)

∂si
+ λi

∂hi(usi)

∂si
= 0,

we see that for Di > D∗
i the solution (Q∗, s∗) to (5.9) remains unchanged

because (5.27) still holds and the marginal expected cybersecurity investment

utility remains positive and is increasing with respect to Di.

5.5 Numerical Examples

The numerical examples consist of a supply chain network with two retailers

and two demand markets as depicted in Fig. 5.2.
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Figure 5.2: Network Topology for the Numerical Examples

The examples are inspired by related examples as in [101] and in [34].

Since we want to report all the results for transparency purposes, we have

selected the size of problems as reported.

The cost function data are:

c1 = 5, c2 = 10,

c11(Q11) = .5Q2
11 +Q11, c12(Q12) = .25Q2

12 +Q12,

c21(Q21) = .5Q2
21 +Q21, c22(Q22) = .25Q2

22 +Q22.

The demand price functions are:

ρ1(d, s) = −d1 + .1
s1 + s2

2
+ 100, ρ2(d, s) = −.5d2 + .2

s1 + s2
2

+ 200.

The damage parameters are: D1 = 200 andD2 = 210 with the investment

functions taking the form:

h1(s1) =
1√

1− s1
− 1, h2(s2) =

1√
1− s2

− 1.

The damage parameters are in millions of $US, the expected profits (and

revenues) and the costs are also in millions of $US. The prices are in thou-

sands of dollars and the product transactions are in thousands. The budgets

for the two retailers are identical with B1 = B2 = 2.5 (in millions of $US).

In this case the bounds on the security levels are us1 = us2 = .91 and the

capacities Qij are set to 100 for all i, j.

Keeping the same structure of the network, we have considered five cases

with different values of demands:
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Case 1: d1 = Q11 +Q21 = 20 and d2 = Q12 +Q22 = 80;

Case 2: d1 = Q11 +Q21 = 40 and d2 = Q12 +Q22 = 190;

Case 3: no fixed demands;

Case 4: d1 = Q11 +Q21 = 60 and d2 = Q12 +Q22 = 280;

Case 5: d1 = Q11 +Q21 = 80 and d2 = Q12 +Q22 = 380.

We remark that Case 3 gives the same results as in the example in [34]

which is a Nash equilibrium.

For i = 1, 2 we obtain:

−∂E(Ui(Q, s))

∂Qi1

= 2Qi1 +Q11 +Q21 − .1
s1 + s2

2
+ ci − 99,

−∂E(Ui(Q, s))

∂Qi2

= Qi2 + .5Q12 + .5Q22 − .2
s1 + s2

2
+ ci − 199,

−∂E(Ui(Q, s))

∂si
= − 1

20
Qi1 −

1

10
Qi2 −

(

1− s1 + s2
2

+
1− si
2

)

Di

+
1

2
√

(1− si)3
.

Now, we wish to determine the equilibrium solution, taking into account

the different values assumed by λ1, λ2, µ1, µ2, and λ, and searching, among

them, the feasible ones. After some algebraic calculations, we realize that for

i = 1, 2 and j = 1, 2 we get the solution when λ
1

ij = λ
2

ij = µ1
i = λi = 0, and

µ2
i > 0. Hence, s∗1 = s∗2 = 0.91 (which is the maximum value).

In this case, the marginal expected transaction utilities are zero, whereas

the marginal expected cybersecurity investment utilities are positive; namely,
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there is a marginal gain, given by µ2
i , i = 1, 2. Solving the system:







∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ, γ)

∂Qi1

= 0

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ, γ)

∂Qi2

= 0

∂L(Q∗, s∗, λ
1
, λ

2
, µ1, µ2, λ, γ)

∂si
= 0

i = 1, 2;

namely:







3Q∗
11 +Q∗

21 − 0.1
s∗1 + s∗2

2
+ c1 − 99− λ

1

11 + λ
2

11 + γ1 = 0

Q∗
11 + 3Q∗

21 − 0.1
s∗1 + s∗2

2
+ c2 − 99− λ

1

21 + λ
2

21 + γ1 = 0

1.5Q∗
12 + .5Q∗

22 − 0.2
s∗1 + s∗2

2
+ c1 − 199− λ

1

12 + λ
2

12 + γ2 = 0

.5Q∗
12 + 1.5Q∗

22 − 0.2
s∗1 + s∗2

2
+ c2 − 199− λ

1

22 + λ
2

22 + γ2 = 0

− 1

20
Q∗

11 −
1

10
Q∗

12 −
3− 2s∗1 − s∗2

2
D1 +

1 + λ1

2
√

(1− s∗1)
3
− µ1

1 + µ2
1 = 0

− 1

20
Q∗

21 −
1

10
Q∗

22 −
3− s∗1 − 2s∗2

2
D2 +

1 + λ2

2
√

(1− s∗2)
3
− µ1

2 + µ2
2 = 0,

and, therefore, assuming for i = 1, 2, j = 1, 2, λ
1

ij = λ
2

ij = µ1
i = λi = 0, and
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µ2
i > 0; hence, s∗1 = s∗2 = 0.91, and D1 = 200 and D2 = 210, we have:







Q∗
11 +Q∗

21 = d1

3Q∗
11 +Q∗

21 = 94.091− γ1

Q∗
11 + 3Q∗

21 = 89.091− γ1

Q∗
12 +Q∗

22 = d2

1.5Q∗
12 + .5Q∗

22 = 194.182− γ2

.5Q∗
12 + 1.5Q∗

22 = 189.182− γ2

µ2
1 =

1

20
Q∗

11 +
1

10
Q∗

12 +
3− 3× .91

2
200− 1

2
√

(1− .91)3

µ2
2 =

1

20
Q∗

21 +
1

10
Q∗

22 +
3− 3× .91

2
210− 1

2
√

(1− .91)3
.

The previous system, in the five examined cases, has been solved using

Wolfram Alpha and the solutions are summarized in Table 5.1. In par-

ticular, we have reported the flows, the cybersecurity levels, the retailers’

vulnerability, the network vulnerability, the Lagrange multipliers associated

to the conservation laws and to the constraints on cybersecurity levels, in

equilibrium.

We remark that, since the retailers invest at the upper bound levels of

security, both the individual retailers’ vulnerability, v1 and v2, and that of

the network, v̄, are low.
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Case 1 Case 2 Case 3 Case 4 Case 5

Q∗
11 11.25 21.25 24.148 31.25 41.25

Q∗
21 8.75 18.75 21.648 28.75 38.75

Q∗
12 42.5 97.5 98.341 142.5 192.5

Q∗
22 37.5 92.5 93.341 137.5 187.5

s∗1 .91 .91 .91 .91 .91

s∗2 .91 .91 .91 .91 .91

v1 .09 .09 .09 .09 .09

v2 .09 .09 .09 .09 .09

v̄ .09 .09 .09 .09 .09

γ1 =
∂E(U1)

∂Q11

=
∂E(U1)

∂Q12

51.591 11.591 0 -28.409 - 68.409

γ2 =
∂E(U1)

∂Q12

=
∂E(U1)

∂Q22

111.682 1.682 0 -88.318 -188.318

µ2
1 =

∂E(U1)

∂s1
13.294 19.294 19.523 24.294 29.794

µ2
2 =

∂E(U2)

∂s2
14.019 20.019 20.248 25.019 30.019

Table 5.1: Equilibrium solutions

Moreover, the demand prices charged by the retailers and the expected

utilities of each retailer, in the five cases, are summarized in Table 5.2.

Comparing the different results, we see that, for some values of the de-

mands, the marginal expected transaction utilities, γ1 and γ2, have a positive

value; for other values of the demands, γ1 and γ2 have negative values, and,

when the demand is not fixed at the values above, γ1 and γ2 are zero. On

the contrary, the marginal cybersecurity investment utilities µ2
1 and µ2

2 are

always increasing when the fixed demands increase too and have a small value

when the demands are not fixed. Further, for the corresponding values of the

demands, the expected utilities, E(Ui); i = 1, 2, achieve the maximum value;

for the other values of the demands, E(Ui) decrease and, when the demands

are not fixed, then E(Ui) assumes a value which is less than the maximum

obtained with certain fixed demands. As a conclusion, we can deduce that
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ρ1(d
∗, s∗) ρ2(d

∗, s∗) E(U1) E(U2)

Case 1 80.091 160.182 2,798.087 5,804.9935

Case 2 60.091 105.182 8,213.3825 7,313.4232

Case 3 54.2954 104.341 8,123.9298 7,156.6968

Case 4 40.091 60.182 3,217.4817 2,455.0132

Case 5 20.091 10.182 -8,732.5083 -9,344.9765

Table 5.2: Demand prices and expected utilities

the problem has an optimal demand which yields optimal expected utilities

and a good value of marginal cybersecurity expected utilities, whereas, when

the demands are not fixed, we get a value of cybersecurity expected utilities

which is not necessarily the optimal one.

Keeping the same structure as the one depicted in Fig. 5.2, now we study

the cybersecurity by introducing the possibility, for each retailer i = 1, 2, to

have different investment cost functions based on their different sizes and

needs.

We assume that the cost functions, the demand price functions, the damage

parameters, the budgets for the two retailers, the bounds on the security

level, the product transactions capacities are given and are the same as in

the previous example, but we suppose now that the investment cost functions

are the following:

h1(s1) = 2

(
1√

1− s1
− 1

)

, h2(s2) = 3

(
1√

1− s2
− 1

)

.

Therefore, we are setting α1 = 2 and α2 = 3.

In Table 5.3 we present the solutions, for the five examined cases, computed

using the MatLab program.

In particular we remark that, since the cybersecurity levels are not equal to

their upper bounds (si < usi) and the budget constraints are satisfied with

equality signs, namely, both retailers use the whole budget, we have: µ̄2
i = 0

and λ̄i 6= 0.

Comparing the different results, we notice that the product transactions Q∗
ij
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in equilibrium are very similar to the previous ones (when α1 = α2 = 1) but

now the cybersecurity levels are lower, specially when αi is higher; obviously,

in this case, the vulnerability values are bigger.

From Table 5.4 we also see that the marginal expected cybersecurity invest-

ment utilities over the marginal expected cybersecurity costs, the Lagrange

multipliers λ̄1 and λ̄2, are always increasing when the demands increase too.

Furthermore, since λ̄i > 0 and
∂hi(s

∗)

∂si
> 0, i = 1, 2, for every case, we

have that
∂E(Ui)

∂si
> 0.

Moreover, the demand prices charged by the retailers and the expected utilit-

ies of each retailer, in the five cases with α1 = 2 and α2 = 3, are summarized

in Table 5.4.

5.6 Conclusions

In this chapter, we introduced a cybersecurity investment supply chain game

theory model consisting of retailers and consumers at demand markets as-

suming that the demands for the product at the demand markets are known

and fixed and, hence, the conservation law of each demand market is fulfilled.

The model also has nonlinear budget constraints. This model is a General-

ized Nash equilibrium model since not only are the retailers’ expected utility

functions dependent on one another’s strategies but their feasible sets are as

well. We proposed a variational equilibrium which allows us to formulate the

governing equilibrium conditions as a variational inequality problem, rather

than a quasi-variational inequality. We also studied the dual problem and,

specifically, we analyzed the Lagrange multipliers associated with the conser-

vation laws and the expected utilities when the demands change. In particu-

lar, we have seen that, for certain values of the fixed demand, we can attain

the best expected utilities with respect to the demand. In the future we
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Case 1 Case 2 Case 3 Case 4 Case 5

Q∗
11 11.25 21.25 24.1438 31.25 41.25

Q∗
21 8.75 18.75 21.6438 28.75 38.75

Q∗
12 42.5 97.5 98.3252 142.5 192.5

Q∗
22 37.5 92.5 93.3252 137.5 187.5

s∗1 .8025 .8025 .8025 .8025 .8025

s∗2 .7025 .7025 .7025 .7025 .7025

v1 .1975 .1975 .1975 .1975 .1975

v2 .2975 .2975 .2975 .2975 .2975

v̄ .2475 .2475 .2475 .2475 .2475

γ1 =
∂E(U1)

∂Q11

=
∂E(U1)

∂Q12

51.5752 11.5752 0 -28.4248 - 68.4248

γ2 =
∂E(U1)

∂Q12

=
∂E(U1)

∂Q22

111.6505 1.6505 0 -88.3495 -188.35

λ1 =

∂E(U1)

∂s1
∂h1(s

∗)

∂s1

5.5028 6.0295 6.0495 6.4685 6.9514

λ2 =

∂E(U2)

∂s2
∂h2(s

∗)

∂s2

8.4566 9.1057 9.1303 9.6466 10.2417

Table 5.3: Equilibrium solutions with α1 = 2 and α2 = 3

would like to continue the study of this topic and, in particular, we will take

into account uncertainty on the data which leads to a random formulation

of the model (see also [30] for an application to the traffic network models).

The results in this work add to the growing literature of operations re-

search and game theory techniques for cybersecurity modeling and analysis.
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Chapter 5. Cybersecurity Investments with Nonlinear Budget Constraints
and Conservation Laws

ρ1(d
∗, s∗) ρ2(d

∗, s∗) E(U1) E(U2)

Case 1 80.0772 160.1545 6,857.8143 6,028.8489

Case 2 60.0772 105.1545 8,202.0839 7,858.6184

Case 3 54.2954 104.341 8,114.7336 7,785.6368

Case 4 40.0772 60.1545 3,204.8084 3,273.8429

Case 5 20.0772 10.1545 -8,746.6946 -8,227.6601

Table 5.4: Demand prices and expected utilities with α1 = 2 and α2 = 3
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Chapter 6

Conclusions

The aim of this thesis is to analyze different thematic areas and applications

to real situations by using models based on networks.

In particular, in this thesis we investigate initially a Mixed-Integer non-

linear programming problem that we solve with a computational procedure

and we compare the solutions with those of the correspondent linearization.

Later, we analyze some non-linear programming problems (some of which

have mixed-integer variables that we solved by obtaining the relaxed prob-

lems) and by applying the classical Lagrange theory we get the optimality

conditions for all decision makers simultaneously.

The purpose of our mathematical model, in Chapter 2, is to represent

a cloud environment. This structured and simplified formulation has the

advantage of perceiving some properties of reality which otherwise could be

unseen.

This mathematical model could also allow to analytically deduce other prop-

erties of the problem which are not yet known and to develop methods for

monitoring and diagnosis. But, above all, it allows us to identify a rational

strategy for reaching a final goal, which is to maximize the Iaas provider’s

profit. Further, the model also provides detailed quantitative information on

the decisions to be taken.

By using this model, the IaaS provider can make a simulation of reality. Such
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a simulation allows him to study the effects of a decision without having to

necessarily take it in the reality.

Hence, the studied model is also effective, since it plays an important pre-

dictive function by reducing the risks in the choices of the decision makers.

We get a mixed-Integer nonlinear programming problem, which can be solved

through the proposed computational algorithm. Such an algorithm can be

also used to solve problems of a different nature but with the same frame-

work. A second step is the linearization of the problem. The effectiveness of

the model and of the algorithm is tested, by comparing the final data with

the results obtained by solving the linearized problem through an existing

software.

In the future we aim at studying the behavior of the decision makers at all

levels of the network, so as to obtain the optimality and equilibrium condi-

tions, and, as a consequence, the global solution for the entire network.

Another topic we have dealt with in depth in Chapter 3 of this thesis is the

financial market. We studied some optimization models based on networks

which allow us to formulate two new multi-period portfolio selection problems

as Markowitz mean-variance optimization problems with intermediaries, and

therefore with transaction costs, the addition of capital gains tax, but also

with short selling and transfer of securities. We proposed two constrained

Integer nonlinear programming problems with which it is possible to estab-

lish if and when it is suitable to buy and to sell financial securities, not only

while maximizing the profits, but also while minimizing the risk (through the

use of a weight).We applied the Lagrange theory and analyzed the variational

inequality also in Chapter 4 and Chapter 5 where we studied an optimization

model for business management and cybersecurity investments, respectively.
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Appendix A

Achieved goals

In this section, we determine the demand forecast of every good, because

it is necessary to estimate the amounts in advance (in the problem there is

the total demand of product i and the range of demand forecasting) and,

since the production takes place daily in a continuous fashion, we consider a

seven-day interval.

Therefore, in this section, we discuss about the time series analysis. Its

main aim is to identify an appropriate model that has trajectories that fit to

the data, to be able to predict and determine the ranges.

The company software also allowed us to achieve the daily data of sales,

starting from the production till today, required for forecasting and produc-

tion planning.

In this work we make use of the statistical software R, with a plurality of

commands and functions very useful in the time series analysis.

Before the analysis, we examined the raw data and we made some adjust-

ments to purify the data by discontinuities or effects of different interval

duration or time periods considered; in particular we have eliminated cases

of additives outlier, observations that lie an abnormal distance from other

values, by replacing them with appropriate values.

Therefore, we show the graph of the series (Figure A.1) which describes an
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increase in the sales in some weeks of the year and especially a regularity at

periodic intervals.

Figure A.1: Time series

This periodicity is confirmed by the correlogram (Figure A.2) which rep-

resents the autocorrelation of the series as a function of the lag.

The result, shown in Figure A.3, clearly proves how in all weeks the trend

remains similar: we notice a maximum on the first day which decreases, until

a minimum on the third day, and after that it has a slight increase.

In order to analyze the series, we have to make it stationary and therefore we

have implemented the detrending through the moving average, although we

loose some initial and final values (the latter being very useful for the predic-

tion). So we used the Holt-Winters model (exponential smoothing), which is

denoted in red in Figure A.4, thus resulting in an initial sales forecast in the

next week:
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Figure A.2: Correlogram

Figure A.3: Profile

> serief<-ts(serie1,frequency=7)

> serie.hw<-HoltWinters(serief,seasonal="additive")

> serie.hw

Holt-Winters exponential smoothing with trend and additive seasonal component.

Call:

HoltWinters(x = serief, seasonal = "additive")

Smoothing parameters:

alpha: 0.4344439

beta : 0.04848514

gamma: 0.4232419
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Figure A.4: Holt-Winters

Coefficients:

[,1]

a 2989.25514

b -36.94766

s1 -1703.41649

s2 -532.79118

s3 -199.48552

s4 -169.15905

s5 -364.33260

s6 514.17507

s7 -1425.35193

> plot(serie.hw)

> prev<-predict(serie.hw,n.ahead=7)

> prev

Time Series:

Start = c(48, 3)
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End = c(49, 2)

Frequency = 7

fit

[1,] 1248.891

[2,] 2382.569

[3,] 2678.927

[4,] 2672.305

[5,] 2440.184

[6,] 3281.744

[7,] 1305.270

A second prediction is obtained by the decomposition and estimation of the

components with the method loess which consists in estimating a locally

weighted polynomial regression at the point tk (with k fixed) using points of

its neighborhood.

We show the graph of this decomposition into seasonal, trend and irreg-

ular components (Figure A.5).

Figure A.5: Decomposition in components

Now we calculate forecasts and ranges of the three components:
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> prev.stag<-predict(stag.stl,7)

> prev.stag

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

48.28571 -1142.75224 -1142.75224 -1142.75224 -1142.75224 -1142.75224

48.42857 89.56213 89.56213 89.56213 89.56213 89.56213

48.57143 378.56325 378.56325 378.56325 378.56325 378.56325

48.71429 131.13198 131.13198 131.13198 131.13198 131.13198

48.85714 147.16995 147.16995 147.16995 147.16995 147.16995

49.00000 1193.92431 1193.92431 1193.92431 1193.92431 1193.92431

49.14286 -797.59933 -797.59933 -797.59933 -797.59933 -797.59933

> prev.trend<-predict(trend.stl,7)

> prev.trend

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

48.28571 2313.735 2255.400 2372.070 2224.5195 2402.951

48.42857 2220.072 2046.462 2393.683 1954.5575 2485.587

48.57143 2131.398 1859.787 2403.009 1716.0049 2546.791

48.71429 2047.446 1677.720 2417.172 1481.9992 2612.893

48.85714 1967.966 1498.356 2437.575 1249.7603 2686.171

49.00000 1892.718 1321.512 2463.924 1019.1340 2766.302

49.14286 1821.478 1147.356 2495.600 790.4974 2852.459

> prev.res<-predict(res.stl,7)

> prev.res

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

48.28571 2.236474 -712.1711 716.6441 -1090.356 1094.829

48.42857 2.236474 -712.1712 716.6441 -1090.356 1094.829

48.57143 2.236474 -712.1712 716.6441 -1090.356 1094.829

48.71429 2.236474 -712.1712 716.6441 -1090.356 1094.829

48.85714 2.236474 -712.1712 716.6441 -1090.356 1094.829

49.00000 2.236474 -712.1712 716.6441 -1090.356 1094.829

49.14286 2.236474 -712.1712 716.6441 -1090.356 1094.829

Therefore, we get the following values of prediction:
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Point Forecast

48.28571 1173,219234

48.42857 2311,870604

48.57143 2512,197724

48.71429 2180,814454

48.85714 2117,372424

49.00000 3088,878784

49.14286 1026,115144

After estimating the seasonal component, it is necessary to prove that the

seasonality over the months shows no trend; in this case we call it trend-

season. A simple and immediate way that we use is to refer to the function

seaplot().

Figure A.6: Seaplot.stl

In our case, the seasonality is constant in every week, in fact, Figure A.6

shows the weekly sub-series of seasonality; the order is from left to right and

from bottom to top (thus the first diagram at the bottom left is referred to

the seasonality observed on the first day of the week, and so on).
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A final prediction is obtained by the ARIMA model.

We show the graph (Figure A.7) and the results of the forecast:

> plot(previsione)

> previsione

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

48.28571 1423.474 572.2470 2274.700 121.6348 2725.313

48.42857 2568.165 1497.7902 3638.539 931.1682 4205.162

48.57143 2819.999 1679.1242 3960.875 1075.1814 4564.818

48.71429 2653.697 1414.4843 3892.909 758.4850 4548.908

48.85714 2535.439 1187.3477 3883.531 473.7111 4597.167

49.00000 3433.762 1978.2263 4889.297 1207.7124 5659.811

49.14286 1421.351 -101.5853 2944.287 -907.7789 3750.480

49.28571 1128.699 -545.8531 2803.251 -1432.3073 3689.705

49.42857 2399.166 581.1618 4217.169 -381.2312 5179.562

49.57143 2591.403 677.6506 4505.156 -335.4290 5518.236

49.71429 2486.855 486.8052 4486.905 -571.9573 5545.668

49.85714 2304.635 203.0068 4406.264 -909.5281 5518.799

50.00000 3264.413 1059.9267 5468.900 -107.0581 6635.885

50.14286 1282.890 -999.7158 3565.496 -2208.0542 4773.834

134



Appendix A. Achieved goals

Figure A.7: ARIMA

After estimating the model, we must verify how well the data fit a statist-

ical model. An important element for such a verification is the coefficient of

determination R2; it measures the rate of variability explained by the model

compared to the variability of Y:

R2 =
ESS

TSS
= 1− RSS

TSS

where:

• ESS =
∑T

t=1(Ŷt − Y )2 is the regression sum of squares, also called the

explained sum of squares;

• TSS =
∑T

t=1(Yt − Y )2 is the total sum of squares (proportional to the

variance of the data);

• RSS =
∑T

t=1 R
2
t =

∑T

t=1(Yt − Ŷy)
2 is the sum of squares of residuals,

also called the residual sum of squares.

When the coefficient R2 is equal to 1, it means that the regression line per-

fectly fits the data, while when R2 is equal to 0, it means that the line does
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not fit the data at all.

Therefore, we calculate the coefficient for the Holt-Winters, the decom-

position and the ARIMA models getting the following values: 0.8368674,

0.8781064 and 0.7328934, respectively. Since we obtain results very close

to 1, we can conclude that the models could usefully be used for predictive

purposes.

For the three obtained forecasts, we verified the validity of the assump-

tions (test specification):

- average waste equal to zero (t-test);

- errors normality (Shapiro-Wilk and Jarque-Bera);

- homoscedasticity (Breusch-Pagan);

- correlation between residues (Box-Pierce and Ljung-Box).

Only models passing all tests and having a good determination coefficient

R2 can be accepted. So, since for the examined product, in the Holt-Winters

model and in the ARIMA model residuals are not normally distributed (and

therefore the second assumption is not verified), only the decomposition model

is acceptable and, hence, it is the one we will use for our optimization prob-

lem.

With a similar procedure we obtained estimates of all 7 goods produced by

the considered production line, but, as a matter of corporate privacy, will

not present them.
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Inventory management

In this section, we study a model of inventory management in order to de-

termine the production periods (days), which satisfy the demand forecast

obtained in the previous section, while minimizing the production and the

storing costs. Later, we shall apply our model so to determine the optimal

amounts we are looking for.

The Wagner-Whitin model of inventory management (1958) is part of

the Lot sizing problems, characterized by the fact that the demand and the

production and storage costs may vary over time.

The aim is to determine the production x1, x2, . . . , xN and the storage s1, s2, . . . , sN

in each period in such a way that the demands d1, d2, . . . , dN (obtained in

the previous section), have, in stock, an initial value s0 = 0. Of course we

should try to minimize production and storage costs. Graphically we have a

situation shown in Figure B.1.

Since the production and the storage costs may vary over time, we have the

following estimates:

- total production cost at time t:

Ct(xt) = Atη(xt) + ct(xt);
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Figure B.1: Inventory management

- total storage cost at time t:

Ht(st) = πtη(st) + ht(st);

where: At and πt are the fixed production cost and the fixed storage cost

respectively;

η(xt) =

{

1 if xt > 0

0 if xt ≤ 0;
ct and ht denote the production and the storage costs.

We have to solve the following optimization problem:






min f(x, s) =
N∑

t=1

(
Ct(xt) +Ht(st)

)

xt + st−1 − st = dt t = 1, . . . , N

xt, st ≥ 0 t = 1, . . . , N.

If (x, s) is a solution to the previous problem, then in any period t ∈
{1, . . . , N} one of the following cases holds:

• if xt > 0 and st−1 = 0, then we have a positive production and no

inventory;

• if xt = 0 and st−1 > 0, then we have no production and a positive

inventory.

Definition 7. If xt > 0, then time t ∈ {1, . . . , N} is called productive

time.
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The demand in a nonproductive time h ∈ {1, . . . , N} is satisfied by the

production in the last productive time k ∈ {1, . . . , N}, where k < h.

Definition 8. The set of nonproductive times when the demand is satisfied

in a special productive time is called production interval.

Let j be the productive time satisfying the demand of nonproductive

times {j + 1, . . . , k}, then these times are subsequent.

After establishing the production interval {j, j + 1, . . . , k}, it is possible to

evaluate the production and the storage:

x̄j =
k∑

r=j

dr and s̄t =
k∑

r=t+1

dr, t ∈ {j, j + 1, . . . , k}.

Further, we have:

- x̄t = 0 for t = j + 1, . . . , k;

- s̄t > 0 for t = j, . . . , k − 1;

- s̄j−1 = s̄k = 0.

A solution (x̄, s̄) depends on the set of productive times J̄ = {j1, . . . , jq}.
Indeed, from this set we can deduce the production and the storage at each

time.

In any productive interval {j, . . . , k}, the total cost, given by the sum of

production and storage costs, is as follows:

M(j, k) = Cj(x̄j) +
k−1∑

t=j

Ht(s̄t) = Cj

( k∑

r=j

dr

)

+
k−1∑

t=j

Ht

( k∑

r=t+1

dr

)

.

Now we introduce Fk, namely the minimum production and storage cost

required in order to satisfy the demand in the interval {1, . . . , k}. Hence, FN

represents the optimal value.

We assume that the productive times form the set J = {j1, . . . , jq}; the total
production and storage cost is given by:

Z(J) =

q−1
∑

s=1

M(js, js+1 − 1) +M(jq, N).
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As a consequence, we have to find the set J∗ ⊆ {1, . . . , N} such that Z(J∗) =

FN .

B.1 Computational procedure

We find Fk recursively.

Assume we have to satisfy the demand in the time horizon {1, . . . , k} and we

know the optimal solution Jk = {j1, . . . , jq}. Then, the minimal cost in such

a time interval is:

Fk = M(j1, j2 − 1) +M(j2, j3 − 1) + . . .+M(jq−1, jq − 1) +M(jq, k).

But, if the horizon is {j1, . . . , jq − 1}, then we have:

Fjq−1 = M(j1, j2 − 1) +M(j2, j3 − 1) + . . .+M(jq−1, jq − 1),

therefore:

Fk = Fjq−1 +M(jq, k).

Time jq represents the last productive time of the optimal solution associated

with the time interval {1, . . . , k}. If j ∈ {1, . . . , k} is the last productive time,

then the minimal production and storage cost is given by Fj−1 +M(j, k).

As a consequence, Fk ≤ Fj−1 +M(j, k) ∀j ∈ {1, . . . , k}.
Hence, we can conclude:

Fk = min
1≤j≤k

{Fj−1 +M(j, k)}.

Such a result is a recursive estimate of Fk depending on the values of

Fj con j = 1, . . . , k − 1. If we set F0 = 0, we can calculate all the values

F1, F2, . . . , FN , and the last one allows us to solve the problem.

We implemented the algorithm in C++ code.
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