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Introduction

In this Ph.D. thesis we give results regarding an important class of good subsemigroups of Nr.

The concept of good semigroup was introduced in [3]. Its definition depends on the properties

of the value semigroups of one dimensional analytically unramified rings (for example the local

rings of an algebraic curve), but in the same paper it is shown that the class of good semigroups

is bigger than the class of value semigroups. Therefore the good semigroups can be seen as

a natural generalization of the numerical semigroups and can be studied without referring to

the ring theory context, with a more combinatorial approach. Here we focus on the local good

semigroups, i.e good semigroups S ⊆ N
r such that the only element of S with zero component

is the zero vector.

We focus on the class of local Arf good semigroups. This is motivated by the importance of

the Arf numerical semigroups in the study of the equivalence between two algebroid branches.

Given an algebroid branch R, its multiplicity sequence is defined to be the sequence of the

multiplicities of the successive blowups Ri of R. Two algebroid branches are equivalent if and

only if they have the same multiplicity sequence (cf. [5, Definition 1.5.11]). In [1] Cahit Arf

introduced the concept of Arf ring and it is shown that for each algebroid branch R there exists

a smallest Arf overring ∗R, called the Arf closure of R, that has also the same multiplicity

sequence of R, and it is described a procedure to compute it. In the same paper it is proved

that two algebroid branches are equivalent if and only if their Arf closures have the same value

semigroup, that is a numerical Arf semigroup, i.e. a numerical semigroup S such that S(s)− s
is a semigroup, for each s ∈ S, where S(s) = {n ∈ S;n ≥ s}.

All these facts can be generalized to algebroid curves (with more than one branch), and this

naturally leads to give a more general definition of Arf ring and of Arf good semigroup of Nr.

In the numerical case an Arf semigroup S = {s0 = 0 < s1 < s2, . . .} is completely de-

scribed by its multiplicity sequence, that is the sequence of the differences si+1− si. Extending

the concept of multiplicity sequence, in [3] it is also shown that to each local Arf good semi-

group can be associated a multiplicity tree that characterizes the semigroup completely. A tree

T of vectors of Nr has to satisfy some properties to be a multiplicity tree of a local Arf good

semigroup. For instance it must have multiplicity sequences along its branches (since the pro-

jections are Arf numerical semigroups) and each node must be able to be expressed as a sum of

nodes in a subtree of T rooted in it. Thus, taking in account this 1-1 correspondence, our aim is

to study Arf good semigroups by characterizing their multiplicity trees, finding an unambiguous

way to describe them. Using this approach, we can also deal with the problem of finding the
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Arf closure of a good semigroup S, that is the smallest Arf semigroup containing S.

Given an algebroid curve R, it is still possible to consider the Arf closure of R as the

smallest Arf ring ∗R containing R. In [4] it is proved that two algebroid curves are equivalent

if and only if it is possible to permute their branches in a way that the value semigroups of their

Arf closures (that are Arf good semigroups) have the same multiplicity tree. This stresses the

importance to have a fast way to compute the Arf closure of an algebroid curve, and we see how

the characterization of the properties of the multiplicity trees can be useful to this aim.

The structure of the thesis is the following.

In Chapter 1 we define and give the main properties of all the basic objects of this thesis.

In order to motivate the definition of the concept of Arf good semigroup, we recall the main

aspects of the Arf theory, the reasons behind its introduction in the study of algebroid branches

and its generalization to algebroid curves.

In Chapter 2, we start considering the Arf good subsemigroups of Nr by focusing on the

properties that arise from their combinatorial interpretation, in order to find an unambiguous

way to describe them and to deal with the problem of finding the Arf closure of a good semi-

group. Given a collection of r multiplicity sequences E, we define the set σ(E) of all the Arf

semigroups S such that the i-th projection Si is an Arf numerical semigroup associated to the

i-th multiplicity sequences of E. We define also the set τ(E) of the corresponding multiplic-

ity trees and we describe a tree in τ(E) by an upper triangular matrix (pi,j), where pi,j is the

highest level where the i-th and j-th branches are glued, and we give a way to deduce from

E the maximal value that can be assigned to pi,j . This fact lets us to understand when the set

σ(E) is finite. We introduce the class of untwisted trees that are easier to study because they

are completely described by the second diagonal of their matrix, and we notice that a tree can

be always transformed into an untwisted one by permuting its branches.

In Section 2.2 we address the problem of understanding when a set of vectors G ⊆ N
r

determines uniquely an Arf semigroup of Nr. Thus, we define Arf(G) as the minimum of the

set S(G) = {S : S ⊆ N
n is an Arf semigroup and G ⊆ S}, and we find the properties that G

has to satisfy in order to have a good definition for Arf(G) (cf. Theorem 2.2.1). Finally, given

a G satisfying these properties, we give a procedure for computing Arf(G).
In Section 2.3 we adapt the techniques learned in the previous section to the problem of

determining the Arf closure of a good semigroup. In [8], the authors solved this problem for

r = 2, leaving it open for larger dimensions. In this section, we use the fact that a good

semigroup S can be completely described by its finite subset Small(S) = {s ∈ S : s ≤ δ},
where δ is the smallest element such that δ + N

r ⊆ S, whose existence is guaranteed by the

properties of the good semigroups.

Finally, in Section 2.4, we address the inverse problem: given an Arf semigroup S ⊆ N
r,

find a set of vectors G ⊆ N
r, called set of generators of S, such that Arf(G) = S, in order to

find a possible generalization of the concept of characters introduced for the numerical case. In

Theorem 2.4.1, we find the properties that such a G has to satisfy and we focus on the problem

of finding a minimal one. From this point of view we are able to give a lower and an upper

bound for the minimal cardinality for a set of generators of a given Arf semigroup (Corollary

2.4.8). With an example we also show that, given an Arf semigroup S, it is possible to find
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minimal sets of generators with distinct cardinalities. The contents of this chapter are based on

[18].

In Chapter 3, we give useful procedures to compute all the Arf good semigroups satisfying

some specific conditions.

In Section 3.1 we consider the problem of finding the set Cond(c) consisting of all the Arf

good subsemigroups of Nr with a fixed conductor c, where the conductor c of a good semigroup

S ⊆ N
r is the minimal vector such that c + N

r ⊆ S. When r = 1, the problem is equivalent

to finding the set of the multiplicity sequences of all the Arf numerical semigroups with a fixed

conductor. This question was already addressed in [12], where the authors found a recursive

algorithm for the computation of such a set. In Subsection 3.1.1, it is presented a non-recursive

procedure to determine such a set, that is faster than the previous one, when used for large value

of the conductor.

In Subsection 3.1.3 we address the general case and, using Lemma 3.1.4 and the base cases

for r = 1 and r = 2, we are able to present a procedure that builds inductively the sets Cond(c)
in all dimensions and for any value of the vector c. We give a strategy for computing the set

Cond(c) of all the possible multiplicity trees (twisted and untwisted) associated to an Arf semi-

group with conductor c. At the end of the section we give an example with r = 3 on the com-

putation of this set and we present some tables containing the cardinalities of the constructed

sets for particular values of the conductor c.

In Section 3.2, we give a procedure that computes the set Gen(r, n) of the untwisted mul-

tiplicity trees of all the Arf good semigroups of Nr with genus n. The procedure works in-

ductively and it is based on Theorem 3.2.1, that gives a way to compute the genus of an Arf

good semigroup of Nr with an untwisted multiplicity tree from its representation TE , and on the

numerical case r = 1, that is solved in Subsection 3.2.1 by accordingly adapting the algorithm

given for the conductor in the previous section (this problem was also considered in [12]). Fi-

nally, we give a strategy for computing the set Gen(r, n) of all the possible multiplicity trees

(twisted and untwisted) associated to an Arf semigroup with genus n in N
r. At the end of the

section we give an example of the application of the developed procedure and we present some

tables containing cardinalites of the sets Gen(r, n) for some values of r and n. The contents of

this chapter are based on the papers [19] and [20]

In Chapter 4, we deal with the problem of finding an efficient algorithm for the computation

of the Arf closure of an algebroid curve with more than one branch. In particular we generalize

the procedure presented in [2], where Arslan and Sahin addressed the algebroid branch case.

In Section 4.1, we introduce an algorithm for the computation of the multiplicity tree of an al-

gebroid curve with two branches R starting from its parametrization. This algorithm will return

the parametrizations of all rings Ri in the Lipman sequence. Then we give a way to recover a

presentation for the Arf Closure ∗R from the information contained in the multiplicity tree (cf.

Discussion 4.2.2).

In Section 4.3 we see how to generalize the algorithm presented in the previous section to the

case of curves with an arbitrary number of branches.

In Section 2.3, we give a way to improve the efficiency of our algorithm. In particular, we

see that it is possible to compute the Arf closure of R by applying the algorithm to an alge-
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broid curve with a simpler parametrization obtained by truncating all the monomials with order

bigger than the conductor of the Arf semigroup ν(R∗) (cf.Theorem 4.4.1). Thus, in order to

determine this bound, we need a way to estimate the conductor of ν(R∗) directly from the

parametrization of R. We firstly analyse the case of curves with two branches having distinct

multiplicity sequences along their branches (we can recover the multiplicity sequences by using

the algorithm of Arslan and Sahin on each branch). In this case, it is possible to find a limitation

for the conductor by using only the numerical properties given by the multiplicity sequences

(cf.Proposition 2.1.2). Then, we study the case of two-branches algebroid curves with the same

multiplicity sequence on their branches. In this case, we need to work on the parametrization of

R to find a suitable bound (cf.Lemma 4.4.4 and Proposition 4.4.5). We conclude by seeing how

it is possible to use the bound in the two-branches case to compute a bound in the general case

(cf.Remark 22). In the end, we present an example that illustrates how the computation of the

Arf closure is simplified by the truncation given by the given bound (cf.Example 4.4.6). The

contents of this chapter are based on the results contained in [15].

All the procedures presented here have been implemented in GAP ([11]). The corresponding

codes can be found in https://github.com/pedritomelenas/Arf-semigroups.
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Chapter 1

Preliminaries

In this chapter we define all the main objects of this thesis, in order to explain the reasons behind

the introduction of the concept of Arf good semigroup. In Section 1.1 we recall the definition

and some basic properties of the numerical semigroups. In Section 1.2 we introduce the concept

of algebroid branch explaining how it is related to the numerical semigroups and we give the

definition of equivalence between these objects. Then, we introduce the Arf’s theory, giving the

concepts of Arf closure of an algebroid branch and of Arf numerical semigroup, showing their

usefulness in the problem of establishing equivalence. Finally, in Section 1.4, we explain how

it is possible to extend the aforementioned constructions for the algebroid branches to the more

general context of algebroid curves. In particular, we present the main properties of the good

subsemigroups of Nr that naturally arise as a generalization of numerical semigroup, and we

study the Arf property in this case.

1.1 Generalities on numerical semigroups

Definition 1.1.1. A numerical semigroup S is a submonoid of (N,+) having finite complement

in N, that is, |N \ S| <∞.
Definition 1.1.2. Given a numerical semigroup S, the maximum F (S) of the set Z\S is known

as the Frobenius number of S.

The conductor c(S) of S is the smallest number such that n ∈ S for all n ≥ c(S), and it is

clear that we have c(S) = F (S) + 1.

Definition 1.1.3. Given a numerical semigroup S, the cardinality of the finite set N\S is called

genus of S, and denoted by g(S). The elements of N \ S are called gaps of the semigroup.

Proposition 1.1.4. The submonoid

S = 〈g1, . . . , gk〉 =
{

k∑

i=1

nigi|ni ∈ N

}

12



is a numerical semigroup if and only if gcd(g1, . . . , gk) = 1.

Definition 1.1.5. E ⊆ S is an ideal of S if for all e ∈ E and for all s ∈ S we have e+ s ∈ E.

A system of generators of a numerical semigroup S is a set of elementsA such that 〈A〉 = S.

Proposition 1.1.6. For every numerical semigroup S there exists a unique minimal system of

generators (with respect to inclusion).

Denoted byM = S\{0} the maximal ideal of S, and by nM = {m1 + · · ·+mn|mi ∈M},
we have that M \ 2M is the required minimal system of generators.

Example 1.1.7. Let us consider the numerical semigroup

S = {0, 4, 6, 8, 10, 12, 13, 14, 16,→},

where with n→ we mean that all the integers larger than n are in S.

We have M = {4, 6, 8, 10, 12, 13, 14, 16,→} and 2M = {8, 10, 12, 14, 16,→}.
Thus S = 〈4, 6, 13〉 .

Definition 1.1.8. We call embedding dimension of a numerical semigroup, and we denote it by

e.d.(S) the cardinality |M \ 2M | of its minimal system of generators. The smallest number

among the generators, is called multiplicity of the semigroup and denoted by e(S).

Notice that the inequality e.d.(S) ≤ e(S) holds since if x, y ∈ M \ 2M and x 6= y, then x
and y have to be different modulo e(S) for the minimality of the system of generators.

1.2 Algebroid branches

The concept of numerical semigroup plays a significant role in algebraic geometry and ring

theory. Under certain circumstances, it is possible to associate to a ring R a numerical semi-

group that can encode some of its properties. The following class of rings is an example of this

situation.

Example 1.2.1. Let R be a one-dimensional local domain and suppose that R is also analyti-

cally irreducible, i.e., the completion R̂ is a domain, or, equivalently, the integral closure R of

R is a DVR, finite over R. Furthermore, denoted by M and N the maximal ideals, respectively

of R and R, we suppose that R/M ∼= R/N. Since R is a DVR, its maximal ideal N has the

form N = (t), then if r ∈ R we can write r = utn where u is an invertible element of R. Hence

there exists a valuation ν : R → N ∪ {∞} such that ν(0) = ∞ and ν(r = utn) = n. Then the

set

ν(R) = {ν(R)|r ∈ R \ {0}}
is a numerical semigroup (the fact that the complement N \ ν(R) is finite follows from the fact

that R is finitely generated as R-module).

13



An important example of rings satisfying the previous properties are the algebroid branches.

We firstly give the definition of algebroid curve.

Definition 1.2.2. An algebroid curve R, is a one-dimensional local ring, complete for the M-

adic topology (being M is maximal ideal). We denote by K ∼= R/M its coefficient field.

Definition 1.2.3. By an algebroid branch we mean an algebroid curve that is also a domain.

The following result, due to Cohen (cf. [6, Cohen ’s Structure Theorem ]) gives us important

information regarding the structure of an algebroid curve.

Theorem 1.2.4. LetR be an algebroid curve, then there exists an ideal I of K[[x1, . . . , xk]] such

thatR ∼= K[[x1, . . . , xk]]/I. Furthermore, there exists prime ideals P1, . . . , Pr ⊆ K[[x1, . . . , xk]]
such that I =

⋂r

i=1 Pi. Notice also that k = e.d.(R) = dim(M/M2).

We firstly focus on the algebroid branches and their connection with numerical semigroups.

From the Cohen’s Structure Theorem follows that if R is an algebroid branch, then R ∼=
K[[t]]. A consequence of this fact is that we can always associate to a branch a parametrization

in power series.

Definition 1.2.5. Let R be an algebroid branch and x1, . . . , xN a system of generators for the

maximal ideal M of R. Let us consider the map

C : K[[X1, . . . , XN ]]→ R,

such that C(Xi) = xi for all i. The map C exists by Theorem 1.2.4. Then a parametrization of

R is a K−algebra homomorphism

Ψ : K[[X1, . . . , XN ]]→ K[[t]],

such that ker(C) ⊆ ker(Ψ). Thus, we have

R ∼= K[[φ1(t), . . . , φN(t)]],

where φi(t) = Ψ(Xi) ∈ K[[t]]. Hence if f ∈ ker(C) we have f(φ1(t), . . . , φN(t)) = 0.

Example 1.2.6. Let us consider the algebroid curve

R = K[[x, y]]/(y2 − x3 − x2).

The polynomial y2 − x3 − x2 is irreducible in K[x, y] but not in its completion with respect the

maximal ideal (x, y). In fact, we have

y2 − x3 − x2 = (y − x
√
1 + x)(y + x

√
1 + x),

where
√
1 + x ∈ K[[x, y]]. Thus, R is not an algebroid branch but an algebroid curve con-

sisting of two algebroid branches. Specifically, they are K[[x, y]]/P1 and K[[x, y]]/P2, where

P1 =
〈
y − x− 1

2
x2 + 1

8
x3 + . . .

〉
and P2 =

〈
y + x+ 1

2
x2 − 1

8
x3 + . . .

〉
.

The parametrizations corresponding to the two branches are:

14



• K[[x, y]]/P1 = K[[t, t+ 1
2
t2 − 1

8
t3 + . . . ]];

• K[[x, y]]/P2 = K[[t,−t− 1
2
t2 + 1

8
t3 + . . . ]].

The fact that the integral closure R̄ is isomorphic to the DVR K[[t]], let us also to consider,

as in Example 1.2.1, a valuation ν and the numerical semigroup ν(R) = S.

Definition 1.2.7. The multiplicity of an algebroid branch R, is given by the smallest positive

value e(R) in S = ν(R).

Example 1.2.8. Let us consider the algebroid branch

R = K[[x, y, z]]/(x3 − yz, y3 − z2) ∼= K[[t5, t6, t9]].

We have R = K[[t]] and

S = ν(R) = 〈5, 6, 9〉 = {0, 5, 6, 9, 10, 11, 12, 14,→}.

We have e(R) = 5.

Notice that, if we represent an algebroid branch by a parametrization K[[φ1(t), . . . , φr(t)]],
then we can deduce that e(R) = min{ord(φi(t)− φi(0)) : i = 1, . . . , r}.

Example 1.2.9. Let us consider the algebroid branch

R = K[[t4, t6 + t7]].

Then ν(R) = 〈4, 6, 13〉 = {0, 4, 6, 8, 10, 12, 13, 14, 16,→}. Notice that the embedding dimen-

sion of R is two, while e.d.(ν(R)) = 3.

1.2.1 Equivalence between algebroid branches

Consider an algebroid branch R = K[[φ1(t), . . . , φr(t)]]. We suppose that φi(0) = 0 for all

i = 1, . . . , r, thus the branch pass through the origin of Ar. Without loss of generality, we can

assume that φ1(t) is such that ord(φ1(t)) = e(R). Furthermore it is not restrictive to assume

that ord(φi) > e(R) for all i 6= 1. We want to find a way to deduce from the parametrization

of R the parametrization of the blowup of the branch at the origin (in the affine chart where it

intersect the exceptional divisor). We recall that the blowup of the affine space A
r at the origin

can be described in the following way:

Bl(Ar) = {((x1, ..., xr), [a1 : · · · : ar]) ∈ A
r × P

r−1 | xiaj = xjai, 1 ≤ i, j ≤ r }.

Denote by U1 the affine chart corresponding to the points of Bl(Ar) such that a1 6= 0.

In U1 we can therefore consider the local coordinates Xi:

X1 = x1, X2 = a2/a1, ..., Xr = ar/a1.
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U1 is the affine chart in which the transformed branch intersects the exceptional divisor (it

follows from the fact that φ1(t) has the least order among the φi(t)).
The parametrization of the transformed branch is therefore given by

Bl(R) = K

[[

φ1(t),
φ2(t)

φ1(t)
. . . ,

φr(t)

φ1(t)

]]

.

Thus the blowup of an algebroid branch is still an algebroid branch and from the assump-

tions on the φi(t), it still passes through the origin. Notice that

e(Bl(R)) = min{ord(φ1(t)), ord(φ2(t)/φ1(t)), . . . , ord(φr(t)/φ1(t))} ≤ ord(φ1(t)) = e(R),

so the multiplicity of the blowup ofR is less or equal than the multiplicity ofR. So, it is possible

to repeat the previous process. If we set B2 = Bl(R) and Bi = Bl(Bi−1), we can consider the

following sequence of algebroid branches:

R ⊆ B2 ⊆ . . . Bn ⊆ . . . .

The fact that the integral closure R = K[[t]] is finite over R guarantees that there exists a

N ∈ N, such that Bn = K[[t]] for all n ≥ N . From the geometric point of view, it means that

the singularity of the algebroid branch at the origin can be solved after considering a sufficient

number of blowups.

Definition 1.2.10. If R is an algebroid branch, we can consider the previous chain of blowups

R ⊆ B2 ⊆ . . . Bn ⊆ · · · ⊆ BN = K[[t]] = BN+1 = . . .

The non-increasing sequence

e(R) ≥ e(B2) ≥ e(BN) . . . 1, 1, . . . ,

is known as the multiplicity sequence of the algebroid branch R.

The concept of multiplicity sequence plays a significant role in the study of the algebroid

branches as we can see in the following definition.

Definition 1.2.11. Two algebroid branches are said to be equivalent if they have the same

multiplicity sequence.

This equivalence extends the Zariski equivalence between plane branches (cf. [17]) to

branches of any embedding dimension and has been studied by several authors (cf. e.g. [5,

Definition 1.5.11]).

The problem of determining the equivalence between two algebroid branches through the

calculation of their successive blowups, despite being more geometrical in nature, was com-

pletely solved by Cahit Arf by focusing on its algebraic aspect. In his paper [1], he answered

to some open questions arised by Du Val in [10], regarding the computation of the multiplicity

sequence of a branch starting from its parametrization. In the following section we summarize

the theory developed by Arf.
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1.3 Arf’s theory

Let us consider an algebroid branch R. We know from Theorem 1.2.4 that it can be seen as a

subring of the formal power series K[[t]] and we can consider the numerical semigroup ν(R).
We denote by c = C(ν(R)) the conductor of ν(R) and we describe the elements of R in the

following way

ν(R) = {0 = i0 < i1 < . . . < im,→},
where we are assuming im = c. For each element ir of ν(R) we choose an arbitrary element

Sir of R such that ord(Sir) = ir. Notice that every element of R can be written as
∑∞

j=0 ajSij

with aj ∈ K. Therefore it is not difficult to prove that

R = K+KSi1 +KSi2 + · · ·+K[[t]]Sim .

For each n ∈ N we consider the following ideal of R

In = {r ∈ R : ord(r) ≥ n}.
For each n ∈ ν(R) we consider the set

In/Sn =

{
r

Sn

: r ∈ In
}

.

Notice that, in general, In/Sn is not a ring, so we can denote by [In/Sn] the smallest subring of

R inside K[[t]] that contains In/Sn. We have the following theorem proved in [1, Theorem 3,

p.259].

Theorem 1.3.1. The ring [In/Sn] does not depend on the choice of the elements Sn ∈ R.
From the previous theorem, it follows that, in the following, we can simply denote [In/Sn]

by [In]. The following example, due to Arf (cf. [1, p.260]), shows that, in general, we have

ν([In]) 6= 〈ν(In/Sn)〉.
Example 1.3.2. Notice that the containment ν(In/Sn) ⊆ ν([In]) is trivial, thus we also have

〈ν(In/Sn)〉 ⊆ ν([In]). Let us consider the algebroid branch R = K[[t4, t10+ t15]]. We have that

ν(R) = {0, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 33,→}.
Suppose n = 4 and consider S4 = t4 ∈ R. We have

ν(I4/t
4) = {0, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 29,→},

then
〈
ν(I4/t

4)
〉
= {0, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29,→}.

But in [I4] we can find the element

h(t) =

(
t10 + t15

t4

)2

− (t4)3,

such that ord(h(t)) = 17 /∈ 〈ν(I4/t4)〉.
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We are ready to define the main objects of this section.

Definition 1.3.3. An algebroid branchR is called an Arf ring if [In] = In/Sn for each n ∈ ν(R).
Example 1.3.4. From the definition, K[[t]] is an Arf ring.

Notice that, if R is an Arf ring, then for each n, the integers

in − in = 0, in+1 − in, in+2 − in . . . ,

must form a numerical semigroup. This leads to the following important definition.

Definition 1.3.5. Let S be a numerical semigroup. If s ∈ S, denote by S(s) = {n ∈ S;n ≥ s}.
Then S is an Arf numerical semigroup if

S(s)− s = {n− s|n ∈ S(s)}

is a numerical semigroup for each s ∈ S.

Example 1.3.6. From the definition, N is an Arf numerical semigroup.

Given an Arf numerical semigroup S = {i0 = 0 < i1 < i2 < · · · }, the multiplicity

sequence of S is the sequence m = {mj = ij − ij−1|j ≥ 1}.
It is evident from the definition that the multiplicity sequence of an Arf numerical semigroup

satisfies the following properties.

Proposition 1.3.7. Let S be an Arf numerical semigroup, and letm be its multiplicity sequence.

Then we have:

• m = {mi|i ≥ 1} is a non-increasing sequence of positive integers;

• there exists k ∈ N
∗ such that mn = 1 for all n ≥ k;

• for all n ∈ N
∗ there exists s(n) ≥ n+ 1 such that mn =

∑s(n)
k=n+1mk.

We will call multiplicity sequence any sequence that satisfies the conditions of the previous

proposition. We fix some notation regarding the representation of a multiplicity sequence m.

Since m = {mn : n ≥ 1} is a sequence of integers that stabilizes to 1, we can describe it by a

finite list

m = [m1, . . . ,ml(m)],

with the convention that mj = 1 for all j > l(m) and ml(m) 6= 1. The integer l(m), that

appears in the previous description, is the length of the multiplicity sequence m. Notice that the

multiplicity sequence m = {mi = 1 : i ∈ N}, will be represented by the empty list [ ], and we

set by definition l([ ]) = 0.

In [16, Corollary 39] it is proved the following result.

Proposition 1.3.8. A non-empty subset of N is an Arf numerical semigroup if and only if there

exists a multiplicity sequence m = [m1, . . . ,ml(m)] such that

S =
{
0,m1,m1 +m2, . . . ,m1 + · · ·+ml(m),→

}
.
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So the multiplicity sequence of an Arf semigroup characterizes the semigroup completely,

and to give an Arf numerical semigroup is equivalent to give its multiplicity sequence. Through-

out this thesis, given a multiplicity sequence m, we denote by AS(m) the Arf numerical semi-

group corresponding to m.

Notice that, if R is an Arf ring, then the numerical semigroup ν(R) is an Arf semigroup,

while the converse is not true in general.

We give now some further results on the properties of Arf rings that can be found in [1].

Theorem 1.3.9. If R is an Arf ring, then [Iin ] is also an Arf ring for all n ∈ N.

Theorem 1.3.10. • The intersection of a finite number of Arf rings is an Arf ring.

• The intersection of a finite number of Arf numerical semigroups is an Arf numerical semi-

group.

Theorem 1.3.10 and Examples 1.3.4 and 1.3.6 ensure that the following definition is not

void.

Definition 1.3.11. Let S be a numerical semigroup, we call Arf closure of S, and denote it by
∗S, the smallest Arf numerical semigroup containing S.

Similarly, given an algebroid branch R, we call Arf closure of R, and denote it by ∗R, the

smallest Arf ring containing R.

Now we give an algorithm for computing the Arf closure of a numerical semigroup. It is

based on the following procedure, known as the modified Jacobian algorithm of Du Val (cf.

[10]).

Definition 1.3.12 (Modified Jacobian algorithm). The input of the algorithm is a finite set of

non-negative integers J1 = {j1,1 < . . . < j1,n1}, with gcd(j1,1, . . . , j1,n1) = d.
Suppose that j1,2 = q1j1,1 + r1, with r1 < j1,1.
We consider the set

J2 = {j1,1, j1,2 − q1j1,1, . . . , j1,n1 − q1j1,1} \ {0} = {j2,1 < . . . < j2,n2}.

Suppose that j2,2 = q2j2,1 + r2, with r2 < j2,1, and we repeat the construction for J3,

subtracting q2j2,1.
The algorithm stops when we reach a N such that d ∈ JN , and this will eventually hap-

pen because we started with a set J1 with gcd(J1) = d and we are essentially performing an

euclidean algorithm. The output is the sequence

j1,1, . . . , j1,1
︸ ︷︷ ︸

q1 times

, j2,1, . . . , j2,1
︸ ︷︷ ︸

q2 times

, . . . , jN−1,1, . . . , jN−1,1
︸ ︷︷ ︸

qN−1 times

, d, d, . . . ,

that is a multiplicity sequence when d = 1.
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Example 1.3.13. Let us consider J1 = {8, 12, 18, 23, 25}. We have gcd(8, 12, 18, 23, 25) = 1
so we will find a multiplicity sequence. We have:

1. 12 = 1 · 8 + 4, then j1,1 = 8 and q1 = 1. Then

J2 = {8, 12− 8, 18− 8, 23− 8, 25− 8} \ {0} = {4, 8, 10, 15, 17}.

2. 8 = 2 · 4, then j2,1 = 4 and q2 = 2. Then

J3 = {4, 8− 8, 10− 8, 15− 8, 17− 8} \ {0} = {2, 4, 7, 9}.

3. 4 = 2 · 2, then j3,1 = 2 and q3 = 2. Then

J4 = {2, 4− 4, 7− 4, 9− 4} \ {0} = {2, 3, 5}.

4. 3 = 1 · 2 + 1, then j4,1 = 2 and q4 = 1. Then

J5 = {2, 3− 2, 5− 2} \ {0} = {1, 2, 3}.

We found 1 ∈ J5, so the procedure stops.

The output is the multiplicity sequence m = [8, 4, 4, 2, 2, 2].

To compute the Arf closure of a numerical semigroup S, it suffices to apply the modified

Jacobian algorithm of Du Val to a minimal system of generators of S.

Example 1.3.14. Suppose that

S = 〈8, 12, 18, 23, 25〉 = {0, 8, 12, 16, 18, 20, 23, 24, 25, 26, 28, 30,→}.

If we apply the modified Jacobian algorithm to the minimal system of generators of S, we obtain

the multiplicity sequence m = [8, 4, 4, 2, 2, 2], then the Arf closure of S is the Arf semigroup

AS(m) = {0, 8, 12, 16, 18, 20, 22→}.

Now, we explain how we can construct the Arf closure of an algebroid branch. From the

construction, we will deduce the connection between the multiplicity sequence of an algebroid

branch and the multiplicity sequence of an Arf semigroup, finding the algebraic answer to the

problem of Du Val.

We follow the construction explained in [1, p.267].

Let R be an algebroid branch, such that ν(R) = {0 = i0 < i1 < . . . , < im,→}. We have

already noticed that it can be presented as

R = K+KSi1 +KSi2 + · · ·+K[[t]]Siim
.
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Let R1 denote the ring [Ii1 ], that is the smallest ring containing Ii1/Si1 . Using the previous

presentation we can deduce that

R2 = [Ii1 ] =
∑

K

(
Si2

Si1

)α2

·
(
Si3

Si1

)α3

. . .

(
Sim−1

Si1

)αm−1

+K[[t]]
Sim

Si1

,

where the summation is taken over all the αi with i = 2, . . . ,m− 1 such that

α2(i2 − i1) + α3(i3 − i1) + . . .+ αm−1(im−1 − i1) < im − i1,

in order to prevent redundancy with elements arising by the term K[[t]]Sim

Si1
.

The Arf closure ∗R of R clearly contains K+R2Si1 . On the other hand, K+R2Si1 contains

R, thus, from the definition of Arf closure we can deduce that

∗R = K+ ∗R2Si1 .

Now we can repeat the previous procedure, deriving from a ring Ri the ring Ri+1. If N is

sufficiently large, we will find RN = K[[t]]. Now, if we denote by Ti an arbitrary element of

minimial valuation in Ri, (we can set T1 = Si1), we can write:

∗R = K+ ∗R2T1 =

= K+ (K+ ∗R3T2)T1 = K+KT1 +
∗R3T1T2 =

. . . . . . . . .

= K+KT1 +KT1T2 + · · ·+KT1T2 . . . TN−1 +
∗RNT1T2 . . . TN−1TN =

= K+KT1 +KT1T2 + · · ·+KT1T2 . . . TN−1 +K[[t]]T1T2 . . . TN−1TN .

If we denote by mi = ord(Ti) we find that

ν(∗R) = {0,m1,m1 +m2, . . . ,m1 + · · ·+mN ,→} ,

thus [m1,m2, . . . ,mN ] is the multiplicity sequence of the Arf semigroup ν(∗R). Notice that R
and ∗R share the same multiplicity e(R) = e(∗R) = ord(Si1). The following lemma lets us to

simplify the construction presented above.

Lemma 1.3.15. Consider the algebroid branch R = K[[φ1(t), . . . , φr(t)]], where, without loss

of generality, we can assume that φ1(t) has order equal to the multiplicity of ν(R).
Then

[Ii1 ] =

[[

φ1(t),
φ2(t)

φ1(t)
. . . ,

φr(t)

φ1(t)

]]

= Bl(R).

From the previous lemma, it follows that, in the construction of the Arf Closure we have

Ri = Bi then

mi = ord(Ti) = min{ord(r)|r ∈ Ri} = min{ord(r)|r ∈ Bi} = e(Bi).
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Thus the multiplicity sequence of the algebroid branchR equals the multiplicity sequence of the

Arf numerical semigroup ν(∗R). To compute the multiplicity sequence of an algebroid branch,

it suffices to compute its Arf closure and consider the associated Arf numerical semigroup. We

can also deduce the following important corollary that gives the answer that we were looking

for.

Corollary 1.3.16. Two algebroid branches R and T are equivalent if and only if ν(∗R) =
ν(∗T ).

Example 1.3.17. Let R = K[[t4, t6 + t9, t14]] be an algebroid branch. Let us compute its Arf

closure. We need to consider the chain of blowups and their respective elements Ti of minimal

value.

1. We choose T1 = t4 as an element of minimal value in R. Then

B2 = K

[[

t4,
t6 + t9

t4
,
t14

t4

]]

= K[[t2 + t5, t4, t10]].

2. We choose T2 = t2 + t5 as an element of minimal value in B2. Then

B3 = K

[[

t2 + t5,
t2

1 + t3
,

t8

1 + t3

]]

.

3. We choose T3 =
t2

1+t3
as an element of minimal value in B3. Then

B4 = K

[[
t2

1 + t3
, (1 + t3)2, t6

]]

= K

[[
t2

1 + t3
, 2t3 + t6, t6

]]

.

4. We choose T4 =
t2

1+t3
as an element of minimal value in B4. Then

B5 = K

[[
t2

1 + t3
, (2t+ t4)(1 + t3), t4(1 + t3)

]]

= K [[t]] .

Thus the Arf closure ∗R can be presented in the following way:

∗R = K+Kt4 +K(t6 + t9) +Kt8 +K[[t]]t10,

and we have ν(∗R) = {0, 4, 6, 8, 10,→}, with the multiplicity sequence [4, 2, 2, 2]. Notice also

that ν(R) = {0, 4, 6, 8, 10, 12, 14,→}, that is already an Arf numerical semigroup. This shows

that, in general can happen ν(∗R) 6= ∗ν(R).
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Remark 1. Determining the Arf closure following the procedure explained above can be compu-

tationally demanding. In fact, at each step the parametrizations of the blowups can gain higher

order terms, arising from the divisions, that can considerably slow down the process. In [2,

Theorem 2.4] Arslan and Sahin proved that, if R is an algebroid branch, then all the monomials

appearing in the parametrization of R with degree strictly greater than c∗ + 1, where c∗ is the

conductor of ν(∗R), do not actually affect the computation of the Arf Closure of R. They also

found a method to estimate an upper bound for c∗, by only looking at the initial parametrization

of R. This means that we can find the Arf Closure of R by applying our procedure to a ring

with a simpler parametrization, obtained by R deleting all the terms with degree greater than

the determined bound. In Chapter 4 we will present a generalization of this result.

In [1, Theorem 1, p.264] Arf proved the following theorem.

Theorem 1.3.18. Given an Arf numerical semigroup G, the intersection of all the numerical

semigroups S, such that ∗S = G is a semigroup Gχ, called characteristic sub-semigroup of G,

and we have ∗Gχ = G.

Theorem 1.3.18 let us to give the following definition.

Definition 1.3.19. Given an Arf numerical semigroup G, we call characters of G a minimal

system of generators for the characteristic sub-semigroup Gχ.

Notice that, if we know the characters {χ1, . . . , χh} of an Arf semigroup G, we can easily

compute G finding its multiplicity sequence by applying the modified Jacobian algorithm to the

set {χ1, . . . , χh} (we have gcd(χi) = 1 because the characters are a system of generators of a

numerical semigroup). So, through the characters, we have a way to represent an Arf semigroup

with less data than through its multiplicity sequence.

We explain, now a way to find the characters (cf. [4, Lemma 3.1]).

Lemma 1.3.20. Let G be an Arf numerical semigroup, and m = [m1, . . . ,mk] its multiplicity

sequence. We denote by r(mj), and we call it restriction number of mj , the number of sums

mq =
k∑

h=1

mq+h where mj appears as a summand. Then the characters of G are the integers

χj = m1 + . . .+mj,

where j is such that r(mj) < r(mj+1) (when it happens we have r(mj) = r(mj+1)− 1).

Example 1.3.21. Let us consider the Arf semigroup

G = {0, 8, 12, 16, 18, 20, 22→},
and compute its characters. We have, that m = [8, 4, 4, 2, 2, 2] is the multiplicity sequence of

G. In order to compute the characters, it is useful to consider also the first two one entries in m,

writing

m = [8, 4, 4, 2, 2, 2, 1, 1],

in fact it is easy to realize that we cannot find r(mj) < r(mj+1) if j ≥ l(m) + 2. We have
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1. m1 = 8 is clearly not a summand, so r(m1) = 0;

2. m2 = 4 appears as a summand in the sum m1 = m2 +m3, therefore r(m2) = 1;

3. m3 = 4 appears as a summand in the sums m1 = m2 + m3, and m2 = m3, therefore

r(m3) = 2;

4. m4 = 5 appears as a summand in the sum m3 = m4 +m5, therefore r(m4) = 1;

5. m5 = 2 appears as a summand in the sums m3 = m4 + m5, and m4 = m5, therefore

r(m5) = 2;

6. m6 = 2 appears as a summand in the sum m5 = m6, therefore r(m6) = 1;

7. m7 = 1 appears as a summand in the sum m6 = m7 +m8, therefore r(m7) = 1;

8. m8 = 1 appears as a summand in the sums m6 = m7 + m8, and m7 = m8, therefore

r(m8) = 2.

The indices where we get an increase in the restriction numbers are J = {1, 2, 4, 7} so we get

the characters:

1. χ1 = m1 = 8;

2. χ2 = m1 +m2 = 12;

3. χ3 = m1 +m2 +m3 +m4 = 18;

4. χ4 = m1 +m2 +m3 +m4 +m5 +m6 +m7 = 23.

If we apply the modified Jacobian algorithm to these characters we will obtain the multiplicity

sequence m. Notice that we did this on Example 1.3.13, where the element 25 ∈ J1 had no

impact on the procedure, because it is not a character for the Arf closure of the numerical

semigroup generated by J1.

Definition 1.3.22. Given an algebroid branch R, the Arf characters of R are the characters of

the Arf numerical semigroup ν(∗R).

The following immediate corollary stresses the importance of knowing the Arf characters

of an algebroid branch.

Corollary 1.3.23. Two algebroid branches are equivalent if and only if they have the same set

of Arf characters.

24



1.4 Good semigroups

In this section we define the good semigroups of Nr and we show why they can be regarded as

a natural extension of the numerical semigroups.

The concept of good semigroup firstly arises in [3] where the authors studied the properties

of the value semigroup of a one-dimensional analytically unramified local ring.

Definition 1.4.1. A one-dimensional reduced Noetherian local ring (R,M) is called analyti-

cally unramified if it satisfies any of the following equivalent conditions (cf. [14, Chapter 10])

• the integral closure R is finite over R;

• the completion R̂ is reduced.

Let R be a ring satisfying Definition 1.4.1. Denote by Q(R) its total ring of fractions, and

by P1, . . . , Pn ∈ Ass(R) its minimal primes. We have that

R ⊂ R/P1 × . . .×R/Pn

R ∼= R/P1 × . . . R/Pn

Q(R) ∼= Q(R/P1)× . . . Q(R/Pn).

We can associate to R a subsemigroup of Nr (where r is the number of maximal ideal of R),

in the following way. If q ∈ Q(R) we can see it as an element of Q(R/P1) × . . . Q(R/Pn),
therefore we can consider

ν(q) = (ν1,1(q1), . . . , ν1,h1(q1), ν2,1(q2), . . . , νn,hn
(qn)),

where νi,j is the valuation associated to the DVR Vi,j =
(

R/Pi

)

Mi,j

, obtained localizing at the

maximal ideal Mi,j. Notice that
∑n

i=1 hi = r. Then

S = ν(R) = {ν(q) : q ∈ R \ Z(R)},

where Z(R) is the set of zero divisors of R, is the required subsemigroup of Nr.

Example 1.4.2. An important example of rings satisfying the previous conditions is the class of

the local rings of an algebraic curve. We will mainly focus on the previously defined algebroid

curves that can be obtained as the completion of local rings of algebraic curves at a singular

point. Given an algebroid curve, R = K[[x1, x2, . . . , xk]]/(P1 ∩ . . . ∩ Pr), where the Pi’s are

prime ideals, we have the inclusion

τ : R ↪→ K[[x1, . . . , xk]]/P1 × . . .×K[[x1, . . . , xk]]/Pr.

The Ri = K[[x1, . . . , xk]]/Pi for i = 1, . . . r are the algebroid branches of the algebroid curve.
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Considering the integral closures in Q(R), we have R ∼= R1 × . . . × Rr where each Ri is

isomorphic to the ring K[[ti]], thus we can consider the valuation νi : K[[ti]]→ N ∪ {∞}, such

that νi(0) =∞ and νi(φ(ti)) = ord(φ(ti)). Finally, becauseR ⊆ K[[t1]]×K[[t2]]×. . .×K[[tr]],
we can define the valuation of an non-zero divisor y ∈ R, such that τ(y) = (φ1(t1), . . . , φr(tr)),
as the vector ν(y) = (ν1(φ1(t1)), . . . , νr(φr(tr))).

Therefore the set of values of non-zero divisors in R constitutes a subsemigroup of Nr.

The subsemigroups ν(R) = S, arising from the construction explained above always satisfy

the following conditions, cf. [3]:

Proposition 1.4.3. Let S = ν(R) ⊆ N
r. Then

1. for all a, b ∈ S, min(a, b) = (min(a[1], b[1]), . . . ,min(a[r], b[r])) ∈ S;

2. if a, b ∈ S and a[i] = b[i] for some i ∈ {1, . . . , r}, then there exists c ∈ S such that

c[i] > a[i] = b[i], c[j] ≥ min(a[j], b[j]) for j ∈ {1, . . . , r}\{i} and c[j] = min(a[j], b[j])
if a[j] 6= b[j];

3. there exists δ ∈ S such that δ + N
r ⊆ S.

In the following we will consider the usual partial ordering in N
r: a ≤ b if a[i] ≤ b[i] for

each i = 1, . . . , r.

Example 1.4.4. Let R be the algebroid curve

R = K[[x, y, z]]/(x3 − z2, y) ∩ (x3 − y2, z).

There is an isomorphism betweenR and the subring k[[(t2, u2), (0, u3), (t3, 0)]] of k[[t]]×k[[u]].
We have that

ν(R) = {(0, 0), (2, 2), (3, 3), (4, 4)}∪{(3, n), (n, 3) : n ≥ 4}∪
{
(5 +m, 5 + n) : (m,n) ∈ N

2
}
,

and it is easy to check that all the conditions of Proposition 1.4.3 are satisfied.
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Figure 1.1: ν(R)

Definition 1.4.5. Any subsemigroup of Nr that satisfies the conditions of Proposition 1.4.3 is

called good semigroup.

A good semigroup is local if 0 is the only element of the semigroup which has some coor-

dinate equal to 0. In fact, it is easy to notice that the ring R is local if and only if the semigroup

v(R) is local. However, it can be shown that every good semigroup is the direct product of local

semigroups (cf. [3, Theorem 2.5]).

Although, as we have just seen, the definition of good semigroup naturally arises from the

ring theory context, it was proved in [3, Example 2.16] that not all good semigroups are value

semigroups of rings. Hence, these objects represent a natural generalization of the numerical

semigroups and it makes sense to study them without taking in account the ring theory context,

focusing only on their combinatorial properties.

Definition 1.4.6. Let S be a good subsemigroup of Nr. The conductor of S is the least vector

C(S) ∈ S, according to the component-wise partial ordering of Nr, such that C(S) + N
r ⊆ S.

The existence of such a vector is guaranteed by the properties 1. and 3. in Proposition 1.4.3.

Given a good semigroup S we can consider the following set

Small(S) = {s ∈ S : s ≤ C(S)} ,

that is known as the set of small elements of S. Using the small elements we can represent a

good semigroup by a finite number of information, as it is shown in the following proposition

proved in [8, Proposition 2].

Proposition 1.4.7. Let a ∈ N
r. Then a ∈ S if and only if min(a, C(S)) ∈ Small(S). Notice

that if we know Small(S), we also know C(S) that is the maximum of Small(S).

Definition 1.4.8. Let S be a good subsemigroup of Nr. A set ∅ 6= E ⊆ Z
r is called a relative

ideal of S if

1. E + S ⊆ E;
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2. there exists α ∈ S such that α + E ⊆ S.

A relative ideal E of S does not need to satisfy the conditions 1. and 2. of Proposition

1.4.3. However it always satisfy the third condition. If a relative ideal also satisfies the first two

conditions, it will be called good relative ideal. We have the following proposition proved in

[7, Proposition 2.3].

Proposition 1.4.9. Let E be a good relative ideal of S. Consider α, β ∈ E with α < β. A chain

α = α(0) < α(1) < . . . < α(n) = β,

with α(i) ∈ E for all i, is said to be saturated if it cannot be extended to a longer one between

α and β in E.

Then all the saturated chains between α and β in E have the same length.

Notice that the length is computed considering the ”edges” in the chain; for instance the

chain

α = α(0) < α(1) < . . . < α(n) = β,

has length n.

Let E be a good relative ideal of S and suppose that α, β ∈ E, with α < β. We denote

by dE(α, β) the common length of a saturated chain in E from α to β. If α = β we set

dE(α, β) = 0. The definition is well defined due to the previous proposition.

Definition 1.4.10. Let F ⊆ E be two good relative ideals of S. Consider mF and mE the

minimal elements in F and E respectively. Then for any sufficiently large α ∈ F we set

d(E \ F ) = dE(mE, α)− dF (mF , α). In [7] it is shown that this definition does not depend on

the choice of α.

The function d( \ ) has some good properties as it was proved in [7, Proposition 2.7 and

Corollary 2.5].

Proposition 1.4.11. 1. If G ⊆ F ⊆ E are good relative ideals of S, then d(E \ G) =
d(E \ F ) + d(F \G).

2. If F ⊆ E are good relative ideals of S, then d(E \ F ) = 0 if and only if E = F .

3. If R is a ring, J ⊆ I fractional ideals of R, then lR(I \ J) = d(ν(I) \ ν(J)), where lR is

the length function of R-modules.

The function d( \ ) lets us also to extend the concept of genus to the good semigroups of

N
r. If S is a numerical semigroup with conductor c, then C = {c,→} is an ideal of S. Thus

the genus of S can be also obtained in the following way:

g(S) = |N \ C| − |S \ C| = c− |S \ C|.
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So we have a natural way to extend this concept to the good semigroups of Nr. If S is a good

semigroup of Nr with conductor C(S), then C = C(S) + N
r is a good ideal of S and we can

define the genus of S as:

g(S) = d(Nr \ C)− d(S \ C).
Since d(Nr \C) is the length of a saturated chain in N

r from the vector 0 ∈ N
r to the conductor

C(S) = (c[1], . . . , c[r]) , it is easy to show that

d(Nr \ C) =
r∑

k=1

c[k].

On the other hand, d(S \ C) is the length of a sautared chain in S from 0 ∈ S to C(S) ∈ S.

In other words the genus is computed by considering the number of unoccupied places in an

arbitrary saturated path linking the zero vector with the conductor, where an unoccupied place

denotes any lattice point belonging to the complement of S in N
r.

1.4.1 The multiplicity tree of an algebroid curve R

We want to extend the concept of multiplicity sequence given for the algebroid branches to the

algebroid curve case. We will associate to a an algebroid curve R with r branches a tree of

vectors of Nr which we will call the multiplicity tree of R.

Let R be an algebroid curve. In the following , we will only consider algebroid curves given

through their parametrization.

Thus we assume that there exists

x1 = (φ11(t1), . . . , φ1r(tr)), . . . , xk = (φk1(t1), . . . , φkr(tr))

such that

R ∼= K[[(φ11(t1), . . . , φ1r(tr)) , . . . , (φk1(t1), . . . , φkr(tr))]].

Since R is a local ring we can define its blow-up as Bl(R) = ∪∞i=0(m
n : mn), where m is its

maximal ideal (the chain of ideals mn : mn has to stabilize because we are in the Noetherian

case).

IfR is an algebroid curve with maximal ideal m = (x1, . . . , xk), thenBl(R) = R[x, x1

x
, . . . , xk

x
]

(see [13, Prop 1.1]), where x is an element of R with minimal valuation (this follows from the

fact that R ⊆ R̄ is a finite integral extension on R).

Thus, it is easy to see that

Bl(R) = K

[[

x,
(φ11(t1), . . . , φ1r(tr))

x
, . . . ,

(φk1(t1), . . . , φkr(tr))

x

]]

.

In the following we denote this ring with the symbol [x−1R] (it is the smallest ring containing

x−1R ). In general the blowup of a local ring is a semilocal ring, that is a ring with a finite
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number of maximal ideals. If S is a semilocal ring then Bl(S) = ∪∞n=0(rad(S)n : rad(S)n),
where rad(S) is the Jacobson ideal of S. Thus to R we can associate (cf. [13]) the following

sequence

R = R1 ⊆ R2 ⊆ R3 ⊆ . . . ,

called the Lipman sequence, where Ri = Bl(Ri−1). Since R̄ is a finite R-module, there exists

an integer N ∈ N such that RN = R = K[[t1]]× . . .×K[[tr]].
The ringsRi are semilocal rings. We can always see a semilocal ring S ⊆ K[[t1]]×· · ·×K[[tr]],
parametrized by

S = K[[(φ11(t1), . . . , φ1r(tr)) , . . . , (φk1(t1), . . . , φkr(tr))]],

as a product of local rings (that are the localizations at its maximal ideals). In other words there

exists a partition P(S) = {P1, . . . , Pt} of {1, . . . , r}, with

Pi =
{
qi,1, . . . , qi,k(i)

}
,

such that

Mj =
r∏

i=1

t
δi,j
i K[[ti]] for j = 1, . . . , t and δi,j =

{

1 if i ∈ Pj

0 if i /∈ Pj

,

and the Mj’s are the maximal ideals of S.

Then

S =
t∏

i=1

SMi
∼=

t∏

i=1

πPi
(S),

where

πPi
: S → K[[t1]]× · · · ×K[[tr]],

with

πPi
(s)[j] =

{

s[j] if j ∈ Pi

0 if j /∈ Pi

,

and such that the rings πPi
(S) are isomorphic to the local subrings of K[[tqi,1 ]] × · · · ×

K[[tqi,k(i) ]]. given by the parametrization

K

[[(

φ1qi,1(tqi,1), . . . , φ1qi,k(i)(tqi,k(i))
)

, . . . ,
(

φkqi,1(tqi,1), . . . , φkqi,k(i)(tqi,k(i))
)]]

.

In (cf. [3]) the authors associated to R a blowing up tree in the following way.

The nodes of the tree are all the local rings appearing in the Lipman sequence of R. We say

that a node is at the level j of the tree if it is one of the local rings that appears as a factor in the

expression of Rj .

Furthermore, considered the maximal ideal Ni = K[[t1]]× · · · × tiK[[ti]]× · · · ×K[[tr]] of

R, the branch sequence of R along Ni is the sequence of the rings (Rt)Ni∩Rt
. Following our
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notation, the node at the j-th level and on the i-th branch is the local ring πPj,k
(Rj), such that

i ∈ Pj,k.

A node at level j is linked to a node at level j + 1 if and only if the corresponding local

rings are in the same branch sequence. The multiplicity sequence of R along Ni is given by the

multiplicities of the rings appearing on the i-th branch.

Now we give a way to associate a multiplicity vector to each ring on the blowing up tree of

R.

If P = {q1, . . . , qk} ⊆ {1, . . . , r} and S is a local ring in K[[tq1 ]]× · · · ×K[[tqk ]], we define

mult(S) = min {ν(s) : s ∈ S}, where u is the valuation defined in K[[tq1 ]] × · · · × K[[tqk ]]. It

is easy to see that if

S = K[[(φ11(tq1), . . . , φ1k(tqk)) , . . . , (φn1(tq1), . . . , φnr(tq1))]],

then

mult(S)[i] = min {ord(φ1i(tqi)− φ1i(0)), . . . , ord(φki(tqi)− φki(0))} for all i = 1, . . . , k.

Because the field K is infinite we can always find a linear combination xS of the generators

of S, such that ν(xS) = mult(S). Note that the multiplicity of S as a local ring is given by the

sum of components of mult(S).
Suppose now that S is a ring on the blowing up tree. Then there exists an integer j and a par-

tition P(Rj) = {P1, . . . , Pt} of {1, . . . , r} such that S = πPi
(Rj), with Pi =

{
qi,1, . . . , qi,k(i)

}
.

We denote by Ri
j the local subring of K[[tqi,1 ]]× · · · ×K[[tqi,k(i) ]] isomorphic to S.

Then we define the fine multiplicity of S as the r-vector mult(S) such that

• mult(πPi
(S))[j] = 0 if j /∈ Pi;

• mult(πPi
(S))[qi,j] = mult(Ri

j)[j], for j = 1, . . . , k(i).

Furthermore we define:

multset(Rj) = {mult(πPi
(Rj)) : Pi ∈ P(Rj)} .

To each element of multset(Rj) we can associate an element xπPi
(Rj) ofRj with ν(xπPi

(Rj)) =
mult(πPi

(Rj)). Notice that we can always choose xπPi
(Rj) such that xπPi

(Rj)[j] = 1 if j /∈ Pi.

If we replace the local rings in the tree with their fine multiplicities, we get the multiplicity

tree of R. In the following we will denote by T (R) the multiplicity tree of the algebroid curve

R. We can also define the minimal tree by assigning to each node of the multiplicity tree the

corresponding element xπPi
(Rj) of minimal value.

Example 1.4.12. Consider the algebroid curveR = K[[(t2, u2), (0, u3), (t3, 0)]] ⊂ K[[t]]×K[[u]]
of Example 1.4.4. Let us compute the multiplicity tree of R.
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1. We can choose xR1 = (t2, u2) as an element of minimal value in R = R1. Thus

multset(R1) = {(2, 2)}. We have

R2 = K

[[

xR1 = (t2, u2),
(0, u3)

xR1

,
(t3, 0)

xR1

]]

= K[[(t2, u2), (0, u), (t, 0)]],

that is still local.

2. We can choose xR2 = (t, u) as an element of minimal value in R2. Thus multset(R2) =
{(1, 1)}. We have

R3 = K

[[

(t, u),
(0, u)

xR2

,
(t, 0)

xR2

]]

= K[[(t, u), (0, 1), (1, 0)]] = k[[t]]× k[[u]].

Thus multset(R3) = {(1, 0), (0, 1)} and the multiplicity tree and the minimal tree have

the following form:

R

R2

R2
3R1

3

blowing up tree of R

(2, 2)

(1, 1)

(0, 1)(1, 0)

Multiplicity tree of R

(t2, u2)

(t, u)

(u, 1)(t, 1)

Minimal tree of R

In [4] the authors gave the following definition of equivalence between algebroid curves that

naturally extends the definition given for the algebroid branches.

Definition 1.4.13. Let R1 and R2 be two algebroid curve. Then R1 and R2 are said to be

equivalent if they have the same number of branches and the branches can be reordered in a

way such that the multiplicity trees T (R1) and T (R2) coincide.

1.4.2 Arf’s theory for the algebroid curves

We saw in the previous section how the concept of Arf ring was introduced in the special

context of algebroid branches in order to find a suitable criterion to establish equivalence. In

[13] Lipman gave a general definition of Arf ring.

Definition 1.4.14. Let R be a one-dimensional semilocal Noetherian ring, such that the Jacob-

son ideal contains a regular element.

ThenR is an Arf ring if and only if every regular integrally closed ideal ofR is stable, where

an ideal I of R is said to be stable if z(I : I) = I for some z ∈ I .
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In our context, it is possible to prove (cf. [3, Lemmas 3.18 and 3.22]) that an algebroid

curve R is Arf if, for every α ∈ ν(R) and x ∈ R with ν(x) = α, we have that

x−1R(α) is a ring,

where R(α) = {r ∈ R : ν(r) ≥ α}. Also in this more general case it is possible to define

the Arf closure of a ring R as the smallest Arf overring R ⊇ ∗R of R (cf. [13, Proposition-

Definition 3.1]). In Chapter 4 we will present a procedure for computing the Arf closure of an

algebroid curve.

In [3, Proposition 5.3] it is proved the following important result that lets us to generalize

Corollary 1.3.16.

Proposition 1.4.15. Let R be an algebroid curve. Then the multiplicity trees of R and of its Arf

closure ∗R are the same.

We can also give the following definition for an Arf good semigroup.

Definition 1.4.16. A good semigroup S of Nr is an Arf semigroup if S(α) − α is a semigroup

for each α ∈ S where S(α) = {β ∈ S; β ≥ α}.

If R is an Arf ring then ν(R) is an Arf good semigroup, while the converse is not true in

general. Furthermore any local Arf good semigroup is the semigroup value of local ring (cf. [3,

Proposition 3.19 and Corollary 5.8]).

This means that to each local Arf good semigroup S ⊆ N
r it is possible to associate a

multiplicity tree and, if S = v(R′), T (R) = T (S) (we denote with T (S) the multiplicity

tree of the semigroup S). Thus the multiplicity tree of a local Arf semigroup characterizes the

semigroup completely and we have the following corollary.

Corollary 1.4.17. Two algebroid curves R and U are equivalent if and only if it is possible to

reorder the branches in such a way that ν(∗R) = ν(∗U).

The following proposition, cf. [3, Theorem 5.11], gives us the properties that a tree of

vectors of Nr has to satisfy in order to be a multiplicity tree of an Arf subsemigroup of Nr.

Proposition 1.4.18. A tree T = {nj
i} of vectors of Nr, where n

j
i is a node at the j-th level and

on the i-th branch, is the multiplicity tree of a local Arf semigroup s if and only if it satisfies the

following conditions:

a) Two nodes n
j1
i1

and n
j2
i2

are linked if and only if i1 = i2 and |j2 − j1| = 1.
b) There exists n ∈ N such that, for m ≥ n, nm

j = (0, . . . , 0, 1, 0, . . . , 0) (the non-zero

coordinate in the j-th position) for any j = 1, . . . , r.
c) The h-th coordinate of ni

j is 0 if and only if ni
j is not in the h-th branch of the tree (the h-th

branch of the tree is the unique maximal path containing the h-th unit vector) and n
i
j1
≡ n

i
j2

(i.e. the two vectors give the same node in the tree) if and only if the j1-th and j2-th branches

are glued in a node at level i.
d) ni

j =
∑

n∈T ′\ni
j
n, for some finite subtree T ′ of T, rooted in n

i
j .
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Notice that we must have multiplicity sequences along each branch. If T = {nj
i} is the

multiplicity tree T of a local Arf semigroup S then the root of the tree is n1
1 = n1

i for all i (at

level one all the branches must be glued in order to have a local semigroup). Furthermore we

have

S = {0}
⋃

T ′







∑

n
j
i∈T

′

n
j
i






,

where T ′ ranges over all finite subtrees of T rooted in n1
1.

Example 1.4.19. Let us consider the following subset of N2,

S = {(0, 0), (4, 4), (8, 6), (12, 6)} ∪ {(8, 8 + n), (12, 8 + n), (14 + n, 6);n ∈ N}∪

∪{(14 +m, 8 + n);m,n ∈ N} .
It is possible to verify that S ia an Arf good semigroup with the following multiplicity tree:

(4, 4)

(4, 2)

(0, 2)

(0, 1)

(0, 1)

(4, 0)

(2, 0)

(1, 0)

34



Chapter 2

Arf good semigroups

In this chapter we focus on the class of local Arf good subsemigroups of Nr. In the following

we will always assume without mentioning that a semigroup is local. We want to use the

1-1 correspondence between Arf good semigroups and multiplicity trees in order to find an

unambiguous way to describe them. As we will see in the following sections, finding a good

way to represent an Arf semigroup will help us to answer some interesting questions about the

determination of the Arf closure of a good semigroup and regarding a possible extension of the

concept of Arf characters to these more general objects.

2.1 Arf semigroups with a given collection of multiplicity branches

In this section we determine a way to find all the local Arf good subsemigroups of Nr having

the same collection of multiplicity branches.

Suppose that E = {mi : i = 1, . . . , r} is an ordered collection of r multiplicity sequences.

Denote by τ(E) the set of all multiplicity trees having the r branches inE (specifically, we want

that the multiplicity sequence along the i-th branch of the tree corresponds to the multiplicity

sequence mi of E) and by σ(E) the set of the corresponding Arf semigroups. Our aim is to find

an unambiguous way to describe distinct trees of τ(E).
If N = max {l(mi) + 2 : i = 1, . . . , r} we can also write for all i = 1, . . . , r

mi = [mi,1, . . . ,mi,N ].

In this way, we manage to describe the multiplicity sequences of E by using finite vectors of

the same length. It will be clear later why it is useful to consider also the first two integers j
such that mi,j = 1. Since mi represents a multiplicity sequence of an Arf numerical semigroup,

it must satisfy the following property:

∀j ≥ 1 there exists si,j ∈ N, such that si,j ≥ j + 1 and mi,j =

si,j∑

k=j+1

mi,k.
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We define, for all i = 1, . . . , r, the following vectors

si = [si,1, . . . si,N ].

Notice that, because we havemi,j = 1 for all j ≥ N−1, it follows si,j = j+1 for all j ≥ N−1.

Example 2.1.1. Let m1 = [14, 7, 5] be a multiplicity sequence. In this case N = 5 so we write:

m1 = [14, 7, 5, 1, 1],

thus s1 is:

s1 = [5, 5, 8, 5, 6].

Notice that, with this notation, from the vectors si we can easily reconstruct the sequencesmi. It

suffices to set mi,N = 1 and then to compute the values of mi,j using the information contained

in the integers si,j .

In the next proposition, the vectors si, arising from the collection E, are used to determine

the level, in a tree of τ(E), where two branches are forced to split up in order to maintain

fulfilled the conditions for a well defined multiplicity tree.

For each pair of integers i, j such that i < j and i, j = 1, . . . , r we consider the set D(i, j) =
{k : si,k 6= sj,k}. If D(i, j) 6= ∅, we denote by kE(i, j) the integer

kE(i, j) = min {min(si,k, sj,k), k ∈ D(i, j)} ,

while if D(i, j) = ∅, i.e. mi = mj , we set kE(i, j) = +∞.

Proposition 2.1.2. Consider a collection of multiplicity sequences E and let T ∈ τ(E). Then

kE(i, j) + 1 is the lowest level where the i-th and the j-th branches are prevented from being

glued in T (if kE(i, j) is infinite there are no limitations on the level where the branches have

to split up).

Proof

Suppose kE(i, j) 6= +∞ and, by contradiction, that the i-th and the j-th branches are glued

at level kE(i, j)+1. From the definition of kE(i, j), there exists k ∈ D(i, j) such that kE(i, j) =
min(si,k, sj,k). Without loss of generality suppose that min(si,k, sj,k) = si,k 6= sj,k (since

k ∈ D(i, j)).
So in the tree we have the following nodes,

(. . . ,mi,k, . . . ,mj,k, . . .), . . . , (. . . ,mi,kE(i,j), . . . ,mj,kE(i,j), . . .),

, (. . . ,mi,kE(i,j)+1, . . . ,mj,kE(i,j)+1, . . .).

We have that kE(i, j) = si,k so

mi,k =

kE(i,j)
∑

t=k+1

mi,t,
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while kE(i, j) + 1 = si,k + 1 ≤ sj,k so

mj,k ≥
kE(i,j)+1
∑

t=k+1

mj,t.

These facts easily imply that the first node cannot be expressed as a sum of the nodes of a

subtree rooted in it, so we have a contradiction because the property d) of Proposition 1.4.18 is

not fulfilled for the node n
k
i of T . Two branches are forced to split up only when we have this

kind of problem, so the minimality of kE(i, j) guarantees that they can be glued at level kE(i, j)
(and obviously at lower levels).

The case kE(i, j) = +∞ is trivial, because we have the same sequence along two distinct

branches and therefore no discrepancies that force the two branches to split up at a certain

level.

Example 2.1.3. Suppose that we have

E = {m1 = [14, 7, 5],m2 = [7, 3]} .

So we can compute the vectors s1 and s2:

s1 = [5, 5, 8, 5, 6] and s2 = [6, 5, 4, 5, 6].

We have D(1, 2) = {1, 3}, then kE(1, 2) = min {min(5, 6),min(4, 8)} = min {5, 4} = 4.

Then the branches have to be separated at the fifth level.

(14, 7)

(7, 3)

(5, 1)

(1, 1)

(0, 1)(1, 0)

(14, 7)

(7, 3)

(5, 1)

(1, 1)

(1, 1)

(0, 1)(1, 0)

Notice that the first tree in the previous picture fulfils the properties of the multiplicity trees

of an Arf semigroup. The second one cannot be the multiplicity tree of an Arf semigroup

because the third node (5, 1) cannot be expressed as a sum of nodes in a subtree rooted in it.

Now we prove a general lemma that will be useful in the following.

Lemma 2.1.4. Consider v1, v2 and v3 in N
r. If i, j ∈ {1, 2, 3} with i 6= j we define:
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• MIN(vi, vj) = +∞ if vi = vj;

• MIN(vi, vj) = min {min(vi[k], vj[k]), k ∈ {1, . . . , r} : vi[k] 6= vj[k]} .
Then there exists a permutation δ ∈ S3 such that

MIN(vδ(1), vδ(2)) = MIN(vδ(2), vδ(3)) ≤ MIN(vδ(1), vδ(3)).

Proof Suppose by contradiction that the thesis is not true. Then, renaming the indices if neces-

sary, we have

MIN(v1, v2) < MIN(v1, v3) ≤ MIN(v2, v3).

From the definition of MIN(v1, v2) = l1,2 it follows that there exists a k ∈ {1, . . . , r} such that

v1[k] 6= v2[k] and min(v1[k], v2[k]) = l1,2. We have two cases:

• If v1[k] = l1,2⇒ v2[k] > l1,2. Then we must have v3[k] = l1,2, in fact otherwise we would

have MIN(v1, v3) ≤ l1,2 < MIN(v1, v3). But then

l1,2 < MIN(v2, v3) ≤ min(v2[k], v3[k]) = l1,2,

and we have a contradiction.

• If v2[k] = l1,2⇒ v1[k] > l1,2. Then we must have v3[k] = l1,2, in fact otherwise we would

have MIN(v2, v3) ≤ l1,2 < MIN(v2, v3). But then

l1,2 < MIN(v1, v3) ≤ min(v1[k], v3[k]) = l1,2,

and we have a contradiction.

Remark 2. If we have three multiplicity sequences m1, m2 and m3 then, if E = {m1,m2,m3},
there exists a permutation δ ∈ S3 such that

kE(δ(1), δ(2)) = kE(δ(2), δ(3)) ≤ kE(δ(1), δ(3)).

In fact the integers kE(i, j) are of the same type of the integers MIN(vi, vj) of the previous

lemma with vi = si.

Now we give a way to describe a tree of τ(E). If T ∈ τ(E), it can be represented by an

upper triangular matrix r × r

M(T )E =









0 p1,2 p1,3 . . . p1,r
0 0 p2,3 . . . p2,r
. . . . . . . . . . . . . . .
0 0 0 . . . pr−1,r

0 0 0 . . . 0









,

where pi,j is the highest level such that the i-th and the j-th branches are glued in T . We will

call M(T )E the ramification matrix of T .
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Remark 3. If M(T )E is the matrix of a T ∈ τ(E), it is clear that every time we consider three

indices i < j < k we must have:

pi,j ≥ min(pi,k, pj,k), pj,k ≥ min(pi,j, pi,k) and pi,k ≥ min(pi,j, pj,k),

when we are using the obvious fact that the relation of being glued has the transitive prop-

erty. From the previous inequalities it follows that {pi,j, pj,k, pi,k} = {x, x, y}, with x ≤ y
(independently of the order).

From Proposition 2.1.2 we have that pi,j ∈ {1, . . . , kE(i, j)} for all i, j = 1, . . . , r with

i < j. In the following, with an abuse of notation, we will identify a tree with its representation.

We call a tree T of τ(E) untwisted if two non-consecutive branches are glued at level l if

and only if all the consecutive branches between them are glued at a level greater than or equal

to l. We will call twisted a tree that it is not untwisted.

From the definition it follows that the matrix of an untwisted tree T ∈ τ(E) is such that:

pi,j = min {pi,i+1, pi+1,i+2, . . . , pj−1,j} for all i < j.

So an untwisted tree can be completely described by the second diagonal of its matrix. Thus,

in the following, we will indicate an untwisted tree by a vector TE = (d1, . . . , dr−1) where

di = pi,i+1, called the ramification vector of T .

Remark 4. It is easy to see that a twisted tree can be converted to an untwisted one by accord-

ingly permuting its branches (the corresponding Arf semigroups are therefore equivalent). So

in the following we can focus, when it is possible, only on the properties of the untwisted trees,

that are easier to study, obtaining the twisted one by permutation.

Example 2.1.5. Let us consider the following tree of τ(E) with

E = {m1 = [5, 4],m2 = [2, 2],m3 = [6, 4]}

(5, 2, 6)

(0, 2, 0)

(0, 1, 0)

(4, 0, 4)

(0, 0, 1)(1, 0, 0)

This tree is twisted because the first and the third branches are glued at level two, while the

first and the second are not.

If we consider the permutation (2, 3) on the branches we obtain the tree

(5, 6, 2)

(0, 0, 2)

(0, 0, 1)

(4, 4, 0)

(0, 1, 0)(1, 0, 0)
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that is untwisted, even if it belongs to a different set τ(E ′) where

E ′ = {m1 = [5, 4],m2 = [6, 4],m3 = [2, 2]} ,

and it can be represented by the ramification vector TE′ = (2, 1).

Denote by S(T ) the semigroup determined by the tree T . In [4, Lemma 5.1] it is shown that

if T 1 and T 2 are untwisted trees of τ(E), then S(T 1) ⊆ S(T 2) if and only if T 2
E is coordinate-

wise less than or equal to T 1
E . The previous result can be easily extended to the twisted trees.

Then, in the general case we have that S(T 1) ⊆ S(T 2), where S(T 1) and S(T 2) belong to

σ(E), if and only if each entry of M(T 2)E is less than or equal to the corresponding entry of

M(T 1)E . If kE(i, j) 6= +∞ for all i < j, we can consider TMIN such that

M(TMIN)E =









0 kE(1, 2) kE(1, 3) . . . kE(1, r)
0 0 kE(2, 3) . . . kE(2, r)
. . . . . . . . . . . . . . .
0 0 0 . . . kE(r − 1, r)
0 0 0 . . . 0









,

that is well defined for Remark 2. Then S(TMIN) is the smallest Arf semigroup belonging to

σ(E).

Remark 5. If in the collection E there are two branches with the same multiplicity sequence

then |σ(E)| = +∞.

Example 2.1.6. We can count the number of untwisted trees of τ(E) by using their representa-

tion. If we call τ ∗(E) the set of all the untwisted trees of τ(E), these trees are completely deter-

mined by the elements in the second diagonal of their matrix, that are bounded by kE(j, j + 1).
Hence the number of untwisted trees is:

|τ ∗(E)| =
r−1∏

j=1

kE(j, j + 1).

Suppose that E = {m1,m2,m3}, where

m1 = [5, 4], m2 = [6, 4], m3 = [2, 2].

We have:

s1 = [3, 6, 4, 5], s2 = [4, 6, 4, 5], s3 = [2, 4, 4, 5].

Then D(1, 2) = {1} , D(2, 3) = {1, 2} and kE(1, 2) = min(3, 4) = 3 and

kE(2, 3) = min {min(2, 4),min(4, 6)} = 2. There are kE(1, 2) · kE(2, 3) = 6 trees in τ ∗(E).
They are:
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(5, 6, 2)

(4, 4, 2)

(0, 0, 1)(1, 1, 0)

(0, 1, 0)(1, 0, 0)

TMIN = TE = (3, 2)

(5, 6, 2)

(0, 0, 2)

(0, 0, 1)

(4, 4, 0)

(1, 1, 0)

(0, 1, 0)(1, 0, 0)

TE = (3, 1)

(5, 6, 2)

(4, 4, 2)

(0, 0, 1)(0, 1, 0)(1, 0, 0)

TE = (2, 2)

(5, 6, 2)

(0, 0, 2)

(0, 0, 1)

(4, 4, 0)

(0, 1, 0)(1, 0, 0)

TE = (2, 1)

(5, 6, 2)

(0, 4, 2)

(0, 0, 1)(0, 1, 0)

(4, 0, 0)

(1, 0, 0)

TE = (1, 2)

(5, 6, 2)

(0, 0, 2)

(0, 0, 1)

(0, 4, 0)

(0, 1, 0)

(4, 0, 0)

(1, 0, 0)

TE = (1, 1)

Remark 6. Because we are able to determine completely τ ∗(E) for each E collection of multi-

plicity sequences we have a way to determine τ(E). If δ ∈ Sr is a permutation of the symmetric

group Sr we can consider δ−1(τ ∗(δ(E))) ⊆ τ(E). It is trivial to see that

⋃

δ∈Sr

δ−1(τ ∗(δ(E))) = τ(E).

If we apply this strategy to find τ(E) with the E of the previous example we find that in

τ(E) there is only one twisted tree T with

M(T )E =





0 1 2
0 0 1
0 0 0



 .
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(5, 6, 2)

(0, 4, 0)

(0, 1, 0)

(4, 0, 2)

(0, 0, 1)(1, 0, 0)

2.2 When a set of vectors determines an Arf semigroup

In this section we want to understand when a setG ⊆ N
r determines uniquely an Arf semigroup

of Nr. First of all we need to fix some notations.

Given G ⊆ N
r we denote by S(G) the following set

S(G) = {S : S ⊆ N
r is an Arf semigroup and G ⊆ S} .

If the set S(G) has a minimum (with the partial order given by the inclusion), we will denote

such a minimum by Arf(G). Hence, we have to understand when Arf(G) is well defined and,

in this case, how to determine it.

If i ∈ {1, . . . , r}, and S ∈ S(G) we denote by Si the projection on the i-th coordinate. We

know that Si is an Arf numerical semigroup and it contains the set G[i] = {g[i] : g ∈ G} where

with g[i] we indicate the i-th coordinate of the vector g. We recall also that, if we have a set

of integers I such that gcd(I) = 1, we can compute the smallest Arf semigroup containing I ,

that is the Arf closure of the numerical semigroup generated by the elements of I , by using the

modified Jacobian algorithm of Du Val (cf. Section 1.3).

We have the following theorem:

Theorem 2.2.1. Suppose that we have G ⊆ N
r. Then Arf(G) is well defined if and only if the

following conditions hold:

• gcd {g[i], g ∈ G} = 1 for i = 1, . . . , r;

• For all i, j ∈ {1, . . . , r} such that i < j there exists g ∈ G such that g[i] 6= g[j].

Proof (⇒) Suppose that Arf(G) is well defined and suppose by contradiction that the two

conditions of the theorem are not simultaneously fulfilled.

We have two cases.

• Case 1: The first condition is not fulfilled.

Then there exists an i such that gcd(G[i]) = d 6= 1. When we apply the Jacobian algo-

rithm to the elements of G[i] we will produce a sequence of the following type:

[mi,1, . . . ,mi,k, . . .]
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where there exists a k such that mi,j = d for all j ≥ k. Denote by k the minimum k such

that the Arf semigroup associated to the sequence

[mi,1, . . . ,mi,k = d],

contains G[i] (such minimum exists for the properties of the algorithm of Du Val). Then

for all z ≥ k we can consider the multiplicity sequence

mi(z) = [mi,1, . . . ,mi,k = d, . . . ,mi,z = d]

and if AS(mi(z)) is the Arf numerical semigroup associated tomi(z) thenG[i] ⊆ AS(mi(z)).
Now it is trivial to show that AS(mi(z1)) ⊆ AS(mi(z2)) if z1 ≥ z2. Then we have an

infinite decreasing chain of Arf semigroup containing the set G[i]. This means that the

projection on the i-th branch can be smaller and smaller, therefore we cannot find a min-

imum in the set S(G).

Thus we have found a contradiction in this case.

An example illustrating Case 1 is the following.

If we consider G = {[2, 3], [4, 4]}, we have no information on the multiplicity sequence

along the first branch and so we can obtain the following infinite decreasing chain of Arf

semigroups containing G:

(2, 3)

(2, 1)

(0, 1)(1, 0)

⊇ (2, 3)

(2, 1)

(0, 1)(2, 0)

(1, 0)

⊇ (2, 3)

(2, 1)

(0, 1)(2, 0)

(2, 0)

(1, 0)

⊇ (2, 3)

(2, 1)

(0, 1)(2, 0)

(2, 0)

(2, 0)

(1, 0)

⊇ . . .

• Case 2: The first condition is fulfilled.

So in this case the second condition is not fulfilled. The fact that gcd {g[i], g ∈ G} = 1
for i = 1, . . . , r implies that we can compute the smallest Arf numerical semigroup S(i)
containing G[i] for all i = 1, . . . , r.

Therefore if we denote by mi the multiplicity sequence of S(i) we clearly have that
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Arf(G) ∈ σ(E), where E = {mi, i = 1, . . . , r}. Suppose that it is defined by the matrix

M(T )E =









0 p1,2 p1,3 . . . p1,r
0 0 p2,3 . . . p2,r
. . . . . . . . . . . . . . .
0 0 0 . . . pr−1,r

0 0 0 . . . 0









.

Now if we consider an element h ∈ G[i] we have that h ∈ S(i) and therefore there exists

an index posE(i, h) such that

h =

posE(i,h)
∑

k=1

mi,k.

If g ∈ G we can define posE(g) = [posE(1, g[1]), . . . , posE(r, g[r])].

Notice that, if we consider i, j ∈ {1, . . . , r}, with i < j and g ∈ G such that posE(i, g[i]) 6=
posE(j, g[j]), we can easily deduce that in a multiplicity tree of an Arf semigroup of

σ(E) containing G the i-th and j-th branches cannot be glued at a level greater than

min(posE(i, g[i]), posE(j, g[j])) .

Then pi,j is at most min(posE(i, g[i]), posE(j, g[j])), and we also have to recall that pi,j
is at most kE(i, j).

So denote by

UE(G) =
{
(i, j) ∈ {1, . . . , r}2 : i < j; posE(i, g[i]) = posE(j, g[j]) for all g ∈ G

}
.

For each (i, j) /∈ UE(G) we define

MINE(i, j, G) = min (kE(i, j),min {min(posE(i, g[i]), posE(j, g[j])) : g ∈ G,

posE(i, g[i]) 6= posE(j, g[j])}) .
Notice that we need (i, j) /∈ UE(G) to have the previous integers well defined.

So from the previous remark it follows that an Arf semigroup S(T 1) of σ(E) containing

G with

M(T 1)E =









0 a1,2 a1,3 . . . a1,r
0 0 a2,3 . . . a2,r
. . . . . . . . . . . . . . .
0 0 0 . . . ar−1,r

0 0 0 . . . 0









is such that ai,j is at most kE(i, j) for (i, j) ∈ UE(G) and ai,j is at most MINE(i, j, G) for

(i, j) /∈ UE(G). In order to obtain the Arf closure we want to choose the biggest possible

values of the ai, thus from the previous bounds we obtain:

pi,j = kE(i, j) for (i, j) ∈ UE(G) and pi,j = MINE(i, j, G) for (i, j) /∈ UE(G).
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We need to prove that this integers are compatible with the transitive property of the

ramification matrix of an Arf semigroup tree. Therefore we consider a triad of integers

i < j < k and we want to show that pi,j, pj,k and pi,k are in a {x, x, y} configuration. We

have the following cases:

1. (i, j), (j, k), (k, i) ∈ UE(G). Then pi,j = kE(i, j),pi,k = kE(i, k) and pj,k =
kE(j, k) and for the Remark 2 they satisfy our condition;

2. (i, j), (j, k), (k, i) /∈ UE(G). We consider the vectors

vl = [posE(l, g1[l]), . . . , posE(l, gm[l])],

where l ∈ {i, j, k} and G = {g1, . . . , gm}. Then, using the notations of Lemma

2.1.4, we have that

pi,j = min(kE(i, j),MIN(vi, vj)), pi,k = min(kE(i, k),MIN(vi, vk)) and

pj,k = min(kE(j, k),MIN(vj, vk)).

Then suppose by contradiction that they are not compatible. Without loss of gener-

ality, we can assume that

pi,j < pi,k ≤ pj,k.

We have two cases

– pi,j = kE(i, j). Then we would have

kE(i, j) = pi,j < pj,k ≤ kE(j, k) and kE(i, j) = pi,j < pi,k ≤ kE(i, k),

and this is absurd for the Remark 2;

– pi,j = MIN(vi, vj). Then we would have

MIN(vi, vj) = pi,j < pj,k ≤ MIN(vj, vk) and MIN(vi, vj) = pi,j < pi,k ≤ MIN(vi, vk),

and this is absurd against Lemma 2.1.4 applied to the vectors vi, vj and vk.

3. (i, j) ∈ UE(G) and (j, k), (k, i) /∈ UE(G) (and the similar configurations). In this

case we have that vi = vj . Then

pi,j = kE(i, j), pi,k = min(kE(i, k), x), and pj,k = min(kE(j, k), x),

where x = MIN(vi, vk) = MIN(vj, vk). We have two cases:

– kE(i, j) = kE(j, k) ≤ kE(i, k) (or equivalently kE(i, j) = kE(i, k) ≤ kE(j, k)).
If x < kE(j, k) ≤ kE(i, k) then we have pj,k = pi,k = x < kE(i, j) and it is

fine. If x ≥ kE(j, k) then pj,k = kE(j, k) = pi,j ≤ pi,k that is compatible too.

– kE(i, k) = k(j, k) < kE(i, j). In this case we have pi,k = pj,k < kE(i, j) = pi,j
and it is fine.
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So we actually have a well defined tree.

Anyway, because the second condition is not fulfilled, then there exists a pair (i, j) ∈
{1, . . . , r}2 such that for all g ∈ G we have g[i] = g[j]. So (i, j) ∈ UE(G), and, since in

this case the two sequences are the same, we obtain pi,j = kE(i, j) = +∞.

Thus we have found a contradiction because Arf(G) is not well defined.

An example illustrating Case 2 is the following. If we consider G = {[3, 3, 2], [2, 2, 3]},
we will have the same multiplicity sequences in the first two branches, with no clues

about the splitting point so we can obtain the following infinite decreasing chain in S(G):

(2, 2, 2)

(0, 0, 1)(1, 1, 0)

(0, 1, 0)(1, 0, 0)

⊇ (2, 2, 2)

(0, 0, 1)(1, 1, 0)

(1, 1, 0)

(0, 1, 0)(1, 0, 0)

⊇ (2, 2, 2)

(0, 0, 1)(1, 1, 0)

(1, 1, 0)

(1, 1, 0)

(0, 1, 0)(1, 0, 0)

⊇ . . .

(⇐) The previous proof gives us a way to compute Arf(G). We have to compute, using the

modified Jacobian algorithm of Du Val, the Arf closure of each G[i], finding the collection

E (the first condition guarantees that it is possible to do that). Then we can find the matrix

describing the semigroup using the setUE(G) and the integers MINE(i, j, G) with the procedure

present in the first part (we cannot have pi,j = +∞ for the second condition).

Example 2.2.2. Suppose that we haveG = {G(1) = [5, 6, 5],G(2) = [9, 11, 4],G(3) = [9, 10, 2]} ,
that satisfies the conditions of the theorem. Then we have to apply the modified Jacobian algo-

rithm to the sets

G[1] = {5, 9} , G[2] = {6, 10, 11} and G[3] = {2, 4, 5} .

We find the following collection of multiplicity sequences:

E = {m1 = [5, 4],m2 = [6, 4],m3 = [2, 2]} .

We have kE(1, 2) = 3, kE(2, 3) = 2 and kE(1, 3) = 2.

Thus posE(G(1)) = [1, 1, 3], posE(G(2)) = [2, 3, 2] and posE(G(3)) = [2, 2, 1]. In this case

UE(G) = ∅.
Hence MINE(1, 2, G) = min(2, kE(1, 2)) = 2, MINE(2, 3, G) = min(1, kE(2, 3)) = 1 and

MINE(1, 3, G) = min(1, kE(1, 3)) = 1.
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So the Arf closure is described by the matrix

M(T )E =





0 2 1
0 0 1
0 0 0



 .

Notice that in this case we find that the Arf closure is an untwisted tree of τ(E) represented by

the vector TE = (2, 1).

(5, 6, 2)

(0, 0, 2)

(0, 0, 1)

(4, 4, 0)

(0, 1, 0)(1, 0, 0)

Example 2.2.3. Suppose that we haveG = {G(1) = [8, 6, 10],G(2) = [5, 10, 5],G(3) = [10, 13, 8]} ,
that satisfies the conditions of the theorem. By applying the modified Jacobian algorithm to the

sets

G[1] = {5, 8, 10} , G[2] = {6, 10, 13} and G[3] = {5, 8, 10} ,
we find the following collection of multiplicity sequences:

E = {m1 = [5, 3, 2],m2 = [6, 4, 2] and m3 = [5, 3, 2]} .
We have kE(1, 2) = 4, kE(2, 3) = 4 and kE(1, 3) = +∞.

Thus posE(G(1)) = [2, 1, 3], posE(G(2)) = [1, 2, 1] and posE(G(3)) = [3, 4, 2].
In this caseUE(G) = ∅, so we get MINE(1, 2, G) = min(1, kE(1, 2)) = 1, MINE(2, 3, G) =

min(1, kE(2, 3)) = 1 and MINE(1, 3, G) = min(2, kE(1, 3)) = 2.

The Arf closure is therefore described by the matrix

M(T )E =





0 1 2
0 0 1
0 0 0



 .

Notice that in this case we find that the Arf closure is a twisted tree.

(5, 6, 5)

(0, 4, 0)

(0, 2, 0)

(0, 1, 0)

(3, 0, 3)

(0, 0, 2)

(0, 0, 1)

(2, 0, 0)

(1, 0, 0)
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2.3 Arf closure of a good semigroup of Nr

Denote by S a good semigroup of Nr. In this section we describe a way to find the smallest Arf

semigroup of Nr containing S, that is the Arf closure of S (the existence of the Arf closure is

proved in [8]). We denote this semigroup by Arf(S). If S is a good semigroup of Nr, we denote

by Si the projection on the i-th coordinate. The properties of the good semigroups guarantee

that Si is a numerical semigroup. Thus, it is clear that an Arf semigroup T containing S is

such that Arf(Si) ⊆ Ti for all i = 1, . . . , r, where Arf(Si) is the Arf closure of the numerical

semigroup Si (we can compute it using the algorithm of Du Val on a minimal set of generators

of Si).

Therefore, in order to have the smallest Arf semigroup containing S, we must have Arf(S) ∈
σ(E) where E = {m1, . . . ,mr} and mi is the multiplicity sequence associated to the Arf

numerical semigroup Arf(Si) (this follows from the fact, proved in [8, Proposition 31] , that the

intersection of two Arf good semigroups containing S is stll an Arf good semigroup).

Now we need to find the matrix

M(T )E =









0 p1,2 p1,3 . . . p1,r
0 0 p2,3 . . . p2,r
. . . . . . . . . . . . . . .
0 0 0 . . . pr−1,r

0 0 0 . . . 0









that describes the tree of Arf(S).
Denote by δ = (c[1], . . . , c[r]) the conductor of S, and consider the set

Small∗(S) = Small(S) \ {0}
of the small elements of S with the exclusion of the zero vector.

Remark 7. We can recover the collection E from Small∗(S). In fact, the multiplicity se-

quence mi can be determined applying the Du Val algorithm to the set {s[i], s ∈ Small∗(S)} ∪
{c[i] + 1} ⊆ Si. In order to find a multiplicity sequence we may have to add c[i] + 1 because

we can have gcd({s[i], s ∈ Small(S)}) 6= 1. Because c[i] and c[i] + 1 belong to Si, we know

that Arf(Si) has conductor smaller than c[i] and this implies that we only have to consider the

elements that are smaller than c[i] + 1.

Now, we notice that pi,j ≤ min(posE(i, c[i]), posE(j, c[j])) for all i, j ∈ {1, . . . , r}, with

i < j, where we are using the notations of the previous section. In fact, if posE(i, c[i]) 6=
posE(j, c[j]), we have already noticed that in an Arf semigroup containing δ the i-th and the

j-th branches cannot be glued at a level greater than min(posE(i, c[i]), posE(j, c[j])), then

pi,j ≤ min(posE(i, c[i]), posE(j, c[j])). If posE(i, c[i]) = posE(j, c[j]) then we have δ1 =
(c[1], . . . , c[i]+1, c[i+1], . . . , c[r]) ∈ S, and posE(i, c[i]+1) = posE(i, c[i])+1 > posE(j, c[j]).

Therefore in an Arf semigroup containing δ1 the i-th and the j-th branches cannot be glued

at a level greater than

min(posE(i, c[i]) + 1, posE(j, c[j])) = posE(j, c[j]) =
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= min(posE(i, c[i]), posE(j, c[j]),

hence we have again pi,j ≤ min(posE(i, c[i]), posE(j, c[j])).
Furthermore, we always have to take in account that pi,j ≤ kE(i, j) for all i, j ∈ {1, . . . , r}.
Now let us consider the following subset of {1, . . . , r}2,

UE(Small∗(S)) = {(i, j) : posE(i, s[i]) = posE(j, s[j]) for all s ∈ Small∗(S)} .

If (i, j) ∈ {1, . . . , r}2 \ UE(Small∗(S)), and i < j we can consider the following integers

MINE(i, j, Small∗(S)) = min (kE(i, j),min {min(posE(i, s[i]), posE(j, s[j])) : s ∈ Small∗(S),

posE(i, s[i]) 6= posE(j, s[j])}) .
Notice that we need only to consider the vectors of Small∗(S) because if s ∈ S then s1 =
min(s, δ) ∈ Small∗(S) and we clearly have

min(posE(i, s[i]), posE(j, s[j])) ≥ min(posE(i, s1[i]), posE(j, s1[j])),

therefore s1 ∈ Small∗(S) gives us more accurate information on the ramification level than s (it

can happen that posE(i, s1[i]) = posE(j, s1[j]) and posE(i, s[i]) 6= posE(j, s[j]), but only when

min(posE(i, s[i]), posE(j, s[j])) ≥ min(posE(i, c[i]), posE(j, c[j]))).
Thus, if T 1 is an Arf semigroup of σ(E) containing S, represented by

M(T 1)E =









0 a1,2 a1,3 . . . a1,r
0 0 a2,3 . . . a2,r
. . . . . . . . . . . . . . .
0 0 0 . . . ar−1,r

0 0 0 . . . 0









we have:

• ai,j ≤ MINE(i, j, Small∗(S)) for (i, j) ∈ {1, . . . , n}2 \ UE(Small∗(S));

• ai,j ≤ min(kE(i, j), posE(i, c[i])), for i ∈ UE(Small∗(S)) (we have posE(i, c[i]) =
posE(j, c[j])).

Then we can finally deduce that the pi,j that define the matrix of Arf(S) are such that

• pi,j = MINE(i, j, Small∗(S)), for (i, j) ∈ {1, . . . , r}2 \ UE(Small∗(S));

• pi,j = min(kE(i, j), posE(i, c[i])), for i ∈ UE(Small∗(S)) (we have posE(i, c[i]) =
posE(j, c[j])),

and it is easy to see that the pi,j fulfil the condition of Remark 3.
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Remark 8. In other words we proved that Arf(S) can be found by computing Arf(G) where:

G = Small∗(S)
⋃

{(c[1] + 1, . . . , c[i], c[i+ 1], . . . , c[r]), . . . , (c[1], . . . , c[i] + 1, c[i+ 1], . . . , c[r]), . . . ,

(c[1], . . . , c[i], c[i+ 1], . . . , c[r] + 1)} .

Example 2.3.1. Let us consider the good semigroup S with the following set of small elements,

Small∗(S) = {[5, 6, 5], [5, 10, 5], [5, 12, 5], [8, 6, 8], [8, 10, 8], [8, 12, 8], [8, 6, 10], [8, 10, 10],

[8, 12, 10], [10, 6, 8], [10, 10, 8], [10, 12, 8], [10, 6, 10], [10, 10, 10], [10, 12, 10]} .
The conductor is δ = [10, 12, 10]. First of all we need to recover from Small∗(S) the collection

of multiplicity sequences E. We have to apply the Du Val algorithm to the following sets:

{5, 8, 10, 11} , {6, 10, 12, 13} and {5, 8, 10, 11} ,

therefore we find that E = {[5, 3, 2], [6, 4, 2], [5, 3, 2]} .
We have

pos(Small∗(S)) = {posE(s) : s ∈ Small(S)} = {[1, 1, 1], [1, 2, 1], [1, 3, 1], [2, 1, 2], [2, 2, 2],

[2, 3, 2], [2, 1, 3], [2, 2, 3], [2, 3, 3], [3, 1, 2], [3, 2, 2], [3, 3, 2], [3, 1, 3], [3, 2, 3], [3, 3, 3]} .
It is easy to check that UE(Small∗(S)) = ∅. Thus we have

• p1,2 = MINE(1, 2, Small∗(S)) = min(kE(1, 2) = 4, 1) = 1, because we have the element

[1, 2, 1] ∈ pos(Small∗(S)) corresponding to s = [5, 10, 5] ∈ Small∗(S) such that 1 =
posE(1, s[1]) 6= posE(2, s[2]) = 2 and min(posE(1, s[1]), posE(2, s[2])) = 1 .

• p2,3 = MINE(2, 3, Small∗(S)) = min(kE(2, 3) = 4, 1) = 1, because we have the element

[1, 2, 1] ∈ pos(Small∗(S)) corresponding to s = [5, 10, 5] ∈ Small∗(S) such that 2 =
posE(2, s[2]) 6= posE(3, s[3]) = 1 and min(posE(2, s[2]), posE(3, s[3])) = 1 .

• p1,3 = MINE(1, 3, Small∗(S)) = min(kE(1, 3) = +∞, 2) = 2, because we have the

element [2, 2, 3] ∈ pos(Small∗(S)) corresponding to s = [8, 10, 10] ∈ Small∗(S) such

that 2 = posE(1, s[1]) 6= posE(3, s[3]) = 3 and min(posE(1, s[1]), posE(3, s[3])) = 2,

and we cannot find a smaller discrepancy.

So the Arf closure of S is described by the matrix

M(T )E =





0 1 2
0 0 1
0 0 0



 .

with

E = {m1 = [5, 3, 2],m2 = [6, 4, 2] and m3 = [5, 3, 2]} .
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The following procedure, implemented in GAP, has as argument the set of small elements of

a good semigroup and give as a result the Arf Closure of the given good semigroup. The Arf

closure is described by a list [E,M(T )E].

gap> S:=[[5,6,5],[5,10,5],[5,12,5],[8,6,8],[8,10,8],[8,12,8],

[8,6,10],[8,10,10],[8,12,10],[10,6,8],[10,10,8],[10,12,8],

[10,6,10],[10,10,10],[10,12,10]];

[ [ 5, 6, 5 ], [ 5, 10, 5 ], [ 5, 12, 5 ], [ 8, 6, 8 ],

[ 8, 10, 8 ], [ 8, 12, 8 ], [ 8, 6, 10 ], [ 8, 10, 10 ],

[ 8, 12, 10 ], [ 10, 6, 8 ], [ 10, 10, 8 ], [ 10, 12, 8 ],

[ 10, 6, 10 ], [ 10, 10, 10 ], [ 10, 12, 10 ] ]

gap> ArfClosureOfGoodsemigroup(S);

[ [ [ 5, 3, 2 ], [ 6, 4, 2 ], [ 5, 3, 2 ] ],

[ [ 0, 1, 2 ], [ 0, 0, 1 ], [ 0, 0, 0 ] ] ]

2.4 Bounds on the minimal number of vectors determining a

given Arf semigroup

Suppose that E is a collection of r multiplicity sequences. Let T ∈ τ(E) and consider the

corresponding semigroup S(T ) in σ(E), we want to study the properties that a set of vectors

G(T ) ⊆ N
r has to satisfy to have S(T ) = Arf(G(T )), with the notations given in the previous

section. We call such a G(T ) a set of generators for S(T ). In particular we want to find bounds

on the cardinality of a minimal set of generators for a S(T ) ∈ σ(E).
Since we want to find a G(T ) such that Arf(G(T )) is well defined, it has to satisfy the

following properties:

• For all i = 1, . . . , r
gcd(v[i]; v ∈ G(T )) = 1,

where v[i] is the i-th coordinate of the vector v ∈ G(T ).

• For all i, j ∈ {1, . . . , r}, with i < j there exists v ∈ G(T ) such that v[i] 6= v[j].

Now we want that Arf(G(T )) is an element of σ(E). This implies that, when we apply the

algorithm of Du Val to G(T )[i], we have to find the i-th multiplicity sequence of E. This means

that, if we call Si the Arf numerical semigroup corresponding to the projection on the i-th co-

ordinate, we must have G(T )[i] ⊆ Si and furthermore G(T )[i] has to contain the characters of

Si. In fact, in [1] it is proved that if we have G = {g1, . . . , gm} ⊆ N with gcd(G) = 1 then G
must contain the set of characters of the Arf closure of the numerical semigroup N = 〈G〉.
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We suppose that E = {m1, . . . ,mr}. Given

mi = [mi,1, . . . ,mi,N ],

we consider the restricion number r(mi,j) ofmi,j . With this notation we have that the characters

of the multiplicity sequence mi are the elements of the set

CharE(i) =

{
j
∑

k=1

mi,k : r(mi,j) < r(mi,j+1)

}

.

Notice that, from our assumptions onN , it follows that the last two entries in eachmi are 1, and

it is easy to see how it guarantees that we cannot find characters in correspondence of indices

greater than N . We define PCharE(i) = {j : r(mi,j) < r(mi,j+1)}.
Given the collection E, we denote by

VE(j1, j2, . . . , jr) =

[
j1∑

k=1

m1,k,

j2∑

k=1

m2,k, . . . ,

jr∑

k=1

mr,k

]

.

Now, the elements of G(T ) must be of the type VE(j1, j2, . . . , jr) (in fact we noticed that when

we project on the k-th coordinate we must find an element of the corresponding numerical

semigroup that has the previous representation for some jk).

From the previous remarks and notations we have the following property:

G(T ) = {Gen(1) = VE(j1,1, . . . , j1,r), . . . ,Gen(t) = VE(jt,1, . . . , jt,r)}

are generators of a semigroup of σ(E) if and only if

PCharE(i) ⊆ {j1,i, . . . , jt,i} for all i = 1, . . . , r.

In particular we have found a lower bound for the cardinality of a minimal set of generators for

a S(T ) ∈ σ(E). In fact G(T ) has at least CE = max {|PCharE(i)|, i = 1, . . . , r} elements.

Now we want to determine the generators of a given semigroup S(T ) ∈ σ(E). We have the

following theorem.

Theorem 2.4.1. Let S(T ) ∈ σ(E) with

M(T )E =









0 p1,2 p1,3 . . . p1,r
0 0 p2,3 . . . p2,r
. . . . . . . . . . . . . . .
0 0 0 . . . pr−1,r

0 0 0 . . . 0









.

Denote by P = {(q, u) : pq,u = kE(q, u)}. Then G(T ) = {Gen(1), . . . ,Gen(t)} ⊆ N
r is such

that Arf(G(T )) = S(T ) if and only if the following conditions hold
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• Gen(1) = VE(j1,1, . . . , j1,r), . . . ,Gen(t) = VE(jt,1, . . . , jt,r) for some values of the in-

dices j1,1, . . . , jt,r;

• PCharE(i) ⊆ {j1,i, . . . , jt,i} for all i = 1, . . . , r.

Furthermore, if we consider the following integer

MING(T )(q, u) = min (kE(q, u),min {min(jp,q, jp,u) : jp,q 6= jp,u, p = 1, . . . , t}) ,

for the (q, u) ∈ {1, . . . , r}2 with q < u and where it is well defined, we have:

• for (q, u) ∈ P we have either jp,q = jp,u for all p = 1, . . . , t, or MING(T )(q, u) is well

defined and it equals kE(q, u);

• MING(T )(q, u) is well defined and it equals pq,u, for all (q, u) /∈ P .

Proof (⇐) Suppose that we haveG(T ) = {Gen(1), . . . ,Gen(t)} ⊆ N
r satisfying the conditions

of the theorem. The first two conditions ensure that if we apply the algorithm defined in the

previous section on G(T ) it will produce an element of σ(E).
Now it is easy, using the notations of Theorem 2.2.1, to show that jp,q = posE(q,Gen(p)[q])

and from this it follows that, when MING(T )(q, u) is well defined, it is equal to MINE(q, u,G(T )).
Furthermore we have UE(G(T )) ⊆ P . In fact we have

UE(G(T )) =
{
(q, u) ∈ {1, . . . , r}2 : posE(q,Gen(p)[q]) = posE(u,Gen(p)[u])

for all p = 1, . . . , t} =
{
(q, u) ∈ {1, . . . , r}2 : jp,q = jp,u for all p = 1, . . . , t

}
,

therefore if (q, u) ∈ UE(G(T )) then (q, u) ∈ P , since G(T ) satisfies the fourth condition in

the statement of the theorem (we cannot have (q, u) /∈ P because in this case MING(T )(q, u) =
MINE(q, u,G(T )) has to be well defined). So it will follow that, if S(T 1) is Arf(G(T )) then

M(T 1)E =









0 a1,2 a1,3 . . . a1,r
0 0 a2,3 . . . a2,r
. . . . . . . . . . . . . . .
0 0 0 . . . ar−1,r

0 0 0 . . . 0









where

• ai,j = MINE(i, j, G(T )) if (i, j) /∈ UE(G(T ));

• ai,j = kE(i, j) if (i, j) ∈ UE(G(T )).

Therefore if (i, j) /∈ P then (i, j) /∈ UE(G(T )) and we have ai,j = MINE(i, j, G(T )) =
MING(T )(i, j) = pi,j . If (i, j) ∈ P then

• if (i, j) ∈ UE(G(T )) then ai,j = kE(i, j);
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• if (i, j) /∈ UE(G(T )) then ai,j = MINE(i, j, G(T )) = MING(T )(i, j) = kE(i, j), for the

properties of the set G(T ) ((i, j) ∈ P ).

So we showed that Arf(G(T )) = S(T ). Thus the proof of this implication is complete.

(⇒) It follows immediately by contradiction, using the first part of the proof.

Example 2.4.2. Suppose that we have E = {m1,m2,m3}, where

m1 = [5, 4],m2 = [6, 4],m3 = [2, 2].

We have, kE(1, 2) = 3, kE(2, 3) = 2 and kE(1, 3) = 2.

We can define:

R(i) = [r(mi,1), r(mi,2), . . . , r(mi,N)].

Notice that r(mi,1) = 0, r(mi,2) = 1. The values of PChar(i) are the indices where this se-

quence has an increase (it can be easily shown that when the sequence has an increase we

have r(mi,j) = r(mi,j+1) − 1 cf. [4, Lemma 3.2]). Furthermore R(1) = [0, 1, 2, 2, 2, 2],
R(2) = [0, 1, 2, 3, 2, 2] and R(3) = [0, 1, 1, 2]. So PCharE(1) = {1, 2} , PCharE(2) = {1, 2, 3}
and PCharE(3) = {1, 3}.

Suppose that we want to find generators for the untwisted tree T 1 such that T 1
E = (2, 1). We

need at least three vectors becauseCE = 3. Consider the vectors Gen(1) = VE(1, 1, 3),Gen(2) =
VE(2, 3, 2) and Gen(3) = VE(2, 2, 1). The second condition, that guarantees that we have

a tree belonging to τ(E), is satisfied. Furthermore MING(T )(1, 2) = min(kE(1, 2), 2) =
2, MING(T )(2, 3) = min(kE(2, 3), 1) = 1, and MING(T )(1, 3) = min(kE(1, 3), 1) = 1 =
min(p1,2, p2,3) where G(T ) = {Gen(1),Gen(2),Gen(3)}. Thus we have Arf(G(T )) = S(T 1).
They are the vectors Gen(1) = [5, 6, 5],Gen(2) = [9, 11, 4],Gen(3) = [9, 10, 2] that appeared

in the Example 2.2.2.

Now, we want to find an upper bound for the cardinality of a minimal set G(T ) such that

Arf(G(T )) ∈ σ(E).
Remark 9. Suppose that T 1 is a twisted tree of τ(E), where E is a collection of r multiplicity

sequences. Then, there exists a permutation δ ∈ Sr such that δ(T 1) is an untwisted tree of

τ(δ(E)). If G is a set of generators for δ(T 1), it is clear that we have

δ−1(G) =
{
δ−1(g); g ∈ G

}
,

is a set of generators for the twisted tree T 1.

From the previous remark it follows that we can focus only on the untwisted trees of τ(E)
to find an upper bound for the cardinality of G(T ).

Our problem is clearly linked to the following question.

Question 2.4.3. Let us consider a vector d = [d1, . . . , dr] ∈ N
r. For all the G ⊆ N

r+1 we

denote by MIN(G, i, j) the integers (if they are well defined)

MIN(G, i, j) = min {min(g[i], g[j]) : g ∈ G with g[i] 6= g[j]} ,
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for all the i < j and i, j ∈ {1, . . . , r + 1} .
We define a solution for the vector d as a set G ⊆ N

r+1 such that:

MIN(G, i, j) = min {di, . . . , dj−1} for all i < j.

Consider r ∈ N with r ≥ 1 . Find the smallest t ∈ N, such that for all [d1, . . . , dr] ∈ N
r

there exists a solution with t vectors. We denote such a number t by NS(r).

Theorem 2.4.4. Consider r ∈ N with r ≥ 1 . Then NS(r) = dlog2 (r + 1)e, where dde =
min {m ∈ N : m ≥ d}.

Proof First of all we show that given an arbitrary vector d of Nr we are able to find a solution

of d consisting of N = dlog2 (r + 1)e vectors.

We will do it by induction on r. The base of induction is trivial. In fact if r = 1 then for

each vector [d1] we find the solution G = {[d1, d1 + 1]} that has cardinality dlog2 (1 + 1)e = 1.

Thus we suppose that the theorem is true for all the m < r and we prove it for r. Let d an

arbitrary vector of Nr. We fix some notations. Given a vector d, we will denote by sol(d) a

solution with dlog2 (r + 1)e vectors. We denote by Inf(d) = min {di : i = 1, . . . , r} and by

Pinf(d) = {i ∈ {1, . . . , r} : di = Inf(d)}. We have 1 ≤ |Pinf(d)| = k(d) ≤ r.
Suppose that Pinf(d) =

{
i1 < i2 < · · · < ik(d)

}
. Then we can split the vector d in the

following k(d) + 1 subvectors:







d1 = d(1 . . . i1 − 1),

dj = d(ij−1 + 1 . . . ij − 1) for j = 2, . . . , k(d),

dk(d)+1 = d(ik(d) + 1 . . . r),

where with d(a . . . b) we mean

• ∅ if b < a;

• The subvector of d with components between a and b if a ≤ b.

Then the subvectors dj are either empty or with all the components greater than Inf(d). We

briefly illustrate with an example the construction of the subvectors dj .

Example 2.4.5. Suppose that d = [2, 3, 2, 2, 5, 4, 5]. Then Inf(d) = 2, Pinf(d) = {1, 3, 4} and

then we have the four subvectors:

• d1 = d(1 . . . 0) = ∅,

• d2 = d(2 . . . 2) = [3],

• d3 = d(4 . . . 3) = ∅,

• d4 = d(5 . . . 7) = [5, 4, 5].
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Then we can consider the list of k(d) + 1 subvectors:

p(d) = [d1, . . . , dk(d)+1],

and, because all the di have length strictly less than r we can find a solution for each of them

with N = dlog2 (r + 1)e or less vectors. For the di = ∅ we will set sol(∅) = {[x]}, where x is

an arbitrary integer that is strictly greater than all the entries of d. It is quite easy to check that

the following equality holds:

r = k(d) +

k(d)+1
∑

i=1

Length(di). (2.1)

We associate to the list of vectors p(d) another list of vector c(d) such that

c(d) = [c1, . . . , ck(d)+1],

where Length(cj) = Length(dj) + 1 and the entries of cj are all equal to Inf(d) for all j =
1, . . . , k(d) + 1.

Now we consider the set I(N) = {0, 1}N . For each t ∈ I(N) we denote byO(t) the number

of ones that appear in t. Because we have N = dlog2 (r + 1)e , it follows

k(d) + 1 ≤ r + 1 ≤ 2N = |I(N)|,

therefore it is always possible to associate to each subvectors of the list p(d) distinct elements of

I(N). We actually want to show that it is possible to associate to all the subvectors di distinct

vectors of t ∈ I(N) such that O(t) ≥ |sol(di)| (for di = ∅ we can also associate the zero

vector). We already know for the inductive step that all the di have solutions with at most N
vectors. Suppose therefore that m ≤ N .

It is easy to see that

| {t ∈ I(N) : O(t) ≥ m} | =
N∑

k=m

(
N

k

)

.

Then we suppose by contradiction that in p(d) we have
∑N

k=m

(
N

k

)
+1 subvectors with solution

with cardinality m. From the inductive step it follows that all these subvectors have at least

length 2m−1, and from the formula 2.1 it follows:

r ≥
N∑

k=m

(
N

k

)

+

(
N∑

k=m

(
N

k

)

+ 1

)

2m−1 ⇒ r + 1 ≥
(

N∑

k=m

(
N

k

)

+ 1

)

(1 + 2m−1).

But we also have that:
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N∑

k=m

(
N

k

)

+ 1 ≥ 2N−m+1,

in fact
∑N

k=m

(
N

k

)
is the number of ways to select a subset of {1, . . . , N} of at least m elements

while there are 2N−m+1 − 1 ways to select a subset which contains at least m elements and

contains {1, 2, . . . ,m− 1}.
Therefore we can continue the inequality:

r + 1 ≥ 2N−m+1(1 + 2m−1) = 2N + 2N−m+1 > 2N .

But N = dlog2 (r + 1)e and therefore r + 1 ≤ 2N and we find a contradiction. Then in

{t ∈ I(N) : O(t) ≥ m} we have enough vectors to cover all the subvectors with solution with

cardinality m. We still also have to exclude the following possibility. Suppose that we have

x subvectors with solutions of cardinality m1 and y subvectors with solutions of cardinality

m2 > m1. If | {t ∈ I(N) : O(t) ≥ m1} | − x < y then it would not be possible to associate

to all the subvectors of the second type an element t of I(N) with O(t) ≥ m2. Indeed if this

happen we would have:

r ≥ x+ y − 1 + x · 2m1−1 + y · 2m2−1 > x+ y − 1 + (x+ y)2m1−1 ⇒

⇒ r + 1 ≥ (x+ y)(1 + 2m1−1) ≥
(

N∑

k=m1

(
N

k

)

+ 1

)

(1 + 2m1−1),

and we already have seen that this is not possible.

Therefore we proved that we can consider a matrix A with N rows and k(d) + 1 distinct

columns with only zeroes and ones as entries and such that the i-th column of A is a vector t of

I(N) such that O(t) ≥ |sol(di)| for each 1 ≤ i ≤ k(d) + 1.

Now we can complete the construction of a solution for d . We consider a matrix B with N
rows and k(d) + 1 columns. We fill the matrix B following these rules:

• If A[i, j] = 0 then in B[i, j] we put the vector cj;

• If A[i, j] = 1 then in B[i, j] we put an element of sol(dj);

• All the elements of sol(dj) have to appear in the j-th column for all j = 1, . . . , k(d) + 1.

Then if we glue all the vectors appearing in the i-th row of B for each i = 1, . . . , N we obtain

a solution G for the vector d. In fact if we consider i1, j1 such that i1 < j1 we have two

possibilities:

• i1 and j1 both correspond to elements in the j-th column of B. Then because in this

column we have either vectors of a solution for dj or constant vectors, it follows that they

fulfil our conditions.

57



• i1 and j1 correspond to elements in distinct columns. This implies that we must have

MIN(G, i1, j1) = Inf(d). In fact, for construction, between two distinct subvectors we

have an element equal to Inf(d) in d forcing MIN(G, i1, j1) = Inf(d). Now suppose that

i1 and j1 correspond respectively to elements in the i-th and j-th columns of B. Because

we suppose i 6= j we have that the i-th column and the j-th column of the matrix A are

distinct so there exists a k such that A[k, i] = 0 and A[k, j] = 1 (or vice versa). This

implies that in B we have a row where in the i-th column there is the constant vector

equal to Inf(d) while in the j-th column we have a vector corresponding to a solution of

a subvectors of d (that has all the components greater than Inf(d) by construction). This

easily implies that MIN(G, i1, j1) = Inf(d).

Example 2.4.6. Suppose that d = [2, 3, 2, 2, 5, 4, 5]. We have r = 7, then we want to show that

there exists a solution with three vectors. We have already seen that in this case we have:

p(d) = [∅, [3], ∅, [5, 4, 5]].

We need to compute a solution for each entry of p(d). We have:

• sol(∅) = {[6]} (6 is greater than all the entries of d);

• sol([3]) = {[3, 4]};

• Let us compute a solution for f = [5, 4, 5] with the same techniques. Because Length(f) =
3 we expect to find a solution with at most two vectors. We have:

p(f) = [[5], [5]],

and we have sol([5]) = {[5, 6]}. Then in I(2) we want to find two distinct vectors with at

least an entry equal to one. We can choose [1, 1] and [0, 1]. Therefore we have:

A =

(
1 0
1 1

)

and B =

(
[5, 6] [4, 4]
[5, 6] [5, 6]

)

.

Then sol([5, 4, 5]) = {[5, 6, 4, 4], [5, 6, 5, 6]}.

Now we want to find in I(3) four vectors ti for i = 1, . . . , 4. We have free choice for the t1
and t3 , while we need O(t2) ≥ 1 and O(t4) ≥ 2. For instance we choose t1 = [0, 0, 0], t2 =
[1, 0, 0], t3 = [1, 1, 0], t4 = [1, 0, 1]. Then we have:

A =





0 1 1 1
0 0 1 0
0 0 0 1



 and B =





[2] [3, 4] [6] [5, 6, 4, 4]
[2] [2, 2] [6] [2, 2, 2, 2]
[2] [2, 2] [2] [5, 6, 5, 6]



 .

Then a solution for d is the set

G = {[2, 3, 4, 6, 5, 6, 4, 4], [2, 2, 2, 6, 2, 2, 2, 2], [2, 2, 2, 2, 5, 6, 5, 6]} .
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So we proved that NS(r) ≤ dlog2 (r + 1)e. To prove that the equality holds we notice that for

each r a constant vector needs exactly dlog2 (r + 1)e vectors in its solutions.

Now we can return to the problem of determining an upper bound for the cardinality of

G(T ). We need another lemma:

Lemma 2.4.7. Let E = {m1,m2} be a collection of two multiplicity sequences. Then, with the

previous notations we have:

kE(1, 2) ≤ min {j : j ∈ (PCharE(1) ∪ PCharE(2)) \ (PCharE(1) ∩ PCharE(2))} .

Proof Let us choose an arbitrary element t ∈ (PCharE(1) ∪ PCharE(2)) \ (PCharE(1) ∩
PCharE(2)). We want to show that kE(1, 2) ≤ t. Suppose by contradiction that t < kE(1, 2).
Without loss of generality we suppose that t ∈ PCharE(1). It follows that t /∈ PCharE(2) and

we have:

r(m1,t) < r(m1,t+1) and r(m2,t) ≥ r(m2,t+1).

Notice that if an entry of m1 has m1,t+1 as a summand and it is not m1,t, it is forced to have

m1,t as a summand too. So from r(m1,t) < r(m1,t+1) we deduce that in m1 there are no entries

involving only m1,t. Similarly from r(m2,t) ≥ r(m2,t+1) we deduce that in m2 we must have at

least one entry m2,s that involves m2,t as a summand but not m2,t+1.

Namely

m2,s =
t∑

k=s+1

m2,k. (2.2)

Now, we have assumed that t < kE(1, 2) hence t+1 ≤ kE(1, 2). This implies that the untwisted

tree T such that TE = (t+ 1) is well defined. In T we have the following nodes:

(m1,s,m2,s), . . . , (m1,t,m2,t), (m1,t+1,m2,t+1).

Then from (2.2) and from the fact that the two branches are still glued at level t + 1 it must

follow that

m1,s =
t∑

k=s+1

m1,k

and we have still noticed how it contradicts the assumption r(m1,t) < r(m1,t+1).

Now we can prove the following result:

Proposition 2.4.8. Let E be a collection of r multiplicity sequences. Then, if S(T ) ∈ σ(E),
there exists G(T ) ⊆ N

r with Arf(G(T )) = S(T ) and |G(T )| = CE + dlog2 (r)e.
Proof For the Remark 9 it suffices to prove the theorem only for the untwisted trees. Therefore

we suppose that TE = (d1, . . . , dr−1). First of all we have to satisfy the condition on the

characters to ensure that Arf(G(T )) ∈ σ(E). From the Lemma (2.4.7) it follows that we can

use CE vectors to satisfy all the conditions. To see it, let us fix some notations.
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Denote by τ(i) = |PCharE(i)| for all i = 1, . . . , r. ThereforeCE = max {τ(i), i = 1, . . . , r}.
Suppose that

PCharE(i) =
{
ai,1 < · · · < ai,τ(i)

}
,

and we define

L = max

(
r⋃

i=1

PCharE(i)

)

+ 1.

For all i = 1, . . . , r we consider the vector J(i) = [ai,1, . . . , ai,τ(i), L, . . . , L] ∈ N
CE . Thus we

can use the following set of vectors to satisfy the condition on the characters,

G = Gen(1) = VE(j1,1, . . . , j1,r), . . . ,Gen(CE) = VE(jCE ,1, . . . , jCE ,r),

where jp,q = J(q)[p] for all p = 1, . . . , CE and q = 1, . . . , r. Now it is clear that we have

PCharE(i) ⊆ {j1,i, . . . , jCE ,i} for all i = 1, . . . , r.
We also need to show that this choice does not affect the condition on (d1, . . . , dr−1). We

define P =
{
(q, u) ∈ {1, . . . , r}2 : jp,q = jp,u for all p = 1, . . . , CE

}
. Thus for each (q, u) ∈ P

the previous vectors are compatible with the conditions on the element pq,u of M(T )E .

For each (q, u) /∈ P , we consider

p(q, u) = min {p : jp,q 6= jp,u} .

Now, because the entries of the vectors J(q) are in an increasing order, it is clear that we have

MING(q, u) = min (kE(q, u),min {min(jp,q, jp,u) : jp,q 6= jp,u}) =

= min
(
kE(q, u),min(jp(q,u),q, jp(q,u),u)

)
, for all (q, u) /∈ P.

Furthermore, for the particular choice of the vectors Gen(i) and of L, it is clear that from

jp(q,u),q 6= jp(q,u),u, it follows that

min(jp(q,u),q, jp(q,u),u) ∈ (PCharE(q) ∪ PCharE(u)) \ (PCharE(q) ∩ PCharE(u)),

and from the Lemma 2.4.7, we finally have

min(jp(q,u),q, jp(q,u),u) ≥ kE(q, u) for all (q, u) /∈ P,

so the vectors Gen(i) are compatible with our tree.

Now from the Theorem 2.4.4 it follows that we can use dlog2 (r)e vectors to have a solution

for the vector [d1, . . . , dr−1]. Adding the vectors corresponding to this solution to the previous

CE we obtain a set G(T ) such that Arf(G(T )) = S(T ).
Notice that the firstCE vectors may satisfy some conditions on the di, therefore it is possible

to find G(T ) with smaller cardinality than the previous upper bound.
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Remark 10. Let us consider the Arf semigroup of the Example 2.4.2.

It was T = TE = (2, 1), where

E = {m1 = [5, 4],m2 = [6, 4],m3 = [2, 2]} ,

with

PCharE(1) = {1, 2} , PCharE(2) = {1, 2, 3} and PCharE(3) = {1, 3} .
We found G = {VE(1, 1, 3), VE(2, 3, 2), VE(2, 2, 1)} as a set such that Arf(G) = S(T ), and it

is also minimal because we have |G| = CE and we clearly cannot take off any vector from it.

Using the strategy of the previous corollary we would find the vectors:

Gen(1) = VE(1, 1, 1),Gen(2) = VE(2, 2, 3) and Gen(3) = VE(4, 3, 4),

that satisfy the conditions on the characters (L = 4).

We have to add vectors that correspond to a solution for the vector [2, 1]. For instance it

suffices to consider [3, 2, 1] and therefore we will add the vector Gen(4) = VE(3, 2, 1). Notice

how the set G′ = {VE(1, 1, 1), VE(2, 2, 3), VE(4, 3, 4), VE(3, 2, 1)}, with |G′| > |G|, is still

minimal because we cannot remove any vector from it without disrupting the condition on the

tree. Therefore we can have minimal sets of generators with distinct cardinalities.

Example 2.4.9. Let us consider

E = {m1 = [4, 4],m2 = [6, 4],m3 = [2, 2],m4 = [3, 2]} .

We want to find a set of generators for the twisted tree T of τ(E) such that:

M(T )E =







0 2 1 2
0 0 1 3
0 0 0 1
0 0 0 0






.

First of all we notice that it is well defined because it satisfies the conditions given by the

Remark 2 and we have

k(1, 2) = 2, k(1, 3) = 4, k(1, 4) = 2, k(2, 3) = 2, k(2, 4) = 3 and k(3, 4) = 2.

We consider the permutation δ = (3, 4) of S4. Then δ(T ) is an untwisted tree of τ(δ(E)) and it

is described by the vector Tδ(E) = (2, 3, 1). We have:

• PCharδ(E)(1) = {1, 3} ;

• PCharδ(E)(2) = {1, 2, 3} ;

• PCharδ(E)(3) = {1, 2} ;
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• PCharδ(E)(4) = {1, 3} .

Then with the vectors Vδ(E)(1, 1, 1, 1), Vδ(E)(3, 2, 2, 3), Vδ(E)(4, 3, 4, 4), we satisfy the condition

on the characters. We need to add the vectors corresponding to a solution for [2, 3, 1]. It suffices

to add Vδ(E)(2, 4, 3, 1). Then

G(T ) = {[4, 6, 3, 2], [9, 10, 5, 5], [10, 11, 7, 6], [8, 12, 6, 2]} ,

is a set of generators for δ(T ). Because δ−1 = (3, 4), we have that

δ−1(G(T )) = {[4, 6, 2, 3], [9, 10, 5, 5], [10, 11, 6, 7], [8, 12, 2, 6]}

is a set of generators for the twisted tree T .
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Chapter 3

Algorithms for Arf good semigroups

In this chapter, we present some procedures regarding the computation of sets consisting of Arf

good semigroups satisfying some specific conditions.

3.1 Finding Arf semigroups with a fixed conductor

The aim of this section is to find an algorithm for computing the set of all the Arf good semi-

groups of Nr having as conductor a fixed vector c ∈ N
r. We will develop a procedure that

works inductively on the dimension r, thus the following two subsections are dedicated to the

solution of the required base cases for r = 1 and r = 2.

3.1.1 An algorithm for Cond(n) where n ∈ N

In [12] it is presented an algorithm for the computation of the set of the Arf numerical semi-

groups with a given conductor. In this section we give a new procedure for the computation of

such a set. It has already replaced the older one in the GAP package Numericalsgps of which

the author is one of the contributors [9].

Now, given a multiplicity sequencem = [m1, . . . ,ml(m)], it is clear that the conductor of the

associated Arf numerical semigroup AS(m) is
∑l(m)

i=1 mi. In particular notice that the conductor

of AS([ ]) = N is 0.

We denote by Cond(n) the set of the multiplicity sequences of Arf numerical semigroups

with conductor n, and we want to find a procedure to compute this set for all n ∈ N.

If n = 0, then Cond(n) = {[ ]}, while if n = 1, Cond(n) = ∅. Thus, we suppose n > 1.

Denote by T n(i) = {m ∈ Cond(i) : m1 + i ≤ n} for all i = 2, . . . , n − 2. Now suppose that

m = [m1, . . . ,mk] ∈ Cond(n). If k = 1 then m = [n], otherwise we have the following

situation:

• 2 ≤ m1 < n− 1 and [m2, . . . ,mk] ∈ Cond(n−m1);
• m1 ∈ AS([m2, . . . ,mk]);
• m2 −m1 ≤ 0⇒ m2 + n−m1 ≤ n⇒ [m2, . . . ,mk] ∈ T n(n−m1).
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Hence, if we know T n(i) for i = 2, . . . , n − 2, we can compute Cond(n) in the following

way:

Cond(n) =
n−2⋃

i=2

{(n− i) :: m|m ∈ T n(i), n− i ∈ AS(m)} ∪ {[n]} ,

where we denote by (n − i) :: m the list obtained by appending n − i at the beginning of m.

Now we need a way to compute T n(i). Suppose that m = [m1, . . . ,mk] ∈ T n(i). If k = 1, and

2 · i ≤ n then m = [i], otherwise we have the following situation:

• 2 ≤ m1 < i− 1 and [m2, . . . ,mk] ∈ Cond(i−m1) = Cond(q);
• q +m2 = i−m1 +m2 ≤ i ≤ n⇒ [m2, . . . ,mk] ∈ T n(q);
•m1 ∈ AS([m2, . . . ,mk]);
•m1 + i ≤ n⇒ 2m1 ≤ n+m1 − i⇒ 2m1 ≤ n− q ⇒ m1 ≤

⌊
n−q

2

⌋
.

So each T n(i) can be constructed using T n(q) with 2 ≤ q < i. Thus, we have the following

algorithm for Cond(n) for n > 1.

input : An integer n > 1
output: The set Cond(n) of all the multiplicity sequences of Arf semigroups with

conductor n

Cond(n)←− {[n]}
for i← 2 to n− 2 do

if i ≤
⌊
n
2

⌋
then

T n(i)←− {[i]}
end

else
T n(i)←− ∅

end

end

for i← 2 to n− 2 do

for m ∈ T n(i) do

if n− i ∈ AS(m) then
Cond(n)←− Cond(n) ∪ {(n− i) :: m}

end

for k ∈ AS(m) ∩
{
2, . . . ,

⌊
n−i
2

⌋}
do

T n(i+ k)←− T n(i+ k) ∪ {(k) :: m}
end

end

end

Cond(n)

Algorithm 1:
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3.1.2 Arf good semigroups of N2 with given conductor

From this section we begin to deal with Arf good semigroups of Nr. The aim of this and the

following section is to find a procedure that lets us to determine all the local Arf semigroups

S ⊆ N
r with a given conductor c ∈ N

r. For the Remark 4, we can focus only on the untwisted

trees.

We denote by Cond(c) the set of all the untwisted multiplicity trees of Arf semigroups in

N
r with conductor c ∈ N

r (in the case r = 1 we have the multiplicity sequences and from the

previous section we have a procedure to determine such a set).

We notice the following general fact.

Proposition 3.1.1. Let S be an Arf semigroup of Nr, T the corresponding multiplicity tree and

mi for i = 1, . . . , r the multiplicity sequences of its branches.

We introduce the following integers

d(i) = min {j ∈ N : mi[j] = 1 and the i-th branch is not glued to other branches at level j} ,
for i = 1, . . . , r.

Then c = (c[1], . . . , c[r]) is the conductor of S where

c[i] =

d(i)−1
∑

k=1

mi[k] for i = 1, . . . , r.

Proof. Denote by N(T ) =
{

n
j
i

}
the set of the nodes of T . We call ei = (0, . . . , 0, 1, 0, . . . , 0),

where the non zero coordinate is in the i-th position. Now, from the definition of the integers

d(i), it follows that

• n
d(i)
i = ei for all i = 1, . . . , r;

• n
d(i)−1
i 6= ei for all i = 1, . . . , r.

We consider the subtree T ′ of T such thatN(T ′) =
{

n
j(i)
i : i = 1, . . . , r; j(i) = 1, . . . , d(i)− 1

}

.

Then we have

• T ′ is rooted in n1
1 (it corresponds to an element of the associated Arf good semigroup);

• ei /∈ N(T ′) for all i = 1, . . . , r;

• If T ′′ is such that T ′ ⊆ T ′′ ⊆ T then N(T ′′) \N(T ′) consists only of nodes of the type ei.

From the previous properties it is clear that the element corresponding to the subtree T ′ must

be the conductor of the Arf semigroup associated to T . It is also trivial that the sum of all the

elements of N(T ′) is equal to c = (c[1], . . . , c[r]) where

c[i] =

d(i)−1
∑

k=1

mi[k] for i = 1, . . . , r.
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Remark 11. Using the notations of Proposition 3.1.1, given an untwisted tree TE = (p1, . . . , pr−1),
where E = {m1, . . . ,mr}, it is easy to show that

d(i)− 1 = max(l(mi), pi, pi−1) for i = 2, . . . , r − 1

d(1)− 1 = max(l(m1), p1) and d(r)− 1 = max(l(mr), pr−1).

Now, we focus on the case r = 2 and we determine a procedure to compute Cond(c)
where c is a fixed arbitrary vector (c[1], c[2]). Suppose that TE = (p) ∈ Cond(c) where E =
{m1,m2}. From the previous remark d(1)−1 = max(l(m1), p) and d(2)−1 = max(l(m2), p).
Furthermore, in the following, we will call compatibility between the multiplicity sequences

m1, m2, denoted by Comp(m1,m2), the integer kE(1, 2), defined in Proposition 2.1.2, where

E = {m1,m2}.
We have the following cases:

• Case d(1)− 1 = l(m1) and d(2)− 1 = l(m2).
We have p ≤ min(l(m1), l(m2)). Furthermore, we have p ≤ Comp(m1,m2) because T is

well defined. Since TE = (p) ∈ Cond(c) we have:

c[1] =

d(1)−1
∑

k=1

m1[k] =

l(m1)∑

k=1

m1[k] and c[2] =

d(2)−1
∑

k=1

m2[k] =

l(m2)∑

k=1

m2[k],

and from it we deduce that m1 ∈ Cond(c[1]) and m2 ∈ Cond(c[2]). So in this case T belongs

to the following set:

S1(c) = {TE = (k) : E = {m1,m2} ;mi ∈ Cond(c[i]) and

1 ≤ k ≤ min(Comp(m1,m2), l(m1), l(m2))} .

Also, we can notice that S1(c) ⊆ Cond(c) (using the inverse implications).

• Case d(1)− 1 = l(m1) and d(2)− 1 6= l(m2).
Hence d(2)− 1 = p and l(m2) < p ≤ min(l(m1),Comp(m1,m2)). Therefore:

c[1] =

l(m1)∑

k=1

m1[k] , c[2] =

p
∑

k=1

m2[k] =

l(m2)∑

k=1

m2[k]+

p
∑

k=l(m2)+1

m2[k] =

l(m2)∑

k=1

m2[k]+p− l(m2),

and from this we can deduce m1 ∈ Cond(c[1]) and, denoted by k2 = c[2] − (p − l(m2)),
m2 ∈ Cond(k2). Notice that 0 ≤ k2 < c[2].

Now, for all 0 ≤ k < c[2] we define the set:

I1(k) = {TE = (p) : E = {m1,m2} ,m1 ∈ Cond(c[1]),m2 ∈ Cond(k) and

p = l(m2) + c[2]− k ≤ min(l(m1),Comp(m1,m2))} .

Thus T belongs to

S2
1(c) =

c[2]−1
⋃

k=0

I1(k).
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With the inverse implication we can easily show that S2
1(c) ⊆ Cond(c).

• Case d(1)− 1 6= l(m1) e d(2)− 1 = l(m2).
We have d(1)− 1 = p and l(m1) < p ≤ min(l(m2),Comp(m1,m2)). Hence:

c[1] =

p
∑

k=1

m1[k] =

l(m1)∑

k=1

m1[k] +

p
∑

k=l(m1)+1

m1[k] =

l(m1)∑

k=1

m1[k] + p− l(m1); c[2] =

l(m2)∑

k=1

m2[k],

and from this we obtain m2 ∈ Cond(c[2]) and, setting k1 = c[1] − (p − l(m1)), we deduce

m1 ∈ Cond(k1). Notice that 0 ≤ k1 < c[1].
For all 0 ≤ k < c[1] we define the set:

I2(k) = {TE = (p) : E = {m1,m2} ,m1 ∈ Cond(k),m2 ∈ Cond(c[2]) and

p = l(m1) + c[1]− k ≤ min(l(m2),Comp(m1,m2))} .

Therefore T belongs to

S2
2(c) =

c[1]−1
⋃

k=0

I2(k).

With the inverse implication we can easily show that S2
2(c) ⊆ Cond(c).

• Case d(1)− 1 6= l(m1) and d(2)− 1 6= l(m2).
Then d(2) − 1 = p, d(1) − 1 = p and we have max(l(m1), l(m2)) < p ≤ Comp(m1,m2).

It follows:

c[1] =

p
∑

k=1

m1[k] =

l(m1)∑

k=1

m1[k] +

p
∑

k=l(m1)+1

m1[k] =

l(m1)∑

k=1

m1[k] + p− l(m1)

c[2] =

p
∑

k=1

m2[k] =

l(m2)∑

k=1

m2[k] +

p
∑

k=l(m2)+1

m2[k] =

l(m2)∑

k=1

m2[k] + p− l(m2).

If we denote by k1 = c[1]−(p−l(m1)) and by k2 = c[2]−(p−l(m2)), we havem1 ∈ Cond(k1)
and m2 ∈ Cond(k2).

Furthermore, notice that 0 ≤ k1 < c[1] and 0 ≤ k2 < c[2]. Now, for all 0 ≤ k1 < c[1] and

0 ≤ k2 < c[2] we define the set:

I(k1, k2) = {TE = (p) : E = {m1,m2} ,mi ∈ Cond(ki) for i = 1, 2 and

p = l(m1) + c[1]− k1 = l(m2) + c[2]− k2 ≤ Comp(m1,m2)} .

So T belongs to

S3(c) =
⋃

0≤ki<c[i]

I(k1, k2) ⊆ Cond(c).

Even in this case we can show that S3(c) ⊆ Cond(c).
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We have studied all the possible cases so we proved

S1(c) ∪ S2
1(c) ∪ S2

2(c) ∪ S3(c) = Cond(c).

All the previous set can be computed by using the procedure given in the case r = 1 so we have

found a procedure to compute Cond(c) when r = 2.

Example 3.1.2. Let us compute Cond([4, 5]).
First of all we compute S1([4, 5]). We need Cond(4) and Cond(5). They are:

Cond(4) = {[4], [2, 2]} and Cond(5) = {[5], [3, 2]} .

Hence when we compute S1([4, 5]) we find:

• E1 = {m1 = [4],m2 = [5]}. Thus Comp(m1,m2) = 5 and

min(l(m1), l(m2)) = 1. Then we have only the tree T1 = TE1 = (1).

• E2 = {m1 = [4],m2 = [3, 2]}. Thus Comp(m1,m2) = 3 and

min(l(m1), l(m2)) = 1. Then we have only the tree T2 = TE2 = (1).

• E3 = {m1 = [2, 2],m2 = [5]}. Thus Comp(m1,m2) = 2 and

min(l(m1), l(m2)) = 1. Then we have only the tree T3 = TE3 = (1).

• E4 = {m1 = [2, 2],m2 = [3, 2]}. We have Comp(m1,m2) = 2 and

min(l(m1), l(m2)) = 2. So we have the trees T4 = TE4 = (1) and T5 = TE4 = (2) .

Hence S1([4, 5]) = {T1, T2, T3, T4, T5}.

(4, 5)

(0, 1)(1, 0)

T1

(4, 3)

(0, 2)

(0, 1)

(1, 0)

T2

(2, 5)

(0, 1)(2, 0)

(1, 0)

T3

(2, 3)

(0, 2)

(0, 1)

(2, 0)

(1, 0)

T4

(2, 3)

(2, 2)

(0, 1)(1, 0)

T5

Now we compute S2
1([4, 5]). The only value k such that I1(k) 6= ∅ is k = 4 and we have:
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• c[1] = 4, k = 4. If we consider m1 = [2, 2] ∈ Cond(4) ,

m2 = [4] ∈ Cond(4) and E5 = {m1,m2} we have

l(m2) + c[2]− k = 2 ≤ min(l(m1),Comp(m1,m2)) = min(2, 2) = 2.

Hence we have the tree T6 = TE5 = (2).

Therefore S2
1([4, 5]) = {T6}. Let us compute S2

2([4, 5]). The only value k such that I2(k) 6= ∅
is k = 3:

• k = 3, c[2] = 5. If we consider m1 = [3] ∈ Cond(3) , m2 = [3, 2] ∈ Cond(5) and

E6 = {m1,m2} we have

l(m1) + c[1]− k = 1 + 4− 3 = 2 ≤ min(l(m2),Comp(m1,m2) = min(2, 3) = 2.

Hence we obtain the tree T7 = TE6 = (2).

Therefore S2
2([4, 5]) = {T7}.

We finally compute S3([4, 5]).
The only values of k1 and k2 such that I(k1, k2) 6= ∅ are the following:

• k1 = 2, k2 = 3. If we consider m1 = [2] ∈ Cond(2),
m2 = [3] ∈ Cond(3) and E7 = {m1,m2} we have

l(m1)+c[1]−k1 = 1+4−2 = 3 = 1+5−3 = l(m2)+c[2]−k2 ≤ Comp(m1,m2) = 3.

Thus we have the tree T8 = TE7 = (3).

• k1 = 3, k2 = 4. If we consider m1 = [3] ∈ Cond(3) ,

m2 = [4] ∈ Cond(4) and E8 = {m1,m2} we have

l(m1)+c[1]−k1 = 1+4−3 = 2 = 1+5−4 = l(m2)+c[2]−k2 ≤ Comp(m1,m2) = 4.

Thus we get the tree T9 = TE8 = (2). Hence S3([4, 5]) = {T8, T9}.

(2, 4)

(2, 1)

(0, 1)(1, 0)

T6

(3, 3)

(1, 2)

(0, 1)(1, 0)

T7

(2, 3)

(1, 1)

(1, 1)

(0, 1)(1, 0)

T8
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(3, 4)

(1, 1)

(0, 1)(1, 0)

T9

Summarizing, we have Cond([4, 5]) = {T1, T2, T3, T4, T5, T6, T7, T8, T9}.

Example 3.1.3. Using the previous results it is easy to implement an algorithm that computes

the number of Arf semigroups of N2 with a given conductor. Each entry of the following table

is such a number, where the conductors range from (1, 1) to (20, 20).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 2 2 4 3 7 6 10 9 17 12 25 20 32 27 49 34 68

2 1 2 2 4 4 8 6 14 12 20 18 34 24 50 40 64 54 98 68 136

3 1 2 3 4 5 9 7 16 14 22 21 39 26 57 46 71 60 111 75 155

4 2 4 4 10 9 18 15 33 28 49 43 81 59 120 96 156 131 236 167 328

5 2 4 5 9 12 19 15 34 32 51 45 86 62 128 102 161 139 250 172 347

6 4 8 9 18 19 41 30 68 60 99 92 171 122 252 201 326 275 497 344 687

7 3 6 7 15 15 30 30 54 48 80 74 134 104 204 163 264 221 399 285 556

8 7 14 16 33 34 68 54 129 108 180 164 306 222 453 371 593 499 901 632 1251

9 6 12 14 28 32 60 48 108 108 160 147 271 202 404 330 522 459 809 566 1120

10 10 20 22 49 51 99 80 180 160 284 242 454 337 676 545 878 748 1336 961 1867

11 9 18 21 43 45 92 74 164 147 242 245 412 307 611 502 798 685 1215 868 1688

12 17 34 39 81 86 171 134 306 271 454 412 798 567 1148 927 1492 1273 2277 1608 3159

13 12 24 26 59 62 122 104 222 202 337 307 567 469 849 694 1115 961 1689 1224 2347

14 25 50 57 120 128 252 204 453 404 676 611 1148 849 1750 1383 2224 1897 3389 2403 4710

15 20 40 46 96 102 201 163 371 330 545 502 927 694 1383 1192 1805 1556 2753 1976 3822

16 32 64 71 156 161 326 264 593 522 878 798 1492 1115 2224 1805 2992 2493 4433 3174 6155

17 27 54 60 131 139 275 221 499 459 748 685 1273 961 1897 1556 2493 2244 3798 2734 5266

18 49 98 111 236 250 497 399 901 809 1336 1215 2277 1689 3389 2753 4433 3798 6867 4814 9394

19 34 68 75 167 172 344 285 632 566 961 868 1608 1224 2403 1976 3174 2734 4814 3634 6701

20 68 136 155 328 347 687 556 1251 1120 1867 1688 3159 2347 4710 3822 6155 5266 9394 6701 13219

3.1.3 Arf semigroups of Nr with a given conductor

In this section we study the general case. We want to develop a recursive procedure to calculate

Cond(c) for c ∈ N
r, using the fact that we already know how to solve the base cases r = 1 and

r = 2. In order to do that is very useful the following Lemma.

Lemma 3.1.4. Consider c = (c[1], . . . , c[r]) ∈ N
r, with r ≥ 3 and suppose that the untwisted

tree T = TE = (p1, . . . , pr−1) ∈ Cond(c), where E = {m1, . . . ,mr}. If t ∈ {2, . . . , r − 1},
then we have that at least one of the following conditions must hold:
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• T1 = TE1 = (p1, . . . , pt−1) ∈ Cond((c[1], . . . , c[t])) with E1 = {m1, . . . ,mt} ;

• T2 = TE2 = (pt, . . . , pr−1) ∈ Cond((c[t], . . . , c[r])) with E2 = {mt, . . . ,mr} .
Proof. We assume by contradiction that

• T1 /∈ Cond((c[1], . . . , c[t]));

• T2 /∈ Cond((c[t], . . . , c[r])).

Let us consider the following integers (which are clearly linked to the conductor):

d1(i) = min {j ∈ N : mi[j] = 1 and the i-th branch in T1 is not glued to any branches at level j},
for i = 1, . . . , t.
d2(i) = min {j ∈ N : mi[j] = 1 and the i-th branch in T2 is not glued to any branches at level j},
for i = t, . . . , r.
We have d1(l) = d(l), for all l = 1, . . . , t − 1, and d2(q) = d(q), for all q = t + 1, . . . , r.
Furthermore, d1(t) ≤ d(t) and d2(t) ≤ d(t). In fact we have noticed that d(t) − 1 =
max(l(mt), pt−1, pt), while d1(t)− 1 = max(l(mt), pt−1) and d2(t)− 1 = max(l(mt), pt).

From T ∈ Cond(c) we deduce that

d(i)−1
∑

k=1

mi[k] = c[i] for i = 1, . . . , r.

We denote respectively by (c1[1], . . . , c1[t]) and by (c2[t], . . . , c2[r])) the conductors of T1 and

T2.
We have:

c1[l] =

d1(l)−1
∑

k=1

ml[k] =

d(l)−1
∑

k=1

ml[k] = c[l] for l = 1, . . . , t− 1

and c2[q] =

d2(q)−1
∑

k=1

mq[k] =

d(q)−1
∑

k=1

mq[k] = c[q], for q = t+ 1, . . . , r

and this implies, because T1 /∈ Cond((c[1], . . . , c[t])) and T2 /∈ Cond((c[t], . . . , c[r])), that

c1[t] =

d1(t)−1
∑

k=1

mt[k] 6= c[t] and c2[t] =

d2(t)−1
∑

k=1

mt[k] 6= c[t],

and therefore we have d1(t) < d(t) and d2(t) < d(t).
From this it would follow

d(t)− 1 = max(l(mt), pt−1, pt) = max(max(l(mt), pt−1),max(l(mt), pt))) =

= max(d1(t)− 1, d2(t)− 1) < d(t)− 1,
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and we obtain a contradiction.

Now, using this Lemma, we can introduce an algorithm that solves our problem working

inductively. Given c ∈ N
r, with r ≥ 3, we want to compute Cond(c). We suppose that we are

able to solve the problem for all s < r and we develop a strategy for the r case.

Let us fix some notations. If k = 2, . . . , r − 1, we denote by ck = (c[1], . . . , c[k]) and by

ck = (c[k + 1], . . . , c[r]). Similarly, if E = {m1, . . . ,mr}, we denote by Ek = {m1, . . . ,mk}
and by Ek = {mk+1, . . . ,mr} . Furthermore, for i = 1, . . . , r − 1, we define the integers
∗pi = max(l(mi), pi−1) and p∗i = max(l(mi+1), pi+1), where, by definition, we set p∗r−1 =
l(mr) and ∗p1 = l(m1).

Fixed c ∈ N
r, we suppose to have a tree T = TE = (p1, . . . , pr−1) ∈ Cond(c) with

E = {m1, . . . ,mr}. Consider t ∈ {2, . . . , r − 1}. It follows from Lemma 3.1.4 that we only

have two cases:

• Case T1 = TEt
= (p1, . . . , pt−1) ∈ Cond(ct).

We clearly have d1(i) = d(i) for all i = 1, . . . , t − 1, while from T1 ∈ Cond(ct) it follows

that d1(t) = d(t). Hence:

∗pt = max(l(mt), pt−1) = d1(t)− 1 = d(t)− 1 = max(pt, pt−1, l(mt)) = max(∗pt, pt)

and we deduce that pt ≤ ∗pt.
We consider the tree T2 = TEt = (pt+1, . . . , pr−1), (if t = r − 1 we have T2 = mr). We

clearly have d2(i) = d(i) for all i = t+ 2, . . . , r.
On the other hand d2(t+ 1)− 1 = max(l(mt+1), pt+1) = p∗t may be different from

d(t+ 1)− 1 = max(l(mt+1, pt+1, pt) = max(p∗t , pt).

Hence we have the following two subcases:

I Subcase d2(t+ 1) = d(t+ 1).
In this case we have T2 ∈ Cond(ct) and pt ≤ p∗t (if t = r − 1 we have T2 = mr ∈

Cond(c[r])). We also recall that we must have the compatibility condition pt ≤ Comp(mt,mt+1).
Thus we have discovered that T belongs to the following set:

S1
1(c) = {TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ;TEt

= (p1, . . . , pt−1) ∈ Cond(ct);

TEt = (pt+1, . . . , pr−1) ∈ Cond(ct) with 1 ≤ pt ≤ min(∗pt, p
∗
t ,Comp(mt,mt+1))

}
.

It is very easy to check that we also have S1
1(c) ⊆ Cond(c). If t = r − 1 the previous set has

the following definition:

S1
1(c) = {TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ; TEr−1 = (p1, . . . , pr−2) ∈ Cond(cr−1);

mr ∈ Cond(c[r]); 1 ≤ pr−1 ≤ min(∗pr−1, l(mr),Comp(mr−1,mr))} .

I Subcase d2(t+ 1) 6= d(t+ 1).

72



In this case we have

pt = d(t+ 1)− 1 > d2(t+ 1)− 1 = max(l(mt+1), pt+1) = p∗t .

Hence

c[t+ 1] =

d(t+1)−1
∑

k=1

mt+1[k] =

pt∑

k=1

mt+1[k] =

p∗t∑

k=1

mt+1[k] + pt − p∗t ,

and from this it follows that T2 ∈ Cond((k[t+ 1], c[t+ 2], . . . , c[r])), where

p∗t∑

k=1

mt+1[k] =

d2(t+1)−1
∑

k=1

mt+1[k] = kt+1 < c[t+ 1],

and we have T2 ∈ Cond(kt+1) in the case t = r− 1. Thus we have kt+1 = c[t+ 1]− (pt − p∗t ).
Notice that kt+1 cannot be equal to zero when t 6= r − 1 (because p∗t ≥ 1), while it can be zero

in the case t = r − 1. Then, for all the kt+1 ∈ N such that min(r − 1− t, 1) < kt+1 < c[t+ 1]
we define the set:

I1(kt+1) = {TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ;TEt
= (p1, . . . , pt−1) ∈ Cond(ct);

TEt = (pt+1, . . . , pr−1) ∈ Cond((kt+1, c[t+ 2], . . . , c[r]));

pt = p∗t + c[t+ 1]− kt+1 ≤ min(∗pt,Comp(mt,mt+1))} .
Hence T belongs to the following set:

S2
1(c) =

c[t+1]−1
⋃

kt+1=min(r−1−t,1)

I1(kt+1),

and it is clear that S2
1(c) ⊆ Cond(c).

If t = r − 1 the previous set has the following definition:

I1(kr) =
{
TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ;TEr−1 = (p1, . . . , pr−2) ∈ Cond(cr−1);

mr ∈ Cond(kr); pr−1 = l(mr) + c[r]− kr ≤ min(∗pr−1,Comp(mr−1,mr))} .

• Case T2 = TEt−1 = (pt, . . . , pr−1) ∈ Cond(ct−1).
We only have to adapt the considerations made in the previous case to this case. Thus we

directly give the sets that arise without further justifications.

I If t 6= 2,

S1
2(c) =

{
TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ;TEt−1 = (pt, . . . , pr−1) ∈ Cond(ct−1);

TEt−1 = (p1, . . . , pt−2) ∈ Cond(ct−1) con 1 ≤ pt−1 ≤ min(∗pt−1, p
∗
t−1,Comp(mt,mt−1))

}
.
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I If t = 2,

S1
2(c) = {TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ; TE1 = (p2, . . . , pr−1) ∈ Cond(c1);

m1 ∈ Cond(c[1]); 1 ≤ p1 ≤ min(l(m1), p
∗
1,Comp(m1,m2))} .

We have S1
2(c) ⊆ Cond(c).

For all kt−1 ∈ N such that min(t− 2, 1) ≤ kt−1 < c[t− 1] we consider:

I If t 6= 2,

I2(kt−1) =
{
TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ;TEt−1 = (pt, . . . , pr−1) ∈ Cond(ct−1);

TEt−1 = (p1, . . . , pt−2) ∈ Cond((c[1], . . . , c[t− 2], kt−1));

pt−1 =
∗pt−1 + c[t− 1]− kt−1 ≤ min(p∗t−1,Comp(mt−1,mt))

}
.

I If t = 2,

I2(k1) =
{
TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} ;TE1 = (p2, . . . , pr−1) ∈ Cond(c1)

m1 ∈ Cond(k1); p1 = l(m1) + c[1]− k1 ≤ min(p∗1,Comp(m1,m2))} .
We have that:

S2
2(c) =

c[t−1]−1
⋃

kt−1=min(t−2,1)

I2(kt−1) ⊆ Cond(c).

The previous lemma ensures that we have considered all the possibilities. So we proved that

Cond(c) ⊆ S1
1(c) ∪ S2

1(c) ∪ S1
2(c) ∪ S2

2(c),

hence

S1
1(c) ∪ S2

1(c) ∪ S1
2(c) ∪ S2

2(c) = Cond(c).

Due to our induction hypothesis all the previous sets can be computed so we developed an

algorithm which computes Cond(c).
Now we have a way to compute all the untwisted multiplicity trees with a given conductor c

for all the c ∈ N
r. Suppose that we want to find also the twisted multiplicity trees with conductor

c. We will call Cond(c) the set of all multiplicity trees (twisted or untwisted) associated to an

Arf semigroup with conductor c. Suppose that T is a twisted tree in Cond(c) with c ∈ N
r.

Then there exists a permutation σ ∈ Sr, where Sr is the symmetric group, such that σ(T ) is

untwisted and it clearly belongs to Cond(σ(c)). From this it follows that:

Cond(c) =
⋃

σ∈Sr

{
σ−1(T ) : T ∈ Cond(σ(c))

}
.
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Example 3.1.5. Let us compute Cond([3, 2, 4]). In this case r = 3, therefore we have t = 2.

First of all we compute S1
1([3, 2, 4]). Because t = r − 1 the definition of this set is:

S1
1([3, 2, 4]) = {TE = (p1, p2) : E = {m1,m2,m3} ; TE2 = (p1) ∈ Cond([3, 2]);

m3 ∈ Cond(4); 1 ≤ p2 ≤ min(l(m3),
∗p2,Comp(m2,m3))} .

Then to do that we need the follwing sets:

• Cond([3, 2]) = {A1, A2}whereA1 = TF1 = (1) andA2 = TF2 = (2) with F1 = {[3], [2]}
and F2 = {[2], [ ]} .
• Cond(4) = {[2, 2], [4]} .

Hence we consider:

• E1 = {m1 = [3],m2 = [2],m3 = [2, 2]} and we have

min(max(l(m2), p1),Comp(m2,m3), l(m3)) = min(1, 2, 2) = 1. Thus we only have the

tree T1 = TE1 = (1, 1).

• E2 = {m1 = [3],m2 = [2],m3 = [4]} and we have

min(max(l(m2), p1),Comp(m2,m3), l(m3)) = min(1, 3, 1) = 1. Thus we only have the

tree T2 = TE2 = (1, 1).

• E3 = {m1 = [2],m2 = [ ],m3 = [2, 2]} and we have

min(max(l(m2), p1),Comp(m2,m3), l(m3)) = min(2, 2, 2) = 2. Thus we have the trees

T3 = TE3 = (2, 1) and T4 = TE3 = (2, 2).

• E4 = {m1 = [2],m2 = [ ],m3 = [4]} and we have

min(max(l(m2), p1),Comp(m2,m3), l(m3)) = min(2, 2, 1) = 1. Thus we only have the

tree T5 = TE4 = (2, 1).

Hence S1
1([3, 2, 4]) = {T1, T2, T3, T4, T5} .

Now we compute S2
1([3, 2, 4]). We find k3 = 3 as the only value such that I(k3) 6= ∅. In

fact, if we consider A2 and m3 = [3], we have:

• E5 = {m1 = [2],m2 = [ ],m3 = [3]} and we have

l(m3) + c[3]− k3 = 2 ≤ min(max(l(m2), p1),Comp(m2,m3))) = min(2, 2) = 2. Thus

we have the tree T6 = TE5 = (2, 2).

(3, 2, 2)

(0, 0, 2)

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

T1

(3, 2, 4)

(0, 0, 1)(0, 1, 0)(1, 0, 0)

T2

75



(2, 1, 2)

(0, 0, 2)

(0, 0, 1)

(1, 1, 0)

(0, 1, 0)(1, 0, 0)

T3

(2, 1, 2)

(1, 1, 2)

(0, 0, 1)(0, 1, 0)(1, 0, 0)

T4

(2, 1, 4)

(0, 0, 1)(1, 1, 0)

(0, 1, 0)(1, 0, 0)

T5

(2, 1, 3)

(1, 1, 1)

(0, 0, 1)(0, 1, 0)(1, 0, 0)

T6

Now we compute S1
2([3, 2, 4]). We are in the case t = 2 so its definition is:

S1
2([3, 2, 4]) = {TE = (p1, p2) : E = {m1,m2,m3} ; TE1 = (p2) ∈ Cond([2, 4]);

m1 ∈ Cond(3); 1 ≤ p1 ≤ min(l(m1), p
∗
1,Comp(m1,m2))} .

Then, to do that we need the following sets:

Cond([2, 4]) = {B1, B2, B3, B4} , where

• B1 = TG1 = (2) with G1 = {[ ], [2, 2]} ;

• B2 = TG2 = (1) with G2 = {[2], [2, 2]};

• B3 = TG3 = (2) with G3 = {[ ], [3]} ;

• B4 = TG4 = (1) with G4 = {[2], [4]} ;

• Cond(3) = {[3]} .

Hence we consider:

• E6 = {m1 = [3],m2 = [ ],m3 = [2, 2]} and we have

min(max(p2, l(m2)),Comp(m1,m2), l(m1)) = min(2, 2, 1) = 1. Thus we only have the

tree T7 = TE6 = (1, 2).

• E1 = {m1 = [3],m2 = [2],m3 = [2, 2]} and we have

min(max(p2, l(m2)),Comp(m1,m2), l(m1)) = min(1, 3, 1) = 1. Thus we only have the

tree, already found in S1
1([3, 2, 4]), T1 = TE1 = (1, 1).
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• E7 = {m1 = [3],m2 = [ ],m3 = [3]} and we have

min(max(p2, l(m2)),Comp(m1,m2), l(m1)) = min(2, 2, 1) = 1. Hence we have the

tree T8 = TE7 = (1, 2).

• E2 = {m1 = [3],m2 = [2],m3 = [4]} and we have

min(max(p2, l(m2)),Comp(m1,m2), l(m1)) = min(1, 3, 1) = 1. Thus we only have the

tree, already found in S1
1([3, 2, 4]), T2 = TE2 = (1, 1).

Hence S1
2([3, 2, 4]) = {T1, T2, T7, T8} .

Now we compute S2
2([3, 2, 4]). We find k1 = 2 as the only value such that I(k1) 6= ∅, and

I(2) contains two elements. In fact, if we consider B1 and B3 and m1 = [2], we have:

• E3 = {m1 = [2],m2 = [ ],m3 = [2, 2]} and we have

l(m1) + c[1]− k1 = 2 ≤ min(max(p2, l(m2)),Comp(m1,m2))) = min(2, 2) = 2. Thus

we only have the tree, already found in S1
1([3, 2, 4]), T4 = TE3 = (2, 2).

• E5 = {m1 = [2],m2 = [ ],m3 = [3]} and we have

l(m1) + c[1]− k1 = 2 ≤ min(max(p2, l(m2)),Comp(m1,m2))) = min(2, 2) = 2. Thus

we only have the tree, already found in S2
1([3, 2, 4]), T6 = TE5 = (2, 2).

Thus S1
2([3, 2, 4]) ∪ S2

2([3, 2, 4]) = {T1, T2, T4, T6, T7, T8}.

(3, 1, 2)

(0, 1, 2)

(0, 0, 1)(0, 1, 0)

(1, 0, 0)

T7

(3, 1, 3)

(0, 1, 1)

(0, 0, 1)(0, 1, 0)

(1, 0, 0)

T8

Hence, Cond([3, 2, 4]) = {T1, T2, T3, T4, T5, T6, T7, T8}.
If we compute the set Cond([3, 2, 4]), with the technique explained above, we find that:

Cond([3, 2, 4]) = Cond([3, 2, 4])
⋃

{T9, T10} ,

where

• T9 =M(T )E8 =





0 1 2
0 0 1
0 0 0



 where E8 = {M1 = [2],M2 = [2],M3 = [2, 2]}.

• T10 =M(T )E9 =





0 1 2
0 0 1
0 0 0



 where E9 = {M1 = [2],M2 = [2],M3 = [3]}.
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(2, 2, 2)

(0, 1, 0)(1, 0, 2)

(0, 0, 1)(1, 0, 0)

T9

(2, 2, 3)

(0, 1, 0)(1, 0, 1)

(0, 0, 1)(1, 0, 0)

T10

Example 3.1.6. It is easy to implement an algorithm that computes the number of untwisted Arf

semigroups of N3 with a given conductor. In the following table we have the values obtained

for some conductors.

c |Cond(c)| c |Cond(c)| c |Cond(c)| c |Cond(c)|
[1, 1, 1] 1 [8, 8, 8] 2401 [15, 15, 15] 71736 [7, 8, 9] 843

[2, 2, 2] 4 [9, 9, 9] 1940 [1, 2, 3] 2 [8, 9, 10] 2901

[3, 3, 3] 9 [10, 10, 10] 8126 [2, 3, 4] 8 [9, 10, 11] 3913

[4, 4, 4] 50 [11, 11, 11] 6671 [3, 4, 5] 18 [10, 11, 12] 11178

[5, 5, 5] 72 [12, 12, 12] 37750 [4, 5, 6] 86 [11, 12, 13] 13942

[6, 6, 6] 425 [13, 13, 13] 18263 [5, 6, 7] 144 [12, 13, 14] 40278

[7, 7, 7] 294 [14, 14, 14] 123498 [6, 7, 8] 542 [13, 14, 15] 47675

Example 3.1.7. The following table contains the value of |Cond(c)| for some values of c.

c
∣
∣Cond(c)

∣
∣ c

∣
∣Cond(c)

∣
∣ c

∣
∣Cond(c)

∣
∣ c

∣
∣Cond(c)

∣
∣

[1, 1, 1] 1 [7, 7, 7] 406 [1, 2, 3] 2 [7, 8, 9] 1145

[2, 2, 2] 5 [8, 8, 8] 3217 [2, 3, 4] 10 [8, 9, 10] 3828

[3, 3, 3] 12 [9, 9, 9] 2650 [3, 4, 5] 26 [9, 10, 11] 5289

[4, 4, 4] 66 [10, 10, 10] 10992 [4, 5, 6] 110 [10, 11, 12] 14908

[5, 5, 5] 98 [11, 11, 11] 9131 [5, 6, 7] 192 [11, 12, 13] 19147

[6, 6, 6] 567 [12, 12, 12] 50903 [6, 7, 8] 701 [12, 13, 14] 53144

3.2 Finding Arf semigroups with a fixed genus

The aim of this section is to solve a similar problem to the one addressed in the previous one.

The role of the conductor will be replaced by the genus. We firstly give a new procedure for

the determination of all the Arf numerical semigroups with a fixed genus, slightly adapting the

one given in the Subsection 3.1.1 for the conductor. Then, we give a way to compute the genus

of an Arf good semigroup from its untwisted multiplicity tree and we give a procedure for the

computation of the set of all the Arf good subsemigroups of Nr with a fixed genus n, that works

by induction on the dimension r.
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3.2.1 An algorithm for the Arf numerical semigroups with a given genus

The problem of determining the set of all the Arf numerical semigroups with fixed genus was

also addressed and solved in [12], where the authors presented a recursive algorithm for the

computation of such a set. Here we present a non-recursive procedure that appeared to be faster

when implemented in GAP.

First of all we recall that the genus of a numerical semigroup S is the cardinality of N \ S.

If m is a multiplicity sequence we denote by c(m) the conductor of the Arf semigroup AS(m)
associated tom. It is easy to deduce from Proposition 1.3.8, that ifm is a multiplicity sequence,

then the genus of AS(m) is c(m)− l(m) =
∑l(m)

k=1 (mk − 1).
We denote by Gen(n) the set of the multiplicity sequences of the Arf numerical semigroups

with genus n.

Our aim is to compute Gen(n) for all n ∈ N. If n = 0 then Gen(n) = {[ ]}. Thus we

suppose n ≥ 1. Denote by

Un(i) = {m ∈ Gen(i) : m1 + i− 1 ≤ n} for all i = 1, . . . , n− 1.

Now suppose that m = [m1, . . . ,mk] ∈ Gen(n). If k = 1 then m = [n+ 1], otherwise we have

the following situation:

• 2 ≤ m1 ≤ n;

• c([m2, . . . ,mk]) = c([m1,m2, . . . ,mk])−m1 and l([m2, . . . ,mk]) = l([m1, . . . ,mk])−1.

So c([m2, . . . ,mk])−l([m2, . . . ,mk]) = n−m1+1, and [m2, . . . ,mk] ∈ Gen(n−m1+1);

• m1 ∈ AS([m2, . . . ,mk]);

• m2 −m1 ≤ 0⇒ m2 + (n−m1 + 1)− 1 ≤ n⇒ [m2, . . . ,mk] ∈ Un(n−m1 + 1).

So if we know Un(i) for i = 1, . . . , n− 1, then we can compute Gen(n) in the following way:

Gen(n) =
n−1⋃

i=1

{(n− i+ 1) :: m|m ∈ Un(i), n− i+ 1 ∈ AS(m)} ∪ {[n+ 1]} .

Thus we need a way to compute Un(i). Suppose that m = [m1, . . . ,mk] ∈ Un(i). If k = 1,

and i+ 1 + i− 1 = 2i ≤ n then m = [i+ 1], otherwise we have the following situation:

• 2 ≤ m1 ≤ i, and [m2, . . . ,mk] ∈ Gen(i−m1 + 1) = Gen(q);

• m2 + q − 1 = m2 + i−m1 + 1− 1 = m2 −m1 + i ≤ i ≤ n⇒ [m2, . . . ,mk] ∈ Un(q);

• m1 ∈ AS([m2, . . . ,mk]);

• m1 + i − 1 ≤ n ⇒ 2m1 ≤ n − i + 1 +m1 = n − (i + 1 −m1) + 2 = n − q + 2 ⇒
m1 ≤

⌊
n−q+2

2

⌋
.

So each Un(i) can be constructed using Un(q) with 1 ≤ q < i. Thus we have the following

algorithm for the computation of Gen(n).
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input : An integer n
output: The set Gen(n) of all the multiplicity sequences of Arf semigroups with genus

n

Gen(n)←− {[n+ 1]}
for i← 1 to n− 1 do

if i ≤
⌊
n
2

⌋
then

Un(i)←− {[i+ 1]}
end

else
Un(i)←− ∅

end

end

for i← 1 to n− 1 do

for m ∈ Un(i) do

if n− i+ 1 ∈ AS(m) then
Gen(n)←− Gen(n) ∪ {(n− i+ 1) :: m}

end

for k ∈ AS(m) ∩
{
2, . . . ,

⌊
n−i+2

2

⌋}
do

Un(i+ k − 1)←− Un(i+ k − 1) ∪ {(k) :: m}
end

end

end

Gen(n)

Algorithm 2:
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3.2.2 Arf semigroups of Nr with given genus

The aim of this section is to find a way to determine all the Arf good semigroups of Nr with

a given genus. For the Remark 4, it is not restrictive to focus only on the Arf semigroups

associated to untwisted trees. Recall that the genus of a good semigroup can be computed as:

g(S) = d(Nr \ C)− d(S \ C).

Since d(Nr \C) is the length of a saturated chain in N
r from the vector 0 ∈ N

r to the conductor

C(S) = (c[1], . . . , c[r]), it is easy to show that

d(Nr \ C) =
r∑

k=1

c[k].

On the other hand, d(S \ C) is the length of a saturated chain in S from 0 ∈ S to δ ∈ S.

Remark 12. Because the conductor δ is an element of the Arf semigroup S(T ), it can be ex-

pressed as a sum of nodes in a subtree T ′ of T . From Proposition 3.1.1, it easily follows

that T ′ is the subtree consisting of the nodes of T that are different from the unit vectors

ei = (0, . . . , 0, 1, 0, . . . , 0).

For the Arf good local semigroups with untwisted multiplicity tree we have the following

theorem:

Theorem 3.2.1. Suppose that T = TE = (p1, . . . , pr−1) is an untwisted multiplicity tree of an

Arf semigroup where E = {m1, . . . ,mr} is a collection of multiplicity sequences.

Then

g(S(T )) =
r∑

k=1

g(AS(mk)) +
r−1∑

k=1

pk,

where S(T ) is the Arf semigroup associated to the tree T and AS(mk) is the Arf numerical

semigroup associated to the multiplicity sequence mk.

Proof. Denoted by δ = (c[1], . . . , c[r]) the conductor of S(T ), and by C = δ + N
r. We know

that

g(S(T )) = d(Nr \ C)− d(S \ C).
We have

d(Nr\C) =
r∑

k=1

c[k] =

max(l(m1),p1)∑

k=1

m1[k]+. . .+

max(l(mi),pi,pi−1)∑

k=1

mi[k]+. . .+

max(l(mr),pr−1)∑

k=1

mr[k] =

=

l(m1)∑

k=1

m1[k]+max(l(m1), p1)− l(m1)+ . . .+

l(mi)∑

k=1

mi[k]+max(l(mi), pi, pi−1)− l(mi)+ . . .
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. . .+

l(mr)∑

k=1

mr[k]+max(l(Mr), pr−1)−l(mr) =
r∑

j=1





l(mj)∑

k=1

mj[k]− l(mj)



+max(l(m1), p1)+

+
r−1∑

k=2

max(l(mk), pk, pk−1) + max(l(mr), pr−1),

where we are using again Proposition 3.1.1.

Now we want to compute d(S \C). We need a saturated chain in S(T ) from 0 to δ. Suppose

that we have

0 = a0 < a1 < · · · < al = δ,

a saturated chain in S(T ). We clearly have a1 = (m1[1], . . . ,mr[1]), that is the multiplicity

vector of S(T ). Let us consider aq ∈ S(T ), with q = 1, . . . , l − 1. From the properties of

the multiplicity tree of an Arf semigroup, there exists a subtree T ′ of T , rooted in the node

corresponding to a1, such that aq is the sum of all the nodes belonging to T ′. As usual we

denote by n
j
i the node of T that is in the i-th branch and on the j-th level. We denote, given a

subtree T ′ of T , by N(T ′) the set of nodes that appears in T ′.

Now, it is clear that, in order to have a saturated chain, aq+1 must be the sum of all the nodes

belonging to a subtree T ′′ of T such that:

• T ′ ⊆ T ′′;

• N(T ′′) \N(T ′) =
{

n
j
i

}
;

• n
j−1
i ∈ N(T ′);

• n
j
i 6= ei, where ei is the i-th canonical vector of Nr (by Remark 12 since aq 6= δ).

From the previous remark, it easily follows that

d(S \ C) = |
{

n
j
i ∈ N(T ) : n

j
i 6= ei

}
|,

and we need to compute this cardinality. Taking in account the expressions for c[i], it follows

that there are

• max(l(m1), p1) nodes along the first branch that are different from e1;

• max(l(mi), pi, pi−1) nodes along the i-th branch different from ei, for 2 ≤ i ≤ r − 1;

• max(l(mr), pr−1) nodes along the last branch that are different from er.

Now from T = TE = (p1, . . . , pr−1) we deduce that the i-th and i+1-th branches have pi nodes

in common for each i = 1, . . . , r − 1. Therefore we can conclude:

d(S \ C) = max(l(m1), p1) +
r−1∑

k=2

max(l(mk), pk, pk−1) + max(l(mr), pr−1)−
r−1∑

k=1

pk.
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Finally we have:

g(S(T )) = d(Nr \ C)− d(S \ C) =
r∑

j=1





l(mj)∑

k=1

mj[k]− l(mj)



+
r−1∑

k=1

pk,

and, because

l(mj)∑

k=1

mj[k]− l(mj) = g(AS(mj)), we have:

g(S(T )) =
r∑

k=1

g(AS(mk)) +
r−1∑

k=1

pk,

and the proof is complete.

Now we denote by Gen(r, n) the set of all the untwisted multiplicity tree associated to Arf

good semigroups in N
r with genus n. Given a n ∈ N we want to find a way to compute the

set Gen(r, n). We do that using recursion on r. From the previous section we know how to

compute Gen(1, n), so the base case is done. First of all, we notice that we need n ≥ r − 1. In

fact an untwisted Arf semigroup S of Nr can be described by a tree T = TE = (p1, . . . , pr−1)
with E = {m1, . . . ,mr}, and we have just showed that

g(S(T )) =
r∑

k=1

g(AS(mk)) +
r−1∑

k=1

pk,

where g(AS(mk)) ≥ 0 and pk ≥ 1 for all the k. Then g(S(T )) ≥ r − 1.

We fix a r ≥ 2 and n ≥ r − 1 and suppose that T = TE = (p1, . . . , pr−1) is a multiplicity

tree in Gen(r, n), where E = {m1, . . . ,mr} is a collection of r multiplicity sequences.

Consider t < r. We have:

n =
r∑

j=1

g(AS(mj))+
r−1∑

j=1

pj =

(
t∑

j=1

g(AS(mj)) +
t−1∑

j=1

pj

)

+pt+

(
r∑

j=t+1

g(AS(mj)) +
r−1∑

j=t+1

pj

)

,

therefore if we denote by

k1 =
t∑

j=1

g(AS(mj)) +
t−1∑

j=1

pj and k2 =
r∑

j=t+1

g(AS(mj)) +
r−1∑

j=t+1

pj,

we have:

n− pt = k1 + k2.

Now, we have:

83



• The tree T 1 = TEt
= (p1, . . . , pt−1), with Et = {m1, . . . ,mt}, belongs to Gen(t, k1)

(k1 ≥ t− 1);

• The tree T 2 = TEt = (pt+1, . . . , pr−1), with Et = {mt+1, . . . ,mr}, belongs to

Gen(r − t, n− pt − k1) ;

• 1 ≤ pt ≤ Comp(mt,mt+1);

• k1 + k2 ≥ r − 2⇒ 1 ≤ pt ≤ n− r + 2;

• k2 ≥ r − 1− t⇒ k1 ≤ n− pt − r + 1 + t.

Now, for each 1 ≤ p ≤ n− r + 2 and t− 1 ≤ k(p) ≤ n− p− r + 1 + t we define the set

Inr (t, p, k(p)) = {TE = (p1, . . . , pr−1) : E = {m1, . . . ,mr} , TEt
= (p1, . . . , pt−1) ∈

∈ Gen(t, k(p)), TEt = (pt+1, . . . , pr−1) ∈ Gen(r − t, n− p− k(p)),
and pt = p ≤ Comp(mt,mt+1)} .

So we can deduce that T belongs to the following set:

S(r, n) =
n−r+2⋃

p=1





n−p−r+t+1
⋃

k(p)=t−1

Inr (t, p, k(p))



 .

With the inverse implications, it is very easy to show that S(r, n) ⊆ Gen(r, n). Then we have

Gen(r, n) = S(r, n).
Notice that the computation of Gen(r, n) involves the computation of Gen(t, k) and Gen(r−

t, k), then using recursion and the base case we can solve our problem.

Remark 13. If we have T = TE = (p1, . . . , pr−1) with E = {m1, . . . ,mr}, we will denote by

T−1 = TE−1 = (pr−1, . . . , p1) where E−1 = {mr, . . . ,m1}.
It is clear that if T ∈ Gen(r, n) then T−1 ∈ Gen(r, n) too. If U is a set of multiplicity trees,

we denote by U−1 = {T−1 : T ∈ U}.
We have the following proposition:

Proposition 3.2.2. If t ≤ r
2

and λ(p) ≥ n−p−1
2

then

Gen(r, n) =
n−r+2⋃

p=1





λ(p)
⋃

k(p)=t−1

(
Inr (t, p, k(p)) ∪ (Inr (t, p, k(p)))

−1)



 .

Proof. Consider t ≤ r
2

and λ(p) ≥ n−p−1
2

, we show that for any p = 1, . . . , n− r + 2, we have

n−p−r+t+1
⋃

k(p)=λ(p)+1

Inr (t, p, k(p)) ⊆





λ(p)
⋃

k(p)=t−1

Inr (t, p, k(p))





−1

.
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Consider T ∈
n−p−r+t+1
⋃

k(p)=λ(p)+1

Inr (t, p, k(p)), then

T = TE = (p1, . . . , pr−1) with E = {m1, . . . ,mr} and TEt = (pt+1, . . . , pr−1) ∈ Gen(r−t, n−p−k),

where λ(p) + 1 ≤ k ≤ n− p− r + t+ 1.

We want to show that

T ∈





λ(p)
⋃

k(p)=t−1

Inr (t, p, k(p))





−1

⇐⇒ T−1 ∈
λ(p)
⋃

k(p)=t−1

Inr (t, p, k(p)).

Let us consider the subtree T 1 of T−1 with T 1 = T(E−1)t = (pr−1, . . . , pr−t+1), where (E−1)t =
{mr, . . . ,mr−t+1}.

Now we have:

t ≤ r

2
⇒ 2t ≤ r ⇒ t ≤ r − t⇒ t+ 1 ≤ r − t+ 1,

and from this and from TEt = (pt+1, . . . , pr−1) ∈ Gen(r − t, n− p− k) we can deduce that

T 1 = T(E−1)t = (pr−1, . . . , pr−t+1) ∈ Gen(t, x),

where t− 1 ≤ x ≤ n− p− k.

Thus, from λ(p) + 1 ≤ k and from λ(p) ≥ n−p−1
2

we deduce:

−k ≤ −λ(p)− 1 and n− p− 1 ≤ 2λ(p)⇒ x ≤ n− p− λ(p)− 1 ≤ λ(p).

Therefore, from T−1 ∈ Gen(r, n) and from the previous inequality we have

T−1 ∈ Inr (t, p, x) ⊆
λ(p)
⋃

k(p)=t−1

Inr (t, p, k(p)),

and the claim is proved. Therefore we have:

Gen(r, n) ⊇
n−r+2⋃

p=1





λ(p)
⋃

k(p)=t−1

(
Inr (t, p, k(p)) ∪ (Inr (t, p, k(p)))

−1)



 ⊇

⊇
n−r+2⋃

p=1





n−p−r+t+1
⋃

k(p)=t−1

Inr (t, p, k(p))



 = Gen(r, n),

and the proof is complete.
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The previous proposition suggests us an easier way to compute Gen(r, n). In fact we have

to consider a smaller amount of sets of the type Inr (t, p, k(p)), completing the computation with

sets of the type (Inr (t, p, k(p)))
−1

that are very easy to obtain once we have Inr (t, p, k(p)). To

speed up the process is also useful to set λ(p) =
⌈
n−p−1

2

⌉
and t =

⌊
r
2

⌋
.

Denote by Gen(r, n) the set of all the multiplicity trees (twisted and untwisted) of the Arf

semigroups in N
r with genus n. We can already compute all the untwisted ones. Suppose that

T is a twisted tree in Gen(r, n). Then there exists a permutation σ ∈ Sr such that σ(T ) is

untwisted. From the formula of the genus it is very easy to see that σ(T ) ∈ Gen(r, n). Thus we

have:

Gen(r, n) =
⋃

σ∈Sr

{
σ−1(T ) : T ∈ Gen(r, n)

}
.

Example 3.2.3. We compute Gen(2, 3). In this case we have t = 1.

We have to consider the sets I32 (1, p, k(p)) and (I32 (1, p, k(p)))
−1

for each 1 ≤ p ≤ 3 and

0 ≤ k(p) ≤
⌈
3−p−1

2

⌉
.

Case: p = 1⇒ 0 ≤ k(1) ≤ 1.

• k(1) = 0. To compute I32 (1, 1, 0) we need m1 ∈ Gen(1, 0) and m2 ∈ Gen(1, 2). They are

Gen(1, 0) = {[ ]} and Gen(1, 2) = {[3], [2, 2]} .

Thus we can consider

– E1 = {m1 = [ ],m2 = [3]}.
In this case 1 = p ≤ Comp(m1,m2) = 2 then the tree T1 = TE1 = (1) belongs to

Gen(2, 3).

– E2 = {m1 = [ ],m2 = [2, 2]}.
In this case 1 = p ≤ Comp(m1,m2) = 3 then the tree T2 = TE2 = (1) belongs to

Gen(2, 3).

Therefore I32 (1, 1, 0) = {T1, T2} . We have now to compute (I32 (1, 1, 0))
−1

– T3 = T−1
1 = TE3 = (1) ∈ Gen(2, 3), with E3 = E−1

1 = {[3], [ ]} .
– T4 = T−1

2 = TE4 = (1) ∈ Gen(2, 3), with E4 = E−1
2 = {[2, 2], [ ]} .

Therefore (I32 (1, 1, 0))
−1

= {T3, T4} .

• k(1) = 1. To compute I32 (1, 1, 1) we need m1 ∈ Gen(1, 1) and m2 ∈ Gen(1, 1). We have

Gen(1, 1) = {[2]} .

Thus we only have to consider

86



– E5 = {m1 = [2],m2 = [2]}.
In this case 1 = p ≤ Comp(m1,m2) = +∞ then the tree T5 = TE5 = (1) belongs

to Gen(2, 3).

Therefore I32 (1, 1, 1) = {T5}. In this case I32 (1, 1, 1) = (I32 (1, 1, 1))
−1

.

Case: p = 2⇒ k(2) = 0.

• k(2) = 0. To compute I32 (1, 2, 0) we need m1 ∈ Gen(1, 0) and m2 ∈ Gen(1, 1).

Thus we only have to consider

– E6 = {m1 = [ ],m2 = [2]}.
In this case 2 = p ≤ Comp(m1,m2) = 2 then the tree T6 = TE6 = (2) belongs to

Gen(2, 3).

Therefore I32 (1, 2, 0) = {T6} . We have now to compute (I32 (1, 2, 0))
−1

– T7 = T−1
6 = TE7 = (2) ∈ Gen(2, 3), with E7 = E−1

6 = {[2], [ ]} .

Therefore (I32 (1, 2, 0))
−1

= {T7} .

Case: p = 3⇒ k(3) = 0.

• k(3) = 0.

To compute I32 (1, 3, 0) we need m1 ∈ Gen(1, 0) and m2 ∈ Gen(1, 0).

Thus we only have to consider

– E8 = {m1 = [ ],m2 = [ ]}.
In this case 3 = p ≤ Comp(m1,m2) = +∞ then the tree T8 = TE8 = (3) belongs

to Gen(2, 3).

Therefore I32 (1, 3, 0) = {T8}. In this case I32 (1, 3, 0) = (I32 (1, 3, 0))
−1

. Thus Gen(2, 3) =

{T1, T2, T3, T4, T5, T6, T7, T8}. We obviously have Gen(2, 3) = Gen(2, 3) because we

have only two branches.

(1, 3)

(0, 1)(1, 0)

T1

(1, 2)

(0, 2)

(0, 1)

(1, 0)

T2

(3, 1)

(0, 1)(1, 0)

T3

(2, 1)

(0, 1)(2, 0)

(1, 0)

T4
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(2, 2)

(0, 1)(1, 0)

T5

(1, 2)

(1, 1)

(0, 1)(1, 0)

T6

(2, 1)

(1, 1)

(0, 1)(1, 0)

T7

(1, 1)

(1, 1)

(1, 1)

(0, 1)(1, 0)

T8

In the following table we report the cardinality of Gen(2, n) for n up to 32.

n |Gen(2, n)| n |Gen(2, n)| n |Gen(2, n)| n |Gen(2, n)|
1 1 9 251 17 4386 25 35203

2 3 10 385 18 5874 26 44209

3 8 11 577 19 7773 27 55175

4 16 12 837 20 10195 28 68493

5 32 13 1207 21 13270 29 84540

6 56 14 1701 22 17138 30 103898

7 99 15 2361 23 21922 31 127031

8 157 16 3239 24 27882 32 154681

Using the previous results, it is easy to implement an algorithm that computes the number

of untwisted Arf semigroups of Nr with a given genus n. Each entry of the following table is

such a number, for 1 ≤ r ≤ 16 and 0 ≤ n ≤ 15.
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r \ n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 2 3 4 6 8 10 13 17 21 26 31 36 47 55

2 0 1 3 8 16 32 56 99 157 251 385 577 837 1207 1701 2361

3 0 0 1 5 18 49 120 263 543 1048 1943 3458 5957 9957 16246 25896

4 0 0 0 1 7 32 110 324 846 2032 4544 9620 19420 37686 70618 128399

5 0 0 0 0 1 9 50 207 716 2169 5958 15119 35994 81196 175001 362501

6 0 0 0 0 0 1 11 72 348 1384 4772 14769 41919 110859 276257 654422

7 0 0 0 0 0 0 1 13 98 541 2432 9403 32385 101658 295681 806530

8 0 0 0 0 0 0 0 1 15 128 794 3980 17050 64678 222474 705806

9 0 0 0 0 0 0 0 0 1 17 162 1115 6164 28973 120016 448873

10 0 0 0 0 0 0 0 0 0 1 19 200 1512 9136 46736 209871

11 0 0 0 0 0 0 0 0 0 0 1 21 242 1993 13064 72239

12 0 0 0 0 0 0 0 0 0 0 0 1 23 288 2566 18132

13 0 0 0 0 0 0 0 0 0 0 0 0 1 25 338 3239

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 27 392

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

From the previous table, we can also deduce, considering the sum of all the entries in the

corresponding column, the number of all the local untwisted Arf semigroups with a given genus

n (in all the possible dimensions). We call

NG(n) = | {SArf semigroup : g(S) = n} |,

such a number.

Thus we have

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NG(n) 1 2 6 17 46 129 356 989 2737 7588 21031 58289 161535 447693 1240773 3438746

Example 3.2.4. In the following table we report the cardinality of the sets Gen(r, n) for 1 ≤
r ≤ 9 and 0 ≤ n ≤ 8.
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r \ n 0 1 2 3 4 5 6 7 8

1 1 1 2 3 4 6 8 10 13

2 0 1 3 8 16 32 56 99 157

3 0 0 1 6 22 61 151 334 693

4 0 0 0 1 10 51 189 576 1555

5 0 0 0 0 1 15 105 505 1906

6 0 0 0 0 0 1 21 197 1208

7 0 0 0 0 0 0 1 28 343

8 0 0 0 0 0 0 0 1 36

9 0 0 0 0 0 0 0 0 1
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Chapter 4

An algorithm for the computation of the

Arf closure of an algebroid curve

In this Chapter we present a procedure for the computation of the Arf closure of an algebroid

curve. In Section 4.1 we explain how to generalize the procedure presented for the algebroid

branches to this more general case determining all the required tools for the computation. In

Section 4.2 and Section 4.3 we give an algorithm that lets us recover all these information

starting from a parametrization of the given algebroid curveR, and we show how to deduce from

them a presentation for the Arf closure ∗R. Finally in Section 4.4, we improve the efficiency

of the algorithm by finding a bound for the truncation of all the power series arising during the

computations, generalizing the ideas presented in [2] for the algebroid branches.

4.1 The computation of the Arf closure of an algebroid curve

Let R be an algebroid curve. We want to show how the Lipman sequence Rj , of the successive

blowups of R, can be used to compute and to give a presentation for the Arf closure ∗R of R.

The strategy is to adapt the construction presented in Section 1.3 for the algebroid branches to

this more general case. We build the Arf closure by using the following inductive process on

the number of branches r.

• Base case: r = 1 we already know how to construct it.

• Inductive step. We suppose that we can solve the problem for m < r and we give a

solution for r.

If Rj is not local then, as we saw in Subsection 1.4.1, there exists a partition P(Rj) =
{Pj,1, . . . , Pj,t}, with

Pj,i =
{
qi,1, . . . , qi,k(i)

}
,

such that

Rj = πPj,1
(Rj)× · · · × πPj,t

(Rj),
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where πPj,i
(Rj) is a local ring isomorphic to a subring of K[[tqi,1 ]]× · · · ×K[[tqi,k(i) ]].

In this case, we have:

∗Rj =
∗(πPj,1

(Rj))× · · · × ∗(πPj,t
(Rj)),

and, for the inductive step, we have a way to compute each
∗(πPj,i

(Rj)), since k(i) < r
for all i.

IfRj is a local subring ofR =
∏r

i=1 K[[ti]], then using the same idea of Arf (cf.[1, p.267])

it is easy to see that
∗Rj = K(1, . . . , 1) + xj · ∗(Rj+1),

where xj is an element of minimal value in Rj .

If Rj+1 is local in R we can compute ∗Rj+1 in the same way using Rj+2 = Bl(Rj+1)
and an element of minimal value xj+1 in Rj+1. But we know that there exist an N such

that RN is not local (in fact the blow-up sequence has to stabilize into R = K[[t1]] ×
· · · × K[[tr]]) and therefore we are able to compute ∗RN as we have already seen in the

non-local case.

Then, if we suppose that N is the first integer such that RN is not local, and we start from

the local ring R = R1, we obtain:

∗R1 = K(1, . . . , 1) + x1 · ∗R2

∗R2 = K(1, . . . , 1) + x2 · ∗R3

. . . . . .
∗RN−1 = K(1, . . . , 1) + xN−1 · ∗RN ,

and from this it follows that

∗R1 = K(1, . . . , 1) +Kx1 +Kx1x2 + . . .+ x1 . . . xN−1 · ∗RN .

where xi is an element of minimal valuation of Ri.

From this procedure we see that it is important to compute the blow-up sequence Ri until

Rm = K[[t1]] × · · · × K[[tr]] to understand how to compute ∗R. In the following section, we

will present an algorithm that gives us a way to compute this sequence along its multiplicity

tree starting from a parametrization of the ring R.

4.2 The algorithm in the two-branches case

In this section we give an algorithm for the computation of the Arf closure of an algebroid curve

with two branches having the following parametrization:

R = K[[(φ1(t), ψ1(u)) , . . . , (φn(t), ψn(u))]].
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First of all we fix some notations. We will always assume that a parametrization does

not contain an element y = (φ(t), ψ(u)) such that ord(φ(t)) = ord(ψ(u)) = 0 and with

φ(0) = ψ(0). If, in the following constructions, we produce a parametrization that contains

such an element, we always convert it to y = y − (φ(0), ψ(0)) (it is possible to do that because

(φ(0), ψ(0)) is a multiple of the unit vector). For each q ≥ 0 we will denote by

Rq = K

[[(

φ
(q)
1 (t), ψ

(q)
1 (u)

)

, . . . ,
(

φ
(q)
n(q)(t), ψ

(q)
n(q)(u)

)]]

,

the parametrization of the q-th blow-up of R (we put by definition R1 = R).

The following lemma will help us to understand when aRq is not local from its parametriza-

tion.

Lemma 4.2.1. Consider

R = K[[(φ1(t), ψ1(u)) , . . . , (φn(t), ψn(u))]].

We have that

R = K[[φ1(t), . . . , φn(t)]]×K[[ψ1(u), . . . , ψn(u)]]

if and only if at least one of the following two conditions holds:

• There exists (φi(t), ψi(u)) in the parametrization such that

ord(φi(t)) · ord(ψi(t)) = 0 and ord(φi(t))
2 + ord(ψi(t))

2 6= 0;

• There exists y = (φi(t), ψi(u)) in the parametrization such that

ν(y) = (0, 0) and φi(0) 6= ψi(0).

Proof. (⇐). Let us suppose that the first condition holds. Without loss of generality, we can

suppose that the element y = (φ1(t), ψ1(u)) in the parametrization is such that ord(φ1(t)) = 0
and ord(ψ1(u)) 6= 0. Then we have φ1(0) 6= 0. Therefore φ1(t) is invertible in K[[φ1(t)]]
because its inverse is

(φ1(t))
−1 = (φ1(0))

−1 ·
+∞∑

i=0

(−1)i
(
φ1(t)− φ1(0)

φ1(0)

)i

.

Thus in K[[y]] ⊆ R there exists an element of the form z = ((φ1(t))
−1, g(u)). Then we have

R 3 y · z = (1, ψ1(u) · g(u)) = (1, h(u)) ,

where ord(h(u)) > 0. But (1, 1) ∈ R so (1, h(u)) − (1, 1) = (0,−1 + h(u)) belongs to R.

Now, h(u) ∈ K[[ψ1(u)]] and therefore −1 + h(u) is invertible in this ring. From this it follows

again that there exist an element of the type (l(t), (−1 + h(u))−1) ∈ R and we have:
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R 3 (0,−1 + h(u)) ·
(
l(t), (−1 + h(u))−1

)
= (0, 1)⇒ (1, 1)− (0, 1) = (1, 0) ∈ R.

Finally we obtain that

K[[φ1(t), . . . , φn(t)]]× {0} = (1, 0) ·R ⊆ R,

{0} ×K[[ψ1(u), . . . , ψn(u)]] = (0, 1) ·R ⊆ R,

therefore we have K[[φ1(t), . . . , φn(t)]] × K[[ψ1(u), . . . , ψn(u)]] ⊆ R and because the inverse

containment is trivial we have our thesis. Suppose now that the second condition holds. Let us

consider y = (φi(t), ψi(u)) in the parametrization such that

ν(y) = (0, 0) and φi(0) 6= ψi(0).

Thus if we consider (φi(0), φi(0)) ∈ R we have that y − (φi(0), φi(0)) ∈ R is an element that

fulfils the first condition and we can use the same arguments of the first part of the proof.

(⇒). It is trivial, in fact if we suppose by contradiction that in the parametrization there are no

elements that fulfil the condition of the theorem, then it would easily follow that in R we cannot

find an element (φ(t), ψ(u)) such that φ(t) is invertible and ψ(u) is not invertible and this is

absurd for the hypotheses on R.

If Rq is local in K[[t]] × K[[u]], we can consider the multiplicity vector mult(Rq), that can

be computed as

mult(Rq) =
(

min
{

ord(φ
(q)
i (t)), i = 1, . . . , n(q)

}

,min
{

ord(ψ
(q)
i (u)), i = 1, . . . , n(q)

})

,

and denote by xRq
an element of Rq with valuation mult(Rq).

Remark 14. For the choice of the element xRq
we can always consider either one of the

(

φ
(q)
i (t), ψ

(q)
i (u)

)

or the sum of two of them. To see it we denote by yi =
(

φ
(q)
i (t), ψ

(q)
i (u)

)

for

i = 1, . . . , n(q). If there exists yi in the parametrization such that mult(Rq) = ν(yi) we can set

xRq
= yi. Otherwise, for the definition of mult(Rq) there must exist i, j with i 6= j such that

(

ord(φ
(q)
i (t)), ord(ψ

(q)
j (u))

)

= mult(Rq),

then yi + yj is a good choice for xRq
(in this case order cancellations cannot happen).

Remark 15. If we have a ring S such that

S = K[[φ1(t), . . . , φn(t)]]×K[[ψ1(u), . . . , ψn(u)]],

then S is not local and, following the notations of the Section 1.4.1, we have that

mult∗(S) = {(m1,1, 0), (0,m2,1)} ,
where m1,1 is the multiplicity of the algebroid branch associated to S1 = K[[φ1(t), . . . , φn(t)]]
and m2,1 is the multiplicity of the algebroid branch associated to S2 = K[[ψ1(u), . . . , ψn(u)]].
It is easy to show that we have
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• m1,1 = min {ord(φi(t)− φi(0)) : i = 1, . . . , n};

• m2,1 = min {ord(ψi(u)− ψi(0)) : i = 1, . . . , n}.

Then we can denote by x1S an element of S1 with order m1,1 and by x2S an element of S2 with

order m2,1. It is clear that there exist i, j such that x1S = φi(t)− φi(0) and x2S = ψj(u)−ψj(0).

Now we want to develop an algorithm for the computation of the Arf closure ∗R of R.

As we have seen in the previous section, we need to compute the blow-up chain Rm of R in

order to find the multiplicity tree of ∗R. In particular we have to find an integer N such that

RN = K[[t]]×K[[u]]. From the properties of the ring of formal power series this is equivalent

to find an N such that RN is not local and such that

mult∗(RN) = {(1, 0), (0, 1)} .

We can consider the following algorithm.

input : R = K[[(φ1(t), ψ1(u)) , . . . , (φn(t), ψn(u))]]
output: The sequence Rq of blow-ups of R until Rq = K[[t]]×K[[u]]

m←− 1
R1 ←− R
while mult∗(Rq) 6= {(1, 0), (0, 1)} do

if Rq is local then
q ←− q + 1
Rq ←− [(xRq−1)

−1Rq−1]

end

if Rq = R1
q ×R2

q is not local then
q ←− q + 1

Rq ←−
[

(x1Rq−1
)−1R1

q−1

]

×
[

(x2Rq−1
)−1R2

q−1

]

end

end

return R1, R2, . . . , Rq

Algorithm 3:
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The algorithm produces the blow-up chain because we know that in the local case we have

Rq =
[
(xRq−1)

−1Rq−1

]
and we know that in this case a parametrization for Rq is given by

Rq = K









(

φ
(q−1)
1 (t), ψ

(q−1)
1 (u)

)

xRq−1

, . . . ,

(

φ
(q−1)
n (t), ψ

(q−1)
n (u)

)

xRq−1

, xRq−1







 .

On the other hand, if Rq−1 is not local we have that

Rq−1 = K[[φ
(q−1)
1 (t), . . . , φ

(q−1)
n(q−1)(t)]]×K[[ψ

(q−1)
1 (u), . . . , ψ

(q−1)
n(q−1)(u)]],

therefore in order to find Rq we can apply the algorithm for the branch case to each compo-

nent of the Cartesian product finding Rq =
[

(x1Rq−1
)−1R1

q−1

]

×
[

(x2Rq−1
)−1R2

q−1

]

which can be

computed as

Rq = K

[[

φ
(q−1)
1 (t)

x1Rq−1

, . . . ,
φ
(q−1)
n(q−1)(t)

x1Rq−1

, x1Rq−1

]]

×K

[[

ψ
(q−1)
1 (u)

x2Rq−1

, . . . ,
ψ

(q−1)
n(q−1)(u)

x2Rq−1

, x2Rq−1

]]

.

So, because at each step we know a parametrization for the q-th blow-up we have a way to

compute the q + 1-th one and we can stop when we reach mult∗(Rq) = {(1, 0), (0, 1)}.
Remark 16. In the previous algorithm,we divide by an element of minimal valuation, consider-

ing element of the type
(φ(t), ψ(u))

x
. It is convenient to work with such an element as a fraction

(cancelling if possible the common factors between the numerator and the denominator) . In

this way we can still express it by a finite set of information avoiding the problem of expanding

it in power series.

When the algorithm stops, we are able to build the multiplicity tree T of ∗R. It will be

a multiplicity tree of an Arf semigroup of N2, therefore it can be represented by a collection

E = {m1,m2} of two multiplicity sequences and an integer p1, where p1 is the highest level

where the two branches of T are still glued. To find p1 we have to check the first h such that, in

our algorithm, we obtain that Rh is not local. Then we have p1 = h− 1.

Furthermore, if R1 = R,R2, . . . , Rq is the output of the algorithm we have that:

m1,i = mult(Ri)[1] for i = 1, . . . , p1 and m1,i = (mult∗(Ri)[1])[1] for i = p1 + 1, . . . , N ;

m2,i = mult(Ri)[2] for i = 1, . . . , p1 and m2,i = (mult∗(Ri)[2])[2] for i = p1 + 1, . . . , N.

Remark 17. The multiplicity sequences m1 and m2 can be also found by using the algorithm

for the branch case, applied to the rings

R1 = K[[φ1(t), . . . , φn(t)]] and R2 = K[[ψ1(u), . . . , ψn(u)]].

In the following image we have the multiplicity tree and the minimal tree of R.
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mult(R1)

mult(R2)

mult(Rp1)

mult∗(Rp1+1)[2]

mult∗(Rm)[2]

[0, 1]

mult∗(Rp1+1)[1]

mult∗(Rm)[1]

[1, 0]

xR1

xR2

xRp1

(1, x2Rp1+1
)

(1, x2m)

(1, u)

(x1Rp1+1
, 1)

(x1m, 1)

(t, 1)

Notice that the algorithm computes all the tools needed to construct the previous two trees.

If the tree T of ∗R is represented by the matrix M(T )E =

(
0 p1
0 0

)

with E = {m1,m2}, the

conductor of the associated Arf semigroup is c = (c[1], c[2]) with

c[i] =

max(l(mi),p1)∑

k=1

mi,k.

Thus we have that (tc[1], uc[2]) · (K[t]×K[u]) ⊆ ∗R.

Discussion 4.2.2. Now we want to find a method to compute a presentation of the Arf closure.

In the previous section, we have seen how to construct it recursively. In the two-branches case

we have that:

∗Ri = K(1, 1) + xRi

∗Ri+1 for i = 1, . . . , p1
∗Rp1+1 =

∗
R1

p1+1 ×
∗
R2

p1+1

R1
i = K[[t]] for i > max{l(m1), p1}

R2
i = K[[u]] for i > max{l(m2), p1}.

If max{l(mj), p1} > p1
∗
Rj

i = K+xjRi

∗
Rj

i+1 for i = p1+1, . . . ,max(l(mj), p1); j = 1, 2.

If we denote by dj = max(l(mj), p1), by substituting the expression in the reverse order we
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find that:

∗
R1

d1
= K+ x1Rd1

K[[t]];
∗
R2

d2
= K+ x2Rd2

K[[u]];
∗
R1

d1−1 = K+ x1Rd1−1
K+ x1Rd1−1

x1Rd1
K[[t]];

∗
R2

d2−1 = K+ x2Rd2−1
K+ x2Rd2−1

x2Rd2
K[[u]];

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
∗
R1

p1+1 = K+ x1Rp1+1
K+ x1Rp1+1

x1Rp1+2
K+ . . .+ x1Rp1+1

x1Rp1+2
. . . x1Rd1

K[[t]];
∗
R2

p1+1 = K+ x2Rp1+1
K+ x2Rp1+1

x2Rp1+2
K+ . . .+ x2Rp1+1

x2Rp1+2
. . . x2Rd2

K[[u]];

and

∗Rp1+1 =
∗
R1

p1+1 ×
∗
R2

p1+1;

∗Rp1 = K(1, 1) + xRp1

∗
R1

p1+1 ×
∗
R2

p1+1;

. . . . . . . . . . . . . . . . . . . . . . . .

∗R = K(1, 1) + xR1K+ . . .+ xRp1
xRp1−1 . . . xR1(

∗
R1

p1+1 ×
∗
R2

p1+1).

Finally, comparing the last two relations, we obtain

∗R = K(1, 1) + xR1K+ . . .+

+ xRp1
xRp1−1 . . . xR1

[

(K+ . . .+ x1Rp1+1
. . . x1Rd1

K[[t]])× (K+ . . .+ x2Rp1+1
. . . x2Rd2

K[[u]])
]

.

Developing the Cartesian product, we find:

∗R = K(1, 1) + xR1K+ · · ·+ xRp1
. . . xR1K+ xRp1

. . . xR1(1, x
2
Rp1+1

)K+ . . .+

+ xRp1
. . . xR1(1, x

2
Rp1+1

. . . x2Rd2
)(K×K[[u]]) + xRp1

. . . xR1(x
1
Rp1+1

, 1)K+ . . .+

+ xRp1
. . . xR1(x

1
Rp1+1

, x2Rp1+1
. . . x2Rd2

)(K×K[[u]]) + . . .+

+ xRp1
. . . xR1(x

1
Rp1+1

. . . x1Rd1
, 1)(K[[t]]×K) + . . .+ (tc[1], uc[2]) · (K[[t]]×K[[u]]),

because

xRp1
. . . xR1(x

1
Rp1+1

. . . x1Rd1
, x2Rp1+1

. . . x2Rd2
) · (K[[t]]×K[[u]]) = (tc[1], uc[2]) · (K[[t]]×K[[u]]).

Notice that the elements with valuation greater than the conductor can be erased. We observe

that the elements in the expression have all different valuation and each of them has valuation

corresponding to an element in ν(R) that is not greater than the conductor.

The elements with valuation not smaller than the conductor have to belong to the set (tc[1], y) ·
(K[[t]]×K) with ord(y) < c[2] or (z, uc[2]) · (K×K[[u]]) with ord(z) < c[1].
Each element of the set (tc[1], y) · (K[[t]]×K) can be written as a sum of an element in (0, y)K
and an element of (tc[1], uc[2]) · (K[[t]] × K[[u]]). Similarly each element of the set (z, uc[2]) ·
(K × K[[u]]) can be written as a sum of an element in (z, 0)K and an element of (tc[1], uc[2]) ·
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(K[[t]]×K[[u]]).
If we define

Y 0 = {(y, z) ∈ ∗R : v((y, z)) < c};
Y 1 = {(0, y) ∈ ∗R : ord(y) < c[2]};
Y 2 = {(z, 0) ∈ ∗R : ord(z) < c[1]};

Y := Y0 ∪ Y1 ∪ Y2,
we have a presentation of the type

∗R = K(1, 1) +Ky1 + · · ·+Kyk + (tc[1], uc[2]) · (K[[t]]×K[[u]]) ,

where the elements yi belong to Y and we have one and only one representative for each valu-

ation not greater than the conductor. In other words

ν(yi + (tc[1], uc[2])) ∈ Small(ν(∗R)) for all i.

Recall that from the properties of the multiplicity tree of an Arf semigroup, it follows that

an element v of Small(ν(∗R)) can be obtained as the sum of the nodes of a subtree of T (R)
rooted in mult(R) and contained in the subtree that gives the conductor.

Then it is easy to find an element y with valuation v ∈ Small(ν(∗R)). It suffices to consider

the corresponding subtree in the minimal tree of Small(ν(∗R)) and multiply all its nodes. We

suppose that s1, . . . , sk are the elements of ∗R such that

{ν(s1), . . . , ν(sk), c} = Small(ν(∗R)),

if we consider the elements s1, . . . , sk, obtained by truncating the monomials of degree bigger

that the corresponding component of the conductor, it is easy to see that they are the elements

yi that we were looking for.

Example 4.2.3. Consider

R = R1 = K[[(t5 + t10, u7), (t8, u11 + u13)]].

We have mult(R1) = (5, 7). We can choose xR1 = (t5 + t10, u7) as an element of minimal

value in R1. Therefore we have

R2 = K

[[

xR1 = (t5 + t10, u7),
(t8, u11 + u13)

xR1

]]

= K

[[

(t5 + t10, u7),

(
t3

1 + t5
, u4 + u6

)]]

.

R2 is still local and we have mult(R2) = (3, 4). We can choose xR2 =
(

t3

1+t5
, u4 + u6

)

.

Thus we have

R3 = K

[[

xR2 =

(
t3

1 + t5
, u4 + u6

)

,
(t5 + t10, u7)

xR2

]]

=
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= K

[[(
t3

1 + t5
, u4 + u6

)

,

(

t2(1 + t5)2,
u3

1 + u2

)]]

.

R3 is still local and we have mult(R3) = (2, 3). We can choose xR3 =
(

t2(1 + t5)2, u3

1+u2

)

.

Thus we have

R4 = K

[[

xR3 =

(

t2(1 + t5)2,
u3

1 + u2

)

,

(
t

(1 + t5)3
, u(1 + u2)2

)]]

.

R4 is still local and we have mult(R4) = (1, 1). We can choose xR4 =
(

t
(1+t5)3

, u(1 + u2)2
)

.

Thus we have

R5 = K

[[

xR4 =

(
t

(1 + t5)3
, u(1 + u2)2

)

,

(

t(1 + t5)5,
u2

(1 + u2)3

)]]

.

R5 is still local and we have mult(R5) = (1, 1). We can choose again xR5 =
(

t
(1+t5)3

, u(1 + u2)2
)

.

Thus we have

R6 = K

[[

xR5 =

(
t

(1 + t5)3
, u(1 + u2)2

)

,

(

(1 + t5)8,
u

(1 + u2)5

)]]

.

This time, for the Lemma 4.2.1, we have that R6 is not local because we have the element(

(1 + t5)8, u
(1+u2)5

)

with valuation (0, 1). We can write:

R6 = K

[[
t

(1 + t5)3
, (1 + t5)8

]]

×K

[[

u(1 + u2)2,
u

(1 + u2)5

]]

= K[[t]]×K[[u]].

Thus we have mult∗(R6) = {(1, 0), (0, 1)}, and we can stop the algorithm. Then the multiplicity

tree of ∗R and the minimal tree are:
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(5, 7)

(3, 4)

(2, 3)

(1, 1)

(1, 1)

(0, 1)(1, 0)

(t5 + t10, u7)

(
t3

1+t5
, u4 + u6

)

(

t2(1 + t5)2, u3

1+u2

)

(
t

(1+t5)3
, u(1 + u2)2

)

(
t

(1+t5)3
, u(1 + u2)2

)

(1, u)(t, 1)

The multiplicity tree T is M(T )E =

(
0 5
0 0

)

where E = {m1 = [5, 3, 2],m2 = [7, 4, 3]}.
We can easily see that conductor c of ν(∗R) is c = (12, 16). We can also compute Small(ν(∗R))
finding that

Small(ν(∗R)) = {(5, 7), (8, 11), (10, 14), (11, 15), (12, 16)} .
Considering the expression of the elements of Small(ν(∗R)) as a sum of nodes in a subtree of

T we can produce the following elements of ∗R as a product of the corresponding nodes on the

minimal tree of ∗R:
{

(t5 + t10, u7), (t8, u11 + u13), (t10(1 + t5)2, u14),

(
t11

1 + t5
, u15(1 + u2)2

)

, (t12, u16)

}

.

Finally we have

∗R = K(1, 1)+K(t5+t10, u7)+K(t8, u11+u13)+K(t10(1+t5)2, u14)+K

(
t11

1 + t5
, u15(1 + u2)2

)

+

+(t12, u16) (K[[t]]×K[[u]]) = K(1, 1)+K(t5+t10, u7)+K(t8, u11+u13)+K(t10, u14)+K
(
t11, u15

)
+

+(t12, u16) (K[[t]]×K[[u]]) .

Notice that the fact that we know the conductor of ∗R allows us to simplify some of the elements

corresponding to the small elements by truncating the terms that have order greater than the

conductor.
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4.3 The algorithm in the general case

In this section we explain how to generalize the algorithm presented in the previous one to

algebroid curve with more than two branches. First of all we fix the notations. We want to find

the Arf closure of the ring R ⊆ K[[t1]]× · · · ×K[[tr]] with the following parametrization

R = R1 = K[[(φ11(t1), . . . , φ1r(tr)) , . . . , (φk1(t1), . . . , φkr(tr))]].

Similarly to the previous section, we will always replace an element of the parametrization

y = (φj1(t1), . . . , φjr(tr)) such that

ord(φji(ti)) = 0 and with φj1(0) = φji(0) for all i = 1, . . . , r,

with the element y = y − φj1(0) · (1, . . . , 1).
To compute the Arf closure ∗R, we have to find the sequence of blow-ups Rq of R. We will

give an inductive algorithm for the computation of Rq.

We will denote by

Rq = K

[[(

φ
(q)
11 (t1), . . . , φ

(q)
1r (tr)

)

, . . . ,
(

φ
(q)
k(q)1(t1), . . . , φ

(q)
k(q)r(tr)

)]]

.

The rings Rq are semilocal subrings of K[[t1]] × · · · × K[[tr]]. We know, as explained

in Section 1.4.1, that for a semilocal ring S there exists a partition P(S) = {P1, . . . , Pt} of

{1, . . . , r}, with

Pi =
{
qi,1, . . . , qi,k(i)

}
,

such that S ∼=
∏t

i=1 πPi
(S). Now we explain how to determine the partition P(S).

If i, j ∈ {1, . . . , r} with i 6= j we denote by πi,j the projection

πi,j : K[[t1]]× · · · ×K[[tr]]→ K[[ti]]×K[[tj]].

We have the following obvious Lemma:

Lemma 4.3.1. Consider S ⊆ K[[t1]]× · · · ×K[[tr]], semilocal ring. We define the equivalence

relation ∼ on {1, . . . , r}, such that i ∼ j if i = j or if πi,j(S) is local in K[[ti]]×K[[tj]]. Then

P(S) is the partition of {1, . . . , r} into equivalence classes with respect to ∼.

If

S = K[[(φ11(t1), . . . , φ1r(tr)) , . . . , (φk1(t1), . . . , φkr(tr))]],

then

πi,j(S) = K[[(φ1i(ti), φ1j(tj)) , . . . , (φki(ti), φkj(tj))]];

since in the two branches case we know how to understand if a ring is local from its parametriza-

tion, we have the following algorithm to compute P(S):
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input : S = K[[(φ11(t1), . . . , φ1r(tr)) , . . . , (φk1(t1), . . . , φkr(tr))]]
output: The partition P(S)

N ←− {1, . . . , r}
for i ∈ N do

Pi ←− {i}
for j ∈ N>i do

if πi,j(S) is local then
Pi ←− Pi ∪ {j}
N ←− N \ {j}

end

end

end

return P(S) = {P1, Pi2 , . . . , Pit}
Algorithm 4:

Now we can give an algorithm for computing the blow-up sequence of R. We will do it by

working on induction on the number r of branches. We need to show a procedure to compute

Rq+1 from Rq.

• Base: r = 2.

For r = 2 we have already seen, in the previous section, how to compute the Rq.

• Inductive step.

We suppose that we are able to solve the problem for rings with less than q branches and

we give a procedure for rings with exactly q branches.

We have two cases:

If Rq is local in R we consider xRq
, the element of Rq such that ν(xRq

) = mult(Rq) (we

can find it as a linear combinations of the elements of the parametrization of Rq).

Then we know that

Rq+1 = K







xRq
,

(

φ
(q)
11 (t1), . . . , φ

(q)
1r (tr)

)

xRq

, . . . ,

(

φ
(q)
k(q)1(t1), . . . , φ

(q)
k(q)r(tr)

)

xRq







 .

If Rq is not local then we have that there exist a partition P(Rq) = {Pq,1, . . . , Pq,t} such

that

Rq =
t∏

i=1

πPq,i
(Rq).
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Notice that πPq,i
(Rq) can be computed from the parametrization ofRq and it is isomorphic

to a local ring with less than r branches. Then for the inductive step we know how to

compute the blowup Bl(πPq,i
(Rq)) and we have that:

Rq+1 =
t∏

i=1

Bl(πPj,i
(Rq)).

Remark 18. It is clear that, with our definitions, we have

S = K[[t1]]×· · ·×K[[tr]] ⇐⇒ mult∗(S) = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} .

So we have a procedure to find the first N such that RN = K[[t1]]× · · · ×K[[tr]]. From this

procedure we can find the sequence

multset(R1),multset(R2), . . . ,multset(RN),

from which we can build the multiplicity tree of ∗R up to level N .

Once we know the multiplicity tree T and the minimal tree we are able to give an expres-

sion for the Arf closure ∗R using the strategy presented in the previous section. In fact we can

compute the conductor c of the semigroup of values of the Arf closure and then use the corre-

spondence between the small elements of the Arf semigroup ν(∗R) and the elements of ∗R to

find {s1, . . . , sl = c} ⊆ ∗R such that:

∗R = K(1, . . . , 1) +Ks1 + . . .+Ksl−1 + (t
c[1]
1 , . . . , tc[r]r ) (K[[t1]]× · · · ×K[[tr]]) .

Example 4.3.2. We want to compute the Arf closure of the following ring

R = R1 = K[[(t5 − t8, u2 + u6, v3, w2 + w9), (t6, u2 + u7 + u10, v7 − v9, w2 + w7)]].

In order to simplify the notation we will denote by Rj
i the local ring isomorphic to πPj

(Ri), and

we denote by x
R

j
i

an element of minimal valuation in Rj
i , and by xji the corresponding element

of minimal valuation in πPj
(Ri) . With an abuse of notation we also write

Ri =
t∏

j=1

πPj
(Ri) ∼=

t∏

j=1

Rj
i .

It is easy to verify that π1,2(R), π1,3(R) and π1,4(R) are all local. Then, for Lemma 4.3.1, it

follows that P(R) = {{1, 2, 3, 4}}, therefore R is local.

We have that mult(R1) = (5, 2, 3, 2). As the minimal element xR1 we can choose xR1 =
(t5 − t8, u2 + u6, v3, w2 + w9).

We have:

R2 = K

[[

xR1 = (t5 − t8, u2 + u6, v3, w2 + w9),
(t6, u2 + u7 + u10, v7 − v9, w2 + w7)

xR1

]]

=
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= K

[[

(t5 − t8, u2 + u6, v3, w2 + w9),

(
t

1− t3 ,
1 + u5 + u8

1 + u4
, v4 − v6, 1 + w5

1 + w7

)]]

.

Now we can verify that π1,2(R2) is not local, π1,3(R2) is local, π1,4(R2) is not local and

π2,4(R2) is local, therefore P(R2) = {P2,1 = {1, 3} , P2,2 = {2, 4}}. We have

R2
∼= R1

2 ×R2
2,

where

R1
2 = K

[[

(t5 − t8, v3),
(

t

1− t3 , v
4 − v6

)]]

,

R2
2 = K

[[

(u2 + u6, w2 + w9),

(
1 + u5 + u8

1 + u4
,
1 + w5

1 + w7

)]]

=

= K

[[

(u2 + u6, w2 + w9),

(−u4 + u5 + u8

1 + u4
,
w5 − w7

1 + w7

)]]

,

and, following our conventions on the parametrization, we replace
(

1+u5+u8

1+u4 , 1+w5

1+w7

)

with
(

1+u5+u8

1+u4 , 1+w5

1+w7

)

−
(1, 1) =

(
−u4+u5+u8

1+u4 , w
5−w7

1+w7

)

.

We have mult(R1
2) = (1, 3) and we can choose as element of minimal value the sum xR1

2
of

its two generators

xR1
2
=

(
t+ t5(1− t3)2

1− t3 , v3 + v4 − v6
)

,

while mult(R2
2) = (2, 2) and we can choose as element of minimal value

xR2
2
=
(
u2 + u6, w2 + w9

)
. Then, we have multset(R2) = {(1, 0, 3, 0), (0, 2, 0, 2)} and we can

proceed with the computation of R3. Thus

R3
∼= Bl(R1

2)× Bl(R2
2),

so we have to compute Bl(R1
2) and Bl(R2

2).
We have

Bl(R1
2) = K

[[(

φ
(3)
1 (t), ψ

(3)
1 (v)

)

, . . . ,
(

φ
(3)
3 (t), ψ

(3)
3 (v)

)]]

,

where

•
(

φ
(3)
1 (t), ψ

(3)
1 (v)

)

=

(
t+ t5(1− t3)2

1− t3 , v3 + v4 − v6
)

;

•
(

φ
(3)
2 (t), ψ

(3)
2 (v)

)

=

(
t4(1− t3)2

1 + t4(1− t3)2 ,
1

1 + v − v3
)

;

•
(

φ
(3)
3 (t), ψ

(3)
3 (v)

)

=

(
1

1 + t4(1− t3)2 ,
v − v3

1 + v − v3
)

.
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We notice that the second generator has valuation (4, 0), then Bl(R1
2) is not local in K[[t]] ×

K[[v]]. Furthermore we have, with our notation, that multset(Bl(R1
2)) = {(1, 0), (0, 1)} in

K[[t]]×K[[v]] . Then we have

Bl(R1
2) = K[[t]]×K[[v]].

Now we can compute Bl(R2
2). We have

Bl(R2
2) = K

[[
(
u2 + u6, w2 + w9

)
,

(−u2 + u3 + u6

(1 + u4)2
,
w3 − w5

(1 + w7)2

)]]

.

Thus Bl(R2
2) is local in K[[u]] × K[w]] and mult(Bl(R2

2)) = (2, 2) in this ring. Then P(R3) =
{P3,1 = {1} , P3,2 = {3} , P3,3 = {2, 4}} and

R3
∼= R1

3 ×R2
3 ×R3

3 = K[[t]]×K[[v]]× Bl(R2
2),

where multset(R3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)}. As a minimal element of Bl(R2
2)
∼=

R3
3 we can choose again xR3

3
= (u2 + u6, w2 + w9). Thus

R4
∼= Bl(R1

3)× Bl(R2
3)× Bl(R3

3) = K[[t]]×K[[v]]× Bl(R3
3).

We have:

Bl(R3
3) = K

[[
(
u2 + u6, w2 + w9

)
,

(−1 + u+ u4

(1 + u4)3
,
w − w3

(1 + w7)3

)]]

.

From this it is easy to show that Bl(R3
3)
∼= K[[u]]×K[[w]].

Then P(R4) = {P4,1 = {1} , P4,2 = {2} , P4,3 = {3} , P4,4 = {4}} and

R4 = K[[t]]×K[[u]]×K[[v]]×K[[w]],

and we have reached the stop condition for our algorithm. We found that N = 4 and

• multset(R1) = {(5, 2, 3, 2)} ,

• multset(R2) = {(1, 0, 3, 0), (0, 2, 0, 2)} ,

• multset(R3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)} ,

• multset(R4) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} .

The corresponding minimal elements are:

• xR1 = (t5 − t8, u2 + u6, v3, w2 + w9),

• x12 =
(

t+t5(1−t3)2

1−t3
, 1, v3 + v4 − v6, 1

)

and x22 = (1, u2 + u6, 1, w2 + w9) ;
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• x13 = (t, 1, 1, 1), x23 = (1, 1, v, 1) and x33 = (1, u2 + u6, 1, w2 + w9) ;

• x14 = (t, 1, 1, 1), x24 = (1, u, 1, 1), x34 = (1, 1, v, 1) and x44 = (1, 1, 1, w).

Then we have the following trees:

R1

R2
2

R3
3

K[[w]]K[[u]]

R1
2

K[[v]] = R2
3K[[t]] = R1

3

(5, 2, 3, 2)

(0, 2, 0, 2)

(0, 2, 0, 2)

(0, 0, 0, 1)(0, 1, 0, 0)

(1, 0, 3, 0)

(0, 0, 1, 0)(1, 0, 0, 0)

(t5 − t8, u2 + u6, v3, w2 + w9)

(1, u2 + u6, 1, w2 + w9)

(1, u2 + u6, 1, w2 + w9)

(1, 1, 1, w)(1, u, 1, 1)

(
t+t5(1−t3)2

1−t3
, 1, v3 + v4 − v6, 1

)

(1, 1, v, 1)(t, 1, 1, 1)

Then the multiplicity tree T (R) of the Arf semigroup associated to ∗R is the tree described by

the matrix

M(T (R))E =







0 1 2 1
0 0 1 3
0 0 0 1
0 0 0 0






,

where E = {[5], [2, 2, 2], [3, 3], [2, 2, 2]}.
The conductor of ν(∗R) is c = (6, 6, 6, 6), therefore

(t6, u6, v6, w6) (K[[t]]×K[[u]]×K[[v]]×K[[w]]) ⊆ ∗R.

We have that

Small(ν(∗R)) = {(5, 2, 3, 2), (5, 4, 3, 4), (5, 6, 3, 6), (6, 2, 6, 2), (6, 4, 6, 4), c = (6, 6, 6, 6)} .
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From the minimal tree we can recover the elements of ∗Rwith valuation belonging to Small(ν(∗R)).
We can calculate the Arf closure truncating the terms with degree bigger than the conductor. So

we obtain:
{
(t5, u2, v3, w2), (t5, u4, v3, w4), (t5, 0, v3, 0), (0, u2, 0, w2), (0, u4, 0, w4)

}
.

Finally we have

∗R = K(1, 1, 1, 1) +K(t5, u2, v3, w2) +K(t5, u4, v3, w4) +K(t5, 0, v3, 0)+

+K(0, u2, 0, w2) +K(0, u4, 0, w4) + (t6, u6, v6, w6) (K[[t]]×K[[u]]×K[[v]]×K[[w]]) .

4.4 A bound for the series

In the previous sections, we have presented an algorithm that computes the Arf closure of an

algebroid curve. The issues explained in Remark 1 for the algebroid branches occur also in

this case, thus we would like to find a bound for the truncation of the series expansion in the

parametrization, in order to improve the speed of the algorithm.

Remark 19. Using the bound of Arslan and Sahin (cf. Remark 1) on each branch would not

solve our problem. In fact, although it guarantees the determination of the actual branches of

the algebroid curve ∗R, we can lose some important information on the splitting levels of its

multiplicity tree.

Our strategy is based on the following theorem that generalizes the result of Arslan-Sahin to

the case of two branches algebroid curves. Thus, in the following, we focus on the two branches

case.

Let us fix some notation. Let R be a two-branches curve with parametrization

R = K[[(φ1(t), ψ1(u)), . . . , (φn(t), ψn(u))]],

we call c = (c[1], c[2]) the conductor of ν(∗R). Furthermore, we denote by φi(t) and ψi(u)
the formal power series obtained from φi(t) and ψi(u) respectively by removing all monomials

with degree greater than c[1] + 1 and c[2] + 1. Finally, we introduce:

Trunc(R) = K[[(φ1(t), ψ1(u)), . . . , (φn(t), ψn(u))]].

Theorem 4.4.1. If we apply the algorithm to both R and Trunc(R) we obtain the same multi-

plicity tree.

Proof Suppose that the multiplicity tree of ∗R is the tree T with M(T )E =

(
0 p1
0 0

)

where

E = {m1,m2}. Consider an arbitrary element of the parametrization of R,

(φ
(1)
i (t), ψ

(1)
i (u)) =




∑

i≤c[1]+1

ait
i +

∑

i>c[1]+1

ait
i,
∑

i≤c[2]+1

biu
i +

∑

i>c[2]+1

biu
i



 .
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We denote by

(χ
(1)
1 (t), χ

(1)
2 (u)) =




∑

i>c[1]+1

ait
i,
∑

i>c[2]+1

biu
i





and

k = (k[1], k[2]) = (ord(χ
(1)
1 (t)), ord(χ

(1)
2 (u))) > (c[1] + 1, c[2] + 1).

Now, we want to follow the path of χ
(1)
1 (t) and χ

(1)
2 (u) in the algorithm in order to observe that

by removing them from the parametrization, the result of the algorithm remains unchanged.

We denote with (χ
(i)
1 (t), χ

(i)
2 (u)) the series obtained by (χ

(1)
1 (t), χ

(1)
2 (u)) at the i-th step of the

algorithm.

To prove the thesis, it is necessary to prove that (χ
(i)
1 (t), χ

(i)
2 (u)) satisfies the following

hypothesis at the i-th step:

i) ord(χ
(i)
1 (t)) > m1,i and ord(χ

(i)
2 (u)) > m2,i;

ii) neither ord(χ
(i)
1 (t)) nor ord(χ

(i)
2 (u)) are 0.

If i) is true we have that the monomials in (χ
(i)
1 (t), χ

(i)
2 (u)) are not involved in the choice of the

minimal valuation elements at the i-th step. If ii) is true they are not involved in the splits as

consequence of Lemma 4.2.1.

So, if both hypothesis are true, the monomials in (χ
(i)
1 (t), χ

(i)
2 (u)) are not involved in the i-th

step of the algorithm.

Recall that p1 is the highest level were the branches in R are joined, then for all i ≤ p1, we have

that:

ν(χ
(i)
1 (t), χ

(i)
2 (u)) ≥ (k[1]−m1,1 − . . .−m1,i−1, k[2]−m2,2[1]− . . .−m2,2[i− 1]) >

> (c[1] + 1−m1,1 − . . .−m1,i−1, c[2] + 1−m2,1 − . . .−m2,i−1) =

=





max(l1,p1)∑

j=1

m1,j + 1−
i−1∑

j=1

m1,j ,

max(l2,p1)∑

j=1

m2,j + 1−
i−1∑

j=1

m2,j



 ≥

≥





i∑

j=1

m1,j + 1−
i−1∑

j=1

m1,j ,

i∑

j=1

m2,j + 1−
i−1∑

j=1

m2,j



 =

= (m1,i + 1,m2,i + 1) > (m1,i,m2,i) > (0, 0).

So the hypothesis i) and ii) are satisfied for χ
(i)
1 (t), χ

(i)
2 (u) with i ≤ p1. When i > p1 the

algorithm works individually on each branch, performing the computation of the Arf closure of

an algebroid branch. Thus, because we have that χ
(p1+1)
1 (t) and χ

(p1+1)
2 (u) are elements with

valuation strictly greater than the conductor of ν(R
(p1+1)
1 ) and ν(R

(p1+1)
2 ) respectively plus one,

for the Arslan-Sahin theorem (cf.[2, Thm. 2.4]), χ
(p1+1)
1 (t), χ

(p1+1)
2 (u) are not involved in the

next steps of the algorithm and this concludes the proof.
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Remark 20. We want to point out that the previous theorem does not imply that the chains of

blow-ups obtained applying the algorithm on R and Trunc(R) are the same. In general, the

parametrization of each blow-up and the minimal tree are different, but they are equal modulo

〈tc[1]+2, uc[2]+2〉 (when we truncate all the elements of degree greater than c+ 1).

In the previous section, we have computed a presentation of the Arf closure starting by any

minimal tree of the curve and it does not depends on the minimal tree chosen. For this reason

we can enunciate the following obvious corollary.

Corollary 4.4.2. R and Trunc(R) have the same Arf closure.

From the previous corollary it follows that our new problem is to find a way to estimate the

conductor of ν(∗R) without actually knowing ∗R.

Now we see how to do that by using the information given by the starting parametrization

of R. Let us start by considering separately the two branches:

R1 = K[[φ1(t), . . . , φn(t)]] R2 = K[[ψ1(u), . . . , ψn(u)]].

We need to find the multiplicity sequences m1 and m2 of R1 and R2 respectively. Thus we

compute the Arf closure of the branches (using the bound given by Arslan-Sahin we have an

efficient way to do that).

Suppose that m1 6= m2. In this case we have that the compatibility Comp(m1,m2) is finite

(recall that the compatibility is an upper bound for the splitting level p1). If we set:

d1 = max{l(m1),Comp(m1,m2)}, d2 = max{l(m2),Comp(m1,m2)},

we have:

c[1] + 1 =

max(l(m1),p1)∑

i=1

m1,i + 1 ≤ m1,1 + . . .+m1,d1 + 1,

c[2] + 1 =

max(l(m2),p1)∑

i=1

m2,i + 1 ≤ m2,1 + . . .+m1,d2 + 1.

So, if we put:

b1 = m1,1 + . . .+m1,d1 + 1,

b2 = m2,1 + . . .+m1,d2 + 1,

as a consequence of Theorem 4.4.1, we can use the vector bO = (b1, b2) as a bound for the series

expansions in the parametrization.

We have found a bound when m1 6= m2 by only using the numeric properties of the multiplicity

sequences. When m1 = m2 we cannot make assumptions on the split level by only using the

mi but we need to work directly on the parametrization in order to find a suitable bound.
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Let us suppose that we have an algebroid curve with two branches such that m1 = m2. In

this case we will do the following positions in order to simplify the notation. We denote with

cr the conductor of the branches R1 and R2 (in fact, in this case the two conductors are equal).

We also set l = l(m1) = l(m2). Now we define Dis(1, 2) = {i ∈ {1, . . . , n} : ν(φi(t)) 6=
ν(ψi(u))} and we call discrepancies the elements of this set. If Dis(1, 2) 6= ∅, we define also

D = min{min{ν(φi(t)), ν(ψi(u))}, i ∈ Dis(1, 2)}

which is the smallest order that causes a discrepancy.

Example 4.4.3. Let us consider the algebroid curve:

R = K[[(t3 + t4, u3 + u7), (t8 + t9, u8), (t12 + t15, u13 + u14), (t21, u17 + u19)]].

The multiplicity tree associated to the ring is:

(3, 3)

(3, 3)

(2, 2)

(1, 1)

(1, 1)

(1, 1)

(0, 1)(1, 0)

So we have: m1 = m2, Dis(1, 2) = {3, 4} and

D = min{min{12, 13},min{21, 17}} = min{12, 17} = 12.

Lemma 4.4.4. Let

R = K[[(φ1(t), ψ1(u)), . . . , (φn(t), ψn(u))]]

be an algebroid branch such that

i) m1 = m2 ;

ii) Dis(1, 2) 6= ∅.
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Then we have max{cr, D} ≥ c[1] = c[2].

Proof From the definition of D, it follows that there exists an element of the type (D, x) in

ν(R) ⊆ ν(∗R) with x > D (or equivalently of the type (y,D) with y > D). We know that

there exists an integer k such that

D =
k∑

i=1

m1,i.

Taking in account that the multiplicity tree T (R) has two identical branches, it is easy to un-

derstand that (D, x) ∈ ν(∗R) with x > D implies p1 ≤ k (if we had k < p1 the only possible

element with valuation of the type (D, x) in ν(∗R) would be (D,D)). So we have

c[2] = c[1] =

max(l(m1),p1)∑

i=1

m1,i ≤
max(l(m1),k)∑

i=1

m1,i = max{cr, D}.

As a consequence of this theorem, we can take bD = (max{cr, D}+1,max{cr, D}+1) as

a bound for an algebroid curve with m1 = m2 and Dis(1, 2) 6= ∅.
Now we only need to understand how to deal with the case of algebroid curves with m1 =

m2 and Dis(1, 2) = ∅. In this case we have:

i) m1 = m2;

ii) ν(φi(t)) = ν(ψi(u)) ∀i = 1, . . . , n.

Without loss of generality, we can rename the elements of the parametrization in order to

have:

ν(φ1(t), ψ1(u)) ≤ ν(φ2(t), ψ2(u)) ≤ . . . ≤ ν(φn(t), ψn(u)).

Let (φi(t), ψi(u)) be the first element with i > 1 such that at least one of the following holds

• φ1(t) 6= ψ1(t)

• φi(t) 6= ψi(t),

(it must exist an element of this type because otherwise we would not have an algebroid curve

with two branches). In this case we can always find a, b, r, s ∈ N, such that

(φ̃(t), ψ̃(u)) = a(φ1(t), ψ1(u))
r + b(φi(t), ψi(u))

s

with ord(φ̃(t)) > ord(φ1(t)).

Now, let us consider

R̃ = K[[(φ̃(t), ψ̃(u)), (φ2(t), ψ2(u)), . . . , (φn(t), ψn(u))]],
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and denote with c̃ the conductor of the Arf closure of R̃.

Since R̃ ⊆ R, we have c ≤ c̃. Now, if R̃ is an algebroid curve such that m̃1 6= m̃2 orDis(1, 2) 6=
∅, then we know how to find a bound for c̃.
Otherwise, we can apply the same idea starting by R̃ until we found an algebroid curve with

a discrepancy for which we know to compute a bound; we will call this bound bG. We note

that this process necessarily produces a discrepancy since R is an algebroid curve that is not an

algebroid branch.

Remark 21. We observe that it makes sense to compute bG even when we have a discrepancy. A

priori we do not know in this case which bound is better between bD and bG, so we will compute

both of them and then we will choose the smaller one.

We will enunciate the following proposition that summarizes what we have seen above.

Proposition 4.4.5. If R is an algebroid curve, c is the conductor of its Arf closure, m1 and m2

the multiplicity sequences of its branches, then the element

b =







bO if m1 6= m2;

min{bD, bG} if m1 = m2 ∧Disc(1, 2) 6= ∅;
bG if m1 = m2 ∧Disc(1, 2) = ∅,

is such that b ≥ (c[1] + 1, c[2] + 1).

As a consequence of the last proposition and Theorem 4.4.1, we have that b is a suitable

bound for the algorithm.

Finally we show how the bound found in two-branches case can be used to determine a bound

in the general case.

Remark 22. If R is an algebroid curve with r branches, parametrized by

R = K[[(φ11(t1), . . . , φ1r(tr)) , . . . , (φk1(t1), . . . , φkr(tr))]].

We consider

πi,j(R) = K[[(φ1i(ti), φ1j(tj)) , . . . , (φki(ti), φkj(tj))]],

the two-branch curve associated with the branches i and j for i, j = 1, . . . , r, i 6= j.
We call bπi,j(R) = (bπi,j(R),i, bπi,j(R),j) the bound computed for the curve πi,j(R) where

bπi,j(R),i and bπi,j(R),j are the components of the bound related to the branches i and j respec-

tively. If we consider

b[i] = max{bπi,j(R),i j = 1, . . . , r, j 6= i},

it is easy to observe that b = (b[1], b[2], . . . , b[r]) is a suitable bound for the curve (because the

general algorithm performs simultaneously the two-case one on each couple of branches).
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Remark 23. From Remark 22, it follows that a bound in the general case is still given by c+ 1,

where c is the conductor of the Arf closure of R. When the set of vectors

G = {ν((φ11(t1), . . . , φ1r(tr))), . . . , ν((φk1(t1), . . . , φkr(tr)))} ⊆ N
r

satisfies the conditions of Theorem 2.2.1, we can speed up the computation of the bound. In

fact we can compute the smallest Arf good semigroup S containing G that is in turn contained

in ν(∗R). So c(S) ≥ c and we have a good bound for our procedure. However, as we show in

the following example, the valuations of the elements in the parametrization are not forced to

fulfil the aforementioned conditions. Furthermore, the bound obtained with this shortcut can be

less accurate than the one obtained from the general strategy.

Example 4.4.6. We want to compute, using the truncation explained in the previous section,

the Arf closure of the ring

R = R1 = K[[(t5 − t8, u2 + u6, v3, w2 + w9), (t6, u2 + u7 + u10, v7 − v9, w2 + w7)]],

that appeared in Example 4.3.2.

If we use the algorithm of Arslan and Sahin to compute the Arf closure of the rings

R1 = K[[t5 − t8, t6]], R2 = K[[u2 + u6, u2 + u7 + u10]],

R3 = K[[v3, v7 − v9]], R4 = K[[w2 + w9, w2 + w7]],

we find that the multiplicity tree T of ∗R belongs to τ(E), where

E = {m1 = [5],m2 = [2, 2, 2],m3 = [3, 3],m4 = [2, 2, 2]} .

We want to compute the bounds bπij(R),i with i, j = 1, 2, 3, 4, i 6= j. Since bπij(R),i = bπji(R),i

for all i, j = 1, 2, 3, 4, i 6= j, we can reduce to compute only bπij(R),i where j > i.
If mi 6= mj we have seen that:

bπij(R),i =





max(l(mi),Comp(mi,mj))∑

k=1

mi,k



+ 1 and bπij(R),j =





max(l(mj),Comp(mi,mj))∑

k=1

mj,k



+ 1.

We have:

• Comp(m1,m2) = 2⇒

bπ1,2(R),1 =





max(1,2)=2
∑

k=1

m1,k



+ 1 = 5 + 1 + 1 = 7;

bπ1,2(R),2 =





max(3,2)=3
∑

k=1

m2,k



+ 1 = 2 + 2 + 2 + 1 = 7.
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• Comp(m1,m3) = 2⇒

bπ1,3(R),1 =





max(1,2)=2
∑

k=1

m1,k



+ 1 = 5 + 1 + 1 = 7;

bπ1,3(R),3 =





max(2,2)=2
∑

k=1

m3,k



+ 1 = 3 + 3 + 1 = 7.

• Comp(m1,m4) = 2⇒

bπ1,4(R),1 =





max(1,2)=2
∑

k=1

m1,k



+ 1 = 5 + 1 + 1 = 7;

bπ1,4(R),4 =





max(3,2)=3
∑

k=1

m4,k



+ 1 = 2 + 2 + 2 + 1 = 7.

• Comp(m2,m3) = 3⇒

bπ2,3(R),2 =





max(3,3)=3
∑

k=1

m2,k



+ 1 = 2 + 2 + 2 + 1 = 7;

bπ2,3(R),3 =





max(2,3)=3
∑

k=1

m3,k



+ 1 = 3 + 3 + 1 + 1 = 8.

• Comp(m3,m4) = 3⇒

bπ3,4(R),3 =





max(2,3)=3
∑

k=1

m3,k



+ 1 = 3 + 3 + 1 + 1 = 8;

bπ3,4(R),4 =





max(3,3)=3
∑

k=1

m4,k



+ 1 = 2 + 2 + 2 + 1 = 7.

We have Comp(m2,m4) = ∞ because m2 = m4 = [2, 2, 2], then to compute bπ2,4(R) we

need to work on the parametrization of π2,4(R). We have:

π2,4(R) = K[[(u2 + u6, w2 + w9), (u2 + u7 + u10, w2 + w7)]].

115



Both the generators of π2,4(R) have valuation (2, 2), therefore we have not discrepancies be-

tween the orders in the initial parametrization. So we have to produce an element of π2,4(R)
with discrepancies by manipulating its generators. It suffices to take the difference between

them, in fact we find:

π2,4(R) 3 (u2 + u6, w2 + w9)− (u2 + u7 + u10, w2 + w7) = (u6 − u7,−w7 + w9),

with ν((u6−u7,−w7+w9)) = (6, 7). Because 6 = min(6, 7) is less or equal than the conductor

of m2 = [2, 2, 2] we can choose bπ2,4(R) = (6 + 1, 6 + 1) = (7, 7).
Finally, denoting with b[i] the bound on the i-th branch, we have:

• b[1] = max
{
bπ1,2(R),1, bπ1,3(R),1, bπ1,4(R),1

}
= max {7, 7, 7} = 7;

• b[2] = max
{
bπ1,2(R),2, bπ2,3(R),2, bπ2,4(R),2

}
= max {7, 7, 7} = 7;

• b[3] = max
{
bπ1,3(R),3, bπ2,3(R),3, bπ3,4(R),3

}
= max {7, 8, 8} = 8;

• b[4] = max
{
bπ1,4(R),4, bπ2,4(R),4, bπ3,4(R),4

}
= max {7, 7, 7} = 7.

Then on the i-th branch we can truncate all the terms with degree greater than b[i] obtaining

the new ring:

S = S1 = K[[(t5, u2 + u6, v3, w2), (t6, u2 + u7, v7, w2 + w7)]].

Let us show that ∗S = ∗R. We will use the same notations of Example 4.3.2.

It is easy to verify that π1,2(S), π1,3(S) and π1,4(S) are all local. Then for Lemma 4.3.1, it

follows that P(S) = {{1, 2, 3, 4}}, in other words S is local.

We have that mult(S1) = (5, 2, 3, 2). As the minimal value xS1 we can choose x1 = (t5, u2+
u6, v3, w2).

We have:

S2 = K

[[

(t5, u2 + u6, v3, w2),
(t6, u2 + u7, v7, w2 + w7)

xS1

]]

=

= K

[[

(t5, u2 + u6, v3, w2),

(

t,
1 + u5

1 + u4
, v4, 1 + w5

)]]

.

Now we can verify that π1,2(S2) is not local, π1,3(S2) is local, π1,4(S2) is not local and π2,4(S2)
is local, therefore P(S2) = {P2,1 = {1, 3} , P2,2 = {2, 4}}. We have

S2
∼= S1

2 × S2
2 ,

where

S1
2 = K

[[
(t5, v3),

(
t, v4

)]]
,
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S2
2 = K

[[

(u2 + u6, w2),

(
1 + u5

1 + u4
, 1 + w5

)]]

=

= K

[[

(u2 + u6, w2),

(−u4 + u5

1 + u4
, w5

)]]

.

where, following our conventions on the parametrization, we replace
(

1+u5

1+u4 , 1 + w5
)

with
(

1+u5

1+u4 , 1 + w5
)

− (1, 1) =
(

−u4+u5

1+u4 , w5
)

.

We have mult(S1
2) = (1, 3) and we can choose as element of minimal value the sum xS1

2
of

its two generators

xS1
2
=
(
t+ t5, v3 + v4

)
,

while mult(S2
2) = (2, 2) and we can choose as its minimal element xS2

2
=
(
u2 + u6, w2

)
. Then

we have multset(S2) = {(1, 0, 3, 0), (0, 2, 0, 2)} and we can proceed with the computation of

S3. Thus

S2
∼= Bl(S1

2)× Bl(S2
2),

so we have to compute Bl(S1
2) and Bl(S2

2).
We have

Bl(S1
2) = K

[[(

φ
(3)
1 (t), ψ

(3)
1 (v)

)

, . . . ,
(

φ
(2)
3 (t), ψ

(2)
3 (v)

)]]

,

where

•
(

φ
(3)
1 (t), ψ

(3)
1 (v)

)

=
(
t+ t5, v3 + v4

)
;

•
(

φ
(3)
2 (t), ψ

(3)
2 (v)

)

=

(
t4

1 + t4
,

1

1 + v

)

;

•
(

φ
(3)
3 (t), ψ

(3)
3 (v)

)

=

(
1

1 + t4
,

v

1 + v

)

.

We notice that the second generator has valuation (4, 0), then Bl(S1
2) is not local in K[[t]] ×

K[[v]]. Furthermore we have multset(Bl(R1
2)) = {(1, 0), (0, 1)} in K[[t]] × K[[v]]. Then we

have

Bl(S1
2) = K[[t]]×K[[v]].

Now we can compute Bl(S2
2). We have

Bl(S2
2) = K

[[
(
u2 + u6, w2

)
,

(−u2 + u3

(1 + u4)2
, w3

)]]

.

Thus Bl(S2
2) is local in K[[u]]×K[w]], and mult(Bl(S2

2)) = (2, 2).
Then P(S3) = {P3,1 = {1} , P3,2 = {3} , P3,3 = {2, 4}} and
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S3
∼= K[[t]]×K[[v]]× S3

3 ,

with multset(S3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)}. As a minimal element of S3
3 we

can choose again xS3
3
= (u2 + u6, w2).

Thus

S4 = Bl(S1
3)× Bl(S2

3)× Bl(S3
3)
∼= K[[t]]×K[[v]]× Bl(S3

3).

We have:

Bl(S3
3) = K

[[
(
u2 + u6, w2

)
,

( −1 + u

(1 + u4)3
, w

)]]

.

From this it is easy to show that Bl(S3
3) = K[[u]]×K[[w]], hence

S4 = K[[t]]×K[[u]]×K[[v]]×K[[w]],

and we have reached the stop condition for our algorithm.

We found that N = 4 and

• multset(S1) = {(5, 2, 3, 2)} ,

• multset(S2) = {(1, 0, 3, 0), (0, 2, 0, 2)} ,

• multset(S3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)} ,

• multset(S4) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} .

The corresponding minimal elements are:

• xS1 = (t5, u2 + u6, v3, w2),

• x12 = (t+ t5, 1, v3 + v4, 1) and x22 = (1, u2 + u6, 1, w2) ;

• x13 = (t, 1, 1, 1), x23 = (1, 1, v, 1) and x33 = (1, u2 + u6, 1, w2) ;

• x14 = (t, 1, 1, 1), x24 = (1, u, 1, 1), x34 = (1, 1, v, 1) and x44 = (1, 1, 1, w).

Then we have the following trees:

S1

S2
2

S3
3

K[[w]]K[[u]]

S1
2

K[[v]] = S2
3K[[t]] = S1

3

(5, 2, 3, 2)

(0, 2, 0, 2)

(0, 2, 0, 2)

(0, 0, 0, 1)(0, 1, 0, 0)

(1, 0, 3, 0)

(0, 0, 1, 0)(1, 0, 0, 0)
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(t5, u2 + u6, v3, w2)

(1, u2 + u6, 1, w2)

(1, u2 + u6, 1, w2)

(1, 1, 1, w)(1, u, 1, 1)

(t+ t5, 1, v3 + v4, 1)

(1, 1, v, 1)(t, 1, 1, 1)

The conductor of ν(∗S) is c = (6, 6, 6, 6) If we compare these tree with the tree computed

starting by R in the Example 4.3.2, we can observe that the tree associated to the ring and the

multiplicity tree are the same, while the minimal trees are equal module c + 1 = (7, 7, 7, 7).
Then we have M(T (S))E =M(T (R))E .

We have that

Small(ν(∗S)) = Small(ν(∗R)) =

= {(5, 2, 3, 2), (5, 4, 3, 4), (5, 6, 3, 6), (6, 2, 6, 2), (6, 4, 6, 4), c = (6, 6, 6, 6)} .

From the minimal tree we can recover the elements of ∗S with valuation belonging to Small(S(T )).
We can calculate the Arf closure by truncating the terms with degree bigger than the conductor.

They are:

{
(t5, u2, v3, w2), (t5, u4, v3, w4), (t5, 0, v3, 0), (0, u2, 0, w2), (0, u4, 0, w4)

}
.

Finally we have

∗S = ∗R = K(1, 1, 1, 1) +K(t5, u2, v3, w2) +K(t5, u4, v3, w4) +K(t5, 0, v3, 0)+

+K(0, u2, 0, w2) +K(0, u4, 0, w4) + (t6, u6, v6, w6) (K[[t]]×K[[u]]×K[[v]]×K[[w]]) .

Then, as expected, truncating the terms with valuation bigger than our bound did not change

the output of our algorithm. Notice that the truncation can have a relevant impact on the

speed of the computation, avoiding to take in account irrelevant terms when manipulating the

parametrizations, as it is shown in the following output of the procedure implemented in GAP.

gap> R:=[[x_1ˆ2+x_1ˆ23,x_2ˆ3+x_2ˆ14,x_3ˆ5+x_3ˆ17],[x_1ˆ4+x_1ˆ21,x_2ˆ6+x_2ˆ30,x_3ˆ6+x_3ˆ22]];

gap> ArfClosurePresentation(R);

[ [ x_1ˆ2, x_2ˆ14+x_2ˆ3, x_3ˆ5 ], [ x_1ˆ4, x_2ˆ6, 0 ], [ x_1ˆ6, x_2ˆ9, 0 ], [ x_1ˆ8, x_2ˆ12, 0 ],

[ x_1ˆ10, x_2ˆ15, 0 ], [ x_1ˆ12, 0, 0 ], [ x_1ˆ14, 0, 0 ], [ x_1ˆ16, 0, 0 ], [ x_1ˆ18, 0, 0 ],

[ x_1ˆ20, x_2ˆ17, x_3ˆ6 ] ]

gap> time;

249984
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gap> ArfClosurePresentationWithTruncation(R);

[ [ x_1ˆ2, x_2ˆ14+x_2ˆ3, x_3ˆ5 ], [ x_1ˆ4, x_2ˆ6, 0 ], [ x_1ˆ6, x_2ˆ9, 0 ], [ x_1ˆ8, x_2ˆ12, 0 ],

[ x_1ˆ10, x_2ˆ15, 0 ], [ x_1ˆ12, 0, 0 ], [ x_1ˆ14, 0, 0 ], [ x_1ˆ16, 0, 0 ], [ x_1ˆ18, 0, 0 ],

[ x_1ˆ20, x_2ˆ17, x_3ˆ6 ] ]

gap> time;

47

The function ArfClosurePresentation takes in input a list of polynomials Ψ and com-

putes the Arf closure of the algebroid curve R parametrized by Ψ. It gives as an output a list of

vectors {v1, . . . , vt} such that

∗R = K(1, 1, 1, 1) +Kv1 +Kv2 + · · ·+ vt (K[[x1]]×K[[x2]]× · · · ×K[[xr]]) .

The function ArfClosurePresentationWithTruncation works in the same way as

ArfClosurePresentation but it applies the truncation explained in the previous section

and it is considerably faster than the latter.
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