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Introduction

In this Ph.D. thesis we give results regarding an important class of good subsemigroups of N".
The concept of good semigroup was introduced in [3]. Its definition depends on the properties
of the value semigroups of one dimensional analytically unramified rings (for example the local
rings of an algebraic curve), but in the same paper it is shown that the class of good semigroups
is bigger than the class of value semigroups. Therefore the good semigroups can be seen as
a natural generalization of the numerical semigroups and can be studied without referring to
the ring theory context, with a more combinatorial approach. Here we focus on the local good
semigroups, i.e good semigroups .S C N” such that the only element of S with zero component
is the zero vector.

We focus on the class of local Arf good semigroups. This is motivated by the importance of
the Arf numerical semigroups in the study of the equivalence between two algebroid branches.
Given an algebroid branch R, its multiplicity sequence is defined to be the sequence of the
multiplicities of the successive blowups R; of R. Two algebroid branches are equivalent if and
only if they have the same multiplicity sequence (cf. [5, Definition 1.5.11]). In [1] Cahit Arf
introduced the concept of Arf ring and it is shown that for each algebroid branch R there exists
a smallest Arf overring *R, called the Arf closure of R, that has also the same multiplicity
sequence of R, and it is described a procedure to compute it. In the same paper it is proved
that two algebroid branches are equivalent if and only if their Arf closures have the same value
semigroup, that is a numerical Arf semigroup, i.e. a numerical semigroup S such that S(s) — s
is a semigroup, for each s € S, where S(s) = {n € S;n > s}.

All these facts can be generalized to algebroid curves (with more than one branch), and this
naturally leads to give a more general definition of Arf ring and of Arf good semigroup of N".

In the numerical case an Arf semigroup S = {sp =0 < 1 < s9,...} is completely de-
scribed by its multiplicity sequence, that is the sequence of the differences s;;1 — s;. Extending
the concept of multiplicity sequence, in [3] it is also shown that to each local Arf good semi-
group can be associated a multiplicity tree that characterizes the semigroup completely. A tree
T of vectors of N” has to satisfy some properties to be a multiplicity tree of a local Arf good
semigroup. For instance it must have multiplicity sequences along its branches (since the pro-
jections are Arf numerical semigroups) and each node must be able to be expressed as a sum of
nodes in a subtree of 7" rooted in it. Thus, taking in account this 1-1 correspondence, our aim is
to study Arf good semigroups by characterizing their multiplicity trees, finding an unambiguous
way to describe them. Using this approach, we can also deal with the problem of finding the
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Arf closure of a good semigroup S, that is the smallest Arf semigroup containing .S.

Given an algebroid curve R, it is still possible to consider the Arf closure of I? as the
smallest Arf ring * R containing R. In [4] it is proved that two algebroid curves are equivalent
if and only if it is possible to permute their branches in a way that the value semigroups of their
Arf closures (that are Arf good semigroups) have the same multiplicity tree. This stresses the
importance to have a fast way to compute the Arf closure of an algebroid curve, and we see how
the characterization of the properties of the multiplicity trees can be useful to this aim.

The structure of the thesis is the following.

In Chapter 1 we define and give the main properties of all the basic objects of this thesis.
In order to motivate the definition of the concept of Arf good semigroup, we recall the main
aspects of the Arf theory, the reasons behind its introduction in the study of algebroid branches
and its generalization to algebroid curves.

In Chapter 2, we start considering the Arf good subsemigroups of N by focusing on the
properties that arise from their combinatorial interpretation, in order to find an unambiguous
way to describe them and to deal with the problem of finding the Arf closure of a good semi-
group. Given a collection of r multiplicity sequences F, we define the set o(F) of all the Arf
semigroups S such that the i-th projection .S; is an Arf numerical semigroup associated to the
i-th multiplicity sequences of £. We define also the set 7(E) of the corresponding multiplic-
ity trees and we describe a tree in 7(£) by an upper triangular matrix (p; ;), where p; ; is the
highest level where the ¢-th and j-th branches are glued, and we give a way to deduce from
E the maximal value that can be assigned to p; ;. This fact lets us to understand when the set
o(E) is finite. We introduce the class of untwisted trees that are easier to study because they
are completely described by the second diagonal of their matrix, and we notice that a tree can
be always transformed into an untwisted one by permuting its branches.

In Section 2.2 we address the problem of understanding when a set of vectors G C N"
determines uniquely an Arf semigroup of N". Thus, we define Arf(G) as the minimum of the
set S(G) = {5 : S C N"is an Arf semigroup and G C S}, and we find the properties that G
has to satisfy in order to have a good definition for Arf(G) (cf. Theorem 2.2.1). Finally, given
a G satisfying these properties, we give a procedure for computing Arf(G).

In Section 2.3 we adapt the techniques learned in the previous section to the problem of
determining the Arf closure of a good semigroup. In [8], the authors solved this problem for
r = 2, leaving it open for larger dimensions. In this section, we use the fact that a good
semigroup S can be completely described by its finite subset Small(S) = {s € S :s <4},
where 0 is the smallest element such that 6 + N” C S, whose existence is guaranteed by the
properties of the good semigroups.

Finally, in Section 2.4, we address the inverse problem: given an Arf semigroup S C N”,
find a set of vectors G C N", called set of generators of .S, such that Arf(G) = S, in order to
find a possible generalization of the concept of characters introduced for the numerical case. In
Theorem 2.4.1, we find the properties that such a GG has to satisfy and we focus on the problem
of finding a minimal one. From this point of view we are able to give a lower and an upper
bound for the minimal cardinality for a set of generators of a given Arf semigroup (Corollary
2.4.8). With an example we also show that, given an Arf semigroup .5, it is possible to find
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minimal sets of generators with distinct cardinalities. The contents of this chapter are based on
[18].

In Chapter 3, we give useful procedures to compute all the Arf good semigroups satisfying
some specific conditions.

In Section 3.1 we consider the problem of finding the set Cond(c) consisting of all the Arf
good subsemigroups of N" with a fixed conductor ¢, where the conductor ¢ of a good semigroup
S C N" is the minimal vector such that ¢ + N” C S. When r = 1, the problem is equivalent
to finding the set of the multiplicity sequences of all the Arf numerical semigroups with a fixed
conductor. This question was already addressed in [12], where the authors found a recursive
algorithm for the computation of such a set. In Subsection 3.1.1, it is presented a non-recursive
procedure to determine such a set, that is faster than the previous one, when used for large value
of the conductor.

In Subsection 3.1.3 we address the general case and, using Lemma 3.1.4 and the base cases
for r = 1 and r = 2, we are able to present a procedure that builds inductively the sets Cond(c)
in all dimensions and for any value of the vector ¢. We give a strategy for computing the set
Cond(c) of all the possible multiplicity trees (twisted and untwisted) associated to an Arf semi-
group with conductor ¢. At the end of the section we give an example with r = 3 on the com-
putation of this set and we present some tables containing the cardinalities of the constructed
sets for particular values of the conductor c.

In Section 3.2, we give a procedure that computes the set Gen(r, n) of the untwisted mul-
tiplicity trees of all the Arf good semigroups of N” with genus n. The procedure works in-
ductively and it is based on Theorem 3.2.1, that gives a way to compute the genus of an Arf
good semigroup of N” with an untwisted multiplicity tree from its representation 7'z, and on the
numerical case r = 1, that is solved in Subsection 3.2.1 by accordingly adapting the algorithm
given for the conductor in the previous section (this problem was also considered in [12]). Fi-
nally, we give a strategy for computing the set Gen(r, n) of all the possible multiplicity trees
(twisted and untwisted) associated to an Arf semigroup with genus n in N". At the end of the
section we give an example of the application of the developed procedure and we present some
tables containing cardinalites of the sets Gen(r, n) for some values of r and n. The contents of
this chapter are based on the papers [19] and [20]

In Chapter 4, we deal with the problem of finding an efficient algorithm for the computation
of the Arf closure of an algebroid curve with more than one branch. In particular we generalize
the procedure presented in [2], where Arslan and Sahin addressed the algebroid branch case.
In Section 4.1, we introduce an algorithm for the computation of the multiplicity tree of an al-
gebroid curve with two branches R starting from its parametrization. This algorithm will return
the parametrizations of all rings R; in the Lipman sequence. Then we give a way to recover a
presentation for the Arf Closure * R from the information contained in the multiplicity tree (cf.
Discussion 4.2.2).

In Section 4.3 we see how to generalize the algorithm presented in the previous section to the
case of curves with an arbitrary number of branches.

In Section 2.3, we give a way to improve the efficiency of our algorithm. In particular, we
see that it is possible to compute the Arf closure of 12 by applying the algorithm to an alge-
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broid curve with a simpler parametrization obtained by truncating all the monomials with order
bigger than the conductor of the Arf semigroup v(R*) (cf.Theorem 4.4.1). Thus, in order to
determine this bound, we need a way to estimate the conductor of v(R*) directly from the
parametrization of R. We firstly analyse the case of curves with two branches having distinct
multiplicity sequences along their branches (we can recover the multiplicity sequences by using
the algorithm of Arslan and Sahin on each branch). In this case, it is possible to find a limitation
for the conductor by using only the numerical properties given by the multiplicity sequences
(cf.Proposition 2.1.2). Then, we study the case of two-branches algebroid curves with the same
multiplicity sequence on their branches. In this case, we need to work on the parametrization of
R to find a suitable bound (cf.Lemma 4.4.4 and Proposition 4.4.5). We conclude by seeing how
it is possible to use the bound in the two-branches case to compute a bound in the general case
(cf.Remark 22). In the end, we present an example that illustrates how the computation of the
Arf closure is simplified by the truncation given by the given bound (cf.Example 4.4.6). The
contents of this chapter are based on the results contained in [15].

All the procedures presented here have been implemented in GAP ([11]). The corresponding
codes can be found in https://github.com/pedritomelenas/Arf-semigroups.
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Chapter 1

Preliminaries

In this chapter we define all the main objects of this thesis, in order to explain the reasons behind
the introduction of the concept of Arf good semigroup. In Section 1.1 we recall the definition
and some basic properties of the numerical semigroups. In Section 1.2 we introduce the concept
of algebroid branch explaining how it is related to the numerical semigroups and we give the
definition of equivalence between these objects. Then, we introduce the Arf’s theory, giving the
concepts of Arf closure of an algebroid branch and of Arf numerical semigroup, showing their
usefulness in the problem of establishing equivalence. Finally, in Section 1.4, we explain how
it is possible to extend the aforementioned constructions for the algebroid branches to the more
general context of algebroid curves. In particular, we present the main properties of the good
subsemigroups of N" that naturally arise as a generalization of numerical semigroup, and we
study the Arf property in this case.

1.1 Generalities on numerical semigroups

Definition 1.1.1. A numerical semigroup S is a submonoid of (N, 4) having finite complement
in N, that is, [N\ S| < c0.

Definition 1.1.2. Given a numerical semigroup S, the maximum F'(.S) of the set Z \ S is known
as the Frobenius number of S.

The conductor ¢(S) of S is the smallest number such that n € S for all n > ¢(.5), and it is
clear that we have ¢(S5) = F'(S) + 1.

Definition 1.1.3. Given a numerical semigroup S, the cardinality of the finite set N\ S is called
genus of S, and denoted by ¢(.5). The elements of N \ S are called gaps of the semigroup.

Proposition 1.1.4. The submonoid

k
i=1
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is a numerical semigroup if and only if ged(g1, ..., gx) = 1.
Definition 1.1.5. £ C S is an ideal of S if forall e € F and forall s € S we havee + s € E.
A system of generators of a numerical semigroup S is a set of elements A such that (4) = S.

Proposition 1.1.6. For every numerical semigroup S there exists a unique minimal system of
generators (with respect to inclusion).

Denoted by M = S\ {0} the maximal ideal of S, and by nM = {my + - - - + m,|m; € M},
we have that M \ 2M is the required minimal system of generators.

Example 1.1.7. Let us consider the numerical semigroup
S ={0,4,6,8,10,12,13,14,16, —},

where with n — we mean that all the integers larger than n are in S.
We have M = {4,6,8,10,12,13,14,16, —} and 2M = {8,10, 12,14, 16, —}.
Thus S = (4,6, 13) .

Definition 1.1.8. We call embedding dimension of a numerical semigroup, and we denote it by
e.d.(S) the cardinality |M \ 2M | of its minimal system of generators. The smallest number
among the generators, is called multiplicity of the semigroup and denoted by e(.5).

Notice that the inequality e.d.(S) < e(S) holds since if x,y € M \ 2M and x # y, then x
and y have to be different modulo e(S) for the minimality of the system of generators.

1.2 Algebroid branches

The concept of numerical semigroup plays a significant role in algebraic geometry and ring
theory. Under certain circumstances, it is possible to associate to a ring R a numerical semi-
group that can encode some of its properties. The following class of rings is an example of this
situation.

Example 1.2.1. Let R be a one-dimensional local domain and suppose that 12 is also analyti-
cally irreducible, i.e., the completion Risa domain, or, equivalently, the integral closure R of
R is a DVR, finite over R. Furthermore, denoted by 9t and 91 the maximal ideals, respectively
of R and R, we suppose that R/9Mt = E/ M. Since R is a DVR, its maximal ideal 9t has the
form O = (¢), thenif r € R we can write r = ut™ where u is an invertible element of . Hence
there exists a valuation v : R — N U {oo} such that v(0) = oo and v(r = ut") = n. Then the

set
v(R) ={v(R)|r € R\ {0}}

is a numerical semigroup (the fact that the complement N \ v(R) is finite follows from the fact
that R is finitely generated as [?-module).
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An important example of rings satisfying the previous properties are the algebroid branches.
We firstly give the definition of algebroid curve.

Definition 1.2.2. An algebroid curve R, is a one-dimensional local ring, complete for the 9J1-
adic topology (being 9t is maximal ideal). We denote by K = R/ its coefficient field.

Definition 1.2.3. By an algebroid branch we mean an algebroid curve that is also a domain.

The following result, due to Cohen (cf. [6, Cohen ’s Structure Theorem ]) gives us important
information regarding the structure of an algebroid curve.

Theorem 1.2.4. Let R be an algebroid curve, then there exists an ideal I of K[[x1, . .., xy]| such
that R = K|[x1, ..., xi]]/I. Furthermore, there exists prime ideals P, . .., P, C K[[z1, ..., zg]]
such that I = (\;_, P,. Notice also that k = e.d.(R) = dim(9t/9?).

We firstly focus on the algebroid branches and their connection with numerical semigroups.

From the Cohen’s Structure Theorem follows that if R is an algebroid branch, then R
K[[t]]. A consequence of this fact is that we can always associate to a branch a parametrization
in power series.

Definition 1.2.5. Let R be an algebroid branch and x1, ...,z y a system of generators for the
maximal ideal 2t of R. Let us consider the map

¢ K[Xi,...,Xy] = R,

such that €(X;) = x; for all 7. The map € exists by Theorem 1.2.4. Then a parametrization of
R 1s a K—algebra homomorphism

U K[ X, .., XN]] = K[[t]],
such that ker(&) C ker(W¥). Thus, we have

R= K[[¢l(t)7 RN ¢N(t)]]7
where ¢;(t) = V(X;) € K[[t]]. Hence if f € ker(€) we have f(¢1(t),...,on(t)) = 0.
Example 1.2.6. Let us consider the algebroid curve

R=K]|[zy]]/(y* — 2° — %)

The polynomial y*> — z® — x? is irreducible in K|x, y] but not in its completion with respect the

maximal ideal (x,y). In fact, we have

2 —at—a? = (y — VT 2)(y + V1 +0),

where /1 + 2 € K][[z,y]]. Thus, R is not an algebroid branch but an algebroid curve con-
sisting of two algebroid branches. Specifically, they are K[|z, y|]/P; and K[|z, y||/ P, where
P = <y—x—%x2+§x3+...>andP2:<y+x+%x2—%x3+...>.

The parametrizations corresponding to the two branches are:

14



o Kz, yll/Pr =K[[t,t + 12 — ¥ + .. .]];
o Klz,y]]/P, =K[[t, -t — 5> + 53+ ...]].

The fact that the integral closure R is isomorphic to the DVR K[[t]], let us also to consider,
as in Example 1.2.1, a valuation v and the numerical semigroup v(R) = S.

Definition 1.2.7. The multiplicity of an algebroid branch R, is given by the smallest positive
value e(R) in S = v(R).

Example 1.2.8. Let us consider the algebroid branch

R =Klz,y, z]]/(a® — yz,y° — %) = K[[*,¢°,1°]].
We have R = K[[t]] and

S=v(R)=(5,6,9) ={0,5,6,9,10,11,12, 14, —}.
We have e(R) = 5.

Notice that, if we represent an algebroid branch by a parametrization K[[¢1(t), ..., ¢,(t)]],
then we can deduce that e(R) = min{ord(¢;(t) — ¢;(0)) : i =1,...,7}.

Example 1.2.9. Let us consider the algebroid branch
R =K[[t*,t° 4+ t7]].

Then v(R) = (4,6,13) = {0,4,6,8,10,12,13, 14,16, —}. Notice that the embedding dimen-
sion of R is two, while e.d.(v(R)) = 3.

1.2.1 Equivalence between algebroid branches

Consider an algebroid branch R = K][¢y(¢), ..., ¢,(t)]]. We suppose that ¢;(0) = 0 for all
t = 1,...,r, thus the branch pass through the origin of A". Without loss of generality, we can
assume that ¢, (t) is such that ord(¢,(t)) = e(R). Furthermore it is not restrictive to assume
that ord(¢;) > e(R) for all ¢ # 1. We want to find a way to deduce from the parametrization
of R the parametrization of the blowup of the branch at the origin (in the affine chart where it
intersect the exceptional divisor). We recall that the blowup of the affine space A" at the origin
can be described in the following way:

BI(A") = {((z1,...,z),[a1: -+ 1 a,])) € A" x P | mya; = zja;, 1 <4,5 <7}

Denote by U the affine chart corresponding to the points of BI(A") such that a; # 0.
In U; we can therefore consider the local coordinates X;:

X1 = T, XQ = ag/al, ...,XT = ar/al.
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U, is the affine chart in which the transformed branch intersects the exceptional divisor (it
follows from the fact that ¢ (¢) has the least order among the ¢;(t)).
The parametrization of the transformed branch is therefore given by

S0 o))

Thus the blowup of an algebroid branch is still an algebroid branch and from the assump-
tions on the ¢;(t), it still passes through the origin. Notice that

e(BI(R)) = min{ord(¢; (1)), ord(¢s(t) /1 (1)), - . ., ord(¢n (£) /61 (1)} < ord(¢ () = e(R),

so the multiplicity of the blowup of R is less or equal than the multiplicity of R. So, itis possible
to repeat the previous process. If we set By = BI(R) and B; = Bl(B;_1), we can consider the
following sequence of algebroid branches:

BIR) = ¢ | o1 (1)

RCB,C...B,C....

The fact that the integral closure R = K|[[t]] is finite over R guarantees that there exists a
N € N, such that B,, = K][t]] for all n > N. From the geometric point of view, it means that
the singularity of the algebroid branch at the origin can be solved after considering a sufficient
number of blowups.

Definition 1.2.10. If R is an algebroid branch, we can consider the previous chain of blowups
RCByC...B,C---CBy=K]|[t]] =Bni1=-..
The non-increasing sequence
e(R) > e(By) >e(By)...1,1,...,
is known as the multiplicity sequence of the algebroid branch R.

The concept of multiplicity sequence plays a significant role in the study of the algebroid
branches as we can see in the following definition.

Definition 1.2.11. Two algebroid branches are said to be equivalent if they have the same
multiplicity sequence.

This equivalence extends the Zariski equivalence between plane branches (cf. [17]) to
branches of any embedding dimension and has been studied by several authors (cf. e.g. [5,
Definition 1.5.11]).

The problem of determining the equivalence between two algebroid branches through the
calculation of their successive blowups, despite being more geometrical in nature, was com-
pletely solved by Cahit Arf by focusing on its algebraic aspect. In his paper [1], he answered
to some open questions arised by Du Val in [10], regarding the computation of the multiplicity
sequence of a branch starting from its parametrization. In the following section we summarize
the theory developed by Arf.
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1.3 Arf’s theory

Let us consider an algebroid branch R. We know from Theorem 1.2.4 that it can be seen as a
subring of the formal power series K[[¢]] and we can consider the numerical semigroup v(R).
We denote by ¢ = C(v(R)) the conductor of v(R) and we describe the elements of R in the
following way

V(R)={0=1dy <i1 < ...<lp,—}
where we are assuming i,, = c. For each element i, of v(R) we choose an arbitrary element
Si, of R such that ord(S;,) = 4,. Notice that every element of R can be written as ) 7 ;S

ir i

with a; € K. Therefore it is not difficult to prove that
R =K +KS;, +KS,, +--- + K[[t]]S:
For each n € N we consider the following ideal of R
I, ={r € R:ord(r) > n}.

For each n € v(R) we consider the set

In/Sn:{SLn:reln}.

Notice that, in general, I,,/.S,, is not a ring, so we can denote by [/,,/S,,| the smallest subring of
R inside K{[[t]] that contains I,,/.S,,. We have the following theorem proved in [1, Theorem 3,
p.259].

Theorem 1.3.1. The ring [1,,/S,] does not depend on the choice of the elements S,, € R.

m*

From the previous theorem, it follows that, in the following, we can simply denote [I,,/5,,]
by [I,]. The following example, due to Arf (cf. [1, p.260]), shows that, in general, we have

v([In]) # (W(In/Sn))-

Example 1.3.2. Notice that the containment v(1,,/S,,) C v([I,]) is trivial, thus we also have
(v(I,,/S,)) C v([I,]). Let us consider the algebroid branch R = K[[t*, ¢! 4 ¢!5]]. We have that

v(R) ={0,4,8,10,12, 14,16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 33, — }.
Suppose n = 4 and consider S; = t* € R. We have
v(I4/t*) = {0,4,6,8,10,12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28,29, — },
then
<1/(]4/t4)> ={0,4,6,8,10, 12,14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28,29, — }.

But in [I,] we can find the element

v - (S t) g

t4
such that ord(h(t)) = 17 & (v(I,/t*)).

17



We are ready to define the main objects of this section.
Definition 1.3.3. An algebroid branch R is called an Arfring if [I,,] = 1,,/S,, foreachn € v(R).
Example 1.3.4. From the definition, K[[¢]] is an Arf ring.

Notice that, if R is an Arf ring, then for each n, the integers
In — ip = Oain—‘rl _inyin+2 —lp-ee,
must form a numerical semigroup. This leads to the following important definition.

Definition 1.3.5. Let S be a numerical semigroup. If s € S, denote by S(s) = {n € S;n > s}.
Then S is an Arf numerical semigroup if

S(s) —s={n—slne S(s)}
is a numerical semigroup for each s € 5.
Example 1.3.6. From the definition, N is an Arf numerical semigroup.

Given an Arf numerical semigroup S = {ip = 0 < iy < iy < ---}, the multiplicity
sequence of S is the sequence m = {m; =i; — i;_1[j > 1}.

It is evident from the definition that the multiplicity sequence of an Arf numerical semigroup
satisfies the following properties.

Proposition 1.3.7. Let S be an Arf numerical semigroup, and let m be its multiplicity sequence.
Then we have:

e m = {m;|i > 1} is a non-increasing sequence of positive integers;

e there exists k € N* such that m,, = 1 for alln > k;

e forall n € N* there exists s(n) > n + 1 such that m,, = Z(;)Hl M.

We will call multiplicity sequence any sequence that satisfies the conditions of the previous
proposition. We fix some notation regarding the representation of a multiplicity sequence m.
Since m = {m,, : n > 1} is a sequence of integers that stabilizes to 1, we can describe it by a
finite list

m = [mq, ..., M),

with the convention that m; = 1 for all j > [(m) and my,) # 1. The integer [(m), that
appears in the previous description, is the length of the multiplicity sequence m. Notice that the
multiplicity sequence m = {m; = 1 : i € N}, will be represented by the empty list | |, and we
set by definition /([ ]) = 0.

In [16, Corollary 39] it is proved the following result.

Proposition 1.3.8. A non-empty subset of N is an Arf numerical semigroup if and only if there
exists a multiplicity sequence m = [mq, ..., My ] such that
S = {O,ml,m1+m2,...,m1 +"'+ml(m)7_>}
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So the multiplicity sequence of an Arf semigroup characterizes the semigroup completely,
and to give an Arf numerical semigroup is equivalent to give its multiplicity sequence. Through-
out this thesis, given a multiplicity sequence m, we denote by AS(m) the Arf numerical semi-
group corresponding to m.

Notice that, if R is an Arf ring, then the numerical semigroup v(R) is an Arf semigroup,
while the converse is not true in general.

We give now some further results on the properties of Arf rings that can be found in [1].

Theorem 1.3.9. If R is an Arf ring, then [I;, ] is also an Arf ring for all n € N.
Theorem 1.3.10. o The intersection of a finite number of Arf rings is an Arf ring.

e The intersection of a finite number of Arf numerical semigroups is an Arf numerical semi-
group.

Theorem 1.3.10 and Examples 1.3.4 and 1.3.6 ensure that the following definition is not
void.

Definition 1.3.11. Let S be a numerical semigroup, we call Arf closure of S, and denote it by
*S, the smallest Arf numerical semigroup containing S.

Similarly, given an algebroid branch R, we call Arf closure of R, and denote it by * R, the
smallest Arf ring containing R.

Now we give an algorithm for computing the Arf closure of a numerical semigroup. It is
based on the following procedure, known as the modified Jacobian algorithm of Du Val (cf.

[10]).

Definition 1.3.12 (Modified Jacobian algorithm). The input of the algorithm is a finite set of
non-negative integers J; = {j11 < ... < Jin, }, With ged(J11,- -+, Jiny) = d.

Suppose that j; o = q171,1 + 71, withrp < j 5.

We consider the set

Jo={J11: 012 — @jras - Jim — @1y \ {0} = {J21 < ... < Jomo}

Suppose that joo = @oj21 + 72, With 73 < jo 1, and we repeat the construction for Js,
subtracting g272 1.

The algorithm stops when we reach a NV such that d € Jy, and this will eventually hap-
pen because we started with a set .J; with ged(J;) = d and we are essentially performing an
euclidean algorithm. The output is the sequence

.]1,1; . ,.]171,.]271, C.e ,]2’1, e 7.]N71,17 C.e 7.7N71,17 d, d, ceey
N > g N >
~~ ~~ ~~
q1 times g2 times gN—1 times

that is a multiplicity sequence when d = 1.
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Example 1.3.13. Let us consider J; = {8,12,18,23,25}. We have ged(8,12,18,23,25) = 1
so we will find a multiplicity sequence. We have:

1. 12=1-8+4,then j;; = 8and ¢; = 1. Then

Jo={8,12 8,18 — 8,23 — 8,25 — 8} \ {0} = {4,8,10,15,17}.

2. 8=2-4,then jo; = 4 and g2 = 2. Then

Jy={4,8—8,10 — 8,15 — 8,17 — 8} \ {0} = {2,4,7,9}.

3. 4=2-2,then j3; = 2 and ¢3 = 2. Then

Ji={2,4—4,7—4,9—-4}\ {0} = {2,3,5}.

4. 3=1-2+1,then j,; = 2and g4 = 1. Then
Js =4{2,3—-2,5-2}\ {0} = {1,2,3}.
We found 1 € J5, so the procedure stops.
The output is the multiplicity sequence m = [8, 4,4, 2,2, 2].

To compute the Arf closure of a numerical semigroup .5, it suffices to apply the modified
Jacobian algorithm of Du Val to a minimal system of generators of .S.

Example 1.3.14. Suppose that
S = (8,12,18,23,25) = {0, 8,12, 16, 18, 20, 23, 24, 25, 26, 28, 30, — }.

If we apply the modified Jacobian algorithm to the minimal system of generators of S, we obtain
the multiplicity sequence m = (8,4, 4,2, 2, 2], then the Arf closure of S is the Arf semigroup

AS(m) = {0,8,12,16,18,20,22 —}.

Now, we explain how we can construct the Arf closure of an algebroid branch. From the
construction, we will deduce the connection between the multiplicity sequence of an algebroid
branch and the multiplicity sequence of an Arf semigroup, finding the algebraic answer to the
problem of Du Val.

We follow the construction explained in [1, p.267].

Let R be an algebroid branch, such that ¥(R) = {0 =iy <i; < ..., < iy, —}. We have
already noticed that it can be presented as

R =K+ KS;, + KS;, + - -- + K[[t]]S;

im "
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Let Ry denote the ring [/;,], that is the smallest ring containing [;, /S;,. Using the previous
presentation we can deduce that

11

where the summation is taken over all the o; with ¢ = 2,...,m — 1 such that

ag(ig — Zl) + ag(ig — 21) + ...+ am_l(im_l — 21) < Zm — il,

in order to prevent redundancy with elements arising by the term K[[¢]] i—m
i1

The Arf closure * R of R clearly contains K+ R5.S;,. On the other hand, K+ R,S;, contains
R, thus, from the definition of Arf closure we can deduce that

*R = K + *RQSil.

Now we can repeat the previous procedure, deriving from a ring R; the ring R; ;. If N is
sufficiently large, we will find Ry = K][[t]]. Now, if we denote by 7; an arbitrary element of
minimial valuation in R;, (we can set 77 = 5;,), we can write:

*R == K—f- *RQTl ==
= K+ (K+*R3Ty)T) = K+ KT, + *RsT\ T, =
= K+KO+KNT+ - +KNOTy... Ty + *RNTV .. . T Ty =
= K+ KN +KOTy+ -+ KO . . Ty + K[[t]| W Ty ... T 1Ty

If we denote by m; = ord(7;) we find that
v(*R) ={0,my,m; +mso,....,mq+ -+ myn,—},

thus [mq, ma, ..., my] is the multiplicity sequence of the Arf semigroup v(*R). Notice that R
and * R share the same multiplicity e(R) = e(*R) = ord(S;, ). The following lemma lets us to
simplify the construction presented above.

Lemma 1.3.15. Consider the algebroid branch R = K[[¢1(t), . . ., ¢.(t)]], where, without loss
of generality, we can assume that ¢1(t) has order equal to the multiplicity of v(R).

Then
Pa(t)  or(D)
Toi(t) T dalt)

From the previous lemma, it follows that, in the construction of the Arf Closure we have
R; = B; then

[£i,] = H%(ﬂ H = BI(R).

m; = ord(7;) = min{ord(r)|r € R;} = min{ord(r)|r € B;} = e(B;).
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Thus the multiplicity sequence of the algebroid branch R equals the multiplicity sequence of the
Arf numerical semigroup v(*R). To compute the multiplicity sequence of an algebroid branch,
it suffices to compute its Arf closure and consider the associated Arf numerical semigroup. We
can also deduce the following important corollary that gives the answer that we were looking
for.

Corollary 1.3.16. Two algebroid branches R and T are equivalent if and only if v(*R) =
v(*T).

Example 1.3.17. Let R = K[[t*,¢° + ¢, t']] be an algebroid branch. Let us compute its Arf
closure. We need to consider the chain of blowups and their respective elements 7; of minimal
value.

1. We choose T} = t* as an element of minimal value in R. Then

t6+t9 tl4
AT

By, =K Ht‘*, H = K[[t2 +°, ¢4, )]

2. We choose T, = t2 4 t° as an element of minimal value in B,. Then

Bys=K||?+¢ * L
3 1+ 13|

2 .. .
3. We choose T3 = l—ti-_t3 as an element of minimal value in Bs. Then

2 2
B,=K||——. 1+2 1| =K || ——. 23+ 5,15 | .
4 |:|:1—|—t3’( + )7 :|:| |:|:1—|—t3’ + )

2 “ e .
4. We choose T = 1i—t3 as an element of minimal value in B,. Then

B; =K H% (2t +tH(1 + ), ¢ (1 + t3)H =K|[[t].

Thus the Arf closure * R can be presented in the following way:

*R=K+Kt* + K(t® + ) + Kt® + K[[t]]*°,
and we have v(*R) = {0, 4,6, 8,10, —}, with the multiplicity sequence [4, 2, 2, 2]. Notice also
that v(R) = {0,4, 6,8, 10,12, 14, —}, that is already an Arf numerical semigroup. This shows
that, in general can happen v(*R) # “v(R).
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Remark 1. Determining the Arf closure following the procedure explained above can be compu-
tationally demanding. In fact, at each step the parametrizations of the blowups can gain higher
order terms, arising from the divisions, that can considerably slow down the process. In [2,
Theorem 2.4] Arslan and Sahin proved that, if R is an algebroid branch, then all the monomials
appearing in the parametrization of R with degree strictly greater than c* 4 1, where c* is the
conductor of v(*R), do not actually affect the computation of the Arf Closure of R. They also
found a method to estimate an upper bound for ¢*, by only looking at the initial parametrization
of R. This means that we can find the Arf Closure of R by applying our procedure to a ring
with a simpler parametrization, obtained by R deleting all the terms with degree greater than
the determined bound. In Chapter 4 we will present a generalization of this result.

In [1, Theorem 1, p.264] Arf proved the following theorem.

Theorem 1.3.18. Given an Arf numerical semigroup G, the intersection of all the numerical

semigroups S, such that *S = G is a semigroup G, called characteristic sub-semigroup of G,
and we have *G,, = G.

Theorem 1.3.18 let us to give the following definition.

Definition 1.3.19. Given an Arf numerical semigroup GG, we call characters of G a minimal
system of generators for the characteristic sub-semigroup G, .

Notice that, if we know the characters {1, ..., xn} of an Arf semigroup GG, we can easily
compute G finding its multiplicity sequence by applying the modified Jacobian algorithm to the
set {x1,.-.,Xxn} (we have gcd(x;) = 1 because the characters are a system of generators of a
numerical semigroup). So, through the characters, we have a way to represent an Arf semigroup
with less data than through its multiplicity sequence.

We explain, now a way to find the characters (cf. [4, Lemma 3.1]).

Lemma 1.3.20. Let G be an Arf numerical semigroup, and m = [my, ..., mg| its multiplicity

sequence. We denote by r(m;), and we call it restriction number of m;, the number of sums
k

my = Z Mg+n Where m; appears as a summand. Then the characters of G are the integers
h=1

X;=mp+...+my,
where j is such that r(m;) < r(m;;1) (when it happens we have r(m;) = r(m;i1) — 1).
Example 1.3.21. Let us consider the Arf semigroup
G = {0,8,12,16,18,20,22 —},

and compute its characters. We have, that m = [8,4,4,2,2, 2] is the multiplicity sequence of
G. In order to compute the characters, it is useful to consider also the first two one entries in m,
writing

m=8,4,4,2,2,2 1,1],

in fact it is easy to realize that we cannot find 7(m;) < r(m,4+1) if j > I(m) + 2. We have
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1. my = 8 is clearly not a summand, so r(m;) = 0;
2. mgy = 4 appears as a summand in the sum m; = msy + mg, therefore r(msg) = 1;

3. m3g = 4 appears as a summand in the sums m; = msy + mg, and my = mg, therefore
r(ms) = 2;

4. my = b appears as a summand in the sum mg = my + ms, therefore r(my) = 1;

5. my = 2 appears as a summand in the sums ms = my + ms, and m, = ms, therefore
r(ms) = 2;

6. mg = 2 appears as a summand in the sum ms = myg, therefore r(mg) = 1;
7. my; = 1 appears as a summand in the sum mg = my + mg, therefore r(mz) = 1;

8. mg = 1 appears as a summand in the sums mg = my; + mg, and m; = mg, therefore
r(msg) = 2.

The indices where we get an increase in the restriction numbers are J = {1,2,4,7} so we get
the characters:

L. x1=my =8;

2. xo=mq +my = 12;

3. x3 =my1 +mgy+m3+my = 18;

4. X4 :m1+m2+m3—|—m4+m5—|—m6+m7:23.
If we apply the modified Jacobian algorithm to these characters we will obtain the multiplicity
sequence m. Notice that we did this on Example 1.3.13, where the element 25 € .J; had no
impact on the procedure, because it is not a character for the Arf closure of the numerical

semigroup generated by J;.

Definition 1.3.22. Given an algebroid branch R, the Arf characters of R are the characters of
the Arf numerical semigroup v(*R).

The following immediate corollary stresses the importance of knowing the Arf characters
of an algebroid branch.

Corollary 1.3.23. Two algebroid branches are equivalent if and only if they have the same set
of Arf characters.
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1.4 Good semigroups

In this section we define the good semigroups of N" and we show why they can be regarded as
a natural extension of the numerical semigroups.

The concept of good semigroup firstly arises in [3] where the authors studied the properties
of the value semigroup of a one-dimensional analytically unramified local ring.

Definition 1.4.1. A one-dimensional reduced Noetherian local ring (R, 9) is called analyti-
cally unramified if it satisfies any of the following equivalent conditions (cf. [14, Chapter 10])

e the integral closure R is finite over R;
e the completion R is reduced.

Let R be a ring satisfying Definition 1.4.1. Denote by Q(R) its total ring of fractions, and
by Pi,..., P, € Ass(R) its minimal primes. We have that

R C R/Pix...xR/P,
R = R/P,x...R/P,
QR) = QR/P)x...QR/F,).

We can associate to R a subsemigroup of N” (where r is the number of maximal ideal of R),
in the following way. If ¢ € Q(R) we can see it as an element of Q(R/P;) x ...Q(R/P,),
therefore we can consider

v(q) = (n1a(q)s - vim (@), v21(q2)s - - s Vi, (40)),

where v; ; is the valuation associated to the DVR V; ; = (R / R-) , obtained localizing at the
i

maximal ideal 91, ;. Notice that Z?zl h; = r. Then
S=v(R)={vr(g) :q € R\ Z(R)},
where Z(R) is the set of zero divisors of R, is the required subsemigroup of N".

Example 1.4.2. An important example of rings satisfying the previous conditions is the class of
the local rings of an algebraic curve. We will mainly focus on the previously defined algebroid
curves that can be obtained as the completion of local rings of algebraic curves at a singular
point. Given an algebroid curve, R = K[[z1,za,...,2¢]]/(PL N ... N P,.), where the P;’s are
prime ideals, we have the inclusion

7: R K[[zy,...,z]]/PL X ... x K[[z1, ..., 2]/ P

The R = K[[z1,...,x}]]/P; fori = 1,...r are the algebroid branches of the algebroid curve.

25



Considering the integral closures in Q(R), we have R = R! x ... x R where each R is
isomorphic to the ring K[[¢;]], thus we can consider the valuation v; : K[[¢;]] — N U {00}, such
that ;(0) = oo and v;(¢(t;)) = ord(¢(¢;)). Finally, because R C K|[t1]] x K[[to]] % .. . x K[[t]],
we can define the valuation of an non-zero divisor y € R, such that 7(y) = (¢1(t1),. .., ¢,(t)),

as the vector v(y) = (1(é1(t1)), - ., vr(0n(t)))-
Therefore the set of values of non-zero divisors in R constitutes a subsemigroup of N".

The subsemigroups v(R) = S, arising from the construction explained above always satisfy
the following conditions, cf. [3]:

Proposition 1.4.3. Let S = v(R) C N". Then
1. forall a,b € S, min(a,b) = (min(a[1],b[1]),...,min(a[r], b[r])) € S;

2. ifa,b € S and ali] = b[i] for some i € {1,...,r}, then there exists ¢ € S such that
cli] > ali] = b[i], c[j] = min(alj], blj]) for j € {1, ..., r}\{i} and c[j] = min(a[j], b[j])
if alj] # bljl;

3. there exists 6 € S such that 6 + N" C S.

In the following we will consider the usual partial ordering in N": a < b if a[i] < b[é] for
each:=1,...,r.

Example 1.4.4. Let R be the algebroid curve
R = K[[I7y7 ZH/(‘IS - 227 y) N (x?) - y27 Z)

There is an isomorphism between R and the subring k[[(t2, u?), (0, u?), (¢3,0)]] of k[[t]] x k[[u]].
We have that

v(R) = {(0,0),(2,2),(3,3), (4,4)}U{(3,n), (n,3) : n > 4}U{(54+ m,5+n) : (m,n) € N°},

and it is easy to check that all the conditions of Proposition 1.4.3 are satisfied.
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Figure 1.1: v(R)

Definition 1.4.5. Any subsemigroup of N" that satisfies the conditions of Proposition 1.4.3 is
called good semigroup.

A good semigroup is local if 0 is the only element of the semigroup which has some coor-
dinate equal to 0. In fact, it is easy to notice that the ring R is local if and only if the semigroup
v(R) is local. However, it can be shown that every good semigroup is the direct product of local
semigroups (cf. [3, Theorem 2.5]).

Although, as we have just seen, the definition of good semigroup naturally arises from the
ring theory context, it was proved in [3, Example 2.16] that not all good semigroups are value
semigroups of rings. Hence, these objects represent a natural generalization of the numerical
semigroups and it makes sense to study them without taking in account the ring theory context,
focusing only on their combinatorial properties.

Definition 1.4.6. Let .S be a good subsemigroup of N". The conductor of S is the least vector
C(S) € S, according to the component-wise partial ordering of N”, such that C'(S) + N" C S.
The existence of such a vector is guaranteed by the properties 1. and 3. in Proposition 1.4.3.

Given a good semigroup .S we can consider the following set
Small(S) ={s € S:s<C(9)},

that is known as the set of small elements of S. Using the small elements we can represent a
good semigroup by a finite number of information, as it is shown in the following proposition
proved in [8, Proposition 2].

Proposition 1.4.7. Let a € N". Then a € S if and only if min(a, C(S)) € Small(S). Notice
that if we know Small(S), we also know C(S) that is the maximum of Small(.S).

Definition 1.4.8. Let S be a good subsemigroup of N". A set ) # E C Z" is called a relative
ideal of S if

1. E4+SCE;
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2. there exists o« € S suchthato + F C S.

A relative ideal £/ of S does not need to satisfy the conditions 1. and 2. of Proposition
1.4.3. However it always satisfy the third condition. If a relative ideal also satisfies the first two
conditions, it will be called good relative ideal. We have the following proposition proved in
[7, Proposition 2.3].

Proposition 1.4.9. Let E be a good relative ideal of S. Consider o, f € E with o < 3. A chain
a=a" <o <. <a™ =35,

with oY) € E for all i, is said to be saturated if it cannot be extended to a longer one between
aand fin F.
Then all the saturated chains between o and (5 in E have the same length.
Notice that the length is computed considering the “edges” in the chain; for instance the
chain
a=a" <o <. <a™ =35,

has length n.
Let E be a good relative ideal of S and suppose that o, 3 € E, with a < 3. We denote

by dg(a, 3) the common length of a saturated chain in F from « to 5. If @« = § we set
dg(c, B) = 0. The definition is well defined due to the previous proposition.

Definition 1.4.10. Let F' C E be two good relative ideals of S. Consider my and mpg the
minimal elements in /' and E respectively. Then for any sufficiently large o € F' we set
d(E\ F)=dg(mg,a) — dp(mg,«). In [7] it is shown that this definition does not depend on
the choice of a.

The function d(_ \ _) has some good properties as it was proved in [7, Proposition 2.7 and
Corollary 2.5].

Proposition 1.4.11. . If G C F C FE are good relative ideals of S, then d(E \ G) =
d(E\F)+d(F\G).

2. If F C FE are good relative ideals of S, then d(E \ F') = 0 ifand only if E = F.

3. If Risaring, J C I fractional ideals of R, then lr(I \ J) = d(v(I) \ v(J)), where I is
the length function of R-modules.

The function d(_\ _) lets us also to extend the concept of genus to the good semigroups of
N". If S is a numerical semigroup with conductor ¢, then C' = {¢, —} is an ideal of S. Thus
the genus of S can be also obtained in the following way:

9(S) = IN\C] =[S\ C] =c—[S\ C].
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So we have a natural way to extend this concept to the good semigroups of N”. If S is a good
semigroup of N” with conductor C'(S), then C' = C(S) + N" is a good ideal of S and we can
define the genus of S as:

9(8) = d(N"\ C) = d(5\ O).

Since d(N"\ C') is the length of a saturated chain in N from the vector 0 € N" to the conductor
C(S) = (c[1],...,c[r]) ,itis easy to show that

T

d(N"\ C) =) c[k].

k=1

On the other hand, d(S \ C) is the length of a sautared chain in S from 0 € S to C(S) € S.
In other words the genus is computed by considering the number of unoccupied places in an
arbitrary saturated path linking the zero vector with the conductor, where an unoccupied place
denotes any lattice point belonging to the complement of S in N".

1.4.1 The multiplicity tree of an algebroid curve R

We want to extend the concept of multiplicity sequence given for the algebroid branches to the
algebroid curve case. We will associate to a an algebroid curve R with r branches a tree of
vectors of N” which we will call the multiplicity tree of R.

Let R be an algebroid curve. In the following , we will only consider algebroid curves given
through their parametrization.
Thus we assume that there exists

x1=(P11(t1), ., O1-(tr)), o oy 2k = (Pr1(t1), - ., Prr(tr))

such that

REK[[(A11(t1), - Orr(tr)) s (Pra(tr)s - - o Orr(80)]]-

Since R is a local ring we can define its blow-up as BI(R) = U2,(m™ : m"™), where m is its
maximal ideal (the chain of ideals m™ : m™ has to stabilize because we are in the Noetherian
case).

If R is an algebroid curve with maximal ideal m = (1, ..., ), then BI(R) = Rz, %, ... %]
(see [13, Prop 1.1]), where z is an element of R with minimal valuation (this follows from the
fact that R C R is a finite integral extension on R).

Thus, it is easy to see that

BI(R) =K Hx7 (P11(t1), - - - 7¢1T<tr))7”'7 (Pr1(th), - - '7¢kr(tr)):|:| .

i T

In the following we denote this ring with the symbol [z~ R] (it is the smallest ring containing
x 'R ). In general the blowup of a local ring is a semilocal ring, that is a ring with a finite
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number of maximal ideals. If S is a semilocal ring then BI(S) = U (rad(S)" : rad(S)"),
where rad(SS) is the Jacobson ideal of S. Thus to R we can associate (cf. [13]) the following
sequence

R=R, gR2gR3g7

called the Lipman sequence, where R; = BI(R;_1). Since R is a finite R-module, there exists
an integer N € N such that Ry = R = K[[t1]] x ... x K[[t,]].

The rings R; are semilocal rings. We can always see a semilocal ring S C K|[[t1]] x - - - x K[[¢,]],
parametrized by

S = K[[(Qsll(tl)v s 7¢1r(tr)) L) (¢k1(t1)7 R ¢kr(tr))”7

as a product of local rings (that are the localizations at its maximal ideals). In other words there
exists a partition P(S) = {Py,..., P} of {1,...,r}, with

P = {qz’,l, ce 7Qi,k(i)} )
such that

U lif? € P;
m,; = th‘JK[[tiH forj=1,...,tand 6;; = o I
’ Hl T |oifi ¢ P

and the 91;’s are the maximal ideals of S.

Then . ,
S =] 5m = [[7r(5),
i=1 i=1
where
wp 1S = K[[t1]] x - x K[[t,]],
with
L) sli]ifje R
and such that the rings 7p,(S) are isomorphic to the local subrings of K[[t,, ]| x --- X

K{[t4, ., ]]- given by the parametrization

K |:|:<¢1(Ii,l (tqm)v R (bqu‘,k(i) (tqi,km)) ZRE) <¢kq¢,1(tqi,1)’ s v¢kqi,k<¢) (tqi,m)))H :

In (cf. [3]) the authors associated to R a blowing up tree in the following way.

The nodes of the tree are all the local rings appearing in the Lipman sequence of R. We say
that a node is at the level j of the tree if it is one of the local rings that appears as a factor in the
expression of ;.

Furthermore, considered the maximal ideal 0; = K[[¢4]] x - -+ x t;K[[t;]] x - - - x K[[t,]] of
R, the branch sequence of R along 91; is the sequence of the rings (R;)m,g,. Following our
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notation, the node at the j-th level and on the i-th branch is the local ring 7p, , (R;), such that
1€ ]Dj"k.

A node at level j is linked to a node at level ;7 + 1 if and only if the corresponding local
rings are in the same branch sequence. The multiplicity sequence of 12 along 91, is given by the
multiplicities of the rings appearing on the ¢-th branch.

Now we give a way to associate a multiplicity vector to each ring on the blowing up tree of
R.

If P={q,....,q} C{Ll,...,r} and Sis alocal ring in K[[t,,]] % - - - x K[[t,,]], we define
mult(S) = min {v(s) : s € S}, where u is the valuation defined in K[[t,,]] x - -- x K[[t,,]]. It
is easy to see that if

S = K[[(gbll(tth)v s 7¢1k’(tqk)) ) (¢n1(tq1)7 R ¢m”(tQ1))Hv

then
mult(S)[i] = min {ord(¢y;(t,) — ¢1:(0)), ..., ord(¢ri(ty) — ¢xi(0))} foralli=1,... k.

Because the field K is infinite we can always find a linear combination x g of the generators
of S, such that v(zg) = mult(.S). Note that the multiplicity of S as a local ring is given by the
sum of components of mult(.5).

Suppose now that S is a ring on the blowing up tree. Then there exists an integer 7 and a par-
tition P(R;) = {P1,..., P} of {1,...,r} such that S = mp,(R;), with P, = {q; 1, ..., Gike) }-
We denote by R} the local subring of K[[t,,,]] x - -+ x K[[t,, , ] isomorphic to S.

Then we define the fine multiplicity of S as the r-vector mult(.S) such that

o mult(rp,(5))[j] = 0if j & Pi;
o mult(rp, (S))[g:;] = mult(RI)[j], for j = 1,..., k(i).
Furthermore we define:

multset(R;) = {mult(rp,(R;)) : P € P(R;)}.

To each element of multset(2;) we can associate an element 2, (r;) of R; With v(Z,, (r;)) =
mult(7p, (R;)). Notice that we can always choose zr,, (r;) such that v, (r;)[j] = 1if j & P

If we replace the local rings in the tree with their fine multiplicities, we get the multiplicity
tree of R. In the following we will denote by 7'(R) the multiplicity tree of the algebroid curve
R. We can also define the minimal tree by assigning to each node of the multiplicity tree the

corresponding element z, (g;) of minimal value.
K2

Example 1.4.12. Consider the algebroid curve R = K[[(¢?, u?), (0, u?), (3,0)]] C K[[¢]] xK[[u]]
of Example 1.4.4. Let us compute the multiplicity tree of R.
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1. We can choose zp, = (t2,u?) as an element of minimal value in R = R;. Thus
multset(R;) = {(2,2)}. We have

fy =% [[on, = @00, 20 CON g2y, 0,0, o)

that 1s still local.

2. We can choose xp, = (t,u) as an element of minimal value in Ry. Thus multset(Rs) =
{(1,1)}. We have

(0,u) (¢,0)

ro = 5 [0, O S0 e, (01 1,00 = K1) % K]
Ry TR,

Thus multset(R3) = {(1,0), (0,1)} and the multiplicity tree and the minimal tree have

the following form:

(=) (%) GO CORRCORCDY
(&) D (D
@ (e G
blowing up tree of R Multiplicity tree of R Minimal tree of R

In [4] the authors gave the following definition of equivalence between algebroid curves that
naturally extends the definition given for the algebroid branches.

Definition 1.4.13. Let R, and R, be two algebroid curve. Then R; and R, are said to be
equivalent if they have the same number of branches and the branches can be reordered in a
way such that the multiplicity trees 7'(R;) and T'( Rz) coincide.

1.4.2 Arf’s theory for the algebroid curves

We saw in the previous section how the concept of Arf ring was introduced in the special
context of algebroid branches in order to find a suitable criterion to establish equivalence. In
[13] Lipman gave a general definition of Arf ring.

Definition 1.4.14. Let R be a one-dimensional semilocal Noetherian ring, such that the Jacob-
son ideal contains a regular element.

Then R is an Arf ring if and only if every regular integrally closed ideal of R is stable, where
an ideal I of R is said to be stable if z(I : I) = I for some z € I.
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In our context, it is possible to prove (cf. [3, Lemmas 3.18 and 3.22]) that an algebroid
curve R is Arf if, for every a € v(R) and x € R with v(z) = «, we have that

' R(a) is a ring,

where R(a) = {r € R : v(r) > a}. Also in this more general case it is possible to define
the Arf closure of a ring R as the smallest Arf overring R O *R of R (cf. [13, Proposition-
Definition 3.1]). In Chapter 4 we will present a procedure for computing the Arf closure of an
algebroid curve.

In [3, Proposition 5.3] it is proved the following important result that lets us to generalize
Corollary 1.3.16.

Proposition 1.4.15. Let R be an algebroid curve. Then the multiplicity trees of R and of its Arf
closure * R are the same.

We can also give the following definition for an Arf good semigroup.

Definition 1.4.16. A good semigroup S of N" is an Arf semigroup if S(«) — « is a semigroup
for each a € S where S(a) = {B € S;5 > a}.

If R is an Arf ring then v(R) is an Arf good semigroup, while the converse is not true in
general. Furthermore any local Arf good semigroup is the semigroup value of local ring (cf. [3,
Proposition 3.19 and Corollary 5.8]).

This means that to each local Arf good semigroup S C N it is possible to associate a
multiplicity tree and, if S = v(R'), T(R) = T(S) (we denote with 7'(S) the multiplicity
tree of the semigroup S). Thus the multiplicity tree of a local Arf semigroup characterizes the
semigroup completely and we have the following corollary.

Corollary 1.4.17. Two algebroid curves R and U are equivalent if and only if it is possible to
reorder the branches in such a way that v(*R) = v(*U).

The following proposition, cf. [3, Theorem 5.11], gives us the properties that a tree of
vectors of N" has to satisfy in order to be a multiplicity tree of an Arf subsemigroup of N”.

Proposition 1.4.18. A tree T = {nf } of vectors of N", where ng is a node at the j-th level and
on the i-th branch, is the multiplicity tree of a local Arf semigroup s if and only if it satisfies the
Jollowing conditions: '

a) Two nodes n], and n; are linked if and only if iy = iy and |jo — ji| = 1.

b) There exists n € N such that, for m > n, nj (0,...,0,1,0,...,0) (the non-zero
coordinate in the j-th position) forany j = 1,...,r.

¢) The h-th coordinate of né- is 0 if and only if n;'- is not in the h-th branch of the tree (the h-th
branch of the tree is the unique maximal path containing the h-th unit vector) and nj, = n
(i.e. the two vectors give the same node in the tree) if and only if the j-th and j,-th branches
are glued in a node at level i.

d)n} = ZHGT,\H; n, for some finite subtree T' of T, rooted in n.

33



Notice that we must have multiplicity sequences along each branch. If 7" = {nf } is the
multiplicity tree 7" of a local Arf semigroup S then the root of the tree is n} = n} for all i (at
level one all the branches must be glued in order to have a local semigroup). Furthermore we

have
s Sni b,

T’ e’
where T’ ranges over all finite subtrees of 7" rooted in ni.

Example 1.4.19. Let us consider the following subset of N2,
S = {(0,0), (4,4), (8,6), (12,6)} U{(8,8 + n), (12,8 4 n), (14 +n,6);n € N} U

U{(14 +m,8+n);m,n € N}.

It is possible to verify that S ia an Arf good semigroup with the following multiplicity tree:
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Chapter 2

Arf good semigroups

In this chapter we focus on the class of local Arf good subsemigroups of N”. In the following
we will always assume without mentioning that a semigroup is local. We want to use the
1-1 correspondence between Arf good semigroups and multiplicity trees in order to find an
unambiguous way to describe them. As we will see in the following sections, finding a good
way to represent an Arf semigroup will help us to answer some interesting questions about the
determination of the Arf closure of a good semigroup and regarding a possible extension of the
concept of Arf characters to these more general objects.

2.1 Arfsemigroups with a given collection of multiplicity branches

In this section we determine a way to find all the local Arf good subsemigroups of N" having
the same collection of multiplicity branches.

Suppose that £ = {m,; : i = 1,...,r} is an ordered collection of » multiplicity sequences.
Denote by 7(F) the set of all multiplicity trees having the r branches in £ (specifically, we want
that the multiplicity sequence along the i-th branch of the tree corresponds to the multiplicity
sequence m; of E) and by o(F) the set of the corresponding Arf semigroups. Our aim is to find
an unambiguous way to describe distinct trees of 7(E).

If N =max{l(m;)+2:i=1,...,r} wecan also write foralli = 1,...,r

m; = [miyl, Ce ,mLN}.

In this way, we manage to describe the multiplicity sequences of F by using finite vectors of
the same length. It will be clear later why it is useful to consider also the first two integers j
such that m; ; = 1. Since m,; represents a multiplicity sequence of an Arf numerical semigroup,
it must satisfy the following property:

Vj > 1 there exists s; ; € N, such thats; ; > j+1and m;; = Z M Jo-
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We define, for all : = 1,. .., r, the following vectors

S; = [82‘,1, Ce Si,N]-
Notice that, because we have m; ; = 1forall j > N —1, it follows s; ; = j+1forall j > N —1.

Example 2.1.1. Let m; = [14, 7, 5] be a multiplicity sequence. In this case N = 5 so we write:
my = [14,7,5,1, 1,

thus s; is:
s1 = [5,5,8,5,6].

Notice that, with this notation, from the vectors s; we can easily reconstruct the sequences m;. It
suffices to set m; xy = 1 and then to compute the values of m; ; using the information contained
in the integers s; ;.

In the next proposition, the vectors s;, arising from the collection F, are used to determine
the level, in a tree of 7(FE), where two branches are forced to split up in order to maintain
fulfilled the conditions for a well defined multiplicity tree.

For each pair of integers 4, j such thati < jand 4,5 = 1,...,r we consider the set D(,j) =
{k:sip # sjx}. I D(i,7) # 0, we denote by kg(i, j) the integer

kg(i,j) = min{min(s;x, s;x), k € D(i,))},
while if D(i,j) = 0, i.e. m; = m;, we set kg(i, j) = +o0.

Proposition 2.1.2. Consider a collection of multiplicity sequences E and let T' € 7(E). Then
kg(i,j) + 1 is the lowest level where the i-th and the j-th branches are prevented from being
glued in T (if kg (1, ) is infinite there are no limitations on the level where the branches have
to split up).

Proof
Suppose kg (i, j) # +oo and, by contradiction, that the i-th ‘and the j-th branches are glued
atlevel kg (i, j)+ 1. From the definition of kg (1, j), there exists k € D(i, j) such that kg (i, j) =

min(s, z, s;5). Without loss of generality suppose that min(s,z,s,;z) = s;7 # ;5 (since
k€ D(i,j)).
So in the tree we have the following nodes,
(. .. ,mLE, e ,mjjg, .. .), ey ( .. 7m7;7kE(i7j)7 e ,mj,kE(M), .. .),
(e k()15 s Tk (i) 41 )

We have that kg (i, j) = s, 7 s0
kE(i»j)
m;z = Z Mg,
t=k+1
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while kg (i,j) + 1 =57 +1< S;7% SO

ke (i,j)+1

t=k+1

These facts easily imply that the first node cannot be expressed as a sum of the nodes of a
subtree rooted in it, so we have a contradiction because the property d) of Proposition 1.4.18 is
not fulfilled for the node n¥ of 7. Two branches are forced to split up only when we have this
kind of problem, so the minimality of k (4, j) guarantees that they can be glued at level kg (i, j)
(and obviously at lower levels).

The case kg(i,j) = +oo is trivial, because we have the same sequence along two distinct
branches and therefore no discrepancies that force the two branches to split up at a certain
level. []

Example 2.1.3. Suppose that we have
E ={my =[14,7,5],my = [7,3]}.
So we can compute the vectors s; and ss:
s1 = [5,5,8,5,6] and ss = [6, 5,4, 5, 6].

We have D(1,2) = {1,3}, then kg(1,2) = min {min(5,6), min(4,8)} = min {5,4} = 4.
Then the branches have to be separated at the fifth level.

Notice that the first tree in the previous picture fulfils the properties of the multiplicity trees
of an Arf semigroup. The second one cannot be the multiplicity tree of an Arf semigroup
because the third node (5, 1) cannot be expressed as a sum of nodes in a subtree rooted in it.

Now we prove a general lemma that will be useful in the following.

Lemma 2.1.4. Consider vi,vs and vs in N". If i, j € {1,2,3} with i # j we define:
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o MIN(v;,v;) = +o0 if v; = vj;
o MIN(v;,v;) = min{min(v;[k],v;[k]), k € {1,...,r} s v;[k] # v;[k]}.
Then there exists a permutation § € S® such that
MIN(vs(1y, vs2)) = MIN(vs(2), v5(3)) < MIN(v5(1, Vs(3))-

Proof Suppose by contradiction that the thesis is not true. Then, renaming the indices if neces-
sary, we have
MH\I('Ul7 U2) < MIN(Ul, 'Ug) < MIN(UQ, ’03).

From the definition of MIN(vy, v9) = [ » it follows that there exists a k € {1,...,r} such that
v1[k] # vo[k] and min(v; [k], vo[k]) = 11 2. We have two cases:

o If vy [k] = 112 = va[k] > l1 2. Then we must have vs[k] = [, 5, in fact otherwise we would
have MIN(Ul, U3) < lLQ < MIN(Ul, ?}3). But then

l172 < MIN(UQ, Ug) < min(vg[k],vg[k’]) = ZLQ,
and we have a contradiction.

o If vy[k] = 112 = vi[k] > l1 2. Then we must have vs[k] = [, 5, in fact otherwise we would
have MIN(UQ, Ug) < lLQ < MIN(UQ, ’03). But then

l172 < MIN(Ul, Ug) < min(vl[k],vg[k’]) = ZLQ,
and we have a contradiction. L]

Remark 2. 1f we have three multiplicity sequences m;, mq and mg then, if £ = {my, ma, ms},
there exists a permutation § € S® such that

kp(0(1),0(2)) = kp(8(2),6(3)) < kr(5(1),0(3)).
In fact the integers kg(7,j) are of the same type of the integers MIN(v;, v;) of the previous
lemma with v; = s;.

Now we give a way to describe a tree of 7(E). If T € 7(F), it can be represented by an
upper triangular matrix r X r

0 pi2 P13 .- D1y
0 0 p23 ... D2y
0 0 0 ... Py
0 0 0o ... 0

where p; ; is the highest level such that the ¢-th and the j-th branches are glued in 7". We will
call M(T)g the ramification matrix of T
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Remark 3. If M (T')g is the matrix of a 7' € 7(F), it is clear that every time we consider three
indices ¢ < j < k we must have:

Pij = Min(p;k, Pjk)s ik = Min(p;j, pik) and iy > min(p; j, pjx),
when we are using the obvious fact that the relation of being glued has the transitive prop-
erty. From the previous inequalities it follows that {p; ;, pj s, pir} = {z,z,y}, withz <y
(independently of the order).

From Proposition 2.1.2 we have that p; ; € {1,...,kg(4,j)} forall 4,j = 1,...,r with
1 < 7. In the following, with an abuse of notation, we will identify a tree with its representation.

We call a tree T' of 7(F) untwisted if two non-consecutive branches are glued at level [ if
and only if all the consecutive branches between them are glued at a level greater than or equal
to [. We will call rwisted a tree that it is not untwisted.

From the definition it follows that the matrix of an untwisted tree 7" € 7(F) is such that:

Pij = Min{piii1, Piy1ite, .-, Pj-1,} foralli < j.
So an untwisted tree can be completely described by the second diagonal of its matrix. Thus,
in the following, we will indicate an untwisted tree by a vector Ty = (dy,...,d,_1) where

d; = pi 1, called the ramification vector of T'.

Remark 4. 1t is easy to see that a twisted tree can be converted to an untwisted one by accord-
ingly permuting its branches (the corresponding Arf semigroups are therefore equivalent). So
in the following we can focus, when it is possible, only on the properties of the untwisted trees,
that are easier to study, obtaining the twisted one by permutation.

Example 2.1.5. Let us consider the following tree of 7(FE) with
E= {m1 = [5,4],77]2 = [2,2],7’713 = [6,4}}

This tree is twisted because the first and the third branches are glued at level two, while the
first and the second are not.
If we consider the permutation (2, 3) on the branches we obtain the tree

39



that is untwisted, even if it belongs to a different set 7(£’) where
E = {ml = [5’4]7m2 = [674}7m3 = [272]} )
and it can be represented by the ramification vector Tx = (2, 1).

Denote by S(7") the semigroup determined by the tree 7". In [4, Lemma 5.1] it is shown that
if T and T? are untwisted trees of 7(F), then S(T") C S(T?) if and only if 7% is coordinate-
wise less than or equal to T'5. The previous result can be easily extended to the twisted trees.
Then, in the general case we have that S(T') C S(7T%?), where S(T") and S(7T?) belong to
o(E), if and only if each entry of M (T?)g is less than or equal to the corresponding entry of
M(TY)g. If kg(i, j) # +oo for all i < j, we can consider TMIN such that

MIMN = ,
0 0 0 coo kg(r—1,7)
0 0 0 0

that is well defined for Remark 2. Then S(T™MW) is the smallest Arf semigroup belonging to
o(E).
Remark 5. If in the collection E there are two branches with the same multiplicity sequence

then |o(E)| = +o0.

Example 2.1.6. We can count the number of untwisted trees of 7(F) by using their representa-
tion. If we call 7*(E) the set of all the untwisted trees of 7( '), these trees are completely deter-
mined by the elements in the second diagonal of their matrix, that are bounded by kg (7,7 + 1).
Hence the number of untwisted trees is:

r—1

(B) =] [ Felii+1).

j=1
Suppose that £ = {my, my, m3}, where
my = [5,4], mo = [6,4}, ms = [2,2]

We have:
s1=[3,6,4,5], so = [4,6,4,5], s3 = [2,4,4,5].

Then D(1,2) = {1}, D(2,3) = {1,2} and kg(1,2) = min(3,4) = 3 and
kg(2,3) = min {min(2,4), min(4,6)} = 2. There are kr(1,2) - kp(2,3) = 6 trees in 7*(F).
They are:
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T

TMIN*TE*32 TE—31
TE—22 TE—21
TE_12 TE_ll

Remark 6. Because we are able to determine completely 7*(E) for each E collection of multi-
plicity sequences we have a way to determine 7(F). If 6 € S, is a permutation of the symmetric
group S, we can consider 6~ (7*(6(E))) C 7(F). It is trivial to see that

U 67 (6(8)) = 7(E).

0ESy

If we apply this strategy to find 7(E) with the E of the previous example we find that in
7(FE) there is only one twisted tree 7" with

M(T)p =

o O O
O O =
S =N
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2.2 When a set of vectors determines an Arf semigroup

In this section we want to understand when a set G C N" determines uniquely an Arf semigroup
of N". First of all we need to fix some notations.
Given G C N” we denote by S(G) the following set

S(G) ={5:S C N"is an Arf semigroup and G C S} .

If the set S(G) has a minimum (with the partial order given by the inclusion), we will denote
such a minimum by Arf(G). Hence, we have to understand when Arf(G) is well defined and,
in this case, how to determine it.

Ifi € {1,...,7r},and S € S(G) we denote by S, the projection on the i-th coordinate. We
know that S; is an Arf numerical semigroup and it contains the set G[i] = {g[i] : ¢ € G} where
with ¢[i] we indicate the i-th coordinate of the vector g. We recall also that, if we have a set
of integers I such that gcd(/) = 1, we can compute the smallest Arf semigroup containing /,
that is the Arf closure of the numerical semigroup generated by the elements of 7, by using the
modified Jacobian algorithm of Du Val (cf. Section 1.3).

We have the following theorem:

Theorem 2.2.1. Suppose that we have G C N". Then Arf(G) is well defined if and only if the
following conditions hold:

o gcd{ylil,ge G} =1fori=1,...r;
e Foralli,j € {1,...,r} suchthati < j there exists g € G such that g[i] # g[j].

Proof (=) Suppose that Arf(G) is well defined and suppose by contradiction that the two
conditions of the theorem are not simultaneously fulfilled.
We have two cases.

e Case 1: The first condition is not fulfilled.

Then there exists an 7 such that ged(G[i]) = d # 1. When we apply the Jacobian algo-
rithm to the elements of G[i] we will produce a sequence of the following type:

[mm, ey Mg ey - ]
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where there exists a & such that m; ; = d for all 7 > k. Denote by k the minimum % such
that the Arf semigroup associated to the sequence

[mi’l, N ,miﬁ = d],

contains G[l] (such minimum exists for the properties of the algorithm of Du Val). Then
for all z > k we can consider the multiplicity sequence

ml(z) = [mi,h s 7m7;,E = d7 sy My, = d]

and if AS(m;(2)) is the Arf numerical semigroup associated to m;(z) then G[i] C AS(m;(z)).
Now it is trivial to show that AS(m;(z1)) € AS(m;(z2)) if 21 > 2. Then we have an
infinite decreasing chain of Arf semigroup containing the set G[i]. This means that the
projection on the i-th branch can be smaller and smaller, therefore we cannot find a min-
imum in the set S(G).

Thus we have found a contradiction in this case.
An example illustrating Case 1 is the following.

If we consider G = {[2, 3], [4, 4]}, we have no information on the multiplicity sequence
along the first branch and so we can obtain the following infinite decreasing chain of Arf
semigroups containing G':

e 5 @ 5 e 5, e 5

Case 2: The first condition is fulfilled.

So in this case the second condition is not fulfilled. The fact that ged {g[i],g € G} = 1
fori = 1,...,r implies that we can compute the smallest Arf numerical semigroup S(7)
containing G[i| foralli =1,..., 7.

Therefore if we denote by m; the multiplicity sequence of S(i) we clearly have that
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Arf(G) € o(E), where E = {m;,i = 1,...,r}. Suppose that it is defined by the matrix

0 pi2 P13 -+ Dir
0 0 pa3z ... Doy

MTMge=|... .. ... ... ..
0 0 0 ceo Dr—1p
0 0 0o ... 0

Now if we consider an element . € G[i] we have that h € S(i) and therefore there exists
an index pos (i, h) such that
pos g (i,h

)
h = Z my k.

k=1
If g € G we can define posy(g) = [posg(1, g[1]),...,posg(r, g[r])].

Notice that, if we consideri, j € {1,...,7}, withi¢ < jand g € G such that pos(i, g[i]) #
posz(7, glj]), we can easily deduce that in a multiplicity tree of an Arf semigroup of
o(E) containing G the i-th and j-th branches cannot be glued at a level greater than

min(pos (i, gil), pos (4, g171)) -
Then p; ; is at most min(pos (¢, g[i]), posz(J, g[j])), and we also have to recall that p; ;
is at most kg (i, j).

So denote by
Up(G) = {(i,j) € {1,....r}" +i < j;posg(i, gli]) = pos (s, glj]) forall g € G}
For each (i, j) ¢ Ug(G) we define
MINg (i, j, &) = min (kg (i, 7), min {min(pos (i, g[i]), posg (5, 7)) : 9 € G,

pos (i, g[i]) # posp(d, gli])}) -
Notice that we need (i, j) ¢ Ug(G) to have the previous integers well defined.

So from the previous remark it follows that an Arf semigroup S(7") of o(E) containing
G with

0 Q12 AdAirsz ... Qay,r
0 0 a3 ... agy
M(THg=1\|... ... ... ... ..
0 0 0 ... a1,
0 0 0 ... 0

is such that a; ; is at most kg (4, j) for (¢, j) € Ug(G) and q; ; is at most MINg (4, j, G) for
(1,7) ¢ Ug(G). In order to obtain the Arf closure we want to choose the biggest possible
values of the a;, thus from the previous bounds we obtain:

Dij = ]CE(Z,]) for (Z,j) - UE(G) and Dij = MINE(Z,j, G) for (Z,j) ¢ UE(G)
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We need to prove that this integers are compatible with the transitive property of the
ramification matrix of an Arf semigroup tree. Therefore we consider a triad of integers
i < j < k and we want to show that p; ;, p;, and p; ;, are in a {z, =, y} configuration. We
have the following cases:

L. (Zvj)v (]7 k)a (kf,@) € UE(G) Then Dij = kE<Z7.])ap7,,k = kE(Za k) and Pik =
kg (7, k) and for the Remark 2 they satisfy our condition;
2. (4,7), (4, k), (k,i) ¢ Ug(G). We consider the vectors

v = [pOSE(l, 5 [l])v s ,pOSE(l, gm[l])]a

where | € {i,j,k} and G = {¢1,...,gm}. Then, using the notations of Lemma
2.1.4, we have that

pij = min(kg(i, ), MIN(v;, v;)), pix = min(kg(i, k), MIN(v;, vi,) ) and

pix = min(kg(j, k), MIN(v;, vg)).
Then suppose by contradiction that they are not compatible. Without loss of gener-
ality, we can assume that
Dij < DPik < Djk-
We have two cases

- pi; = kg(i, j). Then we would have
ke(i, ) = pij <pjx < ke(j, k) and kg (i, j) = pi; < pix < ke(i, k),
and this is absurd for the Remark 2;
- pi; = MIN(v;, v;). Then we would have
MIN(v;,v;) = p;j < pjr < MIN(v;, v;) and MIN(v;, v;) = p;j < pix < MIN(v;, vy,),

and this is absurd against Lemma 2.1.4 applied to the vectors v;, v; and vy,.

3. (1,7) € Ug(G) and (j, k), (k,7) ¢ Ur(G) (and the similar configurations). In this
case we have that v; = v;. Then

pi,j = k'E<7’7.7>7pl,k = m1n<kE(Z7 k>7$)7 and pj,k = Hlll’l(kE(j, k),l'),

where = MIN(v;, v;) = MIN(v;, v),). We have two cases:

- kg(i,5) = kp(j, k) < kg(i, k) (orequivalently kg (i, j) = kg(i, k) < kg(j, k)).
If v < kg(j,k) < kg(i,k) then we have p;, = p;, = < kg(i,7) and it is
fine. If v > kg(j, k) then p; ), = kg(j, k) = pij < pix that is compatible too.

- kg(i,k) = k(j,k) < kg(i, 7). In this case we have p; ;, = pjr < kg(i,J) = pij
and it is fine.
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So we actually have a well defined tree.

Anyway, because the second condition is not fulfilled, then there exists a pair (7, j) €
{1,...,r}” such that for all g € G we have g[i] = g[j]. So (i,j) € Ug(G), and, since in
this case the two sequences are the same, we obtain p; ; = kg(i, j) = +o0.

Thus we have found a contradiction because Arf(G) is not well defined.

An example illustrating Case 2 is the following. If we consider G = {[3, 3,2], [2, 2, 3]},
we will have the same multiplicity sequences in the first two branches, with no clues
about the splitting point so we can obtain the following infinite decreasing chain in S(G):

@ D @ D @ 2.

(<) The previous proof gives us a way to compute Arf(G). We have to compute, using the
modified Jacobian algorithm of Du Val, the Arf closure of each G[i], finding the collection
E' (the first condition guarantees that it is possible to do that). Then we can find the matrix
describing the semigroup using the set U (G) and the integers MIN (i, 7, G) with the procedure
present in the first part (we cannot have p; ; = +oo for the second condition). [

Example 2.2.2. Suppose that we have G = {G(1) = [5,6,5],G(2) = [9, 11,4],G(3) = [9, 10, 2]},
that satisfies the conditions of the theorem. Then we have to apply the modified Jacobian algo-
rithm to the sets

G[1] = {5,9},G[2] = {6,10,11} and G[3] = {2,4,5}.
We find the following collection of multiplicity sequences:

E={my=1[54,ms=[6,4,ms = [2,2]} .

We have kg(1,2) = 3, ( 3) =2and kg(1,3) = 2.
Thus pos;(G(1)) = [1,1, ] posz(G(2)) = [2,3,2] and posz(G(3)) = [2,2,1]. In this case
Ug(G) = 0.

Hence MINg(1,2,G) = min(2, kg (1,2)) = 2, MINg(2,3,G) = min(1, kg(2,3)) = 1 and
MINg (1,3, G) = min(1, kp(1,3)) =
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So the Arf closure is described by the matrix

0 21
0 01
000

M(T)g =

Notice that in this case we find that the Arf closure is an untwisted tree of 7( F) represented by

the vector T = (2,1).

Example 2.2.3. Suppose that we have G = {G(1) = [8, 6, 10], G(2) = [5, 10, 5], G(3) = [10, 13, 8]},
that satisfies the conditions of the theorem. By applying the modified Jacobian algorithm to the
sets
G[1] = {5,8,10},G[2] = {6, 10,13} and G[3] = {5,8,10},
we find the following collection of multiplicity sequences:
E ={m; =[5,3,2],my = [6,4,2] and m3 = [5,3,2]} .

We have kp(1,2) =4, kg(2,3) =4 and kg(1,3) = +oo.

Thus pos;(G(1)) = [2, 1, 3], pos(G(2)) = [1,2, 1] and pos;(G(3)) = [3,4, 2].

In this case Ug(G) = 0, sowe get MINg(1,2,G) = min(1, kg(1,2)) = 1, MINg(2,3,G) =
min(1, kz(2,3)) = 1 and MINg(1, 3, G) = min(2, kp(1,3)) = 2.

The Arf closure is therefore described by the matrix

01 2
MTg=|[0 0 1
000

Notice that in this case we find that the Arf closure is a twisted tree.
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2.3 Arf closure of a good semigroup of N”

Denote by S a good semigroup of N". In this section we describe a way to find the smallest Arf
semigroup of N" containing S, that is the Arf closure of .S (the existence of the Arf closure is
proved in [8]). We denote this semigroup by Arf(.S). If S is a good semigroup of N”, we denote
by 5; the projection on the ¢-th coordinate. The properties of the good semigroups guarantee
that S; is a numerical semigroup. Thus, it is clear that an Arf semigroup 7' containing S is
such that Arf(S;) C T; forall i = 1,...,r, where Arf(.S;) is the Arf closure of the numerical
semigroup 5; (we can compute it using the algorithm of Du Val on a minimal set of generators
Therefore, in order to have the smallest Arf semigroup containing S, we must have Arf(.S) €
o(E) where E = {my,...,m,} and m; is the multiplicity sequence associated to the Arf
numerical semigroup Arf(.S;) (this follows from the fact, proved in [8, Proposition 31] , that the
intersection of two Arf good semigroups containing S is stll an Arf good semigroup).
Now we need to find the matrix

0 pi2 P13 ... Diy
0 0 po3z ... Dpoy

MT)g=|... ... ... ... ..
0 0 0 ... Py
0 0 0o ... 0

that describes the tree of Arf(.S).
Denote by 6 = (c[1], ..., ¢[r]) the conductor of S, and consider the set

Small*(.S) = Small(S) \ {0}

of the small elements of .S with the exclusion of the zero vector.

Remark 7. We can recover the collection £ from Small*(S). In fact, the multiplicity se-
quence m; can be determined applying the Du Val algorithm to the set {s[i], s € Small*(S)} U
{c[i] + 1} C S;. In order to find a multiplicity sequence we may have to add c[i| + 1 because
we can have ged({sli], s € Small(S)}) # 1. Because c[i] and c[i] + 1 belong to S;, we know
that Arf(.S;) has conductor smaller than c[i] and this implies that we only have to consider the
elements that are smaller than c[i] + 1.

Now, we notice that p; ; < min(posy(, c[i]), posg(j,clj])) for all 4,5 € {1,...,r}, with
i < j, where we are using the notations of the previous section. In fact, if posy(i, c[i]) #
posz(7, c[j]), we have already noticed that in an Arf semigroup containing ¢ the i-th and the
j-th branches cannot be glued at a level greater than min(pos(i, c[i]), posg (7, c[j])), then
pi; < min(posg(,cli]), posg (4, clj])). If posg(i,ci]) = posg(j,c[j]) then we have 6; =
(c[1],...,cli]+1,cli+1],...,c[r]) € S, and pos (i, c[i]+1) = posy(i, c[i])+1 > posz(7, c[j]).

Therefore in an Arf semigroup containing ¢; the i-th and the j-th branches cannot be glued
at a level greater than

min(pos (i, cfi]) + 1, pos (7, ¢lf])) = posg(J, ¢ljl) =
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= min(pos (%, c[i]), posz (7, c[j]),

hence we have again p; ; < min(pos(7, c[i]), posg(J, c[j]))-
Furthermore, we always have to take in account that p; ; < kg(4, j) forall4,j € {1,...,r}.
Now let us consider the following subset of {1,...,7}7,

Ugr(Small*(S)) = {(i,7) : posg(i, s[i]) = posp(j, s[j]) for all s € Small*(S)}.
If (i,7) € {1,...,7}* \ Ug(Small*(S)), and i < j we can consider the following integers
MINg (7, j, Small*(S)) = min (kg(7, ), min {min(pos; (4, s[i]), posz(J, s[j])) : s € Small*(.5),

pos (i, s[i]) # pos (4, s[j])}) -

Notice that we need only to consider the vectors of Small*(S) because if s € S then s; =
min(s, ) € Small*(S) and we clearly have

min(pos (i, s[i]), pos (7, s[j])) = min(pos (i, s1[i]), pos (4, s1l5])),

therefore s; € Small*(.S) gives us more accurate information on the ramification level than s (it
can happen that pos (7, s1[i]) = posg(J, s1[j]) and pos (4, s[i]) # posz(J, s[j]), but only when
min(pos (i, s[i]), pos (7, s[j])) = min(pos (i, cfi]), pos (4, c[j]))).

Thus, if 7" is an Arf semigroup of o(F) containing S, represented by

0 i aAirsz ... ap r
0 0 Q23 ... Qg r
M(THg=|... ... ... ... ...
0 0 0 ... a_q,
0 0 0 ... 0

we have:
e a;; < MINg(i, 7, Small*(8)) for (i,7) € {1,...,n}>\ Ug(Small*(5));

e a;; < min(kg(i,j),posg(i,cli])), for i € Ug(Small*(S)) (we have posg(i,cli]) =
pos(J; c[j]))-

Then we can finally deduce that the p; ; that define the matrix of Arf(.S) are such that
e p;; = MINg(i, j, Small*(S)), for (i,7) € {1,...,r}> \ Ug(Small*(S));

e p;; = min(kg(i,7),posg(i,cli])), for i € Ug(Small*(S)) (we have posg(i,c[i]) =
pos(J; clj]);

and it is easy to see that the p; ; fulfil the condition of Remark 3.
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Remark 8. In other words we proved that Arf(S) can be found by computing Arf(G) where:
G = Small*(S) | J{(c[t] + L,... efil, cli+1],....c[r]), ... (c[t],...,cli] + L,cli+ 1],...,c[r]), ...
(cl1], ... cli],cli+1],...,c[r] +1)}.

Example 2.3.1. Let us consider the good semigroup S with the following set of small elements,
Small*(S) = {[5, 6, 5], [5, 10, 5], [5, 12, 5], [8, 6, 8], 8, 10, 8], [8, 12, 8], [8, 6, 10], [8, 10, 10],

8,12, 10], [10,6,8], [10, 10, 8], [10, 12, 8], [10, 6, 10], [10, 10, 10], [10, 12, 10]} .
The conductor is § = [10, 12, 10]. First of all we need to recover from Small*(.S) the collection
of multiplicity sequences F. We have to apply the Du Val algorithm to the following sets:
{5,8,10,11},{6,10,12,13} and {5,8,10,11},

therefore we find that £ = {[5, 3, 2], [6, 4, 2], [5, 3,2] } .
We have

pos(Small*(S)) = {posz(s) : s € Small(S)} = {[1,1,1],[1,2,1],[1,3,1],[2,1,2], [2,2,2],

12,3,2],[2,1,3],[2,2,3],[2,3,3], 3, 1, 2],(3,2,2],[3,3,2],[3,1,3],[3,2,3],[3,3, 3]} .
It is easy to check that Uz (Small*(S)) = (). Thus we have

e p1o = MINg(1,2, Small*(S)) = min(kg(1,2) = 4,1) = 1, because we have the element
[1,2,1] € pos(Small*(S)) corresponding to s = [5,10,5] € Small*(S) such that 1 =
posy(1, s[1]) # posg(2, s[2]) = 2 and min(posg(1, s[1]), posg(2,s[2])) = 1.

e py3 = MINg(2, 3, Small*(S)) = min(kg(2,3) = 4,1) = 1, because we have the element
1,2,1] € pos(Small*( )) corresponding to s = [5,10,5] € Small*(S) such that 2 =
posE( s[2]) # posg(3, s[3]) = 1 and min(pos (2, s[2]), posz(3,s[3])) = 1.

e p13 = MINg(1,3,Small*(S)) = min(kg(1,3) = +00,2) = 2, because we have the
element [2,2,3] € pos(Small*(S)) corresponding to s = [8,10,10] € Small*(S) such
that 2 = posy(1, s[1]) # posg(3,s[3]) = 3 and min(posz(1, s[1]),posz(3,s[3])) = 2,
and we cannot find a smaller discrepancy.

So the Arf closure of S is described by the matrix

01 2
M(T)g=10 0 1
0 00
with
E ={my; =[5,3,2],my = [6,4,2] and m3 = [5, 3,2]} .
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The following procedure, implemented in GAP, has as argument the set of small elements of
a good semigroup and give as a result the Arf Closure of the given good semigroup. The Arf
closure is described by a list [E, M (T) g|.

gap> S:=[[5,6,5],1[5,10,5],[5,12,5], [8,6,8],[8,10,8],[8,12,8],
(8,6,101, 8,110,101, (8,12,10], [10,6,8],[10,10,8],[10,12,8],
(10,6,10],10,10,1071,[10,12,10]11;

[ 05 6, 51, [ 5 10, 51, [5
(s 10, 81, [ 8, 12, 81, [ 8, 6, 10 1, ’ ’
( 8, 12, 10 1, [ 10, 6, 8 1, [ 10, 10, & 1, [ 10, 12, 8 1,
([ 10, 6, 10 ], [ 10, 10, 10 1, [ 10, 12

7 12, 5 ], [ 8/ 6[ 8 ]I
8

gap> ArfClosureOfGoodsemigroup (S);
(005 3 21, (e 4, 21, [5 3,211,

2.4 Bounds on the minimal number of vectors determining a
given Arf semigroup

Suppose that F' is a collection of » multiplicity sequences. Let 7' € 7(FE) and consider the
corresponding semigroup S(7") in o(FE), we want to study the properties that a set of vectors
G(T) € N has to satisfy to have S(T") = Arf(G(T')), with the notations given in the previous
section. We call such a G(7) a set of generators for S(7"). In particular we want to find bounds
on the cardinality of a minimal set of generators for a S(7T") € o(F).

Since we want to find a G(T) such that Arf(G(T)) is well defined, it has to satisfy the
following properties:

e Forall:=1,...,r
ged(vlil; v € G(T)) = 1,

where v([i] is the i-th coordinate of the vector v € G(T').
e Foralli,j € {1,...,r}, withi < j there exists v € G(T') such that v[i] # v[j].

Now we want that Arf(G(7")) is an element of o(E). This implies that, when we apply the
algorithm of Du Val to G(7T')[¢], we have to find the i-th multiplicity sequence of E. This means
that, if we call .S; the Arf numerical semigroup corresponding to the projection on the i-th co-
ordinate, we must have G(7')[i| C S; and furthermore G (7')[i] has to contain the characters of
S;. In fact, in [1] it is proved that if we have G = {¢1, ..., gm} C N with ged(G) = 1 then G
must contain the set of characters of the Arf closure of the numerical semigroup N = (G).
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We suppose that £ = {my,...,m,}. Given
m; = [mi,la e ami,N]7

we consider the restricion number r(m; ;) of m; ;. With this notation we have that the characters
of the multiplicity sequence m; are the elements of the set

Charg(i) = {Zm”“ cr(my ) < r(mi,jﬂ)} .

k=1

Notice that, from our assumptions on /V, it follows that the last two entries in each m; are 1, and
it is easy to see how it guarantees that we cannot find characters in correspondence of indices
greater than V. We define PCharg (i) = {j : r(m,;) < r(m; 1)}

Given the collection £/, we denote by

Ji J2 Jr
VE(jlana"'?jr) = E mik, § ma gy, E My | -
k=1 k=1 k=1

Now, the elements of G(7") must be of the type Vg (j1, jo, - - -, j-) (in fact we noticed that when
we project on the k-th coordinate we must find an element of the corresponding numerical
semigroup that has the previous representation for some jy).

From the previous remarks and notations we have the following property:

G(T) = {Gen<1) = VE(jl,la s 7j1,7“)7 s 7Gen(t) - VE(jt,la s 7jt,7‘)}
are generators of a semigroup of o(FE) if and only if
PCharg (i) C {j14,..., 014} foralli=1,... 7.

In particular we have found a lower bound for the cardinality of a minimal set of generators for
aS(T) € o(E). In fact G(T') has at least C = max {|PCharg(i)|,i = 1,...,r} elements.

Now we want to determine the generators of a given semigroup S(7") € o(FE). We have the
following theorem.

Theorem 2.4.1. Let S(T') € o(E) with

0 pi2 P13 - D1y
0 0 po3z ... Dpoy

MTpep=|... ... ... ... ..
0 0 0 ... Doy
0 0 0o ... 0

Denote by P = {(q,u) : pgu = kp(q,u)}. Then G(T) = {Gen(1),...,Gen(t)} C N" is such
that Arf(G(T)) = S(T) if and only if the following conditions hold

52



o Gen(l) = Vg(ji1,---»J1s),- .., Gen(t) = Vg(jia, ..., jrr) for some values of the in-
dices ji1, ..., Jtrs
o PCharg(i) C {jii,-.. Jratforalli=1,... .

Furthermore, if we consider the following integer
MING(T) (qa U) = Hlil’l (kE(q7 U), min {min(j%% jpﬂ) : jp7q # jpﬂmp = 17 e >t}) ’
forthe (q,u) € {1,... ,r}2 with ¢ < u and where it is well defined, we have:

e for (q,u) € P we have either j,, = jpu forallp = 1,...,t, or MINg(1)(q,u) is well
defined and it equals kg(q,u);

® MINg(1)(q,u) is well defined and it equals pq., for all (q,u) & P.

Proof (<=) Suppose that we have G(T') = {Gen(1),...,Gen(t)} C N satisfying the conditions
of the theorem. The first two conditions ensure that if we apply the algorithm defined in the
previous section on G(7') it will produce an element of o (E).

Now it is easy, using the notations of Theorem 2.2.1, to show that j, , = posy(q, Gen(p)[q])
and from this it follows that, when MIN¢ (7 (q, u) is well defined, it is equal to MINg (g, u, G(T')).
Furthermore we have Ug(G(T)) C P. In fact we have

Up(G(T)) = {(q,u) € {1,...,7}* : posg(g, Gen(p)[q]) = posy(u, Gen(p)[u])

forallp=1,...,t} = {(q,u) S {1,...,7’}2 :jpvq:jp,uforallp:1,...,t},

therefore if (¢,u) € Ug(G(T)) then (q,u) € P, since G(T) satisfies the fourth condition in
the statement of the theorem (we cannot have (¢, u) ¢ P because in this case MINg1)(q, u) =
MINg(q,u, G(T)) has to be well defined). So it will follow that, if S(7") is Arf(G(T)) then

0 iz AaAirsz ... ay r
0 0 Q23 ... a2 r

M(THg=|... ... ... ... ...
0 0 0 ... a1,
0 O 0o ... 0

where
e a;; =MINg(i, 5, G(T)) if (¢, j) ¢ Up(G(T));
o a;; =kg(i,j)if (4,5) € Up(G(T)).

Therefore if (i,j) ¢ P then (i,7) ¢ Ug(G(T)) and we have a;; = MINg(i,5,G(T)) =
MIN¢ 1y (i, j) = pij. If (4,5) € P then

o if (i,j) € Ug(G(T)) then a; ; = kg(i, j);
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o if (i,5) ¢ Ug(G(T)) then a; ; = MINg(i, j, G(T)) = MINg(r (i, j) = kg(i, j), for the
properties of the set G(T') ((i,7) € P).

So we showed that Arf(G(T')) = S(T'). Thus the proof of this implication is complete.
(=) It follows immediately by contradiction, using the first part of the proof. 0

Example 2.4.2. Suppose that we have E = {m;, ms, m3}, where
my = [5,4], mo = [6, 4}, ms = [2, 2]

We have, kg(1,2) = 3,kg(2,3) = 2and kg(1,3) = 2.
We can define:
R(Z) = [’l“(mi71), T(mi72), c ,r(mi,N)].

Notice that 7(m; 1) = 0,r(m;2) = 1. The values of PChar(i) are the indices where this se-
quence has an increase (it can be easily shown that when the sequence has an increase we
have r(m; ;) = r(m;;+1) — 1 cf. [4, Lemma 3.2]). Furthermore R(1) = [0,1,2,2,2,2],
R(2) =1[0,1,2,3,2,2] and R(3) = [0,1,1,2]. So PCharp(1) = {1,2},PCharg(2) = {1,2,3}
and PChary;(3) = {1,3}.

Suppose that we want to find generators for the untwisted tree 7" such that T3 = (2,1). We
need at least three vectors because Cr = 3. Consider the vectors Gen(1) = Vg(1,1,3),Gen(2) =
Ve(2,3,2) and Gen(3) = Vg(2,2,1). The second condition, that guarantees that we have
a tree belonging to 7(F), is satisfied. Furthermore MINg(1(1,2) = min(kg(1,2),2) =
2, MING(1(2,3) = min(kg(2,3),1) = 1, and MINgp)(1,3) = min(kg(1,3),1) = 1 =
min(p; 2, p2.3) where G(T)) = {Gen(1), Gen(2), Gen(3)}. Thus we have Arf(G(T)) = S(T").
They are the vectors Gen(1) = [5,6,5],Gen(2) = [9,11,4],Gen(3) = [9, 10, 2] that appeared
in the Example 2.2.2.

Now, we want to find an upper bound for the cardinality of a minimal set G(7") such that
Arf(G(T)) € o(E).

Remark 9. Suppose that 7" is a twisted tree of 7(FE), where F is a collection of » multiplicity
sequences. Then, there exists a permutation 6 € S” such that §(7") is an untwisted tree of
7(6(E)). If G is a set of generators for §(T"), it is clear that we have

07 HG) = {07 (9);9 € G},

is a set of generators for the twisted tree 7.

From the previous remark it follows that we can focus only on the untwisted trees of 7(E)
to find an upper bound for the cardinality of G/(T).
Our problem is clearly linked to the following question.

Question 2.4.3. Let us consider a vectord = [dy,...,d,| € N". For all the G C N we
denote by MIN(G, i, j) the integers (if they are well defined)

MIN(G, 1, j) = min {min(g[i], g[j]) : g € G with g[i] # g[j]} ,
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forallthei < jandi,j € {1,...,r+1}.
We define a solution for the vector d as a set G C N" ! such that:

MIN(G,Z,]) = min {dl, - adj—l} foralli < j.

Consider r € N with r > 1. Find the smallest t € N, such that for all [dy,...,d,] € N
there exists a solution with t vectors. We denote such a number t by NS(r).

Theorem 2.4.4. Consider r € N withr > 1. Then NS(r) = [log, (r + 1)], where [d] =
min {m € N:m > d}.

Proof First of all we show that given an arbitrary vector d of N” we are able to find a solution
of d consisting of N = [log, (r + 1)| vectors.

We will do it by induction on r. The base of induction is trivial. In fact if » = 1 then for
each vector [d; ] we find the solution G = {[d;, d; + 1]} that has cardinality [log, (1 + 1)] = 1.
Thus we suppose that the theorem is true for all the m < r and we prove it for r. Let d an
arbitrary vector of N". We fix some notations. Given a vector d, we will denote by sol(d) a
solution with [log, (7 + 1)] vectors. We denote by Inf(d) = min{d; :i=1,...,r} and by
Pinf(d) = {i € {1,...,r} : d; = Inf(d)}. We have 1 < |Pinf(d)| = k(d) < r.

Suppose that Pinf(d) = {i; < i» < --- <iya}. Then we can split the vector d in the
following k(d) + 1 subvectors:

d;=d(1...4;—1),
dj :d(Z]_l—l—lZJ—l) fOI'j:27...,k’(d),
dk(d)+1 = d(lk(d) +1... 7"),
where with d(a . .. b) we mean
o Nifb < a;

e The subvector of d with components between a and b if a < b.

Then the subvectors d; are either empty or with all the components greater than Inf(d). We
briefly illustrate with an example the construction of the subvectors d;.

Example 2.4.5. Suppose thatd = [2,3,2,2,5,4,5]. Then Inf(d) = 2, Pinf(d) = {1, 3,4} and
then we have the four subvectors:

ed, =d(1...0) =0,
o dy=d(2...2) =[3],
e d;=d(4...3) =0,
e d;=d(5...7) = [5,4,5]
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Then we can consider the list of £(d) + 1 subvectors:

p(d) = [dy, ..., dya)+1],

and, because all the d; have length strictly less than  we can find a solution for each of them
with N = [log, (r + 1)] or less vectors. For the d; = () we will set sol(()) = {[x]}, where x is
an arbitrary integer that is strictly greater than all the entries of d. It is quite easy to check that
the following equality holds:

r=k(d)+ Z Length(d;). (2.1)

We associate to the list of vectors p(d) another list of vector ¢(d) such that

C(d) = [C1, R 7ck(d)+1]7

where Length(c;) = Length(d,) + 1 and the entries of ¢; are all equal to Inf(d) for all j =
L,...,k(d)+ 1.

Now we consider the set I(N) = {0,1}". Foreacht € I(N) we denote by O(t) the number
of ones that appear in t. Because we have N = [log, (r + 1)] , it follows

k(d)+1<r+1<2¥=]|I(N),

therefore it is always possible to associate to each subvectors of the list p(d) distinct elements of
I(N). We actually want to show that it is possible to associate to all the subvectors d; distinct
vectors of t € I(N) such that O(t) > [sol(d;)| (for d; = () we can also associate the zero
vector). We already know for the inductive step that all the d; have solutions with at most NV
vectors. Suppose therefore that m < N.

It is easy to see that

eer:onzm=3 (})

Then we suppose by contradiction that in p(d) we have ij:m (],X ) + 1 subvectors with solution
with cardinality m. From the inductive step it follows that all these subvectors have at least
length 2™, and from the formula 2.1 it follows:

rsz (JZ) 4 <i <]Z)+1> Sy 41> <i (ZZ)H) (1+2mh).

But we also have that:
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N
Z <]Z> + 1 2 2N—m+1’

k=m
in fact S0 (%) is the number of ways to select a subset of {1, ..., N} of at least m elements
while there are 2V~™*1 — 1 ways to select a subset which contains at least m elements and

contains {1,2,...,m — 1}.
Therefore we can continue the inequality:

,',,_I_ 1 Z 2N—m+1(1+2m—1) — 2N+2N—m+1 > QN

But N = [log, (r + 1)] and therefore » + 1 < 2V and we find a contradiction. Then in
{t € I(N) : O(t) > m} we have enough vectors to cover all the subvectors with solution with
cardinality m. We still also have to exclude the following possibility. Suppose that we have
x subvectors with solutions of cardinality m; and y subvectors with solutions of cardinality
my > my. If [{t € [(N):O(t) > my}| — 2 < y then it would not be possible to associate
to all the subvectors of the second type an element t of /(/N) with O(t) > my. Indeed if this
happen we would have:

r>r4+y—1+x-2"m 4y 2" s oy 14 (v +y)2™ ! =

f: (];[) + 1) (142mh),

k=m1

=Sr+1>(@+y)(1+2m1 > (

and we already have seen that this is not possible.

Therefore we proved that we can consider a matrix A with N rows and k(d) + 1 distinct
columns with only zeroes and ones as entries and such that the ¢-th column of A is a vector t of
I(N) such that O(t) > |sol(d;)| foreach 1 <i < k(d) + 1.

Now we can complete the construction of a solution for d . We consider a matrix B with N
rows and &(d) + 1 columns. We fill the matrix B following these rules:

e If Afi, j] = 0 then in B[s, j] we put the vector ¢;;
e If Afi, j] = 1 then in B[i, j] we put an element of sol(d;);
e All the elements of sol(d;) have to appear in the j-th column forall j = 1,...,k(d) + 1.

Then if we glue all the vectors appearing in the i-th row of B for each7 = 1,..., N we obtain
a solution G for the vector d. In fact if we consider 7, j; such that iy < j; we have two
possibilities:

e i1 and j; both correspond to elements in the j-th column of B. Then because in this
column we have either vectors of a solution for d; or constant vectors, it follows that they
fulfil our conditions.
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11 and j; correspond to elements in distinct columns. This implies that we must have
MIN(G, i1, j1) = Inf(d). In fact, for construction, between two distinct subvectors we
have an element equal to Inf(d) in d forcing MIN(G, i1, j;) = Inf(d). Now suppose that
11 and j; correspond respectively to elements in the ¢-th and j-th columns of B. Because
we suppose ¢ # j we have that the ¢-th column and the j-th column of the matrix A are
distinct so there exists a k such that A[k,i:] = 0 and A[k,j] = 1 (or vice versa). This
implies that in B we have a row where in the i-th column there is the constant vector
equal to Inf(d) while in the j-th column we have a vector corresponding to a solution of
a subvectors of d (that has all the components greater than Inf(d) by construction). This
easily implies that MIN(G, i1, 71) = Inf(d).

Example 2.4.6. Suppose thatd = [2,3,2,2,5,4,5]. We have r = 7, then we want to show that
there exists a solution with three vectors. We have already seen that in this case we have:

p(d) = [(D’ [3]7 @, [57 4’ 5“

We need to compute a solution for each entry of p(d). We have:

sol(()) = {[6]} (6 is greater than all the entries of d);
sol([3]) = {[3, 4]}

Let us compute a solution for f = [5, 4, 5] with the same techniques. Because Length(f) =
3 we expect to find a solution with at most two vectors. We have:

p(f) = [[5], [51];

and we have sol([5]) = {[5,6]}. Then in /(2) we want to find two distinct vectors with at
least an entry equal to one. We can choose [1, 1] and [0, 1]. Therefore we have:

A= (a0 mer= (33 )

Then sol([5,4,5]) = {[5,6,4,4],[5,6,5,6]}.

Now we want to find in /(3) four vectors t; for i = 1,...,4. We have free choice for the t;
and t3 , while we need O(ty) > 1 and O(t4) > 2. For instance we choose t; = [0,0,0],t; =
[1,0,0],t3 = [1,1,0],ty = [1,0, 1]. Then we have:

0111 2] [3,4] [6] [5,6,4,4]
A=|00 1 0| andB=[]2] [2.2] [6] [22,22]
0001 2] [2,2] 2] [5.6,5,6]

Then a solution for d is the set

G =1{[2,3,4,6,5,6,4,4],[2,2,2,6,2,2,2,2],[2,2,2,2,5,6,5,6]} .
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So we proved that NS(r) < [log, (r + 1)]. To prove that the equality holds we notice that for
each r a constant vector needs exactly [log, (r + 1)] vectors in its solutions. [l

Now we can return to the problem of determining an upper bound for the cardinality of
G(T'). We need another lemma:

Lemma 2.4.7. Let E = {my, ms} be a collection of two multiplicity sequences. Then, with the
previous notations we have:

kg(1,2) <min{j:j € (PCharg(1) U PCharg(2)) \ (PCharg(1) N PCharg(2))} .

Proof Let us choose an arbitrary element ¢ € (PCharg(1) U PCharg(2)) \ (PCharg(1) N
PCharg(2)). We want to show that kg (1,2) < t. Suppose by contradiction that ¢ < kg(1,2).
Without loss of generality we suppose that t € PCharg(1). It follows that ¢ ¢ PCharg(2) and
we have:

r(mys) < r(mysqer) and r(may) > r(mogir).

Notice that if an entry of m; has m; ;. as a summand and it is not m, 4, it is forced to have
my ¢ as a summand too. So from r(my ;) < r(mq ;1) we deduce that in m, there are no entries
involving only m; ;. Similarly from r(msy;) > r(ms11) we deduce that in m, we must have at
least one entry my 5 that involves my; as a summand but not mg ;1.

Namely

ma s = Z mo k. (2.2)

Now, we have assumed that ¢ < kg(1,2) hence t+1 < kg(1,2). This implies that the untwisted
tree 7" such that T = (¢ 4 1) is well defined. In 7" we have the following nodes:

(m1,57 m2,s)» S (ml,t7 m2,t>, (ml,t+17 m2,t+1)-

Then from (2.2) and from the fact that the two branches are still glued at level ¢ + 1 it must
follow that

and we have still noticed how it contradicts the assumption 7(mq ;) < r(my 441). O

Now we can prove the following result:

Proposition 2.4.8. Let E be a collection of r multiplicity sequences. Then, if S(T') € o(FE),
there exists G(T) C N" with Ar(G(T)) = S(T') and |G(T)| = Cg + [log, (1)].

Proof For the Remark 9 it suffices to prove the theorem only for the untwisted trees. Therefore
we suppose that Ty = (dy,...,d,_1). First of all we have to satisfy the condition on the
characters to ensure that Arf(G (7)) € o(F). From the Lemma (2.4.7) it follows that we can
use C'g vectors to satisfy all the conditions. To see it, let us fix some notations.
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Denote by 7(i) = |PCharg(7)| foralli = 1,...,r. Therefore Cr = max {7(i),i =1,...,7}.
Suppose that
PCharE(z) = {am < - K ai,f(i)} ,

and we define

L = max (LTJ PCharE(z')> + 1.

=1
Forall i = 1,...,r we consider the vector J(i) = [a;1,...,@;r3), L, ..., L] € N°2. Thus we
can use the following set of vectors to satisfy the condition on the characters,

G = Gen(l) = VE<j171, Ce 7j1,r); . ,GCD(OE) = VE(jCE,la Ce 7jCEJ‘>?

where j,, = J(¢)[p] forallp = 1,...,Crpand ¢ = 1,...,r. Now it is clear that we have
PCharg (i) C {j14,...,Jcpi} foralli =1,... r.

We also need to show that this choice does not affect the condition on (dy, ...,d,_1). We
define P = {(q, u) € {1,... ,r}2 " Jpg = Jpu forallp=1,... ,C’E} . Thus for each (q,u) € P
the previous vectors are compatible with the conditions on the element p, ,, of M (7).

For each (¢, u) ¢ P, we consider

p(g,u) = min{p: jpq 7 Jpu} -

Now, because the entries of the vectors J(q) are in an increasing order, it is clear that we have
MING(Q7 u) = min (kE(Q7 u)7 min {min(jp,qa jp,u) : jp,q 7é jp,u}) =

= min (kg(q, w), min(Jp(gu).q Jp(gu).u)) - for all (g, u) & P.

Furthermore, for the particular choice of the vectors Gen(i) and of L, it is clear that from
Jp(au)g 7 Jp(g.u),us it follows that

min(Jp(g,u).qs Jpg,u)u) € (PCharg(q) UPCharg(u)) \ (PCharg(q) N PCharg(u)),

and from the Lemma 2.4.7, we finally have

MWD (Jp(gu). Tp(gu)u) > ke(g, w) forall (¢, u) ¢ P,

so the vectors Gen(i) are compatible with our tree.

Now from the Theorem 2.4.4 it follows that we can use [log, ()| vectors to have a solution
for the vector [dy, ..., d,_;]. Adding the vectors corresponding to this solution to the previous
Cr we obtain a set G(T') such that Arf(G(T")) = S(T). O

Notice that the first C'y vectors may satisfy some conditions on the d;, therefore it is possible
to find G(T") with smaller cardinality than the previous upper bound.
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Remark 10. Let us consider the Arf semigroup of the Example 2.4.2.
Itwas T =Tg = (2,1), where

E ={my = [5,4],me = [6,4],m3 = [2,2]},
with
PCharg(1) = {1,2},PCharg(2) = {1,2,3} and PCharg(3) = {1,3}.

We found G = {Vg(1,1,3),VE(2,3,2),VE(2,2,1)} as a set such that Arf(G) = S(T'), and it
is also minimal because we have |G| = Cr and we clearly cannot take off any vector from it.
Using the strategy of the previous corollary we would find the vectors:

Gen(1l) = Vg(1,1,1),Gen(2) = Vg(2,2,3) and Gen(3) = Vg(4,3,4),

that satisfy the conditions on the characters (L = 4).

We have to add vectors that correspond to a solution for the vector [2,1]. For instance it
suffices to consider [3, 2, 1] and therefore we will add the vector Gen(4) = Vg(3,2,1). Notice
how the set G' = {Vr(1,1,1),VE(2,2,3),Vr(4,3,4),Vr(3,2,1)}, with |G| > |G], is still
minimal because we cannot remove any vector from it without disrupting the condition on the
tree. Therefore we can have minimal sets of generators with distinct cardinalities.

Example 2.4.9. Let us consider
E = {m1 = [4,4],7)’12 = [6,4],m3 = [2,2],77’14 = [3,2]}

We want to find a set of generators for the twisted tree 7" of 7(E') such that:

M(T)e =

o O OO
S OO NN
S O ==
O = W N

First of all we notice that it is well defined because it satisfies the conditions given by the
Remark 2 and we have

k(1,2) = 2,k(1,3) = 4, k(1,4) = 2,k(2,3) = 2,k(2,4) = 3 and k(3,4) = 2.

We consider the permutation § = (3,4) of S%. Then §(7') is an untwisted tree of 7(§(F)) and it
is described by the vector T = (2,3,1). We have:

® PChar(;(E)(l) = {173};
e PCharsz)(2) = {1,2,3};
® PChar(;(E)(i%) - {17 2}a
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° PChar(;(E) (4) = {1,3}.
Then with the vectors Vg (1,1,1,1), Vig)(3,2,2,3), Vsr)(4, 3,4, 4), we satisfy the condition
on the characters. We need to add the vectors corresponding to a solution for [2, 3, 1]. It suffices
to add Vg)(2, 4, 3,1). Then
G(T) ={[4,6,3,2],[9,10,5,5],[10,11,7,6],[8,12,6, 2]},
is a set of generators for §(T). Because 6! = (3,4), we have that

5 HG(T)) = {[4,6,2,3],]9,10,5,5],[10,11,6,7],[8,12,2, 6]}

is a set of generators for the twisted tree 7.
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Chapter 3

Algorithms for Arf good semigroups

In this chapter, we present some procedures regarding the computation of sets consisting of Arf
good semigroups satisfying some specific conditions.

3.1 Finding Arf semigroups with a fixed conductor

The aim of this section is to find an algorithm for computing the set of all the Arf good semi-
groups of N” having as conductor a fixed vector ¢ € N". We will develop a procedure that
works inductively on the dimension 7, thus the following two subsections are dedicated to the
solution of the required base cases for r = 1 and r = 2.

3.1.1 An algorithm for Cond(n) where n € N

In [12] it is presented an algorithm for the computation of the set of the Arf numerical semi-
groups with a given conductor. In this section we give a new procedure for the computation of
such a set. It has already replaced the older one in the GAP package Numericalsgps of which
the author is one of the contributors [9].

Now, given a multiplicity sequence m = [m, ..., myam)], it is clear that the conductor of the
associated Arf numerical semigroup AS(m) is Zi(:"i) m;. In particular notice that the conductor
of AS([]) = Nis 0.

We denote by Cond(n) the set of the multiplicity sequences of Arf numerical semigroups
with conductor n, and we want to find a procedure to compute this set for all n € N.

If n = 0, then Cond(n) = {[ ]}, while if n = 1, Cond(n) = (). Thus, we suppose n > 1.
Denote by 7" (i) = {m € Cond(i) : m; +¢ <n} foralli = 2,...,n — 2. Now suppose that

m = [my,...,mg] € Cond(n). If & = 1 then m = [n], otherwise we have the following
situation:

e 2<my <n-—1and[my,...,mg] € Cond(n —my);

o my € AS([ma, ..., mg));

e my—my <0=>mo+n—my <n=[mg,...,mg] €T"(n—my).
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Hence, if we know 7" (i) for i = 2,...,n — 2, we can compute Cond(n) in the following
way:

Cond(n) = L_J {(n—1)::mlmeT"(i),n—1ieAS(m)}U{[n]},

where we denote by (n — i) :: m the list obtained by appending n — ¢ at the beginning of m.
Now we need a way to compute 7" (7). Suppose that m = [my,...,my] € T"(i). If k = 1, and
2 - i < n then m = [i], otherwise we have the following situation:
2 <my <i—1and[my,...,mg| € Cond(i —m;) = Cond(q);
eqg+mo=i—mi+mg<i<n=|mg,..,m €T"q);
emy € AS([ma,...,mgl);
emi+i<n=2m <n+m —i=2m <n—qg=m; < L%J

So each 7™ (i) can be constructed using 7™ (q) with 2 < ¢ < i. Thus, we have the following
algorithm for Cond(n) for n > 1.

input : An integer n > 1
output: The set Cond(n) of all the multiplicity sequences of Arf semigroups with
conductor n

Cond(n) «— {[n|}
for: < 2ton —2do
if i < [Z] then

| 7)) «— {[i]}
end
else

| Tm(i) +— 0
end
end
for: < 2ton —2do
for m € T"(i) do

if n — i € AS(m) then
| Cond(n) «— Cond(n) U {(n —1i) :: m}
end
for k € AS(m)N{2,...,[%*]} do
| TM(i+ k) «—T"(i+ k) U{(k)::m}
end
end
end
Cond(n)

Algorithm 1:
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3.1.2 Arf good semigroups of N? with given conductor

From this section we begin to deal with Arf good semigroups of N". The aim of this and the
following section is to find a procedure that lets us to determine all the local Arf semigroups
S C N” with a given conductor ¢ € N". For the Remark 4, we can focus only on the untwisted
trees.

We denote by Cond(c) the set of all the untwisted multiplicity trees of Arf semigroups in
N" with conductor ¢ € N" (in the case r = 1 we have the multiplicity sequences and from the
previous section we have a procedure to determine such a set).

We notice the following general fact.

Proposition 3.1.1. Let S be an Arf semigroup of N, 'T' the corresponding multiplicity tree and
m; fori =1, ..., r the multiplicity sequences of its branches.
We introduce the following integers

d(i) = min{j € N : m;[j] = 1 and the i-th branch is not glued to other branches at level j}
fori=1,...,r
Then ¢ = (c[1],...,c[r]) is the conductor of S where
d(i)—1
cli] = Z m;[k] for i=1,...r
k=1

Proof. Denote by N(T') = {nf} the set of the nodes of 7. We call ¢; = (0,...,0,1,0,...,0),
where the non zero coordinate is in the i-th position. Now, from the definition of the integers
d(i), it follows that

o nt®

;. =eiforallt =1,... 7;

° nf(i)_l #+ e foralli=1,... 7.
We consider the subtree 7" of 7" such that N (7") = {ng(i) ci=1,...,m70)=1,...,d@) — 1}.

Then we have

e T"is rooted in n} (it corresponds to an element of the associated Arf good semigroup);
e ¢;¢ N(T") foralli =1,...,r;
e If 7" issuchthat 7" C T” C T then N(T")\ N(T") consists only of nodes of the type e;.

From the previous properties it is clear that the element corresponding to the subtree 7" must
be the conductor of the Arf semigroup associated to 7. It is also trivial that the sum of all the
elements of N(7") is equal to ¢ = (c[1],. .., c[r]) where

d(i)—1

cli] = Y mlk]  for i=1,...r

—_
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Remark 11. Using the notations of Proposition 3.1.1, given an untwisted tree Tx = (p1, ..., pr—1),
where £ = {my,...,m,}, itis easy to show that

d(1) — 1 = max(l(m;), pi,pi—1) fort =2,...,r —1
d(1) — 1 = max(l{(my),p1) and d(r) — 1 = max(l(m,), pr—_1).

Now, we focus on the case r = 2 and we determine a procedure to compute Cond(c)
where c is a fixed arbitrary vector (c[1], ¢[2]). Suppose that Tx = (p) € Cond(c) where £ =
{my, ms}. From the previous remark d(1) — 1 = max(l(m;), p) and d(2) — 1 = max(l(ms), p).
Furthermore, in the following, we will call compatibility between the multiplicity sequences
my, ms, denoted by Comp(my, ms), the integer kg(1,2), defined in Proposition 2.1.2, where
E = {ml, mg}.

We have the following cases:

e Cased(l) — 1 =1(my)and d(2) — 1 = I(myg).

We have p < min(l(my),l(msz)). Furthermore, we have p < Comp(m;, my) because 1" is

well defined. Since Tr = (p) € Cond(c) we have:

d(1)—1 I(m1) d(2)—1 I(ma)
)= Y mfk] =) mulkland 2] = > malk] = > molk],
k=1 k=1 k=1 k=1

and from it we deduce that m; € Cond(c[1]) and ms € Cond(c[2]). So in this case T" belongs
to the following set:

St(e) = {Tp = (k) : E = {my,my};m; € Cond(cli]) and
1 < k < min(Comp(mq,ms),l(mq),l(ms))}.
Also, we can notice that S'(¢) C Cond(c) (using the inverse implications).

e Case d(1) — 1 =1I(mq) and d(2) — 1 # l(my).
Hence d(2) — 1 = p and I(m2) < p < min(l(m;), Comp(m,,ms)). Therefore:

l(m1) p l(mz2) p l(ma)
1] =Y malk], 2l =D malk] = Y molkl+ > malk] = Y ma[k]+p—1(ms),
k=1 k=1 k=1 k=1(m2)+1 k=1

and from this we can deduce m; € Cond(c[1]) and, denoted by ky = c[2] — (p — I(m2)),
mgy € Cond(kz). Notice that 0 < ky < ¢[2].
Now, for all 0 < k < ¢[2] we define the set:
Li(k) ={Tg = (p) : E = {my,ma},m; € Cond(c[1]), my € Cond(k) and
p =1(ma) + c[2] — k < min(l(m;), Comp(m,ms))} .

Thus 7" belongs to
c[2]-1

s2(c)= |J hk).
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With the inverse implication we can easily show that S?(¢) C Cond(c).
e Case d(1) — 1 #1(my) ed(2) — 1 =1(may).
We have d(1) — 1 = pand I(m;) < p < min(l(ms), Comp(m;,ms)). Hence:

l(m1) P l(m1) l(m2)

= Zm1[k?] = Z malk] + Z my[k] = Z malk] +p—1(ma); c[2] = Z malk],

k=1 k=l(m1)+1 k=1

ol
—

and from this we obtain my € Cond(c[2]) and, setting k1 = c[1] — (p — [(m1)), we deduce
my € Cond(k;). Notice that 0 < &y < ¢[1].
For all 0 < k < ¢[1] we define the set:

L(k)={Tg = (p) : £ ={my,ma},my € Cond(k), my € Cond(c[2]) and
p=1(m1) + c[1] — k < min(l(my), Comp(my, ms))}.
Therefore 7' belongs to
c[1]—-1
S3(e) = |J L(k).
k=0
With the inverse implication we can easily show that S3(¢) C Cond(c).
e Case d(1) — 1 #I(my) and d(2) — 1 # I(msy).
Then d(2) — 1 = p, d(1) — 1 = p and we have max(l(m,),{(mz)) < p < Comp(my,ms).
It follows:

P I(m1) P I(m1)
)= k] = mlkl+ > malk] =) malk] +p—1m)
k=1 k=1 k=l(m1)+1 k=1
P l(m2) p l(m2)
2= molk]=> malk]+ Y m ng | +p—I(my).
k=1 k=1 k=Il(m2)+1

If we denote by k; = ¢[1]— (p—1(my)) and by ko = ¢[2] — (p—1(m>)), we have m; € Cond(k;)
and my € Cond(k,).

Furthermore, notice that 0 < k; < ¢[1] and 0 < ky < ¢[2]. Now, forall 0 < k; < ¢[1] and
0 < ko < c[2] we define the set:

I(ky, ko) ={Tg = (p) : E ={my,ma},m; € Cond(k;) fori =1,2 and
P = l(m1> + C[]_] — ]{?1 = l(mg) + 0[2] — ]{32 S Comp(ml,mg)} .

So T' belongs to
S*e)= | I(k1,kz) C Cond(c).

0<k;<c[i]

Even in this case we can show that S3(¢) C Cond(c).
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We have studied all the possible cases so we proved
Sl(e) U Si(e) U S3(e) US*(e) = Cond(c).

All the previous set can be computed by using the procedure given in the case » = 1 so we have
found a procedure to compute Cond(c) when r = 2.

Example 3.1.2. Let us compute Cond([4, 5]).
First of all we compute S*([4,5]). We need Cond(4) and Cond(5). They are:

Cond(4) = {[4],[2,2]} and Cond(5) = {[5],[3,2]} .
Hence when we compute S*([4,5]) we find:

o £y = {my = [4],my = [5]}. Thus Comp(m,, my) = 5 and
min(l(my),{(mz)) = 1. Then we have only the tree T} = T, = (1).

= [3,2]}. Thus Comp(m;, my) = 3 and
1. Then we have only the tree T, = T, = (1).

|

o Fy={m;=1[4],m
min(l(m1), {(m2))

o F3={m; =122
)

2)

2 ,m = [5]}. Thus Comp(my, my) = 2 and
min(l(ma), l(ms)) =

2

)

1. Then we have only the tree T3 = T, = (1).

o Fy={my =12,2],my = [3,2]}. We have Comp(m,msy) = 2 and
min(l(my),l(mz)) = 2. So we have the trees Ty = T, = (1) and T = T, = (2) .

Hence S*([4,5])) = {T1, Ty, T3, Ty, T5 }.

Now we compute S%([4, 5]). The only value k such that I; (k) # () is k = 4 and we have:
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o ¢[l] =4, k = 4. If we consider m; = [2,2] € Cond(4),
my = [4] € Cond(4) and E5 = {my, ms} we have

l(ma) + c[2] — k =2 < min(l(m,), Comp(my,ms)) = min(2,2) = 2.
Hence we have the tree 75 = T, = (2).

Therefore S7([4,5]) = {Ts}. Let us compute S3([4,5]). The only value k such that (k) # ()
isk=3:

e k = 3, c[2] = 5. If we consider m; = [3] € Cond(3) , my = [3,2] € Cond(5) and
Eg = {m1, my} we have

[(my)+c[l] —k=1+4—3=2<min(l{(mz), Comp(m, my) = min(2,3) = 2.
Hence we obtain the tree 77 = Ty, = (2).

Therefore S3([4,5]) = {T%}.
We finally compute S3([4, 5]).
The only values of k1 and k5 such that (ky, k2) # () are the following:

o ky =2, ky = 3. If we consider m; = [2] € Cond(2),
my = [3] € Cond(3) and E; = {my, ms} we have

I(my)+c[l] =k =144—2=3=1+5-3 = I(ma) +c[2] — ky < Comp(my, my) = 3.
Thus we have the tree Ty = T, = (3).

o ky =3, ko = 4. If we consider m; = [3] € Cond(3) ,
my = [4] € Cond(4) and Eg = {my, ms} we have

I(my)+cl] =k =144—3=2=1+5—4 = (my) +c[2] — ke < Comp(my, my) = 4.

Thus we get the tree Ty = T, = (2). Hence S3([4, 5]) = {7k, To}-

T6 T7 T8
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Ty

Summarizing, we have Cond([4, 5]) = {11, Ts, T3, Ty, T5, T4, T7, Ts, Ty }.

Example 3.1.3. Using the previous results it is easy to implement an algorithm that computes
the number of Arf semigroups of N? with a given conductor. Each entry of the following table
is such a number, where the conductors range from (1, 1) to (20, 20).

[ J1[2[3[4[5]6[7]8 9 [10][11]12]13]14]15]16]17]18]19] 20 |
T[22 [4[3 7 [ 6109 [17 ] 122523 [27]49]34]68
4486 | 141220 [ 1834 | 24|50 |40 | 64| 54| 98| 68| 136
4519716 14| 2 [ 21 |39 [ 26 |57 |4 | 71| 60 | Il | 75 | I55
10 9 [ 18 15| 33 | 28 | 49 [ 43 | 81 | 59 | 120 | 96 | 156 | 131 | 236 | 167 | 328
9 1219 [ 15| 34 [ 32 | 51 | 45 | 86 | 62 | 128 [ 102 | 161 | 139 | 250 | 172 | 347
18 [ 19 | 4130 | 68 | 60 | 99 | 92 | 171 | 122 | 252 | 201 | 326 | 275 | 497 | 344 | 687
15| 1530 [ 30 | 54 | 48 | 80 | 74 | 134 | 104 | 204 | 163 | 264 | 221 | 399 | 285 | 556
33 | 34 | 68 | 54 | 120 | 108 | 180 | 164 | 306 | 222 | 453 | 371 | 593 | 499 | 901 | 632 | 1251
14 [ 28 |32 [ 60 | 48 | 108 | 108 | 160 | 147 | 271 | 202 | 404 | 330 | 522 | 459 | 809 | 566 | 1120
20 [ 227[ 49 |51 [ 99 |80 | 180 | 160 | 284 | 242 | 454 | 337 | 676 | 545 | 878 | 748 | 1336 | 961 | 1867
18 |21 | 43 |45 | 92 | 74 | 164 | 147 [ 242 | 245 | 412 | 307 | 611 | 502 | 798 | 685 | 1215 | 868 | 1688
34 [ 39 [ 81| 86 | 171|134 306 | 271 | 454 | 412 | 798 | 567 | 1148 | 927 | 1492 1273 | 2277 | 1608 | 3159
24 26 [ 59 | 62 [ 122104 | 222 [ 202 | 337 | 307 | 567 | 469 | 849 | 694 | 1115 | 961 | 1689 | 1224 | 2347
50 | 57 | 120 | 128252 | 204 | 453 | 404 | 676 | 611 | 1148 | 849 | 1750 | 1383 | 2224 | 1897 | 3389 | 2403 | 4710
40 | 46 | 96 | 102201 | 163 | 371 | 330 | 545 | 502 | 927 | 694 | 1383 | 1192 | 1805 | 1556 | 2753 | 1976 | 3822
64 | 71 | 156 | 161|326 | 264 | 593 | 522 | 878 | 798 | 1492 | 1115 | 2224 | 1805 | 2992 | 2493 | 4433 | 3174 | 6155
54| 60 [ 131|139 275 | 221 | 499 | 459 | 748 | 685 | 1273 | 961 | 1897 | 1556 | 2493 | 2244 | 3798 | 2734 | 5266
98 | 111236 | 250 | 497 | 399 | 901 | 809 | 1336 | 1215 | 2277 | 1689 | 3389 | 2753 | 4433 | 3798 | 6867 | 4814 | 9394
68 | 75 | 167 | 172|344 | 285 | 632 | 566 | 961 | 868 | 1608 | 1224 | 2403 | 1976 | 3174 | 2734 | 4814 | 3634 | 6701
136 | 155 | 328 | 347 | 687 | 556 | 1251 | 1120 | 1867 | 1688 | 3159 | 2347 | 4710 | 3822 | 6155 | 5266 | 9394 | 6701 | 13219
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3.1.3 Arf semigroups of N” with a given conductor

In this section we study the general case. We want to develop a recursive procedure to calculate
Cond(c) for ¢ € N', using the fact that we already know how to solve the base cases = 1 and
r = 2. In order to do that is very useful the following Lemma.

Lemma 3.1.4. Consider ¢ = (c[1],...,c[r]) € N", with r > 3 and suppose that the untwisted

treeT = Tg = (p1,...,pr—1) € Cond(c), where E = {my,...,m,}. Ift € {2,...,r—1},
then we have that at least one of the following conditions must hold:
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o 11 =Tg = (p1,...,p—1) € Cond((c[1],...,c[t])) with Ey = {mq,...,m;};

o Iy =Tg, = (pty...,pr—1) € Cond((c[t], ..., c[r])) with By = {my,...,m,}.
Proof. We assume by contradiction that

o Ty ¢ Cond((c[1],...,c[t]));

e Ty ¢ Cond((c[t],...,c[r])).

Let us consider the following integers (which are clearly linked to the conductor):

di(i) = min{j € N : m;[j] = 1 and the i-th branch in 7} is not glued to any branches at level j},

fore=1,...,t.

do(i) = min{j € N : m;[j] = 1 and the i-th branch in 7 is not glued to any branches at level j},

fore=t,...,r

We have d;(l) = d(l), foralll = 1,...,t — 1, and do(q) = d(q), forallg =t +1,...,r

Furthermore, d;(t) < d(t) and dy(t) < d(t). In fact we have noticed that d(t) — 1 =

max(l(my), pi—1,pt), while di(t) — 1 = max(l(my), pr—1) and do(t) — 1 = max(l(my), pt).
From 7" € Cond(c) we deduce that

d(i)—1

> mlk] = cli] fori=1,...,r.

k=1

We denote respectively by (ci[1],...,c1[t]) and by (¢e2[t], . . ., ¢2[r])) the conductors of T and
1.
We have:

= Z mylk] = Z mylk] = cll]forl=1,...,t —1

k=1
d2(q)—1 d(g)-1
and c;[q] = mglk mglk ,forg=t+1,.
k=1 k=1

and this implies, because 77 ¢ Cond((c[1],...,¢c[t])) and Ty ¢ Cond((c]t],...,c[r])), that

dl(t)_1 dg(t) 1
alt] = Z my|k] # c[t] and ¢yt Z my|k
k=1 k=1

and therefore we have d; (t) < d(t) and da(t) < d(t).
From this it would follow

d(t) — 1 = max(l(my), pr_1,p:) = max(max(l(my), p;—1), max(l(myg),p))) =
= max(dy(t) — 1,dy(t) — 1) < d(t) —
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and we obtain a contradiction. ]

Now, using this Lemma, we can introduce an algorithm that solves our problem working
inductively. Given ¢ € N", with r > 3, we want to compute Cond(c). We suppose that we are
able to solve the problem for all s < r and we develop a strategy for the r case.

Let us fix some notations. If £ = 2,...,r — 1, we denote by ¢, = (¢[1],...,c[k]) and by
¢t = (clk +1],...,¢c[r]). Similarly, if £ = {my,...,m,}, we denote by E}, = {my,...,my}
and by E* = {my,1,...,m,}. Furthermore, for i = 1,...,r — 1, we define the integers

*p; = max({(m;),p;—1) and pf = max(l(m;s1),pis1), Where, by definition, we set p:_; =
[(m,) and *py = I(ma).

Fixed ¢ € N", we suppose to have atree T = Tp = (p1,...,p-—1) € Cond(c) with
E = {my,...,m,}. Consider t € {2,...,r — 1}. It follows from Lemma 3.1.4 that we only
have two cases:
eCase Tt =Tg, = (p1,...,pi—1) € Cond(cy).

We clearly have d; (i) = d(i) foralli = 1,...,¢t — 1, while from 77 € Cond(c;) it follows
that d; (t) = d(t). Hence:

*pt = max(l(mt),pt_l) = dl(t) -1= d(t) —1= maX(phpt—la l(mt)) = max(*ptapt)

and we deduce that p; < *p;.
We consider the tree 7o = Tt = (pry1,-.-,pr-1), (if t = 7 — 1 we have T, = m,). We
clearly have dy(i) = d(i) foralli =t + 2,...,7.
On the other hand ds(t + 1) — 1 = max(l(my41), pr+1) = p; may be different from
d(t+1) — 1 = max({(mys1, prr1, pe) = max(p;, pr).

Hence we have the following two subcases:
» Subcase da(t + 1) = d(t + 1).
In this case we have T, € Cond(c!) and p; < p; (if t = r — 1 we have T, = m, €
Cond(c[r])). We also recall that we must have the compatibility condition p; < Comp(my, my1).
Thus we have discovered that 7" belongs to the following set:

S%(C) ={Tg =1, spr—1) : E={ma,...,m};Tg, = (p1,...,pi—1) € Cond(c;);

Tee = (pts1, - -+, pr—1) € Cond(c") with 1 < p; < min(*py, p;, Comp(my, mt+1))} .

It is very easy to check that we also have S](¢) C Cond(c). If ¢ = r — 1 the previous set has
the following definition:

Si(e)={Te = (p1,-.,pr—1) : E={my,...,m.}; Tg,_, = (p1,...,pr—2) € Cond(c,_1);

m, € Cond(c[r]); 1 < pr—y < min(*p,_1,(m,.), Comp(m,_1,m,))}.

» Subcase do(t + 1) # d(t + 1).
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In this case we have

pe=d(t+1) —1>do(t +1) — 1 = max(l(my1), pey1) = ;-

Hence
d(t+1)—1 Pt Py
ct+1]= Y mulkl =D mealk] =Y mealk] +p— i,
k=1 k=1 k=1
and from this it follows that 75 € Cond((k[t + 1],¢[t + 2],. .., c[r])), where
Pt da(t+1)—1
th+1[k] = Z My k] = ke < cft +1],
k=1 k=1

and we have T, € Cond(k;, ;) in the case t =  — 1. Thus we have ki1 = c[t + 1] — (pr — p}).
Notice that k;,; cannot be equal to zero when ¢ # r — 1 (because p; > 1), while it can be zero
in the case t = r — 1. Then, for all the k;;; € N such that min(r — 1 —¢,1) < ki1 < ¢t + 1]
we define the set:

Li(kir) ={Te = (p1,.. ., pr—1) : E={mq,...,m}; T, = (p1,...,p1—1) € Cond(c,);

Tgt = (pri1y -, pr—1) € Cond((kis1,clt +2],...,¢c[r]));
pe=p; + [t + 1] = k1 < min(*pg, Comp(my, met1)) } -
Hence T’ belongs to the following set:

clt+1]—1

Si(e) = U I (Kg),

k¢+1=min(r—1—¢,1)

and it is clear that S7(¢) C Cond(c).
If t = r — 1 the previous set has the following definition:

Li(ky) ={Tg = (p1, - ,pr1) s E={my,...,my}; T, = (p1,...,pr—2) € Cond(c, 1);
m, € Cond(k,); pr—1 = l(m,) + c[r] — k. < min(*p,_1, Comp(m,_1,m,))}.
e Case Ty = Tgi-1 = (pg,...,pr—1) € Cond(c!™1).
We only have to adapt the considerations made in the previous case to this case. Thus we

directly give the sets that arise without further justifications.
» Ift +# 2,

Sy(e) ={Tp = (p1,...,pr1) - E={ma,...,my}; Tpr = (p1,...,pr—1) € Cond(c"™");
Tg,_, = (p1, -, pi-2) € Cond(¢;—1) con 1 < py_y < min(*p,_y, p;_,, Comp(my, my_1))} .
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» Ift =2,
521((:) ={Te = (p1,...,pr—1) : E={my,...,m.}; Tpr = (p2,...,pr_1) € Cond(cl);

my € Cond(c[1]); 1 < p; < min(l(my), p}, Comp(my,ms))}.

We have 53 (¢) C Cond(c).
For all k;_; € N such that min(t — 2,1) < k;_; < [t — 1] we consider:
> Ift 2,

Iy(kiy) = {TE =1, pr1) : E={my,...,m.}; Tger = (py,...,pr—1) € Cond(c'™);

Tg,, = (p1,...,p—2) € Cond((c[1],...,c[t —2],ki_1));
Pi—1 = D1 +c[t — 1] — k—y < min(p;_,, Comp(m;_1, mt))} :
» Ift =2,

[2(]{51) = {TE = (pl, e 7pr—1) B = {ml, R ,mr};TE1 = (pg, R apr—l) S Cond(cl)

my € Cond(ky); p1 = l(m1) + ¢[1] — k1 < min(p], Comp(my, m2))} .
We have that:
c[t—1]—1

S2(¢) = U I,(k;—y) C Cond(c).

ki—1=min(t—2,1)

The previous lemma ensures that we have considered all the possibilities. So we proved that
Cond(c) C S} (e) U Si(e) U S;y(e) U S(e),

hence
St(e) US?(e) U Sy(e) US5(e) = Cond(c).

Due to our induction hypothesis all the previous sets can be computed so we developed an
algorithm which computes Cond(c).

Now we have a way to compute all the untwisted multiplicity trees with a given conductor ¢
for all the ¢ € N". Suppose that we want to find also the twisted multiplicity trees with conductor
c. We will call Cond(c) the set of all multiplicity trees (twisted or untwisted) associated to an
Arf semigroup with conductor ¢. Suppose that 7" is a twisted tree in Cond(c) with ¢ € N".
Then there exists a permutation o € S”, where S” is the symmetric group, such that o(7') is

untwisted and it clearly belongs to Cond (o (c)). From this it follows that:

Cond(c) = | J {o7(T) : T € Cond(c(c))} .

oceSs”
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Example 3.1.5. Let us compute Cond([3,2,4]). In this case r = 3, therefore we have ¢t = 2.
First of all we compute S7([3,2,4]). Because t = r — 1 the definition of this set is:

SH[3,2,4]) = {Tg = (p1,p2) : E = {my,mg,ms}; Tr, = (p1) € Cond([3,2]);
mg € Cond(4); 1 < py < min(l(mg), *p2, Comp(ms, ms))} .
Then to do that we need the follwing sets:

e Cond([3,2]) = {A1, Ao} where A} = Tr, = (1) and Ay = T, = (2) with Fy = {[3], [2]}
and Fy = {[2],[]}.

e Cond(4) = {[2,2], [4]}.

Hence we consider:

o [y ={my = [3],my = [2], m3 = [2,2]} and we have
min(max(l(mz), p1), Comp(ma, ms),l(ms)) = min(1,2,2) = 1. Thus we only have the
tree Ty = Tg, = (1,1)

o Fy = {my = [3],me = [2], m3 = [4]} and we have
min(max(l(mz), p1), Comp(ma, ms),l(ms)) = min(1, 3,1) = 1. Thus we only have the
)

o = [ ],mg = [2,2]} and we have
min(max(l(ms),p1), Comp(mQ, mg),l(m3)) = min(2,2,2) = 2. Thus we have the trees
T3 = ij3 = (27 1) and T4 TE3 = (2, 2)

o Ey={my =[2],my =], ms=[4]} and we have
min(max(l(ms), p1), Com (mg, mg),l(m3)) = min(2,2,1) = 1. Thus we only have the
tree 15 = T, = (2 1)
Hence Sll([ 5 Ly ]) = {Tl, TQ,Tg,T4,T5} .
Now we compute S7([3,2,4]). We find k3 = 3 as the only value such that I(k3) # (. In
fact, if we consider A, and m3 = [3], we have:

\_/l\')

o E5={my =[2],my =[], ms=[3]} and we have

l(ms3) + ¢[3] — k3 = 2 < min(max({(ms), p1), Comp(msg, m3))) = min(2,2) = 2. Thus
we have the tree Ts = T, = (2,2).

T1 T2
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Ty T,

15 16

Now we compute S5 ([3,2,4]). We are in the case ¢ = 2 so its definition is:
S%([372a4]) = {TE = (p17p2) B = {m17m27m3}; T‘E1 = (pQ) € COHd([2,4D,

my € Cond(3);1 < p; < min(l(my),p], Comp(my, ms))}.

Then, to do that we need the following sets:
Cond([2,4]) = { B, B2, B3, By}, where

2) with Gy = {[ ], [2,2]};

Bl — TG1

1) with Gy = {[2], [2,2]};

By =1Tg,

= (2)
= (1)

By = Ta, = (2) with G5 = {[ ], [3]} ;
= (1)

By = TG4 1) with G4 = {[2], [4]} 5

Cond(3) = {[3]}.
Hence we consider:

o Fg={my =[3],my =[], ms=[2,2]} and we have
min(max(ps, [(ms2)), Comp(my,ms),l(my)) = min(2,2,1) = 1. Thus we only have the
tree 77 = Tg, = (1,2).

o Fy ={my =[3],mqy = [2],m3 = [2,2]} and we have
min(max(pa, [(msg)), Comp(my, ms),l(m1)) = min(1,3,1) = 1. Thus we only have the

tree, already found in S7([3,2,4]), Ty = Tx, = (1,1).
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o ;= {my =[3],me =[], mg=[3]} and we have
min(max(pa, [(my)), Comp(ml,mg) [(m1)) = min(2,2,1) = 1. Hence we have the
treengTE7:( ).

o Fy = {my = [3],me = [2], m3 = [4]} and we have
min(max(ps, [(ms2)), Comp(my, ms),l(my)) = min(1, 3,1) = 1. Thus we only have the
tree, already found in S7([3,2,4]), To = Tr, = (1,1).

Hence 521([3, 27 4]) = {Tl, TQ, T7, Tg} .
Now we compute S3([3,2,4]). We find k; = 2 as the only value such that I(k;) # (), and
I(2) contains two elements. In fact, if we consider B, and B; and m; = [2], we have:

o E3s={my =[2],my=1],ms=[2,2]} and we have

[(mq) + ¢[1] — k1 = 2 < min(max(ps, [(m2)), Comp(my,m2))) = min(2,2) = 2. Thus
we only have the tree, already found in S} ([3,2,4]), Ty = Tg, = (2,2).

o E5={my =[2],my =[], ms=[3]} and we have

[(mq) + ¢[1] — k1 = 2 < min(max(ps, [(m2)), Comp(my,ms))) = min(2,2) = 2. Thus
we only have the tree, already found in S%([3,2,4]), Ts = Tk, = (2,2).

Thus 521([37274}) U S§<[37274]) = {T17T27T47T67T77T8}'

17 13

Hence’ Cond([37 27 4]) - {T17 T27 T37 T47 T5> T67 T77 TS}
If we compute the set Cond(([3, 2, 4]), with the technique explained above, we find that:

Cond([3,2,4]) = Cond([3, 2, 4]) |_J{Ts, o} .

where
01 2
L] Tg = M(T)Eg = 0 0 1] where Eg {Ml [ ] M2 [2] M3 = [2, 2}}
000
01 2
L] TlO = M(T)Eg = |0 0 1] where Eg = {Ml [2] M2 = [2],M3 = [3]}
000
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Tg TlO

Example 3.1.6. It is easy to implement an algorithm that computes the number of untwisted Arf
semigroups of N3 with a given conductor. In the following table we have the values obtained
for some conductors.

| ¢ |[Cond(c) | c | [Cond(c)] || c | [Cond(c)] || c | [Cond(c)] ||

1,1, 1] 1 3,8, 8] 2401 | [15,15,15] | 71736 [7,8,9] 843

2,2,2] 4 [9,9,9] 1940 1,2,3] 2 8,9, 10] 2901
3,3, 3] 9 [10,10,10] | 8126 2,3, 4] 8 [0,10,11] | 3913
[4,4,4 [ 50 [11,11,11] | 6671 3,4, 5] 8 [10,11,12] | 11178
5,55 | 72 [12,12,12] | 37750 (4,5, 6] 86 [11,12,13] | 13942
6,6,6] | 425 [13,13,13] | 18263 5,6, 7] 144 | [12,13,14] | 40278
[7,7,7] 294 [14,14,14] | 123498 6,7, 8] 542 (13,14, 15] 47675

Example 3.1.7. The following table contains the value of |Cond(c)| for some values of c.

| e HCond [ e [[Condle)] | e HCond [ e [|Conde)] |
[1,1,1] [7,7,7) 406 1,2,3] [7,8,9] 1145
2,2,2] 5 3,8, 8] 3217 | [2,3,4] 10 8,9, 10] 3828
3,3,3] 12 9,9,9] 2650 | [3,4, 5] 26 [0,10,11] | 5289
[4,4,4] 66 [10,10,10] | 10992 || [4,5,6] | 110 [10,11,12] | 14908
5,5, 5] 98 [11,11,11] | 9131 || [5,6,7] | 192 [11,12,13] | 19147
[6,6,6] | 567 [12,12,12] | 50903 |/ [6,7,8] | 701 [12,13,14] | 53144

3.2 Finding Arf semigroups with a fixed genus

The aim of this section is to solve a similar problem to the one addressed in the previous one.
The role of the conductor will be replaced by the genus. We firstly give a new procedure for
the determination of all the Arf numerical semigroups with a fixed genus, slightly adapting the
one given in the Subsection 3.1.1 for the conductor. Then, we give a way to compute the genus
of an Arf good semigroup from its untwisted multiplicity tree and we give a procedure for the
computation of the set of all the Arf good subsemigroups of N” with a fixed genus n, that works
by induction on the dimension 7.
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3.2.1 An algorithm for the Arf numerical semigroups with a given genus

The problem of determining the set of all the Arf numerical semigroups with fixed genus was
also addressed and solved in [12], where the authors presented a recursive algorithm for the
computation of such a set. Here we present a non-recursive procedure that appeared to be faster
when implemented in GAP.

First of all we recall that the genus of a numerical semigroup S is the cardinality of N \ S.
If m is a multiplicity sequence we denote by ¢(m) the conductor of the Arf semigroup AS(m)
associated to m. It is easy to deduce from Proposition 1.3.8, that if m is a multiplicity sequence,
then the genus of AS(m) is c(m) — I(m) = S0 (my — 1).

We denote by Gen(n) the set of the multiplicity sequences of the Arf numerical semigroups
with genus n.

Our aim is to compute Gen(n) for all n € N. If n = 0 then Gen(n) = {[|}. Thus we
suppose n > 1. Denote by

U'(i)={m e Gen(i):my +i—1<n} foralli=1,...,n — L.

Now suppose that m = [my, ..., my] € Gen(n). If k = 1 then m = [n + 1], otherwise we have
the following situation:

e 2<my <n;

o c([ma,...,mg]) = c([my,ma,...,my])—mqand [([ma, ... ,mg]) = 1([m,...,mg])—1.
Soc([ma,...,mg])—l([ma,...,mg]) = n—my+1,and [mo, ..., my| € Gen(n—m;+1);
e my € AS([ma, ..., my]);
e my—m <0=me+(n—m+1)—1<n=[mg,...,mg] € U"(n—my+1).
So if we know U™ (i) fori = 1,...,n — 1, then we can compute Gen(n) in the following way:
n—1

Gen(n) = | J{(n—i+1) =m|m € U"(i),n —i+1€AS(m)} U{[n+1]}.

=1

Thus we need a way to compute U" (7). Suppose that m = [my,...,my| € U"(3). If k = 1,
andi+ 1+ —1=2i <nthenm = [i + 1], otherwise we have the following situation:

e 2 <my <i,and [my,...,mi] € Gen(i —my + 1) = Gen(q);
e mot+qg—l=mo+i—mi+1—1=my—mi+i<i<n=|mg,...,my €U"(q);
e My EAS([mg,...,mk]);

emi+i—1<n=2m<n—i+l+m=n—(Gi+1—-m)+2=n—q+2=
< n—q-+2
mi L 2 J

So each U"(i) can be constructed using U"(g) with 1 < ¢ < i. Thus we have the following
algorithm for the computation of Gen(n).
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input : An integer n
output: The set Gen(n) of all the multiplicity sequences of Arf semigroups with genus
n

Gen(n) «— {[n+ 1]}
for: < 1ton — 1do

if i < [Z] then

| UG — {li+ 1))
end

else
| U™i) «— 0

end
fori < 1ton—1do
for m € U™ (i) do
ifn—i+ 1€ AS(m) then
| Gen(n) «— Gen(n)U{(n—i+1) ::m}
end
for k € AS(m)N{2,...,[*==*2]} do
| Ui+ k—1)«—U"(i+k—-1)U{(k):m}
end
end
end
Gen(n)

Algorithm 2:
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3.2.2 Arf semigroups of N” with given genus

The aim of this section is to find a way to determine all the Arf good semigroups of N” with
a given genus. For the Remark 4, it is not restrictive to focus only on the Arf semigroups
associated to untwisted trees. Recall that the genus of a good semigroup can be computed as:

9(8) = d(N"\ C) —d(5\ O).

Since d(N"\ C') is the length of a saturated chain in N” from the vector 0 € N" to the conductor
C(S) = (c[1],...,c[r]), it is easy to show that

T

d(N"\ C) =) c[k].

k=1

On the other hand, d(S \ C') is the length of a saturated chain in S from0 € Stod € S.

Remark 12. Because the conductor 0 is an element of the Arf semigroup S(7’), it can be ex-
pressed as a sum of nodes in a subtree 7”7 of 7. From Proposition 3.1.1, it easily follows
that 7" is the subtree consisting of the nodes of 7' that are different from the unit vectors
e; =(0,...,0,1,0,...,0).

For the Arf good local semigroups with untwisted multiplicity tree we have the following
theorem:

Theorem 3.2.1. Suppose that T = Tr = (p1,...,pr—1) is an untwisted multiplicity tree of an
Arf semigroup where E = {my, ... ,m,} is a collection of multiplicity sequences.
Then

95T =3 g(AStme) + 3

where S(T') is the Arf semigroup associated to the tree T and AS(my,) is the Arf numerical
semigroup associated to the multiplicity sequence my,.

Proof. Denoted by 6 = (¢[1],...,c[r]) the conductor of S(T"), and by C' = § + N". We know
that
g(S(T)) = d(N"\ C) = d(S\ C).

We have
r max(l(m1),p1) max(l(m;),pi,pi—1) max(l(mr),pr—1)
dN\C)=> ekl = Y w4+ Y milkl+.. .+ ) mk]
k=1 k=1 k=1 k=1
I(m1) 1(m;)
= k] +max(l(my), p1) = U(ma) +...+ > mglk] +max(l(m;), pi, pio1) = L(ma) + ...
k=1 k=1
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Y my k] max(I(M,), prot) —1(my) =Y Z — 1(my) | +max(I(mi), p1)+

k=1 j=1 =
r—1
+ Z maX(Z(mk)a pkapkfl) + maX(l<mr>7prl)>
k=2

where we are using again Proposition 3.1.1.
Now we want to compute d(S\ C'). We need a saturated chain in S(7") from 0 to . Suppose
that we have
O=qgy<a;<---<a =9,

a saturated chain in S(7). We clearly have a; = (m4][1],...,m,[1]), that is the multiplicity
vector of S(T"). Let us consider a, € S(T'), with ¢ = 1,...,1 — 1. From the properties of
the multiplicity tree of an Arf semigroup, there exists a subtree 7" of T, rooted in the node
corresponding to a4, such that a, is the sum of all the nodes belonging to 7”. As usual we
denote by n{ the node of I’ that is in the i-th branch and on the j-th level. We denote, given a
subtree 7" of T', by N(7”) the set of nodes that appears in 7".

Now, it is clear that, in order to have a saturated chain, a,; must be the sum of all the nodes
belonging to a subtree 7" of T" such that:

o T"CT":
o N(T")\ N(T") = {nl};
e n/ ' c N(T");
nf # e;, where ¢; is the i-th canonical vector of N” (by Remark 12 since a, # 0).
From the previous remark, it easily follows that
dS\C) = | {n € N(T): 0! #e;} .

and we need to compute this cardinality. Taking in account the expressions for c[i], it follows
that there are

e max(l(my), p1) nodes along the first branch that are different from e;;
e max(l(m;), p;, pi—1) nodes along the i-th branch different from e;, for 2 <i <r — 1;
e max(l(m,), p,_1) nodes along the last branch that are different from e,..

Now from 7' = T = (p1, - . ., p-—1) we deduce that the i-th and 7 + 1-th branches have p; nodes
in common foreachi =1,...,r — 1. Therefore we can conclude:

r—1

d(S\ C) =max(l(my),p1) + Zmax L(mk), Pk, Pr—1) + max(l(m;), pr—1) Zpk

k=2
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Finally we have:

T l(my) r—1
9(S(T)) = d(N"\ C) = d(S\ C) =) Z K= 1(my) |+ b,
j=1 \ k= k=1
U(m;)
and, because Z m;[k] — l(m;) = g(AS(m;)), we have:
k=1
T r—1
= Zg(As(mk)) + Zpk,
k=1 k=1
and the proof is complete. []

Now we denote by Gen(r, n) the set of all the untwisted multiplicity tree associated to Arf
good semigroups in N” with genus n. Given an € N we want to find a way to compute the
set Gen(r,n). We do that using recursion on 7. From the previous section we know how to
compute Gen(1,n), so the base case is done. First of all, we notice that we need n > r — 1. In
fact an untwisted Arf semigroup S of N” can be described by atree 7' = T = (p1,...,Dr—1)
with £ = {my,...,m,}, and we have just showed that

= Z 9(AS(my)) + ipk,

where g(AS(my)) > 0 and py > 1 for all the k. Then g(S(T")) > r — 1.
We fixar > 2andn > r — 1 and suppose that T' = T = (p1,...,pr—1) is a multiplicity
tree in Gen(r, n), where £ = {m, ..., m,} is a collection of r multiplicity sequences.
Consider ¢t < r. We have:

n= ZQ(AS(mJ’))Jripj - <Zg (AS(m;)) + ZPJ>+Pt+< > g(AS(m;)) + i pj) ,

therefore if we denote by

ZgASm] —1—ij and ko = Z (AS(m;)) ij,

j=t+1 j=t+1

we have:
n—p = ki + ks.

Now, we have:
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e The tree T' = Ty, = (p1,...,ps_1), with E; = {my,...,m;}, belongs to Gen(t, ki)
(ky >t —1);

The tree 7% = Tt = (pes1,-- - Pr_1), with E* = {my,1, ..., m,}, belongs to
Gen(r —t,n —p; — k1) ;

1 < p, < Comp(my, myt1);

ki+ky>r—2=1<p <n-—r+2
e khy>r—1—-t=k<n—p—r+1+t.
Now, foreach 1 <p<n—r+2andt—1<k(p) <n—p-—r+ 1+t we define the set

];L<t7p7k:(p)) = {TE = (p17' .. apT’—l) B = {m17‘ .. amr} 7TEt = (plv' .. apt—l) S

€ Gen(t, k(p)), Tet = (pia1,---,pr—1) € Gen(r —t,n — p — k(p)),
and p; = p < Comp(my, my41)} -

So we can deduce that 7" belongs to the following set:

n—r+2 [n—p-r+t+l

S(r,n) = U U I'(t,p, k(p))

p=1 k(p)=t—1

With the inverse implications, it is very easy to show that S(r,n) C Gen(r,n). Then we have
Gen(r,n) = S(r,n).

Notice that the computation of Gen(r, n) involves the computation of Gen(¢, k) and Gen(r —
t, k), then using recursion and the base case we can solve our problem.

Remark 13. If wehave T' = Tr = (p1,...,pr—1) With E = {m4, ..., m,}, we will denote by
T '=Tg1=(p_1,...,p1) Where E=' = {m,, ... ,m}.

It is clear that if T € Gen(r,n) then T~ € Gen(r,n) too. If U is a set of multiplicity trees,
we denoteby U™ = {T~1: T € U}.

We have the following proposition:

Proposition 3.2.2. Ift < L and \(p) > ““L=1 then

Gen(r,n) = U U (I (t p. k(p)) U (12 (L, p, k() ™)

n—r+2 Ap)
p=1 k(p)=t—1

Proof. Consider ¢t < 7 and A(p) > "_g_l, we show that forany p = 1,...,n — r + 2, we have

-1

n—p—r+t+1 Ap)
U tpke)c| U Irtp k)
k(p)=A(p)+1 k(p)=t—1
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n—p—r+t+1
Consider T" € U I'(t,p, k(p)), then

k(p)=A(p)+1

T=Tg=(p1,...,pr—1) with E = {my,...,m,} and Tex = (piy1,...,pr—1) € Gen(r—t,n—p—k),

where \(p) + 1 <k<n—p—r+t+1.
We want to show that

-1

A(p) A(p)
T e U 1'(t,p, k(p)) — T'e (J I'tpkDp).
k(p)=t—1

Let us consider the subtree 7" of T~ " with 7" = T(-1), = (Pr—1, ..., Pr—t+1), Where (E1), =

{mm s amT—t—i—l}-
Now we have:

T
t<g=2A<r=t<r—t=t+1<r—t+1,

and from this and from Tt = (psy1,...,pr_1) € Gen(r —t,n — p — k) we can deduce that
Tl = T(E'_l)t = (prflv cee 7p7“7t+1) € Gel’l(t, ZZ'),

where ¢t — 1 g:vgn—p__E‘
Thus, from A(p) + 1 < k and from A(p) > ”_72’_1

—k<-Ap)—landn—p—1<2\p)=>z<n—p—Ap) —1<A(p).

Therefore, from T—! € Gen(r, n) and from the previous inequality we have

A(p)
T'el'tpx U " (t,p, k(p)),
and the claim is proved. Therefore we have:

n—r+2 A(p)

Gen(rim) 2 |J | U (Itpkm) U2 k@) ) | 2

p=1 \k(p)=t-1

and the proof is complete. O]
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The previous proposition suggests us an easier way to compute Gen(r,n). In fact we have
to consider a smaller amount of sets of the type I (¢, p, k(p)), completing the computation with
sets of the type (I7(t,p, k(p)))”" that are very easy to obtain once we have I"(t,p, k(p)). To

speed up the process is also useful to set A(p) = [=2=1] and t = |Z].

Denote by Gen(r,n) the set of all the multiplicity trees (twisted and untwisted) of the Arf
semigroups in N” with genus n. We can already compute all the untwisted ones. Suppose that
T is a twisted tree in Gen(r,n). Then there exists a permutation o € S” such that o(7) is
untwisted. From the formula of the genus it is very easy to see that o(7') € Gen(r,n). Thus we
have:

Gen(r,n) = U {o™N(T) : T € Gen(r,n)} .

oc€eST

Example 3.2.3. We compute Gen(2, 3). In this case we have ¢ = 1.
We have to consider the sets I3(1, p, k(p)) and (I3(1,p, k(p)))~" for each 1 < p < 3 and
3—p—1
0 < k(p) < [*5-].
Case: p=1=0<k(1) <1
e k(1) = 0. To compute I3(1,1,0) we need m; € Gen(1,0) and m, € Gen(1,2). They are
Gen(1,0) = {[ ]} and Gen(1,2) = {[3], [2, 2]} .

Thus we can consider

= By ={my = [],my = [3]}.
In this case 1 = p < Comp(m;, ms) = 2 then the tree T3 = Tr, = (1) belongs to
Gen(2, 3).

By = {my = []ma = [2,2]}.
In this case 1 = p < Comp(my,my) = 3 then the tree 75 = T, = (1) belongs to
Gen(2,3).

Therefore 13(1,1,0) = {71, Ty} . We have now to compute (13(1,1,0)) "

- T3 =T,"=Tg, = (1) € Gen(2,3), with E3 = E;' = {[3],[ ]}
- Ty =Ty, =Tg, = (1) € Gen(2,3), with E; = E; ' = {[2,2],[]}.

Therefore (13(1,1,0)) " = {Ts, Ty} .
e k(1) = 1. To compute I3(1,1,1) we need m; € Gen(1,1) and my € Gen(1,1). We have
Gen(1,1) = {[2]}.
Thus we only have to consider
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- E5 = {m1 = [2],m2 = [2]}
In this case 1 = p < Comp(my,ms) = +o0 then the tree 75 = T, = (1) belongs
to Gen(2, 3).

Therefore 13(1,1,1) = {Ts}. In this case I3(1,1,1) = (I3(1,1,1))"".
Case: p =2 = k(2) = 0.
e k(2) = 0. To compute I3(1,2,0) we need m; € Gen(1,0) and m, € Gen(1,1).
Thus we only have to consider

= B = {mi=[],ms = [2]}.
In this case 2 = p < Comp(m, m2) = 2 then the tree T = T, = (2) belongs to
Gen(2, 3).

Therefore 13(1,2,0) = {Ts} . We have now to compute (13(1,2,0)) "
- Ty =T, =Ty, = (2) € Gen(2,3), with B, = E5' = {[2],[]} .
Therefore (13(1,2,0)) " = {T%} .
Case: p =3 = k(3) = 0.
e k(3)=0.
To compute 73(1,3,0) we need m; € Gen(1,0) and my € Gen(1,0).

Thus we only have to consider

= By ={mi=[],ma =[]}
In this case 3 = p < Comp(my, mg) = +oo then the tree Ty = Ty, = (3) belongs
to Gen(2, 3).

Therefore I3(1,3,0) = {Tx}. In this case I3(1,3,0) = (13(1,3,0)) . Thus Gen(2,3) =
{1, T5,T5,Ty,T5,Ts, T7,Ts}. We obviously have Gen(2,3) = Gen(2,3) because we
have only two branches.

%P 95 9P S8
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In the following table we report the cardinality of Gen(2, n) for n up to 32.

n | |Gen(2,n)| | n | |Gen(2,n)| | n | |Gen(2,n)| || n | |Gen(2,n)]
1 1 9 251 17 4386 25 35203
2 3 10 385 18 5874 26 44209
3 8 11 577 19 7773 27 55175
4 16 12 837 20 10195 28 68493
5) 32 13 1207 21 13270 29 84540
6 56 14 1701 22 17138 30 103898
7 99 15 2361 23 21922 31 127031
8 157 16 3239 24 27882 32 154681

Using the previous results, it is easy to implement an algorithm that computes the number
of untwisted Arf semigroups of N” with a given genus n. Each entry of the following table is
such a number, for 1 <r < 16and 0 < n < 15.
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[r\n]O[1[2[3][4[5][6 78] 9 [10] 11 | 12 13 14 15|
1 [1[1[2][3]4[6] 8 [10][13] 17 | 21 | 26 | 31 36 47 55
2 [0[1[3[8][16[32] 56| 99 |157| 251 | 385 | 577 | 837 | 1207 | 1701 | 2361
3 [0]0 ] 1[5[18]49 1202635431048 | 1943 | 3458 | 5957 | 9957 | 16246 | 25896
4 [0]0]0[1[ 7 [32]110]324 8462032 | 4544 | 9620 | 19420 | 37686 | 70618 | 128399
5 [0[0[0[0] 1|9 50 2077162169 | 5958 | 15119 | 35994 | 81196 | 175001 | 362501
6 [0[0[0[0[0 | 1 [ 11| 723481384 | 4772 | 14769 | 41919 | 110859 | 276257 | 654422
7 [0[0]0]0[0 [0 1 | 1398 | 541 | 2432 | 9403 | 32385 | 101658 | 295681 | 806530
8 |0[0]0J0[0 [0 0 [ 1 |15 128 794 | 3980 | 17050 | 64678 | 222474 | 705806
9 [ofofo[0[0 [0 0 | 0 | 1 | 17 | 162 1115 | 6164 | 28973 | 120016 | 448873
10 [0[0[0[0[ 0[O0 0] 0[O0 1 [ 19200 | 1512 9136 | 46736 | 209871
11 [0[0[0[0]/0[0[ 000 0 | 1 | 21 | 242 | 1993 | 13064 | 72239
12 [0[0j0[0[0[O0]O0][O0O[O0][ 0O 1 23 | 288 | 2566 | 18132
13 [0[0jo[0o[0[0] 0] 0][0][ 0| O 0 I 25 338 | 3239
14 [0[0jo[o[0[0] 0000 O 0 0 I 27 392
15 [0[0J0[0[0[0]J 0[O0 0 [0 0 0 0 1 29
16 [0[0j0[0[0[0]J 0[O0 0 O 0 0 0 0 1

From the previous table, we can also deduce, considering the sum of all the entries in the
corresponding column, the number of all the local untwisted Arf semigroups with a given genus
n (in all the possible dimensions). We call

such a number.

Thus we have

NG(n) = | { SArf semigroup : g(S) = n} |,

10

11

12

13

14 15

NG(n)

46

129

356

989

2737

7588

21031

58289

161535

447693

1240773 | 3438746

Example 3.2.4. In the following table we report the cardinality of the sets Gen(r,n) for 1 <
r<9and 0 <n <8.
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Chapter 4

An algorithm for the computation of the
Arf closure of an algebroid curve

In this Chapter we present a procedure for the computation of the Arf closure of an algebroid
curve. In Section 4.1 we explain how to generalize the procedure presented for the algebroid
branches to this more general case determining all the required tools for the computation. In
Section 4.2 and Section 4.3 we give an algorithm that lets us recover all these information
starting from a parametrization of the given algebroid curve R, and we show how to deduce from
them a presentation for the Arf closure *R. Finally in Section 4.4, we improve the efficiency
of the algorithm by finding a bound for the truncation of all the power series arising during the
computations, generalizing the ideas presented in [2] for the algebroid branches.

4.1 The computation of the Arf closure of an algebroid curve

Let R be an algebroid curve. We want to show how the Lipman sequence 7, , of the successive
blowups of R, can be used to compute and to give a presentation for the Arf closure *R of R.
The strategy is to adapt the construction presented in Section 1.3 for the algebroid branches to
this more general case. We build the Arf closure by using the following inductive process on
the number of branches r.

e Base case: 7 = 1 we already know how to construct it.
e Inductive step. We suppose that we can solve the problem for m < r and we give a

solution for 7.

If R; is not local then, as we saw in Subsection 1.4.1, there exists a partition P(R;) =
{P;1,..., P}, with
P;; = {%‘,1, oo a%‘,k(i)} ;
such that
Rj = mp,,(R;) X -+ X 7p, ,(Rj),
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where 7p, ;(R;) is a local ring isomorphic to a subring of K[[t,, ,]] x - -- x K[[t,, ]I

In this case, we have:
"Ry ="(mp,, (R))) x - x (mp, (R))),
and, for the inductive step, we have a way to compute each *(7p,,(R;)), since k(i) < r

for all 2.

If R; is alocal subring of R = [[;_, K[[t;]], then using the same idea of Arf (cf.[1, p.267])
it is easy to see that
*Rj = K(l, ceey 1) + Zj - *(R]url),

where z; is an element of minimal value in R;.

If R;44 is local in R we can compute *R;.1 in the same way using R; o = BI(R;;1)
and an element of minimal value z;,; in R, ;. But we know that there exist an N such
that Ry is not local (in fact the blow-up sequence has to stabilize into R = K[[t;]] x
.-+ x K[[t,]]) and therefore we are able to compute * Ry as we have already seen in the
non-local case.

Then, if we suppose that NV is the first integer such that R is not local, and we start from
the local ring R = R,, we obtain:

*Rl = K(l,,1)+$1*R2
*RQ = K(17,1)+$2*R3
*RNfl = K(lw'wl)_’_l’]\/fl'*RN;
and from this it follows that
*Rl :K(l,...,l)+K$1+K$1$2+...+1’1...$N_1 '*RN'

where x; is an element of minimal valuation of R;.

From this procedure we see that it is important to compute the blow-up sequence R; until
R,, = K][[t1]] x -+ x K][[t,]] to understand how to compute *R. In the following section, we
will present an algorithm that gives us a way to compute this sequence along its multiplicity
tree starting from a parametrization of the ring R.

4.2 The algorithm in the two-branches case

In this section we give an algorithm for the computation of the Arf closure of an algebroid curve
with two branches having the following parametrization:

R =K[[(¢1(), ¥1(w)) ..., (én(t), ¥n(u))]].
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First of all we fix some notations. We will always assume that a parametrization does
not contain an element y = (¢(t),1(u)) such that ord(¢(t)) = ord(¢)(u)) = 0 and with
»(0) = (0). If, in the following constructions, we produce a parametrization that contains
such an element, we always convert it to g = y — (¢(0),1(0)) (it is possible to do that because
(¢(0),(0)) is a multiple of the unit vector). For each ¢ > 0 we will denote by

By =K || (6?0, 47 @) ... (10 0.0 ) ]

the parametrization of the ¢-th blow-up of R (we put by definition R; = R).
The following lemma will help us to understand when a R, is not local from its parametriza-
tion.

Lemma 4.2.1. Consider

R=K[[(¢1(t), V1 (), ..., (¢n(t), ¥n(u))]]

We have that
R=K[[1(t),....0u(®)]] x K[[t1(w), ..., 1n(w)]

if and only if at least one of the following two conditions holds:

o There exists (¢;(t),v;(u)) in the parametrization such that
ord(¢i(t)) - ord(1;(t)) = 0 and ord(¢;(t))* + ord(1(t))* # 0;
o There exists y = (¢;(t),V;(u)) in the parametrization such that
v(y) = (0,0) and ¢;(0) # ¥;(0).

Proof. («<). Let us suppose that the first condition holds. Without loss of generality, we can
suppose that the element y = (¢ (%), 11 (u)) in the parametrization is such that ord(¢;(t)) = 0
and ord(¢1(u)) # 0. Then we have ¢1(0) # 0. Therefore ¢;(t) is invertible in K[[¢(t)]]
because its inverse is

@) = @03 -y (2O A0

Thus in K[[y]] C R there exists an element of the form z = ((¢;(¢))~!, g(u)). Then we have
R3y-z=(1,4¢1(u)-g(u) = (1,h(u)),
where ord(h(u)) > 0. But (1,1) € Rso (1,h(u)) — (1,1) = (0, —1 + h(u)) belongs to R.

Now, h(u) € K][[¢1(u)]] and therefore —1 + h(u) is invertible in this ring. From this it follows
again that there exist an element of the type (I(), (—1 + h(u))™!) € R and we have:
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R>(0,=14h(uw))- (I(t),(=1+ h(u))"') = (0,1) = (1,1) — (0,1) = (1,0) € R.

Finally we obtain that

Kll¢1(t), .., on(t)]] x {0} = (1,0) - RC R,
{0} x K[[¢1(u), ..., ¢hn(u)]] = (0,1) - R C R,
therefore we have K[[¢1(¢), ..., ¢, (t)]] X K[[¢1(u), ..., ¥, (u)]] € R and because the inverse

containment is trivial we have our thesis. Suppose now that the second condition holds. Let us
consider y = (¢;(t), 1;(u)) in the parametrization such that

v(y) = (0,0) and ¢;(0) # :(0).

Thus if we consider (¢;(0), ¢;(0)) € R we have that y — (¢;(0), $;(0)) € R is an element that
fulfils the first condition and we can use the same arguments of the first part of the proof.
(=). It is trivial, in fact if we suppose by contradiction that in the parametrization there are no
elements that fulfil the condition of the theorem, then it would easily follow that in R we cannot
find an element (¢(t), % (u)) such that ¢(t) is invertible and ) (u) is not invertible and this is
absurd for the hypotheses on R. [
If R, is local in K][t]] x K[[u]], we can consider the multiplicity vector mult(R,), that can
be computed as

mult(R,) = (min {ord(qsgq)(t)),z’ —1,... ,n(q)} ,min {ordwgq) (W),i=1,... ,n(q)}) ,

and denote by xr, an element of R, with valuation mult(R,).

Remark 14. For the choice of the element xr, we can always consider either one of the
((b(-q) (t), (u)) or the sum of two of them. To see it we denote by y; = (gb(q) (t), (u)) for

i=1,...,n(qg). If there exists y; in the parametrization such that mult(R,) = v(y;) we can set
rr, = Y;- Otherwise, for the definition of mult(R,) there must exist ¢, j with i # j such that

(ord(9!” (1)), ord (@ (u)) ) = mult(R,),

then y; + y; is a good choice for g, (in this case order cancellations cannot happen).

Remark 15. If we have a ring S such that
S = K[[gbl(t)v sy ¢n(t)]] X K[[¢1(u)7 s ﬂvzjn(u)]]:
then S is not local and, following the notations of the Section 1.4.1, we have that
mult*(S) = {(my1,0),(0,m21)},

where my ; is the multiplicity of the algebroid branch associated to S; = K[[¢1(t), . . ., ¢n(t)]]
and mo  is the multiplicity of the algebroid branch associated to Sy = K[[¢)1(u), . .., ¥, (u)]].
It is easy to show that we have
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e m;; = min{ord(¢;(t) — ¢;(0)) :i=1,...,n};
e my; = min{ord(¢;(u) —¢;(0)) :i=1,...,n}.

Then we can denote by :z:g an element of S; with order m; ; and by x% an element of S, with
order mo ;. It is clear that there exist 4, j such that x5 = ¢;(t) — ¢;(0) and 2% = ¢;(u) — ¢;(0).

Now we want to develop an algorithm for the computation of the Arf closure *R of R.
As we have seen in the previous section, we need to compute the blow-up chain R, of R in
order to find the multiplicity tree of *R. In particular we have to find an integer N such that
Ry = K][t]] x K[[u]]. From the properties of the ring of formal power series this is equivalent

to find an N such that R is not local and such that
mult*(Ry) = {(1,0),(0,1)}.

We can consider the following algorithm.

input : R = K[[(¢1(), ¥1(u)) .-, (¢n(t), Yn(u))]]
output: The sequence R, of blow-ups of R until R, = K[[t]] x K][[u]]

m<+— 1

Rl +— R

while mult*(R,) # {(1,0),(0,1)} do
if R, is local then

qg—q+1

Ry «— [(37Rq_1)_1Rq71]

end
if R, = Ré X Rg is not local then
g+—q+1

Ry +— [(mlllzq,l)_lR;fl} X [(ﬁzq,l)_lRﬁfl

end
end
return 1y, Ry, ..., R,

Algorithm 3:
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The algorithm produces the blow-up chain because we know that in the local case we have
R, = [(x qul)_qu—l:I and we know that in this case a parametrization for 2, is given by

(6@, ul @) (VW)
Rq =K goe ey , TR,
:Cqul qu71

q—1

On the other hand, if R,_; is not local we have that

Ryoy = K0V (0), - 0,y (0] x KV ()i ()]
therefore in order to find R, we can apply the algorithm for the branch case to each compo-
nent of the Cartesian product finding R, = [(x}%qf 1)_1R;71] X [(x%qi 1)_1R271} which can be
computed as

TRy TRy TRy TRy
So, because at each step we know a parametrization for the g-th blow-up we have a way to
compute the ¢ + 1-th one and we can stop when we reach mult*(R,) = {(1,0), (0,1)}.

Remark 16. In the previous algorithm,we divide by an element of minimal valuation, consider-

(6(), ¥ (u))

(cancelling if possible the common factors between the numerator and the denominator) . In
this way we can still express it by a finite set of information avoiding the problem of expanding
it in power series.

ing element of the type . It is convenient to work with such an element as a fraction

When the algorithm stops, we are able to build the multiplicity tree 7" of *R. It will be
a multiplicity tree of an Arf semigroup of N2, therefore it can be represented by a collection
E = {my, my} of two multiplicity sequences and an integer p;, where p; is the highest level
where the two branches of 7" are still glued. To find p; we have to check the first 4 such that, in
our algorithm, we obtain that R}, is not local. Then we have p; = h — 1.

Furthermore, if R; = R, Ry, ..., R, is the output of the algorithm we have that:

my; = mult(R;)[1] fori =1,...,p; and my,; = (mult*(R;)[1])[1] fori =p, +1,..., N;

my; = mult(R;)[2] fori =1,...,p; and mo,; = (mult*(R;)[2])[2] fori =p; + 1,..., N.

Remark 17. The multiplicity sequences m; and ms can be also found by using the algorithm
for the branch case, applied to the rings

R =K[[¢1(t),- .-, ¢a(t)] and R* = K[[¢1(u), ..., dn(w)]]-

In the following image we have the multiplicity tree and the minimal tree of R.

96



e b

Notice that the algorithm computes all the tools needed to construct the previous two trees.
If the tree 7" of * R is represented by the matrix M (T)p = (8 %1) with E = {my, m,}, the
conductor of the associated Arf semigroup is ¢ = (c[1], ¢[2]) with

max(l(m;),p1)

cli] = Z M -

k=1
Thus we have that (¢l w¢2) . (K[t] x K[u]) € *R.

Discussion 4.2.2. Now we want to find a method to compute a presentation of the Arf closure.
In the previous section, we have seen how to construct it recursively. In the two-branches case
we have that:

"R =K(1,1) + xp,"Riyy fori=1,...,p
"Ry 1= *R;ﬁl X *Rzlﬂ
R} =K[[t]] fori > max{l(mi),p:}

R? =K[[u]] fori > max{l(my),p1}.

If max{l(m;),p1} > p "R = K—l—xféi*RLl fori = p1+1,...,max(l(m;),p1); j =1,2.

If we denote by d; = max({(m;),p;), by substituting the expression in the reverse order we
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find that:

"Ry, = K+ zp, K[[]; "Ry, = K+ o, K{[u]];
Ry, 1 =K+ag, K+ap, zp K, “Ri, . =K+aok, K+ak, ok, K]

1 _ 1 1 1 1 1 1 .
Rp1+1 = K—i—meJrlK_‘_prﬁlmeHK_‘_ +3§'Rp1+1.'L'RP1+2 delK[[t]]7

K+...+z% . 27 ...x%dQK[[u]];

p1+1 Rp1+2

2 _ 2 2 2
Rpl+1 =K+ meJrlK + xRlerlxRlerQ

* _*pl * D2 .
Rp1+1 - Rp1+1 X Rp1+1’
* _ *pl * D2 .
Rpl - K(17 1) + TRy, RP1+1 o RP1+1’

*R= K(l,l) +IIJR1K—|— +xRp1xRp1—1 .. -$R1(*R11;1+1 X R 1+1)

Finally, comparing the last two relations, we obtain

*R=K(1,1) +a2p, K+ ...+

1

+ xR, TR gy (Kt tady o ah, KD < (K4 42k .x%dQK[[u]])} .

pr—1°"°
Developing the Cartesian product, we find:

*R:K(1>1)+$R1K+“‘+x3p1' leK—i—xRpl...le(l,:U%%pIH)K—l—...—I—
+ TR, "'le(Lx%%le' :URd YK X K[[u]]) + zg,, ...le(x}%pﬁl,l)K—i—...—i—
+xRp1--~73R1(33}2p1+17 RmH...deQ)(KxK[[u]])—i-...—i-

TRy, TRy (T e hy s D] X K) + o (T uB) - (K] < KTu]),

because

TR, - TR, (x}%pﬁl . .x}%dl : xQRpIH . .x?%) (K] x K[[u]]) = (M, w2 - (K[[1] x K[[u]]).

Notice that the elements with valuation greater than the conductor can be erased. We observe
that the elements in the expression have all different valuation and each of them has valuation
corresponding to an element in v(R) that is not greater than the conductor.

The elements with valuation not smaller than the conductor have to belong to the set (¢!l 7)) -
(K[[t]] x K) with ord(y) < c[2] or (z,u?) - (K x K[[u]]) with ord(z) < c[1].

Each element of the set (¢!, ) - (K[[t]] x K) can be written as a sum of an element in (0, 3)K
and an element of (t° 42 . (K[[¢]] x K[[u]]). Similarly each element of the set (z, u<?) -
(K x K[[u]]) can be written as a sum of an element in (z,0)K and an element of (¢!l 2] .
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(K] > K[fu]])-
If we define
YO ={(y,2) € "R:v((y,2)) < c};
Y1 ={(0,y) € "R:ord(y) < c[2]};
Y2 ={(2,0) € *R:ord(z) < c[1]};
Y:=Y,UY, UYs,

S
S

we have a presentation of the type
*R=K(1,1) +Ky; + - - - 4+ Ky, + (¢ w2 - (K[[t]] x K[[u]]),

where the elements y; belong to Y and we have one and only one representative for each valu-
ation not greater than the conductor. In other words

v(y; + (M, u®)) € Small(v(*R)) for all i.

Recall that from the properties of the multiplicity tree of an Arf semigroup, it follows that
an element v of Small(v(*R)) can be obtained as the sum of the nodes of a subtree of T'(R)
rooted in mult(R) and contained in the subtree that gives the conductor.
Then it is easy to find an element y with valuation v € Small(v(*R)). It suffices to consider
the corresponding subtree in the minimal tree of Small(v(*R)) and multiply all its nodes. We
suppose that sq, . . ., s are the elements of * R such that

{v(s1),...,v(sk),c} = Small(v(*R)),

if we consider the elements 57, . . ., S, obtained by truncating the monomials of degree bigger
that the corresponding component of the conductor, it is easy to see that they are the elements
y; that we were looking for.

Example 4.2.3. Consider
R =Ry =K[[(t* + "), (1, u'" + u?)]].

We have mult(R;) = (5, 7). We can choose zg, = (5 + t'° u") as an element of minimal
value in R;. Therefore we have

_ s 0 o @ ut U)o 5,10 .7 t? 4, .6
Rz—KHx‘Rl—(t +1 ,u),—le =K || +t7,u"), T Y +u :

R, is still local and we have mult(R;) = (3,4). We can choose g, = (

Thus we have
t3 <t5+t10 u7)
R. =K = —— ) | =
3 |:|:'TR2 (1+t57u +U), T,

t 4 6
s U T u )
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Rj is still local and we have mult(R3) = (2, 3). We can choose zr, = <t2(1 +1%)2, &2 )

) 1+’U,2
Thus we have

Ri=K HxRS - <t2(1 + )2, - fu2> , (ﬁ,u(l +u2)2>H .

Ry is still local and we have mult(R4) = (1,1). We can choose zr, = <m, u(l + u2)2>.
Thus we have

e g 9). (1))

Rj is still local and we have mult(R;) = (1, 1). We can choose again zp, = <m, u(l + u2)2) :
Thus we have

e ) |

This time, for the Lemma 4.2.1, we have that R is not local because we have the element
((1 + 19)8, m) with valuation (0, 1). We can write:

u

Thus we have mult*(Rg) = {(1,0), (0, 1)}, and we can stop the algorithm. Then the multiplicity
tree of * R and the minimal tree are:
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0 where E = {m; = [5,3,2],my = [7,4,3]}.

_ D
~\0 0
We can easily see that conductor c of v(*R) is ¢ = (12, 16). We can also compute Small(v(* R))
finding that

The multiplicity tree 7" is M (T)g

Small(v(*R)) = {(5,7), (8,11), (10, 14), (11,15), (12, 16)} .

Considering the expression of the elements of Small(v(*R)) as a sum of nodes in a subtree of
T we can produce the following elements of * R as a product of the corresponding nodes on the
minimal tree of * R:

tll

t5 th 7 t8 11 13 th 1 t5 2 14
{0 e, (s

u'(1 + u2)2> (2, u16)} .

Finally we have
11

‘R =K(1,1D+KE -+, u")+K (3, v ') +K (10 (14+£°)2, u') +K (m u'®(1+ u2)2> +

+(t"%,u'0) (K[[t] x K[[u]]) = K(1, 1)+K(+", u")+K (¢, u"'+u")+ K (0, ") +K (¢, u'®) +
+(t",u') (KI[[t) x Kl[u]]) -

Notice that the fact that we know the conductor of * R allows us to simplify some of the elements
corresponding to the small elements by truncating the terms that have order greater than the
conductor.
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4.3 The algorithm in the general case

In this section we explain how to generalize the algorithm presented in the previous one to
algebroid curve with more than two branches. First of all we fix the notations. We want to find
the Arf closure of the ring R C K][¢;]] x - - - x K[[¢,]] with the following parametrization

R=R =K[[(¢u(t1),...,01:(t)) -+ (Pra(tr), - - -, Prr(tr))]]-

Similarly to the previous section, we will always replace an element of the parametrization
Y = (¢]1<t1)7 R 7¢jr(tr)) such that

ord((bﬂ(tl)) = 0 and with ¢j1(0) = Qbﬂ(()) for all 2 = 1, o,
with the element 7 = y — ¢;1(0) - (1,...,1).

To compute the Arf closure * R, we have to find the sequence of blow-ups R, of R. We will
give an inductive algorithm for the computation of 1,.

We will denote by
Ry =K [[(60 (00,620 (40000, 00, ()]
The rings R, are semilocal subrings of K[[¢;]] x --- x K][[t,]]. We know, as explained
in Section 1.4.1, that for a semilocal ring S there exists a partition B(S) = {Py,..., B} of
{1,...,r}, with

-Pi = {qi,la s 7QZ,]€(2)} )
such that S = []'_, 7p,(S). Now we explain how to determine the partition (S).
Ifi,j € {1,...,r} with i # j we denote by 7, ; the projection
mig : K[G]] > - < K[[E]] — K[[E]] < K[[¢;]].
We have the following obvious Lemma:

Lemma 4.3.1. Consider S C K[[t1]] x --- x K[[t,]], semilocal ring. We define the equivalence
relation ~ on {1, ... 1}, such thati ~ j if i = j orif m; ;j(S) is local in K][[t;]] x K[[¢;]]. Then
B(S) is the partition of {1, ..., r} into equivalence classes with respect to ~.

If
S = K[[(Qsll(tl)v cee 7¢1r(tr)) L) (¢k1(t1)7 R ¢kr(t7"))”7

then
7ii(S) = K[[(¢1:(t:), d15(t5)) s - - -, (Pnilti), s ()]

since in the two branches case we know how to understand if a ring is local from its parametriza-
tion, we have the following algorithm to compute B (.S):
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input : S =K[[(d11(t1),. .-, 01.(t:)) - oy (Dra(t1), - -+, Prr(E1))]]
output: The partition B (.5)
N«+—{1,...,r}
fori € N do
Py« {i}
for j € N, do
if 7; ;(.S) is local then
P «— P U{j}
N «— N\ {j}
end
end
end
return P (S) = {P, P,,,..., B, }
Algorithm 4:

Now we can give an algorithm for computing the blow-up sequence of R. We will do it by
working on induction on the number r of branches. We need to show a procedure to compute
Ry4q from R,.

e Base: r = 2.

For r = 2 we have already seen, in the previous section, how to compute the R,.

e Inductive step.

We suppose that we are able to solve the problem for rings with less than ¢ branches and
we give a procedure for rings with exactly ¢ branches.

We have two cases:

If R, is local in R we consider xp,, the element of R, such that v(zp,) = mult(R,) (we
can find it as a linear combinations of the elements of the parametrization of 7).

Then we know that

G ) I AR N ()

Rq—HZK TR, LR
{L’Rq {L’Rq

If R, is not local then we have that there exist a partition P(R,) = {P,1,..., P,+} such
that

t
Rq = H ’/TPq,i (RQ)
=1
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Notice that 7p_,(RR,) can be computed from the parametrization of 12, and it is isomorphic
to a local ring with less than r branches. Then for the inductive step we know how to
compute the blowup Bl(7p, ,(R,)) and we have that:

t
Ry = [ Bl(mn, (Ry).
=1

Remark 18. It is clear that, with our definitions, we have
S =K[[t]] x--- xK][[t,]] <= mult"(S) = {(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}.

So we have a procedure to find the first N such that Ry = K[[t1]] x - - - x K][¢,]]. From this
procedure we can find the sequence

multset( R, ), multset(Rs), . .., multset(Ry),

from which we can build the multiplicity tree of * R up to level V.

Once we know the multiplicity tree 7" and the minimal tree we are able to give an expres-
sion for the Arf closure * R using the strategy presented in the previous section. In fact we can
compute the conductor c of the semigroup of values of the Arf closure and then use the corre-
spondence between the small elements of the Arf semigroup v(*R) and the elements of *R to
find {s1,...,s = ¢} C "R such that:

*R=K(®1,...,1) +Ksy +...+Ks_y + ", eI (K[[t:]] x - x K[[t,]]).
Example 4.3.2. We want to compute the Arf closure of the following ring
R =R, =K[[(#® —* v* +u® v* w? + w?), (% v* +u” + u' 0" — v w® +w")]).

In order to simplify the notation we will denote by R’ the local ring isomorphic to p;(R;), and
we denote by  ; an element of minimal valuation in R/, and by ] the corresponding element
of minimal valuation in 7p, (R;) . With an abuse of notation we also write

t t
Ry =]]=p(R) =[] R
j=1 =1

It is easy to verify that 7 5(R), 71 3(R) and 7 4(R) are all local. Then, for Lemma 4.3.1, it
follows that P(R) = {{1, 2, 3,4}}, therefore R is local.

We have that mult(R;) = (5,2,3,2). As the minimal element xp, we can choose rr, =
(5 — 8, u® + u®, v3, w? + w?).

We have:

6 12 7 10 ,,7 .9 .,.2 7
Rz:KHle:<t5—t8,u2+u6,v3,w2+w9)7( , U +u'"+u , U v?,w +w):|:|

IRl
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t 14+u+ud 14w’
1—6" 1+wu* 14w '

:KH(t5—ts,u2+u6,v?’,w2+w9),( vt —w

Now we can verify that 7 5(R2) is not local, 7 3(Rs) is local, 7 4(R2) is not local and
ma.4(Ry) is local, therefore P(Rs) = {1 = {1,3}, P2 = {2,4}}. We have

Ry = Ry x R,

e[ ()]

1 5 8 1 5
RSIKH(uQ—i—uﬁ,w2+w9),( +u+u® 1+w >H

where

1+ut 14w

—u4+u5—|—u8 w® — w’
1+ u? Tl ’

=K H(u2+u6,w2 +w?), (

. . . . 5 8 5 . 5 8 5
and, following our conventions on the parametrization, we replace <w Ltw ) with (Hu tu liw )—

1+ut 7 14w 1+ut 7 14w
_ —utuSHud wb—uw”
(]-7 1) - < 1+us y 14+w? )

We have mult(R;3) = (1,3) and we can choose as element of minimal value the sum 2y of

its two generators
t4+t°(1 —t°)?
TRy = (—1(_ = ) 0ot =08 ),

while mult(R3) = (2,2) and we can choose as element of minimal value
Tz = (u® + u®, w* + w”). Then, we have multset(R,) = {(1,0,3,0), (0,2,0,2)} and we can
proceed with the computation of [23. Thus

Rs; 2 BI(R}) x BI(R3),
so we have to compute BI(R3) and B1(R3).

We have
BIRY) =K |[ (670,07 0) ... (6870057 )) ]

where

NCRORIO)

. ( 53)(75)’1/};3)(@)) _ ( t4(1 — 3)? 1 >;

1+t (1 =32 1+v—1°

(t+t5(1 — 13)?

11— ’U3+U4_U6);

3

o <¢§3)(t),1/1§3)(v)> = (1 —|—t4(1 — )21 j_;iqﬁ) '
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We notice that the second generator has valuation (4,0), then BI(R}) is not local in K[[t]] x
K[[v]]. Furthermore we have, with our notation, that multset(BI(R})) = {(1,0),(0,1)} in
K[[t]] x K[[v]] . Then we have

BI(R;) = KI[[t]] x K[[v]].

Now we can compute BI(R3). We have

2 .3 1.6 .3 .5
BI(RS):KH(UQjLuG,wQ—l—wQ)?( ww e W )H

(T+uh)? O (T+w)

Thus BI(R2) is local in K[[u]] x K[w]] and mult(BI(R3)) = (2,2) in this ring. Then P(R3) =
{P3;={1},Ps,={3},Ps3={2,4}} and

Ry = Ry x Ry x Ry = K[[t]] x K[[v] x BI(R),

where multset(R3) = {(1,0,0,0),(0,0,1,0),(0,2,0,2)}. As a minimal element of BI(R%) =
Rj we can choose again zps = (u® + u® w? +w”). Thus

Ry 2 BI(R) x BI(R2) x BI(R?) = K[[t] x K[[v]] x BI(R2).

‘We have:

| e I

From this it is easy to show that BI(R3) = K[[u]] x K[[w]].
Then ‘B(Rgl) = {P4,1 = {1} s P472 = {2} s P473 = {3} s P474 = {4}} and

Ry = K[[]] > K[u]] x K[[v]] x Klfw]],

and we have reached the stop condition for our algorithm. We found that N = 4 and

e multset(R;) = {(5,2,3,2)},

o multset(Ry) = {(1,0,3,0),(0,2,0,2)} ,

o multset(Rs) = {(1,0,0,0), (0,0,1,0), (0,2,0,2)},

o multset(R,) = {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)} .

The corresponding minimal elements are:
o xp, = (t° — 8, u? +ub v3 w? + w?),
1—23

o 7l = (—Hts(l’tg)z, 1,03 + vt — b, 1) and 22 = (1,u? + ub, 1,w? + w%);
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o zi=(t,1,1,1),22 = (1,1,v,1) and 23 = (1,u® + u®, 1, w? + w?);
o zl=(t,1,1,1),2% = (1,u,1,1),23 = (1,1,v,1) and 2} = (1,1, 1, w).

Then we have the following trees:

5 (1-13)2
1—¢3

(

(1,u? +ub 1, w? + w)

Then the multiplicity tree 7'(R) of the Arf semigroup associated to * R is the tree described by
the matrix

M(T(R))e =

o O OO
o O O =
OO =N
S = W=

where £ = {[5],[2,2,2],[3,3],[2,2,2]}.
The conductor of v(*R) is ¢ = (6,6, 6, 6), therefore

(t%, 4, 0%, w®) (K[[t]] x K[u]] x K[[v]] x K[[w]]) € *R.
We have that
Small(v(*R)) = {(5,2,3,2),(5,4,3,4),(5,6,3,6),(6,2,6,2),(6,4,6,4),c = (6,6,6,6)} .
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From the minimal tree we can recover the elements of * R with valuation belonging to Small(v(*R)).
We can calculate the Arf closure truncating the terms with degree bigger than the conductor. So
we obtain:

{(tS, w?,v* w?), (1, ut, P w?), (17,0,0°,0), (0,42, 0,w?), (0,u*, 0, w4)} )
Finally we have
*R=K(1,1,1,1) + K, v, v*, w?) + K, u*,v*, w') + K(¢*,0, 0%, 0)+
+K(0,u?, 0, w?) + K(0,u*, 0, w*) + (% u® 0% w®) (K[[t]] x K[[u]] x K[[v]] x K[[w]]).

4.4 A bound for the series

In the previous sections, we have presented an algorithm that computes the Arf closure of an
algebroid curve. The issues explained in Remark 1 for the algebroid branches occur also in
this case, thus we would like to find a bound for the truncation of the series expansion in the
parametrization, in order to improve the speed of the algorithm.

Remark 19. Using the bound of Arslan and Sahin (cf. Remark 1) on each branch would not
solve our problem. In fact, although it guarantees the determination of the actual branches of
the algebroid curve *R, we can lose some important information on the splitting levels of its
multiplicity tree.

Our strategy is based on the following theorem that generalizes the result of Arslan-Sahin to
the case of two branches algebroid curves. Thus, in the following, we focus on the two branches
case.

Let us fix some notation. Let 12 be a two-branches curve with parametrization

- K[[(¢1(t)> %(U)% T (¢n(t)> wn(“))]]?

we call ¢ = (c[1],¢[2]) the conductor of v(*R). Furthermore, we denote by ¢;(t) and ;(u)
the formal power series obtained from ¢;(t) and 1;(u) respectively by removing all monomials
with degree greater than c[1] + 1 and ¢[2] 4 1. Finally, we introduce:

Trunc(R) = K[[(¢1(2), ¥1(w)), ..., (éa(t), u(w))]].

Theorem 4.4.1. If we apply the algorithm to both R and Trunc(R) we obtain the same multi-
plicity tree.

Proof Suppose that the multiplicity tree of *R is the tree T with M (T)g = <8 %1) where

E = {my, my}. Consider an arbitrary element of the parametrization of R,

@O0 ) = Y att+ Y at, D b+ Y bl

1<c[1]+1 i>c[1]+1 i<c[2]+1 i>c[2]+1
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We denote by
0@ @) = D0 et Y b

i>c[1]+1 i>c[2]+1

and
k= (k[1],k[2]) = (ord(x{"(£)), ord(x" (u))) > (c[1] + 1, ¢[2] + 1).

Now, we want to follow the path of Xﬁ” (t) and Xgl) (u) in the algorithm in order to observe that

by removing them from the parametrization, the result of the algorithm remains unchanged.
We denote with (X?) (1), Xg)(u)) the series obtained by (Xgl) (1), Xgl) (u)) at the i-th step of the
algorithm.

To prove the thesis, it is necessary to prove that (Xgi) (1), Xg)(u)) satisfies the following
hypothesis at the i-th step:

i) ord(xgi) (t)) > my,; and ord(xgi)(u)) > Mais

ii) neither ord(Xgi)(t)) nor ord(xg)(u)) are 0.
If 7) is true we have that the monomials in (xgl) (1), Xg) (u)) are not involved in the choice of the
minimal valuation elements at the i-th step. If 4i) is true they are not involved in the splits as
consequence of Lemma 4.2.1.
So, if both hypothesis are true, the monomials in (Xgi) (1), Xéi) (u)) are not involved in the i-th
step of the algorithm.
Recall that p; is the highest level were the branches in R are joined, then for all 7 < p;, we have
that:

v (1), x5 ()

v

(k[l] —mi1— ... mu_l,k[Q] — m272[1] — .. — ng[i — 1]) >
> (l]+1—mig—...—mii—1,c2]+1—mo1—...—mg;_1) =

max(l1,p1) max(l2,p1
= ( Z mlj—i—l—Zmlj, Z m2]+1zm2])
i i—1 i i—
> (me +1=) muig, Yy mej+1- Zm%) =
j=1 j=1 j=1 j=1

= (mi;+1,mg; +1) > (my;,ma;) > (0,0).

So the hypothesis ¢) and i7) are satisfied for Xﬁ” (1), Xé’)( ) with ¢ < p;. When i > p; the
algorithm works individually on each branch, performing the computation of the Arf closure of

an algebroid branch. Thus, because we have that X(p 1+1)( t) and Y\ )( ) are elements with
valuation strictly greater than the conductor of V(Rgp DY and v(RY ) ) respectively plus one,

for the Arslan-Sahin theorem (cf.[2, Thm. 2.4]), x; % 1H)( £), ! )( ) are not involved in the
next steps of the algorithm and this concludes the proof. O]
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Remark 20. We want to point out that the previous theorem does not imply that the chains of
blow-ups obtained applying the algorithm on R and Trunc(R) are the same. In general, the
parametrization of each blow-up and the minimal tree are different, but they are equal modulo
(tel+2 ,°21+2) (when we truncate all the elements of degree greater than ¢ + 1).

In the previous section, we have computed a presentation of the Arf closure starting by any
minimal tree of the curve and it does not depends on the minimal tree chosen. For this reason
we can enunciate the following obvious corollary.

Corollary 4.4.2. R and Trunc(R) have the same Arf closure.

From the previous corollary it follows that our new problem is to find a way to estimate the
conductor of v(*R) without actually knowing * R.

Now we see how to do that by using the information given by the starting parametrization
of RR. Let us start by considering separately the two branches:

R =K[[¢1(t), ..., 6n(t)] R =K[[¥1(u),- .., ¢a(u)].

We need to find the multiplicity sequences m; and my of R' and R? respectively. Thus we
compute the Arf closure of the branches (using the bound given by Arslan-Sahin we have an
efficient way to do that).

Suppose that m; # my. In this case we have that the compatibility Comp(m;, my) is finite
(recall that the compatibility is an upper bound for the splitting level p,). If we set:

di = max{l(m1), Comp(mi, m»)}, dz = max{l(mz), Comp(mi,m2)},

we have:

max(l(m1),p1)
cl+1= > my+1l<mig+..+mig +1
i=1
max(l(mz2),p1)
C[Q]‘I‘l: Z m27i+1§m271+...+m17d2+1.
=1

So, if we put:

b1:m171+...+m17d1+1,
b2:m271+...+m17d2+1,

as a consequence of Theorem 4.4.1, we can use the vector bp = (b1, b) as a bound for the series
expansions in the parametrization.

We have found a bound when m; # my by only using the numeric properties of the multiplicity
sequences. When m; = my we cannot make assumptions on the split level by only using the
m; but we need to work directly on the parametrization in order to find a suitable bound.
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Let us suppose that we have an algebroid curve with two branches such that m; = ms. In
this case we will do the following positions in order to simplify the notation. We denote with
¢, the conductor of the branches R' and R? (in fact, in this case the two conductors are equal).
We also set [ = [(mq) = I(my). Now we define Dis(1,2) = {i € {1,...,n} : v(¢i(t)) #
v(1;(u))} and we call discrepancies the elements of this set. If Dis(1,2) # (), we define also

D = min{min{v(;(t)),v(¢;(u))}, i € Dis(1,2)}
which is the smallest order that causes a discrepancy.

Example 4.4.3. Let us consider the algebroid curve:
R = K[[(t3 4 t4, u3 4 u?)’ (t8 4 t9’ u8>7 (t12 4 t15, u13 T u14>7 (t21, u17 + ulgml

The multiplicity tree associated to the ring is:

So we have: m; = mo, Dis(1,2) = {3,4} and
D = min{min{12, 13}, min{21,17}} = min{12, 17} = 12.

Lemma 4.4.4. Let
R=K[[(¢1(t), ¥1(w)), ..., (&n(t), Yn(w))]]

be an algebroid branch such that
) my=may;
ii) Dis(1,2) # 0.
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Then we have max{c,, D} > c[1] = ¢[2].

Proof From the definition of D, it follows that there exists an element of the type (D, ) in
v(R) C v(*R) with x > D (or equivalently of the type (y, D) with y > D). We know that
there exists an integer k such that
k
D = Z myq.
i=1

Taking in account that the multiplicity tree 7'(R) has two identical branches, it is easy to un-
derstand that (D, x) € v(*R) with z > D implies p; < k (if we had k£ < p; the only possible
element with valuation of the type (D, z) in v(*R) would be (D, D)). So we have

max(l(m1),p1) max(l(m1),k)
c[2] = c[1] = Z my; < Z my; = max{c,, D}.
i=1 i=1

]
As a consequence of this theorem, we can take bp = (max{c,, D} + 1, max{c,, D} +1) as
a bound for an algebroid curve with m; = my and Dis(1,2) # ().
Now we only need to understand how to deal with the case of algebroid curves with m; =
mgy and Dis(1,2) = (). In this case we have:

1) my = my;
ii) v(n(t) = v(Wi(w) Vi=1,...,n,

Without loss of generality, we can rename the elements of the parametrization in order to
have:

v(d1(t), vn1(u)) < v(ga(t), vo(u) < ... < v(gn(t), Pn(u)).
Let (¢;(t),;(u)) be the first element with ¢ > 1 such that at least one of the following holds

o $i(t) # Ui(t)
g ¢i(t) # %’(t),

(it must exist an element of this type because otherwise we would not have an algebroid curve
with two branches). In this case we can always find a, b, r, s € N, such that

(0(t), d(u) = a(n (1), Yr(w))" + b(i(t), i(u))?
with ord(¢(t)) > ord(¢y(t)).

Now, let us consider

R =K[[(6(1), ¥(w), ($2(t), ¢2(w)); .-, (dn(t), o (w))]];
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and denote with ¢ the conductor of the Arf closure of R.

Since R C R, wehave ¢ < ¢. Now, if Risan algebroid curve such that 1m; # mg or Dis(1,2) #
(), then we know how to find a bound for ¢.

Otherwise, we can apply the same idea starting by R until we found an algebroid curve with
a discrepancy for which we know to compute a bound; we will call this bound ;. We note
that this process necessarily produces a discrepancy since R is an algebroid curve that is not an
algebroid branch.

Remark 21. We observe that it makes sense to compute b; even when we have a discrepancy. A
priori we do not know in this case which bound is better between b and b, so we will compute
both of them and then we will choose the smaller one.

We will enunciate the following proposition that summarizes what we have seen above.

Proposition 4.4.5. If R is an algebroid curve, c is the conductor of its Arf closure, my and ms
the multiplicity sequences of its branches, then the element

bo lf my 7£ ma;
b= < min{bp, bg} if my=myA Disc(1,2) # 0
ba if my=mgyA Disc(1,2) =0,

is such that b > (c[1] + 1,¢[2] + 1).

As a consequence of the last proposition and Theorem 4.4.1, we have that b is a suitable
bound for the algorithm.
Finally we show how the bound found in two-branches case can be used to determine a bound
in the general case.

Remark 22. 1f R is an algebroid curve with r branches, parametrized by

R = K[[(¢11(t1)7 LR ler(tr)) [ (¢k1(t1)7 s 7¢kzr<tr>)]]
We consider
i (R) = K[[(¢1i(ti), 015(t5)) s - - -, (Pni(ts), s (25))]],

the two-branch curve associated with the branches i and j fori,j = 1,... 7,7 # j.

We call by, () = (br,(R).i»br.;(R),;) the bound computed for the curve 7; ;(RR) where
br, ;(r),: and by, (r),; are the components of the bound related to the branches 7 and j respec-
tively. If we consider

bli] = max{bmyj(R)J j=1,...,1mj #1i},

it is easy to observe that b = (b[1],b[2], ..., b[r|) is a suitable bound for the curve (because the
general algorithm performs simultaneously the two-case one on each couple of branches).
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Remark 23. From Remark 22, it follows that a bound in the general case is still given by ¢ + 1,
where c is the conductor of the Arf closure of E. When the set of vectors

G ={v((¢n(tr), .., ¢ (tr))), - v(Dra(tr), - Grr(Er)))} © N

satisfies the conditions of Theorem 2.2.1, we can speed up the computation of the bound. In
fact we can compute the smallest Arf good semigroup S containing G that is in turn contained
in v("R). So ¢(S) > ¢ and we have a good bound for our procedure. However, as we show in
the following example, the valuations of the elements in the parametrization are not forced to
fulfil the aforementioned conditions. Furthermore, the bound obtained with this shortcut can be
less accurate than the one obtained from the general strategy.

Example 4.4.6. We want to compute, using the truncation explained in the previous section,
the Arf closure of the ring

R =R, =K[[(£® — % v + v’ v* w? + ), (t° u* + u" +u'% 0" —0°, w? + w)]],

that appeared in Example 4.3.2.
If we use the algorithm of Arslan and Sahin to compute the Arf closure of the rings

R' = K[[t* — t5,t%], R? = K[[u® + u5, v* + u" + '],
R? = K[[v3,v" — %], R* = K[[w? + v°, w? + w]],
we find that the multiplicity tree 7" of * R belongs to 7( E'), where
E ={my = [5],my = [2,2,2],m3 = [3,3],mq = [2,2,2]}.

We want to compute the bounds b, (r); With 7,7 = 1,2,3, 4,14 = 4. Since bri(R)i = rjs(R) i
forall7,j =1,2,3,4,1 # j, we can reduce to compute only br;(R); Where j > 1.
If m; # m; we have seen that:

max(l(m;),Comp(m;,m;)) max(l(m;),Comp(m;,m;))
bm‘j(RM = Z Mik | + 1 and bﬂ'ij(R),j = Z mik | + 1.
k=1 k=1

We have:

e Comp(my,my) =2 =

max(1,2)=2
bryo(r)1 = mig | +1=5+14+1=T,
k=1
max(3,2)=3
brio(r)2 = mog | +1=2+24+2+1=T.
k=1



e Comp(my, m3) =2 =

max(1,2)=2
br a1 = mig | +1=5+1+1=T,;
k=1
max(2,2)=2
bﬂ1,3(R)73 = msg | +1=3+3+1=T.
k=1
b Comp(mla m4) - 2 =
max(1,2)=2
bﬂlA(R)’l - Z mik + 1=5 + 1 + 1= 7’
k=1
max(3,2)=3
b = Yo omu | +l=2+24241=T.
k=1
e Comp(mgy, m3) =3 =
max(3,3)=3
braamz = > map | +1=2+42+42+1=7,
k=1
max(2,3)=3
brsmys = | D, max|+1=3+3+1+1=8
k=1
max(2,3)=3
broaimys = Z map | +1=3+3+14+1=38;
k=1
max(3,3)=3
b = Yo omag | Fl=242+4241=T
k=1

We have Comp(mg,my) = oo because my = my = [2,2,2], then to compute by, ,(z) We
need to work on the parametrization of 7, 4(RR). We have:

Toa(R) = K[[(v® + ub, w® + w?), (u® + u" + u'%, w? + w")]].
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Both the generators of 7, 4(R) have valuation (2, 2), therefore we have not discrepancies be-
tween the orders in the initial parametrization. So we have to produce an element of 7 4(R)
with discrepancies by manipulating its generators. It suffices to take the difference between
them, in fact we find:

moa(R) > (u® +ub w? + w?) — (WP +u” +u' w? +w") = (Wb — ", —w’ +w?),

with v((u® —u’, —w”+w?)) = (6, 7). Because 6 = min(6, 7) is less or equal than the conductor

of my = [2,2,2] we can choose by, (g = (6 + 1,6 +1) = (7,7).
Finally, denoting with b][i] the bound on the ¢-th branch, we have:

o b[1] = max {b, ,(r) 1. Omy 5 (R)15 brya(r)1 ) = max {7,7,7} =

o V2] = max{b,r12 R).2> Ura 5 (R),2> Do u (R 2} =max {7,7,7} =T,
o b[3] = max {br, ,(r)3: brss(R)3: Umgu(r),3} = max {7,8,8} = &;
o b[4] = max {br, ,(r)as bry s (R) s Uy u(r)a ) = max {7,7,7} = 1.

Then on the i-th branch we can truncate all the terms with degree greater than b[¢] obtaining
the new ring:

S =8, = K[[(#*,u* + u®,v*, w?), (t% v +u", 0", w® + w")]].

Let us show that *.S = * R. We will use the same notations of Example 4.3.2.

It is easy to verify that m; 5(S), 71 3(S) and 7 4(S) are all local. Then for Lemma 4.3.1, it
follows that 3(S) = {{1, 2, 3,4}}, in other words S is local.

We have that mult(S;) = (5,2, 3,2). As the minimal value s, we can choose z; = (%, u*+
ub, v3 w?).

We have:

Sy =K H(t5,u2 +ub, 03 w?),
1 5
=K H(t5,u2+u6,7)3,w2), (t, R 1)4,1+w5)H .

Now we can verify that 7 »(S5) is not local, 7 3(55) is local, 7y 4(.S2) is not local and 79 4(55)
is local, therefore P(S2) = { P21 = {1,3}, Poo = {2,4}}. We have

Sy = S x S2,

where
Sy =K H(t5,03), (t,v4)H ,

116



1 5
ox s (12500

oo ()

where, following our conventions on the parametrization, we replace GIZE, 1+ w5> with
1 5 _ 4 5
(B 1+ 0f) - (1) = (22, 0).
We have mult(S3) = (1,3) and we can choose as element of minimal value the sum gy of
its two generators

Tgy = (t + 10, 0° +v4) ,

while mult(S3) = (2,2) and we can choose as its minimal element 22 = (u” 4 u°,w?). Then
we have multset(S2) = {(1,0,3,0),(0,2,0,2)} and we can proceed with the computation of
Ss3. Thus

S, = BI(S}) x BI(S?),
so we have to compute BI(.S]) and BI(S%).

We have
BISY =K || (670, 6 w)) ... (6P (1), 0P ) ]

where

. (qbf”(t),zp?)(v)) = (t+1°,0° +0Y);

o (008 w) = ( T )

1+t 14w

¢ (080) = (1)

We notice that the second generator has valuation (4,0), then BI(S;) is not local in K[[¢]] x
K[[v]]. Furthermore we have multset(BI(R})) = {(1,0),(0,1)} in K[[¢]] x K[[v]]. Then we
have

BI(S;) = K[[¢]] x K[[v]].
Now we can compute BI(S2). We have

Thus BI(S2) is local in K[[u]] x K[w]], and mult(BI(S3)) = (2, 2).
Then C,B(Sg) = {P371 = {1} s P372 = {3} R P373 = {2, 4}} and
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Ss 2 KI[t]] x K[[v]] x S5,
with multset(S3) = {(1,0,0,0),(0,0,1,0),(0,2,0,2)}. As a minimal element of S5 we

7
can choose again w53 = (u* + u®, w?).

Thus
Sy = BI(S3) x BI(S3) x BI(S3) = K[[t]] x K[[v]] x BI(S3).

s - [, 2550

From this it is easy to show that B1(S3) = K|[[u]] x K][[w]], hence

We have:

Sy = K[[t)] x Kfu]] x K[v]] x K[[w]],

and we have reached the stop condition for our algorithm.
We found that N = 4 and

e multset(S;) = {(5,2,3,2)},

o multset(S,) = {(1,0,3,0),(0,2,0,2)}

o multset(Ss) = {(1,0,0,0),(0,0,1,0), (0,2,0,2)},

o multset(S) = {(1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0,1)} .

The corresponding minimal elements are:

3

o 15, = (£°,u? + ub, v3 w?),

o zl=(t+t> 1,03 +v* 1) and 23 = (1,u® + b, 1,w?);
o = (t,1,1,1),23 = (1,1,v,1) and & = (1,02 + u®, 1, w?);
o v =(t,1,1,1),27 = (1,u,1,1),23 = (1,1,v,1) and =} = (1,1, 1, w).

Then we have the following trees:
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The conductor of v(*S) is ¢ = (6,6,6,6) If we compare these tree with the tree computed
starting by R in the Example 4.3.2, we can observe that the tree associated to the ring and the
multiplicity tree are the same, while the minimal trees are equal module ¢ + 1 = (7,7,7,7).
Then we have M (T'(S))g = M(T(R))g.

We have that

Small(v(*S)) = Small(v(*R)) =
={(5,2,3,2),(5,4,3,4),(5,6,3,6), (6,2,6,2),(6,4,6,4),c = (6,6,6,6) } .

From the minimal tree we can recover the elements of *S with valuation belonging to Small(S(7)).

We can calculate the Arf closure by truncating the terms with degree bigger than the conductor.
They are:

{(t5, u?, v? w?), (1, ut v wh), (2°,0,0%,0), (0,u?, 0, w?), (0,u*,0, w4)} .

Finally we have
*S=*R=K(1,1,1,1) + K(#*,u* v*,w?®) + K(#*,u*,v*, w*) + K(#*,0,0°, 0)+
+K(0,u%,0,w?) + K(0,u*,0,w") + (t°, u’, v, w®) (K[[t] x K[[u]] x K[[v]] x K[[w]).

Then, as expected, truncating the terms with valuation bigger than our bound did not change
the output of our algorithm. Notice that the truncation can have a relevant impact on the
speed of the computation, avoiding to take in account irrelevant terms when manipulating the
parametrizations, as it is shown in the following output of the procedure implemented in GAP.

gap> R:=[[x_1"2+x_1"23,x_2"3+x_2"14,x_3"5+x_3"17], [x_1"4+x_1"21,x_2"6+x_2"30,x_3"6+x_3"2211;

gap> ArfClosurePresentation (R);

[ [ x_ 172, x_2714+x_2"3, x.3°5 1, [ x
[ x_.1710, x_2"15, 0 1, [ x_.1"12, 0O, O
[ x_.1720, %2717, x_.376 1 ]

gap> time;

249984

14, x.2°6, 01, [ x_1"6, .29, 01, [ x.1"8, x_2712, 0 1],
], [ x.1°14, 0, 01, [ x_1"16, O, O], [ x_1718, 0, O ],
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gap> ArfClosurePresentationWithTruncation (R);

[ [ x 172, x 2714+x_2"3, x 3°5 1, [ x. 174, x2"6, 01, [ x 16, x 279, 01, [ x_1°8, %2712, 0 1,
[ x.1"10, x_2"15, 0 1, [ x 112, O, O], [ x_.1"14, O, O 1, [ x_1"16, O, O 1, [ x_.1718, 0, O 1,

[ x.1720, x_2"17, %376 ] 1

gap> time;

47

The function ArfClosurePresentation takes in input a list of polynomials ¥ and com-
putes the Arf closure of the algebroid curve R parametrized by W. It gives as an output a list of
vectors {v1, ..., v} such that

*R=K(1,1,1,1) + Kvy + Kvy + - - + v (K[[w] x K[[wa]] % - -+ x K[[z]]) .

The function ArfClosurePresentationWithTruncation works in the same way as
ArfClosurePresentation but it applies the truncation explained in the previous section
and it is considerably faster than the latter.
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