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“Everything which distinguishes man from the animals depends upon this ability to

volatilize perceptual metaphors in a schema, and thus to dissolve an image into a

concept.”

F. Nietzsche in “On Truth and Lies in a Nonmoral Sense”
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Abstract

The major part of world-wide population moved to urban areas. After such process

many issues of major cities have worsened, e.g. air pollution, traffic, security. The

increase of security cameras and the improvements of Computer Vision algorithm

can be a good solution for many of those problems.

The work in this thesis was started after a grant by Park Smart s.r.l., a company

located in Catania, which believes that Computer Vision can be the answer for

parking space management. The main problem the company has to face is to find a

fast way to deploy working solutions, lowering the labeling effort to the minimum,

across different scene, cities, parking areas. During the three years of doctoral studies

we have tried to solve the problem through the use of various methods such as Semi-

Supervised Learning, Counting and Scene Adaptation through Image Classification,

Object Detection and Semantic Segmentation.

Semi-Supervised classification was the first approach used to decrease labeling effort

for fast deployment. Methods based on counting objects, like cars and parking

spots, were analyzed as second solution. To gain full knowledge of the scene we

focused on Semantic Segmentation and the use of Generative Adversarial Networks

in order to find a viable way to reach good Scene Adaptation results comparable to

state-of-the-art methods.
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Chapter 1

Introduction

The social context where we live is changing rapidly. Recent studies show that more

than half of global population lives in urban areas [1]. Cities are becoming more and

more messy and disordered due to such huge number of inhabitants. These megac-

ities are affected by new problems in different fields. To face this kind of problems,

leveraging new technologies to ease their solutions, the scientific community and the

governments elaborated the concept of Smart Cities.

A Smart City is a city where, with a massive use of ICT solutions, classic problems

such as traffic, health monitoring, mobility, efficient governance, etc. are tackled in

an innovative fashion. Moreover, in the last few years there has been a significant

interest about the Internet of Things paradigm [2]. The IoT has been defined as

“a global infrastructure for the information society, enabling advanced services by

interconnecting (physical and virtual) things based on existing and evolving inter-

operable information and communication technologies” [3]. Thus Smart Cities are

intrinsically correlated to the implementation of an IoT framework. In such a sce-

nario, sensors are distributed in the area of the cities and generally connected via

cloud, to exploit the computational power of remote machines. This model though

is subject to the limitation brought by the availability of a high speed connection.

Recently, major companies have started to focus on a new paradigm, known as edge

computing [4]. In this model, the computation is “moved” from inside the cloud

to its borders, making use of distributed processing units. Thus the IoT device is

transformed from a mere sensor to an intelligent unit. Smart cities is thus one of

the new frontier of the Computer Vision community thanks to increase of security

cameras (see Figure 1.1 (a)) and the improvements of Computer Vision algorithms.

Among the different applications of Computer Vision to Smart Cities we can recall
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(a) (b)

Figure 1.1: (a) Surveillance cameras spotted at Barcelona’s design museum. (Photo by
Ennio Dybeli on Unsplash) (b) An example of a chaotic parking lot (Photo by Ryan Searle
on Unsplash)

traffic analysis [5, 6], vehicle tracking [7], etc.

Focusing on the mobility, over the past few decades, the use of cars in large

metropolitan areas has massively increased. These trends lead to a significant re-

duction in the availability of parking lots (see Figure 1.1 (b)). Consequently the

amount of time spent driving increases, together with stressful conditions and air

pollution. Therefore, smart monitoring of parking stalls aiming to optimize the

path from the current driver position to a free parking lot is not only a matter of

maximizing profits for the owner or the manager of the parking, but also a matter

of public health.

Industrial systems aimed at optimizing the use of parking spaces require methods

to count the number of vehicles and free spaces in a parking area. Solutions in this

application context can be categorized as follows:

1. Counter-based technologies are employed in closed parking areas equipped

with a barrier. The controlled access settings allow to detect whenever a car

enters or leaves the parking area in order to update the number of vehicles

and available parking spaces;
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2. Sensor-based technologies make use of sensors installed under the asphalt to

detect the presence or absence of cars upon it;

3. Image-based technologies employ cameras facing the parking area and rely on

Computer Vision techniques to count vehicles.

Image-based solutions are economically advantageous over other methods since

they do not require specific sensors and can be easily implemented in the context

of free-access parking areas. Nevertheless, such approaches have to face several

variabilities depending on the positioning of the cameras, the shape of the parking

spaces, variable lighting conditions, presence of shadows, occlusions, etc..

The architecture of the system that Park Smart s.r.l. developed follows the

Edge Computing design which brings the Computer Vision computation close to

the parking area. Their aim is to help private companies and public administrations

to manage free entry parking areas, as well closed ones, in order to offer better

services to the final customer, i.e. the drivers, and to increase the revenue per stall.

The main problem the company has to face is to find a fast way to deploy working

solutions, lowering the labeling effort to the minimum, across different scene, cities,

parking areas.

1.1 Parking Management and Computer Vision

The problem of detecting empty vs non-empty parking lots is not new in Computer

Vision. Wu et al. [8] proposed a simple pipeline, where patches were extracted and

normalized into rectangular patches by using perspective transformation. The color

distribution on these patches is computed by the authors and used to feed a Multi-

class Support Vector Machine (SVM) for classification purposes. As a final stage,

the results of the classification are processed using a Markov Random Field (MRF)

to refine potential conflicts between two neighboring patches.

The main objective in [9] was to build an annotated dataset to be exploited

by the computer vision community to assess algorithms related to the free parking

spaces detection problem. The images were taken in two different parking lots with

three different views and different weather conditions (i.e. cloudy, sunny, rainy). In

order to perform a benchmark on the dataset, the authors performed different tests
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using two different hand-crafted features: Local Binary Patterns [10] and Local

Phase Quantization [11]. A Support Vector Machine with a gaussian kernel has

been employed for the classification stage. In a first experiment the authors used

images sampled from a single parking lot to train and test their system. The main

objective of this test was to evaluate the “goodness” of the used features. The

second experiment was developed to evaluate the transfer learning property of the

approach. Images from a single parking lot have been used as training set, whereas

tests where performed with data from the others view/lots. In the third experiment

training and testing data were built considering images of all lots and views in order

to measure the learning ability of the system.

In [12] a smaller version of AlexNet (named mAlexNet) was adopted to make

the detection task executable in real-time on an low-energy embedded device. The

authors tested the network developed on the PKLot dataset and on a new dataset,

CNRPark-EXT, which is now freely available for the community.

A method based exclusively on image processing techniques was proposed by

Yusnita et al. in [13]. The authors mark the real scene painting each stall with a

brown circle in the center. In order to decide if a place is available or not the images

are thresholded and enhanced using morphological operators. Then the system looks

for the circles that are still visible, using an eccentricity based measure to check if the

detected blobs are roughly circular. As a last step, the system applies a threshold

and counts the remaining spots, giving in output the number of free stalls.

Another approach in literature makes use of trajectories or events to separate

empty stalls from non-empty ones. Specifically, Lin et al. [14] employ motion tra-

jectories as feature vectors and then apply the adaptive Gaussian Mixture Model

(GMM) and connected component analysis for background modeling and objects

tracking.

The work in [15] introduces QuickSpot, a car-driven video analytics solution

for on-street vacant parking spot detection designed as a motion detection, object

tracking and visual recognition pipeline. To test their performance under different

lighting conditions, they created QuickSpotDB, a video database for the vacant

parking spot detection problem.
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1.2 Aims and Findings

Through an analysis of the domain it was easy to understand that, to build a sys-

tem robust with high accuracies rates there are several variabilities which have to

be considered such as: camera view, shapes of the parking spaces, and other clas-

sic variabilities of standard image classification problem such as background, light,

deformation, weather. Deep Learning [16] techniques were clearly the approach to

use.

We know, through several tests, that we can achieve more than 99.9% of accuracy

using binary classification. The time to train different models and to label different

datasets for every installation, suggests to find a solution to overpass these limita-

tions. We first tried to decrease labeling effort through Semi-Supervised learning

but the solution tried was not suitable and showed to be highly unstable. We tried

several methods based on counting cars and parking spots, as solution for fast de-

ployment, which showed some results comparable to image classification and suggest

to move the focus on Semantic Segmentation in order to gain a full knowledge of

the scene.

1.3 Contribution

The main contributions of this thesis are the following:

• analyze the parking space management related problems through Computer

Vision in order to solve fast deployment issues;

• introduce the problem of scene-based domain adaptation for semantic segmen-

tation;

• collect and release a synthetic dataset of images to study the considered domain

adaptation problem;

• propose a method to perform scene adaptation using adversarial learning.

The contributions of this thesis have been published and submitted to interna-

tional journals and conferences:
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Conference Di Mauro D, Battiato S, Patanè G, Leotta M, Maio D, Farinella GM.

Learning approaches for parking lots classification. In International Confer-

ence on Advanced Concepts for Intelligent Vision Systems 2016 Oct 24 (pp.

410-418). Springer, Cham.

Conference Di Mauro D, Moltisanti M, Patanè G, Battiato S, Farinella GM. Park

Smart. In Proceedings of Advanced Video and Signal Based Surveillance

(AVSS), 2017 14th IEEE International Conference on 2017 Aug 29 (pp. 1-

5). IEEE.

Conference Di Mauro D, Furnari A, Patanè G, Battiato S, Farinella GM. A Com-

parison of Techniques based on Image Classification and Object Detection to

Count Cars and Non-Empty Stalls in Parking Spaces. In Proceedings of the

15th International Joint Conference on e-Business and Telecommunications -

Volume 2: ICETE, pages 328-336. SciTePress.

Conference Di Mauro D, Furnari A, Patanè G, Battiato S, Farinella GM. Scene

Adaptation for Semantic Segmentation using Adversarial Learning. In Pro-

ceedings of Advanced Video and Signal Based Surveillance (AVSS), 2018 15th

IEEE International Conference on 2018 Nov 29. IEEE.

Journal Di Mauro D, Furnari A, Patanè G, Battiato S, Farinella GM. Scene-Based

Domain Adaptation for Semantic Segmentation using Adversarial Learning.

Under review In Pattern Recognition.

Journal Di Mauro D, Furnari A, Patanè G, Battiato S, Farinella GM. Estimating

the Occupancy Status of Parking Areas by Counting Cars and Non-Empty

Stalls. Under review in Journal of Visual Communication and Image Repre-

sentation

1.4 Thesis Outline

The reminder of this Ph.D. Thesis is divided in 6 chapters all related to problems

in the context of scene understanding for parking space management.

Chapter 2 is a presentation of several methods and computer vision tasks which have

been used for the work in this thesis. Chapter 3 investigates the binary classification
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problem of empty vs non-empty parking space. Chapter 4 describes a first approach

to reduce labeling effort using Semi-Supervised Learning. Chapter 5 define two

counting problems on the parking space domain tackled with three different methods.

Chapter 6 present a Domain Adaptation technique developed in order to solve Scene

Adaptation and View Adaptation problems. Finally Chapter 7 concludes the thesis

and gives insights for future directions.
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Chapter 2

Computer Vision: Background

and State of the Art

Deep learning models presented in this chapter are based on the use of Artificial

Neural Network. Each level of such network learns a function to transform an input

data into a different, usually abstract and compressed, representation.

The word “deep” in “deep learning” refers to the number of layers through which

the data is transformed. Neural networks of two layers depth has been shown to be

a universal approximator [17] in the sense that it can emulate any function, but the

use of extra layers have shown to help learning features in a faster way.

Artificial Neural Network flourished again, after a long stop, thanks to the work

in [18]. The work was developed for the ILSVRC-2012 challenge and since that year,

deep learning have obtained better results of hand-crafted features on every classical

task of computer vision.

2.1 Classification

Image classification refers to the task of assigning a class to an image. It is an

example of supervised learning task: the goal is to learn a function that maps an

image (input) to a class (output). In general, in supervised learning tasks, each

example is a pair consisting of an input object and a desired output value. An

optimal model will allow to correctly determine the class labels for unseen instances,

in this case we talk about generalization.
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In the following sections we introduce five deep learning architectures (LeNet,

AlexNet, GooLeNet, ResNet and VGG) which have been used to produce the work

presented in this thesis.

2.1.1 Gradient-based learning applied to document recog-

nition (LeNet)

In recent years, Neural Networks have re-gained attentions in computer vision. In

particular nowadays we talk about Convolutional Neural Networks (CNN).

CNNs architectures make the explicit assumption that the inputs are images and

allows to encode certain properties to be considered in the context of visual un-

derstanding into the Neural Network architecture, enabling also an efficient forward

function implementation and reducing the amount of free parameters in the network.

Such approach found their roots in the work by LeCun et al. [19].

Figure 2.1: An illustration of the LeNet architecture (Image from [19])

In this network we find some core building block of a Convolutional Neural

Network: Convolutional layer, Spatial Pooling and Fully Connected Layer.

The Convolutional layer’s parameters consist of a set of learnable filters, every

filter is small along width and height, but extends through the full depth of the

input volume. During the forward pass, we convolve each filter across the width and

height of the input volume and compute dot products between the entries of the

filter and the input at any position. The result of such operation will produce a 2-

dimensional activation map that gives the responses of that filter at every position.

The network will learn filters that activate when they encounter a visual feature

useful for the task. Each Convolutional layer is composed by a set of filters, and
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each of them will produce a separate 2-dimensional activation map, which will be

stacked along the depth producing the output volume.

Spatial Pooling (also called subsampling or downsampling) is another core layer

in modern CNNs. The goal is to reduces the dimensionality of each feature map but

retains the most important information. Spatial Pooling can be of different types:

max, average, sum, etc., depending on the function used to filter the most important

information, in case of Max Pooling, we define a spatial neighborhood (e.g., a 2× 2

window) and take the largest element from the activation map within that window.

Finally the Fully Connected layer is a traditional Multi Layer Perceptron that

uses a softmax activation function in the output layer. “Fully Connected” implies

that every neuron in the previous layer is connected to every neuron on the next

layer.

2.1.2 ImageNet Classification with Deep Convolutional Neu-

ral Networks (AlexNet)

In [18] was presented a CNN for the ILSVRC-2012 competition. The Convolutional

Neural Networks proposed is known as AlexNet and in 2012 won the competition

with a good margin of accuracy respect to other methods. AlexNet contains eight

layers: the first five are convolutional layers and the remaining three are fully-

connected. The last fully-connected layer is a 1000-way softmax which produces a

distribution over 1000 object classes.

Figure 2.2: An illustration of the Alexnet architecture (Image from [18])
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The Network had an architecture close to LeNet, but it was deeper, bigger,

and it featured Convolutional Layers stacked on top of each other, previously it

was common to only have a single Convolutional layer always immediately followed

by a Spatial Pooling layer. It uses Rectified Linear Unit (ReLU) [20] instead of

the hyperbolic tangent function (Tanh) to add non-linearity, such function acceler-

ates the speed of the learning process maintaining the same accuracy, finally it use

Dropout [21] instead of regularization to deal with overfitting.

2.1.3 Going Deeper with Convolutions (GoogLeNet)

A further architecture which was introduced by Szegedy et al. [22] is GoogLeNet.

Such model won the ILSVRC-2014 challenge with a TOP-5 test accuracy of 93.3%.

This architecture is composed by 22 layers and a newly introduced building block

called inception module. This new approach proved that CNN layers could be

stacked in more ways than a typical sequential manner. We talk of a Network in

Network (NiN) layer composed by a pooling operation, a large-sized convolution

layer, and small-sized convolution layer computed in parallel and followed by 1× 1

convolution operations to reduce dimensionality. Thanks to those modules, this

network reduces the number of parameters and operations being efficient on memory

usage and on computational cost. In Figure 2.3 (a) is depicted the architecture of

the network.

2.1.4 Very Deep Convolutional Networks for Large-Scale

Image Recognition (VGG)

With the name of VGG we indicate a CNN architecture introduced by the Visual

Geometry Group (VGG) from the University of Oxford in [23]. They proposed

various models and configurations of deep CNNs, one of them was submitted to the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2013). That model,

known as VGG-16 or VGG-19 due to the fact that it is composed by 16 or 19 weight

layers, became popular thanks to its achievement of 92.7% TOP-5 test accuracy.

The main difference between VGG models and its predecessors is the use of a stack

of convolution layers with small receptive fields in the first layers instead of few layers

with big receptive fields leading to less parameters and more nonlinearities resulting
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in a more discriminative function and an easier model to train. An example of the

model with 19 weight layers is depicted in Figure 2.3 (b). A downside of VGG

is its computational cost: it uses a lot more memory and parameters, most of it

depends from the first Fully Connected layer. Since then it was discovered that

Fully Connected layers can be removed with no performance decay, significantly

reducing the number of parameters.

2.1.5 Deep Residual Learning for Image Recognition (Resnet)

As we saw in the previous paragraphs a strong trend has been to make the networks

architectures deeper, with VGG using 19 layers and GoogLeNet 22, and it has been

noted that making layers wider by adding more nodes it is not to be preferred since

increase overfitting. Adding more layers is better, but because of the vanishing

gradient problem, model weights of the first layers can not be updated correctly

through the back propagation of the error gradient: the chain rule multiplies error

gradient values lower than one and when the gradient error comes to the first layers,

its value goes to zero. That is the objective of ResNet [24]: it preserves the gradient

thanks to the identity matrix. Given a shallower network we can add extra layers

and make it deeper without losing accuracy or increasing error using identity map-

pings, they become equivalent to the shallower network. They should produce no

higher training error than its shallower counterpart. The authors call this approach

a solution by construction. In Figure 2.3 (b) we can see a 34 layer ResNet compared

with VGG-19.

ResNet shows us that you should use as big of a neural network as your compu-

tational budget allows, without fearing to overfit it, and use other regularization

techniques to control overfitting.

2.2 Object Detection

Object detection is the computer vision task that deals with detecting instances of

semantic objects of a finite set of classes in images and videos. Ground Truth labels

are bounding boxes around the objects, in other words four corners of the smallest

rectangle which contain all the object. It was introduced in [25], all the state of the
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(a) (b)

Figure 2.3: (a) An illustration of the GooLeNet architecture (Image from [22]) (b) A 34
layer ResNet with VGG-19 side by side (Image from [24])
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art approaches for object recognition, at the time, reduced the problem to a present

vs not-present task.

In the following sections we introduce two state-of-the-art methods, Faster R-

CNN, which has been used in this thesis for work presented in Chapter 5, and YoLo.

2.2.1 Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks (Faster RCNN)

Faster R-CNN [26] is one of the state-of-the-art deep learning architecture for object

detection. The input images are represented as tensors which are passed through

a pre-trained CNN until an intermediate layer, ending with a convolutional feature

map, it uses this as a feature extractor for the next part.

The following part is called Region Proposal Network (RPN). Using the features

that the CNN computed, it is used to regress to a predefined number of regions

(bounding boxes), which may contain objects.

The hardest issue with using Deep Learning for object detection is generating

a variable-length list of bounding boxes. The problem is solved in the RPN by

using anchors: fixed sized reference bounding boxes which are placed uniformly

throughout the original image. Instead of having to detect where objects are, the

problem is modeled in two parts.

Using the features extracted by the CNN and the bounding boxes with relevant

objects, through applying Region of Interest (RoI) Pooling it extracts those features

which would correspond to the relevant objects into a new tensor.

The R-CNN module uses that information to classify the content in the bounding

box or discard it and adjust the bounding box coordinates to better fits the object.

In Figure 2.4 the architecture of Region Proposal Network (RPN) and some example

detections using RPN proposals on PASCAL VOC 2007 test.
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Figure 2.4: Region Proposal Network (RPN) and some example detections using RPN
proposals on PASCAL VOC 2007 test. (Image from [26])

2.2.2 You Only Look Once: Unified, Real-Time Object De-

tection (YOLO)

Ususally, as we saw with Faster R-CNN, detection algorithm based on deep learning

techniques repurpose classifiers architectures to perform detection. They apply the

model to an image at multiple locations and scales and, depending on the algorithm,

considers detections part of the image which respond with higher scores.

The work by Redmon et al [27] uses a totally different approach. They pass a

full image to a single neural network, which divides the image into regions predict-

ing bounding boxes and probabilities for each region. These bounding boxes are

weighted by the predicted probabilities.

Their model has several advantages, it looks at the whole image at test time

such as its predictions are informed by global context, all predictions are done with

a single network evaluation unlike systems like R-CNN which require thousands

resulting in an extremely fast network.
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Figure 2.5: Architecture of YOLO network (Image from [27])

2.3 Semantic Segmentation

Semantic segmentation is the computer vision task in which specific regions of an

image are labeled according to the semantic meaning of the pictured object, first

works of this task appear in [28, 29]. This task is also referred as dense prediction,

because we are predicting the class of each pixel in the image. In Semantic Seg-

mentation task the numerosity of objects is not relevant, if you have several objects

of the same category in your input, the output map does not distinguish these as

separate objects.

In segmentation each pixel contains a class label represented as an integer. In the

following sections we introduce four state-of-the-art methods, two of them (SegNet

and PSPnet) have been used in this thesis for work presented in Chapter 5 and

Chapter 6.

2.3.1 SegNet: A Deep Convolutional Encoder-Decoder Ar-

chitecture for Image Segmentation

Badrinarayanan et al. [30] presented SegNet. The network is composed by a stack

of encoders followed by a corresponding stack of decoders. The up-sampling is

performed by the decoder using the max-pool location indexes generated by the

encoder. The final decoder output feature maps are fed to a soft-max classifier for
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pixel-wise classification. In Figure 2.6 the SegNet architecture is depicted, it shows

how pooling indexes are used to drive upsampling.

Figure 2.6: An illustration of the SegNet architecture (Image from [30])

2.3.2 Fully Convolutional Networks for Semantic Segmen-

tation (FCN)

Previous works investigated the use of Deep Learning to address the problem of

semantic image segmentation. Long et al. [31] proposed to exploit existing CNNs

for classification to produce dense image segmentation masks. Classification net-

works are modified by substituting fully connected layers with convolutions. The

low resolution feature map produced by the network is hence up-sampled using di-

lated de-convolutions to match the resolution of the input image. The resulting

architecture is shown in Figure 2.7.

Figure 2.7: An illustration of the FCN architecture (Image from [31])
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2.3.3 DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs

Another work which addresses the task of semantic image segmentation is [32].

The first main contribution of this work are “atrous convolution” which allows to

explicitly control the resolution at which feature responses are computed and also

to effectively enlarge the field of view without a corresponding increasing in the

number of parameters or the amount of computation. A second contribution is the

use of atrous spatial pyramid pooling (ASPP) to segment objects at multiple scales,

thus capturing objects and image context at multiple scales. Finally they improve

localization of object boundaries through the use of graphical model, the final layer

is connected with a fully connected Conditional Random Field (CRF). In Figure 2.8

an illustration of the process of DeepLab approach.

Figure 2.8: An illustration of the DeepLab method (Image from [32])

2.3.4 Pyramid Scene Parsing Network (PSPnet)

Zhao et al. [33] proposed to exploit global contextual information by context aggre-

gation through a pyramid pooling module. The considered global prior represen-

tation is effective to produce good quality results on the scene parsing task. The

considered approach achieves state-of-the-art performance on various datasets. The
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architecture, and the main contribution, the pyramid pooling module is shown in

Figure 2.9.

Figure 2.9: An illustration of the PSPnet architecture (Image from [33])

2.4 Generative Models and Applications

Generative models represent probability distributions. There are several Genera-

tive Models, among the others we can cite Boltzmann Machines [34], Variational

Autoencoders (VAE) [35], Fully visible belief networks [36], etc. The main differ-

ence between each model is how they calculate such distribution. Some evaluate

probability function explicitly, while others support operations that implicitly re-

quire knowledge of it, such as drawing samples from the distribution. In particular

Generative Adversarial Networks, which will be shortly described in the following

section, belongs to this second family.

2.4.1 Generative Adversarial Networks

Since their introduction in 2014 [37], Generative Adversarial Networks (GANs) have

been employed in a series of applications, including super resolution [38], next video

frame prediction [39], and generative visual manipulation [40].

In a GAN setup, two differentiable functions, represented by neural networks, are

locked in a game. The two players which are called the generator and the discrimi-

nator have different roles in this framework.

The generator tries to produce data that come from some probability distribution,

while on the other side the discriminator acts like a judge. It gets to decide if the



Chapter 2. Computer Vision: Background and State of the Art 20

input comes from the generator or from the true training set. We are in a situation

similar to a police officer (the discriminator) looking for fake money and a counter-

feiter (the generator) that’s printing fake money. It is a two-player zero-sum game

where generator and discriminator try to find a balance between them.

Figure 2.10: General GAN framework (Image from [41])

In Figure 2.10 an example of application GAN for face generation.

2.4.2 Image Translation

In particular, our work is related to the work of Isola et al. [42], who addressed the

problem of image-translation through the use of Generative Adversarial Networks is

introduced. The formulation of the image-translation problem assumes two different

domains X and Y . The goal of image-translation is to model a function F : X → Y

which transforms an input x ∈ X to an output ŷ which is indistinguishable from

elements which could be sampled from Y . The work has further been extended to
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the case of unpaired images in [43]. In this case, given images from two domains X

and Y , two translation functions are modeled: F : X → Y and G : Y → X. The

mappings are learned using unpaired samples by enforcing a cycle consistency loss.

Figure 2.11: An example of CycleGAN Object Transfiguration (Image from [43])

In Figure 2.11 an example of application of Image Translation through Cycle-

GAN.

2.4.3 Transfer Learning and Domain Adaptation

All the networks presented so far can be applied to problems different to the origi-

nal one performing a fine-tuning step. The fine-tuning method is a transfer learn-

ing mechanism. Usually researchers do not train the Convolutional Network from

scratch but, most of the time, it is common to use a pre-trained Convolutional

Neural Networks on a very large dataset (e.g., Alexnet over ImageNet) and only

fine-tune (recalculate weights) some, or the very last, higher-level portion of the
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network. The rationale behind this choice comes from the observation that the ear-

lier layers, because of their convolutional nature, extract low visual features that are

useful to many general computer vision tasks. With fine-tuning the higher layers

are trained for the specific task. Domain Adaptation is a particular case of transfer

learning where the Source Domain is a labeled set of data, while the Target Do-

main is not [44]. The main difference between canonical Supervised Learning and

Domain Adaptation is, indeed, that in the latter situation we study two different,

but related, distributions.

2.4.4 Domain Adaptation for Semantic Segmentation

Domain adaptation for semantic segmentation is gaining attention in the last cou-

ple of years, a first work, to the best of our knowledge, is Hoffman et al. [45] which

proposed to perform global domain alignment using a novel semantic segmenta-

tion network with fully convolutional domain adversarial learning. Category spe-

cific adaptation is performed through a generalization of constrained weak learning,

with explicit transfer of the spatial layout from the source to the target domain. In

a subsequent work, Hoffman et al. [46] proposed to adapt representations both at

the pixel-level and at the feature-level through cycle-consistency without requiring

aligned pairs.

The model has been applied to a variety of visual recognition and prediction settings,

including semantic segmentation of road scenes. Sankaranarayanan et al. [47] ad-

dressed the problem of domain adaptation for semantic segmentation with a method

composed by an embedding network, a pixel-wise classifier, a generator network and

a discriminator network. In [48], Tsai et al. employed a multi-level adversarial net-

work to perform output space domain adaptation at different feature levels. The

algorithm consists of two modules: a segmentation network G and the discrimina-

tor Di, where i indicates the level of a discriminator in the multilevel adversarial

learning.
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Chapter 3

Empty vs Not-empty Parking

Space Classification

Classification is the task where the computer vision community has obtained great

results since the introduction of deep CNNs. Thus we decided to tackle the problem

to decide if a parking space is empty or not as a classification task over patches

corresponding to parking lots. This approach is well suited for the most cases. The

main idea is to divide each frame captured by the camera in several crops, where

every crop is a square image corresponding to a parking space.

3.1 Park Smart: The Overall System at Glance

Despite the problem of detecting empty vs non-empty parking lots is “simple” it can

be easily intractable. Lets think about a single camera which streams every frame to

a centralized server. Then multiply the band needed by one stream for the several

cameras, hundreds, or thousands, or even millions, needed to monitor several smart

cities areas. Note that a mid-sized city could need a number between 800 and 1000

cameras to monitor all the parking spaces.

It is clearly infeasible, or at least really expensive and not economically profitable

to manage such kind of streaming traffic in real-time. We thus decided for a more

scalable approach by bringing the computation close to the camera which acquire

the stream using dedicated embedded systems that will send the results to the main

server system.

Our architecture is described by Fig. 3.1. It has four main components:
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Figure 3.1: This diagram shows the current Park Smart system: images and videos are
captured by cameras which send them to the AISEE embedded where the computation is
performed. From there the information about the parking status is send to the cloud in
order to be viewed by users.

Cameras We use wide angle cameras to optimize the number of parking spaces

monitored. Our approach is not vendor locked. To have best results the

resolution needed is at least 50px per side for each parking space.

AISEE IoT We analyze the video stream as closest as possible to the camera.

It is an embedded system capable of elevated computing power, enough to

do inference using deep learning models. Once inference is done the results

are sent to the cloud platform. The embedded operating system has been

developed with security, privacy and resilience in mind. We can deploy several

AISEE IoT boxes depending on the number of cameras and the dimension of

the installation.

Cloud We collect all the information from several installed embedded systems

through a cloud platform which is scalable by design.

Presentation layer The system is accessible through different kind of appliances:

• The dashboard is the business and administration front-end which al-

lows all the operations and to manage the installations (e.g. to add new
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cameras, configure cameras, add embedded, remove embedded and up-

grade them, etc.).

• The mobile app or browser are the ending point for the people who

are looking for a free spot where to park.

3.2 Classification of parking stalls

To investigate the approach, before producing our dataset, we used PKLot dataset [49],

it has 12417 images with resolution of 1280 × 720 pixels. This dataset is really in-

teresting for us for the following key features

• images were taken from three different parking areas;

• cameras were positioned at different heights;

• images have strong variability: such as the presence of shadows, over-exposition,

low light, difference in perspective.

We sampled three datasets, one for each parking area, and fine-tuned AlexNet. The

results are reported in Table 3.1.

Table 3.1: Results using a fine-tuned AlexNet on PKLot

Sample Train Val Test Accuracy
UFPR05 19281 4820 24101 99.93%
UFPR04 20000 5000 25000 99,96%
PUC 20000 5000 25000 99,92%

We tested the system on other three dataset considering images of a parking

area composed by 46 parking spaces. The images were acquired in Catania, Sicily,

during summer, autumn and winter 2015 in order to have as much variabilities as

possible (light, weather, different cars, etc) and at different time of the day. To

cover the parking space area the images have been acquired from eight cameras

with Full-HD resolution extracted from motion jpeg streams. The sampled images

have been cropped to extract stalls and manually labeled. Specifically each crop has

been assigned a free or occupied label.
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Table 3.2: Results obtained considering different CNN models and three dataset. In
particular, DS1 has 17688 train images, 3924 in val and 21612 in test; DS2 has 20636 train
images, 4578 in val and 31374 in test; DS3 has 13032 train images, 2820 in val and 25212
in test

CNN Models DS1 DS2 DS3 Avg. Accuracy Footprint
AlexNet [18] 98,80% 99.20% 93.82% 97,27% 217M

GoogLeNet [22] 99.72% 99.58% 99.26% 99.52% 40M
VGG16 [23] 99.13% 98.70% 94.91% 97.58% 528M

We analyzed different methods of cropping images, but, in most cases, the meth-

ods did not have an impact on the final classification results.

Figure 3.2: An example of classification of one camera. Best viewed in colors.

To perform our experiments we used the Caffe library [50] taking advantage of

GPU optimized code. To fine-tune the networks we used a machine equipped with

four NVIDIA GeForce TITAN X with 12Gb of DDR5 RAM.

In order to find the best solution, balancing accuracy, classification speed and

model footprint, we have investigated different models known in literature. The

results are reported in Table 3.2. As we can see all the different models work quite

well, with accuracy of 97% or more. GoogLenet (without the fully-connected layer)
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Figure 3.3: Here there are some misclassified images of parking spaces. Best viewed in
colors.

is the slowest to train but is the faster at inference time and the one with the smallest

footprint, while VGG16 and AlexNet weigh far more.

In Figure 3.2 we show an example of classification. The camera is monitoring

12 parking spaces. On every parking space, an overlay displaying the confidence of

belonging to empty or non empty class is shown. In Figure 3.3 we show some misclas-

sification examples. Most of the errors depends from high occlusions and unconven-

tional geometries. To better asses the results, a video demonstrating the proposed

solution is available at the following url: http://iplab.dmi.unict.it/ParkSmart/

3.3 Discussions

In this chapter we have presented the Park Smart system, an end-to-end pipeline

for smart parking assistance and management. The infrastructure makes use of an

IoT device which allows to perform the computation on the “borders” of cloud,

implementing the Edge Computing paradigm. Moreover, we have discussed a clas-

sification based computer vision algorithm able to classify parking spaces, given

their spatial configuration. The work developed in this chapter is a baseline for

Semi-Supervised approaches presented in 4.
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Chapter 4

Semisupervised Learning

Approach Using Pseudolabels

The approach presented in Chapter 3 used supervised learning algorithms to deal

with the problem of classifying a parking space as empty or non-empty. The main

drawback of this kind of approaches is the construction of a big dataset to train

the classifier. Considering the needs of a company deploying an image-based park-

ing monitoring system, the effort of manually labeling the images to build such big

training dataset can became problematic since it is time consuming (i.e., it has high

costs for the company). Moreover, it is difficult to build in advance a proper dataset

for training by considering all the possible variabilities which can be observed in dif-

ferent parking spaces. Variabilities depend on the positioning of the cameras, shapes

of the parking lots, as well as from the classic variabilities which can be considered

in a standard image classification problem (e.g. appearence of vehicles, lighting con-

ditions, presence of shadows, occlusions, etc. See Fig. 4.1). Moreover, most of the

time the images to build the training set (and hence to include possible variabilities

in the learning process) are only available after the deployment of the parking mon-

itoring system. It is hence important to reduce the labeling time adopting learning

methods able to propagate the previous learned model (i.e. models already working

on others parking lots) to the new parking lot to be monitored.

The above considerations have motivated the study presented in this chapter.

In Supervised learning, the labeled datasets are fundamental for the training, but

are “difficult” to create. On the other side, it is simple to create partly labeled sets.

The main goal is how to propagate the labels from few labeled samples to the full

dataset composed by both labeled and unlabeled data. Semi-supervised learning is



Chapter 4. Semisupervised Learning Approach Using Pseudolabels 29

usually proposed to deal with this kind of problem. In order to exploit unlabeled

data, Semi-supervised approaches make some assumptions to the underlying data

distribution. In particular, three assumptions are the most used in literature [51]:

• The Smoothness assumption: if two feature points x1, x2 in a high-density

region are close, then they should have close corresponding outputs y1, y2.

• The Cluster assumption: if feature points are in the same cluster, they are

likely to be of the same class.

• The Manifold assumption: high-dimensional data likely lie roughly on a

low-dimensional manifold.

We evaluate the performances of a semi-supervised learning approach in com-

parison with respect to a classic supervised learning one in order to benchmark the

problem of parking space monitoring. Specifically, considering the high interest of

the community on the deep learning architectures, we compare the well-known su-

pervised learning CNN architecture called Alexnet [18] with respect to the recent

pseudo-label approach for semi-supervised learning of deep neural networks [52]. To

perform this comparison we consider two different datasets; the recent introduced

PKLot dataset [9] and a new dataset called Parksmart dataset (PSD) whose images

have been collected in real scenarios by considering different variabilities.

Experiments have been done to evaluate the performances of Alexnet [18] and

pseudo-label [52] with respect to different training settings. Results show that for

the problem addressed (empty vs. non-empty space) Alexnet outperforms pseudo-

label in all cases and independently from the number of training samples used as

input. The lesson learned is that for the considered problem a supervised learning

technique is to be preferred also in cases where only few labeled samples are available

as training.

4.1 Methods

To compare supervised vs semi-supervised methods we have exploited recent ap-

proaches presented in literature [18] [52]. In the following we summarize the em-

ployed methods.
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Figure 4.1: Example of parking space variability in geometry, luminance, occlusions,
shapes

4.1.1 Deep Convolutional Neural Networks and Fine-Tuning

As a baseline we use AlexNet vanilla implementation which was explained in 2.1.2.

In our case we change the last fully-connected layer from a 1000-way to a 2-way

softmax which produces a distribution over 2 classes.

4.1.2 Pseudo-Label: The Simple and Efficient Semi-Supervised

Learning Method for Deep Neural Networks

In [52] is proposed a network trained in a semi-supervised fashion. The training is

achieved using at the same time labeled and unlabeled data. To the unlabeled data

is assigned the label that the network computed on the forward pass (this is why it

is called “Pseudo Label”). During the training process the loss function calculated

on labeled data and pseudo-labeled ones are summed using the following formula:

L =
1

n

n∑
m=1

C∑
i=1

L(ymi , f
m
i ) + α(t)

1

ñ

ñ∑
m=1

C∑
i=1

L(ỹmi , f̃
m
i ) (4.1)

where n is the number of labeled data, ñ the number of unlabeled data, C the

classes, t is the number of iterations, y and f are the labels and network result for

labeled data, ỹ f̃ are pseudo-labels and network result for unlabeled data and α(t)

is defined as

α(t) =

⎧⎪⎨⎪⎩
0 if t < T1

1 if T1 ≤ t < T2

af if T2 ≤ t

(4.2)

where af = 3 and T1 = 100, T2 = 600.
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4.2 Dataset

In our experiments we used data sampled from the PKLot dataset [9] and a new

dataset which is referred with the acronym PSD. Details on the dataset are given

in the following.

4.2.1 PKLot Dataset

The dataset consists of 12,417 images resulting in 695,899 samples of parking spaces

which have been manually labeled by the authors of [9]. The images were taken

within a 5 minutes time interval, during a 30 days period, using a Full-HD camera

(Microsoft LifeCam HD-5000) with resolution of 1280 × 720 pixels. The cameras

were positioned at very high altitude to minimize occlusions (see Fig. 4.2). The

images were stored in high quality JPEG (100% quality). To crop and to label

every space in the images as free or occupied, the authors of [9] developed a specific

tool able to save information of each space in an Extensible Markup Language file

(XML). To remove rotation variability every parking space patch has been rotated

horizontally or vertically depending of their original rotation angle. The key features

of this dataset are the following:

• images were taken with different weather conditions (sunny, rainy and overcast

periods);

• images were taken from different parking lots;

• cameras were positioned at different heights;

• images have strong variability: such as the presence of shadows, low light,

over-exposition, difference in perspective.

4.2.2 PSD Dataset

The proposed PSD dataset was aquired from August 2015 to November 2015 in a

parking lot of the University of Catania. In order to capture variabilities we have

considered three time slot during the day:

1. from 06:00am to 09:00am (3 hours)
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Figure 4.2: Examples of images belonging to PKlot dataset

2. from 12:30pm to 02:30pm (2 hours)

3. from 05:30pm to 09:00pm (3.5 hours)

The monitored parking lot is composed by 46 parking spaces. To cover the whole

parking lot the data have been acquired by four cameras with a resolution of

1920 × 1080 extracted from motion jpeg registration. The sampled images have

been manually labeled. Specifically, for each image the different parking spaces

have been manually labeled as free or occupied. For experimental purpose the final

set of parking spaces is composed by 270796 crops. Examples of PSD parking lots

are reported in Fig. 4.3.
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Figure 4.3: Example of images belonging to PSD dataset

Table 4.1: Considered dataset and training images

Training

Dataset Images 0.17% 1% 1.7% 5%

PKLot 72000 120 720 1200 3600

PSD 144000 240 1440 2400 7200

PSD* 42000 70 420 700 2100

4.3 Experiments and Results

To perform our experiments we used Caffe library [50]. All the code was developed

using the Python api. We took advantage of GPU optimized code running the tests

on a machine equipped with four NVIDIA GeForce TITAN X with 12Gb of DDR5

RAM.

To test how the fine-tuned AlexNet and the pseudo-labeling method behave

we have performed different experiments varying the number of training images.

Following the rationale in [52], as training we selected a subset of images from

PKLot and from PSD, equal to 0.16%, 1%, 1.6%, 5% of the entire dataset (see

Table 4.1).

The network described in [52] is a neural network with 1 hidden layer. Rectified
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Linear Unit is used for hidden units, Sigmoid Unit is used for output units. The

number of hidden units is 5000. Pseudo-label, is the method to feed a neural network

with labeled and unlabeled data at the same time, thus we decided to implement

such method using an augmented Alexnet able to behave in such way to proper

compare the results. In particular we added an input layer and a concatenation

layer on the front of the network to have two different entrances for labeled and

unlabeled data and to concatenate them before feeding the network. At the end of

the network, we added a slicing layer and a second loss layer in order to calculate

different loss values considering the cases where the input belongs to the labeled set

or to the unlabeled one. The losses calculated were summed using the loss weight

defined by Equation 4.1. We tested the methods using softmax and crossentropy

loss functions in order to have a more complete comparison.

We performed two kind of experiments repeated three times with random labeled

images for training purpose. In the first experiment (see results in Table 4.2) labeled

images were balanced per camera and per class. We decided to balance labeled

images per camera to give the possibility learn in equal way all the geometrical

variabilities of parking spaces. In the second experiment (see results in Table 4.3)

we balanced the labeled images only per class to verify the robustness of the classifier.

The networks were trained for 30 epochs calculated over the training set data.

Pseudo-label approach takes more iterations than fine-tuning. The learning rate

was set at 0.0005. As we can see in Table 4.2 and Table 4.3 results of pseudo-label

and fine-tuned AlexNet are comparable over PKLot dataset. Fine-tuning works even

better at lower training samples. On the other hand, our first experiment on the PSD

dataset obtained results with a huge margin in favour of the fine-tuned AlexNet (see

Table 4.2 and Table 4.3). The standard deviation among different runs is really high.

This suggested us that the result of Pseudo-label is highly depending on the input.

The main difference between the experiments with the two dataset is related on the

random choice of data to be labeled. In fact, PKLot unlabeled subset was balanced

in terms of classes (i.e. 36000 Empty spaces, 36000 Non empty spaces), whereas the

PSD unlabeled subset was not balanced (122903 empty vs 21097 Non-empty spaces).

To prove our intuition we then took a subset of PSD dataset balanced per class. In

this case the dataset was composed by 42000 images (i.e. 21000 Empty spaces, 21000

Non empty spaces) and corresponding training data considered for the training were
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Table 4.2: Results with training balanced per camera and class

Dataset Method Loss 0.17% 1% 1.7% 5%

PKLot finetuning crossentropy 97.35%± 2.17 99.40%± 0.04 99.54%± 0.04 99.76%± 0.02

pseudolabel crossentropy 94.85%± 1.81 98.90%± 0.13 99.35%± 0.17 99.77%± 0.04

finetuning softmax 97.35%± 2.17 99.40%± 0.04 99.54%± 0.04 99.76%± 0.02

pseudolabel softmax 97.03%± 0.79 99.07%± 0.17 99.32%± 0.37 99.81%± 0.06

PSD finetuning crossentropy 99.02%± 0.14 99.46%± 0.15 99.52%± 0.01 99.73%± 0.01

pseudolabel crossentropy 95.76%± 1.60 99.25%± 0.04 99.38%± 0.13 99.81%± 0.02

finetuning softmax 99.02%± 0.14 99.46%± 0.15 99.52%± 0.01 99.73%± 0.01

pseudolabel softmax 96.89%± 0.94 99.34%± 0.07 99.35%± 0.13 99.81%± 0.04

PSD* pseudolabel crossentropy 98.24%± 0.13 99.06%± 0.02 97.24%± 0.56 97.86%± 0.02

pseudolabel softmax 97.55%± 0.56 98.82%± 0.11 97.45%± 0.24 97.93%± 0.22

Table 4.3: Results with training balanced per class

Dataset Method Loss 0.17% 1% 1.7% 5%

PKLot finetuning crossentropy 96.46%± 0.49 98.36%± 0.33 98.70%± 0.01 99.02%± 0.04

pseudolabel crossentropy 15.24%± 0.67 17.13%± 0.91 20.65%± 6.00 14.65%± 0.00

finetuning softmax 96.39%± 0.26 98.25%± 0.33 98.47%± 0.08 99.00%± 0.15

pseudolabel softmax 15.24%± 0.67 17.13%± 0.91 20.65%± 6.00 14.65%± 0.00

PSD finetuning crossentropy 96.92%± 0.13 98.24%± 0.05 98.59%± 0.08 99.05%± 0.06

pseudolabel crossentropy 15.14%± 0.55 51.69%± 26.55 61.78%± 33.33 38.22%± 33.33

finetuning softmax 96.83%± 0.55 98.10%± 0.39 98.68%± 0.17 99.12%± 0.11

pseudolabel softmax 15.14%± 0.55 51.69%± 26.55 61.78%± 33.33 38.22%± 33.33

PSD* pseudolabel crossentropy 98.50%± 0.12 98.99%± 0.05 97.80%± 0.21 98.19%± 0.28

pseudolabel softmax 98.23%± 0.29 98.99%± 0.17 97.89%± 0.30 98.01%± 0.47

computed in percentage as before (see PSD* in Table 4.1). Results over PSD* in

Table 4.2 and Table 4.3 show that the behavior of pseudo-label changed obtaining

results similar to the fine-tuned model. In sum, the experiments pointed out that

the supervised method (AlexNet plus fine-tuning) outperforms the semi-supervised

one (Pseudo-label) in all cases, obtaining very high accuracy (over 96% with few

images as training). Moreover good results can be obtained with Pseudo-label only

when the dataset to be classified is balanced in terms of samples per classes, which

is a prior knowledge too difficult have in real applications.

4.4 Discussions

In this chapter we have compared supervised vs semi-supervised approaches on the

problem of parking lots classification. Results shown that the supervised approach

AlexNet with fine-tuning outperforms pseudo-label method. Moreover the pseudo-

label suffers when the dataset to be classified is composed by samples unbalanced
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with respect to the classes. In the next chapter we study the parking management

problem as a counting problem.
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Chapter 5

Counting Cars And Non-empty

Parking Space In a Monitored

Area

In this chapter, we investigate the use of vision-based techniques to estimate the

occupancy status of parking areas. In particular, we consider two scenarios:

1. Stall-Based Occupancy Estimation: in this scenario, we assume parking stalls

to be marked on the ground. This allows to formulate assumptions on where

cars are expected to be parked;

2. Stall-Free Occupancy Estimation: in this more challenging scenario, no as-

sumption on the presence or location of parking stalls is made.

To fairly evaluate approaches tailored to the two scenarios in a unified way, we ad-

dress the considered task as a counting problem, i.e., the occupancy status of the

parking area is determined counting the number of non-empty parking spaces (in

the stall-based scenario) or the number of cars (in the stall-free scenario). If the

capacity of the parking area is known, as in the most of real cases, is then trivial

to determine the number of available free parking spaces. It should be noted that,

by considering and benchmarking the problem as a counting task (rather than for

instance as a stall classification task), we are able to gain independence from the

specific approach employed to address the problem. Taking advantage of this formu-

lation, we benchmark different vision-based approaches such as image classification,

object detection and semantic segmentation to estimate the occupancy status of

parking areas.
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Our investigation is related to previous literature addressing vision-based count-

ing in specific application contexts. For instance, some methods tackled the prob-

lem of counting people in crowded scenes [53, 54, 55, 56, 57], cells in biological

images [56], bacterial colonies [58], penguins [59], etc.

According to [60], counting methods can be generally divided into three groups:

• counting by detection: these methods use object detection to count exten-

sively [54];

• counting by clustering : these methods assume the presence of individual en-

tities presenting unique yet coherent patterns which can be clustered to ap-

proximate the final number of instances [61];

• counting by regression: these methods count entities by learning a direct map-

ping from low-level imagery to numbers [53, 56, 62, 63];

5.1 Methods

We benchmark different approaches to estimate the occupancy status of parking ar-

eas from images. Specifically, we consider solutions based on three popular computer

vision technologies: image classification, object detection and semantic segmenta-

tion. As discussed in the previous sections, we will consider two main scenarios:

stall-based occupancy estimation and stall-free occupancy estimation.

5.1.1 Stall-Based Occupancy Estimation

The approaches considered in this scenario assume that the position of each stall

is known in advance (see Figure 5.1). It should be noted that, since the camera

is fixed, labeling the position of the stalls is part of a calibration process which

needs to be performed only once, when the camera is installed. Since the position of

each stall is known, it is natural to find the number of available parking spaces by

determining the status of each stall (free/occupied). As anticipated, we explore three

possible approaches based on image classification, object detection and semantic

segmentation for this scenario.
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Figure 5.1: An example image acquired in a real parking lot using a fixed camera. Parking
stalls are highlighted in green (the image is best seen in digital format). To count non-
empty parking spaces, we assume, as in a real scenario, that the positions of the stalls are
known in advance.

The approach based on image classification works as follows. Given an input

image, we sample around each stall the smallest rectangular image patch containing

the entire stall. Each extracted patch is labeled as “empty” or “full” depending on

the occupancy status of the related stall. A classifier is hence trained to discriminate

between “empty” and “full” stalls. At inference time, the trained classifier is used

to determine the status of each stall in order to obtain the number of non-empty

parking spaces. This approach is illustrated in Figure 5.2 (a).

The approach based on object detection works as follows. An object detector is

employed to localize all vehicles present in the input image. At inference time, all

bounding boxes detected with a score lower than a given threshold d1 are discarded.

The Intersection Over Union (IoU) measure between each stall and each retained

bounding box is then computed. A stall is deemed to be occupied if the IoU between

the stall area and at least one of the detected bounding boxes is higher than a given

threshold d2. The thresholds d1 and d2 are optimized empirically on a validation set

as detailed in Section 5.3. The approach is illustrated in Figure 5.2 (b).
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Figure 5.2: Considered methods for stall-based occupancy status estimation. The figure
illustrates methods based on (a) image classification, (b) object detection, (c) semantic
segmentation. See text for details. The image is best seen in digital version.

The approach based on Semantic Segmentation works as described in the follow-

ing. We first train a Semantic Segmentation algorithm to discriminate between two

classes: vehicle and background. At inference time, a stall is classified as “occupied”

if the pixel-based IoU between the stall and the segmentation mask is higher than

a given threshold s1. The thresholds s1 is optimized empirically on a validation set

as detailed in Section 5.3. This method is illustrated in Figure 5.2 (c).

5.1.2 Stall-Free Occupancy Estimation

The approaches focusing on stall-free occupancy estimation do not make any as-

sumption on the existence or position of stalls in the scene. Since the image classifi-

cation approach cannot be used in this scenario, we consider two different approaches

based on object detection and image segmentation. We assume that each input im-

age is provided with a Region of Interest (RoI) indicating where the cars should be

counted. This allows to exclude areas of the image where cars may transit, such as

the road. Figure 5.3 reports an example of a RoI defined on an image.
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Figure 5.3: An example of Region of Interest RoI defined on an image.

The stall-free occupancy estimation method based on object detection adopts

the “counting by detection”. The method works as follows. An object detector is

used to localize all cars present in the scene. Bounding boxes with detection score

lower than the threshold r1 or with IoU score with the RoI lower than a threshold

r2 are discarded. The thresholds r1 and r2 are optimized empirically on a validation

set as detailed in Section 5.3. We obtain the total number of cars present in the RoI

by counting all retained bounding boxes. Figure 5.4 (a) illustrates this method.

The method based on semantic segmentation for stall-free occupancy estimation

works as follows. An image segmentation algorithm is used to segment cars versus

background. The segmentation mask is hence fed to a multi-class classifier, which is

trained to predict a class label comprised between 1 and n, where n is the capacity

of the parking area (i.e., the maximum number of cars which can be parked in the

area). The predicted class corresponds to the number of cars present in the RoI. It

should be noted that this composite architecture can be used to predict the number

of cars directly from the input image frame. Figure 5.4 (b) illustrates this approach.
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Figure 5.4: Considered methods for stall-free occupancy status estimation. The figure
illustrates methods based on (a) object detection, (b) semantic segmentation. See text for
details. The image is best seen in digital version.

Temporal Smoothing

When counting from videos, it is possible to take advantage of temporal consistence

to reduce random flicker in the predictions. In particular, the number of cars in a

parking lot is expected to change smoothly between consecutive observations. We

investigate a simple approach to enforce a temporal constraint, which consists in

averaging the predicted count using a sliding window.

5.2 Dataset

We perform our experimental analysis on a dataset of 11, 066 images captured in our

living lab which is located at the campus of the University of Catania (Figure 5.5).

For each image of the dataset, we manually collected ground truth labels in the form

of semantic segmentation masks, bounding boxes and parking stall configurations.

The dataset has been acquired using three Full-HD cameras looking at different

parking spaces. The three cameras are referred to as “Camera 1”, “Camera 2”

and “Camera 3”. “Camera 1” observes 12 parking spaces (Figure 5.6), “Camera 2”
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Figure 5.5: A satellite image [64] of the monitored parking area located at the campus of
the University of Catania.

Figure 5.6: Camera 1 ob-
serves 12 parking spaces.

Figure 5.7: Camera 2 ob-
serves 14 parking spaces.

Figure 5.8: Camera 3 ob-
serves 12 parking spaces.

monitors 14 parking spaces (Figure 5.7), and “Camera 3” acquires images of 12

parking spaces (Figure 5.8). Given the different viewpoints of the cameras, the

acquired scenes are characterized by different scene geometries. We recorded two

long videos per camera at 1fps. The two videos have been acquired in different

days and care has been taken to cover many configurations of the parking spaces,
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Table 5.1: Videos contained in the dataset, along with the corresponding number of labeled
frames.

Camera Video Number of Frames

Camera 1
Video 1.1 1,801
Video 1.2 1,801

Camera 2
Video 2.1 1,801
Video 2.2 2,241

Camera 3
Video 3.1 1,321
Video 3.2 2,101

Total 11,066

including the cases in which the observed parking area was empty and fully occupied.

Table 5.1 summarizes the videos contained in the dataset and reports the number

of frames of the considered videos.

Each frame of the dataset has been manually labeled to report:

• a Region of Interest to identify the area within which the parking spaces are

comprised;

• the total number of cars present in the monitored parking space;

• a bounding box around each car inside the monitored parking space (see Fig-

ure 5.9);

• a weak semantic segmentation where the pixel-level masks are created from

bounding boxes. All the pixels inside a bounding box are considered as be-

longing to the “car” class, whereas every pixel outside the bounding box is

considered as background (see Figure 5.10 for an example);

• a binary vector, each component of which represents the status of the i-th

parking space as empty (0) or non-empty (1);

• the coordinates of the four corners for each stall present in the frame (see

Figure 5.1).

We propose two different ways of splitting the data into training and testing sets.

The first split assumes that training and testing data have been acquired using a

single camera. This gives rise to 6 different data subsets (one for each camera),
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Figure 5.9: Bounding boxes annotated (in
green) in each frame of the dataset.

Figure 5.10: An example of weak semantic
segmentation label obtained from the anno-
tated bounding boxes.

Table 5.2: Data subsets arising from the two considered data splits.

Subset Training Data Testing Data
Subset 1a Video 1.1 Video 1.2
Subset 1b Video 1.2 Video 1.1
Subset 2a Video 2.1 Video 2.2
Subset 2b Video 2.2 Video 2.1
Subset 3a Video 3.1 Video 3.2
Subset 3b Video 3.2 Video 3.1
Subset A Videos 1.1, 2.1, 3.1 Videos 1.2, 2.2, 3.2
Subset B Videos 1.2, 2.2, 3.2 Videos 1.1, 2.1, 3.1

where one of the two videos is used for training, and the other one is used for testing

(subset “Nx” in Table 5.2). These 6 subsets are intended to assess the performance

of methods when exposed to data acquired from a single camera.

The second data split assumes that both training and test data have been acquired

using the three cameras. In this case, we obtain two subsets (subset “X” in Ta-

ble 5.2), where data acquired using the three cameras, but belonging to one of the

two videos is used for training, while the remaining is used for test.

The above two subsets are intended to assess the ability of methods to generalize to

different scenes.

In order to pre-train the network to perform semantic segmentation and counting

cars in a given RoI, we built a synthetic dataset of 100, 000 plausible semantic

segmentation masks. Each image has been created generating a random number

of bounding boxes placed according to the geometry of the stalls coming from the

three cameras. To include more variability, we jitter both position and size of the
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bounding boxes. Specifically, the size of each bounding box is randomly selected to

match 70%-110% of the original size and the bounding box is randomly positioned

within +15/ − 15 pixels with respect to the original position. We used 70% of the

frames for training and the remaining 30% for test.

5.3 Experimental Settings

We implement the image classification component fine-tuning a VGG16 Convolu-

tional Nerual Network (CNN) [23] pre-trained on ImageNet [65] to discriminate

between “empty” and “full” stalls. The extracted image patches from the frames

constitute in total 17, 688 samples for Video 1.1, 17, 712 samples for Video 1.2,

20, 636 samples for Video 2.1, 25, 676 samples for Video 2.2, 13, 032 samples for

Video 3.1, 20, 556 samples for Video 3.2. For every subset, a different model has

been trained and the fine-tuning process has been carried out for 10 epochs. Test

accuracies for the different data subsets are reported in the first column of Table 5.3.

Given the dependence on scene geometry (image patches are cropped according to

the geometry of the scene), the classifier achieves best results when a single geom-

etry is considered (first six rows of Table 5.3), while performance decreases when

different geometries are mixed (last two rows of Table 5.3).

The car detector is a fine-tuned FasterRCNN [26] object detector based on VGG16.

The detector has been fine-tuned starting from the weights of VGG16 trained on

ImageNet. The training process has been carried out for 70, 000 iterations using a

batch size of 1. As for the classification, we trained a separate model for each data

subset. The second column of Table 5.3 reports mAP values on the test sets for

each of the considered data subsets. As can be noted, the detector benefits from the

larger training sets included in Subset A and Subset B.

The Semantic Segmentation method is implemented fine-tuning SegNet [66] on the

considered dataset. In particular, we fine-tuned the network starting from weights

pre-trained on ImageNet to segment cars vs background. To gather training data,

we considered the weak semantic labels included in the collected dataset, as it is

described in Section 5.2. The pixel accuracy of each model is reported in the third

column of Table 5.3. Also in this case, the results highlight how the method benefits

from the larger training sets of Subset A and Subset B (last two rows of Table 5.3).
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Table 5.3: Performance of the three trained components on the test sets. Performance
of the binary stall classifier is measured using accuracy (fraction of correctly classified
stalls). Performance of the car detector is measured using standard mean Average Pre-
cision (mAP). Performance of semantic segmentation is measured using pixel accuracy
(fraction of correctly classified pixels).

Subset VGG16
Stall Classifier

(Accuracy)

FasterRCNN
Car Detector

(mAP)

SegNet Semantic
Segmentation
(Pixel Accuracy)

Subset 1a 0.991 0.224 0.892
Subset 1b 0.987 0.381 0.857
Subset 2a 0.986 0.358 0.595
Subset 2b 0.988 0.185 0.766
Subset 5a 0.949 0.228 0.715
Subset 5b 0.989 0.340 0.902

Subset A 0.911 0.551 0.896
Subset B 0.952 0.698 0.892

To train the composite architecture which combines semantic segmentation and

classification to count cars, we used the following procedure. We first trained a clas-

sification architecture based on LeNet [19] to classify the 100, 000 synthetic images

contained in the proposed dataset. Here, we set the number of classes predicted by

the final classifier to 14, which is the maximum number of parking spaces seen by

the cameras. Specifically, the network has been trained for 50, 000 iterations using a

batch size of 20 images. We hence concatenated the LeNet classification architecture

to the previously trained SegNet architecture and fine-tuned the composite architec-

ture for 20, 000 iterations with a batch size of 1 image. The fine-tuning procedure

has been carried out independently for each data subset.

5.3.1 Optimization of Thresholds and Seletion of RoI

The methods discussed in the previous sections make use of different thresholds to

classify parking stalls as “empty” or “occupied” and to count cars. We set such

thresholds to the values which optimize the performance of the considered methods

on a validation set which is formed randomly selecting 15% of the training samples.

The search for optimal values is performed independently on each data subset.

Specifically, when counting non-empty parking spaces using the pipeline based on

object detection, we chose the values of d1 and d2 which maximize stall classification
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Figure 5.11: Region of Inter-
est (RoI) for Camera 1.

Figure 5.12: Region of Inter-
est (RoI) for Camera 2.

Figure 5.13: Region of Inter-
est (RoI) for Camera 3.

accuracy on the validation set (see Figure 5.14). Similarly, when counting non-empty

parking spaces using semantic segmentation, we chose the value of the threshold s1

which maximizes stall classification accuracy on the validation set (see Figure 5.15).

When counting cars using the pipeline based on image segmentation, we chose the

values of r1 and r2 which minimize the Mean Absolute Error (MAE) on the validation

set. Figures 5.11, 5.12 and 5.13 show the RoIs considered in our experiments.

Figure 5.14: Example of hyperparameters search over validation test for counting empty
and non-empty spaces using car detection on single camera subset. Each graph shows the
accuracy over validation set varying d1 and d2 thresholds
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Figure 5.15: Example of hyperparameters search over validation test for counting empty
and non-empty spaces using semantic segmentation on single camera subset. Each graph
shows the accuracy over validation set varying the s1 threshold

5.3.2 Evaluation Measures

To assess the discrepancy between predicted counts and ground truth counts, we

evaluate the investigated approaches by computing the Absolute Errors (AE). Given

a test frame Ii, the predicted count ŷi, and the ground truth count yi, we compute

the absolute error corresponding to Ii as follows:

AEi = |yi − ŷi| (5.1)

To evaluate the performance on a set of test frames I = {Ii}Ni=1, we also compute

statistics of the AE values computed for each frame, including minimum, maximum,

median and mean. In particular, among the other measures, we consider the classic

Mean Absolute Error (MAE):

MAE(I) = 1

N

N∑
i

AEi =
1

N

N∑
i

|ŷi − yi| (5.2)
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It should be noted that the absolute errors and the derived statistics are easy to

interpret, as they are expressed with the same unit measure of the original data,

e.g. a method reporting a MAE equal to 1 is, in average, overestimating or under-

estimating the count by 1 unit.

Apart the MAE measure, the performances of the different components employed

in the investigated methods (i.e., image classification, object detection and image

segmentation components) are evaluated by the most appropriate measures. Specif-

ically, we evaluate image classification using accuracy (fraction of correctly classified

images), object detection using mean Average Precision (mAP) as proposed by [67],

and image segmentation using pixel accuracy (fraction of correctly classified pixels),

as shown in the results reported in Table 5.3.

5.4 Results
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Figure 5.16: Box plots of tests for counting
non-empty spaces
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Figure 5.17: Box plots of tests for counting
cars.

The third column of Table 5.4 reports Mean Absolute Error, Maximum Absolute

Error and Median Median Absolute Error for the problem of counting in the Stall-

Based scenario.
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Table 5.4: Mean Absolute Errors for both counting tasks. Median and Maximum Absolute
Errors in parentheses. Minimum is always 0.00. Best results for each data subset are
reported in bold numbers.

Subset Method Stall-Based Stall-Free

Subsets:

1a, 1b, 2a

2b, 3a, 3b

Image Classification 1.63 (1.00/5.00) 1.57 (1.00/6.00)

Object Detection 2.15 (2.00/7.00) 2.83 (2.00/14.00)

Semantic Segmentation 3.32 (3.00/10.00) 2.58 (2.00/12.00)

Subset 1a

Image Classification 1.48 (1.00/3.00) 1.44 (1.00/6.00)

Object Detection 4.20 (4.00/7.00) 2.38 (2.00/11.00)

Semantic Segmentation 3.72 (5.00/7.00) 2.84 (3.00/9.00)

Subset 1b

Image Classification 0.54 (0.00/2.00) 0.56 (0.00/4.00)

Object Detection 2.26 (3.00/5.00) 3.43 (3.00/11.00)

Semantic Segmentation 4.79 (4.00/10.00) 3.39 (3.00/12.00)

Subset 2a

Image Classification 2.49 (3.00/3.00) 2.37 (2.00/6.00)

Object Detection 1.54 (1.00/5.00) 2.30 (2.00/10.00)

Semantic Segmentation 2.02 (2.00/5.00) 1.50 (1.00/6.00)

Subset 2b

Image Classification 3.22 (4.00/5.00) 3.15 (4.00/6.00)

Object Detection 2.04 (2.00/4.00) 5.03 (5.00/14.00)

Semantic Segmentation 5.53 (7.00/9.00) 4.84 (5.00/11.00)

Subset 3a

Image Classification 0.88 (1.00/2.00) 0.85 (1.00/5.00)

Object Detection 1.28 (1.00/4.00) 1.92 (2.00/7.00)

Semantic Segmentation 2.76 (1.00/6.00) 1.92 (2.00/7.00)

Subset 3b

Image Classification 0.86 (1.00/3.00) 0.74 (1.00/2.00)

Object Detection 1.82 (2.00/3.00) 1.98 (1.00/9.00)

Semantic Segmentation 0.88 (1.00/3.00) 0.95 (1.00/3.00)

Subsets:

A, B

Image Classification 0.56 (0.00/2.00) 1.16 (1.00/7.00)

Object Detection 4.23 (4.00/11.00) 1.95 (2.00/11.00)

Semantic Segmentation 5.38 (4.00/12.00) 1.97 (1.00/14.00)

Subset A

Image Classification 0.40 (0.00/1.00) 0.87 (1.00/5.00)

Object Detection 4.09 (4.00/8.00) 1.77 (1.00/9.00)

Semantic Segmentation 5.49 (5.00/12.00) 1.79 (1.00/9.00)

Subset B

Image Classification 0.68 (0.00/2.00) 1.39 (1.00/7.00)

Object Detection 4.34 (4.00/11.00) 2.10 (2.00/11.00)

Semantic Segmentation 5.29 (4.00/12.00) 2.11 (1.00/14.00)

The table reports the results for the different data subsets, as well ass for their

aggregation. In Figure 5.16, we report the box plots for the Absolute Errors ob-

tained for the aggregated data subsets. The best performances are achieved by the

method based on Image Classification. This method always obtains a minimum

Absolute Errors equal to 0 and a maximum Absolute Errors values not exceeding 5

units. Median errors are often close to zero. The Mean Absolute Errors of Image

Classification methods are overall significantly lower than the others both in the
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case of single camera tests (Subsets 1a to 3b) and multiple camera tests (Subsets A

and B). This observation is made particularly clear by Figure 5.16, in which the box

plots related to the Image Classification method exhibit median values and quartile

positions lower than the others. The method based on Object Detection is second

best in all camera scenarios and it is followed by the method based on Semantic Seg-

mentation. Interestingly, the method based on Image Classification benefits from

the presence of different geometries in the training set, allowing to further lower the

MAE of 1.63 to 0.68. On the contrary, the other methods based on object classifi-

cation and Semantic Segmentation achieve much worse results (from 2.15 to 4.23 in

the case of Object Detection and from 3.32 to 5.38 in the case of Semantic Segmen-

tation). This observation suggests that the method based on Image Classification

is more capable to generalize, while the other two methods probably suffer from

overfitting.

The fourth column of Table 5.4 and Figure 5.17 report the statistics of Absolute

Error values and box plots related to the stall-free scenario. Along with the results of

the methods based on object detection and semantic segmentation, the results of the

“Image Classification” method are also reported for reference. In this latter case, the

number of cars in the scene is estimated classifying each stall as whether “free” or

“occupied”. It should be noted that the performance of the “Image Classification”

method is reported for reference only and it is not directly comparable to those of

the other methods in this scenario. As one could expect, the method based on Image

Classification achieves the best results (MAE equal to 1.57 in the case of a single

camera geometry and 1.16 for multiple camera geometres). This suggest that, when

stalls are present and their location is known (i.e., in most of the real cases), this

information can be exploited to count cars. Among the two competing stall-free

methods, the one based on Semantic Segmentation outperforms Object Detection

when multiple geometries are considered. Interestingly, all the methods benefit from

the presence of different camera geometries in this experiment.

As a general remark, when the location of parking stalls is not known and the

method based on Image Classification cannot be applied, a method based on Se-

mantic Segmentation is probably to be preferred given the comparable MAE in both

scenarios (2.58 for Semantic Segmentation vs 2.83 for image detection when a single
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camera geometry is considered and 2.11 vs 2.10 for multiple geometries) and the

lower median absolute error (1 vs 2 for multiple geometries).

We finally investigate the application of temporal smoothing to improve the

results of methods for car counting. We consider the stall-free scenario, since it is

the most general and challenging one. Figure 5.18 shows the Mean Absolute Error

values obtained performing temporal smoothing with different window sizes on the

single camera subsets, whereas Figure 5.19 reports the same results averaged over

all data subsets. Since all videos are acquired at a frame rate of 1 fps, window

sizes are measured in seconds. It should be noted that temporal smoothing can be

applied only to videos, therefore we exclude from this analysis Subsets A and B

which contain several videos.
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Figure 5.18: Temporal smoothing: for each subset we show the MAE with different aver-
aging frames. The x axes represent the size of the temporal window in seconds, while the
y axes represent the obtained MAE.
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Figure 5.19: Temporal smoothing results averaged over the different data subsets. The x
axes represent the size of the temporal window in seconds, while the y axes represent the
obtained average MAE.

The results reported in Figure 5.19 show that both methods based on Ob-

ject Detection and Image Classification benefit in average from temporal smooth-

ing. This observation is true for all data subsets in the case of Object Detec-

tion, while it is not true for Subsets 3a and 3b in the case of Semantic Segmen-

tation (see Figure 5.18). In general, the method based on Image Classification

does not benefit from temporal smoothing (see Figure 5.19 and Subset 1a, 1b, 2a,

2b, 3b in Figure 5.18). Figure 5.20 shows a visual example of counting in the

stall-based scenario. A complete video to better assess the results is available at

http://iplab.dmi.unict.it/ParkSmartCounting.

5.5 Discussions

This chapter has investigated and compared different methods to address the prob-

lem of estimating the occupancy status of parking areas both in a stall-based and

stall-free scenarios.

http://iplab.dmi.unict.it/ParkSmartCounting
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Figure 5.20: An example of discriminating empty and non-empty stalls with considered
methods.

Results on a real dataset have shown that, when the geometry of the scene is known,

the system can take advantage of classification methods to obtain competitive re-

sults. When the configuration of a parking lot is not known, the method based

on image segmentation is to be preferred over the method based on object detec-

tion. Moreover, we have shown that temporal smoothing can be effectively used to

improve results based on object detection and image segmentation, while it is not

effective for methods based on image classification. In the next chapter will focus on

domain adaptation techniques to transfer acquired knowledge to different parking

areas.
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Chapter 6

Scene Adaptation for Semantic

Segmentation using Adversarial

Learning

Semantic image segmentation has a key role in many industrial applications includ-

ing video surveillance and traffic analysis [5, 6]. Despite semantic segmentation ap-

proaches based on deep learning have shown good performance on a variety of tasks

(e.g., instance object segmentation [68], scene segmentation [30], etc.) they usu-

ally need to be adapted to the considered application domain through a fine-tuning

process in order to achieve reasonable results. The fine-tuning process requires the

collection and labeling of a large amount of domain-dependent data. In addition,

whenever the system setup changes (e.g., cameras are moved or new cameras are

installed), the fine-tuning procedure, including the collection and labeling of new

data, needs to be repeated. Since collecting and labeling data requires a significant

effort, the classic fine-tuning approach prevents industrial applications to scale up.

As noted in [69], domain adaptation techniques can be employed in order to limit

the amount of labeled data to be used to adapt a pre-trained semantic segmentation

algorithm.

In this chapter, we consider a scenario in which a fixed camera is installed to

monitor a given area (e.g., a crossroad or a parking lot). When a new camera looking

at a different scene or looking at the same scene but from a different point of view

is added to the camera network, the semantic segmentation algorithms need to be

adapted to the new view through a fine-tuning procedure. We investigate the use

of Adversarial Learning [37] to limit the amount of labeled data required for such
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Figure 6.1: Three cameras monitoring different parts of a city. S and S’ are related to
the same part of the city, but different points of view, whereas S” is an observation of a
different part of the city.

adaptation. Specifically, we require that only unlabeled data, effortlessly collected

using the new camera, have to be used for the adaptation. The task is framed as a

Domain Adaptation problem in which labeled images come from the first camera of

the Source domain, and unlabeled data come from the second camera of the Target

domain. Figure 6.11 illustrates the proposed scene adaptation problem.

To perform the study, we created a dataset of synthetic images using the CARLA

Urban Driving Simulator [70]. The dataset consists of images collected from 3

different scene contexts, each acquired from 2 different views. A scene adaptation

method based on Adversarial Learning is hence proposed. The method is designed

to perform Semantic Segmentation of images of the Target domain after a training

phase which exploits labeled images from Source domain and unlabeled images from

Target domain. The experiments show that the proposed method outperforms the

baselines and achieves results close to (or in some case better than) those obtained

by a classic fine-tuning approach.

13D Model from http://s3-ap-southeast-2.amazonaws.com/launceston/atlas/index.

html.

http://s3-ap-southeast-2.amazonaws.com/launceston/atlas/index.html
http://s3-ap-southeast-2.amazonaws.com/launceston/atlas/index.html
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Figure 6.2: The proposed domain adaptation architecture.

6.1 Method

We propose an architecture which allows to train a semantic segmentation network

using labeled images from the Source domain and unlabeled images from the Target

domain. At test time, the network can be used to predict semantic segmentation

masks for new images coming from both domains.

6.1.1 Network Architecture

The proposed architecture is illustrated in Figure 6.2 and consists of three main

components: the semantic network to be trained (F ), a generative network (G),

and a discriminator network (D). The semantic network F is responsible for pre-

dicting semantic segmentation masks for images belonging to both Source Domain

and Target Domain. The ground truth segmentation masks available for images be-

longing to the Source Domain are used to provide direct supervision to the semantic

network F through a semantic segmentation loss. Since no ground truth segmen-

tation masks are available for images belonging to the Target Domain, supervision
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is also provided by enforcing that produced segmentation masks to be suitable for

reconstructing the input image. This constraint is implemented using the generative

network (G) to reconstruct the input image starting from the predicted segmentation

mask and enforcing a reconstruction loss and an adversarial loss making use of the

discrimination network (D). This encourages the network to produce meaningful

segmentation masks for both domains. The following sections detail the proposed

network and loss function.

Semantic Segmentation Network

The semantic segmentation network F predicts a segmentation mask for each input

image. We implement this module using the PSPNet architecture proposed Zhao

et al. [33] using a pre-trained ResNet backbone [24]. We would like to note that, in

principle, any semantic segmentation network trainable end-to-end through gradient

descent can be used to implement F in the proposed architecture.

Generative Network

The generative network G reconstructs the input images from the inferred segmen-

tation masks. The network G takes over the pixel-wise class scores produced by the

Semantic Network F and generates an RGB image of the same dimensions as the

input image. To implement the generative network, we consider the architecture

proposed by Johnson et al. [71] as implemented in [43].

Discriminator Network

The discriminator network D is used to train the system using the paradigm of

adversarial learning. This is done by training the discriminator to distinguish be-

tween real and reconstructed images. The semantic segmentation and generation

networks described in the previous section are concurrently trained to “fool” the

discriminator as described in [37]. The discriminator network is implemented using

a PatchGANs [42, 72, 38] operating on 70 × 70 overlapping image patches. This

patch-level discriminator architecture has fewer parameters than a full-image dis-

criminator and can be applied to arbitrarily-sized images in a fully convolutional

fashion [42].
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6.1.2 Loss Functions

The overall architecture shown in Figure 6.2 is trained by a composite loss which

encourages the network to produce good semantic segmentation masks as well as to

obtain good performances in reconstructing the input images.

Semantic Segmentation Loss

The semantic segmentation loss is defined as the cross entropy between the inferred

pixel-wise probabilities and the ground truth per-pixel classes. This loss is computed

only on images belonging to the Source Domain, since no ground truth segmentation

masks are assumed for images of the Target Domain. Specifically, let x be an image

from the Source Domain S, let F (x) be the set of scores produced by the semantic

segmentation network and let S(F (x)) be the softmax of F (X) computed along

class scores independently for each pixel. Let y be the ground truth segmentation

mask associated to x, which indicates that a pixel i belongs to class yi. We define

the semantic segmentation loss as follows:

LSem(F ) = Ex∼pS(x)[−
∑
i

log(S(F (x))i,yi)] (6.1)

where pS denotes the distribution of the data belonging to the Source Domain, i

iterates over the pixels of the training image x, S denotes the softmax function, and

S(F (x))i,yi denotes the probability predicted for class yi at pixel i.

Reconstruction Loss

Inspired by [43], we include a reconstruction loss to encourage the correct reconstruc-

tion of the input images, starting from the class scores produced by the semantic

segmentation network. The loss is applied to both images belonging to the Source

and Target Domains. We use a L1 loss defined as follows:

LRec(G,F ) = Ex∼pST (x)[||G(F (x))− x||1] (6.2)

where pST denotes the distribution of data belonging to both the Source and Target

Domains, and || · ||1 denotes the L1 loss.
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Adversarial Loss

The adversarial loss is employed to encourage the network G in Figure 6.2 to produce

better reconstructions and overcome the common limitations of regression losses [73].

This loss is applied to samples belonging to both Source Domain and Target Domain.

The loss is defined as follows:

LGAN(G,F,D) = Ex∼pST (x)[log(D(x))] + Ex∼pST (x)[log(1−D(G(F (x))))]. (6.3)

The contribution of the reconstruction and adversarial losses to the overall perfor-

mance of the proposed method are analyzed in Section 6.4.4.

Overall Loss

The overall loss used to train the whole architecture shown in Figure 6.2 is defined

as the sum of the three losses discussed in previous sections:

L(G,F,D) = LSem(F ) + LRec(G,F ) + LGAN(G,F,D). (6.4)

Scene 1 - View A (A1) Scene 1 - View B (B1)

Scene 2 - View A (A2) Scene 2 - View B (B2)

Scene 3 - View A (A3) Scene 3 - View B (B3)

Figure 6.3: Sample images and ground truth segmentation masks from the 6 data subsets.
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6.2 Datasets

We used CARLA Urban Driving Simulator [70] to generate a synthetic dataset

suitable for the experiments. Since the simulator is targeted to the collection of

datasets for autonomous driving, images can only be collected from moving cars.

To overcome this limitation, we collect images from fixed positions placing the car

at a predefined position and setting up multiple cameras at different altitudes, pitch,

yaw and roll angles relatively to the car. The car does not move during the simulation

in order to obtain a fixed point of view, while other objects (i.e. other vehicles and

pedestrians) are allowed to traverse the scene. The cameras are placed making sure

that the car does not appear in the scene. Using the aforementioned procedure, we

collected three episodes in three different scene contexts of the virtual city, which are

referred to as “Scene 1”, “Scene 2” and “Scene 3”. Images from each scene context

have been collected from two different points of view presenting scene overlap. The

two views are referred to as “View A” and “View B”. The dataset consists of 6

image subsets denoted as “XY”, where X represent the view and Y represents the

scene (e.g., A1, B2, etc.). Each subset is split into a training set and test set.

Figure 6.3 reports some examples from the 6 subsets.

We collected 5, 000 frames at 1 fps for each episode-view pair. The dataset

contains 30, 000 frames in total. Each image has a resolution of 800 × 600 pixels.

The time of the day and weather has been generated randomly for each episode. Each

image of the dataset is associated to a ground truth semantic segmentation mask

produced by the simulator. The 13 annotated classes are: buildings, fences, other,

pedestrians, poles, road-lines, roads, sidewalks, vegetation, vehicles, walls, traffic signs

and none.

The collected dataset allows us to consider two different kinds of source-target

domain pairs: 1) point of view adaptation pairs, composed by two subsets from the

same scene context but with different views (e.g., A1−B2, A2−B2, etc.), 2) scene

adaptation pairs, composed by two subsets belonging to different scene contexts

(e.g., A1−A2, A2−A3, etc.). The dataset is publicly available for research purposes

at http://iplab.dmi.unict.it/ParkSmartSceneAdaptation/pr.html.

http://iplab.dmi.unict.it/ParkSmartSceneAdaptation/pr.html
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6.3 Experimental Settings

We compare the proposed algorithm with respect to the following methods:

No Adaptation (NA) a baseline obtained training PSPNet on the Source Domain

and testing it on the Target Domain, without adaptation;

Fine Tuning (FT) a strong baseline obtained performing the fine-tune procedure,

i.e., training PSPNet directly on the Target Domain using ground truth an-

notations. It should be noted that, making use of ground truth annotations,

the FT baseline denotes in fact the ideal performance that scene adaptation

techniques should be able to achieve;

ASEGNET [48] the domain adaptation method proposed in [48]. We use the

official implementation provided by the authors for the experiments;

LSD [47] the domain adaptation method proposed in [47]. We use the official

implementation provided by the authors for the experiments;

Geometric Warp (WARP) this baseline assumes that an affine transformation

H between source and target scenes exists and is known. Hence, it can be

applied only in the case of point of view adaptation. The baseline works as

follows. At training time, all images from the Source Domain are warped

using H in order to match the geometry of the Target Domain. The same

transformation is applied to the ground truth segmentation masks. A PSPNet

model is hence trained on the warped images. The network is tested directly

on the Target Domain images. It should be noted that no warp operation is

needed at test time. Since the source images need to be mapped to a higher

resolution in order to preserve the scale of the objects appearing in the scene,

training this baseline is computationally expensive. Given the unpromising

results obtained using this method and its limited applicability (i.e., to the

case of point of view adaptation only), we tested the method only on a subset

of the data, as it is discussed in Section 6.4.3.

We perform two experiments to assess the performance of the proposed method

in the contexts of point of view adaptation and general scene adaptation. In the first

set of experiments (point of view adaptation), the Source and Target Domains are
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related to images acquired in the same scene from different points of view. In the

second set of experiments (general scene adaptation), Source and Target Domains

are related to images acquired in different, non-overlapping scenes.

All algorithms are trained for 10 epochs (all methods converged before 10 epochs

in our experiments). The weights of the best epoch are selected for the evaluation.

We optimize the baselines (i.e. NA and FT) using Stochastic Gradient Descent

(SGD) with momentum equal to 0.9, initial learning rate equal to 0.007, weight

decay equal to (1− i/3750)0.9 (where i is the current iteration, and 3750 is the total

number of iterations) and batch size equal to 8. The proposed method is optimized

using Adam, with initial learning rate equal to 0.0002 and batch size equal to 1.

LSD [47] is trained using SGD with momentum equal to 0.9, initial learning equal

to 1.0e−5 and weight decay coefficient equal to 0.0005. ASEGNET [48] is trained

using SGD with momentum 0.9, initial learning equal to 2.5e−4 and weight decay

coefficient equal to 0.0005.

All the results have been evaluated using Per Class accuracy (cacc) and Mean

Intersection Over Union (miou), which are standard measures for semantic segmen-

tation. The measures are defined as follows [31]:

cacc =
1

ncl

∑
i

nii

ti
(6.5)

miou =
1

ncl

∑
i

nii

(ti +
∑

j nji − nii)
(6.6)

where nij indicates the number of pixels of class i classified as belonging to class j,

ncl the total number of classes, and ti =
∑

j nij.

6.4 Results

6.4.1 Comparison with “the state of the art”

Table 6.1 and Table 6.2 report the results of the first set of experiments aimed to

study point of view adaptation. Each table reports the average results in the first

row, as well as the breakdown according to the different classes. The results are

averaged over the following source-target image pairs: A1−B1, A2−B2, A3−B3,

B1−A1, B2−A2, B3−A3. Specifically, each experiment on a given source-target
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Table 6.1: Results of point of view adaptation experiments - per-class accuracy. Best
per-row results are reported in bold. FT results are reported in italic for reference. The
cases in which the proposed method outperforms the FT strong baseline are underlined.

NA ASEGNET [48] LSD [47] OUR FT
Average 0.53 0.52 0.59 0.72 0.69
None 0.27 0.80 0.74 0.90 0.96

Buildings 0.96 0.93 0.53 0.95 0.98
Fences 0.28 0.36 0.58 0.55 0.50
Other 0.29 0.32 0.56 0.60 0.46

Pedestrians 0.21 0.04 0.11 0.53 0.21
Poles 0.05 0.08 0.44 0.25 0.22

Road-lines 0.36 0.38 0.55 0.48 0.44
Roads 0.96 0.88 0.59 0.93 0.98

Sidewalks 0.97 0.88 0.73 0.93 0.98
Vegetation 0.89 0.72 0.77 0.82 0.85
Vehicles 0.66 0.48 0.45 0.94 0.84
Walls 0.75 0.83 0.88 0.82 0.88

T. Signs 0.20 0.13 0.78 0.68 0.73

X−Y pair consists in training the compared method using labeled images from the

training set of X and unlabeled images from the training set of Y and test it on the

test set of Y .

As can be noted, the proposed method outperforms with a good margin all com-

petitors (in average) considering both per-class accuracy (Table 6.1) and mean inter-

section over union (Table 6.2). Interestingly, the proposed method also outperforms

the FT strong baseline in the case of per-class accuracy (Table 6.1). The per-class

scores reported in the tables, show that the main advantage of the proposed method

consists in effectively preventing over-fitting improving the segmentation results for

classes containing small objects such as “Fences”, “Pedestrians”, “Vehicles” and “T.

Signs”. For instance, the proposed method scores a per-class accuracy (Table 6.1)

of 0.53 for the segmentation of pedestrians, while the No Adaptation baselines (NA)

scores only 0.21. Similarly, the proposed method scores a per-class accuracy of 0.68

in the case of traffic signs versus 0.20 scored by the NA baseline. Similar gains can

be observed for the mean intersection over union measure (Table 6.2).

Table 6.3 and Table 6.4 summarize the results related to the second set of exper-

iments aimed at assessing the general scene adaptation capabilities of the proposed
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Table 6.2: Results of point of view adaptation experiments - mean intersection over union.
Best per-row results are reported in bold. FT results are reported in italic for reference.
The cases in which the proposed method outperforms the FT strong baseline are under-
lined

NA ASEGNET [48] LSD [47] OUR FT
Average 0.32 0.37 0.34 0.57 0.64
None 0.26 0.75 0.48 0.85 0.91

Buildings 0.74 0.87 0.49 0.93 0.98
Fences 0.13 0.15 0.33 0.42 0.42
Other 0.22 0.10 0.25 0.50 0.42

Pedestrians 0.09 0.03 0.09 0.13 0.19
Poles 0.04 0.02 0.17 0.20 0.17

Road-lines 0.20 0.03 0.10 0.36 0.34
Roads 0.55 0.82 0.41 0.86 0.95

Sidewalks 0.76 0.66 0.48 0.88 0.92
Vegetation 0.52 0.49 0.64 0.71 0.74
Vehicles 0.23 0.37 0.33 0.26 0.78
Walls 0.28 0.52 0.31 0.71 0.83

T. Signs 0.16 0.03 0.39 0.63 0.70

method. In this case, the results are averaged over the following source-target image

pairs: A1−A2, A1−A3, A2−A1, A2−A3, A3−A1, A3−A2. The proposed method

outperforms all competitors in the case of mean intersection over union (Table 6.4)

and achieves state-of-the-art results in the case of per-class accuracy (Table 6.3).

The results highlight that general scene adaptation is much more difficult than

point of view adaptation. Specifically, the proposed method tends to outperform

the FT strong baseline less often than in the previous set of experiments. Due to

the radical change of the image layout due to the very different scenes, the proposed

method is not always able to accurately segment small objects such as pedestrians

and traffic lines, albeit it generally improves over the NA baseline.

Figure 6.4 and 6.5 report some qualitative examples of the compared methods.

The examples in Figure 6.4 confirm the observations made on the basis of the quan-

titative results, i.e., the proposed method allows to recover small details (e.g., traffic

signs ), especially when compared with respect to the No Adaptation (NA) baseline.

The effect is more substantial int he case of scene adaptation (Figure 6.5), where

the proposed method allows to reduce over-fitting to the source domain.
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Table 6.3: Results of scene adaptation experiments - per-class accuracy. Best per-row
results are reported in bold. FT results are reported in italic for reference. The cases in
which the proposed method outperforms the FT strong baseline are underlined.

NA ASEGNET [48] LSD [47] OUR FT
Average 0.27 0.37 0.32 0.34 0.68
None 0.53 0.54 0.39 0.69 0.23

Buildings 0.09 0.18 0.17 0.25 0.99
Fences 0.07 0.03 0.25 0.01 0.52
Other 0.02 0.07 0.02 0.00 0.70

Pedestrians 0.05 0.01 0.03 0.13 0.38
Poles 0.03 0.11 0.25 0.03 0.25

Road-lines 0.13 0.66 0.49 0.52 0.43
Roads 0.84 0.78 0.75 0.77 0.99

Sidewalks 0.67 0.69 0.67 0.50 0.98
Vegetation 0.41 0.22 0.39 0.49 0.94
Vehicles 0.61 0.57 0.35 0.81 0.89
Walls 0.00 0.00 0.00 0.00 0.94

T. Signs 0.04 0.99 0.73 0.18 0.65

Table 6.4: Results of scene adaptation experiments - mean intersection over union. Best
per-row results are reported in bold. FT results are reported in italic for reference. The
cases in which the proposed method outperforms the FT strong baseline are underlined.

NA ASEGNET [48] LSD [47] OUR FT
Average 0.19 0.18 0.20 0.22 0.47
None 0.30 0.46 0.17 0.50 0.22

Buildings 0.07 0.09 0.25 0.25 0.90
Fences 0.06 0.01 0.02 0.01 0.21
Other 0.02 0.01 0.01 0.00 0.40

Pedestrians 0.03 0.01 0.03 0.02 0.15
Poles 0.01 0.01 0.08 0.02 0.25

Road-lines 0.13 0.07 0.27 0.40 0.33
Roads 0.62 0.71 0.65 0.59 0.88

Sidewalks 0.45 0.44 0.40 0.43 0.88
Vegetation 0.28 0.10 0.23 0.33 0.54
Vehicles 0.40 0.48 0.25 0.21 0.71
Walls 0.00 0.00 0.00 0.00 0.71

T. Signs 0.04 0.00 0.31 0.16 0.07
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Figure 6.4: Qualitative comparisons of view adaptation with respect to the considered
methods.
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Figure 6.5: Qualitative comparisons of scene adaptation with respect to the considered
methods.
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Table 6.5: Improvement on the source domain.

Source Target Method Measure Test Results
A1 - No Adaptation Per Class Accuracy 0.70
A1 - No Adaptation Mean IoU 0.64
A1 B1 Proposed Per Class Accuracy 0.74
A1 B1 Proposed Mean IoU 0.65
A1 A2 Proposed Per Class Accuracy 0.75
A1 A2 Proposed Mean IoU 0.66

Table 6.6: Results of the WARP baseline for the A1-B1 pair.

Per Class Accuracy MIoU
NA 0.47 0.43

WARP 0.58 0.46
Proposed 0.75 0.62

FT 0.72 0.66

6.4.2 Improvement of Performance on the Source Domain

We performed additional experiments in order to assess whether the proposed method

allows to improve segmentation results on the source domain thanks to the target

domain images seen during the training phase. Specifically, to assess generalization

in the case of point of view adaptation, we trained the proposed method on the

training set of the source-target pair A1 − B1 and tested it on the test set of the

source domain set A1. Similarly, for scene adaptation, we trained the proposed

method on the training sets of the source-target pair A1− A2 and tested it on the

test set of the source domain A1. Table 6.5 summarizes the results and observed

gains with respect to the NA baseline. As can be noted, the proposed method allows

to improve performance on the source domain. For instance, the proposed method

improves per-class accuracy on the source domain by 5% in the case of scene adap-

tation and 4% in the case of point of view adaptation. This suggests a regularizing

effect induced by the use of unlabeled images from the target domain.

6.4.3 Geometric Warp Baseline

In this section, we report additional results related to the WARP baseline. Table 6.6

compares the results obtained using the WARP baselines with respect to NA, the
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Table 6.7: Results of the ablation study.

Loss Adaptation Per Class Accuracy MIoU
LSemS(F ) + LRec(G,F ) view 0.77 0.67

LSemS(F ) + LGAN (G,F,D) view 0.71 0.55
LSemS(F ) + LRec(G,F ) + LGAN (G,F,D) view 0.75 0.62

LSemS(F ) + LRec(G,F ) scene 0.33 0.20
LSemS(F ) + LGAN (G,F,D) scene 0.38 0.24

LSemS(F ) + LRec(G,F ) + LGAN (G,F,D) scene 0.39 0.24

proposed method and the FT strong baseline on the A1-B1 data subset. As can be

noted, the WARP baseline allows to obtain only marginal improvements over the

NA baseline. Given the unpromising results obtained on a subset of the dataset, the

computational expensiveness of the method, and its applicability only to the case of

point of view adaptation, we did not perform the experiments on the whole dataset.

6.4.4 Ablation Study

To assess the contribution of the reconstruction and adversarial losses described in

Section 6.1.2 and Section 6.1.2, we tested three versions of the proposed method on

the A1−B1 pair for view adaptation and on the A1−A2 for scene adaptation. Each

considered version of the proposed method is trained using different combinations

of loss functions as it is shown in Table 6.7.

As can be noted, using both the reconstruction and adversarial loss is better for

general purpose adaptation in both scenarios. On the other side, for simple view

adaptation, using only the reconstruction loss leads to better results. Indeed, we

can observe a boost of 2% in per-class accuracy and a 5% in mean intersection over

union.

The results highlight the importance of combining both losses to obtain good

results for general scene adaptation, while the method can be simplified when only

point of view adaptation needs to be obtained.

6.5 Discussions

In this chapter, we have proposed a method to perform scene and point of view

adaptation using adversarial learning. The method improves the generalization of a

semantic segmentation network by enforcing the reconstruction of the input images
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from the generated semantic segmentation class scores. Experiments show that

the proposed method greatly reduces over-fitting in both point of view and scene

adaptation and outperform baselines and other state-of-the-art methods.
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Chapter 7

Conclusions

We built a strong background over the domain and over the deep learning meth-

ods suitable to be used to solve the problem using classical supervised approaches.

Through an analysis of the domain it was easy to understand that, to build a proper

dataset for training, there were several variabilities to be considered such as: camera

view, shapes of the parking spaces, and other classic ones such as background, light,

deformation, weather, etc.

A first attempt to decrease labeling effort was to use a Semi-Supervised approach

but results shown that the supervised approach with fine-tuning, even with really

few data, outperforms pseudo-label method. Such evidence suggested us to try

other methods in order to make deployment scalable. We focused our attention

on methods based on counting cars and parking spots, results shown that when

the geometry of the scene is known, binary classification methods are always to be

preferred. When the configuration of a parking lot is not known, method based on

image segmentation are to be preferred over methods based on object detection.

After such result we moved our attention to a full knowledge of the scene through

Semantic Segmentation and Domain Adaptation techniques based on Generative

Adversarial Networks in order to find a viable way to reach good trade-off between

Semantic Segmentation accuracy and labeling effort. The proposed method greatly

reduces over-fitting in both point of view and scene adaptation and outperform

baselines and other state-of-the-art methods.
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7.1 Future Directions

The next step should go through the acquisition of a real world dataset in order

to improve the current system as well testing systems based on Multi-task Learn-

ing [68] which has showed several advantages, Instance Semantic Segmentation [68,

74] trying to achieve the best of the two worlds: detection and segmentation, Self-

Supervised Learning [75, 76, 77] and Meta-Learning [78] which, currently represent

two good candidates to tackle the curse of data labeling effort reduction.
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Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 1994–2003.

https://doi.org/10.1109/TKDE.2009.191


Bibliography 80

[47] S. Sankaranarayanan, Y. Balaji, A. Jain, S. Nam Lim, and R. Chellappa.

“Learning From Synthetic Data: Addressing Domain Shift for Semantic Seg-

mentation”. In: The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2018.

[48] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chan-

draker. “Learning to Adapt Structured Output Space for Semantic Segmenta-

tion”. In: The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2018.

[49] P. R. de Almeida, L. S. Oliveira, A. S. B. Jr., E. J. S. Jr., and A. L. Koerich.

“PKLot – A robust dataset for parking lot classification”. In: Expert Systems

with Applications 42.11 (2015), pp. 4937 –4949.

[50] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell. “Caffe: Convolutional Architecture for Fast Feature Em-

bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[51] X. Zhu and A. B. Goldberg. “Introduction to semi-supervised learning”. In:

Synthesis lectures on artificial intelligence and machine learning 3.1 (2009),

pp. 1–130.

[52] D.-H. Lee. “Pseudo-label: The simple and efficient semi-supervised learning

method for deep neural networks”. In: Workshop on Challenges in Represen-

tation Learning, ICML. Vol. 3. 2013.

[53] A. B. Chan, Z. S.-J. Liang, and N. Vasconcelos. “Privacy preserving crowd

monitoring: Counting people without people models or tracking”. In: Confer-

ence on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–7.

[54] S. Chen, A. Fern, and S. Todorovic. “Person count localization in videos from

noisy foreground and detections”. In: Conference on Computer Vision and

Pattern Recognition. IEEE, 2015, pp. 1364–1372.

[55] M. Li, Z. Zhang, K. Huang, and T. Tan. “Estimating the number of people

in crowded scenes by MID based foreground segmentation and head-shoulder

detection”. In: International Conference on Pattern Recognition. 2008, pp. 1–

4.



Bibliography 81

[56] V. Lempitsky and A. Zisserman. “Learning to Count Objects in Images”. In:

Advances in Neural Information Processing Systems. 2010, pp. 1324–1332.

[57] C. Zhang, H. Li, X. Wang, and X. Yang. “Cross-scene crowd counting via

deep convolutional neural networks”. In: Conference on Computer Vision and

Pattern Recognition. IEEE, 2015, pp. 833–841.

[58] A. Ferrari, S. Lombardi, and A. Signoroni. “Bacterial colony counting with

Convolutional Neural Networks in Digital Microbiology Imaging”. In: Pattern

Recognition 61 (2017), pp. 629–640.

[59] C. Arteta, V. Lempitsky, and A. Zisserman. “Counting in the Wild”. In: Eu-

ropean Conference on Computer Vision. 2016, pp. 483–498.

[60] C. C. Loy, K. Chen, S. Gong, and T. Xiang. “Crowd Counting and Profiling:

Methodology and Evaluation”. In: Modeling, Simulation and Visual Analysis

of Crowds: A Multidisciplinary Perspective. New York, NY: Springer, 2013,

pp. 347–382.

[61] V Rabaud and S Belongie. “Counting Crowded Moving Objects”. In: Con-

ference on Computer Vision and Pattern Recognition. IEEE, 2006, pp. 705–

711.

[62] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman. “Interactive Object

Counting”. In: European Conference on Computer Vision. 2014, pp. 1–15.

[63] L. Fiaschi, U. Koethe, R. Nair, and F. A. Hamprecht. “Learning to count

with regression forest and structured labels”. In: International Conference on

Pattern Recognition. 2012, pp. 2685–2688.

[64] Google. Google Maps. https://www.google.it/maps/@37.5264537,15.

0741852,230m/data=!3m1!1e3?hl=en. [Online; accessed 12-March-2017].

2018.

[65] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet

Large Scale Visual Recognition Challenge”. In: International Journal of Com-

puter Vision (IJCV) 115.3 (2015), pp. 211–252.

https://www.google.it/maps/@37.5264537,15.0741852,230m/data=!3m1!1e3?hl=en
https://www.google.it/maps/@37.5264537,15.0741852,230m/data=!3m1!1e3?hl=en


Bibliography 82

[66] V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A Deep Convolu-

tional Encoder-Decoder Architecture for Image Segmentation”. In: Transac-

tions on Pattern Analysis and Machine Intelligence 39.12 (2017), pp. 2481–

2495.

[67] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.

“The pascal visual object classes (voc) challenge”. In: International journal of

computer vision 88.2 (2010), pp. 303–338.

[68] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask R-CNN”. In: 2017 IEEE

International Conference on Computer Vision (ICCV). 2017, pp. 2980–2988.

[69] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. “Adversarial Discriminative

Domain Adaptation”. In: 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2017, pp. 2962–2971.

[70] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An

Open Urban Driving Simulator”. In: Proceedings of the 1st Annual Conference

on Robot Learning. 2017, pp. 1–16.

[71] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual losses for real-time style

transfer and super-resolution”. In: European Conference on Computer Vision.

Springer. 2016, pp. 694–711.

[72] C. Li and M. Wand. “Precomputed real-time texture synthesis with marko-

vian generative adversarial networks”. In: European Conference on Computer

Vision. Springer. 2016, pp. 702–716.

[73] M. Mathieu, C. Couprie, and Y. LeCun. “Deep multi-scale video prediction

beyond mean square error”. In: arXiv preprint arXiv:1511.05440 (2015).

[74] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. “Object instance seg-

mentation and fine-grained localization using hypercolumns”. In: IEEE Trans-

actions on Pattern Analysis & Machine Intelligence 4 (2017), pp. 627–639.

[75] P. Agrawal, J. Carreira, and J. Malik. “Learning to see by moving”. In: Pro-

ceedings of the IEEE International Conference on Computer Vision. 2015,

pp. 37–45.



Bibliography 83

[76] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. “Context

encoders: Feature learning by inpainting”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2016, pp. 2536–2544.

[77] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash. “Boosting Self-Supervised

Learning via Knowledge Transfer”. In: arXiv preprint arXiv:1805.00385 (2018).

[78] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H.

Larochelle, and R. S. Zemel. “Meta-Learning for Semi-Supervised Few-Shot

Classification”. In: Proceedings of 6th International Conference on Learning

Representations ICLR. 2018.


	Abstract
	Acknowledgements
	Introduction
	Parking Management and Computer Vision
	Aims and Findings
	Contribution
	Thesis Outline

	Computer Vision: Background and State of the Art
	Classification
	Gradient-based learning applied to document recognition (LeNet)
	ImageNet Classification with Deep Convolutional Neural Networks (AlexNet)
	Going Deeper with Convolutions (GoogLeNet)
	Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)
	Deep Residual Learning for Image Recognition (Resnet)

	Object Detection
	Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (Faster RCNN)
	You Only Look Once: Unified, Real-Time Object Detection (YOLO)

	Semantic Segmentation
	SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
	Fully Convolutional Networks for Semantic Segmentation (FCN)
	DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
	Pyramid Scene Parsing Network (PSPnet)

	Generative Models and Applications
	Generative Adversarial Networks
	Image Translation
	Transfer Learning and Domain Adaptation
	Domain Adaptation for Semantic Segmentation


	Empty vs Not-empty Parking Space Classification
	Park Smart: The Overall System at Glance
	Classification of parking stalls
	Discussions

	Semisupervised Learning Approach Using Pseudolabels
	Methods
	Deep Convolutional Neural Networks and Fine-Tuning
	Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks

	Dataset
	PKLot Dataset
	PSD Dataset

	Experiments and Results
	Discussions

	Counting Cars And Non-empty Parking Space In a Monitored Area
	Methods
	Stall-Based Occupancy Estimation
	Stall-Free Occupancy Estimation
	Temporal Smoothing


	Dataset
	Experimental Settings
	Optimization of Thresholds and Seletion of RoI
	Evaluation Measures

	Results
	Discussions

	Scene Adaptation for Semantic Segmentation using Adversarial Learning
	Method
	Network Architecture
	Semantic Segmentation Network
	Generative Network
	Discriminator Network

	Loss Functions
	Semantic Segmentation Loss
	Reconstruction Loss
	Adversarial Loss
	Overall Loss


	Datasets
	Experimental Settings
	Results
	Comparison with ``the state of the art''
	Improvement of Performance on the Source Domain
	Geometric Warp Baseline
	Ablation Study

	Discussions

	Conclusions
	Future Directions

	Bibliography

