
UNIVERSITÀ DEGLI STUDI DI CATANIA
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INTRODUCTION

The present work is devoted to the study of the non-perturbative properties of quantum

field theories (QFT) of interacting fermions. The pure fermion theories, which are theories

involving only fermion degrees of freedom as well as systems of interacting fermions and

bosons, are taken into account. Moreover the properties of fermion theories with the

insertion of local composite operators are also widely investigated.

The use of these operators can provide important tools for the description of collective

states, without involving the explicit use of scalar elementary particles. In this sense

the results obtained with the Gross Neveu (GN) model [1], used as a paradigm for pure

fermion theories, are compared with those obtained by studying a Yukawa type theory.

According to the (perturbative) power counting theorem [2], four-fermion interactions

are non-renormalizable. They are at most regarded as effective theories, low energy limits

of more fundamental ones. This is for instance the case of the Fermi theory of weak

interactions [3], which is obtained as the low energy limit of the electroweak (EW) the-

ory [4]. Although (perturbatively) non-renormalizable, it provides a very good description

of physical phenomena at energies below the EW scale.

On the other hand the Yukawa theory, first introduced to describe the nuclear inter-

action, has found a wide application in high energy physics thanks to its (perturbative)

renormalizability. The scalar field of the theory, by acquiring a non-vanishing expectation

value, thus spontaneously breaking the symmetry of the model, provides an acclaimed

mechanism for the generation of the particle masses [5].

In a non-perturbative framework, Nambu and Jona-Lasinio (NJL) showed that, for
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Introduction

values of the Fermi constant greater than a critical one, four-fermion theories undergo

spontaneous breaking of chiral symmetry (χSB), thus providing dynamical generation of

fermion masses [6]. Moreover, the divergences appearing in such non-perturbative analy-

sis differ from those obtained in a perturbative approach. The specific structure of these

divergences makes the non-perturbative renormalizability of the theory possible (see be-

low).

Gross and Neveu (GN) considered a similar model in d = 2 dimension and found that,

as a result of the instability of the perturbative vacuum, the effective potential develops

non trivial minima, thus showing the occurrence of χSB. In these lower dimensions, the

model turned out to be asymptotically free [1].

In this way the opportunity of describing the mass generation without involving any

elementary scalar was profiled. In four fermion models a scalar excitation arises as a

fermion-antifermion bound state (ψ̄ψ) and in the Hartree approximation, it has a mass

which is twice that of the fermion [6]. Many works, as for instance the studies on techni-

colour and top quark condensation [7], have tried to establish some compositeness condi-

tions in the attempt to show the superiority of a purely fermionic approach.

However the strongest hint to this problem comes from the deep connection between

QFT and critical phenomena.

As is well known, the generating functional of a QFT, which encodes all the quantum

relativistic amplitudes, can be mapped into a correspondent partition function of a sta-

tistical system (which collects all the thermal correlators) by means of a Wick rotation.1

Far from being a simple mathematical curiosity, around the 70’s, this analogy gave way

to many QFT techniques for the study of universality properties of critical phenomena

and the calculation of universal quantities [8]. But most of all it gave the possibility to

interpret the renormalizability of a QFT as corresponding to the scale invariance property

of a statistical system near a continuous phase transition [9]. In this sense, the renor-

malization program can be implemented far from the perturbative regime and the nature

of divergences arising in calculations can radically change from those predicted by the

perturbation theory. If two theories are acknowledged to have equal renormalizability

properties, then they will show the same scaling of the correlators and in this statistical

1This is why all the results of this work are presented in the Euclidean path-integral formulation of
the QFT.
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Introduction

framework are said to belong to the same universality class.

In d = 4 dimensions, by using the 1/N expansion, it is shown that the NJL and the

GN models have the same divergences of Yukawa theories [10],[11],[12],[13]. Following a

renormalization technique (mean field expansion) introduced by Bender and collabora-

tors [14], the same result was also proven in [15]. In this sense, these four-fermion theories

turn out to be renormalizable [10],[11],[12],[13], although they inherit from the latter the

triviality problem. In d = 3 dimensions, Rosenstein and collaborators performed a similar

computation and showed that these models are 1/N renormalizable [16]. Differently from

the d = 4 case, however, in d = 3 the cut-off can be consistently eliminated without

introducing additional counterterms in the Lagrangian.

These studies were further pursued in [17] and [18], where it was shown that, for

2 < d ≤ 4 and in the framework of the 1/N expansion, the GN model and the Yukawa

theory belong to the same universality class.

From this point of view, χSB is nothing but the occurrence of a quantum phase

transition where the order parameter is the expectation value of ψ̄ψ, the analogous of

the magnetization if one thinks of the ferromagnetic transition. In this analogy, the

“temperature” is identified with 1/G (1/Gc corresponding to the critical temperature)

and a bare fermion mass plays the role of an “external magnetic field”. For the GN model

in d dimensions and for the corresponding Yukawa theory, the critical exponents around

the non trivial fixed point Gc have been computed in the 1/N expansion and turned out

to be the same for the two theories [19]2.

The role of the Yukawian elementary scalar is played by the fermion composite oper-

ator of the GN model which acquires a large anomalous dimension due to the quantum

fluctuations.

As is well known, a profound insight in our understanding of renormalization in quan-

tum field theories (QFT) came with the realization of its deep connection with the Wilson’s

theory of critical phenomena [9]. A renormalized QFT is defined around a fixed point of

the RG equations in the space of the bare parameters.

In such a framework, the renormalizability of four-fermion theories is related to the

existence of a non-Gaussian fixed point Gc. The breaking of chiral symmetry results from

2Contrary to some claims according to which the two models have a different number of parame-
ters [20],[21].
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renormalizing the theory around this point, which also turns out to be the critical point

of the transition [10],[11],[12]. Finally, the fact that in the large N limit the divergences

show a different structure from the one observed in the framework of the perturbation

theory is understood as due to a different scaling of the bare parameters around this

non-trivial fixed point. 3

Within the Wilson renormalization group (RG) approach to critical phenomena, the

critical exponents are computed by considering the behaviour of the correlation functions

around the fixed points (with divergent correlation length) of the RG equations. In a

QFT context, the critical exponents of the analogous quantum phase transition can also

be computed once the “external fields” which correspond to the temperature and/or to

other “relevant” fields (the magnetic field in the ferromagnetic case) are correctly identified

[19],[22],[23].

In the present Thesis work, a generalized GN model in d dimensions with N flavours is

studied within the framework of the Wilsonian RG approach (as originally implemented

by Wegner and Houghton [24]) in the Local Potential Approximation (LPA).

By following [24] and [25], a new RG equation for a purely fermion theory is estab-

lished. Then, with the help of this equation (and following the method outlined above),

the critical exponents are computed in the large N limit in a purely fermion language.

Our results are found to coincide with those obtained with other analytical techniques.

By introducing a running mass term (which, in the ferromagnetic analogy and near

the fixed point, plays the role of an external magnetic field), it is possible to compute

non-universal IR physical quantities such as the physical fermion mass. This soft explicit

breaking of the symmetry suggests a mechanism for the generation of a finite physical

mass as a cross-over phenomenon, thus indicating a way of performing the chiral limit in

the RG picture.

Since our RG method does not depend on perturbative expansions in any small pa-

rameter (1/N or coupling constants expansions), it offers the opportunity of investigating

questions which remain open within the framework of these typical analytical methods.

In this respect, the equivalence of the Yukawa theory and the GN model beyond the 1/N

3In this respect, it is worth noting that in d = 3 dimensions the correspondence between the four-
fermion model and the Yukawa theory is realized as a mapping between the neighbourhood of the non-
trivial fixed pointGc and the neighbourhood of the Wilson-Fisher-Yukawa fixed point of the corresponding
Yukawa theory, while for d = 4 the latter collapses onto the Gaussian fixed point.
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expansion at d < 4 has been investigated (see chap.3). Moreover, in the Hartree approxi-

mation (large N), the triviality of the GN model in d = 4 dimensions, in a purely fermion

language (i.e. with no reference to bosonization techniques), has been reproduced for the

first time. This opens the way for addressing such a question for any value of N , an

analysis which cannot be performed with the help of the usual bosonization techniques.

A novel, intriguing, result suggested by our analysis concerns the possibility that the

non-Gaussian fixed point Gc triggers a non trivial physics when the theory, in addition to

the Fermi interaction term, contains also a Yukawa interaction (see chap.5).

This Thesis is organized as follows. The first two chapters serve as an introduction to

the subject and gives the possibility to contextualize our original RG results in a coherent

way. Nevertheless, some new (albeit simple) results have also been worked out. More

specifically, the first chapter contains an introduction to the path-integral formulation of

theories with self-interacting fermions, involving also the presence of fermion composite

operators and scalar fields. The chiral symmetry is introduced and the perturbative

analyses of the GN and Yukawa models are considered. The Feynmann diagrams of these

models are introduced and the triviality of the Yukawa theory is presented.

In the second chapter some classical non-perturbative techniques are considered and

the celebrated NJL result is recovered in its original formulation, i.e. with the help of the

Dyson-Schwinger equations in the Hartree approximation. Then the large N expansion

method is considered which allows the extension of the field theoretical renormalization

approach to non-perturbative (in the coupling constant) tools. The non-perturbative

renormalizability of the GN model and its equivalence to the Yukawa theory is then

shown.

The third chapter is mainly devoted to the presentation of our original work. Before

doing that, the Wilsonian RG is introduced and the Yukawa theory is studied with the

epsilon expansion method. Then, after introducing our original RG approach, the phase

space of the GN model is studied in a purely fermion language. In the large N limit, its

equivalence to the Yukawa theory is then recovered also in this context. Then our RG

method is applied to the computation of the critical exponents of the GN model in d = 3

dimensions (far from the epsilon expansion domain) and for small values of N .

In this respect, it is worth to note that, within our approach, these models can be

studied even far from the small epsilon domain and for small values of N . This is what

5
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has been done at the end of this chapter.

In chapter four the impact of higher powers operators, (ψ̄ψ)n, in the Wilsonian poten-

tial is considered. In the large N limit, the failure of the hyperscaling and the presence of

a logarithmic behaviour with the scale of the quartic operator (ψ̄ψ)4 are thus recovered

in our RG fermion language. In order to study the theory for small values of N , it would

be necessary to consider the impact of derivative terms, which is left for future work.

However, the above mentioned scaling behaviour is obtained around a non-Gaussian fixed

point, which is a new and unexpected result.

By considering the impact of odd interaction terms in the potential, the marginality

of the cubic operator in d = 3 dimensions is recovered. The anomalous dimension of this

operator is computed and found to be in agreement with results given in the literature at

the next to leading order in the 1/N expansion.

Finally, in the fifth chapter our RG equation is extended to models involving fermions

and bosons. Some interesting non-trivial fixed point solutions are found which would

suggest a non-trivial behaviour of the Yukawa coupling in d = 4 dimensions.

6



CHAPTER 1

FUNCTIONAL FORMALISM FOR FERMION AND BOSON

THEORIES

In this chapter the path integral formulation of fermion and boson field theories is

adopted as a useful tool for studying the properties of those quantum systems with the

same techniques adopted for studying the properties of statistical systems. A deeper

insight into the renormalizability of a QFT is provided by this statistical picture.

Indeed the renormalization of a quantum field theory corresponds to the exhibition of

some critical behaviour in the statistical language. On one hand this offers the possibility

of interpreting the usual perturbative results within this framework, on the other hand

allows the extension of the notion of renormalization beyond the perturbative regime.

By introducing the functional formalism, a perturbative analysis of the GN model and

of the Yukawa theory is performed. The Feynmann diagrams, arising from the expansion

in the coupling constants, are found and some basic quantities as the degree of divergence

of a diagram or the scaling dimension of an operator are introduced. In such a framework,

the perturbative non-renormalizability of theories with self-interacting fermions as well

as the renormalizability of Yukawian interactions are shown. How the renormalizability

properties of these models are modified by the use of non-perturbative techniques is the

topic of the other chapters.

Finally, a way of interpreting the perturbative results for the GN model in terms of

the Feynmann diagrams of a Yukawa theory is obtained with the help of the Hubbard-

Stratonovich transformation [26].

7



Chapter 1. Functional formalism for fermion and boson theories

1.1 Gross-Neveu and Yukawa models

The main topic of our work is the study of the properties of the GN model and of

the Yukawa theory. The first one is given as an example of a purely fermion theory with

fermions interacting through a quartic interaction, while the second one is a model of

fermions interacting by means of a scalar. The Gross-Neveu model is thus defined by the

action:

Sf [ψ, ψ̄] = −
∫

ddx

[

ψ̄ /∂ψ +
G

2
(ψ̄ψ)2

]

(1.1)

where ψ and ψ̄ are U(N) multiplets and U(N) is called the flavour group. Each fermion

field possesses a Dirac index and a flavour one. There internal indices are understood.

The Yukawa theory instead is defined by the action:

Sfb[ψ, ψ̄, φ] =

∫

ddx

[

−ψ̄
(

/∂ + gφ
)

ψ +
1

2
(∂µφ)

2 +
M2

2
φ2 +

λ

4!
φ4

]

. (1.2)

The fermion fields are always in the fundamental representation of the unitary flavour

group. In addition, there is a single self-interacting scalar field φ.

In order to present the results with a high level of generality, one refers to Sf [ψ, ψ̄] as

the action of a generic purely fermion theory. A generic theory involving fermions and

scalars will be characterized by the action Sfb[ψ, ψ̄, φ]. Both these actions are required

to involve only local interactions which in statistical language corresponds to taking into

account only short-range interacting systems [27],[28] .

Expanding the fermionic action in powers of the fields one finds:

Sf [ψ, ψ̄] =
∞
∑

n,m=1

1

(n+m)!

∫

x1

· · ·
∫

xm

∫

y1

· · ·
∫

yn

ψ̄(ym) · · · ψ̄(y1)ψ(x1) · · ·ψ(xm)

× δn+mSf
δψ(xn) . . . δψ(x1)δψ̄(ym) · · · δψ̄(y1)

. (1.3)

The coefficients of the series with (n + m) > 2 define the vertices of the the theory.

The generic n +m-th derivative of the r.h.s of Eq. (1.3) is represented with the diagram

shown in Fig. 1.1. The locality condition is achieved by means of the factorization of a

space-time delta function in front of each derivative.

The inverse of each second derivative of the action plays a prominent role in the cal-

culations since it defines an inverse propagator. Thus, for example, the matrix
(

δ2S
δψδψ̄

)−1

8



1.1 Gross-Neveu and Yukawa models

Figure 1.1: The bare vertex of a purely fermion theory with (n+m) external legs, defined by the expansion
in Eq. (1.3), is represented . Starting from the first label the subsequent indices follow in
counterclockwise order.

is represented by an oriented line with the arrows pointing in the opposite direction to

those of δ2S
δψδψ̄

.

The action Sfb[ψ, ψ̄, φ] of a model involving both scalar and fermions, as for example

the Yukawa theory, can be expanded in powers of ψ, ψ̄ and φ. The general coefficient of

the expansion of Sfb in powers of the fields is:

δn+m+rSfb
δψ(x1) . . . δψ(xn)δψ̄(y1) · · · δψ̄β1(ym)δφ(z1) · · · δφ(zr)

, (1.4)

and it will also be represented by the diagram shown in Fig. 1.2.

Figure 1.2: A diagram, representing either the bare vertex of a theory with elementary fermion and
scalar fields, given in Eq.(1.4), or a vertex defined by the expansion in Eq. (1.5), is shown.
Alternatively each dashed line represents either a scalar field or the composite operator ψ̄ψ.
Starting from the first label the subsequent indices follow in counterclockwise order.

Being interested in describing collective composite excitations, as those described by

the local operator ψ̄ψ(x) =
∑

α,a ψ̄α,a(x)ψα,a(x) (where α and a are respectively Dirac’s

9



Chapter 1. Functional formalism for fermion and boson theories

and internal indices), an alternative, quite redundant, expansion of the action Sf in powers

of the composite and elementary fields can be considered. A generic coefficient of this

expansion has the form:

δn+m+rSf
δψ(x1) . . . δψ(xn)δψ̄(y1) · · · δψ̄β1(ym)δψ̄ψ(z1) · · · δψ̄ψ(zr)

, (1.5)

which defines a vertex which turns out to be useful for further developments and can be

represented with the diagram in Fig. 1.2.

The dashed line for representing both elementary scalars and composite operators was

used. However, by never considering the impact of local operators in theory involving

elementary scalars, misunderstandings should not occur.

1.2 Elementary fields Green’s functions and contin-

uum limit

The correlation functions or the euclidean Green’s functions are the main object of the

statistical parallel of a quantum field theory. For a theory of elementary fermions they

are defined as:

G
(m;n)
f (y1, . . . , ym; x1, . . . , xn) =

〈

ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)
〉

. (1.6)

They are expectation values of products of fermionic fields over the ground state. After

the Wick rotation, this mean value is a quantum amplitude that in many cases can be

related to observable quantities as cross sections and decay rates.

For a generic fermionic theory defined by the action Sf [ψ, ψ̄] the euclidean Green’s

functions can be written through the path-integral formalism as:

G
(m;n)
f (y1, . . . , ym; x1, . . . , xn)

=

∫

DψDψ̄ ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn) e−Sf [ψ,ψ̄]
∫

Dψ̄Dψ e−Sf [ψ,ψ̄] , (1.7)

which are nothing but the momenta associated with the normalized weight function
e
−Sf [ψ,ψ̄]

Z[0]
, where:

Z[0] =

∫

DψDψ̄ e−Sf [ψ,ψ̄]. (1.8)

10



1.2 Elementary fields Green’s functions and continuum limit

Since the Green’s functions are antisymmetric, with respect to their indices, the fermionic

functions can be described by means of even elements of a Grassmann algebra. A generic

Green’s function is represented by the diagram shown in Fig. 1.3.

Figure 1.3: The Green’s function of a purely fermion theory with (n+m) external legs, defined in Eq.
(1.7), is represented . Starting from the first label the subsequent indices follow in counter-
clockwise order.

Without going into technical details, defining the correlators by means of the path-

integral formulation deserves some comments. Each field theory represents a system with

an infinite number of degrees of freedom (ψ, ψ̄) labeled by the spatial index x as well

as as well as any internal indices. In order to define and compute a path-integral it is

necessary to restrict the whole system in a finite box of volume V and then to discretize

the space-time with a lattice of size “a′′. So doing, the fields are thus defined over the

N sites xi of the lattice. Each function ψ(xi) (ψ̄(xi)) with i = 1, . . . ,N , represents a

possible configuration of the system. Each configuration is weighted by e
−Sf [ψ,ψ̄]

Z[0]
(also

calculated for the discretized version of system) so that the path-integral appears as a

well defined statistical sum. From the reciprocal space (momentum space) point of view

the use of a finite box results in a discretization of momentum spectrum. On the other

hand a discretization of the space time implies that each momentum component, say p,

is bounded as |p| ≤ π
a
. Thus space time discretization is strictly related with a sharp

cut-off regularization procedure in momentum space, the cut-off implied being Λ = π
a

[29]. Throughout the present work this type of regularization will be used. The statistical

system associated with this regularized field theory is a usual discrete statistical system.

11



Chapter 1. Functional formalism for fermion and boson theories

However the path-integral definition requires two different limits, that are:

N ,V → ∞, with N /V fixed, (1.9)

a → 0, with finite correlators. (1.10)

The first limit in Eq. (1.9) has an analogy in statistical systems in the so called ther-

modinamic limit. It just represents a way of handling systems with an infinite number

of degrees of freedom but finite density. On the other hand, performing the limit in

Eq. (1.10), while all the Green’s functions are to be finite, corresponds to a very particu-

lar statistical situation. In fact, the size a, from the statistical point of view, characterizes

the typical length scale of the “microstates” of the system. If the “macroscopic” objects,

as the correlators, are insensitive to the microscopic scale, the system turns out to be

scale invariant. The simplest manifestation of scale invariance occurs for systems near

a critical point. (Another example is that of conformal theories). Thus a QFT theory

corresponds to a statistical system near a continuous phase transition [9].

Performing the scaling limit in Eq. (1.10) requires the fine tuning of a small number

of control parameters characterizing the phase of the statistical system, such as the tem-

perature, the external field, etc., near their critical value. This statistical fine tuning

reflects in the predictive power of a QFT . A renormalizable theory is characterized by

the possibility of choosing the bare parameters (the parameters appearing in the action

of the theory) as functions of the cut-off in such a way that correlation functions have a

large finite cut-off limit [27].

Each bare parameter in the action can be identified with the value of a certain mi-

croscopical coupling of the statistical reduced Hamiltonian. (More precisely, the reduced

Hamiltonian identifies a whole class of statistical systems with the same ratio of energy

for temperature). The couplings of a theory near a phase transition must directly corre-

spond to the control parameters of the transition. The other possible interactions must

be discarded from the Hamiltonian.

Thus the first parameters are called relevant, the others are defined “irrelevant” cou-

plings. If we do not discard the irrelevant couplings it means that we are not close enough

to the critical point, so that cut-off effects are not negligible.

This is what occurs when “non renormalizable” interactions are included in the action.

The cut-off cannot be removed and the quantum field theory is called effective [30]. There

12



1.2 Elementary fields Green’s functions and continuum limit

are many way of rephrasing this statement which will be further analyzed in the following.

1.2.1 Green’s functions of composite operators and scalar fields

In the previous section the Green’s functions for elementary fields have been introduced

and their relation to the excitation of fermionic particles or antiparticles has been stressed.

However a theory with a non-perturbative vacuum could also allow the excitations of

composite fields as for example the operator ψ̄ψ. The impact of these operators is taken

into account by defining the appropriate Green’s functions, according to the well known

procedure introduced in [31].

A generic Green’s function involving both elementary and composite fields is defined

as:

G
(m;n;r)
f (y1, . . . , ym; x1, . . . , xn; z1, . . . , zr)

=
〈

ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)ψ̄ψ(z1) · ψ̄ψ(zr)
〉

=

∫

DψDψ̄ ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)ψ̄ψ(z1) . . . ψ̄ψ(zr) e−Sf [ψ,ψ̄]
∫

DψDψ̄ e−Sf [ψ,ψ̄] . (1.11)

The correlators of composite operators are very different objects from the Green’s func-

tions of elementary operators. To recover the correlator of composite operators from that

of some elementary fields requires contracting and permutating some fields and perform-

ing the limit y1 → x1, where y1 and x1 are two distinct points. On the other hand, the

Green’s function of elementary operators can be expanded in terms of a basis of com-

posite operators . Both these procedures are strictly related with the continuum limit.

This can generate divergences showing that the two types of Green’s functions require

different renormalization prescriptions [32]. Thus the correlators of composite operators

are completely independent quantities.

In conclusion the Green’s functions of a theory with elementary fermions and scalars

defined by the action Sfb are introduced. These correlators are as expected:

G
(m;n;r)
fb (y1, . . . , ym; x1, . . . , xn; z1, . . . , zr)

=
〈

ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)φ(z1) . . . ψ(zr)
〉

=

∫

DψDψ̄
∫

Dφψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)φ(z1) . . . φ(zr)e−Sfb[ψ,ψ̄,φ]
∫

DψDψ̄
∫

Dφ e−Sfb[ψ,ψ̄,φ] . (1.12)

The diagram representing such Green’s functions is shown in Fig. 1.4.
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Chapter 1. Functional formalism for fermion and boson theories

Figure 1.4: A diagram, representing the Green’s functions of a theory with elementary fermion and scalar
fields, given in Eq.(1.12), is shown. Each dashed line represents either a scalar field. Starting
from the first label the subsequent indices follow in counterclockwise order.

1.3 Generating functionals for fermion theories

All the Green’s functions that have been introduced can be calculated by means of an

appropriate generating functional. The knowledge of the explicit form of the generating

functional corresponds to knowing the whole theory, thus many results are presented in

terms of these quantities.

1.3.1 Generating functional for Green’s functions

Starting simply with the generator of the Green’s functions of elementary fermion

fields. For the fermion theory one defines:

Zf [η, η̄] =

∫

DψDψ̄ e−Sf [ψ,ψ̄]+
∫
η̄·ψ−

∫
ψ̄·η, (1.13)

where η and η̄ are two Grassmann-valued source fields. The generic correlator G
(m;n)
f is

then obtained as:

G
(m;n)
f (y1, . . . , ym; x1, . . . , xn)

=
1

Zf [0]

δ

δη̄(y1)
· · · δ

δη̄(ym)

δ

δη(x1)
· · · δ

δη(xn)
Zf [η, η̄]

∣

∣

∣

∣

η,η̄=0

, (1.14)

thus Z plays the same role of a canonical partition function. After the derivatives have

been performed the sources must be switched off. Often it is also useful to work with the

correlators including the fluctuations induced by their own sources.

Strictly speaking the generating functional is given by the ratio
Zf [η,η̄]

Zf [0]
=

Zf
Zf,0

. Actually

this functional can be expanded in powers of η and η̄. So the Green’s functions can be

read as the coefficient of this power series.
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1.3 Generating functionals for fermion theories

Figure 1.5: Graphic representation of the η source term coupled with the ψ̄ elementary fermion field in
the generating functional given in Eq. (1.13).

Figure 1.6: Graphic representation of the η̄ source term coupled with the ψ elementary fermion field in
the generating functional given in Eq. (1.13).

Representing the external sources with the diagrams shown in Figs. 1.5, 1.6, the power

series of
Zf
Zf,0

is diagrammatically given by the picture in Fig. .1.7.

Figure 1.7: Diagrammatic representation of the series expansion of the functional
Zf [η,η̄]
Zf [0]

=
Zf

Zf,0
in powers

of η and η̄. The coefficient of the series are nothing but the Green’s functions in Eq. (1.6).

Clearly a generating functional of Green’s functions of elementary fermion and scalar

fields is defined as:

Zfb[η, η̄, J ] =

∫

DψDψ̄
∫

Dφ e−Sfb[ψ,ψ̄,φ]+
∫
η̄·ψ−

∫
ψ̄·η+

∫
Jφ, (1.15)

so that all the previous results can be rephrased for this expression.

Finally the generating functional for the Green’s functions of elementary and compos-

ite fermion operators can also be defined. Now an additional scalar source K must be

introduced so that the partition function is:

Zf [η, η̄, K] =

∫

DψDψ̄ e−Sf [ψ,ψ̄]+
∫
η̄·ψ+

∫
ψ̄·η+

∫
Kψ̄·ψ, (1.16)

If source term K is taken as a constant it has the impact of a bare mass term for the

fermion fields. The Green’s functions can be recovered as:

G
(m;n;r)
f (y1, . . . , ym; x1, . . . , xn; z1, . . . , zr)

=
1

Zf [0]

δ

δη̄(y1)
· · · δ

δη̄(ym)

δ

δη(x1)
· · · δ

δη(xn)

δ

δK(z1)
· · · δ

δK(zr)
Zf [η, η̄, K]

∣

∣

∣

∣

η,η̄,K=0

.(1.17)
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Chapter 1. Functional formalism for fermion and boson theories

A similar expansion to those shown in Fig. .1.7 holds also in this case.

1.3.2 Generating functional for connected Green’s functions

Green’s functions previously defined contain some unconnected pieces [33]. In order

to obtain only connected functions of elementary fields, which cannot be written as a sum

of product of other Green’s functions, an appropriate generator must be defined. In purely

fermion theory including the impact of elementary and composite fields it is defined by

the relation:

Zf [η, η̄, K] = eWf [η,η̄,K], (1.18)

where Zf is the partition function appearing in Eq. (1.16). A generic connected Green

function of elementary fermion fields is obtained as:

G
(m;n)
C,f (y1, . . . , ym; x1, . . . , xn)

=
〈

ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)
〉

C

=
δ

δη̄(y1)
. . .

δ

δη̄(ym)

δ

δη(x1)
. . .

δ

δη(xn)
Wf [η, η̄, K]

∣

∣

∣

∣

η=η̄=K=0

. (1.19)

From the statistical point of view W is nothing but the opposite of the Helmholtz free

energy of the system normalized at its own temperature. Expanding this functional in

powers of the sources η and η̄ and setting K = 0, the Green’s functions of the theory are

achieved as coefficients of the power series. On the other hand by deriving with respect

to the source K also unconnected pieces are generated. The Green’s functions of a purely

fermion theory described by the action:

Sη,η̄,Kf [ψ, ψ̄] = Sf [ψ, ψ̄]−
∫

η̄ · ψ +

∫

ψ̄ · η −
∫

Kψ̄ · ψ, (1.20)

can also be introduced. Such a theory is affected by the impact of the source terms in the

fluctuations. For example a theory involving the source K takes into account the presence

of an explicit bare fermion mass term.

The connected correlators for a theory with elementary scalars and fermions are ob-
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1.3 Generating functionals for fermion theories

tained by defining the generator Wfb = lnZfb[η, η̄, J ]. Thus one finds:

G
(m;n;r)
C,f (y1, . . . , ym; x1, . . . , xn; z1, . . . , zr)

=
〈

ψ(y1) . . . ψ(ym)ψ̄(x1) . . . ψ̄(xn)φ(z1)φ(zr)
〉

C

=
δ

δη̄(y1)
. . .

δ

δη̄(ym)

δ

δη(x1)
. . .

δ

δη(xn)

δ

δJ(z1)
. . .

δ

δJ(zr)
Wf [η, η̄, J ]

∣

∣

∣

∣

η=η̄=J=0

.(1.21)

These correlators are graphically represented with the diagram shown in Fig. 1.8.

(a)

Figure 1.8: A diagram, representing the connected correlators a theory with elementary fermion and
scalar fields given in Eq. (1.21), is shown. Starting from the first label the subsequent indices
follow in counterclockwise order.

For our purposes, it is important to compute the the expectation values:

ψc(x) = 〈ψ(x)〉η,η̄,KC = 〈ψ(x)〉η,η̄,K , (1.22)

ψ̄c(x) =
〈

ψ̄(x)
〉η,η̄,K

C
=
〈

ψ̄(x)
〉η,η̄,K

, (1.23)

as well as the connected correlator:

ψ̄ψ(x)c =
〈

ψ̄ψ(x)
〉η,η̄,K

C
. (1.24)

The latter, which is a fermion condensate, is a scalar quantity. Therefore, unlike the

expectation values in Eqs. (1.22)(1.23), it can be different from zero without violating

the Lorentz invariance but spontaneously breaking the chiral symmetry. More on this

point in the section dedicated to the symmetries of our models. The classical fields in

Eqs. (1.22)(1.23) can be written in terms of the functional generator Wf as:

ψc(x) =
δ

δη̄(x)
Wf [η, η̄, K], (1.25)

ψ̄c(x) =
δ

δη(x)
Wf [η, η̄, K], (1.26)
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Chapter 1. Functional formalism for fermion and boson theories

As the classical field ψ̄ψc can be calculated by the relation:

δWf

δK
[η, η̄, K] = ψ̄ψ(x)c + ψ̄c(x) · ψc(x). (1.27)

Deriving twice Wf the dressed fermion propagator is obtained:

〈

ψaψ̄b
〉

C
=

δ2Wf

δη̄aδηb

=
1

Zf

δ2Zf
δη̄aδηb

− 1

Z2
f

δZf
δη̄a

δZf
δηb

=
〈

ψaψ̄b
〉

− 〈ψa〉
〈

ψ̄b
〉

, (1.28)

where in the present case a, b collectively indicate spatial and internal indices. The imag-

inary poles (since the Euclidean formulation is employed) give the dressed fermion mass.

In the following it will be seen in which cases a fermion mass can be generated by quantum

fluctuations.

The bound states of the system can be found by studying the poles of the function

[34]:

Gab
ψ̄ψ =

δ2Wf

δKaδKb
=

〈

ψ̄ψaψ̄ψb
〉

−
〈

ψ̄ψa
〉 〈

ψ̄ψb
〉

, (1.29)

which, as will be seen, provides informations about the propagation of collective modes.

Finally, the generator of one particle irreducible (1PI) correlators is defined. With the

help of this functional, the usual systematic treatment of the renormalization properties

of a QFT can be extended to non-perturbative approaches.

1.3.3 Generating functional for 1PI Green’s functions

As is well known, the 1PI generating functional is the Legendre transform of the

generator Wf [η, η̄] = lnZf [η, η̄] with respect to the sources coupled with the elementary

fields. It is so called, since it generates diagrams which cannot be separated into two

pieces by cutting a single propagator line. On the other hand, this functional Γf can be

defined, as 1:

Γf [ψc, ψ̄c] = Γf [ψc, ψ̄c, K]
∣

∣

K=0
, (1.30)

1On the other hand, the functional
δΓf

δK
[ψc, ψ̄c,K]

∣

∣

∣

K
= 0, generates 1PI functions with one ψ̄ψ

operator insertion [27]
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1.3 Generating functionals for fermion theories

where:

Γf [ψc, ψ̄c, K] = −Wf [η, η̄, K] +

∫

η̄ · ψc −
∫

ψ̄c · η. (1.31)

While both Z and W are functional of the external sources, Γ is a functional of the

classical fields, defined in Eqs. (1.25),(1.26). From a statistical point of view, it can be

regarded as a sort of Gibbs potential.

By deriving Γ with respect to the classical field ψc one finds:

δΓf
δψc

= −δWf

δψc
− η̄ +

∫

δη̄

δψc
ψc +

∫

δη

δψc
ψ̄c

= −η̄, (1.32)

where the identities found in Eqs. (1.25),(1.26)were applied. Similarly, it is found:

δΓf
δψ̄c

= −η, (1.33)

The relations given in Eqs. (1.32),(1.33) show how Γ, in terms of its arguments, satisfies

the same relations obeyed by the classical action S in the presence of external sources.

For this reason Γ is also called the “effective action” and the previous equations can be

regarded, with a grain of salt, as the quantum equations of motion. Further developments

are found in the next chapter. From these relations it is shown that the classical values

of each fields are given by the minima of the effective action.

The 1PI Green’s functions are obtained by expanding the effective action in powers

of the classical fields around ψc = ψ̄c = 0 one obtains the 1PI correlators. These are the

coefficient of the series:

Γf [ψc, ψ̄c] =

∞
∑

n,m

1

(n +m)!

∫

1

, . . .

∫

n

,

∫

1

, . . . ,

∫

m

ψ̄c,m · · · ψ̄c,1ψc,n . . . ψc,1

× Γ
(n;m)
f (x1, . . . , xn; y1, . . . , ym). (1.34)

The derivative term is represented in Eq. (1.34) Clearly the 1PI functions for a theory

of scalars and bosons can also be defined starting from the appropriate functional Γfb; a

generic correlator of a theory with elementary scalars and fermions is represented with

the diagram shown in Fig. 1.9.

Returning to theories involving only elementary fermions one can see that it is possible

to expand the Γf around a generic non zero classical configuration. Clearly, different series
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Chapter 1. Functional formalism for fermion and boson theories

(a)

Figure 1.9: Graphical representation of the 1PI vertex defined by expansion of the functional Γfb. Start-
ing from the first label the subsequent indices follow in counterclockwise order.

define different irreducible correlators. Expanding around a minimum of the functional

the most interesting results are derived.

Indeed by using the identity:
(

δψc
δη̄

δψc
δη

δψ̄c
δη̄

δψ̄c
δη

)

·
(

δη̄
δψc

δη̄
δψ̄c

δη
δψc

δη
δψ̄c

)

=

(

1 0
0 1

)

, (1.35)

it is immediately found, with the help of Eqs. (1.25),(1.26) and Eqs. (1.32),(1.33):

(

δ2Wf

δη̄δη̄

δ2Wf

δηδη̄
δ2Wf

δη̄δη

δ2Wf

δηδη

)

= −
(

δ2Γf
δψcδψc

δ2Γf
δψ̄cδψc

δ2Γf
δψcδψ̄c

δ2Γf
δψ̄cδψ̄c

)−1

. (1.36)

which shows how the second derivative of the effective action calculated for a generic field

configuration is related to the inverse dressed propagators. Therefore, setting the external

sources at zero, the second derivatives of the effective action calculated at the minimum

are found to provide information about the particle spectrum of the theory.

Following the procedure introduced by Cornwall, Jackiw and Tomboulis CJT [31] one

can eliminate both also the source K via a double Legendre transform:

Γf [ψc, ψ̄c, ψ̄ψc] = −Wf [η, η̄, K] +

∫

η̄ · ψc −
∫

ψ̄c · η +
∫

Kψ̄ψc +

∫

Kψ̄cψc. (1.37)

Thus with the help of Eqs. (1.25),(1.26),(1.27) one finds:

δΓf
δψ̄c

[ψc, ψ̄c, ψ̄ψc] = −η +Kψc, (1.38)

δΓf
δψc

[ψc, ψ̄c, ψ̄ψc] = −η̄ −Kψ̄c, (1.39)

δΓf
δψ̄ψc

[ψc, ψ̄c, ψ̄ψc] = K. (1.40)

These equations
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1.4 Symmetries

The symmetries of the Hamiltonian, together with the field content, uniquely char-

acterize the critical behaviour of a statistical system. Indeed the last, near a continuous

transition, no more depends by microscopical details. Similarly, it is well known by some

perturbative renormalization arguments, that quantum field theories are uniquely speci-

fied by the type of fields involved in the action and by their symmetry transformations [35].

This poverty of detail is a consequence of the universal behaviour implied by the scaling

limit. There are some cases in literature in which a classical symmetry is violated by the

quantum fluctuations [36],[37]. In this section only systems will be considered in which

quantum fluctuations are consistent with the ones possessed by the action. However as in

the case of the GN model and the Yukawa theory the quantum fluctuations can sponta-

neously break a symmetry by generating a non vanishing expectation value for the fields

[38].

Briefly summarizing the symmetries of the GN model and of the Yukawa one, they

turn out to be the same for both of these theories.

Clearly Lorentz and translational invariance are both symmetries of the model. It

should be noted that, in the Euclidean version of the theory, the Lorentz group in d

dimensions is simply the special orthogonal group SO (d).

The set of d gamma matrices satisfying the Clifford algebra are:

{γµ, γν} = 2δµν . (1.41)

If the dimension d of the space is even, another matrix can be constructed which extend

the relations in Eq. (1.41). this matrix γd+1 is defined as:

γd+1 = (−i)d/2Πd
µ=1γµ. (1.42)

With this position γ2d+1 = 1 and {γd+1, γµ} = 0. In odd dimension the Clifford algebra is

fulfilled only by the γµ and such a matrix cannot be constructed. Clearly the orthogonal

group associated with the spinor transformation can be different from those acting on

the space-time coordinates. Sometimes a four-dimensional representation of the gamma

matrices is chosen also for 2 ≤ d ≤ 4 for facilitating the analytical continuation of the

results.
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• Spatial reflections. In addition to the usual Poincaré invariance, the reflections

are needed in order to obtain the full orthogonal group. A full reflection is given by

the transformation:

x′ = −x. (1.43)

Now even and odd dimensions have to be distinguished.

If the dimension of the space is even the full reflection transformation is represented

by:

ψ′(x) = γd+1ψ(−x), (1.44)

ψ̄′(x) = ψ̄(−x)γd+1. (1.45)

Since γd+1 commutes with all the SO(d) transformation the Dirac representation

is reducible. (However it is an irreducible representation of the whole orthogonal

group.) By means of the γd+1 matrix all the other spatial reflections can be con-

structed in order to cover all the transformations of the O(d) group. In conclusion

the scalar is left unchanged by a spatial reflection, that is:

φ′(x) = φ(−x). (1.46)

If the dimension of the space is odd, there is no γd+1. Since the matrix −1̂ has

determinant −1, then the total space reflections are represented by:

ψ′(x) = −ψ(−x), (1.47)

ψ̄′(x) = ψ̄(−x). (1.48)

(Moreover it should observed that the matrix −1̂ also represents the other spatial

reflections.) In contrast with the even dimension, under a reflection the scalar

changes its sign:

φ(x) = −φ(−x), (1.49)

thus preserving the Yukawa interaction. For odd dimensions the presence of an

explicit fermion mass violates this symmetry.

22



1.4 Symmetries

• Chiral symmetry. However both the models possess, in even dimension, an-

other internal symmetry which prevents an explicit mass term. By transforming

the spinors as:

ψ′(x) = γd+1ψ(x), (1.50)

ψ̄′(x) = −ψ̄(x)γd+1, (1.51)

and the scalar field as:

φ′(x) = −φ(x), (1.52)

the kinetic terms as well as the interactions are left unchanged. Conversely a fermion

mass term is forbidden. One of the main purposes of this work is to investigate the

generation of a fermion mass through the spontaneous symmetry breaking of this

chiral symmetry or spatial reflections.

Since these are a discrete symmetries no Goldstone bosons are generated.

• Flavour symmetry: The introduction of an U(N) symmetry in these models is a

very useful tool for investigating the theory with the methods of the 1/N expansions.

Moreover several physical situations can be described with the help of the unitary

group. For historical reasons this N is referred to as a flavour number.

The spinors of the models transform in the fundamental representation according

to:

ψ → eiαiT
i
ψ (1.53)

where T i are the U (N) generators. The scalar φ transforms as a singlet of the

group. This type of symmetry ensures that all the fermions acquire the same mass

from the SSB mechanism.

Charge conjugation and hermitian conjugation are also discrete symmetries of the

model. For further remarks the reader may refer to [27].
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Chapter 1. Functional formalism for fermion and boson theories

1.4.1 Symmetries in functional formalism

In order to describe the behaviour of the generating functionals under a general symme-

try transformation a compact notation is introduced with φ = (ψ, ψ̄, φ) and J = (η̄, η, J).2

The linear representation F of a generic symmetry group acts on the field as:

φ → Fφ. (1.54)

The statement that a quantum field theory possesses a symmetry can be rephrased in the

conditions:

S[Fφ] = S[φ] (1.55)

D(Fφ) = Dφ. (1.56)

The first Eq. (1.55) is the condition for the classical symmetry, the Eq. (1.56) provides the

quantum extension. The above equations imply that the quantum fluctuations leave all

physical quantities unchanged. For the partition function:

Z[J ] =

∫

Dφ e−S[φ]+
∫
J ·φ =

∫

D(Fφ) e−S[Fφ]+
∫
J ·Fφ

=

∫

Dφ e−S[φ]+
∫
(FT )J ·φ = Z[F TJ ]. (1.57)

For the generating functional of the connected correlators this immediately implies that:

W [F TJ ] =W [J ]. (1.58)

As for the classical field one finds:

φc[F
TJ ] =

δ

δ(F TJ)
W [F TJ ] = F−1 δ

δJ
W [F TJ ]

= F−1 δ

δJ
W [J ] = F−1φc[J ], (1.59)

which, once inverted, gives:

F TJ [φc] = J [F−1φc]. (1.60)

2Clearly one should also require that any generic transformation preserve this structure [39].
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1.5 Non-interacting fermions and bosons

The symmetry condition for the effective action then reads:

Γ[F−1φc] = −W [J [F−1φc]] +

∫

J [F−1φc] · F−1φc

= −W [F TJ [φc]] +

∫

F TJ [φc] · F−1φc

= −W [J [φc]] +

∫

J [φc] · φc
= Γ[φc], (1.61)

which can also be written as:

Γ[Fφc] = Γ[φc]. (1.62)

Eq. (1.62) shows that the effective action obeys the same symmetries as classical action.

This property turns out to be very useful whenever the computation of some correlator

can be simplified with the help of symmetry arguments.

It is important to stress that, although the action possesses symmetry, the quantum

fluctuations can spontaneously break this symmetry by inducing a non-vanishing expec-

tation value in the effective action. This is exactly the way in which the chiral symmetry

is broken in the considered fermion models. For the GN model, for example, the
〈

ψ̄ψ
〉

condensate acquires a non vanishing value.

1.5 Non-interacting fermions and bosons

The first analysis of the present fermion theories is provided by the perturbation tech-

niques. This tool gives the possibility of understanding some aspects of these models,

and by means of this technique the Feynmann diagrammatic, which will be useful for

further developments, can be introduced. First of all the partition functions for the non

interacting theories must be calculated. Then by plugging the fermion interactions the

Feynmann rules for the calculations of the correlators of elementary and composite oper-

ators can be established. In the perturbative frame a new diagrammatic representation

is also introduced making it possible to distinguish the Hartree’s contributions from the

Fock’s ones.
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Chapter 1. Functional formalism for fermion and boson theories

1.5.1 Free fermion theory

One can begin by considering the massless free fermion action:

Sf [ψ, ψ̄] = −
∫

ddx ψ̄ · /∂ψ = −
∫

x

∫

y

ψ̄ D−1 ψ. (1.63)

According to Eq. (1.16), the corresponding generating functional Zf [η, η̄, K] is:

Zf [η, η̄, K] =

∫

DψDψ̄ exp

[∫

x

∫

y

ψ̄ (x)D−1
K (x, y)ψ (y) +

∫

η̄ · ψ −
∫

ψ̄ · η
]

, (1.64)

where D−1
K (x, y) = (/∂+K)δ(d)(x, y). The Gaussian integration, extended for a Grassmann

algebra, is given by the formula:
∫

dθ1...dθne
− 1

2
θTAθ+ρT θ = (detA)1/2 e−

1
2
ρTA−1ρ, (1.65)

where θ = (θ1, . . . , θn) as well as ρ = (ρ1, . . . , ρn) are two different sets of Grassmann num-

bers and A is an antisymmetric n×n matrix. With the help of Eq. (1.65) the integrations

in Eq. (1.64) can be performed obtaining:

Zf [η, η̄, K] =

∫

DψDψ̄ exp

[

−1

2

∫ ∫

(

ψ, ψ̄
)

(

0
(

D−1
K

)T

−D−1
K 0

)(

ψ
ψ̄

)

+

∫

(η̄, η) ·
(

ψ
ψ̄

)]

= N det

(

0
(

D−1
K

)T

−D−1
K 0

)1/2

× exp

[

−
∫ ∫

1

2
(η̄, η) ·

(

0
(

D−1
K

)T

−D−1
K 0

)−1

·
(

η̄
η

)

]

= N det

(

0
(

D−1
K

)T

−D−1
K 0

)1/2

× exp

[

−1

2

∫ ∫

(η̄, η) ·
(

0 −DK

DT
K 0

)

·
(

η̄
η

)]

= N ′ det(DD−1
K ) exp

(
∫ ∫

η̄ DK η

)

. (1.66)

Clearly, the pre-factors N or N ′ have no impact in the computation of the correlators.

The two factors appearing in Eq. (1.66) can be interpreted with the help of the dia-

grammatic representation introduced in Sec.1.1. Using the identity:

det(A) = exp (TrlnA) , (1.67)
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1.5 Non-interacting fermions and bosons

the first factor appearing in the partition function can be rewritten as:

det(DD−1
K ) = exp (Trln (1 +DK)) (1.68)

= 1 + Tr(DK) +
1

2

(

(Tr(DK))2 − Tr (DKDK)
)

+
1

6

(

(Tr(DK))3 − 3Tr(DK)Tr (DKDK) + 2Tr (DKDKDK)
)

+ O(K4). (1.69)

The trace Tr is performed over the internal indices as well as over the space-time coordi-

nates. For simplicity the matrix K = K(x)δ(x, y) was defined. The series in Eq. (1.68) is

diagrammatically represented in Fig. 1.10. From these diagrams all the correlators of the

Figure 1.10: Graphical representation of the series expansion in Eq. (1.68). Loop contributions arise in
the free theory because of the insertion of the ψ̄ψ composite field.

composite field can be extracted. On the other hand the second factor in Eq. (1.66) can

be expanded as:

exp (η̄DKη) = 1 + η̄DKη +
1

2
(η̄DKη)

2 +O(η3, η̄3). (1.70)

Using the operatorial expansion:

(A +B)−1 = A−1 −A−1BA−1 + A−1BA−1BA−1 − . . . , (1.71)

a series for the second factor appearing in Zf is found. This is:

exp (η̄DKη) = 1 + η̄Dη − η̄DKDη + η̄DKDKDη

+
1

2

(

(η̄Dη)2 + (η̄DKDη)2

− 2(η̄Dη)(η̄DKDη) + 2(η̄Dη)(η̄DKDKDη)) +O(η3, η̄3, K3).(1.72)
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Chapter 1. Functional formalism for fermion and boson theories

From Eq. (1.72) the diagrams contributing to the correlators of elementary fields as well

as to the correlators of composite and elementary ones can be computed. The series in

Eq. (1.72) is represented with the diagrams shown in Fig. 1.11. As expected the two point

Figure 1.11: Graphical representation of the series expansion in Eq. (1.72). The massive propagator DK

comes from the resummation of an infinite series of massless propagators D with source
insertions.

fermion function is nothing but the propagator D, that is:

G
(1;1)
f (x; y) = D(x, y). (1.73)

The four point elementary function is disconnected and factorizes in the product of the

two point correlators. One finds:

G
(2;2)
f (x1, x2; y1, y2) = −D11D22 +D12D21. (1.74)

The free contribution to the one point function of the composite operator is given by:

G
(0;0;1)
f (x) = trD(x, x), (1.75)

where, in the present case, the trace covers only the internal indices. The two point

composite function is given by:

G
(0;0;2)
f (x, y) = trD(x, x)trD(y, y)− tr(D(x, y)D(y, x)). (1.76)

Finally the function of two elementary fields and one composite operator is calculated.

This is:

G
(1;1;1)
f (x; y; z) = D(x, y)δ(x, z). (1.77)
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1.5 Non-interacting fermions and bosons

In the following how these expressions will be modified by the presence of interactions is

studied.

Starting from the result of Eq. (1.66) the functional Wf can be calculated. It turns

out to be:

Wf [η, η̄, K] =

∫ ∫

η̄ DK η + Trln
(

DD−1
K

)

, (1.78)

where the trace Tr is over spatial and internal indices. Thus, with the help of the

Eqs. (1.25),(1.26),(1.27) the values of the classical fields can be computed. These are:

ψc(x) =

∫

z

DK(x, z)η(z), (1.79)

ψ̄c(x) = −
∫

z

η̄(z)DK(z, x). (1.80)

By applying the following derivative rules for operators:

d

dx
TrlnA = Tr

(

A−1dA

dx

)

, (1.81)

dA−1

dx
= −A−1dA

dx
A−1, (1.82)

the first term in Eq. (1.78) becomes:

δDK

δK
= −DK

δD−1
K

δK
DK . (1.83)

The second term gives instead:

δ

δK
Trln

(

DD−1
K

)

= Tr

(

DKD
−1D

δD−1
K

δK

)

= trDK . (1.84)

Thus the expectation value of the composite operator is given by:

〈

ψ̄ψ
〉

= ψ̄c · ψc + trDK (1.85)

= ψ̄c · ψc + ψ̄ψc. (1.86)

By taking K = 0 the second term in Eq. (1.85) vanishes so that in a free theory the

expectation value of the composite operator is simply given by ψ̄c · ψc. This is not the

case when the interactions are taken into account.
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Chapter 1. Functional formalism for fermion and boson theories

With the help of Eqs. (1.80) and (1.80) for the classical values of the fields, the effective

action defined in Eq. (1.30) can be computed. After some manipulations one finds:

Γf [ψc, ψ̄c, K] = −
∫ ∫

ψ̄cD
−1
K ψc − Trln

(

DD−1
K

)

. (1.87)

Setting K = 0 one finds that the effective action, in terms of its arguments, has the same

form of the classical action as a function of the fields.

1.5.2 Free theory with fermions and scalars

Now a free theory with elementary fermion and scalar fields in considered. The action

of this theory has the form:

Sfb[ψ, ψ̄, φ] =

∫

ddx [−ψ̄ /∂ψ +
1

2
φ(−∂2 +M2)φ], (1.88)

so that the partition function in Eq. (1.15) is given by two decoupled Gaussian functional

integrals:

Zfb[η, η̄, J ] =

∫

DψDψ̄ exp

[
∫

x

∫

y

ψ̄ D−1 ψ +

∫

η̄ · ψ −
∫

ψ̄ · η
]

×
∫

Dφ exp

[

−1

2

∫

x

∫

y

φD−1
b φ+

∫

Jφ

]

. (1.89)

With the help of Eq. (1.65) for the integration of Grassmann variables and by applying

the usual Gaussian integration formula, that is:

Πk

∫

dxke
− 1

2
xiAijxj+bixi = N (detA)−1/2 exp

(

1

2
biA

−1
ij bj

)

, (1.90)

the generating functional Zfb is easily computed and it is found:

Zfb[η, η̄, J ] = N ′e[
1
2

∫ ∫
J Db J]e[

∫ ∫
η̄ D η]

∼ Zb[J ]Zf [η, η̄], (1.91)

which is just the product of the generating functionals of the two independent fermion

and boson free theories. The generating functional of the connected Green’s functions is:

Wfb[η, η̄, J ] = lnZf [η, η̄] + lnZb[J ] = Wf [η, η̄] +Wb[J ], (1.92)

so that also the effective action can be immediately computed, giving the result:

Γfb[ψc, ψ̄c, φc] =
1

2

∫ ∫

φcD
−1
b φc −

∫ ∫

ψ̄cD
−1 ψc. (1.93)
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Again it can be noted that the effective action is obtained from the classical one by

replacing in the classical theory the elementary fields with the corresponding classical

fields. mean values. The only connected functions are the two point correlators.

1.6 Interactions and perturbation theory

Once the partition function of a free theory is known, the impact of interaction terms

is usually analyzed by performing a perturbative expansion in the coupling constants.

Although the aim of this section is to review the perturbative diagrammatic rules for

the GN and the Yukawa models, some general formulas will be worked out that can be

applied to any local potential possessing certain symmetries. The one-loop amplitudes of

the GN model will be worked out explicitly.

1.6.1 Perturbations in fermion theories with composite opera-

tors

The partition function for a model of fermions interacting via a local potential V (ψ, ψ̄)

is given by:

Zf [η, η̄, K] =

∫

DψDψ̄ e[−SG−
∫
V+

∫
η̄·ψ−

∫
ψ̄·η+

∫
Kψ̄·ψ], (1.94)

where SG is the free action given in Eq. (1.63). If only the Green’s function of elementary

fields given by the generating functional in Eq. (1.13) are needed, the usual perturbative

formula can be applied, which is:

Zf [η, η̄] = exp

[

−
∫

V (δ/δη̄, δ/δη)

]

exp

[
∫ ∫

η̄ D η

]

. (1.95)

The vertices appearing in the expansion of the first factor are represented by the diagrams

in Fig. 1.1. The propagators, coming from the expansion of the second factor, are

represented by the usual continuous oriented line.

In order to calculate the Green’s functions of the composite operator ψ̄ψ the Eq. (1.94)

must be considered. As is well known, the identity :
∫

DψDψ̄ (ψ̄ · ψ) e[−SG+
∫
η̄·ψ−

∫
ψ̄·η+

∫
Kψ̄·ψ]

=
δ

δK

∫

DψDψ̄ e[−SG+
∫
η̄·ψ−

∫
ψ̄·η+

∫
Kψ̄·ψ], (1.96)

31



Chapter 1. Functional formalism for fermion and boson theories

is the basis of perturbation theory.

Now, the potential V (ψ, ψ̄) = V (ψ̄ψ) can be expanded in powers of the fields and of

the composite operator, as shown in Eq. (1.5) then the Eq. (1.96) can be applied and the

partition function in Eq. (1.94) can be rewritten as:

Zf [η, η̄, K] = exp

[

−
∫

V

(

δ

δη̄
,
δ

δη
,
δ

δK

)]
∫

DψDψ̄e[−SG+
∫
η̄·ψ−

∫
ψ̄·η+

∫
Kψ̄·ψ]

= exp

[

−
∫

V

(

δ

δη̄
,
δ

δη
,
δ

δK

)]

ZG [η, η̄, K]

= exp

[

−
∫

V

(

δ

δη̄
,
δ

δη
,
δ

δK

)]

det(DD−1
K ) exp

(
∫ ∫

η̄ DK η

)

(1.97)

where ZG [η, η̄, K] is the partition function of the free fermion model and has been com-

puted in Eq. (1.66). The Feynmann rules can easily be worked out. The potential V can

be symbolically expanded in powers of the derivative with respect to the sources of the

elementary and of the composite fields. Then a generic vertex can be represented with

the diagram shown in Fig. 1.5.

Thus the functional Z can be calculated by linking every possible vertex with the

contributions given in Eqs. (1.68),(1.72).

1.6.2 Perturbative expansion of Fermi theory

The previous results are applied by evaluating some amplitudes of the GN model by

means of the Feynmann diagrams. The one-loop contributions to the two point and four

point functions of elementary fields are computed by applying the formula in Eq. (1.95).

Then the one-loop contributions to the one point and the two point correlators of the

composite operator are calculated with the help of Eq. (1.97).

Perturbation with elementary operators

By deriving the interacting part of the action of GN model one finds:

−
∫

V (ψ̄ · ψ)
δψa(x)δψ̄b(y)δψc(z)δψ̄d(w)

= G (δabδcd − δadδbc) δ(x, y)δ(y, z)δ(z, w), (1.98)

thus the vertex splits into two contributions as shown in Fig. 1.12. The first diagram is

called the “direct” or Hartree term, the second one is the “exchange” or Fock term.

Now the one-loop contribution to the 1PI two point and four point function of ele-

mentary fields can be calculated. The one-loop correction to the 1PI two point function
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.

Figure 1.12: According to Eq. (1.98) the four fermion vertex splits in a direct (s-channel) contribution
and in a exchange one (t-channel).

(the inverse propagator) is of order G in perturbation theory. The Feynmann diagrams

contributing to this function are shown in Fig. 1.13. The explicit calculation of the inverse

.

Figure 1.13: One loop contributions to the 1PI fermion-fermion amplitude. The Hartree and the Fock
terms are respectively the second and the last diagram.

propagator gives:

Γ
(1;1)
ab (x, y) = D−1

ab (x, y) +G [δabtrD(z, z)−Dab(z, z)] δ(x, y). (1.99)

By taking the Fourier transform of the previous expression, one finds the form of the in-

verse propagator in momentum space. If Γ̃
(1;1)
ab (p, q) is the Fourier transform of Γ

(1;1)
ab (x, y),

by defining Γ̃
(1;1)
ab (q) from Γ

(1;1)
ab (p, q) = Γ

(1;1)
ab (q)(2π)dδ(p, q), one finds:

Γ̃
(1;1)
ab (q) = i/qab +mBδab +G

[

δab

∫

ddp

(2π)d
tr
−i/p +mB

p2 +m2
B

−
∫

ddp

(2π)d
−i/pab +mBδab

p2 +m2
B

]

,(1.100)

where for convenience a bare mass mB was introduced in the fermion propagator. It is

important to note that the one-loop correction is momentum independent. The integral

appearing in Eq. (1.100) is divergent for d ≥ 2, thus a cut-off Λ (or another kind of

regularization) is implied.

The one-loop contributions to the 1PI fermion four-point correlator are listed in

Fig 1.14. The computation of each diagram is performed in the App.A.1. Here the

result is presented after all the external momenta were settled to zero. So the correlator
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.

Figure 1.14: One loop contributions to the 1PI four point vertex function. The diagrams from (a) to
(c) are s-channel terms, those from (e) to (g) are t-channel terms, finally (d) and (h) are
u-channel terms .

in the momentum space turns out to be:

Γ
(2;2)
abcd (0, 0, 0, 0) = (2π)dδ(0)

[

G−G2NtrI

∫

ddp

(2π)d
−p2 +m2

B

(p2 +m2
B)

2

+G2

∫

ddp

(2π)d
m2
B

(p2 +m2
B)

2

]

(δabδcd − δadδbc) . (1.101)

The results in Eqs. (1.100),(1.101) are useful in testing the RG equations that will be

derived in the following.

Perturbation theory with composite operators

According to the form of the action in Eq. (1.1), the expansion of the potential gives

the result:

−
∫

x

V (δ/δη̄, δ/δη, δ/δK) =
G

3

∫

x

∫

y

δ(x, y)
δ

δK(x)

δ

δK(y)

+
G

3

∑

ab

∫

x

∫

y

∫

z

δ(x, y)δ(y, z)δab
δ

δK(x)

δ

δη̄(y)

δ

δη(z)

+
G

6

∑

abcd

∫

x

∫

y

∫

z

∫

w

δ(x, y)δ(y, z)δ(z, w)

× (δabδcd − δadδbc)
δ

δη̄(x)

δ

δη(y)

δ

δη̄(z)

δ

δη(w)
(1.102)

Thus the perturbative expansion for the functions of the composite operator can be ob-

tained by linking the diagrams given in the series in Eq. (1.68) with these three different

types of vertices. The diagrams contributing to the connected one point function of the

composite operator are shown in Fig. 1.15.
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.

Figure 1.15: Graphical representation of the contributions to
〈

ψ̄ψ
〉

, given in Eq. (1.103), up to the order
G in perturbation theory.

By explicitly performing the calculation the tadpole contribution is obtained, it turns

out to be:

〈

ψ̄ψ(x)
〉

= trD(x, x)−G

∫

z

tr [D(x, z)D(z, x)] trD(z, z)

− G

∫

z

∫

w

tr [D(x, z)D(z, w)D(w, x)] . (1.103)

By evaluating the diagrams that contribute to the two-point connected correlator of

the composite operator, which are displayed in Fig. 1.16, one obtains:

.

Figure 1.16: Graphical representation of the contributions to the two point connected correlator , given
in Eq. (1.104), up to the order G in perturbation theory.
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Gψ̄ψ(x, y) = −tr(D(x, y)D(y, x)) +G

∫

z

tr[D(x, z)D(z, x)]tr[D(z, y)D(y, z)]

+ G

∫

z

tr[D(x, z)D(z, y)D(y, x)]tr[D(z, z)]

+ G

∫

z

tr[D(x, y)D(y, z)D(z, x)]tr[D(z, z)]

− G

∫

z

tr[D(x, y)D(y, z)D(z, z)D(z, x)]

− G

∫

z

tr[D(x, z)D(z, z)D(z, y)D(y, x)]

− G

∫

z

tr[D(x, z)D(z, y)D(y, z)D(z, x)]. (1.104)

It is important to note how the contributions in Fig. 1.15 look very similar to the one

loop contributions to the scalar mean value of the Yukawa theory. On the other hand

the diagrams in Fig. 1.16 are very similar to those of a scalar propagator, apart from a

bare propagator term which is lacking. This not an accident, the similarity found a clear

interpretation with the help of the bosonization technique.

1.6.3 Perturbations in theories with fermions and scalars

By following the same steps used in the previous sections the partition function for a

theory with scalars and fermions that interact via the potential V (ψ, ψ̄, φ) can be com-

puted. For this theory it turns out to be:

Zfb[η, η̄, J ] =

∫

DψDψ̄
∫

Dφ e−SG[ψ,ψ̄,φ]−
∫
V (ψ,ψ̄,φ)+

∫
η̄·ψ−

∫
ψ̄·η+

∫
Jφ

= exp

[

−
∫

V (δ/δη̄, δ/δη, δ/δJ)

]

ZG,fb[η, η̄, J ]

= exp

[

−
∫

V (δ/δη̄, δ/δη, δ/δJ)

]

exp

[
∫ ∫

η̄ D η

]

× exp

[

1

2

∫ ∫

J Db J

]

. (1.105)

In such a way the perturbative expansion can be performed.

1.6.4 Aspects of perturbative renormalization

Since the perturbative regime is considered the classification of field theories which is

based on the dimensional analysis can be applied [2]. The usual results are summarized in
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1.6 Interactions and perturbation theory

order to stress the basic concepts that will be applied in the study of the non-perturbative

renormalizability. Some elementary quantities as the scaling dimension and the pertur-

bative degree of divergence as well as their connection with the renormalization program

are reported in the following.

Scale invariance of a theory: classical conditions

The renormalizability of a field theory is achieved once that the correlators can be made

short distance insensitive by means of the fine tuning of a finite number of bare parameters

[27]. This form of scale invariance is reflected on the request that the correlators must

be homogeneous functions of their arguments and is related to the scaling properties of

these functions under a scale transformation. Actually the renormalizability of a theory

requires the invariance of the theory under a wider class of transformations. This will

be the subject of chap. 3. However in some cases these are reduced to simple scale

transformations. Thus it is important to analyze how the several quantities behave under

a scale transformation [40].

A contraction transforms the space time coordinates as:

x
′µ = bxµ, (1.106)

with b < 1. A gradient ∂µ and a momentum pµ are affected by their contraction as:

p
′µ = pµ/b, (1.107)
∂

∂x′µ
= b−1 ∂

∂xµ
. (1.108)

Generally if the quantity A scales as A′ = b−DAA under a contraction, then its scaling

dimension [A] will be defined as:

[A] = DA. (1.109)

As is well known, for a free theory, the scale invariance can be simply rephrased on the

condition that the Green’s functions transform in such a way that the effective action as

well as the action are invariant, under a scale transformation. Since the effective action

of a theory of free fermions and scalars is given by Eq. (1.93) the scaling dimension of free

fermion is defined through the behaviour of the fermion tree propagator. This propagator
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is a homogeneous function of degree α = −1. That is:

D
(p

b

)

∼ b
1

i/p
, p→ ∞. (1.110)

Thus in d space-time dimensions the scaling dimension of the non interacting fermion

fields is defined as:

[ψ] =
[

ψ̄
]

=
d+ α

2
=
d− 1

2
. (1.111)

This means that in a free theory the fields transform as:

ψ(bx) = b
(1−d)

2 ψ(x), (1.112)

ψ̄(bx) = b
(1−d)

2 ψ̄(x). (1.113)

For a scalar field instead the propagator behaves as:

DB

(p

b

)

∼ b2
1

p2
, p→ ∞, (1.114)

showing that it is an homogeneous function of degree α = −2. Thus the scaling dimension

for the scalar is given by:

[φ] =
d+ α

2
=
d− 2

2
. (1.115)

With these positions the scale invariance of the theory is simply satisfied which also

means the action and the effective action must have a vanishing scaling dimension, i.e.

they must be invariants under a scaling [27].

Anomalous dimensions of elementary fields

Far from the perturbative regime the Green’s functions of a renormalizable theory can

acquire a different scaling law. For example the fermion dressed propagator can behave

near the critical region as:

∆
(p

b

)

= b1−ηψ∆(p). (1.116)

The number ηψ is called the anomalous dimension of the correlator since it represents

the difference between the scaling of the propagator an that of the connected two point

function.
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In order to preserve the scale invariance of the Gaussian part of the effective action

the fermion fields transform as:

ψ(bx) = b−
d−1
2 Z

−1/2
ψ (b)ψ(x), (1.117)

ψ̄(bx) = b−
d−1
2 Z

−1/2
ψ (b)ψ̄(x). (1.118)

Thus one finds:

Zψ = bηψ . (1.119)

From this result the scaling dimensions of the fermion fields can immediately be calculated:

[ψ] = [ψ̄] =
d− 1

2
+
ηψ
2

= [ψ]0 + γψ. (1.120)

Then γ = ηψ/2 is called the anomalous dimension of the field. By deriving the Zψ function

given in Eq (1.119) one obtains:

dlnZψ
dlnb

= ηψ =
γψ
2
. (1.121)

The same arguments can be applied for a theory including a scalar. If the boson two

point correlator scales as:

∆B

(p

b

)

= b2−ηφ∆B(p), (1.122)

the scalar field must transform as:

φ(bx) = b−
d−2
2 Z

−1/2
φ (b)φ(x), (1.123)

in order to preserve the scale invariance of the effective action. This gives :

Zφ = bηφ . (1.124)

The anomalous dimension for the boson field can be calculated from the following relation:

dlnZφ
dlnb

= ηφ =
γφ
2
. (1.125)
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Perturbative scaling of the composite operator ψ̄ψ

The canonical dimension of a local derivative operator is simply given by:

[O]0 = l +
∑

j

[ψj ]0 +
∑

k

[φk]0, (1.126)

where l is the number of derivatives acting on the operator. Thus for example, the

composite field ψ̄ψ has the dimension:

[ψ̄ψ]0 = 2[ψ]0. (1.127)

On the other hand the scaling dimension of this local operator can be defined by the

one of the two point function:

G̃ψ̄ψ(q) =

∫

ddx

∫

ddy e−iq(x−y)Gψ̄ψ(x, y)

=

∫

ddx

∫

ddye−iq(x−y)tr(D(x, y)D(y, x))

=

∫

ddp

(2π)d
tr(D(p)D(p+ q)) ≃ q(2−d). (1.128)

The last equalities come from an explicit calculation that will be analyzed in the following.

Thus the scaling dimension of the field is given by:

[

ψ̄ψ
]2

= d−
[

G−1
ψ̄ψ

]

= 2d− 2, (1.129)
[

ψ̄ψ
]

= d− 1 = 2 [ψ]0 . (1.130)

From this result it should be clear that also in the free case the canonical dimension and

the scaling dimension of this composite operator coincide.

1.6.5 Perturbative classification of divergences

In a free field theory the scaling dimension coincides with its canonical or engineering

dimension. The last one is simply obtained, through dimensional analysis, by measuring

all the quantities in powers of an energy scale. Thus since the action is a dimensionless

quantity the canonical dimensions of the fields are [ψ]0 = [ψ̄]0 = (d − 1)/2, and [φ]0 =

(d− 2)/2. This result coincide with the scaling dimensions found in Eqs. (1.111),(1.115).
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Starting from the canonical dimensions of the fields the canonical one of an interacting

term can be computed, so finding:

[mb]0 = 1, (1.131)
[

M2
]

0
= 2 (1.132)

for the fermion and scalar masses, or

[G]0 = 2− d, (1.133)

[g]0 =
4− d

2
, (1.134)

[λ]0 = 4− d. (1.135)

for the dimensions of the Fermi coupling G of the Yukawa interaction g and of the scalar

quartic coupling respectively.

From the perturbative point of view the scale invariance depends on the way in which

the cut-off scale appears in each diagram. If at every order in the perturbation theory

new positive powers of the cut-off scale are generated, which cannot be removed by tuning

a finite number of parameters, the scaling limit cannot be performed. The origin of new

cut-off effects in a diagram can be taken into account by defining the superficial degree of

divergence D of a Feynman diagram. This quantity will be calculated for a theory with

scalars and bosons. The degree of divergence is nothing but the power law by which a

diagram seems to diverge when the cut-off is sent to infinity. 3 One finds [41]:

D = d− Eψ[ψ]0 −Eφ[φ]0 −
∑

a

[ga]0Va, (1.136)

where Eψ is the number of fermion external legs, Eφ the number of scalar ones and [ga]0

is the canonical dimension of the coupling associated with the a vertex.

The divergences occurring in the perturbation theory permit the classification the

QFT ’s in the following way [27]:

• Non-renormalizable theories: If there is a vertex with a coupling ga of negative

(canonical) dimension (irrelevant coupling). The number Va can be arbitrarily in-

creased in order to obtain an infinite number of diverging diagrams.

3This statement must be revisited when overlapping divergences appear beyond the one loop order
[2].
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• Super-renormalizable theories: If all the vertices have couplings with positive di-

mension (relevant couplings) only a finite number of diagrams is divergent. The

divergences can be treated by tuning only this finite number of interactions.

• Renormalizable theories: If the dimension of a coupling vanishes (marginal coupling)

and there are no couplings with negative dimension then an infinite number of

diagrams diverge. However the maximum degree of divergence does not change for

fixed external legs and does not depend on additional insertions of the coupling with

zero dimension.

According to these results one finds that, for 2 < d < 4, the GN model is perturbatively

non-renormalizable, while the Yuwaka theory is super-renormalizabile. At d = 2 the

GN model became renormalizable while the Yukawa one is always super-renormalizable,

conversely at d = 4 the Yukawa theory is renormalizable since both the coupling g and

the quartic coupling λ have zero dimensions. When a theory is super-renormalizable its

action is scale invariant near the perturbative region. For small values of the interactions

the action satisfies:

[S] = 0. (1.137)

This implies that in the perturbative regime of a super-renormalizable theory the scal-

ing dimension of the fields and their canonical dimension coincides. Moreover from the

Eq. (1.137) the scaling dimension and the canonical dimension of the couplings must co-

incide.

[ga] = [ga]0 (1.138)

In a perturbative renormalizable theory the Eq. (1.138) is no longer satisfied. Weak

violations to the trivial (canonical) scaling occur and the scaling of the fields does not

follow a simple power law.

Finally when a theory is non-renormalizable, in order to preserve the scale invariance

of the theory, an infinite number of coupling must be introduced.

1.6.6 Field theoretical renormalization of the Yukawa theory

As already stressed, the Green’s functions of a (super-)renormalizable theory are cut-

off independent for an appropriate choice of a finite number of bare parameters. Also
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1.6 Interactions and perturbation theory

renormalizable theories can be made cut-off independent by imposing a finite number of

conditions. However, in the last case, the scaling limit cannot be performed so that the

IR scales and the UV cut-off can never be completely decoupled. From a field theoretical

point of view the cut-off Λ can be removed by setting a finite number of renormalization

conditions [41]. As an example the one loop perturbative divergences of the Yukawa

theory at d = 4 are considered. According to the formula in Eq. (1.136) the divergent

diagrams are listed in Fig. 1.17. Just the 1PI diagrams can be considered since the

.

Figure 1.17: One loop divergent diagrams in the Yukawa theory. The (b) and the (f) diagrams correct
to the coupling constants, the (c) give a correction to the scalar mass and the scalar field,
while the diagrams (d) and (e) vanishes because of the symmetry. Finally only the fermion
field is corrected by the (a) diagram since the correction to the fermion mass is zero.

divergent parts of reducible diagrams are products of the divergent pieces corresponding

to their irreducible parts. However diagrams (b) and (e) vanish because of the symmetry

of the theory. At an IR renormalization scale µ << Λ the renormalized connected Green’s

functions are defined by performing the fields transformations:

ψr(x) = Z
−1/2
ψ (

µ

Λ
, {g})ψ(x), (1.139)

ψ̄r(x) = Z
−1/2
ψ (

µ

Λ
, {g})ψ̄(x), (1.140)

φr(x) = Z
−1/2
φ (

µ

Λ
, {g})φ(x), (1.141)
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so that the renormalized correlators are related with the original or bare ones by the

relations:

〈

ψr(x1) . . . ψr(xm)ψ̄r(y1) . . . ψ̄r(yn)φr(z1) . . . φr(zr)
〉

= Z
−n+m

2
ψ Z

− r
2

φ

〈

ψ(x1) . . . ψ(xm)ψ̄(y1) . . . ψ̄(yn)φ(z1) . . . φ(zr)
〉

. (1.142)

In principle these are not the same quantities appearing in Eqs. (1.117),(1.118),(1.123).

Instead, they are defined by the conditions:

∆r(p)−1(p, gr, λr, µ,Λ)
∣

∣

p2=−µ2
= 0, (1.143)

d

d/p
∆r(p)−1(p, gr, λr, µ,Λ)

∣

∣

∣

∣

p2=−µ2

= 1, (1.144)

∆r
B(p)

−1(p, gr, λr, µ,Λ)
∣

∣

p2=−µ2
= 0, (1.145)

d

dp2
∆r
B(p)

−1(p, gr, λr, µ,Λ)

∣

∣

∣

∣

p2=−µ2
= 1. (1.146)

(1.147)

As the bare correlators are functions of momenta, bare parameters and cut-off scale,

so the renormalized ones are just functions of the momenta, of the scale µ and of the

renormalized parameters.4 The renormalized parameters are given by the conditions:

Γφψψ̄({p}, gr, λr, µ,Λ)
∣

∣

s=t=u=−µ2
= µ4−dgr, (1.148)

Γφφφφ({p}, gr, λr, µ,Λ)|s=t=u=−µ2 = µ4−dλr, (1.149)

where s, t and u are the three kinematic channels. If the theory had been super-renormalizable

(as it is at d = 3) the number of arbitrary renormalization conditions equates the number

of bare relevant parameters that have to be tuned in order to reach the critical region.

For example, the conditions in Eqs. (1.143), (1.145) fix respectively the fermion and the

boson bare masses near their critical value. Similarly, the conditions in Eqs. (1.148),

(1.149) tune the Yukawa and the quartic scalar coupling near the origin. As the con-

ditions in Eqs. (1.144), (1.146) are redundant, so they turn out to be just a simple

rescaling of the fields. In this sense, near the critical point they coincide with those given

in Eqs. (1.117),(1.118),(1.123). When the Yukawa theory is just renormalizable (at d=4)

4Eventually they may depend on terms involving the cut-off that are suppressed near the scaling
region.
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the scaling limit cannot be performed. The renormalization conditions tune the value of

the relevant couplings, as done by Eqs. (1.143), (1.145), as well as those of the marginal

ones (conditions in Eqs. (1.148), (1.149)). They give, together with the conditions in Eqs.

(1.144), (1.146), the opportunity of removing the cut-off from the renormalized functions.

However by the presence of the marginal couplings some logarithmic divergences arise in

the bare correlators so that the cut-off can be sent to infinity just at the price of finding

a non interacting theory.

1.7 Bosonization technique

As previously stated there is a strict analogy between the Green’s function of a com-

posite operator and those of an elementary scalar coupled with the elementary fermion

fields. This parallel is favoured by the diagrammatic representation that was introduced

but it has deeper reasons. In principle, the presence of an elementary scalar in a fermion

theory and the insertion of a composite operator should describe two distinct physical sit-

uations. The inclusion of a scalar composite operator in theory should model the effects

of the collective boson excitations of the system. On the other hand the use of an elemen-

tary scalar assumes that all the boson effects must be described with the introduction of

a new scalar elementary particle. It is a difficult task to establish if these alternatives can

produce different distinguishable effects. In this section a technical trick is introduced

which allows the comparison to be clarified.

1.7.1 The Hubbard Stratonovich transformation

The Hubbard Stratonovich transformation for the Fermi interaction is obtained through

the Gaussian identity [26]:

∫

Dσ exp

[

−
∫

1

2G
σ2 +

∫
(

K

G
+ ψ̄ψ

)

σ

]

= N exp

[

∫

G

2

(

ψ̄ψ +
K

G

)2
]

, (1.150)

45



Chapter 1. Functional formalism for fermion and boson theories

then for the GN model the expression in Eq. (1.16) can be rewritten as:

Zf [η, η̄, K] = N
∫

DψDψ̄
∫

Dσ exp

∫ [

ψ̄(/∂ + σ)ψ − σ2

2G
+ η̄ · ψ − ψ̄ · η + K

G
σ

]

× exp

[

−
∫

K2

2G

]

= N e−
∫
K2

2GZb

[

η, η̄,
K

G

]

. (1.151)

Apart from a source dependent pre-factor, the partition function looks like very similar to

that of a theory of elementary fermions and scalar interacting via a Yukawa term. How-

ever some additional remarks are required. First of all there is not any scalar derivative

term ensuring the particle propagation; for this reason this field is often called auxiliary

scalar. Moreover a scalar self-interaction lacks from the original Yukawa theory. Thus

the Lagrangian has fewer bare parameters than those of a Yukawa theory. These obser-

vations could mislead. In the past, attempts were done trying to establish whether the

theories without fundamental scalars could be more predictive than those with the same

symmetries but involving an explicit scalar [20],[21]. Different analysis, performed in the

framework of 1/N expansion, have shown that this is not the case [17] [18]. More on this

point in the next chapter. For the moment some aspects of the Hubbard-Stratonovich

trick are presented. The mean value of the composite operator in the GN theory in the

presence of explicit sources, is given by:

〈

ψ̄ψ
〉η,η̄,K

=
1

Zf [η, η̄, K]

δ

δK
Zf [η, η̄, K]. (1.152)

On the other hand the mean value of the auxiliary field can be defined as:

〈σ〉η,η̄,J =

∫

DψDψ̄
∫

Dσ σe[−Sb[ψ,ψ̄,σ]+
∫
J σ+

∫
η̄·ψ−

∫
ψ̄·η]

∫

DψDψ̄
∫

Dσ e[−Sb[ψ,ψ̄,σ]+
∫
J σ+

∫
η̄·ψ−

∫
ψ̄·η]

=
1

Zb [η, η̄,J ]

δ

δJ Zb [η, η̄,J ] , (1.153)

where J = K
G

and Sb is the action given by the Lagrangian:

Lb = −ψ̄(/∂ + σ)ψ +
1

2G
σ2. (1.154)

Now it is easy to establish the relationship between the original correlators and those

of the bosonized version. Clearly one can immediately verify that the classical values ψc
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and ψ̄c as well as all the correlators made of fermionic elementary fields coincide either for

the purely fermion version of the model or for the bosonized one. By deriving the original

partition function one finds:

〈σ〉η,η̄,J = K +G
〈

ψ̄ψ
〉η,η̄,K

. (1.155)

The result shown in Eq. (1.155) is the well known relation between the mean value of the

auxiliary scalar and that one of the composite operator [6]. The source term explicitly

appears. Minding the form of the partition function in Eq. (1.16) one can realize how the

source term, being positive, plays the role of a bare mass for the fermion fields.

The relationship between the two point functions can also be calculated. These Green’s

functions are then related according to:

〈

ψ̄ψ1 ψ̄ψ2

〉η,η̄,K
= −δ21

G
+

1

G2
K1K2 −

K1

G2
〈σ2〉η,η̄,JC

− K2

G2
〈σ1〉η,η̄,JC +

1

G2
〈σ1σ2〉η,η̄,J . (1.156)

All the detailed calculations can be found in the App.A.2.

Now some expressions are derived for the two other generating functionals and for the

their own correlators.

From Eq. (1.151) one deduces:

Wf [η, η̄, K] =Wb [η, η̄,J ]−
∫

K2

2G
, (1.157)

where clearly Zb = eWb . Thus the propagator of the scalar theory is given by:

δ2Wf

δK1δK2

= −δ12
G

+
1

G2
〈σ1 σ2〉C . (1.158)

The effective action for the bosonized version is defined in a natural way as:

Γb[ψc, ψ̄c, σc] = −Wb [η, η̄,J ] +

∫

J σc +
∫

η̄ψc −
∫

ψ̄cη. (1.159)

After some manipulations, all reported in the App.A.2, one finds:

Γf [ψc, ψ̄c, ψ̄ψc] +

∫

G

2
(ψ̄ψc)

2 = Γb[ψc, ψ̄c, σc]−
∫

σ2
c

2G
+

∫

σc ψ̄ψc. (1.160)

Clearly ψ̄ψc and σc are not independent variables but are related according to the Eq. (1.155).

A more fruitful relation is given by:

δΓf
δψ̄ψc

= G
δΓb
δσc

. (1.161)
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Twice deriving this relation one finds that the second derivative of the two theories are

related in the following way:

(

δ2Γf
δψ̄ψcδψ̄ψc

)−1

= G+G2

(

δ2Γb
δσcδσc

)−1

. (1.162)

Finally the 1PI correlators of one composite and two elementary fields differ from the

dressed Yukawian interaction simply by a proportionality factor. Indeed by deriving both

sides of Eq. (1.161) one obtains:

Γf
ψψ̄ (ψ̄ψ)

= GΓbψψ̄ σ. (1.163)

1.7.2 Perturbation theory of the GN model in the bosonized

version

The first advantage provided by the Hubbard Stratonovich transformation is the fol-

lowing: The perturbartive expansion of the correlators of the GN model can be rephrased

in a perturbative series for the bosonized version. The perturbative calculations for the

composite operators are more simple if performed with the bosonization technique. After

the shift:

σ →
√
Gσ, (1.164)

and by defining:

G = g2, (1.165)

the partition function in Eq. (1.151) becomes:

Zf [η, η̄, K] = N ′

∫

DψDψ̄
∫

Dσ exp

∫ [

−ψ̄(/∂ + gσ)ψ − σ2

2
+ η̄ · ψ − ψ̄ · η + K

g
σ

]

× exp

[

−
∫

K2

2g2

]

= N ′e−
∫
J2

2 Zb [η, η̄, J ] , (1.166)

where J = K
g
was defined. According to the relation in Eq. (1.165) a term of order Gn

becomes of order g2n in the bosonized theory. Thus the pertubative scheme shown in

Eq. (1.105) can be applied. Here the potential is V = gσψ̄ψ and the boson propagator is
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simply Db(x, y) = δ(x, y). All the results found from section 1.6.2 can be easily recovered.

In particular the result of Eq. (1.98) finds an interesting interpretation in this language.

The Hartree term looks like the direct contribution (or s channel) in a four point am-

plitude obtained by means of this “auxiliary” Yukawa theory. On the other hand the

Fock contribution appears as the exchange term (or t channel). The relation found in

Eq. (1.163), performing the appropriate rescaling becomes:

Γf
ψψ̄ (ψ̄ψ)

= g Γbψψ̄ σ. (1.167)

The usual Feynmann rules can simply be applied in order to evaluate the one-loop con-

tribution at the function Γb
ψψ̄ σ

. The diagrams involved in the computation are shown in

Fig. 1.18, while the amplitude turns out to be:

.

Figure 1.18: Diagrammatic representation of the 1PI Γψψ̄σ, calculated in Eq. (1.169) by means of the
perturbative expansion in the bosonized version of the model.

δ3Γb
δψc(x)δψ̄c(y)δσc(z)

= gδ(x, z)δ(z, y)

+ g3D(y, z) ·D(z, x)δ(x, y) (1.168)

By applying the result in Eq. 1.167, the 1PI function of two elementary fields and one

composite operator at the one-loop order can be written. This is:

δ3Γf
δψc(x)δψ̄c(y)δψ̄ψc(z)

= Gδ(x, z)δ(z, y)

+ G2D(y, z) ·D(z, x)δ(x, y). (1.169)

These one-loop results will be very useful for further developments in the framework of

the 1/N expansion.

1.7.3 Non renormalizability of the bosonized theory

A word of caution is necessary. Although the diagrammatic picture of the bosonized

version could resemble that of a Yukawa theory the scaling and the pertubative divergences
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of these two models are very different. It should be stressed that, at this stage, the

bosonization technique was just a way of rephrasing the perturbative results, that were

previously found. The perturbative classification of the divergences in the GN which

is very far from that of the Yukawa theory must not be altered if all the quantities

are expressed in the bosonized version. From the action Sb it can be deduced that the

canonical dimension of the auxiliary field is equal to:

[σ]0 = d/2. (1.170)

Looking at the auxiliary propagator one obtains:

Dσ(p) = 1 =
1

p0
, (1.171)

consistently with Eq. (1.170). Again from the action Sb or from the relation in Eq. (1.165)

the dimension of the coupling g can be calculated. This turns out to be:

[g]0 =
d− 2

2
. (1.172)

Also in the bosonized version the model is perturbatively non-renormalizable.
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CHAPTER 2

NON-PERTURBATIVE ANALYTICAL TECHNIQUES I:

D − S EQUATIONS AND LARGE N EXPANSION

The perturbative analysis has shown that self-interacting fermionic theories are not

renormalizable. Thus the cut-off used in regularizing the theory cannot be sent to infinity,

while keeping finite all other quantities. It represents the physical scale at which these

models no longer apply. However this non-renormalizability statement must be restricted

to the perturbative domain, i.e. when the bare parameters are closer to zero. Indeed,

as will be seen, it is possible to find a region of the bare parameter space, far from the

perturbative one, where the divergences can be removed by an appropriate tuning of

the couplings. This implies a different connection from the usual one between the bare

parameters and the cut-off scale.

Originally the first analytical tools used for studying the non-perturbative behaviour

of fermion theories were the Dyson-Schwinger (DS) equations [42]. The generation of a

fermion mass via a non trivial critical value of the Fermi constant was one of the results

of the NJL analysis and it was achieved by means of the DS method [6]. Therefore

the last one is introduced in this chapter in order to present the NJL results and the

non-perturbative aspects of the χSB.

However, generally the DS equations cannot be solved exactly and consistent approx-

imations are needed. A parameter expansion could be introduced making the systematic

estimation of errors possible [26].

Anyway the usual perturbative expansion in the coupling constants, besides from be-

51



Chapter 2. Non-perturbative analytical techniques I: D − S equations and large N
expansion

ing a simple calculation technique, also provides the scheme for establishing when the

divergences arise in a theory and how to heal them. Following another type of expansion

one can establish a new systematization of renormalization which is far from the pertur-

bative region. The 1/N expansion can be used for this objective and will be introduced

later in the chapter.

2.1 Dyson Schwinger equations for the GN model

The Dyson-Schwinger equations are a system of algebraic relations between the corre-

lators of a theory. They can be seen as the quantum equations of motion, extending the

variational principle for the classical degrees of freedom to their the quantum counterparts.

Similar equations exist for statistical systems and are often applied to non equilibrium

problems [43],[44]. In the construction of the DS equations the exact Green’s functions

of the theory are involved; however analytical approximate solutions can be found with

the introduction of a small parameter expansion. As an example, if a Green’s function

is written in a power series of the coupling constant, at each order in the expansion, the

corresponding perturbative approximation of the correlator will be found as a solution

of the DS equations. On the other hand, by resumming the Feynmann diagrams up to

a certain order in the coupling constant an approximate solution of the DS equation is

obtained. A certain class of diagrams whose resummation satisfy the DS equations is

called Dyson series which can be found by grouping diagrams in a different way from the

perturbative prescription. In the following a Dyson series whose resummation gives the

first order of the 1/N expansion, also called Hartree approximation [34], is presented.

The DS equations for both elementary and composite operators are then recovered. Fi-

nally, by using the Hartree approximation, the NJL result providing the generation of

a fermion mass and a relation between the fermion mass and the mass of the composite

particle is found.

2.1.1 Dyson series

Now, by following the perturbative approach, an infinite class of diagrams is resummed.

However the validity of this result holds beyond the perturbative hypothesis. What will

be found is a truncation of the DS equations called the Hartree approximation [31].
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Indeed the rule for selecting this particular class of diagrams is entirely justified in the

framework of the 1/N expansion. This procedure was first introduced by t’Hooft in [45].

If one supposes that the coupling G is of O(1/N) then every Feynmann diagram will have

a weight in powers of N given by the number of couplings G and the number of closed

loops involved in its construction. A closed loop is a fermionic loop in which the product

of propagators is traced over. Each of these loops gives a contribution of order N . As an

example, the diagrams obtained in Fig. 1.13 for the corrected inverse fermionic propagator

can be considered. The bare inverse propagator is of order N0 as well as the first one loop

diagram in the picture, since it is formed by a closed flavour loop and a fermionic vertex

G. The last diagram instead has a weight of order 1/N , since the propagator is not traced

over, thus at the leading order in the 1/N expansion it can be neglected, while it has to be

retained at the next order. A second example is given by the one loop contributions to the

four point fermionic function shown in Fig. 1.14. The bare vertices are of order 1/N , as

well as the one loop contributions “a” and “e”. The other diagrams are of order 1/N2 and

must be neglected at the leading order. As it should be clear the 1/N expansion collects

the diagrams in a different way from those given by the usual perturbative expansion.

Indeed the bare functions and their one loop corrections are both included in the Hartree

term.

The Dyson series giving the Hartree contribution to the correlators of the Gross Neveu

model are now summed. In Fig. 2.1 the diagrams at O(G2) giving the Hartree contribu-

tion to the two point 1PI function are represented. Since the 1PI function Γψψ̄ is nothing

.

Figure 2.1: The Hartree contributions to the two point 1PI fermion function are represented up to two
loop order. Such terms are often called tadpole diagrams.

but the inverse matrix of the fermionic dressed propagator
〈

ψ ψ̄
〉

= ∆, the Hartree con-

tribution at the one-loop order can be written as:

∆−1
ab = D−1

ab +Gδabtr (D) +O
(

G2
)

, (2.1)

where a, b are generic spatial and internal indices. On the other hand the connected two
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point function satisfies at the same order:

∆ = D −GDtr (D)∆ +O
(

G2
)

, (2.2)

where now all indices are understood. Tracing over all the internal indices one finds:

tr (∆) = tr (D)−G tr (D∆) tr (D) +O
(

G2
)

. (2.3)

Thus at every order in the bubble resummation, thanks to the Eq. (2.3), the series of terms

in Eq. (2.2) can be replaced by a trace over the dressed propagator. The error belonging

to the next order in G. So doing the following equation is obtained:

∆−1 = D−1 +G tr (D)−G2 tr (D) tr (D∆) +O
(

G3
Λ

)

= D−1 +G tr (∆) . (2.4)

The second line is true at every order in the perturbation theory and represents the sum

of the series.

The Dyson series for the mean value of the composite operator ψ̄ψ can be immediately

calculated. Looking at the diagrams in Fig. 1.15 it is possible to note how the first two

terms are Hartree contributions. By performing the series resummation with the help of

Eq. (2.3), it is found:

〈

ψ̄ψ
〉

= tr (∆) . (2.5)

Using Eq. (2.4) and Eq. (2.5) the fermionic propagator and the vacuum expectation value

of the composite field are related according to:

∆−1 = D−1 + G
〈

ψ̄ψ
〉

. (2.6)

Now the analysis of other series can be treated. For example, the 1PI 4-point function,

that has been calculated at one loop level in Eq. (1.101), is considered. The Hartree

contributions to it are shown in Fig. 2.2 (b). First of all it should be observed that in such

a series all the diagrams group in an s channel term and in a t channel one. Indeed the

four point function can be organized as:

δ4Γf
δψa(x)δψ̄b(y)δψc(z)δψ̄d(w)

= G(x, y)δ(y, z)δ(z, w)δabδcd
− G(y, z)δ(x, y)δ(z, w)δadδbc, (2.7)
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where G(x, y) is the same function for both these channels. Thus the series for the s

and the t contributions becomes a series for the only G(x, y) function. First of all, one

supposes that only the bubble chains diagrams give a contribution to the series. As a

consequence one found the expression:

G(x, y) = Gδ(x, y)−G2tr (D(x, y)D(y, x))

+ G3

∫

z

tr (D(x, z)D(z, x)) tr (D(z, y)D(y, z)) +O
(

G4
)

= Gδ(x, y)−G

∫

z

tr (D(x, z)D(z, x))

×
[

Gδ(z, y)−G2tr (D(z, y)D(y, z))
]

+O
(

G4
)

= Gδ(x, y)−G

∫

z

tr (D(x, z)D(z, x))G(z, y) (2.8)

In order to include all the other corrections to the fermionic propagator (the tadpole

contributions) it should be observed that at every order in G the dressed propagator can

be replaced for the bare one in Eq. 2.8. Finally one gets:

G(x, y) = Gδ(x, y)−G

∫

z

tr (∆(x, z)∆(z, x)) G(z, y). (2.9)

.

a

.

b

Figure 2.2: (a) The Hartree type contributions to the s-channel of the four point 1PI fermion vertex are
shown. In this approximation both tadpole and bubble diagrams are included. The t-channel
contributions can be immediately worked out by a simple reflection, while all the u-channel
contributions are discarded. (b) The Hartree type contributions to the connected correlator
of two composite fields.

The result that has been found has also an interesting interpretation. The Hartree

diagrams contributing to the connected Green’s function of two composite operators

G
(0;0;2)
f,C (x, y), calculated at one loop level in Eq. (1.104), are shown in Fig. 2.2 (b). Looking

at the diagrams in Fig. 2.2 (a) one finds that in the Hartree approximation the function

55



Chapter 2. Non-perturbative analytical techniques I: D − S equations and large N
expansion

G
(0;0;2)
f,C (x, y) can be related to the function G(x, y) defined in Eq. (2.7). This implies the

equation:

G(x, y) = Gδ(x, y)−G2G
(0;0;2)
f,C (x, y), (2.10)

which is nothing but the same relation found in Eq. (1.158). The function G(x, y) turns
out to be the propagator of the auxiliary scalar in the bosonized version. An extension of

the relation in Eq. (1.98) to the dressed functions was found. At the leading order in the

large N expansion the four point fermionic function can be rewritten as the sum of the s

and t channel contributions of a particular Yukawa theory. Now however the propagator

in the amplitude is the function G(x, y) which includes all the bubbles resummation. It is

often called improved propagator, since it is a correction of the trivial propagator of the

auxiliary scalar [12].

Some important properties of the GN will soon be investigated by means of the DS

equations. Before this the DS equations of the model will be recovered in a more rigorous

procedure.

2.1.2 Dyson-Schwinger equations for elementary fields

The Dyson-Schwinger identities are derived starting from the functional identity for

the partition function found in Eq. (1.96). By applying a functional operator to the

partition function of elementary fermionic fields one gets:

δSf
δψ

[

δ

δη̄
,
δ

δη

]

Zf [η, η̄] =

∫

DψDψ̄ δSf
δψ

[

ψ, ψ̄
]

× exp

[

−Sf [ψ, ψ̄] +
∫

η̄ψ −
∫

ψ̄η

]

= − e[−Sf [ψ,ψ̄]+
∫
η̄ψ−

∫
ψ̄η]
∣

∣

∣

bound.

−
∫

DψDψ̄ η̄ e[−Sf [ψ,ψ̄]+
∫
η̄ψ−

∫
ψ̄η]

= −η̄ Zf [η, η̄] (2.11)

where an integration by parts was performed minding that the fermion fields vanish at

the boundaries. Similarly, by applying the same arguments to the first derivative in ψ̄

one finds the equation:
(

δSf
δψ̄

[

δ

δη̄
,
δ

δη

]

+ η

)

Zf [η, η̄] = 0. (2.12)
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Now a generic functional F [η, η̄] is considered. The partition function Zf can always be

expressed in terms of the functional Wf as Zf = eWf . For a single application of the

derivative δ/δη one finds:

exp (−Wf [η, η̄])

(

δ

δη

)

expWf [η, η̄]F [η, η̄] =

(

δ

δη
+
δW [η, η̄]

δη

)

F [η, η̄]. (2.13)

So that the DS equations (see Eqs.(2.11),(2.12)) can be rewritten as:
(

e−Wf [η,η̄]
δSf
δψ

[

δ

δη̄
,
δ

δη

]

eWf [η,η̄] + η̄

)

F [η, η̄] = 0, (2.14)

(

e−Wf [η,η̄]
δSf
δψ̄

[

δ

δη̄
,
δ

δη

]

eWf [η,η̄] + η

)

F [η, η̄] = 0, (2.15)

Thus applying the result found in Eq. (2.13) the DS equations for the generator of con-

nected Green’s functions Wf are immediately obtained. They are:

δSf
δψ

[

δ

δη̄
+
δWf

δη̄
,
δ

δη
+
δWf

δη

]

+ η̄ = 0, (2.16)

δSf
δψ̄

[

δ

δη̄
+
δWf

δη̄
,
δ

δη
+
δWf

δη

]

+ η = 0. (2.17)

The DS equations for the effective action are quite involved. Using Eq. (1.22) and

Eq. (1.23) the derivatives with respect to the sources can be expressed in terms of deriva-

tives with respect to the classical fields. One finds:

δ

δη
=

∫

δψc
δη

δ

δψc
+

∫

δψ̄c
δη

δ

δψ̄c

=

∫

δ2Wf

δηδη̄

δ

δψc
+

∫

δ2Wf

δηδη

δ

δψ̄c
, (2.18)

δ

δη̄
=

∫

δψc
δη̄

δ

δψc
+

∫

δψ̄c
δη̄

δ

δψ̄c

=

∫

δ2Wf

δη̄δη̄

δ

δψc
+

∫

δ2Wf

δη̄δη

δ

δψ̄c
, (2.19)

so that Γf satisfies the following equation:

δΓf
δψc

=
δS

δψ

[

ψc +

∫

δ2Wf

δη̄δη̄

δ

δψc
+

∫

δ2Wf

δη̄δη

δ

δψ̄c
,

ψ̄c +

∫

δ2Wf

δηδη̄

δ

δψc
+

∫

δ2Wf

δηδη

δ

δψ̄c

]

. (2.20)

Here the second derivative of the Wf functional must be expressed in terms of the deriva-

tives of the Γf , according to the Eqs. (1.36). As an application of these results the DS
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equations for the connected and 1PI Green’s functions for a fermionic theory, with a bare

mass term and a quartic coupling in the action, are calculated. All computations are

reported in the App.B.2. The physical request that odd Green’s functions must vanish

is motivated by the results in Sec.1.4.1. Under certain conditions if the action possesses

any symmetry this cannot be violated by the quantum fluctuations. This assumption

also implies that 〈ψc〉 =
〈

ψ̄c
〉

= 0, in order to preserve the Lorentz and the U(N) invari-

ance. The two point 1PI function satisfies the equation shown in Fig. 2.3. The diagrams

represent the equation for a generic two point fermion correlator in which the classical

fields are collected in the multiplet θ =
(

ψc, ψ̄c
)

. Two types of diagrams contribute to

.

Figure 2.3: The DS equation for the 1PI fermion two point function. The exact inverse propagator is
given by the sum of a tree level inverse propagator, of a one-loop Hartree-Fock diagram with
a four fermion bare vertex and of a two-loop diagram involving the exact effective interaction.
All loops involve the exact connected two point functions

this equation: the tadpole diagram which is the first one appearing in the figure and the

saturn diagram which is the second. In the Hartree approximation the saturn diagram

can be discarded. In order to trust this assumption one can expand each function in the

following power series:

Γ
(m;n)
f =

∞
∑

p=0

1

Np
Γ
(m;n)
f,p , (2.21)

and identify the terms of the same order. At the leading order in this expansion the same

result shown in Eq. (2.4) is recovered for the two point 1PI fermion function.

Similar results hold also for the four point 1PI function. After performing the cal-

culations one finds (see App.B.2) the result which is diagrammatically shown in Fig. 2.4.

Once again all the odd contributions have been discarded. Moreover, in this case, the

contribution given by the six point function was removed. One can verify that in the

Hartree approximation this equation reduces to the results found in Eqs. (2.7),(2.9).
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.

Figure 2.4: The DS equation for the 1PI fermion four point function. The r.h.s. of the equation involve:
the bare fermion vertex, the three one-loop Hartree-Fock terms, giving respectively the s,t
and u contributions, and the two-loop terms, made of a the bare vertex and two dressed four
point functions. The term involving the six point correlator is descarded.

2.1.3 The NJL result

In this section the Nambu - Jona-Lasinio (NJL) mechanism for the generation of a

fermion mass, by means of the quantum fluctuations, is recovered . Actually, this result

was originally found by the authors for a model in d = 4 dimensions with a continuous

chiral symmetry [6]. However, many of their arguments were also applied to the GN

model. For the moment, only the system in four dimensions is considered. Starting with

the Eq. (2.4) and writing the result in the momentum space one finds:

∆−1
αβ,ab(p) = D−1

αβ,ab(p) +Gδαβδab

∫

d4p

(2π)4
trD(p),

=
(

i/pαβ +mBδαβ

)

δab +Gδαβδab

∫

d4p

(2π)4
trD(p) (2.22)

where the Greek letters stand for the Dirac indices while the Latin ones are used for the

internal flavour space. The mass mB must be removed in order to preserve the symmetry

of the model. This procedure is usually called the chiral limit. From the perturbative

analysis it is known that the corrections to the propagator are momentum independent.

Since a similar loop appears in the DS equation the following ansatz is assumed:

∆−1
αβ,ab(p) =

(

i/pαβ +mδαβ

)

δab (2.23)
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The equation for the inverse propagator becomes a self consistent equation for the fermionic

mass. One finds:

m = mB +G

∫

d4p

(2π)4
tr

(

1

i/p+m

)

.

(2.24)

The integration can be explicitly performed by means of a sharp momentum cut-off Λ.

Thus the gap equation for the mass turns out to be:

m = mB +NG
m

4π2

[

Λ2 −m2ln

(

1 +
Λ2

m2

)]

. (2.25)

Setting mB = 0 (chiral limit), one obtains:

m2

Λ2
ln

(

1 +
Λ2

m2

)

= 1− 4π2

Λ2N G
. (2.26)

Since the first member of the equation is always non-negative a non-trivial solution for

the mass m exists only if:

G ≥ Gc =
4π2

Λ2N
. (2.27)

The generation of a fermionic mass and the related χSB are triggered by a critical value

of the coupling constant. This result is far from being an accident. Indeed the occurrence

of a symmetry breaking has a clear interpretation in the statistical language. The critical

value of the coupling is related to the occurrence of a phase-transition in the statistical

system. Thus the coupling G must be related to the temperature of the system while

the fermion mass should correspond to the order parameter of the transition. All these

aspects will be clarified in the following.

The Eq. (2.9) involving the auxiliary field of the bosonized model is now considered.

For d = 4, in Fourier space, it can be written as:

G (q) = G−G

∫

d4p

(2π)4
tr (∆(p) ·∆(p+ q))G (q) . (2.28)

The previous result can be immediately rewritten in terms of the inverse propagator as:

G (q)−1 = 1/G+Π (q) , (2.29)
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where:

Π (q) =

∫

d4p

(2π)4
tr

(

1

i/p +m
· 1

i
(

/p+ /q
)

+m

)

. (2.30)

The evaluation of this function is quite involved. All the calculations can be found in the

App.C.3. Following the NJL procedure the function G(q) calculated when G = Gc is

reported. It is found:

G(q)−1 =
1

8π2

(

q2 + 4m2
)

[

log

(

Λ2

m2

)

−
√

q2 + 4m2

q
log





1 + q√
q2+4m2

1− q√
q2+4m2



− 3



 . (2.31)

This expression shows that the propagator has a pole in q2 = −4m2. Minding that the

Euclidean version of the model is used, one finds that in the Hartree approximation the

collective bosonic excitation possess the mass:

M = 2m. (2.32)

For a long time this result was considered as evidence that a purely fermionic model is

more predictive than a model with an explicit scalar. However it will be seen how a fixed

ratio between the boson and the fermion masses can be found also in the usual Yukawa

theory.

Another important observation concerns the presence of the logarithmic divergence

in Eq. (2.31). Since the dimension is fixed at d = 4 the Π function in Eq. (2.30) has

both quadratic and logarithmic divergences. However while the leading divergence was

canceled by the use of the gap equation it was not possible to remove the sub-leading one.

At the critical point when m = 0 one obtains:

G(q) = 4π2

q2ln
(

Λ
q

) , (2.33)

Thus the theory remains effective. The scaling of the function is very different from

the perturbative case. In [15] Tamvakis and Guralnik, with the help of the bosonization

technique introduced by Bender et al. [14], have shown that the divergences of self-

interacting fermionic theories in four dimension are equal to those of certain Yukawa
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models in the perturbative region. The presence of this logarithm was related to the

triviality of the Yukawa theory. The renormalization of the bosonized version of the theory

can be performed at every order in the perturbative 1/N expansion by adding a finite

number of counter-terms in the Lagrangian. The number of renormalization conditions

are equal for both the bosonized GN model and the Yukawa theory. More on this point

later.

2.1.4 Dyson-Schwinger equations for theories with composite

operators

A complete study of the phenomenon of χSB involves the mean value of the ψ̄ψ

condensate. Also the two point function of this composite operator plays an important

role. Thus the DS equations satisfied by the Green’s functions of composite operators

will be explicitly derived. It will be seen how the bosonization technique is a necessary

tool in order to establish these relations. First of all by applying the same arguments

used in the previous sections and by following the same passages the DS equations for a

theory involving fermionic and bosonic degrees of freedom are given by:

(

δSfb
δψ

[

δ

δη̄
,
δ

δη
,
δ

δJ

]

+ η̄

)

Zfb[η, η̄, J ] = 0, (2.34)

(

δSfb
δψ̄

[

δ

δη̄
,
δ

δη
,
δ

δJ

]

+ η

)

Zfb[η, η̄, J ] = 0, (2.35)

(

δSfb
δφ

[

δ

δη̄
,
δ

δη
,
δ

δJ

]

− J

)

Zfb[η, η̄, J ] = 0. (2.36)

The partition function of the elementary and composite fermionic operators of the GN

model can be rewritten in a bosonized version according to Eq. (1.166). In principle the

results in Eqs. (2.34),(2.35),(2.36) can be applied also to the bosonized version of this

model. Since these DS equations are indeed satisfied by the functional Zb.

By following the same arguments applied in Eq. (2.13 ) one finds:

e−
∫
J2

2

(

δ

δJ

)

e
∫
J2

2 Zf =

(

δ

δJ
+ J

)

Zf

= N ′e−
∫
J2

2

(

δ

δJ

)

Zb. (2.37)

Thus applying the first derivatives of the bosonized action Sb to the generating functional
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Zf one derives:

(

δSb
δψ

[

δ

δη̄
,
δ

δη
,
δ

δJ
+ J

]

+ η̄

)

Zf [η, η̄, K] = 0, (2.38)

(

δSb
δψ̄

[

δ

δη̄
,
δ

δη
,
δ

δJ
+ J

]

+ η

)

Zf [η, η̄, K] = 0, (2.39)

(

δSb
δφ

[

δ

δη̄
,
δ

δη
,
δ

δJ
+ J

]

− J

)

Zf [η, η̄, K] = 0. (2.40)

These are the DS equations for correlators of elementary and composite functions. The

DS equations for the connected Green’s functions can also be calculated. They turn out

to be:

δSb
δψ

[

δ

δη̄
+
δWf

δη̄
,
δ

δη
+
δWf

δη
,
δ

δJ
+
δWf

δJ
+ J

]

+ η̄ = 0, (2.41)

δSb
δψ̄

[

δ

δη̄
+
δWf

δη̄
,
δ

δη
+
δWf

δη
,
δ

δJ
+
δWf

δJ
+ J

]

+ η = 0, (2.42)

δSb
δφ

[

δ

δη̄
+
δWf

δη̄
,
δ

δη
+
δWf

δη
,
δ

δJ
+
δWf

δJ
+ J

]

− J = 0. (2.43)

By using Eq. (2.43) the equations for the one and the two point functions of composite

scalars can be calculated. After some brief manipulations and the appropriate rescalings

the equation becomes:

δWf

δK
− tr

(

δ2Wf

δηδη̄

)

− tr

(

δWf

δη

δWf

δη̄

)

= 0, (2.44)

which can simply be rewritten as:

〈

ψ̄ψ
〉

= ψ̄c · ψc + tr (∆) . (2.45)

The diagrammatic representation of this result is shown in Fig. 2.5. It is an extension

of the Eq. (1.85) to the interacting theory but it also represents the same result found in

Eq. (2.5). In the present case a non-vanishing expectation value is induced by a non-trivial

propagator.

It is possible to look at this result with the help of Eq. (2.42). Performing some straight

calculations one finds:

D−1 δWf

δη̄
+G

δ2Wf

δKδη̄
+K

δWf

δη̄
+G

δWf

δK

δWf

δη̄
= η. (2.46)
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.

Figure 2.5: The DS equation for the expectation value of the ψ̄ψ composite field. The first contribution
in the r.h.s. involves the mean values of the elementary fields. It must vanish in order
to preserve the Lorentz invariance of the theory. The second one is a one-loop tadpole
contribution including the dressed fermion propagator.

Most people prefer working with the directly with the DS equations for the bosonized

theory. By deriving the Eq. (2.35) and setting to zero all the external sources and the mean

values of the elementary fields one obtains the DS equation for the improved propagator.

This is:

∆ = D −Dg 〈σ〉∆−D g
δ3Wb

δηδη̄δJ
. (2.47)

The result is represented in Fig. 2.6. The last term of the Eq. (2.47) vanishes in the

.

Figure 2.6: The DS equation for the dressed fermion propagator. Apart from the tree level term two
other diagrams appear in the r.h.s of the equation. The first one involve the auxiliary scalar
expectation value. It suggest a relationship between the generation of a fermion mass and
fermion condensate.

ladder approximation, the first one is nothing but the same tadpole contribution shown

in Eq. (2.3). Indeed once the classical value of the scalar field, given by Eq. (2.45) through

Eq. (1.155), is replaced in Eq. (2.47), where ψ̄c = ψc = 0, the self-consistent gap equation

for the fermionic propagator is recovered. In the ladder (Hartree) approximation the

fermionic mass generation is immediately related to a non-zero fermionic condensate in

a similar way as that theorized for superconductors [46]. Finally the correlator of two
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auxialary fields is calculated. Deriving Eq. (2.36), with respect to the source J , one

obtains:

δ2Wb

δJδJ
= g tr

(

δ3Wb

δJδηδη̄

)

+ g tr

(

δWf

δη

δ2Wf

δJδη̄

)

+ g tr

(

δ2Wf

δJδη

δWf

δη̄

)

. (2.48)

Thus by setting ψc = ψ̄c = 0 it is immediately found:

G
(0;0;2)
f,C (x, y) = g trG

(1;1;1)
f,C (x; x; y). (2.49)

2.2 Large N expansion

The large N technique has been the most fruitful method applied for investigating the

non-perturbative aspects of the self-interacting fermionic theories. It has shown how the

Dyson-Schwinger equations can also be treated by means of a certain expansion, however,

in principle, there is no natural small parameter which could be used. Moreover, relying

on the validity of expansion it could become a bit cumbersome. For example, the idea

that the impact of the quartic self-interaction G
2
(ψ̄ψ)2 can be replaced with the effective

term G
〈

ψ̄ψ
〉

ψ̄ψ − G
2

〈

ψ̄ψ
〉2

is justified only if the fluctuations of the composite field ψ̄ψ

are much smaller then those of the fermionic field itself [47]. This cannot be expected a

priori from the DS analysis. Instead the large N expansion, formulated in terms of the

bosonization tool, provides a solution to this problem in the spirit of the central limit

theorem. When the flavour number N is large, an U(N) scalar as the composite field ψ̄ψ

will be a sum of many terms and therefore have small fluctuations from its mean value. In

this sense, the bosonization technique is just a way of rewriting the theory in terms of the

collective degrees of freedom, in such a way that the main contribution to the partition

function is given by the mean value
〈

ψ̄ψ
〉

. For this reason the leading order of the mean

field expansion, around this collective excitation, is also called Hartree contribution [31].

In the following section the large N techniques for the study of the Gross-Neveu model are

presented. The results found by means of the DS equations are recovered and extended.

First of all some of the usual bosonization tools will be introduced, then by performing

the 1/N expansion the NJL result, found at d = 4, will be extended to 2 ≤ d ≤ 4. With

the help of the large N techniques a systematic analysis of the divergences of the model

can also be provided; the theory turns out to be renormalizable at 2 ≤ d < 4 [19],[22],[23].
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However, thanks to the systematic nature of the 1/N tool, the corrections to the leading

order can also be computed. How this can be done will also be illustrated.

2.2.1 Other bosonization tecniques

The simplest bosonization technique is the Hubbard-Stratonovich transformation. It

has also been introduced in the previous chapter. By using the result shown in Eq. (1.151)

and following the relation between the mean value of the auxiliary scalar and that of the

composite operator ψ̄ψ, found in Eq. (1.155), when the source term has been switched off,

one can replace:

G

2
(ψ̄ψ)2 → G

〈

ψ̄ψ
〉

ψ̄ψ − G

2

〈

ψ̄ψ
〉2
. (2.50)

This position is justified when the fluctuations of the field σ can be discarded.

However the Hubbard-Stratonovich trick requires a quadratic interaction in powers

of ψ̄ψ. In order to evaluate the impact of the higher powers of the composite field in

the potential another method is required. Thus the bosonization technique for a generic

potential V (ψ̄ψ) which is a function of the composite fermionic operator is presented [47].

In this case the functional in Eq. (1.16) is given by:

Zf [η, η̄, K] =

∫

DψDψ̄ e[
∫
ψ̄ /∂ψ−

∫
V (ψ̄ψ)+

∫
η̄ψ−

∫
ψ̄η+

∫
Kψ̄ψ]. (2.51)

Inserting a delta function, an auxiliary field X can be introduced so that the generating

functional Zf can be rewritten as:

Zf [η, η̄, K] =

∫

DψDψ̄
∫

DX δ(X − ψ̄ψ) e[
∫
ψ̄ /∂ψ−

∫
V (X)+

∫
η̄ψ−

∫
ψ̄η+

∫
KX]. (2.52)

For a generic real parameter x the delta function is represented in terms of a Fourier

transform as:

δ(x) =

∫ i∞

−i∞

dk

2πi
e−kx, (2.53)

where the variable k belongs to the imaginary axis. By extending this result to the

path-integral formalism the partition function turns out to be:

Zf [η, η̄, J ] = N
∫

DψDψ̄
∫

DΦ
∫

DX e[
∫
ψ̄(/∂+Φ)ψ−

∫
ΦX−

∫
V (X)+

∫
η̄ψ−

∫
ψ̄η+

∫
JX]. (2.54)
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With these positions the fermionic degrees of freedom appear just as quadratic terms.

Thus they can be completely integrated out, then generating an effective action made

only by the collective auxiliary fields X and Φ. Differently from the Hubbard Stratonovich

approach, in this case two auxiliary fields are needed. However the correlators of the field

X can be immediately related to those of the composite field ψ̄ψ.

2.2.2 The saddle point expansion

Since the GN model is investigated the Hubbard-Stratonovich transformation, giving

the expression in Eq. (1.151), is resumed. As was anticipated, a systematic large N

expansion relies on the assumption that, when the number of flavours is very large, the

invariants of the U(N) group self average, as for example the composite operator ψ̄ψ.

Thus for example using Eq. (2.50) one finds:

〈

(ψ̄ψ)2
〉

−
〈

ψ̄ψ
〉2

= 0, (2.55)

showing that fluctuations around the mean value are negligible. Now, the way to imple-

ment this assumption is analyzed. First of all the generating functional of elementary

fields and the auxiliary scalar shown in Eq. (1.166) is considered. Then the fermionic

source multiplets η and η̄ are chosen having just one non-vanishing component. Since

the theory is symmetric under the U(N) group, all the results, written in terms of the

group invariants, will not depend on this particular position. Integrating out the (N − 1)

fermionic degrees of freedom which are not coupled with the sources one obtains:

Zb [η, η̄,J ] =

∫

Dψ
∫

Dψ̄
∫

Dσ e
∫ ∫

ψ̄ D−1
σ ψ−Seff.[σ]+

∫
η̄ψ−

∫
ψ̄η+

∫
J σ

=

∫

Dψ
∫

Dψ̄
∫

Dσ e−Seff.[ψ,ψ̄,σ]+
∫
η̄ψ−

∫
ψ̄η+

∫
J σ, (2.56)

where D−1
σ = /∂ + σ and:

Seff.[σ] =

∫

σ2

2g2
− Trln

(

∆∆−1
σ

)

, (2.57)

was defined. A functional f of the form:

f(j) =

∫ ∞

−∞

dx e−
s(x)
ǫ

+jx, (2.58)
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can be calculated by expanding the argument of the exponent around its maximum x0 as:

−s(x)
ǫ

+ jx = −s(x0)
ǫ

+ j x0 −
1

2ǫ

δ2s

δx2

∣

∣

∣

∣

x=x0

(x− x0)
2 + . . .

= −s(x0)
ǫ

+ j x0 −
1

2

δ2s

δx2

∣

∣

∣

∣

x=x0

y2 +O(
√
ǫ), (2.59)

where
√
ǫy = x − x0 and the small parameter ǫ has been explicitly shown. By retaining

terms up to the first order in ǫ one finds: Thus obtaining:

f(j) = ǫ1/2e−
s(x0)
ǫ

+j x0

∫ ∞

−∞

dy e−
1
2
f ′′0 y

2− ǫ1/2

3!
f
(3)
0 y3− ǫ

4!
f(4)y4+O(ǫ3/2)

= ǫ1/2e−
s(x0)
ǫ

+j x0

∫ ∞

−∞

dy e−
1
2
s′′0y

2

[

1− ǫ

24
s(4)y4 +

ǫ

72

(

s
(3)
0

)2

y6 +O(ǫ2)

]

=
√
2πǫe−

s(x0)
ǫ

+j x0−
1
2
ln[(s′′0 )

−1]

[

1− ǫ

8
(s′′0)

−3s
(4)
0 +

5ǫ

24
(s′′0)

−3(s
(3)
0 )2

]

+ . . . ,(2.60)

where the usual Gaussian integrations were performed. From this calculation it can be

immediately verified that at the leading order, when:

f(j) ≃ e−
s(x0)
ǫ

+j x0 , (2.61)

one gets:

〈x〉j =
1

f(j)

δf

δj
= x0. (2.62)

Now by applying the same arguments to the path-integral in Eq. (2.56) one can verify

that the action in Eq. (2.57) is of order N thus the position ǫ = 1
N

can be done. The

saddle point condition reads:

−
∫ ∫

ψ̄0
δD−1

σ

δσ

∣

∣

∣

∣

σ0

ψ0 +
δSeff.
δσ

∣

∣

∣

∣

σ0

= J (2.63)

∫

Dσ0ψ0 = η (2.64)
∫

ψ̄0Dσ0 = −η̄. (2.65)

Expanding around this configuration and discarding terms up to the second order in the

fluctuations, the partition function is approximated by:

Zb = e−Seff.[ψ0,ψ̄0,σ0]−
1
2
STrln(S(2)|

0
)+

∫
η̄ψ0−

∫
ψ̄0η+

∫
J σ0 , (2.66)
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where the matrix S(2) is the super-matrix:

S(2) =





Sσσ Sψ̄σ Sψσ
Sσψ̄ Sψ̄ψ̄ Sψψ̄
Sσψ Sψ̄ψ Sψψ



 , (2.67)

and where STr designs the super-trace. With some involved calculations reported in the

App.D.1 the form of the effective action at the next to leading order is calculated. It

turns out to be:

Γ[ψ0, ψ̄0, σ0] = Seff.[ψ0, ψ̄0, σ0] +
1

2
Trln(

δ2Seff.
δσδσ

∣

∣

∣

∣

0

)− Trln
[

D−1
σ0

]

+
1

2
Trln

(

1− 2

(

δ2Seff.
δσδσ

)−1
∣

∣

∣

∣

∣

0

ψ̄0Dσ0ψ0

)

. (2.68)

The form of the 1PI Green’s function for the fermionic fields and the auxiliary scalar

can be obtained by expanding this expression. It should be emphasized that the trace over

the logarithm of the fermionic propagator appearing in Eq. (2.68) runs only over the Dirac

indices, and not over the flavour ones, since the N − 1 spinors were previously integrated

out. Often people prefer to include this last term in the definition of the action Seff.

for the reasons which will be clarified soon. The mean field expansion has an important

diagrammatic interpretation that can simplify the calculations. Indeed a saddle expansion

is always a loop expansion. It is well known [41] of the number of loops L is equal to:

L = P − V + 1, (2.69)

where P is the number of propagators and V is the number of vertices. Looking at the

action of the example in Eq. (2.60) one finds that the leading order of the expansion has

no internal line nor vertices thus corresponding to tree level contributions. By this way:

O(ǫ) = L− 1. (2.70)

However this loop expansion is very different from the ordinary one. Indeed the propaga-

tors and the vertices implied are derived by the action Seff., not by the original action of

the model Sf . As an example the bosonic “tree” propagator S−1
σσ is the so called “improved

propagator” obtained from the infinite resummation of Hartree type diagrams given in

Eq. (2.9)). This propagator is represented by the diagram shown in Fig. 2.7. The induced

or improved bosonic vertices can be read off by expanding the action Seff.. For example
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.

Figure 2.7: The leading order contribution in the 1/N expansion, defining an improved bosonic propaga-
tor for the auxiliary field. A comparison with the digrams in Fig. 2.2 (a) shows that, in this
approximation, the four point function can be rewritten as the sum of two tree level channels
involving the improved propagator.

. .

Figure 2.8: The three point and the four point scalar vertices, arising in the improved action Seff., are
shown. Their presence affects only the higher orders contributions of the 1/N expansion.

the diagrammatic representation of the cubic and quartic scalar interactions, giving con-

tributions at two loop order, are shown respectively in Figs. 2.8 (a) and (b). The fermionic

propagator is massive and is given by:

∆(p) = (i/p+ σ0)
−1. (2.71)

It is represented with the ordinary solid line. The computation of the improved vertex

gives:

δ3Seff
δψa(x)δψ̄b(y)δσ(z)

= −δabδ(x, y)δ(x, z). (2.72)

It is the only vertex linking boson and fermion lines and it will be represented as a usual

Yukawian interaction. One more observation. The one loop contribution in Eq. (2.68)

involves the one loop diagrams containing fermionic bubble and tadpoles, represented by

the trace over the logarithm of the fermion improved propagator, as shown in Fig. 1.10.

If this contribution is absorbed in the redefinition of the action Seff these types of graphs

have to be discarded from the corrections to the leading order.

Finally it is important to stress how the systematic expansion also provides a criterion

for the renormalizability of the theory. By studying the form of the 1PI primitive diver-

gences one can establish if all divergences can be systematically removed. An example of

this procedure is described in the following section.
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2.2.3 Divergences and renormalizability of GN model at d = 3.

A proof of the renormalizability of the GN model at d = 3 was given by [16]. From

the saddle point condition, stated in Eqs. (2.63),(2.64),(2.65), by setting ψ0 = ψ̄0 = 0, the

gap equation for the fermion mass is obtained, representing the analogous at d = 3 of the

result in Eq. (2.24). It turns out to be:

σ0
G

=

∫

d3p

(2π)3
tr

(

1

i/p+ σ0

)

. (2.73)

As found in Sec. 2.1.4, a non trivial expectation value of the auxiliary field induces a non

trivial fermion mass, so that one can simply replace m = σ0.

The comparison with the Eq. (2.24) also shows how the bare mass mB does not appear

in Eq. (2.73). Indeed since mB must be identified with the source term, it has been

removed. More precisely one should set mB = K
g
. The critical value for the coupling G is

obtained by setting σ0 = 0 thus finding:

1

Gc
= Ntr I

∫

d3p

(2π)3
1

p2
=
Ntr IΛ

2π2
. (2.74)

The auxiliary improved propagator G(q)−1 can be calculated by deriving the effective

action in Eq. (2.68). Since only the leading order of the expansion is considered it can be

simply found by twice deriving the Seff.[σ] and Fourier transforming the result. Thus one

obtains:

G−1(q) = 1
G
+
∫

d3p

(2π)3
tr
(

1
i/p+σ0

1
i(/p+/q)+σ0

)

. (2.75)

The integral appearing in the gap equation (Eq. (2.73)) is linearly diverging, as the integral

in Eq. (2.75). Both these integrals are regularized by means of a sharp cut-off. However

by replacing in Eq. (2.75) the value of the coupling G found in Eq. (2.73) the divergences

are removed, leaving a finite result when Λ → ∞. When the scaling limit is taken the

coupling G approaches its critical values. So one finds:

G−1(q) =
(

q2 + 4σ2
0

)

arctan

(

q

2σ0

)

Ntr I

8πq
. (2.76)

As in four dimensions the propagator has a pole in q2 = −4σ2.

One can also calculate the ratio:

G−1(q2)
dG−1(q2)
dq2

∣

∣

∣

∣

∣

q2=0

=
4σ2

0
Ntr I
16πσ0

Ntr I
24πσ0

= 6σ2
0, (2.77)
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that will be useful for further applications.

It has shown how, by tuning the coupling G at its critical value (and by setting the

external sources at zero), all the divergences have been removed in the Hartree approx-

imation. A systematic proof of the renormalizability of the theory at every order of the

1/N expansion was given by Rosenstain in [16] Here some of the arguments are reported.

The scaling dimension of the fermionic fields does not change from its canonical value,

as can be found from Eq. ( 2.71). Thus [ψ] = [ψ̄] = 1. On the other hand in the large

momentum limit (at the critical region) the two point correlator of the auxiliary field

behaves as:

G(q) ∼ 1

q
, (2.78)

thus the scaling dimension of the auxiliary field is [σ] = 1. The result is very different

from the usual trivial dimension found in Eq. (1.171) but also from the behaviour of a free

propagating scalar and it has been interpreted as the appearance of a bound state in the

model. The scaling dimension of the improved vertex defined in Eq. (2.72) can easily be

calculated. Since at the leading order the effective action is scale invariant, the dimension

of the vertex is achieved by requiring:

[Seff ] = 0 ⇒ −d+ [σ] + [g] + 2[ψ] = 0, (2.79)

which gives [g] = 0. The corrections to the leading order scaling have to be calculated by

applying the procedure explained in Sec. 2.2.2. The divergences arising at every order in

the loop expansion are taken into account by defining the appropriate superficial degree

of divergence:

D = d− Eψ[ψ]− Eφ[φ]− [g] = 3− Eψ − Eφ, (2.80)

obtained from the result in Eq. (1.136) by replacing the canonical dimension of the fields

with the scaling dimension found in the Hartree approximation. With the help of the

diagrammatic rules established in Sec. 2.2.2 and by using the Eq. (2.80), one finds that

the primitive divergent [2] graphs are those shown in Fig 2.9. The symmetric case in

which σ0 = 0 can be considered and a procedure similar to that described in Sec. 1.6.6

is followed. The diagrams (d) and the the diagram (e) in Fig 2.9 identically vanish since

these diagrams respectively involve a trace over one and over three Dirac matrices. Also
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.

Figure 2.9: Primitive divergences arising in the 1/N expansion of the GN model at d = 3. In the
fourth-dimension also the fourth-point scalar vertex has to be considered.

the momentum independent part of the diagram (a) is zero since the symmetric phase is

considered. Finally the diagram (a) gives a correction to the scaling of the ψ̄ /∂ψ operator,

the diagram (b) gives a correction to the scaling of ψ̄ψσ operator while the graph (c)

produces a correction only to the scalar mass term coupled with the operator σ2. It is

important to stress that, differently from the d = 4 case presented in Sec. 2.1.3, there

are no momentum dependent divergences in the scalar propagator. In order to heal the

divergences only counter-terms generated by operators given in the original action Sf are

needed.

2.2.4 Large N behaviour of the GN model in generic dimensions,

some corrections to the leading order.

The result in Eq. (2.73) can be generalized, for generic d dimension, with 2 < d < 4.

The gap equation at the leading order turns out to be:

σ0
G

=

∫

ddp

(2π)d
1

i/p + σ0
, (2.81)

which leads to the result:

1

G
=

2Ntr I

(4π)d/2(d− 2)

[

Λd−2

Γ(d/2)
− σd−2

0 Γ

(

2− d

2

)]

. (2.82)

And immediately one finds the critical value:

1

Gc

=
2Ntr IΛd−2

(4π)d/2(d− 2)Γ(d/2)
. (2.83)

The bosonic improved propagator is given by the expression:

G−1(q) =
1

G
+Π(q)

=
1

G
+

∫

ddp

(2π)d
tr

(

1

i/p+ σ0

1

i(/p+ /q) + σ0

)

. (2.84)
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A simple power counting analysis gives that near Gc the correlator has the following

behaviour:

G(q) ∼ 1

qd−2
=

1

q2−ησ
. (2.85)

The direct computation is obtained by replacing the gap equation (see Eq. (2.81)) and

performing some algebraic manipulation (see App.C.2) thus finding:

G−1(q) =
N ′

2
(q2 + 4σ2

0)

∫

ddp

(2π)d
1

(p2 + σ2
0)[(p+ q)2 + σ2

0]

=
N ′Γ(2− d/2)

2(4π)d/2
(q2 + 4σ2

0)

σ4−d
0

2F1

(

1, 2− d

2
;
3

2
;− q2

4σ2
0

)

. (2.86)

When d = 3 the result in Eq. (2.76) is recovered. At the leading order the anomalous

dimension of the scalar field is given by ησ = 4 − d. When d reaches the four dimension

the simple power law scaling is lost and weak logarithmic corrections to the free canonical

scaling appear as shown in Eq. (2.33).

Some examples of corrections to the leading order are given. In order to calculate the

correction to the two point fermionic function the contribution of the diagram (a) in Fig.

2.9 must be added to the tree level term. Thus one finds:

Γψψ̄(p) = i/p+ σ0 −G

∫

ddq

(2π)d
1

i(/p + /q) + σ0
G(q). (2.87)

Also the gap equation at the next to leading order can be calculated by adding to Eq. (2.81)

the contribution of the (e) diagram shown in Fig. 2.9. The result is:

σ0
G

=

∫

p

tr
1

i/p + σ0
+

∫

p

∫

q

tr

(

1

(i/p+ σ0)(i(/p+ /q) + σ0)

)

G(q) (2.88)

where
∫

p
=
∫

ddp
(2π)d

.

The scaling of the composite operator

Finally the behaviour of the two point correlator of the composite field is calculated

by means of the result in Eq. (1.158). By Fourier transforming this equation one finds:

Gψ̄ψ(p, q) = −(2π)dδd(p+ q)

G
+

1

G2
〈σ(p)σ(q)〉C (2.89)

Thus by defining: Gψ̄ψ(p, q) = (2π)dδd(p+ q)Gψ̄ψ(q) it is obtained:

Gψ̄ψ(q) = − 1

G
+

1

G2
G(q). (2.90)

74



2.3 The Scaling region, critical phenomena picture of the χSB

Using the result found in Eq. (2.84) this Green’s function turns out to be:

Gψ̄ψ(q) = − 1

G
Π(q)

1

1/G+Π(q)

= − 1

G
Π(q)G(q). (2.91)

In the scaling region the function Π(q) can be replaced with its divergent part for 2 < d < 4

or with the leading divergence at d = 4 [18] thus getting:

Gψ̄ψ(q) ≃
1

G2
c

GΛ=∞ (q) . (2.92)

A part from the 1/G2 factor, near the critical region the composite field two point corre-

lator has the same momentum behaviour of the auxiliary scalar one; however the different

divergences arising in these improved propagators are reflected in the different form of

the Zψ̄ψ function and of the Zσ one.

2.3 The Scaling region, critical phenomena picture

of the χSB

In the following section a detailed comparison between the theory of the critical phe-

nomena and the chiral symmetry breaking mechanism in the Yukawa and Gross Neveu

model is explored. At this scope the corresponding quantities to the order parameter, the

critical temperature and so on are introduced for these QFT . Moreover the relation be-

tween the non-perturbative renormalizability of these models and the anomalous scaling

behaviour of the correlators is analyzed. Thus the critical exponents, acknowledging the

features of a theory around the critical region, are defined.

Although the GN model and the Yukawa one should be in principle two different

theories, they have shown the same renormalizability properties (in the 1/N framework)

after the bosonization of the first model. It could be objected that the Yukawa theory has

two more bare parameters (the quartic scalar coupling and the scalar derivative term),

however when these parameters are necessary in order to renormalize the theory at d = 4

they must be introduced for the bosonized GN model too. Conversely it will be found that

these parameters play no role near the scaling region for 2 < d < 4 thus showing that the

two models have the same predictive power. Using the critical phenomena terminology

one can say that they belong to the same universality class in the framework of the large
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N expansion. This clearly holds for the d = 4 case, as said. Similar situations arise in

the description of a ferromagnetic phase transition. Two of the models describing the

emergence of a spontaneous magnetization are the Ising model and the Landau-Wilson

one. The first theory simply modeling the interactions between the spins of the material

while the second one involves the interactions of scalar quantity representing a local

magnetization intensity. One should expect that the first description is more accurate

than the second one, since it investigates the structure of the interactions in the material.

However near the second order phase transition these details are lost. As explained in

Sec. 1.4 the symmetries and the dimension of the order parameter are sufficient to predict

the behaviour of the correlators.

2.3.1 Critical exponents of the χSB

The description of the χSB transition needs the definition of an appropriate order

parameter. This quantity should be the mean value of any field whose non-vanishing

value is a signal of the occurence of the transition. As it is clear from the previous

section the first candidate for the bosonized version of the GN model is the expectation

value of the auxiliary field σ. A non-vanishing 〈σ〉 induces a fermion mass violating

the symmetry. The result in Eq. (1.155) suggests that in terms of a purely fermionic

language the order parameter is the expectation value of the composite operator ψ̄ψ.

The NJL result described in Sec.2.1.3 identifies the critical value of the coupling G as it

discriminates between the symmetric and the broken phase. Since the χSB occurs when

G > Gc the inverse of the Fermi coupling, 1/G should be interpreted as the temperature

of the model. Thus the reduced temperature τ is given by:

τ =
1

G
− 1

Gc
. (2.93)

Once the order parameter and the temperature have been identified one more quantity is

needed in order to complete the parallel between the χSB and a continuous transition. In

analogy with the ferromagnetic models one has to search for the external (magnetic) field.

This is nothing but the external source K introduced in Eq. (1.16). As previously stated

it can be interpreted as a bare mass term that linearly couples with the operator ψ̄ψ,

explicitly breaking the symmetry of interest. Setting the bare mass equal to zero (chiral

limit) as was done in Eq. (2.81) it is possible to determining the critical temperature Gc

76



2.3 The Scaling region, critical phenomena picture of the χSB

and the onset of the transition. On the other hand the presence of a small non-vanishing

bare mass changes the continuous transition into a cross-over phenomenon. As explained

in Sec. 1.3.2 a complete parallel with the critical phenomena picture needs the study of

the correlators calculated with the effect of small sources.

The gap equation, approximated by the Eq. (2.81) in the large N limit, relates the

order parameter of the transition with the temperature and the external field. It is

nothing but the equation of state in the statistical language. At τ = 0 and J = mB = 0

the phase transition occurs, thus the coordinates G = Gc and mB = 0 in the parameter

space identify the critical point of the transition. The coupling G and the mass mB are

the only two relevant parameters of the transition, any other coupling in the hyper-surface

G = Gc and mB = 0 belongs to the critical surface of the system.

The behaviour under scale transformations of the correlation functions (euclidean

Green’s functions) near the phase transition depends on the scaling of the relevant param-

eters: near the critical point, the Green’s functions follow a power law behaviour described

by the so called critical exponents. Here the usual definition of the critical exponents for

the GN model [19],[22],[23] is presented. The exponent β, which gives the scaling of the

order parameter around the critical value of the Fermi constant, is defined through the

equation:

〈

ψ̄ψ
〉

∼ τβ , (2.94)

while δ is defined by considering the scaling of
〈

ψ̄ψ
〉

in the presence of a small bare mass

when G = Gc:

〈

ψ̄ψ
〉∣

∣

τ=0
∼ m

1
δ
B
. (2.95)

Another fundamental quantity in the description of our critical phenomena is the two

point connected function of the operator ψ̄ψ. It is related with the improved propagator

of the auxiliary field, 〈σ(x)σ(0)〉, by means of the Eq. (1.158). Near the critical region they

follow the same momentum behaviour as explicitly shown in Eq. (2.92). It is generally

assumed that:

Gψ̄ψ(q) ≃
1

G2
〈σ(q)σ(−q)〉 . (2.96)
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The susceptibility χ is related to the two point correlation function from the fluctuation-

dissipation theorem according to the equation:

χ = G

∫

ddx
〈

ψ̄ψ (x) ψ̄ψ (0)
〉

C
, (2.97)

since 1/G is the temperature of the model. Performing a Fourier transformation near the

critical region one finds:

χ−1 = GG (0)−1 , (2.98)

The exponent γ gives the scaling of χ near G = Gc:

χ ∼ |τ |−γ . (2.99)

The exponent η, which governs the scaling of G (q) for large momenta at G = Gc , is

defined by:

G (q)|τ=0 ∼ 1

q2−ησ
. (2.100)

It is nothing but the anomalous dimension of the function also found in Eq. (1.122). The

square correlation length ξ2σ for the auxiliary correlator may be defined [48] by:

2dξ2σ =

∫

ddx |x|2 〈σ(x)σ(0)〉
∫

ddx 〈σ(x)σ(0)〉 , (2.101)

which is based on the result found in Eq. (2.77). With this position the correlation length

is nothing but the inverse of the induced fermion mass. Alternatively it can be defined as

the inverse of the composite boson mass.

By using Eq. (2.101) it turns out to be:

ξ =
√
G
dG−1

dq2

∣

∣

∣

∣

1/2

0

χ−1/2 . (2.102)

Finally, the exponent ν is defined from:

ξ ∼ τ−ν . (2.103)
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Hyperscaling

As has often been said, the critical behaviour is obtained by tuning the bare parameters

in such a way that the dimensionless correlation length of the system ξ
a
diverges. Indeed by

supposing that under a scale transformation the correlation length transforms according

to its canonical dimension one finds:

ξ′ =
ξ

b
, (2.104)

so that at the critical point the condition ξ′ = ξ is fulfilled by a divergent correlation

length.1 This property corresponds to the request that masses of the fermions and of the

the scalar in the model, both proportional to the order parameter σ, are decoupled from

the ultraviolet cut-off scale Λ, so that σ/Λ << 1. However, there is another property

characterizing the critical domain. Since the correlation length diverges at the critical

point, near the phase transition it has become sufficiently large with respect to the other

scales involved. Thus all the correlators should be expressed in terms of simple scale ratios,

thus becoming homogeneous functions of their arguments. This leads to the conclusion

that at the critical point the system is scale invariant.

The way in which the correlators scale under dilatations near the critical point is

reflected on the relations between the different critical exponents. They are called ”hy-

perscaling relations”. Using the hyperscaling hypothesis, that is supposing that the cor-

relators are homogeneous functions one can derive [40]:

β

ν
= −1

2
(2− d− ησ), (2.105)

γ

ν
= 2− ησ, (2.106)

βδ

ν
=

1

2
(2 + d− ησ), . (2.107)

Only two different critical exponents are arbitrary numbers, reflecting the fact that two

relevant parameters characterize the critical domain, and will be related to the behaviour

of the temperature of the external field in the following chapter.

1Conversely an arbitrary large dilatation drives the system towards an uncorrelated (ξ = 0) configu-
ration.
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2.3.2 Large N computation of the critical exponents in the GN
model

Once the critical exponents are defined it is possible to calculate them for a generic d

dimension with 2 < d < 4 by using the results found in Sec. 2.2.4. The gap equation in

Eq. (2.81), written in the presence of an external source J is:

σ0
G

=

∫

tr
1

i/p + σ0
+ J , (2.108)

calculating the integral and replacing the critical value given in Eq. (2.83) one finds:

1

G
− 1

Gc

= −
[

2Ntr I

(4π)d/2(d− 2)
Γ

(

2− d

2

)]

σd−2
0 +

J
σ0
. (2.109)

Thus setting J = 0 the following relation is obtained:

τ ∼ σd−2
0 ⇒ β =

1

d− 2
. (2.110)

on the other hand taking τ = 0 one gets:

J ∼ σd−1
0 ⇒ δ = d− 1. (2.111)

From Eq. (2.86) when q2 = 0 one finds, using the relation in Eq. (2.98):

χ−1 = G
N ′

2d−1πd/2
Γ(2− d/2)σd−2

0 (2.112)

⇒ χ−1 ∼ σd−2
0 . (2.113)

Since from Eq. (2.110) σ ∼ τ
1
d−2 one obtains γ = 1. From Eq. (2.77) extended for a generic

d dimension it is found:

ξ−1 ≃ σ ⇒ ν = β =
1

(d− 2)
. (2.114)

Finally the ησ exponent has been calculated in Eq. (2.85). It is ησ = 4− d.

The first correction in the 1/N expansion to the leading order of exponents just cal-

culated. was computed by Hands et al. [19],[22],[23]. Here the result is briefly reported.

By defining:

Ad =
4

Γ
(

2− d
2

)

Γ
(

d
2

)

B
(

d
2
, d
2
− 1
) , (2.115)
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these exponents turn out to be:

β =
1

d− 2
, (2.116)

δ = (d− 1)

[

1 +
Ad
N ′

]

, (2.117)

γ = 1 +
(d− 1)

(d− 2)

Ad
N ′
, (2.118)

ν =
1

(d− 2)

[

1 +
(d− 1)

d

Ad
N ′

]

, (2.119)

η = 4− d− 2(d− 1)

d

Ad
N ′
. (2.120)

(2.121)

One can easily verify that the hyperscaling relations in Eq. (2.105) are fulfilled. The

results could suggest that in the fourth dimension the GN model becomes trivial at any

order in the 1/N expansion. Actually in order to trust the result at this specific order in

the expansion the higher corrections should be negligible. If the triviality remains also

for small values of N is in our opinion an open question.

2.3.3 Equivalence with Yukawa theory

The large N expansion techniques is now applied in order to show that near the critical

region the GN model and the Yukawa theory give the same predictions [17]: The action

of the Yukawa theory was given in Eq. (1.2). Integrating out the N − 1 fermionic fields

with the procedure described in Sec.2.2.2 the following action is obtained:

Seff.[ψ, ψ̄, φ] =

∫
[

−ψ̄(/∂ + φ)ψ +
1

2g2
(∂µφ)

2 +
M2

2g2
φ2 +

λ

4!g4
φ4

]

− Trln
(

∆∆−1
φ

)

, (2.122)

where the shift φ→ gφ was performed and ∆−1
φ = /∂+φ was defined. In order to compute

the large N expansion both g2 and λ are assumed to be of O(N). Thus the saddle point

condition leads to a modified gap equation:

M2

g2
φ0 +

λ

6g4
φ3
0 −

N ′

(2π)d
φ0

∫

ddq

q2 + φ2
0

= 0, (2.123)
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and N ′ = (N − 1)tr I ≃ Ntr I. The critical coupling corresponding to the critical temper-

ature of the system can be obtained by setting φ0 = 0, thus one finds:

M2
c

g2
=

N ′

(2π)d

∫

ddq

q2
. (2.124)

The boson mass term allows the distinction of the symmetric phase, characterized by a

zero expectation value φ0, from the broken one, with a non-vanishing order parameter.

The reduced temperature is defined as:

τ =
M2

g2
− M2

c

g2
. (2.125)

Thus using Eqs. (2.123),(2.124), one derives:

τ +
λ

6g4
φ2
0 +

N ′

(2π)d
φ2
0

∫

ddq

q2(q2 + φ2
0)

= 0. (2.126)

For 2 < d < 4 the explicit calculation gives:

τ +
λ

6g4
φ2
0 −

[

2N ′

(4π)d/2(d− 2)
Γ

(

2− d

2

)]

φd−2
0 = 0. (2.127)

This shows that for small values of the order parameter, i.e. in the critical region, the

last term is more singular than the second, which provides a correction to the critical

behaviour. Discarding this term the same expression found in Eq, (2.109) is recovered

once the auxiliary field of the bosonized GN model with the scalar field of the Yukawa

theory have been identified and the inverse coupling 1
G

is associated with the ratio M2

g2
.

The second derivative of the action in Eq. (2.122) gives the inverse bosonic improved

propagator. Using the Eq. (2.123) it is obtained:

∆φ(q
2) =

q2

g2
+

λ

3g4
φ2
0 +

N ′

2
(q2 + 4φ2

0)

∫

ddp

(2π)d
1

(p2 + φ2
0)[(p+ q)2 + φ2

0]
(2.128)

In the scaling region, when σ, p << Λ, the integral gives again the dominant contribution.

Thus the bosonic propagator has the same form as the correlator of the auxiliary field

in the GN model found in Eq. (2.86). Since the fermion mass is given by m = φ0

thus near the critical point M2
σ = 4φ2

0 = 2m2. This condition fixes the ratio λc
3g4c

= 4;

when corrections to scaling are included the pole depends on the value of λ. It is found

that at the leading order in the 1/N expansion all the exponents of the Yukawa theory

coincide with those of the GN model. Since these two theories have the same critical
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behaviour one says that they belong to the same universality class. The coupling λ and

g as well as the kinetic term of the scalar play no role near the scaling region for d < 4,

thus they are considered irrelevant couplings. Here there is a non-perturbative example

of what was expressed in Sec. 1.2. A renormalizable theory is characterized by the scale

invariance of its correlation functions. The scale invariance can be achieved near a critical

point by searching for the onset of a second order phase transition. The parameters in the

Lagrangian of a “renormalizable” theory are just the relevant parameters of the transition

since if the system is very close to the critical point any other irrelevant couplings should

be discarded. Conversely if the irrelevant couplings are retained the corrections to the

critical behaviour have been taken into account. Thus the cut-off effects arise and the

theory becomes non-renormalizable.

By discarding the irrelevant couplings of the Yukawa theory near the critical region

its actions become equal to that of the bosonized version of the GN model, with a Fermi

coupling given by G = g2/M2. Both the GN and the Yukawa theory possess the same

numbers of relevant parameters. On the other hand the GN model seems to have fewer

bare parameters than those of the Yukawa theory. However when d = 4 the subleading

divergences affect the equations giving important corrections to the hyperscaling laws.

These corrections are reflected in the divergences appearing in the term trln(∂+σ) of the

Seff. in Eq. (2.57).

In order to avoid these divergences appearing in the GN at d = 4 the tuning of these

operators must be considered too. Thus the same number of parameters found in the

Yukawian Lagrangian are needed [17].
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CHAPTER 3

NON-PERTURBATIVE ANALYTICAL TECHNIQUES II:

RENORMALIZATION GROUP

In the previous chapter the properties of some fermion models together with their

possibility of providing a χSB mechanism were analyzed. The common aspects between

the scaling properties of a QFT and the behaviour of a statistical system, when a SSB

mechanism occurs in the vicinity of a critical point, were also stressed. The non pertur-

bative character of the chiral transition was investigated with the help of the method of

the large N expansion.

One of the main results of this analysis is that, in the framework of the 1/N expansion,

the GN model and the Yukawa theory belong to the same universality class. From a

theoretical point of view this means that a theory of self-interacting fermions produces

the same measurable effects of a theory in which an elementary scalar is the mediator of

the forces.

The easiest check for this assumption is to compare the critical exponents of both of

these models. This comparison has been done in the previous chapter up to the O(1/N)

and it was shown how the scaling of their correlators coincides near the critical region.

On the other hand the number N of spinor components characterizing most of the uni-

tary symmetry groups of the Standard Model physics is relatively small. Thus another

technical tool should be found in order to check the equivalence of the description of the

χSB phenomenon in terms of elementary or composite scalars.

At this scope the renormalization group represents one of the main non-perturbative
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tools which are able to catch the main aspects of the critical behaviour of a system. The

application of this technique to the fermion theories also represents our main original

contribution to the study of fermion chiral theories.

However, there is no natural expansion parameter which can be used in order to

systematically implement this procedure. The starting point is often suggested by the

other analytical methods.

The following chapter is organized as follows. First of all, the main ideas concerning

the Wilsonian renormalization group transformation are applied to the description of the

χSB mechanism. The critical point of the transition will represent a fixed point of the

RG transformations. It has been seen that the d = 4 case represents the upper critical

dimension for the chiral phase transition since the critical exponents of both the bosonized

version of the GN model and of the Yukawa theory acquire their mean field values. When

this occurs the scaling dimension of the fields approaches its canonical value, although

weak logarithmic corrections are also present. The critical region is described by the bare

parameters near the origin and the theory is called trivial. By following the arguments in ..

the calculus of the RG equations of the Yukawa model is performed by means of the epsilon

expansion technique. With the help of the Callan and Symanzik ’s equations the critical

exponents and the scaling of the two point correlator are evaluated. Finally our main

result will be introduced. The RG equations for chiral theories of self-interacting fermions

without the help of any bosonization technique are calculated, extending a procedure

also followed by Clark et. al. [25]. The computation is limited to the so called local

potential approximation (LPA) which neglects the contributions of fluctuations at non-

zero momentum. However as will be shown also in this approximation it is possible

to reproduce the critical exponents of the GN model in the Hartree approximation for

2 < d < 4. They are obtained following the running of an explicit fermion mass term and

calculating the appropriate chiral limit. Using our technique all the physical quantities

at zero momentum as the order parameter of the transition or the susceptivity can be

calculated. With the appropriate approximation the NJL gap equation is recovered,

then other approximations are suggested which best fit the RG improvement. Finally

the critical exponents at any value of N are calculated by means of our technique. At

d = 3 the results are compared with those found by means of lattice numerical simulations

and of other analytical methods. The agreement with the numerical simulations is very
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satisfactory.

3.1 Wilsonian effective action and blocking

The first step of the Wilsonian procedure is based on considering the impact of the

higher momentum degrees of freedom [9]. Before applying this Wilsonian idea to the

study of the fermion models the Wilsonian effective action for a generic scalar field theory

is presented [49]. The partition function of a scalar theory is given by:

Z[J ] =

∫

Dφ e−S[φ]+
∫
Jφ. (3.1)

There are different ways of selecting the degrees of freedom of a theory. The simplest

and direct way is obtained by separating the Fourier modes of the fields in fast and slow

components with respect to an arbitrary scale 0 ≤ k ≤ Λ. The field φ(x) splits as:

φ = φ− + φ+. (3.2)

The field φ− is made of those Fourier modes with p ≤ k while φ+ has only momenta

p > k. The partition function can be rewritten as:

Z[J ] =

∫

Dφ−

∫

Dφ+ e−S[φ
−+φ+]+

∫
J(φ−+φ+). (3.3)

It should be stressed that the path-integral measure was split into two since each product

containing fast and slow components vanishes. Now the fast Fourier modes, encoding

the effects of the higher momenta fluctuations, can be integrated out by defining the

Wilsonian effective action as:

e−Seff.[φ
−] =

∫

Dφ+ e−S[φ
−+φ+]+

∫
Jφ+ (3.4)

By this way the partition function can be described only in terms of the slow components

and of the Wilsonian effective action as :

Z[J ] =

∫

Dφ− e−Seff.[φ
−]+

∫
Jφ−. (3.5)

The present procedure is called decimation since some of the degrees of freedom have been

simply eliminated. Clearly the definition of the Wilsonian action is purely symbolic and

generally cannot be evaluated until some approximations have been done.
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However the knowledge of the Wilsonian action provides a way for calculating the

generating functional of 1PI correlators. Indeed, one finds that the effective action Γ of

the theory is given by:

e−Γ[φc] =

∫

Dφ e−S[φ]+
∫
J(φ−φc), (3.6)

so that, by performing the shift φ→ φ− φc, it turns out to be:

e−Γ[φc] =

∫

Dφ e−S[φ+φc]+
∫
Jφ. (3.7)

When k = Λ there are no fast components in the scalar field since the last one is

composed of only its slow degrees of freedom (φ = φ−). In this case the Wilsonian action

in Eq. (3.4) coincides with the bare action of the theory. It is found:

Seff.[φ] → S[φ]. (3.8)

Conversely when k = 0 most degrees of freedom have been integrated out. The right hand

side of the Eq. (3.4) essentially coincides with that one of the Eq. (3.7) except for the

integration over every possible constant field configuration. Thus when the classical field

φc is constant the effective action calculated in this configuration is well approximated by

the Wilsonian action calculated in its maximum. It is found:

Seff.[φc] → Γ[φc]. (3.9)

In principle the Wilsonian action interpolates between the bare action of the theory when

the scale k, also called running scale, coincides with the cut-off scale Λ and the effective

action of theory when the running scale reaches zero value.

3.2 The Wilsonian RG approach and the field theo-

retical epsilon expansion for the Yukawa model

In this section the RG properties of the Yukawa model near the fourth dimension are

analyzed.

The Wilsonian renormalization group transformations are introduced for this model

and their application to the study of the chiral transition is stressed. The steps providing

the renormalization group transformations for the Yukawa model are summarized. This
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Yukawa model

offers the opportunity of extending the notion of relevant and irrelevant parameters, be-

yond the perturbation theory, and provides the possibility of defining the non-perturbative

renormalizability of a QFT. All the RG technical tools providing a description of the chiral

phase transitions are also introduced.

However another way of implementing the RG transformations, closer to the spirit

of the field theoretical renormalization, is presented. By applying this method the beta

functions governing the flow of the parameters of the theory can be calculated by means

of epsilon expansion technique. The original idea introduced by Wilson and Fisher is

based on a double expansion in terms of the coupling constants of the model and in the

parameter ǫ = 4 − d [50], [51]. Since at d = 4 the Yukawa theory is trivial, near this

dimension the perturbative epsilon expansion and the Wilsonian RG approach give the

same results.

As an application of the procedure, a series of flow equations for the couplings of the

theory will be found.

3.2.1 The Wilsonian RG transformation: Yukawa theory

The renormalization group procedure is made of three essential steps. First of all, as

shown in the previous section, the impact of the higher energy degrees of freedom must

be evaluated by integrating out all the Fourier modes above a certain scale k = bΛ, with

b ≤ 1. This procedure is called decimation, [40]. In order to compare the original system,

defined at the cut off scale Λ, with the new effective one, defined at the scale k, the unit

measure must be rescaled by a factor b and the value of the fields needs an appropriate

rescaling too.

Decimation

The Wilsonian action, introduced in Eq. (3.4) was calculated by integrating out the

scalar modes with bΛ ≤ p ≤ Λ. Thus k = bΛ. For a theory with scalars and fermions

one should separate fast and slow components for both scalar and fermion fields and then

defining the Wilsonian action as:

e−S
k
fb[ψ

−,ψ̄−,φ−] =

∫

Dψ+Dψ̄+

∫

Dφ+ e−Sfb[ψ
−+ψ+,ψ̄−+ψ̄+,φ−+φ+]

× e
∫
η̄ψ+−

∫
φ̄+η+

∫
Jφ+ , (3.10)
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A perturbative calculation of the Wilsonian action in Eq. (3.10) can be performed in a

perturbative way. The methods introduced in Sec. 1.6.3 can be applied, although, since

the integration involves only the fast components, the internal momenta of the loops

belong to the shell b ≤ p ≤ Λ. In this sense the expansion is organized in terms of a

sufficiently small b parameter. Each diagram has a weight given by the number of loops

involved and by a b dependence of the bare parameters 1. Clearly situations far from

the usual perturbative one can be explored. The 1PI correlators, arising from such a

calculation, represent the coefficients of the expansion of the Wilsonian action in series

of the slow components. By expanding each of these coefficients around the momentum

scale p = k one could find [41]:

Skfb[ψ, ψ̄, φ] =

∫

|p|≤k

ddx [−ψ̄
(

Z−1
ψ
/∂ + (g + δg)φ

)

ψ

+
Z−1
φ

2
(∂µφ)

2 +
(M2 + δM2)

2
φ2

+
(λ+ δλ)

4!
φ4 + . . . ], (3.11)

As a consequence, each parameter in the original Yukawa Lagrangian receives an

appropriate correction produced by the diagrammatic contributions. Also other operators

are generated by the integration as those corresponding to higher power couplings and

to non-local interactions. The introduction of the non-vanishing source terms, as given

in Eq. (3.10), could generate contributions which explicitly break the symmetry. However

for a theory near the chiral transition this is not the case. More on this point later.

Rescaling

. The effective action in Eq. (3.11) is defined at a cut-off scale bΛ. In order to restore

the original cut-off scale one can perform the rescaling:

x′ = bx, (3.12)

p′ =
p

b
, (3.13)

So that the momenta belong again to the range 0 ≤ p ≤ Λ. Since the limit in Eq. (1.9)

must be performed, this procedure also preserves the number of degrees of freedom thanks

1inherited by their a priori dependence on the cut-off scale
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to a rescaling of the Lagrangian density. Thus the Wilsonian action can be rewritten as:

Skfb[ψ, ψ̄, φ] =

∫

|p|≤Λ

ddx′b−d
[

−ψ̄(x)
(

Z−1
ψ b/∂

′
+ (g + δg)φ(x)

)

ψ(x)

+
1

2
Z−1
φ b2(∂′µφ(x))

2 +
(M2 + δM2)

2
φ2(x)

+
(λ+ δλ)

4!
φ4(x) + . . .

]

. (3.14)

Field renormalization

After the decimation and rescaling are performed a field transformation is defined

according the rule:

ψ′(bx) = b
1−d
2 Z

−1/2
ψ (b)ψ(x), (3.15)

ψ̄′(bx) = b
1−d
2 Z

−1/2
ψ (b)ψ̄(x), (3.16)

φ′(bx) = b
2−d
2 Z

−1/2
φ (b)φ(x), (3.17)

Again the Z factors appearing in this transformation should not be in principle confused

either with those defined in Eqs. (1.117), (1.118),(1.123), or with those in Eqs. (1.139),

(1.140),(1.141). However all these quantities coincide under certain conditions to be

clarified soon. After the field rescaling the Wilsonian action reduces to:

S
′k
fb[ψ

′, ψ̄′, φ′] =

∫

|p|≤Λ

ddx′
[

−ψ̄′(x′)
(

/∂
′
+ g′φ′(x′)

)

ψ′(x′)

+
1

2
(∂′µφ

′(x′))2 +
M

′2

2
φ

′2(x′) +
λ′

4!
φ

′4(x′) + . . .

]

, (3.18)

where:

g′ = Z
1/2
φ Z1

ψb
d−4
2 g − δg = Z

1/2
φ Z1

ψb
d−4
2 Z−1

g g, (3.19)

M
′2 = Z1

φb
−2M2 − δM2 = Z1

φb
−2Z−1

M2M
2, (3.20)

λ′ = Z2
φb
d−4λ− δλ = Z2

φb
d−4Z−1

λ λ. (3.21)

The relations in Eqs. (3.19),(3.20),(3.21) are the RG discrete transformations for the cou-

plings of the theory. Thus for example, the effective Yukawa coupling or the effective four

scalar interaction, according to the previous prescriptions, satisfy the relations:

S
′k
φψψ̄({p})

∣

∣

∣

s=t=u=−k2
= k4−dg′, (3.22)

S
′k
φφφφ({p})

∣

∣

∣

s=t=u=−k2
= k4−dλ′, (3.23)
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very similar to those given in Eqs. (1.148), (1.149).

The partition function in Eq.(3.10) becomes:

Z[η, η̄, J ] = N (b,Λ, η, η̄, J, {g})
∫

Dψ′Dψ̄′

∫

Dφ′ e−S
′k
fb[ψ

′,ψ̄′,φ′]

× exp

[
∫

dx′b
d+1
2 Z

1/2
ψ η̄(x)ψ′(x′)−

∫

dx′b
d+1
2 Z

1/2
ψ ψ̄(x′)η(x)

+

∫

dx′b
d+2
2 Z

1/2
φ J(x)φ′(x′)

]

≡ N (b,Λ, η, η̄, J, {g})Z ′[η′, η̄′, J ′], (3.24)

while the sources transform according to:

η′(bx) = b−
d+1
2 Z

1/2
ψ η(x), (3.25)

η̄′(bx) = b−
d+1
2 Z

1/2
ψ η̄(x), (3.26)

J ′(bx) = b−
d+2
2 Z

1/2
φ J(x). (3.27)

3.2.2 Fixed points

Clearly the procedure can be reiterated so that the whole RG transformation is rep-

resented by the mapping:

Skfb[ψk, ψ̄k, φk] → S
′k−δk
fb [ψk−δk, ψ̄k−δk, φk−δk]. (3.28)

Where now b = 1 − δk/k. One can think to the renormalization group transformation

as a mapping defined on the space of all possible couplings. Each integration produces a

new set of effective couplings. The boundary value of these transformations at k = Λ is

provided by the value of the couplings appearing in the original action Sfb in Eq. (1.2).

It is clear that the flow of the whole parameter space cannot be followed in practice. The

truncation scheme that should be adopted is justified by the possibility of neglecting those

parameters which are naturally suppressed after a recursion.

It can be immediately verified that a generic connected correlator transforms as:

G
(m;n;r)
k−δk,C({p}; {q}; {l}) = b

d+1
2

(n+m)Z
−n+m

2
ψ b

d+2
2
rZ

− r
2

φ G
(m;n;r)
k,C ({bp}; {bq}; {bl}), (3.29)

plus an additional function which decreases after many integrations. By taking the limit

δk → 0 2 an infinitesimal transformation in the dilatation parameter b is generated. Thus

2this procedure requires attention especially in the sharp-cut off regularization scheme, cite
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a generic parameter vi of the action transforms according to the equation:

dvi
dt

= βi ({vj}) , (3.30)

where t = −lnb = lnΛ
k
was defined.

A fixed point of the RG equations is defined so that:

Skfb[ψk, ψ̄k, φk] = S
′k−δk
fb [ψk−δk, ψ̄k−δk, φk−δk], (3.31)

Jk(x) = Jk−δk(x). (3.32)

This implies that the correlators Gk−δk and Gk in Eq. (3.29) become the same function,

while the RG transformation acts as a simple rescaling. As well known, each regular map,

after many recursions, flows towards a fixed point (which can be finite or infinite).

When a fixed point is reached, the correlation length of the system is either zero or

divergent according to Eq. (2.104). At this point the system becomes scale invariant. The

critical behaviour of the Yukawa model near the chiral transition, has to be described

by the RG trajectories around a fixed point which is characterized by infinite correlation

length (a vanishing fermion mass), that is a critical point.

All the actions connected by the same RG flow belong to the same universality class.

Each point of the parameter space which belongs to the same universality class of a critical

fixed point defines the so called critical surface. In other words a point belonging to a

trajectory which starts on the critical surface flows towards this critical fixed point. Thus

each point on the critical surface represents a system at the critical point of the transition.

The fixed point condition on the RG equations for the couplings reads:

βi
({

v∗j
})

= 0, (3.33)

thus {v∗j} is the fixed point of the transformations in the parameter space.

Expanding the βi’s around the solution {v∗j} the system can be linearized. By defining

the, Jacobian matrix as: Jij =
∂βi
∂vj

∣

∣

∣

{v}={v}∗
. and by setting v = {vj} the equations can be

rewritten in a vectorial form as:

dv

dt
= J (v− v∗) . (3.34)

A generic solution of the linearized system has the general form:

v = v∗ +
∑

i

Cie
λitvi. (3.35)
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The vi’s are the eigenvectors of the Jacobian matrix, associated with their own eigen-

operators. The presence of a critical fixed point makes possible to extend the systematic

renormalization presented in Sec.1.6.4 to a non-perturbative regime. In the present case

only real eigenvalues are considered [27].

• The eigen-operators, corresponding to eigenvalues λi > 0, are related to the relevant

couplings. Fixing the boundary conditions of the flow in the eigen-space spanned

by one of these directions, the trajectory moves away from the fixed point. In order

to reach the fixed point it has to be set Ci = 0 for all the relevant couplings. For

this reason the relevant couplings should be identified with the control parameters

of the transition as: the temperature, the external field and so on.

• The eigen-operators corresponding to eigenvalues λi < 0 identify the irrelevant

couplings. The space spanned by the linear combination of these irrelevant couplings

is the first approximation (the tangent hyperplane) of the critical surface. Near the

critical region the flow of the irrelevant couplings should be discarded by setting

all the irrelevant directions at their fixed point value. If the flow of the irrelevant

parameter is included, the corrections to the critical behaviour will be taken into

account and the cut-off effects will be no more negligible.

• When λi = 0 the linearization fails to work. Usually this means that the eigen-

direction approaches or leaves the fixed point in a logarithmic way.

• The kinetic operators ψ̄ /∂ψ and (∂µφ)
2, which realize the fields renormalization do

not change under the RG transformation. They are called redundant.

In the following some information on the scaling of correlators of the Yukawa theory

are extracted by means of the linearization around the fixed point.

3.2.3 Callan-Symanzik equations for Yukawa theory

Here a different formulation of the renormalization group transformation, first formu-

lated by Callan and Symanzik [52],[53],[54], is considered. This is closer to the spirit of

the usual field theoretical renormalization, although it will be suggested in which sense,

under certain conditions, the Wilsonian and the field theoretical pictures coincide. Ac-

cording to the perturbative results of Sec. 1.6.5 the Yukawa theory at d = 4 is trivial while
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at d = 3 is super-renormalizable. However a double expansion called “epsilon expansion”

can be performed in series of the couplings and of the parameter ǫ = 4 − d. Thanks to

this procedure the different behaviour of the system can be shown. Since a perturbative

expansion has been introduced, at every order some renormalized Green’s functions can

be defined. For example at an IR scale µ << Λ the renormalization conditions introduced

in Sec. 1.6.6 can be applied.

The renormalized connected Green’s functions defined at the scale µ are related to the

bare ones according to the equation:

G
(m;n;r)
r,C ({p}; {q}; {l}; {gµ}, µ,Λ) = Z

−n+m
2

ψ Z
− r

2
φ G

(m;n;r)
C ({p}; {q}; {l}; {g},Λ). (3.36)

A renormalizable theory is such that cut-off dependence of the renormalized Green’s

functions is suppressed by performing the scaling limit. Under the same conditions one

can realize how at k = µ the Wilsonian action coincides with the effective action of the

theory as explained in Sec.3.1. Thus the effective parameters defined with the Wilsonian

procedure should resemble those defined through the renormalization conditions. Finally

the Eq. (3.36), after a trivial rescaling, should correspond to Eq. (3.29).

The relation between the renormalized and the bare couplings can be deduced by

requiring that the renormalized Green’s functions do not depend on the cut-off scale.

This reads:

d

dΛ
G

(m;n;r)
r,C = 0. (3.37)

Solution of C − S equations and critical exponents

The condition in Eq. (3.37) implies that the bare correlation functions satisfy the

equation:
[

Λ
∂

∂Λ
+ βg

∂

∂g
+ βλ

∂

∂λ
+ βM2

∂

∂M2
+

(n+m)

2
ηψ +

r

2
ηφ

]

G
(m;n;r)
r,C = 0. (3.38)

Where for the generic coupling gi it was defined:

βgi = Λ
dgi
dΛ

=
dgi
dt

≡ ([gi]0 + γgi) gi, (3.39)

and:

ηψ = −Λ
dlnZψ
dΛ

=
dlnZψ
dlnb

, (3.40)

ηφ = −Λ
dlnZφ
dΛ

=
dlnZφ
dlnb

. (3.41)

95



Chapter 3. Non-perturbative analytical techniques II: Renormalization Group

The epsilon expansion or any other perturbative series, together with its own renormal-

ization conditions allows the computation of the beta functions of the parameters. These

results should coincide with the Wilsonian RG equations in Eq. (3.30) when the same

perturbative region is investigated.

The case of the two point scalar correlator G (q) is considered. Since it has a dimension

of (momentum)−2 the dependence on the cut-off scale can be converted in a momentum

dependence by writing:

G (q) =
1

q2
f

(

q2

Λ2

)

. (3.42)

Thus Eq. (3.38) reduces to:
[

−q ∂
∂q

+ βg
∂

∂g
+ βλ

∂

∂λ
+ βM2

∂

∂M2
− (2− ηφ)

]

G (q) = 0. (3.43)

Introducing an appropriate dilatation parameter t = lnΛ
q
the Eq. (3.43) can be solved

using the characteristics method. The solution is:

G (q) =
h
(

λ̄, ḡ, M̄2
)

q2
exp

(
∫ Λ

p

dln(Λ/p′) ηφ

)

, (3.44)

where h is an arbitrary function. Its arguments, which are generically denoted by {ḡ},
are the solutions of the equations:

dḡi
dt

= βḡi ({ḡ}) . (3.45)

and:

ηφ = ηφ({g}). (3.46)

Now it is possible to calculate the critical behaviour of the system by using the RG group

equations. A critical fixed point is expected to be found corresponding to the chiral phase

transition. As was shown in Sec. 2.3.3 the reduced temperature of the chiral transition is

given by the difference τ =M2 −M2
c . Thus one of relevant directions, found by means of

the linearization procedure around the critical fixed point, should be approximately equal

to the bare mass direction.

By linearizing the mass equation near such a point it should be found:

M2(k) =M2∗ + C

(

Λ

k

)λM2

, (3.47)
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where C =M2(Λ) =M2∗. Thus the reduced temperature transforms according to:

τ ′ = b−λM2 τ. (3.48)

Since the correlation length scales with its canonical dimension, that is ξ′ = bξ, one

immediately obtains:

ν =
1

λM2

. (3.49)

On the other hand, as proved in the large N framework, the λ and the g couplings play

no role near the phase transition, thus they should be irrelevant also with respect to

the RG classification. The critical region is found by discarding their running. Explicit

calculations show that ηφ near the critical point does not depend on the relevant directions,

thus the scalar correlator in Eq. (3.44) scales as:

G (q) ≃ 1

q2−ηφ(λ
∗,g∗)

. (3.50)

The other critical exponents can be calculated by means of the hyperscaling relations

given in Sec. 2.3.1.

On the other hand, at d = 4 the hyperscaling is violated because of the triviality of

the theory. By means of the RG methods also the corrections to trivial scaling can be

calculated as will be seen in the next paragraph.

3.2.4 Fixed point structure of the Yukawa theory near the four

dimension

The computation of the beta functions at one loop order in ǫ expansion was performed

in [17] by using N ′ = 4N . They are:

βλ = ǫλ− 1

8π2

(

3

2
λ2 − 24Ng4 + 4Nλg2

)

, (3.51)

βg2 = ǫg2 − 2N + 3

8π2
g4, (3.52)

βM2 = [2− 1

8π2
(
λ

2
+ 2Ng2)]M2. (3.53)

In addition the anomalous dimensions of the fields turn out to be:

γφ =
Ng2

8π2
, (3.54)

γψ =
g2

32π2
. (3.55)
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The system in Eqs. (3.51),(3.52),(3.53) has four solutions,[55]. They are:

• The Gaussian solution: g2∗ = λ =M2∗ = 0.

• The wilson-fisher fixed point: M2∗ = g2∗ = 0, λ∗ = 16π2

3
ǫ,

• And the non trivial solutions M2∗ = 0, g2∗ = 8π2ǫ
2N+3

and λ∗± = 8π2ǫλ̃∗±,

where:

λ̃∗± =
1

3(2N + 3)
[−(2N − 3)±

√
4N2 + 132N + 9]. (3.56)

Each of these results deserve to be commented. First the case in which d < 4 is considered.

Linearizing around the Gaussian solution the couplings, as expected, scale with their

trivial behaviour. One finds:

λM2 = 2, (3.57)

λg2 = ǫ, (3.58)

λλ = ǫ. (3.59)

Since ǫ > 0 all these directions are relevant. This reflects the fact that around the origin

the Yukawa theory is super-renormalizable, as also has been found with the perturbative

treatment. Replacing the solution in Eqs. (3.54),(3.55) both the anomalous dimensions

vanish. Thus the correlators scale according to their canonical behaviour.

The second solution is an extension of the well known Wilson-Fisher fixed point. The

linearization around this solution gives the eigenvalues:

λτ = 2− ǫ

3
, (3.60)

λλ = −ǫ, (3.61)

λg2 = ǫ. (3.62)

As in the case of the Gaussian fixed point, the eigenvalues do not depend on N . The first

eigenvalue is associated with the reduced temperature of the ferromagnetic transition. By

using the Eq. (3.49) and calculating the scalar anomalous dimension at the fixed point it

is found:

ν−1 = 2− ǫ

3
, (3.63)

ηφ = 0. (3.64)
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However, since the Yukawa interaction is associated with a relevant direction, this model

requires an additional fine-tuning to the ones prescribed in the usual ferromagnetic models.

The presence of a small interaction between the fermions and the scalar drives the system

away from the critical surface.

The non-trivial solution with λ∗− has two relevant directions so cannot describe the

chiral transition. Finally the non-trivial solution with λ∗+ is considered. For simplicity it

will be denoted with λ∗. The linearization around this solution gives the eigenvalues:

λτ = 2− ǫ
10N + 3 +

√
4N2 + 132N + 9

6(2N + 3)
, (3.65)

λ2 = −ǫ, (3.66)

λ3 = −ǫ
√
4N2 + 132N + 9

2N + 3
. (3.67)

Expanding in powers of 1/N one obtains:

ν−1 = d− 2 + (d− 4)
3

2N
+O(1/N2), (3.68)

while the anomalous dimension of the scalar is given by:

ηφ =
2Nǫ

3 + 2N
= 4− d+ (d− 4)

3

2N
+O(1/N2). (3.69)

These results are consistent with those found in Sec. 2.3.2. However by means of the

epsilon expansion technique the critical exponents of the Yukawa theory also for small

values of N can be calculated near d = 4. This point will be further investigated. The

critical point is an IR attractor along the λ and the g directions. For a generic choice of

the initial bare parameters after many recursions the renormalized ones are frozen to their

fixed point value. On the other hand the in the IR region a tree level calculation can be

performed giving the boson mass M2
φ = λ∗φ2

c/3 the fermion mass mψ = g∗φc. Thus the

ratio of the squared masses is given by:

M2
φ

m2
ψ

=
λ∗

3g2∗
=

−(2N − 3) +
√
4N2 + 132N + 9

9
≃ 4− 30

1

N
+O(1/N2). (3.70)

Once again it seems that a fixed mass ratio is a consequence of the irrelevance of these

couplings.
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3.2.5 Corrections to scaling

With the help of the RG equations it was shown that the critical exponent of the

Yukawa theory take their mean field value at any value of the flavour number. Indeed the

result is independent from the particular choice of N showing that this theory is trivial at

d = 4. When the theory reaches its upper critical dimension the linearization around the

fixed point fails. However corrections to scaling can be calculated in the following way.

The equations Eq. (3.51) can be analytically solved by setting ǫ = 0. The solution gives

for the Yukawa coupling:

g(t)2 ≃ 8π2

(2N + 3)t+ c
, (3.71)

while the anomalous dimension is given by:

ηφ = 2γφ =
2N

(2N + 3) + c
(3.72)

Thus evaluating the expression in Eq. (3.44) one finds:

e−
∫ t
0
dt′ηφ =

(

1 +
3 + 2N

c
t

)− 2N
3+2N

. (3.73)

According to this result, the bosonic correlator scales in the large N limit as:

G(q) ≃ 1

q2ln
(

Λ
q

) , (3.74)

which is the same result found in Eq. (2.33).

For large t values the coupling constants become:

g(t)2 ≃ 8π2

(2N + 3)t
, (3.75)

λ(t) ≃ 8π2λ̃∗
t

(3.76)

The behaviour of the correlation length is encoded in the function:

ν−1(λ(t), g(t)) = 2 + γM2 = 2− λ̃∗
2t

− 2N

(2N + 3)t
≃ 2− 1

t
+ . . . (3.77)
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3.3 The non-perturbative RG approach in the GN

model

The present section is devoted to introducing our original RG approach for the analysis

of self-interacting fermion theories.

A generalized GN model in d dimensions with N flavours is studied, where the inter-

action term is replaced by a more general potential U(ψ̄ψ), within the framework of the

Wilsonian RG approach as originally implemented by Wegner and Houghton [24].

By applying the same techniques considered in [25] (where the N = 1 case for a boson-

fermion system was considered), first of all an RG equation for the Wilsonian potential

for generic N is established, then the large N limit is considered.

In this limit, by truncating the potential to the Fermi constant term alone (and suc-

cessively to the mass and Fermi constant terms), it is found that the theory possesses a

non-trivial fixed point (beyond the Gaussian one). This generalizes to large N a result

which, in this Wilsonian setup, was first obtained for N = 1 in [56].

Then the RG equations for the running mass m(k) and Fermi constant G(k) (k is the

running scale) are linearized around this non-trivial fixed point and both m and G are

found to be relevant eigendirections, i.e. they both are UV repulsive directions. From

the corresponding eigenvalues (the magnetic and temperature exponents in the analogy

with the ferromagnetic case), the hyperscaling relations for the GN model are established

in the fermion language. Then, with the help of these relations, the critical exponents

are computed, finding that our results are in agreement with those obtained in the 1/N

expansion [19],[22],[23]. Naturally, a word of caution has to be said for the d = 4 case

(the upper critical dimension), where weak violations to the scaling laws are expected

[57],[27]. If these relations are used even in the d = 4 case, the critical exponents turn

out to coincide with their mean field values. Up to weak scaling violations, however, they

give the correct behaviour for the correlation functions near the critical point.

Successively, the impact of the presence of an (infinitesimal) bare mass, which is

nothing but the boundary value m(Λ) for the flow of m(k) at the UV scale Λ, on the

renormalized theory, is studied. i.e. the connection between the renormalized mass, the

value of m(k) at k = 0, and the bare mass m(Λ) (IR-UV connection) is analyzed. To

this end, one can consider for the bare Fermi constant GB = G(Λ) (the UV boundary for
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the running of G(k)) values such that G(Λ) > Gc and G(Λ) < Gc, where Gc is the fixed

point value for G(k). Choosing the same value for the bare mass mB = m(Λ) in the two

cases, it is found that when G(Λ) > Gc the renormalized mass turns out to be orders of

magnitude greater than the corresponding renormalized mass obtained with G(Λ) < Gc.

In other words, when G(Λ) < Gc, if the bare mass is infinitesimal, the renormalized mass

turns out to be infinitesimal too. On the contrary, when G(Λ) > Gc, the renormalized

mass turns out to be orders of magnitudes larger than the bare mass, thus giving the

possibility for the generation of a finite fermion mass.

This interesting result suggests a mechanism for the generation of a finite physical mass

as a cross-over phenomenon. For values of the Fermi constant greater than the critical

value Gc, the quantum fluctuations provide an enormous amplification mechanism which

results in the generation of a finite physical mass from an infinitesimal bare mass. In

the ferromagnetic analogy, this corresponds to the fact that for T < Tc an infinitesimal

external magnetic field is sufficient to trigger a finite spontaneous magnetization of the

ferromagnetic material.

Then, analytical approximate solutions to our RG equations are studied. At a first

stage, it is shown that, by considering a simple approximation of the RG equation for the

running fermion mass m(k), it is possible to recover the celebrated NJL result.

Successively, by considering more elaborated approximations, it is possible to recover

with a very good degree of accuracy the entire profile of m(k) (previously obtained nu-

merically) in the whole IR-UV range. This is also an interesting result, as the knowledge

of the profile of m(k) should be relevant for phenomenological applications.

Finally the critical exponents for small value of N are computed and the comparison

with other numerical and analytical approaches is performed at d = 3.

3.3.1 The composite operator in the RG language

In analyzing the χSB mechanism of the Yukawa theory it was supposed that the sources

of the elementary fields do not affect the behaviour of the system. This assumption was

then corroborated by the direct calculations performed with the epsilon expansion method.

The anomalous scaling of the two point bosonic Green’s function is driven by the large

anomalous dimension acquired by the scalar field near the critical point. The source term

of the scalar field is not affected by the quantum fluctuations and its scaling is defined by
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the relation in Eq. (3.27).

A similar situation can be found in the Landau-Wilson theory of the ferromagnetic

phase transition. As previously said, this transition can be described by means of the be-

haviour of a lambda-phi-fourth theory around the non-trivial Wilson-Fisher fixed point.

On the other hand, it is well known, how the spontaneous magnetization can also be de-

picted with the Ising model. Near the critical region these two models become equivalent,

they predict the same critical exponents or in other words belong to the same universality

class [35],[51].

What happens is very similar to the equivalence of the Yukawa theory and the GN

model in the large N framework. More precisely also the Ising and the Landau-Wilson

models can be related by means of an Hubbard Stratonovich transformation near the

critical region.

However the divergences arising in the Ising model are different from those appearing

in the Wilson-Fisher theory. Indeed in the Ising model, it is the external magnetic field,

coupled with the spin field, receiving the large correction from the statistical fluctuations

and which is accountable for the anomalous dimension of the two point correlator. But

in the end, the anomalous scaling of the source term and that of the field have to be

balanced. This is a necessary condition in order to preserve the scale (RG) invariance

of the effective action of the theory. Conversely, when the scaling violations are taken

into account the condition is not fulfilled, and the way in which the field and the source

renormalize is different. However below the upper critical dimension, the hyperscaling

relations are satisfied near the critical region and the critical exponents, calculated by

considering the RG transformation of the magnetic field, coincide with those found for

the Landau-Wilson model.

In the present section it will be shown that this is also the case for the GN when a

functional RG approach in a purely fermion language is adopted. The major role is played

by the introduction of an explicit mass term coupled with the ψ̄ψ composite operator.
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Callan-Symanzik equations

The generating functional of fermion elementary and composite fields was defined in

Eq. (1.16). After the integration over the fast field components it turns out to be:

Zf [η, η̄, K] = N
∫

DψDψ̄ e−Seff.[ψ,ψ̄]+
∫
η̄ψ−

∫
ψ̄η+

∫
Z−1
K Kψ̄ψ, (3.78)

where the Seff. is including all the effects of the integration, except for the correction to

the source term. This merged into the ψ̄ψ operator. The integration over the external

fields could also produce any corrections which explicitly violate the symmetry of the

Wilsonian action. However one should expect that near the critical region of continuous

transition this is not the case. A similar statement can be explicitly verified in the real

space RG group of the Ising model. The explicit integration of a non-zero magnetic field

converts the continuous transition in a sharp cross-over phenomenon.

Similarly in the case of our treatment of the chiral transition it will be shown that

within our approximation scheme the fermion running mass, in the linearization region,

decouples from the other interactions.

Now the rescaling and the field renormalization can be applied to Eq. (3.78), in such

a way:

Zf [η, η̄, K] = N
∫

Dψ′Dψ̄′ e−S
′

eff.[ψ
′,ψ̄]+

∫
Z

1/2
ψ η̄ ψ′+

∫
Z

1/2
ψ η ψ̄′+

∫
Zψ̄ψ+Kψ̄

′ψ′

(3.79)

where:

Zψ̄ψ = Z−1
K Zψ, (3.80)

was defined. Which means that the Eq. (3.80) extends the transformations of elementary

operators in Eqs. (3.15),(3.15),(3.17) to the case of the composite field field ψ̄ψ so that:

ψ̄ψ′(bx) = b−[ψ̄ψ]0Z−1
ψ̄ψ
ψ̄ψ(x), (3.81)

thus immediately giving:

γψ̄ψ = 2γψ − γK . (3.82)

On the other hand, the composite operator renormalization can be defined in the

framework of any perturbative scheme which allows the introduction of the appropriate
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renormalization conditions devoted to removing the divergences in the correlators of the

composite field itself.

Again, choosing these conditions at a scale µ << Λ, the renormalized and the bare

Green’s functions are related according to:

Gm;n;r
r = Z

−(n+m)/2
ψ Z

−r/2

ψ̄ψ
Gm;n;r. (3.83)

By requiring that the renormalized functions do not depend on the cut-off scale, it is

found:

Λ
d

dΛ

[

Z
−(n+m)/2
ψ Z

−r/2

ψ̄ψ
Gm;n;r

]

. (3.84)

Thus the C-S equations for the correlators with composite operator insertion reads:
[

Λ
∂

∂Λ
+ βG

∂

∂G
+

(n +m)

2
ηψ +

r

2
ηψ̄ψ

]

G(m;n;r)
r = 0. (3.85)

Wilsonian effective action

As in the case of the Yukawa theory, an appropriate Wilsonian action can be used

for extracting information on the critical behaviour of the system with elementary and

composite fermion fields. Indeed it defines the way in which the bare parameters transform

in order to preserve the scale invariance. But it also provides a method for calculating

some IR quantities as the order parameter of the transition or the susceptivity when the

running scale is close to zero. This can be shown by splitting the fermion fields in fast

and slow components, then by defining the Wilsonian action as:

e−Seff.[ψ
−,ψ̄−,K] =

∫

Dψ+Dψ̄+ e−Sf [ψ
−+ψ+,ψ̄−+ψ̄+]

× exp

[
∫

η̄ψ+ −
∫

ψ̄+η +

∫

K
(

ψ̄+ψ+ + ψ̄−ψ−
)

]

. (3.86)

With this position when k = Λ the Wilsonian action converge to:

Seff.[ψ, ψ̄,K] → Sf [ψ, ψ̄] +

∫

Kψ̄ψ, (3.87)

which is the action of the model plus an additional bare mass term. On the other hand

when k = 0 it is found:

Seff.[ψ, ψ̄,K] → Γ[ψc, ψ̄c, K]. (3.88)

That should converge to the effective action of the GN model once K = 0 is set.
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3.3.2 Derivative expansion and LPA approximation

In order to study the critical fixed point of the Yukawa theory the epsilon expansion

was introduced. This was possible since near d = 4 the critical behaviour of the system is

not so far from the origin. Unfortunately in a purely fermion language there is no natural

expansion that can be used for the computation of the beta functions near the fourth

dimension. However if one is searching for a constant vacuum, as found in GN in the

1/N expansion, the analysis can be conducted by means of a gradient expansion of the

Wilsonian action [49].

By expanding the Wilsonian action at a scale k around a constant field configuration

one finds for a fermion theory:

Sk[ψ, ψ̄] =

∫

ddx
[

Uk(ψ̄ψ)− Zk(ψ̄ψ)ψ̄ /∂ψ +O(∂2)
]

. (3.89)

The form of the Uk and the Zk functions have been restricted by imposing both the Lorentz

and the U(N) invariance of the model. However, in order to study the χSB mechanism

the even powers as well as of the odd ones of the ψ̄ψ operator are included.

Since both ψ and ψ̄ are slowly varying at the scale k − δk one can imagine they split

as:

ψ(x) = ψ−
0 (x) + ψ+(x), (3.90)

ψ̄(x) = ψ̄−
0 (x) + ψ̄+(x), (3.91)

with ψ−
0 (x) = ψ−+ ǫ(x) and ψ̄−

0 (x) = ψ̄−+ ǭ(x). so that the Wilsonian action at the scale

k − δk can be expanded in gradients of the field too.

In the present work the analysis is limited to the simplest approximation. Only the

running of the Wilsonian potential is taken into account while the Z function is frozen to

the value ZΛ(ψ̄ψ) = 1. For this reason this procedure is called Local Potential Approxi-

mation (LPA).

3.3.3 Wegner-Houghton approach on renormalization group for

fermions

By following the techniques of [25] (where the N = 1 case for a boson-fermion system

is considered), in the present section the RG equation for the Wilsonian potential Uk(ψ̄ψ)
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of a generalized N flavours GN model are derived within the framework of the local

potential approximation (LPA). As will be seen, this equation contains a Hartree and a

Fock contribution. Neglecting the latter, the leading order approximation to this equation

in the 1/N expansion will be obtained.

The Wilsonian action Sk
[

Ψ, Ψ̄
]

is defined at the (energy) scale k and the field Ψ (as

well as Ψ̄) contains Fourier modes up to k. In order to define Sk−δk, the Wilsonian action

at an infinitesimally lower scale k−δk, the field Ψ(x) is decomposed in a component ψ(x)

with modes in the range [0, k− δk] and a component ξ(x) with modes in the infinitesimal

shell [k − δk, k]:

Ψ(x) ≡ ψ(x) + ξ(x) =
∑

|p|≤k−δk

e−ip·x

V
ψp +

∑

k−δk≤|p|≤k

e−ip·x

V
ξp , (3.92)

where Ψ is an U(N) multiplet with N Dirac spinors and V is the quantization volume. An

analogous decomposition holds for Ψ̄(x). Sk−δk
[

ψ, ψ̄
]

is defined through the integration

over the modes ξp (ξ̄p):

e−Sk−δk[ψ,ψ̄] = Nd

∫

DξDξ̄e−Sk[ψ+ξ,ψ̄+ξ̄] , (3.93)

where Dξ = Πpdξp (analogously Dξ̄ = Πpdξ̄p) and Nd is a constant which takes care of

the dimensions of the ξp’s. In order to perform the ξ (ξ̄) integration, Sk
[

ψ + ξ, ψ̄ + ξ̄
]

is

expanded in Eq. (3.93) in powers of ξ and ξ̄ around ξ = ξ̄ = 0 and keep only terms up to

the quadratic ones, as higher powers give vanishing contributions [24]:

Sk
[

ψ + ξ, ψ̄ + ξ̄
]

= Sk
[

ψ, ψ̄
]

+

∫

d x

(

ξ(x)
δSk
δψ(x)

+ ξ̄(x)
δSk
δψ̄(x)

)

+
1

2

∫

d x d y

(

δ2Sk
δψ̄(x)δψ̄(y)

ξ̄(y)ξ̄(x) +
δ2Sk

δψ(y)δψ̄(x)
ξ̄(x)ξ(y)

+
δ2Sk

δψ(y)δψ̄(x)
ξ̄(x)ξ(y) +

δ2Sk
δψ(y)δψ(x)

ξ(x)ξ(y)

)

. (3.94)

The RG equation for Uk(ψ̄ψ) in the LPA is obtained by plugging in Eq.(3.94) the ansatz

Sk
[

Ψ, Ψ̄
]

=

∫

ddx
[

−Ψ̄ (x) /∂Ψ (x) + Uk
(

Ψ̄ ·Ψ
)]

, (3.95)

and choosing for the background field ψ(x) (ψ̄(x)) the constant mode: ψ(x) = ψ0 (ψ̄(x) =

ψ̄0). With this choice, due to Fourier orthogonality, the linear term in ξ (ξ̄) in Eq.(3.94)
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disappears. As for the quadratic terms, the integration in x and y in the second and third

line of Eq. (3.94) is easily performed and gives:

1

2V 2

∑

p,q

(

ξ̄p, ξp
)

· ∆−1 δp,q ·
(

ξ̄q
ξq

)

, (3.96)

where Dirac and flavour indices are understood and ∆−1 is defined as:

∆−1 =

(

δ2Uk
δψ̄0δψ̄0

−i/p+ δ2Uk
δψ0δψ̄0

−i/pT + δ2Uk
δψ̄0δψ0

δ2Uk
δψ0δψ0

)

. (3.97)

Eq. (3.93) then reduces to a Gaussian integral and for Uk−δk it is found:

Uk−δk = Uk −
1

2

∫ ′ ddp

(2π)d
trln

(

∆−1

k

)

, (3.98)

where the trace refers to flavour and Dirac indices and the superscript ′ indicates that the

integration is extended to the shell [k − δk, k] only.

If one now defines ρ = ψ̄ψ =
∑

c,α ψ̄c,αψc,α, where c = 1, . . . , N is the flavour index and

α the Dirac one, after some manipulations reported in the App.D.2, taking the δk → 0

limit, finally the RG equation for Uk(ρ) are obtained (the lower index is omitted as well

as the argument in Uk(ρ)):

k
dU

dk
= kdCd

(

Ntr Iln

(

k2 + U2
ρ

k2

)

− Cdln

(

1 +
2ρUρUρρ
k2 + U2

ρ

))

, (3.99)

where tr I is the trace of the identity matrix in the Dirac space (tr I = 2d/2 for even values

of d and tr I = 2(d−1)/2 for odd values), Cd =
1

(4π)d/2Γ(d/2)
and Uρ means the derivative of

Uk(ρ) w.r.t. ρ. In the r.h.s. of Eq. (3.99), it is possible to recognize a Hartree and a Fock

term, the first and the second one respectively. Being neglected in the large N limit the

Fock term, Eq. (3.99) becomes:

k
dU

dk
= kdCdNtr Iln

(

k2 + U2
ρ

k2

)

. (3.100)

Eq.(3.100) corresponds to the ladder approximation for our RG equation. For our

purposes, it is also convenient to write this equation in terms of dimensionless quantities.

If one defines t = ln (k0/k), where k0 is an arbitrary scale, together with the dimensionless

field and potential, σ = k1−dρ and V (σ, t) = kd Uk(ρ), the RG equation for the V (σ, t)

turns out to be:

∂

∂t
V = d V − (d− 1)σVσ − CdNtr Iln

(

1 + V 2
σ

)

, (3.101)
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where again Vσ is the derivative of V (σ, t) w.r.t. σ.

Eq. (3.101) (or, equivalently, Eq. (3.100)) is the starting point of our following analysis.

3.4 The scaling of the GN model in the Large N limit

3.4.1 Truncated potential: the Fermi constant term

Our study begins by truncating the potential V (σ, t) in Eq. (3.101) to the GN (or

Fermi) term alone:

V (σ, t) = −G(t)
2

σ2 , (3.102)

whereG(t) is the dimensionless Fermi constant. With this truncation, Eq. (3.101) becomes

an RG equation for G(t) (d ≥ 2):

dG

dt
= (2− d)G+ 2Ntr ICdG

2 . (3.103)

For d = 2, this is nothing but the equation found by Gross and Neveu [1]. The beta

function vanishes at G = 0 and the theory turns out to be asymptotically free: G = 0 is

an UV stable fixed point.

For d > 2, the beta function vanishes at

G = 0 and G = Gc =
d− 2

2Ntr ICd
(3.104)

and the solution to Eq.(3.103) is:

G (t) =
Gc

1− Be(d−2)t
, (3.105)

where B is an arbitrary integration constant. Now the two cases B < 0 and B > 0 have

to be distinguished.

The B < 0 case. In this case, G (t) flows for t → −∞ (k → ∞) towards Gc, while in

the IR (t→ ∞ or k → 0), G (t) vanishes. Therefore, Gc turns out to be a UV fixed point

and G = 0 an IR fixed point.

The B > 0 case. In this case, G (t) again flows towards Gc in the UV. In its flow

towards the IR, however, G(t) diverges at a finite value of k, k = kc (t = tc) (see Fig. 3.1).

As first noted by GN, this is also what happens for the IR flow of G(t) in the d = 2 case.
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Figure 3.1: Using a rescaled coupling (so that Gc = 1), the running of G(t) for B = −0.1 is shown (dashed
line) and B = 0.1 (solid line), representing the symmetric and the broken phase respectively.

By computing the effective potential for their model in d = 2, they were actually able to

relate the divergence of G(t) at a finite value of the running scale with the existence of

χSB and the consequent generation of a fermion mass.

In this respect, it should be observed that the appearance of such a divergence in the

RG flow of the theory is nothing but the precursor of the transition to the broken phase

which occurs when the boundary value of G(t) at the UV scale Λ are chosen (say G(t = 0)

with k0 = Λ) such that: G(t = 0) > Gc. This shows that Gc has to be identified with

the critical point of the transition. In this case, the approximation of the potential with

a polynomial expansion (a single term in the truncation of Eq. (3.102)) turns out to be a

poor approximation.

As fluctuations of a longer and longer wavelength (i.e. the RG equations are runt to-

wards the IR) being included, the system starts to develop an instability which eventually

manifests itself in the divergence of the coupling constants. A clear illustration of this

behaviour can be found in [58], where the same phenomenon was considered for a scalar

theory.

Our next goal is to show that it is possible to describe the phase transition with the

help of Eq. (3.101). In particular, in the next section, it will be seen that by means of

our RG equations the critical exponents previously obtained in the framework of the 1/N

expansion [19],[22],[23] can be reproduced.
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3.4.2 Critical exponents with the RG approach

Now going back to Eq. (3.101) and considering the truncation, V (σ, t) = −m(t)σ −
G(t)
2
σ2, for the potential V (σ, t). Plugging this truncation in Eq. (3.101), the system of

RG equations for m(t) and G(t) is found to be:

dm

dt
= m+ 2Ntr ICd

Gm

1 +m2
, (3.106)

dG

dt
= (2− d)G+ 2Ntr ICdG

2 1−m2

(1 +m2)2
. (3.107)

As for the truncation considered in the previous section, the above RG system has

two fixed points: the Gaussian one (m = 0 , G = 0) and the non-Gaussian one:

m = 0, (3.108)

G =
d− 2

2Ntr ICd
. (3.109)

Note that Eq. (3.109) is nothing but Gc found in Eq. (3.104), when the truncation for

V (σ, t) given in Eq. (3.102) is considered , i.e. the truncation with the Fermi term only.

Linearizing Eqs. (3.106) and (3.107) around the Gaussian fixed point it is found:

dm

dt
= m, (3.110)

dG

dt
= (2− d)G, (3.111)

which show that both m and G are eigen-directions for the RG flow around the Gaussian

fixed point, with eigenvalues given by (m(t) ∼ et, G(t) ∼ e(2−d)t):

λm = 1, (3.112)

λG = 2− d . (3.113)

From Eqs. (3.112) and (3.113), one can see that, for d > 2, m is a relevant direction, while

G is irrelevant, this latter property being related to the perturbative non-renormalizability

of the theory.

Linearizing now around the non-Gaussian fixed point one obtains:

dm

dt
= [1 + (d− 2)]m, (3.114)

d(G−Gc)

dt
= [(2− d) + (2d− 4)](G−Gc), (3.115)
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which show that, as for the case of the Gaussian fixed point, m and G are eigendirections

for the RG flow. However, this time the eigenvalues are given by:

λm = d− 1, (3.116)

λG = d− 2, , (3.117)

which means that around this fixed point:

m(t) ∼ e(d−1)t , G(t)−Gc ∼ e(d−2)t. (3.118)

As was anticipated, from Eqs. (3.116) and (3.117) (or from Eq. (3.118)), it is possible

to see that around the non-Gaussian fixed point, for d > 2, both m and G are relevant

couplings. Technically, it should be said that, within such a truncation, the (G,m) plane

is a “UV critical surface” for the non-Gaussian fixed point (G = Gc, m = 0). This

means that the coupling constants, whatever boundary conditions are considered in the

(G,m) plane, flow towards the UV always reach the point (G = Gc, m = 0). From this

more technical point of view, the theory is said to be “asymptotically safe” [59]. This is

nothing but an extension of the notion of asymptotic freedom for the case when the UV

fixed point, towards which the dimensionless coupling constants flow in the UV, is not

the Gaussian one.

From Eqs. (3.110), (3.111), (3.112) and (3.113) it can be noted that the eigenvalues

λm and λG around the Gaussian fixed point are nothing but the canonical dimensions of

the coupling constant m and G. By comparing now with Eqs. (3.114), (3.115), (3.116)

and (3.117), it is found that the anomalous dimensions γm and γG of m and G are:

γm = d− 2, (3.119)

γG = 2(d− 2) . (3.120)

In passing, one can note that, in ladder approximation, it is γG = 2γm, which was found.

As already stressed, the non-Gaussian fixed point is the critical point of the χSB

transition and, from Eqs. (3.116) and (3.117), one can see that m and G are both relevant

directions around this point. Moreover, in the ferromagnetic analogy, the eigenvalues λm

and λG correspond to Dh and Dt, the critical exponents related to the magnetic field and

the temperature respectively.
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Now the hyperscaling relations which relate the different critical exponents β, δ, ...

defined through Eqs. (2.94)-(2.103), can be obtained. These relations are verified under

very general conditions [52],[53],[54]: the scale invariance of the 1PI vertex functions of

elementary and/or composite operators, the existence of a fixed point and the possibility of

linearizing the RG equations around the fixed point 3. Under these conditions, the critical

exponents are expressed in terms of the exponents related to the parameters relevant

at the transition (m and G in this case, the magnetic field and the temperature in the

ferromagnetic case).

Therefore, by following the same steps which gives the possibility of finding the hy-

perscaling relations related to the ferromagnetic phase transition [41], thus the analogous

relations for the χSB transition in a fermion language are achieved:

β =
d− λm
λG

, δ =
λm

d− λm
,

γ =
2λm − d

λG
, ν =

1

λG
, (3.121)

η = 2 + d− 2λm.

By replacing in Eqs. (3.121) the values of λm and λG found in Eqs. (3.116) and (3.117),

it is finally obtained for the critical exponents:

β =
1

d− 2
, (3.122)

δ = d− 1, (3.123)

γ = 1, (3.124)

ν =
1

d− 2
, (3.125)

η = 4− d . (3.126)

These values coincide with those obtained in the leading order of the 1/N expansion [19],

[22],[23].

As is well known, d = 4 is the upper critical dimension: for d > 4, the theory becomes

free and the mean field results are exact. At d = 4, the correlation functions get weak

logarithmic corrections to simple power law behaviour. However, the approximation that

3This means that the cases when the operators are either relevant or irrelevant are considered ex-
cluding the case when marginal operators appear. When this happens, as is well known, weak violations
to the scaling relations appear. In this case, the behaviour of the vertex functions is not described by
simple power laws.
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is considered, the LPA, does not allow the detection of the corresponding hyperscaling

violations. The latter are actually due to non-local contributions, which are absent in

the LPA. Nevertheless, the occurrence of the transition can be observed already at this

stage of the approximation. This is exactly what was seen. For a more detailed study, the

presence of non-local terms needs to be considered. Work is in progress in this direction.

3.4.3 Crossover and mass generation

In the previous section, it was seen how the RG equations for m(t) and G(t) allows

the computation of the critical exponents which give the behaviour of the correlators for

values of G close to the critical point. To this end, it was sufficient to study the linearized

equations in the neighborhood of the non trivial fixed point (G = Gc,m = 0). In this

section the previous analyses are extended to the study of the G and m flows in the whole

(G,m) plane. As will be seen, these flows show interesting features in connection with

the problem of the generation of fermion masses.

The starting point of our analysis is the coupled system of RG equations, Eqs. (3.106)

and (3.107), which are here reproduced for readers’ convenience:

dm

dt
= m+ 2Ntr ICd

Gm

1 +m2
, (3.127)

dG

dt
= (2− d)G+ 2Ntr ICdG

2 1−m2

(1 +m2)2
. (3.128)

The flows of m and G obtained by solving Eqs. (3.127) and (3.128) are governed by the

presence of the two fixed points found in the previous section, the Gaussian and the non

trivial one. For definiteness, in the following these solutions are drawn for the d = 4 case,

although similar flows also hold for other values of d in the range 2 < d < 4.

In Fig. 3.2 the numerical solutions of Eqs. (3.127) and (3.128) are shown, in the (G, m)

plane, for different boundary values. For convenience, the parameters are rescaled in a

manner which amounts to set N = Cd = tr I = 1 (for d = 4, this gives Gc = 1). As has

already been seen, the non-trivial fixed point is IR repulsive, while the Gaussian one has

an irrelevant direction (G) and a relevant one (m). Therefore, all the flows emanate from

the non trivial fixed point at k = ∞ and move towards the IR, asymptotically converging

to the G = 0 axis.

In each of these trajectories, the bare couplings have to be identified with values of

m and G near the non trivial fixed point (UV region), the renormalized ones with those
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Figure 3.2: The three trajectories which lie entirely on the left of the G = Gc axis are obtained for
GB = Gc − 0.1 < Gc and mB = 0.1, 0.01, 2 ∗ 10−3 (from top to bottom respectively). The
three other trajectories are obtained by setting GB = Gc + 0.1 > Gc for the same values of
mB (again from top to bottom).

in the IR region. Moreover, as seen in the previous section from the linearization of

Eqs. (3.127) and (3.128) around the fixed points, while the IR flow is governed by the

Gaussian scaling, so that the (renormalized) couplings in this region scale according to

their canonical dimension, in the UV the (bare) couplings acquire an anomalous scaling

(see Eqs. (3.119) and (3.120)) due to the presence of the non trivial fixed point. By

considering again the analogy with the ferromagnetic phase transition, this is exactly

what happens to the relevant coupling in that case. Around the critical point of the

transition (Wilson-Fisher fixed point), the squared mass (bare value of the coupling) has

an anomalous scaling while in the IR its renormalized value (the inverse square correlation

length) scales with the canonical dimension [50],[51].

A close inspection to the trajectories of Fig. 3.2 shows that they are of four different

types. Two of them lie on the G axis and correspond to the flows already studied in

Section 3. Starting with the UV boundaries m = 0 and G < Gc, the trajectory flows

along the G axis (from the right to the left) towards the Gaussian fixed point. If, on the

contrary, one starts with the UV boundaries m = 0 and G > Gc, the flow proceeds along

the G axis towards the right side and reaches G = ∞ at a finite value of t (finite value of

k). These flows correspond to the symmetric and broken phases respectively.

If instead the UV boundary m 6= 0 is chosen, the two following types of trajectories
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Figure 3.3: (a): The running dimensionful mass obtained by setting, at k = Λ = 1, GB = Gc − 10−5

and mB = 10−8, 4 ∗ 10−9, 10−9 (dotted, dashed and solid lines, respectively). (b): The
running dimensionful mass obtained by setting, at k = Λ = 1, GB = Gc + 10−5 and mB =
10−8, 4∗10−9, 10−9 (dotted, dashed and solid lines, respectively). All quantities are expressed
in cut-off units.

arise. For the UV boundary G < Gc, the flow proceeds from right to left asymptotically

converging on the m axis. When, on the contrary, the UV boundary G > Gc is chosen,

the trajectory initially flows from left to right, moving away from the G = Gc axis. Then,

after creating a more or less pronounced horizontal bell, it turns back, crosses the G = Gc

axis and eventually converges asymptotically on the m axis as in the previous case.

These latter two types of trajectories are very interesting for our analysis. Let us choose

an infinitesimal value as UV boundary for m. When the corresponding UV boundary for

G is G < Gc, the trajectory runs very close to the G axis from the right to the left for

a long “RG time interval”, eventually escaping to reach the m axis asymptotically. The

smaller the initial value ofm, the closer the trajectory is to the G axis. If the UV boundary

for G is G > Gc, the trajectory initially runs very close to the G axis (as in the previous

case, but in the opposite sense) for a long “RG time”, then it creates a very elongated

bell (before turning back to reach asymptotically the m axis). For smaller and smaller

initial values of m, the bell becomes more and more elongated. By comparing these

trajectories with those obtained for the limiting UV boundary m = 0, it can immediately

be seen that the limiting case of the first kind of trajectories corresponds to the (strictly)

unbroken phase, while the limiting case of the second kind of trajectories corresponds to

the (strictly) broken phase.
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Figure 3.4: (a): The running of the dimensionful coupling G(k) obtained by setting, at k = Λ = 1,
GB = Gc−10−5 and mB = 10−8, 4∗10−9, 10−9 (dotted, dashed and solid lines, respectively).
(b): The running of the dimensionful coupling G(k) obtained by setting, at k = Λ = 1,
GB = Gc+10−5 and mB = 10−8, 4∗10−9, 10−9 (dotted, dashed and solid lines, respectively).
All quantities are expressed in cut-off units.

In order to understand better the physics related to these two types of trajectories, the

flows of the corresponding dimensionful running mass m(k) and Fermi constant G(k) is

considered. The RG equations for m(k) and G(k) can be obtained from Eqs. (3.127) and

(3.128) by noting that: m(k) = km(t) andG(k) = G(t)/k2. Alternatively, these equations

can be directly calculated from Eq. (3.100) by truncating the dimensionful potential U(σ)

as: U(σ) = m(k) σ − G(k)
2
σ2. Specifying to the d = 4 case, it it found (NG is redefined

as G):

dm

dk
= − k3

2π2

Gm

k2 +m2
, (3.129)

dG

dk
= − k3

2π2

G2 (k2 −m2)

(k2 +m2)2
. (3.130)

Now the present task is to solve Eqs. (3.129) and (3.130) numerically. Before doing

that, however, it is worth noting that, although it is not possible to find the exact solution

for this system, it is easy to get the asymptotic IR (k → 0) and UV (k → ∞) analytical

behaviour for m(k) and G(k):

k → 0 : m(k) ∼ m = Const. ; G(k) ∼ G = Const. (3.131)

k → ∞ : m(k) ∼ 1

k2
; G(k) ∼ 1

k2
. (3.132)
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This asymptotic behaviour can be easily checked against the numerical solutions presented

in Figs. 3.3 and 3.4.

Now the Eqs. (3.129) and (3.130) are numerically solved. By choosing at the UV

boundary k = Λ an infinitesimal value for the bare mass m(Λ), the running of the equa-

tions is considered once for G(Λ) < 1/Λ2 and once for G(Λ) > 1/Λ2 (remember that

Gc = 1 for our choice). The units are so chosen that Λ = 1. The results for the run-

ning of m(k) are shown in Fig. 3.3. In the left panel (a) the solutions obtained by taking

G(Λ) < 1/Λ2 are presented for different values of m(Λ), in the right panel (b) those for

G(Λ) < 1/Λ2 are related to the same values of the bare masses.

By comparing the figures in these two panels, it immediately found that the smaller

the initial (UV) value of the bare mass, the larger the difference between the renormalized

masses, i.e. the values of m(k) at k = 0.

Physically this is very interesting. It means that if in the UV (k = Λ) an infinitesimal

value for the bare mass m(Λ) is set, when G(Λ) < 1/Λ2, the renormalized mass m(k = 0)

turns out not to be much different from the initial bare value. On the contrary, when

G(Λ) > 1/Λ2, a magnification mechanism triggers the generation of a finite value for the

fermion mass.

Let us look, for instance, at the continuous line in Fig. 3.3(b). Starting from the UV,

one should observe that, for a long RG time, m(k) runs very close to the m = 0 axis. At

a certain value of k, however, it climbs up steeply to its IR (renormalized) value. From

the continuous line in Fig. 3.3(a), the corresponding picture for G(Λ) < 1/Λ2, one can see

that in this case no such mechanism is operating.

In Fig. 3.4 the corresponding flows for the running of G(k) are presented. The left

panel (a) shows the G(Λ) < 1/Λ2 case, the right panel (b) the G(Λ) > 1/Λ2 one. The

continuous lines in Figs. 3.4(b) and 3.3(b) are obtained for the same boundary values of

G and m. The running Fermi constant G(k) has a peak in correspondence of the “step”

in m(k).

Turning back to Fig. 3.1, where the flows were studied in the plane of the dimensionless

parameters m(t) and G(t), one can understand that the elongated horizontal bells on the

right of the G = Gc axis are the reflection of the steepness of m(k) (and the peak of

G(k)) at a finite value of k . They are more or less elongated according to the degree of

steepness of m(k) (and to the height of the peak of G(k)), which in turn depends on the
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value of the bare mass.

The physical picture of what was found should be clear by now. This is the presence

of a crossover phenomenon. As in the case of the strict unbroken-broken phase transition,

for values of GB greater than a critical value, the fermion system is unstable against

quantum fluctuations. The presence of an even infinitesimal bare fermion mass triggers

an amplification mechanism which resolves the instability through the generation of a

finite fermion mass.

In our opinion, such a mechanism is physically more grounded than the picture ob-

tained with a strictly vanishing mB. The reason is explained in the following. Apart

from the Theory of Everything (TOE), every quantum field theory (QFT) is an effective

theory valid up to a certain scale Λ, the physical cut-off. Actually, QFTs are organized

in a hierarchical manner, each having a lower and lower range of validity. The way the

TOE gives rise to this chain of lower-energy effective theories is easily pictured if one

thinks of the RG flow in the TOE coupling constants space. This flow emanates from

the UV fixed point of the TOE. Following the Wilson-Kadanoff approach, in the original

(UV) lagrangian any coupling constant should be considered, i.e. any operator, whatever

is needed in physics, even those of condensed matter 4. The RG flow (the renormalized

trajectory) then dictates the relevance or irrelevance of the different coupling constants

in the various energy regimes. In its way towards the infrared, the renormalized trajec-

tory actually approaches several fixed points. These points create basins of attractions

for the RG flow, so giving rise to the lower energy theories as the electroweak theory,

QCD, QED, ... Within such a Wilson-Kadanoff picture, operators which are relevant in

a certain energy regime become irrelevant at different scales and vice-versa [58].

In the present case, a non-trivial fixed point for a simple fermion theory was found.

Within the above picture, this means that there is a certain energy range where the flow

is governed by this fixed point. The RG trajectory passes close to this point. There-

fore, when the renormalized trajectory is in this region, the mass term is very small,

although not strictly vanishing. As has been seen above, if one also has a bare value of

the Fermi constant greater than a certain value, then a dynamical mechanism is operating

to generate a finite value of the fermion mass.

4Naturally, all these terms are generally complicated composite operators in terms of the fundamental
degrees of freedom of the TOE.
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Figure 3.5: Different phase diagrams showing the normalized mass (a) and the vev
〈

ψ̄ψ
〉

(b) as functions
of τ = 1/GB − 1/Gc. The different lines correspond (from top to bottom) to the choices:
mB = 10−1, 5 ∗ 10−2, 10−4. All quantities are expressed in cut-off units.

What was found is reminiscent of what happens in the ferromagnetic case. In the

presence of a weak external magnetic field, if the temperature is higher than the critical

temperature, T > Tc, the spin alignment is just the one produced by the weak magnetic

field. A weak magnetization of the ferromagnetic material, which is basically of the

same order of the applied external field, should be observed. On the contrary, when the

temperature is lower than the critical temperature, T < Tc, due to large fluctuations, an

even infinitesimal external field h can trigger a macroscopic alignment of spins, so that

the resulting magnetization of the ferromagnetic material is macroscopic, much greater

than the applied external field.

In this respect, it is interesting to note that, if a two dimensional Ising model is

considered, where in addition to the nearest-neighbourhood interactions the magnetic

field coupled to the spins is taken into account, the RG trajectories in the (J, h) plane

closely resemble the RG trajectories in the (G,m) plane [35].

Finally, in order to appreciate better how this cross-over picture contains all the phys-

ical features of a phase transition, the dependence of the physical fermion mass on the

“reduced temperature” τ = 1/GB − 1/Gc is studied. In the analogy with the ferromag-

netic transition, this corresponds to the dependence of the magnetization M on T − Tc.

Alternatively, as in the Hartree approximation one can easily obtain the relation

m = mB −GB

〈

ψ̄ψ
〉

, (3.133)

120



3.4 The scaling of the GN model in the Large N limit

and also consider the dependence on τ of
〈

ψ̄ψ
〉

. The results are shown in Fig. 3.5, where it

is possible to see how, depending on the value of mB, the system passes from a smoother

cross-over picture to a sharper one (for smaller values of mB), the latter having all the

features of a strict symmetry breaking transition, actually being indistinguishable from it

for very small values of mB. In the authors’ opinion, Fig. 3.5 clearly shows how this cross-

over picture is perfectly suited for implementing the phase transition, with the consequent

dynamical generation of fermion masses.

In the coming Section, it is shown that it is possible to find very good approximate

analytical solutions to our RG equations, thus providing the profile of m(k) (and G(k))

in the whole k range.

3.4.4 Analytical approximations to the RG equations

In the previous section the numerical solutions of Eqs.(3.129) and (3.130) were studied

and it was found that the chiral transition is described in a very satisfactory manner in

terms of a cross-over phenomenon.

Now it will be shown how different degrees of analytical approximations to our RG

equations can be obtained. At first, it will be seen that it is possible to reproduce the NJL

result with a simple approximation, which (for obvious reasons) is called the NJL approx-

imation. Despite of its simplicity, this approximation contains the qualitative features

which describe the chiral transition.

For the present analysis, this is an important point. On the one hand, it shows that the

NJL (non-perturbative) approach is already efficient in grasping the physical mechanism

behind the dynamical breaking of the symmetry, i.e. in describing the physics of the

transition. On the other hand, it will be shown that the NJL result is well understood

as an approximate solution to the RG equations, which are naturally designed to take

into account, in a systematic manner, the non-perturbative dynamics of the quantum

fluctuations responsible for the transition.

Finally, higher order analytical approximations are considered, which reproduce not

only the qualitative but also the quantitative predictions of the full RG equations.
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NJL approximation

First of all the NJL approximation is considered. Their well known gap equation

is easily obtained from Eq. (3.129) for the dimensionful mass m(k) once for the r.h.s.

(right-hand-side) of this equation the two approximations indicated in the following are

considered.

In the previous section, the IR and the UV asymptotic behaviour of m(k) and G(k)

was found. In particular, it has been seen that the solution to the equation for G(k) in

the UV gives: G(k) ∼ 1/k2. By considering now a UV scale k = Λ, the running Fermi

constant G(k) in the r.h.s. of Eq. (3.129) is approximated with its UV value G(Λ).

The second step of this approximation consists in replacing in the r.h.s. of Eq. (3.129)

the running mass m(k) with its IR value m = m(0). This latter approximation can be

partially justified for the denominator k2+m(k)2. In fact, in the IR the dominating term

is the mass term, which has already almost saturated to its IR value m2, while in the

UV the dominating term is k2 (and the actual value of m(k)2, which anyhow in the UV

vanishes as 1/k2) does not really matter. As for the numerator, this approximation is

justified only in the IR. As already noted, in fact, in the UV the mass runs as 1/k2.

None of these approximations for m(k) and G(k) can be justified in the entire IR-

UV range. As was anticipated, however, despite the fact that these are somehow crude

approximations, they retain some of the important features of the non-perturbative RG

equations. For this reason, they are able to grasp the fundamentally non-perturbative na-

ture of the dynamical mechanism which is responsible for the transition from the unbroken

to the broken phase.

Then by inserting these approximations in the r.h.s. of Eq. (3.129). Defining the

dimensionless Fermi constant G̃Λ = GΛΛ
2, Eq. (3.129) is then approximated as:

dm(k)

dk
= − k3

2π2
m
G̃Λ

Λ2

1

k2 +m2 . (3.134)

Integrating this equation between k = 0 and k = Λ one obtains:

m (Λ)−m (0) = −mG̃Λ

4π2

[

Λ2 −m2ln

(

1 +
Λ2

m2

)]

. (3.135)

Eq. (3.135), where m(0) is nothing but m, is already the NJL result. In fact, once one

identifies m(Λ) with the bare mass, m(Λ) = mB, and note that Λ2/m2 >> 1, Eq. (3.135)
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is immediately written as:

m−mB =
mG̃Λ

4π2

(

1− m2

Λ2
ln

Λ2

m2

)

, (3.136)

Finally, if the bare mass vanishes, which is the requirement for a massless chiral invariant

bare theory, it is obtained:
4π2

G̃Λ

= 1− m2

Λ2
ln

Λ2

m2 , (3.137)

which is indeed the celebrated NJL result. For values of G̃Λ greater than Gc = 4π2,

Eq. (3.137) admits a non vanishing solution for the fermion mass m, while for values of

G̃Λ smaller than Gc = 4π2, the only solution for m is m = 0.

Although Eq. (3.137) does not provide a profile function for the running mass m(k),

still, through the connection between the UV value of the mass m(Λ) = mB = 0 and

its IR value m(0) = m, the transition from the unbroken to the broken phase can be

described. It is worth noting that a non vanishing solution for m can also be found for

non-vanishing values of m(Λ) = mB. This is somewhat closer in spirit to our result,

where it was shown that for finite values of the scale Λ, m(Λ) is of order 1/Λ2 rather

than being strictly vanishing. Again it is important to stress that, even though the entire

profile of m(k) is missing (which is intrinsically in the nature of the approximation that

we are considering), the possibility of it still being in one of the two phases is given by

the connection between the UV value of the mass m(Λ) and the corresponding IR value

m.

Beyond the NJL approximation

Now it is shown that it is possible to find approximate analytical solutions to Eqs. (3.129)

and (3.130) which go beyond the NJL approximation considered in the previous subsec-

tion and provide, to some extent, quite accurate estimates of the exact numerical results

that we found in Section 5. For the sake of definiteness, again the d = 4 dimensions are

chosen, although the following reasoning applies to any dimension.

For the readers’ convenience, Eqs. (3.129) and (3.130) are written again:

dm

dk
= − k3

2π2

Gm

k2 +m2
, (3.138)

dG

dk
= − k3

2π2

G2 (k2 −m2)

(k2 +m2)2
, (3.139)
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where, as already noted, N has been absorbed in the redefinition of G.

First of all the Eq. (3.139) is considered. It has already been noted (see Eqs. (3.131)

and (3.132)) that for k → ∞,m(k) ∼ 1/k2 and for k → 0,m(k) ∼ m = Const.. Therefore,

one should expect that, if in the r.h.s. of Eq. (3.139), m(k) is replaced with its IR value

m, a quite good approximation to this equation should be found. In the UV regime, in

fact, k2 is by far the dominant term when compared to m(k)2 and it should not change

much either the actual value m(k) or the approximated one, m are considered. In the IR,

on the other hand, m(k) converges to m. Therefore, in these asymptotic regimes (IR and

UV), this is certainly a good approximation. Clearly, one cannot expect that it describes

the intermediate regimes with the same degree of accuracy , i.e. the region of k where

m2(k) is of the order of k2. As will be seen, however, it still provides a profile for G(k)

which is in good qualitative and quantitative agreement with the exact numerical results.

Performing then this replacement in Eq. (3.139), the integration is easily done and one

obtains:

G(k) =
G

1 + G
4π2

[

k2 − 3m2ln
(

1 + k2

m2

)

+ 2m2 − 2m4

k2+m2

] , (3.140)

where G is the IR value of G(k) : G = G(k = 0).

It is easy to see that the IR and UV limits of Eq. (3.140) are:

k → 0 : G(k) ∼ G+
G

2

8π2m2k
4 (3.141)

k → ∞ : G(k) ∼ 4π2

k2
, (3.142)

in agreement with the expectations. Some comments on these results.

First of all it can be noted that Eq. (3.140) has a maximum for k = m. If this result

is compared with the numerical solutions for G(k) and m(k) shown in Figs. 3.4(b) and

3.3(b), one can see that, while it is true that the maximum of G(k) is obtained for k of

the order of m, the actual value kmax where G(k) has a maximum does not coincide with

m. As one can see from Fig. 3.3(b), kmax is also close to the inflection point of m(k): in

the region around these values of k, the flows of m(k) and G(k) change from their UV

to their IR scaling. Actually, for lower values of k, m(k) and G(k) rapidly saturate to

their IR values. This latter observation is a general feature of the RG flow equations.

When the flows reach the region where m2(k) is of the order of k2, the coupling constants

rapidly saturate to their IR values so that they get practically frozen.
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Figure 3.6: The numerical solution (solid line) of Eq. (3.139) for the broken phase where mB = 10−8

and GB = Gc + 10−5 = 1 + 10−5 (m = 4.50 · 10−3, G = 1.61 · 105 ) and the corresponding
analytical approximation (dashed line) Eq. (3.140).

The fact that the maximum of G(k) is not exactly at k = m clearly shows what

was observed above: in the intermediate region, the analytical approximation Eq. (3.140)

cannot reproduce all the quantitative details of the exact G(k) profile (in the IR and in

the UV, on the contrary, as shown in Eqs. (3.141) and (3.142), Eq.(3.140) provides a very

good approximation for G(k)).

However, as shown in Fig. 3.6, where the numerical solution of Eq. (3.139) is compared

with the corresponding approximation Eq. (3.140) for m = 4.50 · 10−3 and G = 1.61 · 105,
the two curves are in quite good agreement. They coincide in the IR and UV ends, while

in the intermediate region the analytical approximation somehow overestimates G(k).

From Eq. (3.141) it has been seen that, near k = 0, G(k) is always increasing. As

it is known that, for higher values of k, this function decreases, it is clear that G(k)

has always a maximum. The location of the maximum and the height of G(k) at the

maximum depend on m. In Section 5, where our cross-over picture was presented, it was

learned that infinitesimal values of the IR mass m correspond to the unbroken phase.

In this case, the maximum is a hardly detectable disturbance on the top of the already

saturated value G of G(k) in the IR region (see Fig. 3.4 (a)). Finite values of the IR mass,

on the contrary, correspond to very pronounced maxima for G(k) (see Fig. 3.4 (b)) and

are related to the broken phase. For the limiting case m→ 0, the maximum is reached at
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k = 0. In this case, in fact, replacing m = 0 in Eq. (3.139), this equation can immediately

be integrated and gives:

G(k) =
G

1 + G
4π2k2

=
4π2

k2 + 4π2

G

=
4π2

k2 +M2
1

, (3.143)

where M2
1 = 4π2

G
has been defined.

Now Eq. (3.138) is considered. In the IR region, where G(k) and m(k) have essentially

saturated to their IR values G and m, Eq. (3.138) can be approximated with:

dm(k)

dk
= − G

2π2m
k3, (3.144)

which is immediately integrated:

m(k) = m− G

8π2m
k4 . (3.145)

Eq. (3.145) gives the behaviour of m(k) near k = 0 and shows the way m(k) approaches

m at k = 0. As for the UV region, it is already known that in the r.h.s. of Eq. (3.138) it

is possible to replace G(k) with 4π2

k2
and neglect m(k)2 in the denominator. The solution

in this region is then:

m(k) = m(k∗)
k2∗
k2
, (3.146)

where k∗ is any UV value of k, i.e. a value of k where the above UV approximations for

m(k) andG(k) are valid. In Eq. (3.146), m(k∗) k
2
∗ is the integration constant. As in solving

Eq. (3.138) it has already used the boundary condition m(k = 0) = m (see Eq. (3.145)),

this constant is virtually known. The reason why, at this stage, it is unknown is that the

UV approximation of Eq. (3.138) has been integrated and the matching condition between

this UV tail of m(k) and its IR part is unknown, Eq. (3.145). As long as these asymptotic

(IR and UV) regions are considered, it cannot do better.

In order to get an analytical approximation for m(k) in the whole range of k, one could

try to integrate Eq. (3.138) where in the r.h.s. G(k) is replaced with its approximation

given by Eq. (3.140). The resulting equation, however, is still too complicated and an

analytical solution to this equation was not still found.

Nevertheless, a very good approximation of Eq. (3.140) can be considered which is

suited for our aim of making the analytical integration of Eq. (3.138) possible. This

is obtained by dividing the whole [0,∞) k range in three regions: an IR [0, k1], an
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3.4 The scaling of the GN model in the Large N limit

intermediate [k1, k2] and a UV [k2,∞) region. In the first region, G(k) is approximated

with G. In the intermediate region,G(k) is approximated with the Lorentzian which is

obtained by expanding the denominator of Eq. (3.140) around kmax = m up to quadratic

terms in k. In the UV region, G(k) is approximated by 4π2

k2
. Therefore, the approximation

to Eq. (3.140) is:

G(k) = Gθ (k1 − k) +
8π2θ (k − k1) θ (k2 − k)

(k −m)2 +M2
2

+
4π2θ (k − k2)

k2
, (3.147)

where

M2
2 =

8π2

G

(

1 +
Gm2

4π2
(2− 3ln2)

)

(3.148)

The values of k1 and k1 are chosen in such a way that Eq. (3.140) is well reproduced by

Eq. (3.147).

Inserting Eq. (3.147) in Eq. (3.138) and replacing in the denominator of the r.h.s. of

this latter equation m(k) with m, Eq. (3.138) is easily integrated. The result is:

m(k) = m exp

(

−θ (k1 − k)
G

4π2

(

k2 −m2ln

(

1 +
k2

m2

))

− θ (k − k1) θ (k2 − k)
2

4M2m
4 +M5

2

(

M5
2 ln

(

1 +
k2 − 2km

m2 +M2
2

)

+ 4M2m
4

(

ln

(

1 +
k2 − 2km

m2 +M2
2

)

+ tan−1

(

k

m

))

+ M3
2m

2

(

ln

(

1 +
k2 − 2km

m2 +M2
2

)

− ln

(

1 +
k2

m2

))

+ 2M4
2m

(

tan−1

(

k −m

M2

)

+ tan−1

(

m

M2

))

− 2M2
2m

3

(

tan−1

(

k −m

M2

)

+ tan−1

(

m

M2

))

+ 4m5

(

tan−1

(

k −m

M2

)

+ tan−1

(

m

M2

)))

− θ (k − k2) ln

(

k2

m2 + 1

))

. (3.149)

In Figs. 7(b) and 8(b) two specific examples for Eq. (3.149) are plotted by considering the

same values of G and m used in Fig. 3.6 (broken and symmetric phase respectively).

First of all the broken phase is considered. In Fig. 3.7(a) three curves are shown which

reproduce the numerical solution of Eq. (3.139) (solid line), the corresponding analytical
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Figure 3.7: (a) The dotted line is the approximation to G(k) given in Eq. (3.140), in the broken phase,
for m = 4.50 · 10−3 and G = 1.61 · 105. The dashed line is the approximation to Eq. (3.140)
given in Eq. (3.147) with the appropriate choice of k1 and k2. For comparison, the numerical
solution (solid line) of Eq. (3.139) is also plotted. The values of m and G are as in Fig. 3.6.
(b) The dashed line is the analytical approximation to m(k) given in Eq. (3.149) for the same
values of the parameters. The corresponding numerical solution (solid line) to Eq. (3.138) is
also plotted.

approximation Eq. (3.140) (dotted line) and the approximation of Eq. (3.140) (dashed

line) given by Eq. (3.147) obtained with the values of G and m used in Fig. 3.6. From

Fig. 3.7(a), it is clear that Eq. (3.147) provides a very good estimate of Eq. (3.140).

In Fig. 3.7(b) the analytical approximation to m(k) is plotted Eq. (3.149) (dashed line)

(which is related to Eq. (3.147) plotted in Fig. 3.7(a) (dashed line)) and it is compared with

the corresponding numerical result (solid line). From the above findings, it is immediately

clear that the approximated analytical solution is in excellent agreement with the exact

profile of m(k).

Now the symmetric phase is taken into account. Again the values of m and G, consid-

ered in Fig. 3.6, are chosen. In Fig. 3.8(a) four curves are shown: the numerical solution

of Eq. (3.139) (solid line), the analytical approximation Eq. (3.140) (dotted line), the ap-

proximation given in Eq. (3.147) of Eq. (3.140) (dashed line) and finally the approximation

Eq. (3.143) (dotted-dashed line). One can note that in this case, in addition to Eq. (3.147),

Eq. (3.143) provides quite a good approximation to Eq. (3.140) too. The reason has been

explained above (see the discussion leading to Eq. (3.143)). For the symmetric case,

it is then possible to consider another analytical approximation for m(k) if one solves
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3.4 The scaling of the GN model in the Large N limit

Eq. (3.138) by inserting in this equation the approximation Eq. (3.143) for G(k). More

precisely, if this replacement is performed and, in addition, in the denominator of the

r.h.s. of Eq. (3.138) m(k) with m is replaced, this latter equation is easily integrated and

(M2
1 = 4π2

G
) is found:
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Figure 3.8: (a) The dotted line is the approximation to G(k) given in Eq. (3.140), in the symmetric phase,
for m = 8.22 · 10−4 and G = 7.15 · 104. The dashed line is the approximation to Eq. (3.140)
given in Eq. (3.147) with the appropriate choice of k1 and k2. For comparison, the numerical
solution (solid line) of Eq. (3.139) is also plotted. The dotted-dashed line is the approximation
of G(k) given by Eq. (3.143). (b) Dashed line: analytical approximation, Eq. (3.149), to m(k)
for the same values of the parameters. Solid line: the corresponding numerical solution,
Eq. (3.138). Dotted-dashed line: analytical approximation, Eq. (3.150), to Eq. (3.138).

m(k) = m exp



−
M2

1 ln
(

1 + k2

M2
1

)

−m2ln
(

1 + k2

m2

)

M2
1 −m2



 (3.150)

In Fig. 3.8(b) the analytical approximation Eq. (3.149) to m(k) (dashed line) is shown,

this is obtained with the help of the analytical approximation Eq. (3.147) for G(k) and

the analytical approximation Eq. (3.150) (dotted-dashed line) obtained with the help of

the analytical approximation Eq. (3.143). These two curves are compared with the corre-

sponding numerical solution (solid line) to Eq. (3.138). Once again, one can see that the

correspondence between the exact results and the analytical approximations is excellent.

Before ending this section, it will be shown that an analytical approximation to

m(k) can also be obtained by noting that the specific form of the approximate solu-

tion Eq. (3.140) to Eq. (3.139), together with all the previous considerations and results.
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This suggests that one could try to approximate G(k) with a Lorentzian profile of the

kind:

G (k) =
4π2

(k − a)2 +M2
3

, (3.151)

where a serves to locate the value of k for which G(k) has a maximum (which is vanishing

or essentially vanishing for the “symmetric phase”), and M3 allows the determination of

the IR value of G(k).
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Figure 3.9: (a) The analytical approximation, Eq. (3.152), to m(k) (dashed line), for the broken phase,
is compared with the corresponding numerical solution (solid line) plotted in Fig. 3.7(b):
a = 3.26 · 10−3 and M3 = 1.94 · 10−3. (b) The same approximation, Eq. (3.152), to m(k)
(dashed line), for the symmetric phase, is compared with the corresponding numerical solution
(solid line) plotted in Fig. 3.8(b): a = 0 and M3 = 3.31 · 10−3.

If the above approximation for G(k) is now plugged in the RG equation for m(k),

Eq. (3.138), where again in the r.h.s. m(k) is frozen to its IR value m, Eq. (3.138) can be

solved and gives:

m (k) = m exp

(

− 1

a4+2a2(m2+M2
3 )+(m2−M2

3 )
2 (m

2 (−a2 +m2 −M2
3 ) ln

(

k2

m2 + 1
)

+ (a4 + a2 (3m2 + 2M2
3 )−m2M2

3 +M4
3 ) ln

(

k2−2ak
a2+M2

3
+ 1
)

+
2a(a4+a2(m2+2M2

3)−3m2M2
3+M

4
3)

M3

(

tan−1
(

k−a
M3

)

+ tan−1
(

a
M3

))

+4am3 tan−1
(

k
m

)

)
)

. (3.152)

This analytical approximation form(k) can be checked against the numerical solutions

shown in Figs. 3.7(b) and 3.8(b) for the broken and the symmetric phase respectively.
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In the left panel of Fig. 3.9 the numerical solution of Eq. (3.138) in the broken phase,

where, in cut-off units, GB = Gc + 10−5 = 1 + 10−5 and mB = 10−8, is compared with

the corresponding analytical solution obtained for a = 3.26 · 10−3 and M3 = 1.94 · 10−3.

Note that the IR values of G(k) and m(k) are: G = 1.61 · 105 and m = 4.50 · 10−3. As

the broken phase is considered, m turns out to be order of magnitudes greater than the

bare mass. As one can easily see, the two profiles are almost superimposed. In the right

panel, the system in the unbroken phase is taken into account and the exact numerical

solution (where, in cut-off units, GB = Gc − 10−5 = 1 − 10−5 and mB = 10−8) has been

compared with the corresponding analytical approximation Eq. (3.152) obtained for a = 0

and M3 = 3.31 · 10−3.

The above results show that replacing G(k) with Eq. (3.151) provides a very good

analytical profile for m(k), given by Eq. (3.152), once the appropriate values of a and M3

are taken into account. Moreover, the IR and UV limits of the analytical approximation

to m(k) as given by Eq. (3.152) show quite interesting features.

Indeed, by expanding Eq. (3.152) for small values of k one finds:

m(k) ∼ m− k4

2m (a2 +M2
3 )
, (3.153)

which is exactly the result previously obtained, Eq. (3.145), once it is noted that, in the

notations of this section, G = 4π2

a2+M2
3
. On the other hand, for large values of k:

m(k) =
m

(M2
3 )

−α(a2 +M2
3 )

−β

1

k2
, (3.154)

where:

α =
m2(−a2 +m2 −M2

3 )

a4 + 2a2(m2 +M2
3 ) + (m2 −M2

3 )
2
,

β =
a4 + a2(3m2 + 2M2

3 )−m2M2
3 +M4

3 )

a4 + 2a2(m2 +M2
3 ) + (m2 −M2

3 )
2
,

α + β = 1 . (3.155)

Eq. (3.154) is quite interesting as it not only provides the already known correct asymp-

totic behaviour of m(k) for large values of k, m(k) ∼ 1/k2 (Eq. (3.146)), but also gives

the coefficient of 1/k2 in terms of the IR parameters of the theory. As already noted, the

coefficient of 1/k2 in Eq. (3.146) could not be determined because the m(k) profile in the

intermediate region is unknown. As Eq. (3.154) is the UV limit of Eq. (3.152), which is an
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approximation to m(k) in the whole k range, this coefficient, which is a parameter that

characterizes the UV behaviour of the theory, is now known and given in terms of the IR

parameters of the theory. This provides a interesting example of the IR-UV connection

that has been already mentioned in this work.

Finally, one can note that Eq. (3.152) appears to be a very good fit for both the

unbroken and the broken phases, the unbroken one being obtained by taking a = 0.

3.5 Critical exponents for small N values

The analysis of the critical behaviour of the GN model for small values of N is con-

sidered. Different analytical methods have been introduced in order to deal with the χSB

phenomenon. However each of these methods has a very definite applicability limit. As

an example the critical exponents calculated in the framework of the 1/N expansion were

shown in Sec. 2.3.2, while those computed with the ǫ expansion method were presented in

Sec. 3.2.4. These two techniques can be compared by performing a double expansion in ǫ

and in 1/N ′. Consistently it is found:

ν =
1

2
+
ǫ

4
+

3

2

ǫ

N ′
+ . . . (3.156)

ησ = ǫ− 6
ǫ

N ′
+ . . . , (3.157)

for both the cases. On the other hand the region when d = 3 and N is very small needs

another tool to be explored. In this sense the Wilsonian RG group could compensate for

this lack.

Clearly this method is also limited by its own approximations which rely on the deriva-

tive expansion as explained in Sec. 3.3.2. However far from the upper critical dimension

one should expect that the derivative contributions can be discarded since, as was sug-

gested in the previous chapter, they do not play any role in determining the critical

behaviour.

The complete version of Eq. (3.101) can be calculated by writing the Eq. (3.99) in

terms of dimensionless quantities. It is found:

∂

∂t
V = d V − (d− 1)σVσ − CdNtr Iln

(

1 + V 2
σ

)

+ Cdln

(

1 +
2σVσVσσ
1 + V 2

σ

)

, (3.158)
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Then by considering again the truncation for the potential V (σ, t) with the mass term

and the Fermi coupling only the following system is worked out:

dm

dt
= m+

2Ntr ICdGm

1 +m2
− 2CdGm

1 +m2
,

dG

dt
= (2− d)G+

2Ntr ICdG
2 (1−m2)

(1 +m2)2
− 4CdG

2 (1− 2m2)

(1 +m2)2
. (3.159)

The search for a fixed point of these equations gives, as expected, two possible solutions.

The Gaussian solution, which was already found in Sec. 3.4.2, and the extension of the

non-Gaussian one, which was used for the description of the chiral transition in the Hartree

approximation. So the non-Gaussian solution is:

m = 0, (3.160)

G =
d− 2

2Cd(Ntr I− 2)
. (3.161)

(3.162)

By linearizing around this fixed point two relevant eigendirections are found. Their scaling

law is encoded in the two eigenvalues:

λm =
Ntr I(d− 1)− d

Ntr I− 2
, (3.163)

λG = d− 2. (3.164)

(3.165)

As also found in the ladder approximation, the first eigendirection coincides with the

fermion mass axis, while the second one is nothing but the G axis. The anomalous

dimension of the local operators coupled with these parameters can immediately be worked

out. One obtains:

[

ψ̄ψ
]

=
[

ψ̄ψ
]

0
− γm = 1 +

(d− 2)

Ntr I− 2
, (3.166)

[

(ψ̄ψ)2
]

=
[

(ψ̄ψ)2
]

0
− γG = 2. (3.167)

Their proportionality can be recovered in the large N limit. By using the same procedure

described in Sec. 3.4.2 the critical exponents are calculated. Indeed the eigenvalues in
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Eqs. (3.163),(3.164) can be replaced in the Eq. (3.121) thus giving:

β =
1

(d− 2)
+

1

N ′ − 2
, (3.168)

δ = (d− 1) +
d(d− 2)

N ′ − d
, (3.169)

γ = 1 +
2

N ′ − 2
, (3.170)

ν =
1

d− 2
, (3.171)

η = (4− d) +
2(d− 2)

2−N ′
. (3.172)

Near d = 2 a check of these results can be done. Indeed by performing a double expansion

in 1/N ′ and ǫ′ = d− 2 one finds:

ν−1 = ǫ′ +O(1/N ′2, ǫ
′2), (3.173)

η = 2− ǫ′ − 2
ǫ′

N ′
+O(1/N ′2, ǫ

′2). (3.174)

Which are exactly the same expressions that can be found by expanding the exponents

in Sec. 2.3.2.

One should deduce that the higher derivative terms can be really neglected near d = 2,

i.e. near the lower critical dimension of the chiral transition. On the other hand, the same

contributions cannot be discarded near d = 4, showing how the LPA is too crude near

the upper critical dimension.

However this approximation has a range of validity even wider. Indeed one could

ask what happens in the intermediate region between the lower and the upper critical

dimension, that is at d = 3. In order to test the high degree of accuracy of the LPA at

d = 3 it is possible to compare the value of the critical exponents, calculated with the

1/N expansion, with those obtained by means of the functional RG. For a large enough

N ′ both these methods give in practice the same results. This is not the case for the ǫ

expansion method, which being performed near d = 4, should not be extended up to this

range.

In advocating these statements the values of ν−1 and η, as functions of 1/N ′ and

calculated at d = 3, have been shown in Figs. 3.10 (a) and 3.10 (b) respectively.

The solid line was used for representing the value of the critical exponents given in the

large N expansion, which should provide a basis for the reliability of our original results.
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Figure 3.10: (a) The solid line shows the value of the ν−1 for different value of 1/N ′ and calculated
at the next to leading order in the 1/N expansion, as shown in Sec. 2.3.2. The dashed line
represents the same quantity calculated by means of the Wilsonian RG method, the result is
given in Eq. (3.171). The dotted line is ν−1 as provided by the epsilon expansion technique,
performed near d = 4 (Eq. (3.68). (b) The solid line shows the value of the exponent η for
different value of 1/N ′, calculated at the next to leading order in the 1/N expansion, as
shown in Sec. 2.3.2. The dashed line represents the same quantity calculated by means of
the Wilsonian RGmethod, the result is given in Eq. (3.172). The dotted line is η as provided
by the epsilon expansion technique, performed near d = 4 (Eq. (3.68)).

The dashed line gives the same exponents calculated with our RG method, while in the

dotted one they are computed with the ǫ expansion tool. The Wilsonian RG method is

nearest to the predictions of the 1/N expansion which, for sufficiently large N , should be

the best analytical approach in this dimension.

For small N value the critical exponents were computed with numerical simulations,

performed by means of Monte Carlo (MC) algorithms, in a lattice. The results for N ′ = 8

were given in [60], while at N ′ = 16 can be found in [61]. By choosing tr I = 4 they

correspond to the cases N = 2 and N = 4. The numerical results are thus compared with

the different analytical approaches respectively in Tab. 3.1 (a) and Tab. 3.1 (b). For

completeness the value of some critical exponents at N ′ = 12 (N=3) and N ′ = 48 (N=12)

are also reported in Tab. 3.1 (b) and Tab. 3.1 (c). In this comparison also the critical

exponents calculated by means of a functional RG method using a bosonized version of

the GN model are reported [62].

From these results it seems that our RG method provides a qualitative but also a very

good quantitative description of the critical region of the GN model at d = 3 even in the
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(a) N = 2

Technique ν γ γ/ν β β/ν ησ
MC simulations 1.00(4) 1.253∗ 1.246(8) 0.881∗ 0.877 0.75∗
fermion Wilsonian RG 1.000 1.333 1.333 0.833 0.833 0.667
ǫ-expansion 0.954 1.364 1.429 0.750 0.785 0.571
1/N -expansion 0.829 1.041 1.256 0.723 0.872 0.744
functional bosonized RG 0.961 1.384 1.440 0.745 0.775 0.561

(b) N = 3

Technique ν γ γ/ν β β/ν ησ
MC simulations . . . . ? .
fermion Wilsonian RG 1.000 1.200 1.200 0.900 0.900 0.800
ǫ-expansion 1.000 1.333 1.333 0.833 0.833 0.667
1/N -expansion 0.942 1.105∗ 1.174 0.860∗ 0.913 0.826∗
functional bosonized RG 1.041 1.323 1.271 0.903 0.867 0.710

(c) N = 4

Technique ν γ γ/ν β β/ν ησ
MC simulations 0.98(2) 1.131∗ 1.152 0.910∗ 0.927 0.848
fermion Wilsonian RG 1.000 1.143 1.143 0.929 0.929 0.857
ǫ-expansion 1.023 1.303 1.273 0.884 0.864 0.727
1/N -expansion 0.982 1.112 1.131 0.918 0.934 0.868
functional bosonized RG 1.010 1.228 1.213 0.910 0.901 0.789

(d) N = 12

Technique ν γ γ/ν β β/ν ησ
MC simulations . . . . .
fermion Wilsonian RG 1.000 1.043 1.043 0.978 0.978 0.956
ǫ-expansion 1.049 1.161 1.111 0.991 0.944 0.889
1/N -expansion 1.013 1.058 1.045 0.991 0.978 0.955
functional bosonized RG 1.023 1.075 1.051 0.998 0.971 0.936

Table 3.1: Some of the critical exponents as well as some of their ratios are shown in the present table
for different value of N (tr I = 4 has been set). The results obtained by applying different
analytical methods are compared. In (a) and (c) the values obtained by means of numerical
simulations are also reported.
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LPA.
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CHAPTER 4

RG ANALYSIS OF HIGHER POWERS IN FERMION

MODELS

As in the previous chapter the χSB is analyzed , for 2 < d ≤ 4, by means of the

Wilsonian RG equation found in Sec. 3.3.3 and the results are discussed using the language

of the critical phenomena.

In the following sections the study is focused on the impact of the higher powers of

ψ̄ψ in determining the behaviour of the chiral transition.

Clearly all the results are limited to the framework of the LPA approximation. The

Eq. (3.101) (or, equivalently, Eq. (3.100)) is the starting point of the present work.

Again the Hartree approximation of the Wilsonian potential is made possible by con-

sidering fermion multiplets of the U(N) flavour group. This procedure allows the compar-

ison of the RG results with the ones found with large N techniques. There are two ways of

extending the GN model to higher local operators. Since the theory can be rephrased in

its bosonized version, the first extension is represented by the usual Yukawa theory. Some

RG results were reported in Sec. 3.2.4 and 3.2.5 with the epsilon expansion techniques.

Other approaches, always in the bosonized language, can be found [62].

Another extension is achieved by directly adding the operator (ψ̄ψ)4 to the Lagrangian

of the non-bosonized model. In the large N expansion, this second option can also be

handled with the bosonization techniques introduced in Sec.2.2.1. An example of this

procedure will be found in the first section of this chapter. The addition of several powers

of the ψ̄ψ operator is also the way in which the extension is treated by means of our RG

139



Chapter 4. RG analysis of higher powers in fermion models

method.

In the present chapter the critical region is investigated at first by discarding the

mass effects so that only even powers of the composite operator are considered in the

potential. Moreover the Hartree approximation is performed and a critical point is found

for 2 < d < 4. It will be shown that while there is a relevant eigendirection, which will

be related to the temperature of the system, and an irrelevant one.

In this sense the result is consistent with the predictions given by the Yukawa theory.

It is well known [19], [17] how the behaviour of the critical fixed point in the Yukawa

theory, describing the chiral transition, closely resembles that of the Wilson-Fisher fixed

point, which is related to the ferromagnetic transition. Clearly the two theories are very

different since they predict different critical behaviour even at d = [63]. However many

common features can be stressed. For example, the scalar mass is related, for both these

theories, to the reduced temperature of the correspondent transition. Also the behaviour

of the fixed points near d = 4 is very similar. These collapse into the origin so that both

of the two theories become trivial. Some operators which are irrelevant for d < 4 became

marginal at the upper critical dimension.

With these premises one could ask if some aspects of the triviality of the GN model

may be worked by studying how the quartic operator (ψ̄ψ)4 scales near d = 4. At this

scope the non-Gaussian fixed point found with the Wilsonian fermion RG equations, is

compared to the Wilson-Fisher fixed point near and at the four dimension. The presence

of a marginal direction found by linearizing around the critical fixed point of the GN

model is highlighted at d = 4 in the large N approximation. In this sense this point turns

out to be an example of a trivial non-gaussian fixed point at d = 4.

A more accurate analysis shows that, because of identical cancellations occurring at

d = 4, the impact of the Fock’ s terms should be taken into account. Despite this the

marginal direction is again recovered in the large N limit.

The analysis near the critical domain is also performed by the introduction of an

explicit mass term to the even powers. A cross-over picture very similar to that described

in the previous chapter is recovered.

Finally the impact of the cubic power of ψ̄ψ is considered and the results are in

agreement with those found in the literature [64].
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4.1 The quartic operator in the Large-N expansion

By applying the techniques of Sec.2.2.1 for the potential:

V (X) = −G
2
X2 +

g4
4!
X4, (4.1)

the saddle point equations turn out to be:

−g4
6
X3 +GX − Φ +K = 0, (4.2)

−X +N ′Φ

∫

ddp

(2π)d
1

p2 + Φ2
= 0. (4.3)

The request for a spontaneous symmetry breaking is achieved by setting J = 0. If the g4

coupling can be discarded the Eqs. (4.2),(4.3) are reduced to the system:

X =
Φ

G
, (4.4)

−Φ

G
+N ′Φ

∫

ddp

(2π)d
1

p2 + Φ2
= 0. (4.5)

Eq. (4.5) is nothing but the Eq. (2.81), the constraint in Eq. (4.5) resembles the relation

between the ψ̄ψ operator and the composite field. However, as is seen from Eq. (4.3), near

the critical region the system can be rewritten as:

− g4
G4

Φ3 +N ′Φ

G

∫

ddp

(2π)d
1

p2 + Φ2
+

Φ

G
≃ 0, (4.6)

X

Φ
≃ 1

G
. (4.7)

The result found in Eq. (4.7) is very similar to that shown in Eq. (2.123). It suggests the

identity:

λ

g4
≃ − g4

G4
, (4.8)

which shows that near the critical region g4 = O(1/N3) in order to be a correction to the

scaling behaviour.

4.2 RG equations for higher powers couplings

Now the impact of higher order parameters is described by means of the RG methods.

In the previous chapter the comparison between the χSB and a second order phase tran-

sition was established by thinking of the bare mass mB as a seed of an external magnetic
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field and at the Fermi coupling GB (which corresponds to the boundary value G(Λ) for

the flow of G(k) at the UV scale Λ) as the inverse of a temperature. Thus it was implicitly

understood that both these couplings were the only relevant parameters of the model.

However, this assumption relies on the hypothesis that the effect of all other couplings

near the fixed point can be neglected, or more precisely that they turn out to be irrelevant

parameters. Clearly this assumption is well corroborated by the result found with the

other analytical methods.

Inspite of this a consistent internal check of our RG approach is required by evaluating

the impact of the higher powers in the Wilsonian potential.

The expansion up to the fourth power of σ is considered. Thus the following truncation

is chosen for the potential V (t):

V (σ, t) = −m(t)σ − G(t)

2
σ2 − g3(t)

3!
σ3 +

g4(t)

4!
σ4. (4.9)

With this position, by inserting this expression into the Eq. (3.101), the RG equations

for the couplings turn out to be, in the Hartree approximation:

dm

dt
= m+

2CdGmNtr I

m2 + 1
, (4.10)

dG

dt
= (2− d)G+

2Cdg3mNtr I

m2 + 1

− 2CdG
2 (m2 − 1)Ntr I

(m2 + 1)2
, (4.11)

dg3
dt

= (3− 2d)g3 +
6Cdg3G (1−m2)Ntr I

(m2 + 1)2

− 2Cdg4mNtr I

m2 + 1
+

4CdG
3m (m2 − 3)Ntr I

(m2 + 1)3
, (4.12)

dg4
dt

= (4− 3d)g4 −
24Cdg3G

2m (m2 − 3)Ntr I

(m2 + 1)3

− 8Cdg4G (m2 − 1)Ntr I

(m2 + 1)2
+

6Cdg
2
3 (m

2 − 1)Ntr I

(m2 + 1)2

+
12CdG

4 (m4 − 6m2 + 1)Ntr I

(m2 + 1)4
. (4.13)

Starting from this result the critical behaviour of the extension of the GN model can

be studied by setting g3 = 0. However for the sake of completeness the the whole system
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is considered still for a while.

4.2.1 Fixed point and linearization

The system of Eqns. from (4.10) to (4.13) cannot be analytically solved. The first

qualitative and quantitative description of its behaviour can be given by searching for the

fixed points.

For a generic dimension 2 < d < 4 and d 6= 3 the Eqns. from (4.10) to (4.13) allow

two fixed points: the Gaussian one m = G = g3 = g4 = 0 and the non-Gaussian

m = 0,

G =
d− 2

2Ntr ICd
,

g3 = 0,

g4 =
3(d− 2)4

4(d− 4)N3tr I3C3
d

. (4.14)

Both these fixed point are the natural extension of those found in Sec. 3.4.2 for the m

and G couplings alone.

It can be observed that the fixed point value for the couplings associated with odd

powers of σ, that are m and g3, is always zero, while the couplings related to the even

powers are non-vanishing.

Some important details are needed. By explicitly studying the equations Eqs. from

(4.10) to (4.13) at d = 3, an infinite number of fixed point solutions is found By replacing

in Eq. (4.12) the fixed point values for m and G given in Eqs. (4.14),(4.14) a multiplicity

of solutions is obtained due to an identical cancellation in the equation itself. Clearly

this is an unpleasant result since a fixed point preserving the chiral symmetry is required.

However this degeneracy disappears in the right and in the left limit for d→ 3. Moreover

this problem is simply circumvented when also the Fock’s contributions are taken into

account. It can be anticipated that this identical cancellation simply reveals that the

cubic operator is marginal at d = 3. More on this point will be clarified later.

Similar to what was found at d = 3, by considering the Eqs. (4.10) in the case d = 4

and by replacing in Eqs. (4.13 the values given in Eqs. (4.14),(4.14) for m,G and g3 ) a

residual term of order 1/N3 is left which prevents the beta function to vanish .

This seems to be an even worse result than that obtained at d = 3. However also in

this case the identical cancellation is related to the appearance of a marginal direction.
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A deeper insight in these statements needs the evaluation of the eigenvalues related

to the linearization of the RG equations.

First of all by linearizing around the Gaussian fixed point, it is found:

λ1 = 1,

λ2 = 2− d,

λ3 = 3− 2d,

λ4 = 4− 3d. (4.15)

As shown in Sec. 1.6.5 these exponents, are related to the canonical dimension of each

coupling.

On the other hand the linearization around the non-Gaussian fixed point given in Eqs.

(4.14) returns:

λ1 = d− 1,

λ2 = d− 2,

λ3 = d− 3,

λ4 = d− 4. (4.16)

It is important to stress that the eigendirections associated with these eigenvalues do

not coincide with the canonical basis but are the vectors:

v1 =

(

2(d− 4)C2
d

3(d− 2)3
, 0, 1, 0

)

,

v2 =

(

0,−(d− 4)C2
d

6(d− 2)3
, 0, 1

)

,

v3 = (0, 0, 1, 0) ,

v4 = (0, 0, 0, 1) . (4.17)

At d = 3 the eigenvalue λ3 vanishes as a clear signal that its corresponding operator,

v3, is marginal. Some terms disappear in Eq. (4.12), giving a multiplicity of fixed point

solutions, due to this marginal behaviour. The apparent degeneracy is just the signal that

the linearization has lost its validity.

A more accurate analysis requires the introduction of the Fock’s contributions.
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For the same reason the vanishing of the λ4 eigenvalue at d = 4 corresponds to the

marginality of the v4 direction. In this case the identical cancellation in Eq. (4.13) seems

to be related to the disappearance of the fixed point.

Actually, as will be seen, the fixed point solution also survives in the Hartree approx-

imation, but one of the coordinates of the FP becomes infinite so that a specific analysis

is needed. Although the Hartree approximation gives the correct scaling in the large N

limit the residual terms of order 1/N3 suggest that neglecting the Fock’s contribution

should not be correct.

4.2.2 Anomalous dimensions

Once the eigenvalues in Eqs.(4.16) have been computed by linearizing of Eqs. (4.10)

around the non trivial fixed point, the anomalous dimension of each composite operator

can be evaluated.

By comparing the eigenvalues in Eqs. (4.15) with those in Eqs. (4.16) the anomalous

dimensions γ1, γ2, γ3 and γ4 are derived. Clearly the anomalous dimension does not

describe the scaling of a given power of ψ̄ψ since the eigendirections do not coincide with

the canonical basis. So the anomalous dimensions are:

γ1 = d− 2,

γ2 = 2(d− 2),

γ3 = 3(d− 2),

γ4 = 4(d− 2). (4.18)

The anomalous dimensions γ1 and γ2 are equal to the γm and γG, previously cal-

culated in Eqs. (3.119),(3.120), and satisfy the relations γ2 = 2γ1. A proportionality

relation, which is a typical result of the ladder approximation [65], holds also for the

other anomalous dimensions. Indeed γ3 = 3γ1 and γ4 = 4γ1.

By knowing the anomalous dimension of each eigendirection it is possible to calculate

the scaling dimensions of the local operators arising when successive powers of ψ̄ψ are

taken into account. As explained in Sec. 3.3.1, the scaling dimension [On] of the operator

, On, associated with the eigendirection vn is given, in the LPA approximation, by:

[On] + [vn] = d. (4.19)
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By knowing the scaling dimension of the operators On the scaling of each power of

ψ̄ψ can be deduced by a simple linear combination.

Since the anomalous dimensions of the different couplings are proportional, the scaling

dimensions of the operators On are connected by proportionality relations. Indeed, they

are:

[O1] =
[

ψ̄ψ
]

0
− γ1 = 1,

[O2] = 2
[

ψ̄ψ
]

0
− γ2 = 2,

[O3] = 3
[

ψ̄ψ
]

0
− γ3 = 3,

[O4] = 4
[

ψ̄ψ
]

0
− γ4 = 4, (4.20)

where
[

ψ̄ψ
]

0
is the canonical dimension of the operator ψ̄ψ.

This means that the operator On is the n-th power of the operator O1.

By comparing these results with those found in Sec. 3.2.4 it can be noted that the

scaling dimension of the operator O1 is the same of those of the scalar operator φ of the

Yukawa near the Wilson-Fisher-Yukawa FP . This is another way of thinking that the

GN model and the Yukawa theory belong, in the large N limit, to the same universaltity

class. The impact of the quantum fluctuations destroys the classical relationship between

the elementary fields ψ and ψ̄ and the composite local operator ψ̄ψ. In this sense, the

operator ψ̄ψ (or more precisely the operator O1) plays the same role of the scalar operator

φ in the Yukawa theory.

Now, by using the relations in Eqs. 4.20, one finds that at d = 4 the scaling dimension

of O1, which does not depend on the dimension d, coincides with the canonical dimension

of the scalar operator φ at d = 4. From the point of view of the Yukawa theory or

equivalently from that of the bosonised version of the GN model (as found by the large

N techniques) this is the sign of triviality behaviour, since the scaling dimension differs

from the canonical one for a logarithmic correction.

The operatorO4 of this extended GN model is marginal as the φ4 or the φψ̄ψ operators

of the Yukawa theory are marginal. Also the marginality of the operator O4 results in

logarithmic scaling as will be shown in the following sections.

However, in the Yukawa theory at d = 4 the logarithmic divergences arise also in the

operators (∂µφ)
2 and ψ̄ /∂ψ, leading to a weak correction of the scalar and of the fermion
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fields. This correction cannot be calculated in our LPA approach but should be achievable

when some higher derivative terms are taken into account.

4.3 The impact of the (ψ̄ψ)4 operator and the critical

behaviour near d = 4

In the previous section the impact of higher couplings of the Wilsonian potential was

analyzed by linearizing the RG equations around their fixed points. It was found a non-

Gaussian FP which is an extension of that given in Sec.3.4.2. Once again, the important

features of the χSB mechanism can be found if the fixed point itself is regarded as the

critical point of a phase transition. As widely stressed the relevant directions of the fixed

point are related with the external parameters characterizing the critical domain.

At risk of repeating well known statements some of the results of the previous chapter

are summarized in order to analyze how they apply in the present case.

The critical exponents of the GN model were computed by considering both the first

and the second power in σ of the Wilsonian potential. These terms are nothing but the

mass m and the coupling G which are related respectively with the external magnetic

field and the temperature of the statistical system. The FP solution (0, Gc) was regarded

as the critical point of the transition. Setting m = 0 the system shows two different

behaviours depending on the boundary conditions chosen for the running coupling G. For

G < Gc the system flows towards the Gaussian fixed point while running mass term is

always zero; this situation characterizes the symmetric phase. On the other hand when

G > Gc the system develops an instability and the equations diverge before that the value

k = 0 is reached. This behaviour is related with the occurrence of the symmetry breaking.

In following section the statistical language will be choose as a tool for interpreting the

impact of the higher powers of ψ̄ψ. First of all the critical region is studied when the

external field (i.e. the bare mass) is strictly zero. Then the impact of a small mass term

is taken into account for extending our cross-over picture at this case.

4.3.1 Analytical solutions and linearization

First of all, only the Eq. (4.11) and the Eq. (4.13) are considered. The odd terms

as the mass or the cubic couplings have been switched off. With this assumption it was
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found:

dG

dt
= (2− d)G+ 2G2, (4.21)

dg4
dt

= (4− 3d)g4 + 12G4 + 8Gg4, (4.22)

where the G and g4 couplings have been recalled as if N, Cd, I = 1 were set. This rescaling

will also be applied to represent the trajectories in the following pictures.

The system in Eqs. (4.21),(4.22) can be exactly integrated. One finds the solutions:

G =
(d− 2)/2

1−Be(d−2)t
, (4.23)

g4 =
1

(1−Be(d−2)t)4

[

3

4

(d− 2)4

(4− d)
+ Ce(d−4)t

]

. (4.24)

for 2 < d < 4, where B and C are the two arbitrary parameters.

When B = C = 0 the system is at one of its the fixed points, which is the same

result given in Eqs. (4.14),(4.14). Thus expanding up to the first power in B and C the

Eqs. (4.23),(4.24) become:

G =
(d− 2)

2
+Be(d−2)t, (4.25)

g4 =
3

4

(d− 2)4

(4− d)
− 6

(d− 2)3

(d− 4)
Be(d−2)t + Ce(d−4)t, (4.26)

which are nothing but the linearized solutions consistent with the result found in Sec.

4.2.1.

At d = 4 the solution is instead:

G =
1

1−Be2t
, (4.27)

g4 =
1

(1− Be2t)4
[12t+ C] , (4.28)

which clearly shows that the marginality, found through the analysis of eigenvalues in

Eqs. (4.16), turns into the logarithmic behaviour of Eq. (4.28.

This supports the statement of the previous section: at d = 4 the theory is trivial.

However it is not very clear what happened to the fixed point. The Eqs. (4.14) and

Eq.(4.26) suggest that the fixed point goes to infinity along the v4 direction as d → 3.

However the Eq. (4.26) and the Eq. (4.28) are not analytically related so that further

studies are required.
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The Eq. (4.21) can be rewritten in terms of a new coordinate x = g−1
4 as:

dG

dt
= (2− d)G+ 2G2, (4.29)

dx

dt
= (3d− 4)x− 12G4x2 − 8Gx. (4.30)

Now the beta functions vanish at the point S ≡ (G = 0, x = 0), at I ≡ (G =

(d− 2)/2, x = 0) and at the point C given by:

G = (d− 2)/2, (4.31)

x =
4

3

(4− d)

(d− 2)4
. (4.32)

The last corresponds to the non-Gaussian solution in Eq. (4.14). Clearly the Gaussian

solution O ≡ (G = 0, g4 = 0) was lost, but two new solutions S and I have appeared,

representing two points at g4 = ∞. Near S the two parameters G and x scale with their

canonical dimension, while near the point I the linearization provides the eigenvalues

λG = (2 − d) and λx = 4 − d. The Jacobian matrix is diagonal for both the cases, thus

the eigendirections coincide with the canonical basis. At the d = 4 it is found that the

critical point C collapses in the fixed point solution I. Thus what happens at the upper

critical dimension becomes clear.

Thinking of the substitution g4 = x−1 as a change of coordinates one finds that, for

d < 4, the point C has a finite value if expressed in terms of the coupling g4 or of the

coupling x. It is the critical fixed point associated with χSB, the v2 vector representing

again the direction of the reduced temperature. However as d → 4 the fixed point value

expressed in the x coordinate decreases while that expressed in the g4 one increases. At

d = 4 the fixed point value in x is zero while one of the eigendirections becomes marginal.

The critical point C collapses into the point I which is at g∗4 = ∞. Finally for d ≤ 4 the

point I inherits the properties of the critical point. On the other hand the fixed point

C cannot be used for describing the chiral transition since it acquires another relevant

direction.

Investigating further on the scaling at d = 4, the Eqs. (4.31) can be explicitly solved

giving:

G =
1

1− Be2t
, (4.33)

x = (1− Be2t)4
(

x0
1 + 12x0t

)

. (4.34)
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Taking B = 0 and x0 = 0 the fixed point solution is found. At the critical point when

the coupling G is frozen at its fixed point value (G = Gc = 1), the flow of Eqs. (4.33)

becomes:

x =
x0

1 + 12x0t
, (4.35)

The flow of the x coupling in Eq. (4.35) closely resembles the behaviour of the quartic

scalar coupling or of the Yukawa one near the origin, as found in Sec.3.2.5.

4.3.2 Flows in the language of critical phenomena
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Figure 4.1: (a) Four trajectories near the non-Gaussian fixed point of the Eqs. (4.21),(4.22), which de-
scribes the χSB at d = 3, are represented in the (G, g4) plane. They are obtained by choosing
the boundaries G(t = 0) = 0.55, 0.6, 0.45, 0.45 and g4 = 1.3, 0,−1, 1.2 respectively. The
dashed lines represent the eigendirections found through the linearization. Since both these
directions are relevant the point cannot describe the χSB. (b) Four trajectories near the
Wilson-Fisher fixed point, found by analyzing the Eqs. (4.36),(4.37) at d = 5, are shown in the
(M2, λ) plane. They are obtained by choosing the boundariesM2(t = 0) = −0.25, 0.1,−0.4, 0
and λ = 0.5, 0.751.1, 1.5 respectively. The eigendirections are represented by the two dashed
lines.

Once the exact solutions of Eqs. (4.21) were found, the flows in the whole (G, g4) plane

can be analyzed by varying the dimension d.

A useful insight in the description of the χSB, by using a Wilsonian RG method,

is given by the comparison between the critical behaviour of the GN model around its

critical fixed point and that one of the scalar theory around the non-trivial Wilson-Fisher

fixed point.

The fact that the coupling G is related to the inverse of a temperature and the intro-

duction of the g4 coupling leads to an irrelevant parameter for d < 4 (marginal at d = 4)

recalls what happens to the ferromagnetic systems when a scalar mass M2 and a quartic
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coupling λ are considered. The scalar system is thus analyzed by considering the RG

equations for the scalar mass and the quartic coupling which can be found in [66]. For

simplicity, these parameters are properly rescaled so that the system takes the form:

M2′ = 2M2 +
λ

4(1 +M2)
, (4.36)

λ′ = (4− d)λ− 3λ2

4(1 +M2)2
. (4.37)

It is important to stress that the following parallel is just an analogy between the two

theories since their critical exponents are different.

The trajectories shown in Fig. (4.1) are the starting point for for the analysis at d = 3.

On the left panel ( Fig. (4.1) (a)) four trajectories in the (G, g4) plane are shown, while in

the right panel ( Fig. (4.1) (b)) the flows of the square mass M2 and the quartic coupling

λ of the scalar theory can be found.

Both these pictures show the trajectories obtained by choosing four different boundary

conditions and following the flows near the corresponding non-Gaussian fixed point. Thus

in the case of the GN model ( Fig. (4.1) (a)) the figure represents the linearization region

(and beyond) around the solution in Eq. (4.14). Conversely, for the scalar model, the flows

near the non-trivial W-F fixed point are considered [50]. The eigendirections obtained by

the linearization are represented by the dashed lines; thus each fixed point lies on the

intersection of its own lines. For the GN the line parallel to the g4 axis and passing

through the FP is the linear approximation of the critical surface. Since this space is

generated by the eigendirection related to the irrelevant parameter each flows starting

from this line falls on the fixed point.

Any other trajectory escapes from the FP by the effect of the relevant component.

This component, in the linearization region, is represented by the dashed-oblique-line; it

turns out to be the direction of the inverse temperature. Although this axis is tilted with

respect to the G axis the critical value Gc is left unchanged by the addition of the g4

parameter and also the exponent Dτ is the same. The critical line separates two possible

regions on the plane: the region with G < Gc and that one with G > Gc. The region

in which G < Gc represents the symmetric phase. Trajectories starting from this region

fall towards the origin. The origin is an attractor for the plane since both G and g4 are

irrelevant directions. For G > Gc the system is in the broken phase. After some RG
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recursions the equations diverge for a finite value of k > 0. This is the same result that

was found in Sec. 3.4.1.

In the scalar theory the direction of the temperature in the linearization region is

represented by the dashed line almost parallel to the M2 axis. This is the well known

correction to the mean-field theory which assumes a reduced temperature proportional to

the squared mass.

The other dashed line is the critical surface.

Thus a trajectory starting from the symmetric region (M2 > M2
c ) flows towards the

infrared and is flattened along the relevant axis.

After many RG recursions the M2 and the λ parameters take their Gaussian scaling.

Now the square mass can be identified with the inverse of the squared correlation length.

For M2 < M2
c the system is on broken phase as for the fermion theory it develops

an instability and the equations diverge due to the failure of a polynomial expansion

around the false vacuum. Finally it is clear that in contrast with the fermion case, here

the Gaussian fixed point is a UV attractor for the plane which is nothing but the RG

formulation of the perturbative super-renormalizability of the scalar theory in d = 3.
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Figure 4.2: (a) Four trajectories, found by running the Eqs. (4.21),(4.22) and describing the onset of the
χSB at d = 4, are represented in the (G, g4) plane. They are obtained by choosing the
boundaries G(t = 0) = 1.0002, 0.995, 1.0002, 0.995 and g4 = −63,−63, 93, 93 respectively.
The dashed lines represent the eigendirections found through the linearization. (b) Four tra-
jectories near the origin, found by analyzing the Eqs. (4.36),(4.37) at d = 4, are shown in the
(M2, λ) plane. They are obtained by choosing the boundariesM2(t = 0) = −0.1, 0.1, 0.1,−0.1
and λ = 0.1, 0.1,−0.1,−0.1 respectively. The eigendirections are represented by the two
dashed lines.

Now what happens at d = 4 can be considered. In the scalar theory the value of

the Wilson-Fisher fixed point decreases and turns out to coincide with the origin. As a

consequence, the irrelevant direction become marginal and the hyperscaling is violated
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4.3 The impact of the (ψ̄ψ)4 operator and the critical behaviour near d = 4

by the effect of the logarithmic scaling of the quartic coupling. However the quartic λ

coupling is weakly irrelevant and thus the Gaussian point can be interpreted as a critical

fixed point.

Conversely in the GN model the value of the non-Gaussian fixed point increases along

the g4 direction and goes to infinity at d = 4. What happens to the trajectories is shown

in Fig. 4.2

The fixed point C, associated with the χSB, has become G = Gc and g4 = ∞. This

result is expressed by the fact that the line G = Gc, which was previously identified with

the critical surface at d = 3, again separates the plane into a symmetric region (on the

left) and into a broken one (on the right). The component of a generic trajectory along

the G axis leaves the critical surface when t → ∞. Thus the G axis coincides with the

direction of the inverse temperature.

It was shown in Eq. (4.28) that the component of the trajectory along the g4 axis has

marginal logarithmic behaviour. The marginality of this operator cannot immediately

be related to the hyperscaling violation, although it signals the onset of the triviality

[63],[67]. As can be seen in the Fig. 4.2 and in Eq. (4.28) the marginal component is

attracted by infinity, starting with a trajectory belonging to the upper plane g4 > 0. This

shows how the fixed point C ≡ I again possesses the features of a critical point.

However starting a trajectory with g4 < 0 the “point” at g4 = −∞ is IR attractive,

thus anticipating the behaviour that will be found for d > 4.

As is well known, at d = 5 the non trivial fixed point of the scalar theory, now shown

in Fig. (4.3) (b), lies on the lower half plane λ < 0 [40]. The linearization near this point

shows how both the two eigendirections are relevant. Thus this is no more the critical

point associated with the ferromagnetic transition. Instead, the properties of the critical

point are inherited from the origin. At this fixed point, while the mass direction has

always remained relevant, the quartic coupling has become irrelevant.

However for d > 4, since the critical point is the Gaussian one, the scaling dimension

of the parameters coincides with the canonical one.

Also in the fermion theory, as can be seen in Fig. (4.3) (a), the non trivial fixed point

lies, at d = 5, on the lower half-plane. Moreover the linearization shows the appearance of

two relevant directions. As in the ferromagnetic case this fixed point cannot be interpreted

as the critical point of the transition.
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Chapter 4. RG analysis of higher powers in fermion models

Conversely the point I at G = Gc and g4 = ∞ possesses one relevant and one irrelevant

direction. It has acquired the properties of a critical fixed point for the chiral transition.
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Figure 4.3: (a) Four trajectories near the non-Gaussian fixed point of the Eqs. (4.21),(4.22) at d = 5 are
represented in the (G, g4) plane. They are obtained by choosing the boundaries G(t = 0) =
1.3, 1.3, 1.7, 1.7 and g4 = −20,−60,−100,−40 respectively. The dashed lines represent the
eigendirections found through the linearization. (b) Four trajectories near the Wilson-Fisher
fixed point, found by analyzing the Eqs. (4.36),(4.37) at d = 5, are shown in the (M2, λ)
plane. They are obtained by choosing the boundaries M2(t = 0) = 0.1, 0.3, 0.4, 0.1 and
λ = −1.5,−1,−3,−3 respectively. The eigendirections are represented by the two dashed
lines. The ferromagnetic transition is instead described by the flows near the origin.

4.3.3 Mass flow and cross-over picture

In the previous section the flows in the parameter space of the GN model were ana-

lyzed by considering only the impact of the even powers in the effective potential. This

procedure approximates well the behaviour of the flows near the non-trivial fixed point.

However, when the system is in broken phase, the equations cannot be solved up to k = 0.

They develop an instability, which resolves in a divergence of the system. In the previous

chapter it was shown how such a stiffness can be solved by the introduction of an explicit

running mass term. The explicit symmetry breaking of the model is obtained by taking

the chiral limit as explained in Sec. 3.4.3. In the following,the results of the previous

section are extended by considering the flow of a mass term m , together with those of

the Fermi coupling G and of the quartic coupling g4.

Actually, the extension is straightforward. As explained in Sec. 4.2.1 both the fixed

points of the complete system, which involves m, G and g4 are found by setting m = 0.

Thus the results of Sec. 4.3.1 and Sec. 4.3.2 show nothing but the behaviour of the other

bare parameters after that m = 0 was set as boundary. However since the m parameter

is relevant thus the whole description of the critical region needs the introduction of this
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4.3 The impact of the (ψ̄ψ)4 operator and the critical behaviour near d = 4

mass term. The behaviour of the system in the symmetric and in the broken phase
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Figure 4.4: (a) The projection in the (G, g4) plane of the two trajectories belonging to in the symmetric
region is represented. This region is defined by the linearization around the non-Gaussian
fixed point found for the system including m, G and g4 at d = 3. The flows are obtained
by choosing the boundaries G(t = 0) = 0.45, 0.45 and g4 = −1, 1.2 respectively, which
are the same given for the trajectories in the symmetric region of Fig. 4.1, and by setting
m(t = 0) = 0.1. (b) In this panel, the projection in the (G,m) plane of the two trajectories
belonging to the symmetric region is represented. The flows are obtained by choosing the
boundaries G(t = 0) = 0.45, 0.45 and g4 = −1, 1.2 respectively, which are the same given
for the trajectories in the symmetric region of Fig. 4.1, and by setting m(t = 0) = 0.1. The
trajectories in the picture closely resemble those in the symmetric region of the Fig. 3.2

is studied at d = 3, in order to compare the results with those found in Sec. 4.3.2.

The symmetric region is shown in Figs. 4.4 (a), (b). In the left panel (Fig. 4.4 (a)) two

trajectories are found to be very similar to the symmetric ones given in Fig. 4.1 (a).

They are obtained by choosing the boundary conditions for G and g4 equal to to those

given for the trajectories in Fig. 4.1 (a) and by setting m(k = Λ) = 0.1. In conclusion

the introduction of the running mass does not affect the behaviour of the system. The

projection of the trajectories in the (G,m) plane is shown in Fig. 4.4 (b). Both the flows

coincide and as expected correspond to the usual symmetric trend.

Conversely the results in the broken phase are shown in Figs. 4.5 (a), (b). In the left

panel (Fig. 4.5 (a)) one can find the two trajectories corresponding to those represented

in the broken region of the Fig. 4.1 (a).

Once again, the first are obtained by imposing for G and g4 the same boundary

conditions chosen for the latter and by setting a small boundary value for the mass (

m(k = Λ) = 0.1). However in the case of the broken phase the mass term plays a

prominent role in determining the evolution of the trajectories.

The introduction of a mass term produces in the (G,m) plane those bells shown in

Fig. 4.5 (b) thus preventing the divergence of the trajectories, as was explained in Sec.3.4.3.
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Figure 4.5: (a) The projection in the (G, g4) plane of the two trajectories belonging to in the broken
region is represented. This region is defined by the linearization around the non-Gaussian
fixed point found for the system including m, G and g4 at d = 3. The flows are obtained by
choosing the boundaries G(t = 0) = 0.55, 0.6 and g4 = 1.3, 0 respectively, which are the same
given for the trajectories in the broken region of Fig. 4.1, and by settingm(t = 0) = 0.1. (b) In
this panel, the projection in the (G,m) plane of the two trajectories belonging to the broken
region is represented. The flows are obtained by choosing the boundaries G(t = 0) = 0.55, 0.6
and g4 = 1.3, 0 respectively, which are the same given for the trajectories in the broken region
of Fig. 4.1, and by setting m(t = 0) = 0.1. The trajectories in the picture closely resemble
those in the broken region of the Fig. 3.2

Similarly, the stiffness affecting the trajectories in the broken region of the Fig. 4.1

(a) is healed by the presence of an explicit mass. Indeed, in Fig. 4.5 (a) it is shown how

such trajectories, rather than diverge, are captured by the origin thus leading the whole

system to its IR behaviour.

4.4 Higher powers in generic N

Until now the impact of the higher powers has been analyzed in the Hartree approx-

imation. This has favoured the comparison with the other analytical approaches, since

in the large N limit some aspects of the triviality of the model can be rephrased, in a

purely fermion language, by looking at the behaviour of the fermion couplings around

the non-Gaussian fixed point. On the other hand, it is natural to ask what happens be-

yond this approximation. The RG equation for the Wilsonian potential has been worked

out without any sort of expansion in the N parameter, thus the results can be trusted,

inside the range of validity of the LPA, for any value of the flavour number. Using the
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dimensionless version of the Eq. (3.99), one finds:

dm

dt
= m+

2CdGmNtr I

m2 + 1
− 2CdGm

m2 + 1
,

dG

dt
= (2− d)G+

2Cdg3mNtr I

m2 + 1
− 4Cdg3m

m2 + 1

− 2CdG
2 (m2 − 1)Ntr I

(m2 + 1)2
+

4CdG
2 (2m2 − 1)

(m2 + 1)2
,

dg3
dt

=
6Cdg3G (1−m2)Ntr I

(m2 + 1)2
+

6Cdg3G (7m2 − 3)

(m2 + 1)2

− 2Cdg4mNtr I

m2 + 1
+

6Cdg4m

m2 + 1
+

4CdG
3m (m2 − 3)Ntr I

(m2 + 1)3

+
4CdG

3m (15− 13m2)

(m2 + 1)3
+ (3− 2d)g3,

dg4
dt

= −24Cdg3G
2m (m2 − 3)Ntr I

(m2 + 1)3
+

528Cdg3G
2m (m2 − 1)

(m2 + 1)3

− 8Cdg4G (m2 − 1)Ntr I

(m2 + 1)2
+

16Cdg4G (5m2 − 2)

(m2 + 1)2

+
6Cdg

2
3 (m

2 − 1)Ntr I

(m2 + 1)2
+

24Cdg
2
3 (1− 3m2)

(m2 + 1)2

+
12CdG

4 (m4 − 6m2 + 1)Ntr I

(m2 + 1)4

− 96CdG
4 (5m4 − 9m2 + 1)

(m2 + 1)4
+ (4− 3d)g4, (4.38)

which represent the extension of the Eqns. from (4.10) to (4.13) to the region of small N

values.

Once again two fixed points are found. The Gaussian FP , which does not depend on

the flavour number N , provides the the usual scaling exponents also given in Eqs. 4.15.

The other solution is the non-Gaussian FP associated with the χSB mechanism. This is:

m = 0, (4.39)

G =
d− 2

2Cd(Ntr I− 2)
, (4.40)

g3 = 0, (4.41)

g4 =
3(d− 2)4(Ntr I− 8)

4C3
d(Ntr I− 2)3(Ntr I(4− d) + 10d− 24)

. (4.42)

It is important to stress that the fixed point solution is found at any value of 2 ≤ d ≤ 4

and without presenting the pathologies found in the Hartree approximation. Despite
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this the fourth dimension is very special and again can be regarded as the upper critical

dimension for the chiral transition. The linearization around this fixed point gives the

eigenvalues:

λ1 =
Ntr I(d− 1)− d

Ntr I− 2
, (4.43)

λ2 = d− 2, (4.44)

λ3 =
Ntr I(d− 3)− 5d+ 12

Ntr I− 2
, (4.45)

λ4 =
Ntr I(d− 4)− 10d+ 24

Ntr I− 2
. (4.46)

The corresponding eigenvectors are instead:

v1 =

(

2C2
d(Ntr I− 2)2(Ntr I2d− 6)(Ntr I(4− d)− 10d+ 24)

3(d− 2)3((Ntr I)2 +Ntr I(2d− 11)− 13d+ 36)
, 0, 1, 0

)

, (4.47)

v2 =

(

0,
C2
d(Ntr I− 2)2(Ntr I+ 4d− 10)(Ntr I(4− d) + 10d− 24)

6(d− 2)3(Ntr I− 8)(Ntr I+ 3d− 8)
, 0, 1

)

, (4.48)

v3 = (0, 0, 1, 0) , (4.49)

v4 = (0, 0, 0, 1) . (4.50)

These results are extremely useful in order to study the problems related with the marginal-

ity of some the operators found in the Hartree approximation. The impact of the cubic

operator will be studied in the following section, in the present one only the behaviour

of the quartic operator is taken into account. By expanding the fixed point in powers of

1/N ′ in Eq. (4.42) one obtains:

g∗4 =
3(d− 2)4

4(4− d)C3
d

1

N ′3
+

6(d− 2)5

(4− d)2C3
d

1

N ′4
+O(1/N

′5). (4.51)

The first term in the expansion gives the same result found in Eq. (4.14). The lower

critical dimension (d = 2) that is the first dimension in which the fixed point can be used

for describing a critical phenomena and the upper critical dimension (d = 4), after which

the FP loses its critical properties are clearly highlighted. At every order in the 1/N

expansion the g∗4 diverges at d = 4. The reason is that the value of g4 at the fixed point,

given in Eq. (4.42) has a term of the type Ntr I, thus an inverse power of ǫ = 4 − d is

generated at every order in the 1/N expansion. Returning to Eq. (4.42) and setting d = 4,

the expansion of the fixed point solution in powers of 1/N ′ turns out to be:

g∗4 =
3

4C3
4

1

N ′2
− 3

2C3
4

1

N ′3
+O(1/N

′4), (4.52)
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showing that at d = 4 the fixed point has become of order 1/N2, rather than 1/N3, in the

large N limit. Perhaps this is a sign of the failure of the LPA approximation at d = 4,

although also in this approximation the operator turns out to be marginal in the large N

limit. Indeed the eigenvalue in Eq. (4.46) can be rewritten as:

λ4 = d− 4 +
8(d− 2)

2/N ′ − 1

1

N ′
. (4.53)

4.5 The cubic operator and the onset of a first order

transition

Until now, the behaviour of the cubic coupling was only considered in the framework

of the general analysis performed in Sec.4.2 and Sec.4.4. A systematic treatment of the

cubic interaction at d = 3 was performed by G. Gat. et al. [64] by using the large

N expansion method. Here some of their results are briefly summarized permitting the

comparison with our RG methods. They were able to calculate the beta function of the

cubic coupling at the next to leading order in the 1/N series. At the leading order, the

authors found that the cubic operator (ψ̄ψ)3 is marginal, while the operator (ψ̄ψ) and

(ψ̄ψ)2 are both relevant. They suggest that the behaviour of the cubic operator near the

non trivial fixed point of the GN model is similar to that one of the φ6 operator near

the Gaussian fixed point in the scalar theory [68], [69],[70], [71]. Both these operators

are trivial near the corresponding fixed point. As is well known, in the scalar case this is

a signal of a first order transition occurring when the bare parameters are chosen in the

vicinity of the origin. Conversely when corrections to the leading order are included the

operator turns out to be irrelevant.

The value of the anomalous dimension of the σ3 operator near the critical FP was

also computed, thus giving:

[σ3] = 3 +
32

π2N ′
≃ 3 + 3.24

1

N ′
. (4.54)

The same results can be achieved and immediately extended by means of the Wilsonian

RG technique. The eigenvalue in Eq. (4.45) can be rewritten as:

λ3 = (d− 3) +
3(d− 2)

2−N ′
, (4.55)
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which clearly shows the marginality of the operator O3 in the Hartree approximation.

Starting from this expression the anomalous dimension can also be calculated giving the

result:

γ3 = 3(d− 2) +
3(d− 2)

2−N ′
, (4.56)

thus the scaling dimension of O3 turns out to be:

[O3] = 3(d− 1)− γ3 = 3 +
3(d− 2)

N ′ − 2
≃ 3 + 3

1

N ′
. (4.57)

Up to the first order in the 1/N ′ expansion the result agrees with those found in Eq. (4.54),

enforcing the statement that the critical region also at d = 3 is well described by the LPA.

.
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CHAPTER 5

RG ANALYSIS OF FERMION-BOSON THEORIES

The present chapter is a brief review of some interesting results which can be found

by extending our Wilsonian RG methods to the study of a system of interacting fermions

and bosons via a potential of the form U(ψ̄ψφ).

Clearly such a potential can include the Yukawa coupling as well as purely fermion

self-interactions. The case N = 1 and d = 4 was first analyzed by [25].

These authors showed how, even in the LPA approximation, quite a good description

of the triviality of the Yukawa model can be recovered. Indeed, analyzing the critical

behaviour of the Yukawa model at d = 4, they have considered trajectories, in bare pa-

rameter space, which lie near the Gaussian fixed point, finding results which are consistent

with the perturbative prescriptions. 1

In the following, where the study is extended to d < 4 and for every N value, it will

be shown, on the opposite, that the LPA is not able to grasp all the features of the chiral

transition. The reasons for this will also be analyzed.

Successively, our studies, even if incomplete, are devoted to the behaviour of systems

including both fermion self-interactions and interactions coupling fermions with bosons.

A very interesting result is found. Unusual behaviour for the Yukawa coupling is noticed

as the result of a non-Gaussian fixed point triggered by the presence of an explicit Fermi

interaction. Such a fixed point persists at d = 4. The scaling of the Fermi coupling

resembles that found for the GN model in chap.3, while the Yukawa coupling follows a

1However an accurate description requires the inclusion of the field strength renormalization.
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simple power law scaling.

5.1 Wilsonian RG equation for theory with fermions

and bosons

First of all, the Wilsonian RG equation for a chiral theory with N fermions and a single

scalar can be worked out easily for generic d dimension. The result will be an extension

of the equation found in [25]. The LPA approximation is obtained by assuming the

following ansatz for the Wilsonian action:

Sk
[

Ψ, Ψ̄,Φ
]

=

∫

ddx

[

−Ψ̄ (x) /∂Ψ (x) +
1

2
(∂µΦ(x))

2 + Uk
(

Ψ̄ΨΦ
)

]

. (5.1)

A straightforward application of the procedure, just introduced in Sec. 3.3.3, leads to the

RG equation for the Wilsonian potential Uk. For completeness, some tricks used for the

integration of the fast fermion and boson degrees of freedom are reported in App.D.3.

The equation for the dimensionless Wilsonian potential V (σ, φ, t), where σ = ψ̄ψ and the

fields ψ, ψ̄ and φ are dimensionless quantities too, turns out to be:

∂

∂t
V = dV − d− 2

2
φVφ − (d− 1)σVσ

+ Cd
[

log (1 + Vφφ)−N ′ log
(

1 + V 2
σ

)

+ log (1 + Σ)
]

, (5.2)

where:

Σ =
2σVσ

(

Vσσ − VσφVφσ
1+Vφφ

)

1 + V 2
σ

. (5.3)

5.2 Equations for the Yukawa theory in the LPA

First of all, by using Eq. (5.2) the RG equations for the Yukawa model in the LPA

are found.

On the one hand they give us the possibility of estimating the range of validity of the

LPA near d = 4, on the other hand they provide the starting point for further analysis.

The Wilsonian potential for the Yukawa theory has the form:

V =
M2

2
φ2 +

λ

4!
φ4 − gφσ. (5.4)
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5.2 Equations for the Yukawa theory in the LPA

By plugging this expression in Eq. (5.2) the following equations can be found:

βλ = (4− d)λ− 2Cd

(

3λ2

2(1 +M2)2
− 6N ′g4

)

, (5.5)

βg2 = (4− d)g2 − 2Cd
2g4

1 +M2
, (5.6)

βM2 = 2M2 + 2Cd

(

λ

2(1 +M2)
−N ′g2

)

. (5.7)

Now a comparison with the Eqs. (3.51),(3.52),(3.53) can be performed easily. Indeed,

near d = 4 each running coupling near the critical region flows around the origin. Thus

by replacing 2C4 = 1/8π2 and by setting N ′ = 4N , the Eqs. (5.5), (5.6),(5.7) can be

consistently approximated by the following expressions:

βλ = ǫλ− 1

8π2

(

3

2
λ2 − 24Ng4

)

, (5.8)

βg2 = ǫg2 − 1

8π2
2g4, (5.9)

βM2 = 2M2 − 1

8π2

λ

2
M2, (5.10)

Now it is easy to recognize which contributions are lacking in the LPA. According to the

prescriptions given in Eqs.(3.19), (3.20), (3.21), the beta functions of the bare couplings,

given in Eqs. (5.8),(5.9),(5.10), should be modified by the following replacements:

βλ → βλ − 4γφλ, (5.11)

βg2 → βg2 − 2γφg
2 − 4γψg

2, (5.12)

βM2 → βM2 − 2γφM
2. (5.13)

(5.14)

Using the anomalous dimensions given in Eqs (3.54),(3.55) the beta functions in Eqs. (3.51),

(3.52),(3.53), calculated by means of the epsilon expansion method, are recovered. Since

γφ is of O(N), important contributions are lost in the LPA for large N values if g2 is

of O(1/N). Thus Hartree approximation cannot be consistently obtained. Returning to

Eqs. (5.5), (5.6),(5.7) and performing an appropriate rescaling, which is equivalent to set
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Cd = 1, the following equations are obtained:

λ′ = (4− d)λ− 3λ2

(1 +M2)2
+ 12N ′g4, (5.15)

g2
′

= (4− d)g2 − 4g4

1 +M2
, (5.16)

M2′ = 2M2 +
λ

1 +M2
− 2N ′g2. (5.17)

Four fixed point solutions can be found for d < 4: the Gaussian one, the Wilson-Fisher

fixed point and the other two fixed points analyzed in Sec. 3.51. It can be simply verified

how these equations describe well the behaviour of the system around the Wilson-Fisher

fixed point. Indeed, by linearizing the system around the fixed point:

g2 = 0, (5.18)

M2 =
4− d

d− 10
≃ − ǫ

6
, (5.19)

λ =
12(4− d)

(d− 10)2
≃ ǫ

3
, (5.20)

one finds the eigenvalues:

λτ =
1

3

(√
7d2 − 62d+ 145 + 2d− 5

)

≃ 2− ǫ

3
, (5.21)

λ2 =
1

3

(

−
√
7d2 − 62d+ 145 + 2d− 5

)

≃ −ǫ, (5.22)

λ3 = 4− d = ǫ, (5.23)

consistent with the results in Eqs. (3.60),(3.61),(3.62). Such a result is a simple extension

of the analysis performed in [72], for a purely scalar theory. However one more comment

is needed, when also fermions are included. In such a case, the anomalous dimensions of

the scalar and fermion fields can be discarded since the fixed point value for g2 is strictly

zero. Unfortunately, this is not the case, for the fixed point associated with the χSB.

After that, an epsilon expansion is performed near d = 4, this fixed point turns out to be:

g2 ≃ ǫ

4
, (5.24)

λ ≃ 1 +
√
1 + 9N ′

6
ǫ, (5.25)

M2 ≃ 1

12

(

−1 + 3N ′ −
√
1 + 9N ′

)

ǫ (5.26)
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Similarly, by linearizing around this fixed point and by expanding the result near d = 4,

one finds the eigenvalues:

λτ = 2− 1 +
√
1 + 9N ′

6
ǫ, (5.27)

λ2 = −ǫ, (5.28)

λ3 = −
√
1 + 9N ′ǫ. (5.29)

One relevant and two irrelevant directions are found, however since important contribu-

tions are missed in the LPA, the large N limit cannot be performed in a consistent way.

On the other hand when d = 4 one finds that, near the origin, the coupling g2 behaves

as:

g2(t) =
4π2

t+ c
. (5.30)

By comparing this result with that given in Eq. (3.71) one can see that the same scaling,

although quantitatively different, is predicted.

5.3 Fermi and Yukawa theories coupled together

In the previous section the Wilsonian RG method was applied for the description of

the Yukawa theory, while in cap.3 it was used for the analysis of the GN model. In the

following a system involving both the Fermi and the Yukawa interaction is taken into

account. The beta functions of such a theory can be immediately calculated by extending

the ansatz in Eq. (5.4) in order to include a fermion mass term and the Fermi coupling.

One obtains:

V =
M2

2
φ2 +

λ

4!
φ4 − gφσ −mσ − G

2
σ2. (5.31)

165



Chapter 5. RG analysis of fermion-boson theories

Thus, inserting this expression in Eq. (5.2), the following set of equations is found:

dm

dt
= m+

2N ′Gm

1 +m2
− 2Gm

1 +m2
− 2mg2

(1 +m2)(1 +M2)
, (5.32)

dG

dt
= (2− d)G+

2N ′G2(1−m2)

(1 +m2)2
− 4G2(1− 2m2)

(1 +m2)2

+
4m2g4

(1 +m2)(1 +M2)2
+

4Gg2(−1 + 3m2)

(1 +m2)2(1 +M2)
, (5.33)

dg2

dt
= (4− d)g2 +

4N ′Gg2(1−m2)

(1 +m2)2
− 4Gg2(1−m2)

(1 +m2)2

− 4g4(1−m2)

(1 +m2)2(1 +M2)
, (5.34)

dM2

dt
= 2M2 +

λ

1 +M2
− 2N ′g2(1−m2)

(1 +m2)2
, (5.35)

dλ

dt
= (4− d)λ− 3λ2

(1 +M2)2
+

12N ′g4(1− 6m2 +m4)

(1 +m2)4
. (5.36)

By freezing all the couplings in the r.h.s of each equation at their bare values the one loop

contribution to the 1PI functions with the external momenta set to zero is obtained. In

such a way, the equations can be easily checked.

In order to handle this complicated system one can start with the search of the fixed

points. For d < 4 several fixed point solutions are found. Many of these are just extensions

of those reported in Sec. 5.2. The Gaussian solution, the Wilson-Fisher fixed point, and

the two non-Gaussian fixed point, presented in Sec. 3.2.4 and Sec. 5.2, are recovered.

In all these cases an explicit mass term provides a new relevant direction, while the

Fermi coupling, as expected, behaves as an additional irrelevant direction, which can be

consistently discarded near the critical region.

In addition, two new interesting non-Gaussian solutions are found.

166



5.3 Fermi and Yukawa theories coupled together

5.3.1 Two non-Gaussian solutions

The first fixed point is given by:

m = 0, (5.37)

G =
d− 2

2(N ′ − 2)
, (5.38)

g2 = 0, (5.39)

M2 = 0, (5.40)

λ = 0. (5.41)

It seems to be a simple extension of the result found in Sec. (3.4.2), but it shows an inter-

esting feature. Indeed, by linearizing around this solution and performing an expansion

around d = 4 one finds the following eigenvalues:

λ1 = 3− ǫ+
2− ǫ

N ′ − 2
, (5.42)

λ2 = 2− ǫ, (5.43)

λ3 = 4− ǫ+
2(2− ǫ)

N ′ − 2
, (5.44)

λ4 = 2, (5.45)

λ5 = ǫ. (5.46)

The eigenvalues λ1 and λ2 are associated with the two relevant operators, characterizing

the non-perturbative behaviour of the GN model, which, roughly speaking, can be iden-

tified with the composite fields ψ̄ψ and (ψ̄ψ)2. On the other hand, the eigenvalues λ4

and λ5 are nothing but those provided by the Gaussian scaling of the operators φ2 and

φ4. Finally the eigenvalue λ3 is a new relevant direction which can be associated with the

behaviour of the squared Yukawa coupling g2.

One of the most interesting aspects of these results precisely concerns the behaviour of

this coupling at d = 4. Indeed, by setting ǫ = 0 one finds that g2 is no longer trivial. The

non-Gaussian FP (see Eqs. from (5.37) to (5.41)) is an UV attractor for the v3 direction.

Conversely the last one departs towards the IR region following a simple power law

scaling.

Before proceeding with further analysis at d = 4 the other non-Gaussian solution is

presented.
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This is:

m = 0, (5.47)

G =
d− 2

2(N ′ − 2)
, (5.48)

g2 = 0, (5.49)

M2 =
4− d

d− 10
, (5.50)

λ =
12(4− d)

(d− 10)2
. (5.51)

The non-Gaussian fixed point, given in Eqs. from (5.37) to (5.41), joins the values obtained

in the Gaussian fixed point solution of the Yukawa theory with those of m and G at the

non-Gaussian fixed point found in Sec. 3.5. While, the fixed point solution given in

Eqs. from (5.47) to (5.51) combines the non-Gaussian FP of the GN model with the

Wilson-Fisher one of the Yukawa theory.

Both the FP in Eqs. from (5.37) to (5.41) and that in Eqs. from (5.47) to (5.51)

coincide at d = 4. By linearizing the system around the non-Gaussian solution in in Eqs.

from (5.47) to (5.51) one finds:

λ1 = 3− ǫ+
2− ǫ

N ′ − 2
, (5.52)

λ2 = 2− ǫ, (5.53)

λ3 = 4− ǫ+
2(2− ǫ)

N ′ − 2
, (5.54)

λ4 = 2− ǫ

3
, (5.55)

λ5 = −ǫ. (5.56)

The values of λ1, λ2 and λ3 are the same as those given in Eqs. (5.42),(5.43) and (5.44) re-

spectively. Conversely λ4 and λ5 coincide with the eigenvalues of the Wilson-Fisher model

near d = 4. Some interesting information about the nature of this fixed point is obtained

by calculating the scaling dimension of some operators in the Hartree approximation. It
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is found:

[O1] =
[

ψ̄ψ
]

0
− γ1 = d− 1− (d− 2) = 1, (5.57)

[O2] =
[

(ψ̄ψ)2
]

0
− γ2 = 2

= 2 [O1] , (5.58)

[O3] =
[

φψ̄ψ
]

0
− γ3

2
=
d− 2

2
+ d− 1− (d− 2)

≃ [φ] + [O1] . (5.59)

The first two relations resemble the classical result of the GN model given Eqs. (3.119),

(3.120). On the other hand the last equality, which is based on the assumption made in

the LPA that γφ ≃ 0, suggests a simple statistical interpretation. Near this fixed point

the boson degrees of freedom weakly interact with a strong coupled fermion mixture, as

also shown by the fact that g2 << 1 and G ≃ Gc. In this sense, it is the opposite situation

to that found near the strong coupled Yukawa theory in which g2 ≃ g2c and G = 0.

5.3.2 Non-trivial scaling of the Yukawa coupling near and at

d = 4

In closing a numerical study of the system described by Eqs. from (5.32) to (5.36)

is performed at d = 4. More precisely, the triviality of the Yukawa coupling, found in

the perturbative region, is compared with an unusual scaling which is triggered by the

presence of the non-Gaussian fixed point:

m = 0, (5.60)

G =
1

(N ′ − 2)
, (5.61)

g2 = 0, (5.62)

M2 = 0, (5.63)

λ = 0. (5.64)

As anticipated, both the fixed point in Eqs. from (5.37) to (5.41) and the one in Eqs.

from (5.47) to (5.51) coincide with the solution in Eqs. from (5.60) to (5.64) at d = 4.

At d = 4 and for N = 2, the behaviour of the Yukawa coupling near the Gaussian fixed

point is compared with the unusual scaling of the same parameter near the non-Gaussian

solution.
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Figure 5.1: (a) The flow of running Yukawa coupling g2(t), near the perturbative region, is shown. It
was obtained by numerical solving the Eqs. from (5.32) to (5.36), at d = 4 and N ′ = 8, with
the boundaries at t = 0: m(t = 0) = 10−3,M2(t = 0) = 0.1, λ(t = 0) = 0.2, g2(t = 0) = 0.01
and G(t = 0) = 0. (b) The flow of running Yukawa coupling g2(t), around the non-Gaussian
fixed point ( Eqs. from (5.37) to (5.41)) , is shown. It was obtained by numerical solving
the Eqs. from (5.32) to (5.36), at d = 4 and N ′ = 8, with the boundaries at t = 0:
m(t = 0) = 10−3,M2(t = 0) = 0.1, λ(t = 0) = 0.2, g2(t = 0) = 0.01 and G(t = 0) = 0.833.

The Gaussian region (Fig. 5.1 (a)) is obtained by setting the running Fermi constant

G(k) strictly at zero on the boundary. The running coupling g2(k) follows its usual

perturbative behaviour. Taking a finite value in the IR region it reaches the Landau pole

at a finite UV scale. On the other hand by choosing a non-zero value for G(k) at the

boundary, the g2(k), while saturates to a constant value in the IR region, flows towards

zero when k → ∞ as shown in Fig. 5.1 (b). According to the result given in Eq. (5.54),

for large N values, the dimensionless coupling g2(t) scales as kd, thus the dimensioned

one behaves as: g2(k) ∼ k4−2d. In this way the dimensioned Yukawa coupling behaves as:

g(k) ∼ 1

kd−2
, (5.65)

which is far from triviality also at d = 4.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

In the present work the non-perturbative renormalizability of self-interacting fermion

models has been investigated for a generic dimension 2 ≤ d ≤ 4, with the help of a

fermion Wilsonian RG method. The RG picture of the χSB has been compared with the

descriptions provided by other analytical techniques. Moreover, regions unreachable by

standard analytical tools have also been investigated. In this context, the GN model has

been chosen as a paradigm for theories which allow for a dynamical mechanism for the

generation of the masses for its simplicity and for the reliability of the known results. A

comparison with theories involving the explicit use of elementary scalars has also been

performed.

The first part of this work (chapters one and two) is mainly a review of the usual tools

used for investigating fermion QFTs and of some features of the critical behaviour of such

models. Although much useful literature on this subject already exists, this part makes it

possible to contextualize our original RG results in a coherent way. Moreover some new,

albeit simple, results have been worked out in this context. The perturbative techniques

for calculating the Green’s functions of elementary and composite fermion fields are also

reviewed. More specifically, the role of the composite operator ψ̄ψ was emphasized as an

essential ingredient for the description of the χSB and for the appearance of scalar collec-

tive excitations in fermion theories. Some amplitudes are explicitly computed in order to

get useful expressions to be compared with our later RG results. The renormalizability

of the Yukawa theory in d = 4 dimensions is discussed, which helps in showing later the
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non-perturbative (actually 1/N) renormalizability of the GN model and its triviality in

d = 4 dimensions. Indeed, as is well known, the usual bosonization techniques and the

1/N expansion method allow the amplitudes of a four fermion theory to be rewritten in

terms of diagrams of a Yukawa model.

A typical tool to analyze the non-perturbative behaviour of the GN model is the

DS formalism. As at our knowledge a systematic derivation of these equations for four-

fermion theories is missing, in the present work the DS equations for the 1PI two point

and four point Green’s functions for the GN model have been explicitly worked out.

Then at leading order of the 1/N expansion, which corresponds to the so called ”Hartree

approximation”, the well known results are recovered, namely, a non-vanishing fermion

mass m for values of the Fermi constant G greater than a critical value Gc and the mass

M of the composite boson, with M = 2m. The DS equations for the correlators of a

theory with elementary and composite operators are then related to the DS equations of

the bosonized version of the theory.

Successively, the critical behaviour of the GN and Yukawa models is reviewed for

2 ≤ d ≤ 4 by using the mapping between an euclidean QFT and a SFT. The critical

exponents (related to the χSB of these models), as obtained at the next to leading order

in the 1/N expansion, are also listed. As a useful tool for such an analysis, the effective

action for the bosonized version of the GN model is explicitly worked out here at the

same order.

Finally, the beta functions of the Yukawa model coupling constants and the corre-

sponding critical exponents, derived with the help of field theoretical renormalization

group methods (implemented in the framework of the epsilon expansion), are presented.

These latter methods provide a useful bridge for the transition to our Wilsonian RG

approach.

By starting with the appropriate scale dependent action Sk for fermion models and

performing a non-trivial extension of previous techniques, a new RG equation for a gen-

eralized N flavors GN model in 2 ≤ d ≤ 4 is established. This equation provides a

non-perturbative analytical tool to study this model in any dimension, with no reference

to 1/N or small coupling or epsilon expansions. Indeed, within the Wilsonian approach,

no expansion in any “small parameter” is needed as the width δk of the infinitesimal shell,

over which the RG elimination of modes is performed, provides the natural small term
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which makes the corresponding Gaussian integration exact.

This opens the way to analytical studies which cannot be performed with any of the

other analytical techniques typically used. The approximation adopted here is the gradient

expansion for the action Sk in its the lowest order, the Local Potential Approximation,

which consists in neglecting the fluctuations induced by derivative operators. The range

of validity of such an approximation is also investigated.

As a check for the validity of our approach by comparison with known results, the

large N case is first considered. Actually, the RG equation for the Wilsonian potential

contains “Hartree” and “Fock” contributions. Neglecting the latter, the leading order in

the 1/N expansion to our RG equation is obtained.

By truncating the potential to the Fermi and mass terms, the RG equations for the

running mass m(k) and Fermi constant G(k) are derived and it is found that the theory

possesses a non-trivial fixed point. By linearizing these equations around this fixed point,

the critical exponents are computed.

Successively, the coupled RG equations for G(k) and m(k) are numerically studied in

the whole (G,m) plane. From this analysis, in turns out that the physics of the chiral

phase transition can be described well in terms of a cross-over phenomenon triggered by

the presence of an infinitesimal bare mass. Interestingly, it is found that, when the bare

value of the Fermi constant is greater than the fixed point value Gc, the running of m(k)

from the UV to the IR shows a “steep” cross-over and a finite value of the fermion mass

is generated. As in the case of the strict unbroken-broken phase transition, for values of

G greater than Gc, the system is unstable against quantum fluctuations: the presence of

an even infinitesimal bare mass gives rise to an amplification mechanism which resolves

the instability through the generation of a finite physical mass.

It is also interesting to note that the knowledge of m(k) in the whole range of k

provides a very good example of IR-UV connection. The same is true for G(k). Our RG

approach makes this connection possible in a natural way. Typically, the behaviour of

these functions is known only in the scaling region.

This IR-UV connection, which is first studied numerically, can also be investigated by

means of some analytical approximations to m(k) and G(k). First of all, by considering

a simple approximation to the RG equation for m(k), the well known NJL result is

reproduced. However, although this approximation is able to grasp qualitatively the
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main features of the RG equations (which, due to quantum fluctuations, lead to the

chiral phase transition), quantitatively more accurate analytical profiles for m(k) and

G(k) require more sophisticated approximations.

As our results are obtained by referring directly to a purely fermion language, it is

not difficult to find issues which can be handled within our approach but are out of reach

of other analytical techniques. For instance, the critical exponents can be computed

even for small values of N and also when the coupling constant space is larger than the

one spanned by only the mass and the Fermi constant. As for the computation of the

critical exponents for small values of N , it is clearly necessary to include also the Fock’s

contributions.

Within our RG approach, the critical exponents for generic values of N and d are then

computed. In order to test the validity of our results, they are compared, when possible,

with well established results obtained by other techniques. Such analysis shows the failure

of the LPA near the upper-critical dimension (d = 4) of the model. Indeed, near d = 4,

only at the leading order of the large N expansion (Hartree approximation) our results

agree with those obtained with the help of other methods.

On the other hand, for 2 ≤ d ≤ 3, the LPA provides results which, for large values

of N , agree with those obtained at the next to leading in the large N expansion. At

the same time, our results, for small values of N , agree with those obtained with MC

numerical simulations at d = 3.

Successively, the impact of higher powers of the ψ̄ψ operators has been considered.

In the previous literature, this is obtained (in the framework of the 1/N expansion) by

including higher powers of the auxiliary scalar field. In that context, it was shown that

the quartic operator plays an important role at d = 4, where corrections to scaling are

important. Similarly, by means of our RG technique, it is now shown that a marginal

operator arises (in d = 4) due to the presence of the (ψ̄ψ)4 term. In the Hartree ap-

proximation, when the LPA works, it is also shown how to translate the triviality of the

bosonized version of the model into the purely fermion language. The new and somehow

unexpected result is that, in this language, such logarithmic behaviour (at d = 4) is ob-

tained around a non-Gaussian fixed point, while this kind of scaling is typically observed

around a Gaussian fixed point. However, from the large N picture the GN model seems

to be trivial even beyond the leading order. How this result could be achieved or, even-
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tually, disproved by means of our RG approach is an interesting development for further

analysis.

The impact of the operator (ψ̄ψ)3 is also investigated. In particular, at d = 3, the

marginality of this operator in the the Hartree approximation is reproduced with our RG

method. Similarly, also the irrelevance of this same operator, beyond the leading order

in the 1/N expansion, is recovered. A way of computing the anomalous dimension is also

introduced and the result turns out to be in agreement, for large N values, with that

found in literature.

Finally the Wilsonian RG equation is extended to theories which involve both fermions

and bosons. For N = 1 and d = 4 this equation coincides with that found in literature.

First of all the equations for the Yukawa theory, for 2 ≤ d ≤ 4, are worked out in the

LPA. A non-trivial FP which should describe the chiral transition for d < 4 is then

found. However, by comparing with known well established results, it is shown the LPA

does not provide a good description of the scaling. On the other hand, when the theory

is expressed in purely fermion language, its corresponding LPA provides good results for

the scaling laws.

If, however, a four Fermi interaction term is added to the Yukawa theory, an intriguing

and unexpected result is found. Namely, the non-perturbative scaling of the running

Fermi constant G(k) triggers the appearance of a non-Gaussian fixed point which heals

the triviality running of the Yukawa coupling. The latter shows a power law scaling in

the UV region near this fixed point, which makes it vanish at this point.

Clearly, several questions need to be further investigated. First of all, the impact

of higher derivative terms should be considered. This target is motivated by different

reasons. For 2 ≤ d ≤ 3, several works have been devoted to investigate the properties

of condensed matter systems via the RG techniques for fermions. In this respect, the

inclusion of higher derivative terms in our approach would clearly bring an important

improvement.

On the other hand, it has just been shown that the inclusion of these terms is necessary

in order to study the region near and at d = 4. Already starting with the Hartree

approximation, their presence should allow the computation of the logarithmic corrections

to the scaling at the upper critical dimension. Moreover, the behaviour of the GN model

and eventually its triviality could be analyzed for small values of N .
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It has also been shown that, when a Fermi operator is considered in addition to a

Yukawa interaction term, the appearance of a non-Gaussian fixed point drastically changes

the scaling of the Yukawa coupling. It is very interesting to further analyze this result

beyond the LPA.

In the authors’ opinion, the suggestion concerning the presence of a non-Gaussian

fixed point at d = 4 is one of the most interesting results of the present work. Far from

representing a simple rephrasing of well known results, it could provide new perspectives

for the non-perturbative analysis of QFTs.
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APPENDIX A

PERTURBATIVE TRICKS IN FERMION MODELS

A.1 One loop contributions to the 1PI four fermion

vertex

In this appendix the diagrams shown in Fig 1.14 are computed. The contributions of

the coupling G appearing in each diagram and the Dirac delta functions, ensuring the

total momentum conservation, are both included in the coefficients:

C1 = −G
2
δd (k1 + k2 + k3 + k4) , (A.1)

C2 = +
G2

8
δd (k1 + k2 + k3 + k4) , (A.2)

By defining the following abbreviations:

∫

k

=

∫

ddk

(2π)d
, (A.3)

Dp =

(

−i/p +mB

)

p2 +m2
B

, (A.4)
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the tree level and the one-loop amplitude turn out to be:

I = C1 (−1) δ41 δ23,

II = C1 (+1) δ21 δ43,

a = C2 (−4)

∫

p

δ41 tr (Dp ·Dp+qs) δ23,

b1 = C2 (+4)

∫

p

(Dp ·Dp+qs)41 δ23,

b21 = C2 (+4)

∫

p

δ41 (Dp+qs ·Dp)23,

c = C2 (−4)

∫

p

(Dp)21 (Dp+qs)43,

d = C2 (−4)

∫

p

(Dp)21 (D−p+qu)43

e = C2 (+4)

∫

p

δ21 tr (Dp ·Dp+qs) δ43,

f1 = C2 (−4)

∫

p

(Dp+qt ·Dp)21 δ43,

f2 = C2 (−4)

∫

p

δ21 (Dp ·Dp+qt)43,

g = C2 (+4)

∫

p

(Dp)41 (Dp+qt)23,

h = C2 (+4)

∫

p

(Dp)41 (D−p+qu)23,

(A.5)

where: qs = k1+ k4, qt = k1+ k2,qu = k1− k3. Thus by setting qs = qt = qu = 0 the result

in Eq. (1.101) is recovered.

A.2 Correlators of the GN model in the bosonized

version

The two point correlation function of the composite operator is given by:

〈

(ψ̄ψ)1(ψ̄ψ)2
〉η,η̄,K

=
1

Zf

δ2

δK1δK2
Zf , (A.6)

while the two point function of the auxiliary field is obtained through:

〈σ1σ2〉η,η̄,J = G2 1

Zb

δ2

δK1δK2

Zb. (A.7)
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Still deriving the result in Eq. (1.151) it is obtained:

δ2

δK1δK2
Zf = N

[

−δ21
G

exp

(

−
∫

K2

2G

)

Zb +
1

G2
K2K1 exp

(

−
∫

K2

2G

)

Zb

− K1

G
exp

(

−
∫

K2

2G

)

δZb
δK2

− K1

G
exp

(

−
∫

K2

2G

)

δZb
δK1

+ exp

(

−
∫

K2

2G

)

δZb
δK2δK1

]

, (A.8)

moreover dividing by Zf the expression becomes:

1

Zf

δ2

δK1δK2

Zf = −δ21
G

+
1

G2
K1K2 −

K1

G

1

Zb

δZb
δK2

− K2

G

1

Zb

δZb
δK1

+
1

Zb

δ2Zb
δK2δK1

. (A.9)

By this way the two point correlation functions are related according to the equation:

〈

(ψ̄ψ)1(ψ̄ψ)2
〉η,η̄,K

= −δ21
G

+
1

G2
K1K2 −

K1

G2
〈σ2〉η,η̄,J

− K2

G2
〈σ1〉η,η̄,J +

1

G2
〈σ1σ2〉η,η̄,J . (A.10)

Setting at zero all the external sources one finds:

〈σ1σ2〉 = Gδ12 +G2
〈

(ψ̄ψ)1(ψ̄ψ)2
〉

. (A.11)

The function G(1;1;1)
f can be also calculated. It involves both elementary and composite

fields. It is obtained by the relation:

〈

ψ ψ̄ (ψ̄ψ)
〉η,η̄,K

=
1

Zf

δ

δη̄

δ

δη

δ

δK
Zf . (A.12)

Deriving the Eq. (1.151) it is found:

1

Zf

δ3Zf
δη̄δηδK

= −K
G

1

Zb

δ2Zb
δη̄δη

+
1

Zb

δ3Zb
δη̄δηδK

, (A.13)

immediately implying:

〈

ψ ψ̄ (ψ̄ψ)
〉η,η̄,K

= −K
G

〈

ψ ψ̄
〉η,η̄,J

+
1

G

〈

ψ ψ̄ σ
〉η,η̄,J

. (A.14)

On the right hand side of Eq. (A.14) the fermion propagator, calculated in the bosonized

version of the theory, is represented.
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Finally the effective action of the GN model can be rewritten with the help of

Eq. (1.155) as:

Γf =

∫

K2

2G
−Wb +

∫

K

G
(σc −K) +

∫

η̄ψc −
∫

ηψ̄c

= −
∫

K2

2G
+ Γb, (A.15)

again by squaring Eq. (1.155) one obtains:

Γf [ψc, ψ̄c, ψ̄ψc] +

∫

G

2
(ψ̄ψc)

2 = Γb[ψc, ψ̄c, σc]−
∫

σ2
c

2G
+

∫

σc ψ̄ψc. (A.16)

Since:

δΓb
δσc

=
K

G
, (A.17)

it is immediately found:

δΓf
δψ̄ψc

= G
δΓb
δσc

. (A.18)

A.3 Properties of local Grassmann vertices

A property, arising in the computation of diagrams with local fermion vertices contri-

butions, is analyzed in the following appendix. An action involving only local interactions

which are powers of the ψ̄ψ operator has the form:

S =

∫

ddx

(

ψ̄αiγ
µ
αβ∂µψβ +

∑

n

gn
n!

(

ψ̄αψα
)n

)

, (A.19)

with α, β = 1, ..., Imax, which are the indices charactering the tensorial product of the

Dirac space with the flavour one. For simplicity one can just consider the N = 1 case

without affecting the general result. Thus Imax = 2k+1 where the index k is defined by

means of the relation d = 2k + 2 for even d dimensions and by d = 2k + 3 for odd D

dimensions.

The Grassmann functions describing the fermion fields satisfies the anti-commutation

rules:
{

ψ̄α, ψβ
}

= 0,
{

ψ̄α, ψ̄β
}

= 0, {ψα, ψβ} = 0 At d = 4 where α = 1, ..., 4, one finds:
(

∑

α

ψ̄αψα

)n

=
(

ψ̄1ψ1 + ... + ψ̄4ψ4

)n
=

=
(

ψ̄1ψ1 + ... + ψ̄4ψ4

)

...
(

ψ̄1ψ1 + ... + ψ̄4ψ4

)

=

= ψ̄1ψ1ψ̄1ψ1...ψ̄1ψ1 + ψ̄1ψ1ψ̄2ψ2...ψ̄1ψ1 + ... . (A.20)
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A.3 Properties of local Grassmann vertices

Just terms involving a product of all distinct ψi components survive. But if n ≥ 5

each term will contain at least a pair of identical components so that all the contribution

vanish. Generally a fermion theory with an U(N) flavour symmetry cannot involve in the

Lagrangian any power of the ψ̄ψ operator greater then Imax = N2k+1. if this property

does not matter in the large N limit where the decoherence makes the ψ̄ψ operator looks

like a scalar field. Interesting results could arise for small N values.
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APPENDIX B

DS EQUATIONS FOR THE GN MODEL

B.1 DS equations for connected Green’s functions

In this appendix some DS equations of the GN model are computed by applying

the methods presented in Sec. 2.1.2) and in Sec. 2.1.4. For convenience, the elementary

fermion fields are grouped in the multiplet θ = (ψ, ψ̄) while the source terms are rewritten

as ξ = (η̄, η). According to these positions, the action of the Gross Neveu model in

Eq. (1.1) takes the form:

S =
∑

ab

1

2
θaθbS

2
ab +

1

4!

∑

abcd

θaθbθcθdS
4
abcd. (B.1)

where a and b are generic indices characterizing both discrete and continuous variables.

According to the Eqs. (2.16),(2.17), the DS equations for the Wf functional are:

δS

δθi

[

δ

δξ
+
δW

δξ

]

= ξi (B.2)

By deriving the action in Eq. (B.1) one finds:

δS

δθi
=
∑

b

θbS
2
ib +

1

3!

∑

abc

θaθbθcS
4
abc, (B.3)

thus with the substitution:

θ → δ

δξ
+
δW

δξ
, (B.4)
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Chapter B. DS equations for the GN model

the equation for the one point connected function turns out to be:

δS

δθi
=

∑

b

δW

δξb
S2
ib

+
1

3!

∑

abc

[

δW

δξa

δW

δξb

δW

δξc
− 3

δ2W

δξaξb

δW

δξc
+

δ3W

δξaδξbδξc

]

S4
iabc, (B.5)

where several terms have been grouped by renaming the indices and by using antisym-

metric properties of the coefficients.

By performing the second derivative of the expression in Eq. (B.5) with respect to the

θi field one finds:

δij =
∑

b

δ2W

δξjδxb
Sib

+
1

3!

∑

abc

[

3
δ2W

δξjδξa

δW

δξb

δW

δξc

− 3
δ3W

δξjδξaδξb

δW

δξc
− 3

δ2W

δξjδξa

δ2W

δξbδξc
+

δ4W

δξjδξaξbδξc

]

S4
iabc, (B.6)

The third equation is obtained by deriving one more time the previous expression:

∑

b

δ3W

δξkδξjδξb
Sib +

1

3!

∑

abc

[

3
δ3W

δξkδξjδξa

δW

δξb

δW

δξc

+ 6
δ2W

δξjξa

δ2W

δξkδξb

δW

δξc
− 3

δ4W

δξkδξjδξaδξb

δW

δξc

+ 3
δ3W

δξjδξaδξb

δ2W

δξkδξc
− 3

δ3W

δξkδξjδξa

δ2W

δξbδξc

− 3
δ3W

δξkδξaδξb

δ2W

δξjδξc
+

δ5W

δξkδxjδξaδξbδξc

]

S4
iabc = 0, (B.7)
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B.2 DS equations for 1PI correlators

Finally the fourth derivative reads:

∑

b

δ4W

δξhδξkδξjδξb
S2
ib +

1

3!

∑

abc

[

3
δ4W

δξhξkδξjδξa

δW

δξb

δW

δξc

− 6
δ3W

δξkδξjδξa

δ2W

δξhδξb

δW

δξc
+ 6

δ3W

δξhδξjδξa

δ2W

δξhδξb

δW

δξc

− 6
δ3W

δξhδξkδξa

δ2W

δξjδξb

δW

δξc
+ 6

δ2W

δξjδξa

δ2W

δξkδξb

δ2W

δξhδξc

+ 3
δ5W

δξhδξkδξjδξaδξb

δW

δξc
− 3

δ4W

ξkδξjδξaδξb

δ2W

δξhδξc

+ 3
δ4W

δξhδξjδξaδξb

δ2W

δξkδξc
− 3

δ4W

δξhξkδξjδξa

δ2W

δξbδξc

−3
δ4W

δξhξkδξaδξb

δ2W

δξjδξc
− 3

δ3W

δξjδξaδξb

δ3W

δξhδξkδξc

+ 3
δ3W

δξkδξjδξa

δ3W

δξhδξbδξc
+ 3

δ3W

δξkδξaδξb

δ3W

δξhδξjδξc

+
δ6W

δξhδξkδξjδξaδξbδξc

]

S4
iabc = 0 (B.8)

B.2 DS equations for 1PI correlators

The DS for the 1PI functions can also be calculated. The equation for the one point

correlator is:

δΓ

δθi
=

∑

b

θbS
2
ib +

1

3!

∑

abc

[

θaθbθc − 3

(

δΓ

δθδθ

)−1

ab

θc

−
∑

mnl

(

δΓ

δθδθ

)−1

am

(

δΓ

δθδθ

)−1

bn

(

δΓ

δθδθ

)−1

lc

δ3Γ

δθmδθnδθl

]

S4
iabc (B.9)

where the relation:

δ

δθm

(

δΓ

δθδθ

)−1

bc

= −
∑

nl

(

δΓ

δθδθ

)−1

bn

δ3Γ

δθmδθnδθl

(

δΓ

δθδθ

)−1

lc

, (B.10)

was used. The Eq. (B.9) can also be written as:

Γ1
i =

∑

b

θbS
2
ib +

1

3!

∑

abc

[θaθbθc − 3∆abθc

−
∑

mnl

∆am∆bn∆lcΓ
3
mnl

]

S4
iabc, (B.11)

185



Chapter B. DS equations for the GN model

thus, for the two point function, one obtains:

Γ2
ji = S2

ij +
1

3!

∑

abc

[

3δajθbθc + 3
∑

lm

∆nl∆mbΓ
3
jlmθc

− 3∆abδjc + 3
∑

mlnrst

∆ar∆sm∆bn∆lcΓ
3
jrsΓ

3
mnl

−
∑

mnl

∆am∆bn∆lcΓ
4
jmnl

]

S4
iabc. (B.12)

The third derivative provides the following equation:

Γ3
kji =

1

3!

∑

abc

[

6δajδbkθc − 6
∑

lmrs

∆ar∆sl∆mbΓ
3
krsΓ

3
jlmθc

+ 3
∑

lm

∆al∆mbΓ
4
kjlmθc − 3

∑

lm

∆al∆mbΓ
3
jlmδck

+ 3
∑

lm

∆al∆mbΓ
3
klmδjc

+

pq
∑

lmnrs

[

−3∆ap∆qr∆sm∆ba∆lcΓ
3
kpqΓ

3
jrsΓ

3
mnl

−3∆ar∆sp∆qm∆bn∆lcΓ
3
kpqΓ

3
jrsΓ

3
mnl

−3∆ar∆sm∆bp∆qn∆lcΓ
3
kpqΓ

3
jrsΓ

3
mnl

−3∆ar∆sm∆bn∆lp∆qcΓ
3
kpqΓ

3
jrsΓ

3
mnl

]

∑

lmnrs

[

+3∆ar∆sm∆bn∆lcΓ
4
kjrsΓ

3
mnl

+3∆ar∆sm∆bn∆lcΓ
3
jrsΓ

4
kmnl

]

+

pq
∑

lmn

[

∆ap∆qm∆bn∆lcΓ
4
jmnlΓ

3
kpq

+∆am∆bp∆qn∆lcΓ
4
jmnlΓ

3
kpq

+∆am∆bn∆lp∆qcΓ
4
jmnlΓ

3
kpq

]

∑

lmn

∆am∆bn∆lcΓ
5
kjmnl

]

.

(B.13)
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Finally by deriving one more time the previous expression the equations for the 1PI four

point correlators it is found. This is:

Γ4
hkji =

1

3!

∑

abc

[

6δajδbkδhc − 6
δ

δθh

(

∑

lmrs

∆ar∆sl∆mbΓ
3
krsΓ

3
jlmθc

)

+ 3
∑

lm

∆al∆mbΓ
4
kjlmδhc − 3

∑

lm

∆al∆mbΓ
4
hjlmδkc

+ 3
∑

lm

∆al∆mbΓ
4
hklmδjc

+ 3
δ

δθh

(

∑

lm

∆al∆mbΓ
4
kjlm

)

θc − 3
δ

δθh

(

∑

lm

∆al∆mb

)

δckΓ
3
jlm

+
δ

δθh

pq
∑

lmnrs

[

−3∆ap∆qr∆sm∆ba∆lcΓ
3
kpqΓ

3
jrsΓ

3
mnl

−3∆ar∆sp∆qm∆bn∆lcΓ
3
kpqΓ

3
jrsΓ

3
mnl

−3∆ar∆sm∆bp∆qn∆lcΓ
3
kpqΓ

3
jrsΓ

3
mnl

−3∆ar∆sm∆bn∆lp∆qcΓ
3
kpqΓ

3
jrsΓ

3
mnl

]

+
∑

lmnrs

[

3
δ

δθh

(

∆ar∆sm∆bn∆lcΓ
4
kjrs

)

Γ3
mnl

+ 3
δ

δθh

(

∆ar∆sm∆bn∆lcΓ
4
kmnl

)

Γ3
jrs

]

+
∑

lmnrs

[

3∆ar∆sm∆bn∆lcΓ
4
kjrsΓ

4
hmnl

+ 3∆ar∆sm∆bn∆lcΓ
4
kmnlΓ

4
hjrs

]

+

pq
∑

lmn

[

∆ap∆qm∆bn∆lcΓ
4
jmnlΓ

4
hkpq

+∆am∆bp∆qn∆lcΓ
4
jmnlΓ

4
hkpq

+∆am∆bn∆lp∆qcΓ
4
jmnlΓ

4
hkpq

]

+

pq
∑

lmn

[

δ

δθh

(

∆ap∆qm∆bn∆lcΓ
4
kmnl

)

Γ3
kpq

+
δ

δθh

(

∆am∆bp∆qn∆lcΓ
4
jmnl

)

Γ3
kpq

+
δ

δθh

(

∆am∆bn∆lp∆qcΓ
4
jmnl

)

Γ3
kpq

]

∑

lmn

δ

δθh

(

∆am∆bn∆lcΓ
5
kjmnl

)

]

.

(B.14)
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Because of the symmetries of the theory the derivative giving odd green’s functions are not

explicitly performed, they have to vanish ensuring the Lorentz invariance of the effective

action.
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APPENDIX C

CALCULATION OF THE IMPROVED PROPAGATOR

Different methods for calculating the function G(q2) are presented in the following.

The computation is performed at d = 3, at 2 < d < 4 and at d = 4. The different types

of divergences arising in each calculus are explicitly stressed.

C.1 Calculation at d = 3

The improved propagator at d = 3 is calculated starting from the Eq. (2.75). By

replacing the value of 1/G given by the gap equation (Eq. (2.73)) one finds:

G−1 = I =

∫

d3k

(2π)3

(

Tr

[

1/m

i/k +m

]

+ Tr

[

1

(i/k +m)
[

i
(

/k + /q
)

+m
]

])

= Tr (1)

∫

d3k

(2π)3

(

1

k2 +m2
+

−k2 − k · q +m2

(k2 +m2)
[

(k + q)2 +m2
]

)

= Tr (1)

∫

d3k

(2π)3

(

k2 + q2 + 2k · q − k · q − k2 + 2m2

(k2 +m2)
[

(k + q)2 +m2
]

)

= Tr (1)

∫

d3k

(2π)3

(

q2 + k · q + 2m2

(k2 +m2)
[

(k + q)2 +m2
]

)

, (C.1)
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Chapter C. Calculation of the improved propagator

Since the integral is no more divergent the cut-off Λ can be sent to infinity near the scaling

region. Thus the following Feynmann trick can be applied:

l = k + (1− x) q,

k · q = l · q − (1− x) q2, (C.2)

1

AB
=

∫ 1

0

dx
1

[xA + (1− x)B]2
, (C.3)

so that:

(

k2 +m2
) [

(k + q)2 +m2
]

→
[

x
(

k2 +m2
)

+ (k + q)2 +m2 − x
(

k2 +m2
)

− xq2 − 2xk · q
]2

=
[

l2 + x (1− x) q2 +m2
]2
. (C.4)

As a consequence one obtains:

I = Tr (1)

∫ 1

0

dx

∫

d3l

(2π)3

(

q2 − (1− x) q2 + 2m2

[l2 + x (1− x) q2 +m2]2

)

= Tr (1)

∫ 1

0

dx

∫

d3l

(2π)3

(

xq2 + 2m2

[l2 + x (1− x) q2 +m2]2

)

, (C.5)

The integrals can thus be calculated by applying the formula:

B (q) =

∫

d3k

(2π)3
1

(k2 +m2)
[

(k + q)2 +m2
]

=

∫ 1

0

dx

∫

d3l

(2π)3
1

[l2 + x (1− x) q2 +m2]2

∫

=
1

8π

∫ 1

0

1
√

x (1− x) q2 +m2
, (C.6)

and by performing the shift:

α = 2x− 1
∫ 1

0

dx
1

√

x (1− x) q2 +m2
=

∫ 1

−1

dα
1

√

(

1 + 4m
2

q2

)

− α2

1

q

=
2

q
arctan

( q

2m

)

∫ 1

0

dx
xq2

√

x (1− x) q2 +m2
=

∫ 1

−1

dα
(1/2 + α/2) q2

√

(

1 + 4m
2

q2

)

− α2

1

q

=
q2

2

2

q
arctan

( q

2m

)

. (C.7)
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C.2 Sharp cut-off calculation 2 < d < 4

Finally one finds:

I = Tr (1)

∫ 1

0

dx
1

8π

(

xq2 + 2m2

√

x (1− x) q2 +m2

)

= Tr (1)
1

8π

(

2m2 2

q
arctan

( q

2m

)

+
q2

2

2

q
arctan

( q

2m

)

)

=
(

q2 + 4m2
)

arctan
( q

2m

) Tr (1)

8πq
. (C.8)

This is the result shown in Eq. (2.76).

C.2 Sharp cut-off calculation 2 < d < 4

Here the calculation of the improved propagator is performed for a generic dimension

2 < d < 4. Starting fro Eq. (2.84) and by replacing the value of 1/G given by the gap

equation (Eq. (2.73)) it is found:

G−1 = I = N ′

∫

ddp

(2π)d

(

q2 + p · q + 2m2

(p2 +m2)
[

(p+ q)2 +m2
]

)

=
N ′

2

∫

ddp

(2π)d

[

1

p2 + σ2
0

− 1

(p+ q)2 + σ2
0

]

+
N ′

2
(q2 + 4σ2

0)

∫

ddp

(2π)d
1

(p2 + σ2
0)[(p+ q)2 + σ2

0 ]
. (C.9)

The rules for integration in polar coordinates are:
∫

ddp

(2π)d
f(p2, p · q) =

∫

dΩd−1

(2π)d

∫ Λ

0

dppd−1

∫ π

0

(sin θ)d−2f(p2, pq cos θ)

=

∫

dΩd−1

(2π)d

∫ Λ

0

dppd−1

∫ 1

−1

(1− x2)
d−3
2 f(p2, pqx). (C.10)

Thus the following expansion it is found:
∫

ddp

(2π)d
1

(p+ q)2 + σ2
0

=

∫

dΩd−1

(2π)d

∫ 1

−1

(1− x2)
d−3
2

∫ Λ

0

dppd−1

[

1

p2 + σ2
0

− 2px

(p2 + σ2
0)
q

+

(

− 1

(p2 + σ2
0)

2
+

4p2x2

(p2 + σ2
0)

3

)

q2 + . . .

]

. (C.11)

The contribution to the integral with odd powers in x vanish for for the parity of the

integrand function. On the other hand terms of order q4 provide only finite contributions
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Chapter C. Calculation of the improved propagator

for 2 < d ≤< 4. Also the coefficient of q2 gives a finite contribution in this region. Indeed

at d = 4, where possible divergent contributions could arise, it is found:
∫

dΩ3

(2π)4

∫ 1

−1

(1− x2)
1
2

∫ Λ

0

dpp3
(

− 1

(p2 + σ2
0)

2
+

4p2x2

(p2 + σ2
0)

3

)

=
1

16π2
ln

(

1 +
Λ2

σ2
0

)

− 1

16π2
ln

(

1 +
Λ2

σ2
0

)

= 0. (C.12)

Since the difference in Eq. (C.9) is finite it vanishes in the continuous limit. it is found:

G−1 =
N ′

2
(q2 + 4σ2

0)

∫

ddp

(2π)d
1

(p2 + σ2
0)[(p+ q)2 + σ2

0]
. (C.13)

The present result highlights the presence of a pole at q2 = −4σ2
0 .

Then, one finds the result:
∫

ddp

(2π)d
1

(p2 + σ2
0)[(p+ q)2 + σ2

0 ]

=

∫ 1

0

dx
ddl

(2π)d
1

[l2 + x(1 − x)q2 + σ2
0]

2

=

∫ 1

0

dx
1

(4π)d/2
Γ(2− d/2)(x(1− x)q2 + σ2

0)
d/2−2

=
24−d

(4π)d/2
Γ(2− d/2)(q2 + 4σ2

0)
d−4
2 2F1

(

1

2
, 2− d

2
;
3

2
;

q2

q2 + 4σ2
0

)

=
Γ(2− d/2)

(4π)d/2
1

σ4−d
0

2F1

(

1, 2− d

2
;
3

2
;− q2

4σ2
0

)

, (C.14)

where the following tricks were applied in the computation:

x = y + 1/2, (C.15)
∫ 1/2

−1/2

dy (ay2 + b)
d−4
2 = b

d−4
2 2F1

(

1

2
, 2− d

2
, 3/2,− a

4b

)

, (C.16)

a = −q2, b = q2/4 + σ2
0, (C.17)

∫

ddl

(2π)d
1

(l2 +∆)
=

1

(4π)d/2
Γ

(

2− d

2

)

∆
d
2
−2, (C.18)

∫ 1

0

dx xα−1(1− x)β−1 =
Γ[α]Γ[β]

Γ[α + β]
, (C.19)

and also:

2F1 (a, b; c; z) = (1− z)−b2F1

(

c− a, b; c;
z

z − 1

)

, (C.20)

z = −q2/4σ2
0. (C.21)

The result in Eq. (2.86) is recovered.

192
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C.3 Sharp cut-off calculation at d = 4

At d = 4 an additional sub-leading divergence appears in the improved propagator.

The integral in Eq. (C.14) is logarithmically divergent thus in order to evaluate it, with

the help of a sharp-cut off regularization scheme, some additional tools are required. One

can split this integral as:

∫

d4p

(2π)4
1

(p2 + σ2
0)[(p + q)2 + σ2

0]
(C.22)

=

∫

d4p

(2π)4
1

(p2 + σ2
0)

2
−
∫

d4p

(2π)4
q2 + p · q + σ2

0

(p2 + σ2
0)

2[(p+ q)2 + σ2
0 ]
, (C.23)

so that the divergence part merges into an integral which is independent from the external

momentum q. By using the Feynmann trick:

∫ 1

0

2(1− x)

(xA+ (1− x)B)3
=

1

AB2
, (C.24)

the finite part of the integral in Eq. (C.22) can be easily computed. One finds:

−
∫

d4p

(2π)4
q2 + 2p · q

(p2 + σ2
0)

2[(p+ q)2 + σ2
0]

(C.25)

= −2

∫ 1

0

dx(1− x)

∫

d4l

(2π)4
(2x− 1)q2

(l2 + x(1− x)q2 + σ2
0)

3
(C.26)

= − 1

16π2

∫ 1

0

dx(1− x)
(2x− 1)q2

x(1 − x)q2 + σ2
0

(C.27)

= − 1

8π2
− 1

16π2

√

q2 + 4σ2
0

q
ln





1 + q√
q2+4σ20

1− q√
q2+4σ20



 . (C.28)

The identity iArctan (−ix) = 1/2 log
(

1+x
1−x

)

was applied. The logarithmic divergent con-

tribution in Eq. (C.22) regularized with a sharp cut-off Λ gives:

∫

d4p

(2π)4
1

(p2 + σ2
0)

2
=

1

16π2
ln

(

1 +
Λ2

σ2
0

)

− 1

16π2
. (C.29)

Thus at d = 4, by setting N ′ = 4N and σ0 = m one finds:

G(q)−1 =
1

8π2

(

q2 + 4m2
)

[

log

(

Λ2

m2

)

−
√

q2 + 4m2

q
log





1 + q√
q2+4m2

1− q√
q2+4m2



− 3



 , (C.30)
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being the result in Eq. (2.31).

In order to reach the scaling region the following expansion should be followed:

ln





1 + q√
q2+4m2

1− q√
q2+4m2



 = ln

(

1 +
√

q2 + 4m2

−1 +
√

q2 + 4m2

)

≃ ln

(

2 + 1
2
4m2

q2

1
2
4m2

q2

)

= log

(

q2

m2

)

, (C.31)

thus getting the result in Eq. (2.33).
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APPENDIX D

FUNCTIONAL DETERMINANT COMPUTATIONS

D.1 First order corrections to the Effective action in

the 1/N expansion

In the following appendix the one loop contribution arising in Eq. (2.68) is calculated.

It represents the next-to-leading-order correction correction in the 1/N expansion. The

rules for the super-algebra manipulations are applied following [25]. Thus one finds:

1

2
STrln(S

(2)
eff.) =

1

2
Trln(Sσσ)

− 1

2
Trln

[(

0 ∆−1
σ

− (∆−1
σ )

T
0

)

+ S−1
σσ

(

ψψ −ψψ̄
−ψ̄ψ ψ̄ψ̄

)]

=
1

2
Trln(Sσσ)− Trln

[

∆−1
σ

]

− 1

2
Trln

[(

1 0
0 1

)

+

(

0 −∆T
σ

∆σ 0

)

S−1
σσ

(

ψψ −ψψ̄
−ψ̄ψ ψ̄ψ̄

)]

=
1

2
Trln(Sσσ)− Trln

[

∆−1
σ

]

+
1

2
Trln

(

1− 2S−1
σσ ψ̄∆σψ

)

. (D.1)
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D.2 The RG equation for the Wilsonian potential in

fermion model

In this Appendix the expression tr ln∆−1 which has been encountered in Eq. (3.98) is

calculated, where ∆−1 is the operator defined in Eq. (3.97):

∆−1 =





δ2U
δψ̄bβδψ̄

a
α

−i/pαβδ
ab + δ2U

δψbβδψ̄
a
α

−i/pβαδ
ba + δ2U

δψ̄bβδψ
a
α

δ2U
δψbβδψ

a
α



 . (D.2)

As compared to Eq. (3.97), the subscript “0” is now omitted in ψ and the subscript k in

Uk, while all the other indexes are explicitly indicated: Greek letters are for Dirac indexes,

Latin letters for flavor ones. Now, defining ρ = ψ̄ψ =
∑

c,γ ψ̄
c
γψ

c
γ and using the chain rule

for functions of Grassmann numbers, all the derivatives can be expressed in terms of the

field ρ:

δ2U

δψbβδψ
a
α

= −ψ̄aαψ̄bβUρρ,

δ2U

δψbβδψ̄
a
α

= δαβδ
abUρ + ψaαψ̄

b
βUρρ,

δ2U

δψ̄bβδψ
a
α

= −δβαδbaUρ + ψ̄aαψ
b
βUρρ,

δ2U

δψ̄bβδψ̄
a
α

= −ψaαψbβUρρ. (D.3)

The operator ∆−1 then becomes:

∆−1 =

(

−ψaαψbβUρρ −i/pαβδ
ab + δαβδ

abUρ + ψaαψ̄
b
βUρρ

−i/pβαδ
ba − δβαδ

baUρ + ψ̄aαψ
b
βUρρ −ψ̄aαψ̄bβUρρ

)

=

(

−ψψUρρ −i/p + Uρ + ψψ̄Uρρ
−i/pT − Uρ + ψ̄ψUρρ −ψ̄ψ̄Uρρ

)ab

αβ

=

(

0 −i/p+ Uρ
−i/pT − Uρ 0

)ab

αβ

+ Uρρ

(

−ψψ ψψ̄
ψ̄ψ −ψ̄ψ̄

)ab

αβ

=

(

0 −i/p+ Uρ
−i/pT − Uρ 0

)ac

αγ




(

1 0
0 1

)

+





0
i/pT−Uρ
p2+U2

ρ
i/p+Uρ
p2+U2

ρ
0



Uρρ

(

−ψψ ψψ̄
ψ̄ψ −ψ̄ψ̄

)





cb

γβ

= (∆−1
0 )acαγ [1 + ∆0Σ]

cb
γβ , (D.4)
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where:

∆−1
0 =

(

0 −i/p + Uρ
−i/pT − Uρ 0

)

, (D.5)

and

Σ = Uρρ

(

−ψψ ψψ̄
ψ̄ψ −ψ̄ψ̄

)

. (D.6)

The matrix ∆−1 has been split in the product of two matrices: ∆−1
0 and [1 + ∆0Σ].

From ∆0 the Hartree contribution to the RG equation (see the text) is obtained, from the

other factor the Fock’s one. From Eq. (D.18) one finds:

trln
(

∆−1
)

= trln
(

∆−1
0

)

+ trln (1 + ∆0Σ) . (D.7)

As for the Hartree term, trln (∆0), one immediately gets:

trln
(

∆−1
0

)

= tr IN ln(p2 + U2
ρ ) , (D.8)

where I is the identity matrix in the Dirac space and the value of tr I depends on the

specific representation chosen for the Dirac spinors (see Section 2).

In order to evaluate the Fock contribution, trln (1 + ∆0Σ),the following expansion is

performed:

trln (1 + ∆0Σ) = tr (∆0Σ)−
1

2
tr (∆0Σ∆0Σ) + . . . (D.9)

with:

∆0Σ =





i/pT−Uρ
p2+U2

ρ
Uρρψ̄ψ − i/pT−Uρ

p2+U2
ρ
Uρρψ̄ψ̄

− i/p+Uρ
p2+U2

ρ
Uρρψψ

i/p+Uρ
p2+U2

ρ
Uρρψψ̄



 . (D.10)

The traces in Eq. (D.9) are easily computed by choosing a multiplet of the U(N) group

with just one non-vanishing component. Then, if d ≤ 4, only terms up to the fourth order

in powers of ψ̄ψ survive, (see App.A.3). For the Fock contribution, with the help of the

identity:

(∆0Σ)
n =

(

2σUσUσσ
p2 + U2

σ

)n−1

∆0Σ, (D.11)

one finds:

trln (1 + ∆0Σ) = −ln

(

1 +
2ρUρUρρ
p2 + U2

ρ

)

, (D.12)

which is the expression used in the text (see Eq. (3.99)).
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D.3 Wilsonian RG equation for fermions and bosons

In the following appendix the Wilsonian RG equations for the effective potential of a

chiral theory involving both boson and fermion fields is calculated.

In order to obtain the flow equation for this potential the same passages sketched in

Sec. 3.3.3 must be followed. After the Gaussian integration over the fast components, a

functional super-determinant of the matrix:




Sφφ Sφψ̄ Sφψ
Sψ̄φ Sψ̄ψ̄ Sψ̄ψ
Sψφ Sψψ̄ Sψψ



 =

(

MBB MBF

MFB MFF

)

, (D.13)

it is found. Generally a super-determinant can be calculated by applying the rule:

sdet (M) =
det (MBB)

det (NFF )
, (D.14)

where: NFF =MFF −MFBM
−1
BBMBF . Thus for the matrix in Eq. (D.13) one finds:

MFBM
−1
BBMBF =

(

Sψ̄φ
Sψφ

)

· S−1
φφ ·

(

Sφψ̄, Sφψ
)

=

(

Sψ̄φS
−1
φφSφψ̄ Sψ̄φS

−1
φφSφψ

SψφS
−1
φφSφ̄ψ SψφS

−1
φφSφψ

)

. (D.15)

By applying the chain rules for functions of Grassmann numbers the matrix NFF can be

evaluated. Since:

Sφφ = p2 + Uφφ,

Sφψ = Uφψ, etc. (D.16)

Uφψα = −Uφρψ̄α,
Uψαφ = −Uρφψ̄α,
Uφψ̄β = Uφρψ

β,

Uψ̄βφ = Uρφψ
β, (D.17)

it turns out to be:

NFF =

(

−ψψ(Uρρ − UρφUφρ
p2+Uφφ

) −i/p + Uρ + ψψ̄(Uρρ − UρφUφρ
p2+Uφφ

)

−i/pT − Uρ + ψ̄ψ(Uρρ − UρφUφρ
p2+Uφφ

) −ψ̄ψ̄(Uρρ − UρφUφρ
p2+Uφφ

)

)

,(D.18)

Finally the trace of the logarithm of this matrix is given by:

ln detNFF = N ′ln
(

p2 + U2
ρ

)

− ln



1 +
2ρUρ

(

Uρρ − UρφUφρ
p2+Uφφ

)

p2 + U2
ρ



 (D.19)
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For generic d dimension the Wilsonian RG equation for dimensionless quantities is then:

∂

∂t
U = dU − d− 2

2
φUφ − (d− 1) σUσ

+
1

2

21−d

πd/2Γ
(

d
2

)

[

log (1 + Uφφ)−N ′ log
(

1 + U2
σ

)

+ log (1 + Σ)
]

, (D.20)

where:

Σ =
2σUσ

(

Uσσ − UσφUφσ
1+Uφφ

)

1 + U2
σ

. (D.21)
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[19] S.Hands, A.Kocić, J.B. Kogut Phys. Lett. B 273, 111 (1991).

[20] W.Bardeen, C.Hill, M.Lindner Phys. Rev. D 41, 5 (1990).

[21] A.Miransky, M.Tanabashi, K.Yamawaki, Mod. Phys. Lett. A4, 1043 (1989);

A.Miransky, M.Tanabashi, K.Yamawaki, Phys. Lett. B221, 177 (1989).
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