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Preface

We study a biological tissue as a biphasic material composed of several constituents al-

lowed to be transferred from one phase to the other .

Our porpuse in the following chapters is to give an overview of the most fundamental problems

of biomechanical and biophysical interest, retracing the state of the art in term of contents and

results.

We start recalling the basic concepts of the Kinematics of Continua and Differential Geometry

(Chapter 1) giving an overview on some fundamental concepts of Continuum Physics and in-

troducing the mathematical framework that we are going to use, i.e., Piola transformation, First

and the Second Principle of Thermo-dynamics in terms of generalised balance laws, thermo-

mechanic constraint’s concept (Chapter 2).

All these considerations allowed us to describe macroscopically the growth and mass transfer

in a biological tissue.

Next step (Chapter 3) is to assume the solid phase comprised of two sub-phases, i.e. matrix and

fibre-like inclusion φS = φM + φI , moving with the common phase velocity vS . Each phase

will be modelled as a mixture on its own with several constituents. Because of mass exchanges

between phases, the solid-phase experiences growth (or resorption). Growth, and the material

inhomogeneities related to it, will be described through the multiplicative decomposition of the

solid-phase deformation gradient tensor, and the introduction of the growth velocity gradient.

It’s time now to discuss possible evolution laws for both mass transfer and growth, and to char-

acterize the equilibrium of the system (Chapter 4). In order to do that we will use the Kröner’s

decomposition to find an elastic, Fe, and inelastic, Fa, part of the deformation gradient tensor,

F = FeFa. This approch has origin in the Theory of Plasticity and it is one of the milestones

of the mathematical modelling of volumetric growth. After the introduction, in the previous

chapters, of many important concepts such as the Mixture Theory, the mass balances and the

kinematics of anelastic processes, we will obtain in Chater 5, the expression of residual dis-

sipation as shown by Grillo et al. (136) and we will study the residual dissipation inequality

improving some of the results presented in (2, 58, 112).

We will adapt the model of fiber reorientation put forward by Olsson and Klarbring (126) to the

case of a multi-constituent solid with statistical distribution of fibers. Morever the latter model

in the presence of chemical agents will also prepresent the starting point for the next and last

chapter (Chapter 6).
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Chapter 1

Elements of Continuum Kinematics

and Differential Geometry

1.1 Introduction

This Chapter is devoted to recall the basic concepts of the Kinematics of Continua and

Differential Geometry which are employed throughout this Thesis.

Will be exploited the Lagrangian and Eulerian Descriptions of the Kinematics of Contin-

uum media with attention on their differences and analogies and presented some geometric

aspects of Continuum Kinematics related to the Theory of Differentiable Manifolds (Marsden

and Hughes, 1983; Felsager, 1998).

1.2 Preliminary Definitions

The mathematical description of the behaviour of deformable media under the action of ex-

ternal agents of various nature is called Continuum Mechanics. In this context a body is

said to be continuum if the smallest characteristic length established by a certain interaction

is much greater than the molecular, or atomic, characteristic distances (Eringen, 1980) and its

elementary constituent is referred to as particle or material point.

In this Chapter, we shall be concerned with the study “simple” continua, i.e., those media

which can be naturally studied in the three-dimensional Euclidean space, or in manifolds of

the same dimensions (Marsden and Hughes, 1983). Therefore, generalized continua, i.e. those

media which may require higher order dimensional spaces (for example, liquid crystals) will

3



1. ELEMENTS OF CONTINUUM KINEMATICS AND DIFFERENTIAL

GEOMETRY

not be treated throughout this Chapter.

In the Configuration Space (Lanczos, 1970; Landau and Lifshitz, 1976), a particle (as

elementary constituent of a continuum body) can be defined as curve parameterised by time, t.

If curves are admitted to be twice differentiable functions of time, then each curve, ℓ, belongs

to the functional space C2(R+0 ;R3). Consequently, the body, B, can be identified with a subset

of C2(R+0 ;R3), i.e. B ⊂ C2(R+0 ;R3). For every t ∈ R+0 , the point ℓ(t) and the set Bt ⊂ R
3

represent the configuration of particle, ℓ, and of the body, B, respectively, at time t.

If we disregard the occurrence bifurcations, the curves of B never intersect each other, i.e.

for every ℓ1, ℓ2 ∈ B, the inequality ℓ1(t) , ℓ2(t) is respected for every t ∈ R+0 .

The configuration of the body at time t, Bt, can be found by introducing a localization

map, i.e. a map φt : B → Bt such that φt(B) = Bt . For every ℓ ∈ B, the map φt is such

that φt(ℓ) = ℓ(t) ∈ Bt. Localization maps are bijective functions and, for every t1, t2 ∈ R
+
0 , the

diffeomorphism φt2 ◦ φ
−1
t1

: Bt1 → Bt2 represents the motion of the body, i.e. its time evolution

from time t1 to time t2, Bt1 and Bt2 being two different configurations of the body.

Given a body, B ⊂ C2(R+0 ;R3), and a normed space, Y, a generic physical quantity related

to the body, f, can be expressed as a function, f : I × B → Y , I being an interval of time, such

that y = f (t, ℓ) for every y ∈ Y , and (t, ℓ) ∈ I × B. Moreover, for every τ, t ∈ I such that τ < t,

we may define a map, f̂ : I × Bτ → Y , such that

y = f (t, ℓ) = f̂ (t, ℓ(τ)) = f̂ (t, φτ(ℓ)), (1.1)

where f̂ (t, ·) = f (t, ·) ◦ φ−1
τ .

1.3 Lagrangian Formulation of the Kinematics of Continua

The Lagrangian Formulation of the Kinematics of Continua is based on the definition of

a reference configuration, BR, associated with the body, B. Although the configuration BR

simply represents an arbitrarily chosen coordinate patch, and it may never be attained by the

body, it is sometimes naturally identified with the subset of R3 occupied by the body at time

t = 0, i.e. BR = B0 = φ0(B).

Coordinates in BR are usually referred to as material coordinates, or referential coordinates.

4



1.3 Lagrangian Formulation of the Kinematics of Continua

1.3.1 Manifolds and Coordinate Systems

In general, the configuration of a body at time t can be regarded as a smooth manifold in

R
3. A set M ⊂ R3 is said to be a manifold if, and only if, for each point P ∈ M, there exists a

subset U ⊂ M containing P, an open subset V ⊂ R3, and a smooth one-to-one mapping, called

chart or coordinate system, (sa)3
a=1, such that s : U→ V (Marsden and Hughes, 1983).

Given a subset U ⊂ M, and two coordinate systems, s(1) : U → V(1) and s(2) : U →

V(2), the map ξ(1,2) : V(1) → V(2), such that ξ(1,2) ∈ C∞(V(1),V(2)), is said to be a change of

coordinate. The change of coordinate is characterized by the property of being invertible, i.e.

there exists a smooth function ξ(2,1) such that ξ−1
(1,2) = ξ(2,1).

Let Ct ⊂ Bt be an open subset of the Bt. The coordinate system s(E) : Ct → C
(E)
t ⊂ R3 is

assumed to map Ct onto the three dimensional Euclidean space, and it is therefore said to be

the Euclidean representation of the manifold. Let s : Ct → C t ⊂ R
3 denote another arbitrary

coordinate system. In the following, we shall write s(E)(P) = z and s(P) = x, respectively, and

we shall consider the change of coordinate ξ : V(E) → V such that x = ξ(z), and ζ = ξ−1 :

V → V(E) such that z = ζ(x).

By regarding time t as a parameter, and introducing a map c : I → V such that c(t) = x =

s(P), and a map c(E) : I→ V(E) such that c(E)(t) = z = s(E)(P), we may write x = ξ(c(E)(t)), and

z = ζ(c(t)). The maps c and c(E ) are the parameterizations of curves in V and V(E), respectively.

On account of the decomposition ζ ◦ c = [ζ i ◦ c]ei (where {ei}
3
i=1 is the Euclidean orthonormal

basis in R3) we note that the derivative of ζ ◦ c with respect to time yields

d(ζ ◦ c)

dt
(t) =

[
d(ζ i ◦ c)

dt
(t)

]
ei =

[
∂ζ i

∂xa
(x)ċa(t)

]
ei. (1.2)

By introducing the notation

ba(x) =
∂ζi

∂xa
(x)], (1.3)

Eq. (1.2) becomes
d(ζ ◦ c)

dt
(t) = ċa(t)ba(x) = ċa(t)ba(c(t)). (1.4)

Equation (1.4) defines the tangent vector at point x to the line parameterized by the map c :

I → V, while Eq. (1.3) defines the three independent vectors, {ba(x)}3
a=1 , which form a basis

of the tangent space, TxCt , at point x to the subset Ct of the manifold Bt. On the other hand,

by inverting Eq. (1.3), we obtain

ei =
∂ξa

∂zi
(z)ba(x) =

∂ξa

∂zi
(ζ(x))ba(x) =

∂ξa

∂zi
(z)ba(ξ(z)). (1.5)
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1. ELEMENTS OF CONTINUUM KINEMATICS AND DIFFERENTIAL

GEOMETRY

From here on, we shall denote by Vi
(E) and Va the Euclidean and arbitrary coordinates, respec-

tively of an arbitrary vector V. Moreover, coordinate systems on the ambient space R3 and

BR will be denoted with {xa}3
a=1 and {XA}3

A=1, respectively, while the corresponding Euclidean

coordinates will be represented by {zi}3
i=1 and {ZI}3

I=1, respectively. In the following, where

there is no danger of confusion, we shall identify the body manifolds, BR and Bt, with their

corresponding coordinate patches, i.e. BR and Bt, respectively.

1.3.2 Configuration Field

The configuration field is defined as a map χ : I × BR → R
3 such that, for every (t, X) ∈

I × BR, there exists a point x ∈ R3 such that χ(t, X) = x. It should be noted that, when the

reference configuration is assumed to coincide with the configuration occupied by the body at

time t = 0 (i.e. BR = B0), and the map χ(t, ·) is restricted to [χ(t, ·)]B0→Bt
, the configuration

field satisfies the identity

[χ(t, ·)]B0→Bt
= φt ◦ φ

−1
0 , (1.6)

where Bt is said to be the current configuration of the body. In this case, the map χ(·, X)

associates to each material point the corresponding trajectory, ℓ, i.e. χ(·, X) = ℓ.

1.3.3 Lagrangian Velocity

Velocity is the map v̂ : I × BR → R
3 such that v̂(t, X) = ∂tχ(t, X). The vector v̂(t, X) is

tangent to ℓ at the point x = ℓ(t) = χ(t, X). By denoting with {ba(x)}3
a=1 an orthonormal basis

attached to the point x ∈ Bt, velocity can be decomposed as (Marsden and Hughes, 1983)

v̂(t, X) = v̂a(t, X)ba(x), (1.7)

where each component coincides with the time derivative of the corresponding component of

the configuration field, i.e.

v̂a = ∂tχ
a,∀a = 1, 2, 3. (1.8)

In order to prove Eq. (1.8), we evaluate the quantity [∂tχ
a(t, X)]ba(x). By applying the trans-

formation rules

χa(t, X) =
∂ξa

∂zi
(z)χi

(E)(t, X), (1.9)

and

ba(x)
∂ξa

∂zi
(z) = ei, (1.10)

6



1.3 Lagrangian Formulation of the Kinematics of Continua

and noting that

∂tχ
a(t, X) = ∂t

(
∂ξa

∂zi
(z)χi

(E)(t, X)

)
=
∂ξa

∂zi
(z)[∂tχ

i
(E)(t, X)], (1.11)

we may write
[∂tχ

a(t, X)]ba(x) = ∂tχ
i
(E)(t, X)

[
ba(x)∂ξ

a

∂zi (z)
]
=

= [∂tχ
i
(E)(t, X)]ei = [v̂i

(E)(t, X)]ei.
(1.12)

Since the identity

[v̂i
(E)(t, X)]ei = [v̂a(t, X)]ba(x) (1.13)

must hold true, we conclude that ∂tχ
a(t, X) = v̂a(t, X).

1.3.4 Lagrangian Acceleration

Acceleration, â, is the partial time derivative of the configuration field, i.e.

â(t, X) = ∂tv̂(t, X) = ∂2
t χ(t, X). (1.14)

The components of â(t, X) are given by

âa(t, X) = ∂tv̂
a(t, X) + γa

bc(x)v̂b(t, X)v̂c(t, X), (1.15)

where the terms

γa
bc(x) =

∂(ξ−1)i

∂xb∂xc
(x)

∂ξa

∂zi
(z) (1.16)

are said to be the Christoffel symbols.

In order to prove Eq. (1.15), we note that ba(x) = b̂a(t, X) and we differentiate v̂(t, X) =

v̂a(t, X)b̂a(t, X) with respect to time, i.e.

∂tv̂(t, X) = [∂tv̂
a(t, X)]b̂a(t, X) + v̂a(t, X)∂t b̂a(t, X) . (1.17)

Since b̂a = ba ◦ χ, we obtain the identity

∂t b̂a(t, X) =
∂ba

∂xb
(x)∂tχ

b(t, X) =
∂ba

∂xb
(x)v̂b(t, X). (1.18)

Substituting Eq. (1.18) into Eq. (1.17) yields

∂tv̂(t, X) = [∂tv̂
a(t, X)]ba(x) + v̂a(t, X)v̂b(t, X)

∂ba

∂xb
(x). (1.19)

By noting that
∂ba

∂xb
(x) =

[
∂

∂xb

(
∂ζ i

∂xa

)]
(x)ei =

∂2ζ i

∂xb∂xa
(x)ei, (1.20)

7



1. ELEMENTS OF CONTINUUM KINEMATICS AND DIFFERENTIAL

GEOMETRY

and applying the inverse of Eq. (1.10), we obtain the identity

∂ba

∂xb
(x) =

∂2ζ i

∂xb∂xa
(x)ei =

∂2ζ i

∂xb∂xa
(x)

∂ξc

∂zi
(z)bc(x), (1.21)

i.e., ∂ba

∂xb (x) = γc
ab

(x)bc(x), where the definition (1.16) has been used.

Finally, Eq. (1.15) is retrieved by substituting Eq. (1.21) into Eq. (1.17),

∂tv̂(t, X) = [∂tv̂
a(t, X) + γa

bc(x)v̂b(t, X)v̂c(t, X)]ba(x), (1.22)

and noting that ∂tv̂(t, X) = â(t, X) = âa(t, X)ba(x).

1.3.5 Covariant Derivative

Let u, v : Ω → R3 be two vector fields, and Ω ⊂ R3 an open set. The covariant derivative

of v along u is defined as the linear map, Dv(x) : R3 → R3, such that the quantity Dv(x) · u(x)

is a vector field on R3. Covariant derivative may also be denoted with ∇uv(x). Moreover, the

a-th component of ∇uv(x) is given by

(∇uv(x))a =
∂va

∂xb
(x)ub(x) + γa

bc(x)vb(x)uc(x). (1.23)

In order to prove Eq. (1.23) we note that, in Euclidean coordinates, the covariant derivative

reads

∇uv(x) =


∂vi

(E)

∂z j
(z)u j

(E)(z)

 ei (1.24)

By applying the transformation formulae

vi
(E)(z) = ∂ζi

∂xc (x)vc(x), u
j

(E)(z) = ∂ζ j

∂xd (x)ud(x),

ei =
∂ξa

∂zi (z)ba(x),
(1.25)

and substituting Eqs. (1.25) into Eq. (1.24), we obtain

∇uv =

{[
∂
∂z j

(
∂ζi

∂xc vc
)] [

∂ζ j

∂xd ud(x)
]}

∂ξa

∂zi ba =

=

{[
∂2ζi

∂x f ∂xc

∂ξ f

∂z j vc +
∂ζi

∂xc
∂vc

∂x f

∂ξ f

∂z j

]
∂ζ j

∂xd ud
}
∂ξa

∂zi ba =

=
∂2ζi

∂x f ∂xc

∂ξ f

∂z j vc ∂ζ
j

∂xd ud ∂ξ
a

∂zi ba+

+
∂ζi

∂xc
∂vc

∂x f

∂ξ f

∂z j

∂ζ j

∂xd ud ∂ξ
a

∂zi ba.

(1.26)

After noting that
∂2ζi

∂x f ∂xc

∂ξa

∂zi = γ
a
f c
,

∂ξ f

∂z j

∂ζ j

∂xd = δ
f

d
, (1.27)

8



1.3 Lagrangian Formulation of the Kinematics of Continua

we rewrite Eq. (1.26) as

∇uv = γa
f c
δ

f

d
vcud ba + δ

a
cδ

f

d
∂vc

∂x f ud ba =

=
[
∂va

∂xd ud + γa
dc

vcud
]

ba.
(1.28)

Finally, by introducing the notation

va
|b =

∂va

∂xb
+ γa

bdvd, (1.29)

covariant derivative can be given the compact form

∇uv = (va
|b

ub)ba, (∇uv)a = va
|b

ub . (1.30)

1.3.6 Tangent Space and Tangent Bundle

Let M ⊂ R3 be a manifold, and P ∈ M. The tangent space to M at P coincides with the

vector space R3 attached at P, and is denoted with TPM. The tangent bundle of M is defined

by TM = M × TPM, and consists of pairs yP = (P, y) ∈ M × TPM.

Let BR be the reference configuration of a body. For each X ∈ BR, the six-dimensional

manifold TBR = BR × TXBR is the tangent bundle of BR.

The elements of TBR are YX = (X,Y(X)), where {XA}3
A=1 = {Ξ

A(Z)}3
A=1 is an arbitrarily chosen

coordinate system on BR, {ZI}3
I=1 is the Euclidean coordinate system, and the components of

the vector Y transforms as YA = ∂ΞA

∂ZI Y I
(E). Analogously, if Bt is the current configuration

of the body, for each x ∈ Bt ⊂ R
3, the six-dimensional manifold TBt = Bt × TxBt is the

tangent bundle of Bt. The elements of TBt are yx = (x, y(x)), where {xa}3
A=1 = {ξ

a(z)}3
a=1 in the

coordinate system such that xa = χa(t, X), and the components of y transform as ya =
∂ξa

∂zi yi
(E).

By introducing a function f : BR → R, such that f ∈ C1(BR), we define the derivative of f

along Y at X ∈ BR as

YX[ f ] = D f (X) · Y(X) =
∂ f

∂XA
(X)YA(X). (1.31)

1.3.7 Tangent Map and Push Forward

Let χt = χ(t, ·) : BR → R
3 be a C1(BR) configuration field. The tangent map of χt is

defined as the map

Tχt : TBR → TR3, (1.32)

such that

(X,Y)→ Tχt(X,Y) = (χt(X),∇Yχt(X)). (1.33)

9
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Therefore, the tangent map, Tχt, associates to each point X ∈ BR a point x = χt(X) ∈ R3, and

transforms each tangent vector Y ∈ TXBR into the tangent vector y ∈ TxR
3, such that y = ∇Yχt.

In particular, the map Tχt(X, ·) is said to be the push forward of the tangent vector Y, and is

defined by

(Tχt(X, ·))
a = (Tχt.YX)a = (χt∗YX)a =

∂χa
t

∂XA
(X)YA(X) (1.34)

1.3.8 Tilt of a Vector Field

Let χt = χ(t, ·) : BR → R
3 be a C1(BR) configuration field and let Y be a vector field on BR

such that YX = (X,Y(X)) ∈ TBR. The map V = Tχt ◦ Y : BR → TR3 is said to be the tilt of Y

by χt.

If χt is regular, the push forward of Y by χt is defined by

χt∗Y = Tχt.VX = Tχt ◦ Y ◦ χ−1
t . (1.35)

Moreover, the components of the push forward are given by

(χt∗Y(X))a =
∂χa

t

∂XA
(X)YA(X). (1.36)

Conversely, if v is a vector field on χt(BR) ⊂ R3, and χt is regular, the pull back of v by χt is

defined by

χt
∗v = Tχ−1

t ◦ v ◦ χt. (1.37)

1.3.9 The Deformation Gradient

Let χt : BR → R
3 be a C1(BR) configuration field. The tangent map of χt, Tχt, is also called

deformation gradient, and is denoted by F, thus F(t, ·) = Tχt. For each X ∈ BR, the linear map

F(t, X) represents the restriction of F to TXBR. Consequently, the map F(t, X) : TXBR → TxBt

(where x = χ(t, X), and Bt = χ(t,BR)) is a linear transformation for every pair (t, X) ∈ I × BR.

If {xa}3
a=1 = {ξ

a(z)}3
a=1 and {XA}3

A=1 = {Ξ
A(Z)}3

A=1 represent the coordinate systems on Bt

and BR, respectively, then the matrix of F(t, X) with respect to the bases {ba(x)}3
a=1 ⊂ Bt and

{BA(X)}3
A=1 ⊂ BR reads

Fa
A(t, X) =

∂χa

∂XA
(t, X). (1.38)

10



1.3 Lagrangian Formulation of the Kinematics of Continua

1.3.10 Inner Product and Transpose of a Linear Application

Let M be a manifold, and u, v ∈ TxM two vectors belonging to the tangent space to M at x.

The inner product between u and v is defined as the bilinear application,

gx(·, ·) := 〈·|·〉x : TxM × TxM → R (1.39)

such that

gx(u, v) = 〈u | v〉x. (1.40)

Since the tangent vectors u and v can be decomposed as u = uaba and v = vbbb, respectively,

Eq. (1.40) becomes

gx(u, v) = gx(uaba, v
bbb) = uavbgx(ba, bb). (1.41)

Moreover, by introducing the notation gx(ba, bb) = gab(x), we obtain

gx(u, v) = uavbgab(x). (1.42)

By rewriting Eq. (1.41) as

gx(u, v) = uavb ∂ζ
i

∂xa
(x)

∂ζ j

∂xb
(x)g(ei, e j), (1.43)

we conclude that

gab(x) =
∂ζ i

∂xa
(x)

∂ζ j

∂xb
(x)δi j, (1.44)

where g(ei, e j) = δi j. By applying the transformation formulae

ui
(E)(x) = ua ∂ζ

i

∂xa (x), v
j

(E)(x) = vb ∂ζ
j

∂xb
(x), (1.45)

Eq. (1.43) can be given the expression

gx(u, v) = ui
(E)(x)v j

(E)(x)δi j, (1.46)

which coincides with the “standard” scalar product in R3.

Let L(X) : TXBR → TxR
3 be a linear transformation, U ∈ TXBR and v ∈ TxR

3. The

transpose of L(X) is the linear map, LT (X) : TxR
3 → TXBR, such that

〈AU | v〉x =
〈
U

∣∣∣ AT v
〉

X
. (1.47)

In components, Eq. (1.47) reads

L
a
AUAvbgab(x) = UA(LT )B

bvbGAB(X), (1.48)

11
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where GAB(X) = GX(BA, BB) = ∂ZI

∂XA (X) ∂ZJ

∂XB (X)δIJ .

Equation (1.47) can be applied to calculate the components of the matrix of FT (t, X). By virtue

of the definition of transpose of a linear application, the FT (t, X) must be such that

〈FU | v〉x =
〈
U

∣∣∣ FT v
〉

X
. (1.49)

In components, Eq. (1.49) reads

(Ft)a
AUAvbĝab = UA(FT )B

bvbGAB, (1.50)

where ĝab = gab ◦ χ.

Since Eq. (1.49) holds true for all U and v, Eq. (1.50) is equivalent to write

(Ft)a
Aĝab = GAB(FT )B

b. (1.51)

Finally, by multiplying Eq. (1.51) by GBC , and noting that GABGBC = δC
A
, we obtain

(FT )B
b = GAB(Ft)a

Aĝab. (1.52)

1.3.11 Green Stretch Tensor

The Green deformation tensor (also called Right Cauchy-Green deformation tensor, or

stretch tensor) is a map C(t, X) : TXBR → TXBR defined by

C(t, X) = FT (t, X)F(t, X). (1.53)

In components, Eq. (1.53) reads

CA
B(t, X) = [(FT )A

aFa
B](t, X) = (GAC(Ft)b

C ĝabFa
B)(t, X). (1.54)

The stretch tensor, C, is symmetric and positive-semidefinite, i.e. 〈CU | U〉X ≥ 0 for all U. In

particular, if F(t, X) is a one-to-one linear map (this condition holds true if χt is regular), then

C(t, X) is invertible and positive-definite, i.e. 〈CU | U〉X > 0 for all U different from the zero

vector.

12
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1.3.12 Piola Deformation Tensor

The Piola transformation tensor (also called Left Cauchy-Green deformation tensor) is a

map B(t, x) : TxBt → TxBt defined by

B̂(t, X) = F(t, X)FT (t, X), (1.55)

where B̂(t, ·) = B(t, ·) ◦ χt, and χt is a C1(BR) regular, and invertible configuration field such

that X = χ−1
t (x).

In components, Eq. (1.55) reads

B̂a
b(t, X) = [Fa

A(Ft)A
b](t, X) = (Fa

AĝbcFc
CGAC)(t, X). (1.56)

The tensor B is invertible and positive-definite, i.e. 〈Bv | v〉 > 0 for all v different from the zero

vector.

1.3.13 Polar Decomposition of the Deformation Gradient

The deformation gradient, F, describes the entire deformation experienced by the body

during its evolution from the reference configuration, BR, to the current configuration, Bt =

χ(t,BR). The most general motion performed by the body is the superposition of a rigid motion

and a deformation. Since rigid translations can always be eliminated without compromising the

body description by a suitable redefinition of the configuration field (i.e. χ̄(t, X) → χ(t, X) =

χ̄(t, X) − ϕ(t), where ϕ(t) denotes the rigid translation), the configuration field must take into

account both rigid rotations and genuine deformations. Therefore, if we assume that the final

(current) configuration of the body is given by the superposition of deformation, χ̃t, and a rigid

rotation, rt, we can describe the body motion by introducing an intermediate configuration, B̃t,

such that

B̃t = χ̃(t,BR), Bt = r(t, B̃t) , (1.57)

and

x = χ(t, X) = r(t, x̃) = r(t, χ̃(t, X))⇒ χt = rt ◦ χ̃t, (1.58)

where X ∈ BR, x̃ ∈ B̃t, and x ∈ Bt. By virtue of Eq. (1.58) the deformation gradient turns out

to be

Fa
A =

∂χa

∂XA
=
∂ra

∂x̃B

∂χ̃B

∂XA
= Ra

BUB
A ⇒ F = RU. (1.59)
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Equation (1.59) is said to be the right polar decomposition of the deformation gradient. It

should be noted that R is a orthogonal tensor (i.e. RT R = I
B̃t

, and RRT = IBt
), while U is a

symmetric second order tensor.

Analogously, if we assume that the final configuration is given by superimposing a deformation,

χ̆t, to a rigid rotation, rt, we can introduce an intermediate configuration, B̆t, such that

B̆t = rt(BR), Bt = χ̆t(B̆t) , (1.60)

and

x = χ(t, X) = χ̆(t, x̆) = χ̆(t, r(t, X))⇒ χt = χ̆t ◦ rt. (1.61)

where X ∈ BR, x̆ ∈ B̆t, and x ∈ Bt. By virtue of Eq. (1.61), F can be written as the product of

a symmetric tensor, V, and the orthogonal tensor, R, i.e.

Fa
A =

∂χa

∂XA
=
∂χ̆a

∂x̆b

∂rb

∂XA
= Va

bRb
A ⇒ F = VR. (1.62)

Equation (1.62) is said to be the left polar decomposition of the deformation gradient. Equa-

tions (1.59) and (1.62) imply the identities C = U2 and B = V2.

1.3.14 Geometric Interpretation of the Stretch Tensor

Let CR ⊂ BR be a regular curve in the reference configuration, and let η : [a, b]→ CR be its

parameterization, i.e. ∀X ∈ CR, ∃λ ∈ [a, b] such that η(λ) = X. On account of the configuration

field, χt : BR → Bt, the curve CR is transformed into the curve C t = χ(t,CR) parameterized by

the map η̃ = χt ◦ η. In the current configuration, the length of the curve is given by

ℓ̃(C t) =

∫ b

a

√〈
η̃′(λ)

∣∣∣ η̃′(λ)
〉
dλ. (1.63)

Since η̃′(λ) = F(t, η(λ))η′(λ), Eq. (1.63) can be rewritten as

ℓ̃(C t) =

∫ b

a

√〈
F(t, η(λ))η′(λ)

∣∣∣ F(t, η(λ))η′(λ)
〉
dλ. (1.64)

By applying the definition of transpose of a linear application (Eq. (1.47)), and the definition

of the stretch tensor (Eq. (1.53)), Eq. (1.64) becomes

ℓ̃(C t) =

∫ b

a

√〈
η′(λ)

∣∣∣ C(t, η(λ))η′(λ)
〉
dλ. (1.65)
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In components, Eq. (1.65) reads

ℓ̃(C t) =
∫ b

a

√
η′A(λ)CB

D
(t, η(λ))η′D(λ)GAB(η(λ))dλ =

=
∫ b

a

√
CAD(t, η(λ))η′A(λ)η′D(λ)dλ .

(1.66)

Equation (1.66) shows how the stretch tensor represents the metric tensor associated with the

deformation.

1.3.15 Lagrange Strain Tensor

The Lagrange strain tensor is a map ε : TBR → TBR defined by

ε = 1
2 (C − IBR

). (1.67)

In components, Eq. (1.67) reads

εA
B =

1
2 (CA

B − δ
A
B). (1.68)

By introducing the displacement vector field, u(t, X) = χ(t, X) − X, the gradient of u with

respect to referential coordinates can be written as

∇Ru = ∇Rχ − IBR
= F − IBR

⇒ F = ∇Ru + IBR
. (1.69)

Consequently, Eq. (1.67) becomes

ε = 1
2 {[(∇Ru)T + IBR

][∇Ru + IBR
] − IBR

} =

= 1
2 (∇Ru)T∇Ru + 1

2 {(∇Ru)T + ∇Ru}.
(1.70)

In the limit of small strains, the quadratic part of the strain tensor is negligible compared with

the linear term. Thus, in this case, we can define a linear strain tensor, εlin, given by

εlin = 1
2 {(∇Ru)T + ∇Ru}. (1.71)

1.3.16 Covariant Derivative of the Velocity Field in the Reference Configuration

The deformation gradient enables us to determine the covariant derivative of the velocity

field in the reference configuration. The gradient of the velocity field, v̂(t, ·) : BR → TR3, with

respect to referential coordinates is given by

∇Rv̂ = (∇Rv̂a)b̂a + v̂a∇R b̂a, (1.72)

or
∂v̂

∂XA
=
∂v̂a

∂XA
b̂a + v̂a ∂b̂a

∂XA
. (1.73)
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Since b̂a = ba ◦ χt, we note that ∇R b̂a = [(∇ba) ◦ χt]Ft. Therefore, Eq. (1.73) can be rewritten

as
∂v̂

∂XA
(t, X) =

∂v̂a

∂XA
(t, X)ba(x) + v̂a(t, X)

∂ba

∂xb
(x)Fb

A(t, X). (1.74)

Moreover, by taking into account the identity

∂ba

∂xb
= γc

babc, (1.75)

Eq. (1.74) can be rearranged as

∂v̂
∂XA (t, X) =

[
∂v̂a

∂XA (t, X) + v̂c(t, X)γa
bc

(x)Fb
A
(t, X)

]
ba(x) =

= v̂a
|A

(t, X)ba(x)
(1.76)

and we may write (∇Rv̂)a
A
= v̂a

|A
, where

(∇Rv̂)a
|A = v̂a

|A =
∂v̂a

∂XA
+ γ̂a

bcv̂cFb
A (1.77)

.

1.4 Eulerian Formulation of the Kinematics of Continua

Let B ⊂ C2(R+0 ,R
3) be a body, Ω ⊂ R3 an open set, and I ⊂ R+0 an interval of time. We

define Eulerian pair the subset (I,Ω) ⊂ (R+0 ,R
3) such that Ω ⊂

⋂
t∈I Bt. The set W, which does

not vary with time, is called Eulerian Control Volume. The portion of the body “controlled” by

the Eulerian pair, (I,Ω), is defined by the set

B
(I,Ω) = {ℓ ∈ B|ℓ(t) ∈ Ω∀t ∈ I}. (1.78)

The set B(I,Ω) ⊆ B contains all the trajectories which "pass" through the control volume, W,

within the time interval I. The Lagrangian from of B(I,Ω) is given by

B
(I,Ω)
R
= {X ∈ BR|χ(t, X) = ℓ(t) ∈ Ω∀t ∈ I}. (1.79)

The set B(I,Ω)
R

contains the points of the reference configuration which reach the points of the

control volume, Ω, at time t.

In principle, any physical quantity can be expressed either in the Lagrangian or Eulerian for-

malism. If we let E f : I × Ω → Y denote a physical quantity defined on the Eulerian pair

(I,Ω), Y being a generic normed space, the Lagrangian form of the same quantity is given by
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f̂ : I × B
(I,Ω)
R
→ Y . In order to pass from the Eulerian to the Lagrangian description we in-

troduce a map, τ : I × BR → I, such that τ(t, X) = t. This auxiliary map is called time map

(Federico, 2000). This enables us to write

E f (t, x) = f̂ (t, X) = [E f ◦ (τ, χ)](t, X) ⇒ f̂ = E f ◦ (τ, χ). (1.80)

In the following, we shall replace E f with f for the sake of simplicity.

1.4.1 Eulerian Velocity

In the Eulerian framework, velocity is given a priori. It is defined as a vector field on

the Eulerian pair (I,Ω) which associates a velocity vector to any pair (t, x) ∈ (I,Ω), i.e. v :

I×Ω→ R3. Since this definition must be consistent with the Lagrangian definition of velocity,

we obtain the identity

v(t, x) = v̂(t, X) ⇒ v̂ = ∂tχ = v ◦ (τ, χ), (1.81)

where v̂ : I × B(I,Ω)
R
→ R3.

1.4.2 Eulerian Acceleration

The Eulerian acceleration is a vector field, a : I×Ω→ R3, which associates an acceleration,

a(t, x), to each pair (t, x) ∈ I ×Ω. In analogy, with Eq. (1.81), we write

a(t, x) = â(t, X) ⇒ â = ∂tv̂ = ∂
2
t χ = a ◦ (τ, χ). (1.82)

By virtue of Eq.(1.82) we note that

â = ∂tv̂ = ∂t[v ◦ (τ, χ)] =
= ∂tv ◦ (τ, χ) + [∇v ◦ (τ, χ)] · [v ◦ (τ, χ)] =
= {∂tv + v · ∇v} ◦ (τ, χ).

(1.83)

By introducing the substantial derivative operator, Dt = ∂t + v · ∇v, we can rewrite Eq. (1.83)

as

â(t, X) = a(t, x) = Dtv(t, x). (1.84)

In components, we obtain

â = ∂t(v̂
a b̂a) = (∂tv̂

a)b̂a + v̂a∂t b̂a. (1.85)
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By noting that

∂tv̂
a = ∂t[va ◦ (τ, χ)] =

{
∂va

∂t
+ ∂boldsa

∂xb vb
}
◦ (τ, χ),

∂t b̂a = ∂t[ba ◦ χ] =
{
∂ba

∂xb vb
}
◦ (τ, χ) = {γc

ab
bcvb} ◦ (τ, χ),

(1.86)

Eq. (1.85) becomes

aa =
∂va

∂t
+ vb ∂va

∂xb
+ γa

bcvbvc. (1.87)

1.4.3 Decomposition of the Velocity Gradient, Rate of Deformation Tensor and

Spin Tensor

In the Eulerian formalism, the velocity gradient is the second-order tensor L = ∇v, and its

components are given by

La
b(t, x) =

∂va

∂xb
(t, x) + γa

bc(x)vc(t, x) = va
|b(t, x). (1.88)

Differentiation of F with respect to time may be written as

∂tF =
∂Fi

(E) I

∂t
ei ⊗ EI =

∂v̂i
(E)

∂ZI ei ⊗ EI =

=

(
∂vi

(E)

∂z j F
j

(E) I

)
ei ⊗ EI ,

(1.89)

where F = Fi
(E) I

ei ⊗ EI is the Euclidean decomposition of F. Equation (1.89) enables us to

state that

(∂tF)i
(E) I = ∂tF

i
(E) I = L̂i

(E) jF
j

(E) I
, (1.90)

where L̂ = L ◦ (τ, χ). Equation (1.90) can be rearranged for generalized coordinates by noting

that
∂v̂i

(E)

∂ZI ei ⊗ EI = ∂
∂ZI

(
∂ζi

∂xa v̂a
)

ei ⊗ EI =

=

[
∂2ζi

∂xb∂xa

∂ξb

∂zk Fk
(E) I

v̂a +
∂ζi

∂xa
∂v̂a

∂XA
∂ΞA

∂ZI

]
ei ⊗ EI =

=
∂2ζi

∂xb∂xa

∂ξb

∂zk Fk
(E) I

v̂a ∂ξ
d

∂zi
∂ZI

∂XD b̂d ⊗ B̂D+

+
∂ζi

∂xa
∂v̂a

∂XA
∂ΞA

∂ZI

∂ξd

∂zi
∂ZI

∂XD b̂d ⊗ B̂D =

=
(
γ̂d

ba
v̂aFb

D
+ ∂v̂d

∂XD

)
b̂d ⊗ B̂D.

(1.91)

Therefore, we obtain that

∂v̂i
(E)

∂ZI ei ⊗ EI =
(
γ̂d

ba
v̂aFb

D
+ ∂v̂d

∂XD

)
b̂d ⊗ B̂D =

= v̂d
|D

b̂d ⊗ B̂D = [vd
|b
◦ (τ, χ)]Fb

D
b̂d ⊗ B̂D.

(1.92)

This result implies that

∂tF = (L̂d
bFb

D)b̂d ⊗ B̂D ⇒ (∂tF)d
D = L̂d

bFb
D. (1.93)
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By virtue of Eq. (1.93), we conclude that the Lagrangian form of the velocity gradient is given

by

L̂a
b = (∂tF)a

A(F−1)A
b ⇒ L̂ = (∂tF)F−1. (1.94)

Equation (1.94) is used to define the rate of deformation tensor. This tensor is found by differ-

entiating the stretch tensor, C, with respect to time, i.e.

∂tC = ∂t(FT F) = (∂tF
T )F + FT∂tF =

= FT L̂T F + FT L̂F = 2FT D̂F,
(1.95)

where

D = 1
2 (LT + L), D̂ = D ◦ (τ, χ), (1.96)

is said to be the rate of deformation tensor, and coincides with the symmetric part of the

velocity gradient.

By invoking the relation C = 2ε + IBR
, Eq. (1.96) can also be written as

D̂ = 1
2 F−T (∂tC)F−1, (1.97)

or

D̂ = F−T (∂tε)F−1. (1.98)

It is worthwhile to note that the tensor D represents the “part” of the velocity gradient related

to the deformation process undergone by the body. Hence, the condition D = 0 holds true if,

and only if, the body experiences a rigid motion. This statement is known as Killing’s Theorem

(Marsden and Hughes, 1983; Liu, 2002). On the other hand, the “part” of the velocity gradient

related to rigid motion, i.e. pure rotation, is given by the skew-symmetric part of L, i.e.

W = skew(L) = 1
2 {L − LT }. (1.99)

The tensor W is the describes the vorticity field which is present within the body, and is usually

called spin tensor. Therefore, the condition W(t, x) = 0 means that the motion is irrotational

at time t and location x. In particular, if this condition holds true for any (t, x) ∈ (I,Ω), then the

motion is said to be irrotational within the whole control volume. In this case, and assuming

that W is a connected domain (Smirnov, 1964), the velocity field is a potential field, i.e. there

exists a scalar field, F, such that v = −∇Φ. By introducing the permutation symbols, ∈i jk, the

components of the vorticity field, ω = ∇ × v, associated with the velocity vector, v, can be

expressed by

ωi =∈i jk W jk =∈
i jk g jlW

l
k. (1.100)

19
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Chapter 2

Balance and Constitutive Laws in

Continuum Physics

2.1 Introduction

In this Chapter will be presented the “classical” formulation of Dynamics and Thermo-

dynamics of Continua (cfr. Truesdell e Toupin, 1960; Truesdell e Noll, 1965; Marsden and

Hughes, 1983; ilhavı, 1997), giving an overview on some fundamental concepts of Continuum

Physics.

Using some tools of Differential Geometry and Functional Analysis, we will present the

Theory of Constitutive Law (Day, 1972; Liu, 2002; Eringen, 2002). In order to do that we

need to introduce the mathematical framework that we are going to use, i.e., Piola transforma-

tion, First and the Second Principle of Thermo-dynamics in terms of generalised balance laws,

thermo-mechanic constraint’s concept .

2.2 Balance Laws

Balance principles can be expressed either in integral (global) form or in differential (local)

form (the Reader is referred to Eringen (2002) for the details related to the generalization

of balance laws to non-local continua). In regions of space where physical quantities vary

sufficiently smoothly, balance laws are equivalent to differential field equations; on the other

hand, in the presence of surfaces of discontinuity, they are to be expressed by means of jump

conditions (Truesdell and Toupin, 1960; ilhav, 1997). In the following, we will consider as
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2. BALANCE AND CONSTITUTIVE LAWS IN CONTINUUM PHYSICS

hypothesis the saturation condition, i.e. the sum of solid- and fluid-phase volume fractions,

denoted by φS and φF , respectively, is equal the unity at all times and all points of the mixture ,

φS + φF = 1. Volume fraction of phase F j, φ j ( j = S , F), is defined by the ratio φ j = |Ω j|/|Ω|,

where Ω and Ω j are the volumes of the Representative Volume Element (RVE), and the j-th

phase contained in the RVE, respectively.

If we denote by ψ a generic macroscopic physical quantity, the notation ψα j means that

quantity ψ refers to the α-th constituent in the j-phase, Cα j. Index α ranges between 0 and N.

The notation ψp

α j
represents a physical quantity defined at the pore-scale, whose macroscopic

counterpart is ψα j.

Following (19), we define the intrinsic mass density of phase F j as the sum of mass densi-

ties of all constituents Cα j, i.e. 1

ρ j :=
N∑

α=0

ρα j. (2.1)

Mass fractions, Cα j (with α ∈ {0, . . . ,N} and j = S , F), are defined by the ratios Cα j :=

ρα j/ρ j and constrained to satisfy the condition

N∑

α=0

Cα j = 1. (2.2)

Such that they are not independent on each other. With respect to each constituent Cα j

inphase F j (withα ∈ {0, . . . ,N} and j ∈ {F, S } , the macroscopic balance laws can be written

in the following general form:

∂(ϕ jρ jCα jψα j)

∂t
+ ∇ · (ϕ jρ jCα jψα jvα j) + ∇ · Φα j − ϕ jρ jCα jFα j = ϕ jρ jCα jGα j (2.3)

Here, vα j is the velocity, Φα j denote flux, Fα j net production (or decay) and Gα j the source

(or sink) of the generic thermodynamic quantity ψα j associated with constituent Cα j. Eq. (2.3)

is a compact way of writing balance of mass, momentum, energy, entropy and balance laws

are obtained in specific form by substituting the quantities in Tables 2.1 and 2.2 into eq. (2.3).

Quantity ψα j may represent either a scalar or a vector field. In the case of balance of mo-

mentum, ψα j is identified with vα j, quantities Fα j and Gα j are vector fields, flux Φα j is a

1Since a given density ρα j measures the amount of mass of α-th constituent in the portion of RVE occupied

by the j-th phase, it is not truly intrinsic. The true intrinsic mass density of the α-th constituents in the j-th phase,

denoted by ρ∗α j, is determined by ρα j = ϕα jρ
∗
α j, where ϕα j is the volume fraction of the α-th constituent in the

subregion Ω j of the RVE. Multiplication of Equation (2.1) by φ j allows for re-defining the intrinsic mass density of

the j-th phase by φ jρ j :=
∑N
α=0 ϕ

∗
α jρ
∗
α j, where ϕ∗α j := φ jϕα j is the volume fraction of the α-th constituent referred to

the volume of the RVE. In this case, mass fraction Cα j should be understood by the ratio Cα j := (ϕ∗α jρ
∗
α j)/(φ jρ j).
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2.2 Balance Laws

Table 2.1: Thermodynamic quantities and related fluxes to be substituted in eq. (2.3)

Quantity ψα j Φα j

Mass 1 0

Momentum vα j −σα j

Energy Eα j +
1
2 v2

α j
−(σα j.vα j + qα j)

Entropy S α j −Θ−1qα j

Table 2.2: Net production (decay) and source (sink) terms to be substituted in eq. (2.3)

Quantity Fα j Gα j

Mass 0 Rα j

Momentum g Rα jvα j + Tα j

Energy g · vα j + hα j Rα j

(
Eα j +

1
2 v2

α j

)
+ Tα j · vα j + Qα j + Q∗

α j

Entropy Θ−1hα j Γα j + Rα jS α j + ηα j + η
∗
α j

second-order tensor, and the product ψα jvα j on the LHS of eq. (2.3) is understood as the

dyadic product ψα jvα j = vα j ⊗ vα j.

In Table 2.1 and 2.2, Eα j is internal energy density, σα j is the Cauchy stress tensor, qα j is

the heat flux vector, Θ is absolute temperature, S α j is entropy density, g is gravity acceleration

vector, and Rα j, Tα j, Qα j, and ηα j are sources (or sinks) of mass, momentum, energy, and

entropy due to exchange interactions among constituents. Finally, in Table 2.2, Q∗
α j

and η∗
α j

represent a source of internal energy, and entropy related to remodelling and growth. Although

here a rather general formalism has been used, these last two quantities are referred only to

the solid-phase. Therefore, it is understood that Q∗
αF
= 0, and η∗

αF
= 0 for all fluid-phase

constituents CαF (α ∈ {0, . . . ,N}).

2.2.1 Mass Balance Law

The mass balance of constituent Cα j (α ∈ {0, ...,N}, j = S , F) can be written as

∂(φ jρ jCα j)

∂t
+ ∇ · (φ jρ jCα jvα j) = φ jρ jCα jrα j, (2.4)

where vα j is velocity of constituent Cα j, and rα j represents the rate at which mass is gained or

lost by constituent Cα j.

Summing Equation (2.4) over all N + 1 constituents of phase F j leads to the mass balance
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2. BALANCE AND CONSTITUTIVE LAWS IN CONTINUUM PHYSICS

of phase F j, i.e.
∂(φ jρ j)

∂t
+ ∇ · (φ jρ jv j) = φ jρ jR j, (2.5)

where v j and R j are defined by the relations

φ jρ jv j :=
N∑

α=0

φ jρ jCα jvα j, (2.6)

φ jρ jR j :=
N∑

α=0

φ jρ jCα jrα j. (2.7)

Quantity v j is the average velocity of phase F j, i.e. the velocity of the center of mass of phase

F j, and the term φ jρ jR j measures the rate at which mass increases, or decreases, in phase F j.

Since the mass of the mixture cannot be conserved in the presence of growth, the sum of

Equation (2.5) over all phases yields

∂ρ

∂t
+ ∇ · (ρv) = ρR, (2.8)

where mixture mass density, ρ, mixture velocity, v, and overall mass source, R, are defined by

ρ =
∑

j=S ,F

φ jρ j, (2.9)

ρv =
∑

j=S ,F

φ jρ jv j, (2.10)

ρR =
∑

j=S ,F

φ jρ jR j. (2.11)

2.2.2 Linear Momentum Balance Law

The balance of momentum of constituent Cα j (α ∈ {0, ...,N}, j = S , F) reads

∂(φ jρ jCα jvα j)

∂t
+∇ · (φ jρ jCα jvα j ⊗ vα j) −∇ ·σα j − φ jρ jCα j g = φ jρ jCα j(rα jvα j + tα j), (2.12)

where σα j is Cauchy stress tensor, g is the gravity acceleration vector, and terms φ jρ jCα jrα jvα j

and φ jρ jCα j tα j are sources of momentum due to both increase, or decrease, of mass of con-

stituent Cα j, and interactions among constituent Cα j and all other constituents.

Summing Equation (2.12) over all N + 1 constituents within phase F j leads to the balance

of momentum for phase F j, i.e.

∂(φ jρ jv j)

∂t
+ ∇ · (φ jρ jv j ⊗ v j) − ∇ · σ j − φ jρ j g = φ jρ j(R jv j + T j). (2.13)
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2.2 Balance Laws

Here,σ j is the overall Cauchy stress tensor of phase F j, and φ jρ jT j is the source of momentum

accounting for both mass production, and macroscale interactions among phase constituents.

Quantities σ j and φ jρ jT j are defined by

σ j =

N∑

α=0

[σα j − φ jρ jCα juα j ⊗ uα j], (2.14)

φ jρ jT j =

N∑

α=0

φ jρ jCα j(tα j + rα juα j), (2.15)

where uα j := vα j − v j is the relative velocity of constituent Cα j with respect to phase velocity

v j.

The balance of momentum for the mixture as a whole is found by summing Equation (2.13)

over all phases F j ( j = S , F), i.e.

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) − ∇ · σ − ρg = ρ(Rv + T), (2.16)

where σ and T are mixture overall Cauchy stress tensor, and momentum production, respec-

tively, i.e.

σ :=
∑

j=F,S

[σ j − φ jρ j(v j − v) ⊗ (v j − v)], (2.17)

ρT :=
∑

j=S ,F

φ jρ j[T j + R j(v j − v)]. (2.18)

2.2.3 Energy Balance Law – First Principle of Thermodynamics

The balance of energy of constituent Cα j (α ∈ {0, ...,N}, j = S , F) reads

∂

∂t

[
φ jρ jCα j

(
Eα j +

1

2
v2
α j

)]
+ ∇ ·

[
φ jρ jCα j

(
Eα j +

1

2
v2
α j

)
vα j

]

= ∇ · (σα j.vα j) + ∇ · qα j + φ jρ jCα j g · vα j + φ jρ jCα jhα j

+φ jρ jCα j

[
rα j

(
Eα j +

1

2
v2
α j

)
+ tα j · vα j + eα j

]
, (2.19)

where Eα j is internal energy density, qα j is heat flux vector, hα j is an energy source related to

both radiative effects and pore-scale mechanical interactions among constituents (cf. (19) for

details), and terms rα j(Eα j +
1
2 v2

α j
), tα j · vα j, and eα j are energy sources accounting for mass

production, and interactions of constituent Cα j with all other constituents.
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2. BALANCE AND CONSTITUTIVE LAWS IN CONTINUUM PHYSICS

Summing Equation (2.19) over all N + 1 constituents Cα j (α ∈ {0, . . . ,N}) in phase F j

yields the balance of energy for phase F j, i.e.

∂

∂t

[
φ jρ j

(
E j +

1

2
v2

j

)]
+ ∇ ·

[
φ jρ j

(
E j +

1

2
v2

j

)
v j

]

= ∇ · (σ j.v j) + ∇ · q j + φ jρ j g · v j + φ jρ jh j

+ φ jρ j

[
R j

(
E j +

1

2
v2

j

)
+ T j · v j + Q j

]
. (2.20)

Here, E j and q j are overall internal energy density and heat flux vector of phase F j, respec-

tively, h j accounts for energy sources due to both radiation and relative motion of constituents

with respect to phase velocity, and Q j is the source of energy due to mass production, me-

chanical interactions among constituents, and thermal effects. Quantities E j, q j, h j, and Q j are

defined by 1

φ jρ jE j :=
N∑

α=0

φ jρ jCα j

(
Eα j +

1

2
u2
α j

)
, (2.21)

q j :=
N∑

α=0

[
qα j − φ jρ jCα j

(
Eα j +

1

2
u2
α j

)
uα j + σα j · uα j

]
, (2.22)

φ jρ jh j :=
N∑

α=0

φ jρ jCα j(hα j + g · uα j), (2.23)

φ jρ jQ j :=
N∑

α=0

φ jρ jCα j

[
eα j + tα j · uα j + rα j

(
Eα j − E j +

1

2
u2
α j

)]
. (2.24)

In order to obtain the balance of energy for the mixture as a whole, we sum Equation (2.20)

over the fluid- and solid-phase, i.e.

∂

∂t

[
ρ

(
E +

1

2
v2

)]
+ ∇ ·

[
ρ

(
E +

1

2
v2

)
v

]
= ∇ · (σ.v + q) + ρg · v + ρh

+ρ

[
R

(
E +

1

2
v2

)
+ T · v + Q

]
. (2.25)

where E and q are mixture internal energy and heat flux vector, respectively, h is the mixture

energy source due to radiation and phase mechanical interactions, and Q is an energy source

due mass production, mechanical interactions, and thermal effects. These quantities are defined

1All these quantities are composed of an inner (or averaged) part, given by the first terms on the RHS of Equa-

tions (2.21)-(2.24), and diffusive contributions identified with the second to fourth terms on the RHS of Equations

(2.21)-(2.24).
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2.3 Clausius-Duhem Inequality

by

ρE :=
∑

j=F,S

φ jρ j

(
E j +

1

2
(v j − v)2

)
, (2.26)

q :=
∑

j=F,S

[
q j − φ jρ j

(
E j +

1

2
(v j − v)2

)
(v j − v) + σ j · (v j − v)

]
, (2.27)

ρh :=
∑

j=S ,F

φ jρ j[h j + g · (v j − v)], (2.28)

ρQ :=
∑

j=S ,F

φ jρ j

[
R j

(
E j − E +

1

2
(v j − v)2

)
+ T j · (v j − v) + Q j

]
. (2.29)

2.3 Clausius-Duhem Inequality

Clausius-Duhem Inequality is usually taken as the basis of a phenomenological treatment

of Thermodynamics of Continua (Maugin, 1999). This is essentially the picture given by B.

D. Coleman, W. Noll, C. A. Truesdell and their co-workers in the 1960s (cfr. Maugin (1999)

and references therein) while establishing the foundations of Rational Thermodynamics. Such

a theory postulates that those notions which precisely could be defined only at equilibrium in

Thermostatics (Giles, 1964; Callen, 1985), exist a priori for any thermo-mechanical state, even

largely outside from equilibrium (Maugin, 1999). Consequently, the notions of temperature,Θ,

and entropy, η, are granted to any state, and their existence is assumed, so that the formal bases

of this thermodynamics are the a priori statement of the first and second of Thermodynamics.

The importance of the Clausius-Duhem inequality lies in the fact that it is able to provide a

simultaneous description of the mechanics and thermodynamics of the body by evidencing the

independent thermo-mechanical variables which are the “most naturally suitable” for the body

phenomenological characterization.

Since it is possible to apply the Clausius-Duhem inequality to any kind of body behaviour, it

acquires the meaning of a constraint which has to be respected for the processes undergone by

the body itself to be thermo-mechanically admissible. This is the basis of the Theory of the

Constitutive Law.
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2. BALANCE AND CONSTITUTIVE LAWS IN CONTINUUM PHYSICS

2.4 Entropy Principle – Second Principle of Thermodynamics

In order to obtain Clausius-Duhem form of the entropy balance for constituent Cα j, we

introduce the Helmholtz free energy density of constituent Cα j,

Aα j := Eα j − ΘS α j, (2.30)

substitute Equation (2.30) into energy balance law (2.19), and combine the result with Equation

(2.20) so to obtain 1

Θφ jρ jCα jΓα j = −φ jρ jCα j

Dα jAα j

Dt
− φ jρ jCα jS α j

Dα jΘ

Dt
+ σα j : ∇vα j

+ qα j ·
∇Θ

Θ
+ φ jρ jCα jrα jΘS α j + φ jρ jCα jeα j

− φ jρ jCα jΘ(rα jS α j + ηα j). (2.31)

Summing over all N + 1 constituents in phase F j, and accounting for Leibniz rule of differen-

tiation and mass balance, lead to the following identity 2 :

N∑

α=0

φ jρ jCα j

Dα jAα j

Dt
= φ jρ j

D jA j

Dt
+

N∑

α=0

∇ · [φ jρ jCα jAα juα j]

−

N∑

α=0

φ jρ jCα jrα j(Aα j − A j), (2.32)

where A j is the Helmholtz free energy density of phase F j. In order for Equation (2.32) to

hold, quantity A j has to be defined as the sum of the N + 1 single-constituent Helmholtz free

energy densities, i.e.

φ jρ jA j :=
N∑

α=0

φ jρ jCα jAα j. (2.33)

1The symbol
Dα j

Dt
:=

∂

∂t
+ vα j · ∇

represents the convective derivative operator with respect to the motion of constituent Cα j.
2 The symbol

D j

Dt
:=

∂

∂t
+ v j · ∇

is said to be the convective derivative operator with respect to the motion of phase F j.
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2.4 Entropy Principle – Second Principle of Thermodynamics

By summing Equation (2.31) over all N + 1 constituents α (with α ∈ {0, . . . ,N}), using

Equation (2.33), and performing some algebraic manipulations, the expression of entropy pro-

duction for phase F j reads

Θφ jρ jΓ j = −φ jρ j

D jA j

Dt
− φ jρ jS j

D jΘ

Dt
−

N∑

α=0

∇ · (φ jρ jCα jAα juα j)

+

N∑

α=0

φ jρ jCα jrα j(Aα j − A j) +
N∑

α=0

σα j : ∇uα j

+

[
σ j +

N∑

α=0

φ jρ jCα juα j ⊗ uα j

]
: ∇v j

+

N∑

α=0

φ jρ jCα jrα jΘS α j +

N∑

α=0

φ jρ jCα jeα j

+
∇Θ

Θ
·

{
q j +

N∑

α=0

φ jρ jCα j

(
Aα j +

1

2
u2
α j

)
uα j − σα j · uα j

]}

−

N∑

α=0

φ jρ jCα jΘ(rα jS α j + ηα j). (2.34)

After summing up Equation (2.34) over solid- and fluid-phase, we collect the terms of the

above inequality as follows:

∑

j=S ,F

Θφ jρ jΓ j = ΘρΓred −
∑

j=S ,F

N∑

α=0

φ jρ jCα jΘ(rtr
α jS α j + η

tr
α j). (2.35)

In Equation (2.35), all sources of entropy directly ascribable to transfer processes between the

solid- and fluid-phase (i.e. rtr
α j

S α j + η
tr
α j

where α ∈ {0, . . . ,N} and j = S , F) are put together in

the second term on the RHS. Since term ΘρΓred does not contain these sources of entropy ex-

plicitly, we call it reduced expression of entropy production. Following Hassanizadeh (19)(20),

the second term on RHS of Equation (2.35) can be taken as non negative, for it represents

the volume average of the entropy exchange occurring at the pore-scale (i.e. inside the RVE)

through the fluid-solid interface. Indeed, by regarding the fluid-solid interface as the collec-

tion of discontinuity surfaces separating the fluid- from the solid-phase inside the RVE, the

pore-scale expression of entropy transfer reads (31)

∑

j=S ,F

N∑

α=0

[ρp

α j
S

p

α j
(wp

I
− v

p

α j
) + Θ−1q

p

α j
] · nI ≥ 0, (2.36)
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2. BALANCE AND CONSTITUTIVE LAWS IN CONTINUUM PHYSICS

where q
p

α j
is the pore-scale heat flux vector of constituent Cα j. Since the average of Equation

(2.36) is still non negative, it is possible to conclude that

∑

j=S ,F

N∑

α=0

φ jρ jCα jΘ(rtr
α jS α j + η

tr
α j) ≥ 0. (2.37)

The consequence of Equation (2.37) is that the reduced entropy production, Γred, satisfies

the inequality ΘρΓred ≥ 0 on its own. For the whole mixture the reduced Clausius-Duhem

inequality reads (58)

ΘρΓred = −
∑

j=S ,F

φ jρ j

D jA j

Dt
−

∑

j=S ,F

φ jρ jS j

D jΘ

Dt
−

∑

j=S ,F

N∑

α=0

∇ · (φ jρ jCα jAα juα j)

+
∑

j=S ,F

N∑

α=0

φ jρ jCα jr
tr
α j(Aα j − A j) +

∑

j=S ,F

N∑

α=0

σα j : ∇uα j

+
∑

j=S ,F

[
σ j +

∑

j=S ,F

N∑

α=0

φ jρ jCα juα j ⊗ uα j

]
: ∇v j

+
∑

j=S ,F

N∑

α=0

φ jρ jCα jr
tr
α jΘS α j +

∑

j=S ,F

N∑

α=0

φ jρ jCα je
tr
α j

+
∇Θ

Θ
·

∑

j=S ,F

{
q j +

N∑

α=0

φ jρ jCα j

(
Aα j +

1

2
u2
α j

)
uα j − σα j · uα j

]}

+
∑

j=S ,F

N∑

α=0

φ jρ jCα jr
gr
α j

(Aα j − A j)

+
∑

j=S ,F

N∑

α=0

φ jρ jCα jCα j(e
gr
α j
− Θη

gr
α j

) ≥ 0.

(2.38)

For the sake of conciseness, we split the reduced expression of entropy production, ρΓred, into

the sum of four contributions, i.e.

ΘρΓred = ΘρΓ
F
red + ΘρΓ

S
red + ΘρΓ

tr
red + ΘρΓ

gr
red ≥ 0, (2.39)

where ρΓF
red and ρΓS

red contain terms associated only to the fluid- and solid-phase, respectively,

ρΓtr
red contains interaction terms due to mass transfer between the two phases, and Γgr

red contains

explicit growth contributions.

Essential information about the mixture thermo-mechanic behaviour can be gained by ex-

ploiting Clausius-Duhem inequality (2.39). To this end, if the mixture is subject to constraints,
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2.4 Entropy Principle – Second Principle of Thermodynamics

these constraints have to be used for a consistent analysis of the entropy inequality. According

to the terminology of (18), this can be accomplished either in strong orweak form. In strong

form, constraints are used for selecting independent thermomechanic variables, and expressing

Clausius-Duhem inequality in terms of these variables only. In weak form, constraints are ac-

counted for through the Lagrange multiplier technique, i.e. each constraint is premultiplied by

an appropriate Lagrange multiplier, and the resulting expression is combined with Clausius-

Duhem inequality in order to obtain a modified, or augmented, form of dissipation inequality.

The equivalence between the strong and weak method was proven by Liu (25).

In the works by Liu (25), Liu and Müller (26), and Müller and Ruggeri (27), the modified

expression of entropy inequality is obtained by adopting field equations as constraints. This

approach was extended by Bennethum et al. (18), who included the kinematic restrictions

N∑

α=0

CαFuαF = 0, (2.40)

N∑

α=0

CαS uαS = 0, (2.41)

imposed on constituent relative velocities, uα j, in the modified expression of Clausius-Duhem

inequality.

In this section, following (18) and (58), we employ the Lagrange multiplier technique to

kinematic relations (2.40) and (2.41), and mass balance of (i) fluid-phase as a whole, (ii) fluid

constituents, (iii) solid-phase as a whole, and (iv) solid constituents.

By combining constraints (i)-(iv), and kinematic restrictions (2.40) and (2.41) with Clausius-

Duhem inequality (2.39), the modified form of entropy inequality becomes (58)

ΘρΓ̃red = ΘρΓF
red + ΘρΓ

S
red + ΘρΓ

tr
red + ΘρΓ

gr
red

+
∑

j=S ,F

λ j

{
ρ j

D jφ j

Dt
+ φ j

D jρ j

Dt
+ φ jρ j∇ · v j − φ jρ jR j

}

+
∑

j=S ,F

N∑

α=0

λα j

{
φ jρ j

D jCα j

Dt
+ ∇ · (φ jρ jCα juα j) − φ jρ jCα j(rα j − R j)

}

+
∑

j=S ,F

φ jΛ j ·

N∑

α=0

∇(ρ jCα juα j) ≥ 0. (2.42)
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2.5 Elements of the Theory of Constitutive Law

As stated at the beginning of Section 2.2, balance laws relate physical quantities in all

cases (Truesdell and Toupin, 1960). They provide a set of necessary conditions which thermo-

mechanic variables must respect. In this framework, Clausius-Duhem inequality represents a

constraint which tells us whether a certain process is thermo-mechanically consistent. How-

ever, balance laws are not sufficient to formulate the thermo-mechanical problem in a self-

consistent form for they involve a number of unknowns which is bigger than the number of

equations. Therefore, a certain number of additional non-redundant conditions have to be

imposed. These conditions must be consistent with phenomenological observations and ex-

perimental results, and must be able to predict the thermo-mechanic behaviour of the body. In

order for the latter requirement to be satisfied, they must be consistent with the Clausius-Duhem

inequality (Coleman and Noll, 1961). These conditions are called Constitutive Laws.

In order to set up a constitutive framework, a set of thermo-mechanic degrees of freedom

has to be chosen. A physical quantity belonging to this set is said to be independent constitutive

variable (ICV), and has the property of being observable and measurable “along” any thermo-

mechanic process followed by the body.

Each ICV is associated with a conjugated or dependent constitutive variable (DCV). Usu-

ally, those physical quantities which are directly related to intrinsic source terms are not en-

listed among constitutive variables. Rather, they are supposed to be known functions of inde-

pendent coordinates (Liu, 2002).

The set of ICV has to be suitably chosen depending on the kind of problem one is concerned

with. Within the set of ICV, we refer to basic fields (Liu, 2002) as to those fields from which

the other ICV can be derived. In thermo-mechanic problems, basic fields are the configuration

field, c, absolute temperature, Q, and mass density, r (sometimes, depending on the problem,

absolute temperature is replaced by the entropy density, h). The gradients of basic fields, such

as velocity, deformation gradient, and higher order gradients, make up the remaining DCV.

Constitutive laws are usually written in the reference configuration and involve the material

form (i.e., the Piola transforms) of fields (Marsden and Hughes, 1983; Eringen, 1980, 2002;

Liu, 2002).

In general, a certain DCV, f, is expressed through a functional relation involving all ICVs,

and space-time coordinates. This aspect of the constitutive relations describes the realm that

the value of f at time t depends on all the values of f at instants of time s ∈ [0; t[, i.e. on the
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2.5 Elements of the Theory of Constitutive Law

past history of f. If j is a generic function of time, we call past history of j the function ϕt such

that ϕt(s) = ϕ(t − s), for all s ∈ [0; t[ and t → ∞ (Liu, 2002; Fabrizio and Morro, 1992). In the

case s = 0, the past history of j reduces to ϕt(0) = ϕ(t).

2.5.1 The Fundamental Axioms of the Theory of the Constitutive Law

A constitutive law descends on the phenomenological interpretation of the thermo-mechanic

system which one wants to describe. Nevertheless, the production of experimental data is

not sufficient to establish an exhaustive and consistent Constitutive Theory. For this reason it

is necessary to determine a set of universal requirements which permit one to extrapolate a

methodological writing of the constitutive laws.

The main requirements a constitutive framework should be based can be summarized in the

following axioms.

2.5.1.1 Axiom of Causality

The axiom of causality states that configuration field, c, temperature, Q (or entropy density,

h), and mass density, r, are the basic fields for any thermo-mechanic behaviour of the body. In

this framework, all physical quantities, except the gradients of c and Q (or h), are the DCV.

2.5.1.2 Axiom of Determinism

The axiom of determinism states that the value of a certain DCV at time t and material

point, X, is determined by the histories χt(s,Y) = χ(t − s,Y), and Θ̂t(s,Y) = Θ̂(t − s,Y) for

every s ∈ [0; t[, and Y ∈ BR. This axiom is actually a principle of exclusion, because it excludes

the dependence of the constitutive behaviour of the body on any instant of time external to the

interval [0; t], and any point external to the region of space instantaneously occupied by the

body. Therefore, by virtue of Axioms 1 and 2, a DCV, f, can be expressed through the definition

of a functional, F( f ), such that (Day, 1972; Liu, 2002)

f̂ (t, X) = F
( f )

Y∈B,s∈[0;t]
(t, X, ρ̂t(s,Y), χt(s,Y), Θ̂t(s,Y)). (2.43)

The functional F( f ) is called response functional of f. It should be noted that Eq. (2.43) takes

into account the occurrence of arbitrary non-local effects (Liu, 2002; Eringen, 2002) of any

inhomogeneous body (i.e., a body the constitutive law of which explicitly depends on material

coordinates) with memory of the past history.
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2.5.1.3 Axiom of Equipresence

This axiom states that all DCVs must depend on the same list of ICVs. According to this

statement, no variable is, at least in principle, a priori excluded from the determination of

the response law (Day, 1972). There are, of course, exceptions which may occur depending

on whether some particular classes of symmetry are found in the system under investigation.

The search for material symmetries is of great interest both from the mathematical and the

physical point of view, and, apart from leading to considerable computational simplifications,

permits to reformulate typical Continuum Mechanics problems in terms of Field Theories.

Within the rigorous mathematical framework established by Mathematics, this may lead to

better appreciate the beauties of Physics.

2.5.1.4 Axiom of Material Objectivity

This axiom states that constitutive laws must be invariant under rigid coordinate transfor-

mations of the spatial reference frame, and time translations. This property is tightly related

with the fact that physical quantities must be observable, and thus cannot depend on the ob-

server. In order to prove this property, it is necessary to show that for two arbitrarily chosen

reference frames, R and R′, the functional F( f ) leads to the same description of the physical

quantity f (Liu, 2002), i.e.

F
( f )
R
= F

( f )
R′
. (2.44)

It should be noted that the concepts of observability and invariance under a certain class of co-

ordinate transformations are tightly related to the concept of gauge symmetry (Felsager, 1998).

2.5.1.5 Axiom of Material Invariance

This axiom is an alternative version of the previous one. It states that constitutive laws must

be invariant with respect to the group of orthogonal transformations, and time and material

translations.

2.5.1.6 Axiom of Smooth Neighbourhood and Smooth Memory

This axiom states that the values of the ICVs at material points, Y, far enough from a

material point, X, do not appreciably affect the values of the DCVs at X. Analogously, the

values of the ICVs at times, s, far enough from the current instant of time, t, do not appreciably

affect the values of DCVs at time t. This axiom implies that the effects of non-locality are
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2.6 Classification of Materials

supposed to die away in time and space. Thus, the correlation functions one may associate with

a certain physical quantity are expected to be “damped” out of the space-time neighbourhood

in which the constitutive variable is examined.

2.6 Classification of Materials

The axioms of Smooth Neighbourhood and Material Objectivity permit to re-define consti-

tutive laws by introducing new response functionals which depend on time, t, material coordi-

nates, X, and on basic fields and their derivatives (up to infinite order) evaluated at t and X, i.e.

f̂ (t, X) = G( f )

s∈[0;t]
(t, X, ρ̂t(s, X),∇Rρ̂

t(s, X), ..., χt(s, X),∇Rχ
t(s, X), ...

..., Θ̂t(s, X),∇RΘ̂
t(s, X), ...).

(2.45)

The expression (2.45) can be simplified by noticing that the term χt(s, X) can be eliminated by

means of a suitable choice of the coordinate frame, i.e.

f̂ (t, X) = G( f )

s∈[0;t]
(t, X, ρ̂t(s, X),∇Rρ̂

t(s, X), ..., Ft(s, X), ...

..., Θ̂t(s, X),∇RΘ̂
t(s, X), ...).

(2.46)

Here, the history of the deformation gradient tensor, Ft(s, X) = ∇Rχ
t(s, X), has been explicitly

introduced.

The advantage of working with a constitutive relation of the kind reported in Eq. (2.46) is

that it is easier to determine the best order of approximation for a certain behaviour of the

modelled material. For instance, when a certain material shows a behaviour which can be

safely approximated by truncating Eq. (2.46) up to the p-th gradient of the configuration field,

and the q-th temperature gradient, the material is said to be of mechanic order p, and thermal

order q. In the case in which p = 1, and q = 1, the material is said to be simple, and the

constitutive law reduces to

f̂ (t, X) = G
( f )

s∈[0;t]
(t, X, Ft(s, X), Θ̂t(s, X)). (2.47)

In Eq. (2.47) mass density and its gradients have not been considered. In the literature, this

approximation is used for all those problems in which mass variation processes are disregarded.

When the constitutive law does not show explicit dependence on time, only the present

values of the ICVs, rather than their whole history, are considered. In this case, Eq. (2.47)

becomes

f̂ (t, X) = Y
( f )(X, F(t, X), Θ̂(t, X)). (2.48)
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Equation (2.48) describes the thermo-mechanical behaviour of the so-called thermo-elastic

materials. Moreover, if the thermal and mechanical responses are supposed to be independent

one on the other, then we speak of hyperelastic materials, and mechanical constitutive variables

are characterized by constitutive relations of the kind

f̂ (t, X) = Ψ( f )(X, F(t, X)). (2.49)

The explicit dependence of Ψ( f ) on X accounts for the presence of material inhomogeneities.

This issue and its Field Theory-related aspects will be treated in detail in the following.

2.6.1 Thermoelastic Materials

In this Section we would like to show how the Constitutive Laws are used to formulate the

closure of a typical Continuum Physics problem. For the sake of simplicity, we shall assume

that the body is made of a thermoelastic material, and neither sources or fluxes are taken into

account.

First, we summarize the balance laws which are involved in a “classical” thermo-mechanical

problem in the absence of any sources and fluxes. With respect to the reference configuration

(where boundary conditions are known), these conditions are

Mass ∂tρR = 0
Linear Momentum ρR∂

2
t χ = ∇R · T

Angular Momentum σ = σT ⇒ FT = (FT )T

First Principle of Thermody-
namics

ρR(∂tÛ) = 〈T | ∂tF〉 − ∇R · Q

Second Principle of Thermody-
namics

ρR(∂tη̂) ≥ −∇R ·
(

Q

Θ̂

)

The relations above consist of fifteen scalar conditions involving the nineteen unknowns

{ρR, χ,T, Û, Θ̂,Q, η̂}. In order to formulate this problem in closed form, it is necessary to

invoke the symmetry of the Cauchy stress tensor, and to enforce the constitutive relations.

Since mass sources are not considered, the mass density in the reference configuration, ρR,

does not depend on time, i.e. ρR(t, X) = ρ(0)
R

(X), and the map ρ(0)
R

can be regarded as an initial

condition. Moreover, since the material is assumed to be thermoelastic, we may rewrite the

Clausius-Duhem inequality in the form

−ρR{∂t[F(ψ) ◦ (I, F, Θ̂) + [F(η) ◦ (I, F, Θ̂)]∂tΘ̂}+

+
〈
F(T ) ◦ (I, F, Θ̂)

∣∣∣ ∂tF
〉
− Θ̂−1∇RΘ̂ · [F(q) ◦ (I, F, Θ̂)] ≥ 0.

(2.50)
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By writing the time derivative of F(ψ) in explicit form, we obtain
〈
−ρR

[
∂F(ψ)

∂F
◦ (I, F, Θ̂)

] ∣∣∣∣ ∂tF

〉
− ρR

[
∂F(ψ)

∂Θ̂
◦ (I, F, Θ̂)

]
∂tΘ̂+

−ρR[F(η) ◦ (I, F, Θ̂)]∂tΘ̂ +
〈
F(T ) ◦ (I, F, Θ̂)

∣∣∣ ∂tF
〉
+

−Θ̂−1∇RΘ̂ · [F(q) ◦ (I, F, Θ̂)] ≥ 0.

(2.51)

We note that the Clausius-Duhem inequality is satisfied as an equality if, and only if, the fol-

lowing conditions are respected

T = F(T ) ◦ (I, F, Θ̂) = ρR

[
∂F(ψ)

∂F
◦ (I, F, Θ̂)

]
,

η̂ = F(η) ◦ (I, F, Θ̂) = −
[
∂F(ψ)

∂Θ̂
◦ (I, F, Θ̂)

]
,

Q = F(q) ◦ (I, F, Θ̂) = 0.

(2.52)

Equations (2.52) enable us to state that, in a thermoelastic material, the heat flux vector vanishes

identically, and, consequently the entropy time variation is solely due to intrinsic heat sources.

Therefore, in the absence of sources of any kind, the Second Principle of Thermodynamics can

be reformulated as an equality stating that entropy does not vary in time, i.e.

ρR(∂tη̂) = 0 ⇒ η̂(t, X) = η̂(0)(X). (2.53)

A consequence to this statement is that thermoelastic materials are in thermal equilibrium. This

can be proven by noting that, since internal energy density and Cauchy stress tensor are given

by

Û = ψ̂ + Θ̂η̂ = F(ψ) ◦ (I, F, Θ̂) − Θ̂
[
∂F(ψ)

∂Θ̂
◦ (I, F, Θ̂)

]

σ̂ = 1
J
FT ⇒

{
σ̂ab = 1

J
Fb

A
T aA

σ̂a
b
= 1

J
T a

A
(FT )A

b
,

(2.54)

the First Principle of Thermodynamics writes

ρR(∂tÛ) = 〈T | ∂tF〉 ⇒ ρR

[
∂F(ψ)

∂Θ̂
◦ (I, F, Θ̂)

]
∂tΘ̂ = 0, (2.55)

i.e. temperature does not depend on time.

In conclusion, we say that a thermoelastic material is thermodynamically admissible if, and

only if, stress, internal energy and entropy are derivable from a potential, F(ψ), and the heat

flux vector is zero.

It is worthwhile to remind that Eqs. (2.53) and (2.55) state that, in the absence of sources

and fluxes, only isoentropic and isothermal processes are allowed. Moreover, since these con-

ditions are equivalent to say that the substantial derivatives of entropy and temperature are zero

(i.e. Dtη = 0, and DtΘ = 0), we conclude that entropy and temperature are constant throughout

the time evolution of each material point, X.
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In the Engineers’ jargon, this can represented by attaching a (Θ̂(0)(X); η̂(0)(X))-Gibbs plane

to each material point, X. In this plane, a thermodynamic state is represented by a point.

2.7 Linear Theory of Elasticity

In case of hyperelastic materials, the Helmholtz free energy density is expressed through

the functional relation

ψ̂ = Φ ◦ (I, F). (2.56)

Equation (2.56) can be rewritten in terms of the Lagrange strain tensor (cfr. Chapter 1), e, i.e.

ψ̂ = Ψ ◦ (I, ε). (2.57)

By deriving Eq. (2.57) with respect to e, we obtain the second Piola-Kirchhoff stress tensor, S,

i.e.

S =
∂Ψ

∂ε
◦ (I, ε). (2.58)

This fully material stress tensor is related to the first Piola-Kirchhoff stress tensor, T, through

the definition

S = F−1T ⇒ S AB = (F−1)A
aT aB. (2.59)

Consequently, the Lagrangian form of the Cauchy stress tensor is given by

σ̂ =
1

J
T FT =

1

J
FS FT ⇒ σ̂a

b =
1

J
Fa

AS A
B(FT )B

b. (2.60)

In the limit of small strains, the potential Y is well approximated by its CityplaceTaylor expan-

sion up to the second order, i.e.

Ψ ◦ (I, ε) � Ψ ◦ (I,O) +
[
∂Ψ
∂εAB ◦ (I,O)

]
εAB+

+1
2

[
∂2Ψ

∂εAB∂εCD ◦ (I,O)
]
εABεCD.

(2.61)

Since the zero-order term can be set to be equal to zero, and the first-order term is identically

zero because no stress can exist at zero strain, we conclude that

Ψ ◦ (I, ε) �
1

2

[
∂2Ψ

∂εAB∂εCD
◦ (I,O)

]
εABεCD. (2.62)

The four-order tensor featuring in Eq. (2.62) is called elasticity tensor and is denoted by

∂2Ψ

∂εAB∂εCD
◦ (I,O) = LABCD ◦ (I,O). (2.63)
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In general, the dependence on the identity second-order tensor, I, means that the elasticity

tensor may depend explicitly on material coordinates, X; therefore, we write L(I(X),O) = L(X).

Equation (2.62) allows us to determine the second Piola-Kirchhoff stress tensor, S. Using

lower indexes only, we obtain

S =
∂Ψ

∂ε
◦ (I, ε) � Lε ⇒ S AB(t, X) = LABCD(X)εCD(t, X). (2.64)

By virtue of the definition of Eq. (2.60), we note that, in the small strain regime, the second

Piola-Kirchhoff stress tensor can be approximated with the Lagrangian form of the Cauchy

stress, i.e.

S AB(t, X) � σ̂ab(t, X). (2.65)

Consequently, Eq. (2.64) can be written as

σ̂ab(t, X) = Labcd(X)εcd(t, X). (2.66)

Within the Linear Theory of Elasticity, the elasticity tensor, L, is the representative of all of the

material symmetries of the material. In particular, while the dependence of L on X deals with

the invariance of material elastic properties under the group of translations (homogeneity), the

symmetry of the tensor L with respect to its pairs of indexes takes into account of the invariance

of material elastic properties under the group of rotations (isotropy). These concepts will be

discussed in detail in the next Chapter.
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Chapter 3

Evolution of a fibre-reinforced

growing mixture

3.1 Introduction

In this Chapter it will be studied a biological mixture consisting of a fluid- and a solid-

phase. The latter will be assumed to comprise two sub-phases, i.e. matrix and fibre-like inclu-

sion, moving with the common phase velocity,vS . Each phase will be modelled as a mixture

on its own with several constituents. Because of mass exchanges between phases, the solid-

phase experiences growth (or resorption). Growth, and the material inhomogeneities related to

it, will be described through the multiplicative decomposition of the solid-phase deformation

gradient tensor, and the introduction of the growth velocity gradient.

Through Onsager’s principle, it will be proven that inhomogeneity velocity “gradient” is

related to the Mandel stress tensor of the solid-phase, and chemical potentials of fluid con-

stituents. This relation will be used in order to show that, in response to growth (or adsorption),

development of material inhomogeneities may trigger fibre reorientation in the solid-phase by

inducing the evolution in time of its texture tensor (112)

The macroscopic mechanical behaviour of biological tissues is influenced by the presence

of inclusions. For example, in the case of articular cartilage, the mechanical properties and

geometric distribution of collagen fibres enhance the tissue resistance to external loads, and

determine the tissue material symmetry.

If inclusions evolve in time, the response of the tissue to external stimuli adapts to the

current organisation of the inclusions. This rearrangement of the internal structure, known
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as remodelling (3), implies that tissue material symmetries evolve in time. For this reason,

an accurate characterisation of the tissue mechanical behaviour should be able to predict how

inclusions evolve, and how their evolution is related to the quantities that determine the me-

chanical state of the tissue.

Tools of investigation are different depending on the phenomenon that has to be described.

In linear elasticity, models are usually based on the theory of composite materials with spheroidal

inclusions (cf., for example, (43)–(45)). According to this approach, the effective strain in the

inclusions, ε̃, is expressed through the relation ε̃ = � : ε, where ε is the strain field “felt” by

the composite as a whole, and � is a fourth-order tensor called strain intensification tensor.

Inclusions may also exhibit statistical orientation. In this case, it is possible to introduce a

probability density distribution, which describes the probability of finding a fibre-like inclusion

aligned along a given direction in space (this approach was used, for example, in (62)(64) for

modelling articular cartilage).

The texture tensor, Ξ, is defined by Ξ = ξ ⊗ ξ, where ξ is a unit vector describing the local

alignment of a fibre-like inclusion along a prescribed direction of space.

When growth is considered, the change of internal structure of the tissue is also driven by

the adaptive re-distribution of its mass density as new material is added (or subtracted) to the

pre-existing one. In the case of a materially uniform continuum body (i.e. a body whose points,

made of the same material, can be brought to attain the same state simultaneously) described by

a first-order constitutive theory, Epstein and Maugin (52) pointed out that the process of growth

is essentially governed by temporal changes of mass density, and distortions of material-point

neighbourhoods in the reference configuration of the body. Distortions, and related residual

stresses, arise because of the possible loss of geometric compatibility of material-point neigh-

bourhoods as growth takes place. Growth is thus viewed as a process capable of developing

body material inhomogeneities.

We would like to approach the problem of growth and remodelling in the context of Mixture

Theory. For our purposes, we consider a mixture consisting of a fluid- and a solid-phase,

and we assume that the solid-phase is composed by a matrix and fibre-like inclusions. In the

following, we refer to matrix and fibre-like inclusions as to solid sub-phases. We remark that,

since fibre-like inclusions are regarded as a phase, their dimension is not seen in the model,

while their orientation is accounted for by the solid-phase texture tensor, ΞS . According to

this description, the solid-phase of the mixture studied in this paper describes a homogenised

system consisting of matrix and fibres.
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3.2 Model Description

3.2 Model Description

We consider a class of biological tissues that can be macroscopically modelled as mixtures

composed of a fluid- and a solid-phase. The former is a multi-constituent fluid experiencing

single-phase flow, and the latter is a deformable medium consisting of a porous matrix and

fibre-like inclusions. We refer to matrix and fibre-like inclusions as to solid sub-phases. In the

following, we denote the fluid-phase by FF , and the solid-phase by FS = FM ∪FI , where

FM and FI represent the matrix, and inclusion sub-phase, respectively.

Following the picture proposed by Bennethum et al. (18), we assume that the fluid-phase,

FF , and the sub-phases FM and FI are mixtures on their own, which comprise the same

number of constituents. Constituents 0-th and 1-st confer the sub-phases FM and FI the

mechanical properties of a solid, respectively. The N-th constituent is identified with water,

and all other constituents (γ = 2, . . . ,N − 1) represent, for example, nutrients, byproducts of

cellular metabolic reactions, chemical agents, and molecular species. The α-th constituent in

phase F j (with α ∈ {0, . . . ,N} and j ∈ {F} ∪ {M, I}) is denoted by Cα j. If a given constituent is

present in one phase but absent in the other two phases, its mass exchange term is set identically

equal to zero, and it is formally regarded as present with zero concentration.

We require that the mixture satisfies the saturation condition. According to this condition,

the sum of solid- and fluid-phase volume fractions, denoted by φF and φS , respectively, is

constrained to equal unity at all times and all points of the mixture, i.e. φF+φS = 1. We remark

that, due to the presence of matrix and inclusions, the volume fraction of the solid-phase as a

whole, φS , is actually defined by the sum of the volume fractions of the solid sub-phases FM

and FI , i.e. φS := φM + φI . Following (19), we define the mass density of fluid-phase, F j

(with j ∈ {F} ∪ {M, I}), by the sum

ρ j :=
N∑

α=0

ρα j, (3.1)

where ρα j (with α ∈ {0, . . . ,N}) is the mass density of constituent Cα j in the phase F j. The

mass fractions of constituents Cα j are defined by the ratios Cα j := ρα j/ρ j, and are thus linearly

dependent through the constraint
∑N
α=0 Cα j = 1. The mass density of the solid-phase is given

by φS ρS = φMρM + φIρI , whereas densities ρM and ρI are defined as in eq. (3.1)
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

3.2.1 Balance laws and Source terms

As saw in Chapter 2 , considering eq.(2.3) and Tables 2.1 and 2.2 we can find the the

following overall source terms:

Mass

R j :=
N∑

α=0

Cα jRα j, (3.2)

Momentum

T j :=
N∑

α=0

Cα j(Rα juα j + Tα j), (3.3)

Energy

Q j :=
N∑

α=0

Cα j

[
Qα j + Tα j · uα j + Rα j

(
Eα j − E j +

1

2
u2
α j

)]
, (3.4)

Entropy

η j :=
N∑

α=0

Cα j

[
ηα j + Rα j

(
S α j − S j

)]
, (3.5)

Moreover by virtue of eqs. (3.2)–(3.4), the fact that the mixture is closed is expressed by

requiring

0 =
∑

j∈{F,M,I}

φ jρ jR j, (3.6)

0 =
∑

j∈{F,M,I}

φ jρ j

(
T j + R jv j

)
, (3.7)

0 =
∑

j∈{F,M,I}

φ jρ j

[
Q j + T j · v j + R j

(
E j +

1

2
v2

j

)]
, (3.8)

0 ≤
∑

j∈{F,M,I}

φ jρ j

(
η j + R jS j

)
. (3.9)

that represent averaged thermodynamic exchange interactions occurring at the interface be-

tween the fluid- and the solid-phase.

Finally, substituting the Helmholtz free energy densities, Aα j, into the balance of entropy and

under the hypothesis that the mixture undergoes only isothermal processes, the expression of

entropy production for constituent Cα j become :

Θφ jρ jCα jΓα j = −φ jρ jCα j

Dα jAα j

Dt
− φ jρ jCα jS α j

Dα jΘ

Dt
+ σα j : ∇vα j (3.10)

+φ jρ jCα jRα jΘS α j + φ jρ jCα jQα j − φ jρ jCα jΘ
(
Rα jS α j + ηα j

)

+φ jρ jCα j(Q
∗
α j − Θη

∗
α j),
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3.2 Model Description

that summed over all constituents Cα j (with α ∈ {0, . . . ,N}) leads to the expression of

entropy production of phase F j, Γ j :=
∑N
α=0 Cα jΓα j ( j ∈ {F} ∪ {M, I}), i.e. as shown by Grillo

et al. (112) :

Θφ jρ jΓ j = −φ jρ j

D jA j

Dt
− φ jρ jS j

D jΘ

Dt
−

N∑

α=0

∇ ·
(
φ jρ jCα jAα juα j

)
(3.11)

+

N∑

α=0

φ jρ jCα jRα j

(
Aα j − A j

)
+

N∑

α=0

σα j : ∇uα j

+

[
σ j +

N∑

α=0

φ jρ jCα juα j ⊗ uα j

]
: ∇v j +

N∑

α=0

φ jρ jCα jRα jΘS α j

+

N∑

α=0

φ jρ jCα jQα j −

N∑

α=0

φ jρ jCα jΘ
(
Rα jS α j + ηα j

)

+φ jρ j(Q
∗
j − Θη

∗
j).

3.2.2 Reduced Entropy Inequality

The expression of entropy production for the mixture as a whole is obtained by summing

eq. (3.11) over all phases F j (with j ∈ {F} ∪ {I,M}). In order to do that, we first need to

compute the sum
∑

j∈{F,I,M}

∑N
α=0 φ jρ jCα jQα j. For the sake of simplicity, we hypothesise here

that: (i) in the solid sub-phases FI and FM, constituents CαI and CαM (with α ∈ {0, . . . ,N})

have no diffusive velocity (i.e. uαI ≡ 0, and uαM ≡ 0, ∀α ∈ {0, . . . ,N}), and (ii) that sub-phases

FI and FM move with the same velocity, i.e. vI ≡ vM ≡ vS , where vS is thus the velocity of

the solid-phase as a whole. By using these assumptions, definitions (3.2)–(3.4), and restrictions

(3.6)–(3.8), the sum
∑

j∈{F,I,M}

∑N
α=0 φ jρ jCα jQα j reads:

N∑

α=0

φIρICαIQαI +

N∑

α=0

φMρMCαMQαM +

N∑

α=0

φFρFCαF QαF (3.12)

= −φFρFTF · wFS − φFρFRF

1

2
w2

FS −

N∑

α=0

φFρFCαFTαF · uαF

−

N∑

α=0

φIρICαIRαIEαI −

N∑

α=0

φMρMCαMRαMEαM −

N∑

α=0

φFρFCαFRαF

[
EαF +

1

2
u2
αF

]
.

We notice that the sum over all phases F j (with j ∈ {F}∪{I,M}) of the second last term on the

RHS of eq. (3.11) gives the averaged form of the overall entropy production due to exchange

processes occurring at the fluid-solid interface. This entropy production is zero if eq. (3.9) is
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

satisfied as an equality (18). We assume that this is the case, and, by making use of eq. (3.12),

hypotheses (i) and (ii), and eqs. (3.2)–(3.4) and (3.6)–(3.8), we define a reduced form of overall

entropy production, Γred, such that

ΘρΓred = −φS ρS

DS AS

Dt
− φFρF

DF AF

Dt
− φS ρS S S

DSΘ

Dt
− φFρFS F

DFΘ

Dt
(3.13)

+

N∑

α=0

[
σαF − φFρFCαF AαF I

]
: ∇uαF

−

N∑

α=0

[
∇(φFρFCαF AαF) + φFρFCαFTαF

]
· uαF

+

[
σF +

N∑

α=0

φFρFCαFuαF ⊗ uαF

]
: ∇vF + σS : ∇vS − φFρFTF · wFS

−φS ρS RS

[
AS − AF −

1

2
w2

FS

]
+ φS ρS A∗S −

N∑

α=0

φFρFCαFRαF

1

2
u2
αF ≥ 0,

where ρ :=
∑

j∈{F,I,M} φ jρ j is the mass density of the mixture, φS ρS AS :=
∑

j∈{I,M} φ jρ jA j and

φS ρS S S :=
∑

j∈{I,M} φ jρ jS j are the Helmholtz free energy density and entropy density of the

solid-phase FS (i.e. FS = FI ∪FM), respectively, wFS := vF −vS is the fluid-phase filtration

velocity, and φS ρS A∗
S

:=
∑

k=I,M φkρk(Q∗
k
− Θη∗

k
) is the rate of dissipation due to remodelling

and growth.

3.2.3 Lagrange Multiplier Method

If the mixture is subject to constraints, these constraints should be accounted for when

the expression of entropy production (in our case, eq. (3.13)) is exploited. A possible way

of doing that consists in the application of the Lagrange multiplier technique: each constraint

is multiplied by an appropriate Lagrange multiplier, and the resulting expression is combined

with the expression of entropy production, in order to obtain a modified form of the entropy

inequality. The reader is referred to the works by Liu (25), Liu and Müller (61), and Müller

and Ruggeri (27) for details. The procedure used in our paper is based on the papers (18)

and (58). For our purposes, we adopt as constraints the balance of mass of constituents Cβ j

(with β ∈ {0, . . . ,N − 1} and j ∈ {F} ∪ {I,M}), the balance of mass of all phases F j (with

j ∈ {F} ∪ {I,M}) (cf., for example, (17)), and the requirement that the weighted sum of all

diffusive velocities of fluid constituents CαF (α ∈ {0, . . . ,N}) is null, i.e.
∑N
α=0 CαFuαF = 0.

46



3.3 Constitutive Framework

The modified expression of entropy production reads

ΘρΓ̃red = ΘρΓred (3.14)

+π

{
φI

ρI

DS ρI

Dt
+
φM

ρM

DS ρM

Dt
+
φF

ρF

DS ρF

Dt
+ wFS · ∇φF +

φF

ρF

wFS · ∇ρF

+φS∇ · vS + φF∇ · vF − φIRI − φMRM − φFRF

}

+
∑

k∈{I,M}

N−1∑

β=0

λβk

{
φkρk

DS Cβk

Dt
− φkρkCβk(Rβk − Rk)

}

+

N−1∑

β=0

λβF

{
φFρF

DFCβF

Dt
+ ∇ · (φFρFCβFuβF) − φFρFCβF(RβF − RF)

}

+φFΛF :
N∑

α=0

∇(ρFCαFuαF) ≥ 0.

The quantities π, λβk (where β ∈ {0, . . . ,N−1} and k ∈ {I,M}), andΛF are Lagrange multipliers.

Their determination follows from the study of eq. (3.14) according to Coleman-Noll method.

We remark that, because of the definition of the solid-phase volume fraction, φS := φI+φM,

and the saturation condition, φF + φS = 1, the summation of the mass balance laws of all

phases implies that no convective derivative of volume fraction, φS (or φF), can feature in

eq. (3.14). Another consequence of the approach followed in the present paper is that, since

the summation of the mass balance laws of all phases leads to a single balance of mass for

the mixture as a whole, the enforcement of the resulting balance law as a constraint for ΘρΓ

requires the introduction of a single Lagrange multiplier, i.e. π. Although this approach differs

from the approach followed in (58), it is probably more appropriate for the development of the

following theory.

3.3 Constitutive Framework

In order to close the field equations to be solved, a constitutive framework has to be intro-

duced. This is done by selecting a set of independent constitutive variables (ICV), and treating

the remaining unknowns as dependent constitutive variables (DCV). In the context of mixtures,

however, this procedure alone does not usually provide conditions for volume fractions. Ben-

nethum et al. (18) pointed out that this problem of closure is due to the loss of information in

the averaging process that leads from the pore-scale analysis of the mixture to the macroscopic

field equations. The solution to this problem can be obtained by following different approaches.
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

In the work by Wilmański (55), a thermodynamic model of compressible porous materials is

presented with a balance law for porosity, whereas in the work by Sciarra et al. (56), volume

fraction is regarded as a microstructural parameter that is introduced so to enlarge the space

of admissible deformations with respect to the classical theory of mixtures. More frequently,

additional conditions on the mass density of phases are imposed. For example, in the case of

biphasic mixtures, it is rather customary to assume that the solid-phase (or the fluid-phase) is

intrinsically incompressible 1. This assumption can be relaxed if the solid-phase is modelled

as a mixture of solid sub-phases (17). Indeed, even though the mass density of each sub-phase

is assumed to be constant, the mass density of the solid-phase as a whole does not need to

be constant because volume fractions of solid sub-phases are allowed to change in space and

time. In our paper, however, we do not assume the incompressibility of the fluid- and the solid

sub-phase. Rather, we assume that the mass densities of the fluid-phase, FF , and the solid

sub-phases, FI and FM, are functions of the mass fractions, Cβ j (with β ∈ {0, . . . ,N − 1}, and

j ∈ {F, I,M}).

3.3.1 Growth

Following the picture proposed by Epstein and Maugin (52), growth is here viewed as a

process causing the development of material inhomogeneities in the reference configuration of

a body due to the presence of mass sources, or sinks, acting inside the body itself. Since, in the

case of surface (or appositional) growth, a reference configuration for the body is not defined

(cf., for example, (17) for explanation), we consider here volumetric (or interstitial) growth

only. Growth is thus assumed to be responsible for inducing the time variation of the mass

density of the body in its reference configuration. Material inhomogeneities 2 are related to the

incompatibility of deformation arising as growth occurs (the reader is referred, for example, to

the work by Rodriguez et al. (5) for explanation, and the connection of incompatible deforma-

tion with residual stresses). The anelastic deformation induced by growth is described through

Kröner’s incompatibility method, which consists of decomposing the deformation gradient ten-

sor into the product of an elastic and an anelastic contribution.

1The j-th phase of a mixture is said to be incompressible, if the convective derivative of its mass density is

zero, i.e.
D jρ j

Dt
= 0.

In the case of mixtures whose phases exchange mass, the assumption that the solid-phase is incompressible does

not necessarily imply that JS = det(FS ) = 1, where FS is the deformation gradient tensor of the solid phase.
2According to Noll’s terminology, by inhomogeneities we mean here distortions.
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3.3 Constitutive Framework

In order to define a reference configuration for the mixture, we adhere to Biot’s approach

(65), and the framework proposed by Quiligotti (40), and Quiligotti et al. (66). Accordingly,

the solid-phase is taken as the “control” phase to which a reference configuration is associated.

In the study presented in our paper, growth (or adsorption) is described as a process concerning

the solid sub-phases of the tissue, FI and FM, as a result of the mass exchange between the

fluid-phase, FF , and sub-phases FI and FM. Although we have assumed that solid sub-

phases FI and FM move with the common velocity vS (which is said to be the solid-phase

velocity), growth may occur independently. Following (60), this is accounted for by assuming

that, according to Kröner’s method, the solid-phase deformation gradient tensor, FS , admits

the multiplicative decomposition

FS = Fe
I F

an
I = Fe

MFan
M , (3.15)

where Fe
I

and Fe
M

measure the true elastic deformation of the inclusions and matrix, respec-

tively, while Fan
I

and Fan
M

describe the anelastic part of deformation related to the production of

material inhomogeneities due to growth in sub-phases FI and FM, respectively. Each tensor

Fan
k

(with k ∈ {I,M}) maps the tangent space of the reference configuration of the mixture into

the tangent space of an intermediate, elastically released configuration, which is referred to as

to the natural configuration of sub-phase Fk (with k ∈ {I,M}). The quantities FS , Fan
I

, and Fan
M

should be treated as free unknowns.

3.3.2 Remodelling

In order to account for the presence of inclusions, and the possibility of remodelling, we

introduce a unit vector λN
I

, which represents the alignment of fibre-like inclusions in the natural

configuration of phase FI . An alternative description of anisotropy can be given by the texture

tensor ΞN
I

:= λN
I
⊗ λN

I
. Unit vectors λN

I
and ξS , and texture tensors ΞN

I
and ΞS are related to

the each other through

ξS =
1√

Tr
[
Fe

I
(λN

I
⊗ λN

I
)(Fe

I
)T

]Fe
Iλ

N
I , (3.16)

ΞS =
1

Tr
[
Fe

I
Ξ

N
I

(Fe
I
)T

]Fe
IΞ

N
I (Fe

I )
T . (3.17)

According to eqs. (3.16) and (3.17), the alignment of fibre-like inclusions in the current con-

figuration, described by ξS (or ΞS ), can be obtained if the fibre arrangement in the natural

configuration of phase FI , described by λN
I

(or ΞN
I

), is known.
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

When remodelling occurs, the change of tissue anisotropy is described by an evolution law

for either the unit vector λN
I

, or the texture tensor ΞN
I

. Therefore, vector λN
I

(or tensor ΞN
I

) has

to be treated as a free unknown for the tissue. However, since the unit vector λN
I

is constrained

by the relation ||λN
I
|| = 1, it may be convenient to select as independent free unknowns only the

angles ϑ and ϕ such that λN
I
= sin(ϕ) cos(ϑ)e1 + sin(ϕ) cos(ϑ)e2 + cos(ϕ)e3, where {eJ}

3
J=1 are

the basis unit vectors of the three-dimensional Euclidean space.

3.3.3 Unknowns

We count the unknowns featuring in the modified expression of entropy production (cf.

eq. (3.14)). In particular, we split these unknowns in three sets, i.e. free unknowns, Ufree,

dependent unknowns, Udep, and Lagrange multipliers, M . Therefore, we conclude that the set

of free and dependent unknowns, and Lagrange multipliers are given by

Ufree =
{
φI , φM,CβI ,CβM,CβF ,uβF ,wFS ,Θ, ϕ, ϑ,F

e
I ,F

e
M,F

an
I ,F

an
M

}
, (3.18)

Udep =
{
AS , AF , S S , S F ,σβF , AβF ,TβF ,σF ,σS ,TF ,RS ,RβF , ρI , ρM, ρF

}
, (3.19)

M =
{
π, λβI , λβM, λβF ,ΛF

}
. (3.20)

For the exploitation of the expression of entropy production (3.14), quantities Fe
I

and Fe
M

are

replaced by the Green-Lagrange strain tensors Ee
I

:= 1
2

[
(Fe

I
)T Fe

I
− IN

I

]
and Ee

M
:= 1

2

[
(Fe

M
)T Fe

M
−

IN
M

]
(where IN

I and IN
M are the identity tensors in the natural configuration of FI and FM, re-

spectively), while quantities Fan
I

and Fan
M

are replaced by the inhomogeneities velocity gradients

Lan
I

and Lan
M

, defined by

Lan
I :=

DS Fan
I

Dt
(Fan

I )−1, and Lan
M :=

DS Fan
M

Dt
(Fan

M)−1. (3.21)

Quantities featuring in balance laws, but not present in the lists above, are related to the above

listed variables through either kinematic restrictions or their own definition. We remark that

fluid-phase mass density is taken as dependent unknown (cf. eq. (3.19)) because we assume

that it is prescribed as a constitutive function of mass fractions of fluid constituents. Further-

more, solid-phase velocity, vS , does not feature in eq. (3.18) because it has been replaced by

deformation gradient tensor, FS , and then by tensors Fe
I
, Fe

M
, Fan

I
, and Fan

M
through eq. (3.15).
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3.4 Exploitation of the entropy production inequality

3.3.4 Helmholtz free energy densities

In our constitutive framework, the set of independent constitutive variables (ICV) is ob-

tained through the union of the set of free unknowns, Ufree, and a set of variables containing

the gradients of volume and mass fractions, and the inhomogeneity velocity gradients, Lan
I

and

Lan
M

, while the set of dependent constitutive variables (DCV) is identified with the set of depen-

dent unknowns, Udep, i.e.

ICV = Ufree ∪

{
∇CβF ,∇CβI ,∇CβM,

DSϕ

Dt
,

DSϑ

Dt

}
, (3.22)

DCV =
{
AS , AF , S S , S F ,σβF , AβF ,TβF ,σF ,σS ,TF ,RS ,RβF , ρI , ρM, ρF

}
, (3.23)

where β ∈ {0, . . . ,N − 1}.

If the Axiom of equipresence were rigorously applied, the Helmholtz free energy densities,

AF and AS should be given as constitutive functions of all ICV’s. However, it is possible to

show that letting AF and AS depend only on a subset of ICV minimizes the algebraic calcula-

tions necessary for our purposes without leading to thermodynamic inconsistencies. For this

reason, we assume here that

AF := ÂF(ρF ,CF ,Θ), and AS := ÂS (ρI , ρM,CI ,CM,Θ,F,F
an
I ,F

an
M , ϕ, ϑ), (3.24)

where C j ≡ {C0 j, . . . ,C(N−1) j} (with j ∈ {F} ∪ {I,M}). Moreover, by prescribing that the mass

densities of both the solid sub-phases, FI and FM, and the fluid-phase, FF , are given by

constitutive (or state) functions of the mass fractions of constituents, i.e.

ρF := ρ̂F(CF), ρk := ρ̂k(Ck), k ∈ {I,M}, (3.25)

we write the constitutive expressions of ÂF and ÂS as

ÂF(ρF ,CF ,Θ) = Ψ̂F(CF ,Θ), (3.26)

ÂS (ρI , ρM,CI ,CM,Θ,F,F
an
I ,F

an
M , ϕ, ϑ) = Ψ̂S (CI ,CM,Θ,F,F

an
I ,F

an
M , ϕ, ϑ). (3.27)

3.4 Exploitation of the entropy production inequality

Substitution of eqs. (3.26) and (3.27) into (3.13), the result into (3.14), and application of

Coleman–Noll procedure to the resulting expression of entropy production leads to the consti-

tutive laws reported below.
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

3.4.1 Lagrange Multipliers

Lagrange multipliers are found to be:

λβI =
∂Ψ̂I

∂CβI

−
π

ρ̂ 2
I

∂ρ̂I

∂CβI

, λβM =
∂Ψ̂M

∂CβM

−
π

ρ̂ 2
M

∂ρ̂M

∂CβM

, λβF =
∂Ψ̂F

∂CβF

−
π

ρ̂ 2
F

∂ρ̂F

∂CβF

. (3.28)

Quantities λβ j (with β ∈ {0, . . . ,N − 1} and j ∈ {F} ∪ {I,M}) are identified with the relative

chemical potential of constituent Cβ j, i.e. λβ j ≡ mβ j := µβ j − µN j, where µβ j and µN j are the

absolute chemical potentials of constituents Cβ j and CN j in phase F j, respectively (cf., for

example, (18)). We remark that, by definition, λN j ≡ mN j ≡ 0 for all F j, j ∈ {F, I,M}. Finally,

Lagrange multiplier ΛF is found to be (18) (20)

ΛF = ANF I −
1

φFρFCNF

σNF , (3.29)

where ANF , CNF , and σNF are Helmholtz free energy density, mass fraction, and Cauchy stress

tensor of constituent CNF in the fluid-phase.

3.4.2 Entropies and Cauchy stress tensors

Entropy densities of the solid- and fluid-phase are related to the derivatives of the corre-

sponding Helmholtz free energy density with respect to temperature, i.e.

S S = −
∂Ψ̂S

∂Θ
, and S F = −

∂Ψ̂F

∂Θ
. (3.30)

Furthermore, the Cauchy stress tensors of fluid-phase constituents, fluid-phase as a whole, and

solid-phase are given by

σαF = φFρFCαF(AαF − λαF)I − φFρFCαFΛF , (3.31)

σF = −φFρFλF I −

N∑

α=0

φFρFCαFuF ⊗ uF = −φFπI −

N∑

α=0

φFρFCαFuF ⊗ uF , (3.32)

σS = −φS πI + σe
I + σ

e
M. (3.33)

We remark that, in order for eq. (3.31) to be consistent with eq. (3.32), the sum over all

constituents in the fluid-phase, CαF (α ∈ {0, . . . ,N}), of the Cauchy stress tensors σαF must be

equal to the inner part of the fluid-phase Cauchy stress tensor, σF , i.e.

N∑

α=0

σαF = −φFπ. (3.34)
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3.4 Exploitation of the entropy production inequality

By using Equation (3.29), this condition can be used in order to show that

µαF = AαF +
παF

ρFCαF

, (3.35)

where παF is the partial pressure of the fluid-phase constituent CαF (α ∈ {0, . . . ,N}). Moreover,

the Cauchy stress tensor of constituent CαF is given by σαF = −φFπαF I, and partial pressures

παF satisfy
N∑

α=0

παF = π. (3.36)

Finally, the sum of the quantities σe
I

and σe
M

represents the elastic part of solid-phase overall

Cauchy stress tensor. These two tensors are defined by

σe
I :=

1

JS

Fe
I

∂W I

∂Ee
I

(Fe
I )

T + φIρI(AS − AI)I (3.37)

= φIρIF
e
I

∂AI

∂Ee
I

(Fe
I )

T + φIρI(AS − AI)I,

σe
M :=

1

JS

Fe
M

∂W M

∂Ee
M

(Fe
M)T + φMρM(AS − AM)I (3.38)

= φMρMFe
M

∂AM

∂Ee
M

(Fe
M)T + φMρM(AS − AM)I,

where W I := JS WI , W M := JS WM, and WI := φIρIAI (with j ∈ {I,M}), and their sum is such

that the elastic part of the Cauchy stress tensor of the solid-phase as a whole is given by

σe
S =

1

JS

Fe
I

∂W I

∂Ee
I

(Fe
I )

T +
1

JS

Fe
M

∂W M

∂Ee
M

(Fe
M)T . (3.39)

Equations (3.37)-(3.38) are obtained by computing the total differential ofΨS and using the fact

that, because of the multiplicative decomposition of FS , the hypothesis of density preserving

growth (which implies that Tr(Lan
k

) = Rk), and the constraint ρk ≡ ρ̂k(Ck), each volume fraction

φk can be written as a function of the elastic part of deformation, Ee
k
, and mass fraction of

constituents in subphase Fk, i.e. φk ≡ φ̂k(Ee
k
,Ck), where

∂φk

∂Ee
k

= −φkCe−T
k ,

∂φk

∂Cβk

= −
φk

ρk

∂ρ̂k

∂Cβk

, (3.40)

and Ce
k

:= Fe T
k

Fe
k
. Moreover, as done in (11), the Helmholtz free energy density of sub-phase

Fk, Ak (k ∈ {I,M}), is assumed to depend on the overall deformation only through the elastic

part of deformation associated with Fk, i.e. Ee
k
.
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3.4.3 Residual entropy production inequality

By virtue of eqs. (3.28)–(3.39), under the assumptions of small diffusive velocities of fluid-

phase constituents, small fluid-phase filtration velocity (i.e. ||uαF ||
2 ≪ 1, and ||wFS ||

2 ≪ 1),

negligible inertial terms in momentum balance laws, and accounting for the kinematic con-

straints on the growth velocity gradients Lan
I

and Lan
M

(60), i.e.

Tr(Lan
I ) = Lan

I : IN
I = RI , and Tr(Lan

M) = Lan
M : IN

M = RM, (3.41)

the expression of residual of entropy production can be written as

ΘρΓ̃red =

N∑

α=0

uαF ·

{
− φFρFCαF

(
∇µαF − g

)}
+ wFS ·

{
− φFρFTF + π∇φF

}
(3.42)

−

N−1∑

β=0

φIρICβIRβI

{
λβI − λβF

}
−

N−1∑

β=0

φMρMCβMRβM

{
λβM − λβF

}

+φIρIL
an
I :

{ 1

JSφIρI

Be
I −

(
AI +

π

ρI

−

N−1∑

β=0

CβIλβI

)
IN

I

+

(
AF +

π

ρF

−

N−1∑

β=0

CβFλβF

)
IN

I

}

+φMρMLan
M :

{ 1

JSφMρM

Be
M −

(
AM +

π

ρM

−

N−1∑

β=0

CβMλβM

)
IN

M

+

(
AF +

π

ρF

−

N−1∑

β=0

CβFλβF

)
IN

M

}

+φS ρS A∗S − φS ρS

DSϕ

Dt
:
∂Ψ̂S

∂ϕ
− φS ρS

DSϑ

Dt
:
∂Ψ̂S

∂ϑ
≥ 0,

where we introduced the notation

Be
I := Ce

I

∂W I

∂Ee
I

, and Be
M := Ce

M

∂W M

∂Ee
M

, (3.43)

with Ce
I
= (Fe

I
)T Fe

I
, Ce

M
= (Fe

M
)T Fe

M
, and JS = det(FS ).

Further conditions on the unknowns can be obtained by studying inequality (3.42) in the

case of thermodynamic equilibrium, i.e. at the state at which all non-equilibrium variables

Non-equilibrium variables =
{DSϕ

Dt
,

DSϑ

Dt
,uαF ,wFS ,L

an
I ,L

an
M ,RβI ,RβM

}
(3.44)
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3.4 Exploitation of the entropy production inequality

(β ∈ {0, . . . ,N −1}) vanish identically. At equilibrium, entropy production is zero, i.e. it attains

its minimum value. Therefore, it is possible to characterise equilibrium by requiring the “gra-

dient”, and the “Hessian”of the residual entropy production with respect to non-equilibrium

variables to be zero, and be positive–definite, respectively. For this purpose, inspired by (71),

we assume that the quantity φS ρS A∗
S

can be written as

φS ρS A∗S = φS ρS A∗∗S + φIρIL
an
I : HI + φMρMLan

M : HM, (3.45)

where HI and HM are two second-order tensors related growth. Under this assumption, the

equilibrium conditions are fulfilled by the following set of Onsager’s relations:

uβF = −MβF∇mβF , (3.46)

wFS = −MF

(
φFρFTF − π∇φF

)
, (3.47)

RβI = −ZβI(mβI − mβF), (3.48)

RβM = −ZβM(mβM − mβF), (3.49)

Lan
I = �I :

{ 1

JSφIρI

Be
I +HI −

(
AI +

π

ρI

−

N−1∑

β=0

CβImβI

)
IN

I (3.50)

+

(
AF +

π

ρF

−

N−1∑

β=0

CβFmβF

)
IN

I

}
,

Lan
M = �M :

{ 1

JSφMρM

Be
M +HM −

(
AM +

π

ρM

−

N−1∑

β=0

CβMmβM

)
IN

M (3.51)

+

(
AF +

π

ρF

−

N−1∑

β=0

CβFmβF

)
IN

M

}
,

A∗∗S −
DSϕ

Dt
:
∂Ψ̂S

∂ϕ
−

DSϑ

Dt
:
∂Ψ̂S

∂ϑ
≥ 0, (3.52)

where we used the definitions of relative chemical potentials, λβI = mβI , λβM = mβM, and

λβF = mβF (with β ∈ {0, . . . ,N − 1}), given in eqs. (3.28). If some constituents are not
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

exchanged, then the index β in eqs. (3.48)-(3.49) ranges in the subset of constituents that are

actually exchanged, i.e. those for which Rβ j , 0. Coefficients ZβI , ZβM are positive scalars,

MβF , MF are positive-definite second-order tensors, and�I ,�M are positive-definite fourth-

order tensors endowed with the major symmetry (cf. Loret and Simões (60)). In general, each

of these coefficients may be a function of all independent constitutive variables. We remark that

eqs. (3.46)–(3.51) are obtained by inverting the near-equilibrium expansions of the coefficients

of non-equilibrium variables (3.44), i.e. the terms between braces in eq. (3.42).

Onsager’s relation (3.46) provides diffusion–dispersion Fick’s law for the fluid-phase con-

stituent CβF . Indeed, by multiplying both side of eq. (3.46) by φFρFCβF , and defining the

diffusive–dispersive mass flux constituent CβF as JβF = φFρFCβFuβF , we obtain

JβF = −φFρFCβFMβF∇mβF , (3.53)

where tensor MβF is proportional to the diffusive–dispersive tensor associated with constituent

CβF .

Equation (3.47) gives Darcy’s law of flow for the filtration velocity of the fluid-phase.

This law is obtained by expressing the momentum exchange φFρFTF through the balance of

momentum for the fluid-phase, approximating the fluid-phase Cauchy stress tensor by σF ≈

−φFπI (cf. eq. (3.32)), and invoking the hypothesis of negligible inertial terms, i.e.

φFρFTF = ∇(φFπ) − φFρFg. (3.54)

Substitution of eq. (3.54) into Onsager’s relation (3.47) leads to

wFS = −KF(∇π − ρFg). (3.55)

where KF = φFMF is said to be the fluid-phase permeability tensor.

Onsager’s relations (3.48) and (3.49) imply that the source (or sink) of mass of constituent

Cβk (with k ∈ {I,M}) depends on the difference between the relative chemical potential of that

constituent, mβk, and the relative chemical potential of constituent CβF in the fluid-phase, mβF .

Since, at equilibrium, the relative chemical potential of a given constituent has to be the same

for any phase, the conditions mβI ≡ mβF and mβM = mβF imply that sources (or sinks) RβI

and RβM have to vanish at equilibrium. Furthermore, since φFρFCβFRβF = −(φIρICβIRβI +

φMρMCβMRβM), also the source (or sink) of mass for constituent CβF in the fluid-phase has to

be zero at equilibrium. Results (3.46)–(3.49) were obtained by Bennethum et al. in (18), and
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3.5 Evolution of fibre-like inclusions

have been here slightly generalized to the case of a solid-phase consisting of two sub-phases

(i.e. matrix and fibre-like inclusion sub-phases).

Equations (3.50) and (3.51) represent the growth laws for the solid sub-phases FI and FM,

respectively. These relations can be rewritten by defining, for solid sub-phases FI and FM,

and for the fluid-phase FF , the following Mandel-type stress tensors

BI = Be
I + JSφIρI

N−1∑

β=0

CβImβI IN
I , (3.56)

BM = Be
M + JSφMρM

N−1∑

β=0

CβMmβM IN
M, (3.57)

BFI = JSφIρI

N−1∑

β=0

CβFmβF IN
I , and BFM = JSφMρM

N−1∑

β=0

CβFmβF IN
M. (3.58)

Substitution of definitions (3.56)–(3.58) into eqs. (3.50) and (3.51) yields

Lan
I = �I :

{ 1

JSφIρI

(
BI − BFI

)
+HI −

[(
AI +

π

ρI

)
−

(
AF +

π

ρF

)]
IN

I

}
, (3.59)

Lan
M = �M :

{ 1

JSφMρM

(
BM − BFM

)
+HM −

[(
AM +

π

ρM

)
−

(
AF +

π

ρF

)]
IN

M

}
. (3.60)

Equations (3.59) and (3.60) are a generalisation of the results reported in (58). Similar growth

laws have been previously proposed by Loret and Simões (60), Fusi et al. (13) for a fluid-solid

mixture with mass exchange between constituents, Ambrosi and Guana (67) in the monophasic

continuum, and by Ambrosi et al. (15) for a non-homogeneous monophasic body. Following

(71)(126), tensors HI and HM may be taken as

HI = −
1

JSφIρI

B0
I , and HM = −

1

JSφMρM

B0
M, (3.61)

where B0
I

and B0
M

are external “forces” that, at equilibrium, balance BI and BM, respectively.

By accounting for Onsager’s relations (3.46)–(3.49), and (3.59)–(3.60), we conclude that

inequality (3.52) has to be verified in order for the entropy principle to be respected. In the

next section, we investigate the consequences of this requirement.

3.5 Evolution of fibre-like inclusions

Since the solid-phase Helmholtz free energy density, Ψ̂S , is assumed to be a dependent

constitutive variable, the derivative of Ψ̂S with respect to texture tensor ΞN
I

can be regarded
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3. EVOLUTION OF A FIBRE-REINFORCED GROWING MIXTURE

as known. Therefore, it can be concluded that, in inequality (3.52), unknown quantities are

DSΞ
N
I
/Dt and A∗∗

S
.

Following Chadwick (46), Imatani and Maugin (53), and Maugin and Imatani (54), a for-

mulation of remodelling can be obtained on the basis of the evolution of the texture tensor ΞN
I

,

i.e.
DSΞ

N
I

Dt
= ΞN

I (Lan
I )T + Lan

I Ξ
N
I − 2(Lan

I : ΞN
I )ΞN

I . (3.62)

We remark that, by virtue of eq. (3.17), texture tensor ΞS is determined if tensors ΞN
I

and Fe
I

are known. Therefore, if ΞN
I

is the solution of the evolution law (3.62), texture tensor ΞS can

be computed directly through eq. (3.17)

In the case in which vector λN
I

is embedded in the continuum, we propose to use Onsager’s

relation (3.59) in order to express the growth velocity gradient, Lan
I

, for the fibre-like inclusion

sub-phase FI . By doing that, tensor Lan
I

is a function of Mandel-type stress tensors BI and

BFI , as well as other thermodynamic quantities. This confirms that Mandel stress is the driving

force for remodelling.

As an example, following Olsson and Klarbring (126), we assume that the growth law

(3.59) takes on the simplified form

Lan
I = MI

{ 1

JSφIρI

(
BI − BFI − B0

I

)
−

[(
AI +

π

ρI

)
−

(
AF +

π

ρF

)]
IN

I

}
, (3.63)

where MI is a positive scalar coefficient. We notice that the growth velocity gradient Lan
I

contains hydrostatic contributions. Since hydrostatic terms cannot play any role in the evolution

equation of ΞN
I

, by introducing the notation

M∗I =
MI

JSφIρI

, (3.64)

eq. (3.62) becomes

DSΞ
N
I

Dt
= ΞN

I M∗I (Be
I − B0

I )T + M∗I (Be
I − B0

I )ΞN
I − 2[M∗I (Be

I − B0
I ) : ΞN

I ]ΞN
I , (3.65)

where only the elastic part of the Mandel-type stress tensor BI is the driving force for remod-

elling. We remark that, in the example described above, the fluid-phase Mandel-type stress

tensor plays no role in remodelling due to the fact that it is a hydrostatic tensor.

This result shows that, in the simple case studied in this section, only the elastic Mandel-

type stress tensor, Be
I
, acts as a driving force for the reorientation of fibre-like inclusions.
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Chapter 4

Growth and Mass Transfer in

Multi-Constituent Biological Materials

4.1 Introduction

A biphasic and multiconstituent material describes macroscopically the growth and mass

transfer in a biological tissue. One phase is fluid, and the other one is solid. Our goals in this

chapter are (i) to discuss possible evolution laws for both mass transfer and growth, and (ii)

to characterize the equilibrium of the system. In order to do that we distinguish between the

phases and growth exchange interactions in the solid-phase. Kröner’s decomposition allows us

to find an elastic, Fe, and inelastic, Fa, part of the deformation gradient tensor, F = FeFa. This

approch has origin in the Theory of Plasticity and it is one of the milestones of the mathematical

modelling of volumetric growth.

In monophasic continua, if growth is the only inelastic process, Fa defines the generally

incompatible and inelastic deformation due to growth (100). Within a first-order constitu-

tive framework, the material derivative of Fa is constrained by R = Tr{La}, where La :=

(DtFa)(Fa)−1, and R is the rate at which the medium grows. If a constitutive law for La is

found, then the identity (DtFa) = LaFa is the evolution law of Fa. In multiphasic continua,

which aim at a more realistic modelling of biological tissues, there are usually other processes

that concur, together with growth, to the variation of mass of the phases. Sometimes, the

growth of one phase (typically the solid one) is identified with the mass that this phase acquires

because of the exchange processes with all other phases. Also in this context, the variation of

mass, assumed to trigger inelastic deformation, is related to Fa.The search for evolution laws of
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MATERIALS

Fa has become the subject of several papers dealing with the Thermomechanics of volumetric

growth.

Inspired by the Thermodynamics of Irreversible Processes, we will determine La directly

from the Dissipation Inequality (cf., for example, (13)-(112)).

To meet the purposes of this Chapter it will be presented the results obtained by Grillo

and Wittum (2), showing possible evolution laws for both mass transfer and growth in multi-

constituent biological materials, and studing the equilibrium of the system.

4.2 Definitions

The studied biphasic material comprises a fluid-phase, FF , and a solid-phase, FS . The

volume fraction of F j, with j ∈ {F, S }, is denoted by φ j. The saturation condition applies, i.e.
∑

j=F,S φ1 j = 1. Each phase contains (N+1) constituents. The α-th constituent of F j is denoted

by Cα j, with α ∈ {0, . . . ,N}. The “true” mass density of F j is defined by ρ j :=
∑N
α=0 ρα j, where

ρα j is the mass density of Cα j. The composition of F j is described by the mass fractions

ωα j := ρα j/ρ j, which are constrained by
∑N
α=0 ωα j = 1.

The velocity of FF is defined by vF :=
∑N
α=0 ωαFvαF , vαF being the velocity of CαF . The

diffusion of CαF in the fluid-phase is described by the mass flux jαF := φFρFωαFuαF , with

uαF := vαF − vF . By definition,
∑N
α=0 jαF = 0. The velocity at which the fluid-phase moves

as a whole through the solid-phase is the filtration velocity wFS := vF − vS , where vS is the

velocity of FS .

In our model, the constituents of FS are assumed to move at the same velocity vS . The

deformation gradient tensor of FS is F := Grad(χS ), and χS is the solid-phase motion (74).

The Helmholtz free energies per unit mass of Cα j and F j are Ψα j and Ψ j, respectively,

with Ψ j :=
∑N
α=0 ωα jΨα j. We also introduce the Gibbs free energy density of F j, G j :=

∑N
α=0ωα jµα j, where µα j is the chemical potential of Cα j. The difference µ̃β j := µβ j − µNk is the

relative chemical potential of Cβ j.

The overall mass source R j of F j may represent the superposition of different processes.

The term Rt
j

accounts for the interphase mass transfer. If F j grows, the term R
g

j
is introduced,

so that R j = Rt
j
+ R

g

j
. We assume that FF and FS exchange mass with each other, and that

FS undergoes also growth. Therefore, we define RF = Rt
F

and RS = Rt
S
+ R

g

S
. Since the

biphasic medium as a whole is closed with respect to the exchange interactions, the restriction
∑

j=F,S φ jρ jR
t
j
= 0 applies. Because of growth, however, the biphasic medium is open.
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4.3 Constitutive Results

If both mass transfer and growth lead to inelastic deformation, we decompose the tensor

Fa as Fa = FgFt. Here, we have exploited the analogy with the Theory of Plasticity a little

further. Indeed, decompositions of Fa of this form are encountered in Plasticity when damage

is present (72). The inelastic velocity “gradient” reads

La = Lg + FgLt(Fg)−1, (4.1)

with Lg := (DtFg)(Fg)−1 and Lt := (DtFt)(Ft)−1 such that Tr{Lg} = R
g

S
, Tr{Lt} = Rt

S
, and

Tr{La} = RS = Rt
S
+ R

g

S
.

4.3 Constitutive Results

Since the phases vary their mass by exchanging constituents, the composition of FF and

FS is variable. Thus, the phases are in principle not intrinsically incompressible, and ρF and

ρS are functions of composition. Assuming constant temperature, the Helmholtz free energy

densities ΨF and ΨS are prescribed constitutive functions as specified below

ΨF := ΨF(ω0F , . . . , ω(N−1)F), and ΨS := ΨS (Fe, ω0S , . . . , ω(N−1)S ). (4.2)

The fact that ρF and ρS are independent on pressure requires to consider pressure as a Lagrange

multiplier. In this case, the study of the Dissipation Inequality for a multi-constituent biphasic

medium comprising a macroscopically inviscid fluid-phase and an elastic solid-phase leads to

the constitutive results (cf., for example, (58)(112)):

TS = −φS pI + Te
S = −φS pI + φS ρS

∂ΨS

∂Fe
(Fa)−T FT , and

TF = −φF pI −
∑N
α=0uα ⊗ jαF (4.3)

µ̃β j =
∂G j

∂ωβ j
=

∂Ψ j

∂ωβ j
−

p

ρ2
j

∂ρ j

∂ωβ j
, with β ∈ {0, . . . ,N − 1}, and G j = Ψ j +

p

ρ j
. (4.4)

4.4 Study of the Residual Dissipation Inequality

We assume that the biphasic medium is in chemical and thermal equilibrium. For such a

system, the residual Dissipation inequality can be written as (cf. (58)(112))

D
res = −

∑N−1
β=0 jβF ·bβF−wFS ·bF+

∑N−1
β=0 ωβS Rt

βSφS ρS {̃µβF−µ̃βS }+Lt : Qt+Lg : Hg ≥ 0. (4.5)
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MATERIALS

The quantity bβF is the dissipative part of the rate at which the constituent CβF exchanges

momentum with all other constituents, while bF := FF − p grad(φF) is the dissipative part

of FF , the latter being the rate of exchange of momentum between FF and FS . The third

summand represents the dissipation due to the exchange of constituents between FF and FS ,

where Rt
βS

is the rate of transfer of the β-th constituent from FF into FS , and vice versa. The

fourth term, instead, accounts for the dissipation due to the overall interphase mass transfer.

The second-order tensor Qt is defined by

Qt =
{
φS ρS

[(
GF−

∑N−1
β=0 ωβF µ̃βF

)
−
(
GS −

∑N−1
β=0 ωβS µ̃βS

)]
Ie+(Je)−1(Fg)T Be(Fg)−T +Mt

}
, (4.6)

where Ie is the identity tensor in the relaxed configuration, Je = det(Fe), and Be is the elastic

Mandel stress tensor of the solid-phase, i.e.

Be = JeφS ρS (Fe)T ∂ΨS

∂Fe
. (4.7)

These results are obtained by enforcing the condition φS ρSωβS Rt
βS
= −φFρFωβFRt

βF
, which

states that the constituent leaving FF enters FS , and vice versa.

Following (73)(71), we define the second-order tensor Hg by

Hg = (Je)−1Be +Mg. (4.8)

The tensors Mt and Mg originate from the non-standard dynamics put forward in (71) for

monophasic media. These tensors are generelized forces conjugated to the generalized veloci-

ties Lt and Lg, respectively. The adjective “non-standard” refers to the fact that, in the present

theory, the space of test velocities of the biphasic medium is augmented by Lt and Lg. Fol-

lowing the terminology of (71), we call Mg and Mt outer remodelling couples, for they drive

the rearrangement of the internal structure of the medium in response to inelastic processes

described by Lt and Lg.

We consider the set T = {Lt,Lg,Qt,Hg} ⊂ Lin, where Lin is the set of all linear maps

from a finite-dimensional vector space V into itself. Any tensor T ∈ T admits the unique

decomposition

T = [T]S + [T]A, (4.9)

where [ · ]S and [ · ]A are operators that extract the symmetric and antisymmetric part of T,

respectively. Let us also introduce the space of symmetric tensors, Sym ⊂ Lin, and the spaces
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4.4 Study of the Residual Dissipation Inequality

of spherical and deviatoric tensors, denoted by Sph and Dev, respectively. Since [T]S ∈ Sym,

and Sym = Sph ⊕ Dev, we perform the further decomposition

T = 1
3 Tr{T}I + Dev{[T]S } + [T]A. (4.10)

By applying (5.34) in (4.5), and performing the scalar products, we obtain:

D
res = −

∑N−1
β=0 jβF · bβF − wFS · bF +

∑N−1
β=0 ωβS Rt

βSφS ρS {̃µβF − µ̃βS } (4.11)

+Tr{Lt}
1
3 Tr{Qt} + Dev{[Lt]S } : Dev{[Qt]S } + [Lt]A : [Qt]A

+Tr{Lg}
1
3 Tr{Hg} + Dev{[Lg]S } : Dev{[Hg]S } + [Lg]A : [Hg]A ≥ 0.

In (4.5), we choose the following quantities as the independent thermodynamic variables that

vanish at equilbrium

Φ = Υ ∪ Σ =
{
(jβF)N−1

β=0 ,wFS

}
∪

{
(φS ρS {̃µβF − µ̃βS })

N−1
β=0 ,Qt,Hg

}
, (4.12)

and we postulate that, for an isotropic medium, Dres admits the simple form

D
res(Φ) :=

∑N−1
β=0 jβ · (AβFjβF) + wFS · (AFwFS ) +

∑N−1
β=0 KβS

(
φS ρS {̃µβF − µ̃βS }

)2 (4.13)

+2
∑N−1
β=0 KβS

(
φS ρS {̃µβF − µ̃βS }

)Tr{Qt}

3 +Qt : t⋆ג [Qt] +Hg : g[Hg]ג ≥ 0.

The symmetric and positive definite tensors AF and AβF are the inverse of the permeability

and mobility of constituent CαF , respectively. The positive scalars KβS are related to the rates at

which constituents are exchanged between the phases, while t⋆ג and gג are the positive definite

fourth-order tensors defined below (75)(76)

ג
⋆
t [Qt] = ltTr{Qt}Ie + 2mt[Qt]S + 2nt[Qt]A =

(3lt + 2mt)
1
3 Tr{Qt}Ie + 2mtDev{[Qt]S } + 2nt[Qt]A, (4.14)

g[Hg]ג = lgTr{Hg}Ie + 2mg[Hg]S + 2ng[Hg]A =

(3lg + 2mg) 1
3 Tr{Hg}Ie + 2mgDev{[Hg]S } + 2ng[Hg]A. (4.15)

The hypothesis of isotropic medium allows for deducing that the dissipation defined in (5.16)

is fully decoupled into a volumetric and deviatoric part (51)(77)1.

1A potential is said to be fully decoupled when the associated fourth-order tensor ג satisfies V : ג : D = 0

and D : ג : V = 0, where V and D are the operators extracting the volumetric and deviatoric part of given tensor

T ∈ Lin, i.e. Vi jkl =
1
3δi jδkl, and Di jkl = δikδ jl − Vi jkl. If T ∈ Sym, then Di jkl =

1
2 (δikδ jl + δilδ jk) − Vi jkl.
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4.4.1 Evolution Laws

We determine the evolution laws for the quantitiesΦ by applying the Principle of Maximum

Dissipation (78). By defining the list of thermodynamic quantities dual of Φ as

Π = Ω ∪ Λ =
{
(bβF)N−1

β=0 ,bF

}
∪

{
(ωβS Rt

βS )N−1
β=0 ,Lt,Lg

}
, (4.16)

the evolution laws for Π are given by Π = 1
2∂ΦD

res.

After some calculations, we obtain:

bβF = −AβFjβF , (4.17)

bF = −AFwF , (4.18)

ωβS Rt
βS = KβS

(
φS ρS {̃µβF − µ̃βS } +

Tr{Qt}

3

)
=

φS ρS KβS

(
µβF − µβS +

Tr{(Je)−1Be}+Tr{Mt}

3φS ρS

)
, (4.19)

Lt =
∑N−1
β=0

φS ρS KβS

3 {̃µβF − µ̃βS }Ie + ג
⋆
t [Qt], (4.20)

Lg = g[Hg]ג = (3lg + 2mg) 1
3 Tr{Hg}Ie + 2mgDev{[Hg]S } + 2ng[Hg]A. (4.21)

Since
∑N
α=0 ωαS Rt

αS
= Rt

S
= Tr{Lt}, we enforce the condition

∑N
α=0

KαS

3 = (3lt + 2mt), so that

Lt can be rewritten as

Lt =
∑N
α=0

φS ρS KαS

3 {(µαF − µαS ) + Tr{Ht}

3φS ρS
}Ie + 2mtDev{[Ht]S } + 2nt[Ht]A, (4.22)

where Ht := (Je)−1(Fg)T Be(Fg)−T+Mt, and KαS ≡ KαS (ω0S , . . . , ω(N−1)S ) for all α ∈ {0, . . . ,N}.

Equations ([Ons3]–[LLt]) generalize the results of [Bennethum2000], and are perhaps

more physical than the evolution laws determined in [GrilloIJES]. The improvement is in the

fact that ([Ons3]–[Ons4]) are now coupled (see also the fourth term in ([Delta])). This coupling

is, in our opinion, necessary in order to have a diagonal representation of the constituent mass

exchange terms, i.e.

ωαS Rt
αS
= φS ρS Kα{µαF − µαS +

Tr{Ht}

3φS ρS
}.

4.4.2 Characterization of Equilibrium

In Mixture Theory, the state of thermodynamic equilibrium is characterized by the vanish-

ing of the quantities Υ and Λ. From (4.17–4.18) it follows that setting Υ = 0 is equivalent

to have zero diffusion fluxes, i.e. jβF = 0 with β ∈ {0, . . . ,N − 1}, and zero filtration veloc-

ity, i.e. wFS = 0. Furthermore, in a neighbourhood of equilibrium, (4.17–4.18) allow for the
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4.4 Study of the Residual Dissipation Inequality

determination of the Fick and Darcy’s laws, respectively. On the other hand, the evolution

laws (4.19–4.22) rephrase the equilibrium conditions for Λ in terms of their conjugated ther-

modynamic quantities Σ. Therefore, setting Σ = 0 provides the circumstances under which the

multi-constituent biphasic material experiences neither interphase mass transfer nor growth.

Let us start with growth. From the condition Lg = 0, we deduce that a sufficient condition

for impeding growth is that Hg = 0. If this is the case, then the non-standard generalized force

Mg must satisfy the equality Mg = −(Je)−1Be. Thus, by regarding Hg as the dissipative part of

Mg, we draw two conclusions: (i) the negative of the Mandel stress tensor, devided by Je, is

the equilibrium part of Mg, and (ii) out of equilibrium, Mg reads

Mg = −(Je)−1Be +Hg = −(Je)−1Be + ג
−1
g [Lg]. (4.23)

Thus, the growing medium behaves as a “visco-elastic” material in which (Je)−1Be, which

is entirely defined by the body elastic behaviour, plays the role of a generalized equilibrium

stress, whereas the inverse tensor 1−ג
g provides the “viscosities”. The characterization of the

types of growth that may occur in a tissue can be instead discussed by looking at the tensor

decomposition in (4.21). For example, if Dev{[Hg]S } = 0 and [Hg]A = 0, then we have

spherical growth.

Let us now look at mass transfer. From (4.22) we notice that the condition Lt = 0 is fulfilled

when Dev{[Ht]S } = 0, [Ht]A = 0, and

µαF − µαS +
Tr{Ht}

3φS ρS
= 0, ∀ α ∈ {0, . . . ,N}. (4.24)

The latter set of equations implies that, at equilibrium, the spherical part of Ht modulates the

difference of chemical potential of the α-th constituent simultaneously present in the fluid- and

in the solid-phase. This might be understood as a chemo-mechanical coupling. Moreover, if

we prescribe Tr{Ht} = 0, then we re-obtain the Gibbsean characterization of equilibrium, i.e.

µαF − µαS = 0 for all α ∈ {0, . . . ,N}. This result cannot be obtained if the tensor Mt, which is

instrinsic in the non-standard dynamics of (71), is not introduced in the model. Indeed, if one

sets Mt = 0, then the imbalance of chemical potentials in (4.24) would be always compensated

for by Tr{(Je)−1Be}/(3φS ρS ), which does not vanish at equilibrium for it is already an equilib-

rium quantity. From the discussion above we draw two conclusions: (i) for mass transfer, there

are two non-equilrium stresses (cf. (4.20)), one of which is proportional to {Eµ̃βF − µ̃βS }Ie, and
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the other one is given by Qt in (4.6), and (ii) out of equilibrium, Lt is driven by Mt and the

generalized imbalance of Eshelby-like stress tensors determined by rewriting (4.6) as follows

Qt = φS ρS (Fg)T {[
GFIe −

∑N−1
β=0 ωβF

∂GF

∂ωβF
Ie

]

−
[
GS Ie −

(∑N
β=0 ωβS

∂GS

∂ωβS
Ie + (Fe)T ∂GS

∂Fe

)]}
(Fg)−T +Mt. (4.25)

To the best of our understanding, mass transfer and growth are different processes. In our

model, the difference is given by the explicit presence of chemical potentials in the evolution

law of Lt.
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Chapter 5

Remodeling in Fiber-Reinforced,

Multi-Constituent Materials

5.1 Introduction

After the introduction, in the previous chapters, of many important concepts such as the

Mixture Theory, the mass balances and the kinematics of anelastic processes, we will obtain

the expression of residual dissipation as shown by Grillo et al. (136) and we will study the

residual dissipation inequality improving some of the results presented in (2, 58, 112).

We adapt the model of fiber reorientation put forward by Olsson and Klarbring (126) to the

case of a multi-constituent solid with statistical distribution of fibers. Morever the latter model

in the presence of chemical agents will also prepresent the starting point for the next and last

chapter. We conceive the solid phase of the mixture as a composite material whose fibers are

distributed according to some probability density distribution. The procedure for determining

the evolution laws of the variables describing the reorientation of fibers is similar to that used

for mass transfer and growth. The novelty, however, is conceptual since we view these variables

either as the parameters specifying the probability density distribution or as the probability

density distribution itself.

5.2 Dissipation

We require that every constituent Ca j of the mixture is characterized by its Helmholtz free

energy density ρa jψa j. Adding these quantities over all constituents of the j-th phase yields
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ρ jψ j =
∑

aρa jψa j, while the addition over all phases leads to the Helmholtz free energy density

of the mixture, i.e. ρψ :=
∑

j

∑
aρa jψa j.

In the case of constant and uniform temperature, the energy imbalance is postulated, for

any part Vt of Bt, in the form

∫

Vt

D = −dt

∫

Vt

(K + ρψ) + Pext
st + P

ext
n-st +

∫

∂Vt

qψ · n+

∫

Vt

g

Ψ ≥ 0, (5.1)

where the time derivative on the right-hand side is taken with respect to the motion of the mix-

ture as a whole, Pext
st and Pext

n-st are the standard and non-standard external powers, respectively,

P
ext
st =

∫

Vt

{∑
j

∑
aρa jba j · va j

}
+

∫

∂Vt

∑
j

∑
aτa j · va j, (5.2)

P
ext
n-st =

∫

Vt

{
Yext : DS K + Zext : DS G +

∑
nR

ext
n DS ζn

}
, (5.3)

qψ is a (pseudo-)flux of energy (n is the unit vector normal to ∂Vt), which arises in response to

the relative velocities ua j, uS and uF , i.e.

qψ = −
{∑

j

∑
aρa jψa jua j + ρSψS uS + ρFψFuF

}
, (5.4)

and
g

Ψ collects all the energy production terms induced by growth (6), i.e.,

g

Ψ =
∑

aρaS

[ g

Ψ
aS
+paS · vaS + γaS

( |vaS |
2

2 + ψaS

)]
, (5.5)

where
g

Ψ
aS

represents a supply of energy which is, in general, not expressed in terms of mechanic

power.

5.2.1 Saturation Constraint

Following (2, 13, 17, 112), we account for saturation in the balance of mass of the mixture

as a whole, which is now regarded as a constraint and written as follows

pC =
∑

jρ j

p

ρ̂2
j

DS ρ̂ j +
p

ρ̂F

grad(ρF) · wFS + φF p div(wFS ) (5.6)

+p div(vS ) −
(

p

ρ̂S

−
p

ρ̂F

)
ρS rS −

p

ρ̂S

ρS γS = 0,

where p is an unknown Lagrange multiplier having the physical meaning of pressure. We

append now (5.6) to (5.1), and evaluate the integral
∫
Vt
{D + pC} which, after localization,
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yields the inequality D̃ = D + pC ≥ 0. In order to study this result, we introduce the Gibbs

free energy density of the phase F j,

G j = ψ j +
p

ρ̂ j

(5.7)

and, after several algebraic manipulations, rewrite the local form of (5.1) as

D̃ = −
∑

jρ j

(
DSψ j −

p

ρ̂2
j

DS ρ̂ j

)
+ D̃I + D̃II + D̃III ≥ 0. (5.8)

In monophasic theories, the Gibbs free energy density is usually defined as the Legendre trans-

formation of the Helmholtz free energy density ψ, i.e. G = ψ − 1
ρR

S : E, where ρR is the mass

density measured with respect to the reference configuration, S is the second Piola-Kirchhoff

stress tensor, and E is the Green-Lagrange strain tensor. In this respect, our definition of G j

reflects the (partial) Legendre transformation of ψ j with respect to the mass density ρ̂ j. We use

this definition because of the assumption on {ρ̂ j} j=S ,F , which are independent on pressure in

our formulation.

The term D̃I provides information about the standard stresses, and is defined by

D̃I = (TS + TF + pI) : grad(vS ) + (TF + φF pI) : grad(wFS ) (5.9)

+
∑

j

∑
b

{
T̃b j − ρb jψ̃b jI

}
: grad(ub j),

where TF =
∑

aTaF and TS =
∑

aTaS are the peculiar Cauchy stress tensors of the fluid phase

and solid phase as a whole, respectively, while T̃b j = Tb j −
ωb j

ωNk
TNk and ψ̃b j = ψb j − ψNk

represent the relative stress and energy in constituent Cb j (cf. (18, 20)). The term D̃II describes

the exchange of momentum among phases and constituents, and can be written as follows

D̃II = −

[
ρFgrad(ψF) + ρF mF −

p

ρ̂F

grad(ρF)
]
· wFS (5.10)

−
∑

j

∑
b

{
TNkgrad

( ωb j

ωNk

)
+ grad

(
ρb jψ̃b j

)
+ ρb jm̃b j

}
· ub j,

where m̃b j = mb j − mNk denotes the relative production of momentum of constituent Cb j due

to exchange interactions. Finally, the summand D̃III contains all terms related to mass transfer,

growth as well as the non-standard external power, i.e.

D̃III =
∑

aρaS raS

{ |uaF |
2

2 −
|uaS |

2

2 +
|wFS |

2

2 + (GF −GS )
}

(5.11)

+
∑

a[ρaS

g

Ψ
aS
+ρaS γaS (ψaS −GS )]

+Yext : DS K + Zext : DS G +
∑

nR
ext
n DS ζn.
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5.2.2 Constitutive Framework

We consider a simplified constitutive framework in which ψF is a given function of the

composition of FF , and ψS depends on the composition of FS , the elastic part of deformation,

FE , and the remodeling parameters {ζn}
I

n=1, i.e.

ψF = ψF({ωbF}
N−1
b=0 ), ψS = ψS (FK−1G−1, X, {ωb j}

N−1
b=0 , {ζn}

I

n=1). (5.12)

The quantities enlisted among the arguments of the Helmholtz free energy densities defined

in (5.12) belong to the set of the independent constitutive variables. This set contains also the

relative velocities ub j and wFS (which describe mass diffusion phenomena and filtration of the

fluid through the solid phase) and the time derivatives of G, K and ζn in order to account for

mass transfer, growth and reorientation of fibers. On the contrary, the gradients of vS , wFS and

ub j are assumed to be neither independent nor dependent constitutive variables.

With this constitutive framework, we substitute (5.12) into (5.8) in order to obtain a mod-

ified form of dissipation, which will be studied by means of the Coleman-Noll method, i.e.

D̃ = D̃
(1)
I + D̃

(1)
II + D̃

(1)
III ≥ 0. (5.13)

The indices “(1)” have been introduced to highlight that the summands of (5.13) are obtained

by combining D̃I, D̃II and D̃III with the first term on the right-hand-side of (5.8). By defining

the auxiliary quantities

gb j =
∂G j

∂ωb j

, (5.14)

Π = FE
T
(
ρS

∂ψS

∂FE

)
+ ZintGT , (5.15)

∆ = FE
T
(
ρS

∂ψS

∂FE

)
+G−T YintKT GT , (5.16)

Nn = −

(
ρS

∂ψS

∂ζn

)
+ Rint

n , (5.17)

the contributions D̃(1)
I , D̃(1)

II , and D̃
(1)
III can be written as

D̃
(1)
I =

{
−

(
ρS

∂ψS

∂FE

)
F−T

A FT + TS + TF + pI

}
: grad(vS ) (5.18)

+

{
TF + φF pI

}
: grad(wFS )

+
∑

j

∑
b

{
T̃b j + ρb j(gb j − ψ̃b j)I

}
: grad(ub j),
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D̃
(1)
II = −

{
ρF mF − p grad(φF)

}
· wFS (5.19)

−
∑

j

∑
b

{
TNkgrad

( ωb j

ωNk

)
− grad

[
ρb j(gb j − ψ̃b j)

]

+ρb jm̃b j + ρb jgrad(gb j)
}
· ub j,

D̃
(1)
III = Π : Λ + ∆ : V +

∑
nNnDS ζn (5.20)

+
∑

aρaS raS

{
|uaF |

2

2 −
|uaS |

2

2

}
+

∑
bρbS rbS (gbF − gbS )

+ρS rS

{(
GF −

∑
bωbFgbF

)
−

(
GS −

∑
bωbS gbS

)
+
|wFS |

2

2

}

−
∑

bρbS γbS gbS − ρS γS

(
GS −

∑
bωbS gbS

)

+
∑

a

{
ρaS

g

Ψ
aS
+ρaS γaSψaS

}
≥ 0.

5.2.3 Bowen’s chemical potential and standard results

Bowen (18, 20, 92) introduced the tensor field νa j = ψa jI −
1
ρa j

Ta j and called it tensorial

chemical potential. This tensor has the property

ν̃b j := νb j − νNk = ψ̃b jI −
1
ρb j

T̃b j, (5.21)

which allows for writing

∑
j

∑
b

{
T̃b j + ρb j(gb j − ψ̃b j)I

}
: grad(ub j) (5.22)

=
∑

j

∑
b

{
ρb j(gb jI − ν̃b j)

}
: grad(ub j).

If grad(ub j) is no constitutive variable, equality (5.22) implies that gb jI = ν̃b j for all values of

b and j. Analogously, if neither grad(vS ) nor grad(wFS ) is a constitutive variable, we conclude

that

TS + TF = −pI +

(
ρS

∂ψS

∂FE

)
F−T

A FT , TF = −φF pI. (5.23)

In order to look for further implications, let us start with the fluid phase. For this phase, the

relation TF =
∑

a TaF is valid. Thus, using Bowen’s definition, we get

−φF pI = ρFψFI −
∑

bρbF ν̃bF − ρFνNF . (5.24)

Moreover, since ν̃bF = gbFI, we conclude that νNF is an isotropic tensor, indeed:

νNF = GFI −
∑

bωbF ν̃bF =
(
GF −

∑
bωbFgbF

)
I. (5.25)
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Finally, further use of Bowen’s definition leads to conclude that νbF is also isotropic, indeed

νbF = ν̃bF + νNF = νNF + gbFI =
(
GF −

∑N−1
d=0 ωdFgdF

)
I + gbFI. (5.26)

It also follows that νaF = µaFI, where µaF is said to be the chemical potential of the constituent

CaF . Consequently, all tensors TaF are isotropic. Let us now look at the solid phase. Since

TS =
∑

aTaS = −φS pI + ρS

∂ψS

∂FE

F−T
A FT , (5.27)

use of Bowen’s definition yields

νNS = (GS −
∑N−1

b=0 ωbS gbS

)
I −

∂ψS

∂FE

F−T
A FT , (5.28)

νbS = (GS −
∑N−1

d=0 ωdsgds

)
I + gbS I −

∂ψS

∂FE

F−T
A FT . (5.29)

Since all νaS have the same non-spherical part, we rewrite them as

νaS = µaS I −
∂ψS

∂FE

F−T
A FT , (5.30)

where µaS is the chemical potential of CaS . Moreover, we obtain ν̃b j = µ̃b jI = gb jI, with

µ̃b j := µb j − µNk. This means that gb j equals the relative chemical potential of Cb j. Chemical

potentials are required to satisfy the relation G j =
∑

aωa jµa j. Based on the results above, and

assuming negligibility of the terms containing the square of relative velocities, we obtain the

following form of the residual dissipation

D̃res = −ρF qF · wFS −
∑

j

∑
bρb jqb j · ub j (5.31)

+Π : Λ + ∆ : V +
∑

nNnDS ζn

+
∑

aρaS raS (µaF − µaS )

+
∑

aρaS γaS (AaS + ψaS − µaS ) ≥ 0,

where we have set
g

Ψ
aS
= γaSAaS (AaS is an energy supply of constituent Ca j, which vanishes if

there is no growth), and introduced the dissipative forces ρF qF and ρb jqb j, i.e.

ρF qF := ρF mF − p grad(φF), (5.32)

ρb jqb j := TNkgrad
( ωb j

ωNk

)
− grad

[
ρb j(µ̃b j − ψ̃b j)

]

+ρb jm̃b j + ρb jgrad(µ̃b j).
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5.3 Study of the residual dissipation inequality

Equation (5.31) collects all dissipative processes taken into account in the formulated prob-

lem. The first two terms on the right-hand side represent the dissipation due to fluid filtration

through the porous medium and diffusion of species, respectively. Analogously to ρF qF and

ρb jqb j, the fields Π, ∆ and Nn are generalized forces conjugate to the generalized velocities

Λ, V and DS ζn, which describe growth, mass transfer and reorientation of fibers. The last two

terms on the right-hand side of (5.31) have an analogous structure: the rates of mass produc-

tion (or depletion) raS and γaS are associated with the force-like quantities ρaS (µaF − µaS ) and

ρaS (AaS + ψaS − µaS ).

If the external actions Zext and Yext were zero, their internal counterparts Zint and Yint

would vanish too because of the field equations :

Yint = Yext, Zint = Zext, R
int
n = R

ext
n (5.33)

moreover Π and ∆ would be equal to Mandel-like stress tensors, as prescribed by (5.15) and

(5.16) (6, 95).

Recently, an attempt to study the dissipation inequality (5.31) by means of the Pericak-

Spektor&Spector decomposition (76) was illustrated in (2). In this study, tensors Λ and V

(denoted Lg and Lt with the formalism of (2)) were related with Π and ∆ (denoted by Hg and

Ht in (2)). In the present paper, however, we follow a different path. We assume that ∆ and Π

have the same symmetry as the Mandel stress, and look for thermodynamic restrictions only

for the tensors sym(CΛ) and sym(CV). A motivation for following this path is outlined in (6).

Assuming ∆ and Π to have the same symmetry as the Mandel stress means requiring

C−1
Π = ΠT C−1 and C−1

∆ = ∆T C−1, where C = FT
E

F
E

. If this is the case, the product

Π : Λ can be rewritten as C−1
Π : sym(CΛ). Therefore, by using the abbreviations Π̄ = C−1

Π,

and Λ̄ = sym(CΛ), we conclude that Π : Λ = Π̄ : Λ̄. Furthermore, we can write the following

relation

Π : Λ = Π̄ : Λ̄ = 1
3 tr(Π)tr(Λ) +Π′ : Λ′, (5.34)

where we have set Π′ = C−1
Π
′ and Λ′ = sym(CΛ′), with Π′ = dev(Π) and Λ′ = dev(Λ).

Analogous considerations hold true also for the product ∆ : V.
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5.3.1 Force-like quantities and their conjugate generalized velocities

The expression of residual dissipation can be written as the sum of terms, each of which is

the scalar product of a force-like quantity multiplied by its conjugate generalized velocity. The

purpose of this section is to identify the force-like quantities, their conjugate velocities, and

discuss how dissipation is studied.

By using (5.34) and the constraints ρS tr(Λ) = ρS γS =
∑

aρaS γaS and ρS tr(V) = ρS rS =
∑

aρaS raS , we can rewrite the residual dissipation as

Dres = −ρF qF · wFS −
∑

j

∑
bρb jqb j · ub j +

∑
nNnDS ζn (5.35)

+
∑

aρaS γaS (AaS + ψaS − µaS +
tr(Π)
3ρS

) +Π′ : Λ′

+
∑

aρaS raS (µaF − µaS +
tr(∆)
3ρS

) + ∆′ : V′ ≥ 0.

According to the study of dissipation provided by (78), we can define force-like quantities and

their conjugate generalized velocities. The force-like quantities are given by

Υ = {−ρF qF ,−ρb jqb j,Nn, yaS ,Π′, saS ,∆′}, (5.36)

where

yaS = ρaS (AaS + ψaS − µaS +
tr(Π)
3ρS

), (5.37)

saS = ρaS (µaF − µaS +
tr(∆)
3ρS

), (5.38)

whereas the conjugate velocities are

X = {wFS ,ub j,DS ζn, γaS ,Λ′, raS ,V′}. (5.39)

The expression of residual dissipation can thus be put in the compact form Dres = Υ · X ≥ 0.

Depending on the phenomena that have to be characterized, there are several possible methods

to explore this inequality. A discussion on this subject can be found, for example, in (78). If

coupled phenomena are excluded, the simplest approach to the dissipation inequality relies on

the fact that requiring each summand of (5.35) to be non-negative is sufficient to ensure that

Dres is non-negative too.

We remark that, at this stage, excluding coupled phenomena from our treatment of the dissi-

pation inequality is due to our ignorance about the physical meaning and modeling assumptions

necessary for discussing couplings among completely different thermodynamic processes. Un-

like thermodiffusion (a phenomenon leading to the Soret and Dufour effects (99, 113, 131), in
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which the diffusion of chemical species in dilute solutions couples with diffusion of heat), a

field in which an extensive literature is available, there is –to our knowledge– no measurement

of the coupling between, e.g., fluid motion and growth, or diffusion of species and reorientation

of fibers. We cannot claim from the outset that such couplings do not exist, but we should be

cautious in establishing relations just on the basis of formal analogies with different, though to

a certain extent similarly modeled, physical phenomena. There are also some technical issues

to be considered. Indeed, the study of coupling effects is based, in the case of thermodiffusion,

on the assumption that Onsager’s relations are valid. This is easy when the dissipation inequal-

ity has a “simple” form, which, in turn, might be too restrictive for the phenomena presented

in our manuscript. For these reasons, we prefer to consider a simpler approach, in which no

coupling is considered, and each summand of the dissipation inequality is viewed as an entity

on its own, which should be non-negative.

5.3.2 Reorientation of fibers

The purpose of this section is to determine differential equations that define the evolution

of the variables {ζ}I
n=1 (cf. (5.41)). Our result is reported in (5.48), and consists in identifying

the variables {ζ}I
n=1 with the parameters that specify the probability density distribution with

which the fibers are distribution in the solid phase.

Let us now consider the term describing the reorientation of fibers, i.e.
∑

nNnDS ζn, and

assume that, for each n, the product NnDS ζn is non-negative. Several possible hypotheses may

be advocated in order to extract information from this requirement. In any case, the inequality

NnDS ζn ≥ 0 should be studied jointly with the “non-standard” equation of motion (5.33)3,

which, by virtue of (5.17), can be now reformulated as Nn = −
(
ρS

∂ψS

∂ζn

)
+Rext

n . If we restrict our

investigation to the case in which the extra-force Nn is obtainable from a constitutive relation

involving DS ζn, and in addition require this relation to be linear, we arrive at

Nn =
c

Nn(. . . ,DS ζn) =
c

N
0
n(. . .)DS ζn (5.40)

where the superimposed “c” stands for “constitutive”, and the dots mean that
c

Nn and
c

N0
n may

depend on all constitutive variables that need not vanish when dissipation is zero. Note that
c

N0
n(. . .) has to be positive. By plugging (5.40) into the the non-standard equation of motion

(5.33)3, written with Nn =
c

Nn, we find

c

N
0
n(. . .)DS ζn = −

(
ρS

∂ψS

∂ζn

)
+ Rext

n . (5.41)
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This result slightly generalizes the presentation of the theory proposed by Olsson and Klarbring

(126) for fiber reorientation in arteries. Their equation is retrieved in the monophasic case by

letting
c

N0
n reduce to a positive constant, viewing the variables ζn as the angles that identify

the direction of fibers in space, and taking the Helmholtz free energy function ψS as in the

Holzapfel-Gasser-Ogden model (117), i.e. as the superposition of an isotropic contribution ψm

due to the matrix, and an anisotropic contribution ψ f due to the fibers, where

ψm = k0(I1 − 3), ψ f =
k1

2k2

[
ek2(I4−1)2

+ ek2(I6−1)2
− 2

]
, (5.42)

where k0, k1 and k2 are material parameters, I1 = tr(C), I4 = tr(CA1) and I6 = tr(CA2)

are invariants, with C = FT
E

F
E

being the Cauchy-Green stretch tensor in the intermediate

configuration, and A1 and A2 the fabric tensors of two families of fibers. In (5.42), the free

energy of the matrix and fibers, ψm and ψ f , are assumed to provide, respectively, the isotropic

and anisotropic contributions to the overall energy. As noticed for Darcy’s and Fick’s laws, the

path followed here for modeling the reorientation of fibers is by no means the most general.

Nevertheless, it is proposed only because it is believed to have some possible reliability in

biological context (for example, in modeling arteries), where the external force Rext
n determines

a target direction along which fibers align in response to mechanical stress (115, 126).

The model discussed above considers a deterministic distribution of fibers. More generally,

however, fibers are oriented according to some normalized probability distribution

℘ : S2
X → R

+
0 ,

∫

S2
X

℘(M)dS = 1, (5.43)

which defines the probability to find, at a given material point X, a fiber aligned along the

direction M. Here, the unit vector M and the unit sphere S2
X

are thought to be associated with

the intermediate configuration of the solid phase. By extending the superposition method (117)

to a continuous infinity of families of fibers (102)(104)(107), it is possible to construct the

Helmholtz free energy density of the solid phase on the basis of (5.43), i.e.

ρSψS (C, {ζn}
I

n=1) = ρmψm(C) + ρ fψ f (C, {ζn}
I

n=1), (5.44)

with

ψ f (C, {ζn}
I

n=1) =

∫

S2
X

℘(M, {ζn}
I

n=1)Ψ f (C,A(M))dS . (5.45)

According to (5.45), ψ f results from the superposition of the continuous infinity of families of

fibers, each with energyΨ f depending on the structure tensor A = M⊗M, and weighted by the
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probability density distribution ℘, whose dependence on the parameters (ζn)I
n=1 is now written

explicitly. In the case of a transversely isotropic material, ℘ can be taken as (102, 103)

℘(ϑ, {ζn}
I

n=1) =
g(ϑ, {ζn}

I

n=1)
∫ 2π

0

[ ∫ π/2
0

g(ϑ′, {ζn}
I

n=1) sin(ϑ′)dϑ′
]
dϕ′

, (5.46)

where ϑ and ϕ are the colatitude and longitude (with respect to the axis of transverse isotropy),

respectively, and g is a non-normalized probability distribution (103). If, for example, the

distribution g is assumed to be gaussian, i.e.

g(ϑ,Θ, λ) = exp
(
−

(ϑ − Θ)2

2λ2

)
, (5.47)

the set of parameters describing fiber reorientation comprises two elements: the mean angle

ζ1 = Θ and the variance ζ2 = λ. Furthermore, if we assume that the variance is constant,

substitution of (5.43) and (5.47) in (5.41) leads to the following model of fiber reorientation

c

N
0
Θ

(. . .)DSΘ = −ρ f

∂ψ f

∂Θ
+ Rext

Θ
(5.48)

= −ρ f

∂

∂Θ

∫

S2
X

℘(M,Θ, λ)Ψ f (C,A(M))dS + Rext
Θ
.

This means that the properties of the material depend on the evolution of Θ. Of course, a

limitation of the proposed approach is that the probability distribution ℘ is regarded as given

and, above all, it is presumed that its functional form does not vary. A further generalization of

this model is still subject of our current investigation. Moreover, an exhaustive formulation of

the theory of remodeling for statistical composites is for us “work in progress” at the moment.

We remark that (5.48) has been obtained under the strong assumption that the dissipa-

tion inequality is satisfied independently for each remodeling parameter. This does not mean,

however, that there exists no coupling among different remodeling parameters. Indeed, each

of these parameters has to be determined by solving an equation of the type (5.33)3. The set

formed by all these equations is coupled because each coefficient
c

N0
n , the energy ψS and the ex-

ternal force Rext
n may depend, in general, on the whole list of remodeling parameters. An even

more general approach could have been obtained by relaxing the hypothesis, leading to (5.41)

and to (5.48), that each term of the sum
∑

n NnDS ζn is non-negative. Indeed, one may need the

less restrictive assumption that each dissipative force Nn depends (linearly) on the whole set

of generalized velocities {DS ζm}
I

m=1. This can be accounted for by admitting the existence of
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coupling coefficients
c

N
0
nm, such that (6.7) becomes

c

N n(. . . , {DS ζm}
I

m=1) =
∑

m

c

N
0
nm(. . .)DS ζm.

Substituting this relation into the dissipation inequality (5.31) yields

∑

nm

c

N
0
nm(. . .)DS ζmDS ζn ≥ 0, (5.49)

which is respected by requiring that the coefficients
c

N
0
nm(. . .) form a symmetric, positive semi-

definite matrix. Consequently, Equation (5.41) should be replaced by the more general one
∑

m

c

N
0
nm(. . .)DS ζm = −(ρS

∂ψS

∂ζn
) + Rext

n , which constitutes a system of differential equations

coupled in the generalized velocities {DS ζn}
I

n=1 as well as in the unknown functions {ζn}
I

n=1.

Of course, also in this case, information about the non-diagonal coefficients
c

N
0
nm (with n , m)

should be supplied. In our manuscript, we prefer however to follow a less general approach.

5.3.3 Mass transfer and growth

The scope of this section is to determine expressions for the transformed rates V̄ and Λ̄ that

are in harmony with the non-standard dynamics and the dissipation inequality. Our results are

reported in (5.53) and (5.60).

Let us consider mass transfer. We require the products raS saS and ∆′ : V′ to be non-

negative independently on one another. The inequalities raS saS ≥ 0 and ∆′ : V′ ≥ 0 have to

be studied consistently with the equation of motion (5.33)1 for the “non-standard” degree of

freedom K, which, in view of (5.16), can be now rewritten as

∆ = FT
E

(
ρS

∂ψS

∂FE

)
+G−T YextKT GT . (5.50)

Since Yext, an external force, is given from the outset and the first term on the right-hand side

of (5.50) is provided by a constitutive law, the study of the dissipation inequality has to supply

information about ∆. In order to extract this information, we classify saS = s0
aS
+ ρaS

tr(∆)
3ρS

, with

s0
aS
= ρaS (µaF − µaS ), and ∆′ as dissipative force-like fields, which should be related to their

conjugate velocity-like quantities raS and V′. To this end, we follow here a much less general

approach: we prescribe saS raS and ∆′ : V′ to be quadratic forms of raS and V′, respectively,

and determine saS and ∆′ as constitutive functions of raS and V′. Furthermore, by requiring

these functions to be invertible, we express raS and V′ as functions of saS and ∆′, respectively.

The first relation is raS = RaS saS , with non-negative RaS , for all a. Relations of this type

have been proposed in (18, 130). As above, each RaS is allowed to depend on all constitutive

variables that need not vanish when dissipation is zero. By multiplying by ρaS , adding over all
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a, and bearing in mind that
∑

aρaS raS = ρS rS and rS = tr(V) (cf. tr(Λ) = γs, tr(V) = rs), we

obtain

tr(V) =
∑

a
ρaS RaS

ρS
saS =

∑
a
ρaS RaS

ρS

[
s0

aS + ρaS
tr(∆)
3ρS

]
. (5.51)

Analogously, studying the product ∆′ : V′ in (5.35), we postulate that V′ is constitutively

determined, and require it to be expressed through the relation

V′ = T̂ : ∆′, (5.52)

where T̂ is a positive-definite, full-symmetric fourth-order tensor, which is constructed in such

a way to fulfill the condition tr(V′) = 0 or, equivalently, tr[C−1(T̂ : ∆′)] = 0. Tensor T̂ may

depend on all variables that are not necessarily zero for vanishing dissipation. We can now

determine V̄ = sym(CV) by using the results (5.51) and (5.52), i.e.

V̄ =
tr(V)

3 C + sym(CV′) (5.53)

=
1

3

{∑
a
ρaS RaS

ρS

[
s0

aS + ρaS
tr(∆)
3ρS

]}
C + T̂ : (C−1

∆
′).

Finally, since V = G(DS K)K−1G−1, we obtain

sym[CG(DS K)K−1G−1] (5.54)

=
1

3

{∑
a
ρaS RaS

ρS

[
s0

aS + ρaS
tr(∆)
3ρS

]}
C + T̂ : (C−1

∆
′).

We conclude that the evolution of K is coupled with G, and should comply with (5.54). Another

consideration concerns the splitting of V into a spherical and non-spherical part. Only the

spherical one, proportional to rS , determines the variation of mass of the solid phase in response

to exchange interactions with the fluid phase. The non-spherical part of V, on the other hand, is

responsible for remodeling the internal structure of the solid. However, let us now set ∆′ = 0.

In Mixture Theory (cf., for example, (18)), it is said that the mass exchange between the phases

of a multi-constituent mixture ceases when the Gibbesean condition holds true, i.e. when

µaF = µaS , for all a. Our model is able to retrieve the Gibbsean result when the additional

requirement tr(∆) = 0 is satisfied, i.e. when the spherical part of the dissipative contribution of

the field YextKT is zero. However, when this is not the case, our model proposes the weaker

condition s0
aS
= 0 or, equivalently

µaF − µaS +
tr(∆)
3ρS
= 0, ∀a, (5.55)
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which means that, in the non-dissipative situation, the spherical part of ∆ opens a “gap” among

chemical potentials. As remarked in (2), if the external force Yext were zero (which implies

that Yint = 0 by virtue of (5.33)1), ∆ would equal the Mandel-like stress tensor FT
E

(
ρS

∂ψS

∂FE

)
, and

(5.55) would become

µaF − µaS +
1

3ρS
tr
[
FT

E

(
ρS

∂ψS

∂FE

)]
= 0, ∀a. (5.56)

Since the Mandel stress needs not vanish when the dissipation is zero, our model would be

unable to reproduce the Gibbsean result if the force Yext were zero from the outset.

Also for growth, we require the products yaS γaS and Π′ : Λ′ to be non-negative indepen-

dently on one another. Again, the inequalities γaS yaS ≥ 0 and Π′ : Λ′ ≥ 0 have to be studied

consistently with the equation of motion (5.33)2 for the “non-standard” degree of freedom G,

which, in view of (5.15), can be now rewritten as

Π = FT
E

(
ρS

∂ψS

∂FE

)
+ ZextGT . (5.57)

As for mass transfer, Zext is regarded as known from the outset, and the dissipation inequality

is investigated for extracting information about Π. In this case, the dissipative force-like fields

are Π′ and yaS = y0
aS
+ ρaS

tr(Π)
3ρS

, with y0
aS
= ρaS (AaS + ψaS − µaS ). Here, the term AaS is

regarded as given, while ψaS and µaS are determined constitutively. By following the same

reasoning done for studying mass transfer, we express γaS and Λ′ as functions of yaS and Π′,

respectively. The first relation is γaS = ΓaS yaS , with non-negative ΓaS , for all a. As above, each

ΓaS is allowed to depend on all constitutive variables that need not vanish when dissipation is

zero. By multiplying by ρaS , adding over all a, and bearing in mind that
∑

aρaS γaS = ρS γS and

γS = tr(Λ) (cf. tr(Λ) = γs, tr(V) = rs), we obtain

tr(Λ) =
∑

a
ρaS ΓaS

ρS
yaS =

∑
a
ρaS ΓaS

ρS

[
y0

aS + ρaS
tr(Π)
3ρS

]
. (5.58)

Analogously, studying the product Π′ : Λ′ in (5.35), we postulate that Λ is constitutively

determined, and require it to be expressed through the relation

Λ′ = Ĝ : Π′, (5.59)

where Ĝ is a positive-definite, full-symmetric fourth-order tensor such that tr(Λ′) = 0 or, equiv-

alently, tr[C−1(Ĝ : Π′)] = 0. On account of (5.58) and (5.59), tensor Λ̄ = sym(CΛ) reads

Λ̄ =
tr(Λ)

3 C + sym(CΛ′) (5.60)

=
1

3

{∑
a
ρaS ΓaS

ρS

[
y0

aS + ρaS
tr(Π)
3ρS

]}
C + Ĝ : Π′.
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We remark that, since growth should be made possible by the availability of nutrients (which

can be identified with some of the constituents of the phases), it has been proposed that growth

occurs only when the concentration of nutrients exceeds a given threshold (85, 109). This is

modeled by assuming that the coefficients ΓaS and Ĝ contain a function of the type

f (ωaS ) = −
ωaS − ωa0

1 − ωa0
H(ωaS − ωa0), (5.61)

where ωa0 is a threshold value, and H( · ) is the Heaviside function.
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Chapter 6

Growth and Remodeling of a Soft

Tissue in the presence of Chemical

Agents

In this Chapter we adapt the model for growth and remodeling in elastic arteries put for-

ward by Olsson and Klarbring (126) to the case of a multi-constituent solid in the presence of

chemical agents.

6.1 Equations to be solved

It is necessary to solve the following equations, which are written in material form:

1. Equations of motion

Div(P) = 0, (6.1)

2. Mass balance of a chemical agent

Div(Jg̺nF−1DF−T Grad(ω)) − aJg̺nω = 0, r > 0, (6.2)

3. Evolution equation of the growth tensor Fg

Ḟg = LgFg. (6.3)

In order to simplify the problem, we shall assume:

83
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• cylindrical symmetry and F = Diag
{
ϕ′(R),R−1ϕ(R), 1

}
,

• that the growth tensor is diagonal Fg = Diag{γ1, γ2, γ3}.

Moreover, we shall assume that the material is elastically incompressible, so that the admissible

deformations are those which satisfy the contraint

det(F) = det(Fg) ⇒ ϕ′(R)
ϕ(R)

R
= γ(R) ⇒ ϕ′(R) =

γ(R)R

ϕ(R)
, (6.4)

where γ := Jg = det(Fg). By integrating this constraint it is possible to find the following

closed form for the deformation

r = ϕ(t,R) =
[ ∫ R

R0

2Aγ(A)dA + K(t)
]1/2

. (6.5)

6.2 Stress

The energy of the incompressible material, measured per unit volume of the intermediate

configuration, is given by

Wn(Ce) =
µ

2
{tr(Ce) − 3}. (6.6)

Therefore, the first Piola-Kirchhoff stress tensor is determined by the relation

P = JgPn(Fg)−T = JgFeSn(Fg)−T (6.7)

= −Jg pF−T + JgF(Fg)−1µ
{
G−1 − 1

3 tr(Ce)Be

}
(Fg)−T .

In order to obtain this expression the following steps have been employed: decomposition of

the deformation gradient tensor F = FeFg, the fact that the metric tensor G remains unchanged

when passing from the reference to the intermediate configuration (this saves a lot of work).

The tensor P has to satisfy the following equation:

∂PrR

∂R
+

PrR − PϑΘ

R
= 0. (6.8)
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6.3 Relations and known parameters

In order to solve the problem, it is necessary to account for the following relations

P = JgPn(Fg)−T = JgFeSn(Fg)−T (6.9)

= −Jg pg−1F−T + JgF(Fg)−1µ
{
G−1 − 1

3 tr(Ce)Be

}
(Fg)−T , Fe = F(Fg)−1,

Wn =
µ

2
{tr[Ce] − 3}, (6.10)

Jg = det(Fg), (6.11)

Lg =
3ℓg + 2mg

3

1

3
tr
[
CeSn + Yn

]
I + 2mgDev

(
CeSn + Yn

)
. (6.12)

Moreover, the following parameters are assumed to be given from the outset:

P = {̺n, a, µ, ℓg,mg}. (6.13)

The tensor Yn is assumed to be given too (although it needs not be a constant). It might turn

out to be necessary to play with the signs of the coefficients of this tensor in order to obtain

physical results.

It is also necessary to impose boundary conditions for ϕ (actually for the pressure, in

the case of elastically incompressible material) and for ω as well as initial conditions for

{γ1, γ2, γ3}.

6.4 Dissipation

The dissipation measured per unit volume of the intermediate configuration reads

Dn =

[1

2
Sn −

∂Wn

∂Ce

]
: Ċe + (CeSn + Yn) : Lg ≥ 0 (6.14)

Under the assumption of Neo-Hookean material,

Wn =
µ

2

{
tr(Ce) − 3

}
, (6.15)

we obtain, as consequence of the incompressibility constraint, the following expression for the

second Piola-Kirchhoff stress tensor:

Sn = −pBe + µ
{
G−1 − 1

3 tr(Ce)Be

}
, (6.16)

where Be = (Ce)−1. Thus, the residual dissipation becomes

Dn = (CeSn + Yn) : Lg ≥ 0. (6.17)
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From (6.16) it follows that the first Piola-Kirchhoff stress tensor, when measured with respect

to the intermediate (natural) configuration, is given by Pn = FeSn, and that P becomes

P = JgPn(Fg)−T = JgFeSn(Fg)−T (6.18)

= −Jg pg−1F−T + JgF(Fg)−1µ
{
G−1 − 1

3 tr(Ce)Be

}
(Fg)−T .

The quantity tr(Ce) is given by

tr(Ce) =
γ2

2γ
2
3R2

r2
+

r2

γ2
2R2
+

1

γ2
3

=
γ4

2γ
4
3R4 + γ2

3r4 + γ2
2r2R2

r2R2γ2
2γ

2
3

(6.19)

Relevant components of P:

PrR = −
r

R
p + µ

2γ4
2γ

4
3R5 − γ2

3r4R − γ2
2r2R3

3rR4γ2
2γ

2
3

, (6.20)

PϑΘ = −γ
R

r
p + µγ

2γ2
3r4 − γ4

2γ
4
3R4 − γ2

2r2R2

3r3Rγ2
2γ

2
3

. (6.21)

Diffusion equation:

∂

∂R

{
D(t,R)[ϕ(t,R)]2

γ(t,R)R

∂ω

∂R
(t,R)

}
− aRγ(t,R)ω(t,R) = 0. (6.22)

Pressure and deformed radius

p(R) = −
R

ϕ(R)
ℓ(R) + h(R), (6.23)

ϕ(R) =

√∫ R

Rin

2Aγ(A)dA + K, (6.24)

γ(R) := γ1(R)γ2(R)γ3(R), (6.25)

ℓ(R) := e
−

∫ R

Rin
q(A)dA

∫ R

Rin

Q(A)h(A)e
∫ A

Rin
q(B)dB

dA, (6.26)

q(R) :=
[ϕ(R)]2 − γ(R)R2

R[ϕ(R)]2
, (6.27)

Q(R) := q(R)
ϕ(R)

R
=

[ϕ(R)]2 − γ(R)R2

R2ϕ(R)
, (6.28)
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h(R) :=
[γ(R)]2R2

[γ1(R)]2[ϕ(R)]2
S RR

d (R) −
R

ϕ(R)

[
PrR

in + η(R)
]
, (6.29)

η(R) :=

∫ R

Rin

{
γ(A)ϕ(A)

[γ2(A)]2A2
SΘΘd (A) −

[γ(A)]2

[γ1(A)]2ϕ(A)
S RR

d (A)
}
dA, (6.30)

PrR
in := −λin

ϕ(Rin)

Rin

, (6.31)

S RR
d (R) := µ

{
1 −Ce(R)

[γ1(R)]2[ϕ(R)]2

[γ(R)]2R2

}
, (6.32)

SΘΘd (R) := µ

{
1 −Ce(R)

[γ2(R)]2R2

[ϕ(R)]2

}
, (6.33)

Ce(R) :=
[γ2(R)]4[γ3(R)]4R4 + [γ3(R)]2[ϕ(R)]4 + [γ2(R)]2R2[ϕ(R)]2

3[γ2(R)]2[γ3(R)]2R2[ϕ(R)]2
, (6.34)

where Ce ≡
1
3 tr(Ce). The functional form of p and ϕ is specified by (6.23) and (6.24), respec-

tively. However, these functions are defined up the unknown K, which has to be determined by

solving the following auxiliary problem:

λin =
Rin

ϕ(Rin)

∫ Rout

Rin

Q(R)p(R)dR +
Rin

ϕ(Rin)
η(Rout). (6.35)

Equation (6.1) determines K.

Parameters:

{Rin = 1 mm,Rout = 2 mm, λin = 10kPa = 10·10−3 N ·mm−2, µ = 36 kPa = 36·10−3 N·mm−2}.

Remark: Every quantity featuring in these equations (except, of course, for the underformed

radial coordinate R) does depend on time. The dependence has been written explicitly just for

ease of notation.

Concentration

∂

∂R

[
R∆(R)

∂ω

∂R
(R)

]
− aRγ(R)ω(R) = 0, (6.36)

∆(R) =
[ϕ(R)]2

R2

D(R)

γ(R)
, (6.37)

D(R) = D0. (6.38)

Boundary conditions: ω(Rin) = ωin = 0.001; ω(Rout) = ωout = 0.002.
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Parameters: {D0 = 10−9 m2s−1, a = 10−3 s−1}.

Remark: Every quantity featuring in these equations (except, of course, for the underformed

radial coordinate R) does depend on time. The dependence has been written explicitly just for

ease of notation.

Growth tensor

γ̇1(t,R) = LgRR(t,R)γ1(t,R), (6.39)

γ̇2(t,R) = LgΘΘ(t,R)γ2(t,R), (6.40)

γ̇3(t,R) = LgZZ(t,R)γ3(t,R), (6.41)

LgRR(t,R) = kgΩ(t,R) + 2mgZRR(t,R), (6.42)

LgΘΘ(t,R) = kgΩ(t,R) + 2mgZΘΘ(t,R), (6.43)

LgZZ(t,R) = kgΩ(t,R) + 2mgZZZ(t,R), (6.44)

Ω(t,R) =
MRR(t,R) + MΘΘ(t,R) + MZZ(t,R)

3
, (6.45)

ZRR(t,R) =
2MRR(t,R) − MΘΘ(t,R) − MZZ(t,R)

3
, (6.46)

ZΘΘ(t,R) =
−MRR(t,R) + 2MΘΘ(t,R) − MZZ(t,R)

3
, (6.47)

ZZZ(t,R) =
−MRR(t,R) − MΘΘ(t,R) + 2MZZ(t,R)

3
, (6.48)

MRR(t,R) = −p(t,R) +
[γ(t,R)]2R2

[γ1(t,R)]2[ϕ(t,R)]2
S RR

d (t,R) + YRR
n (t,R), (6.49)

MΘΘ(t,R) = −p(t,R) +
[ϕ(t,R)]2

[γ2(t,R)]2R2
SΘΘd (t,R) + YΘΘn (t,R), (6.50)

MZZ(t,R) = −p(t,R) +
1

[γ3(t,R)]2
S ZZ

d (t,R) + YZZ
n (t,R). (6.51)

Initial conditions:

γ1(0,R) = γ10(R) = 1.5, γ2(0,R) = γ20(R) = 1.2, γ3(0,R) = γ30(R) = 1. (6.52)

Parameters: {kg = 0.0036 s−1N−1mm2,mg = 0.0024 s−1N−1mm2}.
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Figure 6.2: γ1 as function of R -
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Figure 6.3: evolution of γ1 in 20 steps of time -

90



6.4 Dissipation

2 4 6 8 10

R

1

2

3

4

5

Γ2HRL

Figure 6.4: γ2 as function of R -

91



6. GROWTH AND REMODELING OF A SOFT TISSUE IN THE PRESENCE OF

CHEMICAL AGENTS

5 10 15 20

time

1

2

3

4

5

Γ2HRL

Figure 6.5: evolution of γ2 in 20 steps of time -
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Figure 6.7: evolution of γ3 in 20 steps of time -
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Figure 6.8: γ as function of R -

94



6.4 Dissipation

5 10 15 20

time

0.5

1.0

1.5

2.0

2.5

3.0

ΓHRL

Figure 6.9: evolution of γ in 20 steps of time -

95



6. GROWTH AND REMODELING OF A SOFT TISSUE IN THE PRESENCE OF

CHEMICAL AGENTS

96



References

[1] Grillo A., 2005. PhD Thesis - "Rottura di Simmetrie nella

Fisica dei Continui" Catania , XVIII Ciclo

[2] Grillo A., Wittum G., Growth and Mass Transfer in

Multi-Constituent Biological Materials Am. Inst. Phys.

CP1281 (2010) 355–358. 1, 60, 67, 68, 73, 80

[3] Taber L. A., 1995. Biomechanics of growth, remodelling

and morphogenesis. Appl. Mech. Rev., Vol. 48, 487-545.

42

[4] Skalak R., 1981. Growth as a finite displacement field.

In: Carlsson, D. E., Schield, R. T. (Eds), Iutam Sympo-

sium Finite Elasticity. Martinus Nijhoff, The Hauge, pp.

347–335.

[5] Rodriguez E .K., Hoger A., McCullogh A.D., 1994.

Stress-dependent finite growth in soft elastic tissues. J.

Biomech., Vol. 27, 455–467. 48

[6] Epstein M. and Maugin G. A., 2000. Thermomechanics

of volumetric growth in uniform bodies, Int. J. Plast.,

Vol. 16, pp. 951–978. 68, 73
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[37] Mićunović, M. (1974). A geometrical treatment of ther-

moelasticity of simple inhomogeneous bodies : I - ge-

ometric and kinematic relations, Bull. Acad. Polon.

Sci.,Ser. Sci. Techn., 22/11, pp. 579–588.

[38] Markov, K.Z., (2001) Justification of an effective field

method in elasto-statics of heterogeneous solids J. Mech.

Phys. Solids, 49, 2621-2634.

[39] Kunin, I. A., (1983) Elastic Media with Microstructure,

Berlin: Springer Series in Solid State Sciences.

[40] Quiligotti S. 2002. On bulk growth mechanics of solid-

fluid mixtures: kinematics and invariance requirements,

Theoret. Appl. Mech., 28-29, pp. 277-288. 49

[41] Bowen R. M., 1976. Theory of Mixtures, In: A.C. Erin-

gen (ed.), Continuum Physics, Vol. 3, Academic Press,

New York, pp.2-127

[42] Bowen R. M. and Wiese J. C. 1969. Diffusion in mix-

tures of elastic bodies, Int. J. Engng. Sci. 7, 697–735

[43] Eshelby J.D., 1957. Proc. R. Soc. London. Ser. A., Vol.

241, pp. 477; 42

[44] Walpole L.J., 1969. J. Mech. Phys. Solids, Vol. 17, pp.

235;

[45] Weng G.J, 1990 Int. J. Engng. Sci., Vol. 28, pp. 1111;

42

[46] Chadwick P., 1976. Continuum Mechanics, Concise

Theory and Problems , Dover Publications. Inc. Mine-

ola; 58

[47] Holzapfel G.A., Gasser T.C., and Ogden R.W., 2000.

Journal of Elasticity, Vol. 61, pp. 1–48;

[48] Menzel A., 2005. Biomechan. Model. Mechanobiol.,

Vol. 3, pp.147–171;

[49] Menzel A., 2007. Biomechan. Model. Mechanobiol.,

Vol. 6, pp. 303–320;

[50] Federico S., Grillo A., Herzog W., Giaquinta G., and

Imatani S., 2007. Key Engineering Materials, pp. 340–

341, and pp. 137–142;

[51] Federico S., Grillo A. and Wittum G. Considerations on

incompressibility in linear elasticity. Nuovo Cimento C,

32(1), 81–87 (2009). 63

[52] Epstein M. and Maugin G.A., 2000. Int. J. Plast., Vol.

16, pp. 951–978; 42, 48

98



REFERENCES

[53] Imatani S., and Maugin G.A., 2002. Mechanics Re-

search Communications, Vol. 29, pp. 477–483; 58

[54] Maugin G.A., and Imatani S., 2003. J. Phys. IV France,

Vol. 15, pp. 365–372; 58
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