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Chapter 1

Introduction

The realistic simulation of fluid flows is fundamental in a number of fields, from

entertainment to engineering, from astrophysics to city planning. In particular,

there are a number of applications related to civil protection: simulating a tsunami,

an ash cloud or a lava flow, for example, has an important role both in disaster

prevention and damage mitigation.

The Sezione di Catania of the Istituto Nazionale di Geofisica e Vulcanologia

(INGV-CT) is a leading research center in the fields of natural hazard assessment

and lava flow simulation. In the past 10 years, in collaboration with the Univer-

sity of Catania, two lava simulators have been developed: one uses a Cellular

Automaton (CA) approach, while the other is based on the Smoothed Particle Hy-

drodynamics (SPH) method.

The CA simulator, called MAGFLOW, has been widely used for hazard as-

sessment and forecasting, as it is capable of simulating lava flow with Bingham

rheology on an arbitrary DEM (Digital Elevation Model, a 2D representation of a

3D topography). The SPH-based one, called GPUSPH, has been recently devel-

oped for its capability to model a fluid in a truly three-dimensional environment

while simulating complex phenomena such as solid-fluid interaction, crust forma-

tion and tunneling.
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Such complex and flexible simulators come at the price of a high level of com-

plexity and a significant computational cost. The simulation of an eruption, to be

useful in any application (ranging from scenario forecasting to statistical analysis,

from the validation of the model itself to its sensitivity analysis) should take sig-

nificantly less time than the simulated event; an efficient implementation is thus

needed for any practical application.

Among the possible high-performance computing solutions available, GPU

computing is nowadays one of the most cost-effective in terms of Watt per FLOPS

and nevertheless one of the most powerful ones. For this reason, the MAGFLOW

simulator has been ported for the execution on GPU while GPUSPH, as the name

suggests, has been natively written with GPU computing in mind. This has greatly

improved the performance of MAGFLOW with respect to the correspondent CPU

implementation and allowed GPUSPH to complete a simulation in a reasonable

time (faster than 1:1). A multi-GPU version of both simulators has been recently

developed to increase the performance and, for GPUSPH, to allow simulations that

would not fit the memory of a single GPU.

1.1 Contribution

The subject of this thesis is the original multi-GPU implementation of both

MAGFLOW and GPUSPH simulators. As later explained, it is not trivial to ex-

ploit more than one device simultaneously to solve complex problems like SPH or

cellular-automaton based fluid simulations. We had to overcome several technical

and model-related challenges mainly due to the locality required by the problem

computational units (cells, particles) and to the latencies introduced by using off-

CPU devices. The resulting multi-GPU simulators allow faster simulations and

enable GPUSPH to simulate sets of particles bigger than a single GPU could fit.

To the best of our knowledge, these are the first multi-GPU Cellular-Automaton
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based lava simulator and the first multi-GPU Navier-Stokes SPH fluid simulator.

In the first parts we introduce the concepts of GPU computing, GPGPU, multi-

GPU and CUDA. The second part is dedicated to the MAGFLOW simulator; the

single-GPU version is briefly described and then the multi-GPU implementation

is introduced. A similar structure is used in the third part, where the single- and

multi-GPU implementations of GPUSPH are described. Finally, in the fourth part,

the results are briefly discussed.

The results presented in sections 6.8 and 8.11 show a performance gain almost

linear with the number of GPUs used. The simulators have been tested for using

up to 6 GPUs simultaneously and the execution times differ from the ideal ones

only by a small cost function which is itself linear with the number of GPUs.

Two load balancing approaches have been designed, implemented and tested:

an a priori balancing for MAGFLOW and an a posteriori one for GPUSPH. The

former dynamically changes according to the bounding box variations of the sim-

ulated fluid. The latter one makes GPUSPH perform steadily even in very asym-

metric simulations, where a static split would perform about 50% worse.

The performance results are formally analyzed and discussed. While the re-

sults are close to the ideal achievable speedups, some future improvements are

hypothesized and open problems are mentioned.



Part I

GPU computing



Chapter 2

The Graphics Processing Unit

A GPU (Graphics Processing Unit) is a microprocessor specialized in graphics-

related operations. GPUs have been traditionally used to offload and accelerate

graphic rendering from the CPU by providing direct hardware support for com-

mon 2D and 3D graphics primitives.

The market of videogames has probably been the most important pushing fac-

tor towards faster and faster GPUs, which are nowadays incredibly faster than

CPUs in parallel, arithmetic-intensive tasks like matrix manipulations and coordi-

nate projections.

Figure 2.1: Screenshots of Castle Wolfenstein (1981), Wolfenstein3D (1992), Return to Castle
Wolfenstein (2009) and Wolfenstein (2011).

Fig. 2.2 shows the trend of peak computational power of CPUs vs. GPUs,

from 2003 to 2010, with an always increasing gap. However, as the GPUs are

typically many-cores with a lower clock rate, it is more difficult to reach the peak

value of a GPU, as not all the computational problems can be split in independent,

parallel tasks. The red vertical line marks the introduction of the CUDA GPGPU
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computing platform.
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Figure 2.2: Trend of theoretical computational power of CPUs and GPUs, 2003-2010

2.1 Birth of GPGPU

In 2001 NVIDIA released the first chip capable of programmable shading, i.e. a GPU

with which it was possible to customize the arithmetic pipeline to obtain very

sophisticated surface renderers. Programmable shading later became a standard

GPU feature also for other brands.

While programmable shaders were meant to be used for graphical purposes,

there was a growing interest in using graphic cards also as general-purpose stream

processing engines [78, 33]. Engineers and scientists started using them for non-

graphical calculations by mapping a non-graphic problem to a graphic one and

letting the GPU compute it. To cite a few examples, in [12] a programmable shader

is used to simulate the behavior of a flock; in [34] pixel shaders are used for both

visualization and evolution of Cellular-Automaton based simulations; in [50] a

framework for linear algebra is implemented on programmable GPUs.
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The possibility to use a specialized microprocessor for generic purpose prob-

lems marked the beginning of the GPGPU paradigm, where the acronym GPGPU

stands for General-Purpose Graphics Processing units. The hack of mapping a non-

graphic problem to a graphic one, however, was complex and cumbersome, and

required the programmer to know many hardware details as well as to code using

the hardware assembly language.

2.2 From hacking to CUDA

In 2007 NVIDIA released CUDA (acronym for Compute Unified Device Architec-

ture), a hardware and software architecture with explicit support for general pur-

pose programmability. The ground-breaking feature of CUDA was the possibility

to code for the GPU using an extension of the C programming language1.

1 for (i =0; i <4096; i ++)

2 cpu_array [i] = i;

Listing 2.1: Array initialization in C++ for serial execution on the CPU.

1 # define BLKSIZE 64

2 ...

3 __global__ void init_kernel ( int * gpuPointer ) {

4 index = blockDim .x* blockIdx .x + threadIdx .x;

5 gpuPointer [ index ] = index ;

6 }

7 ...

8 init_kernel <<< 4096/ BLKSIZE , BLKSIZE >>>( gpu_array );

Listing 2.2: Array initialization in CUDA C for parallel execution on the GPU.

1CUDA C is C extended with a few GPU-specific keywords and implicit library calls, but with
some limitations like no possibility to call external libraries, no direct CPU memory access, no
recursion (this limit has been overcome in recent versions), etc.
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Listing 2.1 is an example of serial array initialization on the CPU, in C; listing

2.2 is an equivalent CUDA C array initialization for parallel execution on the GPU.

Also ATI, NVIDIA’s main competitor, released soon after a GPGPU architecture

called Stream; instead of a high-level language, Stream requires to program the

GPU with a low-level assembly language.

A modern GPU typically hosts more cores then a CPU, up to a one thousand,

and runs with a slightly lower clock rate. This setting is ideal to implement a SIMD

(Single Instruction Multiple Data) paradigm, where a series (stream) of instructions

is executed in parallel on multiple data. Fig. 2.4 is a graphical representation of the

SISD (Single Instruction Single Data), SIMD and stream processing approaches.

Figure 2.3: SISD (Single Instruction Single Data), SIMD (Single Instruction Multiple Data)
and Stream Processing.

From a programmer’s perspective, a GPU may be seen as an external com-

puter with its own RAM memory and processors; the typical workflow consists in

transferring the input data from the CPU memory to the GPU memory, requesting

a computation and transferring back the resulting output. Following a common

convention, we will refer to the GPU and its RAM as device and to the CPU and its

memory as host.
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Some classes of problems can be solved much faster on GPUs and achieve

speedups of two orders of magnitude with respect to the correspondent CPU im-

plementations, as long as they expose a high level of parallelism on a fine data

granularity. The price of such a speed benefit is a slight change in the program-

ming logic or, sometimes, a complete rewrite of the computational core. The

high cost-effectiveness of GPU-based solutions is, however, the main breakthrough

of this phenomenon. A single workstation with modern consumer GPUs easily

reaches the theoretical speed of one TFLOPS (1012 Floating Point Operations Per

Second), while costing less than ¤1, 000 and consuming less than 800W.

Figure 2.4: A consumer-level multi-GPU workstation reaching the theoretical speed of one
TFLOPS

Even devices dedicated to scientific computing like the NVIDIA Tesla boards,

which share the chipset with the consumer-level GPUs, are still a very cost-effective

solution and have been recently used also in supercomputing environments. In

may, 2010 a hybrid CUDA-enabled Chinese supercomputer called Nebulae reached

the theoretical peak performance of 2.98 PFlops, ranking first in the list of the

most powerful commercial systems in the world, and second by means of actual

measured performance [53]. Later in 2010 another GPU-based Chinese supercom-

puter, Tianhe-1A, ranked first in the TOP500 list with an actual performance of

2.57 PFlops. In June 2011 another GPU-based supercomputer called TSUBAME 2.0
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entered the top ten; in November 2011 Nebulae, Tianhe-1A and TSUBAME 2.0 still

rank among the top 5 most powerful supercomputers in the world.

The cost-effectiveness and the ease of utilization of modern GPUs, along with

the wide spread of GPU computing even outside the commercial and academic

world, led some to claim that the GPU Computing Era has begun [62]. It is worth

mentioning, however, that some others criticized the excess of enthusiasm for

GPGPU and proved that a well-tuned CPU implementation, optimized for exe-

cution on recent multi-core processors, often reduces the flaunted 100× speedup

reported by many works [51].

2.3 Numerical precision

Another little price of porting an application to GPGPU, apart from the effort of a

little re-engineering, regards numerical precision.

It is useful to recall that floating point arithmetic introduces a systematic er-

ror that is important to take into account and mitigate through the use of specific

numerical techniques [25]. For example, a common and underestimated source of

error is the non-commutativeness of floating point operations: this is particularly

visible when the numbers involved differ by orders of magnitude such as, for ex-

ample, when adding alternatively very large numbers and numbers very close to

zero. Different implementations of the same algorithm may result in a little change

in the order of additions, and if the method is not numerically stable these errors

will propagate and amplify, becoming “mysterious” big changes in the output.

This is a common issue in GPU computing, as porting a software for the execution

on a many-core GPU often requires slight changes in the order of computations

and the output may not match with the one produced with the reference serial

code. Techniques such as the Kahan summation [46] can reduce the numerical dif-

ferences, but a specific numerical analysis is often necessary to guarantee specific
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levels of accuracy.

Another potential cause of differences between a CPU and a GPU implemen-

tation relies in the hardware precision. Among the formats defined in IEEE 754

standard for floating point arithmetic [44], single precision and double precisions are

the most common ones. Their length is respectively 32 and 64 bits and their cor-

respondent C/C++ types are float and double. While most desktop and work-

station CPUs have had hardware support for both types since the ’90s, GPUs have,

until recently, only featured hardware support for single precision, sometimes of-

fering the possibility to emulate double precision (in NVIDIA cards, an emulated

double precision operation is 8× slower than a hardware single precision one). As

the computations performed on the GPU were mainly devoted to compute pixel

coordinates for graphics, single precision was totally acceptable. Because of the

increased request for numerical precision, especially in GPGPU scientific comput-

ing, ATI and NVIDIA afterwards recently introduced on-chip support for double

precision also in GPU cards. Most non high-end cards, however, still use single

precision as default. This is an issue to take into account for applications requiring

double precision.

2.4 Recent advances

Both NVIDIA’s CUDA and ATI’s Stream run on specific GPU hardware, with prac-

tically no interoperability between the two. Because of the growing interest for

parallel computing and the wider range of hardware available, an architecture-

independent parallel computing platform, OpenCL, was proposed in 2008 by Ap-

ple and released in 2009 as the result of a collaboration with AMD, IBM, Intel, and

NVIDIA [28].

OpenCL was designed to offer an abstraction layer between the applications

and the underlying hardware, allowing an application to be transparently executed
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on heterogeneous hardware (GPUs as well as multicore CPUs and other hardware).

The language is derived from C99 and the API is similar to the low-level CUDA

C API. Coding in OpenCL is in general more complex than CUDA C, due to the

wider variety of hardware on which it runs, but does not force the programmer to

bind to a specific hardware class or brand.

We started approaching the GPGPU paradigm in 2007, when CUDA was the

only platform allowing for generic purpose programmability in a C-like language.

For this reason, our GPU-enabled simulators are at moment CUDA-based, but we

are considering the possibility to port our softwares to the OpenCL platform in a

near future.



Chapter 3

CUDA

As mentioned before, the CUDA platform consists of a hardware and a software

part. The hardware required to run a CUDA routine can be found quite easily as

any graphic card produced by NVIDIA since the release of the GeForce 8 series

(2006) is CUDA-capable1; many old PC’s are therefore already CUDA-enabled,

while it is possible to buy a low-end CUDA-enabled card with less than ¤50.

On the software side, a CUDA application relies on two layers: a CUDA-

enabled video driver, which is capable of communicating with the graphic card

at the operative system level, and the CUDA Toolkit, which is a set of shared li-

braries, tools and bindings needed to compile the code for the GPU and integrate

it into a “normal” application. There are two different programming interfaces to

the CUDA runtime libraries: the low-level API, that exposes to the programmer a

higher number of structures to access and use a GPU, and the high-level API, that

automatizes the most common operations. The latter one allows a programmer to

drive a GPU with just a few C functions that closely follow the naming convention

and parameter order of similar functions from the C standard library.

1The NVIDIA website states that CUDA-enabled GeForce cards are “GeForce 8, 9, 100, 200,
400-series, 500-series GPUs with a minimum of 256MB of local graphics memory”.
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3.1 Compute Capabilities

CUDA-enable applications are in general backwards-compatible with all CUDA-

enabled hardware, but new generation cards may offer additional features not

supported in previous devices. The set of capabilities of a given generation has

version number referred as compute capabilities and it is 2.1 in the latest generation

cards (Fermi architecture) as of this writing. As an example, one needs a card

with at least compute capability 1.1 to use atomic operations and 1.3 for hardware

support for double precision. One could define the compute capabilities as the

hardware version of a card, the major number referring to the generation; the

Toolkit has an independent version number, which recently has arrived to 4.0.

The toolchain used to implement a function for the GPU consists of the follow-

ing steps:

1. Write the function (kernel) to be executed on the GPU in CUDA C with any

IDE/text editor, even mixing CPU and GPU functions in the same source

files;

2. Compile the files containing GPU code with the Toolkit compiler (nvcc);

3. nvcc transparently compiles the GPU code into the card’s assembly2, lets a

predifined C/C++ compiler (gcc in Unix-based systems) compile the CPU

code and links together the GPU and CPU binary objects.

It is possible to run the resulting application on any hardware with compute

capability equal or greater than the target one, as long as a possibly up-to-date

video driver is installed. From the programmer’s perspective, the only change

from the usual toolchain is using nvcc in place of gcc.

2nvcc compiles the GPU code into both PTX (a proprietary assembly which abstracts from the
hardware, always forward compatible) and CUBIN (the actual binary code for the GPU, forward-
compatible only with CUDA architectures of the same compute capability major version); when
a CUDA application is run, it loads the CUBIN to the GPU, if compatible, or does a just-in-time
compilation to produce a proper CUBIN from the PTX.
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3.2 Multiprocessors

Although programming with CUDA platform does not require the knowledge of

the details fo the underlying hardware, the way GPU threads are launched and

the characteristics of features like shared memory strongly reflect the way GPU

cores and memory banks are organized in the card. It is therefore advisable to

learn at least the basic principles in order to be able to fully exploit the hardware

capabilities.

Similarly to other NVIDIA and non-NVIDIA GPUs, CUDA-enabled cards host

one or more SIMD multiprocessors each embodying several computational cores,

for a total of tens or even hundreds of cores. Recent cards such as the GTX 590

host up to 1024 CUDA cores, for a total 3 billion transistors. More specifically,

each multiprocessor hosts 8 to 32 ALUs and one instruction unit that decodes

one instruction at a time to be executed in lockstep3 by multiple threads. Distinct

multiprocessors execute thread batches (called warps in CUDA terminology) in

parallel but independently from each other.

Shared memory
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ALU ALU ALU ALU

ALU ALU ALU ALU

Instruction unit

Multiprocessor
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ALU ALU ALU ALU
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Figure 3.1: Schematic representation of how GPU cores are grouped into multiprocessors
and linked to shared and global memory banks.

Recent consumer-level cards host up to 1.5Gb GDDR5 memory and support

hardware double precision; high-end cards like Tesla host larger RAM memory

3Here intended in the parallel computing meaning, as the same instruction is performed syn-
chronously by different cores, not in the meaning of redundant computing.
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with optional ECC support. There are other memory resources, such as a global

constant memory (cached, read-only) and textures (spatially cached, read only

until rebound, although more recent hardware allows writing to texture too). Each

multiprocessor also hosts a bank of shared memory, directly accessible by all ALUs

and much faster than global memory (RAM). Shared memory, however, has a

limited size (16-48Kb) and its temporal scope is limited to the execution of one

block. Because of its high speed and low latency, shared memory is often used

to exchange data between threads of the same block, handle race conditions or

simply avoid multiple reads in global memory by storing them in a shared buffer.

It is up to the programmer to carefully evaluate which kind(s) of memory it is

convenient to exploit for a specific problem and how to access them.

3.3 Kernels, warps, blocks

We already referred to the series of instructions to be executed on a GPU as kernel;

we can see a kernel as a function compiled for the GPU and meant to be executed

in parallel on multiple data streams (SIMD).

The instance of a kernel is called GPU thread, or simply thread when the context

does not allow for any ambiguity. Kernels are instantiated in parallel threads and

threads are grouped into blocks with one, two or three dimensions; blocks are in

turn arranged in a one-, two- or (only with the most recent compute capabilities)

three-dimensional grid. The block and grid sizes are up to the programmer, and

can be decided at runtime. The position of a kernel in a block and the one of the

block in the grid, as well as the block and grid sizes, are available inside the kernel

in the form of implicitly defined variables, so that it is possible for each thread to

compute the address of the data to be accessed.

Blocks have a size limit that may depend on the underlying architecture and

this limit is in general lower than the number of threads a typical application
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Figure 3.2: Simple example of two one-dimensional blocks each assigned to a portion of a
global array.

Figure 3.3: Example thread indexing on a 2D grid of 2D blocks.

would instantiate. This means that grouping the threads into blocks is not just

possible, but often necessary, and it is related to the hardware structure.

Each block is assigned to a multiprocessor which, as already mentioned, exe-

cutes multiple threads simultaneously (a warp). When the number of threads is

greater than the number of cores, a minimal context switch is executed to let all

threads complete. When a thread issues a memory request that may take several

cycles (e.g. accessing a word in the RAM memory of the card takes about 400 clock
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cycles in 2.0 hardware, 800 clock cycles in previous cards) the context switch lets

other threads execute while one is waiting for the resulting data. Thus, instanti-

ating more threads than cores (and, in general, issuing enough computations to

saturate the hardware) leads to a higher throughput as time-consuming memory

requests are covered by computations.

Another time-consuming factor is divergency. When two or more threads of the

same warp need to execute different instructions because of a branch divergence,

those operations are serialized. The programmer should take care to avoid as much

as possible that threads of the same warp diverge.

3.4 Memory types

There are several kinds of memory available on the device, each with specific

features and limits:

• Registers: R/W, very fast, not cached, local to each thread; it is not possible

to access them directly. The total number of registers on a card is fixed and

it is divided among the threads; this limits the complexity of kernels and the

number of concurrent threads.

• Shared: R/W, fast, not cached, local to a multiprocessor and shared among

all the threads of a block; usually only a few tens/hundreds of Kb are avail-

able per multiprocessor.

• Global: R/W, slow, usually not cached4, accessible to all threads; it is the

RAM memory of the card, usually sized in terms of gigabytes (minus a small

buffer used to paint the active screen) in modern GPUs.

• Constant: R/O and cached for the GPU, R/W for the CPU-side; useful for

small global constants. It is as fast as registers if all threads in a warp access

4The Fermi (2.x) CUDA architecture introduces L1 and L2 caches for global memory.



3. CUDA 25

the same datum.

• Texture: R/O and cached for the GPU, can be initialized only by the CPU.

Supports built-in interpolation, clipping, and special address modes. The

caching is spatial (probably using a Z-curve [27]).

GPU threads can not access directly any host memory area5; to exchange data

between the host and the device, specific CUDA functions must be called from

the host side. We will conform to a CPU-centered nomenclature and call download

any copy operation from device to the host and upload any transfer in the opposite

direction.

3.5 Coalescence

It is up to the programmer to choose the most appropriate location for the data,

but it is even more important the way those data are accessed, especially when

accessing the global memory: the controller is able to pack multiple requests to

adjacent memory addresses into one long read, causing multiple potential memory

access to collapse to a single one. Correctly aligned memory requests are referred

to as coalesced. These pattern slightly change across different compute capabilities,

but as a rule of thumb consecutive threads should access consecutive words in

memory and memory requests should begin with addresses that are multiples of a

word. Figures 3.4, 3.5 and 3.6 summarize, as showed in the CUDA Programming

Guide, how the hardware controllers of different compute capabilities are able to

optimize non-consecutive or misaligned accesses, with important consequences on

the overall performance.

One of the practices suggested by NVIDIA’s to improve coalesced accesses, for

example, is to arrange the data in a structure of arrays fashion rather than an array

5It is possible with some specific hardware configurations, e.g. integrated GPUs sharing RAM
with the CPU.
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Figure 3.4: Coalescence - case 1: accesses are aligned and sequential (best case)

Figure 3.5: Coalescence - case 2: accesses are aligned but not sequential

Figure 3.6: Coalescence - case 3: accesses are not aligned but sequential
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of structures [63]. Both MAGFLOW and GPUSPH are implemented following this

recommendation.

In some classes of problems, however, it is not possible to predict or correct the

sparsity of some accesses. In the SPH model, for example, accessing the neighbors

of consecutive particles often leads to misaligned memory accesses. We could

think of putting in the list of neighbors a copy of the data instead of the addresses

of the neighbor particles; however, this could require up to one hundred times

more GPU memory and is thus unfeasible.

3.6 Contexts

A CUDA context is the set of variables and structures used internally by the CUDA

runtime libraries to communicate with a specific device. The high-level API au-

tomatically initializes a CUDA context when a CPU thread first tries to access a

GPU, in a one-context-per-thread fashion; the low-level API instead allows to cre-

ate multiple CUDA contexts and to switch from one to another within the same

CPU thread. Using multiple GPUs with the high-level API requires therefore one

CPU thread per device.

Since the recent release of CUDA 4.0, this is not necessary anymore, as it is

possible to switch from one device to another within the same CPU thread with

a specific high-level call [64]. As we implemented the simulator with CUDA 3.2

using the high-level API, we chose to launch one CPU thread per device. This also

have the advantage of allowing a cleaner design and a more robust code, while

transparently exploiting multiple CPU cores, if available, to perform the host tasks.
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3.7 Streams

A CUDA Stream is an abstraction for a logical sequence of operations that it is

possible to run on the GPU. In a CUDA Stream it is possible to enqueue a kernel

launch, a data transfer or a CUDA Event, a dummy structure needed for GPU

timing and synchronization of streams. If multiple streams are run in parallel, and

the pending operations of a stream are compatible with those of another stream

(e.g. kernel and data transfer in older cards, two different kernels in devices with

compute capability 2.0), the compatible operations are run simultaneously.

3.8 Asynchronous API

All kernel calls are non-blocking, i.e. the CPU code keeps executing after launching

a kernel and CPU and GPU can work independently. To make the CPU code

wait for a kernel to complete, for example when we need the result of the kernel

computation, we can call the cudaThreadSynchronize() method. Memory

transfers, instead, are by default blocking: a cudaMemcpy() method only returns

when the transfer is complete. The CUDA platform offers the capability to run

memory transfers concurrently with CPU and GPU computations. We access this

functionality through the asynchronous API, which is a set of library calls mostly

terminating with the -async suffix.

Listing 3.1 shows an example of concurrent kernels and memory transfers,

where the computations on the input data start as soon as the first part has

been uploaded. Note that three different for cycles are used to iterate on a set

of streams, enqueueing the operations in a breadth-first fashion. Although in

some applications a depth-first fashion could be preferable (e.g. processing video

streams), using distinct for cycles is necessary for actual asynchronous execution

because of the way the CUDA library was designed. The CUDA runtime enqueues

the operations in two internal queues, one for kernels and one for memory trans-
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fers. If all the operations of the same stream are enqueued in a row, the runtime

scheduler will not find any compatible operation to the one being issued as they

belong to the same stream. Listing 3.2 shows an “incorrect” depth-first enqueueing

leading to a synchronous execution.

1 // enqueue the upload of parts of the data

2 for ( int i = 0; i < NSTREAMS ; ++i)

3 cudaMemcpyAsync ( inputDevPtr + i * partial_size ,

4 hostPtr + i * partial_size , size ,

5 cudaMemcpyHostToDevice , stream [i ]);

6 // enqueue the partial computations

7 for ( int i = 0; i < NSTREAMS ; ++i)

8 MyKernel < < <100 , 512 , 0, stream [i]>>>

9 ( outputDevPtr + i * partial_size ,

10 inputDevPtr + i * partial_size , size );

11 // enqueue the download of the results

12 for ( int i = 0; i < NSTREAMS ; ++i)

13 cudaMemcpyAsync ( hostPtr + i * partial_size ,

14 outputDevPtr + i * partial_size , size ,

15 cudaMemcpyDeviceToHost , stream [i ]);

Listing 3.1: Example code for issuing concurrent kernels and memory transfers in a

breadth-first fashion.

There are two requirements to use asynchronous transfers. The first is the usage

of streams. A kernel and a memory transfer must be issued on different, non-zero

streams. Issuing two operations on the same stream (or not specifying a stream,

that results in using stream 0 for both) tells the GPU scheduler that the second

depends on the first, and thus it has to wait for it to finish.

The second is that all CPU buffers involved in the transfers must be allocated

as page-locked. When a CPU process is switched or paused by the scheduler, its

memory area may be swapped in virtual memory by the operative system, and it is
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restored as soon as the process is active again. This may cause concurrency and/or

inconsistency problems for asynchronous transfers, that remain alive despite the

state of the issuing process. For this reason, we must ask the operative system to

allocate a special kind of memory that is not paged (page-locked) even if the owner

process is paused. CUDA offers some simplified methods to issue this special kind

of allocation (cudaHostAlloc() or cudaMallocHost()). Page-locked memory

is also faster than non page-locked, as it prevents page faults and enables direct

GPU-RAM DMA transfers. However, it is advisable to minimize its use, as page-

locking a large amount of RAM memory may result in increased swapping and

reduced overall system performances.

1 // enqueue the upload of parts of the data

2 for ( int i = 0; i < NSTREAMS ; ++i) {

3 // upload input data

4 cudaMemcpyAsync ( inputDevPtr + i * partial_size ,

5 hostPtr + i * partial_size , size ,

6 cudaMemcpyHostToDevice , stream [i ]);

7 // kernel launch

8 MyKernel < < <100 , 512 , 0, stream [i]>>>

9 ( outputDevPtr + i * partial_size ,

10 inputDevPtr + i * partial_size , size );

11 // download output data

12 cudaMemcpyAsync ( hostPtr + i * partial_size ,

13 outputDevPtr + i * partial_size , size ,

14 cudaMemcpyDeviceToHost , stream [i ]);

15 }

Listing 3.2: Example code for issuing concurrent kernels and memory transfers in a

depth-first fashion. Transfers are likely to be performed in a synchronous way.
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3.9 Libraries

Numerical problems often require high-level operations like sorting big arrays or

finding the minimum/maximum element. As it is not trivial to implement such

operations in an efficient way on parallel hardware, some pre-optimized libraries

have been released to this aim.

For example, CUDPP (CUDA Data Parallel Primitives) is “a library of data-

parallel algorithm primitives such as parallel prefix-sum (scan), parallel sort and paral-

lel reduction” [65]. It runs on CUDA-enabled hardware and it is released under

the New BSD license 6 [77]. In particular, we use the CUDPP Radixsort [71] in

GPUSPH and the CUDPP minimum scan [72] in both MAGFLOW and GPUSPH.

Other libraries that are worth citing include CUFFT for parallel Fast Fourier

Transform, CUBLAS for linear algebra solvers, CUSPARSE for efficient handling

of sparse matrices, CURAND for quasi-random number generation and Thrust, a

template library offering similar functions to CUDPP with a higher level of ab-

straction.

6The BSD license is a variant of GNU GPL allowing the code to be used in commercial, closed-
source applications.



Chapter 4

Multi-GPU computing

We already mentioned that only problems exposing some degree of parallelism are

suitable for a parallel implementation on the GPU. Numerical problems exposing

a high level of intrinsic parallelism, however, can be mapped to more than one

level of parallelism. In general, if a problem is modeled as a set of independent

subproblems, then it is possible to split the set of required computations in two or

more partitions that can be executed in parallel on separate devices.

4.1 Motivation

The main motivation to split a problem into multiple devices is the possibility to

achieve a gain in performance. The highest theoretical speedup obtainable with D

devices is D×, but in rare cases it can be even higher 1.

For some problems there is also a memory reason. Some numerical problems

can benefit from the increased total memory of a multi-device systems by working

on a wider range of data or on inputs with higher density. It is the case of very

wide or very dense SPH simulations, whose number of particles would not fit in

the memory of one GPU.

1For example, the split may relieve a congested PCI bus, increasing the data trasfer speed be-
tween the CPU and the devices and therefore causing a superlinear speedup, as in [11].
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In some cases, a substantial speedup or memory gain can even have conse-

quences on the model level. With a problem that is solved one order of magnitude

faster than the prospected time, for example, it is possible to think of applying a

stochastic super-model to refine or bound the numerical results. A multi-device

implementation of a numerical problem is more likely to reach such a result if it

is robust and truly scalable, as it allows to increase performance proportionally to

the available computing power.

However, while exploiting the computational power of a GPU is today far easier

than at the beginning of the GPGPU era, porting a numerical solver to GPU in an

efficient way is still far from trivial and exploiting more than one GPU at a time is

even more difficult due to technical and model constraints. There exist multi-GPU

softwares mainly for data compression and visualization [3, 45, 76], molecular

dynamics [82, 52, 67] and a few grid-based models [5, 68, 83, 81, 66]. To the best of

our knowledge, however, no Navier-Stokes SPH simulator has been implemented

for multi-GPU yet, although some works claim that a port to multi-GPU is in

progress.

4.2 Naïve approach

A trivial approach to run a problem in parallel on multiple devices could be to

split the problem domain, whatever it is, in a number of partitions equal to the

number of devices to be exploited. Recalling that the graphic processor has its own,

coupled memory, one could copy the necessary, partial data to the devices, perform

the computations and finally transfer back the results; this should be repeated for

every set of computations to be performed (e.g. every step of a simulation).

Given the bus data rate and the mathematical throughput of the computing

units, it is easy to estimate the ratio between the two and the potential convenience

of the approach. Unfortunately, except for very particular cases, the time required
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to transfer the problem data largely overcomes the time required to perform the

computations, making the whole process disadvantageous. Moreover, as direct

inter-device communication is in general expensive or even not possible, any inter-

dependence among parts of the problems adds a technical constraint that must be

carefully taken into consideration.

4.3 Subproblems inter-dependence

Some numerical problems, such as astrophysical n-body simulations, present com-

pletely inter-dependent subproblems and therefore can not be easily split, as each

element requires accessing sparse data of the whole domain. In these cases, one

should rethink the model, if possible, or use an approximate solution. Some classes

of problems expose instead a complete subproblem independence; in this cases, it

is enough to partition the problem with a greedy strategy and run the subparts in

parallel on different devices. We refer to these fully parallel problems as embarrass-

ingly parallel.

Most problems are somewhere in the middle. The particle methods we will

describe later, for example, are by definition made up of quasi-independent sub-

problems: the state of a particle depends on the previous state of the same particle

and on the state of neighbor particles only. It is possible to split such a problem

as long as a proper overlap is left between the subproblems; we need to properly

allocate, handle and keep updated this overlap.

4.4 Overhead

Running a problem on multiple devices introduces an unavoidable overhead due

to the split operations and load balancing. Most problems, especially the ones

involving some subproblem overlap, also require a variable amount of data to be
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continuously transferred during the computations, to keep the overlaps updated

and deal with dynamic changes (e.g. a particle “moving” from one device to an-

other). Data transfers between a device and the host, as well as device-to-device

transfers, are the predominant overhead factor in most multi-GPU implementa-

tions. Moreover, as in the general case it is not possible to transfer data from

one device to another in a direct manner, data must be first copied to the host

and then copied back to the recipient device, thus doubling the already significant

transfer times. Making all these overheads negligible is the main challenge of any

multi-GPU system where a continuous inter-device communication is needed.

4.5 Speedup metrics

Comparing the performance of different problems is usually tricky and sometimes

even unfeasible, due to the possible differences in the type of data or the measured

parameters (e.g. speed vs. accuracy or input size). It is however possible to

estimate the efficiency of a parallelization by means of measured speedup with

respect to a single-core execution. We refer to cores for simplicity, but the following

considerations are still valid for either multi-core, multi-GPU or generic many-core

parallel computing.

A common starting point to analyze a parallel implementation is to model

the problem as made by a parallelizable part and a serial, non parallelizable one.

The latter includes operations which are performed anyway in a serial manner

(e.g. file I/O) and operations that are introduced with the parallel implementation

(overhead, e.g. load balancing). Let α be the parallelizable fraction of the problem

and β the non parallelizable one; it is α + β = 1, with α, β non-negative real num-

bers. For embarrassingly parallel problems α is equal or very close to 1; problems

intrinsically serial, where each step depends on the outcome of the previous one,

have β ≈ 1. It is advisable, when the model allows for it, to formulate a problem
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in a way to minimize β to the strictly necessary.

4.5.1 Amdahl’s law

Amdahl’s law, introduced in 1976 by the computer architect Gene Amdahl [2],

measures the speedup in terms of execution time and gives an upper-bound in-

versely proportional to β. Although it is mainly used in parallel programming,

where number of available computing units is often directly related with the ob-

tainable speedup, it can be used in the analysis of a serial problem when only a

portion of it is being improved.

With a slight change in the notation, Amdahl’s law can be written as

SA(N) =
1

β +
α

N

(4.1)

where N is the number of used cores and SA the theoretical maximum speed-up.

Fig. 4.1 plots the outcome of the law with different ratios α/β, the asymptotic limit

of each being 1/β.
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Figure 4.1: Plot of Amdahl’s law with different values of α
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Amdahl’s law assumes that the problem size is fixed and the number of cores

is the only variable. The intuitive meaning is rather simple: the time Tp required

to solve a problem with N cores is Tp = βT1 + αT1/N, and the ratio T1/Tp (equiv-

alently, 1/Tp with T1 = 1) is the expected speedup.

In case the parallel fraction is not known a priori, it is possible to rewrite the

formula for α:

αestimated =

1
Se
− 1

1
N − 1

(4.2)

where Se is the empirical speedup obtained with N cores.

4.5.2 Gustafson’s law

In 1988 J. Gustafson et. al. proposed a different speedup model [29], claiming that

Amdahl’s law was way too restrictive. In particular, they challenged the assump-

tion that the problem size is always fixed, remarking that the size of a problem

often scales with the available raw computing power. In other words, as they

clearly explain in the paper, “rather than ask how fast a given serial program would run

on a parallel processor, we ask how long a given parallel program would have taken to run

on a serial processor”.

Gustafson’s law can be formulated as:

SG(N) = N − β · (N − 1) (4.3)

The obtained speedup is equal to the number of used cores minus the non paral-

lelizable fraction, that makes N− 1 cores unexploited for β fraction of the problem.

The plot of Gustafson’s law is just a line less steep than x = y. With this formu-

lation, there is no theoretical upper-bound to the speedup, as long as it is always

possible to indefinitely increase the workload. When compared to Amdahl’s law,

this is often referred to as scaled speedup.
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4.5.3 Karp–Flatt metric

The Karp–Flatt metric was proposed in 1990 as a measure of the efficiency of

the parallel implementation of a problem [47]. The new efficiency metric is the

experimental measure of the serial fraction β of a problem. As it can be imagined,

this can be proven to be consistent with Amdahl’s approach, and can be derived

from it.

With another slight notation change, it is:

βKF =

1
Se
− 1

N

1− 1
N

(4.4)

where Se is the empirically measured speedup and N is the number of cores, as

usual. This can also be obtained from Amdahl’s law by rewriting for β. Since

this a posteriori metric measures both serial time and introduced overhead, it is

especially useful to apply to at least two executions with different N: a constant

βKF means the the parallelization was efficient, while a growing βKF means that

some overhead is being introduced by the growing number of cores.

4.6 Linear overhead

We already mentioned that the highest theoretical speedup obtainable with D de-

vices is D× and that, except for the so called embarrassingly parallel problems,

we usually introduce some overhead due to the synchronization and data transfer

operations. We now informally analyze the consequences of a linear cost (i.e. βKF

linear with the number of devices), which occurs when a non perfect paralleliza-

tion is implemented or no dynamic load balancing is used.

We may wonder, for a specific problem, at what point the introduced overhead

exceeds the advantage of increasing the number of devices by one, thus determin-

ing an upper-bound to the number of devices that is convenient to use. Please
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note that in this context we use the word convenient referring to the performance

metrics (using D devices is convenient if the problem is solved faster than using

D− 1 devices), and not to the memory gain.

Let us compute first the performance gain of using D devices instead on D− 1,

in an ideal case. Say T the time required to solve a problem with one device. It will

take T/D time to solve the problem with D devices, and T/(D − 1) with D − 1

devices. Using D devices takes

T
D− 1

− T
D

= T(
1

D− 1
− 1

D
) =

T
D(D− 1)

time less than using D− 1 devices. Dividing by T we obtain the gain in percent:

1
D(D− 1)

(4.5)

This number decreases quite fast. Table 4.1 shows the progressive gain, in percent,

from 2 to 8 devices. For example, using 8 devices we expect a problem to be solved

in 1/(8(8− 1)) ≈ 1, 8% less time than using 7 devices.

Let Q be the overhead introduced each time we increase by one the number

of used devices; it is possible to estimate the mentioned upper-bound Dmax by

choosing the maximum D for which the inequality

Q/T <
1

D(D− 1)
⇒

Q <
T

D(D− 1)
(4.6)

holds. It is implicit that for the inequality to be defined it must be D > 1 (indeed,

we can safely assume that it is convenient to use one device instead of zero) and

T > 0 (no need to split a simulation that takes no time).
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Devices 2 3 4 5 6 7 8
Progressive gain 50, 00% 16, 7% 8, 3% 5% 3, 3% 2, 4% 1, 8%

Table 4.1: Ideal progressive gain, in percent, when using 2 to 8 devices

4.7 Timeline profiling

While debugging and testing our first multi-GPU prototypes, we soon felt the

need to profile accurately the execution of the simulations across multiple devices

to find out the effectiveness of asynchronous operations and to detect potential

bugs and unwanted race conditions.

In year 2008 NVIDIA released the Visual Profiler, a multi-platform profiling

utility now provided as part of the CUDA SDK tools [16]. The Visual Profiler runs

a CUDA program in a special environment that makes the CUDA runtime log

information about the ongoing operations. Example of information include the

number of cache hits and misses, timestamps and duration of kernel executions

and memory transfers, number of coalesced and uncoalesced memory access, occu-

pancy of a kernel, and other. Is is also possible to add custom fields by using special

registers within the kernel code. However, the Visual Profiler did not provide until

recently a graphical plot and comparison of the execution timelines, especially for

multi-GPU environments. Moreover, all asynchronous operations were made syn-

chronous for logging purposes, voiding any possibility to check the actual overlap

between transfers and computations.

The CUDA runtime offers the possibility to log, optionally in CSV format, in-

formation such as the beginning and ending timestamps of any kernel or transfer

performed on the GPU, as long as some special environment variables are set.

It is not easy to interpret the logged information, as this feature is very poorly

documented and the meaning of some fields is still unknown, but this allows not

to lose the overlap among asynchronous operations. We then implemented a little

tool that takes in input the log of an execution and produces a custom multi-device
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timeline in SVG format.

The output is a fully configurable timeline with indications about the absolute

and relative execution times. It shows the time at which an operation has been

issued on the CPU and the time it was actually performed on the device. Thanks

to the powerful ECMA script feature of the SVG standard, it is possible to see

detailed informations about an event just by hovering the mouse on an event,

as shown in fig. 4.2. It is possible to configure via command-line a number of

graphical parameters (e.g. horizontal drawing scale) and filtering options (e.g.

hide CUDPP calls or replace decorated kernel names); the visualization can be

organized by method name (fig. 4.2) or by stream (fig. 4.3) and it is possible to

show the timelines of different GPUs in the same view. The only important limit

currently known is the lack of an accurate synchronization between timelines of

different devices. Unfortunately, each device uses its own clock-driven timeline

and there is no documented way to fix an absolute relation between any two. We

thus had to synchronize by means of different estimates, e.g. knowing the process

start time or timing a dummy kernel launch as a reference.

Figure 4.2: Timeline produced for a 3-GPUs MAGFLOW simulation (only 2 are shown).
The overlap between the bordering slice transfer (in purple) and the CalcFlux kernel (in
read) is immediately recognizable. Together with the yellow popup, two event delimiters
appear on hovering, to compare the event time with other events even in different GPUs.
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This little tool boosted the testing and debugging process of both simulators, al-

lowing to rapidly find minor bugs that prevented some operations or even different

devices to overlap their execution. In general, a detailed graphical representation

of what is really happening in the device helps to evaluate quickly the efficiency

of new design hypotheses and fine tune execution parameters.

Stream 0

Stream 1

Stream 2

Stream 3

431.755ms 531.755ms

Stream 0

Stream 1

Stream 2

Stream 3

431.755ms 531.755ms

Stream 0

Stream 1

Stream 2

Stream 3

431.755ms 531.755ms
stream: 0; dir.: -; size: 0; mem_type - 
method: buildNeibs; on gpu: 16132.4µs; row: 125; 

Figure 4.3: Timeline produced for a 3-GPUs GPUSPH simulation, aligned by stream. Note
the dependency of memory transfers on previous kernels of the same stream, esp. in GPU
n.3 (the central one of the simulation, with 2 bordering slices).

The timeline feature, which at the time we started working on multi-GPU was

only available as a plugin for the Microsoft Visual Studio commercial IDE for

Windows [15], seems to have been finally introduced in recent CUDA 4.1RC release

[14]. Although one of the counters is supposed to measure the overlapping ratio

of calls to the asynchronous API, it seems many calls are still made synchronous,

and this is confirmed by the bad performance of programs being profiled. It is

therefore still not possible to profile a multi-GPU program and track the actual

amount of asynchronous operations unless using a non-official profiler like the

one we developed.

In the future, the timeline tool might be improved for general use with a user

friendly interface and, most important, an automatic system to synchronize the
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timelines of different devices (e.g. with a timed dummy kernel launch).

4.8 Testbed

4.8.1 MAGFLOW

Our test-bed for the MAGFLOW simulator was the simulation of the lava erup-

tion on Etna volcano in the year 2001 on DEMs with 2m and 5m resolution.

In this scenario there is a single vent emitting up to 30m3/s fluid lava with a

pseudo-gaussian trend. The lava was modeled with a Bingham rheology [9] and

a Giordano-Dingwell viscosity [24] with a solidification temperature of 800◦ and a

0.2% water percentage. Some sets of simulations were resumed from one already

19% complete, where the bounding box of the active flow had already reached its

maximum extent.

4.8.2 GPUSPH

In GPUSPH the scenario to be simulated (topology plus various parameters) is en-

capsulated into the C++ virtual class Problem. A class that inherits from Prob-

lem must define the environment (e.g. walls) and the amount and initial shape

of fluid. Optionally, it is possible to override the default physical and simulation

parameters. We used two classes in particular, DamBreak3D and BoreInABox,

both defining a 0.43m3 parallelepiped of water in a box. The former containes a

column-shaped obstacle almost in the center; the latter has a wall on one side par-

tially containing the fluid and an optional second wall making a corridor. In the

DamBreak3D the fluid flows almost evenly in the domain, while in BoreInABox

the flow soon becomes strongly asymmetric and flattens afterward in the non-

corridor variant. The SPH is set to use a Wendland kernel with a density in

the range 4 · 10−3...4 · 10−3; the fluid was modeled with an artificial viscosity law
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(α = 4) and a speed of sound c =


300 · 0.4 · g m/s.

4.8.3 Hardware

Our testing platform is a TYAN-FT72 rack mounting 6×GTX480 cards on as many

2nd generation PCI-Express slots. The system is based on a dual-Xeon processor

with 16 total cores (E5520 at 2.27GHz, 8Mb cache) and 16Gb RAM in dual channel.

Each GTX480 has 480 CUDA cores grouped in 15 multiprocessors, 48Kb shared

memory per MP, 1.5Gb global memory with a measured datarate of about 3.5Gb/s

host-to-device and 2.5 Gb/s device-to-host (with 5.7 Gb/s HtD and 3.1 Gb/s DtH

peak speeds for pinned buffers).

The operative system is Ubuntu 10.04.2 LTS Lucid Lynx 2.6.32-33-server SMP

x86_64, gcc 4.4.3, CUDA runtime 3.2 and NVIDIA video driver 285.05.09.
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The MAGFLOW simulator



Chapter 5

The MAGFLOW simulator

The MAGFLOW model is an advanced state-of-the-art Cellular Automaton (CA)

for lava flow simulation. Its physics-based cell evolution equation guarantees ac-

curacy and adherence to reality, at the cost of a significant computational time for

long-running simulations. We here provide an overview of the related work, then

describe the model behind the simulator and finally the single- and multi-GPU

implementations.

5.1 Related work

The CA-based approach is probably one of the most successful for the simulation

of a lava flows [17, 43, 54, 4]. The computational domain is represented by a

regular grid of 2D or 3D cells, each characterized by properties such as lava height

and temperature; an evolution function for the properties of the cells models the

behavior of the fluid.

The MAGFLOW model [80] is a cellular automaton developed at INGV-Catania

and capable of modeling many physical phenomena of lava flows like thermal

effects and temperature-dependent viscosity change.

It has been successfully used both to reproduce well known past events (vali-
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dation) and to predict the behavior of the lava flow in real-time during the Etna

eruptions of 2004 [20], 2006 [37, 79] and 2008 [10]. It has been possible to use it for

forecasting purposes thanks to its fast GPU implementation, which can simulate

several days of eruption in a few hours.

5.2 Model

We here describe briefly the MAGFLOW model as necessary basis to understand

the single- and multi-GPU implementation; for a detailed description please refer

to [80].

The simulation domain is modeled as a regular 2D grid of cells whose side

matches the resolution of the DEM (Digital Elevation Model) available for the area.

Each cell carries five scalar properties: ground elevation, fluid lava thickness, so-

lidified lava thickness, heat and temperature. Cells marked as “vent” also have a

lava emission rate, which is usually time-dependent.

The state of a cell at step s depends on the state of the eight neighboring cells

(Moore neighborhood) and on the state of the same cell at step s− 1. The lava flux

between each pair of neighboring cells is determined according to the height differ-

ence using a steady-state solution for the one-dimensional Navier-Stokes equations

for a fluid with Bingham rheology.

Ground
Solidified lava
Lava

Figure 5.1: Section of three adjacent cells with ground elevation, solidified lava and fluid
lava.

The total flux of each cell depends on the lava emission (for vent cells) plus any

lava flux with neighboring cells. The actual lava variation is given by the total flux
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Q multiplied by the timestep δt for that iteration. A numerical constraint upper-

bounds δt to prevent nonphysical simulations. Each cell computes its maximum

and the minimum of the maxima is chosen as global timestep.

Each iteration of simulation consists of the following steps:

1. Compute the lava emitted by active vents;

2. Compute the cross-cell lava flux between each pair of neighbors;

3. Find the minimum timestep among the computed maxima;

4. Integrate the flux rate over the chosen timestep: compute new lava thickness,

solidified lava and heat loss.

The MAGFLOW simulator was initially developed only for serial CPU exe-

cution. As the model suits well a parallel implementation, it was ported to be

executed on a many-core GPU.

5.3 Single-GPU MAGFLOW

Porting MAGFLOW to CUDA was relatively easy due to the implicit parallel na-

ture of the model. Each cell only depends on the previous state of the same cell

and of a small number of neighbors (eight); the only global operation is finding

the minimum δt. We can therefore run one thread per cell and let them run in

parallel, each computing its next state.

The CPU implementation of MAGFLOW defined a Cell structure holding the

data for each cell; the automaton was essentially a list of Cells. The GPU version of

MAGFLOW defines instead an array for each property of the cells. This follows the

NVIDIA recommendation to use structures of arrays rather than arrays of structures

[63], and it is aimed to improve coalescence in memory accesses.

The four steps of the CPU implementation were straightforwardly implemented

as GPU kernels:
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1. Erupt: for each cell, compute lava emission if it is a vent (parallel);

2. CalcFlux: for each cell, compute the final flux by iterating on neighbors,

sum the partial fluxes and compute the maximum δt (parallel);

3. MinimumScan: find the minimum δt (global scan);

4. Update: compute new lava thickness, solidified lava and heat loss (parallel).

As showed in the list, the only operation that is not truly parallel is the mini-

mum scan, for which the CUDPP library is used.

The main difference between the serial CPU-based implementation and the par-

allel GPU-based one is the number of times interactions are computed. The CPU

code computes the interaction between two cells once and adds the contribution

to both cell (with proper change in sign). The GPU benefits instead from totally

independent and parallel computations, and it is more efficient to let each cell

compute the interactions with all its neighbors, even if this means computing each

interaction twice. This approach simplifies the implementation substantially, since

it avoids the concurrency problems that have to be dealt with when partial results

are stored on cell by multiple neighbors.

R

CPU GPU

R/WR/W

R/W

R/W

R/W R/W

R R R

R R

R R

Figure 5.2: The CPU code computes the interaction of a pair of neighbors once and adds
the partial on both; the GPU code computes all the interactions for each cell and only
writes self total.
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As mentioned in section 2.3, numerical results may vary a little with respect to

the CPU implementation as partial fluxes are added together in a different order.

We use the Kahan summation algorithm to mitigate this difference. Moreover, the

CPU implementation used double precision while most GPU simulations are run

on cards featuring hardware single precision. The numerical differences, however,

do not alter the simulation significantly.

The performance results of the GPU implementation are quite impressive. The

speedup factor depends on the hardware used, the topology of the flow and the

DEM resolution. For example, the higher the DEM resolution, the more saturated

is the GPU, thus better covering all transfers and other GPU-related overheads. In

the general case, it is safe to say that on recent hardware (i.e. GTX480) the speedup

over the reference serial implementation for single-core CPUs varies from 50× to

100×, taking only tens of seconds to simulate a one week eruption.

More details on the implementation, validation and performance gain of the

GPU-based MAGFLOW can be found in [8].



Chapter 6

Multi-GPU MAGFLOW

We here describe how the parallel, GPU-based MAGFLOW was adapted to run on

multiple GPUs simultaneously, thus exploiting a second level of parallelism.

6.1 Splitting the problem

There are in general at least two ways to exploit a second level of parallelism for an

already parallel problem: splitting the set of data to be elaborated (space domain)

or split the set of computations to be performed (computational domain).

The simplest and most intuitive is to split the automaton domain into separate

areas and assign each area to a different device. Because the flux computation for

every cell requires to access its immediate neighbors, the split areas need to have

some degree of overlap.

We could instead divide the problem in the domain of computations, assigning

each phase of the computation to a different device (in pipeline). This approach

presents unfortunately three major drawbacks: it is not possible to scale to an arbi-

trary number of devices; it is not trivial to balance computational load among the

devices; it requires the complete domain to be continuously transferred through

all active devices during the whole simulation. For these reasons, we chose the
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former (spatial) division.

The two-dimensional arrays of cells holding all the properties needed for a

simulation are stored in row-major order, following the C convention. This must

be taken into account for the optimization of memory transfers, since accessing a

burst of consecutive cells is faster than accessing the same amount of data sparsely

distributed. We therefore split the domain only horizontally, in stripes, so that we

will need to transfer only whole rows. In special cases of very narrow, rectangular

domains, we can work on transposed data depending on which choice will lead to

shorter rows.

Steps 1 (Erupt) and 4 (Update) do not require any special consideration when

splitting the simulation domain; each cell runs the Erupt and Update kernels in

a completely independent fashion. No significant changes are thus required with

respect to the single-GPU implementation.

Step 3 (Minimum scan) easily scales to multiple GPUs as each GPU provides

its local minimum and the global one is chosen with a quick comparison. Step 2

(CalcFlux) is the only one having consequences on the split as each cell requires

to access its immediate neighbors. Because it is not possible to access a cell from

one device to another in an efficient and completely transparent way, each device

must hold a copy of an entire row of cells (the neighbors of the edging subdomain

cells) along each edge shared with another device subdomain. This copied row

is read-only, and needs to be updated at every iteration. Because also neighbor

devices need a row to read from, the total overlap is 2 cells thick. Fig 6.1 represents

such a subdomain division.

Let D be the number of available GPU devices; a workstation usually has 1 to 3

devices, while a dedicated rack may host up to 8 devices per PCI domain. Let also

R be the number of rows and C the number of columns of the simulation domain.

We split our R×C grid in horizontal subdomains and we assign bordering subdo-

mains to consecutive GPU indices. If we split the domain in equal parts, assuming
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for simplicity that R is a multiple of D, the device of index d will be assigned to

zero-based rows d(R/D) to (d + 1)(R/D)− 1.

0
1
...

d(rows/D)

d(rows/D)-1

(d+1)(rows/D)-1

...

...

...

...
(d+1)(rows/D)

(d+2)(rows/D)-1

...

d=0

d=1

d=2

Figure 6.1: Representation of subdomains and overlapping rows. The internal rows of
stripe assigned to device d = 1 are green, the external ones (i.e. one internal of device
d = 0 and one internal for d = 2) are light red.

However, device d needs to read cells in row d(R/D)− 1 to compute cross-cell

lava fluxes of row d(R/D), i.e. it needs to read the last row of device (d − 1);

the same reasoning applies to row (R/D)(d + 1) − 1, that requires reading ac-

cess to row (d + 1)(R/D). Devices (d − 1) and (d + 1) need in turn to read

respectively the first and the last row assigned to device d; the needed overlap-

ping between contiguous subdomains is therefore two rows high. We call rows

[d(R/D) . . . (d + 1)(R/D)− 1] internal rows for device d, while rows [d(R/D)− 1]

and [(d + 1)(R/D)] are external rows for the same device. Every device computes

and writes the status of all its internal rows, while the external ones are just copies

accessed for reading.
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6.2 Hiding row transfers

Transferring one row of cells takes a variable time depending on the underlying

hardware, the PCI bus utilization, the DEM resolution, the direction of the transfer,

and many others. We observed an average time of 10% the total GPU time required

by one iteration on a 2-GPU simulation. The more the number of devices, the

more edges we need to transfer, the more PCI bus will congest and slow down.

Moreover, PCI bus is full-duplex but multiple transfers in the same direction can

not interlace and are thus serialized.

We need a technique to cover these latencies. As already mentioned, CUDA

offers a simple though efficient feature: asynchronous data transfers, where “asyn-

chronous” refers to the possibility to perform them concurrently with kernel exe-

cutions. We can organize the simulator so that the transfer of borders is “hidden”

by a kernel execution.

The key idea is to compute the borders first, and begin to download them as

soon as they are ready, while still working on the rest of the subdomain. As soon

as all borders have been downloaded, it is possible to upload them to neighbor

devices, so that every device will have an updated copy of external cells at the

beginning of the next iteration. To exchange the final, integrated amount of fluid

lava we should run the transfers in parallel with the euler kernel. However, this

takes too little time to complete and does not saturate the device enough to be split

in portions.

It would be more efficient to run the transfers in parallel with the computation

of fluxes, that takes most of the simulation time and would be surely long enough

to hide the transfers. Lava amounts are not ready in this phase, as fluxes have

not been integrated yet, but we can transfer fluxes instead; we will then need to

run the integration also on external borders, as we have most recent fluxes but not

quantities of lava.
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The key idea is to compute the flux of the internal bordering rows first, and be-

gin to download them as soon as they are ready; while they are being transferred,

the GPU can work on the remaining subdomain. We need to split the CalcFlux

kernel in two or three executions, the first two of which running on the internal

borders only and the third one computing the remaining cells. Fig. 6.2 represents

the way concurrent transfers and computations are issued and performed.

fluxes_and_transfers

Launch kernel_fluxes on edging internal 

slices (1,2)

Launch kernel_fluxes on the rest of slices (3)

Launch download of internal slices (dqs)

GPUThread BARRIER

Launch upload of external slices (dqs)

GPU

Stream A Stream B Stream C
1

2

3

Figure 6.2: Final design of fluxes_and_transfers method. Note that the fluxes are ex-
changed instead of the integrated lava amounts, which are not reay yet. As a consequence,
euler kernel must be run also on external cells.

Since transferring the borders (downloading and uploading) takes much less

time than computing the fluxes on the rest of cells, data transfers are expected to

be completely covered by the second CalcFlux call. The amount of data com-

puted by the first call is actually more than one row as it is not convenient to run

a kernel which does not saturate the hardware; moreover, it is more robust to run

CalcFlux one time for each border than once for both. The most efficient and el-

egant solution is therefore to split the subdomain in three equal stripes and launch

the kernel one time for each stripe.

6.3 Barriers

A barrier is needed in between the download and the upload of borders to keep

data integrity and avoid r/w conflicts. The barrier has been implemented as a

stream flushing call (cudaStreamSynchronize), only on the streams assigned
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to borders, and a CPU thread barrier (pthread_barrier_wait), to ensure that

all the devices reached the same point. In fig. 6.2 these are called GPUThread

barrier. Note that these barriers do not stop nor wait for the CalcFlux kernel, that

in the mean time computes the fluxes non non-bordering cells. The host copies of

the borders are double buffered to prevent the unfortunate case of a CPU thread

so fast that the internal rows are already being written by the next iteration before

they have been upload by neighbor GPUs (e.g. if the scheduler of the operative

system pauses one of the GPUThreads for too long).

Another barrier is required when selecting the minimum δt: as soon as they

selected their local minimum, all GPUs must communicate this value and wait

for the global one to be selected by the CPU. This time we call a general device

flushing call (cudaThreadSynchronize), which waits for all kernels up to the

MinimumScan to be complete, and a CPU thread barrier (pthread_barrier_wait),

to ensure that all local dts have been written. In fig. 6.3 these are called BARRIER.

GPUThread::runMultiGPU()

Allocate CPU buffers

Compute first split

Launch SimulationThreads

while (running)
    BARRIER
    choose global min. dt
    t += dt
    update moving boundaries
    check if need save_request
    check if simulation is over
    check balancing
    if (unbalanced)
        compute new balance
    BARRIER

Deallocate CPU buffers

Allocate GPU buffers

Upload data to GPU

while (running)
    kernel_erupt
    fluxes_and_transfers
    kernel_find_min_dt
    BARRIER
    BARRIER
    kernel_euler
    if (save_request)
        dump_subdomain

Deallocate GPU buffers

Figure 6.3: Simplified scheme of the simulator structure. NPTL barriers are purple; the
red fluxes_and_transfers method encapsulates also asynchronous slice exchange.
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6.4 From serial to parallel code

The CUDA parts of the single-GPU MAGFLOW implementation underwent al-

most no changes while porting to multi-GPU. The CPU code, as well as the general

structure, was instead completely redesigned.

In the multi-GPU implementation we introduce the class GPUThread (not to

be confused with GPU threads, that are GPU instances of a kernel), that en-

capsulates all pointers and CUDA calls needed to handle a GPU and work on

the assigned subdomain. The main thread allocates one GPUThread per de-

vice and each GPUThread starts a dedicated pthread in constant communi-

cation with the associated device. Threads are mainly synchronized with the

pthread_barrier_wait() primitive of the NTPL pthread implementation [22].

We also tried other sets of primitives, like a far more CPU-consuming busy-wait

mechanism, but pthread_barrier_wait() performed quite well with an over-

head measured in some seconds every hour of simulation.

The main thread tracks the simulation time and periodically requests a subdo-

main dump from the GPUs according to a user-defined save frequency. An op-

tional auxiliary thread checks periodically the status of the system for debugging

purposes.

It is possible to specify at command line several options such as the simulation

percentage to run, an interrupted simulation to restore and the list of devices to

be used. Devices may be heterogeneous and even belong to different generations

(e.g. Tesla and Fermi). It is possible to specify a device more than once; this

causes two or more GPUThreads to use the same physical device, thus emulating

a multi-GPU behavior on a single-GPU machine. Obviously, this is useful only

when developing/debugging and gives no performance gain. The data is not

multi-GPU aware: it is possible to save the state of a single-GPU simulation and to

load it in a multi-GPU environment, and vice-versa.
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6.5 Preliminary performance analysis

We could think that splitting a simulation on D devices would complete D× faster

than on a single GPU. Unfortunately, things are not that simple. The first as-

pect we need to consider is the different device saturation each kernel reaches.

The CalcFlux kernel is the only one capable of saturating the hardware. The

Erupt kernel does almost no mathematical operations but accesses the global

memory at least twice; this means most of the time is spent waiting for the data

transfer to complete, and working on a subdomain smaller than the global one

does not yield a proportional performance gain. The same consideration holds

for the MinimumScan, but for a different reason: a parallel reduction usually

takes log(N) operations and even halving the size of the input we still need

log(
N
2
) = log(N) − 1 operations. Also the Update kernel barely saturates the

hardware. The plot in fig. 6.4 shows how much time the kernels take with respect

to the number of input cells, from 100 to 6 · 104 (corresponding to the number

instantiated GPU threads).
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Figure 6.4: Execution times of each step with respect to the number of active cells in the
domain.
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We notice a sudden change in the time of CalcFlux kernel at about 7500 cells

and a smaller one around 104. The first “step” is the saturation point of the GPU;

before the hardware is saturated, we get no benefit in decreasing the size of the

assigned subdomain. It is now clear that it is not convenient to split a simulation

on multiple devices if the resolution of the underlying DEM is very small.

We also notice that although the growth of CalcFlux and Update kernels is

almost linear, their fit corresponds to a line of the kind ax + by + c = 0 with c > 0.

This means that even for kernels actually saturating the hardware, say N is the

size of the input and T the time required to compute it, it is

T(N/D) > T(N)/D (6.1)

Let us call TE, TC, TM and TU the time required by kernels Erupt, CalcFlux,

Minimum Scan and Update, respectively. The time T required to complete an

iteration of the automaton on an input big N is

T(N) = TE(N) + TC(N) + TM(N) + TU(N) (6.2)

If we compute the average time taken by each kernel over the whole simulation we

find that the the Erupt kernel takes about 2% of the total GPU time; CalcFlux

73.0%; MinimumScan 9.0% and Update 16%. From the observed trend (linear

or constant) we also know that the approximate time taken by each kernel on a

fraction 1/D of the input is

TE(N/D) ≈ TE(N)

TC(N/D) > TC(N)/D

TM(N/D) ≈ TM(N)

TU(N/D) > TU(N)/D
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We can thus estimate the total time TD required by an iteration using D GPUs as

TD(N/D) > 0.02 + 0.73/D + 0.09 + 0.16/D ⇒

TD(N/D) > (0.11 + 0.89/D)T (6.3)

We have a substantial fraction of the problem that just does not scale, as if it was

non-parallelizable. Even assuming zero-overhead, the maximum speedup we can

achieve is Smax(D) = 1/TD(N/D) with T = 1, i.e.:

Smax(D) =
1

0.11 +
0.89
D

(6.4)

More formally, we estimated β = 0.11 and α = 0.89. This limits the maximum

achievable speedup, in Amdahl’s speak, to∼ 3.87×with 6 devices, with an asymp-

totic upper bound of 1/0.11 ≈ 9.1× (with a number of cores that goes to infinite).

We should remark, however, that among the limitations of the Amdahl’s law there

is the simplicity of assumptions such as that the parallelizable part scales linearly.

In this case, for example, this is not true, as each kernel scales with a different rate.

We never experienced the need for a simulation with a higher resolution than

2m. As the memory required by a simulation up to this resolution always fits

the memory of one devices, the multi-GPU MAGFLOW allocates in each GPU

enough memory to contain the whole simulation. Though not memory-efficient,

this is very robust and straight to implement. For this reason, it is not proper for

MAGFLOW to estimate the scaled speedup (in Gustafson’s speak) of the multi-GPU

implementation, as the size of the problem can not increase indefinitely.
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6.6 Load balancing

It is trivial to prove that an even division performs better than one in which the

time taken by one or more devices largely differs from the average. As the topology

of the flow may vary greatly, a static subdomain assignment made at the beginning

of a simulation would end up in a completely unbalanced division, undermining

the overall performance. A dynamic load balancing system is necessary.

As the simulation begins, the main thread makes a rough estimation of the

computational power of each active GPU by retrieving the number of their mul-

tiprocessors, then assigns parts of the domain proportionally with the computa-

tional power of the devices. As the bounding box of the lava flow grows, the

proportions are checked again and if the distribution of rows does not reflect any-

more the computational power ratio, the splits dynamically move by one row at a

time. While dynamic, this only an a priori load balancing, i.e. it tries to estimate

what is best to do but does not check if the consequences are actually positive.

Unfortunately, there are some unpredictable runtime factors that influence the

performance of the devices (CPU thread scheduling, GPU block scheduling, PCI

bus conflicts, particular lava flow topologies, etc.). The only way to take into ac-

count all these factors is to change the split proportions according to the execution

times of previous iterations (a posteriori load balancing). However, because the cur-

rent approach is quite robust and performs reasonably well, we did not implement

yet such a complex balancer for the multi-GPU MAGFLOW.

Lava flows often start with a very small or even single-cell extent; the lava

erupted by vent cells, then, makes them quickly expand until they eventually sta-

bilize to a certain extent. Splitting the automaton immediately after a simulation

is started would give us no speedup, or even slow down the performance. For this

reason, the simulator always starts a simulation on a single GPU and then enables

one GPU at a time, as long as all of the already active devices are saturated. As
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an a priori saturation threshold, we roughly estimated that a device should not be

considered saturated unless the number of issued kernel blocks is about one order

of magnitude bigger than the number of multiprocessors. Every time a new device

is activated, the domain is split again among the active GPUs. Fig. 6.5 shows how

the number of devices and the size of the subdomains dynamically changes as the

bounding box of the simulated flow grows.

1.8 · 104s (1 GPU) 2.6 · 104s (2 GPUs) 2 · 105s (3 GPUs) 4.9 · 105s (3 GPUs)

Figure 6.5: Snapshots of different phases of a simulation with MAGFLOW. The available
devices are enabled one at a time while the previous ones are saturated. As the bounding
box of the lava flow grows, the subdomains are dynamically reassigned.

6.7 Interface

Though not fundamental for the purposes of the simulations, we took the op-

portunity of redesigning the simulator to add a real-time display of the ongoing

simulations. Its main purpose is to visually monitor the topology and size of a

simulation while it runs, without the need to export the temporary dumps and

import them into an external visualization tool. It was also extremely useful for

debugging purposes and as an insight to the simulator internals.

Fig. 6.6 is a screenshot of the mentioned interface. It is just a single window

where it is possible to draw the running lava flow as well as the DEM underlying
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Figure 6.6: Screenshot of the simulator interface while running a 4-GPUs simulation.

the simulation and the solidified lava. It outlines the bounding box of the active

eruption and, in case of a multi-GPU simulation, the subdomain division. The

palette reflects the amount of lava contained in a cell and some text information

about the state of the simulation are drawn in the upper right corner.

6.8 Results

The multi-GPU MAGFLOW has been tested by simulating the lava eruption on

Etna volcano in year 2001 on the rack described in section 4.8. We ran the simu-

lations on DEMs with 5m and 2m resolutions, loading from a simulation that was

already 19% complete, so that the active box already reached its maximum extent.
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DamBreak3D 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
Real time (s) 14, 377 7, 737 5, 813 4, 993 4, 562 4, 500
Ideal time (s) 14, 377 7, 189 4, 792 3, 594 2, 875 2, 396
Real cost (s) 0 549 1, 021 1, 399 1, 687 2, 104
Karp-Flatt (βKF) 0 0.076 0.106 0.130 0.147 0.176

Table 6.1: Multi-GPU MAGFLOW execution times, overhead in seconds and Karp-Flatt
metric, while simulating on a 2m DEM

As a single simulation may require days to complete, for performance comparison

most tests performed up to 20% or 22% of simulation time. All tests have been

numerically validated and the comparison refers to the same simulation with the

same options (e.g. state dumping frequency) as computed by the single-GPU code.

Table 6.1 shows the execution times in seconds.

1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
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Figure 6.7: Simulation time: real, ideal and difference between the two, 1 to 6 devices.

Table 6.1 lists the actual and ideal execution times, overheads in seconds and

serial fraction estimated with the Karp-Flatt metric. As βKF keeps growing, we are

introducing some liner overhead, the source of which we identified with the lack

of an a posteriori load balancing.

Fig. 6.7 plots the same data as table 6.1. Being T the total simulation time and

D the number of GPUs used, T differs from the ideal time T/D only for a constant
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Figure 6.8: Speedup: observed and ideal, 1 to 6 devices. The purple line marks the
theoretical maxim estimated with equation 6.4.

overhead Q approximately equal to 4 · 10−2 · T · D.

Because the overhead is approximately linear, we can apply the estimation tech-

nique mentioned in section 4.6. The overhead introduced for each new device is

≈ 4 · 10−2 · T; the maximum number of devices satisfying the inequality 4.6 is

Dmax = 5.

Indeed, table 6.1 confirms our estimate: if we split the simulation across more

than 5 GPUs, the cost becomes comparable with the simulation time and it is not

convenient to exploit the sixth, available GPU.

The overhead size with respect to the total simulation time depends on the

simulation settings, and sometimes even on the input data (e.g. topology of the

flow). For example, the same eruption on a 5m DEM can benefit at most from

being distribute across 3 GPUs, as at that resolution even a single-device simulation

barely saturates the GPU. More in general, the maximum number of GPUs across

which it is convenient to distribute the computation depends on the total number

of active cells (i.e. the extent of the simulated flow) and the DEM resolution.



Part III

The GPUSPH simulator



Chapter 7

The GPUSPH simulator

GPUSPH is the CUDA implementation of fluid-dynamics models based on the

Smoothed Particle Hydrodynamics (SPH) numerical method. It allows for sim-

ulations with a superior adherence to fluid physics and enables simulating phe-

nomena like fluid-solid interaction and crust formation that would not be possible

to simulate with a model based on the cellular automaton approach. This flex-

ibility comes at the price of increased computational and memory requirements

with respect to the MAGFLOW simulator. Luckily, SPH too exposes an intrinsic

parallelism that makes it convenient for implementation on a many-core GPU.

Similarly to the arrangement of part II, here follows an overview of the related

work, the model and the single- and multi-GPU implementations.

7.1 SPH

SPH is a mesh-free, Lagrangian numerical method for fluid modeling, originally

developed by Gingold, Monaghan and Lucy [23, 56] for astrophysical simulations.

The mathematics behind the SPH method rely on the properties of convolu-

tions. For any scalar field u in a domain Ω ⊆ Rd we can write, by definition of the
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Dirac’s delta distribution δ:

u(x) =


Ω
u(y)δ(x− y)dy.

Let W(·, h) be a family of smoothing kernels, parametrized by their smoothing

length h, satisfying


Rd

W(x, h)dx = 1

lim
h→0

W(·, h) = δ

We can approximate δ with a W as follows:

u(x) ≃


Ω
u(y)W(x− y, h)dy. (7.1)

Let Ω represent the body of the fluid with density ρ : Ω → R. We can discretize

Ω with a set of points xi, each with an associated mass mi. The volume associated

with the point xi is then Vi = mi/ρ(xi) and the integral 7.1 can be approximated

with


Ω

u(y)W(x− y, h)dy ≃

∑
i

u(xi)W(x− xi)Vi =

∑
i

u(xi)
mi

ρi
W(x− xi, h)

we arrive thus at the standard SPH discretization for field values:

< u(x) >= ∑
i

u(xi)
mi

ρi
W(x− xi, h) (7.2)

which is the standard SPH interpolation formula for scalar fields.

The smoothing kernels are usually chosen with compact support so that the
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summation is extended only to particles in a spatial neighborhood of x; they are

chosen positive, so that the interpolated density

< ρ(x) >= ∑
i

miW(x− xi, h)

is always strictly positive; and they are chosen center-symmetric to ensure first-

order accuracy of interpolation.

7.1.1 SPH for derivatives

It is possible to transfer the ∇ operator to the kernel by exploiting the divergence

theorem and the properties of convolutions. We then obtain the first form of the

SPH interpolation for the gradient:

< ∇u(x) >= ∑
i

ui
mi

ρi
∇W(ri, h), (7.3)

that is first order accurate for particles for which the kernel support is entirely

contained in Ω.

The SPH gradient is generally written using slightly different formulations than

(7.3). In particular:

< ∇u(xj) >= ∑
i
(ui ± uj)Vi∇Wij, (7.4)

< ∇u(xj) >=
1
ρj

∑
i
(ui − uj)mi∇Wij (7.5)

< ∇u(xj) >= ρj ∑
i


ui

ρ2
i
+

uj

ρ2
j


mi∇Wij. (7.6)

The preference of a formulation over another has to be evaluated case by case as

they present slightly different properties. For example, in (7.4) (with the plus sign)

and (7.6) it is guaranteed that the influence of particle j over particle ı̄ is opposite

the influence of particle ı̄ over particle j. On the other hand, (7.4) (with a minus
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sign) and (7.5) guarantee that the gradient of a constant function evaluates to zero.

The formulation (7.5) is computationally more efficient but (7.4) is more stable in

the case of big differences in the density values between particles (as in the case

of multiple fluids). Further details about these formulations and their applications

can be found in [57].

For second order derivatives, the standard SPH interpolation introduces very

high errors near the boundaries of Ω. In the case of the Laplacian operator, a

possible approach to solve this issue derives from the Taylor expansion of the SPH

gradient. It was introduced in [13] to model thermal conduction and adapted for

the dynamic case in [60]. It has the form

< ∇2vj >= ∑
i

mi
(ρi + ρj)xij · ∇Wij

ρiρj(x2
ij + εh2)

vij (7.7)

where ε ≃ 0.01, h is the smoothing length and the εh2 term prevents singularities

in the case of overlapping particles.

7.1.2 SPH for Navier Stokes

The simulation of a quasi-compressible and isotropic fluid is driven by the Navier-

Stokes equations paired with an equation of state:

Dv
Dt

= −∇P
ρ

+ ν∇2v + g (7.8)

Dρ

Dt
= −ρ∇ · v, (7.9)

P =
ρ0c2

s
γ


ρ

ρ0

γ

− 1


,

Here, g = (0, 0,−g) is gravity, ρ0 is the density at rest, γ is a constant generally

chosen in the range [1, 7] and the speed of sound cs is chosen to be an order of

magnitude higher than the maximum speed expected during the flow.

We can discretize these equations by applying (7.7) and (7.4) (with plus sign)
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to (7.8) and (7.5) to (7.9), resulting in:

Dρj

Dt
= ∑

i

ρj

ρi
vij · xijF(rij, h)mi,

Dv
Dt

= −∑
i


Pi + Pj

ρiρj
+ Πij


xijF(rij, h)mi + ν ∑

i

mi(ρi + ρj)vij

ρiρj
Fij

Here, Πij is an artificial viscosity that takes the form

Πij =


−αh

c̄s

ρ̄

xij · vij

rij + εh2 xij · vij < 0,

0 otherwise

where c̄s is the average speed of sound computed at the particles i and j, and ρ̄

their average density. More details on the artificial viscosity in SPH can be found

in [55].

7.1.3 Integration

The integration relies on an explicit predictor/corrector scheme with a dynamic

timestep limited by standard CFL conditions. Being fM the maximum particle

force per unit mass, the timestep is limited by:

∆t ≤ k min


h
cs

,


h
fM

,
h2

ν



with k a safety factor in range ]0, 1[.

From the particle positions Xn and velocities Vn at time tn we compute the

particle accelerations F∗n+1(Xn, Vn) and the maximum timestep ∆t∗. The predicted



7. The GPUSPH simulator 72

new positions and velocities are then:

V∗n+1 = Vn + ∆tnF∗n+1,

X∗n+1 = Xn + ∆tnV∗n+1.

with the timestep ∆tn selected from the previous iteration. The correction step

therefore computes F∗∗n+1(X∗n+1, V∗n+1) and a new maximum timestep ∆t∗∗. The

corrected velocity Vc to be used is computed as

Vc = Vn + ∆tnF∗∗n+1/2.

The final velocities and positions are computed as

Vn+1 = Vn + ∆tnF∗∗n+1

Xn+1 = Xn + ∆tnVc

and the timestep for next iteration is chosen as ∆tn+1 = min(∆t∗, ∆t∗∗).

This kind of two-step integration scheme adds some complexity when splitting

an SPH simulator on multiple GPUs, since additional memory transfers might be

necessary to keep the overlapping subdomain areas updated in-between the steps.

7.2 Related work

The SPH method has been used in many fields of research including astrophysics,

volcanology and oceanography. It has recently seen increasing interest with appli-

cation to several aspects of fluid dynamics, from free surface [58] to thermal prob-

lems [13], from gaseous media [75] to hair [31] and deformable objects [21, 74, 6]. It

has been applied to simulate phase transitions [48, 74], viscous fluids [60] and in-

teraction of miscible and immiscible fluids [61, 73]. Other partially explored fields
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include fluid-solid interaction and solid mechanics, where it is often referred as

SPAM (Smooth-Particle Applied Mechanics) [41]. Recent reviews on SPH can be

found in [59] and [26].

The great flexibility of the SPH method comes at the price of a significant com-

putational cost. Fortunately, SPH is an excellent candidate for implementation on

high performance parallel computing platforms, and in particular on GPUs. One

of the first SPH solvers partially exploiting a GPU was developed by Amada [1]:

in this case, the force computation was offloaded to the GPU while the CPU took

care of other tasks such as neighbor search. A multicore-CPU version has also

been recently developed [42].

The first implementation of the SPH method completely on the GPU is due to

Kolb and Cuntz [49] and Harada et al. [32]. A strong limitation in these imple-

mentation, as with Amada’s work, was the use of OpenGL and Cg (C for graphics)

to program the GPU. There was no official platform support for GPGPU program-

ming and this lead to some technical limitations. As an example, it was not pos-

sible to write to three-dimensional textures, and this imposed to use a flattened

two-dimensional structure to the textures holding position and velocity of each

particle.

The introduction of the CUDA architecture for NVIDIA cards in 2007 allowed

to fully exploit the computational power of modern GPUs without the limitations

imposed by having to go through the graphical engine.

The first CUDA implementation of the SPH model [35] was developed at the

Sezione di Catania of the Istituto Nazionale di Geofisica e Vulcanologia (INGV-

CT) in cooperation with the Department of Civil Engineering of the Johns Hopkins

University. It was inspired by the Fortran SPHysics code [30] and has been recently

published as the open source project GPU-SPH [36].

The first GPU-based implementation achieved two order of magnitude in speedup

over the reference single-core CPU implementation at that time. A comparison
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with an implementation optimized for modern multi-core CPUs would probably

lead to a smaller speedup; however, no such performance comparison has been

conducted as it would require to port the entire source code to OpenCL or to a

CPU-specific platform.

GPU-SPH applications range from coastal engineering [38, 18, 19] to lava flow

simulation, for which a specialized version with support for non-Newtonian vis-

cous fluids and temperature-dependent parameters has been developed [7, 39, 40]

7.3 Single-GPU GPUSPH

Here we give an overview of the simulator design as a necessary basis to under-

stand the challenges posed by the multi-GPU implementation and how they have

been overcome. For a detailed description of the porting process and the perfor-

mance results please refer to [35].

7.3.1 Kernels

The organization of the SPH method in CUDA kernels directly reflects the com-

puting phases of the SPH model:

1. BuildNeibs - For each particle, build the list of neighbors;

2. Forces - For each particle, compute the interaction with neighbors;

3. MinimumScan - Select the minimum dt among the maxima provided by

each particle;

4. Euler - For each particle, update the scalar properties integrating over se-

lected dt.

The kernel for force computation(Forces) and the kernel for integration (euler)

are actually run twice because of the two-step integrator scheme. All kernels
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have been written from scratch, except for the particle sorting during the neighbor

search phase, that uses CUDPP Radixsort, and for the minimum scan that is also

done using CUDPP.

7.3.2 Fast neighbor search

We could totally skip step one and look for neighbors only when we need to

access them (e.g. force computation). However, because we need to access them

more than once within each iteration, it is faster to build the list once and iterate

on it when needed.

The simplest way to find the neighbors of a particle is to compute the euclidean

distance to every other particle of the simulation and compare this to the influence

radius. This naïf approach, however, has a O(n2) complexity that makes it too

expensive even for small simulations. To speedup this process, the simulated vol-

ume is partitioned in virtual cells with side equal to the influence radius and all

the particles are sorted and indexed with respect to such grid. When looking for

neighbors of a given particle it is enough to iterate only on neighbor cells instead

of the whole simulation domain. Fig. 7.1 is a schematic representation of the vir-

tual cells in 2D. It is worth to highlight that this grid serves only to speed up the

neighbor search, and has nothing to do with the SPH model.

Building the list of neighbors for every particle of the simulation still requires

about 50% the total simulation time, even using the above mentioned grid for

fast neighbor search. Another optimization is to update the neighbor list every

k− th iteration; this causes a negligible loss of precision while decreasing the time

required for the neighbor list construction from 50% to about 20% of the total

simulation time.

An alternate model has been also tests, based on a completely different ap-

proach [70]. For each cell of the virtual grid, some slots are reserved to store

potential particles. In other words, the list of particles is not compressed; empty
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Figure 7.1: If cells have side equal to the influence radius, neighbors of the green particle
must reside inside in the immediate neighbor cells (light blue).

cells reserve anyway free slots for all potential particles. A particular indexing

method allowed to keep track of the particles outgoing from the cell or ingoing in

it without having to iterate on them again. No neighbor list was constructed, as

neighbors were listed only when needed.

border !outgoing fluid empty locations o.fluid

Figure 7.2: Organization and indexing of particles in a cell in the alternate model.

The approach resulted to have a memory consumption and a computational

cost similar to the traditional and nevertheless simpler method, hence researches

in this directions have been stopped by now.

7.3.3 Memory requirements

For each particle in the simulation we need to allocate in the GPU memory three

vectors, three scalar values, a particleInfo and a set of slots to store the neigh-

bor list. More specifically, we need:
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• A float4 array (pos) holding three-dimensional position and scalar mass

(double buffered because of the two-step integration scheme)

• A float4 array (vel) holding three-dimensional velocity and scalar density

(ditto)

• A float4 array (forces) holding three-dimensional force and scalar pres-

sure derivative

• A short4 array (particleInfo) holding the particle type, the object ID

and a global particle ID (useful for tracking a particle through a simulation

when post-processing the output)

• An array of MAXNEIBSNUM uint holding the list of neighbors, where MAXNEIB-

SNUM is the maximum number of neighbors per particle, selected at compile

time

• Two uint arrays holding the particle indices and hashes for sorting

• Other auxiliary arrays such as cell indices for fast neighbor search and buffers

for MinimumScan, plus some arrays that depend on specific simulation set-

tings (correction factors, vorticity vector, etc.). These other arrays may not be

necessarily proportional to the number of particles.

The overall memory requirement is about 1Kb per particle, more than half of which

being occupied by the neighbor list. The total number of particles fitting the global

memory of a GPU ranges from ∼ 5 · 105 for a card with 512Mb of RAM to ∼

1.8 · 106 for a card with 1.5Gb of RAM (e.g. a GTX480).

If P is the number of particles to be simulated in D devices, we need to allocate

more than P/D particles in each card because of the overlapping slices. If Po is the

average overlap size, we need to allocate at least P/D + 2 · Po particles. However,

because the split is at the slice level, even if load balancing is enabled it is still
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possible that the fluid topology causes a device to hold many more particles than

at the beginning of a simulation. Let us define a margin factor M f ; we can allocate

M f · P/D particles, with M f empirically estimated. In our tests it was enough to set

M f = 1.4; only the corridor version of BoreInABox problem required to slightly

increase M f . If the number of particles fits in one device, it is still possible to start

a multi-GPU simulation with the option --alloc-max, that causes allocating in

each device enough memory for the whole simulation.

On the host side, we only need a subset of these arrays as temporary storage to

periodically dump the state of the simulation. Moreover, the underlying operative

system offers a virtual memory mechanism swapping with the hard disk. The only

memory limits are therefore on the GPU side.

7.3.4 Speedup

By fine-tuning the thread block size and making most memory access coalesced,

while iterating on neighbors still requires sparse accesses that probably can not

be further optimized, it was possible to reach a speedup of two orders of mag-

nitude (i.e. 100×) with respect to a single-core CPU implementation. It is worth

keeping in mind, however, that when this comparison was conducted the CPU

implementation was used a single-core CPU in a serial way. A comparison with

respect to a modern, multi-core CPU, running a fully multi-threaded version of

the simulator, would definitely bring a quite smaller speedup factor. A detailed

comparison would require to port the whole simulator to OpenCL or to a CPU-

specific platform; we would not expect the CPU to be faster than a hundred-cores

GPU anyway.



Chapter 8

Multi-GPU GPUSPH

Exploiting a second level of parallelism required some structural changes to the

single-GPU GPUSPH code. It became a multi-threaded application and many

modules needed to be re-engineered and encapsulated in a different class struc-

ture. Some minor features were temporarily disabled for testing purposes, like

periodic boundaries, and will be enabled again soon.

Here follows an overview of the challenges we had to overcome on the model

side and on the technical side.

8.1 Splitting the problem

The key idea for exploiting multiple GPUs for the same simulation is that the total

computational burden must be fairly split among the devices. This is far from triv-

ial if the computational elements of the problems are not completely independent

of each other. The way the problem is split and the path the data has to follow

depends on the nature of the problem. There could even be no unique optimal

solution for a certain problem, as different splits may perform quite differently

according to the characteristics of a specific problem instance.

SPH is a purely parallel method except for the fact that every particle needs to
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interact with other particles closer than the influence radius (neighbors). This local-

ity constraint, together with the need to search for a globally minimum timestep,

required a special consideration when designing the parallel version of the simu-

lator. Planning to exploit multiple GPUs simultaneously brings the challenge to a

higher level, as the level of parallelism increases and the inter-particle communica-

tion becomes less simple. With this in mind, we analyze now different possibilities

for splitting GPUSPH.

We first wonder if it is convenient to use the naïve approach described in section

4.2. The Forces kernel, that is the longest step, takes about 84µs for each 1K

particles. If we consider about 128 bytes per particle, downloading 1K particles

takes about 24µs, while uploading them takes 40µs. We are still under 84µs but

we did not take into account yet the neighbor list. Its size is at least 128 · 4 bytes

per particle and it makes the transfer time overcome the kernel time. As in most

cases, this approach is not convenient here; we need a more sophisticated model,

specialized for the SPH problem.

There are at least three different ways to split a SPH simulation across multiple

GPUs. As each iteration of the simulation is made of at least 4 different steps,

we could split the problem in the domain of the computations: we could assign

each phase of the computation to a different device, thus arranging a pipeline. This

method, however, still needs the entire set of particles to be transferred at every

iteration across all the devices, and does not scale easily as the number of devices

increases.

The second possibility comes naturally from the organization of particles in

memory. SPH is a lagrangian, meshless model, where particles are arranged in a

list. We can see the list as an enumeration of all the particles with no connection at

all with their spatial position: list locality does not correspond to spatial proximity.

We could just split the list in subsets and assign each subset to a different device.

Unfortunately, this is not feasible because we have no guarantee that the neighbors
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of a particle reside on its same device, and accessing single neighbors in different

devices would bring way too much overhead.

The last possibility is to split the problem in the spatial domain. Though SPH

is a meshless method, we have seen in section 7.3.2 that particles are sorted and

indexed by means of a grid of virtual cells of the same size of the influence radius.

The SPH model is absolutely unaware of this, but keeping the particles sorted

thought the simulation greatly speeds up the neighbor search. We can exploit this

ordering to split the fluid on a spatial basis and handle a minimum overlapping

of subdomains needed by the locality requirement. This is actually an extension

of the previously described list-split that takes into account a pre-existent order

constraint. We choose the spatial split because of its simplicity, scalability and

robustness.

= particle = cell

slice sn slice sn+1 slice sn+2
slice sn+3

device D externalinternal

device D+1external internal

Figure 8.1: Representation of the the list split technique. Once particles are sorted by cells
and 3D cells are linearized, it is possible to split the 3D domain by splitting the list of
particles in specific addresses when 3D slices begin.

8.2 Split planes

While a spatial split in theory could operate on any three-dimensional plane, we

focus on the three cartesian ones (the planes orthogonal with the cartesian axes),

as the split is based on the (virtual) cubic cells used for fast neighbor search.

Although splitting along different, orthogonal planes simultaneously could be

technically possible, transferring the edge of a subdomain would be very expen-
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sive. Fig. 8.2 illustrates the problem in a simpler two-dimensional case. Assuming

that the domain is linearized in a row-first fashion, it is possible to transfer every

green edge by requesting a single memory operation, while the red edges require

many small transactions. As a general rule, it is recommended that all the split

lines (or planes in 3D) are aligned to the way data are linearized in memory. It

is thus not allowed to operate progressive splits along different planes within the

same simulation; we can imagine the 3D domain being split in slices all parallel

with each other.

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Figure 8.2: Splitting a 2D domain along the same axis or along orthogonal axes. Assuming
the data are linearized per row, it is possible to copy each of the green edges in one memory
transfer, while the red edges require many small transactions.

It is still possible to choose a different split plane for each simulation at compile

time. This is implemented by defining three different compiler macros and letting

the programmer enable any of the three; the way cells are enumerated and 3D

grid is linearized changes accordingly. The compiler macros for the device code

are reported in listing 8.1. The only simplification with respect to the actual code

is the use of the normal multiplication instead of __mul24() method, which is a

faster replacement performing a 24bit multiplication.
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1 #if defined ( PROBLEM_SIMMETRY_PLANE_XY )

2 # define PSA z

3 # define CALC_SIMMETRY_HASH return \

4 gridPos .z * ( gridSize .y * gridSize .x) + \

5 gridPos .y * ( gridSize .x) + \

6 gridPos .x;

7 # elif defined ( PROBLEM_SIMMETRY_PLANE_XZ )

8 # define PSA y

9 # define CALC_SIMMETRY_HASH return \

10 gridPos .y * ( gridSize .z * gridSize .x) + \

11 gridPos .z * ( gridSize .x) + \

12 gridPos .x;

13 # elif defined ( PROBLEM_SIMMETRY_PLANE_YZ )

14 # define PSA x

15 # define CALC_SIMMETRY_HASH return \

16 gridPos .x * ( gridSize .y * gridSize .z) + \

17 gridPos .y * ( gridSize .z) + \

18 gridPos .z;

19 # else

20 # error No split plane defined in the selected problem .

21 // the following avoids further compile errors

22 # define PSA x

23 # endif

Listing 8.1: Compiler defines for different linearization of 3D cells according to the

split plane; PSA stands for Principal Split Axis.

It is up to the programmer to decide which split plane is the most convenient.

As a rule of thumb, one should choose the split that minimizes the number of par-

ticles per slices (i.e. the sections of fluid being cut). For most problems the choice

has no big consequences as the time required for transferring an overlapping slice,

whatever the chosen plane, is usually completely covered by the force computa-

tion. Very asymmetric topologies, however, may benefit from a proper cut when

load balancing, as the balancing granularity is at the slice level (see section 8.10).
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8.3 Subdomain overlap

To ensure that all the neighbors of a particle p reside on the same device as p

we need a small section of the subdomain of each GPU to overlap with neighbor

devices. An overlapping the size of the influence radius for each GPU is necessary

and sufficient to have this condition guaranteed. As either one of two neighboring

subdomains must overlap with the other, the total overlap is twice as wide as the

influence radius. Recalling that the split is done by means of the grid of virtual

cells, and that cells have size equal to the influence radius, the total overlap is

exactly two cells wide.

In three-dimensional space, we can think of slices of volume to be exchanged

at every iteration (see fig. 8.3). Each device needs a copy of the first slice of

neighboring devices as read-only information for the interaction with neighbors,

and sends its edging slices as read-only copy to neighboring devices. We refer to

the assigned read/write particles as internal ones and to the read-only particles as

external. When referring to slices, internal and external also means edging (i.e. first

or last slice of the device subdomain).

Figure 8.3 represents one possible split of a simulation domain. The subdo-

mains assigned to two devices and their overlaps are highlighted. The position of

the particles is taken from an actual simulation and particles are colored by veloc-

ity. The blue spot in device n.2 is due to the impact with an obstacle not drawn for

visualization purposes.

8.4 Kernels

We now discuss about the kernels and what changes were necessary to pass from

one GPU to multiple GPUs.

Working on a subset of the global domain is trivial for step 1 (neighbor search)

and 4 (integration) of the model. We have to be careful only in running them on the
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Figure 8.3: Fluid volume with virtual cells, split on YZ plane. The blue line shows the
internal cells of GPU n.1; light blue the external read-only slice updated by GPU n.2;
internal cells of GPU n.2 are green, while the external slice is light green. Particles are
colored by velocity and cells are not in scale for visualization purposes.

appropriate particles subset. In particular, the neighbor search reads all internal

and external particles but produces the neighbor list of internal particles only. The

integration, instead, is run on all particles, as the external ones are exchanged

as forces, as later explained, and new positions have to be computed. Running

the integration also on the external particles means that in the whole multi-GPU

simulation the overlapping slices are integrated twice. Fortunately, this overhead

is really narrow, as the integration step barely saturates the GPUs.

Step 3 (minimum scan) is straightforwardly extended to n GPUs: each device

finds its local minimum and sends it to the CPU, that quickly compares the few

local minima and finds the global one. We need a barrier to wait for all the lo-

cal minima to be ready. Step 2 requires a further remark. The neighbors of the

external particles may not be available, as the next 3D slice reside on a different

device. Therefore, any force computed on an external particle would be partial and

should not contribute to the computation of the final dt. We therefore run the force

computation kernel only on the internal particles; external ones are accessed only
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as neighbors of internal ones.

8.5 Hiding slice transfers

Each device needs an updated copy of the neighboring slices at each iteration.

More specifically, we need updated positions and velocities of particles in neigh-

boring slices each time forces are computed and integrated; due to the two-step

integration, this update has to be done twice for every iteration. This introduces a

conspicuous overhead. The contribute to the whole simulation time greatly varies

according to the density and topology of the simulated fluid. In some cases it can

even make a multi-GPU simulation perform worse than a single-GPU one.

To overcome this problem we exploit the hardware capability of performing

concurrent computations and data transfers, similarly to what we did for the multi-

GPU MAGFLOW. We use the asynchronous API described in section 3.8 to begin

the transfers as soon as the edging slices are ready, while the other one are still

being computed.

We initialize three CUDA streams for each device; we will use two of them to

enqueue operations about the edging borders and one for the remaining slices.

Except for the first and the last device, which only have one neighboring device

and thus one edging slice, all devices have two edging slices. We will describe the

behavior of a device with two neighbors, as the devices with only one neighbor are

just a simpler case. A first, simple design would be to issue first a Forces kernel

on edging slices; download the edges as soon as they are ready, while computing

the forces on the remaining slices; run the MinimumScan; run Euler kernel on the

non-edging slices while uploading the updated external edges; finally, integrate

also the edging slices as soon as the uploads are complete. Fig. 8.4 contains a

graphical representation of this scheme and they way the GPU performs the issued

operations.
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kernel_forces_async

Launch kernel_forces on edging internal

slices (1,2)

Launch kernel_forces on the rest of slices (3)

Launch download of internal slices (positions)

Launch CUDPP_minimum_scan on dts

GPUThread BARRIER

Launch kernel_euler on non-edging slices (1)

Launch upload of external slices (positions)

Launch kernel_euler on internal edging

slices (2,3)

GPU

Stream A Stream B Stream C
1

2

3

2
3

1

Figure 8.4: Early design of kernel_forces_async method. Note that the positions (and
velocities) are exchanged, and the method includes the MinimumScan and the integration.

Another possibility could be to exchange the forces instead of positions and

velocities. This would have two major advantages:

1. We can start uploading the external slices while the forces on the non-edging

slices are still being computed; because the Forces kernel takes longer than

euler, transfers are more likely to be completely hidden.

2. We need to transfer less data (forces instead of positions and velocities). This

is true unless we need additional structures, such as τ coefficients for SPS

correction [69].

As already mentioned, this comes at the small price of running the integration

kernel also on external particles. We chose the latter approach, that is represented

in fig. 8.5. The minimum scan and the integration are not included in the method

anymore, as all asynchronous transfers finish before the Forces kernel does.

In both figures 8.4 and 8.5, CUDA events are omitted for simplicity. They are

enqueued in every stream after each operation to allow fine control of completed

operations. As an example, streams A and B are synchronized (i.e. waited for) just

before the purple colored barrier, that is a “soft” barrier that only simulation-

Threads reach. Once the barrier has been reached by all threads we are thus sure

that the exchange buffers are updated and ready to be uploaded to the device.
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kernel_forces_async

Launch kernel_forces on edging internal 

slices (1,2)

Launch kernel_forces on the rest of slices (3)

Launch download of internal slices (forces)

GPUThread BARRIER

Launch upload of external slices (forces)

GPU

Stream A Stream B Stream C
1

2

3

Figure 8.5: Final design of kernel_forces_async method. Note that the forces are
exchanged instead of the positions; as a consequence, euler kernel must be run also on
external particles.

Launching the Forces kernel on a single slice is in general not convenient, as

it very likely does not saturate the device; in other words, running the kernel on

more than one row would require the same time though reducing the workload

of the “central” launch. It is thus convenient to launch the kernels on the edging

stripes, i.e. a small number of slices with enough particles to saturate the GPU. In

our tests 1/16 of the total subdomain was an arbitrary size performing excellent

in any setting. The transfer of edges, instead, will only affect single edging rows.

8.6 Simulator design

Similarly to the implementation of the MAGFLOW simulator, we encapsulate all

pointers and CUDA calls needed to handle a GPU into the class GPUThread

(not to be confused with the homonymous GPU instances of a kernel). The

main thread allocates one GPUThread per device and each GPUThread starts

a dedicated pthread in constant communication with the associated device.

The main thread tracks the simulation time and periodically requests a subdo-

main dump from the GPUs according to a user-defined save frequency. Trea-

suring the experience we had with MAGFLOW, we synchronized the threads

through a GPU flush (cudaThreadSynchronize) and the NTPL implementation

of pthread_barrier_wait() as CPU barrier.
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As for the MAGFLOW simulator, it is possible to specify at command line

several simulation options and it is possible to run a simulation on a heterogeneous

set of devices, even belonging to different hardware generations. The data is not

multi-GPU aware: it is possible to save the state of a single-GPU simulation and to

restore it in a multi-GPU environment, and vice-versa.

GPUThread::runMultiGPU()

Allocate CPU buffers

Compute first split

Launch SimulationThreads

while (running)
    BARRIER
    choose global min. dt
    t += dt
    update moving boundaries
    check if need save_request
    check if simulation is over
    check balancing
    if (unbalanced)
        compute new balance
    BARRIER

Deallocate CPU buffers

GPUThread::simulationThread()

Allocate GPU buffers

Upload data to GPU

while (running)
    if (balancing_requests)
        give / take slices
    if (buildneibs_time)
        kernel_sort
        download internal slices
        GPUThread BARRIER
        upload external slices
        kernel_buildneibs
    foreach of 2 steps    
        kernel_forces_async
        kernel_find_min_dt
        kernel_euler
    if (save_request)
        dump_subdomain
    BARRIER
    BARRIER

Deallocate GPU buffers

Figure 8.6: Simplified scheme of the simulator structure. GPU kernels are green; NPTL
barriers are purple; the red kernel_forces_async method encapsulates also asynchronous
slice exchange. Light purple barriers are only reached by simulationThreads for inter-
GPU synchronization while darker ones serve for communication between the main thread
and the simulationThreads.

8.7 Performance metrics

As we often simulate problems exhibiting different densities, topologies and num-

ber of particles, the absolute execution time required by a simulation to complete is

too simple a performance metric to our purposes. It is not even useful to measure

the straight speedup in the Amdahl’s or Gustafson’s meaning, unless comparing
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simulations with identical settings and simulated time. We needed a more versatile

metric abstracting from the specific simulation settings.

We propose to measure the amount of work done within a simulation as the

number of fulfilled iterations times the number of particles. This can be considered

as the number of single iterations completed (imagining, for example, a hypotheti-

cal single-core GPU). To abstract from the simulation length we can simply divide

by the real time. We chose seconds as time units and, as the number of particles

often exceeds the million, we found useful to consider thousands of them. We are

thus measuring thousands of iterations on particles per second; in short form, we call

this unit kip/s or simply kips. Another advantage of this metric compared to the

mere speedup is that it is possible to compute the instantaneous speed at runtime,

with no need to wait for a simulation to complete. This metric, however, is specific

for SPH simulations and may not be suitable for other models.

In the following section we also give the performance measure in kips, although

for the final performance evaluation we still use the speedup in the Amdahl’s

meaning, to ease a possible comparison with any future or independent work.

It is worth recalling that for any comparison to be accurate the same integration

scheme and physical settings must be used. It is also advisable to simulate similar

fluid topologies, as different topologies can still affect memory coalescence and

thread/block scheduling.

8.8 Preliminary results

The testbed was the simulation of 0.43m3 of water divided into 1 million particles

for 1.5s of simulated time, on the rack described in section 4.8. Up to six devices

were used. No load balancing techniques were used in this phase of the test; the list

of particles is fairly divided among the devices and the subdomain size remains

constant through the whole simulation. Videos of the reference simulation run
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DamBreak3D 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
Kip/s 10, 304 19, 71 27, 981 35, 376 40, 861 45, 675
Real time (s) 3, 641 1, 885 1, 331 1, 072 914 823
Ideal time (s) 3, 641 1, 821 1, 214 910 728 607
Real cost (s) 0 65 117 162 186 216

Table 8.1: Multi-GPU GPUSPH kips and execution times and cost in seconds, 1 to 6
devices, 1 million particles

on different number of devices are available at http://www.dmi.unict.it/

~rustico/sphvideos.

Table 8.1 shows the execution time in seconds of the same simulation running

on a variable number of GPUs. The execution time of two simulations with the

same settings (including the number of GPUs used) did not vary more than a

couple of seconds over the total time (∼0.1%), so there was no need to average

several instances of the same simulation. Fig. 8.7 is a graphical representation of

values in table 8.1.

1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
0,00

500,00

1000,00
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2000,00

2500,00
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3500,00

4000,00

Time (s)
Ideal time (s)
Overhead (s)

Figure 8.7: Simulation time: real, ideal and difference between the two, 1 to 6 devices

The simulation scales almost linearly with the number of GPUs. The overhead

due to the transfer of overlapping slices at each iteration is completely covered (as

shown in fig. 8.8); however, the lack of load balancing causes a tangible difference

http://www.dmi.unict.it/~rustico/sphvideos
http://www.dmi.unict.it/~rustico/sphvideos
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from the ideal times. The cost is linear with the number of GPUs and, with the

above settings, it is roughly equal to one minute for every additional device used.

In terms of simulation time, each device adds an overhead approximately equal to

T · 1.6 · 10−2, with T being the reference single-GPU simulation time. According to

the estimation (4.6), it would be convenient to use up to 8 GPUs.

Minimumscan

Sort

BuildNeibs

Download dt

Async slice down.

Euler

Forces

Async slice up.

431.755ms 531.755ms

10ms

Figure 8.8: Actual timeline of a multi-GPU GPUSPH simulation, with kernel lengths in
scale (lengths smaller than 1 pixel have been rounded up). Only one GPU with 2 neigh-
boring devices is shown. The little dots mark the moment operations were issued from the
CPU. Downloading the dt is blocking for the CPU (from which, the long line) until the
minimum scan is complete.

Fig. 8.8 shows the actual sequence of events as profiled during the simulation of

a DamBreak3D with 1 million particles on 3 GPUs. The exchange of slices (purple)

is actually performed concurrently with computation of forces, and effectively start

as soon as the computation of forces on edges is completed. While the rectangles

plot the start time and duration of the events on the device, the little dots above

them mark the timestamps of the same operations as issued on the host. All

operations are asynchronous to the host except for the download of the dt, which

is blocking for the time represented by the long brown line.

We also reached the second aim of the multi-GPU GPUSPH: the possibility to

run simulations that would not fit in the memory of a single device. Taking into

account the additional buffers needed for a multi-GPU simulation, such as the

overlapping stripes and the exchange buffers, we have been able to run a simula-

tion with about 10 million particles on 6 GPUs.
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8.9 Numerical precision

It is worth mentioning that the numerical results may vary a little bit when chang-

ing the number of GPUs used. We already mentioned in section 2.3 that addition is

not commutative in floating-point arithmetic. Particles are sorted by means of the

containing cell index; during the exchange of borders, many slices are moved along

the particle array and we have no guarantee that the radixsort applied afterwards

preserves the inner-cell particle order.

The numerical difference observed in summing floats in a different order de-

pends on the values being sorted; in our case, the error should be no higher than

10−7. Through thousands of iterations, this error propagates in the fluid and ampli-

fies up to ∼ 10−5 in the computed timesteps. It is therefore acceptable to observe

a slightly different number of iterations and some minor differences in the final

particle positions, as it is possible to observe in the videos.

8.10 Load balancing

In the ideal case of all the GPUs taking the same amount of time to complete each

step, the simulation time is expected to speedup in a quasi-linear way (with the

only exception of constant factors such as kernel launch latency). In general, this

is difficult to guarantee, and even small differences from the average time may

lead to a considerable performance loss. A device taking n% more time than the

average to perform all the operations between two synchronization barriers will

worsen the whole simulation time by exactly n%.

Dividing the fluid in parts of the same size (i.e. same number of particles) does

not always lead to the optimal workload balance. Indeed, many unpredictable el-

ements may influence the total computation time, such as the sparsity of neighbor

particles since last sort, the fluid topology, branch divergences inside a kernel and

even hardware factors such as PCI interrupts and bus congestion. No balancing
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Figure 8.9: Average execution times before and after load balancing.

model can take all these factors into account without relying on the execution time

of the previous steps. An a posteriori load balancing technique is more appropriate

here.

The key idea is very simple: we keep track of the time required by each GPUs

for the Forces kernel and we ask the GPUs taking longer than the average to give

a slice of their subdomain to GPUs taking less.

More in detail, we consider the average time Ag taken by a single GPU g to

complete the forces kernel on the central set of particles over the last k iterations.

A smart choice of k could be a multiple of the number of iterations between two

reconstructions of the neighbor list, to minimize the number of sorts; in our case,

k = 10. We then compute the cross-GPU average

AG =
D

∑
d=1

Ad/D

and Aδg = Ag − AG.

If |Aδg| ≥ TLB, with TLB as balancing threshold, we mark the GPU g as giving (if

Aδg > 0) or receiving (if Aδg < 0). A giving GPU “sends” one slice to the receiving

one; if they are not neighboring, every intermediate GPU gives one slices and takes

another at the appropriate edge. Ag is reset to wait for next k iterations. Listing

8.2 represents this algorithm in pseudo-code.
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GPU1 GPU2 GPU3 GPU4

avg.

GIVE TAKE- -

SLICE SLICE

Figure 8.10: Example of balancing: GPU n.2 is marked as GIVING, GPU n.4 as TAKING
and GPU n.3 is requested to take a slice from GPU n.2 e give one to GPU n,4.

1 AG ← global avg . duration of kernel Forces

2 Ts ← avg . duration of one slice = AG / num . slices

3 foreach GPU

4 Ag ← self avg . duration of kernel Forces

5 delta ← Ag - AG

6 if ( abs ( delta ) > Ts * HLB_THRESHOLD )

7 if ( delta > 0)

8 mark as GIVING_CANDIDATE

9 else

10 mark as TAKING_CANDIDATE

11 foreach GPU

12 if a couple GIVING / TAKING is found

13 mark GIVING_CANDIDATE as GIVING

14 mark TAKING_CANDIDATE as TAKING

15 foreach intermediate GPU

16 mark as GIVING and TAKING

17 break

Listing 8.2: Load balacing pseudocode

The threshold TLB must be big enough to avoid sending slices back and forth

and small enough to trigger the balancing when needed. Let Tslice the average time

required to compute the Forces kernel on a single slice; because the granularity
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is at the slice level, it convenient to set TLB proportionally to Tslice:

TLB = HLB · Tslice

with HLB as balancing threshold. In our tests HLB = 0.5 performed quite well in the

general case, but might need a manual fine-tuning in specific simulations.

Fig. 8.11a shows the variation of performance (distance in seconds from the

average time with the same number of GPUs) with different values of HLB when

simulating BoreInABox problem. Choosing HLB = 0.5 is a good choice in the

general case, performing better than higher as well as lower thresholds. Fig. 8.11b

shows the variation of performance with problem DamBreak3D. We first notice an

oscillating behavior due to the presence of a narrow obstacle that changes the gen-

eral subdivision of the fluid: when simulating with an odd number of GPUs, one

of them entirely contains the obstacle, while with an even number of devices the

obstacle is “shared” between two of them. The DamBreak3D is roughly symmetric

along the split axis and it is quite balanced even with a static split. It is therefore

not surprising that in this case a higher threshold (i.e. less balancing overhead)

slightly increases the performance.

It is worth mentioning, however, that these considerations are only interesting

for the sake of theoretical research. The performance variations refer to simulations

lasting several hundreds of seconds (from about 1, 200s with 2 devices to about

400s with 6 devices) and are thus almost negligible in practice.

Figures 8.13 and 8.12 show different snapshots of two BoreInABox simulations

with about 1.1 million particles, each Each particle is colored according to the

device it belongs to, so that the dynamics of balancing are highlighted. In the

corridor variant the workload keeps becoming more and more asymmetric, while

in the standard BoreInABox the originary symmetry is partially restored when

the fluid redistributes evenly on the floor.
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Figure 8.11: Performance of load balancing (distance in seconds from the average time)
with respect to threshold HLB.

The load balancing policy and algorithm described so far is not perfect and,

while it works reasonably well in practice, may not converge to the optimal balance

in some classes of situations, remaining stuck in a local minima or in a “ping-

pong” slice exchange. This has to be considered as a first attempt to overcome the

technical difficulties arising from on-the-fly subdomain resizing and needs further

improvements especially in the balancing policy.
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t = 0.0s t = 0.16s t = 0.32s

t = 0.48s t = 0.8s t = 2.0s

Figure 8.12: Snapshots of different phases of the BoreInABox problem simulation, corri-
dor variant, on 6 GPUs. Each particle is colored according to the device number it belongs
to.

8.11 Final results

In GPU-SPH terminology, a problem is the definition of a physical domain, fluid

volumes and geometrical shapes (a scene) to simulate. The effectiveness of the im-

plemented load balancing policy has been tested by measuring the achieved perfor-

mance during the simulation of two problems, DamBreak3D and the BoreInABox,

with about 1.6 million particles each, from 1 to 6 GPUs. The resulting times are

showed in tables 8.2 and 8.3; tables 8.4 and 8.5 show the measured kips/s; charts

8.14 and 8.15 plot the execution times for visual comparison.
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t = 0.0s t = 0.2s t = 0.5s

t = 0.64s t = 1.04s t = 1.68s

Figure 8.13: Snapshots of different phases of the BoreInABox problem simulation, with
no lateral corridor, on 6 GPUs. Each particle is colored according to the device number it
belongs to.

The DamBreak3D problems presents a high level of symmetry, especially when

splitting the problem along the Y axis. The number of particles assigned to each

GPU is roughly constant during the whole simulated time (1.5s) and the load bal-

ancing is not expected to make a big change. Simulating over 2 and 4 GPUs lead

to an advantage of roughly 1% total simulation time; on 5 and 6 GPUs simulations

run between 6% and 13% faster than without any balancing. Nevertheless, sim-

ulating on 3 GPUs is surprisingly about 1% longer with load balancing activated.

This is probably a consequence of the domain shape and distribution of parti-

cles. With 3 GPUs, two of them are assigned to lateral stripes (thus, have a higher
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percent of static particle-border interactions) while the central one deals with the

obstacle. The naturally balanced particle distribution highlights the little overhead

of balancing attempts (112 slices moved over about 35k iterations), without any

performance gain.
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Figure 8.14: Multi-GPU GPU-SPH execution times for a simulation with 1.6 million parti-
cles, DamBreak3D problem, 1-6 GPUs.
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Figure 8.15: Multi-GPU GPU-SPH execution times for a simulation with 1.6 million parti-
cles, BoreInABox problem, 1-6 GPUs.

When simulating an asymmetrical problem like BoreInABox, however, load
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balancing makes a big performance difference. During the 2.5s simulated time of

BoreInABox, the particles flow in the lateral corridor and one third of the simula-

tion domain, considering Y as split axis, receives two thirds of the total fluid. about

In fig 8.15 it is possible to see how load balancing keeps the performance close to

the ideal ones, while without balancing the performance drops (or, execution time

jumps up). In such cases, load balancing also allows for bigger simulations, as it

is possible to reduce the allocation margin factor M f and save space for further

particles.

1 2 3 4 5 6
0

10000

20000

30000

40000

50000

60000

70000

Kip/s
LB kip/s
Ideal kip/s

1 2 3 4 5 6
0

10000

20000

30000

40000

50000

60000

Kip/s
LB kip/s
Ideal kip/s

Figure 8.16: Multi-GPU GPU-SPH performance in kips, 1.6 million simulation,
DamBreak3D and BoreInABox problems, 1-6 GPUs
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Figure 8.17: Multi-GPU GPU-SPH speedups, 1.6 million simulation, DamBreak3D and
BoreInABox problems, 1-6 GPUs
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DamBreak3D 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
LB off (s) 5, 932 3, 127 2, 128 1, 693 1, 500 1, 304
LB on (s) - 3, 103 2, 179 1, 676 1, 406 1, 200
Ideal time (s) - 2, 966 1, 977 1, 483 1, 186 989

Table 8.2: Multi-GPU GPU-SPH execution times, without and with load balancing (LB),
DamBreak3D with 1.6 million particles.

BoreInABox 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
LB off (s) 8, 301 5, 737 4, 479 3, 532 2, 841 2, 477
LB on (s) - 4, 304 3, 037 2, 391 1, 982 1, 752
Ideal time (s) - 4, 150 2, 767 2, 075 1, 660 1, 383

Table 8.3: Multi-GPU GPU-SPH execution times, without and with load balancing (LB),
BoreInABox with 1.6 million particles.

DamBreak3D 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
Kip/s 9, 977 19, 149 27, 802 35, 213 39, 784 45, 599
LB kip/s - 19, 380 27, 191 35, 336 42, 578 49, 491
Ideal kip/s - 19, 955 29, 932 39, 910 49, 887 59, 865

Table 8.4: Multi-GPU GPU-SPH kip/s, without and with load balancing (LB),
DamBreak3D with 1.6 million particles.

BoreInABox 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
Kip/s 8, 770 12, 713 16, 275 20, 649 25, 657 29, 418
LB kip/s - 16, 940 24, 115 30, 548 36, 800 41, 745
Ideal kip/s - 17, 541 26, 311 35, 082 43, 852 52, 623

Table 8.5: Multi-GPU GPU-SPH kip/s, without and with load balancing (LB),
BoreInABox with 1.6 million particles.

DamBreak3D 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
βKF, no LB 0.053 0.036 0.048 0.063 0.061
βKF, LB 0.053 0.056 0.037 0.041 0.040

Table 8.6: Multi-GPU GPU-SPH measured βKF with Karp-Flatt formula, without and with
load balancing (LB), DamBreak3D problem.

BoreInABox 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs
βKF, no LB 0, 429 0, 289 0, 222 0, 181 0, 153
βKF, LB 0, 053 0, 056 0, 048 0, 048 0, 050

Table 8.7: Multi-GPU GPU-SPH measured βKF with Karp-Flatt formula, without and with
load balancing (LB), BoreInABox problem.
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The empirically measured βKF confirms the efficiency of the implementation

(table 8.7). The simulator performs quite well for DamBreak3D with load balancing

either enabled or disabled. With no balancing βKF reaches approximately 6% with

5 and 6 GPUs, while load balancing bounds it to about 4%. In general, βKF does not

show any significant growth and this confirms that no tangible overhead is being

introduced for the execution on multiple GPUs. Problem BoreInABox shows a

more peculiar trend, with βKF inversely proportional to D. βKF is pretty stable

around 5% when load balancing is enabled, while a static split exposes an initially

high but decreasing βKF. In fact, it is βKF ≈ 43% with 2 GPUs and it decreases to

15% with 6 (yet, three times bigger than with load balancing). This is due to the

simplistic assumption that the parallelizable part α scales in a homogeneous way,

which is no more than a rough approximations for meshless fluid simulations.

The strong asymmetry in the distribution of the fluid in the BoreInABox problem

affects the performance in a non-linear way, as if we had portions of α each with its

own scaling factor. Increasing the number of devices corresponds to a performance

improvement, as we are slightly refining the subdivision granularity. In general,

using a slightly inaccurate notation, the condition βKF(d1) > βKF(d2) with d1 < d2

suggests that part of β is probably due to asymmetry in the workload rather than

in serial, non parallelized portions of the problem. In such cases, load balancing is

necessary for an efficient parallelization.

The current balancing implementation still exposes some uncovered overheads.

In particular, the slice transfers right after the construction of the neighbor list (i.e.

when a particle “moves” from one device to another) are not covered. Moreover, as

the load balancing operations must be complete before kernel BuildNeibs starts,

the load balancing itself is an operation with a little uncovered cost. In the same

simulations which were used to estimate βKF, the number of slices moved across

different devices for balancing purposes ranges from about 700 in the 2- and 3-

GPUs simulations to 1, 700 in the 6-GPUs ones. Each slice transfer takes from tens
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to hundreds of microseconds and needs to be performed twice; the total overhead

easily reaches a couple of minutes per simulation. With a more complex simulator

design it could be possible to cover all these transfers or even merge them into the

operations for the updated of neighboring slices.



Part IV

Conclusions



Chapter 9

Conclusions

We have implemented and tested a multi-GPU version of two fluid simulators

based on two rather different numerical models.

The experience maturated with MAGFLOW highlights how important is the

ratio between the mathematical throughput of a numerical model and the amount

of memory accesses. Although most of the accesses to global memory are coa-

lesced, devices are not fully saturated, and this becomes evident when increasing

the number of GPUs used. The small, linear cost needed to increase by one the

number of GPUs used can become quickly comparable with the expected gain and

voids the advantage of using more than 4 GPUs. On the other hand, the a priori

balancing technique adopted to distribute the simulation domain according to the

computational power is not flexible as a a posteriori balancing could be. We did

not have the need to further improve the simulator performance, as the highest

DEM resolutions we used barely saturated the hardware; however, a more dy-

namic balancing policy should be the first step for any future improvement in case

the computational burden is increased.

The GPUSPH simulator has a far higher mathematical throughput, due to the

heavy simulation model on which it relies. Although the absolute number of global

memory accesses is higher than in MAGFLOW, the large amount of mathematical
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operations performed, together with the concurrent transfer/execution hardware

capability, makes it very convenient to execute a simulation even on 6 GPUs simul-

taneously. Getting close to the ideal speedup was not trivial and required using

many optimizations and some advanced programming techniques. In particular,

the implemented a posteriori load balancing policy allowed to maintain a high per-

formance level even in adverse, very dynamic simulations, by fairly distributing

the computational load as the fluid dynamically changes.

In both cases, the results are quite promising as the execution time of simula-

tions exploiting multiple GPUs is close to the ideal one and the unavoidable over-

heads, negligible for GPUSPH and tangible for MAGFLOW, were easily foreseen

and bounded. Many of the design, programming and GPU-specific techniques

we developed can be easily exploited in different applications, similarly to what

we did by applying to GPUSPH the know-how aquired during the MAGFLOW

development.

The overall experience confirms how difficult is to exploit the available raw

computational power in a scalable and efficient way. Especially for non-trivial

problems with small granularity and locality requirements, more computational

power does not directly lead to a linear performance gain, unless a robust design

is planned and the appropriate hardware features are exploited. This goes through

a deep knowledge of the underlying platform and a proper usage of parallel pro-

gramming techniques.

9.1 Publications

The research conducted so far has been published in international journals and

conferences.

ISI journals:

• Scalable multi-GPU implementation of Cellular Automata based lava simulations,
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E. Rustico, G. Bilotta, A. Hérault, C. Del Negro and G. Gallo, Annals of

Geophysics, Vol. 54, No. 5, 2011

• Porting MAGFLOW to CUDA, G. Bilotta, E. Rustico, A. Hérault, A. Vicari, C.

Del Negro and G. Gallo, Annals of Geophysics, Vol. 54, No. 5, 2011

• LAV@HAZARD: A web-gis interface for volcanic hazard assessment, A. Vicari G.

Bilotta, S. Bonfiglio, A. Cappello, G. Ganci, A. Hérault, E. Rustico, G. Gallo

and C. Del Negro, Annals of Geophysics, Vol. 54, No. 5, 2011

• Numerical Simulation of lava flow using a GPU SPH model, A. Hérault, G. Bilotta,

E. Rustico, A. Vicari and C. Del Negro, Annals of Geophysics, Vol. 54, No. 5,

2011

• A journal article with title Advances in multi-GPU Smoothed Particle Hydrody-

namics simulations is is being finalized for submission to IEEE Transactions on

Parallel Computing

Proceedings:

• Smoothed Particle Hydrodynamics simulations on multi-GPU systems, proceed-

ings, E. Rustico, G. Bilotta, A. Hérault, C. Del Negro and G. Gallo, 20th

Euromicro International Conference on Parallel, Distributed and Network-

Based Computing, Special Session on GPU Computing and Hybrid Comput-

ing, 2012, Munich (accepted, forthcoming event)

• Wave Forces and Fragility for Elevated Residential Structures, proceedings, A.

Kennedy, T. Tomiczek, T. Kijewski-Correa, R. Dalrymple, A. Hérault, G.

Bilotta e E. Rustico. In collaboration with the Johns Hopkins University

(USA) and the University of Notre Dame (USA). It is being finalized for sub-

mission to the International Conference on Coastal Engineering 2012 (ICCE)

Other:
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• Realistic rendering of Smoothed Particle Hydrodynamics lava flows, poster, E. Rus-

tico, G. Bilotta, A. Hérault and C. Del Negro, Pericolo Vulcani 2010, Roma

• Scalable multi-GPU implementation of Cellular Automata based lava simulations,

poster, E. Rustico, G. Bilotta, A. Hérault and C. Del Negro, Pericolo Vulcani

2010, Roma

• Advances in SPH-based lava flow simulation on GPU, extended abstract, A.

Hérault, G. Bilotta, E. Rustico, A. Vicari, C. Del Negro, GNTS 2010

• A Web Interface for Volcanic Hazard on Mt Etna, poster, A. Cappello, S. Bon-

figlio, A. Vicari, G. Ganci, G. Bilotta, A. Hérault, E. Rustico, G. Gallo and C.

Del Negro, EuroVis 2010

• Alternate cell-based neighbour search method, technical report. Eugenio Rustico,

in collaboration with UNICT-DMI, INGV-CT and Univerisité de Marn-La-

Vallée

9.2 Further improvements

We have seen that simulating a lava flow on a DEM with 2m resolution with the

MAGFLOW simulator barely saturates a couple of modern GPUs. There is cur-

rently no need for any performance improvements on the multi-GPU aspect, unless

new tests are required by a slight change in the model (e.g. approximating the dt

and avoiding the synchronization barrier needed for the minimum reduction). It

is seldom needed to simulate on a 1m resolution DEM; in that special case, a big

lava flow with a very wide extent could require more memory than a GPU can

hold, as the entire domain is currently uploaded in each device (unlike GPUSPH,

where the amount of required memory has to be split). Although we have never

encountered such a need, a possible extension could be to upload to each GPU

only the active subdomain.
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The most important extension we are willing to implement to the GPUSPH

simulator is instead the possibility to run a simulation on a cluster of multi-GPU

nodes, reaching a third level of parallelism. This would allow for simulations

with several millions of particles, enabling very wide simulations (e.g. tsunamis)

and/or the simulation of very dense fluids for a superior physical accuracy. The

main differences of such a scenario with current multi-GPU single-node imple-

mentation would reside in the spatial subdivision policy and the inter-node syn-

chronization mechanism, while the communication latencies could even be smaller

than the intra-device ones 1.

Another interesting change would be in the problem granularity. We are cur-

rently evaluating the possibility to handle the splits at a finer resolution than the

3D slice. Working at cell granularity, although requiring a more complicated slice

addressing system, would allow a finer load balancing and pave the way for accu-

rate second-level splits (e.g. for simulations on GPU clusters).

The load balancing algorithm implemented for GPUSPH is still to be consid-

ered a preliminary though successful attempt toward a more sophisticated bal-

ancing system. Many possible improvements would need a detailed theoretical

analysis and a deep testing: adaptive threshold, history analysis and detection of

local minima, just to mention a few.

Finally, we are evaluating the possibility to employ the techniques and know-

how developed so far to design a general-purpose task-driven scheduler allowing

other computationally expensive numerical problems to exploit a multi-GPU sys-

tem.

1An Infiniband link data rate can exceed 1TB/s with a latency of ∼1µs. For comparison, the
PCI-Express 2.0 bus can achieve 16GB/s and a CUDA kernel launch requires ∼6µs.
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