
UNIVERSITY OF CATANIA
Department of Mathematics and Computer Science

SET THEORY FOR
KNOWLEDGE REPRESENTATION

Cristiano Longo

A dissertation submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy

Tesi presentata per il conseguimento del titolo di “Dottore di Ricerca in
Informatica” (XXIV ciclo)

Coordinatore e Tutor

Chiarissimo Prof. Domenico Cantone

Contents

1 Introduction 3
1.1 Knowledge Representation 5

1.1.1 SWRL Rules . 5
1.2 Metamodeling . 5
1.3 The ∀π Family . 7
1.4 Contributions . 7
1.5 Thesis Organization . 8

2 Computable Set Theory 9
2.1 Preliminaries . 9

2.1.1 Ordered Pairs . 10
2.1.2 Background Semantics 12

2.2 Multi-Level Syllogistic . 13
2.2.1 Multi-Level Syllogistic with Maps 14

2.3 The Language ∀0 . 15

3 Description Logics 17
3.1 Preliminaries . 18
3.2 The Description Logic ALC 22

3.2.1 Complexity Issues . 23
3.3 Number Restrictions . 24
3.4 The Description Logic SROIQ 25
3.5 SWRL Rules . 27

4 The ∀π Family 28
4.1 The Language ∀π

0 . 28
4.1.1 Skeletal representations 30
4.1.2 A Decision Procedure for ∀π

0 36
4.1.3 Complexity Issues . 40

4.2 The Language ∀π
0,2 . 41

4.2.1 Map-Isomorphic Interpretations 42
4.2.2 A Decision Procedure for ∀π

0,2 44
4.2.3 Some Remarks about ∀0 47

4.3 The Language ∀π
∆ . 47

4.3.1 A Decision Procedure for ∀π
∆ 49

1

5 Expressivity of the ∀π Languages 53
5.1 The Language MLSS×

2,m . 54

5.1.1 Normalized MLSS×
2,m-Formulae 55

5.1.2 A Decision Procedure for MLSS×
2,m 56

5.1.3 ExpTime-hardness of MLS with the image operator . 60
5.2 The Description Logic DL⟨∀π⟩ 63
5.3 A Metamodeling Enabled Version of DL⟨∀π⟩ 67

6 Conclusions and Future Work 71

2

Chapter 1

Introduction

During the last century Set Theory played a central role in the development
of modern mathematics, as it provided a single foundation for the diverse
areas of this discipline. For example, the intuitive content of geometry, arith-
metic, and analysis has been re-expressed in set-theoretic terms in entirely
precise formal fashion.

The decision problem in set theory has been intensively investigated in
the last decades, thus giving rise to the novel research field of Computable Set
Theory, devoted to study the decision problem for fragments of set theory
(see [11, 15] for a thorough account of the state-of-the-art until 2001).

The motivation which initially animated this research stream was the de-
sign and implementation of an interactive proof checker, envisaged by Jackob
T. Schwartz1 in [41], supposed to accept sequences of logical formulae, such
that any formula in the sequence follows logically from earlier formulae. In
addition, such a system should include also an inferential core, based on
the very expressive formalism of set theory, to handle elementary inferential
steps, in order to keep at a reasonable level the mass of details in proofs.

Over the years, decision procedures or proofs of undecidability have been
provided for several quantified and unquantified fragments of set theory. It
is to be noticed, however, that several decision procedures found so far are
not practical at all and their interest is limited to the foundational pur-
pose of identifying the boundary between the decidable and the undecidable
in set theory, while the most efficient decision procedures devised in this
context have been implemented in the inferential core of the proof verifier
ÆtnaNova/Referee, described in [16, 33, 42].

The first unquantified sublanguage of set theory that has been proved
decidable is Multi-Level Syllogistic (in short MLS, cf. [19]). MLS involves
the set predicates ∈, ⊆, =, the Boolean set operators ∪, ∩, \, and the
connectives of propositional logic (see Section 2.2 for the precise definitions
ofMLS syntax and semantics). Subsequently, several extensions ofMLS with
various combinations of operators (such as singleton, powerset, unionset,

1January 9, 1930 – March 2, 2009.

3

etc.) and predicates (on finiteness, transitivity, etc.) have been proved to
have a solvable satisfiability problem.

Also, some extensions of MLS with various map2 constructs have been
shown to be decidable. In [19] a two-sorted extension of MLS is presented,
where the two sorts indicate respectively set variables and map variables,
and which contains the domain, range, direct and inverse image operators
on maps. Additionally, this language allows assertions meaning that a map
term is single-valued (i.e. it is a function) or bijective. However, the decision
procedure proposed there had a double exponential time complexity. We
mention also a one-sorted version of the language considered in [19], further
extended with map evaluation (cf. [17]). In this case, since there is no
distinction between set and map variables, maps can be combined with the
Boolean set operators as well. However, the language in [17] does not allow
a predicate is map(x), asserting that x is a collection of pairs. Therefore,
for instance, a predicate of type Inverse(f, g) expresses only that g is an
inverse of f , up to non-pair elements, so that Inverse(f, g) and Inverse(f, g′)
do not imply that g = g′, but only that g and g′ contain the same pairs
(namely the inverse of the pairs contained in f). Despite the peculiarity of
such semantics, the decision procedure given in [17] has a nondeterministic
exponential time complexity.

Concerning quantified fragments, of particular interest to us is the re-
stricted quantified fragment of set theory ∀0, viewed in Section 2.3, which
has been proved to have a decidable satisfiability problem in [6]. We re-
call that ∀0-formulae are propositional combinations of restricted quantified
prenex formulae (∀y1 ∈ z1) · · · (∀yn ∈ zn)p, where p is a Boolean combina-
tion of atoms of the forms x ∈ y, x = y, and no zj is a yi (i.e., nesting among
quantified variables is not allowed). The same paper considered also the ex-
tension with another sort of variables representing single-valued maps, the
map domain operator, and terms of the form f(t) (representing the value
of the map f on a function-free term t). However, neither one-to-many, nor
many-to-one, nor many-to-many relationships can be represented in this lan-
guage. We observe that the ∀0-fragment is very close to the undecidability
boundary, as shown in [37]. In fact, if nesting among quantified variables in
prenex formulae of type (∀y1 ∈ z1) · · · (∀yn ∈ zn)p are allowed and a predi-
cate stating that a set is an unordered pair is also admitted, then it turns out
that the satisfiability for the resulting collection of formulae is undecidable.

In this thesis we study the decision problem for three novel quantified
fragments of set theory, which we denote as the ∀π-family of languages. The
expressive power of languages of this family is measured in terms of set-
theoretical constructs they allow to express. In addition, these languages
can be profitably employed in knowledge representation, since they allow to
express a large amount of description logic constructs (cf. Section 3).

2According to [43], we use the term ‘maps’ to denote sets of ordered pairs.

4

1.1 Knowledge Representation

As mentioned before, set theory allows to define in a elegant and precise way
all common mathematical notions. Furthermore (and consequently) it can
be used to represent knowledge about several domains in a simple and formal
fashion. For this reason, we investigated the application of Computable Set
Theory to knowledge representation, the field of Artificial Intelligence which
deals with formalisms that are both epistemiologically and computationally
adequate to represent knowledge about different domains.

Description Logics (see [2] for an introduction) are a family of logic based
formalisms widely used in knowledge representation. Several results and de-
cision procedures devised in this context have been profitably employed in
the area of the Semantic Web (cf. [5]). For example, the description logic
SROIQ, described in [24], underpins the semantic web language OWL 2.
Description Logics are logic-based formalisms that allow to represent knowl-
edge about a domain of interest in terms of concepts, which denote sets of
elements, roles, which represent relations between elements, and individuals,
that denote domain elements. Each description logic is mainly characterized
by a set of constructors, which allow to form complex terms starting from
concept, role and individual names. Finally, a description logic knowledge
base is a finite set of constraints on the domain structure. The most com-
mon description logic constructs are listed in Tables 3.1, 3.2, and 3.3. The
description logic framework will be discussed in details in Chapter 3.

1.1.1 SWRL Rules

Other approaches to knowledge representation are those related with Horn-
Style rules. SWRL rules are a simple form of Horn-style rules which were
proposed in [26] with the aim of increasing the expressive power of descrip-
tion logics. It must be noticed that extending description logics with SWRL
rules in general leads to undecidability. In [32] this issue has been overcome
by restricting the applicability of rules to a finite set of named individuals.
Another approach, studied in [29], consists in restricting the set of allowed
rules to those which can be internalized, i.e. which can be converted into
description logic statements.

1.2 Metamodeling

Description logics strictly separate the conceptual layer, which defines classes
and properties, from the data layer, which contains domain objects. As
a consequence, such framework does not allow metamodeling, namely the
ability to define meta-concepts (i.e., concepts containing other concepts and
roles) or meta-roles (i.e., relationships among concepts or among roles). We
clarify the notion of metamodeling by way of an example originally presented

5

in [46]. Let us consider the “IUCN Red List3 of endangered species,” and
let Eagle be a species in this list. Furthermore, let Harry be an eagle. The
membership relations among the three items RedList , Harry , and Eagle
cannot be accurately modeled in description logics, since Eagle should be
simultaneously a concept, as it contains Harry as member, and an individual,
since it is a member of RedList . Furthermore, there is no (intuitive) way to
arrange a description logic knowledge base in such a way that an automated
agent can infer that Harry cannot be hunted from the fact that it is a
member of RedList .

The lack of metamodeling features is sometimes perceived as a crucial
limitation of the description logics framework. For example, metamodeling
was one of the original goals of the Semantic Web Language, and the earlier
version of this language, called OWL Full, was expressive enough to include
features of this sort. However, it turned out that this language is undecid-
able, as proved in [31], where a decidable restriction of OWL Full relative
to two alternative semantics, the contextual and the HiLog semantics, has
been proposed. Specifically, in the contextual semantics (also known as pun-
ning), identifiers are interpreted as individuals or as concepts, depending on
the context, but the individual and the corresponding concept are treated as
entirely independent, so that some of the expected conclusions can not be
drawn (for example from Eagle(Harry),¬Aquila(Harry) it does not descend
that the individuals associated to Eagle and Aquila must be distinct). The
HiLog semantics is not affected by this issue. However, it has some conse-
quences which may be considered counterintuitive, as they contrast with the
Zermelo-Fraenkel axiomatization of set theory (which instead underpins the
family of ∀π languages). For example, a knowledge base {A(B), B(A)} is
consistent under this semantics, in contrast with the regularity axiom; also,
we may have two distinct domain items whose concept and role extensions
coincide, thus contradicting the extensionality axiom.

Another strategy to enforce Semantic Web with metamodeling capabil-
ities consists in adding on top of a domain knowledge base a separate one,
which contains meta-knowledge about concepts and relationships among
them. Then the two knowledge bases are kept in sync by some additional
external mechanisms. This is the approach followed, for example, in [45]
and, with slight modifications, in [21]. However, in our opinion, it does not
apply very well to knowledge domains with more than two levels of nesting,
which are not strictly stratified (i.e., when an item can be simultaneously
member of two or more items placed at different levels). This issue also
affects the Fixed Layered Metamodeling Architecture, studied in [35, 34].

3http://www.redlist.org

6

http://www.redlist.org

1.3 The ∀π Family

In this thesis we present a collection of decidable quantified fragments of
set theory, called the ∀π family (see Chapter 4), which allow the explicit
manipulation of ordered pairs, and which can be profitably employed as
knowledge representation languages.

We present a decision procedure for each language of this family, and
prove that all of these procedures are optimal (in the sense that they run in
nondeterministic polynomial-time) when restricted to formulae with quanti-
fier nesting bounded by a constant. A considerable amount of set-theoretic
constructs can be expressed by the languages in this family, also in the re-
stricted case. In particular map-related constructs like map inverse, Boolean
operator among maps, map transitivity, and so on, are expressible. In addi-
tion, the quantified nature of these languages and the pair-related constructs
they provide allow to map numerous description logic constructs into them
in a very natural way, showing that these languages can effectively serve to
knowledge representation.

A restricted set of SWRL rules, namely those which do not contains data
literals, can be easily embedded in all the languages of the ∀π family without
disrupting decidability.

Finally, as language terms are interpreted as sets in the von Neumann
standard cumulative hierarchy V , described later, the semantics of our lan-
guages is multi-level, so that these languages can embody metamodeling in
a very natural way.

1.4 Contributions

The main contributions of this thesis are in the field of Computable Set The-
ory. The decidability of the languages in the ∀π family is helpful in defining
the boundary between decidable and undecidable quantified fragments of set
theory.

In addition, we consider the proof of the NP-completeness of the satisfi-
ability problem for formulae in the unquantified language MLSS×

2,m, carried
out in Section 5.1 by means of a straightforward reduction to the satisfiability
problem for formulae in a language of the ∀π family, a significant advance-
ment in the study of set-theoretical languages with map-related operators,
in particular languages which allows the Cartesian product. Concerning
this, we recall that extending MLS with Cartesian product and cardinality
comparison leads to undecidability.

Comparison of Computable Set Theory with the description logics frame-
work brought some interesting results in both these areas. Regarding Com-
putable Set Theory, in Section 5.1.3 the ExpTime-hardness of the unsat-
isfiability problem for every MLS extension which contains the map image
operator is derived from an analogous result for the description logic ALC.

7

On the description logic side, the result obtained in Section 5.2 shows
that imposing some restrictions on the usage of existential quantifier con-
structs allows one to identify a very expressive description logic, which we
denote as DL⟨∀π⟩, for which the consistency problem is NP-complete. In
addition, it can be equipped with metamodeling-features in such a way that
the consistency problem remains NP-complete. Finally, both DL⟨∀π⟩ and
its metamodeling-enabled version remain decidables also if extended with
SWRL rules.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapters 2 and 3 provide
a short introduction to Computable Set Theory and description logics, re-
spectively, where their basic notions and some languages of our interest are
briefly reviewed.

Chapter 4 introduces the three quantified fragments of set theory ∀π
0,

∀π
0,2, and ∀π

∆, which together constitute the ∀π family. In the same chapter,
these language are proved to have a decidable decision problem, which is
NP-complete when restricting to formulae whose quantifier prefix lengths
are bounded by a constant.

In Chapter 5 we study the expressive power of ∀π languages. To this
purpose, we present the unquantified fragment of set theory MLSS×

2,m and
the description logic DL⟨∀π⟩, which are both expressible in a restriction of
∀π
0,2 characterized by anNP-complete decision problem. In the same chapter

we show that extending MLSS×
2,m (and thus also ∀π

0,2) with the map image
operator, or with the map domain operator, would trigger the ExpTime-
hardness of the decision problem. Finally, we prove that DL⟨∀π⟩ can be
extended with SWRL rules and metamodeling features, but still remaining
decidable.

Finally, in Chapter 6 we draw our conclusions giving also some hints to
future works.

8

Chapter 2

Computable Set Theory

In this chapter we give a brief overview of Computable Set Theory. In
particular, we will review MLS, which has been the first sublanguage of set
theory to be studied in this context. Then, we will focus our attention
on MLS extensions which involve constructs related to multi-valued maps.
Finally, the quantified language ∀0 will be discussed. All of the languages
mentioned in this chapter have been proved to be decidable. However, no
decision procedure is reported here, rather the decidability of some of these
fragments will be proved in Chapter 4, by way of reductions to languages in
the ∀π family, presented there.

To begin with, we define a general setup for set-theoretical languages by
introducing some useful notations and definitions.

2.1 Preliminaries

Computable Set Theory focuses on decidable fragments of set theory. We
will refer to the Zermelo-Fraenkel axiomatization of set theory, and we will
restrict out attention to pure sets, i.e. sets whose members are sets recur-
sively founded by the empty set ∅. We recall that the von Neumann standard
cumulative hierarchy of sets V is the class containing all the pure sets. This
hierarchy is defined by

V0 = ∅
Vγ+1 = P(Vγ) , for each ordinal γ
Vλ =


µ<λ Vµ , for each limit ordinal λ

V =


γ∈On Vγ ,

where P(·) is the powerset operator and On denotes the class of all ordinals.
It can be proved that the membership relation is well-founded in V and,
therefore, no membership cycle can occur in V .

We denote with rank(u) the least ordinal γ such that u ⊆ Vγ (i.e., u ∈
Vγ+1), for every set u in V .

The basic constituents of the languages studied in the context of Com-
putable Set Theory are variables. In the rest of this thesis, we will denote

9

with Vars = {x, y, z, . . .} the denumerable infinite set of variables. In ad-
dition, some fragments which allow map-related or pair-related constructs
will make also use of another sort of variables, map variables, which are
intended to denote multi-valued maps; their collection will be denoted by
Varsm = {f, g, h, . . .}. For the sake of conciseness, we will assume that
Varsm is just a sub-sort of Vars (i.e. Varsm ⊆ Vars), and we will denote
with Varss the remaining variables (i.e. Varss = Vars \ Varsm), which we
call set variables.

Given any set theoretic formula ϕ, we will denote with ϕx
y the formula

obtained by replacing each occurrence of x in ϕ with y, with x, y ∈ Vars .
Variables can be combined together to form complex terms by means of

the usual set theoretic operators (see Table 2.1, left column). In particular,
any term of the form [X, Y], where X, Y are set theoretical terms, represent
the ordered pair of X and Y .

Finally, formulae of our languages are built from the atomic formulae,
described in Table 2.2, using the connectives of propositional logic and, in
quantified fragments, also the quantifiers ∀ and ∃.

In the next sections we provide a background semantics, which will be
specialized for each fragment of set theory presented in the following. To
this purpose it is useful to recall first the notion of ordered pairs.

2.1.1 Ordered Pairs

We remark that multi-valued maps are just sets consisting only of ordered
pairs. Thus, for our purposes, it is useful to recall some notions concerning
ordered pairs in set theory.

Ordered pairs are represented in set theory by means of pairing functions.
In order to provide the precise definition of such kind of operations, we need
first to recall that, given an injective binary operation over sets π, and two
sets u, v, the Cartesian product of u and v with respect to π, denoted by
u× v, can be defined as follows:

u× v = {π(u′, v′) : u′ ∈ u ∧ v′ ∈ v}.

Definition 1. Let π be a binary operation over sets in V . π is said to be a
pairing function if and only if the following conditions hold:

(P1) π(u, v) = π(u′, v′) ⇐⇒ u = u′ ∧ v = v′, and

(P2) u× v is a set in V
for any u, v, u′, v′ ∈ V .

Let π be a pairing function, and let u be a set in the von Neumann
hierarchy. We denote with π(u) the set consisting of the pair members of u,
with respect to the pairing function π. More formally

π(u) = {π(v, v′) : π(v, v′) ∈ u}.

Note that from this definition it follows that π(u) is a set in V as u is.

10

Syntax I(·)
x MIx
(variable)

∅ ∅
(empty set)

X ∪ Y IX ∪ IY
(union)

X ∩ Y IX ∩ IY
(intersection)

X \ Y IX \ IY
(difference)

{X} {IX}
(singleton)

[X,Y] πI(IX, IY)
(pair)

X−1 {πI(u, v) : πI(v, u) ∈ IX}
(map inverse)

dom(X) {u : (∃v)(πI(u, v) ∈ IX}
(domain)

range(X) I(dom(X−1))
(range)

X[Y] {v : (∃u)(πI(u, v) ∈ IX ∧ u ∈ IY)}
(image)

XY | {πI(u, v) : πI(u, v) ∈ IX ∧ u ∈ IX}
(domain restriction)

X|Y {πI(u, v) : πI(u, v) ∈ IX ∧ v ∈ IX}
(range restriction)

XY |Z I(XY | ∩X|Z)

(map restriction)

X ◦ Y {πI(u, v) : (∃u′, v′)(πI(u, u′) ∈ IX∧
(composition) πI(v

′, v) ∈ IY)}
id(X) {πI(u, u) : u ∈ IX}
(identity)

sym(X) I(X ∪ IX−1)
(symmetric closure)

refl(X) I(X ∪ id(dom(X)))
(reflexive closure)

X+ {πI(u, v) : πI(u, v) ∈ IX ∨ (∃v′)(πI(u, v′) ∈ IX∧
(transitive closure) I(v′, v) ∈ IX}
X∗ I(refl(X) ∪X+)
(transitive reflexive closure)

Table 2.1: Set-theoretic terms

11

Syntax I |= (·) iff
X ∈ Y IX ∈ IY
X = Y IX = IY
X ⊆ Y IX ⊆ IY

injective(F) (∀u, u′, v)(πI(u, v) ∈ IF ∧ πI(u
′, v) ∈ IF → u = u′)

single valued(F) I |= injective(F−1)
bijective(F) I |= injective(F) ∧ I |= single valued(F)
is reflexive(F) I(F−1) ⊆ IF
is transitive(F) I(F ◦ F) ⊆ IF
is asym(F) IF ∩ I(F−1) = ∅
is irreflexive(F) IF ∩ I(refl(F)) = ∅

Table 2.2: Set-theoretic atomic formulae

2.1.2 Background Semantics

Now we provide some notions and definitions that will be used in the se-
mantics definitions of the fragments presented later.

To begin with, we will refer to mappings from variables to sets in V as
assignments. LetW be a finite subset of Vars , and letM,M ′ be assignments.
Then M ′ is said to be a W -variant of M if M ′x =Mx for all x ∈ Vars \W
(i.e. M and M ′ coincides except for the variables in W).

A set-theoretic interpretation is a pair I = (MI, πI), where MI is an
assignment, and πI is a pairing function. We characterize this kind of inter-
pretation as set-theoretic in order to distinguish them from the descriptive
interpretations of description logic, which will be defined in Chapter 3. How-
ever, we will omit to indicate the interpretation type when it will be clear
from the context.

The notion of W -variant is extended to interpretations as expected.
Thus, let W be a finite subset of Vars , and let I, I′ be two interpretations.
I′ is said to be a W -variant of I if and only if

• πI′ = πI, and

• MI′ is a W -variant of MI.

An interpretation I associates sets in V to terms as indicated in Table 2.1,
right column. Furthermore, interpretations evaluate set-theoretic formulae
to a truth value true or false. We say that an interpretation I is a model
for a formula ϕ if I evaluates ϕ to true. In this case, we write I |= ϕ.
Otherwise, if I evaluates a formula ϕ to false, we write I ̸|= ϕ.

A formula is said to be satisfiable if it admits a model, otherwise it is said
to be unsatisfiable. Thus, the satisfiability problem (in short s.p.) consists
in determining whether a formula is satisfiable or not.

Evaluation of formulae for each of the languages described in this chap-
ter will be defined in a precise way when the languages will be presented.

12

However, evaluation of atomic formulae is carried out as indicated in Table
2.2, right column.

We conclude this section with some definitions concerning interpreta-
tions. Let W be any collection of variables. An interpretation I is said to
be pair-free with respect to W if

πI(MIx) = ∅

for each x ∈ W , that is, I associates to variables in W only sets which do
not contain any pair. An interpretation is said to be just pair-free if it is
pair-free with respect to the whole set of variables Vars .

Finally, an interpretation I is said to be pair-safe if it associates just sets
of ordered pairs (or the empty set) to map variables. In other words, I is
pair-safe if and only if

MIf = πI(MIf)

for each f ∈ Varsm.
In the next section we will examine some unquantified fragments of set

theory, starting from the basic languagesMLS andMLSS, and then reviewing
some MLSS extensions with map constructs.

2.2 Multi-Level Syllogistic

As mentioned before, Multi-Level Syllogistic (in short MLS) has been the
first unquantified language studied in the context of Computable Set Theory.
MLS is a fragment of set theory which contains:

1. the denumerable infinity of variables Vars ;

2. the set-theoretical operators ∪,∩, \;

3. the relators ∈,=;

4. the Boolean connectives of propositional logic.

The set of the terms allowed in this language, which we call the set of
MLS-terms, is defined by the following syntax rule:

X, Y −→ x | X ∪ Y | X ∩ Y | X \ Y

where x is a variable, and X, Y are MLS-terms. Atomic MLS-formulae are
atomic formulae of the types

X ∈ Y, X = Y

where X and Y are MLS-terms. Finally, MLS-formulae are Boolean combi-
nations of atomicMLS-formulae by means of the connectives of propositional
logic. Then, evaluation of MLS-formulae by interpretations is carried out as

13

usual in propositional logic, assuming that atomic formulae are evaluated as
indicated in Table 2.2.

The language MLSS (Multi-Level Syllogistic with Singleton) is obtained
by extending MLS with the singleton operator {X}. In more details, the set
of MLSS -terms is defined by

X, Y −→ x | X ∪ Y | X ∩ Y | X \ Y | {X}

where x is a variable, and X, Y are MLSS-terms. Again, MLSS -formulae are
Boolean combinations of atomic MLSS-formulae, and evaluation of MLSS-
formulae follows the standard rules.

In the next section we review some extensions involving map constructs.
It must be noticed that the satisfiability problem for formulae of the lan-
guages presented in the next section is ExpTime-hard, as reported in The-
orem 2.

2.2.1 Multi-Level Syllogistic with Maps

The first MLS extension involving maps we examine is that studied in [17],
which we denote by MLSm, where the subscript indicates the presence of
map related operators. MLSm -terms are formed according to the following
syntax rule:

X, Y, Z −→ x | X ∪ Y | X ∩ Y | X \ Y | dom(X) | range(X) |
X[Y] | X−1 | XY | | X|Y | XY |Z

where x ∈ Vars , and X, Y, Z are MLSm-terms. Atomic MLSm -formulae are
of the following types:

[X, Y] ∈ Z, X ∈ Y, X = Y,
injective(X), single valued(X), bijective(X),

where X, Y, Z are MLSm-terms. Finally, MLSm-formulae are Boolean com-
binations of atomic MLSS-formulae.

Another approach to extendMLS with map constructs is the one followed
in [19], where a two-sorted language which contains map constructs was
proved to be decidable. We denote this language as MLSm,2, where the
subscript “2” indicates that it contains two sort of variables.

MLSm,2 is a fragment of set theory which contains:

1. the denumerable infinity of set variables Varss;

2. the denumerable infinity of map variables Varsm;

3. the predicate symbols single valued, bijective;

4. the operator symbols ∪, ∩, \, dom, range, f−1 (map inverse), f [x]
(image);

14

5. the relators ∈,=;

6. the Boolean connectives of propositional logic.

MLSm,2 -terms are defined according to the following syntax rules:

X, Y −→ x | X ∪ Y | X ∩ Y | X \ Y | f | dom(F) | range(F) |
f [X] | f−1[X]

where x and f stay respectively for set and map variables, and X, Y for
MLSm,2-terms. Atomic MLSm,2 -formulae are set-theoretic expressions of
the types X ∈ Y , X = Y , single valued(f), and bijective(f), where X, Y are
MLSm,2-terms, and f is a map variable. We remark that the decidability
of the s.p. for MLSm,2-formulae was proved in [19] with presenting a double
exponential-time decision procedure.

Up to this point, we illustrated just unquantified languages devised in
the context of Computable Set Theory. In the next section we review a
quantified fragment, called ∀0.

2.3 The Language ∀0
In this section we discuss the quantified fragment of set theory ∀0, studied
in [6]. We recall that decision procedures for this language can be found in
[6, 8]. In particular, the decision procedure presented in [8] is optimal, since
it runs in nondeterministic-polynomial time. However, we do not report this
decision procedure, as we provide instead a reduction of the satisfiability
problem for formulae of this language to one of the languages in the ∀π-
family (which will be proved to be decidable later), that will be introduced
and discussed in Chapter 4.

The language ∀0 contains:

• the variables in Vars ;

• the set relators ∈,=;

• the universal quantifiers ∀, ∃;

• parentheses;

• the logical connectives ¬,∧,∨,→,↔.

The set of the ∀0 -formulae is defined as follows. Atomic ∀0 -formulae
are atomic formulae of the types x ∈ y, x = y (pairs are not allowed in this
language), with x, y ∈ Vars . Quantifier-free ∀0 -formulae are Boolean com-
binations of atomic ∀0-formulae by means of the propositional connectives.
Finally, ∀0-formulae1 are quantified formulae of the form

Q1Q2 . . . Qnψ

1In [6] they are called simple prenex formulae.

15

where

• ψ is a quantifier-free ∀0-formula;

• n is a non-negative integer;

• for 1 ≤ i ≤ n, either every Qi is a restricted quantifier of the form
(∀xi ∈ yi), or every Qi is of the form (∃xi ∈ yi) (we will refer to xi as
quantified variables and to yi as domain variables, for 1 ≤ i ≤ n);

• nesting among quantified variables is not allowed (more precisely, no
yj is a xi, for all 1 ≤ i, j ≤ n).

It must be noticed that, in the previous definition, if we restrict to the
case n = 0 we get the class of quantifier-free ∀0-formulae. In other words,
all the quantifier-free ∀0-formulae are ∀0-formulae.

Given any ∀0-formula ϕ, we denote with Vars(ϕ) the set of the free vari-
ables in ϕ, i.e. all the variables which occur not bounded by any quantifier
in ϕ.

The ∀0 semantics extends the background semantics introduced above to
cope with universal quantifiers. Then, evaluation of quantifier-free formulae
is carried out as usual, while, given any interpretation I, I evaluates to true
a quantified ∀0-formulae of the form (∀x ∈ y)χ, with x, y ∈ Vars , if and
only if I′ |= χ, for every {x}-variant I′ of I such that I′x ∈ Iy.

16

Chapter 3

Description Logics

Description Logics are a well-established and well-studied framework for
knowledge representation (see [2] for a quite complete introduction to this
family of languages). They are logic-based languages which allow to provide
a high-level description of the world in a formal and precise way. More in
details, knowledge about a domain of interest is described in terms of con-
cepts, which denote sets of elements, roles, which represent relations between
elements, and individuals, that denote domain elements. Then, a description
logic knowledge base is a finite description of the world, expressed by means
of a finite set of constraints involving concepts, roles, and individuals.

Over the years, description logics have been employed in several applica-
tion domains such as natural language processing, configuration, data bases
and medicine. Most notably, they have been adopted in the context of Se-
mantic Web (cf. [5]) to provide solid semantical foundations to the Semantic
Web Language OWL1 (see for example [25]).

In contrast with other earlier knowledge representation approaches such
as, for example, Semantic Networks (cf. [40]), description logics are equipped
with a well-defined syntax, and a formal, unambiguous semantics. In ad-
dition, the description logic framework provides effective mechanisms for
reasoning, which allow to extract implicit knowledge from the knowledge
explicitly stated in a knowledge base. The main reasoning tasks identified
in this context are:

• concept satisfiability, which allows to determine whether a complex
concept can be interpreted (description logic interpretation will be de-
fined in a precise way later in this chapter) by a non-empty set of
domain elements;

• concepts subsumption, i.e. testing if a concept subsumes another con-
cept;

• instance checking, which allows to determine whether an individual
belongs to a given concept;

1http://www.w3.org/standards/techs/owl

17

http://www.w3.org/standards/techs/owl

• instance retrieval, which consists in retrieving all the individuals be-
longing to a given concept;

• entailment, i.e. testing if, given two knowledge bases K and K′, the
facts stated in K′ are consequences of those contained in K.

However, the main reasoning task for description logics is consistency
check, which consists in determining whether the information contained in
a knowledge base is self-contradictory or not, since, except for some weaker
description logics, all the other reasoning tasks can be reduced to it. For this
reason, when we will use the term “reasoning” without being more specific,
we will refer to consistency check. Consistency check, along with the other
reasoning tasks, will be defined formally in Section 3.1.

In the last decades sound and complete algorithms were devised for a
considerable amount of description logics, and optimized versions of these
algorithms have been implemented in several reasoning engines like FaCT,
Race, and DLP (cf. [23, 22, 39]).

The trade-off between the expressive power (in terms of allowed con-
structs) and the computational complexity of reasoning is actually one of
the major research topics in description logics. In fact, while the reasoning
for the basic description logic AL is ExpTime-hard (cf. [2, Theorem 3.27,
page 132]), and this may be prohibitive for practical applications, a lower
computational complexity can be achieved by choosing appropriately the set
of allowed constructs (see [7] and [1] for some examples of description logics
with polynomial-time reasoning).

This chapter aims to provide a brief overview of the description logic
framework, by reviewing some of these logics of our interest. We introduce
this framework by describing the basic description logic ALC, and then
we discuss some of its expressive extensions. Finally, we will examine an
extension of this framework based on Horn-like rules, namely SWRL rules,
proposed in [26]. As we did in Chapter 2, we begin with providing the
general notions and definitions of this framework.

3.1 Preliminaries

As mentioned before, a description logic knowledge base describes a knowl-
edge domain in terms of concepts, roles, and individuals. The building blocks
of description logics are

• a countably infinite collection of concept names N c = {A,B, . . .},

• a countably infinite collection of role names N r = {P,Q, . . .}, and

• a countably infinite collection of individual names N i = {a, b, . . .}.

Each description logic is mainly characterized by a set of concept and
role constructors, which, starting from the basic names in N c, N r, and N i,

18

Constructor Interpretation (·)I

⊤ ∆I

(universal concept)

⊥ ∅
(bottom concept)

¬C ∆I \ CI

(concept negation)

C ⊔D CI ∪DI

(concept union)

C ⊓D CI ∩DI

(concept intersection)

{a} {aI}
(nominal)

∃R.Self {u ∈ ∆I : [u, u] ∈ RI}
(self restriction)

∀R.C {u ∈ ∆I : (∀[u, v] ∈ RI)(v ∈ CI)}
(value restriction)

∃R.C {u ∈ ∆I : (∃v ∈ CI)([u, v] ∈ RI)}
(existential quantifier)

≤ nR.C {u ∈ ∆I : |{v ∈ CI : [u, v] ∈ RI}| ≤ n}
(min-cardinality restriction)

≥ nR.C {u ∈ ∆I : |{v ∈ CI : [u, v] ∈ RI}| ≥ n}
(max-cardinality restriction)

Table 3.1: Description logic concept constructors

allow to form complex concepts and roles. Thus, description logic terms
are divided into concept and role terms: concept terms are concept names
and complex concepts constructed by means of the concept constructors;
analogously, role terms are role names and complex roles constructed by
means of role constructors. Some of the most common constructors used in
description logics are listed in Tables 3.1 and 3.2, where C,D are concepts,
R, S are roles, and a is an individual name.

In general, we will use the terms “concepts” and “roles” to indicate
concept and role terms, respectively.

Description logics are also characterized by the types of constraints they
allow to be specified in knowledge bases. These constraints (see Table 3.3)
can be of three different types: concepts inclusions of the form C ⊑ D, role
inclusions R ⊑ S, and assertions like C(a), R(a, b), concerning the mem-
bership of individuals or individual pairs to concepts and roles, respectively.
In addition, some expressive description logic allow also constraints stating
properties of roles, for example Trans(R), which expresses the fact that the

19

Constructor Interpretation (·)I

U ∆I ×∆I

(universal role)

¬R (∆×∆) \RI

(role negation)

R ⊔ S RI ∪ SI

(role union)

R ⊓ S RI ∩ SI

(role intersection)

R− {[u, v] ∈ ∆I ×∆I : [v, u] ∈ RI}
(role inverse)

RC| {[u, v] ∈ RI : u ∈ CI}
(role domain restriction)

R|D) {[u, v] ∈ RI : v ∈ DI}
(role range restriction)

RC|D (RC|)
I ∩ (R|D)

I

(role domain and range restriction)

id(C) {[u, u] : u ∈ CI}
(role identity)

R ◦ S RI ◦ SI

(role composition)

R∗ (RI)∗

(transitive closure)

sym(R) RI ∪ (R−)I

(symmetric closure)

Table 3.2: Description logic role constructors

20

Syntax I |= (·) iff

C ⊑ D CI ⊆ DI

C ≡ D CI = DI

R ⊑ S RI ⊆ RI

R ≡ S RI = SI

Sym(R) (∀[u, v] ∈ RI)([v, u] ∈ RI)
Trans(R) (∀[u, v], [v, v′] ∈ RI)([u, v′] ∈ RI)
Ref(R) (∀[u, v] ∈ RI)([u, u] ∈ RI)
ASym(R) (∀[u, v] ∈ RI)([v, u] /∈ RI)
Irr(R) (∀[u, v] ∈ RI)([u, u] /∈ RI)
Dis(R,S) RI ∩ SI = ∅

C(a) aI ∈ CI

R(a, b) [aI , bI] ∈ RI

Table 3.3: Knowledge base constraints

role R must be a transitive relation.
Then a description logic knowledge base is a finite set of constraints of

the types listed in Table 3.3, left column, where C,D are concepts, R, S are
roles, and a, b are individual names.

Description logic semantics2 is given in terms of descriptive interpreta-
tions. An interpretation I = (∆I , ·I) consists of a nonempty set ∆I , namely
the interpretation domain, and an interpretation function ·I assigning to
each concept name a subset of ∆I , to every role name a relation over ∆I ,
and to every individual name a domain item in ∆I . An interpretation I
extends recursively to complex terms as indicated in the right column of
Tables 3.1 and 3.2.

An interpretation I evaluates a description logic constraint γ to a truth
value true or false. We say that an interpretation I satisfies a constraint
γ, and write I |= γ, if I evaluates γ to true, otherwise we write I ̸|= γ.
Evaluation of knowledge base constraints is carried out as indicated in the
right column of Table 3.3.

If an interpretation I satisfies all the constraints in a knowledge base K,
then I is said to be a model for K, and we write I |= K. A knowledge base
is said to be consistent if it admits a model. Thus the consistency problem
for description logic knowledge bases is to determine whether a knowledge
base is consistent or not.

We conclude this section with the precise definitions of the other reason-
ing tasks mentioned before.

2Here we will limit ourselves to the descriptive semantics. There are several other
semantics that are out of the scope of this thesis.

21

Given a concept C, we say that C is satisfiable if and only if there exists
an interpretation I which associates to it a non-empty set, i.e. CI ̸= ∅.
Given a knowledge base K and a concept C, C is said to be satisfiable with
respect to K if K admits a model I such that CI is not empty.

Now let C,D be two concepts. We say that C subsumes D if and only if
DI ⊆ CI , for every interpretation I. In addition, we say that C subsumes
D with respect to the knowledge base K if and only if DI ⊆ CI for each
model I of K.

Given a knowledge base K, a concept C, and an individual a, then a is
said to be an instance of C with respect to K if and only if I |= C(a) for
every model I of K.

The reasoning tasks called instance retrieval consists in determining
which individuals are instances of the concept C with respect to the knowl-
edge base K.

Finally, given two knowledge bases K and K′, we say that K entails K′

if each model of K is a model for K′ also, i.e. I |= K =⇒ I |= K′.
In the next section we recall the basic description logic ALC and then

show that in ALC all the reasoning tasks we just mentioned can be reduced
to knowledge base consistency.

3.2 The Description Logic ALC
ALC is one of the earlier languages devised in the context of description
logics. It contains:

• a countably infinite collection of concept names N c = {A,B, . . .};

• a countably infinite collection of role names N r = {P,Q, . . .};

• the concept constructors ⊔, ⊓, ¬, ∃, ∀;

• concept inclusions and equality symbols.

The collection of ALC-concepts is defined by the following syntax rule:

C,D −→ A | ¬C | C ⊓D | C ⊔D | ∃P.C | ∀P.C

where C,D are ALC-concepts, A is a concept name in N c, and P is a
role name, while complex roles are not allowed in ALC. Finally, an ALC-
knowledge base is a finite set of constraints of the following types:

C ⊑ D, C ≡ D, C(a), R(a, b)

with C,D ALC-concepts, and a, b ∈ N i.
The description logic ALC extends the basic description logic AL (which

is an acronym for Attributive Language) by also allowing the negation of

22

complex concepts, while in AL concept negation is available only for concept
names.

This peculiarity of ALC allows one to reduce all the reasoning tasks men-
tioned above to knowledge base consistency, since complex negation allows
one to express the negation of ALC-knowledge base constraints.

Plainly, a concept C is satisfiable with respect to a knowledge base K if
and only if the knowledge base K ∪ {C(a)}, where a is an individual name
not already occurring in K and in C, is consistent. In turn, a concept C
is satisfiable (in general) if and only if it is satisfiable with respect to the
empty knowledge base.

Concept subsumption can be reduced to concept (un)satisfiability, which
we just proved to be reducible to knowledge base consistency, since, given
any two concepts C and D, C subsumes D if and only if the concept C⊓¬D
is unsatisfiable.

Next, we show that the entailment of a knowledge base K′ by K can be
reduced to knowledge base (un)consistency. Let us consider first the simpler
case in which K′ consists of a single constraint γ. If γ is the concept inclusion
C ⊑ D, for some concepts C and D, then K entails K′ = {C ⊑ D} if and
only if the knowledge base K ∪ {(C ⊓ ¬D)(a)} is not consistent, for some
individual name a not already occurring in K ∪ K′. Analogously, K entails
{C(b)}, where C is a concept and b is an individual name, if and only if
K ∪ {(¬C)(b)} is inconsistent.3

Now let K′ = {γ1, . . . γn}, for some ALC-knowledge base constraints
γ1, . . . , γn, with n ∈ N, n > 1. Then K entails K′ if and only if K entails γi,
for every 1 ≤ i ≤ n.

Finally, a knowledge base K entails that the individual a is an instance
of the concept C if and only if K entails the knowledge base {C(a)}, and
all the instances of C with respect to K can be retrieved by iterating the
instance checking test over all the individual names occurring in K.

3.2.1 Complexity Issues

It must be noticed that the description logic ALC is not very expressive. For
example, it does not contains complex roles. Despite of this, the complexity
of reasoning in ALC is ExpTime-hard, and this is prohibitive for some
application domains.

This complexity lower bound was proved for the weaker description logic
AL in [2, Theorem 3.27, page 132], where the accessibility problem for suc-
cinct representations of AND-OR graphs was reduced to concept unsatisfi-
ability with respect to knowledge base consisting of concept inclusions only
(see [36, 3]). Hence, the following Theorem easily follows, since AL is a
sublogic of ALC.

3Entailment of role assertions of the form R(a, b) requires an additional constructor,
called nominal.

23

Theorem 2. The problem of deciding whether a given ALC-concept C is un-
satisfiable with respect to a finite collection of ALC-inclusions is ExpTime-
hard.

We argue that this lower bound is mainly due to the presence of the
quantifiers ∃ and ∀ in an unconstrained way, since their presence force any
decision algorithm to invent new items when constructing a model witness-
ing the consistency of a knowledge base. Intuitively speaking, if during the
construction process of such a model we find an item u ∈ (∃R.C)I , we may
be forced to introduce a new item v ∈ CI to be placed as second item of the
pair [u, v] ∈ RI . And, in ALC, this may require to introduce exponentially
many new items.

This argumentation is supported by the fact that reasoning in the de-
scription logic DL⟨∀π⟩ (studied in Section 5.2) is NP-complete despite of the
significant amount of constructs available in this language, since the usage
of quantifiers is restricted in this description logic.

In the next sections we will examine some expressive extensions of ALC.

3.3 Number Restrictions

In general, the expressive power of ALC is considered insufficient to deal
with knowledge representation matters. For this reason, over the years sev-
eral extensions of ALC have been studied. In this context the so called
number description were devised. These are actually considered one of the
most distinguishing feature of the description logic framework. Number de-
scriptions, described in Table 3.1, are concept constructors which allow to
impose some cardinality constraints. For example, the concept ≤ 3R.C,
where R is a role and C is a concept, contains all those domain items which
are connected by the role R to at most 3 domain items in the concept C.
Thus, for example, the following constraint states that the role R is single-
valued4

⊤ ⊑≤ 1R.⊤.

Observe that the constructors ≤ n and ≥ n are mutually expressible
in those description logics which allow complex concepts negation, since
≤ nR.C ≡ ¬(≥ (n + 1)R.C) and ≥ nR.C ≡ ¬(≤ (n + 1)R.C) are valid
statements.

In addition, an existential restriction ∃R.C can be expressed as ≥ 1R.C,
so that the complexity upper bound provided by Theorem 2 holds also for
the description logic obtained from ALC extended with number restriction,
but disallowing the quantifiers.

4Here we used the term “single-valued”, which is typical of set-theoretical languages,
just to avoid confusion. However, in the description logic context these kind of roles are
often called functional roles.

24

In the next section we present the very expressive description logic
SROIQ, which underpins the semantic web language OWL2.

3.4 The Description Logic SROIQ
The description logic SROIQ, devised in [24], is a very powerful descrip-
tion logic which extends ALC with some advanced features concerning roles.
In fact, it allows role inverses, the universal role, role inclusion constraints
and role composition. However, it imposes some quite intricate syntactic
restrictions. Nevertheless, the consistency problem in this language is NEx-
pTime-hard, since it extends the description logic ALCQIO, whose NEx-
pTime-hardness was proved in [44].

SROIQ concepts and roles are defined by means of the following syntax
rules:

C,D −→ A | ¬C | C ⊓D | C ⊔D | ∃R.C | ∀R.C | {a} | ∃C.Self |
≤ nR.C | ≥ nR.C

R −→ P | R−

where n is a non-negative integer, A is a concept name, C and D are
SROIQ-concepts, a is an individual name, P is a role name, and R is
a SROIQ-role. Semantics of SROIQ concepts and roles is reported in the
right column of Tables 3.1 and 3.2, respectively.

Beside the constraints allowed in ALC-knowledge bases, a SROIQ-
knowledge base may contain also role inclusions, and role assertions of the
following types:

Sym(R), ASym(R), Trans(R),
Ref(R), Irr(R), Dis(R, S),

where R and S are SROIQ-roles. However, as mentioned before, SROIQ
imposes several syntactic restrictions on knowledge base, which require some
preliminary definition to be stated.

Let ≺ be a strict partial order over the set of SROIQ-roles (we recall
that a relation is said to be a strict partial order if it is irreflexive and
transitive). Then ≺ is said to be regular if the following holds for any pair
of SROIQ-roles R and S:

S ≺ R ⇐⇒ S− ≺ R.

A role hierarchy Rh is a finite set of inclusions of the form

R1 ◦ . . . ◦Rn ⊑ P

where R1, . . . , Rn are SROIQ-roles not including the universal role U, and
P is a role name.

Now let ≺ be a strict partial order, and let w ⊑ P be a role inclusion,
with w = R1◦. . .◦Rn for some n > 0 and R1, . . . , Rn SROIQ-roles different
from U. Then w ⊑ P is said to be ≺-regular if either one of the following
conditions holds, for some role name P and for some roles S1, . . . , Sn−1:

25

• w = P ◦ P ;

• w = P ◦ P−;

• Ri ≺ P , for all 1 ≤ i ≤ n;

• w = P ◦ S1 ◦ . . . ◦ Sn−1 and Si ≺ P , for all 1 ≤ i < n;

• w = S1 ◦ . . . ◦ Sn−1 ◦ P and Si ≺ P , for all 1 ≤ i < n.

Finally, a role hierarchy Rh is said to be regular if there exists a regular
order ≺ such that each inclusion in Rh is ≺-regular.

Given a role hierarchy Rh, we denote with ⊑∗ the reflexive transitive
closure of the relation ⊑ among roles induced by Rh. Then, a SROIQ-role
R is said to be a subrole of the SROIQ-role S if R ⊑∗ S.

Role Assertions are knowledge base constraints of the following forms:

Sym(R), ASym(R), Trans(R),
Ref(R), Irr(R), Dis(R, S),

where R,S are SROIQ-roles such that R, S ̸= U. Given a role hierarchy
Rh, and a finite set of role assertions Ra, the set of roles that are simple in
R = Rh ∪Ra is inductively defined as follows:

• a role name is simple if it does not occur in the right-hand side of any
inclusion in Rh;

• R− is simple if and only if so is R, for every SROIQ-role R;

• if R occurs in the right-hand side of an inclusion in Rh, R is simple if,
for each inclusion w ⊑ R ∈ Rh, w = S for some simple role S.

A set of role assertions Ra is simple if all roles R, S appearing in role
assertions of the form Irr(R), ASym(R), or Dis(R, S), are simple in R.

A SROIQ -RBox R is a set R = Rh ∪ Ra, where Rh is a regular role
hierarchy, and Ra is a simple set of role assertion.

Finally, a SROIQ -knowledge base consists of

• a SROIQ-RBox R = Rh ∪Ra;

• a finite set of inclusions of SROIQ-concepts, in which the terms of
the forms ∃S.Self, (≤ n)R.C, and (≥ n)R.C are so that R is simple
with respect to R;

• a finite set of individual assertions of the forms C(a), R(a, b),
(¬R)(a, b), and a ̸= b, where a,b are individual names, C is a SROIQ-
concept, and R is a SROIQ-role.

In the next section we mention another approach to augment the expres-
sive power of description logics, which consists in extending description logic
knowledge bases with SWRL rules.

26

3.5 SWRL Rules

In order to increase the expressive power of description logics, in [26] it was
proposed to extend this framework with a simple form of Horn-style rules
called SWRL rules. SWRL rules have the form

H → B1 ∧ . . . ∧Bn

where H,B1, . . . , Bn are atoms of the forms A(x), P (x, y), x = y, x ̸= y,
with A a concept name, P a role name, and x, y either SWRL-variables or
individual names.

A binding B(I) is any extension of the interpretation I which assigns a
domain item to each SWRL-variable. An interpretation I satisfies a rule
H → B1 ∧ . . . ∧ Bn if each binding B(I) which satisfies all the atoms
B1, . . . , Bn satisfies H also.

A description logic knowledge base K extended with a finite set of SWRL
rules R is said to be consistent if and only if it admits a model which satisfies
K and all the rules in R.

The great expressive power of SWRL rules leads to undecidability if used
in conjunction with the description logic SROIQ. This was proved in [26]
by providing a reduction to the consistency problem for SROIQ-knowledge
bases5 of the Tiling Problem, a well-known undecidable problem studied in
[4].

A similar undecidability result was proved in [28, Fact 4.2.2] with provid-
ing a reduction of the Post Correspondence problem. The same proof shows
that undecidability is not caused by the great expressive power of SROIQ,
but just by the presence of existential quantifiers, in conjunction with SWRL
rules.

5To be more precise, in [26] it was provided a reduction to the consistency problem in
SHOIN , a sublogic of SROIQ.

27

Chapter 4

The ∀π Family

In this chapter we introduce the ∀π family of quantified fragments of set
theory, consisting of three languages which allow the explicit manipulation
of ordered pairs. We will provide a decision procedure for each language in
this family. Furthermore, we will prove that, when the length of quantifier
prefixes is bounded by a constant, the decision procedures for the three
languages run in nondeterministic-polynomial time.

4.1 The Language ∀π0
The language ∀π

0 is a quantified fragment of set theory which contains

• a denumerable infinity of variables Vars , defined in Section 2.1,

• the binary pairing operator [·, ·],

• the monadic function π̄(·), which yields the collection of the non-pair
members of its argument,

• the relators ∈ and =,

• the Boolean connectives of propositional logic ¬,∧,∨,→,↔,

• parentheses, and

• the universal quantifier ∀.

A quantifier-free ∀π
0-formula is any propositional combination of atomic

∀π
0-formulae. These are expressions of the following types:

x ∈ π̄(z), [x, y] ∈ z, x = y,

with x, y, z ∈ Vars . Intuitively, terms of the form [x, y] represent ordered
pairs of sets. A prenex ∀π

0-formula is a formula of the form

Q1 · · ·Qnψ

28

with n ≥ 0, where ψ is a quantifier-free ∀π
0-formula, and the Qi are restricted

universal quantifier all of the form (∀x ∈ π̄(y)) or all of the form (∀[x, x′] ∈
y). We will refer to x and x′ as quantified variables and to y as domain
variables. A prenex ∀π

0-formula is said to be simple if no variable occurs
both as a quantified and a domain variable, i.e., roughly speaking, no x, x′

can be a y in the previous definition.
Finally, a ∀π

0-formula is any finite conjunction of simple prenex ∀π
0-

formulae.
In order to provide the semantics definitions for ∀π

0, we extend set-
theoretic interpretations to terms of the form π̄(x) as follows:

Iπ̄(x) = Def Ix \ πI(Ix)

for every interpretation I = (MI, πI), where x ∈ Vars .
According to Table 2.2, atomic ∀π

0-formulae are evaluated by a set-
theoretic interpretation I as follows:

I |= x ∈ π̄(y) ⇐⇒ Ix ∈ Iπ̄(y)
I |= x = y ⇐⇒ Ix = Iy
I |= [x, y] ∈ z ⇐⇒ I[x, y] ∈ Iz.

Evaluation of quantifier-free ∀π
0-formulae is carried out according to the

standard rules of propositional logic, and simple prenex ∀π
0-formulae are

evaluated as follows:

• I |= (∀x ∈ π̄(y))ϕ iff I′ |= ϕ for every {x}-variant I′ of I such that
I′x ∈ Iπ̄(x),

• I(∀[x, y] ∈ z)ϕ = true iff I′ϕ = true for every {x, y}-variant I′ of I
such that I′[x, y] ∈ Iz.

Finally, an interpretation I evaluates to true a ∀π
0-formula ϕ1 ∧ . . .∧ϕn,

where n ∈ N and ϕi are simple prenex ∀π
0-formulae, for 1 ≤ i ≤ n, if and

only if it evaluates to true all the conjuncts ϕi.
In the rest of this section we present and discuss a nondeterministic de-

cision procedure for ∀π
0. We begin with introducing skeletal representations,

which are finite structures which represent interpretations in a concise way,
in a sense that will be clarified below. We will prove that skeletal representa-
tions can be used to witness the satisfiability of ∀π

0-formulae. In particular,
the decision procedure presented here relies on the fact that any ∀π

0-formula
is satisfiable if and only if there exists a size-bounded skeletal representation
with some peculiar characteristics.

Later, the same problem will be considered from a complexity point of
view, and we will show that it is NP-complete if we restrict to formulae
whose quantifier prefixes have length bounded by a constant.

29

4.1.1 Skeletal representations

Skeletal representations are concise representations of set-theoretic interpre-
tations, in the sense that, given an interpretation I and a finite collection
of variables x1, . . . , xn, one can construct a skeletal representation S which
represents in a faithful and concise manner the relationships among the sets
Ixi, I[xi, xj], where 1 ≤ i, j ≤ n.

Basic constituents of skeletal representations are atomic ∀π
0-formulae.

Given a finite collection S of atomic formulae, we denote with Vars(S)
the collection of the variables occurring in the formulae of S. In addition,
we indicate with ∈+

S (the membership closure of S) the minimal transitive
relation on Vars(S) such that the following conditions hold:

• if “x ∈ π̄(y)” ∈ S, then x ∈+
S z;

• if “[x, y] ∈ z” ∈ S, then x ∈+
S z ∧ y ∈+

S z.

A finite collection S of atomic formulae is said to be a skeletal represen-
tation if x ̸∈+

S x, for all x ∈ Vars(S).
Let S be a skeletal representation. We define the height of a variable

x ∈ Vars(S) with respect to S (which we write heightS(x)) as the length n
of the longest ∈+

S -chain of the form x1 ∈+
S . . . ∈

+
S xn ∈+

S x ending at x, with
x1, . . . , xn ∈ Vars(S). Thus, heightS(x) = 0 if y ̸∈+

S x, for any y ∈ Vars(S).
A skeletal representation S is said to be V -extensional, for a given set of

variables V , if the following conditions hold:

• if “x = y” ∈ S, then x, y ∈ V and αx
y and αy

x belong to S, for each
atomic formula α in S;

• if “x = y” /∈ S, for some x, y ∈ V , then the variables x and y must
be explicitly distinguished in S either by some variable z, in the sense
that “z ∈ π̄(x)” ∈ S iff “z ∈ π̄(y)” /∈ S, or by some pair [z, z′], in the
sense that “[z, z′] ∈ x” ∈ S iff “[z, z′] ∈ y” /∈ S.

A skeletal representation can be turned into a special interpretation,
namely its realization, in polynomial time as illustrated below. 1

Definition 3 (Realization). Let S be a skeletal representation, and let V
and T be two finite and disjoint sets of variables such that Vars(S) ⊆ V ∪T .
In addition, let π be a pairing function, and let σ be an injective mapping
which associates a set in the von Neumann hierarchy to each variable in T .

Then the realization R = (MR, πR) of S relative to (V, T, π, σ) is defined
by

πR = Def π
MRx = Def {Ry : “y ∈ π̄(x)” ∈ S} ∪ {R[y, z] : “[y, z] ∈ x” ∈ S} ∪ s(x) ,

1Realizations were first introduced in [10], though with a slightly different meaning.

30

where

s(x) = Def


{σ(x)} if x ∈ T

∅ otherwise,

for all x ∈ Vars .

It must be noticed that the recursion which defines the realization as-
signment is well posed, since being S a skeletal representation, it must be
acyclic.

In the next lemma we show that, if π and σ are appropriately chosen,
then the realization of a skeletal representation correctly models the atomic
formulae in the representation itself. In more details, we will prove that
realizations act as minimal models for skeletal representations, in the sense
that if V, T are two disjoint sets of variables, S is a V -extensional skeletal
representation such that Vars(S) ⊆ V ∪ T , and R is the realization of S
relative to (V, T, π, σ), where π and σ were appropriately chosen, thenR |= α
if and only if α ∈ S.

Lemma 4. Let S be a skeletal representation, let V and T be two finite and
disjoint collections of variables such that V is non empty, and Vars(S) ⊆
V ∪ T . Let π, σ be respectively a pairing function and an injective mapping
from T to V. Finally, let R be the realization of S with respect to (V, T, π, σ).

Now let us suppose that the following conditions hold:

(RC1) S is V -extensional;

(RC2) π(u, v) ̸= Rx for all x ∈ V ∪ T , and for all u, v ∈ V. (i.e. R does not
assign any pair to the variables in V ∪ T);

(RC3) σ(t) ̸= π(u, v) for all t ∈ T and for all u, v ∈ V (i.e. σ does not contain
pairs in its range);

(RC4) Rx ̸= σ(t) for all x ∈ V ∪ T, t ∈ T .

Then

(R1) Rx = Ry if and only if either “x = y” ∈ S or x and y coincide,

(R2) Rx ∈ Rπ̄(y) if and only if “x ∈ π̄(y)” ∈ S, and

(R3) R[x, y] ∈ Rz if and only if “[x, y] ∈ z” ∈ S

for all x, y, z ∈ V ∪ T .

Proof. To prove (R1) we reason as follows. Let x, y be two variables in
V ∪ T , and let us assume that “x = y” ∈ S. Then x, y must be in V , since
S is V -extensional. Now we prove that, in this case, Rx must be a subset
of Ry. Thus let u be a set arbitrarily chosen in Rx. From Definition 3 it
follows that either u = Rz, for some z ∈ V ∪ T such that “z ∈ π̄(x)” ∈ S,

31

or u = R[z′, z′′], for some z′, z′′ ∈ V ∪ T such that “[z′, z′′] ∈ x” ∈ S. In
the former case, “z ∈ π̄(y)” ∈ S follows from the V -extensionality of S, so
that u = Rz ∈ Ry. For the same reason, if “[z′, z′′] ∈ x” occurs in S, then
“[z′, z′′] ∈ y” must occurs in S also, so that u = R[z′,Rz′′] ∈ Ry. Hence
u ∈ Rx entails u ∈ Ry, for all u ∈ Rx, so that Rx must be a subset of Ry.
Analogously it can be proved that Ry ⊆ Rx, and thus we can conclude that
Rx = Ry must hold in the case “x = y” ∈ S.

For the converse direction we have to prove that if Rx = Ry, for distinct
variables x, y ∈ V ∪ T , then “x = y” ∈ S. So, assume that “x = y” /∈ S,
for two distinct variables x, y ∈ V ∪ T and consider first the case in which
either x or y, say y, is a variable in T . From the definition of realization
it follows that σ(y) ∈ Ry, while from (RC3) and (RC4) it follows that
σ(y) /∈ Rx, unless x ∈ T and σ(y) = σ(x). But in such a case, we would
have σ(x) = σ(y) and therefore x and y must coincide, since we supposed
σ injective, contradicting our initial assumption that x and y are distinct
variables. Therefore we have Rx ̸= Ry.

Next, let us assume that x, y ∈ V . We will induct on

max(heightS(x), heightS(y)).

From the V -extensionality of S it follows that x, y are distinguished in S by a
variable z or by a pair [z′, z′′]. Let us first assume that x, y are distinguished
in S by a variable z. If “z ∈ π̄(x)” ∈ S and “z ∈ π̄(y)” /∈ S, then for all w
such that “w ∈ π̄(y)” ∈ S we have Rz ̸= Rw by the inductive hypothesis,
since heightS(z) < heightS(x) and heightS(w) < heightS(y). Furthermore,
from (RC2) it follows also that Rz ̸= R[w,Rw′], for all w,w′ such that
“[w,w′] ∈ y” ∈ S. Thus Rz ∈ Rx \ Ry. If “z ∈ π̄(y)” ∈ S and “z ∈
π̄(x)” /∈ S we can prove that Rz ∈ Ry \ Rx in an analogous way. In both
cases we have Rx ̸= Ry. On the other hand, if x, y are distinguished by a
pair [z′, z′′], we can argue as follows. Assume first that “[z′, z′′] ∈ x” ∈ S
and “[z′, z′′] ∈ y” /∈ S. Plainly, R[z′, z′′] ∈ Rx so that, by (RC2), R[z′, z′′]
must coincide with R[w′, w′′], for some pair [w′, w′′] such that “[w′, w′′] ∈
y” ∈ S. Since π is a pairing function, we have Rz′ = Rw′ and Rz′′ =
Rw′′. Considering that max(heightS(z

′), heightS(z
′′)) < heightS(x) and that

max(heightS(w
′), heightS(w

′′)) < heightS(y), the inductive hypothesis yields
that

• z′ and w′ coincide or “z′ = w′” is in S, and

• z′′ and w′′ coincide or “z′′ = w′′” is in S.

But then, by the V -extensionality of S, “[z′, z′′] ∈ y” would be in S, a
contradiction. Hence, R[z′, z′′] ∈ Rx\Ry. Analogously, if “[z′, z′′] ∈ x” /∈ S
and “[z′, z′′] ∈ y” ∈ S, we have R[z′, z′′] ∈ Ry\Rx. Therefore, in both cases
we have Rx ̸= Ry, proving (R1).

Next we prove (R2). If “x ∈ π̄(y)” is an atomic formula in S, then
Rx ∈ Ry directly follows from the definition of realization. Now let us

32

suppose “x ∈ π̄(y)” /∈ S, and let us assume by way of contradiction that
Rx ∈ Ry. We remark that Rx cannot be a pair, in consequence of (RC2),
and, in the case y ∈ T , Rx ̸= σ(y) follows from (RC4). Thus, from the
definition of realization it follows that there must exists some variable z,
distinct from x, such that “z ∈ π̄(y)” ∈ S, and Rx = Ry. Thus “z = x” ∈ S
follows from (R1), so that x, y must be in V , and “x ∈ π̄(y)” must occur
in S, since S is V -extensional, thus contradicting our initial assumption
“x ∈ π̄(y)” /∈ S

Finally let us consider (R3). Analogously to (R2), “[x, y] ∈ z” ∈ S
easily entails R[x, y] ∈ Rz. Conversely, if R[x, y] ∈ Rz, then, for (RC2)
and (RC3), there must exist two variables z′, z′′ such that “[z′, z′′] ∈ z”
occurs in S, and R[z′, z′′] = π(Rz′,Rz′′) = R[x, y] = π(Rx,Ry). However,
Rz′ = Rx and Rz′′ = Ry must hold, as π is a pairing function. Thus, as
consequence of (R1), it must be either z′ = x or “z′ = x” ∈ S. Analogously,
z′′ = y or “z′′ = x” ∈ S. In the case z′ = x, z′ = y, our thesis follows
straightforwardly from “[z′, z′′] ∈ z” ∈ S. Concerning the other cases, it can
easily be proved that “[x, y] ∈ z” follows if we consider the V -extensionality
of S.

In fact, given S, V, T as in Definition 3, we can construct a pairing func-
tion π and a mapping σ so that they satisfy conditions (RC2), (RC3), and
(RC4). To this purpose, we begin with by introducing the following family
{πn}n∈N of binary operations over sets, recursively defined by

π0(u, v) = Def {u, {u, v}}
πn+1(u, v) = Def {πn(u, v)} ,

for every u, v ∈ V . It can easily be proved that each function in this family
is a pairing function.

Lemma 5. Let πn be defined as above. Then πn is a pairing function.

Proof. We proceed by induction on n. Let us consider the function π0,
and let u, v, u′, v′ be four sets in V . Plainly, if u = u′ and v = v′, then
π0(u, v) = {u, {u, v}} = {u′, {u′, v′}} = π0(u

′, v′). Conversely, let us assume
that π0(u, v) = π0(u

′, v′). Then either one of the followings must hold:

(i) u = u′ ∧ v = v′, or

(ii) u = {u′, v′} ∧ {u, v} = u′.

But (ii) contradicts the regularity axiom of set theory, since in this case it
would be u = {{u, v}, v′}. Thus (i) must hold. It remains to prove that,
given any two sets u, v in the von Neumann hierarchy V , their Cartesian
product (with respect to π0) is a set in V . To this purpose, let us consider
u, v any two sets in V , and let us denote with u×0 v the Cartesian product
of u and v with respect to π0. It is easy to see that u ×0 v is a subset of

33

P(u ∪ v ∪ P(u ∪ v)). This is enough to say that u ×0 v ∈ V , as u, v ∈ V
and the von Neumann hierarchy is closed under the powerset and the binary
union operators.

Now let us consider the function πn+1, with n ∈ N, and let u, v, u′, v′ ∈
V . Also in this case πn+1(u, v) = πn+1(u

′, v′) trivially follows from the
definition of πn+1, if u = u′ and v = v′. Thus let us assume that
πn+1(u, v) = πn+1(u

′, v′), and prove that u = u′ and v = v′. However,
πn+1(u, v) = {πn(u, v)} and πn+1(u

′, v′) = {πn(u′, v′)}, so that πn(u, v) and
πn(u

′, v′) must coincide. Then our thesis follows by applying the inductive
hypothesis.

Concerning (P2), it is enough to observe that, given u, v ∈ V , πn(u′, v′) ∈
V follows by applying the inductive hypothesis, for all u′ ∈ u and v′ ∈ v,
and then πn+1(u

′, v′) = {πn(u′, v′)} must be in V also.

Next we show how to construct a suitable pairing function π and mapping
σ, so as conditions (RC2), (RC3), and (RC4) of Lemma 4 are satisfied.

Lemma 6. Let S be a skeletal representation, let V and T = {t1, . . . , tm}
be two finite and disjoint sets of variables such that V is non empty and
Vars(S) ⊆ V ∪ T . Then there exist a pairing function π and a mapping σ
from T to V, such that, if S is V -extensional, then (R1), (R2), and (R3)
of Lemma 4 hold for the realization R of S relative to (V, T, π, σ).

Proof. To prove the lemma, we provide a pairing function π and a mapping
σ which satisfy (RC2), (RC3), and (RC4). Thus, let us put

π = Def π|V |+|T |
σ(ti) = Def {k + 1, k, i}, for all 0 ≤ i < m,

where k = |V | · (|V |+ |T |+ 3).2 Then let R be the realization of S relative
to (V, T, π, σ).

To prove (RC2), we establish the more general property

if heightS(x) ≤ n ≤ |V |+ |T |, then Rx ̸= πn(u, v),
for all x ∈ V ∪ T and for all u, v ∈ V . (4.1)

Notice that, as V is non empty, then the sets assigned to the variables in
T by σ must have cardinality exactly 3. On the other hand, |π0(u, v)| = 2.
and |πn(u, v)| = 1 for all u, v ∈ V , n > 0.

Let n ≤ |V |+ |T | and let us assume by way of contradiction that Rx =
πn(u, v) for some u, v ∈ V and some x ∈ V ∪ T of minimal height such that
0 ≤ heightS(x) ≤ n. We can rule out at once the case in which n = 0, as
in this case heightS(x) = 0, so that |Rx| ≤ 1, and therefore Rx ̸= π0(u, v),
since |π0(u, v)| = |{u, {u, v}}| = 2. Thus, we can assume that n > 0. Let

2We are assuming that integers are represented à la von Neumann, namely 0 =Def ∅
and, recursively, n + 1 =Def n ∪ {n}. In addition, we denote with | · | the cardinality
operator over sets.

34

us consider first the case in which heightS(x) = 0. If x ∈ V then, by the
very definition of realization, we have Rx = ∅ ̸= πn(u, v). On the other
hand, if x ∈ T , then Rx = {{k + 1, k, i}}, for some 1 ≤ i ≤ |T |, and
since |{k+1, k, i}| > |πn−1(u, v)| and πn(u, v) = {πn−1(u, v)}, it follows that
Rx ̸= πn(u, v). In both cases we found a contradiction, so that we must
have heightS(x) > 0.

On the other hand, if heightS(x) > 0, our absurd hypothesis Rx =
πn(u, v) = {πn−1(u, v)} and the definition of realization imply that either

(i) πn−1(u, v) = {k+1, k, i}, for some 1 ≤ i ≤ |T |, but provided that x ∈ T ,
or

(ii) πn−1(u, v) = Ry, for some y such that “y ∈ π̄(x)” ∈ S, or

(iii) πn−1(u, v) = R[y, z] = π(Ry,Rz), for some y, z such that “[y, z] ∈ x” ∈
S.

We can exclude at once case (i), since |πn−1(u, v)| ≤ 2 < |{k + 1, k, i}|.
Case (ii) can be excluded as well, since it would contradict the minimality
of heightS(x), as heightS(y) < heightS(x). In case (iii), from elementary
properties of our pairing functions πi it would follow that |V |+ |T | = n− 1,
contradicting our initial assumption that n ≤ |V |+ |T |. Thus (4.1) holds.

In view of (4.1), to establish (RC2) it is now enough to observe that
heightS(x) < |Vars(S)| ≤ |V |+ |T |.

(RC3) easily follows if we observe that |σ(ti)| = 3 and |πn(u, v)| ≤ 2,
for all ti ∈ T, n ∈ N, u, v ∈ V .

Next, since rank({k + 1, k, i}) = k + 2, for 1 ≤ i ≤ |T | (as k > |T |),
to establish (RC4) it will be enough to show that rank(Rx) ̸= k + 2, for
x ∈ V ∪ T . Thus, let x ∈ V ∪ T . If y ∈+

S x, for some y ∈ T , then
rank(Rx) ≥ rank(Ry) ≥ k + 3. The same conclusion can be reached also in
the case in which x ∈ T . On the other hand, if y ̸∈+

S x, for any y ∈ T and
x ∈ V , it can easily be proved that rank(Rx) ≤ heightS(x) · (|V |+ |T |+3) ≤
|V | · (|V | + |T | + 3) = k, so that, in any case, rank(Rx) ̸= k + 2 holds,
proving (RC4). We proceed by induction on heightS(x). Indeed, Rx = ∅
follows from the very definition of realization if heightS(x) = 0, so that
rank(Rx) = 0 ≤ |V | · (|V |+ |T |+3) since we assumed V not empty. Now let
us consider the case heightS(x) > 0. Then either one of the followings must
hold:

(i) rank(Rx) = rank(Ry) + 1 for some y such that “y ∈ π̄(x)” ∈ S, or

(ii) rank(Rx) = rank(R[y, z]) + 1 for some y, z such that “[y, z] ∈ x” ∈ S.

If “y ∈ π̄(x)” ∈ S, then heightS(y) < heightS(x), so that rank(Ry) ≤
heightS(y) · (|V | + |T | + 3) follows by applying the inductive hypothesis,
and thus, if (i) holds, rank(Rx) = rank(Ry) + 1 < heightS(y) · (|V | + |T | +

35

3) < heightS(x) · (|V | + |T | + 3). Now let us suppose (ii). heightS(x) >
max(heightS(y), heightS(z)) follows from the very definition of height, and
thus Ry ≤ heightS(y) · (|V | + |T | + 3) and Rz ≤ heightS(z) · (|V | + |T | +
3) follows by applying the inductive hypothesis. In addition, rank(Rx) =
max(rank(Ry), rank(Rz))+(|V |+|T |+3)+1 holds, since we put π = π|V |+|T |,
and thus rank(Rx) ≤ max(heightS(y), heightS(z)) · (|V | + |T | + 3) + (|V | +
|T |+3)+1 = (max(heightS(y), heightS(z))+1)·(|V |+|T |+3)+1, so that the
thesis follows by observing that heightS(x) > max(heightS(y), heightS(z)), as
we assumed that “[y, z] ∈ x” ∈ S.

In light of Lemma 6, in the rest of this thesis we will omit to indicate π
and σ when defining a realization, assuming that they are those indicated
in Lemma 6.

Skeletal representations can be used as faithful witnesses for the satisfi-
ability of ∀π

0-formulae, as shown in the decision procedure illustrated in the
following section.

4.1.2 A Decision Procedure for ∀π0
In this section we report a proof of the decidability of the s.p. for ∀0-formulae.
This proof, and the consequent decidability result, represents the main con-
tribution of the thesis, since from it most of the other results presented here
are derived. This proof was originally presented in [12], with slight modifi-
cations. It follows much the same strategy of [8], reformulated in terms of
skeletal representations, and suitably extended so as to cope with ordered
pair terms.

First of all, it is convenient to recall the following notion, introduced in
[10]. We say that a set Σ distinguishes a set S if s∩Σ ̸= s′∩Σ holds for any
two distinct s, s′ ∈ S. The following lemma will be used in the decidability
proof provided later in this section.

Lemma 7.3 Any finite set S admits a set Σ which distinguishes it and such
that |Σ| ≤ |S| − 1.

Proof. If |S| ≤ 1, our claim is vacuously true. Otherwise, let |S| > 1 and,
inductively, let us assume that our claim holds for any set S ′ such that
|S ′| < |S|. Then, pick s ∈ S. By our inductive hypothesis the set S \ {s}
admits a set Σ′ which distinguishes it and such that |Σ′| ≤ |S| − 2. If Σ′

distinguishes S, we are done. Otherwise, there is an s′ ∈ S \ {s} such that
s∩Σ′ = s′ ∩Σ′. Let d ∈ (s \ s′)∪ (s′ \ s) and consider Σ = Def Σ

′ ∪ {d}. We
claim that Σ distinguishes S. Indeed, if this were not the case there would
exist an s′′ ∈ S \{s, s′} such that s∩Σ = s′′∩Σ, so that s∩Σ′ = s′′∩Σ′ and,
therefore, s′∩Σ′ = s′′∩Σ′, contradicting our assumption that Σ′ distinguishes
S \ {s}. It only remains to observe that plainly |Σ| ≤ |S| − 1.

3See [10]. [38] also provides an extension to infinite sets.

36

In the following theorem we prove the decidability of the s.p. for ∀π
0-

formulae by showing that skeletal representations can be used to witness
satisfiability of ∀π

0-formulae.

Theorem 8. Let ϕ be a ∀π
0-formula, and let V = Vars(ϕ). Then ϕ is

satisfiable iff there exists a V -extensional skeletal representation S such that:

(i) Vars(S) ⊆ V ∪ T , for some T such that |T | < 2|V |;

(ii) R |= ϕ, where R is the realization of S relative to (V, T).

Proof. To prove the theorem, it is enough to exhibit a skeletal representation
S that satisfies conditions (i) and (ii) above, given a model I for ϕ.

Thus, let I be a model for ϕ and let Σ = {Ix : x ∈ V }. As shown in
Lemma 7, there exists a collection Σ0 of size strictly less than |Σ| which
witnesses all the inequalities among the members of Σ, in the sense that
s∩Σ0 ̸= s′ ∩Σ0 for any two distinct s, s′ ∈ Σ. Let us split the pairs present
in Σ0 (relative to the pairing function πI of I) forming the collection

Σ1 = Def Σ0 \ πI(Σ0) ∪


{{u, v} : πI(u, v) ∈ Σ0} .

Then we put Σ2 = Def Σ1 \Σ and let T be any collection of variables in Vars ,
not already occurring in ϕ, such that |T | = |Σ2|. Notice that |T | ≤ 2|Σ0| <
2|V |.

Finally, we define our skeletal representation as the collection S of atomic
∀π
0-formulae such that:

“x ∈ π̄(y)” ∈ S ⇐⇒ Ix ∈ Iπ̄(y)
“[x, y] ∈ z” ∈ S ⇐⇒ I[x, y] ∈ Iz
“x = y” ∈ S ⇐⇒ Ix = Iy and x, y ∈ V

for all x, y, z ∈ V ∪ T .
We begin with proving that the skeletal representation defined in this

way is V -extensional, as required by condition (i). Plainly,

“x = y” ∈ S ⇐⇒ x, y ∈ V

follows from the very definition of S. Now let α be an atomic formula in S.
αy
x ∈ S, αx

y ∈ S trivially follow from the very definition of I, as “x = y” ∈ S
imply Ix = Iy. For example, let us consider the case α = “x ∈ π̄(z)”, for
some z ∈ Vars(S). Then Ix ∈ Iπ̄(z) follows from the very definition of I,
so that Iy ∈ Iπ̄(z), and thus “y ∈ π̄(z)” ∈ S. To conclude that S is V -
extensional, it remains to prove that, given two distinct variables x, y ∈ V ,
they are distinguished in S by some variable z, or by some pair [z, z′]. To
this purpose, we remark that Σ0 distinguishes Σ, which contains both Ix
and Iy, so that there must exists d ∈ Σ1 such that d ∈ (Ix \ Iy) ∪ (Iy \ Ix).
Let us assume d ∈ (Ix \ Iy) (the case d ∈ (Iy \ Ix) is analogous). If d is

37

not a pair, with respect to the pairing function πI, then d ∈ Σ1, so that
d ∈ Σ2 ∪ Σ, which yields Iz = d, for some z ∈ V ∪ T , and Iz ∈ Iπ̄(x). Thus
“z ∈ π̄(x)” ∈ S, and “z ∈ π̄(y)” /∈ S follow from the very definition of I.
Analogously, if d = πI(d, d

′) for some sets d,d′, then d, d′ ∈ Σ2, so that there
must exist z, z′ ∈ V ∪ T such that Iz = d and Iz′ = d′, and then it must be
“[z, z′] ∈ x” ∈ S and “[z, z′] ∈ y” /∈ S.

We prove next that also condition (ii) is satisfied, i.e. R |= ϕ holds,
where R is the realization of S relative to (V, T). This amounts to showing
that R models correctly all conjuncts of ϕ. These are simple prenex ∀π

0-
formulae whose free variables belong to V ∪ T and whose domain variables
belong to V , which are correctly modeled by I. It will therefore be enough
to prove the following general property stating that

I |= ψ =⇒ R |= ψ, (4.2)

for every simple prenex ∀π
0-formula ψ such that Vars(ψ) ⊆ V ∪T and whose

domain variables, if any, belong to V .
We prove (4.2) by induction on the length of the quantifier prefix of ψ.
When ψ is quantifier-free, (4.2) follows from propositional logic, by

observing that the definition of S, together with Lemma 6, yields that
Iα = Rα, for each atomic ∀π

0-formula α such that Vars(α) ⊆ V ∪ T .
For the inductive step, let ψ have either the form (∀x ∈ π̄(y))χ or the

form (∀[x, y] ∈ z)χ, with χ a simple prenex ∀π
0-formula having one less

quantifier than ψ. For the sake of simplicity, we consider here only the case
in which ψ has the form (∀x ∈ π̄(y))χ, as the other case can be dealt with
much in the same manner. We remark that, by hypothesis, the domain
variable y in (∀x ∈ π̄(y))χ belongs to V .

Let us assume that I |= ψ. To complete the inductive proof of (4.2) we
need to show that R |= ψ. From I |= ψ it follows that I |= (w ∈ π̄(y)) → χx

w,
for every variable w, and in particular for every variable w ∈ W , where
W = Def {w ∈ V ∪ T : “w ∈ π̄(y)” ∈ S}. Let w ∈ W . We clearly have
I |= w ∈ π̄(y), and therefore I |= χx

w. Plainly, Vars(χx
w) ⊆ V ∪ T . In

addition, all domain variables in χx
w belong to V , since this is the case for

all domain variables in χ and w can not appear in χx
w as a domain variable,

since x is a quantified variable of ψ and as such can not appear also as a
domain variable in ψ, and therefore in χ. Hence, by inductive hypothesis,
we have R |= χx

w and, a fortiori, R |= (w ∈ π̄(y)) → χx
w.

Notice that the latter relation holds also for w ∈ (V ∪ T) \W , since in
this case I ̸|= (w ∈ π̄(y)) and therefore, as observed above, R ̸|= (w ∈ π̄(y)).
Thus we have

R |= (w ∈ π̄(y)) → χx
w, (4.3)

for every w ∈ V ∪ T . We show that (4.3) implies R |= (∀x ∈ π̄(y))χ, which
is what we want to prove.

Indeed, if by contradiction R ̸|= (∀x ∈ π̄(y))χ, then R′ ̸|= (x ∈ π̄(y)) →
χ, for some {x}-variant R′ of R, so that R′ |= (x ∈ π̄(y)) and R′ ̸|= χ. But

38

then
R′x ∈ R′π̄(y) = Rπ̄(y) ⊆ {Rz : “z ∈ π̄(y)” ∈ S}.

Therefore R′x = Rz0, for some variable z0 (in V ∪ T) such that the literal
“z0 ∈ π̄(y)” belongs to S. Thus we have R |= z0 ∈ π̄(y) and R ̸|=
(z0 ∈ π̄(y)) → χx

z0
, contradicting (4.3). Hence, R |= (∀x ∈ π̄(y))χ holds,

completing the inductive proof of (4.2) and, in turn, the proof of condition
(ii) of the theorem.

We observe that that condition (ii) of Theorem 8 is effectively verifiable.
Indeed, if ϕ is a quantifier-free ∀0-formula, V is the set of the free variables
occurring in ϕ, S is a V -extensional skeletal representation, and R is the
realization of S relative to (V,Vars(S) \ V), then, in force of Lemma 3, it
can be tested in polynomial time if R is a model for ϕ, since R |= α if and
only if α occurs in S, for each atomic ∀π

0-formula α occurring in ϕ.
On the other hand, if ϕ is a simple prenex ∀π

0-formula, condition (ii) can
be verified, as it will be proved in Lemma 9, by checking that R correctly
models the expansion of ϕ relative to S, which we define shortly. For a
simple prenex ∀π

0-formula ψ, we put

expS(ψ) = Def


ψ if ψ is quantifier-free,

“x′∈π̄(y)”∈S
expS(χ

x
x′) if ψ = (∀x ∈ π̄(y))χ,

“[x′,y′]∈z”∈S
expS(χ

x, y
x′,y′) if ψ = (∀[x, y] ∈ z)χ.

Then we put
ExpS(ϕ) = Def expS(ϕ1) ∧ . . . ∧ expS(ϕn),

where ϕ1, . . . , ϕn are the (simple prenex) conjuncts of ϕ.
The next lemma shows the connection between realizations and expan-

sions.

Lemma 9. Let ϕ be a simple prenex ∀0-formula, let V = Vars(ϕ), and let
S be a V -extensional skeletal representation. Let R be the realization of S
relative to (V,Vars(S) \ V). If R |= expS(ϕ) then R |= ϕ.

Proof. We proceed by induction on the length of the quantifier prefix of ϕ.
If ϕ is quantifier-free, then the lemma trivially holds, since expS(ϕ) = ϕ
follows from the very definition of expS(·).

Now let ϕ = (∀x ∈ π̄(y))ψ, for some x, y ∈ Vars , and for some ∀0-
formula ψ. In addition, let us assume that R |= expS(ϕ). It will be enough
to prove that R′ |= ψ, for every R′ {x}-variant of R such that R′x ∈ Rπ̄(y).
In this case, R′x must coincide with Rx′, for some x′ ∈ Vars(S) such that
“x′ ∈ π̄(y)” ∈ S, since Ry = {Rz : “z ∈ π̄(y)” ∈ S}. In addition, x
must be free in ψ, as quantifiers nesting is not allowed in ∀0-formulae. Then
R′ |= ψ if and only if R |= ψx

x′ , which, in turn, follows by applying the

39

inductive hypothesis, as expS(ψ
x
x′) is a conjunct of expS(ϕ), and we assumed

that R |= expS(ϕ). This allows us to conclude that R |= ϕ, for every R′

{x}-variant of R such that R′x ∈ Rπ̄(y), and then R |= ϕ.
Analogously, if ϕ = (∀[x, y] ∈ z)ψ, for some x, y, z ∈ Vars , and for

some ∀0-formula ψ, then R |= expS(χ
x, y
x′,y′), for all variables x′ and y′ such

that “[x′, y′] ∈ z” occurs in S, and then R′ |= χ follows by applying the
inductive hypothesis, for each {x, y}-variant R′ of R such that R′x = Rx′
and R′y = Ry, where “[x′, y′] ∈ z”. The thesis easily follows if we recall
that the realization does not assign any pair to variables in V ∪ T , so that
πR(Rz) = {R[x′, y′] : “[x′, y′] ∈ z” ∈ S}.

This allow us to conclude the decidability proof for the s.p. of ∀0-
formulae.

Corollary 10. The satisfiability problem for ∀0-formulae is decidable.

Proof. As proved in Theorem 8, the satisfiability of a ∀π
0-formula ϕ can

be tested by first guessing a V -extensional skeletal representation S, where
V = Vars(ϕ), such that |Vars(S)| < 3|Vars(ϕ)|. It must be noticed that
the number of possible V -extensional skeletal representations satisfying con-
dition (i) of the theorem is finite. It can easily be verified that the size of
such a skeletal representation S is polynomial in the size of ϕ.

In addition, condition (ii) of Theorem 8 is effectively verifiable, since, by
Lemma 9, it corresponds to checking that the realization R of S relative to
(Vars(ϕ),Vars(S) \Vars(ϕ)) correctly models all the conjuncts of Expϕ(S),
which is a quantifier-free ∀π

0-formula.

In the next section we analyze the s.p. for ∀0-formulae from a complexity
point of view.

4.1.3 Complexity Issues

The s.p. for propositional logic can be easily reduced to the one for ∀π
0-

formulae as follows. Given a propositional formula Q, we construct in linear
time a quantifier-free ∀π

0-formula ψQ, by replacing each propositional variable
p in Q with a corresponding atomic formula xp ∈ π̄(U), where U is a variable
distinct from all variables xp so introduced. It is then immediate to check
that Q is propositionally satisfiable if and only if the resulting ∀π

0-formula
ψQ is satisfiable. Thus the NP-hardness of the satisfiability of ∀π

0-formulae
follows immediately.

On the other hand, if ℓ is the longest quantifier prefix of the conjuncts in
ϕ, then it turns out that |ExpS(ϕ)| = O(|ϕ|2ℓ) = O(|ϕ|2·|ϕ|), and therefore
testing whether R |= ExpS(ϕ) takes at most exponential time, as it amounts
to check that the realization correctly models all the conjuncts of ExpS(ϕ),
thus showing that the s.p. for ∀π

0-formula is in NExpTime.

Corollary 11. The s.p. for ∀π
0-formula is in NExpTime.

40

However, the same proof shows that if we restrict to the collection of ∀π
0-

formulae whose quantifier prefixes are bounded by a constant h ≥ 0, which
we call (∀π

0)
≤h, then |ExpS(ϕ)| is only polynomial in |ϕ|, for any (∀π

0)
≤h-

formula ϕ, and therefore to test whether R models correctly ExpS(ϕ), and
in turn to test whether R |= ϕ, takes polynomial time in |ϕ|, proving the
following result:

Corollary 12. The s.p. for (∀π
0)

≤h-formulae is NP-complete, for any h ≥
0.

The language we just discussed was devised in [12] with the main goal of
allowing the explicit manipulation of ordered pairs without breaking theNP-
completeness of the decision problem. This was achieved by distinguishing
between the pairs part from the non-pairs part of a set in the quantifier. In
the next sections we examine two other different approaches for representing
pairs in quantified fragments of set theory.

4.2 The Language ∀π0,2
Now we introduce ∀π

0,2, in which, in contrast with ∀π
0, set variables and map

variables belong to two different sorts. This language contains:

• the denumerable infinities of set variables Varss and map variables
Varsm, both defined in Section 2.1;

• the binary pairing operator [·, ·];

• the relators ∈ and =;

• the Boolean connectives of propositional logic ¬,∧,∨,→,↔;

• parentheses, and

• the universal quantifier ∀.

Atomic ∀π
0,2 -formulae are expressions of the following types

x ∈ y, x = y, [x, y] ∈ f,

where x, y are set variables, and f is a map variable. Quantifier-free ∀π
0,2-

formulae are Boolean combinations of atomic ∀π
0,2-formulae, while prenex

∀π
0,2 -formulae are those formulae of the following form:

Q1 . . . Qnψ

with n ∈ N, where ψ is a quantifier-free ∀π
0,2-formula, and Q1, . . . , Qn are

restricted quantifiers of the following forms

(∀x ∈ y), (∀[x, x′] ∈ f)

41

with x, y ∈ Varss, f ∈ Varsm. Analogously to ∀π
0, we will refer to x, x′ as

quantified variables, and to y, f as domain variables. A prenex ∀π
0,2-formula

is said to be simple if nesting of quantifiers is not allowed, i.e. no variable
can be occurred both as a domain and a quantified variable. Finally, ∀π

0,2-
formulae are finite conjunctions of simple prenex ∀π

0,2-formulae.
Evaluation of atomic ∀π

0,2-formulae follows the usual rules for quantified
fragments of set theory. In particular

I |= x ∈ y ⇐⇒ Ix ∈ Iy
I |= x = y ⇐⇒ Ix = Iy
I |= [x, y] ∈ f ⇐⇒ I[x, y] ∈ If

for all x, y ∈ Varss, and for each f ∈ Varsm.
Let ϕ be a ∀π

0,2-formula. An interpretation I is said to be a model for ϕ
if I is map-safe, and it evaluates ϕ to true.

It must be noticed that, since map variables and set variables have differ-
ent sorts, we do not really need to be specific about the pairing function used
by the interpretation. We clarify this in the next section, by introducing the
notion of map-isomorphism among interpretations. Map-isomorphism will
help us to enlight some relevant properties of the language ∀π

0,2.

4.2.1 Map-Isomorphic Interpretations

Given two map-safe interpretations I and I′, we say that I and I′ are map-
isomorphic, and we write I ∼m I′, if and only if

• MIx =MI′x, for every set variable x, and

• πI′(u, v) ∈MIf iff πI(u, v) ∈MI′f , for each u, v ∈ V , f ∈ Varsm.

It can easily be verified that ∼m is an equivalence relation over map-safe
interpretations. Indeed, each interpretation is map-isomorphic with itself,
and thus ∼m is reflexive. The symmetricity of ∼m follows straightforwardly
from the very definition of ∼m. Finally, given any two u, v ∈ V , a map
variable f , and three map-safe interpretations I, I′,I′′ such that I ∼m I′,
I′ ∼m I′′, then πI′(u, v) ∈ MIf iff πI′(u, v) ∈ MI′ , and πI′(u, v) ∈ MI′ iff
πI′′(u, v) ∈ MI′′ , so that πI′(u, v) ∈ MIf if and only if πI′(u, v) ∈ MI′ . Thus
the transitivity of ∼m easily follows.

All the interpretations in the same equivalence class evaluate a ∀π
0,2-

formula to the same truth value. In other words, each equivalence class
uniquely identifies the truth value assigned to a formula by the interpreta-
tions it contains, as proved in the following lemma.

Lemma 13. Let ϕ be a ∀π
0,2-formula, and let I,I′ two map-safe interpreta-

tions such that I ∼m I′. Then

Iϕ ⇐⇒ I′ϕ.

42

Proof. Let I |= ϕ, we have to prove that I′ |= ϕ. I evaluates to true each
simple prenex ∀π

0,2-formula occurring as conjunct in ϕ, so that it will be
enough to prove that, more in general,

Iψ =⇒ I′ψ

for each simple prenex ∀π
0,2-formula ψ. We proceed by induction on the

length of the quantifier prefix of ψ. To begin with, we observe that I and I′

evaluate atomic ∀π
0,2-formulae in the same manner. Indeed, I |= x ∈ y ⇐⇒

I′ |= x ∈ y and I |= x = y ⇐⇒ I′ |= x = y, for each x, y ∈ Varss,
follow since I and I′ are map-isomorphic, and hence they must coincide on
set variables. Concerning formulae of the type [x, y] ∈ f , we recall that
I |= [x, y] ∈ f if and only if πI(MIx,MI′y) ∈ MIf . But MIx = MI′x and
MIy = MI′y, for any x, y ∈ Varss, as I and I′ are map-isomorphic. Map-
isomorphism guarantees also that πI(MI′x,MI′y) ∈MIf iff πI′(MI′x,MI′y) ∈
MI′f , and thus we can conclude that I |= [x, y] ∈ f if and only if I′ |= [x, y] ∈
f .

Thus, I |= ψ ⇐⇒ I |= ψ easily follows from propositional logic if ψ is
quantifier-free.

Now let ψ = (∀x ∈ y)χ, for some x, y ∈ Varss, and for some simple
prenex formula χ having one less quantifier than ψ. Given a set u ∈ V , let
us denote with Iu and I′u the {x}-variants of I and I′, respectively, such
that Iux = u, I′ux = u. We observe that Iu and I′u are still map-isomorphic,
for every u ∈ V , since they differs from I and I′ just for the value assigned
to a set variable, and the sets assigned to map variables remain unchanged.
Thus, if u ∈ I′y = Iy, I′u |= χ follows by applying the inductive hypothesis,
since we assumed I |= (∀x ∈ y)χ, which yields Iu |= χ. And this holds for
every u ∈ I′y, thus proving that I′ |= (∀x ∈ y)χ = ϕ.

Finally, let us consider the case ψ = (∀[x, y] ∈ f)χ, for some x, y ∈ Varss,
f ∈ Varsm, and for some simple prenex formula χ having one less quantifier
than ψ. We proceed analogously to the previous case. Thus, given two
sets u, v ∈ V , we denote with Iu,v and I′u,v the {x, y}-variants of I and I′,
respectively, such that Iu,vx = I′u,vx = u and Iu,vy = I′u,vy = v. Plainly,
Iu,v and I′u,v are map-isomorphic, for every u, v ∈ V , so that Iu,v |= χ entails
I′u,v |= χ. Hence I′u,v |= χ follows, for every u, v such that πI′(u, v) ∈ I′f , as
I |= (∀[x, y] ∈ f)χ, and then I′ |= (∀[x, y] ∈ f)χ = ψ.

In addition, each equivalence class of ∼m contains at least one interpreta-
tion Iπ for each possible pairing function π, such that πIπ = π. In fact, given
any map-safe interpretation I, and a pairing function π, an interpretation
Iπ such that Iπ ∼m I and πIπ = π can be easily constructed as follows:

πIπ = Def π;

MIπx = Def MIx for each x ∈ Varss;
MIπf = Def {π(u, v) : πI(u, v) ∈MIx} for each f ∈ Varsm.

43

Thus, given any pairing-function π, every satisfiable ∀π
0,2-formula has a

model I such that πI = π.
The properties of models for ∀π

0,2-formulae we just stated allow us to
prove the following lemma, which will be useful in proving the decidability
of the s.p. for ∀π

0,2-formulae.

Lemma 14. Every satisfiable ∀π
0,2-formula has a model which is pair-free

with respect to set variables.

Proof. Let ϕ be a satisfiable ∀π
0,2-formula, and let I be a model for ϕ. To

prove the lemma, it will be enough to exhibit an interpretation I′ such that
I′ is a model for ϕ, and πI′(I

′x) = ∅, for every set variable x ∈ Varss. To
this purpose, we introduce the binary operation over sets π∆ defined by

π∆(u, v) = Def {πI(u, v),∆}

for every u, v ∈ V , where

∆ = Def {Ix : x ∈ Varss}.

It can easily be proved that π∆ is a pairing function. Indeed, if u, v, u′, v′

are sets in the von Neumann hierarchy of sets V , and u = u′, v = v′, then
π∆(u, v) = π∆(u

′, v′) follows from the very definition of π∆. Conversely, let
us assume by contradiction that π∆(u, v) = π∆(u

′, v′) and one of u ̸= u′,
v ̸= v′ holds. Then πI(u, v) ̸= πI(u

′, v′), as πI is a pairing function, so that
π∆(u, v) = {πI(u, v),∆} = {πI(u′, v′),∆} = π∆(u

′, v′) yields that πI(u, v) =
∆ = πI(u

′, v′), which is absurd. Thus property (P1) must hold for π∆. In
addition, the Cartesian product of two sets u, v in V with respect to π∆
must be another set in V , since it is a subset of P(u×πI

v ∪∆), where ×πI

is the Cartesian product with respect to the pairing function πI. Thus, we
can conclude that π∆ is a pairing function.

Then ϕ must admit a model I′ which is map-isomorphic with I, and such
that πI′ = π∆. In fact, given any model I of ϕ, our model I′ such that I ∼m I′

and πI′ = π∆ can be easily obtained from I by the construction process just
illustrated above.

In addition, I′x = Ix does not contain any pair, for every set variable
x, since this would contradict the regularity axiom. In fact, given any x ∈
Varss, MI′x ∈ ∆ and ∆ ∈ π∆(u, v) follow from the very definition of π, for
any two u, v ∈ V . This allow us to conclude that πI′(MI′x) = ∅, thus proving
lemma.

The next section addresses the s.p. for ∀π
0,2-formulae.

4.2.2 A Decision Procedure for ∀π0,2
In this section we solve the s.p. for ∀π

0,2-formulae by providing a reduction
to the s.p. for ∀π

0-formulae. This reduction will allow us to deduce also some
complexity information concerning this decision problem.

44

To begin with, it is convenient to introduce some further notations and
definitions. Let ϕ be a ∀π

0,2-formula. We denote with Varss(ϕ) the collection
of set variables which occur free in ϕ, and with Varsm(ϕ) the collection of
the map variables in ϕ (notice that map variables can not occurs as bounded
variables in ϕ).

Next we define the following abbreviations for ∀π
0-formulae:

pair free(x) = Def (∀[x′, y] ∈ x)([x′, y] /∈ x)
is map(x) = Def (∀x′ ∈ π̄(x))(x′ /∈ π̄(x)).

Finally, we introduce a mapping τ from ∀π
0,2-formulae to ∀π

0-formulae,
defined by

τ(ϕ) = Def


x∈Varss(ϕ)

pair free(x) ∧
f∈Varsm(ϕ)

is map(f) ∧
1≤i≤n

τ0(ψi)

where ϕ = ψ1 ∧ . . . ∧ ψn, for some n ≥ 1 and for some simple prenex
∀π
0,2-formulae ψ1, . . . , ψn, and τ0(·) is a correspondence which associates to

each simple prenex ∀π
0,2-formula ψ a corresponding simple prenex ∀π

0-formula
τ0(ψ), obtained from ψ replacing each quantifier of the type (∀x ∈ y) with
(∀x ∈ π̄(y)), and each atomic formula of the type x ∈ y with x ∈ π̄(y).
It can easily be verified that, given any ∀π

0,2-formula ϕ, the corresponding
∀π
0-formula τ(ϕ) can be constructed in polynomial time, with respect to the

size of ϕ. In order to show that the s.p. for ∀π
0,2-formulae is decidable, we

first prove the following property of the mapping τ0.

Lemma 15. Let ϕ be a simple prenex ∀π
0,2-formula, and let I be an in-

terpretation, which is pair-free with respect to the collection of the domain
variables of ϕ. Then

I |= ϕ ⇐⇒ I |= τ0(ϕ).

Proof. We proceed by induction on the length of the quantifier prefix of ϕ.
If ϕ is quantifier-free, then the lemma trivially holds, since Ix ∈ Iπ̄(y) iff
Ix ∈ Iy, as I is pair-free with respect to all the free variables x, y ∈ Vars(ϕ).

Thus, let us suppose that ϕ = (∀x ∈ y)χ, for some x, y ∈ Varss, and for
some simple prenex ∀π

0,2-formula χ with one less quantifier than ϕ. Again,
Iπ̄(y) = Iy, since y is a domain variable of ϕ, and then πI(Iy) = ∅, as I is
pair-free with respect to all the domain variables of ϕ. Thus, it will suffice
to prove that

Iu |= χ ⇐⇒ Iu |= χ (4.4)

for all the sets u ∈ Iy, where Iu denotes the {x}-variant of I which assigns the
set u to x. Iu is pair-free with respect to all the domain variables of χ, since Iu
differs from I only for the value assigned to x, which is a quantified variable.
Then (4.4) immediately follows by applying the inductive hypothesis to χ,
for any u ∈ Iy, thus concluding the proof of this case.

45

Now, let us consider the case ϕ = (∀[x, y] ∈ f)χ, for some x, y ∈ Varss,
f ∈ Varsm, and for some simple prenex ∀π

0,2-formula χ with one less quan-
tifier than ϕ. It easily can be verified that

Iu,v |= χ ⇐⇒ Iu,v |= χ,

for all u, v such that πI(u, v) ∈ If , where Iu,v indicates the {x, y}-variant of
I such that Iu,vx = u and Iu,vy = v. Again, x and y are quantified variables
of ϕ, and thus Iu,v is still pair-free with respect the domain variables of ϕ.
Hence, the thesis follows by applying the inductive hypothesis, since the
domain variables of χ are a subset of those of ϕ.

In view of the preceding lemma, it becomes very easy to show that any
∀π
0,2-formula has exactly the same models of the corresponding ∀π

0-formula
τ(ϕ). We provide a reduction of the s.p. for ∀π

0,2-formulae to the s.p. of
∀π
0-formulae, thus proving the decidability of the decision problem of ∀π

0,2.

Theorem 16. The satisfiability problem for ∀π
0,2-formulae is NExpTime.

Proof. Let ϕ = ψ1∧ . . .∧ψn be a ∀π
0,2-formula. We prove that ϕ is satisfiable

if and only if so is the ∀π
0-formula τ(ϕ). To begin with, let us assume that

ϕ is satisfiable, and let I be a model of ϕ. We can assume without loss of
generality that I is pair-free, as consequence of Lemma 14. Then I evaluates
to true all the conjuncts of τ(ϕ) of the type pair free(x). In addition, I
is map-safe, as it is a model for a ∀π

0,2-formula, and hence it evaluates to
true also all the conjuncts is map(f) of τ(ϕ). Finally, we observe that I is
pair-free with respect to all the set variables, and thus it is pair-free also
with respect to the domain variables of ϕ. Thus I |= τ(ψi), for all 1 ≤ i ≤ n,
follows applying Lemma 15, and then I is a model for τ(ϕ), as it evaluates
to true all its conjuncts.

Conversely, let I be a model for the ∀π
0-formula τ(ϕ). We can assume

without loss of generality that I is map-safe, since it evaluates to true the
conjuncts is map(f) of τ(ϕ), and then πI(If) = ∅ for all the map variables
occurring in ϕ, while the other map variables are not relevant. In addition,
it is pair-free with respect to all the set variables occurring free in ϕ, and
thus also with respect to the subset of the domain variables of the conjuncts
of ϕ. Then I |= ψi, for 1 ≤ i ≤ n, directly follows from Lemma 15, and this
allow us to conclude definitively that Iτ(ϕ) |= ϕ.

Finally, the thesis follows from Theorem 8, since the reduction we just
provided is polynomial in the size of the tested formula ϕ.

The reduction provided in the last theorem applies also if we restrict to
∀π
0,2-formulae whose quantifier prefixes has length bounded by a constant h,

which we refer to as (∀π
0)

≤h -formulae.

Corollary 17. The satisfiability problem for (∀π
0,2)

≤h-formulae is NP-
complete, for any constant h ∈ N.

46

Proof. The s.p. for propositional formulae can be easily reduced to the
s.p. for quantifier-free ∀π

0,2-formulae, which belong to the class of (∀π
0,2)

≤0-
formulae, by reasoning as in Theorem 4.1.3. Thus the s.p. for (∀π

0,2)
≤h-

formulae, for all h ≥ 0, is NP-hard.
In order to provide a complexity upper bound, it is enough to observe

that the mapping τ associates to any (∀π
0,2)

≤h-formula ϕ a (∀π
0)

≤k-formula
ϕ′, with k = max(1, h). We remark that τ(ϕ) contains the pair free and
is map conjuncts, which are formulae with one quantifier. For this reason,
a quantifier-free ∀π

0,2-formula will be mapped by τ to a (∀π
0)

≤1-formula. In
any case, k ≤ h+1 , so that the s.p. for (∀π

0,2)
≤h-formulae can be reduced in

polynomial time to the s.p. for (∀π
0)

≤h+1-formulae. This allow us to conclude
that the satisfiability of (∀π

0,2)
≤h-formulae can be tested in nondeterministic-

polynomial time as consequence of Lemma 17.

4.2.3 Some Remarks about ∀0
We conclude this section by observing that ∀π

0,2 strictly contains the language
∀π
0, presented in Section 2.3. Then all the decidability and complexity results

reported in this section apply to ∀0 also, except for the NP-hardness of the
satisfiability problem, which however can be easily proved by reasoning as in
Theorem 4.1.3. Then the following corollaries directly follows from Theorem
16, and from Corollary 17. 4

Corollary 18. The satisfiability problem for ∀0-formulae is NExpTime.

Corollary 19. The satisfiability problem for (∀0)
≤h-formulae is NP-

complete.

Up to now, we presented two quantified languages which allow the ex-
plicit manipulation of ordered pairs. They employ two different strategies to
preserve the decidability: ∀π

0 introduces the non-pairs operator π̄(·), which
extracts the members of a set which are not pairs. However, it allows only
universal quantification restricted either to pair members or to non-pair
members of a set; on the other hand, ∀π

0,2 allows quantifiers of the form
(∀x ∈ y), but it distinguishes between set and map variables, so that terms
like [f, f ′] ∈ g, with f, f ′, g ∈ Varsm, are not allowed. This issue is overcome
in the last language described in this chapter, called ∀π

∆, by introducing an
additional condition on interpretations to be models.

4.3 The Language ∀π∆
The language ∀π

∆ is a quantified fragment of set theory which contains:

4Note that these are not novel results, as it was already proved in [8]

47

• a denumerable infinity of variables Vars = {x, y, z, . . .};

• the binary pairing operator [·, ·];

• the relators ∈,=;

• the Boolean connectives of propositional logic ¬,∧,∨,→,↔;

• parentheses;

• the universal quantifier ∀.

Prenex ∀π
∆ -formulae are expressions of the form

(∀x1) . . . (∀xn)ψ,

where x1, . . . , xn are variables and ψ is a propositional combination of atomic
∀π
∆-formulae, i.e., expressions of the following three types

x ∈ y, x = y, [x, y] ∈ z,

with x, y, z ∈ Vars . As before, formulae with an empty quantifier prefix
(i.e., when n = 0) are said to be quantifier-free. Finally, a ∀π

∆-formula is a
finite conjunction of prenex ∀π

∆-formulae.
For any ∀π

∆-formula ϕ, we will denote with Vars(ϕ) the collection of
variables occurring free (i.e., not bounded by any quantifier) in ϕ.

The semantics of ∀π
∆ differs from the semantics of the other set-theoretical

languages presented in this thesis as it imposes some additional constraints
to interpretations. In addition, interpretations are extended with an inter-
pretation domain as follows.

A ∀π
∆-interpretation is a triple I = (∆I ,MI , πI), where

• ∆I , the interpretation domain, is a set of the von Neumann cumulative
hierarchy of sets V ,

• MI is an assignment such that MIx ∈ ∆I for each x ∈ Vars , and

• πI is a pairing function.

A ∀π
∆-interpretation I evaluates any ∀π

∆-formula ϕ into a truth value
Iϕ ∈ {true, false} in the following recursive manner. First of all, evaluation
of quantifier-free ∀π

∆-formulae is performed according to the standard rules of
propositional logic, where the predicates ∈ and = are interpreted according
to their standard meaning in set theory.

In order to extend recursively the evaluation also to quantified formulae,
we extend the notion of W -variant to ∀π

∆-interpretations. Thus, let I =
(∆I ,MI , πI) and J = (∆J ,MJ , πJ) be any two ∀π

∆-interpretations. We say
that J is a W -variant of I if ∆J = ∆I , πJ = πI , and MJ is a W -variant of
MI .

48

Then, recursively, we put I(∀x)ψ = true, provided that Jψ = true, for
every {x}-variant J of I.

Finally, we say that a ∀π
∆-interpretation I is a model for a ∀π

∆-formula ϕ
(and write I |= ϕ) if the following conditions are satisfied:

(M1) the sets ∆I and ∆I ×∆I are disjoint;

(M2) MIx ⊆ ∆I ∪ (∆I ×∆I), for all x ∈ Vars(ϕ);

(M3) I evaluates to true all the conjuncts of ϕ.

Thus, ∀π
∆-formula is said to be satisfiable if it admits a model, and then

the satisfiability problem for ∀π
∆-formulae consists in determining whether a

∀π
∆-formula admits a model.
In the next section we solve the decision problem for our language ∀π

∆

by exploiting some correspondences between ∀π
∆ and the fragment ∀π

0.

4.3.1 A Decision Procedure for ∀π∆
Firstly we show that the satisfiability problem for ∀π

∆-formulae is in NEx-
pTime, by reducing it in polynomial time to the satisfiability problem for
∀π
0-formulae. Subsequently, we will examine the satisfiability problem for

(∀π
∆)

≤h-formulae, namely ∀π
∆-formulae whose conjuncts have quantifier pre-

fixes of length at most h ≥ 0.
The satisfiability problem for ∀π

∆-formulae can be easily reduced to the
satisfiability problem for ∀π

0-formulae. To this purpose, it is convenient to
fix a variable D ∈ Vars , which we call the knowledge domain variable, and
define a syntactic transformation τD(·) on D-free ∀π

∆-formulae, namely ∀π
∆-

formulae which contain no occurrence of the knowledge domain variable D.
More specifically, given a D-free ∀π

∆-formula ϕ, then τD(ϕ) is obtained from
ϕ by replacing each quantifier (∀x) in ϕ by its restricted form (∀x ∈ π̄(D)),
and each atomic formula of the type x ∈ y with x ∈ π̄(y). For the sake
of simplicity, for the rest of the paper we will write τ(·) in place of τD(·)
since the knowledge domain variable D will remain fixed. We also observe
that, without any loss of generality, we can assume that any ∀π

∆-formula of
interest is D-free.

The following lemma provides a useful semantical relation among ∀π
∆-

formulae and their corresponding ∀π
0-formulae.

Lemma 20. Let ϕ be a D-free prenex ∀π
∆-formula and let I and I be respec-

tively a ∀π
0-interpretation and a ∀π

∆-interpretation satisfying the following
conditions:

(i) ∆I = ID, MI =MI , πI = πI ;

(ii) πI(ID) = πI(∆
I) = ∅.

Then Iϕ = Iτ(ϕ).

49

Proof. Let us denote withM and π the assignmentMI =MI and the pairing
function πI = πI, respectively. We proceed by induction on the quantifier
prefix length of the ∀π

∆-formula ϕ.
We observe that the set Ix = Ix assigned to each variable x by both

interpretations I and I we are considering can not be a pair, since Ix ∈ ∆I

and, by (ii), πI(∆
I) = ∅. ThusMx ∈My if and only ifMx ∈My\π(My) =

Iπ̄(y), so that Ix ∈ Iy if and only if Ix ∈ Iπ̄(y), for all x, y ∈ Vars . This
allows us to conclude that I and I evaluate each atomic ∀π

∆-formula to the
same truth value. Thus the thesis follows directly from propositional logic,
when ϕ is quantifier-free.

Now let ϕ = (∀x)χ, for some x ∈ Vars \ {D} and for some D-free ∀π
∆-

formula χ. Let us denote with Iu and Iu the {x}-variant of I and of I,
respectively, such that Iux = u and Iux = u, for u ∈ V . We must prove that
Iuχ = true, for all u ∈ ∆I , if and only if Iuτ(χ) = true, for all u ∈ Iπ̄(D).

Observe that, by (ii), I(π̄(D)) = ID = ∆I = MD, and thus it will be
enough to prove that

Iuχ = true ⇐⇒ Iuτ(χ) = true,

for all u ∈ MD. But this follows immediately by applying the inductive
hypothesis to χ and to the interpretations Iu and Iu, for u ∈MD.

It must be noticed that if I is a model of some ∀π
∆-knowledge base, then

the condition πI(∆
I) = ∅ (as required by the hypothesis (ii) of Lemma 20)

is not a trivial consequence of (M1), since this does not exclude that some
pair πI(u, v) may belong to the domain ∆I , for some u, v /∈ ∆I . However,
every consistent ∀π

∆-knowledge base admits a model with a pair-free domain,
i.e. a model I such that πI(∆

I) = ∅, as proved in the following lemma.

Lemma 21. Let ϕ be a satisfiable ∀π
∆-formula. Then ϕ admits a model with

a pair-free domain.

Proof. Let I be a model for ϕ, and let J be the ∀π
∆-interpretation such that

∆J = ∆I , MJ =MI , and

πJ(u, v) = Def


πI(u, v) if u, v ∈ ∆I

{πI(u, v),∆I} otherwise,

for all u, v ∈ V .
We observe that J behaves in much the same way as I does, in the

sense that u ∈ Ix if and only if u ∈ Jx and πI(u, v) ∈ Ix if and only
if πJ(u, v) ∈ Jx, for all u, v ∈ ∆J = ∆I , since πI and πJ coincide when
restricted to the interpretation domain ∆J = ∆I . Thus J |= ϕ follows
directly from the assumption I |= ϕ.

It remains to prove that ∆J = ∆I does not contain any pair. To this
purpose, let u, v ∈ V be arbitrarily chosen. If u, v ∈ ∆I , then πJ(u, v) /∈
∆I follows from (M1), since πJ(u, v) = πI(u, v) in this case. Otherwise,

50

πJ(u, v) = {πI(u, v),∆I} follows from the very definition of πJ , so that
πJ(u, v) ∈ ∆I would contradict the regularity axiom of set theory. In both
cases we have πJ(u, v) /∈ ∆I , and thus we can conclude that πJ(∆

I) = ∅.

In the following theorem we extend the transformation τ(·) to (D-free)
∀π
∆-formulae, in order to complete the reduction of the s.p. for ∀π

∆-formulae
to the satisfiability of ∀π

0-formulae.

Theorem 22. The satisfiability problem for ∀π
∆-formulae is in NExpTime.

Proof. We will prove that, given any ∀π
∆-formula ϕ, we can construct in poly-

nomial time a corresponding ∀π
0-formula τ(ϕ) such that τ(ϕ) is satisfiable

if and only if ϕ is consistent. Then the thesis will follow from Theorem 8.
Let ϕ = ψ0∧ . . .∧ψn be a ∀π

∆-formula, with ψ0, . . . , ψn prenex ∀π
∆-formulae,

and let V = Vars(ϕ). Without loss of generality, we may assume that ϕ is
D-free. We extend the transformation τ as follows:

τ(ϕ) = Def pair free(D) ∧


1≤i≤n

τ(ψi)

∧

z∈V


z ∈ π̄(D) ∧ z ⊆ D ∪ (D ×D)


,

where

• pair free(D) stands for (∀[x, y] ∈ D)([x, y] /∈ D), and

• x ⊆ D ∪ (D ×D) stands for

(∀y ∈ π̄(x))(y ∈ π̄(D)) ∧ (∀[y, z] ∈ x)([y, z] ∈ D) .

Let us first assume that τ(ϕ) admits a model I. We construct a ∀π
∆-

interpretation I by putting

∆I = Def ID, MI = Def MI, and πI = Def πI.

Observe that I satisfies conditions (M1), (M2), and (M3). Indeed, from
the first conjunct of τ(ϕ) we have πI(∆

I) = ∅, so that ∆I ∩ (∆I ×∆I) = ∅,
i.e. (M1) is satisfied. Condition (M2) follows from the conjunction

z ∈ π̄(D) ∧ z ⊆ D ∪ (D ×D).

Finally, (M3) is a direct consequence of Lemma 20, since I(pair free(D)) =
true entails πI(∆

I) = πI(ID) = ∅. Thus I is a model for ϕ.
For the converse direction, let I be a model for ϕ. In view of Lemma

21, we can assume without loss of generality that πI(∆
I) = ∅. Let I be the

∀π
0-interpretation defined by

MIx = Def


∆I if x = D

MIx otherwise
and πI = Def πI ,

51

for all x ∈ Vars . Plainly, I satisfies the conjunct pair free(D) of τ(ϕ), as we
assumed πI(∆

I) = ∅. In addition, it also satisfies the conjuncts z ∈ π̄(D) (by
the properties of ∀π

∆-interpretations) and the conjuncts z ⊆ D∪(D×D) (by
(M2) and since ID = Iπ̄(D)), for z ∈ V . Finally, by Lemma 20, I satisfies
τ(ψi), for each conjunct ψi of ϕ. Thus we can conclude that I is a model for
τ(ϕ).

Hence, in order to check whether the knowledge base ϕ is consistent it
is enough to check whether the corresponding ∀π

0-formula τ(ϕ) is satisfiable.
As seen in Theorem 8, the latter check can be done in nondeterministic
polynomial time, thus proving the theorem.

Next we consider (∀π
∆)

≤h-formulae, namely ∀π
∆–formulae with conjuncts

whose quantifier prefixes length is bounded by the constant h ≥ 0.
By reasoning much as in the proof of Theorem 22, it is immediate to check

that the satisfiability problem for any (∀π
∆)

≤h-formula ϕ can be reduced
in polynomial time to the satisfiability problem of the corresponding ∀π

0-
formula τ(ϕ) in (∀π

0)
≤h, and thus, by Corollary 4.1.3, it can be decided in

nondeterministic polynomial time.
On the other hand, it is an easy matter to show that the satisfiability

problem for (∀π
∆)

≤h-formulae is NP-hard. In fact, the proof we provided for
the NP-hardness for ∀π

0 and ∀π
0,2 can be easily adapted to ∀π

∆.
The following corollary summarizes the above observations.

Corollary 23. For any integer constant h ≥ 0, the satisfiability problem for
(∀π

∆)
≤h-formulae is NP-complete.

52

Chapter 5

Expressivity of the ∀π
Languages

The languages in the ∀π family are expressive enough to include a large
amount of set-theoretic constructs, in particular several map-related con-
structs like, for example, map restriction and map inverse. In this chapter
we discuss the expressive power of this family by presenting the unquanti-
fied fragment of set theory MLSS×

2,m,
1 and then providing a reduction to the

s.p. problem for (∀π
0,2)

≤2-formulae, thus proving that the s.p. for MLSS×
2,m-

formulae is NP-complete. One of the most relevant peculiarities of this
language is the presence of the Cartesian product. Concerning this opera-
tor, we recall that in [9] it was proved that extendingMLS with the Cartesian
product and cardinality comparison leads to undecidability, while is actu-
ally unknown the decidability of MLS extended with the Cartesian product
alone. On the other hand, MLSS×

2,m imposes some crucial restrictions on the
usage of the map domain and range operators.

Then we study the applications of the languages in ∀π in the field of
knowledge representation. Applications of Computable Set Theory to knowl-
edge representation have been recently proposed in [14], where some corre-
spondence between (decidable) fragments of set theory and description logics
have been exploited. Here we recall a very expressive description logic, called
DL⟨∀π⟩, which is the counterpart in the description logic framework of the
set-theoretical language MLSS×

2,m. A polynomial reduction of the consis-
tency problem for DL⟨∀π⟩-knowledge bases to the satisfiability problem for
(∀π

0,2)
≤2-formulae is provided, thus proving that the consistency problem for

DL⟨∀π⟩-knowledge bases is NP-complete.
Next we prove that this description logic can be extended with SWRL

rules, thus identifying another fragment of the Semantic Web Ontology Lan-
guage which can be extended with SWRL rules without disrupting the de-
cidability.

Finally, we present a metamodeling-enabled version ofDL⟨∀π⟩, and prove

1Here we present an extended version of the language studied in [13]

53

that the consistency problem in this novel description logic is still NP-
complete.

5.1 The Language MLSS×2,m

MLSS×
2,m (Multi-Level Syllogistic with singleton, Cartesian product, and var-

ious map constructs, see [13]) is a two-sorted unquantified fragment of set
theory which contains:

• a countably infinite collection of set variables Varss = {x, y, z, . . .};

• a countably infinite collection of map variables Varsm = {f, g, h, . . .};

• the predicate symbols ∈, =, ⊆, injective(·), single valued(·), bijective(·),
is reflexive(·), is transitive(·), is asym(·), is irreflexive·;

• the operator symbols ∩, ∪, \, × (Cartesian product), [·, ·] (pair), {·}
(singleton), (·)·|, (·)|·, (·)·|· (map restriction operators), (·)−1 (map
inverse), sym(·) (symmetric closure), ◦ (composition of maps), id(·)
(identity),dom(·) (domain), range(·), f [x] (map image);2

• parentheses (to construct compound terms);

• the logical connectives ¬, ∧, ∨, →, ↔ (to construct compound formu-
lae).

Set and map terms allowed in this languages are those defined by the
following syntax rules:

X, Y −→ x | ∅ | X ∪ Y | X ∩ Y | X \ Y | {X}
F,G −→ f | F ∪G | F ∩G | F \G | {[X, Y]} | X × Y | F−1 |

sym(F) |FX| | F|Y | FX|Y | id(X)

where x is a set variable, f is a map variable, X and Y are set terms, and
F ,G are map terms. MLSS×

2,m -formulae are Boolean combinations of atomic

MLSS×
2,m -formulae, which extend the usual atomic formulae X ∈ Y , X = Y ,

X ⊆ Y , [X, Y] ∈ F , F = G, F ⊆ G with predicates of the following forms

injective(F), single valued(F), bijective(F), is reflexive(F),
is transitive(F), is asym(F), is irreflexive(F), F ◦ F ′ ⊆ G,
dom(F) ⊆ X, range(F) ⊆ X, F [X] ⊆ Y

where F, F ′, G are map terms, and X, Y are set terms.

2Note that map domain, range and image operators are allowed in MLSS×2,m only in a
restricted way, as specified later.

54

We denote with Terms(ϕ) the collection of terms occurring in the
MLSS×

2,m-formula ϕ. For example,

Terms(x ∪ (y ∩ y′) ∈ z) = {x ∪ (y ∩ y′), z}.

The evaluation of atomic formulae of the types injective(·),
single valued(·), bijective(·), is reflexive(·), is transitive(·), is asym(·),
is irreflexive(·) is reported in Table 2.2, while the evaluation of atomic
MLSS×

2,m-formulae of the remaining types is carried out as indicated below:

I |= F ◦ F ′ ⊆ G ⇐⇒ (∀u, v, v′)(πI(u, v) ∈ IF ∧ πI(v, v′) ∈ IF ′

→ πI(u, v
′) ∈ IG)

I |= dom(F) ⊆ X ⇐⇒ (∀u, v)(πI(u, v) ∈ IF → u ∈ IX)
I |= range(F) ⊆ X ⇐⇒ (∀u, v)(πI(u, v) ∈ IF → v ∈ IX)

I |= F [X] ⊆ Y ⇐⇒ (∀u, v)(πI(u, v) ∈ IF ∧ u ∈ IX → v ∈ IY).

Finally, the notions of model and satisfiability are defined as usual.
It must be noticed that MLSS×

2,m is a two-sorted extension of MLSS, as
indicated by the subscript 2, while the decidability of the language obtained
extendingMLSS with the Cartesian product over generic variables is actually
unknown.

In the next section we define a restricted set ofMLSS×
2,m-formulae, namely

normalized MLSS×
2,m-formulae, and we provide a reduction of the satisfiabil-

ity problem for this kind of formulae to the s.p. for (∀π
0,2)

≤2-formulae. Then

we will prove that this result can be extended to general MLSS×
2,m-formulae.

5.1.1 Normalized MLSS×2,m-Formulae

Normalized MLSS×
2,m-formulae are finite conjunctions of positive and neg-

ative normalized MLSS×
2,m-literals (in short literals), where positive nor-

malized MLSS×
2,m-literals (in short positive literals) are all those MLSS×

2,m-
formulae of the following types

x ∈ y, x = y ∪ z, x = y \ z, f = g ∪ h,
f = g \ h, f = x× y, f = gx|, f = id(x),
f ◦ g ⊆ h, is reflexive(f), is irreflexive(f),

with x, y, z set variables and f , g, hmap variables, while negative normalized
MLSS×

2,m-literals (in short negative literals) are formulae of the form ¬γ,
where γ is a positive literal.

In this section we present a polynomial reduction of the s.p. for normal-
ized MLSS×

2,m-formulae to the s.p. for ∀π
0,2-formulae. In more details, given

a normalized MLSS×
2,m-formula, we show how to construct (in polynomial

time) an equisatisfiable (∀π
0,2)

≤2-formula (i.e. a ∀π
0,2-formula with quantifier

prefix lengths at most 2), thus proving that the s.p. for normalized MLSS×
2,m-

formulae is NP-complete.

55

To ease our reduction, we adopt an alternative syntax for ∀π
0,2-formulae

by representing ∀π
0,2-formulae ϕ = ψ1∧ . . .∧ψn as finite sets of simple-prenex

∀π
0,2-formulae {ψ1, . . . , ψn}.
In the next theorem we solve the satisfiability problem for normalized

MLSS×
2,m-formulae. Intuitively speaking, the reduction reported in the fol-

lowing proof is carried out by replacing, in the formula we are testing, each
normalized MLSS×

2,m-literal with a corresponding ∀π
0,2-formula, in such a way

that the resulting formula is equisatisfiable.

Theorem 24. The satisfiability problem for normalized MLSS×
2,m-formulae

can be decided in nondeterministic polynomial-time.

Proof. Let ϕ = γ1∧. . .∧γn be a normalizedMLSS×
2,m-formula, with γ1, . . . , γn

normalized MLSS×
2,m-literals. Let us define τ as the mapping which associate

a ∀π
0,2-formula to each literal in ϕ as indicated in Table 5.1, where x, y, z

are set variables, f , g, h are map variables, and wi, w
′
i, w

′′
i , for 1 ≤ i ≤ n,

are distinct set variables not occurring in ϕ.
Then the (∀π

0,2)
≤2-formula ϕ′, induced by ϕ, is defined as

ϕ′ = Def


1≤i≤n

τγi.

It can easily be verified that, if I is a model for ϕ′, then it is a model for
ϕ also. Conversely, if I is a model for ϕ then

• it correctly models all the ∀π
0,2-formulae τγi, for every positive literals

of γi of ϕ, and

• it can easily be extended (redefined) to the variables wi, w
′
i, w

′′
i so that

it evaluates to true also the formulae τγi, when γi is a negative literal.

Then ϕ and ϕ′ are equisatisfiable. Furthermore, ϕ′ ∈ (∀π
0,2)

≤2, so that
the thesis of the theorem directly follows from Corollary 17.

In the next section we extend this result to general MLSS×
2,m-formulae.

5.1.2 A Decision Procedure for MLSS×2,m

In this section we prove that the satisfiability problem for (general)MLSS×
2,m-

formulae is NP-complete. The decision procedure presented in this section
is a valid satisfiability test for MLS-formulae, since MLSS×

2,m includes MLS.

We begin with showing several steps which allow to transform aMLSS×
2,m-

formula into an equivalent one, in a form which will fit better our task.
Then, we present a decision procedure for formulae of this form, which uses
(as subprocedure) the one introduced in the proof of Theorem 24, and which
runs in nondeterministic-polynomial time.

56

γi τγi
x ∈ y {x ∈ y}

x = y ∪ z′ {(∀x′ ∈ x)(x′ ∈ y ∨ x′ ∈ z′),
(∀y′ ∈ y)(y′ ∈ x), (∀z′ ∈ z′)(z′ ∈ x)}

¬(x = y ∪ z′) {wi ∈ x ∧ wi /∈ y ∧ wi /∈ z′∨
wi /∈ x ∧ (wi ∈ y ∨ wi ∈ z′)}

x = y \ z′ {(∀x′ ∈ x)(x′ ∈ y ∧ x′ /∈ z′),
(∀y′ ∈ y)(y′ ∈ x ↔ y′ /∈ z′)}

¬(x = y \ z) {wi ∈ x ∧ (wi /∈ y ∨ wi ∈ z)∨
wi ∈ y ∧ wi /∈ z ∧ wi /∈ x}

f = g ∪ h {(∀[x′, y′] ∈ f)([x′, y′] ∈ g ∨ [x′, y′] ∈ h),
(∀[x′, y′] ∈ g)([x′, y′] ∈ f), (∀[x′, y′] ∈ h)([x′, y′] ∈ f)}

¬(f = g ∪ h) {[wi, w
′
i] ∈ f ∧ [wi, w

′
i] /∈ g ∧ [wi, w

′
i] /∈ h∨

[wi, w
′
i] /∈ f ∧ ([wi, w

′
i] ∈ g ∨ [wi, w

′
i] ∈ h)}

f = x× y {(∀x′ ∈ x)(∀y′ ∈ y)([x′, y′] ∈ f),
(∀[x′, y′] ∈ f)(x′ ∈ x ∧ y′ ∈ y)}

¬(f = x× y) {[wi, w
′
i] ∈ f ∧ (wi /∈ x ∨ w′

i /∈ y)∨
wi ∈ x ∧ w′

i ∈ y ∧ [wi, w
′
i] /∈ f}

f = gx| {(∀[x′, y′] ∈ f)(x′ ∈ x ∧ [x′, y′] ∈ g),

(∀[x′, y′] ∈ g)(x′ ∈ x → [x′, y′] ∈ f)}

¬(f = gx|) {[wi,w′
i] ∈ f ∧ ([wi, w

′
i] /∈ g ∨ wi /∈ x)∨

[wi, w
′
i] ∈ g ∧ wi ∈ x ∧ [wi, w

′
i] /∈ f}

f = id(x) {(∀x′ ∈ x)([x, x] ∈ f), (∀[x′, y′] ∈ x)(x′ = y′ ∧ x′ ∈ x)}

¬(f = id(x)) {[wi, w
′
i] ∈ f ∧ (wi ̸= w′

i ∨ wi /∈ x) ∨ wi ∈ x ∧ [wi, wi] /∈ f}

f ◦ g ⊆ h {(∀[x′, y′] ∈ f)(∀[y′′, z′] ∈ g)([x′, z′] ∈ h)}

¬(f ◦ g ⊆ h) {[wi, w
′
i] ∈ f ∧ [w′

i, w
′′
i] ∈ g ∧ [wi, w

′′
i] /∈ h}

is reflexive(f) {(∀[x′, y′] ∈ f)([x′, x′] ∈ f)}

¬(is reflexive(f)) {[wi, w
′
i] ∈ f ∧ wi ̸= w′

i}

is irreflexive(f) {(∀[x′, y′] ∈ f)(x′ ̸= y′)}

¬(is irreflexive(f)) {[wi, wi] ∈ f}

Table 5.1: The mapping τ

57

Thus, let ϕ be a MLSS×
2,m-formula. The terms of the forms ∅, X ∩ Y ,

F ∩G, {[X, Y]}, sym(F), F|X , and FX|Y can be eliminated from ϕ, obtaining
an equivalent formula, in force of the following equivalences among sets:

∅ = u \ u
u ∩ v = (u ∪ v) \ (u \ v) \ (v \ u)

{[u, v]} = {u} × {v}
sym(m) = m ∪m−1

mu|v = m ∩ (u× v)

m|u =

(m−1)u|

−1

for all u, v,m ∈ V such that m is a map. For the sake of conciseness, we are
intentionally omitting any reference to the pairing function used, since all
these equations are valid for any fixed pairing function.

Atomic MLSS×
2,m-formulae of the types X = Y , F = G, X ⊆ Y , F ⊆

G, [X, Y] ∈ F , single valued(F), bijective(F), is transitive(F), is asym(F),
dom(F) ⊆ X, range(F) ⊆ X, F [X] ⊆ Y can be eliminated also, since the
followings hold for all u, v,m ∈ V such that m is a map:

u = v ⇐⇒ u = v ∪ v
u ⊆ v ⇐⇒ v = v ∪ u

[u, v] ∈ m ⇐⇒ {u} × {v} ∈ m
single valued(m) ⇐⇒ injective(m−1)

bijective(m) ⇐⇒ injective(m) ∧ single valued(m)
is transitive(m) ⇐⇒ m ◦m ⊆ m

is asym(m) ⇐⇒ m ∩m−1 = ∅
dom(m) ⊆ u ⇐⇒ mu| = m
range(m) ⊆ u ⇐⇒ dom(m−1) ⊆ u

m[u] ⊆ v ⇐⇒ range(mu|) ⊆ v.

Finally, complex terms can be unfolded by introducing a linear number
of new variables. For example, if a term x ∪ (x ∪ z) occurs in a formula
ϕ, and ϕ′ is the formula obtained from ϕ by replacing each occurrence of
the term x ∪ z with the variable y, not already occurring in ϕ, then ϕ and
ϕ′ ∧ y = x ∪ z are equisatisfiable.

Thus, given any MLSS×
2,m-formula ϕ, we can obtain an equivalent

MLSS×
2,m-formula ϕ′ which is a Boolean combination of positive normal-

ized MLSS×
2,m-literals.

3 In addition, this transformation can be performed in
linear time, with respect to the size of the formula. However, the resulting
formula ϕ′ is not necessarily a normalized MLSS×

2,m-formula, since it may be
not a simple conjunction of normalized literals, but a more complex propo-
sitional combination of formulae of this kind. If the resulting formula is
not a MLSS×

2,m-formula, its satisfiability can be tested in nondeterministic-
polynomial time as follows.

3Of course, being a Boolean combination, it may contain also negative literals.

58

At first, we guess a Boolean assignment ν for the literals γ1, . . . , γn which
occur in ϕ′, i.e an injective mapping from these formulae to {true, false}.
Then we verify whether this assignment evaluates the formula ϕ′ to true,
which means checking that the formula obtained from ϕ′ by replacing each
atomic formula γi with νγi is valid (indeed, this test can be performed in
linear time). If not, we return a negative answer. Otherwise, we return
true if and only if the normalized MLSS×

2,m-formula ϕ′′, defined below, is
satisfiable. Let us denote with neg(·) the negation operator for normalized
MLSS×

2,m-literals, which, given any literal γ, returns ¬γ if γ is positive, or γ′

if γ = ¬γ′, for some positive literal γ′, and let

γi = 
γi if νγi = true

neg(γi) otherwise.

Then ϕ′′ is defined as

ϕ′′ = Def


1≤n

γi.
The formula ϕ′′ can be constructed from ν in linear time (with respect to

the length of ϕ′), and the satisfiability test for ϕ′′ requires nondeterministic-
polynomial time (cf. Theorem 24). Thus, the decision procedure just pre-
sented runs in nondeterministic-polynomial time.

It can easily be proved that the test just outlined is sound and complete.
Plainly, if I is a model for ϕ′′, then

I |= γi ⇐⇒ νγi = true, (5.1)

for all 1 ≤ i ≤ n, so that I must be a model for ϕ′ also, since ν evaluates ϕ′

to true. Conversely, any model I for ϕ′ yields a Boolean assignment ν over
the literals of ϕ′

νγi = true ⇐⇒ I |= γi

which evaluates ϕ′ to true, so that I correctly models the normalized formula
ϕ′′, obtained from ϕ′ and ν as indicated above.

Finally, the NP-hardness of the s.p. for MLSS×
2,m-formulae can be proved

by reasoning as in Theorem 16, thus yielding the NP-completeness of the
s.p. for MLSS×

2,m.

Theorem 25. The satisfiability problem for MLSS×
2,m-formulae is NP-

complete.

The language MLSS×
2,m allows one to express a very large amount of

set-theoretic constructs, so that it provides a quite comprehensive vision
of the expressive power of the quantified language ∀π

0,2, since the s.p. for

MLSS×
2,m can be reduced to the s.p. for ∀π

0,2. In some sense, we can say
that the language ∀π

0,2 may be used as a definition language for higher-level
set-theoretical languages.

59

It is noticeable that the great expressive power of ∀π
0,2 is not yet enough

for some simple and very common map-related operators like domain, range
and map image, so that these operators can not be freely used in MLSS×

2,m,
but only in a limited fashion. However, these restrictions are due to efficiency
reasons, since dropping them would trigger the ExpTime-hardness of the
satisfiability problem.

In the next section we prove this fact, by presenting a more general
result which concerns MLS extensions which comprehend the map domain
operator.

5.1.3 ExpTime-hardness of MLS with the image oper-
ator

In this section we provide a complexity lower bound for the satisfiability
problem of the decidable extension MLSIm of MLS with atomic formulae of
the type y = f [x]. Our result is achieved by reducing the decision problem
for the description logic ALC, reviewed in Section 3.2, to the satisfiability
problem forMLSIm. In particular, we will show how the satisfiability problem
for ALC-concepts with respect to a finite set of inclusions can be reduced
to the satisfiability of MLSIm-formulae. Since ∃R.C ≡ ¬(∀R.(¬C)), without
loss of generality we can consider only concepts that do not contain any
occurrence of universal restriction.

Theorem 26. The satisfiability problem for MLSIm is ExpTime-hard.

Proof. In view of Theorem 2, it is enough to exhibit a reduction from ALC
to MLSIm. Thus, given a finite collection T of ALC-inclusions and an ALC-
concept C, we show how to construct an MLSIm-formula which is satisfiable
if and only if the concept C is satisfiable w.r.t. T .

With a small abuse of notation, for the sake of conciseness, we sometimes
will write [u, v] ∈ IF instead of πI(u, v) ∈ IF to indicate that the ordered
pair [u, v] is a member of IF .

Let Cpts ⊆ N c and Rls ⊆ N r be the collections of the concept names and
of the role names, respectively, occurring in C and in T . Additionally, let τ
be a function that injectively associates every concept name in Cpts to a set
variable of the language MLSIm and every role name in Rls to a map variable
of MLSIm. The function τ extends naturally to concepts and constraints in
the following recursive way:

τ⊤ = Def U
τ⊥ = Def ∅

τ(¬C) = Def U \ τC
τ(C ⊓D) = Def τC ∩ τD
τ(C ⊔D) = Def τC ∪ τD
τ(∃R.C) = Def (τR)[τC]

τ(C ⊑ D) = Def τC ⊆ τD
τ(C ≡ D) = Def τC = τD ,

60

where U is a set variable of MLSIm not in τ [Cpts].
Let ϕ = Def ψ1 ∧ ψ2 ∧ ψ3 be the MLSIm-formula in which:

ψ1 = Def U ̸= ∅ ∧


A∈Cpts
τA ⊆ U ∧


R∈Rls

(τR)[U] ⊆ U

ψ2 = Def


γ∈T

τγ

ψ3 = Def τC ̸= ∅.

We observe that the size of the MLSIm-formula ϕ is linear in the total size
of T and C.

Next we show that ϕ is satisfiable (relative to the semantics of MLSIm)
if and only if C is satisfiable w.r.t. T (relative to the semantics of ALC).

To begin with, let us assume that ϕ is satisfiable, and let I be a model for
ϕ. We construct a descriptive interpretation I, induced by I, with domain
∆I = Def IU , by putting

AI = Def I(τA)

RI = Def


(I(τR))IU |

−1

,

for every concept name A and role name R occurring in T or in C.4. Oth-
erwise, the action of the interpretation I over the remaining concept and
role names can be defined arbitrarily, as long as the constraints AI ⊆ ∆I

and RI ⊆ ∆I × ∆I hold, for each concept name A and role name R not
occurring in T or in C.

Notice that since I models correctly all the literals in ψ1, then we actually
have AI ⊆ ∆I and RI ⊆ ∆I ×∆I for all concept names A and role names
R, respectively, showing that I is a valid interpretation. Moreover, for every
concept D involving only variables that occur in T and in C we have

DI = I(τD). (5.2)

We prove (5.2) by structural induction on the concept D. If D is of type ⊤,
⊥, ¬D′, D′ ⊔D′′, or D′ ⊔D′′, then (5.2) follows directly from the definition
of I. Thus, the only interesting case occurs when the concept D is of type
(∃R.D0), with R a role name in Rls and D0 a concept structurally simpler
than D.

Let us show that (∃R.D0)
I = I(τ(∃R.D0)). Let v ∈ (∃R.D0)

I . Then
there is a u ∈ DI

0 = I(τD0) such that

[v, u] ∈ RI =

(I(τR))IU |

−1

.

4Notice that we are assuming that ordered pairs are represented by means of the same
pairing function by both the descriptive interpretation I and the set-theoretical one I.
However, this does not conflict with the semantics of ALC, as in this language concept
and role terms are strictly distinguished.

61

The latter implies [u, v] ∈ (I(τR))IU |, so that [u, v] ∈ I(τR) (since u ∈ IU),
and therefore v ∈ (I(τR))[I(τD0)] = I(τ(∃R.D0)). Hence, (∃R.D0)

I ⊆
I(τ(∃R.D0)).

To show the converse inclusion, let now v ∈ I(τ(∃R.D0)). Then v ∈
(I(τR))[I(τD0)], so that [u, v] ∈ I(τR) for some u ∈ I(τD0). Therefore
[u, v] ∈ (I(τR))IU | (since by inductive hypothesis I(τD0) = DI

0 ⊆ ∆I = IU
and therefore u ∈ IU). Hence,

[v, u] ∈

(I(τR))M(U)|

−1

= RI .

And since u ∈ DI
0 , then v ∈ (∃R.D0)

I . Therefore I(τ(∃R.D0)) ⊆ (∃R.D0)
I

which together with the previous inclusion yields (∃R.D0)
I =M(τ(∃R.D0)).

From (5.2) and the fact that I models correctly all the conjuncts of ψ2,
it follows that I is a model for T . Additionally, since I satisfies ψ3, it also
follows that I satisfies C, so that the interpretation I induced by the model
I satisfies C w.r.t. T . This completes the first half of the proof.

Conversely, let I be a model for C w.r.t. T . Without loss of generality,
we may assume that ∆I is a set belonging to the von Neumann hierarchy V
(otherwise, we embed ∆I in V).

Given any fixed pairing function π, we construct a set-theoretic interpre-
tation I induced by I as follows:

πI = Def π,
MIU = Def ∆I ,

MI(τA) = Def AI ,
MI(τR) = Def {π(u, v) : [v, u] ∈ RI},

for all concept names A and role names R occurring in T and in C (as
usual, we do not need to be specific on the remaining variables of MLSIm),
and show that I is a model for ϕ.

Much as was done before, we prove by structural induction that

I(τD) = DI , (5.3)

for every concept D involving only concept and role names occurring in T
and C. As before, the only relevant case to be considered is when D is of
type (∃R.D0). To prove (5.3) for a concept D of type (∃R.D0), it is enough
to show that I(τR)[I(τD0)] = (∃R.D0)

I .
Let u ∈ (∃R.D0)

I . Then there is a v ∈ DI
0 such that [u, v] ∈ RI .

Therefore [v, u] ∈ I(τR) and since by inductive hypothesis v ∈ I(τD0), it
follows that u ∈ I((τR)[τD0]). Hence we have (∃R.D0)

I ⊆ I(τR)[I(τD0)].
To prove the converse inclusion, let u ∈ I(τR)[τD0]). Hence, there exists

v ∈ I(τD0) such that [v, u] ∈ I(τR). But then [u, v] ∈ RI and since by in-
ductive hypothesis I(τD0) = DI

0 , we have v ∈ DI
0 , and thus u ∈ (∃R.D0)

I .
Therefore we have I(τR)[I(τD0)] ⊆ (∃R.D0)

I , which together with the pre-
viously established inclusion yields I(τR)[I(τD0)] = (∃R.D0)

I .

62

Having established (5.3), it is immediate to check that the assignment I
satisfies the MLSIm-formula ϕ, completing the proof of the theorem.

This complexity lower bound extends to all the MLS extensions in which
the range and domain restriction operators can be used without the lim-
itations imposed in MLSS×

2,m. This can be easily proved in force of the
set-theoretic equation m[u] = range(mu|), which holds for all sets u,m in
the von Neumann hierarchy of sets V such that m is a map.

Analogously, extending MLS with literals of the types x = dom(f),
f = gx|, and f = g−1 would trigger the ExpTime-hardness of the deci-
sion problem, since range(m) = dom (m−1).

In this section we devised a correspondence between a description logic
and a fragment of set theory to derive a complexity lower bound for frag-
ments of set theory from a similar result presented in the description logics
area. Conversely, in the next sections we will provide complexity upper
bounds for some description logics by deriving them from the complexity
results we obtained for the ∀π languages, presented earlier in this thesis.

This will allow us to claim that ∀π languages are expressive enough to
be profitably employed as knowledge representation languages.

5.2 The Description Logic DL⟨∀π⟩
Description logics are a family of well-studied logic-based formalisms for
knowledge representation, whose basic notions was reviewed earlier in Chap-
ter 3. The descriptive semantics of these languages is set-theoretical (see
Tables 3.1, 3.2, and 3.3), and this yields a straightforward mapping of most
of the constructs used in these languages to the framework of Computable
Set Theory (cf. [14]). In this chapter we show that ∀π

0,2, and, consequently,
also ∀π

0, is expressive enough to include the very expressive description logic
DL⟨∀π⟩, originally presented in [12], which will be reviewed below.5

Let N c,N r,N i be the three denumerable, infinite and mutually disjoint
collections of concept, role, and individual names, respectively. DL⟨∀π⟩-
concept terms and DL⟨∀π⟩-role terms are formed according to the following
syntax rules:

C,D −→ A | ⊤ | ⊥ | ¬C | C ⊔D | C ⊓D | {a} | ∃R.Self | ∃R.{a}
R, S −→ P | U | R− | ¬R | R ⊔ S | R ⊓ S | RC| | R|D | RC|D |

id(C) | sym(R),

where C,D denote DL⟨∀π⟩-concept terms, R, S denote DL⟨∀π⟩-role terms,
A,P denote a concept and a role name, respectively, and a denotes an indi-
vidual name. A DL⟨∀π⟩-knowledge base is then a finite collection of state-

5In [12] this description logic was presented with the name DL⟨∀π0⟩.

63

ments of the following types:

C ≡ D, C ⊑ D, R ≡ S, R ⊑ S, C ⊑ ∀R.D,
∃R.C ⊑ D, R ◦R′ ⊑ S, Trans(R), Ref(R), Irr(R),
ASym(R), C(a), R(a, b),

where C,D are DL⟨∀π⟩-concept terms, R, S,R′ are DL⟨∀π⟩-role terms, and
a, b are individual names.

Notice that the above definition of DL⟨∀π⟩ is not minimal, as we intended
to give a clear and immediate overview of its expressive power.

DL⟨∀π⟩ does not allow number restrictions. Additionally, value restric-
tion and existential quantification are restricted to the left-hand side and
right-hand side of inclusions, respectively. Nevertheless, the set of allowed
constructs is extremely large. In particular, complex role constructors can
be used freely, in contrast with most expressive description logics (see, for
example, the description logic SROIQ, reviewed in Section 3.4). Despite of
this, reasoning in DL⟨∀π⟩ is NP-complete, as will be proved in the following
theorem.

Theorem 27. The consistency problem for DL⟨∀π⟩-knowledge bases is NP-
complete.

Proof. We will show that the consistency problem for DL⟨∀π⟩-knowledge
bases reduces to the satisfiability problem for (∀π

0,2)
≤2-formulae.

We begin by observing that we can restrict our attention to DL⟨∀π⟩-
knowledge bases containing only statements of the following types:

A ≡ ⊤, A ≡ ¬B, A ≡ B ⊔B′, A ≡ {a}, A ≡ ∃P.{a},
P ≡ U, P ≡ ¬Q, P ≡ Q ⊔Q′, P ≡ QA| P ≡ Q−,
P ≡ id(A), P ◦ P ′ ⊑ Q, Ref(P),

where A,B,B′ are concept names, P, P ′, Q,Q′ are role names, and a is an
individual name.

In fact, by reasoning much as in Section 5.1.2, any DL⟨∀π⟩-knowledge
base K can be easily transformed into a knowledge base K′, which contains
only statements of these types, and such that K is consistent if and only if
K′ is, if we consider that

(∃R.C)I = dom

RI

|CI


holds for every role R, for every concept C, and for every interpretation I.

For the sake of completeness, we report the equations which justify this

64

transformation step.

(⊥)I = (¬⊤)I

(C ⊓D)I = (¬(¬C ⊔ ¬D))I

(R ⊓ S)I = (¬(¬R ⊔ ¬S))I

(R|C)
I =


(R−)C|

−
I

(RC|D)
I =


RC| ⊓R|D

I
(sym(R))I = (R ⊔R−)I

I |= C ≡ D ⇐⇒ I |= C ≡ D ⊔D
I |= C ⊑ D ⇐⇒ I |= D ≡ D ⊔ C
I |= R ≡ S ⇐⇒ I |= R ≡ S ⊔ S
I |= R ⊑ S ⇐⇒ I |= S ≡ S ⊔R

I |= C ≡ ∃R.Self ⇐⇒ I |= id(C) ≡ id(⊤) ⊓R
I |= C ⊑ ∀R.D ⇐⇒ I |= RC| ⊑ R|D
I |= ∃R.C ⊑ D ⇐⇒ I |= R|C ⊑ RD|
I |= Trans(R) ⇐⇒ I |= R ◦R ⊆ R

I |= Irr(R) ⇐⇒ I |= R ⊓ id(⊤) = ¬U
I |= ASym(R) ⇐⇒ I |= R ⊓R− = ¬U

I |= C(a) ⇐⇒ I |= {a} ⊑ C
I |= R(a, b) ⇐⇒ I |= {a} ⊑ ∃R.b.

Next, we define a mapping τ from DL⟨∀π⟩-statements to ∀π
0,2-formulae

as follows:

τ(A ≡ ⊤) = Def (∀x ∈ ∆) (x ∈ A)
τ(A ≡ ¬B) = Def (∀x ∈ ∆) (x ∈ A↔ x /∈ B)

τ(A ≡ B ⊔B′) = Def (∀x ∈ ∆) (x ∈ A↔ x ∈ B ∨ x ∈ B′)
τ(A ≡ {a}) = Def (∀x ∈ ∆) (x ∈ A↔ x = a) ∧ a ∈ A

τ(A ≡ ∃P.{a}) = Def (∀x ∈ ∆) (x ∈ A↔ [x, a] ∈ P)
τ(P ≡ U) = Def (∀x, y ∈ ∆) ([x, y] ∈ P)

τ(P ≡ ¬Q) = Def (∀x, y ∈ ∆) ([x, y] ∈ P ↔ [x, y] /∈ Q)
τ(P ≡ Q ⊔Q′) = Def (∀x, y ∈ ∆) ([x, y] ∈ P ↔ [x, y] ∈ Q ∨ [x, y] ∈ Q′)

τ(P ≡ Q−) = Def (∀x, y ∈ ∆) ([x, y] ∈ P ↔ [y, x] ∈ Q)
τ(P ≡ QA|) = Def (∀x, y ∈ ∆) ([x, y] ∈ P ↔ [x, y] ∈ Q ∧ x ∈ A)

τ(P ≡ id(A)) = Def (∀x, y ∈ ∆) ([x, y] ∈ P ↔ x = y ∧ x ∈ A)
τ(P ◦ P ′ ⊑ Q) = Def (∀[x, y] ∈ P) (∀[y′, z] ∈ P ′) (y = y′ → [x, z] ∈ Q)

τ(Ref(P)) = Def (∀[x, y] ∈ P) ([x, x] ∈ P) ,

for all A,B,B′ ∈ N c, P, P ′, Q ∈ N r, and a ∈ N i. In the previous definition
we abbreviated (∀x ∈ ∆)(∀y ∈ ∆) with (∀x, y ∈ ∆).

We remark that in the above definition of the mapping τ we are assuming
that the collections Varss, Varsm of the variables of the language ∀π

0,2 contain
all the concept, role, and individual names. In particular N c ∪ N i ⊆ Varss
and N r ⊆ Varsm. Moreover, we used the same symbol ∆ which is also

65

used to denote the domain of a description logic interpretation, under the
assumption that ∆ ∈ Varss \ (N c ∪ N r). These are just technical assump-
tions (not strictly necessary for the proof) which have been just introduced
to enhance readability of the formulae τ(·) and to emphasize the strong cor-
relation between the semantical definitions of DL⟨∀π⟩-statements and their
corresponding ∀π

0,2-formulae.
Now let K be a DL⟨∀π⟩-knowledge base. We define the ∀π

0,2-formula ϕ,
expressing the consistency of K, as follows

ϕ = Def ϕC ∧ ϕR ∧ ϕI ∧ ϕK
ϕC = Def


A∈Cpts

(∀x ∈ A)(x ∈ ∆)

ϕR = Def


P∈Rls

(∀[x, y] ∈ P)(x ∈ ∆ ∧ y ∈ ∆)

ϕI = Def


a∈Inds

a ∈ ∆

ϕK = Def


γ∈K

τ(γ),

where Cpts,Rls, and Inds are respectively the sets of concept, role and indi-
vidual names occurring in K.

The consistency problem for K is equivalent to the satisfiability of ϕ, as
we prove next.

Plainly, ϕC , ϕR, and ϕI guarantee that each model of ϕ can easily be
turned into a descriptive interpretation, since a model of a ∀π

0,2-formula
must be map-safe. Additionally, ϕK ensures that the DL⟨∀π⟩-interpretation
obtained in this way satisfies all the statements in K.

Conversely, let I be a model for K. Without loss of generality, we may
assume that ∆I is a set belonging to the von Neumann hierarchy V (oth-
erwise, we embed ∆I in V). Thus let I be any set-theoretic interpretation
such that

MI∆ = Def ∆I

MIA = Def AI for all A ∈ N c

MIP = Def P I for all P ∈ N r

MIa = Def aI for all a ∈ N i.

We remark that we don’t need to specify the pairing function when
defining a candidate model for a ∀π

0,2-formula, in force of the properties
of map-isomorphic interpretations reported in Section 4.2.1. In addition,
the description logics descriptive semantics guarantees that such any inter-
pretation I is map-safe, and that I |= ϕ.

We conclude the proof by observing that each conjunct in ϕ contains
at most two quantifiers (i.e., ϕ is a formula of (∀π

0,2)
≤2). Thus, in view

of Corollary 12, the satisfiability of ϕ can be checked in nondeterministic
polynomial time, while the NP-hardness of this problem follows directly
from the NP-completeness of the satisfiability problem for propositional
formulae.

66

The reduction provided in Theorem 27 can be easily extended to cope
withDL⟨∀π⟩-knowledge bases extended with finite sets of SWRL rules, which
was described in Section 3.5, as shown in the following theorem.

Theorem 28. The consistency problem for DL⟨∀π⟩-knowledge bases ex-
tended with finite sets of SWRL rules is decidable.

Proof. Let K be a DL⟨∀π⟩-knowledge base, and letR be a finite set of SWRL
rules. Let us extend the mapping τ , defined in Theorem 27, to SWRL rules
and atoms as follows:

τ(H → B1 ∧ . . . ∧Bn) = Def (∀x1, . . . , xm ∈ ∆) (τH → τB1 ∧ . . . ∧ τBn)
τ(A(x)) = Def x ∈ A

τ(P (x, y)) = Def [x, y] ∈ P
τ(x = y) = Def x = y
τ(x ̸= y) = Def x ̸= y,

where H,B1, . . . Bn are SWRL atoms, x1, . . . , xm are the SWRL variables
occurring in H → B1 ∧ . . . ∧ Bn, x, y can be either SWRL variables or
individual names, and A,P are respectively a concept and a role name.
We conclude the proof by observing that the following ∀π

0,2-formula ϕ′ is
satisfiable if and only if the knowledge base K extended with R is consistent:

ϕ′ = Def


ρ∈R

τ(ρ) ∧ ϕ,

where ϕ is built from K as described in Theorem 27, extending Cpts, Rls and
Inds with the concept, role and individual names occurring inR, respectively.

The description logic presented in this section can be extended with
metamodeling capabilities, in order to allow to represent roles which connect
concepts and other roles, and concepts which contains other concepts and
roles.

5.3 A Metamodeling Enabled Version of

DL⟨∀π⟩
In this section we introduce DL⟨∀π

∆⟩, a metamodeling enabled extension of
DL⟨∀π⟩. We will prove that the consistency problem of DL⟨∀π

∆⟩-knowledge
bases can be reduced to the satisfiability problem of (∀π

∆)
≤3-formulae. Again,

in order to make our proofs more fluent, we will represent ∀π
∆-formulae,

which are finite conjunctions of prenex ∀π
∆-formulae, as finite sets of prenex

∀π
∆-formulae. Furthermore, we will assume that Vars = N c ∪N r ∪N i.
The description logic DL⟨∀π

∆⟩ extends DL⟨∀π⟩ with the two additional
concept constructors {R} and ∃R.{Q}, where R and Q are role terms. More-
over, DL⟨∀π

∆⟩ admits also knowledge-base constraints of the forms C(T) and

67

R(T, T ′), where C is a DL⟨∀π
∆⟩-concept, R is a DL⟨∀π

∆⟩-role, and T, T ′ are
two genericDL⟨∀π

∆⟩-terms. This allows one to state, for example, that a con-
cept or a role are deprecated, i.e. that they belongs to a concept Deprecated

Deprecated(Human), Deprecated(father),

and to indicate which concept and role must be used instead

replacedBy(Human,HumanBeing), replacedBy(father , isFatherOf).

Formally speaking, DL⟨∀π
∆⟩-terms are constructed by means of the fol-

lowing syntax rules

C,D −→ A | ⊤ | ⊥ | ¬C | C ⊔D | C ⊓D | {a} | {C} | {R} | ∃R.Self |
∃R.{a} | ∃R.{C} | ∃R.{S}

R, S −→ P | U | R− | ¬R | R ⊔ S | R ⊓ S | RC| | R|D | RC|D |
id(C) | sym(R),

where A and P are respectively a concept and a role name, C,D are concept
terms, R, S are role terms, and a, b are individual names.

DL⟨∀π
∆⟩-knowledge bases are finite sets of constraints of the types

C ≡ D, C ⊑ D, R ≡ S, R ⊑ S,
C ⊑ ∀R.D, ∃R.C ⊑ D, R ◦R′ ⊑ S, Trans(R),
Ref(R), ASym(R), C(T), R(T, T ′),

where C,D are concept terms, R, S, S ′ are role terms, and T, T ′ can be either
concept terms, role terms, or individual names.

The semantics of DL⟨∀π
∆⟩ differs from the standard description logic

semantics as it is multilevel, in order to allow nesting concepts and roles.
It is given in terms of ∀π

∆-interpretations as follows. ∀π
∆-interpretations are

first extended to complex DL⟨∀π
∆⟩-terms and to DL⟨∀π

∆⟩-knowledge base
constraints in the usual manner for description logics. Then we say that a
∀π
∆-interpretation I = (∆I ,MI, πI) is a ∀π

∆-model for a DL⟨∀π
∆⟩-knowledge

base K if and only if it satisfies the following conditions:

(a) MIA ⊆ ∆I , for all A ∈ N c;

(b) MIP ⊆ ∆I × ∆I , for all P ∈ N r, where × is the Cartesian product
with respect to πI;

(c) I |= α, for each constraint γ occurring in K.

Finally, a DL⟨∀π
∆⟩-knowledge base is said to be ∀π

∆-consistent if it admits
a ∀π

∆-model.
The following lemma shows that DL⟨∀π

∆⟩ extends DL⟨∀π⟩ also from a
semantic point of view.

68

Lemma 29. Let K be a DL⟨∀π⟩-knowledge base. K is consistent (with
respect to the descriptive semantics) if and only if it is ∀π

∆-consistent.

Proof. To begin with, we observe that each ∀π
∆-interpretation I can be easily

turned into a description logic interpretation I such that ∆I = ∆I and
XI = MIX, for all X ∈ Vars , in such a way that I is a ∀π

∆-model for K if
and only if I is a model for K.

For the converse direction, let I be a model for K. Without loss of gen-
erality, we may assume that ∆I is a set belonging to the von Neumann hier-
archy V (otherwise, we embed ∆I in V). Now, let I be the ∀π

∆-interpretation
defined by

∆I = Def ∆I ∪

XI : X ∈ N c ∪N r


πI(u, v) = Def {{u}, {u, v},∆I}
MIP = Def {πI(u, v) : [u, v] ∈ P I}
MIY = Def Y I ,

for all u, v ∈ V , P ∈ N r, Y ∈ N c ∪N i.
This definition guarantees that I satisfies (a) and (b). Furthermore, it

can be proved by induction on the terms structure that I |= α if and only
if I |= α, for each possible DL⟨∀π⟩-knowledge base constraint α, and thus I
must satisfy (c) also, since I is a model for K.

As mentioned before, the language (∀π
∆)

≤3 is expressive enough to include
DL⟨∀π

∆⟩. In fact, from any DL⟨∀π
∆⟩-knowledge base K we can construct an

equivalent (∀π
∆)

≤3-formula ϕ as indicated in the following theorem.

Theorem 30. The consistency problem for DL⟨∀π
∆⟩-knowledge bases is NP-

complete.

Proof. Let K be a DL⟨∀π
∆⟩-knowledge base. We show how to construct an

equivalent (∀π
∆)

≤3-formula ϕ. We assume, without loss of generality, that
K consists only of constraints of the forms indicated in the left column of
Table 5.2. ϕ is defined as follows:

ϕ = Def K0 ∪

γ∈K

ρ(γ),

where
K0 = Def


A∈N c∩Vars(K)

{(∀x)(∀y)([x, y] /∈ A)}

∪


P∈N r∩Vars(K)

{(∀x)(x /∈ P)}

and ρ is the transformation defined in Table 5.2.
It can easily be verified that, in force of the constraints in K0, each

model of ϕ must satisfies (a) and (b). Furthermore, given any DL⟨∀π
∆⟩-

interpretation I, I evaluates γ to true if and only if it is a model for ρ(γ),
for any constraint γ occurring in K.

69

γ ρ(γ)

A ≡ ⊤ {(∀x)(x ∈ A)}
A ≡ ¬B {(∀x)(x ∈ A ↔ x /∈ A)}
A ≡ B ⊔B′ {(∀x)(x ∈ A ↔ x ∈ B ∨ x ∈ B′)}
A ≡ {X} {X ∈ A; (∀x)(x ∈ A → x = X)}
A ⊑ ∀P.B {(∀x)(∀y)(x ∈ A ∧ [x, y] ∈ P → y ∈ B)}
∃P.A ⊑ B {(∀x)(∀y)(y ∈ A ∧ [x, y] ∈ P → x ∈ B)}
A ≡ ∃P.{X} {(∀x)(x ∈ A ↔ [x,X] ∈ P)}
P ≡ U {(∀x)(∀y)([x, y] ∈ P)}
P ≡ ¬Q {(∀x)(∀y)([x, y] ∈ P ↔ [x, y] /∈ Q)}
P ≡ Q ⊔Q′ {(∀x)(∀y)([x, y] ∈ P

↔ ([x, y] ∈ Q ∨ [x, y] ∈ Q′))}
P ≡ Q− {(∀x)(∀y)([x, y] ∈ P ↔ [y, x] ∈ Q)}
P ≡ id(A) {(∀x)(∀y)([x, y] ∈ P ↔ x = y ∧ x ∈ A)}
P ≡ QA| {(∀x)(∀y)([x, y] ∈ P

↔ ([x, y] ∈ Q ∧ x ∈ A))}
P ◦ P ′ ⊑ Q {(∀x)(∀y)(∀z)(([x, y] ∈ P ∧ [y, z] ∈ P ′)

→ [x, z] ∈ Q)}
Ref(P) {(∀x)(∀y)([x, y] ∈ P → [x, x] ∈ P)}

Table 5.2: The transformation ρ.

In addition, this construction process takes polynomial time, with respect
to the size of K, and thus the consistency problem for DL⟨∀π

∆⟩-knowledge
bases can be tested in nondeterministic polynomial time. The NP-hardness
of this problem follows from the NP-completeness of reasoning for DL⟨∀π⟩
(cf. Corollary 23).

We conclude this section by observing that ∀π
∆ (and also its restriction

(∀π
∆)

≤3) is much more flexible than the description logic introduced here,
and thus it may be used to extend DL⟨∀π

∆⟩ with new constructs to increase
its metamodeling capabilities. We clarify this observation by defining, for
instance, a novel construct involving the union set operator:

A ⊑ B = Def (∀x)(∀y)((x ∈ y ∧ y ∈ A) → z ∈ B) ,

where A,B ∈ N c.

70

Chapter 6

Conclusions and Future Work

In this thesis we presented three quantified fragments of set theory, namely
∀π
0, ∀π

0,2, and ∀π
∆. In ∀π

0 only restricted quantifiers of the forms (∀x ∈ π̄(y)),
(∀[x, y] ∈ z) are permitted. ∀π

0,2 is a two sorted language which allows
quantifiers of the forms (∀x ∈ y) and (∀[x, y] ∈ f), with x, y ∈ Varss,
f ∈ Varsm. In ∀π

∆ quantifiers are not restricted, rather quantified vari-
ables ranges over a set ∆, and interpretations must satisfies the additional
constraint ∆ ∩ (∆×∆) = ∅ to be models for ∀π

∆-formulae.
We proved that all these languages, which we call ∀π-languages, are de-

cidable, and that their decision problem is in NExpTime. In addition,
if we restrict ourselves to formulae with quantifier prefixes whose length is
bounded by a constant, the relative decision problem becomes NP-complete.

Next, we showed that a large amount of set-theoretic constructs can be
expressed by these languages. To this purpose, we presented the unquan-
tified language MLSS×

2,m, which contains the usual set-theoretic operators
∪, ∩, \, and several map constructs like, for example, map restrictions and
Cartesian product.

We exploited some correspondences between set-theoretical languages
and description logics. In particular, we proved that each MLS extension
which contains the map image operator is ExpTime-hard by providing a
reduction from the description logic ALC to the MLS extension MLSIm.

Conversely, several description logic constructs are ∀π-expressible, prov-
ing that the languages of this family may be profitably employed as knowl-
edge representation languages. In particular, the decision problem of the de-
scription logic DL⟨∀π⟩ can be reduced in a very natural way to the decision
problem of (∀π

0,2)
≤2, thus proving that reasoning in DL⟨∀π⟩ is NP-complete.

In addition, we showed that this description logic can be extended with
SWRL rules without disrupting the decidability. Finally, we introduced the
description logic DL⟨∀π

∆⟩, which extends DL⟨∀π⟩ with metamodeling fea-
tures, and we proved that reasoning in DL⟨∀π

∆⟩ is still NP-complete by
providing a reduction to (∀π

∆)
≤3.

We intend to further explore quantified fragments of set theory, and their
applicability in knowledge representation, thus focusing our attention on

71

fragments of set theory with a tractable decision problem (inNP), and which
contain map-related (or pair-related) constructs. For this reason, we intend
to investigate the decision problem for the one-sorted language obtained
from ∀π

0,2 by dropping the distinction between set and map variables. We
conjecture that an undecidability result for this theory can be proved by a
reduction of the tiling problem (cf. [4]).

The language MLSS×
2,m imposes some relevant restrictions on the usage of

the domain and range operators. However, these restrictions can be relaxed
when these operators are applied to reflexive functions. In light of this,
MLSS×

2,m extensions which allow one to use the domain operator also on the
right-hand side of inclusions should be investigated, when the application of
such kind of constructs is limited, for example, to symmetric or transitive
functions.

Also in DL⟨∀π⟩ some very common description logic operators are avail-
able in a limited fashion, in particular the universal and the existential re-
strictions. In [14], the knowledge bases in the test bed provided in [20]
were examined in order to estimate if and how much the description logic
DL⟨MLSS×

2,m⟩ (see [13]) can cope with real-world knowledge bases. How-
ever, this test bed is out-of-date, and therefore it should be repeated with a
most relevant one, relatively to the description logic DL⟨∀π⟩, which strictly
contains DL⟨MLSS×

2,m⟩.
In [29, 27] some correspondences between description logics and Dis-

junctive Datalog (cf. [18]) have been exploited. In particular, in [29] a
description logic which can be reduced to Datalog was devised, so that all
the highly optimized reasoning engines for Datalog developed over the years
may be reused in this context. For this reason, the relationship between our
languages and Datalog should be investigated.

72

Bibliography

[1] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI, pages 364–369. Professional Book Center, 2005.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[3] José L. Balcázar. The Complexity of Searching Implicit Graphs. Artif.
Intell., 86(1):171–188, 1996.

[4] R Berger. The undecidability of the dominoe problem., volume 66 of
Mem. Amer. Math. Soc., pages 1–72. American Mathematical Society,
1966.

[5] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American Magazine, May 2001.

[6] Michael Breban, Alfredo Ferro, Eugenio G. Omodeo, and Jacob T.
Schwartz. Decision procedures for elementary sublanguages of set the-
ory. II. Formulas involving restricted quantifiers, together with ordinal,
integer, map, and domain notions. Communications on Pure and Ap-
plied Mathematics, 34:177–195, 1981.

[7] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

[8] D. Cantone, E. G. Omodeo, and A. Policriti. The automation of syl-
logistic. ii. optimization and complexity issues. J. Autom. Reason.,
6:173–187, May 1990.

[9] Domenico Cantone, Vincenzo Cutello, and Alberto Policriti. Set-
theoretic reductions of hilbert’s tenth problem. In Egon Börger,
Hans Kleine Büning, and Michael M. Richter, editors, CSL, volume
440 of Lecture Notes in Computer Science, pages 65–75. Springer, 1989.

73

[10] Domenico Cantone and Alfredo Ferro. Techniques of computable set
theory with applications to proof verification, volume XLVIII of Comm.
Pure Appl. Math., pages 901–945. Wiley, 1995.

[11] Domenico Cantone, Alfredo Ferro, and Eugenio Omodeo. Computable
set theory, volume 6 of International Series of Monographs on Computer
Science. Oxford Science Publications. Clarendon Press, Oxford, UK,
1989.

[12] Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo.
A Decidable Quantified Fragment of Set Theory Involving Ordered
Pairs with Applications to Description Logics. In Marc Bezem, editor,
CSL, volume 12 of LIPIcs, pages 129–143. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011.

[13] Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo.
A Decision Procedure for a Two-sorted Extension of Multi-Level Syl-
logistic with the Cartesian Product and Some Map Constructs. In
Wolfgang Faber and Nicola Leone, editors, CILC2010 : 25th Italian
Conference on Computational Logic, 2010.

[14] Domenico Cantone, Cristiano Longo, and Antonio Pisasale. Comparing
Description Logics with Multi-level Syllogistics: the Description Logic
DL⟨MLSS×

2,m⟩. In 6th Workshop on Semantic Web Applications and
Perspectives (SWAP), 2010.

[15] Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set the-
ory for computing: from decision procedures to declarative program-
ming with sets. Monographs in Computer Science. Springer-Verlag,
New York, NY, USA, 2001.

[16] Domenico Cantone, Eugenio G. Omodeo, Jacob T. Schwartz, and Pietro
Ursino. Notes from the logbook of a proof-checker’s project. In Nachum
Dershowitz, editor, Verification: Theory and Practice, volume 2772 of
Lecture Notes in Computer Science, pages 182–207. Springer, 2003.

[17] Domenico Cantone and Jacob T. Schwartz. Decision Procedures for
Elementary Sublanguages of Set Theory: XI. Multilevel Syllogistic Ex-
tended by Some Elementary Map Constructs. J. Autom. Reasoning,
7(2):231–256, 1991.

[18] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Data-
log. ACM Trans. Database Syst., 22(3):364–418, 1997.

[19] Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz. Decision
Procedures for Elementary Sublanguages of Set Theory. I. Multi-level
syllogistic and some extensions., volume XXXIII of Comm. Pure Appl.
Math., pages 599–608. Wiley, 1980.

74

[20] Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. Framework for
an automated comparison of description logic reasoners. In Isabel F.
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Michael Uschold, and Lora Aroyo, editors, International
Semantic Web Conference, volume 4273 of Lecture Notes in Computer
Science, pages 654–667. Springer, 2006.

[21] Birte Glimm, Sebastian Rudolph, and Johanna Völker. Integrated
metamodeling and diagnosis in owl 2. In Peter F. Patel-Schneider,
Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang 0007, Jeff Z. Pan, Ian
Horrocks, and Birte Glimm, editors, International Semantic Web Con-
ference (1), volume 6496 of Lecture Notes in Computer Science, pages
257–272. Springer, 2010.

[22] Volker Haarslev and Ralf Möller. RACE System Description. In Lam-
brix et al. [30].

[23] Ian Horrocks. Using an Expressive Description Logic: FaCT or Fiction?
In KR, pages 636–649, 1998.

[24] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irre-
sistible SROIQ. In Proc. of the 10th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR2006), pages 57–67. 10th In-
ternational Conference on Principles of Knowledge Representation and
Reasoning, AAAI Press, June 2006.

[25] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL Entailment
to Description Logic Satisfability. In Diego Calvanese, Giuseppe De
Giacomo, and Enrico Franconi, editors, Description Logics, volume 81
of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[26] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL
rules language. In Stuart I. Feldman, Mike Uretsky, Marc Najork, and
Craig E. Wills, editors, WWW, pages 723–731. ACM, 2004.

[27] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ-
Description Logic to Disjunctive Datalog Programs. In Didier Dubois,
Christopher A. Welty, and Mary-Anne Williams, editors, KR, pages
152–162. AAAI Press, 2004.

[28] Markus Krötzsch. Description Logic Rules, volume 008 of Studies on
the Semantic Web. IOS Press/AKA, 2010.

[29] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos
Fakotakis, and Nikolaos M. Avouris, editors, ECAI, volume 178 of Fron-
tiers in Artificial Intelligence and Applications, pages 80–84. IOS Press,
2008.

75

[30] Patrick Lambrix, Alexander Borgida, Maurizio Lenzerini, Ralf Möller,
and Peter F. Patel-Schneider, editors. Proceedings of the 1999 Inter-
national Workshop on Description Logics (DL’99), Linköping, Sweden,
July 30 - August 1, 1999, volume 22 of CEUR Workshop Proceedings.
CEUR-WS.org, 1999.

[31] Boris Motik. On the Properties of Metamodeling in OWL. J. Log.
Comput., 17(4):617–637, 2007.

[32] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for
OWL-DL with rules. J. Web Sem., 3(1):41–60, 2005.

[33] Eugenio Omodeo, Domenico Cantone, and Alberto Policriti. Reasoning,
Action and Interaction in AI Theories and Systems, Essays Dedicated
to Luigia Carlucci Aiello. In Oliviero Stock and Marco Schaerf, editors,
Reasoning, Action and Interaction in AI Theories and Systems, volume
4155 of Lecture Notes in Computer Science. Springer, 2006.

[34] Jeff Z. Pan and Ian Horrocks. OWL FA: a metamodeling extension
of OWL DL. In Les Carr, David De Roure, Arun Iyengar, Carole A.
Goble, and Michael Dahlin, editors, WWW, pages 1065–1066. ACM,
2006.

[35] Jeff Z. Pan and Ian Horrocks. RDFS(FA): Connecting RDF(S) and
OWL DL. IEEE Trans. Knowl. Data Eng., 19(2):192–206, 2007.

[36] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[37] Franco Parlamento and Alberto Policriti. Undecidability results for
restricted universally quantified formulae of set theory. Comm. Pure
Appl. Math., ILVI:57–73, 1993.

[38] Franco Parlamento, Alberto Policriti, and K. P. S. B. Rao. Witnessing
differences without redundancies. In Proc. Amer. Math. Soc., volume
125, pages 587–594, 1997.

[39] Peter F. Patel-Schneider. DLP. In Lambrix et al. [30].

[40] M. Ross Quillian. Semantic memory. In M. Minsky, editor, Semantic
Information Processing, pages 216–270. The MIT Press, 1968.

[41] Jacob T. Schwartz. A survey of program proof technology. Technical
Report 001, New York University, Department of Computer Science,
September 1978.

[42] Jacob T. Schwartz, Domenico Cantone, and Eugenio G. Omodeo. Com-
putational Logic and Set Theory: Applying Formalized Logic to Analy-
sis. Texts in Computer Science. Springer-Verlag New York, Inc., 2011.

76

[43] Jacob T. Schwartz, Robert B. K. Dewar, Edmond Schonberg, and E Du-
binsky. Programming with sets; an introduction to SETL. Springer-
Verlag New York, Inc., New York, NY, USA, 1986.

[44] Stephan Tobies. The Complexity of Reasoning with Cardinality Re-
strictions and Nominals in Expressive Description Logics. CoRR,
abs/1106.0239, 2011.

[45] Thanh Tran, Peter Haase, Boris Motik, Bernardo Cuenca Grau, and
Ian Horrocks. Metalevel information in ontology-based applications. In
Dieter Fox and Carla P. Gomes, editors, AAAI, pages 1237–1242. AAAI
Press, 2008.

[46] Christopher A. Welty and David A. Ferrucci. What’s in an instance?
Technical report, RPI Computer Science, 1994.

77

	Introduction
	Knowledge Representation
	SWRL Rules

	Metamodeling
	The Family
	Contributions
	Thesis Organization

	Computable Set Theory
	Preliminaries
	Ordered Pairs
	Background Semantics

	Multi-Level Syllogistic
	Multi-Level Syllogistic with Maps

	The Language 0

	Description Logics
	Preliminaries
	The Description Logic ALC
	Complexity Issues

	Number Restrictions
	The Description Logic SROIQ
	SWRL Rules

	The Family
	The Language 0
	Skeletal representations
	A Decision Procedure for 0
	Complexity Issues

	The Language 0,2
	Map-Isomorphic Interpretations
	A Decision Procedure for 0,2
	Some Remarks about 0

	The Language
	A Decision Procedure for

	Expressivity of the Languages
	The Language MLSS2,m
	Normalized MLSS2,m-Formulae
	A Decision Procedure for MLSS2,m
	ExpTime-hardness of MLS with the image operator

	The Description Logic DL"426830A "526930B
	A Metamodeling Enabled Version of DL"426830A "526930B

	Conclusions and Future Work

