
UNIVERSITA’ DEGLI STUDI DI CATANIA

DIPARTIMENTO DI INGEGNERIA

INFORMATICA E DELLE TELECOMUNICAZIONI

DOTTORATO DI RICERCA IN INGEGNERIA

INFORMATICA E DELLE TELECOMUNICAZIONI

XXIV CICLO

SLA and Advance Reservation

management in Wide-Area

Distributed Systems

CANDIDATO: Ing. Daniele Zito

IL COORDINATORE

Prof. O. Mirabella

IL TUTOR

Prof. A. Di Stefano

The rare occurence of expected...

William Carlos William

Contents

1 Introduction 1

Introduction . 1

1.1 Grid Issues . 2

1.2 Cloud Issues . 4

1.3 Basic concepts . 8

1.3.1 QoS, SLA and resource reservation 8

1.3.2 From Grids to Services MarketPlace 11

1.3.3 Services MarketPlace Architecture 12

1.3.4 Cloud over multicore systems 14

1.4 Contributions . 18

1.5 Organization . 20

1.6 Acknowledgments . 21

2 Immediate and Advanced Reservation 23

Reservation . 23

2.1 Some notes on SLA and QoS 26

2.1.1 QoS profile, best effort and QoS-guaranteed jobs . . . 26

2.1.2 SLA . 27

i

ii Contents

2.2 Current implementations of allocation and AR in the Job

Management System . 29

2.2.1 Advanced Reservation Manager Pattern 30

2.2.2 Selecting Applications for Termination 37

2.2.3 Pattern: features . 38

2.3 Tecnhologies exploited . 44

2.3.1 Considerations about JAM and LSF 44

2.3.2 gLite overview . 45

2.4 Reducing the impact of Advance Reservation: the proposed

algorithm . 46

2.4.1 Backfill . 46

2.4.2 How our modified Backfill works 48

2.5 Evaluation results . 51

2.5.1 Some notes on the simulation approach 51

2.5.2 Simulations . 52

2.6 Related works . 57

2.7 Conclusions . 61

3 Service Level Agreement Management according to specific QoS

requestes 63

SLA Management driven from QoS requestes 63

3.1 SLA Management . 64

3.1.1 The gLite framework for the SLA Management 68

3.2 Conclusions . 71

4 QoS-aware discovery protocol 73

QoS aware discovery protocol . 73

4.1 The Discovery Protocol . 75

Contents iii

4.1.1 The phases, the actors and the exchanged messages . . 77

4.1.2 Discovery phase . 83

4.1.3 Response’s reception and agreement management . . . 89

4.1.4 Services cache . 91

4.2 Results evaluation . 93

4.3 Improving protocol performance using mobile agents 101

4.3.1 Results . 105

4.3.2 Security policies . 108

4.4 Conclusions . 109

5 QoS-aware Service Composition 111

QoS aware Service Composition 111

5.1 The management of QoS in composed services 112

5.2 Service Level Agreements 116

5.3 A fast technique for the composition of services 118

5.3.1 The services discovery phase 119

5.3.2 Setting the path . 120

5.3.3 The management of exceptions 125

5.4 Related work . 131

5.5 Conclusion . 135

6 Applicating ARM among a multicore Cloud environment 137

Multicore Cloud environment . 137

6.1 Reference Scenario . 138

6.1.1 QoS profile and SLA 139

6.1.2 The influence of resources virtualization on QoS

management . 140

6.1.3 The resources reservation and the Xen Hypervisor . . 143

iv Contents

6.2 Advance Reservation . 145

6.2.1 Resources Management Systems 145

6.2.2 Model of Advance Reservation implemented with ARM146

6.3 The Pattern: objectives, components and functioning. 150

6.3.1 Objective . 150

6.3.2 Structure of pattern 150

6.3.3 Functioning . 153

6.3.4 Some notes about JAM and VMM 155

6.3.5 Checkpointing and migration 155

6.4 Related Work . 157

6.5 Conclusion . 159

7 Dime Technology 161

Dime . 161

7.1 Dime Computing Model . 166

7.1.1 FCAPS, signaling channel, execution channel 166

7.1.2 DIME Components 169

7.2 Dime Network . 173

7.2.1 Architecture . 173

7.2.2 Functioning . 176

7.2.3 Fault Management 179

7.3 Case study: LAMP,an application of the Dime computin model 183

7.3.1 LAMP Web Services Using DNA 184

7.4 Conclusions and future direction 187

8 Conclusions 193

Conclusions . 193

8.1 Macroarea: Grid . 193

Contents v

8.2 Macro-area: Cloud . 197

Bibliography 201

List of Figures

1.1 Current Cloud Market Landscape 5

1.2 Five Year TCO of Virtualization According to a Vendor ROI Calcu-

lator . 6

1.3 TCO over 5 Years with virtualization of 1500 servers using 13 VMs

per Server . 7

1.4 Grid . 13

1.5 P2PGrid . 15

2.1 Two levels for the SLA management 24

2.2 JMS Architecture . 31

2.3 ARM architecture . 33

2.4 ARM: sequence diagram . 36

2.5 Backfill Windows . 48

2.6 Comparation between long and short backfill windows: queuetime . 49

2.7 Comparation between long and short backfill windows: utilization

of WNs . 49

2.8 Comparison of all algorithms, parameter: average utlization rata . . 54

2.9 Comparison of all algorithms, parameter: queuetime 54

2.10 Second step of simulations . 55

vii

viii List of Figures

3.1 SLAM . 64

3.2 framework’s component . 69

3.3 Sequence Diagram . 71

4.1 DQ frame’s structure . 81

4.2 (a)DQH and (b)SI frames’ structure 82

4.3 (a)NM/NA and (b)SC/SA frames’ structure 82

4.4 An example of DQ’s propagation 90

4.5 An example of negotiation phase 90

4.6 Average number of DQs spread in the (power law) network during

discovery phase . 94

4.7 Average number of DQs spread in the (multimodal) network during

discovery phase . 95

4.8 Search efficiency in the (power law) network during discovery phase 96

4.9 Search efficiency in the (multimodal) network during discovery phase 97

4.10 Influence of reputation on messages spread in the (power law) network 97

4.11 Influence of reputation on messages spread in the (Multi Modal)

network . 98

4.12 Influence of reputation on search efficiency index (power law network) 98

4.13 Influence of reputation on search efficiency index (Multi Modal net-

work) . 99

4.14 The influence of cache hit probability on messages spread in the

(power law) network . 100

4.15 The influence of cache hit probability on messages spread in the

(power law) network . 101

4.16 The influence of clustering index on messages spread in the (power

law) network . 102

List of Figures ix

4.17 The influence of clustering index on messages spread in the (power

law) network . 103

4.18 Intraplarform vs interplatform 106

4.19 Adaptative Vs Source chosen policy 107

4.20 Size cache / Cache hit probability 108

5.1 Example of serially composed service 121

5.2 Clusterization of SLAs . 122

5.3 The graph representing Scmp . 123

5.4 An execution path for Scmp . 125

6.1 Reference Scenario . 138

6.2 QoS management layers . 141

6.3 Extended state diagram for advance reservation in ARM 147

6.4 Interaction among the components constituting the pattern 149

6.5 Hash tables details . 152

6.6 Resource reservation: the sequence diagram 153

7.1 Current data center estimates of Total Cost of Ownership 163

7.2 The Resiliency, Efficiency and Scaling of Information Technology

Infrastructure . 170

7.3 The Anatomy of a DIME with Service Regulator and Service Pack-

age Executables . 171

7.4 The Anatomy of a DIME The Anatomy of a DIME and the separa-

tion of service regulation and service execution workflows 174

7.5 Fault during execution of a workflow 180

7.6 Fault management during execution of a workflow 182

x List of Figures

7.7 DIME network implementing web services using LAMP services

with FCAPS management at both the node level and at the network

level . 185

Chapter 1

Introduction

The terms Software on demand, Software as commodity or Software as a ser-

vice (SaaS), represent the keywords of a new trend in the field of distributed

computing where the main attention is directed towards the users and their

needs, in order to compose a set of new market/research segments.

Within this trend, two set of technologies have emerged:

• Grid technologies that manage combination of computer resources

frommultiple administrative domains to reach a common goal. The grid

can be thought of as a distributed system with noninteractive workloads

that involve a large number of tasks. What distinguishes grid computing

from conventional high performance computing systems such as clus-

ter computing is that grids tend to be more loosely coupled, heteroge-

neous, and geographically dispersed. Although a grid can be dedicated

to a specialized application, it is more common that a single grid will

be used for a variety of different purposes. Grids are often constructed

with the aid of general-purpose grid software libraries known as mid-

dleware;

1

2 Chapter 1. Introduction

• Cloud technologies that provides computation, software, data access,

and storage services that do not require end-user knowledge of the phys-

ical location and configuration of the system that delivers the services.

The term cloud computing refers to a new supplement, consumption,

and delivery model for IT services based on Internet protocols, that

typically involves provisioning of dynamically scalable and often virtu-

alised resources.

Through them, web is becoming a marketplace where each user can find, use

and compose services and applications offered, with different qualities, from

different providers. From the users’ point of view, this scenario allows them

to have what they want, when they need it, with a specific quality of service,

without having to care for the management or ownership of hardware and

software resources. From the service provider’s point of view, instead, the

ability to offer all these functionalities implies the adoption of an effective

strategy for services and resources management: the providers have to cope

with new and complex challenges in order to guarantee the satisfaction of the

user’s requests.

The aims of this thesis are to investigates these challenges both in a wide area

Grid based service marketplace and in a Cloud based multicore environments,

proposing for each one an effective solution and discussing the obtained ad-

vantages.

1.1 Grid Issues

The grid computing paradigm, born in the mid 1990’s to enable the sharing

of computational and storage resources among academic and research institu-

tions, has been, in recent years, deeply influenced by the SOA advent.

1.1. Grid Issues 3

Today, the grids are opening towards new applications, embracing not only

the e-science field, where it is born and developed, but also the business, fi-

nancial and educational ones.

The grids, now, have to be able to supply resources and services in a flexi-

ble manner, exposing and offering them on-demand to different typologies of

users, each one characterized by specific requirements. It is creating a com-

petitive grid services marketplace where the user’s satisfaction of the QoS

requirements becomes the fundamental issue. In fact, this grid evolution of-

fers to the users a great number of grid services easily accessed via web. It can

choose and use those services that better satisfy these requirements, obtaining

them by different grid providers based on the services performance and cost.

In this distributed scenario, characterized by the lack of a centralized coor-

dinator, some challenges have to be faced in order to guarantee its correct

functioning:

(i) each grid, i.e. each service provider, has to guarantee the service fruition

respecting the user’s QoS requirements.

(ii) the user has to rely on a robust and scalable algorithm to find services

under QoS constraints among the different providers.

(iii) an effective strategy has to be designed to manage QoS agreement for

composed services belonging to different providers.

One of the aims of this thesis are to investigates these challenges in a wide

area P2P-Grid based service marketplace, proposing for each one an effective

solution and discussing the obtained advantages.

4 Chapter 1. Introduction

1.2 Cloud Issues

Cloud computing is a natural evolution of the widespread adoption of vir-

tualisation, service-oriented architecture, autonomic, and utility computing.

Details are abstracted from end-users, who no longer have need for expertise

in, or control over, the technology infrastructure textitin the cloud that sup-

ports them.

Virtualization, in particular, is a key enabling technology for cloud computing

environments. The concept of cloud computing has captured the attention and

imagination of organizations of all sizes because its service delivery model

converts the power of virtualization into measurable business value by adding

the provisioning and billing capabilities.

Today, computing virtualization is provided with Hypervisor technology

to create virtual servers, network virtualization is provided through multi-

protocol routers and switches and storage virtualization is provided through

specialized appliances supporting NAS and SAN. New appliances are being

rolled out for databases and storage transaction management.

Different virtualization platforms and orchestrators that integrate them are

flooding the market. The costs of associated services are skyrocketing. Figure

1.1 shows various layers of management to provide application specific avail-

ability, reliability, performance, security and billing functions. The products

and services that have evolved bottom up in the services stack from the server,

network, storage or application and infrastructure software domains are ex-

panding their reach into other domains to gain market share.

Various vendors play at various levels in each layer. The complexity of hetero-

geneity, multiple vendor solutions and orchestrators that provide integration

has been overwhelming the service developers, operators and consumers.

The infrastructure makers, the service developers and the service operators are

1.2. Cloud Issues 5

Figure 1.1: Current Cloud Market Landscape

striving to capture the big chunk of a large market share by racing to provide

universal access to virtual computing services with telecom grade trust. There

is a battle brewing between the Äppliances for High Performance Campänd

the Öpen System Software and Services Approach for Everything Campöf

the current IT infrastructure vendors. By this way, the current cloud solutions

present similar issues:

1. Poor end-to-end distributed transaction reliability, availability, perfor-

mance and security as recent episodes at Sony, Amazon, Google, and

RSA [1–3] demonstrate.

2. The hardware upheaval caused by the new class of many-core proces-

sors that allow parallelism which cannot be fully exploited with current

state of software innovation.

6 Chapter 1. Introduction

Figure 1.2: Five Year TCO of Virtualization According to a Vendor ROI Calculator

It is estimated that 60% to 70% of IT data center cost is in its operation and

management with or without virtualization in spite of a 10X improvement in

hardware, space and energy savings with the new class of servers available

today [4]. Figure 1.2 shows percentage Total Cost of Ownership (TCO) (for a

1500 server data center) over five years by each component with and without

virtualization. While virtualization introduces many benefits such as consoli-

dation, real-time business continuity and elastic scaling of resources to meet

wildly fluctuating workloads, it adds another layer of management systems in

addition to current computing, network, storage and application management

systems. 1.3 shows a reduction by 50% of the five-year TCO with virtual-

ization. The Virtual Machine density of about 13 allows a great saving in

hardware costs which is somewhat off-set by the new software, training and

1.2. Cloud Issues 7

Figure 1.3: TCO over 5 Years with virtualization of 1500 servers using 13 VMs per
Server

services costs of virtualization. In addition, there is the cost of new com-

plexity in optimizing the 13 VMs within each server in order to match the

resources (network bandwidth, storage capacity, IOPs and throughput) to ap-

plication workload characteristics, business priorities and latency constraints.

The cost per VM is estimated to be around $2500 with minor variation with

the use of VMWare, Microsoft, Red Hat or Citrix solution. This is consistent

with 2X improvement with a managed physical server cost of about $5000.

In spite of vendor claims, there is not much difference between different Hy-

pervisors just as there was no big difference between DB2, Oracle and Sybase

in the 1980ś. They are all equally knowledge intensive and require expensive

services solutions to maintain. Further improvements in TCO have to come

8 Chapter 1. Introduction

from new approaches that drastically reduce complexity of current layers of

management systems. This thesis focuses on this issues, investigating a set

of solutions that are able to increment the performances of a cloud both i)

extending the existent solutions with a new pattern for the resources manage-

ment and ii) proposing a new approach based on biological principles.

1.3 Basic concepts

In this section it will be given a brief description of the basic concepts in QoS

management in Wide-area distributed systems..

1.3.1 QoS, SLA and resource reservation

Quality of Service (QoS) is a concept born in the networking field to indicate

some aspects related to the communication quality such as transmission de-

lay, number of packets loss or percentile of corrupted information.

With the advent of the SOA, the term QoS has assumed a more general mean-

ing: today, the concept of quality is based on the perception that a user has of

the service execution and it is related to the value of some (often called) non-

functional parameters, such as e.g. service response time, reliability, avail-

ability and cost.

QoS represents an important aspect in a services marketplace, since it offers

the user a choice of, on the basis of their expectations, the best one among

different versions of a service.

In order to reach an agreement about functional and QoS parameters related to

a service execution, the client and the provider have to negotiate the type and

the value of this parameter. The result of this negotiation process is a specific

document known as Service Level Agreement (SLA): it is used for describing

1.3. Basic concepts 9

all the parameters characterising a service, both functional and QoS related,

and the rules and conditions to properly use the service. In particular, the

SLA specifies, for a proper subset of parameters, the corresponding values or

range of values expected by the service requester and that the service provider

is able to offer. Many implementations of an SLA are possible (WSLA, WS-

agreement, SLAng), each one taking care of some specific characteristics of

the context in which it is used. Generally, an SLA implementation should

contain technical specifications and QoS related parameters. Technical speci-

fications include:

• service name,

• service description, in terms of input/output parameters and availability,

• participants: provider, consumer and any third party needed to ensure a

trusted service,

• service access mode, i.e. involved protocols and exchanged messages.

QoS parameters may include response time, throughput, availability, service

cost, etc. Two important aspects have to be considered in the SLA manage-

ment. The first item pertains to the opportunity of using, in the SLA manage-

ment, standard structures that define the behaviour that the provider and the

consumer have to adopt to reach a common target. These structures, called

SLA templates, considerably simplify the agreement creation phase because

they make transparent the issue related to ḧow to provide,̈ focusing on ẅhat is

provided.̈ Thus, the agreement process is reduced only to the negotiation of

the parameters.

The second item, fundamental in the proposed SLA management system (see

Chap.5), is the capability of establishing specific boundaries when recovery

10 Chapter 1. Introduction

activities have to be started due to an agreement violation. An SLA is a bind-

ing agreement: a provider, that is selected based on its promised performance,

is bound to guarantee the proper execution of the service. If this does not hap-

pen due to the provider, the client must be refunded, based on both the service

level and on the reason of the problem, in a partial or total way.

The exceptions are very important when they have to do with composed ser-

vices because they allow to build recovery paths for the faults.

The provision of a QoS level with a certain degree of guarantee, implies the

existence of a mechanisms able to set and monitor this guarantee, otherwise

an SLA would be impossible to draw up. The service client, in fact, requires

the overconfidence that its own requests are satisfied following the negotiated

behaviour.

One of the more frequent situation in the Grid utilization is the request of al-

location of resources to execute one or more services. In this context, the best

effort strategy allows the users only to request a fixed amount of resources,

but it does not provide any guarantee that the service will be executed in a

given time range or that the service will start its execution at a fixed time.

For more users, this strategy is too restrictive: e.g for the execution of a par-

ticular class of services strongly dependent by time constraints or for the com-

position of a set of services characterized by time dependence among them.

Similar questions pertain to resources different from the ones related to CPU

allocation, like bandwidth. The execution of a particular service is strongly

affected by the bandwidth between the node where they are executed the dif-

ferent jobs that compose it. In a purely best effort logic, the middleware

cannot influence the provision of the service, because it has no tools to guar-

antee the bandwidth required for an optimal supply of the service. In order

to guarantee the execution of the services respecting the user’s expectations,

the provider has to be able to reserve for it all the needed resources. The ad-

1.3. Basic concepts 11

vance reservation, then, plays a crucial role in the provisionning of service

with guaranteed QoS parameters. In the absence of mechanisms of advance

reservation, in fact, the provider/resources broker can not provide any guar-

antee on the service provision/exectution. The adoption and the provisioning

of a quality of service(QoS)-based management of resources in Grids (able

to guarantee the respect of the agreements established between services con-

sumers and providers) represents a fundamental requirement in order to obtain

a flexible and dynamic services management.

Recognizing the centrality of the reservation in the actual research about Grid

middleware, in the first chpater of this thesis, a new architectural pattern for

the management of advance reservations in grid environments called Advance

Resource Manager (ARM), is proposed.

1.3.2 From Grids to Services MarketPlace

Grid systems and Peer to Peer networks are the most commonly-used solu-

tions to achieve the same goal: the sharing of resources and services in het-

erogeneous, dynamic, distributed environments. Many studies have proposed

hybrid approaches that try to conjugate the advantages of the two models.

This thesis proposes an architecture that integrates the P2P interaction model

in Grid environments, so as to build an open cooperative model wherein Grid

entities are composed in a decentralized way. In particular, the chapter 4 fo-

cuses on a QoS aware discovery algorithm for P2P Grid systems, analyzing

protocols and explaining techniques used to improve its performance.

Today, Grid systems are applied in widely distributed systems where several

administrative domains offer a huge amount of heterogeneous resources and

services to meet pervasive and heavy requests with a number of different QoS

and security constraints.

12 Chapter 1. Introduction

The standardization and the implementation of Grid systems are presently

strongly structured in centralized or hierarchical architectures. This allows a

single organization to adopt simple, even if rigid, strategies to guarantee the

control of the owned resources and the maintenance of the designed security

degrees. However, the use of a centralized approach compromises both scal-

ability and reliability of the Virtual Organization [5] (a group of individuals

or institutions belonging to different administrations who share the computa-

tional and storage resources of a Grid for a common goal), especially in terms

of robustness and fault tolerance, reducing the effective exploitation of the

resources and their availability issues.

Some studies [6], [7], [8] have explored the advantages of implementing Grid

systems adopting Peer-To-Peer (P2P) models and techniques to manage the

services even if critical concerns related to the decentralized control and the

security issues remain.

This thesis proposes to combine Grid middleware facilities with the P2P ap-

proach, exploiting the capability of peer/CE to handle cooperation issues. One

of the most critical issues that has to be taken into account when Grid and P2P

systems are combined regards the resources/services discovery and services

composition

1.3.3 Services MarketPlace Architecture

The term P2P grid architecture in this thesis indicates an overlay network

where each peer is represented by a Computing Element (CE). Referring to

the grid terminology [9], each CE is the master node of a computers cluster:

it’s aim is the distribution of tasks and data among other cluster machines,

called Worker Nodes (WN). In a classical Grid organization (Fig. 1.4), the

service requests are sent to CEs from a centralized Resource Broker (RB) that

1.3. Basic concepts 13

RB

CE

WN

WN

WN

WN

CE

WNWN

CE

WN

WN

WN

WN

CE

WNWN

CE

WN

WN

WN

WN

UI UI

Virtual Organization

Figure 1.4: Grid

receives them from several sources, called User Interfaces (UI), that represent

the user’s access points to shared VO resources.

In the P2P schema here proposed, shown in fig.1.5, the concepts of cen-

tralized RB and UI are missing: the jobs arriving at each CE (peer) come

from remote sources (e.g. a single user or another CE looking for services or

resources not available in its own local environment) displaced over a wide

area. This type of organization gives each peer a flexible way to interact with

a great number of other peers: from the view point of a user (peer) that wants

to exploit a generic service, the P2P grid environment can be considered as a

services marketplace in which several providers offer the same services with

different features in terms of availability, reliability, performance, cost and

many other aspects related to non functional parameters of services.

In the proposed architecture, each CE holds an ad hoc QoS-aware services

manager [10], that:

14 Chapter 1. Introduction

1. represents the access point to the services supplied by WNs registered

on the peer;

2. handles (publishes and monitors) information about the set of services

provided by the underlying WNs;

3. manages services execution;

Each service is characterized by a set of parameters used for QoS manage-

ment. E.g. parameters like Operating System, processor type and computa-

tional power are typically associated with a job allocation service, while the

type of memory, its free space and bandwidth available for data transfer are

parameters associated with a distributed storage allocation service.

The services are classified according to QoS level [11] based on their features

and their prices.

1.3.4 Cloud over multicore systems

The Cloud Computing paradigm decouples the hardware infrastructure and

the virtual computing infrastructure, thus offering a grid of virtual computing,

network and storage resources to implement a virtual grid services network,

overcoming the limitation of present grids due to their rigid schema. For this

reason cloud computing is, today, the most significant and diffused example

of Services Oriented Architecture.

This is mainly due to the widespread adoption of virtualization technologies

that, ensuring the isolation among the VMs, allow Cloud to manage a huge

amount of software and hardware resources in a simple and extremely

flexible way.

However, if not properly managed, the virtualization can adversely affect the

1.3. Basic concepts 15

CE

WN

WN

WN

WN

CE

WNWN

CE

WN

WN

WN

WN

CE WNWNCE
WN

WN

WN

WN

CEWNWN

CE

WN

WN

WN

WNCE

WNWN

CE

WN

WN

WN

WN

internet

Figure 1.5: P2PGrid

16 Chapter 1. Introduction

underlying hardware performance: for instance, the current solution are not

able to exploit, by default, all the functionalities offered by the multicore

systems.

Moreover, these solutions do not guarantee the performance isolation among

virtual machines and this makes impossible the creation of any form of

QoS-guaranteed services management.

This requires the full control over the hardware resources: every QoS-aware

request done by an user, containing parameters as execution time, waiting

time, security and robustness, is translated into specific physical and logical

constraints about the number and the types of resources managed at low

layer.

For this reason I propose a Resources Management System (RMS) based

on ARM, the behavioral pattern investigated for the grid environments (see

1.3.1. RMS is designed to provide, through VM allocation and advanced

resource reservation, QoS-guaranteed services in a multicore-based cloud

system.

However this solution mitigates, but does not solve the actual issues about

the exploition of the multicore computing resources.

More recently, David Patterson [4] asserts that taking real advantage of

multi-core processors is limited by our inability to figure out how to make

dependable parallel software that works efficiently as the number of cores

increases. He concludes with a pessimistic note. Talking about dependable

parallel software, he says: Although Iḿ rooting for this outcome and many

colleagues and I are working hard to realize it I have to admit that this third

scenario is probably not the most likely one. He cites many casualties from

the past such as Ardent, Convex, Encore, Floating Point Systems, Inmos,

Kendall Square Research, MasPar, nCube, Sequent, Tandem, and Thinking

Machines as the most prominent names from a long list of long-gone parallel

1.3. Basic concepts 17

hopefuls. He also cites the list of languages designed to support parallel

processing and points out their inadequacy in making parallel programming

easy or straight forward.

While the evolution of current software architectures starting from the

operating system have evolved from a server centric architecture where

the CPU resource is scarce and is shared to perform multiple tasks, the

multi-core Processors promote a contra architecture where each CPU has

multiple threads and multiple CPUs can be networked to perform tasks in

parallel.

Todayś server-centric operating systems are more suited for operating on

the resources in a virtual computer in a virtual grid rather than managing

distributed resources that contribute to a virtual computer in the cloud. A

distributed OS that assures Fault, Configuration, Accounting (of utilization),

Performance and Security of a composition of distributed resources that

constitute a virtual server is required to dynamically provision service levels

such as the CPU, memory, bandwidth, storage capacity, IO and throughput

on demand.

According to these considerations, in the last chpater of my thesis, I will

revisit the design of distributed systems with a new non-von Neumann

computing model (called Distributed Intelligent Managed Element (DIME)

Network computing model) that integrates computational workflows with

a parallel implementation of management workflows and provide dynamic

real-time FCAPS management of distributed services to provide end-to-end

service transaction management.

18 Chapter 1. Introduction

1.4 Contributions

This thesis proposes several novel research contributions in the field of QoS

management, both in Grid and in P2P-Grid scenarios. In particular:

• The thesis proposes an innovative resource reservation pattern (called

ARM) able to manage both immediate and advanced reservation. This

reservation policy introduces two important new features. The first one

regards the ability to allow the agreement renegotiation: the user can

requests to modify the amount of time and resources at run time. The

second feature regards the the ability to use a resource-task association

instead of the classical resource-user one. The resource-user, adopted

e.g. in LSF and in PBS, consists of reserving one or more resources for

a user, where it can allocate a set of tasks. The use of this technique,

however, does not allow a differentiation among the user’s task: the

agreement is taken for the whole set of tasks, making too complex the

renegotiation mechanism for a single one. Instead, the choice to use

the resource-task association makes the reservation management very

flexible because it allows to discern the requirements and constraints of

each task from the others and gives the ability to modify selectively the

negotiated agreements.

• The thesis proposes also a gLite framework for the SLA Management

(called SLAM). It takes into account the issues related with the creation,

monitoring, modification, termination of SLAs in a grid environment,

traslating it in specific directives for the resource exploitations. It is

strictly related with ARM, beacuse the management of a service with

a specific QoS operated by SLAM requires a set of low level mecha-

nisms that allow the Computing Element to manage and monitor and

1.4. Contributions 19

guarantee the resources allocation with required QoS.

• The thesis proposes an unstructured distributed services discovery pro-

tocol able to search services under QoS constraints. The ability to

search services under QoS constraints is an important innovation in the

field of discovery algorithms for distributed systems. It represents a

fundamental value-added in a service market place scenario in that it

allows not only to identify different providers for the desired services

but also to discern among them the most suitable one to satisfy the user

requirements.

• The thesis proposes two different strategies to handle QoS assurance for

service composition both in grids and in P2P-Grid based services mar-

ketplace scenarios. In particular, both strategies face the issues related

to services management when unexpected faults occur at runtime. The

proposed strategies handle re-negotiation by finding other (better) ser-

vices performing a runtime adaptation with the aim of avoiding degra-

dation of the level of service that the user expects.

The renegotiation and the runtime adaptation have been made possible

by reaching the SLA, used to establish the agreement with each service

provider, with an additional section, the exception section, which de-

fines the penalties for the provider and the recovery activities that have

to be started if an agreement violation happens.

• The thesis proposes the translation of the ARM pattern (previously de-

fined for the grid environments) in the cloud environment, so as pro-

viding QoS-guaranteed services in a multicore-based cloud system,

through VMs allocation and advanced resource reservation.

• Finally the thesis proposes new computing model called the Distributed

20 Chapter 1. Introduction

Intelligent Managed Element (DIME) network computing model to

overcome the actual limitations of cloud/multicore environments. This

model allows the encapsulation of each computing engine (a universal

Turing Machine) into a self-managed computing element that collabo-

rates with a network of other such elements to execute a workflow im-

plemented as a set of tasks, arranged or organized in a directed acyclic

graph (DAG).

1.5 Organization

The rest of the thesis is organized as follows.

Chapter 2 describes the ARM behavioral pattern. It focuses on the man-

agement of advance reservation and allocation of computing resources in a

gLite-based grid environment.

Chapter 3 proposes a web services based framework for SLA in grids. The

chapter explains the components of the framework and the main algorithms

used to guarantee QoS-based service in a gLite middleware.

Chapter 4 discusses the design of a QoS-aware services discovery algorithm

in the above mentioned P2P-Grid scenario. The chapter explains the dis-

tributed search strategy, all the involved messages and gives an overview of

the algorithm performance.

Chapter 5 analyses the issues related to the QoS management for services

composition. It discusses the meaning of composed QoS, provides the con-

cept of exception management in SLA management and proposes two tech-

niques to handle quality assurance in grids and in P2P-Grid scenarios.

Chapter 6 proposes a Resources Management System (RMS) based on ARM,

to provide, through VM allocation and advanced resource reservation, QoS-

1.6. Acknowledgments 21

guaranteed services in a multicore-based cloud system.

Chapter 7 discusses DIME, a network computing model able to create dis-

tributed computing clouds and execute distributed managed workflows with

high degree of agility, availability, reliability, performance and security.

Finally, Chapter 8 presents the thesis’ conclusions.

1.6 Acknowledgments

This thesis represents the result of various works that I have done during the

three years of my Ph.D. courses. I would like to thank the people who have

contributed, in different way, to this thesis.

I would like to express my appreciation to my supervisor, Professor Antonella

Di Stefano, for her advice during my doctoral research. Her observations and

comments helped me to establish the overall direction of the research.

I am grateful to Rao Mikkilineni for his supervisions and for his help in my

work about Dime Technology.

I would like to thank my university colleagues, Giovanni Morana, Marilena

Bandieramonte and Gianluca Scuderi, for generously sharing their time and

knowledge in our cooperative work for making grid a s̈afer and more reliable

place.̈

Last, but not least, I would like to dedicate this thesis to my girlfriend

Benedetta for her love, patience, and, above all, her understanding: it’s very

hard to share many things with a PhD student that works on his thesis.

22 Chapter 1. Introduction

Chapter 2

Immediate and Advanced

Reservation

Currently, concepts as execution time, costs, services security and availability

are becoming more and more important; the ability of supplying services that

comply agreements related to QoS parameters [12] is now a basic requirement

for a provider who wants to show better than from the other in a competitive

scenario. This trend strongly influences also the grid middleware, that are

changing quickly to follow these new concepts of services provisioning, al-

though there are still many difficulties to face.

The strategy of executing all services requests with the same settings, with-

out any distinction (neither related to users nor to applications), typical of the

classical grids, is no longer able to provide sufficient guarantees on the en-

forcement of users requirements. Many Grid environments still operate only

on a best effort basis, sharing the resources among users little or too strictly

to distinguish the different needs of users.

In the emerging user centric service marketplace, the Grid middleware are

23

24 Chapter 2. Immediate and Advanced Reservation

Figure 2.1: Two levels for the SLA management

called upon manage complex service requests specifying QoS parameters

(like maximum execution or queue waiting time) able to influence how they

have to execute.

This new way of booking service at delivery requires a deep re-design of the

software components responsible for managing heterogeneus and changing in

time user requests in a scalable and flexible way.

My work poses exactly these goals: it focuses both on the modelling of a

QoS-aware job submission service in a Grid environment and on the proposal

of suitable protocols to manage different kinds of constraints on supplying

QoS guarantees.

To do this, I refer to the typical Grid architecture where a Resource Broker

(RB) (the service providers), forwards the user jobs to Computing Elements

(CEs), each responsible of managing all the resources of a cluster and allocat-

ing the job to theWorker Nodes (WNs) for running. Inside these architectures,

I identified two different SLA management levels (see fig. 2.1):

• an high level (on the Resource Broker) that receives and negotiates user

QoS-aware requests, translates them in constraint for the underlying

25

resources and creates related SLA;

• a low level, within CEs, that imply a scheduling policy to identify the

more suitable resources distribuition matching the user requirements

and accordingly reserves them to guarantee the agreements.

These two level are strictly related: the management of a service with a spe-

cific QoS at high level requires a set of low level mechanisms that allow the

CE to manage and monitor and guarantee the resources allocation with re-

quired QoS. The advance reservation, then, plays a crucial role in the pro-

visionning of service with guaranteed QoS parameters. In the absence of

mechanisms of advance reservation, in fact, the provider/RB can not provide

any guarantee on the service provision/exectution. Recognizing the centrality

of the reservation in the actual research about Grid middleware, here, a new

architectural pattern for the management of AR, called Advance Resource

Manager (ARM), is proposed. It guarantees the satisfaction of specific user

requirements of a set of jobs submission 1 on the resources collected in a a

gLite-based [13] grid environment. In other worlds, ARM is able to intercept

the single reservation requests from users and to translate them in appropriate

directives for the underlying Job Managemen Systems - JMS (responsible of

job allocation on the WNs), keeping the status of CE in an information repos-

itory and monitoring the positive completion of all operations involved in the

reservation.

ARM is able to provide reservation even if it does not foresee by the JMS 2.

At present, ARMis implemented within one of our research activities inside

the PI2S2 project [14]. It is integrated with the two technologies used within

the project PI2S2 to build the grid: the middleware gLite and the job manage-

1even only one job
2Notice that no hypothesis is made on the features supplied by the JMS

26 Chapter 2. Immediate and Advanced Reservation

ment system LSF. This choice does not affect the extendibility of the compo-

nent realized, because the design of the pattern is general enough to be easily

extended to other technologies(like Globus, Unicore, PBS, etc.).

In this chapter, I propose also a set of solutions to mitigate the drop of per-

fomances related to the introduction of AR in a grid environment. Tipically,

in fact, reserving a set of resources, decrementing resources availability, de-

creases the average utilization of a CE and increases the waiting times of

queued applications that require simple allocation (see 2.4 for more informa-

tion).

I tested the opportunity to use a modification of the classical backfill algo-

rithms [15] to improve the performance indexes of the CE and led simulations

to conferm their hypotesis.

2.1 Some notes on SLA and QoS

2.1.1 QoS profile, best effort and QoS-guaranteed jobs

A QoS profile defines a set of parameters and values characterizing the per-

formance expectations about service execution. It can be associated with a

service request and comprises a given set of QoS parameters. According to

many studies about QoS, in a Grid it’possibile to distinguish two types of QoS

attributes:

1. those based on the quantitative characteristics of the Grid infrastructure.

They refer to aspects such as network latency, CPU performance, or

storage capacity (e.g. for the networks, quantitative parameters are:

delay, delay jitter, throughput, packet-loss rate, etc.). It’s difficult to

measure these measures objectively.

2.1. Some notes on SLA and QoS 27

2. those based on the qualitative charactericstics. They refer to aspects

such as service reliability and user satisfaction.

We can distinguish best effort jobs, the jobs that require the simple execution

of a service without defining no QoS profiles; while, conversely, we define

QoS-guaranteed jobs the jobs that require a service with a specific QoS pro-

file.

In this contribution, we restrict our resource model to CPU resources and we

consider initially only services that exploit these typology of resources (tipi-

cally submission and allocation services).

In order to introduce diversification related to CPU performance, we introduce

different service level for mulitple classes of CPUs with respect to their per-

formances (in terms of GFlops/s). Each level is charaterized by a performance

ratio which express the performance bonus of using a CPU from a particular

level compared to a CPU from lowest level. Obviously, CPU belonging to the

same type but to a different level are substitutable.

Each consumer has a queue of CPU-bound computational jobs that need to be

executed and for which resources must be acquired form providers through

participation in the market. The dispatch of a job to the CPU is effected by

the ARM. Every job has a nominal running time, i.e. the time it takes to finish

the job on a reference CPU.

2.1.2 SLA

A Software Level Agreement (SLA) is a formal contract stated between a

client and a service provider, containing all the information about services

exploitation (as protocol adopted, messages exchanged, third-party entities

involved and penalties in case of agreement breach). Among these, great

importance have the list and the values of both functional and non functional

28 Chapter 2. Immediate and Advanced Reservation

(QoS) parameters negotiated between the two parties.

For a job submission service, the one considered in this chapter, an SLA can

contain several aspects related to the temporal deadlines (as maximum time

spent for job execution, maximum queue waiting time before job allocation

or maximum time needed to gather the job results); to the job dependability

(as replication, checkpointable jobs) or to the job security (results’ cryptog-

raphy).

As said in the introduction, the high level capability to provide (i.e. create,

monitor and maintain) SLA-based and QoS-aware services implies that

the provider is able to manage, at low level, its own resources in order to

guarantee the fulfilment of the requirements stated in the SLA. This means

that a services provider has to translate all the QoS parameters negotiated

with the consumer in specific constraints on underlying resources. So e.g. if

an user submits a job requiring a queue waiting time as short as possible, the

provider has to map its execution on the node having the lowest number of

jobs in its own execution queue. If, instead, an user submits a job requiring

a specific delivery time for a given execution time foreseen, the provider has

to forward the job toward a node able to satisfy this requirement reserving an

adequate free slot time. If the user requires that job has to be replicated in

two different nodes and that the results have to be encrypted, the provider has

to find two nodes which not only have to be free for the specified time range,

but also have to contain the needed software libraries for data encryption.

2.2. Current implementations of allocation and AR in the Job Management System 29

2.2 Current implementations of allocation and

AR in the Job Management System

In a classical cluster administration, the key components that face the issues

related with the schedulation, exploitation, and monitoring of the cluster’s

resources is called: Job Management System (JMS). It takes care on: i) the

resource matching allocation policy: for each job, the JMS has to find the

suitable resources able to satisfy the job constrains; ii) the job scheduling: for

the execution of each job, the JMS has to select one or more resources among

the suitable ones identified in the previous item; they are chosen according

to various optimization strategies (for example, avoiding the overloading or

the underutilization of some resources); iii) the job state monitoring: the JMS

has to continuously collects information about the jobs life-cycle in order to

supervise their correct and complete execution.

Obviously there are several implementations of JMS [16, 17], developed by

severl software companies. Howevee, all these implemantation are featured

by a common set of software components:

- User Server: this component represents the JMS user interface. It al-

lows users to submit their jobs and their related requirements (i.e. type

and quantity of needed resources), to the JMS. Moreover, it answers to

queries about jobs state and allow users to terminate or suspend their

own jobs.

- Job Scheduler: thid component distributes jobs among the available

suitable resources according to specific rules related to system and users

requirements.

- Resource Manager: this component tipically consists of two main

30 Chapter 2. Immediate and Advanced Reservation

components: Rosurce Monitor collecting information about the under-

lying resources; and Job Dispatcher allocating resources and starting

the jobs execution.

Usually, a basic JMS address only the allocation of the jobs on the available

resources, without supporting any advance reservation of resources; in order

to handle Advance Reservation, the architecture of JMS has to be enriched

with two new components, as shown in fig.2.2:

- AR Manager: handles the reservation life cycle: it (i) checks if a spe-

cific reservation is possible, (ii) provides an handler to access the reser-

vation info, (iii) monitors reservation state, (iv) allocates the needed

resources and (v) gathers the output of job execution.

- AR Mon: monitors the current reservations and collects information on

the resources still available for future reservations. Indeed, while an im-

mediate or just in time allocation requires to know only the present state

of the resources (i.e. a ”snapshot” of the cluster’s resources state), in

case of advanced reservation it has to be able to foresee how the future

state of resources will evolve, in order to determine where resources

can be reserved.

2.2.1 Advanced Reservation Manager Pattern

All the above considerations led me to propose the architectural pattern

”Advance Reservation Manager” (ARM), according to the well known

schema briefly described in [18]. This paragraph will explain the objectives,

the software components involved in ARM and their interactions.

2.2. Current implementations of allocation and AR in the Job Management System 31

Figure 2.2: JMS Architecture

32 Chapter 2. Immediate and Advanced Reservation

Pattern objectives

The objective of the proposed pattern is the provisioning of a robust, flexible

and easy-to-adapt mechanism to manage both immediate and advanced re-

sources reservations.

In particular, the pattern:

• provides a general support for different grid middlewares for resources

allocation and advanced reservation.

• enforces QoS resources management taking into account requirements,

constraints and, in general, all the parameters characterizing the reser-

vation requests;

• exploits the functionalities of underlying Job Manager System (in this

case the platform LSF/EGO) to perform respectively job submission,

job execution and resources state updating on behalf of the reservation

menager;

Pattern structure

The structure of the ARM pattern, shown in the Fig. 2.3 consists of five main

elements: ARMServer, Table, TableManager, ARMController and Job Allo-

cation Module (JAM).

• ARMServer is a event-driven proxy responsible for accepting the reser-

vation requests coming from external clients/users (or software agents

working on behalf of them), for parsing them and, finally, for forward-

ing valid requestes to the ARMController.

• ARMController is the reservations coordinator. It performs all the ac-

tivities related to the resource reservation: it looks for the availability

2.2. Current implementations of allocation and AR in the Job Management System 33

Figure 2.3: ARM architecture

34 Chapter 2. Immediate and Advanced Reservation

of the resources, manages the reservation lifecycle, monitors the status

of active reservations and finally coordinates the execution of best ef-

fort jobs in the slot times not reserved. ARMController also includes a

local fault recovery engine that, in case of errors, tries to restore, where

possible, the correct job execution.

• JAM (Job Allocation Manager) is the component responsable for allo-

cating jobs. It consists of three main threads that exploit the functional-

ities offered by the underlying JMS (see 6.3.4 for more information).

• The Planning Table represents the information source of the reservation

system. By means of it, ARM can obtain the information about the ac-

tual and future status of the resources held in a CE.

In ARM the information are organized in a double hashed table (the

reasons of this choice are expplainned in /refTime). The first hashtable

indexes all the resources by means of their identificative (primary key)

and the value of their QoS (secondary keys). Each item contains a sec-

ond hashtable that holds the information about the state of the specific

resource for the whole time horizon. This last uses the start time as pri-

mary key and the duration as secondary key.

The items in the second hashtable are clusterized in epoches (see 2.2.3

for more information). The information held in the double hashed table

are managed by two software components: a listener and a daemon.

The listener monitors every change on the resource. Once an status

changing has been revealed, the listener start a routine of updating of

the proper item in the hashtable. The daemon periodically refreshes the

items of hashtable. This means: i)updating the information on the state

of any resource on the basis of listener’s directives; ii) deleting all the

items held in the second hashtable that refers on the actual time; iii)

2.2. Current implementations of allocation and AR in the Job Management System 35

keeping track of all the unused resources, so as to assign them to the

best effort jobs; iv) for each resources, inspecting all the reservations

related to the first epoch, to search potential candidate for the backfill

(see section about backfill).

The Planning Table exposes their information through a proxy server,

the TableManager , by means the ARM can communicate with Planning

Table to require the addition, the removal, the modification of every ta-

ble entry.

The TableManager represents the only access point to the information

system.

Among these components, it is necessary to mention the local JMS: al-

though it does not directly belong to the pattern structure, this component is

very important for the pattern functioning because its provides the APIs for

managing the underlying resources.

All the jobs requestes are described using JDL (Job Description Language).

Basing on the nomenclature of the model described in 2.2, ARMServer is the

User Server, the TableManager is the AR Mon, JAM is the Resource Man-

ager, while the AR Manager and the Job Scheduler are part of the ARMCon-

troller.

Pattern functioning

The functioning of the ARM Pattern can be summarized as follows. Note that

the numbers into round brackets refer actions in sequence diagram shown in

Fig. 2.4.

ARMServer waits (act. 1) for reservation requests coming from external

clients. When a request is received, ARMServer checks (act. 2) the JDL file,

to verify whether reservation parameters are properly defined (e.g. if they be-

36 Chapter 2. Immediate and Advanced Reservation

Figure 2.4: ARM: sequence diagram

long to a correct range of values) and whether the user has the authorization

to request the specified type and the given amount of needed resources. If the

checks succeed, ARMServer forwards (act. 3) the request to ARMController

and sends (act. 4) a reply (used to notify the beginning of reservation process)

to the client.

ARMController checks (act. 5) whether there are suitable resources able to

satisfy the user request, asking for free time slots to the Table. This inter-

action is, however, mediated by the TableManager (act. 6) that is the only

component authorized to access the Table information. The TableManager

returns this information to the ARMController which, basing on the defined

reservation policies, will take the better decision (act. 9). If the reservation

can be performed, ARMController asks (act. 10) TableManager to save the

reservation (act. 11) request for the chosen resource. Instead, if it is not pos-

sible, it notify to ARMServer the inability to perform reservation. At the same

time, ARMController forwards (act. 8), through ARMServer (act. 7) the pro-

2.2. Current implementations of allocation and AR in the Job Management System 37

cess result to client that has done the request.

When the start time of an advance reservation is reached, ARMController

drives JAM to submits the job to the reserved resources. When the exe-

cution of jobs ends or the end time is reached, JAM warns ARMController.

If job ends before the estimated end time, the ARMController trough Table-

Manager, updates the Planning Table entries freeing the reserved resources.

If the end time is reached before the ending of job execution, the ARMCon-

troller has to decide whether (i) to extend reservation time (if possible), (ii) to

suspend job or (iii)to kill it. This decision depends on resources management

policies and on resources status.

The result of the whole reservation process is then notified to user, through

ARMServer.

2.2.2 Selecting Applications for Termination

This section describes the techniques used to perform reservations assuming

that running applications can be terminated and restarted at later time.

There are many alternatives to select which running applications that came

from a queue should be terminated to allow a reservation to be satisfied. As

described above, obviously, the application terminated must be chosen among

the ones that have required a simple allocation, because we assume that an

advance reservation gives the user the certain that its application will run on a

fixed set of resource for a given time interval.

ARM orders running application from queue in a list based on some cost. The

application are then terminated in increasing order of cost until enough nodes

are available for the reservation to be satisfied, according to this formula:

N(αTe+βTf)

38 Chapter 2. Immediate and Advanced Reservation

where: α and β are constants, N is the number of nodes being used by the

application, Te is the amount of time the application has executed, Tf is the

amount of time the ARM expects the application will continue to execute

(this data is taken from the duration d indicated by the user when submit the

request of allocation: d = Te+Tf).

α represents the weight related to the termination of an application that as

performed a large amount of work (that would be lost), while β represents

the weight related to the manteinance for an application that still has a large

amount of work to do.

It occurs vary the constants α and β to determine their optimal values. The

best values to use for these constraints vary by the scheduling algorithm and

on the basis of the parameter to optimize. If α is larger than β , indicates that

the amount of work done thus far is the most important factor to consider

when selecting applications to terminate. This choice takes care of the

uncertainty with which we can determine Tf , and focuses on the Te that, on

the opposite, can be exactly calculated. But if a resource is blocked by an

application that for any reason can continue own execution, a value of β

larger than α could avoid the waste, lead the ARM to select the application

blocked for the termination.

2.2.3 Pattern: features

In the last section, we have described the general architecture of ARM. To

implement it, we have take into account several implmentative choices.

We described these in the next paragraphes.

2.2. Current implementations of allocation and AR in the Job Management System 39

The ownership of a reservation

In the proposed approach, the owner of the reservation is the single job (or

group of jobs) rather then the user that submits the job, as it happens in the

currently, mostly adopted solutions [16, 17].

This choice makes the reservation management more flexible compared

to other solutions presently adopted: distinguishing the requirements and

constraints related to each submitted job offers the opportunity to selectively

modify the negotiated agreements with a finer grane (single job instead of

overall user submission).

The most common alternative of associating the reservation with the user

using a single SLA on his set of jobs implies that each modify on such SLA

influences not only the running job involved in the user SLA, but the whole

set of jobs belonging to the user.

Moreover, to enhance resources exploitation, the resources are released once

the job is completed even when the reservation time is not elapsed. This does

not happen when the reservation is associated with an user rather than with

a job, indeed, in this case the user maintains the resource ownership even if

its tasks are completed. This policy could imply a low resources utilization

and, consequently, a worsening of the whole system performance. Instead,

releasing the resource when the job execution is finished, makes possible to

make get resource soon available for another reservation without waste of

time.

Alteration of a reservation

Another foundamental feature of the proposed solution is the ability to

modify an active reservation, i.e a mapping jobs-resources already in use,

40 Chapter 2. Immediate and Advanced Reservation

supporting the renegotiation of previously established SLA: an user can

modify same parameters of an established agreement only if the underlying

JMS is able to modify the parameters of the reservation related with the SLA

at any time.

The management of the knowledge of reservation

As described in sect. 2.2, the management of advance reservation requires

the knowledge about the future usage of resources, making more complex the

information schema used by CE.

The CE provider has to map the avalilability of resource on a time axis and

then it has to estabilish how represent it and how manage the information on

the future state of the CE. These imply some design solutions.

First of all, it has to be considered an observation time window, here defined

time horizont, wherein a reservation can be made: a time horizon very large

allows providers to accept advance reservation for a resource well in advance,

but considerably increases both the seeking time and the dimension of the

information source, the software component that tracks these information

(tipically is a table); vice versa a small time horizon reduces the dimensions

of information source and seeking time, but also reduces the chances to

accept a reservation.

A simple example of ”time horizont” implementation is given by a bitmap,

where every bit represents the state of a resource in a specific time unit. The

extension of time horizon strongly affects the sizing of bitmap. For each

resource, the bitmap has to use an array of bits(one for each time unit taken

in consideration). The size of this array of bits depend on the extension of the

time horizon. If the time horizon grows, also the array of bits grows.

2.2. Current implementations of allocation and AR in the Job Management System 41

Guarateeing a very large time horizon means to use an high number of bit to

represents the state of each single resource.

Notice that, adopting the bitmap, the dimension of the time horizon must be

finite.

Besides, continuing to consider the example of bitmap, there is another

parameter that affects the sizing of the bitmap: the extension of time slot that

can be associated to a resource, i.e. the time grain.

A fine grain allows user to reserve a resource exactly for the time he needs,

but increases the dimension of bitmap. Conversely a course grain reduces the

space consumption, but increases the probability to waste resources (the user

must reserve an amount of resources even if he doesn’t use it in full.

In our pattern we try to face these issues adopting an approach based on a

doubly hashed table.

First indexing derives from an hashing on the identifiers (primary key), and

the QoS parameters (secondary key).

The second index on the same mapset derives from hashing the start time of

the reservations that involve the resource (primary key) and the durations of

such reservations slot (secondary key).

Each item of this hashtable contains information on both the actual and the

future state of any single resource.

Using this representation we can consider an infinite time horizon: the size

of hashtable depends only on the number of reservations active on CE. Our

information source, in fact, has not one item for every time slot considered,

as in the case of bitmap, but, on the contrary, it has one item for every

reservation active. It is indipendent from both the extension of the time

horizon and time grain.

This feature allows our pattern to accept reservation requests for any future

slot time.

42 Chapter 2. Immediate and Advanced Reservation

On the other hands, this feature introduces a strong dependence between the

performances of the information source here taken in consideration and the

amount of reservations for a resources. An high number of reservations on a

specific resource increments the seeking time for the information related to

that resource.

To face this issue, we have clusterized the information held in each item in

epoches.

Each epoch refers on a fixed time interval and contains all the reservations

whose start time fall in that time interval.

If a user needs information about the future state of a resource, it must not

inspect the whole item related to that resource, but only the epoch containing

the start time required, reducing significantly the seeking time.

Overtime issues

If the execution time of running service exceeds its reserved time, it would

affect the normal execution of admitted but not yet started services or subser-

vices.

It’s impossible avoiding this situation because the end time of advance reser-

vation is calculated by estimate, even using the approaches that use historical

information to predict the run times of parallel application [?]. So, it cannot

be avoided de facto that the real time (Tr) is shorter or longer than estimated

time (Te). We consider separately the two cases:

1. Tr < Te: in this case, we waste the resource (then this leads to lower

ratio of resource utilization), because the resource reserved in advance

will result unused for the remaining time Tm (Tm = Tr− Te). In order

to avoid this, ARMController monitors all the reserved resources; if one

2.2. Current implementations of allocation and AR in the Job Management System 43

of those resources is unused (because the service either terminated its

execution or because of faults) ARMController leads JAM to release

that resurce and update opportunely the TableManager for allowing the

reception of new jobs. This is possible because the reservation refers to

that job and, once the jobs ends, the resources associated with it can be

release.

2. Tr > Te: in this case we will have a series of downstream services ab-

normal behaviour, a fault chain, like dominos. A solution would be to

stop or migrate the active service to ensure the other services executed

at the required time. Unfortunately, restarting or migrating need addi-

tional features not available in the LSF EGO: as a consequence, it is not

possible doing ”checkpoints” in a service. Then the action performed

when the Te exceeds the reserved quantum is the following: once the

end time for a reservation expires, ARMController checks if the service

still runs. If so, it estimates the pending requests of reservation and the

availability of resource. There are two possibility:

• if the availability exceeds the requests, ARMController leaves that

the service continues its execution;

• on the contrary, ARMController drives JAM to stop the execution

of the reservation, giving the resource to the another service on

the base of the scheduling policy. The referred service is tagged

as allocation and is restarted when the resource becomes again

available to accept an allocation.

In both cases a penalty is charged to the user that own the reservation.

44 Chapter 2. Immediate and Advanced Reservation

2.3 Tecnhologies exploited

2.3.1 Considerations about JAM and LSF

As said before, the JMS chosen for this work is the Platform LSF.

Although this JMS is a widely consolidated product in the grid environment,

it lacks of mechanisms and tools to manage the advance reservation profile.

In order to overcome these limitations, the JAM (Job Allocation Manager)

is able to interact directly with the LSF to obtain the AR profile described

above.

JAM uses the Platform EGO to i) have a uniform vision of the resources

available in the considered CE and ii) to submit a job maintaining the infor-

mation about it’s state.

JAM , as said before, is driven by the ARMController , the core of the whole

ARM.

JAM is not able to distinguish between an allocation request and an advance

reservation request in that it considers the allocation a border line reservation

with start time set up on the current time.

The different management of both typologies of requests is demanded to the

ARMController.

When the ARMController forwards the allocation requests to the JAM , the

requests are queued in the specific resource queue.

The JAM is responsible for getting the allocation request from the resource

queue and making an allocation request to Platform EGO.

The Cluster Kernel processes the requests and sends a reply to the JAM .

These replies are held in the work queue. A thread of the JAM is responsible

for getting the allocation reply from the work queue, adding the resource to

the resource collection structure, and starting a container on the allocated host

2.3. Tecnhologies exploited 45

slot.

This thread cycles through the queue until containers have been started on all

allocated host slots.

JAM is also responsible to take the information about the status of the re-

sources, properly querying to the underlying information system provided by

Platform EGO Cluster Kernel.

2.3.2 gLite overview

gLite combines and refines some components developed in previous related

projects (Condor [19], Globus [20], LCG [21], and VDT [22]). This middle-

ware provides the user with a set of high level services (i) for scheduling and

running computational jobs, (ii) for accessing and moving data, and (iii) for

gathering information about the Grid infrastructure and the Grid applications.

According to architecture standardization given by OGSA [23], gLite adopts

the Web Services technologies and the Service Oriented Architecture in or-

der to facilitate interoperability among the different components and to allow

easier compliance with upcoming standards in this field.

For the proposal of this chapter, I will take into account the component that

handles the jobs allocation issues in gLite: the Workload Manager Service

(WMS).

The WMS accepts jobs coming from grid users and provides a set of tools

(that will be referred to as WMS-UI from now on) by means of which users

can exploit all the functionalities made available by the WMS itself. The

architecture here proposed adds a new crucial feature to WMS: the opportu-

nity to make an advance reservation for a resource, even if it could be easily

integrated with other grid middlewares.

46 Chapter 2. Immediate and Advanced Reservation

2.4 Reducing the impact of Advance Reserva-

tion: the proposed algorithm

The introduction of the reservation affects the performances of the resource

scheduling.

An entity (user or job) requiring best effort services can not use the resources

assigned to another entity B in the entire time interval they are reserved, even

if B should finish its execution before the declared end time, beacuse, in ac-

cording to the reservation’ rules, the resources remain to the job B. Since sta-

tistically a job performing a reservation does not use the assigned resources

for all the duration that has required, this rigid assignment could create a set

of holes that imply an underutilization of the CE.

As previous said, in our model, the jobs are grouped in: best effort jobs (low

priority) and guaranteed jobs (high priority). Each guaranteeed job has asso-

ciated a reservation for a set of resources. The presence of guaranteed jobs

in the schedulation queue, increments the queuetime for the remaining best

effort jobs, because these last have a lower level of pririority.

These side effects can be reduced using suitable algorithms to handle the job

schedulation, e.g. backfill.

2.4.1 Backfill

The duration of each reservation is calculated on the basis of a job profiling,

and often it is overestimated to avoid that a reservation expires before a job

completes its execution.

This means that a high percentage of guaranted jobs complete their activities

before their reservation expire. This implies that resources assigned to a job

are unused for all the time elapsing from the jobs completation time to the

2.4. Reducing the impact of Advance Reservation: the proposed algorithm 47

end of reservation.

We refer to the WNs that are still reserved but have not a job that running on

them, idle WN.

In 2.2.3, we have described the proposed model of advance reservation,

explaining that in this approach the owner of the reservation is a single job

(or group of jobs) rather then the user that has submitted it. This implies that

once a job completes its execution, it releases all reserved resources (idle

WNs) that can be used by other best effort jobs.

ARM uses backfill algorithm to reassign the idle WNs and to improve the

performances of CE.

Generally, the Backfill [15] is an optimization strategy that allows to improve

the exploitation of the resources available on a cluster of workstation execut-

ing jobs out of order.

This strategy assigns a priority value to each job, according to a predefined

policy, and then re-orders the jobs into a highest priority first sorted list.

In this case, backfill operates basing on the job reservations information

(start time and duration).

ARM knows: i) the idle WNs; ii) number and duration of the jobs that could

start on those idle WNs, and which resources it will need at that time.

Basing on this information ARM determines what WNs are idle and how long

they will remain idle till their next reservation. The association between a set

of WNs and their idle times is defined as backfill window.

Once determined the backfill windows, ARM inspects the scheduling queue

to determine which best effort jobs can be started within this backfill

windows. This job is executed out of order, but this is possible because they

do not delay the reserved job. By this way ARM improves the exploitation of

resources, without affecting the privileges of guaranteed jobs.

48 Chapter 2. Immediate and Advanced Reservation

Figure 2.5: Backfill Windows

2.4.2 How our modified Backfill works

Fig. 2.5 shows a simple use case regarding two running jobs and a reservation

for a third job.

The present time is represented by the leftmost end of the box with the

future moving to the right. The gray rectangle represent currently idle nodes

which are eligible for backfill, i.e. the nodes where a resource is not already

interessed by a reservation. To determine backfill windows, ARM analyzes

the idle WNs essentially looking for largest node-time rectangles. In the case

represented in figure, it determines that there are two backfill windows. The

first window contains only one WN and has no time limit because this WN

is not blocked by any reservation. The second window, Window 2, consists

of 3 WNs which are available for two hours because some of the WNs are

blocked by a reservation. These backfill windows partially overlap yielding

larger windows and thus increasing backfill scheduling opportunities.

It is important to note that the choice of the number and the size of backfill

windows strongly affect the performance of the cluster. As shown in the

figure, the backfill windows that range mainly on the X axis (window 1)

privilege jobs that need a restricted set of resource, but for a long period of

2.4. Reducing the impact of Advance Reservation: the proposed algorithm 49

Figure 2.6: Comparation between long and short backfill windows: queuetime

Figure 2.7: Comparation between long and short backfill windows: utilization of
WNs

50 Chapter 2. Immediate and Advanced Reservation

time; while, on the contrary, the backfill windows that range mainly on the Y

axis (window 2 and 3) privilege jobs that required many resources for short

period of time.

ARM selects the policy to adopt on the basis of an analisys of the allocation

queue. It monitors this queue periodically. If there are many short jobs

that are waiting for the allocation, it adopts short backfill windows (many

resources for short time interval), while if there are many long jobs that are

waiting for the allocation, it adopts long backfill windows (a restricted set of

resources for long time interval).

Once the backfill windows have been determined, ARM begins to traverse

them.

By default, these windows are traversed widest window first but this can be

configured to allow a longest window first approach to be employed.

As each backfill window is evaluated we assigns it to a best effort job,

extracting it from the schedulation queue.

The selection of job to start in the backfill window is operated on the basis of

a predefined algorithm.

In our evalutations, we have considered three algorithms: first fit (selects the

first job able to fill the backfill window), shortest job fit (selects the shortest

job able to fill the backfill window), biggest job fit (selects the big job to fill

the backfill job).

The choice of one of these algorithms and the choice of one of the policies

previously described (for the determination of the size of backfill windows)

represent the two main variables of the backfill proposed in this chapter.

Once the ARM selected a pair algorithm-policy (e.g best fit - short backfill

windows), it is able to extract opportunely a best effort job from the allocation

queue and run it ahead of the job that is waiting at the top of the queue.

2.5. Evaluation results 51

2.5 Evaluation results

In order to better understand how the reservation affects the performance of

the job scheduling, I tested the behaviour of ARM on a CE handling a cluster

of 200 WNs.

Two different parameters have been considered for these simulations. The

first and most important parameters gives a measure of resources utilization

and it is expressed as the ratio between the number (average) of the resources

actually exploited and the ones available. The second, instead, takes into

account the average time spent in queue by each submitted job (average

queue waiting time). It is useful because gives indications about the influence

of reservation on the management of BF jobs. The simulation evaluates

several scheduling algorithms, chosen among the ones commonly used in the

considered scenario.

2.5.1 Some notes on the simulation approach

Our software is an event-driven discrete simulator that evolves through a suc-

cession of epochs.

Each epoch, that represents the ”unit of time” chosen for simulation, lasts 10

minutes.

For each epoch, a set of jobs is submitted to the system: the number of jobs,

as well as their duration, type (i.e. reservation or best effort) and the needed

number of CPU for their execution are chosen following the considerations

done below:

1. jobs’ number: the number of submitted jobs depends from the number

of resources available on the CE. In particular, fixed the maximum value

52 Chapter 2. Immediate and Advanced Reservation

of this number equals to the 1% of the available resources (from here

nresCE), the number of jobs introduced in the considered CE is chosen

statistically (uniform distribution) within the range [1, 1
100 ∗nresCE].

2. jobs’ duration: each submitted job has an own duration. This duration

is related to the a priori established simulation time (i.e. number of

chosen epoch, from here nEP). Fixed the number of epochs (nEP),

the duration for each job is chosen statistically (uniform distribution)

within the range [1, 1
100 ∗nEP].

3. jobs’ type: the scheduler foresees two different type of jobs, ”reserved”

and ”best effort” respectively. A request for a reserved job is submitted

in the CE only if there are the needed quantity of available resources

and time ranges to be executed: the scheduler does not influence this

kind of jobs because their time and order execution are fixed ”a priori”

by the ARM thought an advanced resources reservation. A best effort

request, instead, is submitted in the CE without any guarantees: it is

executed under the guidelines established by the scheduling policy. In

our simulations, the number of submitted jobs for each epoch is equally

parted between the two different typologies (50% reserved, 50% best

effort).

4. number of needed CPUs: each job needs a given number of CPUs to

run. This number is chosen statistically for each job within the range

[1, 25100 ∗nCE] (uniform distribution).

2.5.2 Simulations

The evaluations here proposed relate on the impact of advance reservation

strategy adopted on the performances of the scheduling algorithms adopted

2.5. Evaluation results 53

in a CE. For the simulation an ad hoc software has bee used: it was a bind

chosen because several aspects needed for our proposal are not foreseen in

the common used grid/cluster simulators.

They will be measured both the resources utilization and the jobs queue wait-

ing time.

The strategy that have been compared to the Best Effort (from here called

B̈E)̈ are: the typical standing alone FIFO scheduling; it’s arrangement with

the resources reservation (from here called ARFifo) and the effect of three

different versions of Backfill techniques to order and execute the jobs out of

order: f̈irst fitp̈olicy(from here called ARBFff), the “shortest job first” policy

(from here called ARBFsf) and the b̈iggest job firstp̈olicy (from here called

ARBFbf). To refer to a concrete GRID scenario, I take into account the real

workload observed in the gLite Grid handled by the consortium COMETA

Grid infrastructure 3 within the project PI2S2.

The results of led simulations are summarized in the figures 2.8 and 2.9.

The figures show the differences among the compared scheduling policies, re-

spectively, on resources exploitation capability (fig. 2.8) and on average time

spend by jobs in waiting for execution (fig. 2.9). Obviously BE has got ever

the best performance, as expected, while the simple FIFO algorithm (without

reservation support) has the worst result in both cases. Among the algorithms

that use AR, as can be observed, the ARBFbf has got the best performance

with regard to the resources utilization, while the ARBFff has got the best per-

formance with regard to the queue waiting time. These last results coincide

with the expectations: the choice of the biggest job to fill the hole, i.e the time

range not covered by the reservation requests, increases the average utiliza-

tion of the entire CE, but contemporaneously increases time spends in queue

3www.consorzio-cometa.it

54 Chapter 2. Immediate and Advanced Reservation

Figure 2.8: Comparison of all algorithms, parameter: average utlization rata

Figure 2.9: Comparison of all algorithms, parameter: queuetime

2.5. Evaluation results 55

Figure 2.10: Second step of simulations

56 Chapter 2. Immediate and Advanced Reservation

by the remaining jobs. On the other hand, the choice of the f̈irst fitp̈olicy

results less advantageous with regard to the average utilization rate, but has

good performance in term of queuetime, because a greater number of job is

dispatched in the same time range.

Focusing on ARBFff (AR with backfill using the biggest job first for the al-

locations) that shows best performances in terms of average resources utiliza-

tion and jobs queue waiting time, as previously discussed, it is interesting to

analyze its behaviour depending on three factors:

1. Number of submitted jobs. Fig. 2.10.a shows the behaviour of the

ARBFff strategy when the number of jobs, submitted in an epoch,

changes. In particular, the simulation have been done submitting,

for each epoch, a maximum number of jobs equals respectively

to 2(1% of total available resources), to 10(5%), to 20(10%), to

30(15%) and 40(20%), respectively.

The fig. 2.10.a shows that the increment of the job rate implies the

increment of the average resource utilization (till to saturate), while

the queuetime worsens. This behavior was foreseeable in that a greater

number of jobs permits a better exploitation of the resource in the CE;

on the otjer hand, this means also that the resources are busy for a wide

range of time, increasing of the queuetime.

2. Jobs duration. Fig. 2.10.b shows the performance of the ARBFff strat-

egy on changing the jobs duration (in epoch). The simulation is led

submitting, for each epoch, jobs having, respectively, a maximum

duration equals to 5(1% of total available resources), to 25(5%), to

50(10%), to 75(15%) and 100 (20%) epochs(on capisco).

The results show that the performance of the ARBFff, both in terms

2.6. Related works 57

of resources exploitation and in terms of reduction of average queue

waiting time, are better when the duration of the jobs grows up. In par-

ticular, the fig.2.10.b shows that the average resources utilization ranges

widely while the queue waiting time remains, substantially, the same.

3. Percentage of Advance Reservation. Fig. 2.10.c shows the variations

of the parameters taken into account when the ratio between the

number of BF and of AR requests changes. A percentage of 33%

of AR means that, for each burst of input, the 33% of total requests

are advance reservation requests. The fig. 2.10.c shows that as the

frequency of AR increases, the utilization of the CE decreases and

the queuetime increases. This trend can be easily explained: an high

percentage of advance reservation requests creates a great number of

”holes”, increasing the probability of wasting resources. A similar

discussion can be done for queuetime: the greater the number of

reserved resources, the lesser the probability of dispatching BF jobs.

The results of led simulations have demonstrated that, although the in-

troduction of advance reservation reduces the utilization of the resources be-

longing to the CE, the adoption of an effective backfill strategy is useful to

mitigate this performance reduction. In particular, the use of the ”biggest

jobs” strategy gives results very close to the best effort case.

2.6 Related works

Since the first implementation of Grid architecture, the advance reservation

was an open question and many studies have investigate it.

58 Chapter 2. Immediate and Advanced Reservation

The Grid Resource Agreement and Allocation Protocol (GRAAP) Working

Group (WG) has produced a state of art document which explores proper-

ties, attributes, roles, mechanisms about resource reservation in grid envi-

ronments [24]. We envision that our reservation, employed in the proposed

system, can be used to support the reservation properties outlined by the

GRAAP-WG.

The General-purpose Architecture for Reservation and Allocation (GARA),

storically, was the most commonly known framework proposed for supporting

Advance Reservation in the context of computational grids. It takes care the

issue to provide advance reservation with uniform treatment of various types

of resources, such as network, computation, and storage. Although GARA

has gained great popularity in the Grid community, it has strong limitations

in copying with current application requirements and technologies: i) GARA

is not OGSA-compliant, and therefore all the current grid application, that

often are OGSA-enabled applications, cannot directly make use of GARA;

ii) GARA does not support the concept of agreement, therefore it does not

support agreement protocol and SLA; iii) GARA, finally, does not support

QoS monitoring and QoS run-time adaptation, key mechanisms to provide

QoS-guaranteed services [25]. Contra, ARM is OGSA-compliant, is explic-

itly thinked to support SLA negotiation and can be easily extended whith

adaptive functions.

Many studies and tests have been conducted on advance reservation-based

Grid scheduling technologies. Most of them focused on the benefits for Grid

jobs profiting from advance reservations. Some fo them have been devoted

to evaluate the impact from advance reservations for Grid jobs on the perfor-

mances of CE [26–29], taking care of the problem of fragmentation generated

in the computing environments due to these reservations. [30] investigates

the influence of AR from the Grid on local parallel scedulers, using discrete

2.6. Related works 59

event simulations with real trace from the parallel workload archive.The per-

formance are increased by means of two backfill algorithms: conservative

and aggressive(also called: EASY). In the simulation section of this chapter I

give some considerations about the choice of job that must be backfilled (the

biggest in the queue or the shortest or the first).

[31] discusses the design and the prototype implementation of a QoS system

(QoS Grid Services - QGS), that presents some analogies with the one pro-

posed in this chapter: the provision of advance reservation to enable Grid

applications to become QoS compliant, the care on the computational param-

eters of QoS, and the management of the allocation at CE tier. Differently

from our implementation, QGS is mainly oriented toward the issues related

with the management of QoS and related SLA, instead of those related with

AR. Our work results more complete, especially regards on the management

policies of the relationships between AR and allocation. Moreover, ARM,

thanks its design, could easily be integrated in the QGS, with the role of CE

handler.

[32] examines the requirements on a grid’s infrastructure to support SLAs

and focuses on a dynamic offload infrastructure to match a set of SLA re-

quirements under variation of workload conditions. It assumes that a pool

of servers and bandwidth exists from which the commercial grid can draw

resources under high-load conditions and to which it returns resources when

the load decreases. This approach results too binded to both the dimension of

this pool and its acessibility. There are not real guarantees on the availability

of the resource necessary to a job. In ARM, on the contrary, through AR, this

guarantee exists and, thank to it, it’s possible to draw SLA with specific QoS

requirement.

More researchers have become interested on how to improve system utilisa-

tion by including flexibility factors in advance reservation. Chen and Lee [33]

60 Chapter 2. Immediate and Advanced Reservation

propose a flexible reservation model based on flexible intervals for the param-

eter: start time of the advance reservations. Kaushik et al. [34] use the term

”flexible time intervals” to define the flexible intervals for advance reserva-

tions. They investigate the relation between the interval size and the request

waiting time, assuming that the request inter-arrival time follows the Pareto

distribution. Both [33] and [34] does not consider requests for multiple re-

sources.

[35] proposes a flexible advance reservation model where start and end time,

duration and numbero of requested CPUs are flexible. All these last ap-

proaches can be compared with our work. The flexible advance reservations

conceptually are equals to our allocation, since they are advance reservations

without no hypotesis on the start time and end time, but with a duration spec-

ificated in the request stage. The approaches differs for: the target of the

optimization critera (cost, average load, completion time) and for the algo-

rithms used for this optimizations. Our work considers both the typologies

of AR: strict reservations (with defined start time/end time) and flexible (only

duration defined).

In [36] the authors propose an algorithm for a negotiation based scheduler

(called NARPS) that dinamically analyses and assesses the incoming jobs in

terms of priorities and requirements, reserving them to resources. NARPS

reacts to the dynamic behaviour of a large number of users with different re-

quirements seeking computational services, like the work presented in this

chapter. The reservation of NARPS, however, are priorized jobs. It does not

provide any guarantee on their start time/end time and this strongly reduces

the attractives of this solution in a Market-based scenario.

Castillo et al. [37] use concept of computational geometry to handle resoruce

fragmentation caused by the introduction of advance reservations. they also

develop a set of implementations for scheduling algorithms that have a good

2.7. Conclusions 61

scalability degree. In their studey they consider only jobs with strict time

intervals and only jobs requiring a single resource.

2.7 Conclusions

In this chapter two crucial aspects for the present development of Grid en-

vironments are considered: the SLAs and the resources reservations. The

resource reservation has been considered as a strategy to guarantee that jobs

have what they need at the proper time, while the SLA has been studied as

a list of all the parameters characterizing a service, both functional and QoS

related, and the rules and conditions for the proper use of the service.

This chapter focused on the SLAmanagement in gLite middleware, analyzing

a first set of features that are related with the issues of (i) QoS provision and

monitoring and (ii) creation, monitoring, negotiation and run time adaption of

the SLA.

It also discuses the issues related to job allocation and scheduling and advance

reservation of the resources.

The results of this investigation have brought about the implementation of

a prototype of an approach created in the context of the gLite middleware,

called SLAM (described in the next chapter). Every component of SLAM has

been described, also facing the issues of interacting with the gLite middleware

and the JMS LSF Platform EGO.

The findings of this study have a number of important implications for future

practices.

As described above, the execution of each service is monitored continuously

to detect whether some QoS parameter achieve a value that violates the agree-

ments and, if so, to attempt when possible, strategies for run time adaption.

62 Chapter 2. Immediate and Advanced Reservation

Chapter 3

Service Level Agreement

Management according to specific

QoS requestes

Providing and guaranteeing quality of service (QoS) of shared resources in

a Grid environment is a crucial challenges to obtain a flexible and dynamic

services management. This represents a basic feature to guide Grids towards

the concept of trading services, wherein providers and consumers of services

and their relationship are clearly defined.

This chapter focuses on modelling QoS in a gLite platform [38] and designing

suitable protocols to manage different kinds of constraints for supplying QoS

guarantees.

It will be taken into account the issues related with the creation, monitoring,

modification, termination of SLAs in a grid environment. Since the definition

of SLAs strongly affects the profile of reservation that each grid has to

provide, the chapter also deals with the issues related to advance reservation

63

64 Chapter 3. Service Level Agreement Management according to specific QoS requestes

Figure 3.1: SLAM

and allocation, facing the issues related to the advance reservation of a

resource, defining the role of the Job Management System, describing the

implementation pattern of advance reservation that can follow the choices

made in development are taken into account of the planned SLA provision.

3.1 SLA Management

The introduction of the QoS levels [11] in the requests for generic resources

allows users to better characterize their needs.

Using the non-functional parameters, in fact, the users can formulate fine-

3.1. SLA Management 65

grained requests, requiring specific function or imposing some executing con-

straints. On the other hand, the provisioning of services considering the QoS

parameters forces the providers to adopt more accurate and complex manage-

ment policies, to have a continuous and complete control of their resources

(i.e. resource monitoring) and to improve system reliability and fault toler-

ance. For a service provider, the QoS management means:

1. collecting and parsing the user requests in order to translate their QoS

requirements in term of specific resources (i.e. quantity and type)

2. discovering, among the available ones, the resources that are able to

satisfy the user requests.

3. choosing, among the suitable resources, the best ones according to the

scheduling policy adopted.

4. reserving the specific resources (i.e. to guarantee that one or more re-

sources belong only to a user for a specific range of time)

5. monitoring the service execution to check the QoS requirements fulfil-

ment.

Although some solution have been investigated [39], the present implementa-

tions of Grid middlewares do not allow the users to specify QoS parameters in

their requests; the permissions and the limitations of a generic Virtual Organi-

zation user are established thought an ”a priori” agreement between the grid

and the VOmanagers. In order to overcome these limits, this thesis proposes a

web services based framework, SLAM (Services Level Agreement Manager),

able to create an advanced support for QoS provisioning in the grid. SLAM

has been developed and tested on gLite middleware but it can be used on top

66 Chapter 3. Service Level Agreement Management according to specific QoS requestes

of different grid middlewares. In the following, an overview of gLite will be

given and then the framework infrastructure will be shown.

gLite

The middlewares are the software infrastructures used by grids in order to in-

tegrate services and resources provided by different vendors and/or belonging

to different organisations. The middleware used in the EGEE project [40], the

one considered in this thesis, is gLite [38], a middleware stack that combines

and refines some components developed in previous related projects (Con-

dor [41], Globus [42], LCG [43], and VDT [44]). This middleware provides

the user with a set of high level services (i) for scheduling and running com-

putational jobs, (ii) for accessing and moving data, and (iii) for gathering in-

formation about the Grid infrastructure and the Grid applications. According

to architecture standardization given by OGSA [45], gLite adopts the Services

technologies and the Service Oriented Architecture, in order to facilitate in-

teroperability among the different components and to allow easier compliance

with upcoming standards in this field.

For the proposal of this thesis, two components of gLite will be taken into

account: the Relational Grid Monitoring Architecture (R-GMA [46]) and the

Workolad Manager Service (WMS [40]).

R-GMA is an implementation of the Grid Monitoring Architecture (GMA)

proposed by the Global Grid Forum (GGF), that provides a service for in-

formation, monitoring and logging in a grid environment. This component

abstracts the complexity related to the resources information management,

virtualizing and collecting them in one large Relational Database that may be

queried directly by the users via web services. The main feature of this archi-

tecture is the ability to provide a useful and predictable information system

3.1. SLA Management 67

built on the data provided by losser-coupled providers across the grid environ-

ment. The R-GMA architecture consists of three components: i) Producers

which publish information into R-GMA, Consumers which obtain the infor-

mation by subscribing to the interested services and Registry which mediates

the communication between the Producers and the Consumers offering them

a common interface.

The Workload Manager Service (WMS) is the component that handles the

jobs allocation issues. It works on i) accepting requests for job submission

and management coming from its clients and ii) taking the appropriate ac-

tions to satisfy them. The specific kind of tasks that request computation are

usually referred to as jobs and are described using the Job Description Lan-

guage (JDL). The WMS provides a set of client tools (that will be referred

to as WMS-UI from now on) allowing the user to access the main services

(job management services) made available by the WMS itself. The main fun-

cionalities of the WMS include:

1. job submission for execution on a remote CE

2. automatic resource discovery and selection of the CE

3. listing of suitable resources to run a specific job according to the user

requirements

4. monitoring of the job state for all its lifecycle

5. cancellation of one or more submitted jobs

6. handling i) the stage-in and stage-out files and ii) bookeeping and log-

ging information

Interacting with the R-GMA and the WMS services, the gLite user can fully

manage its jobs submitted to the grid.

68 Chapter 3. Service Level Agreement Management according to specific QoS requestes

3.1.1 The gLite framework for the SLA Management

SLAM provides to the user an unique interface (i) to request one or more re-

sources specifying the needed QoS parameters, (ii) to negotiate the value of

each QoS parameter, (iii) to establish an SLA that collects all the informa-

tion related to the agreement and to (iv) monitor the requests life-cycle. The

framework consists of four main components:

1. RequestInterpreter

2. SLAManager

3. ResourceDiscover

4. ResourceBooker

The RequestInterpreter receives from the user all the information related

to the jobs submission. These include the input parameters (and related

datasets), the libraries required for the execution and, different from the

present implementation, the list of QoS requirements. The aim of the Re-

questInterpreter is to translate these requests into the amount of required re-

sources(both in physical and temporal terms) needed.

These results are then given to the SLAManager that probes, through the Re-

sourceDiscover , the information service (MDS, RGMA) to obtain the list of

the resources which are able to execute the job following the user’s demands.

All the available resources discovered are passed to the ResourceChoser , that

selects the resources to be allocated: this decision strongly depends on the

load balancing policy adopted. The ResourceChoser provides the selected re-

sources to the SLAManager which communicates them to the JAM . Finally,

the resources will be reserved and the SLAManager composes the information

in a SLA.

3.1. SLA Management 69

Figure 3.2: framework’s component

The SLA is sent to the user so that he can sign it thus reaching to an agree-

ment with the service provider. If some resources are not available with the

desired QoS, the SLAManager starts a negotiation phase to find a compromise

between available resources and user requirements. If the client accepts the

new values for some parameters of QoS requests, he will sign a new SLA,

otherwise it will refuse the agreement (see fig.3.2).

Description of the components

This paragraph reviews each component of the framework:

• SLAManager It coordinates the other components to guarantee the

correct service fruition. The SLAManager attempts to receive the user’s

requests translated as resource requirements, to invoke the ResourceDis-

70 Chapter 3. Service Level Agreement Management according to specific QoS requestes

cover (to discover the resource) and the JAM (to manage the reserva-

tions).

• ResourceDiscover It attempts to recover the information on the avail-

able resources. The ResourceDiscover is able to request the information

from information services through a standard query mechanisms, be-

cause it is implemented as Web Service.

It is composed of two sub-components: 1) a standard front-end imple-

mented by a WS and 2) a standard back-end, platform dependent, that

represents a logic driver that can translate every high level query into

lower level commands.

Actually, in gLite there are two standards: an information service that

uses the BDII technology [47] with MDS, GRIS and GIIS [42], while

the other uses RGMA [46].

• ARM It has a central role for the whole architecture. It reserves the

resources that the ResourceChoser has discovered.

It has a two level pattern: the first level consists of a WS tier that is

able to receive the requests originating from the SLAManager while the

second, the reservation maker, adapts the high level command into low

level directives to drive the underlying JMS, e.g. PBS, LSF or Condor.

• ResourceChoser It selects the resources that will host the task among

all the available resources. Through the selection of the resources, it

implements a policy of task management. It contains several responses

of the ResourceDiscover , grouped in entries.

• RequestInterpreter It tries to translate the user request in parameters

that are understandable by the framework.

3.2. Conclusions 71

Figure 3.3: Sequence Diagram

3.2 Conclusions

This chapter focused on the SLAmanagement in gLite middleware, analyzing

a first set of features that are related with the issues of (i) QoS provision and

monitoring and (ii) creation, monitoring, negotiation and run time adaption of

the SLA.

It also discuses the issues related to job allocation and scheduling and advance

reservation of the resources.

The results of this investigation have brought about the implementation of

a prototype of an approach created in the context of the gLite middleware,

called SLAM. Every component of SLAM has been described, also facing

the issues of interacting with the gLite middleware and the JMS LSF Plat-

form EGO.

72 Chapter 3. Service Level Agreement Management according to specific QoS requestes

The findings of this study have a number of important implications for future

practices.

As described above, the execution of each service is monitored continuously

to detect whether some QoS parameter achieve a value that violates the agree-

ments and, if so, to attempt when possible, strategies for run time adaption.

This last issue will be faced in the chapter 5.

Chapter 4

QoS-aware discovery protocol

A rapid and effective mechanism for service provider localization is a funda-

mental and necessary tool in a distributed Services MarketPlace.

In this scenario, in fact, the services are distributed among several remote

providers: to find the providers of a specific service, the consumer has to refer

to a services information index.

The design of these services is an important aspect because it has a great im-

pact on the system as a whole.

If a centralized (or hierarchical) services index is used, as with classical grid

solutions (e.g. MDS for Globus Toolkit [48] [49] and BDII for gLite [47]),

it is possible to obtain a discovery mechanism simple to manage and char-

acterized by a low response time (i.e. the time needed to obtain the service

reference). Unfortunately, this approach compromises both the scalability and

the reliability of the services information index, especially in terms of robust-

ness and fault tolerance, in that it represents a single point of failure.

For instance, if there are too many clients that query the index service at

the same time, the response time could become very high wasting perfor-

73

74 Chapter 4. QoS-aware discovery protocol

mance. Furthermore, if the service crashes, the information stored within it

becomes unreachable. If, instead, a structured distributed information mech-

anism is used, like Distributed Hash Tables (DHT), it is possible, exploiting

their well-defined structure and their self-organization capabilities, to obtain

a low response time and to solve the problems related to scalability and fault

tolerance. Unfortunately, this information organization foresees that the in-

formation related to a provider and to its offered services could be maintained

by another provider: it could be a problem in a system where each service

provider is in competition with the others. Using DHT, in fact, it is possible

that the information related to several providers of a specific service are stored

in another provider of the same service: thus there are no guarantees that this

provider responds to a query giving the users only its own service reference,

excluding other providers.

To overcome these drawbacks, this chapter proposes an unstructured dis-

tributed services discovery based on a selective flooding algorithm. Consid-

ering the P2P-Grid based services Marketplace, presented in the first chapter,

the proposed algorithm propagates the searching messages through the ”near

nodes” of the underlying overlay network. Each peer/node autonomously

maintains the information related to the number and type of services provided

locally and a cache of ”partial knowledge” of the services offered by a lim-

ited amount of other nodes in the overlay network; the required service will

be discovered by a selective propagation of the queries through the network

which will be sorted through a suitable management of partial information

previously collected on each peer.

This distributed searching algorithm is fault resilient: the scope of any crash

is bound only to the node involved while the remaining ones will continue to

work guaranteeing a high fault tolerance and reliability. Furthermore, since

each peer/provider manages locally their own information, the algorithm does

4.1. The Discovery Protocol 75

not suffer of problems generated by the malicious behaviour that could be as-

sumed using the DHT. Unfortunately, because the proposed discovery proto-

col is based on flooding-based algorithm, like the well known Gnutella [50],

it can generate a large amount of frames routed through the network: if the

number of peers involved becomes very high, the flooding strategy can cause

high bandwidth consumption.

The algorithm proposed overcomes this issue through:

1. a flexible and dynamic management of neighbour relationships

2. a control mechanisms for the quantity of frames created by a query

3. a selective routing protocol based on node reputation

4. a cache of partial information related to the knowledge of services of-

fered by some other peers

Furthermore, the proposed algorithm is able to search the services under QoS

constraints, allowing the users to obtain only the references of those services

able to satisfy its requirement. This ability, that is an innovation in the field

of discovery algorithm for distributed systems, represents an important value-

added in a service market place scenario in that it allows not only to identify

different providers for the desired services but also to discern among them the

most suitable one to satisfy the user requirement.

4.1 The Discovery Protocol

The proposed discovery algorithm is characterized by five core issues, out-

lined below.

76 Chapter 4. QoS-aware discovery protocol

• Distributed discovery is based on flooding queries through neigh-

bours. Each peer is able to directly interact only with the nodes (other

peers) it knows and it can address, that are considered its neighbours in

the overlay network. Each peer may forward the queries to its neigh-

bours according to a flooding strategy, similar to the one used in the

Gnutella v0.4 protocol. The concept of neighbourhood is very impor-

tant for this scenario because every interaction between a peer and the

rest of the network is mediated by its neighbours.

• The services are searched under QoS constraints. The queries used

to search services contain a list of QoS parameters that allow selection

of the service that is most suitable for the user application requirements.

This avoids an initial negotiation process with the service providers

which, even if offering the needed resources/services, are not able to

provide the required QoS level.

• Services Level Agreement (SLA) based mechanism for service ne-

gotiation. Within every response message, each service provider spec-

ifies the values of QoS parameters involved in the negotiation process

and an SLA template [51, 52] to manage them. The information in the

template will be used to build an SLA that contains (i) all the consid-

ered parameters, (ii) their values, (iii) the aim of the agreement and (iv)

the possible penalties in case of breach of contract.

• A cache of known services is used to speed up discovery. The dis-

covery protocol is supported by a local cache that maintains couples of

service-peers that can be used as a shortcut to speed-up the discovery

process, allowing a ”provider-consumer” direct link.

• A reputation mechanism to improve neighbours management. In

4.1. The Discovery Protocol 77

order to increase the probability of finding the desired service and to

reduce the number of messages spread over the network, the peer sends

the queries, through flooding, to a subset of its ”better” neighbours. The

quality of a neighbour is given by a reputation value, that measures the

number of times that a contacted peer answered a service request by of-

fering either a local service or useful information for service discovery.

4.1.1 The phases, the actors and the exchanged messages

In the proposed protocol it is possible to distinguish three different phases,

that can be summarized as:

• Overlay network joining (explained in the first chapter).

• Services discovery.

• Service Level Agreement management.

The first phase takes into account the operation that each peer has to accom-

plish in order to become member of the overlay network and to be able to

interact with other peers. The messages involved in these first steps are:

• GetNearNode (GNN): it is used by a peer to obtain a list of available

peers from some well-known entry point servers (EPS).

• NearNodeList (NNL): it is used by EPS to return a list of available peers

to the peer that had sent the GNN message.

• NearNodeRequest (NNR): it is used by a peer to establish a neighbour

relationship with another peer on the overlay network.

78 Chapter 4. QoS-aware discovery protocol

• NearNodeAccept (NNA): it is used by a peer to accept a neighbour

relationship request.

All the operations related to services lookup are envisaged in the service dis-

covery phase.

Each of these operations involves two different categories of actors. The first

one is represented by client/consumer, i.e. the peer that wants to exploit a

generic service offered by some remote peers. In the rest of the chapter this

kind of peer will be called Requiring Peer (RqP).

The second category consists in the server/provider of service, i.e. the peer

that lends its computational and storage resources to satisfy the requests of

clients. In the following, the service provider will be called Provider Peer

(PrP). However, according to the peer-to-peer philosophy, each peer of the

overlay network can assume both consumer and provider role.

The messages exchanged between RqPs and PrPs during the discovery phases

are:

• Discovery Query (DQ): it is used by RqP to search for a specific service

among the peers belonging to overlay network. It contains the name

and level required for the service (deterministic, statistical, best effort),

both expressed as globally known and unambiguous code, and a list of

parameter-value couples used to characterize the service request. The

complete DQ structure is shown in Fig.4.1:

1 s t r u c t DQ{

2 s t r u c t bitmap id_frame ;

3 i n t hops ;

4 s t r u c t peer RqP ;

5 s t r u c t id_service serv ;

6 s t r u c t id_level serv_level ;

4.1. The Discovery Protocol 79

7 s t r u c t ParamList list ;

8 }

• Discovery Query Hit (DQH): it is used by the PrP to answer service re-

quests coming from RqPs. TheDQH contains the reference of PrP loca-

tion, the service name, the service level, an SLA template, the values of

the required parameters and a local timestamp for temporal reference.

The DQHstructure is shown in Fig.4.2(a).

1 s t r u c t DQH{

2 s t r u c t bitmap id_frame ;

3 s t r u c t id_service serv ;

4 s t r u c t id_level serv_level ;

5 s t r u c t peer PrP ;

6 s t r u c t peer infoPeer ;

7 s t r u c t timeStamp time ;

8 s t r u c t Template tmp ;

9 s t r u c t ParamList list ;

10 }

• Service Indication (SI): it is used by peers involved in the discovery

protocol (i.e. peers which have been reached by a DQ message but

not able to provide the needed service) to give the RqP an indication

about the position, on the overlay network, of PrPs able to provide the

relevant service. It contains both the name and service level requested

in the DQ, the address of the SI sender peer and the list of IP addresses

of the PrP found with the relevant time reference indicating the known

last time it provided the service. The SI structure, shown in Fig.4.2(b)),

is:

80 Chapter 4. QoS-aware discovery protocol

1 s t r u c t SI{

2 s t r u c t bitmap id_frame ;

3 s t r u c t id_service serv ;

4 s t r u c t id_level serv_level ;

5 s t r u c t peer InfoPr ;

6 s t r u c t SIinfo [] PrPList ;

7 }

8

9 s t r u c t SIinfo{

10 s t r u c t peer PrP ;

11 s t r u c t timeStamp time :

12 }

The interaction between the same two actors characterized also the last

phase, the one related to the management of agreement. During this phase the

two parties try to find a common agreement that will set the rules for a correct

service fruition. All information related to agreement is collected in an SLA

that all involved entities must accept. The messages exchanged in this phase

are:

• Negotiation Message (NM): it is used by RqP to request to PrP the re-

negotiation of some values of the QoS parameters. It contains a list of

QoS parameters with the new needed values. The NM structure, shown

in fig4.3(a) is:

1 s t r u c t NM{

2 s t r u c t bitmap id_frame ;

3 s t r u c t ParamList list ;

4 }

4.1. The Discovery Protocol 81

ID_Frame HOPS RQ PEER SRV NAME SRV LEVEL PARAMETERS’LIST

0 128 131 179 195 200 Variable(...)

IP ADRESS TCP PORT

131 162 179

Figure 4.1: DQ frame’s structure

• SLAAccept (SA): it is sent to RqP to the chosen PrP to notify its interest

in completing the agreement; each SA contains the code of the template

and the list of the agreed parameters.

1 s t r u c t SA{

2 s t r u c t bitmap id_frame ;

3 i n t SLAcode ;

4 s t r u c t id_service serv ;

5 s t r u c t id_class serv_class ;

6 s t r u c t Template tmp ;

7 s t r u c t ParamList list ;

8 }

• SLA Confirm (SC): it is used by PrP to confirm and to end in a conclu-

sive way the agreement process. SC has the same structure (shown in

fig4.3(b)) as SA.

Network joining and neighbors management

A peer can be considered part of our overlay network if it is able to interact

with at least another peer of the network. In order to join the network, it sends

a GetNearNodes(GNN) message to well-known entry point servers. The aim

82 Chapter 4. QoS-aware discovery protocol

ID_Frame RqP PEER SRV NAME SRV LEVEL PARAMETERS’LIST

0 128 Variable(...)

Info PEER TIMESTAMP

ID_Frame TEMPLATEPrP PEERSRV NAME SRV LEVEL PARAMETERS’LIST

0 128 Variable(...)

(b)

(a)

144 160 208 224

176 192 208 256 288

Figure 4.2: (a)DQH and (b)SI frames’ structure

ID_Frame PARAMETERS’LIST

0 128 Variable(...)

ID_Frame

0 128 Variable(...)

(a)

(b)
TEMPLATESRV NAME SRV LEVEL PARAMETERS’LIST

144 160 176

Figure 4.3: (a)NM/NA and (b)SC/SA frames’ structure

of this type of server, which handles a repository of peer addresses, is to pro-

vide to the applicant, within a NearNodeList(NNL), a list of on-line available

peers.

Once the NNL message is received, the peer tries to establish a neighbour

relationship, by sending a NearNodeRequest(NNR), to every single node in

the NNL. The NNR message stores the information related to (i) the location

of the neighbor (IP address, service port) and the (ii) provided services, e.g.

their number or the number of available queues. A peer that receives an NNR

can decide to agree or to refuse the neighbor relationship: the choice depends

on either the number of neighbors it is able to manage or on the value of

service-related parameters stored in the NNR message (e.g. type and quality

of services locally offered). A neighbor relationship is accepted by means

of the NearNodeAccept (NNA) message. The two peers involved ratify the

neighbor relationship by adding the remote peer address to their own neigh-

bors list.

4.1. The Discovery Protocol 83

The neighbors list collects the neighbors with a relevant value of reputation

that measures the ”strength” of the neighbor relationship. The reputation will

be used in the discovery process to select from the neighbors list only those

peers that meet certain criteria. Every time a peer receives a response mes-

sage, it uses the information contained to update the value of the sender rep-

utation. By associating the reputation value with the number of fruitful inter-

actions among peers it is possible to find the more collaborative nodes inside

the list. Each peer can take into account the new neighbors for flooding as

their reputation value grows, according to the frequency with which it uses

their services or obtains useful information about discovery. The reputation

value plays an important role in the discovery process since it allows dynamic

change of the neighbor list and, consequently, a change in the routing rules

for the messages . It should be noted that the neighbor list may also increase

when a peer finds a new provider peer by means of the discovery protocol (as

will be described in the following section).

4.1.2 Discovery phase

Each time that a RqP wants to use a remote service, it has to find at least one

of the relevant providers (PrPs) present on the overlay network. If the RqP

requires the remote service with some specific QoS parameters, it has to de-

scribe the values of these parameters in its discovery request together with the

needed QoS level.

The RqP may obtain these information by means of a distributed discovery

protocol, based on selective flooding involving only neighbours with ade-

quate reputation, or by searching in a local services cache, that holds a list

of service-PrP couples, obtained from discovery activities in the last period.

The behavior of peers involved in the discovery phase is influenced by:

84 Chapter 4. QoS-aware discovery protocol

• local services actually offered.

• service QoS level required in the request message.

• local services cache entries

• overlay network routing table, depending on reputation of neighbours

list peers.

• the length of the path from RqP (distance in hops)

The discovery protocol is based on the flooding of Discovery Queris (DQ,

see section 4.1.1). Generically, in a flooding schema, the number of messages

(Mout) spread over the network for each peer is given by:

Mout = N
H (4.1)

where N is the number of neighbour for each peer and H is the number of max

hops foreseen by the protocol. Considering that in an overlay network the

number of neighbour changes for each peer, i.e. each peer is free to establish

several neighbour relationship, the formula 1 becomes:

Mout =
H

∏
i=1

N̄i (4.2)

where N̄i is the average number of neighbours for each peer having a distance

in hops equal to i. Before starting a distributed discovery on the overlay net-

work forwarding a DQ message, each peer searches inside its services cache

to look for entries that could match its requirements. If any entries are found,

i.e. it knows the information related to the location of one or more possible

PrP of requested service, it tries to contact the PrP(s) directly sending it(them)

4.1. The Discovery Protocol 85

a DQ (with hops= 1).

If no entries for the desired service are available in the local cache, the peer

starts a distributed discovery, flooding the DQ to a subset of its neighbour(in

a selective manner driven by their reputation value) and sets a timeout which

measures the time interval within which RqP can wait for a useful response.

This strategy determines a reduction in the Mout ; the formula 2 becomes:

Mout =
H

∏
i=1

N̄i ∗ r (4.3)

where r is the reputation factor, having a value belonging to [0.5,1] represents

the concept of selectivity. When a peer receives a DQ, it verifies if it is able to

provide the required service and, if it can do it, checks the service level and the

values of the parameters required. If it can satisfy all the QoS requirements,

i.e. it is a PrP of the specific service, the peer sends the response frame named

DiscoveryQueryHit (DQH, see section 4.1.1).

The DQH contains the reference to PrP location and all the useful information

related to service fruition. In particular, the DQH contains a reference to an

SLA template which is used, together with the values of the QoS parameters,

to create the SLA that RqP will use to evaluate the convenience of the contract

offered. Moreover, the DQH has a field, called infoPeer , used to support the

reputation mechanism by allowing it to update the neighbour list with the

identity of the last node that sent DQ to PrP. The RqP uses these indications,

together with PrP address, to increment the value of the reputation for these

nodes (see 4.1.1); if the latter is not present in the neighbour list, it will be

added.

Unlike Gnutella, sending the DQH stops the propagation of DQs originating

86 Chapter 4. QoS-aware discovery protocol

from the PrP. This decreases the number of DQs transmitted on the network:

Mout =
H

∏
i=1

[(N̄i ∗ r)−Pi] (4.4)

where Pi is the number of peers able to provide the desired service. The re-

duction of Mout is greater the closer the PrP is to the RqP.

If the specified service is not present among the ones locally provided or if

the peer is not able to match the QoS requirements of RqP, the peer that has

received the DQ searches inside its services cache. If the peer finds one or

more other peers providing the specified services, it stops the DQ propagation

and forwards the request directly towards the found peers (with hops = 1).

This operation both (1) speeds up the discovery algorithm (trying to establish

a direct contact between PrP and RqP) and (2) reduces the number of DQs

flooded through the network. In fact, as PrP, the peer that has found an entry

of desired service in its cache stops the DQ propagation.

In addition, the above mentioned peer sends a Service Indication (SI), in back-

ward routing, to all the peers that belong to the same network branch that links

it with the RqP, thus allowing them to update their services cache. In fact, if

the DQ has reached this peer it means that no previous peer has a reference to

the required service in its cache.

This causes a new modification of the Mout formula, adding a new detracting

term, PSIi that represent the number of peers sending an SI at ith hop.

Mout =
H

∏
i=1

[(N̄i ∗ r)−Pi−PSIi] (4.5)

The SI will also be used by the RqP to update its neighbour list: in particular,

the SI sender address will be added to the list and, if already present, its repu-

4.1. The Discovery Protocol 87

tation value is increased.

If the peer that received the DQ does not find entries in the cache for that re-

quest, it checks the hop value in the DQ. If it is set to a value greater than 1

(hops>= 1) it then decreases it and sends the DQ to each peer of a neighbour

subset chosen based on a reputation mechanism that allows a peer to select a

subset of ”better” ones. If hops= 1, the discovery protocol stops and the DQ

is not forwarded.

The pseudocode below summarizes the actors’ behavior:

1 RqP :

2

3 void directContact (DQ , ip , TTL){

4 send (DQ , ip) ;

5 i f (DQHmanagement (request))

6 re turn SUCCESS ;

7 e l s e

8 distribuitedDiscovery (DQ , TTL) ;

9 }

10

11 i n t DQHmanagement (request){

12 waitFor (DQH) ;

13 i f (receive (DQH , Template)) {

14 startNegotiation () ;

15 cacheUpdate () ;

16 re turn (TRUE) ;

17 }

18 e l s e

19 re turn (FALSE) ;

20 }

21

88 Chapter 4. QoS-aware discovery protocol

22 void distribuitedDiscovery (DQ , TTL){

23 neighboursList=choiceNeighour (idPeer) ;

24 send (DQ , neighboursList) ;

25 }

26

27 i n t main () {

28 TTL=N ;

29 requestedService request ;

30 ip=searchIntoCache (request) ;

31 i f (! ip)

32 distribuitedDiscovery (DQ , TTL) ;

33 e l s e

34 directContact (DQ , ip , TTL) ;

35 }

36 }

1

2 Intermediate Peer or PrP :

3

4 t ypede f s t r u c t service{

5 serviceId ;

6 serviceClass

7 parametersList ;

8 }requestedService ;

9

10 i n t main () {

11 requestedService s ;

12 waitFor (DQ) ;

13 s=extractFrom (DQ) ;

14 i f (isPresent (s)) {

4.1. The Discovery Protocol 89

15 send (DQH , Template) ;

16 startNegotiation () ;

17 re turn 0 ;

18 }

19 ip=searchIntoCache (s) ;

20 i f (! ip){

21 TTL−−;

22 i f (TTL>=1)

23 distribuitedDiscovery (DQ , TTL) ;

24 e l s e re turn 0 ;

25 }

26 e l s e {

27 TTL−−;

28 i f (TTL >=1)

29 directContact (DQ , ip , TTL) ;

30 e l s e send (SI , ip) ;

31 }

32 }

Fig.4.4 shows an example of DQ propagation.

4.1.3 Response’s reception and agreement management

After having forwarded a DQ, the peer waits a fixed amount of time for the

arrival of the DQHs. After every DQH has arrived, the peer extracts from

its SLA field the template that the PrP had provided with their agreement.

According to the proposed template and the negotiated QoS value, the RqP

derives from the DQH the information needed for a contract and creates an

SLA. The peer receives as many possible SLAs as the number of received

DQHs: generally this number varies based on the required service and on the

90 Chapter 4. QoS-aware discovery protocol

Requestor Peer Neighbour Peer Neighbour Peer Peer Provider

1: DQ (TTL:6)
2: search in local service:

 no entry found

3: search in services’cache:

 no entry found

4: select neighbour subset

5: DQ (TTL:5)

6: search in local service:

 no entry found

7: search in services’cache:

 1 entry found

8: SI

10: search in local service:

 1 entry found

11: DQ: Parameters match

9: DQ (TTL:1)

12: DQ

Figure 4.4: An example of DQ’s propagation

Peer Provider #1 Peer Provider #2 Requiring Peer

1: DQH

3: SLAs creation

4: evaluate SLAs

2: DQH

5: NM - change some parameter

6: NM - change some parameter

7: NA - no change possible

8: DQH

9: SLA creation

10: evaluate SLA

11: SA

12: SC

Figure 4.5: An example of negotiation phase

4.1. The Discovery Protocol 91

value specified for each parameter. The RqP is also able to re-negotiate the

value of the QoS parameters by sending a Negotiation Message (NM), to a

PrP, wherein it specifies the new values required. In the renegotiation phase,

the PrP can decide whether to accept or refuse the new RqP requests, based

on the state of the local resources. If the renegotiation is accepted, the PrP

verifies its own availability and sends a new DQH to the RqP.

Finally, once the parameters for negotiation are terminated and the RqP has

collected all the SLA proposed by PrPs, the RqP sends an SLA Accept (SA),

to the chosen PrP that completes the SLA negotiation process by sending an

SLA Confirm (SC). The structure of these message is simpler than the ones

related to the service discovery, because they are exchanged between the PrP

and RqP only to negotiate an agreement so they do not have any functionality

linked to routing.

Fig4.5 illustrates an example of the negotiation phase.

4.1.4 Services cache

In order to speedup the discovery protocol, each peer maintains a local cache

named services cache. This cache contains a limited amount of direct links to

known service providers. In particular, the services cache records information

relative to the locations (IP, port) of peers which have recently provided spe-

cific services. This information will be used as a shortcut whenever possible,

thus reducing the number of messages sent through the network. The services

cache is a hash table indexed by two keys: service name and service level. It

contains, in addition to information about the location of the PrP and the name

and the level of service, a priority field, which considers the type of frame that

has provided the cached information (DQH, SI and SC), and a timestamp.

1 s t r u c t cacheEntry{

92 Chapter 4. QoS-aware discovery protocol

2 s t r u c t id_service serv ;

3 s t r u c t id_class serv_class ;

4 s t r u c t peer PrP ;

5 s t r u c t timeStamp time ;

6 s t r u c t priority prior ;

7 }

The cache (initially empty) is updated during the discovery phase. Each

time a response frame is received, the peer extracts the service name, service

level and PrP from it and then analyzes the cache content using this informa-

tion to obtain the index of the above mentioned hash table. If an entry does

not exist with this primary key, a new cache entry can be inserted in the hash

table. Otherwise the priority field has to be checked: if the priority has the

same value, it updates the entry if the new timestamp is more recent. If not, it

updates the entry only if the new priority is higher.

To avoid large increases in the cache size, which is easily foreseeable with a

distributed search algorithm, the peer uses a reclaiming policywhen it reaches

a predetermined threshold (90% of total size). This policy considers priority,

timestamp and the number of entries for a given service. Initially the peer

detects the services with the highest number of cache entries; for any specific

service, the number of entries removed from the cache is proportional to their

total number: the selection of an entry that must be removed is based on prior-

ity (SC, DQH and SI in thar order) and on timeStamp (oldest reference first).

This system ensures that both: (1) the proportion between the services num-

ber and references number will be respected and (2) more reliable and recent

information is maintained.

4.2. Results evaluation 93

4.2 Results evaluation

The behavior of the proposed QoS-aware discovery protocol has been as-

sessed by means of a network simulator.

The aim of these simulations is to measure the advantage derived by the use

of the proposed strategy in terms of reduction of the number of frames in-

volved in a wide area distributed discovery, with respect to the classic flood-

ing schema, as is the one adopted in Gnutella v0.4.

In particular, the increment of scalability has been evaluated in terms of the

number of messages spread over the network that represent the major draw-

back in flooding-based discovery algorithms.

It should be noted that the comparison focuses only on ”quantitative” infor-

mation, i.e. the number of total frames sent through the network, and it does

not consider the frame structure or size. Remember that, there is a signifi-

cant difference between Gnutella and the proposed discovery protocol: while

Gnutella is used to share files, the proposed algorithm has been designed for

discovery services under QoS constraints.

Each peer of the considered overlay network has a list of local services pro-

vided, a services cache of known couples Service - PrP and a list with the

address of its neighbour and their relevant reputation value. The number and

the type of services provided locally, as the initial cache size and its contents

have been chosen randomly in the simulation. We evaluated:

• the average number of DQ and DQH frames spread over the network

during a distributed discovery phase, used to measure the obtained in-

crement of scalability.

• the ratio of number of DQHs and the number of DQs, that can be con-

sidered as an index of search efficiency.

94 Chapter 4. QoS-aware discovery protocol

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Hops

Messages (per hop) on the overlay network (Power Law degree distribution)

legend
DQ

DQH
GnuQuery

GnuQueryHit

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Hops

Messages (per hop) on the overlay network (Power Law degree distribution)

legend
DQ

DQH
GnuQuery

GnuQueryHit

Figure 4.6: Average number of DQs spread in the (power law) network during dis-
covery phase

The measures have focused on comparing the performance of the proposed

algorithm and Gnutella v0.4. In addition, some measures aim to show the

trend of our algorithm in changing same of internal aspects: in particular it

will be shown the influence of reputation mechanism (used to select the best

neighbour subset), of the increment of cache hit probability and of clustering

coefficient ([53] in follow clustering index) .

Since the network topology influences the performance of flooding based

search, all measures have been carried out for two networks topologies fea-

tured by a kind of neighbour distribution in power law and multimodal way.

Fig.5.3.2 and fig.4.7 show a comparison of the trend related to the average

number of DQs (and DQH) per hops spread over the network (respectively

for power law and multimodal ones) using the proposed algorithm and the

Gnutella one. These measures have been done considering a reputation value

4.2. Results evaluation 95

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Hops

Messages (per hop) on the overlay network (MultiModal degree distribution)

legend
DQ

DQH
GnuQuery

GnuQueryHit

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Hops

Messages (per hop) on the overlay network (MultiModal degree distribution)

legend
DQ

DQH
GnuQuery

GnuQueryHit

Figure 4.7: Average number of DQs spread in the (multimodal) network during
discovery phase

threshold equal to 0.8 (i.e the flooding involves 80% of neighbour) and a clus-

tering index equal to 0.2. The number of neighbour for each peer varies (in

relation with selected distribution function) in the range [3,40] and the hops

value is equal to 6 (the Y axis has a log scale). As can be observed, our

approach allows a significant reduction in the number of sent messages. In

particular, the number of DQs created by our algorithm is less than Gnutella

by a multiplication factor equals about 10. This trend can be observed in both

overlay network topologies explored. The consistent reduction in DQs could

suggest a proportional reduction in DQHs. Instead, figures 5.3.2 and 4.7 show

that the number of DQHs is similar for both the algorithms: this is due to the

reputation mechanism that allows an increase in the search efficiency of our

approach with respect to the Gnutella one. This claim is supported by figure

5.3.2 and fig.4.9 that show the trend of search efficiency (nDQH
nDQ

) for power

96 Chapter 4. QoS-aware discovery protocol

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0 1 2 3 4 5

S
e

a
rc

h
 e

ff
ic

ie
n

c
y
 I
n

d
e

x
 (

D
Q

H
/D

Q
)

Hops

Search efficiency per hop (Power Law degree distribution network)

legend
GRID-P2P

Gnutella

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0 1 2 3 4 5

S
e

a
rc

h
 e

ff
ic

ie
n

c
y
 I
n

d
e

x
 (

D
Q

H
/D

Q
)

Hops

Search efficiency per hop (Power Law degree distribution network)

legend
GRID-P2P

Gnutella

Figure 4.8: Search efficiency in the (power law) network during discovery phase

law and multimodal network respectively. Figures 4.10 and 4.11 show

the effectiveness of the reputation mechanism on the discovery phase in both

overlay network topologies : using the reputation field, each peer is able to

route the DQ only to the neighbours that have demonstrated an active and effi-

cient role in the previous discovery. This means that the messages are flooded

in the peers having a high informative value.

Figures 4.12 and 4.13 show the effects of reputation mechanism on search

efficiency index. Each figure shows the trend of DQ and DQH when the repu-

tation value decreases, i.e. the number of neighbour involved in the distributed

discovery increases.

It can be noted that the reputation mechanism has a big influence on the dis-

covery algorithm. In fact, selecting only the best 80% of neighbour (i.e. a

reduction of neighbour equal to 20%), the algorithm produces only 25% of

4.2. Results evaluation 97

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1 2 3 4 5

S
e

a
rc

h
 e

ff
ic

ie
n

c
y
 (

D
Q

H
/D

Q
)

Hops

Search efficiency per hop (MultiModal degree distribution network)

legend
Grid-P2P
Gnutella

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1 2 3 4 5

S
e

a
rc

h
 e

ff
ic

ie
n

c
y
 (

D
Q

H
/D

Q
)

Hops

Search efficiency per hop (MultiModal degree distribution network)

legend
Grid-P2P
Gnutella

Figure 4.9: Search efficiency in the (multimodal) network during discovery phase

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing reputation value (Power Law degree distribution)

legend
DQ

DQH

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing reputation value (Power Law degree distribution)

legend
DQ

DQH

Figure 4.10: Influence of reputation on messages spread in the (power law) network

98 Chapter 4. QoS-aware discovery protocol

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing reputation value (MultiModal degree distribution)

legend
DQ

DQH

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing reputation value (MultiModal degree distribution)

legend
DQ

DQH

Figure 4.11: Influence of reputation on messages spread in the (Multi Modal) net-
work

 0.082

 0.084

 0.086

 0.088

 0.09

 0.092

 0.094

 0.096

 0.098

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
Q

H
/D

Q

Clustering Value

Search efficiency when changing reputation value (Power Law degree distribution)

legend
GRID-P2P

 0.082

 0.084

 0.086

 0.088

 0.09

 0.092

 0.094

 0.096

 0.098

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
Q

H
/D

Q

Clustering Value

Search efficiency when changing reputation value (Power Law degree distribution)

legend
GRID-P2P

Figure 4.12: Influence of reputation on search efficiency index (power law network)

4.2. Results evaluation 99

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
Q

H
/D

Q

Clustering Value

Search efficiency when changing reputation value (MultiModal degree distribution)

legend
GRID-P2P

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
Q

H
/D

Q

Clustering Value

Search efficiency when changing reputation value (MultiModal degree distribution)

legend
GRID-P2P

Figure 4.13: Influence of reputation on search efficiency index (Multi Modal net-
work)

the messages it would have produced had all its neighbour been involved.

Figures 4.14 and 4.15 show the influence of cache hit probability on the dis-

covery phase for both overlay network topologies under study. The measures

have been done by increasing the cache hit probability from 0% (empty cache)

to 5%. The results obtained illustrate the great importance that the services

cache holds in our approach.

Another aspect that has been considered in these measures is the influence

of the clustering index. It is important to consider this parameter since it

is related to neighbour management. In fact, this index gives a measure of

the existing relationship between the neighbour of a peer: in particular, this

index indicates how the neighbours of a peer have themselves a neighbour

relationship. This parameter influences the discovery phase because a peer

that receives the same request message from several other peers, sends only

100 Chapter 4. QoS-aware discovery protocol

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Cache Hit Probability (% increment)

Messages on the overlay network when Cache Hit Probability increase (Power Law degree distribution)

legend
DQ

DQH

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Cache Hit Probability (% increment)

Messages on the overlay network when Cache Hit Probability increase (Power Law degree distribution)

legend
DQ

DQH

Figure 4.14: The influence of cache hit probability on messages spread in the (power
law) network

a single copy of the message. This means that the bigger the clustering in-

dex, the lower the number of DQ messages flooded on the network will be.

Unfortunately, as shown in figures 4.16 and 4.17,the decrease in DQs, due to

the increase in the clustering index, corresponds in proportional decrease of

obtained DQH.

In conclusion, it can be said that this approach allows a reduction in the num-

ber of messages flooded on the network and, as a consequence, increases the

scalability without compromising, in a strong manner, the number of obtained

responses: these capabilities weigh on the search efficiency index that, in fact,

is better than the Gnutella one. Moreover, the measures demonstrate that these

improvements are independent from the network topology.

4.3. Improving protocol performance using mobile agents 101

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Cache Hit Probability (% increment)

Messages on the overlay network when Cache Hit Probability increase (Multi Modal degree distribution)

legend
DQ

DQH

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 1 2 3 4 5

M
e

s
s
a

g
e

s

Cache Hit Probability (% increment)

Messages on the overlay network when Cache Hit Probability increase (Multi Modal degree distribution)

legend
DQ

DQH

Figure 4.15: The influence of cache hit probability on messages spread in the (power
law) network

4.3 Improving protocol performance using mo-

bile agents

Although the led tests have shown the validity of adopted solution, the perfor-

mance of the proposed protocol are bound by the slow update mechanism of

service cache that, as said above, is based on the analysis of the synchronous

messages exchanged . To overcome this drawback, it has been studied a dif-

ferent update cache technique, based on mobile agents technology [54–58],

no more focused on analysis of frame forwarded through the network (pas-

sive update), but on autonomous research of information held in the other

peers (active update). The main advantage of the agent-based update mecha-

nism is represented by its independence from flooding-based discovery: each

peer decides autonomously when updating its cache, sending a mobile agent

102 Chapter 4. QoS-aware discovery protocol

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing clustering index (Power Law degree distribution)

legend
DQ

DQH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing clustering index (Power Law degree distribution)

legend
DQ

DQH

Figure 4.16: The influence of clustering index on messages spread in the (power
law) network

to retrieval the information maintained in the various service cache of all the

peers. This represents a great benefit because it allows to increase the in-

formative content of the cache without waiting for the DQH or SI frames,

reducing the start-up time and reaching quickly a steady state conditions.

Furthermore, this technique can be used to obtain some information about

neighbour relationship maintained by host peer: this information will be ex-

ploited by mobile agent both to update own peer neighbour list and to create

a discovery path based on reputation values.

In this context, each agent is defined by a behavior and by a dynamic search

path. The behaviour specifies the set of operations that a peer executes when

it arrives in the other peers. The search path, instead, specifies the list of peers

that the agent will visit.

When a peer joins an overlay network, it creates a software agent, assigns it a

4.3. Improving protocol performance using mobile agents 103

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing clustering index (MultiModal degree distribution)

legend
DQ

DQH

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e

s
s
a

g
e

s

Clustering Value

Messages on the overlay network when changing clustering index (MultiModal degree distribution)

legend
DQ

DQH

Figure 4.17: The influence of clustering index on messages spread in the (power
law) network

particular behaviour and a starting search path, encodes it in a ACL message

and, finally, forwards it to remote peers basing on the assigned path.

The mobile agent, visisting each peer belonging to its serch path, executes the

operation assigned by its source peer.

In this work are defined:

• three basic behaviours

• two path management policies

The basic behaviour are:

1. cache update

2. services discovery

104 Chapter 4. QoS-aware discovery protocol

3. neighbour update

In the cache update mode the agent, routing through the peers of assigned

search path, makes a copy of information maintained into local service list

and on service cache of the currently node and, at the end of each travel, car-

ries back this information to source peer.

The services discovery mode represents an alternative way to discovery ser-

vice: it allows to search one or more services references on peers belonging

to search path.

The last basic behaviour, neighbour update, is substantially used to enlarge

the portion of overlay network seen by peer and to increase its neighbour

”quality“ level. Both features are obtained through a selection of the best

peers (based on reputation values) belonging to neighbour list of visited ones.

The path management policies are:

1. source-chosen approach: the path is assigned, each time, by souce peer

2. adaptative approach: the path is defined, at run-time, by agent

In the source-chosen approach, the path is assigned a priori by source peer:

usually, the peer assigns as path a subset of its known neighbours to deepen

the knowledge of its overlay network portion.

In the adaptative approach, instead, the search path is established by the mo-

bile agent. At each migration step, the agent selects a target peer based on

some parameters, like peer reputation value in neighbour list or the number

of references of a peer into service cache.

The selection criteria and the number of migration step is fixed by souce peer.

Each agent, futhermore, has a mechanism to control to avoid an excessive

grown of information size collected. Its retrieval algorithm, in fact, is able to

recognize and delete the redundant information, with a policy similar to the

4.3. Improving protocol performance using mobile agents 105

one used by source peer to manages its services cache.

The policy used by agent takes into account (1) the number of entries for a

given service and (2) the value of priority1 field.

4.3.1 Results

The software infrastructure has been developed through Java Agent DEvelop-

ment Framework (JADE) v3.4.0 [59, 60], an open source framework that al-

lows implementation and deployment of multi-agents system (complies with

FIPA [61] specification), and through an specific add-on, called migration,

that enables the interplatform agents migration, a foundamental requirement

in a distributed environment like the considered one. The use of this add-on

is necessary because the basic JADE version allows only the intraplatform

agents migration mode that enables agents transfer only if the target destina-

tion belongs at the same platform.

Figure 4.18 shown the two different ways to exchange agents.

Although this platform can be distributed on various machines, it is charac-

terized by a single AMS agent2 and by a single DF agent3 hosted in the server

machine containing the JADE main container, creating a single fault point4.

Themigration add-on permits that each peer can create the own platform with

specific AMS agent (indipendent from other ones): in this way the mobile

1Each entry has a priority value assigned by peer basing on the type of frame providing
the information (DQH or SI)

2Agent Management System, identifies and register the agent present on managed plat-
form

3Directory Facilitator, performs the Yellow pages service
4If server containing AMS crushs, all agents belongin to platform became unmanageable

106 Chapter 4. QoS-aware discovery protocol

Figure 4.18: Intraplarform vs interplatform

agents is encoded and exchanged among peers5 through ACL6 messages.

All developed software has been implemented and tested on Globus Toolkit

v4.0.1. A simulation campaign has been led to show the growth model of

information maintained into the service cache related to both “search path”

policy used and visited node number.

The simulation has been done considering an overlay network composed by

5000 peers: each peer has a service cache and a neigbours list (30 neighbours

for each peer). The initial cache size and its content are choosen in a statistical

way.

Figures 4.19 shows the cache hit probability trend(CHP) using “cache up-

date“ behaviour and both source -chosen and adaptative approach.

In this example the source chosen “search path” contains all peer’s neigh-

bours, while, in the adaptative approach, the “search path” has been made

selecting the best neighbour on each visited peer (30 step). The differences

5Local AMS sends agent to remote AMS without estabish an additional communication
channel.

6ACL messages complies with FIPA specification.

4.3. Improving protocol performance using mobile agents 107

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

C
a

c
h

e
’s

 h
it
 p

ro
b

a
b

ili
ty

(%
)

Migration number

Agents Migration

Dynamic
Static

Figure 4.19: Adaptative Vs Source chosen policy

between the two trend is mainly due to “local nature” of source chosen ap-

proach, i.e. caches of near peers tend to contain the same information.

When the agent accesses to cache of a neighbour peer, it has a low probability

to find a new service and, as a consequence, a low probability to increase the

source peer’s CHP. Otherwise, it is more probable that the agent find a new

reference of a known service: this explain the trend shown in figure 4.20, that

represent the relationship beetwen cache size7 growth and cache hit probabil-

ity for both approaches.

7The size depends by (1) service number and by (2) total entries number (each services
can have one or more references).

108 Chapter 4. QoS-aware discovery protocol

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30

C
a

c
h

e
 s

iz
e

/C
H

P

Migration number

Agents Migration

Dynamic
Static

Figure 4.20: Size cache / Cache hit probability

4.3.2 Security policies

Security is an issue particularly critical when using mobile agent [62–65] so-

lutions.

For the scope of this work, it will be taken into account only the agent-to-

platform threat8 and, in particular, the problems related to unauthorized ac-

cess to local information repository.

When an agent arrives on another peer, it is able to accesses to the services

cache and the neighbour list to achieve its task: if it is a malicious agent, it

could replace correct information with mistaken ones. This misconduct can

carry a discovery protocol performances worsening because both cache and

neighbour list can address wrong service provider peer, putting in the overlay

network lazy traffic.

8according to threat definition proposed in [65]

4.4. Conclusions 109

In order to avoid these problems, all resources which could be accessed by

external agent have been hooked by an access control list. In this way, only

the administrator can modify their content: the others can access the shared

resources in a read-only mode. No one policy, instead, has been adopted to

solve reverse problem, i.e malicious platform that provides misleading infor-

mation to mobile agents. This choose has been taken because the information

provided by untrusted peer have only a light effect on source peer service. In

fact:

1. the mobile agents takes information by many peer: if search path in-

clude an enough high number of peer, the malicious information will

represent only a minimum subset.

2. the information provided by mobile agent are used by source peer

mainly to update cache, not to replace its entry.

Furthermore, the reputation mechanism used to manage neighbour list tends

to isolate the peers that provide incorrect information compared to peer pro-

viding trusted ones.

4.4 Conclusions

In this chapter an algorithm for services discovery in a P2P-Grid-based ser-

vice marketPlace has been depicted. The algorithm is based on selective flood-

ing, where any service is searched for specific QoS constraints forwarding

queries to the overlay network of the CE through sets of neighbours. The

queries propagate according to a reputation strategy that allows a peer to

select a subset of ”better” ones and exploiting a cache of frequently used

110 Chapter 4. QoS-aware discovery protocol

services in order to speed-up discovery mechanisms. The performance eval-

uation results allowed to highlight the low average number of frames spread

in the network due to the single discovery request. This demonstrated that the

technique adopted reduces the bandwidth consumption related to the flooding

and, at same time, is still able to discover a high number of peers that provide

the required services.

Chapter 5

QoS-aware Service Composition

The cooperation between resources managers belonging to different adminis-

trative domains has been one of the open issues of Grid Computing [?]. The

different solutions used for the description of resources or jobs, the different

policies for the management of security, of authorizations and of account-

ing policies, in fact, represented a strongly limit the possibility of integration

among different middlewares. The adoption of interfaces based on Web Ser-

vices technologies (above all WSDL [66] and SOAP [67]) has considerably

simplified these problems making easier the interoperability between differ-

ent Grids.

This has permitted the creation of new applicative scenarios [6–8, 68] where

grids become peers of a strongly ”service oriented” overlay network, and

where these peers interacting each other to provide and consume services.

This scenario is intrinsically competitive: different peers can provide many

versions of the same services, different from the others for the cost, the avail-

ability, the execution time and for other parameters related to the Quality of

Service (QoS)([11]).

111

112 Chapter 5. QoS-aware Service Composition

In a the last chapter, I have introduced a possible model of P2PGrid scenario

and have proposed a solution for the discovery of services under QoS con-

straints.

That work, that considers the same P2PGrid scenario, proposes a technique

for composing services belonging to different providers, guaranteeing the

maintenance of a specific QoS level and high resilience.

The proposed solution, in particular, is characterized by a fast recovery strat-

egy, based on the concept of QoS compensation, and takes advantage by the

peculiarities of the graph representing the execution path for composed ser-

vices.

This process of services composition is realizes in three different phases: dis-

covery of services, creation of execution path and, in case of services failures,

management of exception.

5.1 The management of QoS in composed ser-

vices

The management of Quality of Service (QoS) represents an important aspect

in service oriented computing. In a services marketplace as the one consid-

ered in this work, in fact, the QoS gives users the basic support for identifying

and choosing, basing on users expectations, the best one among different im-

plementations of a given service.

The concept of QoS is based on the expectations of users about services ex-

ecution and takes into account the aspects related with the question ”How is

the service executed ?” rather than ”What does the service do?”.

Two services, in fact, can have the same functionalities but different perfor-

mance. A service, for example, can run over a better workstation (having

5.1. The management of QoS in composed services 113

better hardware devices), connected to a faster network, or can be distributed

over multiple workstations or rely on optimized computing libraries and ad

hoc software. All these aspects do not change the output (in terms of given

results) of a service but they influence several ”non functional parameters”,

such as the ”response” time, the ”queue waiting” time, the availability, the

reliability and the cost, that are related with the ”quality” of execution.

For a composed service Scmp, the QoS is a function of the QoS of the n basic

services Si, i= 1..n:

Scmp|QoS = f (S1|QoS,S2|QoS, ..,Sn|QoS) (5.1)

where Si|QoS, i ∈ [1,n] represents the set of values of non functional parame-

ters related with the ith service.

In order to give a measure of composed QoS it is necessary to specify the

function f (∗).

If it is possible to identify one or more common parameters among the ba-

sic services, e.g. response time, availability or cost, the function f (∗) can be

simply expressed as the ”sum” or the ”average” of each single value. For ex-

ample, if it wants to execute a service composed by n different basic services,

executed sequentially within a fixed time frame, it is necessary to impose that

Scmp|maxT <=MaxTime(maxT), whereMaxTime is the deadline specified by

the user.

In this case f (∗) can be represented as:

Scmp|maxT =
n

∑
i=1

Si|maxT (5.2)

114 Chapter 5. QoS-aware Service Composition

If, instead, the services can be executed in parallel, the function f (∗) becomes:

Scmp|maxT =
max Si|maxT

i= 1..n
(5.3)

If it wants to have a composed service with an average availability (av), at

least, equals to 80%, the function f (∗) can be expressed as:

Scmp|av =
∑ni=1 Si|av

n
≤ 80% (5.4)

Many times, however, especially when the composed service takes into ac-

count many different parameters, it is very difficult to express the function

f (∗) using a simple formula. For example, when the required QoS takes

into account different features of each single basic service (e.g. the number

of CPUs in a render farm or the replicas number in a storage system), it is

difficult to provide an function f (∗) expressed using all the involved QoS pa-

rameters.

In order to simplify the management of heterogeneous parameters, I intro-

duced the concept of user satisfaction. The user satisfaction value, obtained

applying the normalization process to each considered function, represents a

set of ”non uniform” QoS requirements through a single numeric value. This

value, ranging between a min(= 0) and a MAX(= 1), is calculated for each

basic service: depending on the parameters involved, the ”sum” or the ”aver-

age” of these numbers can be considered the index of QoS for the composed

service.

An example of normalized function is the normalized differences average.

This function is not related to a single parameter but to the ratio between the

difference of the value of parameters required by the user (U |QoS) and the one

5.1. The management of QoS in composed services 115

provided by the service (Pi|QoS), as numerator, and the value of parameters

required by the user (U |QoS), as denominator.

This function is:

0<
(U |QoS−Pi|QoS)

U |QoS
< 1 (5.5)

In order to better explain the advantages obtained using the normalized differ-

ences average function, a simple example is given below. A service composed

by two simple services is taken into account: the first requires a fixed amount

of CPU (nCPU) and bandwidth (bdw), the second a certain number of data

replica(nrpl).

The function providing the total QoS is:

Scmp|QoS = f (S1|QoS,S2|QoS) (5.6)

=
(
nCPU |u−nCPU |p

nCPU |u
+
bdw|u−bdw|p

bdw|u
)+

nrpl |u−nrpl |p
nrpl |u

N
(5.7)

where N is the number of involved parameters.

If the user require nCPU = 8, bdw = 4GBit and nrpl = 4 and the services are

execute with nCPU = 6, bdw = 3.5GBit and nrpl = 3, the user satisfaction,

calculated using the above mentioned formula, is:

=
(8−68 + 4−3.5

3)+ 4−3
4

3
= 0.78= 78% (5.8)

Instead, if the services are execute with nCPU = 4, bdw= 3GBit and nrpl = 2,

the user satisfaction is:

=
(8−48 + 4−3

4)+ 4−2
4

3
= 0.58= 58% (5.9)

116 Chapter 5. QoS-aware Service Composition

It is possible to refine the normalized differences average function assigning

a weight to each involved parameter: in this way, each parameter can have an

own specific importance.

Scmp|QoS =
f (wi ∗S1|QoS, ..,wn ∗Sn|QoS)

∑ni=1wi
(5.10)

5.2 Service Level Agreements

The Service Level Agreements (SLA) represent important instruments for the

QoS-aware management of services. An SLA is a formal deal, established

between the user and the provider, about all the parameters characterizing a

specific service, both functional and QoS, and the rules and the conditions for

the service fruition.

There are many implementations of SLA (WSLA [69], WS-agreement,

SLAng), each one taking care of the specific aspects of the applicative context

where it is used. In general, each SLA implementation foresees two different

parts.

The first one contains some technical specifications:

1. service name

2. service description, in terms of required input and provided output pa-

rameters.

3. involved participants: provider, user and any third party entities able to

ensure a ”trusted” execution of the service.

4. service access mode, i.e. protocols or exchanged messages.

5.2. Service Level Agreements 117

The second part, instead, is used to specify the non functional parameters

related to the service:

1. service cost

2. QoS section, consisting of the list of all the QoS parameters, negotiated

between user and provider, with their respective values(or ranges).

3. exceptions section (optionally), i.e. the list of couple (”condition over

parameters”, ”cost”), negotiated between user and provider, used as

penalties (in terms of reduction of the service cost) if faults happen

or as benefits in case of better (in terms of values of QoS parameters)

service execution.

In this chapter, I take into account two important topics related to SLA man-

agement.

The first one regards the use of SLA templates, i.e. standard pre-defined struc-

tures that define the behavior that provider and user have to adopt to reach a

common target. These structures are very useful in that they simplify consid-

erably the negotiation phase because they put the focus directly on ”what is

provided”.

The second aspect, fundamental in the proposed SLAmanagement system, re-

gards the capability of establishing specific boundaries when, after an agree-

ment violation, recovery activities have to be started. An SLA is a binding

agreement: a provider, that is selected based on its promised performance,

is bound to guarantee the proper service fruition. If this does not happen, the

user must be refunded, in a partial or total way, based both on the service level

and on the parameters involved in the failure.

An example of ”exceptions” section in an SLA is:

1QoS section :

118 Chapter 5. QoS-aware Service Composition

2responseTime = 375 sec

3service cost = 2$

4

5Exception section :

6i f responseTime < 350 sec

7 then cost = 2 . 5 $

8i f 400 < responseTime < 500 sec

9 then cost = 1 . 8 $

10i f 500 < responseTime < 600 sec

11 then cost = 1$

12i f responseTime > 600 sec

13 then cost=0$

The exceptions are very important in services composition because they

allow to build alternative solution for recovering the possible faults. In fact,

using ad hoc techniques for the management of exceptions, it is possible to

change, at run time, the set of services involved in the composition in order to

recover delays and agreement violations.

5.3 A fast technique for the composition of ser-

vices

The composition of services is an important issue in Service Oriented Ar-

chitectures because it allows the creation of new complex services by the

use of autonomous and independent simple services. The proof of this is

given by the great quantity of scientific works (CANS, BPEL4WS, SWORD,

QUEST [70]) that take into account this issue (see Section 5.4) and propose

different strategies for having robust, adaptable, reliable and fault tolerant

5.3. A fast technique for the composition of services 119

composed services. Each composition strategy, in general, foresees three

main phases:

1. the discovery phase, i.e. the phase where the possible providers of each

basic service is identified;

2. the execution phase, i.e. the phase where the execution path is set up

and the composed service is run;

3. the exception management phase, i.e. the phase where it tries to restore

the correct execution of a composed service after that a fault in one or

more involved services has happened.

After a short description of the service discovery protocol adopted in this

work, the attention will be focus on the strategies used both in execution and

exception phases.

5.3.1 The services discovery phase

The first step in a process of services composition consists in the search of

providers for every basic service. It should be note that it is important to

have a certain number of providers for each service in order to increase the

probability to find providers able to fulfill the user requirements. There are

many strategies for services discovery, different both for the technology used

and for applicative scenario: e.g. web services use UDDI, grid services use

MDS or RGMA. The protocol proposed in the last chapter, uses an optimized

version of ”flooding algorithm” to distribute the discovery queries over the

entire network. The use of QoS constraints inside the queries allows the iden-

tification of only those providers able to supply services fulfilling the user

requirements. Here, a brief description of that protocol is given: for details

120 Chapter 5. QoS-aware Service Composition

see chapter 4.

Using the nomenclature introduced in that work, the service user and the ser-

vice provider will be indicated as RqP (Request Peer) and PrP (Provider

Peer) respectively. The RqP sends, in flooding to its neighbor, a Discov-

eryQuery(DQ), a message containing the service name and the QoS require-

ments; the RqP sends a DQ for each basic service and waits for the arrival

of a DiscoveryQueryHit (DQH). The DQH is a response message, sent by the

PrPs that are able to satisfy the RqP request: this message contains informa-

tion about the service location, the values of QoS parameters that the PrP can

supply and an SLA template (5.2) used to create an agreement between par-

ties.

The RqP can receive a huge amount of DQHs: for each received DQH, the

RqP extracts information about the provider location and QoS values pro-

posed and, according to the template, creates an SLA.

The RqP can accept the PrP SLA terms confirming it through an SLA Ac-

cept (SA) message; on the contrary, the RqP can renegotiate some QoS values

exchanging a given number of Negotiation Messages (NMs). This ability is

an important feature because, as will be explained in 5.3.3, it allows to cre-

ate a robust ”execution path”, increasing the fault tolerance of the composed

service. Once the negotiation is finished, the RqPhas an SLA for each DQH

and, as a consequence, more providers for each service: the services discov-

ery phase is completed and it is possible to start the next phase: the execution

one.

5.3.2 Setting the path

A composed service Scmp can be considered as a combination of basic ser-

vices S1,S2, ..,Sn, arranged in serial or parallel manner or, more generically,

5.3. A fast technique for the composition of services 121

Figure 5.1: Example of serially composed service

in a more complex DAG. In order to give a clearer explanation, I take into

account only serially composed services(see fig. 5.1): the proposed solution,

however, can be easily extended to other cases.

The creation of a execution path for the Scmp consists in the selection of a

provider for each service Si|i∈[1,n], and their sequentially invocation.

Considering the providers as vertexes and the links1 between them as edges,

the ”optimal” execution path can be obtained referring to the graphs theory.

All the PrPs involved in the composition process are clustered basing on

type of supplied service (see fig. 5.2): e.g. the providers PrP11 and PrP12,

both suppling the service S1, are collected together and are divided from

PrP21, PrP22 and PrP23 (suppling the service S2) and from PrP31 and PrP32

1Two providers are linked if they are invoked sequentially

122 Chapter 5. QoS-aware Service Composition

Figure 5.2: Clusterization of SLAs

(suppling the service S3).

It should be noted that, since the execution path must have only a single

PrP for each basic service, there cannot be links between two PrPs belonging

to the same service. Under the above mentioned considerations, each

composed service can be considered as a directed graph: G(V,E,C,Q) where

1. V = {PrPi j | i ∈ [1,n], j ∈ [1,nSi]} is the set of providers;

5.3. A fast technique for the composition of services 123

Figure 5.3: The graph representing Scmp

2. E = {ei j | i, j ∈V} is the set of edges. An edge between two providers

exists if and only if the providers are invoked in sequence;

3. C = {cei j | i, j ∈V} is the set of costs (cei j is the cost of the edge ei j);

4. Q= {qSi | i ∈ [1,n]} is the set of values of the user satisfaction required

for the execution of services.

The figure 5.3.2 shows the complete graph with two additional sham vertexes

that represent, respectively, the points of departure and of arrival.

The fundamental characteristics of this graph are the following:

• the PrPs belonging to the same service have the same number of ele-

ment in the InDegree and in the OutDegree set.

124 Chapter 5. QoS-aware Service Composition

• the weights (i.e. the elements belonging to set Q) related to the edges

belonging to the InDegree set of each PrP of the same service Si have

the same value qSi .

• the weights related to the edges belonging to the OutDegree set of each

PrPof service Si, have the same value qSi+1 .

Considering these conditions, the problem of service composition can be ex-

pressed in terms of searching of the “less expensive“ path (abstraction of the

minimum path) that guarantees a global QoS level, given by the user satis-

faction calculated with the function ”normalized differences average”, higher

than an established minimum threshold (in reference to the search of a con-

strained minimum).

This problem, that can be expressed like a multi-constrained path selection

problem, can be resolved using the well-known Dijkstra algorithm. This is

possible since the cited(5.3.1) algorithm for services discovery, guarantees

that every PrP in the graph is able to provide, at least, the desired QoS level

and, as a consequence, the selection of providers can be done considering only

the costs associated to each edge. Under these conditions, applying the Di-

jkstra algorithm, it’s guaranteed that not only the total path has the minimum

cost but also that whichever path, between any two nodes PrPi∗ and PrPj∗,

with j > i, is the minimum. This particular property gives more robustness to

the execution path because it guarantees that, if the PrP related to Si fails, it

is not necessary to renegotiate the agreements with the whole set of services

between Si and Sn (the last one) for obtaining again the minimum path
2, but

only for the failed service(Si).

In fact, as said above, the path included between Si+1 and Sn remains the min-

imum path: choosing the PrP with the minimum cost among the known ones

2As happens in the classical Dijkstra approach.

5.3. A fast technique for the composition of services 125

Figure 5.4: An execution path for Scmp

that offering the service Si, it is possible to rebuild again the whole path with

minimum cost.

The figure 5.3.2 shows a possible ”execution path” for the composed service

Scmp.

5.3.3 The management of exceptions

As described in ”ten pillars world class business process management”, nearly

80% of the time spent in building composed business processes is spent in

exceptions management. This means that each technique of services com-

position has to focus particular attentions on this critical step. The correct

execution of a composed service depends on the correct execution of all basic

services that compose it: if not adequately managed, a failure in one of basic

126 Chapter 5. QoS-aware Service Composition

services can degrade the performance the whole process. Since the considered

scenario, due to its dynamism, its heterogeneity and above all, its distributed

nature, is subject to several kinds of failures, it is essential to adopt several

procedures and/or alternative behaviors in order to restore, in total or - at least

- partially, the correct functioning of composed service in case of failures.

Usually, when an failure in a basic service Si occurs, the value of one or more

QoS parameters can be corrupted, degrading the QoS of the entire process.

In order to avoid this degradation, it is necessary to recompute a new path,

from the service Si+1 to the service Sn, in that the ones previously chosen,

having pre-negotiated agreements, are not be able to restore the QoS level.

The re-computation of a path requires:

• a new discovery phase in order to identify the new providers.

• a new negotiation phase in order to establish the new values of param-

eter in order to complete the process with the desired level of QoS.

• the break of the agreements (SLAs) with those providers that belonged

to first path and do not belong to the new one.

The solutions proposed in literature manage all these issues trying to avoid, or

at least minimize, the degradation of QoS level. Here, I proposed a different

approach for a fast path re-computation: this techniques, based on the concept

of ”compensation”, aims to overcome the mentioned issues exploiting the

”exceptions section” of the SLAs established with the providers of the basic

services involved in the composition.

The idea behind this approach is very simple: if the service Si does not respect

the agreements stated in the related SLA, degrading the overall QoS level, the

user (or an proxy acting on behalf of it) uses the penalties that the provider of

the ith service has to pay to improve the performance of one or more services

5.3. A fast technique for the composition of services 127

among the ones remaining. Considering, for example, the SLA stated with

the service Si:

1QoS section :

2responseTime = 150 sec

3service cost = 5$

4

5Exception section :

6i f 160 < responseTime < 200 sec

7 then cost = 4$

8i f 200 < responseTime < 300 sec

9 then cost = 2$

10i f responseTime > 300 sec then cost=0$

If the service has a responseTime greater than 150 sec, the SLA is

considered broken.

The user, knowing that an SLA violation is occurred, it can invoke one

of the next services warning them, through an apposite signal (e.g. the

boolean variable FAULT), that there was a fault. Invoking a service using

FAULT=true, the user forces the provider to try fault recovery.

E.g, the service S j| j>i, with an SLA like:

1QoS section :

2responseTime = 100 sec

3service cost = 3 . 5 $

4

5Exception section :

6i f FAULT=true

7 then i f 90 < responseTime < 60 sec

8 then cost = 4$

128 Chapter 5. QoS-aware Service Composition

9 e l s e i f responseTime < 60 sec

10 then cost = 5 . 5 $

11i f 110 < responseTime < 150 sec

12 then cost = 3$

13i f 150 < responseTime < 200 sec

14 then cost = 2$

15i f responseTime > 200 sec

16 then cost=0$

it is able to recover the given QoS maintaining the total cost under an es-

tablished threshold.

Using this technique, under given conditions, it is possible avoiding the QoS

degradation (or reducing it to an acceptable value) maintaining the overall

cost under an established threshold, without starting a new path computation,

thus to reduce the number of new involved providers and, as a consequence,

both the negotiation phases and the number of broken SLAs.

Let Scmp the composed services and Si, iε[1,n] the services that compose it.

Let QoScmp the value of expected QoS and QoSi, iε[1,n] the value of QoS re-

lated to the correct execution of Si.

Let DQoSi the degradation of QoS due to the fault occurred in Si (if Si goes

down △QoSi will be equals to QoSi) and △QoSi the added value of QoS of-

fered by Si if the user requires a compensation approach.

The ”compensation” of the DQoSi due to a fault in Si consists in the iden-

tification of the provider of kth service, Sk,k > i, able to satisfy the follow

conditions:










DQoSi−△QoSk < th1

Cost△QoSk−CostDQoSi < th2

. (5.11)

5.3. A fast technique for the composition of services 129

where th1 and th2 are two thresholds related with the QoS degradation and

with the maximum cost acceptable, respectively.

In order to automatize the selection process and to make these operation faster,

the user (or an proxy acting on behalf of it) is supported by two ad hoc hash

tables that suggests the best solution for both th1 and th2 parameters. The

first hash table is indexed by the value of △QoS and, each entry, contains a

list, ordered by the cost, of all the services that are able to compensate that

QoS value. The services are inserted in the hash table at the end of negotia-

tion phase, after that all the SLAs are stated. For each SLAs, the exceptions

section is analyzed: for each additional opportunity given by the provider, the

value of△QoSi is calculated and the service Si is inserted in the related entry.

It should be note that each service can appear several times, as many as the op-

portunities given in the SLA. When different services provide the same value

of△QoS, they are inserted in the hash table under the same index (collision)

and sorted using their cost. The second hash table, instead, is indexed by the

cost and the services, in each entry, are sorted by the△QoS. The process for

the creation of this hash table follows the same rules (inverting the cost and

the△QoS) used to built the first one. If, during the execution phase, an error

occurs (e.g. in the service Si), the user (or an proxy acting on behalf of it)

calculates the value of DQoSi and the penalties that the provider of service Si

has to pay (in term of refunding cost). Basing on these values and on th1 and

th2, the user can obtain the reference to one (or more) provider that:

• at the same cost (considering the th2 value), allows to minimize the QoS

degradation,

• maintaining the required QoS level (considering the th1 value), allows

to minimize the increment of cost,

130 Chapter 5. QoS-aware Service Composition

• is able to maintain the required QoS level at the same cost (considering

the fluctuation due to both th1 and th2).

In case that the provider of S1 fails, going down, the user has to find a new

provider and complete the negotiation phase. In this case, as for services dis-

covery phase, the negotiation phase can obtain a significant advantage using

the searching technique discussed above: this protocol, in fact, foresees the

use of Negotiation Message (NM), a special message that allows SLA rene-

gotiation, adding new clauses at runtime. This technique is very useful when:

• there are a composed services with ”deadline”, in that it avoids search-

ing of new providers for establishing new path and negotiation QoS

values, saving time;

• the failure involves the first services, because there are many other

providers that can be used to compensate the QoS decrement, and, as a

consequence, there is a greater probability to minimize, or eliminate at

all, both additional costs and/or the reduction of QoS level;

• there are many failures: in this case, in fact, the proposed solution could

be able to restore the QoS level on a single provider whereas the other

solutions must re-compute the path each time an error occurs, wasting

time.

The proposed technique, instead, could be ineffective when the fault happens

at the end (i.e. on one of the last services available) of given work-flow.

In fact, the smaller the number of services available for the ”compensation”

process, the smaller the probability to satisfy the above mentioned recovery

conditions (see eq. 11).

5.4. Related work 131

5.4 Related work

The issues related to the composition of services under QoS constraints are

gaining attention and have been addressed in a number of recent works.

[71] presents a framework for autonomous and coordinated SLA negotiation

and re-negotiation through an agent-oriented solution, in order to face the

adaptive service composition provision. In this framework autonomous ne-

gotiation can be carried out in a coordinated fashion to determine QoS con-

straints for individual services that collectively fulfill end-to-end QoS using

the Stochastic Workflow Reduction (SWR) algorithm for the decomposition

of total QoS in a collection of atomic QoS. Another important aspect of this

framework is the possibility to re-negotiate the SLAs in case of breaks through

the Iterated Contract Net Protocol (ICNP). However this approach lacks sup-

port for the management of penalties. [72] presents a framework for the re-

source provisioning problem in service composition subject to multiple QoS

constraints and an SLA violation penalty for differentiated customer service,

defining, therefore, a QoS index for service selection and quantifying these

QoS metrics and their SLA violation penalties. The central question of this

paper is similar to those described in my work: to solve a QoS-constrained

resource provisioning problem, i.e. minimize the overall cost of the selected

service resources required while satisfying SLA requirements. The solutions

adopted, instead, are different: while we use a decentralized approach to com-

pose the service, [72] refers to a central QoS manager that handles each aspect

of the composition. Differently from our approach, the failure of this com-

ponent and/or of the associated service broker could be catastrophic for the

whole system. Moreover the management of the penalties simply focused on

the selection of new service sites for all the services that are broken, without

any consideration about the possibility to handle the QoS parameters to try to

132 Chapter 5. QoS-aware Service Composition

contain the cost of the SLA violation (that represents the core of the solution

here presented).

[73] presents Agflow, a middleware platform able to address the issue of se-

lecting Web Services for the purpose of their composition in a way that maxi-

mizes user satisfaction expressed as utility functions over QoS attributes. The

paper discusses two alternative QoS driven service selection approaches for

composite service selection: one based on a local optimization and the other

on global planning. Only the second alternative can be compared with our

work. Our approach is based on the optimization of a parameter, the user sat-

isfaction, by means of a particular version of Dijkstra’s algorithm, while Zeng

et al. uses an extension of Multiple Criteria Decision Making (MCDM) tech-

nique [74]. The differences between the two approaches depends on many

factor, the main is the reference architecture: we refers to a fully decentral-

ized Grid-P2P context with could be extended to a generic SOA, while Zeng

et al. refers explicitly to a Web Services context, where the MCDM technique

is a good solution. [75] focuses on the composite service re-planning during

execution. This paper presents a trigger that replannes the composite service

when intercepts a QoS deviation from the initial estimation within a services

that is executing.To realize this issue, Canfora et al propose an approach that

relies on a proxy-based architecture to permit the binding between abstract

and concrete services.

Determining the best discretization of a composite service is an optimization

problem, aiming to: i) maximizes a fitness function based on a set of QoS

attributes, and ii) meet the constraints specified for some of those attributes.

The authors analyze the above problem like a NP-hard, investigating the effect

of different strategies: Integer Programming [73], Genetic Algorithms [76],

the Constraint Programming [77]. These three approaches provide good re-

sults if there are not specific time constraints. For services requiring a quick

5.4. Related work 133

response (as those considered in our work) it is necessary to pursue a trade off

between a possible improvement gained with re-planning and the replanning

overhead on response-time. For these reasons our approach uses a replan-

ning strategies that doesn’t assure the optimization of the whole composite

service, but is very fast and present a crucial features (in according to our

opinion): it chooses the replacement that best contains the costs of the com-

position. [78] is focused on the guaranteed path selection inside a Service

Overlay Network (SON) wherein there are a set of component services that

act as building blocks for more advanced services, which can be created by

combining these component services in series or parallel configurations. The

composition of the service is performed through the selection of a path be-

tween a source and a destination that passes through a specific set of overlay

nodes that satisfy one or more QoS requirements specified by the user. This

approach uses the K-Closest Pruning (KCP) algorithm to solve the problem

of multi-constraint service path selection for SON in polynomial time.

[79] presents a QoS-aware service composition heuristic algorithm able to se-

lect a set of interconnected domains with specific service classes. Moreover

when one or more domains fail to deliver their promised QoS performance

during the service session, it performs a self-adaption by seeking an alterna-

tive communication path that satisfies the original QoS requirements. The

target of the adaptation is to cause as little service disturbance as possible,

through a simple network adaption algorithm that tries to find a minimal cost

alternative path that utilizes as much of the old path as possible.

[79] uses a selection approach based on global allocation of tasks of services

using integer programming. It presents AgFlow a middleware platform that

enables the quality driven composition of web services. In this approach the

adaption of the system related to a service breach is performed through an

adaptive execution engine which reacts to changes occurring during the exe-

134 Chapter 5. QoS-aware Service Composition

cution of a composite service by re-planning the execution in order to ensure

that the total QoS is respected.

QUEST, [70], a framework that provides both initial service composition,

which can compose a qualified service path under multiple QoS constraints,

and a dynamic service composition, which can dynamically recompose the

service path to quickly recover from service outages and QoS violations. For

the initial composition it uses a modified Dijkstra algorithm by comprehen-

sively considering multiple constraints. For the dynamic service composition

it uses two algorithms: DQSC (dynamic Qos-assured Service Composition)-

complete and DQSC-partial. In the first case, it tries to rebuild the whole path,

in the second it tries to reuse as much as possible the old path. However, the

search heuristic only attempts to find a feasible path, rather than an optimal

one.

In eFlow, [80] the definition of a service node contains a search recipes repre-

sented in a query language. When a service node is invoked, a search recipe

is executed in order to select a specific service. No QoS model is explicitly

supported.

Finally, an approach for monitoring service compositions is presented in [32].

Here, monitors are defined as additional services of a process and used to

validate contracts of the individual services, expressed through assertions in

the process specification. [81] proposes a interesting framework for checking

requirement compliance during the execution of a service. In this approach

the expected behavior and assumptions are expressed in event calculus.

5.5. Conclusion 135

5.5 Conclusion

In this chapter I described an innovative technique for guaranteeing the main-

tenance of QoS level in composed services belonging to different providers

within a P2PGrid environment.

The proposed solution is innovative because it introduces the concept of ”QoS

compensation”. If the ith service fails, violating the agreements and degrad-

ing the overall QoS, the provider has to refund the user: the user can use this

refund as additional resources for asking better performance to one or more

of the following services in order to compensate the QoS violation.

Using the concept of ”compensation” and negotiating effectively the values of

refunds stored in the ”exception” section of SLAs, it is possible to implement

a fast recovery strategy for avoiding QoS level degradation due to services

failures. This technique works well when there are errors in ”long-terms”

composed services, in presence of many failures or when those failures hap-

pen in one of the first basic services. This happens because this technique

avoids the re-computation of ”execution path”, ever necessary in the other

strategies proposed in literature, reducing the references to new services and,

as a consequence, to new processes for services discovery and negotiation.

136 Chapter 5. QoS-aware Service Composition

Chapter 6

Applicating ARM among a

multicore Cloud environment

Cloud computing is, today, the most significant and diffused example of Ser-

vices Oriented Architecture.

This is mainly due to the widespread adoption of virtualization technologies

that, ensuring the isolation among the VMs, allow Cloud to manage a huge

amount of software and hardware resources in a simple and extremely flexible

way.

However, if not properly managed, the virtualization can adversely affect the

underlying hardware performance: for instance, the current solution are not

able to exploit, by default, all the functionalities offered by the multicore sys-

tems.

Moreover, these solutions do not guarantee the performance isolation among

virtual machines and this makes impossible the creation of any form of QoS-

guaranteed services management.

This requires the full control over the hardware resources: every QoS-aware

137

138 Chapter 6. Applicating ARM among a multicore Cloud environment

Figure 6.1: Reference Scenario

request done by an user, containing parameters as execution time, waiting

time, security and robustness, is translated into specific physical and logical

constraints about the number and the types of resources managed at low layer.

In this chapter the author proposes a Resources Management System (RMS)

based on ARM, a behavioral pattern designed to provide, through VM al-

location and advanced resource reservation, QoS-guaranteed services in a

multicore-based cloud system.

6.1 Reference Scenario

The reference Cloud environments consists of a set of multicore machines,

connected via a shared communication channel (shared memory, dedicated

bus as PCI-Express or socket over Giga-Ethernet or Infiniband). In my work

I refer to this system in terms of Cloud Elements (CEs), logical entities in-

volving both the underlying hardware resources and the software components

6.1. Reference Scenario 139

for managing and exploiting these resources. ARM is the component of each

CE representing the ”access point” for the considered cloud: it handles the

scheduling issues and manages the allocation and the reservation of the re-

sources for the execution of the Virtual Machines (VMs). In this chapter, as

commonly happens in cloud, services requests of users are mapped on VMs,

logical containers providing ”well defined” environments for their execution.

ARM does not act directly on the resources but it exploits the management

functionalities offered by a Virtual Machine Monitor that, in my work, is the

Hypervisor of Xen [82] (see the subsection 6.1.3). For running, each VM

needs of a specific set of resources: one or more cores, a fraction of the sys-

tem memory and a set of I/O devices. There are many ways for mapping VM

on the resources (e.g. one VM - one core, one VM - multicore, many VMs

- one core): ARM makes this choice basing on the performance and the QoS

requirements required by the users. As described in fig. 6.1, the end user

forwards to CE a request for a service execution with a given QoS profile(see

subsection 6.1.1). The CE processes the request in order to understand if the

specific service can be provided; in positive case, the VM containing the ”ex-

ecution environment”, created by the user itself or chosen among the ones

provided by the CE, is allocated, by the ARM and Hypervisor, on the most

suitable resources ready for its execution.

6.1.1 QoS profile and SLA

Each time it makes a request for the execution of a service, the user can

specify a list of attributes on the software and hardware facilities needed

for the service execution. In the following, QoS parameters defines the at-

tributes/items of the list and QoS profile indicates the requirements and con-

straints on the service execution expressed by that list. In general, it is possible

140 Chapter 6. Applicating ARM among a multicore Cloud environment

to distinguish two different types of QoS parameters:

1. functional, those based on the quantitative characteristics of the hard-

ware infrastructure, i.e. network latency, CPU performance, storage

capacity;

2. non functional, those based on the qualitative characteristics of the ser-

vice required: i.e. reliability, availability, robustness, responsiveness,

costs.

If the end user defines in his requests a QoS profile, the related service

will be referred as QoS-guaranteed service; conversely, the service will be

referred as best effort service. For each QoS-guaranteed service, there is

a negotiation phase between the end user and the service provider: if it

concludes with success, the two parties stipulate a Software Level Agreement

(SLA) [51, 52, 83], a formal document that contains all the information about

services exploitation, as protocol adopted, messages exchanged, third-party

entities involved and penalties in case of agreement breach, including,

overall, the list of the values of both functional and non functional parameters

negotiated between the two parties.

6.1.2 The influence of resources virtualization on QoSman-

agement

The provisioning of QoS-aware services requires in general a management

system divided in two different layer.

The higher one, the applicative layer, is the coordinator and provides the

user interface: it accepts the requests coming from the users, translates the

6.1. Reference Scenario 141

Figure 6.2: QoS management layers

required QoS parameters in constraints over the underlying resources, creates

the SLA if the negotiation process is competed successfully and, finally,

supervises the execution of service in order to avoid breaches of SLA.

The lower layer, the resources one, plays a fundamental but passive role. It

consists of a software component, acting as an ”access point” for resources

functionalities, that enforces the commands coming from the applicative

layer.

However, in the considered scenario,the adoption of virtualization technolo-

gies modifies the mapping QoS requests-resources in QoS requests-virtual

machine-resources, introducing another layer, the ”virtualization” one (see

fig. 6.2). In this scenario, the user requests are firstly translated, in the ap-

plication layer, in parameters used for the configuration of one or more VMs

able to execute the required service and, subsequently, in the virtualization

142 Chapter 6. Applicating ARM among a multicore Cloud environment

layer, these VMs are mapped on the underlying resources according to the

allocation and reservation policies adopted in the Cloud system. The mapping

VMs-resources is done using the functionalities offered by the resource layer

that, in this case, is divided in turn in two sub-layer: the SW-resource layer,

constituted by the Hypervisor, and the HW-resource layer, that takes into

account all the hardware resources managed by the Hypervisor.

The interactions between virtualization and resources layers, and in particular

the mapping VMs-resources, have a crucial importance in the management

of QoS-guaranteed services. In fact, the number and the type of resources

dedicated to a VM influences the performance of the services running inside

the execution context represented by the VM itself. This mapping, usually, is

done automatically basing on the QoS profile required by the user according

to predefined allocation policies. However, especially for expert users, the

system foresees the possibility to mapping manually the VM over a given set

of resources.

As shown in fig. 6.1, the user requests contains, in addition to the re-

quirements and constraints expressed in the QoS profile, a section for the

configuration of the VMs over the physical hardware resources. This section,

in particular, contains indication about OS, number of core involved, size and

type of memory required, number of I/O channels, etc, useful to understand

which resources have to be reserved for obtaining guarantee about VM

performance. Moreover, the proposed system gives the ability to associate a

start time and duration to a reservation, making possible the both just-in-time

allocation and advanced resources reservation.

The use of virtualization, finally, allows the user to estimate the behavior of

its service with an high degree of accuracy.

The service, in fact, runs within a specific VM on a well-known hardware

architecture. This means that it is possible executing specific profiling of that

6.1. Reference Scenario 143

service by means of appropriate benchmarks.

The results of these benchmarks, done over different hardware configuration,

constitutes a VMs performance catalog that the providers offers to their users

for foreseeing the performance of their own services.

runs within a specific VM on a well-known hardware architecture. This

means that it is possible executing specific profiling of the user applications,

by means of appropriate benchmarks. Since the applications will run on the

same VM and on the same hardware configuration used in the tests, the user

has got the guarantee that the execution of the own application will follow

the behavior profiled.

6.1.3 The resources reservation and the Xen Hypervisor

The concept of resources reservation is strictly related to the concept of re-

source usage: a resource is reserved by one or more tasks if and only if they

are the only entities allowed to run on the resource. This means that a re-

source can be reserved if and only if it is possible to have a complete control

on the accesses on the resource. This ability, in general, is a prerogative of

the resources manager. In the reference scenario here considered, the com-

putational resources belonging to the cloud are managed by Xen, an ”open

source” virtual-machine monitor able to give guarantees on the precise man-

agement of the resources. Xen offers a set of virtualization technologies for

several hardware architectures (IA-32, x86-64, Itanium, ARM). Born in the

Computer Laboratory of the University of Cambridge Computer, Xen is a

free software, licensed under the GNU General Public License (GPLv2), de-

veloped and maintained by the Xen Community. The core component of Xen

is the Hypervisor (i.e. the Virtual Machine Monitor -VMM-): it provides

144 Chapter 6. Applicating ARM among a multicore Cloud environment

both the abstraction layer for the hardware resources of the host machine and

some fundamental mechanisms, like CPU scheduling and main memory par-

titioning, that the above level, the Domain 0, can exploit for overseeing and

managing the VMs that will run over that machine. The Domain 0 (dom0) is

a special VM having a modified version of the Linux kernel: it starts automat-

ically when the Hypervisor boots and manages and monitors the behavior of

all the other VM, called Domain U(domU) running on the Hypervisor. This

is possible since it is the unique VM having special management privileges

and direct access to the physical hardware. dom0 of Xen represents, indeed,

the key component for controlling the exploitation of the hardware resources

and, as a consequence, the key component on which building the reservation

support. Configuring the dom0, it is possible to state precisely and in a deter-

ministic way the quantity of hardware resources to be assigned to each one of

the running VMs and, thus, to guarantee the required performance. This con-

figuration phase is mandatory: in fact, while Xen provides faults and security

isolation for VMs runnings on the same resource with respect to faults and se-

curity, it does not provide performance isolation. As shown in QClouds [84],

for example, the performance of a set of VMs consolidated on a multicore

hardware with a shared Last Level Cache (LLC) can not be foreseen ”a priori”

because of the VMs interfere with each other. To overcome these issues, Xen

provides a set of commands that allow to specify, for each VM, the quantity of

hardware that can be accesses. The reservation manager here proposed uses

the commands to drive dom0 to enforce the required hardware exploitation

assuming the complete control of the underlying system. It is possible, for

example, to assign a given amount of main memory to a specific VM (using

mem-set of mem-max commands), to dedicate one of more core for the execu-

tion of a single VM (using vcpu-pin command) or to regulate the scheduling

of several VMs on the same CPU (with sched-credit command). The control

6.2. Advance Reservation 145

is not only for computational resources: using the pci command, it is possible

to dedicate a given pci device, for example the network controller, to a single

VM.

6.2 Advance Reservation

6.2.1 Resources Management Systems

A computing system can offer an environment for secure, reliable, robust and

QoS-aware services execution only if it can rely on an effective Resources

Management System (RMS).

The RMS represents the access point for resources exploitation: its main

task concerns the managing the life-cycle of services execution requests. In

general, the functionalities provided by the RMS can be summarize in three

fundamental steps. The first step concerns the collection of the requests

coming from the users. It foresees that the RMS gets the requirements of

the user on the service execution and translates them into constraints for the

underlying hardware resources. For example, if an user asks for executing

a services without any waiting time, the RMS have to find a free resource.

Or, if an user asks for executing a services with an high level of robustness,

the RMS has to execute the service, in parallel, on two or three different

resources.

In the end of this initial interpretation and translation phase, the RMS has

a certain number of physical and logical constraints about the type and the

number of resources needed for executing the service.

These constraints represent the input for the second step. It consists in

checking if, among the ones available, there are enough resources able to

execute the services according to both temporal and physical constraints.

146 Chapter 6. Applicating ARM among a multicore Cloud environment

If the RMS does not find an adequate amount of resources, the request is

rejected. When, instead, the RMS identifies these resources, reserves them

for given time intervals. Some RMSs (the more sophisticated one) could

provide a negotiation step for offering to users the ability to execute their

services with a lower QoS with, for example, a lower cost. The reservation

of the resources and the subsequent execution of the services over them

represents the third and last step.

Each RMS characterizes each of these steps with own specific functionalities,

basing on the applicative scenario. In the next section, I will introduce a

behavioral design pattern for a RMS supplying QoS-guaranteed services in

cloud environments called ARM.

6.2.2 Model of Advance Reservation implemented with

ARM

ARM provides the software tools for supporting both just-in-time VMs allo-

cation and advanced resources reservation in a Cloud environment.

Fig. 6.3 shows the Finite State Machine for the management of an advance

reservation (AR) performed using ARM˙

The starting state is represented by the Waiting for request state: the ARM is

idle. When a request arrives, the ARM goes in the Evaluating request state.

Here, the ARM extracts the user requirements, translates them in physical

(hardware requirements) and logical (software requirements) constraints for

the underlying resources and checks if these constraints can be satisfied. If

ARM find the needed resources, i.e. the request can be satisfied, it goes in the

Reservation established state. Here, ARM sets up the Hypervisor for config-

uring the hardware resources.

6.2. Advance Reservation 147

Figure 6.3: Extended state diagram for advance reservation in ARM

Instead, if there are not enough resources to guarantee the required QoS level,

ARM goes in the Negotiation state. In this state the ARM using a given ne-

gotiation protocol (e.g the one used for stating the SLAs in chapter 4), try to

reach an agreement with user for the provisioning of a service with a lower

level of QoS (or an higher one, if it needs to user). If the user accepts this QoS

degradation (e.g. obtaining the service at lower cost), the resources involved

are reserved and ARM goes in the Reservation established state. If, instead,

the user does not accept the QoS degradation, he withdraws his request: ARM

goes in the Reservation canceled state. In the Reservation established state,

the reservation has been accepted but start time is not yet reached. From here,

the reservation can become:

• active, if the start time is reached: the ARM goes in the Reservation

148 Chapter 6. Applicating ARM among a multicore Cloud environment

active state and the VM is allocated on the resource;

• canceled, if the user deletes its reservation request: the ARM goes in

the Reservation canceled state;

• altered, if the user user asks for modifying some parameters: the ARM

goes in the Negotiation state;

From the Reservation active state, the ARM can go in three different states.

If the user wants to delete or modify his request, ARM goes, respectively, in

Reservation canceled and Negotiation states. If, instead, the reservation ends

normally, the ARM goes in the Reservation completes state: its work ends

and the resource returns to be free. It is important to note that ARM allows

users to modify the parameters of reservation both when the reservation is

established and also when he has some service requests already in progress.

In this way, the user that has overestimated the reservation time can release

the resources once its services is terminated and, on the contrary, the user that

has underestimated the duration of reservation can extend it to complete its

service.

ARM is able to provide all this functionalities through the coordination of the

set of software components that I have organized in a pattern. The next section

illustrates the objective, the structure and the functioning of this pattern.

6.3. The Pattern: objectives, components and functioning. 149

Figure 6.4: Interaction among the components constituting the pattern

150 Chapter 6. Applicating ARM among a multicore Cloud environment

6.3 The Pattern: objectives, components and

functioning.

6.3.1 Objective

The pattern here proposed aims to provide a reliable, flexible and easy-to-

adapt mechanism to manage both just-in-time allocation and advanced reser-

vation of resources in a Cloud environment.

Although the pattern can be used for managing several kind of resources, for

the aims of this chapter, I will focus on the reservation of computational re-

sources. In particular, since the considered scenario is based on multicores

machines, the reservation will be referred to each single core of the available

hardware. In the following, resource and core will be used as synonymous.

The proposed pattern:

• provides a general solution adaptable to different Cloud middlewares;

• enforces QoS resources management allowing to meet requirements,

constraints and, in general, all the parameters characterizing the reser-

vation requests;

• exploits the functionalities of underlying resources layer (in this case,

XEN) to perform VM submission, VM execution, resources state up-

dating, and VM checkpoint and migration on behalf of the reservation

manager;

6.3.2 Structure of pattern

The architectural structure of the ARM pattern is shown in the fig. 6.4 and

consists of five main elements: ARMServer, Table, TableManager, ARMCon-

6.3. The Pattern: objectives, components and functioning. 151

troller, and (JAM).

• ARMServer is a event-driven proxy responsible for accepting the re-

quests coming from the users (or software agents working on behalf

of them), parsing these requests and, finally, forwarding them to the

ARMController.

• ARMController is the reservations coordinator. It performs all the ac-

tivities related to the allocation and the reservation: it looks for the

availability of the cores, maps the VMs on the cores, manages the reser-

vation life-cycle, monitors the status of active reservations and finally

coordinates the execution of best effort requests allocating the VM on

the resources left free by the manager (i.e not reserved). ARMController

also includes a local fault recovery engine that, in case of failures, tries

to restore the correct execution of the VM using the checkpointing and

migration abilities provided by the JAM .

• JAM is the pattern component that manages the allocation of VMs on

the cores. It also takes care of the issues related with checkpointing and

migration of the VMs among the cores. It represents the lower level of

ARM and the interface with the Xen Hypervisor, by means of which

performs its tasks.

• The Table represents the information repository of the reservation

system that ARM can consult for obtaining information on the actual

and future state of the cores.

In Table, the information are organized in a doubly hashed table, as

shown in fig. 6.5. The first hashtable, on the left in the fig. 6.5, indexes

all the cores by means of their identification (ID, primary key) and of

152 Chapter 6. Applicating ARM among a multicore Cloud environment

Figure 6.5: Hash tables details

the value of QoS level they can provide (QoS, secondary key). Each

one of the elements of the first table contains a second hashtable, on

the right in the fig. 6.5, that holds the information about the state of

the specific core. In particular, this second hash table contains, for

each core, the indication about the time intervals in which the core is

reserved ([R]) with its start time (Start time, primary key) and duration

(Duration, secondary key). This information, organized in epochs

having fixed duration, covers the whole time horizon taken into account

for the reservation. Maintaining references only about the reserved

slots time instead of all the slots that could be reserved, it is possible

to have an infinite time horizon: this means that the pattern can accept

reservation requests for any future slot time.

• The TableManagerrepresents the unique access point to the information

maintained by the Table. In order to add, delete or modify a parameter

related to the reservations, the ARM has to use the functionalities of-

fered by this component. The use of a centralized manager guarantees

the correctness and the consistency of the information in Table.

6.3. The Pattern: objectives, components and functioning. 153

Figure 6.6: Resource reservation: the sequence diagram

6.3.3 Functioning

The functioning of the Advanced Reservation Management Pattern is sum-

marized in sequence diagram shown in Fig. 6.6.

ARMServer waits for reservation requests coming from user. When a request

is received (act. 1), ARMServer parses it (act. 2) to verify whether reservation

parameters are correctly defined (e.g. if they belong to a valid range of values)

and if the user can obtain the specified type and the given amount of needed

resources. If the checks succeed, ARMServer forwards the request to ARM-

Controller (act. 3) and sends a reply back to the client (act. 4) thus notifying

the beginning of reservation process.

ARMController checks (act. 5), through the TableManager whether the cores

154 Chapter 6. Applicating ARM among a multicore Cloud environment

pool under its control can satisfy the user requirements. The TableManager

(act.6), through the Table identifies the cores able to provide the required QoS

level and verifies whether there is a sufficient quantity of free slots for com-

pleting the user service. Then, TableManager returns this information to the

ARMController which take a decision, basing on the reservation policies (act.

7). If the reservation can be performed, ARMController asks (act. 8) Table-

Manager to reserve those slots time for executing the user service. Instead, if

it is not possible, it notify to ARMServer that the reservation can not be done.

At the same time, ARMController forwards (act. 9), through ARMServer (act.

10) the process result to the user that has submitted the request.

When the start time of an advance reservation is reached, ARMController

through JAM (act 11) and Xen Hypervisor, instantiates the VM on the core

and start the service execution.

When the reservation time expires, JAM alerts ARMController.

If the duration of the reservation has been correctly estimated, i.e if the all the

services related with the reservation have been completed before the expira-

tion of reservation time, the ARMController frees the cores, releasing the VMs

associated with it, and updates the associated entries in Table, through Table-

Managerİf, instead, the time for reservation expires while the VM is even

running on the reserved resources, the ARMController has to decide whether:

• to extend reservation time (if it is possible, i.e. if the availability of the

specific resource exceeds the request);

• to checkpoint the VM and, eventually, migrate it on another free core;

• to kill it, stopping the execution of the VM on the reserved resources.

ARMController takes this decision basing on the agreement stated with the

user, on the resources management policies and on the state of available re-

6.3. The Pattern: objectives, components and functioning. 155

sources.

6.3.4 Some notes about JAM and VMM

The JAM uses Xen as Virtual Machine Monitor (VMM) for managing the

resources of the Cloud.

In particular, JAM exploits the Xen’s Hypervisor i) for having a uniform

vision of the resources available in the Cloud and ii) for executing a VM

maintaining the information about its state.

As said before, JAM is driven by the ARMController the core component of

ARM pattern.

JAM is not able to distinguish between an allocation request and an advance

reservation request: it considers the allocation a border line reservation with

start time set up on the current time. The different management of both ty-

pologies of requests is demanded to the ARMController.

When the ARMController forwards the allocation requests to the JAM , the

requests are enqueued on the specific resource.

The JAM is responsible for getting the request from the resource queue and

forwarding it to Xen Hypervisor, using the commands introduced in section

6.1.3.

JAM uses Xen also for gathering information about resources state. Finally,

as explained in the next section, JAM and Xen cooperate for making possible

checkpointing and migration of VMs.

6.3.5 Checkpointing and migration

Checkpointing and migration of VMs are two fundamental functionalities

in Cloud environments: they improve the resources exploitation allowing to

156 Chapter 6. Applicating ARM among a multicore Cloud environment

modify the scheduling and allocation policies at runtime, adapting the system

to accepts new unforeseen requests or optimizing its performance via load

balancing. These abilities, that are available by default in all the VMMs (Xen

Hypervisor included), are fundamental to avoid the ”reservation holes” effect

that wastes the performance of those system adopting advanced reservation of

resources.

Checkpointing is the operation that allows ARMController to freeze a snap-

shot of the current state of a VM so as it can be restarted from that state

at a later time in another core. This enables the ARMController to modify

scheduling decisions basing on its needs. If the ARMController decides to

no longer allocate a VM on a core, it can checkpoint the VM and preempt

it without loosing the work already made by the service that runs on it. The

VM can resume its execution starting from a checkpoint when the ARMCon-

troller allocates it on a new core. Among the several benefits introduced by

checkpointing mechanisms, one of the most important concerns the robust-

ness of the system: using periodic checkpoints, it is possible restarting a failed

VM from the most recent checkpoint instead of restarting it from the begin-

ning. The ARMController implements checkpoint and migration mechanism

exploiting the functionalities offered by the Xen Hypervisor.

The implementation of checkpoint mechanism uses the following algorithm:

1. save and store the VM identifier

2. stop the VM

3. dump the VM state into a file representing its disk image;

4. flush all the I/O flows

The implementation of VM migration uses the following algorithm:

6.4. Related Work 157

1. check if the disk image of the VM is accessible on the remote node,

2. allocate resources on the remote node,

3. start a lazy copy of the VM memory to the remote node (the VM is still

running),

4. when the memory is copied, stop the VM and complete the transfer of

the VM to the remote node

The components involved in these issues, as mentioned in section 6.3.3, are

the JAM and the Hypervisor.

6.4 Related Work

There are many different solutions for the management of resources in Cloud

Systems, coming both from business companies and scientific community.

ARM differs from these solutions because the allocation and resources reser-

vation policies it provides are strictly oriented to the QoS provision.

Infrastructure as a Service (IaaS) systems, such as Elastic Compute Cloud

(EC2) [85] of Amazon, do not provide such guarantees on the QoS level of

the provided services: they rely on the availability of a huge amount of com-

puting resources and often delegate, to the users, the issues related with the

QoS management. For instance, the SLAs supported by Amazon EC2 con-

sider only the annual uptime percentage, an metric related to the resources

availability, without providing any guarantees that this computing capacity

will be supplied.

Platform as a service (PaaS) systems (such as Google AppEngine [86] and

MS Azure [87]) offer a set of APIs for allowing users to develop services

158 Chapter 6. Applicating ARM among a multicore Cloud environment

able to exploit the features offered by the these kind of systems. Although

they supply many functionalities for automatic scaling up/down and fault-

tolerance management, these systems do not give the ability to define, at the

lowest layer, the mapping between the VM and the hardware resources as,

instead, the proposed solution does.

The problem of mapping VM(or services)-resources is taken into account

both in [88] and in [89].

In [88], the authors describe an utility-based approach for adaptive workload

execution in a cloud environment. In particular, authors design a dynamic

model that, basing on a predefined utility function and on a costs model, is

able to evaluate the performance of any workload on a given execution envi-

ronment and to identify the mapping workload/resources that maximize the

utility function. Similarly Grounds et Al. in introduce a cost-minimizing

scheduling algorithm (CMSA) for scheduling requests of multi-level work-

flows of various types and degrees of complexity [89]. Even this algorithm

assumes that a cost function is provided, and operates by making scheduling

decisions in order to minimize the estimated value of cumulative cost. Dif-

ferently from the approach proposed in this chapter, [88] and [89] focus only

on the problem of workload/resource mapping, without considering the issues

related with advance reservation of the resources.

In [90], instead, the authors tackle the issue related with the resources man-

agement under an economical point of view. They analyze a scenario on

which different providers (Amazon, Microsoft, etc) co-existing in a cloud-

based services marketplace and propose a sensitivity analysis of Nash Equi-

librium of the variation of the prices and QoS level on each provider in respect

to the variation of prices and QoS level in the other providers. In that com-

petitive scenario, where all providers offer to users the same services with

different prices and QoS guarantees, the high manageability provided by the

6.5. Conclusion 159

ability to have the complete control over the underlying resources, obtained

using ARM, could represent the winning strategy to adapt, quickly and easily,

the management policies to the market trends.

6.5 Conclusion

In this chapter I proposed a solution for designing a Resources Management

System (RMS) for cloud-oriented multicore environments.

In particular, I proposed ARM, a behavioral design pattern that defines the

architecture and the interactions among a set of specific software compo-

nents for providing, through VM allocation and advanced resource reserva-

tion, QoS-guaranteed services in a multicore-based cloud system. This chap-

ter introduced the issues related with the QoS management in Clouds, ex-

plainned how the use of virtualization technologies influences the manage-

ment policy and given a detailed description of the proposed pattern in term

of objectives, architecture and functioning. Particular attention, is given to the

interaction between ARM and the Xen Hypervisor, that acts as unique access

point to the underlying hardware resources. The complete control of the re-

sources obtained interacting with the Hypervisor, together with the ability to

planning resources reservations in the future, represents the key aspects of the

ARMfunctioning.

160 Chapter 6. Applicating ARM among a multicore Cloud environment

Chapter 7

Dime Technology

Cloud computing is essentially the ability to acquire or deliver a resource

on demand, configured however the users chooses, and paid for according

to consumption. From a supplier’s perspective, including both internal IT

groups and service providers, it means being able to deliver and manage re-

source pools and applications in a multi-tenancy environment, to deliver the

user an on-demand, pay-per-use service. A cloud service can be infrastructure

for hosting applications or data storage, a development platform, or even an

application that you can get on-demand, either off-site at a provider, such as

SunGard or Salesforce, or built onsite within IT.

The aim of these technology consists in the decoupling of the hardware infras-

tructure and the virtual computing infrastructure. By this way they implement

a virtual grid services network, where they offer a grid of virtual computing,

network and storage resources, overcoming the limitations of present Wide

area distributed system (as Grid) due to their rigid schema.

161

162 Chapter 7. Dime Technology

Today, the virtualization represents the key techonology of this trend, 1 at

least, for two reasons: i) it guarantees the isolation of tenants (to guarantee

fault, configuration, accounting, performance and security (FCAPS) manage-

ment) and ii) improves scalability. Ont the other hand, the ongoing devel-

opment of virtualization poses some at least three questions that must be ad-

dressed.

The first concerns the real scalability of the actual solutions. This is strictly re-

lated to the scalability of the software used for assuring the virtualization, i.e.

the Virtual Machine (VM). The number of guest VMs that can be effectively

consolidated on a hypervisor without disruptive performance impact within

a physical server with the actual technology at best is 10. This means that

a ratio of 1 to 10 is possible to accommodate multiple tenants. Any further

scaling can only be obtained with an architectural transformation to provide

isolation and FCAPS management at much finer granularity at an object level

providing a service in an individual (physical or virtual) server or at a trans-

action (end-to-end customer interaction including execution and persistence)

spanning across multiple virtual servers.

The same scalability problem exists in many-core servers because the current

generation operating systems, such as Linux and Windows, can support only

few tens of CPUs in a single instance and are inadequate to manages servers

that contain hundreds of CPUs, each with multiple cores. It is possible to

definte this gap as operating system gap (the difference between the number

of cores available in an enclosure and the number of cores visible to a single

image instance of an OS). The solutions currently proposed for solving the

scalability issue in these systems, i.e. the use of SSI [91] or the introduction

of multiple instances of the OS in a single enclosure with high-speed con-

1as said form Charles King, Principal Analyst at Pund-IT: ”Without virtualization there is
no cloud that’s what enabled the emergence of this new, sustainable industry.”

163

Figure 7.1: Current data center estimates of Total Cost of Ownership

nectivity (e.g. [92]), are inefficient because they increase the management

complexity.

The second concerns the communication among the VMs. The current vir-

tualization technologies provide only TCP/IP coomunication patter even in

presence of other possibilities (PCI Express, shared memory, etc.), reducing

the performances of the clouds. A last question concerns the future trend

of cloud marketplace. Fig. 7.1 shows current data center estimates of Total

Cost of Ownership over a 5 year period with infrastructure that is virtualized

compared to the infrastructure that is not virtualized.

Few key points to note are:

1. The TCO over a five year period is 1.87 better with virtualization with

150 servers and is 2.04 times better with 1500 servers.

2. First year investments are $1.24M and $5.36M with 150 and 1500

server data centers respectively while the first year savings are $0.57M

and $2.59M respectively.

164 Chapter 7. Dime Technology

3. The infrastructure management costs over 5 years are about 40% to

45% of the total cost with or without virtualization.

4. The software and services costs are approximately 20% of the total cost.

In a data center with 1500 servers, the total cost of infrastructure man-

agement and virtualization software and services costs add up to 70%

of the TCO.

The main conclusion one can draw is that there is still room for improve-

ment to reduce the infrastructure management and virtualization software and

services costs as a percentage of TCO. Even though the TCO reduces sub-

stantially by about a factor of about 2, it is interesting to note that Infrastruc-

ture management cost remains around 40% of the total cost. Virtualization

software and services add about 20% of the total cost. Real progress cannot

be made till the management cost is substantially reduced with real-time dy-

namic and automated computational workflow management.

Facing these three questions probably means rethinking (or at least reexam-

ine) the current server centric computing model that has evolved over decades

when bandwidth abundance and multi-core architectures were not the norm,

because the scenarios are evolved.

In this regard it is possibile to identify two main directions on which to coor-

dinate efforts:

1. Develop a simplification of the architecture to facilitate the decoupling

of hardware infrastructure management from virtual services manage-

ment so that the service workflow implementations are truly distributed

and managed based solely on their latency tolerance and not on geo-

graphical or physical infrastructure boundaries [93–95]. This will al-

low eliminating layers of management infrastructure which burdens the

165

data centers today that has evolved from a server-centric architecture

with limited bandwidth networks.

2. While both Grids and Clouds offer pooling and sharing of distributed

resources, management of resources becomes a critical factor to re-

solve contention based on business priorities of the consumers of the

shared resources. In addition, in order to meet the wildly fluctuating

demand for resources in a mass market, dynamic configuration, Fault,

Accounting, Performance and security management must accompany

the resource sharing infrastructure. Therefore, Investigate ways to im-

plement telecom grade textittrust in the cloud so that services can share

resources distributed over different clouds based on their latency toler-

ance and business priorities.

In a recent work, [96], authors proposes to fill these issues using a new com-

puting model called the Distributed Intelligent Managed Element (DIME)

network computing model.

The model incorporates FCAPS management using a signaling network over-

lay and allows the dynamic control of the computing element with respect

to its configuration, Fault management, Performance management, security

management and accounting management. Such parallel implementation

of signaling and computing networks is feasible today with multi-core,

multi-CPU hardware assisted virtualization.

In my PhD work, my contributions to this techonology mainly focused on:

i) the definition of the basic idea of the DIME computing model, ii) the

realization of the first demo of DIME Network Architecture (DNA), iii)

the implementation of a Linux, Apache, MySQL, and PHP (LAMP) based

services architecture that exploit the functionalities of DNA to demonstrate

end-to-end transaction management with auto-scaling, self-repair, dynamic

166 Chapter 7. Dime Technology

performance management and distributed transaction security assurance.

7.1 Dime Computing Model

7.1.1 FCAPS, signaling channel, execution channel

A DIME is an autonomous computing entity endowed with self FCAPS

management capabilities along with computing capabilities. The concept of

FCAPS management is derived from the Telecommunications Management

Network (TMN). It defines the FCAPS framework:

1. Fault management, by detecting and correlating faults in network de-

vices, isolating faults and initiating recovery actions

2. Configuration management, by providing change tracking, configura-

tion, installation and distribution of software to all network devices

3. Accounting management capability through comprehensive network

usage reports generated by collecting and parsing accounting data

4. Performance management by providing real-time access for the moni-

toring of network performance (QoS) and resource allocation data

5. Security management by providing granular access control for network

resources

Project management is a specific example where Fault, configuration, ac-

counting, performance and security are individually managed to provide an

7.1. Dime Computing Model 167

optimal network configuration with a coordinated workflow. Functional or-

ganizations, and hierarchical and matrix organizational structures are all de-

signed to improve the efficiency and agility of an organization to accomplish

the goals using both FCAPS management and signaling. Connection manage-

ment is achieved through effective communications framework. Over time,

human networks have evolved various communications schemes and signal-

ing forms the fundamental framework to configure and reconfigure networks

to provide the agility. There are four basic abstractions that comprise signal-

ing: Alerting, Addressing, Supervision and Mediation. Thus organizational

hierarchies, project management, process implementation through workflows

are all accomplished through the network object model with FCAPS abstrac-

tions and signaling.

In the same way, each DIME encapsulates the management of the FCAPS

issues at its internal, and uses two channels for coordinating the execution of

workflow wwith the other DIMEs:

• Signaling channel Through it, one DIME signals each other to imple-

ment DIME network management which configures, secures, monitors,

repairs and optimizes the workflow based on workload characteristics,

latency constraints and business priorities specified as service manage-

ment profiles 2 (we call this profile the Service Regulator SR)

• Execution channel Through it, one DIME communicates with each

other to implement a distributed business workflow as a DAG (in the

2Profile based resource management is inspired by Plain Old Telephone Service (POTS).
Everytime, a user want to call anotherone, the network knows both the the service characteris-
tics and requirements of the initiating party and the service characteristics and requirements of
the dialed party, so as to allocate the appropriate resources and initiate the connection. More-
over, the network monitors the connections, bills for the duration and assures the connection
reliability, availability, performance and security. The DIME computing model performs the
same function for the services that utilize computing, network and storage resources.

168 Chapter 7. Dime Technology

von Neumann Stored Program Control Computing model). The tasks

implemented by the DIME node is specified as a DAG (called the Ser-

vice Package SP).

DIME integrates the computation and its management at the computing

element level. By this way, it exploits distributed resources, parallelism

and networking to provide real-time telecom grade availability, reliability,

performance, and security management of distributed workflow services

execution. In addition, it uses signalling to monitor and control the business

workflow implementation using the parallelism of multicore systems.

Signaling allows prioritization of the network objectives and allocates

resources in the form of distributed DIME to accomplish the objectives

and provides management control to mitigate risk. Elaborate workflows

are implemented using the signaling mechanism to specialize and distribute

tasks to various DIMEs. The DIMEs are used to collect information, analyze

it and control themselves as a group to accomplish the required goals. A

key factor of the success of this model is the parallelism of service delivery

and the service management networks using a signaling OS to manage the

FCAPS element of the individuals and the group connection by leveraging

the individual FCAPS management capabilities.

According to this vision, the computation spans over a network of DIME

that adapts its composition and its features so as to optimize specific per-

formance parameters. This is in total contrast to current approaches where

the Operating Systems and management systems, which were designed in

the days of CPU and memory resource constraints, and labor dependent

administration paradigms are used to implement both computation and

management workflows. Figure Referencespicture2 shows a comparison

between the von Neumann SPC computing model and the DIME computing

7.1. Dime Computing Model 169

model. There are three key features in this model that differentiate it from all

other models:

1. The self-management features of each SPC node with FCAPS man-

agement using parallel threads allows autonomy in controlling local

resources and provide services based on local policies. Each node

keeps its state information and history1 of its transactions. The DIME

node provides managed computing services, using the MICE to other

DIMEs based on local and global policies.

2. The network aware signaling abstractions allow a group of DIMEs to

be programmed to manage themselves with sub-network/network level

FCAPS management based on group policies and execute a service

workflow as a managed directed acyclic graph (DAG).

3. Run-time profile based FCAPS management (at the group level and at

the node level) allows a composition scheme by redirecting the MICE

I/O to provide recombination and reconfiguration of service workflows

dynamically at run-time.

7.1.2 DIME Components

Each DIME is an autonomous computing entity endowed with self FCAPS

management capabilities along with computing capabilities. It is imple-

mented as group of multi-process, multi-thread components, as shown in

Figure 7.3. Each one of the components constituting the DIME performs a

170 Chapter 7. Dime Technology

Figure 7.2: The Resiliency, Efficiency and Scaling of Information Technology In-
frastructure

7.1. Dime Computing Model 171

Figure 7.3: The Anatomy of a DIME with Service Regulator and Service Package
Executables

specific function and, based on its configuration given to it by an external

configuration file or by commands; each DIME can assume several roles (see

next section) in the management of workflows.

The main components are the following:

• The DIME local Manager (DLM) is the core of a DIME. It sets up

the other DIME components; it monitors their status and manages their

execution based on local policies. Upon a request to instantiate a DIME,

the DLM, based on the role assumed by the DIME, sets up and starts

three independent threads to provide the Signaling Manager (SM), the

Managed Intelligent Computing Element (MICE) Manager (MM) and

the FCAPS Manager (FM) functions.

• The SM is in charge of the signaling channel. It sends or receives com-

mands related to the management and setting up of DIME to guarantee

a scalable, secure, robust and reliable workflow execution. It also pro-

172 Chapter 7. Dime Technology

vides inter-DIME switching and routing functions

• The MICE is in charge of the execution of a task on the assigned re-

sources. It is istantiated from the MM. All the actions related to the

task execution, which are performed by the MICE including memory,

network, and storage I/O, are parameterized and can be configured and

managed dynamically by the SM through the FM via the MM. This

enables both the ability to set up the execution environment on the ba-

sis of the user requirements and, overall, the ability to reconfigure this

environment, at run- time, in order to adapt it to new, foreseen or un-

foreseen, conditions (e.g. faults, performance and security conditions).

• The MM is a passive component which starts the MICE, monitors its

execution and, on completion, notifies the event to the SM.

• The FM is the key component of the architecture. It processes the events

received from the SM or from the MM and configures the MICE appro-

priately to load and execute specific tasks (by loading program and data

modules available from specified locations). The main task of FM is

the provisioning of FCAPS management for each task loaded and ex-

ecuted in the local DIME. This means that it handles autonomously

all the issues regarding the management of faults, resources utilization,

performance monitoring and security. For this reason it provides a sep-

aration of concerns which decouples the management layer from the

execution layer

The DIME network computing model thus allows the description and

management of the service to be separated from the execution of the service

(leaving it in MICE). The signaling control network allows parallel manage-

ment of the service workflow. In step 1, the service regulator instantiates the

7.2. Dime Network 173

DIME and provisions the MICE based on service specification. In step 2, The

MICE is loaded, executed, and managed by the service regulation policies. At

any time, the MICE can be controlled through its FCAPS management mech-

anism by the service regulator. The MICE provides the logical type that per-

forms everything that is feasible within that logical type (a Turing machine)

and the DIME FCAPS management provides a higher logical type (manage-

ment of the Turing machine) which describes and controls what is feasible in

the MICE. These features provide the powerful genetic transactions namely,

replication, repair, recombination and reconfiguration that have proven to be

essential for the resiliency of cellular organisms [97].

Figure 7.4 describes the separation of service regulation and service execution

workflows.

7.2 Dime Network

7.2.1 Architecture

The execution of a workflow (formalized by a DAG) needs the creation of an

ad hoc network of DIMEs. In order to have two separated and parallel lay-

ers for managing and executing the workflow,each DIME network is imple-

mented using two classes of DIMEs: Signaling DIMEs and Worker DIMEs.

The first class (Signaling DIME) foresees two type, called respectively Su-

pervisor and Mediator, for the management layer at the network level.

The Supervisor sets up and controls the functioning of the sub network of

DIMEs where the workflow is executed. It coordinates and orchestrates the

DIMEs through the use of the Mediators. Mediator is a specialized DIME

for providing predefined roles such as fault or configuration or accounting or

performance or security management.Each one of this roles is performed by

174 Chapter 7. Dime Technology

Figure 7.4: The Anatomy of a DIME The Anatomy of a DIME and the separation
of service regulation and service execution workflows

7.2. Dime Network 175

a specific manager:

1. Fault Manager guarantees the availability and reliability in the sub net-

work by coordinating the Fault components of the FM of all the DIMEs

involved in the workflow provisioning. The Fault Manager DIME de-

tects and manages the faults in order to assure the correct completion

of the workflow.

2. Configuration Manager performs network-level configuration manage-

ment and provides directory services. These services include regis-

tration, indexing, discovery, address management and communication

management with other DIME networks.

3. Account Manager tracks the utilization of the network wide resources

by communicating with the individual DIMEs.

4. Performance Manager coordinates performance management at the net-

work level and coordinates the performance using the information re-

ceived through the signaling channel from each node.

5. Security Manager assures network level security by coordinating with

the individual DIME component security.

The second class, the Worker DIMEs, constitutes the execution layer of the

network. They perform domain specific tasks described in the DAG. A worker

DIME, in practice, provides a highly configurable execution environment

built on the basis of the requirements/constraints expressed by the develop-

ers and conveyed by the Service Regulator. The deployment of DIMEs in the

network, the number of signaling DIMEs involved in the management level,

the number of available worker DIMEs and the division of the roles are not

prefixed, but they are established on the basis of the number and the type of

176 Chapter 7. Dime Technology

tasks constituting the workflow and, overall, on the basis of the management

profiles related to each task.

Note that the profiles play a key role in the DIME model; each profile, in fact,

contains the indication about the control and the configuration of both the

signaling layer and execution environment for setting up the DIME that will

handle the related task. Each node of the DAG related to a workflow contains

both the task executables 3 and the profile DAG as a tuple ¡ task (SP), pro-

file (SR)¿: in this way, it is possible not only to specify what a DIME has to

do or execute, but also how DIME has to do everything and under what con-

straints (i.e. its management). These constraints allow the control of FCAPS

management both at the node level and the sub-network level.

7.2.2 Functioning

Eeach workflow assigned to the Supervisor DIME consists of a set of tasks

arranged in a DAG.

The supervisor DIME, upon receiving the workflow, identifies the number of

tasks and their associated profiles. It instantiates other DIMEs based on the in-

formation provided, by selecting the resources among the ones available, both

the management and the execution layers. This selection is carried out using

two simple criteria: the number of DIMEs constituting the set of workers is

equals to the number of tasks in the workflow, while the DIMEs composing

the signaling layer are known a priori but their number can vary based on the

requirements and on the constraints of the workflow. The Supervisor, in fact,

can decide to use six different DIMEs (one acting as local Supervisor and five

as the different managers - Fault, Configuration, Account, Performance and

Security managers -) or a single DIME playing all the foreseen roles or, in

3which itself could be another DAG

7.2. Dime Network 177

addition, to use some dedicated DIMEs only for specific roles. The informa-

tion about the profiles becomes instrumental to define 1) the signaling sub-

network, 2) the type of relationship between the mediator DIMEs composing

the signaling sub-network and the FM of each worker DIME and, finally, 3)

the configuration of all the MICEs of each worker DIME to build the most

suitable environment for the execution of the workflow. Following these cri-

teria, the Supervisor creates a sub-network able to implements specific work-

flows that are in turn FCAPS managed both at management layer (through the

mediators) and at execution layer (through the FM of each worker DIME).

So, the Supervisor can decide either to create and use new DIMEs for the sig-

naling layer or to share the managers with other sub-networks. This choice

depends on the requirements of the workflow and on the current workload

managed by Superivsor. For example, if the workflow management requires a

great number of messages for its coordination, the Supervisor can use a DIME

for each manager. Instead, if the coordination of workflow requires only few

signaling messages, the Global Supervisor can decide to use only a DIME for

all the managers.

The decisions taken by Supervisor, however, can be modified at run-time,

simply activating or halting some components in DIMEs and/or modifying

the used addressing schema. This ability, which represents one of the major

advantages provided by the signaling based network-aware DIME organiza-

tion, is fundamental for tackling the workload fluctuation typical of systems

providing services on-demand. Using it, the Supervisor can tune optimally

the behavior and, as a consequence, the performance of the workflow in exe-

cution.

The features become very important especially, in those system where there

can be several workflows working in parallel; based on workflow profile, on

QoS parameters, on resources required and on costs paid by the users, the

178 Chapter 7. Dime Technology

Supervisor can be used to organize the DIME network (and sub-networks) for

optimizing given parameters (for example, for maximizing the resources uti-

lization, for maximizing the system gain or for improve robustness of entire

system).

Similar considerations can be used for choosing the position/deployment of

worker DIMEs. The physical location of the DIMEs in the sub-network, in

fact, can influence strongly the performance of the workflow.

If, for example, the workflow needs low-latency communications, the Super-

visor is used to deploy the worker DIMEs as close as possible in term of com-

munications delay. The options among that Supervisor can choice are three:

deploying the DIMEs on the same PC (using shared memory-based or PIPE-

based communication), deploying DIMEs on the same rack/server/blade (us-

ing dedicated-bus communication, gigabit-Ethernet or Infiniband) or to dis-

tribute DIMEs over the internet (using socket-based communications). These

three options present obviously different performances. The initial choice

of the Supervisor will depends on the available resources and on the per-

formance requirements. This flexibility about the choice of deployment of

Worker DIMEs is an improvement over existing cloud technologies anchored

to the socket communication among the VMs. Moreover,the DIMEs belong-

ing to the computing workflow layer are not also configured in a static way

but can be re-arranged at run-time to adapt the workflow performance to the

workload fluctuation or to react to unforeseen events. The MICE of worker

DIMEs, in fact, can be dynamically re-configured for redirecting I/O at run-

time. This ability, obtained using a proxy-like communication management

system in both layers (signaling and execution), allows the Supervisor to mod-

ify the sub-network based on running workflow and on its workload needs.

Once the best solution for organizing the sub-network of DIMEs is defined

statically to execute the workflow, the Supervisor uses the Mediator to starts

7.2. Dime Network 179

a Local Supervisor and all the managers involved in the FCAPS management

of the workflow execution. Each manager, based on its offered functionali-

ties and on workflow requirements, executes a list of controls: for example,

they check the ”heartbeat” of the system for fault prevention 4, authoriza-

tion and authentication for security, or the timers for accounting and perfor-

mance evaluation. If all the checks are successful, the Local Supervisor sets

up the MICEs (through the Cmanager) of the entire worker DIME network

for starting the execution of the workflow. If no problems occur, the work-

flow completes its execution correctly and the output is sent to the user; the

sub-network is de-allocated and the DIMEs are made free.

7.2.3 Fault Management

There are several type of fault: some depend on the technological support used

to build a DIME network (network delays, resources leaks, security vulner-

abilities, etc), while others depend on the functioning of the DIME network

(one or more DIME crash during the workflow execution). In this paragraph

I focus only on the analysis about the last type of fault.

Consider the case of the occurence of a DIME fails during the execution of

workflow (as shown in 7.5) .

Once that the fault is detected, the system starts the recovery of the

errors and restores the correct functioning of the entire sub-network, but

the behaviour of the network change on the basis of the role that the DIME

played within the network. We can have four cases.

First case: a worker DIME faults while is executing a task. In this case, the

fault manager, which monitors the ”heartbeat” signal of each worker DIME,

4the absence of one heartbeat indicates a fault of the DIME related to that heartbeat

180 Chapter 7. Dime Technology

Figure 7.5: Fault during execution of a workflow

7.2. Dime Network 181

identifies immediately that a DIME has become unreachable, deduces that an

error has occurred and asks the Local Supervisor for a new worker DIME.

The Local Supervisor, then, obtains the reference of a new DIME from the

Configuration Manager; the Local Supervisor then configures the new DIME

with the same SR and SC of the task not completed and sends the reference

of this new DIME to the worker DIME executing the task directly related to

the task not completed. The CManager of this worker DIME, then, modifies

at run-time the I/O ports of the MICE in order to redirect the output of its task

toward the new worker DIME. All these actions, done autonomously and in a

transparent way in relation with the other DIMEs of the sub-network, can be

collected in both standard and ad hoc procedures (as described in figure 7.6).

In the latter case, the user can specify to system a given behavior for

reacting to specific faults.

Second case: one signaling DIME faults during the execution of a work-

flow. A mechanism similar to the ”heartbeat” is implemented between

the Supervisor and the signaling DIMEs of each sub-network. If one of

the managers becomes unavailable, the Global Supervisor loads in a new

DIME (or in a DIME shared with another sub-network) the ”templateâ of

the old manager. Modifying the references on the Configuration DIME, the

Supervisor recovers the correct functioning of the signaling network without

alerting any of the other components in the signaling layer or the other

worker DIMEs.

Third case: a Local Supervisor DIME’s failure. For each subnetwork, a

mechanism similar to the ”heartbeat” is implemented between the Supervisor

of the main network (called Global Supervisor) and the Supervisor DIMEs

of each sub-network (called Local Supervisor). If one of the Supervisors be-

comes unavailable, the Global Supervisor loads in a new DIME the template

of the old Supervisor. Modifying the references on the Configuration DIME,

182 Chapter 7. Dime Technology

Figure 7.6: Fault management during execution of a workflow

7.3. Case study: LAMP,an application of the Dime computin model 183

the Supervisor recovers the correct functioning of the signaling network

without alerting any of the other components in the signaling layer or the

other worker DIMEs.

Fourth case: Fault of the Global Supervisor. Each local Supervisor is linked

with the Global Supervisor through the heartbeat. These heartbeat are

bidirectional: the Global Supervisor responds to one heartbeat of a Local

Supervisor, sending in turn one heartbeat to the Local Supervisor. By this

way, the absence of a heartbat can be intercepted from the Local Supervisors’

network. If there are sufficient resources available, the recovery procedure is

similar to that I described for the Local Supervisor (case 3). Otherwise, local

Supervisors starts a election phase to estabilish a new Global Supervisor.

The new global Supervisor continue to be also the local Supervisor for its

subnetwork till new resources are available to create a new local Supervisor.

7.3 Case study: LAMP,an application of the

Dime computin model

In this section, I describe the use of a DIME network (each DIME encapsu-

lating a Linux process with FCAPS management) to implement LAMP based

web services architecture to demonstrate end-to-end transaction management

with auto-scaling, self-repair, dynamic performance management and dis-

tributed transaction security assurance.

184 Chapter 7. Dime Technology

7.3.1 LAMPWeb Services Using DNA

The DIME network architecture takes its cues from parallels in cellular bi-

ology where regulatory genes control the actions of other genes which allow

them the ability to turn on or turn of specific behaviors. As affirmed by Philip

Stanier and Gudrun Moore, [98] In essence, genes work in hierarchies, with

regulatory genes controlling the expression of âdownstream genesâ and with

the elements of âcross-talkâ between the regulatory genes themselves. The

same parallel, furthermore, exists between the task profile and the concept of

gene expression. Gene expression is the process by which information from

a gene is used in the synthesis of a functional gene product. Fig. 7.7 shows

a DIME network of Linux processes implementing a web services workflow

using a MySQL database and Apache and PHP services. Key innovation in

DNA enables the application or service running in the MICE under the control

of the FCAPS manager to provide Fault and performance information through

the intra-DIME signaling which is utilized by the end-to-end DIME network

management infrastructure using the Inter-DIME signaling. The policies are

implemented by the DIME service network managers (the Supervisor, Fault

Manager, Performance Manager, Accounting Manager and the Security Man-

ager designed to execute policy implementation workflows.) A simple work-

flow is as follows:

1. Local performance manager in DIME 2 monitors Apache using an ad

hoc library that notifies the response time of the web sites deployed in

Apache.

2. When the performance exceeds a threshold, the signaling channel is

used to notify the service network manager which in turn requests the

Supervisor to instantiate an additional Apache in a new DIME.

7.3. Case study: LAMP,an application of the Dime computin model 185

Figure 7.7: DIME network implementing web services using LAMP services with
FCAPS management at both the node level and at the network level

186 Chapter 7. Dime Technology

3. The supervisor based on business priorities, workload management

policies and latency constraints coordinates with configuration and se-

curity managers to instantiate a new instance of Apache with appropri-

ate configuration.

4. The configuration manager instantiates the new service and adjusts the

work-loads based on policies including DNS splitting.

A similar management workflow regulates the fault management using the

heartbeats provided by each DIME at a regular interval to the network fault

manager. The database response time similarly is also monitored by periodi-

cally querying the MySQL database and appropriate policies are enforced to

meet business priorities. The scaling up or down by the configuration man-

ager is implemented based on the workloads, latency constraints and overall

business priorities. The policies are implemented at various levels; at the

node level and at the sub-network or network level. In addition to domain

specific service management workflow, each DIME implements its own lo-

cal FCAPS management independent of what MICE processes are doing.

This allows programming DNA level DIME instantiation, and its life-cycle

management to assure 100% infrastructure availability, performance and se-

curity service levels. While a simple end-to-end transaction security check

is performed with a login and password scheme that allows service network

management, a more elaborate authentication, authorization and accounting

scheme is discussed in another paper by Tusa et al [99]. We believe that

the DIME network architecture represents a major departure from the current

cloud approaches [100, 101]. Using the non-von Neumann approach, it rad-

ically improves the resource exploitation using parallelism even within the

cloud environments, hiding the complexity of the management of FCAPS is-

sues both from the developers and users of cloud services.

7.4. Conclusions and future direction 187

7.4 Conclusions and future direction

While the last section discusses the use of DNA injection into Linux OS, we

see no technical obstacle to do the same in other operating systems. The key

requirement is the multithreading capability to implement parallel manage-

ment workflow to control the Turing machine implemented as a process in

the conventional OS. It is also proven that the DNA can be injected at the core

with a native OS written from scratch that scales and provides the resiliency.

It is also proven that we can leverage current service oriented architecture,

development environments and workflow implementations using a network

of Turing machines by migrating them to a managed network of Turing ma-

chines using DNA.

It is interesting to note that the services management decoupling from the in-

frastructure hardware management using DNA does not require any new stan-

dards or approaches except exploiting parallelism to separate the management

workflow and computing workflows at the core or at the process level using

self-management, signaling and network management abstractions.

In designing this new class of distributed systems, it behooves us to go back

and seriously study von Neumannś views on the subject [97]. Talking of

cellular organisms and how they operate across errors, he points out that tex-

titthe system is sufficiently flexible and well organized that as soon as an

error shows up in any part of it, the system automatically senses whether this

error matters or not. If it does not matter, the system continues to operate

without paying any attention to it. If the error seems to the system to be im-

portant, the system blocks that region out, by-passes it, and proceeds along

other channels. The system then analyzes the region separately at leisure and

corrects what goes on there, and if correction is impossible the system blocks

the region off and by-passes it forever. The duration of operability of the

188 Chapter 7. Dime Technology

automaton is determined by the time it takes until so many incurable errors

have occurred, so many alterations and by-passes have been made, that finally

the operability is really impaired. This is a completely different philosophy

which proclaims that the end of the world is at hand as soon as the first error

occurred. In order to benefit from the approach adopted by the cellular organ-

isms, current services management approaches must implement two features

at the core computing element (a von Neumann computing node). First, they

must implement self-management based on local history and local policy re-

quirements. Second it must provide a parallel signaling channel for a network

of self-managed computing elements to communicate and collaborate to im-

plement global policies.

While current cloud and grid management systems implement services man-

agement by monitoring various application or service characteristics with the

use of various management systems, the applications or services that use local

operating systems in each node still have their resource and service manage-

ment serialized using the von-Neumann SPC computing model. The DNA

addresses this by implementing the separation at the computing node by ex-

ploiting parallelism.

Discussing the work of Francois Jacob and Jacques Monod on genetic

switches and gene signaling, Mitchell Waldrop [102] points out that tex-

titDNA residing in a cell’s nucleus was not just a blueprint for the cell - a

catalog of how to make this protein or that protein. DNA was actually the

foreman in charge of construction. In effect, DNA was a kind of molecular-

scale computer that directed how the cell was to build itself and repair itself

and interact with the outside world. We believe that the DIME network archi-

tecture enabling the execution of a workflow as a managed directed acyclic

graph provides at least a mechanism for a blueprint for enterprise business

process description, replication, execution, and control using a lengthy recur-

7.4. Conclusions and future direction 189

sive sequence of nested programs which unfold in the von Neumann comput-

ing world using a non-von Neumann computing model.

Future directions of this research are self-evident.

First, the non-von Neumann middleware can be exploited to improve re-

siliency, efficiency and scaling of current grid and cloud services by decou-

pling services management from the infrastructure hardware management.

This approach allows implementing reliable and resilient services using unre-

liable hardware just as the cellular organisms do. Few immediate applications

present themselves:

1. Dynamic many-core cluster communication management across multi-

ple Linux images to choose the type of communication based on avail-

able resources and service requirements.

2. Implement WAMP services architecture using DIME network architec-

ture

3. Application aware resource allocation (dial-up and dial-down) at run

time.

4. Resilient services oriented architecture (RSOA) implementation

through the migration of the services microcontainer [103] into a

DIME.

5. High performance computing (HPC) resource scheduling and manage-

ment.

Secondly, the hardware infrastructure itself can be redesigned (exploiting

the many-core architecture) to become signaling aware and respond to appli-

cation requests at run time. Future storage and networking hardware thus can

be simplified with hardware assisted DIME architecture to eliminate current

190 Chapter 7. Dime Technology

layers of management software and special purpose ASIC implementations.

They can be designed to dial-up and dial-down raw resources (number of

cores, memory, bandwidth, throughput, storage capacity etc.) based on appli-

cation requests at run time.

Finally, DNA can be implemented by chip vendors in hardware to provide

self-management and signaling awareness exploiting parallelism at the core.

This allows uniformity in hardware device drivers with self-management and

signaling awareness. On the theoretical side, it is worth examining the in-

triguing remarks of von Neumann about Godel’s theorem and its implications

on the descriptions of complexity [104]. In his Hixon Symposium talk, von

Neumann remarks textitIt is a theorem of Godel that the next logical step, the

description of an object, is one class type higher than the object and is there-

fore asymptotically infinitely longer to describe. He goes on to say textitIt is

one order of magnitude harder to tell what an object can do than to produce

the object. The DNA attempts to describe and assure what an object does; in

this case the object happens to be a von Neumann computing node. In the

light of the new resiliency of DNA (e.g. the DIME can be instantiated and

managed to provide 100% availability and recoverability), it is worthwhile to

revisit the classic distributed computing issues such as the dining and drinking

philosopher problems, the CAP theorem etc. In conclusion, we observe that

the evolution of living organisms has taught us that the difference between

survival and extinction is the information processing ability of the organism

to:

1. Discover and encapsulate the sequences of stable patterns that have

lower entropy, which allow harmony with the environment providing

the necessary resources for its survival,

2. Replicate the sequences so that the information (in the form of best

7.4. Conclusions and future direction 191

practices) can propagate from the survived to the successor,

3. Execute with precision the sequences to reproduce itself,

4. Monitor itself and its surroundings in real-time, and

5. Utilize the genetic transactions of repair, recombination and rearrange-

ment to sustain existing patterns that are useful.

That the computing models of living organisms utilize sophisticated meth-

ods of information processing, was recognized by von Neumann who pro-

posed both the SPC computing model and the self-replicating cellular au-

tomata. Later Chris Langton created computer programs that demonstrated

self-organization and discovery of patterns using evolutionary rules which led

to the field of artificial life and theories of complexity.

192 Chapter 7. Dime Technology

Chapter 8

Conclusions

Cloud computing and grid computing are, today, the most significant and dif-

fused example of SOA for wide-area distributed systems. This thesis studied

these two techonologies, focusing on the aspects of the resources’ manage-

ment and services’ provision.

In keeping with this premise, the results of my investigations can be grouped

in two macroareas: results about the SLA and Advance Reservation manage-

ment in the Grid macroarea and results about the SLA and Advance Reserva-

tion management in the Cloud multicore macroarea.

8.1 Macroarea: Grid

The introduction of SOA features has deeply modified the way to exploit the

functionalities of the computational grids.

These features have allowed to open grid systems toward new applications,

embracing not only the field of scientific research, where the grid comput-

ing paradigm was born and developed, but also the business, financial and

193

194 Chapter 8. Conclusions

educational ones. Offering access to their services through the web, grids

have contributed to the creation of a competitive marketplace where the user

can choose and use those grid services that better satisfy its requirements.

In this scenario, the satisfaction of the user’s QoS requirements becomes a

fundamental issue because each user will select the provider based on the per-

formance and cost of the offered service.

This thesis has accurately investigated this typology of wide area distributed

systems, facing some important challenges and proposing, for each one, an

effective solution.

The main issue examined in this dissertation regards the QoS management

in grids. The present implementations of grid middlewares manage their un-

derlying resources respecting the static policies imposed by the Virtual Orga-

nizations. These policies, defined by an a priori agreement between Virtual

Organizations managers and grid resources owners, are fixed and can not be

modified textitat run time. This type of resources management policies are

not adequate in the considered scenario, where there are different typologies

of users that need to set up and to tune up the service execution based on their

heterogeneous and dynamic requirements.

In order to make grids able to satisfy these requirements, this thesis has pro-

posed a strategy able to overcome the limitations due to Virtual Organization

management policies. This strategy foresees that when a user, belonging to a

Virtual Organization, requires a generic service, it is able to specify a set of

QoS parameter in order to customize the service execution based on its ex-

pectations.

To support this feature, it has been necessary to make the grid manager able

(i) to establish an agreement, i.e. the SLA, with the service user and (ii) to

reserve the resources needed for a correct fruition of the considered service.

The resource reservation is a fundamental support to guarantee that the ser-

8.1. Macroarea: Grid 195

vice has what it needs, in terms of hardware and software requirements, at

the proper time; the ability to manage the SLA, instead, is fundamental to es-

tablish univocally all the parameters involved in the agreement, the rules and

conditions for the proper use of the service.

All these features allow the service provider to adapt the service execution on

the user requests (i.e the user can indirectly influence the resource manage-

ment policy of the provider). This mean that a provider can execute the same

service in different ways (e.g. using or not reserved resources, modifying the

waiting time or guaranteeing the complete execution before a deadline) for

different users.

On the other hand, a user can require, to different providers, the same service

with different guarantees of execution: the user has now the ability to request

not only a service but a customized version of it. This means that when a user

is in looking for a service provider, it has to have the ability to search for a

provider able not only to execute the service but also able to satisfy its QoS

requirements.

In this thesis I describe ARM, a pattern that faces the issues related with the

grid resources management in terms of allocation and advance reservation.

This pattern represents the base on which it’s possible to build a Service ar-

chitecture able to guarantee services provision under SLA constraints. This

new architecture uses a set of conmponents: SLAM (described in chapter 3),

to manage the SLA in grid environments.

The design of this QoS-aware services discovery protocol has been another

important aspect treated in this thesis. Herein, the adoption of an unstruc-

tured distributed services discovery protocol based on a selective flooding

algorithm has been proposed. This strategy has been chosen in order to ob-

tain a reliable, scalable and fault tolerant solution that would be impossible to

have using centralised o DHT based approaches. The proposed algorithm has

196 Chapter 8. Conclusions

relied on (i) a flexible and dynamic management of neighbour relationships,

(ii) a control mechanism for the quantity of frames created by a query, (iii),

a selective routing protocol based on node reputation and on (iv) a cache of

partial information related to the knowledge of services offered by some other

providers. The experimental results have demonstrated the validity of the pro-

posed algorithm. Furthermore, the proposed algorithm is able to manage the

SLA in order to simplify the agreement phases between client and provider

of the service. The ability to search services under QoS constraints, that is an

important innovation in the field of discovery algorithm for distributed sys-

tems, represents a fundamental value-added in a service marketplace scenario

in that it allows not only to identify different providers for the desired service

but also to discern among them the most suitable one to satisfy the user re-

quirements.

This discovery protocol, furthermore, has been helpful in the management

of QoS for composed services, the last issue taken into account in this the-

sis. The users, in fact, are usually interested in executing complex services,

consisting of a composition of (simpler) services, rather than a single one.

The management of QoS for composed services, however, is made difficult

by the need of coordinating services offered by different providers and work-

ing independently by the others. Whenever one or more service providers do

not supply the foreseen agreement with the client (because of a fault or an

unpredicted overloading), the QoS for the whole composed service could be

compromised. This condition forces the use of a QoS management strategy

that not only has to continuously monitor the state of every single agreement

(i.e of each provider, as it happens with the management of the QoS for a

single service), but also it has to involve a compensation strategy that, trough

agreement renegotiations, makes it possible for a run time adaptation in order

to maintain the desired QoS level for the whole composed service.

8.2. Macro-area: Cloud 197

The solutions proposed in this thesis have permitted the building of a reliable,

scalable and flexible environment where each user can find, use and compose

services based on their QoS requirements. The guarantee that these QoS re-

quests can be successfully supported by the services providers is assured by

the adoption of an effective resources management strategy that allows each

user to accurately tune up the desired service. The scenario here depicted

gives a great importance to the user.

The user, in fact, has not only the ability to compose easily services offered by

other organizations as it happens in the web 2.0 scenario: it is has the ability

to customize them, influencing their execution.

8.2 Macro-area: Cloud

As I said in the introductino, Cloud computing is, today, the most significant

and diffused example of Services Oriented Architecture. This is mainly due

to the widespread adoption of virtualization technologies that, ensuring the

isolation among the VMs, allow Cloud to manage a huge amount of software

and hardware resources in a simple and extremely flexible way.

However, if not properly managed, the virtualization can adversely affect the

underlying hardware performance: for instance, the current solution are not

able to exploit, by default, all the functionalities offered by the multicore sys-

tems. Moreover, these solutions do not guarantee the performance isolation

among virtual machines and this makes impossible the creation of any form

of QoS-guaranteed services management. This requires the full control over

the hardware resources: every QoS-aware request done by an user, containing

parameters as execution time, waiting time, security and robustness, is trans-

lated into specific physical and logical constraints about the number and the

198 Chapter 8. Conclusions

types of resources managed at low layer. In this thesis, I proposed two solu-

tions to overcore this issues: RMS and DIME.

The Resources Management System (RMS) is an extension of ARM for

cloud-oriented multicore environments. As described above ARM is a behav-

ioral design pattern that defines the architecture and the interactions among a

set of specific software components for providing, through VM allocation and

advanced resource reservation, QoS-guaranteed services in a multicore-based

cloud system. In the chapter 6, the thesis introduces the issues related with

the QoS management in Clouds, explains how the use of virtualization tech-

nologies influences the management policy and gives a detailed description

of the proposed pattern in term of objectives, architecture and functioning.

Particular attention, is given to the interaction between ARM and the Xen

Hypervisor, that acts as unique access point to the underlying hardware re-

sources. The complete control of the resources obtained interacting with the

Hypervisor, together with the ability to planning resources reservations in the

future, represents the key aspects of the ARM functioning.

DIME is a new approach for the Cloud field. It introduces self-management

of computing nodes and their management as a group using a parallel sig-

naling network to execute managed computational workflows. The DIME

computing model does not replace any of the computational models in use to-

day. Instead, it complements these approaches by decoupling the management

workflow from computing workflow and providing dynamic reconfiguration,

Fault Management, Utilization Management, Performance Management and

Security Management. I worked with my colleagues Morana and Mikkili-

neni to implement the DIME network computing model using Linux operat-

ing system and exploited the parallelism to demonstrate the dynamic Fault,

configuration, performance and security management.

By this way, It’s possible to demonstrare two significative enhancements from

8.2. Macro-area: Cloud 199

current computing models:

1. The parallel implementation of FCAPS management and computing in-

tegrates workflow execution and workflow management provides a new

degree of reliability, availability, performance and security management

in allocating resources at the node level

2. The signaling scheme allows a new degree of agility though configura-

tion management of each node at run time.

There are two ways in which the workflow can be dynamically changed.

The first one is through the control of the MICE component to load and ex-

ecute a specific program at run time. The second, instead, is through the

reconfiguration of the I/O channels of the DIME to compose and decompose

new services.

We believe that the DIME network computing model represents a gen-

eralization of other distributed computing models. The capability to set up

the management layer, in fact, allows replicating the functioning of the other

models such as, Clusters, P2P or Grid computing; one of the next steps of

our research will be focused on the definition of well-defined profiles, used as

templates for Signaling DIMEs, for setting up of DIME computing networks

that are able to offer the same functionalities of those computing models with

an added benefit of dynamic reconfiguration and real-time end-to-end inte-

grated FCAPS management. The separation of service regulator executables

from the service executables and their implementation in parallel with dy-

namic FCAPS management facilitated by signaling perhaps provides an ob-

ject one class type higher, which von Neumann was talking about in his Hixon

Symposium lecture [105]: textitThere is a good deal in formal logic which in-

dicates that when an automaton is not very complicated the description of the

200 Chapter 8. Conclusions

function of the automaton is simpler than the description of the automaton

itself but that situation is reversed with respect to complicated automata. It is

a theorem of Godel that the description of an object is one class type higher

than the object and is therefore asymptotically infinitely longer to describe. It

is for themathematicians to decide.

Supporting dynamically reconfigurable communication mechanism

(shared memory, or PCIexpress or Socket communication) under Linux op-

erating system, the Dime computing model can improve the communication

efficiency between multiple Linux images based on context that will make

manycore servers more useful with less complexity of cluster management.

By encapsulating Linux based processes with FCAPS management and sig-

naling, DIME provides live migration, fault management and performance

management of workflows without the need for a Hypervisor-based server

virtualization. Incorporating signaling in hardware provides a new level of

agility to distributed services creation, delivery and assurance.

Bibliography

[1] C. Morris, “Sony playstation facing yet another security breach.”

http://www.cnbc.com/id/43079509.

[2] Thibodeau and Vijayan, “Amazon ec2 service outage reinforces cloud

doubts.” http://www.computerworld.com/s/article/356212/.

[3] A. Moscaritolo, “Rsa confirms lockheed hack linked to securid

breach,.” http://www.scmagazineus.com/article/204744/.

[4] D. Patterson, “The trouble with multi-core.” IEEE Spectrum, July

2010, p28.

[5] C. Kesselman, I. Foster, and S. Tuecke, “The Anatomy of the Grid -

Enabling Scalable Virtual Organizations,” The International Journal of

Supercomputer Applications and High Performance Computing, May

2001.

[6] Foster and Iamnitchi, “On death, taxes, and the convergence of peer-

to-peer and grid computing,” 2003. In 2nd International Workshop on

Peer-to-Peer Systems (IPTPS’03), LNCS.

201

202 Bibliography

[7] D. Talia and P. Trunfio, “Adapting a pure decentralized peer-to-

peer protocol for grid services invocation,” arallel Processing Letters,

vol. 15, no. 1-2, pp. 67–84, 2005.

[8] J. Tang and M. Zhang, An Agent-based Peer-to-Peer Grid Comput-

ing Architecture - Convergence of Grid and Peer-to-Peer Computing,

vol. 54 of Conferences in Research and Practice in Information Tech-

nology. Hobart, Australia: ACS, 2006. Fourth Australasian Sympo-

sium on Grid Computing and e-Research (AusGrid 2006).

[9] F. Gagliardi, B. Jones, M. Reale, and S. Burke, “European DataGrid

Project: Experiences of Deploying a Large Scale Testbed for E-science

Applications,” 2002.

[10] A. D. Stefano, G. Morana, and D. Zito, “An agent based component

for qos management in a grid-p2p architecture,” 2007. Conference on

Self-Organization and Autonomous Systems in Computing and Com-

munications (SOAS’2007), Leipzig, Germany.

[11] G. von Bochmann and A. Hafid, “Some principles for quality of service

management,” Distributed Systems Engineering, vol. 4, no. 1, pp. 16–

27, 1997.

[12] M. Page and P. Blanche, “TERMS AND DEFINITIONS RELATED

TO THE QUALITY OF TELECOMMUNICATION SERVICES rec-

ommendation E.800 QUALITY OF SERVICE AND DEPENDABIL-

ITY VOCABULARY,” Nov. 17 1988.

[13] Enabling Grids for E-sciencE (EGEE) , “glite home page.”

http://glite.web.cern.ch/glite/.

Bibliography 203

[14] www.pi2s2.it.

[15] W. A. W. Jr., C. L. Mahood, and J. E. West, “Scheduling jobs on paral-

lel systems using a relaxed backfill strategy,” in JSSPP (D. G. Feitelson,

L. Rudolph, and U. Schwiegelshohn, eds.), vol. 2537 of Lecture Notes

in Computer Science, pp. 88–102, Springer, 2002.

[16] Altair corporate. , “Openpbs home page.”

http://www.pbsgridworks.com/.

[17] Platform Computing , “Platform lsf homepage.”

http://www.platform.com/Products/platform-lsf.

[18] Gamma, Helm, Johnson, and Vlissides, Design Patterns Elements of

Reusable Object-Oriented Software. Massachusetts: Addison-Wesley,

2000.

[19] J. Frey, T. Tannenbaum, M. Livny, I. T. Foster, and S. Tuecke, “Condor-

G: A computation management agent for multi-institutional grids,”

Cluster Computing, vol. 5, no. 3, pp. 237–246, 2002.

[20] Globus toolkit version 4: Software for service-oriented systems ,

“globus home page.” http://www.globus.org/toolkit/.

[21] LCG project , “official website.” http://lcg.web.cern.ch/LCG/.

[22] VDT project, “official website.” http://vdt.cs.wisc.edu/components/vdt.htm.

[23] D. De Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt, “The

Evolution of the Grid,” in Grid Computing - Making the Global Infras-

tructure a Reality (F. Berman, G. Fox, and A. J. G. Hey, eds.), John

Wiley and Sons Ltd, August 2002.

204 Bibliography

[24] GRAAP-WS, “Grid resource allocation agreement protocol wg.”

https://forge.gridforum.org/sf/projects/graap-wg.

[25] R. J. Al-Ali, A. Hafid, O. F. Rana, and D. W. Walker, “An approach for

quality of service adaptation in service-oriented grids,” Concurrency -

Practice and Experience, vol. 16, no. 5, pp. 401–412, 2004.

[26] W. Smith, I. Foster, and V. Taylor, “Scheduling with Advanced Reser-

vations,” in Proceedings of the 14th International Conference on Par-

allel and Distributed Processing Symposium (IPDPS’00), (Los Alami-

tos), pp. 127–132, IEEE, May 1–5 2000.

[27] Q. Snell, M. J. Clement, D. B. Jackson, and C. Gregory, “The per-

formance impact of advance reservation meta-scheduling,” in JSSPP

(D. G. Feitelson and L. Rudolph, eds.), vol. 1911 of Lecture Notes in

Computer Science, pp. 137–153, Springer, 2000.

[28] F. Heine, M. Hovestadt, O. Kao, and A. Streit, “On the impact of

reservations from the grid on planning-based resource management,”

in Computational Science – (5th ICCS’05, Part III) (V. S. Sunderam,

G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds.), vol. 3516

of Lecture Notes in Computer Science (LNCS), pp. 155–162, Reading,

UK: Springer-Verlag (New York), May 2006.

[29] K. Krauter, R. Buyya, andM.Maheswaran, “A taxonomy and survey of

grid resource management systems for distributed computing,” Softw,

Pract. Exper, vol. 32, no. 2, pp. 135–164, 2002.

[30] B. Li and D. Zhao, “Performance impact of advance reservations from

the grid on backfill algorithms,” inGCC, pp. 456–461, IEEE Computer

Society, 2007.

Bibliography 205

[31] R. J. Al-Ali, K. Amin, G. von Laszewski, O. F. Rana, D. W. Walker,

M. Hategan, and N. J. Zaluzec, “Analysis and provision of qoS for

distributed grid applications,” J. Grid Comput, vol. 2, no. 2, pp. 163–

182, 2004.

[32] A. Leff, J. T. Rayfield, and D. M. Dias, “Service-level agreements and

commercial grids,” IEEE Internet Computing, vol. 7, no. 4, pp. 44–50,

2003.

[33] Y. T. Chen and K. H. Lee, “A flexible service model for advance reser-

vation,” Computer Networks (Amsterdam, Netherlands: 1999), vol. 37,

pp. 251–262, Nov. 2001.

[34] N. R. Kaushik, S. M. Figueira, and S. A. Chiappari, “Resource co-

allocation using advance reservations with flexible time-windows,”

SIGMETRICS Performance Evaluation Review, vol. 35, no. 3, pp. 46–

48, 2007.

[35] T. Roblitz, F. Schintke, and A. Reinefeld, “Resource reservations with

fuzzy requests,” Concurrency and Computation: Practice and Experi-

ence, vol. 18, pp. 1681–1703, Nov. 2006.

[36] M. Siddiqui, A. Villazón, and T. Fahringer, “Grid allocation and reser-

vation - grid capacity planning with negotiation-based advance reser-

vation for optimized qoS,” in SC, p. 103, ACM Press, 2006.

[37] C. Castillo, G. N. Rouskas, S. Member, and K. Harfoush, “PARALLEL

AND DISTRIBUTED SYSTEMS 1 on the design of online scheduling

algorithms for advance reservations and qoS in grids,” June 16 2009.

[38] EGEE gLite , “Home page.” http://glite.web.cern.ch/glite/.

206 Bibliography

[39] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke,

“SNAP: A Protocol for Negotiating Service Level Agreements and Co-

ordinating Resource Management in Distributed Systems,” in Proceed-

ings of 8th International Workshop on Job Scheduling Strategies for

Parallel Processing, vol. 2537 of LNCS, (Edinburgh, UK), pp. 153–

183, Springer-Verlag, July 2002.

[40] EGEE Project, Enabling Grids for E-sciencE, 2007.

http://public.eu-egee.org.

[41] J. Frey, T. Tannenbaum, M. Livny, I. T. Foster, and S. Tuecke, “Condor-

G: A computation management agent for multi-institutional grids,”

Cluster Computing, vol. 5, no. 3, pp. 237–246, 2002.

[42] I. Foster, “Globus toolkit version 4: Software for service-oriented sys-

tems,” 2006.

[43] “Lcg project website.” http://lcg.web.cern.ch/LCG/.

[44] VDT, “project homepage.” http://vdt.cs.wisc.edu.

[45] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of

the Grid: An Open Grid Services Architecture for Distributed Systems

Integration,” in Open Grid Service Infrastructure WG, Global Grid Fo-

rum, June, 22 2002.

[46] E. project, “Rgma homepage.” http://hepunx.rl.ac.uk/egee/jra1-uk/r-gma/.

[47] . Berkley Database Information Index. Twiki site, “twiki.cern.ch/bdii.”

Bibliography 207

[48] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented

Systems,” Journal of Computer Science and Technology, vol. 21, no. 4,

pp. 513–520, 2006.

[49] X. Zhang and J. M. Schopf, “Performance analysis of the globus toolkit

monitoring and discovery service, MDS2,” CoRR, vol. cs.DC/0407062,

2004.

[50] Gnutella Protocol Development, “Home page,” 2006.

http://www.the-gdf.org/.

[51] J. Hathaway, “Service level agreements: keeping a rein on expecta-

tions,” in SIGUCCS, pp. 131–133, ACM, 1995.

[52] L. jie Jin, V. Machiraju, and A. Sahai, “Analysis on service level agree-

ment of web services,” Tech. Rep. HPL-2002-180, Hewlett Packard

Laboratories, July 10 2002.

[53] M. E. J. Newman, “The structure and function of complex networks,”

2003. SIAM Review,Society for Industrial and Applied Mathemat-

ics,Philadelphia,Vol. 45 num. 167, pp. 167-256.

[54] N. Jennings andM.Wooldridge, eds., Agent Technology : Foundations,

Applications, and Markets. Springer-Verlag, Berlin, 1998.

[55] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik,

“Itinerant agents for mobile computing,” IEEE Personal Communica-

tions, vol. 2, pp. 34–49, Oct. 1995.

[56] M. Condict, D. Milojicic, R. Franklin, and D. Bolinger, “Towards a

world-wide civilization of objects,” in Proceedings of the 7th SIGOPS

European Workshop, (Connemara, Ireland), Sept. 1996.

208 Bibliography

[57] D. Lange and M. Oshima, Programming and Deploying Java Mobile

Agents with Aglets. Addison-Wesley, 1998.

[58] A. Lingnau, O. Drobnik, and P. Dömel, “An HTTP-based infrastruc-

ture for mobile agents,” in Proceedings of the 4th International WWW

Conference, (Boston (MA), USA), Dec. 1995.

[59] J. Agent, “Development framework.” http://jade.tilab.com/.

[60] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE — A FIPA-

compliant agent framework,” in Proceedings of the 4th International

Conference on the Practical Applications of Agents and Multi-Agent

Systems (PAAM-99), (London, UK), pp. 97–108, The Practical Appli-

cation Company Ltd., 1999.

[61] Foundation for Intelligent Physical Agents, FIPA Abstract Architecture

Specification, Dec. 2002. http://www.fipa.org/specs/fipa00001/.

[62] A. Poggi, M. Tomaiuolo, and P. Turci, “Extending JADE for agent

grid applications,” in WETICE, pp. 352–357, IEEE Computer Society,

2004.

[63] I. Chao, R. Sangesa, and O. Oardaiz, “Grid resource management using

software agents,” ERCIM News, vol. 1, no. 59, 2004.

[64] “Agent-based resource management for grid computing,” 2002.

[65] W. Jansen and T. Karygiannis, “Mobile agent security,” tech. rep., Na-

tional Institute of Standards and Technology, 1999.

Bibliography 209

[66] E. Christensen, F. Curbera, G. Meredith, and S. Weer-

awarana, “Web services description language (WSDL) 1.1.”

http://www.w3.org/TR/wsdl, 2001.

[67] S. 1.1, “Simple object access protocol,” http://www.w3.org/TR/SOAP.

[68] D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto, and F. Silvestri,

“A grid information service based on peer-to-peer,” in Euro-Par 2005,

Parallel Processing, 11th International Euro-Par Conference, Lisbon,

Portugal, August 30 - September 2, 2005, Proceedings (J. C. Cunha and

P. D. Medeiros, eds.), vol. 3648 of Lecture Notes in Computer Science,

pp. 454–464, Springer, 2005.

[69] A. Keller and H. Ludwig, “The WSLA framework: Specifying and

monitoring service level agreements for web services,” J. Network Syst.

Manage, vol. 11, no. 1, pp. 57–81, 2003.

[70] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward, “QoS-assured

service composition in managed service overlay networks,” in 23th

International Conference on Distributed Computing Systems (23th

ICDCS’03), (Providence, RI), pp. 194–, IEEE Computer Society, May

2003.

[71] J. Yan, J. Zhang, J. Lin, M. B. Chhetri, S. K. Goh, and R. Kowalczyk,

“Towards autonomous service level agreement negotiation for adaptive

service composition,” in Proceedings of International Conference on

Computer Supported Cooperative Work in Design (CSCWD), IEEE,

May 3-5 2006.

[72] K. Xiong and H. G. Perros, “SLA-based resource allocation in cluster

computing systems,” in IPDPS, pp. 1–12, IEEE, 2008.

210 Bibliography

[73] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang, “QoS-aware middleware for web services composition,”

May 01 2004.

[74] M. Zeleny,Multiple Criteria Decision Making. McGraw-Hill, 1982.

[75] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “QoS-aware

replanning of composite web services,” in ICWS, pp. 121–129, IEEE

Computer Society, 2005.

[76] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Reading, Mass.: Addison-Wesley, 1989.

[77] P. Van Hentenryck, H. Simonis, and M. Dincbas, “Constraint satis-

faction using constraint logic programming,” Artificial Intelligence,

vol. 58, no. 1–3, pp. 113–159, 1992.

[78] M. Jain, P. Sharma, and S. Banerjee, “Qos-guaranteed path selection

algorithm for service composition,” in Proceedings of the International

Workshop on Quality of Service (IWQoS), pp. 288–289, IEEE, June

2006.

[79] J. Xiao, Service-Driven Networking. 2010.

[80] F. Casati and M.-C. Shan, “Dynamic and adaptive composition of e-

services,” Inf. Syst, vol. 26, no. 3, pp. 143–163, 2001.

[81] G. Spanoudakis and K. Mahbub, “Requirements monitoring for

service-based systems: Towards a framework based on event calculus,”

in ASE, pp. 379–384, IEEE Computer Society, 2004.

[82] Xen Hypervisor, “homepage.” http://www.xen.org/.

Bibliography 211

[83] A. Keller and H. Ludwig, “The WSLA framework: Specifying and

monitoring service level agreements for web services,” Journal of Net-

work and Systems Management, vol. 11, no. 1, 2003.

[84] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing

performance interference effects for qoS-aware clouds,” in EuroSys

(C. Morin and G. Muller, eds.), pp. 237–250, ACM, 2010.

[85] Amazon.com. (EC2) , “homepage.” http://aws.amazon.com/ec2/.

[86] Google.com, “Google application engine homepage.”

http://code.google.com/appengine/.

[87] Microsoft.com, “Microsoft azure homepage.”

http://www.microsoft.com/windowsazure/.

[88] N. W. Paton, M. A. T. Aragão, K. Lee, A. A. A. Fernandes, and

R. Sakellariou, “Optimizing utility in cloud computing through au-

tonomic workload execution,” IEEE Data Eng. Bull, vol. 32, no. 1,

pp. 51–58, 2009.

[89] N. G. Grounds, J. K. Antonio, and J. T. Muehring, “Cost-minimizing

scheduling of workflows on a cloud of memory managed multicore

machines,” in CloudCom (M. G. Jaatun, G. Zhao, and C. Rong,

eds.), vol. 5931 of Lecture Notes in Computer Science, pp. 435–450,

Springer, 2009.

[90] B.-Q. Cao, B. Li, and Q.-M. Xia, “A service-oriented qos-assured

and multi-agent cloud computing architecture,” in CloudCom (M. G.

Jaatun, G. Zhao, and C. Rong, eds.), vol. 5931 of Lecture Notes in

Computer Science, pp. 644–649, Springer, 2009.

212 Bibliography

[91] R. Buyya, T. Cortes, and H. Jin, “Single system image,” The Interna-

tional Journal of High Performance Computing Applications, vol. 15,

pp. 124–135, Summer 2001.

[92] seamicro, “homepage.” http://www.seamicro.com/.

[93] V. Sarathy, P. Narayan, and R. Mikkilineni, “Next generation cloud

computing architecture: Enabling real-time dynamism for shared dis-

tributed physical infrastructure,” in WETICE (S. Reddy, ed.), pp. 48–

53, IEEE Computer Society, 2010.

[94] R. Mikkilineni and V. Sarathy, “Cloud computing and the lessons from

the past,” in WETICE (S. Reddy, ed.), pp. 57–62, IEEE Computer So-

ciety, 2009.

[95] I. Sriram and A. Khajeh-Hosseini, “Research agenda in cloud technolo-

gies,” Jan. 19 2010. Comment: Submitted to the 1st ACM Symposium

on Cloud Computing, SOCC 2010.

[96] G. Morana and R. Mikkilineni, “Scaling and self-repair of linux based

services using a novel distributed computing model exploiting paral-

lelism,” in WETICE (S. Reddy and S. Tata, eds.), pp. 98–103, IEEE

Computer Society, 2011.

[97] J. Neumann, “Theory of Natural and Artificial Automata,” in the His-

tory of Computing vol 12., pp. 408 – 474, Mit Press, 1987.

[98] P. Ferretti, Embryos, genes and birth defects. Wiley, 2006.

[99] F. Tusa, A. Celesti, and R. Mikkilineni, “AAA in a cloud-based vir-

tual DIME network architecture (DNA),” in WETICE (S. Reddy and

S. Tata, eds.), pp. 110–115, IEEE Computer Society, 2011.

Bibliography 213

[100] R. Buyya and R. Ranjan, “Special section: Federated resource man-

agement in Grid and cloud computing systems,” Future Generation

Computer Systems, vol. 26, pp. 1189–1191, Oct. 2010.

[101] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud

computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility,” Future Generation Comput.

Syst., vol. 25, pp. 599–616, June 2009.

[102] M. M.Waldrop, Complexity: The emerging science at the edge of order

and chaos. New York: Simon & Schuster, 1992.

[103] M. Mohamed, S. Yangui, S. Moalla, and S. Tata, “Web service micro-

container for service-based applications in cloud environments,” in

WETICE (S. Reddy and S. Tata, eds.), pp. 61–66, IEEE Computer So-

ciety, 2011.

[104] J. von Neumann, “Theory and organization of complex automata,” in

Theory of Self-Reproducing Automata (A. Burks, ed.), Urbana and

Chicago: University of Illinois Press, 1966.

[105] J. V. Neumann, “The general logical theory of automata,” Cerebral

Mechanisms in Behavior–The Hixon Symposium, 1951.

