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ABSTRACT

Identity verification is one of the most common and important processes in

our daily lives. For centuries, humans have relied on the visual appearance of

their peers - or other distinctive traits - to recognize them.

Currently, most of the traditional authentication methods infer one’s iden-

tity by either verifying the knowledge of a shared secret (i.e., password) or

the possession of a given object (i.e., token); both methods are sub-optimal,

since they do not directly verify the person’s identity, but an alternate and less

rich representation that could also very easily stolen or inadvertently shared.

Biometrics offers a natural solution to this problem, by providing quanti-

tative methods for recognizing one’s identity by the analysis of either physio-

logical or behavioural traits.

In addition to the traditional biometric traits, such as fingerprint, iris or

voice, there is a growing interest in novel biometric traits, that can be used

in conjunction with the most established ones to compensate to their weak-

nesses. In the first part of this thesis, we will analyze the usage of heart sounds

as a physiological trait for biometric recognition, discussing some novel ad-

hoc algorithms developed to process them.

Forensic analysts often have to determine whether a given speech sam-

ix



ple was uttered by a suspect or not; in the second part of the thesis, we will

investigate the usage of automatic text-independent speaker recognition sys-

tems in this context, exploring the limits of this approach and proposing new

solutions.

Finally, given the capillary diffusion that Internet access has gained in the

last years, we will analyze the problem of biometric authentication for web

application. Through the performance analysis of 3 biometric systems and

their combination using 2 multi-biometric score level fusion strategies, we

will find the optimal combination of those system; we will then present the ar-

chitecture and implementation of an open-source web-based multi-biometric

authentication system based on speech and face recognition, fused together

using the optimal strategy identified in the preliminary analysis phase.
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SOMMARIO

Provare la propria identità è una delle attività più comuni ed importanti che

ci viene richiesto di svolgere quotidianamente. Nei secoli, gli esseri umani

si sono affidati alla fisionomia dei propri simili - o ad altri tratti distintivi -

per riconoscerli. Attualmente, la maggior parte dei metodi di autenticazione

derivano l’identità di una persona tramite la verifica di un segreto condiviso

(come una password) o tramite la verifica del possesso di un determinato

oggetto (un token); entrambi i metodi non sono esenti da difetti, poiché non

verificano direttamente l’identità della persona, ma una rappresentazione della

stessa alternativa e meno significativa, che potrebbe inoltre essere rubata o i-

navvertitamente condivisa.

I metodi di autenticazione biometrica offrono una valida soluzione

a questo problema, fornendo metodi quantitativi per il riconoscimento

dell’identità di un individuo tramite l’analisi di tratti fisiologici o compor-

tamentali.

Uno degli obiettivi principali delle attuali attività di ricerca nell’ambito

della biometria è l’individuazione di nuovi tratti biometrici, che possano es-

sere utilizzati in aggiunta ai tratti biometrici tradizionali per compensarne le

debolezze. Nella prima parte di questa tesi verrà analizzato l’utilizzo dei suoni

xi



cardiaci come tratti fisiologici per il riconoscimento biometrico, illustrando

algoritmi e sistemi innovativi che sfruttano questa tecnica.

Nella seconda parte della tesi si analizzerà l’utilizzo di tecniche auto-

matiche di riconoscimento biometrico basate sulla voce in contesto forense.

La qualità del segnale audio analizzato in questi contesti è spesso non

eccellente a causa del rumore introdotto dal processo di acquisizione e

dall’ambiente in cui viene effettuata la registrazione, che non sono sotto il

controllo del perito. In queste difficili condizioni, attualmente il perito viene

chiamato ad effettuare delle scelte che potrebbero condizionare l’esito del ri-

conoscimento e di conseguenza anche influenzare l’esito del processo stesso.

L’analisi presentata si focalizza sulle limitazioni della biometria vocale in

questo contesto, e presenta delle nuove soluzioni per aggirare le stesse.

Infine, considerato il continuo incremento della diffusione dell’accesso ad

Internet e la crescente importanza che le attività basate sul web stanno as-

sumendo negli ultimi anni, nella terza parte della tesi sarà analizzato il tema

dell’autenticazione biometrica nell’ambito delle applicazioni web. Tramite

l’analisi delle prestazioni di 3 sistemi biometrici e le loro combinazioni uti-

lizzando 2 strategie di fusione multi-biometrica a livello di punteggio, sarà

identificata la combinazione ottimale degli stessi; saranno quindi presentate

e discusse sia l’architettura che l’implementazione di un sistema open-source

di autenticazione multi-biometrica per applicazioni web basate su riconosci-

mento del volto e della voce, fusi tramite la strategia ottimale identificata nella

fase di analisi preliminare.
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CHAPTER

ONE

INTRODUCTION

Identity verification is an increasingly important process in our daily lives.

Whether we need to use our own equipment or to prove our identity to third

parties in order to use services or gain access to physical places, we are con-

stantly required to declare our identity and prove our claim.

Traditional authentication methods fall into two categories: proving that

you know something (i.e., password-based authentication) and proving that

you own something (i.e., token-based authentication).

These methods connect the identity with an alternate and less rich repre-

sentation, for instance a password, that can be lost, stolen, or shared.

A solution to these problems comes from biometric recognition systems.

Biometrics offers a natural solution to the authentication problem, as it con-

tributes to the construction of systems that can recognize people by the anal-

ysis of their physiological and/or behavioral characteristics. With biometric

systems, the representation of the identity is something that is directly derived

from the subject, therefore it has properties that a surrogate representation,

1



2 Chapter 1. Introduction

like a password or a token, simply cannot have [1–3]. Biometric recognition

is further discussed in Chapter 2.

1.1 Novel traits, algorithms and application sce-

narios

In this thesis, we will describe our work in some of the most challenging

research areas in the field of biometric recognition: novel biometric traits,

novel algorithms for biometric recognition, novel application scenarios for

biometrics.

One of the most important research directions in the field of biometrics is

the characterization of novel biometric traits that can be used in conjunction

with other traits, to limit their shortcomings or to enhance their performance.

In Chapter 3 we will describe our proposal for a new physiological biometric

trait: the heart sound.

Throughout the thesis, and especially in Chapter 3, we will present some

novel algorithms invented during the research activities; amongst them, the

most important are the ones for the computation of the First-to-Second Ra-

tio (Section 3.3.2) and the quality-based best subsequence selection (Sec-

tion 3.5.1), both designed for heart-sounds based biometry.

In this thesis we will also examine innovative and challenging applica-

tion scenarios for biometric recognition systems. In Chapter 4 we deal with

speaker recognition in the delicate context of forensic investigation. As of to-

day, there is no definitive answer to the question of whether automatic speaker

recognition can be successfully used in the forensic context, where speakers

have to be identified from fragments of conversations captured in noisy con-

ditions, like from wire-tappings or from ambient microphones. The analysis
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that we will present has the objective to find the current limitations of this

technology with respect to most of the stages of speaker recognition systems

that deal directly with the audio signals, and to try to make it clearer how

these systems can be improved in order to be, in a near future, successfully

employed for forensic tasks.

Finally, in Chapter 5 we will present a novel architecture for multi-modal

biometric recognition in the context of web applications. The ensemble of

classifiers and biometric traits used for this system have been determined by

an experimental selection process involving testing all the possible combina-

tions of 1-modal, 2-modal and 3-modal systems built using exploiting three

different traits and two different score-level multi-biometric fusion strategies.

1.2 Research projects

Most of the research activity presented in this thesis was carried on in the

framework of the following research projects:

• ICT-E1- Dipartimento di Ingegneria Informatica e delle Telecomuni-

cazioni - University of Catania (2008-2009)

• Interactive Multimedia Services - Consorzio Nazionale Interuniversi-

tario per le Telecomunicazioni (2009-2010)

• Biometric4Net - Consortium GARR (2010-2011)

• Context-Aware Security by Hierarchical Multilevel Architectures

(CASHMA) - Centro di Competenza ICT-SUD and Engineering S.p.A.

(2011)
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CHAPTER

TWO

BIOMETRIC RECOGNITION

As stated in Chapter 1, identity verification is crucial to many of our daily

activities. Let P be a person and I be an identity; there are two types of

identification:

• Positive identification: verification that the stated identity claim is true

(the identity of P is I);

• Negative identification: verification that a negative identity claim is true

(the identity of P is not I).

While the first type is the most common, there are some use-cases also

for the second kind, like preventing issuing multiple identity documents of

the same type to the same person (think of P having documents for identities

I1 and I2). For the rest of this thesis, unless otherwise specified, we will talk

about identification in the sense of positive identification.

Traditionally, there are two ways of doing identity verification:

• verify that the person has something (a token, an ID card, etc..);

5



6 Chapter 2. Biometric Recognition

• verify that the person knows something (a password, a PIN, etc..).

Both these approaches reduce the complex problem of answering the

question “Who are you?” (or “Is I your identity?”) to simpler problems:

the first approach is equivalent to asking the question “Do you have the object

X?”; the second is equivalent to the question “Do you know X?”.

Note that both the approaches can be decoupled from the person P. In

other words, the person who is claiming identity I (that corresponds to person

P) may not be P and yet be able to make a successful claim on identity I.

Biometric recognition aims to provide an answer to the question “Who are

you?” that is intrinsically dependent on the properties of the person itself and

not on external objects or pieces of knowledge; it answers this question by

processing signals that derive either from characteristics of the human body

(physiological traits) or from a given behaviour like walking (behavioural

traits) [4, 5].

In this chapter, we will give a brief overview of biometric systems in Sec-

tion 2.1; in Section 2.2 we will discuss about the performance metrics used

to evaluate such systems; in Section 2.3 we will present a short description of

the most important biometric traits; finally, in Section 2.4 we will introduce

the concept of multibiometrics.

2.1 Biometric systems

A biometric system is basically a pattern recognition system, that acquires

data from the user P, extracts features from the data, compares the feature set

with one or more stored identity models (depending on the operating modal-

ity) and then performs the identity recognition task [6]. Figure 2.1 shows a

diagram of a generic biometric system.
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Figure 2.1: Diagram of a biometric system

Its five components are the following

1. Sensor, the device that is responsible for the acquisition of biometric

data from the user;

2. Pre-processor, the part of the system responsible for preparing the raw

data for the further processing steps; it might include, for instance, a

filter in case of audio signals, or image enhancement algorithms when

dealing with image-based biometric traits;

3. Feature extractor, the part of the system that is responsible for analyz-

ing the acquired data and extracting from it an alternate representation,

usually more meaningful and more compact; an example is the extrac-

tion of Mel-Frequency Cepstrum Coefficients (MFCC) in voice-based

biometric systems;

4. Template database, the storage area that contains the models of all the

enrolled identities;

5. Matcher, the module that has the duty to compare the feature set(s)

extracted to the models, according to the operating modality of the bio-
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metric system; the output of this stage is either a matching score or, in

the case of simpler systems, a decision.

A biometric system can work in two modalities: enrollment and recogni-

tion.

Enrollment is the process by which an user, whose identity is verified by

external means such as an ID card, deposits its biometric data in the system, so

that it can build a template from this data and store it in the template database,

associating it with the verified identity. The enrollment process does not use

the Matcher component of the biometric system, and it is necessary if the

same person needs to use the system in any other operating modalities.

After a user is enrolled in the system, the data related to his identity can be

used during the recognition phase; there are two types of recognition: identi-

fication and verification.

Identification is the process by which only the biometric data is fed into

the biometric system, and using only this data it has to determine which is

(or which are) the most likely identity (resp. identities) in the database; this

means doing a 1:N comparison.

Verification is the process by which both the biometric data and a claimed

identity are fed to the system, that must check if the data matches with the

template associated to the identity, doing a 1:1 comparison.

The system shown in Figure 2.1 is an example system that takes in input

both the identity I and biometric data X – thus working in the verification

modality – and outputs both the matching score S and the decision D.

In the rest of this thesis, unless otherwise specified, we will discuss about

identification systems.
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2.2 Performance of biometric systems

A biometric identity verification system can be seen as a binary classifier.

Binary classification systems work by comparing matching scores to a

threshold; their accuracy is therefore closely linked with the choice of the

threshold, which must be selected according to the context of the system.

Figure 2.2: Biometric system errors

There are two possible errors that a binary classifier can make:

• False Match (Type I Error): accept an identity claim even if the tem-

plate does not match with the model;

• False Non-Match (Type II Error): reject an identity claim even if the

template matches with the model

The importance of each type of errors depends on the context in which the

biometric system operates; for instance, in a high-security environment, a

Type I error can be critical, while Type II errors could be tolerated.

Given a threshold T , and given a distribution of scores such as the one de-

picted in Figure 2.2, we can represent the two error types using the following
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formulas:

FNM(T ) =
∫ T

−∞
pn(s)ds (2.1)

FM(T ) =
∫ +∞

T
pm(s)ds (2.2)

where pn(s) is the distribution of non-match (impostor) scores and pm(s)

is the distribution of match (genuine) scores, under the assumption that higher

scores lead to a higher matching likelihood.

The choice of a threshold is a delicate design challenge that must be under-

taken while working on a biometric system. Biometric systems are deployed

in a wide range of working contexts, from consumer devices to military-grade

access control, and each of them needs a careful trade-off between usability

and security.

When evaluating the performance of a biometric system, however, we

need to take a threshold-independent approach, because we cannot know its

applications in advance. A common performance measure is the Equal Error

Rate (EER) [4], defined as the error rate at which the False Match Rate (FMR)

is equal to the False Non-Match Rate (FNMR).

A finer evaluation of biometric systems can be done by plotting the De-

tection Error Trade-off (DET) curve, that is the plot of FMR against FNMR.

This allows to study their performance when a low FNMR or FMR is imposed

to the system.

The DET curve represents the trade-off between security and usability.

A system with low FMR is a highly secure one but will lead to more non-

matches, and can require the user to try the authentication process several

times; a system with low FNMR will be more tolerant and permissive, but

will make more false match errors, thus letting more unauthorized users to

get a positive match. The choice between the two setups, and between all the
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intermediate security levels, is strictly application-dependent.

2.3 Biometric traits

The authors of [1] present a classification of the most common biometric traits

with respect to the 7 qualities that, according to them, are the most significant

parameters to use for a meaningful and complete comparison. Those qualities

of biometric traits are:

• Universality: each person should possess it;

• Distinctiveness: it should be helpful in the distinction between any two

people;

• Permanence: it should not change over time;

• Collectability: it should be quantitatively measurable;

• Performance: biometric systems that use it should be reasonably per-

forming, with respect to speed, accuracy and computational require-

ments;

• Acceptability: the users should see its usage as a natural and trustable

thing to do in order to authenticate themselves;

• Circumvention: the system should be robust to malicious identification

attempts.

This classification is reproduced in Table 2.1, where each trait is evaluated

with respect to each of these qualities using 3 possible qualifiers: H (high), M

(medium), L (low).

Biometric traits can be split in three categories:
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• physiological, whose characteristics depend on a particular (usually

static) property of the human body; examples of such traits are face,

fingerprint, iris, heart sounds;

• behavioural, whose characteristics depend on how a person behaves;

examples are gait and signature;

• hybrid, that contain both physiological and behavioural elements; the

only trait that can be classified as hybrid is voice.

In the rest of this section, we will present a brief overview of some of the

most important biometric traits.

2.3.1 Face

Face recognition is probably the identity verification method that we humans

are more naturally trained to use. The face characteristics that are used for

recognition are the position and shape of individual elements of the face, such

as the eyes, the nose, the lips, but also the overall face shape and the relations

between the elements [7].

One of the main strengths of face recognition is the simplicity of the ac-

quisition process itself, that can be also carried covertly via surveillance cam-

eras. Some of the most important algorithms used for feature extraction in

face recognition systems are the following: Principal Components Analysis

(PCA) or eigenfaces is an algorithm used for the representation of a face as a

linear combination of base faces; Linear Discriminant Analysis (LDA) or fish-

erfaces is an algorithm that finds optimal projection vectors in the face space

that maximize the ratio of intra-class dispersion to inter-class dispersion; is a

graph-based algorithm, that identifies some key points in the face and creates
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a graph using those points and nodes, that is further processed by computing

a set of complex wavelet Gabor coefficients on them.

Face recognition is still subject to noise in the acquisition phase. Illumina-

tion changes, occlusions, distance and low resolution can all affect negatively

the face recognition process. Only recently we are seeing deployment of face

recognition technology on consumer devices like smartphones [8], and recent

advances in face recognition are helping the industry to overcome these tech-

nical difficulties and make this technology available to the mass market.

2.3.2 Voice

Along with face, voice is also a very natural means for identifying people. We

are used to discriminate people by their voice, both live or on the phone.

Speaker recognition techniques can be split in two categories: text-

dependent and text-independent. Text-dependent speaker recognition ex-

ploits the knowledge of what the speaker has uttered, and generally uses

Hidden Markov Models (HMM) to carry on the recognition process. Text-

independent speaker recognition, on the other side, do not have this knowl-

edge, and therefore only uses the speech input data during the recognition

process.

Feature extraction on speech can be done on different levels [9]. The most

commonly used features are short-term spectral (or cepstral) and voice source

features, like Mel-Frequency Cepstrum Coefficients (MFCC), Linear Predic-

tion Coefficients (LPC) and Perceptual Linear Prediction (PLP). These are

low-level features, that usually model more the physiological characteristics

than the behavioural ones. On a higher level, there are features related to the

speaking process of the person, like pitch, rhythm and temporal features; fi-

nally, there are higher-level features like accent and pronunciation. Higher
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level features are correlated with the behavioural component of voice biomet-

rics; they are more robust to channel effects and noise but also significantly

more difficult to extract and process.

Text-independent speaker recognition uses, among other techniques,

Gaussian Mixture Models (described in Appendix A) and Support Vector Ma-

chines during the matching phase.

Voice biometrics has a wide variety of applications, including phone-

based recognition and forensic biometric recognition, the latter being the con-

text in which we will mostly discuss it in this thesis.

2.3.3 Signature

Signing a document means writing one’s own full name in a designated por-

tion of the document itself, in the act of deeming it legit, agreeing with its

content and personally subscribing it. This is a practice very common today,

and the authenticity of the signature has legal value.

From the biometric point of view, there are two approaches to signature

recognition: using static information (off-line) [10] or using information com-

ing from the dynamics of writing the signature (on-line) [11].

The first technique treats the signature as an image, while the second one

requires the usage of devices like Wacom tablets during the acquisition phase,

because they give a multi-dimensional time-varying output that usually con-

tains, for each discrete time value, at least the position of the pen (x,y); more

advanced acquisition devices also allow to capture the pressure, the azimuth

and other features. From these features, a richer derived feature set can be

computed (e.g., including instantaneous speed and acceleration).

On-line verification algorithms usually adopt HMMs for the modeling and

matching phases.
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2.3.4 Fingerprint

Fingerprints have been used for recognition for decades, especially in the

forensic context. The fingerprint is the representation of the epidermis of

the hand fingers, and its shape is affected both by the DNA and by the foetus

grow process, so that even identical twins have different fingerprints.

A fingerprint is composed by ridges and valley, that usually have a shape

similar to a concentric oval.

Most of the existing systems use as features the so-called minutiae, that

are singularities in the ridge patterns, more specifically where ridges end and

where ridges fork. There are also second-level features, like pores inside

ridges, but those need higher resolution acquisition devices.

The accuracy of existing fingerprint systems is very high, and they are

used in many contexts, like consumer devices authentication (e.g., laptops

with built-in fingerprint scanners) and forensic contexts. The downsides of

this technique are its high computational cost in large-scale identification

tasks and the fact that some people do not have fingerprints suitable for recog-

nition.

2.3.5 Iris

Iris recognition is based on the analysis of the texture (not the color) of the iris,

the annular region of the eye between the pupil and the sclera. This texture is

stabilized roughly after two years of life.

The techniques for iris recognition are quite mature, and there are appli-

cations in many fields, including airport border control and identification of

people during war. It is a biometric modality that requires considerable co-

operation from the user and has a high false rejection rate, characteristics that
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make it not ideal for consumer applications.

2.4 Multi-biometric systems

Biometric systems are technologically mature, and deployed in lots of con-

texts, from consumer hardware to military-grade access control systems. Un-

fortunately, This does not mean that they are flawless; the reason behind the

huge amount of research in this field is the fact that there are many problems

that still need to be addressed, among which the most important are [12]:

• Low robustness against noise in the biometric samples

• Non-universality

• Upper bound on matching performance

• Spoof attacks

In addition to limitations of individual traits, there are also context-

dependent constraints; in web-based authentication, the problem tackled in

Chapter 5, the system designer does not have any control on the acquisition

devices of the user - this means that consumer-grade webcams and micro-

phones might be used, limiting the effectiveness of each trait due to noise.

A possible solution to all these problems comes from multibiometrics [5];

multibiometrics can be defined as the usage of multiple techniques or sources

of information at any stage of a biometric system.

There are different areas of research in the field of multibiometrics; the

most important are:

• identifying the sources for multiple biometric information;
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• determining the type of information to be fused;

• designing, evaluating and comparing fusion methodologies;

• building robust multimodal interfaces

Most of these ideas can be seen as application of information fusion tech-

niques in the field of biometrics. The benefits of multibiometric systems over

unibiometric systems are the following:

• improvement in the matching performance;

• increased robustness of the system to the lack of universality of the traits

used;

• increased robustness of the system to spoof attacks;

• increased reliability of the system in relation to failures of individual

unibiometric subsystems

The design of a multibiometric system can involve fusion on each of its

components. For instance, one could design a system with two sensors for the

same biometric, with one that provides actual biometric data and the other that

gives some sort of liveness measurement to avoid spoofs; another example is

the usage of two different biometric traits, duplicating the early stages of the

individual systems and then doing a fusion of the processed data in one of the

latter stages (like at score level, or at decision level).

In this thesis, we will use the multibiometric paradigm in two circum-

stances. The first one is the feature-level fusion of two feature sets for heart

sounds, described in Section 3.3.2; the second and more obvious one is the

design of a multi-modal web-based biometric authentication system, that is

described in Chapter 5.
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DNA H H H L H L L

Ear M M H M M H M

Face H L M H L H H

Facial thermogram H H L H M H L

Fingerprint M H H M H M M

Gait M L L H L H M

Hand geometry M M M H M M M

Hand vein M M M M M M L

Iris H H H M H L L

Keystroke L L L M L M M

Odor H H H L L M L

Palmprint M H H M H M M

Retina H H M L H L L

Signature L L L H L H H

Voice M L M L L M H

Table 2.1: Comparison between biometric traits, from [1]



CHAPTER

THREE

HEART SOUNDS BIOMETRY

3.1 Introduction

Since the strength of biometric systems are highly dependent on the proper-

ties of the traits that it exploits, there are lots of research efforts towards the

development of techniques that use novel traits.

As described in Chapter 2, many parts of the human body can already be

used for the identification process [4]: eyes (iris and retina), face, hand (shape,

veins, palmprint, fingerprints), ears, teeth etc.

The need for novel traits is motivated by the fact that there is no biometric

trait that can be successfully used in all possible scenarios. So researchers are

often trying to make viable the usage of traits that are complementary to the

existing ones or that can act as drop-ins because they are overall better.

In this chapter, we will focus on the usage for biometric recognition pur-

poses of an organ that is of fundamental importance for our life: the heart.

19
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The heart is involved in the production of two biological signals, the Elec-

trocardiograph (ECG) and the Phonocardiogram (PCG). The first is a signal

derived from the electrical activity that drives the organ, while the latter is a

recording of the sounds that are produced during its activity (heart sounds).

While both signals have been used as biometric traits (see [13] for ECG-

based biometry), this chapter will focus on hearts-sounds biometry1.

Using heart sounds for biometric recognition is both interesting and chal-

lenging. The main use cases for heart-sounds are quite different from the ones

of the most conventional biometric traits: a consumer authentication system

would rather not employ a biometric device based on heart sounds, since the

acquisition is still not as easy as it is for other traits like fingerprint and face;

rather, we foresee that heart sounds could be successfully used as a supple-

mentary biometric index for high-security multi-modal identity verification

system, or in critical systems based on continuous authentication.

As stated later in the chapter, it is still a novel biometric trait, and re-

searchers still need to address many issues before the adoption of the trait

will be commercially viable.

This chapter is structured as follows: in Section 3.2 we explore in-depth

the comparison between heart sounds and the other conventional biometric

traits; in Section 3.3 we discuss the heart sounds themselves, how they are

produced by the human body, their structure and some of the algorithms that

can be used for processing them; in Section 3.4 we present a review of the

most important research papers that have been published in the last years on

this topic; in Sections 3.5 and 3.6 we present two identity verification sys-

tems based on heart sounds, and we describe in detail their structure; in Sec-

tion 3.7 we discuss the performance evaluation of the two systems, including

1this chapter is mainly based on the research described in [14]
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the database and the evaluation protocol that have been adopted; finally, in

Section 3.8 we present our conclusions and we discuss some possible topics

for future research.

3.2 Comparison to other biometric traits

In Section 2.3 we presented a comparison of the most important biometric

traits, as presented in [1]; in this section we will describe the relationship

between those traits and heart sounds.

As a basis for the comparison, we used the 7 qualities of biometric traits

depicted in Table 2.1; we added to this table a row with our subjective eval-

uation of heart-sounds biometry with respect to each quality, in order to give

to the reader a schematic overview of the comparison. The updated table is

reproduced in Table 3.1.

The reasoning behind each of our subjective evaluations of the qualities

of heart sounds is as follows:

• High Universality: a working heart is a conditio sine qua non for hu-

man life;

• Medium Distinctiveness: the actual systems’ performance is still far

from the one of systems that use the most discriminating traits, and the

tests are conducted using small databases; the discriminative power of

heart sounds still must be demonstrated;

• Low Permanence: although to the best of our knowledge no studies

have been conducted in this field, we perceive that heart sounds can

change their properties over time, so their accuracy over extended time

spans must be evaluated;
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• Low Collectability: the collection of heart sounds is not an immedi-

ate process, and electronic stethoscopes must be placed in well-defined

positions on the chest to acquire a high-quality signal;

• Low Performance: most of the techniques used for heart-sounds biom-

etry are computationally intensive and, as said before, the accuracy still

needs to be improved;

• Medium Acceptability: heart sounds can probably be perceived as

unique and trustable, but people might be unwilling to use them in daily

authentication tasks;

• Low Circumvention: it is very difficult to reproduce the heart sound

of another person, and it is also difficult to record it covertly in order to

reproduce it later.

The main advantages of heart sounds are, so far, the High Universality and

the Low Circumvention.

The first point is undeniable and objectively true. If our body does not

produce the heart sound, it means that we are not alive and so any task of

authentication or live verification would be possible. This property is shared

with all the biometric traits that depend on organs whose functioning is critical

for our life, like the brain. This also means that heart sounds cannot be used

if the subject is not close to the sensor when the signal needs to be recorded,

making it useless for situation like crime scene analysis.

The second point is maybe less undeniable but still true. As recording

heart sounds is more difficult than recording - for instance - voice, so a mali-

cious user of the system would have trouble in recording another user’s heart

sounds for using them later, not mentioning the difficulties in hiding a proper
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DNA H H H L H L L

Ear M M H M M H M

Face H L M H L H H

Facial thermogram H H L H M H L

Fingerprint M H H M H M M

Gait M L L H L H M

Hand geometry M M M H M M M

Hand vein M M M M M M L

Iris H H H M H L L

Keystroke L L L M L M M

Odor H H H L L M L

Palmprint M H H M H M M

Retina H H M L H L L

Signature L L L H L H H

Voice M L M L L M H

Heart sounds H M L L L M L

Table 3.1: Relation between heart sounds and other biometric traits
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audio device that plays it back if the acquisition phase is done under super-

vision. One possibility that must still be explored is the usage of synthetic

heart sounds; since most of the approaches today use generative models (like

GMMs), the attacker could steal the templates and try to use them to generate

fake heart sounds that share the biometric properties of the user to which the

template belongs to. This concerns, however, are more likely to be addressed

by researchers in the area of the security of biometric systems. Our studies are

more focused on the investigation of the biometric properties of heart sounds,

and therefore ignore these problems, because they usually come into play at a

later stage of research, when the trait has reached sufficient maturity.

The main drawbacks of heart-sounds biometry are probably the Low Per-

formance and, above all, its overall immaturity as a biometric trait. Of course,

heart-sounds biometry is a new technique, and as such many of its current

drawbacks will probably be addressed and resolved in future research work.

3.3 Heart sounds

3.3.1 Physiology and structure of heart sounds

The heart sound signal is a complex, non-stationary and quasi-periodic signal

that is produced by the heart during its continuous pumping work [15]. It

is composed by several sounds, each associated with a specific event in the

working cycle of the heart.

Heart sounds fall in two categories:

• primary sounds, produced by the closure of the heart valves;

• other sounds, produced by the blood flowing in the heart or by patholo-

gies;
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The primary sounds are S1 and S2. The first sound, S1, is caused by

the closure of the tricuspid and mitral valves, while the second sound, S2, is

caused by the closure of the aortic and pulmonary valves.

Among the other sounds, there are the S3 and S4 sounds, that are qui-

eter and less frequent than S1 and S2, and murmurs, that are high-frequency

noises.

Most of these smaller sounds are periodic, and their frequency is usually

measured in beats per minute (bpm). In each heart beat there are one S1 and

one S2 sound. We refer to each heart beat as a “cardiac cycle”.

In our systems, we only use the primary sounds because they are the two

loudest sounds and they are the only ones that a heart always produces, even

in pathological conditions. We separate them from the rest of the heart sound

signal using the algorithm described in Section 3.3.2.

3.3.2 Processing heart sounds

Heart sounds are monodimensional signals, and can be processed, to some ex-

tent, using techniques known to work on other monodimensional signals, like

audio signals. Those techniques then need to be refined taking into account

the peculiarities of the signal, its structure and components.

Once the heart signal is acquired, we need to execute three kinds of task

with it:

• pre-processing

• segmentation

• feature extraction

The rest of the biometric systems do not deal with the signal itself, but
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with features or templates (models); in this section we will instead describe

the algorithms that operate on the heart sound signal.

Pre-processing is carried out with standard signal processing techniques,

like low-pass filtering, that does not need to be discussed.

Segmentation is the task of separating the S1 and S2 sounds from the rest

of the signal, and is discussed in Section 3.3.2.

Feature extraction, as discussed in Section 2.1 is the task of transforming

the signal into an alternate, more compact and possibly more meaningful rep-

resentation. We present three algorithms for feature extraction, two that work

in the frequency domain (CZT and MFCC) and one that works in the time

domain (FSR).

Segmentation

In this section we describe a variation of the algorithm described in [16] to

separate the S1 and S2 tones from the rest of the heart sound signal, improved

to deal with long heart sounds.

Such a separation is necessary because we believe that the S1 and S2 tones

are as important to heart sounds as the vowels are to the voice signal. They

can be considered stationary in the short term and they convey significant

biometric information, that is then processed by feature extraction algorithms.

A simple energy-based approach can not be used because the signal can

contain impulsive noise that could be mistaken for a significant sound.

Before being processed by the algorithm, the signal is split in frames.

Usually, 20ms wide frames are used, with 10ms overlap between frames.

The first step of the algorithm is searching the frame with the highest

energy, that is called SX1. At this stage, we do not know if we found an S1

or an S2 sound.
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Then, in order to estimate the frequency of the heart beat, and therefore

the period P of the signal, the maximum value of the autocorrelation function

is computed. Low-frequency components are ignored by searching only over

the portion of autocorrelation after the first minimum.

The algorithm then searches other maxima to the left and to the right

of SX1, moving by a number P of frames in each direction and searching

for local maxima in a window of the energy signal in order to take into ac-

count small fluctuations of the heart rate. After each maximum is selected, a

constant-width window is applied to select a portion of the signal.

After having completed the search that starts from SX1, all the corre-

sponding frames in the original signal are zeroed out, and the procedure is

repeated to find a new maximum-energy frame, called SX2, and the other

peaks are found in the same way.

Finally, the positions of SX1 and SX2 are compared, and the algorithm

then decides if SX1, and all the frames found at distance P starting from it,

must be classified as S1 or S2; the remaining identified frames are classified

accordingly.

The nature of this algorithm requires that it works only on short sequences,

4 to 6 seconds long, because as the sequence gets longer the periodicity of the

sequence fades away due to noise and variations of the heart rate.

To overcome this problem, the signal is split into 4-seconds wide win-

dows and the algorithm is applied to each window. The resulting sets of heart

sounds endpoint are then joined into a single set.

The chirp z-transform

The Chirp z-Transform (CZT) is an algorithm for the computation of the z-

Transform of sampled signals that offers some additional flexibility with re-
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Figure 3.1: Example of S1 and S2 detection

spect to the Fast Fourier Transform (FFT) algorithm.

The main advantage of the CZT exploited in the analysis of heart sounds

is the fact that it allows high-resolution analysis of narrow frequency bands,

offering higher resolution than the FFT.

For more details on the CZT, please refer to [17]

Cepstral analysis

Mel-Frequency Cepstrum Coefficients (MFCC) are one of the most

widespread parametric representation of audio signals [18].

The basic idea of MFCC is the extraction of cepstrum coefficients using

a non-linearly spaced filterbank; the filterbank is instead spaced according

to the Mel Scale: filters are linearly spaced up to 1 kHz, and then are loga-

rithmically spaced, decreasing detail as the frequency increases. Parametric
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representation that use only linearly spaced filters are called Linear Frequency

Cepstrum Coefficients (LFCC) or Linear Frequency Bands Cepstra (LFBC).

This scale is useful because it takes into account the way we perceive

sounds.

The relation between the Mel frequency f̂mel and the linear frequency flin

is the following:

f̂mel = 2595 · log10

(

1+ flin

700

)

(3.1)

The first step of the algorithm is to compute the FFT of the input signal;

the spectrum is then fed to the filterbank, and the i-th cepstrum coefficient is

computed using the following formula:

Ci =
K

∑
k=1

Xk · cos

(

i ·

(

k−
1

2

)

·
π

K

)

i= 0, ...,M (3.2)

Where K is the number of filters in the filterbank, Xk is the log-energy

output of the k-th filter andM is the number of coefficients that must be com-

puted.

Many parameters have to be chosen when computing cepstrum coeffi-

cients. Among them: the bandwidth and the scale of the filterbank (Mel vs.

linear), the number and spectral width of filters, the number of coefficients.

In addition to this, differential cepstrum coefficients, typically denoted

using a ∆ (first order) or ∆∆ (second order), can be computed and used.

Figure 3.2 shows an example of three S1 sounds and the relative MFCC

spectrograms; the first two (a, b) belong to the same person, while the third

(c) belongs to a different person.
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Figure 3.2: Example of waveforms and MFCC spectrograms of S1 sounds

The First-to-Second Ratio (FSR)

In addition to standard feature extraction techniques, it is desirable to develop

ad-hoc features for the heart sound, as it is not a simple audio sequence but has

specific properties that could be exploited to develop features with additional

discriminative power.

This is why in [19] we introduced a time-domain feature called First-to-

Second Ratio (FSR). Intuitively, the FSR represents the power ratio of the first

heart sound (S1) to the second heart sound (S2). During our experiments, we

observed that some people tend to have an S1 sound that is louder than S2,
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while in others this relation is inverted. We try to represent this diversity using

our new feature.

The implementation of the feature is different in the two biometric systems

that we will describe in this chapter, and a discussion of the two algorithms

can be found in later sections.

Figure 3.3 shows the plot of the distribution of the intra-person and inter-

person dFSR distances, as defined in Equation 3.7. The comparison was car-

ried over a database of 50 people. This plot clearly shows that the FSR has

some discriminative power.

Figure 3.3: Distribution of intra-person and inter-person FSR distances

3.4 Review of related works

In the last years, different research groups have been studying the possibility

of using heart sounds for biometric recognition. In this section, we will briefly

describe their methods.
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In Table 3.2 we summarized the main characteristics of the works that will

be analyzed in this section, using the following criteria:

• Database - the number of people involved in the study and the amount

of heart sounds recorded from each of them;

• Features - which features were extracted from the signal, at frame level

or from the whole sequence;

• Classification - how features were used to make a decision.

We chose not to represent performance in this table for two reasons: first,

most papers do not adopt the same performance metric, so it would be diffi-

cult to compare them; second, the database and the approach used are quite

different one from another, so it would not be a fair comparison.

In the rest of the section, we will briefly review each of these papers.

[20] was one of the first works in the field of heart-sounds biometry. In

this paper, the authors first do a quick exploration of the feasibility of using

heart sounds as a biometric trait, by recording a test database composed of

128 people, using 1-minute heart sounds and splitting the same signal into

a training and a testing sequence. Having obtained good recognition per-

formance using the HTK Speech Recognition toolkit, they do a deeper test

using a database recorded from 10 people and containing 100 sounds for each

person, investigating the performance of the system using different feature ex-

traction algorithms (MFCC, LFBC), different classification schemes (Vector

Quantization (VQ) and Gaussian Mixture Models (GMM)) and investigating

the impact of the frame size and of the training/test length. After testing many

combinations of those parameters, they conclude that, on their database, the

most performing system is composed of LFBC features (60 cepstra + log-
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Paper Database Features Classification

[20]
10 people MFCC GMM

100 HS each LBFC VQ

[21]
52 people Multiple SVM

100m each

[22]
10 people Energy Euclidean

20 HS each peaks distance

[23]

21 people MFCC, LDA, Euclidean

6 HS each energy peaks distance

8 seconds per HS

[24]

40 people autocorrelation MSE

10 HS cross-correlation kNN

10 seconds per HS complex cepstrum

Table 3.2: Comparison of recent works about heart-sound biometrics

energy + 256ms frames with no overlap), GMM-4 classification, 30s of train-

ing/test length.

The authors of [21], one of which worked on [20], take the idea of finding

a good and representative feature set for heart sounds even further, explor-

ing 7 sets of features: temporal shape, spectral shape, cepstral coefficients,

harmonic features, rhythmic features, cardiac features and the GMM super-

vector. They then feed all those features to a feature selection method called

RFE-SVM and use two feature selection strategies (optimal and sub-optimal)

to find the best set of features among the ones they considered. The tests were
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conducted on a database of 52 people and the results, expressed in terms of

Equal Error Rate (EER), are better for the automatically selected feature sets

with respect to the EERs computed over each individual feature set.

In [22], the authors describe an experimental system where the signal is

first downsampled from 11025 Hz to 2205 Hz; then it is processed using the

Discrete Wavelet Transform, using the Daubechies-6 wavelet, and the D4 and

D5 sub-bands (34 to 138 Hz) are then selected for further processing. After

a normalization and framing step, the authors then extract from the signal

some energy parameters, and they find that, among the ones considered, the

Shannon energy envelogram is the feature that gives the best performance on

their database of 10 people.

The authors of [23] do not propose a pure-PCG approach, but they rather

investigate the usage of both the ECG and PCG for biometric recognition. In

this short summary, we will focus only on the part of their work that is related

to PCG. The heart sounds are processed using the Daubechies-5 wavelet, up to

the 5th scale, and retaining only coefficients from the 3rd, 4th and 5th scales.

They then use two energy thresholds (low and high), to select which coeffi-

cients should be used for further stages. The remaining frames are then pro-

cessed using the Short-Term Fourier Transform (STFT), the Mel-Frequency

filterbank and Linear Discriminant Analysis (LDA) for dimensionality reduc-

tion. The decision is made using the Euclidean distance from the feature vec-

tor obtained in this way and the template stored in the database. They test the

PCG-based system on a database of 21 people, and their combined PCG-ECG

systems has better performance.

The authors of [24] filter the signal using the DWT; then they extract dif-

ferent kinds of features: auto-correlation, cross-correlation and cepstra. They

then test the identities of people in their database, that is composed by 40 peo-

ple, using two classifiers: Mean Square Error (MSE) and k-Nearest Neighbor
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(kNN). On their database, the kNN classifier performs better than the MSE

one.

3.5 The structural approach to heart-sounds

biometry

The first system that we describe in depth was introduced in [16]; it was de-

signed to work with short heart sounds, 4 to 6 seconds long and thus contain-

ing at least four cardiac cycles (S1-S2).

The restriction on the length of the heart sound was removed in [25], that

introduced the quality-based best subsequence selection algorithm, described

in 3.5.1.

We call this system “structural” because the identity templates are stored

as feature vectors, in opposition to the “statistical” approach, that does not di-

rectly keep the feature vectors but instead it represents identities via statistical

parameters inferred in the learning phase.

Figure 3.4 contains the block diagram of the system. Each of the steps

will be described in the following sections.

detector

S1/S2 endpoint

detector

S1/S2 sounds S1/S2 sounds

MFCC

FSR

Template

yes

no

Matcherx̂(n)x(n)

Low-pass filter

Best subsequence

detector

Figure 3.4: Block diagram of the proposed cardiac biometry system
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3.5.1 The best subsequence selection algorithm

The fact that the segmentation and matching algorithms of the original system

were designed to work on short sequences was a strong constraint for the

system. It was required that a human operator selected a portion of the input

signal based on some subjective assumptions. It was clearly a flaw that needed

to be addressed in further versions of the system.

To resolve this issue, the authors developed a quality-based subsequence

selection algorithm, based on the definition of a quality index DHSQI(i) for

each contiguous subsequence i of the input signal.

The quality index is based on a cepstral similarity criterion: the selected

subsequence is the one for which the cepstral distance of the tones is the

lowest possible. So, for a given subsequence i, the quality index is defined as:

DHSQI(i) =
1

4

∑
k=1

4

∑
j=1
j 6=k

dS1( j,k)+
4

∑
k=1

4

∑
j=1
j 6=k

dS2( j,k)

(3.3)

Where dS1 and dS2 are the cepstral distances defined in 3.5.5.

The subsequence i with the maximum value of DHSQI(i) is then selected

as the best one and retained for further processing, while the rest of the input

signal is discarded.

3.5.2 Filtering and segmentation

After the best subsequence selection, the signal is then given in input to the

heart sound endpoint detection algorithm described in 3.3.2.

The endpoints that it finds are then used to extract the relevant portions

of the signal over a version of the heart sound signal that was previously
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filtered using a low-pass filter, which removes the high-frequency extraneous

components.

3.5.3 Feature extraction

The heart sounds are then passed to the feature extraction module, that com-

putes the cepstral features according to the algorithm described in 3.3.2.

This system usesM = 12 MFCC coefficients, with the addition of a 13-th

coefficient computed using an i = 0 value in Equation 3.2, that is the log-

energy of the analyzed sound.

3.5.4 Computation of the First-to-Second Ratio

For each input signal, the system computes the FSR according to the follow-

ing algorithm.

Let N be the number of complete S1-S2 cardiac cycles in the signal. Let

PS1i (resp. PS2i) be the power of the i-th S1 (resp. S2) sound.

We can then define PS1 and PS2, the average powers of S1 and S2 heart

sounds:

PS1 =
1

N

N

∑
i=1

PS1i (3.4)

PS2 =
1

N

N

∑
i=1

PS2i (3.5)

Using these definitions, we can then define the First-to-Second Ratio of a

given heart sound signal as:

FSR=
PS1

PS2
(3.6)
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For two given heart sounds x1 and x2, we define the FSR distance as:

dFSR (x1,x2) = |FSRdB (x1)−FSRdB (x2)| (3.7)

3.5.5 Matching and identity verification

The crucial point of identity verification is the computation of the distance

between the feature set that represents the input signal and the template asso-

ciated with the identity claimed in the acquisition phase by the person that is

trying to be authenticated by the system.

This system employs two kinds of distance: the first in the cepstral domain

and the second using the FSR.

MFCC are compared using the Euclidean metric (d2). Given two heart

sound signals X and Y , let XS1(i) (resp. XS2(i)) be the feature vector for the

i-th S1 (resp. S2) sound of the X signal and YS1 and YS2 the analogous vectors

for the Y signal. Then the cepstral distances between X and Y can be defined

as follows:

dS1(X ,Y ) =
1

N2

N

∑
i, j=1

d2(XS1(i),YS1( j)) (3.8)

dS2(X ,Y ) =
1

N2

N

∑
i, j=1

d2(XS2(i),YS2( j)) (3.9)

Now let us take into account the FSR. Starting from the dFSR as defined in

Equation 3.7, we wanted this distance to act like an amplifying factor for the

cepstral distance, making the distance bigger when it has an high value while

not changing the distance for low values.

We then normalized the values of dFSR between 0 and 1 (dFSRnorm
), we

chose a threshold of activation of the FSR (thFSR) and we defined kFSR, an

amplifying factor used in the matching phase, as follows:
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kFSR =max

(

1,
dFSRnorm
thFSR

)

(3.10)

In this way, if the normalized FSR distance is lower than thFSR it has no

effect on the final score, but if it is larger, it will increase the cepstral distance.

Finally, the distance between X and Y can be computed as follows:

d(X ,Y ) = kFSR ·
√

dS1(X ,Y )2+dS2(X ,Y )2 (3.11)

3.6 The statistical approach to heart-sounds

biometry

In opposition to the system analyzed in Section 3.5, the one that will be de-

scribed in this section is based on a machine learning process that does not

directly compare the features extracted from the heart sounds, but instead uses

them to infer a statistical model of the identity and makes a decision comput-

ing the probability that the input signal belongs to the person whose identity

was claimed in the identity verification process.

Figure 3.5 contains the block diagram of the system. Each of the steps

will be described in the following sections.

This system uses the GMM-UBM approach for the creation of the identity

models and for the computation of the scores, in the form of log-likelihood

ratios. For more information about the GMM-UBMmethod, see Appendix A.

3.6.1 Front-end processing

Each time the system gets an input file, whether for training a model or for

identity verification, it goes through some common steps.
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computation

yes

no

S1/S2 endpoint

Feature Extraction

x(n)

(LFCC/FSR)

detector

Normalization

Feature

S1/S2 sounds

detector

Match score Decision

Identity Model

World Model

Figure 3.5: Block diagram of the Statistical system

First, heart sounds segmentation is carried on, using the algorithm de-

scribed in Section 3.3.2.

Then, cepstral features are extracted using a tool called sfbcep, part of the

SPro suite [26].

For each input sequence, we also compute the FSR and we append it to

each feature vector, as a sequence-wise feature. This operation is done by a

program developed using the low-level Alize framework.

In the context of the statistical approach, it seemed more appropriate to

just append the FSR to the feature vector computed from each frame in the

feature extraction phase, and then let the GMM algorithms generalize this

knowledge.

To do this, we split the input heart sound signal in 5-second windows and

we compute an average FSR (FSR) for each signal window, that is the average

of the FSR values of each heart cycle.

3.6.2 The experimental framework

The experimental set-up created for the evaluation of this technique was im-

plemented using some tools provided by ALIZE/SpkDet , an open source
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toolkit for speaker recognition described in Appendix B.

The adaptation of parts of a system designed for speaker recognition to a

different problem was possible because the toolkit is sufficiently general and

flexible, and because the features used for heart-sounds biometry are similar

to the ones used for speaker recognition, as outlined in Section 3.3.2.

During the world training phase, the system estimates the parameters of

the world model λW using a randomly selected subset of the input signals.

The identity models λi are then derived from the world modelW using the

Maximum A-Posteriori (MAP) algorithm.

During identity verification, the matching score is computed using Equa-

tion A.3, and the final decision is taken comparing the score to a threshold

(θ ).

3.6.3 Optimization of the method

During the development of the system, some parameters have been tuned in

order to get the best performance. Namely, three different cepstral feature sets

have been considered in [27]:

• 16 + 16 ∆ + E + ∆E

• 16 + 16 ∆ + 16 ∆∆

• 19 + 19 ∆ + E + ∆E

However, the first of these sets proved to be the most effective

In [28] the impact of the FSR and of the number of Gaussian densities in

the mixtures was studied. Four different model sizes (128, 256, 512, 1024)

were tested, with and without FSR, and the best combination of those param-

eters, on our database, is 256 Gaussians with FSR.
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3.7 Performance evaluation

In this section, we will compare the performance of the two systems described

in the previous sections of this chapter. We will first describe the database in

Section 3.7.1, then the performance evaluation protocol in 3.7.2. Finally the

results of the comparison will be given in Section 3.7.3.

3.7.1 The HSCT-11 database

One of the drawbacks that is relatively common among novel biometric traits

is the absence of significantly large databases for performance evaluation.

To overcome this problem, we are building a heart sounds database suit-

able for identity verification performance evaluation. This database is called

HSCT-11, that stands for Heart Sounds Catania 20112 [29].

Currently, in the database there are sounds recorded from 206 people, 157

male and 49 female; for each person, there are two separate recordings, each

lasting from 20 to 70 seconds; the average length of the recordings is 45

seconds. The heart sounds have been acquired using a Thinklabs Rhythm

Digital Electronic Stethoscope, connected to a computer via an audio card.

The sounds have been converted to the Wave audio format, using 16 bit per

second and at a rate of 11025 Hz.

The filenames encode the following metadata about the person:

• the first character encodes the sex of the person (M or F);

• the next 4 characters are the numeric unique ID of the person;

2the database is available for free download at the URL

http://www.diit.unict.it/users/spadaccini/hsct11
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• the next character encodes the heart valve used for the auscultation (M:

mitral, P: pulmonary, A: aortic, T: tricuspid); this database currently

contains only sequences recorded near the pulmonary valve;

• the next character encodes whether the recording was done with the

subject in resting condition (N) or after some light physical activity

(C); so far the database contains only sequences recorded in resting

condition;

• the next 3 characters encode the sequential number of the registration

acquired from a given person; the first of these 3 characters is always

the letter R.

• the next 7 characters encode the date of the acquisition; the first one is

always a letter D, the others represent the date in the format MMDDYY;

• the next 7 characters encode the birth date of the subject; the first one is

always a letter N, the others represent the date in the format MMDDYY;

The letters between fields could have been avoided since the fields have

a fixed length, but they have been inserted because they make it easier for

human eyes to scan the filename and extract the required information. An

example filename is: F7007NR01D290610N051077.wav.

3.7.2 Evaluation protocol

The comparison has been done in the following way: for each person, one

sequence is used for the model training phase and one is used for the compu-

tation of matching scores.

Let X be a given person, Xa its first recording and Xb its second recording;

also let D be the set of all the people in the database, and let N = |D| = 206
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be the number of people in it. Let S be the matching function that, given an

identity model and a recording gives a similarity score.

For each person, the database user should compute one genuine matching

score, that is S(MX ,Xb), and N−1 impostor matching scores S(MY ,Xb),∀Y ∈

{D\X}. This will yield N genuine matching scores and N · (N−1) impostor

matching scores.

3.7.3 Results

The performance of our two systems has been computed over the HSCT-11

database, and the results are reported in Table 3.3.

System EER (%)

Structural 36.86

Statistical 13.66

Table 3.3: EER of the two heart-sounds biometry systems

The huge difference in the performance of the two systems reflects the

fact that the first one is not being actively developed since 2009, and it was

designed to work on small databases, while the second has already proved to

work well on larger databases.

It is important to highlight that, in spite of a 25% increment of the size of

the database, the error rate remained almost constant with respect to the last

evaluation of the system, in which a test over a 165 people database yielded a

13.70% EER.

Figure 3.6 shows the Detection Error Trade-off (DET) curves of the two

systems. As stated before, a DET curve shows how the analyzed system per-
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Figure 3.6: Detection Error Trade-off (DET) curves of the two systems

forms in terms of false matches/false non-matches as the system threshold is

changed.

In both cases, fixing a false match (resp. false non-match) rate, the system

that performs better is the one with the lowest false non-match (resp. false

match) rate.

Looking at Figure 3.6, it is easy to understand that the statistical system

performs better in both high-security (e.g., FMR = 1-2%) and low-security

(e.g., FNMR = 1-2%) setups.

We can therefore conclude that the statistical approach is definitely more

promising that the structural one, at least with the current algorithms and using

the database described in 3.7.1.
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3.8 Conclusions

In this chapter, we described a novel biometric technique based on heart

sounds, analyzing two different approaches and evaluating their performance.

As shown in the survey of recent papers in this field, the number of re-

search groups that work on this topic is slowly increasing, and this means that

there is interest for this new biometric trait.

The performance analysis of the two systems presented in this chapter

show that, using our database, the performance of the system is still not suit-

able for real-world systems but it is not so far from being viable.

Unfortunately, it is difficult to compare the results with the ones presented

in the other papers, because the databases are not public, the performance

metrics are often different from the EER and the size of the databases is just

too different to try and derive any conclusion from comparing the numeric

values obtained from the evaluation.

To the best of our knowledge, our database is so far the one that contains

the highest number of people, and while this is encouraging because it might

give more validity to our results, we recognize that 206 people are still not

enough to draw significant statistical conclusions. Moreover, the database

needs to be more diversified, with more than 2 sessions and with more vari-

ability in session time spread, health condition etc.

As larger databases of heart sounds become available to the scientific com-

munity, there are some issues that need to be addressed in future research.

First of all, the identification performance should be kept low even for

larger databases. This means that the matching algorithms will be fine-tuned

and a suitable feature set will be identified, probably containing both elements

from the frequency domain and the time domain.

Next, the mid-term and long-term reliability of heart sounds will be as-
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sessed, analyzing how their biometric properties change as time goes by. Ad-

ditionally, the impact of cardiac diseases on the identification performance

will be assessed.

Finally, when the algorithms will be more mature and several indepen-

dent scientific evaluations will have given positive feedback on the idea, some

practical issues like computational efficiency will be tackled, and possibly ad-

hoc sensors with embedded matching algorithms will be developed, thus mak-

ing heart-sounds biometry a suitable alternative to the mainstream biometric

traits.
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CHAPTER

FOUR

FORENSIC SPEAKER RECOGNITION

4.1 Introduction

In this chapter we will analyze some of the current research problems in the

field of forensic speaker verification, and we will present the results of our

experiments1.

Speaker recognition has already been described in Section 2.3.2, and it is a

biometric technique that is employed in many different contexts, with various

degrees of success.

In this chapter, we are interested in a narrow context: the analysis of

speech data coming from wiretappings or ambient recordings retrieved during

criminal investigation with the purpose of being able of recognizing if a given

sentence had been uttered by a given person. This process is called forensic

speaker recognition, and it is still a controversial topic [33].

1this chapter is based on the research described in [30–32]

49
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As of the writing of this document, in Italian courts this process is still car-

ried on using semi-automatic techniques. This means that an expert witness

does the analysis with the aid of some specialized software, but he is free to

change some parameters that can affect the final outcome of the identification.

It is obvious that human errors, or in the worst case conscious alterations

of the parameters, can lead to wrong results, with disastrous consequence on

the trial.

What we want to analyze is how can state-of-the-art speaker recognition

techniques be employed in this context, what are their limitations and their

strengths and what must be improved in order to migrate from old-school

manual or semi-automatic techniques to new, reliable and objective automatic

methods.

It is well-known that speech signal quality is of fundamental importance

for accurate speaker identification [34].

The reliability of a speech biometry system is known to depend on the

amount of material available, in particular on the number of vowels present

in the sequence being analysed, and the quality of the signal [35]. The former

affects the resolution power of the system, while the latter impacts the cor-

rect estimation of biometric indexes. In automatic or semi-automatic speaker

recognition, background noise is one of the main causes of alteration of the

acoustic indexes used in the biometric identification/verification phase [36].

Therefore, background noise is one of the main causes of a performance

degradation of a biometry system.

In this chapter, we will analyze the behaviour of some speaker recognition

techniques when the conditions are not controlled and the speech sequences

are disturbed by background noise.

In Section 4.2 we will describe the speech and noise databases used for the

experiments; in Section 4.3 we will analyze the performance of two Signal-
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to-Noise (SNR) estimation algorithms; in Section 4.4 we will analyze the

performance of a speaker recognition toolkit; in Section 4.5 we will analyze

the impact of Voice Activity Detection (VAD) algorithms on the recognition

rates; finally, in Section 4.6 we will draw our conclusions.

4.2 Speech and noise databases

4.2.1 The TIMIT speech database

All the speaker recognition experiments described in this chapter use as a

speech database a subset of the TIMIT (Texas Instrument Massachusetts In-

stitute of Technology) database, that will be briefly described in this section.

The TIMIT database contains speech data acquired from 630 people, that

are split in subsets according to the Dialect Region to which each of them

belongs. Each DR is further split in training and test set. The number of

speakers contained in each DR, and their division in training and test set are

reported in Table 4.1.

This database was explicitly designed to provide speech researchers with

a phonetically rich dataset to use for research in speech recognition, but it is

widely adopted also in the speaker recognition research community.

It contains three types of sentences, dialectal (SA), phonetically-compact

(SX) and phonetically diverse (SI). The total number of spoken sentences is

6300, 10 for each of the 630 speakers. There is some superposition between

speakers, because there are sentences that are spoken by more than one per-

son. Each person, however, has to read 2 SA sentences, 5 SX sentences and 3

SI sentences.

The database also contains annotations about the start and end points of

different lexical tokens (phonemes, words and sentences). This was especially
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Dialect Region Total Training Test

New England (DR1) 49 38 11

Northern (DR2) 102 76 26

North Midland (DR3) 102 76 26

South Midland (DR4) 100 68 32

Southern (DR5) 98 70 28

New York City (DR6) 46 35 11

Western (DR7) 100 77 23

Moved around (DR8) 33 22 11

Totals: 630 462 168

Table 4.1: Composition of the TIMIT data set

useful for the research on SNR and VAD, because we could compare our

algorithms with ground truth provided by the database itself.

4.2.2 The noise database

The noise database comprises a set of recordings of different types of back-

ground noise, each lasting 3 minutes, sampled at 8 kHz and linearly quantized

using 16 bits per sample. The types of noise contained in the database fall into

the following categories:

• Car, recordings made inside a car;

• Office, recordings made inside an office during working hours;

• Factory, recordings made inside a factory;



4.3. Performance evaluation of SNR estimation algorithms 53

• Construction, recordings of the noise produced by the equipment used

in a building site;

• Train, recordings made inside a train;

4.3 Performance evaluation of SNR estimation

algorithms

In forensics, one of the most widely adopted methods to assess the quality of

the intercepted signal is based on the estimation of the Signal to Noise Ratio

(SNR), that should not be lower than a critical threshold, usually chosen be-

tween 6 and 10 dB [35]. It is possible to estimate the SNR using manual or

semi-automatic methods. Both of them exploit the typical ON-OFF structure

of conversations, which means that on average there are times when there is

a speech activity (talkspurt) and times when nobody is talking, and the sig-

nal is mainly composed by environmental noise recorded by the microphone

(background noise). With manual methods, the SNR is estimated choosing

manually the segment of talkspurt and the segment of background noise im-

mediately before or after the talkspurt. The estimation is computed by the

following formula:

SNRest =
Ptalk−Pnoise

Pnoise
(4.1)

Semi-automatic estimation methods use a Voice Activity Detection (VAD)

algorithm that separates the ON segments from the OFF segments in a given

conversation, and use those segments to estimate the SNR using equation

4.1 [37, 38].

Both algorithms do not give an exact value of the SNR, because the noise
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sampled for the SNR estimation is different from the noise that degraded the

vocal segment for which the SNR is being estimated. This happens because

the noise level can be measured only when the speakers are not talking, in an

OFF segment.

Sometimes the estimation error causes the elimination of good-quality

data (under-estimation of the SNR), while sometimes it causes the usage of

low-quality biometric data that was probably corrupted by noise in the subse-

quent identification process (over-estimation of the SNR)

In this section, we will discuss about the accuracy of the SNR estimation

methods, comparing their average estimation error to the real SNR.

4.3.1 Speech and background noise database

In this experiment, we used speech data coming from 100 people, half female

and half male, randomly selected from the DR1 subset of the TIMIT database

The 10 sentences spoken by each person, sampled at 8 kHz and linearly

quantized using 16 bits per sample, have been used to produce a clean conver-

sation composed by talkspurt segments (ON) normalized to an average power

level of −26dBovl and silence segments (OFF). The ON-OFF statistics were

chosen using the model proposed in [39].

We used 4 kinds of background noise: Car, Office, Stadium, Construction.

For each type of noise, the clean sequence was digitally summed to the

noise, in order to get sequences with four different real SNRs in the activity

segments: 0, 10, 20 and 30 dB.
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4.3.2 SNR estimation methods

Both analyzed SNR estimation methods exploit the manual phonetic marking

offered by the TIMIT database. In particular, for the sake of simplicity, we

selected a restricted subset of vowel sounds (“ae”, “iy”, “eh”, “ao”), of which

only the central 20 ms were considered.

The manual SNR estimation method computes the estimated SNR as the

ratio between the power of the signal of the current vowel, (Ptalk) lasting 20ms,

to the power of noise, (Pnoise), measured at the nearest OFF segment and last-

ing 20 ms. The classification of the signal in ON and OFF segments is done

manually.

The semi-automatic method uses the VAD algorithm to automatically

classify ON and OFF segments. The VAD used is the one standardized by

the ETSI for the speech codec AMR [40]. In this case, the noise power is

measured using the nearest OFF segment classified by the VAD.

The values obtained by the two algorithms have then been compared to the

real SNR, computed as the ratio between the power of the vowel measured on

the clean signal and the power of the background noise measured in the same

temporal position but on the noise sequence.

4.3.3 Results

The first analysis that we present is the computation of the average estimation

errors. In each subplot, two axis represent the SNR and the vowel, while the

third one represents the average estimation error.

Figure 4.1 shows the average estimation error for the manual method,

while Figure 4.2 shows the same error, but for the semi-automatic method.

The performance of both methods are similar for the Car and Noise, with
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(a) Car (b) Construction

(c) Office (d) Stadium

Figure 4.1: Average SNR estimation errors for the manual method

an average error between 3 and 5 dB of difference with the reference SNR.

A comparison of the errors reveals that the usage of the automatic method

increases the average error by 1 dB in case of the Car, Construction and Office

noises, while the increase is larger (between 2 and 5 dB) for the Stadium noise.

Even though the VAD impact on the SNR estimation depends on the type

of noise, it however does not lead to heavily poorer performance because on
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(a) Car (b) Construction

(c) Office (d) Stadium

Figure 4.2: Average SNR estimation errors for the semi-automatic method

average the error grows by only 1-2 dB.

In both cases, when the reference SNR is 0 dB it can be seen that the

“iy” vowel is subject to a high sensitivity for each kind of noise. The aver-

age estimation error generally is larger by 20-30% with respect to the other

vowels.

The plots in Figure 4.3 and Figure 4.4 show the correlation between the
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(a) Car

(b) Office

Figure 4.3: Real vs. estimated SNR, manual method



4.3. Performance evaluation of SNR estimation algorithms 59

(a) Car

(b) Office

Figure 4.4: Real vs. estimated SNR, semi-automatic method
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real SNR and the estimated SNR for each of the 4 vowels in case of Car

and Office noise. If we assume a critical threshold for rejecting a biometric

sample of 10 dB, it is possible to outline 4 regions in each of these plots:

the upper-left one, that encompasses data erroneously used because the SNR

was over-estimated; the lower-right region, that comprises data erroneously

discarded because the SNR was under-estimated, and the remaining regions

(upper-right and lower-left), that contain data that were correctly discarded or

used for the subsequent identity verification phases.

Tables 4.2 and 4.3, respectively, for manual and semi-automatic methods,

show the error percentages depicted in Figure 4.3 and Figure 4.4. The semi-

automatic method induces an increment of the percentage of low-quality data

that is used for subsequent elaboration for the Office noise, while the percent-

ages for the Car noise are similar to the ones of the manual method.

In the end, comparing the percentage of low-quality data erroneously

used, it can be deduced that each vowel reacts in different ways: for instance,

the “iy” vowel is one of the most robust. A similar comparison can be carried

out in terms of high-quality data erroneously discarded.

4.4 Performance evaluation of Alize-LIA RAL

In this section we present a study on how a speaker recognition system based

on the Alize/LIA RAL toolkit behaves when the data is affected by back-

ground noise. In particular, the section shows both the performance using a

clean database and the robustness to the degradation of various natural noises,

and their impact on the system. Finally, the impact of the duration to both

training and test sequences is studied.
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Car noise ae iy eh ao

Bad data used 15.39% 11.63% 15.34% 16.82%

Good data discarded 5.49% 6.75% 4.49% 4.91%

Office noise ae iy eh ao

Bad data used 22.14% 14.95% 21.76% 17.70%

Good data discarded 5.97% 7.97% 6.41% 6.00%

Table 4.2: Percentage errors for the manual method

Car noise ae iy eh ao

Bad data used 18.56% 15.42% 18.11% 18.77%

Good data discarded 4.94% 6.86% 4.61% 4.33%

Office noise ae iy eh ao

Bad data used 60.45% 42.70% 58.55% 56.46%

Good data discarded 2.35% 3.28% 1.53% 1.59%

Table 4.3: Percentage errors for the semi-automatic method

4.4.1 Speech and background noise database

For this experiment, we used the training portion of the DR1 TIMIT subset,

that contains 38 people.

We generated the clean and noisy databases using the same protocol de-

scribe in Section 4.3.1.
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4.4.2 Performance evaluation and results

In order to verify the performance of our system, we computed the genuine

match scores and the impostor match scores for different types of noises and

signal-to-noise ratio (SNR). The Detection Error Trade-off of each test case

is shown in the following figures.

Figures 4.5 compare the performance on the basis of noise type for: (a)

SNR=20 dB, (b) SNR=10 dB, (c) SNR=0 dB. In all cases we can notice major

performance degradation after raising the noise level volume and a different

impact on the system performance made by various noise types. In partic-

ular, car noise has less impact (EER=13 %) while construction noise is the

most degrading noise type (EER=24 %). Algorithm performance in clean se-

quences points out an EER value of about 8 %, so the impact of the noise

compromises the performance for EER percentage basis ranging from 5 to 15

%.

Another important result is the discovered relation about the recognition

performance and the duration of the training and testing sequences. Fig-

ure 4.6a compares the DET achieved using clean sequences spanning the fol-

lowing durations:

• 2 training sequences (duration 6,24 sec), 2 true test sequences (duration

6,24 sec) and 2 false test sequences (6,24 sec);

• 8 training sequences (duration 25 sec), 2 true test sequences (6,24 sec)

and 2 false test sequences (6,24 sec);

In this case the real impact of the training duration on the total system perfor-

mance is evident.

Figure 4.6b shows the opposite case where a different duration of the test

sequences is applied, in particular:
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(a) 20 dB (b) 10 dB

(c) 0 dB

Figure 4.5: DET vs. Noise type

• 2 training sequences (duration 6,24 sec), 3 true test sequences (duration

9,36 sec) and 3 false test sequences (9,36sec);
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(a) 2-2-2 vs. 8-2-2 (b) 2-3-3 vs. 2-8-8

Figure 4.6: Training length vs. test length

• 2 training sequences (6,24 sec), 8 true test sequences (25 sec) and 8

false test sequences (25 sec).

In this case the different durations of the test sequences does not have

much impact and the performance are very similar. Therefore, from this result

it emerges that, for automatic speaker recognition, it is better to use longer

duration sequences for training and shorter duration sequences for testing.

Finally, Figure 4.7 compares system performance in three different modal-

ities: comparison of clean type training and testing sequences, comparison of

clean training sequence and degraded testing sequence by car noise with SNR

0dB, and comparison of training and testing sequences both degraded by car

noise with SNR 0dB. Analysing the three DET curves it is possible to see

that employing one noisy sequence in the training phase does not contribute

to the improvement of the performance, which remains similar to the clean-

noisy case. Generally, we can therefore conclude that speaker identification
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Figure 4.7: Clean-clean, Clean-Noisy, Noisy-Noisy

performance is sensitive to the degradation of one of the compared sequences

(phonic test and testing).

4.5 The impact of voice activity detection

The performance of biometric speaker verification systems is largely depen-

dent on the quality level of the input signal [41]. One of the most important

components of such a system is the Voice Activity Detection (VAD) algo-

rithm, as it has the duty of separating speech frames and noise frames, dis-

carding the latter and feeding the speech frames to the rest of the system.

This task becomes quite challenging as the Signal-to-Noise Ratio (SNR) of

the input signal goes down [37] [38].

A VAD algorithm can use many techniques to classify speech and noise,

such as an energy threshold or the analysis of the spectral characteristics of
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the audio signal. Due to these differences, different algorithms can behave

differently in a given noise condition, and this is the reason for the study

presented by this section.

The context in which we operate is the analysis of phone tappings in foren-

sic investigations, and our task is to determine whether the conversation was

carried on by a suspect or not. Those tappings are often noisy, so we generated

from a speech database some audio files with the typical ON-OFF statistics of

phone conversations and artificially added to them background noise in order

to evaluate the performance of VAD algorithms and speaker identification at

different SNR levels [36].

Our objective is to demonstrate that the usage of a single VAD is not

the optimal solution, however, biometric identification performance can be

improved by introducing a noise estimation component that can dynamically

choose the best VAD algorithm for the estimated noise condition.

4.5.1 Alize/LIA RAL

The speaker verification system used in this experiment is based on AL-

IZE/SpkDet , that is described in Appendix B.

Thanks to its modularity, we were able to run tests with the integrated

VAD, described in Section 4.5.4, and with the other VAD algorithms (ideal

and AMR), by converting the output of those algorithms in a format accepted

by ALIZE/SpkDet .

4.5.2 The speech database

For our task we selected a TIMIT subset composed by 253 speakers, namely

the union of DR sets 1, 2 and 3. Of those speakers, 63 were destined to train
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the UBM and 190 were used to train the identity models and to compute the

match scores. With those speakers, we obtained 190 genuine match scores

and 35910 (190 ·189) impostor match scores for each simulation.

The speech files were used to generate two one-way conversation audio

files, each containing speech material from 5 speech files and with an activity

factor of 0.4, using the algorithm described in Section 4.5.3. In the case of the

UBM speakers, both sequences were processed for the training phase, while

in the case of identity models one sequence was used for the model training

and the other was used for the computation of match scores.

The whole database was downsampled to 8kHz, to better match the foren-

sic scenario, and normalized to an average power level of −26dBovl .

4.5.3 Generation of one-way conversations

In order to simulate the forensic scenario, and to give realistic input data to

the VAD algorithms, we generated for each speaker two audio files that mimic

one side of a two-people conversation, inserting speech and pauses according

to the model described in ITU-T Recommendation P.59 “Artificial Conversa-

tional Speech” [42], that will now be briefly described.

According to this model, a conversation can be modelled as a Markov

chain, whose state can be one of the following: A is talking, B is talking,

Mutual silence, Double talk. A and B are the two simulated speakers.

The chain is depicted in Figure 4.8, along with the transition probabilities

between the states.

The permanence in each of these states is given by the following equa-
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Figure 4.8: Markov chain used to generate the conversations

tions:

Tst = 0.854ln(1− x1)

Tdt = 0.226ln(1− x2)

Tms = 0.456ln(1− x3)

where 0 < x1,x2,x3 < 1 are random variables with uniform distribution.

Tst is the permanence time in the states in which a single speaker is talking,

Tdt is associated to the double talk state and Tms is used for the mutual silence

state.

This model represents a two-way conversation, but we are interested in

generating speech for one of the two sides of the conversation. So when the

model is in the state “A is speaking” or “Mutual talk”, the generator adds

speech material to the output sequence, while in the other two states the gen-

erator adds silence.

For this experiment, we used the Car, Office and Factory noises.
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4.5.4 The LIA RAL VAD

The LIA RAL VAD is an energy-based off-line algorithm that works by train-

ing a GMM on the energy component of the input features. It then finds the

Gaussian distribution with the highest weight wi and uses its parameters to

compute an energy threshold according to the following formula:

τ = µi−ασi

where α is a user-defined parameter, and µi and σi are the parameters of

the selected gaussian mixture Λi.

The energy threshold is then used to discard the frames with lower energy,

keeping only the ones with a higher energy value.

4.5.5 The AMR VAD

The Adaptive Multi-Rate (AMR) Option 1 VAD [40] is a feature-based on-

line algorithm that works by computing the SNR ratio in nine frequency

bands, and decides which frames must be kept by comparing the SNRs to

band-specific thresholds.

Note that this VAD is not optimized for speaker verification tasks, as it has

the objective of minimizing the decision time, and it is designed to be used in

real-time speech coding applications, while in a forensic biometric system the

delay is not a significant parameter to minimize, and thus the VAD could use

information from all the input signal to make its decision, as the LIA RAL

VAD does.
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4.5.6 Evaluating VAD performance

In order to evaluate the VAD performance, we need to compare the results of

the classification on a given input signal with a reference ideal classification

that we know for sure to be correct.

In our experimental set-up, this ideal classification is derived by labelling

the start and the end of speech segments generated by the model described in

Section 4.5.3. This classification does not take into account pauses that can

occur during the TIMIT spoken sentences, but it is a good approximation of

an ideal classification.

The VAD classifier can misinterpret a given input frame in two ways:

detecting a noise frame as speech (Noise Detected as Speech, NDS) or classi-

fying a speech frame as noise (Speech Detected as Noise, SDN).

Those two errors are then further classified according to the position of

the error with respect to the nearest word; see [43] for a discussion of those

parameters.

For our analysis, we are not interested in the time when the misclassifi-

cation occurs, as it is mainly useful when evaluating the perception effects of

VAD errors [44], so we use the two NDS and SDN parameters, defined as

follows for a single conversation:

NDS% = NNDS· f
C

SDN% = NSDN · f
C

where NNDS and NSDN are, respectively, the number of NDS and SDN

frames, f is the frame length expressed in seconds andC is the duration of the

conversation expressed in seconds.

We then define a Total Error Rate (TER), as:
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TER% = NDS%+SDN% (4.2)

The TER is the percentage of audio frames that are misclassified by the

VAD.

4.5.7 Experimental results

The starting point of our experiments is the creation of 9 noisy speech

databases, obtained by summing to the one-way conversation speech database

described in Section 4.5.3 the Car, Office and Factory noises, artificially set-

ting the SNR to 20 dB, 10 dB and 0 dB.

Next the Equal Error Rate (EER) was computed over each database, first

with the ideal segmentation and then by swapping this segmentation with the

ones generated by the LIA RAL VAD and by the AMR VAD, for a total of 27

simulations.

Finally, the VAD errors were computed using the metrics defined in Sec-

tion 4.5.6.

In the clean case (Table 4.4), we reported the average NDS%, SDN% and

TER%, computed over all the speech samples used to run the speech veri-

fication simulations, one time for each VAD algorithm (including the ideal

VAD).

In the noisy cases (Tables 4.5, 4.6, 4.7), since for each VAD the simulation

was run once for each SNR level, the reported VAD error metrics are the

average of the average of the value of each metric (denoted with µ) computed

over all the speech samples, and their standard deviations σ are reported in

order to better understand the nature of the data presented. Obviously, the

VAD errors of the ideal VAD are always zero, so the standard deviation is

omitted from the tables.
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4.5.8 Analysis of the results

VAD algorithm EER (%) NDS% SDN% TER%

ideal 3.76 0 0 0

AMR 4.36 1.08 4.81 5.89

LIA RAL 3.77 4.33 31.74 36.07

Table 4.4: Results for clean speech

EER (%) VAD Errors (µ ±σ , %)

VAD 0dB 10dB 20dB NDS% SDN% TER%

ideal 5.77 3.60 3.55 0 0 0

AMR 4.95 4.77 3.38 7.30±1.55 4.88±0.34 12.18±1.89

LIA RAL 6.49 5.43 4.87 3.95±0.12 34.38±0.24 38.33±0.36

Table 4.5: Results table for CAR noise

Looking at Table 4.4, the first question is why the ideal segmentation

yields an EER that is very close to the one that the LIA RAL VAD obtained,

in spite of a greater TER%.

This is because the ideal segmentation does not focus only on vocalized

sounds, that are known to carry the information that is needed to determine

the identity of the speaker, but rather is an indicator of when the generator

described in Section 4.5.3 introduced speech in the audio sequence. This

therefore includes some sounds, like fricatives, that should be left out when
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EER (%) VAD Errors (µ ±σ , %)

VAD 0dB 10dB 20dB NDS% SDN% TER%

ideal 8.52 5.69 4.10 0 0 0

AMR 9.77 5.39 3.75 41.23±5.24 5.08±0.30 46.31±5.53

LIA RAL 6.97 5.21 4.00 0.83±0.85 19.39±3.52 20.22±4.37

Table 4.6: Results table for OFFICE noise

EER (%) VAD Errors (µ ±σ , %)

VAD 0dB 10dB 20dB NDS% SDN% TER%

ideal 7.84 5.01 4.70 0 0 0

AMR 7.27 5.02 3.42 13.64±1.04 6.12±1.33 19.76±2.49

LIA RAL 6.58 5.93 4.37 3.13±1.44 16.87±3.40 20.00±4.84

Table 4.7: Results table for FACTORY noise

doing biometric identity comparisons. This also explains the worse perfor-

mance of the ideal VAD in other cases like OFFICE, FACTORY 0 dB, etc.

Analyzing the average errors made by the VAD algorithms, it is clear that the

AMR VAD usually tends to be more conservative in the decision of rejection

of speech, because its NDS% is always greater than LIA RAL’s; on the other

hand, LIA RAL always has a greater SDN% than AMR, and this means that it

tends to be more selective in the decision of classifying a frame as noise.

The results for the CAR noise show that the AMR VAD always performs
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better than the LIA RAL VAD in terms of EER, and it is supported by a

significantly lower TER.

The OFFICE noise results do not show a clear winner between the two

algorithms, as for high SNR the AMR VAD performs better, but as the SNR

decreases, the LIA RAL algorithm outperforms the AMR VAD. A similar

pattern can be seen in the FACTORY results.

4.6 Conclusions and future work

In this chapter, we analyzed many of the problems that currently affect foren-

sic speaker recognition. It is clear from the results of the previous sections

that there is still no universal approach for speaker recognition in forensic

context, and also that this applies to some of the smaller sub-problems.

More specifically, some ideas for future work in the SNR estimation area

are:

• develop more effective SNR estimation algorithms, that can guarantee

a lower average error and, most importantly, lower variance;

• estimate SNR in the sub-bands of interest of the main biometric indices

adopted [36], typically in the fundamental frequency and in the first

three formants;

• identify the critical SNR thresholds for each vowel and for each kind of

noise by evaluating the impact of the noise on the whole identification

process;

• use automatic environmental noise classifiers that allow to choose an

SNR estimation model and critical thresholds tailored to the kind of

noise [38] [45]
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Regarding the selection of VAD algorithms, in the forensic context, where

accuracy is truly important and results can be collected off-line, multiple VAD

algorithms with different characteristics could be used, and all the identifica-

tion decisions computed using them could then be fused using a majority rule

or other fusion rules. In those critical kinds of analysis, it would be impor-

tant that most of the decisions agreed between them, or else the disagree-

ment could be an indicator that the choice of the VAD algorithm has a greater

weight than desired.

More broadly, based on the results of the research work described in this

chapter, it is clear that both the SNR estimation and VAD algorithm selec-

tion problems could benefit from an adaptive approach that first estimates the

characteristics of background noise and then select the algorithm that per-

forms better in that context [46].
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CHAPTER

FIVE

MULTI-MODAL WEB AUTHENTICATION

5.1 Introduction

In the last 20 years, thanks to the development of the World-Wide Web

(WWW), many of the activities carried on the Internet have been increas-

ingly moved to web browsers and web sites, to the point that most people

today commonly misidentify the Internet for the WWW itself [47].

The Web browser is increasingly becoming the access point for most on-

line activities, and the recent trend of moving from traditional client-server

computing paradigm to cloud-based computing, coupled with the rise of thin

client for the WWW (netbooks), will only contribute towards this change of

perspective, making web browsers more and more the entry point of the In-

ternet for most people.

In this context, biometric authentication systems will need to adapt them-

selves to be successful. In particular, they should not depend on external

devices that are not commonly found in consumer hardware, and they should

77



78 Chapter 5. Multi-modal Web Authentication

be accessible from inside a Web browser. Moreover, given that the quality of

the samples acquired from consumer hardware - think about the microphone

or the webcam of a netbook - is not comparable to the quality of samples ac-

quired with professional biometric devices, it is possible that those systems

will need to exploit more than one biometric trait to be effective.

In this chapter, we will describe the architecture and the implementation

of Biometric4Net1 [48], a prototype of web-based multi-modal biometric au-

thentication system. The system is open source, and the performance of its

biometric back-ends were evaluated using a non-chimeric multi-modal bio-

metric database called UCT10.

This chapter is structured as follows: in Section 5.2 we will describe the

Biometric4Net architecture and implementation choices; in Section 5.3 we

will describe the UCT10 multi-biometric database; in Section 5.4 we will

describe the performance evaluation of the biometric backends; finally, in

Section 5.5 we will draw our conclusions about the system.

5.2 Proposed architecture

The prototype system is composed by two sub-systems, the biometric au-

thentication server (from now on simply referred to as the server) and the

web-based user interface, that will be simply called client.

Figure 5.1 shows the proposed architecture, along with some hints on the

appearance of the client. Being it a web-based architecture, the two clients

will have to communicate using the HTTP protocol. The client will need to

run inside a web browser, and the server will either need an external web

server or implement it by itself.

1this work was supported by the GARR Consortium with Grant 2009-01
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Figure 5.1: The proposed architecture

In the remainder of this section, we will describe the structure of both

the components of the system, and discuss briefly the alternatives considered

while choosing the technologies used for the prototype implementation.

5.2.1 The client

The objective of the web client is to let the user interact with the whole system,

allowing him to:

• declare his identity;

• give his biometric data to the system;

• receive feedback from the system;
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• if needed, have access to the requested resource.

The identity declaration, feedback communication and resource access

tasks are trivial to implement, and very common in web applications. The

only task that is worth of discussion is the acquisition and encoding of bio-

metric data, that implies access to the relevant devices of the user’s computer,

in particular the microphone and the webcam.

One of the most common ways of achieving this task is the development

of browser plug-ins that bypass the protection of the browser and have di-

rect access to the operating system. An example of this kind of solutions is

the family of ActiveX browser plug-ins, for the Microsoft Internet Explorer

browser. This kind of solution has the huge disadvantage of being tied to a

single browser (and operating system), greatly limiting the portability of the

system.

Given that one of the objectives of the system is to be open, and not only

in terms of giving access to the source code, this family of solutions was not

considered.

After a careful analysis, three technologies were deemed worthy of con-

sideration for this task:

1. HTML 5;

2. Java;

3. Flash;

In the early stages of investigation, the still-evolving HTML 5 specifica-

tions [49], the <device> item was said to allow client-side web applications

to access the user’s devices, including audio/video and USB devices.

This would have been the ideal solution: standards-compliant, open,

cross-browser. Unfortunately, the specification is still not complete and not
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fully implemented by all the leading browsers, thus the adoption of HTML

5 would paradoxically result in a limited usability of the application. The

choice of not using HTML 5 was later revealed to be appropriate, because

the <device> tag was removed from the specification, in favour of the

getUserMedia API [50].

Both Java and Flash allow web applications to have access to the micro-

phone and to the webcam of the user, and they both offer to developers a free

SDK. It is widely accepted that Java does not offer the same cross-platform

compatibility level of Flash, and moreover Flash it is already in use in many

audio/video communication platforms.

This is why the technology chosen for the development of the client

platform is Flash, using as a development framework the Flex 4 SDK by

Adobe [51].

5.2.2 The server

Having chosen the front-end technology, we can now focus on the commu-

nication technique between the front-end and the back-end. There are two

possible strategies:

• send data in real-time;

• record data in the client and send it when the recording phase is finished.

For biometric authentication purposes, the two strategies are indifferent,

as the biometric score has to be computed on the whole data segment acquired

from the user: all the data must be processed before the final decision. So the

choice can be driven only by implementation-related reasons.

The streaming solution can be implemented using the Real-Time Messag-

ing Protocol (RTMP), a protocol that is well-integrated into the Flash plat-
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form. Unfortunately, the most common RTMP server is Adobe Flash Media

Server (FMS), a closed-source and commercial software. Luckily, there are

some open source alternatives, that have all been tested by us:

• Red5 [52];

• erlyvideo [53];

• rtmplite [54];

The first, Red5, is the most complete and most complex of the three

servers, and it is the one with which most of our exploratory tests have been

conducted. Once Red5 was set up, the other two servers were briefly installed

and configured. While once the configuration phase has been done the us-

age of the protocol is relatively easy, it was clear that an RTMP server is an

additional layer of complexity that could be avoided, with the additional con-

straint that all the acquisition and pre-processing had to be done on the client,

leaving to the server only the biometrics-related tasks.

The next step was then the investigation on how the data should be en-

coded and serialized. The most natural choice is the adoption of the AMF

(Action Message Format) serialization format, used primarily by Actionscript

(one of the main languages of the Flash platform) but with bindings for many

other languages.

Finally, for the code of the server component we chose to adopt the Python

programming language, due to its flexibility, to the wide availability of lots of

third-party libraries, and to its dynamic typing that makes it perfectly suited

for a relatively small portion of code that acts as middleware between many

systems.

The server component comprises two layers:

• A communication layer, based on PyAMF and WSGI;
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• A middle layer that encodes data for each biometric backend;

In this prototype, only the voice backend has been implemented, while

the performance evaluation tests were conducted on both voice- and face-

based biometric recognition systems, as the whole encoding and transmission

process introduced by the client/server system does not have any effect on the

biometric performance of the backends.

5.2.3 The authentication process

Figure 5.2: Sequence diagram of the authentication process

Figure 5.2 shows a sequence diagram of the authentication process, that

we will comment with the help of the screenshots of the prototype shown in

Figure 5.3.

When the user wants to gain access to a (fictitious) resource protected by

Biometric4Net, as a first step he has to declare his identity (Figure 5.3a). This

phase is implemented as a simple selection from a combo-box containing all

the identities presented in the database, but it could very easily be replaced

by the insertion of an user name. Also, currently the only identity validation
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factor is the biometric data, but it would be easy to add a second authentication

factor, such as a password.

Next, the user has to start the biometric acquisition. The security model

of Flash imposes that he has to explicitly authorize the Flash application to

gain access to the webcam and the microphone the first time that he uses it,

and this is shown in Figure 5.3b. After the authorization, the user records his

sentence and then stops the acquisition, as shown in Figure 5.3c.

At this point, the process summarized in Figure 5.2 starts. The client

sends to the server the identity verification request, serializing to AMF the

tuple (claimed identity, biometric data). The web server receives the HTTP

request and processes it, calling via RPC the authenticatemethod of the

biometric Controller.

The Controller is the component that queries the biometric systems and

employs a score-level fusion algorithm to decide whether the claim must be

considered true or not. Most fusion algorithm have already been implemented

in the Controller, while only the backend for Alize/LIA RAL has been imple-

mented.

Each biometric system can be located in the same machine of the Con-

troller or in another machine. This is totally transparent to both the User and

the Controller.

As soon as the decision is taken by the Controller, it returns a tuple (deci-

sion, score) of types (boolean, float) to the Web Server, which simply proxies

those value to the Client via an HTTP response. The Client has then the re-

sponsibility of rendering the choice to the User, as shown in Figure 5.3d, and

let him access the protected resource if the decision is positive.
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5.3 The UCT10 database

In order to evaluate the performance of multi-modal biometric systems, it

is necessary to have a database that contains biometric data for each of the

combined modalities. Ideally, to study the interaction between the different

traits, for each person in the database there should be one or more biometric

sample for each trait.

Unfortunately, this is not always the case, as there are practical difficulties

in acquiring multi-modal databases. Usually, it is common practice among

multi-modal biometric researchers to build artificial databases by arbitrarily

associating biometric data acquired from different people into one artificial

person. These databases are called chimeric databases, and recent studies

have shown that the hypothesis of statistical independence between the traits

does not hold [55].

This is why, in order to evaluate the performance of Biometric4Net, we

built a true multi-modal biometric database, called UCT10 (University of

Catania - 2010).

The database is composed of 50 people, and from each of them we ac-

quired:

• 4 speech samples, of the average duration of 30 seconds;

• 10 frontal face pictures;

• 5 real signatures and 5 unskilled signature forgeries;

• 2 heart sound sequences of the average duration of 60 seconds.

Each person who contributed to the database has signed an agreement that

authorizes the department to which we belong, the Dipartimento of Ingegneria
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Elettrica, Elettronica and Informatica of the University of Catania, to use this

data for research purposes and, if needed, to give this data to third parties,

also for research purposes. In no way this data is associated with the actual

identity or name of each of them.

5.4 Performance evaluation

In this section, we will describe the results of a performance evaluation of

three biometric systems based on three different biometric traits and three

score-level fusion algorithms, to justify the multi-modal approach and to show

that in our context the more appropriate set of biometric traits appears to be

the one composed by voice and face.

The comparison have been carried on using the UCT10 database, that has

been described in Section 5.3.

The first biometric system is Alize/LIA RAL, that is based on voice. It is

described further in Appendix B.

The second and the third systems are 2DFace and Get-Int HMM. The

first one is based on face recognition and the second on dynamic signature

recognition. Both are described in [56].

We selected those three biometric traits (voice, face and signature dynam-

ics) because they seem to be the ones that are more easily acquirable using

widely available consumer-grade hardware that is accessible through software

running in a web browser.

The first test, whose results are summarized in Table 5.1, have the objec-

tive to simply compare the recognition performance of the three systems on

the UCT10 database.

It is easy to see that the Voice and Face systems give similar results
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Biometric trait System EER (%)

Voice ALIZE/SpkDet 4.25

Face 2DFace 4.06

Signature Get-Int 12.65

Table 5.1: Results of the mono-modal identity verification tests

(4.25 % vs. 4.06 % EER), while the signature system has a considerably

higher EER of 12.65 %. Note that this does not necessarily mean that multi-

modal systems using the signature will perform worse than systems using the

other traits, as the biometric traits are not orthogonal and we can expect some

correlation effects.

Biometric traits sum rule, EER (%) product rule, EER (%)

Voice/Face 0.43 0.40

Voice/Signature 4.12 4.12

Face/Signature 3.25 2.76

Voice/Face/Signature 0.36 0.78

Table 5.2: Results of the multi-modal identity verification tests

This is shown more clearly in Table 5.2, where the scores of the systems

were fused in all their possible combinations using two different fusion tech-

niques, the sum rule and the product rule.

The best value of EER is obtained by fusing the scores of all the three

systems using the sum rule. This clearly shows that each of the systems gives
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its contribution to improving the accuracy of the global system.

In the choice of the traits to use in an hypothetic biometric system, the

recognition performance is only one of the parameters of the choice. In this

particular case, we would have suggested to use the Voice/Face fusion using

the product rule. While this combination does not offer the absolute best

performance, it is pretty close to the best one and the difference (0.04 % EER)

is really negligible when doing performance evaluation on databases that are

so small. Moreover, this set of biometric traits does not require a separate

device for the acquisition of the signature and is probably perceived by the

user as an acceptable couple of biometric traits.

Finally, a consideration on the type of fusion: in this analysis we consid-

ered only parallel fusion strategies; this means that all the data must be col-

lected before the recognition process begins. Another class of fusion strate-

gies is the one that employs serial fusion. This means that biometric samples

are acquired from the user only if needed. If the system has a significant con-

fidence on the analysis performed on the first biometric sample, the user will

not be requested to provide other samples and the decision will be final even

with only one sample.

In certain scenarios, these strategies can greatly improve the usability of

the biometric samples, and should be considered when designing real-world

biometric systems.

5.5 Conclusions and future work

In this chapter, we presented Biometric4Net, an open source prototype of

web-based multi-modal biometric authentication system.

We discussed its client/server architecture, the design and implementation
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choices that have driven its development and a performance evaluation of the

biometric backends in mono- and multi-modal setups, over the multi-modal

biometric database UCT10.

The system is freely available and can be used by the community as a start-

ing point for the implementation of research multi-biometric systems. Some

work would be required to turn it into a real-world application, for instance:

• encryption and cryptographic authentication of all the client/server

communications;

• implementation of an enrolling interface;

• integration with directory services like LDAP and authentication ser-

vices like Kerberos;

Nonetheless, the system can still be used in research setups, and it can

also easily be extended to become a distributed biometric samples collection

engine, to help the biometric research community in building larger multi-

modal non-chimeric biometric databases.
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(a) Identity selection (b) Acquisition

(c) End of acquisition (d) Decision

Figure 5.3: Authentication process screenshots



CHAPTER

SIX

CONCLUSIONS

The recent trends in research activity and industrial product development

show that biometric recognition techniques will gain more and more impor-

tance as time passes by. In this thesis, we have analyzed three different aspects

of biometric systems.

Heart sounds are a new and promising biometric trait that has unique

properties of universality and spoof robustness; in this thesis, we presented

two systems based on this modality, the most performing on which is based

on a statistical approach that uses Gaussian Mixture Models to represent the

biometric templates; we also introduced some new algorithms for processing

heart sounds and a new time-based feature set. The performance of this trait

are still far from the conventional biometrics, but its unique properties, the in-

creasing trends of better performance and the increasing number of research

works suggest that, when it will reach a more mature stage, it might be helpful

in high-security multi-biometric systems.

Automatic text-independent speaker recognition is a technique that would
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help avoiding subjective mistakes made during trials; in this thesis, we an-

alyzed many of the problems that the forensic context adds to conventional

speaker recognition, namely how noise affects the different components of

the system, and we highlight some possible solutions for mitigating those

problems.

The rise of web-based services offer a new use-case for remote authenti-

cation based on biometrics. The usage of consumer-grade hardware for the

acquisition process leads to a degradation of the sample, thus making it nec-

essary to use multi-biometric techniques. In this thesis, we discussed the ar-

chitecture and implementation of an open source web-based multi-biometric

system called Biometric4Net; three different biometric traits were considered

for this system, and after analyzing the performance of all the 14 possible

combination of these traits using two different score-level fusion rules, we

demonstrated that the usage of speaker and face recognition, fused with the

score product rule, yields the best compromise between good performance

and ease of use.
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A

GAUSSIAN MIXTURE MODELS

In this chapter, we present a brief overview of the concepts and equations that

are behind Gaussian Mixture Models, a statistical method for the approxima-

tion of complex data distributions.

In the field of biometric recognition, one of the most well-known fields of

application of GMMs is speaker recognition [41], but in this thesis the same

approach, with the due adaptations, has been applied also to heart-sounds

biometry.

A GMM λ is a mixture composed by a weighted sum of N Gaussian

probability distributions. The i-th Gaussian PDF is defined by the following

formula:

pi(x) =
1

(2π)D/2 |Σi|
1/2

e−
1
2 (x−µi)

′Σi(x−µi)

where µi and Σi are respectively the mean vector and the covariance matrix

of pi.
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The probability that a given D-dimensional vector x derives from the λ

GMM is:

p(x|λ ) =
N

∑
i=1

wipi(x) (A.1)

Wherewi is the weight of each individual Gaussian. So the λ GMMmodel

is defined by the following parameters:

λ = {wi,µi,Σi} (A.2)

Those parameters are learned via the Expectation Maximization (EM) al-

gorithm [57] in the model training phase, that in a biometric system is the

enrollment phase.

The application of GMMs to speaker recognition has led to the devel-

opment of the GMM/UBM method [41], where UBM stands for Universal

Background Model.

The idea beyond this technique is to model separately the speaker and the

set of people that, in our context are not the speaker (the world model).

In this discussion, we will not talk about speakers but of generic identities,

and instead of speech samples we will talk about signals, generalizing the

method.

Given an input signal s and a stated identity I, the problem of determin-

ing whether s belongs to I (represented by its model λI) is equivalent to a

hypothesis test between two hypotheses:

H0 :s belongs to I

H1 :s does not belong to I

This decision can be taken using a likelihood test:

S(s, I) =
p(s|H0)

p(s|H1)

{

≥ θ accept H0

< θ reject H0

(A.3)
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where θ is a decision threshold determined by the context in which the

system is deployed.

We model the probability p(s|H0) using Gaussian Mixture Models.

The input signal is converted by the front-end algorithms to a set of K

feature vectors, each of dimension D, so we can write:

p(s|H0) =
K

∏
j=1

p(x j|λI) (A.4)

In order to compute the score (A.3) that must be compared to the system’s

threshold, we still need to estimate p(s|H1).

In the GMM/UBM framework, this probability is modelled by building a

speaker model trained with a set of speakers that represent the variability of

the people that might use the system, the UBM.

The final score of the identity verification process, expressed in terms of

log-likelihood ratio, is

Λ(s) = logS(s, I) = log p(s|λI)− log p(s|λW ) (A.5)
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APPENDIX

B

ALIZE/LIA RAL

All the GMM-based experiments that have been described in this thesis were

implemented using the free (as in free speech) speaker recognition toolkit

Alize/LIA RAL [58,59].

This toolkit is developed jointly by the members of the ELISA consor-

tium [60], and consists of two separate components: Alize, that is the low-

level statistical framework, and LIA RAL, that is the set of high-level utilities

that perform each of the tasks of a state-of-the-art speaker recognition sys-

tem. One of its main advantages is the high level of modularity of the tools:

each program does not directly depend on the others and the data between

the modules is exchanged via text files whose format is simple and intuitive.

This means that researchers can easily change one of the components of the

system with their own program, without having to modify its source code but

only adhering to a set of simple file-based interfaces.

In this appendix, we will briefly describe all the components of a typical

experiment that uses the ALIZE/SpkDet toolkit.
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B.1 Feature extraction

LIA RAL does not contain any module that performs feature extraction; all

the experiments in this thesis used the Speech Signal Processing Toolkit

(SPro) [26] for feature extraction tasks. SPro allows to extract different types

of features, using filter-banks, cepstral analysis and linear prediction.

A notable exception is the computation of the FSR (see Section 3.3.2),

that is done using custom programs written in GNU Octave or C++; one of

them is built using the Alize framework, and has the duty of modifying the

feature files containing cepstral parameters by adding the FSR feature to each

vector; the other one computes the average FSR by analyzing the input signal.

B.2 Frames selection

The second step of the recognition process is to remove the frames that do

not carry useful information. When dealing with the speech signal, this task

is carried on by VAD algorithms, that have been already described in Sec-

tion 4.5. Each of these VAD algorithms was implemented by a different pro-

gram, and their output was always converted to a format that is compatible

with the LIA RAL toolkit.

For the heart sound, the S1/S2 segmentation algorithm described in Sec-

tion 3.3.2 was used as the equivalent of VAD.

The default VAD algorithm in LIA RAL, described in Section 4.5.4, is

implemented in the utility EnergyDetector.
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B.3 Feature normalization

The third step is the feature normalization, that changes the parameters vec-

tors so that they fit a zero mean and unit variance distribution. The distribution

is computed for each file.

The tool that performs this task is called NormFeat.

B.4 Models training

To use the UBM/GMM method, it is necessary first to create a world model

(UBM), that represents all the possible alternatives in the space of the identi-

ties enrolled in the system; then, from the UBM, the individual identity tem-

plates are derived from the UBM using the Maximum A-Posteriori (MAP)

estimation algorithm.

The tool used for the computation of the UBM is TrainWorld, while the

individual training models are computed using TrainTarget.

B.5 Scoring

The computation of scores is done via the ComputeTest program, that scores

each feature set against the claimed identity model and the UBM, and gives

as output the log-likelihood ratio.

In order to take a decision, the system has then to compare the score with

a threshold, and then accept or reject the identity claim. The decision step is

implemented in LIA RAL utility Scoring, but in this thesis we have not used

it.
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