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Abstract

The present work is devoted to the study of free boundary problems for

Euler and Navier-Stokes equations in primitive variables. The goal of the

present work is to elaborate a methodology for numerical modeling of all

kinds of incompressible viscous fluids, having in mind possible application to

deep water, lava flow simulation and crust formation.

Our approach could be essentially divided in three fundamental com-

ponents: finite difference for spatial approximation, second order accurate

method for temporal discretization and level set methods for boundary rep-

resentation.

The domain is discretized by a regular Cartesian grid. The boundary is

described by level set methods. In this context the boundary is seen as a

zero level set of a specific function. Navier-Stokes equations is solved starting

from Semi-Lagrangian methods, achieving second order accuracy in time and

space. Resolution of Navier-Stokes equations allows a Poisson problem for

pressure as an intermediate step. This is solved by multigrid methods. The

velocity and the pressure are computed by solving a single implicit system

solved iteratively.
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Introduction

Central task in the natural sciences lies on describing reality as accurately

as possible in order to better understand natural phenomena and gain insight

into the behavior of objects under given conditions. An important application

area for numerical simulation is the study of the behavior of fluid flows. Flows

are everywhere and as often we don’t realize it. The behavior of liquids and

gases, both of which are considered fluids, can be observed in many areas

of everyday life, such as waterfall and transformation of clouds. Without an

exhaustive knowledge of the fluid flow, it would be impossible to construct

aircraft and other vehicles, indeed it is fundamental to know which is the

behavior of the flow around the wings or the coachwork. Other applications

could be the simulation of waves from a breaking dam, the simulation of blood

flow in human circulatory system, the simulation of weather and climate

modeling and so on. For modeling flows on the geophysical scale, such as

whole rivers or lakes, or for evaluating the results of human activities in

nature, the hydrodynamic-numerical models are nowadays indispensable.

The primary aim of this thesis is to explore numerical methods for the

governing equation of fluid dynamic, the Navier-Stokes and Euler equations,

and to elaborate a strategy for numerical modeling of different kind of in-
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Introduction

compressible fluid flows with free moving interface (water and lava flow, in

particular), having in mind possible interface topology changes, like merging

or break-up.

Different points of view are possible in the description of fluid flow: Eule-

rian, Lagrangian and mixed Euler-Lagrangian approaches. Eulerian methods

are characterized by a coordinate system that is fixed and stationary in the

frame of reference. The fluid moves in the different computational cells. La-

grangian methods are characterized by a coordinate system that moves with

the fluid. The fluid is seen as a collection of particles and the motion of

every particles is studied. The mixed Euler-Lagrangian methods, such as

Semi-Lagrangian or Arbitrary Lagrangian-Eulerian (ALE) methods, are re-

lated to both Eulerian and Lagrangian concepts.

In general, it seems that any computational method for free-surface flow con-

sists of flow modeling and interface modeling, but there are two important

components of an algorithm to be included: spatial discretization and flow

solver. Collecting the main parts of a numerical modeling procedure for fluid

flows with free interface, we summarize the following step:

• mathematical model : primitive variables (velocity and pressure), vorticity-

stream function formulation;

• flow modeling : Eulerian, Lagrangian, mixed Euler-Lagrangian;

• interface modeling : level set methods, particle level set, marker level

set, Volume-Of-Fluid (VOF), hybrid level set and VOF, front capturing

methods (ENO, WENO);
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• spatial discretization: Finite Element Methods (FEM), finite difference,

finite volume, meshless methods;

• flow solver

Multiphase flows and free surface problems are difficult to simulate, be-

cause the interface separating two fluids could develop complex pattern.

There are two basic approaches that can be used to describe the flows with

a material interface: “capturing” and “tracking”. In the interface capturing

methods, the interface is treated as a region of steep gradient in some quan-

tity, i.e. density. In the interface tracking method the interface is treated

explicitly as a sharp discontinuity moving through the grid. We will focus

our attention to capturing methods. In general, a possible classification of

interface capturing methods is:

• a piecewise polynomial function (front tracking);

• level set of some function (level set methods)

• a collection of volume fractions (volum of fluid methods)

Piecewise polynomial methods allow high order-accurate approximations

to a smoothly varying front but it is very difficult to extend it in three spa-

tial dimension. Example of piecewise polynomial methods include boundary

integral methods [2, 28, 35] and front tracking method [16, 17, 40].

Level set methods, introduce by Osher and Sethian [30], has applied to

a wide variety of problems such as bubble and drops [38]. In the level set

methods the interface is seen as the zero level set of some function, named

level set function. They are very easy to implement and no specific procedure
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are required in order to describe topological change of the boundary. Level

set methods have gained widespread popularity in the computational physics

community. At the beginning, the Ghost Fluid Method (GFM) for two phase

compressible flows, developed in [14], captures and preserves discontinuities

across an interface represented by a suitable level set function. Using GFM

the level set methods have been extended to more general cases, such as

detonation [15], incompressible flow [3], two-phase incompressible flow [23,

18], Stefan problems for crystal growth [13]. In [6] a level set formulation is

derived for the incompressible Navier-Stokes equations with free surface.

Finally the Volume-Of-Fluid method consists on tracking the volume of

each cells that contain a portion of the interface. At each time these volumes

are used to reconstruct an approximation to the interface, which allows to

update the values of the fluid volume in each cell at the next time. Sussman et

al. [37] proposed a Coupled Level Set/Volume-Of-Fluid (CLSVOF) method

combining the advantages of both methods.

The development of numerical methods for incompressible viscous flow

was strongly influenced by the Marker-And-Cell (MAC) method of Harlow

et al. [19]. The method consists of a finite difference scheme with an explicit

first-order time discretization. Primitive variables are located on a staggered

grid, that is velocity and pressure are stored on different grid nodes. One

of the main difficulties in the design of numerical methods for the Navier-

Stokes equation is the development of an appropriate discrete formulation of

the incompressibility condition ∇ · u = 0. The MAC method [19] enforces

the incompressibility constraint by deriving a Poisson problem for pressure.
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Chorin, [7, 10], developed a numerical method based on a discrete form of the

Hodge decomposition, which is very close to the MAC method and showed

that his method is first order in time and second order in space. Since the

method is only first order accurate in time, it requires a restrictive time step

to achieve a reasonable accuracy. Kim and Moin [26] started from Chorin’s

projection method, replacing the treatment of the non linear terms with a

second order explicit Adams-Bashforth scheme and using the staggered grid

of the MAC method. Kim and Moin achieved mass conservation by an im-

plicit coupling between the continuity equation and the pressure in the mo-

mentum equations. Their method is based on fractional-step method and is

second order accurate. Van Kan [22] developed a second order scheme, based

on discretizing the spatial terms using the staggered grid. This reduces the

PDEs to a system of differential algebraic equations and finally he used an

integration technique of projection type for this system, leading to a second

order scheme. Bell et al. [4] described a second order projection method

for the incompressible Navier-Stokes equations: starting from Chorin’s pro-

jection method, they solve diffusion-convection equations (by a second order

Godunov method) to predict intermediate velocities which are projected onto

the space of divergence-free vector fields. Gibou et al [25] presented an uncon-

ditionally stable second order accurate projection method. The momentum

equation is updated by a second order accurate Semi-Lagrangian method and

a backward difference scheme to treat the diffusion term.

The study of all these different numerical methods for fluid flows led us to

a specific choice of diverse components of the numerical strategy embraced
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in this thesis. First of all, in order to describe the interface, we use Eulerian

approach since it enables us to use a fixed structured grid. In particular,

level set approach is taken. Finally we choose Eulerian and Semi-Lagrangian

methods to describe fluid motion. Starting from this methods we develop an

original solver in which the pressure and velocity are updated simultaneously,

having in mind possible application to deep water, lava flow simulation and

crust formation.

The thesis is organized as follows: first of all a synthetic description of the

incompressible fluid motion equations and a description of projection method

are given, followed by an overview on level-set methods; then a description

of numerical methods for the Euler and Navier-Stokes equations is treated.

A brief description of pressure Poisson solver by multigrid methods follows.

Finally a variety of numerical examples are presented to validate the proposed

computational method.
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Chapter 1

The mathematical model

In this section we derive the mathematical model for unsteady viscous

fluid flow, [32].

1.1 The Navier-Stokes Equations

The motion of a continuous medium is governed by the principles of

classical mechanics and thermodynamics for the conservation of mass, mo-

mentum and energy. Application of these principles in an absolute frame of

reference leads to the following conservation equations in integral form for

mass, momentum and energy respectively

d

dt

∫
δ

ρ dδ +

∫
Σ

ρ U · n dΣ = 0 (1.1)

d

dt

∫
δ

ρ U dδ +

∫
Σ

(n ·U) ρ U− nσ dΣ =

∫
δ

F dδ (1.2)

d

dt

∫
δ

ρ E dδ +

∫
Σ

n · (ρEU− σU + q) dΣ =

∫
δ

F ·U dδ (1.3)

7



CHAPTER 1. The mathematical model

where t is the time, ρ is the density, U is the velocity, E = e + U2/2 is the

total specific energy per unit mass, σ is the stress tensor, q is the heat-flux

vector, F is the external force, n is the unit outward normal to the boundary

Σ of the fixed control volume δ. The energy equation is valid under the

assumption that there is no source or sink of energy in δ. If the property

of the medium are continuous functions of space and time and sufficiently

differentiable, the conservation equations in integral form (1.1)-(1.3) can be

transformed into an equivalent set of partial differential equations through

the divergence theorem:

∂ρ

∂t
+∇ · (ρ U) = 0 (1.4)

∂

∂t
(ρU) +∇ · (ρ U U− σ) = F (1.5)

∂

∂t
(ρ E) +∇ · (ρ E U− σU + q) = F ·U (1.6)

One thus obtains the equations in divergence or conservative form. Equiva-

lent non conservative forms are:

Dρ

Dt
+ ρ∇ ·U = 0 (1.7)

ρ
DU
Dt

−∇ · σ = F (1.8)

ρ
De

Dt
− σ · ∇U +∇ · q = 0 (1.9)

where D/Dt = ∂/∂t+ U · ∇ is the material derivative.

The above equations are based on the Eulerian approach for the description

8



CHAPTER 1. The mathematical model

of the continuum motion. An alternative description is provided by the La-

grangian formulation in which the dependent variables are the characteristic

properties of the material particles that are followed in their motion.

The basic dependent variables in Eqs (1.1-1.3) or (1.4-1.6) are ρ, U and E.

Constitutive relationship for the stress tensor σ and for the heat-flux vector

q must be added to these equations in order to obtain a closed system. For

Newtonian fluids, the stress tensor is a linear function of the velocity gradient.

From this definition results Newtonian’s laws, also called the Navier-Stokes

law for σ:

σ = −pI + τ and τ = λ(∇ ·U) I + 2μDef U (1.10)

where Def U = (∇U + ∇Ut)/2 is the rate of deformation tensor . In this

relation p is the pressure, τ is the viscous stress tensor, λ and μ are two

coefficients of viscosity. Furthermore, the fluid is assumed to obey Fourier’s

law of heat conduction for q:

q = −k∇T (1.11)

where T is the absolute temperature, and k is the thermal conductivity co-

efficient. Many fluids, in particular air and water, follow Newton’s law and

Fourier’s law.

9



CHAPTER 1. The mathematical model

1.2 The Navier-Stokes Equation for the Incom-

pressible Flow

An incompressible flow in characterized by the condition that

∇ ·U = 0 (1.12)

This condition when introduced into the continuity equation (1.4) implies

that
∂ρ

∂t
+∇ · (ρ U) = 0 or

Dρ

Dt
= 0 (1.13)

This condition states that the density is constant along the fluid particle

trajectory. In most cases one usually assumes ρ to be uniform so that this

condition is satisfied identically everywhere. In the event that μ is constant,

the momentum equation (1.5) reduces to the form:

ρ

[
∂U
∂t

+∇ · (U U)

]
+∇p− μΔU = F (1.14)

This form is called the conservative form of the Navier-Stokes equations. In

this case the unknowns are the velocity field and pressure. Applying the

incompressibility condition to the (1.8), one can obtain the nonconservative

form of the Navier-Stokes equations for incompressible flow equation (1.5):

ρ

[
∂U
∂t

+ (U · ∇)U
]
+∇p− μΔU = F (1.15)

10
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1.3 Dimensionless form

To define dimensionless variables, characteristic values of all the variables

entering the Navier-Stokes equations can be constructed from some reference

quantities: a reference length L, a reference velocity U∗, a reference density

ρ∗ and a reference values μ∗ and k∗ of the coefficients of viscosity and thermal

conductivity.

All other characteristic quantities can be derived from these basic ones;

we choose L/U∗ as characteristic time t, ρ∗U∗2 as characteristic σ, ρ∗U∗2/L

as characteristic F , U∗2 as characteristic e and E, and ρ∗U∗3 as characteristic

q, so the previous equations (nonconservative and conservative form) remain

unchanged in dimensionless form. Furthermore, we use as reference value

ρ∗U∗2 for p and μ∗U∗/L for τ , so that the constitutive relationship (1.10),

becomes

σ = −pI + 1

Re
τ and τ = λ(∇ ·U) I + 2μDef U (1.16)

in which new variables are to be interpreted as nondimensional variables.

The quantity Re = V ∗Lρ∗/μ∗is the Reynolds number, which represents the

relative magnitude of inertial and viscous forces: for Re � 0 the inertial

forces are negligible against the viscous forces (highly viscous fluid), whereas

for Re very large the viscous forces can be neglected.

In the following chapter, dimensionless form for Navier-Stokes equation is

used.

11
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1.4 Free boundary problem for incompressible

fluid

The Navier-Stokes equation for incompressible flow are:

⎧⎪⎨
⎪⎩

∂U
∂t

+ (U · ∇) +∇p− 1

Re
ΔU = F

∇ ·U = 0
(1.17)

while the Euler equations for incompressible fluid are:

⎧⎪⎨
⎪⎩

∂U
∂t

+ (U · ∇) +∇p = F

∇ ·U = 0
(1.18)

ΩL

GroundN

Lava

D

Crust
ΩC

Figure 1.1: Lava flow domain example

These equation are solved in a domain Ω, in which a liquid could fill up

the entire physical domain or a portion of it. For example, in Figure 1.1

a very schematic view of lava flow is represented. There is fluid in ΩL and

we solve (1.17) or (1.18) only in this region. Proper boundary condition are

imposed on free surface (see chapter 4 for more details).

12



Chapter 2

Projection methods

Projection methods are a popular class of methods for solving the incom-

pressible Navier-Stokes equations

Ut + (U · ∇)U +∇p− 1

Re
ΔU = F (2.1)

∇ ·U = 0 (2.2)

The first projection method was developed by Chorin [9, 10]. The basic

idea behind this method is to use the momentum equation to solve for an

intermediate velocity that is not required to be divergence-free. Then the

intermediate velocity is projected to yield a discretely divergence-free veloc-

ity and a gradient field. The latter can then be used to update the pressure.

Projection methods involve solving for intermediate quantities which are then

used to compute the velocity field and the pressure. Because the interme-

diate quantities are not physical quantities, there has been much confusion

related to the boundary conditions. The proper update for the pressure is

13



CHAPTER 2. Projection methods

another source of ambiguity in projection methods. A recent paper by Brown

et al. [5] explores and clarifies the role of boundary conditions and different

pressure updates in projection methods.

The following, well-known decomposition theorem helps to clarify the role

of the pressure in incompressible flow and motivates projection methods [7].

Theorem 1. (Hodge deomposition) Let Ω be a smooth, bounded domain,

and U∗ be a smooth vector field on Ω. The vector field U∗ can be decomposed

in the form

U∗ = U+∇φ (2.3)

where

∇ ·U = 0 in Ω, U · n = 0 on ∂Ω (2.4)

Proof. Taking the divergence of the (2.3) gives the Poisson equation

Δφ = ∇ ·U∗ (2.5)

with the boundary condition given by the normal component of the (2.3)

∂φ

∂n
= U∗ · n on ∂Ω (2.6)

The (2.5) and (2.6) define a Neumann problem for φ, which has a unique

solution, up to an additive constant, provided the solvability condition

∫
Ω

∇ ·U∗ dδ =
∫
∂Ω

U∗ · n dS (2.7)

14



CHAPTER 2. Projection methods

is satisfied. The previous equation is always satisfied, because this is simply

the divergence theorem. This defines the gradient part of the decomposition,

and the divergence-free field is then defined by

U = U∗ −∇φ (2.8)

The previous proof describes the general procedure for decomposing an

arbitrary smooth vector field into a gradient field and a divergence-free field.

Let P denote the operator which takes vector fields to divergence-free vector

fields, as in the decomposition theorem. Then P is a projection operator

P(U∗) = U (2.9)

and

(I − P)(U∗) = ∇φ (2.10)

Applying the projection operator to (2.1) gives the equation

Ut = P
(
−U · ∇U +

1

Re
ΔU + F

)
(2.11)

in which the pressure has been eliminated. This form is equivalent to the

original equations (2.1) - (2.2).

The proof of the Hodge decomposition suggests of a scheme for evolving

velocity and pressure in time: advance the momentum equation (2.1) to

determine an intermediate velocity which is not required to be divergence-

15
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free; find the pressure by solving a Poisson problem for pressure and then

update the velocity filed by (2.8)

16



Chapter 3

Level set method

The level set method was created by Osher and Sethian in 1988. The

strength of this method lies in implicitly representing dynamic surfaces. This

greatly simplifies many of the problems one faces with explicit representa-

tions, such as merging of different surfaces.

Implicit functions are widely used in the mathematics and graphics commu-

nities for modeling complex dynamic surface such as the surface of water.

The strength of the level set method is in modeling and animating implicit

functions that dynamically change over time.

3.1 Implicit function

The distinguishing property of an implicit function is that the interface

exists where the implicit equation evaluates to zero. For example, in one

spatial dimension, suppose we dived the real line in three different region by

the points x1 = −1 and x2 = 1. We refer to Ω− = (−1, 1) as the inside

17



CHAPTER 3. Level set method

region, Ω+ = (−∞,−1) ∪ (1,∞) as the outside region and the set of two

points ∂Ω = −1, 1 as the interface. This is an explicit representation of the

interface, because we explicitly write down the points that belong to it. As we

said before, an implicit interface representation defines the interface as a zero

isocontour of some function, called level set function. In this case, the level

Figure 3.1: 1d Implicit representation of ∂Ω = {−1, 1} and level set function
φ(x) = x2 − 1

set function is φ(x) = x2 − 1. One can merely extend previous definitions

in two dimensions. For example, consider φ(x) = x2 + y2 − 1 where the

interface defined by the zero isocontour φ(x) = 0 is the unit circle defined by

∂Ω = {x : |x| = 1}. An explicit representation of an interface only contains

information about the interface itself (only a finite set of points). That is,

given an explicit function, we can find the position of the interface, but we

don’t have any information about the rest of space in which the interface

exists. Instead, an implicit representation contains information about the

entire space of the function, including the position of the interface. As it is

shown in Figure 3.1 and Figure 3.2, the implicit level set function φ represents
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Figure 3.2: Implicit representation of flower shaped domain

the region with the following properties:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ (x, y) > 0 (x, y) /∈ Ω

φ (x, y) = 0 (x, y) ∈ ∂Ω

φ (x, y) < 0 (x, y) ∈ Ω

(3.1)

In Figure 3.2 is represented a flower-shaped domain: its the level set function

has the following expression, [31]

φ = r − 0.5− (y5 + 5 x4 y − 10 x2 y3)/(3 r4)

where r =
√
x2 + y2. The other major difference between explicit-implicit

representation is how we represent the function in discrete space. When

we are dealing with an explicit object, we make use of splines or triangles
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for representing its interface, or surface. For a rigid body, or nearly rigid

body object, this explicit framework works fine. However, working with this

methodology becomes non-trivial when we want to represent a surface that

dynamically changes topology, such as water or fire.There is no easy way of

dynamically merging and splitting the surface as it changes form.

Discrete representations of implicit functions are handled using a Cartesian

grid that bounds the space that the function exists in. Then we simply

represent the space by storing the value of as each grid node. To find the

interface itself, we just need to interpolate between nodes that have negative

values for φ and nodes that have positive values for φ.

3.2 Geometric properties

By using level set methods, it is very easy define domain with complex

shape. Indeed another advantage of implicit level set representation is the

simplicity of performing boolean operations. If φ1 and φ2 are two differ-

ent implicit functions, then φ = min(φ1, φ2) is the level set function repre-

senting the union of the interior regions of φ1 and φ2. At the same way,

φ = max(φ1, φ2) is the level set function representing the intersection of the

interior regions of φ1 and φ2. In Figure 3.4 is shown the zero isocontour of

the minimum between two level set functions.

The gradient ∇ φ is perpendicular to the isocontours of φ and points in

the direction of increasing φ. It is useful to compute the unit normal n in
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Figure 3.3: Zero isocontour of two level set functions φ1 end φ2

outward direction to the interface:

n =
∇ φ

|∇ φ|

The mean curvature of the interface is defined as the divergence of the normal:

κ = ∇ · n

so that κ > 0 for convex regions, κ < 0 for concave regions and κ = 0 for

a plane. As we said, the level set approach is very useful for computing

interface evolution. The interface Γ is the zero level set of a level set φ:

Γ = {x ∈ R
n : φ(x) = 0}

By adding a temporal variable, it easy to capture the evolution of the inter-

face. If φ(x) is the level set function and Γ is the zero isocontour, one can
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Figure 3.4: Isocontour of φ = min(φ1, φ2); in black the zero level set

Figure 3.5: Level set function φ = min(φ1, φ2); in black the zero level set
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write φ(x, t) such that the interface is a function of the time:

Γ(t) = {x ∈ R
n : φ(x, t) = 0}

The interface Γ(t) is updated by solving a transport equation for φ:

∂φ

∂t
+ v · ∇φ = 0 (3.2)

where v is a velocity field . This equation follows from the fact that if a point

x(t) lies on the interface then:

dφ

dt
(x(t), t) = 0 (3.3)

If the normal component of the velocity is considered:

vn = v · ∇φ

|∇φ| (3.4)

the (3.2) becomes:
∂φ

∂t
+ vn |∇φ| = 0 (3.5)

3.3 Signed Distance functions and Reinitializa-

tion

Exact solution of (3.2) reflects the position of an interface moving with

speed v. The level set function can develop large or small gradients around

the zero level set, so that the numerical solution of the level set equation will
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become progressively less accurate. In many numerical implementations of

the level set method, the level set function is replaced as a distance function

by reinitializing the level set function [34]. The signed distance function

(shortly sdf) is a particular implicit functions, such that at each point in

space, the value of φ is the signed distance to the closest point on the interface

Γ (zero level set of sdf). The level set reinitialization step replaces the original

level set function with a new level set function that shares the same zero

isocontour, but is a distance function.

Numerically one can reinitialize the level set function by solving the following

equation to the steady state:

φt + S(φ0) (|∇φ| − 1) = 0 (3.6)

with φ(x, 0) = φ0(x) initial condition and S(φ0) sign function. The zero level

set φ0(x) represents the location of the interface. Steady state solution of the

previous equation gives a distance function with |∇φ| = 1 and solving up to

time τ , φ(x, τ) is the signed distance function for all points within distance

τ from the interface.

3.3.1 First order approximation

The (3.6) equation can be discretized by using upwind methods. The first

order 1D version used in [38] is given by

φn+1
i = φn

i −Δt S(φ0
i )G(φn

i ) (3.7)
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where:

G(φi) =

⎧⎪⎨
⎪⎩

max(|a+|2, |b−|)− 1 φ0
i > 0

max(|a−|2, |b+|)− 1 φ0
i < 0

(3.8)

with

a = D−
x φi = (φi − φi−1)/Δx

b = D+
x φi = (φi+1 − φi)/Δx

and for any real number k, it is k− = min(k, 0) and k+ = max(k, 0). The

method used to solve the equation (3.6) is usually upwind methods, where

the discrete derivatives are computed by upwind differencing according to the

direction of the characteristics. In particular, this means that when differenc-

ing across the interface, this property will be violated. So the discretization

of the derivatives near the interface is not truly upwind, in the sense that

part of the information is coming from the wrong side of the level set.

So the method needs to be modified. Russo and Smereka in [38] proposed a

new upwind scheme obteined by a simple correction of the previous schemes.

The new method is:

φn+1
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φn
i

Δt
h
(S(φ0

i ) |φn
i | −Di) se φ0

i φ
0
i−1 < 0 oppure φ0

i φ
0
i+1 < 0

φn
i −Δt S(φ0

i )G(φi) otherwise

The scheme is applicable in a dimension by dimension framework. Since

the location of the interface is preserved, the loss of area/volume becomes

independent of the number of iteration of the algorithm.
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3.3.2 High order approximation

The method can be extended to general ENO reconstruction in order

to develop higher order schemes. In this section a second order scheme is

presented, [34].

Given five points of the stencil around the node xi, (X(k), H(k)) , k ∈ [−2, 2]

such that X(k) = xi+k, H(k) = φi+k. The left and right derivatives a and b

are given as follows. First of all, divided differences are computed:

D1
k+ 1

2
=

H(k + 1)−H(k)

X(k + 1)−X(k)
, k ∈ [−2, 1]

D2
k =

D1
k+ 1

2

−D1
k− 1

2

X(k + 1)−X(k − 1)
, k ∈ [−1, 0]

Define the minmod function

MM(α, β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α se |α| ≤ |β| e αβ > 0

β se |α| > |β| e αβ > 0

0 se αβ ≤ 0.

(3.9)

Then:

a = D1
− 1

2
+MM(D2

1, D
2
2) (X(0)−X(−1))

b = D1
1
2
+MM(D2

2, D
2
3) (X(0)−X(1))
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If the point xi is within one grid cell from the interface, then the stencil will

include the intersection of the function with the axis, for example by fitting a

third-order polynomial through the grid points near the zero. The extension

of the scheme to two dimension is straightforward.

3.4 Reinitialization Results

Consider the square domain [−2, 2]2 and the level set function:

φ0 = ((x− 1)2 + (y − 1)2 + 0.1)
√

x2 + y2 − 1;

The zero level set is the circle centered in the origin and radius 1. The

function φ0 isn’t a signed distance function.

In Figure 3.6 we can see the result of applying second order scheme. The

grid is 100x100 , the time step is Δt = 0.5Δx and the number of iteration is

k = 0, 10, 20, 40, from the top left to the lower right.

A characteristic property of the signed distance function is that |φ| = 1.

In Figure 3.7 the gradient of φ is plotted as a function of the number of

iterations.

Observing Figure 3.6 and Figure 3.7, one could see that after 50 iteration

the level set function is a signed distance function in the all domain. If the

method is used as an intermediate step of a more general algorithm, it should

be useful compute the signed distance function only in a narrow band, near

the zero level set.
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Figure 3.6: Level-set reinitialization; in black the zero level set of φ; The
contours run from -1 to 1 and are spaced by 0.2

3.5 Final remarks: Discretization of the Do-

main

The whole computational domain Ω is a rectangular box discretized by a

regular square grid. In Ω a level-set function φ, is defined such that its zero

isocontour Γ is the boundary of the physic domain. Sometimes it should be
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Figure 3.7: |φ| is plotted as a function of iterations number

useful to define more than one level set function in order to describe domain

with particular shape, i.e. domain depicted in Figure 3.8, in which we would

like to describe the motion of a fluid. In this context, we define a level set

function φf (x, t) with zero level set Γf (x, t) to define fluid surface and a level

set function φg(x) with zero level set Γg(x) to define ground surface. The

f

g

Figure 3.8: General Domain
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region in which we want to solve the problem is Ω− that is equivalent to

the region in which the level set function φ(x, t) = min(φf ,−φg) is negative.

The domain Ω is discretized by a regular square grid. Scanning grid nodes

f

g

Figure 3.9: Discretization of General Domain

xj,k, it is possible to identify which points are inside Ω− and which points

are outside Ω− but close to an inside points, called ghost points. So active

grid nodes are composed by two sets of points, defined as:

• inside, Pi = {xj,k ∈ Ω : φ(xj,k) < 0}, marked with a red dots in

Figure 3.9

• ghost, Pg = {xj,k ∈ Ω : φ(xj,k)φ(xj+1,k) < 0 or φ(xj,k)φ(xj−1,k) < 0 or

φ(xj,k) φ(xj,k−1) < 0 or φ(xj,k) φ(xj,k+1) < 0}, marked with a blu dots

in Figure 3.9

For simplicity we omitted the t term in function φ.
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Numerical methods for the

Navier-Stokes equation

In this chapter I’m going to describe the main methods studied and de-

veloped in my research. We focused our attention on MAC method, semi-

lagrangian method and a new iterative technique to solve Navier-Stokes equa-

tions.

4.1 Mac method

The Mac method was probably the first primitive variable method for

incompressible flow. The first paper on this approach was written by Harlow

and Welch ([19]). They called this method marker-and-cell (MAC) method

and can be applied to time dependent motion of viscous, incompressible

fluid in two-dimensional Cartesian grid. The solution technique makes use of

finite-difference approximations applied to the Navier-Stokes equations. The
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dependent variable are velocity and pressure and neither vorticity nor stream

function is considered. It is assumed that velocity field is conservative.

The nondimensional form of the Navier-Stokes equations is

∂u

∂x
+

∂v

∂y
= 0 (4.1)

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂p

∂x
=

1

Re
(
∂2u

∂x2
+

∂2u

∂y2
+ gx) (4.2)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
+

∂p

∂y
=

1

Re
(
∂2v

∂x2
+

∂2v

∂y2
+ gy) (4.3)

where Re is the Reynold’s number and g = (gx, gy) is external forces (i.e.

gravity). Initial conditions are required and need to satisfy the (4.1). The

MAC method is based on finite difference discretisations and on the solution

of a Poisson equation to determine the pressure behaviour. The domain is

discretized using a staggered grid, in which the different unknown variables

are not located at the same grid points, but are evaluated at different nodes:

the pressure is located in the cell centers, the horizontal velocity u in the

midpoints of the vertical edges, the vertical velocity v in the midpoints of

the horizontal edges (Fig. 4.1). Discretization of (4.1) gives

uj+1/2,k − uj−1/2,k

Δx
+

vj,k+1/2 − uj,k−1/2

Δy
= 0 (4.4)
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Figure 4.1: Staggered grid

While the (4.2) becames

un+1
j+1/2,k = F n

j+1/2,k −
Δt

Δx

(
pn+1
j+1,k − pn+1

j,k

)
(4.5)

where

F n
j+1/2,k = un

j+1/2,k −Δt

(
u2
j+1,k − u2

j,k

δx
+

(u v)j+1/2,k+1/2 − (u v)j+1/2,k−1/2

Δy

)n
+

Δt

Re

(
uj−1/2,k − 2uj+1/2,k + uj+3/2,k

Δx2
+

uj+1/2,k−1 − 2uj+1/2,k + uj+1/2,k+1

Δy2

)n
+Δt gx

The momentum equation for v becomes:

vn+1
j,k+1/2 = Gn

j,k+1/2 −
Δt

Δy

(
pn+1
j,k+1 − pn+1

j,k

)
(4.6)
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where

Gn
j,k+1/2 = vnj,k+1/2 −Δt

(
v2j,k+1 − v2j,k

Δy
+

(u v)j+1/2,k+1/2 − (u v)j−1/2,k+1/2

Δx

)n
+

Δt

Re

(
vj,k−1/2 − 2vj,k+1/2 + vj,k+3/2

Δx2
+

vj−1,k+1/2 − 2vjk+1/2, + vj+1,k+1/2

Δy2

)n
+Δt gy

The values uj+1,k and (uv)j+1/2,k+1/2 are simple averages computed as follow:

uj+1,k =
uj+1/2,k + vj+3/2,k

2

and

(u v)j+1/2,k+1/2 =
(uj+1/2,k + uj+1/2,k+1) (vj+1,k+1/2 + vj,k+1/2)

4

To compute the pressure is sufficient substitute the (4.5) e (4.6) nella (4.4)

(
pn+1
j−1,k − 2 pn+1

j,k + pn+1
j+1,k

Δx2
+

pn+1
j,k−1 − 2 pn+1

j,k + pn+1
j,k+1

Δy2

)
=

1

Δt

(
F n
j+1/2,k − F n

j−1/2,k

Δx
+

Gn
j,k+1/2 −Gj,k−1/2

Δy

n)
(4.7)

This equation is can be solved each time step using iterative techniques or

direct Poisson solver. In this contest we use multigrid method.

The discrete equation to advance the velocity field can be written in vector

form as:

un+1 = Fn −Δt∇P n+1 F = (F,G) (4.8)
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The Poisson equation for the pressure can be written as

ΔP n+1 =
1

Δt
∇ · Fn (4.9)

The MAC method is very close to the projection method proposed by Chorin

and seen in the previous section.

Since discretized momentum equation are treated in an explicit manner, a

restriction on the maximum time step for a stable solution is required:

0.25(‖u‖+ ‖v‖)2ΔtRe ≤ 1

Δt

ReΔx2
≤ 0.25 assuming that Δx = Δy

The method seen before has the advantage of being very simple to implement.

One weakness is that it is an explicit method, and not suitable for simula-

tions of low Reynolds number flows or Stokes flows. For an explicit method,

the time step should be less than the viscous time scale and it should be pos-

sible that the time step becomes very small and computational time huge.

Moreover the method is second order in space but only first order in time.

We overcome all these difficulties using implicit semi-lagrangian methods.

4.1.1 Boundary condition

The discretization of the momentum equation involves values of the ve-

locity and pressure that lie out the computational domain.
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Velocity Boundary Condition

In general, on rigid wall one could choose between free-slip (velocity com-

ponent tangent to the boundary vanish along the normal derivative of the

velocity component tangent to the boundary) and no-slip boundary condi-

tion (the fluid has the same velocity of the boundary). Other boundary

condition are outflow (the total velocity does not change in normal direc-

tion), inflow (the velocity are assigned) and periodic boundary conditions.

The choice of which type of previous boundary condition depends on the

particular problem describing the fluid flow.

On free surface the situation is quite different. Let’s consider the situation

depicted in Figure 4.2, in which only horizontal component of the velocity

is shown. There is liquid in Ω− and for example gas in Ω+. The interface

between fluid and gas Γ is the zero level set of a suitable function φ(x, t).

In discretizing the momentum equation for the horizontal component u of

the velocity in the grid node (i + 1/2, j), the value u(i + 1/2, j + 1), where

(i+1/2, j+1) is a ghost point, is required. Since the velocity field is defined

only in Ω−, we use a strategy to extrapolate the velocity from inside region

Ω− to outside region Ω+. The simplest extrapolation that can be performed

is the constant extrapolation.

Given a function u define d only in a portion of a space and a level set function

φ such that φ <= 0 defines the region where u is known and φ > 0 define the

region where u is unknown. Function u is extrapolated as a constant along
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u i+1/2 , j

u i+1/2 , j+1

u
 i+3/2 , j+1

u i-1/2 , j+1

u i+3/2 , ju i-1/2 , j

 +

 -

Figure 4.2: Velocity boundary condition on free surface

the normal n defined as:

n =
∇ φ

|∇ φ|

To extrapolate in normal direction, the following PDE is used

∂u

∂t
+ n · ∇u = 0 (4.10)

This equation is solved until the steady state is reached, since at this state

n · ∇u = 0, that means that u will be constant along the characteristic

direction n. Sometimes the u value are required only in a narrow band of Γ,

so the (4.10) is solved only for a few time step [1, 14].

Pressure Boundary Condition

Solving the pressure Poisson equation (4.9) requires boundary value for

the pressure. These result from multiplying the discrete momentum equation
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(4.8) with n = (nx, ny)

∇P n+1 · n =
∂pn+1

∂x
nx +

∂pn+1

∂y
ny =

= − 1

Δt
((un+1 − F n)nx + (vn+1 −Gn)ny) (4.11)

On a left vertical rigid wall the normal is n = (−1, 0) and the discrete (4.11)

p
 1, j

 +

 -

p
 0, j p

 2, j

p
 1, j+1

p
 1, j-1

Figure 4.3: Pressure boundary condition

becomes:

pn+1
0,j − pn+1

1,j

Δx
=

1

Δt
(un+1

1/2,j − F n
1/2,j) (4.12)

If we now instert this in (4.13), we obtain

pn+1
2,j − pn+1

1,j

Δx2
+

pn+1
1,j+1 − 2 pn+1

1,j + pn+1
1,j−1

Δy2
=

1

Δt

(
F n
3/2,j − un+1

1/2,j

Δx
+

Gn
1,j+1/2 −Gn

1,j−1/2

Δy

)
(4.13)
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This equation does not depend on the value F n
1/2,j, that can be selected arbi-

trarily. The simplest choice is F n
1/2,j = un+1

1/2,j, which leads to a zero Neumann

boundary condition for pressure. Analogous results can be obtained on other

rigid walls.

Because of Neumann boundary condition, the system Ax = b associated to

pressure Poisson problem is singular. The common strategy used in this case

consists in considering an augmented matrix, [20, 25]

⎛
⎜⎝ A s

s 0

⎞
⎟⎠
⎛
⎜⎝ x

α

⎞
⎟⎠ =

⎛
⎜⎝ b

0

⎞
⎟⎠

where s denotes the null eigenvector of A. In this way, though the original

matrix is singular, the augmented matrix is not.

Finally, on free surface, we impose p = 0.

4.2 High order projection method: second or-

der semi-lagrangian

We first consider the advection-diuffsion equation

∂φ

∂t
+ u · ∇φ = μΔφ (4.14)
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and write it in lagrangian form

d φ

d t
= μΔφ (4.15)

d x
d t

= u(x, t) (4.16)

Semi-lagrangian methods are a generalization of the classical method of

characteristics proposed by Courant - Isaacson - Rees for hyperbolic equa-

tion. From a lagrangian point of view, solving previous equations means solve

the (4.15) along the characteristic lines (4.16). This leads to a decoupling

of the advection and diffusion terms and a scheme that is unconditionally

stable. But, as the fluid particles move, they may reach points that are not

grid nodes, so the new mesh could result irregular and distorted. Hence, each

time step a remeshing is required and this operation may be very expensive

from a computational point of view.

In the semi-lagrangian approach, the computational mesh is fixed, no remesh-

ing is requires. At each time step, a discrete set of particle is tracked back-

ward over a single time step along its characteristic line up to the departure

points. In other word, the solution is reconstructed by integrating the equa-

tion along characteristic curves, starting from any grid point xi and tracking

back the departure point xd in the upwind direction. The (4.15) becomes:

φn+1 − φn
d

Δt
= μΔ

(
φn+1 + φn

d

2

)
(4.17)

d x
d t

= u(x, t), xn+1 = x(tn+1) = xi (4.18)
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where φn
d is the value of φ at the departure point xd from which the charac-

teristic curve originates from at time level n and xi is any grid point that is

an arrival point. Using the explicit second order midpoint rule for locating

the departure point, we have:

x̂ = xn+1 − Δt

2
un(xn+1) (4.19)

xn
d = xn+1 −Δt un+1/2(x̂) (4.20)

where un+1/2 is a linear combination of the velocities at the two previous

time steps tn and tn−1, that is un+1/2 = 3
2
un − 1

2
un−1. The point x̂ is not

necessary a grid point, so an interpolation procedure is required to compute

the value un+1/2(x̂). At the same way the value φn
d need to be interpolated

from φn in xn
d .

xd

x1

x4

x3=xax2

x9x8x7

x6x5

Figure 4.4: Arrival and departure point of a characteristic curve and nine
point stencil in upwind direction

In Figure 4.4 there is a sketch of Semi-Lagrangian transport: xd is the
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CHAPTER 4. Numerical methods for the Navier-Stokes equation

departure point of characteristic curve arriving to xa, grid node. In order to

compute φn
d , biquadratic interpolation is used, which is constructed from the

value of solution at nine different points. The stencil is in upwind direction

with respect to the velocity component. In particular, once that the cell in

which the point xd is determined and the point xi,j is the grid node close to

xd in the upwind direction, the stencil has the following structure

Sx = [i, i+ a, i+ 2 a] and Sy = [j, j + b, j + 2 b] (4.21)

where a = sign(ui,j) and b = sign(vi,j). In Figure 4.4 the xi,j is x3.

Let’s write now the Navier-Stokes equations in non dimensional and compact

form:

Ut + (U · ∇)U +∇p− 1

Re
ΔU = F (4.22)

∇ ·U = 0 (4.23)

and rewrite them in semi-lagrangian form

d U
d t

= −∇p+
1

Re
ΔU + F (4.24)

∇ ·U = 0 (4.25)

The Crank-Nicolson scheme is often used for implicit treatment of viscous

term. However , Xiu et al. [41] showed that the method seems to be second-

order in time, but it is fill first-order in time. The backward differentiation

formula (BDF) offers a more convenient choice for its unconditional stability

and simplicity, [25].
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Using semi-lagrangian and BDF, the momentum equation becomes:

1

Δt

(
3

2
Un+1 − 2Un

d +
1

2
Un−1

d

)
= −∇pn+1 +

1

Re
ΔUn+1 + F n+1 (4.26)

where Un
d is the velocity at the departure point xn

d at time level n and Un−1
d

is the velocity at the departure point xn−1
d at time level n−1. The departure

point xn
d is computed by solving (4.27)-(4.28) over one single time step Δt,

while the point xn−1
d is given by:

x̂ = xn+1 − un(xn+1) (4.27)

xn
d = xn+1 − 2Δt un(x̂) (4.28)

The (4.26) is solved by projection method. First, given the velocity Un, an

intermediate velocity field is computed by ignoring the pressure:

1

Δt

(
3

2
U∗ − 2Un

d +
1

2
Un−1

d

)
=

1

Re
ΔU∗ + F n+1 (4.29)

that could be written as

(
3

2
Id− 1

Re
Δ

)
U∗ = 2Un

d −
1

2
Un−1

d +Δt F n+1 (4.30)

To satisfy the incompressibility condition, a potential function P̃ is now
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defined by solving the following Poisson problem:

ΔP̃ = ∇ ·U∗ (4.31)

Finally the fluid velocity Un+1 is projected to the divergence free field:

Un+1 = U∗ −∇P̃ (4.32)

Describing previous method, the assumption of constant time step is done.

When the time step is not constant we propose a simple alternative structure.

Let’s define hn+1 = tn+1 − tn and hn = tn − tn−1. By performing a Taylor

expansion:

Un = Un+1 − hn+1U′
n+1 +

1

2
h2
n+1U

′′
n+1 +O(h3) (4.33)

Un−1 = Un+1 − (hn + hn+1)U′
n+1 +

1

2
(hn + hn+1)

2U′′
n+1 +O(h3) (4.34)

Multiplying the (4.33) by (hn + hn+1)
2 and the (4.34) by −h2

n+1, let’s sum

new expression each other:

(hn + hn+1)
2 (Un −Un−1)− h2

n+1 (Un−1 −Un+1) =

−(hn + hn+1)
2hn+1U′

n+1 + (hn + hn+1)h
2
n+1U

′
n+1

Then, the derivative U′
n+1 is given by:

U′
n+1 =

(h2
n + 2 hnhn+1)Un+1 − (hn + hn+1)

2Un + h2
n+1Un−1

hn hn+1 (hn + hn+1)
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Therefore the left hand side of (4.26) becomes:

(h2
n + 2 hnhn+1)Un+1 − (hn + hn+1)

2Un
d + h2

n+1U
n−1
d

hn hn+1 (hn + hn+1)

Boundary condition for velocity and pressure

Following the approach of [5, 25, 26], proper boundary condition on ∂Ω

for the intermediate velocity and pressure on rigid walls are:

n ·U∗ = n ·Un+1

n · ∇P = 0

τ ·U∗ = τ ·Un+1 + τ · ∇P

On free surface, we always extrapolate the velocity from inside to outside

region and impose p = 0.

4.3 Iterative method

In our computation, we have seen that previous method is second order

in time and space, but it doesn’t preserve stationary solution. We have

introduce an original technique based on an iterative solution of the Navier-

Stokes equations that preserves stationary solution at discrete level. Starting

from the Semi-Lagrangian form of the Navier-Stokes equation, taking the

divergence of both side of

1

Δt

(
3

2
Un+1 − 2Un

d +
1

2
Un−1

d

)
= −∇pn+1 +

1

Re
ΔUn+1 + F n+1 (4.35)
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and imposing the discrete incompressibility condition ∇ ·Un+1 = 0, we ob-

tain:

−Δp = Fp, where Fp = ∇ ·
(
− 2

Δt
Un +

1

2Δt
Un−1 − F n+1

)

Boundary condition for velocity and pressure

On rigid walls, we choose free-slip boundary conditions. To compute the

right boundary condition for pressure, multiply by n the equation:

d U
d t

= −∇p+
1

Re
ΔU + F (4.36)

and obtain:
∂p(n+1)

∂n
= μΔU(n+1) · n+ F · n (4.37)

in which d U
d t
· n = 0 because of free-slip boundary condition.

On free surface, extrapolated value of velocity are used, while the boundary

conditions for pressure are:

∇ ·Un+1 = 0

∂Un+1 · τ
∂n

= 0

p = 0

46



Chapter 5

Poisson Solver

Solution of Navier-Stokes equations allows a Poisson problem for pressure

as an intermediate step. In this section we briefly describe the technique used

to solve this kind of problem (for more details see [11, 12]).

5.1 Second order discretization

Let d ≥ 1 an integer, D = [−1, 1]d the computational domain, Ω ⊂ D

a domain such that ∂Ω ∩ ∂D = ∅. We assume Ω is a smooth domain, i.e.

the boundary ∂Ω ∈ C1. Suppose that the boundary can be partitioned in

ΓD,ΓN such that, for example, ΓD

⋃
ΓN = ∂Ω, and

◦
ΓD ∩

◦
ΓN= ∅.

The model problem to be solved is:

−Δu = f in Ω (5.1)

u = gD on ΓD (5.2)
∂u

∂n
= gN on ΓN (5.3)
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where n is the outward unit normal, f : Ω→ R, gD : ΓD → R, gN : ΓN → R

are assigned functions. The domain Ω is represented by a level set function

φ.

5.2 Discretization of the problem

Once the computational domain is discretized in regular cells, denote with

Ni = |Ωh| the number of grid nodes inside Ω and with Ng = |Γh| the number

of ghost nodes, where inside and ghost nodes are defined as in Section 3.5.

The goal is to write a (Ni +Ng)× (Ni +Ng) linear system. Discretizing

the Laplace operator by the standard five points stencil, the Ni equations for

the inside points can easily write as, (Fig. 5.1):

4ui,j − (ui,j−1 + ui,j+1 + ui−1,j + ui+1,j)

h2
= fi,j. (5.4)

To close the linear system, we must write an equation for each ghost point

G. In order to close the linear system of equations (5.4) for inside grid

points, an equation for each ghost point has to be written. Let G be a

ghost point. The outward unit normal in G, using the level set function φ,

n̂G = (nx
G, n

y
G) = ∇φ/ |∇φ|, using a second order accurate discretization for

∇φ, such as central difference in G. By the signed distance function, it is

possible to compute the closest boundary point to G, called B (see Fig. 5.2):

B = G− n̂G · φ(G). (5.5)
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Figure 5.1: Five-point stencil
centered at P . The grid point
G is outside the domain and it is
named ghost point.

Figure 5.2: Computation of the
boundary closest point B to the
ghost point G from the normal
unit vector, obtained from the
signed distance function.

The point B could lie on ΓD or ΓN . If B ∈ ΓD, the boundary conditions are:

uh(B) = gD(B) (5.6)

while, if B ∈ ΓN , we have:

∂uh

∂n
(B) = gN(B)

where uh(B) and
∂uh

∂n
(B) are suitable reconstructions of the exact solution

and its normal derivative by the numerical solution uh. We choose

uh(B) = ũ(B),
∂uh

∂n
(B) = (∇ũ · n̂)|B =

(
∇ũ · ∇φ̃/|∇φ̃|

)∣∣∣
B

(5.7)

where ũ and φ̃ are biquadratic interpolant respectively of u and φ on the

upwind (with respect to the normal) nine-point stencil defined in 4.2
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5.3 Relaxation scheme: fictitious time

A simple Gauss-Seidel scheme applied to the linear system fails to con-

verge. The main idea to use Gauss-Sidel-like smoother consists in keeping

a Gauss-Seidel-type iteration for inner equations and relaxing the boundary

conditions. Therefore, the model problem 5.1 (5.1)-(5.3) is transformed into

the following associate time-dependent problem:

∂ũ

∂t
= Δũ+ f in Ω (5.8)

∂ũ

∂t
= μD(gD − ũ) on ΓD (5.9)

∂ũ

∂t
= μN

(
gN −

∂ũ

∂n

)
on ΓN (5.10)

ũ = ũ0 in Ω, when t = 0 (5.11)

where μD and μN are two positive constants. If the solution of the pro-

blem (5.8)-(5.11) is stationary (i.e. ∂ũ/∂t → 0, as t → +∞), then u(x) =

limt→+∞ ũ(t, x) is a solution of the model problem (5.1)-(5.3). A relaxation

scheme can be therefore obtained discretizing the problem (5.8)-(5.11), where

the time t is a fictitious time.

5.3.1 Discretization of relaxation scheme

For any grid point of Ωh, set of grid nodes inside Ω, we have an equa-

tion deriving form discretization of (5.8) in such point. Using forward Euler

in time and central difference in space and taking the maximum time step

50



CHAPTER 5. Poisson Solver

consented by the CFL condition (i.e. Δt = h2/4):

u
(n+1)
i,j = 1/4

(
h2fi,j + u

(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1

)
. (5.12)

Eq. (5.12) is equivalent to (5.1) using central difference in space and Jacobi

iteration.

For any ghost point G we compute the projection point B on the boundary

by previous formula (5.5) and discretize (5.9) or (5.10) if respectively G ∈ ΓD

or G ∈ ΓN . We use forward Euler in time and the discretizations (5.7) in

space. We obtain the iterative scheme:

u
(n+1)
G = u

(n)
G + μDΔt

(
gD(B)− u

(n)
h (B)
)

(5.13)

if G ∈ ΓD, or

u
(n+1)
G = u

(n)
G + μNΔt

(
gD(B)− ∂uh

∂n

(n)

(B)

)
(5.14)

if G ∈ ΓN .

The reconstructions u(n)
h (B) and

∂uh

∂n

(n)

(B) are the ones described in Sec.

5.1, more precisely they are (5.7) for second order accuracy (of the solution

and in the gradient).

Constants μD and μN of (5.13) and (5.14) are obtained by CFL condition,

i.e. in such a way that the coefficient of u(n)
P in the right-hand side of (5.13)

and (5.14) is positive. Such conditions read:

μDΔt < 1,
μNΔt

h
<

1√
2

for first order accuracy;
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μDΔt < 1,
μNΔt

h
<

2

3
√
2

for second order accuracy. (5.15)

5.4 Multigrid components

In this section we describe a multigrid approach to speed up the conver-

gence of the relaxation scheme (5.8)-(5.11). Let Ih be a general subset of Dh,

set of grid nodes. Let introduce the linear space of grid functions over Ih and

define S(Ih) = {wh : Ih → R}. From now on, we shall consider the two space

dimension, i.e. d = 2, but the results are valid also for d > 2.

Using the simplified notation, the iterative scheme (5.12)-(5.14) converges

to the solution of the problem:

⎧⎪⎪⎨
⎪⎪⎩
−Δhuh = fh

Lhuh = gh

(5.16)

where:

• uh ∈ S(Ωh ∪ Γh) is the unknown;

• Δh : S(Ωh ∪Γh)→ S(Ωh) is the standard discrete version of the Lapla-

cian operator:

Δhwh(x, y) =
1

h2
(wh(x+ h, y) +wh(x− h, y)− 4wh(x, y)

+wh(x, y + h) +wh(x, y − h))

for any wh ∈ S(Ωh ∪ Γh) and (x, y) ∈ Ωh;
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• fh ∈ S(Ωh) is defined by fh(P ) = f(P ) for any grid point P ∈ Ωh;

• Lh : S(Ωh∪Γh)→ S(Γh) is the discrete version of boundary conditions:

Lhwh(G) =

⎧⎪⎨
⎪⎩

LStG [u](B) if B ∈ ΓD(
∇LStG [u] ·

∇LStG [φ]

|∇LStG [φ]|

)∣∣∣∣
B

if B ∈ ΓN

(5.17)

for any wh ∈ S(Ωh ∪ Γh) and G ∈ Γh;

• gh ∈ S(Γh) is defined by:

gh(G) =

⎧⎪⎨
⎪⎩

gD(B) if B ∈ ΓD

gN(B) if B ∈ ΓN

for any ghost point G ∈ Γh.

For any spatial step h, let introduce an exact solver:

uh = Sh (fh,gh)

of the system (5.16), and denote by

�h : S(Ωh ∪ Γh)× S(Ωh)× S(Γh) −→ S(Ωh ∪ Γh) (5.18)

the relaxation operator. The iterative scheme

u
(m+1)
h = �h

(
u
(m)
h , fh,gh

)
(5.19)

converges to the solution of (5.16) as n → +∞. In details, the iteration
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(5.19) summarize the iterative scheme (5.12)-(5.14).

In order to explain the multigrid approach, we just describe the two-grid

correction scheme (TGCS), because all the others schemes, such as V -cycle,

W -cycle or Full multigrid, can be easily derived from it (see [39, Sections 2.4,

2.6] for more details). The TGCS consists into the following algorithm:

1. Set initial guess uh = 0

2. Relax ν1 times on the finest grid: for k from 1 to ν1 do

uh : = �h (uh, fh,gh)

3. Compute the following defects:

rΩh = fh +Δh uh

rΓh = gh − Lhuh

4. Transfer the defects to a coarser grid with spatial step 2h by a suitable

restriction operator

rΩ2h = Ih2h
(
rΩh
)

rΓ2h = Ih2h
(
rΓh
)

5. Solve exactly the residual problem in the coarser grid

e2h = S2h
(
rΩ2h, r

Γ
2h

)
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6. Transfer the error to the finest grid by a suitable interpolation operator

eh = I2hh (e2h)

7. Correct the fine-grid approximation

uh : = uh + eh

8. Relax ν2 times on the finest grid: for k from 1 to ν2 do

uh : = �h (uh, fh,gh)

In the next section, a description of step (4) an (6) is given.

5.4.1 Transfer grid operators

Restriction operator

In general, by the stencil notation

Ih2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...

· · · t−1,−1 t−1,0 t−1,1 · · ·

· · · t0,−1 t0,0 t0,1 · · ·

· · · t1,−1 t1,0 t1,1 · · ·
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h

2h
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we will intend the restriction operator Ih2h defined by:

Ih2hwh(x, y) =
∑

(i,j)∈Rk

ti,jwh(x+ jh, y + ih),

where only a finite number of coefficients ti,j is different from zero, and Rk ≡

{−k, . . . , k}2 for some positive integer k. In practice k = 1 allows second

order restriction operator.

Let us suppose we have extended the defect to the whole computational

domain Dh (as it is carefully described in Sec. 5.4.1). Since we have dif-

ferent operators for inner equations and for boundary conditions, the defect

is smooth separately inside Ωh and along the ghost point Γh (or Dh − Ωh,

because of the extension), but it is not smooth in all Ωh∪Γh. For this reason,

it is convenient to transfer separately to the coarse grid the defects rΩh and

rΓh. Let us define the new restriction operator:

Ih
2h : S(Zh) −→ S(Z2h), (5.20)

where Zh is an arbitrary subset of Dh, and where we intend Z2h = Zh ∩

Ω2h. Let (x, y) ∈ Z2h. Let N (x, y) = {(x + jh, y + ih) : j, i = −1, 0, 1} a

neighborhood of (x, y).

Now consider the maximum full rectangle T with vertices belonging to

N (x, y) and such that T ∩Dh ⊆ Zh (see Fig. 5.3, where Zh = Ωh). Therefore,

the stencil we use in (x, y) to transfer wh to a coarse grid depends on the

size of T . Now let T ∩Dh be a 3× 2 points. We can suppose the vertices of

T are (x+ jh, y+ ih), with j ∈ {−1, 0}, i ∈ {−1, 1}. In this case, the stencil
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we will use is:

(
Ih2hwh

)
(x, y) =

1

16

⎡
⎢⎢⎢⎢⎣

2 2 0

4 4 0

2 2 0

⎤
⎥⎥⎥⎥⎦

h

2h

(x, y), (5.21)

while, if T is a 2× 2 points, with vertex (x+ jh, y + ih), j, i ∈ {−1, 0}, the

stencil will be:

(
Ih2hwh

)
(x, y) =

1

16

⎡
⎢⎢⎢⎢⎣

0 0 0

4 4 0

4 4 0

⎤
⎥⎥⎥⎥⎦

h

2h

(x, y), (5.22)

This three case are summarized in Fig. 5.3 (where Zh = Ωh).

1

16

⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦

h

2h

1

16

⎡
⎣ 2 2 0

4 4 0
2 2 0

⎤
⎦

h

2h

1

16

⎡
⎣ 0 0 0

4 4 0
4 4 0

⎤
⎦

h

2h

Figure 5.3: Upper, the nine points of N (x, y) and the green boundary of the
rectangle T . The bold red point is on the coarser and finer grids, while the
little red points are on the finer grid. The arrows represent the action of the
restriction operators. Below, the respective stencil to be used.
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Extension of the defect

Finally we talk about the extension of the defect rΓh from S(Γh) to S(Dh−

Ωh). In every ghost point we store the defect of the boundary condition

concerning that ghost point but it is geometrically referred to a boundary

point B placed along the normal direction. Switching to a coarse grid, some

ghost point G1 may not be ghost point in the fine grid (see Fig. 5.4).

Figure 5.4: Red bold and small points are grid points of Ωh, while red bold
points are grid points of Ω2h. G1 is a ghost point on the coarser grid, but
not on the finer grid, then no value of the defect is stored in it. Qx and Qy

are the two upwind near points to G1.

Then, no acceptable value of the defect is stored in G1. Indeed, we expect

that r2h has in the ghost point G1 the defect of the boundary conditions

referred to B1. Hence, if we extend the defect rh outside Ωh constant along

the normal lines to the boundary, we will find rΓh (G1) as an approximation

of the defect of the boundary conditions in B1. After coarsening (performed

using only points outside Ωh, as described before), the ghost points of the
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coarser grid will contain the expected values of the defect.

The extension of the defect rΓh is performed by solving the same transport

equation solved for computing velocity boundary condition on free surface

∂rΓ

∂τ
+∇rΓ · n = 0

in a few steps of a fictitious time τ . The extension process can be resumed

introducing an extension operator, which in practice depends only on the

set of ghost point Γh and on the discretized signed distance function φh.

Therefore:

E [Γh;φh] : S(Γh) −→ S(Dh − Ωh), (5.23)

and then the extension procedure and the restriction of the defect rΓh can be

resumed as follows:

Ih2h(E [Γh;φh](r
Γ
h)).

Interpolation

Since the interpolation operator will act on the error, which is continuous

across the boundary, we can use the standard stencil for linear interpolation

operator:

I2hh =
1

4

⎤
⎥⎥⎥⎥⎦

1 2 1

2 4 2

1 2 1

⎡
⎢⎢⎢⎢⎣

2h

h

. (5.24)
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Numerical Test

6.1 Workflow of the general method

Let Ω a free surface domain in which we would describe the motion of a

certain fluid. Let’s assign:

• a level set function φ0 such that its zero level set Γ is equivalent to ∂Ω

• an initial condition for velocity field U0 such that ∇ · U0 = 0

Until the final time or steady state is reached:

• reinitialize the level set function to the signed distance function φ;

• scan grid nodes to identify inside, ghost and outside points;

• extrapolate the velocity out of the interface in normal direction, to

“cover” ghost points;

• solve the Euler or Navier-Stokes equation in Ω−
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• extrapolate the new velocity out of the interface in normal direction,

to “cover” ghost points;

• update the interface by solving the level set equation for φ

6.2 Euler equation - Mac method

This is a very simple test, in which we would like to solve Euler equation

on a parabolic-shaped basin. In Figure 6.1 snapshot are taken at time t=0,

0.15, 0.60, 0.83 from the top left to right.

6.3 Comparison with SPH method

Smoothed Particle Hydrodynamics (SPH) is a Langrangian meshless me-

thod. The fluid is divided into a set of particles, each carrying information

about its position, velocity, pressure and any other quantity needed by the

model.

Since the method is Lagrangian, the particles move according to the go-

verning equation of the fluid, without being constrained to a fixed mesh. This

allows them to move freely with respect to one another, without the issues

related to mesh deformations which are often found in methods such as fi-

nite elements. As in fixed-mesh method, it necessary to compute derivatives

using information from a finite number of points: in the SPH method, the

interpolation points are particles which move with the flow, and the inter-

polation of any quantity depends on kernel estimation (kernels are functions

which tend to the delta function as the length scale h tend to zero), [21, 27].
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Figure 6.1: Fluid flow on parabolic ground, t = 0, 0.15, 0.60, 0.83, test (6.2)

We compare first-order in time Sem-Lagrangian method with SPH method

implemented by Dr. G.Bilotta. Initial level set function is a gaussian defined

in [0, 2]× [0, 0.5]

φ0 = y − (0.1 exp(−(x− 1)2/(0.1)2) + 0.1);

Comparison are based on two different grid size. In Figure 6.2, magenta

clored lines correspond to 512 × 64 grid size, black colored lines correspond

to 256× 64 grid size and blu dots are fluid particles.
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Figure 6.2: SPH vs 1st order in time semi-lagrangian
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The results are very encouraging: using two different method, with two

different approaches, we obtain same results except in the convex areas near

the free surface of the fluid. In the concave areas there is a good agreement

between two methods. This may results from the fact that SPH is a first order

approximation and accuracy also depends on near particle, in fact it increases

in high density regions and decreases in low density regions, Figure 6.3.
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Figure 6.3: Zoom on convex areas of the free surface

6.4 Another comparison

In Figure 6.4 and Figure 6.5 flow evolution is plotted. Computational

domain is [−1, 1]×[0, 0.25]. The gaussian φ0 = y−(a exp(−(x−b)2/c2)+0.1)

with a = 0.1, b = 0. and c = .1 is the starting level set. First order in time

Semi-Lagrangian methods for Euler equations are used. The blu, red and

black lines correspond respectively to 128× 32, 256× 64 and 512× 128 grid

size.
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Figure 6.4: Fluid flow evolution using Semi-Lagrangian O(Δt,Δx), test (6.4)

Figure 6.5: Fluid flow evolution using Semi-Lagrangian O(Δt,Δx2), test
(6.4)
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6.5 Verify accuracy of new iterative method

In order to test the accuracy of the method, consider a single vortex flow

in [−0.5, 0.5]2. The exact solution is

u(x, y, t) = − cos(π x) sin(π y) cos(π t)

v(x, y, t) = sin(π x) cos(π y) cos(π t)

p(x, y, t) = −1/4 cos(π t)(cos(2π x) + cos(2π y))

In Figure 6.6 are plotted error computed comparing the exact solution with

numerical solution. As we can see, a CFL=1 is a good choice in order to

obtain good results.

CFL Bestfitting Slope
0.125 1.68
0.5 1.88
1 1.92

Table 6.1: Bestfitting of error on exact solution at different CFL, test (6.5)

Figure 6.6: Error at different CFL, , test (6.5)
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6.6 Stationarity of new iterative method

The iterative method seen for the Navier-Stokes equation, preserves the

stationary solution. Starting from a solution ue for the stationary Euler

equations, we have seen that the same function satisfy the Navier-Stokes

equation, in which the external forces are set equal to −Δue.

The function Ue = (ue, ve)

ue = − cos(π x) sin(π y)

ve = cos(π y) sin(π x)

is a stationary solution for the Euler equation:

d U

d t
+∇ p = 0

If we consider the Navier-Stokes equation:

d U

d t
+∇ p = ΔU + F

we can see that Ue satisfy the left hand side. Then, Ue is a stationary solution

for the Navier-Stokes equation if F = −ΔUe. In Figure 6.7 is plotted error

estimate. The stationary solution is reached at time t=0.6

CFL Bestfitting Slope
u 0.125 1.81
v 0.125 1.91

Table 6.2: Bestfitting slop of error computed on velocity component with
respect to exact solution at CFL=0.125, test (6.6)
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Figure 6.7: Error on stationary solution, test (6.6)

6.7 Comparison between new iterative method

and shallow water solver

In this section we compare the results obtained by new iterative scheme

with a central scheme for conservations laws, [33]. As we ca see in Figure 6.8,

t = 0.5; Nx = 50
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t = 0.5; Nx = 100
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Figure 6.8: Compare Shallow water solver with Semi-Lagrangian scheme,
test(6.7)
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there is a good agreement in results. The difference between two interfaces,

(in red interface from the iteraritve scheme and in black the water depth

from shallow water scheme) is very small, respect to the spatial step.

6.8 Sitting-Bubble

Figure 6.9 and Figure 6.10 show the results of evolution of a bubble

of fluid “sits” on a same properties fluid film in [0, 2]2, . Tests are run at

different Reynold’s number and snapshot are taken at time t=0, 0.18, 0.27,

0.342 from the top left to the bottom right. For Re = 10 deposition regime

0
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Figure 6.9: Sitting Bubble at different Reynold’s number, Re=10 in red,
Re=100 in blue, t=0, 0.18, test (6.8)

is observed (red line): the bubble sits on the layer without waves formation.

For Re = 100 spreading regime is observed (blue line): while sitting, the

bubble causes a waves that propagates on layer surface towards right side of

the domain.
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0.27
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Figure 6.10: Sitting Bubble at different Reynold’s number, Re=10 in red,
Re=100 in blue, t=0.27, 0.342, test (6.8)

6.9 Rising Bubble

In this benchmark problem proposed for example in [36], a rising bubble

is simulated in [0, 1]× [0, 1] from t=0 to t=0.25. We solve the Navier Stokes

equation with no-slip boundary condition on the wall and Reynolds number

100. The initial configuration is a circle with center in xc = 0.5, yc = 0.5 and

radius Rc = 0.25. The initial level set is φ = −
(√

(x− xc)2 + (y − yc)2 −Rc

)
.

We suppose that the fluid is only in the region where φ < 0
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Figure 6.11: Evolution of Rising-Bubble (left column) and plot of the velocity
filed (right column), t=0.1, 0.15, 0.2, 0.25
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Conclusion

We have presented the general computational approach that is well suited

for numerical simulation of all kinds of unsteady fluid flows. The approach

essentially relies on three basic components: level set methods for boundary

representation finite difference scheme for spatial discretization and Eulerian

or Semi-Lagrangian for temporal discretization. Two numerical methods have

been applied to fluid flow simulation: 1) Chorin’s projection or MAC method

and 2) Semi-lagrangian method.

The first two methods are incredibly flexible and relatively efficient and,

above all, easily understood. They may be applied to the computation of

flows in fixed domains and to the simulation of free boundary value problems.

Unfortunally they are explicit and this may cause a very small step size in

computation. Moreover they are first order accurate in time and second order

accurate in space.

Semi-lagrangian methods are second order accurate in time, therefore

more accurate then the previous one. Starting from semi-lagrangian back-
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ward differentiation formula, we have developed an original iterative method,

which is second order accurate in time and space and which preserves statio-

nary solution at discrete level. The general system of Navier-Stokes equations

with proper boundary condition, is split in two subproblems (one for the ve-

locity and one for pressure) which are solved iteratively.

Future work

Next step is to include a solid body in the fluid and simulate the flow past

this object. Our idea is to treat solid body as a fluid with a huge viscosity

and so treat the problem as usual. The different things consist in boundary

condition to be applied on the interface Γ between the “two fluids”: the quan-

tity as viscosity, density, pressure and velocity may have a jump on Γ. All

these ingredients lay the foundations for lava flow simulation and crust for-

mation. First of all is necessary to couple Navier-Stokes equations with heat

equation because of viscosity dependence on temperature. Different rheolo-

gies may be considered: Newton, Herschel-Bulkley and Bingham. Actually,

real lava rheologies is not known but most common rheology assumed for it

is Bingham rheology. Finally we would like to implement our code in three-

spatial dimension and validate it using multiphysics modeling and simulation

software, as Comsol.
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