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Introduction

The increase, in the past few decades, of the phenomena of intense transport
of geophysical mass flows, pushed the technical and scientific community
in face of the heavy responsibility to effectively protect people, man-made
structures, and the economic activities of affected areas. Typical examples
of these dangerous and destructive natural phenomena are landslides, snow
avalanches, pyroclastic flows, debris flows that are driven down a slope under
the action of gravity ([1]-[13]).

These gravity-driven flows, characterized by a mixture of soil, rocks and
water, are often originated by sediments of natural deposits, mobilized of a
considerable quantity of fluid and resulting in the formation of huge floods
of sediments that are propagated with elevated speed. The characteristics
of the flow depend on the rheology of dry granular flows and of the amount
of fluid that is added, characterizing the mechanism of initiation along the
streams listed first ([14]-[28].

Following the celebrated paper of Savage and Hutter [29], in the last two
decades great progresses have been made in the mathematical and numerical
modeling of granular geophysical flows by means of depth-averaged or thin
layer models, which are based on the small aspect ratio of typical flows (small
characteristic flow depth H compared to the characteristic flow length L).
The study of Savage and Hutter was concerned with the one-dimensional
motion of a relatively thin layer of a dry granular material along a slope.
They started from the classical Saint-Venant system [30]:

∂th+ ∂x(hu) = 0,

(1)

∂t(hu) + ∂x(hu
2 + 1

2
gh2) + hg∂xz(x) = 0

that has been widely used to model single-phase flows in one space dimension.
In (1) h denotes the height of the material, u the velocity in the direction
parallel to the bed, g the gravity constant. The influence of the topography
enters through the function z(x) which is the altitude of the relief and it is
assumed that ∂xz is small.
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Savage and Hutter, modifying the Saint Venant equations, introduced a
model which is still one-dimensional but take into account the curvature of
the terrain at least when small. Both systems are hyperbolic and posses a
convex entropy.

Eventually their approach has been followed and generalized by several
authors which studied a bidimensional model but began to consider a complex
basal topography ([31]-[38]). Even the extension to multidimensions of the
Saint-Venant system is obvious, however it is valid only for almost flat topog-
raphy, thus not relevant for debris avalanches in particular. Unfortunately
the extension to several dimensions of the Savage-Hutter model appears to
be far from trivial. The first attempt has been made by Gray, Wieland and
Hutter [34], they assumed that the topography has large variation only in one
direction, while it is essentially flat in the other direction. Later, see [39] and
[40], Hutter and Pudasaini introduced a model for avalanches in arbitrarily
curved channels.

It is worthwhile stressing that a considerable part of the literature on
debris flow modeling, from the early studies to the most recent ones is de-
voted to single-phase dry granular masses. Single-phase models are, however,
limited in the simulation of the complex behavior of debris flows. As Hutter
points out in [41] this is mainly due to neglecting the effects of the interstitial
fluid. The effects of pore pressure on the fluidization of a solid-fluid mixture
is often necessary for an accurate description of debris flows mechanics. In
fact the interaction forces between solid grains and interstitial fluid influence
not only the rheological behavior of the moving mass but also may play an
important role in deformation processes, flow mobility and run-out. It is
possible to find examples going from dry rock avalanches, in which pore fluid
influence may be negligible, to liquid-saturated debris flows and gas-charged
pyroclastic flows, in which fluids may enhance bulk mobility.

In order to take into account intergranular fluid effects in the flowing
material Iverson [42] and Iverson and Denlinger [35], [43] suggested a new
model by developing a depth averaged solid-fluid mixture theory based on
the simplifying assumptions of constant porosity (fluid volume fraction) and
equality of fluid velocity to solid velocity. In these models the flow is de-
scribed by a set of balance equations for the mass and for the momentum
of the mixture, which formally appears as a single-phase model with a stress
term accounting for contributions from the two constituents. This mixture
formulation lacks an inherent description of the pore fluid motion and the
model needs to be supplemented with some specification of the pore fluid
pressure evolution. In particular, the Iverson and Denlinger model extended
the modeling to two dimensions, and included several refinements to the
equations. Moreover, they postulate an advection-diffusion equation for the
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fluid pressure, allowing for changes in the pressure in response to the move-
ment of solid. Numerical applications of this model to laboratory avalanches
and debris flume experiments are reported in [43].

The models of Savage and Hutter [29] and Iverson [42] have a very similar
structure, this fact allows to formulate with appropriate positions a single
model for two flows classes [44]. This particular model is hyperbolic, so for
some experimental data, it is possible to write weak discontinuity evolution
equation [45] and to evaluate the critical time, that is the instant when
discontinuity amplitude becomes unbounded.

Making a significant progress with respect to the previous models, Pitman
and Le [90] have recently introduced a novel depth-averaged two-phase model
for debris flows and avalanches that contains mass and momentum balance
equations for both the solid and fluid component. This implicitly provides
equations for the velocities of both phases and for porosity. This model is
tractable to describe unsteady and non uniform configurations encountered
in real geophysical flows. In their work, the granular phase is described as a
Coulomb material, and again, no dilatancy is present.

Moreover, in this thesis taking in consideration the Pitman and Le model
and we study the partial differential equation system that tries to approach
the range of scales and the complexity of the rheology for geological materials
([46], [47]). This system is a first order quasilinear system and we wonder if it
is hyperbolic or not in order to look for propagation of weak discontinuities
[45] and for further developments. Being the characteristic polynomial, in
one space dimension, of degree four it is not trivial task to discuss about
the reality of its zeros. Because of our interest are the application of this
model to gravitational geophysical flows such as avalanches and debris flows,
some experimental data are considered in order to compute the zeros of
characteristic polynomial, to write weak discontinuity evolution equations
and to evaluate the critical time.

The thesis is organized as follows. In section 1 the phenomenology of the
geophysical mass flows is described. In section 2, the single-phase model of
Savage and Hutter are shown. In section 3 the classical theory of mixtures are
recalled, the derivation of a simple model for a Debris Flow Surges is shown
and finally the ”hydraulic” model of Iverson is described. In section 4 the
bi-phase model of Iverson and Denlinger is shown. In section 5 ”a model for
two flows classes” is formulated and the propagation of weak discontinuities is
studied. Finally, in section 6 the derivation of the two fluid model of Pitman
and Le is shown, the hyperbolicity is discussed and the propagation of weak
discontinuities is studied. In the last section conclusion are given.
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Chapter 1

Phenomenology

1.1 Classification of the phenomena of mass

flows

The phenomena of instability of a slope are mainly due to factors directly
related to the geometric shape of the slope, to the geological and geotechni-
cal properties of earth and rocks involved in the process, and finally to the
hydraulic characteristic of the site. These factors are extremely variable in
time and space determine how the kinematics of breaking.

The apparent complexity of the phenomena has given rise to a large num-
ber of classifications, in which we tried to group events according to the
seemingly common material, the morphology of the deposit and the type of
motion. However, as regards the casting of both land, both detritus, fast or
slow with fluid consisting of water alone, alone by air or air-water mixture,
were considered more significant that proposed by Varnes [48] on the phe-
nomena of flow within mass motion, and descriptions of different types of
motion of debris seconds Hutchinson ([49]-[51]).

The classification of Varnes [48] is the most complete and has become,
especially from the engineering point of view, the most widely used reference
for the terminology of mass motions. It uses as discriminatory elements, the
type of motion derived from geometric and kinematic characteristics, and the
type of material involved in the movement itself:

• type motion: collapse, overturning, rotational and passed slips, expand-
ing side, castings and complex motions.

• type material: the rock in place, coarse detritus, fine-grained soils.

Varnes introduces the cast, starting from the observation that many examples
of motions of slopes can not be classified as structural collapse, overturning or
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slipping, and that in many cases the speed of distribution of mass in motion
seems that of a viscous fluid. He considers two main types of flows: the flows
in the rocks and streams of debris and soil.

The classification of Hutchinson [51] divides the movement of debris that
looked like a stream into 4 types, showing that essentially differ in their
mechanism of propagation ([52]-[64]).

• Mudslide. Are characterized by slow motions of debris accumulated
in a clay matrix, mainly consisting of slips rather than flow.

• Debris flows. These flows fast or very fast debris and mixed with wa-
ter are characteristic phenomena of instability of the mountain slopes,
where water leakage sudden supplied by rain or melting snow, can mo-
bilize coperture detrital.

• Flowslides. Are characterized by a sudden collapse and from the wide
one and rapids propagation of a mass of granular material or detrital
after an external cause. Having the material a loose structure or high
porosity, following the trouble, the collapse is had with partial total
transfer of the overload on the fluid of porosity and therefore the gen-
eration of an excess of pressure is had. The pore fluid usually consists
of water, but in some cases it may be gas.

• Sturzstrom. This is true ”pattern of debris” that affect large vol-
umes, with values of high-speed. The movement of sturzstrom depends
on the turbolent granular flow, with a necessary tension dispersive in
normal direction to the flow furnished by the transfer of momentum
between the grains that collide and not by the presence of a liquid
or gaseous fluid. There is therefore a fundamental difference between
the behavior of sturzstrom and flowslides because, in addition to the
different volumes involved, in the first ones the physical trial is tied
up to the quantity of motion transferred through the collisions among
wheats, while in the seconds it is essentially a phenomenon of impact
liquefaction.
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1.2 Physical characteristics of mass flows

The mass flows consists of detritus from mixtures consisting of air, water,
colloidal suspensions of clay minerals, solid grains of various sizes (from sand
to the blocks) in different proportions.

These phenomena of instability, typical of mountain slopes, are mobilized
in connection with flooding and propagate downstream with speeds that can
reach a few tens of meters per second. Flash floods gravitated in which the
material undergoes a state of tension ring is unable to resist distortion and
flows like a viscous fluid.

The main physical characteristics of the mass flows are: granulometry,
speed and gradient.

1.2.1 Granulometry

The geological deposits which arise from the mass flows are not usually strat-
ified and multi-class grain. The examination of the grading curve of some
debris that have been casting motions [51] allows to put in evidence a break-
down of the material that extends from the clay, the pebbles, the blocks. The
percentage of each class may vary from one deposit to another and within a
deposit.

The mass flows are, in fact, characterized by several phases of movement:
a flow of material consists of mainly coarse elements are generally followed
phases of fluidder flow.

1.2.2 Speed

The danger of Geophysical mass flows is closely linked to high speed with
which these phenomena occur, since the speed between 0,5 m/s and 10 m/s.
The differences between the values of velocity may be due to granuloma-
try material affected, to the geometry of the channel and therefore to the
inclination, the size and morphology of the area concerned.

1.2.3 Slopes

Although the mass flows originate on very inclined slopes, however, are char-
acterized by the ability to move up inclines very weak. The ranges of observed
slopes vary between 2% and 32%.
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1.3 Mechanisms of initiation, propagation and

arrest of mass flows

A comprehensive study of physical processes in question should also consider
the phase of initiation, as well as the maintenance of the phenomenon.

The formation of mass flow can in general due to the simultaneous occur-
rence of the following three conditions:

1. the presence of detrital material (storage, layer, etc.);

2. intake of fluid (water, mud, etc..) sufficient for the mobilization of the
material;

3. a slope of adequate fund.

In a mass flow can refer to two typical sources of material constituent, in
percentage as:

• material accumulated and deposited in streams, from the sides, by the
erosive action on the rocks, etc..

• material originated from erosive events concurrent with the occurrence
of detrital casting.

The flow are mainly caused by events of particularly intense rainfall or sudden
dissolution of the phenomena of glaciers due to sudden variations. Sometimes
there may be a result of volcanic phenomena or as a result of landslides caused
by earthquakes accompanied by surface water.

In such cases, the shear direction parallel to the slope increases with the
degree of saturation, while the shear strength decreases with the increase
in interstitial pression. The rupture occurs when cutting the shear active
reaches the shear strength available. After the break, the unstable mass is
moving, in some cases, very slowly and travels short distances, in other cases,
however, is transformed into flow of detritus, reaching very high speeds and
driving long distances.

Tubino and Seminara [65] have identified 4 different types of ignition of
mass flows:

1. flow generated by the mobilization of debris deposited in the bed of
streams, following the surface currents produced by heavy rainfall or
thawing;

2. flow originated from the collapse of a slope, with subsequent transfor-
mation of the landslide in detrital casting;
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3. flow originated from the collapse of a natural dam, produced by the
occlusion of a stream following a landslide the previous event;

4. flow produced by the fluidized immediate constituent of the material a
landslide, due to the presence of an abundant surface current.

The mechanisms for generation of type 1, 3 and 4 are characterized, although
with different modalities, from a flow of water in the form of tracking that
is the cause of the phenomenon of instability. The mechanism of type 2
is, however, fundamentally different in that, to produce the phenomenon of
instability, it is necessary that it is delivering the interstitial overpressure
inside the material, leading to liquefazio with.

The classification proposed by Seminara and Tubino [65] reflects, besides,
substantial differences in response times of the phenomenon: the time inter-
val between the phenomenon and not trigger the occurrence of debris flow
shows the hour-days in the case castings caused by landslides or slope failure,
and stroke is reduced to the order of minutes-hours in the case of castings
produced by the mobilization of deposits in the streams. In particular move-
ment is very rapid in the case of non-saturated layers on high slopes.

The main characteristics of the debris on the move are:

• erosive capacity is particularly high during the initiation and develop-
ment, during which the front of material thickens incorporating large,
but much reduced in the subsequent propagation phase, during which
the casting is characterized by a front face, where the sediments of
greater dimensions are assembled, and an opposite rear end of the ma-
trix;

• impact strength: due to the size of the granules of the front face (caus-
ing major damage).

I can stop debris flows naturally and the effect of artificially drawn structures
suitable for this purpose.

Experimentally it was observed that the debris flows deposited in plains
or mountain gorges where the slope of the fund is reduced to values which
can not exceed 3o. Generally, however, arrested at the mouth of a river or at
the apex of a cone.

In cases of non-stop the width of the current debris flow increases slightly
and it has side storage with the formation of natural levees on both sides.
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Chapter 2

The Savage-Hutter model

The Savage-Hutter model is a depth averaged dynamical model of a finite
volume of cohesionless granular material in two dimensions released from rest
on rough inclines. It takes into account the assumptions of density preserving
(incompressibility), of a dry Coulomb-like friction law with bed friction angle
σ, of shallowness of the flow with small topographic curvatures and finally
the assumption of nearly uniform velocity profile through the flow depth.

Depth averaging the equations of conservation of mass and momentum
yielding a tractable model of hyperbolic equations, reminiscent of the non-
linear shallow-water equations. The granular mass is treated as a continuum
along a slowly varying bottom profile with thickness, in which consider free
surface flow and density not variable.

Mass and momentum balance equations for the incompressible model are
written as 




∇ · (ρsv) = 0,

ρs(∂tv + (v · ∇)v) = −∇ ·Ts + ρsg,
(2.1)

where ρs is the constant density, v is the velocity vector, Ts is the solid
stress tensor and g the gravity acceleration.

The flow considered is represented in two-dimensional Cartesian coordi-
nate system with x is the downslope direction and z the normal direction
(see figure 2.1).

The equations of the system (2.1) in these coordinates system become:




vxx + vzz = 0,

ρs(gvxt + vxvxx + vzvxz ) = ρsgsin(θ)− T sxxx − T sxzz +,

ρs(vzt + vxvzx + vzvzz) = −ρsgcos(θ)− T sxzx − T szzz ,

(2.2)
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Fig. 2.1: Sketch of the geometry of a finite mass of granular material moving
along a curved rigid bed showing definitions of the free surface given by
F h(x, z, t) = 0 and the equation of the bed F b(x, z, t) = 0. Also indicated
are the scales [L] and [H] for the spread and maximum height.

where θ is the angle that the base of the mass flow makes with the hori-
zontal, consequently sin(θ) and cos(θ) are the local components of gravity.

Boundary conditions at the upper free surface are two. First is the fol-
lowing stress free condition:

Ts · n = 0, (2.3)

where n is the exterior unit normal vector. The second boundary condition
that in water wave problem is known as kinematic condition, is expressed
by a function F , which is F h(x, z, t) = 0 to indicate the position of the free
surface, then the further condition becomes:

F h
t +∇F h · v = 0, (2.4)

where the subscript t denotes the derivative with respect to the time. Instead,
at the base the expression F b(x, z) = 0 indicates the tangency of the flow,
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that must satisfy the following condition:

v · n = 0. (2.5)

Furthermore, the boundary condition at the base satisfy the a sliding friction
law, which expresses the proportionality between the shear traction S and
the normal stress N as follows:

S = ±Ntang(φbed), (2.6)

where φbed is the basal friction angle and the sign is given by the direction of
the sliding velocity.

With

S = n ·Ts − n(n ·Ts · n), (2.7)

and

N = n ·Ts · n, (2.8)

the two boundary conditions at the base (Fb(x, z) = 0) becomes:




v · n = 0,

n ·Ts − n(n ·Ts · n) = −
(
vs
|vs|

)
(n ·Ts · n)tang(φbed),

(2.9)

where vs is the sliding velocity relative to the stationary bed.
The system of equations (2.1) is put in a non dimensional form by using

the following scaling transformation:




(x, z, t) = L

[
x̃,
H

L
z̃,

(
L

g

)
1

2 t̃

]
,

(vx,uz) = (gL)
1

2

(
ṽx,

H

L
ṽz
)
,

Ts = ρsgHT̃s,

(2.10)

where H is the characteristic thickness in the z-direction and L is the char-
acteristic flow length in the x direction. Moreover, are specialized the free
surface and the bed by z = h(x, t) and z = b(x), so that when h and b are
scaled by H obtained:





h(x, t) = H[h̃(x̃, t̃)],

b(x) = H[b̃(x̃)].

(2.11)
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Consistent with the assumption of slow variation of the bed and the free

surface, take h̃ and b̃, as well as
∂h̃

∂x̃
and

∂b̃

∂x̃
to be order-unity functions.

Moreover, introducing the term ǫ =
H

L
<< 1, we can assert that the functions

listed above are of order ǫ.
From eqn. (2.1) with scaling transformation (2.10), by dropping tilde and

dividing each term by ρsg, we get the following three scalar equations written
in component form:





vxx + vzz = 0,

vxt + vxvxx + vzvxz = −ǫT sxxx − T sxzz + sin(θ),

ǫ(vzt + vxvzx + vzvzz) = −ǫT sxzx − T szzz − cos(θ),

(2.12)

Putting ǫ = 0 in the z-momentum equation we obtain the following litho-
static equilibrium equation:

T szzz = −cos(θ). (2.13)

Instead, taking ǫ = 0 in the x-momentum equation, should neglect the lon-
gitudinal stress tensor ǫT sxxx , but unlike of the transverse stress tensor ǫT sxzx ,
is sufficiently large to be retained.

The final procedure to simplify the x-momentum equation is the depth-
average, which is integration in z, from the basal surface z = b(x) to the upper
free surface z = h(x, t). Moreover, using the continuity equation and the
Leibnitz’s rule, interchanging integrations and differentiations, the equation
becomes:

∂

∂t

∫ h

b
vxdz +

∂

∂x

∫ h

b
vx

2

dz −
[
vx
(
∂h

∂t
+ vx

∂

∂t
− vz

)]

z=h(x,t)

+

+

[
vx
(
vx
∂b

∂x
− vz

)]

z=b(x)

= sin(θ)(h− b)− T sxz|z=h(x,t) + T sxz|z=b(x) +

−ǫ
[
∂

∂x

∫ h

b
T szzdy − T szz|z=h(x,t)

∂h

∂x
+ T szz|z=b(x)

∂b

∂x

]
(2.14)

Applying the boundary conditions at the free surface and the base, in
the latter equation many terms are simplified. Moreover, the equation (2.14)
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incorporates the following kinematic boundary conditions:





∂h

∂t
+ vx

∂

∂t
− vz at z = h(x, t),

vx
∂b

∂x
− vz at z = b(x),

(2.15)

These conditions include the assumption that the surface of the flow of ma-
terial is free of the stress, then consider:

T sxz = T sxx = T szz = 0 at z = h(x, t), (2.16)

The equation (2.14) with the use of (2.15) and (2.16) simplifies and becomes:

∂

∂t

∫ h

b
vxdz +

∂

∂x

∫ h

b
vx

2

dz = sin(θ)(h− b) + sin(θ)T sxz|z=b(x) +

−ǫcos(θ)
[
∂

∂x

∫ h

b
T szzdy + T szz|z=b(x)

∂b

∂x

]
. (2.17)

Moreover, the depth-averaged velocities and normal stresses are defined as
follows:

vx =
1

h− b

∫ h

b
vxdz, (2.18)

T sxx =
1

h− b

∫ h

b
T sxxdz, (2.19)

T szz =
1

h− b

∫ h

b
T szzdz, (2.20)

vx2 =
1

h− b

∫ h

b
αvx

2

(h− b)dz, (2.21)

The term α in (2.21) indicates that if its value differs from unit, the
velocity profile deviates from uniformity. Then, a value of α = 1 indicates
a uniform profile and that the mass flow moves slipping on the base, with
no differential shear. In this case the active shear zone is confined to a thin
basal layer and the velocity profile is blunt [66].

Instead, if you do not slip on the base and the shear is all differential, the
speed profile is parabolic and takes α = 6

5
.
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Therefore assume a value of α ≈ 1 represents a good approximation, since
it does not introduce a large errors.

With the shallowness assumption the non-dimensional form of the Coulomb
sliding law (2.15) becomes

T sxz = −sgn(vx)T szzcot(θ) tan(φbed) at z = b(x). (2.22)

Assuming that the constitutive behavior of the material can be described
by a simple Mohr-Coulomb yield criterion. By having postulated that the
Coulomb constitutive relation for the material, is a nonlinear relation among
the components of the solid tensor stress. Full reports expressing the Coulomb
law are very complex to be used in Savage-Hutter derivation, because they
yield the mass and momentum balance laws linearly ill-posed, then make
the simplifications in the relations to be taken. However, it is based upon
the results of shear cell and chute flow tests, and explanations of and jus-
tifications for this assumption are given in considerable detail in [67]. The
Mohr-Coulomb yield criterion for a cohesionless material with an internal
friction angle ϕ, expresses the alignment between the shear stress and the
normal stress, by the following relation:

T sxz = T szztan(ϕ), (2.23)

This is shown schematically in terms of a standard Mohr-diagram (see figure
2.2) for the case of a constant internal friction angle and a constant bed
friction angle φbed.

At the bed , the normal stress T szz and the shear stress T sxz must be such
that they lie on the wall yield line as shown. Note that two possible Mohr
circles can be drawn through the point corresponding to the (T szz, T sxz) stress
state. That one corresponding to a larger value of the normal stress T sxx (i.e.
T sxx > T szz) we associate the passive state of stress (to use the common soil
mechanics terminology) and the other we associate with the active state of
stress. An earth pressure relation expresses the proportionality between the
diagonal stress components, as follows:

T sxx = Kact/pasT
szz, (2.24)

where Kact/pas is the earth pressure coefficient, determined by the equation:

Kact/pas = 2
1∓ [1− cos2(φint)[1 + tan2(φbed)]]

1/2

cos2(φint)
− 1, (2.25)

with φint is the internal friction angle. The sign ∓ depends on whether
an element of the material is being elongated (”active” coefficient ∂v/∂x > 0,
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Fig. 2.2: Mohr stress circle and Coulomb failure envelopes for a granular
material that is simultaneously slipping along a bed and failing internally.
The radius of the stress circle defines the maximum internal shear stress.

with - sign) or compressed (”passive” coefficient ∂v/∂x < 0, with + sign) in
the direction parallel to the bed.

The relation (2.17) with (2.18)-(2.24) becomes:

[(h− b)vx]t + [α(h− b)vx2]x = sin(θ)(h− b) +

−ǫcos(θ)Kact/pas{[(h− b)T szz]x + T szzbx}+
−cos(θ)sgn(vx)T szz tan(φbed). (2.26)

From (2.13) after integration and taking account of the zero pressure condi-
tion at the free surface obtained the following overburden pressure:

T szz = h(x, t)− b(x) = ĥ(x, t) (2.27)

and still has:

ĥT szz =
1

2
[h(x, t)− b(x)] =

1

2
ĥ(x, t) (2.28)
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So the relation (2.26) with (2.27) and (2.28) becomes:

[ĥvx]t + [αĥvx2]x = sin(θ)ĥ− ǫcos(θ)Kact/pas{ĥ2x + ĥbx}+
−cos(θ)sgn(vx) tan(φbed)ĥ. (2.29)

Finally, after integration of the first equation of the system (2.2) over the
depth and use the kinematic boundary conditions at the free surface and at
the base, the continuity equation becomes:

ĥt + (ĥvx)x = 0. (2.30)

The relation (2.31) using the (2.30) is simplified as:

vxt + vxvxx = sin(θ)− ǫcos(θ)Kact/pas{ĥx + bx}+
−sgn(vx)cos(θ) tan(φbed), (2.31)

taking a value of α = 1.
Equations (2.30) and (2.31) comprise a system of two partial differential

equations for the profile ĥ(x, t) and the transversely averaged velocity vx.
Provided the internal angle of friction ϕ, the basal friction angle φbed, and
the basal geometry (through the angle θ and the function b(x) are known.
The evolution in time of both ĥ(x, t) and vx can be determined if an initial
profile and a velocity distribution





h(x, 0) = h0(x),

vx(x, 0) = vx0(x),
(2.32)

are prescribed. In particular, for the motion of an avalanche along a planar
bed the authors may set b = 0 and replace ĥ by h. So the considerations of
the present model will be restricted to this case, and the system become:





ht + (hvx)x = 0,

vxt + vxvxx = sin(θ)− sgn(vx)cos(θ) tan(φbed)− βhx,
(2.33)

where we have omitted the over bars for simplicity and

β = ǫKact/pascos(θ) (2.34)

is a small constant. Boundary conditions which must imposed upon the
system (5.8) are:





h(x, t) = hF (t) at x = xF (t),

h(x, t) = hR(t) at x = xR(t),
(2.35)
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with x = xF (t) and x = xR(t) denoting the front and rear margins respec-
tively, while hF (t) and hR(t) are prescribed functions of time. Note that
hF (t) = hR(t) = 0 are obvious choices, but cliffs are also possible.

Finally, we mention that the margin velocities are given by:





uF = dxF
dt
,

uR = dxR
dt
.

(2.36)
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Chapter 3

The Iverson model

In an extensive review of debris flows, Iverson [42] presented a thin layer
model for a mixture of granular material and interstitial fluid in one spatial
dimension.

Before dealing with the analysis of the model described by Iverson, we
think it is useful to show a short review of the equations governing the theory
of mixtures, which underlie this model.

The governing equations for a debris flow can be obtained from established
theory of continuous mixtures [68]. Equations are formulated separately, even
if strongly coupled, they describe the balance of conservation of mass and
momentum, respectively for solid and liquid constituents of a debris flow. In
addition, as it is usual for the classical theory of mixtures, these equations
both for solid and liquid are assumed to be valued simultaneously be all
positions.

It usually, these equations for the solid and the liquid are assumed to be
applied simultaneously to all positions. One could also formulate an equation
of balance of moment of momentum, but this is not necessary since it is
assumed that the stress tensor is symmetric. Similarly, the thermodynamic
energy balance is made redundant, because it is assumed that the mixture
is isothermal. The mixture theory mass conservation equations for the solid
and fluid constituents are, respectively:

∂(ρsϕ)

∂t
+∇·(ρsϕvs) = ms, (3.1)

∂[ρf (1− ϕ)]

∂t
+∇·[ρf (1− ϕ)vf ) = mf , (3.2)
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where ϕ is the solid volume fraction, vs and vf are the solid and fluid ve-
locities and and ms and mf are the respective rates of solid and fluid mass
addition, per unit volume.

As the material of the debris flow is saturated, the volume fractions of
solid and fluid must satisfy the condition of saturation. As a result, the
equations (3.1) and (3.2) are coupled, and their sum gives an equivalent
equation of conservation of the total mass of the mixture:

∂ρ

∂t
+∇·(ρv) = ms +mf , (3.3)

where the total mass density of the mixture ρ and the barycentric velocity
v, are defined by:

ρ = ϕ+ ρf (1− ϕ) (3.4)

v =
ρsϕvs + ρf (1− ϕ)vf

ρ
(3.5)

Now, we consider the special case of conservation of mass, in which the
variations of mass are zero (ms = mf = 0) and the solid and fluid constituents
are individually incompressible.

By summing (3.1) and (3.2) we get the alternative forms of mass balance:

∇ · (1− ϕ)(vf − vs) +∇·vs = 0, (3.6)

∇·v = 0, (3.7)

After having substituted the fluid specific discharge,

q = (1− ϕ)(vf − vs),

in the equation (3.6) we get the standard form of the equation of continuity
for deforming porous media subject to quasistatic [69] or inertial motion [70].

In this way it is exploited the analogy between the mixtures of debris
flow and porous media. Finally, the (3.7) represents the standard continuity
equation for an incompressible, single-phase continuum.
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In general, from the theory of mixtures, the momentum balance equation
of the solid and fluid phase are, respectively:

ρsϕ[∂vs/∂t+ vs·∇vs] = ∇·Ts + ρsϕg + f −msvs, (3.8)

ρf (1− ϕ)[∂vf/∂t+ vf ·∇vf ] = ∇·Tf + ρf (1− ϕ)g − f −mfvf , (3.9)

where g is gravitational acceleration, Ts and Tf are the solid phase and
fluid phase stress tensors, respectively, and f is the interaction force per unit
volume that results from momentum exchange between the solid and fluid
constituents. Sign conventions define normal stresses as positive in tension
and f as positive when it acts on the solid.

The last term of (3.8) and (3.9) arises from the nonzero terms on the
right-hand sides of (3.1) and (3.2) and account for momentum change due
to mass change. However, they do not account for forces that enable mass
change, and they assume that mass enters or leaves with zero momentum.

By adding the (3.8) and (3.9), and considering the special case with (ms =
mf = 0), the mixture is obtained, the equation of conservation of momentum:

ρ[∂v/∂t+ v · ∇v] = ∇·(Ts +Tf + T̂) + ρg, (3.10)

in which

T̂ = ρsϕ(vs − v)(vs − v)− ρf (1− ϕ)(vf − v)(vf − v), (3.11)

is a contribution to the stress of the mixture, resulting from the motion of
fluid and solid constituents.

T̂ brings in (3.10), the convective acceleration terms of the mixture, given
by v·∇v.

It shows in a two-phase mixture (debris flow), represented as a single
material, the stresses are more complex than those obtained by adding the
stress of the solid and fluid Ts +Tf .

Finally we can observe that by excluding T̂, the equation (3.10) assuming
the form of a single-phase continuum balance equation.
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The basic equations of the mixture’s theory (3.1-3.10) compared with
those for single phase, show three significant advantages with respect to com-
parable single-phase equations:

1. they represent explicitly the volume fractions of solid, of fluid and
changes in mass, allowing them to show the various compositions or
evolution of a debris flow;

2. they include separately the stress tensor for the solid and fluid, which
have a direct physical meaning.

On the contrary, in the single-phase models of the stress tensor that
amalgamates the effects of solids and fluids and their interactions. This
formulation of stress, to describe the rheology of the mixture may need
the use of many parameters poorly constrained.

3. the momentum mixture equations contain explicit solid-fluid interac-
tion force. Such a force is missing in the single-phase models, that
include they effect in the mixed stress tensor.

Since the solid-fluid interactions vary from point to point within a de-
bris flow, playing an important role physical, it is necessary to introduce
an explicit representation of their effects.
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3.1 A simple model for a Debris Flow Surges

There are two phenomena that characterize the unstable motion and non-
uniform of a debris flow:

1. In a debris flow, the pressure of the fluid, which can not exists in a con-
stant and uniform motion, is significantly greater than the hydrostatic
pressure, thus increasing the efficiency of the flow. The significant in-
fluence of pore pressure on the mechanics of debris flow can be molded
easily by introducing the actual pore pressure in a specially formulated
hydraulic model (as we will see in Section 3.1).

2. The debris flow, move as a surge or series of surges, in which coarse-
grained heads that lack high fluid pressure restrict the downslope mo-
tion of finer-grained debris that may be nearly liquefied by high fluid
pressure.

The concentration of coarse material (clasts) at the surge heads, means that
the hydraulic diffusivity is higher than in the main part of materials of de-
bris flow. This is because the heads of the pulses appear unsaturated and
exhibit small or no pore fluid pressure. The interaction of the surge heads
with the almost liquid material, plays a key role in the determination of the
unstable and non-uniform motion and limit the expansion of the debris flow.
The remaining parts of the flow almost liquefied provide a small frictional
resistance to motion, unlike the surge heads.

A rigorous evaluation of the interaction between the dry surge heads with
the material liquefied almost requires the numerical analysis of the motion
unstable and non-uniform flow.

However a simple analysis of steady-state, provides a framework for under-
standing the problem and interpretation of numerical results. Such analysis
([71]-[73]), assumes that the surge heads acts as a rigid body shifted, with
resistance at the base of Coulomb and pushed back by a mass completely
liquefied.

This analysis ignores other forms of resistance, considering only those
associated with internal deformation, ignore all the inertial effects and time-
dependent, whereas the evolution of the shape of the flow and finally, ignore
the multi-dimensional effects that can not be represented with a balance
one-dimensional forces.

We consider here, the simple model of the pulse of a debris flow, shown
in Figure 3.1.

The surge moves steadily on a uniform slope inclined at the angle θ.
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Fig. 3.1: Schematic vertical cross section of the rigid body model of a debris-
flow surge, with geometric parameters defined ([71], [72]).

The surge head has a triangular cross-sectional shape with height h equal
to the debris flow thickness measured normal to the slope. The length l of
the surge head is measured parallel to the slope.

The mass of the surge head is then 1
2
ρhlw , where ρh is the bulk density

of the head and w is its breadth normal to the plane of the page.
The basal shear force τ and normal force σ due to the action of gravity

on the head are simply:

τ =
1

2
ρhghlw sin θ, (3.12)

and

σ =
1

2
ρhghlw cos θ, (3.13)

The slope basal parallel Coulomb resistance, sliding of the head, is de-
scribed by −σ tanφ, and the slope parallel force of the liquefied debris flow
body pushing against the upslope face of the head is described by 1

2
ρbgh

2lw cos θ,
where ρb is the density of the liquefied body. This expression assumes that
the streamlines of flow parallel the slope.
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Steady motion of the head then requires to be zero the sum of the slope
parallel forces acting on the head:

1

2
ρhghlw sin θ − 1

2
ρhghlw cos θ +

1

2
ρbgh

2lw cos θ = 0, (3.14)

Combining the terms of (3.14) [72]we get:

h

l
=
ρh
ρb

(tanφ− tan θ). (3.15)

Moreover, if we assume ρh ≈ ρb, for reasonable approximation debris flow,
the (3.15) can be expressed as:

h

l
= (tanφ− tan θ). (3.16)

The quantitative predictions of (3.15) and (3.16) must be interpreted with
great caution because of several factors neglected in the analysis. However,
they provide some insight for the interpretation of the behavior of debris flow
and to predict more elaborate models.

(3.16) shows that on steep slopes, when θ → φ, we obtain h
l
→ 0.

This implies that the momentum tends to accelerate on the steep slope,
unless the length of the head is much larger than its height.

Furthermore, in addition, pulses with identical values of l, rise height h
larger and with greater acceleration, overtaking the smaller pulses.
Instead, for small angles of slope, when θ → 0, (3.16) becomes h

l
= tanφ,

this implies that the pulse will slow down and stop, unless, which requires
that the heads of the pulses are short and steep.

Typically an angle of friction φ→ 30o is sufficient to stop the movement,
in fact, the length exceeds the value so that the frictional resistance of the
head of the pulse is capable of stopping the movement of the flow.

A more realistic assessment of the role of the head of the pulse requires a
model such as that described in the following section.
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3.2 Hydraulic modeling and prediction of de-

bris flow motion

This model formulated by Iverson [42], known as ”hydraulic model”, uses the
simplifications of the hydraulics theory and is one of the most refined for the
prediction of unstable and non-uniform motion of a debris flow, and its limits
of expansion and flooding.

In this model are still used of depth-averaged equations of motion. How-
ever, are neglect some key physical phenomena, such as the rigorous treat-
ment of the evolution of the granule temperature and non-hydrostatic pore
pressure.

To account for debris flows variable composition, the possibility of bound-
ary slip, and the mechanics of initiation and deposition as well as flow, the
hydraulic model described here uses internal and basal friction angles and
pore fluid viscosity to characterize flow resistance. This simplifies the rig-
orous testing of the model because the values of the angles of friction and
viscosity of the fluid can be measured independently rather than being cali-
brated.

In fact, the calibration is a problem of debris flows because the transport
mechanisms of the time and energy dissipation differ significantly depending
on the type of event.

The mathematical formulation is based on the change of hydraulic theory
for dry granular flows developed by Savage and Hutter [29].

To clarify the assumptions of hydraulic formulation we refer to the rela-
tionships described in the theory of mixture.

A simpler form of the equations of momentum of the mixture (3.8) and
(3.9), can be obtained by focusing attention on the motion of solids, and
analyzing the motion of fluid in relation to that of solids. So, it is defined
that

q

(1− ϕ)
= vf − vs.

where q is the specific discharge and (1 − ϕ) is the volume fraction of the
fluid

Substituting this relation into the equation of momentum of the fluid, we
get:

ρf (1− ϕ)[
∂

∂t

(
q

1− ϕ
+ vs

)
+

q

1− ϕ
·∇
(

q

1− ϕ
+ vs

)
+ vs·∇

(
q

1− ϕ
+ vs

)
=

= ∇·Tf + ρf (1− ϕ)g − f , (3.17)
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Darcy’s law provides an estimate of the largest plausible q in (3.19) be-
cause data show that hydraulic head gradients in debris flows commonly
approach but seldom exceed liquefaction-inducing gradients, which roughly
is equal 1. Thus the hydraulic conductivity, for example, provides a good es-
timate of the maximum magnitude of q, and the conductivity rarely exceeds
0.01 m/s for debris flow materials. In contrast, vs typically exceeds 1 m/s.

By this rationale, vs generally exceeds
q

1− ϕ
by more than an order of

magnitude, then assuming

∣∣∣∣∣
q

1− ϕ

∣∣∣∣∣ << |vs| (3.18)

the (3.19) becomes:

ρf (1− ϕ)

[
∂vs

∂t
+ vs·∇vs

]
= ∇·Tf + ρf (1− ϕ)g − f , (3.19)

This equation implies that inertial forces affecting fluid motion are prac-
tically indistinguishable from those affecting solid motion, except insofar as
the fluid and solid masses per unit volume of mixture differ.

By adding (3.19) with (3.8), we obtain a simplified equation of momentum
of the solid-fluid mixture:

ρ

[
∂vs

∂t
+ vs·∇vs

]
= ∇·(Ts +Tf ) + ρg, (3.20)

where ρ is the density of the mixture defined by (3.4), we also note that the
solid-fluid interaction force f does not appear explicitly, but implicitly lies in
the combination of solid-fluid stress tensor Ts +Tf .

The assumption (3.18), produces a further simplification of the mass bal-
ance equation (3.6), which reduces to the following form:

∇·vs = 0. (3.21)

The equations (3.20) and (3.21) are the equations governing the debris
flow. They differ from the equations governing the motion of granular solids
to a single-phase, because they involve the total mass density ρ of the mixture
and the influence of the fluid stress Tf (implicitly considered in the equation
of momentum of the mixture).

We consider a two-dimensional flow through an infinitely wide planar
surface, inclined at an angle θ to the horizontal, as shown in Figure 3.2.
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Fig. 3.2: Schematic vertical cross section of an unsteady, deforming debris
flow surge moving down an inclined plane. The flow depth h and depth-
averaged velocity vx vary as functions of x and t.

The equations (3.20) and (3.21) generalized to two spatial coordinates x
and y become:

∂vx
∂x

+
∂vy
∂y

= 0, (3.22)

ρ

[
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vy
∂y

]
= −∂T

s
xx

∂x
− ∂T syz

∂y
− ∂T fxx

∂x
+

−∂T
f
yz

∂y
+ ρg sin θ, (3.23)

ρ

[
∂vy
∂t

+ vy
∂vy
∂y

+ vx
∂vy
∂x

]
= −∂T

s
yy

∂y
− ∂T sxy

∂x
− ∂T fyy

∂y
+

−∂T
f
xy

∂x
+ ρg cos θ, (3.24)
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Since all velocities refer to the solid phase, we omitted the subscript s,
also the speed of the x and y subscripts denote the Cartesian components
parallel and normal to the inclined plane.

Sign conventions for stress components have been reversed so that com-
pression and left-lateral shear are positive [29].

The subscripts denote the Cartesian components of the stress of the solid
and fluid, the first subscript indicates the direction normal to the plane of ac-
tion of components of stress, and the second subscript indicates the direction
of action.

Finally, the subscripts (x, y) and (y, x) are interchangeable because it is
assumed that the stress tensor is symmetric.

To normalize the equations (3.22-3.24), we introduce two scale lengths:
L the characteristic length of flow in x direction, and H the characteristic
height of flow in y direction.

Therefore, the parameter ǫ =
H

L
describes the ratio of these lengths of

scale and is considered generally much smaller than 1.
Instead, the characteristic time scale is given by the free fall in the x

direction (L/g)
1

2 , as the potential free fall is leading the movement of debris
flow.

These time and length scales in turn lead to different scales of speed,
in x direction (Lg)

1

2 and y direction ǫ(Lg)
1

2 , and also imply that vx >> vy.
Finally, the scale of stress are the stress that existed on the basis of a constant
flow and uniform height H, ρgH sin θ for shear stress and ρgH cos θ for normal
stress and pore pressure.

In summary, using the following scaling transformation:





(x, y, t) = L(x̃, H
L
z̃, (L

g
)
1

2 t̃),

(vx,vy) = (gL)
1

2 (ṽx, H
L
ṽy),

(Txx, Tyy) = ρsgH sin θ(T̃xx, T̃yy)

(Txy, Tyx) = ρsgH cos θ(T̃xy, T̃yx)

(3.25)

The system of equations (3.22-3.24) with scaling transformation (3.25),

by dropping tilde, multiplying each term of (3.22) by (L/g)
1

2 , dividing each
term of (3.23) and (3.24) by ρg and taking the limit as ǫ → 0, we get the
following
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three scalar equations written in component form:

∂vx
∂x

+
∂vy
∂y

= 0, (3.26)

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vy
∂y

= sin θ

[
1− ∂T syz

∂y
− ∂T fyz

∂y

]
+

+ǫ cos θ

[
− ∂T sxx

∂x
− ∂T fxx

∂x

]
, (3.27)

0 = cos θ

[
− 1− ∂T syy

∂y
− ∂T fyy

∂y

]
. (3.28)

These equations differ from governing equation of Savage and Hutter [29]
only by including fluid stresses.
Equations (3.26-3.28) have two key properties:

1. The y direction momentum balance (3.28) has a simple form identical
to that for steady, uniform flow; its integration shows that the total
normal stress at any depth is simply the static stress ρg(h− y) cos θ.

2. The x direction momentum balance (3.27) includes longitudinal nor-
mal stress gradient terms preceded by the small parameter ǫ, which
apparently indicates that such terms can be neglected.

However, as was explained by Savage and Hutter, neglect of longitudinal
normal stress gradients is untenable because it produces a stress field identical
to that for steady, uniform flow, which negates any hope of modeling surge-
like motion.

The physical rationale for retaining this term becomes more apparent
when the equations are integrated over the flow depth.

The final step in the simplification of the equations of government is to
introduce the depth integration, which incorporates the assumptions with
respect to stress and produces constitutive equations without explicit depen-
dence on y.

The process is linear, but rather prolonged, then try to summarize the
results easily. It includes repeated application of Leibniz’s rule for integrating
derivatives and incorporates kinematic boundary conditions, which state that
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the mass does not enter and exit the free surface (where y = h) and the bed
(where y = 0),

∂h

∂t
+ vx

∂h

∂x
− vy = 0 at y = (x, t) (3.29)

vy = 0 at y = 0 (3.30)

It also involves the assumption that the debris flow surface is free of all
stresses,

T sxx = T syy = T sxy = T fxx = T fyy = T fxy = 0 at y = (x, t) (3.31)

and it employs depth-averaged velocities and normal stresses defined by

vx =
1

h

∫ h

0
vxdy, (3.32)

T sxx =
1

h

∫ h

0
T sxxdy, (3.33)

T syy =
1

h

∫ h

0
T syydy, (3.34)

T fxx =
1

h

∫ h

0
T fxxdy, (3.35)

T fyy =
1

h

∫ h

0
T fyydy, (3.36)

v2x =
1

h

∫ h

0
v2xdy = αv2x, (3.37)

The value of α in (3.37) [29], provides information on the deviation of the
vertical velocity profile uniformity. If a debris flow moves only for basal slip,
is applied 1.
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For a description of the constitutive stress in (3.27), we use the simple
relationship of Coulomb granular solids, in dimensionless form:

T sxy = −sgn(vx)T syy cot θ tanφbed/int, (3.38)

where φbed/int indicates the appropriate friction angle for bed slip or internal
deformation, sgn(vx) denotes the sign (+ or -) of (vx) and cot θ is introduced
because of the different scalings for shear and normal stress components.

Finally, in (3.38) does not appear explicitly the effects of pore pressure,
but implicitly, because the T syy and T

f
yy refer to (3.28). Thus as fluid pressures

T fyy grow in magnitude, the magnitudes of T syy and T syx diminish.
Moreover, the Coulomb rule leads directly to the following expression of

T sxx and T syy obtained from classical Rankine [79] earth pressure theory:

T sxx = Kact/pasT
s
yy, (3.39)

where Kact/pas is an earth pressure coefficient that has different values de-

pending on whether the flow is actively extending

(
∂vx
∂x

> 0

)
or passively

compressing

(
∂vx
∂x

< 0

)
, and its expression presented without derivation by

Savage and Hutter:

Kact/pas = 2
1∓ [1− cos2(φint)[1 + tan2(φbed)]]

1/2

cos2(φint)
− 1, (3.40)

where the sign ”-”applies to the active coefficient, and the sign ”+”applies
to the passive.

Equations (3.26-3.40) provide all information necessary to complete the
formulation of hydraulic equations.

Integration of equation (3.26) from y = 0 to y = h, with application of the
kinematic boundary conditions (3.29-3.30) produces a depth-averaged mass
conservation equation:

∂h

∂t
+
∂hvx
∂x

= 0. (3.41)

Integration of (3.28) from y = 0 to y = h yields a steady momentum
balance in the y direction, which states that the sum of the nondimensional
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solid and fluid stress balances the y component of the nondimensional total
mixture weight

T syy + T fyy = h(x, t)− y. (3.42)

This in turn leads to nondimensional expressions for the total (solid plus
fluid) normal stress at the bed and for the y direction depth-averaged total
normal stress,

T syy + T fyy = h, at y = 0 (3.43)

T
s
yy + T

f
yy =

1

h

∫ h

0
(h− y)dy =

1

2
h. (3.44)

Integration of the normalized x direction momentum equation (3.27) from
y = 0 to y = h, gives the following expression:

∂

∂t
(hvx) +

∂

∂x
(αhv2x) = h sin θ+

+(T syx|y=0) sin θ + (T fyx|y=0) sin θ+

−ǫ cos θ ∂
∂x

(hT
s
xx)− ǫ cos θ

∂

∂x
(hT

f
xx). (3.45)

Terms on the right-hand side of (3.45) can be interpreted as follows. The
first term represents the gravitational driving stress. The second term repre-
sents frictional resistance to slip at the base of the flow and can be evaluated
by applying the Coulomb equation (3.38) and the normal stress equation
(3.43) at the flow base

(T syx|y=0) sin θ = −sgn(vx)(h− pbed) cos θ tanφbed (3.46)

where h− pbed is the nondimensional basal effective stress and φbed = T fyx|y=0

is the nondimensional basal pore pressure.
The third term on the right-hand side of (3.45) represents flow resistance

due to shear of the fluid at the flow base. It can be evaluated using Newton’s
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law of viscosity [42], which yields

(T fyx|y=0) sin θ = −(1− ϕ)µ

(
∂vx
∂y

)

|y=0

(3.47)

where µ is the appropriate, nondimensional depth-averaged viscosity, given
by

µ =
µ

[
ρgh

2
/gl

1/2
] . (3.48)

Application of (3.48) requires knowledge of the fluid velocity gradient

at the bed,

(
∂vx
∂y

)

|y=0

, which is generally unknown but can be obtained

from estimates of the vertical velocity profile. The estimates are constrained
by assuming no slip of fluid at the bed and a mean fluid velocity of vx.

For example, if the velocity profile is linear, then

(
∂vx
∂y

)

|y=0

=
vx
h
. If the

velocity profile is parabolic, then a simple analysis of laminar flow down an

incline shows that

(
∂vx
∂y

)

|y=0

=
3vx
h

. If the velocity profile is blunt, with

shear strongly concentrated near the bed, a good descriptor is

(
∂vx
∂y

)

|y=0

=

(n + 2)
vx
h
, where n = 1 indicates a parabolic profile and n > 1 indicates

blunter profiles; this form is used below.
The fourth term on the right-hand side of (3.45) represents the longitu-

dinal stress gradient due to interaction of solid grains. It can be evaluated
using (3.39) and (3.44), yielding

− ǫ cos θ
∂

∂x
(hT

s
xx) = −ǫKact/pas cos θ

∂

∂x

(
h2

2
− hT

f
yy

)
. (3.49)

As is indicated by the presence of T
f

yy in (3.49), the longitudinal solid
stress gradient is mediated by fluid pressure.

The final term in (3.45) represents the longitudinal stress gradient due
to the fluid pressure alone. Because fluid pressure is isotropic, it can be

rewritten with T
f

yy in place of T
f

xx,

− ǫ cos θ
∂

∂x
(hT

f

xx) = −ǫKact/pas cos θ
∂

∂x

(
h2

2
− hT

f

yy

)
. (3.50)
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The utility of (3.49) and (3.50) is enhanced by evaluating the integral

(3.36) to calculate T
f

yy for a condition in which the fluid pressure increases
linearly from zero at the debris flow surface to a maximum of pbed at the bed
(a condition consistent with the hydraulic theory assumptions). Integration
shows that we can write

∂hT
f
yy

∂x
= h

pbed
∂x

.

The final form of the x direction momentum equation results from in-
corporating (3.41) and (3.46-3.50) in (3.45), assuming α = 1, collecting and
canceling like terms, and dividing by h, which yields

∂vx
∂x

+ vx
∂vx
∂t

= sin θ − sgn(vx)

(
1− pbed

h

)
cos θ tanφbed+

−(1− ϕ)µ(n+ 2)

(
vx
h2

)
+

−ǫ cos θ ∂
∂x

[Kact/pas(h− pbed) + pbed]. (3.51)

Together, (3.51) and (3.41) form a set of two equations in two unknowns,
vx(x, t) and h(x, t), which can be solved provided that the basal pore fluid
pressure pbed(x, t) and the necessary initial and boundary conditions are spec-
ified.

The need to specify rather than predict basal pore pressures is inherent to
the hydraulic model; fluid pressure deviations from hydrostatic values result
from velocity components normal to the bed, and neglect of such velocities
in (3.28) precludes the possibility of predicting non hydrostatic pressures.

Thus inclusion of non hydrostatic pressures pbed(x, t) may seem to contra-
dict the hydraulic model assumptions. The inclusion is justified, however, on
the grounds that the consolidation process responsible for generating non hy-
drostatic fluid pressures typically operates on timescales substantially longer
than the debris flow duration.

Thus as a first approximation, high pore pressures, once established, may
be assumed to persist in debris flows, and pore pressures may be treated as
parameters in hydraulic model calculations.

Inspection of the individual terms in (3.51) reveals how the hydraulic
model encapsulates debris flow physics.

The inertial terms on the left-hand side of (3.51) show that both rigid
body accelerations and convective accelerations may be important.
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On the right-hand side of (3.51), if the first two terms are viewed in
isolation, they depict a static balance of forces identical to that used in infi-
nite slope stability analyses for cases in which there is zero cohesion and an
arbitrary distribution of pore pressure [74]-[75].

If the last term on the right-hand side is included, this static force balance
assumes a form comparable to that of two-dimensional slope stability analyses
that use methods of slices, and in this case the interslice forces are represented
by depth-averaged Rankine stresses.

Thus the model subsumes classical models of the statics of landslides with
spatially varied pore pressures as a limiting case, which applies to incipient
debris flow motion.

The third term on the right-hand side of (3.51) represents the effects of
shear resistance due to fluid viscosity.

The motion of a frictionless but viscous mass is represented by the special
case where φbed/int = 0 or, alternatively, pbed = h (in which case the mass is
completely liquefied by pore pressure).

The final term is perhaps the most interesting and important term in
(3.2), for it describes the longitudinal stress variation that accompanies vari-
ations in flow depth and surge-like motion.

The term shows that a great change in debris flow behavior occurs as pbed
ranges from 0 to h. If pbed = h and the sediment mass behaves like a liquid,
normal stresses are isotropic, equal to the static pressure, and independent
of the local style of deformation. If pbed = 0 and the debris behaves like a
Coulomb solid, normal stresses are anisotropic, and the longitudinal normal
stress depends strongly on whether the sediment mass is locally extending(
∂vx
∂x

> 0

)
or compressing

(
∂vx
∂x

< 0

)
as it deforms and moves downslope.

Consequently, the model predicts that strong local gradients in the lon-
gitudinal normal stress can occur for two reasons: either the style of defor-
mation changes locally from extending to compressing, or the pore pressure
varies locally from high to low.

Thus, depending on the deformation style and pore pressure distribution,
the model expressed by (3.41) and (3.51) can represent unsteady flow behav-
ior that ranges from that of a granular avalanche, as modeled by Savage and
Hutter [29]-[67], to that of a liquid surge, as modeled by Hunt [76].

Furthermore, the front of a fully developed debris flow may act like a
compressing granular solid and support high lateral stresses, while the trailing
flow acts more like a fluid.

This phenomenon explains how debris flow surges with steep snouts and
gradually tapered tails can move downstream with only modest attenuation.

The initial and boundary conditions used in conjunction with (3.41) and
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(3.51) are identical to those described by Savage and Hutter [29].
The initial conditions specify the zero velocity and static geometry of the

mass that mobilizes into a debris flow,

vx(x, 0) = 0 (3.52)

h(x, 0) = h0(x) (3.53)

Boundary conditions stipulate that the height of the deforming mass is
zero at the front margin (x = xF ) and rear margin (x = xR),

h(xF , t) = 0 (3.54)

h(xR, t) = 0 (3.55)

These zero-depth boundary conditions are connected to the velocities at
the front and rear flow margins by the relations

vFx (x, 0) =
dxF
dt

(3.56)

vRx (x, 0) =
dxR
dt

(3.57)

Finally, the pore pressure distribution pbed(x, t) must be specified.
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Chapter 4

The Iverson and Denlinger
model

This model is a generalization of the depthaveraged, two-dimensional grain-
fluid mixture model of Iverson [42], who in turn generalized the one-phase
grain flow model of Savage and Hutter [29].

The new generalization yields depth-averaged mass and momentum bal-
ance equations that describe finite masses of variably fluidized grain-fluid
mixtures that move unsteadily across a threedimensional terrain, from initi-
ation to deposition.

In generalizing to three spatial dimensions we address key physical issues
concerning with preservation of frame invariance, symmetry of conjugate
shear stresses, magnitudes of lateral forces, and distributions of pore fluid
pressure.

Here, along the guidelines of the paper of Iverson and Denlinger [35] we
consider the relevant equations for debris flow resulting from the theory of
mixtures (see Section 3): :

∇·vs = 0. (4.1)

ρ

[
∂vs

∂t
+ vs·∇vs

]
= ∇·(Ts +Tf ) + ρg, (4.2)

A key step in further simplifying the equations of motion involves depth
averaging to eliminate explicit dependence on z which is the coordinate nor-
mal to the bed.

Depth averaging requires decomposing the vector equations (4.1) and
(4.2) into component equations in locally defined x, y, z orthogonal direc-
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rx(x,y)

rx(x,y)

h(x,y,t) vy(x,y,t)

vx(x,y,t)

z y

x

g

Fig. 4.1: Schematic cut-away view of an unsteady flow down a curvilin-
ear slope, illustrating the local coordinate system and dependent variables
h(x, y, t), vx(x, y, t), vy(x, y, t) that describe depth-averaged flow. The x com-
ponent of bed curvature is specified by the local radius of curvature rx.

tions, then integrating each component equation from the base of the flow at
z = 0 to the surface of the flow at z = h (see Figure 4.1).

The pertinent mathematical manipulations are rather lengthy, and we
omit some details here. However, the details are similar to those in [78]
derivation of the standard shallow water equations and in [34] derivation of
dry granular avalanche equations.

The derivation makes frequent use of Leibniz’ theorem for interchanging
the order of integrations and differentiations [77] and of kinematic boundary
conditions that specify that mass neither enters nor leaves at the free surface
or base of the flow:

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz = 0 at z = (x, y, t) (4.3)

vz = 0 at z = 0 (4.4)

In these equations and in hereinafter, all v denote the solid-phase velocity,
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and subscripts x, y, and z denote Cartesian components of vector and tensor
quantities.

Depth averaging also implies that the total normal stress (the sum of solid
and fluid normal stresses) in the z direction balances the z component of the
mixture weight:

T szz + T fzz = (h− z)ρgz. (4.5)

Equation (4.5), in turn, leads to expressions for the total normal stress
at the bed and for the depth-averaged total normal stress in the z direction,

T szz|z=0 + T fzz|z=0 = ρgzh. (4.6)

T
s
zz + T

f
zz =

1

h

∫ h

0
ρgz(h− z)dz =

1

2
ρgzh. (4.7)

In (4.6), (4.7), and equations hereinafter, overbars denote depth-averaged
quantities defined by integrals similar to that in (4.7).

Thus depth-averaged velocities are defined by

vx =
1

h

∫ h

0
vxdz (4.8)

vy =
1

h

∫ h

0
vydz (4.9)

and depth-averaged stress components (denoted generically by subscript ij)
are defined by

T ij =
1

h

∫ h

0
Tijdz. (4.10)

Using these definitions together with (4.1) and (4.2), we obtain depth-
averaged mass and momentum conservation equations for motion in the x
and y directions:

∂h

∂t
+
∂(hvx)

∂x
+
∂(hvy)

∂y
= 0, (4.11)

ρ

[
∂(hvx)

∂t
+
∂(hv2x)

∂x
+
∂(hvxvy)

∂y

]
=
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= −
∫ h

0

[
∂T sxx
∂x

+
∂T fxx
∂x

+
∂T syx
∂y

+
∂T fyx
∂y

+
∂T szx
∂z

+
∂T szx
∂z

− ρgx

]
dz, (4.12)

ρ

[
∂(hvy)

∂t
+
∂(hv2y)

∂y
+
∂(hvyvx)

∂x

]
=

= −
∫ h

0

[
∂T syy
∂y

+
∂T fyy
∂y

+
∂T sxy
∂x

+
∂T fxy
∂x

+
∂T szy
∂z

+
∂T szy
∂z

− ρgy

]
dz. (4.13)

The factor h that appears explicitly or implicitly in each term of these
equations can be eliminated from the left-hand side of (4.12) and (4.13) by
combining these equations with (4.11) [42]. However, here we retain the
factor h so that individual terms have ”conservative”’ forms that represent
fluxes of mass or momentum insofar as possible [78].

We use an ”uniform slab” approximation, which assumes that stresses at
any location and time (x, y, z, t) depend only on the local thickness, h(x, y, t)
and not on thickness gradients ∂h/∂x and ∂h/∂y. Despite this approxima-
tion, thickness gradients influence the overall momentum balance, because
all stress components are differentiated in space and multiplied by h as a
result of the mathematical operations in (4.12) and (4.13).

Before evaluating Coulomb stress components, we replace the local solid
stresses in (4.12) and (4.13) with depth-averaged stresses and basal shear
stresses obtained by evaluating the integrals on the right-hand sides of (4.12)
and (4.13) and using Leibniz’ theorem to simplify the resulting expression.
For (4.12) we find:

−
∫ h

0

[
∂T sxx
∂x

+
∂T syx
∂y

+
∂T szx
∂z

]
dz = −∂(hT

s
xx)

∂x
− ∂(hT

s

yx)

∂y
+ T szx|z=0, (4.14)

and we find an analogous expression (with x and y interchanged) for (4.13).
Evaluation of individual Coulomb stress components follows a rationale

like that in [42] two-dimensional analysis, with one important complication:
whereas a depthaveraged two-dimensional stress field involves no transverse
shear stresses (T

s
yx, T

s
xy), such shear stresses appear in both the x and y

direction momentum equations used here.
Moreover, these conjugate shear stresses must satisfy T

s

yx = T
s

xy to main-
tain the stress symmetry that preserves mechanical equilibrium in the x −
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y plane. This shear stress symmetry also requires equality of the depth-
averaged intergranular normal stresses T

s
xx and T

s
yy because shear stresses

are proportional to normal stresses in deforming Coulomb materials.
Following Savage and Hutter [29], Gray et al.[34], and Iverson [42], we

relate the depth-averaged normal stresses T
s
xx and T

s
yy to the depth-averaged

z direction normal stress T
s
zz by using a lateral stress coefficient, kact/pass,

derived from Coulomb theory

T
s

xx = T
s

yy = Kact/pasT
s

zz. (4.15)

Unlike Gray et al. [34], however, we use a scalar lateral stress coefficient,
which applies in the x and y directions simultaneously. Use of a scalar coef-
ficient ensures frame invariance in the x − y plane and preserves the stress
symmetry T

s
yx = T

s
xy described above, whereas use of multiple coefficients

may violate invariance and symmetry.
At each point in a flow, our model stipulates that one of three determin-

istic values of the lateral stress coefficient applies. The coefficient values are
given by

Kact/pas = 2
1∓ [1− cos2(φint)[1 + tan2(φbed)]]

1/2

cos2(φint)
− 1, (4.16)

where ”−” in ”∓” applies to the ”active” coefficient for diverging flow, Kact,
and ”+” applies to the ”passive” coefficient for converging flow, Kpas. These
coefficient definitions are more general than those of classical Rankine earth
pressure coefficients commonly used in soil mechanics [79] because (6.13) is
derived by assuming that Coulomb failure occurs simultaneously along the
bed (where φ = φbed) and within the overlying sediment mixture (where φ =
φint) [42]. For the special case in which φbed = 0, the coefficient definitions
in (6.13) reduce to the classical Rankine definitions [80]. For most values of
φbed, corresponding values of Kact/pas indicate that lateral stresses in regions
of converging flow exceed bed-normal stresses, whereas lateral stresses in
regions of diverging flow are less than bed-normal stresses. Lateral normal
stresses where flow converges typically exceed those where flow diverges by
a factor of 2 to 10. An exception to this behavior occurs if the bed has
maximum roughness, in which case, φbed = φint and (6.13) reduces to a
single-valued expression:

Kact/pas =
1 + sin2 φint
1− sin2 φint

, (4.17)
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The uniqueness of this value indicates that a slab of Coulomb material
can move downslope with zero velocity divergence (implying no thinning or
thickening) only if the bed friction angle equals the internal friction angle.

We express the depth-averaged lateral stresses in the granular solids by
combining (4.15) and (4.7) to obtain

T
s

xx = T
s

yy = Kact/pas

(
1

2
ρgzh− T

f

zz

)
, (4.18)

and we evaluate the depth-averaged fluid normal stress T
s

zz in (4.18) by iden-
tifying this stress as the pore fluid pressure. We assume that the pore fluid
pressure varies linearly from a maximum of pbed at the base of the flow to
zero (i.e., atmospheric reference pressure) at the flow surface, yielding

T
f
zz =

1

h

∫ h

0
T fzzdz =

1

2
T fzz|z=0 =

1

2
pbed, (4.19)

The assumption of linear variation of fluid pressure is appropriate because
nonlinear variation would imply locally unbalanced forces in the z direction,
violating the static force balance in (4.5). Linear variation of fluid pressure
also allows us to express the fluid pressure as a fraction λ of the total basal
normal stress given by (4.6), yielding

pbed = λρgzh, (4.20)

This definition, similar to that of Hubbert and Rubey [81], aids brevity
and indicates that λ = 1 represents a case of zero basal effective stress or com-
plete liquefaction. Combining (4.18), (4.19), and (5.5) yields the expression
we use for the solid lateral normal stresses:

T
s
xx = T

s
yy = Kact/pas

[
1

2
ρgzh(1− λ)

]
. (4.21)

Next, we derive an expression for the transverse solid shear stresses T
s
yx,

T
s

xy by first noting that equality of T
s

xx and T
s

yy implies that these depth-
averaged normal stresses equal the mean normal stress in the x − y plane.
Combine the (4.21) with the form of the Coulomb rule applicable on these
planes ([82], [83]) to obtain the shear stress equation:

T
s

yx = T
s

xy = −sgn
(
∂vx
∂y

)
{Kact/pas[1/2ρgzh(1− λ)]} sinφint. (4.22)
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Here we introduce the factor −sgn(∂vx/∂y) to designate the sign (+ or
-) opposite that of the argument (∂vx/∂y), which ensures that shear stresses
oppose shear straining in the x− y plane (see Figures 2 and 3).

Basal sliding necessarily accompanies bulk mixture motion unless φbed ≥
φint and frictional locking occurs at the bed. We evaluate solid shear stresses
at the bed by combining (5.5) with the Coulomb equation for basal sliding
([82], [83]) and the equation for the z direction normal stress at the bed (4.6),
which yields

T szx|z=0 = −sgn(vx)[ρgzh(1− λ)] tanφbed. (4.23)

and an analogous equation T szy|z=0. In these equations, factors of the form
−sgn(vx) stipulate that basal Coulomb stresses oppose basal sliding. These
sign factors are exactly analogous to that in (4.21) but involve only the perti-
nent velocity component (rather than its gradient) because velocity gradients
in the z direction do not appear in the depth-averaged model.

Resistance due to basal sliding friction is modified by changes in bed
slope that affect the apparent weight of the moving mass. For example,
where the bed slope decreases in the downstream direction, part of the depth-
averaged momentum flux per unit area ρv2x is directed into the bed and
resisted by the reaction force provided by the underlying Earth (assumed to
be infinitely massive and immobile). This external reaction force redirects the
flow’s depth-averaged momentum flux to keep it parallel to the bed. However,
the action-reaction at the bed also locally increases the normal stress at the
bed by an amount (ρhv2x)/rx, where rx is the radius of local bed curvature in
the x direction and v2x/rx is the associated centripetal acceleration (Figure
3). Thus, for curving beds, (4.23) generalizes to

T szx|z=0 = −sgn(vx)
[
ρgzh(1− λ)

(
1 +

v2x
rxgz

)]
tanφbed. (4.24)

Equation (4.24) reduces to (4.23) in the limit rx → ∞ applicable to planar
beds, and it applies to both bed concavities with positive curvature (rx > 0)
and bed convexities with negative curvature (rx < 0). (For combinations of
velocity and convex curvature that satisfy v2x = −rxgz, (4.24) implies that
bed friction vanishes because the mass becomes effectively weightless as it
descends in free fall.) Savage and Hutter [29] and Gray et al. [34] obtained
results like (4.24) through formal transformations from linear to curvilinear
coordinates. Their scaling analyses demonstrated that other terms generated
by such coordinate transformations are generally negligible. Consequently,
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(4.24) contains the only term we use for adapting (4.11), (4.12), and (4.13)
to curving terrain.

We assume that fluid-phase stresses in (4.12) and (4.13) obey the conven-
tional linear law that governs the behavior of Newtonian fluids (e.g., water).
Fluid stresses include both an isotropic pressure component that not does
not depend on viscous deformation (as used in (4.19) and a deviatoric, vis-
cous component [e.g., [84], [85]]. More complicated, non-Newtonian fluid
stresses could be included instead, but no compelling data indicate that this
complication is warranted.

To streamline our presentation, we take advantage of results well-known
from derivations of the standard Navier-Stokes equations for flow of incom-
pressible Newtonian fluids [e.g., [84], [85]]. Adapting the Navier-Stokes equa-
tions, we find that the fluid stress terms in (4.12) can be expressed by

−
∫ h

0

[
∂T fxx
∂x

+
∂T fyx
∂y

+
∂T fzx
∂z

]
dz =

= −
∫ h

0

[
∂p

∂x
− (1− ϕ)µ

(
∂2vx)

∂x2
+
∂2vx)

∂y2
+
∂2vx)

∂z2

)]
dz, (4.25)

and we find an analogous expression (with x and y interchanged) for (4.13).
As discussed during evaluation of solid stresses, we multiply the pore fluid
viscosity µ by the fluid volume fraction (1− ϕ) because only this fraction of
the mixture produces viscous stresses.

Consistent with (4.19) and (5.5), we assume that the fluid pressure in
(4.25) varies linearly from a maximum of pbed at the bed to zero at the
free surface. Using this assumption and Leibniz’ theorem, we integrate the
pressure term in (4.25) directly, yielding

−
∫ h

0

∂p

∂x
dz = − ∂

∂x

∫ h

0
λρgz(h− z)dz = −λρgzh

∂h

∂x
= −h∂pbed

∂x
(4.26)

Equation (4.26) establishes the relationship between longitudinal fluid
pressure gradients and their representation in the depth-averaged model.

Similarly, term-by-term integration of the velocity derivatives on the
right-hand side of (4.25) establishes the relationship between viscous stress
gradients and their depth averages. For example, using Leibniz’ theorem and

some algebraic manipulation, we find that the term involving
∂2vx
∂x2

in (4.25)
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can be written as

∫ h

0
(1− ϕ)µ

∂2vx
∂x2

dz = (1− ϕ)µ

[
h
∂2vx
∂x2

+ 2
∂

∂x
(vx)− vx(h))

∂h

∂x
+

+(vx)− vx(h))
∂2h

∂x2

]
, (4.27)

where vx(h) specifies the value of vx at the flow surface. An equation
analogous to (4.27) results from integration of the viscous term involving
∂2vxh

∂y2
in (4.25). Employing the same uniform-slab approximation (∂h/∂x =

0) used to derive the Coulomb stress equations, the right-hand side of (4.27)
simplifies and reduces the equation to

∫ h

0
(1− ϕ)µ

∂2vx
∂x2

dz = (1− ϕ)µh
∂2vx
∂x2

. (4.28)

The same simplification reduces the analogous equation for
∂2vx
∂y2

to The

final viscous stress term in (4.25) can be integrated directly, yielding

∫ h

0
(1−ϕ)µ

∂2vx
∂x2

dz = (1−ϕ)µ

[
∂vx
∂z |z=h

− ∂vx
∂z |z=0

]
= −3(1−ϕ)µ

vx
h
. (4.29)

The last form of this equation results from assuming a no-slip basal
boundary condition for fluid flow and a parabolic velocity profile in the z
direction [84].

Combination of the results from (4.25) through (4.29) indicates that the
depth-averaged fluid stress terms in (4.12) can be represented by

−
∫ h

0

[
∂T fxx
∂x

+
∂T fyx
∂y

+
∂T fzx
∂z

]
dz = −h∂pbed

∂x
+

+(1− ϕ)µh
∂2vx
∂x2

+ (1− ϕ)µh
∂2vx
∂y2

− 3(1− ϕ)µ
vx
h
, (4.30)
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An analogous expression (with x and y interchanged) represents the fluid
stress terms in (4.13).

The final form of the depth-averaged x direction momentum equation
results from combining (4.10) and (4.12) with (4.18), (4.19), (5.5), (4.21),
(4.22), (4.24), and (4.30) and using the substitution

∂(h2/2)

∂x
= h

(
∂h

∂x

)

to eliminate explicit dependence on h2. After this elimination, (5.5) may be
used to eliminate λ in favor of pbed, which improves physical clarity. The final
result is the x momentum equation

ρ

[
∂(hvx)

∂t
+
∂(hv2x)

∂x
+
∂(hvxvy)

∂y

]
=

= −sgn(vx)(ρgzh− pbed)

(
1 +

∂(v2x)

rxgz

)
tanφbed − 3(1− ϕ)µ

vx
h
+

−hKact/pas
∂

∂x
(ρgzh− pbed)− h

∂pbed
∂x

+ (1− ϕ)µh
∂2vx
∂x2

+

−sgn∂(vx)
∂y

hKact/pas
∂

∂y
(ρgzh− pbed) sinφint+

+(1− ϕ)µh
∂2vx
∂y2

+ ρgxh. (4.31)

The y direction momentum equation is obtained by interchanging x and
y in (4).

Terms on the right-hand side of (4.31) are grouped by line according to
type of stress: the first line represents basal shear stresses, the second line
represents longitudinal normal stresses, the third and fourth lines represent
transverse shear stresses, and the fifth line represents the driving stress due
to the gravitational body force. Combined with the mass balance equation
(4.11), equation (4.31) and its y direction analog provided a set of three
governing equations in three unknowns, vx(x, y, t), vy(x, y, t) and h(x, y, t),
which we use to compute flows of dense solid-fluid mixtures.

Importantly, (4.31) and its y direction analog are invariant with respect
to rotation of the x and y coordinates about the z axis. This frame invariance
is crucial if the equations are used to solve problems involving motion over
irregular topography, for which flow paths are unknown a priori.
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Examination of limiting cases reveals another key feature of our governing
equations. For cases in which no pore fluid pressure or viscosity are present,
the equations reduce to a set applicable to granular avalanches with purely
frictional energy dissipation. At the other extreme, for cases in which the
mass is fully liquefied by persistent high pore fluid pressure (pbed = ρgzh),
the equations reduce to a set applicable to Newtonian fluid flow with purely
viscous dissipation. For intermediate cases the equations indicate a combi-
nation of frictional and viscous energy dissipation that changes in response
to spatial and temporal changes in pore pressure. Before we consider pore
pressure evolution, however, we describe initial and boundary conditions for
the governing mass and momentum conservation equations.

To solve the governing equations, we use initial conditions that specify
zero flow velocity and an initial thickness distribution, h0(x, y),

vx(x, y, 0) = vy(x, y, 0) = 0, and h(x, y, 0) = h0(x, y). (4.32)

These conditions represent a static mass of specified volume and geometry
that is poised to descend a slope. In principle, we could use the static limits
of our model equations to identify sectors of a landscape where a sloping
mass has reached Coulomb equilibrium and imminent failure, but we have
not yet implemented a search algorithm to perform this task.

We use boundary conditions that specify the flow thickness is zero at
coordinates that denote the margins (xM , yM) of the flowing mass,

h(xM , yM) = 0. (4.33)

These conditions are connected to the velocities at the flow margins by

vx(xM , y, t) =
dxM
dt

, and vy(x, yM , t) =
dyM
dt

. (4.34)
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Chapter 5

A model for two flows classes

We consider, here, the motion of a geophysical mass flow along a rough
inclines, modeled in order to use the models described in the previous chap-
ters. In particular, we take into account the one-phase model of Savage and
Hutter [29] described in chapter 2 and the two-phase model of Iverson [42]
described in chapter 3 by recalling on its generalization developed by Iverson
and Denlinger [35] described in chapter 4.

These systems will be considered in one space dimension, that is in the
x-direction.

In the following, after neglecting for simplicity the subscripts in the x
components and the overbars, we put

∂

∂t
= ( )t

∂

∂x
= ( )x

The Savage and Hutter model system reads





ht + (hv)x = 0,

vt + vvx = sin(θ)− sgn(v)cos(θ) tan(φbed)− βhx,
(5.1)

where v is the velocity component, h is the depth flow, φbed is the angle of
friction for bed slip, θ is the angle that the base of the mass flow makes with
the horizontal, consequently sin(θ) and cos(θ) are the local components of
gravity. Moreover we have put

β = ǫKact/pascos(θ) (5.2)
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being Kact/pas the earth pressure coefficient, introduced in chapter 2 and
determined by the equation:

Kact/pas = 2
1∓ [1− cos2(φint)[1 + tan2(φbed)]]

1/2

cos2(φint)
− 1, (5.3)

with φint is the internal friction angle.

Finally, as known ǫ is the small constant given from the ratio
H

L
, where

H is the characteristic thickness and L is the characteristic flow length.
Instead, Iverson model system reads





ht + (hv)x = 0,

vt + vvx = sin(θ)− sgn(v)

(
1− pbed

h

)
cos(θ) tan(φbed)+

−(1− ϕ)µ(n+ 2)

(
vx
h2

)
+

−ǫ cos(θ)[Kact/pas(h− pbed) + pbed]x.

(5.4)

where v, h, φbed, φint, θ, ǫ and Kact/pas have the same meaning as the (5.1). µ
is a nondimensional depth-averaged viscosity, which is generally unknown but
can be obtained from estimates of the vertical velocity profile, as explained
in Section 3, through the term n. In the following the viscous shear term
involving is omitted for three reasons.

1. Scaling analyses [42] indicate that this term is commonly orders of
magnitude smaller than other terms in (5.4).

2. Lack of knowledge of the appropriate n value makes evaluation of the
viscous shear term uncertain, and it is undesirable to introduce a poorly
constrained ”fitting” parameter in the model.

3. Omission of the viscous shear term reduces the model to a straightfor-
ward force balance in which Coulomb friction provides all resistance to
motion, and fluid stresses merely mediate the Coulomb friction. This
facilitates comparison of model results with those for the dry Coulomb
flows of Savage and Hutter [29].
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Finally, we recall the term pbed(x, t) in (5.4) is the basal pore pressure, de-
termines the degree of mixture fluidization and must itself be determined
to complete the solutions for v and h. Assumes a linear variation of fluid
pressure that also allows us to express the fluid pressure as a fraction λ of
the total basal normal stress given by

pbed = λρgzh, (5.5)

This definition [35], similar to that of Hubbert and Rubey [81], aids
brevity and indicates that λ = 1 represents a case of zero basal effective
stress or complete liquefaction. So, Iverson and Denlinger [35] describe a
model in which pore pressure simultaneously advects downstream with the
flowing debris and diffuses normal to the bed. Only the computed basal pore
pressure (indicated by λ) enters depth-averaged calculations of flow dynam-
ics. In their numerical simulations of watersaturated debris flows they employ
the advective diffusion model and assume that pore pressures are hydrostatic
until the debris begins to move. When movement commences, we specify that
pore pressures rise linearly over the course of 1 sec. to a value λ = 0.9 and
then begin to decay diffusively as they advect downstream. This behavior
mimics behavior measured in debris flow initiation experiments ([86]-[87]).

Similarly Iverson [42] says the last term of the second equation of system
(5.4) shows a great change in debris flow behavior occurs as pbed ranges from
0 to h. If pbed = h and the sediment mass behaves like a liquid, while if
pbed = 0 the debris behaves like a Coulomb solid.

So, in the system (5.4), in very simplified way, we have put

pbed = αh, (5.6)

where 0 ≤ α ≤ 1 is a constant. So, if α=1 the mass flows behaves like a
liquid, instead if α=0 the mass flows behaves like a solid.

For the function sign(v), common to both systems (5.1) and (5.4), Savage
and Hutter [29] in order to find some similarity solution assumed that the
bed slope and the bed friction angle are such that is always sign(v) = 1. In
the following, in order to regularize the function sign(v), we have substituted
it with the function

f(v) = arctan
v

ǫ
, (5.7)

that for ǫ << 1 is a good approximation of sign(v).
We can say, that the systems (5.1-5.4), with (5.6) and (5.7) belong to the

following class
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ht + (hv)x = 0,

vt + ǫChx + vvx = A− f(v)BD,
(5.8)

where we denote

A = sin θ, B = cos θ tanφbed,

C =





Kact/pascos(θ) in order to get (5.1)

cos(θ)[Kact/pas(1− α) + α] in order to get (5.4)

and

D =





1 in order to get (5.1)

(1− α) in order to get (5.4)

The system (5.8) in matrix form reads:

Ut +AUx = F (5.9)

where

U =

[
h
v

]

A =

[
v h
ǫC v

]

F =

[
0

A− f(v)BD

]
.
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It is easy to verify that the characteristic equation of the system (5.8) is

P (λ) := det(A− λI) =

= λ2 − 2λv + (v2 − ǫCh) = 0, (5.10)

and admits the real roots

λ1,2 = v ∓
√
ǫCh, (5.11)

then, by recalling that h > 0, the system is always hyperbolic.
The corresponding right and left eigenvectors are respectively:

rT1,2 =

[
∓
√
h

ǫC
, 1

]
, (5.12)

and

l1,2 =

[
∓
√
ǫC

h
, 1

]
. (5.13)
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5.1 Weak discontinuity propagation in a con-

stant state

Let Σ denotes the weak discontinuity surface of equation

ψ(x, t) = 0 (5.14)

across which the field

U =

[
h
v

]

is continuous but discontinuities in its first derivatives are permitted. By
denoting the jump of the first derivatives across Σ with

δ :=

[
∂

∂ψ

]
=

(
∂

∂ψ

)

ψ=0+

−
(
∂

∂ψ

)

ψ=0−

(5.15)

At any point of surface ψ is defined the normal speed of the wave propa-
gation λn, where:





λ =
ψt

|∇ψ|
n =

∇ψ
|∇ψ|

(5.16)

Following Hadamard [88], we write:

[U] = 0, (5.17)

that indicates U is continuous across the surface ψ, while, according with a
well established procedure [89], [45] we have

[Ux] = ψxΠ, [Ut] = ψtΠ (5.18)

where the vectorΠ denotes the amplitude of discontinuities in the first deriva-
tives, which satisfies the characteristic condition

(A0 − λ0I)Π = 0. (5.19)

Here the subscript ”0” means that a function of the field U is evaluated at
the unperturbed state U0.
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We assume that the unperturbed state:

U0 = U∗ :=



h∗

v∗




where the constant value of h∗ and v∗ are solutions of the system (5.8), h∗ is
an arbitrary value of h, while v∗ is obtained by solving the following equation:

A− arctan
v

ǫ
BD = 0. (5.20)

Then

v∗ = ǫ tan

(
A

BD

)
. (5.21)

In the constant state the characteristic equation becomes:

P∗(λ) = λ2 − 2λv∗ + (v2∗ − ǫCh∗) = 0, (5.22)

and the solutions are:

λ(1,2)∗ = v∗ ∓
√
ǫCh∗.

We consider the discontinuity wave propagating with speed λ = λ
(2)
∗ ,

through a constant state U∗. The corresponding right eigenvectors r(2) and
left eigenvectors l(2) valued in the unperturbed stateU = U∗ are respectively:

r(2)
T

∗ = [r
(2)
1 , r

(2)
2 ]TU=U∗

r
(2)
1∗ =

√
h∗
ǫC
,

r
(2)
2∗ = 1,

and
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l(4)∗ = [l
(2)
1 , l

(2)
2 ]U=U∗ ,

l
(2)
1∗ =

√
ǫC

h∗
,

l
(2)
2∗ = 1.

By following [89], [45],the equation of evolution of weak discontinuities,
in the constant state U∗ , is written as:

dΠ

dσ
+ (∇λ(2)·r(2))∗Π2 = ν∗Π (5.23)

where d/dσ = ∂t + λ(2)∂x is the time derivative along the characteristic,

ν∗ =

(
∇(F · l(2)) · r(2)

l(2) · r(2)
)

U=U∗

= − ǫBD

2(ǫ2 + v2∗)
, (5.24)

moreover, of course,

(∇λ(2) · r(2))∗ =
3

2
(5.25)

By integrating, from (5.23), following [45] we get:

Π = η/φ (5.26)

with
φ = 1 +

∫ σ

0
(∇λ(2) · r(2))∗ηdτ, (5.27)

and
η = ηr(2)∗ (5.28)

being η the solution of the Cauchy problem:





dη/dσ = ν∗η,

η0 = Π(0),
(5.29)
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that is
η = Π(0) exp ν∗σ. (5.30)

Taking into account (5.30) it follows

φ = 1 +
(∇λ(2) · r(2))∗

ν∗
Π(0)(exp ν∗σ − 1). (5.31)

If the wave satisfies the genuine non linearity condition ∇λ(2) · r(2) 6= 0 it
is possible that exists for suitable amplitudes Π(0), a critical time σcr which
makes zero the denominator φ. So at this instant the discontinuity becomes
unbounded. Usually the critical time corresponds to the formation of a strong
discontinuity (shock), that is, corresponds to that instant when the field U
becomes discontinuous across the wave front ψ. From (5.31) it is a simple
matter to get

σcr =
1

ν∗
ln

(
1− ν∗

Π(0)(∇λ(2) · r(2))∗

)
=

= −2(ǫ2 + v2∗)

ǫBD
ln

(
1 +

ǫBD

3Π(0)(ǫ2 + v2∗)

)
(5.32)

It is worthwhile stressing that for ν∗ < 0 exists a threshold value of initial
discontinuity:

Π(0)thres =
ν∗

(∇λ(2) · r(2))∗
(5.33)

that separates the values of Π(0) that brings to zero the discontinuity and
the values of Π(0) that brings to infinite the discontinuity in a finite time σcr.

In details the possibility to get σcr > 0, being ν∗ < 0 is fulfilled if:

0 < 1− ν∗
Π(0)(∇λ(2) · r(2))∗

< 1 (5.34)

this implies the following subcase:

Π(0) < 0, (∇λ(2) · r(2))∗ > 0 Π(0) < Π(0)thres. (5.35)
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5.1.1 Some geophysical mass flows

Here we analyze the discontinuity propagation in a constant state, start-
ing from the experimental data of geophysical mass flows [43] as Debris
Flow (Yake Dake), Pyroclastic Flow (Mount St.Helens) and Avalanche (Elm
Rock).

These flows are characterized by a common value of the angles of internal
friction and bed friction (φint = 50o and φbed = 25o), with which the value of
the earth pressure coefficient, obtained from equation (6.13), is Kpas = 7.25.
In the following, we show the numerical data and numerical results of these
flows for both systems (5.1) and (5.4) ( see Table 6.1, 6.2 and 6.3).

Debris Flow System (5.1) System (5.4)
Kpas 7.25 7.25
θ 11o 11o

α 0.4 0.4
ǫ 0.002 0.002
A 0.19 0.19
B 0.46 0.46
C 7.12 4.66
D 1.0 0.6
h 2 2

λ(2) 0.17 0.14

(∇λ(2) · r(2))∗ 1.5 1.5
ν∗ -114.43 -68.65

η e(−114.43σ) e(−68.65σ)

φ −0.00018 + e(−114.43σ) −0.0058 + e(−68.65σ)

Π(0)thres -76.2 -45
Π(0) -76.3 -76.3
σcr 0.075 0.013

Table 5.1: Numerical data and numerical results of the systems (5.1) and
(5.4) for Debris Flows (Yake Dake).
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Pyroclastic Flow System (5.1) System (5.4)
Kpas 7.25 7.25
θ 2o 2o

α 0.6 0.6
ǫ 0.0005 0.0005
A 0.03 0.03
B 0.47 0.47
C 7.24 3.50
D 1.0 0.4
h 1 1

λ(2) 0.06 0.04

(∇λ(2) · r(2))∗ 1.5 1.5
ν∗ -466.02 -186.41

η e(−466.02σ) e(−186.41σ)

φ −0.001 + e(−466.02σ) −0.005 + e(−186.41σ)

Π(0)thres -310 -124
Π(0) -311 -311
σcr 0.014 0.0027

Table 5.2: Numerical data and numerical results of the systems (5.1) and
(5.4) for Pyroclastic Flows (Mount St.Helens).
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Avalanche System (5.1) System (5.4)
Kpas 7.25 7.25
θ 28o 28o

α 0.5 0.5
ǫ 0.005 0.005
A 0.47 0.47
B 0.41 0.41
C 6.40 3.64
D 1.0 0.5
h 10 10

λ(2) 0.57 0.43

(∇λ(2) · r(2))∗ 1.5 1.5
ν∗ -41.16 -20.55

η e(−41.16σ) e(−20.55σ)

φ −0.020 + e(−41.16σ) −0.021 + e(−20.55σ)

Π(0)thres -27 -13
Π(0) -28 -28
σcr 0.095 0.19

Table 5.3: Numerical data and numerical results of the systems (5.1) and
(5.4) for Avalanches (Elm Rock).

We can observe that for the same experimental data of geophysical mass
flows previous considered, in particular for the same value of the initial dis-
continuity Π(0), satisfying (5.35), the system (5.4) provides a critical time
σcr less than the (5.1). This is clearly due to the existence of a second phase
in the system (5.4) that brings the discontinuity amplitude to become infinite
faster than the system (5.1).
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In figures (5.1-5.6) we have shown the evolution of weak discontinuities
with respect to σ, concerned with the previous geophysical mass flows. In
these figures it is easy to ascertain that the value of the discontinuity ampli-
tude becomes unbounded in a finite critical time σcr.
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Fig. 5.1: The evolution of discontinuity amplitude of the systems (5.1) in a
Debris Flows (Yake Dake).
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Fig. 5.2: The evolution of discontinuity amplitude of the systems (5.4) in a
Debris Flows (Yake Dake).
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Fig. 5.3: The evolution of discontinuity amplitude of the systems (5.1) in a
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Fig. 5.4: The evolution of discontinuity amplitude of the systems (5.4) in a
Pyroclastic Flow (Mount St.Helens).
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Fig. 5.5: The evolution of discontinuity amplitude of the systems (5.1) in
Avalanche (Elm Rock).
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Fig. 5.6: The evolution of discontinuity amplitude of the systems (5.4) in
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In figures 5.7, 5.8 and 5.9 we have shown the evolution of weak discontinu-
ities with respect to σ, concerned with the previous geophysical mass flows.
In these figures it is easy to ascertain that the value of the discontinuity
amplitude becomes unbounded in a finite critical time σcr.
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Fig. 5.7: The evolution of discontinuity amplitude of the systems (5.1) and
(5.4) in a Debris Flows (Yake Dake).
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Chapter 6

The two-fluid model

Along the guidelines of the paper of Pitman and Le [90], we consider, here,
the (1+3)-dimensional model equations, describing a thin layer of a mixture
of incompressible solid frictional granular material and interstitial incom-
pressible fluid, each one of constant specific density ρs and ρf , respectively.
In the following, we neglect any erosion of the base and assume that the com-
ponents of the mixture are moving over a variable terrain. At any point of
the terrain, we consider a Cartesian coordinate system xyz, defined so that
the plane xy is tangent to the basal surface and z axis is the normal direc-
tion. Moreover, it is assumed that the mixture is moving without a preferred
direction in the xy-plane.

Mass and momentum balance equations [91] for the two constituent phases
are written as

∂t(ρ
sϕ) +∇ · (ρsϕv) = 0, (6.1)

∂t(ρ
f (1− ϕ)) +∇ · (ρf (1− ϕ)u) = 0, (6.2)

ρsϕ(∂tv + (v · ∇)v) = −∇ ·Ts − ϕ∇ ·Tf + f + ρsϕg, (6.3)

and

ρf (1− ϕ)(∂tu+ (u · ∇)u) = −(1− ϕ)∇ ·Tf − f + ρf (1− ϕ)g, (6.4)

where ϕ is the solid volume fraction, v and u are the solid and fluid
velocities, Ts and Tf the solid and fluid stress tensors, and g the gravity
acceleration vector. f represents all non-buoyant interaction forces of the
fluid on the particle. These forces are characterized using a simple drag
interaction:

f = (1− ϕ)β(u− v), (6.5)
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β being a phenomenological function [92] given by

β =
(ρs − ρf )ϕg

vT (1− ϕ)m
, (6.6)

where vT is a characteristic velocity, g is the magnitude of the gravita-
tional force and m is related to the Reynold number of the flow.

In agreement with Savage and Hutter [29] developments, the system of
equations (1-4) is put in a non dimensional form by using the following scaling
transformation:





(x, y, z, t) = L(x̃, ỹ, H
L
z̃, 1

(gL)
1
2

t̃),

(v,u) = (gL)
1

2 (ṽ, ũ),

Ts = ρsgHT̃s,

Tf = ρfgHT̃f ,

(6.7)

where H is the characteristic thickness in the z-direction and L is the
characteristic flow length in the x and y direction.

In the following we consider the component of the scaled solid and fluid
momentum balances along x, y and z axes. From eqn. (6.3) with scaling
transformation (6.7), by dropping tilde and dividing each term by ρsg, after

putting ǫ =
H

L
<< 1 , we get the following three scalar equations:





ϕ(vx,t + (v · ∇)vx) = −(ǫT sxx,x + ǫT sxy,y + T sxz,z)+

−ρf

ρs
(∇ ·Tf )x +

fx
ρsg

+ ϕgx,

ϕ(vy,t + (v · ∇)vy) = −(ǫT sxy,x + ǫT syy,y + T syz,z)+

−ρf

ρs
(∇ ·Tf )y +

fy
ρsg

+ ϕgy,

ǫϕ(vz,t + (v · ∇)vz) = −(ǫT sxz,x + ǫT syz,y + T szz,z)

−ρf

ρs
(∇ ·Tf )z + ǫ fz

ρsg
+ ϕgz,

(6.8)

72



In a similar way from eqn. (6.4) dividing each term by ρf (1 − ϕ)g, we
obtain:





ϕ(ux,t + (u · ∇)ux) = −(ǫT fxx,x + ǫT fxy,y + T fxz,z)− fx
ρf (1−ϕ)g

+ gx,

ϕ(uy,t + (u · ∇)uy) = −(ǫT fxy,x + ǫT fyy,y + T fyz,z)− fy
ρf (1−ϕ)g

+ gy,

ǫϕ(uz,t + (u · ∇)uz) = −(ǫT fxz,x + ǫT fyz,y + T fzz,z)− ǫ fz
ρf (1−ϕ)g

+ gz.

(6.9)

For a more direct comparison of theory with the experiments, we exclude
the viscosity, so the only fluid stress considered is a pressure. Moreover,
a Coulomb friction law, expressing collinearity between shear stresses and
normal stresses is assumed:

T s∗z = −sgn(v∗)νbT szz, (6.10)

where νb = tanφbed is the friction coefficient and φbed is the angle of
friction for bed slip, while ∗ can be either x and y and sgn(v∗) determine
the force opposing to the motion in ∗-direction. It is worth stressing that in
recent works, it has been shown that the Coulomb friction coefficient of the
particle phase at the bed can be considered, at least for particular values of
the concentration of particles, to depend on a certain inertial parameter, see
e.g ([93]-[95]) and references therein.

In order to determine the xy shear stress [35] we use the following Coulomb
relation

T sxy = −sgn(vx,y) sin(φint)Kact/pasT
s
zz ≡ αxyT

s
zz, (6.11)

where φ = φint denotes the internal friction angle.
Finally, an earth pressure relation is employed for the solid phase [29, 35,

43, 34, 82]; this assumes that the basal shear stress is proportional to the
normal stress,

T s∗∗ = Kact/pasT
s
zz ≡ α∗∗T

s
zz, (6.12)

where Kact/pas is the earth pressure coefficient, determined by the equa-
tion:

Kact/pas = 2
1∓ [1− cos2(φint)[1 + tan2(φbed)]]

1/2

cos2(φint)
− 1, (6.13)

the sign ∓ depends on whether the sediment mass is locally extending
(”active” coefficient ∂v/∂x > 0, with - sign) or compressing (”passive” coeffi-
cient ∂v/∂x < 0, with + sign) as it deforms and moves downslope.
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Fig. 6.1: Model Topography

In agreement with Savage and Hutter [29], the earth pressure coefficient
can be obtained with reference to the Mohr stress circle and Coulomb failure
(for its derivation see also Appendix C in [42]). In the special case where
φbed = 0, equation (6.13) reduces to the classical Rankine [79, 80] definitions
commonly used in soil mechanics. After some algebraic manipulations, it is
possible, from the mass balance equations, to write:

∇ · (ϕv + (1− ϕ)u) = 0)

that implies that the mixture is isochoric. This allows to depth average
for the mixture between the basal surface z = B(x, y) and the upper free
surface z = S(x, y, t) (figure 1) and write the mass balance equations and
the momentum balance equations in a depth averaged form. An averaged
quantity Ā is defined as:

Ā =
1

S −B

∫ h

B
Adz,

where h = S −B.
So the mass balance equations is written:

∫ h

B
∇ · (ϕv + (1− ϕ)u)dz = 0,

that at the upper free surface z = S(x, y), becomes:

ϕh+ (1− ϕ)h],t + [ϕvx + (1− ϕ)ux]h,x + [ϕvy + (1− ϕ)uy]h,y + (6.14)

−[ϕvz + (1− ϕ)uz] = 0,

74



and likewise at the basal surface z = B(x, y, t) is:

[ϕvx + (1− ϕ)ux]B,x + [ϕvy + (1− ϕ)uy]B,y + (6.15)

+[ϕvz + (1− ϕ)uz] = 0.

In this way it is possible to derive from mass balance equations the follow
equation for the total mass of the solid and fluid

ĥ,t +
[
ĥ(ϕ̄v̄x + (1− ϕ̄)ūx)

]
,x
+
[
ĥ(ϕ̄v̄y + (1− ϕ̄)ūy)

]
,y
= 0 (6.16)

As it is necessary to follow the evolution of the depth-averaged volume frac-
tion, but there is no obvious candidate equation to which we could appeal, we
turn to the mass balance law for the solid phase and depth average, beginning
with the follow integration:

∫ h

B
ϕ,t +∇ · (ϕv)dz = 0,

which becomes
[ ∫ h

B
ϕdz

]

,t

+

[ ∫ h

B
ϕvxdz

]

,x

+

[ ∫ h

B
ϕvydz

]

,y

+ ϕvz|h − ϕvx|hh,x +

−ϕvy|hh,y − ϕ|hh,t − ϕvz|B + ϕvx|BB,x + ϕvy|BB,y = 0,

In order for the boundary terms to vanish here, the solid and fluid phases
must separately satisfy material-free surface and basal surface conditions,
just as the mixture does ((6.15) and (6.16)). If no erosion or infiltration
occurs, it is reasonable to assume the motion of each species is tangent to
the basal surface.

Imposing the material surface condition on the upper free surface is less
justified. If the fluid and solid velocities do not differ by much, consideration
of flows for which the x or y velocity is zero suggest special conditions under
which each phase does in fact satisfy a material-free surface condition. We
make the assumption, recognizing it is subject to error: at z = h,

ϕh, t+ (ϕvx)h, x+ (ϕvy)h, y − ϕvz0,

and

[(1− ϕ)h, t+ [(1− ϕ)ux]h,x + [(1− ϕ)uy]h,y − [(1− ϕ)uz] = 0.
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With this assumption the equation for solid mass balance equation is:

(ĥϕ̄),t + (ĥϕ̄v̄x),x + (ĥϕ̄v̄y),y = 0 (6.17)

where ūx, ūy, v̄x, v̄y, ϕ̄, are the depth averaged velocities and the depth

averaged volume fraction respectively , while ĥ = h− z.
To be sure, the imposition of individual phase mass balance requires ex-

perimental validation. The justification offered here breaks down when the
difference v − u is not small, such as at the time of final deposition, where
interesting phase separation occurs.

Now going to consider the momentum balance equations, in order to write
them in a depth averaged form, we observe that by putting ǫ = 0 in the fluid
z-momentum equation, in the spirit of the shallow water approximation, we
get that the fluid is hydrostatic, and :

T fzz,z = gz, (6.18)

while from the solid z-momentum equation, by putting ǫ = 0, it follows:

T szz,z +
ρf

ρs
ϕT fzz,z = ϕgz. (6.19)

so, by using (6.18), it is possible to write the following relation:

T szz,z =

(
1− ρf

ρs

)
ϕgz =

(
1− ρf

ρs

)
ϕT fzz,z. (6.20)

which affirm that the normal solid stress in the z-direction at any height is
equal to the reduced weight of the solid material overburden.

Then by integrating(6.18) and imposing the boundary conditions we find:

T fzz = −gz(h− z). (6.21)

that after depth averaging reads:

T̄ fzz = −1

2
gzĥ. (6.22)

In a similar way from:

T szz,z =

(
1− ρf

ρs

)
ϕT fzz,z, (6.23)

we get

T̄ szz =

(
1− ρf

ρs

)
ϕ(−gz)

ĥ

2
. (6.24)
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Now remains to describe the process which bring the x and y-components
of momentum balance equation in depth averaged form. In several steps of
the derivation that follows, we will use the approximation ϕ̄f ≈ ϕ̄f̄ , and we
do not indicate every place at which this is performed. For more details the
interested reader can see to appendix B of [90].

Consider the x momentum equation for the motion of the solid phase.
The left-hand side of this can be written:

LHS = (ϕvx),t + (ϕvxvx),x + (ϕvxvy),y + (ϕvxvz),z

Depth averaging and using boundary conditions yields

∫ h

B
LHSdz =

(∫ h

B
ϕvxdz

)

,t

+

(∫ h

B
ϕv2xdz

)

,x

+

(∫ h

B
ϕvxvydz

)

,y

.

Instead, the right-hand side of x momentum equation can be written:

RHS = −(ǫT sxx,x + ǫT sxy,y + T sxz,z)−
ρf

ρs
(∇ ·Tf )x +

+

(
1− ρf

ρs

)
ϕ(1− ϕ)

vT (1− ϕ)m
(ux − vx) + ϕgx

and depth averaging yields:

∫ h

B
RHSdz = −

∫ h

B
(ǫT sxx,x + ǫT sxy,y + T sxz,z)dz

︸ ︷︷ ︸
A

+ (6.25)

−
∫ h

B

ρf

ρs
(∇ ·Tf )xdz

︸ ︷︷ ︸
B

+
∫ h

B

(
1− ρf

ρs

)
ϕ(1− ϕ)

vT (1− ϕ)m
(ux − vx)dz

+
∫ h

B
ϕgxdz

Observe that:

∫ h

B
T fxx,xdz =

[ ∫ h

B
T fxxdz

]

x

− T fxx|z=hh,x + T fxx|z=BB,x.
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From the assumptions (6.10-6.12), the term B of the (6.26) becomes:

B = −ǫρ
f

ρs

∫ h

B
ϕT fxx,xdz = −ǫρ

f

ρs

(∫ h

B
ϕdz

∫ h

B
T fxx,xdz

)
=

= −ǫρ
f

ρs

[
gzĥ2

2
+ gzĥB,x

]
.

Finally, using the following fluid and solid stress relation:

T̄ szz =

(
1− ρf

ρs

)
ϕ̄T̄ fzz, (6.26)

term A is approximated as:

A = −ǫ
∫ h

B
αxxT

s
zz,xdz − ǫ

∫ h

B
αxyT

s
zz,ydz − ǫ

∫ h

B
αxzT

s
zz,zdz =

= −ǫ
[ ∫ h

B
αxxT

s
zzdz − αxxT

s
zz|z=hhx + αxxT

s
zz|z=BBx

]

x

=

= −ǫ
[ ∫ h

B
αxyT

s
zzdz − αxyT

s
zz|z=hhy + αxyT

s
zz|z=BBx

]

y

=

= −αxzT szz|z=h − T szz|z=B.

Because the upper free surface is stress free, all terms T szz|z=h vanish, so
the previous expression A becomes:

A = −ǫ
(
1− ρf

ρs

) [
ĥαxxϕ̄T̄

f
zz

]
,x
− ǫ

(
1− ρf

ρs

) [
ĥαxyϕ̄T̄

f
zz

]
,y
+

+

(
1− ρf

ρs

)
(−ǫαxxB,x − ǫαxyB,y + αxz)gzĥϕ̄.
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Combining all terms yields the following solids x-momentum equation:

(ĥϕ̄vx),t + (ĥϕ̄vxvx),x + (ĥϕ̄vxvy),y =

= − ǫ

2

(
1− ρf

ρs

)(
αxxĥ

2ϕ̄gz
)
,x
− ǫ

2

(
1− ρf

ρs

)(
αxyĥ

2ϕ̄gz
)
,y
+

+

(
1− ρf

ρs

)
(−ǫαxxB,x − ǫαxyB,y + αxz)ĥϕ̄gz −

ǫ

2

ρf

ρs
ϕ̄(ĥ2gz),x +

−ǫρ
f

ρs
ĥϕ̄gzB,x +

(
1− ρf

ρs

)
ĥϕ̄(1− ϕ̄)1−m

vT
(ux − vx) + ĥϕ̄gx.

The y-solid momentum equation can be derived in a similar fashion and
yields:

(ĥϕ̄vy),t + (ĥϕ̄vxvy),x + (ĥϕ̄vyvy),y =

= − ǫ

2

(
1− ρf

ρs

)(
αxyĥ

2ϕ̄gz
)
,x
− ǫ

2

(
1− ρf

ρs

)(
αyyĥ

2ϕ̄gz
)
,y
+

+

(
1− ρf

ρs

)
(−ǫαxyB,x − ǫαyyB,y + αyz)ĥϕ̄gz −

ǫ

2

ρf

ρs
ϕ̄(ĥ2gz),y +

−ǫρ
f

ρs
ĥϕ̄gzB,y +

(
1− ρf

ρs

)
ĥϕ̄(1− ϕ̄)1−m

vT
(uy − vy) + ĥϕ̄gy.

We now proceed to derive an equation for the fluid motion. Depth aver-
aging for the fluid presents fewer difficulties than in the solid equations. The
x-momentum equation takes the form:

(ĥux),t + (ĥuxux),x + (ĥuxuy),y =

= −ǫgz
2
ĥ2,x −



1− ρf

ρs

ρf/ρs


 ĥϕ̄

vT (1− ϕ̄)m
(ux − vx) + ĥgx.

The fluid y-momentum equation is similar:

(ĥuy),t + (ĥuxuy),x + (ĥuyuy),y =

= −ǫgz
2
ĥ2,y −



1− ρf

ρs

ρf/ρs


 ĥϕ̄

vT (1− ϕ̄)m
(uy − vy) + ĥgy.
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Finally after having depth averaged the momentum equations of the thin
layer in the shallow flows approximation it is possible to write by dropping
hat for sake of simplicity, the full system of equations of the two fluid model
as follows





h,t + [h(ϕvx + (1− ϕ)ux)],x + [h(ϕvy + (1− ϕ)uy)],y = 0,

(hϕ),t + (hϕvx),x + (hϕvy),y = 0,

(hϕvx),t + (hϕv2x),x + (hϕvxvy),y = −1
2
a(h2ϕ),x − 1

2
a1(h

2ϕ),y+

−bϕhh,x − hϕ[(a+ b)B,x + a1B,y − sgn(v)νb(1− γ)g]+

+(1− γ)hϕ(1−ϕ)
1−m

vT
(ux − vx) + hϕgx,

(hϕvy),t + (hϕvxvy),x + (hϕv2y),y = −1
2
a1(h

2ϕ),x − 1
2
a2(h

2ϕ),y+

−bϕhh,y − hϕ[a1B,x + (a2 + b)B,y + sgn(v)νb(1− γ)g]+

+(1− γ)hϕ(1−ϕ)
1−m

vT
(uy − vy) + hϕgy,

[h(1− ϕ)ux],t + [h(1− ϕ)uxux],x + [h(1− ϕ)uxuy],y =

−1
2
c[h2(1− ϕ)],x −

(
1−γ
γ

)
hϕ(1−ϕ)1−m

vT
(ux − vx) + hgx,

[h(1− ϕ)uy],t + [h(1− ϕ)uxuy],x + [h(1− ϕ)uyuy],y =

−1
2
c[h2(1− ϕ)],y −

(
1−γ
γ

)
hϕ(1−ϕ)1−m

vT
(uy − vy) + hgy,

(6.27)

where




γ = ρf

ρs
< 1, a = ǫ(1− γ)αxxg, a1 = ǫ(1− γ)αxyg,

a2 = ǫ(1− γ)αyyg, b = ǫγ g, c = ǫ g.
(6.28)
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6.1 The one dimensional case

For our purposes here, we consider the special case of a flow in one space
dimension. That is, consider the model equation (3.29) confined so that all
motion is in the x-direction only, and set all y-derivatives, y-stress terms and
y-velocities to zero. Finally, we assume the bottom surface B = B(x, y),
which describes the bottom topography, to be flat, that is, B = B0 ≡ 0.
Then, in the one dimensional case (x-direction e.g.), after neglecting the
subscripts in the x components of u and v, by putting

( ),t = ( )t ( ),x = ( )x

and removing the limiting cases h = 0, ϕ = 0, ϕ = 1, we write:





ht + [ϕv + (1− ϕ) u]hx + h(v − u)ϕx + hϕ vx + h(1− ϕ)ux = 0,

ϕt +
1
h
[ϕ (v − u)(1− ϕ)]hx + [v − ϕ (v − u)]ϕx + ϕ(1− ϕ)vx+

−ϕ(1− ϕ)ux = 0,

vt + (a+ b)hx +
ah
2ϕ
ϕx + vvx = (1− γ) (1−ϕ)

1−m

vT
(u− v)+

−sgn(v)νb(1− γ)g,

ut + chx − ch
2(1−ϕ)

ϕx + uux = −
(
1−γ
γ

)
ϕ(1−ϕ)−m

vT
(u− v).

(6.29)

The system (6.29) in matrix form reads:

Ut +AUx = F (6.30)

where

U =




h
ϕ
v
u
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A =




ϕv + (1− ϕ) u h (v − u) hϕ h (1− ϕ)
ϕ (1−ϕ)(v−u)

h
v − ϕ (v − u) ϕ (1− ϕ) −ϕ (1− ϕ)

a+ b ah
2ϕ

v 0

c − ch
2−2ϕ

0 u




F =




0
0

(1− γ) (1−ϕ)
1−m

vT
(u− v)− sgn(v)νb(1− γ)g

−(1−γ
γ
)ϕ(1−ϕ)

−m

vT
(u− v)



.

The characteristic equation of the system (6.29) is

P (λ) := det(A− λI) =

= (λ− v)2(λ− u)2 − h
2
[a(1 + ϕ) + 2ϕ b](λ− u)2 +

− ch
2
(2− ϕ)(λ− v)2 + ch2

2
(a+ bϕ) = 0

(6.31)
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6.1.1 Eigenvalues

The problem of hyperbolicity of the system is related to the reality of the
roots of equation (6.31).

In [90], the case of the parameter ǫ = 0, has been considered and it has
been observed that in this case, taking (6.28) into account, equation (6.31)
reduces to:

(λ− v)2(λ− u)2 = 0 (6.32)

That is, there are two double real roots. It is easy to verify that for
ǫ = 0 the system (6.29) is hyperbolic. Of course for ǫ small the system is still
hyperbolic.

In view of further applications we observe that the constant vector

U∗ :=




h∗

ϕ∗

0

0



, (6.33)

with h∗ > 0 and 0 < ϕ∗ < 1, gives a two parameters family of solutions
for the system (6.29). Here, according to [46] we show as the system can be
hyperbolic around a constant solution U∗.

After having put U = U∗, the characteristic equation becomes a quartic
equation in λ:

P∗(λ) := λ4 − h∗
2
[a(1 + ϕ∗) + 2ϕ∗ b− c(2− ϕ∗)]λ

2 +
ch2∗
2

(a+ bϕ∗) = 0,

(6.34)

whose roots are written as

λi∗ = ±1

2

√
A± h∗

√
∆∗ i = 1, 2, 3, 4 (6.35)

where
A = h∗ [(a− 2c) + ϕ∗(a+ 2b+ c)] , (6.36)

and

∆∗ = (a−2c)2+ϕ2
∗(a+2b+c)2+2ϕ∗(a−2c)(a+2b+c)−8c(a+bϕ∗). (6.37)
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The eigenvalues λi∗ i = 1, 2, 3, 4 will be real if and only if both A and ∆∗

are non negative. In fact, due to Descartes rule, it follows that the values of

λ2 =
1

4

(
A± h∗

√
∆∗

)
(6.38)

are not only real but also non-negative. Then all the eigenvalues λi∗ are
real (i = 1, 2, 3, 4).

From (6.36) and (6.37), taking (6.28 ) into account, it is a simple matter
to ascertain that in order that A and ∆∗ are both non-negative it is necessary
and sufficient that both:

[αxx(1− γ) + 2γ + 1]ϕ∗ + [αxx(1− γ)− 2] ≥ 0. (6.39)

and

[αxx(1− γ) + 2γ + 1]2ϕ2
∗ + 2[α2

xx(1− γ)2 − αxx(2γ − 1)(γ − 1) +

−(8γ + 2)]ϕ∗ + α2
xx(1− γ)2 − 12αxx(1− γ) + 4 ≥ 0. (6.40)

So, for values of αxx, γ and ϕ∗ of relevant physical interest, satisfying the
previous conditions, we can say that the system (6.29) is hyperbolic around
a solution U∗.

6.1.2 Some geophysical mass flows

Here we discuss some real cases due the observation of geophysical mass flows
[43] as Debris Flow (Yake Dake), Pyroclastic Flow (Mount St.Helens) and
Avalanche (Elm Rock). In this case we have considered typical values of the
physical parameters, appearing in (6.39) and (6.40).

These flows are characterized by a common value of the angles of internal
friction and bed friction (φint = 50o and φbed = 25o), with which the value of
the earth pressure coefficient, obtained from equation (6.13), is αxx = Kpas =
7.25. Now in the following we show the specializations of the constraints
(6.39) and (6.40) for the values of αxx and γ, concerned with the aforesaid
flows. And find the range of the values of ϕ∗ which allows real eigenvalues.
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1. For Debris Flow (Yake Dake), γ = 0.4 (ρs = 2600Kg/m3, ρf = 1200Kg/m3),
αxx = 7.25, the (6.39) and (6.40) become:

6.15ϕ∗ + 2.35 ≥ 0; (6.41)

and the (6.40):
37.82ϕ2

∗ + 25.7ϕ∗ − 29.2 ≥ 0; (6.42)

the range of the values of ϕ∗ is:

ϕ∗ ∈ [0.61, 1[.

2. For Pyroclastic Flow (Mount St.Helens), the parameters are γ = 0, 0007
(ρs = 2600Kg/m3 and ρf = 2Kg/m3), αxx = 7.25 and the (6.39)
becomes:

8.24ϕ∗ + 5.24 ≥ 0; (6.43)

and the (6.40):
68ϕ2

∗ + 86.49ϕ∗ − 30.45 ≥ 0; (6.44)

the range of the values of ϕ∗ is:

ϕ∗ ∈ [0.29, 1[.

3. For Avalanche (Elm Rock), the parameters are γ = 0, 0008 (ρs =
2400Kg/m3 and ρf = 2Kg/m3), αxx = 7.25 and the (6.39) becomes:

8.24ϕ∗ + 5.24 ≥ 0; (6.45)

and the (6.40):

67.99ϕ2
∗ + 86.47ϕ∗ − 30.45 ≥ 0; (6.46)

the range of the values of ϕ∗ is:

ϕ∗ ∈ [0.29, 1[.
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In figure 6.2, 6.3 and 6.4 we show the feature of the eigenvalues corre-
sponding to some values of ϕ∗, referring to previous cases.

f*= 0.1

f*= 0.61

f*= 0.9

5

10

15

20

-5
-1-2 1 2

25

30

-3 3

P( )l*

l*

Fig. 6.2: Debris Flows (Yake Dake). Feature for some values of ϕ∗.
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Fig. 6.3: Pyroclastic Flows (Mount St.Helens). Feature of characteristic
polynomial P (λ∗) for some values of ϕ∗.
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Fig. 6.4: Avalanches (Elm Rock). Feature of characteristic polynomial
P (λ∗) for some values of ϕ∗.

So we can conclude that for values of ϕ∗ satisfying (6.39) and (6.40) the
system is hyperbolic not only in U∗ but also for continuity reasons in a
suitable neighborhood of U∗.

88



6.1.3 Approximate computations of λi

After these results, more generally, we can compute the values of λi by using
a perturbation expansion with respect to small parameter η =

√
ǫ starting

from the constant state U∗.
So by assuming that λ, h, ϕ, u, v are analytic function of small parameter

η we are able expanding them in power series as follows:





λi = λi∗ + ηλi1 + η2λi2.....,
h = h∗ + ηh1 + η2h2......,
ϕ = ϕ∗ + ηϕ1 + η2ϕ2......,
u = ηu1 + η2u2......,
v = ηv1 + η2v2.......

(6.47)

After having truncated (6.47) at the first power of η we substituted them
in the P (λ) and obtain, by neglecting all powers of η greater than one, an
approximate characteristic polynomial:

P1(λ
i) := P0(λ

i
∗) +

+η
{
2[2λi1 − (u1 + v1)]λ

i
∗
3
+ 1

2
[(ϕ∗h1 + ϕ1h0)(c− a− 2b) +

−h1(a+ 2c)]λi∗
2
+ h∗{(u1 − λi1)[a(1 + ϕ∗) + 2bϕ∗] + (6.48)

+(v1 − λi1)c(2− ϕ∗)}λi∗ + ch∗
[
b
2
(h∗ϕ1 + 2h1ϕ∗) + ah1

]}
= 0.

When

P0(λ
i
∗) = P (λi∗) (6.49)

Then by requiring:





P0(λ
i
∗) = 0

2[2λi1 − (u1 + v1)]λ
i
∗
3
+ 1

2
[(ϕ∗h1 + ϕ1h∗)(c− a− 2b)+

−h1(a+ 2c)]λi∗
2
+ h∗{(u1 − λi1)[a(1 + ϕ∗) + 2bϕ∗]+

+(v1 − λi1)c(2− ϕ∗)}λi∗ + ch∗
[
b
2
(h∗ϕ1 + 2h1ϕ∗) + ah1

]
= 0,

(6.50)
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it follows

λi∗ = ±1

2

√
A± h∗

√
∆∗, i = 1, 2, 3, 4 (6.51)

and

λi1 =
−2(v1 + u1)λ

i
∗
3
+ 1

2
[(ϕ∗h1 + ϕ1h∗)(c− a− 2b)− h1(a+ 2c)]λi∗

2

λi∗[4λ
i
∗
2 − ah∗(1 + ϕ∗)− ch∗(2− ϕ∗)− 2h∗bϕ∗]

+

+
{cv1h∗(2− ϕ∗) + u1h∗[a(1 + ϕ∗) + 2bϕ∗]}λi0
λi∗[4λ

i
∗
2 − ah∗(1 + ϕ∗)− ch∗(2− ϕ∗)− 2h∗bϕ∗]

+

+
ch∗[

b
2
(h∗ϕ1 + 2h1ϕ∗) + ah1]

λi∗[4λ
i
0
2 − ah∗(1 + ϕ∗)− ch∗(2− ϕ∗)− 2h∗bϕ∗]

. i = 1, 2, 3, 4.

So,

λi ≈ ±1

2

√
A± h∗

√
∆∗ +

+η

{
−2(v1 + u1)λ

i
∗
3
+ 1

2
[(ϕ∗h1 + ϕ1h∗)(c− a− 2b)− h1(a+ 2c)]λi∗

2

λi∗[4λ
2
∗ − ah∗(1 + ϕ∗)− ch∗(2− ϕ∗)− 2h∗bϕ∗]

+

+
{cv1h∗(2− ϕ∗) + u1h∗[a(1 + ϕ∗) + 2bϕ∗]}λi∗
λi∗[4λ

2
∗ − ah∗(1 + ϕ∗)− ch∗(2− ϕ∗)− 2h∗bϕ∗]

+

+
ch∗[

b
2
(h∗ϕ1 + 2h1ϕ∗) + ah1]

λi∗[4λ
2
∗ − ah∗(1 + ϕ∗)− ch∗(2− ϕ∗)− 2h∗bϕ∗]

}
, i = 1, 2, 3, 4.
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6.1.4 Eigenvectors

The components of the right eigenvectors ri = [ri1, r
i
2, r

i
3, r

i
4]
T are:

ri1 = −(λi − u)[ah(ϕ− 1) + 2(λi − v)2] + (λi − v)[2ϕ(λi − u)(v − u)− chϕ]

c[ϕ(u− v)(λi − v)− 2(λi − v)2 + h(a+ ϕb)]
,

ri2 =
2ϕ(ϕ− 1){(λi − u)[h(a+ b)− v2] + λi

2

(v − u) + (λi − v)(u2 − ch)}
ch[ϕ(u− v)(λi − v)− 2(λi − v)2 + h(a+ ϕb)]

,

ri3 =
(λi − u){av(1− ϕ) + 2b[ϕu+ v(1− ϕ)]} − 2λi

2

(a+ b)

c[ϕ(u− v)(λi − v)− 2(λi − v)2 + h(a+ ϕb)]
+

− au2(1 + ϕ)− ch(a+ bϕ)

c[ϕ(u− v)(λi − v)− 2(λi − v)2 + h(a+ ϕb)]

ri4 = 1,

and the components of the left eigenvectors li = [li1, l
i
2, l

i
3, l

i
4] reads:

li1 =
c[ϕ(u− v)(λi − v)− 2(λi − v)2 + h(a+ ϕb)]

(u− λi){2(λi − v)2 − h[ϕ(a+ 2b) + a]} ,

li2 =
ch{(λi − v)[u(ϕ− 1) + v(2− ϕ)− λi] + h(a+ ϕb)}
(ϕ− 1)(u− λi){2(λi − v)2 − h[ϕ(a+ 2b) + a]} ,

li3 =
chϕ

2(λi − v)2 − h[ϕ(a+ 2b) + a]
,

li4 = 1.
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6.2 Weak discontinuity propagation in a con-

stant state

Let Σ denotes the weak discontinuity surface of equation

ψ(x, t) = 0 (6.52)

across which the field

U =




h
ϕ
v
u




is continuous but discontinuities in its first derivatives are permitted. By
denoting the jump of the first derivatives across Σ with

δ :=

[
∂

∂ψ

]
=

(
∂

∂ψ

)

ψ=0+

−
(
∂

∂ψ

)

ψ=0−

(6.53)

we obtain from the system (6.29) the compatibility conditions for weak dis-
continuities [89] and [45], which allows us to write (see Section 5.1 of this
thesis):

δU(i) := Π = Πr
(i)
0 (6.54)

where r
(i)
0 is the right eigenvector, corresponding to λ(i), evaluated for the

unperturbed state Uo. We consider the discontinuity wave propagating with
speed λ = λ

(4)
∗ , through a constant state U∗, characterized by:

U∗ :=




h∗

ϕ∗

0

0
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The characteristic equation, in the unperturbed state U = Uo = U∗,

det(A− λI)|U∗=0,

becomes

P∗(λ) = λ 4 − h∗
2
[a(1 + ϕ∗) + 2ϕ∗ b)λ

2 − ch∗
2

(2− ϕ∗)λ
2+

+
ch2∗
2

(a+ bϕ∗) = 0. (6.55)

Assuming that the constitutive parameters and the components of U∗

satisfies (6.39) and (6.40), we can affirm that solutions of (6.2) are real so we
write them as

λ(1,2)∗ = −1

2

√
A± h∗

√
∆∗,

λ(3,4)∗ =
1

2

√
A± h∗

√
∆∗,

The corresponding right eigenvectors r(4) and left eigenvectors l(4) valued
in the unperturbed state U = U∗ defined by are respectively:

r(4)
T

∗ = [r
(4)
1 , r

(4)
2 , r

(4)
3 , r

(4)
4 ]TU=U∗

r
(4)
1∗ = −λ

(4)
∗ [ah∗(ϕ∗ − 1) + 2λ

(4)2

∗ − ch∗ϕ∗]

c[h∗(a+ ϕ∗b)− 2λ
(4)2
∗ ]

,

r
(4)
2∗ =

2λ
(4)
∗ ϕ∗(ϕ∗ − 1)(a+ b− c)

c[h∗(a+ ϕ∗b)− 2λ
(4)2
∗ ]

,

r
(4)
3∗ =

ch∗(a+ bϕ∗)− 2λ
(4)2

∗ (a+ b)

c[h∗(a+ ϕ∗b)− 2λ
(4)2
∗ ]

,

r
(4)
4∗ = 1,
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and

l(4)∗ = [l
(4)
1 , l

(4)
2 , l

(4)
3 , l

(4)
4 ]U=U∗ ,

l
(4)
1∗ = − c[h∗(a+ ϕ∗b)− 2λ

(4)2

∗ ]

λ
(4)
∗ {2λ(4)2∗ − h∗[ϕ∗(a+ 2b) + a]}

,

l
(4)
2∗ =

ch∗[λ
(4)2

∗ + h∗(a+ bϕ∗)]

λ
(4)
∗ (ϕ∗ − 1){2λ(4)2∗ − h∗[ϕ∗(a+ 2b) + a]}

,

l
(4)
3∗ =

ch∗ϕ∗

2λ
(4)2
∗ − h∗[ϕ∗(a+ 2b) + a]

,

l
(4)
4∗ = 1.

In order to write of weak discontinuity evolution equation [45], we observe
that from (6.31) it is possible to derive the following relation:

∂P

∂h
+ P ′(λ)λh = 0, (6.56)

where

P ′(λ) = (λ− v)[ch(ϕ− 2) + 2(λ− u)(2λ− v − u)]+

−h(λ− u)[a(1 + ϕ) + 2ϕ b],

denote the derivative of P (λ) with respect to λ.
From (6.56) which we get

λh = − 1

P ′(λ)

∂P

∂h
. (6.57)
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After having obtained in similar way λϕ, λv, λu we are able to write:

∇λ =




λh

λϕ

λv

λu



=

=




1
2
{[a(1 + ϕ) + 2ϕ b](λ− u)2 + c(2− ϕ)(λ− v)2 − 2ch(a+ ϕ b)}

P ′(λ)
h
2
[(a+ 2b)(λ− u)2 − c(λ− v)2 − chb]

P ′(λ)

(λ− v)[2(λ− u)2 − ch(2− ϕ))]

P ′(λ)

(λ− u){2(λ− v)2 − h[a(1 + ϕ) + 2ϕ b]}
P ′(λ)




The equation of evolution of weak discontinuities in the constant state
U∗, neglecting friction and the function sgn(v), following Boillat [45] (see
also recently e.g. [96], [97]), is written as:

dΠ

dσ
+ (∇λ(4)· r(4))∗Π2 = ν∗Π (6.58)

where d/dσ = ∂t + λ(4)∂x is the time derivative along the characteristic,

ν∗ =

(
∇(F · l(4)) · r(4)

l(4) · r(4)
)

U=U∗

=
−aγ λ4∗ [2λ(4)2∗ + ah∗(ϕ∗ − 1)− ch∗ϕ∗]

C +

+
B[2λ(4)2∗ − ah∗(1 + ϕ∗)− h∗ϕ∗(2b+ γ c)]

C , (6.59)

with

B = 2λ(4)2∗ (c− 1)(1− γ)(1− ϕ∗)
(1−m)[2λ(4)2∗ − ah∗(1 + ϕ∗)− 2h∗ϕ∗b]
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and

C = cγ vT [2λ
(4)2
∗ −2h∗ϕ∗b]{[2λ(4)2∗ −ah∗(1−ϕ∗)− ch∗ϕ∗][h∗(a+ϕ∗b)−λ(4)2∗ ]+

−cγ vT [ah∗(1 + ϕ∗)]{[2λ(4)2∗ − ah∗(1− ϕ∗)− ch∗ϕ∗][h∗(a+ ϕ∗b)− λ(4)2∗ ]+

−2ϕ∗h∗(a+ b− c)[h∗(a+ ϕ∗b)− λ(4)2∗ ] + h∗ϕ∗[ch∗(a+ ϕ∗b)− 2λ(4)2∗ (a+ b)]+

+[h∗(a+ ϕ∗b)− 2λ(4)2∗ ][2λ(4)2∗ − h∗a(1 + ϕ∗ − 2h∗ϕ∗b)]}.

moreover, of course,

(∇λ(4) · r(4))∗ =
λ
(4)2

∗ {2λ(4)2∗ [a(ϕ∗ + 5) + 2b(ϕ∗ + 2)− c(ϕ∗ − 6)]

D +

+
2ah∗ϕ∗c(ϕ∗ − 2)− a2h∗(ϕ∗ + 1)2 − 2abh∗ϕ∗[2(a+ b)(ϕ∗ − 1)

D +

−c(2ϕ∗ + 9)] + ch∗[4(a+ ϕ∗b) + 22a+ cϕ2
∗ − 8b]}

D + (6.60)

+
2ch2∗{a[2− a(ϕ∗ − 1)]− ϕ∗b[b− b2 − c(3− ϕ∗)]

D +

+
(a+ ϕ∗b)[a(1 + ϕ∗) + 2ϕ∗b]}

D ,

with

D = 2c[2λ(4)
2

∗ − h∗(a+ ϕ∗b)]{4λ(4)
2

∗ − ch∗(2− ϕ∗)− h[a(1 + ϕ∗) + 2ϕ∗b]}

From (6.58) by integrating, following [45] we get:

Π = η/φ (6.61)

where
η = ηr(4)∗ (6.62)

being η the solution of the Cauchy problem:





dη/dσ = ν∗η,

η0 = Π(0),
(6.63)

96



that is

η = Π(0) exp ν∗σ. (6.64)

Being

φ = 1 +
∫ σ

0
(∇λ(4) · r(4))∗ηdτ, (6.65)

from (6.64) it follow

φ = 1 +
(∇λ(4) · r(4))∗

ν∗
Π(0)(exp ν∗σ − 1) (6.66)

If the wave satisfies the genuine non linearity condition ∇λ(4) · r(4) 6= 0 it
is possible that exists for suitable amplitudes Π(0), a critical time σcr which
makes zero the denominator φ. So at this instant the discontinuity becomes
unbounded. Usually the critical time corresponds to the formation of a strong
discontinuity (shock), that is, corresponds to that instant when the field U
becomes discontinuous across the wave front ψ. From (6.66) it is a simple
matter to get

σcr =
1

ν∗
ln

(
1− ν∗

Π(0)(∇λ(4) · r(4))∗

)
(6.67)

It is worthwhile stressing that for ν∗ > 0 the possibility of critical time
is depending only of the sign of Π(0). Instead for ν∗ < 0 exists a threshold
value of initial discontinuity:

Π(0)thres =
ν∗

(∇λ(4) · r(4))∗
(6.68)

that separates the values of Π(0) that brings to zero the discontinuity and
the values of Π(0) that brings to infinite the discontinuity in a finite time σcr.
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In details the possibility to get σcr > 0 is fulfilled in the following cases:

1. ν∗ > 0 implies
ν∗

Π(0)(∇λ(4) · r(4))∗
< 0

so that two subcases arise

(a) Π(0) > 0, (∇λ(4) · r(4))∗ < 0

(b) Π(0) < 0, (∇λ(4) · r(4))∗ > 0

2. ν∗ < 0 implies 0 < 1− ν∗
Π(0)(∇λ(4) · r(4))∗

< 1

also in this subcases arise

(a) Π(0) > 0, (∇λ(4) · r(4))∗ < 0 Π(0) > Π(0)thres

(b) Π(0) < 0, (∇λ(4) · r(4))∗ > 0 Π(0) < Π(0)thres

In the following, we analyze the discontinuity propagation in a constant state,
starting from the experimental data shown in section (6.1.2)( see Table 6.1,
6.2 and 6.3).
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Debris Flow
αxx 7.25
γ 0.4
ϕ∗ 0.61

λ
(4)
∗ 1.7
m 2.65
vT 0.1
h 2

(∇λ(4) · r(4))∗ 6.5
ν∗ -138.94

η e(−138.94σ)

φ −0.13 + 1.13 e(−138.94σ)

Πthres -21
Π(0) -24
σcr 0.016

Table 6.1: Numerical data and numerical results for Debris Flows (Yake
Dake).

Pyroclastic Flow
αxx 7.25
γ 0.0007
ϕ∗ 0.29

λ
(4)
∗ 1.41
m 2.65
vT 0.1
h 1

(∇λ(4) · r(4))∗ 8.8
ν∗ -70356.43

η e(−70356.42σ)

φ −0.00062 + e(−70356.42σ)

Πthres -7995
Π(0) -8000
σcr 0.00011

Table 6.2: Numerical data and numerical results for Pyroclastic Flows
(Mount St.Helens).
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Avalanche
αxx 7.25
γ 0.0008
ϕ∗ 0.29

λ
(4)
∗ 4.4
m 2.65
vT 0.1
h 10

(∇λ(4) · r(4))∗ 8.8
ν∗ -61603.1

η e(−61603.1σ)

φ −0.00066 + e(−61603.1σ)

Πthres -7000
Π(0) -7005
σcr 0.00012

Table 6.3: Numerical data and numerical results for Avalanches (Elm Rock).

In figures 6.5, 6.6, 6.7 and 6.8 we have shown the evolution of weak
discontinuities with respect to σ, concerned with the previous geophysical
mass flows. In the first three figures it is easy to ascertain that the value of
the discontinuity amplitude becomes unbounded in a finite critical time σcr.
In the figure 6.8 (obtained in the case of Pyroclastic Flows, Mount St.Helens)
we show a case where the discontinuity amplitude vanishes in the time.
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Fig. 6.5: The evolution of discontinuity amplitude in a Debris Flows (Yake
Dake).
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Fig. 6.6: The evolution of discontinuity amplitude in a Pyroclastic Flows
(Mount St.Helens)
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Fig. 6.7: The evolution of discontinuity amplitude in Avalanches(Elm Rock).
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Fig. 6.8: The evolution of discontinuity amplitude in a Pyroclastic Flows
(Mount St.Helens). In this case the discontinuity amplitude asymptotically
vanishes and does not exist a critical time.
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In figures 6.9, 6.10 and 6.11 we show the feature of the curves σcr =
σcr(Π(0)), in the case of the geophysical mass flows previously considered.
We observe that σcr is defined starting from the values of Π(0) < Πthres and
is increasing with respect to Π(0).

0-20-40-60-80-100

10
-2

2 10
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3 10
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4 10
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5 10
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P(0)

scr
P(0)thres= -21

0

Fig. 6.9: The curve σcr = σcr(Π(0)) for Debris Flows (Yake Dake).
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Fig. 6.10: The curve σcr = σcr(Π(0)) for Pyroclastic Flows (Mount
St.Helens).
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Fig. 6.11: The curve σcr = σcr(Π(0)) for Avalanches (Elm Rock).
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Conclusion

In this thesis the study of the complex phenomena of geophysical mass flows
have been approached by starting from the analysis of their specific charac-
teristics and by inserting them in the framework of the different phenomena
of surface erosion.

By analyzing the various classifications of gravitational phenomena, it was
possible to highlight the type of motion in relation to the different physical
properties of the materials involved and to the mechanisms of initiation,
propagation and arrest.

The main goal of this thesis has been the study of the complete mecha-
nisms of propagation of the geophysical mass flows through the use of math-
ematical models that allow for the landslide event simulation along its path.

We have considered some interesting mathematical models used in the
engineering practice. The first was the pioneering modeling of Savage and
Hutter. They started from the mass and momentum balance laws based on
a Coulomb constitutive description of dry granular material and developed a
”thin layer” model for granular flows down inclines.

The successive models of Iverson and Iverson-Denlinger argue that the
presence of interstitial fluid alters the behavior of flows and should be in-
cluded in the constitutive behavior of the flowing material. They took in
consideration the mixture theory equations and through a careful examina-
tion of experiments, developed a system of mass and momentum balance laws
for the flow considered as a solid-fluid mixture.

Moreover, we have considered a simple model for a debris flow surges,
that offers a simple analysis of the steady-state, where it is assumed that the
surge heads act as a rigid body shifted with resistance at the base of Coulomb
type and pushed back by a mass completely liquefied. This analysis allows us
to make quantitative predictions of the behavior of geophysical mass flows,
and to better understand more elaborate models.

On the basis of the models described so far, we have written a mathemat-
ical model, which includes as special cases the model of Savage and Hutter or
at the model of Iverson. We analyzed for these models the wave propagation
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features and the growth of discontinuities. Moreover, after having found the
critical time we applied these results to some geophysical mass flows and we
got numerical results.

In the final part of the thesis the Pitman-Le two fluid model is considered
and the region of the field where the model is hyperbolic is characterized.
By taking into account some real geophysical mass flows, we have shown a
procedure to evaluate the approximate roots of the characteristic equation.
Finally, we have written the evolution equation for the weak discontinuity
amplitude in a constant state. We have discussed about the possibility to
exist a critical time when discontinuity amplitude goes to infinite and show
some numerical results.

For the ”two flows classes model” and for the Pitman-Le model we found
a threshold value of initial discontinuity that separates the values that bring
to zero the discontinuity amplitude and from the values that bring the dis-
continuity amplitude to infinite in a finite critical time.

In addition as a future research we planned to study the shock waves for
both types of models and to look for exact and numerical solutions.

109



Bibliography

[1] R. I. Tiling (ed.) Volcanic hazards: short course in geology, vol. 1. Amer-
ican Geophysical Union. Washington, D.C. (1989).

[2] National Research Council 1991 The eruption of Nevado del Ruiz Vol-
cano, Colombia, South America, November 13, 1985. (1991). Washing-
ton, DC: The Committee on Natural Disasters.

[3] National Research Council 1994 Mount Rainier: active cascade volcano.
Washington, DC: The US Geodynamics Committee.

[4] S. D. Ellen and R. W. Fleming, Mobilization of debris flows
from soil slips, San Francisco Bay region, California, in Debris
Flows/Avalanches: Process, Recognition, and Mitigation, Rev. Eng.
Geol., voI. 7, edited by J. E. Costa and G. F. Wieczorek, pp. 31-40,
Geol. Soc. of Am., Boulder, Colo., (1987).

[5] L. H. Fairchild and M. Wigmosta, Dynamic and volumetric character-
istics of the 18 May 1980 lahars on the Toutle River, Washington in
Proceedings of the Symposium on Erosion Control in Volcanic Areas
Tech. Mem. 1908, pp. 131-153, Jpn. Public Works Res. Inst., Min. of
Constr., Tokyo (1983).

[6] T. R. Howard, J. E. Baldwin and H. F. Donley, U.S. Geol. Surv. Prof
Pap., 1434, 163-184 (1988).

[7] G. Plafker and G. E. Ericksen, Natural Phenomena, 1, 277-314 (1978).

[8] J. K. Mitchell, Fundamentals of Soil Behavior, 422 pp., John Wiley, New
York (1976).

[9] T. Takahashi, I. Hydraul. Div. Am. Soc. Civ. Eng., 104, 1153-1169
(1978).

[10] K. M. Scott, J. W. Vallance and P. T. Pringle, US. Geol. Surv. Prof.
Pap., 1547, 56 pp., (1995).

110



[11] R.P.Sharp, and L.H.Nobles, Geol. Soc. Am. Bull., 64, 547-560 (1953).

[12] H. Suwa, Trans. Jpn. Geomorphol. Union, 9, 151-178 (1988).

[13] G. F. Wieczorek, E. L. Harp, R. K. Mark and A. K. Hhattacharyya, Us.
Geol. Surv. Prof. Pap., 1434, 133-162 (1988).

[14] H. M. Jaeger and S. R. Nagel, Science, 255, 1523-1531 (1992).

[15] S. B. Savage, Mechanics of debris flows, in Hydraulic Engineering ’93.
In: Proceedings of the 1993 Conference of the Hydraulics Division of
the American Society of Civil Engineers), vol. 2, 1402-1407, Am. Soc. of
Civ. Eng., New York (1993).

[16] S. B. Savage, Adv. Appl. Mech., 24, 289-366 (1984).

[17] K. Sassa, The mechanism of debris flow. In Proceedings of the Eleventh
International Conference on Soil Mechanics and Foundation Engineer-
ing, pp. 1173-1176, A. A. Balkema, Rotterdam, Netherlands (1985).

[18] N. Sitar, S. A. Anderson and K. A. Johnson, Conditions for initiation
of rainfall-induced debris flows, in Stability and Performance of Slopes
and Embankments Il Proceedings, pp. 834-849 Geotech. Eng. Div., Am.
Soc. of Civ. Eng., New York (1992).

[19] L. Siebert, J. Volcanol. Geotherm. Res., 22, 163-197 (1984).

[20] A. E. Scheidegger, Rock Mech., 5, 231-236 (1973).

[21] T. C. Pierson, Earth Surf. Processes, 5, 227-247 (1980).

[22] T. C. Pierson, Sedimentology, 28, 49-60 (1981).

[23] T. C. Pierson, Geol. Soc. Am. Bull., 96, 1056-1069 (1985).

[24] T. C. Pierson, Flow behavior of channelized debris flows, Mount St.
Helens, Washington, in Hillslope Processes, edited by A. D. Abrahams,
pp. 269-296, Allen and Un-win, Winchester, Mass., 1986.

[25] T. C. Pierson, J. Volcanol. Geotherm. Res., 66, 283-294 (1995).

[26] T. C. Pierson and J. E.Costa, Geol. Soc. of Am., Boulder, Colo., 7,1-12
(1987).

[27] T. C. Pierson and K. M. Scott, Water Resour. Res., 21, 1511-1524
(1985).

111



[28] T. C. Pierson, R. J. Janda, J. C. Thouret and C. A. Borrero, J. Volcanol.
Geotherm. Res., 41, 17-66 (1990).

[29] S. B. Savage and K. Hutter, J. Fluid Mech., 199, 177-215 (1989).

[30] A. J. C. de Saint-Venant, C. R. Acad. Sc. Paris 73, 147-154 (1871).

[31] K. Hutter, M. Siegel, S. B. Savage and Y. Nohguchi, Theory. Acta Mech.,
100, 37-68 (1993).

[32] F. Bouchut and M. Westdickenberg, Comm. Math. Sci. 2, 359-389
(2004).

[33] R. P. Denlinger and R. M. Iverson, J. Geophys. Res. 109 (2004) F01014,
doi:10.1029/2003JF000085.

[34] J. M. N. T. Gray, M. Wieland and K. Hutter, Proc. R. Soc. Lond. A
455, 1841-1874 (1999).

[35] R. M. Iverson, and R. P. Denlinger, Journal of Geophysical Research,
106, 553-566 (2001).

[36] A. K. Patra, A. C. Bauer, C. C. Nichita, E. B. Pitman, M. F. Sheridan,
M. Bursik, B. Rupp, A. Webber, A. J. Stinton, L. M. Namikawa and
C. S. Renschler, J. Volcanology Geotherm. Res., 139, 1-21 (2005).

[37] S. P. Pudasaini and K. Hutter, J. Fluid Mech., 495, 193-208 (2003).

[38] S. P. Pudasaini, Y. Wang and K. Hutter, Natural Hazards and Earth
System Sciences, 5, 799-819 (2005) .

[39] S. P. Pudasaini, Dynamics of flow avalanches over curved and twisted
channels: theory, numerics and experimental validation. Dissertation,
Fachbereich Mechanik, Technische Universitat Darmstadt. Available at:
http://elib.tu-darmstadt.de/diss/000393.

[40] S. P. Pudasaini and K. Hutter, Granular avalanche model in arbitrar-
ily curved and twisted mountain terrain: a basis for the extension to
debris flow. In: Debris-Flow Hazards Mit- igation: Mechanics, Predic-
tions and Assessment (Eds. D. Rickenmann and C.-L. Chen). 1, 491-502,
Millpress.

[41] K. Hutter, Debris and mudflows: are we asking the correct questions?
What are the deficits? In: Mitteilungen der Versuchsanstalt fur Wasser-
bau Hydrologie und Glaziologie an der Eidgenössischen Technischen
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