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Abstract 

The main target of this research activity has been to develop an autonomous 

electrical vehicle able to perform precision farming tasks inside greenhouses. The 

vehicle can increase operations safety level for operators and quality of the chemicals 

distribution, allowing a lower environmental pollution and a better greenhouse 

product quality. Farmers thus obtain a return on their investment by using such a 

robot and technologies thanks to a waste reduction of phytosanitaries and fertilizers 

with a consequent cost lowering. 

Moreover, due to constant reduction of electronic parts cost, like computer, sensors 

and power control system and to the presence on the market of new low cost devices 

for precision farming, the development of a dedicated autonomous vehicle is not as 

expensive as in the past. In this thesis new low-cost solution will be introduced and 

detailed. 

Meanwhile, the robot has been equipped with an intelligent vision system in order to 

perform tomatoes detection in greenhouse and automatic guidance: the algorithm 

allows the tomato recognition and, as future development, once it will be integrated 

with the robot, it will be really useful to perform precision farming activities: fruit 

classification, harvesting, local chemicals treatment etc. 

During a first step, the activity has been focused on the development and test of the 

electrical vehicle able to autonomously navigate along the greenhouse's rows. After 

the vehicle had been fully tested, great effort has been carried out on the 

development of the vision algorithm and sensor integration through the development 

of a versatile and high-modular software framework. Encouraging results will be 

shown and interesting perspective can rise from this analysis. 
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1 Introduction 

Precision Farming is generally defined as information and technology based farm 

management system to identify, analyse and manage variability within fields for 

optimum profitability, sustainability and protection of the land resource. In this mode 

of farming, new information technologies can be used to make better decisions about 

many aspects of crop production. The goal is not to obtain the same yield 

everywhere, but to manage and distribute inputs on a specific site in order to 

maximize long term cost/benefit. Applying the same inputs on  the entire field may 

no be the best choice. 

Precision Farming is helping many farmers worldwide to maximize the effectiveness 

of crop inputs. To be viable, both economic and environmental benefits must be 

considered, as well as the practical questions of field level management and 

technologies needed. 

 

Figure 1 - Important issues related to precision farming (adapted from Davis, 2004) 

The potential of precision farming for economical and environmental benefits could 

be visualized through reduced use of water, fertilizers, herbicides and pesticides 

besides the farm equipments. Instead of managing an entire field base upon some 

hypothetical average condition, which may not exist anywhere in the field, a 
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precision farming approach recognizes site specific differences within fields and 

adjusts management actions accordingly. 

Precision agriculture offers the potential to automate and simplify the collection and 

analysis of information. It allows management decisions to be made and quickly 

implemented. In order to collect and utilize information effectively, it is important 

for everyone considering precision farming to be familiar with modern technological 

tools available. The vast array of tools includes hardware, software and the best 

management practices. These are briefly described in the following paragraphs. 

For example, precision agriculture management practices can significantly reduce the 

amount of nutrient and other crop inputs used while boosting yields. Farmers thus 

obtain a return on their investment by saving on phytosanitary and fertilizer costs. 

The second, larger-scale benefit of targeting inputs—in spatial, temporal and 

quantitative terms—concerns environmental impacts. Applying the right amount of 

inputs in the right place and at the right time, it will benefit crops, soils and 

groundwater, and thus the entire crop cycle. Consequently, precision agriculture has 

become a cornerstone of sustainable agriculture, since it respects crops, soils and 

farmers. Sustainable agriculture seeks to assure a continued supply of food within the 

ecological, economic and social limits required to sustain production in the long 

term. 

Precision agriculture therefore seeks to use high-tech systems in pursuit of this 

respectable and worthy goal. 

The use of robotics is of great benefit for many industries, and for various reasons. 

For example, robotics can be used for tasks when there are concerns over human 

safety, or when the task is repetitive and can be done more productively by a robot 

working much longer hours than humans. And then there are times when robots 

simply offer a required level of precision that humans cannot provide. 

The agricultural industry is no different in this regard. In order to remain competitive 

in what is now a global industry, farmers will have to be more productive, more 

efficient, and provide consistently good product. On top of this, the industry is also 

http://en.wikipedia.org/wiki/Sustainable_agriculture
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suffering from a reduction in the available skilled and unskilled labour workforce. 

Robotic solutions leading to autonomous farming can be used to help. 

The use of robots could significantly contribute to increase overall performances in 

intensive culture management and production efficiency, reducing costs, and, not 

least, to improve labour quality and safety. Particular attention should be focused on 

the last aspect: in agriculture, in fact, the development of autonomous systems able to 

remove or facilitate the operators in the workplace comes from the sensitivity to the 

issues of health and safety.  

Robots can easily perform repetitive task, can undertake operations that are not 

possible with human operators since their cost in terms of time and/or required 

concentration is too high. Operations like precise fertilization and spraying of each 

single plant, precise mechanical weed control or harvesting specific procedures can 

be routinely performed with a robot that can also performs control tasks such as 

inspection and growth evaluation of each single plant. Meanwhile a robot can operate 

in a hazardous environment strongly reducing the exposition of human operators to 

dangerous chemicals. 

1.1 The Goal 

The project‘s main task is the integration of robotics technology and plant science; 

understanding and overcoming socio-economic barriers to technology adoption; and 

making the results available to growers and stakeholders. 

Central to the present work is the development and use of an automated robotic 

platform that can autonomously navigate inside production greenhouses 

environments (especially tomatoes cultivation). The robot structure and architecture 

allows thinking on its reusability in other environment with similar structure of 

greenhouses, e.g. vineyards, for many and different applications. 

Focusing always on all the safety aspects concerning the research, the described 

robot can carry sensors, instruments, farm implements, to automate or to augment 

production operations, including: 
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- Pesticide spraying 

- Tomatoes detection for operation such as: crop load estimation, harvesting, 

precision spraying treatment. 

After the robotic platform has been developed and sensors on board defined, most of 

the work has been focused on the second point and, with more detail, on the 

development of an intelligent computer vision system. 

Computers have become ubiquitous in our daily lives. They perform repetitive, data 

intensive and computational tasks, more efficiently and more accurately than 

humans. It is natural to try to extend their capabilities to perform more intelligent 

tasks such as analysis of visual scenes – in brief the high-level tasks that we humans 

perform subconsciously hundreds of times every day with so much ease that we do 

not usually even realize that we are performing them. 

In real human vision, the exact type, colour and viewpoint of a tomato is irrelevant to 

the decision that an object is a tomato. Similarly, we are able to detect people under 

widely varied conditions, irrespective of the colour or kind of clothing, pose, 

appearance, partial occlusions, illumination or background clutter. On the other side, 

computers are currently far behind humans in performing such analysis and 

inference. 

Thus one goal of researchers working in computer vision and machine intelligence 

has been to grant computers the ability to see – visual analysis and interpretation of 

images or videos. One of the primary tasks is the detection of different classes of 

objects (in our case tomatoes) in images and videos. Such a capability would have 

many applications in the precision farming field. 

This thesis introduces the problem of automate such repetitive tasks performed by 

humans and operators in harsh environment like greenhouses, discusses the 

challenges involved, and briefly presents the approach highlighting the contributions 

of the thesis.  
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1.2 Overview of the work 

With the aim to facilitate workers in precision farming activities inside greenhouses 

environment, a versatile multifunction electrical vehicle with different automated 

subsystem has been developed. 

The vehicle, named U-Go, has been built in order to be used as a multipurpose 

outdoor vehicle in different applications, so the control electronics have been 

designed to provide different choices for control modalities. The simplest one is the 

teleoperated modality. In this situation a remote user, using a joystick, can send 

direct commands to the robot in order to move forward, backward or turn left or right 

at different speeds. In order to allow the totally autonomous operations in the 

greenhouse, different sensors have been tested. 

Among all, this work targets the problem of the implementation of a machine vision 

allowing tomato detection in images. For a more precise definition of our goal we 

can view an object detector as a combination of two key building blocks: a feature 

extraction algorithm that encodes image regions or parts of videos as feature vectors, 

and a detector that uses the computed features to provide object/non-object decisions 

(tomato or not tomato). 

Differently from the approach currently used, (see §2.3) our contribution is focused 

on a learning phase. The system is data-based. It learns what a tomato is and detects 

it on a test image through a classification method (support vector machine is used). 

Consider the example of recognizing handwritten digits, illustrated in Figure 2. Each 

digit corresponds to a 28×28 pixel image and so can be represented by a vector x 

comprising 784 real numbers. The goal is to build a machine that will take such a 

vector x as input and that will produce the identity of the digit 0, . . . , 9 as the output. 

This is a nontrivial problem due to the wide variability of handwriting. 

 

Figure 2 - Example of hand-written digits taken from US zip codes 
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It could be tackled using handcrafted rules or heuristics for distinguishing the digits 

based on the shapes of the strokes (as in the literature overview) but in practice such 

an approach leads to a proliferation of rules and of exceptions to the rules and so on, 

and invariably gives poor results. 

This is fundamental to creating efficient object (tomato) detectors as unlike text 

documents where two words either match exactly or are different, matching or 

categorising objects in images is inherently ambiguous. Many factors contribute to 

this ambiguity, including the image formation processes, variations in illumination, 

partial occlusions, intra-class variation and context (Dalal 2006). 

Due to the dataset sensitivity of the used algorithm, as much bigger is the dataset as 

the machine vision will provide precise detection. 

The introduction of a simple and robust image descriptor simplifies the classification 

task allowing tomatoes to be discriminated easily with less training data and less 

sophisticated learning methods. 

1.3 Challenges 

In order to achieve our goal, the first challenge faced was to develop a robotic 

platform able to navigate autonomously along the environment path. In this context, 

an important role has been played by the choice of a robust algorithm for the 

navigation and the sensors mounted on board. 

Related to the sensors, a cost-benefices analysis has been taken into account and in 

this perspective new low cost solutions have been designed and developed. 

A second challenge has been the choice of an innovative computer vision approach 

allowing us to achieve the second goal: the development of a system vision for 

tomato detection. Finally, the choice of a detector applicable to our case. 

The foremost difficulty in building a robust object detector is the amount of variation 

in images. 
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Figure 3 - Classical view of a tomatoes row 

Several factors contribute to this: 

 Firstly, the image formation process suppresses 3-D depth information and 

creates dependencies on viewpoint such that even a small change in the 

object‘s position or orientation respect to the camera centre may change its 

appearance considerably. A related issue is the large variation in scales under 

which an object can be viewed. An object detector must handle the issues of 

viewpoint and scale changes and provide invariance to them. 

 Secondly, background clutter is common and varies from image to image. 

The detector must be capable of distinguishing object class from complex 

background regions. 

 Thirdly, object colour and general illumination varies considerably, for 

example directs unlighted and shadows during the day to artificial or dim 

lighting at night. Thus a robust object detector must handle colour changes 

and provide invariance to a broad range of illumination and lighting changes. 

 Finally, partial occlusions and overlapping create further difficulties because 

only part of the object is visible for processing. 

Figure 4 (left and right) provides two classical view of tomato rows in a greenhouse 

(robot view) illustrating the difficulties listed above. Note the amount of variation in 

the images, in particular, the variations in appearance, colour and illumination. 
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Figure 4 - Tomatoes row view 

1.4 Outline of Dissertation 

This chapter introduces an overall system description, the key applications of our 

project and presents the overall goals of the thesis. It then continues with a brief 

background of robotics application in greenhouse, outlines our approach to the 

problem, and summarizes our main contributions. The remaining chapters are 

organized as follows: 

 Chapter 2 describes the state of the art in precision farming greenhouses 

activities focusing particularly on those performed by using computer vision 

support. 

 Chapter 3 presents a high-level overview of our project. It does not give 

implementation level details but it describes the overall system platform and 

provides an introduction to the vision system architecture. 

 Chapter 4 deeply describes the robotic platform has been developed and on 

board sensors, showing the tools used and giving a motivation for the 

attempted choices. 

 Chapter 5 presents the algorithm vision architecture and the developed vision 

algorithm. 

 Chapter 6 shows and give an analysis of the obtained results. 
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2 State of Art 

2.1 Robotics in Greenhouses: social impact 

Nowadays a great awareness is spreading rapidly among the farmers concerning 

safety aspects.  

It is clear from literature as the workplace and the activity performed inside a 

greenhouse are not always performed in safety conditions (Balloni et al. 2008a, 

Balloni et al. 2008b, Schillaci et al., 2009). This due to the: ―hard‖ environment 

(humidity, hot, dirty etc), the material and machines managed, wrong procedures and 

not adequate training of the personnel involved, etc.. 

Greenhouses, Figure 5, are characterised by small volumes of continuously recycled 

supporting resources, and have critical epidemic average ratios, enhanced by 

moisture and lighting continuance (for farming effectiveness) favouring the spread of 

biotic agents. 

Greenhouses are translucent glass or plastic constructions for hastening the growth of 

plants. The distribution of plants inside greenhouses usually consists of an alternation 

of double rows of plants and narrow corridors for human operation and walkway. 

This kind of agricultural technique is massively used for intensive production of 

horticultural products in regions with adverse natural climatic conditions, since it 

allows a more effective use of water and daylight. 

  

Figure 5 - Greenhouses environment 
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The favourable atmosphere created inside greenhouses for plant growth causes pests 

and undesirable organisms to thrive as well, making necessary the use of pesticides 

and other chemical products that must be sprayed directly on the plants (Acaccia et 

al. 2003, Pasinetti 1952) 

Today solutions massively depend on heavy chemicals, plentifully distributed at 

given time intervals, making the greenhouse indoors highly toxic, with operator 

health shocks and forbidden re-entry long lasting delays.  

The automation of spraying, as well as other greenhouse operations like monitoring 

and control of environmental conditions, harvest support, plant inspection, and 

artificial pollination, has a dramatic social and economical impact (Acaccia et al. 

2003). 

Recent studies reported confirmation that spraying operations have hazardous effects 

on the health of knapsack sprayer human operators, who are specially exposed when 

working inside greenhouses, in conditions of high temperature and poor ventilation 

(Acaccia et al. 2003). 

Different studies were conducted about risk connected with preparing and spraying 

to high temperature and humidity. The problems related to a prolonged phytosanitary 

exposure are constantly studied and till now are considered indisputable (Aprea et al. 

2011, Giambattistelli 2003, Jovita et al. 2011). 

In Capri et al. 1999 the aim of the study was both to measure potential dermal and 

inhalation exposure in the greenhouse and to evaluate the risk to workers in such a 

scenario. 

During pesticides spreading operations into greenhouses sited in Mediterranean area 

many workers don‘t use all the PPD prescribed by law because the high temperature 

and humidity. Use of vehicles and of a full helmet endowed with forced ventilation 

and air filtration devices for greenhouse agrochemical application appears to be 

related to greater comfort and better operator ventilation (Balloni et al. 2008d). 

In Italy the agricultural sector is in second place as regards accidents, just after the 

building industry. There are many reasons for this but it can be said that human error 
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is often the cause. Carelessness, non-observance of safety regulations, progressive 

aging of the operators, poor technical training of employers and operators and lack of 

maintenance of safety devices are the main causes of accidents in agriculture. To 

these key elements, can be added the fact that many of the machines used daily in the 

fields were designed for completely different purposes or are now obsolete; often are 

also home-made by operators. 

Due to these reasons in agriculture many accidents involve agricultural machinery. 

Of about one million, seven hundred and eighty thousand registered machines, at 

least five hundred thousand do not have the requisites to be in circulation and thus 

endanger the safety of the operators and others. This data is quite shocking in that it 

means that about one machine out of three of those used daily in the fields is obsolete 

and, no longer having the necessary requisites for use, should be taken out of 

circulation (Balloni et al. 2008a) 

In the province of Ragusa, many of the examined machines in Balloni et al. 2008a 

are without bonnets and or chain guard, or they are not in good conditions. It appears 

those workers and often the employers and consequently the management are not 

greatly involved in safety aspects. To make adjustment to machineries and to form 

and to motivate workers are all activities that employers often consider as additional 

costs. A great benefice and support can come from the adoption of automated or 

robotic solutions. Actually the use of robot in every environment requires 

trained/skilled personnel, differently its usage can arise other issues. The aim should 

be to provide reliable and safe solutions that not require mechanical and electronic 

proficiency to be used. 

In Balloni et al. 2008b, Nuyttens et al. 2005, Cerruto et al. 2007, Schillaci et al. 

2009a, the results showed a large reduction in operator dermal exposure using the 

prototype of a self-propelled sprayer suitably designed to properly work in 

greenhouses with respect the normal spray lance. 

In addition to the supplemental security issues, even a costs analysis may be 

advanced (Moltó et al. 2001). Pesticide treatments make up 30 and 42% of the 

production costs. One reason for the high cost of these treatments is due to the high 
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percentage loss of pesticide out of the canopy, due to the globular shape of their 

canopies and to the application of chemicals in the absence of trees.  

The mechanized harvesting of specialty crops, such as tomatoes, is becoming 

necessary as labour costs continue to rise and as the availability of labour decreases. 

In any production system there is a growing need to obtain higher quality products at 

a lower cost in order to be competitive. One solution to this challenge is the 

development of automatic systems that replace manpower in tasks when a person 

performs worse than an automatic device in terms of precision, repetitively and 

working cycle. Probably, harvesting is the process that has received the least amount 

of technological development for satisfactory automation (Jiménez et al. 2000). 

The applications of instrumental robotics are spreading every day to cover further 

domains, as the opportunity of replacing human operators provides effective 

solutions with return on investment. This is especially important when the duties, 

that need be performed, are potentially harmful for the safety or the health of the 

workers, or when more conservative issues are granted by robotics.  
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2.2 Overview of Robotics platform for Greenhouse application 

It is well known that the introduction of robotics in agriculture has not had the same 

success as it has in the manufacturing industry. This is mainly due to the fact that the 

agricultural environment is much less structured and consequently, it is more 

difficult to adopt robots in the automation of different agricultural processes 

(Muscato et al. 2005). The object, with which machines have to interact, have 

irregular size, location and shape; operating environment is quite hostile (humidity, 

dirty, etc) and drivable path are not well defined with possible unexpected obstacles 

As previously mentioned, greenhouse activities often require hours of hard-work 

made by operators. Many of these works can be also very dangerous and 

uncomfortable because of chemicals, high temperature and humidity. With this 

environmental condition, even common agricultural operation can became heavy and 

stressful. Moreover, because of high temperature and humidity, operators often do 

not correctly wear safety clothes, increasing health risk (Sammons et al. 2005). In 

this condition an assist machine could be useful for operators in order to alleviate the 

work load. 

Automation is a need for agriculture operations because of the reduction in the labour 

and increasing cost. There are numerous research investigations reported in literature 

in the area of robotic application in agriculture. 

But frequently agricultural tasks are carried out in an outdoor environment and this 

involves: 

 more expensive design and realization of the mechanical structures, because 

they have to be waterproof, dust-proof and resistant to anything that is present 

in a non-protected environment; 

 the adoption of high-performance and outdoor-proof sensors and actuators; 

 the development of elaborate, flexible control laws in order to cope with a 

great variety of conditions. 

One of the biggest challenges is in developing and integrating robotic solutions into 

the farming landscape. The more unstructured and uncertain the environment is the 
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more machine intelligence is required to achieve any required precision in farming 

operations. 

From the robotics viewpoint, for this reason, there are many advantages to use a 

typical greenhouse environment such as: controllable and/or partially known position 

of the plants, controllable shape of the plants (e.g. the growing direction and the 

height) and ground floor (at least in the driveable surface) more regular than in the 

open field etc. (Dario et al. 1994). 

The robot locomotion mobility is performed on a plane and can be obtained through 

a narrow mobile platform or by track rails suitably joined to the greenhouse ceiling 

structure. Both the solutions have been examined and compared (Acaccia et al. 

2003). 

Due to their high cost and huge impact on the greenhouse, fixed or ―invasive‖ 

solutions are not so common. Actually these systems are adopted in plant nursery 

greenhouses where it can be easy to spray chemicals from the ceiling. In any case 

environmental issues must be considered as chemicals pipe can have leakages, 

releasing dangerous substances in wrong places. Anymore, huge amount of toxic 

fluids are required to fill-in long pipes with non-trivial problem of post-spraying 

flushing with clean water. Instead, because of greenhouses environments are highly 

structured and regular with respect to the open field, they are well suited to be 

operated by automatic machines that do not implies much fixed cost for each 

greenhouse. Moreover, automatic machines can be re-used in different place and can 

solve tasks other than spraying. 

Definitely, the high risk level for operators has driven different research group to 

find some solutions like autonomous or teleoperated robotics systems. 

The available solutions are costly and insufficiently robust, the architecture or the 

software used is often old or heavy and they have limited working capabilities. So, in 

general, till this moment the potential of robotics has not been fully exploited in 

agricultural and there aren‘t robots, to be created and commercialized, as dexterous 

and skilful as trained workers (Gay et al. 2008). 
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The main design parameters for a robot that have to work in a greenhouse 

environment are analysed (Gay et al. 2008, Belforte et al. 2006, Blackmore et al. 

2002). In Acaccia et al 2003 and Gay et al. 2008, the problem of the introduction and 

diffusion of robotic was faced. Analysing carefully the reasons that have prevented 

the employment of robotic systems in agriculture so far some important guide lines 

to design agricultural robots was introduced. 

Among these, the capability to perform different tasks appears the most important 

feature for a robotic system conceived to operate in the agricultural context. 

Moreover, greenhouses are indeed the most suitable agricultural environment to the 

introduction of robotic systems for several technical, safety and economical reasons. 

In Pedersen et al. 2008, economical impact for different automatic approach in 

agriculture for different parameters (fuel consumption, labour costs, autonomy, 

chemicals cost, maintenance) is analysed against manual approach. 

Different autonomous machines have been developed for similar tasks in open field 

(Slaughter et al. 2008, Blasco et al. 2002). 

In the last decade, different research group have been interested on these issues. The 

Aurora robot (Spain) is able to perform different tasks in an autonomous way with 

remote supervision (Mandow et al. 1996). In order to solve navigation problem, 

some visual feedback have been used (Dario et al. 1994). 

At University of Genoa a project named ―Mobile robots in greenhouse cultivation: 

inspection and treatment of plants‖ (Acaccia et al. 2003) has been developed. The 

paper presents a service robot for health monitoring and localized chemical, drugs 

and fertilizers dispensing to plants in greenhouses. The robot and its end-effectors 

have been conceived and designed specifically oriented to the specific environment 

and tasks. Only a virtual prototype has been realized and the authors suggest solution 

in order to solve different tasks: mobile or suspended solutions are compared, 

discussion about the use of an arm with an end-effector, a gripper equipped with a 

system vision to detect the fruits. 
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Figure 6 - The gripper and the eyes-hand system 

Among the several sensor devices used for robot navigation, vision provides the 

richest source of information. In Palamas et al. 2006, a technique for autonomous 

navigation in a greenhouse pathway using pixel based image segmentation is 

presented. 

In literature, different automatic guidance systems that allows reducing driver stress 

and a more relaxed working and an efficient use of machines and resources, were 

presented. Autoguidance, also called auto-steer, of tractors and agricultural machines 

that is based on a global navigation satellite system (GNSS) represents one currently 

available technology that can provide significant benefits for crop production in 

different growing environments. Today, numerous farmers have suspended the use of 

conventional markers from their operations and rely on cost-effective alternative 

methods to steer their farm equipment based on continuously measured geographic 

coordinates. There are several companies that sell such GPS systems for tractors or 

machines and other automated solutions (e.g. sprayers) (Deere, Trimble, Arvatec). 

Some papers highlight different approaches for guiding a vehicle using a Differential 

Global Positioning System (DGPS) based position sensor as the only external posture 

sensor (Buik et al. 2006, Heraud et al. 2009). Some machine adopts multiple 

guidance sensors (Holpp et al. 2006, Li M. et al. 2009, Wan et al. 2008, Murakami et 

al. 2008, Toru 2000). 

In this thesis, an innovative solution, for robot autonomous navigation in tomatoes 

greenhouse cultivations, is described. 

The next sections focus on the past and current solution related the development of 

greenhouse robotic platform. Particular attention has been taken in those equipped 

with system vision as support of precision farming activity. 



State of Art 

 

23 
 

Spraying robot 

Different engineering solutions to the current human health hazards involved in 

spraying potentially toxic chemicals in the confined space of hot and steamy 

glasshouses are presented: from the two different multi-purpose robotic cells 

prototypes (Gay et al. 2008), through robots capable to realise the potential of steel 

pipes as a method of guidance in the greenhouse (Sammons et al. 2005), to the 

development of robots totally autonomous capable to work in every greenhouses 

(Mandow et al. 1996, Balloni et al. 2008c). 

  

Figure 7 - Fixed point robotic cell operating in the greenhouse 

A mobile platform for greenhouse chemicals spraying has been developed at 

University of Almeria (Sanchez et al. 2010). In this work, specifications for a 

greenhouses robot are first identified then the complete machine (named FitoRobot) 

has been built with ultrasonic sensors for the motion between plants rows. The 

machine is driven by an internal combustion engine. A commercial machine, named 

Fumimatic 400 (Fiuminatic), is available in Spain. It is not autonomous nor 

teleoperated but it is a complete spraying machine with a powerful Diesel engine and 

a 400 l tank for chemicals. In the area of Vittoria (RG), Italy, a local SME build and 

sold a small tracked vehicle with thermal engine. On board is mounted a complete 

spraying system; the machine is named ―Vanco Spray‖ (Balloni et al. 2008c, Balloni 

et al. 2008d, Schillaci et al. 2009a, Schillaci et al. 2009b).  

Cho and Ki (Cho et al. 1999) used fuzzy logic and machine vision technology for an 

autonomous speed sprayer for orchards. The input information to the fuzzy logic 
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controller is given by both machine vision and ultrasonic sensors. The vehicle 

heading was decided from the machine vision image while the range data, between 

the object and the sprayer, was determined from ultrasonic sensors.  

Shin and Kim (Shin et al. 2001) developed an autonomous guidance system for a 

small orchard sprayer with ultrasonic sensors using artificial stainless steel pipe 

targets, due to its strong reflection of ultrasonic waves.  

Misao (Misao et al. 2001) used image processing for an automatic steering system 

with red target boards to guide the power sprayer. Video camera was used to acquire 

the image of 3 the travel path including the red board targets. Image processing was 

used to determine the distance from the current vehicle position to the target, and 

then the actual position to the desired vehicle path was compared and corrected by 

automatic steering control.  

The path in greenhouse is usually straightness to increase plant area, so high 

guidance precision is strictly demanded especially at the comer. The guidance 

control strategy in Fujuan et al. 2010 can deduce the heading speed of the robot 

when turning the comer and increase the guidance precision. Electromagnetism 

guidance method is adopted. In the spraying control system, the spraying pole can 

fold to avoid touching the strut and the greenhouse wall and stop spraying to save 

pesticide when the robot arriving at the end of the field and lay down a certain angle 

to spray when the robot arriving at the path in the field. 

In Zhang et al. 2005, the electromagnetic induction mode is chosen as navigation 

methodology. The selection of spraying is relied on many factors, for example: the 

type of the plant, the kind and grade of the insect pest and the kind of the pesticide. 

The spraying mode could be chosen according to different situations, the robot is 

versatile. A signal switch is used for switching on or off induction wires so as to 

make the robot change the path according to task's requirements. A drawback of this 

work has to be identified in the operation of laying wires in the greenhouse 

underground; this causes big effort and cost every time the environment or 

greenhouse changes (not flexible solution). 
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Figure 8 - Robotics platform 

Harvesting robot 

In large-scale greenhouse production, technological developments can reduce 

production costs; mechanization of crop maintenance and harvesting is one desirable 

way to accomplish this. In Hayashi et al. 2005, authors developed, about this context, 

three types of harvesting robot. The prototype strawberry-harvesting robot could 

judge maturity and make basic harvesting movements. The eggplant-harvesting robot 

achieved a harvesting rate of 29.1%, averaging 43.2 seconds per fruit.  

  

Figure 9 - Strawberry and eggplant harvesting robot 

In Van Henten et al. 2002, the author describes the concept of an autonomous robot 

for harvesting cucumbers in greenhouses. The paper focuses on the individual 

hardware and software components of the robot. These include, the autonomous 

vehicle, the manipulator, the end-effector, the two computer vision systems for 

detection and 3D imaging of the fruit and the environment and, finally, a control 

scheme that generates collision free motions for the manipulator during harvesting. 
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Figure 10 - A functional model of the harvesting robot. 

The Kitamura et al. 2005 paper describes recognition and cutting system of sweet 

peppers for picking robots in greenhouse horticulture. This picking robot has an 

image processing system with a positioning system for two cameras and cutting a 

device to follow the sweet pepper by visual feedback control. 

 

Figure 11 - Structure of picking robot 
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2.3 Precision farming based on computer vision 

Agricultural automation may take advantage of computer vision resources, which can 

be applied to a number of different tasks, such as inspection (Brosnan et al. 2002), 

classification of plants (Tang et al. 2003, Neto et al. 2003, Steward et al. 2004), 

estimated production (Annamalai et al. 2004), automated collection (Plebe et al. 

2001) and guidance of autonomous machines (Lulio et al. 2009). 

In Sandini et al. 1990, the authors have classified three different main area of 

intervention related this field: 

1. Navigation control; 

2. Grading and quality control; (Blasco et al. 2003 and 2009) 

3. Monitoring and localization of important objects; 

Different approach of image processing can be applied depending on the assigned 

task. Related the first point, in this thesis, a new approach has been developed (see 

§4.7). 

The homogeneity and appearance of the fruits have significant effect on consumer 

decision. For this reason, the presentation of agricultural produce is manipulated at 

various stages from the field to the final consumer and is generally oriented towards 

the cleaning of the product and sorting by homogeneous categories (Blasco et al. 

2003b). 

 

Figure 12 - (a) Acquisition of the first image; (b) acquisition of the second image - cup 1 rotates the fruit 

120°; (c) acquisition of the third image - cup 1 rotates the fruit other 120° and (d) acquisition of the fourth 

image - cup 2captures the fruit and rotated 180° 
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The approached method (segmentation) is fast and appropriate for on-line processes, 

but depends much on the colour of the objects to be inspected. In fact, many factors 

can invalidate the results: illumination, colour, highlights, etc.  

In Gomez-Sanchis et al. 2008, the study proposes a method for correcting the 

adverse effects produced by the curvature of spherical objects in acquiring images 

with a computer vision system. Its suitability has been illustrated in a specific case of 

citrus fruits. The images of this kind of fruit are darker in areas nearer the edge than 

in the centre, and this makes them more difficult to analyse. 

 

Figure 13 - Diagram of the image acquisition system 

This methodology considers the fruit as being a Lambertian ellipsoidal surface and 

produces a 3D model of the fruit. By doing it becomes possible to calculate the part 

of the radiation that should really reach the camera and to make the intensity of the 

radiation uniform over the whole of the fruit surface captured by the camera, no 

matter what region is being sampled. Some tests have been carried out in order to 

prove that using the proposed correction methodology the reflectance in all the 

surface of the fruit is similar, minimizing the differences from the central area to the 

peripheral areas. 

Relating to the second point, monitoring and localization of important objects inside 

a greenhouse, since there is a clear tendency of reducing the use of chemicals in 

agriculture, numerous technologies have been developed trying to obtain safer 

agricultural products and lower environmental impacts. 
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One of the precision farming activities that involve machine vision system is 

automatic weeding strategy (Blasco et al. 2002). The development of image 

processing methods to discriminate between weed, crop and soil is an important step 

(Xavier et al. 2008). Automatic weeding strategy could minimize the volume of 

herbicides that is sprayed to the fields. Image filtering technique (Ghazali et al. 2008) 

or segmentation (Jafari et al. 2006) has been used to process the images as well as a 

feature extraction method to classify the type of weed images.  

In Quan et al. 2006, a semi-automatic technique for modelling plants directly from 

images is proposed. 

Most of them focus on segmentation or filtering image processing technique based 

on the difference of the color existing between the fruit, the crop, the soil and so on 

(Haff et al. 2006, De Mezzo et al. 2007, Pajares et al. 2007, Xia et al. 2009). 

In Svensson et al. 2002, the aim of the project has been to investigate the possibility 

of using image processing as a tool to facilitate grapevine management, in particular 

shoot counting and assessment of the grapevine canopy. 

In Braun et al. 2010, a novel colour-based recording and evaluation technique is 

presented which allows determining the spatial distribution of foliage along 

approximately planar vine rows with high accuracy. The approach uses optical flow 

tracking to construct a composite from an image sequence and user-trainable 

bayesian colour classification to segment foliage from distinctively colored canvas 

carried along behind the row under evaluation.  
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Figure 14 - Estimation process of the vineyard foliage 

In De Mezzo et al. 2007, the author proposes a new method of pest detection and 

positioning based on binocular stereo to get the location information of pest, which is 

used for guiding the robot to spray the pesticides automatically. 

In the context of monitoring and localization of important objects in the greenhouses 

environment, one of the most performed activities is the localization and detection of 

the fruit. It could guarantee a better phytosanitary product/pesticide distribution, 

harvesting procedure, detecting illness or pest diffusion, quality and growth control. 

Different components make difficult such operation: occlusion of the leaf, 

brightness, huge variety of horticulture typology etc. 

The work reported in Jiménez et al. 2000, is a review of previous studies that try to 

automate the fruit location finding process on trees using computer vision methods. 

The main features of these approaches are described, paying special attention to the 

sensors and accessories utilized for capturing tree images. The work focuses on 

different aspects: the image processing strategy used to detect the fruit, the results 

obtained in terms of the correct/false detection rates and the ability to detect fruit 

independent of its maturity stage. 
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The majority of these works use CCD cameras to capture the images and use local or 

shape-based analysis to detect the fruit.  

Systems using local analysis, like intensity or colour pixel classification, allow for 

rapid detection and were able to detect fruit at specific maturity stages, i.e. fruit with 

a different colour from the background. However, systems based on shape analysis 

were more independent of hue changes and were not limited to detecting fruit with a 

colour different from the background one. Nevertheless these algorithms were more 

time consuming. 

The approaches using range images and shape analysis were capable of detecting 

fruit of any colour, did not generate false positive and gave precise information about 

the fruit three-dimensional position. In spite of these promising results, the problem 

of total fruit occlusion limits the amount of fruit that can be harvested, depending on 

fruiting and viewing conditions. 

2.3.1 Fruit detection in greenhouses 

Aiming at realizing cucumber identification and location for cucumber harvesting 

robot in greenhouse, a segmentation algorithm for cucumber image was presented 

(Van Henten et al. 2002). Choosing an initial threshold to segment the images, it was 

dynamic revised based on shape characteristics of cucumber fruits after the initial 

segmentation threshold was judged. The pixel region which did not belong to fruit 

was removed 

 

Figure 15 - (a) Original Images (b) Image after segmentation (c) Images after post-processing 

 

Fruit detection is an intricate problem because the green cucumber fruit have to be 

found on a green background (Van Henten et al. 2002). From the two main 
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approaches, (a) recognition based on shape and (b) recognition based on spectral 

properties, the last seems to be the most promising. 

The reasons for not detecting the fruit were mainly caused by illumination problems 

(reflection, flash intensity too high or too low), problems with separating two 

cucumbers, problems with separating fruit and stem, and by cucumbers completely 

hidden behind leaves. 

 

Figure 16 - Detection of cucumber fruit using computer vision. Original image taken by the camera 

mounted on the vehicle (left), segmentedimage (middle) and detected fruit (right). 

In the image-processing algorithm of Kitamura et al. 2005, the fruit of the sweet 

pepper is recognized by binarization of HSI colour specification. HSI colour 

specification system is one of colour image expressions; it consists of three images 

that are hue, saturation, and intensity. However, this algorism cannot recognize fruits 

without enough lighting. 

 

Figure 17 - Pepper detection flow 
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Most of the works, for developing their project, they have chosen the productive 

cycle of tomato plants in a greenhouse environment since it presents a sequence of 

cultural operations (as explained below) rather diversified and not banal. At the same 

time tomato plant is characterized by certain regularity in its structure that could 

partially simplify the development of cultural operations by means of a robotic 

system and so it is a valid test. 

Tomato's fruit generally doesn't ripe simultaneously. On each tomato plant, green, 

yellow, orange, and red tomatoes can be found. Tomato can be detected basing on: 

colour, shape or highlights. 

In Whittaker et al. 1987, digital image analysis with a modified circular Hough 

transform, proved to be able to locate tomatoes based on shape and not colour, even 

when the scenes contained substantial background noise and the fruit were partially 

hidden from view. 

The circular Hough transform is indeed an acceptable method for locating and 

identifying tomatoes in an image that has been acquired under natural field 

conditions. The circular Hough transform method does not depend upon a colour 

difference between the fruit and the foliage. It has the ability to operate in the 

presence of natural "noise" in an image such as bright spots caused by specular 

reflectance and shadows cast by plant leaves onto the tomato. Finally, the circular 

Hough transform is valid for situations in which the perimeter of the tomato is 

partially occluded. The algorithms presented in the research are computationally 

intensive on a serial processor and cannot at the present time be performed in real 

time. 

In Arefi et al. 2011, the harvesting robot was designed to have the ability to detect all 

the types of tomato colours and pick up only the ripen ones. Because colour range of 

UT and RT (Ripe Tomato and Unripe Tomato) is close together and colour of RT is 

not uniform (there is yellow- red colour pixels in a RT), no appropriate algorithm has 

been reported yet to detect the RT on the plant. Hence, the object of this study was to 

introduce and develop a new algorithm for recognition and localization of RT from 
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the background (green, branches, leaves and greenhouse space) and UT (yellow and 

orange tomato) based on the colour quantification and shape of fruit. 

 

Figure 18 - Typical RT recognition. (a) Original color image (b) Gray image (c) Binary image (d) Image 

after removing the background (e-f) Extraction of red pixels, and g. RT recognition. 

In Hayashi et al. 2005, authors have developed a stereoscopic vision system that 

relies on highlights (Figure 19). The system consists of a halogen light, two cameras, 

a travelling carriage, and a computer. Figure 19 shows the method of detecting ripe 

tomatoes in a cluster. First, the stereoscopic vision system detects the red area from 

the R-G images. Second, the highlights of each fruit inside the red area are separately 

detected. Finally the system calculates the fruit position in three dimensions from the 

stereoscopic images. 
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Figure 19 - The stereoscopic vision system and the method of detecting red tomatoes in a cluster 

In Yin H. et al. 2009 a robotic system for harvesting tomatoes in greenhouses is 

designed. Effective recognition of ripe tomatoes from complex background is the key 

technology of the harvesting robotic system. In this work, the colour feature of ripe 

tomatoes is employed. The ripe tomato is segmented by K-means clustering using the 

L*a*b* color space. To extract a single integrity ripen tomato, mathematical 

morphology method is used to de-noise and handle the situations of tomato 

overlapping and shelter. 
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Figure 20 - The tomato with complex background. (a) The input image; (b) The segmented tomato; (c) The 

extracted tomato 

In Kondo et al. 2008, a research on a tomato fruit cluster harvesting robot was started 

to automate the whole process. It consists of a system for artificial vision, a 

manipulator and an end-effector. 

This machine vision system consisted of two identical colour TV cameras (VGA 

class), four lighting devices with PL (polarizing) filters, and two image capture 

boards. Two images were acquired at a time and RGB colour component images 

were converted into HSI images. Using colours on the HSI images, main stems, 

peduncles, and fruits were discriminate and an end-effector grasping point on the 

main stem was recognized based on physical properties of the tomato plant. 

 

Figure 21 - End-effecter and machine vision 

Fruit image segmentation issue on colour difference between mature fruits and 

backgrounds under natural illumination condition is an important and difficult 
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content of fruit-harvesting robot vision. Some studies concerning fruit image 

segmentation have been presented in the last few years. However, these studies are 

focused on particular fruit and different from segmentation results. In Yin J. et al. 

2008, four kinds of segmentation methods are presented and applied into fruit image 

segmentation. The tests show that these methods can segment successful several 

kinds of fruits image, even tomatoes. 

 

Figure 22 - Tomato image and its segmented image (image size: 640x480) 

The Yang et al. 2007 paper presents a method to detect and recognize mature tomato 

fruit clusters on a complex structured tomato plant containing clutter and occlusion 

in a tomato greenhouse for automatic harvesting purpose. A colour stereo vision 

camera (PGR BumbleBee2) is applied as the vision sensor. The proposed method 

performs a 3D reconstruction with the data collected by the stereo camera to create a 

3D environment for further processing. The Colour Layer Growing (CLG) method is 

introduced to segment the mature fruits from the leaves, stalks, background and 

noise. Target fruit clusters can then be located by depth segmentation. The 

experimental data was collected from a tomato greenhouse and the method is 

justified by the experimental results. The experiments included severe self and stereo 

occlusion. 

 

 

Figure 23 - Mature fruits at 32~35cm distance with stereo occlusion (a) raw left image (b) raw right image 

(c) CLG colour segmentation (d) fruit cluster in the image with depth filter 

In these approaches many factors can infect the quality results and the same 

detection. 
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One of the drawbacks of the segmentations method based on the colour information 

relies on the fact that it can detect only fruit at the same maturity or colour 

distribution: how detect tomato when different color appearance occurs? As shown in 

Figure 24: 

 

Figure 24 - Classical view of a tomatoes raw 

Occlusion, highlights presence, illumination variability, etc are all parameter that 

have to be taken into account and till the moment it doesn't exist a robust method to 

solve the detection issues. Our approach starts directly from the object/tomato and 

proposes a new algorithm method based on detecting classes of objects, in our case 

tomato (Blasco et al. 2003a). 

Our focus is on developing robust feature extraction algorithms that encode image 

regions as high dimensional feature vectors that support high accuracy object/non-

object decisions. To test our feature sets we adopt a relatively simple learning 

framework that uses linear Support Vector Machines to classify each possible image 

region as a ―tomato‖ or as a ―non-tomato‖. The approach is data-driven and purely 

bottom-up using low-level appearance and motion vectors to detect objects. 
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3 Materials and Methods 

3.1 The Greenhouses 

The Mediterranean landscape is characterized from a huge number of greenhouses 

for crop cultivation as shown in figure below. 

 

Figure 25 - Overview of the greenhouse industry at Pachino (Province of Siracusa, Sicily, Italy) 

 

Figure 26 - Overview of the greenhouse industry at Licata (Province of Agrigento, Sicily, Italy) 

The present work is focused on activity performed on tomato cultivation. 
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The experimental trials were carried out in a tomato greenhouse located in the 

province of Ragusa (Sicily, Italy) (Figure 27). The plants were arranged in twin rows 

with distance between plants of about 0.6 m, distance between twin rows of 0.85 m, 

and row spacing of 1.80 m (Figure 28): 

 

Figure 27 - Greenhouses plant where the tests has been performed (Ragusa, Sicily, Italy) 

 

Figure 28 - Section of a Greenhouse sample 
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The greenhouse had a metallic structure, covered with plastic film. The minimum 

height was 2.70 m, the maximum 4.50 m. It had 15 spans, each 29 m long and 8 m 

wide, so the total surface was some 3600 m
2
. A lateral aisle 1.10 m wide is provided 

for internal movements of operators during crop activities. 

There are around 7500 tomato varieties grown for various purposes. Tomato varieties 

are roughly divided into several categories, based mostly on shape and size. 

 "Slicing" or "globe" tomatoes are the usual tomatoes of commerce, used for a 

wide variety of processing and fresh eating. 

 Beefsteak tomatoes are large tomatoes often used for sandwiches and similar 

applications. Their kidney-bean shape, thinner skin, and shorter shelf life 

make commercial use impractical. 

 Oxheart tomatoes can range in size up to beefsteaks, and are shaped like large 

strawberries. 

 Plum tomatoes, or paste tomatoes (including pear tomatoes), are bred with a 

higher solids content for use in tomato sauce and paste, and are usually 

oblong. 

 Pear tomatoes are obviously pear-shaped, and are based upon the San 

Marzano types for a richer gourmet paste. 

 Cherry tomatoes are small and round, often sweet tomatoes generally eaten 

whole in salads. 

 Grape tomatoes, a more recent introduction, are smaller and oblong, a 

variation on plum tomatoes, and used in salads. 

 Campari tomatoes are also sweet and noted for their juiciness and low acidity. 

They are bigger than cherry tomatoes, but are smaller than plum tomatoes. 

The work is mainly focused on the "cherry" tomatoes variety; a typical crop wall is 

shown in the figures below: 
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Figure 29 - Typical Cherry tomatoes wall 

The robot structure, the sensors and the vision system developed has been designed 

in order to guarantee the achievement of the goal: development of a vehicle capable 

to autonomously navigate in the greenhouses previously described, equipped with 

sensors (of different cost solutions) for the navigation and a vision system for the 

detection of tomatoes. The robot will be equipped with a remote operable sprayer 

that can use information coming from the artificial vision subsystem to optimize the 

spraying process. The next paragraphs are an overview of the work, leaving to the 

next chapters the task of a deeper explanation of the architecture and algorithm used. 

3.2 U-Go Robot 

The mechanical structure of the robot has been designed in order to be compliant to 

different requirements (see §4.1). Different sensors have been tested and new 

solutions developed in order to guarantee mainly the autonomous navigation along 

the greenhouses path (Figure 30) and the detection of the tomatoes fruit. 
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Figure 30 - Typical greenhouse path 

Related to the navigation sensors, two different categories can be identified. Those 

based on: 

 DGPS and Laser scanners (high cost solution) 

 Webcams and ultrasounds (new low cost solutions) (Longo et al. 2010a) 

 

Figure 31 - system modalities overview 

Actually a third modality is in development. The aim of the work presented 

(Bonaccorso et al. 2011) is the investigation of the potentialities of a very low cost 

Global Navigation Satellite System (GNSS) based localization architecture. 
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The needed accuracy in the position solution is obtained through the adoption of the 

―Sicili@Net‖ infrastructure, a free of charge Ground Based Augmentation System 

(GBAS) offered by the National Institute of Geophysics and Volcanology – INGV. 

Several test campaigns have been conducted to test both the augmentation and the 

guidance systems in dynamic conditions and performances have been evaluated in 

different environments (open spaces, urban environments). 

In the next chapters a description of the architecture, of the sensors and of algorithm 

used will be carried out taking into account only the first two modalities previously 

mentioned. A computer vision approach for the detection of the tomato based on a 

commercial web cameras will be introduces in the next paragraph and more detailed 

in §5. 

3.3 The Vision System and Tomato Detection 

Computer vision (or machine vision) is the science and technology of machines that 

see. Here see means the machine is able to extract information from an image, to 

solve some task, or perhaps "understand" the scene in either a broad or limited sense. 

Applications range from (relatively) simple tasks, such as industrial machine vision 

systems which, say, count bottles speeding by on a production line, to research into 

artificial intelligence and computers or robots that can comprehend the world around 

them. 

Computer vision seeks to apply its theories and models to the construction of 

computer vision systems. Examples of applications of computer vision include 

systems for: 

 Controlling processes (e.g., an industrial robot or an autonomous vehicle). 

 Detecting events (e.g., for visual surveillance or people counting). 

 Organizing information (e.g., for indexing databases of images and image 

sequences). 

 Modelling objects or environments (e.g., industrial inspection, medical image 

analysis or topographical modelling). 
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 Interaction. 

The classical problem in computer vision, image processing, and machine vision is 

that of determining whether or not the image data contains some specific object, 

feature, or activity. This task can normally be solved robustly and without effort by a 

human, but is still not satisfactorily solved in computer vision for the general case: 

arbitrary objects in arbitrary situations. The existing methods for dealing with this 

problem can at best solve it only for specific objects, such as simple geometric 

objects (e.g., polyhedral), human faces, printed or hand-written characters, or 

vehicles, and in specific situations, typically described in terms of well-defined 

illumination, background, and pose of the object relative to the camera. 

Tomato detection is a computer vision system that determines the locations and sizes 

of objects in arbitrary (digital) images. It detects objects features we are interested 

and ignores anything else, such as buildings, trees and every kind of object in the 

background. 

Our algorithm can be regarded as a specific case of object-class detection. In object-

class detection, the task is to find the locations and sizes of all objects in an image 

that belong to a given class. 

Often, a window-sliding technique is employed. That is, the classifier is used to 

classify the (usually square or rectangular) portions of an image, at all locations and 

scales, as either tomato or non-tomato (background pattern). 

This approach has been followed in our research and it can be summarized in two 

main steps (Figure 32). 

The first, the learning phase, is in off-line mode and it can be performed once you 

decide your objective and dataset. The dataset creation has been a main and 

determinant step in order to achieve the results expected. Finally, it‘s up to the 

classifier to choose what the object is and what not. 

The second phase, the detection ones, can be called on-line phase. It starts 

considering a test image and applying to that one a dense image scanning. Once a 
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classifier has run and performed the detections, a fusion of multiple data (non 

maxima suppression technique) is often required. 

 

Figure 32 - Tomato Detections Overview 

The power of this method consists in the reusability of its architecture for other 

applications. The achievement of the results whished depends strongly on the dataset 

(e.g. tomatoes, apples, strawberry etc.) and in the descriptor choice. 

For more and deeper details on the vision algorithm please refer to §5. 
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4 U-Go Robot 

4.1 Introduction to the robot 

This section will present the U-Go Robot, a rugged outdoor vehicle under developed 

at DIEEI Robotic Laboratories. The main target for this new machine is to be a 

multifunction system able to comply with different field of applications. The DIEEI 

Robotic Group currently has different active projects in the field of autonomous 

navigation, new GNSS technologies, agriculture and precision farming applications, 

artificial vision, data fusion and so on. The work has been a challenging opportunity 

to test different subsystems working together. 

U-Go Robot is an acronym that means ―Unmanned Ground Outdoor Robot‖. This 

robot has been developed at DIEEI Robotic Laboratories mainly to solve problems 

like transportation, navigation and inspection in very harsh outdoor environments, to 

perform inspections into volcanic environments and as a test bed for new GNSS 

(Global Navigation Satellite System) localization technologies. 

Moreover, in this thesis, the robot has been used as a multifunctional vehicle able to 

mainly operate inside greenhouses for precision farming applications. 

The whole hardware and software kit has been developed in order to perform 

different kind of activity; in the next paragraphs the hardware configuration of the 

sensors, the computation units and the used framework for the development of the 

control algorithm, will be shown. 

4.2 The robot structure 

The mechanical structure has been designed in order to be compliant to different 

requirements. First of all, the robot must be able to move inside greenhouse 

corridors; moreover it must be able to move on different uneven terrains and must 

not generate too high pressure on the terrain (in order to meet agricultural 

requirements). The robot must be able to carry at least 200 kg payload over a flat 
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road (in order to be able to carry an agricultural spraying machine or other tools) and 

climb on sloping roads with some reduced payload. 

According to these specifications, the robot two main dimensions are 0.6 m wide and 

1.2 m long. Moreover it uses rubber tracks instead of wheels for locomotion and its 

weight is about 150 kg. Figure 33 shows the U-Go Robot. Two 12 V – 180 Ah sealed 

lead-acid batteries are mounted on the mechanical structure on the rear side of the 

robot. Each rubber track is actuated by means of a 24 V – 650W brushed DC motor 

and suitable gearboxes are mounted in the front side of the robot. Two roller chains 

connect gearboxes output shaft with tracks input shaft; in case of emergency they can 

be easily opened to allow free tracks motion. Above the two DC motors it is possible 

to see the box that contains the power electronics. 

 

Figure 33 - The tracked U-Go Robot in the lab and during a teleoperated outdoor test. 

Finally, on the top of the robot there is another box that contains computers, all the 

necessary electronic circuits needed for autonomous navigation, the emergency stop 

button and the safety flash. The computers box can be disconnected if only 

teleoperation is needed. 

4.3 The on-board electronics 

The control electronics have been designed to provide different choices for control 

modalities.  

The simplest one is the teleoperated modality. In this situation a remote user, using a 

joystick or simply a computer keyboard, can send simple direct commands to the 
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robot in order to move forward, backward or turn left or right at different speeds. The 

user can also read some system parameters like battery voltage, power electronics 

temperatures or motors currents. The only components required for this operating 

mode is the power electronics box and a radio link between the robot and the remote 

station. The radio link sends digital data at the speed of 9600 bit/s over a UHF radio 

signal. The remote station is composed by the joystick, the radio and a standard PC 

or laptop used to read joystick movement by means of suitable software. The PC 

could be replaced by apposite suitable electronic circuit capable to read movements 

of an analogical joystick and to send digital commands to the radio. These 

commands will be received by the radio mounted on-board the robot and then sent to 

the power electronics. A block diagram of this system modality is shown on Figure 

34. 

The other two possible modalities for controlling the robot are semi-autonomous 

mode and autonomous mode. Both these two modalities rely on an on-board 

computer and on several sensors mounted on the robot. 

In the first mode, a remote base station is also required. In the second mode, the 

remote base station could be avoided, however for safety and logging reasons it is 

always better to keep it. In semi-autonomous mode, the remote user send high level 

commands to the robot (like ―go forward‖); then the robot, using on-board sensors 

can compensate the whole trajectory for unexpected disturbances and to reach 

waypoints and targets.  

In autonomous mode, the robot will be able to find its way through corridors in the 

greenhouse, to find optimal path on a not well defined road, to reach a target by GPS 

waypoints and to avoid obstacles. For safety reason a remote or local user can always 

issue an emergency ―stop‖ command to the robot. Next chapters will briefly describe 

the different sensors and algorithms used. 
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Figure 34 - Block diagram of the system in teleoperated mode 

4.4 Interfaces and sensors 

The on- board sensors suite is composed by: 

 

Figure 35 - Hardware configuration and disposition for U-Go Robot 

• Global Navigation Satellite System (GNSS) receiver 

• X-Sens MTi Attitude/Heading sensor 

• Laser range finder (LRF) 

• Stereocam for Eye-Bird vision 
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• Control and Vision PCs 

• DC Motor Driver 

• Vision System 

• Webcam and US-Sonars 

Information coming from these devices are fused together in order to implement a 

self-localization and obstacle avoidance algorithm. In Figure 35 a block diagram of 

the sensors system architecture is shown. 

Different cost solutions, depending on the sensors used, will be explained in §4.5. 
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4.4.1 Global Navigation Satellites Systems (GNSSs) 

The sensor provides information on the absolute position of the robot in geographic 

coordinates. Due to the functioning with the module for differential correction, it 

provides a very accurate measurement (with an error in the order of centimetres) of 

the position of the robot. The Differential GPS (DGPS) is a method to improve the 

accuracy of a standard GPS signal by using one or more GPS reference stations with 

exactly known positions, each equipped with a GPS receiver. It is obtained by 

sending signals to correct the error between the different stations and the mobile 

station with unknown position. 

DGPS requires the use of at least two GPS receivers: 

 Base: permanently positioned in a fixed location with known coordinates 

with great accuracy. 

 Mobile: used in a generic position (e.g. equipped on board the robot) with 

unknown coordinates. 

If the two receivers are not too far one from each other, they will be more or less at 

the same weather conditions and subjected to the same error in the calculation of the 

position. The base station knows its location (latitude, longitude, altitude) and then 

accurately can calculate the error between the estimated position and unknown 

location. If this error is communicated to the receiver mobile, for instance through 

radio modems, it can correct its estimated position, greatly reducing the localization 

error. The information transmitted from the receiver to the mobile base is called 

differential correction. The precision offered by this tracking system can also reach a 

few centimetres. 

4.4.1.1 LLA to Local coordinates conversion 

WGS84 is a mathematical model of the Earth from a geometric, geodetic and 

gravitational point of view, built on the basis of the scientific and technological 

knowledge available in 1984. From the geometrical point of view, WGS84 is a 

particularly conventional Earth system, or more precisely a Cartesian reference 

system used to describe the earth, whose characteristics are: 



U-Go Robot 

 

 

53 
 

 center: on the mass center of the earth 

 Z-Axis: passing through the North Pole. 

 X axis: passing through the Greenwich meridian. 

 Y axis: chosen to complete a right-handed triad, i.e. such that an observer 

placed along the Z axis sees the X-axis overlaps to the Y-axis with counter-

clockwise motion. 

To this reference system is associated an ellipsoid obtained by rotating an ellipse 

around its minor axis. A point P is uniquely determined by the following triplet of 

geographic coordinates LLA: 

 Latitude µ: is the angular distance of the point P measured from the equator 

along the meridian passing through that point. 

 Longitude l: is the angle between the meridian passing through P and the 

prime meridian of Greenwich. It is positive in the west front and negative by 

the east of Greenwich. 

 Altitude h: distance along the normal to the ellipsoid between P and the same 

ellipsoid. 

 

Figure 36 - Latitude and longitude coordinates 



U-Go Robot 

 

 

54 
 

The ultimate goal is the conversion of the LLA coordinates in ENH (East, North and 

Height) local coordinates but, first, they must be converted into an intermediate 

system of reference: ECEF (Earth-Centered Earth-Fixed). It‘s also a Cartesian 

coordinate system similar to the WGS84 system. It‘s the system of reference rotating 

with the Earth; the X, Y, Z are represented in meters. The XY plane is coincident 

with the equatorial plane with the respective unit vectors pointing directions of 

longitude 0° and 90°, while the Z axis orthogonal to this plane pointing in the 

direction of the north pole. The point (0, 0, 0) denotes the centre of the earth, hence 

the name "Earth-Centered." In this system of coordinates, a generic point P is defined 

by the triple of coordinates(x, y, z). 

 

Figure 37 - ECEF coordinate system 

The conversion from LLA to ECEF can be done through the use of these 

relationships: 
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and f = 298.257223563 is the flattening coefficient and R = 6378137 is the equatorial 

radius.  

Now you can make the conversion from geocentric Cartesian coordinate system 

(ECEF) to local Cartesian coordinate system (ENH). 

P0 is a known geocentric coordinates (X0, Y0, Z0), the origin of the Eulerian triad, 

while P be a generic point, with geocentric coordinates (X, Y, Z).  

We calculate first the coordinate differences between P and P0. 

ΔX = X - X0 

ΔY = Y - Y0 

ΔZ = Z - Z0 

Then the coordinates (e, n, h) of the generic point P are obtained by using the 

rotation formulas between the two systems: 
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4.4.1.2 The Standard: NMEA 0183 

The purpose of the standard NMEA0183 is to send to the computer processed data 

from the GPS receiver in a series of strings, with a certain frequency (typically 1 Hz). 

Each string is included between a $ terminator and a carriage return '\r\n'; they 

identify exactly the beginning and end of the string. After the $, each string contains 

a prefix identifying the device is working properly sending the string. For example, 
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for GPS receivers the prefix is 'GP'. The fields of each string have variable length 

and they are separated by ','. 

The GPS string we are interested is the GGA, which contains essential data for 3D 

localization. An example of the GGA string is the following: 

$GPGGA , 122730.00 , 3731.5177 , N , 01504.4368 , E , 1 , 06 , 1.2 , 154.3 , M , 

39.4 , M , , 0000*5A\r\n 

where: 

 GPGGA: String identifier  

 122730: UTC system Time; corresponding to 14:27:30. 

 3731.5177: latitude in DM format (Degrees, Minutes); corresponding to 

37°31.5177‘.  

 1504.4368: longitude in DM format (Degrees, Minutes), corresponding to 

15° 4.4368‘. 

 154.3: altitude in meters above the sea level. 

 39.4: geode height (sea level) on the ellipsoid WGS84. 

Thanks to this information, the geodetic coordinates LLA can be extracted, then 

converted in geocentric Cartesian coordinates ECEF and finally in the local 

coordinates ENH. 

4.4.1.3 The DGPS System used 

The DGPS system, used for robot satellite tracking, is based on the model produced 

by the Ashtech Z-Xtreme. 
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Figure 38 - Ashtech Z-Xtreme module 

It consists of two modules, a base and a mobile. Each module is powered up by a 

battery even if the base module, being fixed, can be powered by a generator. The 

module provides six ports: 

 Power: used to feed the module, if the battery is not provided. 

 Radio: the port used for connecting the module to the radio modem, 

necessary for the communication between base and mobile. The base module 

is connected to a transmitter to communicate the differential correction; the 

module will be connected to a mobile antenna to receive it. 

 Serial Port A, B, C: serial ports used for the output of differential correction 

and navigation data, as well as the connection between base and mobile in 

alternative way to the radio modem. 

 GPS: connecting port of the DGPS module to the GPS antenna. 

A PC can be connected to any of the three serial ports and Mobile Base. This is 

necessary to set the two modules and to obtain a proper working of the DGPS 

system. The Base module signal will be set in order to: 

 provide the differential correction to the output port B. 

 provide navigation data to the output port C. 

In addition, it is necessary to save on the Base module, the geodetic coordinates of 

the antenna mounted on a tripod. In this way, the Base module, knowing with 

precision the position of the antenna, is able to estimate the error and notify the 

differential correction to the mobile module. This output on serial port B is 

transmitted via radio modem.  

The Mobile module is set in order to: 
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 receive the differential correction in the input port where is connected a radio 

antenna. 

 provide navigation data to the output port C. 

At this point, the mobile module is able to correct its position and provide it to the 

serial port connected to a PC. The parameters of the connection between mobile and 

PC module are: 

 Baud rate: 9600 bps 

 Data bit: 8 

 Parity: No 

 Stop bit: 1 

 Flow Control: Hardware 

4.4.2 Laser Scanner 

The laser scanner used is a Sick, model LMS200 (Figure 39). This type of sensors 

detects the distance between points detected by scanning the environment, calculated 

from the average of a laser beam deflected through a rotating mirror mechanism, and 

the instrument itself. 

 

Figure 39 - Laser Scanner Sick LMS 200 

These devices allow measuring an angular range of 180°. In terms of resolution, the 

smallest detectable angular variation is typically 0.5° but it is also possible to obtain 
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a resolution of 0.25°. The power requirement is 24 VDC with a power consumption 

of 20W. The optimal temperature for its operating range is between 0°C to 50°C. 

The interface used is a serial RS-232 or RS-422. The weight is about 4.5 Kg and 

dimensions are156x155x210 mm (LxWxH). Laser scanning technology allows the 

digital acquisition of tridimensional objects as point clouds. The digital geometric 

description of the object is discrete, the resolution set for the acquisition defines the 

density of the point cloud and so the detail of the representation. 

Every point is described by a spatial position in x y z coordinates respect to the 

origin represented by the position of the scanner. 

4.4.2.1 Sensor communication 

The Sick receives commands as a stream of bytes through the serial port. In 

response, it sends distance measures through packet data.  

A typical data stream could be as follows: 

2 128 214 2 176 105 65 79 23 76 23 77 23...... 

To get the data from the sensor, you need to send a string of initialization is as 

follows: 

 Hexadecimal form: 02 00 02 00 20 24 34 08 

 Decimal form: 2 0 2 0 32 36 52 8 

Successfully received the string, the sensor begins to forward the measures. This 

information is organized in packets whose format is: 

 

Figure 40 - Data Packet of the distance measures 

The first five fields of the packet are header. They contain information about the 

address of the recipient (typically a PC), total size (in bytes) of data stream 

(excluding the CRC field) and size (in bytes) of data section. The overall size of the 
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header is 7 bytes. In the package, there's a part of the packet data (16 bits) reserved to 

distance measures (Data Low and Data High fields). 

Totally there are n x 16 bits for data, where n is the number of measurements 

performed by the sensor. If the resolution is 0.5 ° and the scan range of 180 ° there is 

a total of 361 measures (722 data bytes). For each measurement, the device sends the 

least significant byte first, followed by the most significant. 

The measurement unit is the millimetre. For example, if the sensor detects a distance 

of 5000 mm it will send two bytes in decimal form: 136 and 19 (88 and 13 in 

hexadecimal), in fact, 136 + 19 x 256 = 5000. 

The last three fields in the packet (3 bytes) are part of trailers and contain 

information about the state of the system and a checksum (typically a 16 bit cyclic 

redundancy code). 

To stop forwarding data from the sensor, an additional string has to be sent to the 

device. The string is as follows: 

 Hexadecimal form: 02 00 02 00 20 25 35 08 

 Decimal Form: 2 0 2 0 32 37 53 8 

4.4.3 DC Motor Driver 

It allows the robot moving through commands sent via RS-232. The independent 

actuation of the robot tracks allow a differential drive configuration (§4.7.1.4). 

4.4.4 Stereocam: Bird-Eye Vision 

Mainly for outdoor use, e.g. vineyard, on the robot there are also two high quality 

stereoscopic cameras; each one has a resolution of 1.3 Megapixel; they are equipped 

with fixed focus lens of 4.0 mm. The CCD sensors of these cameras have a good 

noise immunity and sensibility; moreover, it is possible to adjust all the image 

parameter, e.g. exposure gain, frame rate, resolution. The cameras are mounted on a 

rigid support; it permits to adjust in a simply way the camera distance in a range 5-20 
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cm (Figure 41).The images come from the two camera are synchronized with an 8 

KHz clock, generated by using IEEE1394 interface. 

 

Figure 41 - Stereocamera 

The sensor is composed from two video cameras, based on fixed position, in order to 

provide a 3D vision to the user. 

Through this device, it is available a 3D vision for the implementation of artificial 

vision algorithm (e.g. the ―Bird Eye Vision‖). The terrain morphology is used both to 

detect the presence of obstacles in the mission path and to recognize and define a 

drivable surface in the proximity of the robot. An approach similar to the one 

described in Dahlkamp et al. 2006 is adopted: a supervised algorithm permits to 

create a database of the scenarios, allowing the on-line identification of possible safe 

patterns. However, while in Dahlkamp et al. 2006, a simple camera is adopted, in our 

application, a stereo camera pair will be used. Image processing is based on the 

OpenCV open source library that provides useful, quick and reliable basic functions 

to build up computer vision algorithms. An auto-calibration tool for stereo camera 

has been developed, in order to easily and quickly compute cameras intrinsic, 

extrinsic and distortion parameters. The computed parameters are used in the real-

time image processing procedures so as to obtain a top down ―bird‘s eye‖ view 

(Figure 42), from which information about the path in front of the robot can be 

extracted. The adoption of stereo cameras also allows detecting obstacles and getting 

out elevation data from the images, in order to find drivable corridors. 
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Figure 42 - Original image (on the right); reconstructed top down “bird’s eye” view (on the left) 

4.4.5 PCs for vision and control 

The two calculation units are separated for a greater efficiency and consist of two 

PCs (UNO - 2182) Intel CoreDuo. The Vision PC provides sensory information from 

the images coming from the stereocameras processed by graphics library (OpenCV). 

An additional PC is dedicated to the final control algorithm with the collection of 

data coming from sensors, to the processing and actuation of the DC motor driver. 

All sensors are connected to the PC for control via RS-232, while the connection 

between the two calculation units is via UDP protocol over Ethernet. 

The two on board PC have been chosen on the basis of the characteristics required by 

the application: the structure is robust and suitable for industrial use, they do not use 

cooling fans for use in dusty environments and solid-state hard disk has been used to 

improve robustness to vibration. 

4.4.6 Low cost solution for localization 

Another main target of this research activity has been to develop and test different 

low cost sensors that can enable the multifunctional tracked electrical vehicle to 

move autonomously inside a greenhouse with tomatoes cultivation, regardless of use 

of the DGPS system. 
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Big effort has been put on finding solutions that require minimum or no apparatus 

installation in the greenhouses while performing centimetre-level accuracy at a 

fraction of the cost of a DGPS commercial system. 

Two main kinds of sensors systems have been developed using low cost ultrasound 

sensors. The first system uses a set of eight ultrasound transmitter/receiver couple. 

These sensors can compute time by time the distance and the rotation angle of the 

robot with respect to the plants rows. This information could be used to correct the 

robot trajectory, allowing the system to move along the centre line between rows. 

The second system that has been tested is a Local Positioning System (LPS). It uses a 

set of low cost ultrasound receiver sensors mounted on the greenhouse structure in a 

regular grid while an ultrasound transmitter is mounted on-board the robot that is 

moving between rows. The system allows knowing the relative coordinate of the 

robot with respect to a reference inside the greenhouse. At this stage, different trials 

on the sensors have been performed inside a greenhouse in different condition; these 

trials allowed evaluating systems accuracy and performance. 

As previously mentioned, sensors like DGPS and 2D Laser scanner are widely used; 

they have very good performance but the high cost and their use cannot be addressed 

to most SME in the agriculture field. The two methodologies proposed here are 

instead based on very low cost ultrasound sensors and suitable measurement 

algorithms. They allow obtaining the position of a moving machine along rows with 

respect to corridors boundary or with respect to a reference system defined in the 

greenhouse. The two systems can be used at the same time on the same machine for a 

better accuracy (smart data fusion algorithm could be developed) or it is possible to 

use only one of the two at time. 

Different tests have been done in a real greenhouse in order to evaluate performance 

and capabilities of the two systems and results have been reported; the obtained 

accuracy is in any case in the order of few centimetres. 
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In next section, the two different low cost solutions, both based on ultrasound 

sensors, for robot autonomous navigation in tomatoes greenhouse cultivations, are 

described. 

Finally, another low cost solution will be shown. The algorithm uses Visual 

Odometry to calculate position, speed and directions of the movement for the mobile 

robot moving through narrow paths, by using only the images coming from a single 

CCD camera. This methodology has different advantages and could be very cheap 

compared to other solutions; moreover it can be applied to a wide range of narrow 

path similar to the greenhouse corridors that consists of a floor, a ceiling and two 

limits walls. 

4.4.6.1 Self-centering system 

The first sensor system is composed by eight SFR08 sensors from Devantech and 

exploits the particular environment of tomatoes cultivation in greenhouse. Generally 

speaking, the system can operate in all those places where a wide, quite regular, 

vertical leaves surface is available. 

Each sensor is a module that comprises both transmitter and receiver transducers and 

all the related electronics in order to perform distance measurement in the range 0.03 

m – 6 m. The used ultrasound wave is in the 40 kHz band and the radiation diagram 

of the transducers is quite large. The module uses the acoustic wave generated by the 

transmitter and reflected by an obstacle in front of the module itself, to measure the 

distance by means of the wave time of flight (about 300 m/s in free air). The sensor 

module is shown in Figure 43. 

 

Figure 43 - The SFR08 sensor module 

Exploiting these features it was possible to use this sensor to measure distance 

against leaves walls. Due to the wide area covered by the sensor, the single 
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measurement is not biased by the particular leaf or by local leaves structures but it 

takes a kind of mean value of the distance. In more detail, in the particular area 

covered by the sensor, if a single small leaf is on a different plane with respect to the 

most leaves vertical plane, its position will be neglected by the sensor because of the 

very small acoustic energy it can reflect; in fact the module has a threshold below 

which it cannot ‗see‘ targets in front of it. 

These sensors and related control electronics, can compute time by time the distance 

and the rotation angle of the robot with respect to the plants rows by using a 

triangulation algorithm. This information could be used to correct the robot 

trajectory, allowing the system to move along the centre line between rows. 

4.4.6.2 The LPS system 

The second system that has been developed is a Local Position System. Like the 

most common GPS system, the LPS give back the position of the system, for 

example the robot, while moving or standing still. The main difference is that the 

GPS uses absolute coordinates while the LPS uses relative coordinates with respect 

to a reference system locally defined, for example one of the vertex of the 

greenhouse. The LPS system that has been used was developed at DIEEI during past 

research activities for different applications (Andò et al. 2006, 2008, 2009). The 

system does not rely on some special structure of the greenhouse, but it can be used 

in all kind of environment indoor or outdoor. Moreover different tests performed in 

real greenhouse has shown that plants, cable, pipe and other infrastructures that 

normally can be found in every greenhouse, does not interfere with normal system 

operations. The LPS system uses a set of low cost ultrasound receiver mounted on 

the greenhouse structure in a regular grid (for example one sensor on each pillar). An 

ultrasound transmitter is then mounted on the robot that is moving between rows; 

every time the fixed receivers hear the signal sent by the robot, the system computes 

the robot position with respect to the reference system using a trilateration algorithm. 

Using the robot position and as the greenhouse map is known, it is possible to use 

standard navigation algorithms used for outdoor DGPS navigation, exploiting the 
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same centimetre-level precision at a fraction of the cost of a DGPS commercial 

system. 

4.4.6.3 Artificial vision system for odometer estimation 

The aim of this research is to implement and test an artificial vision algorithm that 

will allow autonomous navigation of the robot through greenhouses corridors. This 

target can be achieved exploiting some special features and light condition that are 

normally found in a typical greenhouse with tomatoes cultivation (Figure 44). For 

example, lateral vegetation, a very high illuminated ceiling, some pattern differences 

between lateral vegetation and drivable path on the floor and so on. With this 

methodology in mind, some others high cost solutions (for example DGPS or 2D 

Laser Scanner) are automatically excluded. 

 

Figure 44 - Common robot path in a greenhouse 

Data coming from the artificial vision are then used to obtain useful information that 

will be used to drive the robot through the aisle. The algorithm uses Visual Odometry 

to calculate position, speed and directions of the movement for the mobile robot 

moving through narrow paths, by using a single CCD sensor (a common commercial 

low cost webcam – Figure 45). 
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Figure 45 - Webcam used for the trials. 

Odometry is a technique used to estimate the position of a moving machine using 

sensors like encoders, accelerometers and so on. Visual Odometry is a process that 

tries to find the same information of traditional odometry, but using only the images 

from CCD cameras. The algorithm does not rely on previous information about 

surrounding environment. It uses perspective or central projection into a new plan. 

In few words, the original frame caught from the webcam, after a stabilization phase, 

is transformed using a bird-eye like algorithm (Figure 46). This perspective 

transformation allows pointing out the pattern differences between lateral vegetation 

and the driveable path. With simple image manipulation algorithms, the vanishing 

point of the image is determined. 

 

Figure 46 - Corridor view: a) Original frame b) Bird-eye view. 
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Using this information and the actual position of the robot (determined in the 

previous algorithm step) the robot orientation and offset is then calculated. The 

application solves different problems as the stabilization and calibration of image 

stream, the extrapolation of information from the image stream and the speed of 

execution of the algorithm. In Figure 47 a block diagram of the implemented 

software is represented. The FluxLab object is the core of the application. It 

calculates three parameters: the alpha angle, the offset and the speed of the robot. 

 

Figure 47 - Block diagram of the implemented software. 

The alpha angle is the angle of the robot with respect to the aisle axis while the offset 

is the distance of the robot from one side wall. The speed parameter is calculated 

with respect to the floor using the optical flow methodology. 

4.4.7 MTi 

The sensor provides an absolute orientation of the robot. The MTi is a unit that use 

MEMS devices as inertial measurement sensors, capable of calculating real-time roll, 

pitch and yaw, as well as acceleration, angular velocity, data related to the magnetic 

field and to the temperature. 

 

Figure 48 - MTi sensor 
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Fields of use of the device are numerous:  

 Robotics 

 Aerospace Applications 

 Autonomous Vehicles 

 Marine Industry 

 Motion Capture 

The orientation of the MTi is calculated using a Extended Kalman Filter (EKF), and 

data related the magnetic field are exploited to stabilize direction, in particular, the 

measure of gravity and magnetic north offsetting the unlimited growth of errors 

associated with the integration of the gyroscopic measurements. 

A diagram of the inertial device is shown in Figure 49, where there are represented 

the various sensors, 3D accelerometer, 3D gyroscope, 3D magnetometer, and 

temperature sensor. All sensor data will be sent to a digital signal processor (DSP) 

and then will be processed in a PC via serial communication. 

 

Figure 49 - Functioning scheme of MTi sensor 

The specifications of the inertial device are the following: 
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Dinamic Range All angles in 3D 

Angular Resolution 0.05° 

Repeatability 0.2° 

Static Accuracy (roll/pitch) 0.5° 

Static Accuracy (Yaw) 1.0° 

Dinamic Accuracy 2° RMS 

Refresh Rate From 1 Hz to 120 Hz. 

Table 1 - MTi specifications 

The output values can be presented in different parameters: 

 Quaternions 

 Euler angles: roll, pitch, yaw 

 Rotational Matrix 

The sensor is able to provide the orientation of the reference system S, within the 

frame of the sensor, compared to the reference system G, that is, in other words, the 

inertial system of the earth. 

 

Figure 50 - Orientation of the reference system S, within the frame of the sensor, compared to the 

reference system G, within the frame of the earth 
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The axes will be oriented respect to the ―earth reference system‖ according to these 

conventions: 

 X is positive when it corresponds to magnetic north 

 Y is positive when it corresponds to magnetic West 

 Z is positive when it points upward 

Obviously they are defined with respect to magnetic north and not to true north, due 

to the magnetic declination. 

4.4.8 The Vision System for Tomato Detection 

Two simple web cams have been mounted on board of the robot. They provide the 

data image flow necessary for the tomato detection. More details will be added in the 

next chapter (Chapter 5). 

4.5 System Architecture Overview 

As the large sensor kit available, the modularity of the architecture of the robotics 

platform used (see 4.6) will vary depending on the choices, application environment 

(greenhouses, vineyards, etc.) and the budget available. 

The system control architecture is shown in Figure 51. It mainly consists of one 

computer, in which reside software modules used to receive information from the 

various sensors used (sonar, laser, webcam etc) and data from the computer where is 

implemented the artificial vision system. The communication between the different 

sensors and computers is through serial port or Ethernet and UDP protocol. 

Navigations algorithms have been developed using the Microsoft Robotics 

Developer Studio (MRDS) tool. This programming platform is developed by 

Microsoft just to interact with different and customizable robotic devices and 

integrate also a Visual Simulation Environment (VSE). This permits easily to 

simulate control algorithms and architectures before real robot testing. This 

development environment designed for robotics allows to: 



U-Go Robot 

 

 

72 
 

• create a simulated custom scene, simulating the sensors and the traction of 

the vehicle 

• implementing communication services with the real hardware 

• create control loops using block diagrams 

• implementing control algorithms in a powerful object-oriented language 

like C# 

• easily simulate robotics algorithms using physically realistic 3D simulated 

models 

• testing the same algorithms in a real context 

• exploit the service-oriented paradigm for a rapid and intuitive 

development 

MRDS is particularly useful for moving a project from simulation toward the real 

robot implementation. In fact, it is possible to replace each simulation entity with a 

corresponding tool of the real world. For all these reasons, MRDS is proposed in the 

robotics world as a powerful tool for the development of robotics applications. 

The control module, therefore, resides in a PC that receives and processes sensors 

information provided by the GPS device Ashtech Z-Extreme, the laser scanner SICK 

LMS200, the Bird Eye Vision system, XSens MTi, the vision system for odometry, 

the bumpers, the ultrasound sensors etc. 

In figure, the whole architecture is shown: 
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Figure 51 - System control architecture 

As previously mentioned, two different solutions for the localization of the robot can 

be shown: 

 Low cost: based on ultrasound system (Self-centering or LPS system) 

 Higher cost (GPS and Laser Scanner) 

Thanks to the use of MRDS, the control architecture has been developed in order to 

guarantee the usage of the entire kit of sensors, choosing each time the most suitable 

for the requested application and, sequentially, for the development of the control 

law. 

In the previous chapter the hardware toolkit has been explained. In the next sections 

the used framework will be shown, and an overview of the control algorithms and the 

final architecture will be offered. 
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4.6 Microsoft Developer Robotics Studio 

Microsoft Developer Robotics Studio (MRDS) has been chosen as control software 

for the robotics platform. It‘s a framework, Windows based, representing a 

significant tool for the development of robotics applications. 

In particular MRDS was created by developers want to give innovative solutions to 

problems encountered in the robotics field. In fact, MRDS born after a large analysis 

dedicated to discovering the world of robotics and the problems most commonly 

encountered. Microsoft, after studying the needs not only of professionals but also of 

hobbyists, students and researchers, has drafted a user‘s ―wish list" that can be 

translated as: 

 Simple configuration of sensors and actuators and ability to use them 

asynchronously 

 Ability to start and stop software components dynamically 

 Ability to monitor the robot during normal operation 

 Ability to access, in a distributed architecture, to multiple robots 

simultaneously from a single user node or from multiple users to single robot 

 Ability to reuse the same software components for different robots 

The points listed reflect most of the daily problems encountered in software 

development for a new robotic platform: they are related to the monitoring and 

remote control of the robot as well as the need of re-writing control software every 

time a change on the sensors used occurs (which is a widespread issue in the field). 

Encouraging the reuse of code already written and interoperability across the 

network, Microsoft aims to open the doors of robotics to more people and provide a 

new development platform, which solves the most trivial problems, leaving to the 

researchers more time for more complex problems and for design of new algorithms. 
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Figure 52 - MRDS Runtime 

MRDS is a development environment that offers a service-oriented programming, 

graphical tools, tutorials, and documentation. The applications created with MRDS 

are divided into services linked one to each other through exchanging messages. 

A MRDS application, as shown in Figure 52, uses three levels: CCR, DSS and .NET 

Common Language Runtime (CLR) allowing the interaction between different 

services in a message oriented architecture. 

4.6.1 CCR, DSS components and Asynchronous Programming 

4.6.1.1 Concurrency and Coordination Runtime 

A substantial part of the development environment is represented by the component 

"Concurrency and Coordination Runtime" (CCR) of the framework .NET that makes 

asynchronous programming much easier than using traditional tools. 

The CCR component is a part of .NET library and can be used by any developer 

wants to avoid the typical problems of thread programming. It provides 

asynchronous programming where the concurrency is managed by the component 

CCR. 

In practice, a robot is equipped with sensors and actuators that operate 

simultaneously, assigning to each one a service. The component CCR manages the 

proper functioning in a multithreaded architecture. 
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Without the CCR the developer is forced to use events and semaphores to coordinate 

the different services and complex algorithms and to prevent threading deadlock of 

asynchronous operations. With the integration of CCR component in MRDS, it‘s 

possible to avoid all the mentioned issues having to handle each type of 

asynchronous operation, leaving to the user the ability to split the code into services, 

and taking care only of the exchanging messages between services. 

4.6.1.2 Decentralized Software Services 

The DSS is an application model allowing the developer to monitor services in real 

time. It follows a set of rules used to define some of the Web technologies. By 

definition, the web is a stateless environment, however, through the DSS, to each 

service is associated a unique identifier within the subnet URI (Unified Resource 

Identifier) which becomes the access key to the service in a MRDS applications and 

allows to display its status through the net. Peculiar characteristic of the DSS is the 

separation between state and behaviour of the service. 

 

Figure 53 - DSS component 

The DSS, therefore, defines the components of each service in MRDS as shown in 

Figure 53. 
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Service Partners. Service Partners are special kind of services with which the main 

service exchanges messages. 

Service Identifier. In MRDS, a unique identifier, Universal Resource Identifier 

(URI), is assigned to each service. 

Contract Identifier. The contract defines the operation of the service and is 

identified by a URI; you must know the URI of the contract to use the service. 

Service State. The status of the service is a set of variables representative of the 

service. It can be monitored at any time through a web interface of the MRDS tools 

or other services that know the identifier. 

Main Port. It is the main port of the service where the messages, to be processed to 

generate a response output, occur. On the port, there are defined one or more actions 

that the service is ready to provide. 

Service Handlers. Each action will work differently as described in the Service 

Handler where it is detailed the processing of the incoming message in order to 

provide the output message. 

Notification. It allows to link more services: they will answer in case of 

asynchronous changes of status of the service (paragraph 3.3). 

To implement subscriptions, the Extensible Markup Language (XML), which 

provides rules for handling data structures, event notifications, and multiple accesses 

on the web, has been used in MRDS.  

MRDS uses standard protocols such as TCP combined with XML and HTTP. 

4.6.2 Visual Programming Language 

A solution for beginners or for a rapid prototyping of complex applications is the use 

of the MRDS Visual Programming Language (VPL). VPL is a graphical tool 

intuitive and easy to use whose main objects are blocks and connections between 

them: it simplifies the creation and editing of even complex algorithms. 
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Figure 54 - VPL context 

As shown in Figure 54, a VPL application consists of blocks for actions/services and 

connections. In addition, the activities in VPL are blocks performing standard actions 

as the data manipulation, the use of global variables for a project, or calculations. 

VPL, although a graphical environment, is based on messages flows. The different 

blocks exchange messages through the main port or by creating flows through 

notifications. 

The different work flows, running in parallel, follow simple rules for a competitive 

access to data in a consistent manner. 

In the following sections, practical applications for the completion of the final 

application through the use of components of Microsoft Robotics Developer Studio 

are illustrated. 

4.6.3 The VSE component 

The Microsoft VSE (Visual Simulation Environment) provides an integrated 

environment that allows you to perform simulations, even complex ones, in order to 

test different applications. It gives the ability to create a simulated scenario, not only 

robots but also environments and other entities, such as obstacles, using a realistic 
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3D rendering. The VSE uses the AGEIA PhysX engine for the physical simulation of 

the environment. Without it, the simulation would be useless, since it could in no 

way represent the world that you are trying to simulate. For example, entities would 

be not affected by gravity or friction. Finally, the physics engine allows entities to 

interact with the environment in a realistic way. 

 

Figure 55 - Simulation environment 

The VSE gives the possibility to create custom simulation scenes essential to test, in 

security, the applications and the control algorithms developed. The simulation 

phase, has also given the opportunity to simulate the noise and "bottlenecks" in the 

existing context. The presence of a tool such as VPL has permitted to build control 

loops in a graphical and intuitive manner. 

MRDS allows "painless" transfer by the simulated environment to the real one, thus 

giving the user the ability to focus on simulation to better understand the role of 

parameters in the control laws and to identify the optimal values. 

4.6.4 U-Go robot applications 

U-Go Robot applications are different, thanks to the simplicity in the management 

and reuse of code provided by MRDS. This last one was a useful tool for carrying 

out the various applications and control algorithms. 

The sensors management provides the opportunity of changing sensor in relation of 

the control algorithm. 
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The code, so written, is modular respecting the interfaces between the services; 

moreover, the code writing is simple, neat and easy to understand. 

MRDS makes possible different applications of U-Go Robot, with different sensor 

configurations, due to the simplicity in the sensors management through services. To 

add a new feature of a new sensor is sufficient adding a new sensor service and a 

new control algorithm service for the new application. 

4.6.5 MRDS Interface Sensors 

As previously mentioned, in MRDS each sensor corresponds to a service. This 

section is a MRDS service overview of the sensors on board of U-Go robot. For each 

service the interfaces provided to the navigation service will be detailed. 

4.6.5.1 GPS Service 

A GPS service provides an interface between the hardware module and control 

service. The service implements the serial interface, manages the string received 

through the serial port, unpacks and decodes the string attributing a value to the 

different variables. 

The handler of the output values is related to the action ―GetLLA‖ of the main port. 

The service architecture consists of a thread. 

The service architecture consists of a hardware thread handles RS-232, the 

processing of the received string and updating of the service variable. The handler 

attached to the main port allows forwarding updated values of the VPL flow. 

The input to the VPL action GetLLA of the MyGPS service is null; the service 

output variables are the following: 

 ucttime: The time provided to the GPS module in UCT format. 

 Gpsqi: A value related to the GPS signal quality. 

 numSats: Satellites number received by GPS module. 

 latitude longitude e altitude: current GPS position. 
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 nuoviDati: boolean value, indicating that the values are generated from 

current data than the previous. 

 ggaString: complete string received in input, forwarded to the output for the 

log file or other functions. 

All information is contained in a single output string properly processed and 

validated. The string is sent with a frequency of 1 Hz or 5 Hz. The field nuoviDati is 

set to a true value when a new string has been validated and unpacked. 

4.6.5.2 MTi Service 

The management service of the inertial sensor (MTi) is similar to the GPS service. It 

uses a library provided by the manufacturer of the sensor available for the most 

common programming languages. It is necessary to properly import this library from 

the installation folder of the sensor at the following path: 

C:nProgramminXsensnSoftware DevelopmentnCMTDllComnXsensCMT.dll 

To start the service, as the GPS service previously mentioned, a null message shall 

be sent as VPL input. Inside the service, a thread manages the processing of the input 

data sensor. The outputs are the data provided by the sensors: 

 Roll Pitch Yaw: Orientation values in the system reference of the sensor 

within the frame of the inertial system. 

 AccX AccY AccZ: acceleration values in all three spatial directions. 

 gyrX gyrY gyrZ: components of the acceleration detected by the gyroscopic 

sensor. 

 magX magY magZ: components of the magnetic field detected by the sensor. 

 Temperature: temperature value measured by the MTi internal sensor. 

4.6.5.3 Laser Scanner Service 

To provide the management of the Laser Scanner has been used a service developed 

and tested by Ben Axelrod (Axelrod): it allows the management of the sensor and its 

initialization.  
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The sensor requires an initialization string when the application starts and the output 

from the service is an array of measures along the different radial directions. 

The proper functioning of the sensor is secured by a further flow VPL, as shown in 

Figure 56: the first flow is executed only once when the application starts and 

ensures the proper initialization of the sensor. Secondly it queries sensors and 

updates to the new values the variables in the diagram. 

 

Figure 56 - VPL initialization and management flows of the Scanner Laser. The second operation may be 

linked to a timer for the sensor polling 

4.6.5.4 Bird-Eye Vision 

An important sensory information for the final application is the result of the 

algorithm based on machine vision library OpenCV. The vision algorithm, called 

―Bird Eye Vision" (Aranzulla et al. 2010), through the processing of images from 

stereocamera, provides information on a viable path and any obstacles located at an 

increased distance from the laser scanner range. 

The service and its implementation are more useful in the case of outdoor inspection, 

e.g. vineyard context, and till now, it hasn't been used for greenhouse environments. 
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The result of the vision algorithm is a further sensory information for the control 

service and consists of two arrays, one attractive and one repulsive, each containing 

five values. The values represent the forces of attraction and repulsion toward the 

path travelled in an opposite direction to the obstacles identified. 

The exchange of data between two computers is guarantee d by the communication 

service via UDP protocol, as described in section 4.6.5.6. 

 

Figure 57 - Representation of the output vectors of the vision algorithm: in green the attractive forces, reds 

are repulsive. 

The directions of the five values of the two arrays are radial directions along five 

fixed angles: -23°, -14°, 0°, 14°, 23° in the reference system shown in Figure 4.4. 

4.6.5.5 Ultrasound sensor (US) Service 

On-board the robot there are 8 US sensors:  

 E0, E2, E4 on the left side 

 F0, F2, F4 on the right side 

 E6 on the front position 
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 E6 on the back 

In Figure 58 is shown the exactly pose on the robot 

 

Figure 58 - Position of US sensors on the robot 

Reading the measure of each sensor, the aim is to obtain parameters useful for the 

robot driving. In more detail, the algorithm allows to extract two parameters: 

 delta: translation of the robot axis respect to the corridor's axis (negative if 

the robot is translated towards the left or positive in the opposite case) 

 theta: rotational angle between the robot axis respect to the corridor's axis 

(negative if anticlockwise, positive viceversa) 

To better understand the meaning of Delta and Theta refers to the following 

explanation and figure. 

 

Delta estimation 

The robot translation can be measured through the difference between the sensors 

measures on the left side and those on the right side. 

In other words as: 

difference[1] = misure_E0 – misure_F0 

difference[2] = misure_E2 – misure_F2 

difference[3] = misure_E4 – misure_F4 
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Figure 59 - robot translation respect to the corridor axis 

 

Theta estimation 

To know the orientation of the robot, it's necessary to take sensor measurements in 

subsequent couple on the same side, and note the distance between the sensors, we 

can calculate the angle, as seen in Figure 60. 

 

Figure 60 - robot orientation respect to the row. 

For example, supposed sensors calculate the distance from a perfectly flat wall, 

known sensor measurements of E0 and E2 and the distance between the sensors, 

which is set at 0.50 m, it is possible to know the angle between the two sensors by 

the following formula: 

angle_1= arcsin [(misure_E0 – misure_E2) / distance] 

angle_l is the first angle calculated for the left side of the robot. 
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The second angle is calculated through the difference between E2 and E4, and in the 

same way for the right side. 

Obviously it should be noted that the row is not perfectly flat, but still contains the 

points where the foliage is sparser. Consequently, the measures do not have high 

accuracy, therefore, the orientation will be known within a certain margin of error 

which will be determined on the basis of experimental tests. 

Finally the robot orientation is estimated considering the average of the calculated 

four angles. 

4.6.5.6 UDP Service 

The information provided by the algorithm of computer vision (paragraph 4.2.4) is 

sent to the navigation algorithm via UDP protocol. In fact, a PC has been dedicated 

to the execution of image processing and an Ethernet connection allows the data 

exchange with the PC dedicated to the navigation control. 

So a MRDS service to allow these operations has been created for the final 

application. 

In more detail, a thread allows the network communication via UDP and the data 

processing. The service has been customized in order to receive the data from the 

vision system. The outputs of the action ―GetVision‖ are two arrays updated each 

time new data come from the Vision PC: 

 attractiveArray is an array of five values: along five directions are shown 

attractive forces. 

 repulsiveArray is a further array of five values representing the obstacle 

forces for the obstacle detection in addition to the data performed by the 

Scanner Laser. 

These values are the result of the algorithm performing the detection of the drivable 

path and the detection of the obstacles located at a greater distance from the Scanner 

Laser. 
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4.7 Navigation 

The navigation algorithm, running on the MRDS platform, takes care of generating 

the control reference for trajectory of the used robot; in our case the code has been 

customized for the U-Go Robot. 

 

Figure 61 - System control architecture 

First of all, different algorithms have been tested using data coming from the laser 

scanner and the DGPS. Relying on these data, an Obstacle Avoidance (OA) 

algorithm was developed. One of the techniques used for OA was the Potential Field 

Method (PFM) which allows the motion control to avoid collisions with the obstacles 

detected by sensors during the motion itself, without losing the main task; for 

example to achieve a target configuration identified by a GPS waypoint. The result 

of this technique is a sequence of movements that allows to safely drive the vehicle 

towards the target without collisions. 

4.7.1 Autonomous Navigation Algorithm 

This section is dedicated to the presentation of algorithms applicable to the mobile 

robot, subject of the related work. 
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4.7.1.1 Target Following 

Among the different algorithms for autonomous navigation, one of the algorithms 

used in this work is the tracking of targets, shown in Figure 62. The operation of the 

algorithm is based on the compensation of the angle between the robot and the target, 

while the robot is going towards the target point.  

Varying the rotation speed of the robot, the algorithm compensates the error between 

the orientation vector of the robot and the vector that identifies the target. 

Considering the coordinates of the position of the robot (Xr and Yr ) and Xg and Yg 

the coordinates of the goal, the angle that the robot detects is given by: 













 

XrXg

YrYg
goal 1tan  

a rotational speed proportional to the error angle will be applied: 

ω = Kωθerror= Kω(θgoal – θrobot) 

 

Figure 62 - Representation of the algorithm for tracking targets 
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4.7.1.2 Trajectory Tracking 

In some applications it is preferred that the robot follows a precise trajectory rather 

than just the target. The navigation of the robot through trajectory tracking (in Figure 

63) takes care of the position (Xr and Yr) and orientation of the robot (θrobot). 

The goal is the trajectory track given by joining two contiguous points (X1, Y1) and 

(X2, Y2) of the path the robot must follow. A straight line (trajectory to be followed) 

in that tracking step, has the equation: 
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 (X1; Y1) and (X2; Y2) are the coordinates of the two extremes of the 

trajectory 

 x and y are the variables for the straight line equation in the plane 

  

Figure 63 - Representation of the algorithm for trajectory tracking 

In this case the coefficients of error to be compensated are two. We need a combined 

action of two weights given by: 

etot = K1eorientation + K2edistance 

with: 

eorientation = θrobot - θstraight line 

the orientation error is: 
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The error distance between the robot and the straight line that identifies the trajectory 

is given by the intersection of the normal to the straight line through the robot.  

M is the angular coefficient and q is the ordinate of the origin of the straight line 

trajectory. 

4.7.1.3 Estimation of the Robot orientation 

The calculation of the orientation of the robot can be derived directly from 

measurements made by an inertial sensor (§4.4.7), or approximated by the difference 

between two consecutive positions (Figure 64). 

Let (X1, Y1) and (X2, Y2) the two consecutive positions of the robot, the angle of 

orientation for the robot will be: 

 

Figure 64 - Angle representing the orientation of the robot 
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In both solutions, estimated using inertial sensor or calculated between two 

successive positions, the estimated orientation of the robot is used in navigation 

algorithms discussed earlier. 



U-Go Robot 

 

 

91 
 

4.7.1.4 Differential Drive 

The robot has a differential traction (Differential Drive) which consists of two 

independent actuated wheels or tracks.  

As shown in Figure 65, the traction is a combination of differential rotation speeds of 

two wheels. The robot can rotate on itself with two equal speeds (but in opposite 

direction for the two wheels). 

 

Figure 65 - Differential drive principle 

The angular speed (ω) and the linear speed (v) of the traction differential vehicle are: 

b

VlVr 
 ; 

2

VlVr
v


  

Where b is the distance between the two wheels (wheelbase) and Vr e Vl are the 

rotation speeds 

4.7.2 Potential Field Method 

The Potential Field Method (PFM) is a technique of obstacle avoidance that 

translates the problem of autonomous navigation in the presence of obstacles in a 

vector problem as shown in Figure 66. 

Sensory information and information about the target to be reached are vectors for a 

mathematical treatment of the problem. The method is to represent the robot as a 

particle moves in configuration space, under the influence of a force field. 
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Figure 66 - Potential Field Representation: (a) Forces vector system applied to the robot during the 

navigation (b) Vectorial field configuration in robot workplace 

The target location applies on the particle a force of attraction Fatt, while the 

obstacles apply repulsive forces Frep. At any instant, the motion is processed in such a 

way that the vehicle follows the direction of the artificial induced force. This force is 

derived from the sum of the attraction and repulsion vectors: 

Ftot(ti) = Fatt(ti) + Frep(ti) 

The force of attraction is a vector having the direction joining the center of the robot 

and the target location. The module is equal to the attraction constant: 

Fatt = Kattngoal 

The repulsion force, Frep is the result of the repulsive forces applied by obstacles. Let 

q be the position vector of the robot and pj the j-th obstacle position vector. The 

single repulsion force applied by the j-th obstacle is inversely proportional to the 

distance of the robot from the obstacle, multiplied for a repulsion constant Krep. The 
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single force of repulsion is a vector having the direction of the joining line between 

the centre of the robot and the obstacle j-th. 

The final algorithm implementation is given by a weighted vector sum composed by 

several vectors each attractive or repulsive. Each sensor has been translated into a 

vector for the final algorithm. The following sections describe the different forces 

used and their combination. 

4.7.3 PFM for U-Go Robot 

The autonomous modality of the U-Go robot, consists on reaching the coordinates of 

the waypoints along the path that the robot has to accomplish, they represent the 

forces of attraction for the robot.  

The waypoints can be set in manual mode, choosing which points you want the robot 

marks or entering previously the coordinates of the waypoint, expressed in the 

related reference system respect to the workplace. 

The vectors of force used by the algorithm of navigation are given by a weighted 

sum of the individual vectors according to the formula: 

FT = _WPFWP + _laserFlaser + _CVaFCVa + _CVrFCVr  

The attractive forces (FWP and FCVr ), are given by the vector that identifies the 

waypoint and by the data coming from the vision algorithm (it suggests a preferred 

path); while the forces of repulsion are given by measurements of the laser scanner 

and vision algorithm that provides more information on obstacles at distances greater 

than the range of the laser scanner. 

The different vectors of forces are centred in the robot with suitable coordinate 

transformations for the coherence between reference systems. Figure 67 is a 

representation of the PFM applied to U-Go Robot: 
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Figure 67 - PFM method 

The position and orientation of the robot in the configurations space are the values 

coming from GNSS and inertial sensor (MTi). An Extended Kalman Filter (EKF) has 

been also implemented to make up for absences of GPS. 

4.7.4 PFM Implementation in MRDS 

The control implementation in the MRDS is contained within a service. The final 

version, including all the sensory information, is implemented by the handler action 

"BirdNavigation" named by the computer vision algorithm and described in 

paragraph 4.4.4. 

All sensory information related to the determination of the position and orientation of 

the robot, the obstacles detection by using laser scanner and the information from 

stereo cameras for machine vision are forwarded to the service: 

 XR and YR: are the position coordinates coming from GNSS expressed in the 

reference system of the workplace 

 Distance Array: they are all measurement coming from scanner laser, each 

one for every 0.5° (for a total of 180° on front of the robot) 
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 New Data: is a boolean value indicating the occurrence of a new data coming 

from sensors 

 Yaw: is the unique value of the inertial sensor used for the estimation of the 

robot orientation respect to the North (Reference System of the Earth) 

 

Figure 68 - Feedback form of the PFM in MRDS 

 BirdAttractiveArray and BirdRepulsiveArray are two arrays results of the 

image processing coming from stereocam: only the highest value of the 

attractive force has been chosen, which is responsible for the choice of the 

best path. Instead, all values of the repulsive forces are used for 'obstacle 

avoidance 

 GPS quality and Number of Satellites values are information about the GNSS 

for estimating the quality of the signal and the information provided 

The outputs are: the linear and rotation speed references (Vlin and Vturn) for the DC 

Motor Driver. 

4.8 Control Architecture in MRDS 

This section contains an explanation of the robotics application: more details will be 

added on the final architecture used. 
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The VPL global architecture is divided into streams of messages exchanged between 

different services and cooperating one with each other. The variables of the VPL 

diagram represent the state of the robot determined from the sensors outputs. 

The final architecture presented in this section refers to the case where the position of 

the robot is provided by using DGPS. Similar considerations must be made in cases 

where such information comes from "low cost" solutions previously discussed. 

4.8.1 Sensor Polling in VPL 

For a proper working of the final application and the management of the robot in 

autonomous and manual mode, synchronization of timers and sensors has been used. 

 

Figure 69 - Sensor polling in VPL in the final application. 
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The management sensors timer allows asynchronous interrogation of all the sensors 

services interface and the update of the VPL diagram global variables. As shown in 

Figure 69, the timer is initialized for operation at a frequency of 2 Hz and sends 

messages to each sensors service in order to update all variables. In the diagram in 

Figure 69 additional services (e.g. Serv02) for the log of the data file coming from 

different sensors are shown. 

4.8.2 VPL Data Flow 

The flow diagram architecture has been developed taking into account the different 

navigation modalities, autonomous and manual, and taking into account the 

necessary sensors. 

In Figure 70 the commands flow allowing the managing of the joypad, is developed 

by VPL. It guarantees the use of a wide range of joypad. In succession a service 

specifically created (GamePadManager) manages the state of the robot according to 

the modalities settings and to the timer variables for the final control diagram. 

 

Figure 70 - VPL diagram for the joypad commands management with different modalities and 

functionalities. 

 “gear” and “reverse” variables: are the driving speed (1, 2 or 3 with higher 

speed at level ‗3‘) and the flags for the reverse mode (for robot backward  

motion). 
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 “TimerAutonomus” e “TimerManual”: are two timers that set with a 

positive or void value allowing the modalities choice: autonomous or manual. 

 Waypoint management service: used for waypoints setting (add, remove or 

reverse) in the autonomous navigation modality. 

 “X” e “Y” Axis: are the joypad values, translating in moving commands in 

the manual navigation modality. 

In Figure 71 the data flow needed for the DC Motor Driver action in the manual 

navigation modality is shown. The ―TimerManual‖ is set in a value different from 

zero if the manual modality is chosen (figure 5.8). A message is sent to the DDCingo 

service containing the axis values of the joypad that are translated in Vlin e Vturn 

commands for the differential drive of the vehicle. 

 

Figure 71 - Manual Navigation management 

The movement string is created and sent through VPL message by using a RS-232 

protocol (―SerialPortService”) to the engine driver. 

An additional message is sent to the PFM service for displaying the feedback form in 

manual mode. 
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Figure 72 - Autonomous Navigation management. 

In Figure 72 the data flow for the autonomous navigation composed of a succession 

of the following service: 

“EKF2”: service implementing the Kalman filter for the interpolation of the data in 

the case of GNSS lacks: the output is GPS measurement if the quality is acceptable, 

otherwise it is a measure interpolated by the filter. 

“PFM” service: with action "BirdNavigation" having in input all the data coming 

from the several sensors and in output the speed references for the ‖DDCingo‖ 

service. 

“DDCingo” service: with the action "DriveCingo". It translates the speed references 

coming from PFM in commands to be sent through RS-232 protocol to the DC motor 

driver. 

“serv02" service: dedicated to the log file of the EKF output values or commands 

sent to the tracks. 

 

Figure 73 - Laser Scanner initialization 

In Figure 73 the flow for the initialization of the laser sensor: it is performed only 

once at application startup to initialize, by sending a string of start to the laser 

scanner. In Figure 73, after initializing the sensor, measurements are in an array of 

360 elements (180° with a resolution of 0.5°). 
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Figure 74 - Sensors timer initialization and polling 

In Figure 74 (the same of Figure 69, repeated here in order to make it easy to 

analyse) the flow for the interrogation of multiple sensors (sensor polling) is 

represented. The timer is initialized at the starting of the VPL application in the first 

flow of Figure 74, while the second flow deals with interviewing various sensors 

through the interface services, logging services with "Serv02" and updating global 

variables (red blocks). 

These variables represent the state of the system and they are used in navigation 

services as inputs for the services.  
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4.8.3 Final Architecture 

Figure 75 shows the entire and complete architecture for the final application. It 

consists by the flows for the two navigation modalities and sensors polling. 

The cooperation between the different flows, even if disconnected one from each 

other, is managed through the sharing of system variables that are represented by 

global variables in VPL. 



 

 
 

Figure 75 - Complete diagram of the final architecture 
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5 The vision system for tomato detection 

5.1 Preliminary concept on object recognition 

Pattern recognition develops and applies algorithms that recognize patterns in data. 

These techniques have important applications in character recognition, speech 

analysis, image analysis, clinical diagnostics, person identification, machine 

diagnostics, and industrial process supervision. Many chemistry problems can be 

solved with pattern recognition techniques, such as: recognizing the provenance of 

agricultural products (olive oil, wine, potatoes, honey, etc.) based on composition or 

spectra; structural elucidation from spectra; identifying mutagens or carcinogens 

from molecular structure; classification of aqueous pollutants based on their 

mechanism of action; discriminating chemical compounds based on their odour; 

classification of chemicals in inhibitors and non-inhibitors for a certain drug target. 

To better understand details of the present work, some basic notions of pattern 

recognition will be shown as follows. A pattern (object) is any item (chemical 

compound, material, spectrum, physical object, chemical reaction, industrial process) 

whose important characteristics form a set of descriptors. A descriptor is a variable 

(usually numerical) that characterizes an object. A descriptor can be any 

experimentally measured or theoretically computed quantity that describes the 

structure of a pattern: spectra and composition for chemicals, agricultural products, 

materials, biological samples; graph descriptors and topological indices; indices 

derived from the molecular geometry and quantum calculations; industrial process 

parameters; chemical reaction variables; microarray gene expression data; mass 

spectrometry data for proteomics. 

The major hypothesis is that the descriptors capture some important characteristics of 

the pattern, and then a mathematical function (machine learning algorithm) can 

generate a mapping (relationship) between the descriptor space and the property. 

Another hypothesis is that similar objects (objects that are close in the descriptor 

space) have similar properties. A wide range of pattern recognition algorithms are 
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currently used to solve chemical problems: linear discriminating analysis, principal 

component analysis, partial least squares (PLS), artificial neural networks, multiple 

linear regression (MLR), principal component regression, k-nearest neighbours (k-

NN), evolutionary algorithms embedded into machine learning procedures, support 

vector machines. 

5.1.1 Visual Feature 

In computer vision and image processing the concept of feature is used to denote a 

piece of information which is relevant for solving the computational task related to a 

certain application. More specifically, features can refer to: 

 the result of a general neighbourhood operation (feature extractor or feature 

detector) applied to the image 

 specific structures in the image itself, ranging from simple structures such as 

points or edges to more complex structures such as objects. 

When features are defined in terms of local neighbourhood operations applied to an 

image, a procedure commonly referred to as feature extraction, one can distinguish 

between feature detection (Feature Detection, Wikipedia) approaches that produce 

local decisions whether there is a feature of a given type at a given image point or 

not, and those who produce non-binary data as result. 

When feature extraction is done without local decision making, the result is often 

referred to as a feature image. Consequently, a feature image can be seen as an image 

in the sense that it is a function of the same spatial (or temporal) variables as the 

original image, but where the pixel values hold information about image features 

instead of intensity or colour. This means that a feature image can be processed in a 

similar way as an ordinary image generated by an image sensor. Feature images are 

also often computed as integrated step in algorithms for feature detection. 

A specific image feature, defined in terms of a specific structure in the image data, 

can often be represented in different ways. 

http://en.wikipedia.org/wiki/Feature_detection
http://en.wikipedia.org/wiki/Feature_detection
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A common practice is to organize the information provided by all these descriptors 

as the elements of one single vector, commonly referred to as a feature vector. The 

set of all possible feature vectors constitutes a feature space. 

In computer vision, visual descriptors or image descriptors are descriptions of the 

visual features of the contents in images, videos, algorithms, or applications that 

produce such descriptions. They describe elementary characteristics such as the 

shape, the colour, the texture or the motion, among others. 

Feature extraction involves sparse or dense representation of image regions as feature 

vectors while the detector architecture specifies exactly how the spatial occurrences 

of these feature vectors related to each other are exploited to obtain detection 

decisions. Feature extraction typically captures intensity patterns, texture details, 

and/or shape and contour information. There are two contrasting views in computer 

vision on how to compute feature vectors: 

 One approach is based on sparse features extracted from a set of salient image 

regions. The motivation is that not all image regions contain useful 

information: many are uniform, texture-less, or too cluttered to use.  

 The alternative approach is to densely compute feature vectors on image 

regions. 

Note that the differences between the sparse and dense approaches are not as great as 

they may seem as the detection of salient regions requires a dense scan of the input 

image. 

5.1.2 Image Descriptors 

Descriptors (Visual Descriptors, Wikipedia) are the first step to find out the 

connection between pixels contained in a digital image and what humans recall after 

having observed an image or a group of images after some minutes. 

Visual descriptors are divided in two main groups: 

1. General information descriptors: they contain low level descriptors which 

give a description about colour, shape, regions, textures and motion. 

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Motion_graphics
http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Texture_%28computer_graphics%29
http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Pixels
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Regions
http://en.wikipedia.org/wiki/Texture_%28computer_graphics%29
http://en.wikipedia.org/wiki/Motion_%28physics%29
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2. Specific domain information descriptors: they give information about 

objects and events in the scene. 

General information descriptors consist of a set of descriptors that covers different 

basic and elementary features like: colour, texture, shape, motion, location and 

others. This description is automatically generated by means of signal processing. 

 COLOUR: the most basic quality of visual content. 

 TEXTURE: also, an important quality in order to describe an image. The 

texture descriptors characterize image textures or regions. They observe the 

region homogeneity and the histograms of these region borders 

 SHAPE: contains important semantic information due to human‘s ability to 

recognize objects through their shape. 

 MOTION: defined by four different descriptors which describe motion in 

video sequence. Motion is related to the objects motion in the sequence and 

to the camera motion. This last information is provided by the capture device, 

whereas the rest is implemented by means of image processing. 

 LOCATION: elements location in the image is used to describe elements in 

the spatial domain. 

5.1.3 Feature Detection and Matching 

Regarding the detector, several different models and techniques have been studied in 

the literature. We broadly divide them into two categories: 

 One common approach is to learn to recognize classes of similar image 

regions that commonly occur in the given object class. Broadly this can be 

termed a parts based approach. This approach is not applicable in the case of 

tomato detection. 

 Another, perhaps simpler, approach is to implicitly encode spatial 

information in the form of rigid templates of feature vectors. This scheme is 

usually based on densely computed image representations, but sparse 

http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Texture_%28computer_graphics%29
http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Texture_%28computer_graphics%29
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Texture_%28computer_graphics%29
http://en.wikipedia.org/wiki/Histograms
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image
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representations can also be used. The overall detection is then provided by an 

explicit template matching or by use of state-of-the-art machine learning 

algorithms such as kernel-based Support Vector Machines (SVM). 

In more detail: 

Template matching (Template matching, Wikipedia) is a technique in digital image 

processing for finding small parts of an image which match a template image. 

+ =

 

Figure 76 - Template matching concept 

Support Vector Machines (SVM): is a concept in computer science for a set of related 

supervised learning methods that analyse data and recognize patterns, used for 

classification and regression analysis. The standard SVM takes a set of input data 

and predicts, for each given input, which of two possible classes the input is a 

member of, which makes the SVM a non-probabilistic binary linear classifier. Given 

a set of training examples, each marked as belonging to one of two categories, an 

SVM training algorithm builds a model that assigns new examples into one category 

or the other. An SVM model is a representation of the examples as points in space, 

mapped so that the examples of the separate categories are divided by a clear gap that 

http://en.wikipedia.org/wiki/Template_matching#cite_note-0
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/File:SIMG.jpg
http://en.wikipedia.org/wiki/File:Temp2.jpg
http://en.wikipedia.org/wiki/File:SIMGo.jpg
http://en.wikipedia.org/wiki/File:SIMG.jpg
http://en.wikipedia.org/wiki/File:Temp2.jpg
http://en.wikipedia.org/wiki/File:SIMGo.jpg
http://en.wikipedia.org/wiki/File:SIMG.jpg
http://en.wikipedia.org/wiki/File:Temp2.jpg
http://en.wikipedia.org/wiki/File:SIMGo.jpg
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is as wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category based on which side of the gap they fall on. 

In other words, the goal of SVM modelling is to find the optimal hyperplane that 

separates clusters of vector in such a way that cases with one category of the target 

variable are on one side of the plane and cases with the other category are on the 

other size of the plane. The vectors near the hyperplane are the support vectors. The 

figure below presents an overview of the SVM process. 

 

Figure 77 - Principle of Support Vector Machine 

5.2 Tomato Detection: the method 

As mentioned earlier, an object detector can be viewed as a combination of an image 

feature set and a detection algorithm. 

This thesis focuses on various aspects of the image encoding. It proposes and 

provides a study of different image encoding schemes, but on the other hand 

deliberately adopts a standard and a relatively simple learning and testing framework 

for object detection. 

The overall object detection architecture is built around a method for classifying 

individual image regions. This is divided into two phases. The learning phase creates 

a binary classifier that provides object/non-object decisions for fixed sized image 

regions (―windows‖); while the detection phase uses the classifier to perform a dense 

multi-scale scan reporting preliminary object decisions at each location of the test 

image. These preliminary decisions are then fused to obtain the final object 
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detections. Both the learning phase and the detection phase contain three stages. 

Figure 78 depicts these. 

 

Figure 78 - Overall object detection architecture. (a) The learning phase extracts robust visual features 

from fixed size training windows, and trains a binary object/non-object classifier over them. (b) The 

detection phase uses the learned binary classifier to scan the test image at all locations and scales for 

object/non-object decisions.  

The first stage of learning is the creation of the training data. The positive training 

examples are fixed resolution image windows containing the centered object, and the 

negative examples are similar windows that are usually randomly sub-sampled and 

cropped from set of images not containing any instances of the object. 

The binary classifier is trained using these examples. Ideally, each positive window 

contains only one instance of the object, at a size that is approximately fixed with 

regard to the window size. Details of the data sets used and how we annotate the 

images are given in §5.4. 

This simple window architecture has various advantages. It allows a conventional 

classifier to be used for detection and relieves the classifier of the responsibility to be 

invariant to changes in position and scale (although invariance to other types of 

transformations, changes in pose and viewpoint, and illumination still has to be 

assured). It also means that the classifier works in relative coordinates (feature 

position relative to the centre of the current window) which allows relatively rigid 

template-like feature sets to be used. On the other hand it means that the classifier is 

run on a large number of windows, which can be computationally expensive and 
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which makes the overall results very sensitive to the false positive rate of the 

classifier. 

Any classifier can be used for the purpose, but SVM or AdaBoost are common. In 

this thesis we have chosen to focus mainly on the issue of robust feature sets for 

object recognition, so we have selected a simple, reliable classification framework as 

a baseline classifier for most of the experiments. 

We use linear SVM as our baseline binary classifier. During detection, the input test 

image can be scanned at all scales and locations. For each scale and location, the 

feature vector is computed over the detection window, just as in the learning phase, 

and the binary classifier is run to produce object/non-object decision for the window. 

Image regions that contain objects typically produce multiple firings and it is 

necessary to fuse these overlapping detections into a single coherent one. The overall 

detection score depends both on the dataset creation and on how finely the test image 

is scanned and the detections fused. 

5.3 Overview of the Encoding Process 

Our proposed image feature sets are based on dense and overlapping encoding of 

image regions using descriptors. Different kind of descriptors are faced in literature; 

in the next paragraphs a really sub category, the ones analyzed in our approach, will 

be detailed. 

Figure 79 gives an overview of overall encoding process. 
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Figure 79 - The appearance channel uses the current image and computes static descriptors over it. 

Descriptors are collected over the detection window and the combined vectors are fed to a classifier for 

object/non-object classification. 

 

5.3.1 HOG Descriptors 

This section gives an overview of the static HOG feature extraction chain. The 

method is based on evaluating a dense grid of well-normalized local histograms of 

image gradient orientations over the image windows. The hypothesis is that local 

object appearance and shape can often be characterized rather well by the 

distribution of local intensity gradient or edge directions, even without precise 

knowledge of the corresponding gradient or edge positions. 

We now sketch and motivate each step of this process (Figure 80). The method has 

been applied in literature in the case of pedestrian detection but we strongly believe 

in its reusability in other and different context such as ours. 

 The first stage applies an optional global image normalization equalization 

that is designed to reduce the influence of illumination effects. Image texture 

strength is typically proportional to the local surface illumination so this 

compression helps to reduce the effects of local shadowing and illumination 

variations. 

 The second stage computes first order image gradients. This step capture 

contour, silhouette and some texture information, while providing further 

resistance to illumination variations. The locally dominant colour channel is 
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used, which provides colour invariance to a large extent. Variant methods 

may also include second order image derivatives, which act as primitive bar 

detectors – a useful feature for capturing, e.g. bar like structures in bicycles 

and limbs in humans. 

 The third stage aims to produce an encoding that is sensitive to local image 

content while remaining resistant to small changes in pose or appearance. The 

adopted method pools gradient orientation information locally in the same 

way as the SIFT (Lowe 2004) feature. The image window is divided into 

small spatial regions, called ―cells‖. For each cell we accumulate a local 1-D 

histogram of gradient or edge orientations over all the pixels in the cell. This 

combined cell-level 1-D histogram forms the basic ―orientation histogram‖ 

representation. Each orientation histogram divides the gradient angle range 

into a fixed number of predetermined bins. The gradient magnitudes of the 

pixels in the cell are used to vote into the orientation histogram. Figure 80 

illustrates the notion of a cell and orientation histogram within it. 

 The fourth stage computes normalization, which takes local groups of cells 

and contrast normalizes their overall responses before passing to next stage. 

Normalization introduces better invariance to illumination, shadowing, and 

edge contrast. It is performed by accumulating a measure of local histogram 

―energy‖ over local groups of cells that we call "blocks‖. The result is used to 

normalize each cell in the block. 

 The final step collects the HOG descriptors from all blocks of a dense 

overlapping grid of blocks covering the detection window into a combined 

feature vector for use in the window classifier. 



The Vision System for Tomato Detections 

 

113 
 

 

Figure 80 - An overview of static HOG feature extraction. The detector window is tiled with a grid of 

overlapping blocks. Each block contains a grid of spatial cells. For each cell, the weighted vote of image 

gradients in orientation histograms is performed. These are locally normalized and collected in one big 

feature vector. 

The HOG representation has several advantages. The use of orientation histograms 

over image gradients allows HOGs to capture local contour information, i.e. the edge 

or gradient structure that is very characteristic of local shape. In conjunction with the 

spatial quantization into cells, it allows them to capture the most relevant information 

with controllable precision and invariance (e.g. by changing the number of bins in 

orientation histograms and the cell size). 

Gamma normalization and local contrast normalization contribute another key 

component: illumination invariance. The use of overlapping of blocks provides 

alternative normalizations so that the classifier can choose the most relevant one. 

In the present work, the results does not show the use of HOG descriptor in the 

architecture, but considering the future developments, in the effort of obtain better 
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results and performance, this kind of descriptor will be integrated and fused with the 

current configuration. 

5.3.2 Grayscale Pixels Descriptors 

A grayscale (or gray level) image is simply one in which the only colours are shades 

of gray. The reason for differentiating such images from any other sort of colour 

image is that less information needs to be provided for each pixel. In fact a `gray' 

colour is one in which the red, green and blue components all have equal intensity in 

RGB space, and so it is only necessary to specify a single intensity value for each 

pixel, as opposed to the three intensities needed to specify each pixel in a full colour 

image.  

Often, the grayscale intensity is stored as an 8-bit integer giving 256 possible 

different shades of gray from black to white. If the levels are evenly spaced then the 

difference between successive graylevels is significantly better than the graylevel 

resolving power of the human eye.  

Grayscale images are very common, in part because much of today's display and 

image capture hardware can only support 8-bit images. In addition, grayscale images 

are entirely sufficient for many tasks and so there is no need to use more complicated 

and harder-to-process colour images.  

Starting to the definition of a grayscale image, given an image 24x24 pixels, the 

descriptor of a feature sample will be a vector of 576 values representing each a 

grayscale value (from 0 to 255). 

Given a tomato sample of 24x24 pixel as that in Figure 81, 

 

Figure 81 - Tomato sample 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/rgb.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
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the descriptor of this tomato will be a vector o 576 values. Repeating the 

computation for the 500 samples and collecting all the data in one element, the result 

will be a matrix of 575x500 pixels. 

Averaging each column of the matrix, the result will be a new vector of 575 values 

that can be shown in Figure 82 

 

Figure 82 - Representation of average pixel descriptors 

All results in §6 consider the use of this kind of descriptors. They have several 

advantages, first of all the simplicity and the low calculation load. 

5.3.3 Colour Pixel Descriptors 

Image category recognition is important to access visual information on the level of 

objects (buildings, cars, etc.) and scene types (outdoor, vegetation, etc.). In general 

(Koen et al. 2010), systems for category recognition on images and video, use 

machine learning based on image descriptions to distinguish object and scene 

categories. However, there can have large variations in viewing and lighting 

conditions for real-world scenes, complicating the description of images and 

consequently the image category recognition task. 

A change in viewpoint will yield shape variations such as the orientation and scale of 

the object. 

In addition, changes in the illumination of a scene can greatly affect the performance 

of object and scene type recognition if the descriptors used are not robust to these 

changes. To increase photometric invariance and discriminative power, colour 

descriptors have been proposed which are robust against certain photometric changes 
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(Koen et al. 2010). There are many different methods to obtain colour descriptors, 

however, the approach analysed in the work is really simple. We call it improperly as 

colour descriptor but it can't be considered as a real one. In other word it is an 

extension of the grayscale descriptor adding the colour component. 

A feature/image can be obtained by the combination of the three primary channels: 

red, green and blue. Starting from the same concept explained in §5.3.2, given a 

colour image 24x24x3 pixels, the descriptor of a feature sample will be simply a 

vector of 576x3 (one for each RGB channel) values. 

5.4 Annotation Methodology 

All annotations shown in the present work have been made on the original images 

(figures below). 

     

Figure 83 - Samples of original images 

Each annotation consisted of a centre point and a bounding box surrounding the 

object. Typically the bounding boxes contain the object, in this case the entire or 

partial tomato (occlusion issue). 

500 tomatoes samples have been extracted and the same number of negative (not 

tomato) samples.  
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Figure 84 - Positive samples 

     

     

     

     

Figure 85 - Negative samples 
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The image regions belonging to the annotations were cropped and rescaled to 24x24 

pixel image windows. On average the tomatoes height is 24 pixels in these 

normalized windows to allow for an approximately 6 pixel margin on each side. In 

practice, we leave a further 6 pixel margin around each side of the image window to 

ensure that flow and gradients can be computed without boundary effects. The 

margins were added by appropriately expanding the annotations on each side before 

cropping the image regions. 

5.5 The Learning Process 

We use linear Support Vector Machines as our benchmark classifiers. More in detail, 

the Matlab implementation of the SVM algorithm proposed by Chang et al. 2011 has 

been used. 

First, we train a preliminary detector on the positive training windows and an initial 

set of negative windows. The (centered and normalized) positive windows are 

supplied by the user, and the initial set of negatives is created once and for all by 

randomly sampling negative images. 

A preliminary classifier is thus trained using these inputs. Second, the preliminary 

detector is used to exhaustively scan the negative training images for hard examples 

(false positives). The classifier is then re-trained using this augmented training set 

(user supplied positives, initial negatives and hard examples) to produce the final 

detector. The number of hard examples varies from detector to detector, and in 

particular depends on the initial detector‘s performance. If too many large numbers 

of hard examples are generated, the set of hard examples is sub-sampled in order to 

optimize the RAM memory usage. This retraining process significantly and 

consistently improves the performance of all the tested detectors (approximately 

reducing false positive rates by an order of magnitude in most cases). Additional 

rounds of retraining make little or no difference to the overall results and so we do 

not use them. 
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The output of the learning process to be provided for the detection phase is a model: 

a predict tool allowing the classifier, during the detection phase, to discriminate 

between tomato and not-tomato selection in a test image. 

5.6 The Detection Process 

Once the learning (or retraining) phase has been performed, the test image can be 

scanned densely (moving each time of one pixel). 

 

Figure 86 - Scanning Windows in a test image 

The model before calculated can be applied to each window scanned, in order to 

provide a decision (classifier is again the owner): tomato or not tomato. 

More in detail: the classifier runs to each window scanned and associates a 

confidence value (an index representing the tomato property). The most high 

confidence values should be associated to tomato, the lowest to the background. 

Two issues arise from this process: multiple and hard detection. 

Multiple issues occur every time an object is detected in more bounding box: a 

tomato should be associated to just one bounding box. 

Hard detection occurs in the case of false detection: the classifier indicates as tomato 

a feature that is not. 

In the following paragraphs a description of the approaches used to solve the two 

issues will be detailed. 

Scanning Windows 
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5.7 Non Maxima Suppression: single or multiple scales 

During the detection phase, the binary window classifier could be scanned across the 

image at multiple scales. Actually in the case of the robot moving along the path, the 

distance between the webcam and the raw will be approximately the same. The size 

of tomato (depending by the growth - about the same on every raw) in the images 

acquired from the camera on the same raw doesn‘t have big changes so, if you are 

interested to the detection of tomato on the same raw and not different, multi scale 

feature can be avoided. 

In this case the software will leave to the user the possibility to set up the 

environment depending on the greenhouse condition. A calibration phase (offline) is 

required: the operator, looking on the image acquired from the camera, sets the size 

(in pixel) of the tomato he wants to detect, drawing a square around the fruit as 

shown in the image below: 

 

Figure 87 - Tomato Calibration 

The algorithm produces a multiple overlapping detections for each tomato so a non-

maximum suppression technique is required to fuse the information of the same 

object. 

Non-maximum suppression is often used along with detection algorithms. The image 

is scanned in windows and if the pixels are not part of the local maxima they are set 

to zero. This has the effect of suppressing all image information that is not part of 

local maxima. 
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If you are interested to a multi scale algorithm, this typically produces multiple 

overlapping detections for each object instance. Also in this case, these detections 

need to be fused together.  

We propose somewhat based on representing detections in a position scale pyramid: 

each detection step provides a weighted point in this 3-D space and the weights were 

the detection‘s confidence score. A non-parametric density estimator is run to 

estimate the corresponding density function and the resulting modes (peaks) of the 

density function constitute the final detections, with positions, scales and detection 

scores given by value of the peaks. Figure 88 illustrates the steps 

 

Figure 88 - An overview of the steps of the non-maximum suppression algorithm. The detection window is 

scanned across the image at all positions and scales, and non-maximum suppression is run on the output 

pyramid to detect object instances.  

5.8 Results evaluation 

We know that most features in one image are likely to match the other image, 

although some may not match because they are occluded or their appearance has 

changed too much. 

 

Figure 89 - (1) Correct and (2) uncorrected matching sample 

On the other hand, if we are trying to recognize how many known objects (tomatoes) 

appear in a cluttered scene (Figure 89), most of the features may not match. 

1 

2 
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Furthermore, a large number of potentially matching objects must be searched, which 

requires more efficient strategies, as described below. 

Given a Euclidean distance metric, the simplest matching strategy is to set a 

threshold (maximum distance) and to return all matches from other images within 

this threshold. Setting the threshold too high will result in too many false positives, 

i.e., incorrect matches being returned. Setting the threshold too low will result in too 

many false negatives, i.e., too many correct matches being missed. 

 

Figure 90 - An example of false positives and negatives. The black digits 1 and 2 are the features being 

matched against a database of features in other images. At the current threshold setting (black circles), the 

green 1 is a true positive (good match), the blue 1 is a false negative (failure to match), and the red 3 is a 

false positive (incorrect match). If we set the threshold higher (dashed circle), the blue 1 becomes a true 

positive, but the brown 4 becomes an additional false positive. 

We can quantify the performance of a matching algorithm at a particular threshold by 

first counting the number of true and false matches and match failures, using the 

following definitions: 

 TP: true positives, i.e., number of correct matches; 

 FN: false negatives, matches that were not correctly detected; 

 FP: false positives, proposed matches that are incorrect; 

 TN: true negatives, non-matches that were correctly rejected. 

Figure 91 shows a sample confusion matrix (contingency table) containing such 

numbers. 

We can convert these numbers into unit rates by defining the following quantities 
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Figure 91 - Sample table showing the number of matches correctly and incorrectly estimated by a feature 

matching algorithm. The table shows the number true positives (TP), false negatives (FN), false positives 

(FP), true negatives (TN). The columns sum up to the actual number of positives (P) and negatives (N), 

while the rows sum up to the predicted number of positives (P’) and negatives (N’). The formulas for the 

true positive rate (TPR), the false positive rate (FPR), the positive predictive value (PPV), and the accuracy 

(ACC) are given in the text. 

 

• true positive rate (TPR), 

 

• false positive rate (FPR), 

 

• positive predictive value (PPV), 

 

• accuracy (ACC), 

 

In other words, the indexes have been used are: 

PPV = (True Positive) / (All Predicted Tomatoes) 

TPR = (True Positive) / (Total Number of Tomato to be predicted); 
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In the information retrieval the terms precision is used instead of PPV (how many 

returned feature are relevant) and recall is used instead of TPR (what fraction of 

relevant feature was found). 

Ideally the precision and recall value should be as much possible close to 1 for any 

different value of threshold. In ideal condition the precision-recall value has the trend 

shown in Figure 92. 

 

Figure 92: Ideal and real trend of the precision-recall curve 

The algorithm performs better as much bigger is the area under the precision-recall 

curve. 
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6 The results 

In this chapter some experimental results will be shown. The first part of the tests 

have been focused in order to verify the functioning and performance of the control 

algorithms for the autonomous navigation- Later, each developed sub-system has 

been tested and as consequence improved to obtain better results. A deep analysis 

has been faced in the last part of the results chapter relating one of these subsystems: 

the vision algorithm for the tomato detection. 

6.1 Robot navigation test 

To evaluate the performance of the robotics platform, different tests have been 

performed. The U-Go Robot has been built in order to be used as a multipurpose 

outdoor vehicle in different application. Its technical specification meets 

requirements both for teleoperated as for autonomous motion. 

In this paragraph a brief review of the all the tests performed will be shown. 

Teleoperated mode has been used on volcanic environment (Muscato et al. 2008) in 

order to test system reliability and payload capabilities. About 180 kg of materials 

and instrumentation were carried on the top of the Mt. Etna volcano (about 3300 m 

asl) on behalf of INGV (Istituto Nazionale di Geofisica e Vulcanologia) in order to 

allow their technicians to build some gases monitoring stations. In Figure 93 the U-

Go Robot during this test is shown. 

 

Figure 93 - Teleoperated robot test on the Etna volcano 
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Preliminary tests in autonomous modality were performed first in the simulated 

environment and only after on the real context to detect and reduce possible bugs. 

The algorithm in the real context was extended later with the use of the artificial 

vision. 

These algorithms have been developed to allow autonomous navigation in case of 

GPS signal failure. 

Even if the data coming from the GPS were not always continuous, the robot reached 

the target following again the path. If the GPS data are missing for a longer time, the 

navigation algorithm will take advantage of the information coming from the 

developed artificial vision system. 

6.1.1 PFM in simulated mode 

In this paragraph, there will be shown the results obtained in simulation (Figure 94) 

by using the obstacle avoidance technique: the control algorithm of the Potential 

Field. 

 

Figure 94 - U-Go Robot in Simulated Environment 

This algorithm exploits the sensors information coming from the laser scanner device 

that allowing investigating the environment and avoiding the obstacles along the 

path. The choice of the parameters is crucial for the algorithm performance. 

As already detailed, the PFM considers the robot as a particle moving in the 

configuration space, under the influence of forces field. The target location applies 
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on the particle an attraction force Fatt, while the obstacles a repulsive Frep. Once 

calculated, it‘s possible to define a resultant force Ftot: its direction shall be followed 

by the vehicle in order to reach the target avoiding the collisions. 

In absence of obstacles, the robot follows perfectly the targets, being the resultant 

coincident with the attraction ones. To verify it, a test on a rectangle has been 

performed. Four targets have been planned with coordinates (x, y): (-12.6, 8.22),     (-

21.0, 12.65), (-18.0, 18.7), (-9.23, 14.3). In the real context, these points correspond 

to a square behind the DIEEI laboratory. They are local cartesian coordinates enh 

respect to an eulerian tern neh (Stoppini et al., 2011) with origin in a specific point 

P0 of the square.. 

Considering: 

 v and Kw :the velocity reference for the differential drive. 

 Kw and Ka: the attractive and repulsive obstacle constant 

 sleep: the delay for the localization measures (in the real context they 

correspond to the GPS measurement) 

 threshold: the distance the robot have to keep from the obstacles 

Setting the following variables results are shown: 

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 0 ; sleep = 0 ms goal threshold = 1 

m 
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Figure 95 - Square path test; dark blue line represents robot trajectory, black dot represent target 

waypoint while red circles represent the target threshold area 

The robot follows the target in a right manner, driving a rectangle where the vertexes 

are the planned goals. The red circles in the graph, in the following tests, represent a 

threshold value: over it, the algorithm considers the target as reached and the 

movement towards the next goal will be planned.  

The second test, performed in ideal condition (in the ideal case GPS sends 

continuous measurements; simulating that case no delay has been introduced: 

sleep=0) consists on placing the targets in a ―serpentine‖ configuration. Because of 

the delays absence, the test has been performed with a high translation speed (half of 

the maximum speed allowed). 

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 0 ; sleep = 0 ms; goal threshold = 1 

m 
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Figure 96 – Robot drives a serpentine path in order to simulate the rows configuration inside a greenhouse 

Also in this case, the repulsive constant has been maintained null, because of the 

total absence of obstacles in the scene. The trajectory of the robot, as pointed out in 

the graph, is very similar to the ideal ones (traced in black). Further tests will be 

planned in order to evaluate algorithms performances in terms of maximum error 

between target trajectory and the real one. 

The third test has been performed adding obstacles along the path, located in the 

center of each side of the square. The test has been repeated different times, with 

increasing speed, always in ideal condition, namely without introducing delays on 

the control ring. 

Obviously, the obstacles presence determines a repulsive force that causes freaky 

changes of the robot direction in proximity of them. Four cubes of 0.5 m
3 

have been 

added with the objective of simulating the obstacles to be avoided during the 

simulation. The block are located to the coordinates: (-16.6 , 10.3), (-19.5 , 15.7) , (-

13.6 , 16.5) , (-10.7 , 11.2), in the center of each side of the rectangle  

 v = 0.3 m/s ; Kw = 0.2 ; Ka = 10 ; Krep = 1 ; sleep = 0 ms; goal threshold = 3 

m 
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Figure 97 –Robot avoids obstacles (black square) during the performing of the square path 

The obstacles presence produces repulsive forces that cause a safe deviation of the 

robot. When the obstacles are located outside the area detected from the laser 

scanner, the repulsive component is null and the movement is dominated by the 

attraction forces toward the goal (same behave of the previous test). 

Reducing the threshold from the obstacle, the reaction of the robot respect to the 

presence of the obstacle is delayed. If the speeds are high or the pose measures are 

provided with a certain delay, it can cause robot collisions. A threshold increase, 

instead, gives to the robot a higher sensibility towards the obstacles with a 

consequent increasing of the direction changes. 

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 1 ; sleep = 0 ms; goal threshold = 3 

m 
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Figure 98 – Robot path with an increase of a speed to 0,5 m/s that needs an adjustment of the Kw variable  

The vehicle behavior, even if with higher speed, is similar to the previous case. To 

quickly compensate the orientation error respect to the target, the Kw parameter has 

been increased, returning a robot trajectory very similar to the ideal case (black 

rectangle). 

 v = 0.8 m/s ; Kw = 0.4 ; Ka = 10 ; Krep = 1 ; sleep = 0 ms; goal threshold = 3 

m 

 

Figure 99 – Further test increasing speed parameters to 0,8 m/s 

The reaction of the robot respect to the obstacles presence is similar to the two 

previous cases. Considering the maximum translation speed allowed for the robot 

entity in simulation, about 1 m/s and the speed in the real test is close to this, we can 
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deduce that Potential Field Algorithm implemented has an optimal behave in absence 

of delay. 

The last fourth test, initially without adding any delay, forecasts two couples of 

obstacles, located on the first and third side of the rectangle. The linear speed is low, 

because of the complexity of the scene proposed. It is necessary to reduce the 

obstacle threshold parameter because the robot could feel too strong the proximity 

between the two blocks, traducing it in too frequent direction changes of the vehicle. 

 v = 0.3 m/s ; Kw = 0.2 ; Ka = 10 ; Krep = 1 ; sleep = 0 ms; goal threshold = 2 

m 

 

Figure 100 – Configuration with double obstacle and narrow space between them 

By using moderate speed values, the robot avoids correctly all the obstacles, as 

shown in the graph above. 

Finally all the tests are repeated, introducing a time delay of 1 second that simulates 

the low update frequency of the GPS module used in the real context. 

v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 0 ; sleep = 1 s; goal threshold = 3 m 
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Figure 101 –Square path performed by robot adding a delay component to simulate real GPS performance 

Despite the delay introduced, the robot follows correctly the targets. The trajectory is 

near to the ideal ones. The reduced number of blue circles underlines as the sample 

frequency of the pose is reduced considerably. The GPS provides information related 

to the robot pose once in a second (frequency of 1 Hz). 

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 0 ; sleep = 1 s; goal threshold = 3 

m 

 

Figure 102 – Robot performs a serpentine path with a sleep parameter set to 1s  

Also in this case, the robot reaches the planned way-points. The trajectory followed 

by the robot in some points differs from the ideal ones. However, it would be enough 

to increase the Kw parameter to obtain similar trajectories. 



The Results 

 

134 
 

 v = 0.3 m/s ; Kw = 0.2 ; Ka = 10 ; Krep = 1 ; sleep = 1 s; goal threshold = 3 

m 

 

Figure 103 – Test on obstacle avoidance introducing a delay on the robot pose estimation of 1 s 

Thanks to the low speed, the robot can avoid the obstacles and reach the targets (it 

drives inside the threshold area highlighted by red circles).  

An alternative solution is to increase the parameter related to the obstacle threshold 

avoiding suddenly robot direction changes. The decrease of the parameter Kw, causes 

larger trajectories because the robot has a lower compensation of the orientation 

errors respect to the target. 

As it will be deduced from next tests, it is not always possible to increase the 

parameter related to the obstacle threshold in case of multiple obstacles. The robot 

would suffer excessively of the proximity between the obstacles, causing not 

predictable trajectories. 

 

 v = 0.2 m/s ; Kw = 0.1 ; Ka = 10 ; Krep = 1 ; sleep = 1 s; goal threshold = 4 

m 
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Figure 104 – Robot performing square path: increasing speed value, the obstacle parameter should be 

increased too in order to reach all way-points 

Again the result is satisfactory. The parameters are not independent one from each 

other and their choice can require amount of time in the real application. It will be 

the user, through his experience, to determine the optimal parameters for the 

application observing the environment proposed. 

Moving the frequency rate update to 1 Hz introduces strong constraints on the speed 

performed by the robot. Increasing the speed, the robot can drive longer in a shorter 

time. 

Having a reduction of the information number respect to the ideal case causes a 

minor control and a slower planning of the speed references for the robot. 

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 1 ; sleep = 1 s; goal threshold = 3 

m 
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Figure 105 – Robot colliding an obstacle when a sleep parameters of 1s and a speed of 0,5m/s are set 

As shown in the figure above, the algorithm was not be able to avoid collision. It has 

been set a different parameters tuning studied for this kind of environment. In any 

case, the best choice is to work with low speed. 

 v = 0.3 m/s ; Kw = 0.2 ; Ka = 10 ; Krep = 1 ; sleep = 1 s; goal threshold = 2 

m 

 

Figure 106 – Robot path with a reduction of the speed (sleep =1) in a configuration with double obstacle for 

each side 

If the speed setting is low, the control algorithm is able to perform correctly and in 

safety the task avoiding all the obstacles. The robot drive, when obstacles occur, can 

be more linear decreasing the ―obstacle‖ parameter: the robot will be less sensible to 

obstacle influence. 
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6.1.2 PFM in the real context 

The tests in the real context have been performed in the square place behind the 

DIEEI laboratory. The tests are the same shown in the simulated context, in order to 

demonstrate a similarity between them. The figures below show all the trajectories of 

the robot (the blue small circles are the coordinates of the robot while the black lines 

are reference trajectories). That has been possible thanks to the AGEIA physical 

engine: without it, there would not be any correspondence between simulated and 

real context. 

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 0 ; freq. GPS=1Hz; goal threshold 

= 3 

 

Figure 107 – Robot in real context driving a square path 

The robot follows correctly the targets: in the second and fourth side the trajectories 

are larger than the simulated model probably because the low number of satellites 

detected by GPS.  

 v = 0.5 m/s ; Kw = 0.3 ; Ka = 10 ; Krep = 0 ; freq. GPS=1Hz ; goal threshold 

= 3 
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Figure 108 – Robot in real context driving a serpentine path 

The serpentine trajectory has been performed satisfactory by the robot: the error 

computed is of centimeter order. This precision has been reached thanks to the use of 

the differential GPS device. 

 v = 0.3 m/s ; Kw = 0.2 ; Ka = 10 ; Krep = 3 ; freq. GPS=1Hz ; goal threshold 

= 3 

 

Figure 109 – Obstacle avoidance algorithm test on real context 

In this test the repulsive constant has been increased to have a better robot response 

in proximity of the obstacles. The robot avoids all obstacles and reaches the four 

target points. Decreasing the parameter Kw allows obtaining less large trajectories but 

it can cause faster direction changes (not safety condition). 
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 v = 0.3 m/s ; Kw = 0.2 ; Ka = 10 ; Krep = 3 ; freq. GPS=1Hz ; goal threshold 

= 2 

 

Figure 110 –Obstacle avoidance algorithm test in presence of double boxes 

The overall result is very similar to the simulated context and the robot trajectory 

very similar to the ideal ones reaching correctly all the way-points. 
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6.1.3 M-Elrob 

Different sensors have been tested to allow for autonomous operations not only in 

greenhouses but also in open field. 

A deeper evaluation of the robot performance has been performed during the M-

Elrob competition (military purpose), performed in Hammelburg (Germany) on May 

2010; in Figure 111 the robot performing a task during the opening ceremony. 

 

Figure 111 - U-Go Robot in autonomous modality during M-ELROB 2010 (b) 

In Figure 112the robot path extracted from Google Earth (yellow line). The very long 

straight line is the path the robot traveled between the camp area and the opening 

ceremony area. 
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Figure 112 – The yellow line represents the U-Go Robot moving inside the military base in Hammelburg 

(Germany) 

An example of the obstacle avoided has shown in Figure 113 and Figure 114: 

 

Figure 113 – Examples of obstacles present in the environment 
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Figure 114 - The u-go robot during an autonomous task in a rocky area  

while in Figure 115 again the robot during the official ceremony. 

 

 

Figure 115 – U-Go robot during the official ceremony 

Using the same configuration of the tests performed in the University context (see 

§6.1.2) the robot‘s task, during the trial, was to reach some waypoints (as shown in 

Figure 116 from Google Earth) avoiding all the (rocky) obstacles. Here, in red, it has 

been highlighted the ideal path, matching simply two consecutive waypoints; in 

yellow the path obtained from the GPS data during the trial execution. U-Go Robot 

reached all waypoints with good results completing the set path. 
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Figure 116 – Robot path avoiding obstacles 

The totally new scenario and the achievement of the tasks can be considered a great 

result for the application requested and for the finality of the project.  

6.1.4 Tests in Vineyards  

Other tests have been performed in the vineyards located near Viagrande (CT) 

(Longo et al. 2010b, Schillaci et al. 2010). 

The vineyard environment is very similar to the greenhouse‘s one, so it simplifies its 

reuse. 

In Figure 117 U-Go Robot drives along the vineyards rows during the tests.  

One of the possible applications of this electrical tracked robot is as a semi-automatic 

barrow to carry bins with grapes out of the rows. To perform these tasks, the operator 

can just drive the robot between two different rows, while the robot can 

autonomously move along the row using GPS and Laser range finder. In this way 

operators can concentrate their self in the harvesting task, while the robot perform 

the transport task; it also have special algorithms in order to not be dangerous for 

operators and vineyards. Moreover, because the robot is electrically powered, there is 

no danger for operators of toxic exhausts. When the robot uses a D-GPS, it can be 

fully autonomous and can perform fully autonomous operations (Schillaci et al. 

2010). Also in vineyards spraying application can be possible increasing, also there, 

workers safety. 
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Figure 117 - U-Go Robot during tests in the vineyards (Viagrande, Sicily) 

6.2 Low cost sensors: results 

6.2.1 Self-Centering System 

Using the considerations previously faced, a set of eight sensors and a small 

electronic board that collect data from each sensor, were mounted around a wooden-

made robot mock-up (used only for testing purpose). In Figure 118 the experimental 

test-bed is shown. The front and rear sensors, during these experiments, are not used 

but they can be useful for safety reasons to avoid collision of the robot with obstacles 

and operators. 

 

Figure 118 - The experimental setup with eight SFR08 sensor modules 

The other six lateral sensors are used in order to compute the position of the robot 

with respect to the plants rows. Each sensor measures its distance to the plants and 

all these measures, using some filtering algorithm and some trigonometric 

consideration, give back the robot position (offset with respect plant rows) and 

orientation. Actually only two lateral sensors could be necessary for this algorithm; 
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the third sensor (the central one) is used for validating measurement of the other two 

and to compensate for wrong measurement that can happen. Information about robot 

offset and orientation are then used to correct the robot trajectory, allowing the 

system to move between rows. In Figure 119 and Figure 120 some data acquired 

during the real experiment are shown. During these tests, the eight sensors were put 

between the two rows with different orientation and offset. At the same time, the real 

position was measured by using the ultrasonic sensors and by using a rule and a 

goniometer. Using this methodology, it was possible to evaluate system 

performances and accuracy. 

 

Figure 119 - Orientation test: on the X axis there is the true orientation of the robot while along the Y axis 

there are orientation measures by using the SFR08 sensors 
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Figure 120 - Offset test: on the X axis there is the true offset of the robot while along the Y axis there are 

offset measures by using the SFR08 sensors 

6.2.2 LPI 

As detailed in §4.4.6.2 in this section the results of the experimental test are listed 

showing as the system can exploits the same centimetre-level precision at a fraction 

of the cost of a DGPS commercial system. 

 

Figure 121 - LPS system: static test. 
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In Figure 121: 

 *: is the real position of the robot 

 ˙: is the position measured with the LPS algorithm and the ellipse (in red line) 

around it represents the variance of the cloud points acquired. More in details, 

the ellipse axis are the measures of the variance of all the acquired point; 

among these points, only the average value has been represented with a back 

black dot. 

Different tests have been performed in a greenhouse in order to validate the system 

capabilities. Eight fixed receivers have been mounted inside the greenhouse covering 

an area of about 14 m
2
. Static tests have been performed in order to evaluate the 

system accuracy. The mobile transmitter has been placed on different position inside 

the area covered by the fixed sensors. 

 

Figure 122 - LPS system: dynamic test. 

The real position has been measured with a rule and compared with the position 

estimated by the LPS system. In Figure 121 some results are shown. In Figure 122 

the results of a dynamic test are shown. In this case, the mobile transmitter has been 

moved along rows and subsequent positions have been recorded. Dark dots represent 

the system measurement, while the solid line represents the trajectory mean value. 

Dash-dot lines represent the data variance. In both figures, green boxes represent the 

plants. 
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6.2.3 Artificial Vision 

Different tests have been done in a real greenhouse environment in order to evaluate 

overall performance and capabilities of the low cost guidance visual system. 

In Figure 123 an experimental results is shown. The cart with laptop and webcam 

mounted on-board is moving in a greenhouse corridor at a speed of about 2 km/h that 

is comparable with normal speed used by operating machine during spraying 

operations in greenhouses. At the same time the on-board webcam is acquiring the 

optical flow and the software is elaborating in real time the data. 

The system has been calibrated before starting the experiment using the chessboard 

technique. 

On the image (extracted from the video stream) different information are then 

superimposed. The red central cross is the vanishing point while the red line on the 

top is the movement direction. In the black box on the top left, the velocity vector is 

represented. In the black box on bottom left the different parameters are shown in a 

numerical format (velocity vector and alpha angle).  
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Figure 123 - Some algorithm results: the robot is moving in the corridor.  
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6.3 Tomato detection: results 

As described in §5, the architecture of the detection system can be summarized in the 

following two steps: the learning and the detection phase. 

 

Figure 124 - Tomato Detections Overview 

Figure 124 has been reported again here in order to make more readable the present 

paragraph and distinguish better the two phases. 

The learning phase (in off-line modality) is based entirely on the dataset creation as 

well as the classifier choice. As previously mentioned, it has been used linear support 

vector machine as binary classifier. 

Increasing the number of positive and negative samples, guarantees better 

performance and results in the detection phase. In this thesis 500 samples of positive 

and negative tomatoes have been selected, but dataset can be further improved and 

expanded. 

The classifier output for the detection phase is a model or in other words a predicting 

tool allowing once again to the classifier, during the detection phase, to discriminate 

between tomato and not-tomato selection in a test image. 

The test images used for the results are shown in the figures below: 
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Figure 125 - Test_Image_1 

 

Figure 126 - Test_Image_2 

 

Figure 127 - Test_Image_3 
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Figure 128 - Test_Image_4 

 

Figure 129 - Test_Image_5 

The images have been extracted from a video and different conditions (illumination, 

distance from the raw and the tomato detection) have been tested in order to 

demonstrate the robustness of the proposed approach. 

The video were acquired in tomato greenhouses located in Vittoria (Ragusa - Sicily) 

during daylight in the month of June 2011.  

Different typology of tomato has been analysed; the method can be exploited for any 

kind (it will be needed just to change the dataset) but, in this thesis, the results are 

focused on cherry variety. 

In the Detection phase, the test image has been scanned densely, but in order to 

reduce the time and the calculation load, a different scanning can be adopted (e.g. 
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moving the scanning windows every time of 3 or more pixels and not 1). In this last 

case (a "not densely" scanning) the results are perfectly comparable with that one's 

shown in the present work. 

In the Detection phase, the classifier returns a vector where for every window 

scanned a confidence value is associated to that window (represents how much the 

selected window is or not a tomato). 

The size of the test image is 320*240 pixels and the scanning window is 24*24 

pixels. The vector in output to the classifier will have a size of: 

confidence value* number of scanned windows (22912 in our case). 

A threshold value can be used in order to select which of the confidence value can be 

associated to a tomato or not. 

6.3.1 Multiple Detection Issue 

Performing the detection, the highest values of the confidence parameter are related 

to tomatoes, but the most of the times a tomato can be detected different times. 

In order to solve this problem, a non maxima suppression method has been used 

(§5.7 ) 

 

Figure 130 - 20 best detection without Non Maxima Suppression 
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As previously mentioned, this has the effect of suppressing all image information 

that is not part of local maxima, leaving only one bounding box around the best one. 

6.3.2 Hard Detections Issue 

Another important aspect we have faced is related to the hard detection removal 

(false positive or, in other words, not-tomato that is considered tomato). 

To better understand, let's a look of some results obtained (non maxima suppression 

has already performed) varying the threshold parameter. In a first analysis, it has 

been considered threshold values in the range from 0 to 2. 

Let's consider the image related Test_Image_1 for a threshold value of 0.1 (Figure 

131): 

 

Figure 131 - 55 detections over a threshold of 0.1 (Test_Image_1) 

As can be seen, 55 detections have been found over a threshold of 0.1. In the figure it 

is possible to see the correspondence between the bounding box (square) and the 

confidence value coming from classifier in the detection phase. As it is possible to 

see some of this detections are related to tomatoes, some others not.  



The Results 

 

155 
 

If the threshold value increases, the number of the detections will decrease, as shown 

in Figure 132: 

 

Figure 132 - 16 detections over a threshold of 1.5 

Now, 16 detections will be found with a threshold of 1.5. As it can be seen, some of 

these detections are related to false detections (or "hard detections", not tomato that 

the method recognizes like tomato). 

Increasing again the threshold value (2.0), the precision (number of true detections) 

increases but some tomatoes are missed. 
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Figure 133 - 5 detections over a threshold of 2.0 

How is it possible to avoid, remove or decrease the number of hard detections (above 

all for high values of threshold)? 

A retraining method can be adopted in order to improve the results evaluation. It 

consists on detect the false detection and, coming back to the learning phase, give 

them again to the classifier. 

Once this action will be performed, the hard detections will be removed (see Figure 

138 and Figure 139 where hard detection over the threshold of 1.5 has been 

removed). Obviously, the case of hard detections will arise again for other test 

images, but it is a demonstration that increasing the dataset is a key point in order to 

achieve better results. 

The following images represent the detections found in pre and post retraining for a 

threshold value of 1.5: 



The Results 

 

157 
 

 

Figure 134 - pre-retraining - 14 detections over a threshold of 1.5 

14 detections where the true positive are: 

 

Figure 135 - 9 pre-retraining - true detections over a threshold of 1.5 

and the false detection are the following: 
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Figure 136 - pre-retraining - false detections over a threshold of 1.5 

The windows in Figure 137 are hard detections have been added to the dataset in 

order to give them to the classifier for the retraining. 

 

Figure 137 - Hard detections samples 

Once this action has been performed, let's run again the detection on the same image 

test and let's a look of the result obtained for the same threshold value: 
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Figure 138 - Post-retraining - 6 detections over a threshold of 1.5 

No more hard detections have been found.  
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Figure 139 - Post-retraining - 6 true detections over a threshold of 1.5 

These results give evidence on the dataset relevance and allow us to identify sample 

(the hard one's) we have previously "forgotten" or "undervalued" in the creation of 

the not-tomatoes dataset. 

There are some features in the background that incorrectly, because of themselves 

appearance can be confused with true samples.  

 

Figure 140 - Hard detection sample 

The retraining approach can help to detect these features and remove them. Certainly 

not all the hard detection can be removed but in any case we can try to reduce their 

number. 
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6.3.3 Precision Recall evaluation 

The following graphs show the recall, the precision and the precision-recall trend for 

different test images (shown in §6.3). Each curve is obtained varying the threshold 

used to filter the best confidence values in the range 0-2. This range rate comes from 

a heuristic evaluation. 

A deeper description of the precision and recall meaning can be found on §5.8. They 

can be expressed by the following formulas:  

Precision = (True Positive) / (All Predicted Tomatoes) 

Recall = (True Positive) / (Total Number of Tomato to be predicted); 

 

If higher would be the threshold (high severity with hard selection of the best 

detections), higher is the precision, but lower the recall. This trend has been 

confirmed in our results shown below for different test images. 

The ideal threshold setting is the highest possible recall and precision rate. This goal 

is not always achievable, because the higher the recall rate, the lower the precision 

rate, and vice versa. Setting the most appropriate threshold for a category is a trade-

off between these two rates and strongly depending on the application purpose. 

In other words, depending on the application context, if we are interested to have a 

high precision, the threshold should be set higher, viceversa, if we prefer obtaining a 

higher recall the threshold can be set lower. 

Same results are represented for different test images showing results absolutely 

comparable in order to demonstrate the repeatability and robustness of the method. 

The analysis can be repeated for all graphs relates different test images: 

- Lower threshold -> major recall and viceversa 

- Lower threshold -> minor precision and viceversa 

- Precision – recall trend is better as it is near to 1 
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Test Image 1: 

 

Figure 141 - Recall Test_Image_1 

 

Figure 142 - Precision Test_Image_1 
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Figure 143 - Precision-Recall Test_Image_1 

The Figure 144 shows the tomato detections for different threshold values. It shows 

as decreasing this values the number of true detections respect all the predicted value 

increase with a consequently increase of the precision. 

 

Figure 144 - Detection varying the threshold: 1, 1.5 and 2 (Test_Image_1) 
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Test Image 3: 

 

Figure 145 - Recall Test_Image_3 

 

Figure 146 - Precision Test_Image_3 
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Figure 147 - Precision-Recall Test_Image_3 

 

 

Figure 148 - Detection varying the threshold: 1, 1.5 and 2 (Test_Image_3) 
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Figure 149 - Precision Test_Image_2 

 

Figure 150 - Recall Test_Image_2 

Threshold 

Threshold 

R
e
c
a
ll 

P
re

c
is

io
n

 



The Results 

 

167 
 

 

Figure 151 - Precision-Recall Test_Image_2 

For better understand the importance of the retraining process, let's compare the 

results pre and post phase: 

 

Figure 152 - Precision, Recall and Precision-Recall curves in the pre-retraining phase (Test_Image_3) 

 

Figure 153 - Precision, Recall and Precision-Recall curves in the post-retraining phase (Test_Image_3) 

A better trend, for all the three curves examined, has been obtained after the 

retraining process: a higher precision and lower recall for lower values of threshold 

and a bigger area under the curve of precision-recall. 
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Summarizing, if the scope of the research is to detect the grape of tomato, leaving a 

high threshold, the precision of the detection method is high and allow detecting the 

tomato grapes presence. Decreasing the threshold, more tomatoes will be detect but 

with a worse precision (because of the false detections). In this last case, if a high 

precision is requested the false positives number can decrease by using the retraining 

process or increasing the dataset). 

   

Figure 154 - 20 True Positives against 26 False Positive with threshold of 0.2 

 

   

Figure 155 - 13 True Positive and 9 False Positive with a threshold of 1 
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Figure 156 - 6 True Positive and no False Positive with a threshold of 1.5 

The method allows, till the moment, to detect the tomato grapes presence with a 

really high precision (setting a high threshold value and so increasing the precision). 

If we are interested to count the number of tomatoes, a better precision for low 

threshold value should be obtained and this can be performed increasing the dataset 

or using a more performing descriptor to describe tomatoes. 

To better understand the algorithm performance and to verify the compatibility with 

a future real time implementation (in particular for the detection phase), the average 

processing time of each algorithm step is reported in Table 2. 

Step Average Time 

Training phase  

(for 500 samples of 24x24 pixels) 

0.481962 s 

Detection phase  

(images of 320x240 pixels) 

1.3919 s  

(12 pixels steps for the sliding windows) 

Table 2 – Average Processing Time for Training and Detection phase 

In the detection phase the average time estimation is strongly dependent on how 

many pixels the sliding windows move on the test image (minors are the moving 

pixels, major the number of sliding windows and so higher the average time). From 

experimental analysis it has been chosen moving the sliding windows of 12 pixels 

because it doesn't affect the obtained results and algorithm performance (the results 
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are comparable to the case of a dense detection) finally improving algorithm 

execution time. 

These data has been performed using a standard personal computer with an 

Intel(R)Xeon(R) CPU with 2.67GHz and 8Gb RAM. 

Since the overall algorithm implementation has been performed using the Matlab 

tool, in order to obtain real-time performance, a C language implementation (using 

OpenCV and suitable SVM code as support libraries) is required. 
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7 Conclusions and Perspectives 

In this work, some limits and benefits of introducing robotics in agricultural context 

have been faced and deepened. It seems to be clear how the adoption of intelligent 

system in such a context, can increase operations safety level for operators and 

quality of the chemicals distribution. A cost reduction of the phytosanitaries and 

fertilizers can be reached as well as a lower environmental pollution and better 

greenhouse product quality. 

A suitable robotic platform has been designed and the different subsystems on board 

have been developed and tested reaching the objective prefixed in terms of 

integration and functionality. 

The performed study, in the first phase of the work related to the Microsoft Robotics 

Studio framework, represents an important step towards the creation of a versatile 

robotic platform and a services library capable to achieve the different algorithms for 

the autonomous navigation. The possibility of simply managing the sensors and the 

navigation algorithms through the Visual Programming Language has allowed a fast 

algorithm development and left more time for the testing of the hardware/software 

combination on the robotics platform. 

Sensors like DGPS and 2D Laser scanner are widely cited in literature and different 

tests have been performed in the present work. They have very good performance but 

due to the high cost, their use cannot be addressed to most SME in the agriculture 

field. The low cost methodologies proposed here are instead based on very low cost 

ultrasound sensors and suitable artificial vision algorithms (one for the robot 

navigation and one for detecting fruit/tomatoes along the greenhouse rows). 

All the developed sensors and algorithms are used also for guidance and safety 

purpose. They allow obtaining the position of a moving machine along rows with 

respect to corridors boundary or with respect to a reference system defined in the 

greenhouse. At the same time they allow a safety level increase on performing such 
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activities in a hot, dirty and hard greenhouse environment, reducing the exposition 

and the employment of the workers during harmful operation. 

Different tests have been done in a real greenhouse in order to evaluate performance 

and capabilities of the systems and results have been reported. 

Finally, the used architecture has versatile features and can adapt to different 

applications: from the usage as service robot in greenhouse context to new and open 

field applications, such as in vineyards. 

Despite the results obtained, future improvements are related to: 

 Implementation of new and more complex navigation algorithms with 

different characteristics using the sensors and the communication interfaces 

already existing. Such solutions can improve the robot safety level and 

capabilities and consequently can raise workers safety during performing 

dangerous operations. 

 Testing of the final algorithm on more and different scenarios. 

 Creation of a MRDS services library in order to allow an efficient reuse of 

the existing code. 

 In collaboration with DIEEI and Istituto Nazionale di Geofisica e 

Vulcanologia (INGV), further tests will be performed on the top of Etna 

volcano. Actually INGV manages more than 80 GPS station in Sicily and in 

Calabria. This network makes possible the planning of new applications (i.e. 

volcanic surveillance) in proximity of the Etna main craters. 

 Integration with the tomato detection system in order to perform 

autonomously precision farming activities. 

Related to the last point the implemented algorithm has shown good performance 

during experimental trials and its usage allows the detection of the grape of tomatoes 

with such acceptable precision.  

Despite all, taking into account the state of art available nowadays, the results and 
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performances related the object/fruit detection offer great improvement cues. Till 

now there is no a mathematical law or algorithm allowing to represent or recognize 

nature: no general rules. 

So many components and factors should be taken into account that, currently, a 

robust and reliable method allowing object detection doesn't exist. The developed 

algorithm has not such accuracy to allow harvesting operation or counting precisely 

tomatoes in a crop. Despite all opposition, improvements in the detection method can 

be provided and are related to: 

 Using more performing descriptors (e.g. HOG or colour descriptors) to 

describe the fruit, extending and improving the dataset to obtain better 

precision and to limit the number of false detections. 

 Once a higher precision and accuracy level is reached, the algorithm could be 

used for multiple application such as:  

 fruit classification; 

 illness fruit detection and local treatment application; 

 finally, 3D pose localization for harvesting purpose (Del 

Bimbo et al. 2010); 

 Re-testing the algorithm in other and various agricultural environment, such 

as in vineyards for the grape detection (Nuske et al. 2011). In this last case, 

because of the grape feature and structure, maybe it should be preferred to 

implement the whole grape detection and not of the single fruit. 

 

The present work represents a mixture and a fusion of different scientific disciplines 

and knowledge: robotics, computer vision, system integration, safety regulations and 

agricultural concepts are fused together. 

The achievement of such a wide and various results have been possible leveraging 

the DIEEI (Dipartimento di Ingegneria Elettrica Elettronica ed Informatica of the 

University of Catania) skills of years of experience and involvements in different 

robotics projects. On the other hand, the Dipartimento GeSA (Dipartimento di 

Gestione dei Sistemi Agroalimentari e Ambientali of the University of Catania) has 

contributed with its experience in the field of agricultural machinery, with an 
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analysis of the agronomic and environmental context and providing many contacts 

with local SME. Finally the cooperation with the MICC (Media Integration and 

Communication Center of the University of Florence) related to the computer vision 

aspects has allowed the development of the tomato detection methodology. 

The collaboration between DIEEI, GeSA and MICC, has allowed reaching of more 

exciting results in a context, those agricultural, still in investigation and in growth 

upon the technology profile. Moreover most of this work cover the area of interest of 

the project ―Veicolo mobile a guida autonoma per la distribuzione di agrofarmaci in 

serra‖, co-funded and supported by MIPAAF (Ministero delle Politiche Agricole 

Alimentari e Forestali), that is currently in progress with the cooperation of Dept. 

GeSA, DIEEI and local SMEs. 

Always keeping in mind all the aspect related the safety and the health of the 

workers, new and always safer solution will be provided in order to facilitate man 

tasks; never a machine could replace him. 
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