
            

                                                                   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

Università degli studi di Catania 
Facoltà di Ingegneria 

Dipartimento di Matematica e Informatica 

 

Dottorato di Ricerca in Matematica Applicata all’Ingegneria 

XXIII Ciclo, Triennio 2007‐2010 

 

Coupling and thermal effects 
in semiconductor devices 

 

Nella Rotundo 

Tutor 

Chiar.mo Prof. Vittorio Romano 
 

Coordinatore 

Chiar.mo Prof. Mariano Torrisi 



Coupling and thermal effects
in semiconductor devices

Nella Rotundo

December 10, 2010



2



Contents

1 Introduction 5

2 Mathematical modeling in chip design in nanoelectronics 9

2.1 Circuit modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Modified Nodal Analysis . . . . . . . . . . . . . . . . . . . 10

2.1.2 Charge-oriented Modified Nodal Analysis . . . . . . . . . . 12

2.2 General framework for device models . . . . . . . . . . . . . . . . 13

2.3 Coupled problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Tractability index for linear systems . . . . . . . . . . . . . . . . . 18

2.5 Tractability index for linear MNA equations . . . . . . . . . . . . 21

2.6 Index concept for the nonlinear MNA equations . . . . . . . . . . 24

2.6.1 Index-1 conditions for nonlinear systems . . . . . . . . . . 25

2.6.2 Index-2 conditions for nonlinear systems . . . . . . . . . . 27

3 Basic semiconductor equations 33

3.1 Outline of semiconductor physics . . . . . . . . . . . . . . . . . . 33

3.2 Physics of equilibrium of semiconductors . . . . . . . . . . . . . . 39

3.3 Derivation of the drift-diffusion model from BTE equation . . . . 43

3.4 Drift-diffusion model form Maxwell equations . . . . . . . . . . . 51

3.5 The recombination-generation term . . . . . . . . . . . . . . . . . 53

3.6 Boundary conditions of the drift-diffusion model . . . . . . . . . . 56

4 Analysis of the basic semiconductor device equations 59

4.1 The steady-state drift-diffusion model . . . . . . . . . . . . . . . . 59

4.2 Some preliminary results . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Proof of the existence result . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Iteration map for the device equations . . . . . . . . . . . 67

4.3.2 Existence of fixed points . . . . . . . . . . . . . . . . . . . 69

4.4 Device current and passivity . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Device current . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Passivity condition . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 The current map . . . . . . . . . . . . . . . . . . . . . . . 73

3



5 Analysis of the circuit-device coupled model 77
5.1 The circuit-device coupled problem . . . . . . . . . . . . . . . . . 77
5.2 Existence theorem for index-1 model . . . . . . . . . . . . . . . . 79

5.2.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Iteration map for the coupled problem . . . . . . . . . . . 82
5.2.3 Existence of fixed point . . . . . . . . . . . . . . . . . . . . 83

5.3 Existence theorem for index-2 model . . . . . . . . . . . . . . . . 84
5.3.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Iteration map for the coupled problem and existence of

fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Mathematical modeling of thermal effects in devices 91
6.1 Thermodynamic approach and energy transport model . . . . . . 91
6.2 Electron-phonon kinetic model . . . . . . . . . . . . . . . . . . . . 96
6.3 Maximum Entropy Principle . . . . . . . . . . . . . . . . . . . . . 99
6.4 Diffusive limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4



Chapter 1

Introduction

In recent years, many research groups have started a systematic mathematical
study of coupling effects arising in the transition from microelectronics to na-
noelectronics. In this thesis we refer to effects which are especially relevant in
integrated circuit modeling, and whose relevance increases with the decreasing of
the scales, like the ones due to electrothermal coupling [17, 20, 22], electromag-
netic coupling [23, 27], and electric network-device coupling [1, 2, 54].

We concentrate here on two main topics: coupling of devices ad electric net-
works, and heat effects in semiconductor devices. Both topics heave the common
feature that they refer to high order effects, which can be neglected when micro-
scopic scales scale are involved.

In the first part of this thesis, we focus on the electric network-device coupling.
Usually the components of an electric networks are described in terms of

constitutive relations which link node voltages and branch current. In the case
of components constituted by semiconductor devices, the representation of the
physical device takes the form at an equivalent circuit, which captures the main
features of the device itself. This is done by introducing a description in terms
of non linear resistor, capacitors and inductors, with a set of fitting parameters
which are recovered by measures. Coupling effects of devices and circuit are
usually introduced by corrections in the equivalent circuit. In this approach, all
quantities are lumped, without any distributed quantity.

Here we follow a different approach. We consider an electric network which
contains semiconductor devices, and we model the devices by multidimensional,
steady-state, drift-diffusion equations.

In this case, the lumped variables are the node potentials of the network and
the fluxes through branches with inductances or with independent voltage sources.
The network equations which describe these variables come from Modified Nodal
Analysis, and consists of Kirchhoff’s current law, with some constitutive laws for
the basic components of the network. The distributed equations enter the defini-
tion of the currents which cross the Ohmic contact of the devices in the network.
These currents show up in the network equations, and are defined by means of
surface integrals of some fluxes of the distributed variables. In turn, the dis-
tributed variables are described by a set of multi-dimensional, nonlinear, elliptic
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equations, and the boundary data are related to the network’s node potentials,
which are part of the lumped variables.

Thus, it is generally possible to view the coupled model as a set of lumped
equations with additional components modeled by complicated input/output re-
lations, which involve partial differential equations, or as a set of distributed
equations with additional differential-algebraic constraints. The first viewpoint
is usually followed in the numerical simulation realms, while the second approach
is generally preferable for an analysis of the coupled model. Here, the two view-
points will be used alternatively one with the other. In fact, the analysis of the
coupled is based on the analysis of the device equation, but the main existence
result is established by using a fixed-point map for the network equations.

This kind of coupled model was considered in [29] from the point of view
of abstract differential-algebraic systems, and the modeling of the coupling was
discussed in [54]. An existence result was proved in [1] for a network containing
one-dimensional devices modeled by steady-state drift diffusion equations, and a
uniqueness result for the same model was established in [3], assuming that the
system is close enough to an equilibrium state. We also mention [2], where it is
established the well-posedness of the coupled model of the network equations and
the time-dependent, one-dimensional, drift-diffusion equations, and [18], which
deals with the perturbation analysis.

The first result presented in this thesis is directly related to [1], extending
its results to general multi-dimensional, steady-state, drift-diffusion equations,
when the coupled problem is index-1. This is the first existence result for the
fully nonlinear model of the network equation coupled with multidimensional
semiconductor devices. A second result is established for a special class of index-
2 coupled problems, defined by means of some technical conditions. This is the
first existence result for index-2 elliptic partial-differential-algebraic equations in
microelectronics.

The second part of the thesis, which consists of the last chapter, deals with
thermal effects in semiconductor devices. We propose a general framework to de-
rive energy-transport model from the Bloch-Boltzmann-Peierl equations, which
describe the evolution of the distribution functions of electrons and phonon in
a semiconductor. Starting from an hydrodynamic model with closure relations
obtained by application of the maximum entropy principle, we introduce a dif-
fusive scaling, and derive formally the limit system. The resulting system is an
energy-transport model with no fitting parameters.

The thesis is organized as follows. In chapter 2 we introduce the modified
nodal analysis formalism, to deal with the circuit variables, and we set a general
framework for the coupling with semiconductor devices. In chapter 3 we derive the
semiconductor equations, starting from basic physical considerations. In the next
chapter we prove an existence result for the semiconductor equations, introducing
an iteration map which will be used in the existence proof for the coupled problem.
Also, we derive some basic properties of this iteration map. Chapter 5 contain
the two main results concerning coupled problems, the existence results for index-
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1 and index-2 elliptic partial-differential-algebraic equations for semiconductor
devices and electric networks. Finally, in chapter 6 we present the results on the
derivation of the energy-transport model.
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Chapter 2

Mathematical modeling in chip
design in nanoelectronics

2.1 Circuit modeling

In microelectronics, an integrated circuit is usually described as an electric net-
work. This is a simplified description, but it captures the main features of the
electric behavior of the integrated circuit, at least when second order coupling
effects between the active and passive components and the substrate can be ne-
glected. Moreover, it is a very efficient description, because it leads to a system
of differential-algebraic equations (DAEs) which can be efficiently solved numer-
ically. For this reason, even when previously neglected secondary effects started
to become important, they were introduced in the network framework by adding
appropriate sub-networks and more and more refined equivalent circuits.

From a mathematical point of view, an electric circuit is a directed multi-
graph, that is, a set of nv vertices (or nodes) connected by na arcs (or branches)
with a direction. Two vertices may be connected by more than one arc. Each arc
contains a basic component, and is labeled according to the component it con-
tains. The electric behavior of the network is given by a set of time-dependent
variables associated to its nodes and branches. An applied potential is associated
to each node, ek(t), k = 1, . . . , nv, to each branch is associated a voltage drop
vh(t) and a current ih(t), j = 1, . . . , na, with t ∈ [t0, t1]. We denote by e(t) ∈ Rnv ,
v(t) ∈ Rna and i(t) ∈ Rna , the vectors comprising node potentials, voltage drops
and currents, respectively.

The connections of the branch-node of the network graph can be described
by an incidence matrix A = (ahk) ∈ Rnv×na defined by

ahk =


−1 if the branch k leaves the node h,

1 if the branch k enters the node h,
0 otherwise.

(2.1)

This description applies also to networks with multi-terminal elements. In
this case, the network can be appropriately described by an hypergraph, that is,
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a generalization of the concept of graph where a branch can connect more than
two nodes. In practice, we can retrieve the incidence matrix formalism by identi-
fying branches with ordered couples of terminals within the same multi-terminal
element. We will provide more details when dealing with elements consisting of
semiconductor devices.

The composition of the basic elements is ruled by the following two Kirchhoff’s
laws, which can be derived by applying Maxwell’s equations.

• Kirchhoff’s voltage law (KVL): The algebraic sum of voltage along each
loop of the network must be equal to zero at every istant of time. From
this law we can derive an expression that links the node potentials e(t) to
the voltage drops v(t)

A>e(t) = v(t), ∀ t ∈ [t0, t1]. (2.2)

• Kirchhoff’s current law (KCL): The algebraic sum of current traversing
each cut set of the network must be equal to zero at every istant of time

Ai(t) = 0, ∀ t ∈ [t0, t1]. (2.3)

2.1.1 Modified Nodal Analysis

In order to describe the behavior of the network quantities we chose to use one
of the most common approaches for network analysis that is the Modified Nodal
Analysis (MNA). This method represents a systematic way to derive equations
for circuits. The main idea of MNA is:

1. Write node equations applying Kinchhoff’s current law (2.3) to each node
except for the reference node, corresponding to the zero reference potential.

2. In equation (2.3), replace the currents of voltage-controlled elements by the
voltage-current relations of these elements.

3. Add the current-voltage relations for all current-controlled elements.

We consider RLC networks, that is, electric networks containing only resis-
tances (labeled by R), inductances (labeled by L), and conductances (labeled by
C). In addition, we need to allow also for branches with independent current
and voltage sources, labeled with iI(t) ∈ RnV , vV (t) ∈ RnI , respectively. To keep
detailed informations about the structure of the equations arising from the MNA,
we make the splitting of the incidence matrix A, with components described in
(2.1), into the element-related incidence matrices

A = (AR,AC ,AL,AI ,AV ) ∈ Rnv×(nR+nC+nL+nI+nV ) ≡ Rnv×na ,

whereAR,AC ,AL,AI andAV describe the branch-current relations for resistive,
capacitive, inductive branches and branches of current sources and voltage sources
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respectively. To keep track of the different labels, we write

v =


vR
vC
vL
vI
vV

 , i =


iR
iC
iL
iI
iV

 ,
for voltage and current respectively. The direction of each branch coincides with
the positive direction of the voltage drop and the current through the branch. To
the above relations, (2.2) and (2.3), we need to add constitutive relations for the
RLC components:

iR = iR(vR), iC =
dqC(vC)

dt
, vL =

dφL(iL)

dt
, (2.4)

where qC collects the charges inside the capacitors, and φL is a flux term for the
inductors. We also need to consider relations for the branches with sources:

iL = I, vV = V . (2.5)

Following the formalism of Modified Nodal Analysis (MNA), we use the relations
(2.4) and (2.5) in Kirchhoff’s current law equation (2.3),to obtain the DAE equa-
tion for the unknowns qC , φL, e, iL, iV . Sometimes it is convenient to reduce
the number of variables, eliminating qC and φL. This leads to the following form
of the MNA equations, for the unknowns e, iL, iV :

AC
dqC(A>Ce)

dt
+ARiR(A>Re) +ALiL +AV iV +AII = 0,

dφL(iL)

dt
−A>Le = 0,

A>V e− V = 0.

(2.6)

We notice that the constitutive relations qC(v), iR(v), φL(iL), depend on the
specific components present in the network.

We will restrict ourselves to linear RLC networks, that is, such that the con-
stitutive relations for qC , iR, φL, are linear:

qC(v) = Cv, iR(v) = Gv, φL(iL) = LiL. (2.7)

The capacitance, inductance and conductance matricesC ∈ RnC×nC ,G ∈ RnG×nG

and L ∈ RnL×nL , appearing in the previous relations, are assumed to be symmet-
ric and positive definite.

For linear RLC networks the system (2.6) can be written in the following
compact form:

Eẋ = Ax+Bu(t), (2.8)
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where we have introduced the unknowns vector

x =

 eiL
iV

 ,
and the matrices

E =

ACCA
>
C O O

O L O
O O O

 , A = −

ARGA
>
R AL AV

−A>L O O
−A>V O O

 ,
B = −

AI O
O O
O I

 , u(t) =

[
I(t)
V (t)

]
.

Here, and in what follows, O denotes the generic zero matrix and I the generic
identity matrix.

2.1.2 Charge-oriented Modified Nodal Analysis

The MNA approach presented in the previous subsection leads to the conven-
tional MNA equations (2.6), for the unknowns e, iL, iV . It is possible to choose
an alternative approach, called charge-oriented MNA, in which we consider two
additional unknowns: the charge of capacitances q, and the flux of inductances
φ [34]. The charge-oriented MNA equations are:

AC
dq

dt
+ARiR(A>Re) +ALiL +AV iV +AII = 0,

dφ

dt
−A>Le = 0,

A>V e− V = 0,

q − qC(A>Ce) = 0,

φ− φL(iL) = 0.

(2.9)

We mention another approach to derive equations for electric network, which
is the stamping approach. We consider Kirchhoff’s current law (2.3), for each of
the nv electrical nodes of the network, writing that

na∑
k=1

ikh = 0 h = 1, . . . , nv (2.10)

where ikh ≡ ahkik denotes the current flowing from node h into element k.
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The currents in (2.10) can be expressed in terms of the vector of electrical
state variables s = [s1, . . . , snv ]> plus a set of additional (vector valued) variables
rk each of dimension Ik

ikh = Akhṙk + Jkh(s, rk), h = 1, . . . , na, h = 1, . . . , nv, (2.11)

where Akh ∈ R1×Ik , and Ik, k = 1, . . . , na being a set of non negative integers. As
the variables rk only appear in the equations defining the fluxes relative to the
k-th element, they will henceforth be referred to as internal variables of the k-th
element. The MNA model is completed by a suitable number Ik of constitutive
relations for the internal variables of each element

Bkiṙk +Qki(s, rk) = 0, k = 1, . . . , na, i = 1, . . . , Ik, (2.12)

where Bki ∈ R1×Ik . Notice that, although only time derivatives of internal vari-
ables appear in (2.12) and the terms involving such derivatives are linear, no
restriction on the practical applicability of the model has been introduced so far.

2.2 General framework for device models

In this section we provide a general framework for the description of a semicon-
ductor device, which is consistent with the MNA description of a network.
A semiconductor device can be model by means of a domain Ω ∈ Rd, with
d = 1, 2, or 3, it is characterized by an electric potential φ(x, t), and by a vector
variable U(x, t), with x ∈ Ω. The variable U(x, t) collects the other macroscopic
variables for the device, such as carrier density, flux density, energy, and so on.
Many mathematical models can be used to describe semiconductor devices, these
models have some common features.

The first common feature is that the electric potential φ is generated by the
built-in charge, ρbi(x), due to the dopants embedded in the semiconductor, and
by the charge density ρ(U), due to the carriers, so that it satisfies the Poisson
equation:

−∇ · (εs∇φ) = ρbi + ρ(U), (2.13)

where εs(x) is the dielectric constant.
The second common feature in the semiconductor mathematical models, is

that the device variable U satisfies a system of partial differential equations,
which is coupled to the electric potential only through the electric field

E = −∇φ. (2.14)

Symbolically, we can write

F(U , ∂
∂t
U ,∇ ·U , . . . ; E) = 0. (2.15)

The last common feature is that the previous equation is consistent with the
conservation of the charge density:

∂ρ(U)

∂t
+∇ · J(U) = 0. (2.16)
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in which we have indicated with J(U) the electric current. It is also possible to
include this variable J(U) as a component of the variable U , or can be evaluated
as a functional of the said variable.

The equation (2.13) must be supplemented by appropriate boundary condi-
tions. We assume that the boundary ∂Ω is the union of two disjoint parts ΓD
and ΓN . The first part of the boundary is the union of all the Ohmic contacts

ΓD =
K⋃
k=0

ΓD,k,

that is, the union of the terminals ΓD,k, Here, we assign conditions of Dirichlet
type:

φ = φbi(ρbi) + eD,k, on ΓD,k, k = 0, 1, . . . , K, (2.17)

where φbi(ρbi) is the built-in potential, eD,k, k = 0, 1, . . . , K, are the applied
potentials at the Ohmic contacts of the device considered. For later use, we
denote by eD the vector comprising the applied potentials.

The second part of the boundary, ΓN , is the union of all the insulated portions
of the boundary, ΓN = ∂Ω \ ΓD. Here we assign Neumann conditions:

ν · ∇φ = 0, on ΓN , (2.18)

where ν denotes the external unit normal to ∂Ω.
The electric current J depends also on the applied potentials eD,k, k =

0, 1, . . . , K, due to the coupling of (2.15) with the Poisson’s equation (2.13),
through the electric field E.

Using equation (2.13) in equation (2.16), taking into account (2.14), we obtain

∇ ·
(
εs
∂

∂t
E + J(U)

)
= 0 (2.19)

The term εs
∂
∂t

E is the displacement current, and represents the current induced
by time-variations of the electric field. Then, the total current in the device is
given by

j := εs
∂

∂t
E + J(U). (2.20)

The current jD,k through the k-th contact of the device, is defined by:

jD,k = −
∫

ΓD,k

j · ν dσ(x), (2.21)

with k = 0, 1, . . . , K, and we denote by jD the vector of these currents.

When connected to an electric network, a semiconductor device with K + 1
Ohmic contacts can be regarded as a multi-terminal element. We have mentioned
that, in presence of multi-terminal elements, the multigraph description of an
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electric network should be replaced by a hypergraph description. In practice, we
can avoid this complication by introducing internal branches of a multi-terminal
element, as appropriate pairs of terminals.

For a semiconductor device, the simplest way to do so, is by identifying the
node labeled by 0 with the reference potential. Then, the internal branches will
be given by the pairs (0, 1), . . . , (0, K), and we can define the internal incidence
matrix

Â =


−1 · · · −1
1 · · · 0
...

. . .
...

0 · · · 1

 . (2.22)

The corresponding voltage drops through the internal branches are given by
vD,k = eD,k − eD,0. If we introduce the vector vD of the voltage drops, it is
immediate to verify that

vD = Â>eD. (2.23)

Moreover, introducing the vector

iD =

 jD,1...
jD,K

 , (2.24)

it is possible to verify that
jD = ÂiD. (2.25)

In fact, integrating (2.19) over Ω, we find

K∑
k=0

jD,k = 0, (2.26)

so the current jD,0 can be expressed as the opposite of the sum of the other
currents. For this reason, we can use the vector iD instead of jD.

Recalling (2.15), the variable U is coupled to the Poisson equation only
through the electric field E, and so are the components of the electric current
J(U), and the components of j, which appear in (2.21). Since the electric field
is not affected by a time-dependent translation of the electric potential,

φD → φD + eD,0(t),

we can conclude that j, and thus iD, depends on the voltage drops vD rather
than on the applied potentials eD.

2.3 Coupled problem

Now we consider an RLC electric network that contains nD semiconductor de-
vices, described as in the previous section. That is: each i-th device is modeled
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by a domain Ωi, of dimension d = 1, 2 or 3. This i-th device has Ki + 1 contacts
and we assume that the boundary ∂Ωi is made of a Dirichlet part ΓiD, union of
Ki + 1 disjoint parts, which represent Ohmic contacts, and of a Neumann part
ΓiN , which represents insulating boundaries (for d > 1),

ΓiD =

Ki⋃
j=0

ΓiD,j, ΓiN = ∂Ωi \ ΓiD, i = 1, . . . , nD.

In total, the devices contain nvD terminals (Ohmic contacts) and naD internal
branches, with

nvD := nD +

nD∑
j=1

Kj, naD :=

nD∑
j=1

Kj.

Following the definition of the applied potential vectors, voltage drop vectors and
current vectors of the previous section, we define:

eiD =

 eiD,0
...

eiD,Ki

 ∈ RKi+1, eD =

 e
nD
D
...
enD
D

 ∈ RnvD , (2.27)

viD =

 viD,1
...

viD,Ki

 ∈ RKi , vD =

 v
1
D
...
vnD
D

 ∈ RnaD , (2.28)

iiD =

 jiD,1
...

jiD,Ki

 ∈ RKi , iD =

 i
1
D
...
inD
D

 ∈ RnaD . (2.29)

Moreover, we have internal incidence matrices

Âi ∈ R(Ki+1)×Ki , Â = diag (Â1, . . . , ÂnD) ∈ RnvD×naD

where Âi is defined as in (2.22).

Each contact must be connected to a node of the electric network. To relate
the contacts of the devices to the nodes of the network, we need to introduce a
contact-to-node selection matrix, SD = (sD,ij) ∈ Rnv×nvD , defined by:

sD,ij =

{
1, if the contact j is connected to the node i,
0, otherwise.

(2.30)

By using this matrix, we can define an incidence matrix for the internal branches
of the devices:

AD = SDÂ. (2.31)
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Now we are ready to apply the formalism of MNA to derive equations for
the network variables. We consider an incidence matrix A that comprises the
semiconductor incidence matrix that is

A = (AR,AC ,AL,AI ,AV ,AD) ∈ Rnv×(nR+nC+nL+nI+nV +naD) ≡ Rnv×na .

To keep track of the different branches, we write

v =


vR
vC
vL
vI
vV
vD

 , i =


iR
iC
iL
iI
iV
iD

 .

We notice that in this decomposition, the vectors vD and iD appears, which have
been defined above. The presence of the voltage drop vector vD is justified by
the identification

eD = S>De. (2.32)

In fact, recalling the definition of vD in terms of eD, we have

vD = Â>eD = Â>S>De = A>De, (2.33)

consistently with the MNA formalism. We will refer to (2.32) as network-to-
device coupling relation, since it relates the network variables e to the device
variables eD.

As for the presence of the current vector iD, we observe that

ADiD = SDÂiD = SDjD,

which is consistent with the interpretation of the term ADiD. The current vector
iD is defined by the device equations, through the relations

iD =

 i
1
D
...
inD
D

 , iiD =

 jiD,1
...

jiD,Ki

 , jiD,k = −
∫

Γi
D,k

ji · ν dσ(x). (2.34)

We will refer to (2.34) as device-to-network coupling relation, since it relates the
device quantities ji to the network variable iD.

With the above formalism, it is possible to derive, from the Kirchhoff current
law, MNA equations formally equivalent to the ones obtained in the previous
section, both the conventional form (2.6) and the charge-oriented form (2.9).
The conventional form of the MNA equations is:

AC
dqC(A>C)

dt
+ARiR(A>Re) +ALiL +AV iV +AII +ADiD = 0,

dφL(iL)

dt
−A>Le = 0,

A>V e− V = 0.

(2.35)
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The equations (2.35) need to be coupled with the semiconductor equations, to
express the constitutive relations for the currents iD. We will discuss more ex-
tensively this problem in a subsequent chapter.

For a linear RLC network, we can write system (2.35) in compact form, sim-
ilarly to what done for system (2.6). By using the same notation as in (2.8), we
can write (2.35) in the form

Eẋ = Ax+Bu(t) + σ(x). (2.36)

The term σ(x), that represent the currents through the devices, is given by

σ(x) = −AiD(A>x) (2.37)

with

A =

AD

O
O

 . (2.38)

If there are no semiconductor devices, the matrix A is identically zero, and (2.36)
reduces to (2.8).

We note explicitly the identity

A>x = A>De = vD. (2.39)

For later use, we introduce also the matrix

S =

SDO
O

 . (2.40)

The matrices A and S are related by

A = SÂ. (2.41)

We have also the identity
S>x = S>De = eD. (2.42)

2.4 Tractability index for linear systems

To study the index concept of the DAE equation (2.36), we adopt a perturbative
approach, studying first the equations without the nonlinear term, that is the
equation (2.8). Then we will write down additional conditions depending on the
matrix A that appears in the nonlinear term σ(x), such that the structure of the
system is preserved.

We consider equation (2.8), that we rewrite here for convenience:

Eẋ = Ax+Bu(t). (2.43)

To define the tractability index of (2.43) we need the notion of projector [51].
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Definition 2.4.1 (1) A matrix Q ∈ Rm×m is a projector onto T 1 if and only
if Q2 = Q and im Q = T 1.

(2) A matrix Q ∈ Rm×m is a projector along T 2 if and only if Q2 = Q and ker
Q = T 2.

(3) For Rm = T 1

⊕
T 2 a matrix Q ∈ Rm×m is the uniquely defined projector

onto T 1 along T 2 if and only if Q2 = Q, im Q = T 1 and ker Q = T 2.

We set

E0 = E, A0 = A.

We define Q0 projector onto kerE0, that is

E0Q0 = O Q2
0 = Q0. (2.44)

and P 0 complementary projector of Q0, that is

P 0 = I −Q0. (2.45)

Let Ei, Ai i = 1, . . . , k, and we consider Qi projector onto the kerEi, such that1

EiQi = O, Q2
i = Qi, (2.46)

QiQj = O, ∀j < i, i = 1, . . . , k. (2.47)

We set

P i = I −Qi. (2.48)

We define iteratively the matrices Ek, Ak, k ≥ 0, in the following way:

E0 = E, A0 = A, (2.49)

Ek = Ek−1 −Ak−1Qk−1, k ≥ 1, (2.50)

Ak = Ak−1P k−1, k ≥ 1. (2.51)

Lemma 2.4.1 The sequences of matrices defined iteratively in (2.49)-(2.51) us-
ing the projectors defined in (2.46),(2.48), and having the property (2.47), are
such that equation

Ek(P k−1 · · ·P 0ẋ+Q0x+ · · ·+Qk−1x) = Akx+Bu(t), (2.52)

is equivalent to (2.43) for any k ≥ 1.

Proof. We argument by induction on k.
For k = 1, equation (2.52) becomes

E1(P 0ẋ+Q0x) = A1x+Bu(t). (2.53)

1It is always possible to choose a projector satisfying these additional conditions.
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Using the identities

E1P 0 = (E0 −A0Q0)P 0 = E0P 0 = E0,

E1Q0 = (E0 −A0Q0)Q0 = −A0Q0,

and the definition of A1, equation (2.53) reduces to

E0ẋ−A0Q0x = A0P 0 +Bu(t), (2.54)

which is equivalent to (2.43), since Q0 + P 0 = I.
Next, for k > 1, we assume that

Ek−1(P k−2 · · ·P 0ẋ+Q0x+ · · ·+Qk−2x) = Ak−1x+Bu(t) (2.55)

is equivalent to (2.43), and prove the same equivalence for the subsequent integer.
To do so, using Ek−1P k−1 = Ek−1, we compute

EkP k−1 · · ·P 0 = (Ek−1 −Ak−1Qk−1)P k−1 · · ·P 0

= Ek−1P k−2 · · ·P 0

and considering (2.46)-(2.47)

EkQj = (Ek−1 −Ak−1Qk−1)Qj = Ek−1Qj, j < k − 1,

EkQk−1 = (Ek−1 −Ak−1Qk−1)Qk−1 = −Ak−1Qk−1.

Then, using the definition of Ak, equation (2.52) reduces to

Ek(P k−1 · · ·P 0ẋ+Q0x+ · · ·+Qk−1x)−Ak−1Qk−1x = Ak−1P k−1x+Bu(t),

which is equivalent to (2.55), since Qk−1 + P k−1 = I. Using the inductive hy-
pothesis concludes the proof of the Lemma.

The procedure to construct the sequences (2.50)-(2.51) can be continued in-
definitely, but after a finite number of iterations, we will end up with a non
singular matrix Eµ, with Ek singular for k < µ. Then we will have Eµ+i = Eµ,
Aµ+i = Aµ for all i ≥ 0. The index µ is called index of the system (2.8).

For k = µ, the form (2.52) of (2.8) becomes:

Eµ(P µ−1 · · ·P 0ẋ+Q0x+ · · ·+Qµ−1x) = Aµx+Bu(t), (2.56)

since Eµ is nonsingular, we have

P µ−1 · · ·P 0ẋ+Q0x+ · · ·+Qµ−1x = E−1
µ (Aµx+Bu(t)). (2.57)

The matrices appearing on the left-hand side of (2.57) are projectors and
consitute a decomposition of the identity matrix,

I = P µ−1 · · ·P 0 +Q0 + · · ·+Qµ−1, (2.58)
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as we can see from the definition of the projectors Qi, and condition (2.47).
Using the theory of projectors it is possible to decouple the equation (2.8)

following the strategy that we will introduce. By definition of projector, using
(2.58), we can prove that the following multiplicative table holds:

P µ−1 · · ·P 0 Q0 Q1 . . . Qµ−1

P 0P 1 · · ·P µ−1 P 0P 1 · · ·P µ−1 O O . . . O
Q0P 1 · · ·P µ−1 −Q0Q1 Q0 O . . . O
P 0Q1 · · ·P µ−1 −P 0Q1Q2 O P 0Q1 . . . O

...
...

...
...

. . .
...

P 0P 1 · · ·Qµ−1 O O O . . . P 0P 1 · · ·Qµ−1

In fact

P i · · ·P µ−1Qj =

{
Qj if j < i ≤ µ− 1,
O if i ≤ j ≤ µ− 1,

(2.59)

P 0 · · ·P i−2P i · · ·P µ−1Qj =

{
Qj if j < i ≤ µ− 1,
O if i ≤ j ≤ µ− 1.

(2.60)

Then it is possible to write

P 0 · · ·P µ−1ẋ= P 0 · · ·P µ−1E
−1
µ (Aµx+Bu),

−Q0Q1ẋ+Q0x= Q0P 1 · · ·P µ−1E
−1
µ (Aµx+Bu),

...
−P 0 · · ·P i−1QiQi+1ẋ+P 0 · · ·P i−1Qix

= P 0 · · ·P i−1QiP i+1 · · ·Pµ− 1E−1
µ (Aµx+Bu),

...
−P 0P 1 · · ·P µ−2Qµ−1x= P 0 · · ·P µ−2Qµ−1E

−1
µ (Aµx+Bu),

(2.61)

with 0 < i < µ − 1. Using the system (2.61) we decouple the equation (2.8) in
the following µ+ 1 equations:

ẏ = P 0 · · ·P µ−1E
−1
µ (Aµy +Bu),

z0 = Q0Q1ẋ+Q0P 1 · · ·P µ−1E
−1
µ (Aµy +Bu),

...
zi = P 0 · · ·P i−1QiQi+1ẋ+ P 0 · · ·P i−1QiP i+1 · · ·P µ−1E

−1
µ (Aµx+Bu),

...
zµ−1 = P 0 · · ·P µ−2Qµ−1E

−1
µ (Aµy +Bu),

(2.62)
with 0 < i < µ− 1.

2.5 Tractability index for linear MNA equations

In the previous section we have defined the tractability index in an abstract way.
In this section we specialize the tractability index to the equation of linear Mod-
ified Nodal Analysis. Due to the special structure of MNA equations, following
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[51], we will be able to show that the index can be at most 2, giving topological
conditions for index-1 and index-2 linear MNA equations.

We need some preliminary results.

Lemma 2.5.1 If the capacitance and inductance matrices, C and G respectively,
of all capacitances and inductance are positive definite then the following relations
are satisfied

kerE = kerA>C × {0} × RnV , and imE = imAC × RnL × {0}, (2.63)

where nL and nV denote the number of inductance branches and voltage sources
respectively.

To prove this lemma we need the following result.

Lemma 2.5.2 If M is a positive definite m×m-matrix and N is a rectangular
matrix of dimension k ×m, then it holds that

kerNMN> = kerN> and imNMN> = imN .

Proof. (Lemma 2.5.2) We consider the first assumption about the null space of
the matrix NMN>. Obviously, kerN> ⊆ kerNMN>. Now we assume that
z ∈ kerNMN>, then we have

z>NMN> = 0, equivalent to (N>z)>M(N>z) = 0, (2.64)

being M positive definite, we have N>z = 0. This implies the first statement of
the thesis of the lemma. For the image space we know that imNMN> ⊆ imN ,
and because of relation (2.64) we have

rankNMN> = rankN> = rankN ,

that is dim(imNMN>) = dim(imN ). This implies second statements of the
thesis of the and complete the proof.

Proof. (Lemma 2.5.1) The matrices C and L are positive definite since all
capacitances and inductances have positive definite capacitance and inductance
matrices, respectively. Consider the nullspace of E. Obviously

kerE = ker(ACCA
>
C)× kerL× RnV .

Lemma 2.5.2 implies that kerACCA
>
C = kerA>C , and the regularity of L implies

kerL = {0}, hence the first part of the thesis.
For the image space of E we can write

imE = im(ACCA
>
C)× imL× {0}. (2.65)

Applying again Lemma 2.5.2, we have im(ACCA
>
C) = imAC , and since L is

regular it follows imL = RnL , and thus the thesis.
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Definition 2.5.1 An L-I cutset is a cutset consisting of inductances and/or cur-
rent sources only.

Definition 2.5.2 A C-V loop is a loop consisting of capacitances voltage sources
only.

Theorem 2.5.3 Let the capacitance, inductance and resistance matrices of all
capacitances, inductances and resistances, respectively be positive definite. If
the network contains neither L-I cutsets nor controlled C-V loops except for
capacitance-only loops, then the MNA leads to an index-1 DAE.

Proof. Let E0 ≡ E, A0 ≡ A, and we define a projector Q0 onto the nullspace
of E0 in the following way

Q0 =

QC O O
O O O
O O I

 , (2.66)

whereQC is a constant projector onto the kerA>C . We will show that the equation
(2.8) is index-1-tractable, that is the matrix

E1 = E0 −A0Q0,

is non singular. The matrix E1 is given by

E =

ACCA
>
C +ARGA

>
RQC O AV

−A>LQC L O
−A>VQC O O

 .
Let x∗ = [e∗ i∗L i

∗
V ] be a vector of the nullspace ofE1 then x∗ occurs the following

system

ACCA
>
Ce
∗ +ARGA

>
RQCe

∗ +AV i
∗
V = 0, (2.67)

−A>LQCe
∗ +Li∗L = 0, (2.68)

−A>VQCe
∗ = 0. (2.69)

Multiplying (2.67) by Q>C and whereas Q>CAC = (A>CQC)> = 0, we obtain

Q>CARGA
>
RQCe

∗ +Q>CAV i
∗
V = 0. (2.70)

Let QV C be a projector onto kerA>VQC , then Q>V CQ
>
CAV = 0. Multiplying the

previous equation by Q>V C we have

Q>V CQ
>
CARGA

>
RQCe

∗ = 0. (2.71)

We notice that we can write the equation (2.71) in the following way

Q>V CQ
>
CARGA

>
RQCQV Ce

∗ = (Q>V CQ
>
CAR)G(Q>V CQ

>
CAR)>e∗ = 0, (2.72)
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since from (2.69), e∗ ∈ kerA>VQC , that is

e∗ = QV Ce
∗. (2.73)

Applying the Lemma 2.5.1 and since G is positive definite, we can conclude

A>RQCQV Ce
∗ = 0, (2.74)

and considering (2.73), we have

A>RQCe
∗ = 0. (2.75)

Taking into account thatQC is a projector onto the kerA>C , considering equations
(2.69) and (2.75), we obtain

(AVARAC)>QCe
∗ = 0. (2.76)

The matrix (AVARAC)> has full rank since by assumption the network does not
contain an L-I cutset, then we have

QCe
∗ = 0. (2.77)

and by (2.70) we obtain Q>CAV i
∗
V = 0. Moreover we know that if the network

does not contain a C-V loop except for capacitance-only loops, the matrix A>VQC

has full rank than the nullspace of its transpose is only the zero vector, that is
i∗V = 0. Hence by (2.67) and (2.77) we can deduce

ACCA
>
Ce
∗ = 0,

and being C positive definite, since Lemma 2.5.1, we haveA>Ce
∗ = 0, that implies

e∗ ∈ im QC . Regarding equation (2.77) we can conclude that

e∗ = QCe
∗ = 0,

then the matrix E1 is non singular and the network equation system is of index
1.
For a system of index-2 it is possible to prove the following theorem.

Theorem 2.5.4 If the network contains L-I cutsets or C-V loops except for
capacitance-only loops, then the MNA leads to an index-2 DAE.

For the proof of this Theorem we refer to [51].

2.6 Index concept for the nonlinear MNA equa-

tions

In this section we propose index conditions for the MNA system (2.36), that we
rewrite here for convenience

Eẋ = Ax+Bu(t) + σ(x). (2.78)
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This equation is nonlinear, due to the coupling term with the semiconductor
device σ(x), definited in (2.37). Anyway, due to the special structure of σ(x),
we can extend the method applies for decoupling linear DAEs [40]-[51], described
above, to the specific case by assuming some additional structural conditions.

Following this idea we will assume that the system (2.78) has a given index
when the coupling term σ is not present:

Eẋ = Ax+Bu(t). (2.79)

Then we write additional conditions which ensure the same index for the coupled
system (2.78).

In the next subsections we will treat in details the cases of index-1 and index-2
systems.

2.6.1 Index-1 conditions for nonlinear systems

Let us assume that the system (2.79) is index-1. In this case E0 is singular and
we can define the projector Q0 and P 0, as in (2.44), (2.45), respectively. We
introduce the new matrices

E1 = E0 −A0Q0, A1 = A0P 0, (2.80)

thus, using Lemma 2.4.1, equation (2.43) can be written in the form

E1 (P 0ẋ+Q0x) = A1x+Bu. (2.81)

In conclusion, system (2.79) is index-1 if we have

E0 is singular, E1 is nonsingular. (2.82)

In this case the projected equations (2.62) become

ẏ = P 0E
−1
1 [A1y +Bu(t)] , (2.83)

z = Q0E
−1
1 [A1y +Bu(t)] , (2.84)

with

y = P 0x, z = Q0x. (2.85)

Notice that y and z are differential and algebraic components of x. In this way
we have obtained a decomposition of the original DAE in a differential equation
and an algebraic equation [5, 52].

If we we apply the same decomposition procedure to equation (2.78), we get
the following projected equations:

ẏ = P 0E
−1
1 [A1y +Bu(t) + σ(x)] , (2.86)

z = Q0E
−1
1 [A1y +Bu(t) + σ(x)] . (2.87)
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As we can see, equations (2.86)-(2.87), are coupled through the nonlinear term.
To decoupled these equations we assume that this term depend only on the dif-
ferential part of x, that is,

σ(x) = σ(y). (2.88)

Then, we can still use the decomposition (2.85), derived without coupling, also
in the nonlinear case. In fact we have then

ẏ = P 0E
−1
1 [A1y +Bu(t) + σ(y)] , (2.89)

z = Q0E
−1
1 [A1y +Bu(t) + σ(y)] . (2.90)

If we have that σ(y) is Lipschitz continuous, equation (2.89) can be solved for y
and (2.90) gives z as function of y.

Proposition 2.6.1 If A>Q0 = O, then we have

σ(x) = σ(y), (2.91)

Q0E
−1
1 σ = 0, (2.92)

where E1 is defined in (2.80).

Proof. First we prove (2.91). Considering the decomposition

x = P 0x+Q0x = y + z,

we find immediately

σ(x) = −AiD(A>x)

= −AiD(A>(P 0x+Q0x))

= −AiD(A>P 0x)

= σ(y).

The second statement, (2.92), is immediate if we consider the identity

Q0E
−1
1 ≡ Q0(E0 +Q>0A0Q0)−1Q>0 . (2.93)

in fact we have

Q0E
−1
1 σ = −Q0(E0 +Q>0A0Q0)−1Q>0 AiD

= 0,

since Q>0 A = O.
The previous proposition shows that system (2.78) has index-1 if conditions

(2.82) hold together with the additional condition

AQ>0 = O. (2.94)
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Remark 2.6.1 Condition (2.94) has a simple topological interpretation. In fact,
using the explicit representation (2.66), we find

A>Q0 =

A>DQC

O
O

 .
Thus condition (2.94) is equivalent to

A>DQC = O,

which holds, if any device terminal is connected to ground by a path of capacitors.

Equation (2.78), which is equivalent to (2.89)–(2.90), is considered for t ∈
[t0, t1], and must be supplemented with consistent initial data

x(t0) = x0. (2.95)

The consistency of the initial data is related to the decomposition (2.85) of x.
Namely we can supplemented the equation (2.78) with the initial data

y(t0) = y0 = P 0x0. (2.96)

Then, we can evaluate the component z(t0) by using the equation (2.90).

2.6.2 Index-2 conditions for nonlinear systems

Let us assume that the system (2.79) is index-2. In this case we can follow the
same procedure used in the previous subsection, defining Q0, P 0 and E1, A1. At
this point we have that E1 is also singular so we need to continue the procedure.

We consider a projectorQ1 onto the null space of E1, satisfying the additional
condition

Q1Q0 = O, (2.97)

and introduce its complementary projector, P 1 = I −Q1. Then we can define
the new matrices

E2 = E1 −A1Q1, A2 = A1P 1. (2.98)

Using 2.4.1, equation (2.79), equation (2.81) is equivalent to

E2 (P 1P 0ẋ+Q1x+Q0x) = A2x+Bu(t). (2.99)

Since we assume that (2.79) is index-2, we have that the matrix E2 is nonsingular.
In conclusion the index-2 conditions for (2.79) are:

E0,E1 are singular, (2.100)

E2 is nonsingular. (2.101)
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Then using the multiplicative table

P 1P 0 Q0 Q1

P 0P 1 P 0P 1 O O
Q0P 1 −Q0Q1 Q0 O
P 0Q1 O O P 0Q1

we obtain the index-2 version of the projected equations (2.62):

ẏ = P 0P 1E
−1
2 [A2y +Bu(t)] , (2.102)

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu(t)] , (2.103)

w = P 0Q1E
−1
2 [A2y +Bu(t)] , (2.104)

with
y = P 0P 1x, z = Q0x, w = P 0Q1x. (2.105)

Notice that P 0P 1 is a projector ((P 0P 1)2 = P 0P 1) such that A2x = A2y.
In this way we have obtained a decomposition of the original DAE in a differ-

ential equation and two algebraic equations. We can solve the equation (2.102)
for y, then we compute w by (2.104), and finally z by (2.103). We see that in
the solution appears the time derivative of the source term u(t).

Now, we include also the nonlinear term σ(x). We can still define the projectors
Q0, Q1, and write the system (2.78) in the form

ẏ = P 0P 1E
−1
2 [A2y +Bu(t) + σ(x)] , (2.106)

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu(t) + σ(x)] , (2.107)

w = P 0Q1E
−1
2 [A2y +Bu(t) + σ(x)] . (2.108)

We would like to identify additional conditions so that the above nonlinear system
still exhibits an index-2 structure by means of the above decomposition. We will
propose two different strategy to do so.

1. Recalling the structure of σ(x), we have

σ(x) = −AiD(A>x) = −AiD(A>(P 0P 1x+Q0x+ P 0Q1x)).

If we assume the additional conditions

A>P 0Q1 = O, A>Q0 = O, (2.109)

we have
σ(x) = −AiD(A>P 0P 1x) = σ(y),

and the resulting equations have the same structure as in (2.102)-(2.103):

ẏ = P 0P 1E
−1
2 [A2y +Bu(t) + σ(y)] , (2.110)

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu(t) + σ(y)] . (2.111)

w = P 0Q1E
−1
2 [A2y +Bu(t) + σ(y)] , (2.112)
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2. A second strategy is to allow the function σ to depend on y and w but not
on z. This can be done by assuming the condition

A>Q0 = O. (2.113)

Moreover, we assume that it is possible to choose Q1 so that the following
additional conditions are satisfied:

P 0Q1E
−1
2 A = O, Q0E

−1
2 A = O. (2.114)

This amounts to imposing that the components w and z of the solution do
not depend on the nonlinear term σ(x) = −AiD(A>x). Then we obtain:

ẏ = P 0P 1E
−1
2 [A2y +Bu(t) + σ(y +w)] , (2.115)

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu(t)] , (2.116)

w = P 0Q1E
−1
2 [A2y +Bu(t)] . (2.117)

In this decomposition, we see that the system is still index-2, since we can
solve w in terms of y by using (2.117), and then solving (2.115) for y.
Finally, z can be reconstructed by (2.116).

The second strategy is slightly more general and will be considered in the
following. Therefore we will consider index-2 system which satisfy conditions
(2.100), (2.101), together with the additional conditions (2.114).

Remark 2.6.2 The additional conditions (2.113), (2.114) define a non empty
class of index-2 differential-algebraic systems. We can show this by exhibiting an
explicit example. We consider the circuit shown in Fig. 2.1.

V

R

C2C1

iD

Fig. 2.1 Simple circuit schematic.

The respective incidence matrices read:

AC =

[
−1 0

0 1

]
, AR =

[
1
−1

]
, AV =

[
1
0

]
, AD =

[
0
−1

]
.

The MNA equations for this circuit are:

C1ė1 = 1/R(e2 − e1)− iV ,
C2ė2 = −1/R(e2 − e1)− iD, (2.118)

0 = V − e1.
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For C1, C2, R 6= 0, iD = iD(e2), u(t) = V (t) and

x =

 e1

e2

iV

 ,
we can recast the MNA equations (2.118) in the above matrix form (2.78) using

E0 =

C1 0 0
0 C2 0
0 0 0

, A0 =

−1/R 1/R −1
1/R −1/R 0
−1 0 0

,

B =

 0
0
1

, A =

 0
−1

0

 .
For this example we find for the matrix chain:

Q0 =

 0 0 0
0 0 0
0 0 1

 , P 0 = I−Q0 =

 1 0 0
0 1 0
0 0 0

 , (2.119)

consequently

E1 =

C1 0 1
0 C2 0
0 0 0

 , A1 =

−1/R −1/R 0
1/R −1/R 0
−1 0 0

 . (2.120)

From this we deduce the general form of the projector Q1 (characterized by Q2
1 =

Q1, E1Q1 = O) which satisfies condition (2.97), with free parameter α ∈ R, and
consequentely the matrix E2:

Q1 =

 1 α 0
0 0 0
−C1 −αC1 0

 , E2 = E1 −A1Q1 =

C1 + 1/R α/R 1
−1/R C2 − α/R 0

1 α 0

 .
If we check the additional conditions (2.113) and (2.114) we will see that

A>Q0 =

 0
0
0

 , P 0Q1E
−1
2 A =

 0
0
0

 , Q0E
−1
2 A =

 0
0
−αC1

C2

 . (2.121)

Choosing α = 0, which is allowed, the additional conditions are satisfied.

Equation (2.78), which is equivalent to (2.115)–(2.116), is considered for t ∈
[t0, t1], and must be supplemented with consistent initial data

x(t0) = x0. (2.122)
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The consistency of the initial data is related to the decomposition (2.105) of x.
Namely we can supplemented the equation (2.78) with the initial data

y(t0) = y0 = P 0P 1x0. (2.123)

Then, we can evaluate the components w(t0), z(t0) by using the equations
(2.115)-(2.116).
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Chapter 3

Basic semiconductor equations

3.1 Outline of semiconductor physics

In literature, the term semiconductor has been introduced to denote solid materi-
als with a much higher conductivity than insulators, but a much lower conductiv-
ity than metals measured at room temperature. Usually, a semiconductor device
can be considered as a device which needs an input and produces an output. The
device is connected to the outside world by contacts at which a voltage (potential
difference) is applied. Depending on the device structure, the main transport
phenomena of the electrons may be very different, for instance, due to drift, dif-
fusion, convection, or quantum mechanical effects. For this reason, we have to
devise different mathematical models which are able to describe the main phys-
ical phenomena for a particular situation or for a particular device. This leads
to a hierarchy of semiconductor models. We can divide semiconductor models in
three classes: quantum models, kinetic models and fluiddynamical (macroscopic)
models. However we can say that it is possible to derive all other descriptions
for the evolution of the electron and in particular the fluiddynamical and kinetic
models, from the Schrödinger equation. For this reason we introduce only this
quantum view-point.

We consider the vector quantity p = mv called momentum. The space of all
states (x,p) ∈ R3 ×R3 is the phase space. A path x = x(t) in the phisical space
identifies a curve (x,p) = (x(t),mẋ(t)) in the phase space.

As is well known to a path in phisical space is associated a total energy of
the particle. Also in the phase space to each curve in this space is related a total
energy. To explain this report we introduce the Hamiltonian function

H(x,p) :=
|p|2

2m
− qφ(x). (3.1)

where m is the mass of the particle and φ is the electric potential. Using the
Hamiltonian function we can write the equations of the motion in the form

ẋ = ∇pH, ṗ = −∇xH. (3.2)
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We have to add also the relation that between the Hamiltonian function and the
energy

H(x,p) = E . (3.3)

that is to every path x(t) is related an energy E(t), given by

E(t) = H (x(t),p(t)) . (3.4)

In quantum mechanics every elementary particle is associated to a material
wave. Related to this wave there are the concepts of wave vector k and pulsation
ω. The wave vector indicates the direction of propagation of the wave front. The
carrier wave and pulse wave associated with a material particle are related to the
impulse and energy of the particle through the law of de Broglie,

p = ~k, (3.5)

and the Planck-Einstein relation

E = ~ω, (3.6)

where ~ = h/2π is the reduced Planck constant.
In general the dynamics of an elementary particle is described by a wave

complex function ψ(x, t), related to the Probability that the particle occupies the
position x at time t. We consider now the most simple wave function, that is a
plane wave with wave vactor k and pulsation ω

ψ(x, t) = ei(k·x−ωt), (3.7)

where i is such that i2 = −1. This wave function is related to a free electron under
the action of a constant potential φ0, that in classical mechanics is described by
the Hamiltonian function.

H(x,p) =
|p|2

2m
− qφ0.

Then, from equation (3.7),

∂ψ

∂t
= −iωψ, ∆xψ = −|k|2ψ.

Hence, using the law of de Broglie and the Planck-Einstein relation, we can write

i~
∂ψ

∂t
= Eψ, (3.8)

− ~2

2m
∆xψ − qφ0ψ = H(x,p)ψ. (3.9)

Introducing the following Hemiltonian

H := − ~2

2m
∆x − qφ0,
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equation (3.9) can be written as

Hψ = H(x,p)ψ. (3.10)

we can find the expression for the operator H form the Hemiltonian function H,
usng the substitution

x→ x, p→ −i~∇x. (3.11)

Remembering that there is a correspondence between a trajectory total energy
of the physical space of the particle. From equation (3.4), using equations (3.8)
and (3.10), we have

i~
∂ψ

∂t
= Hψ. (3.12)

This equation, obtained in this case, is called Schrödinger equation, its validity
is postulated in the description of the behavior of matter at the atomic scale or
lower. Finally we have to add the boundary conditions for the wave function

ψ(x, 0) = ψ0(x). (3.13)

Considering a single electron of mass me and elementary charge q moving in
a vacuum under the action of an electric field E = E(x, t), its motion is governed
by the single-particle Schrödinger equation, as we have said,

i~
∂ψ

∂t
= − ~2

2me

∆ψ − qφ(x, t)ψ, x ∈ Rd, d = 1, 2, 3, t > 0, (3.14)

with initial condition
ψ(x, 0) = ψ0(x), x ∈ Rd.

A more precise definition of semiconductor is that a semiconductor is a solid
with an energy gap larger than zero and smaller than about 4eV . Metals have no
energy gap, whereas this gap is usually larger than 4eV in insulators. Therefore
it is necessary to introduce the concept of energy gap Eg, and for this aim we
have to explain the crystal structure of solids. A solid is made of an infinite
three-dimensional array of atoms arranged according to a lattice. A lattice L is
a countable subset of Rd, generated by d independent vectors a1, . . . ad. We can
write

L =
{
a ∈ Rd | a = n1a1 + · · ·+ ndad, n1, . . . , nd ∈ Z

}
.

where a1, . . . , ad are the basis vectors of L. The choice of the basis for the lattice
can be done in infinite number of ways by d independent vectors just choosing a
d-tuple a′1, . . . a

′
d with

a′i =
d∑
j=1

mijaj, mij ∈ Z, det(mij) = 1.

Usually chooses a basis consisting of vectors of minimum length.
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We define the primitive cell of L in Rd a subset D in Rd that contains a
unique element of L (usually the origin) and that its translated form a partition
of Rd. There are infinite choices of primitive cells of the same lattice. Among
them, the one defined by the basis vectors of minimal length is called the unit
cell. Explicitly, the unit cell of a lattice is the set

D = {x = α1a1 + · · ·+ αdad, with α1, . . . , αd ∈ [0, 1[}.

We say that the Wigner-Seitz primitive cell is the region DWS around the origin,
whose points are closest to the origin than to any other lattice point, that is

DWS = {x ∈ Rd : |x| ≤ |x + a|, ∀a ∈ L}.

In the following, we consider for simplicity d = 3. Each lattice is translation
invariant if and only if it is traslated with respect one of its element. It is possible
to see that there exists a finite number of traslation lattice called Bravais lattice.
To any lattice L, generated by the vector {a1, a2, a3}, we can associate a reciprocal
lattice L∗,

L∗ = {n1a
∗
1 + n2a

∗
2 + n3a

∗
3, n1, n2, n3 ∈ Z}. (3.15)

where the basis vectors {a∗1, a∗2, a∗3}, satisfy the relation

a∗i · aj = 2πδij, (3.16)

where δij is the Kronecker delta, equal to 1 if i = j, 0 otherwise. Explicitly

a∗i = 2π
aj ∧ ak

a1 · a2 ∧ a3

, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).

From (3.16) we can derive

eia
∗·a = 1, ∀a ∈ L, a∗ ∈ L∗.

The reciprocal lattice of any Bravais lattice is still a Bravais lattice. If we indicate
with |DL| the volume of the primitive cell DL of L it is possible to see that the
volume of the primitive cell DL∗ of the reciprocal lattice L∗ is given by

|DL∗| =
(2π)3

|DL|
.

The Wigner-Seitz primitive cell of the reciprocal lattice

B := {k ∈ R3 : |k| ≤ |k + a∗|, ∀a∗ ∈ L∗}

is called (first) Brillouin zone, that is the Brillouin zone B is the set of the points
in R3 that are closest to the origin than to any other element of the inverse lattice
L∗.
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If the atoms of the solid are arranged in a lattice L, the potential, φL, gener-
ated by them, will be a periodic with the same lattice periodicity, that is will be
invariant with respect to a translation for each element of L:

φL(x + y) = φL(x), ∀x ∈ R3, y ∈ L.

As we have seen the energy states that can be filled by an electron are determined
by the solution of the stationary Schrödinger equation

− ~2

2me

∆ψ − qφL(x, t)ψ = Eψ, x ∈ R3, (3.17)

where E is the total energy. The equation (3.17) is an eigenvalue problem and we
have to find eigenfunction-eigenvalue pairs (ψ, E).

Now we can apply the Bloch Theorem that says that the Schrödinger equation
is equivalent to the system of Schrödinger equations

− ~2

2me

∆ψk − qφL(x, t)ψk = E(k)ψk, x ∈ DL, (3.18)

indexed by k ∈ B, with pseudo-periodic boundary conditions

ψk(x + y) = ψk(x)eik·y, x,x + y ∈ ∂DL, (3.19)

where DL is a primitive cell of L. It is possible to prove that the wave function
ψk and the energy state Ek, seen as functions of k, are periodic with respect to
the reciprocal lattice L∗ that is

ψk+a∗ = ψk, Ek+a∗ = Ek ∀a∗ ∈ L∗.

The eigenvalue problem (3.18)-(3.19), for any k ∈ B has a sequence of eigen-
functions ψmk with associated eigenvalues Em(k), m ∈ N0. the relation between
ψk and ψ is given by

ψk(x) =
∑
`∈L

e−ik·`ψ(x + `).

We can also write ψmk as a distorted waves

ψmk = umk (x)eik·x, (3.20)

where
umk (x) =

∑
`∈L

e−ik·(x+`)ψ(x + `)

is periodic in L. It is possible to see the functions ψmk as the plane waves eik·x

which are modulated by a periodic function umk called Bloch waves. The function
k 7→ Em(k) is called the dispersion relation or the m-th energy band. It shows
how the energy of the n-th band depends on the wave vector k. The union of the
ranges of Em over m ∈ N is not necessarily the whole set R, i.e., there may exist
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energies E∗ for which there is no m ∈ N and no k ∈ B such that Em(k) = E∗.
The connected components of the set of energies with this non-existence property
are called energy gaps. The energy gap separates two energy bands. The nearest
energy band below the energy gap is called valence band ; the nearest energy band
above the energy gap is termed conduction band. Now we are able to state the
definition of a semiconductor: It is a solid with an energy gap whose value is
positive and smaller than about 4eV . In other words we can say that at absolute
zero the electrons occupy the states available to more low energy in the energy
bands of the crystal. There may be two very different situations. Some bands can
be completely filled, while all others remain completely empty. In this case it is
called the energy gap Eg, the maximum difference between the highest (in energy)
filled band and the minimum of the most low empty band. These bands are called
respectively valence band Ev(k) and conduction band Ec(k). The energy is given
by

Eg = min
k∈B
Ec(k)−max

k∈B
Ev(k) ≡ Ec − Ev > 0.

Depending on how big is the energy gap the crystals are insulators or semicon-
ductors. Typically the value of Eg is from 1 to several eV in the case of insulators,
for semiconductors is between 0.1 and 0.5 eV . Examples of semiconductors are
silicon (Si), germanium (Ge) and gallium arsenide (GaAs). The second situation
that can occur is one in which at absolute zero some bands are only partially
filled, in this case, we say that the crystal is a conductor.

It is possible to show that the group velocity of the wave packet in the n-th
band is given by

vn(k) =
1

~
∇kEn (3.21)

Differentiantig (3.21) we have

∂vn
∂t

=
1

~
d2En
dk2

∂k

∂t
=

1

~2

d2En
dk2

F,

where F indicates the force. Using the Newton’s law

F =
∂p

∂t
= m∗

∂vn
∂t

,

in wich m∗ is the effective mass and p is the momentum, we obtain

(m∗)−1 =
1

~2

d2En
dk2

.

We consider this equation as a definition of the effective mass m∗. The second
derivative of En with respect to k is a 3× 3 matrix, so the symbol (m∗)1 is also a
matrix. If we evaluate the Hessian of En near a local minimum, i.e. ∇kEn(k0) = 0,
then d2En(k0)/ dk2 is a symmetric positive matrix which can be diagonalized and
the diagonal elements are positive: 1/m∗x 0 0

0 1/m∗y 0
0 0 1/m∗z

 =
1

~2

d2En
dk2

(k0).
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Assume that the energy values are shifted in such a way that the energy vanishes
at the local minimum k0. For wave vectors k “close” to k0, we have from Taylor’s
formula and

En(k) = En(k0) +∇kEn(k0) · k +
1

2
k>

d2En
dk2

(k0)k +O(|k− k0|3)

=
~2

2

(
k2
x

m∗x
+
k2
y

m∗y
+
k2
z

m∗z

)
+O(|k− k0|3),

where k = (kx, ky, kz)
>. If the effective masses are equal in all directions, i.e.

m∗ = m∗x = m∗y = m∗z, we can write, neglecting higher-order terms,

En(k) =
~2

2m∗
|k|2, (3.22)

for wave vectors k “close” to a local band minimum. In this situation, m∗ is
called the isotropic effective mass. We conclude that the energy of an electron
near a band minimum equals the energy of a free electron in vacuum where the
(rest) mass of the electron is replaced by the effective mass. The effects of the
crystal potential are represented by the effective mass. The expression (3.22) is
referred to as the parabolic band approximation and usually, the range of wave
vectors k is extended to the whole space. In order to account for non-parabolic
effects, the following non-parabolic band approximation in the sense of Kane is
used

En(1 + αEn) =
~2

2m∗
|k|2, (3.23)

where α > 0 is a non-parabolicity parameter.
When we consider the effective mass near a band maximum, we find that the

Hessian of En is negative definite which would lead to a negative effective mass.
Using a positive charge leads to a positive effective mass. The corresponding
particles are calles holes. Physically, a hole is a vacant orbital in an otherwise
filled (valence) band. Thus, the current flow in a semiconductor crystal comes
from two sources: the flow of electrons in the conduction band and the flow of
holes in the valence band. It is a convention to consider rather the motion of the
valence band vacancies that the motion of the electrons moving from one vacant
orbital to the next.

3.2 Physics of equilibrium of semiconductors

It is possible to describe a statistical ensemble of particles in equilibrium using
three thermodynamic quantities, such as the density of the number of particles,
the temperature and the chemical potential. These quantities do not are inde-
pendent of the another, but it is possible to express each of them in function of
the other two with a relationship called the equation of state. In this section we
determine the equation of state for the density of the number electrons in con-
duction band, and the density of the number hole in valence band. The starting
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point is that in equilibrium the probability of employment of an electronic state
depends only on the energy state and is given by the Fermi-Dirac distribution

FFD(E) =
1

exp
(
E−µ
kBT

)
+ 1

, (3.24)

where kB is the Boltzmann constant, T is the absolute temperature and µ is
the chemical potential. This chemical potential represent the energy required to
increase by one the number of particles, at constant temperature and constant
volume. When the energy E is equal to the chemical potential µ, obviously the
distribution function FFD is equal to 1/2, this value for the energy is called energy
Fermi level EF .

Now we are able to determine the number of electrons in the conduction band
and the number of holes in the valence band per unit volume. We use statistical
methods, and we make two assumption:

• the electrons cannot be distinguished from one another and

• the Pauli exclusion principle that says that each level of a band can be
occupied by not more than two electrons with opposite spin.

At the first we calculate the number of possible states within all energy bands
per unit volume (2π)3, this number is

gc(E) =
2

(2π)3

∑
ν

∫
B

δ(E − Eν(k)) dk. (3.25)

this quantity is called density of states. In this equation B is the Brillouin zone
and the function δ is the delta distribution defined by∫ ∞

−∞
δ(E0 − E)ϕ(E)dE = ϕ(E0) (3.26)

of all appropriate function ϕ. The electron density, that is the integral of the
probability density occupancy of the energy state per unit volume

nc =
2

(2π)3

∑
ν

∫
B

fFD(Eν(k)) dk. (3.27)

Using the (3.26), the definition of the density of states gc(E), and the properties
of the delta function, we have

nc =
1

4π3

∑
ν

∫
B

∫ ∞
−∞

δ(E − Eν(k))fFD(E) dk,

=

∫ ∞
Ec

gc(E)fFD(E)dE , (3.28)
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in wich Ec is the minimum of the conduction band Ec(k). Thus using the definition
of the Fermi-Dirac distribution we have the following expression for the electron
density

nc =

∫ ∞
Ec

gc(E)dE
1 + exp((E − EF )/kBT )

. (3.29)

In a similar way for the hole density pv, we obtain the following expression

pv =

∫ ∞
−∞

gc(E)

(
1− 1

1 + exp((E − EF )/kBT )

)
dE

=

∫ Ev
−∞

gc(E)dE
1 + exp((EF − E)/kBT )

, (3.30)

where Ev is the maximum of the valence band Ev(k).
For semiconductor we can consider the assumption of non degeneracy, that is

Ec − EF � kBT, (3.31)

EF − Ev � kBT, (3.32)

then for (3.31), for all E > Ec, we have that E − EF � kBT and then the Fermi-
Dirac distribution function in (3.28) can be approximated with the Maxwell-
Boltzmann distribution function (for electron):

1

1 + exp
(
E−EF
kBT

) ≈ exp

(
−E − EF

kBT

)
, ∀E < Ec. (3.33)

In similar way if we assume (3.32) for the hole we have the Maxwell-Boltzmann
distribution function (for hole):

1

1 + exp
(
EF−E
kBT

) ≈ exp

(
−EF − E

kBT

)
, ∀E < Ev. (3.34)

Using these approximations we can write

nc =

{∫ ∞
Ec

gc(E) exp

(
−E − Ec

kBT

)
dE
}

exp

(
−Ec − EF

kBT

)
,

pv =

{∫ Ev
−∞

gv(E) exp

(
−Ev − E

kBT

)
dE
}

exp

(
−EF − Ev

kBT

)
.

If we define the quantities

Nc(T ) :=

∫ ∞
Ec

gc(E) exp

(
−E − Ec

kBT

)
dE ,

Pv(T ) :=

∫ Ev
−∞

gv(E) exp

(
−Ev − E

kBT

)
dE ,

(3.35)
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the electron density and the hole density have the form

nc = Nc(T ) exp
(
− Ec − EF

kBT

)
,

pv = Pv(T ) exp
(
− EF − Ev

kBT

)
.

(3.36)

Multiplying the last two expressions for nc and pv, we obtain the law of mass
action

ncpv = n2
i , (3.37)

where ni is the intrinsic concentration that, in this case, depends only on the
temperature and is given by

n2
i = NcPv exp

(
− Ec − Ev

kBT

)
≡ NcPv exp

(
− Eg
kBT

)
. (3.38)

A pure semiconductor crystal with no impurities is called intrinsic semicon-
ductor. In this case the conduction band electrons can only have come from
formerly occupied valence band levels leaving holes behind them. The number of
conduction band electrons is therefore equal to the number of valence band holes:

nc(T ) = pv(T ) =: ni(T ). (3.39)

Using this relation and (3.36), it is possible to determine the chemical potential
(Fermi level) depending on the temperature,

Nc(T ) exp
(
− Ec − EF

kBT

)
= Pv(T ) exp

(
− EF − Ev

kBT

)
. (3.40)

Then, from (3.40), we have

EF = EF,i(T ) ≡ 1

2
(Ec + Ev) +

1

2
kBT log

(
Pv(T )

Nc(T )

)
. (3.41)

Now using (3.39), we obtain the carrier density ni,

ni(T ) =
√
Nc(T )Pv(T ) exp

(
− Eg

2kBT

)
, (3.42)

that is equivalent to (3.38). Then we can say that the “intrinsic concentration”
is the concentration of the carrier for an intrinsic semiconductor in equilibrium
state.

We notice that the expressions (3.36) are valide also in partial equilibrium,
in which we have to replace the Fermi level EF with EF,c for the electrons in
conduction band and with EF,v for holes in valence band, then we have

nc = Nc(T ) exp
(
− Ec − EF,c

kBT

)
,

pv = Pv(T ) exp
(
− EF,v − Ev

kBT

)
.

(3.43)
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These relations are equivalent to the following relations in which we consider the
intrinsic concentratio ni and the Fermi level depending on temperature EF,i(T )

Nc(T ) = ni exp
(Ec − EF,i

kBT

)
, Pv(T ) = ni exp

(EF,i − Ev
kBT

)
. (3.44)

Using these identities we can write the equations (3.43) as

nc = ni exp

(
EF,c − EF,i
kBT

)
, pv = ni exp

(
EF,i − EF,v
kBT

)
. (3.45)

The relations (3.45) are the Maxwell-Boltzmann relations. From these equations
we obtain also

EF,c = EF,i + kBT ln
nc
ni

, EF,v = EF,i − kBT ln
pv
ni

. (3.46)

The intrinsic density is too small to result in a significant conductivity. How-
ever, it is possible to replace some atoms in a semiconductor crystal by atoms
which provide free electrons in the conduction band or free holes in the valence
band. This process is called doping. Impurities that contribute to the carrier
density are called onors if they supply additional electrons to the conduction
band, and acceptors if they supply additional holes to the valence band. A semi-
conductor which is doped with donors is termed n-type semiconductor, and a
semiconductor doped with acceptors is called p-type semiconductor. Generally
speaking, let Ed and Ea be the energy level of a donor electron and an accep-
tor hole, respectively. Then Ec − Ed and Ea − Ev are small compared to kBT .
This means that the additional particles contribute at room temperature to the
electron and hole density.

3.3 Derivation of the drift-diffusion model from

BTE equation

We introduce the phase space which is the space with seven coordinates: spatial
coordinates x = (x1, x2, x3)>, momentum coordinates k = (k1, k2, k3)> and time
t. At the beginning we introduce the unipolar case. The electron concentration
is described by a distribution function f(x,k, t), we can find the carrier concen-
tration per unit volume of phase space integranting the distribution function over
the entire momentum volume Vk, that is∫

Vk

f(x,k, t) dk = n(x, t). (3.47)

The distribution function has the property that in the entire phase space the
derivative along a particle trajectory x(t), k(t) with respect to time vanishes,
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when scattering events are not present that is the Boltzmann transport equation
in implicit form. Expanding the total derivative we obtain

∂f

∂t
+∇xf ·

dx

dt
+∇kf ·

dk

dt
= 0,

clearly ∇k and ∇x indicate the gradients operator with respect to the momentum
coordinates k, and the spatial coordinates x, respectively.

In the presence of scattering, we have

d

dt
f(x(t),k(t), t) = C[f ],

and then the Boltzmann transport equation becomes

∂f

∂t
+∇xf ·

dx

dt
+∇kf ·

dk

dt
= C[f ], (3.48)

where C[f ] represents the scattering events due to the macroscopic external fields,
internal forces and to internal localized crystal attributes like impurity atoms or
ions, vacancies, and thermal lattice vibrations (phonons). Using statistical laws
(Fermi’s golden rule), and placing f = f(x,k, t) and f ′ = f(x,k′, t) we can write

C[f ] = −
∫
Vk′

[f(1− f ′/y)P (k,k′)− f ′(1− f/y)P (k′,k)] dk′.

where y = 1/(4π)3 is the density of the states, and P (k,k′) dk′ represents the
probability per unit time that a carrier in the state k will be scattered into the
momentum volume dk′.

We must introduce some considerations about the collision term described
above. In general, this term should also consider another type of particle or
rather pseudo-particles called phonons. These quasi-particles correspond to the
oscillations of the nuclei of the semiconductor around the equilibrium configura-
tion which determine the lattice, they are bosons, that is, many phonons may
occupu the same quantum state.

If we take into account the thermal effects we have to consider electrons and
holes immersed in a thermal bath of phonons. We consider nph relevant families
of phonons, then the phonon concentrations, that we indicate with gi, with i =
1, . . . , nph, depends only from the lattice temperature or rether from the internal
energy.

In this section we consider the equilibrium state for phonons and this state
is characterized by the fact that the number of occupancy, NB, (average number
of phonons which are in a given state quantum) is given by the Bose-Einstein
distribution

NB =
1

exp
(

~ω
kBTL

)
− 1

, (3.49)

where ~ω is the energy of phonon.
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For this reason in general we must write

C = C[f, gi]

but in the Boltzmann description we neglect thermal effect and then we have

C = C[f ].

Back to our derivation of the model, we notice that the derivative of k with
respect to time, that appears in (3.48), multiplied times the Planck’s constant ~
it’s equal to the sum of all forces F, and the derivative of x with respect to time
is the velocity group of the carriers v(k), that is

dk

dt
=

1

~
F,

dx

dt
= v(k).

Thus the explicit form of the Boltzmann equation is

∂f

∂t
+ v(k) · ∇xf −

q

~
E · ∇kf = C[f ]. (3.50)

If we consider the bipolar case we have that the Boltzmann transport equation
comprise a scattering term which describe the collisions also between holes and
electron, that is

∂fν
∂t

+ v(k) · ∇xfν −
q

~
E · ∇kfν = Cν [fν , fν̄ ], (3.51)

where ν stands for n or p in electron or hole case, respectively, and ν̄ the opposite
of ν. The collision term has the form

Cν [fν , fν̄ ] = Cνν [fν ] + Cνν̄ [fν , fν̄ ],

in this equality the first term represents the scattering between electron-electron
or hole-hole, and the second term is the generation-recombination term.

Continue to investigate the unipolar case, we derive the first and simpler
model for semiconductor device called drift-diffusion model from the Boltzmann
equation (3.50). Integrating this equation with respect to the momentum space
k on the Brillouin zone B, and using the periodicity on the boundary of this
region, we have

−
∫

B

q

~
E · ∇kf dk = − q

~
E ·
∫
∂B

fνB dσ(k) = 0, (3.52)

where νB(k) is the external unit normal on the boudary of B. We have the same
result with parabolic approximation (3.22) or with Kane approximation (3.23),
if we assume that the distribution function for eletrons quickly vanish to infinity.
It is possible to see that 1 is a collision invariant for C[f ] because is a function
that does not depend on k, then∫

B

C[f ] dk = 0. (3.53)
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Apllying (3.52) and (3.53) in the Boltzmann equation (3.50), we obtain the con-
tinuity equation for the electron density,

∂n

∂t
+∇x · jn = 0, (3.54)

where the current density for the electrons

jn =

∫
B
fvn dk. (3.55)

Sometimes we write also jn = nv, where

vn =
1

n

∫
B
fv dk is the average velocity. (3.56)

Equations (3.54) for electrons, coupled with the Poisson equation, forms the
much simpler system that describes the carrier in semiconductor. To solve this
system we need the closure relation for jn. In ather words we have to write jn as
function of n and φn. To have this closure relation from the semiclassical Boltz-
mann equation with elementary methods, is necessary to simplify the collision
term C[f ], replacing the integral operator representing the physical scattering
with relaxation term. The basic concept is that the carriers, because of collisions
with phonons and other carriers, tend to relax gradually to the state of global
thermal equilibrium at the lattice temperature TL and this relaxation takes place
over a period relatively long. During the relaxation the system retain for a time
comparable to that of interest simulations (at least nanoseconds) in a state of
local thermodynamic equilibrium described by a Maxwellian with a carriers tem-
perature T different from that of the lattice. With this phisical description we
can replace the collision term with a relaxation term of the following form

C[f ] = −f − feq

τ(E)
, (3.57)

where τ(E) is the relaxation time and feq is the distribution function at equilib-
rium that has the form

feq(x,k, t) = yFM(E(k)), (3.58)

in which we have posed

FM(E) = exp

(
−E − EF
kBTL

)
.

At global thermal equilibrium we have that the temperature in a constant value
that is equal to lattice temperature T = TL, and the quasi-Fermi level EF is also a
constant value with respect to space and time. We use now the Hilbert expansion,
that is: we rescale the relaxation time in the following way

τ(E)→ ετ(E), (3.59)
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where τ denotes a typical value of the relaxation time, which is a measure of
its size. The parameter τ is related to the time scale in which the equilibrium
relaxation becomes important. To express it we rescale the time by introducing
a rescaled time

t→ t

ε
(3.60)

The derivative with respect to time is

∂

∂t
→ τ

∂

∂t

Using this new time variable, the Boltzmann equation with BGK approximation
(3.57) for the collision operator becames

τ
∂f

∂t
+ v(k) · ∇xf −

q

~
E · ∇kf = −1

τ̄

f − feq

τ(E)
. (3.61)

With the same scaling the electric field equation and the Poisson equation become

E = −∇xφ, −∇x · (εs∇xφ) = q(ND − n), (3.62)

with

f(x,k, t)→ f(x,k, t/τ), φ(x, t)→ φ(x, t/τ). (3.63)

Then we introduce the following series expansion of the new distribution func-
tion f , writed with the new time t∗ around the equilibrium distribution function
feq with respect to the parameter τ

f =
∞∑
k=0

τ kfk ≡ f0 + τf1 + τ 2f2 + · · · , con f0 = feq. (3.64)

Similarly we have for the electric potential

φ =
∞∑
k=0

τ kφk ≡ φ0 + τφ1 + τ 2φ2 + · · · . (3.65)

Using the expansions (3.64)-(3.65) in the Boltzmann equation (3.61), we obtain

v · ∇xf0 −
q

~
E0 · ∇kf0

+
∞∑
k=1

τ k

{
∂fk−1

∂t
+ v · ∇xfk −

q

~

k∑
i=0

Ei · ∇kfk−i

}

= − 1

τ(E)
f1 −

1

τ(E)

∞∑
k=1

τ kfk+1,
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from which, equating all the coefficients of τ in both sides of the equation, we
have

f0 = feq, (3.66)

f1 =−τ(E)
{
v · ∇xf0 −

q

~
E0 · ∇kf0

}
, (3.67)

fk+1 =−τ(E)

{
∂fk−1

∂t′
+ v · ∇xfk −

q

~

k∑
i=0

Ei · ∇kfk−i

}
, k = 1, 2, . . . (3.68)

Using the same expansion in the Poisson equation we find

−∇x · (εs∇xφ0)−
∞∑
k=1

τ k∇x · (εs∇xφk) = q(ND − n0)−
∞∑
k=1

τ kqnk,

then the electric potential φk satisfy the Poisson equations

−∇x · (ε∇xφ0) = q(ND − n0), (3.69)

−∇x · (ε∇xφk) = −qnk, k = 1, 2, . . . (3.70)

In the previous equations, we have

Ek = −∇xφk, nk =

∫
B

fnk dk. (3.71)

Using this procedure iteratively we can obtain the approximation of f at the
desired order of τ . At the first order of τ , we find

f = f0 + τf1

= feq − ττ(E)
{
v · ∇xfeq −

q

~
E0 · ∇kfeq

}
, (3.72)

with
E0 = −∇xφ0, −∇x · (ε∇xφ0) = q(ND − n0), (3.73)

where

n0 =

∫
B

feq dk.

Using the approximation (3.72) we can compute the rescaled n, jn

n =

∫
B

feq dk + τ

∫
B

f1dk, jn =

∫
B

vfeq dk + τ

∫
B

vf1dk. (3.74)

Observing that feq and E are even function with respect to k, while f1 and v are
odd function,

feq(x,−k, t) = feq(x,k, t), E(−k) = E(k),

f1(x,−k, t) = −f1(x,k, t), v(−k) = −v(k).
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Then in equations (3.74), because of the symmetry, are different from zero only
the integrals of even functions

n =

∫
B

feqdk, jn = τ

∫
B

vf1dk. (3.75)

Then the continuity equation (3.54), for electrons becomes

τ
∂n

∂t
+∇x · jn = 0. (3.76)

Considering the previuos time t and the Poisson equation we obtain the system

∂n

∂t
+∇x · jn = 0, (3.77)

E = −∇xφ, −∇x · (εs∇xφ) = q(ND − n), (3.78)

with

n =

∫
B

feq dk, (3.79)

jn = −
∫

B

τ(E)v
{
v · ∇xfeq −

q

~
E · ∇kfeq

}
dk. (3.80)

To close the system we have to explicit the closure relation (3.79). To this aim
we insert equation (3.58) in the expression for the electron density (3.77),

n =

∫
B

feq dk =
1

4π3

∫
B

fM(E(k)) dk

=
1

4π3

∫
B

exp

(
−E − E

c
F

kBT

)
dk,

from which,

n = N exp

(
EcF
kBT

)
, N :=

1

4π3

∫
B

exp

(
− E
kBT

)
dk. (3.81)

and remembering the expression for the intrinsic concentration ni = ni(TL) we
can identify the intrinsic Fermi level as

EF,i = −kBT log
N

ni

⇐⇒ N = ni exp

(
− EF,i
kBT

)
.

and we can rewrite equation (3.81) in the form

n = ni exp

(
EcF − EF,i
kBT

)
. (3.82)
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Now we compute the closure relation (3.79). Using the expression (3.58), and
considering that, in this case, the temperature is constant and equal to lattice
temperature T = TL,

∇xfeq = feq
1

kBT
∇xEcF

∇kfeq = −feq
~

kBT
v.

then we have,

v · ∇xfeq −
q

~
E · ∇kfeq =

feq

kBT
v · [∇x(EcF − qφ)] (3.83)

Using this relation in equation (3.79) we obtain the following expression for the
electron flux

jn = −
∫

B

τ(E)v
{
v · ∇xfeq −

q

~
E · ∇kfeq

}
dk

= −
∫

B

τ(E)v ⊗ vfeq dk ·
[

1

kBT
∇x(EcF − qφ)

]
(3.84)

where ⊗ indicates the tonsorial product between vectors.
Remembering the Maxwell-Boltzmann relation, and that for the quasi-Fermi

level EcF and the intrinsic Fermi level EF,i we can write the relation

EcF − EF,i = q(φ− φn), (3.85)

that defines the quasi-Fermi potential φn. Then the closure relation (3.84) be-
comes

jn = − 1

kBT

∫
B

τ(E)v ⊗ vfeq dk · ∇x(EF,i − qφn)

=
q

kBT

∫
B

τ(E)v ⊗ vfeq dk · ∇xφn. (3.86)

We have found a a linear dependence of jn from ∇xφn.
Using phisical considerationit is also possible to write the current as a sum of

two part, one that taking into account the drift of electron and other part that
consider the diffusion of them that is

jn = µnn∇xφn −Dn∇xn, (3.87)

where µn is the mobility and Dn is the diffusion coefficient

Dn = φthµn =
kBTµn
q

.

From equation (3.86) we have

jn =
1

n

q

kBT

∫
B

τ(E)v ⊗ vfeq dk ·
[
−kBT

q
∇xn+ n∇xφ

]
,
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that represents the fact that

1

n

q

kBT

∫
B

τ(E)v ⊗ vfeq dk

is the motility tensor.
Now we can write unipolar drift-diffusion model for electron is

∂n

∂t
+∇x · jn = 0,

jn = µn (n∇φ− φth∇n) ,

E = −∇xφ, −∇x · (εs∇xφ) = q(ND − n)

(3.88)

Similarly we can get a unipolar drift-diffusion model for holes in the valence
band, and starting with a system of Boltzmann equations for electrons and holes,
with a coupling term, we can get the following bipolar drift-diffusion model

∂n

∂t
+∇ · jn = H, jn = µn (n∇φ− φth∇n) ,

∂p

∂t
+∇ · jp = H, jp = −µp (p∇φ+ φth∇p) .

E = −∇xφ, −∇x · (εs∇xφ) = q(ND −NA + p− n).

(3.89)

The term H is the recombination-generation term that we will introduce in the
following section.

3.4 Drift-diffusion model form Maxwell equa-

tions

In this section we give a first approach on building the equations that represent
the mathematical models for the analysis of semiconductor devices. In the first
chapter we gave a first idea on these equations, in this section, we show how to
derive such equations from the following Maxwell’s equations

∇×H = J +
∂D

∂t
, (3.90)

∇× E = −∂B

∂t
, (3.91)

∇ ·D = ρ̂, (3.92)

∇ ·B = 0. (3.93)

The vectors E and D are the electric field and the displacement vector, H and
B are the magnetic field and the induction vector respectively, J indicates the
conduction current density and finally ρ is the electric charge density.

From the equation (3.92) we can derive the Poisson equation that we rewrite
for convenience

−∇ · (ε∇φ) = ρbi + ρ. (3.94)
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We introduce the relation between the displacement vector D and the electric
field E

D = εE, (3.95)

where ε denotes the dielectric constant considered time independent. We assume
that the polarization by mechanical forces is neglected. These assumption are
consistent with the semiconductor devices. Now we introduce a vector field A,
remembering that the operator ∇ · (∇ × u) applied to any vector u is zero and
solving the equation(3.93) we obtain

B = ∇×A and ∇ ·A = 0.

Using these identities in (3.91), assuming that the speed of light is large compared
with to all velocities which are relevant for the device, we have

∇×
(

E +
∂A

∂t

)
= 0. (3.96)

Then there exists a scalar field φ such that

−∇φ = E +
∂A

∂t
.

Finding the electric field E from the previous equality and substituting into (3.95)
and the resulting vector D in (3.92) we obtain

−∇ ·
(
εs
∂A

∂t

)
−∇ · (εs∇φ) = ρ̂. (3.97)

We have obtained the Poisson equation (3.94) considering that the first term
of the previous equation is zero if the dielectric constant ε can be considered
homogenous. The term ρ̂ includes the charge density due to the dopans embedded
in semiconductor indicates with ρbi and the charge density due to the carriers ρ.
We can express the charge density ρ̂ as the product of the elementar charge
q times the sum of the positively charged hole concentration p the negatively
charged electron concentration n and an additional concentration N

ρ̂ = q(p− n+N). (3.98)

As we will see later this is not only a substitution but we additional assumption
are brought about by modeling the quantities n and p.

From the Maxwell equations we can derive also the continuity equations. Ap-
plying the divergence operator to equation (3.90) and considering (3.92), we have
immediately

∇ · (∇×H) = ∇ · J +
∂ρ̂

∂t
= 0, (3.99)

The conduction current density J can be expressed as the sum of a component
cuosed by holes Jp and a component due to the electrons Jn. Assuming that all
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charges in the semiconductor, except the mobile carriers electrons and holes, are
time invariant, and using equation (3.98) in (3.99) we have

∇ · (Jp + Jn) + q
∂

∂t
(p− n) = 0. (3.100)

This result just means that sources and sinks of the total conduction current are
fully compensed by the time variation of the mobile charge.

Finally, to obtain the two continuity equations we have to define a quantity
H using the following equation

∇ · Jn − q
∂n

∂t
= qH, (3.101)

thus we have from (3.100)

∇ · Jp + q
∂p

∂t
= −qH. (3.102)

The quantity H can be seen as a function that represents the net generation
or recombination of electrons and holes. Positive H means recombination and
negative H means generation. As we will see later this term has several different
formulations depending on how one chooses to model it.

Finally, remembering (3.55) and (3.56), we can write that the current density
of charged particles is the product of the charge constant per particle, the particle
concentration and the average velocity (drift velocity) of the particles, so we have,
respectively, for electrons

Jn = −qnvn.

that is consistent with the description in prevoous setcion noting that

Jn = −qjn.

With same simple consideration we obtain similar thing for holes.

3.5 The recombination-generation term

In this section we describe the expression of the production term H in the drift-
diffusion model. Usually we assume that H is a balance term in which there
is a contribute to generation of electrons and holes, which cause an increase of
the concentrations of particles, and there is also a contribute of recombination of
electrons and holes, causing a decrease of the concentrations of particles. That is

H = G−R, (3.103)

G and R stand for generation and recombination events respectively. The most
basic recombination-generation processes, are described by Auger term and Shockley-
Read-Hall term. We introduce at the first the Auger recombination-generation
process. In this model we have two possible mechanisms of recombination
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• Capture of an electron: an electron moves from the conduction band to
the valence band and recombines with a hole in valence. The energy of
this electron is transferred to another electron in the conduction band. The
recombination rate for this mechanism is given by Cnn

2p.

• Capture of a hole: an electron moves from the conduction band to the va-
lence band and recombines with a hole in valence. The energy of the electron
is transferred to another hole in the valence band. The recombination rate
for this mechanism is given by Cp np

2.

There are also two possible mechanisms of generation

• Emission of an electron. The generation rate for this mechanism is given
by Cnn

2
i n.

• Emission of a hole. The generation rate for this mechanism is given by
Cpn

2
i p.

Then the recombination-generation term introduced by Auger is

GA −RA = Cnn
2
i n+ Cpn

2
i p− Cnn2p− Cp np2

= −(Cnn+ Cp p)(np− n2
i ). (3.104)

The other model introduced by Shockley, Read and Hall, describes the effect of
the presence of traps, that is additional levels of energy in the bandgap, due to
the presence of impurities, accessible to electrons and holes. If we indicate with
Ntr the traps density and with ntr the occupied traps density, we have also in this
description two mechanism of recombimation

• Capture of an electron. An electron moves from the conduction band to
an unoccupied trap. The rate of this recombination mechanism is given by
Can(Ntr − ntr).

• Capture of a hole. An electron moves from an occupied trap to the valence
band. A hole disappears. The rate of this recombination mechanism is
given by Cbp ntr.

The following are possible mechanisms for generation.

• Emission of an electron. An electron moving from one trap to the conduc-
tion band occupied. The rate of this recombination mechanism is given by
Ccntr.

• Emission of a hole. An electron moves from the valence band to an unoc-
cupied trap. A hole appears. The rate of this recombination mechanism is
given by Cd(Ntr − ntr).
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Thus, the recombination-generation rate for electrons and holes are given, respec-
tively, by

Gn
SRH −Rn

SRH = Ccntr − Can(Ntr − ntr),

Gp
SRH −R

p
SRH = Cd(Ntr − ntr)− Cbp ntr.

Moreover must be valid the balance equation for the occupied traps density

∂ntr

∂t
= Can(Ntr − ntr)− Cbp ntr − Ccntr + Cd(Ntr − ntr).

Then we can assume that ntr is in equilibrium and does not depend on time

0 = Can(Ntr − ntr)− Cbp ntr − Ccntr + Cd(Ntr − ntr).

Requiring that two terms of recombination-generation terms are the same, we
have

ntr =
Can+ Cd

Can+ Cbp+ Cc + Cd
Ntr,

whence

GSRH −RSRH = − CaCb np− CcCd
Can+ Cbp+ Cc + Cd

Ntr.

Dividing numerator and denominator of this expression by CaCb, introducing the
idensities

n∗ =
Cc
Ca
, p∗ =

Cd
Cb
,

and the electron and hole life-time

τn =
1

CbNtr

, τp =
1

CaNtr

,

remembering that n∗p∗ = n2
i , we obtain the recombination-generation Shockley-

Read-Hall term

GSRH −RSRH = − np− n2
i

τn (n+ n∗) + τp (p+ p∗)
. (3.105)

Then we have the expression for the recombination-generation term

H = GA −RA +GSRH −RSRH ≡ −F (n, p)(np− n2
i ), (3.106)

with

F (n, p) = (Cnn+ Cp p) +
1

τn (n+ n∗) + τp (p+ p∗)
≥ 0.
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3.6 Boundary conditions of the drift-diffusion

model

As we have wrote in the previous chapter, the semiconductor is modeled by a
doman Ω in Rd, with d = 1, 2 or 3. The boundary of this region ∂Ω is divided in
two parts ΓD and ΓN representing the ohmic contacts and the electrically isolated
regions, respectively. Since the ohmic contacts are generally more than one, say
nD, we write

ΓD =

nD⋃
i=1

ΓD,i, ΓN = ∂Ω \ ΓD.

At the first we consider the steady-state drift diffusion model
−∇ · (εs∇φ) = q(N − n+ p),

∇ · jn = H, jn = µn (n∇φ− φth∇n) ,

∇ · jp = H, jp = −µp (p∇φ+ φth∇p) ,
(3.107)

where N = ND −NA. In this case we have the possibility to choose between dif-
ferent sets of variables. The first set of three variables consists of (φ, n, p). Ohmic
contacts on the boundary conditions are found by requiring that the semiconduc-
tor is in equilibrium, the conditions of neutrality charge and the law of mass
action are valid, moreover the quasi-Fermi potentials are equal to the applied
potential,

N − n+ p = 0, np = n2
i , φn = φp = UD, su ΓD.

Using the previous equations and the Maxwell-Boltzmann relations

n = ni exp

(
φ− φn
φth

)
, p = ni exp

(
−φ− φp

φth

)
, (3.108)

we find that on ΓD must be valid:

φ = eD + φbi, n = nD, p = pD, (3.109)

with

φbi := φth log
nD
ni

, (3.110)

nD :=
N(x)

2
+

√(
N(x)

2

)2

+ n2
i , (3.111)

pD := −N(x)

2
+

√(
N(x)

2

)2

+ n2
i ≡

nD
n2

i

. (3.112)

Usually the value of the applied potential is constant on each ohmic contact,

eD(x, t) = eD,i(t), x ∈ ΓD,i, i = 1, . . . , nD. (3.113)
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Another possible set of three variables for (3.107) is made up of (φ, φn, φp), with
respect to which, using (3.108), the constitutive relations for the flows of carri-
ers take the simplest form, jn = µnn∇φn, jp = −µpp∇φp, and system (3.107)
becomes 

−∇ · (εs∇φ) = q(N + p− n),
∇ · jn = H jn = µnn∇φn,
∇ · jp = H jp = −µpp∇φp,

in Ω. (3.114)

For these variables, the boundary condition on ΓD are:

φ = eD + φbi, φn = eD, φp = eD. (3.115)

The last tern is that we consider is (φ, u, v), where u, v are the Slotboom variables,
defined by:

u = ni exp

(
− φn
φth

)
, v = ni exp

(
φp
φth

)
. (3.116)

With respect to this tern, the Maxwell-Boltzmann relations become

n = u exp

(
φ

φth

)
, p = v exp

(
− φ

φth

)
, (3.117)

and the costitutive relations for the fluxes are

jn = −Dn exp

(
φ

φth

)
∇u, jp = −Dp exp

(
− φ

φth

)
∇v, (3.118)

with Dn = φthµn, Dp = φthµp. On ΓD must be valid the boundary conditions

u = ni exp

(
− eD
φth

)
, v = ni exp

(
eD
φth

)
. (3.119)

For each of the previous choices of variables, on Neumann region of the bound-
ary ΓN the conditions of isolation are valid

ν · E = 0, ν · jn = 0, ν · jp = 0, (3.120)

where ν is the unit external normal on the boudary of Ω, and E = −∇φ. The
above conditions for the three choices of variables became respectively

∂φ

∂ν
= 0,

∂n

∂ν
= 0,

∂p

∂ν
= 0, (3.121)

∂φ

∂ν
= 0,

∂φn
∂ν

= 0,
∂φp
∂ν

= 0, (3.122)

∂φ

∂ν
= 0,

∂u

∂ν
= 0,

∂v

∂ν
= 0. (3.123)

Let us now consider the drift-diffusion equations depending on time:
−∇ · (εs∇φ) = q(N − n+ p),

∂n

∂t
+∇ · jn = H, jn = µn (n∇φ− φth∇n) ,

∂p

∂t
+∇ · jp = H, jp = −µp (p∇φ+ φth∇p) .

(3.124)
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In this case the choice of variables is of course the first (φ, n, p) then the boundary
conditions are

φ = φbi + UD, n = nD, p = pD, on ΓD, (3.125)

∂φ

∂ν
= 0,

∂n

∂ν
= 0,

∂p

∂ν
= 0, on ΓN . (3.126)

In addition, we must impose the initial conditions for the main variables of the
continuity equations, in which they appear derivative with respect to time:

n(x, 0) = n0(x), p(x, 0) = p0(x), on Ω. (3.127)
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Chapter 4

Analysis of the basic
semiconductor device equations

4.1 The steady-state drift-diffusion model

We consider a semiconductor device with nD+1 terminals and model it by means
of a domain Ω ⊂ Rd, characterized by a doping profile N(x), with x ∈ Ω. We
neglect all thermal effects, and assume that two carriers are responsible for the
diode’s output current, that is, electrons with negative charge −q, and holes
with positive charge q. In the steady-state case we describe the behavior of the
device in terms of number densities of electrons and holes, n(x), p(x), quasi-Fermi
potentials for electron and holes, denoted by φn(x), φp(x), current densities for
electrons and holes, denoted by jn(x), jp(x), and electrostatic potential, denoted
by φ(x). As we have seen in the previous chapter, these variables satisfy the
following drift-diffusion system:

−∇ · (εs∇φ) = q(N + p− n),
∇ · jn = H jn = µnn∇φn,
∇ · jp = H jp = −µpp∇φp,

in Ω. (4.1)

In this section we write the steady-state drift diffusion system for electron and
hole current density, that are related to electron and hole fluxes by the relations

Jn = −qjn, Jp = qjp, (4.2)

then the system (4.1) become
−∇ · (εs∇φ) = q(N + p− n),
∇ · Jn = −qH Jn = −an∇φn,
∇ · Jp = qH Jp = −ap∇φp,

in Ω. (4.3)

with

an = qµnn, ap = qµpp, (4.4)
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We choose as unknowns of the problem the electrostatic potential φ, and the
quasi-Fermi potentials φn, φp. The densities n, p, are related to the quasi-Fermi
potentials by the Maxwell-Boltzmann relations,

n = ni exp

(
φ− φn
φth

)
, p = ni exp

(
−φ− φp

φth

)
, (4.5)

where ni is the intrinsic concentration.
The system (4.3) is supplemented with mixed boundary conditions

φ− φbi = φn = φp = eD,i, on ΓD,i, i = 0, 1, . . . , nD,

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN .
(4.6)

with ∂Ω = ΓD ∪ ΓN with ΓD =
⋃nD

i=1 ΓD,i and ΓN = ∂Ω \ ΓD. In (4.6) we have
indicate ∂/∂ν = ν · ∇ the normal derivative along the external unit normal to
the boundary, ν.

The built-in potential φbi is defined euquation (3.110) in chapter 3.
To prove an existence result for the steady-state drift-diffusion system (4.3)

we need some assumption on the geometry, data and parameter models.

(T.1) Let Ω is a bounded domani in Rd, with d = 1, 2, 3 of class C0,1 and the
(k − 1)-dimensional Lebesgue measure of ΓD is positive.

(T.2) The Dirichlet boundary data satisfy

eD,i|ΓD
∈ L∞(ΓD),

in particular they are constants on each ΓD,i.

(T.3) The doping profiles satisfies N ∈ L∞(Ω). We denote with N := infΩN(x)
and N := supΩ N(x).

(T.4) We assume that εs is a bounded function, and there exists a positive con-
stant εs such that:

εs(x) ≥ εs > 0.

(T.5) For the generation-recombination term H = H(n, p) we assume

H(n, p) = −F (n, p)

(
np

n2
i

− 1

)
= F (n, p)

(
exp

(
−φn − φp

φth

)
− 1

)
, (4.7)

with F ≥ 0 and continuous with respect to the arguments. This expres-
sion for H comprises the Shockley-Read-Hall and the Auger recombination-
generation terms.

(T.6) The electron and hole mobilities, that appear in equations (4.4) for an and
ap, will be assumed to be bounded, strictly positive functions of the space
variable x and the densities n, p.
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In this chapter we introduce the proof of the following main theorem for the
existence of solution of the system

Theorem 4.1.1 Under the assumption (T.1)-(T.6), the problem (4.3) has a weak
solution (φ, φn, φp) ∈ (H1(Ω) ∩ L∞(Ω))3, which satisfies the L∞-estimates:

inf
ΓD

φbi + min
i
eD,i ≤ φ ≤ sup

ΓD

φbi + max
i
eD,i, (4.8)

min
i
eD,i ≤ φn ≤ max

i
eD,i, (4.9)

min
i
eD,i ≤ φp ≤ max

i
eD,i. (4.10)

The proof of this Theorem requires several step. For convenience, we intro-
duce in the following section some preliminary results, which will be used in the
subsequent sections to prove the existence theorem. The proof is based on an
appropriate iteration map, which will be shown to be a fixed point map. The
iteration map introduced here is more general than needed by the aim of the
chapter, since this more general form will be used in the next chapter. In the last
section we study some properties of the iteration map, for later use.

4.2 Some preliminary results

We start by introducing two basic lemmas. We will see later that these lemmas
allow us to study the decoupled steady-state drift-diffusion system.

We introduce and prove these Lemmas in a more general case, that is compar-
ising the time dependence because this is important in order to prove the results
for the coupling with circuit.

Assumptions.
Let f(x, t, u) a continuous function with respect to t ∈ [t0, t1] such that:

(A.1) f(x, t, u) is a non increasing function with respect to u, that is:

∂f

∂u
(x, t, u) ≤ 0 ∀u ∈ R, ∀(x, t) ∈ Ω× [0, T ]. (4.11)

(A.2) There exist two functions f(t, u) and f(t, u) such that:

f(t, u) ≤ f(x, t, u) ≤ f(t, u) ∀u ∈ R, ∀(x, t) ∈ Ω× [0, T ]. (4.12)

(A.3) There exist two functions u(t) and u(t) such that:

f (t, u(t)) = 0, and f (t, u(t)) = 0. (4.13)
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We consider the following problem:
−∇ · (a(x, t)∇u) = f(x, t, u), in Ω× [t0, t1],

u = uD, on ΓD × [t0, t1],

∂u

∂ν
= 0, on ΓN × [t0, t1],

(4.14)

where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅ and uD(x, t) continuous with respect to
t ∈ [t0, t1].

For semplicity we introduce the notation

uD(t) = min
ΓD

uD(·, t) uD(t) = max
ΓD

uD(·, t). (4.15)

Lemma 4.2.1 Let a(x, t) is a bounded function and continuous with respect to
t ∈ [t0, t1], such that:

a(x, t) ≥ a > 0, for all (x, t) ∈ Ω× [0, T ], (4.16)

for a positive constant a. Under the assumption (4.11)-(4.13), there exists a
unique solution u(·, t) ∈ H1(Ω) of the problem (4.14), continuous with respect to
t ∈ [0, T ]. Moreover, this solution satisfies the following estimate:

min {uD(t), u(t)} ≤ u(x, t) ≤ max {uD(t), u(t)} . (4.17)

Proof. For convenience, we divide the proof of the Lemma in three parts.
1. A priori estimates.

We first prove the estimate (4.17). By (4.12) and (4.13) we have

−∇ · (a(x, t)∇u) = 0 = f(t, u(t)) ≥ f(x, t, u(t)).

Then, if u is a solution to (4.14), we find

−∇ · (a(x, t)∇(u− u)) ≤ f(x, t, u)− f(x, t, u)

=

{∫ 1

0

∂

∂u
f (x, t, u+ θ(u− u)) dθ

}
(u− u)

= c(u− u).

where, from (4.11), we have c =
∫ 1

0
∂
∂u
f (x, t, u+ θ(u− u)) dθ ≤ 0. Then, we

obtain
−∇ · (a(x, t)∇(u− u))− c(u− u) ≤ 0. (4.18)

From the maximum principle, we have

max
Ω

(u− u) ≤ max
ΓD

(u− u)+, (4.19)

where we use the notation v+ = max(v, 0) for any function v.
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Since u does not depend on x, it follows that

max
Ω

(u− u) = max
Ω

u− u

and therefore

max
Ω

(u) ≤ u+ max
ΓD

(u− u)+.

Now we observe that

max
ΓD

(u− u)+ ≤ max{uD(t)− u, 0}.

and consequently

u(x, t) ≤ max
Ω

u(x, t) ≤ max{uD(t), u(t)}.

Then, since ωi(−q) Similarly we obtain also

u(x, t) ≥ min
Ω
u(x, t) ≥ max{uD(t), u(t)}.

then the estimate (4.17) is proved.
2. Uniqueness.

Let us assume that there exist two functions u′ and u′′, satisfying problem
(4.14). Subtracting the equations obtained from (4.14) with u = u′ and u = u′′,
we find

−∇ · (a(x, t)∇(u′ − u′′)) = f(u′)− f(u′′).

Multiplying by (u′ − u′′) and integrating by part on Ω, we have

−
∫
∂Ω

(u′ − u′′)a(x, t)
∂

∂ν
(u′ − u′′) dσ(x)

+

∫
Ω

a(x, t)|∇(u′ − u′′)|2dx =

∫
Ω

(u′ − u′′) (f(u′)− f(u′′)) dx. (4.20)

Recalling assumption (4.11), the right-hand side is a negative quantity. Moreover,
using the boundary conditions we obtain∫

Ω

a(x, t) |∇(u′ − u′′)|2 dx ≤ 0.

This inequality can hold if and only if

∇(u′ − u′′) = 0 a. e. in Ω, (4.21)

because of the assumption (4.16). From (4.21), u′ − u′′ is a costant quantity but
for the bonduary conditions this costant is necessarily zero.
3. Existence.

63



To prove the existence of solutions of the problem (4.14), we must define a
fixed point map. Let K > 0. For u′ ∈ L2(Ω), we define, for all x ∈ Ω, the
following cut function

u′K(x) =


K if u′(x) ≥ K,

u′(x) if −K ≤ u′(x) ≤ K,

−K if u′(x) ≤ K.

(4.22)

This function is in L∞(Ω), and if u′ ∈ H1(Ω) also u′K ∈ H1(Ω).
Now we choose K = max (|u|, |u|) and define an operator

M : L2(Ω)× [0, 1]→ L2(Ω) by M(u′, σ) = u′′

where u′′ is the solution of the problem
−∇ · (a(x, t)∇u′′) = σf(x, t, u′K), in Ω× [0, T ];

u′′ = σuD, on ΓD × [0, T ],

∂u′′

∂ν
= 0, on ΓN × [0, T ].

(4.23)

Every fixed point u∗ of M(·, 1) which satisfies |u∗(x)| ≤ K a.e. in Ω is a weak
solution of (4.14). Let u∗ be some fixed point of M(., 1). A standard regularity
result implies u∗ ∈ C1(Ω). Thus the set Ω+ ⊆ Ω of points x at which u∗(x) > K
holds is open in Ω and the boundary of Ω+ consists of point x at which either
u∗(x) = K or which are contained in ∂Ω. Assuming that Ω+ is nonempty and
letting x∗ ∈ Ω+, we denote with Ω∗+the maximal connected component of Ω+

containing x∗. Then u∗ ∈ Ω∗+ is solution of the problem

−∇ · (a(x, t)∇u∗) = f(x, t,K), in Ω∗+ × [0, T ];

u∗ = uD, on ∂Ω∗+ ∩ ΓD × [0, T ],

∂u∗

∂ν
= 0, on ∂Ω∗+ ∩ ΓN × [0, T ],

u∗ = K, on ∂Ω∗+ \ ∂Ω× [0, T ].

(4.24)

Since f(x, t,K) ≥ 0 in Ω and maxΓD
uD ≤ K, we can conclude that u∗ = K is

an upper solution of this problem, which is a contraddiction. Therefore Ω+ is
empty and u∗(x) ≤ K in Ω, similarly we obtain u∗(x) ≥ −K in Ω. It follows
|u∗D(x)| ≤ K. Thus any fixed point of M(·, 1) is a weak solution of (4.14).
The operator u′ → u′K , L2(Ω) → L2(Ω) is continuous, then it is possible to
show that the right hand side of the first equation in (4.23) σf(x, t, u′K) depends
continuously in L2(Ω) on (u′, σ) ∈ L2(Ω)× [0, 1]. Thus, by the continuous depen-
dence of solutions of elliptic equations in H1(Ω) on L2(Ω)-right hand side and
H1(Ω)-boundary data, it follows the continuity of operator M . The range of M
is bounded in H1(Ω)

‖u′′‖1,2,Ω ≤ c‖f(x, t, u′K)‖2,Ω ≤ cµ(Ω)1/2 f(t,K),
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where c is a generic constant and µ(Ω) is the measure of Ω. Since H1(Ω) is
compactly imbedded in L2(Ω) we can conclude that M is completely continuous.
Moreover M(u′, 0) = 0 holds for all u′ ∈ L2(Ω). The maximum principle implies
that u′′ = M(u′, σ) satisfies ‖u′′‖∞,Ω ≤ const. indipendently of u′ ∈ L2(Ω) and
σ ∈ [0, 1] since ‖f(x, t, uK)‖∞,Ω ≤ f(t,K). Thus the Leray-Schauder Theorem
proves the existence of a fixed point u∗ of M(·, 1).

Next, we consider the problem

−∇ · (a1(x, t)∇u1) = f(x, t, u1 − u2), in Ω× [0, T ],

−∇ · (a2(x, t)∇u2) = −f(x, t, u1 − u2), in Ω× [0, T ],

u1 = u2 = uD, on ΓD × [0, T ],

∂u1

∂ν
=

∂u2

∂ν
= 0, on ΓN × [0, T ].

(4.25)

For this problem we can proove the following Lemma.

Lemma 4.2.2 Let a1(x, t), a2(x, t) are bounded functions, continuous in t and
such that:

a1(x, t) ≥ a1 > 0, a2(x, t) ≥ a2 > 0, (4.26)

for positive constants a1, a2. Under the assumptions (4.11)-(4.12) and

f(t, 0) = f(t, 0) = 0, for all t ∈ [0, T ], (4.27)

problem (4.25) has a unique solution (u1, u2) ∈ C([0, T ], (H1(Ω))2). This solution
satisfies the estimates

uD(t) ≤ u1(x, t) ≤ uD(t), uD(t) ≤ u2(x, t) ≤ uD(t), in Ω× [0, T ]. (4.28)

Proof. The proof of the Lemma is based on a fixed point argument. To define
a fixed point map, we consider two functions u′1, u

′
2 ∈ C([0, T ], L2(Ω)), satisfying

the estimates in (4.28). Then, let us consider the two decoupled problems:
−∇ · (a1(x, t)∇u1) = f1(x, t, u1), in Ω× [0, T ],

u1 = uD, on ΓD × [0, T ],

∂u1

∂ν
= 0, on ΓN × [0, T ].

(4.29)


−∇ · (a2(x, t)∇u2) = f2(x, t, u2), in Ω× [0, T ],

u2 = uD, on ΓD × [0, T ],

∂u2

∂ν
= 0, on ΓN × [0, T ],

(4.30)
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where we have introduced the functions

f1(x, t, u1) := f(x, t, u1 − u′2(x, t)), (4.31)

f2(x, t, u2) := −f(x, t, u′1(x, t)− u2). (4.32)

Both problems (4.29) and (4.30) satisfy the hypotesis of Lemma 4.2.1, with a, f , u
replaced with a1, f1, u1, and a2, f2, u2, respectively. Specifically, let us consider
problem (4.29), first. Recalling the assumptions (4.11), (4.12), and using the
estimate (4.28) for u′2, we find

f(t, u1 − uD) ≤ f1(x, t, u1) ≤ f(t, u1 − uD).

Then we can introduce the functions

f
1
(t, u1) := f(t, u1 − uD), f 1(t, u1) := f(t, u1 − uD),

and assumption (4.12) holds with f = f
1
, f = f 1. Moreover, recalling (4.27), we

get
f

1
(t, uD) = f(t, 0) = 0, f 1(t, uD) = f(t, 0) = 0,

thus assumption (4.13) holds with u = uD, u = uD.
Similarly, for problem (4.30) we find

−f(t, uD − u2) ≤ f2(x, t, u2) ≤ −f(t, uD − u2).

Then we can introduce the functions

f
2
(t, u2) := −f(t, uD − u2), f 2(t, u2) := −f(t, uD − u2),

and assumption (4.12) holds with f = f
2
, f = f 2. Then, recalling (4.27), also in

this case assumption (4.13) holds with u = uD, u = uD.
In conclusion, applying Lemma 4.2.1, there exists a unique solution u1(·, t) =

u′′1(·, t) ∈ H1(Ω) of problem (4.29), and a unique solution u2(·, t) = u′′2(·, t) ∈
H1(Ω) of problem (4.30). These solutions satisfy the estimates in (4.28).

In this way we have defined a map

(u′1, u
′
2) 7→M(u′1, u

′
2) := (u′′1, u

′′
2),

which acts from

X := {(v1, v2) ∈ C([0, T ], (L2(Ω))2) | uD ≤ v1 ≤ uD, uD ≤ u2 ≤ uD}

in to itself. It is possible to see that X is a nonempty, closed, bounded subset
of the Banach space C([0, T ], (L2(Ω))2), and that the map M is compact. Then,
using Schauder’s fixed point theorem, we obtain the existence of a couple of
functions (v1, v2) ∈ (H1(Ω))2 that is solution of problem (4.25), and satisfies the
estimate (4.28).

The uniqueness of this solution can be obtained by using the same arguments
used for the uniqueness proof in Lemma 4.2.1.
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4.3 Proof of the existence result

In this section prove the existence result for the system (4.3). We use this strat-
egy: we decouple by iteration the system into two systems, one containing the
Poisson equation and other containing the continuity equations. In the following
subsection we introduce an iteration map that will be used also in next chapter.

4.3.1 Iteration map for the device equations

We consider eD, e∗D ∈ RnD+1, with components

eD =


eD,0
eD,1

...
eD,nD

 , e∗D =


e∗D,0
e∗D,1

...
e∗D,nD

 ,
and define the following elliptic system

−∇ · (εs∇φ∗) = q(N + p∗ − n∗),
∇ · Jn = qF ∗(n−2

i np− 1), Jn = −a∗n∇φn,
∇ · Jp = −qF ∗(n−2

i np− 1), Jp = −a∗p∇φp,
in Ω (4.33)

in which we have posed a∗n = qµnn
∗, a∗p = qµpp

∗, and boundary conditions
φ∗ − φbi = e∗D,i, φn = φp = eD,i, on ΓD,i, i = 0, 1, . . . , nD,

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN ,
(4.34)

where: n∗ = n(φ∗, φ∗n), p∗ = p(φ∗, φ∗p), with

n(φ, φn) = ni exp

(
φ− φn
φth

)
, p(φ, φn) = ni exp

(
φp − φ
φth

)
. (4.35)

The ∗ on F denotes evaluation on n∗, p∗, that is, F ∗ = F (n∗, p∗).

We divide the system (4.33) in two systems.
First step. The first system is one that includes the nonlinear Poisson equation

−∇ · (εs∇φ∗) = q(N + p(φ∗, φ∗p)− n(φ∗, φ∗n)), in Ω,
φ∗ − φbi = e∗D,i, on ΓD,i,

∂φ

∂ν
= 0, on ΓN ,

(4.36)

where the built-in potential φbi depends on N(x), as defined in chapter 3. On
εs(x) and N(x) we make assumptions (T.3)-(T.4).

67



Observing that the problem (4.36) has the same structure of problem (4.14),
then, using the Lemma (4.2.1), we have that this problem admits a unique solution
φ∗ ∈ H1(Ω). Moreover, the solution satisfies the estimate:

inf
ΓD

φbi + min
i
e∗D,i ≤ φ∗ ≤ sup

ΓD

φbi + min
i
e∗D,i, a.e. in Ω. (4.37)

Second step. We consider the problem:

−∇ · ( a∗n∇φn) = qF ∗(n−2
i np− 1),

−∇ · ( a∗p∇φp) = −qF ∗(n−2
i np− 1), in Ω

φn = φp = eD,i, on ΓD,i,

∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN ,

(4.38)

The functions a∗n, a∗p, F
∗ are evaluated for φ = φ∗, φn = φ∗n, φp = φ∗p. Thanks to

(4.35), the term n−2
i np depends only on φn − φp, since we have

n−2
i np = exp

(
φp − φn
φth

)
.

The above problem has the same structure of problem (4.25), then using Lemma
(4.2.2) , we find that the problem (4.38) has a unique solution (φn, φp) ∈ (H1(Ω)∩
L∞(Ω))2. This solution satisfies the estimates

min
i
eD,i ≤ φn ≤ max

i
eD,i, min

i
eD,i ≤ φp ≤ max

i
eD,i a.e. in Ω. (4.39)

Using the system (4.33) with boundary conditions (4.34), it is possible to de-
fine an iteration map for the device current in the following way. For any given eD,
e∗D ∈ RnD+1, with components eD = (eD,0, . . . , eD,nD

)>, e∗D = (e∗D,0, . . . , e
∗
D,nD

)>,

we introduce the function Φ](eD; e∗D), which maps the function Φ∗ ≡ (φ∗n, φ
∗
p),

taken in a set M to be specified later, to the function Φ = (φn, φp) defined by
the elliptic system (4.33) with boundary conditions (4.34). We use the notation

Φ = Φ](eD; e∗D,Φ
∗), (4.40)

that is,
(φn, φp) = (φ]n(eD; e∗D,Φ

∗), φ]p(eD; e∗D,Φ
∗)).

Thus, for any given eD, e
∗
D ∈ RnD+1, we have defined the map

Φ](eD; e∗D) : Φ∗ 7→ Φ](eD; e∗D,Φ
∗).

We can also view the above map in the following way: for any given eD ∈ RnD+1,
we consider the map

Φ](eD) : (e∗D,Φ
∗) 7→ Φ](eD; e∗D,Φ

∗).

This view will be adopted in the next chapter. In this chapter we will always
take eD = e∗D. Nevertheless, for later use, we will considered the map with the
most general variation of arguments.
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Lemma 4.3.1 (Well-posedness of Φ](eD; e∗D)) For any eD, e∗D ∈ RnD+1, the
problem (4.33)–(4.34) defines uniquely a map

Φ](eD; e∗D) : M (e∗D)→M ](eD) := M (eD) ∩H1(Ω),

M (e∗D) 3 Φ∗ 7→ Φ](eD; e∗D,Φ
∗) ∈M ](eD).

where

M (eD) = {ψ ∈ L2(Ω) | min
i
eD,i ≤ ψ ≤ max

i
eD,i a.e. in Ω}2.

The first equation in (4.33) is decoupled from the other two equations, and
defines the electric potential φ∗ = φ∗(e∗D,Φ

∗), which is then used in the next two
equations. So the definition of Φ](eD) actually takes place in two steps. Thus,
the proof of Lemma 4.3.1 will result from the uniqueness of the solutions of the
systems (4.36),(4.38).

Using the same considerations we have also that

Lemma 4.3.2 If Φ∗ ∈M (e∗D), that is, Φ∗ ∈ L2(Ω) and

min
i
e∗D,i ≤ φ∗n ≤ max

i
e∗D,i, a.e. in Ω, (4.41)

min
i
e∗D,i ≤ φ∗p ≤ max

i
e∗D,i, a.e. in Ω, (4.42)

then problem (4.36) has a unique solution φ∗ ∈ H1(Ω), which we denote also by
φ∗(e∗D,Φ

∗). Moreover, the solution satisfies the following estimate:

inf
ΓD

φbi + min
i
e∗D,i ≤ φ∗ ≤ sup

ΓD

φbi + min
i
e∗D,i, a.e. in Ω. (4.43)

4.3.2 Existence of fixed points

In this section we conclude the proof of the existence theorem 4.1.1, the main
result of this chapter.

In the previous subsection we have introduced the iteration map Φ](eD; e∗D),
and we have shown that it is well defined from M (e∗D) to M (eD) ∩ H1(Ω). In
particular, if we take e∗D = eD, we find that the map Φ](eD; eD) is well defined
from M (eD) to M (eD) ∩H1(Ω).

We observe that any fixed point of Φ](eD; eD) is a solution of the drift-
diffusion equations (4.3), as can be seen by inspecting the defining problem (4.33)-
(4.34). Moreover, since for any fixed point Φ∗ we have

Φ∗ = Φ](eD; eD,Φ
∗) ∈M (eD),

it follows that its components φ∗n, φ∗p satisfy the estimates (4.9), (4.10). Then, by
using lemma 4.3.2, the electric potential φ∗ = φ∗(eD,Φ

∗) satisfies the estimate
(4.8). Thus, theorem 4.1.1 is proved if can show the existence of a fixed point of
the map Φ](eD; eD).

We have that M (eD) is nonempty, bounded, closed, convex subset of L2(Ω).
Also, Φ](eD; eD) is an compact automorphism of M (eD), since H1 is compacly
embedded in L2(Ω). Then, Schauder’s Theorem implies the existence of a fixed
point, and the proof of theorem 4.1.1 is completed.
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4.4 Device current and passivity

In this section we define in a proper way the electric currents flowing through the
Ohmic contacts, and establish some properties which will be used for the coupling
to the circuit.

As we will see, the electric currents at the terminals are defined once we have
a solution of the drift-diffusion equations. We have seen in chapter 2 that, in
principle, these currents depend on the applied potentials. Moreover, we can
show that they are invariant under translation of the applied potentials, so they
actually depend on the voltage drops with respect to a terminal, chosen as ground
terminal for the device.

In fact, theorem 4.1.1 establishes the existence of at least a solution, but says
nothing on its uniqueness. In general we do not expect to have uniqueness of so-
lutions without additional assuptions, and there could be more than one solution
corresponding to the same applied potentials. Then the previous considerations
on the dependence of the currents on the applied potentials are valid only locally,
and we cannot define a map that to any applied potentials associate the resulting
terminal currents. In this respect, the device-circuit coupled problem does not
appear to be well-posed in a simple way.

Nevertheless, we will see in the next chapter a way to give a meaning to this
coupled problem. The key idea is that the iteration map defined in the previous
section gives rise to a well-defined current, which is Lipschitz-continuous with
respect to the applied potentials.

In the next two subsection we define the currents through the terminals of
the device, and prove the passivity of the device. Then, we will discuss in more
details the current defined by the iteration map Φ](eD; eD), and prove some
relevant properties.

4.4.1 Device current

To define the electric current flowing through the Ohmic contacts of the device,
we introduce the auxiliary functions wi, i = 0, 1, . . . , nD, defined by the following
elliptic boundary value problem:

−∇ · (εD∇wi) = 0, in Ω,

wi = δij, on ΓD,j, j = 0, 1, . . . , nD,

∂wi
∂ν

= 0, on ΓN ,

(4.44)

where δij is Kronecker’s delta (δij = 1 if i = j, δij = 0 if i 6= j).
Then, the electric current jD,i flowing through the ith Ohmic contact ΓD,i is

defined by the surface integral

jD,i(t) = −
∫

Ω

∇wi · (Jn(x, t) + Jp(x, t)) dx. (4.45)
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Remark 4.4.1 It is possible to see that the definition (4.45) leads to the usual
definition of current. In fact, summing up the two equations ∇ · Jn = −qH and
∇ · Jp = qH of the drift-diffusion system (4.3) we find that

∇ · (Jn + Jp) = 0. (4.46)

From Gauss divergence theorem, recalling the boundary values of wi, we obtain

jD,i(t) = −
∫

ΓD,i

ν · (Jn(x, t) + Jp(x, t)) dσ(x), (4.47)

that is, the natural definition for the electric current through the i-th Ohmic con-
tact ΓD,i, (given in chapter 2, (2.21)). The expression in (4.47) is equivalent to
the one in (4.45), if the right-hand side is well defined.

By definition, the currents jD,i depend on eD,k, i, k = 0, 1, . . . , nD. Actually
the currents are not independent quantities. Furthermore, they depend only
on the voltage drops eD,k − eD,0, k = 1, . . . , nD, where eD,0 is the potential
corresponding to the ground contact, arbitrarily chosen. These concepts are
formally expressed in the following propositions.

Proposition 4.4.1 The currents jD,i, i = 0, 1, . . . , nD, defined in (4.45), satisfy
the relation

nD∑
i=0

jD,i(t) = 0, (4.48)

in according with the conservation of charge.

Proof. The function w0 + w1 + · · ·+ wnD
satisfies the elliptic equation in (4.44)

with Dirichlet data identically 1 on ΓD and uniform Neumann conditions on ΓN .
It is simple to verify that the function 1 satisfies the same problem. Then, from
uniqueness, it follows

nD∑
i=0

wi = 1. (4.49)

Thus, using (4.49), we have also

∇

(
nD∑
i=0

wi

)
= 0,

which yields (4.48).

Proposition 4.4.2 The currents jD,i, i = 0, 1, . . . , nD, are invariant under the
translation of the applied potential

eD,k → eD,k + ēD, k = 0, 1, . . . , nD. (4.50)

Proof. The translation (4.50) produces a translation

(φ, φn, φp)→ (φ+ ēD, φn + ēD, φp + ēD).

The relation (4.45) which defines jD,i depends on n, p, ∇φ, ∇φn, ∇φp. Recalling
(4.5), it follows that jD,i is independent of ēD.
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4.4.2 Passivity condition

Now we introduce a property of the device current, said passivity condition, as
we will see, this property is fundamental for the description of the coupling with
circuit equations. We remember the definition of applied potential vector eD and
voltage drops vector vD introduced in chapter 2,

eD =

 eD,0
...

eD,nD

 , vD =

 eD,1 − eD,0
...

eD,nD
− eD,0

 , (4.51)

and we define the vectors which components given by (4.45)

jD =

 jD,0
...

jD,nD

 , iD =

 jD,1
...

jD,nD

 , (4.52)

We notice that
e>DjD = v>DiD. (4.53)

Lemma 4.4.1 For a fixed t > 0, let (φ, φn, φp)(x, t) be a solution of the drift-
diffusion equation (4.3) with boundary condition (4.6). Then, we have the pas-
sivity condition

v>DiD ≥ 0, (4.54)

where vD, iD are defined in (4.51), (4.52) respectively.

Proof. To prove the passivity condition we consider the equations for φn, φp in
the system (4.3)

∇ · (−an∇φn) = −qH,
∇ · (−ap∇φp) = qH,

multiplying them for φn, φp respectively, integrating over Ω and summing them,
we have

−
∫

Ω

[φn∇ · (an∇φn) + φp∇ · (ap∇φp)] dx =

∫
Ω

(φn − φp)qH dx ≤ 0,

the inequality come from the expression of H in (4.7). From conservation of
charge, we have the identity

∇ · (an∇φn) +∇ · (ap∇φp) = 0,

then we get

−
∫

Ω

[(
φn −

nD∑
k=0

wkeD,k

)
∇ · (an∇φn) +

(
φp −

nD∑
k=0

wkeD,k

)
∇ · (ap∇φp)

]
dx ≤ 0,
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where wk is the auxiliary function defined in (4.44). It is possible to verify that

φn −
nD∑
k=0

wkeD,k = 0 and φp −
nD∑
k=0

wkeD,k = 0, on ΓD.

Then, integrating by parts the previous inequality, and using the definition of jD,
we obtain ∫

Ω

[
an|∇φn|2 + ap|∇φp|2

]
dx− e>DjD ≤ 0.

Using (4.53), the previous inequality gives immediately the passivity condition
(4.54).

4.4.3 The current map

The map Φ](eD; e∗D) defines also the modified electron and hole currents, jn =
j]n(eD; e∗D,Φ

∗), jp = j]p(eD; e∗D,Φ
∗), by the expressions in (4.33), that is,

jn = −a∗n∇φn, jp = −a∗p∇φp, (4.55)

with φn = φ]n(eD; e∗D,Φ
∗), φp = φ]p(eD; e∗D,Φ

∗). We use the notation

j]D(eD; e∗D,Φ
∗) =

 j]D,0(eD; e∗D,Φ
∗)

...

j]D,nD
(eD; e∗D,Φ

∗)

 , (4.56)

i]D(vD; e∗D,Φ
∗) =

 j]D,1(eD; e∗D,Φ
∗)

...

j]D,nD
(eD; e∗D,Φ

∗)

 , (4.57)

where we have introduced the voltage drops

vD = Â>eD. (4.58)

Propositions 4.4.1 and 4.4.2 can be extended also to the modified equations
(4.33)–(4.34). This explains why we consider i]D as a function of vD instead
of iD. We have also the relation

j]D(eD; e∗D,Φ
∗) = Âi]D(vD; e∗D,Φ

∗). (4.59)

Using the result in [5] we have the following Lemma.

Lemma 4.4.2 (Lipschitz-continuity and passivity) Let us consider e∗D ∈
RnD+1, and Φ∗ ∈M(e∗D). Then, the map

RnD 3 vD 7→ i]D(vD; e∗D,Φ
∗) ∈ RnD
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is Lipschitz-continuous with respect to vD, that is,

‖i]D(v′D; e∗D,Φ
∗)− i]D(v′′D; e∗D,Φ

∗)‖ ≤ c(e∗D)‖v′D − v′′D‖, (4.60)

for all v′D, v′′D ∈ RnD , for some positive constant c(e∗D) depending on e∗D and on
the data of the problem. Moreover, i]D satisfies the passivity condition

v>Di
]
D(vD; e∗D,Φ

∗) ≥ 0. (4.61)

Proof. Let us consider any vectors e′D, e
′′
D ∈ R such that

v′ = Â>e′D, v′′ = Â>e′′D.

Let us introduce the two functions Φ′ = Φ](e′D; e∗D,Φ
∗), Φ′′ = Φ](e′′D; e∗D,Φ

∗),
which for simplicity we denote just by Φ′ = (φ′n, φ

′
p), Φ′′ = (φ′′n, φ

′′
p). We will

use the notation δg(eD,Φ) = g(e′D,Φ
′) − g(e′′D,Φ

′′) for any suitable g, e.g.,
δφn = φ′n − φ′′n and

δj]D,i(eD; e∗D,Φ
∗) = j]D,i(e

′
D; e∗D,Φ

∗)− j]D,i(e
′′
D; e∗D,Φ

∗)

=

∫
Ω

∇wi ·
(
a∗n∇δφn + a∗p∇δφp

)
dx.

Subtracting the equations for Φ′ and Φ′′, and omitting to write explicitly the
dependence on x, we get

−∇ · (a∗n∇δφn) = δf(φn − φp), (4.62)

−∇ · (a∗p∇δφp) = −δf(φn − φp), (4.63)

where we use the notation f(ψ) = qF ∗(exp(−ψ/φth)−1). Now we multiply (4.62)
and (4.63) by δφn and δφp, respectively. Summing the resulting equations, we
obtain

−
∑
α=n,p

δφα∇ · (a∗α∇δφα) = δ(φn − φp)δf(φn − φp) ≤ 0. (4.64)

The right-hand side is a non-positive quantity since f is a non increasing function.
Next, summing up (4.62) and (4.63) , we find

−
∑
α=n,p

∇ · (a∗α∇δφα) = 0.

Then the following identity holds:

−
∫

Ω

∑
α=n,p

(
δφα −

nD∑
k=0

wkδeD,k

)
∇ · (a∗α∇δφα) dx

= −
∫

Ω

∑
α=n,p

δφα∇ · (a∗α∇δφα) dx. (4.65)
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We note that[
δφα −

nD∑
k=0

wkδeD,k

]
ΓD,i

= δeD,i −
nD∑
k=0

δikδeD,k = 0, α = n, p,

that is,

δφn −
nD∑
k=0

wkδeD,k = δφp −
nD∑
k=0

wkδeD,k = 0, on ΓD.

Integrating by part the left-hand side of (4.65), and recalling (4.64), using the
definition of j]D,i(eD; e∗D,Φ

∗), we obtain∫
Ω

∑
α=n,p

a∗α|∇δφα|2 dx−
nD∑
k=0

δeD,kδj
]
D,k(eD; e∗D,Φ

∗) dx

= −
∑
α=n,p

∫
Ω

δφα∇ · (a∗α∇δφα) dx ≤ 0, (4.66)

which gives ∫
Ω

∑
α=n,p

a∗α|∇δφα|2 dx ≤ δe>Dδj
]
D(eD; e∗D,Φ

∗)

= δv>Dδi
]
D(vD; e∗D,Φ

∗). (4.67)

On the other hand, we have

|δi]D(vD; e∗D,Φ
∗)|2 ≤

nD∑
i=1

‖∇wi‖2
L2

∫
Ω

(∑
α=n,p

a∗α∇δφα

)2

dx

≤ c

∫
Ω

∑
α=n,p

a∗α|∇δφα|2 dx, (4.68)

with c =
∑nD

i=1 ‖∇wi‖2
L2 max{‖a∗n‖L∞ , ‖a∗p‖L∞}. This constant depends only on

the bounds on Φ∗, that is, on e∗D, and on the data of the problem, that is, on the
mobility functions and the doping profile. Using (4.67) in (4.68) we obtain

|δi]D(vD; e∗D,Φ
∗)|2 ≤ cδv>Dδi

]
D(vD; e∗D,Φ

∗)

≤ c |δvD|
∣∣∣δi]D(vD; e∗D,Φ

∗)
∣∣∣ ,

dividing by
∣∣∣δi]D(vD; e∗D,Φ

∗)
∣∣∣ we have

|δi]D(vD; e∗D,Φ
∗)| ≤ c |δvD| . (4.69)

This proves the Lipschitz continuity of i]D(vD; e∗D,Φ
∗) with respect to vD.

We can prove the passivity condition as in Lemma 4.4.1.
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Proposition 4.4.3 Under the same assumptions of Lemma 4.2.1, the function

Rn+nL+nV 3 x 7→ σ](x; e∗D,Φ
∗) ∈ Rn+nL+nV ,

with
σ](x; e∗D,Φ

∗) := −Si]D(S>x; e∗D,Φ
∗),

is Lipschitz-continuous with respect to vD, that is,

‖σ](x′; e∗D,Φ∗)− σ](x′′; e∗D,Φ∗)‖ ≤ c(e∗D)‖x′ − x′′‖, (4.70)

for all x′, x′′ ∈ Rn+nL+nV , for some positive constant c(e∗D) depending on e∗D and
on the data of the problem. Moreover, σ] satisfies the passivity condition

x>σ](x; e∗D,Φ
∗) ≤ 0. (4.71)
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Chapter 5

Analysis of the circuit-device
coupled model

In the previous chapter we have discussed the steady-state drift-diffusion model
for semiconductor devices introduced in chapter 3 and in chapter 2 we have
described the circuits using the MNA formalism. In this chapter we discuss the
coupling between the steady-state drift-diffusion model and the circuit of index-1
and index-2, and we prove the existence results in both cases.

5.1 The circuit-device coupled problem

In this section we summarize the equations that will be considered. We have used
two similar symbols for two different concepts: we have used the notation x(t)
to denote the circuit variables, and the notation x to denote the semiconductor
space variable.

We consider a circuit containing only one device. The case of circuits with
many devices can be dealt using the same arguments, but the notation would be
much heavier.

Network equations. We consider the compact form for the network equa-
tions

Eẋ = Ax+Bu(t) + σ(x), in [t0, t1], (5.1)

with consistent initial data. The unknown is

x =

 eiL
iV

 .
Device equations. For the semiconductor device we consider the steady-

state drift-diffusion model discussed in details in previous chapters.
−∇ · (εs∇φ) = q(N + p− n),
∇ · Jn = −qH, Jn = −an∇φn,
∇ · Jp = qH, Jp = −ap∇φp,

in Ω (5.2)
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As unknowns we choose the electric potential φ(x, t), and the carriers potentials
(φn(x, t), φp(x, t)) =: Φ(x, t). For the system (5.2), we assign the following mixed
boundary conditions

φ− φbi = φn = φp = eD,i(t), on ΓD,i, i = 0, 1, . . . , nD,

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN .
(5.3)

The unknowns of the problem (5.2)-(5.3) depend parametrically on t ∈ [t0, t1]
through the boundary data eD,i = eD,i(t).

The densities n, p, are related to the quasi-Fermi potentials φn, φp by the
Maxwell-Boltzmann relations by equations (4.5).

For the generation-recombination term H = H(n, p) and for the mobilities we
assume hypothesis (T.5) (T.6) given in chapter 4.

Coupling conditions.
In chapter 2 we have defined the potentials eD,k as the external electric poten-

tials applied to the device. They are determined by the equations for the electric
network. Recalling equation (2.32) in chapter 2, the network-to-device coupling
condition are:

eD = S>De, (5.4)

where

eD =

 eD,0
...

eD,nD


and the selection matrix SD is defined in (2.30).

The relation that expresses the coupling device-to-network is given by equa-
tion (2.37), that is

σ(x) = −AiD(A>x), (5.5)

with

A =

AD

O
O

 ,
where AD is the incidence semiconductor matrix, and iD is the current vector
defined in (4.52).

We note that SD is related to AD by the identity AD = SDÂ. Then recalling
(2.33), we find

A>x = A>De = vD,

thus

σ(x) = −AiD(vD). (5.6)
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For this coupled problem we can prove an existence theorem if the DAE circuit
equations are of index-1 and also if they are of index-2. The difference between
these systems will be described in the following sections.

5.2 Existence theorem for index-1 model

We consider the coupled problem (5.1)-(5.2), with boundary conditions for the
device system given by (5.3). First of all we have to introduce the initial condi-
tions for the network system. In the index-1 case, as discussed in chapter 2, it is
possible to show that the network system (5.1) is equivalent to the two projected
equations

ẏ = PE−1
1 [A1y +Bu(t) + σ(x)] , (5.7)

z = QE−1
1 [A1y +Bu(t) + σ(x)] , (5.8)

for the differential part y = Px, and the algebraic part z = Qx, where the
matrix Q is a projector onto kerE, P is its complementary projector. In (5.7),
(5.8) we have used the matrices E1 = E − AQ, A1 = AP . We assume the
index-1 condition

E is singular, E1 is nonsingular, (5.9)

and the following additional topological condition

A>Q = O. (5.10)

Recalling proposition 2.6.1 in chapter 2, the topological conditions (5.9), (5.10)
imply

σ(x) = σ(y), QE−1
1 σ(x) = 0.

Thus equation (5.8) become

z = QE−1
1 [A1y +Bu(t)] . (5.11)

We need to assign initial conditions only for the differential part of x, and
subsequently determining consistent initial data for the algebraic part, that is,

Px(t0) = y0,

and thus

z0 = QE−1
1 [A1y0 +Bu(t)] .

Now we are ready to introduce the existence result of the coupled index-1
problem.
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Theorem 5.2.1 The problem (5.1)–(5.2), with the topological conditions (5.9)–
(5.10), admits a solution, (x,Φ) ∈ C0([t0, t1])×C0([t0, t1];H1(Ω)∩L∞(Ω)), with
Px ∈ C1([t0, t1]). Moreover, any solution satisfies the estimates:

|Px(t)|2 ≤ cye
k(t−t0)

(
|y0|2 + ‖u‖2

L2([t0,t1])

)
, (5.12)

|Qx(t)|2 ≤ cz
(
|Px(t)|2 + |u(t)|2

)
, (5.13)

inf
ΓD

φbi + min
i
eD,i ≤ φ ≤ sup

ΓD

φbi + max
i
eD,i, (5.14)

min
i
eD,i ≤ φn ≤ max

i
eD,i, (5.15)

min
i
eD,i ≤ φp ≤ max

i
eD,i, (5.16)

for some positive constants cy, cz and k depending only on E, A.

The proof of the main result requires several steps. First we prove a priori es-
timates for the network variables, employing the passivity condition. Next we
define an iteration map, extending the map used in the previous chapter to prove
the existence result for the steady-state semiconductor device equation. Finally
we show that the iteration map is a fixed point map.

For simplicity, we present the above steps separately in the following three
subsections.

5.2.1 A priori estimates

For any finite dimensional vector space Rm, let | · | denote the Euclidean vector
norm, that is, for w ∈ Rm we have |w|2 = w>w ≡ w ·w.

In the following Lemma we prove the a priori estimates for the network un-
knowns.

Lemma 5.2.2 Let E be symmetric, positive semidefinite, and let the index-1
topological condition (5.9), and the additional topological condition (5.10) be sat-
isfied. Furthermore, let x ∈ C0([t0, t1]) be a solution of the network equation
(5.1), with consistent initial value x0. We assume that σ satisfies the passivity
condition

x>σ(x) ≤ 0. (5.17)

Then, for all t ∈ [t0, t1], the differential part y = Px, and the algebraic part
z = Qx of the solution, satisfy the estimates

|y(t)|2 ≤ cye
k(t−t0)

(
|y0|2 + ‖u‖2

L2([t0,t1])

)
, (5.18)

|z(t)|2 ≤ cz
(
|y(t)|2 + |u(t)|2

)
, (5.19)

for some positive constants cy, cz and k depending only on E, A.
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Proof. Equation (5.11) implies immediately (5.19).

Next we prove (5.18). Multiplying (5.1) by y> = x>P>, we get

y>Eẏ = y>Ay + y>Az + y>Bu+ y>σ. (5.20)

Noting that it is possible write the differential part of x in the following way

y = x−Qx,

recalling (5.10) and the passivity condition (5.17), we find

y>σ(x) = x>σ(x)− x>Q>σ(x) = x>σ(x) ≤ 0.

Then, we use the previous inequality and (5.19) in (5.20), we integrate over [t0, t],
and apply Cauchy-Schwarz and Young inequalities, obtaining

y>Ey ≤ y>0Ey0 + c

∫ t

t0

(|y(τ)|2 + |u(τ)|2) dτ. (5.21)

Since E is positive semidefinite, it is positive definite when restricted to PRm,
with m = n+ nL + nV , that is,

c1|y|2 ≤ y>Ey ≤ c2|y|2,

for two positive constants c1, c2. Then, from (5.21) we find

|y|2 ≤ cy

(
|y0|2 + ‖u‖2

L2([t0,t1])

)
+ k

∫ t

t0

|y(τ)|2 dτ,

with cy, k positive constants. Estimate (5.18) follows from Gronwall’s lemma.

We can prove that the passivity condition (5.17), assumed in previous Lemma,
is satisfied for our problem. In fact from Lemma 4.4.1, we have

v>DiD ≥ 0,

and, using (5.6) we have

x>σ = −x>AiD = −v>DiD,

that implies the passivity condition for σ.
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5.2.2 Iteration map for the coupled problem

In this subsection, we introduce an iteration map for both the device variables
and network variables by estending the map Φ] defined in (4.40), in the previous
chapter. The map Φ] is defined by Φ](eD; e∗D,Φ

∗) = (φn, φp), solution of the
following problem:

−∇ · (εs∇φ∗) = q(N + p∗ − n∗),
∇ · Jn = qF ∗(n−2

i np− 1), Jn = −qµ∗nn∗∇φn,
∇ · Jp = −qF ∗(n−2

i np− 1), Jp = −qµ∗pp∗∇φp,
in Ω (5.22)

with boundary conditions
φ∗ − φbi = e∗D,i, φn = φp = eD,i, on ΓD,i, i = 0, 1, . . . , nD,

∂φ

∂ν
=
∂φn
∂ν

=
∂φp
∂ν

= 0, on ΓN .
(5.23)

The definition of the iteration map for the device equation given above, de-
pends on the Lemmas 4.2.1, 4.2.2, in chapter 4, which apply to equations with
a parametric dependence on time. Thus, all the discussion in the previous chap-
ter can be extended to functions e∗D(t), Φ∗(t) in the spaces C0([t0, t1],RnD+1),
C0([t0, t1], L2(Ω)), respectively, defining the set M(e∗D) ⊂ C0([t0, t1], L2(Ω)) by

M(eD) = {ψ ∈ C0([t0, t1], L2(Ω)) |
min
i
eD,i ≤ ψ ≤ max

i
eD,i a.e. in Ω, for all t ∈ [t0, t1]}2.

In particular, as we have shown in Lemma 4.4.2, in the previous chapter, for
any e∗D(t) ∈ C0([t0, t1],RnD+1), Φ∗ ∈M(e∗D), the map

C0([t0, t1],RnD) 3 vD 7→ i]D(vD; e∗D,Φ
∗) ∈ C0([t0, t1],RnD),

vD = Â>eD,

is Lipschitz continuous and satisfies the passivity condition (4.61).
We fix (e∗D,Φ

∗) in an appropriate set M, which will be rendered explicit later,
and we solve the coupled system

Eẋ = Ax+Bu(t) + σ](x; e∗D,Φ
∗), in [t0, t1], (5.24)

σ](x; e∗D,Φ
∗) = −Ai]D(A>x; e∗D,Φ

∗), (5.25)

Px(t0) = y0, (5.26)

which is just a modified version of the original coupled system (5.1)–(5.2). The
network equation (5.1) is replaced by (5.24), with a modified coupling term σ].
The device-to-network coupling condition (5.5) is replaced by (5.25), with a mod-
ified current vector i]D. Denoting by S the matrix

S =

SDO
O

 , (5.27)
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we can see that the device equations (5.2) are implicit in the notation for the mod-
ified current i]D(A>x; e∗D,Φ

∗), defined by Φ = Φ](S>x; e∗D,Φ
∗), which satisfies

the system (5.22)-(5.23).
Since the modified nonlinear coupling term σ] is Lipschitz-continuous, we can

regard (5.24), (5.26) as an index-1 differential-algebraic system, which admits a
unique solution x, depending on the pair (e∗D,Φ

∗). Then, x determines uniquely
the device variable Φ = Φ](eD; e∗D,Φ

∗). In this way, the coupled system (5.24)–
(5.26) defines a map

T : (e∗D,Φ
∗) 7→ (eD,Φ) = (Sx,Φ](eD; e∗D,Φ

∗)).

To make this statement more precise, we need to specify the set M where the
map T acts.

5.2.3 Existence of fixed point

In this section we define the set M where the map T is defind. We use the a priori
estimates found in chapter 4.

We can apply Lemma 5.2.2, because of the passivity condition, and the solu-
tion x uniquely defined by (5.24)-(5.26) satisfies the estimates (5.18)–(5.19):

|Px(t)|2 ≤ cye
k(t−t0)

(
|y0|2 + ‖u‖2

L2([t0,t1])

)
, (5.28)

|Qx(t)|2 ≤ cz
(
|Px(t)|2 + |Q>u(t)|2

)
. (5.29)

In particular, the applied potentials eD = S>x are bounded by a constant which
depends only on the data of the network problem and on the time interval [t0, t1],

‖eD‖C0 ≤ CD(t0, t1). (5.30)

This estimate defines a bounded subset B of C0([t0, t1],RnD+1),

B =
{
eD : ‖eD‖C0 ≤ CD(t0, t1)

}
. (5.31)

Let us consider the subset M of C0([t0, t1],RnD+1)×C0([t0, t1], L2(Ω)), defined
by

M =
{

(eD,Φ) : eD ∈ B, Φ ∈M(eD)
}
.

Lemma 5.2.3 (Fixed-point map) The set M is a nonempty, bounded, closed,
convex subset of C0([t0, t1],RnD+1)×C0([t0, t1], L2(Ω)). The map T is a compact
automorphism of M.

Proof. The first part of the Lemma is immediate.
To prove the second part, we need to show that T (M) ⊂ M, and that T (M)

is precompact in M. The inclusion T (M) ⊂ M follows by construction. To prove
that T (M) is precompact in M, we note that

T (M) ⊂ B× T (B),
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with

T (B) = {Φ ∈ C0([t0, t1], H1(Ω)) |
Φ = Φ](eD; e∗D,Φ

∗
D), eD ∈ B, (e∗D,Φ

∗
D) ∈ M}.

The set T (B) is a compact subset of C0([t0, t1], L2(Ω)). Then also B × T (B) is
a compact subset of C0([t0, t1],RnD+1) × C0([t0, t1], L2(Ω)), and thus T (M) is a
compact subset of the same functional space. It follows that T (M) is precompact
in M.

The previous Lemma implies that the map T fulfills the hypothesis of Schauder’s
fixed point theorem. Than, T admit a fixed point, which satisfies

Eẋ = Ax+Bu(t) + σ](x; eD,Φ), in [t0, t1], (5.32)

σ](x; eD,Φ) = −Ai]D(A>x; eD,Φ), (5.33)

eD = S>x, (5.34)

Px(t0) = y0. (5.35)

By definition,

σ](x; S>x,Φ) = σ(x; S>x,Φ), (5.36)

and the fixed point (eD,Φ) leads to a solution (x,Φ, φ) of the original problem
(5.1)–(5.2), with x solution of (5.33), and φ = φ(eD,Φ). Thus the main result,
Theorem 5.2.1, is proved.

5.3 Existence theorem for index-2 model

In this section we consider index-2 conditions for the coupled model (5.1)-(5.3).
As we have discussed in chapter 2, these conditions are given by

E0 ≡ E, E1 = E0 −A0Q0 are singular, (5.37)

E2 = E1 −A1Q1 is nonsingular, (5.38)

together with the additional conditions

A>Q0 = O, P 0Q1E
−1
2 A = O, Q0E

−1
2 A = O. (5.39)

In the previous equations, Q0, Q1 are projectors onto kerE0, kerE1 respectively,
A ≡ A0, A1 = A0P 0 and P 0 is the complementary projector of Q0. Considering
the conditions (5.37), (5.38), we have decomposed the network equation (5.1) in
the following projected equations:

ẏ = P 0P 1E
−1
2 [A2y +Bu(t) + σ(x)] , (5.40)

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu(t) + σ(x)] , (5.41)

w = P 0Q1E
−1
2 [A2y +Bu(t) + σ(x)] , (5.42)
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with

y = P 0P 1x, w = P 0Q1x, z = Q0x, (5.43)

and P 1 complementary projectors of Q1 and A2 = A1P 1. The equations (5.40)–
(5.42) are coupled through the coupling term with the device σ. Using the
additional conditions (5.39) we obtain

ẏ = P 0P 1E
−1
2 [A2y +Bu(t) + σ(y +w)] , (5.44)

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu(t)] , (5.45)

w = P 0Q1E
−1
2 [A2y +Bu(t)] . (5.46)

Then we can assign the following initial data for the network equation (5.1) in
the coupled problem

P 0P 1x(t0) = y0. (5.47)

In the following subsection we prove the existence result for the coupled index-
2 model.

Theorem 5.3.1 The problem (5.1)–(5.2), with the index-2 conditions (5.37)–
(5.38), and the additional conditions (5.39), admits a solution, (x,Φ) ∈ C0([t0, t1])×
C0([t0, t1];H1(Ω) ∩ L∞(Ω)), with P 0P 1x ∈ C1([t0, t1]). Moreover, any solution
satisfies the estimates:

|P 0P 1x(t)|2 ≤ cye
k(t−t0)

(
|y0|2 + |u0|2 + ‖u‖H1([t0,t1])

)
, (5.48)

|P 0Q1x(t)|2 ≤ cwe
k(t−t0)

(
|y0|2 + |u0|2 + ‖u‖H1([t0,t1])

)
, (5.49)

|Q0x(t)|2 ≤ cz (|y(t)|+ |ẏ(t)|+ |u(t)|+ |u̇(t)|) , (5.50)

inf
ΓD

φbi + min
i
eD,i ≤ φ ≤ sup

ΓD

φbi + max
i
eD,i, (5.51)

min
i
eD,i ≤ φn ≤ max

i
eD,i, (5.52)

min
i
eD,i ≤ φp ≤ max

i
eD,i, (5.53)

for some positive constants cy, cw, cz and k depending only on E0, A0.

5.3.1 A priori estimates

Lemma 5.3.2 Let E be symmetric and positive semidefinite, and let the index-
2 topological conditions (5.37), (5.38), and the additional topological condition
(5.39) be satisfied. Furthermore, let x ∈ C0([t0, t1]) be a solution of the network
equation (5.1), with consistent initial value x0. We assume that A and σ satisfies
the passivity conditions

x>Ax ≤ 0 (5.54)

x>σ(x) ≤ 0. (5.55)
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Then, for all t ∈ [t0, t1], the differential part y = P 0P 1x, and the algebraic parts
w = P 0Q1x, z = Q0x of the solution, satisfy the estimates

|y(t)|2 ≤ cye
k(t−t0)

(
|y0|2 + |u0|2 + ‖u‖H1([t0,t1])

)
, (5.56)

|w(t)|2 ≤ cwe
k(t−t0)

(
|y0|2 + |u0|2 + ‖u‖H1([t0,t1])

)
, (5.57)

|z(t)| ≤ cz (|y(t)|+ |ẏ(t)|+ |u(t)|+ |u̇(t)|) , (5.58)

for some positive constants cy, cw, cz and k depending only on E, A.

Proof. Multiplying (5.1) by x>, and using the passivity properties (5.54) and
(5.55), we obtain

x>Eẋ ≤ x>Bu(t).

Here we can replace x> with P 0x
> because of the symmetry of E and definition

of P 0. Then, we obtain

(P 0x)>E(P 0ẋ) ≤ x>Bu(t).

Using again the symmetry of E, we find

1

2
(P 0x)>E(P 0x) ≤ 1

2
(P 0x0)>E(P 0x0) +

∫ t1

t0

x>(τ)Bu(τ) dτ. (5.59)

P 0Q1 +Q0P 1 = P 0Q1 −Q0Q1 +Q0

Using the decomposition (5.44)-(5.45) and the hypotesis (5.39), we have

x>Bu = y>Bu+w>Bu+ z>Bu

= y>Bu+ [P 0Q1E
−1
2 (A2y +Bu)]>Bu

+ [Q0Q1(ẇ −w) +Q0E
−1
2 (A2y +Bu)]>Bu

= y>[I +A>2M
>]Bu+ u>B>M>Bu

− w>(Q0Q1)>B(u+ u̇) +
d

dt
[w>(Q0Q1)>Bu]

with M = (I−P 0P 1)E−1
2 . In the last equality there appear no terms quadratic

in the components of x. Then, using the Schwarz inequality, we find∫ t1

t0

x>(τ)Bu(τ) dτ ≤ c

∫ t1

t0

(‖y(τ)‖2 + ‖u(τ)‖2) dτ

+ c

∫ t1

t0

(‖w(τ)‖2 + ‖u(τ)‖2 + ‖u̇(τ)‖2) dτ

+ w>(Q0Q1)>Bu−w>0 (Q0Q1)>Bu0

≤ c

∫ t1

t0

(‖y(τ)‖2 + ‖w(τ)‖2) dτ + c‖u‖H1([t0,t1])

+ δ‖w(t)‖2 + c(δ)‖u(t)‖2 −w>0 (Q0Q1)>Bu0,
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where δ is a small positive real number which will be chosen later.
On the other hand, we have

1

2
(P 0x)>E(P 0x) ≥ c‖P 0x‖2

≥ cE(‖y‖2 + ‖w‖2).

Using the previous two inequalities in (5.59) and choosing δ = cE
2

, we get

1

2
cE(‖y‖2 + ‖w‖2) ≤ 1

2
(P 0x0)>E(P 0x0)−w>0 (Q0Q1)>Bu0

+ c‖u‖H1([t0,t1]) + c

∫ t1

t0

(‖y(τ)‖2 + ‖w(τ)‖2) dτ.

Here we have used the Sobolev embedding H1([t0, t1]) ⊂ C0([t0, t1]). From Gron-
wall Lemma, we find the inequality

‖y‖2 + ‖w‖2 ≤ C0e
c(t−t0), (5.60)

with C0 = c0(|y0|2 + |u0|2 + ‖u‖H1([t0,t1])).
Finally we obtain (5.58) considering that

z = Q0Q1ẇ +Q0P 1E
−1
2 [A2y +Bu]

= Q0Q1E
−1
2 [A2ẏ +Bu̇] +Q0P 1E

−1
2 [A2y +Bu].

Now, as for the index-1 case, we can apply Lemma 4.4.1 to prove that the
passivity condition (5.55) is satisfied also in this case.

5.3.2 Iteration map for the coupled problem and existence
of fixed points

As in the previous section, also in this subsection we introduce an iteration
map for both the device variables and network variables by estending the map
Φ](eD; e∗D,Φ

∗), defined in the previous chapter, to functions e∗D(t), Φ∗(t) in
the spaces C0([t0, t1],RnD+1), C0([t0, t1], L2(Ω)), respectively, defining the set
M(e∗D) ⊂ C0([t0, t1], L2(Ω)).

We fix (e∗D,Φ
∗) in an appropriate set M′, which will be rendered explicit later,

and we solve the coupled system

Eẋ = Ax+Bu(t) + σ](x; e∗D,Φ
∗), in [t0, t1], (5.61)

σ](x; e∗D,Φ
∗) = −Ai]D(A>x; e∗D,Φ

∗), (5.62)

P 0P 1x(t0) = y0, (5.63)

which is just a modified version of the original coupled system (5.1)–(5.2).
Since the modified nonlinear coupling term σ] is Lipschitz-continuous, we can

regard (5.61), (5.63) as an index-2 ordinary differential-algebraic system, which
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admits a unique solution x, depending on the pair (e∗D,Φ
∗). Then, x determines

uniquely the device variable Φ = Φ](eD; e∗D,Φ
∗). In this way, the coupled system

(5.24)–(5.26) defines a map

T ′ : (e∗D,Φ
∗) 7→ (eD,Φ) = (Sx,Φ](eD; e∗D,Φ

∗)).

To specify the set M′ where the map T ′ acts, we use the a priori estimates
found in chapter 4.

We can apply Lemma 5.3.2, because of the passivity condition, and the solu-
tion x uniquely defined by (5.61)-(5.63) satisfies the estimates (5.56)–(5.58):

|y(t)|2 ≤ cye
k(t−t0)

(
|y0|2 + |u0|2 + ‖u‖H1([t0,t1])

)
, (5.64)

|w(t)|2 ≤ cwe
k(t−t0)

(
|y0|2 + |u0|2 + ‖u‖H1([t0,t1])

)
, (5.65)

|z(t)| ≤ cz (|y(t)|+ |ẏ(t)|+ |u(t)|+ |u̇(t)|) , (5.66)

In particular, the applied potentials eD = S>x are bounded by a constant which
depends only on the data of the network problem, on their time derivatives, and
on the time interval [t0, t1],

‖eD‖C0 ≤ C ′D(t0, t1). (5.67)

This estimate defines a bounded subset B′ of C0([t0, t1],RnD+1),

B′ =
{
eD : ‖eD‖C0 ≤ C ′D(t0, t1)

}
. (5.68)

Let us consider the subset M of C0([t0, t1],RnD+1)×C0([t0, t1], L2(Ω)), defined
by

M =
{

(eD,Φ) : eD ∈ B, Φ ∈M(eD)
}
.

Lemma 5.3.3 (Fixed-point map) The set M is a nonempty, bounded, closed,
convex subset of C0([t0, t1],RnD+1)×C0([t0, t1], L2(Ω)). The map T is a compact
automorphism of M.

Proof. The first part of the Lemma is immediate.
To prove the second part, we need to show that T (M) ⊂ M, and that T (M)

is precompact in M. The inclusion T (M) ⊂ M follows by construction. To prove
that T (M) is precompact in M, we note that

T (M) ⊂ B× T (B),

with

T (B) = {Φ ∈ C0([t0, t1], H1(Ω)) |
Φ = Φ](eD; e∗D,Φ

∗
D), eD ∈ B, (e∗D,Φ

∗
D) ∈ M}.
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The set T (B) is a compact subset of C0([t0, t1], L2(Ω)). Then also B × T (B) is
a compact subset of C0([t0, t1],RnD+1) × C0([t0, t1], L2(Ω)), and thus T (M) is a
compact subset of the same functional space. It follows that T (M) is precompact
in M.

The previous Lemma implies that the map T fulfills the hypothesis of Schauder’s
fixed point theorem. Than, T admit a fixed point, which satisfies

Eẋ = Ax+Bu(t) + σ](x; eD,Φ), in [t0, t1], (5.69)

σ](x; eD,Φ) = −Ai]D(A>x; eD,Φ), (5.70)

eD = S>x, (5.71)

P 0P 1x(t0) = y0. (5.72)

By definition,
σ](x; S>x,Φ) = σ(x; S>x,Φ), (5.73)

and the fixed point (eD,Φ) leads to a solution (x,Φ, φ) of the original problem
(5.1)–(5.2), with x solution of (5.70), and φ = φ(eD,Φ). Thus the main result,
Theorem 5.2.1, is proved.
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Chapter 6

Mathematical modeling of
thermal effects in devices

In this chapter we present a systematic way to derive models for the thermal
effects in a semiconductor device. The methodology we present is consistent with
the linear irreversible thermodynamics.

6.1 Thermodynamic approach and energy trans-

port model

In this section we describe a semiconductor in a state near equilibrium using the
approach of the Linear Irreversible Thermodynamics.

We assume that it is possible to define an entropy S for a thermodynamic
system around equilibrium. The entropy of the system will depend on some
extensive thermodynamic quantities, which we denote by Ei, with i varying in
an index set I. Than we can write the Gibbs relations

dS =
∑
i∈I

Ii dEi, Ii =
∂S

∂Ei
. (6.1)

We assume that each thermodynamic quantity Ei, i ∈ I, satisfies a balance
equation of the form

∂Ei
∂t

+∇ · ji = Hi, i ∈ I, (6.2)

where ji is the flux density and Hi is the production term of the quantity Ei.
We assume also that the Gibbs relations (6.1) are valid also in non equilibrium
states. Using these relation and (6.2) we can obtain an entropy balance equation
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in the following way:

∂S

∂t
=

∑
i∈I

Ii
∂Ei
∂t

=
∑
i∈I

Ii(−∇ · ji +Hi)

= −∇ ·

(∑
i∈I

Iiji

)
+
∑
i∈I

∇Ii · ji +
∑
i∈I

IiHi.

If we identify the entropy flux

jS =
∑
i∈I

Iiji, (6.3)

and the entropy production term

HS =
∑
i∈I

∇Ii · ji +
∑
i∈I

IiHi, (6.4)

we obtain the entropy balance equation

∂S

∂t
+∇ · jS = HS ≥ 0. (6.5)

The inequality expresses the second principle of thermodynamics. The entropy
production term, defined in (6.4), is the sum of the flux densities, called thermo-
dynamic fluxes, multiplied by the gradients of the conjugate quantities Ii, that
is X := ∇Ii, called thermodynamic forces, plus a combination of the production
terms. According to the Linear Irreversible Thermodynamics, the thermody-
namic fluxes depend linearly on the thermodynamic forces, that is, there exist
matrices Lij such that

ji =
∑
j∈I

LijXj, i ∈ I. (6.6)

The second principle of thermodynamics, expressed in (6.5), is satisfied if the
following inequalities hold: ∑

i∈I

∇Ii · ji ≥ 0, (6.7)∑
i∈I

IiHi ≥ 0. (6.8)

Using (6.6), the inequality related to the thermodynamic fluxes (6.7), becomes∑
i,j∈I

X · (LijXj) ≥ 0, (6.9)
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which implies that the matrix (Lij)i,j∈I positive definite. In addition, we know
that the Onsager reciprocity principle is valid, that requires the symmetry con-
ditions

Lij = Lji, i, j ∈ I.

The inequality (6.8) provides a constraint on the production terms, which must
hold for a thermodynamically compatible model.

Now we apply this theory to a semiconductor, in which we want to consider
thermal effect. If we take into account the thermal effects, besides the ther-
modynamic effects of electrons and holes, we have to analyze in terms of the
thermodynamic behavior the whole lattice. To this aim we describe the first two
thermodynamic systems as immersed in a thermal bath of phonons, which rep-
resents the thermodynamic contents of the lattice. This means that we assume
that the concentration of phonons in the lattice depends only on the tempera-
ture of the lattice, or rather on its internal energy. Phonons are quasi-particles
which correspond to the oscillations of the nuclei of the semiconductor around
the equilibrium configuration which determine the lattice. They are bosons, that
is, many phonons may occupy the same quantum state.

Summing up, we consider three thermodynamic subsystems:

1. Electron in conduction band, whose thermodynamic state is identified by
the chemical potential µc and the temperature Tc.

2. Holes in valence band, whose thermodynamic state is identified by the chem-
ical potential µv and the temperature Tv.

3. Phonons in the lattice, whose thermodynamic state is identified the tem-
perature TL.

For the chemical potentials µc and µv we have

µc = EF,c, µv = −EF,v,

where EF,c, and EF,v are defined in chapter 3. The minus sign in µv depends on the
fact that a hole is lack of an electron so −µv is the chemical potential for electrons
in valence band, in accordance with the definition of EF,v. If we introduce the
entropy functions Sc, Sv and SL for the electrons in conduction band, the holes in
valence band and the phonons in the lattice, respectively, we can write the Gibbs
relations

dSc = −µc
Tc

dnc +
1

Tc
duc, (6.10)

dSv = −µv
Tv

dnv +
1

Tc
duv, (6.11)

dSL =
1

TL
duL, (6.12)
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where uc, uv, uL are the internal energy corresponding to the three subsystems
above described. The quantities nc, uc, pv, uv, uL satisfy the balance laws

∂nc
∂t

+∇ · jc = Hc, (6.13)

∂uc
∂t

+∇ · juc = Hu
c + qjc · ∇φ, (6.14)

∂pv
∂t

+∇ · jv = Hv, (6.15)

∂uv
∂t

+∇ · juv = Hu
v − qjv · ∇φ, (6.16)

∂uL
∂t

+∇ · juL = Hu
L. (6.17)

The terms qjc · ∇φ, and −qjv · ∇φ, that appear in equations (6.14) and (6.16)
represent the dissipation due to Joule effect.

The entropy is an additive quantity, then the total entropy of the system is
S = Sc + Sv + SL, which satisfies the Gibbs relation

dS = −µc
Tc

dnc +
1

Tc
duc −

µv
Tv

dnv +
1

Tc
duv +

1

TL
duL. (6.18)

Using the approach described at the beginning of this section, we obtain the
following balance equation for the entropy of the system

∂S

∂t
= − µc

Tc
[−∇ · jc +Hc]

+
1

Tc
[−∇ · juc +Hu

c + qjc · ∇φ]

− µv
Tv

[−∇ · jv +Hv]

+
1

Tv
[−∇ · juv +Hu

v − qjv · ∇φ]

+
1

TL
[−∇ · juL +Hu

L],

that is equivalent to

∂S

∂t
= − ∇µc

Tc
· jc +∇ 1

Tc
· jc −∇

µv
Tv
· jv +∇ 1

Tv
· jv∇

1

TL
· juL

− ∇ ·
(
µc
Tc
jc +

1

Tc
juc +

µv
Tv
jv +

1

Tv
juv +

1

TL
juL

)
− µc

Tc
Hc +

1

Tc
Hu
c −

µv
Tv
Hv +

1

Tv
Hu
v +

1

TL
Hu
L

+
1

Tc
qjc · ∇φ+

1

Tv
qjv · ∇φ.
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Then we can write

∂S

∂t
+∇ · jS =

5∑
i=1

X i · ji +
5∑
i=1

IiHi,

with thermodynamic forces

X1 = ∇I1 + qI2∇φ ≡ ∇
(
−µc
Tc

)
+

q

Tc
∇φ,

X2 = ∇I2 ≡ ∇
(

1

Tc

)
,

X3 = ∇I3 − qI4∇φ ≡ ∇
(
−µv
Tv

)
− q

Tv
∇φ,

X4 = ∇I4 ≡ ∇
(

1

Tv

)
,

X5 = ∇I5 ≡ ∇
(

1

TL

)
,

and production terms

H1 = Hc, H2 = Hu
c , H3 = Hv, H4 = Hu

v , H5 = Hu
L.

The presence of the electric charge affects the definition of the thermodynamic
forces, but it is possible assume that the fluxes depend linearly on the forces

ji =
5∑
j=1

LijX, i = 1, . . . 5. (6.19)

Finally we must consider, for the electric potential φ, the Poisson equation
because of the presence of the charge

−∇ · (εD∇φ) = ρ ≡ q(N+
d −N

−
a )− qnc + qpv. (6.20)

The system (6.13)-(6.17) with costitutive relations (6.19), coupled with Poisson
equation (6.20), is the most general energy transport model for semiconductor.

This thermodynamic approach does not give a way to determine the explicit
form of the matrices Lij, nor the expression for the production term. It just give
a general form of the equations and the “measure” for the matrices. Then we
have to consider other approaches or fitting the data given by the measurement.
The Linear Irreversible Thermodynamics provides only the general constraints
on Lij and Hi by the second principle of thermodynamics, that are:

(Lij)i,j∈I , symmetric and positive definite, (6.21)∑
i∈I

IiHi ≥ 0. (6.22)
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The last thing that we want to note in this section concerns the choice of
unknowns in energy transport system above introduced. We can choose for the
equations (6.13)-(6.17), (6.20) the variables nc, uc, pv, uv, uL and φ. Another
choice, provided by the constitutive relations (6.19), could be

µc
Tc
− qφ

Tc
, − 1

Tc
,

µv
Tv
− qφ

Tv
, − 1

Tv
, − 1

TL
, φ,

that are related to the opposite of variables Ii.
It is possible to determine the relations between the first type of variables

and the second from the following relations introduced in chapter (3). For the
electrons on conduction band, we have

nc(µc, Tc) = y

∫
B

FFD(Ec(k);µc, Tc) dk, (6.23)

where y = 2/(2π)3. For the holes in valence band, recalling that µv = −EF,v and
noting that

1− FFD(−E ;µv, Tv) = 1− 1

exp E+µv

kBTv
+ 1

=
1

1 + exp −E−µv

kBTv

= FFD(−E ;µv, Tv),

we have also

pv(µv, Tv) = y

∫
B

FFD(−Ev(k);µv, Tv) dk. (6.24)

Similarly we obtain expressions for internal energies

uc(µc, Tc) = y

∫
B

Ec(k)FFD(Ec(k);µc, Tc) dk,

uv(µv, Tv) = y

∫
B

(−Ev(k))FFD(−Ev(k);µv, Tv) dk.

For the phonons internal energy uL, using the Bose-Einstein distribution NB,
introduced in chapter 3, equation (3.49), we have the following expression

uL(TL) = z

∫
B

~ω(q)NB(~ω;TL) dq,

where z = 3/(2π)3.

6.2 Electron-phonon kinetic model

We consider an ensemble of electrons, with charge −qe, in a semiconductor with
nph relevant families of phonons. We denote by f(x,k, t) the electron distribution
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function, and by gi(x,q, t), i = 1, . . . , nph, the phonon distribution functions, with
x ∈ Ω ⊂ R3, k,q ∈ B ⊂ R3, t ∈ R+, where Ω is the domain of the semiconductor,
and B is the first Brillouin zone of the inverse lattice.

For simplicity we use the scaling:

f

y
→ f,

gi
z
→ gi,

keeping the same name. Thus the distribution functions f, gi must now be inter-
preted as occupation probabilities.

These distribution functions satisfy the Bloch-Boltzmann-Peierls (BBP) equa-
tions: 

∂f

∂t
+ v(k) · ∇xf −

qe
~

E · ∇kf = Cel
0 (f) +

nph∑
i=1

Cel
i (f, gi),

∂gi
∂t

+ ci(q) · ∇xgi = Cph
i (f, gi), i = 1, . . . , nph.

(6.25)

Below we explain the meaning of the terms appearing in (6.25). The term E(k) is
the electron dispersion relation (conduction energy band), and v(k) is the carrier
electron velocity related to the energy by the relation

v(k) =
1

~
∇kE(k), (6.26)

where the ~ is the reduced Planck constant. The group velocities of the phonons
are indicated with

ci(q) = ∇qωi(q), i = 1, . . . , nph,

where ωi(q) are the phonons dispersion relations, i = 1, . . . , nph.
The operator Cel

0 (f), represents the collision electron-impurities and is given
by

Cel
0 (f) =

∫
B

[P0(k′,k)f ′(1− f)− P0(k,k′)f(1− f ′)] dk′, (6.27)

where P0(k′,k) is the transition probability per unit time from a state k′ to a state
k, we assume that these collisions are elastic and anisotropic, and we assume that
P0 does not depend on temperature. In equation (6.27) and in the following, we
use the short notation E = E(k), E ′ = E(k′), f = f(x,k, t) and f ′ = f(x,k′, t).

The other two collision terms in equations (6.25), Cel
i (f, gi), Cph

i (f, gi), are the
collision operator between electrons and phonons. To obtain the form of this
collision operator we have to sum the probabilities of the phenomena of collision
that we have chosen.

1. Probability that an electron goes from a state k′ to a state k releasing the
i-th phonon

s(q)δ(E − E ′ + ~ωi)δ(k− k′ + q)(gi + 1)f ′(1− f).
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2. Probability that an electron goes from a state k to a state k′ assimilating
the i-th phonon

s(q)δ(E − E ′ + ~ωi)δ(k− k′ + q)gif(1− f ′).

3. Probability that an electron goes from a state k′ to a state k assimilating
the i-th phonon

s(q)δ(E − E ′ − ~ωi)δ(k− k′ − q)gif
′(1− f).

4. Probability that an electron goes from a state k to a state k′ releasing the
i-th phonon

s(q)δ(E − E ′ − ~ωi)δ(k− k′ − q)(gi + 1)f(1− f ′).

Here, s(q) is the Fourier transform of the scattering potential, and δ is the delta
function definted in chapter 3.

Using these considerations we can write

Cel
i (f, gi) =

∫
B

w+
i (k,k′,q+)[(g+

i + 1)f ′(1− f)− g+
i f(1− f ′)] dk′

+

∫
B

w−i (k,k′,q−)[g−i f
′(1− f)− (g−i + 1)f(1− f ′)] dk′

=

∫
B

[Pi(k
′,k; gi)f

′(1− f)− Pi(k,k′; gi)f(1− f ′)] dk′.

with q± = ±(k′ − k).
Noting that

ω±i (k,k′,q) = ω∓(k′,k,q)

and

δ(k− k′ ± q) = δ(k− k′ ∓ q),

the phonon collision operator has the form

Cph
i (f, gi) = 2

∫
B

∫
B

si(q){δ(E − E ′ + ~ωi)δ(k− k′ + q)(gi + 1)f ′(1− f)

−δ(E − E ′ + ~ωi)δ(k− k′ + q)gif(1− f ′)} dk dk′.

= 2

∫
B

∫
B

si(q)δ(E − E ′ + ~ωi)δ(k− k′ + q)×

{(gi + 1)f ′(1− f)− gif(1− f ′)} dk dk′.

= 2

∫
B

si(q)δ(E∗ − E ′ + ~ωi){(gi + 1)f ′(1− f ∗)− gif ∗(1− f ′)} dk′.

in the last integral f ∗ = f(x,k∗, t), where k∗ = k′ − q.
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6.3 Maximum Entropy Principle

Macroscopic models for semiconductors can be obtained from a suitable finite
subset of the infinite moment equations hierarchy of the Bloch-Boltzmann-Pierls
equations. To this aim we consider the sets of weight functions for electrons and
for phonons:

W el = {ψα(k) : α ∈ I}, W ph
i = {ψαi (q) : α ∈ Ii}, i = 1, . . . , nph,

with I, Ii index sets, and introduce the electron and phonon moments:

Mα(x, t) =

∫
B

ψα(k)f(x,k, t) dk, α ∈ I,

Mα
i (x, t) =

∫
B

ψαi (q)gi(x,q, t) dq, α ∈ Ii, i = 1, . . . , nph.

This moments satisfy the coupled electron-phonon moment equations
∂Mα

∂t
+∇ ·Mα + qeE ·Nα = Cα0 + Cα, α ∈ I,

∂Mα
i

∂t
+∇ ·Mαi

i = Cαi
i , α ∈ Ii,

(6.28)

with

Mα(f) =

∫
B

ψαvf dk, Nα(f) =

∫
B

1

~
∇kψ

αf dk, (6.29)

Mαi
i (gi) =

∫
B

ψαi
i cigi dq, (6.30)

Cα0 (f) =

∫
B

ψαCel
0 (f) dk, Cα(f, gi) =

nph∑
i=1

∫
B

ψαCel
i (f, gi) dk, (6.31)

Cαi
i (f, gi) =

∫
B

ψαi
i C

ph
i (f, gi) dq. (6.32)

System (6.28) is not closed, since the new moments in (6.29),(6.30) depend on
ψα and ψαi

i , and the collision term in (6.31),(6.32) are not express in terms of
moments of f or gi.

To solve this closure problem we use the Maximum Entropy Principle. We
introduce the entropy functional

H(f, g1, . . . , gnph
) = Hel(f) +Hph

1 (g1) + · · ·+Hph
nph

(gnph
). (6.33)

where

Hel(f) = −
∫

B

[f log f + (1− f) log(1− f)] dk,

Hph
i (gi) = Hph(gi) = −

∫
B

[gi log gi − (1 + gi) log(1 + gi)] dq,
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equivalent to

Hel(f) =

∫
B

h+(f) dk,

Hph(g) =

∫
B

h−(g) dq,

with h±(f) = − [f log f ± (1∓ f) log(1∓ f)].
The maximum entropy principle (hereafter MEP) leads to a systematic way

for obtaining constitutive relations on the basis of information theory. According
to the MEP if a given number of moments are known, the distribution function
fME, or respectively gME, which can be used to evaluate the unknown moments
of f and g, corresponds to the extremal of the entropy functional under the
constraints that it yields exactly the known moments.

In other words the maximum entropy principle says that if we know the mo-
ment Mα and Mαi

i , α ∈ I, αi ∈ Ii, we need to find (f, g) = (f, g1, . . . , gnph
) that

maximizes the entropy functional H in (6.33) with the constraints∫
B

ψαf dk = Mα, α ∈ I,
∫

B

ψαi
i gi dq = Mαi

i , αi ∈ Ii. (6.34)

This is equivalent to find (f, g, λα, λαi
i ) that minimizes

H = −H(f, g) +
∑
α∈I

λα(Mα(f)−Mα) +

nph∑
i=1

∑
αi∈Ii

λαi
i (Mαi

i (gi)−Mαi
i )

=

∫
B

{−h+(f) +
∑
α∈I

λαψαf} dk +

nph∑
i=1

∫
B

{−h−(gi) +
∑
αi∈Ii

λαi
i ψ

αi
i gi} dq

−
∑
α∈I

λαMα −
nph∑
i=1

∑
αi∈Ii

λαi
i M

αi
i .

To this aim, we compute the Fréchet derivatives of the functional H with respect
to f and gi, and we equal them to zero

δH

δf
(f, g)[η] =

∫
B

{
− dh+

df
(f) + χ

}
η dk = 0,

δH

δgi
(f, g)[ηi] =

∫
B

{
− dh−

dgi
(gi) + χi

}
ηi dq = 0,

with
χ :=

∑
α∈I

λαψα, χi :=
∑
αi∈Ii

λαi
i ψ

αi
i .

Because of
dh+

df
= − log

f

1− f
,

dh−

dgi
= − log

gi
1 + gi

,
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we have

log
fME

1− fME
= −χ, log

gME
i

1 + gME
i

= −χi

and, inverting the above equations, we obtain the maximum entropy distribution
fuctions indicate with fME and gME

i ,

fME =
1

expχ+ 1
, gME

i =
1

expχi − 1
(6.35)

The Lagrangian multipliers are implicitly defined as functions of the moments
{Mα, α ∈ I}, {Mα

i , α ∈ Ii} by the constraints∫
B

ψαfME dk = Mα, α ∈ I,
∫

B

ψαi
i g

ME
i dq = Mαi

i , αi ∈ Ii. (6.36)

We choose the following sets of weight functions

W el = {1,v, E , Ev}, W ph
i = {~ωi, ~ωici},

thus we consider electron and phonon moments Mα(f) and Mαi
i (gi):

electron number density n = n(f) := y

∫
B

f(x,k, t) dk,

electron current density j = j(f) := y

∫
B

vf(x,k, t) dk,

energy electron density W = W (f) := y

∫
B

Ef(x,k, t) dk,

energy electron flux jW = jW (f) := y

∫
B

Evf(x,k, t) dk,

energy phonon density Wi = Wi(gi) := z

∫
B

~ωi(q)gi(x,q, t) dq,

energy phonon flux jWi = jWi (gi) := z

∫
B

~ωi(q)c(q)gi(x,q, t) dq.

This moments satisfy the coupled electron-phonon moment equations

∂n

∂t
+ ∇ · j = 0,

∂j

∂t
+ ∇·J + qeE ·R = C0 + C,

∂W

∂t
+ ∇ · jW +qeE · j = CW0 +CW ,

∂j

∂t

W

+ ∇·JW +qeE ·RW = CW0 +CW ,

∂Wi

∂t
+ ∇ · jWi = CWi ,

∂jWi
∂t

+ ∇·JW
i = CWi , i = 1, . . . , nph,

(6.37)
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with

J (f) = y

∫
B

v ⊗ vf dk,

JW (f) = y

∫
B

Ev ⊗ vf dk,

JW
i (gi) = z

∫
B

~ωici ⊗ cigi dq,

and

R(f) = y

∫
B

1

~2
∇k ⊗∇kEf dk,

RW (f) = y

∫
B

[
v ⊗ v + E 1

~2
∇k ⊗∇kE

]
f dk.

For the collision terms we have

C0 = y
∫

B
v(k)Cel

0 (f) dk, C =
∑nph

i=1 y
∫

B
v(k)Cel

i (f, gi) dk

CW0 = y
∫

B
E(k)Cel

0 (f) dk, CW =
∑nph

i=1 y
∫

B
E(k)Cel

i (f, gi) dk

CW0 = y
∫

B
E(k)v(k)Cel

0 (f) dk, CW =
∑nph

i=1 y
∫

B
E(k)v(k)Cel

i (f, gi) dk

CWi = z
∫

B
~ωiCph

i (f, gi) dq, CWi = z
∫

B
~ωiciCph

i (f, gi) dq
(6.38)

Now we apply the Maximum Entropy Principle and we obtain the maximum
entropy distribution functions fME, gME

i , definited in (6.35), depending on the
Lagrange multipliers, more precisely depending on

χ = λ+ v · λ+ EλW + Ev · λW , (6.39)

χi = ~ωiλWi + ~ωici · λWi . (6.40)

The Lagrange multipliers are implicitly defined as functions of the known mo-
ments, that is,

n(fME) = n, j(fME) = j,

W (fME) = W, jW (fME) = jW ,

Wi(f
ME) = Wi, jWi (fME) = jWi .

(6.41)

6.4 Diffusive limit

In this section we consider the diffusive limit of the MEP-based models (6.37).
First we have to identify the smallness parameter from the collision term.
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First scaling. We introduce the first scaling for the transition probability
P0(k,k′) in the collision term for electron-impurities Cel

0 in (6.27)

P0(k,k′) =
1

ε
P̂0(k,k′). (6.42)

The scaling for the other transition probabilities is in the terms si(q) and ~ωi in
Cel
i and Cph

i

si(q) =
σ

ε
ŝi(q), ~ωi = σ~ω̂i. (6.43)

This second part of the first scaling, uses other small parameters σ that will be
later related to the small parameter ε in (6.42).

Second scaling. The second scaling, that we propose for the Lagrange mul-
tipliers, corresponding to the fluxes, is the following

λ = ελ̂, λW = ελ̂
W
, λWi = ελ̂

W

i . (6.44)

Using both previous scaling, we can write χ and χi, defined in (6.39), (6.40), as
follows

χ = χ(0) + εχ(1), (6.45)

χi = σ
(
χ

(0)
i + εχ

(1)
i

)
(6.46)

in which we have posed

χ(0) = λ+ EλW , χ(1) = v · λ̂+ Ev · λ̂
W
,

χ
(0)
i = ~ω̂i, χ

(1)
i = ~ω̂ici · λ̂

W
.

(6.47)

Now we introduce a lemma that that will allow us to write the distribution
functions, in (6.35), in series form.

We use a parameter ν which can take values −1, 0, 1, in order to characterize
in an unified way the expansion of the Fermi-Dirac, Maxwell and Bose-Einstein
distributions, respectively.

Lemma 6.4.1 Let

fν(x) =
1

ea+bx + ν
, (6.48)

with a, b ∈ R. Then

fν(x) = f (0)
ν

∞∑
n=0

(−1)nbnxnpν,n(f (0)
ν ) (6.49)

with ν = −1, 0, 1, and

f (0)
ν =

1

ea + ν
,

and the function pν,n is defined iteratively by

pν,0(s) = 1, pν,n(s) =
1

n
(1− νs) d

ds
[spν,(n−1)(s)], n ≥ 1.
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Proof. The first observation, easly to show, is the following relation between the
function f , definited in (6.48), and its first defivative

f ′ν(x) = −bfν(1− νfν). (6.50)

Now we prove, by induction, that

f (n)
ν (x) = n!(−1)nbnfν(x)pν,n(fν(x)), n ≥ 1. (6.51)

The first step of induction, for n = 0, is trivial. Let us now assume that (6.51)
is true for some n = ` and prove that it follows for n = ` + 1. To this aim we
compute

f (`+1)
ν (x) =

d

dx

[
f (`)
ν (x)

]
=

d

dx

[
`!(−1)`b`fν(x)pν,`(fν(x))

]
= (−1)`b``!

d

dx
[fν(x)pν,`(fν(x))]

= (−1)`b``!

[
d

dfν
(fν(x)pν,`(fν(x)))

]
f ′ν(x)

= (−1)`b``![−bfν(x)(1− νfν(x))]

[
d

dfν
(fν(x)pν,`(fν(x)))

]
= (−1)`+1b`+1(`+ 1)!fν(x)pν,(`+1)(fν(x)),

where the last equality follows from (6.50). Evaluating the derivatives at x = 0
we obtain the series in the right hand side of (6.49).

Using the previous Lemma, we can write both maximum entropy distribution
functions

fME =
1

exp (χ(0) + εχ(1)) + 1
, gME

i,σ =
1

exp
(
σ(χ

(0)
i + εχ

(1)
i )
)
− 1

, (6.52)

as

fME =
∞∑
`=0

ε`f (`), gME
i,σ =

∞∑
`=0

ε`g
(`)
i,σ, (6.53)

with

f (`) = f (0)(−1)`p+
` (f (0))(χ(1))`

g
(`)
i,σ = g

(0)
i,σ (−1)`σ`p−` (g

(0)
i,σ )
)
(χ

(1)
i )`

where

f (0) =
1

expχ(0) + 1
, g

(0)
i,σ =

1

expσχ
(0)
i − 1

,
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and the functions p±` are defined iteratively by

p±0 (x) = 1, p±` (x) =
1

`
(1∓ x)

d

dx
[xp`−1(x)], ` ≥ 1,

and χ, χi defined in (6.45) and (6.46).
It is possible to see that, since

lim
σ→0

σg
(0)
i,σ =

1

χ
(0)
i

, (6.54)

and that the leading order coefficient of the polynomial p−` is equal to 1, we have

lim
σ→0

σg
(`)
i,σ =

1

χ
(0)
i

(
χ

(1)
i

χ
(0)
i

)`

.

In the expansions (6.49), we have that,

f (`)(−k) =

{
f (`)(k), if ` is even,
−f (`)(k), if ` is odd,

and similarly

g
(`)
i,σ(−q) =

{
g

(`)
i,σ(q), if ` is even,

−g(`)
i,σ(q), if ` is odd.

Using this property, and the fact that E(k) is even functions, expansions (6.49)
lead to analogous expansions for each term in (6.37). For the electron number
density n we have

n = n(fME) =
∞∑
`=0

ε`y

∫
B

f (`)(k) dk =
∞∑
`=0

ε2`y

∫
B

f (2`)(k) dk

=
∞∑
`=0

ε2`n(2`)(k).

In a similar way, we obtain

J = J (fME) =
∞∑
`=0

ε`y

∫
B

v(k)⊗ v(k)f (`)(k) dk

=
∞∑
`=0

ε2`J (2`)(k),

remembering that v(k) = 1
~∇kE(k), then it is an odd function. Using the same

argument, we have for the other term

R = R(fME) =
∞∑
`=0

ε`y

∫
B

1

~2
∇k ⊗∇kE(k)f (`)(k) dk

=
∞∑
`=0

ε2`R(2`)(k).
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Similarly for the energy electron density, we have

W = W (fME) =
∞∑
`=0

ε`y

∫
B

E(k)f (`)(k) dk =
∞∑
`=0

ε2`y

∫
B

E(k)f (2`)(k) dk

=
∞∑
`=0

ε2`W (2`)(k).

and

JW = JW (fME) =
∞∑
`=0

ε`y

∫
B

E(k)v(k)⊗ v(k)f (`)(k) dk

=
∞∑
`=0

ε2`JW,(2`)(k),

RW = RW (fME) =
∞∑
`=0

ε`y

∫
B

[
v(k)⊗ v(k) + E(k)

1

~2
∇k ⊗∇kE(k)

]
f (`)(k) dk

=
∞∑
`=0

ε2`RW,(2`)(k).

Taking into account that ωi(q) is an even function, for the energy phonon density,
we have

Wi = Wi(g
ME
i,σ ) =

∞∑
`=0

ε`z

∫
B

~ωi(q)g
(`)
i,σ(q) dq

=
∞∑
`=0

ε2`W
(2`)
i (q),

and

JW
i = JW

i (gME
i,σ ) =

∞∑
`=0

ε`z

∫
B

~ωi(q)ci(q)⊗ ci(q)g
(`)
i,σ(q) dq

=
∞∑
`=0

ε2`JW,(2`)
i (q),

Instead for the electron current density j and for the energy fluxes for electron
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and phonon jW and jWi respectively, we have

j = j(fME) =
∞∑
`=0

ε`y

∫
B

v(k)f (`)(k) dk

=
∞∑
`=0

ε2`+1j(2`+1)(k). (6.55)

jW = jW (fME) =
∞∑
`=0

ε`y

∫
B

E(k)v(k)f (`)(k) dk

=
∞∑
`=0

ε2`+1jW,(2`+1)(k). (6.56)

jWi = jWi (gME
i,σ ) =

∞∑
`=0

ε`z

∫
B

~ωi(q)ci(q)g
(`)
i,σ(q) dq

=
∞∑
`=0

ε2`+1j
W,(2`+1)
i (q). (6.57)

Third scaling. These expressions lead to the third and last following scaling

t =
t̂

ε
, j = εĵ, jW = εĵ

W
, jWi = εĵ

W

i . (6.58)

Applying the three scalings introduced in (6.42), (6.43), (6.44) and (6.58) to
system (6.37), the system of the moment equations becomes

∂n

∂t̂
+ ∇ · ĵ = 0,

ε2
∂ĵ

∂t̂
+ ∇·J + qeE ·R = 1

ε
Ĉ0 + σ

ε
Ĉ,

∂W

∂t̂
+ ∇ · ĵ

W
+qeE · ĵ = 1

ε2
ĈW0 + σ

ε2
ĈW ,

ε2
∂ĵ

W

∂t̂
+ ∇·JW +qeE ·RW = 1

ε
Ĉ
W

0 + σ
ε
Ĉ
W
,

∂Wi

∂t̂
+ ∇ · ĵ

W

i = σ
ε2
ĈWi ,

ε2
∂ĵ

W

i

∂t̂
+ ∇·JW

i = σ
ε
Ĉ
W

i , i = 1, . . . , nph.

(6.59)

Theˆon the collision terms, in the system (6.59), refers to the use of the scaled
quantities introduced in (6.42), (6.43).

Next, we need to see the consequences on the collision terms of the three
scalings that we have introduced. This is done in the following proposition.
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Proposition 6.4.1 Using the scalings (6.42), (6.43), (6.44) and (6.58) in the
collision terms, definited in (6.38), we obtain that

1. The terms 1
ε
Ĉ0 and 1

ε
Ĉ
W

0 are O(1) around ε = 0.

2. The terms σ
ε
Ĉ, σ

ε
Ĉ
W

, σ
ε
Ĉ
W

i are O(1) around ε = 0 and σ = 0.

3. The terms 1
ε2
ĈW0 , σ

ε2
ĈW , σ

ε2
ĈWi are of order O(1) around ε = 0, assuming

σ = O(ε2).

Proof. We define
F (k′,k) = f(k′)(1− f(k)), (6.60)

then, the collision term, describing the scattering electron-impurities, has the
form

Cel
0 =

∫
B

[P0(k′,k)F (k′,k)− P0(k,k′)F (k,k′)] dk. (6.61)

If we introduce the expansion for the distribution function f , given in (6.53), we
can write

F (k′,k) =
∞∑
`=0

F (`)(k′,k) (6.62)

with F (0)(k′,k) = f (0)(k′)(1− f (0)(k)) and

F (`)(k′,k) =
∑̀
m=0

(−1)`ε`p+
`−m(f (0)′)

(
χ(1)′

)`−m
p+
m(f (0))

(
χ(1)
)m

in which
f (0) = f (0)(k), f (0)′ = f (0)(k′),

and
χ(1) = χ(1)(k), χ(1)′ = χ(1)(k′).

Then we can write

1

ε
Ĉ0 =

1

ε

∫
B

∫
B

v(k)[P̂0(k′,k)F (k′,k)− P̂0(k,k′)F (k,k′)] dk′ dk

=
1

ε

∞∑
`=0

∫
B

∫
B

v(k)
[
P̂0(k′,k)F (`)(k′,k)− P̂0(k,k′)F (`)(k,k′)

]
dk′ dk

=:
1

ε

∞∑
`=0

ε`Ĉ(`)
0 .

Recalling the expressions in (6.47) for χ(0) and χ(1), we notice that

χ(0)(−k) = χ(0)(k), χ(1)(−k) = −χ(1)(k),
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thus we find F (0)(−k′,−k) = F (0)(k′,k) and

F (`)(−k′,−k) =

{
F (`)(k′,k), if ` is even,
−F (`)(k′,k), if ` is odd.

(6.63)

Moreover, we have P0(−k′,−k) = P0(k′,k). Then, since v(−k) = −v(k), the
previous expansion reduces to

1

ε
Ĉ0 =

∞∑
`=0

ε2`Ĉ
(2`+1)

0 .

In the same way, since E(−k)v(−k) = −E(k)v(k), we find

1

ε
ĈW0 =

∞∑
`=0

ε2`ĈW,(2`+1)
0 .

In particular we have:

1

ε
Ĉ0 = Ĉ(1)

0 + O(ε),

1

ε
Ĉ
W

0 = ĈW,(1)
0 + O(ε),

which proves the first statement.
Recalling the form of the electron-phonon collision term, given in the previous

section, and the definition of the function F , we have

Cel
i (f, gi) =

∫
B

[Pi(k
′,k; gi)F (k′,k)− Pi(k,k′; gi)F (k,k′)] dk′.

in which the transition rates is given by

Pi(k,k
′; gi) = w+

i (k,k′,q+)g+
i + w−i (k,k′,q−)g−i + w−i (k,k′,q−)

where
w±i (k,k′,q) = si(q)δ[E(k)− E(k′)± ~ωi(q)].

and g±i = gi(q
±), with q± = ±(k′ − k)).

We notice that w±i (−k,−k′,−q) = w±i (k,k′,q).
We define the function

Gi(k
′,k,q) = gi(q)F (k′,k).

Using the scaling (6.43) and the expansion given in (6.53) for the distibution
function gi we can write

Gi(k
′,k,q) =

∞∑
`=0

G (`)
i,σ (k′,k,q),
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with

G (`)
i,σ (k′,k,q) =

∑̀
m=0

g(0)
σ (q)(−1)mσmp−m(g(0)

σ (q))(χ(1)(q))mF (`−m)(k′,k).

Thus we have that

σ

ε
Ĉ =

σ

ε

nph∑
i=1

∫
B

∫
B

v(k)[ŝi(q
+)δ(E(k′)− E(k) + ~ωi(q+))Gi,σ(k′,k,q+)

+ŝi(q
−)δ(E(k′)− E(k)− ~ω̂i(q−))Gi,σ(k′,k,q−)

+ŝi(q
−)δ(E(k)− E(k′)− ~ω̂i(q−))F (k,k′)

−ŝi(q+)δ(E(k)− E(k′) + ~ω̂i(q+))Gi,σ(k,k′,q+)

−ŝi(q−)δ(E(k)− E(k′)− ~ω̂i(q−))Gi,σ(k,k′,q−)

−ŝi(q−)δ(E(k)− E(k′)− ~ω̂i(q−))F (k,k′)] dk dk′

=
σ

ε

∞∑
`=0

nph∑
i=1

∫
B

∫
B

v(k)[ŝi(q
+)δ(E(k′)− E(k) + ~ω̂i(q+))G (`)

i,σ (k′,k,q+)

+ŝi(q
−)δ(E(k′)− E(k)− ~ω̂i(q−))G (`)

i,σ (k′,k,q−)

+ŝi(q
−)δ(E(k)− E(k′)− ~ω̂i(q−))F (`)(k,k′)

−ŝi(q+)δ(E(k)− E(k′) + ~ω̂i(q+))G (`)
i,σ (k,k′,q+)

−ŝi(q−)δ(E(k)− E(k′)− ~ω̂i(q−))G (`)
i,σ (k,k′,q−)

−ŝi(q−)δ(E(k)− E(k′)− ~ω̂i(q−))F (`)(k,k′)] dk dk′

=:
σ

ε

∞∑
`=0

ε`Ĉσ(`).

Using (6.63) and since g
(0)
i,σ (−q) = g

(0)
i,σ (q), χ(1)(−q) = −χ(1)(q), we have that

G (`)
i,σ (−k′,−k,−q)

=
∑̀
m=0

g
(0)
i,σ (q)(−1)mσmp−m(g

(0)
i,σ (q))(−1)m(χ(1)(q))m(−1)`−mF (`−m)(k′,k)

= (−1)(`)G (`)
i,σ (k′,k,q),

then

G (`)
i,σ (−k′,−k,−q) =

{
G (`)
i,σ (k′,k,q), if ` is even,

−G (`)
i,σ (k′,k,q), if ` is odd.

(6.64)

Then, since ωi(−q) = ωi(q), we have

σ

ε
Ĉ = σ

∞∑
`=0

ε2`Ĉσ(2`+1), (6.65)

σ

ε
Ĉ
W

= σ

∞∑
`=0

ε2`Ĉ
W,(2`+1)

σ . (6.66)
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Recalling the expression for the phonon-electron scattering, using the defini-
tion of the functions F ,G , we have

Cph
i (f, gi) = 2

∫
B

{si(q)δ(E∗−E ′+~ωi)[G (k′,k∗q)−F (k′,k∗)−G (k∗,k′,q)]} dk′,

with k∗ = k′ − q. Then, doing the same consideration made above, considering
that ci(−q) = −ci(q) we can find

σ

ε
ĈWi = σ

∞∑
`=0

ε2`ĈW,(2`+1)
i . (6.67)

The relations (6.65), (6.66), (6.67), in particular imply

σ

ε
Ĉ = σĈ(1) + O(ε),

σ

ε
Ĉ
W

= σĈW,(1) + O(ε).

σ

ε
ĈWi = σĈW,(1)

i + O(ε).

Using (6.54) we can prove the second statement of the proposition.
To prove the third statement, we consider the following expansion for CW0 :

1

ε2
ĈW0 =

1

ε2

∞∑
`=0

ε2`ĈW,(2`)0 . (6.68)

with

Ĉ
W,(`)

0 =

∫
B

∫
B

E(k)
[
P̂0(k′,k)F (`)(k′,k)− P̂0(k,k′)F (`)(k,k′)

]
dk′ dk.

The expansion does not contain the odd terms in ε since E(k) is an even function.
From (6.68) we find

1

ε2
Ĉ
W

0 =
1

ε2
Ĉ
W,(0)

0 + Ĉ
W,(2)

0 + O(ε2).

We have

Ĉ
W,(0)

0 =

∫
B

∫
B

E(k)
[
P̂0(k′,k)F (0)(k′,k)− P̂0(k,k′)F (0)(k,k′)

]
dk′ dk

=

∫
B

∫
B

(E(k)− E(k′))P̂0(k′,k)F (0)(k′,k) dk′ dk

= 0

The remaning terms σ
ε2

ˆCW , σ
ε2
ĈWi can be treated in a similar way. Thus we obtain
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Denoting by (0) the leading order terms of the right-hand side of the previous
scaled equations, using (6.49), we find(

Ĉ(0)

ĈW (0)

)
= B

(
λ̂

λ̂W

)
= −BA−1

(
ĵ

ĵ
W

)
, ĈW (0)

i = biλ̂
W
i = −bia−1

i ĵ
W

i .

In conclusion, taking the formal limit of (6.37), after the three scaling we
obtain the following limit system:

∂n

∂t̂
+ ∇ · ĵ = 0,

∇·J + qeE ·R = Ĉ
(0)
,

∂W

∂t̂
+ ∇ · ĵ

W
+qeE · ĵ = ĈW (0),

∇·JW +qeE ·RW = Ĉ
W (0)

,

∂Wi

∂t̂
+ ∇ · ĵ

W

i = ĈW (0)
i ,

∇·JW
i = Ĉ

W,(0)

i , i = 1, . . . , nph.

(6.69)

The equations on the left column constitute the energy transport system, while
the equations on the right column are the constitutive relations for the flux, which
can be written in the compact form(

ĵ

ĵ
W

)
= −AB−1

(
∇ ·J (0) + qeE ·R(0)

∇ ·JW (0) + eE · (J (0) + RW (0))

)
ĵ
W

i = −aib−1
i ∇ ·J

W (0)
i , i = 1, . . . , nph.

(6.70)

All the coefficients in the above expressions are given in closed form. The limit
model (6.69), (6.70) is consistent with linear irreversible thermodynamics.
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[25] Estévez Schwarz, D., Topological analysis for consistent initialization in cir-
cuit simulation. Technical Report 99-3, Fachbereich Mathematik, Humboldt-
University, Berlin (1999).
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