
UNIVERSITY OF CATANIA

FACULTY OF ENGINEERING

Department of Electrical, Electronics and Computer Engineering

Ph. D. Course in Electronic, Automation and

Control of Complex Systems

(XXV)

Alessandra Vitanza

Methodologies and Tools for the Emergence of

Cooperation in Biorobotics

Coordinator: Prof. L. Fortuna

Turor: Prof. P. Arena

To those who believed in me

Synopsis

The study of the emergence of collective behaviours and division of

labour in biological colonies has, since many years, inspired Mathemati-

cians and Roboticists; representing the starting point for the derivation

of algorithms and their application to Swarm Robotics.

In general, Biorobotics is used to refer to a field of robotics, where

the mechanical design is bio-inspired, emulating biological bodies or be-

haviours. Besides this definition, Biorobotics can be referred to the ca-

pability to model the behaviours of robots through biologically inspired

cognitive structures; in particular, the use of Neural Networks is the

most common example. Moreover, the Biorobotics can be referred also

to the possibility to use robots as a modeling tool for addressing biolog-

ical investigations. The activites of this research involve all the previous

definitions; in fact, the main robot type used for our tests is a hybrid

bio-robot; but also all the on-board developed cognitive architectures

are biologically inspired and, finally, the cooperation strategies can be

seen as a powerful opportunity to investigate unknown behaviours.

VIII Synopsis

One of the main purposes of the Ph.D. activities was the investiga-

tion of the swarm aspects in order to formulate new strategies for the

emergence of cooperation within a colony of robots. The proposed idea

was to furnish each robot with identical cognitive architectures, apply-

ing them in a reward-based learning mechanism leading to the emer-

gence of cooperation capabilities and perform tasks where one robot

alone cannot succeed. The selected technique to induce the emergence

of cooperation was based on a selection of specific sub-set among the

available behaviours. During the learning phase, each robot can evolve

its knowledge in order to specialize its behaviours to acquire a specific

role in the environment challenge. The aim is to demonstrate how a

group of robots, each one equipped with an independent control sys-

tem, thanks to the flexibility of the architecture can learn cooperative

behaviours through the specialization and organization of several ac-

tivities and roles to reach a common intent. As will be seen in chapter 2

and 7, basically robots are controlled through simple Spiking Networks.

Starting from a common and identical knowledge, using sensory in-

put and the proposed learning mechanism, the robot can select the

advantageous behaviours. This is in line with the theory that more

complex abilities can thus be heritable and inborn, even if many be-

haviours arise with learning.

In this way, the coordination among agents promotes a natural

specialization within the group, like diversity of personalities present

in bees. This kind of cooperation encourages the success of the task

through the collaboration and division of labor. This approach is also

Synopsis IX

confirmed by recent studies that show how individual arthropods (espe-

cially ants) can mutate their behaviours in a flexible way, particularly

combined with learning mechanisms [1].

To permit the investigation of these new cooperation methodolo-

gies, one of the important aims of this work was the development of

new tools and platform for multi-robot applications. In particular, a

software/hardware framework, called RS4CS (RealSim for Cognitive

Systems), a library, called LiN2, for the design and simulation of neural

networks, and finally a 3D dynamic simulator were developed.

The Thesis is organized as follows: Chapter 1 gives a brief introduc-

tion to the general principles of Swarm Intelligence and cooperation

strategies, in Chapter 2 the Threshold Adaptation approach and the

methodological choices for cooperative strategies implementation will

be given. After a general introduction about Robotic Programming in

Chapter 3, Chapters 4, 5, 6 will be dedicated to the developed im-

plementation tools: the software/hardware framework in Chapter 4,

the library for neural Network in Chapter 5 and finally the 3D Dy-

namic Simulator in Chapter 6. The results of the related experimental

methodology based on Threshold Adaptation will be shown in Chap-

ter 7. Specification and implementation details about, respectively,

robot platform will be shown in Appendix A (App. 9), framework

and library guidelines in Appendix B (App.10) and simulator specifi-

cations in Appendix C (App.11). Finally, in Appendix D (App.11) an

interesting task partitioning application will be introduced.

Contents

1 Cooperation and Swarm Intelligence 1

1.1 Biological investigation in social insects 1

1.2 Cooperation in Ecological Biology . 7

1.3 Labor division - Biological inspiration 10

1.4 Cooperation in Robotics Research . 12

1.5 Summary . 14

2 Neural Structures for Cooperation 15

2.1 Role Specialization . 15

2.1.1 Neuron model . 17

2.1.2 Synaptic plasticity through STDP learning 18

2.1.3 The Neural Network structure 20

2.1.4 Threshold adaptation . 22

2.2 The emergence of labor division . 25

2.2.1 The Neural structure . 26

2.3 Summary . 30

XII Contents

3 Robotic Programming . 31

3.1 Introduction . 31

3.2 Mobile-robot software/hardware frameworks 33

3.3 Dynamic simulation modules . 40

3.4 Summary . 44

4 RS4CS: the robotic framework . 45

4.1 RS4CS: a sw/hw framework for Cognitive architectures . 45

4.1.1 Algorithm Libraries . 48

4.1.2 Algorithms . 51

4.1.3 Robot Hierarchy . 55

4.1.4 Graphical User Interface (GUI) 58

4.2 Summary . 60

5 LiN2: the Network library . 63

5.1 LiN2 - a Library for Neural Networks 63

5.2 Library Specifications . 64

5.2.1 Network Components Description 66

5.2.2 Networks Builder . 68

5.2.3 Log4LiN: the Logging System for LiN2 72

5.2.4 The clock . 73

5.2.5 Algorithms . 74

5.3 LiN2 Portability . 75

5.4 Summary . 76

Contents XIII

6 3D Dynamic Robotic Simulator . 77

6.1 The robotic simulation platform . 77

6.2 Technical Description . 79

6.3 Implementation Details . 81

6.3.1 Configuration File . 82

6.3.2 Communication model . 82

6.3.3 Logging System . 83

6.4 Summary and Remarks . 86

7 Experimental Investigations . 89

7.1 Role Specialization . 89

7.1.1 Experimental details . 92

7.1.2 Experimental scenarios . 95

7.1.2.1 Role Specialization through Threshold

adaptation . 95

7.1.2.2 Role Specialization with STDP Learning . . 96

7.1.3 Simulation Results . 97

7.1.3.1 Role Specialization – Threshold adaptation

plasticity . 97

7.1.3.2 Role Specialization with STDP Learning . . 98

7.1.4 Specialization with and without STDP: Comparisons103

7.1.5 Role Specialization with differently skilled robots . . 109

7.1.6 Remarks and related works . 121

7.2 Labor Division . 123

7.2.1 Algorithm Details . 124

XIV Contents

7.2.2 Results and Performances Analyses 126

7.2.3 Remarks . 136

7.3 Summary . 139

8 Concluding remarks . 143

9 Appendix A:

Robot Implementation Specifics . 147

9.1 TriBot I - Robot description . 147

10 Appendix B:

Framework Guidelines . 151

10.1How to use the framework . 151

10.2How to develop the framework . 152

10.3 Izhikevich neuron implementation . 155

10.4LayeredNetworkBuilder Interface . 156

10.5How to Build a Network . 158

10.5.1XML-based Description . 158

10.5.2Construction Directives . 159

10.6How to Create a Logger . 163

10.7STDP Algorithm Implementation . 167

11 Appendix C:

Simulator Guidelines . 171

11.1How to introduce a new Robot in the Simulator 171

11.2How to create environment in the Simulator 173

11.3Configuration File . 174

Contents XV

12 Appendix D:

Task partitioning . 177

12.1Task partitioning issue . 177

12.2Scenario description . 178

12.2.1IRIDIA approach . 180

12.2.2Theshold adaptation approach 181

12.3Comparisons and Remarks . 187

12.4FootBot - Robot description . 189

13 Acknowledgements . 191

References . 193

1

Cooperation and Swarm Intelligence

In this chapter a brief introduction on general principles of

swarm intelligence and collective behaviours will be given.

Starting from the investigation of the behaviours observed

in social animals, this chapter aims to underline biological

concepts within an ecological perspective. Moreover, robotics

applications will briefly showed in the final part of the chapter,

to highlight the interest about these strategies.

1.1 Biological investigation in social insects

The origin of swarm intelligence comes from the biological investiga-

tion of self-organized behaviors discovered in social insects, in order

to comprehend how these animals reach goals and evolve, interacting

with each other. The application of these principles has only recently

become relevant and nowadays its influence affects a lot of fields from

telecommunication to robotics [2], from transportation systems to mil-

itary applications. Furthermore, scientists are paying attention in this

2 1 Cooperation and Swarm Intelligence

kind of scientific discipline that can be applied in swarm optimization,

seen as a distributed control in collective scenarios [2]. From a high-

level point of view, social insects show exceptional abilities to solve

complex everyday-life problems, using emergent behaviors of colony:

this approach combines flexibility and robustness in an efficient way

[3]. Swarm colonies are decentralized systems, large aggregates of sev-

eral workers without a supervisor, where a single insect is not able to

perform some activities connected to a global situation.

The emergence of the configuration and organization of the colony

is due to this kind of interactions, giving the possibility to organize the

activities of each member with the propagation of information within

the group. In this way social insects can evolve and solve different kinds

of problems in a robust and flexible manner [4]. There are many ex-

amples of sophisticated behaviors such as building complex structures,

management of a foraging network and dynamic task allocation, but

these aspects are in contrast with the individual behaviors [5, 6]. Indi-

vidual agents are relative simple entities with the ability to modulate

their behavior on the basis of sensory inputs [2]; hence, often a single

member is not able to perform an efficient solution to a colony prob-

lem, whereas the population as a whole can be find an optimal solution

in a very simple manner. In this ‘organization without an organizer’

there are several mechanisms which enable insects to use partial infor-

mation of the environment, to manage uncertain situations and to find

solutions to more complex problems [7].

1.1 Biological investigation in social insects 3

Agents often use local information interacting with the local neigh-

bors according to specific rules, in order to create dynamical interrela-

tions which modify when neighborhood changes. The individuals often

follow only a restricted set of behaviors [5] without knowing the global

pattern that is going to emerge and characterize the whole behavioral

shape of the colony: this is a classical example of complex behavior.

Birds in a flock or fish in a school are examples of these systems.

In order to outline a classification of collective behaviors, it is pos-

sible to identify five peculiar components, which contribute together

to the execution of the global colony tasks: coordination, cooperation,

deliberation, collaboration and adaptation.

Coordination: seen as the spatio-temporal distributions of indi-

viduals, of their activities and of the tasks required to resolve com-

plex problems. An example of coordination is the exploitation of the

pheromone trail used by ants [8]. Another example of coordination is

the organization of the displacement in bee and locust swarms, where

different members interact together to realize a temporal (synchroniza-

tion) and a spatial (orientation) arrangement toward a specific goal, as

shown in Fig. 1.1.

Cooperation: represents the peculiarity of the members of a group

to work together to achieve a common goal. In this way they merge

their efforts in order to replace individual incapacities with the coalition

power. Examples of cooperation are, for example, the rescue of large

objects or preys, the transport of food items to the nest, or the ability

by ants to overcome together a wide obstacle (see Fig. 1.2).

4 1 Cooperation and Swarm Intelligence

Fig. 1.1. Coordination example - Ants organize themselves to move big objects.

Fig. 1.2. Cooperation example - Ants cooperate together to overcome an obstacle.

1.1 Biological investigation in social insects 5

Collaboration: identified as the capability to perform several ac-

tivities simultaneously by groups of specialized individuals. It is due to

a morphological and natural differentiation influenced by the age of the

individuals that permits the specialization of different behaviours. For

example, bees are specialized in different activities obtaining an unique

emergent behaviour (Fig.1.3): the disposing brood inside the nest and

foraging for prey. In fact, some agents go out to search food, whereas

other members stay and work at the nest [9].

Fig. 1.3. Collaboration example - bees are specialized in different activities, obtaining an

unique emergent behaviour.

Adaptation: is another important feature of the group to modu-

late its composition in order to adapt to environmental changes. This

mechanism is the product of a modulation of individual insects’ behav-

iors. A typical example of adaptation is the capability of ants to modify

their paths in order to adapt to environmental changes, this capability

6 1 Cooperation and Swarm Intelligence

allows, for instance, to avoid an obstacle and it is very important for

recovery and fault tolerance aspects.

Fig. 1.4. Adaptation example - Ants choose a new path to avoid an obstacle (important

for recovery and fault tolerances aspects).

Finally, deliberation: related to the mechanism of selection that

describes how agents select one among several opportunities, resulting,

at the end, in a collective choice for the whole colony. An example of

deliberation is the selection by honeybees of the favourable and more

productive floral parcels thanks to the dance of foragers returning from

a food source [10].

Thanks to these capabilities observed in social insects, colonies can

be viewed as a super-organism in which agents operate together as a

single system. In robotics research, cooperative strategies are analyzed

1.2 Cooperation in Ecological Biology 7

Fig. 1.5. Deliberation example - Using a waggle dance bees can show the direction of the

favourable food sites [11].

to realize elaborated tasks otherwise impossible for an individual, and,

to improve global performances.

1.2 Cooperation in Ecological Biology

Recent progress in ecology has demonstrated the presence of different

personalities in bee colonies, whereas ants have shown to have involved

behaviours not only within colony, but also individually. In fact, some

investigations show new results where some honeybees give more at-

tention on accuracy, whereas other individuals give emphasis on speed

and this approach can seem advantageous to the whole colony [12],

[13]. In particular Burns and Dyer [14] suggest that this intra-colony

variability is vital to survival and to respond to environment changes in

a flexible manner. Their experiments show that it is possible to recog-

nise different kinds of animal personalities, in fact some individuals

8 1 Cooperation and Swarm Intelligence

appear to be more slow and careful foragers, whereas others use fast

and more inaccurate strategies. Moreover diverse individuals seem to

develop different techniques even for the same kind of flower [15].

Different researches tried to formulate the possible theory about the

origin and co-existence of different personality, Raine et al. [16] argue

that variation is selectively neutral, as well as Nettle in [17] discusses

how heterogeneity and variation of environments seem to play an im-

portant role to induce this diversity. Those studies stimulate new ideas:

for example, it might be interesting to identify if these strategies are re-

tained or if there is a decrease in interest rate, or if there is repeatability

in time. Inside this research field the cooperative approaches proposed

in this dissertation can be located.

Moreover, in order to comprehend the difference between the strate-

gies used in literature and set the proposed approaches in the right

context it is worth to conceptually distinguish two concepts: Ontogen-

esis and Phylogenesis. Both philosophies originate from developmental

biology, but while Ontogenesis refers to the sequence of events involved

in the development of an individual organism all along its ‘single’ life,

Phylogenesis follows directly from a Darwinian approach on evolution

through small and gradual changes, during the evolution of the species.

In this approach the history of evolution is genetically related to the

population. On the other hand, in ontogenesis the changes are applied

to the same genetic structure within the agent. This developmental

history often involves a move from simplicity to higher complexity,

varying and specializing itself in order to respond efficiently to own

1.2 Cooperation in Ecological Biology 9

experiences. The study of the emergence of collective behaviours and

division of labour in biological colonies, represents the starting point

for the application of these concepts in groups of robots individually

controlled by a cognitive architecture. In particular, the concepts ap-

plied in the studies of this work derive from the consideration that

often swarm intelligence is not only the result of cooperation among

‘simple’ individuals. In fact, looking at social insects, it can be easily

found that these ones are not only reflex automata. Rather they show,

as individuals, interesting capabilities, like numerosity, attention and

categorization-like processes, the capability to distinguish the concept

of sameness and difference, water maze solution, and so on [18]. Under

this perspective, each individual has its own learning and decision ca-

pabilities which enable it to actively interact with the environment and

decide appropriate strategies. Of course the agent could use particu-

lar perceptual neural structures to identify the other members of the

colony, but in this work attention is devoted primarily to the role of the

environment mediation in contributing to the emergence of a coopera-

tive behavior. In the approach here reported each individual interacts

with the environment as if it is alone: the other agents are considered,

within the context of the environment, as ‘disturbances’. The capabil-

ity of the agent will be to exploit those particular ‘disturbances’ as a

mean to increase the Reward Function (RF).

10 1 Cooperation and Swarm Intelligence

1.3 Labor division - Biological inspiration

As seen in previous sections, coordination and collaboration among

robots are the results of self-organized behaviors: social insects provide

brilliant solutions for foraging, migration, mating and others [19],[2].

Transferring these characteristics to future biorobotic systems will as-

sure high flexibility in space- and time-varying environment and high

robustness to faults in the single agents [2],[20]. On the other hand,

even within the same ecological niche, individuals of the same spieces

compete for resources. This is mostly clear in simple insects like flies,

which do not show apparent cooperation capabilities, but indeed com-

pete for food and mating.

Behavioral experiments have shown that male flies loose interest for

nonreceptive mature mated females; this courtship suppression affects

the fly behavior for some time [21], before restoring the normal mating

behavior. This contributes to the overall benefit of the spiece, since

maximises the population grouth, even if the single fly is not aware of

this global advantage. Unfortunately the specific part of the fly brain

devoted to such a type of courtship behavior has not yet been identified.

Competition is always shaped by learning, which, even in such sim-

ple creatures, plays a fundamental role in enhancing the basic inher-

ited capabilities [18]. Negative or positive olfactory associative mem-

ories were peculiarly addressed into the Mushroom Bodies of the fly

brain [22] [23] and efficient computational models were recently de-

signed and implemented [24] [25], which resulted useful for addressing

1.3 Labor division - Biological inspiration 11

more complex behaviors like attention, expectation and decision mak-

ing. Feeding, as well as courtship, involves environment exploration

and exploitation, which mainly includes local competition by the sin-

gle agent and leads to a global benefit for the colony, which can be

considered as a form of global cooperation, even if the single agent is

probably not aware of this global aspect. Indeed the boundary between

cooperation and competition is rather subtle: in a sense it can be argued

that simple brains mainly compete for resources. Such a competition

is of course mediated by the environment: resources are scarce, can be

exhausted by other individuals and can be cyclically regenerated. The

single agent behavior and the environment co-evolve, within the single

agent life cycle, to reach a global equilibrium (which can be seen as a

local or global optimum) for the colony. The environment acts so as

to shape the local competitive behavior of the single agents, to give

rise to a global cooperative strategy, leading to an equilibrium state.

One among the key open questions in animal social behavior is the

following: global order in a colony is due to inborn cooperation capa-

bilities within the single agents, or to the existence of a kind of social

brain guiding the single behaviours through the environment, or other-

wise global order can also emerge from the local behavior of the agents

which simply compete for survival?

12 1 Cooperation and Swarm Intelligence

1.4 Cooperation in Robotics Research

To have an idea about the interest of the scientific community on co-

operative strategies, we can mention some projects and activities. The

GUARDIANS (Group of Unmanned Assistant Robots Deployed In Ag-

gregative Navigation supported by Scent detection) Project [26] devel-

oped a swarm of autonomous robots used to explore, search and rescue

for targets in an urban environment or, for example, victims in an in-

dustrial magazine in smoke [27]. The main objective of the Eu Project

JAST (Joint-Action Science and Technology) [28] is focused on the

investigation of collaborative actions in order to build jointly-acting

autonomous systems. The IWARD (Intelligent Robot Swarm for At-

tendance, Recognition, Cleaning and Delivery)[29] Project’s aim is the

application of robot cooperation in hospital centres, where safety and

accuracy are fundamental features. Many works related to these topics

describe scenarios in which agents learn by evolution how to cooperate

together and how to properly interpret their sensorimotor information

[30]. The emergence of cooperation arises from the co-evolution, when

team converges toward the best solution for the assigned task. An ex-

ample of cooperative algorithms is the Ant Colony Optimization (ACO)

[31], a methodology inspired by the ant’s abilities to use cooperation

to solve problems otherwise impossible [32].

In [33] Yong & Miikkulainen show an example of particular prey-

capture task where cooperation is a crucial aspect for predators that

want to catch preys. They must coordinate their behavior to accomplish

1.4 Cooperation in Robotics Research 13

a common goal, and for this reason predators agents are controlled by

feedforward neural networks, that evolve simultaneously using the Mul-

tiagent ESP method. Results show that cooperating neural networks

have better performances than the method based on the evolution of a

single centralized controller.

An example of related work, similar to the approach introduced in

the following chapter, is Swarm-bots [34]: a project sponsored by the

European Commission. The aim to study new approaches to the real-

ization of self-organizing artifacts and the project focused on a coop-

eration mechanism based on the self-assembly capabilities of 35 small

robots, called s-bots, to aggregate themselves into a unique entity, just

called swarm-bot. In this work a predominant phylogenesis approach is

applied using an evolutionary computation technique through mecha-

nisms inspired by natural selection [35]. Although artificial neural net-

works (ANNs) used to control their robots are quite similar to our

Spiking neural networks (SNNs), the methods used to synthesize them

are different. In fact the structure is a feed-forward two-layer network

where input layer nodes represent the input information from vision

system and proximity sensors, whereas output nodes are used to steer

the angular speed of the left/right wheels and the status of the gripper

[36]; the model of neurons used to create non-reactive neuro-structures

is ‘leaky-integrator’ neuron [37]. Whereas the structure is very similar,

especially in input/output assignment, the major difference is related

to the evolution of the connection weights; these parameters have been

determined using evolutionary algorithms in [38]. In particular a self-

14 1 Cooperation and Swarm Intelligence

adaptive (µ + λ) evolution strategy [39] has been used. At the end,

output values of the network are computed by using equations rules

showed in [36] whereas, in our approach, the spikes of the output neu-

rons directly drive wheels through an appropriate trasduction function.

1.5 Summary

In this chapter an introduction about swarm intelligence and coopera-

tion was discussed. The key concepts were underlined to transfer and

apply social animal behaviours to robotics applications. In line with

these ideas in the following chapters, new cooperative learning tech-

niques will be introduced to study the emergence of specialization in a

group of robots using neural spiking networks.

2

Neural Structures for Cooperation

In this chapter, after a general description about neuron

model and classical reinforcement learning method, a new

learning technique for cooperative behaviors specialization

will be discussed. Starting from classical Spiking Networks,

a learning mechanism, called Role Specialization, will be in-

troduced to induce the emergence of collective behaviours in

groups of robots. Moreover, a new application scenario for the

specialization strategy to induce labor division will be argued.

2.1 Role Specialization

Collective behavior, observed in social animals like ants and bees, is

fundamental to efficiently solve complex tasks where single individu-

als cannot succeed, as discussed above. Among studies about multi-

robot and cooperative systems, the work here presented focalized on

the emergence of specialization through an ontogenetic approach, in

which autonomous entities during a learning phase, optimize their con-

16 2 Neural Structures for Cooperation

trol structures. The new approach is a reward-based learning strategy,

used in conjunction with a threshold adaptation technique on specific

sensory neurons to increase or decrease the activity response to specific

stimuli.

The proposed work derives from the consideration that often swarm

intelligence is not only the result of cooperation among ‘simple’ individ-

uals. Looking at social insects, it can be easily found that they have not

only reflex automata. Rather they show, as individuals, interesting ca-

pabilities, like numerosity, attention and categorization-like processes,

the capability to distinguish the concept of sameness and difference,

water maze solution, and so on [18]. Under this perspective, each in-

dividual has its own learning and decision capabilities which enable

it to actively interact with the environment and decide appropriate

strategies. Of course the agent could use particular perceptual neural

structures to identify the other members of the colony, but in this work

attention is devoted primarily to the role of the environment media-

tion in contributing to the emergence of a cooperative behavior. In the

approach here reported each individual interacts with the environment

as if it is alone: the other agents are considered, within the context of

the environment, as ‘disturbances’.

The implementation of the strategy proposed carries a number of

advantages over the relevant studies on this field. Specifically, whereas

traditional approaches to swarm emergence exploit evolutionary, time

consuming strategies, the proposed one exploits the potentialities of

a fast learning scheme in simple networks, to find a working solution

2.1 Role Specialization 17

to the problem in a fast way. Moreover, in front of change in the ex-

ternal conditions, the flexible approach allows to update the network

knowledge accordingly. The side disadvantage of the method is that

the optimality is not guaranteed: the solution found is a working one

that can be improved as long as the learning phase takes place, trig-

gered by the environment conditions. These issues will be outlined in

Section 7.2.3.

The advantage of the proposed strategy consists in the realization

of an on-line and continuous learning. A robot specializes itself thanks

to the interactions with the other robots and the environment, guided

by a global reward. Moreover, at the same time the robots can find al-

ternative solutions for different environmental situations, adapting its

behaviours in the new scenario. It has to be noticed that the learning

structure embedded into the robots show the interesting potentiality

in constituting a valid alternative to classical approaches to swarming

algorithms, which although being able to reach a global optimal solu-

tion, are notoriously time consuming and so cannot be implemented in

a real time learning campaign.

2.1.1 Neuron model

The neuron model adopted is the class I Izhikevich excitable neuron,

that reproduces the main firing patterns and neural dynamical proper-

ties of a biological neuron, retaining a really low computational burden.

This neuron model is considered as a good trade-off between computa-

tional load and biological plausibility.

18 2 Neural Structures for Cooperation

This configuration is suitable for sensing neurons, because, in this

class of neurons the spiking rate is proportional to the amplitude of the

stimulus, according to the model equations [40]:

v̇ = 0.04v2 + 5v + 140− u+ I

u̇ = a(bv − u)
(2.1)

with the spike-resetting

if v ≥ 0.03, then

v ← c

u← u+ d
(2.2)

where v, u represent, respectively, the neuron membrane potential

and the recovery variable, and they are dimensionless variables. I mod-

els the pre-synaptic input current and it will acquire relevance for the

learning method, whereas a, b, c and d are system parameters and in

particular, a = 0.02, b = −0.1, c = −55, d = 6. The time unit is ms.

2.1.2 Synaptic plasticity through STDP learning

To model the synapse connecting a neuron j with a neuron i, we as-

sumed that the synaptic input to neuron j is given by the following

equation:

Ij(t) =

wijε(t− ti) (2.3)

where ti indicates the instant in which a generic neuron i, connected to

neuron j emits a spike, wij represents the weight of the synapse from

neuron i to neuron j and the function ε(t) describes the contribution

of a spike from a presynaptic neuron emitted at t = 0 [41], according

to:

2.1 Role Specialization 19

ε(t) =

 t
τ
e1−

t
τ if t ≥ 0

0 if t < 0
(2.4)

In our simulations τ = 5ms. In order to model the biological synaptic

plasticity, the Spike Timing Dependent Plasticity (STDP) was adopted

[42]. It is a Hebbian learning method used to learn correlations between

low-level sensor inputs, separated in Unconditioned Stimuli (US) and

Conditioned Stimuli (CS). According to STDP, The synaptic weights

w are modified by w → w +∆w, where, ∆w depends on the timing of

pre-synaptic and post-synaptic spikes:

∆w =

A+e
∆t
τ+ if ∆t < 0

A−e
−∆t
τ− if ∆t ≥ 0

(2.5)

∆t = tpre − tpost represents the difference between the spiking time of

the pre-synaptic neuron (tpre) and the post-synaptic one (tpost). During

a learning cycle, the synapsis is reinforced when ∆t < 0, (i.e. when

the post-synaptic spike occurs after the pre-synaptic spike); otherwise

when ∆t ≥ 0, the synaptic weight is decreased. The terms A+ and

A− represent the maximum values, obtained for equal pre- and post-

spiking times. As this synaptic rule (2.4) may lead to an unrealistic

growth of the synaptic weights, it was proposed in [43, 44] to fix upper

limits for the weight values, whereas in [45, 46] a decay rate in the

weight update rule was introduced. This solution tries to avoid the

increase of weights and allows a continuous learning to be implemented.

In our experiments the parameters are chosen as follow: A+ = 0.8 ,

A− = −0.8, τ+ = 7ms, τ− = 2ms , whereas the upper bound of the

20 2 Neural Structures for Cooperation

weights value is set to 32, the lower bound is set to 0 and the decay

rate is set to 2% each robot step.

2.1.3 The Neural Network structure

The control architecture is a correlation based algorithm, which exploits

bio-inspired spiking networks tuned through an unsupervised learning

paradigm. The spiking network [47] [48], used as starting point for

this new learning mechanism, consists of two main parallel blocks: the

subnetwork dedicated to obstacle avoidance (Fig. 2.1 (a)) and the sub-

network related to visual target recognition and object approaching

(Fig. 2.1 (b)).

Both sub-networks take part in the control of the robot movements,

thanks to the output of motor-neurons present in the upper layer; they

provide input to the wheel motors of the robot. The block dedicated

to obstacle avoidance is implemented to avoid collision both with the

arena wall, and with the other robots. Walls and other robots, present

in the same environment, are seen as “natural” obstacles and the robot

learning is performed managing also obstacle detection and overcom-

ing, whose results of course influence the final robot specialization.

Moreover a robot is indeed a ‘dynamic’ obstacle for the others, more

difficult to manage and avoid than fixed ones. The block dedicated to

visual target detection and object approaching permits the robot to

identify and reach specific targets.

In details, we can divide the network into three layers. The first

layer is constituted by sensory neurons that are connected to motor-

2.1 Role Specialization 21

Fig. 2.1. The neural network used to control each robot is composed by two subnetworks:

(a) Obstacle avoidance subnet - CL/CR are inputs coming from left and right contact

sensors, and represent unconditioned stimuli (US). DL/DR are inputs coming from dis-

tance sensors, and represent conditioned stimuli (CS) of this subnet (see Fig.9.2 (1) in

Appendix A [par. 9.1] for implementation details). CLN/CRN and DLN/DRN are the

sensory neurons that modulate motor actions to avoid collisions with obstacles through

the mediation of inter-neurons (OALN/OARN). This subnet has higher priority in order

to react quicker if an obstacle is detected. (b) Object approaching subnet - TLCx/TRCx

are unconditioned stimuli (US) of this subnet, coming from target sensors (refers Fig.9.2

(2) in Appendix A [par. 9.1]). VLx/VCx/VRx are inputs coming from vision sensors, useful

to identify the position of the detected targets (x = 1,2 respectively for Col1/Col2) (see

Fig.9.2 (4) in Appendix A [par. 9.1]). In the same way as the other subnet, TLN/TRN

and VLN/VCN/VRN are sensory neurons that act on the motor neurons (MLN/MRN)

through the inter-neurons VISLN/VISRN. Finally, motor neurons outputs are used to con-

trol the velocity of the wheels on the left (MLN) and right (MRN) side of the robot. The

Role Specialization learning starts its evaluation when a reward function is activated and

the Threshold adaptation of sensory neurons is performed, in relation with the activated

target sensors, in order to reinforce or weaken the corresponding sub-network.

22 2 Neural Structures for Cooperation

neurons through a layer of inter-neurons. Referring to Fig. 2.1, contact

(CL-CR) and target (TLC1-TRC1, etc.) sensors receive unconditioned

stimuli (US): they are basic sensors processed with reflexive pathways

and cause unconditioned responses (UR), not subject to learning. Con-

ditioned stimuli (CS) are here represented as distance (DL-DR) and

vision sensors (VL-VC-VR). Details on position of distance and target

sensors on the robot are depicted in Appendix A Fig. 9.2.

At the beginning the conditioned stimuli are not able to trigger a

response: the learning process creates new paths from the conditioned

sensory layer to the motor layer modifying the corresponding synaptic

weights.

2.1.4 Threshold adaptation

Starting from this structure, the novelty of the proposed approach is to

apply both STDP to synaptic connections and an input current adapta-

tion, to develop a Role Specialization where each robot can learn its fa-

vorite role within the group. Threshold adaptation has a solid biological

background: in fact, it can be seen as a consequence of the nonlinearities

presented in the neuron membrane dynamics [49]. Input-output func-

tion adaptations for auditory neurons involved in sound coding were

accurately detected and studied [50]. Moreover this mechanism seems

to produce emergent cooperative phenomena in a large population of

neurons, and seems to be responsible for contrast adaptation [51, 52],

or for the scaling adaptation to varying stimuli in somatosensory cortex

[53]. In our implementation, the threshold of the punished neurons will

2.1 Role Specialization 23

be incremented until the corresponding inputs will be unable to elicit

a response. On the other hand, the threshold of the rewarded neurons

will be decreased to depolarize them and facilitate stimuli responses.

Biological studies have reported its relevance in such cases as the

forward masking of weaker stimuli [54] or the selection response to

fast stimuli [55]. In Neurobiology, the adaptation mechanism should

be modeled as either an adaptation current or a dynamic threshold:

both mechanisms result in a similar adapting spiking rate and the two

methods are mostly comparable [56]. Moreover, adaptation current re-

produces the properties of the more realistic conductance-based model

for integrate-and-fire neurons, even if the two mechanisms have a qual-

itatively different effect on the neuron transfer function. Furthermore,

spike-frequency adaptation can be modelled using adaptation current,

because dynamic firing threshold seems not to be the cause of spike-

frequency adaptation, but it is a secondary effect, i.e. the result of an

adaptation current action [57].

In our implementation, the input current I (in eq. 2.1) is split in

two contributions: an input Ii, that accounts for both external stimuli

(e.g. sensorial stimuli) and synaptic inputs, and the IA, that represents

a bias subject to the adaptation effects. Equation (2.1) becomes:

I = IA + Ii (2.6)

In particular, the Threshold adaptation process can be modeled as a

voltage-dependent current and so the term IA in (2.6) can be expressed

as IA = gAVthresh, defining gA as an activation-conductance. The cur-

24 2 Neural Structures for Cooperation

rent can be modified to hyperpolarize or depolarize (IA ← IA ±∆IA)

neurons.

The increase or decrease of this value acts on the neuron membrane

potential to make neurons more or less susceptible to input stimuli: IA

that acts on the neuron threshold is reward-dependent and it has the

role of the incremental adaptation current as reported in [57].

The learning procedure consists of several steps in which the thresh-

old of sensory neurons, subject to the learning rule, is updated as fol-

lows: if the target sensors are activated, for example, by Col1, and the

reward signal is activated too, (due to the concurrent actions of an-

other robot), the Bias currents (IA) of the Col1 subnet are increased,

whereas the other currents for neurons sensitive to Col2 are weakened.

Consequently, the neurons related to the suppressed subnet become

less sensible to the corresponding input stimuli, until no response oc-

curs even in presence of Col2. All bias currents are initialized to the

same value: IA = 20; instead Ii can assume two possible values: Ii =0

if no input occurs or Ii =8 otherwise. Using this initialization, together

with a threshold value for the input current IAth
= 22, at the beginning

the presence of a target is abundantly able to elicit a neuron response.

The learning process influences the parameter IA so, when this value

sufficiently decreases, the contribution of Ii cannot overcome IAth
and

the neuron is no longer sensitive to external stimuli.

2.2 The emergence of labor division 25

2.2 The emergence of labor division

The strategy adopted is to apply the learning method based on a global

reward function (introduced in sec. 2.1.4), applying it to identical neu-

ral structures endowed in each agent. The results show that agents

evolve molding their own basically competitive capabilities to perform

globally collaborative strategies, starting from a homogeneous initial

situation and with environmental mediation. The strategy is here ex-

tended towards the formation of swarming capabilities, with particu-

lar attention to the emergence of collaboration. In this scenario the

agents start with the same cognitive knowledge and concurrently act

in the same environment where a series of differently colored targets

are present on the floor. These are cyclically activated, once at a time.

When a robot reaches an active target, this one disappears and the

following target is activated becoming visible in the scene. A global

reward signal is forecasted to all the agents whenever the last target is

reached by one robot: only this event induces learning in robots. During

the learning phase each robot, due to its random motion in the arena,

visits a different sequence of targets, so, the activation of the reward

signal biases its behavior according to its own experiences. In case of

reward, in fact, each robot increases its willingness to reach the visited

color targets and decreases its interest in the others color targets. The

final expected situation is to obtain decoupling of color sensitivities

for each robot, to perform collaborative sub-tasks and optimize efforts.

Thanks to the flexibility of our neural architecture, agents learn to

26 2 Neural Structures for Cooperation

collaborate performing specialization through an emergent labor divi-

sion to reach a common intent. Starting from a homogeneous indirect

communicating team, in which each robot has the same mechanical

body and neural control structure, robots are induced to collaborate

to achieve an overall global task guided by the reward-based learning

mechanism.

In the following sections a brief overview of the neural network (NN)

controller in each robot is reported, together with the details on the

learning algorithm which allows Threshold adaptation to obtain Spe-

cialization (refers [58],[59],[47],[48] for further details).

2.2.1 The Neural structure

The neural structure is similar to the multi-layer bio-inspired spiking

network shown above in section 2.1.3, where each neuron is a Class I

Izhikevich model [40].

According the description depicted in section 2.1.3, it is composed

by two modules to cope both with obstacle avoidance and visual tar-

get recognition. Thanks to the inter-correlation between modules, the

robots are able to navigate autonomously in dynamical environments.

The peculiarity of this structure is to allow learning both in the synaptic

links among the neurons, and in the threshold of each neuron. How-

ever, in the simulation presented here, synapses are already learned

and fixed: a Hebbian learning method (STDP - Spike Timing Depen-

dent Plasticity) was already applied, as shown in [47],[48], to let all

the robots show tactic behavior for all the targets present in the envi-

2.2 The emergence of labor division 27

Fig. 2.2. Neural Network Model used for Object approaching: the two-layer structure

permits to transduce inputs coming from target sensors and from vision sensors to guide

the approaching behaviour. Sensing and Specialization Modules (S&SM) must be as many

as the number of different targets to recognize. Output neurons directly act on the wheels

through the mediation of inter-neurons. TaN is the Threshold adaptation neuron, the

neuron devoted to induce Specialization learning.

ronment. Here attention is focussed to the learning aspects related to

the neuron thresholds: this in fact allows specialization. In particular,

the module dedicated to visual target recognition was split in as many

Sensing and Specialization Modules (S&SM) as the targets to reach

(see Fig. 2.2 for details).

Threshold plasticity was applied to induce hyperpolarization or de-

polarization into the visual neurons within each sub-group S&SM, to

make them responsive only to a specific class of targets, as shown in

[58].

28 2 Neural Structures for Cooperation

Following the rules introduced in section 2.1.4, the modified equation

of neuron model, used for TaN, is here reported:

v̇ = 0.04v2 + 5v + 140− u− gAVthresh + Ii

u̇ = a(bv − u)
(2.7)

with the same parameters: a = 0.02, b = −0.1, c = −55, d = 6. The

pre-synaptic input current is now composed of two terms: an adaptation

parameter gAVthresh, that is voltage-dependent [57] and the sensorial

and synaptic inputs Ii. The time unit is ms and gA = 1.

Variations of Vthresh produce neuron facilitation or hyperpolarization

and depend on events happened before the reward-signal activation,

according to the formula:

Vthresh =

Vthresh +∆Vh Rw = 1

Vthresh + 0 otherwise
(2.8)

In particular, each S&SM block contains a series of vision neurons

(Fig.2.2), each one emitting spikes only if a specific colored target is de-

tected in the scene. This block also contains target neurons which spike

only when a specific target is reached by the robot. Target neurons en-

code unconditioned stimuli coming from e.g. contact with the targets.

Threshold adaptation takes place when both target neurons within the

S&SM and a Reward signal are active: in details whenever a particu-

lar target neuron is active, it depolarises the corresponding threshold

adaptation Neuron. When a target is reached, the corresponding target

neuron remains active until the reward signal is given. For each robot,

2.2 The emergence of labor division 29

vision neurons for all the active and visited targets are depolarized,

whereas all the other ones within the other S&SMs are hyperpolarized.

Since the interrelations among members of the swarm are medi-

ated by the reward function without direct-communication among the

robots, the reward signal acts as an external global input for all agents.

In this scenario, a single agent can see only local information and no

global situation. The reward signals acts as a bias on TaN , which, in

this condition, adds a contribution ∆Vh to the threshold Vthresh of all

the vision neurons within the block:

∆Vh =

∆VD for depolarization.

∆VH for hyperpolarization.
(2.9)

with ∆VD = 1.8; ∆VH = −0.6. From this equation it derives that

∆Vh can be positive (for depolarization) or negative (for hyperpolar-

ization). This is a key aspect of the learning procedure which acts

according to the principle of local activation and global inhibition, as

explained in the following.

Although all neurons start with the same value of gaVthresh (= 20),

this value can be modified within two saturation limits: 0 ≤ gaVthresh ≤

22. Moreover, learning can be considered complete when the current

goes below a lower bound here fixed to Iina = gaVthresh = 14. Below

this value the vision neuron does no longer emit spikes, even if the

corresponding target is within the visual field.

30 2 Neural Structures for Cooperation

2.3 Summary

New specialization strategies for the emergence of cooperative be-

haviours and labor division were analized in order to formalize methods

for the realization of multi-robot scenarios. For these purposes, flexible

platforms are needed for the specific scenarios requirements: this will

be the subject of the following chapters.

3

Robotic Programming

The formulation of strategies for the emergence of cooperation

induces the need for a powerful platform to develop and test

experiments in a flexible way. In this chapter a brief introduc-

tion on general principles in robotic programming and robot

control architectures will be given before to introduce the re-

alized software/hardware framework. Related works will be

reported to compare and underline the fundamentals of the

developed system. Moreover, the simulation issues and tech-

niques commonly used for robotic simulated platform will be

discussed. An overview of the available simulators will be con-

ducted to underline adeguate guidelines for the development

of an efficient and powerful Dynamic robotic simulator.

3.1 Introduction

Over the last years, the advances in intelligent agents and robotics have

been incredible, and promising improvements in future scientific appli-

32 3 Robotic Programming

cations, such as the creation of cognitive agents that can make their

own representations, that are able to adapt its behaviours improving

its capabilities. The main target is to create agents that are conscious

of what they are doing, and can adapt robustly to modifying conditions

and requirements deal with new and unexpected situations. Robot per-

ception, world modelling, prediction, attention selection, control and

learning, planning and acting are the main capabilities required in a

cognitive architecture.

Besides the necessary functions for sensing, moving and acting, a

cognitive robot will exhibit the specific capacities enabling it to focus

its attention, to understand the spatial and dynamic structure of its

environment and to interact with it, to exhibit a social behaviour and

communicate with other agents at the appropriate level of abstraction

according to context.

According to these peculiarities the design of the cognitive archi-

tectures needs to identify structures and components in a flexible and

adaptable way; a flexible Robotic System has to show best solutions for

a multitude of problems in a simple manner. The possibility to develop

new behaviours in a rapid and trasparent way, and to furnish a lot of

already ready-made libraries for different algorithms are the backbones

of our general-purpose Robotic Framework.

In general, in robotic programming the common functional schema

can be summarized in Fig. 3.1, where the correlation between real en-

vironment, robot and control algorithms are highlighted. In particular,

a robotic controller receives information from the environment using

3.2 Mobile-robot software/hardware frameworks 33

sensors

actuators

Environment

Control

Algorithm

Robot

Fig. 3.1. Generic Functional Robotic Schema.

robot sensors and, after the selection of an appropriate strategy, the

selected bevahiour is tranduced using actuators to perform specific ac-

tions in the environment.

3.2 Mobile-robot software/hardware frameworks

An overview about already existing robotic simulation environments is

important to identify and discuss different solutions in order to compare

them all together and also in relation with the proposed framework

(deeply described in Chapter 4).

An interesting architecture is the project called Player project [60].

It furnishes a Free Software to carry on research in robot and sensor

systems. Player represents the robot device server providing a robot

device interface and a network transparent robot control as an hardware

abstraction layer. In this way, it is possible to create a controller that is

language and device independent. Among the same project Stage and

Gazebo are the 2D and 3D robotic simulators.

34 3 Robotic Programming

Player provides a simple interface to the robot’s sensors and actua-

tors over the IP network. The client program talks to Player over a TCP

socket, reading data from sensors, writing commands to actuators, and

configuring devices on the fly. This mechanism is present in the pro-

posed framework regarding, for example, the communication between

the algorithms and the simulator, but, in order to decouple and mask

the differences an unique robot-interface is given, making free the algo-

rithm from hardware specifications. Player supports a variety of robot

hardware, at first only the ActivMedia Pioneer 2 family, but now sev-

eral other robots are supported because its modular architecture makes

it easy to add support for new hardware.

Another example of a distributed object-oriented framework is Miro

(Middleware for Robotics)[61]. It was based on CORBA and allows

a rapid development of software on heterogeneous environments and

supports several programming languages. It can be divided into two

inseparable main parts: a set of services to address the several sen-

sors/actuators and a framework of classes that implement design pat-

terns for mobile robot control. In this way, sensors and actuators can

be modeled as objects with specific methods used to control and query

data. Thereby, robots can be viewed as aggregations of them to give

information in an agent-like manner.

Although the view of abstraction is similar to our approach the

main difference is that those objects provide services instead of abstract

interfaces, whereas in the proposed framework robot interfaces give an

useful abstract level to mask hardware or simulated implementations.

3.2 Mobile-robot software/hardware frameworks 35

Besides, the use of CORBA middleware represents the disadvantage

of this solution in terms of memory overhead and processing power,

even if, it allows a rapid development of reliable and safe software on

heterogeneous computer networks.

Another interesting framework recently developed on robot control

architectures is XPERSIF [62]. Like MIRO, it is a component-based and

service-oriented architecture through the CBSE (Component Based

Software Engineering) approach. It uses Ice middleware in the com-

munication layer to provide a component model furnishing an efficient

communications patterns [63]. The use of components allows to divide

system into functional parts, and permits their access through logical

interfaces; for these reason we can classify them in three basic groups

according to their functionality (i.e. basic, organizational and aggre-

gate components). To allow soft real-time requisites, two different type

of communication are provided, in particular, Operations are used for

real-time services to finish quickly, while Commands are used for more

relaxed services and they are implemented as non-blocking Remote Pro-

cedure Calls (RPCs). From this prospective XPERSIF is more similar

to the proposed framework, where there are blocking and non-blocking

commands to satisfy strict requisites; furthermore, a lot of libraries

are supplied in order to collect all functionalities into organizational

components.

Finally, another interesting framework to analyze is ORCA [64].

It is a robotic open-source architecture useful to develop component-

based robotic systems and use them together in order to obtain more

36 3 Robotic Programming

complex systems. These features are provided using common interfaces,

libraries and a repository of existing components. Orca is similar to

XPERSIF system and also our Architecture in the use of interfaces and

libraries providing a simple but powerful component-based structure.

Orca2, that is the Orca most recent version uses, as XPERSIF, the Ice

middleware.

Exploring the existing mobile-robot control architectures, it is clearly

found out that no suitable flexible and modular software implementa-

tion platform for developing mobile robot software is available for our

purposes. It is due to two distinct factors: on one hand the several

environments provided by the vendors suffer from severe limitations

regarding flexibility, scalability, and portability and there is no sup-

port for multi-robot applications; on the other hand the most available

architectures are developed in academic-environment and they are usu-

ally by-products of research developments.

Reviewing the state of the art in mobile-robot control architectures,

it is clearly found out that a suitable software implementation plat-

form for developing mobile robot software is not available up to now.

It is due to two distinct factors: on one hand the different environ-

ments distributed on the market suffer from several limitations regard-

ing flexibility, scalability, and portability, moreover there is no support

for multi-robot applications; on the other hand the other available ar-

chitectures are developed in research project and they can not easily

used or extended for different applications.

3.2 Mobile-robot software/hardware frameworks 37

The main idea, proposed in this work, is to develop a software archi-

tecture based on C++, whose schema is shown in Fig. 3.2. It is com-

posed of modules that interact with others blocks, already developed,

and libraries, with common functionalities useful for robotic control al-

gorithms, in order to identify an adaptive structure for rapid develop-

ment of reusable components, and to create cognitive and bio-inspired

architectures that are able to investigate their behaviour, using classi-

cal approach or proving neural structures based on spiking processing

neural networks.

Although, intense efforts to define a common framework have been

carried out in literature during last years, due to the diversity of robotic

applications, the development of an unique universal framework is up to

now an open issue. On the other hand Modularity and re-usability

have been identified as major features for robotic applications. The for-

mer arises from the need to divide an application in smaller modules,

or better mutually decoupled software units with direct interfaces. The

latter is related to the possibility to decrease the overall development

time, by reassembling and using the components designed in other ap-

plications.

Both concepts are directly interconnected, in fact splitting behav-

iors into modular units can improve reusability and understandability,

making easier the testing and validation phases [65]. Another impor-

tant peculiarity of robotic architectures is the need to real-time inter-

actions with dynamic and unpredictable environments; to satisfy all

requirements the framework design must include real-time control sys-

38 3 Robotic Programming

Fig. 3.2. Block diagram of our proposed Robotic System - The modules related to the

framework and simulator and relative interactions are highlighted.

tems to supervise sensors and actuators, to react to critical situations,

also supporting concurrency. For this reason, usually these systems are

decomposed in hierarchical-modular components to identify a layered

structure in order to reduce complexity using abstraction concept.

A hierarchical structure allows to identify generic interfaces that

are hardware independent, so that the same algorithms can run on

3.2 Mobile-robot software/hardware frameworks 39

different scenarios (several different robots with peculiar hardware ar-

chitectures). These characteristics are fundamentals in our scenarios

where different kinds of robots are implemented.

In particular, two different classes of robots are considered: roving

and hybrid robots.

- Rovers:

Roving robots are commonly used as test-bed to evaluate the per-

formance of cognitive algorithms mainly devoted to navigation con-

trol. Inside this class of platforms we are considering the Pioneer

P3AT, that it is a high-performance, wheeled mobile robot for indoor

and outdoor applications, produced by ActivMedia and software-

compatible with all MobileRobots robots [66]. It can be equipped

with different kinds of sensors, such as sonar, bumpers, a laser

rangefinder, a GPS receiver and a pan-tilt-zoom colour camera.

- Hybrids:

To extend the cognitive capability of a system beyond navigation,

a mechanical structure able to show different basic behaviours is

needed. For this reason a bio-inspired hybrid mini-robot, named

TriBot I [67], has been taken into consideration. It is composed by

three modules, the first two are wheeled-modules, whegs with three-

spoke appendages with a design that improve the stability of the

structure [68]. The last module is composed by two standard legs

with 3 degrees of freedom each connected to the main body through

an other actuated degree of freedom. Thanks to the interoperation

of these modules, the TriBot is able to face with irregular terrains

40 3 Robotic Programming

overcoming potential deadlock situations, to climb high obstacles

compared to its size and to manipulate objects.

TriBot II is the second prototype of the robot TriBot. The major

differences between them lie in the manipulator design and in the

motors used to actuate the whegs. In the two prototypes, two differ-

ent configurations of the manipulator have been used: the first one is

inspired by the hexapod robot Gregor [69], whereas the second one

uses the same leg configuration of the Tarry robot [70] to improve

the working space of the manipulator.

3.3 Dynamic simulation modules

The needs of a reliable simulation environment has became a very crit-

ical factor with the increase of complexity in different algorithms and

the need to develop complex cooperative strategies. After these inves-

tigations, an ‘ad hoc’ Dynamic robotic simulator has been provided

for complicated 3D scenarios, to simulate generic and flexibility tools.

After a brief overview of the simulator, next paragraphs provide an ex-

planation of the methods utilized to create the environment, required

to test specific algorithms.

Several available simulators had been analyzed in order to choose

the best one to furnish a simple but powered instrument to test appli-

cations. A lot of interesting 3D robot simulators are available such as

Gazebo [71] (that is the 3D version of Player/Stage simulators). It pro-

vides a suite of libraries for sensors and models of robots, in a typical

3.3 Dynamic simulation modules 41

Client/Server paradigm. To simulate the dynamic, Gazebo uses ODE

library such as many of these 3D robot simulators to perform accu-

rate simulation of rigid-body physics. It is a multi-robot simulator for

outdoor environments, able to simulate a small population of robots,

equipped with sensors and objects in a three-dimensional world. The

flexibility of the simulator collides with the difficulty to simulate large

groups of robots maintaining high performances. Another interesting

product is USARSim (Unified System for Automation and Robot Sim-

ulation) [72]. It is a high fidelity simulator for urban search and rescue

(USAR) for the investigation of multirobot coordination and human-

robot interaction (HRI). It uses unreal game engine for the dynamics

and visualization and Karma engine for physics simulations. In order

to concentrate forces on robotic relevant issues, the simulator leverages

the strengths of a commercial game engine, delegating rendering as-

pects to it. An important strength of this simulator is the availability

of interfaces compatible with controllers to allow the migration of code

from simulation to real robots and vice versa without modifications.

Another interesting aspect is the chosen policy about the realization of

simulation environment. Virtual arenas are created through AutoCAD

model of real arenas, distinguishing several parts in simulated environ-

ments: geometric models, that are AutoCAD models of the real arenas,

seen as static objects and for this reason immutable and unmovable (for

example floors, walls, etc.); obstacles simulation, or better objects that

can be moved or manipulated. Light simulation, useful to simulate the

light environment in the arena, special effects simulation, to simulate

42 3 Robotic Programming

particular objects such as mirrors or glasses, and victim simulation,

to simulate human victims. About robot models, in the simulator are

already built five different Pioneer robots (P2AT and P2DX, the Per-

sonal Exploration Rover (PER), the Corky and a typical four-wheeled

car), but it is possible to build new ones.

Another example of powered development environment is Webots, a

commercial simulator, produced by Cyberbotics Ltd. [73]. It supports

many kinds of robots, in fact there are a lot of models of commercially

available robots (such us bipeds, wheeled robots and robotic arms), but

it is possible to introduce new ones written in C, C++, Java or third

party software, moreover an environment and robot editor are provided.

Webots is not a robotics software platform, but rather a simulation

engine with prototyping capabilities, and it is the main deficit of it.

Moreover, ARGoS [74] is another interesting 3D discrete-time simu-

lator for multi-robot systems, designed for the Swarmanoid project sim-

ulations. It supports the three different types of robot used in project:

eye-bots, hand-bots and foot-bots, it is entirely written in C++ and

based on the use of free software libraries. ARGoS is a modular archi-

tecture where new sensors, actuators and physic engines can be added.

This is possible thanks to the use of an XML configuration file, in

this way new modules can be automatically included using the XML

file. Another important feature of this architecture is the possibility to

transit between simulated and real robots in a total transparent way.

Finally, XPERSim simulator is the 3D simulator integrated into

XPERSIF framework [75]; it uses Ogre engine (Object-Oriented Graph-

3.3 Dynamic simulation modules 43

ics Rendering Engine 3D) for the rendering of the simulation and ODE

(Open Dynamics Engine) to calculate the dynamics. XPERSim pro-

vides an accurate and realistic physics simulation in a flexible and rea-

sonable computational cost, a lot of sensors and actuators libraries are

provided and it supports multiple simulated camera high frame rates.

In order to improve the latency, given by the distributed nature of the

system, while the client is rendering a scene it will receive the new

information, or better the server does not wait the client request but

sends images continuously. In same way it is possible to realize multi-

ple client connection decoupling the physics and graphics, and for this

reason it was realized a XPERSim Server to calculate dynamics and a

TeleSim view Client to render the new information.

The realization of a robotic simulation environment is convenient

in robotic programming situations where simulated investigations can

reduce development time and provide a rapid and useful platform for

multi-cooperative strategies, such as in our scenarios.

The use of a powerful tool is demanded to finely reproduce the

dynamic contraints among physical bodies interacting within a multi-

body robotic structure in an unstructured environment. For this reason,

ODE results the best trade-off between fidelity and computational per-

formance and thereof it is the most used engine, as discussed before.

As shown in Fig. 3.2, the separation between simulation environment

and control algorithm is one of the main properties of our approach.

The need to maintain transparent linking with real hardware platforms

induces to prefer a Client/Server communication paradigm, in order to

44 3 Robotic Programming

decouple high-level controller with low-level actions. Finally, particular

attention was given to provide versatile mechanisms to introduce and

simulate robots, environments and objects. Like Gazebo, a CAD design

is used to create simulated scenes.

3.4 Summary

General fundamentals about robotic architectures and simulation as-

pects were investigated in this chapter. The classical keywords and

common used techniques were highlighted to outline suitable solutions

for the realization of the software/hardware framework and Dynamic

robotic simulator here introduced. However, a deep description with all

details about implementation will be provide in the following chapters

(Chap. 4, 5 and 6).

4

RS4CS: the robotic framework

The realization of a software/hardware framework for coop-

erative and bio-inspire cognitive architectures was one of the

focuses of this work. In this chapter a complete description of

the system, named RealSim for Cognitive Systems (RS4CS),

will be introduced in order to show potentialities and capabil-

ities. Moreover, the design choices and implementation issues

related to the proposed robotic programming environment

will be here addressed.

4.1 RS4CS: a sw/hw framework for Cognitive

architectures

The essential prerequisites of the framework were the evaluation of the

capabilities of bio-inspired control systems and the possibility to use

the same platform for the implementation of cooperative strategies.

For such purposes, during the design of the RS4CS framework spe-

cial attention was paid to the modular structure, supposed as impor-

46 4 RS4CS: the robotic framework

tant characteristic for a flexible and powerful tool. The main advantage

introduced by the proposed architecture consists in the rapid develop-

ment of applications, that can be easily tested on different robotic

platforms either real or simulated, because the differences are prop-

erly masked by the architecture. In fact, the developed architecture

can be easily interfaced with both dynamic simulation environments

and robotic platforms by using a communication interface layer in a

client-server based topology.

In order to develop an useful and suitable architecture, the proposed

framework is flexible and robust and presents a structure adapt to de-

couple simulations from control algorithms. The functional separation

helps to isolate the application itself from graphic interfaces and the

underlying hardware.

The main aim was to develop an extensible and general purpose

architecture, and for this reason in the following section an overview

of the designed architecture will be given splitting it into its main

parts, and giving some examples of several applications developed on

different kinds of robots, in particular, rover and hybrid, to highlight

the potentiality of this approach.

In a modular architecture the mechanisms used by each module to

access to the shared computational resources are extremely important

together with the communication rules. Modularity and functional sep-

aration, together with reusability and robustness, are the most basic

software design principles that can be ensured in software applications.

The aim of modularity is to encapsulate all the physical and logical

4.1 RS4CS: a sw/hw framework for Cognitive architectures 47

characteristics of the main entities to decouple specific implementa-

tions, defining a set of access functions. For this reason, it is possible

to divide our structure in specific parts, in order to decouple its func-

tionalities.

The architecture can be structured as reported in Fig. 4.1 where five

main elements have been identified:

Fig. 4.1. RS4CS - Overview of the interactions between components in the software

framework.

The Graphical User Interface (GUI) provides tools to display real-

time data while allowing the user to control robot and execute algo-

rithms. It is directly connected to the Algorithm module in order to

obtain data to show and to convey external commands during execu-

48 4 RS4CS: the robotic framework

tions. Interconnected with the Algorithm module there are other two

important parts of the architecture, the Algorithm libraries, useful to

obtain specific and peculiar functionalities related to Algorithm imple-

mentations and the Log Handler dedicated to log fundamental infor-

mation to create historical traces. Finally, Robot Hierarchy part gives

an abstract view of robots, decoupled from specific implementations.

As shown in Fig. 4.1, the framework can be interfaced with differ-

ent kinds of robotic platforms, both robot prototypes mediating the

sensory-motor loop and also kinematic or dynamic simulated environ-

ment.

4.1.1 Algorithm Libraries

Fig. 4.2. Algorithms Library main components.

This module is dedicated to collect all common and useful functions,

in order to provide proper libraries including typical structures that are

commonly present in our control algorithms.

4.1 RS4CS: a sw/hw framework for Cognitive architectures 49

It is very important for re-usability concept, the possibility to reuse

implemented structures like Neural Networks in different ways and in

different applications. Moreover, to maintain a certain degree of flexi-

bility a schema of functional blocks have been considered as shown in

Fig.4.2:

• Generic Libraries

- CameraLib and OpenCv Lib

provide a complete set of specific routines for the vision system. A

camera is a complex object, so the easiest way of handling it is via

libraries, which contain functions to return or set attributes or

to return image values. Encapsulating the specific device man-

agement in a proper class, it is possible to avoid the need of

modifying old code when installing a new camera.

– GeometryLib

this library provides a generic implementation of geometry func-

tions. It contains, for example, the definitions of point and force

concepts, the implementation of point-to-point distance, point-

to-line distance, and it also contains transformation functions to

convert measurement units.

• Algorithm-Oriented Libraries and InsectBrainBlocks

are the libraries which contains the implementation of the principal

basic elements used for the development of the Insect Brain compu-

tational model [76] [77].

50 4 RS4CS: the robotic framework

i Standard Algorithms

here, there are libraries which contain typical functions used in

traditional algorithms.

ii Neural-based Algorithms

- Neuron represents the implementation of the basic block

used to model biological neuron dynamic; using this elemen-

tary building block is possible to create networks of spiking

neurons.

- Navigation Network

is an implementation of a neural Network based on Spike Tim-

ing Dependent Plasticity (STDP) approach [48].

- Behaviors selection Network

implements a Neural Network used to choose the basic behav-

ior that the robot can use when a particular landmark has

been identified. Landmarks are distinguished on the basis of

color and shape information coming from camera.

- Target Approach Network

implements a neural network based on the STDP approach

[48] and using neuron definitions present in the previous li-

braries. In particular, the network is divided in two parts: the

first one is used to avoid obstacles, has major priority and uses

distance and contact sensors as input, while the second one al-

lows robot to approach target objects using vision information

and target sensors as input.

4.1 RS4CS: a sw/hw framework for Cognitive architectures 51

4.1.2 Algorithms

This module can be considered as the core of the Architecture, since it

contains all instruments for implementing an algorithm.

The Algorithm superclass1 can be seen as a wrapper class to provide

a simple and rapid implementation of specific algorithms. In particular,

it is important to underline that an algorithm is implemented as a

thread repeated periodically to perform peculiar actions in each step,

as shown in Fig. 4.3.

Fig. 4.3. Algorithm core

1 A superclass is seen as a base class: a generic class from which other classes, called

subclasses, are derived. Moreover, it establishes a common interface and allows the

extending classes to inherit its attributes and methods.

52 4 RS4CS: the robotic framework

In fact, the difference between algorithms is only in various actions

encapsulated in the AlgoStep() function; for this reason, the superclass

includes all of thread utilities functions such as thread management,

with function to start, stop or resume threads. All implementations

extend it in order to perform own specific actions.

Fig. 4.4. AlgoStep() State Machine.

In other words, this class is mainly a convenience wrapper around

Thread concept, so that it can easily create an own algorithm that

encapsulates the concept of a thread, providing a number of supports

to make it easier to write object-oriented threaded codes. An overview

of what it is inserted and implemented in the framework up to know is

shown in Fig. 4.5, even if this list is continuously evolving.

• Standard Algorithms

- Potential Field and Potential Speed

contains respectively the implementation of a classical Potential

Field and Speed Algorithm; the latest differs from the previous

4.1 RS4CS: a sw/hw framework for Cognitive architectures 53

Fig. 4.5. lgorithms Overview.

one, since it evaluates the speed instead of the position of the

robot, using the potential field algorithm.

• Neural-based Algorithms

- STDP Navigation Algoritm

implements a correlation-based navigation schema, based on

Spike Timing Dependent Plasticity (STDP) paradigm. It is a

simple algorithm which, using the neural network implemented

in STDPNet library, allows a robot to approach or avoid objects.

- STDP Navigation Algorithm with Visual Features

contains the implementation of an algorithm to reach a specific

target. To perform safe navigation the algorithm gives major pri-

ority to the network sub-part dedicated to the obstacle avoidance,

using the camera information to explore the environment in order

to identify a landmark.

- STDP Behaviors selection Algorithm

implements an algorithm that uses sensors information to im-

54 4 RS4CS: the robotic framework

plement STDP step and a camera to obtain vision information

about environment. In particular, it uses the previous algorithm

to approach objects. When the robot is in front of a particular

one it utilizes the camera to analyze the scene and identify the

landmark. Then a specific behavior (i.e. take, climb, avoid), will

be selected. For this reason this algorithm extends the previous

Algorithms using robot basic behaviours and providing new ones.

- Domain Protection Algorithm

provides an algorithm to reach a target, considered as food to

defend. For this reason, once the robot has taken possession of

the place where is the food, it tries to defend it controlling con-

tinuously its domain by camera information, and if it intercepts

an intruder it tries to push it out.

• Insect Brain Algorithms

contains all experiments predicted to test and validate Insect Brain

computational model [76]. In particular, since flies are able to extract

visual clues from objects like color, center of gravity position and

others that can be used to learn to associate a meaning to specific

features (a reward or a punishment).

- Visual Learning

simulates how the fly treats visual inputs and learn through clas-

sical and operant conditioning the proper behaviour depending

of the object visual clues [78, 79].

- Decision Making

wants to validate the process that has been trained to avoid ob-

4.1 RS4CS: a sw/hw framework for Cognitive architectures 55

jects with specific visual features; in presence of a conflict the fly

have to decide which features are the most relevant to make a

choice. The Decision Making strategies is guided by a prewired

hierarchical categorization of the features that, for instance, leads

the fly to give more importance to color with respect to shape

[80].

- Extended Detour Paradigm

is used to show that Drosophila possesses a short-term spatial

memory; flies can remember the position of an object for several

seconds after it has been removed from their environment. The

detour consists into temporarily attract the fly away from the

direction towards the chosen target, putting a distractor in the

arena for a few seconds while the target is switched off. When

the distractor is eliminated, the fly is able to aim for the former

target [81].

- Odor Learning

implements an odor learning in a classical conditioning experi-

ment [82].

4.1.3 Robot Hierarchy

In this section the design and implementation of the Robot hierarchy

will be described. It results as a collection of classes dedicated to decou-

ple the specific robot implementations. Using the advantages of object

technology, the Robot class is implemented as an abstract class, which

56 4 RS4CS: the robotic framework

is not determined for making instances of this class but for the next

inheritance of members representing individual robot types.

Fig. 4.6. Hierarchy of classes involved in the implementation process. Pioneer and TriBot

device interfaces are unfolded to their related specific classes for illustrative purposes.

Boxes are classes and arrows imply inheritance relations. ARobot Class is the generic

robot interface, it is the super-class for the specific robot classes (i.e. Pioneer & TriBot).

Instead, these latter classes properly mask, if necessary, the differences among hardware

robotic devices and simulated skeletons (i.e.TriBot Protocol vs. Skeleton Simulator).

These classes are organized in a three-level hierarchy in order to

exploit C++ modularity and inheritance, as shown in Fig. 4.6. The

superclass implements the generic abstract robot interface (layer 1) to

supply generic interface with software environment, in the second part

we can see the specific device interfaces classes (layer 2) to decouple

algorithms from interfacing with hardware (real robot) or simulator

(simulated robot) (layer 3). The interfaces provide functions to mod-

4.1 RS4CS: a sw/hw framework for Cognitive architectures 57

ify attributes and to retrieve their values, but they also provide all

functions useful to perform specific functionalities, such as acquiring

information from sensors or executing actions.

• Pioneer It represents the implementations of a class useful to in-

teract with Pioneer’s specific library (i.e. ARIA development tools

[83]). It supplies all functions to allocate a robot instance and runs

indifferently on the real robot or in the simulation [66]. In this case,

the library (ARIA) provides to emulate the behavior of the Pio-

neer robot in the simulation environment. It also includes interfaces

to emulate the sensory system including sonar distance and laser

sensors.

• TriBot It represents the robot class adapted for TriBot bio-inspired

robot. It interacts with the lower level of robot hierarchy and pro-

vides independent routines to interlock TriBot Protocol, used to

support communications with the real robot, and with Skeleton2,

used to interact with the Dynamic Robotic Simulator.

The separation from the low level hardware is more complicated and for

this reason it needs to develop a device driver for each external device

used, in particular it is obvious how a specific robot class, present in

the second layer of the hierarchy, uses hardware or simulated interfaces

to mask low level communications.

2 A Skeleton is a server side interface analog to the robot device interfaces, used to

correctly invoke request to simulated robot

58 4 RS4CS: the robotic framework

4.1.4 Graphical User Interface (GUI)

Graphical interfaces allow users to interact with the algorithms using

specific input commands and showing information and results through

the manipulation of graphical elements.

In order to decouple the two mechanisms, the Command pattern

was applied and both commands and graphical elements are seen as

specific exchanging objects.

Fig. 4.7. Command pattern structure.

The classical structure of the pattern is shown in Fig. 4.7, whereas

the message passing mechanism applied for our purposes, is shown in

Fig.4.8.

In particular, once received the command, the GUI creates the corre-

spondent object command for Algorithm; which will consume it, setting

the internal state machine.

4.1 RS4CS: a sw/hw framework for Cognitive architectures 59

Fig. 4.8. Communication between Algorithms and Graphical Interfaces: GUI sends an

object (SendComman(Object ˆ)) which contains all the parameters related to the specific

command request. The Algorithm receives and parses the command (ReceiveCommand()),

setting the State Machine in order to satisfy the request.

As regards Graphical Updates, a mechanism to guarantee the decou-

pling between the execution of the algorithms and graphical refreshes

is needed; for this reason a Producer/Consumer mechanism is used

(see Fig.4.9). During the algorithm execution all data are collected and

Fig. 4.9. Producer/Consumer Mechanism. In particular, the relationship between

Producer-Consumer and Queue is depicted in figure.

sent to the common queue; where GUI periodically takes-off the upper

60 4 RS4CS: the robotic framework

object in order to update output graphical information. This commu-

nication mechanism is shown in Fig.4.10.

Fig. 4.10. Objects Queue for Graphical Updates. During the running of the algorithm

steps, all the output data are collected in specific formats (ProduceResult(Object ˆ));

after that the output object is picked up by the GUI (ConsumeResult(Object ˆ)) and the

information used to update the visual output interface.

Pratical guidelines for the framework tool are provided in Appendix

B [par. 10.1, 10.2].

4.2 Summary

In this chapter the realization of a flexible software/hardware frame-

work, useful to develop cooperative and bio-inspired architectures, has

been described.

Thanks to the use of a modular approach, the proposed framework

results robust, expansible and general-purpose for a rapid development

of reusable applications.

4.2 Summary 61

The use of generic libraries and common interfaces ensures complete

independence from hardware or simulated resources. The framework,

in fact, transparently uses, as a final actor, either robots (wheeled,

legged or hybrid) simulated in a detailed Dynamical Simulator (in-

cluded within the simulation environment and discussed in chapter 6),

or real robots roving on a real environment.

5

LiN2: the Network library

A description of the library, developed with the aim to fur-

nish a software instrument for the design and simulation of

neural networks, will be introduced in this chapter. The soft-

ware structure and the implementation issues will be argued

in order to present the final choices. The extreme flexibility

of the module guarantees the feasibility to model arbitrary

spiking neural networks.

5.1 LiN2 - a Library for Neural Networks

LiN2(Library for Neural Networks) is an object-oriented library, useful

to design and simulate biologically inspired neural networks, computa-

tionally challenging, as discussed in Chapter 2. It is written in C++

as software module for the Sw/Hw framework (see Chapter 4 for more

details), even if it results a flexible and powerful self contained tool.

All the requirements and goals for the library design will be following

64 5 LiN2: the Network library

discussed, together to the technical specifications and implementative

solutions.

5.2 Library Specifications

Among desirable features provided by the library, the possibility to sup-

port any different network topologies, to deal with any model of neuron

or synapse, and to permit the simulation of recurrent topologies seems

to be the most important ones. In addition, the support for multiple

network topologies/neuron models allows to change the actual network

structure/neuron model, even at run-time thanks to the abstraction

from the network actual type. The separation between network con-

struction from its representation and algorithms (e.g. learning) from

its internal representation (Bridge Approach1) guarantees flexibility,

reusability and the prevention from manipulating the network internal

mechanism. Moreover, the specific functional cohesion together with a

low coupling between classes assure a good usability. Finally, a properly

logging system and a powerful Builder factory2 system are provided

into the library to permit a rapid, flexible and traceable design and

simulation of the networks.

1 The Bridge pattern is used to decouple the abstract concept from its implementation

details, in order to change independently and to defer the concrete implementation.
2 The Builder pattern is used to decouple the abstraction of construction procedures from

the specific implementations of these mechanisms, which can build different representa-

tions of structures. Often, the builder pattern is used in conjunction with the composite

pattern.

5.2 Library Specifications 65

There exist many different network topologies [84], which differing

for how neurons are connected together. The feed-forward networks

are an example of simple topologies: the absence of current loops are

their main characteristic. Usually they are structured into sequentially-

arranged layers with a certain number of neurons, which receive current

from the neurons of the layer i− 1, and send current to the neurons of

the layer i+ 1.

More complex network class are the recurrent topologies, where typi-

cally current loops attend and neurons can be connected with any other

neurons located in any layers.

The simulation logic for these networks is evident different from the

previous one, in fact for the former just need to propagate current

through the network layers whereas, for the latter, the output of the

network at a step i depends on both the current the network is receiving

and its previous state, that is, the network state at the step i− 1.

For this kind of networks is difficult to establish the dynamics (e.g.

neuron evaluation and currents propagation); a mechanism to imple-

ment a consistently evaluation order is needed.

The Network class is realized to represent the generic network, pro-

viding methods to set the network input currents, performing action in

a simulation step, to read the network state (seen as a set containing

the state of each network component) and, finally, to manipulate the

network itself. It delegates all of his behaviour to a inner NetworkImp

object, that defines the basic type for all concrete network implemen-

tations and has to be subclassed (see Fig. 5.1).

66 5 LiN2: the Network library

Fig. 5.1. Separation between network interface and implementation.

LiN2 comes with a NetworkImp concrete subclass, LayeredNetwork,

which is suitable to represent both feed-forward and recurrent networks

since, in general, networks are made of interconnected layers. Decou-

pling the network interface from all of its possible implementation also

makes LiN2 meet with the specific requirement to allow the description

of algorithms referring only to the Network interface and can be reused

regardless of the network topology.

Decoupling the network interface from its implementations brings

one more benefit: firstly, it allows programmers not to deal with the

network internal representation and, moreover, it prevents them from

manipulating directly the network components, avoiding potential in-

terferences that could lead to potential inconsistencies during the sim-

ulation.

5.2.1 Network Components Description

In order to insure the important requirement to permit change in struc-

ture and components (i.e. neurons and synapses), LiN2 provides such a

separation by means of a bridged approach [85], as shown in Fig. 5.3.

In regards to neurons: the neuron interface is decoupled from its

implementation, as shown in Fig. 5.2. In this way, to change the model

5.2 Library Specifications 67

Fig. 5.2. Separation between neuron interface and its implementation. Neuron models

are encapsulated into concrete subclasses of NeuronModel such as, for example, Izhike-

vichModel.

to use, it is enough to configure all Neuron with a different imple-

mentation of NeuronModel. The specific implementation of neuron is

simply assigned by inheritance, for example in Fig. 5.2 IzhikevichModel

class represents the built-in implementation of the Izhikevich model

neuron. Details about the relative neuron implementation are given in

Appendix B par. 10.3.

Concerning the synapses, instead, a composite3[86] and a decora-

tor 4[87] patterns has been followed to assure decoupling between inter-

face and implementation, refers Fig. 5.3 for details:

3 The Composite pattern is used to build objects as a composition of several elements. It

is useful to manage complex composite objects in a simple way.
4 The Decorator Pattern is used to dynamically add behaviours to an already existing

structure. It is often used with Composite and generally, in this case, decorator has to

support the Component interface with operations like Add, Remove, and so on... .

68 5 LiN2: the Network library

Fig. 5.3. Bridge approach: separation between synapse interface and its behaviours. The

used scheme allows to obtain complex synapse behaviours by means of the composition

of multiple basic behaviours: for example, the ProportionalBehaviour, which makes the

synapse propagate the current in input multiplying it by a weight can be combined with

a NotTrainableSynapse behaviour: if so, the resulting synapse will be immune to any

learning algorithm, that is, the algorithm won’t be able to edit its weight.

5.2.2 Networks Builder

The description, design and internal representation of networks are

relatively complex processes, since it requires to know the number and

model of the neurons involved, to determine all synapses, specifing their

behaviour parameters. For these reasons it would appear a quite time-

consuming task, and a builder object can permit to abstract users from

the network internal representation, store components configurations

and create many components with a single invocation. This has led to

the creation of a Builder mechanism for LiN2; where NetworkBuilder

class represents the generic formalization of the system. It has been

made extensible to obtain a hierarchy of concrete builder, which cares

5.2 Library Specifications 69

about the selection of the concrete classes to instantiate: an example

of Builder hierarchy is shown in Fig. 5.4.

Fig. 5.4. LiN2 extensible hierarchy of network builders.

An example of the LayeredNetworkBuilder interface is provided in

Appendix B [Listing. 10.2].

As said above, LiN2 contains a subclass of NetworkImp, devoted to

create layered networks: LayeredNetwork, thereby along with this class,

a LayeredNetworkBuilder is provided in the Builder system. This class

is able to represent both layered feed-forward networks, but also recur-

rent networks where current loops occur only among neurons belonging

to the same layer, as shown in Fig. 5.5.

One of the main purpose of this scheme is to provide a mechanism

to determine the layers evaluation order and establish the correct prop-

agation of current flows inside the network.

70 5 LiN2: the Network library

Fig. 5.5. An example of recurrent networks. The current loops involve between neurons

located in the same layer.

To explain the mechanism used to evaluate the current propagation

order let us consider, for convenience, the Izhikevich neuron model and

let be:

i a generic simulation step

Si ≡ {ui; vi} the state of a neuron at the i-th step

Ifi be the current the neuron receives from external inputs and feed-

forward synapses at the i-th step

Iri−1 be the current the neuron receives from recurrent synapses at the

i-th step

The successive state Si+1 can be evaluated as:

Si+1 = f(Si; I
f
i + Iri−1)

Such a relation is nothing more than the system of differential equations

of the Izhikevich model.

At the end of the network construction, when it is complete and the

Builder::End() method is invoked, the builder inspects the network,

looks at how synapses connect neurons, then determines the order in

which neurons output have to evaluated and propagated to keep the

simulation consistent.

5.2 Library Specifications 71

For every network, a layer dependency graph is generated, in which

each node represents a layer; if there is a connection between two neu-

rons belonging to two different layers, the correspondent nodes are

connected by a direct edge. An example of graph is shown in Fig. 5.6

Fig. 5.6. An example of layer dependency graph. Nodes represents layers of the network,

whereas edges indicate connections among neurons located in the corrispondent layers.

To determine the simulation order, the following rules are adopted:

g // dependency graph

s = [] // l i s t o f nodes

while g i s not empty :

for each n in g | n has no inward connect i ons :

s . append (n)

g . remove (n)

The sequence diagram for the simple network shown in Fig. 5.5 is

illustrated in Fig. 5.7:

It is possible to use two different approaches to build a network:

• provide an XML description of the network (see Appendix B par.

10.5.1 for details).

72 5 LiN2: the Network library

Fig. 5.7. Sequence diagram.

• use the construction directives of the builder itself (Appendix B par.

10.5.2).

5.2.3 Log4LiN: the Logging System for LiN2

Most of the times, it can be useful to trace the evolution of the network

components internal dynamics, e.g. the membrane potential of each

neu- ron. In order to provide a simple logging system, the Logger class

is included in the library to encapsulate the logic of the mechanism: the

specific class diagram is shown in Fig. 5.8. Log4LiN contains support for

different output channels and for loggers hierarchies, which is useful to

establish different level and priority for the logging messages. Invoking

the Log() method on an instance of such a class is possible to log a

message.

Fig. 5.8 clearly shows how logger does not directly manipulate out-

put channels but it need one or more subclass of Appender, each wrap-

5.2 Library Specifications 73

Fig. 5.8. Log4LiN: Logging System Class Diagram.

ping a specific channel (e.g. std out, socket or file). The mechanism used

for the module interface is based on macros to permit a very simple

and powerful use avoiding to deal with types.

The following macros are used to add an Appender to the Logger:✞
1 // add a FileAppender to the s p e c i f i e d l o g g e r

2 LOG SET FILE(logger , f i l ename) ;

3

4 // add a StdOutputAppender to the s p e c i f i e d l o g g e r

5 LOG SET STDOUT(l ogg e r) ;✡✝ ✆
Listing 5.1. Adding appenders

A detailed guide to build a Logger is provided in Appendix B [par.

10.6].

5.2.4 The clock

To beat the clock time during simulations, LiN2 implements a globally-

accessible Clock: to provide global timing (see Fig. 5.9). It must be con-

figured depending on the duration of a single integration step and the

74 5 LiN2: the Network library

Inc() method is invoked at every simulation step. The Reset() method

is used to reset the clock, whereas the Now() can be used to obtain the

current simulation step. Finally, the SetDeT() and DeT() methods can

be used to set and get the duration of a single simulation step.

Fig. 5.9. LiN2 clock.

5.2.5 Algorithms

LiN2 provides an abstract view for the concept of the algorithms applied

on the networks. Using the class Algorithm (Fig. 5.10) it is possible to

create subclasses to assign new algorithms (i.e. learning techniques,

evolution strategies); it is easily feasible since Algorithm contains only

a protected Network * attribute and a Run() method.

Fig. 5.10. LiN2 Algorithm Class.

For our purpose, a classical version of the STDP algorithm was en-

capsulated into a subclass of the Algorithm (see Fig. 5.10). It provides a

5.3 LiN2 Portability 75

concrete implementation of the learning method to support adaptation

and evolution changes (e.g. weight-update rules). The built-in imple-

mentation of the STDP [48] algorithm, provided with LiN2, is shown

in Appendix B [par. 10.7.], together with a complete UML class dia-

gram with all the base classes, derived classes, associations, attributes

and operations included. The separation between abstract and concrete

classes is also highlighted.

5.3 LiN2 Portability

Among the peculiarities of the proposed framework, the portability of

the LiN2 library assumes a fundamental role. In fact, it was success-

fully ported to a completely different simulation environment, called

ARGoS [74], properly designed at IRIDIA laboratory5 as a modular

and pluggable simulator for solving swarm multirobot applications.

Moreover, together with the porting, it was also possible to refor-

mulate the task partitioning problem into our bottom up approach to

cooperation based on threshold adaptation and role specialization in

spiking neural networks. Details are reported in Appendix D and com-

parisons among the two approaches are currently under investigation.

As widely discussed in chapter 5, LiN2 was born with the purpose to

furnish an efficient and robust tool for the development of bio-inspired

neural networks. It results extremely self-contained, because during the

5 IRIDIA - Institut de Recherches Interdisciplinaires et de Développements en Intelli-

gence Artificielle in Brussels.

76 5 LiN2: the Network library

design particular attention was given to features such as modularity,

decoupling, portability and flexibility.

For this reason, the porting of LiN2 in ARGoS [74] was facilitated

since ARGoS results a modular architecture. The performance (in

terms of simulation time), shown by the LiN2 library in ARGoS context,

was exactly the same of the performance in our RS4CS framework.

5.4 Summary

In this chapter the description of the LiN2 library was discussed and for-

mal diagram representations were provided using the Unified Modeling

Language (UML) to give descriptions of software models and justify the

implementation choices. In particular, the whole process is carried out

with the aim to furnish a software tool useful for the design and simu-

lation of neural networks. Following a top-down approach and trying to

maintain disjointed interfaces with implementation, the final product

represents a good and comprehensive instrument for neural networks

simulations. The extreme flexibility and portability of the LiN2 library

were widely demonstrated through the porting in ARGoS simulator

environment.

6

3D Dynamic Robotic Simulator

In order to validate the functionality of our algorithms, al-

lowing the development of cooperative strategies a simulation

environment was needed. Starting from investigations about

the simulation issues and robotic supports, an ‘ad hoc’ Dy-

namic robotic simulator has been provided for complicated

3D scenarios, to simulate generic and flexibility tools. This

chapter provides an explanation of the methods utilized to

create the environment, required to test specific cooperative

algorithms.

6.1 The robotic simulation platform

In general robotics research involves a simulation part and typical sim-

ulations denote very simplified environments, often 2D environments.

Dynamic Robotic Simulator aim is to create a tool for high performance

3D simulations of autonomous mobile robots. Another important intent

is to create a simulation tool to allow the investigation and development

78 6 3D Dynamic Robotic Simulator

Fig. 6.1. Internal Model - The simulator can be seen as a ‘copy’ of the internal state of

the robot; recovery solutions can be found via simulated trials.

of bio-inspired behaviors in robotic scenarios. For this reason, the tool

is designed to recreate a complete replica of the real environment and

situations in which robots can be found, in order to learn how achieve

their goals. The simulator is developed in particular contexts where

dynamism, performance and accuracy are necessary prerequisites.

In particular, the novelty of this approach lies in the representa-

tion of internal model, or better the imitation of the interior state of

the robot and the perception of the sorrounding environment recon-

structed through sensory feedback. This representation can be used,

for example, to resolve deadlock situations in order to preserve the

system from waste of resources and reduce energy consumption. The

simulator becomes the instruments to learn new skills, to test capacity

and performance of the robot to investigate preliminary study of new

6.2 Technical Description 79

behaviors, in order to develop cognitive strategies. These characteris-

tics, on the other hand, take inspiration from experience of everyday

life, in a biologically plausible way. For example, we often think the

better way to do a task, before to perform it in a new environment or

situation, according to own experiences. An overview of these possible

interactions is shown in Fig. 6.1.

6.2 Technical Description

Starting from this key idea the simulator represents a platform where

cognitive bio-inspired structures can be simulated. The simulator is

written in C++ and results multiplatform (Windows & Linux sup-

ported); it uses Open Dynamics Engine (ODE) as physics engine to sim-

ulate dynamics and collision detection and Open Scene Graph (OSG)

as high performance 3D rendering engine.

Giving a brief description of the used tools:

• ODE: is an open source library useful to simulate phisical entities

dynamics with high performances in virtual reality environments. It

contains a lot of different rigid body and joint types and an inte-

grated collision detection with friction.

• OSG: is an open source high performance 3D graphics toolkit for

simulating virtual reality and modelling. It is multiplatform, written

in Standard C++ using OpenGL APIs.

The main novelty of the proposed simulator consists in the extreme

extensibility to introduce models. In fact, to import robot models in

80 6 3D Dynamic Robotic Simulator

the simulator, it was developed a procedure: starting from models re-

alized with 3D computer graphics softwares (such as 3D studio MAX,

Maya, Blender, etc.), a COLLADA (COLLAborative Design Activity)

description of the model is obtained using NVIDIA Physics Plugin.

This description is properly transport in the simulated environment.

In this way, it is guaranteed the possibility to simulate own environ-

ments and robots in a faithful way. In the Appendix C, a pratical

description about the procedures to introduce new robots (par. 11.1)

and environments (par. 11.2) is given.

Moreover, the Client/Server paradigm and the possibility to estab-

lish the graphical model granularity permits the decoupling of simula-

tion capabilities from robot’s controllers, so another advantage of this

structure is the ability to simulate a large number of robots with very

slight losses in performance. Thanks to a Client/Server communication

model it results very flexible and so it is perfectly interfaced with the

architecture showed before (RS4CS, chap. 4).

The simulator provides a simulated control connection accessible via

a TCP port, that is similar to the real robot’s serial port connection,

making transparent the interconnection to simulator or to real robot.

Its flexibility is interconnected with the possibility to customize the

simulation environment and simulated objects using a configuration

file.

6.3 Implementation Details 81

Fig. 6.2. UML Class Diagram for the Dynamic Simulator.

6.3 Implementation Details

An overview of the main important classes in the Simulator structure

is shown in Fig. 6.2 where it is possible to identify:

• Simulator - Main Class : contains several functions to parse the

configuration file, to start/stop and manage the simulation. It con-

trols all objects during the run.

• Simulable - Base Class : represents the base implementation of a

generic simulable object. It manages the physical and visual models

with different ad-hoc functions. From this class, using the inheri-

tance, a profusion of objects can be implemented.

• World - Model Class : represents the environment where a simula-

tion takes place. It contains static objects: an obstacle, a wall or the

arena itself are some examples of static objects.

• Simobject - Model Class : represents the implementation of a

generic dynamic object. Manipulable objects such as balls, boxes,

bottles are some examples of Simobjects.

82 6 3D Dynamic Robotic Simulator

• Robot - Model Class : represents the implementation of a generic

robot. It can contain more sensors and actuators.

6.3.1 Configuration File

As said above, a file in XML format (simfile.sim.xml) is used to set

several parameters for the simulation.

The simulator includes a built-in parser based on TinyXML Library

and a lot of tags are furnished to describe all setting parameters.

An example and description of a simple configuration file is reported

in the Appendix C par. 11.3.

6.3.2 Communication model

As introduced in section 6.2 a Client/Server paradigm was used to

implement the communication model; thanks to this mechanism it is

possible to decouple the computational work of the control structures

with the simulation itself.

The simulator contains the Server and cares the simulation runnig,

whereas the simulated robot can be considered as a stub which receives

and executes commands of the control architecture in the simulated

environment. In this way simulator and control architecture can be

located in distinct machines; since the command-based communication

is based on TCP/IP and UDP/IP protocols.

The former protocol is used for the trasmission of camera images,

since it is a stream-oriented and so a connection-based communication

is established to assure the correct transfer of the images.

6.3 Implementation Details 83

(a)

Fig. 6.3. UML Class Diagram Server-side architecture.

The latter is used for the simulation and robot remote control;

a packet-oriented communication is enough for send simulation com-

mands or for directly control remote robots.

An overview of the classes devoted to the connection mechanism

Server-side is shown in Fig. 6.3.

6.3.3 Logging System

In order to give an exhaustive collection of useful tools for performance

analysis and optimization, a Tracing Mechanism has been established

in the Simulator, to help in the debugging phase, to collect data and

traces paths during simulation execution, giving a mechanism to log

critical information.

The flexibility of the simulator’s classes structure gives the opportunity

to obtain TraceFiles about each of the simulation variables, setting the

84 6 3D Dynamic Robotic Simulator

configuration XML-file in an appropriate way. These files are created

by a Tracer and a module (TraceEngine) that handles file tracing of

specified variables. Up to now it is possible to have only one instance of

a TraceEngine, and so, only one TraceFile during a simulation. During

the Parsing phase, when the configuration file is analyzed, the different

Traces are registered on TraceEngine module, and during the simula-

tion, this module will collect desired variables step by step. The Tracers

already implemented in this version of the simulator are:

• RigidBodyPositionTracer to trace the position of a physical

body in the model, in terms of absolute position respect geomet-

rical center.

• RigidBodyRotationTracer to trace the position of a rigid body,

in terms of Eulero’s angles in according to Yaw-Pitch-Roll conven-

tion.

• MotorTracer to log parameters of a motor used in the models

of the robot. The variables traced are: position, velocity, supplied

couple.

• SensorTracer to log sensors’ parameters. On the basis of the sensor

the variable traced assumes different meanings.

Using programs such as Matlab or GNUPlot it is possible to obtain

interesting plots manipulating these files, in order to monitoring and

analyzing relevant information about simulation results. The following

figures show an example of robot navigation in the simulator, plotting

some interesting information about the path.

6.3 Implementation Details 85

(a)

Fig. 6.4. Example of the TriBot robot navigation in the simulator. (a) the TriBot robot

model, in which are highlighted simulated sensors respectively, distance sensors: SDLA

(Sensor Distance Left Arm), SDLH (Sensor Distance Left Hand), SDRA (Sensor Dis-

tance Right Arm), SDRH (Sensor Distance Left Hand) and contact sensors: SCLA (Sen-

sor Contact Left Arm), SCLH (Sensor Contact Left Hand), SCRA (Sensor Contact Right

Arm), SCRH (Sensor Contact Right Hand). (b) Navigation path done by the robot in

the simulation environment, where three interesting situations occurred during the path

followed are underlined. (c) A - The robot tries to climb an obstacle in front of it, B - The

robot, arrives near the wall and tries to avoid it, C - The robot takes an object, found in

the environment.

In the Fig.7.12, an example of the visual output of the simulator is

provided, referring to the TriBot robot (Fig.7.12(a)) and its navigation

trail underlined in the virtual arena (Fig.7.12(b)) are showed, highlight-

ing three particular positions during the path (Fig.7.12(c)), in order to

analyze output traces files.

86 6 3D Dynamic Robotic Simulator

Fig. 6.5. Simulation results obtained for the experiment reported in Fig. 7.12. (a) trend

of the position of the anterior module of the robot in the 3D environment obtained during

the simulation (b) Angle position and speed evolution of the anterior left wheel motor.

In the Fig. 6.5 e Fig. 6.6, the first figure (Fig. 6.5(a)) shows position

parameters (x, y, z coordinates) of the robot during the path, whereas

remaining figures give an explanation of several tractable attributes

respectively, wheel motor angle and speed (Fig. 6.5(b)), Roll-Pitch-

Yaw angles relating to the robot (Fig. 6.6(a)) and contact information

and distance value for low sensors (Fig. 6.6(b)).

6.4 Summary and Remarks

The realization of a flexible robotic simulation environment are exam-

ined in this chapter. It is convenient to underline that the 3D Dynamic

Robotic Simulator was born not only with the aim to validate the

functionality of the proposed framework architecture (introduced and

discussed in Chapter 4) but, also, to furnish a flexible platform for the

realization and simulation of cooperative algorithms.

6.4 Summary and Remarks 87

(a)

Fig. 6.6. Simulation results obtained for the experiment reported in Fig. 7.12. (a) Roll-

Pitch-Yaw angles related to the robot anterior module, (b) Distance and contact sensor

time evolution.

The flexibility of the Client-server paradigm used in the dynamic

simulation platform permits to be easily interfaced by the RS4CS

framework.

7

Experimental Investigations

After the realization of useful programming tools, the appli-

cations of the new learning method for cooperative behav-

iors specialization (Chap.2) will be discussed in this chapter.

The aim is to demonstrate how a group of robots, each one

equipped with a structurally identical neural control system,

can learn cooperative behaviours through the specialization of

activities and roles to reach a common intent. Furthermore, a

new scenario of collaboration arising from local competition

behaviors, will be presented. The specialization strategy al-

lows to autonomously solve a task assignment problem among

agents in an initially homogeneous swarm, resulting in a labor

division which improves the performance of the team.

7.1 Role Specialization

In the scenario considered in this work all the individual have the same

body structure and, at the beginning of the learning phase, all of them

90 7 Experimental Investigations

are endowed with the same neural network, so they show the same

capabilities. All of them can learn, for example, to choose among at-

tractive or repulsive landmarks, which, due to their identical structure,

will be the same for all the individuals. Initially there is no strategy in

the population: all the behaviors match. The performance is guided by

a global reward function which is propagated through all the individ-

uals which incrementally learn, each one from its side, to specialise in

order to contribute to the reward increase. This naturally leads to the

emergence of global strategies which in any case remain unknown to the

single individual, but globally lead to the birth of a team as the results

of the role distribution among the components. The basic element of the

neural network architecture embedded into the individuals is a simple

model of spiking neuron, subject to training both in synaptic plasticity

and in threshold adaptation. This is realised through the modulation

of the presynaptic bias current. The assumption of no communication

among the individuals was adopted to enhance the capabilities of the

proposed approach.

About the experiments carried out to develop the strategy, a group

of robots, endowed with a neural network controller, is allowed to rover

into an arena. The basic element of the neural network architecture

embedded into each robot is a computational model of spiking neuron,

subject to training both in synaptic plasticity and in threshold adap-

tation. Different scenarios have been considered in order to analyze

the two learning mechanisms, investigating the advantages of apply-

ing them simultaneously or separately. At the beginning, each robot

7.1 Role Specialization 91

contains the same neural structure composed of spiking neurons that

receive the sensory inputs, coming from distance sensors and visual

system, and provide the corresponding behaviours to perform. In par-

ticular, exploration is the default behaviour carried out by agents if

no target is seen in the scene, whereas an approaching behaviour is

activated when a target is detected by the vision system. Each network

within each robot is able to detect all the targets: allowing each robot

to reach them exploiting some basic reflexes triggered by sensor inputs.

All the individuals have the same body structure and, at the beginning

of the learning phase, all of them are endowed with the same neural net-

work, so they show the same capabilities. Initially there is no strategy

in the population and each agent has no preference on the particular

target to reach. While exploring the environment, the neural network

within each robot is able to learn, and the robot performance is guided

by a global reward function which is propagated through all the indi-

viduals: they incrementally learn, each one from its side, to specialize,

focalizing interest only in specific subsets of targets, discarding others.

This naturally leads to the emergence of global strategies which in any

case remain unknown to the single individual, but globally lead to the

birth of a team as the results of the role distribution among the agents.

In this way, coordination promotes a natural and dynamic specializa-

tion, environmentally mediated, within the group and labor division.

This approach has a strict relation with the ethological counterpart:

individual arthropods (e.g. bees and ants) can mutate their behaviours

92 7 Experimental Investigations

in a flexible way, particularly combined with learning mechanisms [88],

[1].

7.1.1 Experimental details

The robot experiments were implemented using RS4CS and our 3D

Dynamic Robotic Simulator [89] (refer to chapters 4 and 6 for details).

Fig. 7.20(a) shows a screenshot of the overall dynamic environment

used to perform the experiments. Simulation tests were carried out

in an arena (3m x 2m) filled with a number of different target areas

distributed on the floor. In particular, the combination of two (1 yellow

and 1 blue target), three (2 yellow and 1 blue and viceversa) and four

(2 yellow and 2 blue) targets were used for the tests. The robots used

in the experiments are the simulated version of TriBot I (details in

Appendix A [par. 9.1]).

The robots are allowed to reach multiple targets: at the beginning,

only yellow targets are visible in the arena; when a robot reaches one

of these, blue targets are enabled becoming visible to the robot visual

system. Whenever a robot reaches the blue target, the reward signal is

activated. Blue targets are now disabled and a new cycle begins. The

robot, after reaching a target, remains there for a given time to simulate

feeding conditions: this also allows other robots to reach the remain-

ing targets to accomplish the task. These simple rules prevent a robot

to reach a rewarded state independently on the actions of the other

robots, even if each robot does not posses any information about the

other robot behaviors. So the only way to be rewarded is to specialise

7.1 Role Specialization 93

(a) (b)

Fig. 7.1. Screenshot of the used tools. (a) The simulated environment implemented with

the Dynamic Robotic Simulator consists in an arena 3m x 2m with four targets (two

yellow and two blue) and four TriBot robots. (b) The simulated environment and the GUI

of RS4CS. On the left-middle and left-bottom side, the graphical interface related to two

robots are shown. Subfigures from the top left to the top right show the robot on-board

cameras, whose field of view was fixed to ±45o.

in different behavioral actions, which lead to the emergence of a coop-

erative behavior. The arousal of this specialization is reached thanks to

the fact that, in case of reward, each robot undergoes a learning phase,

leading to increase its willingness to reach the color currently reached

(considered as the source of reward) and decreases its interest in the

other. Learning details are given below.

The Fig.7.2 shows the algorithm flowchart in order to permit a better

comprehension of the experiment.

The first algorithm action is Sensor Evaluation: the robots retrieve

the current state polling their sensors. A processing phase of the Neural

Network is then performed (Control System Spiking Network Block).

Here, the Network simulation is performed, together with synapses up-

94 7 Experimental Investigations

Fig. 7.2. Algorithm block diagram. Three main blocks are depicted: Sensor evaluation

stage where information from the sensors embedded on the robot is collected, a (Con-

trol System Spiking Network) where the spiking network evolves on the basis of the ac-

quired sensory signals and a ”Behavioural Selection” stage where the suitable action is

performed by the robot in the dynamic simulated Environment. A global reward (RW),

generated when the overall task is completed, is perceived by the robots that apply learning

mechanisms on sensory neurons (Neuron Threshold Adaptation) and on specific network

synapses, by using STDP learning, to specialize each robot behaviour on the basis of the

actions performed.

date and threshold adaptation, if necessary, according to the rules de-

tailed in the following. The network output leads to the selection of

the suitable behaviour: Exploration or Target Approach. Avoidance is

a reflex induced behavior which is automatically implemented when-

ever a robot meets walls or other robots. After the execution of the

selected behavior, the flowchart cycle is concluded: this corresponds to

one robot step.

7.1 Role Specialization 95

More specifically, within each robot step Spiking Neural Network

(SNN) is simulated for a time window of 300ms: in our case one robot

step corresponds to 2500 simulation steps with an integration time

of 0.12ms. The robot motion direction will be selected according to

the number of spikes generated by the left and right motor-neurons

during the simulation time window. During the robot behaviors, no

communication is allowed with the other robots, but the interrelations

are mediated by the environment.

The used control architecture is the bio-inspired spiking networks

introduced in Chapter 2 [sec. 2.1].

7.1.2 Experimental scenarios

The combination of synaptic and threshold plasticity has been applied

to find the best combination of learning methods for cooperative ap-

proaches. This fusion can be useful to investigate the interplay between

Role Specialization mechanism and STDP Learning, to estimate the

improvement in speed-up of Role Specialization and to evaluate the

possible improvement of the learning convergence.

7.1.2.1 Role Specialization through Threshold adaptation

In this case the robot were already trained to recognise and reach all the

targets, through STDP [48], so here we can appreciate only the effect

of Threshold adaptation. The rules are the same as already reported:

the robots start searching targets, when a robot reaches the target area

a second target area is made visible, and so, the other robot can reach

96 7 Experimental Investigations

it. When the final target is reached, a reward function is activated. In

these conditions if a robot has currently reached a specific target (say

Col1), the correponding target neurons (TLNCol1, TRNCol1) activate

their own role specialization learning block (see Fig. 2.1(b)) in order to

increase IA for vision neurons belonging to the same subnet (VLNCol1,

VCNCol1, VRNCol1). Moreover TLNCol1 and TRNCol1 will act on all

the other role specialization learning blocks to decrease IA. In this way,

the Role Specialization learning mechanism will reward the active sub-

net, whereas a punishment will be performed in the remaining subnets.

At the end of the learning process, each robot will be specialized in

a well defined role. For example, a robot, after reaching several times

the activation-target area, specializes only to reach it; whereas, in the

case of a group of two robots and two targets, the other robot becomes

interested only in the final target.

7.1.2.2 Role Specialization with STDP Learning

In this second scenario, the weights are not pre-trained and each robot

is requested to autonomously learn, while specialising, how to deal with

targets as discussed in [47]. At the beginning, no targets are known

and robots perform only default behavior, that is the exploration of

the environment which simply consists of going straight forward in the

arena. When a target is detected during exploration, the US triggered

by target sensors induce weights update through STDP. If the reward

is also activated, a threshold learning phase is triggered.

7.1 Role Specialization 97

7.1.3 Simulation Results

To validate the efficacy of our learning method, a set of testing simu-

lations has been performed and some simulation results are discussed.

The tests have been carried out with different combinations of robot

number and targets; two, three and four robots were inserted in the

arena to analyze the difference in behaviors and the emergence of co-

operation.

7.1.3.1 Role Specialization – Threshold adaptation plasticity

As said above, in this first experiment the capabilities of threshold

adaptation are evaluated. Initially each robot is sensitive to two tar-

gets, characterized by two different colors (Col1 = yellow and Col2 =

blue). This kind of learning will lead to a specialization towards a single

target.

Fig. 7.3 and Fig.7.4 show an example of the learning mechanism:

the reward function is elicited when Col2 is activated, given that Col1

was activated before. In the time window around 2.0 ∗ 105 Simulation

steps, Robot 1 target sensors are stimulated by Col1 (Fig. 7.3(a)): so

the corresponding target neuron starts to fire due to Ii, but no adap-

tation takes place, since, at the same time, Robot 2 is not stimulated

by the other color but, instead, it is also stimulated by Col1 (Fig.

7.4(a)). The reward signal is therefore silent. On the contrary, around

2.07 ∗ 105 Simulation steps, Robot 1 target sensors are stimulated by

Col2 (Fig. 7.3(b)) and concurrently Robot 2 reaches Col1 target (Fig.

98 7 Experimental Investigations

7.4(b)). The reward signal is activated and Robot 1 target neurons sen-

sitive to Col2 are depolarized (by increasing IA), Col1 target neurons

are hyperpolarized. On the other side, the Col2 subnet in Robot 2 is

hyperpolarized, whereas its Col1 subnet is depolarized. The emerging

behavior is a specialization effect for Robot 1 to Col2, for Robot 2 to

Col1, respectively.

7.1.3.2 Role Specialization with STDP Learning

In this situation, threshold adaptation is used in combination with

the synaptic plasticity: so, initially the robots are ingnorant about the

behavior to take in front of visible object. The two mechanisms are here

combined in order to perform a complex global learning procedure.

During the experiment, as said in Section 7.1.2.2, if the robot reaches

a target previously seen with the visual system, nconditioned target

sensors are stimulated and the update of the corresponding synaptic

weights for the conditioned (visual) pathway is performed. In addi-

tion, when the global reward function is activated, a cycle of the Role

Specialization mechanism is performed. All the tests performed have

shown the remarkable positive influence of the threshold adaptation

over the STDP learning in the synapses related to the vision neurons

for the color which the specific robot is specialized for. This result was

predictable since initially the retrieval of the target is random, being

the environment and the objects unknown by the robots. At the begin-

ning, robots show no reaction to visual stimuli but, during the learning

phase, the increase of synaptic efficiency and the threshold adaptation

7.1 Role Specialization 99

(a)

(b)

Fig. 7.3. Effects of the Role Specialization learning. The figures show respectively: Mem-

brane Potential, Reward activation and Total Input Current of sensory neurons related

to Robot 1. The Total Input Current (I) is the sum of two contributes: IA and Ii. The

activation of the Reward function is reported in dashed line. Dash-dot line represents the

Threshold current value considered for the total input current I for class I neuron, set at

IAth=22. (a) - Hyperpolarization of a neuron: the input current decreases during reward

the activation. In this case, the spike train frequency tends to decrease in front of subse-

quent stimulations; this will lead to emit no spikes at the end of the learning phase. (b) -

Depolarization of a neuron: for this neuron the adaptation current increases reaching the

upper bound. This increases the neuron spiking rate.

100 7 Experimental Investigations

(a)

(b)

Fig. 7.4. Example of simulation results: Membrane Potential, Reward activation and

Total Input Current of a sensory neuron related to Robot 2 are shown. (a) - In this case

a depolarization of the neuron occurs in front of a reward signal. The adaptation current

increases during an input excitation, and the spike train increases. (b) - Hyperpolarization

of a neuron. Even if no input is present, a decrement of the current is learned during the

reward activation. This causes the spike train frequency to decrease.

7.1 Role Specialization 101

work concurrently. In this way, the STDP learning is made more effec-

tive and quick by specialization: the initial randomness encourages one

of the potential roles, since robots are prone to find one target more

frequently than other targets. At the same time the relative synapses

are updated and contemporarily the other behavioral choices are in-

hibited, improving the learning convergence. Fig.7.5 shows the neuron

Fig. 7.5. Trends of adaptation current: high values of IA are maintained for VLNCol1.

This Vision neuron remains sensitive to its input stimulus, whereas IA of VLNCol2 is

decreased even below the Inactivation current level Iina (dashed line). This neuron during

time looses sensitivity to its input.

current (IA) for a Vision neuron related to the subnet that is going to

be reinforced (VLNCol1) and for a Vision neuron of the subnet that

will be inhibited (VLNCol2). In the first one, the current is maintained

at high values and so the sensitivity of these neurons is maintained: on

the other side, the currents of the other neurons are decreased. During

102 7 Experimental Investigations

time, for these last neurons it becomes more and more difficult to reach

and exceed the threshold value (IAth
=22); the effect consists in an ever

decreasing spiking rate until the lower bound current value (Iina) is

overcome and no spikes are emitted, even in presence of a visual input.

As regards synaptic weights, Fig. 7.6 and 7.7 display how only the sub-

net dedicated to the selected interesting target is trained, whereas the

weights of the neurons related to the leftover uninteresting target are

maintained very low. Fig. 7.8 shows the trend of the number of targets

Fig. 7.6. Role Specialization with STDP Learning: trends of the synaptic weights for

the robot specialized in yellow (Col1) targets. The weights related to Col1 reach upper

bounds, whereas the weights of Col2 keep lower values.

(NY for yellow targets, NB for blue ones) found by the two robots. In

Fig. 7.8(a) Robot 1 specialises in yellow targets. Results show clearly

that NY is much higher than NB. Fig. 7.8(b) shows the case in which

Robot 2 is going to specialise in the blue targets. In this case, since the

7.1 Role Specialization 103

Fig. 7.7. Role Specialization with STDP Learning: trends of the synaptic weights for

the robot specialized in blue (Col2) targets. In this case, the weights related to Col2 reach

upper bounds, whereas the weights of Col1 (yellow) remain negligible: the robot quickly

becomes sensible to the blue target. Even if it reaches a yellow one, no learning mechanisms

will be activated.

yellow target remains active much longer than the blue one within each

cycle, it can happen that Robot 2 detects yellow targets not as a re-

sult of targeting, but accidentally during exploration: so the difference

between NY and NB is lower in this case. Fig. 7.9 shows the trend of

the synaptic weights when only STDP learning was applied, showing

experimental evidence of the improvement in convergence.

7.1.4 Specialization with and without STDP: Comparisons

To perform statistical comparisons, a set of simulation tests was per-

formed, where also Role Specialization is introduced. Also no decay

effect was applied to the synaptic weights: in this way, learning is con-

104 7 Experimental Investigations

(a)

(b)

Fig. 7.8. Cumulative number of reached targets: (a) related to the robot which is going

to specialize in yellow (Col1) target, (b) related to the robot which is going to specialize

in blue (Col2) targets.

7.1 Role Specialization 105

(a)

(b)

Fig. 7.9. (a) STDP learning without threshold adaptation: trends of the synaptic weights

for yellow target (Col1). The weights reach their upper bound after 3.3 ∗ 105 simulation

steps (corresponding to 132 robot steps). (b) - Threshold adaptation and STDP Learning:

trends of the synaptic weights for Col1. The weights saturate around 2 ∗ 105 simulation

steps (corresponding to 80 robot steps).

106 7 Experimental Investigations

sidered complete when all values reach their upper bounds. The results

reported refer only to one of the two robots. The situation is depicted

in Fig. 7.10. In this case, we can see that using only STDP, the weights

Fig. 7.10. Statistical comparison of results. Trend of the synaptic weights with and

without the activation of the threshold adaptation during STDP: results of ten trials for

each case. The weights of the network trained only via STDP are reported in dotted

line, whereas in solid line the trend of weights with STDP learning in association with

threshold adaptation are shown. The event used to compare performance is the simulation

step when weights reach their upper bound. According to the obtained results, for STDP

learning with Role Specialization, caused by threshold adaptation, the mean value of the

synaptic weights is m = 2 ∗ 105 Simulation Steps (corresponding to 80 robot steps), with

a standard deviation σ = 0.78 ∗ 105 Simulation Steps (31 robot steps). Moreover, min =

0.55∗105 Simulation Steps (22 robot steps), Max = 2.9∗105 Simulation Steps (115 robot

steps). As regards weights without Role Specialization, the mean value is m = 3.2 ∗ 105

Simulation Steps (130 robot steps), the standard deviation 0.85 ∗ 105 Simulation Steps

(34 robot steps), min = 2.1 ∗ 105 Simulation Steps (83 robot steps) and Max = 4.7 ∗ 105

Simulation Steps (187 robot steps).

7.1 Role Specialization 107

require more simulation steps to reach their steady-state values, than

when applying also Threshold adaptation. This comparison shows an

improvement of about 40% in simulation steps. More in details, the best

improvement shown by the various tests was around 45%, whereas an

increase of 30% was found in the worst case. The same comparison was

Fig. 7.11. Adaptation current (IA) evolution. Dash-dotted line (upper line): threshold

adaptation and STDP learning; dashed line (lower line): threshold adaptation with already

tuned weights. The solid line indicates the inactivation current level Iina = 14. When the

current passes below this lower bound the neuron does no longer emit spikes, even in

presence of an input Ii.

carried on to evaluate the performance of the Threshold adaptation

without and with the STDP learning concurrently active. The results

show that the specialization becomes slowly convergent when acting to-

gether with STDP learning. This aspect is directly related to the global

reward and its activation. In fact, to perform a Threshold adaptation

108 7 Experimental Investigations

learning cycle, the group has to complete the mission and the robots

must reach different targets. In the first steps, when the weights are

not tuned, the robots obviously spend a lot of time in exploring the

arena, so the specialization learning starts to converge later.

Fig. 7.11 displays a comparison between the current IA for a vision

neuron which is going to loose activation to its input: in the upper

curve (dash-dot line) is the effect of the concurrent action of Threshold

adaptation and STDP, whereas in the lower curve (dashed line) thresh-

old adaptation was applied on an already trained network. In the first

case, the specialization was completed after 4.5 ∗ 105 Simulation Steps

(corresponding to 180 robot steps), whereas in the second case just

after 1 ∗ 105 Simulation Steps (41 robot steps). This is a clear result:

in a network already trained to reach all the targets, it is relatively

simple to specialize the agent to a particular target class. This is a po-

tential benefit, since preferences could be easily modified by adjusting

the reward function, without changing completely the system knowl-

edge. This is particularly interesting in case of dynamically changing

environment.

Fig. 7.12 shows a typical trajectory before and after learning, respec-

tively, for an experiment with two targets and two robots; here Role

Specialization is tested using already tuned weights. Before learning,

robots are both attracted by all targets present in the arena. This is

evident from the initial trajectory: both robots try to reach the first

active (yellow) target (placed in the bottom right part of the arena).

These trajectories show the presence of competition among robots, in-

7.1 Role Specialization 109

dicated with a circle in Fig. 7.12(a). Here the two robots, attracted by

the same target, interact each other and Robot 1 turns right to avoid

the other agent, that will be able to reach the yellow target. After

learning, in Fig. 7.12(b) each robot is interested only in a specific type

of target.

7.1.5 Role Specialization with differently skilled robots

The spiking architecture and the learning mechanisms here discussed

are suitable for the development of a lot of possible applications for

collective behaviours. An interesting analysis was related to a scenario

in which 4 robots have 4 different velocities, STDP with weight de-

cay and Role Specialization learning both enabled, two yellow and two

blue targets on the arena. The velocities of the robots are respectively:

3 cm/s (Robot 3v), 4 cm/s (Robot 4v), 5 cm/s (Robot 5v), 6 cm/s

(Robot 6v). In this case of study, the complete task can be better ac-

complished exploiting the different capabilities of the robots. This often

found in Biology, where natural differentiations influenced by the age

or morphological structure of the individuals, allow the specialization

of different behaviours, in order to maintain or even improve the group

performance, for safety or defence [90] [91]. The results obtained in this

scenario outline the different specializations obtained on the basis of

both the characteristics of each robot and the environment conditions,

which, in a realistic situation, cannot be completely predicted. In any

case the emerging behaviour of the labour division among the agents

remains satisfied: this is the main focus of the strategy which is robustly

110 7 Experimental Investigations

(a)

(b)

Fig. 7.12. Example of robot trajectories (Threshold adaptation with tuned weights). At

the beginning of learning (a), robots are sensitive to both targets. The threshold adaptation

causes gradual specialization to only one target. After learning (b), Robot 1 is specialized

for yellow targets, Robot 2 for blue ones. At the beginning of the simulation the blue target

is not yet visible, so Robot 2 goes straight (the default exploration strategy) whereas the

yellow target attracts Robot 1. At 10 robot steps the blue target is enabled, since Robot 1

has just reached the yellow target. Even if Robot 2 can see both targets, it proceeds directly

towards the blue one. Finally, at 18 robot steps Robot 1, which has already reached the

yellow (Col1) target starts to explore the environment, whereas Robot 2 directs toward

the blue one (Col2) to complete the mission.

7.1 Role Specialization 111

retained whichever robot specialises in whichever target. This peculiar-

ity is more and more evident in animal colonies, whose global behaviour

is robust against disturbances, including the loose of a number of single

individuals, enhancing the key role of the single agent flexibility medi-

ated by the environment. The following simulation results enhance this

assertion. Figs. 7.13 and 7.14 show respectively the IA current related

to the yellow subnet neuron (IA(VCNCol1)) and related to the blue

subnet (IA(VCNCol2)) (see Fig. 2.1 in Chapter 2).

The behaviour of each robot is quite complex, being affected in many

ways from the environment and from the interaction with the other

robots. To better clarify the dynamics of the whole system it is useful

to inspect the dynamics of the weights within the network of each robot.

The weight fluctuations show that STDP learning is strictly guided by

the threshold adaptation. In fact if the threashold enhances a specific

color preference, only the corresponding weights are reinforced. Also,

whenever the environment conditions incidentally cause oscillations in

the threshold values, some opponent target weights show a temporary

increment, which fades out due to the decay.

The analysis of Figs.7.15 and 7.16 is really interesting, since it

shows the knowledge acquired by the network in continuous interac-

tion with the environment. For example, Fig.7.15(a) refers to Robot

3v, specialised in Yellow targets (Col1). The highest weights are in

fact those guiding the robot towards the Col1 target from different

directions (Central, Right and Left). All of these weights are high:

this means that this robot can reach the yellow target from all of the

112 7 Experimental Investigations

(a)

(b)

Fig. 7.13. Results of a test performed with four robots with different speeds. The two sub-

plots show respectively the IA current related to a yellow subnet neuron (IA(VLNCol1))

and related to blue subnet (IA(VLNCol2)). When the IA for a neuron sensitive to a spe-

cific color is under the lower bound, as happens in the grey areas, the specialization for the

other color is reached. (a) - Robot with lower velocity (Robot 3v). During experiments,

this robot changes its role: initially it is attracted from yellow targets, then blue special-

ization appears, which then switches again to the yellow one. (b) - (Robot 4v) This robot

has medium velocity and shows an uncertain behaviour with no clear Role Specialization.

7.1 Role Specialization 113

(a)

(b)

Fig. 7.14. Results of a test performed with four robots with different speeds. The two sub-

plots show respectively the IA current related to a yellow subnet neuron (IA(VLNCol1))

and related to blue subnet (IA(VLNCol2)). When the IA for a neuron sensitive to a spe-

cific color is under the lower bound, as happens in the grey areas, the specialization for the

other color is reached. (a) - (Robot 5v) (b) - (Robot 6v): these robots have high velocity

and clearly specialize, respectively, in blue and in yellow targets.

114 7 Experimental Investigations

(a)

(b)

Fig. 7.15. Synaptic Weights related to the 4 Robots. (a) - Robot 3v: this robot specializes

in yellow targets; the weights of Col1 (yellow) are higher than those related to Col2. The

initial increment of Col2 weights is due to the initial Col2 (blue) target specialization. (b)

- Robot 4v: this robot shows an oscillating specialization emphasised by the decay, which

allows flexibility.

7.1 Role Specialization 115

(a)

(b)

Fig. 7.16. Synaptic Weights related to the 4 Robots. (a) - Robot 5v: the clear special-

ization to Col2 allows to maintain low values for the weights related to Col1. (b) - Robot

6v: here also the clear specialization induces high sensitivity for Col1. It is useful to notice

how the unpredictability of environmental influence heavily biases the learning effects. So

in this case the weight wVcN1Col1 remains at a lower value than others because the robot

during the experiment rarely detects the Col1 target from a front position.

116 7 Experimental Investigations

three visual positions (central, right or left), through with a steering

angle related to the absolute value of the weight themselves. On the

other side Robot 4v specialization in Col2 is only partially implemented

through the weights values. These are high for the central field of view

(wVCNCol2 − V ISLN), fading out for the right and more clearly for

the left visual field. This means that if Robot 4v finds the blue tar-

get on its left side (as in Fig. 7.19(point F)) is not attracted, since

the left visual neuron weight is really low (see Fig. 7.15(b)). The same

consideration can hold for the other two robots (Figs.7.16(a)(b)). Role

specialization is strictly related to the STDP learning outcome, which

is dependent in turn by the learning history and specific conditions.

These seem to be crucial factors which affect the whole outcome of the

robot colony and labour division is in any case maintained by the robot

group.

For a complete description of the results and a better comprehension

of the experiment, the robot trajectories are reported and explained

below. Specific trajectories occurring in the first, middle and final part

of a typical simulation, are reported and the evolution of the experiment

is described below.

At the beginning of the learning phase, reported in Fig. 7.17, all

the robots perform the default behaviour (i.e. a straight trajectory

with the addition of a simple obstacle avoidance strategy). Yellow is

the first active target (depicted as a circle): when this is reached (by

chance) by a robot (in this case robot blue - 3v.), the blue targets are

activated and robot green-6v reaches one of them. The reward signal

7.1 Role Specialization 117

Fig. 7.17. Beginning of the learning phase: trajectories followed by the four robots until

the first reward signal is perceived; this happens after the retrieval (by chance) of the

targets.

is activated, the threshold learning and STDP learning is induced in

only those robots who reached the two targets (3v and 6v). In this way

specialization starts.

Fig. 7.18 shows a snapshot of the middle learning phase, approxi-

mately around 5.8x105 Simulation steps (see also Fig. 7.13 (a)), cor-

responding to 232 robot steps. At this stage the robots are specialized

as follows: robot 3v is already specialized in yellow targets: in fact

its heading points directly towards this target. The specialization is

clearly visible also from the level of the activation current for yellow

target (Col1) in Fig. 7.13 (a). Robot 4v is attracted by blue target: this

118 7 Experimental Investigations

Fig. 7.18. An example of trajectories followed by the robots during learning, approxi-

mately in the middle phase, around 5.6x105 Simulation steps.

is indeed only a transient phase, as it can be drawn from Fig. 7.13 (b).

Here the activation current for Col2 is high, even if soon after this robot

will be sensible to Col1, before becoming back sensible to the former

blue target (Col2). A different situation takes place for Robot 5v: this

is already clearly specialized in blue targets (see Fig. 7.14 (a)). Here,

the robot incidentally passes through a yellow target present along its

trajectory, while going forward: this is clear since no centering strategy

is performed. Finally, Robot 6v has the highest velocity. It is already

specialized in yellow targets: the first one is not fully reached since

an avoidance strategy from Robot 3v is performed. This robot after

7.1 Role Specialization 119

the avoidance manoeuvre clearly steers and directs toward the second

yellow target.

Fig. 7.19. Trajectories followed by the four robots after learning. The robots are now

specialized to retrieve specific targets, in the reported case the reward signal is obtained

through the effort of robot 6v and 4v.

The trajectories related to the final part of the learning show that

robots are attracted only by specific targets in relation to the final con-

figuration of adaptation current (IA) and the actual weights configura-

tion. Fig.7.19 shows the sequences of actions performed by each robot

between two consecutive reward activations toward the end of the learn-

ing phase, The first reward is activated by Robot 5v on the blue target,

whereas the second rewards takes place when Robot 4v,specialised for

120 7 Experimental Investigations

blue targets, reaches one of these. Robot 3’s heading, at the beginning

of this window, is toward the arena’s wall. So it first performs a back-

ward motion, steers clockwise and goes forward. Given the field of view

of the camera (±45◦) the robot cannot see the yellow target at its right

hand side, and proceeds forward. It is finally able to reach the yellow

target at the left hand side of the arena.

The fast Robot 6v is the first to reach the yellow target, activating

the blue ones. a high specialization can be appreciated: no orientation

movements are performed in presence of the blue targets (see the last

part of the trajectory: point A) Robot 5v, though specialised in blue

target is not able to reach any target in this window: in fact at the

beginning of its path it follows a straight trajectory (since the yellow

target in not detected by the vision neurons), until an obstacle avoid-

ance is performed to avoid Robot 6v (point B). After that, (point C)

the robot detects a blue target on its right side and it tries to approach

it, but the presence of Robot 6v (point D and point E) induces a small

steering in order to avoid collision. It has to be noticed that the obsta-

cle avoidance strategy has a higher priority than the target reaching

action. The trajectory followed by Robot 4v is quite clear: it is spe-

cialised for blue targets and reaches one of them only at the end of this

time window.

As it can be drawn by the description of a whole experiment, the

motion of each robot is quite complex, being this affected in many

ways from the environment and from the interaction with the other

robots. To better clarify the dynamics of the whole system it is useful

7.1 Role Specialization 121

to inspect the dynamics of the weights within the network of each robot.

The weight fluctuations show that STDP learning is directly guided by

the threshold adaptation. In fact it can be noticed that only the weights

related to specialized colour are reinforced, whereas the others remains

at lower values. Moreover, if the environment conditions incidentally

cause oscillations in threshold values, some opponent target weights

show a temporary increment, which fades out due to the decay.

7.1.6 Remarks and related works

In the proposed approach the interactions among the swarm members

are indirectly controlled by the reward function, that is seen as an ex-

ternal global input for all agents. In the current implementation we

prevented the robots to directly communicate each other. Rather, we

force the system to lead to the emergence of cooperation only through

environment mediation. This approach is completely different from the

typical algorithms for swarm intelligence, which are based on a mas-

sively direct inter-individual communication. This is in line with the

ecological results, which show how colonies take benefits from the capa-

bility to distribute and collect information using specialized channels to

share knowledge among them [92]. Also, as in traditional swarm algo-

rithms, a single agent is not aware of the global situation of the group:

rather it can see only local information to learn correlations among its

actions and the global performance improvement. A hearing source or

a flashing light are just some examples signals stimulating a reward or

a punishment.

122 7 Experimental Investigations

Among studies about multi-robot and cooperative systems, the work

here presented focalized on the emergence of specialization through an

ontogenetic approach environmentally mediated, in which autonomous

agents during a learning phase optimize their control structures.

An example of related work is the Swarm-bots project [34], with the

aim to study new approaches for the realization of self-assembling ar-

tifacts [93]. The project focused on a cooperation mechanism based on

the self-assembly capabilities of 35 small robots, called s-bots, to aggre-

gate themselves into a unique entity, just called swarm-bot. In this work

a predominantly phylogenetic approach is applied using an evolution-

ary computation technique through mechanisms inspired by natural

selection [35]. Moreover, although artificial neural networks (ANNs)

used to control the robots are quite similar to our Spiking neural net-

works (SNNs), the methods used to synthesize them are different [36],

[37]. In fact the structure is a feed-forward two-layer network where

input layer nodes represent the input information from vision system

and proximity sensors, whereas output nodes are used to steer the an-

gular speed of the left/right wheels and the status of the gripper [36].

The model of neurons used to create non-reactive neuro-structures is

‘leaky-integrator’ neuron [37]. Even if the structure is a similar to ours,

especially in input/output assignment, In particular the evolution of

the connection weights in [38], was implemented through evolutionary

algorithms, whereas the network outputs (motor signals) are computed

by using spedific rules [36]. In our approach, the spikes of the output

7.2 Labor Division 123

neurons directly drive the robot wheels through an appropriate tras-

duction function.

Role Specialization is an interesting mechanism based on adaptation,

a typical characteristic of neurons able to adapt the spike-frequency

becoming refractory or more sensitive to specific stimuli.

7.2 Labor Division

This section shows, through a series of simulation results, that labor

division task can be accomplished in a small number of competitive

roving robots, endowed with the same neural controller (introduced in

7.2) able to adapt to environment conditions. Here there is no need,

in principle, for a kind of super organism, and the global benefit for a

colony can arise from the local competition strategies among equally

endowed individuals.

Results in simulation environments show how labor division depends

on the environmental setup and it is mainly independent on the initial

positions of the robots: environment and the other robots play clearly

a fundamental role in mediating the swarm capabilities.

If a pre-defined sequence of tasks is assigned, the single agents, com-

peting to reach the maximum number of available targets, indirectly

reach the global result of labor division where the cumulative energy

spent tends to be minimized. The definition of a series of tasks is fre-

quently met in Nature: there are different activities that have to be

performed in given time slots during the daily cycle, and the division

124 7 Experimental Investigations

of these tasks among the individual is requested, even if all the indi-

viduals could perform all the tasks.

7.2.1 Algorithm Details

In the experimental setup, the environment contains differently colored

targets on the floor, which are cyclically activated and mutually exclu-

sive. In our simulations two robots are allowed to move. Each robot

starts with the same ability to identify and reach all the targets in the

arena.

Fig. 7.20(a) shows an overview of the overall simulation environment

used to implement the experiments, whereas Fig. 7.20(b) shows the

control algorithms’ interface.

At the beginning of the running only a target (the blue-target in

Fig.7.20) is enabled and visible on the floor. When a robot reaches it,

the following target is activated and the previous one disappears from

the scene. Whenever all targets are sequentially enabled and reached by

robots, the reward signal is activated to induce learning in all individ-

uals. After that, the situation is restored to original configuration and

the cycle repeats. If a target is present in the environment the robots

move toward it with a fixed speed for a given time interval, otherwise

they rotate looking for targets, performing a clockwise rotation on the

spot for a fixed amount of 45 degrees. These rules imply that a target

can be reached by a more distant but well oriented robot than by an-

other which is nearer but badly oriented. No direct communication is

introduced among the agents, but they compete for reaching the same

7.2 Labor Division 125

(a) (b)

Fig. 7.20. (a) An image of the arena designed with the Dynamic Robotic Simulator.

Two TriBot robots move in the environment with four targets-chain. The blue target (with

white edge) is the first in the chain and it is enabled at the beginning of the experiment

(as shown in (b)). The other targets (faded in figure) are going to be enabled whenever

a robot reaches the preceding target in the chain. (b) The GUI software architecture

(RS4CS). The graphical interface related to the two robots and the on-board cameras are

shown on top of the figure.

targets once they are activated. This causes competition since the tar-

get is disabled briefly after being reached by a robot. After all targets

are reached, the cycle is concluded and the reward signal is activated

for all robots. A learning phase is now performed: for a given robot,

all the thresholds for the vision neurons of the targets reached within

the current cycle are depolarized, all the remaining vision neurons are

hyperpolarized. Each robot thus increases its attractivity to the targets

reached, and decreases attractivity to the non-reached ones. The final

result that emerges from this scenario is a spontaneous labor division

among the robots, which become refractory to those targets they are

not able to reach. The learning mechanism concurrently acts in differ-

126 7 Experimental Investigations

ent ways on the neural architectures in each robot: the result is the

development of diverse skills. The presence of a global reward signal

assures diversity and specialization. At implementation level a hearing

source or a flashing light are just some examples signals stimulating a

reward or a punishment.

The targets are circular spots on the ground worth to be reached

by both robots: this fact can hardly take place, owing to the avoidance

robot sensors, but nevertheless this encourages competitive behaviours.

It is obvious that environmental setup and the other robots play a

fundamental role biasing the final behavior of each single robot.

7.2.2 Results and Performances Analyses

Also these experimental simulations are conducted using the soft-

ware/hardware framework RS4CS and 3D Dynamic Simulator (details

in chapter 4 and 6) [89]. The robots are the simulated version of TriBot

I (see Appendix A [par. 9.1] for more implementation details), which

act in the same environment: an arena of 3mx2m with targets on the

floor. Different targets arrangements and various activation sequences

are used for simulation tests. In particular, the combination of three

and four targets is used. The reward signal is activated when the last

target is reached by any robot.

Tipical example results are discussed, in this section, to introduce

and validate the approach. The target-chain used in this experiment

is composed of (starting from the first to the last enabled): blue, red,

yellow and violet. Upon reaching the latter, the reward signal is broad-

7.2 Labor Division 127

casted to all the robots. These simple rules allow the robots to indepen-

dently create sequences of visited targets, although no communication

is furnished.

In these experiments the results related to the capabilities of thresh-

old adaptation to induce learning of sub-sequences of targets are eval-

uated. Initially each robot is sensitive to all targets, characterized by

different colors (Col1 = yellow and Col2 = blue Col3= red Col4 =

violet). At the end of the specialization learning, robots are interested

only in a sub-set of targets.

Starting from the same value gaVthresh = 20 all bias currents related

to the different neurons can be modulated, considering the following

saturation values: 0 ≤ gaVthresh ≤ 22. The threshold adaptation is

considered complete when the lower bound, called inactivation current

gAVthresh = Iina = 14 is reached. In these conditions, even if an input

current is present, the total current value cannot overcome the thresh-

old and the neuron is no longer sensitive to external stimuli.

Fig. 7.22(a) and Fig. 7.22(b) show the dynamic fluctuation of the

bias current gaVthresh due to this mechanism. In the time window, after

about 20 reward activation events (er in Fig. 7.22), Robot 1 learns to

focalize its attention on blue and yellow targets, whereas the emerg-

ing behaviour of Robot 2 is a specialization in red and violet targets.

Starting position of the robots and the arrangement of targets for this

simulation are shown in Fig.7.21.

In particular, Fig. 7.22 shows the neuron current of one of the Vi-

sion neurons devoted to a particular color target. It is clear that at

128 7 Experimental Investigations

Fig. 7.21. Screenshot of the experimental setup for Simulation 1. Numbers indicate the

activation order of the targets in the chain.

the beginning of the experiment all current values are modulated but

currents are maintained at high values since all robots are pre-trained

to recognize and approach all targets, whereas after about 10 reward

activations, robots start to show different specialization behaviours.

Robot 1 proceeds reaching more frequently the yellow and blue target,

whereas the thresholds of the neurons related to the other color targets

are decreased. During learning, for these last neurons it becomes more

and more difficult to exceed the threshold value. A similar situation

involves in robot 2, but regarding the other targets.

As another example, results of a different simulation are reported

in Fig. 7.24, to demostrate the validity of the approach and to detect

similarities and differences through comparisons. This simulation differs

7.2 Labor Division 129

(a)

(b)

Fig. 7.22. (a) - Robot 1 dynamic fluctuations of the bias current. This robot is going to

specialize in blue and yellow targets; so as shown in figure after approximately 20 reward

activations, the bias current of red and violet targets go below lower bound value. (b)

- Robot 2 dynamic fluctuations of the bias current. This robot becomes sensitive to red

and violet targets, so in this case the current related to the blue target needs 17 rewards

to overcome the lower bound value (Iina), whereas bias current of the yellow target comes

down bound value after 35 rewards.

in starting position of the robots and in the arrangement of targets as

shown in Fig.7.23.

130 7 Experimental Investigations

Fig. 7.23. Environmental setup for Simulation 2. In this arena the targets are more

distributed. The order of activation for the targets is shown.

Fig. 7.24 shows the neuron current for the same Vision neuron as in

Fig. 7.22. At the beginning all currents keep high values, but in this case

just after about 5 reward activations, robots start to show specialization

effects. In this simulation, the robot 1 proceeds specializing in blue

and violet target, whereas the robot 2 in yellow and red ones. Similar

to the previous results is the trend of bias current gaVthresh but this

experiment needs about 23 reward activation events to complete the

theshold adaptation.

Fig. 7.25(a) and Fig. 7.25(b) show the trend of the number of targets

found by the two robots in relation to Simulation 1. It can be noticed

the difference between the color targets in which each robot is going to

7.2 Labor Division 131

(a)

(b)

Fig. 7.24. Further experiment; (a) - Robot 1 dynamic fluctuations of the bias current.

This robot is going to specialize in blue and violet targets; after approximately 15 reward

activations, the bias current of red targets go below lower bound value, whereas the bias

current of yellow target needs about 23 reward activation events (er) to learn completely.

(b) - Robot 2 dynamic fluctuations of the bias current. This robot remains reactive to red

and yellow targets. In this case the current of the blue and violet targets after about 17

rewards overcomes the lower bound value (Iina) and the specialization can be considered

completed.

specialize and the remaining targets that the robot will incrementally

ignore.

132 7 Experimental Investigations

(a) (b)

Fig. 7.25. Cumulative number of visited targets: (a) related to the robot 1, which

specializes in yellow and blue targets, (b) related to the robot 2 which specializes in red

and violet targets.

Referring again to Simulation 1, Fig. 7.26(a) reports the first event of

activation of the reward function. Robot 1 trajectory is reported in blue

and outlined with the blue bullet with the robot identification number,

whereas robot 2 path is depicted in green. As it can be noticed, both the

robots are attracted by all the targets. Environmental conditions and

the initial robot position have the important role of the initial biasing

of the learning phase. In fact as it can be seen from the figure, according

to the sequence, the blue target (first activated in the chain) attracts

both the robots, but the nearest one (robot 2) arrives before the other

(at robot step number 2). This event leads to the activation of the

second target (yellow one). This is perceived by both robots, but robot

1 arrives slightly before the other. Robot 2 has then to avoid robot 1

soon after step 13. In the mean time the red target is activated and, once

again, robot 1 reaches it, activating the last target, which is reached

by robot 2. At this time the reward signal is broad casted to all the

7.2 Labor Division 133

robots, and the sequence just visited by each robot is reinforced. The

activation of the reward function at the event er = 40 is reported in Fig.

7.26(b). Here the task division is clearly visible: robot 1 is specialised

in reaching violet and red targets, whereas the other robot prefers the

other targets. It is to be noticed that robot 2 passes through the yellow

target when this is not activated: the robot simply follows the path to

reach the red target.

After that, a number of different environments were simulated, in-

volving different arrangements of the arena, displacement of the targets

and initial position of the robots. The results of the different performed

simulations are summarized in Table 7.1.

The first column shows the target arrangements in the arena, the

distances among the targets and the activation sequence are reported

in column 2 and 3 respectively.

For each configuration an amount of at least 10 simulations were

performed starting from different initial robot positions. The fourth

column reports the statistical distribution robot-targets for each of the

solutions reported in the last column. From the analysis of the table

it derives that the emerging solutions directly depend on the target

position. In the first case T7.1[1.a-e], the initial attractiveness of each

robot for all the targets is shaped towards the two of them which are

nearest one another, with the emergence of a robust solution which

does not depend on the activation sequence.

For this configuration, the dynamics of the learning phase is reported

in Fig.7.27. The bar diagram in Fig.7.27(e) shows in blue and green

134 7 Experimental Investigations

Arena Distances (m) Activation Sequence Percent Solution

BY= 1.98 BR= 2.49 [1.a] B-Y-R-V 100% RY,R −RB,V

BV= 0.76 YR= 1.53 [1.b] B-V-Y-R 100% RY,R −RB,V

YV= 2.05 RV= 2.03 [1.c] B-V-R-Y 100% RY,R −RB,V

[1.d] B-R-V-Y 100% RY,R −RB,V

[1.e] B-Y-V-R 100% RY,R −RB,V

BY= 0.65 BR= 2.46 [2.a] B-Y-R-V 100% RR −RB,Y,V

BV= 1.28 YR= 1.95 [2.b] B-V-R-Y 67% RR −RB,Y,V

YV= 1.41 RV= 1.98 33% RB,Y −RR,V

[2.c] B-R-Y-V 83% RR −RB,Y,V

17% RB,Y −RR,V

BY= 1.26 BR= 2.46 [3.a] B-Y-R-V 100% RY,R −RB,V

BV= 1.28 YR= 1.22 [3.b] B-V-Y-R 100% RY,R −RB,V

YV= 1.29 RV= 1.98 [3.c] B-V-R-Y 80% RB,Y −RR,V

20% RB,V −RY,R

[3.d] B-R-V-Y 86% RY,R −RB,V

14% RB,Y −RR,V

BY= 1.29 BR= 2.46 [4.a] B-Y-R-V 100% RY,R −RB,V

BV= 1.28 YR= 1.18 [4.b] B-Y-V-R 100% RY,R −RB,V

YV= 1.02 RV= 1.98 [4.c] B-V-Y-R 83% RY,R −RB,V

17% RR −RB,Y,V

BY= 0.80 BR= 1.29 [5.a] B-Y-R-V 64% RB,Y −RR,V

BV= 0.82 YR= 0.76 36% RY,R −RB,V

YV= 0.93 RV= 0.79

BY=YV= 1.25 [6.a] B-Y-V 100% RB,Y −RY,V

BY= BV = 1.13 [7.a] B-Y-R-V 50% RY,R −RB,V

YR= RV = 1.13 50% RB,Y −RR,V

BR= YV= 1.60 [7.b] B-R-Y-V 25% RY,R −RB,V

75% RB,Y −RR,V

Table 7.1. Synthesis of simulation results. Legend: Arena: the environmental setup,

Distance: the distance between targets in meters, Activation Sequence: the order

according with the targets are activated, Percent: Percentage of occurrence related to

specific solution, Solution: the emerging solution.

7.2 Labor Division 135

the total distance travelled by Robot1 and Robot2 respectively, at each

reward cycle, whereas the red bar represents the overall distance totally

travelled by all the robots normalized to the shortest path needed to

complete the sequence. It is possible to observe that, at the beginning

of the learning phase all the robots are attracted by all the targets, but,

since they start from different initial positions, they succeed in reaching

only the nearest ones (Fig.7.27(a)-(c)). After this phase, which in a

certain step involves also a kind of flocking behavior, whenever a robot

does not succeed in reaching a target, it is punished and becomes more

and more refractory to this target: from this conditions specialization

emerges (Fig.7.27(d)).

A different situation arises in the cases T7.1[2.a-c], T7.1[3.a-d] and

T7.1[4.a-c] cases, where the yellow target position is slightly shifted

from the blue toward the red target. In such cases the solution is depen-

dent, besides on the target position, also on the activation sequence.

The last three cases in Table 7.1 report symmetric target configura-

tions. In particular, in the situation T7.1[5.a] the slight asymmetries

in the target position and the robot rotations play a fundamental role

in deciding the statistics of the solution. The case T7.1[6.a] reports a

highly symmetric target arrangement. Here the yellow target remains

attractive by both the robots, and it is shared in their travelled paths.

Finally, in the last arrangement T7.1[7.b] in most cases (75%) the so-

lution RB;Y − RR;V is preferred, since a robot once reached a target,

spends some time to turn, leaving more possibilites to the other robot

to reach the active target.

136 7 Experimental Investigations

This is clearly visible in Fig.7.28, which shows the dwelling time for

this target configuration, corresponding to the first five (Fig.7.28(a)(b))

and last five (Fig.7.28(c)(d)) reward cycles for each robot. The compe-

tition caused by the yellow target is evident. Robot2 succeeds in reach-

ing the yellow target more frequently than the other one, since the

activation sequence leads the yellow target to be active when Robot2

is oriented towards it. This does not take place for Robot1, that, in

any case reaches sometimes the yellow target; otherwise it arrives later

and is forced to avoid Robot2. Fig.(7.28(e)(f)) reports the trend of the

bias current for the two robots: the current related to the yellow vision

neuron is high for the neural controllers of both the robots, meaning

that attractiveness for this target is never lost by them. Instead, the

specialization is quite fast for the remaining targets: as soon as the

bias current decreases below the inactivation level Iina the correspond-

ing vision neuron does no longer emit spikes even in presence of the

corresponding colored target.

7.2.3 Remarks

The possibility to use an adaptation mechanism, which is biased toward

exploiting the capabilities of each individual to induce specialization in

an group of robots is an interesting approach to permit the emergence

of collective behaviours and division of labour. The key remark to be

underlined is that in this approach no particular capabilities are as-

cribed to each agent within the group. Even in this case, a suitable

7.2 Labor Division 137

task division among the agents is obtained, exploiting the mediation of

the environment through the action of the reward function.

The aim of this kind of experiments was to experimentally observe

the emergence of labour distribution among robots in completely de-

centralized situations. In fact, each robot have no information about

the task to be globally pursued (in this case the sequence of target

activation) and during the learning phase it becomes more attracted

to the targets it succeeds more frequently to reach, whereas it looses

interest in the other ones. This behavior is frequent in insects: flies

are initially attracted by all the targets in the environment and they

learn positive or negative associations as a consequence of rewarding

or punishing events.

This basic neural structure has been embedded into the two robots

simulated in this approach, to evaluate how these simple but efficient

plastic networks can bias the single individual behavior and indirectly

contribute to shape the collective capabilities.

The presented results show that the emergence of collective behav-

iors, at least in these simple cases, can arise from very simple, egocentric

and non-communicating single robotic architectures. The neural struc-

ture was derived after modelling the olfactory learning system in the fly

employing a classical conditioning approach in spiking neural networks.

Indeed, such a structure is only a block of a more complex insect brain

computational architecture endowed with other functionalities like ori-

entation, path integration, decision making, and also some other ones

recently included, which reproduce attention and expectation [24] [25].

138 7 Experimental Investigations

Moreover, it was very recently discovered that fruit flies are indeed

able to show attention, expectation [24], but also simple forms of im-

itation [94]. Even if they do not basically show evident social behav-

iors, nevertheless embedding their basic brain capabilities into a robotic

population can lead to derive new strategies for cooperation, basically

dependent on the individual capabilities rather than on the presence of

a global social brain.

The simulation results obtained demonstrate that the presence of a

global reward induces diversity in a team of homogeneous robots as also

discussed in general approaches to swarm intelligence [95, 20]. On the

other hand, it is not quite rare to find such a strategy in living swarms.

Different studies [96, 97] show how various species of social insects

use an interesting communication system based on multimodal signals

to exchange information through the colony. They use pheromones,

visual, acoustic and tactile signals that reach a large amount of the

colony population.

Finally, some interesting cues drawn on from these scenarios: the

robots could be endowed with different and much more enhanced in-

dividual capabilities, robots with different structures, like wheeled and

legged robots, robotic arms, hybrid vehicles. Thus, a heterogeneous

group of robots can be designed, endowed with the same cognitive

architecture but with different preferences and priorities inside. Conse-

quently, for example, if a wheeled robot without manipulator can pre-

fer, at first, to reach a manipulable target, during the learning phase,

it will acquire knowledge about its inability to satisfy its priority de-

7.3 Summary 139

mand, so it can change and adapt its objectives in order to specialize

itself in a more useful role within the swarm.

This is on the line of biological inspiration, where specialization is

influenced by the structure of the individuals and it emerges from a be-

havioral and morphological differentiation. In this way, individually for

each robot it is possible to elicit different behavioral responses accord-

ing to each robot structure, obtaining a natural and morphologically-

based division of labor.

7.3 Summary

In this chapter the emergence of cooperation is shown through appli-

cations. Interesting simulation results are provided to supply justifi-

cations and evaluate the performance and relevance of the approach.

More elaborate simulations show the possibility to use the formalized

adaptation mechanism for the emergence of labor division. Finally, a

campaign of simulations have been performed to show how the emer-

gence of labor division is event-based and influenced by environmental

setup.

140 7 Experimental Investigations

(a)

(b)

Fig. 7.26. Simulation 1: (a) Trajectories performed by the robots before the first

activation of the reward signal. For the sake of clarity the robot steps number rs when

targets are enabled Ten and disabled Tdis are reported. blue target: Ten = 0 rs, Tdis = 2 rs,

yellow target: Ten = 2 rs, Tdis = 12 rs, red target: Ten = 12 rs, Tdis = 15 rs, violet

target: Ten = 15 rs, Tdis = 18 rs. (b) Trajectories performed by the robots during the

last activation of the reward signal.

7.3 Summary 141

Fig. 7.27. Dynamics of the learning phase. The trajectories performed by Robot1 and

Robot 2, at specific reward events, are showed in (a)(b)(c)(d), the starting position of

each robot is also indicated. (e) - shows the bar diagram: in particular, the total distance

travelled by Robot1 and Robot2, at each reward cycle, are shown in blue and green bars.

Finally, the red bar represents the normalized distance travelled by all the robots.

142 7 Experimental Investigations

(a) (b)

(c) (d)

(e) (f)

Fig. 7.28. (a)/(b) - Dwelling Time of Robot1/Robot2 during the first five reward

events and the last five ones in (c) and (d). (e) - Dynamic trend of the bias current

related to Robot 1. This robot specializes itself in blue and yellow targets. As shown in

figure after approximately 25 reward events, the bias current of violet target comes below

the lower bound value (Iina = 14). (f) - Trend of the bias current related to Robot 2.

On the contrary, this robot becomes attractive only to violet and yellow targets. It has

been noticed that bias current related to yellow target remains at high values although

it presents a lot of fluctuations. It is the consequence of symmetric environmental setup,

which encourages competitive behaviours.

8

Concluding remarks

This thesis deals with two important pathways: the investigation of

new methodologies for the emergence of cooperation in groups of bio-

inspired robot and, on the other hand, the development of available

and suitable tools useful to support this kind of investigations and

applications.

It is important to emphasize that all the implementation steps of

the proposed methodologies require appropriate tools: the complexity

of multi-robot scenarios and of the involved biological structures in-

duce the need to have some powerful development instruments. The

formulation of RS4CS framework and the LiN2 library derives from

these aspects. In particular, the framework results as a very flexible

and modular architecture; thanks to these comcepts it result an ex-

pansible and general purpose instrument useful to the development of

bio-inspired cognitive architectures in a rapid and trasparent manner.

Furthermore, the LiN2 library assures the feasibility to design and sim-

ulate generic and custom neural networks in a very user-friendly way

(OPPURE useful manner). Finally, the realization of a 3D Dynamical

144 8 Concluding remarks

Simulator with high physical-fidelity and high performance was one of

the focus, seen as an important prerequisite for the implementation,

simulation and test of algorithms in multi-robots scenarios.

Starting from biological investigations, the explored model sys-

tems was applied for the realization of adaptive bio-inspired control-

architectures. In particular, a new learning approach based on neural

threshold adaptation was performed to induce specialization. The flex-

ibility of this mechanism based on behaviour specialization assures the

use of this technique for the emergence of cooperative and collabo-

rative scenarios like labor division. The new learning mechanism can

perfectly apply with classical learning mechanisms such as SDTP, as

widely shown in the dissertation.

The extreme flexibility of the proposed framework was also demon-

strated through the portability of the LiN2 library in a different envi-

ronment, giving the opportunity to reformulate the task partitioning

issue with our techniques based on specialization.

The techniques here introduced are suitable of a lot of other in-

teresting ideas; for example, possible developments are related to the

possibility to formalize interactions as a communication language, to

ensure the propagation of information and assign different tasks and

activities among robots. Besides with the introduction of a communi-

cation layer, it is possible to exchange successful information or scheme

already learned by robots, diffusing the knowledge acquired by a sin-

gle agent to the group in order to improve the performance and the

chances of success in the overall mission.

8 Concluding remarks 145

The emergence of sequences within the swarm can be an interest-

ing possible investigation: for instance, if different kinds of rewards are

introduced, separated for each robot in order to have different mean-

ings for several situations, it is possible to obtain sequences of actions.

Particularly, if a communication language is established, each robot

can learn if a reward is correlated with another robot action. In this

way, a correlation-based association can be realized to converge in an

optimized sequence of actions in the swarm. Moreover, a robot, who is

specialized to perform a specific task can learn, using correlations in-

ferences, to start its task only if another robot has formerly performed

an other one, or otherwise it can carry out indipendent actions, waiting

until other robot has complete its task, in order to reduce and optimize

the mission-time.

9

Appendix A:

Robot Implementation Specifics

This appendix describes in deep the details about the robot platform

used in the experimental scenarios discussed in this Thesis. The de-

scription of the robot structure, sensors and on-board camera will be

here discussed.

9.1 TriBot I - Robot description

The implemented robot is a simulated version of a bio-inspired hybrid

mini-robot, named TriBot I [67], [98], [99] (as shown in Chapter 6). It

results a hybrid robot developed to investigate cognitive capabilities

inspired by insects.

TriBot I is composed of three modules, the first two contain wheels

made of three-spokes appendages that improve the dexerity of the

structure [68]. The front module is composed of two standard legs with

3 degrees of freedom, each one connected to the main body.

Thanks to this peculiar design, TriBot is able to face with irregular

terrains overcoming potential deadlock situations, to climb high obsta-

148 9 Appendix A: Robot Implementation Specifics

Fig. 9.1. Comparison of real and simulated TriBot I version. In these screenshots it is

possible appreciate the high fidelity of the simulated reproduction.

cles compared to its size and to manipulate objects: these capabilities

were already tested in the single real robot in several situations [69],

and could be useful to boost the cooperation abilities.

a b

c

d

Fig. 9.2. Overview of the TriBot robot model, where simulated sensors are highlighted.

(a) Distance sensors: DLA (Distance Left Arm), DLH (Distance Left Hand), DRA (Dis-

tance Right Arm) and DRH (Distance Left Hand). Contact sensors: CLA (Contact Left

Arm), CLH (Contact Left Hand), CRA (Contact Right Arm), CRH (Contact Right Hand).

(b) Low level sensors: TL (Target Left), TR (Target Right). (c) on-board camera captured

image. (d) processed image.

9.1 TriBot I - Robot description 149

Fig. 9.2 gives and overview of on-board sensors and camera fur-

nished in TriBot I. It is useful to understand the meaning of input in

the Neural structure discussed in Chapter 2.

Referring to the subfigure Fig. 9.2(a) Distance sensors are shown: DLA

(Distance Left Arm),DLH (Distance Left Hand),DRA (Distance Right

Arm) andDRH (Distance Left Hand). On each side, the lowest distance

value calculated by the sensors is used to provide the DL and DR input

value to the neural network, respectively (see Chapter 2, Fig.2.1(a)).

Tribot is endowed also with contact sensors: CLA (Contact Left Arm),

CLH (Contact Left Hand), CRA (Contact Right Arm), CRH (Con-

tact Right Hand); if at least one of the two sensors is under a given

threshold, the respective CL/CR input is triggered (see Chapter 2,

Fig.2.1(a)). In subfigure Fig. 9.2(b) it is highlighted the Low level sen-

sors: TL (Target Left) and TR (Target Right): these are color sensors

that detect if the robot reached a given colored target area. Finally,

in subfigure Fig. 9.2(c) an example of the image captured by on-board

camera and in subfigure Fig. 9.2(d) the same image processed by visual

system. The image is partitioned in three sectors to identify the posi-

tion of the object in the visual field for orientation purposes. The sector

is selected depending on the centroid position of the detected target in

the scene, and for example in this case, only the neuron related to the

right sector (VR) will receive input from visual processing. VL,VC and

VR represent respectively the left, central and right sectors (see Chapter

2, Fig.2.1(b)). If multiple targets are detected in the scene, the object

150 9 Appendix A: Robot Implementation Specifics

with the largest area is selected. It is needed to underline that the field

of view is ±45◦, as shown by captured image examples.

10

Appendix B:

Framework Guidelines

This appendix furnishes details about the specific implementation of

the RS4CS framework.

Construction procedures, implementation details and How to... descrip-

tions will be here discussed to provide useful guidelines.

10.1 How to use the framework

The Form dedicated to a specific robot represents the interface with

this robot in order to connect, interact, query and launch control algo-

rithms.

The Fig. 10.1 shows an example of the interface, realized to interact

with TriBot robot. In this form we can see buttons devoted to imple-

ment all possible interaction actions:

- Connect section

- Movement and manipulator commands

- Sensors queries section

- Implemented algorithms

152 10 Appendix B: Framework Guidelines

Choose an algorithm to open related interface.

Fig. 10.1. TriBot Interface.

Fig. 10.2 shows an example of simple algorithm, used such as an

example of developing. Refers to How to develop the framework sec-

tion for more details. In this interface there are sections dedicated to

peculiar input/output and commands to run the algorithm.

10.2 How to develop the framework

1. Decouple the problem in the essential architecture parts:

10.2 How to develop the framework 153

Fig. 10.2. Algorithm Interface.

a. Algorithms⇒ project which contains all algorithms implemen-

tations and related interfaces.

b. AlgorithmsLib⇒ project which contains the base and common

useful libraries.

2. In general, to add a new Algorithm in the Algorithms project, it

must create a new directory with the same algorithm name (Algo-

rithmName) and 4 files:

i. Files AlgorithmName.h and AlgorithmName.cpp – which contains

the specific implementation of the algorithm.

This class must be a derived class of the Algorithm class (lo-

cated in Algorithms/AlgorithmCore/). Besides the class it must

override 2 virtual methods:

154 10 Appendix B: Framework Guidelines

- void AlgoStep(ArrayList ˆ args) implements actions per-

formed in an algorithm step.

- void CloseHandler() with the actions performed when a

crash occurs or in algorithm closing phase.

ii. Files Algorithm Form.h and Algorithm Form.cpp – which repre-

sent the graphical interface of the algorithm. Remember that the

management of graphical updates are performed with a Publish/-

Subscribe paradigm.

3. If necessary, use existing libraries or create new ones in the project

AlgorithmsLib.

Refers to BasicExamples code, located in Algorithms/BasicExam-

ples, for more implementation details.

10.3 Izhikevich neuron implementation 155

LiN2

10.3 Izhikevich neuron implementation

A specific neuron model implementation is simply obtained by inheri-

tance from NeuronModel class, overriding the Step() method, which is

nothing more than the code equivalent of the state equations of model:

✞
1 bool Izh ikev ichModel : : Step (f loat I){

2 f loat vp , up ;

3 i = I ;

4

5 vp = 0.04 ∗ pow(v , 2) + 5 ∗ v + 140 − u + I + i b i a s ;

6 up = a ∗ (b ∗ v − u) ;

7 v = vp ∗ Clock : : DeT () + v ;

8 u = up ∗ Clock : : DeT () + u ;

9

10 i f (v >= 30 . f) {

11 v = c ;

12 u = u + d ;

13 return true ;

14 }

15 return fa lse ;

16 }✡✝ ✆
Listing 10.1. IzhikevichModel::Step () method.

About this specific neural model, since there exist 20 different con-

figurations for Izhikevich neurons, LiN2 can handle all of them, focusing

on which configuration to use, rather than on the value of its parame-

ters:

156 10 Appendix B: Framework Guidelines

enum neuron model

{

TONIC SPIKING,

PHASING SPIKING,

. . .

INHIBITION INDUCED BURSTING,

CUSTOMMODEL

} ;

const f loat NEURONCONFIGURATIONS [2 1] [5] =

{

0 .02 f , 0 . 2 f , −65. f , 6 . f , 14 . f , // ton i c s p i k i n g

0 .02 f , 0 .25 f , −65. f , 6 . f , 0 . 5 f , // phas i c s p i k i n g

. . .

−0.026 f , −1. f , −45. f , 0 . f , 80 . f , // i n h i b i t i o n−induced bu r s t i n g

FP NAN, FP NAN, FP NAN, FP NAN, FP NAN // custom−de f ined neuron

} ;

10.4 LayeredNetworkBuilder Interface

An example of LayeredNetworkBuilder interface is shown in the fol-

lowing Listing.

Giving details: the make network() factory method [100] has been

overridden to create instances of LayeredNetwork, which represents the

concrete subclass of NetworkImp.

Similarly, the AddNeurons() method is used to create neurons and

configures them as IzhikevichModel instances.

10.4 LayeredNetworkBuilder Interface 157

✞
1 class LayeredNetworkBuilder : public NetworkBuilder{

2 private :

3 [. . .]

4 /∗ ovve r i de NetworkBui lder : : make network () ∗/

5 NetworkImp ∗ make network (s t r i n g) ;

6 public :

7 [. . .]

8 /∗ ove r r i d e NetworkBui lder : : End () ∗/

9 void End () ;

10 /∗ ove r r i d e NetworkBui lder : : AddNeurons () ∗/

11 void AddNeurons (neuron [] , int) ;

12 /∗ ove r r i d e NetworkBui lder : : SetNeuronParams () ∗/

13 void SetNeuronParams (neuron params ∗) ;

14 /∗ ove r r i d e NetworkBui lder : : SetSynapses () ∗/

15 void SetSynapses (syn [] , int) ;

16 /∗ ove r r i d e NetworkBui lder : : SetSynapseParams () ∗/

17 void SetSynapseParams (synapse params ∗) ;

18 /∗ ove r r i d e NetworkBui lder : : BuildFromXml () ∗/

19 void BuildFromXml (s t r i n g) ;

20 // c l a s s−s p e c i f i c

21 // network cons t ruc t i on p r im i t i v e s

22 void AddLayer (s t r i n g) ;

23 void Se l e c tLayer (s t r i n g) ;

24 void AddNeurons (neuron [] , int , i z neuron params ∗) ;

25 void SetSynapses (syn [] , int , synapse params ∗) ;

26 void SetSynapse (syn , synapse params ∗) ;

27 } ;✡✝ ✆
Listing 10.2. LayeredNetworkBuilder interface.

158 10 Appendix B: Framework Guidelines

10.5 How to Build a Network

10.5.1 XML-based Description

Using the NetworkBuilder::BuildFromXml(), a network can be built

from an XML description similar to the the following simple scheme1:

✞
1 <network type="network -topology" name="network -name"

2 c l o ck ="step_duration">

3 < l a y e r name="layer -name">

4 <neuron name="neuron -name">

5 <model name="model -name" param="param -value"/>

6 </neuron>

7 . . .

8 <!−− more neurons here −−>

9 </layer>

10 . . .

11 <!−− more l a y e r s here −−>

12 <synapses>

13 <synapse pre="presynaptic -neuron"

14 post="postsynaptic -neuron">

15 <behaviour name="behaviour -name" param="param -value"/>

16 . . .

17 <!−− more synapse behaviours here −−>

18 </synapse>

19 . . .

20 <!−− more synapses here −−>

21 </synapses>

22 </network>✡✝ ✆
Listing 10.3. XML skeleton of a network description

1 to parse XML, LiN2 relies on the pugixml library [101]

10.5 How to Build a Network 159

Once done with the XML, the network can be created:✞
NetworkBuilder ∗ bu i l d e r = new LayeredNetworkBuilder () ;

bu i lde r−>BuildFromXml ("/path/to/xml/Network.xml") ;

Network ∗ network = bui lde r−>GetNetwork () ;✡✝ ✆
Listing 10.4. Creating a network from XML

10.5.2 Construction Directives

Beside XML description, the networks can be manually create using the

building directives offered by NetworkBuilder. First of all, to start the

construction process the NetworkBuilder::Begin() method must be

invoked; it takes as input a string representing the name of the network

to create:✞
NetworkBuilder ∗ bu i l d e r = new LayeredNetworkBuilder () ;

bu i l d e r −> Begin ("Network") ;✡✝ ✆
Listing 10.5. Beginning the network construction

Then it is possible to add neurons using arrays, one for each layer:✞
neuron i npu t l a y e r [] = {"I1" , "I2" , "I3" , "I4" } ;

neuron output l aye r [] = {"O1" , "O2" } ;✡✝ ✆
Listing 10.6. Specifying neurons for each layer

It useful to notice how the neuron type is just a typedef for string.

Time to add the first layer, the LayeredNetworkBuilder::AddLayer()

will do the work.

160 10 Appendix B: Framework Guidelines

✞
bu i l d e r −> AddLayer ("input_layer") ;✡✝ ✆

Listing 10.7. Adding the input layer

Once a new layer has been added, it must be selected to tell the builder

we want to add neurons on it:✞
bu i l d e r −> Se l e c tLayer ("input_layer") ;✡✝ ✆

Listing 10.8. Selecting the input layer

A layer remains selected until we tell the builder to selected another

layer.

It is now time to create the neurons: we will pass the builder an

instance of iz neuron params to specify the neuron class we want to

use and any other parameter:✞
1 iz neuron params ∗ n params = new i z neuron params () ;

2 n params −> model = spa r k l i n : : CLASS 1 ;

3 n params −> IB ias = 0 . f ;

4 n params −> u = −20. f ;

5 n params −> v = 70 . f ;

6

7 bu i l d e r −> SetNeuronParams (n params) ;✡✝ ✆
Listing 10.9. Selecting the input layer

From this moment on, all the neurons created by the builder will be

configure with these parameters.

We are now ready to add the neurons of the first layer:✞
1 bu i l d e r −> AddNeurons (input l aye r , 4) ;✡✝ ✆

Listing 10.10. Adding neurons to the first layer

10.5 How to Build a Network 161

Adding the second layer is straightforward:✞
1 bu i l d e r −> AddLayer ("output") ;

2 bu i l d e r −> Se l e c tLayer ("output") ;

3 bu i l d e r −> AddNeurons (output layer , 2) ;✡✝ ✆
Listing 10.11. Selecting the input layer

Let us now add synapses. The procedure is quite similar, we have to

tell the builder the parameters and the behaviour the synapses we want

to create, this involves a synapse params object:✞
1 synapse params ∗ s params = new synapse params () ;

2 s params −> behaviour = PROPORTIONAL | NOT TRAINABLE;

3 s params −> weight = −4. f ;✡✝ ✆
Listing 10.12. Specifying synapses’ parameters and behaviour

As showed above, synapse behaviour can be composed using the "|"

operator.

To add a synapse, we will use the NetworkBuilder::SetSynapse()

method:✞
1 bu i l d e r −> SetSynapse (syn ("I1" , "O1") , s params) ;

2 bu i l d e r −> SetSynapse (syn ("I2" , "O2") , s params) ;✡✝ ✆
Listing 10.13. Specifying synapses’ parameters and behaviour

As for the neuron, here the syn type is just a shorthand name for the

pair<string, string> type.

162 10 Appendix B: Framework Guidelines

Let us add all of the remaining neurons:✞
1 s params −> weight = 8 . f ;

2 bu i l d e r −> SetSynapse (syn ("I1" , "O2") , s params) ;

3 bu i l d e r −> SetSynapse (syn ("I2" , "O1") , s params) ;

4

5 s params −> behaviour = PROPORTIONAL;

6 s params −> weight = −4. f ;

7 bu i l d e r −> SetSynapse (syn ("I3" , "O2") , s params) ;

8 bu i l d e r −> SetSynapse (syn ("I4" , "O1") , s params) ;

9

10 s params −> weight = 8 . f ;

11 bu i l d e r −> SetSynapse (syn ("I3" , "O1") , s params) ;

12 bu i l d e r −> SetSynapse (syn ("I4" , "O2") , s params) ;✡✝ ✆
Listing 10.14. Specifying synapses’ parameters and behaviour

The network construction is done and so it is possible to invoke the

builder to get a reference to the network just created:✞
bu i lde r−>End () ;

n = bu i lde r−>GetNetwork () ;✡✝ ✆
Listing 10.15. Ending the network construction

10.6 How to Create a Logger 163

10.6 How to Create a Logger

To create a Logger instance it need to invoke the Logger::CreateInstance()

class method, and passing it a string representing a unique identifier of

the log a new reference is obtained, if the specified logger does not ex-

ist, otherwise a reference to the already existing logger is returned. The

existing loggers are held into a tree structure: when the Log() method

is invoked on a logger, the log message is also broadcast up the log-

gers three, so that every logger collects all log messages from all of its

leaves/subtrees. This is particularly useful when one wants to simul-

taneously perform logging at both component level and system-wide

level. To obtain a reference to the root logger, the Logger::GetRoot()

can be used. To specify, instead, that a logger must be a leaf for an-

other logger, a dotted notation has be used when specifying its name,

as shown in Listing 10.16:✞
1 // ge t a r e f e r ence to the roo t l o g g e r

2 Logger ∗ root = Logger : : GetRoot () ;

3

4 // ge t a r e f e r ence to a c h i l d l o g g e r

5 // i t w i l l be c rea t ed as l e a f o f the roo t l o g g e r

6 Logger ∗ ch i l d = Logger : : GetInstance ("child") ;

7

8 // ge t a r e f e r ence a s u b c h i l d l o g g e r

9 // i t w i l l be c rea t ed as l e a f o f ” c h i l d ”

10 Logger ∗ subch i ld =

11 Logger : : GetInstance ("child.subchild") ;✡✝ ✆
Listing 10.16. Loggers creation

164 10 Appendix B: Framework Guidelines

Each logger is configured with a Priority, and there are different

available priorities:✞
1 enum Pr i o r i t y

2 {

3 WARN,

4 DEBUG,

5 ERROR,

6 CRITICAL,

7 } ;✡✝ ✆
Listing 10.17. Priorities

Changing the priority of a logger will result in having a more or less

verbose log, since the Logger::Log () method logs a message if and only

if the priority of the message is equal or higher to the priority of the

logger itself. Last, let us see how to actually log messages. log4sparklin

provides the following macros:✞
1 // i s s u e s a message wi th ”warn” p r i o r i t y

2 LOGWARNING(logger , step , message) ;

3 // i s s u e s a message wi th ”debug” p r i o r i t y

4 LOGDEBUG(logger , step , message) ;

5 // i s s u e s a message wi th ” error ” p r i o r i t y

6 LOGERROR(logger , step , message) ;

7 // i s s u e s a message wi th ” c r i t i c a l ” p r i o r i t y

8 LOG CRITICAL(logger , step , message) ;✡✝ ✆
Listing 10.18. log4sparklin macros

Invoking the Network::Trace() method and passing it two lists: a

list containing the names of the components to trace and a list con-

taining the names of the variables of interest. Every internal vari-

10.6 How to Create a Logger 165

able of each component will be traced on a file whose name will be

component.variable.txt. For example, tracing the evolution of the

mem- brane potential of the neuron S as the simulation runs can be

done this way:✞
1 int x = 500 ;

2 l i s t <s t r i ng> i t em s t o t r a c e ;

3 i t ems t o t r a c e . push back ("I1") ;

4

5 l i s t <s t r i ng> v a r s t o t r a c e ;

6 v a r s t o t r a c e . push back ("v") ;

7

8 for (int i = 0 ; i < x / Clock : : DeT () ; i++)

9 {

10 n−>SetCurrent (i npu t cu r r en t s) ;

11 n−>Simulat ionStep () ;

12 n−>Trace (i t ems t o t r a c e , v a r s t o t r a c e) ;

13 }✡✝ ✆
Listing 10.19. Tracing the network during its simulation

If tracing network variables is not enough, user-created loggers can

be attached to any of the network components. For example, saying to

add a logger to the I1 neuron, the Network::SetLogger() method is

used as shown in Listing 10.21.✞
1 Logger ∗ S l ogg e r = Logger : : GetInstance ("I1") ;

2 LOG SET FILE(S logger , "log/I1.txt") ;

3 LOG SET LEVEL(S logger , l o g 4 s p a r k l i n : :DEBUG) ;

4 n−>SetLogger ("I1" , S l o gg e r) ;✡✝ ✆
Listing 10.20. Adding loggers to network components

166 10 Appendix B: Framework Guidelines

The first argument identifies the name of the component we want to

attach the logger, while the second is the logger itself. This can be

done easily with synapses also, a synapse name can be obtained from

the name of the neurons it connects, putting a -> in between:✞
1 Logger ∗ s yn l ogg e r = Logger : : GetInstance ("I1->O1") ;

2 n −> SetLogger ("I1->O1" , S l o gg e r) ;✡✝ ✆
Listing 10.21. Adding loggers to synapses

10.7 STDP Algorithm Implementation 167

10.7 STDP Algorithm Implementation

Let us have a look at the implementation of the STDP[48] algorithm

provided with LiN2: the TrainSynapse()method is the implementation

of the classical STDP weight-update rule. After having got the state

of the synapse one wants to train and of both the presynaptic and the

postsynaptic neurons, the synapse is updated with the new weight by

means of the Network::UpdateSynapse() method.✞
1 void STDP : : TrainSynapse (syn synapse)

2 {

3 synapse params ∗ new params = new synapse params () ;

4 f loat cur r ent we ight =

5 cu r r e n t s y n ap s e s t a t e . f i nd ("weight")−>second ;

6 pair<vector<f loat >, vector<f loat> > s p i k i ng t ime s ;

7 sp i k i ng t ime s = GetSpikingTimes (synapse) ;

8 f loat deltaW = 0 . f ;

9 // c a l c u l a t e the new synap t i c we igh t

10 for (int i = 0 ; i < s p i k i ng t ime s . f i r s t . s i z e () ; i ++)

11 for (int j = 0 ; j < s p i k i ng t ime s . second . s i z e () ; j ++)

12 deltaW +=

13 W (sp i k i ng t ime s . second [j] −

14 sp i k i ng t ime s . f i r s t [i]) ;

15 // s e t the new synap t i c we igh t

16 new params−>weight = cur r ent we ight + deltaW ;

17

18 // pass i t to the UpdateSynapse () method

19 network−>UpdateSynapse (synapse , new params) ;

20 delete new params ;

21 }✡✝ ✆
Listing 10.22. STDP::Run() method.

168 10 Appendix B: Framework Guidelines

Fig. 10.3. UML Class Diagram. LiN2 overview of base and derived classes, attributes and

operations included. It is clearly highlighted the separation between abstract and concrete

classes.

10.7 STDP Algorithm Implementation 169

Fig. 10.4. UML Class Diagram. LiN2 overview of base and derived classes, attributes and

operations included. It is clearly highlighted the separation between abstract and concrete

classes.

11

Appendix C:

Simulator Guidelines

This appendix furnishes details about the specific implementation of

the Simulator environment.

In particular, How to... descriptions will be here shown to provide

guidelines.

11.1 How to introduce a new Robot in the

Simulator

Many suitable instruments are needed to model and create the me-

chanical model of the robot starting from the real physical robot.

The 3D design of the robot realized using a CAD (Computer Aided

Design) design program (i.e. AutodeskTM Autocad 2008) must be di-

vided in two parts: visual and physic, in order to decouple the visual

representation of the simulator from the real physic model simulated by

ODE engine. The policy chosen to create environment and robot model

looks like USARSim approach [72] where the environment is created

using AutoCAD model of the real arena.

172 11 Appendix C: Simulator Guidelines

Fig. 11.1. Pipelined process models’ design.

After that, using another modeling software (AutodeskTM 3DStudio

MAX) and two plugins(PhysX Plug-In for Autodesk 3ds Max of Nvidia

[102] and COLLADA MAX Nextgen by Fcollada [103]), it is possible

to obtain the complete model of the robot. In particular, the former

plugin provides the physical model of a body while the latter furnishes

the visual representation in a standard format (COLLADA that is a

XML schema).

The decision to use a standard XML-like format to configure simula-

tor reminds the ARGoS approach [74], giving the possibility to include

new modules in a transparent way.

As shown in Fig. 11.1, the complete model is composed by two dif-

ferent parts: physical and visual for performance issues. For example

the visual model can be more ‘complex’ than the physical one with-

out big losses in performance. This mechanism is needed to simplify

11.2 How to create environment in the Simulator 173

the model used by the ODE engine in order to avoid the increase of

computational load as regards collision detection algorithms.

At the moment different prototypes of robot (TriBot I, TriBot II,

Hexapod,...) are imported in the simulation tool; moreover, a faith-

ful reproduction of the drosophila megaloganster is furnished to allow

biological investigations.

11.2 How to create environment in the Simulator

In relation to the realization of environments or objects, this procedure

will became extremely simple to be followed, so the models can be

designed directly using 3DStudio MAX.

Fig. 11.2. Pipelined process for environment (i.e. world, objects) design.

As the previous process, the CAD design is exported using the plu-

gins(PhysX Plug-In for Autodesk 3ds Max of Nvidia [102] and COL-

174 11 Appendix C: Simulator Guidelines

LADA MAX Nextgen by Fcollada [103]) in order to obtain the simu-

lated model. The Fig. 11.2 shows an example where an simulated bottle

is introduced in the simulation environment.

11.3 Configuration File

An example of simple configuration file is shown in List. 11.1, where it

is possible identify some of the built-in tags:

• Simulator - Required tag : contains global simulation parameters.

• World - Required tag : used to set the simulation environment.

• Robot - Optional tag : used to define a robot entity in the simulation

environment. It can contains several attributes such as name, ID,

model type, cfm, start position, server port, emnbedded camera.

• Object - Optional tag : used to insert a generic object (i.e. obstacles)

in the simulation environment. Among attributes, enabled permits

to decide if the object will appear in the scene at the beginning of

the simulation, or if it will be not visible.

• Graphics - Required tag : contains graphical parameters.✞
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <Simulator>

3 <Simulat ion name="SimulazioneDiProva">

4 <dt value = "0.01" /> <max contact po ints va lue="20" />

5 <erp value="0.8" /> <cfm value="0.000001" />

6 <s t a r t va lue = "false" />

7 <t r a c e f i l e n ame value = "..\..\traces%simname%.rawdata" />

8 </Simulat ion>

11.3 Configuration File 175

9 <World>

10 <model>

11 <phy s i c a l f i l ename="..\\..\\ worlds\\arenap.dae"

12 id="Scene0 -PhysicsInstance" binding="1" />

13 <v i s u a l f i l ename="..\\..\\ worlds\\arenav.DAE" />

14 </model>

15 </World>

16 <Robot name = "TribotSw1" ID = "0" type = "tribot" >

17 <model>

18 <phy s i c a l f i l ename = "..\..\TRIBOT\tribotp_Ghost.dae"

19 id="Scene0 -PhysicsInstance" binding="1" />

20 <v i s u a l f i l ename= "..\..\TRIBOT\tribotlittlevis.dae" />

21 </model>

22 <s t a r tpo s x="0.5" y="0.0" z="0.0" />

23 <attached camera name = "On-Board -Camera" at tachto="ModuloANT"

24 transx = "0.0" t ransy = "0.0" t ransz = "0.2"

25 lookatx="0.0" l ookaty=" -0.6" l ooka tz="0.0"

26 width = "320" he ight = "200" s e r v e r = "10010"/>

27 <s e r v e r port="10000" />

28 </Robot>

29 <Graphics>

30 <viewport f u l l s c r e e n = "false" width = "800" he ight = "600" />

31 <normal sca l e va lue = "0.02" />

32 < l i g h t x="1.0" y="1.0" z="1.5" />

33 <capture f i l ename = "..\..\ capture\capture.bmp"

34 method = "1" f ramesk ip = "4"/>

35 </Graphics>

36 </Simulator>✡✝ ✆
Listing 11.1. Example of Configuration File.

12

Appendix D:

Task partitioning

Threshold adaptation technique is suitable for the reformulation of the

Task partitioning scenario analized by IRIDIA laboratory1. Role spe-

cialization and labor division can be used to optimize performance and

reduce inference. This appendix provides details about the proposal

strategy used in the ongoing testing applications.

12.1 Task partitioning issue

In general, it is difficult to partition a task, and often in robotic appli-

cations this aspect could limit the number of robots employed in that

task. A possible solution is to identify and split it into inter-dependent

subtasks. This is the guideline to identify task partitioning in groups of

robots. The main focus of this division is the reduction of interference,

seen as a constraining factor in the performance. In swarm robotics,

1 work in collaboration with IRIDIA laboratory (Institut de Recherches Interdisci-

plinaires et de Développements en Intelligence Artificielle) in Brussels, under the su-

pervision of Prof. Marco Dorigo and Dr. Vito Trianni.

178 12 Appendix D: Task partitioning

interference is a critical bottleneck problem, that limits number of de-

ployed robots. There is interference when, for example, different robots

try to access the same zone at the same time. In this way, the time

spent in unfruitful behaviors (i.e. obstacle avoidance) increases with

the density of individuals [104].

In the considered scenario the environment is manually partitioned

(spatially divided in three zones) to permit the distribution of subtasks

to the different individuals, in order to show how this strategy improves

performance [105].

12.2 Scenario description

The scenario takes inspiration from the work presented in [105], in order

to show how specialization techniques (discussed in chapter 2) can be

perfectly applied for these approaches.

The main goal is to analyze the task partitioning effects in the reduc-

tion of spatial interference and how the Specialization induces division

of labor in the robotic swarm.

Before introducing the neural structures identified for this scenario,

details about experimental description are needed. The environment is

similar to the wide-nest arrangement used in [105]; in particular, an

arena (4m x 2 m) is made and threee different zones are depicted:

- the Nest (blue area) is the store area, marked by blue light sources.

- the Source (red area) is the harvest area, marked by red light sources.

12.2 Scenario description 179

- the Exchange/transfer Zone (grey area) is the exchange zone where

preys can be transferred. It is located in the middle of the arena,

midway between Nest and Source.

The symmetry of the arena guarantees the same level of interference

in all the zones. A screenshot of the arena is furnished in Fig. 12.1.

Fig. 12.1. Arena used for the task partitioning investigations.

The robots have to accomplish a foraging task and so they can be

harvesters, grasping preys from the source and move them to the ex-

change zone, where they wait awhile in order to pass the prey to other

free robots (potential storers). All the robots are able to identify others

with a prey on the basis of their LEDs color (see par. 12.4 for details).

If no robot is available for the transfer, robots can decide to switch

subtask to accomplish overall task (un-partitioned task). The waiting

time, the time spent to wait in the zone for a prey-transfer, can be used

as evaluation of the allocation quality in the swarm. If this time is very

180 12 Appendix D: Task partitioning

long and the timeout often occurs, there is no a good allocation in the

group.

12.2.1 IRIDIA approach

In [105], robots used a simple threshold-based model to decide when

to switch task. The waiting time, related to each single robot, is a

function of the average time needed to the robots in working to the

other subtask. This mechanism can be represented through a finite

state machine, as shown in Fig. 12.2:

Fig. 12.2. Finite state machine for the IRIDIA approach.

where gray states are related to the harvest sub-task, whereas white

states are related to the store sub-task. All the robots start in the

harvest area and so they will reach the source to retrieve a prey. Then,

they move to the Transfer zone to wait for a free storer. Robots with

preys will move to the nest to deposit the prey. After that, they can

reach the exchange zone and search for a prey.

12.2 Scenario description 181

In this approach task switches can occur: that is, a robot with a

prey (harvester) can decide to become a storer, and viceversa. These

switches depend on the internal threshold, seen as the maximum control

cycles a robot can spend in the exchange zone waiting for others. If a

robot wait for a time longer than threshold, it switches the task. The

threshold (θ) is set in a static way at the beginning of the experiment:

robots choose a random threshold in the interval [0; 1000].

12.2.2 Theshold adaptation approach

In this approach the Insect Brain structure, proposed in [76], is used

in conjunction with threshold adaptation technique [58]. In particular,

starting from the model [106] a sub-set of the blocks are considered:

• Internal States: in the specific task it contains all internal needs,

seen as drives to guide the correspondent actions to be performed.

In particular: pick up a prey object from the source (drives: GoTo-

Source), store a prey in the nest (drives: GoToNest), move to the

exchange zone and wait for a free storer (drives: WaitInTheZone).

• BSN: (Behavior Selection Network) network used to select the cor-

rect behavior to be performed. More details in the following para-

graph.

• MB(2): (Behaviour Evaluation) block devoted to manage the Thresh-

old adaptation learning. It evaluates the benefits efficacy of the just

performed behavior in front of the obtained reward.

182 12 Appendix D: Task partitioning

In addiction, CX (Central Complex - PB, FB) was considered to

manage Visual inputs for the network. The obstacle avoidance is con-

sidered as a reflexive behavior and so it has major priority and it results

in competition with the other behaviors to perform. Summarizing, the

proposed architecture is schematized as follows:

Fig. 12.3. Proposed IBB Architecture.

12.2 Scenario description 183

Details about the proposed neural network (BSN), used to select

the behaviour to perform, is shown in Fig. 12.4.

Fig. 12.4. Behavior Selection Network.

The network is composed of 2 input neurons and 3 output neurons

which exactly correspond to the 3 different possible behaviors. The be-

havior related to Transfer zone (OZone) results as default behavior and

it can be reached both by harvesters and storers, every time the inter-

nal state (drives) cares about ambiguity. The external current inputs

of network are defined as constant, in order to merely establish if the

stimulus is present or not.

In order to introduce the possibility to modulate the output behav-

ior and permit a threshold learning phase, a threshold adaptation is

184 12 Appendix D: Task partitioning

applied to the neuron OZone. The Timeout and Transfer input affects

the threshold level of the neuron. During the learning, the Threshold

adaptation will guide the output behaviors in order to establish the

convenient current output behavior.

Following the model reported in [58], it is possible to formalize a

proposed structure for the motor and pre-motor part. This block can

be seen as a three layers network, where the BSN outputs are now the

inputs of the network, devoted to guide and filter inputs depending on

the internal state needs.

In particular, analyzing the figure (Fig. 12.5) it is possible distin-

guish 3 subnets devoted to directly modulate the motor actions using

the output motor neurons (MLN/MRN) through the inter-neurons.

TLx/TRx are unconditioned stimuli (US) of the subnet, they come

from target sensors and represent the input of the sensory neurons

TLX/TRX (X = N,S,Z, respectively for Nest/Source/Zone). They are

basic sensors processed with reflexive pathways and cause uncondi-

tioned responses (UR), not subject to learning. Instead, IxL/IxC/IxR

(x = N,S,Z: Nest/Source/Zone) are inputs coming from vision sensors,

useful to identify the position of the attractive zones and represent

Conditioned stimuli (CS) subject to learning. In the same way, these

inputs stimulate XL/XC/XR (X = N,S,Z: Nest/Source/Zone), that are

the sensory neurons related to vision sensors. When a reward is acti-

vated, all the weights related to the subnet involved in the current

activation are reinforced. The Obstacle avoidance subnet is used to

modulate motor actions to avoid collisions with obstacles. This subnet

12.2 Scenario description 185

Fig. 12.5. Proposed neural implementation.

186 12 Appendix D: Task partitioning

has higher priority, in order to react more quickly if an obstacle is de-

tected. The motor neurons outputs are used to control the velocity of

the wheels on the left (MLN) and right (MRN) side of the robot.

Since the transit in the transfer zone is the default behavior in all

situations (pick up a prey from source, or store food) and considering

the robot has an omnidirectional camera, every time all input currents

are simultaneously activated, so the BSN works as filtering level to

select the inputs through the internal drives.

The Role Specialization learning is here introduced to decide the be-

havior to perform and properly mask the inputs. Step-by-step, the BSN

incrementally learns which behavior is to be selected and forwarded to

the input of the pre-motor layer. The current input value is set inversely

proportional to the distance from the zones so, the intensity of inputs

and the effect of Threshold adaptation on the BSN permit to modulate

the response of the network, based on the learning stage. Furthermore,

the proposed neural architecture gives also the possibility to learn to

recognize targets from visual inputs, using STDP, in conjunction with

threshold adaptation. Starting from these ideas a local reward is intro-

duced to permit the correct learning activation updates. In particular a

satisfactory event is enough to induce a learning update; the synapses

are reinforced when a sub-task (one of the three possible behaviors) is

successfully accomplished, based on the internal drives.

12.3 Comparisons and Remarks 187

12.3 Comparisons and Remarks

The main difference between the two approaches discussed above is

correlated to the strategies itself. In fact, in the IRIDIA approach the

agents decide, every cycle, the behaviour to perform merely in relation

to the fixed theshold value and the time spent in Transfer Zone. In

Theshold adaptation approach, instead, the robot specializes its be-

haviour, becoming an harvester or a storer during the learning phase.

Moreover, since it is an on-line learning, the arrangament of the swarm

can adapt to environmental changes. However, in both techniques the

situation can vary when deadlock or interferences problems induce dif-

ferent solution.

Furthermore, a variation of the scenario presented in the par. 12.2

can be proposed using the Theshold adaptation, through the addition

of a variable threshold value (θ).

In particular, as concerns this aspect the method used to modify

the threshold value is referred to the model showed in [107]. In this

work a model of division of labour in insect societies, based on variable

response thresholds is introduced and the threshold value (θ), used to

establish the maximum amount of control cycles they can spend to

perform a specific task, is regulated by the following formula:

θij → θij − xijξ∆t+ (1− xij)ϕ∆t (12.1)

where assume that m tasks need to be performed and N are the

workers, θij(i = 1, ..., N and j = 1, ...,m) is the current threshold

value; whereas ξ and ϕ are the coefficients that describe learning and

188 12 Appendix D: Task partitioning

forgetting, respectively. In this time-incremental model, individual i

becomes more (respectively less) sensitive by an amount ξ∆t (respec-

tively ϕ∆t) to task j-associated stimuli when performing (respectively

not performing) task j during a time period of duration ∆t. Finally, xij

is the fraction of time spent by individual i in task j performance. For

our purposes, the threshold value (θ) is now used as timeout, in order

to establish the maximum amount of control cycles they can spend in

the transfer zone. Following this approach, our timeout value can be

modified in respect to the formula:

Θi
Tout
→ Θi

Tout
− tpercent (12.2)

where Θi
Tout

represents the timeout value (ref. Fig. 12.4) and it is

updated subtracting an amount sensible by the rule:

tpercent = F (tfrac, tMAX) (12.3)

where tfrac is the fraction respect to the Max value (tMAX = 1), seen

as the time spent to perform the Wait in the Zone behavior respect to

the other behaviors.

Moreover, another possible variation is related to the transfer zone.

In fact, if this zone is identified using different grey levels in order to

produce a gradient in that area, it is possible to establish not only the

amount of time to spend in that zone but also the grey-level where

stop and wait. This solution permits to obtain a task-partitioning and,

in addition, a self-organization into the group to optimize in terms of

12.4 FootBot - Robot description 189

both time and space. An adaptation method is necessary to decide the

stop position on the grey-level floor.

This approach permits to use task partitioning as a way to reduce

interference in a spatially constrained harvesting task. It is possible

to allocate individuals of a robotic swarm to a partitioned task, and

show how the partitioning can increase system performance by reducing

sources of interference.

12.4 FootBot - Robot description

The foot-bot is an autonomous roving robot equipped with self-assembling

capabilities. It uses a gripper to self-assemble to create a cooperative,

more complex entity; moreover its modular architecture allows differ-

ent task-dependent configurations. An image of the real and simulated

foot-bot robot are shown in the following Fig. 12.6:

(a) (b)

Fig. 12.6. Foot-bot overview.

190 12 Appendix D: Task partitioning

Giving some implementation details: the foot-bot is high 28 cm with

a diameter of 13 cm and the maximum speed is 30 cm/s. It contains

infrared sensors in the base, located in different positions and with

different purposes: 24 sensors are located around the perimeter and

used for obstacle detection, whereas 8 sensors are located in the bottom

face and 4 contact ground sensors under the robot for ground detection.

Moreover, in the base there are 3-axis accelerometers and gyroscopes

and a ring of 8 LEDs, used to perceive close robots by using on-board

cameras and to visually communicate. The robots contain two camera:

a top/front camera and an omnidirectional camera. Finally, a rotating

long-range infrared scanner is used to identify far objects; the distance

scanner is based on 4 infrared distance sensors mounted on a 360◦

rotating platform.

13

Acknowledgements

These years represented for me important advances for my human and

professional experiences.

Foremost, I would like to express my sincere gratitude to my advisor

Prof. Paolo Arena for the support of my Ph.D studies and research, for

his motivation and wide knowledge. Moreover, I thank the coordinator

Prof. Luigi Fortuna for the opportunities that I had during my doctor-

ate, Luca Patané and all fellow labmates.

A very special thanks goes to my family for their constant support

and love they give me every day. In particular, my brother Eugenio for

its steady encouragement and its special quips.

My sincere thanks also goes to Prof. M. Dorigo, Dr. V. Trianni and

Dr. M. Birattari for offering me the opportunity to collaborate with

IRIDIA laboratory and to appreciate their exciting group. During this

period, I had the daily possibility to compare not only my knowledge,

192 13 Acknowledgements

but also human experiences with a great group of researchers and lab-

mates. I’m especially grateful to all of these extraordinary guys to have

received me heartily and for the unforgettable fun we have had in my

belgian period.

Heartfelt thanks to all my friends for their patience, support and

friendship, in particular the magnificent trio: Giovanna, Sabrina, Zaira,

the super-woman Antonella, the wonderful Favitta’s family.

Finally, I would like to thank a special person: everything must

change to remain as it is.

References

1. A. Dornhaus and N. R. Franks, “Individual and collective cognition in ants and other

insects (hymenoptera: Formicidae).” Myrmecological News, vol. 11, no. August, pp.

215–226, 2008.

2. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to

Artificial Systems. New York: Oxford Univ.Press, 1999.

3. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and

E. Bonabeau, Self-Organization in Biological Systems. Princ.Univ.Press, 2001.

4. V. R. Lesser, “Cooperative Multiagent Systems: A personal view of the state of the

art.” IEEE Trans. on Knowledge and Data Eng., vol. 11, no. 1, pp. 133–142, 1999.

5. C. Anderson, G. Theraulaz, and J. L. Deneubourg, “Self-assemblages in insect soci-

eties.” Insectes Soc., vol. 49, no. 2, pp. 99–110, May 2002.

6. M. Dorigo, V. Trianni, E. Sahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi,

J.-L. Deneubourg, F. Mondada, D. Floreano, and L. Gambardella, “Evolving self-

organizing behaviors for a swarm-bot.” Autonomous Robots, vol. 17, no. 2–3, pp.

223–245, 2004.

7. S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of Swarm In-

telligence.” Swarm Intell., vol. 1, no. 1, pp. 3–31, June 2007.

8. C. Kube and E. Bonabeau, “Cooperative transport by ants and robots.” Robotics

and Autonomous Systems, vol. 30, no. 1–2, pp. 85–101, Jan 2000.

9. A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella, “Collaboration

through the exploitation of local interactions in autonomous collective robotics: The

stick pulling experiment.” Autonomous Robots, vol. 11, no. 2, pp. 149–171, Sep 2001.

194 References

10. R. M. Seyfarth and D. L. Cheney, “Signalers and receivers in animal communication.”

Annual Review of Psychology, vol. 54, no. 1, pp. 145–173, Feb 2003.

11. J. Lieff, “Searching for the mind.” 2012. [Online]. Available: http://jonlieffmd.com/

blog/the-remarkable-bee-brain-2

12. H. Muller and L. Chittka, “Animal Personalities: The Advantage of Diversity.” Cur-

rent biology, vol. 18, pp. R961–R963, Oct 2008.

13. J. G. Burns, “Impulsive bees forage better: the advantage of quick, sometimes inac-

curate foraging decisions.” Animal Behaviour, vol. 70, no. 6, pp. e1–e5, Dec 2005.

14. J. G. Burns and A. G. Dyer, “Diversity of speed-accuracy strategies benefits social

insects.” Curr. Biol., vol. 18, pp. R953–R954, Oct 2008.

15. N. E. Raine and L. Chittka, “Pollen foraging: learning a complex motor skill by

bumblebees (Bombus terrestris).” Naturwissenschaften, vol. 94, no. 6, pp. 459–64,

May 2007.

16. N. Raine, T. Ings, A. Dornhaus, N. Saleh, and L. Chittka, “Adaptation, genetic drift,

pleiotropy, and history in the evolution of bee foraging behavior.” Adv. in the Study

of Beh., vol. 36, no. 06, pp. 305–354, 2006.

17. D. Nettle, “The evolution of personality variation in humans and other animals.”

American Psychologist, vol. 61, no. 6, pp. 622–631, 2006.

18. L. Chittka and J. Niven, “Are Bigger Brains Better?” Current Biology, vol. 19, no. 21,

pp. R995–R1008, Nov. 2009.

19. Y. Mohan and S. Ponnambalam, “Swarm robotics: An extensive research review.”

Nature & Biologically Inspired Computing, pp. 140–145, dec 2009.

20. L. Bayindir and E. Sahin, “A review of studies in swarm robotics.” Turkish Journal

of Electrical Engineering, vol. 15, no. 2, 2007.

21. A. Villella and J. C. Hall, “Chapter 3 neurogenetics of courtship and mating in

drosophila.” ser. Advances in Genetics, J. C. Hall, Ed. Academic Press, 2008,

vol. 62, pp. 67 – 184.

22. S. Scherer, R. F. Stocker, and B. Gerber, “Olfactory learning in individually assayed

drosophila larvae.” Learning Memory, vol. 10, no. 3, pp. 217–225, 2003.

23. T. Nowotny, M. I. Rabinovich, R. Huerta, and H. D. I. Abarbanel, “Decoding tem-

poral information through slow lateral excitation in the olfactory system of insects.”

Journal of Computational Neuroscience, vol. 15, no. 2, pp. 271–281, 2003.

http://jonlieffmd.com/blog/the-remarkable-bee-brain-2
http://jonlieffmd.com/blog/the-remarkable-bee-brain-2

References 195

24. P. Arena, L. Patané, and P. S. Termini, “Learning expectation in insects: A recur-

rent spiking neural model for spatio-temporal representation.” Neural Networks, Feb.

2012.

25. ——, “Modeling attentional loop in the insect mushroom bodies.” International Joint

Conference on Neural Networks (IJCNN 2012), July 31 – June 10-15 2012.

26. (2010) Guardians - Group of Unmanned Assistant Robots Deployed In

Aggregative Navigation supported by Scent detection. [Online]. Available:

http://vision.eng.shu.ac.uk/mmvlwiki/index.php/GUARDIANS

27. L. A. Joan Saez-Pons and V. G. Jacques Penders, “Non-communicative robot swarm-

ing in the guardians project.” in Proceedings of the EURON/IARP International

Workshop on Robotics for Risky Interventions and Surveillance of the Environment.,

Benicassim, Spain, January 2008.

28. (2008) Jast-Joint Action Science and Technology. [Online]. Available: http:

//www6.in.tum.de/Main/ResearchJast

29. S. Cordi, “EU project:IWARD:intelligent robot swarm for attendance, recognition,

cleaning and delivery.” CORDIS-6th Framework programme, 2007–2009.

30. S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Tech-

nology of Self-Organizing Machines. MIT Press/Bradford Books, 2000.

31. M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.

32. M. Dorigo and C. Blum, “Ant colony optimization theory: A survey.” Theoretical

Computer Science, vol. 344, pp. 243–278, November 2005.

33. C. H. Yong and R. Miikkulainen, “Coevolution of Role-Based Cooperation in Multia-

gent Systems.” IEEE Trans. Autonomous Mental Develop., vol. 1, no. 3, pp. 170–186,

Oct 2009.

34. (2003-2006) SWARM-BOT: EU FET Project (ist-2000-31010). [Online]. Available:

http://www.swarm-bots.org/index.php?main=2

35. S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Tech-

nology of Self-Organizing Machines. Cambridge, MA: MIT Press/Bradford Books,

Nov 2000.

36. M. Dorigo, E. Tuci, V. Trianni, R. Gross, S. Nouyan, C. Ampatzis, T. H. Labella,

R. O’Grady, M. Bonani, and F. Mondada, “SWARM-BOT: Design and implementa-

tion of colonies of self-assembling robots.” in Computational Intelligence: Principles

and Practice. IEEE Comput. Intell. Society, New York, NY, 2006, pp. 103–135.

http://vision.eng.shu.ac.uk/mmvlwiki/index.php/GUARDIANS
http://www6.in.tum.de/Main/ResearchJast
http://www6.in.tum.de/Main/ResearchJast
http://www.swarm-bots.org/index.php?main=2

196 References

37. E. Tuci, C. Ampatzis, and M. Dorigo, “Evolving Neural Mechanisms for an Iterated

Discrimination Task: A Robot Based Model.” in Advances in Artificial Life, 8th

European Conference, ECAL 2005, Canterbury, UK, Sept. 5-9, 2005, Proceedings,

ser. Lecture Notes in Computer Science, vol. 3630. Springer, 2005, pp. 231–240.

38. R. Groß and M. Dorigo, “Group transport of an object to a target that only some

group members may sense.” in Parallel Problem Solving from Nature - PPSN VIII,

ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2004, vol.

3242, pp. 852–861.

39. H.-G. Beyer, The Theory of Evolution Strategies. Springer-Verlag, 2001.

40. E. M. Izhikevich, “Simple model of spiking neurons.” IEEE Transactions on Neural

Networks, vol. 14, no. 6, pp. 1569–1572, Nov 2003.

41. D. Floreano and C. Mattiussi, “Evolution of spiking neural controllers for au-

tonomous vision-based robots.” in T. Gomi (Ed.), Evolutionary Robotics IV. Berlin:

Springer-Verlag, 2001.

42. S. Song, K. D. Miller, L. F. Abbott, and N. G. Program, “Competitive hebbian learn-

ing through spike-timing-dependent synaptic plasticity.” Nature Neurosci, vol. 3, pp.

919–926, 2000.

43. S. Song and L. Abbott, “Cortical Development and Remapping through Spike

Timing-Dependent Plasticity.” Neuron, vol. 32, no. 2, pp. 339–350, Oct 2001.

44. E. M. Izhikevich, “Solving the Distal Reward Problem through Linkage of STDP

and Dopamine Signaling.” Cerebral Cortex Advance, vol. 17, no. 10, pp. 2443–2452,

oct 2007.

45. P. Verschure, B. J. Kröse, and R. Pfeifer, “Distributed adaptive control: The self-

organization of structured behavior.” Robotics and Autonomous Systems, vol. 9,

no. 3, pp. 181–196, 1992.

46. P. Verschure and R. Pfeifer, “Categorization, representations, and the dynamics of

system-environment interaction: a case study in autonomous systems.” in From An-

imals to Animats: Proceedings of the Second International Conference on Simulation

of Adaptive behavior. MIT Press, 1992, pp. 210–217.

47. P. Arena, L. Fortuna, M. Frasca, and L. Patané, “Learning anticipation via spiking

networks: Application to navigation control.” IEEE Transactions on Neural Net-

works, vol. 20, pp. 202–216, February 2009.

References 197

48. P. Arena, S. de Fiore, L. Patané, M. Pollino, and C. Ventura, “STDP-based behavior

learning on the TriBot robot.” in Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series., 2009.

49. E. M. Izhikevich, “Which Model to Use for Cortical Spiking Neurons?” IEEE Trans.

on Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sept. 2004.

50. I. Dean, N. S. Harper, and D. Mcalpine, “Neural population coding of sound level

adapts to stimulus statistics.” Nature Neuroscience, vol. 8, no. 12, pp. 1684–1689,

Dec 2005.

51. V. Dragoi, J. Sharma, and M. Sur, “Adaptation-Induced Plasticity of Orientation

Tuning in Adult Visual Cortex.” Neuron, vol. 28, no. 1, pp. 287–298, Oct 2000.

52. M. W. Greenlee and F. Heitger, “The functional role of contrast adaptation.” Vision

Research, vol. 28, no. 7, pp. 791–797, 1988.

53. J. Garcia-Lazaro, S. Ho, A. Nair, and J. Schnupp, “Shifting and scaling adaptation

to dynamic stimuli in somatosensory cortex.” European Journal of Neuroscience,

vol. 26, no. 8, pp. 2359–2368, Oct 2007.

54. E. C. Sobel and D. W. Tank, “In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron:

An Example of Chemical Computation.” Science, vol. 263, no. 5148, pp. 863–826,

Feb 1994.

55. S. Peron and F. Gabbiani, “Spike frequency adaptation mediates looming stimulus

selectivity in a collision-detecting neuron.” Nature Neuroscience, vol. 12, pp. 318–326,

Mar 2009.

56. Y. H. Liu and X. J. Wang, “Spike-frequency adaptation of a generalized leaky

integrate-and-fire model neuron.” Journal of Computational Neuroscience, vol. 10,

pp. 25–45, Jan 2001.

57. J. Benda, L. Maler, and A. Longtin, “Linear Versus Nonlinear Signal Transmission

in Neuron Models With Adaptation Currents or Dynamic Thresholds.” Journal of

Neurophysiology, vol. 104, no. 5, pp. 2806–2820, Nov 2010.

58. P. Arena, L. Patané, and A. Vitanza, “Spiking networks and the emergence of co-

operation through specialization.” submitted in: Transactions on Systems, Man, and

Cybernetics–Part B: Cybernetics, 2012.

59. P. Arena, L. Patané, and A. Vitanza, “Autonomous learning of collaboration among

robots.” in Neural Networks (IJCNN), The 2012 International Joint Conference on,

june 2012.

198 References

60. B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:

Tools for multi-robot and distributed sensor systems.” in In Proceedings of the

11th International Conference on Advanced Robotics, 2003, pp. 317–323. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.3914

61. G. K. Kraetzschmar, H. Utz, S. Sablatnög, S. Enderle, and G. Palm, “Miro - mid-

dleware for cooperative robotics.” in RoboCup 2001: Robot Soccer World Cup V.

London, UK: Springer-Verlag, 2002, pp. 411–416.

62. I. Awaad, R. Hartanto, B. León, and P. Plöger, “A software system for robotic learn-

ing by experimentation.” in SIMPAR ’08: Proceedings of the 1st International Con-

ference on Simulation, Modeling, and Programming for Autonomous Robots. Berlin,

Heidelberg: Springer-Verlag, 2008, pp. 99–110.

63. M. Henning, “A new approach to object-oriented middleware.” IEEE Internet Com-

puting, vol. 8, no. 1, pp. 66–75, 2004.

64. A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for robotics.” in

In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS’06), 2006.

65. B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Berlin, Heidelberg:

Springer, 2008. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-30301-5

66. ActivMedia Robotics, “Pioneer 3 Operations Manual.” January 2006.

67. P. Arena, L. Patané, M. Pollino, and C. Ventura, “Tribot: a new prototype of bio-

inspired hy-brid robot.” in Proceedings of the IEEE/RSJ International Conference

on Intelligent RObots and Systems, St.Louis,Missouri,USA, 2009.

68. R. T. Schroer, M. J. Boggess, R. J. Bachmann, R. D. Quinn, and R. E. Ritzmann,

“Comparing cockroach and whegs robot body motion.” in Proceedings of the IEEE

International Conference on Robotics and Automation, New Orleans, April 2004, pp.

3288–3293.

69. P. Arena, L. Fortuna, M. Frasca, L. Patané, and M. Pavone, “Implementation and

experimental validation of an autonomous hexapod robot.” in Proceedings of the

IEEE International Symposium on Circuits and Systems, Kos, Greece, 2006, pp.

401–406.

70. Tarry project, “Tarry robot home page.” http://www.tarry.de/.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.3914
http://dx.doi.org/10.1007/978-3-540-30301-5

References 199

71. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator.” vol. 3, 2004, pp. 2149–2154 vol.3. [Online]. Available:

http://dx.doi.org/10.1109/IROS.2004.1389727

72. M. Lewis, J. Wang, and S. Hughes, “Usarsim: Simulation for the study of human-

robot interaction.” Journal of Cognitive Engineering and Decision Making, vol. 1,

no. 1, pp. 98–120, 2007.

73. Webots, “http://www.cyberbotics.com,” commercial Mobile Robot Simulation

Software. [Online]. Available: http://www.cyberbotics.com

74. C. Pinciroli, M. Dorigo, and M. Birattari, “Argos.” IRIDIA, Université Libre de

Bruxelles, Belgium, Tech. Rep. [Online]. Available: http://www.swarmanoid.org

75. I. Awaad and B. León, “Xpersim: A simulator for robot learning by experimentation.”

in SIMPAR, ser. Lecture Notes in Computer Science, S. Carpin, I. Noda, E. Pagello,

M. Reggiani, and O. von Stryk, Eds., vol. 5325. Springer, 2008, pp. 5–16. [Online].

Available: http://dblp.uni-trier.de/db/conf/simpar/simpar2008.html#AwaadL08

76. P. Arena, C. Berg, L. Patane, R. Strauss, and P. S. Termini, “An insect brain com-

putational model inspired by drosophila melanogaster: Architecture description.” in

International Symposium on Neural Networks, 2010, pp. 1–7.

77. P. Arena, L. Patane, and P. S. Termini, “An insect brain computational model in-

spired by drosophila melanogaster: Simulation results.” in International Symposium

on Neural Networks, 2010, pp. 1–8.

78. R. Ernst and M. Heisenberg, “The memory template in drosophila pattern vision at

the flight simulator.” Vision Research, vol. 39, no. 23, pp. 3920 – 3933, 1999. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0042698999001145

79. G. Liu, A. Seiler, Hand Wen, T. Zars, K. Ito, R. Wolf, M. Heisenberg, and L. Liu,

“Distinct memory traces for two visual features in the drosophila brain.” Nature, vol.

439, no. 5, pp. 551–6, 2006-02-02.

80. S. Tang and A. Guo, “Choice behavior of drosophila facing contradictory visual

cues.” Science, vol. 294, no. 5546, pp. 1543–1547, Nov. 2001. [Online]. Available:

http://dx.doi.org/10.1126/science.1058237

81. K. Neuser, T. Triphan, M. Mronz, B. Poeck, and R. Strauss, “Analysis of a spatial

orientation memory in drosophila.” pp. 1244 –1247, 2008. [Online]. Available:

http://www.nature.com/nature/journal/v453/n7199/full/nature07003.html

http://dx.doi.org/10.1109/IROS.2004.1389727
http://www.cyberbotics.com
http://www.swarmanoid.org
http://dblp.uni-trier.de/db/conf/simpar/simpar2008.html#AwaadL08
http://www.sciencedirect.com/science/article/pii/S0042698999001145
http://dx.doi.org/10.1126/science.1058237
http://www.nature.com/nature/journal/v453/n7199/full/nature07003.html

200 References

82. S. Scherer, R. Stocker, and B. Gerber, “Olfactory learning in individually assayed

Drosophila larvae.” Learn. Mem., vol. 10, pp. 217–225, 2003.

83. ActivMedia Robotics, “Aria - Advanced Robotics Interface for Applications.” 2012.

[Online]. Available: http://robots.mobilerobots.com/wiki/ARIA

84. E. Fiesler, “Neural network topologies.” 1996.

85. “Bridge design pattern.” 2012. [Online]. Available: http://sourcemaking.com/

design patterns/bridge

86. “Composite design pattern.” 2012. [Online]. Available: http://sourcemaking.com/

design patterns/composite

87. “Decorator design pattern.” 2012. [Online]. Available: http://sourcemaking.com/

design patterns/decorator

88. G. E. Robinson, “Regulation of division of labor in insect societies.” Annual Review

of Entomology, vol. 37, no. 1, pp. 637–65, 1992.

89. P. Arena, M. Cosentino, L. Patané, and A. Vitanza, “SPARKRS4CS: a soft-

ware/hardware framework for cognitive architectures (invited paper).” in Proceedings

of the SPIE - The International Society for Optical Engineering, vol. 8068, Prague,

Czech Republic, 2011, pp. 8068A–18.

90. M. L. Muscedere and J. F. A. Traniello, “Division of labor in the hyperdiverse ant

genus pheidole is associated with distinct subcaste- and age-related patterns of worker

brain organization.” PLoS ONE, vol. 7, no. 2, p. e31618, 02 2012.

91. J. S̆obotńık, T. Bourguignon, R. Hanus, Z. Demianová, J. Pytelková, M. Mares̆,

P. Foltynová, J. Preisler, J. Cvac̆ka, J. Krasulová, and Y. Roisin, “Explosive back-

packs in old termite workers.” Science, vol. 337, no. 6093, p. 436, 2012.

92. A. Dornhaus and L. Chittka, “Information flow and regulation of foraging activity

in bumble bees (bombus spp.).” Apidologie, vol. 35, no. 2, pp. 183–192, Mar 2004.

93. G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi, “Self-

organized coordinated motion in groups of physically connected robots.” IEEE Trans.

on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 1, pp. 224–239,

feb. 2007.

94. M. B. Sokolowski, “Social interactions in ‘simple’ model systems.” Neuron, vol. 65,

pp. 780,794, 20100325.

http://robots.mobilerobots.com/wiki/ARIA
http://sourcemaking.com/design_patterns/bridge
http://sourcemaking.com/design_patterns/bridge
http://sourcemaking.com/design_patterns/composite
http://sourcemaking.com/design_patterns/composite
http://sourcemaking.com/design_patterns/decorator
http://sourcemaking.com/design_patterns/decorator

References 201

95. T. Balch, “Communication, diversity and learning: Cornerstones of swarm behavior.”

in Swarm Robotics, ser. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2005, vol. 3342, pp. 21–30.

96. J. Billen, “Signal variety and communication in social insects.” in Proceedings of the

Netherlands Entomological Society Meetings, vol. 17, 2006, pp. 9–25.

97. R. Hickling and R. Brown, “Analysis of acoustic communication by ants.” J Acoust

Soc Am, vol. 108, no. 4, pp. 1920–9, 2000.

98. (2004–2007) SPARK: Spatial-temporal Patterns for Action-oriented perception in

Roving robots, EU ICT-FP6 Project. [Online]. Available: http://www.spark.diees.

unict.it

99. (2008–2011) SPARK II: EU ICT-FP7 Project. [Online]. Available: http:

//www.spark2.diees.unict.it

100. “Factory method design pattern.” 2012. [Online]. Available: http://sourcemaking.

com/design patterns/factory method

101. “pugixml - light-weight, simple and fast xml parser for c++ with xpath support.”

2012. [Online]. Available: http://pugixml.org/

102. Nvidia, “The Nvidia PhysX Technology.” 2012. [Online]. Available: http:

//developer.nvidia.com/object/physx dcc plugins.html

103. K. Group, “Collada max nextgen.” 2012. [Online]. Available: http://colladamaya.

sourceforge.net

104. K. Lerman and A. Galstyan, “Mathematical model of foraging in a group of robots:

Effect of interference.” Autonomous Robots, vol. 13, pp. 127–141, 2002.

105. G. Pini, A. Brutschy, M. Birattari, and M. Dorigo, “Interference reduction through

task partitioning in a robotic swarm.” in Sixth International Conference on Informat-

ics in Control, Automation and Robotics – ICINCO 2009, J. Filipe, J. Andrade-Cetto,

and J.-L. Ferrier, Eds. Setùbal, Portugal: INSTICC Press, 2009, pp. 52–59.

106. P. Arena, L. Patané, P. S. Termini, A. Vitanza, and R. Strauss, “Software/hardware

issues in modelling insect brain architecture.” in Proceedings of the 4th

international conference on Intelligent Robotics and Applications - Volume Part

II, ser. ICIRA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 46–55. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-25489-5 5

107. G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg, “Response threshold reinforce-

ment and division of labour in insect societies.” pp. 327–332, 1998.

http://www.spark.diees.unict.it
http://www.spark.diees.unict.it
http://www.spark2.diees.unict.it
http://www.spark2.diees.unict.it
http://sourcemaking.com/design_patterns/factory_method
http://sourcemaking.com/design_patterns/factory_method
http://pugixml.org/
http://developer.nvidia.com/object/physx_dcc_plugins.html
http://developer.nvidia.com/object/physx_dcc_plugins.html
http://colladamaya.sourceforge.net
http://colladamaya.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-25489-5_5

	Cooperation and Swarm Intelligence
	Biological investigation in social insects
	Cooperation in Ecological Biology
	Labor division - Biological inspiration
	Cooperation in Robotics Research
	Summary

	Neural Structures for Cooperation
	Role Specialization
	Neuron model
	Synaptic plasticity through STDP learning
	The Neural Network structure
	Threshold adaptation

	The emergence of labor division
	The Neural structure

	Summary

	Robotic Programming
	Introduction
	Mobile-robot software/hardware frameworks
	Dynamic simulation modules
	Summary

	RS4CS: the robotic framework
	RS4CS: a sw/hw framework for Cognitive architectures
	Algorithm Libraries
	Algorithms
	Robot Hierarchy
	Graphical User Interface (GUI)

	Summary

	LiN2: the Network library
	LiN2 - a Library for Neural Networks
	Library Specifications
	Network Components Description
	Networks Builder
	Log4LiN: the Logging System for LiN2
	The clock
	Algorithms

	LiN2 Portability
	Summary

	3D Dynamic Robotic Simulator
	The robotic simulation platform
	Technical Description
	Implementation Details
	Configuration File
	Communication model
	Logging System

	Summary and Remarks

	Experimental Investigations
	Role Specialization
	Experimental details
	Experimental scenarios
	Role Specialization through Threshold adaptation
	Role Specialization with STDP Learning

	Simulation Results
	Role Specialization – Threshold adaptation plasticity
	Role Specialization with STDP Learning

	Specialization with and without STDP: Comparisons
	Role Specialization with differently skilled robots
	Remarks and related works

	Labor Division
	Algorithm Details
	Results and Performances Analyses
	Remarks

	Summary

	Concluding remarks
	Appendix A: Robot Implementation Specifics
	TriBot I - Robot description

	Appendix B: Framework Guidelines
	How to use the framework
	How to develop the framework
	Izhikevich neuron implementation
	LayeredNetworkBuilder Interface
	How to Build a Network
	XML-based Description
	Construction Directives

	How to Create a Logger
	STDP Algorithm Implementation

	Appendix C: Simulator Guidelines
	How to introduce a new Robot in the Simulator
	How to create environment in the Simulator
	Configuration File

	Appendix D: Task partitioning
	Task partitioning issue
	Scenario description
	IRIDIA approach
	Theshold adaptation approach

	Comparisons and Remarks
	FootBot - Robot description

	Acknowledgements
	References

