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Abstract

The visual ability of humans and other animals is the result of the complex in-

teraction of light, eyes and brain. We are unaware of how extremely complex is

the shape analysis performed by the brain, since it is mainly done subconsciously,

with no need to involve the higher level of cognition. Hence, although “to see and

understand” seems natural and straightforward, the design of versatile and robust

computer vision system is a tough task.

In computer era, the attempt to imitate the human ability to understand shapes

led to the fields of computer vision and pattern recognition, having been motivated

by a wide spectrum of important applications such as in robotics, biology, security

and so on. In computer vision, accordingly to the great variety of applications,

there is a wide range of possible computer’s “eyes”, which can be very different

from a human eye (e.g. tomography devices, ultrasonic range sensors).

Among all different aspect underlying visual information, the shape of objects

plays a very important role, which will be emphasized in this dissertation showing

how such a fundamental feature can be efficiently used to solve a wide range of

relevant problems in Computer Vision, Pattern Recognition and Computer Graph-

ics, in both the 2-D and 3-D realms. In almost all cases the input data is a set of

one or more images, demonstrating that they convey enough information about

the shape, if a proper setup is used. The input devices we use range from DSLR

cameras to MRI devices, with great differences in the imaging techniques and in

the quality of produced images. Starting from the input images, we show how

to accurately model the surface of the depicted objects using polarization cues or

how to parameterize shapes using state of the art descriptors, based on statisti-

cal properties of the object classes or simply on the individual objects surface or

silhouette.
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Chapter 1

Introduction

1.0.1 Motivation

One of the most stimulating research fields, from both the scientific and techno-

logical perspectives, is related to vision, the main human sense and source of most

significant information for most people about the world. The visual ability of hu-

mans and other animals is the result of the complex interaction of light, eyes and

brain. We are able to see because light from an object can move through space

and reach our eyes. Once light reaches our eyes, signals are sent to our brain, and

our brain deciphers the information in order to detect the appearance, location and

movement of the objects we are sighting at. The whole process, as complex as it

is, would not be possible if it were not for the presence of light. When we see a

picture, we understand its meaning by recognising the objects which are depicted

and relating them to what we have learned in our lives: among all different aspect

underlying visual information, the shape of objects plays a very important role,

since shapes can be considered as being the words of the visual language.

We are unaware of how extremely complex is the shape analysis performed by

the brain, since it is mainly done subconsciously, with no need to involve the

higher level of cognition. Hence, although “to see and understand” seems natu-

ral and straightforward, the design of versatile and robust computer vision sys-

tem is a tough task. In computer era, the attempt to imitate the human ability to

understand shapes led to the fields of computer vision and pattern recognition,

having been motivated by a wide spectrum of important applications such as in

2
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Figure 1.1: Conceptual representation of the relations between the fields of com-

puter vision, computer graphics, and pattern recognition.

robotics, biology, security and so on. What we see is a 2-D picture perceived by

the eyes, so it is common to think of a shape as a 2-D projection of a 3-D object

(a geometric model), but in computer vision, accordingly to the great variety of

applications, there is a wide range of possible computer’s “eyes”, which can be

very different from a human eye (e.g. tomography devices, ultrasonic range sen-

sors), hence shapes can be represented as parametric surfaces, triangular meshes,

etc. other than the common 2-D shapes. As stated before, computer vision deals

with extracting information about objets from their visual representation, whereas

computer graphics addresses the converse problem: how to realistically and aes-

thetically render an image from a geometric model. There are many other fields

which involve shapes, such as pattern recognition, i.e. to assign a label to the rep-

resentation of a shape. Fig. 1.1 describes the relations between computer vision,

computer graphics and pattern recognition.

In this dissertation the key role of the shape in all these fields will be empha-

sized, demonstrating how such a fundamental feature can be efficiently used to

solve a wide range of relevant problems, in both the 2-D and 3-D realms. In al-

most all cases the input data will be a set of one or more 2-D images, showing that

they convey enough information about the shape, if a proper setup is used.
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1.0.2 Chapter Overview

The remainder of this thesis is organized as follows. Chapter 2 discusses the

relevant background for the topics covered in this dissertation.

In Chapter 3 we propose a novel method for estimating surface orientation

from the Stokes polarization vector under a single spherical incident illumination

condition that is either circularly polarized or unpolarized. Accurate shape and

appearance estimation is a crucial component in many computer vision and com-

puter graphics applications. For instance, digitally reproducing the appearance of

physical objects such as cultural artifacts, consumer products, material samples,

and human faces is a long-standing goal of computer graphics. Despite being

at the focal point of intense research, shape and appearance estimation remains

a challenging problem, especially under uncontrolled real-world conditions. We

illustrate the practicality of our technique by estimating surface normals under

uncontrolled outdoor illumination from just four observations from a fixed view-

point. Estimation of both small-scale surface shape as well as surface reflectance

greatly benefits from accurate knowledge of surface orientation and we describe

how the proposed method can be combined with a novel data-driven surface re-

flectometry technique which is able to measure, per visible surface point, diffuse

and specular albedo, specular roughness of isotropic BRDFs, and index of refrac-

tion, assuming circularly polarized incident lighting.

In Chapter 4 we present a novel technique to describe the shapes of women

breasts in a low dimensional parameter space. The parametrization is obtained

from a sample of about 40 patients MRI taken in prone position. The data have

been cleaned from noise and disturbances and has been dimensionally reduced

using Principal Component Analysis. The resulting principal modes may be used

as clinical indicator and have a direct medical interpretation. If two references

relative to extremal shapes (one of a reconstructed breast and one of a severely

aged breast) are taken, all the other shapes span a continuum space that provides

an objective way to classify and describe the variability observed in the common

clinical practice.

We then discuss the feasibility of estimating the Body Condition Score (BCS)

of cows from digital images by employing statistical shape analysis and regres-
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sion machines in Chapter 5. The shapes of body cows are described through a

number of variations from a unique average shape. Specifically, Kernel Principal

Component Analysis is used to determine the components describing the many

ways in which the body shape of different cows tend to deform from the average

shape. This description is used for automatic estimation of BCS through regres-

sion approach. The proposed method has been tested on a new benchmark dataset

available through the Internet, demonstrating that both our semi-automatic and

automatic approaches outperform the state-of-the-art approaches proposed in the

context of dairy cattle research.

The use of contour-based shape descriptors to deal with articulated and de-

formed shapes is discussed in Chapter 6, describing how Computer Vision and

Pattern Recognition can provide a great support in Archaeometry. An important

feature of the Minoan culture is the pottery of Kamares style, that documents the

Cretan cultural production between the first half of the II millennium BC. This

high level painted production, characterized by the combination of several diverse

motifs, presents an enormous decorative repertoire. The extraordinary variety of

combinations between elementary motifs according to a complex visual syntax

makes interesting the automatic identification of the motifs, particularly upon pot-

sherds. A complete pipeline to accomplish this task is still a challenge to Com-

puter Vision and Pattern Recognition, however the co-occurrence of the different

shapes in a specimen can be used to help the archaeologists in the cultural and

even chronological setting.

In Chapter 7 we describe hardware and software components to detect coun-

terfeits of Euro banknotes, demonstrating the use of low cost hardware and con-

sequently a very simple shape classification technique to effectively solve this

problem. The system is also able to recognize the banknote values. The proposed

method makes use of images acquired with near infrared camera and works with-

out motors or any other moving parts. The proposed system is robust to changes

in ambient lighting and banknote positioning. The effectiveness of the proposed

solution has been properly tested on a dataset composed by genuine and fake euro

banknotes.

Finally, we conclude with a discussion on the scope and contribution of the

dissertation in Chapter 8.



Chapter 2

Background and related work

Our work relates to a significant body of work in photometric stereo, polarization-

based analysis of reflected light,shape from shading and 2D shape description.

We start by describing the principles of photometric stereo and their application

to surface normals estimation, describing also the current state of the art. A re-

cent advance in computer vision, which is able to recover low frequency details

of shape, albedo and illumination from a single grayscale image will then be de-

scribed. We then review some shape 2D descriptors, used to model statistical

properties of the shape contour or to address the typical deformation observed in

shape analysis.

2.1 Shape Appearance

Shape recovery is a classic problem in computer vision. The goal is to obtain

a 3-D scene description from one or more 2-D images. The recovered shape

can be expressed in several ways: depth Z(x,y), surface normal (nx,ny,nz), sur-

face gradient (p,q), and surface slant φ and tilt θ . The depth can be consid-

ered either as the relative distance from the camera to surface points, or the rel-

ative surface height above the x − y plane. The surface normal is the orienta-

tion of a vector perpendicular to the tangent plane on the object surface. The

surface gradient, (p,q) = ( ∂ z
∂x
, ∂ z

∂y
), is the rate of change of depth in the x and y

directions. The surface slant φ and tilt θ are related to the surface normal as

6
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(nx,ny,nz) = (l sinφ cosθ , l sinφ sinθ , l cosθ), where l is the magnitude of the

surface normal.

2.1.1 Intrinsic Images

The problem of describing a scene in terms of intrinsic characteristics, such as

range, orientation, reflectance, and incident illumination of the surface element

visible at each point in the image, was first posed to the computer vision com-

munity as the “intrinsic images” problem [1]. The central problem in recovering

intrinsic scene characteristics is that the information is confounded in the original

light-intensity image: a single intensity value encodes all the characteristics of the

corresponding scene point. Recovery depends on exploiting constraints, derived

from assumptions about the nature of the scene and the physics of the imaging

process. Over time the intrinsic images problem has been simplied to the prob-

lem of separating an image into shading and albedo, which has seen some recent

progress [2] mostly by relying on color as a cue. However, none of these algo-

rithms allow shape to be directly recovered.

A competing approach to single-image techniques is to better constrain the prob-

lem with additional data. Instances of this approach are photometric stereo [3],

structure from motion [4], and inverse global illumination [5]. All these tech-

niques depend on multiple observations.

Shape From Shading. In computer vision, the techniques to recover shape are

called shape-from-X techniques, where X can be shading, stereo, motion, texture,

etc. The classic shape-from-shading problem [6] deals with the recovery of the

shape of a smooth opaque object from a monocular image, given a knowledge of

the surface photometry and the position of the light-source. This method in some

sense can be considered as complementary to the use of stereoscopy, which relies

on matching up sharp detail and will fail on smooth objects.

To solve the shape-from-shading problem, it is important to study how the im-

ages are formed. A simple model of image formation is the Lambertian model,

in which the gray level at a pixel in the image depends on the light source di-

rection and the surface normal. In shape-from-shading, given a gray level image,

the aim is to recover the light source and the surface shape at each pixel in the
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image. However, real images do not always follow the Lambertian model. Even

if we assume Lambertian reflectance and known light source direction, and if the

brightness can be described as a function of surface shape and light source di-

rection, the problem is still not simple. This is because if the surface shape is

described in terms of the surface normal, we have a linear equation with three

unknowns, and if the surface shape is described in terms of the surface gradient,

we have a non-linear equation with two unknowns. Therefore, finding a unique

solution to shape-from-shading is difficult; it requires additional constraints. Most

shape-from-shading algorithms assume that the light source direction is known. In

the case of the unknown light source direction, some assumptions about the sur-

face shape are required, such as the local spherical surface, uniform and isotropic

distribution of the surface orientation. Once the light source direction is known,

3-D shape can be estimated.

Shape and Albedo from a Single Image.

None of the “intrinsic images” algorithms allow shape, or illumination to be

directly recovered. Recently a superset of the shape-from-shading problem has

been addressed by [7], in which shape, albedo, and a spherical harmonic model

of illumination are estimated from a single grayscale image of an object, using

shading as primary cue. This technique is the first unified model for jointly esti-

mating all the mentioned parameters together. Since this “inverse optics” problem

is terribly underconstrained, the authors construct statistical models of albedo and

shape, and define an optimization problem that searches for the most likely ex-

planation of a single image. The model has been called SAIFS (shape, albedo,

and illumination from shading) and it produces reasonable results on arbitrary

grayscale images; SAIFS has been further extended to recover chromatic illumi-

nation [8]. Cast shadows and specularities are not addressed by the SAIFS model.

The key observation is that the space of albedos, shapes, and illumination that

reproduce an image is immense but not all albedos and shapes are equally likely.

The SAIFS algorithm is an optimization problem in which the most likely shape,

albedo, and illumination are recovered under to the statistical model of natural

albedo and shape, such that a single image is exactly reproduced. The SAIFS

model relates to the classic shape-from-shading problem since it uses shading as
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a cue for depth.

Assuming Lambertian reectance and orthographic projection, given a log-albedo

map A, a depth-map Z, and illumination L, the log-intensity image I is dened

as I = A+ S(Z,L). The function S(Z,L) is called the “logshading image” of Z

with respect to L: it linearizes Z into a set of normals and renders those nor-

mals using L, a model of spherical harmonic illumination. Assuming that the

image I and illumination L have been observed, but Z and A are unknown, the

problem is still underconstrained, so priors on Z and A are imposed. The term

“prior” in the context of SAIFS is actually an abuse of terminology, since it ac-

tually refers to loss functions or regularizers on Z and A. Two priors on albedo

are used, which encourage local smoothness and global sparsity, and three priors

on shape which encourage flatness, outward-facing orientation at the occluding

contour, and local smoothness. More in detail g(A) are two priors on albedo: one

which encourages piecewise-smoothness by placing heavy-tailed distributions on

the multiscale gradient norm of log-albedo, and one which encourages a low en-

tropy in the marginal distribution of log-albedo across all scales of an entire image.

f (Z) are the three priors on shape: one which encourages fronto-parallel flatness

(primarily to address the bas-relief ambiguity [4]), one which informs the surface

orientation near an objects occluding contour, and one which encourages a novel

measure of smoothness by placing heavy-tailed distributions on the multiscale

gradient norm of the mean curvature of shape. The algorithm search for the most

likely shape and albedo that explain image I and this is equivalent to minimizing

the sum of g(A) and f (Z), which is defined as being loosely equivalent to the

negative log-likelihoods of Z and A respectively.

The optimization problem is:

minimize
Z,A

g(A)+ f (Z)

subject to I = A+S(Z,L).
(2.1.1)

The problem formulation in Equation 2.1.1 can be extended to present a novel

framework for recovering illumination in addition to shape and albedo. The tech-

nique can be modified to handle unknown illumination, reformulating the problem
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as a MAP estimation:

maximize
Z

log(P(A|Z,L)P(Z)) (2.1.2)

P(A|Z,L) = exp(−g(I −S(Z,L))) (2.1.3)

P(Z) = exp(− f (Z)). (2.1.4)

L can be introduced as a latent variable, and marginalizing over it:

maximize
Z

log(P(Z)∑
L

P(A|Z,L)P(L)) (2.1.5)

2.1.2 Photometric Stereo and Normals Estimation

The seminal work by Woodham [3] on photometric stereo, which proposes to es-

timate surface normals from single viewpoint images of diffuse surfaces lit from

different lighting directions using a simple linear system, has inspired much re-

search since its introduction in 1978. The idea of photometric stereo is to vary the

direction of the incident illumination between successive images, while holding

the viewing direction constant. Since the imaging geometry is not changed, the

correspondence between image points is known a priori. This technique is called

“photometric” because it uses the radiance values recorded at a single image lo-

cation, in successive views.

Let (x,y,z) be the coordinates of a surface point. If the equation of an object sur-

face is given explicitly as z = f (x,y), then a surface normal is given by the vector:
[

∂ f (x,y)
∂x

, ∂ f (x,y)
∂y

,−1
]

. We can define p and q by: p = ∂ f (x,y)
∂x

and q = ∂ f (x,y)
∂y

, then

(p,q) is the gradient of f (x,y) and the surface normal can be written as [p,q,−1].

Let R(p,q) be the reflectance map, which determines image intensity as a func-

tion of p and q. A reflectance map captures the surface reflectance of an object

material for a particular light source, objet surface and viewer geometry. Using

the reflectance map, the basic equation describing the process of image formation

can be written as:

I(x,y) = R(p,q). (2.1.6)
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If three images I1(x,y), I2(x,y) and I3(x,y) are obtained by varying the direction

of incident illumination with no change in the imaging geometry, then each pixel

(x,y) in the three images corresponds to the same surface point and gradient (p,q).

The effect of varying the illumination is to change he reflectance map in each im-

age. The three views are characterized by three independent equations:

I1(x,y) = R1(p,q)

I2(x,y) = R2(p,q)

I3(x,y) = R3(p,q) .

These equations in general are non linear with more than one solution. If the direc-

tions of incident illumination are not collinear in azimuth, assuming a lambertian

surface three equations are sufficient to uniquely determine the surface orientation

and the reflectance factor ρ at each image point.

Let I = [I1, I2, I3]
′
be the column vector of intensity values recorded at a point (x,y)

in each of the three views and let

n1 = [n11,n12,n13]
′

n2 = [n21,n22,n23]
′

n3 = [n31,n32,n33]
′

be unit column vectors defining the three directions of incident illumination, which

hence have to be known beforehand.

We can construct the matrix N where

N =







n11 n12 n13

n21 n22 n23

n31 n32 n33






.

Let n = [n1,n2,n3]
′

be the column vector corresponding to a unit surface normal

at (x,y). Then I = ρ ·N · n, so ρ · n = N−1 · I, if N−1 exists, which is the case if

and only if n1, n2, n3 do not lie in a plane. In this case the reflectance factor and

unit surface normal at (x,y) are given by: ρ =
∣

∣N−1 · I
∣

∣

and

n = 1
ρ ·N−1 · I.

It should be noted that since the sun’s path across the sky is nearly planar, the

described technique cannot be used with outdoor images taken at different times

during the same day.
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Photometric stereo variants have been successfully used in applications as di-

verse as capturing surface normals of micron-level accurate details [9] to surface

normals of large outdoor scenes [10]. Extensions of photometric stereo have al-

lowed orientation to be recovered in the presence of interreflections [11] as well

as specularity [12, 13]; a recent survey of photometric stereo work in this area

is reviewed in [14]. Another line of work has endeavored to estimate surface

orientation specifically from its specular reflection. Many of its successors differ

from traditional photometric stereo use extended lighting patterns in order to reli-

ably observe the specular reflection for a certain range of angles. [15] uses light

from fluorescent tube lights reflecting onto diffuse surfaces to estimate surface

orientation assuming mirror-like specular reflection. [16] uses the eyes specular

reflection of a pattern of rings and spline-based surface fitting to model the shape

of the cornea. More recently, [17] have combined specular normals obtained us-

ing many lighting conditions with positional information to create highly detailed

geometry. While recent advances do not require the incident lighting to be known

beforehand [18], these methods still require multiple lighting conditions to accu-

rately estimate surface orientation. In contrast, out work requires just a single

lighting condition, making it better suited for normal estimation in uncontrolled

outdoor environments.

Shape estimation under fixed lighting can be obtained from specular cues.

Roth and Black [19] introduce the concept of specular flow and illustrate how

such specular flow relates to shape under general environmental illumination for

surfaces that exhibit (binary) mixtures of diffuse and specular materials. Vasilyev

et al. [20] extend specular flow to general unconstrained surface shapes, but they

require exact knowledge of the content of the environment and assume that the

specular flow is know. However, estimating specular flow from multiple view-

points is a difficult and complex problem. While the proposed method also relies

on specular reflections, it only needs four observations from a single viewpoint un-

der constant illumination, avoiding complex specular flow and/or correspondence

computations. Furthermore the proposed method naturally handles per-pixel mix-

tures of diffuse and specular.
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Polarization cues have also been used extensively for estimating surface nor-

mals. Most methods exploit the property that the angle of polarization relates to

the surface normal direction perpendicular to the plane of incidence. The direc-

tion within the plane of incidence is found by either observing the surface from

multiple viewpoints [21, 22, 23, 24], or from the degree of polarization [25, 26,

27, 28, 29]. The majority of the above methods infer surface information from

a series of photographs of the surface while rotating a linear polarizer in front of

the camera. This either requires a large number of photographs, or a careful cali-

bration. The proposed method does not only rely on linear polarization cues, but

instead infers surface information from the full characterization of the reflectance

(i.e., the Stokes reflectance field), that can be captured in just four photographs

with different polarizers in front of the camera (i.e., three linear polarizers rotated

0, 45, and 90 degrees, and a (left) circular polarizer). Furthermore, we show that

even under unpolarized incident lighting, some non-negligible circularly polar-

ized reflectance is present, which impacts the accuracy of the estimated normals

if ignored.

Ma et al. [30] propose a photometric stereo variant that makes use of four

lighting patterns and employs either linear or circular polarization for separating

diffuse and specular reflections. Diffuse and specular reflection components differ

in that specular reflection alters polarization in a deterministic manner in accor-

dance with the Fresnel equations, while diffuse reflection produces outgoing light

which is generally close to unpolarized. They show that the centroids of the dif-

fuse and specular reflectance each yield an estimate of the pixel’s surface normal,

which is very accurate for the specular component.

The four spherical illumination patterns Pi(ω̃) needed are:

• a constant pattern Pc(ω̃) = 1,

• a linear gradient along the x-coordinate Px(ω̃) = ωx,

• a linear gradient along the y-coordinatePy(ω̃) = ωy,

• a linear gradient along the z-coordinate Pz(ω̃) = ωz
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and , where ω̃ is the direction defined on a spherical domain Ω. Note that ω̃ =

[ωx,ωy,ωz] are the components of the normalized vector corresponding to the

direction ω̃ . Unlike the proposed method, they rely on photometric cues for esti-

mating the surface normal and they need an expensive lighting apparatus (i.e. the

USC-ICT Light Stage) to create the gradient lighting patterns.

Koshikawa [31] estimate the surface normal of a single surface point from the

Stokes vector, measured using a ellipsometer, under a single directional circularly

polarized light source. They assume known index of refraction, and estimate the

normal from the Fresnel equations. However, they ignore the ambiguity in the

azimuthal angle of the surface normal. In contrast, the proposed method employs

a standard DSLR camera instead of an ellipsometer and considers both circularly

polarized and unpolarized incident lighting, and explicitly handles the azimuthal

ambiguity.

2.2 2D Shape Representation

Shape is an important visual feature and it is one of the basic features used to

describe image content. Although 3D objects are now commonly used in a num-

ber of areas such as games, mechanical design for CAD models, archaeology and

cultural heritage, medical research studies and many more, most image processing

applications work with 2D images and the majority of shape descriptors developed

are built for such images. However, 2-D shape representation and description is a

difficult task. This is because when a 3-D real world object is projected onto a 2-D

image plane, one dimension of object information is lost. As a result, the shape

extracted from the image only partially represents the projected object. To make

the problem even more complex, shape is often corrupted with noise, defects, arbi-

trary distortion and occlusion. Shape representation generally looks for effective

and perceptually important shape features based on either shape boundary infor-

mation or boundary plus interior content. Shape descriptors are computational

tools used for analysing image shape information, which consist of mathematical

functions which when applied to image produce numerical values, representative

of a specific characteristic of the given shape. The nature and meaning of such
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values depends on the definition of the shape descriptor. After shape features

have been extracted, they can be used as input features for an image processing

application. The standard MPEG-7 has set several principles to measure a shape

descriptor, that is, good retrieval accuracy, compact features, general application,

low computation complexity, robust retrieval performance and hierarchical coarse

to fine representation [32]. Good retrieval accuracy requires a shape descriptor be

able to effectively find perceptually similar shapes from a database. Perceptually

similar shapes usually means rotated, translated, scaled shapes and affinely trans-

formed shapes. The descriptor should also be able to find noise affected shapes,

variously distorted shapes and defective shapes, which are tolerated by human be-

ings when comparing shapes. This is known as the robustness requirement. Com-

pact features are desirable for indexing and online retrieval. If a shape descriptor

has a hierarchical coarse to fine representation characteristic, it can achieve a high

level of matching efficiency. This is because shapes can be matched at coarse level

to first eliminate large amount dissimilar shapes, and at finer level, shapes can be

matched in details. A desirable shape descriptor should be application indepen-

dent rather than only performing well for certain type of shapes. Low computa-

tion complexity is an important characteristic of a desirable shape descriptor. For

a shape descriptor, low computation complexity means minimizing any uncertain

or ad hoc factors that are involved in the derivation processes, hence it implies

clarity and stability.

Shape representation and description techniques can be generally classified

into two class of methods: contour-based methods and region-based methods.

The classification is based on whether shape features are extracted from the con-

tour only or are extracted from the whole shape region. Under each class, the

different methods are further divided into structural approaches and global ap-

proaches. This sub-class is based on whether the shape is represented as a whole

or represented by segments/sections (primitives). These approaches can be fur-

ther distinguished into space domain and transform domain, based on whether

the shape features are derived from the spatial domain or from the transformed

domain.

There are some properties which are desirable for shape descriptors in general,

although they are not, strictly speaking, requirements for all shape descriptors.
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The following is a list of some of these desirable properties which by no means

intends to be extensive:

• Rotation invariance. The rotation of an object does not affect its shape; there-

fore it would be expected that a shape descriptor should produce the same

measure for a shape S and for the same shape rotated by θ degrees, R(S;θ),

• Translation invariance. The shape of an object is independent of the coordinate

axes used; therefore it would be expected that a shape descriptor should

produce the same measure for the shape S regardless of its location in the

coordinate plane.

• Scale invariance. Because the shape of an object is independent of its repre-

sentation, the scale of an object should not affect the measure produced by

a shape descriptor.

• Well defined range. Having an idea of the range of values produced by a shape

descriptor can be important when interpreting the meaning of the values

produced by the descriptor and it is useful to know the range produced by a

descriptor in particular when designing an application, in particular if nor-

malisation is required.

2.2.1 Statistical Shape Models

Most real-world applications need an automated system to recover image structure

and understand its meaning. This necessarily involves the use of models which

describe and label the expected structure of the world. Real applications, such

as in medical image interpretation, are also typically characterised by the need

to deal with complex and variable structure. To deal with structural complexity,

some prior knowledge of the problem can be used, which could also provide tol-

erance to noisy or missing data, and provide a means of labelling the recovered

structures. Generative models, if complete enough to be able to generate realistic

images of target objects, are of particular interest. In fact, using such a model,

image interpretation can be formulated as a matching problem: given an image to
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interpret, structures can be located and labelled by adjusting the model’s parame-

ters in such a way that it generates an image which is as similar as possible to the

real thing.

In real applications there is a need to deal with variability, because they have

to handle classes of objects which are not identical, for example female breasts.

Hence, a suitable model should maintain the essential characteristics of the class

of objects it represents and it should be able to deform to fit a range of examples.

Such deformable model should be general, i.e. being able of generating any plau-

sible example of the class it represents and it should only generate legal examples,

for instance it could only deform in ways found in a given training set. The latter

characteristic, being specific, is very important to correctly interpret and label ob-

jets.

The “Point Distribution Model” [33] is a computational tool for representing the

mean geometry of a shape and some statistical modes of geometric variation in-

ferred from a training set of shapes, represented by a set of labelled points. The

technique determines the statistics of the points over the training set: the mean po-

sitions of the points give an average shape and a number of modes of variation are

determined describing the main ways in which the example shapes tend to deform

from the average, thus allowing to include variation in shape in the model. The

method produces a compact and flexible point distribution model, with a small

number of linearly independent parameters.

In order to be modeled, a shape need to be represented as a set of points, for

instance chosen around the boundary. The method works by modelling how dif-

ferent labelled points tend to move together as the shape varies, examining the

statistics of the co-ordinates of the labelled points over the training set. Shapes

must be aligned in the same way with respect to a set of axes by scaling, rotating

and translating the training shapes so that they correspond as closely as possible,

using for instance the “Generalised Procrustes Analysis” [34].

Let xi be a vector describing the n points of the ith shape in the set, xi =

(xi0,yi0,xi1,yi1, · · · ,xin−1,yin−1)
′.

Let M j

[

x j

]

be a rotation by θ j, and a scaling by s j. Given two similar shapes xi

and x j we can choose θ j, s j and a translation (tx, ty) j mapping xi onto M j

[

x j

]

so

as to minimise the weighted sum
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E j = (xi −M j(x j))
′W (xi −M j(x j)) (2.2.1)

where M j

(

x jk
y jk

)

=
((s j cosθ)x jk−(s j sinθ)y jk+t jx

(s j sinθ)x jk+(s j cosθ)y jk+t jy

)

and W is a diagonal matrix of weight

for each point. The weights can be chosen to give more significance to those

points which move “less” than other points in a shape. Once a set of aligned

shapes is available the mean shape and variability can be found. The mean shape

x̄ is calculated using

x̄ =
1

Ns

Ns

∑
i=1

xi. (2.2.2)

The modes of variation, that are the ways in which the points of the shape tend

to move together, can be found by applying principal component analysis to the

deviations from the mean: for each shape in the training set the deviation from the

mean dxi is calculated as: dxi = xi − x̄.

The next step is to calculate the 2n×2n covariance matrix S using

S =
1

Ns

Ns

∑
i=1

dxidxi
′ (2.2.3)

The modes of variation of the points of the shape are described by the unit

eigenvectors pi of S, i = (1 . . .2n) such that Spi,= λi pi, p′i pi = 1 where λi is the

ith eigenvalue of S, λi ≥ λi+1.

It can be demonstrated that the eigenvectors of the covariance matrix correspond-

ing to the largest eigenvalues describe the most significant modes of variation in

the variables used to derive the covariance matrix, and that the proportion of the

total variance explained by each eigenvector is equal to the corresponding eigen-

value [35].

The total variance λT of all variables is given by λT = ∑
2n
i=1 λi. Usually only a

small number t modes is sufficient to explain most of the observed variation, and

the error discarding the remaining 2n− t modes is mathematically bound and easy

to estimate. A pratical way to determine a good value for t is to chose the smallest

number of modes such that the sum of variance explained was a sufficiently large
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proportion of λT .

The ith eigenvector affects point k in the model by moving it along a vec-

tor parallel to (dxik,dyik), which is obtained from the kth pair of elements in pi,

(dxi0,dyi0, . . . ,dxik,dyik, · · · ,dxin−1,dyin−1) Any shape in the training set can be

approximated using the mean shape and a weighted sum of these deviations ob-

tained from the first t modes x = x̄+Pb where P = (p1 p2 . . . pt) is the matrix of

the first t eigenvectors, b= (b1b2 · · ·bt) is a vector of weights for each eigenvector.

The eigenvectors are orthogonal, P′P = I so b = P′(x− x̄).

The above equations allow us to generate new examples of the shapes be vary-

ing the parameters (bi) within suitable limits. The parameters are linearly inde-

pendent, though there may be non-linear dependencies still present. The limits

for bi are derived by examining the distributions of the parameter values required

to generate the training set. Since the variance of bi over the training set can be

shown to be λi, suitable limits are likely to be of the order of −3
√

λi ≤ bi ≤ 3
√

λi

since we are assuming a multivariate gaussian distribution and most of the pop-

ulation lies within three standard deviations of the mean. The described Point

Distribution Model is defined on 2-D images, but it can be extended to deal with

volume data, considering a set of labeled 2-D slices of a 3-D object.

2.2.2 Contour-based shape descriptors

Existing techniques for 2-D shape representation and description can be gener-

ally classified in contour-based methods and region-based methods. Area based

methods are not sensitive to small changes on the shape and even large changes

on the boundary have a small effect on the shape area. Hence, these methods are

not greatly affected by the presence of noise, but this also means that they are

unable to perceive small variations on the shape, which implies that shape details

are ignored.

Contour shape techniques, on the contrary, only exploit shape boundary informa-

tion and can perceive small changes in the shape, however this implies that such

methods can be affected by the presence of noise in the shape, producing undesir-

able results: a robust distance measure is strongly advisable. There are two types
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of very different approaches for contour shape modeling: continuous approach

(global) and discrete approach (structural). Continuous approaches do not divide

shape into sub-parts: usually a feature vector derived from the integral boundary

is used to describe the shape. A suitable measure of shape similarity for a con-

tinuous approach is a metric distance between the acquired feature vectors. A

commonly used metric distance is the Hausdorff metric, which measures how far

two subsets of a metric space are from each other. Hausdorff distance is a clas-

sical correspondence-based shape matching method and it has often been used to

locate objects in an image and measure similarity between shapes [36]. Given two

shapes represented by two set of points: A = a1,a2, . . . ,ap and B = b1,b2, . . . ,bq,

the Hausdorff distance between A and B is defined as

H(A,B) = max(h(A,B),h(B,A)) (2.2.4)

where h(A,B) = max
a∈A

min
b∈B

‖a−b‖ and ‖·‖ is the underlying norm on the points of

A and B, usually Euclidean distance. In other words, given two sets, the Hausdorff

distance is the greatest of all the distances from a point in one set to the closest

point in the other set. If every point of either set is close to some point of the other

set then they are close in the Hausdorff distance.

However, this distance measure is too sensitive to noise or outlier. A single point

in A that is far from anything in B will cause h(A,B) to be large. Rucklidge [37] in-

troduce a modified Hausdorff distance, to address the problem of noise sensitivity

of the original definition:

h f (A,B) = f th
a∈Amin

b∈B
‖a−b‖ (2.2.5)

where f th
x∈X g(x)denotes the f th quantile value of g(x) over set X , for some value

of f between 0 and 1. For example, the 1th quantile value is the maximum and

the 1/2th quantile value is the median. In practice, f is usually set to be 1/2.

The advantage of shape matching using Hausdorff distance is that shape can be

matched partially. However, the Hausdorff distance is not translation, scale and

rotation invariant. In order to match a model shape with a shape in the image, the

model shape has to be overlapped on the image in different positions, different
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Figure 2.1: The log polar maps of the contest of two different points in the contour

of a shape.

orientations and different scales. As the result, the matching is prohibitively ex-

pensive.

In our work we focused on contour-based descriptors, which can deal with artic-

ulated and flexible shapes, allowing us to better classify 2-D shapes in various

applications.

Shape Context

Belongie et al. propose a correspondence-based shape matching method using

shape contexts [38]. Shape matching using shape contexts is an improvement

to traditional Hausdorff distance based methods. It extracts a global feature,

called shape context, for each corresponding point. The matching between cor-

responding points is then the matching between the context features. In this ap-

proach an object is treated as point set and it is assumed that the shape of the

object can be captured by a finite subset of its points, for example sampled uni-

formly from the external contour. These points do not need to be key-points such

as inflection points, cusps, extrema of curvature, etc., and can be derived from

edge pixels found by a simple edge detector, whose output is a set P of n points

P = {p1, p2, . . . , pn}, pi ∈ R
2.

The shape context considers the set of n−1 vectors originating from a point to

all other sample points on a shape, which expresses the configuration of the whole
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shape with respect to the reference point. Since shapes may vary from an instance

to another in the same category, the full set of vectors is too detailed and does not

guarantee robustness. The distribution over relative position is a more robust and

compact description, hence for each point pi on the shape, a coarse histogram hi

of the relative n−1 coordinates is computed:

hi(k) = #{q 6= pi : (q− pi) ∈ bin(k)} (2.2.6)

The length r and orientation θ of the vectors (q− pi) are quantized to create a his-

togram map which is the shape context used to represent the point pi. To make the

histogram more sensitive to the location of nearby points than to the location of

points farther away, these vectors are mapped into a log-polar space representation

(Fig. 2.1). Shape contexts are distribution represented as histograms: it is hence

possible to use the χ2 test statistic to define the cost of matching two points. Con-

sider two shapes P and Q. A point pi on the first shape and a point q j on the second

shape, Ci j =C(pi,q j) denotes the cost of matching the two points in exam, where

C(pi,q j) = 1/2ΣK
k=1

[hi(k)−h j(k)]
2

hi(k)+h j(k)
and hi(k), h j(k) denote the K − bin normalized

histogram respectively at pi and q j. Given the set of costs Ci j between all pairs

of points pi of P and q j of Q, the total cost of matching H(π) = ΣiC(pi,qπ(i))

has to be minimized, with the constraint of one-to-one matching. The matching

of two shapes then is done by matching two context maps of the shapes, which

is a matrix-based matching. It minimizes the total cost of matching between one

context matrix and all the permutations of another context matrix. To reduce the

matching overhead, the shortest augmenting path algorithm for the matrix match-

ing is used. When the number of sample points is not equal on the two shapes, the

matching is done adding dummy nodes to the smaller point set, with a constant

matching cost of εi. Since all measures are taken with respect to points on the

object, invariance to translation is intrinsic to the definition of the descriptor. The

use of histograms makes shape context insensitive to small deformations, non lin-

ear transformation occlusions and presence of outliers. Additional robustness to

outlier can be added not allowing points labeled as outlier to contribute to any his-

togram. The above definition of shape context is not invariant to rotation, which

can be obtained using a relative frame instead of the absolute frame described, e.g.
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treating the tangent vector at each point as the positive x-axis.

Contour Flexibility

It this Section we briefly report the main ideas about contour flexibility. The

reader is urged to find the details of this algorithm in [39]. Vision science has

developed as an interdisciplinary research field, frequently involving concepts

and tools from computer science, image processing, biology, psychology and

cognitive science, for example the importance of high curvature points in shape

perception has been already described in [40] and [41]. From this theories the

important features for shape recognition come from parts of the object where

changes occur (e.g. corners). A recent descriptor, named contour flexibility [39],

depicts the deformable potential at each point along a closed curve, extracting

both global and local features, with proper trade-off between them. It can be

observed that in most cases articulated high flexible parts correspond to high cur-

vature points. Let ℓ be a closed simple contour, surrounding a bounded domain D.

For a point p on a contour ℓ and a given radius r, the contour flexibility is defined

as ω(p,r) = min(ω+(p,r),ω−(p,r)), where ω+ is the interior flexibility and ω−
is the exterior flexibility:

ω+(p,r) =

∫

C+
p,r

k+(x)dx
∫

C+
p,r

dx
(2.2.7)

ω−(p,r) =

∫

C−
p,r

k−(x)dx
∫

C−
p,r

dx
(2.2.8)

C+
p,r and C−

p,r respectively are the connected components containing p in the sets

{x ∈ D :‖ x− p ‖≤ r} and {x ∈ R
2\D :‖ x− p ‖≤ r}. k+ and k− are two function

of distance transform on

k+(x) = d(x,R2\D), x ∈ R
2 (2.2.9)

d(·, ·) is the minimum Euclidean distance between two sets. The radius r is called

bendable size and should be tuned taking into account the width of the limb-like

parts of an object. The bendable size r and the contour flexibility are proportional
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to the scale of the contour but invariant to translation, rotation and the choice of

starting point for the parameterization of the contour. Let

z(t) = (x(t),y(t)), 0 ≤ t < 1 (2.2.10)

be the arc-length parameterization of a contour ℓ. Since it is difficult to match

flexible parts of two contours (e.g., using uniform sampling of the contour), a

better strategy is to give large weights to inflexible landmarks and smaller weights

to more flexible landmarks, using more samples on the segments of a contour

which are more inflexible. Let

γ(t) =

∫ t
0 ω(z(u),r)du

∫ 1
0 ω(z(u),r)du

(2.2.11)

the optimal sampling can be obtained with sampling speed dγ/dt. Considering

each landmark a complex number zk = xk + jyk, the contour can be treated as a

complex vector Φ = (z1,z2, . . . ,zn)T and the Procrustean Distance between two

sequences can be used for global matching of Φ1 and Φ2:

d̂(Φ̄1,Φ̄2) = cos−1(maxs∈N |〈Φ̄1,σ
s(Φ̄2)〉|) (2.2.12)

where σ s(Φ̄2) is a cyclic permutation of Φ̄2, to achieve independence from the

starting point and ” <> ” denotes the inner product of two complex vectors. The

matching score between the two shapes represented by Φ̄1 and Φ̄2 is determined

by

Md =
α

π
d̂(Φ̄1,Φ̄2)+D(Ω1,Ω2) (2.2.13)

Where D(·, ·) is the warping distance between the two sequences of the contour

flexibility values extracted from the contours; Ω1, Ω2 are the sequences of the

values of the contour flexibility at each landmark of uniformly sampled sequences,

starting form the leading landmark found ŝ by (2.2.12), α weighting factor, π

normalization factor.
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Circular Blurred Shape Model

Circular Blurred Shape Model is a recent rotationally invariant descriptor, which

makes use of a correlogram structure to capture spatial arrangement of object

parts, shared among regions defined by circles and sections [42]. The correlo-

gram structure can be defined as follows: given a number of circles C, number

of sections S, and an image region I, a correlogram B = {b{1,1}, . . . ,b{C,S}} is

a radial distribution of sub-regions of the image. In each region b of the correlo-

gram the centroid b∗ can be located by its coordinates and used as reference point.

The regions around b define the neighborhood of b, and the number of neighbors

depends on the spatial location b (e.g. inner circle, middle circle or extern circle).

The descriptor makes use of the information obtained from the contour of the

object, which can be extracted for example by means of an edge detector. Every

point x in the contour map is taken into account, calculating first the distance to

the corresponding centroid of the region in which x lies, then the distances to the

centroids of neighbor regions. The inverse of these distances are computed and

normalized by the sum of total distances and the obtained values are then added

to the corresponding positions of the descriptor vector ν , which as dimension

C× S. As in the case of shape context, the use of histograms makes description

tolerant to irregular deformations. As for the complexity, for a map of k relevant

contour points, the computation of the descriptor requires O(k) simple operations.

Parameters C and S defines the degree of spatial information taken into account

in the description process (i.e., as the number of regions increase the description

becomes more local) and should be tuned for each particular application. See also

Fig. 2.2.

To obtain a rotationally invariant descriptor a second step needs to be included.

The main diagonal Gi of correlogram B, with the highest density, is searched. This

diagonal is then used as a reference to rotate the descriptor. The orientation of the

rotational process, so that Gi is aligned with the x-axis, is that corresponding to

the highest description density at both sides of Gi. Once obtained the rotationally

invariant CBSM descriptor, it can be used to design a symbol spotting methodol-

ogy (e.g., using Adaboost to distinguish between foreground and background) or a

multi-class classifier by embedding binary classifiers, for instance using Adaboost
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(a) (b) (c) (d)

Figure 2.2: Circular Blurred Shape Models of the same shape with different

choices of the parameters C and S.

to define a classifier based on the features that best discriminate one class against

another, combining then binary classifiers in a Error Correcting Code Framework.



Chapter 3

Surface Normals Estimation from

Spherical Incident Lighting

3.1 Introduction

Accurate shape and appearance estimation is a crucial component in many com-

puter vision applications. Despite being at the focal point of intense research,

shape and appearance estimation remains a challenging problem, especially under

uncontrolled real-world conditions. Estimation of both small-scale surface shape

as well as surface reflectance greatly benefits from accurate knowledge of sur-

face orientation. In this work, we propose a novel method for estimating surface

orientation from the Stokes polarization vector under a single spherical incident

illumination condition that is either circularly polarized (Fig. 3.1,c-d) or unpolar-

ized (Fig. 3.1, e-f).

Polarization cues have previously been employed to separate diffuse and spec-

ular reflectance components (e.g., [43, 44, 45, 30, 46, 47, 48, 49, 50], to classify

materials (e.g., [43, 51, 52, 53], to estimate reflectance properties (e.g., [54, 55]),

and to estimate surface normals (e.g., [56, 21, 25, 57, 58, 31, 22, 26, 27, 23, 28].

Motivated by the polarization characteristics of natural lighting, which is either

unpolarized (overcast sky) or linearly polarized (sunlight), most of these methods,

with exception of [30, 50, 31] focus solely on linear polarization cues. In contrast,

in this work we leverage observations of the view-independent symmetric Stokes

27
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reflectance field – which encodes the impact of unpolarized, linearly polarized, as

well as circularly polarized reflected light – for estimating surface normals under

constant incident spherical illumination. We show that for many dielectric mate-

rials, a non-negligible circularly polarized reflectance is observed, not only under

circularly polarized incident lighting, but also for unpolarized lighting. Leverag-

ing these circular polarization cues greatly improves normal estimation for front

facing surfaces. We demonstrate that both types of incident lighting can be used

to reliably estimate surface normals from observations of the Stokes reflectance

field, and show how this theory can be applied to normal estimation under uncon-

trolled outdoor illumination. The techniques discussed in this Chapter have been

published in [59, 60, 61].

(a) Subject (b) Photometric Normals (c) Circular Stokes Param. (d) Circ. Pol. Normals (e) Unpol. Stokes Param. (f) Unpol. Normals

Figure 3.1: Estimating surface normals (encoded as 1
2
(x+1)→ R, 1

2
(y+1)→ G,

and 1
2
(z+ 1) → B) from Stokes parameters (encoded as |s3| → R, |s1| → G, and

|s2| → B) of specularly reflected incident spherical illumination. Surface normals

inferred from circularly polarized illumination (c-d), and unpolarized illumina-

tion (e-f), compared to surface normals obtained from a photometric stereo vari-

ant [30](b). Top-row: Plastic orange - φ -ambiguity resolved by growing normals

inward. Bottom-row: Marble statue - φ -ambiguity resolved using an additional

measurement.
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3.2 Surface Normal Estimation from Stokes Vectors

In previous work [54] it has been shown that the Stokes vector may be used to re-

cover reflectance parameters, if the incident lighting is circularly polarized. Here

we show how to infer per-pixel surface normal n from the observation of the scene

under either circularly polarized or unpolarized spherical illumination.

3.2.1 Background: Mueller Calculus

Before detailing how surface normals can be estimated from measurements of

the Stokes reflectance field under a single spherical illumination condition, we

first give a brief overview of the related theory on Stokes parameters and Mueller

calculus. We refer the interested reader to [62] for a more in depth overview of

polarization and Mueller calculus.

In what follows we assume that the surface consists of a homogeneous dielec-

tric material, and the coordinate frame is that of the camera, i.e., the camera looks

down the -Z axis, the X axis points right, and the Y axis points up.

Polarization describes the mutually perpendicular components of the trans-

verse oscillation of light waves (see Appendix ?? for more details). According to

Mueller calculus, the polarization state of light can be described by the 4-element

Stokes vector s = (s0,s1,s2,s3), where: s0 represents the total power, s1 is the

power of the 0◦ linear polarization, s2 is the power the +45◦ linear polarization,

and s3 is the power of right circular polarization. The degree of polarization, or

ratio of the power of polarized light versus the total power equals:

DOP =

√

s2
1 + s2

2 + s2
3

s0
. (3.2.1)

The Stokes parameters are related to the polarization ellipse coordinates by:

2ψ = arctan
s1

s2
, (3.2.2)

2χ = arctan
s3

√

s2
1 + s2

2

. (3.2.3)



CHAPTER 3. SURFACE NORMALS ESTIMATION 30

S3

S2

S1

2χ

2ψ

Figure 3.2: The last three Stokes parameters ploted as spherical coordinates on a

Poincaré sphere.

Fig. 3.2 illustrates this relation on a Poincaré sphere. Note that the radius of the

sphere is the degree of polarization times s0.

When a polarized ray hits a reflective surface (i.e., specular), the resulting

change to Stokes vector is predicted by Mueller calculus:

s′ = C(φ)D(δ ;n)R(θ ;n)C(−φ)s. (3.2.4)

Each of the linear operators C, D and R can be compactly represented by a matrix.

C is the Mueller rotation that brings the linear polarization parameters into a

canonical frame:

C =













1 0 0 0

0 cos2φ −sin2φ 0

0 sin2φ cos2φ 0

0 0 0 1













, (3.2.5)

where φ is the angle between the the plane of incidence and the x axis in the
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observation coordinate system (the camera in our case). The plane of incidence

is the plane containing the incident ray, the exitant ray, and the surface normal n,

hence φ is equal to arccos(n ·x).
R is the Mueller reflection matrix:

R =













R‖+R⊥
2

R‖−R⊥
2

0 0
R‖−R⊥

2

R‖+R⊥
2

0 0

0 0
√

R‖R⊥ 0

0 0 0
√

R‖R⊥













, (3.2.6)

where R‖ and R⊥ are the Fresnel equations for the parallel and perpendicular

components, respectively, as functions of the incident angle θ (i.e., arccos(n · z)).
Finally, D is the Mueller retardation matrix:

D =













1 0 0 0

0 1 0 0

0 0 cosδ sinδ

0 0 −sinδ cosδ













, (3.2.7)

and δ is the phase shift. The phase shift differs depending on whether the material

is a dielectric or a metal. For dielectric materials it is either 180◦ when θ ≤ θB,

or 0◦ when θ > θB, where θB is the Brewster angle. For dielectric materials, this

essentially flips the signs of s2 and s3 over the Brewster angle.

Finally, the Stokes reflectance field [54] is defined as the description of the

Stokes vectors resulting from a single surface interaction, under a user-defined

incident light field, computed for every surface normal direction.

3.2.2 Measurement of Stokes Vectors

Direct observation of the Stokes vectors is difficult because typical polarizers do

not block unpolarized light completely. In order to minimize the impact of polar-

izer inefficiency, the Stokes parameters are computed indirectly from four differ-

ent measurements, following the acquisition scheme of [54] to capture the Stokes

reflectance field. Specifically, four photographs of a surface are recorded with
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four different polarizers in front of the camera: a linear polarizer rotated 0◦ (PH),

45◦ (P45), 90◦ (PV ), and a (left) circular polarizer (P◦). Note that each polarized

image receives (50+ ε)% unpolarized radiance. We can then robustly compute

the Stokes vector components as: s0 = PH +PV , s1 = PH −PV , s2 = 2P45− s0, and

s3 = s0 −2P◦. Assuming similar efficiencies for the linear and circular polarizers,

this scheme has the advantage that any unpolarized light that passes through the

polarizers will be canceled out in the computation of s1, s2, and s3, because of the

subtraction. Since s0 may overestimate the unpolarized power by a factor of 2ε , it

will not be used in any of our computations to estimate surface orientation.

3.2.3 Uniform Circularly Polarized Incident Lighting

We will develop our theory first on the case where the incident illumination has

power Φ over the sphere of incident directions and is circularly polarized. In other

words s(ω) = s ∼ (Φ,0,0,Φ). Applying Mueller calculus for diffuse and specular

surface interactions yields the Stokes reflectance vector s′:

s′ = (s′0,s
′
1,s

′
2,s

′
3) (3.2.8)

= (ρsΦ
R⊥+R‖

2
+ρdΦ,

ρsΦ
R⊥−R‖

2
cos2φ ,

ρsΦ
R⊥−R‖

2
sin2φ ,

∓ρsΦ
√

R‖R⊥),

where ρd and ρs are the diffuse and specular albedo of the dielectric material.

Note that s′0 is the result of both specular as well as diffuse reflectance. While the

impact of diffuse reflectance can be easily removed from s′0 using the degree of

polarization [54], we avoid using this component in our computations to minimize

the impact of potential diffuse pollution (e.g., due to suboptimal polarizers). Note

that s′1, s′2 and s′3 are the result of specular reflections only, and hence unaffected

by any diffuse pollution.
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Figure 3.3: Error plots for θ estimated with a fixed index of refraction of 1.4 for

materials with increasing index of refraction.

To compute θ , we establish a relation ξ between the Stokes components s′1,

s′2 and s′3 that is independent of specular albedo ρs and the power of the incident

light source Φ:

ξ = arctan





s′3
√

s′21 + s′22



= arctan

(

∓2

√

R‖R⊥
R⊥−R‖

)

. (3.2.9)

Note that ξ is implicitly related by a non-linear one-to-one mapping to θ =

arccos(z ·n) via the Fresnel equations R⊥ and R‖. θ can be directly computed

from the Fresnel equations; in our implementation we invert this non-linear map-

ping by precomputing a lookup table that maps ξ to θ , obtained by evaluating Eq.

(3.2.9) for a dense sample of θ , and assuming a fixed index of refraction of 1.4.

Fig. 3.3 illustrates the impact of on the accuracy of the recovered θ when

the true index of refraction differs from the fixed index. As can be seen, the error

remains below 5◦ for moderate indexes of refraction and for θ < 60. Alternatively,

the index of refraction can be accurately computed, for each pixel, taking into

account the exact amount of total reflected radiance, which is governed by the

well-known Fresnel equations (see A.0.2 and A.0.3). From this we can write η as

a function of R⊥ and R‖, which can be inferred from the Stokes vector; see [54]

for a thorough description of this method.

The remaining azimuthal angle φ can be directly computed from the linear
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components s′1 and s′2:

arctan

(

s′2
s′1

)

= arctan

(

sin2φ

cos2φ

)

= 2φ . (3.2.10)

Note that this is exactly the same as the angle of polarization used in prior work.

Similarly as in prior work, this relation is ambiguous: φ and φ +π both satisfy the

above equation. Resolving this ambiguity as been the focus of many prior work.

In this work, we employ two alternative strategies:

1. For convex objects, we can grow the normals in from the silhouette, as-

suming that the normals at the silhouette are orthogonal to silhouette edge

and the view direction. This strategy was also employed in prior work such

as [25].

2. Alternatively, we can capture an additional photograph of the surface while

lit by another known spherical illumination condition I(·, ·) such that I(φ ,θ) 6=
I(φ +π,θ). This strategy is useful when incident lighting can be precisely

controlled (e.g., laboratory setting). We will also employ a variant of this

for normal estimation in uncontrolled outdoor lighting.

It can be shown that Equations (3.2.9) and (3.2.10) are closely related to the spher-

ical coordinates of Poincaré sphere (respectively 2χ and 2ψ).

3.2.4 Uniform Unpolarized Incident Lighting

In the case that the incident lighting is unpolarized (i.e., the Stokes vector is

(Φ,0,0,0)), Mueller calculus for diffuse and specular surface interactions predicts

the following resulting reflected Stokes vector:

s′ =

(

ρsΦ
R⊥+R‖

2
+ρdΦ,ρsΦ

R⊥−R‖
2

cos2φ ,ρsΦ
R⊥−R‖

2
sin2φ ,0

)

.

(3.2.11)

Observe that s′1 and s′2 are solely due to specular reflections. φ can be computed

similarly as before using Eq. (3.2.10). However, Eq. (3.2.9) cannot be employed

for estimating θ , because the circular Stokes component s′3 differs. While a re-

lation can be expressed in terms of s′1 and s′2 (e.g., ∼ s′21 + s′22 ), such a relation

will suffer from a low SNR when R⊥ ≈ R‖. While no circular polarization is
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predicted by Eq. (3.2.11), we experimentally detected a small quantity of left cir-

cularly polarized reflectance under unpolarized incident illumination. We observe

that, while fairly constant for different angles of θ , it is stronger than the ob-

served amount of linearly polarized reflectance near normal incidence (Fig. 3.4,

(a)) . This provides a means to improve the accuracy of surface normals for front

facing surfaces. We believe that this observed circularly polarized reflectance is

due to polarization preserving (subsurface) scattering, which was not taken into

account when computing Eq. (3.2.11). Fig. 3.4, (b-e) shows an experimental

validation that indicates that the observed circularly polarized reflectance is not

due to specular reflections (i.e., non-zero s′3 is observed between the sharp high-

lights). Furthermore, it has been shown that scattering from randomly oriented

particles can give rise to circular polarization (see [63], p.451), and that polar-

ization is preserved for an average of 2.5 scattering events [64]. Exact modeling

of the corresponding Mueller matrix, and thus the resulting s′3, for polarization

preserving scattering is difficult due to the many unknown factors. Instead of re-

lying on an exact formulation of s′3 for computing θ , an example-based strategy

is employed. The Stokes reflectance field of a dielectric object with known shape

(e.g., a sphere) is recorded under unpolarized incident lighting. To account for

differences in specular albedo and scattering properties, a first-order correction is

performed by scaling the maximum of

√

s′21 + s′22 and of s′3 in the target dataset

to match those of the exemplar dataset. This first-order correction works well for

objects that exhibit a rich variation in surface normals. Finally, the normal of a

surface point is computed by finding the best matching

√

s′21 + s′22 and s′3 pair on

the exemplar.

3.2.5 Uncontrolled Outdoor Illumination

The extension of the proposed method to uncontrolled outdoor environments builds

on two observations:

• We observe that overcast sky is unpolarized, and the content varies approxi-

mately as: I(φ ,θ)∼ sin(φ). Such an illumination condition is slowly vary-

ing, and fulfills the condition that I(φ ,θ) 6= I(φ +π,θ), and thus it is suit-

able for resolving the φ -ambiguity.
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(a) Circular vs Linear mag. (b) Black ball (c) Black ball Unpol. Stokes (d) Blue ball (e) Blue ball Unpol. Stokes

Figure 3.4: (a) Plot of reflected circular vs linear polarization under uniform spher-

ical illumination as function of θ . (b - e) Stokes parameters of two sharp specular

balls under uniform spherical illumination (emitted from a LED sphere with 346

lights) showing circular polarization (red) between the observed specular high-

lights which are linearly polarized.

• Furthermore, if the content of the environment lighting varies slowly in

comparison to the sharpness of the specular reflection (which is the case

for overcast sky), then we can approximate the intensity of incident lighting

over the solid angle of significant specular response as a constant scale fac-

tor sω . Hence, for every surface point, the specular response is similar (up to

a scale factor sω ) as if it was captured under a constant lighting condition.

However, care has to be taken when performing the first-order correction

of

√

s′21 + s′22 and s′3 since different surface points’ specular reflections are

possibly scaled by a different scale factor sω . We propose to either capture

the exemplar in the same environment (and hence it includes sω ), or alterna-

tively perform a first-order correction on the ratio s′3/
√

s′21 + s′22 instead of

the individual components (effectively dividing out sω ). The latter is similar

to the ratio used in Eq. (3.2.9).

Again, we can readily apply the theory outlined for the uniform unpolarized inci-

dent lighting case to compute surface normals under uncontrolled overcast illumi-

nation.

The inclusion of circular polarization yields a more robust estimation of sur-

face normals compared to prior work such as [27, 28, 25, 26, 29] which rely solely

on linear polarization cues to estimate the in-plane incident angle from the reduced

degree of polarization: DOP′ =
√

s2
1 + s2

2/s0 (i.e., s3 is implicitly assumed to be

zero). We found the estimation error to reduce by 5◦ close to normal incidence

with the inclusion of circular polarization.
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(a) Geometric normals (b) Ma et al. [30]

(c) Circ. Pol. Normals (d) Unpol. Normals (e) 1D error plot

Figure 3.5: Surface normals of a spherical ball estimated from Stokes parame-

ters of incident spherical illumination. Surface normals inferred from circularly

polarized illumination (c), and unpolarized illumination (d), compared to known

ground truth geometric normals (a), and compared to normals obtained from lin-

early polarized incident lighting using the method of [30] (b).

3.3 Results

We validate our theory in both controlled and uncontrolled lighting conditions.

Fig. 3.1 shows surface normal estimation results for a convex plastic orange (top

row) under controlled incident lighting generated by an LED sphere with 346

lights. We compare the estimated surface normals under circularly polarized and

unpolarized spherically uniform incident lighting to surface normals obtained by

the photometric method of Ma et al. [30]. The φ ambiguity is handled by growing

the normals in from the silhouette. Fig. 3.1 (bottom row) presents the results

under similar conditions of a more complex marble statue with concavities. The

φ -ambiguity is solved by capturing an additional lighting conditions: I(φ ,θ) =

(sin(φ)+1)/2.

Fig. 3.5 gives a quantitative error analysis of the surface normal estimation

for an object with known shape (i.e., sphere). As can be seen the quality of the

estimated normals is good, except close towards extreme angles due to reflection

occlusion. Furthermore, the surface normals estimated under circular incident

lighting exhibit a better SNR for front facing surfaces compared to those acquired

under unpolarized incident lighting. The mean angular error is around 7◦ for

incident angles less than 75◦. Note that normals towards the bottom of the sphere
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(a) Subject (b) Photometric Normals [30] (c) Circular Stokes Param. (d) Circ. Pol. Normals (e) Unpol. Stokes Param. (f) Unpol. Normals

Figure 3.6: Estimated surface normals from Stokes parameters under idealized

simulated outdoor lighting conditions. Surface normals inferred from circularly

polarized illumination (c-d), and unpolarized illumination (e-f), compared to pho-

tometric normals [30] (b). Top-row: Plastic maquette - surface normal map of

face grown inward from the silhouette. Center-row: Marble statue - φ ambigu-

ity resolved using directional cues from the incident illumination. Bottow-row:

Plaster bas relief.

exhibit a larger error due to reflection occlusion from the stand supporting the ball.

Fig. 3.6 shows normal estimation results under a spherical linear intensity gra-

dient in the top-down direction: I(φ ,θ) = (sin(φ)+1)/2, which simulates an ide-

alized outdoor overcast condition. Fig. 3.6 (top row) show the estimated normals

of a plastic maquette under this simulated lighting condition. The φ -ambiguity

was handled by growing in the normals from the silhouette. Fig. 3.6 center and

bottom row, show a marble statue and a plaster bas relief respectively captured

under the same single simulated lighting condition. For these two cases, the φ -

ambiguity was solved using the intensity information of the incident lighting con-

dition.

Fig. 3.7 shows results of surface normal estimation from outdoor illumination

on a cloudy day for the convex plastic orange as well as a jade Confucius statue

with several concavities. The exemplar sphere was captured under the same light-

ing condition.
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(a) Subject (b) Unpol. Stokes Param (c) Unpol. Normals

Figure 3.7: Estimated surface normals from Stokes parameters of diffuse outdoor

illumination. Top-row: Plastic orange. Bottom-row: Confucius statue.

3.4 Discussion

In this chapter we presented a novel technique for estimating surface normals from

polarization cues obtained from the Stokes reflectance field captured in just four

photographs from a single viewpoint and under a single (unpolarized or circu-
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larly polarized) constant spherical incident lighting. While the theory is based on

Meuller calculus and is strictly for homogeneous dielectric materials with a con-

stant specular roughness, we found it to work well in practice for both dielectrics

as well as dielectric-metal composites. We validated the proposed technique in

both controlled as well as uncontrolled outdoor lighting conditions.

A key empirical observation is that unpolarized light becomes slightly circularly

polarized. Additionally, because the proposed technique only requires four pho-

tographs of a scene from a fixed viewpoint and under a single lighting condition,

the proposed technique could potentially enable a single shot normal estimation

device based on the assorted pixel [65] concept.

At the current state of our research we are able to capture also live subjects

(e.g. a human face), although a typical acquisition session lasts a few seconds,

because fo the need to flip the polarizer in front of the camera, plus the time

required to capture the pictures required by [30] to infer accurate surface normals,

in case we need a ground truth for comparison. Even if the subjects are generally

able to stay still during the acquisition session in a laboratory setting, we detected

a small amount of motion for our subjects, which can bias the normals estimate.

We found safer to include a few extra frames, lit by a uniform spherical incident

lighting, used as reference to run the joint optical flow technique described in [66].

In Figure 3.8 the estimated normals for a human face are shown; in particular the

subject changed slightly her pose during the session, introducing motion around

all three axis. As a consequence blurring and other artifacts are introduced, in

particular on the unpolarized normals because of their lower signal to noise ratio.

Our method is closely related to [54] and they can be effectively combined

together in case of circularly polarized incident lighting, as mentioned in Section

3.2.3. In this case it is possible to obtain a full description of the BRDF of the

object, for each pixel, in just four observations: specular albedo, diffuse albedo,

index of refraction, specular roughness and surface normals.

The surface normal estimation can also suffer from bias due to any reflec-

tion occlusion. We also restrict the analysis to spherically symmetric lighting

conditions with respect to polarization, i.e., circularly polarized and unpolarized

incident lighting. Linearly polarized incident lighting typically results in view-

dependent Stokes reflectance fields as well as very little variation in the measured
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(a) Female subject (b) Photometric Normals (c) Circ. Polarized Normals (d) Unpolarized Normals

Figure 3.8: Estimating surface normals (encoded as |x| → R, |x| → G, and |x| →
G to better focus on motion artifacts introduced by a slight change in the pose

of the subject during the acquisition) . Surface normals inferred from circularly

polarized illumination (b), and unpolarized illumination (c), compared to surface

normals obtained from a photometric stereo variant [30](a).

Stokes parameters for robust surface normal estimation. The method inherently

relies on the incident polarization state of light to be uniform from all directions.

This assumption is violated under linearly polarized illumination or strongly re-

flected bounce light from the floor or walls for uncontrolled indoor or outdoor

measurements.



Chapter 4

Statistical 3D Shape Modeling

4.1 Introduction

The female breast is a complex three-dimensional shape, with fuzzily defined

boundaries and only a few easily identiable anatomical landmarks. Evaluating

the post-operative outcome of breast plastic surgery is currently a little more than

craftsmanship and intuition, strongly relying on the professional skills and per-

sonal experience of plastic surgeons, which cannot be embedded into a standard

clinical procedure. Visual assessment is the common practice among surgeons,

since no universally accepted breast shape analysis technique is currently avail-

able, and clearly is barely reproducible. Devising reliable and objective method-

ologies to objectively analyse natural and reconstructed breast shape, to comple-

ment the direct inspection of the surgeon both in the pre-operatory and postoper-

atory phase, is an important research issue in plastic and reconstructive surgery.

The techniques should be the least invasive and at reasonable cost.

Our proposal makes use of Nuclear Magnetic Resonances Imaging (MRI).

This is nowadays a standard radiological test that is performed in most of the hos-

pitals, which provides good information about internal breast structures. It also

provides, at practically no cost, precise numerical measurement of the 3D exter-

nal surface of a womans breast. These data are especially valuable if the patient is

carefully put in a standard prone position during the MRI acquisition (Fig. 4.1).

42
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(a)

(b)

Figure 4.1: The patient is lying prone and she must have comfortable pillow for

head and arms. Care as to be taken in centering the breast in the coil. Patient posi-

tioning as seen from the side (a) and from behind (b), together with the idealized

shape of a sagittal section of the breast. Courtesy of: Cornell MRI Laboratory

Group (http://weill.cornell.edu/mri/).

For this purpose a collection of MRI data relative to about 40 patients have

been acquired with a homogeneous clinical protocol. Using this data set we have

the opportunity to explore the variability space of the human breasts and to try to

isolate few numerical parameters able to describe the shape variations observed in

the women population.

We have pre-processed the collected MRI data to obtain geometrical mod-

els of the breasts eliminating from them most of the experimental noise. These

standardized surfaces have been in turn processed with the Principal Component

Analysis to obtain an average shape and a small set of principal orthogonal modes

that are able to explain and model most of the observed variation in the data.

At this stage we are already able to present an interesting way to objectively eval-

uate a patients breast within a span between some extremal cases.

The description of the human shape by mean of a set of numerical parameters
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has a long history. Perhaps the first to propose such a way to describe the human

body are the Renaissance artists (Leonardo da Vinci, Albrecht Durer). Efforts to

systematically measure body shape parameters have been carried out in military

environments [67]. These efforts have been perfected by the availability of re-

cent laser body scanning techniques. CAESAR is a joint European and American

funded effort that has brought to the constitution of publicly available, massive

database of the whole human body shapes [68]. Since the conclusion of this

project, studies about anthropometric measurements based on these public data

have become abundant in the published literature. Principal Component Analysis

has been used in order to embed the space of human body shapes in some low

dimensional geometric variety [69].

As for specific organs of the human body considerably less work have been

done and published. Regarding human breasts few experimental approaches have

been published both from the point of view of industrial and clothing applications

[70] and of medical studies [71]. For breast evaluation, laser scanning techniques

are not yet sufficiently robust: typically scanning time is too long and patients

breathing interferes too much with the quality of the final data. Moreover areas of

the female torso may remain occluded to the optical laser ray [72]. As for the use

of a parametric model to describe the shape of the human breast a seminal paper

using a super quadric approach is [73]. In this chapter we follow the approach of

[69] applying the principal modes obtained with PCA to the problem of describing

the breast. Our work has been published in [74, 75].

4.2 Proposed Methodology

4.2.1 The Dataset

To collect our dataset we acquired 46 MRI of womens breasts, with a homoge-

neous clinical protocol. The volunteers varied in age from 21 to 76 years, in

order to take into account the effect of natural aging on the breast shape. In all

the resonances the patient was lying prone and left the breasts free to hung down

influenced only by gravity within the instrument (Fig. 4.1).

Both right and left breasts images were acquired in this way. The volunteers
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varied in age from 21 to 76 years. The majority of the cases are relative to healthy

women, but some pathological typical cases have been also included in the study.

Care has been taken not to include extremely aberrated or incomplete shapes in

our computations, to avoid the introduction of bias in our model. The whole

volume of the resonance for each patient is made of 100 slices (50 slices for each

breast).

The rough data present heavy noise, due to the MRI scanner and the imaging

process, and need to be cleaned and registered in a unique reference frame for

further processing. Figure 4.2 shows some example of noisy MRI slices and the

corresponding filtered output. To obtain acceptably smooth surfaces we apply the

processing pipeline described in the following section.

(a)

(b)

Figure 4.2: Some example of noisy MRI slices (a) and the corresponding filtered

output (b).

4.2.2 Surface Smoothing with Polynomial Fitting

Noise reduction at each MRI slice is the very first and preliminary processing that

has to be performed on the data. The hypothesis of additive white Gaussian noise,

with zero mean and variance σ2
L at each slice L is assumed. This allows to sep-

arately process each slice as an independent picture. To statistically evaluate the

noise variance σ2
L in a slice we sample a reasonably large region R where, with

high probability, there is no tissue. A natural candidate for R is the corner of the
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slice opposite to the breast. The knowledge of σL allows to precisely tune a ro-

tationally symmetric Gaussian lowpass filter of size L. This first smoothing still

leaves some amount of salt and pepper disturbances. A median filtering is used

to reduce this kind of noise without affecting edges and hence without perturbing

the profile of the breast/air interface (Figure 4.3(c)).

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Steps of surface fitting. a) input slice; b) output of gaussian filter; c)

output of median filter; d) thresholding; e) morphological closing; f)robust local

regression.

The precise identification of the breast/air interface is subsequently performed

with a binarization procedure. An adaptive threshold for the binarization is found

on each slice separately: the threshold value is determined looking at the his-

togram of the pixel values in the region R considered above. R is relative only

to the air and ideally it should appear totally black. For this reason the natural

choice for the threshold value is the maximum observed non zero value in R. The

resulting binarized images still may present isolated dark areas within the tissue

region and isolate bright spikes in the air region. These artifacts are appropriately

removed with standard filtering (Figure 4.3(d)).
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Figure 4.4: Three views of the 3-D reconstruction using Marching Cubes algo-

rithm of a breast in our dataset. In all views it is evident the degree of ptosis

which affects the patient.

To naively follow the border between black and white areas in the slice at this

stage would produce a very jagged contour while a more regular curve is desir-

able. Regularization is achieved first applying some morphological operators and

hence fitting a polynomial curve. More precisely a morphological binary dilation,

followed by a morphological erosion (morphological closing) [76], with a 3× 3

pixels square as a structuring element is performed. Eventually a local robust

regression using weighted linear least squares and a second degree polynomial

model is used to further regularize the curve. To ensure robustness the regression

weights are assigned in such a way that probable outliers gets a lower weight and

zero weight is assigned to data outside six mean absolute deviations.

The curves resulting from the application of this procedure on each slice are

finally assembled together in a surface model. Figure 4.4 shows a 3-D reconstruc-

tion of the breast surface using Marching Cubes [77]. It is possible to obtain a

smoother 3-D surface by means of bicubic interpolation.

4.2.3 Principal Component Analysis of Breast Shapes

Out of the complete data set we have set apart, for further testing, ten randomly

chosen breast shapes. All the other smooth surface data (36 breast pairs) have been

processed using a standard implementation of Principal Component Analysis in
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(a) (b) (c) (d)

Figure 4.5: The average shape (a) and the first three components (b)-(d) in our

dataset.

MATLAB. The average shape in our dataset and the first three components are

reported in Fig. 4.5

Table 4.1 reports the percentage relevance of the six eigenvalues associated

with the first six components. In particular the first three components explain

about 82% of the total data variation. PCA theory guarantees that the approxima-

tion error introduced leaving the less significative modes out of the reconstruction

is mathematically bounded.

Eigenvalue λi λ1 λ2 λ3 λ4 λ5 λ6

Contribution % 61.6 15 5.27 3.77 2.53 2.39

Table 4.1: Eigenvalues of the covariance matrix.

To experimentally confirm that the first six components are sufficient to pro-

duce a fairly good approximation of the real data even in the case of extremely

deformed shapes, we report the results of the reconstruction of some real data us-

ing only the first six modes both in the case of normal breast than in the case of a

severely deformed one. The reconstructed models are shown in Figure 4.6. The

reader may visually appreciate the faithfulness of both the reconstructions.

The knowledge of the average shape of the breast together with the principal

modes allows the synthesis of new models. To enable the physician to interac-

tively explore the patient data and the potentiality of the proposed modelling tech-

nique we have implemented a graphical JAVA application. The program makes

use of the JAVA3D library to interactively show a breast model. The model can be

moved in 3−D with mouse gestures. A set of six sliders provides the user with

the possibility to change the contribution to the final shape of each of the main six

modes, and the effect of changes in weights is immediately visible. A screenshot
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(a) (b)

(c) (d)

Figure 4.6: Results of the reconstruction of some real data. a) a normal breast

and b) its reconstruction using the first six modes; c) a deformed breast and d) its

reconstruction.

of the application is shown in Figure 4.7.

4.3 Results

We have tested the proposed methodology in two ways: reconstruction and guid-

ance to qualitative analysis. As we mentioned above to test the expressive power

of the proposed shape descriptors we set apart as control set a small number of

randomly chosen MRIs (10) for the modes extraction phase and we reconstructed

these left out breasts from the computed orthogonal modes. The control set in-

cluded cases of fairly standard breasts as well as cases of great deviance from the

norm. In all cases the reconstruction appeared to be visually satisfactory although

a degree of approximation has been introduced. The mean error distribution is
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Figure 4.7: The graphical user interface of our JAVA application, to interactively

explore patient data.

shown in Figure 4.8. Observe that most of the error is localized only in peripheral

areas of the breast and in the inframammary fold.

A relevant issue is if each mode may be interpreted as a morphological macro-

scopic feature with some clinical meaning. Although a precise mapping of the

proposed modes to common properties like volume, roundness, concavity, etc is

unlikely, at least for the first two modes some correlation can be made. In par-

ticular the first mode (whose associate eigenvalue weights 62%) induces mostly

volume variations (Figure 4.9a). As for the second mode (whose associate eigen-

value weights 15%) it induces mostly variations in the degree of protrusion of

the breast in front of the sternum (Figure 4.9b). These observation suggested the

construction of a linear scale to qualitatively evaluate breast shapes. Please note

that the proposed scale is just exemplary, but we believe that our approach may be

helpful in the direction of the construction of a well balanced and universal scale.
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Figure 4.8: Mean reconstruction error distribution.

(a)

(b)

Figure 4.9: (a) Variations induced by the first parameter; (b) Variations induced

by the second parameter.

Keeping in mind the previous caveat, we selected two extremal breast shapes

in our database. In particular the doctors chose as a reference the case of a patient

whose photograph is shown in Figure 4.10. The patient is a 48 aged woman whose

left breast has been surgically reconstructed after the resection of a tumor, while

the right breast has been only subject to normal aging. These left and right breasts

constitute in a way two extremal cases and it is, in a first hypothesis, reasonable

to believe that all the breast shapes may span between these two poles. To check
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this idea we computed the “distance” of the other breast shapes from the two

extremal cases. More precisely, the “distance” from shape A to shape B is defined,

in this context, as the Euclidean distance in R
d between the normalized first d

coefficients in the PCA expansions of A and B. We experimentally found visually

clearer results for d = 2. Figure 4.11 shows a plot of the breast shapes in a X −Y

plane. The X coordinate of each data point represents the distance of the breast

from the left breast of Figure 4.10; the Y coordinate of each data point represents

the distance of the breast from the right breast of Figure 4.10.

Figure 4.10: Reference case: woman whose left breast has been surgically recon-

structed after the resection of a tumor, while the right breast has been only subject

to normal aging.

We partitioned the span between the two extremal cases into 5 parallel strips

(S1− S5). For each not empty strip we choose a central data point. Figure 4.12

shows the central sections of the 4 selected shapes between the central sections

of the two reference breasts. As it is evident the progression between the two

extremal cases appear to be gradual and of immediate clinical meaning, demon-

strating that the proposed parametrization may be used to develop a reliable, ob-

jective technique to evaluate the shape of a breast, whether it has been surgically

reconstructed or not.
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Figure 4.11: The X coordinate of each data point represents the distance of the

breast from the left breast (L) of Fig. 4.10; the Y coordinate of each data point

represents the distance of the breast from the right breast (R) of Fig.4.10.

Le f tbreast(L) S1 S2 S3 S4 Rightbreast(R)

Figure 4.12: Central sections of the 4 selected shapes between the central sections

of the two reference breasts; strip S5 is empty.
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4.4 Discussion

In this paper we have presented an embedding of the shape space of the hu-

man female breast into a low dimensional linear parameter space. The proposed

parametrization has been experimentally obtained from a set of purposely col-

lected and properly processed MRI data. The data have been processed for noise

removal and analyzed with the PCA technique. A first medical assessment of

the model, done using a 3-D software especially developed for this application,

proved that this technique may be of clinical relevance and a tentative qualitative

scale for breast evaluation has been proposed. Although the proposed technique

has proven being useful, easy to apply and at a reasonable cost, recent advance

in technology made available a number of low cost devices which might be taken

into account to complement or even replace MRI technique. The reasons which

encourage further research are mainly three:

• MRI requires well trained personnel, not only for using the scanner itself

but even for a careful patient positioning;

• the exam takes time and the patient has to stay as still as possible, otherwise

breathing and motion artifact will be introduced;

• the resolution of each slice is adequate along the sagittal and coronal axis.

However the number of slices is limited to fifty for each breast, and each

slice is relative to three millimeter of thickness along the transverse axis,

hence the resolution is quite limited. Figure 4.4 makes clear this limitation.

Kinect [78] is a new and widely-available commodity sensor platform that incor-

porates a structured light based depth sensor, that generates a eleven bit depth map

at 30Hz, with a resolution of 640× 480. Taking into account the cost of the de-

vice, the quality of this depth map is generally remarkable, but the depth images

contain numerous holes” where no structured light depth reading was possible.

This phenomena is due to the properties of certain materials or scene structures

which do not reect infra-red (IR) light, very thin structures or surfaces at glancing

incidence angles; motion blurring can also lead to missing data. Newcombe et

al. [79] recently developed a system for accurate real-time mapping of complex
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and arbitrary indoor scenes in variable lighting conditions, using a Kinect sensor

and commodity graphics hardware. All of the depth data streamed from a Kinect

sensor are fused into a single global implicit surface model of the observed scene

in real-time. The current sensor pose is simultaneously obtained by tracking the

live depth frame relative to the global model using a coarse-to-ne iterative closest

point algorithm, which uses all of the observed depth data available. This method

allows dense surfaces to be reconstructed in real-time, with a good level of detail

and robustness. A similar approach is implemented in [80].

We used used the Kinect along with the ReconstructMe 3-D scanning software

to capture a new dataset and to build a prototypal system for breast shape analy-

sis. The acquisition protocol is way less constrained than the MRI protocol and

the patient is required to stand still for only a few seconds, depending on the GPU

hardware capabilities. Preliminary tests shows that the best tradeoff between ac-

quisition time, patient comfort, quality and reproducibility of the acquired shapes

can be obtained performing the pose depicted in figure 4.13(a). The patient is

standing still, with her hands crossed behind the head and the elbows at the same

height of her nose. The described pose allows to accurately capture enough depth

information about the inframammary crease even in presence of a sever degree of

ptosis.

(a) Patient pose (b) (c) (d)

Figure 4.13: 3-D female breast shapes acquired using a low cost depth-camera

(Kinect); a) the patient is standing still, with her hands crossed behind the head

and the elbows at the same height of her nose. (b-d) three patient acquired in the

same pose.
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At this stage we are able to show the quality of the acquired breast shapes, and

some examples are reported in figure 4.13(b-d).

It is evident that the quality of the 3-D models is quite high, potentially enabling

a more accurate shape analysis. Acquisition time is around 30 seconds during

which our patients are generally able to stay still, but it can be reduced using

high-performance graphics hardware. Future research to be done in this area

will include refinement and clinical evaluation of a qualitative shape space and

a thorough investigation of any issue which can arise from the absence of a rigid

positioning protocol for the patients.



Chapter 5

Statistical 2D Shape Modeling

5.1 Introduction

In this chapter we demonstrate a pratical use of statistical 2-D shape models, ap-

plying a technique derived by [33] to the problem of evaluating overall health

condition of animals. In particular, semi-automatic and automatic assessment of

dairy cattle health is addressed.

The energy reserves in cows in terms of body fat stores and mobilization during

the different lactation stages have important implications for milk production, ani-

mal well-being, reproductive performance, and, more generally, farm productivity.

Body Condition Score (BCS) is widely considered an important tool for manage-

ment of dairy cattle because it is a simple and repeatable system used to evaluate

body fat stores and estimate cumulative energy balance through visual or tactile

inspection [81]. The score range used by most dairy management advisors applies

a scale from 1 to 5, with 1 representing emaciated cows and 5 representing obese

cows. Despite the general consensus on the benefits of the BCS evaluation in

farms, only a small percentage of US dairy farms have adopted this practice in the

production chain. The main reasons that discourage the use of the traditional BCS

evaluation techniques are the lack of computerized reports [82], the subjectivity

in the judgment that can lead to different scores for the same cow under consid-

eration, and the complex, not immediate, and time consuming on-farm training of

technicians. Furthermore, the measurements must be revised frequently on each

57
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cow augmenting hence the costs for the farms.

The feasibility of estimating the BCS from digital images has been demon-

strated in recent works. Ferguson et al. [83] assess the ability to assign a BCS to

a dairy cow, by a human observer, directly from digital photographs or a video

taken from the rear of a cow at a 0 to 20 degree angle relative to the tail head. In

[84] a semi-automatic BCS estimation technique, from a single digital image, is

presented. A dorsal view is captured automatically as cows pass through a weigh

station and then 23 anatomical points are considered, to define the shape of the

body of the cow. These points, selected in a manual way, are used to compute

15 angles around the hooks, pins, and tailhead, in order to describe the cow’s

contour. A regression machine is employed to infer the BCS from the computed

angles. Halachmi et al. [85] test the hypothesis that the body shape of a fat cow

is rounder than the shape of a thin cow and, therefore, may better fit a parabolic

shape. The posterior part of the cow is considered in performing the parabolic fit-

ting. Images are acquired by means of a thermal camera that allows a very simple

and straightforward shape extraction. The BCS estimation is achieved by consid-

ering the absolute differences between the real body shape and the fitted parabola.

Despite the progress in this research area, such studies have not addressed

the problem of modeling the shape of body cows to build a robust descriptor for

automatic BCS estimation. Among the visual cues used by human visual sys-

tem, the shape provides important information that allows humans to distinguish

between objects of different categories [38] as well as information that are rele-

vant to understand the differences in the appearance of an object within a specific

class [33]. In computer vision literature, several shape descriptors have been pro-

posed [38, 33, 86, 87]. More specifically, shape descriptors based on Principal

Component Analysis (PCA) [33, 86] are used to consider the different variability

of anatomical landmarks with respect to the average shape.

The aim of our study is to model the shape cows, as seen from above, by

capturing variability with respect to a “prototype” shape properly derived by a

set of examples and then exploiting these variabilities to describe the involved

shapes in a reconstructive way. BCS estimation is performed after learning a
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Figure 5.1: The scheme of a system for semiautomatic estimation of BCS.

regressor on a kernel PCA space of cows shapes. A further objective was to build a

benchmark dataset useful for dairy cattle research purposes, available through the

Internet1. Experimental results confirm the effectiveness of the proposed approach

that outperforms all previous approaches in terms of BCS evaluation accuracy.

5.2 Proposed methodology

5.2.1 System overview

The first step of our research is semi-automatic evaluation of the BCS from digital

images and it has been published in [88, 89, 90]; a general scheme such a system

is shown in Figure 5.1. The system consists of two different blocks: Training

Block and Employing Block. The Training Block is used to learn the parameters

of the model exploited to infer the BCS from features extracted on digital images.

The parameters are learned by using a set of labeled examples. Once the training

is completed, learned parameters are used in the model to infer the BCS of new

samples during the employing phase. Both Training Block and Employing Block

1The BCS Database is available at: http://iplab.dmi.unict.it/bcs/
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make use of the same hardware infrastructure (e.g., digital camera parameters and

position).

Each block consists in different modules organized in a sequential pipeline.

The Training Block is composed of three modules as follows: acquisition of train-

ing examples, labeling of anatomical features, and learning the BCS model pa-

rameters.

• The Acquisition Module is used to acquire images to be used as samples in

learning the model parameters. The sample cow images to use in the Acqui-

sition Module should include the range of the number and variety of samples

to be acquired, since this set of acquired images should be representative of

all possible BCS values. During the acquisition phase, technicians should

evaluate BCS of the involved cows on site, building a consistent labeled

dataset which contains images together with the corresponding BCS. In or-

der to build a system capable to infer the BCS from anatomical features of

cows (e.g., hook angles), the features must be first labeled by experts and

then used to learn the parameters of the chosen BCS model.

• In the Labeling Module an expert uses a software tool (which will be de-

scribed in Section 5.2.4) to mark the anatomical features of interest on

the acquired digital images. Labeled points are related to the features that

should be taken into account to assess BCS. Several experts and technicians

(at least two) should be used independently in the labeling phase to guar-

antee that the final labeled dataset is not biased by subjectivity of just one

technician.

• The Learning module is devoted to establishing the set of parameters in-

volved in the BCS model (e.g., regressor on anatomical points) from the

labeled dataset. The Training Block uses the Learning and Acquisition Mod-

ules to construct the parameters of a model to estimate the BCS of a cow

from the images labeled by the expert(s).

The Employing Block is composed of three sequential modules: acquisition of a

new unlabeled image of a cow, identification and labeling of anatomical features
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of the image, and application of the model generated in the learning phase to

assign a BCS to the sample.

Barn description and image acquisition. Images are acquired by means of a

standard network digital camera, with pan and tilt functions. This camera can

be monitored from the local area network or from the Internet and can switch

between color images during daytime, and black/white images in low light con-

ditions (or nighttime) using the built-in infrared lighting. The camera also offers

an Application Programming Interface (API) for software integration and its res-

olution is 704× 480 pixels at up to 30 frames per second for NT SC system and

768×576 at up to 25 frames per second for PAL system. The camera is positioned

3 meters above the floor, to capture images dorsally as cows pass through an exit

gate. The choice of this specific gate, accessible from a pair of milking robots,

guarantee that all the lactating cows present in that group are examined at least

once a day. Cows are constrained briefly at the exit gate for a few seconds which

allowed image capture from a relatively stationary cow. Images are acquired at

an average frame-rate of 12 f ps from 10 a.m. to 2 p.m. and from 8 p.m. to 00

a.m., in order to take into account two different illumination conditions. All im-

ages are saved locally and then processed offline. Cows are not restricted based

on coat color (cows had variable combinations of white to black markings), coat

condition (sleekness of hair coat), or age and size for sample collection.

5.2.2 Image selection

During each sample collection period, the image acquisition system gathers a huge

amount of data (approximately 172800 images for each acquisition interval). For

each acquisition period only a few images actually contains a cow in the frame

(about 40 images). The selection of the images containing cows is a critical issue

that cannot be addressed manually. To overcome this problem, a three step algo-

rithm was developed to select only those images that contains a cow image for

analysis. First, a filtering procedure is used, employing absolute interframe error

or frame difference, which is the analysis of the difference between corresponding

pixels in adjacent frames. When a cow passes through the gate the absolute inter-

frame error typically has higher values compared to the absolute interframe error
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(a) Input sequence (b)

(c) (d)

Figure 5.2: Absolute interframe error (b) relative to the series of selected frames

(a), local variance analysis (c), and differences between the identified background

frame and the other selected frames (d). The peak indicates the image that differs

more with respect to the background (i.e., the image that contains the whole cow).

The plateau in (c) is strongly related to consecutive background frames.

comparing frames without a cow (background images). For each acquisition pe-

riod of four hours, a peak and valley plot is obtained. Each peak corresponds to an

image containing a cow whereas valleys correspond to background images. After

identifying the highest peak images, an automatic process selects a fixed number

of images around the peak (200 in our implementation). The image correspond-

ing to the peak might not be the best image to be used for BCS estimation (e.g.,

only part of the cow could be visible). Optimal images to use for BCS has to be

chosen from the 200 selected images. The mean absolute interframe error (Figure

5.2 (b)) is employed as starting point for local variance analysis from the 200 im-
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ages (i.e., the variance is computed considering a sliding window of 20 elements).

A plateau is strongly related to consecutive background frames (Figure 5.2 (c)).

A background frame, Bg, is selected from this uniform region and the difference

between all the selected frames and Bg is computed (Figure 5.2 (d)). The peak in-

dicates the frame that differs the most with respect to Bg: the corresponding frame

hence probably contains the whole cow. In order to cope with motion blur, out of

focus, and other acquisition problems, five frames around the identified frame are

selected. Finally the best frame is manually identified among the five frames. Hu-

man interaction is therefore required only at the end of the process and is related

to a small subset of frames (5× 40 per 4 hours of acquisition). In our work, the

aforementioned filtering process led to a final dataset with 286 images, relatives

to 29 cows.

5.2.3 Cow identification and manual body condition scoring

At the beginning of acquisition step, two technicians are employed to identify

cows at the exit alley of the milking robot. The clocks of both the image acquisi-

tion system and the technicians were synchronized. Technicians fill out a report

with one record for each cow involved in the experiment. The report contains the

cow identification (ID) from neck collar, BCS assessed by the observer (estimated

according to [81]), and a timestamp. Once the report is completed, the assigned

BCSs are properly associated to the acquired cows’ images by using the times-

tamp. A semi-automatic procedure is adopted to assign ID label and BCS score

(i.e., the ground truth) to all the other acquired images selected by the filtering

pipeline. To establish similarity between images labeled by technicians and un-

labeled images obtained with the filtering process, each image is first binarized

by considering the average color within the shape region, and then represented as

a binary distribution taking into account black and white pixels within the shape

region (Figure 5.3 (a)). Similarity between the distributions related to different im-

ages is measured by using the Bhattacharyya coefficient [91]. Since the binarized

texture of cows can be similar in their distribution if the shape is considered as a

whole, we adopt a more robust representation of the content of images based on a

binary distribution for each subregion of the shape obtained considering anatomi-
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(a) Similarity between cows’ images. (b) Binary distribution in each subregion.

Figure 5.3: A semi-automatic procedure was adopted to assign ID label and BCS

score (i.e., the ground truth) to all the other acquired images selected by the filter-

ing pipeline.

cal landmarks and the center of mass of the anatomical points (Figure 5.3 (b)). The

similarity between two images, represented by using binary distributions of sub-

regions within the shape is obtained by averaging the similarity of distributions

of corresponding subregions measured with the Bhattacharyya coefficient. Our

software takes in input an image from the labeled dataset and retrieves the first K

similar unlabeled images (K = 10 in our experiment). A technician is employed

to associate the retrieved unlabeled images to the target labeled image through vi-

sual inspection. The ID and BCS of the target image are automatically associated

by the software to the images selected by the technician. This software is useful

to speed up the labeling phase. This procedure led to a dataset of 29 images (one

for each cow involved in the experiment, as mentioned at the end of 5.2.2) labeled

with the mean BCS estimated by the two technicians.

5.2.4 Anatomical points labeling

An ad-hoc JAVA application was implemented to label the 23 anatomical points

useful for together with the BCS dataset, subject to the GPL license. The graph-

ical user interface is shown in Figure 5.4. The main window is subdivided into

four rectangular areas; lower areas report a reference figure and a legend of the

key points to locate; the upper regions present the image of a cow to mark and

records the regions as they are identified. An image is automatically loaded from

a user specified directory and presented in the box in the upper left corner (Figure



CHAPTER 5. STATISTICAL 2D SHAPE MODELING 65

Figure 5.4: The JAVA interface of the labeling software used to mark the 23

anatomical points used for BCS estimation.

5.4). All 23 anatomical landmarks to be marked are listed in the legend in the

order in which they have to be identified. To select a point the user right clicks

on it with a mouse, to record its location. The selection of a point activates two

buttons (upper right quadrant in figure 5.4): the first one deletes the point pre-

viously identified whereas the second one permits acceptance of the new point

identified and enables the user to move forward (labeling errors can be immedi-

ately corrected). A counter in the top right box records the anatomical landmarks

as they are identified by the user (Figure 5.4). Once the 23rd anatomical point

is confirmed, the software performs a consistency check of the selected points,

identifying the most likely errors in their placement order (e.g. points from 1 to 9

should have an increasing abscissa).
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5.3 Proposed methodology

5.3.1 Shape alignment

To obtain a consistent shape representation, location, scale and rotational effects

need to be filtered out by aligning the corresponding anatomical landmarks of the

different involved shapes. Shapes alignment is carried out by establishing a coor-

dinate reference (position, scale, and rotation, commonly known as pose) to which

all shapes are referred. The reference anatomical landmarks are the foreribs, the

tail, and the right and left hook, as highlighted in Figure 5.5 (a).

(a) (b)

(c) (d)

Figure 5.5: Among the 23 labeled points, only a few anatomical landmarks ((a),

highlighted in red) are used as reference for shape translation (b), shape rotation

(c), and shape scaling (d).

Since the anatomical landmarks that define the shapes (Figure 5.5 (a)) refer

to the image coordinate system, as first, shapes were translated to the origin (Fig-

ure 5.5 (b)). Shapes were then rotated such that the left ileal tuberosity (hook
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bone) and the right ileal tuberosity (hook bone) had the same horizontal coordi-

nate (Figure 5.5 (c)). To perform translation and rotation of shapes, the middle

point between the left hook bone and the right hook bone is taken into account.

The choice of the mid-point between the hook bones provides a fixed point of

reference for performing translation and rotation of the body image with respect

to this point so that the shapes differs only on scale; shapes are finally scaled to

fit in a unit square (Figure 5.5 (d)). The landmarks with minimum and maximum

values of x coordinates were used to scale the shape with respect to the X axis,

whereas the landmarks with minimum and maximum values of y coordinate were

used to scale the shape with respect to the Y axis. After alignment, all shapes refer

to the same coordinate system (centered into the origin) and can be modeled using

the statistics on the 23 anatomical landmarks.

5.3.2 PCA based shape descriptor

We started by considering the following shape definition: “Shape is all the geo-

metrical information that remains when location, scale and rotational effects are

filtered out from an object” [92]. Shapes are typically represented by locating a

finite number of landmarks on the outline of an object. The mathematical repre-

sentation for n landmarks located into the shape of an object is a 2n-dimensional

column vector:

s = [x1,x2, . . . ,xn,y1,y2, . . . ,yn]
′ = [s1,s2, . . . ,sn,sn+1,sn+2, . . . ,s2n]

′
(5.3.1)

Let S = {s1, . . . ,sm} be a set of shapes and Ŝ = {ŝ1, . . . , ŝm} the set of shapes ob-

tained through the alignment procedure. The mean shape of Ŝ corresponds to the

vector that minimizes the sum of the squared-error criterion function with respect

to the shapes in Ŝ. Hence, the sample mean, calculated according to formula

2.2.2, is the zero-dimensional descriptor of the dataset Ŝ and can be considered as

a “prototype” of the data, in the sense that it is the most similar to all the samples

in the dataset, but it does not reveal any of the variability in the data. The modes of

variations, i.e. the ways in which the points of the shape tend to move with respect

to the average shape, can be found by applying principal component analysis to
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the deviations from the mean [33, 86]. More specifically, taking into account the

2n×2n covariance matrix C built taking into account the samples in Ŝ, the modes

of variation of the points of the shapes are described by the unit eigenvectors of

C, such that:

Cei = λiei i = 1, . . . ,2n

e′iei = 1 i = 1, . . . ,2n

where λi is the ith eigenvalue of C. The eigenvectors ei of the covariance matrix

corresponding to the largest eigenvalues describe the most significant modes of

variations in the variables used to derive the covariance matrix, as detailed in

Section 2.2.1.

5.3.3 Kernel PCA based shape descriptor

Shape descriptors based on Kernel Principal Component Analysis (KPCA) have

been successfully used for statistical shape analysis and recognition [93, 94]. Ker-

nel PCA is an extension of classic PCA to deal with non-linear cases using the

technique of kernel methods. The basic idea beyond kernel methods is to map

the data in the input space (Ŝ in our case) into a high dimensional feature space

via some non-linear function Φ and then apply a linear method in the augmented

space to do further analysis. Note that PCA is a particular instance of the kernel-

ized method, in which the mapping function is Φ(x) = x.

Let Φ : R2n → R
nΦ be a mapping function acting on the input space Ŝ. The

mean shape of ŜΦ can be simply computed as follows:

¯̂sΦ =
1

m

m

∑
i=1

Φ(ŝi) (5.3.2)

The sample mean ¯̂sΦ is the vector vΦ that minimizes the sum of the squared

error criterion function:

¯̂sΦ = argmin
vΦ

m

∑
i=1

‖vΦ −Φ(ŝi)‖ (5.3.3)

The sample mean ¯̂sΦ is the zero-dimensional descriptor of the dataset ŜΦ and
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the modes of variation, the ways in which the points of the shape into the Kernel

space tend to move with respect to the average shape, can be found by applying

principal component analysis (PCA) to the deviations from the mean ¯̂sΦ. In this

way a shape into the kernel space can be considered as a linear combination of

basis shape into the kernel space, and the basis components can be used as de-

scriptor of the shape. Kernel PCA finds the principal axes by diagonalizing the

following matrix:

CΦ =
1

m

m

∑
i=1

[

(

Φ(ŝi)− ¯̂sΦ

)(

Φ(ŝi)− ¯̂sΦ

)′]
(5.3.4)

Specifically, taking into account the nΦ × nΦ covariance matrix above, the

modes of variation are described by the unit eigenvectors of CΦ such that:

CΦeΦ
j = λ Φ

j eΦ
j j = 1, . . . ,nΦ

eΦ
j

′
eΦ

j = 1 j = 1, . . . ,nΦ

where λ Φ
j is the jth eigenvalue of CΦ. The eigenvectors eΦ

j of the covariance ma-

trix corresponding to the largest eigenvalues describe the most significant modes

of variations in the variables used to derive the covariance matrix CΦ. Taking

into account the considerations made by [85], where BCS is estimated using a

parabolic fitting of the cows’ body shape, in our experiments we have tested a

polynomial mapping function to model the shape of cows.

5.3.4 Shape Descriptor and BCS estimation

The eigenvectors
{

eΦ
j

}nΦ

j=1
useful to describe the shapes are computed using Ker-

nel PCA (see Section 5.3.3). Any shape in the training set, mapped into the kernel

space through Φ, can therefore be generated by using the following equation:

Φ(ŝi) = ¯̂sΦ +
nΦ

∑
j=1

aΦ
i, je

Φ
j (5.3.5)

where

aΦ
i, j = eΦ

j

′ (
Φ(ŝi)− ¯̂sΦ

)

(5.3.6)
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Figure 5.6: Shapes generated by using the third and fourth shape basis. In our

case, these two basis are related to the information around the tail and the hooks

of the cows.

The eigenvectors
{

eΦ
j

}nΦ

j=1
are the set of basis of the shapes into the kernel

space Φ
(

Ŝ
)

useful to generate new samples. Unseen shapes in the kernel space

can be generated by changing the values of each aΦ
j,k taking into account that

its variance is represented by λ Φ
k . Since most of the sample of the training set

lies within three standard deviations of the mean, the suitable range for aΦ
j,k is

[

−3

√

λ Φ
k ,3

√

λ Φ
k

]

. The range of each aΦ
j,k can be used to detect outlier that in

our case are probably due to errors in manual labeling. Figure 5.6 shows an ex-

ample of shape reconstruction taking into account only two vectors of the shape

basis, computed with kernel principal component analysis and a linear mapping

function. These two vectors appear to visually correspond to the modes of varia-

tion around the hooks and the rear of the cows.

Given a training set of shapes, kernel principal component analysis can be ap-

plied after alignment and hence each shape ŝ j can be described by using the vec-

tor aΦ
j = [aΦ

j,1, . . . ,a
Φ
j,nΦ

]. The shape descriptors of the training set can be used
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together with a linear regressor to build a system for BCS estimation:

BCS j = aΦ
j,nΦ

wnΦ
+aΦ

j,nΦ−1wnΦ−1 + . . .+aΦ
j,1w1 +w0 (5.3.7)

Given the descriptors of the shape in the training set, the regression model can

be fitted by using least squares method. The learned parameters [w0,w1, . . . ,wnΦ
]

are then used to infer the BCS of new shape samples describing them by using the

basis
[

eΦ
1 , . . . ,e

Φ
nΦ

]

learned on the training set.

5.4 Experiments and Results

5.4.1 Experiments description

The PCA and kernel PCA based shape descriptor methods were evaluated by com-

paring them to other existing methods of BCS scoring using digital images [84,

85] from the selected database. In our experiments, we employed kernel PCA to

model the shape of cows. Specifically, we used a linear and a polynomial map-

ping function, respectively Φ(x) = x and
(

ΦPolynomial (x) =
[

x2
1,x

2
2,
√

2x1x2

])

, for

x = [x1,x2]).

In [84] the authors use a single image of the dorsal view of the cow and manually

select 23 anatomical points to define the shape of the body of the cow. These

points are used to compute 15 angles around the hooks, pins and tailhead. The au-

thors exploit the symmetry of cow shape to obtain 7 composite angles averaging

the left and right angles of the shape. The related proposed models are reported

below:

yi j = µ +Cowi +β1HAi j +β2PHAi j +β3 (HA×PHA)i j + ei j (Bewley 1)

(5.4.1)

yi j =µ +Cowi +β1HAi j +β2PHAi j +β3 (HA×PHA)i j+

+β4T Di j +β5 (PHA×T D)i j + ei j (Bewley 2)
(5.4.2)
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where:

• yi j is the jth BCS of the ith cow estimated by technicians;

• µ , β1, β2, β3, β4, and β5 are the regression parameters;

• Cowi is the identifier of the ith cow;

• ei j is the residual error;

• HAi j is the average hook angle,

• PHAi j the average posterior hook angle

• T Di j is the average tailhead depression.

In our experiments, the term Cowi, in the Bewley 1 and Bewley 2 formulas,

was not taken into account to test the models since this value does not provide

anatomical information useful for BCS estimation: technicians do not use the ID

of the cow to estimate the BCS and if in the training phase the ID was included

in the learning process, the BCSs of unseen cows (never captured by the system)

could not be estimated. Moreover, we think that by knowing the ID of the cow,

particularly when BCS is assessed over time, the BCS estimation could be biased

from two sources:

• technical observers, influenced by prior BCS of a particular cow;

• the machine algorithm. Since the machine algorithm learns parameters of

the model from BCSs, when cow IDs are associated a priori with a BCS,

changes over time within a cow may be masked by linking BCS with cow

ID. Cow BCS must be assigned prior to linking with cow ID to minimize

this bias.

In [85] the posterior part of the cow is considered and a parabolic fitting is

performed. The absolute differences between the real body shape and the fitted

parabola are used in the BCS estimation as follows:
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BCST hermal = 5×B f it ×
1

MAE
(modified Halachmi) (5.4.3)

where B f it is the best fit reached in the herd, MAE is the mean absolute error,

and 5 is a normalization factor. In our evaluation phase, we employ a modified ver-

sion of the Halachmi method. Parabolic fitting and BCS estimation are performed

considering only the labeled points because we did not use a thermal camera to

acquire images and therefore shape extraction from those images is a complex

task not addressed in this first step of the study. The mean BCS estimation error

is defined as:

BCSERROR =
1

N

N

∑
i=1

|BCSest (i)−BCStec (i)| , (5.4.4)

where N is the number of images (i.e., 286 in our dataset), BCSest and BCStec

are the BCS values estimated from digital images and the mean BCS manually

evaluated by technicians, respectively.

In order to assess the effectiveness of the methods, the Leave One Out Cross

Validation (LOOCV) procedure and the Regression Error Characteristic Curves

(REC) [95] are used. Each run of LOOCV involves a single observation of the

dataset as test, and the remaining samples as training data. This is repeated to

guarantee that each sample is used once as the test data. The average error rate

is computed taking into account all runs. The REC curve is essentially the cu-

mulative distribution function of the error. It was derived by plotting the errors

tolerance versus the percentage of samples predicted within the tolerance. The

area over the curve is a biased estimation of the expected error of an employed re-

gression model. This technique enables simple assessment of different regression

models by examining the relative position of their REC curves.
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(a) Predicted (Linear Kernel PCA) versus actual BCS. (b) Predicted (Polynomial Kernel PCA) versus actual BCS.

(c) Predicted (Bewley model 1) versus actual BCS. (d) Predicted (Bewley model 2) versus actual BCS.

(e) Predicted (Halachmi model) versus actual BCS. (f) Polynomial Kernel PCA approach compared with Bewley model 2.

Figure 5.7: (a)-(e) BCS predicted by the compared approaches versus actual BCS

(estimated by technicians). (a) Linear kernel PCA; (b) Polynomial kernel PCA;

(c) Bewley model 1; (d) Bewley model 2; (e) Halachmi model. (f) Polynomial

Kernel PCA approach (red line) versus Bewley model 2 (blue line): mean values

and standard deviations are reported.
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Method Mean BCS error

Modified Halachmi 0.9837

Bewley (model 1) 0.3295

Bewley (model 2) 0.3289

KPCA - Linear Kernel 0.3218

KPCA - Polynomial Kernel 0.3059

Table 5.1: Mean BCS error comparison

5.4.2 Results

BCS is estimated using the five different models over the images of the training

set and errors were averaged for all runs of LOOCV; results of errors obtained

from BCS estimation are reported in Table 5.1.

The modified Halachmi approach is not able to provide satisfactory results

(Figure 5.7 (e)): the parabolic fitting might be not accurate enough since it is per-

formed considering only the labeled points. Bewleys models have similar results

(model 2 performs slightly better than model 1) (Figure 5.7 (c-d). Their perfor-

mances are better for central BCS values (around 3.5) and worst in the extreme

cases (2.5 and 4.5). Our approach, in particular the polynomial one, performs

better than the other techniques, obtaining satisfactory results even in the extreme

cases. Results of our approach are reported in Figure 5.7 (a-b). As shown in Fig-

ure Figure 5.7 (f), our approach using a polynomial kernel is able to follow the

ideal line better than Bewleys approach. In Figure 5.8 the comparison through

REC curve confirms that the proposed approach performs better than state-of-the-

art methods in estimating BCS.

5.5 Discussion: toward a fully automatic pipeline

The cows body shape is described considering the deviation from the average

shape in the kernel space. Our method produces a description of the shape to

be used for automatic estimation of BCS. Experimental results confirm the ef-

fectiveness of the proposed approach. A second contribution of this work is the

new benchmark dataset useful for research purpose, publicly available through
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Figure 5.8: Regression error characteristic curves (RES) of some models involved

in the comparison: Bewley’s model 2 (blue line), Polynomial kernel PCA ap-

proach (red line) and Halachmi model (magenta line).

the Internet. BCS estimation systems that work fully automatically (with no user

intervention) or at least semi-automatically (with minimal user intervention) are

desired to cut down time and costs of the traditional BCS estimation techniques.

Moreover, these systems can produce an objective evaluation of BCS in a way

that is less invasive for the cows. The main drawback of a semi-automatic sys-

tem for BCS estimation is due to the manual labeling of anatomical points during

both training and employing phases. A fully automatic system for BCS evalua-

tion, in which the shape of a cow is automatically extracted from digital images

through segmentation procedure, would be desirable. The automatic extraction of

the whole shape could be also useful to build a more robust model for BCS estima-

tion by using more anatomical points, automatically extracted. Hence we decided

to extend our research, toward the direction of a fully automatic system for BCS

estimation. The proposed technique is described in the following sections.

5.6 Automatic BCS estimation: proposed pipeline

The basic approach described in previous sections of this chapter is here extended

to grant a fully automatic scoring method that requires no human intervention.

The infrastructure for image acquisition is the same as described before; our inter-

vention is mainly devoted to avoid manual labelling by experts in the Employing
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Block (indicated by Identification of Anatomical Features in Figure 5.1), which

needs to be replaced by automatic shape extraction. Once the whole shape of the

cow has been extracted (similarly to previous sections “shape” here is intended as

the cow’s silhouette as seen vertically from above) we can sub-sample the con-

tour obtaining an arbitrary number of points; for instance we could make use of

more points than in our semi-automatic approach, and hence use more informa-

tion about the contour, to derive our shape descriptor for BCS estimation, avoiding

labelling errors and potentially enabling higher accuracy.

5.6.1 Image Segmentation and Shape extration

The network camera used in our system records standard RGB images. In RGB

space, each color is represented as a triple (R, G, B), where R, G, and B represent

red, green, and blue signals corresponding to different wavelengths of the visi-

ble spectrum. An approximately perceptually uniform color space is defined in

terms of Hue, Saturation and Value (HSV ), a phenomenal color space. Phenom-

enal color spaces attempt to classify colors in relation to how they are perceived

and interpreted by the human brain and they are more “intuitive” in manipulating

color.

In our preliminary tests HSV led to better segmentation performance than RGB

in both noisy and noise-free conditions. According to experimental evidence, a

preliminary conversion from RGB to HSV color space is hence performed. The

H channel obtained from the color space conversion is processed by means of the

Statistical Region Merging (SRM) algorithm [96], a segmentation technique able

to capture the main structural components of a digital image using a simple but

effective statistical analysis. SRM is based on two parametric choices:

• Merging Predicate, used to establish if two regions have to be merged;

• Merging Order, used to establish the order used to test the Merging Predi-

cate.

The Merging Order is computed using a function f which approximates the

following invariant: when any test between two true regions occurs, that means
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that all tests inside each of the two true regions have previously computed. Dif-

ferent choices can be done both for Merging Factor Q used by the Merging Pred-

icate and the f function. In our experiments we heuristically choose Q = 4, since

it produces better shape estimates. In Figure 5.9 some segmentation results are

reported; note that after segmentation, locating the shape of the cow is a straight-

forward procedure (e.g. since the gate exit gate, described in Section 5.2.1, ap-

pears always in the same position in all images (Figure 5.9 (a-c), left side, it can

be easily removed).

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Some examples of the output produced by the SRM algorithm ap-

plied to cows’ images; input images are converted into HSV color space before

performing the segmentation. Top row: RGB input images; Bottom row: corre-

sponding SRM output.

The output of this phase is then transformed into a curve representation and

used for subsequent analysis; a morphological regularization for noise reduction

is also performed.

To obtain a consistent shape representation, shape must be aligned to a common

coordinate reference, removing position, scale and rotation. Please note that the

procedure described in Section 5.3.1 cannot be applied here, since we don’t have

the manually labelled points required. Instead, we can consider the shape of a cow
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as an ellipsoidal object and use a PCA based algorithm to find its major axis which

are then rotated and aligned with respect to X and Y axis, filtering out rotational

effect (see Figure 5.10 (a-b)).

(a) (b) (c)

Figure 5.10: The shape of a cow can be roughly approximated as an ellipsoidal

object (a). A simple PCA is applied to all points within the shape, to find the major

axis of the ellipsoid; final alignment with respect to X and Y axis filters out most

rotational effects (b). To filter out the effect of random neck twist (c) we consider

a fixed portion of the whole silhouette (the 70% of the whole curve centered at the

cows tail).

5.6.2 Shape descriptor and BCS estimation

An uncontrollable source of variation in cows shape is the random neck twist taken

by the animal at the moment when it has been photographed. To filter out this

effect we consider for further processing only a portion of the whole silhouette,

more precisely the 70% of the whole shape contour, centered at the cows tail

(5.10c). Taking into account the previous caveat, once alignment of all the curves

has been obtained, the contour of the shape is uniformly sampled using arc-length

parameterisations, leaving us with a set of n points along the contour (Figure 5.11

(a)). Once shapes are aligned to the axis and the neck part ha been removed,

shapes are scaled to fit in a unit square (Figure 5.11 (b)). After alignment, all

shapes refer to the same coordinate system. Uniform sampling leaves us with

each shape described as a set of points coordinates, which can be represented

using Equation 5.3.1. Application of Polynomial Kernel PCA is straightforward,

and we can safely use Equations 5.3.1 - 5.3.7 to derive a shape descriptor and a

BCS estimated for each involved shape, as described in previous sections.
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(a) (b)

Figure 5.11: The contour of the shape is uniformly sampled (a) and shapes are

then scaled to fit in a unit square (b).

5.6.3 Results and Conclusion

To validate our automatic pipeline we adopted the evaluation methodology de-

scribed in Section 5.4. We fixed the number n of sampled point along the shape

contour to 24, to better compare this method with other approach, all based on the

23 anatomical points described in [84]; the parabolic fitting method proposed by

Halachmi is not further considered because of its poor performances, as reported

in Section 5.4.2. We tested our technique on a subset of the BCS dataset, since

some images included in the whole dataset are excessively blurred and/or the auto-

matic white balancing performed by the network camera produced a wrong result

(e.g. bluish aloes). In this cases only manual labeling could be used and even

though, it would be error prone (see Figure 5.12 for some examples of images not

included in this experiment). Please note that the same subset has been used also

with the other techniques, for a fair comparison. Numerical results are reported in

Table 5.2. As it can be noted, the removal of blurred and low quality images from

the dataset improves performances of all methods included in this experiment (see

also Table 5.1), of a percentage about 7-13%. Figure 5.13 (a-e) reports the plots

of predicted BCS versus the ground truth, for each method considered in our ex-

periments, as well as the REC curves. The automatic approach generally gives

better results than other models, including our semi-automatic techniques, except

for BCS values 2.5 < BCS < 3. The reason could be the low number of samples,

with a BCS values within this range, available in our dataset. This observation

suggests to extend our dataset including more images of cows with a low BCS
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(a) (b)

(c) (d)

Figure 5.12: Sample images affected by blurring and/or wrong automatic white

balancing, which have been excluded from the BCS dataset. In almost all cases

images were took during daytime.

value; moreover the use of a camera without automatic white balancing could be

beneficial, allowing us to perform this step in post-processing, employing ad-hoc

techniques. At the best of our knowledge, the fully automated technique we re-

ported in the second part of this chapter, is the first technique that can provide

reliable BCS estimation without the direct human intervention and as such it has

promising practical applications.

Method Mean BCS error

Bewley (model 1) 0.3008

Bewley (model 2) 0.3039

KPCA - Linear Kernel 0.2813

KPCA - Polynomial Kernel 0.2787

KPCA - Linear Kernel, Automatic Pipeline 0.2613

Table 5.2: Fully automatic pipeline: mean BCS error comparison.
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(a)Bewley model 1 (b)Bewley model 2

(c) Kernel PCA, linear kernel (d) Kernel PCA, polynomial kernel

(e) Automatic segmentation, Kernel PCA, linear kernel (f) REC curve

Figure 5.13: (a)-(e) BCS predicted by the compared approaches versus actual

BCS, estimated by technicians. Mean values and standard deviation are plotted.

(a) Linear kernel PCA; (b) Polynomial kernel PCA; (c) Bewley model 1; (d) Be-

wley model 2; (e) Halachmi model. (f) REC curves.



Chapter 6

Shape Classification for Articulated

and Deformed Shapes

6.1 Introduction

In the past decades, the application of the computer science to archaeological re-

search, in particular in the field of prehistory, turned out from a simple auxiliary

technology into a cognitive strategy influencing the approach to ancient artifacts.

Even if the introduction of the database enhance the possibility of dealing with

large amount of text data, the problem of taking into account huge groups of vi-

sual data still remains unsolved. One common case that makes hard the initial

steps of an archaeological study is for example the analysis of decorative reper-

toires of some prehistoric pottery classes, characterized by the exuberant use of a

multiplicity of motifs. The most complicated artistic production of the Mediter-

ranean prehistory is certainly the Kamares style pottery (Fig. 6.1), flourished in

Crete in the first half of the second millennium, whose main feature is a com-

plex system of polychrome painted decoration with a rich decorative alphabet that

is combined, according to an elaborate visual syntax, to produce an almost end-

less variation of results. The high number of vessels and potsherds available of

this class all over Cretan territory and the fact that a complete framework for the

Kamares decorative grammar and the associations motif/vessel/site/chronological

layer is far from being understood, determined a stop in the cognitive progress of

83
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Figure 6.1: Examples of Kamares style vessels (this image has been obtained as a

collage from several public sources).

the Minoan civilization.

In this perspective Computer Vision and Pattern Recognition can provide a

great support in automatically assisting the archaeologists in classification ac-

cording time and place of production of Kamares pottery fragments (Fig. 6.2),

also taking into account that, in some cases, the visual information can be of sev-

eral kinds, like watercolors, black and white and color photographs of unequal

resolution and quality, pencil sketches and high quality digital photographs.

The application of this research strategy on the available visual corpus of im-

age data is the object of the research that we present in this chapter. The chapter

is structured as follow: in the remainder of this Section we introduce the Kamares

pottery. Section 6.2 shows the proposed technique and a short review of exist-

ing shape similarity techniques. Section 6.3 reports the experimental results; a

conclusion Section ends the chapter.

The Kamares Pottery. The Kamares style pottery represents the main artistic

feature of the Minoan civilization between the XXth and XVIIth century BC and

its technical and stylistic level achieved was never equaled in the Aegean Bronze

Age [97], [98], [99], [100]. This class, with a large lifespan that covers the Pro-
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Figure 6.2: Selection of Kamares pottery sherds from Phaistos (courtesy of Prof.

V. La Rosa).

topalatial and Neopalatial periods, can be divided in four main phases related to

the local chronology arranged by A. Evans [101]: Pre-Kamares or 1 (Middle Mi-

noan IA), Early Kamares or 2 (Middle Minoan IB/IIA), Classical Kamares or 3

(Middle Minoan IIA/IIB/IIIA), Post-Kamares or 4 (Middle Minoan IIIA/IIIB).

Kamares ware is named for finds first identified at the end of XIX century in the

Kamares cave sanctuary [102] in Mount Ida, and its diffusion on the Cretan ter-

ritory can be distinguished between the elegant production of the palatial centers

of Knossos and Phaistos (Palatial Kamares) and the less impressive creations of

the provincial workshops of Eastern, Western, Central and Eastern-Central Crete

(Provincial Kamares areas 1-4) as in Fig. 6.3.

Finer clay, thrown on the wheel, sometimes with very thin bodies (2-3 mm like

in the egg shell varieties), painted with polychrome pigments on dark background,

the Kamares style has a vast assemblage of shapes and its distinctive feature is a

huge repertoire of exuberant decorative motifs often resembling naturalistic atmo-

spheres (Fig. 6.1). About the colors, the black slip which covers most of Kamares

vessels has been identified as a clayish paint layer containing iron oxides of spinel

type with a high content of potassium. It is produced by exposure to high tem-

peratures in a reducing atmosphere, thereby turning in into a black sintered layer.

The red color consists of red ochre, which in contrast with the black slip does not

contain potassium at all. As a result of the lower content of potassium, the red

paint layer does not melt and turn into a sintered layer in a reducing atmosphere
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Figure 6.3: Map of Crete showing principal sites with Kamares style pottery.

but it remains porous and turns bright red when exposed to oxidation. The white

pigment is composed by calcium silicate or talc depending on the chronological

period of the production and of the production centre itself. In the decoration of

large vessels of domestic type also a less elaborated and much lasting dark on

light decoration system is used as it was found appropriate for vases which had to

be strong and practical rather than attractive.

In a preliminary survey, seventy-four different shapes were identified includ-

ing both the decorated and fine ware and domestic and specialized forms. During

the four chronological phases, open and closed shapes are equally preferred and

even if there is a general conservativeness in the use of the same formal typologies

some specific tendencies for each phase can be defined (Fig. 6.4).

For what concerns the decoration, the Kamares style is basically character-

ized by the application of thirty-one different core motifs (abstract, rectilinear,

pictorial, pictorialized motifs) and patterns (stone, rock, sponge and metal sur-

face patterns), each of them with several levels of varieties, composed together in

order to obtain complex decorative syntaxes joined to create much more compli-

cated composite designs. In general the repertoire of core motifs maintains itself

the same in both the main production districts, the Palatial and Provincial, and
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Figure 6.4: Schematic shape taxonomy of the Kamares pottery repertoire.

Figure 6.5: Schematic taxonomy and possible elaborations of some Kamares dec-

orative motifs.

basically remains unaltered during all the chronological development, just with

few elements peculiar for some phases. But it must be also considered that a core

motif, even simple, can deeply change shape when transformed from a 2D sketch

to a 3D design on the vessel body, when combined with copies of the same motif

or joined with other motifs, when elaborated or pictorialized and in relation to

different chronological phases. As a result, in some cases, the classification of

elements can be very hard (Fig. 6.5).

About the composition of decorative elements and its relation with the tectonic

of the vessel, two different method can be identified. First is the unity decoration

that depends on the shape of the vase and that can be circumcurrent, that means

planned with regard to the whole vessel body and composed by encircling zones,

facial, that means planned with regard only to one part of the vessel body as seen

from a special angle, and zonal, that means composed by a system of decorated
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zones related to each other in order to create coherent designs. Second is the

structural decoration that consists in separation of the vase into different parts

and accentuates the horizontal and vertical axes. In the both type of decoration

a field division for the location of the motifs is applied, selecting different parts

of the body vessels for the definition of the limits of the decorated area. In the

field division the choice of the decoration strategy for the accessory parts of the

vase, like rim, lip, handle, spout, is very peculiar of each period and production

centre. It must be also considered that both the shapes and the decoration contain

dynamic effects and the decoration cannot merely be described as a movement

across a surface, as in the case of a static background. It must be described as

a movement in the same direction or opposed to the movement inherent in the

vessel shape. The dynamic effects of the vase and the decoration together create

the overall effect, that can give, for example, the illusion of the contraction or

expansion of some vessel parts. In the selection of the composition strategies it’s

possible to find difference between the Palatial and Provincial production and to

define tendencies from the Pre-Kamares to the Post-Kamares phases.

The overall effect of a Kamares vessel is sometimes completed by the applica-

tion of an accessory decoration represented by incision, relief and applied plastic

details or by the use of complementary embellishment techniques like the ripple,

barbotine and the trickle decoration. Finally, it must be noticed that differences

can be find also within the same centre and in the same period because, besides

the guidelines of this production, the essence of the style itself was strongly influ-

enced by the creativity and aesthetic concept of the single artisan, that constantly

elaborated the core motifs and experimented new ways of expression. As a result,

the Kamares style is more than the simple combination of syntaxes of elemen-

tary motifs with different vessel type. It is a complicated interplay, carried out to

the smallest detail, where every elements has an important part, especially in the

Palatial production. The fact that each Kamares style product depends by many

quantifiable variables (time, place, vessel shape, high number of probable com-

position of core decorative elements, colors and accessory decoration techniques)

and just by one variable not quantifiable at all that is the unpredictable will of the

artisan, it made quite impossible for the archaeologists specialized in the Middle

Minoan pottery to carry out a exhaustive study of the main features of this style,
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also because of the huge amount of data represented by millions of decorated

potsherds.

The first study of classification of the Kamares pottery was carried out by G.

Walberg in 1978 and it was dedicated to the Palatial production of Phaistos and

Knossos [97], [99] (Fig. 6.3). In this work, the position of Phaistos, as the most

important production centre and also the only site with a clear chronological pro-

gression in the development of the production itself, were pointed out and corpus

of core motifs and patterns was published. Furthermore, the features characteriz-

ing the climax of the Kamares style were find between Middle Minoan IIA and

Middle Minoan IIIA, within the phase named Classical Kamares. In 1983 a sec-

ond reassessment of the Kamares materials from Provincial districts was carried

out by the same author [98], emphasizing assonances and dissonances between

Palatial and Provincial production and trying to rebuild the decorative repertoire,

as whole as possible, in order to enrich the main assemblage and obtain a complete

study and classification of the Kamares pottery.

After the Walberg’s corpora, a large quantity of new Kamares vessels were

found and published together with groups of pottery coming from old excava-

tions, in both cases often fragmented potsherds. This re-opened the problem for

the archaeologists of dealing with a class of materials so variable present in huge

amount of specimens. In particular the interpretation of the decorative motifs and

syntaxes partially preserved on the sherds, in order to ascribe them to the reper-

toire of a specific workshop, trying to match the fragmentary information with a

standard collection of visual references arranged by the scholars, has become the

hardest part of the research.

Even if the goal of an accurate and exhaustive classification according time

and place of production of Kamares pottery fragments is likely to be unobtain-

able with the present state of the art, Computer Vision and Pattern Recognition

could provide a great support in automatically assisting the archeologists in the

classification task. Our contribution illustrates a complete pipeline to automat-

ically process these data. The processing starts with the extractions of a clean

representation of the decorative designs. Our goal is to create a standardized

database of ”shapes” that could be successively automatically investigated with

Pattern Recognition methods.



CHAPTER 6. ARTICULATED AND DEFORMED SHAPES 90

Iconographical Documentation Available. Besides the large amount of speci-

mens available, another significant problem in an exhaustive study of the Kamares

style pottery is dealing with an heterogeneous group of iconographical data. For

the two most important Palatial production centers, Phaistos and Knossos, the

documentation is basically composed by watercolors, black and white pictures,

technical drawings in scale with front view and section and reconstructive un-

scaled perspective drawings. The best preserved vessels representing the highest

stylistic level of the Kamares style, in the editions of the two sites, were illustrated

by unscaled watercolors carried out by E. Stafani, R. Oliva and Th. Fanourakis for

Phaistos and D. Mackenzie for Knossos. In the reproduction of the complex Ka-

mares painted decoration, each modern artist or technician at work was influenced

by his own personal taste and this caused, in many cases, alteration and distortion

of the original shape of the motifs and of the original scheme of the syntaxes.

It must be also considered that the draftsmen working in Crete in the first half

of the XX century, had different formation and artistic education. For the repro-

duction of the Phaestian Kamares, E. Stefani, chosen by the director L. Pernier for

the documentation of the excavation, was an architect. Decades later, D. Levi, new

head of the expedition, chose R. Oliva and Th. Fanourakis, two painters strongly

influenced by his archaeological point of view. Otherwise at Knossos, a large part

of the graphical documentation, including the watercolors, was carried out by D.

Mackenzie [103], that was an archaeologist, second in charge after A. J. Evans,

head of the mission. In this case he demonstrated a more straight and scientific

method of depicting artistic features [104].

Furthermore, the fact that the documentation of Kamares vessels from Knos-

sos dated back to 1921-1935 [101] while that of Phaistos was performed in 1935-

1951 and 1976 [105], [106], [107], it determined different choices in the repro-

duction strategies, like different line thickness or colors, due to the changing taste

of the time (Fig. 6.6). Finally, another misleading problem in the interpretation

of the Kamares pottery from Knossos come also from the reconstructive draw-

ings, where in many cases the hypothesis of the missing part of a motif or of a

decorative outline was denied by the subsequent findings.

In this chapter the results achieved working basically on the visual archive

provided by Walberg’s corpora [98], [99] will be discussed.



CHAPTER 6. ARTICULATED AND DEFORMED SHAPES 91

(a) (b) (c)

Figure 6.6: Watercolors of Kamares style pottery and potsherds: (a) Phaistos 1935

drawings by E. Stefani; (b) Phaistos 1976 drawings by R. Oliva; (c) Knossos 1935

drawings by D. Mackenzie.

6.2 Kamares Shape Analysis: System Overview

The automated system that we propose to assist the archaeologist in assessing

similarities among the Kamares findings, follows a general pipeline that could be

easily adapted to other similar case studies. As in most Computer Vision applica-

tions the idea is to go from the raw data (pixels) to a symbolic representation of

the image content. These information may, in turn, be fed to an intelligent system

that assists the experts in formulating and checking working hypotheses about the

scenes captured in the original images.

More specifically, in this case study the system starts with a digitalized for-

mat of a pictorial representation of a vase or of a sherd. Fig. 6.7 shows the

successive steps performed. The digital data are the input of a contour extraction

algorithm. Please, notice that in this way we are disregarding any 3D information:

perspective deformation, and occlusions together with noise and artifacts due to

low resolution are simply ignored at this stage.

Contour extraction produces a collection of contours: some of them are not rel-

evant for our application and should be filtered out [108],[109],[110]. We choose

to ask the interventation of the expert for this ROI identification task because of
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Figure 6.7: The complete pipeline of the proposed technique.

the occurrence of cases like those reported in Fig. 6.8, in which several occur-

rences of the “raquet” decorative pattern are shown. It is clear that the isolation of

this complex motif is the product of an informed semantic choice that is not easily

mimicked with a fully automatic approach.

ROI identification most commonly reduces the set of contour shapes to exam-

ine. Even so Kamares decorative motifs are reduced by this step into a smaller

but yet complex set of elementary shapes. Fig. 6.9 shows several instances of the

patterns that are obtained after ROI selection. Observe that in some case it is more

convenient to refer to the “flattened” version of the motifs whenever these, manu-

ally produced by an expert draftsman, are available. These lucky cases reduce the

problems due to 3-D distortion and occlusion but introduces in the pipeline the

bias of a draftsman.

The proposed system deals with simple shapes one at each time. They are

analyzed by the shape analyzer and reduced to a set of numerical and geometri-

cal invariants. These invariants are the final features that the matching module

of the system considers for search and similarity retrieval into a reference shape

database.

The reason to deal with elementary shapes instead of the set of contours in a

ROI has the following motivations:

• Algorithms that deal with simple contours and extract suitable invariants
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(a) (b)

Figure 6.8: Examples of occurrences of the “raquet” motif in different vases.

Figure 6.9: Kamares potteries and relative decorations.

from them are much better understood and robust at the actual state of art;

• A ROI represents a complex figurative “proposition” composed of simpler

elementary shapes. Unfortunately, the “order of reading” of such complex

visual structures is not linear. Indeed it is not easy to “read” those drawing

in a canonical un-ambiguous way.

Fig. 6.10 reports a case of two different ways to isolate ”visual word” within

the same ROI. Archaeologists would in this case probably prefer the visual hier-

archy on the left (Fig. 6.10(a)) while, on the other hand, a computer algorithm

would find more appropriate the right one (Fig. 6.10(b)). It is hard, at this stage

of the research to provide a way to resolve these ambiguities. It is hence a safer

choice, for now, to find and match only elementary shapes. Next steps of our

research will address this issue.
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(a) (b)

Figure 6.10: (a) figure interpretation by the archaeologist. (b) figure interpretation

by the computer scientist. The same color indicate the same symbol.

6.2.1 Shape Similarity Measures

To apply the technique presented in this chapter a contour line representation of

the motifs is required. Hence, a decorative pattern is previously translated into a

digital sequence of consecutive points on a raster plane. Several issues about res-

olution and standardization of these rasterized contours arise. Going from digital

images to digital shapes is far from being an easy task: different media (water

colors, photos and hand drawn schematic lines) require different methods of con-

tour extraction and present different algorithmic challenges. Once the pictorial

data have been translated into a more abstract “contour shape representation” it

is possible to apply a shape similarity measures. The idea is to present the shape

database with a “query” which represents a decorative element that the user (typi-

cally an archaeologist) wishes to recognize. The answer to the query is an estimate

of the similarity distance between the query shape and the shapes in the database.

In this chapter er propose the use of the following shape similarity algorithms:

contour flexibility technique [39], Shape Context [38], and Circular Blurred Shape

Model descriptor [111]; these methods are described in Sections 2.2.2-2.2.2.

Notice that even if the published ideas in shape recognition are overabundant
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in the present scientific literature most of them are relative to complex vision

tasks where one wishes to recognize real objects that move and deform within

a complex real environment. This is not the case for our application where the

most common deformations observed are affine distortions, noise, irregularities,

lacunae, and non linear scaling.

6.3 Results

To test our system we have built an experimental image database, created as fol-

lows. First of all, a selection of images from [97] have been inserted in the col-

lection. A total of 36 motifs have been chosen. The selection of these motifs

among the much larger catalogue in [97] has been done randomly, although in

this initial stage of our research we choose to sort out the most complex motifs.

Instances of these selected patterns show a high intra-class variability in terms

of scale, rotation, rigid and elastic deformations when observed in the pictorial

reference corpus. Some of the shapes exhibits a low inter-class variability (this

holds in particular for simple shapes), explaining for instance some resulting am-

biguities of the classification. The selected images are in a way the “canonical”

reference for each of the decorative motifs to recognize. To use as a reference

only the clean and canonical drawing prepared by an expert is too demanding for

any shape recognition algorithm. Following a general praxis in the shape recog-

nition community we hence enriched the database with a number of variations for

each decorative motif. These variations have been artificially obtained applying

the following transformations: rotation in clockwise sense of about 33 degrees,

perspective camera distortion, where camera orientation has been assigned at ran-

dom, and random warping. Examples of the shape included in the database are

reported in Fig. 6.11, and an example of variations over a given shape is reported

in Fig. 6.12. Eventually the database is made of 144 shapes. Those shapes are

stored in binary images of 500×500 pixels, which are processed for contour ex-

traction in Matlab [112, 113].

The resulting contours are resampled and for each shape a vector of 100 points

is obtained. Using a higher sampling rate does not improve the performance of the

system, perhaps because a denser sampling of a contour tends to preserve some
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Figure 6.11: Examples of decoration used in our database.

Figure 6.12: Examples of distortion for a single motif in our database. Starting on

the left: original, warping, distortion and rotation.

of the noise of the original image making recognition and matching a harder task.

The down-sampling has been performed in two different ways, and the results of

both selections have been stored in the reference database. The first way to sample

100 points from a closed contour is to compute 100 equally spaced pints along

the contour. Notice that the sample points are obtained with cubic interpolations

of close by points on the contour. This uniform sampling procedure is applied

to be able to compute CBSM distance and to estimate local contour flexibility

values. A second non-uniform sampling has been also performed. This second

sampling takes 100 points according to contour flexibility values: more points are

allocated in the most flexible segments of the shape. This non-uniform sampling

procedure is applied to be able to compute contour flexibility distance. Contour

flexibility value in each of the sampled point is also stored. In summary our system

refers to this collection of 144×2 point vectors and 144 contour flexibility values

to compute similarity distances of queries from the database. Observe that this

mathematical representation is quite compact and easily allows the scaling up of
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the system up to thousands of shapes.

We choose to check the performance only of the CSBM algorithm and of

the Contour Flexibility approach. Indeed CSBM is a refinement of the initial

Belongie’s proposal and it is safe to assume that it will perform better.

% of perfect matches % of majority of correct

within the four matches within the

closest shapes four closest shapes

CBSM 48% 72%

Contour Flexibility 75% 99%

Table 6.1: Performance of the shape matching procedures.

The experiments have been carried out as follows. Each shape in the database

has been, in turn, considered as a query and the best matching shapes (other than

the query shapes itself) have been considered as the results of the retrieval opera-

tion. In Table 6.1 we report the results obtained with this set of experiments. In

particular the first column of the Table indicates the percentage of total queries in

which the algorithms finds, within the four most similar shapes, the query shape

itself and the three variations of it in the database. The second column in the ta-

ble indicates the percentage of total queries in which the algorithms finds, within

the three most similar shapes (other than the query shape itself) the majority of

shapes of the correct class. Each shape of the database is, in turn, taken as a query

and the seven shapes with the smallest distances are retrieved from the database,

including the query itself. Using Contour Flexibility, on the average 75% of the

retrieved shapes is of the same class of the query pattern images. This rate is close

to 95 ∼ 100% for categories of articulated shapes, whereas for simpler shapes (di-

amonds, petals, etc) it is significantly lower: in these shapes the flexibility along

the boundary varies insignificantly and does not help for object matching, be-

cause the global matching reduces to Procrustean distance matching of uniformly

sampled contours. On the other hand, Circular Blurred Shape Model has better

performances in case of simple shapes, hence a possible remedy to this problem

is to analyze the sequence of contour flexibility and to automatically switch to

a simpler descriptor for matching (e.g., Circular Blurred Shape Model or Shape

Context) which can manage these shapes better than Contour Flexibility. It can
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(a)

(b)

Figure 6.13: Instance of false positives produced by the system. (a) CF; (b) CBSM

be observed that most of the errors are “near misses”, in particulare in case of

articulated shapes used as query and using the Contour Flexibility algorithm. An

example of these is given in Fig. 6.13.

The results are very encouraging, although the system is far from being error

free it provides a valuable help to the expert. When trying to match a novel query

an archeologist, in almost all of the cases, has to look only at a very small (4 to

6) reference shapes provided as an answer from the system. This greatly reduces

the time that he should otherwise spend to look among a larger set of candidate

reference patterns. On the other hand at this stage of development of the system

the human expert intervention is still necessary.

To further support our claim about the robustness and the usefulness of our ap-

proach we present two real world examples. The queries and the results are shown

in Fig. 6.14. The application of the algorithm for the automatic classification of

the Kamares style pottery revealed itself particularly efficient for the immediate

discrimination of the motifs on the chronological and geographical scales. Basing
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(a) (b)

Figure 6.14: Examples of real queries to the database.

upon the Walberg’s corpora it’s possible to offer two examples of the procedure

working. In the first case in Fig. 6.14(a), we have a potsherd with a spiral type

motif partially preserved. From the image the algorithm automatically extracts the

contour and checking for matches in the available database it suggests three hy-

pothesis of interpretation, the simple j-spiral (Walberg 2.i.1), the running j-spiral

(Walberg 2.i.2), even possibly deformed, and the j-spiral with filled angle (Wal-

berg 6.2), again with a certain degree of alteration. The immediate restriction of

the range of possible motifs gives to the archaeologists the chance to easily check

the available data on the geographical and chronological distribution of the motifs

themselves and obtain confirmation for their initial hypothesis. In fact, while the

simple J- spirals has a wide diffusion in both Provincial and Palatial areas and in

the four chronological phases, the j-spiral with filled angle is present in the Pala-

tial area just in the phase 3 and in the Provincial district exclusively in the phases

2 and 3 and just in the East and East-Central Crete (in [98] pp. 38-39, 41, pll. 28,

31; [99], pp. 48-49, 51, 180, 183). Again in the second example in Fig. 6.14(b),

in the potsherd is visible a series of teardrops motifs. After the extraction of the

contour, the algorithm suggests two different matches, the spiral derivatives (Wal-

berg 8.33), both the original motif and its altered versions, and the petaloid loops

(Walberg 12.i.1). Also in this case, the two motifs have exclusive distribution fea-

tures. The spiral derivatives are present in the Palatial area in phases 2-4 and are

absent in phase 1, while in the Provincial district they occur in all the chronologi-

cal phases but restricted just to East, East-Central and Central Crete. The petaloid

loops have same distribution in the Palaces as the above mentioned derivatives but
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in the Provincial areas they are exclusive of phase 1 and 3 also having the same

geographical diffusion ([98], pp. 43-44, 48-49, pll. 35, 41; [99], pp. 52-53, 57-58,

183, 188).

6.4 Conclusions

In this chapter a pipeline to automatically classify simple Kamares decoration has

been presented. In particular, we focused on the shape matching of the pipeline

showing how contour flexibility together with Procustean distance, circular blurred

shape model or shape context may solve this problem. The proposed system will

be of great support in automatically assisting the archeologists in classification

operations according time and place of production of Kamares pottery fragments.

This first example of application of Computer Vision and Pattern Recognition

techniques to a specific topic of the prehistoric archaeology as the Minoan Ka-

mares pottery opened a completely new field of investigation that in the future

can deeply change the approaching of the scholars to iconographical problems.

The satisfactory results obtained with the classification of single motifs, even de-

formed by the preservation of the specimens or altered by the chronological and

geographical variability of the production and by the creativity of the Minoan

artisans, let expect the extension of this technique also to the decorative syntax

of the Kamares style, in order to allow the archaeologist to look forward for the

long waited exhaustive study of this so significant feature of the Mediterranean

prehistory. The content of this chapter has been published in [114, 115, 116].



Chapter 7

Shape Classification through

Template Matching

7.1 Introduction

The detection of counterfeit banknotes is one of the most important task in billing

machines. Usually it is performed by employing several image analysis tech-

niques (transmittance analysis, reflectance analysis, etc) on different light spectra

(visible, infrared and ultraviolet). Unfortunately these systems are very expensive

and hence they are used only for ATM machines where a high degree of reliability

is required since those machines are fully unsupervised by humans. In the last

years, cheaper systems for validation and classification of banknotes have been

commercialized. They are usually based on motors aimed to let the banknote pass

through light emitters and sensors in a dark area. This allows to have a controlled

lighting. On the other hand, motors are expensive and the mechanical parts tend

to frazzle in few years.

Is well known that, in order to avoid forgeries, the security system of a ban-

knote is typically encoded inside the banknote itself. Different security systems

are used depending on the currency, hence an algorithm must be carefully de-

signed for a specific currency. In [117] the authors make use of light transmittance

and pattern recognition techniques to recognize the value of banknotes. The pro-

101
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posed solution requires the banknote to pass through light emitters (LED) and re-

ceivers (photo transistors) placed in opposite side. Hence, the system requires of a

motor or a moving part; moreover the method is not designed to handle counterfeit

banknotes. In [118] an algorithm for Korean Won bills classification is described.

It makes use of images acquired with visible light. The face value recognition is

performed by extracting features in the wavelet domain. Banknote images are first

processed with a Sobel filter and then the wavelet feature extraction is performed.

Also in this case the problem of detecting counterfeit banknotes is not considered.

In the approach proposed in [119] the banknote is segmented into different regions

and a classifier for each segmented region is employed. A consensus on the results

obtained from the different classified regions provide the final decision. Specifi-

cally, genetic algorithms are used for classification of the segmented regions. A

neural network and genetic algorithms are exploited in [120, 121] to address the

problem of banknote recognition, whereas in [122] the authors propose an Intelli-

gent Banknote Identification System (IBIS) based on neural networks. The system

is specifically designed for Turkish Lira and Cyprus Pounds identification. De-

spite different approaches have been presented in literature, most of them do not

take into account Euro Banknotes. All the techniques above could be extended

to other currencies (e.g., Euro), but their adaptation to counterfeit detection is

not straightforward because, under visible light, many counterfeit banknotes may

look like the valid ones. In Euro banknotes there are different features which make

forgery difficult: the sheet of paper, the watermarks, the special inks with different

behavior in visible, infrared and ultraviolet lights, etc. However, all these features

are designed to work in synergy, i.e.a system designed for counterfeit detection

should check all features in order to classify a banknote as genuine or counterfeit.

Hence, a system which performs only a few check, e.g. concentrating on the ban-

knote appearance under visible light will fail on ad-hoc counterfeit banknotes.

In this chapter we present a complete system, with hardware and software

components useful to detect counterfeit banknotes and to recognize their face

value. Our system has been developed together with an industrial partner and

hence some major constraints were taken into account:
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(a) (b)

Figure 7.1: An euro banknote (500 EURO) as seen the infrared camera (a) and an

example of the calibration map from a different prototype (b).

1. the proposed solution must be effective in recognising banknotes face values

and detecting counterfeits;

2. our system must emphasize ease of use and it must work in quasi-real time;

3. the system must use cheap components in order to have a very low final cost

for the buyer.

As consequences, moving parts are not allowed, lighting condition cannot be

controlled and the software components have the key role to ensure reliability and

low computational time, despite of hardware limitations (e.g. lack of memory and

storage, low CPU clock speed and so on). Moreover, only a few features can be

checked without requiring specific and expensive extra hardware, hence a careful

selection of the features to use is required. In the proposed system an infrared

(IR) image of the banknote is used, since it provides good and robust features for

counterfeit detection of Euro banknotes.

A prototype of the proposed system has been built and tested on a dataset

composed by genuine and fake euro banknotes provided by an Italian Bank. The

main components of the proposed system are:
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Figure 7.2: Scheme of the proposed system.

• an infrared camera;

• a microprocessor

• a software component.

A glass is placed in the focal plane of the camera in order to acquire a sharp image.

The acquired image is then processed through the designed algorithms. The only

task which is left to the user is to lean a banknote on the glass and the system

provides the information on the validity and the related face value. An example

of a Euro banknote, as seen by the IR camera, is shown in the Figure 7.1(a).

The two different inks present on the euro banknotes (one reflective to infrared

and one absorbing infrared) allow to obtain useful features for the considered

task. The reminder of the paper is organized as follows: Section 7.2 summarizes

the proposed algorithms for counterfeit detection and currency value recognition

of euro banknotes. In Section 7.3 the realized hardware prototype is described,

whereas experimental results are presented in Section 7.4. Finally, conclusions

and future works are given in Section 7.5.



CHAPTER 7. TEMPLATE-BASED SHAPE CLASSIFICATION 105

7.2 Proposed methodology

The overall scheme of the developed software for infrared based counterfeit detec-

tion and currency value recognition is shown in Figure 7.2. The software consists

of three main blocks: Calibration, Training and Use Module.

7.2.1 Calibration

Since the employed LED illumination is not spatially uniform (see Figure 7.1(b)),

and taking into account its variabilities from prototype to prototype, a calibration

phase is required to remove illumination bias. Specifically, in this phase a bright-

ness map is acquired and a compressed copy is stored inside the flash memory. To

obtain the brightness map we capture an image of a white sheet of paper under a

idealized lighting condition (i.e. dark room, with no source of infrared light). The

map is then used by Training and Use Modules to normalize the input banknotes

images as following:

NormalisedImage(i, j) =
InputImage(i, j)

BrightnessMap(i, j)
(7.2.1)

7.2.2 Training

The Training block is used to learn optimal features of the banknotes (i.e., patches),

which will be used determine the validity and the value of each banknotes. The

parameters are learned using a large data set of genuine and counterfeit banknotes,

which come in several face values Di ∈ D = {5, 10, 20, 50, 100, 200, 500}.

A training dataset of 1000 images has been acquired taking into account typ-

ical contexts of use of the apparatus, in which there are very different lighting

conditions (e.g. neon, sunlight, incandescent and fluorescent lamps, etc.) and a

high degree of misalignment with respect to the proscenium (the system must be

robust to slightly translated and or rotated banknotes).

Genuine Euro banknotes are made such that only specific visual features are

visible under infrared lighting (see Figure 7.1(a)). In particular banknotes must

show darker areas in different zones depending on their value. Those areas always

show characteristic patterns. However, there is some overlap among all banknote
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(a) 5 Euro (b) 10 Euro (c) 20 Euro (d) 50 Euro (e) 100 Euro (f) 200 Euro (g) 500 Euro

Figure 7.3: A sample set of discriminative patches, one for each possible face

value for the Euro currency. The output of the learning process is a set of patches,

together with the corresponding positions within the image.

values, for both dark and bright areas, which can be used to develop a reliable

validity check.

The learning phase is aimed to find the best area to check banknote validity by

using a training dataset composed by genuine and counterfeit euro banknotes.

Given the set of all genuine banknotes G= {G1,G2, . . . ,Gn} the training block

is devoted to search for the largest common dark area Fg, and the largest common

bright area Tg.

Let Fgi = IRSignal(Gi) be the infrared highlighted dark area of each Gi , then

Fg =
⋂

i Fgi.

Let Tgi = Gi \Fgi be the unresponsive bright area of each Gi , then Tg =
⋂

i Tgi.

The regions Tg and Fg need to be refined in order to ensure robustness with re-

spect to counterfeit banknotes, which in some case might show a slightly similar

infrared response. In a similar way, given the set C = {C1,C2, . . . ,Cn} of all coun-

terfeit banknotes in our data set, we define Fc j = IRSignal(C j) and Tc j =C j \Fc j.

Let C∗ be the set of all C j such that
((

Fc j

⋂

Fg 6=∅
)

AND
(

Tc j

⋂

Tg 6=∅
))

.

We can finally define T and F considering C∗ as follows: T = Tg \
⋃

j Tc j and

F = Fg \
⋃

j Fc j.

For each banknote Bk in G
⋃

C, for each possible threshold s ∈ {0, . . . , 255},

we computed the percentage percBks of pixels above s in region Tk and the per-

centage percDks of pixels below s in regions Fk. Using those values we com-

puted optimum percB∗ and percD∗ thresholds to separate genuine and counterfeit

classes.

Template matching is a classical technique for locating the position of a given

small subimage inside a large image. It has been frequently used in the applica-
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tions of object detection, image registration and pattern recognition. The match-

ing process involves shifting a template image over a search area, measuring the

similarity between the template and the current search area, and locating the best

match position.

We tested various correlation and histogram based matching with our hard-

ware and software, in order to find a suitable similarity measure. The sum of

absolute distances (SAD), carried out on pixel gray values, has proven to be of

particular interest, since it gives good matching results and has a very simple

structure. Let the search area consists of W ×H pixels whereas the template object

(i.e. a patch) consists of w× h opaque pixels. For all (W −w+1)× (H −h+1)

possible positions (y,x) of the template within the image, calculate

SAD(y,x) =
h−1

∑
i=0

w−1

∑
j=0

(|I (i+ y, j+ x)−T (i, j)| ·M (i, j)) ; (7.2.2)

where I is the pixel value of the search frame, and T is the pixel value of the

template object, respectively. For one frame, absolute distance calculations need

to be computed. A match is found at a position (y,x) where SAD(y,x) is minimum

and also smaller than a certain threshold determined by the user.

To classify the banknote value, during training phase the software determines

the discriminative patterns Pi and corresponding search areas for each possible

banknote value Di such that the intra-class SAD distance is minimized whereas

the inter-class distance is maximized. For some banknote values, which share

similar patterns (e.g., 5 Euro and 20 Euro), the process is time consuming.

The output of this process is a set of patches, with the corresponding position,

related to the different banknote values. In Figure 7.3 an exemplary set of patches

is shown. To take into account slightly translated and/or rotated images, the search

area of each patch has the same shape and center coordinates of the patch itself,

but it is wider: approximately the search area is 2.5 times the corresponding patch

area.

Once the training phase is performed, the selected banknote features (patches,

locations and thresholds learned) are stored in the flash memory and used during

usage stage (see Figure 7.2) to infer validity and value of input banknote images.
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Figure 7.4: A banknote and the set of regions used to test its genuineness. White:

ROI. Blue: the threshold to binarize the image is calculated in this area. Green:

when seen under infrared light, this area must be dark. Red: when seen under

infrared light, this area must be bright and without noticeable patterns. Magenta:

additional area used to check the genuineness of some denominations.

7.2.3 Banknote authentication

Once the image has been corrected for the nonuniform LED illumination (see

Section 7.2.1), a proper threshold needs to be found according to the actual input

data. In our experiments we tested the hypothesis that the average grey value

(indicated as MeanRe f ) of the blue region shown in Figure 7.4 can be robustly

used for this purpose.

To check the genuineness of a banknote, the percentage of pixels inside the

green region with a grey value below MeanRe f (percLT ) is calculated, together

with the percentage of pixels inside the magenta and red regions with a grey value

above MeanRe f (percGT ). If ((percLT > percD∗)AND(percGT > percB∗))

the banknote is classified as genuine.

To identify the face value, the training block provides us with a set of patches

(templates related to the different banknotes values) and the corresponding search

areas coordinates. Search areas are wider than the patches in order to be robust to
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Figure 7.5: The block based schema of the hardware prototype.

a small misalignment. Each template patch is placed at the center of its search area

and the correlation measure 1
SAD

between the pattern itself and the corresponding

pixels on the search area is calculated. The procedure then search if a translation

around the neighborhood of the current position could increase the correlation.

This is performed by moving the pattern position. This step is then repeated until

the correlation reaches a local maximum. The pattern with the highest correlation

determines the final value to be assigned to the input banknote. Information about

genuineness and face value are then sent to the display, in order to inform the

user about the results of the banknote analysis. The overall computational speed

is of about 1 second for validity and 2 seconds for value recognition using the

microprocessor described in the Section 7.3. It should be noted that the proposed

software has been designed with the aim to work on a low cost hardware, with the

low computational resources (e.g., 32Kbyte of Random Access Memory). The

hardware components used in our system are described in the following Section.

7.3 Hardware Prototype

The hardware prototype has been designed to demonstrate the effectiveness of

the proposed framework. The overall system is summarized in the block diagram

reported in Figure 7.5.

The Infrared LEDs (IR leds block) illuminate the scene. It is composed by

6 LEDs placed around the proscenium (the area where the banknote is placed).
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The illumination is not uniform in the real system. Moreover, it can vary from

prototype to prototype. Hence, a calibration is needed to take into account the

non uniformity and the performances decay in the system life (see Section 7.2.1).

An optical filter is inserted to avoid the external light source to influence the im-

age acquisition system. It is placed on top of the infrared camera (IR camera

block) that acquires the image. It is basically a common camera with CCTV out-

put. Since the output is analog, an analog to digital converter (A/D converter

block) is used to obtain a digital standardized format (i.e., CCIR−656). The dig-

ital image is acquired by the microprocessor. In the prototype we have used an

AT MEL AT 91SAM9XE256, containing a ARM926EJ−ST M processor, 200MHz

with 256KByte internal high-speed flash memory in which is stored the program.

It contains also an Image Sensor Interface (ISI) port able to capture video se-

quences compliant with the standard ITU −RBT 601/656. The program contains,

beside the control logic for the entire subsystems (e.g. IR led, IR camera settings,

Display, etc.), also the related algorithms (for both validation and classification)

described in the Section 7.2. The prototype has been also equipped with exter-

nal SRAM memory, since the microprocessor contains only 32KByte of internal

SRAM. In Figure 7.6 the hardware prototype is shown. In the center there is the

AT MEL microprocessor; on the right side there is the A/D converter, in the upper

part there is the external SRAM memory, in the lower/right side there is the power

supply.

True positive True negative

(counterfeit banknote correctly classified) (genuine banknotes correctly classified)

100% 95.7%

False positive False negative

(counterfeit banknote misclassified) (genuine banknotes misclassified)

0% 4.3%

Table 7.1: Genuine/Counterfeit classification
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Figure 7.6: The main board containing the microprocessor in the center, the A/D

converter on the right side, the external SRAM memory in the upper part, and the

power supply in the lower/right side.

7.4 Results

To evaluate performances of the proposed technique we used our prototype to ac-

quire a test set of 1750 banknote images, with the same criteria used for the train-

ing dataset (i.e. both counterfeit and genuine banknotes have been acquired un-

der several environment lighting conditions, with different illuminants and bright-

ness). In both cases, training and experimental phases, the dataset has been pro-
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vided by an Italian Bank.

Acquired counterfeit banknotes include also specimens carefully calibrated to

mislead digital counterfeit detectors. To deal with special cases (i.e., fake ban-

knotes provided by the bank), additional procedure has been included in our soft-

ware. The overall processing time is very close to the base algorithm, since it

requires a few additional computations, relative to small areas. Table 7.1 reports

the results of the validity assessment. Table 7.2 shows the output of the banknote

value classification. Most of the false negatives are observed for images acquired

under direct sunlight illumination and for worn banknotes. Wear and tear can be

identified as the main cause of misclassified samples for 5 and 10 Euro banknotes,

since those banknotes are widely used in everyday life.

7.5 Conclusions

In this chapter we have proposed hardware and software modules to detect coun-

terfeit of euro banknotes. Conversely to the state of the art algorithms, the pro-

posed solution makes use of infrared image and low-cost hardware. The proposed

system allows recognizing not only the value, but also forgeries. The proposed

software components demonstrate the use of very simple shape matching tech-

niques and similarity measures to solve in an effective way an important task for

billing machines. he described algorithms are robust to changes in the incident

lighting conditions, potentially enabling a widespread diffusion of our system.

Thanks to a training phase it is also robust to non-uniformity of the infrared light-

5E 10E 20E 50E 100E 200E 500E Counterfeit

5E 88% 0% 0% 0% 0% 0% 0% 12%

10E 1% 91% 0% 0% 0% 0% 0% 8%

20E 0% 0% 98% 0% 0% 0% 0% 2%

50E 0% 0% 0% 99% 0% 0% 0% 1%

100E 0% 0% 0% 0% 93% 0% 0% 7%

200E 0% 0% 0% 0% 0% 98% 1% 1%

500E 0% 0% 0% 0% 0% 0% 95% 5%

Table 7.2: Banknote value classification
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ing apparatus. The experiments performed on genuine and counterfeit banknotes

provided by an Italian Bank show good performances in both validity and value

recognition. Future works will be aimed to increase the recognition accuracy and

to further reduce the computational time.
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Conclusions

In this dissertation the key role of the shape of the objects is emphasized, demon-

strating how such a fundamental feature can be efficiently used to solve a wide

range of relevant problems in the fields of Computer Vision, Computer Graphics

and Pattern Recognition. Typically our input is a set of one or more 2-D image,

which convey enough information about the shape if an ad-hoc setup is used for

each individual application. The input devices we use range from DSLR cameras

to MRI devices, with great differences in the imaging techniques and in the quality

of images.

In Chapter 3 we presented a novel technique for estimating surface normals

from polarization cues obtained from the Stokes reflectance field captured in just

four photographs from a single viewpoint and under a single (unpolarized or cir-

cularly polarized) constant spherical incident lighting. We found it to work well

for both dielectrics as well as dielectric-metal composites. We demonstrate that

both circularly polarized and unpolarized incident lighting can be used to reliably

estimate surface normals from observations of the Stokes reflectance field. Accu-

rate shape and appearance estimation is a crucial component in many computer

vision and computer graphics applications, which often requires expensive labo-

ratory settings: the main contribution of our work is that we show how our theory

can be applied to normal estimation even under uncontrolled outdoor illumination.

On the other hand, if the incident lighting is circularly polarized, our method can

be used together with the technique described in [54] to obtain a full description

114
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of the BRDF of the object in just four pictures, achieving a long-standing goal

of computer graphics: digitally reproducing in a realistic way the appearance of

physical objects such as cultural artifacts, consumer products, material samples,

and human faces.

In many applications there is a need to deal with classes of objects which are

not identical, for example female breasts. A suitable model should maintain the

essential characteristics of the class of objects it represents, it should be able to

deform to fit a range of examples and it should only generate legal examples. In

Chapters 4 and 5 such models are developed to respectively describe the variabil-

ity observed in 3-D female breast shapes and in the silhouette of cows, as seen

from above. In particular we present an embedding of the shape space of the hu-

man female breast into a low dimensional linear parameter space, obtained from

a set of MRI data processed for noise removal and then analyzed with the PCA

technique. Our contributions are a 3-D graphical application to enable the physi-

cian to interactively explore the patient data and the potentiality of the proposed

modelling technique and a tentative qualitative scale for breast evaluation, helpful

to certify the post-operative outcome of breast plastic surgery which is currently

a little more than craftsmanship and intuition. We also suggest a new direction

for our research, which makes use of a low cost depth camera able to produce

accurate 3-D models, potentially enabling accurate shape analysis and avoiding

the use of the MRI device.

Our method to parameterize the shape of cows produces a description of the

shape to be used for automatic estimation of the health condition of the involved

animals (Body Condition Score). The first contribution of this work is a new

benchmark dataset useful for research purpose, publicly available through the

Internet. BCS estimation systems that work fully automatically (with no user

intervention) or at least semi-automatically (with minimal user intervention) are

desired to cut down time and costs of the traditional BCS estimation techniques.

Moreover, these systems can produce an objective evaluation of BCS in a way

that is less invasive for the cows. We proposed both solutions, an automatic and a

semi-automatic approach for BCS estimation, able to outperform the state of the

art techniques.

In chapter 6 we present a pipeline to automatically classify simple Kamares
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decoration, focusing on the shape matching step of an ideal pipeline to assist the

archaeologists in classification of Kamares pottery fragments, according time and

place of production. This first example of application of Computer Vision and

Pattern Recognition techniques to a specific topic of the prehistoric archaeology

as the Minoan Kamares pottery opens a completely new field of investigation that

in the future can deeply change the approaching of the scholars to iconographical

problems. The satisfactory results obtained with the classification of single motifs,

even deformed by the preservation of the specimens or altered by the chronolog-

ical and geographical variability of the production and by the creativity of the

Minoan artisans, show how just the 2-D shape contour is able to convey enough

information to solve complex problems. Future directions of our research will be

devoted to the implementation of the outlined pipeline, starting from the identifi-

cation of the Region of Interest of each fragment.

In some cases there are specific project constraints which prevent from using

an exact solution or state of the art algorithms to obtain a good approximation, e.g.

when the hardware employed to execute the algorithms has noticeable limitation

or quasi-real time is required. In Chapter 7 we describe an instance of this class

of problems, in which a banknote must be efficiently classified in terms of face

value and genuineness. We propose a complete solution, which consists in hard-

ware and software modules to detect counterfeit of euro banknotes. Conversely

to the state of the art algorithms, the proposed solution makes use of infrared im-

age and low-cost hardware and the software components demonstrate the use of

very simple shape matching techniques and similarity measures to solve in an ef-

fective way this important task for billing machines. The described algorithms

are robust to changes in the incident lighting conditions, potentially enabling a

widespread diffusion of our system. Thanks to a training phase it is also robust

to non-uniformity of the infrared lighting apparatus. The experiments performed

on genuine and counterfeit banknotes provided by the Italian Central Bank show

good performances in both validity and value recognition. Future works will be

aimed to increase the recognition accuracy and to further reduce the computational

time.



Bibliography

[1] H. G. Barrow and J. M. Tenenbaum, “Recovering intrinsic scene charac-

teristics from images,” in International Conference on Computer Vision

Systems, 1978.

[2] M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic im-

ages from a single image,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,

pp. 1459–1472, Sept. 2005.

[3] R. J. Woodham, “Photometric stereo: A reflectance map technique for de-

termining surface orientation from image intensity,” in Proc. SPIE’s 22nd

Annual Technical Symposium, vol. 155, 1978.

[4] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

New York, NY, USA: Cambridge University Press, 2 ed., 2003.

[5] Y. Yu, P. Debevec, J. Malik, and T. Hawkins, “Inverse global illumina-

tion: recovering reflectance models of real scenes from photographs,” in

Proceedings of the 26th annual conference on Computer graphics and in-

teractive techniques, SIGGRAPH ’99, pp. 215–224, 1999.

[6] B. K. Horn, “Shape from shading: a method for obtaining the shape of a

smooth opaque object from one view,” tech. rep., 1970.

[7] J. Barron and J. Malik, “Shape, albedo, and illumination from a single im-

age of an unknown object,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pp. 334 –341, june 2012.

117



BIBLIOGRAPHY 118

[8] J. T. Barron and J. Malik, “Color constancy, intrinsic images, and shape

estimation,” in Computer Vision ECCV 2012 (A. Fitzgibbon, S. Lazebnik,

P. Perona, Y. Sato, and C. Schmid, eds.), vol. 7575 of Lecture Notes in

Computer Science, 2012.

[9] M. K. Johnson and E. H. Adelson, “Retrographic sensing for the measure-

ment of surface texture and shape,” in Computer Vision and Pattern Recog-

nition (CVPR), pp. 1070–1077, 2009.

[10] J. Ackermann, M. Ritz, A. Stork, and M. Goesele, “Removing the example

from photometric stereo by example,” in Proceedings of the ECCV 2010

Workshop on Reconstruction and Modeling of Large-Scale 3D Virtual En-

vironments, Sept. 2010.

[11] S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” In-

ternational Journal of Computer Vision, vol. 6, pp. 173–195.
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Appendix A

Light and Reflectance Models

The visual ability of humans and other animals is the result of the complex inter-

action of light, eyes and brain. We are able to see because light from an object can

move through space and reach our eyes. The objects that we are able to see can

be either luminous objects, which generate their own light, or illuminated objects,

capable of reflecting light to our eyes. Objects are visible because they reflect light

to the eyes of those who look its way: it is only thanks to reflection that objects in

our physical world can be seen.

Specular Reflection. Light is known to behave in a very predictable manner. If a

ray of light could be observed approaching and reflecting off of a flat mirror, then

the behavior of the light as it reflects would follow a predictable law known as

the law of reflection (Figure A.1). Specular reflection is the mirror-like reflection

of light (or of other kinds of wave) from a surface, in which light from a sin-

gle incoming direction (a ray) is reflected into a single outgoing direction. Such

behavior is described by the law of reflection, which states that the direction of

incoming light (the incident ray I), and the direction of outgoing light reflected

(the reflected ray R) make the same angle with respect to the surface normal N,

thus the angle of incidence θi equals the angle of reflection θr, and that the inci-

dent, normal, and reflected directions are coplanar. To view an image of an object

in a mirror, a person (or a camera) must sight along a line at the image location

(Figure A.2(a)).
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Figure A.1: A diagram illustrating the law of reflection.

Fresnel Equations. Even when a surface exhibits only specular reflection with

no diffuse reflection, not all of the light is necessarily reflected, since the surface

material may absorb some light and depending on the type of material behind the

surface, some of the light may be transmitted through the surface (Figure A.2(b).

For most interfaces between materials, the fraction of the light that is reflected

increases with increasing angle of incidence. The relationship between the angle

of incidence θi and the angle of refraction θt , when referring to light passing

through a boundary between two different isotropic media, is described by the

Snell’s Law:
sinθi

sinθt
=

η2

η1
, (A.0.1)

where η1 is the refractive index of the initial medium through which the light

propagates, and η2 is the index of the other medium. The reflectivity of a surface

is the ratio of reflected power to incident power. The reflectivity is a material

characteristic, depends on the wavelength, and is related to the refractive index

of the material through Fresnel equations, which describe the behaviour of light

when moving between media of differing refractive indices. Consider the case of

reflections of a mirror-like specular dielectric material. If the other media is the

air, which has a index of refraction ηair ≈ 1, the exact amount of total reflected

radiance is governed by the well-known Fresnel equations, which are a function
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(a) (b)

Figure A.2: (a)diagram which shows how the light reflects off the mirror. (b)

When the incident light ray I strikes the interface between two media of refractive

indices η1 and η2 , part of the ray is reflected as ray R and part refracted as ray

T . The angles that the incident, reflected and refracted rays make to the normal of

the interface are given as θi, θr and θt , respectively.

of incident angle θi and the index of refraction η of the surface:

R⊥ =









cosθi − η

√

1 −
(

1
η sinθi

)2

cosθi + η

√

1 −
(

1
η sinθi

)2









2

(A.0.2)

R‖ =









√

1 −
(

1
η sinθi

)2

− η cosθi

√

1 −
(

1
η sinθi

)2

+ η cosθi









2

(A.0.3)

Brewster’s Angle. Brewster’s angle (also known as the polarization angle) is

an angle of incidence at which light with a particular polarization is perfectly

transmitted through a transparent dielectric surface, with no reflection. When un-

polarized light is incident at this angle, the light that is reflected from the surface is

therefore perfectly polarized. When light encounters a boundary between two me-
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dia with different refractive indices, some of it is usually reflected as shown in the

figure above. The fraction that is reflected is described by the Fresnel equations,

and is dependent upon the incoming light’s polarization and angle of incidence.

The Fresnel equations predict that light with the R‖ polarization will not be re-

flected if the angle of incidence is

θB = arctan

(

η2

η1

)

, (A.0.4)

where η1 is the refractive index of the initial medium through which the light

propagates, and η2 is the index of the other medium; the angle defined by this

equation is the Brewster’s angle. For a glass medium, with η2 ≈ 1.5 in air, Brew-

ster’s angle for visible light is approximately 56; the refractive index for a given

medium changes depending on the wavelength of light, hence Brewster’s angle

will also vary with wavelength.

Diffuse Reflection. Ideal diffuse reflectors reflect light according to Lambert’s

cosine law. Lambert’s law states that the reflected energy from a small surface

area in a particular direction is proportional to the cosine of the angle between

that direction and the surface normalA.3. Lambert’s law determines how much of

the incoming light energy is reflected in any one direction, which is constant. In

other words, the reflected intensity is independent of the viewing direction, differ-

ently from the case of specular reflection. The intensity does, however, depend on

the light source’s orientation relative to the surface, and it is this property that is

governed by Lambert’s law [123]:

Idi f f use = kd · Ilight · cosθi, (A.0.5)

where Ilight represents the intensity of the incoming light at the particular wave-

length (which determines the light’s color) and kd represents the diffuse reflectiv-

ity of the surface at that wavelength. In practice, many common materials exhibit

a mixture of specular and diffuse reflection and it is necessary to model both kind

of reflections in order to achieve realistic image synthesis.
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Figure A.3: Lambert’s law states that the reflected energy from a small surface

area in a particular direction is proportional to the cosine of the angle between

that direction and the surface normal.

Figure A.4: The BRDF geometry.

Bidirectional Reflectance Distribution Function. Accurate descriptions of how

light reflects off a surface are a fundamental prerequisite for realistic rendering.

Real world materials exhibit characteristic surface reflectance, such as glossy or

specular highlights, anisotropy, or retro-reflection, which need to be modeled for

visual realism. The surface reflectance of a material is formalized by the notion

of the Bidirectional Reflectance Distribution Function (BRDF) as described by

Nicodemus et. al. [124], which is a four dimensional function (ignoring the wave-

length dependence) describing the response of a differential surface dA in a certain

exitant direction (θr,φr), centered within a cone of solid angle dωr, to illumina-

tion from a certain incident direction (θi,φi), through a solid angle dωi, over a
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hemisphere of directions (Figure A.4). The BRDF is mathematically defined as

the ratio of the directionally reflected radiance dLr to the directionally incident

irradiance dEi:

fr (ωi,ωr) =
dLr (ωr)

dEi (ωi)
(A.0.6)


