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Chapter 1

Introduction

M
edical imaging is a generic term used to define the use of medical

practices to create images of the human body for clinical purpose.

Today it includes a wide range of different techniques and these have greatly

enhanced the quantity and quality of information available in the clinical

practice. The clinician may now obtain a comprehensive view of internal

structures of the human body, such as heart, kidney, lung, gut and so on.

Computer assistance plays a relevant role in all these clinical applications.

Each imaging technique is indeed associated with some kind of specialized

workstation which maintains the appropriate tools for manipulating images,

performing measurements and extracting relevant information from the avail-

able data. The major strength in the application of computers to medical

imaging hence is the use of Computer Vision and Image Processing tech-

niques to automate some specific analysis tasks.

Among the thousands of possible areas, in this dissertation we exploit the

current Computer Vision technologies to propose new methods in two re-

search fields: “Automatic Classification of Frames from Wireless Capsule

Endoscopy” and “Depth Estimation in Bronchoscopic Intervention”. In

both cases the exploration of tubular internal structures of the human body

through the analysis of endoscopic images asks for innovative and “smart”

algorithms to translate the rough image data into useful information for the

doctors.
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Automatic Classification of Frames from Wireless Capsule Endoscopy

Wireless Capsule Endoscopy (WCE) is a diagnostic technique used to ex-

plore intestinal regions which are difficult to reach with traditional endoscopy.

The large number of images produced by this technology requires the use of

computer-aided tools to select only meaningful frames to speed up the analy-

sis time by the expert. In the first part of this dissertation a machine learning

system to automatically categorize the frames in WCE videos is proposed.

Our research focus in two different classification/detection tasks. In partic-

ular, we tackle the problem of the automatic detection of sudden changes

in endoscopic video sequences in order to help the clinician to locate only

the relevant frames for diagnostic purpose. The second problem is the auto-

matic detection of specific events such as the intestinal contractions, that are

often related to certain gastrointestinal disorders. It should be known that

the interpretation of a medical examination by an expert is strongly related

to his/her experience. The presence of low-skilled staff, together with the

potential distractions of the observer, can affect directly the final report of

the examination. Performing a computer-aided analysis or use a fully au-

tomated one as a second opinion is hence very useful. These considerations

motivated the research of classification algorithms that are addressed in this

dissertation.

Depth Estimation in Bronchoscopic Intervention

3D vision systems are currently used for enhancing depth perception and to

provide a greater immersive experience for different research domains. Other

than for entertainment, stereo viewing has being proposed for medical appli-

cations even if real applications are at the present time at their begin. In the

second part of this dissertation we intend to exploit the stereo-camera setup

available in stereo-viewing systems for 3D reconstruction. In particular, we

aim at extracting depth information of the bronchial scene observed through

an experimental stereo bronchoscopic probe. Although we focus on broncho-

scopic images, our ideas can be applied to different endoscopic procedures.

In particular, the information provided by a depth map representation can
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be used in different ways in an endoscopic station and it might be useful to

improve the visual navigation and surgical intervention. The main important

advantage of the 3D reconstruction that we try to achieve is to enable the

use of Augmented Reality to support the endoscope teleguide. As a proof of

concept for this research, we initially report the experiments that we have

conducted on a bronchoscopic video obtained from the application of a stan-

dard monocular bronchoscope. In a second section, we describe a simulation

of virtual environment of a stereo-setup system over a synthetic model of

a tracheo-bronchial tree. Finally, we introduce a real prototype of a stereo

bronchoscope, i.e., a flexible probe equipped with a couple of micro cameras

and a light source. This technological step has been developed at the labs

of the “School of Engineering and technology”, University of Hertfordshire

(UK), where the author of this dissertation has spent a significative time of

his graduate studies, partecipating to this project.

1.1 Dissertation organization

This dissertation is structured in two parts: throughout the first part, which

comprises the first seven chapters, we introduce the research conducted to au-

tomatically detect specific events in endoscopic images. In particular, Chap-

ter 2 describes in detail the WCE technique that provides the ensemble of

endoscopic images under examination. Chapter 3 reports and discusses the

relevant works that have already been published regarding the capsule en-

doscopy technology. In this occasion, it is possible to know which classifica-

tion problems are typically addressed and the algorithms employed to solve

them. The following two chapters (Chapter 4 and Chapter 5) discuss the

theory behind our experiments: Information Theory and Ensemble Learning

respectively. The experiments conducted to verify our proposals are reported

in Chapter 6. Chapter 7 closes the first part of this dissertation with the gen-

eral discussion of our work. It also discusses which future activities may be

taken to improve the results obtained insofar.

The second part of the dissertation, which includes the remaining chapters, is

devoted to study the Stereoscopic Vision in the context of endoscopic imag-
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ing. Chapter 8 gives to the reader some useful information on Stereoscopy.

It is explained how it is possible to obtain depth clues from a pair of stereo

images. It also gives some useful information on the calibration step needed

to extract the camera information and to bring a pair of rough images in a

standard stereo form. A literature review about Stereoscopy applied in med-

ical devices is reported in Chapter 9. Chapter 10 reports the experiments

conducted to test the validity of our proposal. Finally, Chapter 11 draws the

conclusion and closes this dissertation.



Part I

Automatic Classification of

Frames from Wireless Capsule

Endoscopy
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Chapter 2

Wireless Capsule Endoscopy

Endoscopy is the most prevailing modality for diagnosing gastrointestinal dis-

orders. Nowadays, there are several different endoscopic procedures varying

from colonscopy and enteroscopy to full intraoperative endoscopy. The tra-

ditional “push” endoscopy involves the use of a surgical probe-tube equipped

with a micro camera and a light source. The physician conducts the probe

by moving it forward along the bowels and examines the recorded images

projected on a screen. Modern endoscopes also contain an accessory chan-

nel, which allows to insert medical instruments to take tissue sample and

perform endoscopic resections. Although this procedure is efficient both for

diagnostic and therapeutic purposes, it is usually limited by the depth of

the insertion of the scope allowing only the exploration of the upper small

intestine. The exam also requires the presence of a qualified staff and the

need of hospitalization and sedation of the patient.

While progressive size reductions in probes and imaging enhancements are

enabling ongoing technical improvements in endoscopes, the rigid structure

and the thickness of the probe do not allow the exhaustive exploration of long

and convoluted regions like the small intestine. Limitations of current endo-

scopic techniques in the identification of small bowel disorders have prompted

a search for alternative technologies. For this reason, a new technique called

Wireless Capsule Endoscopy (WCE) [1],[2] has been introduced as a new less

invasive and painless kind of endoscopy.

8



CHAPTER 2. WIRELESS CAPSULE ENDOSCOPY 9

WCE employs the use of a pill-shaped device that is swallowed by the patient

and it is propelled through the gut by the physiological intestinal peristalsis.

The front-end of the capsule is equipped with a tiny camera and a transmitter

wirelessly sends the recorded images to an external receiver. Once the study

is finished, the recorded movie can be easily downloaded into a workstation

with the appropriate software for its posterior analysis by the expert.

As the quality of the images obtained with WCE improves, this technology

is strongly elective to detect abnormalities such as ulcers, bleedings or the

presence of tumors in the small intestine. The exam is also less uncomfort-

able to the patient because it is required only to swallow a capsule. Once

activated, the capsule approximatively captures two frames per second; WCE

operates for about 8 hours, that corresponds to the lifetime of the battery

of the capsule, reaching up to 50000 useful images at the end of the exam-

ination. Images taken during the entire route of the capsule through the

intestine are successively analyzed by an expert. He/She may spend up to

one or more hours to gather the relevant information for a proper diagnosis.

This greatly limits the use of the capsule technology as a diagnostic routine

tool. Recognition of frames displaying a pathology is indeed a hard problem,

and pre-processing of the whole ensemble of the frames to eliminate those

that do not carry relevant information is a much needed step.

The advent of WCE endoscopic imaging technique has led to the develop-

ment of a new branch of computer-aided support systems. Such systems may

be deployed using Computer Vision techniques to assist a medical expert in

improving the accuracy and the annotation times of medical diagnosis. Some

typical tasks that can be facilitated by the use of these computer-aided tools

are related to anomaly detection and categorization, data reduction and clus-

tering, and automatic topographic segmentation of an endoscopic video.

This chapter reviews the fundamentals of WCE. Special care is paid to the

structure of the capsule, with the relative benefits and drawbacks. After

presenting some basic theoretical notions, we focus on the images we get out

of this imaging technique, analyzing how these ones differ according to the

digestive tract in which they were recorded. In order to make easier the

understanding of this work, this chapter ends with a brief overview of the
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human digestive system.

2.1 WCE system details

The first prototype of the modern WCE was made in 1981. Its creator, the

Israeli Gavriel Iddan, worked at the research center of the Israel Defense

Forces (IDF) to design elettro-optical visors applicable on rockets. Iddan ex-

ploited the latest miniaturization technologies to create a new revolutionary

system for gastrointestinal endoscopy, in which images are acquired by means

of a swallowable micro-camera traveling within the digestive tract driven by

the peristaltic movements. Once built an initial prototype and carried out

their feasibility studies, it was performed testing on animals. In 2001, with

the approval of FDA (Food and Drug Administration) and applying the CE

mark , the application was extended to human people as a system to routine

diagnostic endoscopy [3]. Around the capsule, Iddan founded the company

“Given Imaging” [1] that aims to develop and commercialize worldwide this

new technology. The system was patented under the name “Mouth 2 Anus

(M2A) Given Diagnostic Imaging System.” Capsule endoscopy immediately

raised great interest as it opened the opportunity to exhaustively explore

the entire small intestine without any discomfort. With thousands of physi-

cians now using the capsule as part of the initial endoscopic check-up, several

articles have been written indicating this new technology suitable for some

diseases as small bowel tumors, celiac disease, bleedings [4, 5].

The WCE technology is composed by means of three main subsystems: a

ingestible capsule, a recording device and a workstation equipped with pro-

prietary data processing software.

The capsule is disposable, which means it will not be recovered after

the expulsion that naturally occurs 10 to 72 hours after the ingestion. The

characteristics of the capsule may vary depending on the manufacturer. The

pioneer WCE company, Given Imaging, commercializes capsules for the vi-

sualization of the mucosa in the small bowel (PillCamTM SB), esophagus

(PillCamTM ESO) and colon (PillCamTM COLON). The first two kinds of
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Table 2.1: The first generation of video-capsules produced by Given Imaging.
Video-capsule Release Dimensions Frame Working

Date Rate Time

2001 11◦�× 26 mm 2 fps ∼ 8 hours
PillCamTM SB

2004 11◦�× 26 mm 18 fps ∼ 20 minutes
PillCamTM ESO

2006 11◦�× 31 mm 4 fps ∼ 4 hours
PillCamTM COLON

capsules have the same dimensions, even if they acquire images at two differ-

ent frame rates. This is due to the different travel times of the capsule, which

takes about 8 hours to go through the small intestine and 15-20 minutes in-

side the esophagus. All small bowel capsules have only one camera, whereas

Given Imaging’s esophagus and colon capsules have two of them. The idea

of adding a camera comes from the need to maximize the covered surface for

intestinal regions of higher diameter. It also helps to store more information

in regions where the capsule travels quickly. PillCamTM COLON captures

4 frames per second and the imaging devices on either end of the capsule

provide a near 360◦ view of the colon (Table 2.1).

The quality of WCE imaging has improved through the years. The reso-

lution and lighting conditions are now significantly better. Given Imaging

company has already reached the next generation of the capsules, which sat-

isfies a higher frame rate maintaining the dimensions of the old generation.

Another capsule distributor, Olympus [2], produces capsules based on the

same size as the Given capsule but with a charged-coupled device (CCD)

rather than a CMOS imager. It also provides a viewer showing real time

information on the route covered by the capsule inside the patient’s torso.
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(a) (b)

Figure 2.1: (a) Illustration of a video-capsule together with the distribution
of its components in scale (b).

Figure 2.1 shows the structure of the PillCamTM SB capsule1. It is an as-

sembly of well-tried image acquisition components. The external case is a

biocompatible plastic capsule weighting 3.7g and measuring 11mm×26mm.

The body of the capsule hosts the following components: an optical dome (1),

a lens holder (2) with a short focal length lens (3), four illuminating LEDs (4),

a CMOS (Complementary Metal Oxide Semiconductor) sensor (5), two bat-

teries (6), an application-specific integrated circuit (ASIC) radio-frequency

transmitter (7) and an external receiving micro-antenna (8). The capsule

comes from the manufacturer ready to use and it starts to transmit on re-

moval from a storage compartment, which contains a magnet that keeps the

capsule inactive until use.

The recorder device involves the use of eight receiving antennas taped

to the patient’s torso, similarly to the electrodes adhesives used for the elec-

trocardiograms. These collect the signal transmitted by the capsule and send

it to the receiver carried on the patient’s belt (Figure 2.2). It starts to record

as soon as a signal is received from the video-capsule. The characteristics of

the recorder allow the patient to wear it easily under clothing and to continue

a normal daily activity. Patients are asked to avoid abrupt movements and

1Notice that the specific Given Imaging products are used here to explain the WCE
technology. After Given PillCam was introduced, many types of video-capsules have been
developed and are available in the market [6, 7, 8].
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(a) (b)

Figure 2.2: (a) The antennas array that transmits the capsule’s signal to a
recorder worn by the patient (b).

to constantly monitor a flashing light on the receiver for the confirmation of

a good signal reception. In the last years the recorders have been improved.

The capacity, battery life and reliability are now significantly better to re-

flect different types of capsules. They are easy to use and contain intuitive

LEDs for signal reception and battery level. A typical capsule endoscopy

exam takes approximatively 7-8 hours. Once the exam is finished, the pa-

tient comes back to ambulatory to deliver the recorder containing all the

images captured by the capsule and wirelessly transmitted.

The workstation is a dedicated computer equipped with a proprietary

data analysis software. It allows to watch the entire examination, with

a special utility enabling to get quickly any image within the video. The

physician reads the video in one of several formats, captures and labels the

salient information, and then prepares a final report. As already mentioned,

this is one of the main drawbacks of endoscopy through video-capsule. Notice

that a good diagnosis requires up to two hours, and it highly depends on the

physician’s experience. This process is also so exhausting that the physician

rarely performs two consecutive diagnoses. At the end of the analysis all the

annotated information are automatically saved. These findings files can be

saved on a CD, a DVD or any other storage device and then sent to colleagues

for consultations. For further details on using this software, refer to Section

2.4.
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2.2 Benefits and risks of capsule endoscopy

Since its introduction, more than 1.000.000 patients worldwide have benefited

from the capsule endoscopy. As with all new technologies, the practical use of

the capsule led to the introduction of improvements to the diagnostic system

that, in turn, has opened new fields of clinical use. Already in the early

studies it was possible to assess the operational characteristics and the limits

of the capsule:

• Usability: It is much less invasive than traditional endoscopy, since

the patient simply has to swallow a vitamin-size capsule, which will be

expelled in the normal cycle through the defections. The application

of the system (antennas, recorder, batteries) to the patient is very easy

and can be carried out, with a minimum of training, even by unskilled

staff.

• Tolerability: The majority of the patients succeeds in swallowing the

capsule with some sips of water. The application of the antennas on

patient’s torso has not resulted in complaints by patients.

• Completeness of the examination: As already mentioned, the cap-

sule is strongly indicated to the exploration of the small intestine. It

sometimes allows to capture images of the esophagus, but the rapidity

of oesophageal transit rarely allows to capture significant findings. In

such cases it is suggested to use the Given PillCam ESO: it contains an

imaging device at both ends of the capsule and take up to 18 frames

per second as it passes through the esophagus. Nowadays, however,

capsule endoscopy cannot exhaustively replace the use of standard en-

doscopic procedure; indeed, it is often complementarily used with other

examinations. Since the capsule has not therapeutic capabilities, any

abnormalities detected by the capsule must be further investigated by

the standard endoscope. This has the proper tools for the extraction of

intestinal tissue destined to a later histological investigation. Further-

more, the movement of the capsule within the digestive tract is passive

and driven by peristalsis. The recorded area is hence unpredictable, it
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is patient dependant, and it is not conceivable the employment of the

capsule in place of the standard endoscopy.

One of the main concern, although it rarely appears, is related to the cap-

sule retention when it is not naturally excreted in the feces within two weeks

after the ingestion. If it occurs, it is necessary to remove it through the

surgery. Capsule endoscopy is hence controindicated in patients with known

or suspected intestinal stenosis or with the presence of severe deformities of

the digestive tract. Recently, a “patency” capsule that does not require any

preparation has been introduced in the market. The utility is to scan the

bowels to verify an adequate patency of the gastrointestinal tract in patients

with known or suspected strictures prior to administration of the video cap-

sule in safety and tranquillity. This capsule is made of specific materials

decomposing with the contact to the intestinal contents in a few days after

the ingestion. It also contains a Radio Frequency Identication (RFID) tag

to determine capsule location.

Other contraindications to the application of the video-capsule refer to pa-

tients which have suffered previous invasive surgery on the abdomen and

when there is the presence of pacemakers or other electrical medical equip-

ment. This is due to the possible interferences between those systems and the

WCE radio transmitter. Some technical malfunctions related to the capsule

have been reported but were rarely significant [9]. The increasing interest

in this technique and the technology improvement would make these issues

occurring less frequent.

The most critical limitation concerns the discharge time of the images from

the portable recorder and the long annotation time that each exam needs

from a trained specialist. He/She may spend up to one or more hours to

gather the relevant information for a proper diagnosis. This greatly limits

the use of the capsule as a diagnostic routine tool. Such shortcoming may be

overcome if the WCE video is automatically segmented into shorter videos,

each one relative to a different trait of the bowels, and if reliable automatic

annotation tools are available to the clinicians. Unfortunately, the goal of

automatically producing a summary of the whole WCE video remains yet

unaccomplished. Tools to extract semantic information from such videos,
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such as the one presented in this work, are relevant research products for

applied Pattern Recognition investigators.

2.3 Typical capsule endoscopy images

Wireless Capsule Endoscopy produces images of the digestive tract, covering

a circular 140◦ field of view. An average exam has around 50.000 images

where 1000 are captured in the gastrointestinal tract entrance, 4000 in the

stomach, 30000 in the small bowel and 3000 in the large intestine. The cap-

tured frames have three 8 bit color planes with a 256×256 pixels resolution,

rendering a circular area of 240 pixels of diameter. The black area surround-

ing each rendered frame usually contains some further information, like the

exam’s date and the patient’s name (Figure 2.3).

Figure 2.3: A typical Wireless Capsule Endoscopy frame.

Each incoming frame can be visually classified according to the characteris-

tics of the intestinal mucosa and other typical elements that may be present

into the bowels, like bubbles, bleedings, residuals, ulcers, etc. The physician

recognizes these events mainly using color and texture pattern, determining

the status of the intestinal mucosa. Figure 2.4 illustrates sample images of

healthy regions and organic lesions of the gastrointestinal tract. In particu-

lar, Figure 2.4(a) shows a detailed view of the normal mucosa of the small

bowel. It is an intestinal region with uniform pink hue. Bleeding is defined

as the flow of blood from a ruptured vein into the digestive tract. The visual

feature used to characterize this scenario may rely on the intensity of the red
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(a) (b) (c) (d)

Figure 2.4: Different examples of capsule endoscopy scenarios. (a) Normal
small bowel mucosa. (b) Bleeding. (c) Residual. (d) Intestinal juices.

color component (Figure 2.4(b)). Instead, green color is usually related to

the presence of fecal materials (Figure 2.4(c)). In WCE, the good visibility of

the internal tissue is sometimes obstructed by the intestinal juices, which can

be visualized as a turbid liquid accompanied by bubbles or other elements

related to the flow of different gastric juices (Figure 2.4(d)).

It should be noticed that the gut is not motionless; the physiological motion

peristalsis may reverse or incline the capsule recording a variety of orien-

tations of the scene. In addition, it is needed to consider external factors

such as the lighting of the capsule which can sometimes falsify the perceived

colors. The number of scenarios in which a certain event can be recognized

is hence very impressive.

2.4 Manual annotation

Once the examination is finished, the patient delivers the data recorder con-

taining the images captured by the capsule. A workstation with proprietary

software is used by the physician for the analysis of the video. This means

that the physician needs to view the full 50 thousand images2, annotate all

the relevant ones, and create a final medical report with the summary of the

conducted investigation. The expert also includes all the diagnostic conclu-

sions and any checks to be performed for the monitoring of certain diseases.

2The number of collected frames may range depending on which type of examination
is performed and the frame rate used by the capsule.
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Figure 2.5: Rapid Reader exam annotation software developed by Given
Imaging.

Performing correctly the analysis is difficult, requires trained staff and time

to perform the needed analysis.

Figure 2.5 shows a snapshot of the visualization tool provided by Given Imag-

ing: Rapid Reader. Two main motivations lead us to adopt this software.

Considering that we have a dataset of images coming from Given capsules,

the only way to handle this data is with the dedicated software. It can also

be downloaded for free directly from the manufacturer’s site.

The RAPID (Reporting And Processing of Images and Data) software suite

enables efficient management of capsule endoscopy studies from initiation,

through review and analysis, to report generation. With solutions for every

capsule endoscopy workflow, this software suite provides multiple reading

modes, advanced analysis features that aid in image interpretation, intuitive

report generation, convenient study management, and network connectivity.

The physician can review the WCE video by using all the available features
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and utility provided with the application software. Video images can be

viewed in single or mosaic format and with different frame rates. This de-

pends on the experience of the physician; specialized users tend to display

multiple images at once while maintaining a higher reading frame rate.

The software also contains three important utilities:

• The first is a time bar that allows the doctor to understand the context

of a specific intestinal image. This bar contains the average color of

the images to which it refers. In this way it is possible to track the

movement of the capsule and its travel times through each intestinal

organ.

• The doctor is facilitated in the preparation of the report by the presence

of a comprehensive atlas. This provides side by side comparison of an

image in a case currently under review with atlas reference images.

• Rapid Reader software includes a Suspected Blood Indicator (SBI)

designed to detect bleedings in the video. However, this tool has been

reported to have insufficient specificity and sensitivity. This means

that it may display a high number of false positives but it is useful for

capture regions with active bleedings.

2.5 The digestive tract

In this section we give some useful information to the reader about the human

digestive system. This is done to better understand the classification tasks

addressed in this work and how these differ according to different organs of

the intestinal tract. A simplified description of the human gastrointestinal

tract appears in Figure 2.6.

The digestive system, also known as the gastrointestinal (GI) system , can

be seen as a long tube (about 4-7 meters) that passes through the body,

starting at the mouth and ending at the anus. It is capable of absorbing the

nutritional contents from the ingested food eliminating the waste out of the

body. The function and the visual appearance of each different section of the
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Figure 2.6: A schematic illustration of the human GI tract.

gut highly depends on the physiological task to which is part is devoted. A

first distinction is generally done between the upper GI tract and the lower GI

tract. The first one is composed by the oral cavity (mouth and pharynx), the

esophagus, and the stomach. Typically, these portions of the digestive system

are viewed using standard probe-based endoscopic procedures. The stomach

is a big bag covered with a thick mucosa membrane containing gastric juices.

In its relaxed state contains several longitudinal folds and in the pylorus,

the terminal region of the stomach, the diameter is about two centimeters.

Automatically locating the pylorus is of great advantage because it provides

the expert with the point at which food passes into the duodenum, the first

part of the small intestine.
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Figure 2.7: The lower GI tract.

The lower GI section is hardly practicable as it is much longer and articulated;

it comprises the small intestine, large intestine, and anus (Figure 2.7).

The small intestine presents three different areas: duodenum, jejunum and

ileum. The main duty of the duodenum is to continue the digestion done by

the stomach. The next part of the small intestine is called the jejunum, and

the third is called the ileum. Except by close internal histological inspection,

these two parts cannot be readily separated as they present a similar visual

appearance: the intestinal walls are plain in the relaxation state, but they

contract creating folds during the motility activity. The ileum has a paler

color, and tends to be of a smaller caliber as well. Together the jejunum

and the ileum contribute more than 15 feet to the small intestinal length.

The ileum ends by opening into the large intestine, or colon, via the ileocecal

junction.

The last region of the intestinal tract is the large intestine which is about

150 cm long and 6 cm in diameter. It does not contain many folds as the small

intestine and the larger diameter makes the diagnosis difficult for capsules

designed for the small intestine.



Chapter 3

Literature review

The previous section has provided a description of WCE as a technological

advancement in the area of diagnostic endoscopy. The increasingly clini-

cal relevance is evidenced by different studies that compare the examination

through the video-capsule with the traditional endoscopic procedures. It is

quite clear that capsule endoscopy performs better than push enteroscopy in

diagnosing patients with difficult gastrointestinal bleedings [5],[10]. It is also

commonly used in other clinical conditions, such as the detection of Chron’s

disease in the small bowel [11],[12], celiac disease [4], small bowel polyposis

and tumors [13]. Sometimes is used to study the impact of drugs on the gas-

trointestinal tract [14]. Moreover, children can benefit from this technology

as well as adults [15].

The main issue is related to the final report of the examination. A consid-

erable amount of time is required to view and interpret the many thousand

of images produced during the examination. This is a difficult and tedious

task that requires a qualified staff.

Since the vision is the main feature of an optical system such as the video

capsule endoscopy, Computer Vision techniques may help to automatically

select and detect the salient information enclosed in WCE data. Although

the research conducted on this new endoscopic technology is still in an intro-

ductory phase, a significant number of papers have already been published.

The application of Computer Vision in capsule image analysis can be di-

22
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vided in two categories. The first considers the topographic segmentation

of a WCE video into meaningful parts such as mouth, esophagus, stomach,

small intestine, and colon. Regarding the second category, there are several

works which seek to identify clinically relevant video events. Some instances

include the automatic detection of bleedings, intestinal juice, intestinal con-

tractions, ulcers.

In this chapter we offer a brief survey of research related to the classification

of images extracted from WCE videos.

3.1 Topographic segmentation

One of the main issue in wireless capsule imaging is the creation of a map

of the data recorded by the capsule during the navigation through the gut.

To this aim, topographic segmentation performs a segmentation of an endo-

scopic video into shorter videos, each one relative to a different trait of the

gut. Some intestinal diseases may reside in a specific segment of the intes-

tine; each digestive organ thus requires a different level of attention by the

clinical viewer. A comprehensive map of the examination enables a medical

expert to browse to a particular areas of interest, making the analysis of the

examination faster.

Most of the work found in literature tend to split the endoscopic video into

four main sections (for a better understanding see Section 2.5):

• Entrance: Once it is activated, the capsule is outside the body for

no more than few seconds. Then, it is swallowed by the patient and it

quickly reaches the esophagus until the esogastric junction separating

this from the stomach. This subset of data is clinically irrelevant be-

cause the capsule travels very fast in these areas that can adequately

be observed using traditional probe-based endoscopic procedures. From

an Image Processing perspective, it is possible to find images with sev-

eral color and texture variations: we can see the capsule cover, outside

world, teeth, tongue, etc.



CHAPTER 3. LITERATURE REVIEW 24

• Stomach: This area begins in the esogastric junction and ends in the

pylorus. Although it is clinically relevant, it is difficult to find relevant

events since the peristalsis may reverse or incline the capsule due to

the higher diameter of this tract. The images in this area are usually

light red and smooth. Finding the pylorus in the video can be difficult

and time-consuming, even for an experienced viewer, as visually the

stomach tissue in the pyloric region and the tissue at the beginning of

the intestine appear very similar.

• Small Intestine: This is the region in which the capsule has the most

significant clinical impact. The small intestine is the longest region of

the gastrointestinal tract. This tubular section usually contains semi-

digested foods, intestinal juices, enzymes. It is divided from the colon

by the ileocecal valve. Annotating this boundary is even more diffi-

cult because intestine and colon tissue are very similar and are often

contaminated with faecal residuals that occludes the camera view.

• Large Intestine: The last topographic section encountered by a WCE

begins in the ileocecal valve and normally ends when the capsule’s

battery runs out. This area suffers from very low visibility due to the

high concentration of food and faecal material. It does not contain

as many folds as the small intestine, but the larger diameter leads

the capsule to freely move making the diagnosis difficult for capsules

designed for the small intestine.

The topographic segmentation task is roughly equivalent to the search of

those boundaries in the video. Since 2001, a considerable number of works

have been published regarding this task.

The authors in [16] propose a technique to perform the boundary detection

task based on color change pattern analysis. When a capsule travels around

a boundary between two different digestive organs, the corresponding color

signal has a sudden change. This methodology characterizes the contractions

of WCE videos using energy function in a frequency domain. They segment

a WCE video into events by using a high frequency content function. The de-

tected boundaries event indicate either entrance in the next organ or unusual
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events in the same organ, such as bleedings, intestinal juices, and unusual

capsule movements. It is hence possible that boundary events may contain

other smaller events representing something else. The authors classify these

events through a threshold-based correlation rule into higher level events

that represent digestive organs. The experimental results indicate that a

high percentage (76%) of detecting correct boundaries events and a precision

of 51% have been achieved. The methodology manages to detect the most of

stomach and duodenum, but the accuracy in the ileum and cecum is worse.

A relevant series of papers performs an automatic gastrointestinal tissue dis-

crimination resulting in the segmentation of various intestinal organs [17,

18, 19, 20, 21, 22, 23]. In these papers, feature extraction procedure is per-

formed in the same way: the authors create a feature vector using color

and texture information. To this aim, images are initially converted in HSI

color space. They derive a color features from Hue Saturation chromaticity

histograms, compressed using a hybrid transform, incorporating the Dis-

crete Cosine Transform (DCT) and Principal Component Analysis (PCA) .

Because of the abrupt intensity changes in WCE images, the intensity com-

ponent is removed to achieve intensity invariance and data size reduction.

In [17] a second feature combining color and texture information is derived

using Local Binary Pattern (LBP). Having extracted feature vectors, the

next stage involves classifying them as belonging to a specific digestive tract.

There are several classifiers which can perform this task. In [19] the system

is trained to detect mouth/esophagus and stomach, stomach/intestine, and

intestine/colon using k-nearest neighbor (KNN) and Support Vector Machine

(SVM) classifiers. The work in [20] is similar to the previous one; additional

regions have been discriminated both in stomach and intestine. Histograms

built using the entire image may contain visual contamination present in the

image. Some examples of such noise is the presence of bile, saliva, food re-

mains, air bubbles and so forth. In order to minimize the affect of noise in the

image, the authors divide the WCE image into 28 sub-regions and process

only those regions where tissue is clearly visible. They derive five parame-

ters for each of the sub-images (Mean Intensity, Saturation, Hue, Standard

Deviation of Intensity and Hue). Then, each sub-image is tested and it is
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discarded if exceeds the range of reference values for visually clear images of

stomach or intestine tissue.

Coimbra et al. [24, 25, 26, 27] deal with the task of topographic segmentation

by using a novel visual descriptor called MPEG-7 [28]. This defines a variety

of visual descriptors for multimedia content, including audio, speech, graph-

ics and their combination. In [24] the authors use this descriptor adapted

to the WCE specific scenario. The final segmentation is based either on

Bayesian or SVM classifiers. In particular they trained four SVMs classi-

fiers, one for each boundary (esogastric junction, pylorus, ileo-cecal valve),

determining thereby the belonging topographic section of each frame. De-

spite good results have been achieved in [24, 25], the authors suggest to use

content features with context information [29]. Such new information may

include the approximated capsule spatial location inside the body with the

relative capsule velocity.

All these works disregard the computational cost to perform the segmenta-

tion. Notice that some capsules manufacturers [2] offer original viewer to

physician providing real-time examination imagery. It is hence highly desir-

able that these computer-assisted tools can run on simple portable hardware

that might be incorporated, for example, next to the portable hard-drive car-

ried in the patient’s belt during the procedure. To this aim, in a more recent

paper Coimbra et al. [30] show how a compressed domain color information

can be used to perform topographic segmentation as well as algorithms using

fully decoded images saving about 20% of the computational cost.

3.2 Event detection

With the video segmentation into coherent intestinal sections, the expert can

easily access to the images taken in a specific intestinal tract. The next step

consists in automatically detect some typical intestinal scenarios in order to

reduce the analysis time by the expert to do a diagnosis. Only a small amount

of interesting images for diagnostic purposes are indeed usually spread in

thousands of useless images. Notice that a higher amount of false positives

than of false negatives is typically preferred for this kind of applications. The
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presence of a high number of false positives result in more time spent by the

expert to do a diagnosis. Losing a rightful event is a worse event because it

means to miss relevant information with the resulting inaccuracy in the final

report.

3.2.1 Intestinal contractions

Dysfunctions of the intestinal motility are often related to certain disorders

that may occur with different symptoms [31]. The analysis of intestinal

contractions in the small intestine, in terms of number, frequency and distri-

bution, represents one of the methods with greater clinical significance. An

intestinal contraction involves a sequence of frames in which the intestinal

lumen shrinks, tending to the maximum closure, and then expands again.

The typical appearance hence consists in a dark area surrounded by the typ-

ical rays that muscular tone produces due to the folding of the intestinal

wall. In [32] the authors propose a technique based on anisotropic image

filtering and efficient statistical classification of contraction features. The

procedure to detect the typical star-shape of a contraction is accomplished

in three steps. The skeleton of the wrinkle pattern is extracted. Then, it is

verified whether the point at which all the rays converge corresponds to the

closure of the intestinal lumen. Finally, a set of descriptors were estimated

taking into account the radial organization of the wrinkle skeleton around

the intestinal lumen. Classification is performed by using a SVM classifier

with radial basis function. The system reaches a sensitivity of the order of

90.84% and a specificity of the order of 94.43% respectively.

3.2.2 Intestinal juices

In many images the information needed for a correct diagnosis is sometimes

obscured by intestinal elements, such as gastric juice, bubbles, residuals.

These intestinal elements are constituted by turbid liquids with color ranging

from green to white. They often are visualized together with bubbles or other

artifacts related to the flux of different fluids into the gut (Figure 3.1).

The authors in [33] point out the the most relevant feature of the intestinal
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Figure 3.1: Examples of endoscopic frames showing intestinal juices.

fluids is the presence of bubbles of different sizes and circular shapes. To

characterize these items they rely on the use of a Gabor filters bank of 16 units

with orientations 0◦, 45◦, 90◦, 135◦ and standard deviations σ = 1, 2, 4, 8. By

using a threshold-based mechanism, they obtain a binary image in which

the intestinal fluids are emphasized. Those images with detected region of

bubbles greater than 50% of the useful visualization area are excluded. It

can be observed that an overall reduction in visualization time about 23% is

achieved.

3.2.3 Bleeding detection

Bleeding in the digestive tract is often a symptom of some diseases, rather

than a disease itself. The cause of bleeding may not be serious, but locating

the source of bleeding is critical. The Given proprietary software provides an

automatic image analysis tool called Suspected Blood Indicator (SBI), which

is devoted to find in the video areas with active bleedings. However, this tool

has been reported to have insufficient sensitivity and specificity [34]; to be

safe, the physician must continue to manually check for bleedings.

To overcome this problem, in [35] a technique to automatically detect the

bleedings regions using the expectation maximization (EM) clustering algo-

rithm and Bayesian information criterion (BIC) is proposed.

When it is performed a visual inspection of gastrointestinal images, one of

the most salient feature indicating the presence of bleeding is a deeply red
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appearance or the presence of dark red regions. Finding a red dominant

color in the gut is very common, but the red in non-bleeding regions usually

appear with lower color saturation. The authors in [36] exploit this idea and

propose a two-steps bleedings detection algorithm. The first step provides an

efficient block-based discrimination of the input frames that contain bleed-

ing features from those that do not correspond to bleeding. The second step

refines the initial classification and increase its reliability using a pixel-based

saturation-luminance analysis. To make the classification more complete, im-

ages are categorized into several levels of bleeding activity or as non-bleeding.

A 4-level bleeding classification is applied: level 0 indicates non-bleeding and

level 3 indicates highly intensity bleeding. The system sensitivity achieved

is 88.3%.

Recently Li et al. [37] propose a method to detect either bleeding and ulcer

by means of chromaticity moments, which make use of the Tchebichef poly-

nomials and the illumination inviariant provided by the HSI color space.

To reduce effects of visual contaminations such as bubble, fecal material and

the dark regions that occur often in this kind of images, the authors divide

the endoscopic frame into a grid of 36 non-overlapping blocks calculating six

chromaticity moments for each one. The blocks are finally classified using an

MLP (multilayer perceptron) Neural Network with 4-fold cross-validation.

3.2.4 Anomaly detection

In this section we provide a brief overview of published works related to the

detection of abnormal lesions in endoscopic images. In this way, one of the

first Image Processing studies was conducted by Boulougoura et al. [38]. The

authors propose to use a feature vector composed by nine measures (stan-

dard deviation, variance, skew, kurtosis, entropy, energy, inverse different

moment, contrast and covariance) extracted from histograms of six channels

(R,G,B,H,S,V). The implementation of an advanced neural network scheme

and the concept of fusion of multiple classifiers dedicated to specific feature

parameters have been adopted to classify the images as normal or abnormal.

The detection accuracy achieved by this system is 100%. However, at the
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Figure 3.2: Examples of endoscopic frames showing ulcers.

time of this paper the system was evaluated using only 73 capsule images,

which were split into the training set and the test set, and therefore it is

difficult to draw conclusions about its potential application in a diagnostic

station.

Li et al. [39] propose a new feature extraction scheme based on the use of

curvelet transformation and LBP to discriminate ulcer regions from normal

regions (Figure 3.2). The traditional wavelets transform extracts directional

details capturing only horizontal, vertical and diagonal activities in an im-

age, and these three directions cannot in general provide enough directional

information in images. To this aim, curvelet transform is employed as a new

multi-resolution analysis tool. The basic idea is to represent a curve as a

superposition of functions of various lengths and widths obeying a specific

scaling law. Taking into reference 2D images, this may be obtained by decom-

posing an image into wavelet sub-bands. Each sub-image of a given scale is

then analyzed with a ridgelet transformation, another type of tool for multi-

resolution analysis. It should be known that capsule endoscopy images suffer

from sudden changes in lighting due to the movement of the capsule and the
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limited range of illumination inside the digestive tube. The authors propose

to use LBP after they applied curvelet transformation to images. In this way

they obtain robust performance to illumination variations. By using uniform

LBP histogram, they obtain six statistical measurements of the histogram

as features of texture in order to reduce the number of features. These fea-

tures are standard deviation, skew, kurtosis, entropy, energy and mean of

the histogram. To reduce effects of visual contaminations such as bubble,

faecal material and dark regions that occur often in capsule endoscopy im-

ages, they divide each frame into small patches extracting textural features

from each one of them. To verify the performance of this features extraction

scheme, the authors deploy MLP neural network and SVM to demonstrate

their power in differentiating normal regions and ulcer regions in capsule

endoscopy images. The best results are obtained using the MLP classifier

and the YCbCr color space. With these parameters the system achieves an

accuracy of 92.37%, a specificity of 91.46% and a sensitivity of 93.28%.

More recently, Bejakovic et al [40] present a method that uses color, texture

and edge features to detect lesions (in particular Chron’s disease) in capsule

endoscopy images. They use MPEG-7 visual descriptors and Haralick tex-

ture features. This includes MATLAB adaptation of dominant color (DCD),

homogeneous texture (HTD) and edge histogram (EHD). Haralick features

include angular moments, contrast, correlation, and entropy measures, which

are computed from 1 pixel co-occurrence matrix. They used SVM to classify

images into three categories: lesion, normal tissue, and extraneous matter

(food, bile, stool, air bubbles, etc). The dataset used to evaluate their sys-

tem is composed by images selected from ten studies. For each study only

10% of the data was used to train the classifier; the remaining data was used

for validation. Over the ten studies, lesions could be detected with an accu-

racy rate of 96.5%, normal tissues 87.5% and extraneous matter 87.3% using

dominant color information alone.

Finally, Li et al. [41] develop a computer aided system to diagnose small

bowel tumors. They propose a new textural feature built by using wavelet

and LBP. Notice that tumors exhibit great variations in color, size and shape,

so a single classifier may not be discriminative enough to make a right decision
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about status of these difficult images. To this aim, the system is evaluated

using an integration of KNN, MLP neural network and Support Vector Ma-

chine. The database used for the classification consists of 600 representative

small bowel tumor images and 600 normal images previously labeled by the

physician. Comparative experimental results show that this scheme achieves

a promising performance for small bowel tumor detection.



Chapter 4

Information Theoretic Method

Information Theory aims to identify the theoretical concepts for the study of

problems related to the transmission, reception, processing and storing infor-

mation. Although at first sight it seems to be a very specific application, this

theory has important implications (and applications) in many areas. Infor-

mation Theory is usually dates back to 1948, when Claude Shannon published

“A mathematical Theory of Communication” in which he introduced for the

first time a systematic study about information and communication. He

also formulated the key concepts of the theory, such as entropy and mutual

information and introduced the fundamental laws of data compression and

transmission. Entropy is a measure that quantizes the information contained

in a random process. Mutual information is a measure of the information

contained in one process about another process. However, Shannon’s entropy

is relative to some probability distribution generating data. In many cases

such a distribution is unknown or does not even exists. To this aim, Kol-

mogorov complexity has been connected with Information Theory and proved

to be closely related to Shannon’s entropy rate of an information source. In

both theories, the amount of information in an object may be defined as a

function of the length of the object’s description. In the Shannon approach,

however, the method of encoding objects is based on the presupposition that

the objects to be encoded are outcomes of a known random source; it is only

the characteristics of that random source that determine the encoding, not

33
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the characteristics of the objects that are its outcomes. In the Kolmogorov

complexity approach we consider the individual objects themselves and the

encoding of an object is a short computer program (compressed version of

the object) that generates it and then halts [42]. Kolmogorov complexity is

a measure that answers the question: how random is an individual bit string

or message? Complexity is in this case intended to define the amount of

information contained in a particular message in terms of the number of bits

necessary to describe it. More random objects would require more bits to de-

scribe them, so the Kolmogorov complexity is also a measure of how random

a particular message is. In contrast, the Shannon entropy is an answer to

the question: how random is an entire distribution of messages overall? En-

tropy measures the expected amount of information contained in any given

message within that distribution.

In this chapter, some basic notions of Information Theory and Algorithmic

Information Theory describing an absolute information-theoretic distance be-

tween bit strings are presented.

4.1 Entropy

Given a generic event E, how can we define the informative content of this

event? Shannon starts from the consideration that the observer should have

some ideas of the probability that such an event occurs. The basic idea is that

the information has to deal with uncertainty: more the observer is surprised

to see a symbol, the more the level of informative content will be high (and

viceversa). Suppose we have a set of possible events with a-priori distribution

probability of occurrence P = (p1, p2, ..., pN). To numerically estimate how

much information is gained on average or the degree of uncertainty with a

given function H(P ), the following basic properties must be guaranteed:

• The function must exist, i.e., it must be possible to associate a link

between the numerical uncertainty of a probability distribution and

the real numbers.
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• H(p1, ..., pN) is continuous in p1, ..., pN . This means that to small vari-

ations of P correspond small variations of H.

• If all the pi are equal, pi =
1
N
, then H should be a monotonic increasing

function of N . In other words, as the number of events increases, if

they are equally probable, the associated uncertainty also increases.

• H must guarantee the additive property: if a event is splitted into two

successive events, the original H should be the weighted sum of the

individual values of H. A clarifying example of this property is shown

in the figure 4.1.

Figure 4.1: Grouping property of the entropy.

We can think of P = (1
2
, 1
3
, 1
6
) as being generated in two successive

choices p′ = (1
2
, 1
2
) and p′′ = (2

3
, 1
3
). Thus, the entropy of P must be

equal to entropy of the first step in the decomposition process, plus the

weighted sum of the entropies of the second step:

H(
1

2
,
1

3
,
1

6
) = H(

1

2
,
1

2
) +

1

2
H(

2

3
,
1

3
) (4.1)

The coefficient 1
2
in the entropy of the second step means that the

second choice only occurs half the time.

The only H satisfying the four above assumptions is of the form

H = −K
N∑

i=1

pi log pi (4.2)
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Figure 4.2: Entropy of a binary source.

where K is a positive constant. We interpret 0 log 0 as equal to 0, which

follows logically from limx→0 x log x = 0. When K = 1 and the logarithm is

log2, information is measured in bits. If the probability distribution has only

two entries with probability p and 1 − p respectively, entropy will be equal

to

Hbin = −p log p− (1− p) log (1− p) (4.3)

The graph of the functionHbin is shown in Figure 4.2. It is a concave function

with null values for p = 0 and p = 1; this occurs when the variable is

not random and there is not uncertainty. Similarly, with the value p = 1
2

uncertainty is maximum.

Some other relevant properties of the entropy are:

• H is symmetrical with respect to the probability vector P from which

it depends, in the sense that if it is performed a permutation of the

elements on the vector P , entropy does not change.

• H(P ) = 0 if and only if all the probabilities except one are zero.

• H(P ) = log n when all the probabilities are equal. This is the case in

which the informative content is maximum.

It is worth mentioning that, in Information Theory, the concept of entropy

is closely linked to that of compression. If the content of a message (for
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example a simple string) is uncorrelated with each other, there is no way to

compress the message without losing information and this is the case where

entropy is maximum. Conversely, if some parts of a message are logically

related to other, the resulting entropy will be smaller and consequently the

message can be compressed without loss of information. The entropy of a set

of data is hence directly related to the amount of information that it contains

and provides a theoretical bound on the amount of compression that can be

achieved [43].

4.2 Kolmogorov complexity

One of the most difficult and representative problem in Computer Science is

represented by the problem of Complexity, i.e., the measure of the computa-

tional resources required to perform a computation. There are two different

categories of complexity:

• Static complexity, related with the structure of the program and its

size.

• Dynamic or computational complexity, typically divided in time com-

plexity and space complexity.

In the context of static complexity, the Kolmogorov complexity, indepen-

dently introduced by R.J. Solomonoff in 1964 [44], by A.N. Kolmogorov in

1965 [45] and by G.J. Chaitin in 1966 [46] is very relevant to the development

of an Information Theory based on the length of the codes.

Kolmogorov complexity (or algorithmic entropy) of a string x, defined as

K(x), is the length l(p) of the shortest program p that runs on a universal

computing device (a Universal Turing Machine ϕ) and produces the string

x as output. Intuitively, it represents the minimum amount of information

required to generate the string x from some effective process. For example,

the string consisting of n equals symbols is extremely simple, since the short-

est program that generates it has only to print n times the same symbol.
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Mathematically, the Kolmogorov Complexity is defined as follows [47]:

K(x) = min
{p|ϕ(p)=x}

l(p) (4.4)

Intuitively, the above equation describes a competitive selection of the short-

est program, denoted p∗, from an unbounded set of competing programs

{p0, p1, ...}, each one capable of producing the desired output x. The un-

limited nature of this competition ensures that the winning model can be

more efficient to find all the structural regularities in the specific string. Un-

fortunately, this also implies the lack of a guarantee that this competition

always produces a result. Despite the great interest shown in the scientific

community, actual results about the Kolmogorov complexity have not been

achieved. The difficulty is related to the impossibility to evaluate the function

K for a given string x, because it is not Turing computable. The uncom-

putability of Kolmogorov complexity has motivated several authors to seek

useful approximations. A very good reference is the classic “Vitany trilogy”

[48, 49, 50] in which practical approaches for approximating the Kolmogorov

complexity and the related notion of Algorithmic Information Distance using

compression algorithms are presented.

4.3 Algorithmic Information Distance

While the Kolmogorov complexity is a measure of the information contained

in a individual object, a similar concept for the information distance between

two individual objects is required. In this section we consider the problem

of the definition of a distance D between two generic string x and y. This

distance measure must satisfy the following requirements:

• Positivity: D(x, y) ≥ 0 (D(x, y) = 0 ↔ x = y)

• Simmetry: D(x, y) = D(y, x)

• Triangle inequality: D(x, z) ≤ D(x, y) +D(y, z)
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Intuitively, it is possible to calculate the similarity between two strings x

and y as the length of the shortest program that computes x from y and

viceversa. Bennett et al. [48] defines this measure, denoted E(x, y) as:

E(x, y) = max{K(x|y), K(y|x)} (4.5)

where K(x|y) is the conditional Kolmogorov complexity of a string x related

to string y defined as the length of the shortest program to compute x if string

y is provided to the universal computer as an auxiliary input. Sometimes

the distance analysis requires a normalized metric. This requirement can be

satisfied by the universal similarity metric defined by Li et al. [50], known

as NID (Normalized Information Distance) and mathematically represented

by the following formula:

NID(x, y) =
max{K(x|y), K(y|x)}
max{K(x), K(y)} (4.6)

NID is an universal distance measure for objects of all kinds. It is also based

on Kolmogorov complexity and thus uncomputable, but in the Vitany trilogy

[48, 49, 50], the authors propose a way to approximate it. Compression

algorithms can be used to approximate the Kolmogorov complexity if the

objects have a string representation. Let C(x) the size of the compressed

version of the string x and C(x, y) the size of the compressed version of the

concatenation of x and y. We can rewrite the NID to obtain the Normalized

Compression Distance (NCD) :

NCD(x, y) =
C(x, y)−min(C(x), C(y))

max(C(x), C(y))
(4.7)

Standard Compression algorithms like zip, gzip, bzip2, are able to recognize

the regularities in the data and the NCD measure exploits these abilities.

Intuitively, strings with similar schemes take up less space when they are

compressed together rather than separately compressed. There are not pa-

rameters needed to compute the NCD, except for the choice of the com-

pression algorithm and its settings. Research conducted from Vitany et al.
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shows that the choice of the compression algorithm has a negligible impact

in the final analysis. This is facilitated by the use of a massive data nor-

malization in order to minimize the differences in NCD scores calculated

with different compression algorithms. NCD is a non-negative number in

the range 0 ≤ r ≤ 1 + ǫ representing the difference between two strings.

Obviously, smaller numbers represent greater similarity. The ǫ value in the

upper limit arises from imperfection in the compression algorithms, and it is

typically less than 0.1. The calculation of the NCD does not requires any

prior knowledge about the data. The dimensions of the two strings do not

necessarily have to be the same. Moreover, in most cases, the results will be

better when the strings are of different lengths.

Although it is not possible to compute how close the NCD is from the ideal

NID for a pair of bit strings, NCD has reached interesting results. In Cili-

brasi et al. [49], it was used to correctly classify data in areas as diverse as

genomics, virology, languages, literature, music, handwritten digits, astron-

omy, and combinations of objects from completely different domains.



Chapter 5

Ensemble Learning

Supervised learning algorithms search, through a hypothesis space, a good

model that will make good predictions for a particular problem. Even if the

hypothesis space contains features that are very well-suited for a particular

problem, it may be very difficult to find a good one. Not all features can in-

deed discriminate in the same way. Depending on the problem some of them

may show an effective discriminative power, whereas other features may not

have such power at all. To this aim, Ensemble Learning [51] was proposed

as a machine learning approach where multiple learners are trained to solve

the same problem. In contrast to standard learning approaches which try to

build one learner from training data, ensemble methods try to construct a set

of base learners and combine them to improve the results. Base learners are

usually generated from training data by means of a base learning algorithm

which can be a decision tree, a neural network or other kinds of machine

learning algorithms.

Many authors have experimentally demonstrated significant performance im-

provements through the use of ensemble methods [52, 53, 54]. Boosting is one

of the most influential ensemble methods. Its foundation was incite from the

answer to a theoretical question posed by Kearns and Valiant about “Prob-

ably Approximately Correct - PAC” learning model [55, 56]. They were the

first to pose the question of whether a weak learner, which performs just

slightly better than random guessing in the “PAC” model, can be “boosted”

41
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into a more accurate strong classifier. Shapire [57] found that the answer

to this question is positive, and he gave a proof which is enclosed in the

first Boosting algorithm. An important drawback of that algorithm is the

requirement that the error bound of the base learners must be known ahead

of time, which is usually difficult to achieve. Freund and Schapire [58] then

proposed an adaptive Boosting algorithm, called AdaBoost, which does not

require this unavailable information.

In the remainder of this chapter we provide a brief introduction to AdaBoost

and an illustration of how this algorithm can be adapted to be used in a real

application such as the face detection problem.

5.1 AdaBoost

There are many Boosting algorithms. They usually differ depending on

their method of weighting training data points and hypotheses. AdaBoost

(Adaptive Boosting), is the most popular Boosting algorithm, which was

introduced by Freund and Schapire in 1995 [58]. AdaBoost maintains a

weighted distribution over the training data and adjusts it at each Boosting

round. In particular, higher weights are associated to examples classified

with a lower accuracy by the current weak classifier. As a main effect, this

weighting scheme forces to focus learning on most difficult examples of train-

ing data.

Pseudo-code for AdaBoost is reported in Figure 5.1. The algorithm main-

tains a set of weights over the m training examples. AdaBoost operates

for T Boosting iteration. On each one, a distribution Dt is computed by

normalizing the current weights. This distribution is then forwarded to the

weak learner which generates a hypothesis ht. Based on the errors committed

by this hypothesis, a new weighted distribution Dt+1 is generated and the

process is repeated. T weighted training sets are generated in sequence and

T classifiers are built. A final strong classifier is obtained using a weighted

voting scheme: the weight of each classifier depends on its performance on

the training set used to build it.

At each Boosting round the parameter αt measures the importance that is
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Figure 5.1: AdaBoost pseudo-code.

assigned to the classifier ht. The relationship between error and αt can be

described as follows:

αt =
1

2
ln

1− ǫt
ǫt

(5.1)

It means that αt ≥ 0 if ǫt ≤ 1
2
. Then, αt gets larger as ǫt gets smaller. In

other words, if the current classifier is trained for a feature which maintains

αt greater than 0.5 (like the random guessing), then the feature is a good

choice in the weak learning algorithm.

Many articles have shown that AdaBoost is often immune from overfitting

problem even when a complex hypothesis space is involved, i.e., when T

grows. It has also been observed a decrease in the generalization error even

when the training error has already reached zero [59, 60].
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5.1.1 Real application

Boosting has already been applied in different applications such as text cat-

egorization, data mining, object recognition, computer-aided medical diag-

nosis, and so on. Relevant for the present work is the contribution of Viola

and Jones [61], in which the authors propose to use AdaBoost combined with

a cascade of strong classifiers for object detection. The Viola-Jones object

detection framework provides a real-time detection rate. Although it can

be trained to detect a variety of object classes, it was motivated primar-

ily by the problem of face detection. This algorithm consists of three main

parts, i.e., integral image calculation, feature definition and extraction, and

classification through a cascade of strong classifiers.

Feature extraction

Features used by Viola-Jones are reminiscent of Haar basis functions which

have been used by Papageorgiou et al. [62]. The main motivation for the use

of these features is that they allow to be easily adapted to recognize different

types of objects. Within the face detection context, the authors propose

three kinds of Haar-features (Figure 5.2).

(a) (b)

Figure 5.2: (a) Haar features proposed by Viola-Jones. (b) Two relevant
features used for face detection. They rely on the intensity contrast between
adjacent rectangular areas of the image.
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The value of a two-rectangle feature is the difference between the sum of

the pixel values within two rectangular regions. The regions have the same

size and shape and are horizontally or vertically adjacent. A three-rectangle

feature computes the sum within two outside rectangles subtracted from

the sum in a center rectangle. Finally a four-rectangle feature computes

the difference between diagonal pairs of rectangles. As can be seen from

Figure 5.2(b), a simple two-rectangle feature is very efficient to measure the

difference in intensity between the region of the eyes and the region across

the upper cheeks. Similarly, a three-rectangle feature may help to find the

region between the nose and the eyes.

Integral image

Rectangular Haar features used by Viola and Jones can efficiently be com-

puted using an intermediate representation called integral image (also known

as a summed-area table [63]). Consider a two-dimensional gray-tone image

i. The integral image, denoted ii(x, y), at location (x, y) contains the sum of

the pixel value above and to the left of (x, y), including x and y,

ii(x, y) =
∑

x′≤x
y′≤ y

i(x′, y′) (5.2)

where i(x, y) is the input image. The integral image can be computed in

linear time over the image using the following recurrence relation:

s(x, y) = s(x, y − 1) + i(x, y) (5.3)

ii(x, y) = ii(x− 1, y) + s(x, y) (5.4)

where s(x, y) is the cumulative row sum, s(x,−1) = 0, and ii(−1, y) =

0. Given the integral image, the sum of pixel values within a rectangular

area of the image can be computed with four array references regardless

of the size and location of that area. For example, to compute the sum

of pixel intensities inside the region D in Figure 5.3(b), the following four

references are required: L4 + L1 − (L2 + L3). One needs to compute the
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Figure 5.3: Integral image representation. (a) The value of the integral image
at point (x, y) is the sum of all the pixels above and to the left of (x, y). (b)
The region D can be computed using the following four array references:
L4 + L1 − (L2 + L3).

integral image only once, and then one can calculate in a very efficient way

the pixel sum in any rectangular image region. Since the Viola-Jones two-

rectangle features involve adjacent rectangular sums, they can be computed

in six array references, eight in the case of the three-rectangle features, and

nine for four-rectangle features. Figure 5.4 shows an example of computation

of a simple two-rectangle feature.

(a) (b)

Figure 5.4: Evaluation of a simple two-rectangle feature. (a) A reference
matrix and its integral image representation (b). The light gray rectangle
refers to the white region of the feature. To compute feature score six refer-
ences from integral image are required. W = 187 + 21 − 38 − 92 = 78 and
B = 294 + 38− 76− 187 = 69. Feature score S = W − B = 9.
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Cascade of strong classifiers

Features scores are calculated from sub-windows of reference images. The

training module considers images rescaled to a base resolution of 24 × 24

pixels. Each of the proposed features types are scaled and shifted across all

possible combination along an image. This give rise to an overcomplete set

of features. Application of AdaBoost provides a list of best discriminative

features. In particular, Viola and Jones build a binary classifier for each

feature (these are traditionally referred in the boosting community as weak

classifiers). Initially all the examples have the same weight. For each boost-

ing step, the determination of a new weak classifier involves the evaluation

of the relevance of each feature on training data. The best feature is selected

according to the weighted error that each feature shows on the training data.

In the successive round, the samples are reweighted to emphasize the mis-

classified ones. Since this step has to be iterated several times, this is the

most expensive section of the training module.

The final step involves the construction of a cascade of strong classifiers.

The idea is that simpler classifiers are used at the beginning steps and more

complex classifiers are applied at the later steps to reduce the false positive

rates. Each node of the cascade is a classifier built through the AdaBoost

procedure to satisfy a specific detection and false positive rate. A 24 × 24

patch is forwarded to the first node of the cascade. If it is judged as a pos-

itive example, it is sent to a more complex classifier. A patch is labelled

as a face if it successfully overcomes each node of the cascade. A negative

outcome at any point give rise to the immediate rejection of the sub-window

without further processing. In practice, in a single image, the majority of

sub-windows refer to not-face objects. A cascade of strong classifiers rejects

most of the negative examples in the initial stages and it will continue to test

only in the promising sub-windows.
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Figure 5.5: Cascade of strong classifiers. A sub-window is subjected to the
classification of the first node of the cascade. If it is labeled as a positive
example by the current classifier, it is forwarded to a second more complex
classifier. A sub-window is labeled as a face if it successfully overcomes each
node of the cascade. A negative outcome at any point of the cascade leads
to the immediate rejection of the sub-window without further processing.



Chapter 6

Experiments

In this chapter we provide all the results obtained applying the methods

that have been described previously. In particular, Section 6.2 reports ex-

periments published in [64], Section 6.3 refers to [65, 66], Section 6.4 refers

to [67].

6.1 Dataset

This research has been conducted in collaboration with a group of gastroen-

terologists from “Maddalena Raimondi” hospital in San Cataldo (Caltanis-

setta, Sicily). They have provided us the WCE data collected in the period

between 2005 and 2010. Each video has been decomposed into individual

frames and these have been manually labeled by the expert according to a

specific detection task. A typical frame coming from the video-capsule con-

tains a black border in which the information of the patient and the exam

are annotated. For all the conducted experiments, we restrict the region of

interest within the circular area of the video, hence for each frame only a

sub-image is considered (Figure 6.1).

49
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(a) (b)

Figure 6.1: Preprocessing of WCE data. Original image (a) and the extracted
region of interest (b).

6.2 Information Theory basedWCE video sum-

marization

In this experiment an algorithmic information-theoretic method is presented

for the automatic summarization of meaningful changes in video sequences

extracted from WCE videos. To segment a WCE video into anatomic parts

(esophagus, stomach, small intestine, colon), we use a textons-based method

[68, 69, 70]. The local textons histogram sequence is used for image repre-

sentation and the Normalized Compression Distance (NCD) [48] is used to

compute the similarity between images.

6.2.1 Feature extraction

In this phase of processing we take into account the HSI representation of

data. Each frame is also partitioned into sub-squares of 16 × 16 pixels. For

each one of these square sub-windows we extract the features for the next

automatic classification. A visual analysis by the clinician is mainly based on

a direct examination of the chrominance values of the frames. To this aim,

we choose to include the average values of the hue, saturation and intensity

of each of the blocks of a frame. These features, although informative, are

not sufficient to effectively classify the frames and they should be combined

with more information.

As pointed out in Section 3.1, when a capsule travels around a boundary

between two different digestive organs, the corresponding color signal has a
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sudden change and an increase (or a decrease) of energy. For this reason,

we include the high frequency energy content (HFC) of blocks among the

features used by the classifier.

Finally, we choose a Gabor filter bank in order to characterize the texture

information. In particular, we consider the following parameters set: phase:

0, 2, 4, 8, 16, 32 and four directions: 0◦, 45◦, 90◦, 135◦.

All the mentioned features have been chosen in order to obtain a good balance

between recall and precision of the resulting classifier.

6.2.2 Classification method

Each 16 × 16 patch is described by a feature vector of 28 components: in-

formation on color chrominance from HSI color space (3 elements), HFC

(1 element) and Gabor filter responses (24 elements). In order to achieve a

more abstract representation we put together the vectors of all of the 16×16

blocks of the frames in the video. The next step involves the creation of a

“bag of visual words” from this ensemble. To this purpose, we use a textons-

based method [68]. Feature vectors are initially clustered into Textons using

a standard K-Means algorithm [71]. The number of clusters is chosen to

optimize the ratio of dispersion between cluster centroids over the dispersion

within clusters (Figure 6.2). We empirically found that a suitable value for

the number of clusters in our experiments is 100. By associating to each

patch its reference centroid, this Textons dictionary allow us to represent

an image as a “bag of visual words”. The histogram of Textons, i.e., the

frequency with which each texton occurs in an image, represents the model

corresponding to each training image. Figure 6.3 summarizes this process.

Comparison between histograms provides a way to assign a distance between

consecutive frames in a video. Relevant for this work is the contribution of

Gallo et al. [72] in which the Bhattacharya distance [73] between the cor-

responding histograms of the frames is computed. Bhattacharya distance

d(fi, fj) of a simple pair of consecutive frames fi and fj is generally a weak

indicator of changes in the video. This happens because occasionally a frame

can be quite different from the previous one just because of casual distur-
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Figure 6.2: A schematic illustration of the Textons method. Every image of
the training set is convolved with a filter bank. Filter responses are clustered
using K- Means algorithm to build a Textons dictionary.

bances and transmission noise. To have a more robust indicator of sudden

changes in the video, for each frame fi, an indicator function C(i) is defined

to average the distances between frames in a short sequence:

C(i) =
1

9

i+2∑

k=i

5∑

j=3

d(fk, fi+j) (6.1)

The original contribution of this experiment is the use of an information the-

oretic approach to summarize meaningful changes in WCE image sequences.

In our experiments we tested NCD distance adopting several compression

algorithm (dzip, gzip, etc.) instead of using the Bhattacharya distance, as

it has been proposed in [72]. Although these compression algorithms are

supposed to grant a good performance because of their ability to exploit the

sequential redundancies in the data, their usage is costly. We found that,

for the problem at hand, the gain obtained in this way is not relevant and

for this reason we introduced a simplified (although rough) version of NCD

based on Shannon’s Entropy:

NCDentropy(x, y) =
E(x, y)−min(E(x), E(y))

max(E(x), E(y))
(6.2)
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Figure 6.3: Representation of frames as a “bag of visual words”. Each frame
is represented by mean of the histograms over the resulting Textons dictio-
nary.

where E(x) is the Shannon’s entropy for the string x and E(x, y) is the en-

tropy of the concatenation of the string x and y. In the application considered

here x is the string obtained concatenating the “symbols” made with the tex-

ton dictionary. In other words a frame from a WCE video is represented here

as a sequence of visual words. Following a common practice in Computer Vi-

sion, we disregard the sequential order of the words and represent a frame as

a “bag of visual words”. This observation justify the substitution of a com-

pression algorithm with the much less expensive use of Shannon’s entropy.

The use of entropy in place of Kolmogorov complexity to calculate the NCD

is not novel even in image domain, see for example [74, 75]. Observe that

if sequentiality is disregarded, the entropy of the string of visual words ob-

tained concatenating the representation of two frames is the entropy relative

to the averaged histogram of the visual words frequencies in two frames.

For the WCE application, however, it makes sense to bias the difference

between frames not only considering the visual differences but taking into

account the proximity of the frames within the video. To this aim, a new

similarity distance SIM is introduced as follows:

SIM(x, y) = α ∗NCDentropy(x, y) + β ∗ |i(x)− i(y)| (6.3)
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i(x) and i(y) represent the index of two frames in the video sequence and

α + β = 1. In this experiments the best result have been obtained with

α = 0.8 and β = 0.2. Following the approach in [72], for each frame fi, the

expression 6.1 can be written as:

Score(i) =
1

9

i+2∑

k=i

5∑

j=3

SIM(fk, fi+j) (6.4)

Score(i) averages the distances between frames in a short sequence and it

provides high values when there is an abrupt change or low values in segments

with similar frames. Thresholding the function Score(i) will lead to select

interval of frames in which there is a sudden change in pattern.

6.2.3 Experimental results

In this section a number of experiments are undertaken in a real problem

domain to demonstrate the efficacy of the proposed method. In our exper-

iments we use ten video sequences provided by the “Maddalena Raimondi”

Hospital. We use the labelling protocol explained in [76]. Let (f1...fN) be

the sequence of frames in a video. We have formed the sequence of intervals

(I1...IN−3

3

) where interval Ii is made of the six frames (f3i−2...f3i+3) (Figure

6.4).

In our setting an event includes every change in pattern in a short video

Figure 6.4: The computation of function Score(i). Equation 6.4 is defined
to average the similarity distances between frames in a short sequence.
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sequence like a boundary transition, a pathology or a common disturbance

like intestinal juices, residuals, bubbles, etc. For each interval the clinician

has judged if there is a significative change between the first 3 frames with

respect to the last 3 frames. If this is the case the interval has been labelled

as an “event” (Figure 6.5). To grant greater robustness the labelling has been

performed independently by two human experts. Only those intervals that

both of them have labelled “event” are considered real event in the following

experiments. The two independent labelling agree on 93% of the cases.

Intervals Ii of each video have been sorted according to the decreasing value

of their Score(i) indicator. We have hence partitioned the sorted Ii’s into

ten groups of the same size. The first group contains the intervals with the

top 10% of Score(i), the last group contains the interval with the lowest

10% of Score(i). For each group we have counted the number of intervals

labelled as event. In this experimental session two experts have labelled the

sequences and the resulting ensemble has been given by their intersection.

The bar plot of Figure 6.6 shows the average percent of intervals that have

been labelled as event vs the intervals that have been labelled as not-event in

the ten groups. The use of precision-recall analysis is investigated in Figure

6.14. As the ROC curve shows the discrimination obtained using the pro-

posed method is comparable with the results in [72]. The slightly less robust

discrimination shown by the novel method is justified by the proposed usage

of NCDentropy instead of classical NCD. This loss in discrimination power

(a)

(b)

Figure 6.5: Two examples of sequences of consecutive frames. The row (a)
represents an event. The row (b) is relative to an homogeneous tract.
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Figure 6.6: Percentage of events and not-events in a WCE video. Intervals of
six consecutive frames have been sorted according to the decreasing value of
their Score(i) indicator and partitioned in ten group of the same size. The
first group (the first column in the graph) contains the intervals with the top
10% of Score(i), the last group (the last column in the graph) contains the
interval with the lowest 10% of Score(i).

is however justified by the greater efficiency that the usage of NCDentropy

provides with respect to NCD. We also compare the results obtained with

the formula of NCDentropy (Equation 6.2), the modified version that uses the

concept of entropy, and NCDαβ (Equation 6.3). Results are shown in Table

6.1.

Some examples of events detected with the proposed method are reported

in Figure 6.8. The first row corresponds to an event found in the first 10%

until the last row corresponds to an event found in the sixth interval.

Figure 6.7: Two ROC curves compare the performance of tested methods.



CHAPTER 6. EXPERIMENTS 57

Table 6.1: Summary of experimental results.
Intervals NCDentropy NCDαβ

top 20% 72% 71%
top 20% 68% 66%
top 30% 85% 86%
top 30% 53% 54%

Figure 6.8: Examples of events found with the proposed method.

6.2.4 Conclusion

In this experiment we have presented an algorithmic information-theoretic

method applied to find sudden changes in WCE video sequences. We used

a modified formula NCD to compute the distance between the histograms

obtained with the Textons approach explained in [76]. Experimental results

have been shown that using the entropy, in combination with two parameters

α and β, we reach a recall of 90% with a precision of 52% discarding the 30%

of the video. Future works will extend the usage of NCD-like distance since

the early stage of Textons dictionary construction.
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6.3 Lumen Detection in Endoscopic Images:

A Boosting Classification Approach

In this experiment we present a novel method to automatically discriminate

a relevant subclass of frames. In particular, our classifier sorts the frames in

two categories: “lumen frames” (images depicting the stages of an intestinal

contraction where the shrinkage of lumen intestine is well visible) and “not

lumen frames” (Figure 6.9).

(a)

(b)

Figure 6.9: Examples of lumen (a) and not lumen (b) frames extracted from
a WCE video.

“Lumen frames” detection is clinically relevant because it announces the pres-

ence of a contraction and helps the physician to study the intestinal motility.

Alteration of the physiological intestinal motility is an indicator of disorders

in which the gut has lost its ability because of endogenous or exogenous

causes. In particular, anomalies in contraction are a common symptom of ir-

ritable bowel syndrome, delayed gastric emptying, cyclic vomiting syndrome,

and so on.
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Our summarization tool may be deployed in a diagnostic station providing

real-time useful shortcuts to the middle phases of an intestinal contraction

resulting in reduced time of analysis by the expert.

In our approach “lumen frames” detection is obtained as a special case of

object detection. To this aim, we choose the Viola and Jones paradigm

introduced in 2001 [77]. Although other techniques, like neural networks,

fuzzy rules systems, etc., could be deployed, the main motivation for our

choice has been the following. Haar features based classification is readily

customizable to recognize different kinds of objects. Moreover, Boosting al-

lows fast learning even in presence of high dimensionality data. Indeed in the

case of Boosting as for all ensemble learning methods, different classifiers are

built using a tiny part of the available features. The classification obtained

by combining the responses of different classifiers improves the performance

achieved by a standard classification algorithm in a straightforward, efficient,

principled way when adaptive Boosting is adopted.

In this chapter we describe in detail how the Viola-Jones technique is cus-

tomized to address the present detection problem. We report the experiment

conducted on real WCE videos. To better assess the accuracy of the pro-

posed boosted classifier, we also present an experimental comparison with

the results obtained with a Support Vector Machine using a linear kernel.

6.3.1 Feature extraction

The learning stage for the proposed system can be summarized in the fol-

lowing three steps:

• Evaluation of a customized set of Haar features to the integral images

of the training samples.

• Selection of the best discriminative features through the application of

the AdaBoost algorithm.

• Construction of a final boosted classifier based on a cascade of classifiers

whose complexity is gradually increasing.
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To obtain, through a reliable learning procedure, a good classifier we must

guarantee two requirements: a comprehensive set of examples where the ob-

jects of interest may occur; a suitable selection of descriptors to describe

each possible occurring pattern. In order to detect an object in an image

we should in principle take into account the information provided by each

single pixel. This search space may be reduced if we exploit the semantic in-

formation enclosed by “lumen frames”. These images, indeed, show a strong

geometrical coherence that may help in discriminating them from other kinds

of frames. To this aim, Haar-like features, a set derived from Haar wavelets

[62], recognize objects using intensity contrast between adjacent regions in

an image.

Basic Haar features proposed by Viola-Jones and specialized for face detec-

tion do not have proper discriminative power for lumen investigation: it is

necessary to define customized variations for the present case. In particular,

the features needed in this work should provide a strong positive response

on a rectangular region with low intensity called generically “lumen” and a

brighter surrounding area corresponding to the gut wall. By combining a

learned evaluation threshold to each feature, it is possible to assign an image

to the appropriate category. Figure 6.10(a) shows an example of the first

kind of our proposed features that we call “center-surround” feature. The

typical appearance of a frame that shows an intestinal contraction consists

in a dark area surrounded by the typical rays that muscular tone produces

due to the folding of the intestinal wall. We hence introduce two additional

“cross-like” features that enhance the discriminative power produced by the

simpler “center-surround” feature (Figure 6.10(b) - 6.10(c)). The computa-

tion of this second kind of features may be efficiently obtained as for the

simpler “center-surround” feature from the integral image representation.

Using integral image representation, feature evaluation is accomplished by

few memory accesses. It is straightforward to verify that to compute “center-

surround” features, at any position or scale, only eight look-ups are needed.

The remaining two kinds of features require more accesses due to the greater

number of rectangular areas. “Cross-features” require respectively 16 and 24

references from the integral image. The reader may easily convince himself
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(a) (b) (c) 

Figure 6.10: The three kinds of features proposed for lumen detection. For
each feature we get a score S calculated as the difference of intensity between
light and dark regions of the rectangle. In the first row the images at the
original resolution are shown while in the second the images are rescaled to
the base resolution 24 × 24 pixels zooming on the region of interest. (a)
Evaluation of a “center-surround” feature in a “not lumen frame” (Sa =
6348 − 2175 = 4173). (b) Evaluation of the first cross feature in a “lumen
frame” (Sb = 1083−1766 = −683). (c) Evaluation of the second cross feature
in a “lumen frame” (Sc = 861− 1988 = −1127).

that indeed this is the minimum number of look-ups needed from a direct

analysis of this feature geometry.

Once a feature shape has been assigned, it is necessary to specify its position

and scale within the region of interest. Actually, the features are scanned

across the image top left to bottom right using a sliding offset of two pixels

both in the horizontal and in the vertical directions. The process is iter-

atively repeated with different feature scales at each round. To keep the

computation of the proposed features within the same number of look-ups

into the integral image, we choose not to change the scale of the image but
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to variate instead the size of the features. The exact representation for the

three proposed types of features is as follows:

f = [xw, yw, swx, swy, xb, yb, sbx, sby, type, θ, ρ] (6.5)

The first four elements xw, yw, swx, swy, refer to the larger square of the fea-

ture. Similarly, the following four elements xb, yb, sbx, sby, relate to the inner

square. The type parameter is an integer that indicates which type of feature

is considered (1 for the “center-surround” feature, 2 and 3 for the two kinds of

cross features respectively). The last two parameters are the optimal learned

threshold and the polarity to register the category of images discriminated

by that feature.

The “center-surround” features are evaluated considering difference between

the sum of the pixels within two rectangular regions (Figure 6.11(a)). The

second type of features considers a cross-shaped region to enhance the lumen

area. Location and size of this region are constrained by the size of correlated

“center-surround” feature (Figure 6.11(b)). The third type of features is pro-

cessed in a similar way. The central region of the cross is enlarged of one

pixel both in the horizontal and in the vertical directions (Figure 6.11(c)).

We consider the same total number of features for each type. Lumen area

presents always a square aspect ratio, i.e., the bounding region of these areas

is approximatively a square. This leads to a simplification of the feature

definition as follows:

f = [xw, yw, sw, xb, yb, sb, type, θ, ρ] (6.6)

We consider only squared features, i.e., those with equal horizontal and ver-

tical even scale sw. The internal region relative to lumen varies from a

minimum size 2 × 2 up to (sw − 2) × (sw − 2) pixels. Once we have fixed

the size of the external section, the descriptor associated with the lumen is

shifted across the external descriptor with a resizing of two pixels at each step

(Figure 6.12). In this phase of processing the resolution of a WCE frame is

reduced to 24 × 24 pixels. The total number of features per scale is hence
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Figure 6.11: Schematic features representation. (a) Center-surround feature.
(b) First cross feature obtained by center-surround feature considering the
cross with width sby and height sbx. (c) Second cross feature obtained by the
first taking into account a inner square of width and height greater than one
pixel respect to the previous version.

equal to the total amount of different features in the image multiplied by

the allowed variations of scale. For example, a 8 × 8 feature contains nine

regions of size 2× 2, four of size 4× 4 and one of size 6× 6 pixels. The total

number of features of size 8× 8 is 1134, equal to the number of windows in

the image (assuming a horizontal and vertical offset of two pixels) for the

total number of variations. Table 6.2 summarizes the feature counting for

the chosen scales.

6.3.2 Classification method

Training a cascade of strong classifiers

As it is stated above, during the training phase the dataset is rescaled to

the base resolution 24 × 24 pixels. The integral image representation of
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Figure 6.12: Given feature size, all regions of a fixed scale are considered in
each location (a). This cycle is reiterated by increasing the size of the inner
square (b) until maximum amplitude is achieved (c).

gray tone training samples is used to compute feature scores. Application

of AdaBoost provides a list of best discriminative features. In particular,

we build a binary classifier for each feature (these are traditionally referred

in the Boosting community as weak classifiers). Initially all the examples

have the same weight. For each Boosting step, the determination of a new

weak classifier involves the evaluation of the relevance of each feature on

training data. The “best” feature is selected according to the weighted error

that each feature shows on the training data. In the successive round, the

samples are reweighed to emphasize the misclassified ones. Since this step

has to be iterated several times, this is the most expensive section of the

training module.

The result of the training module is a classifier (called “strong classifier” in

the Boosting jargon) computed as a weighted linear combination of the weak

classifiers built during each round of boosting. The whole Boosting process

is, in turn, iterated, varying at each step the number of weak classifiers. The

result is the realization of a cascade of strong classifiers with a gradually

increasing number of features.

An appropriate learning process requires that each strong classifier shows a

prescribed detection rate, while maintaining a definite rate of false positives.

In particular, a minimum detection rate and a maximum false positive rate

is required at every level of the cascade. For each strong classifier, a weak

classifier is added until it reaches the required parameters for the current
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Table 6.2: Features number per scale. The first column refers to the size
of the feature while the second is related to maximum scale allowed for the
lumen area.

Feature Max
size Internal #Features #V ariations Total

scale

4× 4 2× 2 121 1 121
6× 6 4× 4 100 5 500
8× 8 6× 6 81 14 1134
10× 10 8× 8 64 30 1920
12× 12 10× 10 49 55 2695
14× 14 12× 12 36 91 3276
16× 16 14× 14 25 140 3500
18× 18 16× 16 16 204 3264
20× 20 18× 18 9 285 2565
22× 22 20× 20 4 385 1540
24× 24 22× 22 1 506 506

21021

level of the cascade. Similarly, a new strong classifier is associated to the

cascade until total false positive rate crosses a certain threshold.

One of the advantages of the proposed system is that the user only needs to

define the feature set to be used and the false positives and detection rates

for each level of the cascade. All the internal parameters are automatically

selected during the training phase.

Testing a cascade of strong classifiers

In the proposed system, each test image is scaled to 24× 24 pixels and it is

labelled as “lumen frame” or “not lumen frame”. This single scale procedure

combined with selection of best features during training allows real time

application of our system (up to 600 frames per second). Please notice that,

differently than in the case where the object to recognize may appear at

different scales, in the present case a “single-scale” choice has been shown

adequate. Notice that in this simplifying choice of a single scale we differ

from the original Viola and Jones approach. In the case of face detection



CHAPTER 6. EXPERIMENTS 66

the issue is to find faces that may appear at different scales within an image.

These stringent requirements force Viola and Jones to include different scales

in their detection procedure. In our case the problem is simpler: lumens are

roughly all at the same scale and we do not require localization of them inside

the frame but only to label the frame as a “lumen frame”. This justifies our

choice of a single scale.

6.3.3 Experimental results

Boosting based classification

In this section, we report the experiments carried out to verify the efficacy

of the proposed method. To this aim, we have considered 10033 images ex-

tracted from real WCE videos of 12 patients of which 6 were healthy and 6

had suspected bowel disorders. Rather than considering only one training

set as was done in an earlier version of this work [65], we have extracted ten

different training sets and control sets from the whole set at our disposal.

This more extensive experiment has been aimed to verify if the behavior of

the algorithm significantly changes according to the used learning set.

To train each one of the cascades of strong classifiers, we take into account

the integral images of 3000 images, 1000 positive and 2000 negative, rescaled

to 24×24 pixels. The positive images have been previously manually selected

fromWCE videos labelled by an expert. The selected images represent a com-

prehensive set of scenes where the intestinal lumen can be present, including

location and scale changes within the image. Differently, the negative exam-

ples have been randomly selected from videos that not contain any lumen.

Both typical smooth images and images containing other judged negative

events, like the presence of bubbles, bleedings, residuals, share this set.

During the learning module, we need to establish a maximum false positive

rate and a minimum detection rate to satisfy for each layer of cascade. In

particular, we require that 98% of positive images must be recognized at each

level while maintaining a maximum amount of false positives equivalent to

80%. These values have been experimentally optimized. Notice, however,

that higher positive images recognition rate are first of all rarely attainable
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Table 6.3: Details on trained cascades using ten different training sets.
Train Nodes features Center Cross 1 Cross 2
Data surround

1 6 217 51 78 88
2 5 291 82 109 100
3 6 397 89 154 154
4 6 342 77 131 134
5 6 256 57 71 128
6 5 185 47 67 71
7 6 257 72 98 87
8 5 205 60 66 79
9 6 184 47 80 57
10 5 272 67 100 105

and even when possible, they may introduce strong overfitting. At the next

levels of the cascade these two values are computed relatively to the new

dataset whose positives set is composed by every lumen recognized as such

by the previous classifier; the negatives set includes the remaining false pos-

itives. A strong classifier will be added to the cascade until the total false

positive rate drops to zero. By iterating this process for each training set,

we get ten different cascades of strong classifiers whose details are listed in

Table 6.3. It is straightforward to understand that the trained cascades are

slightly different only in the total number of features, but the proportion of

features is often the same: the cross-shaped features (Cross 1 , Cross 2)

are the most discriminative. The number of nodes in the cascade can not

be deterministically calculated, but this also depends on the type of images

used during learning. We do not impose any constraints on the number of

features in each node. It is assured only that the node i + 1 must have a

greater or equal number of features than node i. To clarify this procedure,

in Figure 6.13 is illustrated the cascade of strong classifiers relative to the

8− th dataset. The total detection rate of this cascade, D, and the final false

positive rate F , are obtained as a combination of intermediate outcomes on

the cascade:

D =
N∏

i=1

di = 97, 98% F =
N∏

i=1

fi = 0% (6.7)
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Figure 6.13: Example of a cascade of strong classifiers obtained in the exper-
iments. di and fi represent detection and false positive rate at the i-th level
of cascade. L and NL indicate lumen and not lumen frames, respectively.

where N is the total number of layers of the cascade.

To test the effectiveness of trained cascades, we have considered ten different

collections of 7033 images randomly extracted from a set of frames disjoined

from each training set. During testing phase, we consider the integral images

of test set rescaled to 24 × 24 pixels with the respective labels, the cascade

of boosted classifiers as it has been obtained during training and, finally, a

threshold that determines the rigorousness of the classifier. Each test sample

gets through each single node of the cascade; a positive outcome is sent by

the classifier i to the more complex classifier i + 1. An image is labeled as

lumen if positively overcomes each node of the cascade. If at any point the

test image is judged negative, it is rejected immediately without further test

(Figure 6.13). The classification performance has been evaluated in terms of

precision and recall by comparing our results with the annotations provided

by the specialist. Table 6.4 shows the results. The labeling of images was

previously made by a human expert. However, for certain images it is often

difficult to understand, even to a skilled human observer, if what we hold

as “lumen frame” is actually a particular fold of the intestinal tissue or vice

versa.

Each strong classifier in the cascade is constrained by a rigidity threshold.

Higher threshold values minimizes both detection and false positive rates.

Similarly, a low threshold will lead to acceptance of a greater number of

lumens images while increasing the probability of detecting false positives.



CHAPTER 6. EXPERIMENTS 69

Table 6.4: Classification results using Boosting.
Test Recall Precision Accuracy
Data

1 88, 60% 72, 06% 91, 32%(6423/7033)
2 89, 05% 71, 64% 91, 24%(6417/7033)
3 91, 82% 69, 11% 90, 67%(6377/7033)
4 91, 37% 67, 86% 90, 16%(6341/7033)
5 87, 92% 70, 73% 90, 81%(6387/7033)
6 88, 07% 71, 76% 91, 17%(6412/7033)
7 88, 90% 69, 06% 90, 34%(6354/7033)
8 90, 85% 70, 78% 91, 15%(6411/7033)
9 86, 95% 73, 40% 91, 55%(6439/7033)
10 91, 45% 68, 33% 90, 34%(6354/7033)

The optimal value of threshold depends on the preferences of the physician.

We expect that a higher amount of false positives than of false negatives is

typically preferred. The presence of a high number of false positive results

in more time spent by the expert to do a diagnosis. Losing a rightful lumen

is a worse event because it means to miss a relevant event with the resulting

inaccuracy in the final report. By varying the rigidity threshold from a min-

imum to a maximum value, we can construct a ROC curve comparing the

detection rate versus the number of false positives. Figure 6.14 reveals that is

possible to reach a detection rate above the 90%, keeping the amount of false

positives at about 600 instances, i.e., 8% of the test dataset. All experiments

have been conducted on a consumer level PC with Intel R©CoreTM2 Duo pro-

cessor and 4 GB of RAM. Calculations have been performed in MATLAB

environment.

Figure 6.15 shows some examples of false positives obtained with the pro-

posed method. In many circumstances, the intensity contrast between adja-

cent regions does not correspond to the presence of a lumen. This is maybe

a consequence that Haar features are sensitive to illumination changes. Vari-

ations on the lighting conditions may cause the cascade to detect lumen that

was not predicted during the training stage. Likewise, in some images, folds

of the intestinal wall may produce contrasted regions that confuse the Haar
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Figure 6.14: ROC curve for each dataset obtained by varying the stiffness
threshold of each classifier from 0.1 to 1.

features. If new kind of images are presented to the classifier, detection is

difficult and the amount of false positives increases. To deal with this prob-

lem, training data must include as many examples as possible to predict only

true lumen.

Features analysis

One may reasonably ask if the proposed kind of features is optimal: may we

obtain good classification results without one of these three kind of features?

May we get away with only one kind? Adding some more elaborate Haar-like

features is worth the gain in accuracy? The authors have tried to perform

Figure 6.15: Example of some false positives detected by the system.
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boosted classification using only one kind of feature among those proposed

in this experiment at each time. The results were only slightly different than

those obtained using the whole set of features. This suggests that we might

use only one kind of feature and achieve similar results. It is relevant to point

out that the cross-shaped features have been introduced by the authors to

improve not the results but the stability of the classifier. The availability of

the whole set of features helps to keep down the number of classifiers in each

node of the cascade. This happens because AdaBoost achieves more quickly

the requirements fixed for the current classifier by the user. Also the number

of nodes in the cascade is minimized. However, the use of cross-shaped

features may bring discriminating power for all those suspicious regions that

seem at first sight a lumen, while they are actually residuals, bubbles, or

any other intestine artifact that generates an intensity contrast similar to

a lumen. We can confirm that the use of additional features can only take

effect on the structure of the classifier. The results would not be further

significatively improved.

Comparing the boosted classifier with Support Vector Machine

The mean recall value we obtained using boosting is 89,5%. This result is

efficiently attainable allowing a real-time performance. An interesting ques-

tion is to compare the results provided by the boosting-based implementation

with another “classic” classification method. The main problem in our data

is the excessive dimensionality (63,063 features for each image to be clas-

sified). The high number of features suggests that comparison with other

classification technique is fair only if these other techniques are adequate to

handle these cases. For this reason, Support Vector Machine (SVM) is the

ideal candidate for comparison. It is well know that SVM may easily deal

with very high feature dimension; moreover, standard SVM implementation

are available and this makes comparison easier and repeatable. SVM is a

supervised learning algorithm used both for classification and regression. It

indicates a binary classifier which projects the training samples in a mul-

tidimensional space looking for a separating hyperplane in this space. The
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Table 6.5: Classification results using Support Vector Machine.
Test Recall Precision Accuracy
Data

1 69, 92% 63, 84% 86, 79%(6104/7033)
2 71, 57% 63, 77% 86, 90%(6112/7033)
3 70, 82% 66, 39% 87, 67%(6166/7033)
4 69, 62% 64, 27% 86, 90%(6112/7033)
5 68, 79% 67, 58% 87, 83%(6177/7033)
6 70, 59% 65, 39% 87, 35%(6143/7033)
7 69, 17% 66, 14% 87, 44%(6150/7033)
8 70, 37% 65, 37% 87, 32%(6141/7033)
9 70, 37% 64, 11% 86, 92%(6113/7033)
10 72, 77% 63, 86% 87, 03%(6121/7033)

hyperplane should maximize the margin, i.e., the distance from the closest

training examples. SVM is well adapted to handle the curse of dimension-

ality and its performance has been tested in different application domains.

We have considered the same data used in the previous experiments to train

different SVMs using a linear kernel. We rely on a particular class of SVM

called Least Squares SVM (LS-SVM). In this version it is possible to maxi-

mize the margin between support vectors by solving a linear equation with

a least squares method. Classification results using this method are shown

in Table 6.5. The superiority of the proposed Boosting based technique is

evident.

6.3.4 Conclusion

In this experiment we introduced an automatic lumen detection algorithm for

endoscopic images. Inspired by Viola-Jones object detection system, we show

that using AdaBoost learning-based algorithm combined with a cascade of

strong classifiers leads to a good rate of detection minimizing running time.

Experimental results show that the proposed system detects positive images

using exclusively Haar-like proposed features. Our detector is flexible and

easily extensible to other semantic objects in endoscopic applications.
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6.4 Random Forests based WCE frames clas-

sification

This experiment provides another methodology for the detection task dis-

cussed in the previous Section 6.3. We are satisfied with the performance

achieved by the Haar-features set to recognize images containing a clearly

narrowing of the intestinal lumen and we repropose their use in this new

experiment. Here, the customized set of Haar-like features is used for the

growth of different binary decision tree. Each tree assigns a label. One

image is eventually associated with the class that has the majority vote in

the forest. Experiments conducted on real WCE images have proved the

effectiveness of the proposal and are reported and discussed.

6.4.1 Classification method

The proposed automatic lumen detection tool is inspired by the work of L.

Breiman [78]. The motivation behind the use of this method comes from its

steady success in different classification domains. In addition, the construc-

tion of a forest, meant as an ensemble of low level tree-based classifiers, has

better performance than individual classifiers and it is more robust to noise.

The first stage towards the classification is to extract salient information

from crude WCE images. To this aim, we propose the same feature set used

in Section 6.3.1 and shown in Figure 6.16.

Feature-score extraction creates a “population” of N records arranged into

a matrix D of size N ×M . N indicates the number of training samples with

M different features. Each entry in this matrix indicates the score of a Haar

feature on a sample. This information is used for the recursive growth of

a binary decision tree. The process begins from the root node, which takes

as input the entire matrix D formulating binary questions that determine

whether each record is assigned to the left or the right descendant node. The

process is recursively repeated treating each child node as the father of the

next iteration until termination conditions are achieved.

We must establish a valid criterion to perform the best split on data. The
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Figure 6.16: The three features used in the proposed method. The score of a
feature is computed as: S(x) = sumrect(W )− sumrect(B), where sumrect
indicates the total value of pixels intensity within a rectangular region. W
and B are related to light and dark regions of the feature. (a) “Center-
surround” feature. (b) First “Cross” feature. (c) Second “Cross” feature
obtained by the previous considering a larger central section.

split function will be good if it helps to achieve a higher degree of homo-

geneity in each terminal node: the degree of impurities in each node must be

minimal. In our experiments Gini coefficient is used to establish the impurity

of a node [79]. A node assumes a minimal value zero when the elements in

the node all belong to the same class. Gini’s coefficient is defined as follows:

g(t) = 1−
M∑

i=1

p(i|t)2 (6.8)

where p(i|t) is the rate of items labelled i in the node t.

A valid criterion for stopping the growth of the tree is relevant for the size

of a tree. We consider two alternatives:

• The current node contains elements belonging to a single class: this

gives a “pure” leaf node whose label is the label of its element.

• The current node aggregates too few records to allow a new split. The

minimal number of records is a user defined parameter and it is useful

to avoid overfitting problems. In our implementation we experimentally

choose 10 as a good value for this parameter. If an “impure” node is

stopped from splitting it is a terminal leaf and it assigns the label of

the majority of the records in the node.
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This procedure is flexible to process data with either discrete or continuos

variables and it does not require any assumption on the statistical distribu-

tion of data as in our present application. Once a decision tree has been

learnt from training data, classification is very simple and fast, although the

classification performance of a single tree may be unsatisfactory.

To improve the classification performance we adopt the Random Forests tech-

nique, as it has been proposed by L. Breiman in 2001 [78]. The idea is

to build many different decision trees. Each of these low-level classifier is

parametrized slightly differently than each other. In particular, each tree is

grown by combining the technique of Bagging [80] with a random selection

of features:

• Let N the number of samples in the training set. For each tree a new

training set consisting of N elements randomly chosen (with replace-

ment) from the original data is selected to grow a tree. Small changes

in the training set can result in substantial changes in the final result.

• Let M the number of discriminative features for classification. For

each split only m ≪ M different features are randomly selected. The

value of m is set by the user at the beginning of the training phase and

remains constant for each split and for each tree.

The mechanism to create a forest from a large training set is very simple: the

user needs only to establish the number of different trees in the forest and the

number of features to consider for each split. The trees are also not subjected

to pruning operation. Observe that each tree uses only a proper subset of

the whole training set for its growth. The unused records are indeed useful

to establish the classification accuracy of each tree and hence to weight their

contribution toward the final label assignment. Given a test sample, it is

forwarded to the classification of each tree in the forest. Each tree provides

a label. The class with the most votes is the one that is associated with

the case. This classification can be carried out in two different ways taking

into account that each trained tree has a different accuracy than others.

The simplest way of classification is the one that associates a unit weight

to each tree in the forest. Otherwise, the final classification may be more
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affected by the trees that have greater accuracy. The weight of each tree is

computed as the ratio between the number of items correctly labeled and the

total number of elements, otherwise known as Out Of Bag Error (OOBE).

This index also allows to know which variables are most discriminative for

classification, offering the possibility to select a subset that is optimal from

the statistical point of view.

6.4.2 Experimental results

We performed our experiments on a training dataset of 3000 images, 1000

of which are “lumen frames” taken at different scales and locations. The re-

maining images contain other negative events typically seen in a WCE video:

from the normal intestinal mucosa to specific events including the presence of

bubbles, residuals, bleedings, ulcers, etc. Based on the Haar features scores,

we started the training phase for the construction of the forest. As men-

tioned before, two parameters are required by the user: the number of trees

in the forest and the number of different features to be used in each split.

Not knowing a priori the optimal number of trees, we trained a forest with a

progressively increasing number of trees (up to 100 trees). In each bifurca-

tion, the search for the best split is done by minimizing the Gini coefficient

on a subset of m = ⌊
√
M⌋ features1.

To test the classifier obtained in this way we considered another different

dataset of 7033 images. Figure 6.17 shows recall and precision as trees are

added to the forest. All experiments have been conducted on a consumer

level PC with Intel R©CoreTM2 Duo processor and 4 GB of RAM. Calcula-

tions have been performed in MATLAB environment.

As can be seen from the picture, the performance of the classifier does not

improve after a certain number of trees have been added. Experiments have

shown that 50 is a safe choice for the optimal number of trees. Table 6.6

shows the classification results obtained with this choice of parameters and

a comparison with the related boosted-based technique [65]. Random For-

1The number 21021 in Table 6.2 refers to the total number of features for type. We
consider the same total number of features for each type, for a total amount of M = 63063
features.
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Figure 6.17: Comparison of recall and precision rate as a function of the
number of trees in the forest. The graph on the left refers to the testing
phase in which each tree has a unit weight. The graph on the right takes
into account the OOBE.

est finds a slightly smaller amount of lumens, but the false positives rate is

greatly minimized compared to the boosting based implementation. Also the

accuracy is greatly improved.

Notice that our technique allows the exploration of the discriminative power

of each feature. We used this opportunity to study which of the three pro-

posed types of features is most discriminative for the “lumen problem”. Sur-

prisingly, the “center-surround” feature provides less detailed information.

This feature takes an internal area with low intensity surrounded by a lighter

landscape. No one indeed ensures that the internal region refers to a lumen.

The same circumstances can occur in other types of images. For example,

there are images with low intensity residuals, they also surrounded by a

lighter background (see the third image in Figure 6.9(b)). The second and

third type of proposed features enrich the discriminatory power and thus are

more relevant to the classification (Figure 6.18).

Finally, we report some typical errors of our classifier. As can be seen from

Figure 6.19(a), many false positives are due to intensity contrast that does

not corresponds to any lumens but confuses the behavior of Haar features.

False negatives (Figure 6.19(b)) often contain a lumen with a severe offset

from the center of the image. In order to resolve these problem, new features

should reflect these particular scenarios. In addition, training data must
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Figure 6.18: Percentage distribution of the three types of features in the final
classifier. Either Boosting and Random Forests testify the most discrimina-
tory power provided by the “cross-shape” features.

include as many images as possible to predict only true “lumen frames”.

6.4.3 Conclusion

In this experiment we have reported a classification method to discriminate

“lumen frames” in a WCE context. Relying on a custom set of Haar fea-

tures combined with a classification technique based on randomized trees,

we achieved good classification results. Although we referred to images com-

ing from video capsule, our experiments can be reproposed for other kind

of endoscopic sequences. Our ongoing work involve the strengthening of the

proposed algorithms using temporal coherence in a sequence and the gener-

alization of the proposed technique to the classification of other relevant kind

of events in endoscopic images.

Table 6.6: Classification Results
Boosting Random Forest

Recall 92, 2% 89, 8%
Precision 67, 1% 85, 6%
Accuracy 89, 9% 95, 2%

(6326/7033) (6696/7033)
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Figure 6.19: Some misclassified of our classifier, false positives (a) and false
negatives (b) respectively.



Chapter 7

Conclusion and future work

In the first part of this dissertation we have presented computer-based meth-

ods to tackle the problem of automatic classification of endoscopic frames.

In particular, the set of images used in our experiments has been obtained by

means of the WCE procedure, an endoscopic minimally-invasive technique.

As with all the endoscopic examinations, the medical expert needs to see the

entire set of images recorded during the exam to do a confident diagnosis.

In an effort to keep low the analysis time by the expert, we have conducted

research on two different areas: “sudden changes discrimination” and “in-

testinal motility detection” in a WCE video. In both cases, it is expected to

substantially reduce the number of images to be manually analyzed allowing

a more widespread use of WCE.

One of the main problems addressed in WCE is the segmentation of the video

into homogeneous sections with the same semantic content. In our setting, we

have indicated with “event” an abrupt and significative change in the video.

It can be represented by a boundary transition from an organ to another

one or other relevant events, like the presence of intestinal juices, bubbles,

ulcers, etc. To automatically detect such events, we have constructed an

indicator function that reveals a sudden change in a video. The construc-

tion of the function uses the statistical Textons approach combined with an

algorithmic information-theoretic method applied to find sudden changes in

WCE video sequences. In particular, we have used a modified formula of

80
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Normalized Compression Distance (NCD) to compute the distance between

the histograms obtained with the Textons approach. The best results have

been achieved considering a combination of features related to colours, tex-

ture and energy information. The experiments have been demonstrated that

the proposed method may eliminate up to 70% of the frames from further

processing while retaining all the clinically relevant ones.

The second problem that we have tackled refers to the automatic searching,

in a WCE sequence, of the central frames of an intestinal contraction. By

labeling these frames, also called “lumen frames”, the physician can easily

be obtain the video subsequences representing the intestinal contractions and

then conduct the related analysis of the intestinal motility. A “lumen frame”

consists of a central area with low intensity and a brighter surrounding area

corresponding to the gut wall. To recognize this kind of frames, we have

proposed a set of image descriptors based on intensity contrast between ad-

jacent regions in an image. The classification task has been performed with

Ensemble Learning techniques. In a first experiment we have built a classifier

using AdaBoost, a subclass of Boosting, i.e., a machine learning algorithm for

performing supervised learning. AdaBoost generates a new “weak classifier”

in each of a series of rounds. For each iteration, a distribution of weights is

updated that indicates the relevance of each example in the training data.

The weights of each incorrectly classified example are increased and the new

classifier will focuses on the examples which have so far eluded correct clas-

sification. This procedure leads to the construction of a “strong classifier”

meant as a set of classifiers constructed during each Boosting round. The fi-

nal step towards the classification involves the creation of a cascade of “strong

classifiers” with progressively increasing complexity. It has been proven the

effectiveness of ensemble techniques in such systems and showed how a cas-

cade of strong classifiers provide both high accuracy and few false positives

for a efficient approach to find intestinal contractions.

The same classification problem has been addressed using a different ensem-

ble technique that use a set of decision tree instead of AdaBoost as base

learners. Each decision tree in the forest is built to train only a tiny part

of the available data. Also the hypotheses space is reduced by considering
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only a random subset of them. The results obtained using this technique are

comparable with those obtained through the AdaBoost procedure. Within

the lumen detection task, the use of Random Forests approach is able to

reduce the false positive rate more than using Boosting. However, if we want

to set a stiffness threshold in the final classifier to restrict or enlarge the rate

of detected “lumen frames”, we suggest the use of the Boosting approach.

In this case, it is possible to conduct a ROC analysis just by ranging the

values for the threshold in each weak classifier. The same procedure with

the Random Forests technique requires the modification of the thresholds for

each branch of the decision tree.

The classification domains discussed in this dissertation represent only a

portion of what can be automatically classified and recognized in the WCE

context. It should be noted that the search for an event can often be rough.

In other words, it should be more useful to obtain a list of events divided by

type. Recognizing other kind of events (such as bleedings, cancer, polyps,

etc.) in a video sequence will help the physician to reduce the time inspection

and to make capsule endoscopy a clinical routine. It would be ideal to have

a software tool that automatically processes the video content and produce

a final report, replacing the work of the expert. Although such a solution is

not yet available, there is no doubt that the Computer Vision research on

WCE videos will become an important field of medical Image Processing and

will gain much wider interest of the researchers in the coming years.

Finally, we are in a continuous feedback with the experts in order to improve

the current methods, create optimal protocols and include faster and more

efficient versions of our solutions for their use in a real clinical scenario in a

close future.
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Chapter 8

Stereoscopic Vision

In Computer Vision, 3D reconstruction refers to the process used to obtain

a three-dimensional description of the observed scene. There are different

reconstruction techniques based on different principles and each one with

specific strengths, limitations and areas of application. Among these, the

Stereoscopic Vision is the one that has received the most attention.

The idea behind Stereoscopic Vision consists of a triangulation targeted to

relate the projection of a point of the scene in two (or more) image planes

of the cameras that compose the stereo system. The identification of these

homologous points allows to obtain a quantity called disparity by which,

knowing the appropriate parameters of the stereoscopic system, it is possible

to deduce the 3D location of the considered point. This process is an imi-

tation of one of the capacities of the human vision system where this task

is automatically performed by the brain. It merges the retinal images that

come from the eyes and perceives them as a single image. It is this process,

known as Stereopsis, which allows the relative location of visual objects in

depth, giving the perception of the three-dimensional space.

In this chapter we focus our attention on binocular stereo vision with two

cameras, called left and right camera, that observe the scene from two dif-

ferent points of view, as illustrated in Figure 8.1. In the first part of this

chapter, we introduce the most important parameters of a stereoscopic sys-

tem required to define the transformation of a three-dimensional point into a
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Figure 8.1: Example of a binocular stereo system. The cameras observe the
scene from two different point of view.

two-dimensional point of the camera image plane. In the second part, we give

some informations about the stereo correspondence problem, i.e., the process

by which two projections of a point in two image planes are associated. We

illustrate how the epipolar geometry may help to reduce the research space

for the correspondence problem.

8.1 Stereoscopic system

8.1.1 Disparity

Consider the stereo system in Figure 8.2. This system is composed by two

cameras Cl and Cr with focal points Ol and Or and parallel optical axes αl

and αr. The cameras share the same focal length f and T is the horizontal

baseline between them. cl and cr are the principal points, i.e., the intersection

points between the image planes and the optical axes of the cameras. A

generic point P is located to a depth Z from the baseline. It projects the

points pl and pr in the left and right image planes of the cameras, respectively.

The pixel pr in the right image appears shifted to the left compared to the

pixel pl in the left image. This shift between the coordinates xl and xr of

homologous pixels is called disparity:

d = xr − xl (8.1)
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Figure 8.2: Scheme of a binocular stereo system with parallel optical axes. A
point P generates two different projections in the image planes of the cam-
eras. The difference between the horizontal coordinates of these projections
is called disparity.

Taking into account the similar triangle plÁPpr and Ol
ÁPOr, we can write the

following:
T

Z
=

T − d

Z − f
⇒

(Z − f)T = Z(T − d) ⇒

TZ − Tf = TZ − Zd ⇒

Z =
Tf

d
(8.2)

Equation 8.2 allows to assert the following:

• The disparity value is inversely proportional to the distance separating

the point P from the camera planes, i.e., the depth of P . Moreover,

depending on the parameters of the stereo setup, the maximum possible

disparity between the left and right images can be established.
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• The relation between Z and d is not linear.

• Once fixed the focal length and the baseline, the depth of a point

depends only on its disparity value.

• Estimation errors of the disparity lead to large errors in the estimated

depth.

8.2 The correspondence problem

The main issue in Stereoscopic Vision is represented by the correspondence

problem: finding the pixels in two images corresponding to the same point

in the scene. This process may be very difficult due to the presence of many

complex objects in the scene, often with very similar textures. The situation

is worsened by the presence of noise, occlusions or other artifacts that make

difficult the coupling of homologous points. A correct match is required for

a reliable depth estimation. Consider the stereo system in Figure 8.3. The

points P and Q project four points in the image planes of the cameras Cl

and Cr. If pl and ql are correctly associated with pr and pr respectively, the

reconstruction will report the depth values of P and Q. If the point pl is

wrongly associated with the point qr, it will be generated the disparity value

for a point P ′, totally wrong respect to the real value. The same happens

when ql is matched with pr, resulting to the depth value of the point Q′.

There are two different approaches to solve the matching problem. The

“dense” techniques try to find corresponding points between different images

maximizing a measure of similarity in the pixel domain. Another approach

generates disparity values only in correspondence of a specific set of salient

points of the image.

Dense stereo matching methods

Dense matching methods, also called area-based methods, estimate the dis-

parity of a pixel p in the first image (chosen as reference image) comparing

a small region around p with all the possible areas of the same size in the
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Figure 8.3: If the projections of the points P and Q in the left and right
image planes are not correctly associated, it is impossible to estimate the
correct depth for these points. This occurs when pl is wrongly associated to
qr, generating the disparity value for a point P ′. The same happens when ql
is matched with pr, resulting to the depth value of the point Q′.

other image. Once the window is identified as the most similar to the one

in question, a correspondence between projections is achieved. The correct

disparity can be defined as the difference (in absolute value) between the

horizontal coordinates of p and p′, i.e., the centers of the correlation win-

dows whereby the matching function presents the highest peak. A very good

metric to measure the similarity between two pixel areas is the statistic cor-

relation. For each pixel in the reference image, a match in the other image

can be established. Thus, the correlation leads to the construction of a dense

disparity map. If we interpret such map as an intensity image according to

the disparity, we will see the areas closest to the camera colored white and

distant objects in a color darker and darker.

In Figure 8.4 is illustrated a standard stereo pair. In this example, left image

is chosen as the reference image. Notice that the right image is translated
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(a)

(b)

Figure 8.4: An example of a standard stereo pair. An object in the left image
(a) is shifted across the right respect to the right image (b).

towards the left in relation to the reference image. This shift is due to the

different positions of the optics of the cameras. An object in the right image

is slightly shifted to the left respect to its representation in the left image.

This means that a point P in the left image with coordinates (x, y) has a

conjugate in the right image with coordinates (x− d, y), where d is the value

of disparity for the point P . It ranges from 0 and a specific maximum value

which depends on the hardware setting.

To calculate the similarity between two pixel areas the following measures
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are usually adopted:

Sum of Squared Difference

CSSD(x, y, d) = min

®∑

i,j

[Il(x+ i, y + j)− Ir(x− d+ i, y + j)]2
´

(8.3)

Sum of Absolute Difference

CSAD(x, y, d) = min

®∑

i,j

|Il(x+ i, y + j)− Ir(x− d+ i, y + j)|
´

(8.4)

Normalized Cross Correlation

CNCC(x, y, d) =

max

® ∑
i,j [Il(x+ i, y + j)− Īl(x, y)]× [Ir(x− d+ i, y + j)− Īr(x+ d, y)]»∑
i,j [Il(x+ i, y + j)− Īl(x, y)]2 × [Ir(x− d+ i, y + j)− Īr(x+ d, y)]2

´

(8.5)

The index i ranges from −⌊N/2⌋ to +⌊N/2⌋ where N is the width of the cor-

relation sub-window. Similarly, the index j ranges from −⌊M/2⌋ to +⌊M/2⌋
where M is the height of the correlation sub-window. Il(x, y) and Ir(x, y)

denote the intensity values in the point (x, y) for left and right images re-

spectively. Finally, Ī(x, y) is the average intensity value inside the N × M

sub-window. The estimation of the disparity for a point can be obtained

through the following three steps:

• Comparing the sub-window around the current point with all the cor-

responding sub-windows that fall within the range of disparities in the

second image.

• The comparison is done using one of the functions defined above over

the gray tone images.

• The disparity of the point is obtained from the difference of the hori-

zontal coordinates of the centers of the sub-windows that are the most

similar according to the correlation function used for the correspon-

dence.
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Performing the comparison between all possible pairs of sub-windows is ex-

tremely expensive. Although the corresponding areas have similar coordi-

nates, the number of comparison to be carried out is prohibitive for a real-

time system. However, by exploiting a particular feature of the geometry of

a stereoscopic system, it is possible to restrict the research of homologous

points in one-dimensional space. This will be clearer when we will introduce

the epipolar geometry.

Features-based stereo matching methods

A feature is a significant characteristic of the image. There are specific al-

gorithms for detecting different types of features (edges, contours, corners,

SIFT, etc.). The first step to compute the disparity involves the use of a

feature detector in order to extract a set of features from both left and right

images. Each detected feature provides a descriptor. Next, a match function

is used to establish the correct correspondences and the disparity can be mea-

sured by the coordinates of homologous points. Feature based techniques,

although presenting improved accuracy around the extracted features, usu-

ally produce sparse disparity maps and require image interpolation to achieve

a denser representation. The number of disparities is indeed proportional to

the amount of features properly coupled by the matching function.

8.3 Epipolar geometry

The epipolar geometry helps to simplify the matching problem: given a point

projected in the image of a camera, the epipolar geometry can limit the

search for the homologous point to a single line in the other image. Consider

the stereo system in Figure 8.5. There are two cameras Cl and Cr with

focal points Ol and Or. Let pl and pr the projections of the point P in the

cameras Cl and Cr respectively. Suppose that the cameras have convergent

optical axes such that the projection of each focal point intersects the visual

plane of the other camera. These points el and er are called epipoles. The

point P and the focal points Ol and Or form a plane called epipolar plane.
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Figure 8.5: Graphical representation of the epipolar line (red line) associated
with the point pl. pr must be one of the points Pi of this line.

This intersects each camera’s image plane in two lines, called epipolar lines.

The intuition behind the epipolar geometry is that, if we know the extrinsic

parameters of the stereo system and the position of pl on the image plane of

Cl, we can look for pr only on the corresponding epipolar line on the image

plane of Cr.

8.3.1 Calibration

A Stereoscopic Vision system is characterized by the intrinsic and extrinsic

parameters. The first ones characterize the camera and enable to model the

projection of a point of the scene on the image plane of the camera. These pa-

rameters include the coordinates relative to the image plane of the principal

point, the focal length, and other parameters that describe further charac-

teristics of the sensor, like the lens distortion and the shape of the pixels.

The extrinsic parameters represent the positions of each camera with respect

to a known reference system. The determination of the intrinsic and extrin-

sic parameters, obtained by the calibration procedure, allows to completely

describe the stereoscopic system and in particular to infer information about

the coordinates of points in space through the triangulation of homologous

points.
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A further step to simplify the search for corresponding points is the rectifi-

cation of the cameras’ projections. If the optical axes of the cameras are not

parallel, the epipolar lines of each camera converge on the epipoles. However,

if the epipolar lines are parallel and perfectly horizontal, the search for corre-

spondence may be reduced to a one-dimensional problem (along a horizontal

line). Given a pair of stereo images, the intrinsic parameters of each camera,

and the extrinsic parameters of the stereo system, the rectification computes

the image transformation that makes epipolar lines collinear and parallel to

the horizontal axis. In other words, it converts a general stereo configuration

to a simple stereo configuration with parallel optical axes.



Chapter 9

Literature Review

In endoscopy, the surgeon can investigate the inside of a body structure (ab-

domen, intestine, lung, etc) without any surgery, but using an endoscopic

camera located at the end of a medical probe. Modern technologies have

led to the development of endoscopes that include plenty of accessories and

utilities. At the same time the resolution of the integrated optics has been sig-

nificantly improved. Despite these technological innovations in modern endo-

scopic surgery, the visualization that is currently used remains 2-dimensional.

This is associated with significant limitations, such as the lack of depth per-

ception. It is often quite difficult to locate the objects that can be seen

through the endoscope and understand what is deeper in presence of multi-

ple objects. In [81] it has been demonstrated that severe errors made during

surgery procedures are not due to poor technical skills but rather reflect a

critical misinterpretation of the video image.

The entire endoscopic examination is performed by watching the video mon-

itor while the expert handles the endoscope from outside the body. When

the displayed scene is not immediately recognized, or when the image is ro-

tated with respect to the surgeon’s perspective, the surgeon often becomes

disoriented. This is especially true in the bronchoscopic context where the

presence of several ramifications in the bronchial tree makes easy to lose track

of the surgical probe.

To compensate these shortcomings, systems that provide 3D visual informa-
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tion have found an increasing number of medical applications. A 3D medical

system, that is capable of providing more depth clues, has a great potential

to improve the current 2D imaging technologies.

While most researches seek for a hardware solution to build a 3D system,

there are not many works trying to apply stereovision techniques to extract

3D information from bronchoscopic video. The first experiments of stereo-

vision in medicine also deal with the study of the benefits of stereo viewing

rather than the reconstruction which can be started from it. For this reason,

in the first part of this chapter we introduce the main technologies currently

used in medicine to obtain a 3-dimensional view. Then, we discuss some

reconstruction techniques with the aim of using the Augmented Reality.

9.1 Stereoscopy in medicine

The effectiveness and usefulness of stereo property has been suggested in

many medical applications. Today, there are two main technologies avail-

able that create stereoscopic images in the medical context. The first one

involves the use of a surgical probe equipped with two cameras. It captures

two pictures that are displayed to the viewer on a stereoscopic display. This

kind of technology is adopted in the integrated system “DaVinci” [82], a sur-

gical robot which permits the fulfillment of different surgical operations. It

provides an immersive operating environment for the surgeon by providing

both high quality stereo visualization and an interface that directly connects

the surgeons hands to the motion of surgical tool inside the patient’s body

(Figure 9.1). The main disadvantages that exist with dual-camera technol-

ogy are related to user side-effects such as fatigue, headache, dizziness, and

eye strain, that result from viewing two images that differ in picture angle,

brightness, color, optical distortion, and sharpness.

A newer different technology, developed by VisionSense [83], uses a single

sensor composed by many micro-lenses looking at different directions. The

layout of the lenses is similar to the eye-structure of a bug. This technol-

ogy has the advantage of generating an image from a single charge coupled

device, to avoid the problem of dual-camera technologies. The use of a mi-
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Figure 9.1: The surgical robot “DaVinci”. It consists of four entities: 1)
a plenty of surgical instruments and 2) the console to handle them by the
surgeon (3). His assistant (4) works next to the robotic arms and the patient.

croarray of lenses creates multiple small images that are then divided into

simultaneous left and right images using proprietary software. The viewer’s

eyes then simultaneously pick up two slightly different images of the same

object. This provides the surgeon with real-time, high-resolution, natural

stereoscopic vision (Figure 9.2).

The introduction of stereoscopy in the medical field has also led to the study

of the benefits of this technology with respect to the 2D standard approach.

For instance, the authors in [84] report a comparison between the 2D and 3D

technologies applied during laparoscopic surgery. By utilizing the “DaVinci”

robot launched in both 2D and 3D modes, they evaluate the outcomes of su-

turing and knot-tying tasks completed by seven participating surgeons. The

overall set of experiments was completed 65% faster using 3D mode with

equal, if not greater, accuracy. Despite there are limitations to this study

design, notably the restricted number of participating surgeons, it is believed

that the 3-dimensional view enhances the performance with regard to speed,

accuracy, and ease with which different surgical interventions are performed.

If stereoscopic viewing includes significant improvements in the diagnostic

practice, many improvements also come from the reconstruction obtained

using data extracted from a stereo system. The recovery of 3D information
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Figure 9.2: Schematic representation of the VisionSense technology. The
imaging device is represented by a single lens (L) with two pupils (l and r)
located to the focal plane P . All the rays passing from a point O through
the pupils generate signal on both pixels O1 and O2. These pixels are left
and right views of point O.

from stereo images is one of the classic problems in Computer Vision. A

comprehensive summary of progress in this field is reported in [85]. How-

ever, most of the reported methods are indicated for regular scene. These

contain lots of shape features such as corners, edges, and it is easy to locate

the features and find correspondences between adjacent views. Endoscopic

images are often characterized by the presence of small field of view, big

distortion, varying illumination and surgical instruments. These problems

make the reconstruction procedure very difficult. A number of stereoscopic

techniques for recovering 3D shape have been proposed in different medical

procedures [86, 87, 88, 89]. These experiments are usually performed using

endoscopic sequences from the “DaVinci” surgical system.

9.2 Augmented Reality in surgery

The lack of depth perception during endoscopy often limits delicate dissec-

tion or suturing [90]. The use of an Augmented Reality interface allows to

combine supplementary imagery as part of the scene and can be used for guid-

ance, training and locational aids. An Augmented Reality display presents
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objects in correct perspective depth, assuming that the geometry has been

accurately acquired. With such a system, a surgeon is able to understand

better the structure of the environment by the presence of “artificial” infor-

mations that would be impossible to infer from the original visualization.

The authors in [86] propose an Augmented Reality tool to assist the surgeon

during cardiac surgery. In particular, they build a time-variant 3D model

of the beating heart using standard coronarography sequences, MRI or CT-

scan data of the heart. In this experiment, the authors rely on the use of the

surgical robot “DaVinci”. In this way, the tridimensional data of the cardiac

surface is easily achieved from the stereoscopic optics positioned at the ex-

tremity of the surgical probe. Once the observed surface is registered with

the 3D heart model, informations about the location of coronary arteries are

superimposed on the endoscopic images by Augmented Reality.

It is worth mentioning the work in [91], not for the reconstruction module but

rather for the application of Augmented Reality applied in the bronchoscopic

context. During a bronchoscopy, the expert inserts a bronchoscope into the

bronchial tree using the nasal or the oral cavity. Because of the very complex

tree structure of the respiratory system, he/she may be easily confused and

loses the way to the target location. For this reason, the authors in [91]

propose an augmented display of anatomical names of bronchial branches

on real bronchoscopic views in order to improve the navigation and perform

the bronchoscopy in safety. To generate such Augmented Reality interface,

they initially extract the bronchial tree structure from 3D CT images. For

each detected branch, they collect five features: the length of the branch, the

running direction of a branch, the relative position from the parent branch,

the average direction of the child branches, and the running direction of

sibling branches. Then, the proposed method calculates candidate branch

names and groups them depending on which branch is the parent. Finally,

multi-class AdaBoost technique is used to train the classifiers. To overlay

anatomical names on real bronchoscopic images, the proposed method de-

tect the branch where the bronchoscope is currently located and the child

branches of the current branch. To find the location of the bronchoscope the

authors adopt the Deguchi’s method [92].



Chapter 10

Experiments

The recovery of 3D structure during a medical endoscopic procedure is a

necessary step towards accurate deployment of surgical guidance and control

techniques. Taking in account the computational stereo theory, the first step

to achieve a reliable 3D structure of the scene involves the estimation of dis-

parity, i.e., the apparent pixel difference or motion between a pair of stereo

images. A disparity map contains the apparent motion in pixel for every

point and it is represented as an intensity image out of these measurements.

Large disparities are encoded as light gray values, small disparities as dark

grey values. Although it may seem a limited description of a 3D model, it is

possible to encode the gray tones present in a disparity map with the actual

depth values by using the intrinsic parameters of the cameras.

We believe that depth information may be exploited to reconstruct the scene

and to add virtual objects and information to the real images by Augmented

Reality. In order to understand the strategy followed to validate this pro-

posal, we report in Figure 10.1 the three kinds of images examined in the

experiments. The analysis begins by taking into account real bronchoscopic

images (Figure 10.1(a)). In this way it is possible to give a first look at the in-

formative content of this type of images (e.g. texture, lighting conditions) as

well as the presence of noise or occlusion, and then figure out which methods

should be taken into account in the following stereo analysis. In this phase

of investigation it is also possible to verify which characteristics may create

99
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(a) (b) (c)

Figure 10.1: The three type of bronchoscopic images used in the experiments.
(a) A real bronchoscopic image. (b) A “virtual” bronchoscopic image taken
inside a graphic model of the bronchial tree. (c) A bronchoscopic image
captured inside the bronchial tree of a medical simulation dummy.

problems in this type of images. Two relevant worsening of images quality

are indeed due to non-uniform illumination and blurring. The illumination is

not the same in all the images but strongly depends on the distance between

the light of the camera and the shooting object. When the camera is too close

to a bronchial item, some parts of the images are more illuminated, generat-

ing color-saturated areas, while others present more shadows. Blurring effect

appears when the camera moves too fast and also when the camera objective

is obscured because of the breath of the patient. However, the major draw-

back encountered during this first analysis is based on the lack of stereo data.

In other words, the images on which we work are taken from a monoscopic

bronchoscope. To this aim, the second step in our analysis involves the use of

virtual reality for a simulation of a stereo bronchoscopy. Having analyzed the

anatomy of the respiratory tract, it was possible to create a graphical model

of the bronchial tree and navigate inside it with a pair of stereo cameras. An

example of frame captured inside the model is reported in Figure 10.1(b). All

the problems that can occur in a hypothetical real-world application are here

minimized. The use of virtual reality also allows the possibility to perform

different experiments with different parameters. For example, it is possible

to find the optimal baseline between the cameras just by conducting several

navigations inside the model with different baseline values and choose the
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one that produces the desired stereo effect. Although the virtual images are

not realistic as in the previous case, they contain adequate detail to validate

our proposal about the extraction of depth clues for Augmented Reality pur-

poses.

The final step in our analysis involves the creation of a real prototype of

a flexible stereo bronchoscope. Figure 10.1(c) reports an example of image

captured by one lens of this prototype inside the bronchial tree of a medical

simulation dummy. The use of a real stereoscopic instrumentation represents

an interesting case. In this way, it is possible to analyze more realistic im-

ages compared to the experiment in virtual environment. We can also deal

with the problems that might occur in a hypothetical real-world application,

notably the lens distortion, lighting control, the focus of the lens.

In summary, the three investigation phases (there are reported in the next

three sections) are the followings:

• Depth extraction from monocular bronchoscopy (Section 10.1): in this

first experiment, we extract depth information from a standard bron-

choscopic examination. By applying the stereo theory to pairs of ad-

jacent images in the video, we extract the disparity in proximity of

salient points of the image.

• 3D reconstruction in virtual reality (Section 10.2): disparity maps are

obtained this time using a conventional stereo system. In particular,

a virtual model of the bronchial tree is crossed by a couple of aligned

cameras with parallel optical axes. The convenience of the virtual envi-

ronment to set optimal values for the cameras have led to good results

that have been published in [93].

• Stereoscopic bronchoscope prototype (Section 10.3): in this last work,

which also is our ongoing activity, we propose a first prototype of a

flexible stereo bronchoscope. After giving enough details about the

hardware setting and the software needed to manage it, we reported

the same experiments set of the previous work performed on images

captured inside the bronchial tree of a medical simulation dummy.
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Depth information may be exploited to reconstruct the scene and to add

virtual objects and information to the real image by Augmented Reality.

For this reason, in the last two experiments reported above, we propose an

Augmented Reality application based on the gray tones of the disparity map.

It is only one of the possible Augmented Reality interface that can be used

in this type of images. It shows the benefits produced by Augmented Reality

in bronchoscopy, and more generally in the endoscopic field.
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10.1 Depth extraction from monocular bron-

choscopy

In order to determine the 3D position of a physical point in space, at least two

images that capture the scene from two different points of view are required.

The movie obtained by a moving bronchoscope may provide the images of

the operating site from distinct viewpoints. Therefore, if the surface does

not significantly change over time and if the camera does not change orien-

tation too quickly between two adjacent frames, the 3D information can be

extracted by applying computational stereo theory.

In this experiment we take into account a monocular video of a bronchoscopy.

Unlike most other systems that utilize stereo endoscopes with dual lens,

we study the feasibility of 3D reconstruction from single-lens bronchoscopic

video by extracting disparity information around a set of candidate feature

matches. Having the availability of an adequate number of disparities, dis-

parity maps have been constructed from two consecutively collected images

on the video. The approach presented here consists of two parts. First we es-

timate the camera parameters based on conventional feature point detection

and correspondence analysis. Then, we use the camera motion information

to bring two adjacent frames of the video in a standard stereo form. For all

pairs of images for which this process is properly performed, disparities are

extracted for a set of candidate feature matches. In order to have a denser

representation, we use a region growing algorithm to expand the information

of disparity on a point to the homogeneous region around it.

The purpose of this experiment is not reduced to the construction of a depth

map of the scene. Before reaching this result, it must be analyzed the in-

formative content of this type of images that should be taken into account

from the Image Processing point of view. This analysis allows to understand

how much detail contain the textures and hence the optimal parameters to

be used during the feature extraction step as well as the threshold to employ

during the segmentation phase.

The approach used in this experiment to obtain a representation of the depth

of the scene highly depends on the movements of the bronchoscope during
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the navigation. Note that the movement that occurs between each pair of

consecutive frames is not always the same through the video. Even when

the movement is minimal but enough to provide depth clues, the number

of matches established between two images may be insufficient to ensure a

reliable result. For example, this happens when the pair of frames under

consideration presents highly blurred areas in which it is difficult to establish

any match. However, we expect that there are pairs of frames that simulate

a real good stereo pair and at the same time contain a high number of correct

matches. For these pairs of frames we expect a reliable disparity map.

10.1.1 Depth clues extraction

The first step towards depth information extraction involves an epipolar rec-

tification step to transform the images in a new version where epipolar lines

are parallel along the horizontal plane and corresponding points have the

same vertical coordinates. Lacking the availability of the intrinsic parame-

ters of the camera, the only way to estimate the camera motion information

relies on the knowledge of some correspondences between two different views.

To this aim, we use the Matlab toolbox available at [94]. This framework pro-

vide non-calibrated stereo using Fundamental Matrix only, i.e., a 3×3 matrix

F of rank 2 that encapsulates the intrinsic projective geometry between two

views. If a point in space X is projected in x in the first view, and x′ in the

second, then the image points satisfy the relation x′Fx = 0. The framework

finds matching points between two images using the SIFT algorithm [95] and

the final rectification is achieved by a suitable rotation of both image planes

according to the epipolar constraints. Due to misalignments, usually some of

the correspondences are incorrect. To achieve a robust estimation of camera

motion parameters, a random sampling algorithm [96] for outlier detection

is employed. The reader is referred to [97] for more details.

Once one has obtained a standard stereo pair, our approach finds again the

SIFT features from both images and puts them in correspondence with the

provided descriptors. In particular we use the Lowe’s matching function

[95], in which the ratio of the distance of a given feature from its nearest
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match to distance from the second nearest match is adopted as a metric. For

each correspondence the disparity is calculated as the difference, in absolute

value, between the horizontal coordinates of the matching points. Having

the availability of rectified images, it is easy to remove from the disparity

computation those points for which the vertical coordinates are very differ-

ent because probably there is the presence of false matches.

When disparities for all matching points of an image have been extracted, a

“semi-dense” disparity map of the observed scene can be created. One possi-

ble strategy is the use of a segmentation technique for partitioning the image

into homogeneous regions. With the availability of appropriately segmented

images, the cluster membership of each disparity point can be established.

The disparity value for the cluster is represented by the average of the dis-

parities which lie in the same cluster. To segment the images we rely on

the use of a region growing approach. This algorithm involves the choice of

initial seeds. For each of them, a cluster is created and iteratively grown by

comparing all unallocated neighbouring pixels to the cluster. The difference

between the value of intensity of a pixel with respect to the average intensity

already present int the cluster is used as a criterion of similarity. The pixel

with the smallest difference is allocated to the region. In addition to the

choice of initial seeds, a threshold is chosen to make more flexible or less the

addition of pixels to a cluster. In other words, the segmentation for a given

seed stops when the intensity difference between the region mean and a new

pixel becomes larger than the threshold. Figure 10.2 shows some examples

of the application of the region growing technique with different values of

threshold. By conducting the appropriate experiments, it was noticed that

it is not easy to establish an optimal threshold value. In this kind of images,

a small threshold is suitable to recognize the so-called “blob”, i.e., the entry

of a new bronchial branch that appears in depth in the image. Similarly, a

too high threshold creates too large regions that make rough the calculation

of the disparity with consequent loss of information. In this experiment a

threshold equal to 0.07 has been chosen as optimal value.
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Initial seed Threshold = 0.02 Threshold = 0.07 Threshold = 0.1 

Figure 10.2: Example of application of the region growing technique. The
blue point is the initial seed from which a cluster is created and iteratively
expanded. The segmentation for a given seed terminates when the difference
between the intensity average value inside a cluster and the intensity of a
new non-allocated pixel becomes larger than the threshold.

10.1.2 Experimental results

In this section we report the experiments carried out on a monocular bron-

choscopic video. Each pair of adjacent images in the video is undergone to

an epipolar rectification step and disparity is extracted from the matching

points detected on the rectified images. The greater the number of matches,

the better the description on the depth resulting from the disparity map

with the assumption that there are no matching errors. Figure 10.3 shows

some examples of disparity maps obtained with this approach. The “Sparse

disparity” column reports the disparity value in correspondence of matching
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points. Taking into account the gray tones representation, the white color is

associated with the points that display large values of disparity. The greater

the depth of the point, the darker the gray tone with which it is represented.

For each point we consider all the disparities that fall on the same region

according to the region growing application and the final value of the dispar-

ity is the average of the disparities of the points that fall in the segmented

region (the column “Semi-dense disparity” in Figure 10.3). To ensure that

the segmented region does not have rigid edges, we have slightly smoothed

the image with a median filter prior to application of the region growing al-

gorithm. Notice that it is not possible to have depth information for all the

regions where there are not matching points (the black pixels in our results).

For this reason we use the “semi-dense” nomenclature in our final results.

10.1.3 Discussion

One of the major drawbacks in this proposal is certainly due to the lack

of stereo information arising from a real pair of stereo cameras. In our ex-

periments we use the motion information between two adjacent views of a

monocular video to rectify images so that they can simulate a real stereo pair.

However, it may not suite for the whole video sequence since the change of

orientations of rectified stereo pairs may not be smooth, which implies unsta-

ble results. Moreover, the “virtual” baseline of rectified stereo pairs may also

not be the same throughout the video. Some pairs of images are so different

that the procedure for rectification can not be properly operated. Disparity

maps for those couples can not be achieved.

Another consideration regards the application of region growing segmenta-

tion to fill a denser disparity map. For each matching point the algorithm

considers it as initial seed. When a pair of images has a high number of

matches, the performance of this segmentation algorithm becomes computa-

tionally prohibitive. A further relevant problem concerns the choice of the

threshold. This strongly depends on the current image and a a-priori esti-

mation is quite difficult. The threshold value adopted in our experiments is

not necessarily the optimal one throughout the video.
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Rectified left image Rectified right image Sparse disparity Semi-dense disparity 

Figure 10.3: Disparity maps obtained using a monocular bronchoscopic video.
Each pair of adjacent images in the video is undergone to a rectification step.
The consequent extraction of key-points from these images with a suitable
matching function leads to the creation of a coarse disparity map. The use of
a segmentation technique allows to expand the value of disparity in a point
to the whole homogeneous region around it.
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Despite these drawbacks, it is easy to verify the validity of our assumptions

for all those pairs of images capable of simulating a real stereo pair. The

disparity in the matching points (as it is depicted in the “Sparse disparity”

column in Figure 10.3) contains coherent depth values. This occurs when

the rectification error is very small and there are not false matches.

Having a dual-camera bronchoscope certainly eliminates many of the prob-

lems encountered during this experiment. The next step of our analysis,

presented in the next section, provides a simulation of a stereo bronchoscopy

in virtual environment.
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10.2 3D reconstruction in virtual reality

The previous experiment has provided depth clues from images taken by

a monocular bronchoscopy. Having explored the anatomy of the bronchial

tree, the next experiment will be conducted in virtual environment using a

synthetic 3D model allowing for stereoscopic viewing. The usage of virtual

reality techniques in clinical applications is gettinn more wide-spread because

of the availability of more detailed simulation models. Virtual simulators of-

fer many advantages to the medical staff: they are especially valuable for

training purposes, for pre-operative planning and evaluation of surgical skills

[98], [99]. Virtual reality can recreate the conditions of experimental research

that would be difficult to propose in the real world. In particular, in this

experiment, virtual reality is applied to recreate the typical environment of a

bronchoscopy. To this aim, we have preliminarily built a geometric model of

a significative segment of the tracheobronchial tree. The synthetic model has

been realized with the open source software Blender [100] using real bron-

choscopic images as a reference (Figure 10.4). Special care has been taken to

Figure 10.4: A typical real bronchoscopic image.

replicate in the virtual model two of the main geometric parameters of the

human pulmonary cavities: the branching degree (i.e. the rate of bifurcation

of the air channels as one goes down the respiratory tree) and the decreas-

ing rate of the tube sections after each bifurcation. To enrich with a more

realistic value our model, we have reproduced the typical pattern of the res-

piratory system through the use of some simple procedural textures provided

by the standard Blender version. Lighting conditions have been simulated

using directional spotlights properly controlled so that light fades down the
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Figure 10.5: Scheme of the canonical stereo system used in virtual reality.

pulmonary branches approximately as the it would in a real bronchoscopy.

To perform a stereo reconstruction step in this model, we have placed a cou-

ple of aligned cameras with parallel optical axes. The cameras lie in the same

vertical and depth axes. They share the same focal length and differ only

in the horizontal baseline between them (Figure 10.5). Taking availability of

the parameters of the cameras, it is not required to conduct a preliminary

calibration step because the images are already rectified. Figure 10.6 shows

some pairs of stereo images extracted from the model.

We believe that the ideal conditions provided by virtual reality allow to ob-

tain reliable results, and then use this experiment as a basis for a hypothetical

future real application.
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Left Image Right Image 
 

Figure 10.6: Examples of stereo images extracted from the proposed virtual
model.

10.2.1 Depth clues extraction

The next step in our analysis involves a stereo recording of a route inside the

virtual model. Each rendering is carried out from stereo cameras looking at

the scene from two different points of view. The goal is to construct a depth

map of the scene from a standard stereo pair acquired by two cameras. In
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order to reconstruct the scene we look at the disparity values, i.e., the differ-

ences of coordinates of homologous points lying in each image captured by

two cameras. As mentioned in Section 8.1, depth is inversely proportional to

the disparity; if we represent it such as a gray tone image, brightest pixels

correspond to the high values of disparity and consequently to the regions

near the cameras. Similarly, the darker pixels represent the deepest ones. By

setting focal length and baseline, the depth of a point depends only on the

disparity. For the calculation of disparity map we have used the tool in [101].

There are two main motivations for this choice: this method is inspired by

algorithms according to the Middlebury stereo evaluation dataset [102]. It

also provides the result to support our experimental concepts.

The main problem is to establish which point in right image is the exact

projection of the same point in the left image, otherwise known as the cor-

respondences problem. The matching function used in our experiments is

inspired by Klaus et al. [103] and consists of a weighted combination of

two outcomes: the sum of absolute intensity differences (SAD) and a mea-

sure based on gradient determining the disparity by formulating a differential

equation which correlates disparity with brightness variations. This match

function is defined as:

C(x, y, d) = (1− ω) ∗ CSAD(x, y, d) + ω ∗ CGRAD(x, y, d) (10.1)

where

CSAD(x, y, d) =
∑

(i,j)∈N(x,y)

|I1(i, j)− I2(i+ d, j)| (10.2)

and

CGRAD(x, y, d) =
∑

(i,j)∈Nx(x,y)

|∇xI1(i, j)−∇xI2(i+ d, j)|+
∑

(i,j)∈Ny(x,y)

|∇yI1(i, j)−∇yI2(i+ d, j)|
(10.3)

N(x, y) is the correlation window at point (x, y), ∇x and∇y are the gradients

along the horizontal and vertical directions. Nx(x, y) is a correlation window

without the rightmost column, Ny(x, y) a correlation window without the



CHAPTER 10. EXPERIMENTS 114

lowest row. The optimal value of disparity d is one that minimizes the match

function C. The probability of a wrong match decreases in proportion with

the size of the correlation window. A correlation window of size 3× 3 pixels

is optimal for the reliability of our results. Further parameters needed to

estimate disparity assume the default values, as in [101].

Using virtual reality we can easily obtain the field of depth on the rendered

images. Then, a qualitative assessment was carried out by comparing our

maps with the ground truths depicting real disparities relative to the refer-

ence image (left image). Figure 10.7 shows some examples of depth maps

calculated with the proposed method. Ground truth images are also reported.

As shown in Figure 10.7, depth maps provide an adequate description of the

depth of the scene. However, some problems may arise when images have

satured and/or textureless regions. In these circumstances, the amount of

correct matches decreases and the resulting disparity map contains inconsis-

tent values.

10.2.2 Augmented Reality

There are different ways to exploit depth information. One of this is Aug-

mented Reality. The final step in our experiments provides for the integration

of depth information in the original representation of the scene. All must be

optimally developed, in a way that user has the perception of a single scene.

To emphasize the effect we take into account depth information in order to

meaningfully overlay colors within the image, as proposed in [104], [105]. In

detail, red color is associated with the pixels with the maximum value of dis-

parity, corresponding to areas of the scene near the cameras; likewise, blue

color is associated with the deeper areas. Intermediate disparity values take

gradation colors between red and blue. The colors in red-blue range have a

strong impact in the operator than other colors because they are convention-

ally associated to the situations of danger, warning and safety respectively.

In the context of the bronchoscopic images, this representation allows many

advantages, including to figure out where objects are lying, so they can be

easily avoided. Figure 10.8 shows depth maps integrated in the original rep-
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Figure 10.7: Examples of depth maps estimated with the proposed method.
The second column shows the ground truth data for the reference images.

resentations. We have conducted some tests to verify the percentual of color

information to be overlayed in the images. Final results contain the colors

that best support our visual investigation and give a greater sense of depth.
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Figure 10.8: Color depth maps integrated in the reference images.

10.2.3 Discussion

Our experiments show that the additional information provided by depth

maps leads to a better perception of the distances in the scene. This should

in turn likely provide a greater precision in the movements of the broncho-

scope, minimizing the number of accidental collisions with the bronchial wall

during probe navigation. This last feature provides two main benefits: the
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patient undergoes a less discomfort during the examination. Furthermore,

the final video contains only meaningful frames to make a good diagnosis.

Although at the present time precise data about the effectiveness of the pro-

posed set-up in reducing unwanted collision are unavailable, we believe that

the present study supports the application of stereoscopic vision in broncho-

scopic applications.

The colored depth map overlayed on the original representation is only one of

the potential Augmented Reality visualizations. With this analysis we have

to experience with depth map and Augmented Reality visualization based

on color in endoscopic context. However, informations that can be inte-

grated on real bronchoscopic images are several. Hence, Augmented Reality

in bronchoscopic environment can actually provide an useful instruments to

overcome surgeon’s perceptual skills.

These tasks may be proposed using only information provided by depth-map

images. Additional tools can be developed combining depth informations into

a tridimensional mesh, using dense surface stereo reconstruction techniques.

In this context, a potential application involves the shape reconstruction, in a

post-operative scenario, of route taken by the physician during the examina-

tion. In this way the expert can analyze which regions have been explored.

This reconstruction can also be used for educational purposes to develop

training-oriented systems for the simulation of bronchoscopic examinations.

Depth maps in Figure 10.7 provides a detailed description about the depth

of the scene. The high number of correct matches is due to the ideal con-

ditions provided by the virtual environment. In the real case, the situation

is most likely more challenging as the bronchoscopic images may present

a more articulated or smoother texture, which may make harder to solve

the correspondence problem. Defocus regions may also be present due to

sudden movements by the operator during the navigation. The situation is

worsened by the presence of satured regions of color due to the led light of

the surgical probe. In order to obtain the same results proposed in virtual

environment, it is necessary to use appropriate denoising Image Processing

algorithms. Stereo reconstruction in this kind of images is a difficult issue.

The complications are due to the nature of the images that often include ra-
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dial distortion. In addition, the matching function used for extract disparity

often rely on the use of epipolar rectified images. To overcome these prob-

lems, an accurate calibration step is needed in order to obtain information

on the perspective view of the scene and to bring images in a standard stereo

form.

The problems listed above can be addressed using appropriate Image Pro-

cessing techniques and the proposed approach can therefore successfully be

applied to support endoscopic navigation and intervention. A first step in

this direction is to develop a real prototype of a flexible bronchoscope whose

tip is equipped with two aligned miniature cameras. This activity has been

carried out at the labs of the “School of Engineering and Technology, Uni-

versity of Hertfordshire”. In the next chapter, we give a preview of what has

already been done about the flexible stereo bronchoscope.
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10.3 Stereoscopic bronchoscope prototype

Modern technologies provide flexible endoscopes that include plenty of ac-

cessories and utilities. Currently, there are no companies that offer flexible

stereo endoscopes while this solution seems to be promising and it will cer-

tainly be soon on the market. A typical problem by using flexible endoscopes

is that the operator loses track of the route covered during the navigation.

In this regard, some medical tracking systems have been proposed. These

systems calculates the position and the orientation of surgical instruments

using optical or magnetic sensors [106]. Other approaches attempt to recon-

struct the path followed by the endoscope-tip position. However, this does

not provide information on tip position at run time. The use of an Aug-

mented Reality interface can revolutionize this field by adding information

to the scene to alert the physician if a route has already been covered or to

keep track of the depth at which the bronchoscope is currently located.

In this chapter we introduce a prototype of a flexible stereo bronchoscope

and discuss our early experience using it to provide depth information that

can help the deployment of computer-aided navigation systems. In order to

make the proposed system more realistic, we perform our experiments in the

bronchial tree of simulation dummies available at the University of Hertford-

shire labs. First, we design a complete calibration scheme to estimate both

geometric and photometric parameters including spatial and rotation angle

of the cameras of the stereo system. Then, we extract depth maps in order

to repropose the same Augmented Reality visualization adopted during the

simulation in virtual environment (see Section 10.2).

10.3.1 Hardware

The limiting factor in building a bronchoscope is the diameter. The human

bronchial tube has a diameter of about 2 cm in its initial section and this

gradually decreases as one goes forward in the respiratory tree. To satisfy

this requirement we make use of two cameras, each with a diameter of about

5 mm. Each camera also contains four lighting leds whose intensity can

be appropriately increased or decreased. The characteristics of the optical
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Figure 10.9: Hardware information of the prototype of stereo bronchoscope.

system is reported in Figure 10.9.

The cameras have analog signal and the shooting scene can be displayed

in a device equipped with an analog video input. The management with

appropriate software is achieved using an analog/digital converter. For the

accurate navigation in a tubular surface such as the bronchial tree, we rely on

the use of a 1cm-diameter probe whose tip can be articulated in two directions

up to 180◦. We bought this probe as a fiber-optic system commonly used for

the inspection of not easily accessible tubular structures. The ideal would be

to have a real bronchoscope, but also having the economic resources, it is yet

not possible to find a flexible stereo bronchoscope stereo in the market. For

our experiments is enough to have something close to the real case and our

probe is readily customizable for the case under examination. Initially, the

cameras have been placed on the probe’s tip separated by a baseline of 8 mm

with parallel optical axes. Further experiments have been made to verify the

amount of stereo effect provided for different baselines. The produced stereo

effect has been tested by means of stereoscopic displays and 3D glasses [107].

We have achieved the best results when the cameras are perfectly adjacent.

This configuration leads to an overall diameter of about 1.5 cm, which is
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adequately small for a bronchoscopic examination. Figure 10.10 shows a

scheme of how the cameras are cabled for management through computer.

The overall stereoscopic system is reported in Figure 10.11.

10.3.2 Software

Calibration of the stereo system

Calibration is a process performed after the capture of the images from the

cameras that compose the stereo system. The goal is to accurately mea-

sure the intrinsic and extrinsic parameters of the stereo model. With these

parameters it is possible to infer information about the coordinates of the

points in the real space. There are different techniques to perform the cali-

bration [108]. Typically, this procedure is carried out by using a geometric

rig with known geometry, such as a checkerboard pattern. We choose the

calibration toolbox developed by Jean-Yves Bouguet and available at [109].

The ease of use and the presence of wide documentation prompted us to use

this tool. The toolbox is also written in Matlab, providing broad compatibil-

ity with our software. In Bouguet’s calibration technique, several images of

checkerboards in various positions are captured by each camera simultane-

ously. Through various perspective views of the checkerboard, the algorithm

estimates the position, orientation and internal parameters of each camera.

In our experiments we use the checkerboard shown in Figure 10.12(a). We

know the number of squares along both horizontal and vertical directions

and the size of each square inside the checkerboard pattern (7mm× 7mm).

The checkerboard is fixed on a rigid surface not easily deformable. Twenty

images are captured for each camera with the checkerboard covering a com-

prehensive set of positions, rotations and inclinations with respect to the

camera that remains fixed (Figure 10.12(b)). The extreme corners of the

checkerboard in each captured image are manually located with four mouse

clicks by the user, and the toolbox finds the locations of the corners of the

internal squares of the checkerboard (Figure 10.13).

Once the corners have been extracted for both sets of left and right images,

the algorithm calibrates each camera and then as a stereo pair. Details on
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Figure 10.10: Hardware configuration of the prototype of stereo broncho-
scope. Two analogic cameras are handled via computer using analog/digital
converters. Each camera contains four lighting leds whose intensity can be
adjusted with an appropriate dimmer. The whole system is powered by two
9-volt batteries.
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Figure 10.11: The prototype of flexible stereo bronchoscope. The cameras
are placed at the end of a probe whose tip can be articulated by the user in
two directions up to 180◦. The best configuration has been obtained with
the cameras perfectly adjacent with parallel optical axes.
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(a) (b)

Figure 10.12: (a) Checkerboard pattern used for the calibration of the stereo
system. It contains five squares along the vertical axis and eight along the
horizontal axis. The size of each square is 7mm × 7mm. (b) In order to
perform a reliable calibration step, twenty images of the checkerboard placed
in different directions and rotation are captured for each camera.

Figure 10.13: Selection of the four angles of the checkerboard. The system
estimates the number of squares inside the pattern and tries to extract all
the internal corners.
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Figure 10.14: Extrinsic parameters of the stereo system. They allow to obtain
the spatial configuration of the two cameras respect to the world’s reference
system.

the mathematical resolution of this procedure are reported in [110]. Each

camera produces a set of intrinsic parameters, including the focal length in

pixels, the coordinates of the principal point, the possible deformation of the

pixels with respect to the ideal square shape (a parameter also known as

skew) and the parameters to characterize the distortion caused by the lens.

The calibration provides one set of extrinsic parameters for the stereo system

with the geometry rotation and translation of the right camera with respect

to the left camera. Figure 10.14 illustrates a graphical representation of the

extrinsic parameters produced by a stereo calibration over the cameras at

our disposal.

An important consequence of the calibration is the rectification of images,

i.e., a transformation of the original images in order to produce a stereo pair

in which the image planes of the cameras are coplanar and the detection of
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Figure 10.15: Image rectification. During the calibration step, the intrinsic
and extrinsic parameters are calculated for each camera. Stereo calibration
brings together these parameters allowing for a geometric transformations of
the images in a standard stereo form. The black lines superimposed on the
rectified images validate the correctness of this procedure.

homologous points is done by examining the same row in two image planes.

In figure 10.15 is shown the rectification for a pair of images acquired by our

stereo system. In the first row the original images are reported. Rectified left

and right images are achieved exploiting the parameters estimate during the

calibration. Some horizontal lines are superimposed in the rectified images

to verify the accuracy of the procedure.

Acquisition and calculation of disparity map

Figure 10.16 shows a screenshots of the GUI developed for the acquisition

of the images from the stereo system. In a stereoscopic system aimed at

obtaining three-dimensional information of a dynamic scene, it is necessary

that the acquisition of left and right images is simultaneous. Our acquisi-
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Figure 10.16: GUI of the acquisition software. The user selects the left and
right devices and one of the supported resolutions. The system loads the
calibration data and rectifies the images captured by the cameras. Disparity
map is extracted from rectified images and reported.

tion software detects the devices currently installed on the system. The user

selects both left and right cameras and one of the resolution supported by

these devices.

The system loads the calibration data and rectifies in real time the images

captured by the cameras. Disparity maps are calculated using a dense match-

ing approach with SAD as similarity metric (see Section 8.2). Linear inter-

polation is used to fill in the “holes” in the disparity maps. These can been

computed both for a single pair of rectified images or in real-time mode.

However, the calculation in real time of disparity maps only makes sense if

small values for the size of the correlation window and maximum disparity

are used. If these two parameters are set to high values, the computation

may take much longer.
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10.3.3 Experimental results

The dataset used in our experiments has been acquired by means of the use

of simulation dummies available at the “Clinical Simulation Centre” of the

University of Hertfordshire. These are provided by Laerdal company [111].

It produces interactive and realistic simulation dummies for a wide range of

medical procedures. The simulator responds to clinical intervention, instruc-

tor control, and comprehensive pre-planned scenarios for effective practice

of diagnosis and patient care. It also has all the features necessary to the

training of hospital staff, with spontaneous breathing, airway control, voice,

sounds, and many other clinical features. With realistic anatomy, careful

clinical functionality and operation using computer software, it offers nu-

merous educational opportunities for healthcare professionals. Figure 10.17

shows some pictures of the simulation dummy used in our experiments.

The stereoscopic bronchoscopic probe has been previously calibrated by fol-

lowing the procedure described in Section 10.3.2. The imaging device has

been set to a resolution of 640× 480 pixels working on RGB color space.

An important parameter of a stereo system is the baseline separating two

camera objectives. A small baseline implies the estimation of small dispari-

ties and this may not be enough to ensure a detailed description of the depth

of the scene. One could then conclude that it is better to have a high base-

line in order to get two significantly different perspectives and therefore high

disparities. However, this can be done within certain limits, because with

increasing baselines decreases the field of view common to the two cameras

and it makes the correspondence problem more difficult. We have conducted

experiments with different baseline values. In each of them we noticed that

the stereo pairs contain too different images to ensure a reliable reconstruc-

tion of the scene. Even when the value of baseline has been reduced to a

minimum, making the cameras perfectly adjacent, the situation does not

change. Figure 10.18 shows the obtained results. The first column in Figure

10.18 represents the reference image (left image) for the calculation of the

correspondence between points. We report in the remaining two columns the

disparity maps in the red-blue color range and the Augmented Reality ap-
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(a) (b)

(c)

Figure 10.17: The simulation dummy used in the experiments. The inser-
tion of the bronchoscope can occur from the mouth or directly from the
trachea. In this case the hole located in the neck of the dummy is exploited.
The user observes on a screen the images captured during the bronchoscopic
navigation.

plication, obtained as reported in Section 10.2. If the bronchoscope acquires

an object located at a depth enough to ensure similar field of views in the

two cameras, a reliable disparity map can be achieved. If the bronchoscope

is next to an object located at a minimum distance (one or two centimeters),

the images that come out are too different to conduct a reliable correspon-

dence analysis and the final disparity map may contain errors.
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Rectified left image Rectified right image Color depth map Augmented Reality 

Figure 10.18: Disparity maps obtained using the prototype of flexible stereo
bronchoscope. The first two columns show the rectified version of image pairs.
Disparity map is reported in the third column using the red-blu range of
colors. The last column combines the color disparity map with the reference
image (left image).
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One of our ongoing activities involves the use of new cameras with a diameter

smaller than those currently used and a larger field of view. We believe that,

with this new hardware, we can eliminate some of the problems that prevent

us from really reliable results.
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Conclusion and future work

The second part of this dissertation has focused on the study of stereo re-

construction algorithms for endoscopic data. Generally, the purpose of these

algorithms is to reconstruct the 3D object surface and depth maps. But

the main proposal of our analysis is to give useful depth markers to doc-

tors through the use of Augmented Reality. To this aim, we have performed

experiments to extract depth maps in three different kinds of endoscopic im-

ages. Taking into account the bronchoscopy, i.e., a subset of the endoscopic

field, we have conducted a first experiment making use of a bronchoscopic

video obtained with a standard monoscopic equipment. In other words, the

bronchoscope contains only one camera and the stereo pair required to per-

form a stereo analysis is constituted by two adjacent images on the video. We

have used feature-based matching to perform a calibration step in order to

rectify the images in a standard stereo form. This approach strongly depends

on the movement of the camera and may properly work only for those image

pairs that can “simulate” a real stereo pair. For these images the depth of

matching points is estimated and a sparse depth map has been obtained.

We have also reported a “semi-dense” representation of the disparity maps

obtained making use of a segmentation algorithm in order to detect the main

clusters in the image and to fill them with the most representative disparity.

In a second experiment we have considered a graphic model of the bronchial

tree simulating a stereo bronchoscopy in virtual environment. Unlike the pre-

132
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vious experiment, the depth is here estimated through the use of correlation-

based matching. With the availability of ideals stereo images, a subwindow

in the left image is paired with its homologous in the right image by using

a correlation function. This process repeated for each left subwindow allows

to obtain a dense depth map. Once such representation has been obtained,

we have proposed an integration of depth information in the original rep-

resentation of the scene through the use of Augmented Reality. A simple

representation that combines the original images and colors in accordance to

the depth has been presented to indicate which regions are located near the

camera as well as those with greater depth.

In the last experiment we have proposed the same Augmented Reality in-

terface applied in images captured inside the bronchial tree of a medical

simulation dummy. To mimic a real bronchoscopy, we have presented a real

prototype of flexible stereo bronchoscope. We have reported details about

the couple of cameras employed in the bronchoscope and the software used

to manage it.

In all the conducted experiments we have represented a depth map as an

intensity image that shows in correspondence of each point of the reference

image (for example the left image), the value of disparity associated with

that point. To facilitate the visualization, the disparity values are mapped

by means of a suitable scale factor within the range [0, 255]. What we banally

call depth map is simply a disparity map. However, it is possible to achieve

the actual depth of an object in the scene from its disparity value taking into

account the cameras parameters estimated during the calibration step.

Notice that in a simplified use of Augmented Reality, like the one proposed

in this dissertation, disparity maps are quite enough to validate our proposal

about the use of Augmented Reality in bronchoscopic field. In the general

case, the issue is to overlay information to a specific depth in the reference

system of the scene. This requirement forces the use of a real depth map in

order to preserve the 3D position of physical objects in space and reconstruct

the entire three-dimensional structure of the visible scene. Once such a depth

representation has been obtained, many Augmented Reality effects may be

considered and we suggest their implementation as part of future works. Sev-
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(a) (b)

Figure 11.1: Two examples of Augmented Reality effects that can be used in
the bronchoscopic context. (a) An arrow marker indicates the proximity to
a bronchial wall and the direction to follow to ensure a safe navigation. (b)
Another similar effect shows the optimal path to follow during navigation.

eral kinds of markers can be displayed when the bronchoscope is too close

to an object, providing additional support to the navigation. Two examples

of Augmented Reality effects that can be implemented in the bronchoscopic

context are reported in Figure 11.11. It is relevant to point out that a correct

depth map must be obtained in order to ensure an optimal visualization of

these Augmented Reality effects. In this way, a virtual object may be scaled

and positioned properly inside the real scene. If the bronchoscope is being

moved around the object, the user should observe the virtual object from a

different angle.

Although our analysis has involved three different application areas (mono-

scopic real images, virtual images and images taken inside a medical dummy),

it is clear that future works are aimed to improve the results achieved through

the use of the bronchoscope prototype. Improving the hardware is one of the

activities that we most recommend. The problem of poor lighting in some

images can be easily reduced by adding a further lighting led to the bron-

choscopic probe. Another improvement concerns the cameras employed in

the bronchoscope that produce two totally different points of view when the

probe is too close to an object. Having a pair of cameras with smaller diame-

ter and with a larger field of view can help to minimize the baseline between

1The images in Figure 11.1 are obtained by courtesy of 3D Visualization and Robotics
Lab, School EnT, University of Hertfordshire, UK.
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the cameras and reduce this problem. With regard to the software implemen-

tation, we are in continuous research of newer Computer Vision techniques

in order to improve the results achieved by the current methods. However,

evaluative experiments proposed in this dissertation show that the proposed

system is accurate enough to be used for further studies. Outcomes of this

research have indeed relevant implications for the improvement of current

endoscopic imaging systems.
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