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5.1 Example of a 2-dimensional parameter inference dominated by data informa-
tion, where distributions are represented as functions of two variables along the
vertical z-axis (arbitrary units). The posterior probability distribution (c) ap-
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6.2 Oscillation amplitudes for 1640 stars observed withKepler in SC (orange squares)
and LC (blue circles) modes and plotted against the frequency of maximum
power νmax (top left) and the large frequency separation ∆ν (top right) of the
stars in a log-log scale. Amplitudes against the effective temperature Teff are
shown in the bottom panel, representing an asteroseismic HR diagram for our
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7.1 Cleaned periodograms of theKepler Q0+Q1+Q2+Q3 time-series for KIC 7985370
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7.2 Kepler light curve with best fit (solid red line, second Case-A solution of Ta-
ble 7.1) over-plotted. The residuals, shown at the top, are ±2.14mmag. As for
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the light curve to another. Image courtesy of Antonio Frasca. . . . . . . . . . . 154
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removed (Case B). Image courtesy of Antonio Frasca. . . . . . . . . . . . . . . 155
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7.5 Equator-to-pole differential rotation of the star. Mean and 68-per-cent confi-
dence region are marked by vertical lines (Case A only). Dashed: The corre-
sponding marginal distribution for the original data with linear trends removed
(Case B). Image courtesy of Antonio Frasca. . . . . . . . . . . . . . . . . . . . 156
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residuals are not homogeneous from one part of the light curve to another, hence,
the value ±2.35mmag has to be considered an overall average. Image courtesy
of Antonio Frasca. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
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A.1 Panel (a): doubled échelle PSD of the RGB star KIC 2436818 used by AARG.
The PSD is shown in a color-coded background. The dashed line overlaid shows
the ∆ν value of the star, which divides the échelle PSD into two identical
parts. Panel (b): corresponding collapsed échelle diagram in normalized units,
smoothed by means of a boxcar having width 4∆ν. . . . . . . . . . . . . . . . . 168

A.2 Results of the fine-tuning for the RGB star KIC 2436818. Panel (a) shows the
FWHM profile as a function of the step in ∆ν. Index #15 represents our initial
value, while the indices #0 and #30 correspond to +1.5% and −1.5% variation
of ∆ν, respectively, which set the extremes of our fine-tuning interval. Panel (b)
shows a zoom of the ` = 0 peak in the CED with the initial guess of ∆ν, where
a Lorentzian fit is overlaid for providing a rough estimate of its FWHM. Panel
(c) is equivalent to panel (b) but in the case of the CED with the fine-tuned ∆ν.
As visible from the result, the fine-tuned ∆ν provides a narrower FWHM than
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A.3 Example of échelle diagrams of an RGB (left) and RC (right) star with ` =
0, 1, and 2 modes indicated by red circles, green triangles, and blue squares,
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value corresponding to the turning point, here denoted as νc,0. Image credit by
[179]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
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A.4 Doubled CED of the RGB star KIC 2436818 used by AARG for fine-tuning ∆ν.
The ordinate shows an arbitrary scale for the collapsed power, while the abscissa
is expressed in µHz. The dashed red line shows the position of the ∆ν value,
which separates the doubled CED into two equal parts containing the same,
repeated pattern of the ` = 2, 0, 1 peaks (single CEDs). The blue dot-dashed
blue line marks our position of the ` = 0 peak considered for the analysis, while
the dotted red lines mark the values of ∆ν/2 and 3

2∆ν, hence dividing the entire
doubled CED into four regions, labeled from I to IV ingoing from left to right.
The blue arrow highlights the value of the marked position of the ` = 0 peak,
which we denoted as p0. The doubled CED has been smoothed by means of a
boxcar having width 4∆ν to simplify the pattern of the peaks. . . . . . . . . . . 174

A.5 CED of the RGB star KIC 2436818 used by AARG for the derivation of the
asymptotic parameters, smoothed by means of a boxcar having width 4∆ν to
simplify the pattern of the peaks. Panel (a): the dashed lines show the position
of the centroids ν2 and ν0 arising from the Lorentzian fits, marked with thick
solid lines. Labeled and indicated by an arrow, the final measurement of the
small spacing δν02. Panel (b): Same case as panel (a) but for the Lorentzian
fit to the ` = 1 peak (thick purple line), whose centroid ν1 is marked with a
dashed purple line. The red dot-dashed line represents the position ν0 + ∆ν/2,
considered for measuring the small spacing δν01 according to the definition given
by Eq. (4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.6 Example of two synthetic CEDs of the RGB star KIC 2436818 used by AARG
for the derivation of uncertainties. The notation is the same as for Figure A.5.
As it appears clear by comparing top and bottom panels, different realizations
result in different centroids ν0, ν1, ν2, hence in a new set of asymptotic values
δν ′02, δν

′
01. Both CEDs have been smoothed by means of a boxcar having width

4∆ν. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.7 Similar description as the one adopted for Figure A.1 but in the case of an
“erased” doubled échelle PSD of the RGB star KIC 2436818 — panel (a). The
PSD is shown in a color-coded background, where black regions represents those
set to zero value. Panel (b) shows the corresponding erased CED in normalized
units, smoothed by means of a boxcar having width 4∆ν. As it appears clear
when comparing to Figure A.1, the regions containing radial and quadrupole
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A.8 “Erased” PSD (gray) of the RGB star KIC 2436818 overlaid on the original PSD
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C.1 Probability density function fν(x), where ν is the number of degrees of freedom. 186

C.2 Probability density function f3(x) for a chi-square with three degrees of freedom.
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C.3 Left panel: Gaussian (symmetric) marginal PDF of a dimensionless parameter
φ. 68.27 % Bayesian credible region is marked with a shaded band. The mean
value of φ is reported with a dashed vertical line. Red points represent the
credible limits to the shaded region, while the arrow indicates the dropping
amount in height of the distribution from its maximum (black point) to the
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Abstract

In this dissertation we present and investigate new results attained in the field of Asteroseis-
mology, a branch of stellar physics that aims at deriving the fundamental stellar properties
and at describing the internal structure of the stars by means of the oscillations observed at
their surface. The stochastically excited and intrinsically damped acoustic modes, also known
as solar-like oscillations, represent the main type of pulsations discussed in this thesis.

The document is sectioned into four parts, where the last one includes a supplementary
material for the reader. Part I deals with ground-based observations of solar-like oscillations
detected through the measurement of Doppler shifts from line profiles. Here, Chapter 1 provides
a general and comprehensive introduction to Asteroseismology, with a focus on the class of
solar-like oscillations. Chapter 2 readily describes the main techniques, tools and features of
the asteroseismic analysis of solar-like oscillations, and subsequently presents a detailed study
of the solar-like subgiant stars β Aquilae and µ Herculis, both observed by means of the SARG
spectrograph operating @TNG. This study was done by using a preliminary version of the
iSONG code, the new software to be used within the SONG project of stellar oscillations for
radial velocity extractions.

Part II gives a particular focus to the space-based NASA’s Kepler Mission, whose photo-
metric observations represent the main source of data used for the research presented in this
work. An overview of the NASA’s Kepler Mission is given in Chapter 3, together with a brief
presentation of some of the main results derived from large ensemble of stars observed with
Kepler. The results discussed in this chapter were derived by means of the ORK pipeline
developed @OACT. Chapter 4 instead, is related to a thorough investigation of the ensemble
seismic properties of a sample of red giant stars belonging to the open clusters NGC 6791,
NGC 6811, and NGC 6819 observed by Kepler. The entire analysis was done by means of the
AARG code. The excellent quality of the 19 months-long observations carried out by Kepler
made this analysis possible, despite of the low signal-to-noise ratio of these stars.

Last but not least, Part III debates with the use of Bayesian statistics applied to Kepler
light curves for studying both the seismic properties of solar-like oscillations and the stellar
differential rotation in active stars. In particular, an exhaustive introduction to the Bayesian
concept of probability, the main statistical tools, and the Markov Chain Monte Carlo method
are provided in Chapter 5. Chapter 6 presents a detailed Bayesian inference and model com-
parison applied to the scaling relations adopted for predicting the amplitudes of solar-like
oscillations in stars spanning from main sequence to the late red giant phase of the stellar
evolution. Finally, Chapter 7 is related to a detailed study of the differential rotation in the
Kepler targets KIC 7985370 and KIC 7765135, two young and active Sun-like stars that show
an evident photometric modulation caused by star spots at their surfaces.

The appendices are given in Part IV. Appendix A describes in detail the AARG code
developed for the analysis discussed in Chapter 4. All the results derived with AARG are
listed in Appendix B for each star investigated. Lastly, Appendix C deals with a description
about some useful numerical methods adopted for the analysis described in Chapter 6, while
Appendix D discusses the theory of Principal Component Analysis.
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Preface

In the first period of my PhD project I was interested in the analysis of solar-like oscillations
in the subgiants β Aquilae and µ Herculis. This study involved the data reduction of spectra
collected at the TNG Italian telescope and the derivation of radial velocity time-series by means
of the iSONG code [142], which I developed in part during my period of collaboration with
Prof. Frank Grundahl and Dr. Hans Kjeldsen at the Department of Physics and Astronomy
of Aarhus Univeristy. The analysis of these time-series was published in A&A [86].

Afterward I focused on the analysis of light curves acquired by the NASA’s Kepler Mission.
My research activity within the WG1 of the KASC (Kepler Asteroseismic Science Consortium)
was related the investigation of the global asteroseismic parameters of ∼ 800 main sequence
and early subgiant stars. In particular, I developed an automated pipeline together with my
PhD tutor Dr. Alfio Bonanno, that allowed me to search for the global asteroseismic quantities
of these stars. These results contributed to some publications in scientific journals such as
Science, ApJ, A&A, MNRAS [71, 72, 73, 216, 310, 63, 275, 218, 317, 167, 45].

At the same time Kepler is allowing for detailed studies of differential rotation in active
stars. During my visit at the AIP (Astrophysics Institute of Postdam), I collaborated with
Dr. Hans-Erich Fröhlich in the analysis of active stars by means of a Bayesian spot modeling
code. This also involved spectroscopic studies that were done by Dr. Antonio Frasca from
OACT (Catania Astrophysical Observatory), for the measurement of fundamental stellar prop-
erties. The results of this work have been published in A&A [118]. The research conducted
through these collaborations allowed me to gain knowledge and expertise about the use of
Bayesian methods applied to the astrophysics field.

During my period of collaboration with Prof. Tim Bedding and my second PhD tutor
Dr. Dennis Stello at the SIfA (Sydney Institute for Astronomy), I studied the asteroseismic
properties of 115 red giant stars belonging to the open clusters NGC 6791, NGC 6811 and
NGC 6819 observed by Kepler. This research has been accepted for publication by ApJ [87].
The code that I developed for this purpose (AARG - Asymptotic Analysis of Red Giant stars),
allows for a detailed asteroseismic analysis of large samples of cluster red giant stars in a semi-
automated manner. The AARG code is expected to produce even better results in the case of
field red giant stars in the near future.

In conclusion to my PhD, my research has been focused to the study of amplitude scal-
ing relations for solar-like oscillations by using a sample of 1640 targets, spanning from main
sequence to red giant stars observed with Kepler. This involved the application of Bayesian
statistics for both the parameter estimation and the model comparison of the scaling rela-
tions studied. The work sets the basis for a subsequent investigation of the methods used for
measuring the amplitude uncertainties and possibly for further theoretical developments of new
scaling relations. The paper produced with this research is currently under revision by MNRAS.

Enrico Corsaro
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Part I
Asteroseismology from

ground-based Observations





Aerts, C., Christensen-Dalsgaard, J., Kurtz, D. W.,
Asteroseismology, First Edition, Springer Verlag, 2010 [1]
Christensen-Dalsgaard, J., Lecture Notes on Stellar

Oscillations. Fifth Edition, University of Aarhus, 2003 [76]

1 Introduction

In the opening of The Internal Constitution of the Stars [105], Sir Arthur Eddington ques-
tioned about the possibility to study the interior of the stars without direct observations:

“At first sight it would seem that the deep interior of the Sun and stars is less
accessible to scientific investigation than any other region of the universe. Our
telescopes may probe farther and farther into the depths of space; but how can we
ever obtain certain knowledge of that which is hidden behind substantial barriers?
What appliance can pierce through the outer layers of a star and test the conditions
within?”

Nowadays, we are aware that from our knowledge of the basic laws of physics, and from
the observable boundary conditions at the surface of a star, it is possible to investigate its
interior structure, and also with a high level of confidence. In fact, many stars have sound
waves traveling in their interior. Those waves cannot get out and not travel in a vacuum, but
for many kinds of pulsating stars the sound waves make the star periodically swell and contract,
get hotter and cooler. With our telescopes we can see the effects of this behavior: the periodic
changes in the star’s brightness; the periodic motion of its surface moving back-and- forth with
respect to the observer. Thus we can detect the natural oscillations of the star and “hear” the
sounds inside them.

It is the combination of the frequencies, amplitudes and phases of the harmonics that defines
the character of the sound waves generated. A sound wave is in fact a pressure wave, which
is basically a rarefaction and compression of the gas that propagates at the speed of sound.
The propagation occurs indeed at the molecular level because the information that the high
pressure wavefront is coming is transmitted by individual molecular collisions. In the adiabatic
case, the speed of sound is c =

√
Γ1p/ρ, where Γ1 is one of the adiabatic exponents (see below),

p the pressure and ρ the density of the gas. Of course, for an ideal gas p = ρkBT/µmu , where
kB is the Boltzmann’s constant, µ is the mean molecular weight, and mu the atomic mass unit;
thus c =

√
Γ1kBT/µmu.

The changes in pressure are therefore accompanied by changes in density and temperature.
In this case the speed of sound depends on the temperature and chemical composition of the
gas. Thus, if the temperature is higher, and the molecules are moving more quickly, then the
collisions become more frequent and the sound speed increases. Moreover, given a temperature
of thermal equilibrium, in gases having a lighter molecular weight, molecules collide easier than
for heavier gases. Therefore by measuring the speed of sound in a gas, we gain information
about the pressure and density of that gas, and, with the additional use of the equation of
state, we may also constrain the temperature and chemical composition.

Stars are made of gas and they have natural overtones (which, conversely to the harmonics
of an instrument, would appear dissonant to our ears when played at audible frequencies),
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1. INTRODUCTION

and similarly as one can recognize the shape of the instrument producing a particular sound
wave, we can use the frequencies, amplitudes and phases of the sound waves that we detect in
the stars to “see” their interiors, i.e. to see their internal “shapes”. One of the main goals of
asteroseismology is in fact to measure the sound speed throughout a star so that we can derive
the fundamental parameters of the stellar structure.

Asteroseismology uses astronomical observations in photometry and spectroscopy in order
to extract the frequencies, amplitudes and phases of the sound waves at a star’s surface [1].
Then, basic physics and mathematical models are used to infer the sound speed and density
inside a star, throughout its interior, and hence derive a pressure profile. With reasonable
assumptions about chemical composition and knowledge of appropriate equations of state, the
temperature can then be derived.

The acoustic waves propagating in the stellar interior are known as “pressure” modes, or p
modes. Anyhow, pulsations in stars are more complicated than simple sound waves generated
from an instrument. In fact, there we can find equally important “gravity” modes, or g modes,
where the restoring force of the pulsation is not pressure, but buoyancy. Much of the studies of
stellar pulsation that can be found in the literature offer a valid view of the presence of gravity
modes, though they are not acoustic. These modes allow us to probe different regions of the
interior of stars than those where pressure waves propagate, as we shall discuss later in this
chapter.

The Sun is certainly the star that has been investigated mostly in this sense. In fact, sev-
eral thousand individual modes have been identified so far by observing its surface, and it is
expected that with more precise observations a number up to 106 modes can be determined
accurately. The enormous amount of information about the solar interior sets the basis for
helioseismology (e.g. see [67]), the science of learning about the Sun from the observed fre-
quencies. Helioseismology has already led to a considerable amount of information about the
structure and rotation of the solar interior, similarly to what asteroseismology is actually doing
with other stars.

A general background of helioseismology can be found in [97, 204, 79, 206, 135, 80]. Since
the Sun is considered to be a normal star, similarly rich spectra of oscillations would be expected
in other similar stars. However, due to the distance of the other stars their observation has
no or very limited, spatial resolution, which has the effect of reducing the number of modes
that can be detected. In fact, most of the observed solar modes have relatively short horizontal
wavelength on the solar surface, and hence would not be detected in stellar observations due
to the poor spatial resolution. A second problem in trying to detect the expected solar-like
oscillations in other stars is their very small amplitudes. On the Sun the maximum velocity
amplitude in a single mode is about 15 cm s−1, whereas the luminosity amplitudes are of the
order of 1 µmag. As a consequence, a particular care is required when observing such oscillations
in other stars, hence a great deal of effort is being spent on developing new instrumentation
with the required sensitivity (see Chapters 2, 3).

In this chapter we will describe how oscillations in stars are parametrized in order to be
used for inferring the fundamental stellar properties. In addition we present the asteroseismic
relations and quantities that are at the basis for the analyses presented in the forthcoming
chapters, together with some qualitatively discussions about the main aspects of this science.
A detailed derivation and description of the equations that characterize asteroseismology goes
beyond the scope of this work, but can be found in [1, 76] for the interested reader.
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1.1 Oscillations in Stars

1.1 Oscillations in Stars

For understanding how pulsations are visualized into a star we start by introducing some
important basic concepts that are widely known in the field of asteroseismology. Clearly, stars
are three-dimensional objects, so their natural oscillation modes have nodes in three orthogonal
directions. Assuming to consider a frame in spherical coordinates and having origin in the center
of the star, the oscillations are described by the distance r to the centre, the co-latitude θ and
the longitude φ, where θ is measured from the pulsation pole, i.e. the axis of symmetry (θ is in
fact co-latitude, since latitude is measured from the equator). The nodes are concentric shells
at constant r, cones of constant θ and planes of constant φ. For a spherically symmetric star
the solutions to the equations of motion have displacements in the (r, θ, φ) directions and are
given by1.

ξr(r, θ, φ, t) = a(r)Y m
` (θ, φ)e−i2πνt (1.1)

ξθ(r, θ, φ, t) = b(r)
∂Y m

` (θ, φ)

∂θ
e−i2πνt (1.2)

ξφ(r, θ, φ, t) =
b(r)

sin θ

∂Y m
` (θ, φ)

∂φ
e−i2πνt (1.3)

where ξr, ξθ and ξφ are the displacements, a(r) and b(r) are amplitudes, ν is the so called cyclic
frequency and Y m

` (θ, φ) are the spherical harmonics

Y m
` (θ, φ) = (−1)mc`mP

m
` (cos θ)eimφ (1.4)

being Pm` (cos θ) the Legendre polynomials given by

Pm` (cos θ) =
1

2``!
(1− cos2 θ)m/2

d`+m

d cos`+m θ
(cos2 θ − 1)` , (1.5)

and c`m the normalization coefficients given by

c`m ≡
√

2`+ 1

4π

(`−m)!

(`+m)!
, (1.6)

which let the spherical harmonics to satisfy the normalization condition |Y m
` |2 = 1. In most

of the pulsating stars the pulsation axis coincides with the rotation axis. The main exceptions
are the rapidly oscillating Ap stars where the axis of pulsational symmetry is the magnetic axis
which is tilted with respect to their rotational axis. Thus, in stars there are three quantum
numbers to specify these modes: n is related to the number of radial nodes and is called the
overtone of the mode, or simply radial order ; ` is the angular degree of the mode and specifies
the number of surface nodes that are present; m is the azimuthal order of the mode, where
|m| specifies how many of the surface nodes are lines of longitude. It follows therefore that the
number of surface nodes that are lines of co-latitude is equal to `− |m|. The values of m range
from −` to +`, so there are 2`+ 1 modes for each degree `. In the following we shall describe
the two kinds of modes observable in pulsating stars, namely radial and nonradial modes.

1A detailed analytical derivation of the equations that describe the oscillations in stars goes beyond the scope
of this thesis. Details can be found in, e.g., [1, 76]
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1.1.1 Radial Modes

The simplest modes are the radial modes with ` = 0, and the simplest of those is the funda-
mental radial mode. In this mode the star swells and contracts, heats and cools, spherically
symmetrically with the core as a node and the surface as a displacement antinode. This is the
typical mode of pulsation for Cepheid variables and for RR Lyrae stars, amongst others.

The first overtone radial mode has one radial node that is a concentric shell within the
star. As we are thinking in terms of the radial displacement, that shell is a node that does not
move; the motions above and below the node move in antiphase. The surface of the star is
again an antinode. There are Cepheid variables, RR Lyrae stars and δ Sct stars that pulsate
simultaneously in the fundamental and first overtone radial modes. The of the ratios between
the overtone periods and the fundamental one reflect the sound speed gradient in the stars
where we observe these modes, hence they provide information about temperature and (in
some places) chemical composition gradients.

1.1.2 Nonradial Modes

The simplest of the nonradial modes is the axisymmetric dipole mode with ` = 1, m = 0.
For this mode the equator is a node; the northern hemisphere swells up while the southern
hemisphere contracts, then vice versa; one hemisphere heats while the other cools, and so on
and so forth, all with the simple cosine dependence of P 0

1 (cos θ) = cos θ, where θ is again the
co-latitude. From the observer’s point of view, the star seems to oscillate up and down in space
because the centre-of-mass of the star is not displaced during dipole oscillations due to the fact
that stars are not incompressible bodies. Nonradial modes only occur for n ≥ 1, so in the case
of the ` = 1 dipole mode, there is at least one radial node within the star. While the outer
shell is displaced upwards from the point of view of the observer, the inner shell is displaced
downwards and the centre of mass stays fixed. Dipole modes are observed in many kinds of
pulsating variables.

Modes with two surface nodes (` = 2) are known as quadrupole modes. For the ` = 2,
m = 0 mode the nodes lie at latitudes ±35◦, since P 0

2 (cos θ) = (3 cos2 θ − 1)/2 (see also [1]
for further details). The poles of an ` = 2, m = 0 mode swell up (and heat up, although not
usually in phase with the swelling) while the equator contracts (and cools), and vice versa.
Figure 1.1 represents and explains a set of octupole modes with ` = 3, giving a mental picture
of what the modes look like on the stellar surface which is generally inclined with respect to
the line-of-sight.

Unfortunately, we are not yet at the stage where we can resolve stellar surfaces and detect
the nodal lines directly from intensity or Doppler maps such as the ones shown in Figure 1.1.
This can only be done for the Sun so far. As a consequence, for other stars we have to deal
with observations representing integrated quantities over the stellar surface, such as the surface-
averaged brightness or radial velocity. It is then intuitively clear that, for a fixed value of the
amplitude of the oscillation, and for a particular value of the inclination of the symmetry axis of
pulsation with respect to the line-of-sight, such observed quantities must be smaller for higher
angular degree ` modes than for lower degree modes. Indeed, the higher `, the more sectors
and/or zones will divide the stellar surface, with neighbouring regions having opposite sign in
intensity or velocity. Their influence on the integrated quantity therefore partially tends to
cancel out. A rigorous mathematical expression for the partial cancellation can be found in [1],
Chapter 6, or in [76]. To get a feel for the consequences of this effect, let us assume here the
simplest case, which is the surface-integrated intensity of an axisymmetric mode over a stellar
disc that does not suffer from limb darkening. In that simplest case, the partial cancellation is
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1.1 Oscillations in Stars

Figure 1.1: Snapshot of the radial component of the ` = 3 octupole modes. The columns show the
modes from different viewing angles; the left column is for an inclination of the pulsation pole of 30◦,
the middle column is for 60◦, and the right column is for 90◦. The white bands represent the positions
of the surface nodes; red and blue represent sections of the star that are moving in (out) and/or heating
(cooling) at any given time, then vice versa. The top row shows the axisymmetric octupole mode (` = 3,
m = 0) where the nodes lie at latitudes ±51◦ and 0◦. The second row shows the tesseral (meaning
0 < |m| < `) ` = 3, m = ±1 mode with two nodes that are lines of latitude and one that is a line of
longitude. The third row is the tesseral ` = 3, m = ±2 mode, and the bottom row shows the sectoral
mode (meaning ` = |m|) with ` = 3, m = ±3. Importantly, rotation distinguishes the sign of m. Image
copied from [1].

described well by an integral of the intensity eigenfunction over the visible stellar disc, i.e., it
is proportional to

c`0

∫ π/2

0
P`(cos θ) sin θ cos θdθ , (1.7)

where c`0 is defined according to Eq. (1.6). This factor is shown for all axisymmetric modes
with ` = 0, . . . , 10 in Figure 1.2. The radial mode does not suffer from partial cancellation
and thus reaches value unity, which is about twice as high as a quadrupole ` = 2 mode. It is
very important to be aware that axisymmetric ` = 3 modes are almost invisible in intensity
measurements due to the partial cancelling, while they are still quite visible in velocity mea-
surements because they allow for a slightly higher spatial resolution2. Partial cancellation for
the ` = 4 mode is a factor 10 greater than that of the dipole mode, and this factor increases
as ` increases. While the inclusion of rotation and limb darkening complicates this simplistic
description, and the effects are more complicated for velocity quantities than for the intensity,
Figure 1.2 explains why even modes are much easier to detect in the data than odd modes,

2This is caused by the fact that Doppler shifts let us distinguish about different regions on the stellar’s surface
more than intensity variations do. This also represents an interesting advantage of spectroscopic measurements
to the photometric ones.
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Figure 1.2: The partial cancelling factor for the surface-integrated intensity in the case of axisymmetric
modes for ` = 0, 1, . . . , 10, when ignoring the darkening at the limb of the stellar surface. Image copied
from [1].

except for the special case of the dipole mode. The modes become more difficult to detect as
their degree increases, and in general no modes having ` > 3 have been identified so far in any
star different than the Sun.

1.1.3 Including the Rotation Effect

Although the rotation effect is not part of the asteroseismic studies presented in this disserta-
tion, for the sake of completeness we shall discuss it briefly in the following. In Eqs. (1.1) and
(1.4) it can be seen that for modes with m 6= 0 the exponentials in the two equations combine
to give a time dependence that goes as exp [−i(2πνt−mφ)]. This phase factor in the time
dependence means that the m 6= 0 modes are traveling waves, where our sign convention is
that modes with positive m are traveling in the direction of rotation (prograde modes), and
modes with negative m are traveling against the direction of rotation (retrograde modes).

For a spherically symmetric star the frequencies of all 2`+ 1 members of a multiplet (such
as the octupole septuplet ` = 3, m = −3, −2, −1, 0, +1, +2, +3) are the same. But deviations
from spherical symmetry can lift this frequency degeneracy, and the most important physical
cause of a star’s departure from spherical symmetry is rotation. For example, in a rotating star
the Coriolis force causes pulsational variations that would have been up-and-down to become
circular with the direction of the Coriolis force being against the direction of rotation. Because
of this effect (and others effects as well, e.g. see [1]), the prograde modes traveling in the
direction of rotation have frequencies slightly lower than the m = 0 axisymmetric mode, and
the retrograde modes going against the rotation have slightly higher frequencies, in the co-
rotating reference frame of the star, thus the degeneracy of the frequencies of the multiplet is
lifted. This was discussed by [205] in a study of the β Cep star β CMa (see [1], Chapter 2, for
a definition of this class of stars). In the observer’s frame of reference the Ledoux rotational
splitting relation for a uniformly rotating star is

νn`m = νn`0 +m(1− Cn`)Ω/2π , (1.8)

where νn`m is the observed frequency of the mode having numbers n, ` and m, νn`0 is the
unperturbed central frequency of the multiplet (for which m = 0) which is unaffected by
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the rotation, Cn` is a model-dependent quantity with value below 1 (see [1], Chapter 3 for a
definition), and Ω is the angular velocity, corresponding to a rotation frequency of Ω/2π. If we
rewrite Eq. (1.8) as

νn`m = νn`0 −mCn`Ω/2π +mΩ/2π , (1.9)

then it is easy to see that the Coriolis force, contributing as the second term in the right-hand
side of the equation, reduces the frequency of the prograde modes with positive m slightly in
the co-rotating rest frame, but then the rotation frequency is added to that since the mode is
going in the direction of rotation. Likewise the retrograde modes with negative m are traveling
against the rotation so have their frequency in the observer’s frame reduced by the rotation
frequency.

In this way we end up with a multiplet with 2`+1 components all separated by the rotational
splitting (1 − Cn`)Ω/2π. In a real star rotation is not expected to be uniform and hence
the rotational splitting would depend on the properties of the modes in a more complicated
manner; also, the various components of the multiplet may be excited to different amplitudes,
and some may not have any observable amplitude, so all members of the multiplet may not be
present. The importance for asteroseismology is that in case such rotationally-split multiplets
are observed, the ` and m of the corresponding modes may be identified and the splitting used
to measure the rotation rate of the star. Where multiplets of modes of different degree or
different overtone are observed, it is possible to gain knowledge of the interior rotation rate of
the star – something that is not knowable by any other means.

In the case of the Sun, helioseismology has spectacularly measured the differential rotation
rate of the Sun down to about half way to the core. Below the convection zone at r/R� ∼ 0.7
the Sun rotates approximately rigidly with a period close to the 27-d period seen at latitudes
of about 35◦ on the surface. Within the convection zone the rotation is not simply dependent
on distance from the solar rotation axis, as had been expected in the absence of any direct
observation. It is certainly a great triumph of helioseismology that we can know the internal
rotation behaviour of the Sun. In addition, rotationally-split frequencies have been recently
identified also in red giant stars observed by Kepler [22, 23], providing the first remarkable
measure of internal rotation rates in distant stars.

1.2 Using Asteroseismology

Since p modes are acoustic waves, for modes that are not directed at the centre of the star (i.e.,
the nonradial modes) the lower part of the wave is in a higher temperature environment than
the upper part of the wave, thus in a region of higher sound speed according to the discussion
given in the introduction of this chapter. As a consequence the wave is refracted back to the
surface, where it is then reflected, since the acoustic energy is trapped in the star, as can be
seen in Figure 1.4(a). For higher ` values, the modes have more reflection points. This means
that high degree modes penetrate only to a shallow depth, while lower degree modes penetrate
more deeply. The frequency of the mode observed at the surface depends on the sound travel
time along its ray path, hence on the integral of the sound speed within its “acoustic cavity”.
Clearly, if many modes that penetrate to all possible depths can be observed on the surface,
then it is possible to “invert” the observations to make a map of the sound speed throughout
the star, and from that deduce the temperature profile, with reasonable assumptions about the
chemical composition. In the Sun the sound speed is now known to a few parts per thousand
over 90% of its radius. To do the same for other stars is an ultimate goal of asteroseismology.

Thus asteroseismology lets us literally see the insides of stars because different modes pen-
etrate to different depths in the star. However, stellar oscillations are not so simple as just p
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Figure 1.3: The frequency of modes versus their degree ` for a solar model. The figure clearly illustrates
the general property of p modes that frequency increases with overtone n and degree `. For g modes
frequency decreases with higher overtone, but increases with n if we use the convention that n is negative
for g modes. Frequency still increases with degree ` for g modes, just as it does for p modes. Some
values of the overtone n are given for the p modes lines in the upper right of the figure. Note that
while continuous lines are shown for clarity, the individual modes are discrete points, corresponding to
integer `, which are not shown here. Image copied from [1].

modes. We can also see inside the stars with g modes. In fact, for some stars, and for parts
of others, we can only see with g modes (see also the recent findings for Kepler stars done by
[21, 32] and the mixed mode analysis presented in Chapter 4).

1.2.1 p Modes and g Modes

There are two main sets of solutions to the equation of motion for a pulsating star, and these lead
to two types of pulsation modes: p modes and g modes. As already mentioned at the beginning
of our discussion, for the p modes, or pressure modes, pressure is the primary restoring force
for a star perturbed from equilibrium. These p modes are acoustic waves and have gas motions
that are primarily vertical. For the g modes, or gravity modes, buoyancy is the restoring force
and the gas motions are primarily horizontal. There is also an f mode situated between the p
mode of radial order 1 and the g mode of radial order 1 for all ` ≥ 2.

Both p and g modes of high order can be described in terms of the propagation of rays.
This provides illuminating graphical representations of their properties; examples are shown
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Figure 1.4: Propagation of rays of sound or gravity waves in a cross-section of a Sun-like star. The
acoustic ray paths (panel a) are bend by the increase in sound speed with depth until they reach the
inner turning point (indicated by the dotted circles) where they undergo total internal refraction. At the
surface the acoustic waves are reflected by the rapid decrease in density. Shown are rays corresponding
to modes of frequency 3000µHz and degrees (in order of increasing penetration depth) ` = 75, 25, 20
and 2; the line passing through the centre schematically illustrates the behavior of a radial mode. The
g-mode ray path (panel b) corresponds to a mode of frequency 190µHz and angular degree 5 and is
trapped in the interior. In this example, it does not propagate in the convective outer part. g modes are
observed at the surface of other types of pulsators. This figure illustrates that the g modes are sensitive
to the conditions in the very core of the star. Image copied from [1].

in Figures 1.4 and 1.5. Also, this representation forms the basis for powerful asymptotic
descriptions of the modes [1, 76]. There are three other important properties of p modes and
g modes:

1. as the number of radial nodes increases the frequencies of the p modes increase, but the
frequencies of the g modes decrease, as is shown in Figure 1.3

2. for stars having an internal structure similar to that of the Sun, the p modes are most
sensitive to conditions in the outer part of the star, whereas g modes are most sensitive
to conditions in the deep interior of the star (except in white dwarfs where the g modes
are sensitive mainly to conditions in the stellar envelope), as is shown in Figure 1.4

3. for n� ` an asymptotic relation for p shows that they are approximately equally spaced
in frequency, while another asymptotic relation for g modes points out that they are
approximately equally spaced in period.

As illustrated in Figure 1.4(b), g modes in solar-like stars are trapped beneath the convective
envelope, when viewed as rays. In reality the modes have finite amplitudes also in the outer
parts of the star and hence, at least in principle, can be observed on the surface; this is in fact
the case in the γ Dor stars which have convective envelopes. In more massive main-sequence
stars, such as illustrated in Figure 1.5, the g-mode rays are confined outside the convective
core.
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Figure 1.5: Propagation of rays of gravity waves in a cross-section of an 8M� ZAMS star. The ray
path corresponds to a mode of frequency 50µHz and ` = 5. It is trapped outside the convective core of
the star. Image credit by [1].

1.2.2 The Asymptotic Relations

The asymptotic relations are very important in many pulsating stars. From [299] they show
that for the p modes, the frequencies are approximately given by

νn` = ∆ν

(
n+

`

2
+ ε

)
+ δνn` , (1.10)

where n and ` are the overtone (radial order) and angular degree of the mode, ε is a phase
shift sensitive to the properties of the near surface layers of the star [81], and δνn` is a small
correction. ∆ν is known as the large frequency separation, or simply the large separation, and
is the inverse of the sound travel time for a sound wave from the surface of the star to the core
and back again [304], given by

∆ν =

(
2

∫ R

0

dr

c(r)

)−1

, (1.11)

where c(r) is the sound speed as a function of the radial coordinate. The large separation is
obviously sensitive to the radius of the star, hence near the main sequence it is a good measure
of the mass of the star. The term δνn` is the small frequency separation, or simply the small
separation and it is sensitive to the core condensation, hence the age of the star (e.g. see [317]
for the case of solar-like oscillations). Different small separations are adopted when analyzing
the observations, and their investigation in relation to ∆ν will be discussed in more detail in
Chapter 4 for cool stars observed in open clusters.

The periods of g modes, asymptotically given by

Πn` =
Π0√
`(`+ 1)

(n+ α) , (1.12)

are nearly uniformly spaced; here n and ` are again the radial order and angular degree of the
mode, α is a small constant, and Π0 is given by

Π0 = 2π2

(∫
N

r
dr

)−1

, (1.13)
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where N is the Brunt-Väisälä frequency given by

N2 = g

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
(1.14)

Γ1 being the adiabatic exponent

Γ1 =

(
∂ ln p

∂lnρ

)

ad

, (1.15)

and the integral is over the cavity in which the g mode propagates, as in Figure 1.4(b). Devia-
tions of the period spacing for g modes are used to diagnose stratification in stars, since strong
mean molecular weight gradients trap modes and cause deviations from the simple asymptotic
relation given in Eq. (1.12). This technique has been particularly successful in measuring the
stratification in white dwarf atmospheres with carbon-oxygen cores and layers of helium and hy-
drogen above (see [1], Chapter 7). Period spacings observed in red giant stars are also extremely
useful for distinguishing between H-shell and He-core burning phases (see e.g. [32, 245, 87] and
the mixed modes analysis presented in Chapter 4).

1.3 Asteroseismology across the HR Diagram

Figure 1.6 shows a power spectrum of the radial velocity variations (see Chapter 2 for a defi-
nition) observed over a time span of 9.5 years for the Sun by BiSON, the Birmingham Solar
Oscillation Network3. This shows the set of frequencies expected from Eq. (1.10) for high
overtone, low degree (n � `) p modes. It is noteworthy that the comb of frequencies consists
of alternating even and odd `-modes, as expected from Eq. (1.10), where it can be seen that
(to first order) modes of (n, `) and (n − 1, ` + 2) have the same frequency. It is the small
separation, δν, that lifts this degeneracy. This effect can be seen in Figure 1.8 which is a
portion of an amplitude spectrum of the radial velocity variations of the Sun seen as a star
made by the GOLF (Global Oscillation at Low Frequencies4) experiment on SOHO (SOlar
and Heliospheric Observatory5) orbiting at the Earth-Sun L1 Lagrangian point. Here it can
be seen that while the large separations for even and odd `-modes (reported as ∆ν0, ∆ν1) are
very similar, the small separation lifts the degeneracy between paris of modes having (n, `) and
(n−1, `+2). We also notice that there is a substantial difference between the small separations
for even and odd `-modes (i.e. δν13, δν02).

Figure 1.7 shows a spectrum similar to that of Figure 1.6 but corresponding to 30 days
of photometric observations taken by the VIRGO instrument on the SOHO spacecraft. Again
the regularity of the peaks corresponding to p-mode oscillations is evident, though they are
rising above a sloping background which is caused by granulation effects in the surface layers
of the star. In Section 1.3.3 we will discuss more about the differences between photometric
and spectroscopic measurements of the oscillation signal.

Ultimately, it is the goal of asteroseismology for any star to detect enough frequencies over
ranges in n, ` and possibly m that the interior sound speed may be mapped with precision,
so that deductions can be made about interior temperature, pressure, density, chemical com-
position and rotation. A fundamental step along the way is to resolve a sufficient number of
frequencies in a star, and to identify the modes associated with them unambiguously such that

3The official BiSON website can be found at http://bison.ph.bham.ac.uk/.
4The official website of the GONG experiment can be found at http://golfwww.medoc-ias.u-psud.fr/.
5The NASA’s SOHO space mission can be found at http://sohowww.nascom.nasa.gov/.
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1. INTRODUCTION

Figure 1.6: A power spectrum of radial velocity variations in the Sun seen as a star for 9.5 years
of data taken with the Birmingham Solar Oscillation Network (BiSON) telescopes. The equivalent
amplitude noise level in this diagram is 0.5mms−1. Image copied from [1].

Figure 1.7: Amplitude spectra of full-disk solar oscillations measured in intensity by the VIRGO
instrument on the SOHO spacecraft. The observations are smoothed and rescaled here to show the
spectrum corresponding to 30 days. Individual oscillation modes appear as strong peaks rising above a
sloping background, which arises from random convective motion on the solar surface. Image copied
from [1].
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1.3 Asteroseismology across the HR Diagram

Figure 1.8: This amplitude spectrum of radial velocity variations observed with the GOLF instrument
on SOHO clearly shows the large and small separations in the p modes of the Sun. The radial order
and angular degree of the modes are also included. Image copied from [1].

the large and small separations may be deduced with confidence6. That step alone leads to
determinations of the fundamental parameters of mass and age for some kinds of stars. A
practical example of this method is given in Chapter 2 where the asteroseismic analysis of two
solar-like subgiant stars is presented.

Figure 1.9 shows an “asteroseismic HR Diagram” [75] where the large separation clearly
is a measure of mass (largely because of the relationship between mass and radius), and the
small separation is most sensitive to the central mass fraction of hydrogen, hence age. Now
that many solar-type oscillators have been found, it is possible to begin to model them using
the large and small separations (e.g. see [316, 317]). The pattern of high overtone even and
odd ` modes is also observed in some roAp stars, although their interpretation for those stars
is more complex because of the strong effects of their global magnetic fields on the frequency
separations.

Figure 1.10 shows a black-and-white version of the so-called “pulsation HR Diagram”. The
g-mode pulsators are common amongst other types of stars — even some, the γ Dor stars,
that are not very much hotter than the Sun and are overlapping with the solar-like oscillators,
keeping hope alive that g modes may eventually be detected with confidence in the Sun. There
are three places in Figure 1.10 where there are p-mode and g-mode pulsators of similar stellar
structure: for the β Cep (p-mode) and Slowly Pulsating B (SPB; g-mode) stars on the upper
main sequence; for the δ Sct (p-mode) and γ Dor (g-mode) stars of the middle main sequence;
and for the EC 14026 subdwarf B variables (p-mode) and the PG 1716+426 stars (g-mode).
Stars pulsating in both p modes and g modes promise particularly rich asteroseismic views of
their interiors.

6A remarkable case of ambiguous mode identification is that concerning the hot F type stars that show solar-
like oscillations (the star Procyon among the most famous). This issue has been recently solved by adopting
correlations between the asymptotic quantities appearing in Eq. (1.10) and the effective temperature of the
stars, see [318].
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Figure 1.9: An asteroseismic HR Diagram in which the large separation ∆ν is most sensitive to mass,
and the small separation δν is most sensitive to age. The solid, nearly vertical lines are lines of constant
mass, and the nearly horizontal dashed lines are isopleths of constant hydrogen mass fraction in the core,
at the values indicated in the figure. Image copied from [1].

1.3.1 The Driving Mechanisms

It is first worth to say that not all stars pulsate. It would be interesting to know whether all
stars would be observed to pulsate at some level, if only we had the precision to detect those
pulsations. At the present time, and with the level of the precision of our observations of µmag
in photometry and cm s−1 in radial velocity, we can say that some stars do not pulsate.

In the longest known case of a pulsating star, that of o Ceti (Mira), it has been pulsating
for hundreds of years, at least. In many other cases there are good light curves going back over
a century, so that we know that stellar pulsation is a relatively stable phenomenon in many
stars. That means that energy must be fed into the pulsation via what are known as driving
mechanisms.

For most of the interior of the star, energy is lost in each pulsation cycle, i.e., most of the
volume of the star damps the pulsation. The observed pulsation can only continue, therefore,
if there is some part of the interior of the star where the energy fed into the pulsation is as
much as that damped throughout the rest of the bulk of the star. In the following we briefly
illustrate the three main driving mechanisms responsible of generating oscillations in all the
main classes of pulsators.

There is a region in the star, usually a radial layer, that gains heat during the compression
phase of the pulsation cycle and is able to drive the pulsation. All other layers that lose heat
during the compression phase are responsible of damping the pulsation instead. If this layer
succeeds in driving the oscillation, then the star functions as a heat engine, converting thermal
energy into mechanical one; thus we refer to this type of driving as a heat-engine mechanism.
For Cepheid variables, RR Lyrae stars, δ Sct stars, β Cep stars — as for most of the pulsating
variables seen in Figure 1.10 — the driving mechanism is connected with the opacity, thus it is
known as the κ mechanism. Simplistically, in the ionization layers for H and He opacity blocks
radiation, the gas heats and the pressure increases causing the star to swell. But the ionization
of the gas reduces the opacity, radiation flows through, the gas cools and can no longer support
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1.3 Asteroseismology across the HR Diagram

Figure 1.10: A pulsation HR Diagram showing many classes of pulsating stars for which astero-
seismology is possible. Tilted lines are oriented according to the nature of the modes observed (left
orientation for p modes, right orientation for g modes). Image copied from [1].

the weight of the overlying layers, so the star contracts. On contraction the H or He recombines
and flux is once more absorbed as opacity is increased again, hence the condition for a heat
engine is present: the layer gains heat on compression.

The other major driving mechanism that operates in the Sun and solar-like oscillators, as
well as some pulsating red giant stars, is the stochastic driving, which identifies the class of
pulsators studied in this dissertation. Indeed, nonadiabatic calculations taking convection into
account generally find that modes in stars on the cool side of the instability strip are stable,
hence in this case the heat-engine mechanism is not able to drive the oscillations. In these
stars the convective motion near the surface likely reaches speeds close to that of sound. Such
turbulent motion with near-sonic speed is an efficient source of acoustic radiation for making
the star resonate in some of its natural oscillation frequencies. This is due to the stochastic
noise that is transferred to energy of global oscillation. Since the excitation is caused by a very
large number of convective elements, the driving is essentially random.

As the stochastically excited modes are also intrinsically damped (see Chapter 2 for more
details). The outcome is that the average power spectrum is therefore a Lorentzian spectrum,
with a width determined by the linear damping rate of the mode [76]. If a single realization,
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Figure 1.11: Observed spectrum, from Doppler observations with the BiSON network, of a single radial
mode of solar oscillations. The smooth curve shows the fitted Lorentzian profile, multiplied by three for
clarity. Image copied from [76].

rather than the average, of the spectrum is considered, as is generally the case for observations
of stellar oscillations, the result is a random function with a Lorentzian envelope. An example
is shown in Figure 1.11, based on observations of solar oscillations with the BiSON network.
Such Lorentzian profiles are often assumed in the fits carried out to determine the frequency
and other properties of the modes.

Lastly, the third major theoretical driving mechanism is the ε mechanism, where in this case
ε is used to refer to the energy generation rate in the core of the star. Potentially, variations
in ε could drive global pulsations. This has been discussed as a possible driving mechanism
in some cases of evolved very massive stars, but there is no known class of pulsating stars at
present that are thought to be driven by the ε mechanism alone.

1.3.2 Solar-like Oscillations in Cool Stars

It is fairly well established that the solar five-minute oscillations are intrinsically stable, and
excited by the vigorous near-surface convection [13], that is the stochastic driving introduced
above. Oscillations excited in this manner can therefore be called solar-like; since near-surface
convection with speed approaching or exceeding the speed of sound is generally found in stars
cooler than the Cepheid instability strip (e.g. see Figure 1.10), such stars may be expected to
exhibit solar-like oscillations, unless other intrinsic excitation mechanisms are at work. This
obviously includes stars which are otherwise quite different from the Sun, such as subgiants
and giants. It should be noted that, even though the excitation mechanism is in principle
the same as in the Sun, differences in internal structure can lead to substantial differences
in the properties of the oscillation spectra, particularly for highly evolved stars (we refer to
Chapters 3 and 4 for more details on solar-like oscillations in red giant stars and to Chapter 6
for a discussion about the oscillation amplitudes).

A major difficulty in observing solar-like oscillations, at least in main-sequence stars, relies
on their expected very small amplitudes: in the solar case the largest amplitude per mode for
radial-velocity observations is around 20 cm s−1, or around 5 ppm (parts per million) in broad-
band intensity observations. Thus definite detection of oscillations analogous to the solar
five-minute oscillations has been an elusive goal for a long time. In the last few years, however,
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1.3 Asteroseismology across the HR Diagram

major breakthroughs have been achieved, largely thanks to the development of very stable
techniques for radial-velocity observations and of space-based photometric missions aimed at
detection of extra-solar planets (see Chapters 2 and 3).

Solar-like oscillations are expected in all cool stars. An important feature of these pulsations
is that the envelope of the power excess in the acoustic spectrum moves to lower frequencies as
the star evolves from main sequence to the red giant phase. The main asteroseismic parameter
that is related to this effect is the frequency of maximum power νmax. As demonstrated by [58],
νmax scales with the cut-off frequency of the star, hence, νmax ∝ g /

√
Teff . This correlates νmax

to the fundamental stellar properties of mass, radius and effective temperature. In Chapter 3
it will be shows how the (asteroseismic) mass and radius of a star can be derived by simply
combining the measurements of νmax and ∆ν.

It is however important to note that the properties of solar-like oscillations change substan-
tially with the changes in stellar internal structure, particularly following hydrogen exhaustion
in the core, i.e. the beginning of the subgiant phase. The resulting core contraction greatly
increases the local gravitational acceleration in the deep interior of the star. Furthermore, gra-
dients in hydrogen abundance, associated with a hydrogen shell-burning source and possibly
the presence of a shrinking convective core in the main-sequence phase, give rise to an increase
of the buoyancy frequency N , Eq. (1.14). As a result, the acoustic oscillations may have a
g-mode character in the deep interior, which arises when p and g modes undergo so-called
avoided crossings (see Chapter 4 for further details). The analysis of these mixed modes is of
great importance for gaining knowledge about the very deep interior of red giant stars, which
also makes these targets one of the most interesting class of pulsators for testing of stellar
evolution and stellar oscillation theory.

1.3.3 Observational Techniques

For completing this general introduction to asteroseismology, we present a summary concerning
the observational techniques used to attain data of stellar variability. As discussed by [185, 25],
stellar oscillations can be observed in the stellar atmosphere in three ways: (i) velocity shifts
of the spectral lines (spectroscopy), (ii) variations in the total intensity (photometry), (iii)
variations in the equivalent widths of temperature-sensitive lines (spectroscopy). All these
techniques require coverages of the targets as continuous as possible in order to reduce the
confusion from aliases in the spectral window (see Chapter 2 for more discussion). In the
following we briefly describe the main features, advantages and disadvantages of each of these
observational techniques. We also stress that the first two techniques are those used for the
entire analysis presented in this thesis.

Velocity Measurements

Before the advent of the space-based missions CoRoT and Kepler (see below), most of the
results of the asteroseismology were based on velocity measurements obtained using high-
dispersion spectrographs with stable reference sources. The great improvement in Doppler
precision over the past years was a direct result of programs aimed at detecting planets around
other stars. Asteroseismology has benefited considerably from these advances. In a near future,
the SONG project [142] is expected to improve dramatically the quality of spectroscopic ob-
servations for asteroseismology by exploiting a ground-based network of telescopes that allows
for continuous observations of targets.

Velocity measurements have the important advantage of being more sensitive to modes
having angular degree ` ≥ 2 (e.g. see [76]). The reason is that the observations have some
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spatial resolution of the stellar disk, and so the tendency for high-degree modes to cancel
is reduced. Thus, we measure velocities projected onto the line of sight, which gives more
sensitivity to the centre of the disk relative to the limb. In addition, Doppler shift observations
are far less sensitive to the stellar background (mainly originated from the granulation effects)
than photometric observations, which is a very important advantage.

However, velocity observations have the disadvantage of suffering from pronounced effects
of stellar rotation, which prevent to attain high precision due to line broadening, hence they
cannot be used for stars that show a high rotational velocity (e.g. see the case of η Bootis
studied by [189]). The observations also require high-resolution spectroscopy with extremely
high precision, which is only achievable on a handful of instruments from ground. This clearly
introduces further problems related mainly to Earth’s atmosphere conditions and to the day
and night alternation due to Earth’s rotation, which limits significantly the continuity of the
observations from a single site (see Chapter 2 for more details). Lastly, spectroscopy observa-
tions are, in general, single target dedicated, i.e. only one target per time is usually observed
from a single operating site.

Intensity Measurements

Observing the brightness variations on the stellar’s surface shows three important advantages:
it can be done with an extremely simple instrumentation; the acquired photons span a wide
range of wavelengths; it can be made simultaneously on many stars (although to some extent,
multi-object spectroscopy also offers this possibility). Unfortunately, scintillation from the
Earth’s atmosphere severely limits the precision of ground-based photometry, but thanks to
the simplicity of the instrumentations, space-based missions can operate as well. In fact, space
is the ideal place to make intensity measurements, given the absence of atmospheric scintillation
and the possibility for long periods of uninterrupted observations. The most successful space
missions designed specifically for asteroseismology are MOST [221] (launch date 2003), CoRoT
[11, 229] (launch date 2006) and Kepler [50, 193] (launch date 2009). The latter in particular
is providing an enormous amount of high-precision light curves that span up to over more than
3 years of continuous observations (see Chapter 3 for an introduction and first results of the
NASA’s Kepler Mission).

Intensity measurements detect temperature variations, as the brightness follows a law∝ T 4
eff ,

and so are much more sensitive to the stellar background that arises from granulation. This is
seen in intensity observations of the Sun (see Figure 1.7) as background power rising towards
low frequencies. Although this power contains information about stellar convection that might
usefully be compared with models (see e.g. [301, 217]), for asteroseismology it represents
an unwanted and fundamental noise source. This constitutes a significant disadvantage with
respect to the velocity measurements.

Equivalent Width Measurements

This method for detecting oscillations was suggested by [189] and used for the first time in
the study of η Bootis. It involves monitoring changes in spectral lines whose equivalent widths
(EWs) are temperature sensitive, most notably the hydrogen Balmer lines. Similarly to the
velocity measurements, EW measurements are more sensitive to modes with ` ≥ 2 than in-
tensity measurements. Conversely to velocity measurements, at least for the Balmer lines, the
centre-to-limb variation of line strengths gives a similar effect to EW measurements.

As for the photometric case, EW measurements are sensitive to temperature changes, hence
they suffer from the granulation noise at low frequencies and are, in general, more difficult to be
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obtained than photometric observations because they require spectroscopic techniques. Lastly,
this technique has the advantage of being more useful for detecting oscillations in rapid rotators,
where instead the velocity measurements become less precise.
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Corsaro, E., et al., Solar-like oscillations in
the G9.5 subgiant β Aquilae, 2012a, A&A, 537, 9 [86]

2 Solar-like Oscillations

in Subgiant Stars

The search for solar-like oscillations (see [77, 107] for a summary) in main-sequence and
subgiant stars showed a tremendous growth in the last decade (for reviews see e.g. [25, 26]),
especially by means of the photometric space-based missions CoRoT [11, 229] and Kepler
[50, 193]. The latter in particular is presently providing an enormous amount of high-quality
asteroseismic data (e.g. see [127] for more details on the KAI - Kepler Asteroseismic Investiga-
tion and Chapter 3). Photometric studies of a large number of solar-type stars are fundamental
for statistical investigations of intrinsic stellar properties and for testing theories of stellar evo-
lution [71]. However, as is known from the theory of solar-like oscillations, high-precision
Doppler shift measurements are more effective for detecting p modes of higher angular degrees
(see Chapter 1). At the present time the échelle spectrometers such as CORALIE, HARPS,
UCLES, UVES, SOPHIE and SARG, attaining high-precision radial velocity (RV) measure-
ments [211], offer a way to detect solar-like oscillations in bright asteroseismic targets (e.g. see
[27] for a review on ground-based campaigns). The spectroscopic approach to the detection
of solar-like oscillations will also be used in the ground-based SONG project [142] in the near
future.

In the first part of this chapter we provide a general introduction to the Fourier analysis
method adopted for analyzing the RV time-series, together with some definitions and techniques
that are helpful for the classical asteroseismic study conducted in this dissertation.

Afterwards we describe the detection of excess of power and a detailed analysis of the
solar-like oscillations observed in the evolved subgiant star β Aquilae (HR 7602, HD 188512,
HIP 98036) [86], by exploiting RV measurements and a measure of its parallax obtained by
Hipparcos. In particular, in Section 2.3.1 we describe the observations, the data reduction
done by means of the standard IRAF1 package facilities and the RV extraction developed
for the first time with the iSONG code, an IDL2 based software to be used within the SONG
project [142] for an automated extraction of RV measurements from star’s spectra. The Fourier
analysis and the mode identification process that led us to the global asteroseismic quantities
are presented in Sections from 2.3.3 to 2.3.7. In Section 2.4 we discuss the scaled mass, mode
amplitudes, mode lifetimes, and frequency of maximum power of the star, where a comparison
with expectations and a global list of stellar parameters also derived by means of the SEEK
package [260] is presented.

In the last part of the chapter (Section 2.5) we show the new results derived from a revised
analysis of the solar-like oscillations in the G5 subgiant µ Herculis [48] (HR 6623). We show

1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association
of the Universities for Research in Astronomy, inc. (AURA) under cooperative agreement with the National
Science Foundation.

2IDL (Interactive Data Language) is a registered trademark of ITT Visual Information Solutions.
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how the RV time-series derived by means of the iSONG code from the same spectra used by
[48], suffer from less systematic effects than the old dataset derived by means of the AUSTRAL
code [110]. For this case, the raw spectra were reduced with the REDUCE IDL package [258].

The preliminary analyses described in this chapter show the interesting potential of the
iSONG code for extractions of RV measurements from high-precision wavelength-calibrated
stellar spectra. The conclusions are drawn in Section 2.6.

2.1 Fourier Analysis

In this section we introduce the Fourier analysis for the calculation of the so-called power
spectrum, the main tool for the asteroseismic analysis discussed here. In fact, seismic analyses
usually deal with time-series in the time domain, then transformed into a signal in the frequency
domain to be used for deriving the oscillation properties3. The simple Fourier transform in the
frequency domain is termed acoustic spectrum4. Here we plot the frequency in abscissa and
the oscillation amplitudes in ordinate. This amplitude spectrum can be computed in different
manners (see also [181]), the Fast-Fourier Transform (FFT) [123, 259] and the Discrete Fourier
Transform (DFT, mostly known as the Lomb-Scargle periodigram [208, 272]) being the most
known methods. These algorithms converge to the same spectrum for evenly sampled data
without gaps, but keeping in mind that the scale of the amplitudes is not always the same:
this aspect represents a problem when comparing data that have been analyzed with different
methods.

For the analysis presented in this chapter (and also in Chapter 3 concerning the ensemble
studies of Kepler targets) we used the so called Least-Squares Spectrum (LSS), which is defined
so that a sine wave with an unitary amplitude in the time domain shows a peak having an
unitary amplitude when transformed to the amplitude spectrum, and it has unitary area in
the power-density spectrum (see Section 2.1.4 for a definition). The LSS differs from the
amplitude spectrum derived by either the FFT or the Lomb-Scargle periodigram [208, 272] by
a normalization factor only. In the following we describe the LSS method and present its main
advantages compared to the other techniques mentioned above.

2.1.1 The Least-Squares Spectrum

Let us assume we have a set of N observations x0, x1, . . . , xN−1, having zero mean and sampled
at times t0, t1, . . . , tN−1, respectively5. The observations that can be used can be in the form
of either light curves or RV time-series, the latter being the case of the analysis presented in
this chapter. Thus, one can set up a model of the observations as follows

xth
n = α cos(2πνtn) + β sin(2πνtn) , (2.1)

which assumes that our time-series consists of a single sine wave. By means of simple trigonom-
etry formula, the model can be rewritten as

xth
n = A sin(2πνtn + δ) , (2.2)

3Studying the asteroseismic properties of a star directly from its time-series is however possible, see e.g. [54].
Nonetheless, description of the methods that do not involve the Fourier analysis techniques goes beyond the
scope of this work.

4It is often common referring to the power spectrum, which is derived as the squared modulo of the amplitude
spectrum.

5The zero mean dataset is given as an example for simplifying the calculations and it can be applied to any
time-series in general by simply removing any offset given by the position of its mean value. A more general
introduction to the LSS that considers the offset as additional parameter can be found in [1].
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where A =
√
α2 + β2 and δ = tan−1 (α/β). In a LSS the coefficients α and β are calculated

by minimizing the following equation

R(νk) =
N−1∑

n=0

(
xn − xth

n

)2

=
N−1∑

n=0

{xn − [α cos(2πνktn) + β sin(2πνktn)]}2 ,
(2.3)

which basically represents a least-squares method applied to the difference between model and
observations. This consists in solving the system of two equations

∂R

∂α
= 0 ,

∂R

∂β
= 0 . (2.4)

This yields the system of equations represented by
[
ccc(νk) ccs(νk)
ccs(νk) css(νk)

] [
α(νk)
β(νk)

]
=

[
yc(νk)
ys(νk)

]
(2.5)

where, following [181], we used the notations:

yc(νk) =

N−1∑

n=0

xn cos(2πνktn) ,

ys(νk) =

N−1∑

n=0

xn sin(2πνktn) ,

ccc(νk) =

N−1∑

n=0

cos2(2πνktn) ,

css(νk) =

N−1∑

n=0

sin2(2πνktn) ,

ccs(νk) =
N−1∑

n=0

cos(2πνktn) sin(2πνktn) .

(2.6)

Thus, the system of Eq. (2.5) can be denoted as

Ca = y , (2.7)

C being the matrix of the terms ccc, css, ccs given by Eq. (2.6), a the vector of the coefficients
α, β to be determined, and y the vector of the terms yc, ys, Eq. (2.6). Therefore, the solution
to the system (2.5) is given by

a = C−1y , (2.8)

namely
[
α(νk)
β(νk)

]
=

[
ccc(νk) ccs(νk)
ccs(νk) css(νk)

]−1 [
yc(νk)
ys(νk)

]

=

[
css(νk)/∆(νk) −ccs(νk)/∆(νk)
−ccs(νk)/∆(νk) ccc(νk)/∆(νk)

] [
yc(νk)
ys(νk)

]
,

(2.9)
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where ∆(νk) = ccc(νk) · css(νk)− c2
cs(νk). The coefficients can be then written as

α(νk) =
css(νk)yc(νk)− ccs(νk)ys(νk)
ccc(νk)css(νk)− c2

cs(νk)
, (2.10)

β(νk) =
ccc(νk)ys(νk)− ccs(νk)yc(νk)
ccc(νk)css(νk)− c2

cs(νk)
. (2.11)

Hence, given a frequency value νk, the amplitude in the LSS is given by

A(νk) =
√
α2(νk) + β2(νk) . (2.12)

A great advantage of the LSS method with respect to the FFT one is that the spectrum
can be calculated using statistical weights. By assigning a statistical weight wn to each data
point xn, usually wn = σ−2

n with σn the corresponding uncertainty (see Section 2.3.1 for more
discussion), Eq. (2.3) can be rewritten as

R(νk) =
1

W

N−1∑

n=0

wn

(
xn − xth

n

)2

=
1

W

N−1∑

n=0

wn {xn − [α cos(2πνktn) + β sin(2πνktn)]}2 ,
(2.13)

where

W =

N−1∑

n=0

wn . (2.14)

The solution to Eq. (2.13) is obtained in the same way as for Eq. (2.3) but adopting the terms

yc(νk) =
N−1∑

n=0

wnxn cos(2πνktn) ,

ys(νk) =
N−1∑

n=0

wnxn sin(2πνktn) ,

ccc(νk) =
N−1∑

n=0

wn cos2(2πνktn) ,

css(νk) =
N−1∑

n=0

wn sin2(2πνktn) ,

ccs(νk) =
N−1∑

n=0

wn cos(2πνktn) sin(2πνktn) ,

(2.15)

instead of those given by Eq. (2.6) (see [112]). Another important and very useful feature of
the LSS method is that it can be calculated also for unevenly sampled data, as happens in
most of the cases, especially for spectroscopic observations from ground sites.

At this point, we briefly enhance the main differences between the LSS method and the
other methods mentioned above. First, in the normalization of the Lomb-Scargle periodigram
the significance of a given peak in the spectrum has a central importance, whereas for the LSS
method it is important to ensure that a sine wave with a unitary amplitude in the time domain
has a corresponding unitary amplitude in the frequency domain. In order to evaluate when the
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2.1 Fourier Analysis

significance of a peak in the power spectrum is relevant, it is common to adopt the 4σ criteria
given by [52]. This empirical criteria has been tested over many ground-based datasets [52].

Second, as also stressed in [181], highlighting the difference between a typical Fourier trans-
form and the LSS is of importance for a deeper understanding of the method. The former
technique allows one to derive a series of values X0, X1, . . . , XN−1 in the frequency domain by
transforming a series of observations x0, x1, . . . , xN−1 having zero mean in the time domain,
according to the relation

Xk =

N−1∑

n=0

xn exp

(
−2πi

N
kn

)
(2.16)

with Xk = X(νk) ∈ R, and νk the corresponding frequency. The Fourier transform fulfills the
Parseval’s theorem by definition, namely

N−1∑

n=0

|xn|2 =
1

N

N−1∑

k=0

|Xk|2 , (2.17)

which means that the total information contained in the time domain is preserved when passing
to the frequency domain. This conservation follows from the fact that the possible natural
frequencies νk are only in a well defined number, i.e.

νk =
2πn

T
, k = −N/2, . . . ,+N/2 , (2.18)

with N again the total number of data points, and T the total duration of the observing run.
Therefore, it follows that the natural frequencies are only given for evenly sampled data and
the Parseval’s theorem is not fulfilled for the case of unevenly sampled observations, which also
include time-series with gaps. In fact, as stated by [108], unevenly sampled data have neither
a well defined Nyquist frequency nor a set of natural frequencies. The main consequence is
that particular care must be paid when using statistics for the modeling of the observations,
because the resulting acoustic spectra may not be χ2 distributed with two degrees of freedom,
according to the statistic of an acoustic spectrum [319].

2.1.2 Aliasing

One of the main problems of time-limited and/or unevenly sampled observations is that given
a frequency of a real oscillation signal, there will be always more than a single peak (sidebands
or sidelobes) in the amplitude spectrum that corresponds to the same sinusoidal contribution.
This effect is the well known aliasing phenomenon of the theory of signal processing.

To understand the problem, let us assume to have a single sinusoidal oscillation with fre-
quency ν0, phase δ0, and unitary amplitude, given by

W (t) = sin(2πν0t− δ0) . (2.19)

Its corresponding amplitude spectrum will be hereafter denoted as the window function, or
equivalently spectral window if one refers to the squared modulus [190]. As calculated by [76],
the functional form of the window function approximately reads

W (ν) ∝ T sinc [πT (ν − ν0)] , (2.20)

where T is the total observing time and

sinc(x) =
sin(x)

x
, (2.21)
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2. SOLAR-LIKE OSCILLATIONS IN SUBGIANT STARS

is the sinc function (see Figure 2.1). Thus, the spectral window S(ν) is expressed as

S(ν) ∝ T 2sinc2 [πT (ν − ν0)] . (2.22)

In practice the peak corresponding to the single frequency ν0 has a more complex structure
than the one described by the window function due to observational noise and fluctuations in
the oscillation amplitude.

Figure 2.1: The sinc function (a) and the sinc2 function (b). Image copied from [76].

In addition data can from gaps caused by the day-night alternation (corresponding to a
frequency range of 11.57µHz) as it happens for ground-based observations from single site.
Then, following [76], the window function is approximately given by

W (ν) ∝ T cos [πτ(ν − ν0)] sinc [πT (ν − ν0)] , (2.23)

where τ is the duration of the gap in the data, while the spectral window is again expressed as
S(ν) = |W (ν)|2. Both Eqs. (2.20) and (2.23) reduce to a delta of Dirac for T →∞.

The integral of the spectral window, that is the integral in power of the window function,
represents the reciprocal of the “effective” observing time of a time-series with either unevenly
sampling or gaps, or both of them. This integral is known as the spectral resolution of the
time-series. Clearly, the effective observing time will be always lower (or equal at most) to the
total observing time. In conclusion, the presence of big gaps can distort the real amplitude of
a sinusoidal signal as measured in the amplitude spectrum because, according to Eq. (2.23),
the area under the peak profile would be spread into a wider range of frequencies.

2.1.3 Damping of the Modes

As stressed in [76], a further complication to the case described in Section 2.1.2 is represented
by an additional damping term appearing in the single sinusoidal component. The new signal
we consider is

A(t) = A0sin(2πν0t− δ0)e−ηt , (2.24)

where η is the damping rate. The reciprocal of the damping rate is known as the mode lifetime,
and can be found in literature as the quantity τ expressed in days. The resulting power
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spectrum as a function of the angular frequency ω = 2πν, where ν is the so-called cyclic
frequency, assuming to observe the signal for a time T →∞, is expressed as

P (ω) ∝ A2
0

(ω − ω0)2 + η2
, (2.25)

where ω0 = 2πν0. Thus, P (ω) is a Lorentzian profile having HWHM = η. If we express P (ω)
in terms of the cyclic frequency, we have

P (ν) ∝ A2
0

(ν − ν0)2 +
( η

2π

)2 , (2.26)

that is a Lorentzian profile having HWHM = η/(2π). This let us introducing another important
quantity that characterizes solar-like oscillations, namely the mode linewidth, defined as the
FWHM of Eq. (2.26), that is Γ ≡ η/π. The mode linewidth is directly related to the mode
lifetime according to the relation Γ = (πτ)−1, and is usually expressed in µHz. As we will
describe in Chapter 4, measuring the mode linewidths is important for our understanding of
the damping mechanism of solar-like oscillations and can be used as a probe for estimating the
temperature of the stars [87].

In the real case of a finite observing time T , the resulting shape of the peak in the power
spectrum will be intermediate between the sinc2 function and the Lorentzian one. In particular,
the profile will tend to the former for ηT � 1, and toward the latter for ηT � 1 (see [76] for
further details). However, this is not yet a real case of oscillation because we are implicitly
assuming a sudden excitation of the mode. For solar-like oscillations, as it appears for the Sun,
the oscillations are excited stochastically (see Chapter 1) and it can be shown that this effect
originates a number of sharp peaks, whose distribution surrounds the general Lorentzian profile
of the mode peak (e.g. see [76]). Thus, this process, combined with the exponential decay,
generates a spectrum that on average has a Lorentzian profile.

2.1.4 The Power Density Spectrum

At this stage, defining a spectrum that is independent of data sampling (both uneven sampling
and data gaps) can be of great utility, especially when ground-based observations carried out
from different sites need to be merged into a single dataset (see e.g. [29, 9, 31]). The so-called
power density spectrum (PSD) fulfills this requirement and it is defined so that a sine wave with
unitary amplitude in the time domain produces a window function with unitary area in the
frequency domain. Intuitively, the PSD can be computed by normalizing the power spectrum
to the value of the spectral resolution introduced above, namely

PSD(ν) =
P (ν)∫ νNyquist

0 S(ν)dν
, (2.27)

where P (ν) is the power spectrum and the spectral resolution is calculated as the integral of
the spectral window S(ν) = |W (ν)|2 from 0 to the Nyquist frequency νNyquist. Although for
unevenly sampled data the Nyquist frequency is not defined, we are still able to introduce a
limit frequency for the integral of the spectral window, that is

νLimit =
1

2〈t〉 , (2.28)

with 〈t〉 the average sampling time of the time-series. In practice this method works properly
also because the spectral window goes rapidly to zero as the frequency increases and the integral
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2. SOLAR-LIKE OSCILLATIONS IN SUBGIANT STARS

can be estimated correctly within the range [0, νLimit]. In fact, the window function for ground-
based observations (e.g. those used for the analysis presented in this chapter) is typically
represented by a sinc function having a number of significant sidebands not larger than 8
[48, 86]. Therefore, the PSD at a given frequency νk can be expressed analytically as

PSD(νk) =
|A(νk)|2∫ νLimit

0 S(ν)dν
(2.29)

where A(νk) is the LSS computed according to Eq. (2.12) (either weighted or unweighted).
Since the spectral resolution is a constant for a given dataset, Eq. (2.29) can be applied to any
frequency νk chosen in the sampling, bearing in mind that the window function W (ν) has to
be computed with the same frequency sampling of the acoustic spectrum A(ν), as suggested
by [181].

The PSD has the advantage of having amplitudes that are insensitive to the sampling of the
data and the duration of the observation. This means that amplitudes measured in datasets
with different sampling and observing length can be compared directly. The PSD has been
widely used in literature for estimating the oscillation amplitudes in stars showing solar-like
pulsations by means of the method described by [190, 191]. Such method is also adopted for
the analysis of the oscillation amplitudes in both β Aquilae and µ Herculis described below.

2.1.5 The CLEAN algorithm

The CLEAN algorithm described in this section is analogous to the original algorithm intro-
duced by [153] for aperture synthesis in radio interferometry. It was afterwards adapted by [266]
for cleaning up the spectral window pattern for frequency analysis. It is the widest adopted
algorithm for frequency analysis of acoustic spectra and it will be used in the context of the
study presented in this chapter.

The first step in CLEANing an acoustic spectrum is to construct the dirty (i.e. observed)
spectrum A(ν), which is the Fourier transform of the data without any manipulation. Secondly,
one deconvolves the observed spectrum with the window function W (ν) shifted to the position
of the highest peak appearing in the dirty spectrum. The deconvolution is usually done by first
applying a particular scaling factor to the window function according to the gain factor g, with
0 < g < 2. Thus, one subtracts the g-scaled spectral window from the dirty spectrum in order
to produce a residual spectrum, R(ν). We have

A(ν) = R(ν)⊗W (ν − ν0) (2.30)

where ν0 is in this case the frequency of the highest peak in the observed spectrum (first
iteration) or the highest peak in the residual spectrum (starting from second iteration), W (ν−
ν0) is the window function centered at the peak to be CLEANed, and ‘⊗’ represents convolution.
Hence the residual spectrum is formally given as

R(ν) = A(ν)⊗−1 W (ν − ν0) . (2.31)

Let now assume we computed the LSS, hence we have the coefficients α(ν) and β(ν) intro-
duced in Section 2.1.1, or alternatively the amplitude A(ν) and the phase δ(ν). A simple way
to remove a peak at a given frequency from the observed spectrum is to subtract a sinusoidal
signal from the time-series. In fact, assuming to have an oscillation of frequency ν0 at a given
time tn

xth
n = A0 sin(2πν0tn + δ0)

= α(ν0) cos(2πν0tn) + β(ν0) sin(2πν0tn) ,
(2.32)
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where A0 = A(ν0) and δ0 = δ(ν0). When subtracting it from the data we obtain

cn = xn − xth
n = xn −A0 sin(2πν0tn + δ0)

= xn − α(ν0) cos(2πν0tn)− β(ν0) sin(2πν0tn) ,
(2.33)

where cn is n-th point of the residual time-series. This method is very similar to the CLEAN
algorithm mentioned above and it is known as Iterative Sine Wave Fitting (ISWF) [181]. The
great advantage of this method, as well as for the CLEAN algorithm, is that it can be done iter-
atively, i.e. for an arbitrary number of frequencies. The ISWF algorithm is used in this chapter
for extracting the frequencies of oscillation from an acoustic spectrum (see Section 2.3.3). The
algorithm can be summarized as follows:

1. Identify the frequency of the highest peak in the amplitude spectrum (this can be easily
done by searching for the maximum of the signal in the frequency domain).

2. Subtract the corresponding sinusoid from the original data according to Eq. (2.33) — for
our purposes they can be either radial velocity time-series or light curves — and ensuring
that the computed sinusoid is sampled in the same manner of the data themselves.

3. Consider the new residuals time-series {cn}, with i = 0, 1, . . . , N − 1 and recompute the
amplitude spectrum with e.g. the method described in Section 2.1.1.

4. Repeat the procedure from point (1) for the new highest peak in the last residual spectrum
computed in point (3), until the S/N of the peak to be removed is below a given threshold
(usually S/N = 4, [52], but one can adopt even lower values, depending on the quality of
the data and on the manner the noise level in the amplitude spectra is treated, as done
e.g. by [48] and [86]).

This algorithm can be used to filter a desired region in the power spectrum. This is done
by applying the ISWF to all the peaks whose amplitudes are above the threshold set by the
white noise level, and being in a range of frequency we want to “clean” from any power. This
method is usually denoted as pre-whitening.

2.2 The Échelle Diagram for p Modes

The échelle diagram is a fundamental tool for inferring the most reliable value of the mean
large separation ∆ν in asteroseismic data analysis, and for deriving a proper identification of
the modes. An échelle diagram is commonly constructed by plotting the frequencies derived
in the preliminary CLEANing phase against the frequencies modulo ∆ν. In fact, according to
the regular pattern of p modes in the frequency domain given by Eq. (1.10), when the value
of the large separation is correct the modes in the échelle diagram align into straight vertical
ridges (e.g. see [293]). Thus, the échelle diagram can be used to estimate both the best value
of ∆ν and the average spacing between the ` = 2 and ` = 0 ridges, i.e. δν02. In addition, this
simple but fundamental tool allows us to identify the frequencies derived from the amplitude
spectrum of a star in most of the cases.

Figure 2.2 shows a theoretical échelle diagram, which is built through several models eval-
uated at different values of the frequency of maximum power, νmax. The plot was done by
[293], with νmax ranging from 0 to 4500µHz. From left to right we find ` = 2, 0, 3 and 1 as
the most detectable modes, while ` = 4, 5 modes are too faint to be observed with short length
time-series. As the star evolves the frequency of maximum power decreases, because it scales
from the acoustic cut-off frequency of the star [58]. When νmax < 1500µHz, the star becomes a
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subgiant, hence it stops to burn Hydrogen in its core. During this phase, acoustic modes (from
the outer convective zone) and gravity modes (arising from the interior of the star) are, in some
cases, able to couple together, undergoing so called avoided crossings, as already mentioned in
Chapter 1. These mixed modes have the main feature of deviating from the position given by
the asymptotic relation for p modes, which is conversely expected to be followed properly by
pure pressure modes. As we shall discuss in more detail in Chapter 4, this behavior is more
evident for dipole modes, as it is clear from Figure 2.2 where red symbols are spread along the
entire range in the case of subgiant stars. Mixed modes are however visible during the entire
red giant phase, though having a spread in the échelle diagram smaller than that of a subgiant.
Clearly, the identification of the modes is rather difficult for subgiant stars because they could
easily be confused with modes of different angular degree. In this case, further investigations
deriving from both a theoretical modeling of the star and mode profile features such as the
FWHM of the peak in the acoustic spectrum6 are necessary for properly identifying them.

A modified version of the échelle diagram uses the amplitude spectrum as a background for
the CLEANed frequencies. This is done by folding the observed spectrum of the star into slices
of length ∆ν and subsequently collapsing them along the entire range of frequency we intend to
plot (see also Appendix A). This version of the échelle diagram can be very helpful especially for
confusing cases in which a low number of modes is observed because the additional information
of the mode amplitude is given (see below).

2.3 The G9.5 subgiant β Aquilae

Once that the main tools for the asteroseismic analysis of time-series are so provided, we can
proceed by describing the asteroseismic study of the G9.5 subgiant star β Aquilae [86].

2.3.1 Observation and Data Reduction

The subgiant β Aquilae has V = 3m.699 ± 0m.016 (UBV photometric measurements from
[250]), spectral type G9.5 IV [139], distance 13.70±0.04 pc derived from the Hipparcos parallax
π = 73.00 ± 0.20mas [309], Teff = 5160 ± 100K [209], log g = 3.79 ± 0.06 [307] and [Fe/H]
= −0.17 ± 0.07 [121]. The radius R = 3.05 ± 0.13 R� was measured by means of Long
Baseline Interferometry [249] that is listed in the CHARM2 catalogue for high angular resolution
measurements [265]. An excess of power in the power spectrum (hereafter PS) of β Aquilae
data acquired with HARPS was already found by [191], who estimated a mean large separation
∆ν = 30 µHz from stellar parameters. The data for β Aquilae used in this work were acquired
with observations carried out during six nights (2009 August 5-11) by means of the high-
resolution cross-dispersed échelle spectrograph SARG [137, 83], Figure 2.3, mounted on the
3.58m Italian telescope TNG at the La Palma observing site. SARG operates in both single-
object and long-slit (up to 26”) observing modes and covers a spectral wavelength range from
370 nm up to about 1000 nm, with a resolution ranging from R = 29000 up to R = 164000.
Our spectra were obtained at R = 164000 in the wavelength range 462-792 nm. The calibration
iodine cell works only in the blue part of the spectrum (500-620 nm), which was used for
measuring Doppler shifts. During the observing period we collected spectra with a signal-to-
noise ratio (S/N) varying from 150 to 300, a typical exposure of ∼ 150 s and a sampling time
of ∼ 190 s. A total of 828 spectra were collected with the following distribution over the six
nights: 91, 133, 110, 146, 163, 185. The spectra were then reduced and calibrated in wavelength

6The width of the peak in the acoustic spectrum, i.e. the lifetime of the mode (see Section 2.1.3) can be an
important parameter to distinguish between pure pressure modes and gravity-dominated mixed modes because
gravity modes have lifetimes much longer than acoustic modes.
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Figure 2.2: Theoretical échelle diagram. Image copied from [293].

with a Th-Ar lamp, using standard tasks of the IRAF package facilities (see e.g. [85]). No
flat-fielding was applied to the spectra because of a degradation of the S/N level.

2.3.2 Radial Velocity Measurements with iSONG

The RV measurements were determined by means of the iSONG code, an IDL based software
developed for the SONG project [142]. iSONG models the instrumental profile given by the
point-spread function (PSF), stellar, and iodine cell spectra to measure Doppler shifts. The
observed stellar spectrum, II2,obs, was fitted with a reconstructed one by using a convolution
between the oversampled stellar template, Is, the very high-resolution iodine cell spectrum
(derived from the transmission function of the iodine absorption cell, TI2), and the measured
spectrograph instrumental profile. Essential to this process are the template spectra of β
Aquilae taken with the iodine cell removed from the beam, and the iodine cell itself superim-
posed on a rapidly rotating B-type star, the same for all the measurements. The B-type star
spectra allow us to construct the instrumental profile because they are essentially featureless,
while the β Aquilae spectra acquired without the iodine cell create the original stellar template
when deconvolved with the PSF (see [211, 61] for a detailed explanation of the method). The
true stellar template, Is, is found as

Is = Iobs ⊗−1 PSF , (2.34)
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Figure 2.3: SARG layout in the TNG Nasmyth room B. On the foreground, the SARG electronic
rack. Behind it, the SARG, rigidly mounted on the telescope fork. Light reaches the spectrograph from
a folding mirror. The rotator adaptor is kept fixed when using SARG. Field derotation is achieved by
means of an optical derotator. Guiding is done at the slit, using a cooled CCD.

where Iobs is the stellar spectrum taken without the iodine cell, while the PSF is obtained by
using the B-star spectra taken with the absorption cell superimposed [306]. The deconvolution
is done by means of a modified Jansson method [125]. Then, iSONG exploits the relation given
by [211, 61] for attaining high precision Doppler shift measurements through iodine absorption
cells, namely

II2,obs(λ; k,∆λ) = k [TI2(λ)Is(λ+ ∆λ)]⊗ PSF (2.35)

where k is a normalization factor and ∆λ is the Doppler shift to be estimated, in order to
construct a new observed stellar spectrum taken through the absorption cell, which is shifted
by ∆λ. The best ∆λ, hence the RV we intend to measure, is found by minimizing the squared
differences between the shifted observed spectrum and the original one. The velocities were cor-
rected to the solar system barycenter [161, 162] and no other corrections, such as decorrelation
or filtering by removing polynomial fits to the time-series, were applied.

iSONG provides also an estimate of the uncertainty in the velocity measurements, σi; these
values were derived from the scatter of the velocities measured from many (' 650), small (' 1.8
Å) segments (chunks) of the échelle spectrum. To include the accuracy of the measurements
in a weighted Fourier analysis of the data, we firstly verified that these σi reflected the noise
properties of the RV measurements and their Fourier transform, following a slightly modified
approach used by [62]. First we considered that the variance deduced from the noise level σamp

in the amplitude spectrum has to satisfy the relationship

σ2
amp

N∑

i=1

σ−2
i = π (2.36)

according to [186] and [187]. This procedure yields new RV uncertainties scaled down by a
factor of 1.51. Then we performed the following three steps. (i) The high-frequency noise
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in the PS, well beyond the stellar signal (> 1000µHz), reflects the properties of the noise in
the RV data, and because we expected that the oscillation signal is the dominant cause of
variations in the velocity time-series, we need to remove it to analyze the noise. This we made
iteratively by finding the strongest peak in the PS of the velocity time-series and subtracting the
corresponding sinusoid from the time-series (see also [112], Section 4.3, and Section 2.1.5 of this
chapter). This procedure, namely the pre-whitening, was carried out for the strongest peaks
in the oscillation spectrum in the frequency range 0-1.5mHz, until the spectral leakage into
high frequencies from the remaining power was negligible (see also [203, 48]). This left us with
a time-series of residual velocities, ri, that reflects the noise properties of the measurements.
(ii) We then analyzed the ratio ri/σi, expected to be Gaussian-distributed, so that the outliers
correspond to the data points that exceed the given distribution. The cumulative histogram
of the residuals is shown as a solid red curve in the upper panel of Figure 2.4, indicating the
fraction of “good” data points. An excess of outliers is evident for |ri/σi| & 1.5. In this step we
used the theoretical Gaussian function for the cumulative histogram, given by the expression

F (xi) =
N

M
[1− erf (xi/x0)] , (2.37)

where
erf(x) =

2√
π

∫ x

0
et

2
dt (2.38)

is the error function, N is the total number of data points, M = max [1− erf (xi/x0)], and
xi = |ri/σi|. The zero point fixed to x0 = 0.89 allows us to adjust the fit for a noise-optimized
distribution, which means that the chosen distribution minimizes the noise level in the weighted
PS (see [29] for more details on different kinds of weight optimizations). The reason for this
optimization relies on the possibility to improve the mode identification by increasing the S/N
of the frequency peaks. (iii) The lower panel of Figure 2.4 shows the ratio f of the values
of the observed points to the corresponding ones of the cumulative distribution function, i.e.
the fraction of data points that could be considered as “good” observations, namely those that
are close to unity. The quantities wi = 1/(σ2

i f) were adopted as statistical weights in the
computation of the weighted PS according to the procedure described in Section 2.1.1 for the
weighted LSS. In this way we get rid of the systematics that affect the gaussianity of the
residuals and an improvement of the S/N ratio in the weighted PS is then expected.

The time-series of the whole dataset is presented in Figure 2.5 (lower panel) with the
corresponding noise-scaled and outliers-corrected uncertainties σi (upper panel). Figure 2.6
shows the details of the oscillation observations during the fifth night, overlaid with a solid
blue curve representing a smoothing of 3.30 min for enhancing the p-mode oscillations pattern.
The final data point number of the full observation was reduced with respect to the number of
observed spectra owing to a consistent improvement of the oscillation envelope, so that a total
of 818 data points was taken into account for computing the time-series analysis.

We can now focus on the analysis concerning mode identification, amplitudes, lifetimes and
mean global asteroseismic parameters of the subgiant star β Aquilae.

2.3.3 Time-Series Analysis

As already mentioned above, the amplitude spectrum of the velocity time-series was calculated
as a weighted least-squares fit of sinusoids [112, 8, 28, 190], Section 2.1.1, with a weight as-
signed to each point according to its uncertainty estimate obtained from the RV measurement,
explained in Section 2.3.2. The result is shown in Figure 2.7, where a clear excess of power
around 420µHz is visible, with the typical pattern for p-mode oscillations in a G9.5 subgiant
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Figure 2.4: Upper panel: cumulative histograms of |ri/σi| for SARG data. The diamonds show the
observed data, and the solid curve shows the result expected for a Gaussian-distributed noise. Lower
panel: ratio f of the observed to the expected histograms, indicating the fraction of “good” data points.
An excess of outliers is evident for |ri/σi| & 1.5.

star. This feature is apparent in the power spectra of individual nights, and its frequency
agrees with theoretical expectations, as we will discuss in Section 2.4. To determine the S/N
of the peaks in the PS, we measured the noise level σamp in the amplitude spectrum in the
range 1200-1500µHz, far from the excess of power. By means of the new weights introduced
above, it was reduced from 14.4 cm s−1 to the final value of 12.8 cm s−1, which corresponds to
a noise level in the PS σPS = 0.02m2 s−2, where σPS = (4/π)σ2

amp as explained by [187]. Since
this is based on 818 measurements, we can deduce the velocity precision on the corresponding
time-scales using the relation σRMS = σamp

√
N/π, as derived by [187], which gives a scatter

per measurement of 2.1m s−1.
However, particular care has to be taken with the noise evaluation within the region of solar-

like oscillations. Indeed, by evaluating the noise in the amplitude spectrum in the intervals
100-300µHz and 600-800µHz, just below and above the excess of power, we obtained the
two noise levels σ100−300

amp = 26.2 cm s−1 and σ600−800
amp = 15.6 cm s−1, which appear to be quite

different. We then adopted a noise decaying accordingly to a linear trend law, ranging between
the two values within the region 200-700µHz.

2.3.4 Search for a comb-like pattern

We remind that, as already discussed in Chapter 1, the frequencies for low-degree, high radial
order p-mode oscillations in Sun-like stars are reasonably well approximated by the asymptotic
relation [299], which can be written in a more useful form for the analysis presented here, that
is

νn,` = ∆ν

(
n+

`

2
+ ε

)
− `(`+ 1)δν02/6 , (2.39)
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Figure 2.5: Radial velocity measurements of β Aquilae for the entire time of observation, obtained
with the iSONG code from the SARG spectra (lower panel) and their corresponding noise-scaled and
outliers-corrected uncertainties σi (upper panel).

Figure 2.6: Detail of the fifth night of observation of radial velocity measurements obtained with the
iSONG code from the SARG spectra (filled black circles). The solid blue line represents a 3.30min wide
smoothing to enhance the p-mode oscillations pattern.

where n and ` are integers that define the radial order and angular degree of the mode, respec-
tively, ∆ν = 〈νn,`− νn−1,`〉 is termed mean large frequency separation, δν02 = 〈νn,0− νn−1,2〉 is
the small frequency separation for the ` = 2, 0 modes, a quantity sensitive to the sound speed
gradient near the core, and ε is a quantity on the order of unity sensitive to the stratification of
the surface layers (see also Chapter 1). On attempting to find the peaks in our power spectrum
that match the asymptotic relation, we were severely hampered by the single-site window func-
tion, whose power is visible in normalized units in the inset of Figure 2.7, giving an effective
observation time of ∼ 1.80 days (i.e. the reciprocal of the integral in power of the window func-
tion). As is well known, daily gaps in a time-series produce aliases in the power spectrum at
spacings ±11.57µHz and multiples, which are difficult to disentangle from the genuine peaks.
Various methods to search for regular series of peaks have been discussed in the literature,
such as autocorrelation, comb response and histograms of frequencies. To find a starting value
for the ∆ν investigation we used the comb-response function method, where a comb-response
function CR (∆ν) is calculated for all sensible values of ∆ν (see [189] for details), representing
a generalization of the PS of a PS and consequently allowing us to search for any regularity in
the spectral pattern. In particular we used the generalized comb-response function discussed
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2. SOLAR-LIKE OSCILLATIONS IN SUBGIANT STARS

Figure 2.7: Power spectrum of the weighted radial velocity measurements of β Aquilae extracted with
the iSONG code from the SARG spectra. An excess of power is clearly visible, with a maximum centered
at 422µHz. The inset shows the normalized power spectrum of the window function for a sine-wave
signal of amplitude 1m s−1, sampled in the same way as the observations.

in [48]

CR (∆ν) =
N∏

n=1

[
PS

(
ν0 ±

2n− 1

2
∆ν

)
PS (ν0 ± n∆ν)

] 1
2n−1

, (2.40)

so that a peak in the CR at a particular value of ∆ν indicates the presence of a regular series
of peaks in the PS, centered at νmax and having a spacing of ∆ν/2. It differs from a correlation
function because the product of individuals terms is considered rather than the sum. For actual
calculations we used N = 2 but we checked that our result was stable for N > 2 as well.

To reduce the uncertainties caused by noise, only peaks above 300µHz and with amplitude
> 0.5ms−1 in the amplitude spectrum, corresponding to a S/N & 3.5, were used to compute
the CR. We determined the local maxima of the response function CR (∆ν) in the range 8
≤ ∆ν ≤ 50µHz as first step. In this case the result was seriously affected by two very strong
peaks at 11.57µHz and 23.14µHz, corresponding to once and twice the value of the daily gap,
respectively, which consistently reduced the strength of the peak corresponding to ∆ν. We
then decided to restrict the search range to 26 ≤ ∆ν ≤ 50µHz as second step to completely
exclude the daily alias peaks. The resulting cumulative comb-response function for this range,
obtained by summing the contributions of all the response functions, had the most prominent
peak centered at 28.90±0.45µHz as shown in Figure 2.8, where the uncertainty was computed
by considering the FWHM of the Gaussian used to fit the peak, and represented by the blue
dot-dashed curve. The peak corresponding to three times the daily spacing is also visible in
the right side of the plot, centered at 34.71µHz.

2.3.5 Oscillation Frequencies

The comb-response function provided a guess of the large separation, which was then used as
a starting point to investigate the most reliable value that could represent the observed data.
The investigation involved a parallel checking and trade-off between two different methods, i.e.
the folded PS and the échelle diagram (see Section 2.2). Firstly we computed the folded PS,
namely the PS collapsed at the large separation value, for different values of ∆ν subsequent to
the guess number. The final result for the folding was computed for ∆ν = 29.56µHz and is
shown in Figure 2.9, where the peaks corresponding to ` = 0 and ` = 2 ridges are marked by
a dashed and a dotted line, respectively. The daily side-lobes for ±11.57µHz are also clearly
visible and are marked with the same line-styles. The overlaid ridges represent the result of
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2.3 The G9.5 subgiant β Aquilae

Figure 2.8: Cumulative comb-response obtained as the sum of the individual comb-responses for each
central frequency ν0 with amplitude > 0.5ms−1 (S/N & 3.5) in the amplitude spectrum. The maximum
peak is centered at ∆ν = 28.90 ± 0.45µHz where the uncertainty is evaluated as the FWHM of the
Gaussian used to fit the peak (blue dot-dashed curve). The second marked peak on the right, centered at
34.71µHz, represents three times the daily spacing.

a least-squares fit to the asymptotic relation given by Eq. (2.39). It is noticeable how the
` = 1 ridge, marked by a dot-dashed line, does not correspond to any peak in the folded PS.
This could be caused by avoided crossings, although it could also be explained by a wrong
identification of the modes, as we will discuss in more detail in Section 2.4. We note that the
` = 2 ridge appears to be slightly shifted with respect to the position of the maximum of the
relative peak, a result that can be explained by the limit of our frequency resolution.

The second method adopted for the investigation of the large separation is represented by
the well known échelle diagram, an essential tool for frequency identification in asteroseismic
data, as discussed in Section 2.2. The échelle diagram was computed for a list of 9 high S/N
(& 3.5) frequencies directly obtained from the PS by means of the CLEAN algorithm (see
Section 2.1.5), although a further consideration regarding this aspect is required to explain the
way the final list was attained. In fact, two different ways of CLEANing the PS were adopted
for this work. In the first case the algorithm was applied to the weighted PS for a sufficiently
large number of frequencies (' 50 to find all the peaks with S/N > 3) in the range 0.01-
700µHz, then the resulting values were restricted to the interval 200-700µHz, obtaining a list
of 20 frequencies. For the second case the PS region below 200µHz was at first completely pre-
whitened. Then 20 frequencies were identified on the new resulting weighted PS in the range
200-700µHz. Comparing both lists of frequencies, the most unstable ones, i.e. those that were
not present in both lists, were rejected and only the first nine frequencies were considered. These
frequencies, showing an amplitude > 0.5ms−1 (or S/N & 3.5), were almost the same in both
cases. However, the first frequency list was selected because the chance of the identification of
one more ` = 2 mode was possible for this case. In Figure 2.10 we show the final result for
the échelle diagram superimposed on a colored scale background representing the amplitude
spectrum, where the plot was computed in the same way as in [216]. The filled symbols (white
and orange) represent the 10 identified modes for ` = 0 (circles), ` = 1 (triangles) and ` = 2
(squares); the orange symbols are the corrected frequencies, i.e. those shifted for the daily
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2. SOLAR-LIKE OSCILLATIONS IN SUBGIANT STARS

Figure 2.9: Folded PS in normalized units in the case of ∆ν = 29.56µHz. The overlaid ridges represent
the result for ` = 0, 1, 2 mode degrees as derived by a least-squares fit to the asymptotic relation, which
are marked as dotted, dashed and dot-dashed lines, respectively. The daily side-lobes for ±11.57µHz in
the case of ` = 0, 2 are also clearly visible and marked with the same line-style for each mode degree.

gap of ±11.57µHz from their original values (the corresponding open symbols) and reported
in Table 2.4. The aliasing considerably affects the amplitude spectrum with the presence of
several fictitious peaks, which appear as strong spots in the diagram without frequency symbols
overlaid. In particular, the two daily side-lobes arising from the strongest mode (` = 0) are
clearly visible as two red spots on the right-hand part of the diagram. The uncertainties on
frequencies are listed in Table 2.4 and were evaluated by using the analytical relation provided
by [237]

σ(ν) =

√
6

N

1

πT

〈σv〉
A
' 0.16

Am/s
µHz , (2.41)

where N = 818 is the total number of data points, T = 5.21 is the total duration of the
run in days, 〈σv〉 = 2.72ms−1 is the average uncertainty on each RV data point and A is
the amplitude per mode as derived in Section 2.3.6. This relation holds exactly for coherent
oscillations, hence we remark that the estimated uncertainties represent only a lower limit to
the real uncertainty value because these oscillations are not fully coherent. An upper limit to
these uncertainties can be fixed to the formal frequency resolution, given as the reciprocal of
the total duration of the run, which is 2.2µHz for this dataset. The complete identification of
the p modes is reported in Table 2.4 together with their S/N, where only three frequencies out
of nine were shifted by the daily alias. The ` = 1 modes reported without any radial order
number are potential candidates for mixed modes.

By means of a linear weighted least-squares fit to the asymptotic relation of the ` = 0
frequencies, the final value of ∆ν = 29.56 ± 0.10µHz was obtained, together with the con-
stant ε = 1.29 ± 0.04. The most likely value for the small separation was derived by using
the definition from the asymptotic relation with the frequency pairs (ν12,0, ν11,2), (ν13,0, ν12,2)
and (ν16,0, ν15,2), where ν15,2 = 508.47µHz was computed directly from ν16,2 = 538.03µHz by
adopting our value of the large separation. This led to δν02 = 2.55 ± 0.71µHz, as reported
in Table 2.2, but because it is comparable to the frequency resolution, its uncertainty is rel-
atively high (Figure 2.10). As a consequence, the reliability of this result requires additional
investigations and a longer dataset.
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2.3 The G9.5 subgiant β Aquilae

Figure 2.10: Échelle diagram of β Aquilae overlaid on the amplitude spectrum with a colored back-
ground scale. The filled symbols (white and orange) represent the identified modes for ` = 0 (circles),
` = 1 (triangles) and ` = 2 (squares). The orange symbols are the frequencies shifted for the daily gap
of ±11.57µHz while the open symbols correspond to the original unshifted values. The ridges derived
from the fit to the asymptotic relation (2.39) are also marked.

2.3.6 Mode Amplitudes

The evaluation of mode amplitudes is interesting for the discussion on the L/M scaling by
extrapolating from the Sun, as we will discuss in Section 2.4. As is known from the theory
of solar-like oscillations, the amplitudes of individual modes are affected by the stochastic
nature of the excitation and damping (e.g. see [187]). To measure the oscillation amplitude
per mode in a way that is independent of these effects, we followed the approach explained
in [190, 191]. This involves the following steps: (i) heavy smoothing of the weighted PS by
convolving it with a Gaussian whose FWHM is fixed to 4∆ν (which is the value considered
as a standard that allows comparisons since the amount of smoothing affects the exact height
of the smoothed amplitude spectrum), which is large enough to produce a single hump of
power that is insensitive to the discrete nature of the oscillation spectrum; (ii) conversion of
the smoothed PS to PSD by multiplying by the effective length of the observing run (that
is the reciprocal of the spectral resolution, Section 2.1.4, namely 6.40µHz for this dataset);
(iii) subtraction of the background noise, which we computed as a linear trend in the interval
200-700µHz, ranging from 26.2 cm s−1 to 15.6 cm s−1; (iv) multiplication of the result by ∆ν/c
where c = 4.09 (which represents the effective number of modes that fall in each segment of
length ∆ν as evaluated in the case of radial velocities) and taking the square root to convert to
amplitude per oscillations mode. The result is shown in Figure 2.11 for the range 200-700µHz,
where Amax = 76±13 cm s−1 centered at νmax = 416µHz, which is assumed to be the frequency
of maximum power and agrees with the result of [191]. The uncertainty on the amplitude is
evaluated by means of the analytical estimation relation

σ(A) =

√
2

N
〈σv〉 (2.42)

[237], where, as for the frequencies case, N = 818 is the total number of data points and 〈σv〉
is once more the average uncertainty on each data point. Again, the uncertainty in amplitude
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2. SOLAR-LIKE OSCILLATIONS IN SUBGIANT STARS

Table 2.1: Mode identification for β Aquilae, in the frequency range 300-600µHz. The modes listed
show an amplitude > 0.5ms−1 (or S/N & 3.5). The corrected frequencies reported in the fourth column
include the frequencies shifted for the daily gap of ±11.57µHz. The fifth column represents the uncer-
tainties as derived by means of the analytical relation (2.41). The ` = 1 frequencies reported without
any radial order are possible avoided crossings.

` n S/N Corrected frequencya (µHz) Uncertaintyb (µHz)

0 12 6.4 393.02 (+11.57) 0.22
0 13 11.3 422.43 0.22
0 16 3.7 511.20 (-11.57) 0.34

1 - 4.0 429.27 0.16
1 - 4.7 471.04 0.20
1 - 3.5 546.71 0.38

2 11 3.5 389.87 0.22
2 12 3.5 420.67 0.21
2 16 5.1 538.03 (-11.57) 0.42

a The raw frequencies can be evaluated by adding the daily frequency reported in parentheses.
b The actual uncertainties can be several times larger up to the limit of the formal resolution of 2.2µHz,

because the modes are not coherent.

Table 2.2: Asymptotic parameters for β Aquilae as derived by a linear weighted least-squares fit to the
asymptotic relation given by Eq. (2.39).

∆ν (µHz) δν02 (µHz) ε

29.56± 0.10 2.55± 0.71a 1.29± 0.04

a The most likely value for the small separation was derived by using the definition from the asymptotic
relation with the couples of frequencies (ν12,0, ν11,2), (ν13,0, ν12,2) and (ν16,0, ν16,2 −∆ν).

represents a lower limit to the real value. The amplitude distribution is evaluated for the radial
modes only, but the calculation of the amplitude in the case of ` = 1 and ` = 2 modes is
straightforward, namely it can be obtained by multiplying the result for a factor of 1.35 and
1.02 respectively, representing the relative strength given by the spatial response function (see
[191] for more details). The result derived in this work is not far from the value obtained by
[191].

2.3.7 Mode Lifetimes

For stars showing a large number of identified modes it is in principle possible to determine the
mode lifetime by using the correlation between the mode lifetime and the scatter of the observed
frequencies with respect to their asymptotic values (see [28, 190] for more details). Nevertheless
this method is not applicable in our case since the number of identified modes is small and, being
β Aquilae a quite evolved subgiant star, many avoided crossings crowding the échelle diagram
are expected to be observed, a feature that would hamper considerably the regularity of the
peaks and the modes identification. We then adopted the method presented in [203], where
the modes amplitudes are supposed to increase with increasing lifetime. However, since there
is not a simple relationship between amplitude and lifetime, we used simulated time-series in
order to establish a calibrated relationship between the peak amplitude and the mode lifetime.
With respect to the previous method, this one has the advantage of being independent of the
mode identification but the disadvantage of being less accurate. The procedure adopted can be
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Figure 2.11: Smoothed amplitude spectrum of β Aquilae showing the amplitude per radial mode
computed in the range 200-700µHz. The maximum amplitude Amax = 76 ± 13 cm s−1 occurs at
νmax = 416µHz. The positions of the identified ` = 0 frequencies as derived from the asymptotic
relationship given by Eq. (2.39) are also marked.

summarized as follows: (i) computation of one thousand simulated time-series for each value of
mode lifetime (0.2, 0.5, 1, 2, 4, 8, 16, 32 and 64 days were the lifetimes chosen for this work, in
order to cover a wide range of values), with a total of 9000 simulations computed; (ii) analysis of
all the simulated PS in the way explained in Section 2.3.5, namely by CLEANing each PS with
50 peaks in the frequency range 0.01-700µHz, in order to identify all the frequencies with S/N
> 3; (iii) restriction of the number of frequencies to the interval 200-700µHz; (iv) evaluation
of the ratio 〈A〉1−5/〈A〉1−20, i.e. the ratio of the average amplitude of the first 5 highest peaks
with respect to the average amplitude of the first 20 peaks for each given simulated PS; (v)
comparison of the ratio of the observed data with the simulated ones in order to derive the
corresponding lifetime. The result is shown in Figure 2.12, where no clear correlation is visible.
This can be explained by considering the fact that this star has a quite small value of the mean
large separation ∆ν. This feature, combined with the complex structure of the spectral window
caused by the daily gaps, and to the short observing time, makes each slice of PS having length
≈ 30µHz completely filled by frequency peaks and their corresponding sidelobes. The overlap
of the line profiles occurring also for long lifetimes (i.e. 64 days) does not allow us to derive
any information on their FWHM and consequently on the mode lifetimes.

2.4 Comparison with Theoretical Expectations

A complete discussion on the evolutionary state of this star goes beyond the scope of this work.
Nevertheless, the identified modes provided a reliable estimate for the mean large separation,
as described in Section 2.3.5, which can be used to derive the scaled mass for this star according
to the fact that ∆ν scales approximately with the square root of the mean density of the star
[90]. From the scaling relation extrapolating from the solar case (e.g. see [29])

∆ν

∆ν�
=

(
M

M�

)0.5( R

R�

)−1.5

, (2.43)

where the radius is provided by [249] and ∆ν� = 134.9µHz, we obtained a mass ofM = 1.36±
0.17M�, which agrees very well with the value found by [121]. By considering a luminosity
of L = 5.63 ± 0.16L�, as derived by means of visual magnitude [250], bolometric correction
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2. SOLAR-LIKE OSCILLATIONS IN SUBGIANT STARS

Figure 2.12: Amplitude ratio 〈A〉1−5/〈A〉1−20, i.e. the ratio of the average amplitude of the first 5
highest peaks respect to the average amplitude of the first 20 peaks, reported as a function of the mode
lifetime in days. The error bars are computed as the standard deviation from one thousands points for
each lifetime. The dot dashed line represents the same ratio level as measured on the observed dataset.

[111], Sun bolometric magnitude [91] and Hipparcos parallax [309], and the scaled value for
the mass, we were able to compute the value for the amplitude by using the relation provided
by [187]:

Aosc =

(
L

L�

)(
M

M�

)−1

(23.4± 1.4) cm s−1, (2.44)

which gives Aosc = 97± 6 cm s−1, which fairly agrees with the value obtained in Section 2.3.6.
Moreover, the expected frequency of maximum power can be evaluated from scaling the acoustic
cutoff frequency from the solar case. We computed this frequency by considering the relation-
ship

νmax =

(
M

M�

)(
R

R�

)−2( Teff

Teff,�

)−1.5

3.05 · 103 µHz (2.45)

where Teff,� = 5777K (see [187] and Chapter 6 for more details), whose result gives νmax =
472± 72µHz, consistent with the value obtained on the smoothed amplitude spectrum.

Table 2.3: Global list of stellar parameters for β Aquilae.

Stellar parameter Value Source

M 1.36± 0.17M� This worka

R 3.05± 0.13R� [249]
〈ρ〉 0.0676± 0.0004 g cm−3 This work
Z 0.015± 0.002 SEEK
X 0.70± 0.02 SEEK
Age 2.43+3.56

−0.32 Gyr SEEK
L 5.63± 0.16L� This work
log g 3.61+0.01

−0.02 SEEK
Teff 5160± 100K [209]
∆ν 29.56± 0.10µHz This work
δν02 2.55± 0.71µHz This work
Amax 76± 13 cm s−1 This work

a The corresponding parameter was derived directly in this work.

Concerning the values for the mean large separation and the frequency of maximum power
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2.5 The G5 subgiant µ Herculis

it is outstanding that they fit the power law relation of [286] quite well, which represents a
considerable validation to the reliability of our results. Moreover, an independent measure for
the large separation by using the Eq. (2.43), with the radius from [249] and the mass from [121]
is also compatible with the value presented in Section 2.3.5.

Lastly, an important note regards the dipole frequencies reported in this work, which are
expected to deviate strongly from their asymptotic values, especially for an evolved subgiant
star like β Aquilae. Indeed, the presumed ` = 1 modes identified here are possibly bumped
because of avoided crossings. Although the lack of a clear ` = 1 ridge in Figure 2.9 could also
be explained by a wrong identification of the modes, we are confident that the large separation
is correct. The reason of our belief is that different tools for its investigation, such as the comb-
response function, the folded PS, the échelle diagram and the fit to the asymptotic relation,
show consistent results. In addition, its compatibility with the independent estimation and the
agreement with the ∆ν–νmax power law relation mentioned in the above paragraph ensure a
robust derivation of the result presented. Nonetheless, we are talking about a very difficult
star, such as ν Ind [64], because in the region of the HR diagram to which the star belongs,
avoided crossings considerably hamper the p-mode identification (see [24] for a summary on
ground-based observations across the HR diagram). Therefore, a theoretical confirmation is
required before adopting the ` = 1 frequencies reported in Table 2.4 as real frequencies of
oscillations for mixed modes, and more observations by a multi-site ground-based project such
as SONG are required to firmly solve the mode identification.

2.4.1 Stellar Parameters

The SEEK package [260] is developed for the analysis of asteroseismic data from the Kepler
mission and is able to estimate stellar parameters in a form that is statistically well-defined.
It is based on a large grid of stellar models computed with the Aarhus Stellar Evolution Code
(ASTEC), which allow us to derive additional stellar parameters giving as input astrophysical
quantities such as Teff [209], log g [307] and [Fe/H] [121], and the asteroseismic values derived
in this work, i.e. the large and small separation and the frequency of maximum power. The
output list of parameters for β Aquilae is shown in Table 2.3, where the 1-σ error bars on the
SEEK values are computed using the Bayesian evaluation of the posterior distributions. The
mass, radius and luminosity computed by SEEK also agree with the values presented in this
work.

2.5 The G5 subgiant µ Herculis

The G5 subgiant µ Herculis (HR 6623, V = 3.417± 0.014), has a mass M = 1.1M�, effective
temperature Teff = 5596± 80K, and log g = 3.93± 0.10 [120]. It has been studied already by
[48], who found the star to have a clear excess of power centered at νmax = 1110µHz, a large
frequency separation ∆ν = 56.50± 0.07µHz, a small frequency spacing δν02 = 5.03± 0.94µHz
and ε = 1.44± 0.03.

In this section we provide a revised analysis of this star, made along the same lines of those
used by [48], by exploiting a new set of RV measurements derived by means of the iSONG
code. The data were acquired with observations carried out over six nights (2006 August
13-19) by means of the high resolution cross dispersed échelle spectrograph SARG [137, 83]
mounted on the 3.58m Italian telescope TNG at La Palma observing site. SARG operates in
both single-object and long-slit (up to 26”) observing modes and covers a spectral wavelength
range from 370 nm up to about 1000 nm, with a resolution ranging from R = 29000 up to
R = 164000. Our spectra were obtained at R = 144000 in the wavelength range 462-792 nm.
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Figure 2.13: Radial velocity measurements of µ Herculis for the entire time of observation, obtained
with the iSONG code from the SARG spectra reduced with the REDUCE package (lower panel), and
their corresponding noise-scaled and outliers-corrected uncertainties σi (upper panel).

The calibration iodine cell works only in the blue part of the spectrum (500-620 nm) that has
been used for measuring Doppler shifts. During the observing period we collected spectra with
a signal-to-noise ratio (S/N) varying from 200 to 400, a typical exposure of 60 s with a dead-
time 55 s between exposures due to the readout time. A total of 1106 spectra were collected
with the following distribution over the seven nights: 27, 106, 184, 179, 227, 198. The spectra
were then reduced and calibrated in wavelength with a Th-Ar lamp, using the recently released
REDUCE package [258]. No flat-fielding was applied to all the spectra due to a degradation
of the S/N level.

The RV measurements were determined by means of the iSONG code, Section 2.3.2. An
offset caused by the inversion of the telescope within every night of observation was removed, in
order to overcome the systematics introduced in the time-series. An example of such correction
is provided for the 5th night of observation, as shown in Figure 2.14 where the blue dots
represent the original time-series, without any offset correction and the black ones are our final
result. The final time-series is plotted in Figure 2.13, with a similar description to that adopted
for Figure 2.5.

2.5.1 Comparing iSONG and AUSTRAL

Following the same procedure explained in Section 2.3.2 we computed the outliers distribution
for the new time-series. The result is shown in Figure 2.15 (left) in comparison to the outliers
distribution for the old dataset used by [48] (right). As it appears quite clear from both the
upper and the lower panels, iSONG provides RV measurements that are suffering less from
systematic effects than those given by AUSTRAL. In fact, the excess of outliers becomes
evident for |ri/σi| & 2 in the case of iSONG, while it is already pronounced for |ri/σi| & 1.5
in the case of AUSTRAL.

The scaling factor for the uncertainties in the iSONG time-series is 1.53, while for the
AUSTRAL one is 0.57. This shows that, according to Eq. (2.36), on one hand the uncertainties
derived with the version of iSONG used for the analysis are overestimated, while on the other
hand those of AUSTRAL used by [48] are underestimated. An improvement concerning the
derivation of the uncertainties in radial velocity for the iSONG code is still undergoing.
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Figure 2.14: Example of the 5th night of observation for µ Herculis, before (blue dots) and after
(black dots) offset removing. Red dotted lines represent the offset level (one for each segment of the
night, marked with numbers 1 and 2) subtracted with respect to the zero level corresponding to the black
dashed line.

Table 2.4: Offsets of the original time-series µ Herculis for each night, according to Figure 2.14.
Values are reported for each night of observation.

Day Offset 1 (m s−1) Offset 2 (m s−1)

1 8.34 9.80
2 8.98 2.82
3 6.36 3.23
4 15.57 -11.24
5 -8.97 -8.97
6 1.56 -7.78
7 1.64 -9.15

2.5.2 Time-Series Analysis

The amplitude spectrum of the velocity time-series was calculated by means of the LSS method,
as s explained in Section 2.3.3. The result is shown in Figure 2.16, where a clear excess of power
around 1200µHz is visible, with the typical pattern for p-modes oscillations in a G5 subgiant
star. In order to determine the S/N of the peaks in the PS, we measured the noise level
σamp in the amplitude spectrum in the range 3000-5000µHz, far from the excess of power, as
done by [48]. By means of the new statistical weights introduced above, it was reduced from
11.3 cm s−1 to the final value of 11.1 cm s−1, which corresponds to a noise level in the PS of
0.02m2 s−2. Since this is based on 1106 measurements, we can deduce the velocity precision
on the corresponding time-scales using the relation σRMS = σamp

√
N/π, as derived by [187],

which gives a scatter per measurement of 2.1ms−1. For this dataset it is evident from the
values of σamp reported above that the noise reduction is not producing a significant result,
which relies mainly on the fact that the excess of outliers for the time-series of µ Herculis is
lower than that of β Aquilae.

2.5.3 Oscillation Frequencies

In order to derive the frequencies of the modes and the subsequent mode identification, we
performed an identical approach to that exposed in Section 2.3.5 but by considering a frequency
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Figure 2.15: Upper panels: cumulative histograms of |ri/σi| for µ Herculis (left for iSONG and right
for AUSTRAL). The diamonds show the observed data, and the solid curve shows the result expected for
a Gaussian-distributed noise. Lower panel: ratio f of the observed to the expected histograms (left for
iSONG and right for AUSTRAL), indicating the fraction of “good” data points. An excess of outliers
is evident for |ri/σi| & 2 in the case of iSONG and for |ri/σi| & 1.5 for AUSTRAL.

range at higher values, namely 800-2000µHz, as the star is less evolved than β Aquilae.
At first, we searched for a comb-like pattern, following the method used by [48] and the

approach described in Section 2.3.4, and found a first value for the mean large separation, ∆ν =
57.76 ± 0.96µHz, very close to the value found by [48]. The subsequent mode identification
for 13 different modes is reported in Table 2.5, as derived from Eq. (2.39) and by means of the
échelle diagram shown in Figure 2.17. The notation adopted in Figure 2.17 is similar to that
used for Figure 2.10, having the amplitude with the same color-coded background. A total of
6 frequencies has been shifted by the corresponding daily gap of ±11.57µHz in order to be
identified according to the asymptotic relation. Only modes whose amplitude was > 0.35m
s−1 (or S/N > 3) were considered, with a final list of 13 frequencies. As for β Aquilae, the
uncertainties on the frequencies were derived by means of the analytical relation adopted by
[48] and derived by [237], which now reads

σ(ν) =

√
6

N

1

πT

〈σv〉
A
' 0.1

Am/s
µHz (2.46)

where 〈σv〉 = 2.22 m s−1 and T = 6.28, N = 1106. However, as also stressed in Section 2.3.5,
these uncertainties can be several time larger than the true ones, up to the limit of the formal
resolution of 1.8µHz given by the reciprocal of the total observing time of our dataset.

The asymptotic parameters of Eq. (2.39) were derived by means of a linear weighted least-
squares fit to the asymptotic relation, as done in Section 2.3.5 and are listed in Table 2.6,
together with their 1σ uncertainties. The results for ∆ν and ε are very close to those obtained
by [48], but with a slight different small spacing δν02, although compatible within the error
bars.
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Figure 2.16: The Power Spectrum of the weighted radial velocity measurements of µ Herculis extracted
with the iSONG code from the SARG spectra. An excess of power is clearly visible, with a maximum
centered around 1200 µHz. The inset shows the normalized power spectrum of the window function for
a sine-wave signal of amplitude 1m s−1, sampled in the same way as the observations.

2.5.4 Mode Amplitudes and Lifetimes

The amplitude distribution per radial mode was derived according to the method introduced by
[190, 191] and adopted in Section 2.3.6. For this case we computed the amplitude distribution in
the range 700-2000µHz. The maximum amplitude is given by Amax = 41±9 cm s−1 and occurs
at νmax = 1189µHz. The resulting distribution is plotted in Figure 2.18, where the identifica-
tion of the radial modes has been marked. Amplitude distributions for dipole and quadrupole
modes are derived using the same coefficients adopted in Section 2.3.6. The resulting values
for each mode were then used in Eq. (2.46) for estimating the frequency uncertainties, like for
β Aquilae.

The resulting maximum amplitude is lower than the value found by [48], who used a different
method. Anyhow, according to the results derived in [191] our estimate of the amplitude
appears to be reasonable for a subgiant star with νmax ≈ 1000µHz.

Lastly, the analysis of the mode lifetimes, performed in an analogous manner to that de-
scribed in Section 2.3.7, lead us to inconclusive results similarly to the case of β Aquilae. This is
likely to rely mainly on the complicated pattern of the mode peaks due to the window function.
Hence, longer and more continuous datasets would be required for investigating this aspect of
the acoustic modes observed.

2.6 Conclusions

Our observations of β Aquilae show an evident excess of power in the PS region centered at
415 µHz, clearly very well separated from the low-frequency power, and with a position and
amplitude that agree with expectations. Although consistently hampered by the single-site
window, the comb analysis and the échelle diagram show clear evidence for regularity in the
peaks at the spacing expected from the asymptotic theory. The complete identification of six
high S/N modes for ` = 0, 2 led to a well-constrained mean large separation of ∆ν = 29.56 ±
0.10µHz, compatible with a scaled value from the Sun and the value obtained by the power law
relation [286], and to a most likely value for the small separation of δν02 = 2.55±0.71µHz, whose
reliability has yet to be confirmed. The ` = 1 modes found are presumably mixed modes but
a theoretical confirmation is needed before adopting these values as real modes of oscillations
for this star. Moreover, our results provide a valuable proof that solar-like oscillations in an
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Figure 2.17: The échelle diagram for µ Herculis overlaid on the amplitude spectrum with a colored
background scale. The filled symbols (white and orange) represent the identified modes for ` = 0 (circles),
` = 1 (triangles), ` = 2 (squares) and ` = 3 (stars). The orange symbols are the frequencies shifted
for the daily gap of ±11.57µHz while the open symbols correspond to the original unshifted values. The
ridges derived from the fit to the asymptotic relation given by Eq. (2.39) are also marked.

evolved subgiant star show amplitudes that scale as L/M by extrapolating from the Sun.
The revised analysis of µ Herculis by means of the new iSONG time-series led to very similar

results to those obtained by [48]. The values of ∆ν = 56.50± 0.06µHz, δν02 = 5.73± 0.76µHz
and ε = 1.44± 0.02 appear to be very close to asymptotic parameters derived using the AUS-
TRAL time-series by [48]. Interestingly, the comparison between iSONG and AUSTRAL
shows that iSONG provided radial velocity measurements that suffer less from systematics
than those derived by AUSTRAL. In addition, according to Eq. (2.36), we found that the un-
certainties in radial velocity were underestimated by AUSTRAL and overestimated by iSONG.
This aspect would require further improvements of iSONG for the derivation of the uncertain-
ties.

Therefore, this campaign of observations attained with SARG led to high-precision RV
measurements by means of the iSONG code, which was used for the first time in this work.
The time-series analysis of the given dataset was able to provide for the first time global
asteroseismic parameters and individual p modes together with the evidence for mixed modes.
Moreover, this result will be extremely important to develop theoretical models for this star.
Multi-site observation campaign with the SONG project is highly desirable in a near future.
That would then allow us to explore the solar-like oscillations for this target in a detailed
way by providing a large number of identified modes. The asteroseismic and astrophysical
parameters of this star will then be constrained properly, yielding a deeper understanding of
solar-like oscillations in the very difficult region of the HR diagram to which β Aquilae belongs.
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Table 2.5: Mode identification for µ Herculis, in the frequency range 800-2000µHz. The modes
listed show an amplitude > 0.35ms−1 (or S/N > 3). The corrected frequencies reported in the fourth
column include the frequencies shifted for the daily gap of ±11.57µHz. The fifth column represents
the uncertainties as derived by means of the analytical relation (2.41). The ` = 1 frequencies reported
without any radial order are possible avoided crossings.

` n S/N Corrected frequencya (µHz) Uncertaintyb (µHz)

0 16 4.5 986.26 (+11.57) 0.38
0 17 3.6 1040.36 (-11.57) 0.34
0 19 3.4 1156.13 (+11.57) 0.25
0 20 8.1 1210.96 0.24
0 24 5,1 1437.41 (-11.57) 0.37

1 - 5.4 1133.92 0.19
1 19 3.9 1181.45 (+11.57) 0.18
1 - 3.2 1188.30 0.18
1 - 3.1 1328.10 0.22

2 18 7.4 1147.82 0.24
2 29 3.2 1770.23 (+11.57) 0.76
2 32 3.2 1940.14 0.71

3 22 3.6 1398.24 0.73
a The raw frequencies can be evaluated by adding the daily frequency reported in parentheses.
b The actual uncertainties can be several times larger up to the limit of the formal resolution of 1.8µHz,

since the modes are not coherent.

Table 2.6: Asymptotic parameters for µ Herculis as derived by a linear weighted least-squares fit to
the asymptotic relation given by Eq. (2.39).

∆ν (µHz) δν02 (µHz) ε

56.50± 0.06 5.73± 0.76a 1.44± 0.02

a The small separation was derived by using the definition from the asymptotic relation and the modes
identified for ` = 1, 3.

Figure 2.18: Smoothed amplitude spectrum of µ Herculis showing the amplitude per radial mode
computed in the range 700-2000µHz. The maximum amplitude Amax = 41± 9 cm s−1 occurs at νmax =
1189µHz. The positions of the identified ` = 0 frequencies as derived from the asymptotic relationship
given by Eq. (2.39) are also marked.
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3 The NASA’s Kepler Mission

The centuries-old quest for other worlds like our Earth has been rejuvenated by the intense
excitement and popular interest surrounding the discovery of hundreds of planets orbiting other
stars. There is now clear evidence for substantial numbers of three types of exoplanets; gas
giants, hot-super-Earths in short period orbits, and ice giants. The challenge now is to find
terrestrial planets (i.e., those one half to twice the size of the Earth), especially those in the
habitable zone of their stars where liquid water and possibly life might exist.

The NASA’s Kepler Mission1, NASA Discovery mission #10, is specifically designed to
survey a portion of our region of the Milky Way galaxy to discover dozens of Earth-size planets
in or near the habitable zone and determine how many of the billions of stars in our galaxy
have such planets. Results from this mission will allow us to place our solar system within the
continuum of planetary systems in the Galaxy.

The great interest shown for extrasolar planets detections has incredibly favored the aster-
oseismology of stars across the entire HR diagram (see Chapter 1), yielding enormous amounts
of high quality data, especially subsequently to the launch of the space missions CoRoT and
Kepler. Kepler light curves in particular represent one of the main data source used in this dis-
sertation. Thus, in the first part of this chapter we introduce the main features of the NASA’s
Kepler Mission, the spacecraft and instrumentation, and details about its datasets. In the
second part of the present chapter we will focus on the importance of the Kepler mission for
the asteroseismology field, providing a description of the ORK pipeline used to analyze Kepler
light curves for the research discussed in this thesis, and ending up with a presentation of some
of the most important and early results that allowed the investigation of ensemble properties
of stars observed in the Kepler FOV.

3.1 General Outlook

The NASA’s Kepler Mission [50] was designed to determine the frequency of Earth-sized planets
in and near the habitable zone of Sun-like stars. The habitable zone is the region where
planetary temperatures are suitable for water to exist on a planet’s surface. During the first
6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes
between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered.
The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even
though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density
planets (∼ 0.17 g cm−3) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets
with densities lower than those predicted for gas giant planets.

1The NASA Kepler Mission official website is available at http://kepler.nasa.gov/ and
http://www.nasa.gov/kepler.
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3.1.1 Scientific Objective

The scientific objective of the Kepler Mission is to explore the structure and diversity of plan-
etary systems. This is achieved by surveying a large sample of stars to:

1. determine the abundance of terrestrial and larger planets in or near the habitable zone
of a wide variety of stars;

2. determine the distribution of sizes and shapes of the orbits of these planets;

3. estimate how many planets there are in multiple-star systems;

4. determine the variety of orbit sizes and planet reflectivities, sizes, masses and densities
of short-period giant planets;

5. identify additional members of each discovered planetary system using other techniques;
and

6. determine the properties of those stars that harbor planetary systems.

The Kepler Mission also supports the objectives of future NASA Origins theme missions Space
Interferometry Mission (SIM) and Terrestrial Planet Finder (TPF),

• by identifying the common stellar characteristics of host stars for future planet searches,

• by defining the volume of space needed for the search and

• by allowing SIM to target systems already known to have terrestrial planets.

3.1.2 Transit Method for Planets detection

When a planet crosses in front of its star as viewed by an observer, the event is called a transit.
Transits by terrestrial planets produce a small change in a star’s brightness of about 1/10,000
(100 parts per million, ppm), lasting for 1 to 16 hours. This change must be periodic if it is
caused by a planet. In addition, all transits produced by the same planet must be of the same
change in brightness and last the same amount of time, thus providing a highly repeatable
signal and robust detection method.

Once detected, the planet’s orbital size can be calculated from the period (how long it takes
the planet to orbit once around the star) and the mass of the star using Kepler’s Third Law of
planetary motion. The size of the planet is found from the depth of the transit (how much the
brightness of the star drops) and the size of the star. From the orbital size and the temperature
of the star, the planet’s characteristic temperature can be calculated. Knowing the temperature
of a planet is key to whether or not the planet is habitable (not necessarily inhabited). Only
planets with moderate temperatures are habitable for life similar to that found on Earth.

3.1.3 Design

For a planet to transit, as seen from our solar system, the orbit must be lined up edgewise to us.
The probability for an orbit to be properly aligned is equal to the diameter of the star divided
by the diameter of the orbit. This is 0.5% for a planet in an Earth-like orbit about a Sun-like
star (for the giant planets discovered in four-day orbits, the alignment probability is more like
10%). In order to detect many planets, one can not just look at a few stars for transits or even
a few hundred. One must look at thousands of stars, even if Earth-like planets are common.
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If they are rare, then one needs to look at many thousands to find even a few. Kepler looks
at more than 100,000 stars so that if Earths are rare, a null or near null result would still be
significant. If Earth-size planets are common then Kepler should detect hundreds of them.

Considering that the aim is to find planets in the habitable zone of stars like the Sun, the
time between transits is about one year. To reliably detect a sequence one needs four transits.
Hence, the mission duration needs to be at least three and one half years. Since the Kepler
Mission has been approved for Mission extension by NASA through fiscal year 2016 [295], it
will be able to detect smaller, and more distant planets as well as a larger number of true Earth
analogs. It is noticeable already how the total number of planets candidates has increased up
to over 2,300 in the first 16 months of observations [18], and it is destined to increase in the
extended mission phase.

TheKepler instrument is a specially designed 0.95-m diameter telescope called a photometer
or light meter (Figure 3.1). It has a very large field of view for an astronomical telescope, 105
square degrees, which is comparable to the area of your hand held at arm’s length (Figure 3.2).
The fields of view of most telescopes are less than one square degree. Kepler needs the large
field of view in order to observe the large number of stars. It stares at the same star field for
the entire mission and continuously and simultaneously monitors the brightnesses of more than
100,000 stars for at least 3.5 years, the initial length of the mission, which is now extended to
more than 6 years.

Figure 3.1: Scheme of the Kepler spacecraft.

The diameter of the telescope needs to be large enough to reduce the noise from photon
counting statistics, so that it can measure the small change in brightness of an Earth-like
transit. The design of the entire system is such that the combined differential photometric
precision over a 6.5 hour integration is less than 20 ppm (1σ) for a 12th magnitude solar-like
star including an assumed stellar variability of 10 ppm. This is a conservative, worse-case
assumption of a grazing transit. A central transit of the Earth crossing the Sun lasts 13 hours.
And about 75% of the stars older than 1Gyr are less variable than the Sun on the time scale
of a transit.

The photometer must be space-based to obtain the photometric precision needed to reliably
see an Earth-like transit and to avoid interruptions caused by day-night cycles, seasonal cycles
and atmospheric perturbations, such as, extinction associated with ground-based observing.
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Figure 3.2: Representation of the Kepler FOV.

3.1.4 Photometer and Spacecraft

TheKepler photometer is a simple single purpose instrument. It is basically a Schmidt telescope
design with a 0.95-meter aperture (Figure 3.3) and a 105 deg2 (about 12 degree diameter) field-
of-view (FOV). It is pointed at and records data from just a single group of stars for the four
year duration of the mission. The photometer is composed of just one “instrument”, which
is an array of 42 CCDs (Charge Coupled Devices) (Figure 3.4). Each 50 × 25 mm CCD has
2200 × 1024 pixels. The CCDs are read out every 6 seconds to prevent saturation. Only the
information from the CCD pixels where there are stars brighter than mV = 14 is recorded (the
CCDs are not used to take pictures; the images are intentionally defocused to 10 arc seconds
to improve the photometric precision). The data are integrated for 30 minutes.

The instrument has the sensitivity to detect an Earth-size transit of a mV = 12 G2V
(solar-like) star at 4σ in 6.5 hours of integration. The instrument has a spectral bandpass from
400 nm to 850 nm, with a central wavelength of 650 nm, as shown in Figure 3.5. Data from
the individual pixels that make up each star of the 100,000 main-sequence stars brighter than
mV = 14 are recorded continuously and simultaneously. The data are stored on the spacecraft
and transmitted to the ground about once a month.

The spacecraft provides the power, pointing and telemetry for the photometer. Pointing
at a single group of stars for the entire mission greatly increases the photometric stability and
simplifies the spacecraft design. Other than the small reaction wheels used to maintain the
pointing and an ejectable cover, there are no other moving or deployable parts The only liquid
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Figure 3.3: Pictures of the 1.4m mirror (left) and of the 0.95m Schmidt corrector (right).

Figure 3.4: Pictures of the CCD photometer.

is a small amount for the thrusters which is kept from slosh by a pressurized membrane. This
design enhances the pointing stability and the overall reliability of the spacecraft. In particular,
the main system characteristics are:

• Spacebased Photometer: 0.95-m aperture.

• Primary mirror: 1.4 meter diameter, 85% light weighted.

• Detectors: 95 mega pixels (21 modules each with two 2200× 1024 pixel CCDs).

• Bandpass: 430-890 nm FWHM.

• Dynamic range: 9th to 16th magnitude stars.

• Fine guidance sensors: 4 CCDs located on science focal plane.

• Attitude stability: < 9 milliarcsec, 3σ over 15 minutes.

while the most important mission characteristics can be summarized by

• Continuously point at a single star field in Cygnus-Lyra region except during Ka-band
downlink.

• Roll the spacecraft 90 degrees about the line-of-sight every 3 months to maintain the Sun
on the solar arrays and the radiator pointed to deep space.
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Figure 3.5: The spectral response εK of Kepler as a function of the wavelength λ (solid lines), in
comparison to that of CoRoT seismo- and exofield (dashed and dotted lines, respectively). Grey profiles
indicate the spectra (in arbitrary units) of black bodies with temperatures of 7000, 6000, and 5000 K.
Image copied from [12].

• Monitor 100,000 main-sequence stars for planets.

• Mission lifetime of 3.5 years extended to least 7 years.

• X-band contact twice a week for commanding, health and status.

• Ka-band contact once a month for science data downlink.

3.2 Kepler and Asteroseismology

Asteroseismology is sometimes considered as the stellar analog of helioseismology [136], being
the study of very low amplitude sound waves that are excited by near-surface, turbulent con-
vection, leading to normal-mode oscillations in a natural acoustical cavity. The Sun, when
observed as a star without benefit of spatial resolution on its surface, shows ∼ 30 independent
modes with white light amplitude of a few parts per million (ppm) and periods of 4–8 minutes
(see also Chapter 1. In many cases stars with stochastically driven oscillations may deviate
strongly from solar size, as in the case of red giants. For our purposes, however, we will broaden
the definition of asteroseismology to also include the many types of classical variable stars, e.g.
Cepheids, famous for helping to establish the scale of the universe [163].

There are two primary motivations for performing asteroseismology with Kepler, which is
primarily a planet-detection and characterization mission [50]. First, knowledge of planet prop-
erties is usually limited to first order by knowledge of the host star, e.g. Kepler easily measures
the ratio of planet to star size through transit depths. Turning this into an absolute size for the
planet requires knowledge of the host star size which, in favorable cases, asteroseismology is
able to provide better than any other approach – in many cases radii can be determined to ac-
curacies near 1%. Second, the instrumental characteristics already required for the exquisitely
demanding prime mission [50, 193] can readily support the needs of seismology at essentially no
additional cost or modification, which is actually proven by the large number of studies based
on the use of Kepler light curves.
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Oscillations in stars similar to the Sun, which comprise the primary set for the planet
detections, have periods of only a few minutes and require use of the Short Cadence (SC) mode
[127] with 58.8-second effective integrations. Many of the classical variables may be studied
well with the more standard Long Cadence (LC) mode [174], which has 29.4-minute effective
integrations.

Kepler comes at a propitious time for asteroseismology. The forerunner missions MOST
[221], and especially CoRoT [11, 229], have started the journey taking space-based asteroseis-
mology from decades of promise to the transformative reality that was realistically expected
with Kepler. The most salient features of the Kepler Mission for asteroseismology are: (a) a
stable platform from which nearly continuous observations can be made for months to years,
(b) cadences of 1 and 30 minutes which support the vast majority of asteroseismology cases,
(c) a large 100 square degree field of view providing many stars of great intrinsic interest, (d) a
huge dynamic range of over a factor of 10,000 in apparent stellar brightness over which useful
asteroseismology (not always of the same type of variable) can be conducted, and (e) exquisite
precision that in many cases is well under one ppm for asteroseismology purposes. Initial data
characteristics for SC [127] and LC [174] have been shown to support results that nearly reach
the limit of Poisson statistics.

The observations conducted by Kepler are sectioned into quarters having length of three
months each and usually termed as “Q” and the number of the quarter. A quarter itself is also
divided into three segments having length of one month each (e.g. Q1.1, Q1.2, Q1.3 for the first
quarter). Exceptionally, quarter Q0 had a length of 10 days because it was the commissioning
run of the mission, while quarter Q1 was only one month long being that of the survey phase.
So far, quarters up to Q13, namely about 36 months of observation (∼ 3 years), are already
public for download and can be used for asteroseismic purposes.

3.2.1 The Kepler Input Catalog

The Kepler Input Catalog (KIC)2 [193, 60] provides knowledge (30 – 50% errors on stellar
radii) of likely stellar properties for ∼ 4.5 million stars in the Kepler field of view at a level of
accuracy necessary to specify the targets to be observed. One application of asteroseismology
follows from quantification of stellar radii to more than an order of magnitude better than this
for a few thousand giant stars, and several hundred dwarfs, which can then be used to test
the KIC entries, and quite possibly provide the foundation for deriving generally applicable
improvements to the calibrations enabling redefined entries for the full catalog.

Some 15% of the KIC entries were not classified, thus no radius estimates were available to
support selection of stars most optimal for small-planet transit searches. In Q0 (May 2009) and
Q1 (May - June 2009) a total of about 10,000 such unclassified stars brighter than mKep = 13.8
were observed for either 10 and/or 33 days respectively. An early application of asteroseis-
mology was to identify stars in this unclassified set that are obviously red giants, a well-posed
exercise given the quality of Kepler data [193], and thus allow these to be dropped from further
observation in favor of bringing in smaller, and photometrically quieter stars.

In addition, a detailed study conducted by [256], who used griz filters from Sloan Digital
Sky Survey (SDSS) photometry, has provided new temperature estimates for more than 150,000
stars observed by Kepler. A systematic difference of about 200K between KIC and SDSS
temperatures was found. Thus, the catalog of temperature estimates [257] derived by [256]
can be a very useful supporting tool for attaining more detailed and reliable investigations of
asteroseismic properties of large sample of stars, as we will discuss in Chapter 6.

2http://archive.stsci.edu/kepler/kepler_fov/search.php.
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3.3 Testing Stellar Astrophysics

The mission as a whole is benefitting from enhanced knowledge of stellar structure and evolution
theory. This aspect is advancing by challenging theory with detailed observations of stellar
oscillations across a wide range of stellar types. Supporting this goal has led to devoting 0.8%
from the available LC target allocations (still a very healthy number of 1,320 stars) to a broad
array of classical variables. These LC targets are usually large stars with characteristic periods
of variation of hours, to in extreme cases months or even years, and hence are either massive
and/or evolved stars. In addition, a set of 1,000 red giants selected to serve as distant reference
stars for astrometry [235] provide enticing targets for LC-based asteroseismology. A number
of stellar variables, including, of course, close analogs of the Sun can only be probed with use
of the SC (1-minute) observations. After the first year a subset of these surveyed targets has
been selected for more extended observations. As the mission progressed, a growing fraction
of the SC targets has been used to follow up planet detections and candidates, for which
better sampling supports transit timing searches for additional planets in the system [155] and
oscillation studies of the host stars. In the actual extended mission phase, target selection is
not available anymore.

Asteroseismology with Kepler is being conducted through the Kepler Asteroseismic Science
Consortium (KASC)3, whose ∼ 500 members are organized into working groups by type of
variable star. The WG1, related to Solar-like oscillations in main-sequence and subgiant stars
is the one of interest for the results presented in this chapter. Chapter 4, instead, deals with
targets of interest for the WG2, which studies oscillating stars in Open Clusters, while Chapter 6
is referred to both WG1 and WG8 targets, the latter represented by red giants oscillations.

3.3.1 Solar-like Oscillations

Stars like the Sun, which have sub-surface convection zones, display a rich spectrum of oscil-
lations that are predominantly acoustic in nature (see Chapter 1). As already mentioned in
the introductory part of this thesis, the fact that the numerous excited modes sample different
interior volumes within the stars means that the internal structures can be probed, and the
fundamental stellar parameters constrained, to levels of detail and precision that would not
otherwise be possible (e.g. see [134]). Asteroseismic observations of many stars are allowing for
multiple-point tests of stellar evolution theory and dynamo theory. They are also important
constraints to be placed on the ages and chemical compositions of stars, key information for
constraining the evolution of the galaxy (e.g. see [233, 234]). Furthermore, the observations
permit tests of physics under the exotic conditions found in stellar interiors, such as those
underpinning radiative opacities, equations of state, and theories of convection.

Main Sequence and Subgiant Stars

Kepler observed more than 1500 solar-like stars during the initial survey phase of the astero-
seismology program. This allowed the first extensive “seismic survey” performed on this region
of the color-magnitude diagram. On completion of the survey, a subset of 50 to 75 solar-like

3The Kepler Asteroseismic Investigation (KAI) is managed at a top level by Gilliland, R. L., Brown, T. R.,
Christensen-Dalsgaard, J., & Kjeldsen, H.. The next level of authorship comprises the KASC working group
chairs, and members of the KASC Steering Committee. Data for KASC use first passes through the STScI
archive for Kepler, then if SC is filtered to remove evidence of any transits, and then is made available to the
KASC community from the Kepler Asteroseismic Science Operations Centre (KASOC) at the Department of
Physics and Astronomy, Aarhus University, Denmark. Astronomers wishing to join KASC are welcome to do
so by following the instructions at: http://astro.phys.au.dk/KASC/.
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targets have been selected for longer-term, multi-year observations. These longer datasets allow
tight constraints to be placed on the internal angular momenta of the stars, and also enable
“sounding” of stellar cycles via measurement of changes to the mode parameters over time (e.g.
see [182, 220], and Chapter 7 for an application to Kepler light curves for studying differential
rotation in active stars).

Figure 3.6 showcases the potential of the Kepler data for performing high-quality astero-
seismology of solar-like stars from SC data [70]. The left-hand panels show frequency-power
spectra of three 9th-magnitude, solar temperature targets observed during Q1. All three stars
have a prominent excess of power showing a rich spectrum of acoustic modes. The insets show
near-regular spacings characteristic of the solar-like mode spectra, and highlight the excellent
S/N observed in the individual mode peaks . The sharpness of the mode peaks indicates that
the intrinsic damping from the near-surface convection is comparable to that seen in solar p
modes. The p modes sit on top of a smoothly varying background that rises in power towards
lower frequencies. This background carries signatures of convection and magnetic activity in
the stars. We see a component that is most likely due to faculae — bright spots on the surface
of the stars formed from small-scale, rapidly evolving magnetic field. This component is man-
ifest in the spectra of the top two stars as a change in the slope of the observed background
just to the low-frequency side of the p-mode envelope (see arrows). All three stars also show
higher-amplitude components due to granulation, which is the characteristic surface pattern
of convection. The near-regularity of the oscillation frequencies allows us to display them in
so-called échelle diagrams (see Chapter 2 for a definition), in Figure 3.6 (right-hand panels, see
also Chapter 1). Here, the individual oscillation frequencies have been plotted against their
values modulo ∆ν — the average large frequency spacing, see Eq. (1.11). The frequencies align
in three vertical ridges that correspond to radial, dipole, and quadrupole modes. As already
discussed in Chapter 1, by making use of the individual frequencies and the mean spacings
we are able to constrain the masses and radii of the stars to within a few percent. The top
two stars are both slightly more massive than the Sun (by about 5 %), and also have larger
radii (larger by about 20 % and 30 % respectively). The bottom star is again slightly more
massive than the Sun (10 %), and about twice the radius. It has evolved off the main sequence,
having exhausted the hydrogen in its core. The ragged appearance of its dipole-mode ridge
labeled avoided crossing in Figure 3.6, is a tell-tale indicator of the advanced evolutionary state,
placing the star in the subgiant phase of the evolution; the frequencies are displaced from a
near-vertical alignment because of evolutionary changes to the deep interior structure of the
star.

Red Giant Stars

Red giants have outer convective regions and are expected to exhibit stochastic oscillations that
are solar-like in their general properties but occur at much lower frequencies (requiring longer
time series). The first firm discovery of solar-like oscillations in a giant was made using radial
velocities by [113]. However, it was only recently that the first unambiguous proof of non-radial
oscillations in G and K giants was obtained, using spaced-based photometry from the CoRoT
satellite [96]. This opened up the field of red giant seismology, which is particularly interesting
because important uncertainties in internal stellar physics, such as convective overshooting and
rotational mixing, are more pronounced in evolved stars because they accumulate with age.

The extremely high S/N photometry of the Kepler observations brings red giant seismology
to the next level. With the first 43 days of LC data it was possible to detect oscillations with
νmax ranging from 10µHz up to the Nyquist frequency around 280µHz. The results include the
first detection of oscillations in low-luminosity giants with νmax > 100µHz [30]. These giants
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are important for constraining the star-formation rate in the local disk [231]. In addition, Kepler
power spectra have such a low noise level that it is possible to detect ` = 3 modes (see e.g.
[30, 165, 87]), hence increasing the available asteroseismic information. The large number of
giants that Kepler continuously monitors for astrometric purposes during the entire mission is
allowing pioneering research on the long-term interaction between oscillations and granulation
[219]. Moreover, as it was already expected from the beginning, the frequency resolution
provided by Kepler was sufficient to detect rotational splitting in the fastest rotating giants
[22, 23], and possibly allow the measurement of frequency variations due to stellar evolution
on the red giant branch.

3.4 Ensemble Asteroseismology and First Results

Although not representing the primary goal of the NASA’s Kepler Mission, one of the main
contributes comes from Asteroseismology. In fact, with the great advantage of high quality pho-
tometry and continuous observations of large numbers of stars, Kepler is allowing for a thorough
study of fundamental stellar properties of thousands of pulsating stars, thus contributing to
the previous work done by the CoRoT satellite (see e.g. [96, 178, 243]).

In this second part of the current chapter we describe the pipeline developed at Catania
Astrophysical Observatory (OACT) for the measurement of the mean global asteroseismic
parameters 〈νmax〉 and 〈∆ν〉 (see Chapter 1 for a definition) for a number of ∼ 800 main-
sequence to subgiant stars observed by Kepler and showing solar-like oscillations. We then
briefly present the main works that adopted the global parameters derived with the ORK
pipeline. The ensemble asteroseismology, namely the study of global asteroseismic properties
of large sample of stars, is the main character of the works that used our estimates of νmax and
∆ν. The ensemble asteroseismology relies on the adoption of scaling relations, namely simple
empirical laws used to derive the fundamental stellar properties from our knowledge about the
Sun. In particular, the most useful and widely adopted scaling relations are those given by
Eqs. (2.43) and (2.45) for ∆ν and νmax respectively (see also [72]). As already mentioned in the
introduction of this thesis, these two asteroseismic quantities are directly related to mass, radius
and effective temperature of the star. By combining the two equations mentioned beforehand
and assuming to have the estimates of both νmax and ∆ν, and a measure of temperature of the
star either from photometry or spectroscopy, we can estimate its mass and radius up to 2-3 %
of precision (see [71]).

3.4.1 The ORK Pipeline

The ORK pipeline (@OACT), is an IDL based pipeline that searches regular patterns of p-
mode oscillations in stars selected by the KASC WG1 at the beginning of the Kepler mission.
An original version of the pipeline is described in [48] and was adopted for the single target µ
Herculis in the study of its asteroseismic properties from a set of ground-based observations (see
also Chapter 2, for further discussion). The Kepler light curves used by the ORK pipeline span
from Q1 up to Q3 and are those corrected for KASC members through the method described
by [122]. Some additional corrections were also applied: removing “bad points” from the light
curves, i.e. those points that deviated by 0.5σ from the mean flux value, σ being the scatter
in the observed flux around its mean.

After this preliminary phase, we convert the flux from e−/cadence, which is a default unit
for the pre-processed Kepler light curves format [127] of SC, to ppm, i.e. parts per million of
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variation in magnitude. From the simple Pogson relation for apparent magnitudes

m = −2.5 log10 F (3.1)

where F is the flux in e−/cadence, we evaluate error bars in magnitude through the propagation
of the errors

σm =
2.5

ln 10

σF

F
(3.2)

where σF is the error on flux from Kepler light curves and it is again expressed in e−/ cadence.
Afterwards, we subtract the mean magnitude value from the light curve and multiply the result
by 106, in order to obtain units of ppm.

Thus, from the light curves cleaned from bad points and ppm units, we compute the am-
plitude spectrum by means of the LSS method described in Chapter 2. In this case, either
adopting a weighted or an unweighted LSS, lead to the same result. Thus, we decided to
compute the unweighted amplitude spectrum for simplicity.

The general procedure used in the ORK pipeline guarantees a half-automated extraction
of the asteroseismic parameters νmax and ∆ν, and it can be summarized in the following steps:

1. load iteratively the Kepler light curve by selecting the star from a list given by WG1

2. apply the corrections mentioned above to the selected light curve

3. compute the LSS in order to derive the corresponding PS (i.e. power spectrum) in a
range of frequencies from 50 to 4000µHz

4. check by eye whether the selected star shows a significant excess of power in that frequency
range

5. if positive, continue the analysis to point (6), otherwise discard the star and go to the
next one starting from point (2)

6. multiply the value in power of the PS at each bin by the value of the frequency at that
bin. This enhances the power excess of the solar-like oscillations for a sufficiently large
νmax (& 400µHz) and therefore allows us to identify its position in an easier manner

7. apply a Gaussian smoothing, having a FWHM ≈ 50µHz, to the entire PS in order to get
rid of the frequency peaks and search for the maximum of the power excess

8. find the maximum of the smoothed PS and save the frequency corresponding to the
maximum as our estimate of the mean frequency of maximum power, 〈νmax〉

9. compute a new PS in the region of the power excess by considering the range 〈νmax〉 ±
〈νmax〉/2π (supposed to be wide enough to contain the entire power excess caused by
oscillation signal)

10. CLEAN a number of 20 peaks (can be more if desired) from the last PS computed and
save their corresponding frequencies

11. search for a comb-like pattern using the 20 CLEANed peaks and the CR function defined
by Eq. (2.40) (see also Chapter 2 or [48] for details)

12. find the mean large separation 〈∆ν〉 resulting directly from the maximum of the CR
function.
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The choice of the FWHM of the Gaussian smoothing as well as the number of CLEANed peaks
followed from tests done on a small number of stars (∼ 20) having values of νmax spanning
from 400 to 3500µHz. The results derived with this pipeline, though without uncertainties,
contributed to several projects of the KASC, related to both WG1 [71, 72, 73, 216, 310, 63,
275, 218, 317, 45], and joint WG1–WG8 [167]. We will briefly show some of the main results
and list all the , since a detailed description of their analyses goes beyond the scope of this
thesis.

3.4.2 Results

The first work that adopted our estimates of 〈νmax〉 and 〈∆ν〉 is described in [71]. This allowed,
together with the results arising from other pipelines (e.g. see [310] for a general presentation
of the different methods), to derive asteroseismic masses and radii for a sample of ∼ 2000 stars
and to compare the distribution in mass and radius with theoretical computations made by
means of the TRILEGAL code [130]. Thanks to the scaling relations given by Eqs. (2.43) and
(2.45) we can derive the fundamental stellar properties of these stars in a very straightforward
manner. This method is usually known as the “direct” method of estimation of stellar properties
(see also [71, 72, 310] for more details) and has the great advantage of being independent of
any stellar evolutionary model, hence of great benefit for instructive comparisons with the
population synthesis models. Another method that is often adopted is termed the “grid-based”
method of estimation, which relies on the adoption of several theoretical models for predicting
∆ν, having different input values of mass and radius (see e.g. [71, 17]).

Panel (A) of Figure 3.7 shows the HR diagram of the stars studied by [71] with luminosities
computed from the scaling relations of νmax and ∆ν. Combining together Eqs. (2.43) and
(2.45) we obtain the asteroseismic mass and radius
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where the values νmax,� = 3150µHz, ∆ν� = 134.9µHz and Teff,� = 5777K were used. From
the error propagation law we can derive the corresponding uncertainties
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According to these relations, the uncertainty on the scaled mass is usually about twice larger
than that in radius, as also noted by [71]. These scaling relations have been proven to provide
reliable estimates of masses and radii for stars homologous to the Sun (up to the subgiant
phase), but start to deviate from the real stellar parameters for stars that are already ascending
the RGB (see e.g. [232]). However, they have been used extensively for deriving fundamental
stellar properties of thousands of main sequence stars, providing successful results.

Panel (B) of Figure 3.7 shows a similar plot to that of panel (A) by using the asteroseismic
quantity ∆ν instead of luminosity, where the former, as clearly visible, proves to decrease as the
stars evolve. The red points marked in both panels represent some cases discussed by [71] and
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were used to show that the frequency of maximum power νmax decreases with the increasing
age of the star.

An interesting result of this work arises by comparing the distribution of the asteroseismic
masses derived from Eq. (3.3) to that obtained by the population synthesis code TRILEGAL
[129]. The result is shown in Figure 3.8, where the observed distributions are represented by
black lines while the synthetic ones are indicated in red. As it appears evident, the matching
is rather good in the case of radii distributions (bottom panel), while there is a significant
lack of dwarfs in the observed masses (top panel) with respect to the models. Indeed, the low
number of solar twins in the Kepler FOV constitutes one of the main sources of bias for the
asteroseismology of the stars observed.

Other works that used the global asteroseismic parameters derived by means of the ORK
pipeline are listed below:

• predicting the detectability of oscillations in Solar-Type stars [72]

• evidence for the impact of stellar activity on the detectability of solar-like oscillations [73]

• solar-like oscillations in KIC 11395018 and KIC 11234888 from 8 months of Kepler data
[216]

• global asteroseismic properties of solar-like oscillations: a comparison of complementary
analysis methods [310]

• asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars
KIC 10273246 and KIC 10920273 [63]

• constructing a one-solar-mass evolutionary sequence using asteroseismic data [275]

• asteroseismic diagrams from a survey of solar-like oscillations with Kepler [317]

• testing scaling relations for solar-like oscillations from the Main Sequence to Red Giants
[167]

• calibrating convective properties of solar-like stars in the Kepler FOV [45]

• Seismic Analysis of Four Solar-like Stars Observed during More Than Eight Months by
Kepler [218].
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Figure 3.6: Left-hand panels: Frequency-power spectra of Kepler photometry of three solar-like stars
(grey) over 200–8000 µHz. The thick black lines show the result of heavily smoothing the spectra. Fitted
estimates of the underlying power spectral density contribution of p modes, bright faculae and granulation
as labelled in the top left panel are also shown; these are color coded red, blue and green respectively in
the on-line version. These components sit on top of a flat contribution from photon shot noise. The
arrows mark a kink in the background power that is caused by the flattening toward lower frequencies
of the facular component. The insets show the frequency ranges of the most prominent modes. Right-
hand panels: So-called échelle plots of individual mode frequencies. Individual oscillation frequencies
have been plotted against the frequencies modulo the average large frequency spacings (with the abscissa
scaled to units of the large spacing of each star). The frequencies align in three vertical ridges that
correspond to radial modes (` = 0, diamonds), dipole modes (` = 1, triangles) and quadrupole modes
(` = 2, crosses). Image copied from [128].
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Figure 3.7: Panel (A): Estimates of the luminosities of the stars (in units of the solar luminosity) of
the ensemble of Kepler stars showing detected solar-like oscillations, plotted as a function of effective
temperature, Teff . Stars with red symbols are those described in [71]. Panel (B): Average large frequency
separations, ∆ν, against Teff . The symbol sizes are directly proportional to the prominence of the
detected oscillations (i.e., the signal-to-noise ratios). These ratios depend both on stellar properties
(e.g. the photometric amplitudes shown by the oscillations, and the intrinsic stellar backgrounds from
convection) and the apparent brightness of the stars. The dotted lines show predicted evolutionary tracks
[212] for models of different stellar mass (0.8 to 1.5M�, in steps of 0.1M�). The Sun is marked with
a solar symbol (�).

Figure 3.8: Black lines: Histograms of the observed distribution of masses (top) and radii (bottom)
of the Kepler ensemble. In red, the predicted distributions from population synthesis modeling, after
correction for the effects of detection bias. The population modeling was performed using the TRILEGAL
code [130].
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4 Pulsating Red Giants in Open Clusters

Many recent studies of solar-like oscillations of red giant stars have been focused on large
ensembles of stars, made possible by the flood of high quality photometric data provided by
the space missions CoRoT [96, 178, 243]. and Kepler [50, 193, 30]. Particular attention has
been given to the three open clusters NGC 6791, NGC 6811, and NGC 6819 in the Kepler field
[289, 17, 150, 291, 292, 232], due to the well-known advantage of cluster stars sharing common
properties, which allows for more stringent investigations of stellar evolution theory.

Among the highlights in recent results relevant for our study are the measurements of the
small frequency separations δν02, δν01 and of the dimensionless term ε, their correlation with
the large frequency separation (see [30, 165, 179] for previous results on field red giant stars)
and their dependence on stellar mass [236, 179]. Also, the results on the ensemble échelle
diagrams have allowed for the investigation of ensemble properties of the modes, including the
measurement of the mean small spacing δν03 [30, 165] and the linewidths of the dipole modes
and their correlation to fundamental stellar properties [69, 19, 7, 35], which are important
for the comprehension of the physics responsible for the excitation and damping of solar-like
oscillations. Finally, the period spacing analysis for the investigation of the evolutionary stage
of red giants [32, 242] now allows us to distinguish between He-core burning red giants and
those only burning hydrogen in a shell.

Here, we study 115 red giants belonging to the above mentioned clusters, continuously
observed for 19 months by the NASA Kepler Mission (see [175, 128, 60] for details on the data
pipeline and acquisition, for a general introduction to the asteroseismic program, and for a
description of the Kepler Input Catalog, respectively). Our study is made along the same lines
as those described by [165], who analyzed the first 4.5 months of Kepler observations of field
red giants. In contrast to [165], our cluster red giants have the great advantage of providing
more homogeneous samples because age, metallicity and mass [17, 232], are about the same.
In particular, NGC 6791 is a very old, (∼ 8.3 Gyr [56]), and metal rich ([Fe/H] = 0.29± 0.03
(random) ±0.07 (systematic) [55]) open cluster, with average masses MRGB = 1.20± 0.01M�
[17] and MRC = 1.15 ± 0.03M� [232] for red giant branch (RGB) and red clump (RC) stars
respectively (see also [56] for recent results from eclipsing binaries). NGC 6819 is a middle aged
(2-2.4 Gyr [17]) open cluster, with solar metallicity ([Fe/H] = 0.09 ± 0.03 [51]), and average
massesMRGB = 1.68±0.03M� andMRC = 1.65±0.04 for RGB and RC stars respectively. The
third open cluster, NGC 6811, is characterized by a young (0.7 ± 0.1 Gyr [131]) and possibly
solar metallicity star population (suggested by two independent spectroscopic investigations by
Bruntt et al., in prep, and Molenda-Żakowicz et al., in prep.), where a small number of RC
stars has been observed, showing an average mass MRGB = 2.35 ± 0.04M� [291, 292]. The
temperature estimates for both NGC 6791 and NGC 6819 were derived by [150]. In particular,
they used color-temperature calibrations by [262] and JHK photometry from the 2MASS
catalog [277], which is available for all the stars of the sample. V magnitudes are taken from
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[294] for NGC 6791 and from [154], in order to derive temperatures based on the (V −K) color.
The adopted reddenings are E(B − V ) = 0.16± 0.02 for NGC 6791 [55] and E(B − V ) = 0.15
for NGC 6819 [51]. Lastly, [17] estimated DMs for both NGC 6791 and NGC 6819 by adopting
the extinction AV = 3.1E(B−V ), which yielded to (m−M)0 = 13.11± 0.06 and (m−M)0 =
11.85± 0.05, respectively.

After briefly introducing the parameters involved in our study in Section 4.1, we introduce
the code developed for this work in Section 6.1 (see Appendix A for all the details), which
concerns the analysis of the average p-mode structure in the power spectrum. In Section 4.3
we show the resulting asteroseismic ensemble diagrams and the linewidths of radial modes as
a function of fundamental stellar parameters, while Section 4.4 presents the analysis of the
period spacing of mixed dipole modes following the approach of [32]. Finally, we conclude in
Section 4.5.

Figure 4.1: Power spectrum of KIC 2436593, a typical low luminosity RGB star belonging to NGC
6791. Mode identification for some of the peaks is shown. Shaded regions in gray indicate mixed ` = 1
modes. ∆ν and δν02 are also marked. The inset shows the detail of one of the ` = 1 shaded regions,
where an indication of the observed period spacing, ∆Pobs, is shown.

4.1 Asymptotic Parameters Investigated

Before proceeding with the description of the data analysis, it is helpful to introduce the
physical quantities that we study in this work. As we remind from the introduction of this
thesis given in Chapter 1, the asymptotic theory of solar-like oscillations show us that the
acoustic standing waves (also known as p modes) with low angular degrees, `, and high radial
orders, n, are regularly spaced in frequency, according to the relation given by Eq. (1.10) (see
also [308, 299, 133]). The term δν0`, known as the small frequency separation, for ` = 1, 2 and
3 it is defined as

δν02 = νn,0 − νn−1,2, (4.1)

δν01 =
1

2
(νn,0 + νn+1,0)− νn,1, (4.2)

δν03 =
1

2
(νn,0 + νn+1,0)− νn,3. (4.3)
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As stressed in Chapter 1, Section 1.2, the small frequency separations are related to the sound
speed gradient in the stellar core, hence to the mean molecular weight, which increases as the
star evolves. Mixed modes occur as the frequencies of the g modes in the core and the p modes
in the envelope become similar during the subgiant and red giant phase. As the star evolves, its
mixed modes will undergo avoided crossings causing so called mode bumping, which broadens
the ridges in the échelle diagram (e.g. see [293]). As argued by [30] and [165] the small spacing
δν03 is therefore preferred in red giants over the more conventional δν13. We note that mode
bumping mostly affects the dipole modes as they penetrate deeper into the star, and hence
couple more strongly to the g modes in the core [103], see also Figure 4.2. The dipole modes
are therefore sensitive to the core properties of the star, which allows us to determine which
red giants burn helium or not (see Section 4.4).

Figure 4.2: Example of avoided crossing occurring in low degree p modes as the star evolves. Evolution
of adiabatic frequencies with age of a model of mass 1.60M�, where age is measured by the effective
temperature. The dashed lines correspond to modes of degree ` = 0, and the solid lines to ` = 1. The
vertical solid line indicates the Teff of η Bootis. As it is clear from the mode frequency evolution, the
dipole modes are bumped at some times, resulting in an increase of their frequency with respect to the
value predicted by the asymptotic relation given by Eq. (1.10). Image copied from [25].

Figure 4.1 shows a typical power spectrum of a low luminosity RGB star, KIC 2436593,
observed in NGC 6791. The mode identification for some of the modes is shown, together with
the indication of regions containing mixed ` = 1 modes, represented by the gray-shaded strips.
The large separation ∆ν and the small spacing δν02 are indicated as well. The inset shows
a zoom-in of one of the gray-shaded strips, where the observed period spacing of the dipole
modes, ∆Pobs is marked.

4.2 Observations and Data Analysis

The photometric time series of the 115 red giants used in this work were obtained in Kepler ’s
long cadence mode (∆t ∼ 30 min, [174]) between 2009 May 13 and 2010 December 22. This
corresponds to the observing quarters 1−7, providing a total of almost 18,000 data points per
star (see [122] for details on the detrending of the data). We followed the approach described
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by [292] for merging the quarters, and we discarded the stars that they classified as seismic
non-members in their study. We also note that, according to their classification based on the
color-magnitude diagram (CMD), the cluster stars in NGC 6811 are all He-burning stars, with
one star appearing to be in a late He-core burning phase towards the asymptotic giant branch
(AGB).

For the present study we developed the Asymptotic Analysis of Red Giants (AARG) code
(Appendix A), with the purpose of deriving asymptotic parameters for p modes and observed
period spacings for mixed modes in red giant stars (see Appendix A for more details). AARG
performs a multi-step analysis in a semi-interactive way, allowing the user to follow the results
at each step and make any necessary corrections. We calculated background-corrected power
spectra and measured ∆ν using the SYD pipeline [164]. As a check we compared ∆ν values
with those derived using other methods [240, 215, 149, 177] and found good agreement. We
focus first on the analysis of p modes, which represents the main part of the work, leaving the
discussion of period spacings to Section 4.4.

The analysis of p modes, performed for each star, was done in three steps: (i) collapse the
échelle diagram using the measured ∆ν; (ii) identify the centroids ν0, ν1, ν2 of the ` = 0, 1, 2
ridges by fitting three Lorentzian profiles to the collapsed échelle diagram, which gives the small
spacings δν02 and δν01, and ε (see the next paragraph and [165]); and (iii) simulate 500 power
spectra by perturbing the observed power spectrum of the star according to a χ2 statistics
with 2-degrees of freedom [319], perform the first two steps of the analysis for each simulation
in order to derive a new set of asymptotic parameters, and evaluate their uncertainties by
computing a robust rms of the results. Figure 4.3 shows an example of a collapsed échelle
diagram obtained with the AARG code. The centroids of the ridges ` = 0, 1, and 2 are marked
by dotted lines, while the Lorentzian profiles used to fit the different ridges are shown with
thick solid lines (red, blue, and green, respectively).

Figure 4.3: Collapsed échelle diagram of KIC 2436593. The identification of the ridges ` = 0, 1, and
2 is shown, together with their Lorentzian fits (red, blue, and green solid lines, respectively).

We now describe step (ii) in slightly more detail. AARG requires an initial guess of ε for
each star, given by manually marking the position of the ` = 0 peak in the collapsed échelle
diagram. This is followed by a Lorentzian fit to obtain the centroid, ν0. According to the values
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shown by [165] and [317], we expected to have 0.5 < ε < 1.5 for red giants with ∆ν < 15 µHz.
We therefore either added or subtracted 1 to the measured ε to ensure it would fall within
this range (see also [243, 316] for further discussion of the position of the centroids and the ε
diagrams).

Next, AARG makes a first guess for the centroid ν2 of the ` = 2 peak by adopting an
empirical relation ν0 − ν2 ≡ δν02 = c∆ν, where c is small. Although the relation has a slight
mass dependence [236], using a fixed value of c = 0.123 offered a reliable first guess for every
star in our sample (note that our value is very close to the one measured by [30]). As for ν0, a
Lorentzian fit centered on the first guess for the ` = 2 ridge position provides the final value of
the centroid ν2, and hence also δν02. The search for the ` = 1 peak is performed automatically
by finding the maximum in the regions of the collapsed échelle diagram laying outside the
` = 0, 2 peaks. A third Lorentzian fit is then performed, providing the centroid ν1, which gives
δν01 = ν0 + ∆ν/2− ν1 according to the convention by [30]. For a few stars (∼ 10) our method
did not perform well. This was mainly caused by partly overlapping ` = 0, 2 peaks (especially
in NGC 6811 because of the higher mass of its stars) and strongly affected ` = 1 peaks due to
mixed modes. These stars were manually analyzed afterwards. We could successfully derive the
asymptotic parameters of p modes for a total of 115 stars: 60 for NGC 6791, 5 for NGC 6811,
and 50 for NGC 6819.

4.3 Results

In the present section we provide the results arising from our analysis of p modes. A complete
table of values can be found in Appendix B.

4.3.1 ε Diagram

The ε term of Eq. (1.10) was shown to be highly correlated with ∆ν for red giant stars [165, 243].
The ε diagram is shown in Figure 4.4 for the clusters NGC 6791, NGC 6811, and NGC 6819,
where 1σ error bars were derived by means of Eq. (1.10). We note that the RC stars (identified
from the CMDs by [292] but adjusted for a few stars based on our analysis of the period
spacing, presented in Section 4.4) form distinct groups with slightly lower ε than the RGB
stars at ∆ν ' 3.7µHz for NGC 6791, ∆ν ' 8µHz for NGC 6811, and ∆ν ' 4.8µHz for
NGC 6819. In particular, we measured a weighted average of ε for clump stars and RGB
stars in the same ∆ν range of RC stars, and found them to be 〈εRC〉 = 0.829 ± 0.031 and
〈εRGB〉 = 0.915± 0.039 for NGC 6791, and 〈εRC〉 = 0.970± 0.018 and 〈εRGB〉 = 1.015± 0.017
for NGC 6819. In both cases, 〈εRC〉 appears to be significantly different from 〈εRGB〉. This is in
good agreement with [32] and [179]. Although a lower mass of RC stars can result in lower ∆ν,
and hence lower ε, one should note that this effect alone cannot explain the observed difference
in ε between RC and RGB stars of similar ∆ν (see also [232] for a detailed study about the
mass difference between the RGB and RC stars). The difference in evolutionary state also
needs to be taken into account to fully explain the observed difference in phase shift [179].

A least-squares fit to the RGB stars of the clusters was computed, using the log-relation

ε = A+B log ∆ν , (4.4)

adopted by [243]. Since the fits computed to the RGB stars of NGC 6791 and NGC 6819 are
not significantly different, we give the result for all the RGB stars in our sample, providing
single values for the coefficients A and B. The result is shown as a solid black line in Figure 4.4,
where A = 0.601 ± 0.025 and B = 0.632 ± 0.032. The fit from [243], who used a five-month
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Figure 4.4: ε diagram for the clusters NGC 6791 (red circles), NGC 6811 (blue diamonds), and
NGC 6819 (green squares). Open symbols represent RC stars while filled symbols are RGB stars. 1σ
uncertainties are displayed for both quantities. A fit to the RGB stars of all the clusters using Eq. (4.4)
is added (solid black line), as well as the one from [243] (dashed purple line) and [179] (dot-dashed cyan
line). Stars marked with labels and arrows represent special cases that are discussed in Section 4.4.2.
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data set, is added for comparison and plotted in the ∆ν range [0.6, 10] µHz covered in that
study (dashed purple line). The fit by [179], based on more than 900 field red giants observed
by Kepler for about 600 days, is almost indistinguishable from ours (dot-dashed cyan line). We
also tested a power-law form of the ε-∆ν relation and found the χ2 to be very similar to that
derived from Eq. (4.4). The log-relation was finally chosen to allow a direct comparison with
the results by [243] and [179].

Lastly, we note that the uncertainties on ∆ν, and hence on ε, become quite large for values
of ∆ν below < 2µHz due to the limited frequency resolution and small number of orders
observed. For the star with the highest ∆ν, the large uncertainty is caused by the low S/N
level, due to its low oscillation amplitude.

4.3.2 C-D Diagrams

In the C-D diagram one plots the small spacing δν02 versus the large spacing ∆ν [75], which for
MS stars enables one to discriminate stars of different age and mass. A new version of the C-D
diagram proposed by [222] and by [236] for MS and RGB stars respectively, is constructed by
considering δν01 instead of δν02 (see also [316]). It has been shown that for red giants the C-D
diagrams can not be used to investigate age [317] but that it is still useful to discriminate mass
(e.g. see [30, 165, 236, 179]). The results for both δν02 and δν01 are shown in Figures 4.5(a)
and (c), for the three clusters. As before, open symbols represent RC stars while filled symbols
are RGB stars. As a first approximation, we represent the relation between δν02 and ∆ν by
the linear relation δν02 = a02 + b02∆ν, which we fitted with a standard least-squares method
to the RGB stars. The results are shown in Fig. 4.5 with a dashed red line for NGC 6791 and
a dot-dashed green line for NGC 6819. Their equations are given by

δν
(6791)
02 = (0.121± 0.003) ∆ν + (0.035± 0.012) µHz , (4.5)

and
δν

(6819)
02 = (0.114± 0.003) ∆ν + (0.019± 0.012) µHz . (4.6)

Only error bars on δν02 were considered for the fits, but the results obtained by including
uncertainties on both quantities were indistinguishable from the ones presented here. The
coefficients of the δν02-∆ν relation estimated from our fit agree within a few percent with those
derived by [179] for field stars.

The typical mass for an RGB star, MRGB, is expected to be different for each cluster but
about the same within a given cluster. For cluster RGB stars we therefore have a much tighter
constraint on the stellar mass than for field stars. [17] found M6791 = 1.20 ± 0.01M� and
M6819 = 1.68 ± 0.03M� as the averages for the RGB stars, which were derived using grids of
stellar models that incorporated scaling relations for νmax and ∆ν. We refer to [232] for further
discussion about the mass estimates for these stars. Following the theoretical work by [236],
who showed that δν02 depends on mass, we relate the difference in the slopes, b02, in Eqs. (4.5)
and (4.6) to the difference in MRGB. Assuming the linear relation

b02 = α02 + β02

(
MRGB

M�

)
, (4.7)

we obtain α02 = 0.138±0.012 and β02 = −0.014±0.008 by solving the system of two equations
(one for each cluster).

As done for δν02, we fitted a linear relation δν01 = a01 + b01∆ν to the RGB stars of
NGC 6791 and NGC 6819. The linear trends are shown in Figure 4.5(c) with the same notation
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Figure 4.5: (a), (c): C-D diagrams of the small spacings δν02 and δν01 for the clusters NGC 6791
(red circles), NGC 6811 (blue diamonds), and NGC 6819 (green squares). Open symbols represent RC
stars while filled symbols are RGB stars. Error bars show 1σ uncertainties. The linear fits to the RGB
stars are shown for both NGC 6791 (dashed red line) and NGC 6819 (dot-dashed green line). Stars
marked with labels represent special cases that are discussed in Section 4.4.2. (b), (d): modified C-D
diagrams of the ratios δν02/∆ν and δν01/∆ν with the same notation adopted for the upper panels.
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as Figure 4.5(a), and the results are

δν
(6791)
01 = − (0.021± 0.003) ∆ν − (0.063± 0.011) µHz (4.8)

and
δν

(6819)
01 = (0.000± 0.003) ∆ν − (0.109± 0.012) µHz . (4.9)

Once again, the uncertainties are quite similar for the two clusters. Like δν02, we also see a
mass dependence on δν01 for the RGB stars. But unlike δν02, the trend appears to go in the
opposite direction, with higher δν01 for higher masses. This is in qualitative agreement with
the theoretical results by [236], whose Figure 5(b) shows a slight increase in δν01 for increasing
mass along the RGB. As for δν02, we relate the slopes b01 in Eqs. (4.8) and (4.9) to MRGB,
assuming the linear relation

b01 = α01 + β01

(
MRGB

M�

)
, (4.10)

and find α01 = −0.073 ± 0.012 and β01 = 0.044 ± 0.008. We find that |β01| ' 3|β02|, hence it
appears that δν01 is more sensitive to mass than δν02 by about a factor of three. But at this
stage we would caution overinterpretation of this result as further theoretical investigations are
required to fully understand how δν01 depends on the fundamental parameters and internal
structure of red giants (Section 4.3.3).

Figures 4.5(b) and (d) show the so-called modified C-D diagrams which plot the relative
ratios δν02/∆ν and δν01/∆ν. The reason for considering the ratio δν0`/∆ν is that models show
it to be less sensitive to surface layer effects (e.g. see [316]) and that the small spacings δν0`

approximatively scale with ∆ν. Our results appear to be in agreement with previous results
on red giants [30, 165, 243, 179] and with the theoretical studies by [236].

4.3.3 The small spacings of Red Clump Stars

It is interesting to compare the average small spacings for the RC stars relative to the RGB
stars in each cluster. In the following we denote this quantity ∆〈δν0`〉 ≡ 〈δνRC

0` 〉 − 〈δνRGB
0` 〉. It

is evident in all four panels of Figure 4.5, but slightly more so in Figures 4.5(b) and (d), that
the RC stars on average show different small spacings than RGB stars of similar ∆ν. We will
first discuss ∆〈δν02〉.

For NGC 6819, ∆〈δν02〉 = 0.112 ± 0.016µHz, while for NGC 6791 we have ∆〈δν02〉 =
0.012 ± 0.021µHz. Given the relation between δν02 and mass for RGB stars (Section 4.3.2),
one might speculate that a similar relation would exist for RC stars. However, we note that
∆〈δν02〉 for NGC 6819 is about twice as large as the difference in δν02 between the two RGB
populations in NGC 6791 and NGC 6819 at a similar ∆ν. Hence, if we applied the relation in
Eq. (4.7) to the RC stars, we would find that the RC stars in NGC 6819 have a mass of about
0.7M� (corresponding to a mass loss of about 1M�), in stark disagreement with the results by
[232], who found ∆〈M〉 = −0.03 ± 0.04. Hence, there is certainly something else dominating
the different values of ∆〈δν02〉 we see for the two clusters.

Turning our attention to the other small spacing, we have ∆〈δν01〉 = 0.004± 0.025µHz for
NGC 6819 and ∆〈δν01〉 = −0.113±0.020µHz for NGC 6791. Hence we see that ∆〈δν01〉6791 <
∆〈δν01〉6819, which was also the case for ∆〈δν02〉. We recall that the mass dependencies of δν02

and δν01 were opposite for the RGB, both in observations (Section 4.3.2) and models [236].
Hence, we would also expect an opposite trend for ∆〈δν01〉 (∆〈δν01〉6791 > ∆〈δν01〉6819). The
fact that we do not observe this is further evidence that a simple relation with mass alone
cannot explain the observed differences in small spacings between RC and RGB stars.

79



4. PULSATING RED GIANTS IN OPEN CLUSTERS

A possible explanation is the internal structural changes of the stars that occur during the
He-flash phase [42] between the tip of the RGB and the RC. These changes could be significantly
different for stars of different masses (M6791 = 1.20 ± 0.01M� and M6819 = 1.68 ± 0.03M�,
[17]), composition ([Fe/H]6791 = 0.29 ± 0.03 (random) ±0.07 (systematic), [55]; [Fe/H]6819 =
0.09± 0.03, [51]), and rotation rates [223]. Further investigation requires modeling of both the
RGB and RC stars in these clusters.

The dependence of δν01 on stellar properties was investigated by [236] using stellar models
covering 0.7−2.3M� on the RGB and 2.5−5.0M� in the He-core burning phase. They found
that small values of δν01 were predominantly seen among RGB models, and we would therefore
expect the RC stars to show larger δν01 on average, which is in contrary to what we observe
for NGC 6791. However, we note that all the He-core burning models in the [236] sample were
more massive than the stars in the two clusters considered here, and a direct comparison is
therefore not possible. The physical cause of a lower value of δν01 was not firmly established
by [236], but they argued that there was a tendency for low δν01 values in models where the
inner turning point of the ` = 1 modes was well inside the convective envelope, corresponding
to stars with deep convective envelopes. Clearly, these issues deserve further study.

4.3.4 Ensemble échelle Diagrams

Following [165], we computed the so-called ensemble échelle diagrams for both NGC 6791 and
NGC 6819. When dealing with a large number of stars, ensemble échelle diagrams are very
helpful for studying the evolution of features such as ridge width and position. In particular,
the measurement of the average position of the ` = 3 ridge becomes possible also when low S/N
in the power spectra does not allow one to make a clear detection of the corresponding peak in
a single star. The results are shown in Figures 4.6(a) and (c), where the stars are numbered by
increasing ∆ν. Each row in the plot represents the collapsed échelle diagram of a single star
using the large separation adopted in the analysis, and shifted in order to have the ` = 0 ridge
fall on (ν/∆ν mod 1) = 0.3 (see also the discussion by [293], Sec. 2). The RC stars (red star
symbol) clearly show strong broadening of the ` = 1 and 2 ridges. We see that even the ` = 0
ridge appears broader for RC stars in both clusters.

The result of collapsing the ensemble échelle over the entire sample of stars is shown in
Figures 4.6(b) and (d) (thick black line). Results for RC stars (red line) and RGB stars (blue
line) are also plotted for both clusters. The presence of an ` = 3 peak becomes evident for
NGC 6791, while for NGC 6819 a hint of ` = 3 is visible only for the RGB stars. For NGC 6791,
the ` = 3 hump seems to arise from several stars, particularly those with ∆ν < 7µHz, as visible
from Figure 4.6(a). The position of the marked ` = 3 peaks of the two clusters, and hence their
average small spacings δν03, are in agreement with the results of [30, 165, 243] and [179].

It is noticeable that the ` = 1, 2 ridges move away from the ` = 0 ridge as the stars evolve
from H-shell to He-core burning red giants, a result that was already discussed by [165]. We
also note that the hump visible in Figure 4.6(d), on the left slope of the ` = 1 peak (red line),
is caused by only two stars having strong peaks that occur at (ν/∆ν mod 1) ' 0.7 and this
is therefore not an indication of a general feature. Referring to the effect on δν01 discussed
in Section 4.3.3, we notice that the ` = 1 ridge of the RC stars of NGC 6791 (Figure 4.6(a))
is shifted towards the right-hand side of the diagram, i.e towards lower values of the small
spacing, while this shift is not apparent in NGC 6819 (Figure 4.6(c)).
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Figure 4.6: (a), (c): ensemble échelle diagrams of the clusters NGC 6791 and NGC 6819, respectively,
where ` = 0 centroids were aligned by shifting the ` = 0 ridge of each star to align with (ν/∆ν mod
1) = 0.3. The number of the stars, ordered by increasing ∆ν, is shown on the left coordinate, and the
corresponding ∆ν is shown on the right axis. Red star symbols mark the clump stars identified in the
clusters. Note that each row corresponds to the collapsed échelle of one star, normalized to unity. (b),
(d): diagrams showing panels (a), (c) collapsed over the entire range of ∆ν (thick black line) normalized
to unity. Results for RC stars in red and RGB stars in blue are also shown. Ridge identifications and
definitions of small separations are indicated. In both panels, the dotted lines represent the centroids of
the ` = 0, 1, 2 and 3 ridges, while the dashed line is the position of the midpoint of two adjacent ` = 0
modes.
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Figure 4.7: FWHM of the ` = 0 ridge as a function of ∆ν for RGB stars in NGC 6791 (filled red
circles) and NGC 6819 (filled green squares). Each point represents the average of values within a subset
of stars with similar ∆ν. The error bars are the 1σ uncertainties on the mean for each subset. Open
symbols at ∆ν ' 3.7µHz and ∆ν ' 4.8µHz represent the measurements for the subsets of RC stars.

4.3.5 Mode Linewidths

Measuring the linewidths of p modes and studying how they correlate to the fundamental
stellar properties has important consequences for the understanding of the damped nature of
solar-like oscillations. In fact, the physics responsible for the damping mechanism that acts in
the convective envelope of low mass stars is not yet fully understood (e.g. see [158, 103, 35]).

In the present work we provide estimates of the linewidths of radial modes derived through
the AARG code. In particular, the widths of the ridges in the collapsed échelle diagrams
(Figures 4.6(b) and (d)) give a rough estimate of the mode linewidths. Figure 4.7 shows the
FWHM for the ` = 0 ridge from the Lorentzian fit to the corresponding peak in the collapsed
échelle diagram, for the RGB stars of both NGC 6791 and NGC 6819. Each point is the average
from a subset of stars sorted in bins of ∆ν, while the overlaid error bars are 1σ uncertainties
on the mean for each bin. The open symbols at ∆ν ' 3.7µHz and ∆ν ' 4.8µHz show our
measurements for the RC stars. We see a clear increasing trend when moving to higher ∆ν, a
result that was already apparent from the analysis by [165] of field red giants, despite of the
shorter data set that was available (see also [179], who obtained a similar result by using a
different method). This increasing trend is also visible in Figures 4.6(a) and (c), in that the
scaled width ν/∆ν of the ` = 0 ridge at low ∆ν is about the same of that at high ∆ν. In
Figure 4.7 we also notice a systematic difference between the ridge widths of the two clusters,
a feature that is already visible from the collapsed échelle diagrams of Figures 4.6(b) and (d).

To see whether the difference in ridge width between the two clusters and between stars
with different ∆ν arises from the difference in temperature of the stars as contemplated by
[69, 19, 7, 35], we plot our measurements of FWHM as a function of Teff in a log-log scale
in Figure 4.8. This shows indeed that all the cluster stars follow an almost common trend,
which supports that the observed difference in ridge width largely follows the difference in
temperature. We also show the linewidth measurements of a sample of main sequence (MS)
and subgiant stars (blue diamonds) from [7], where we have taken temperatures from [65, 66].
It is remarkable how well all the stars are aligned in Figure 4.8. Note that our measure of the
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Figure 4.8: FWHM of the ` = 0 ridge plotted against Teff for the stars of NGC 6791 (red circles)
and NGC 6819 (green squares). Also shown are measured linewidths for MS and subgiant field stars
(blue diamonds) from [7]. Each cluster point represents the same subset of stars plotted in Figure 4.7.
The error bars are the 1σ uncertainties on the mean for each subset. The fit to the MS and subgiant
stars taken from [7] is also shown (dot-dashed blue line). The dashed black line shows an exponential
fit (Eq. (4.11)) to all stars.

ridge width only provides an upper limit to the ‘true’ mode linewidths because of the slight
curvature of the ridges in the échelle diagram. The fit to the linewidths across all stars is
represented by an exponential function

Γ = Γ0 exp

(
Teff − 5777K

T0

)
, (4.11)

where Γ0 = 1.39 ± 0.10µHz and T0 = 601 ± 3K (dashed black line). A detailed study using
linewidths found by direct mode fitting (peak bagging) of MS and red giant stars (e.g. [69,
19, 7]) goes beyond the scope of this work. The power law fit with a background component
proposed by [7] is here added for comparison in its range of validity (5300K−6800K, dot-
dashed blue line). However, we can conclude that our measurements, combined with Kepler
results on MS and subgiant stars, follow a single exponential trend with temperature.

4.4 Mixed Modes

Mixed modes have the great advantage of being sensitive to the core structure, while at the
same time being observable at the surface. They were recently used as a way to successfully
distinguish between RC and RGB stars [32, 242]. Although their amplitude is lower than of
pure p modes [244], long datasets enable us to identify many of them due to their long lifetimes
[103]. Even in cluster red giants, which are generally fainter than the Kepler field stars, we can
detect many mixed ` = 1 modes in the best cases. The main features of mixed modes relevant
for the analysis presented in this work are discussed in Section 4.4.1, while our results on their
period spacings are described in Section 4.4.2.
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Figure 4.9: Period spacings of the three clusters NGC 6791 (red circles), NGC 6811 (blue diamonds),
and NGC 6819 (green squares). Open symbols represent RC stars, while filled symbols are RGB stars.
Tracks for 1.2 M� (thick red line) and 1.6 M� (thick green line), and Z = 0.017, are shown [316].
Tick marks drawn at the top (RC) and bottom (RGB) refer to stars that could not be identified with
our period spacing analysis, and are colored according to the notation adopted in the rest of the paper.
The dashed black line represents the minimum period spacing one can measure with a 19 months-long
time-series. Special cases discussed in Section 4.4.2 and listed in Table 4.1 are marked.

4.4.1 Period Spacings of Mixed Dipole Modes

While p modes are equally spaced in frequency, pure g modes are approximately equally spaced
in period, following the asymptotic relation given by Eq. (1.12) [299, 78]. From Eq. (1.12), the
period spacing of dipole g modes is given by

∆Pg = Π0/
√

2 , (4.12)

which appears the most interesting quantity to investigate because of the strong coupling
between p and g modes for ` = 1 [103, 236, 293, 24].

However, in contrast to the large separation for p modes, the period spacing of pure g modes,
∆Pg, cannot always be directly measured in red giants because all the non-radial modes are
mixed in the red giant phase [78]. Nevertheless, from recent studies it seems to be possible to
infer Π0 in some cases (see [32, 245]). Fortunately we can readily measure the period spacing
of the mixed modes, ∆Pobs, which can serve as a proxy for ∆Pg. ∆Pobs is lower than ∆Pg by
about a factor of 0.6-0.8 (e.g. see [32, 245]).

4.4.2 ∆Pobs-∆ν Diagram

As mentioned in the introduction of the present chapter and in 4.2, AARG measures period
spacings using the approach used by [32] (see Appendix A for further details). As a first step,
it modifies the power spectrum for each star by erasing the regions containing all the ` = 0, 2
modes, whose positions come directly from our analysis of p modes (see Section 6.1). This
new power spectrum shows only ` = 1 mixed modes, and possibly some low amplitude ` = 3
modes, and is then expressed in period rather than frequency. The power spectrum of this
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power spectrum is then calculated, which is converted back into period. To obtain a first guess
for the observed period spacing, a manual marking of the position of the excess of power is
required. Finally, a Gaussian fit to the selected hump of power provides our measure of ∆Pobs.

We were able to measure ∆Pobs for a total of 53 stars in our sample: 27 from NGC 6791, 4
from NGC 6811, and 22 from NGC 6819. The results are shown in Figure 4.9, where RC and
RGB stars are marked with open and filled symbols, respectively. The dashed black line is the
limit set by the frequency resolution. Overlaid are theoretical tracks for 1.2M� and 1.6M� at
near-solar metallicity (Z = 0.017), as calculated by [316], which are representative of the RGB
stars of NGC 6791 and NGC 6819, respectively. Using stellar models, we verified that changing
the metallicity over the range spanned by the two clusters has no significant effect on ∆Pg for
RGB stars.

The tick marks at the top (RC) and bottom (RGB) represent stars for which the period
spacing could not be clearly measured by our analysis, classified by [292] using the CMD.
We see that the fraction of stars with measured period spacings is much higher for RC stars
than for RGB stars even after taking into account the limit set by the frequency resolution. In
particular, for NGC 6791 these fractions are ∼36% (RGB) and ∼73% (RC), while for NGC 6819
they are ∼10% (RGB) and ∼86% (RC). This could be explained by a weaker coupling between
the p-mode and g-mode cavities for the RGB stars [103], which makes the resonances narrower
in frequency, resulting in a smaller number of observable mixed modes.

4.4.3 Discussion of Special Cases

The stars labeled from A to D (KIC 5112361, KIC 4937770, KIC 5024414 and KIC 5024476)
are outliers in the ∆Pobs-∆ν diagram (Figure 4.9), while KIC 2437103, KIC 2437589, and KIC
5024404 have period spacings that imply a different stage of evolution to the one based on the
CMDs [292]. KIC 9716522 represents a star on its way up towards the AGB, as already noted
by [292] and now supported by our measurement of its high period spacing in agreement with
that of other He-burning stars (Figure 4.9).

All these highlighted stars are also marked in Figures 4.4 and 4.5, and in the CMDs of
Figure 4.10 (as derived by [292]). We also list these stars in Table 4.1, together with all their
asteroseismic parameters derived in this work. To further support the discussion presented
below, we derived the masses of all stars near the RC in the CMD, including the outliers A−D
and the stars that we have marked as ‘likely evolved RC’ (Figure 4.9), which are also shown in
Figure 4.10 and listed in Table 4.1. To estimate the masses we use the scaling relation for the
asteroseismic mass of a star, introduced in Chapter 3 and given by Eq. (3.3), where we adopted
νmax,� = 3100µHz, ∆ν� = 135µHz and Teff,� = 5777K (e.g. [232]). The result is shown
in Figure 4.11, with masses plotted against V magnitude and 1σ error bars overlaid (see also
Chapter 3). Blue lines represent the mean masses of RC stars (solid) and their 1σ uncertainties
(dashed), as derived by [232] by adopting Eq. (3.3). To provide corrected estimates of mass
for clump stars, the ∆ν scaling relation was corrected by 2.7 % and 1.9 % for NGC 6791 and
NGC 6819, respectively, according to the study by [232].

We first discuss possible causes for the outliers, A−D. All four are potentially binary stars.
Three of them (A, C, and D) are listed as binary stars in the radial velocity study by [154], and
the fourth star (B) shows a low oscillation amplitude, which could be indicative of a binary
star, as argued by [291]. All four stars also appear relatively blue in the CMD (Figure 4.10).
Stars A and B fall below the RC in the CMD and are in line with the rest of the RGB stars
in Figures 4.4 and 4.5, suggesting that they are RGB stars with no clear sign of an abnormal
mass (Figure 4.5(a) and (b)). This is confirmed by our estimate of their masses according
to Eq. (3.3) (Figure 4.11), whose values are similar to the average mass of the RGB stars of
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NGC 6819 found by [17] (see Section 4.3.2). Binarity seems like the most plausible explanation
for their B − V colors being lower than the other RGB stars. However, their power spectra do
not show oscillations from two components, and their higher-than-expected ∆Pobs is therefore
difficult to explain. Perhaps it could come from a different core structure of these stars caused by
binary interaction. We note that the stars do not seem to be the result of a merger event, given
their apparently ‘normal’ masses. In conclusion, stars A and B are most likely both binaries,
with one component on the RGB, whose seismic signal we detect, and a fainter less-evolved
component. Stars C and D have luminosities typical to that of the RC. Our measurement of
∆Pobs suggests that the stars indeed belong to the RC. The position of the stars in the sequence
of He-core burning stars going from low mass (low ∆ν) to high mass (high ∆ν) spanned by
the three clusters indicates that stars C and D have higher masses than the other RC stars in
NGC 6819 (Figure 4.9). This is confirmed by our estimate of their masses (Figure 4.11). Our
conclusion that they are high-mass RC stars is in good agreement with [268], who mention
these stars along with others with this position in the CMD to be potential descendants of blue
stragglers, meaning that they experienced mass transfer and therefore have a component with
a mass significantly higher than the cluster’s turn-off mass.

Concerning the next three stars, our period spacing analysis shows that KIC 2437103
(∆Pobs = 306 s) is an RC star, and KIC 2437589 (∆Pobs = 39 s) is an RGB star, as ar-
gued by [232], and KIC 5024404 (∆Pobs = 182 s) is an RC star. It seems that KIC 2437589
is an evolved blue straggler in the RGB phase, as suggested by [56]. This would explain its
unusual position in the CMD (top panel of Figure 4.10), and is also supported by a mass of
about 1.7M�, as derived from Eq. (3.3), greater than the mass of the other RGB stars of the
cluster.

Lastly, six stars (two in NGC 6791 and four in NGC 6819), were found to be possible
candidates for RC stars that are starting to evolve towards the AGB. We list them as ‘likely
evolved RC’ in Table 4.1. Our suggestion arises from our measurement of their ∆Pobs, which
corresponds to that of RC stars, and from their ∆ν, which is lower than that of the other
RC stars. Their masses (Figure 4.11) are similar to that of the average RC star which, in
combination with their lower ∆ν, confirm that they have a radius significantly larger than the
other RC stars.

4.5 Summary of the Results

To summarize and conclude on the main results of the analysis presented in this chapter:

1. The fit of the ε-∆ν relation to the RGB stars of our sample, computed using Eq. (4.4), is
compatible with the result derived by [243], although it deviates slightly towards higher
values of ∆ν, where our sample has more stars and benefits from longer observations.
Our fit is almost indistinguishable from that by [179], which was based on more than 900
field red giants observed for a similar length of time. Moreover, we tested a power-law
form of the ε-∆ν relation and found it to provide a very similar fit to that derived from
Eq. (4.4). Lastly, the average ε of clump stars appears to be significantly different from
that of their RGB counterparts for both NGC 6791 and NGC 6819, a result in agreement
with previous findings on field RGs.

2. The linear fits to the δν02-∆ν relation for the RGB stars of our sample, given by Eqs. (4.5)
and (4.6), appear to be compatible within a few percent with the results by [165] and
[179] on field red giants. A direct measure of the mass-dependence for the small spacings
δν02 and δν01 is derived for the first time for cluster stars. The result indicates that δν01
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Figure 4.10: CMDs of the clusters NGC 6791 (top panel), NGC 6811 (middle panel), and NGC 6819
(bottom panel) as derived by [292]. Both RC and RGB stars are shown, with open and filled symbols
respectively, according to the classification obtained by the membership study of [292] and our analysis
of period spacings. Stars marked with labels represent special stars discussed in Section 4.4.2 and listed
in Table 4.1. Isochrones are shown for all the clusters (solid lines, see [292], for details).

is about three times more sensitive to a mass difference than δν02. The mass-dependence
for δν02 is compatible with the results by [179] on field red giants. Furthermore, both
δν02 and δν01 show dependence on mass that is qualitatively in agreement with theoretical
studies of red giant stars by [236].

3. It is notable that the RC stars of NGC 6791 behave differently from those of NGC 6819
for both δν02 and δν01, as visible in Figures 4.5 and 4.6. We quantified this unexpected
feature through the difference in 〈δν0`〉 between RC and RGB stars, which is significantly
different from one cluster to the other for both the small spacings. As discussed in
Section 4.3.3, further theoretical investigations concerning differences on mass, metallicity
and rotation between the two cluster populations, are required for the full interpretation
of our results.

4. The positions of the ridges in the collapsed ensemble échelle diagrams (Figure 4.6) confirm
the results from [165], with the ` = 1 and 2 ridges moving away from the ` = 0 ridge
as the stars evolve from the H-shell to the He-core burning phase. The position of the
` = 3 ridges, hence of the average small spacings δν03 (Figures 4.6(b) and (d)), is also in
agreement with results by [30, 165, 243, 179] on field red giants. The FWHM of ` = 0
ridge, which represents an upper limit of the mode linewidths, increases with ∆ν for both
NGC 6791 and NGC 6819, a result that agrees with the studies by [165] and by [179]
on field red giants. A systematic difference of the FWHM between the two clusters is
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4. PULSATING RED GIANTS IN OPEN CLUSTERS

Figure 4.11: Mass of stars near the RC of NGC 6791 (red circles) and NGC 6819 (green squares)
with applied correction in the ∆ν scaling of 2.7% and 1.9% respectively (see [232]). Error bars show
1 − σ uncertainties derived according to Eq. (3.3). Outlier stars A−D and ‘likely evolved RC’ stars
discussed in Section 4.4.2 and listed in Table 4.1 are marked. Blue lines represent the corrected mean
masses of RC stars (solid) and their 1σ uncertainties (dashed) derived by [232].

shown, which is largely explained by the temperature dependence of mode linewidths
(Figure 4.8), as discussed in Section 4.3.5. This result shows the first evidence for an
exponential correlation between mode linewidth and temperature in red giants, which is
consistent with extrapolating Kepler results for main-sequence and subgiant stars derived
by [7].

5. The analysis of period spacings using the method described by [32] allowed for the suc-
cessful identification of almost half of the stars in our sample as either H-shell or He-core
burning red giants. The fraction of RGB stars with clearly detectable period spacings
is much lower than for RC stars, as seen in Figure 4.9, and could be due to a weaker
coupling of the p- and g-mode cavities in RGB stars. We see a number of outliers in Fig-
ure 4.9 which require further investigations. It is likely that all of them are binaries and
two of them appear to be evolved blue stragglers, as suggested by [268] and supported by
their higher masses (Figure 4.11). In addition, our analysis confirms the suggestion by
[232] that stars KIC 2437103 (∆Pobs = 306 s) and KIC 2437589 (∆Pobs = 39 s), are an
RC and an RGB star, respectively, and that KIC 5024404 (∆Pobs = 182 s) is an RC star.
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4.5 Summary of the Results

Lastly, we find a number of possible candidates for evolved RC stars in both NGC 6791
and NGC 6819, as suggested by our measurement of their masses (Figure 4.11), which
indicate they have a radius larger than the other RC stars. The special cases discussed in
Section 4.4.3 represent potentially interesting targets for detailed theoretical modeling.
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5 Bayesian Statistics and

Markov Chain Monte Carlo

The Bayesian approach to data analysis has become more frequent in the last decades
[303], showing great potential among many different fields of interest for the human kind, e.g.
economy, biology, finance, astrophysics, and in particular for the asteroseismology [53, 57, 315,
144, 63, 6, 179], the main topic discussed in this dissertation, and the study of stellar differential
rotation in active stars [93, 117, 115, 118], to which the Chapter 7 is dedicated.

The substantial growth of scientific works that employ Bayesian methods is mostly caused by
a continuously-increasing amount of information contained in the data, which is therefore more
difficult to be extracted and properly interpreted. Of course, the advances in techniques adopted
in building the instrumentations represent one of the main goals for scientists to improve the
quality of the data to be analyzed, a consequence of the increasing request for obtaining more
accurate and reliable results that could broad our knowledge about astrophysical phenomena.
One of the most plausible examples of this aspect is represented by the NASA’s Kepler Mission,
presented in Chapter 3, whose primary aim is the discovery of earth-sized exoplanets. The
advanced quality of the instrumentation installed on board1 allows scientists to acquire light
curves with precisions up to few 10−6 mag, a value that sets a new limit in the precision of
photometric observations. In order to gain a deeper understanding and a better interpretation
of the information contained in such high quality data, a renovated type of tools for statistical
analysis is certainly required for exploiting all of their potential. Nowadays Bayesian methods
are providing results of great scientific value in the field of asteroseismology commonly by
involving the extraction of the stars’ asteroseismic parameters that characterize their Fourier
power spectra. The reliability and robustness of such results appear to be better than the
ones obtained with classic statistical methods (e.g. the minimum χ2 criterion or Maximumx
Likelihood Estimators). The reason relies mainly on the fact that the Bayesian approach offers
a solution to the controversial problems of model selection.

On the one hand, the Bayesian statistics applied to solar-like oscillations is usually ad-
dressed to the extraction of the main asteroseismic properties of stars by exploiting the Fourier
analysis of time-series (see Chapters 1 and 2 for a description of the classical approach to the
analysis of time-series), where a low number of free parameters is involved. On the other hand,
Bayesian analyses for the study of differential rotation in active stars usually deal with high-
dimensional problems, where the number of free parameters can be even above one hundred.
A detailed Bayesian analysis applied to a low-dimensional problem for the study of amplitude
scaling relations of solar-like oscillations is presented in Chapter 6, while a description of a spot
modeling for Kepler targets aimed at measuring the differential rotation, is given in Chapter 7,

1We remind to the reader that the photometer’s sensitivity enables the detection of a earth-sized planet
transiting on a G2V star with magnitude mV = 12m and an integration time of 6.5 hours. For more details see
Chapter 3.
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5. BAYESIAN STATISTICS AND MARKOV CHAIN MONTE CARLO

together with a presentation of the results derived.
In the first half of this chapter we shall introduce a new formalism, which enables us

to describe the Bayesian probability theory, whose fundamental meaning is enclosed in its
most important statement, represented by the Bayes’ Theorem2. The differences between
Bayesian probability theory and the classic probability theory, known as the frequentist school
of thought, will be described. Subsequently, we will show how to solve the so-called Bayesian
Inference problem on the light of numerical simulations techniques in the form of Markov Chain
Monte Carlo (MCMC) simulations (a brief introduction to the advantages carried out by the
Principal Component Analysis (PCA) for reducing the dimensionality of the problem is given
in Appendix D). Details about uncertainty estimation in the Bayesian approach are discussed
in Appendix C.

In the second part of this chapter we will focus on the Bayesian Evidence by presenting the
general problem related to model selection and its solution according to Bayesian’s principle
of Occam’s razorm. Therefore, we provide a detailed description on how this method is able
to weigh the quality of a model on the light of the data and the number of free parameters,
together with some practical examples.

5.1 Introduction to Probability

The concept of probability as a degree of belief on a given proposition (event) was introduced
for the first time by the mathematician and Presbyterian minister Thomas Bayes3 [20] (1702
- 1761). Nevertheless this new definition of probability has been adopted consistently only
within the latest years. This aspect should not be surprising if we consider the remarkable
progress obtained in the field of computation, which obviously allowed for the use of many and
onerous numeric techniques serving as auxiliary tools for statistics. An outline on the differences
between the two most important schools of thought for probability theory is provided in the
following, together with the reasons that lead us to consider the Bayes’ statistics the preferred
tool for data analysis and model selection.

5.1.1 The Frequentist Probability

A first, although approximate, concept of probability was given by Aristotle already in the IV
century B.C. in his "Rhetoric"

“The likely is what occurs for most of the times.”

The classical idea of probability is called frequentist probability, asserted for the first time
by Robert Leslie Ellis in 1842 and subsequently exposed in a more systematic and elaborated
form by John Venn. Anyhow the rise of the frequentist school of thought is typically assigned
to the mathematicians Jerzy Neyman and Egon Pearson, but for sure Pierre-Simon de Laplace,
Adrien-Marie Legendre, Ronald Fisher and Harold Jeffreys and the contemporaries Edwin T.
Jaynes and Larry Brethorst should be considered the fathers of the statistics and of the fre-
quentist inference as it is actually known. The current definition of probability furnished by
the classic view states that

2See [44] for a comprehensive introduction to Bayesian Statistics
3It was also reproduced in Biometrika, 45, 293-315, 1958.
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“The probability of an event is defined as the number of times the event occurs over the total
number of trials, in the limit of an infinite series of equiprobable repetitions.”

Although apparently clear, this definition is unsatisfactory in many aspects, which we sum-
marize in the following.

• The definition itself appears to be circular, i.e. it assumes that repeated trails have the
same probability of outcomes, but it was the fundamental notion of probability itself that
we were trying to define as first step.

• It cannot handle with unrepeatable events, a limit that excludes a class of physical phe-
nomena which are generally related to a single sample of a particular physic system.

• The definition only holds exactly for an infinite sequence of repetitions. This never occurs
in the reality because in practice we always handle with a finite number of measurements,
which are sometimes only in a very small number (e.g. one of the biggest limits in
asteroseismology is represented by the finite observing time). The frequentist approach
cannot answer to the question “how can we manage events if we have only a handful
of repetitions?”, although some complicated ad hoc adjustments have been introduced
for small sample size. Unfortunately physicists tend to forget about the infinite series
requirement and apply the frequentist definition for any number of measurements they
are dealing with, consequently affecting the results that go with them.

• Another more subtle aspect concerns the notion of “randomness”. In order to understand
this concept we refer to the paradigmatic example of coin tosses. By carrying out a long
enough sequence of tosses, we will come up to the conclusion that the coin is deemed to be
“fair” if the probability of getting heads is pH = 0.5. If this probability is not satisfied we
could assert that the coin has some physical imperfections. At this point it might appear
plausible that the primary task becomes to determine such physical properties (e.g. a
tensor of inertia symmetric about the plane of the coin) in order to understand how
they affect the outcome of the coin itself. Anyhow, as forcefully argued by the american
physicist Jaynes, who devoted the large part of his studies on mechanical statistics, the
probability of the outcome of a sequence of tosses has nothing to do with the physical
properties of the coin being tested [170]. In fact, a skilled coin-tosser (or equivalently
a purpose-built machine [98]) can heavily influence the outcome even if the coin is not
symmetric. The key of the problem is represented by the definition of random toss. Every
time the coin-tosser influences the outcome, e.g. by modifying the speed or the spin of
the coin, the randomness of the experiment will be clearly spoiled (this is what we call
“cheating”). It appears thus that the outcome depends on our state of knowledge about
the initial conditions of the system (namely angular momentum and velocity of the toss).
Is therefore correct to assert that a lack of precise information about the initial conditions
results in a state of indifference about the possible outcome.

5.1.2 The Bayesian Probability

Many of the limitations above exposed can be avoided and paradoxes solved by considering
another definition of probability, know as the Bayesian probability. The Bayesian viewpoint
is based on the simple and intuitive tenet that

“Probability is a measure of the degree of belief about a proposition.”
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It is immediately clear that this statement can be applied to any kind of proposition be-
cause the notion of probability becomes a state of knowledge in presence of a limited number
of information. Moreover another advantage is that it deals with uncertainties independently
of their origin, i.e. there is no distinction between “statistical uncertainty”, arising from the
finite precision of the measurement apparatus and the relative random noise, and “systematic
uncertainty”, deriving from deterministic effects whose nature is only partially known (e.g. cali-
bration uncertainty of a spectrograph, computation errors introduced within the codes used for
the data analysis, instrumental drifts in the light-curves caused by temperature variations of
the spacecraft). From the coin tossing example we learn that the randomness is directly related
to our lack of information about the initial conditions of the system (if we know precisely the
way the coin is flipped we could then predict the outcome of any toss with certainty).

The growing complexity of theoretical models and of the information contained in the data
are causing an increasing request for more sophisticated statistical tools, which will soon rep-
resent the limit of our interpretations. Moreover due to the non-unlimited resources available
for scientific projects, the optimization of their success is becoming a tough problem. In this
aspect the Bayesian statistics is considerably helpful, especially for what concerns the estima-
tion of outcomes arising from a rigorous ponderation of our degree of uncertainty about that
particular field.

It seems that the above mentioned arguments strongly favor the Bayesian view of proba-
bility, and for physicists the approach that yields demonstrably superior results ought to be
preferred. We now list some good reasons to prefer such type of approach:

• It can be shown that the application of Bayes’ Theorem recovers frequentist results (in
the long run) for cases simple enough where such results exist, while remaining applicable
to propositions that cannot even be formulated in a frequentist context.

• Bayesian inference deals effortlessly with the so called nuisance parameters. These param-
eters have to be considered within the data interpretation but no any physical information
is carried with them (dealing analytically with this aspect will be discussed below).

• In many situations of physical relevance the prior information is highly outstanding. In
fact, a lack of information on our state of knowledge before any experiment can seriously
affect the outcomes of our inference. A typical example concerns the use of constrained
likelihood methods for the determination of parameters whose values are restricted by
their physical meaning, e.g. mass, counts, luminosity and distances. In the frequentist
approach the result over these parameters can provide also negative values, while we
know that all these quantities must be positive. Instead by considering prior information
accounted for in the final inference we ensure that physically meaningless results are
weeded out from the beginning.

• Bayesian statistics only deals with data that were actually observed, while frequentist
methods usually focus on the distribution of possible data that have not been obtained!
Thus frequentist results depend on what the experimenter thinks about the probability
of data that have not been observed (this is called the “stopping rule” problem). The
argument above is clearly absurd and consequently the classic viewpoint is providing
an inference lacking in rigorousness. In fact, a serious and robust inference should not
absolutely depend on what could happen but should be conditional only to whatever has
already occured. Bayesian methods directly include this aspect because their inferences
are by construction conditional on the observed data.
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5.2 Bayes’ Theorem

5.2 Bayes’ Theorem

The analytic expression used to describe the degree of belief on a proposition is called Bayes’
Theorem. It can be derived from a set of basic consistency requirements for plausible reasoning,
known as Cox axioms [89]. Therefore Bayesian probability theory can be shown to be the unique
generalization of a logical deduction when the available information is incomplete.

5.2.1 Cox Axioms

In order to introduce a mathematical treatment of the Bayesian statistics we adopt a fairly
relaxed notation which can be easily understood. Let us consider a generic proposition A,
where p (A) could be for instance the probability to obtain head with a coin toss and p

(
Ā
)
its

complementary. The sum rule reads

p (A | I) + p
(
Ā | I

)
= 1 , (5.1)

where I represents any relevant information that is assumed to be true (it can be important to
prove the veracity of A) and p (A | I) is the conditional probability of A, i.e. the probability
that A occurs given as verified the information I. By introducing a second proposition B the
product rule gives

p (A,B | I) = p (A | B, I) p (B | I) , (5.2)

which says that the joint probability of A and B equals the probability of A given that B occurs
times the probability of B occurring on its own (both conditional on information I). If we are
interested in the probability that B occurs singularly, assuming the existence of A, then we
have to sum over all the possible outcomes of the proposition A. By adopting the sum and the
product rule together we obtain

p (B | I) =
∑

A

p (A,B | I)

=
∑

A

p (A | B, I) p (B | I) .
(5.3)

The quantity shown in the left-hand side of the equation is called marginal probability of B.
Since obviously p (A,B | I) = p (B,A | I) we can derive the Bayes’ Theorem directly by

rewriting the product rule, giving

p (B | A, I) =
p (A | B, I) p (B | I)

p (A | I)
. (5.4)

The interpretation can be simple to be understood if one replaces for A the observed data d
(e.g. the fluxes in a light-curve attained with a photometer) and for B the hypothesis H we
want to asses. We then obtain

p (H | d, I) =
p (d | H, I) p (H | I)

p (d | I)
. (5.5)

On the left-hand-side p (H | d, I) represents the posterior probability, namely the probability
that hypothesis H is verified taking the data into account. It is proportional to the sampling
distribution of the data p (d | H, I), which is not a probability distribution but encodes how
the degree of plausibility of the hypothesis changes when we acquire the data. Considered
as a function of the hypothesis H (for a given dataset d) the sampling distribution is called
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likelihood function and we can employ the shortcut notation L (H) ≡ p (d | H, I). The second
term p (H | I) is usually known as the prior probability. which is heavily conditioned to our
degree of knowledge about the measurements before we acquire data, as already announced
above. The last term on denominator of the right-hand-side of Eq. (5.5) is called the marginal
likelihood (also known as the Bayesian Evidence), which can be expressed by means of Eq. (5.3)
as

p (d | I) ≡
∑

H

p (d | H, I) p (H | I) . (5.6)

In the forthcoming sections we will show how the posterior probability distribution allows for the
derivation of parameter estimates. Nonetheless, posteriors do not play a fundamental role for
the model comparison issue, which is determined by the marginal likelihood and prior choice
instead, as we shall describe in the second part of the current chapter. Thus, the marginal
likelihood represents just a normalization constant within the Bayesian Inference problem and
as a consequence it is not changing the posterior probability pattern but the “amplitude”, say,
of the likelihood function employed.

5.2.2 Prior Probability

One of the most important and at the same time potentially dangerous and criticized aspects
of the Bayesian approach is related to the subjectivity conditioning the posterior probability.
In fact, it is historically believed that results obtained from considering subjective elements
may appear as non objective. As a matter of fact the state of knowledge the experimenter has
got about the observed event is exactly what makes the data interpretation objective, as we
shall argue below.

The inference problem has no solution without any prior assumptions, as the guideline
of the Bayesian logic states. In fact, any choice of such assumptions requires high accuracy
level in order to afford the best representation of our degree of knowledge before acquiring the
data. Nevertheless priors should be regarded as a feature of the Bayesian statistics, rather
than a limitation. Thus, priors allow for a correct weighting of results obtained from different
experimenters, who are possessing different states of knowledge about the event (e.g. obser-
vational and theoretician points of view), accordingly for an advantageous comparison of the
data interpretation.
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5.2 Bayes’ Theorem

Figure 5.1: Example of a 2-dimensional parameter inference dominated by data information, where
distributions are represented as functions of two variables along the vertical z-axis (arbitrary units).
The posterior probability distribution (c) appears to be clearly well constrained as the likelihood function
does (a) despite of two different assumptions representing the priors of two different experimenters (b).
Hence, priors distribution is not influencing the outcome since the dataset employed is strong enough to
constrain the result. As a consequence both the experimenters are converging to the same result through
the Bayes’ Theorem.

Example

We can now mention an example about the role of priors that might help the reader to un-
derstand how priors can influence the results. When the information carried on by the data
sampling distribution is relevant with respect to the one contained in the priors then the poste-
rior probability derived by two different scientists will converge to the same result, i.e. objective
inference on the hypothesis, as shown in Figure 5.1. This means that the information included
in the dataset is exhaustive enough for solving the inference problem. On the other hand, when
the priors play a fundamental role for the posterior probability then a great care must be given
on their choice. This situation is often reproduced in real cases since the data are usually not
strong enough to override the prior (e.g. for small sample sizes or for dimensionality problems
of the hypotheses space, see Figure 5.2). Hence we have learned something useful about the
constraining power (or lack thereof) of the data.

After all we can conclude that the objectivity of the Bayesian method relies on the follow-
ing statement: two different experimenters with the same state of knowledge about the event
must assign the same priors, hence obtaining identical posterior probability distributions by
using the same dataset.

Anyhow, any existing typologies of priors can be used for the data analysis (see also [124] and
references therein for further details on prior choice). In order to be probability distributions,
priors must be proper i.e. normalizable to unity probability content. Essentially the most
interesting ones are:

1. Ignorance Priors: reflect the state of indifference with respect to the symmetries of the
problem taken into account.

2. Flat Priors: priors of standard choice in Bayesian parameter estimation and especially
for the analysis described in the following chapters. A flat prior distribution is given when
we assume a constant state of knowledge for all the possible outcomes of our parameters
(Figure 5.3). Flat priors are in general improper, in the sense they are not normalizable to
unity as a probability density function (PDF) has to, which is the case when an infinite
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Figure 5.2: Example of a 2-dimensional parameter inference dominated by priors information (arbi-
trary units along the vertical z-axis). The posterior probability distribution (c) is clearly hampered by
the prior distribution patterns of the two different experimenters (b). Hence, since the dataset employed
is not large enough to provide all the information, the likelihood function is not ensuring the same
outcome for both experimenters through the Bayes’ Theorem.

Figure 5.3: Example of a 2-dimensional flat prior distribution (b). The posterior probability dis-
tribution (c) has the same 2-dimensional Gaussian shape of the likelihood function (a), meaning that
our state of knowledge about the parameters is non-committal, i.e. we have no information about the
expected outcomes and hence priors are not conditioning the result given by the Bayes’ Theorem.

range of values of the parameter is taken into account (e.g. the real axis). Anyhow,
the improperness is generally not an issue because one usually constraints the number
of expected values by limiting the parameter to a known interval of variation (see also
[297]). For instance, the proper flat prior of a physical quantity β limited to the range
[βmin, βmax] is simply given as p(β) = (βmax − βmin)−1, i. e. it gives a constant value
equal to the reciprocal of the length of the interval of values where β is supposed to be
measured. Such choice allows the prior to satisfy the normalization condition

∫ βmax

βmin

p(β)dβ = 1 , (5.7)

Thus, flat priors reflect an absolute lack of information about the parameter for which
they are adopted. For instance, one can consider again a one-dimensional case dealing
with the parameter β (e. g. the inclination angle of the rotational axis of a star). When a
particular value of β is not supposed to be predominant among the others, a flat and space
limited prior distribution is required (e.g. for the inclination angle we expect to observe
values within the range [−π/2, π/2]). Nevertheless we should not forget that a flat prior
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distribution for β does not turn into a flat prior distribution for any non-linear function
ψ (β), because a uniform distribution is not invariant under re-parametrization (see the
discussion in [297]). In fact, being p (β) a probability density function (PDF), p (β) dβ is
the probability to find β within the range β and β + dβ. Since we are considering the
same physical information (e. g. the inclination of the rotational axis of a star), although
through two different functions of the parameter, the two probability distributions must
coincide. Thus we have

p (β) dβ = p (ψ) dψ , (5.8)

and hence the PDF for the new function ψ (β) will be

p (ψ) = p (β)

∣∣∣∣
dβ

dψ

∣∣∣∣ . (5.9)

This relation describes how a flat prior for the parameter β may be extremely constrain-
ing for a function ψ (β) of the same parameter instead. This relies on the derivative term
|dβ/dψ| appearing in the right-hand-side of the equation (in a multi-dimensional case
the derivative is represented by the determinant of the Jacobian matrix for the trans-
formation). Parameters inference can be sometimes facilitated by adopting an adequate
function of the parameter which transforms a non-flat prior distribution into a flat one.
A very simple and clarifying example is represented by the inclination angle i of the rota-
tional axis of a star. As well known, the observed component of the rotational velocity of
a star is proportional to sin i, where i is taken as the angle between our line of sight and
the rotational axis of a star. Hence the expected prior distribution p(i) for the parameter
i will follow a sine law (Figure 5.4a), clearly peaked at the best angle for measuring the
rotational velocity (angles toward 90◦ are more likely to be observed). On one hand,
a non-flat prior distribution must be used if we consider the parameter i itself, which
will clearly yield to more complex structures in the posterior PDF (see Section 5.3). On
the other hand, the problem can be solved by simply using the function ψ (i) = cos i,
which is able to flatten our prior distribution (Figure 5.4b) through Eq. (5.9). In fact, the
advantage of flat priors is that they can be included in the inference problem as a simple
interval of values for the parameter. Therefore the choice of the new parameter cos i
limited to the range [−1, 1], will overcome further complexities in the inference problem.

Figure 5.4: The inclination angle i of the rotational axis of a star. The prior distribution of the
expected values for the angle i is shown in panel (a), deriving from the observed component of the
rotational velocity of the star, which follows a sine law. An adequate choice of a function of the
parameter will lead to a flat prior distribution, panel (b), through Eq. (5.9), where ψ (i) = cos i. Hence
the enclosing of such prior over the parameter within the inference, will be simply expressed as the range
[−1, 1] of allowed values imposed on the new parameter.
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3. Reference Priors: exploit the experience acquired by the scientist to construct the least
informative state of knowledge. They were first described by [40] and subsequently further
developed by [39]. The method adopted for deriving reference priors is usually known as
the Berger-Bernardo method.

4. Jeffreys’ Priors: a particular class of reference priors [184] used when we are ignorant
about the scale of a given quantity β. In this case, it can be shown that the appropriate
prior is flat on lnβ because it gives equal weight to all orders of magnitude [170]. From
Eq. (5.9) we can derive that the corresponding Jeffreys’ prior for β is given by p (β) ∝ β−1.

Another important feature of the Jeffreys’ priors concerns the treatment of posteriors
probability distributions of different but correlated physical parameters, that is of pa-
rameters that carry on the same physical information. In order to understand the prob-
lem we can provide the example of two couples of physical parameters, i.e. the period
and frequency (P, ν) related to a p-mode oscillation and the radius and area (r,A) of a
flat circular spot laying on a stellar photosphere. Since clearly P = ν−1 and A = πr2,
the Bayes’ Theorem will provide two different posterior distributions for both P , ν and
r, A, without allowing for any statistical comparison of the same physical information
contained. Conversely, if we adopt the new parameters p = lnP and a = lnA we obtain
p ∝ ln ν and a ∝ ln r. Hence the PDFs of the new parameters p and a will give identical
statistical moments whether we consider periods and radii or frequencies and areas. As-
suming those parameters to have flat priors, then P and A will have Jeffreys’ priors given
by p (P ) ∝ P−1 and p (A) ∝ A−1. The adoption of such priors is of importance in the
physics field because different functions of the same physical observable can be treated
equivalently, in a manner independent of our choice of the function. Applications of this
explanation are treated in Chapters 6 and 7.

5.3 Parameters Inference

Once we have introduced the main elements and features of the Bayesian mindset we can
proceed with the description and solution of the parameters inference problem. We remind
to the reader that in statistics the inference problem represents the estimation of population
parameters by means of quantities derived from a single (or more than one) sample, which is
usually only a small subset of the entire population4. It has been shown [281] that if the sample
size n ≥ 30, many times a quantity derived from the sample with the purpose of estimating
a population parameter, hereafter denoted as statistic5, appears to be normally distributed.
The probability distribution of a sample statistic, is known as the sampling distribution of the
statistic. In particular, a statistic is called an unbiased estimator of the corresponding popula-
tion parameter if the mean (or expectation) of the statistic, which called unbiased estimate, is
equal to the population mean.

In the context of Bayesian statistics, we first choose a model, which we denote as M,
containing a set of hypotheses H formalized into a vector of free parameters, ξ, known as the
parameters vector. The parameters might describe any aspect of the model, but usually they
identify some physically meaningful quantities (e.g. the frequency, amplitude and damping time
of a p-mode oscillation). Together with the model assumption, the priors for the parameters

4In general, a population can be either finite or infinite. In most of the cases, however, only small samples
of the entire population can be analyzed.

5Any quantity arising from a sample of measurements of a given population that is derived with the purpose
of estimating population parameters is called sample statistic or briefly statistic. In general, depending on the
population parameter we want to estimate, there will be a precise statistic to be derived from the sample.
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must be specified. Besides, the prior for a new observation might be taken to be the posterior
from a previous measurement.

The central step of the Bayesian inference is the construction of the likelihood function,
which usually reflects the way the data are obtained. For instance, a measurement with a
Gaussian noise will be represented by a Normal distribution, while cosmic rays counts on a
detector will have a Poisson distribution for a likelihood. Thus the Bayes’ Theorem given by
Eq. (5.5) reads

p (ξ | d,M) = L(ξ)
π(ξ |M)

p(d |M)
, (5.10)

where p (ξ | d,M) is the posterior PDF, L(ξ) = p(d | ξ,M) is the likelihood function, π(ξ |M)
the chosen priors, and p(d |M) is the Bayesian evidence, the latter described in Section 5.6.2.

5.3.1 Marginalization Problem

We therefore consider the parameters vector ξ divided into physically interesting parameters,
ξI and no physically meaningful parameters (nuisance parameters), ξN . Hence, since we are
considering the vector ξ = (ξI , ξN ), Eq. (5.10) can be rewritten as

p (ξI , ξN | d,M) = L(ξI , ξN )
π(ξI , ξN |M)

p(d |M)
. (5.11)

We assume to have a continuous parameter space6, hereafter denoted as ΩM. If we suppose
to have m interesting parameters, ξI = {ξI1 , ξI2 , . . . , ξIm} and n nuisance parameters ξN =
{ξN1 , ξN2 , . . . ξNn}, and assuming each of them to have a delimited range of variation, the
parameter space can be expressed as

ΩM =
[
ξmax
I1 − ξmin

I1

]
×
[
ξmax
I2 − ξmin

I2

]
× · · · ×

[
ξmax
Im − ξmin

Im

]

×
[
ξmax
N1
− ξmin

N1

]
×
[
ξmax
N2
− ξmin

N2

]
× · · · ×

[
ξmax
Nn − ξmin

Nn

]
,

(5.12)

namely the cartesian product of the intervals of the free parameters that formalize the hypothe-
ses of the model, and whose ranges of variation are fixed by our choice of the priors.

At this stage, we can finally solve the inference problem by marginalizing the posterior PDF
over the nuisance parameters. This is done by integrating Eq. (5.11) over all the possible values
of the nuisance parameters, obtaining

p(ξI | d,M) ∝
∫

ΩM

L(ξI , ξN )π(ξI , ξN |M)dξN , (5.13)

where we excluded the marginal likelihood p(d | M) since it is irrelevant for the parameter
inference (but central for model comparison, see Section 5.6). We can further marginalize our
solution for each ξIj , where j ∈ [1,m], by integrating the posterior p(ξI | d,M) with respect to

6In Bayesian statistics a parameter space is the multi-dimensional space identified by our choice of the priors,
thus its total volume is given by the product of the intervals of each free parameter considered in the inference
problem. In general, we refer to prior parameter space and posterior parameter space as the effective volume
of the prior and posterior PDFs, respectively. The dimensionality of the parameter space equals the number
of free parameters involved within the model chosen to represent the data. A continuous parameter space is a
space where parameters’ values are expressed as continuous variables. Although continuous parameter spaces
are useful for a mathematical treatment of the argument, only discrete parameter spaces are considered for
practical cases.
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the remaining m-1 parameters. We will then obtain a one-dimensional posterior PDF for each
parameter ξIj . Without losing in generality we can assume j = 1 and write

p(ξI1 | d,M) =

∫

ΩM

p(ξI | d,M)dξI2dξI3 . . . dξIm , (5.14)

where we have assumed that p(ξI1 | d,M) satisfies the normalization condition
∫ ξmaxI1

ξminI1

p(ξI1 | d,M)dξI1 = 1 . (5.15)

Eq. (5.14) is called the marginal PDF of the parameter ξI1 . In Bayesian statistics, all the
information about the parameter are drawn from its marginal PDF, namely represented by
the statistical moments of the distribution (usually 1st and 2nd momentum are the most used
quantities). Eq. (5.14) constitutes the so called marginalization problem and its solution will be
discussed in Section 5.5, while a technical description about the calculation of the uncertainties
is provided in Appendix C.

5.4 Markov Chain Monte Carlo

Although apparently simple in its formulation and meaning, the marginalization problem has
usually no analytical solution. For example, for models representing the star spot activity as
the one described in this dissertation, the number of parameters employed for reproducing the
modulation of an observed light-curve might be up to the order of a hundred, increasing the
complexity of the shape of the posterior PDF. Hence Eq. (5.13) becomes completely unsolvable
with analytical treatment.

Nowadays the computational power available is encouraging the introduction and develop-
ment of sophisticated numerical techniques. One of the most interesting and powerful inference
techniques, which is actually the base of the wide applicability of the Bayesian method, is ob-
tained by means of the Markov Chain Monte Carlo (MCMC). An introduction about the
notion of Monte Carlo numerical simulations and about the properties of a Markov Chain will
be therefore provided [41, 228, 261, 247]. Later in this chapter we will show how MCMC can
solve the parameters inference when the marginalization problem presented in Section 5.3 has
no analytical solution.

5.4.1 Monte Carlo Methods

The term Monte Carlo is referred to a wide class of computational algorithms that rely on
repeated random sampling to compute their results. This class of algorithms is particularly
useful for simulating physical and mathematical systems (where a large number of coupled
degrees of freedom is involved). The idea of Monte Carlo simulation was coined in 1940s
by Enrico Fermi and Stanislaw Ulam while they were studying neutron collisions at the Los
Alamos Scientific Laboratory. Since the problem of the collision had not an analytical solution
the charge to create a secret code for simulating the experiment was committed to John von
Neumann, which named it in homage to the famous Monte Carlo casino. The fundamental
feature distinguishing a Monte Carlo simulation from a classic one is related to the manner of
reconstructing a deterministic problem. In fact, Monte Carlo simulations inverts systematically
the way to approach to a deterministic problem by starting from the research of a probabilistic
analog, conversely to what normal algorithms do. Many different approaches are used within a
Monte Carlo simulation. However some common features characterizing such simulations can
be identified in the following pattern:
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1. Define a domain of possible inputs.

2. Generate inputs randomly from a probability distribution over the domain.

3. Perform a deterministic computation on the inputs.

4. Aggregate the results.

For instance consider a circle inscribed in a square. Given that the circle and the square have
a ratio of areas that is π/4 (a result this one that can be attained from geometry), the value
of π can be approximated using a Monte Carlo method:

1. Draw a square on the ground, then inscribe a circle within it.

2. Uniformly scatter some objects of uniform size (grains of rice or sand) over the square.

3. Count the number of objects inside the circle and the total number of objects.

4. The ratio of the two counts is an estimate of the ratio of the two areas, which is π/4.
Multiply the result by 4 to estimate π.

In this procedure the domain of inputs is the square that circumscribes our circle. We generate
random inputs by scattering grains over the square, then perform a computation on each input
(test whether it falls within the circle). Finally, we aggregate the results to obtain our final
result, the approximation of π.

Other two important properties are arising from the above description. First, the quality of
the randomness whereby random numbers are generated should be always high. Second, there
should be a large number of inputs, generally by adopting long run simulations. Obviously the
more is the randomness of the inputs the more will be the quality of the results, as well as their
precision will increase by extending the duration of the simulation.

Lastly, we can complete this overview on the Monte Carlo numerical simulations by listing
the most interesting areas in which they are employed. Presently these methods are extremely
important for physical sciences, especially in computational physics, chemical and statistical
physics, molecular modeling, particle physics, QCD, galaxy and cosmological modeling and of
course star spot modeling and p-mode oscillations modeling. Monte Carlo methods are also
applied to other fields such as engineering, applied statistics, design and 3D graphic, finance and
business, telecommunication and artificial intelligence for video games. Moreover they are very
useful for computational mathematics related to integration methods, numeric optimization
and inverse problem solution.

5.4.2 Stochastic Processes

In order to introduce and understand the notion of Markov Chain we firstly have to describe
the meaning of a random process. A random process, also called stochastic, is the counterpart
to a deterministic process. Instead of dealing with only one possible reality of how the process
might evolve under time (e.g. for solutions of an ordinary differential equation), in a stochastic
or random process there is some indeterminacy in its future evolution described by probability
distributions. This means that a given physical system laying on a state si at the time ti, will
not pass to a subsequent state si+1 at the time ti+1 in a deterministic manner, but accordingly
to a certain probability distribution. Hence even if the initial condition (or starting point) is
known, there are many possibilities the process might go to, but some paths may be more likely
and others less so.
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A mathematical formalization for the notion of stochasticity of a system requires the intro-
duction of some terminologies. First of all we assume to deal with discrete states7, which are
collected in a finite or countable space known as the state space. We will denote this space with
S = {si}i∈I , where I ⊂ N is a finite or countable set and si is the ith state occupied by the
system. Sometimes this state will be known while in other cases one can just talk about the
probability for the state to be occupied. Therefore it is reasonable to introduce a probability
distribution λ on S. It can be represented by a set of values λi, where i ∈ I, such that

λi ≥ 0 ∀i ∈ I,
∑

i∈I
λi = 1 , (5.16)

namely greater than (or equal to) zero and whose sum is equal to the unity. A distribution
having λi = 1 for some i and λj = 0 when j 6= i is called concentrated at point i. Then the state
of our system becomes deterministic. When

∑
i∈I λi 6= 1 instead, then λ is called a measure

on S. If such measure is finite, i.e.
∑

i∈I λi <∞, then λ can be transformed into a probability
distribution by the normalization

λ̃i =
λi∑
j∈I λj

, (5.17)

since we have ∑

i∈I
λ̃i =

∑
i∈I λi∑
j∈I λj

= 1 . (5.18)

On the other hand, when the measure is infinite, i.e. when
∑

i∈I λi = ∞, it is still possible
to transform λ into a probability distribution by considering a finite subset J ⊂ I such that
λ(J) =

∑
i∈J λi <∞.

As a second step we have to introduce the concept of discrete-time stochastic processes.
We refer to systems laying in a single state for each single time-step. Time-steps are formally
associated to integer numbers, n ∈ N. For example we can couple the times (0, 1, . . . ,m) to
the states (s0, s1, . . . , sm). Generally a discrete-time stochastic process is represented as a set
Φ = {Φ0,Φ1, . . . ,Φn} of individually measurable random variables, where Φi ∈ S ∀i ∈ [0, n],
hence belonging to the state space.

We can now describe the stochastic mechanism that allows the system to transit between
two successive states. The transition is made possible by means of the so called transition matrix
or matrix of transition probabilities P, whose entries pij , with i, j ∈ I, are the probabilities
for the system to transit from a state si to a state sj in a single time-step. The nth power of
the transition matrix, Pn, will provide the transition probability for n consecutive time-steps.
Lastly, a transition matrix is called stochastic if it satisfies the properties

0 ≤ pij ≤ 1 ∀i, j ∈ I ,
∑

j∈I
pij = 1 ∀i ∈ I , (5.19)

where each entry in P is non-negative but not greater than 1, and the sum of entries along
every row equals the unity. By analogy, a probability distribution λ on S is often called a
stochastic vector. Then a stochastic matrix is one where every row is a stochastic vector. In
fact, we can think of pij as the conditional probability for the system to occupy the state sj
starting from the state si, after a single time-step.

7Discrete stochastic processes are the simplest and most interesting to be treated since when dealing with
numerical simulations only discrete quantities are involved. Anyhow continuous stochastic processes are studied
analytically [296].
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The simplest case of a stochastic matrix is the one in a two-state space. We refer to the
states A = s0 and B = s1 and we denote with t0, t1 the two corresponding time-steps. Without
loss of generality, the stochastic matrix has the form of the 2× 2 matrix

P =

( A B

A 1− α α
B β 1− β

)

where 0 ≤ α, β ≤ 1. In particular, α = β = 0 gives the identity matrix I and α = β = 1
the anti-diagonal matrix. A system with the identity transition matrix remains in the initial
state forever; in the anti-diagonal case it flips state every time, from A to B and vice versa.
If we consider α = β = 1/2 instead, the system may stay either in the same state or flip into
the other one with equal probabilities. It is sometimes convenient to represent the transition
matrix by an oriented graph where arrows show all the possible transitions, see Figure 5.5.

A B

Figure 5.5: Oriented graph of a 2-states stochastic process.

5.4.3 Markov Processes

Very common examples of stochastic processes concern random movements, namely random
walk or Brownian motion. Here below we would like to stress their most important and useful
features.

The russian mathematician Andrey A. Markov (1856 - 1922) is best known for his work
on theory of stochastic processes. In 1907 he focused his research on a new idea of processes
related to the probability, where the outcome of some experiment can influence the outcome
of a subsequent experiment. Such subclass of stochastic processes was then called Markov
Chain. Although at first judged an unimportant discover by Markov himself, Markov Chains
are nowadays widely used for simulations of random walks in the exploration of posterior
probability distributions or likelihood spaces.

Formally, a discrete-time Markov Chain (DTMC)8 is a discrete-time stochastic process for
which the Markov property (or memoryless property) holds. For a mathematical introduction
of a DTMC we refer to the terminology presented in Section 5.4.2. We denote as Φn the state
occupied by the system at the time n and we assume to have an initial probability distribution
λ on S and a transition matrix P. The framework is completed by specifying the initial state
of the system, that is the state where the system lies at the initial time n = 0. Therefore we
assume that the initial state of our DTMC is Φ0 = si, where si ∈ S and it is occupied with a
probability λi. Subsequently the rules defining a Markov Chain can be formulated as:

1. Φ0 has a probability distribution λ:

P(Φ0 = si) = λi ∀i ∈ I ,
8We refer to this category of Markov Chain since it is the one of interest for practical studies.
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meaning that the probability the system occupies one of the states of the state space S

at its initial time n = 0 is given by the initial probability distribution λ,

2. more generally, for all time-steps n and the states s0, s1, . . . , sn ∈ S, the total probability
P(Φ0 = s0,Φ1 = s1, . . . ,Φn = sn) that the system occupies states s0, s1, . . . , sn at times
0, 1, . . . , n is written as

P(Φ0 = s0,Φ1 = s1, . . . ,Φn = sn) = λ0 · p01 · p12 · · · p(n−1)n , (5.20)

namely the product between the probability to occupy the initial state and the transition
probabilities from a state to the successive one. Of course (1) is a particular case of (2)
with n = 0.

The Markov property is expressed by an important corollary of Eq. (5.20), which defines the
conditional probability P(Φn+1 = sb|Φ0 = s0,Φ1 = s1, . . . ,Φn = sa) that the state occupied by
the system at time n + 1 is sn+1 = sb, given that the states s0, s1, . . . , sn−1 and sn = sa have
been occupied at times 0, 1, . . . , n− 1, n:

P(Φn+1 = sb|Φ0 = s0, . . . ,Φn−1 = sn−1,Φn = sa)

=
P(Φ0 = s0, . . . ,Φn−1 = sn−1,Φn = sa,Φn+1 = sb)

P(Φ0 = s0, . . . ,Φn−1 = sn−1,Φn = sa)

=
λ0 · p01 · · · p(n−1)a · pab
λ0 · p01 · · · p(n−1)a

= pab ,

(5.21)

meaning that the conditional probability on the successive state Φn+1 does not depend on the
states s0, s1, . . . , sn−1 but only on the state Φn at the last preceding time n. The memoryless-
ness illustrated by Eq. 5.21 is the main feature of all the Markov processes. Hence only the
last occupied state can influence the probability for successive states of the system to be occupied
and no memory of the preceding states remains.

5.4.4 Equilibrium and Convergence of a Markov Chain

A peculiar feature of DTMC regards the equilibrium condition and the convergence for a long
enough run of the process. It is crucial for a successful numerical inference, as will be discussed
in the forthcoming Section 5.5.

Let Φ = {Φ0,Φ1, . . . ,Φn} be a DTMC with transition probability matrix P. An initial
probability distribution λ is called an equilibrium distribution (also stationary, or an invariant
distribution) if it is preserved in time. That is

λj = P(Φ0 = sj) = P(Φ1 = sj) = · · · = P(Φn = sj) , ∀j ∈ I (5.22)

and we will denote it as a probability distribution π on S. This means that the stochastic
vector π = (πi) is an invariant vector for P (that is, an eigenvector with the eigenvalue 1)
since it satisfies the eigenvalues equation πP = π. If P is an irreducible matrix9 it allows a
unique equilibrium distribution at most (one or none). Moreover if P is also finite, so as for
computationally treated systems, then it will always admit a unique equilibrium distribution.
For instance, referring to the case illustrated in Section 5.4.2, we have that

9A matrix R is denoted as reducible if exists a matrix B for a change of base such that B−1RB is a
block-triangular matrix. A non reducible matrix is also called irreducible.
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• if α+ β > 0, the systems has the only equilibrium distribution

π =

(
β

α+ β
,

α

α+ β

)
;

• if α = β = 0 then P = I and all (x, y) vectors will be invariant.

Convergence to equilibrium means that, as the time progresses, the Markov Chain “forgets"
about its initial distribution λ. Clearly, this is related to the asymptotic properties of the
n-step matrix Pn as n→∞. Consider again the case of a finite DTMC and suppose to have a
m×m n-step finite transition matrix Pn, converging to a limiting matrix Π = ||πij || such that

lim
n→∞

p
(n)
ij = πij ∀i, j ∈ I , (5.23)

where p(n)
ij are the transition probabilities given as entries of Pn. Hence each row π(i) of Π is

an equilibrium distribution, that is

π(i)P = π(i) or πij =
∑

m

πimpmj .

Besides if P is irreducible then a unique equilibrium distribution is ensured, so that all rows
π(i) coincide, π(1) = π(2) = · · · = π(m) = π. Therefore

lim
n→∞

P(Φn = sj) = πj ∀j ∈ I .

In other words, each row of the limiting matrix is a repetition of the same, unique vector
representing the equilibrium distribution for P. Hence the DTMC forgets about its initial
distribution λ and converges to a unique stationary distribution π.

In conclusion, some definitions about the nature of states have to be introduced before the
convergence condition can be provided. A state si is called:

• periodic with period k if the system transits on the same state after k time-steps. Con-
versely it is called aperiodic.

• transient if, assuming it is the initial state, there is a non-zero probability that the state
will not be occupied again. Otherwise it is denoted as recurrent or persistent.

• positive recurrent if the expectation time for the state to be occupied again is finite. On
the contrary, when it is infinite then the state is called null recurrent.

Such definitions can be subsequently extended to the transition matrix when its entries, that is
the transition probabilities, are verifying the conditions for each type of state. The convergence
to an equilibrium distribution is then ensured by the Convergence Theorem.

Theorem 1. Given an irreducible, aperiodic and positive recurrent transition matrix P, then
Pn → Π as n→∞.

When a DTMC converges to an equilibrium condition, it is typically denoted as a relaxed
DTMC.
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5.5 Numerical Inference

Once the main properties of a Markov Chain have been given, we can come back to the
marginalization problem presented in Section 5.3.1. In this section we shall try to understand
both how a free parameter of a given model can be inferred from a posterior PDF through
numerical techniques and how a marginal PDF can be derived in the case of a multi-dimensional
problem.

Markov Chain Monte Carlo algorithms are used to develop a sequence of points (which is
called a chain) in the parameter space fixed by our model and whose density is proportional to
the posterior probability density distribution p(ξ | d,M) given by Eq. (5.10). In the Bayesian
inference framework, the equilibrium distribution which a DTMC converges to, introduced in
Section 5.4.4, is represented by such posterior probability distribution.

Chosen an algorithm capable of generating a Markov Chain with some particular features
(among the most known we remember the Metropolis-Hastings algorithm [225, 147], which
is briefly illustrated in Section 5.5.1 below, the Gibbs sampling [278] and the Hamiltonian
Monte Carlo [145], the derivation of statistical moments for the expectation values obtained
by means of Monte Carlo estimations becomes rather trivial. Consider a finite DTMC φ =
{φ0, φ1, . . . , φM−1}, that is a Markov Chain with M different values for a given parameter φ,
which might be, for instance, the longitude of a star spot on the star’s photosphere. Then
the posterior mean of the parameter φ, whose expectation value (or 1st momentum) from the
posterior probability can be denoted as 〈·〉, is given by

〈φ〉 ≈
∫
p(φ | d,M)φdφ =

1

M

M−1∑

i=0

φi , (5.24)

where the equality with the mean of the sample from the MCMC follows because the samples
φi are generated from the posterior by construction. In general, one can easily obtain the
expectation value for any function f (φ) of the parameter by writing

〈f (φ)〉 ≈ 1

M

M−1∑

i=0

f (φi) . (5.25)

Similarly to Eq. (5.24), the posterior variance (or 2nd momentum) of the parameter φ is given
by

σ2
φ ≈

∫
p(φ | d,M) (φ− 〈φ〉)2 dφ =

1

M − 1

M−1∑

i=0

(φi − 〈φ〉)2 , (5.26)

where the equality follows with the same arguments adopted for the expectation value. Further
details about the statistical estimators from a marginal PDF and are presented in Appendix C.

In order to extend the discussion to a m-dimensional problem, we assume φ to be one
of the m parameters ξj of the chosen model M, represented by the parameters vector ξ =
{ξ1, ξ2, . . . , ξm}. Hence, without losing in generality, we can put φ = ξ1 and write Eq. (5.14) as

p(φ | d,M) =

∫

ΩM

p(ξ | d,M)dξ2dξ3 . . . dξm , (5.27)

with p(ξ | d,M) = p (φ, ξ2, . . . , ξm | d,M) the posterior PDF in a m-dimensional parameter
space and p(φ | d,M) the one-dimensional marginal PDF of the parameter φ. ΩM represents
again the parameter space of the free parameters involved. The left-hand side of Eq. (5.27)
can be trivially computed through a Markov Chain process since, being its points part of the
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parameter space itself, their density reflects the total posterior PDF. It suffices discretizing the
range for the expected values of φ by dividing the interval of variation in a series of bins10 and
hence count the number of points of the Markov Chain that fall in each bin simply by ignoring
the reference to all the remaining coordinates ξ2, . . . , ξm. Thus, assuming each parameter ξi
has Mi different values ξ

(j)
i , with j = 0, 1, . . . ,Mi − 1 (i.e. its values are divided into a grid of

Mi different bins), numerically the marginal PDF of the parameter φ can be computed as

p (φ | d,M) =
m−1∑

i=1

Mi−1∑

j=0

p (φ, ξ2, . . . , ξm | d,M) , (5.28)

where we note that the sum over all the values of the parameter ξ1 = φ, given for i = 0, has
been skipped in order to marginalize over the remaining parameters.

Figure 5.6: Example of a posterior PDF depending on two free parameters ξ1, ξ2. As clearly visible,
even in a low dimensional problem the plotted surface of the posterior probability may have many local
maxima (multimodal distribution).

Nonetheless, when dealing with high-dimensionality problems m ≥ 3), particular attention
must be paid in using MCMC methods for exploring and sampling the posterior distributions.
In fact, the shape of the posterior PDF may be rather complex and potentially its integration
may become a very tough issue. For example, in the case of a photometric star spots modeling
[93, 117, 115, 118] when 7-8 (or more) spots are involved, the number of free parameters can be
larger than a hundred, possibly leading to posterior PDFs that are sharply peaked with several
local extremes. A probability distribution having many peaks (or conversely dimples) is called
a multimodal distribution, since two or more modes11 are coexisting in the same distribution
(e.g. see Figure 5.6). Therefore, the probability for a Markov Chain to fall inside a local
extreme and get stuck within itself becomes very high. In this case the exploration of the
entire parameter space is likely to fail, yielding to big mistakes on parameter inference. For
this reason, particular criteria for the exploration of posterior PDFs that show highly complex
structures have been developed in the last decades. We shall describe one of the most known
and used criteria in Section 5.5.1 below.

5.5.1 The Metropolis-Hastings algorithm

Nowadays many algorithms capable of generating a Markov Chain are available. In principle,
their choice strongly depends on the features of the problem we want to solve. For the star spots

10For example, if φ is a longitude then we have to discretize the range [0, 2π].
11In statistics, the mode is the value that occurs most frequently in either a dataset or a probability distri-

bution. Modal values are usually referred to the most likely values given by a probability distribution.
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modeling issue [93, 117, 115, 118], we will refer to and make use of the so called Metropolis-
Hastings algorithm [225, 147]. In order to illustrate the mechanism of such algorithm we
consider to have again set of m parameters identifying the chosen model and whose values
can be defined by the m-dimensional parameters vector denoted as ξ. Hence the MCMC
approach builds a smart random walk inside the m-dimensional parameter space, saving the
actual values of the parameters vector ξ at each time-step. At the successive time-step a new
vector of actual parameter values will be then initialized, differing by a fixed displacement
vector with respect to the precedent one (i.e. the parameters vector saved at the last point
of our random walk). The new point of the random walk will be then accepted or rejected
accordingly to a given criterion. The Metropolis-Hastings criterion asserts that a new step in a
Markov Chain random walk is accepted if pi+1qi/piqi+1 > u and conversely rejected, where u is
random number between 0 and 1 (u ∈ [0, 1]) and qi/qi+1 is the ratio of the probabilities for the
new solution. In other words this means we always accept a new point in the random walk if it
increases the fit quality of the model to the data (the probability value is higher by advancing
in the random walk) otherwise it is sometimes (randomly) accepted if the fit becomes worse
(that is when the probability value is lower). This technique allows the exploration of regions
of the parameter space that would be otherwise inaccessible if the random walk falls into a
local extreme. In computational analysis the application of such criterion is summarized by
the so-called acceptance, a parameter expressed as the ration of the percentage of good steps
(i.e. steps that increase the probability value of the next point) over the sum of good and bad
steps together (i.e. steps that decrease the probability value of the next point). When using
the Metropolis-Hastings algorithm a value of acceptance between 20 and 30 % ought to be
preferred for a successful exploration of the parameter space, as derived by several applications
of the criterion in the case of large numbers of free parameters employed (e.g. see Chapter 7).

5.6 Model Comparison

As announced already in the introduction of this chapter, we now focus to some other very
interesting and useful features of Bayesian statistics in this second part of the discussion. In fact,
it is important to stress that the parameters inference may sometimes fall into a degeneracy
problem, that is when a framework of more than one possible model for explaining a given
dataset, is obtained. This issue is usually known as the model selection problem and it rises
whenever there are several competing theoretical models for the interpretation of the same
dataset. In such case the Bayesian statistics offers another powerful tool, usually known in
astrophysics as the Bayesian Evidence, which provides a formal way to evaluate the degree
of reliability of each model in the light of the information related to the choice of the priors
and the features of the dataset used. The model selection problem, which is typically wrongly
assessed by means of the intuition level of the experimenter, can then therefore solved in an
objective manner. The guiding principle of the Bayesian model selection states that the ‘best’
model is the one that strikes an optimum balance between quality of fit and predictivity12. In
this part of the chapter we intend to provide a fulfilling discussion concerning the complexity
notion of a model and the method used for its selection, together with the introduction of some
analytical tools that allow for the development of the Bayesian evidence technique.

12The term predictivity suggests the degree of simplicity whereby a model is capable of predicting the results
derived from observations.
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5.6.1 Occam’s Razor

The name Occam’s razor, deriving from the english philosopher and Franciscan friar William of
Ockham (c. 1285 - c. 1349), establishes that among two or more possible theories for resolving
some problem the one able to provide an explanation in the simplest (or most economic)
manner ought to be preferred. As argued above, the Bayesian evidence relies on this principle
by assessing the complexity of a model in the light of its degree of simplicity for reproducing the
observed phenomenon, though in general the chosen model will be the one representing the best
trade-off between complexity and quality of the fit over the experimental data. Obviously, by
increasing the number of free parameters involved the fit to the data will always be better (or
at least equal), despite of the bulk of information we want to derive, which will consequently
increase due to the introduction of less significative free parameters. Thus, when too many
free parameters are introduced for explaining the observed data, an excess of unnecessary
information is derived, which clearly compromises our level of comprehension13. For instance,
when referring to the planetary motions one can consider the model comparison of the Ptolemaic
model of epicycles versus the heliocentric model based on Newtonian gravity. Occam’s razor
would favor the latter because of its simplicity and ability to explain the planetary motions in
a more economic fashion than the baroque construction of epicycles.

In the Bayesian mindset it appears pointless to reject a theory unless an alternative expla-
nation of the event that fits the data better is provided. This means that, although data might
be improbable, we cannot discard a model if no alternatives are given, unless it is impossible to
yield observations for the model itself. Such aspect is in contrast with the frequentist goodness-
of-fit tests (e.g. χ2 minimum criterion, Maximum Likelihood Estimator, etc.). So for example,
perturbations to the motion of Uranus led the French astronomer U. J. J. Leverrier and the
English scholar J.C. Adams to formulate the prediction, based on Newtonian theory, that a
further planet ought to exist beyond the orbit of Uranus. The discovery of Neptune in 1846
within 1 degree of the predicted position thus should strengthen our belief in the correctness
of Newtonian gravity. However the change in the plausibility of Newton’s theory following the
discovery of Uranus crucially depends on the alternative we are considering. If the alternative
theory is Einstein gravity, then obviously the two theories make the same predictions as far as
the orbit of Uranus is concerned, hence their relative plausibility is unchanged by the discovery.
Hence the alternative “Newton theory is false” is not useful in Bayesian model comparison, and
we are forced to put on the table a more specific model than that before, assessing how much
the new observation changes our relative degree of belief between an alternative theory and
Newtonian gravity.

In the context of model comparison it is appropriate to think of a model M as a specification
of a set of parameters ξ and of their prior distribution, p (ξ |M). As shown below, it is the
number of free parameters and their prior range that control the strength of the Occam’s
razor effect within the Bayesian model comparison. Models that have many free parameters
ranging within a wide interval of values but that are not needed in the light of the data are
hence penalized for their unwarranted complexity. Therefore, we can assert that the prior choice
ought to reflect the available parameter space under the model M, independently of experimental
constraints we might already be aware of. This important statement justifies the fact we are
trying to asses the economy (or simplicity) of the model itself by selecting priors on the basis
of the model under consideration. Often these will take the form of a range of values that are

13We refer to the example mentioned in Section 5.5. In fact, when the number of free parameters increases,
a longer computational time is required for mapping the posterior probability density function by means of
the MCMC methods. This is caused by the amount of "wasted" parameter space, which clearly increases by
increasing the number of unnecessary dimensions.
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deemed intuitively plausible, or nature, as already discussed in Section 5.2.2. It is then clear
that prior specification is inherent in the model comparison approach.

5.6.2 The Bayesian Evidence

The prime tool for model selection allowing for the evaluation of a model’s performance in the
light of the data, is represented by the marginal likelihood or model likelihood, best known as
the Beyesian evidence in the field of astrophysics. As announced in Sections 5.2.1 and 5.3,
the evidence is the normalization term appearing on the denominator of the right-hand side of
Eq. (5.5), which can be expressed in the continuous parameter space ΩM by means of Eq. (5.6)
as

p (d |M) ≡
∫

ΩM

p (d | ξ,M)π(ξ |M)dξ

=

∫

ΩM

L(ξ)π(ξ |M)dξ

(5.29)

where again ξ = {ξ1, ξ2, . . . , ξm} is the parameter vector and ΩM the m-dimensional parameter
space. Thus the Bayesian evidence is the average of the likelihood function under the prior for
a specific model choice, or equivalently the normalization factor to the volume of the posterior
PDF14. By means of the Bayes’ Theorem it is possible to invert the condition and thus evaluate
the model posterior probability, given as

p (M | d) =
π (M) p (d |M)

p(d)
, (5.30)

where we can drop the constant p (d), depending only on the data, since it is irrelevant within
the model comparison problem. The term π (M) is the prior probability assigned to the model
M, which can also be expressed. Such model prior has not to be confused with the priors
discussed in Section 5.2.2 and it is usually taken to be non-committal and equal to 1/NM, with
NM the number of different models considered. When comparing two models, M0 versus M1,
the ratio of their posterior probabilities (or posterior odds) represents the interesting quantity.
By adopting Eq. (5.30), it is given as

p (M0 | d)

p (M1 | d)
= B01

π(M0)

π(M1)
, (5.31)

where π(M0) = π(M1) = 1/2 and B01 is denoted as the Bayes factor, that is, the ratio of the
models’ evidences:

B01 ≡
p (d |M0)

p (d |M1)
. (5.32)

When B01 > 1 then we have an increase of the support in favor of the model M0 versus the
model M1 given the observed data. Conversely, that is when B01 < 1, the model M1 will
be the favorite one and a new Bayes factor given as the reciprocal of Eq. (5.32) can be then
considered, that is

B10 ≡
p (d |M1)

p (d |M0)
, (5.33)

where we will clearly have B10 > 1 when the more complex model is preferred. As we will show
in the forthcoming Chapter 6, it is sometimes more convenient to adopt the natural logarithm
of the Bayes factor, which therefore reads

lnB01 = ln p(d |M0)− ln p(d |M1) . (5.34)
14In Chapter 6 a particular case of interest that simplifies the computation of the Bayesian evidence, is

described.
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Example

In order to gain some intuition about the application of Occam’s razor through the Bayes
factor, we can consider a clarifying example, described in [303], Section 4.2. Assume to have
two competing models M0 and M1 which provide their explanation about a physical meaningful
parameter ξ. In particular we suppose M0 to predict that ξ = 0 with no other free parameters,
and M1 assigning ξ a Gaussian prior distribution with 0 mean and variance Σ2 (hence showing
one extra parameter with respect to the simpler model). Hence the two prior distributions will
be

p (ξ |M0) = δ (ξ = 0) ,

p (ξ |M1) =
1√
2πΣ

exp

(
− ξ2

2Σ2

)
,

(5.35)

where δ (ξ = 0) is the Delta of Dirac peaked at ξ = 0. Assume we perform a measurement of
ξ described by the following normal likelihood

L (ξ) =
1√
2πσ

exp

[
−(ξ − λσ)2

2σ2

]
(5.36)

of variance σ2, and whose maximum lies λ standard deviations away from 0, that is |ξmax/σ| =
λ. By adopting Eq. (5.29) and Eq. (5.32) the Bayes factor B01 can be formally written as

B01 =

∫
ΩM0

L(ξ)p (ξ |M0) dξ
∫

ΩM1
L(ξ)p (ξ |M1) dξ

, (5.37)

and substituting the above functions, we obtain

B01 =

√
2πΣ

∫∞
−∞ exp

[
− (ξ−λσ)2

2σ2

]
δ(ξ = 0)dξ

∫∞
−∞ exp

[
− (ξ−λσ)2

2σ2

]
exp

(
− ξ2

2Σ2

)
dξ

=

√
2πΣ

∫∞
−∞ exp

[
− ξ2−2λσξ

2σ2

]
exp

(
− ξ2

2Σ2

)
dξ
,

(5.38)

where the parameter spaces have been taken as the real axis, ΩM0,1 ≡ R, since the one-
dimensional case is considered. By defining the quantity

α =
√

1 + σ2/Σ2 ,

one can rewrite the denominator as

exp

(
λ2

2α2

)∫ ∞

−∞
exp

[
−(αξ − λσ/α)2

2σ2

]
dξ ,

whose integral can be solved by means of the Gaussian integral
∫ ∞

−∞
e−x

2
dx =

√
π ,

thus yielding to the final expression

B01 =
√

1 + (σ/Σ)−2 exp

[
− λ2

2(1 + (σ/Σ)2)

]
. (5.39)
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Figure 5.7: The Bayes factor as a function of parameters λ and σ/Σ of the given example. For
λ� 1 the exponential term of Eq. (5.39) dominates and the Bayes factor flattens to the value B01 � 1.
Conversely, if λ . 1 and we have informative data (σ/Σ� 1) then B01 ' Σ/σ, otherwise if σ/Σ� 1
the Bayes factor B01 → 1, i.e. model comparison is prior dominated.

Table 5.1: Empirical scale (so–called “Jeffreys’ scale” [172]) for evaluating the strength of evidence
when comparing two models, M0 versus M1. It is an empirically calibrated scale where odds of about 3
: 1, 12 : 1 and 150 : 1 correspond to weak, moderate and strong evidence respectively.

|lnB01| Odds Strength of evidence

< 1.0 . 3 : 1 Inconclusive
1.0 ∼ 3 : 1 Weak evidence
2.5 ∼ 12 : 1 Moderate evidence
5.0 ∼ 150 : 1 Strong evidence

For λ� 1, that is when the detection occurs at many sigma away from the value 0, the expo-
nential term dominates and B01 � 1, favoring the model M1 as intuitively in agreement with
the usual conclusion. If λ . 1 and σ/Σ� 1, meaning the likelihood is much more informative
than the prior and in proximity of 0, then the prediction of the simpler model M0 is confirmed.
This allows the Occam’s razor term to dominate, with B01 ' Σ/σ, that is the evidence increases
in favor of the simpler model proportionally to the volume of “wasted” parameter space. Lastly,
when σ/Σ � 1 instead, i.e. when the likelihood is less informative than the prior, the Bayes
factor B01 → 1, hence the data have not changed our relative belief between the two models
(see Figure 5.7).

Table 5.1 shows the natural logarithm of the Bayes factor against the Jeffreys’ scale for the
strength of the evidence [172]. It is an empirically calibrated scale where odds of about 3 : 1,
12 : 1 and 150 : 1 correspond to weak, moderate and strong evidence respectively. Another
case with odds . 3 : 1 is also reported, leading to an inconclusive comparison. It appears from
the natural logarithm of the Bayes factor that evidence accumulates slowly and that indeed
moving up a level in the evidence strength scale requires about an order of magnitude more
support then the level before. As we shall argue in Chapter 6, the natural logarithm of the
Bayes factor provides great advantages for numerical computations.

Finally it is important to stress that while the parameter inference, discussed in Section 5.3,
deals with the assessment of hypotheses within the chosen model, the Bayesian evidence extends
(and does not substitute) the assessment in the light of the available data to the space of
theoretical models. This feature is clearly represented by Eq. (5.31), which is the equivalent
expression for models to Eq. (5.10).
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5.6.3 The Bayes Factor

A wider overview concerning the use of the Bayes factor is here discussed in order to provide
the reader with a deeper understanding of the model comparison problem15. We can refer again
to the simple example mentioned in the above section and by considering the natural logarithm
of Eq. (5.39) the Bayes factor can be expressed as

lnB01 = ln
√

1 + (σ/Σ)−2 − λ2

2 (1 + (σ/Σ)2)
(5.40)

where λ gives once again the number of sigma away from ξ = 0 (it is also known as the
significance of the measurement). Assuming the data are more informative than the prior, that
is if σ/Σ� 1 we obtain

lnB01 ≈ ln (Σ/σ)− λ2/2, (5.41)

where the first term on the left-hand side is approximately the logarithm of the ratio of the
prior to posterior volume or the “wasted” parameter space, as already announced. Thus, on one
hand the first term can be interpreted as the constraining power of the information content of
the data, which gives the factor of reduction of the parameter space volume in going from the
prior to the posterior. It is obviously positive for informative data, i.e. the likelihood is more
sharply peaked than the prior. On the other hand, the second term appearing in Eq. (5.41) is
always negative and it favors the more complex model if the measurement gives a result many
sigmas away from the prediction (i.e., for λ� 1).

By taking the reciprocal of B01, given by Eq. (5.33) of the previous section, we obtain the
Bayes factor referred to the more complex model, B10. Therefore, its logarithm will be

lnB10 = − ln
√

1 + (σ/Σ)−2 +
λ2

2 (1 + (σ/Σ)2)
. (5.42)

One can refer to the Jeffreys’ scale of strength reported in Table 5.1 also when B10 is taken
into account. Therefore, the strength of evidence will be related to the more complex model
M1.

For a deeper investigation of the features of the Bayesian model comparison we can finally
analyze the behavior of the Bayes factor with respect to the significance and the volume of
“wasted” parameter space. Following the example described in [303], we define the quantity
I10 ≡ log10(Σ/σ), known as the Information gain, because a base 10 logarithm is closer to our
intuition being the order of magnitude of our information increase. By plotting Eq. (5.41) and
Eq. (5.42) as functions of λ (significance of the fit) and I10 (the state of knowledge acquired by
inferring our model prediction with the information provided by the data) for the odds listed
in the Jeffreys’ scale of strength of Table 5.1, we obtain a clear contouring of the different
significance regions, shown in Figure 5.8. For values of I10 > 0 we have a parameter space
dominated by data information, since Σ/σ > 1. The orange shaded region represents the case
of simpler model favored, where the values |lnB01| = 1.0, 2.5, 5.0 for contours have been plotted.
For moderately informative data, I10 ∼ 1 − 2 the measured mean has to lie at least about 4σ
away from 0 in order to robustly disfavor the simpler model (i.e., λ & 4). On the other side,
for λ . 3 and highly informative data, I10 > 2, the simpler model furnishes the best prediction
for our measurement. Hence, in general, a large information content favors the simpler model
because Occam’s razor penalizes the large volume of “wasted” parameter space of the extended
model, being Σ� σ. When λ & 4 another free parameter is required for a better prediction of
the result, since we are obtaining a measure many sigma away from the predicted value 0. Then

15We suggest the reader to refer to [173], for a detailed discussion about the use of the Bayes factor.
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Figure 5.8: The Bayes factors |lnB01| (orange) and |lnB10| (blue) as functions of significance λ and
information gain I10 of the example shown in Section 5.6.2. Inconclusive evidence is shown (white
region) so as for prior dominated evidence (hatched region). Contours for values of 1.0, 2.5, 5.0 of the
Jeffreys’ scale of strength for both B01 and B10 are also marked.

the more complex model is favored, as shown by the blue shaded region with contours plotted
at the values | lnB10 |= 1.0, 2.5, 5.0. The white region represents an inconclusive evidence, i.e.
odds . 3 : 1, while the hatched region in the left side of the plot, occurring at I10 ≤ 0, shows
a prior dominated evidence, meaning that no more information than the one contained in the
prior is provided by data. Furthermore an useful property of Figure 5.8 allows to quantify the
impact of a change of prior within the analysis. In fact, a different choice of prior width (i.e.
Σ) amounts to a horizontal shift across the plot, at least as long as I10 > 0. Picking more
restrictive priors (lower Σ, reflecting more predictive theoretical models) corresponds to shift
the result of the model comparison toward the left side of the plot, resulting in an inconclusive
result or a prior dominated outcome.

Bayesian model comparison is usually conservative when it admits a new quantity in our
model, even in the case when the prior is chosen incorrectly. Consider the following two
possibilities:

• If the prior range is too small, the model comparison result will be non-committal (white
region in Figure 5.8), or even prior dominated (hatched region, where the posterior is
dominated by the prior). Hence in this case we have to hold judgement until better data
come along.

• Too wide a prior will instead unduly favor the simpler model (orange, shaded regions).
However, as new, better data come along the result will move to the right (for a fixed prior
width, as the likelihood becomes narrower) but eventually also upwards, towards a larger
number of sigma significance, if the true model really has a non–zero extra parameter.
Eventually, our initial “poor” prior choice will be overridden as the number of sigma
becomes large enough to take the result into the blue, shaded region.

In both cases the result of the model comparison will at least override the “wrong” prior choice
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exactly as it happens for parameter inference, as long as better datasets can be provided (see
the example given in Section 5.2.2).

5.6.4 Model Complexity

As widely argued already, the advantage of the Bayesian model selection approach is that
the Bayesian evidence tells us whether the increased “complexity” of a model (i.e. a model
with more free parameters) is justified by the data. However, sometimes the number of free
parameters is not a satisfying description of this concept since it might be reduced by the data
we are using under particular conditions, and a more refined definition of model complexity is
desirable to be introduced. For instance, consider we are trying to measure a periodic signal
in a time series and assume we have a model to fit the data that looks like

f(t) = A [1 + β cos(t+ δ)] , (5.43)

where A, β, δ are free parameters we wish to constrain. Nevertheless if β � 1 and the noise
is large compared to β, then the oscillatory term is left unconstrained by the data, and only
the normalization term A could effectively be measured. Thus the parameters β, δ should not
amount among the total number of free parameters as they cannot be constrained given the
data we have, hence the effective model complexity is closer to 1 rather than to 3. From this
example it follows that the very notion of free parameter is not absolute, but it depends on
both what our expectations are under the model, i.e. on the prior, and on the constraining
power of the data at hand.

For the sake of completeness, it is therefore plausible to define an appropriate measure of
complexity16 taking into account the number of parameters that the data can support. For
a given model M and a vector of parameters ξ formalizing model’s hypotheses, consider first
a new notion of the information gain obtained when upgrading the prior to the posterior, as
measured by the Kullback-Leibler (KL) divergence [197] between the posterior, p, and the prior,
π:

DKL(p, π) ≡
∫

ΩM

p(ξ | d,M) ln

[
p(ξ | d,M)

π(ξ |M)

]
dξ . (5.44)

In virtue of the Bayes’ Theorem given by Eq. (5.10), p(ξ | d,M) = L(ξ)π(ξ |M)/p(d |M) and
since ∫

ΩM

p(ξ | d,M)dξ = 1 , (5.45)

being the integral of the posterior PDF, the definition of the KL divergence can be rewritten
as

DKL(p, π) = − ln p(d |M) +

∫

ΩM

p(ξ | d,M) lnL(ξ)dξ , (5.46)

that is, the sum between the negative natural logarithm of the evidence and the expectation
value of the log-likelihood under the posterior.

Example 1

To gain some feeling about the meaning of the KL divergence let us consider a one-dimensional
case for the measure of a physical meaningful parameter ζ. As in a previous example we assume

16We adopt the notion of Bayesian complexity defined in [282].
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a Gaussian prior around ζ = 0, of variance Σ2 and a Gaussian likelihood centered at ζmax and
variance σ2:

π(ζ |M) =
1√
2πΣ

exp

(
− ζ2

2Σ2

)
, (5.47)

L(ζ) =
1√
2πσ

exp

[
−(ζ − ζmax)2

2σ2

]
. (5.48)

Since p(ξ | d,M) = L(ξ)π(ξ |M)/p(d |M) Eq. (5.46) reads

DKL(p, π) = − ln p(d |M) +
1

p(d |M)

∫ ∞

−∞
L(ζ)π(ζ |M) lnL(ζ)dζ , (5.49)

where ΩM ≡ R is the real axis, and the evidence p(d |M) given by Eq. (5.29) gives

p (d |M) =

∫ ∞

−∞
L(ζ)π (ζ |M) dζ , (5.50)

which can be solved similarly to the example described in Section 5.6.2, hence obtaining

p (d |M) =
1√

2πΣα
exp

[
ζ2
max(1− α2)

2α2σ2

]
, (5.51)

with α =
√

1 + σ2/Σ2. The integral on the right-hand side of Eq. (5.49) can be evaluated as
the sum of three terms:

∫ ∞

−∞
L(ζ)π(ζ |M) lnL(ζ)dζ =

(
ln

1√
2πσ

− ζ2
max

2σ2

)
p(d |M) +

ζmax
σ2

I1 −
I2

2σ2
(5.52)

where we defined the integrals I1 and I2 as proportional to the mean of ζ, < ζ >, and the mean
of ζ2, < ζ2 >, under the posterior probability, namely

I1 ≡
∫ ∞

−∞
L(ζ)π(ζ |M)ζdζ and I2 ≡

∫ ∞

−∞
L(ζ)π(ζ |M)ζ2dζ . (5.53)

We can now proceed in evaluating the integrals I1 and I2 by means of the integration by parts
of the Gaussian Integral, that is

∫ ∞

−∞
xe−x

2
dx = 0 and

∫ ∞

−∞
x2e−x

2
dx =

√
π/2 , (5.54)

being the integral on the left side equal to 0 since its integrand is the product of an even to an
odd function. We obtain after a short calculation

I1 =
ζmax√
2πΣα3

exp

[
ζ2
max(1− α2)

2α2σ2

]
, (5.55)

I2 =

(
σ2

√
2πΣα3

+
ζ2
max√

2πΣα4

)
exp

[
ζ2
max(1− α2)

2α2σ2

]
. (5.56)

Finally Eq. (5.49) becomes

DKL(p, π) = −1

2
− ln

σ

Σ
+

1

2

[(σ
Σ

)2
(
ζ2
max

σ2
− 1

)]
, (5.57)

120



5.6 Model Comparison

in which the second term on the right-hand side gives the reduction in volume in going from
the prior to the posterior PDF. For informative data, σ/Σ� 1, this term is positive and grows
as the logarithm of the volume ratio. Conversely, in the same regime the third term is small,
unless ζmax/σ � 1, i.e. the maximum likelihood is many standard deviations away from the
expected prevision under the prior. In this case we say the maximum likelihood is “surprising”
since it is far from what our prior led us to expect. Therefore the KL divergence can be in-
terpreted as a summary of the amount of information, or “surprise”, contained in the data, or
equivalently the entropy generated in the parameter space when going from prior to posterior
distributions.

Let us now assume that we have a parameter ξ, formalizing the hypotheses of the model
M, that is a normal random variable, i.e. it is χ2 distributed with one degree of freedom.
Hence we can define an effective χ2 through the likelihood (see also Appendix C) as L(ξ) ≡
exp

[
−χ2(ξ)/2

]
. Then Eq. (5.46) gives

DKL(p, π) = −1

2
χ2(ξ)− ln p(d |M) , (5.58)

where the bar denotes a mean taken over the posterior distribution, namely

χ2(ξ) =

∫

ΩM

p(ξ | d,M)χ2(ξ)dξ . (5.59)

The posterior average of the effective chi-square can be easily evaluated through MCMC tech-
niques (see Section 5.4) and it represents the “expected surprise”. We then define the “estimated
surprise" in the data after we have actually fitted the model parameters, as the following quan-
tity

D̂KL ≡ −
1

2
χ2(ξ̂)− ln p(d |M) , (5.60)

where the first term on the right-hand side is the effective chi-square at the estimated value of
the parameters, indicated by a hat. This will usually be the posterior mean of the parameters,
as defined by Eq. (5.24), but other possible estimators are the maximum likelihood point or the
posterior median, depending on the details. Thus, D̂KL represents the KL divergence evaluated
at the single point ξ̂. In general the Bayesian complexity can be defined by

Cb ≡ −2
(
DKL(p, π)− D̂KL

)
, (5.61)

in which, by taking the difference, we compare the effective information gain, namely the KL
divergence, to the maximum information gain we can expect under the model, that is D̂KL.
For a given likelihood L(ξ), we have from Eq. (5.46) that

Cb = −2

∫

ΩM

p(ξ | d,M) lnL(ξ)dξ + 2 lnL(ξ̂) , (5.62)

and substituting Eqs. (5.58) and (5.60) we have

Cb = χ2(ξ)− χ2(ξ̂) , (5.63)

where the Bayesian evidence term p(d |M) disappears as it does not depend on the parameters
(i.e. it has no weight within the complexity). Therefore we can assert that the Bayesian
complexity gives the effective number of parameters as a measure of the constraining power of
the data as compared to the predictivity of the model, namely the prior. Hence Cb depends both
on the data and on the prior available parameter space.
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Example 2

Let consider the likelihood and prior introduced in the previous example. After a short calcu-
lation [198], employing the results already obtained, we derive the expression for the Bayesian
complexity

Cb =
1

1 + (σ/Σ)2 . (5.64)

Thus, on one hand if σ/Σ � 1, that is when the data are more informative than the prior,
then Cb ≈ 1 and the model has one effective, well constrained, parameter. On the other hand,
when the data are not informative, i.e. σ/Σ � 1, then the experiment is not providing any
constrains on our model belief and therefore the Bayesian complexity will be Cb → 0.

Bayesian complexity can be an useful diagnostic tool when the evidence for two competing
models is about the same. In fact, since the evidence does not take into account the effective
number of parameters and hence does not penalize the parameters that are unmeasured within
a model, the evidence alone is not able to establish if we are in the situation where the extra
parameters are unconstrained and hence irrelevant (e.g. for β � 1 in the model of Eq. (5.43)),
or if they improve the quality-of-fit just enough to offset the Occam’s razor penality term
and produce the same evidence of the simpler model. The Bayesian complexity breaks this
degeneracy in the evidence allowing to distinguish between the two following cases:

• p(d | M0) ≈ p(d | M1) and Cb(M1) > Cb(M0): the quality of the data is sufficient to
measure the additional parameters of the more complicated model (M1), but they do
not improve its evidence by much. Since the Occam’s razor rules the selection in model
comparison, the model M0 with less parameters ought to be preferred.

• p(d | M0) ≈ p(d | M1) and Cb(M1) ≈ Cb(M0): both models have a comparable evidence
and the number of effective parameters is about the same. In this case the data is not
good enough to measure the additional parameters of the more complicated model and
we cannot draw any conclusion as to whether the extra parameter is needed.

5.6.5 Information Criteria

As a last point we shall introduce some practical usages of the Bayesian complexity, which
can be enclosed in the adoption of the so called information criteria. In fact, sometimes it
might be useful to employ methods that aim at an approximate model selection under some
simplifying assumptions with a given penalty term for more complicated models, which replaces
the Occam’s razor term coming from the different prior volumes in the Bayesian evidence. While
this is an obviously appealing feature, on closer examination it has the drawback of being
meaningful only in fairly specific cases, which are not always met in astrophysical applications.
In particular, it can be argued that the Bayesian evidence tool (ideally coupled with an analysis
of the Bayesian complexity) ought to be preferred in model selection because it is precisely the
lack of predictivity of more complex models, as enclosed in the physically motivated range of
the prior, that ought to penalize them.

With this caveat in mind, we list below three types of information criteria that have been
widely used in several astrophysical contexts.

1. Akaike Information Criterion (AIC): Introduced by Akaike [2], it is an essentially
frequentist criterion that sets the penalty term equal to twice the number of free param-
eters in the model, denoted as k:

AIC ≡ −2 lnLmax + 2k (5.65)
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where Lmax ≡ p(d | ξmax,M) is the maximum likelihood value. The derivation of the AIC
follows from an approximate minimization of the KL divergence between the true model
distribution and the distribution being fitted to the data.

2. Bayesian Information Criterion (BIC): It is also known as “Schwarz Information
Criterion" (from the name of its proposer [273]), the BIC follows from a Gaussian ap-
proximation to the Bayesian evidence in the limit of large sample size:

BIC ≡ −2 lnLmax + k lnN (5.66)

where k is again the number of fitted parameters and N is the number of data points.
The best model is once more the one that minimizes the BIC.

3. Deviance Information Criterion (DIC): Introduced by Spiegelhalter [282], the DIC
can be written as

DIC ≡ −2D̂KL + 2Cb. (5.67)

In this form, the DIC is reminiscent of the AIC, with the lnLmax replaced by the estimated
KL divergence and the number of free parameters by the effective number of parameters,
Cb, from Eq. (5.61). Indeed, for well-constrained parameters, the AIC is recovered from
Eq. (5.67), but the DIC has the advantage of accounting for unconstrained directions in
the parameters space.

The information criteria ought to be interpreted with care when applied to real situations.
By comparing Eq. (5.66) with Eq. (5.65) it is noticeable that for N > 7 the BIC penalizes
models with more free parameters more harshly than the AIC. Furthermore, both criteria
penalize extra parameters regardless of whether they are constrained by data or not, unlike
the Bayesian evidence. The BIC represents a simple and valuable approximation to Bayesian
evidence in the light of highly informative data and of large sample sizes, as we will discuss in
Chapter 6 for a practical astrophysical study.
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6 Amplitude Scaling Relations

The NASA’s Kepler spacecraft is providing a very large amount of high quality light curves,
with a very high duty cycle, as already discussed in Chapter 3. These will become longer in the
Kepler extended mission phase [295]. The asteroseismic studies done with Kepler have recently
led to the birth of the ensemble asteroseismology [71], which is showing great potential for a
thorough understanding of stellar evolution theory. The success of ensemble asteroseismology
relies mainly on adopting scaling relations: generally simple empirical laws that allow for the
derivation of fundamental stellar properties for stars different from the Sun by scaling their
asteroseismic quantities from the solar values (see also Chapter 3, Section 3.4).

Among the most challenging asteroseismic quantities to measure and model one can cer-
tainly mention the oscillation amplitude. This is due to both the difficulty in estimating the
background level in the power spectrum and the rather complicated physics involved in the
driving and damping mechanisms of the modes (e.g. see [190, 191]). Different scaling rela-
tions aimed at predicting amplitudes by scaling from the Sun’s values have been derived and
discussed by several authors, both theoretically [187, 158, 159, 160, 269, 33, 188, 271] and ob-
servationally [291, 167, 244]. A variety of amplitude scaling relations has been used extensively
in literature in both ensemble studies [290, 72, 310, 167, 244, 36] and detailed analyses of single
stars from main sequence to the subgiant phase of evolution [48, 270, 166, 216, 63, 86].

The underlying physical meaning of these various amplitude scaling relations is still not
properly understood (e.g. see the discussion by [269, 310, 167, 271, 36]). Testing them with
observational data is vital for assessing the competing relations and for improving our under-
standing of stellar oscillations, i.e. the driving and damping mechanisms that produce the
observed amplitudes (see also [72]). In this context, Bayesian methods can be of great use (see
e.g. [303]) because they allow us to measure physical quantities of interest in a rigorous manner.
Moreover, Bayesian statistics provides an efficient solution to the problem of model comparison,
which is the most important feature of the Bayesian approach (see also [37, 144, 141]).

In the present paper we analyze amplitude measurements of a sample of 1640 stars observed
with Kepler, together with temperature estimates derived from SDSS photometry, which we
introduce in Section 6.1. In Section 6.2 we discuss the different scaling relations for predicting
the oscillation amplitude per radial mode. The results obtained from a Bayesian parameter
estimation for the different scaling relations are shown in Section 6.3 and the model comparison
is presented in Section 6.4. Lastly, discussion and conclusions about the results of our analysis
are drawn in Section 6.5 and 6.6, respectively.

6.1 Observations and Data

We use amplitude measurements and their uncertainties, obtained by [167] for a sample of
1673 stars spanning from main sequence (MS) to red giant stars (RGs) observed with Kepler
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6. AMPLITUDE SCALING RELATIONS

Figure 6.1: Example PSD of a typical star studied by [291] where the method for measuring oscillation
amplitudes described by [190, 191] was used. The smoothed spectrum (solid white line) and the fit to
the stellar granulation background (dashed line) are shown. The oscillation power, Pobs, is evaluated at
the frequency of maximum power, νmax. Image copied from [291].

in short cadence (SC; mostly MS stars but also some subgiants and low luminosity RGs) and
long cadence (LC; all RGs) modes ([127, 174], respectively). Most of the 542 stars observed
in SC have photometry for one month, while the 1131 stars observed in LC have light curves
spanning from Kepler ’s observing quarters 0 to 6. All amplitudes were derived according to
the method described by [190, 191] (see also Chapter 2, Section 2.3.6 for more practical details
about this technique), where the background level was fitted by using Harvey models [146], see
also Figure 6.1 for an example of the method applied on the PSD of a typical red giant star
studied by [291]. The amplitudes are so derived per radial mode (see [168] for more details).
Values of the frequency of maximum power, νmax, the large frequency separation, ∆ν, and their
uncertainties for all the stars were also taken from [167], who used the SYD pipeline [168].

It is important to have accurate temperature estimates for the stars of our sample. Un-
fortunately, those provided by the KIC [60] are known to suffer from significant systematic
effects (see [256] for a detailed discussion of the problem). We used revised Teff derived by
[256] for a total of 161977 KIC stars from Sloan Digital Sky Survey (SDSS) griz filters, which
were corrected using temperature estimates from infrared flux method (IRFM) (J −Ks) color
index for hot stars (e.g. see [66]). The revised effective temperatures are available in the online
catalog [257].

By cross-matching the stars of our sample with the temperature estimates provided by
[256], we arrived at a final sample of 1640 stars with an accurate Teff (1111 observed in LC
and 529 in SC), which will be used for our investigation. Total uncertainties on temperature,
as derived by [256], include both random and systematic contributions. The amplitudes of
the final sample are plotted against νmax and ∆ν in in Figure 6.2 (top left and right panels,
respectively). The bottom panel shows an asteroseismic HR diagram of our sample of stars
(amplitudes against Teff from [256]), similar to the one introduced by [290]. 1σ error bars are
overlaid on both quantities for each panel. The average relative uncertainty in amplitude is
〈σA/A〉 = 9.2% for the entire sample, and 〈σA/A〉SC = 11.7% and 〈σA/A〉LC = 8.1%, for SC
and LC targets, respectively.
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Figure 6.2: Oscillation amplitudes for 1640 stars observed with Kepler in SC (orange squares) and
LC (blue circles) modes and plotted against the frequency of maximum power νmax (top left) and the
large frequency separation ∆ν (top right) of the stars in a log-log scale. Amplitudes against the effective
temperature Teff are shown in the bottom panel, representing an asteroseismic HR diagram for our
sample of stars. 1σ error bars are shown on both quantities for all the plots. The Sun is shown with its
usual symbol (�).

6.2 Amplitude scaling relations

Several scaling relations for oscillation amplitudes have been proposed so far. We will briefly
introduce them in the following (see [167] for further discussion).

6.2.1 The L/M scaling relation

The first scaling relation for amplitudes was introduced by [187] for radial velocities, based on
theoretical models by [74]. It is given by

vosc ∝
(
L

M

)s
, (6.1)

where vosc represents the prediction for the amplitude in radial velocity, L is the luminosity
and M the mass of the star, and s = 1 (see also Chapter 2, Section 2.4 were it was used for
predicting the oscillation amplitude in β Aquilae). [187] also showed that the corresponding
photometric amplitude Aλ, observed at a wavelength λ, is related to vosc by

Aλ ∝
vosc

λT reff

. (6.2)

For adiabatic oscillations, the exponent r is 1.5 (see also [160]), but [187] found the observed
value for classical p-mode pulsators to be 2.0 (see also [269]). By combining the two equations,
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one obtains
Aλ ∝

(
L

M

)s 1

λT reff

. (6.3)

We are interested in a sample of stars observed with Kepler, whose bandpass has a central
wavelength λ = 650 nm. By scaling Eq. (6.3) to our Sun, we have

Aλ
Aλ,�

=

(
L/L�
M/M�

)s( Teff

Teff,�

)−r
, (6.4)

where A650,� = 3.98 ppm is the Sun’s photometric amplitude observed at the Kepler wavelength
(e.g. see [291]). The exponent s has been examined both theoretically (e.g. see [158, 159, 269])
and observationally [126, 104, 290, 310, 19], and found to be 0.7 < s < 1.5. The exponent r has
usually been chosen to be 2.0 (e.g. see the discussion by [291]), which implies that solar-like
oscillations are not fully adiabatic. This was also shown in the case of CoRoT red giant stars
by [271]. Nonetheless, some authors (e.g. see [229, 241]) have chosen to adopt r = 1.5 (see also
the discussion by [188]).

We can also use the results introduced by [58], which suggest that the frequency of maximum
power scales with the cut-off frequency of the star. Hence, νmax ∝ g /

√
Teff , and by considering

that L/M scales as T 4
eff/g, one obtains

L

M
∝ T 3.5

eff

νmax
. (6.5)

Thus, Eq. (6.4) can be rewritten as

Aλ
Aλ,�

=

(
νmax

νmax,�

)−s( Teff

Teff,�

)3.5s−r
, (6.6)

where νmax,� = 3100µHz and Teff,� = 5777K. The functional form of the amplitude scaling
relation given by Eq. (6.6) has the advantage of simplifying the inference problem presented in
Section 6.3 with respect to the one of Eq (6.4). This is because Eq. (6.6) is based on a set of
independent observables, namely νmax and Teff , which represent the input data used for this
work. An analogous argument has been applied to the other scaling relations described in the
following sections.

Thus, Eq. (6.6) represents the first model to be investigated, which we will refer to as M1.
For this model, both the exponents s and r are set to be free parameters. In parallel, an
extended version of Eq. (6.6) given by

Aλ
Aλ,�

= β

(
νmax

νmax,�

)−s( Teff

Teff,�

)3.5s−r
, (6.7)

is also considered, where the factor β allows the model not to necessarily pass through the solar
point, as we will discuss in more detail in Section 6.3.2. Eq. (6.7) is treated as a separate model
and will be denoted as M1,β . Clearly, M1,β depends upon the additional free parameter, β.

6.2.2 The bolometric amplitude

The stars considered span over a wide range of temperatures, from about 4000K to more than
7000K. Hence, following the discussion by [167], a more valuable expression for the photometric
amplitude could be represented by the bolometric amplitude Abol, which is related to Aλ by
(see [187]):

Abol ∝ λAλ Teff ∝
vosc

T r−1
eff

. (6.8)
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By using Eq (6.1) we thus have

A
(1)
bol ∝

(
L

M

)s 1

T r−1
eff

, (6.9)

which by scaling to the Sun and adopting Eq. (6.5) yields

A
(1)
bol

Abol,�
=

(
νmax

νmax,�

)−s( Teff

Teff,�

)3.5s−r+1

, (6.10)

where Abol,� = 3.6 ppm represents the Sun’s bolometric amplitude, determined by [230] and
also adopted by [167]. Eq. (6.10) is the second model, M2, to be investigated in Section 6.3,
with the exponents s and r set again to be the free parameters. We also consider the new model
M2,β , which again includes the proportionality term β playing the same role as in Eq. (6.7).

6.2.3 The Kepler bandpass-corrected amplitude

[12] have recently established a bolometric correction for amplitude of radial modes observed
with Kepler, which translates into a correction factor for effective temperatures falling within
the range 4000–7500K. Again following the approach by [167], we consider a revised version of
Eq. (6.9), which reads

A
(2)
bol ∝

(
L

M

)s 1

T r−1
eff cK(Teff)

, (6.11)

where

cK(Teff) =

(
Teff

5934

)0.8

(6.12)

is the bolometric correction expressed as a power law of the effective temperature. By scaling
once again to the Sun and applying Eq. (6.5), we obtain

A
(2)
bol

Abol,�
=

(
νmax

νmax,�

)−s( Teff

Teff,�

)3.5s−r+0.2

, (6.13)

which we will refer to as M3. As for the other models, we introduce the model M3,β with the
proportionality term β included.

6.2.4 The mass-dependent scaling relation

A mass dependence of the oscillation amplitudes was suggested for the first time by [165],
and later on studied in detail by [291] for cluster RGs with the introduction of a new scaling
relation. It was also tested afterwards by [167] for a wider sample of field stars. According to
[167], an obvious way to modify Eq. (6.11) is given by

A
(3)
bol ∝

Ls

M t

1

T r−1
eff cK(Teff)

, (6.14)

where now the mass varies with the independent exponent t. For this case, the dependence
upon the quantities νmax and Teff becomes slightly more complicated because the simple pro-
portionality expressed by Eq. (6.5) can no longer be adopted. Therefore, the first step to derive
the functional form based on our set of observables (νmax,∆ν, Teff), is to consider the scaling
relations for the large frequency separation ∆ν given by Eq. (2.43) with ∆ν� = 135µHz (see
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Chapter 2, Section 2.4), and for the frequency of maximum power νmax, given Eq. (2.45), which
we now rewrite as

νmax

νmax,�
=

(
M

M�

)(
R

R�

)−2( Teff

Teff,�

)−0.5

. (6.15)

Both scaling relations are expressed in terms of the fundamental stellar properties M , R, and
Teff . As already shown in Chapter 3, by combining them one can derive the expression for the
seismic radius of a star, given by Eq. (3.4). As a second step, we express Ls/M t in terms of R,
νmax, and Teff and scale from the Sun’s values, yielding

(
L

L�

)s( M

M�

)−t
=

(
R

R�

)2s−2t( νmax

νmax,�

)−t

(
Teff

Teff,�

)4s−0.5t

.

(6.16)

Finally, by combining Eqs. (6.12), (6.14), (??) and (6.16) we arrive at

A
(3)
bol

Abol,�
=

(
νmax

νmax,�

)2s−3t( ∆ν

∆ν�

)4t−4s

(
Teff

Teff,�

)5s−1.5t−r+0.2

.

(6.17)

This represents the model for the mass-dependent scaling relation for amplitudes, hereafter
denoted as M4. In this case, we have the three free parameters s, r, and t and the set of
observables now includes also our measurements of ∆ν. The corresponding model M4,β has
the largest number of free parameters among those investigated in this work. Note that models
M4 and M4,β reduce to models M3 and M3,β , respectively, for t = s.

6.2.5 The lifetime-dependent scaling relation

In their study of oscillation amplitudes and granulation [188] have recently provided physical
arguments to propose a new scaling relation for predicting the amplitudes of solar-like oscil-
lations observed in radial velocities. Their relation arises by postulating that the amplitudes
depend on both the stochastic excitation (given by the granulation power, see [188] for details)
and the damping rate (given by the mode lifetime). It reads

vosc ∝
Lτ0.5

osc

M1.5T 2.25
eff

, (6.18)

where τosc is the average mode lifetime of radial modes. By means of Eq. (6.8), and with the
bolometric correction introduced in Section 6.2.3, the corresponding relation for the bolometric
amplitude is given by (see also [167])

A
(4)
bol ∝

Lτ0.5
osc

M1.5

1

T 1.25+r
eff cK(Teff)

. (6.19)

In order to obtain the expression for the model M5, we use similar arguments to those adopted
in Section 6.2.4, arriving at

A
(4)
bol

Abol,�
=

(
νmax

νmax,�

)−2.5( ∆ν

∆ν�

)2( τosc

τosc,�

)0.5

(
Teff

Teff,�

)2.3−r
,

(6.20)
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where τosc,� = 2.88 d, as adopted by [188]. For our computations we assume that the mode
lifetime is a function of the effective temperature of the star alone (e.g. see [69, 19, 6, 35, 87]).
We used the empirical law found by [87], which relates the mode linewidths Γ (see Chapter 2,
Section 2.1.3 for a definition) of the radial modes (` = 0) to the effective temperature of the
star within the range 4000–7000K. In particular, they found that

Γ = Γ0 exp

(
Teff − Teff,�

T0

)
, (6.21)

where Γ0 = 1.39 ± 0.10µHz and T0 = 601 ± 3K (see also Chapter 4, Section 4.3.5 and Ap-
pendix A for more details). This relation was calibrated using Kepler RGs in the open clus-
ters NGC 6791 and NGC 6819, and a sample of MS and subgiant Kepler field stars. Given
τ = (πΓ)−1, we obtain

τosc = τ0 exp

(
Teff,� − Teff

T0

)
, (6.22)

with τ0 = 2.65 ± 0.19 d. The mode lifetimes were computed for all the stars of our sample by
means of Eq. (6.22), together with their corresponding uncertainties from the error propagation
(see Appendix A). As for the other scaling relations, we also introduce model M5,β .

6.2.6 A new scaling relation

Following similar arguments to those adopted by [291] for introducing a new scaling relation
for amplitudes of cluster RGs, and the discussion by [167] about the mass dependence of
the amplitudes, we introduce a slightly modified version of the amplitude relation given by
Eq. (6.19), where we set the mass to vary with an independent exponent t, thus yielding

A
(5)
bol ∝

Lτ0.5
osc

M t

1

T 1.25+r
eff cK(Teff)

. (6.23)

By adopting again Eq. (6.16) and rearranging, we finally obtain

A
(5)
bol

Abol,�
=

(
νmax

νmax,�

)2−3t( ∆ν

∆ν�

)4t−4( τosc

τosc,�

)0.5

(
Teff

Teff,�

)4.55−r−1.5t

,

(6.24)

hereafter marked as model M6. As done for the other scaling relations, the model M6,β is
also included in our inference. Clearly, models M6 and M6,β reduce to models M5 and M5,β ,
respectively, for t = 1.5.

6.3 Bayesian inference

We now use Bayesian inference for the free parameters of the models described above. The
Bayes’ theorem tells us that

p(ξ | A,M) =
p(A | ξ,M)π(ξ |M)

p(A |M)
, (6.25)

where ξ = ξ1, ξ2, . . . , ξk is the vector of the k free parameters that formalize the hypotheses of
the model M, considered for the inference, and A is the set of amplitude measurements (see
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6. AMPLITUDE SCALING RELATIONS

Chapter 5 for a general introduction to Bayesian probability theory and statistics). The term
p(A | ξ,M) is now identified with the likelihood L(ξ) of the parameters ξi given the measured
oscillation amplitudes:

p(A | ξ,M) = L(ξ | A,M) . (6.26)

Thus, the left-hand side of Eq. (6.25) is the posterior probability density function (PDF), while
the right-hand side is the product of the likelihood function L(ξ), which represents our manner
of comparing the data to the predictions by the model, and the prior PDF π(ξ | M), which
represents our knowledge of the inferred parameters before any information from the data is
available. The term p(A |M) is a normalization factor, known as the Bayesian evidence, which
we do not consider for the inference problem because it is a constant for a model alone. As we
will argue in Section 6.4, the Bayesian evidence is essential for solving the problem of model
comparison (see also Chapter 5, Section 5.6 for more details).

For our inference problem, we adopt the common Gaussian likelihood function, which pre-
sumes that the residuals arising from the difference between observed and predicted logarithms
of the amplitudes are Gaussian distributed, i.e. the amplitudes themselves are presumed to be
log-normal distributed (see also [5]). Therefore, we have

L(ξ) =
N∏

i=1

1√
2πσ̃i

exp

[
−1

2

(
∆i(ξ)

σ̃i

)2
]
, (6.27)

where N is the total number of data points (the number of stars, in our case), while

∆i(ξ) = lnAobs
i − lnAth

i (ξ) (6.28)

is the difference between the observed logarithmic amplitude for the i-th star and the predicted
one (which depends on the adopted model, i.e. on the parameters vector ξ). The term σ̃i
appearing in the leading exponential term of Eq. (6.27) is the total uncertainty in the pre-
dicted logarithmic amplitude, namely the relative uncertainty of the amplitude enlarged by the
relative errors of the independent variables νmax, ∆ν, and Teff . This means that we are not
considering error-free variables in our models (see e.g. [95, 4] for more details). For simplifying
the computations a modified version of the likelihood function, known as the log-likelihood, is
preferred. The log-likelihood function is defined as Λ(ξ) ≡ lnL(ξ), which yields

Λ(ξ) = Λ0 −
1

2

N∑

i=1

[
∆i(ξ)

σ̃i

]2

, (6.29)

where

Λ0 = −
N∑

i=1

ln
√

2πσ̃i . (6.30)

Further details about the method used to compute the final likelihood are given in Appendix C,
Section C.3.

The choice of reliable priors is important in the Bayesian approach. For our purpose,
uniform priors represent a sensible choice for most of the free parameters. This means one has
no assumptions about the inferred parameters before any knowledge coming from the data, with
equal weight being given to all values of each of the parameters considered. In particular, we
use standard uniform priors for the exponents s, r and t of the models described above, letting
the parameters vary within a limited range in order to make the priors proper, i.e. normalizable
to unity. For the proportionality term β introduced in Eq. (6.7), we adopt the Jeffreys’ prior
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6.3 Bayesian inference

Table 6.1: Maximum and minimum values of the free parameters, adopted for all the models and
samples.

ξj
[
ξmin
j , ξmax

j

]
s [0.2, 1.2]
r [−6.5, 11.0]
t [1.0, 2.0]
lnβ [−1.0, 1.0]

∝ β−1 [184], a class of uninformative prior that results in a uniform prior for the natural
logarithm of the parameter (see also Chapter 5, Section 5.2.2). In this manner, the parameter
of interest is represented by the offset lnβ (see below), whose prior is uniform distributed and
also limited in range. Hence, uniform priors are included in the inference problem as a simple
constant term depending on the intervals adopted for the inferred parameters

π(ξ |M) =
4∏

j=1

[
ξmax
j − ξmin

j

]−1 (6.31)

with ξ1 = s, ξ2 = r, ξ3 = t and ξ4 = lnβ, and ξmin
j , ξmax

j the minimum and maximum values
defining the interval of the j-th parameter (see also Appendix C, Section ?? for more details).
The intervals that we adopt are listed in Table 6.1. These ranges are used for both the Bayesian
parameter estimation and the model comparison.

A note of caution concerns the treatment of the uncertainties. In fact, by using the natural
logarithm of the equations that describe the models (see also Section 6.3.2), we ensure that we
are not favoring for example frequencies upon periods, amplitudes upon power, temperatures
upon surface brightness, etc., which has the advantage of making the error propagation law
fully correct. Thus, the corresponding uncertainties to be considered in Eq. (6.27) will be the
relative uncertainties.

As already explained in Chapter 5, Section 5.3 for a general case, the inference problem
for a given parameter, e.g. ξ1, is then performed by integrating (marginalizing) the posterior
distribution function p(ξ | d,M) over the remaining k − 1 parameters ξ2, ξ3, . . . , ξk. We obtain
the corresponding marginal PDF of the parameter ξ1

p(ξ1 | A,M) =

∫
p(ξ | A,M)dξ2, dξ3, . . . , dξk , (6.32)

whose statistical moments and credible intervals (i.e. Bayesian confidence intervals) are the
quantities of interest for our work. In particular, the confidence intervals are introduced in
Appendix C, Section C.2, together with a detailed description of their computation for the
work described in this chapter. Since the dimensionality of our problem is not higher than
k = 4, all the integrations can be computed by direct numerical summation of the posterior
distribution over the remaining parameters (only in case the observables, like Teff , were error-
free all integrations could be computed analytically).

The results presented in the coming sections are derived in three cases: for the entire sample
of stars, and for SC (dominated by MS stars) and LC (RGs) targets separately. Analyzing the
two subsets separately allows us to test whether the fitted parameters of the scaling relations
are sensitive to the evolutionary stage of the stars (see also [167]).

The mean values (or expectation values) of the free parameters of the models, together with
their corresponding 68.3% Bayesian credible intervals, are listed in Table 6.2 for the case of the
entire sample, and in Tables 6.3 and 6.4 for the subsets of SC and LC targets. We also computed
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6. AMPLITUDE SCALING RELATIONS

a weighted Gaussian rms, σwrms, of the residuals ∆2
i (ξ), where we adopted the weights wi = σ̃−2

i ,
σ̃i being the total uncertainty used in Eq. (6.27). The maximum of the log-likelihood function,
Λmax, and σwrms, used as an estimate of the fit quality, are also listed in the same tables.
In addition, we derived correlation coefficients for each pair of free parameters by means of
principal component analysis using Singular Value Decomposition (SVD) from the posterior
PDFs (see Appendix D for an introduction). The results are shown in Tables 6.5, 6.6, 6.7 for
the entire sample, and SC and LC targets, respectively, with −1 meaning total anti-correlation
and 1 total correlation. The effects of the correlations will be discussed in Section 6.5.

6.3.1 Statistically independent models

Before getting to a description on how to correctly include the models in the inference problem,
it is useful to highlight that the models M1,β , M2,β , and M3,β on the one hand, and the models
M2, and M3 on the other hand, are statistically identical to one another (but not identical
in the general sense, since their underlying physical assumptions are different). In case the
intervals of their free parameters are the same for all the models when performing the Bayesian
parameter estimation (as it is for the analysis presented in this work) this implies that a
statistical inference for these models would lead to identical (or directly related) values of these
free parameters. In particular, according to Eqs. (6.7), (6.10), and (6.13) we have that

s(M1,β) = s(M2,β) = s(M3,β)

s(M2) = s(M3)
(6.33)

for the exponent s,

r(M1,β) = r(M2,β)− 1 = r(M3,β)− 0.2

r(M2) = r(M3)− 0.8 ,
(6.34)

for the exponent r, and

lnβ(M1,β) = lnβ(M2,β) + ln

(
Abol,�
Aλ,�

)

= lnβ(M3,β) + ln

(
Abol,�
Aλ,�

)
(6.35)

for the offset lnβ, where the term ln (Abol,�/Aλ,�) arises from the difference in considering the
amplitudes to be either observed at λ = 650 nm (M1,β) or bolometric (M2,β and M3,β). As a
consequence, from now on the entire analysis for the models M1,β , M2,β , and M3,β on one side,
and for the models M2 and M3 on the other side, will be reduced to that of the two models
M1,β and M2, respectively. The reader can derive the corresponding parameters for the other
dependent models using Eqs. (6.33), (6.34), and (6.35).

6.3.2 Models M1 and M1,β

The first model to be investigated is given by Eq. (6.6). As argued above, we need to consider
the natural logarithm in order to treat the observables independently of the function adopted
(see the discussion in Section 6.3 and in Chapter 5, Section 5.2.2). Hence the model reads

ln

(
Aλ
Aλ,�

)
=− s ln

(
νmax

νmax,�

)

+ (3.5s− r) ln

(
Teff

Teff,�

)
.

(6.36)
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Table 6.2: Expectation values of the inferred parameters for all the models described in Section 6.2
in the case of the entire sample (both LC and SC targets), having N = 1640 stars. 68.3% Bayesian
credible intervals are added. The maximum value for the log-likelihood function Λmax and a weighted
Gaussian rms of the residuals, σwrms, are also reported.

Model s r t lnβ Λmax σwrms

M1 0.680± 0.002 4.31± 0.04 – – −3533.1 0.23
M1,β 0.524± 0.004 5.51± 0.05 – 0.400± 0.010 −2491.3 0.24
M2 0.722± 0.002 4.96± 0.04 – – −4159.9 0.24
M4 0.822± 0.003 3.93± 0.06 1.58± 0.02 – −948.5 0.23
M4,β 0.643± 0.005 4.46± 0.06 1.36± 0.02 0.528± 0.012 163.4 0.18
M5 – −5.71± 0.03 – – −925.5 0.31
M5,β – −5.07± 0.05 – −0.122± 0.007 −786.9 0.29
M6 – −5.04± 0.05 1.80± 0.02 – −727.1 0.30
M6,β – −4.97± 0.06 1.75± 0.02 −0.035± 0.012 −722.8 0.29

Table 6.3: Same description as for Table 6.2 but in the case of SC targets, having N = 529 stars.

Model s r t lnβ Λmax σwrms

M1 0.775± 0.003 3.23± 0.05 – – −321.4 0.20
M1,β 0.624± 0.010 3.68± 0.06 – 0.241± 0.016 −199.3 0.19
M2 0.838± 0.003 4.05± 0.05 – – −443.8 0.22
M4 0.984+0.009

−0.010 2.79± 0.09 1.66+0.04
−0.05 – −94.9 0.23

M4,β 0.748± 0.015 3.47± 0.09 1.27± 0.04 0.321± 0.020 18.0 0.20
M5 – −2.78± 0.09 – – −83.1 0.24
M5,β – −2.75± 0.09 – 0.020± 0.008 −80.2 0.24
M6 – −2.80+0.10

−0.09 1.56± 0.02 – −79.6 0.24
M6,β – −2.75± 0.10 1.72± 0.04 0.087+0.014

−0.015 −59.4 0.24

Table 6.4: Same description as for Table 6.2 but in the case of LC targets, having N = 1111 stars.

Model s r t lnβ Λmax σwrms

M1 0.464+0.007
−0.006 9.53+0.15

−0.16 – – −799.2 0.28
M1,β 0.548± 0.009 9.67+0.15

−0.16 – −0.35± 0.03 −737.4 0.27
M2 0.491+0.007

−0.006 10.51+0.15
−0.16 – – −769.0 0.28

M4 0.666+0.006
−0.005 6.99± 0.12 1.28± 0.02 – 207.4 0.18

M4,β 0.602± 0.008 5.87± 0.14 1.31± 0.02 0.45± 0.03 301.0 0.16
M5 – −6.08± 0.04 – – −357.9 0.24
M5,β – −4.38± 0.16 – −0.27+0.02

−0.03 −309.2 0.24
M6 – −5.94± 0.08 1.55± 0.03 – −356.0 0.24
M6,β – −4.39± 0.16 1.45+0.02

−0.03 −0.30± 0.03 −307.1 0.24
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Table 6.5: Correlation coefficients for pairs of free parameters for each model in the case of the entire
sample.

Model s vs r s vs b s vs t r vs b r vs t b vs t

M1 −0.90 – – – – –
M1,β −0.85 −0.92 – 0.66 – –
M2 −0.94 – – – – –
M4 −0.74 – 0.59 – 0.01 –
M4,β −0.74 −0.76 0.44 0.31 −0.25 0.04

M5 – – – – – –
M5,β – – – −0.74 – –
M6 – – – – 0.74 –
M6,β – – – −0.41 0.18 0.71

Table 6.6: Same description as for Table 6.5 but in the case of SC targets.

Model s vs r s vs b s vs t r vs b r vs t b vs t

M1 0.22 – – – – –
M1,β −0.40 −0.94 – 0.49 – –
M2 0.20 – – – – –
M4 −0.29 – 0.88 – −0.27 –
M4,β −0.48 −0.85 0.71 0.44 −0.37 −0.31

M5 – – – – – –
M5,β – – – 0.12 – –
M6 – – – – −0.07 –
M6,β – – – 0.03 −0.01 0.76

Table 6.7: Same description as for Table 6.5 but in the case of LC targets.

Model s vs r s vs b s vs t r vs b r vs t b vs t

M1 −0.98 – – – – –
M1,β −0.49 −0.71 – −0.25 – –
M2 −0.98 – – – – –
M4 −0.92 – 0.50 – −0.19 –
M4,β −0.31 −0.66 0.30 −0.46 −0.30 0.18

M5 – – – – – –
M5,β – – – −0.98 – –
M6 – – – – 0.88 –
M6,β – – – −0.88 0.04 0.37
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6.3 Bayesian inference

At this stage we briefly describe how the uncertainties have been included in our analysis. The
new uncertainties on the scaled amplitude to be considered in Eq. (6.27) are clearly given by
σAi/Ai, hereafter σ̃Ai for simplicity, where Ai is the observed amplitude for the i-th star and
σAi its corresponding uncertainty as derived by [167]. However, Eq. (6.36) suggests that the
uncertainty on amplitude is not the only one affecting the predicted amplitude Aλ. In fact,
uncertainties on both νmax (derived by [167]) and Teff (from [256]) have to be included in our
computations. The total uncertainty to be used in Eq. (6.27) is given by the Gaussian error
propagation law, which gives

σ̃2
i (s, r) = σ̃2

Ai + s2σ̃2
νmax,i

+ (3.5s− r)2σ̃2
Teff,i

(6.37)

where we defined σ̃νmax,i ≡ σνmax,i/νmax,i and σ̃Teff,i
≡ σTeff,i

/Teff,i, similarly to what was done
for the amplitudes. Eq. (6.37) only holds in case of uncorrelated uncertainties and linear
relations (see also [95, 4] for a demonstration). Intuitively, Eq. (6.37) is the quadratic sum
of the relative uncertainties over the physical quantities considered, according to Eq. (6.36).
A variation of Eq. (6.36) is represented by the model M1,β given by Eq. (6.7), whose natural
logarithm reads

ln

(
Aλ
Aλ,�

)
=− s ln

(
νmax

νmax,�

)

+ (3.5s− r) ln

(
Teff

Teff,�

)
+ lnβ .

(6.38)

which differs from Eq. (6.36) by the additional term lnβ. As already argued before, the offset
lnβ allows the model not to necessarily pass through the solar point (A�, νmax,�, Teff,�). Its
introduction in the inference is of importance if one wants to assess whether or not the Sun
is a good reference star for the sample considered. This choice is also motivated by the fact
that the Sun is falling at the edge of the sample of stars when plotting amplitudes against
νmax and ∆ν (Figure 6.2, top left and right panels). This peculiar position is also evident from
our asteroseismic HR diagram (Figure 6.2, bottom panel), and is caused by the lack of solar
twins in our sample of stars (see the discussion by [71] and the results shown in Chapter 3,
Section 3.4). In fact, in the case of lnβ 6= 0, by replacing the solar values in Eq. (6.38) (or
alternatively Eq. (6.7)), the predicted amplitude for the Sun would be resized by a factor β.
This means that the best reference amplitude for scaling the amplitudes of our sample of stars
would be represented by βAλ,�. According to Eq. (6.38), the total uncertainty to be considered
in building the likelihood function for the model M1,β is given again by Eq. (6.37) because the
offset does not play any role in the total contribute of the uncertainties.

A representative sample of the resulting marginal PDFs is plotted in Figure 6.3 for the case
of the entire sample, where 68.3% Bayesian credible regions (shaded bands) and expectation
values (dashed lines) are also marked. The comparison between the predicted and the observed
amplitudes is shown in Figure 6.4 for the three cases considered (top panels for model M1,
bottom panels for model M1,β), together with a plot of the residuals arising from the difference
between the models and the observations.
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6.3.3 Model M2

The model M2 given by Eq. (6.10) deserves a similar description to that presented in Sec-
tion (6.3.2) for model M1, where the natural logarithm is now given by

ln

(
A

(1)
bol

Abol,�

)
=− s ln

(
νmax

νmax,�

)

+ (3.5s− r + 1) ln

(
Teff

Teff,�

)
,

(6.39)

with a total uncertainty for the i-th star expressed as

σ̃2
i (s, r) = σ̃2

Ai + s2σ̃2
νmax,i

+ (3.5s− r + 1)2σ̃2
Teff,i

(6.40)

to be included in Eq. (6.27). The resulting models are shown in Figure 6.5, with similar
descriptions as those adopted for Figure 6.4.

6.3.4 Models M4 and M4,β

The models M4 and M4,β (see Section 6.2.4) are clearly the most complex ones among those
investigated in this work because the largest number of free parameters is involved, and mea-
surements of ∆ν are also needed. We note that, although a tight correlation between νmax and
∆ν has been found in previous studies (e.g. see [286]), we choose not to adopt the νmax–∆ν
relation to express model M4 in terms of νmax only (or alternatively ∆ν) because additional
uncertainties arising from the scatter around this relation would affect the results of our infer-
ence. This is also motivated by recent results by [167] who found that the νmax-∆ν relation
changes as a function of Teff between dwarf and giant stars.

Therefore, by considering the natural logarithm of Eq. (6.17) one obtains

ln

(
A

(3)
bol

Abol,�

)
= (2s− 3t) ln

(
νmax

νmax,�

)
+ (4t− 4s) ln

(
∆ν

∆ν�

)

+ (5s− 1.5t− r + 0.2) ln

(
Teff

Teff,�

)
,

(6.41)

for model M4, and with the additional term lnβ for M4,β . According to Eq. (6.41), the total
uncertainty to be considered in Eq. (6.27) reads

σ̃2
i (s, r, t) = σ̃2

Ai + (2s− 3t)2σ̃2
νmax,i

+ (4t− 4s)2σ̃2
∆νi

+ (5s− 1.5t− r + 0.2)2σ̃2
Teff,i

,
(6.42)

with σ̃∆νi ≡ σ∆νi/∆νi, as done for the other quantities. As one can intuitively expect, the new
total uncertainty depends on the three free parameters of the model. The resulting models are
shown in Figure 6.6.

6.3.5 Models M5 and M5,β

The models described in Section 6.2.5 are derived with a quite different approach, which requires
an estimate of the mode lifetime for each star considered in our sample. We note that model
M5 was also investigated by [167], who however did not take into account mode lifetimes.
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The natural logarithm of model M5 lead us to

ln

(
A

(4)
bol

Abol,�

)
=− 2.5 ln

(
νmax

νmax,�

)

+ 2 ln

(
∆ν

∆ν�

)
+ 0.5 ln

(
τosc

τosc,�

)

+ (2.3− r) ln

(
Teff

Teff,�

)
.

(6.43)

Thus, the total uncertainty for the i-th star of the sample is given by

σ̃2
i (r) = σ̃2

Ai + 6.25σ̃2
νmax,i

+ 4σ̃2
∆νi

+ 0.25σ̃2
τosc,i

+ (2.3− r)2σ̃2
Teff,i

,
(6.44)

with σ̃2
τosc,i

≡ στosc,i/τosc,i, and is the same for both the models here considered, as model M5,β

differs only by the additional term lnβ. The resulting models are shown in Figure 6.7, with
similar descriptions as those adopted for Figures 6.3 and 6.4.

6.3.6 Models M6 and M6,β

Following the same arguments used for the other models, we obtain

ln

(
A

(5)
bol

Abol,�

)
= (2− 3t) ln

(
νmax

νmax,�

)

+ (4t− 4) ln

(
∆ν

∆ν�

)
+ 0.5 ln

(
τosc

τosc,�

)

+ (4.55− r − 1.5t) ln

(
Teff

Teff,�

)
.

(6.45)

for the model M6. The new uncertainties to be considered will depend on the free parameters
r and t, thus we have

σ̃2
i (r, t) = σ̃2

Ai + (2− 3t)2σ̃2
νmax,i

+ (4t− 4)2σ̃2
∆νi

+ 0.25σ̃2
τosc,i

+ (4.55− r − 1.5t)2σ̃2
Teff,i

.
(6.46)

with the same quantities adopted in Eq. (6.44). An analogous discussion to that used for other
scaling relations has to be applied for model M6,β . The results of the inference for both models
are plotted in Figure 6.8.

6.4 Bayesian Model Comparison

As mentioned in Section 6.3, the term p(A | M) appearing in Eq. (6.25) (Bayesian evidence)
is the one of interest for solving the problem of model comparison in the context of Bayesian
statistics (e.g. see [303, 37, 144, 141] and Chapter 5, Section 5.6). The Bayesian evidence is
given by integrating the numerator appearing in the right-hand side of Eq. (6.25) over all the
possible values of the free parameters ξ1, ξ2, . . . , ξk. Thus we have

EM ≡ p(A |M) =

∫

ΩM

L(ξ)π(ξ |M)dξ , (6.47)
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Figure 6.3: Top panels: Marginal PDFs for the free parameters of the models M1 and M1,β, where
expectation values listed in Table 6.2 (dashed lines) and 68.27% Bayesian credible regions (light gray
for M1 and dark gray for M1,β) have been marked. Middle panels: Same description of the top panels
but for the case of SC targets only (light orange for M1 and dark orange for M1,β). Bottom panels:
Same description of the top panels but for the case of LC targets only (light blue for M1 and dark blue
for M1,β).

where ΩM represents the parameter space, defined by the intervals of variation of the free pa-
rameters that formalize the hypotheses of the model M, and having volume given by Eq. (6.31).
The Bayesian evidence given by Eq. (6.47) basically represents the integral of the likelihood
function “averaged” by the prior distribution. As the prior π(ξ |M) has to be normalized, the
evidence depends on the parameter space. Thus, the intervals [ξmin

j , ξmax
j ] of the free parame-

ters ξj used for computing Eq. (6.47) are those listed in Table 6.1. A detailed discussion about
the computation of the evidences is given in Appendix C, Section C.3, where the values of all
the evidences are also listed.

Since a measure of EM alone does not carry any meaningful information, to solve the
problem of model comparison it is useful to take into account the ratios (or odds) of the
evidences, namely the so-called Bayes factor, which is given as

Bij =
p(A |Mi)

p(A |Mj)
=

EMi

EMj

. (6.48)

We recall from Chapter 5 that in case Bij > 1 the model Mi is the favored one, while conversely
if Bij < 1 the model Mj ought to be preferred. The resulting natural logarithms of the Bayes
factor, which are computed according to Eq. (6.48) are listed in Tables 6.8, 6.9, and 6.10, for
the cases of the entire sample, and SC and LC targets, respectively. Therefore, if lnBij > 0
the model Mi is preferred over Mj and vice versa if lnBij < 0.

It is sometimes useful to consider so-called Information Criteria, which may offer a simpler
alternative to the Bayesian evidence, whose numerical computation in some cases can be very
time demanding. In particular, we adopted the Bayesian Information Criterion (BIC), also
known as Schwarz Information Criterion [273], which follows from a Gaussian approximation
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6.4 Bayesian Model Comparison

Table 6.8: Natural logarithms of the Bayes factor lnBij for each pair of models Mi, Mj as derived by
means of Eq. (6.48) for the case of the entire sample.

Model M1 M1,β M2 M4 M4,β M5 M5,β M6

M1 –
M1,β 1038.2 –
M2 −626.7 −1664.9 –
M4 2582.3 1544.1 3209.0 –
M4,β 3690.6 2652.4 4317.3 1108.3 –
M5 2613.9 1575.7 3240.6 31.6 −1076.6 –
M5,β 2748.4 1710.2 3375.2 166.2 −942.1 134.5 –
M6 2809.1 1770.9 3435.9 226.8 −881.4 195.2 60.7 –
M6,β 2810.0 1771.8 3436.7 227.7 −880.6 196.1 61.6 0.9

Table 6.9: Same description as for Table 6.8 but in the case of the sample of SC targets.

Model M1 M1,β M2 M4 M4,β M5 M5,β M6

M1 –
M1,β 118.8 –
M2 −122.4 −241.2 –
M4 225.2 106.4 347.6 –
M4,β 334.7 215.8 457.0 109.5 –
M5 243.7 124.8 366.0 18.5 −91.0 –
M5,β 242.7 123.9 365.1 17.5 −91.9 −0.9 –
M6 244.3 125.5 366.7 19.1 −90.3 0.7 1.6 –
M6,β 261.4 142.6 383.8 36.2 −73.2 17.8 18.7 17.1

Table 6.10: Same description as for Table 6.8 but in the case of the sample of LC targets.

Model M1 M1,β M2 M4 M4,β M5 M5,β M6

M1 –
M1,β 59.2 –
M2 30.2 −29.0 –
M4 1003.2 943.9 973.0 –
M4,β 1094.2 1035.0 1064.0 91.1 –
M5 445.7 386.4 415.5 −557.5 −648.6 –
M5,β 491.5 432.3 461.3 −511.6 −602.7 45.9 –
M6 444.9 385.6 414.7 −558.3 −649.4 −0.8 −46.7 –
M6,β 490.9 431.6 460.7 −512.3 −603.4 45.2 −0.7 46.0
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Table 6.11: Bayesian Information Criterion (BIC) computed for all the models in three cases consid-
ered: all targets (second column), SC targets (third column), LC targets (fourth column).

Model BIC BIC(SC) BIC(LC)

M1 7081 655 1612
M1,β 5004 417 1497
M2 8335 901 1552
M4 1920 209 −393
M4,β −296 −11 −574
M5 1859 172 723
M5,β 1589 173 632
M6 1469 173 726
M6,β 1468 137 635

to the Bayesian evidence in the limit of a large sample size, as it can be represented by our
sample of stars (N � 1, see also Chapter 5, Section 5.6.5). Thus, the BIC reads

BIC ≡ −2Λmax + k lnN , (6.49)

where k is the number of free parameters of the model considered (i.e. the dimension of the
corresponding parameter space), and N the number of data points. Since Λmax is known, the
BIC can be computed straightforwardly. The resulting values of the BIC are listed in Table 6.11
for the cases of the entire sample (second column) and of SC and LC targets separately (third
and fourth columns, respectively). According to the Occam’s razor principle on which Bayesian
model comparison relies, the most eligible model is the one that minimizes the BIC.

As highlighted by the shaded rows and columns, the model M4,β is largely the favored one
for all the samples considered because its evidence is always greater than those of any other
model investigated in this work. In addition, the BIC confirms the result computed through
the evidences.

6.5 Discussion

The analysis described in Section 6.3 and in Section 6.4 lead us to interesting results about
the use of the amplitude scaling relations in asteroseismology. The main aspects of the work
presented here can be divided into two groups, whose contents we discuss in the following.

6.5.1 Results from Bayesian parameter estimation

The results coming from the inference described in Section 6.3 show that:

1. for models from M1 to M4,β , the expectation values of exponent r, which we remind was
introduced for converting radial velocity amplitudes into photometric ones, differ from
the value r = 2 adopted for non-adiabatic oscillations [187, 291, 271]. On one hand,
this outcome is even more evident in the case of RGs (namely the LC targets), where
we found r ' 10.5 for model M2 (Table 6.4). Although such a high value for r could
be partly explained by a very tight anti-correlation with the exponent s (see Tables 6.5
and 6.7), this seems to support the recent findings by [271] who suggest that for RGs
the non-adiabatic effects become significantly important in the driving mechanism of
solar-like oscillations and that, in general, the excitation model is underestimating the
true amplitudes. On the other hand, in the case of SC targets, which are essentially
dominated by MS stars, the mean r is not as correlated with s as for the LC targets (see
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Table 6.6), and its estimated values are considerably lower (r ≈ 3), and much closer to
the value r = 2 adopted in previous works (Table 6.3). This again could suggest that
solar-like oscillations are more adiabatic in early stages of stellar evolution.

Conversely, r becomes negative for the models that take into account the granulation
power and the lifetime of the modes (M5 to M6,β), which give a different contribution to
the predicted amplitudes from effective temperature (see Sections 6.2.5 and 6.2.6). The
reason our estimates of r are much lower than the theoretical value is mainly related to
the fact that predicted amplitudes based on the scaling relation by [188] are considerably
greater than the observed ones, even for the most adiabatic case corresponding to r = 1.5
(e.g. see the discussions by [291, 167]). This overestimation could be explained by a
missing term containing the mode masses, as proved by recent theoretical calculations by
[271] for a sample of RGs observed by CoRoT.

Correlations among the free parameters are very tight in many cases and can be par-
tially responsible of decreasing r, except for the case of SC targets, where no significant
correlations are found

2. for the models that include the exponent s (M1 to M4,β), the expectation values derived
here are fairly compatible with previous results (e.g. see [187, 126, 104, 290, 310, 19, 291,
167]). However, it is worth mentioning that when moving from the main sequence to the
red giant phase, s decreases, which is apparent for all the models mentioned above. This
effect can be partially explained by a compensation of the exponent r

3. the expectation values of the exponent t found for models M4,M6, and M6,β are not far
from the value t = 1.7 ± 0.1 derived by [291] using a sample of cluster RGs, although
correlation effects with the exponents s and r cannot be neglected and are, in some cases,
quite pronounced (see Table 6.5). For model M4,β instead, we found t to be very close
to the value t = 1.32± 0.02 derived by [167], who used a very similar sample of stars but
with effective temperatures from KIC. These results are confirmed for both the entire
sample and the sample of SC targets. The RGs sample is instead behaving differently,
showing values of t significantly lower than the other two samples. This result is certainly
dominated by correlations, which are stronger than those of the MS-dominated sample
(see below)

4. as a qualitative result we can state that, in general, all the expectations of the free param-
eters involved in the amplitude scaling relations investigated here are on average rather
different when comparing the MS-dominated sample to the RGs one. The correlations
among the free parameters are enhancing the differences between dwarfs and giants and
are likely to be stronger in the sample of more evolved stars because for red giants there
is a large degree of degeneracy in the stellar fundamental properties as stars with dif-
ferent mass all converge along the red giant branch spanning only a small temperature
range. As a consequence, this could suggest that not a single of the amplitude scaling re-
lations discussed can be adopted to both MS and RGs simultaneously because the driving
and damping mechanisms responsible of generating the observed amplitudes encounter a
substantial change as the stars evolve

5. the introduction of a set of models that take into account the offset lnβ allowed us to pro-
duce new outcomes that provide better fits for the entire set of scaling relations adopted,
as it appears clear by looking at the comparison of different fits shown in Figures 6.4, 6.6,
6.7, and 6.8, together with the hint provided by our estimates of a weighted rms of
the residuals listed in Tables 6.2, 6.3, and 6.4. In fact, in almost all cases, the offset
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lnβ differs from zero significantly. In addition, we note that our estimates of σwrms are
fairly consistent with the total relative uncertainty adopted in Eq. (6.27) for models M4,
M4,β , M6, and M6,β , which are the only ones that have a separate dependence upon the
mass of the stars (accounted for in the additional free parameter t). Models M1 to M2

and models M5 and M5,β have instead a scatter in the residuals that is from 1.5 to 2
times larger than the total relative uncertainties. This suggests that the average relative
uncertainty on the observed amplitudes alone is considerably smaller than the intrinsic
scatter of the residuals given by Eq. (6.28), for any of the models investigated. Thus,
we suppose that additional contributions to the total uncertainty are missing for models
that do not take into account a separate dependence upon the mass of the stars. It is
however important to note that this outcome only holds for the set of measurements and
uncertainties adopted in the inference.

6.5.2 Results from Bayesian model comparison

From the model comparison applied to the amplitude scaling relations here investigated, we
can say that:

1. models M1, M1,β and M2 are not performing well at predicting the amplitudes along
the entire range of stars considered. This is clear from the fact that their corresponding
Bayes factors are the lowest among the models considered (see Tables 6.8, 6.9, 6.10), a
result that is confirmed by our computation of the BIC from Eq. (6.49), which reaches its
highest value for these models (see Table 6.11 in Section 6.4). The larger scatter of the
residuals arising from these models (up to a factor of 2) compared to the total relative
uncertainties derived from Eqs. (6.37) and (6.40) are supporting our conclusion from the
model selection described in Section 6.4

2. models fromM4 toM6,β , according to Bayesian principles of model selection, are certainly
more favored than the others (Tables 6.8, 6.9, 6.10, and 6.11). In particular, model M4,β ,
which includes a separate dependence upon the mass of the stars (see Section 6.2.4), is
strongly dominant over all the other scaling relations investigated, by at least a factor
of ∼ exp(880) if one takes into account the Bayes factor. Thus, model M4,β is the best
one according to the computation of both the evidences and the BIC for all the samples
used. This suggests that the spread observed in the amplitudes is likely to be caused by
a spread in mass of the stars. This is also confirmed by the consistency between σwrms and
the total relative uncertainties computed from Eq. (6.42).

The models having an evidence weaker than that of M4,β , but still stronger than that
of models from M1 to M2, are the models from M5 to M6,β , which instead include the
effects of mode lifetimes and granulation power (see Section 6.2.5). These results are
again confirmed for all the three samples considered from both the evidences and the
BIC

3. all the models that take the proportionality term β into account, are preferred to their
counterparts without this extra free parameter, with the only exception of models M6 and
M6,β for which the model comparison is inconclusive in the case of the entire sample of
stars (Table 6.8). These results are confirmed from the computation of both the evidences
and the BIC regardless of the evolutionary state of the stars. As a consequence, according
to the set of measurements and uncertainties adopted in this work, we can conclude that
the Sun is not necessarily a good reference star for this Kepler sample, and that only
models having β 6= 0 should be considered. Equivalently, one could consider models

144



6.6 Conclusions

that do not include β as a free parameter, but having a reference amplitude for scaling
given by βAbol,� (for models M2 to M6,β) or βAλ,� (for models M1 and M1,β), with β
given according to the results shown in Tables 6.2, 6.3, and 6.4. Such result could also
be supported by the effect of the stellar activity (occurring mostly for dwarfs), which
is responsible of reducing the amplitudes of solar-like oscillations (see the discussion by
[73, 167]). In fact, as noted by [167], the Sun shows on average a higher activity level
than the other stars of the sample.

6.6 Conclusions

A Bayesian approach to test the set of amplitude scaling relations discussed in this work allowed
us to draw new interesting conclusions on the free parameters that describe all the models.

First, as evident from the results derived in Section 6.4, our analysis strongly recommends
the use of Eq. (6.17) for predicting amplitudes of solar-like oscillations, for all the stars spanning
from MS to RGs. This result, together with the consistency found between our estimates of
the fit quality, σwrms, arising from the corresponding models and the total relative uncertainties
discussed in Section 6.3.4, supports the idea that a mass difference from star to star is among
the main effects that produce the observed spread in the oscillation amplitudes (see also [165,
167, 291]).

Second, one should keep in mind that according to the Bayesian parameter estimation
described in Section 6.3 the results arising from the inference change considerably from MS to
RGs. This suggests that, in general, particular attention has to be paid when using amplitude
scaling relations for samples containing a large range of stars. This behavior is already apparent
from our plot of the asteroseismic HR diagram (Figure 6.2, bottom panel), which shows that,
assuming the logarithmic amplitudes change linearly with the logarithm of the temperatures
— as done by all the models considered — the two samples have on average a quite different
slope, which is reflected mainly in a different value of the exponent r of the two samples. As a
consequence, we strongly recommend further investigations of this aspect for different sets of
measurements and uncertainties and also for samples of stars different than the ones used here.

Moreover, as shown in Tables (6.5), (6.6), and (6.7), the free parameters of the models
are, in most of the cases, highly correlated. This may suggest to adopt different priors (e.g.
non-uniform priors) for some of them in future analyses. The correlation is much more evident
for RGs, possibly due to the larger range of the fundamental stellar properties in the LC sample
considered.

Finally, as it is evident from many of the models investigated, the Sun is not necessarily a
good average star from which to scale amplitudes for this sample of Kepler stars, neither for the
MS-dominated sample nor for the RGs. This outcome could be partially explained by the fact
that the Sun is placed at the edge of our sample of measurements, as visible from Figure 6.2
(see also the discussion in Section 6.3.2), and that its activity level is on average higher than
that of the other stars [73, 167]. Nevertheless, we stress that this result also relies on our choice
of the set of uncertainties adopted for computing the likelihood. In fact, as discussed at the
end of Section 6.5.1, the uncertainties used are underestimated in most of the cases, even when
considering errors on the variables of the models. This aspect may in fact produce a misleading
solution to the inference problem and to the model selection. Since both the inference and the
model comparison presented here rely on the assumption that these uncertainties are themselves
error-free, in future work, it will be worth investigating how uncertainties affect the results by
performing uncertainty-independent analyses that do not necessarily assume the adoption of a
Gaussian likelihood function (see e.g. the Bayesian inference discussed in Chapter 7).
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Figure 6.4: Top panels: Predicted amplitudes (filled light-gray circles for LC targets and filled dark-
gray squares for SC targets) for model M1 plotted against νmax in the three cases considered (all sample
in left panel, SC targets only in middle panel, LC targets only in right panel). The expectation values
of the free parameters reported in Tables 6.2, 6.3, 6.4, have been adopted for plotting the predicted
amplitudes. Observed amplitudes are shown in background for both SC (open orange squares) and LC
(open blue circles) targets, together with 1-σ error bars shown on both quantities. The Sun’s symbol
(�) is added for comparison, where A650,� = 3.98 ppm (λ = 650nm). The residuals arising from
the difference between the logarithms of observed and predicted amplitudes, according to Eqs. (6.36)
and (6.38), are also plotted (same symbols). Bottom panels: Same description of the top panels but for
the model M1,β.

Figure 6.5: Same description as for Figure 6.4 but for the model M2.
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Figure 6.6: Same description as for Figure 6.4 but for the models M4 (top panels) and M4,β (bottom
panels).

Figure 6.7: Same description as for Figure 6.4 but for the models M5 (top panels) and M5,β (bottom
panels).

147



6. AMPLITUDE SCALING RELATIONS

Figure 6.8: Same description as for Figure 6.4 but for the models M6 (top panels) and M6,β (bottom
panels).
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7 Differential Rotation in Sun-like

Active Stars

In the Sun, magnetic activity is thought to be produced by a global-scale dynamo action
arising from the coupling of convection and rotation [251, 283]. Young Sun-like stars are rotating
faster than the Sun and display a much higher level of magnetic activity at all atmospheric
layers, which is likely due to a stronger dynamo action. They also show different manifestations
of activity compared to the Sun, such as bigger and long-living spots in their photospheres,
active longitude belts, absence or a different behavior of activity cycles, highly energetic flares,
etc. These differences are likely related to the dynamo mechanism, which is operating in
rather different conditions in young stars mainly regarding their rotation rate and internal
structure. Understanding the properties of young Sun-like stars and, particularly, their activity
and rotation, is crucial to trace the Sun and its environment back to the first evolutionary stages.

In fact the properties of the magneto-convection in these stars seem to be strongly influenced
by the Ω-effect that produces characteristic “wreaths” on large scales [248]. Although strong
latitudinal variations of the differential rotation can be obtained by means of the combined
role of thermal wind balance and geostrophy, the results of numerical simulations seem to be
strongly dependent on the Reynolds number of the flow. The situation is at variance with the
dynamo action in main sequence solar-type stars, where the role of the tachocline is instead
essential in producing the α effect [99, 46, 49].

It is still unclear whether a strong latitudinal differential rotation is common among fast-
rotating stars. The study by [214] reports values of the absolute differential rotation dΩ in
the range 0.08–0.45 rad d−1 for a sample of rapid rotators similar to and slightly more massive
than the Sun. Despite the spread of values, it seems that dΩ is in any case larger than in the
Sun. The measures of absolute differential rotation in a large sample of F- and early G-type
stars through the Fourier transform technique [264, 263] show no indication of the decrease in
this parameter with the rotation period, rather the highest values of dΩ are encountered for
periods between 2 and 3 days. On the other hand, some recent calculations predict a moderate
differential rotation, comparable to that of the Sun, also for a Sun-like star rotating 20 times
faster (e.g. [196]).

Moreover, dΩ seems also to be a function of the stellar mass for main-sequence stars,
increasing with their effective temperature, as shown, e.g., by [15]. One of the largest val-
ues of differential rotation for a star noticeably cooler than the Sun was found by [115] for
KIC 8429280, a 50Myr-old K2-type star, from the analysis of the light curve collected by the
NASA Kepler spacecraft.

The highly precise photometry of Kepler [50, 193] (Chapter 3) coupled with the long and
virtually uninterrupted coverage makes these data unique for the study of photospheric activity
and differential rotation in late-type stars, as it has been shown by [115] based on the analysis
of spotted stars from Kepler data. However, whether star spots are indeed the best tracers of
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7. DIFFERENTIAL ROTATION IN SUN-LIKE ACTIVE STARS

the surface rotation or not is still a matter of debate (see [194] for a different point of view).
In this last chapter we shall briefly describe the study done by [118] who used a Bayesian

approach to the Kepler light curves of the stars KIC 7985370 and KIC 7765135, which are
introduced in Section 7.1. In fact, the spot modeling analysis of these targets done by means
of Bayesian methods represents part, although a little one, of the research addressed in this
dissertation. The Bayesian inference for the spot modeling applied to the Kepler light curves
is described in Section 7.2 while the results are shown in Section 7.3, with relevance to the
problem of differential rotation. Lastly, a discussion and conclusions about the results are
drawn in Section 7.4.

7.1 Data and Observations

As for KIC 8429280 [115], the two new targets KIC 7985370 (HD 189210, 2MASS J19565974+
4345083, TYC 3149-1571-1) and KIC 7765135 (2MASS J19425057+4324486 = TYC 3148-2163-
1) were selected as active stars from their optical variability and from the cross-correlation of
the ROSAT All-Sky Survey (RASS; [311, 312]) with Tycho and Hipparcos catalogues [254].
With V = 10m.0 and 11m.8, respectively, both stars are relatively bright ones in the Kepler
field of view. Both of them were recently reported as variable stars by [255], who searched for
bright variable stars in the Kepler field of view with ASAS3-North station. The variability of
KIC 7985370 could be due to a rotational modulation according to [305] that rely on the first
two quarters of Kepler data. The Kepler light curves readily show these stars as rotationally
variable with a period of about 2–3 days, which is typical of G-type stars in the Pleiades cluster
(age ∼ 130Myr, [16]). The estimates of their atmospheric parameters reported in the Kepler
Input Catalog (KIC) [60], which are based on Sloan photometry (for a revised temperature
scale cf. [256]), suggested to us that these objects were similar to the Sun.

The analysis of the optical spectra collected by us confirmed that the stars are nearly
identical to the Sun, but much younger and as such deserving a detailed investigation. Applying
the same techniques used by [115], the basic stellar parameters, the chromospheric activity, and
elements abundances were derived for these stars (see [118] for details). The kinematics of these
stars was also discussed by the same authors.

7.2 Bayesian Spot Modeling

All the available public Kepler LC light curve (∆t ∼ 30 min, [174]), spanning from 2009 May
2 to 2009 December 16, was analyzed. It covers altogether 229 days and corresponds to the
observing quarters 0–3 (Q0–Q3), with the largest gap, about 4.5 days, appearing between Q1
and Q2.

To remove systematic trends in the Kepler light curves associated with the spacecraft,
detector, and environment, and to prepare them for the analysis of star spots that we will
describe below, we used the software kepcotrend1. This procedure is based on Cotrending
Basis Vectors (CBV), which are calculated (and ranked) through singular value decomposition
and describe the systematic trends present in the ensemble flux data for each CCD channel.
We used the first two basis vectors for Q0 data, while from three to five CBV were adopted for
the correction of longer data sets such as Q1, Q2, and Q3.

In order to check how the data rectification accomplished with kepcotrend is reflected in
the outcome, the spot modelling has been done twice: with the rectified data (Case A) as well
as with the original data (Case B).

1http://keplergo.arc.nasa.gov/ContributedSoftwareKepcotrend.shtml.
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7.2 Bayesian Spot Modeling

Figure 7.1: Cleaned periodograms of the Kepler Q0+Q1+Q2+Q3 time-series for KIC 7985370 (upper
panel) and KIC 7765135 (lower panel). Image courtesy of Antonio Frasca.

The power spectra of the Kepler time-series, cleaned by the spectral window according
to [266], are displayed in Figure 7.1. The lower panel of Figure 7.1 clearly shows two main
peaks for KIC 7765135, which are close in frequency (0.391 and 0.414 d−1). The corresponding
periods are 2.560 ± 0.015 and 2.407 ± 0.014 days, respectively. The period errors are from
the FWHM of the spectral window. The low-amplitude peaks at frequency of ≈ 0.8 d−1 are
overtones of the two main peaks. As visible from the upper panel of Figure 7.1, the structure of
the peaks for KIC 7985370 is more complex, with the maximum corresponding to 2.856±0.019
days and a second peak, blended with the first one on its low-frequency side, at 2.944 days. A
third small peak corresponding to P = 3.090 days is also visible.

Such a double- or multiple-peaked periodogram hints at differential rotation. As [199]
predicted, a photometric time series, if sufficiently accurate (∆F/F = 10−5− 10−6) as it is the
case of Kepler photometry, may reveal a Sun-like latitudinal differential rotation.

An estimate of the inclination of the rotation axis with respect to the line of sight is very
useful to constrain the spot model. With v sin i, stellar radius R, and rotation period P known,
the inclination of the rotation axis follows from

sin i =
(v sin i) · P

2πR
. (7.1)

In the absence of an accurate parallax value the stellar radius cannot be derived from the
effective temperature and luminosity.

If we adopt the radius for a ZAMS star with the effective temperature of our targets
(Teff = 5800K), R ≈ 1.1R�, we get sin i = 0.967 (i = 75◦ ± 15◦) for both stars. However,
as stated in [118], Section 3.3, the lithium content cannot provide a firm lower limit for the
ages of these stars, which could also be as young as a few 10Myr (post-T Tauri phase). Thus,
allowing for such a young age, a Teff = 5800K is reached by a star of 1.5M� at 10Myr with a
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radius of about 2R� according to the evolutionary tracks by [274]. In this case, an inclination
of about 30◦ is deduced.

7.2.1 Bayesian photometric imaging

The method is basically that adopted by [115, 118]. However, as the light curves are now
significantly longer, the introduction of further free parameters was inevitable. The latitudi-
nal dependence of rotation frequency Ω(β), Eq. (7.2), now contains a sin4 β-term and, more
important, the prescription for spot area evolution is much more detailed. Furthermore, the
likelihood function, Eq. (7.3), is generalized by taking into account an unknown linear trend in
the data. To tackle the problem of strong correlations between some parameters, an essential
new ingredient is the usage of an orthogonalized parameter space, where the steered random
walk of the Markov chains is performed. For the sake of clarity, due to these new features, the
basics of the method are explained in this section, although they can also found in [115]. A
full account of the method will be described in a forthcoming paper [119].

A light curve fitting that represents spots as dark and circular regions has the advantage of
reducing the dimensionality of the problem and to promptly provide us with average parameters
(area, flux contrast, position, etc.) for each photospheric active region. Of course, there are
other techniques, which are based on different assumptions, to reconstruct surface features
photometrically as the inversion of Kepler light curves done by, e.g., [59].

Our aim is to present a low-dimensional spot model, with few spots only, that fits reasonably
well the data regardless to very low-amplitude details that require a high degree of complex-
ity. As widely discussed in Chapter 5 and also with the analysis presented in Chapter 6, in a
Bayesian context this claim could be even quantified by ideally estimating the Bayesian evi-
dence, i.e. the integral over the posterior probability distribution. It would provide a measure
of the probability of a n-spot model and, therefore, allow one to constrain the number n of
spots that are really needed. For numerical reasons we are compelled to resort instead to
the less demanding Bayesian Information Criterion (BIC) by [273], which has been used also
for solving the model comparison discussed in Chapter 6, Section 6.4. As discussed in Chap-
ter 5, Section 5.6.5, the BIC or any other related criterion expresses Occam’s razor principle in
mathematical terms without the need to compute the evidence.

Unfortunately, we have to admit that – due to the unprecedented accuracy of the Kepler
data – we could not reach this goal with only seven or nine spots. There is obviously more
information in the data than our most elaborate model is able to account for.

Dorren’s analytical star-spot model [101], generalized to a quadratic limb-darkening law,
was used. The two coefficients are taken from the tables by [82] for a microturbulence velocity
of ξ = 2 km s−1 and are used for both the unperturbed photosphere and the spots.

Four parameters describe the star as a whole: one is the cosine of the inclination angle
i, while the other three parameters (A,B and C) describe the latitudinal dependence of the
angular velocity. With β being the latitude value, the angular velocity Ω is parameterized by
a series expansion using Legendre polynomials:

Ω(β) = A + 3B
(
5 sin2 β − 1

)
/2 +

+ C
(
315 sin4 β − 210 sin2 β + 15

)
/8 . (7.2)

The equatorial angular velocity is Ωeq = A−3B/2+15C/8 and the equator-to-pole differential
rotation dΩ = 15B/2 + 105C/8. In the case of the equator rotating faster than the poles dΩ
is negative. In what follows the minus sign is suppressed, and only the absolute value |dΩ| is
given. Both stars are definitely rotating like the Sun.
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7.2 Bayesian Spot Modeling

As in the work done by [115], all star spots have the same intensity κ relative to the
unspotted photosphere and are characterized by two position coordinates (latitude and initial
longitude) and by their radius. All these are free parameters in the model. Other spot param-
eters are the rotation period, which defines the spot longitude at any time and is tied to the
latitude via Eq. (7.2). The hemisphere, to which a spot belongs to, is to be found by trial and
error. Further parameters describe the spot area evolution.

As our photometric analysis mainly aims at estimating the level of surface differential
rotation, our focus is on long-lived spots. Longevity of star spots is at the heart of our approach.
In order to obtain, in view of the extraordinary length of the time series, a satisfying fit, more
freedom has been given to spot area evolution with respect to [115]. It is now parameterized
by up to eight parameters.

Spot area is given in units of the star’s cross-section. Area evolution is assumed to go
basically linearly with time. The underlying physical reason is that then, at least in the case
of a decaying spot, the slope of the area–time relation is somehow related to the turbulent
magnetic diffusivity. With the aim of enhancing flexibility and to describe the waxing and
waning of a spot, three consecutive slope values are considered. The time derivative of spot
area is then a mere step function over time. Step height measures the increase/decrease of area
per day. So, there are six free parameters: three slope values, two dates of slope change, and
the logarithm of spot area at some point of the time series. We have done even a little bit
more. In order to prevent sharp bends in spot area evolution, some smoothing is introduced.
Each date where the slope changes is replaced by a time interval within which the slope is
linearly interpolated between the two adjacent values. This makes the second time derivative
of spot area a mere step function of time, described by six parameters. To get the integrated
area itself as function of time two constants of integration enter, thus bringing the number of
free parameters to describe a spot’s area evolution to a total of eight.

In addition to the free parameters of the model there are derived ones, the marginal dis-
tributions of which are of interest. An example is the rotational period. It follows from the
longitudes of the spot centre at the beginning of the time series and at its end. All parame-
ters are estimated in a Bayesian manner, i.e. their mean values as well as the corresponding
uncertainties follow straightforwardly from the data alone (see Chapter 5).

To maintain a flat prior distribution in parameter space, all dimensional parameters like
periods or spot radii must actually be described by their logarithms (this has been done similarly
in Chapter 6). Only then the posterior probability distribution for a period will be consistent
with that of a frequency and likewise the posterior for a radius with that of an area, i. e. it
does not matter whether one prefers periods to frequencies or radii to areas.

The likelihood function, Eq. (7.3) assumes that the measurement errors have a Gaussian
distribution in the magnitude domain. This is justified as long as the signal-to-noise ratio does
not vary with changing magnitude, as it is for our data that span a full variation range of
less than 0.1 magnitudes. It has the invaluable advantage that the likelihood function can be
analytically integrated over measurement error σ, offset c0, and linear trend d0. To perform
the integration over σ one has to use Jeffreys’ prior ∝ σ−1 [184]. The resulting mean likelihood
depends on spot-modelling parameters p1 . . . pM only. It takes into account all possible error
values, offsets and linear trends. By multiplying it with the prior, assumed constant in param-
eter space, one gets the posterior density distribution. All interesting quantities, parameter
averages and confidence intervals, are then obtained by marginalization.

With the N magnitude values di measured at times ti, their standard deviations σi, the
model magnitudes f0(ti, p1 . . . pM ), offset c0, and trend d0, the likelihood function is given by

L (σ, c0, d0, p1 . . . pM ; di) =
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7. DIFFERENTIAL ROTATION IN SUN-LIKE ACTIVE STARS

Figure 7.2: Kepler light curve with best fit (solid red line, second Case-A solution of Table 7.1) over-
plotted. The residuals, shown at the top, are ±2.14mmag. As for the case of KIC 7765135, the residuals
are not homogeneous from one part of the light curve to another. Image courtesy of Antonio Frasca.

N∏

i=1

1√
2πσi

exp

[
−(di − f0 (ti, p1...M )− c0 − d0 · (ti − t0))2

2σ2
i

]
. (7.3)

We set σi = si · σ, with relative errors si being normalized according to

N∑

i=1

1

s2
i

= N . (7.4)

Parameter estimation by sampling the parameter space has been done by the Markov Chain
Monte Carlo (MCMC) method [259] (see also Chapter 5).

Often parameter values are highly correlated. As MCMC performs best in an orthogonalized
parameter space, all parameters have been converted by a principal component analysis using
Singular Value Decomposition [259] (see Appendix D). Each parameter in this abstract space
is linearly dependent on all of the original parameters. The reconstruction of the original
parameter values can be done exploiting a subspace of that orthogonalized parameter space.
The dimension of that subspace, the number of degrees of freedom, proves lower by roughly
one third or even more than the number of original parameters.

7.3 Results on Differential Rotation

In this section we present the results derived by [118] by means of the Bayesian spot modeling
introduced above. The description is divided into two parts, each one concerning one of the
stars investigated.

KIC 7985370

We have identified eleven gaps longer than an hour and two additional small jumps in the light
curve (Figure 7.2). The data set was accordingly divided into 14 parts. Each part has been
assigned its individual error level, off-set and, in Case B (i.e. non-rectified data), linear trend.
Hence, the likelihood, Eq. (6.27), is the product of 14 independent contributions.

KIC 7985370’s inclination value i appears ill-defined by the spot model applied to the
Kepler photometry. Indeed, with only six spots the MCMC results in very dark spots (κ ≈ 0)

154



7.3 Results on Differential Rotation

Figure 7.3: Determination of the stellar inclination from Kepler photometry. Mean and 68-per-cent
confidence region are marked by vertical lines (Case A only). Dashed: The corresponding marginal
distribution for the original data with linear trends removed (Case B). Image courtesy of Antonio
Frasca.

at very low inclination (i ≈ 10◦). But even for these unrealistic solutions the equator-to-pole
differential rotations was 0.18 rad d−1. Only with seven spots and allowing for enough spot
evolution we arrived at acceptable inclination values (Figure 7.3) and spot intensities. If the
inclination is fixed to the spectroscopically derived value of i = 75◦ the residuals are rather high,
±2.46mmag, exceeding the residuals of our best solution (±2.14mmag) by far. Nevertheless,
details of the solution with fixed inclination are also included in Table 7.1, where the results
are presented.

Improving the 7-spot solution by adding an eight spot leads formally to a better fit. As the
new spot proves to be ephemeral, lasting only six rotations, it neither constrains the differential
rotation nor adds any significant insight (one can always get a better result by adding short-
lived features).

The marginal distributions of the seven spot frequencies (Case A only), combined into one
plot, are shown in Figure 7.4.

From the three parameters describing the star’s surface rotation, A,B and C, the equatorial
rotational period and the equator-to-pole differential rotation (Figure 7.5) follow. The latter
amounts to 0.1774+0.0004

−0.0005 rad d
−1 (Case A) and 0.1729± 0.0002 rad d−1 (Case B), respectively.

The difference is significant, considering the formal errors, albeit very small. In the case
of fixed inclination (i = 75◦) the differential rotation would be slightly enhanced, 0.1839 ±
0.0002 rad d−1.

The spot area evolution is depicted in Figure 7.6. The sudden rise of spot #7 seems to be
an artifact. It falls into the gap between the end of Q2 data and the beginning of Q3 data. On
the other hand, the sudden disappearance of spot #3 is not related to any switching from one
part of the light curve to the next one. The fall in area of spot #1 at the end of the time series
is somehow mirrored in an increase in the size of spot #5. Maybe this indicates a flaw due to
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7. DIFFERENTIAL ROTATION IN SUN-LIKE ACTIVE STARS

Figure 7.4: All seven marginal PDFs (Case A) of the spot frequencies. The three frequencies (0.324,
0.340, and 0.350 d−1) seen in the low-resolution Fourier spectrum (Figure 7.1) are confirmed by the
results of the spot model performed by [118]. Image courtesy of Antonio Frasca.

Figure 7.5: Equator-to-pole differential rotation of the star. Mean and 68-per-cent confidence region
are marked by vertical lines (Case A only). Dashed: The corresponding marginal distribution for the
original data with linear trends removed (Case B). Image courtesy of Antonio Frasca.
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7.3 Results on Differential Rotation

Figure 7.6: Spot area evolution (Case A). Area is in units of the star’s cross-section. Vertical lines
mark the boundaries of the Q0 to Q3 quarters of data. A number in parenthesis indicates the spot
number. Image courtesy of Antonio Frasca.

too much freedom in describing spot area evolution. Expectation values with 1–σ confidence
limits for various parameters are also quoted in Table 7.1.

One should be aware that there is more than one solution for each case. The second Case-A
solution presented in Table 7.1 is the one that has the lowest residuals found so far. There is
an other well-relaxed 7-spot solution with slightly larger residuals nearby in parameter space.
In that solution the fastest spot (#2), coming into existence near the end of the time series at
JD∼2455135, is located at a more southern latitude of −21◦, resulting in a slightly increased
differential rotation. All other spots are virtually unaffected. Further details of this second
solution are given in Table 7.2.

KIC 7765135

We have identified eleven gaps longer than an hour and three additional small jumps in the
light curve (Figure 7.7). The data set was accordingly divided into 15 parts. Each part has
been assigned its individual error level, off-set and, in Case B (i. e. non-rectified data), linear
trend. Hence, the likelihood function (Eq. 7.3) is the product of 15 independent contributions.

As the inclination is photometrically ill-defined, we fixed it to the spectroscopically derived
value of i = 75◦.

Despite two spots more, the residuals, ±2.35mmag, exceed those of the seven-spot model
of KIC 7985370 (±2.14mmag). This is not due to the fainter magnitude of KIC 7765135
compared to KIC 7985370, because the photometric uncertainties are typically 0.047mmag for
the former and 0.022mmag for the latter. The reason may be that three of the nine spots
are definitely short-lived with a life span as low as two months (cf. Figure 7.10), which is less
than twice the lapping time of 38 days between the fastest and the slowest spot. We have to
admit that dealing with nine spots goes already to the limit of the MCMC technique since the
method’s relaxation time becomes prohibitively long. The marginal distributions of the nine
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7. DIFFERENTIAL ROTATION IN SUN-LIKE ACTIVE STARS

Table 7.1: Three 7-spot solutions for KIC 7985370. Listed are expectation values and 1-σ confidence
limits. Latitudes β are derived from the assumed law of differential rotation, Eq. (7.2). Periods P
are given in days, the spot intensity κ is in units of the intensity of the unspotted surface. The ratio
C/B measures the deviation from a pure sin2-law of differential rotation. The differential rotation dΩ
(rad d−1) is the equator-to-pole value of the shear. Residuals are in mmag. Case A refers to rectified
data, Case B to non-rectified one. In order to get the Case-B solution the Case-A solution has been taken
as a starting point for the MCMC parameter estimation. In the first Case-A solution the inclination is
fixed to i = 75◦. The second spot is near the equator, therefore, the hemisphere it belongs to is doubtful.

parameter Case A Case A Case B

inclination i 75◦.0 fixed 41◦.4 +0.5
−0.5 32◦.6 +0.7

−0.9

1st latitude β1 34◦.0 +0.1
−0.1 29◦.4 +0.4

−0.4 22◦.6 +0.5
−0.6

2nd latitude β2 −10◦.0 +0.6
−0.9 −6◦.9 +0.9

−0.9 3◦.3 +0.1
−0.1

3rd latitude β3 32◦.2 +0.2
−0.2 29◦.9 +0.3

−0.3 27◦.7 +0.4
−0.4

4th latitude β4 86◦.8 +0.1
−0.1 87◦.5 +0.1

−0.1 87◦.8 +0.1
−0.1

5th latitude β5 53◦.8 +0.1
−0.1 53◦.6 +0.1

−0.1 51◦.1 +0.2
−0.2

6th latitude β6 35◦.8 +0.2
−0.2 35◦.8 +0.3

−0.2 33◦.0 +0.3
−0.3

7th latitude β7 29◦.6 +0.3
−0.2 19◦.9 +0.9

−0.9 10◦.0 +0.5
−0.6

1st period P1 2.8581 +0.0001
−0.0001 2.8563 +0.0001

−0.0001 2.8572 +0.0001
−0.0001

2nd period P2 2.8350 +0.0003
−0.0003 2.8428 +0.0007

−0.0006 2.8475 +0.0002
−0.0002

3rd period P3 2.8541 +0.0004
−0.0004 2.8572 +0.0004

−0.0005 2.8644 +0.0007
−0.0005

4th period P4 3.0895 +0.0001
−0.0001 3.0898 +0.0001

−0.0001 3.0888 +0.0001
−0.0001

5th period P5 2.9382 +0.0002
−0.0002 2.9421 +0.0002

−0.0002 2.9417 +0.0003
−0.0002

6th period P6 2.8629 +0.0003
−0.0004 2.8700 +0.0004

−0.0003 2.8754 +0.0005
−0.0004

7th period P7 2.8490 +0.0003
−0.0002 2.8460 +0.0002

−0.0002 2.8487 +0.0002
−0.0002

spot intensity κ 0.437 +0.005
−0.004 0.396 +0.006

−0.006 0.406 +0.012
−0.012

equ. period Peq 2.8347 +0.0003
−0.0003 2.8427 +0.0007

−0.0006 2.8474 +0.0003
−0.0002

deviation C/B 0.28 0.28 0.21
diff. rotation dΩ 0.1839 +0.0002

−0.0002 0.1774 +0.0004
−0.0005 0.1729 +0.0002

−0.0002

residuals ±2.46 ±2.14 ±2.12

Table 7.2: A second pair of 7-spot solutions for KIC 7985370. The meaning of the entries is the same
as in Table 7.1, i.e. periods are in days, the differential rotation in rad d−1, and the residuals in mmag.

parameter Case A Case B

equ. period Peq 2.8202 ±0.0002 2.8209 ±0.0002
diff. rotation dΩ 0.1943 ±0.0002 0.1933 ±0.0002
residuals ±2.20 ±2.21

spot frequencies (Case A only), combined into one plot, are shown in Figure 7.8.
From the three parameters describing the star’s surface rotation, A,B and C, the equatorial

rotational period and the equator-to-pole differential rotation (Figure 7.9) follows. The latter
amounts to 0.1760± 0.0003 rad d−1 (Case A) and 0.1774+0.0003

−0.0004 rad d−1 (Case B), respectively.
As for KIC 7985370 the difference is small, but nevertheless significant.

The level of differential rotation does not depend on the number of spots considered. Ne-
glecting the three short-lived spots, i.e. considering a six-spot model, would result in an equator-
to-pole shear of 0.1777± 0.0006 rad d−1.

Inclination does not significantly affect dΩ. Indeed, decreasing the inclination from the
adopted value of i = 75◦ to 45◦ would result in a marginally larger differential rotation, three
to four per cent. This is quite understandable. Inclination affects latitudes, but hardly periods.

A cursory glance cast at the beating pattern (Figure 7.7) reveals a lapping time Pbeat ∼ 40
days, which is nearly exactly the lapping time of 40.3 days from the two peaks of the cleaned
periodogram (Figure 7.1). From these 40.3 days one already gets an estimate of the minimum
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7.3 Results on Differential Rotation

Figure 7.7: Kepler light curve with best fit (solid red line, Case-A solution of Table 7.3) over-plotted.
The residuals, shown at the top, are ±2.35mmag. Obviously, the residuals are not homogeneous from
one part of the light curve to another, hence, the value ±2.35mmag has to be considered an overall
average. Image courtesy of Antonio Frasca.

Figure 7.8: Marginal PDFs of the frequency for all the nine spots. The frequency values group around
the two principal frequencies (0.391 and 0.414 d−1) seen already in the Fourier spectrum (Figure 7.1),
which is the reason for the obvious “beating” phenomenon in Figure 7.7 with a period of 40 days. The
shortest and the longest frequencies are a superposition of two frequencies. Image courtesy of Antonio
Frasca.
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7. DIFFERENTIAL ROTATION IN SUN-LIKE ACTIVE STARS

Figure 7.9: Same as Figure 7.5, for KIC 7765135. Image courtesy of Antonio Frasca.

value for the differential rotation as 2π/Pbeat ∼ 0.156 rad d−1, which is not far from that derived
by the model.

The spot area evolution (Case A) is depicted in Figure 7.10. The overwhelmingly large
southern spot – at the beginning it fills to a large extent the southern hemisphere – may be an
artifact. Because of its southern location its contribution to the light curve is rather modest.
Perhaps it is actually a feature of the northern hemisphere, a non-circular extension of spot
#2. To prevent spot overlapping, spot #8 had to be moved to the southern hemisphere. The
reader should be aware that even in the case of a large spot the whole spot region has been
assigned the angular velocity of its centre. Differential rotation is, to be exact, not compatible
with a fixed circular shape. This is a shortcoming of our simple model.

In the case of KIC 7765135 it cannot be excluded that spot area evolution is partly driven
by the need to avoid overlapping of spots. Expectation values with 1–σ confidence limits for
various parameters are compiled in Table 7.3.

7.4 Discussion & Conclusions

Despite the fact that both stars are very active ones and exhibit filled-in absorption of several
chromospheric activity indicators, our photometric analysis is in terms of dark surface features
only. Allowing for bright ones too, would make the MCMC approach usually unstable. Anyway,
photometry alone seems to be unable to discriminate even between dark and bright spots [210].

As a comparison of the two cases A and B reveals, the results of our spot modelling are
hardly influenced by the rectification procedure. The smaller residuals for non-rectified data
(Case B) are very likely due to the fact that the Case-B likelihood function, Eq. (7.3), also
takes into account a linear trend in the data, individually for each part of the light curve. This
allows for more freedom in fitting the data and results in a slightly better fit.

The reader should be aware that the estimated parameter values and their often surprisingly
small errors are those of the model constrained by the data. Error bars indicate the “elbow
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7.4 Discussion & Conclusions

Figure 7.10: Same as Figure 7.6, for KIC 7765135. Three of the nine spots (# 4, #7, and #9) are
short-lived ones. Note the change in scale in the upper part! Image courtesy of Antonio Frasca.

Table 7.3: Two 9-spot solutions for KIC 7765135 with inclination being fixed to i = 75◦. Listed
are expectation values and 1-σ confidence limits. The meaning of the superscripts is the same as in
Table 7.1.

parameter Case A Case B

inclination i 75◦.0 fixed 75◦.0 fixed
1st latitude β1 20◦.4 +0.1

−0.1 20◦.0 +0.1
−0.1

2nd latitude β2 76◦.3 +0.2
−0.2 75◦.1 +0.2

−0.2

3rd latitude β3 1◦.9 +0.2
−0.1 0◦.8 +0.2

−0.2

4th latitude β4 21◦.1 +0.3
−0.3 20◦.5 +0.3

−0.3

5th latitude β5 0◦.9 +0.3
−0.4 0◦.7 +0.3

−0.2

6th latitude β6 12◦.1 +0.1
−0.1 11◦.7 +0.1

−0.1

7th latitude β7 16◦.3 +0.3
−0.3 17◦.2 +0.3

−0.3

8th latitude β8 −75◦.9 +0.2
−0.2 −74◦.4 +0.2

−0.2

9th latitude β9 60◦.2 +0.4
−0.4 59◦.4 +0.4

−0.4

1st period P1 2.4223 +0.0001
−0.0001 2.4222 +0.0001

−0.0001

2nd period P2 2.5651 +0.0001
−0.0001 2.5653 +0.0001

−0.0001

3rd period P3 2.4020 +0.0001
−0.0001 2.4022 +0.0001

−0.0001

4th period P4 2.4237 +0.0004
−0.0004 2.4231 +0.0005

−0.0005

5th period P5 2.4019 +0.0001
−0.0001 2.4022 +0.0001

−0.0001

6th period P6 2.4092 +0.0001
−0.0001 2.4092 +0.0001

−0.0001

7th period P7 2.4151 +0.0004
−0.0005 2.4172 +0.0005

−0.0005

8th period P8 2.5645 +0.0001
−0.0001 2.5641 +0.0001

−0.0001

9th period P9 2.5313 +0.0010
−0.0010 2.5311 +0.0009

−0.0009

spot intensity κ 0.671 +0.003
−0.003 0.700 +0.003

−0.003

equ. period Peq 2.4018 +0.0001
−0.0001 2.4022 +0.0001

−0.0001

deviation C/B −0.008 −0.008
diff. rotation dΩ 0.1760 +0.0003

−0.0003 0.1774 +0.0003
−0.0004

residuals ±2.35 ±2.29
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room” of the model, nothing more.

7.4.1 Frequencies

It is remarkable that the frequencies that stand out in the power spectrum of the light curves
(Figure 7.1) represent the distribution of spot frequencies (Figures 7.4 and 7.8) astonishingly
well. The lapping time, as a measure of the lower limit of surface differential rotation, follows
already from the periodogram analysis! However, in order to get an estimate of the full equator-
to-pole span of the latitudinal shear, including its sign, one needs latitudinal information.

7.4.2 Inclination

Combining the inclination value from photometry, i ≈ 40◦, with the spectroscopically measured
projected rotational velocity v sin i (see [118]) allows us to determine in the case of KIC 7985370
the star’s radius. Taking the shortest rotational period (Peq), one arrives at R = 1.42–1.44R�.
This (minimal) radius is larger than the ZAMS value of R ≈ 1.1R�, but smaller than the
R ≈ 2R� for a star of 1.5M� at 10Myr. Hence, the photometrically derived radius is within
the expected range. As stated in Section 7.3, in the case of KIC 7765135 the photometric
inclination is badly defined. Therefore, the inclination has been fixed to i = 75◦, assuming the
radius to have its ZAMS value.

7.4.3 Spot contrast and spot longevity

Although both stars share the same spectral type and age, there are differences concerning the
spots. The spots of KIC 7985370 seem to be darker and longer living than those of KIC 7765135.

We would like to remind that a “spot” may be in fact a group of smaller spots that all
together form an active region, which could also include bright features.

For KIC 7765135, the spot contrast, κ ≈ 0.7, looks rather normal. It is similar to the
previously studied case of KIC 8429280 [115]. The corresponding temperature contrast, the
ratio between spot and photospheric temperature Tsp/Tph, is 0.9, assuming that the “white
light” Kepler flux matches the bolometric conditions. The much darker spots, κ ≈ 0.4, in the
case of KIC 7985370 defy a simple explanation. There is no need for exceptionally small (and
therefore dark) spots to prevent spot overlap.

Apart from a few late F-type stars with low or moderate activity observed by CoRoT [239]
where spots seem to be short-lived, there is strong evidence that spots in very active stars like
our targets have rather long lives compared to the star rotation. Active longitudes lasting for
months or years have been observed in young stars (e.g. [84, 148, 14, 168, 201]) and in the
evolved components of close binary systems, like II Peg (e.g. [267, 207]). This does not exclude
that individual unresolved spots, which are composing the active region, have shorter evolution
times, but the photospheric active region seen as an entity endures for a very long time in such
cases.

Unlike KIC 7985370, in the case of KIC 7765135 mid-latitude spots (30–50◦) are missing.
This is reminiscent of the spot distribution of two fast-rotating early G dwarfs, He 520 and He
699, of the α Persei cluster studied by [14]. Despite the fact that there is a clear distinction
between near-equator and near-pole spots, with regard to spot lifetimes, no correlation seems
to exist between lifetime and latitude, which is contrary to the case of the rapidly-rotating
young AB Dor [84], where only low- and intermediate-latitude spots are long-lived.
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7.4.4 Differential rotation

Both stars exhibit low-latitude spots as well as high-latitude ones at the time of observation
making them suitable for studying their latitudinal shear. The most robust and important
result of the present work is the high degree of surface differential rotation found for both
stars: dΩ = 0.18 rad d−1.This exceeds threefold the solar value.

This estimate is rather robust, because any spot model with a few long-lasting spots able
to reproduce the beating of the light curve must provide a value of equator-to-pole differential
rotation that exceeds the lower limit of 2π/Pbeat, irrespective of the number of spots used.
Inclination has a marginal effect since the periods found in the light curve do not depend on it.

We remark that the high value dΩ relies on the assumption of spot longevity. It is always
possible to get an excellent fit with many short-lived spots even for rigid rotation.

Very different values of differential rotation have been found for HD 171488 (V889 Her),
a young (∼50 Myr) Sun. For this star, which is rotating faster (P = 1.33 days) than our
targets, a very high solar-type differential rotation dΩ ≈ 0.4–0.5 rad d−1, with the equator
lapping the poles every 12–16 days, was found by both [213] and [171]. Much weaker values
(dΩ ≈ 0.04 rad d−1) were derived instead for the same star by [169] and [195]. In the study by
[168] the authors even claim their data being consistent with no differential rotation.

The analysis done by [214] reports values of dΩ in the range 0.08–0.45 rad d−1 for a sample of
stars similar to and slightly more massive than the Sun. Among these stars, HD 141943, a 1.3-
M� star that is still in the PMS phase (age ∼ 17Myr), displays values of dΩ ranging from about
0.23 to 0.44 rad d−1 in different epochs. A solar-type differential rotation, dΩ ≈ 0.2 rad d−1,
was also found by [313] for HD 106506, a G1V-type star (Teff = 5900K) that is very similar
to our targets, but it is rotating faster (Peq = 1.39 days).

Moreover, the Fourier transform technique applied to high-resolution spectra of a large
sample of F- and early G-type stars indicates that differential rotation is rather frequently
found [264, 263]. In their data, there is no clear dependency on the rotation period, but the
strongest differential rotation, up to ∼ 1.0 rad d−1, occurs for periods between 2 and 3 days
and values as high as ∼ 0.7 rad d−1 are encountered down to P ∼ 0.5 days.

From ground-based photometry, which is basically devoted to cooler stars, a different be-
havior, i.e. a differential rotation decreasing with the rotation period, seems to emerge [224].
However, the precision of the ground-based light curves does not allow to draw firm conclusions
and accurate photometry from space, as well as Doppler imaging, is needed for settling this
point.

For mid-G to M dwarfs, weaker values of the latitudinal shears are generally found. In
particular, [15] analyzed with the Doppler imaging technique a small sample of active stars in
the spectral range G2–M2 finding a trend towards decreasing surface differential rotation with
decreasing temperature. This suggests that the stellar mass must also play a significant role in
this respect. The largest values for stars as cool as about 5000K are dΩ = 0.27 rad d−1 found
by us in Paper I for KIC 8429280 (K2V, P = 1.16 days) and dΩ = 0.20 rad d−1 found by [100]
for LQHya (K2V, P = 1.60 days).

The slowly rotating (Peq = 11.2 d) and mildly active K2V star εEri exhibits only little
differential surface rotation (0.017 ≤ dΩ ≤ 0.056 rad d−1) as a Bayesian reanalysis of the
MOST light curve [93, 94] revealed [116]. Thus, there is an indication that a high differential
rotation goes along with a high rotation rate.

The high differential rotation that we found for KIC 7985370 and KIC 7765135 disagrees
with the hydrodynamical model of [196], which instead predicts a rather low value of dΩ ≈
0.08 rad d−1 for an (evolved) solar-mass star rotating with a period as short as 1.3 days.

Surface differential rotation may even vary along the activity cycle. Indeed, certain mean-
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field dynamo models for rapidly rotating cool stars with deep convection zones predict torsional
oscillations with variations of several percent in differential rotation [92]. Of course, this can-
not explain such extreme cases as LQHya where at times the surface rotation is solid body.
According to [200], to maintain the strong shear (∼ 0.2 rad d−1) observed for LQHya in the
year 2000 would imply a dissipated power exceeding the star’s luminosity.

The differential rotation of rapidly-rotating solar-like stars has been recently investigated
on theoretical grounds by [157]. They found that differential rotation approaches the Taylor-
Proudman state, i.e. the iso-rotation surfaces tend to become cylinders parallel to the rotation
axis, when stellar rotation is faster than the solar one. In this case, the differential rotation
is concentrated at relatively low latitudes with large stellar angular velocity. They show that
the latitudinal shear (between the equator and latitude β = 45◦) increases with the angular
velocity, in line with our results and the recent literature.

A detailed study of the two Sun-like stars, KIC 7985370 and KIC 7765135, by means of
high-resolution spectroscopy and high-precision Kepler photometry has been described by [118]
and its description goes beyond the scope of this thesis. However, it is important to mention
that the high-resolution spectra used by [118] allowed to derive, for the first time, their spectral
type, astrophysical parameters (Teff , log g, [Fe/H]), rotational and heliocentric radial velocities,
and lithium abundance. All this information, combined with the analysis of the SED (spectral
energy distribution) and proper motions, allowed to infer their distance and kinematics, and
to estimate the age of both stars, found to be in the range 100–200Myr, although we cannot
exclude that they could be as young as 50Myr. Thus, these two sources should be already in
the post-T Tauri phase.

As expected from their young age, both stars were found to be chromospherically active
displaying filled-in Hα, Hβ, and Ca II IRT lines, as well as He I D3 absorption [118]. The surface
chromospheric fluxes and the X-ray luminosity (for KIC 7985370), within the ranges found for
stars with similar Teff and v sin i in the Pleiades cluster, are just below the saturation level [280].
The flux ratio of two Ca II IRT lines and the Balmer decrement (for KIC 7765135 only) suggest
that the chromospheric emission is mainly due to optically-thick surface regions analogous to
solar plages.

In this chapter, we have described a robust spot model (performed by [118] for the study of
the two young Suns presented here) based on a Bayesian approach and a MCMC method, to the
Kepler light curves that span nearly 229 days and have an unprecedent precision (≈ 10−5 mag).
While seven long-lived spots were needed to perform a reasonable fit (at a 2-mmag level) of the
light curve of KIC 7985370, up to nine spots were needed in the case of KIC 7765135 due to a
shorter lifetime of its spots. Because of the exceptional precision of the Kepler photometry it is
impossible to reach the Bayesian noise floor defined by, e.g., the BIC [273] (see also Chapter 5)
without increasing significantly the degrees of freedom and, consequently, the non-uniqueness
of the solution. Provided spots are indeed long-lived, the equator-to-pole value of the shear
amounts for both stars to 0.18 rad d−1. This is in contrast with the theoretical models of [196]
that predict a moderate solar-type differential rotation even for fast-rotating main-sequence
stars, unless the convection zone is shallower than predicted by the stellar models. The results
presented are instead in line with the scenario proposed by other modelers of a differential
rotation that increases with the angular velocity [157] and that can be also subject to changes
along the activity cycle [92, 200].
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A The AARG Code

In this Appendix we provide a detailed description of the AARG (Asymptotic Analysis
of Red Giant stars) code, an IDL based code developed with the purpose of deriving the
mean asteroseismic quantities (here denoted as asymptotic parameters) for both p modes and
g modes — see Eqs. (1.10), and (1.12) — in large samples of red giant stars that show solar-like
oscillations (see Chapter 4 for a brief introduction).

A.1 Getting started

At the beginning, AARG requires a list of stars to be analyzed, together with corresponding
values of both νmax and ∆ν, and with datasets containing their PSDs (power density spectra),
which for the analysis presented in Chapter 4 were derived by means of the SYD pipeline [164].
The input values of νmax and ∆ν do not need to be neither very accurate nor precise, as AARG
is supposed to derive the mean asymptotic parameters on its own. The entry display of the
code visualizes three different plots for each star, namely the échelle PSD, the collapsed échelle
diagram (CED from now on), and the PSD. This helps the user to check for the correctness of
the input data (both νmax, ∆ν and the PSD) and to decide whether to continue the analysis or
discard the star for checking it at a later time. Moreover, the stars are displayed in a decreasing
order of ∆ν, which helps the overall analysis because the asymptotic parameters are expected
to change smoothly as the stars evolve.

For the sake of clarity we shall consider the example of a single target, the RGB star
KIC 2436818, having νmax = 96.1 ± 2.8µHz and ∆ν = 8.77 ± 0.09µHz, and belonging to the
open cluster NGC 6791 (see Appendix B), which represents a good reference star for explaining
all the steps of the analysis done by AARG. Figure A.1 shows the échelle PSD (top panel) and
the corresponding CED (bottom panel) as derived by means of the input values of νmax and
∆ν. In order to center the region of the power excess — the ordinate direction in Figure A.1(a)
— AARG considers an interval in frequency centered at νmax and having width 4

5νmax. This
choice resulted to provide a range of frequencies large enough to contain the entire power excess,
but sufficiently small to let the regular structures of the oscillation ridges to appear prominent
when collapsing the PSD into the CED. The échelle PSD is obtained in a similar manner to
that derived by [63, 216].

A.1.1 The CED

The computation of the CED is done by a separate procedure within the AARG code, termed
pfold, which does the following steps:

1. get as input the values for ∆ν and the left and right margin values of the frequency range
to be collapsed, i.e. νleft = νmax − 2

5νmax and νright = νmax + 2
5νmax
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Figure A.1: Panel (a): doubled échelle PSD of the RGB star KIC 2436818 used by AARG. The PSD
is shown in a color-coded background. The dashed line overlaid shows the ∆ν value of the star, which
divides the échelle PSD into two identical parts. Panel (b): corresponding collapsed échelle diagram in
normalized units, smoothed by means of a boxcar having width 4∆ν.

2. find the correct starting point to collapse the PSD. This is done by computing the shift
cref = νleft mod ∆ν so that νinitial mod ∆ν = 0, where νinitial = νleft − cref is the initial
frequency to be considered as the starting point. This allows us to align correctly the
structures in the CED (see points below).

3. find the largest integer number of slices having length ∆ν contained in the range [νleft, νright].
Thus we have m = b(νright − νleft)/∆νc, where b·c denotes the floor operator.

4. the i-th slice having length ∆ν will be given as

si = [νinitial + i∆ν, νinitial + (i+ 1)∆ν] for i = 0, 1, . . . ,m− 1 (A.1)

5. the CED (or equivalently the collapsed échelle PSD or simply the collapsed PSD) in
normalized units is then build as

CED = max
[0,∆ν]

−1

{
m−1∑

i=0

PSDi

}
×
m−1∑

i=0

PSDi (A.2)

where PSDi = PSD(si) is the power density spectrum at each slice si. The resulting CED
has to be plotted against a modulo abscissa, ν mod ∆ν, in the range [0,∆ν] which is the
interval within which all the structures of the CED can be found.
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A.2 Fine-tuning the mean large separation ∆ν

The correlation between the mean large separation ∆ν1 and the shift in position of the centroid
of a given mode peak in a collapsed échelle diagram (or alternatively in a simple échelle diagram)
is one of the known features of such an asteroseismic tool of analysis. In order to find the best
∆ν value for a given star, a first guest for ∆ν is our starting point2. The corresponding CED
to be considered is built by adopting the first guess for ∆ν and has a double width in abscissa
in order to ensure us to observe the ` = 0 peak in its entire shape3.

In this section we intend to quantify the aforementioned correlation by assuming ∆ν to be
fine-tuned around its initial value — few % of ∆ν, see also [292]. We start by considering the
asympotitc relation for the ` = 0 modes [299]:

νn,0 = ∆ν(n+ ε). (A.3)

If we take into account the frequency of maximum power, νmax, we have

νmax = ∆ν(nmax + ε0) , (A.4)

where
nmax =

νmax

∆ν
− ε0 (A.5)

is the radial order of the mode with frequency ν = νmax and ε0 is the constant that defines it’s
position in the échelle diagram. We note that ε0 has to be considered as our first measure of
the average ε value derived by the position of the ` = 0 peak in the CED4, obtained with our
first guess of ∆ν. By perturbing Eq. (A.3), we obtain

δν ' δ(n∆ν) + δ(∆ν ε)

= n δ(∆ν) + δ(∆ν ε)
(A.6)

where we put n out of the variation since it is a constant for a fixed mode of oscillation. If
we now turn our attention to the ` = 0 mode that corresponds to the maximum power in the
PSD, by exploiting Eq. (A.5) we obtain

δ(νmax) ' nmax δ(∆ν) + δ(∆ν ε)

= νmax
δ(∆ν)

∆ν
− ε0 δ(∆ν) + δS = 0 ,

(A.7)

where δ(νmax) = 0 because νmax is an unique and observed value that characterizes each star and
it does not change within the time spanned by an observation. We also defined δS ≡ δ(ε∆ν)

1We refer to the term mean large separation, or mean large frequency separation because we are dealing with
a global measurement of ∆ν, hence not a measure of the large separation as a function of frequency, which
would arise from a detailed peak bagging of each star. Such an analysis goes beyond the scope of the ensemble
analysis presented in Chapter 4.

2In general, ∆ν can be easily estimated by means of either a Comb-Response function — e.g. see Chapter 2
or [48, 86] — or an Auto-Correlation function — e.g. see [164] — applied to the Power Spectrum of the star.

3For instance, if we consider a normalized modulo in abscissa, we have the range (ν/∆ν mod 1) ∈ [0, 2], or
alternatively if we consider a standard modulo (not normalized) we have (ν mod ∆ν) ∈ [0, 2∆ν]. In fact, it may
happens that the ` = 0 peak in the CED falls in a position close to the border of the diagram, which makes
the fine-tuning of its position not possible. By adopting a doubled range we ensure that the peak is repeated
without any cuts at least once.

4We postpone the discussion about the measurement of ε to Section A.3. For this section we assume that ε0
is already given.
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as the small shift of the centroid of the ` = 0 peak in the CED caused by a change in ∆ν of
δ(∆ν).

Hence, considering the infinitesimal quantities dS and d(∆ν), and integrating between an
initial and a final ∆ν value, (∆ν(i) and ∆ν(f), respectively), the total shift ∆S occurring for a
change in ∆ν, which we define as ∆(∆ν) ≡ ∆ν(f) −∆ν(i), is given by

∆Sif ' −νmax

∫ ∆ν(f)

∆ν(i)

d(∆ν)

∆ν
+ ε0

∫ ∆ν(f)

∆ν(i)

d(∆ν)

= −νmax ln
∆ν(f)

∆ν(i)
+ ε0

(
∆ν(f) −∆ν(i)

)
.

(A.8)

The main properties of Eq. (A.8) are written below:

1. For any ∆ν(f) such that ∆ν(f) > ∆ν(i) the shift is always negative, ∆Sif < 0, and vice
versa if ∆ν(f) < ∆ν(i), ∆Sif > 0 .

2. ∆Sif = 0 for ∆ν(f) = ∆ν(i) .

3. When ∆(∆ν) ∼ 10−2∆ν (i.e. few % of variation in ∆ν), as it is the case when fine-tuning
∆ν for Red Giants, Eq. (A.8) reduces to the linear equation5

∆Sif ' −νmax

(
∆ν(f)

∆ν(i)
− 1

)
+ ε0

(
∆ν(f) −∆ν(i)

)
(A.9)

The property #1 follows from the fact that

∆ν(f)/∆ν(i) − 1

∆ν(f) −∆ν(i)
∼ ε0∆ν

νmax
∼ 0.1 (A.10)

being ε0 a number of the order of unity. Thus, the first term appearing on the right-hand side
of Eq. (A.8) is always dominant with respect to the second one.

AARG requires the position of the “clear” ` = 0 peak, as it appears from the first doubled
CED, to be manually marked by the user (we denote such position as p0,i). At this point, it
is worth to say that in an updated version of the AARG code, the position of the ` = 0 peak
could be estimated automatically by exploiting the ε–∆ν relation found by [87], which however
holds for RGB stars only. In fact, in the case of clump RGs the observed ε is in average lower
than that of their RGB counterparts showing similar ∆ν, with a difference quantified by [87]
to be up to ∆ε ' 0.15 for the cluster RGs presented in Chapter 4 — see also the discussion in
[87, 179, 238]. Hence, when analyzing heterogeneous samples of RGs, it may happen that the
predicted value for p0,i provides a peak position that is shifted by some amount with respect
to its true position. According to the findings by [87], on one hand this difference can be of
the order of 0.15∆ν — namely of the order of δν02 — if a clump star is being analyzed, while
on the other hand it is expected to be not greater than 0.05µHz in the case of RGB stars,
as derived from the error propagation of their ε–∆ν relation — see Eq. (A.14) below. Such
an amount of shifting becomes very important especially for more evolved stars, whose CED

5To derive the approximation of Eq. (A.8) for small ∆(∆ν) we used the series expansion of the natural
logarithm, namely

ln(x+ 1) =

∞∑
i=1

(−1)n−1 x
n

n
,

where we considered x = ∆ν(f)/∆ν(i) − 1, being x� 1.
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Figure A.2: Results of the fine-tuning for the RGB star KIC 2436818. Panel (a) shows the FWHM
profile as a function of the step in ∆ν. Index #15 represents our initial value, while the indices #0
and #30 correspond to +1.5% and −1.5% variation of ∆ν, respectively, which set the extremes of our
fine-tuning interval. Panel (b) shows a zoom of the ` = 0 peak in the CED with the initial guess of ∆ν,
where a Lorentzian fit is overlaid for providing a rough estimate of its FWHM. Panel (c) is equivalent
to panel (b) but in the case of the CED with the fine-tuned ∆ν. As visible from the result, the fine-tuned
∆ν provides a narrower FWHM than that of the initial value.

are more sensible to small variations in ∆ν. For partially getting rid of this issue, AARG
performs a Lorentzian fit6 to the ` = 0 peak in the range [p0,i − d02/2, p0,i + d02/2], where
d02 ' 0.123∆ν (see Section A.3), which allows to recenter the predicted centroid by replacing
it with the centroid arising from the fit7.

Once that p0,i is found, the position of the ` = 0 peak at each new shift in the fine-tuning
phase will be given by p0,f = p0,i + ∆Sif . Therefore, Eq. (A.8) — or alternatively Eq. (A.9) —
can be of great help especially for stars that show very low values of νmax (. 4µHz) since the
tracking of the ` = 0 peak in the CED requires particular care due to the limit of the resolution
and to the low number of observed modes. Eq. (A.8) has proven to provide a quite accurate
and reliable guess for the position of the centroid of the ` = 0 peak when fine-tuning ∆ν within
2–3 % of the initial value provided by the SYD pipeline [164]. This method has been tested
successfully in over a hundred of cluster RGs observed by Kepler.

A.2.1 The FWHM Method

At each step of the fine-tuning, i.e. for each step-value of ∆ν8 a Lorentzian fit to the new shifted
` = 0 peak is performed. Such fit has a double purpose: first, the fit centroid can be used for
improving the position of the peak centroid in the follow-up; second, and more important, it
allows to obtain a rough estimate of the FWHM of the peak. In fact, as discussed by [292],
following from the properties of the asymptotic relation for p modes, the correct value of ∆ν
provides the best vertical alignment of the oscillation ridges in the échelle power spectrum of
the star. According to this explanation, the final estimate of ∆ν arising from the fine-tuning
is reached by taking the value that minimizes the FWHM of the ` = 0 peak. Figure A.2 shows
a clarifying example of the method for the star KIC 2436818.

Anyhow, regardless of the sophistication of the method described above, the resulting fine-
tuned ∆ν of the RGB stars of the clusters NGC 6791 and NGC 6819, resulted to have a spread

6All the Lorentzian fits performed by AARG are done by means of the IDL procedure mpfitpeak dis-
tributed within the mpfit IDL Library.

7Such a particular care is only required for this fine-tuning phase, because for secondary steps of the analysis
the correct position of the ` = 0 peak must be known already, as we shall discuss in Section A.3 below.

8The step considered for the fine-tuning process amounts to 10−3∆ν.
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Figure A.3: Example of échelle diagrams of an RGB (left) and RC (right) star with ` = 0, 1, and
2 modes indicated by red circles, green triangles, and blue squares, respectively. The ordinate is the
frequency in units of ∆νc and centered at the value corresponding to the turning point, here denoted as
νc,0. Image credit by [179].

larger than that of the values given as input from the SYD pipeline, up to a factor of ∼ 2−−3.
The reason for this result is very likely to rely on the enhanced curvature of the ridges of
oscillation, which is due to the large number of modes detected thanks to the long observing
run. In fact, the curvature of the ridges will result in a broader peak width when collapsing
the PSD into a CED. A solution to this problem is presented in the forthcoming section.

A.2.2 Overcoming the problem of Ridge Curvature

One of the main effects that hampers the fine-tuning process of the mean large separation by
means of the FWHM method is related to the curvature of the ridge corresponding to the radial
modes (e.g. see [178, 243, 179] for more details). In fact, as the observations become longer
and more modes are so detected, the frequencies of the radial modes start to deviate from their
asymptotic values, although in an amount of the order of ∼ 10−2∆ν, see [243]. In particular,
the radial mode sequence of an RGB star becomes “C” shaped, while that of an RC star is more
“S” shaped [179] (see Figure A.3). In order to overcome this issue, we follow a similar idea to
that introduced by [178] and consider a mean large separation ∆νc defined for the modes close
to the frequency of maximum power νmax. This choice relies on the fact that, as it appears
from all the observations, the ridge curvature has a turning point that is always close to the
radial mode corresponding to νmax. This means that the radial modes close to νmax are those
less affected by the ridge curvature, hence these modes are those of interest to find the best
value for ∆νc and subsequently ∆ν.

Nevertheless, for the analysis presented in Chapter 4, we decided not to consider an im-
proved version of the fine-tuning that takes into account the central radial modes because
reliable estimates of ∆ν as derived by means of the SYD pipeline [164] were already available
for all the RGs investigated. For future works, we aim at implementing this method in the
AARG code in order to allow the code to perform a completely independent and self-supported
analysis of the asymptotic parameters, with the advantage of being automatized so that large
numbers of red giant stars can be analyzed in a short time lapse.
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A.3 Measuring ε and the Small Spacings δν02 and δν01

As already mentioned in Chapter 4, in order to derive the measurements for ε and for the
small spacings δν02 and δν01, we first collapse the échelle diagram of each star by adopting its
corresponding best value of ∆ν, as derived with, e.g., the method described in Section A.2.
The CED to be considered has again a double width, this time with the purpose of allowing us
to catch each structure of the diagram at least once without any cuts (each peak corresponding
to an oscillation ridge can be repeated in its entire shape twice at most, see also the discussion
in Section A.2).

A.3.1 Shifting and clipping the doubled CED

To perform the analysis in a simpler manner, AARG requires the temporary position of the
` = 0 peak9 — referred to as p0 in the following — which is the position corresponding to
the fine-tuned ∆ν, or alternatively to the position of ` = 0 peak in the doubled CED if no
fine-tuning has been used. Thus, we aim at displaying the complete sequence of the ` = 0, 2, 1
peaks without any cuts and respecting the order suggested by the asymptotic relation given
by Eq (??), i.e. ` = 2, 0, 1 from left to right. This is done by AARG by shifting the range in
abscissa of the CED by an amount given by the quantity

sref ≡ p2 −
3

4
d02 , (A.11)

where d02 is a rough guess of the small spacing δν02 derived by means of the empirical relation
d02 ≡ p2 − p0 = c∆ν, with c ' 0.123 — see also [30] who adopted a similar value — and p2

a rough guess of the position of the ` = 2 peak in the doubled CED. Consequently AARG
considers a slice of length ∆ν for applying the clipping to the doubled CED. Thus, in the
new CED the positions of the ` = 0 and 2 centroids will be given by p′0 = p0 − sref and by
p′2 = p2 − sref (or equivalently by p′2 = p′0 − d02). These positions will be used in the following
Section A.3.4 to derive the small spacings δν02 and δν01.

Lastly, we note that when the fine-tuning process is performed, the shifting and clipping of
the CED is done automatically. In this way, the new interval in abscissa of the CED used for
the analysis will be always of the form [sref ,∆ν + sref ].

A.3.2 The ε Term

In Section A.2 we have seen that AARG uses a very first estimate of ε, which we called ε0, in
order to exploit the relation given by Eq. (A.8) for fine-tuning the ∆ν value. In the following
we shall describe in pratice how can ε0 be derived from the doubled CED considered for either
the fine-tuning or the shifting and clipping process shown in Section A.3.1.

While measuring ε one should keep in mind that, according to the results derived by [165,
317], we expect to find a reliable estimate in the range [0.5, 1.5] for stars having ∆ν < 15µHz.
If the ` = 0 peak is repeated twice within the range of the CED, e.g. see Figure A.4, our ε0
can be measured either for the first or the second ` = 0 peak appearing in the doubled CED,
no matter which one we choose to consider. In fact, AARG recognizes the true position of the

9We term temporary position of a peak the position of the peak in the doubled CED, the latter not being
necessarily equal to the true position of the centroid. This is because the marked ` = 0 peak could lay in the
second half of the CED, i.e. in the range (ν mod ∆ν) ∈ [∆ν, 2∆ν], hence the real and temporary position would
differ by a factor ∆ν. For further details, see also the discussion in Section A.3.2.
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Figure A.4: Doubled CED of the RGB star KIC 2436818 used by AARG for fine-tuning ∆ν. The
ordinate shows an arbitrary scale for the collapsed power, while the abscissa is expressed in µHz. The
dashed red line shows the position of the ∆ν value, which separates the doubled CED into two equal
parts containing the same, repeated pattern of the ` = 2, 0, 1 peaks (single CEDs). The blue dot-dashed
blue line marks our position of the ` = 0 peak considered for the analysis, while the dotted red lines mark
the values of ∆ν/2 and 3

2∆ν, hence dividing the entire doubled CED into four regions, labeled from I
to IV ingoing from left to right. The blue arrow highlights the value of the marked position of the ` = 0
peak, which we denoted as p0. The doubled CED has been smoothed by means of a boxcar having width
4∆ν to simplify the pattern of the peaks.

` = 0 peak by simply considering the cases

if

{
p0 > ∆ν ⇒ ptrue

0 = p0 −∆ν

p0 < ∆ν ⇒ ptrue
0 = p0

, (A.12)

where p0 is once again the temporary position of the ` = 0 peak as derived from the beginning.
The estimate of ε0 will depend upon which of the four regions, labeled in Figure A.4 from I to
IV, our marked ` = 0 peak falls. Thus, according to the asymptotic relation for p modes —
Eq. (1.10) — AARG considers the solutions

{
ε0 = (p0/∆ν) + 1 (I or III)
ε0 = p0/∆ν (II or IV)

. (A.13)

A new version of the code could predict the peak centroid by exploiting the well-calibrated
ε-∆ν relation derived by [87] for the RGB stars of the open clusters NGC 6791 and NGC 6819
(see Chapter 4, Section 4.3.1), namely the logarithmic relation

ε = (0.601± 0.025) + (0.632± 0.032) log ∆ν , (A.14)

or alternatively the power law relation

ε = (0.681± 0.017)∆ν0.261±0.014 . (A.15)

In this manner, the position of the ` = 0 peak could be found automatically for any RGB
star by simply giving as input the mean large separation ∆ν. This can be certainly of great
advantage when analyzing thousands of Red Giants as those observed by Kepler. However,
as discussed for the fine-tuning process, such relation does not hold for clump stars, and a
manual mark of the peak may still result in being the best solution for a proper analysis of
heterogeneous samples of RGs.
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Finally, the last estimate of ε, which we take as the first asymptotic parameter derived for
the analysis presented in Chapter 4, is obtained by fitting a Lorentzian profile to the ` = 0
peak marked by the position p′0 (or alternatively p0 if no shift has been applied), within the
range [p′0 − d02/2, p

′
0 + d02/2]. We also define the parameter m0 ≡ d02/2 as the one giving the

margin width for the Lorentzian fit to the ` = 0 peak (see Section A.4). The fit yields us to the
final centroid ν0, and consequently to the final ε of the star, as derived by means of Eq. (A.13),
in which we use ν0 instead of p0 (see also Figure 4.3 in Chapter 4 and the related discussion).

A.3.3 Average Linewidths of ` = 0 Modes

By considering the CED smoothed by means of a boxcar having width ∆ν, we can use the
FWHM of the Lorentzian profile fitted to the ` = 0 peak in the interval [ν0 −m0, ν0 +m0] in
order to derive some information about the lifetime of these modes. In fact, the FWHM derived
can be used as an upper limit to the real average linewidth of the radial modes [87], and we
will term it Γup

0 from now on. The resulting values of Γup
0 are listed in Appendix B for all the

stars analyzed in the sample. These values were adopted for studying the correlation between
linewidths and both ∆ν and Teff , as described in Chapter 4. Nevertheless, we note that our
values do not represent accurate measurements for linewidths, because a detailed peak bagging
for each star and an accurate estimation of the background level in the power spectrum would
be required for obtaining estimates of the real linewdiths of the modes.

For the sake of completeness, we highlight that the empirical relation given by Eq. (4.11),
found by [87] for predicting the average linewidths of radial modes Γ in stars from MS to RGs,
is also based on the set of measurements Γup

0 . In particular, the uncertainties on Γ can be
derived from the standard error propagation, which yields

σΓ (Teff) = Γ (Teff)

√(
σΓ0

Γ0

)2

+

(
Teff − 5777K

T 2
0

)2

σ2
T0

+

(
σTeff

T0

)2

, (A.16)

where Γ0 = 1.39µHz, σΓ0 = 0.10µHz, T0 = 601K, σT0 = 3K and Teff is the effective tempera-
ture of the star expressed in K.

A.3.4 The Small Spacings δν02 and δν01

A further step in the analysis of p modes performed by AARG consists in measuring the small
spacing δν02, namely the spacing between the ` = 0 and ` = 2 peaks in the CED introduced in
Section A.3.1, as defined by Eq. (4.1). This is done by AARG by considering the centroid ν0

derived in the previous step, and subsequently fitting a Lorentzian profile to the ` = 2 peak,
in the range [p′2 − d02/2, p

′
2 + d02/2]. Again, we introduce the width parameter m2, which for

` = 2 is given by m2 ≡ d02/2 = m0. The Lorentzian fit leads us to the final centroid ν2 of the
peak, thus we have that δν02 = ν0−ν2. An example of this procedure is shown in Figure A.5(a)
for the star KIC 2436818.

Conversely to δν02, the estimation of the small spacing δν01 is more subtle because the ` = 1
peak has often a complex structure caused by the presence of mixed modes, which deviate from
the regular pattern defined by the asymptotic relation for p modes. In order to improve the
capability of AARG to detect and properly fit the ` = 1 ridge, the CED is generally smoothed
by means of a boxcar having width 4∆ν, which makes the pattern of the oscillation ridges
clearer and simpler, as shown in Figure A.5(b).

AARG estimates the position of the ` = 1 peak by finding the maximum cmax of the CED in
the region [ν0 + δν02,∆ν], which is clearly expected to contain the entire central pattern of the
dipole modes. Subsequently, it is required to the user to manually mark the left-hand extreme
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Figure A.5: CED of the RGB star KIC 2436818 used by AARG for the derivation of the asymptotic
parameters, smoothed by means of a boxcar having width 4∆ν to simplify the pattern of the peaks.
Panel (a): the dashed lines show the position of the centroids ν2 and ν0 arising from the Lorentzian fits,
marked with thick solid lines. Labeled and indicated by an arrow, the final measurement of the small
spacing δν02. Panel (b): Same case as panel (a) but for the Lorentzian fit to the ` = 1 peak (thick purple
line), whose centroid ν1 is marked with a dashed purple line. The red dot-dashed line represents the
position ν0 + ∆ν/2, considered for measuring the small spacing δν01 according to the definition given
by Eq. (4.2).

of the interval for the Lorentzian fit, which has to be large enough to contain all the possible
prominent structures related to ` = 1. The range between cmax and the left-hand extreme
marked by the user is saved by AARG as the width parameter m1, which will be useful for the
derivation of the uncertainties, as we shall discuss in Section A.4. The outcoming centroid ν1

of the Lorentzian fit applied to the interval [cmax −m1, cmax +m1] is used to derive our final
estimate of the small spacing δν01. In fact, according to the definition given by Eq. (4.2), we
have that δν01 = ν0− ν1 + ∆ν/2, namely δν01 assumes negative or positive values whether the
` = 1 peak falls above or below the semi-distance ν0+∆ν/2 occurring between two consecutives
` = 0 peaks (see the example given in Figure A.5).

A.4 Derivation of the Uncertainties

The analysis of the asymptotic parameters of p modes is finally completed with the derivation
of the uncertainties for ε, δν02, δν01 (see also Chapter 4 for a brief introduction). AARG follows
a similar approach to that used by [167], which consists in generating 500 different realizations
of each star’s PSD by perturbing the observed one by means of a synthetic noise level that is
χ2-distributed with 2 d.o.f., according to the statistics of a PSD [319].

In order to “rescale” the noise level at each realization, AARG multiplies a vector containing
χ2-distributed random numbers by the vector containing the values of the observed PSD. This
allows each bin in the PSD to be rescaled, either increased or decreased, by an amount given
by the corresponding synthetic noise at that bin. In addition, each synthetic noise vector has
been normalized to the χ2 distribution of the observed PSD, that is it has been rescaled by
some factor in order to make the two χ2 distributions coincide. Such factor depends on the
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Figure A.6: Example of two synthetic CEDs of the RGB star KIC 2436818 used by AARG for
the derivation of uncertainties. The notation is the same as for Figure A.5. As it appears clear by
comparing top and bottom panels, different realizations result in different centroids ν0, ν1, ν2, hence in
a new set of asymptotic values δν′02, δν

′
01. Both CEDs have been smoothed by means of a boxcar having

width 4∆ν.

star considered and was found to be between 1.5 and 2.5 for most of the stars analyzed.
After a synthetic PSD is derived, it is collapsed into a synthetic CED by using the correct

∆ν for the star, in a similar manner to that described in Section A.1.1. The CED is afterwards
smoothed by convolving it for a boxcar having width 4∆ν. AARG exploits the parameters
ν0, ν1, ν2 that mark the position of the ` = 0, 1, 2 peaks in the original CED, together with the
corresponding margins used for the Lorentzian fits, which we denoted as m0,m1,m2. In fact,
AARG applies three Lorentzian fits to the synthetic CED by using the parameters mentioned
beforehand. This allows us to derive a new set of centroids ν ′0, ν ′1, ν ′2, used to obtain the synthetic
asymptotic parameters δν ′02, δν

′
01 with the methods described in the sections above. This step

is fully automated and it is repeated 500 times for each star. A plot of the CED with the
actual Lorentzian fits overlaid (see Figure A.6) is displayed for each simulation with the aim at
checking that the fits are performing well during the analysis. For improving the reliability of
the fit for the ` = 1 peak, an additional smoothing up to 8∆ν to the region [ν1 −m1, ν1 +m1]
of the CED can be applied. The additional smoothing can be extremely useful for stars having
particularly confusing ` = 1 regions. Figure A.6 shows two different synthetic CED for the star
KIC 2436818. When comparing the position of the centroids in the two CEDs, it is apparent
that the asymptotic parameters δν ′02, δν

′
01 derived in each simulation are different.

The last step concerns the computation of the uncertainties. This can be done straightfor-
wardly by evaluating the standard deviation of each sample of synthetic parameters

{
δν ′02,i

}
,
{
δν ′01,i

}
with i = 1, 2, . . . , 500 . (A.17)

However, the distributions of synthetic parameters may contain some outliers, which in
general can arise from a wrong fit especially for stars where ` = 0 and ` = 2 are very close to
each other and ` = 1 is splitted into several peaks. In order to get rid of these “bad” points
responsible of increasing the effective standard deviation of the distribution, AARG computes
a resistant estimate of its dispersion by means of the Tukey’s method [152], implemented in the
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Figure A.7: Similar description as the one adopted for Figure A.1 but in the case of an “erased”
doubled échelle PSD of the RGB star KIC 2436818 — panel (a). The PSD is shown in a color-coded
background, where black regions represents those set to zero value. Panel (b) shows the corresponding
erased CED in normalized units, smoothed by means of a boxcar having width 4∆ν. As it appears clear
when comparing to Figure A.1, the regions containing radial and quadrupole modes are not appearing
in this erased CED.

IDL procedure robust_sigma. The robust sigma has proved to give narrower constraints
than the Gaussian standard deviation for most of the stars analyzed. This last step is also
performed in a completely automated manner. In addition, AARG plots histograms of the
distributions of synthetic parameters for each star. Since the distributions are expected to be
Gaussian-like, the histograms are an helpful tool to the user for checking wrong results.

Lastly, the uncertainty on ε is derived by the error propagation from ∆ν, according to
Eq. (1.10). Thus we have that

σε =
νmax

∆ν2
σ∆ν , (A.18)

where σ∆ν is the 1σ uncertainty on ∆ν. All the uncertainties so derived are saved and used
for the plots shown in Chapter 4.

A.4.1 Uncertainty on ∆ν

In the case ∆ν is derived by means of a fine-tuning process that uses an improved FWHM
method as the one discussed in Section A.2.2, the uncertainty σ∆ν can be estimated as the
FWHM of the Lorentzian fit to the ` = 0 peak in the CED, which must be collapsed for the
fine-tuned value of ∆ν. Otherwise, the uncertainty on ∆ν can be taken as the FWHM of
the peak arising from either a CR function (see, e.g., the analysis described in Chapter 2) or
an ACF method [164], the latter being the case for the input values adopted for the results
presented in Chapter 4.
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Figure A.8: “Erased” PSD (gray) of the RGB star KIC 2436818 overlaid on the original PSD (black).
Gray PSD has only dipole mixed modes regions.

A.5 Estimation of ∆Pobs for Mixed Dipole Modes

As already discussed in Chapter 4, the observation of mixed dipole modes — that is oscillation
modes that show a mixed behavior between that of pure g and dipole p modes, see [21] for
the first discovery with Kepler — can be of great importance for our understanding about the
evolutionary state of a red giant star. In fact, as noted by [32], and later on by [242], the
measurement of the so-called observed period spacing ∆Pobs is an extremely useful tool for
distinguishing between H-shell (RGB) and He-core burning (RC) red giant stars. This analysis
has been done also for cluster RGs by [87], where ∆Pobs could be measured in almost half of
the sample considered, despite of a lower signal-to-noise ratio in the oscillation signal of these
stars (see Appendix B for a list of all the results).

As already mentioned in Chapter 4, AARG exploits the method introduced by [32] for
measuring the mean ∆Pobs in RGs, which allows us to readily measure the parameter from the
PSDs. The analysis of mixed dipole modes done by AARG involves the following steps:

1. by using the centroids ν0, ν2 and the corresponding marginsm0,m2 for the Lorentzian fits
derived the analysis of p modes, erase (that is set to zero value) all the regions in the star’s
CED belonging to the interval [ν2 − 1.3m2, ν0 + 1.5m0], chosen empirically to remove any
excess of power related to radial and quadrupole modes. This is done by AARG through a
separate procedure, named erasepower, which generates a CED having ` = 0, 2 peaks
completely removed. An example of this result is shown in Figure A.7(b) for the star
KIC 2436818, together with the corresponding échelle PSD in a color-coded background
— panel (a)

2. reconstruct the new “erased” PSD (hereafter EPSD) with an inverse procedure to that
used to derive the CED, which simply merges consecutive slices of the erased échelle PSD
in increasing order of frequency. This is again done by the procedure erasepower.
The result for KIC 2436818 is shown in Figure A.8 in gray color, overlaid on the original
PSD in black

3. convert the abscissa of the EPSD into periods (to be expressed in seconds) and apply a
Fourier transform to the result. This is done by a separate function named pps, which
uses the lnp_test IDL library function to compute the Lomb Periodogram of the
EPSD converted into periods (see also [259], Section 13.8)
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4. the power spectrum of the EPSD expressed in periods, is then converted into a power
spectrum in periods as well by simply reverting the frequencies into periods and plotting
in the range 30–500 s. The result, whenever any mixed modes would be present, will show
a power excess peaked around the value ∆Pobs, which we aim at measuring for inferring
the evolutionary state of the RGs

5. mark a rough position of such power excess and the left (or right) margin of the interval
to be used for fitting the power excess with a Gaussian profile. The resulting centroid of
the Gaussian fit gives our estimate of ∆Pobs.

As auxiliary tools, AARG displays a zoom of the EPSD converted into periods for each slice
containing a region of mixed dipole modes. This is done to help the user to search for any
regular pattern, as suggested by the asymptotic relation for g modes given by Eq. (1.12). In
addition, it is also possible to compute the Lomb Periodogram of each slice in order to visualize
a possible power excess arising from the presence of a regular spacing in period. The reason
for which checking a single slice separately is suggested derives from the fact that mixed dipole
modes may be apparent in a slice rather than in another.
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B Asymptotic Parameters

In this Appendix we list the asymptotic values derived by means of the AARG code (see Ap-
pendix A) for the Red Giants belonging to the clusters NGC 6791, NGC 6811, and NGC 6819.
For each star analyzed, the p-mode asymptotic values νmax, ∆ν, ε, δν02, δν01, together with
their 1σ uncertainties, the upper limits to the linewidths of radial modes Γup

0 , and the period
spacing of mixed dipole modes ∆Pobs, are reported. Stars for which Γup

0 could not be derived
properly and stars where no evidence of period spacing has been found, show a dash symbol
for the corresponding parameter. We also note that the values of νmax and ∆ν, as well as
their uncertainties, are those derived by means of the SYD pipeline [164]. We remind that the
dataset used to derive these quantities is the one described in Chapter 4.

Table B.1: Asymptotic parameters for the Cluster NGC 6791.

KIC ID νmax (µHz) ∆ν (µHz) ε δν02 (µHz) δν01 (µHz) Γup
0 (µHz) ∆Pobs (s)

2297384 31.8± 1.8 3.80± 0.06 0.810± 0.128 0.416± 0.087 −0.271± 0.063 0.136 256.
2297825 29.6± 1.6 3.83± 0.09 0.806± 0.172 0.513± 0.070 −0.299± 0.086 0.145 254.
2435987 38.1± 1.2 4.22± 0.01 0.954± 0.032 0.553± 0.025 −0.175± 0.028 0.176 –
2436097 42.4± 1.3 4.53± 0.03 1.000± 0.053 0.568± 0.038 −0.166± 0.030 0.199 –
2436209 57.8± 0.7 5.73± 0.03 1.073± 0.051 0.732± 0.037 −0.184± 0.037 0.183 –
2436332 28.1± 1.4 3.40± 0.02 0.916± 0.039 0.455± 0.031 −0.126± 0.021 0.076 –
2436417 26.7± 0.8 3.41± 0.06 0.874± 0.134 0.342± 0.090 −0.237± 0.074 0.155 268.
2436458 36.0± 1.3 4.15± 0.02 0.980± 0.038 0.561± 0.029 −0.156± 0.030 0.147 48.
2436540 57.4± 1.3 5.79± 0.03 1.088± 0.043 0.724± 0.033 −0.199± 0.039 0.214 –
2436593 111.6± 1.7 9.64± 0.09 1.238± 0.107 1.178± 0.094 0.078± 0.155 0.248 55.
2436676 132.7± 5.8 11.31± 0.06 1.263± 0.067 1.521± 0.228 −0.037± 0.204 0.297 55.
2436688 76.9± 1.4 7.22± 0.03 1.174± 0.043 0.872± 0.071 −0.240± 0.049 0.233 –
2436732 30.9± 1.2 3.72± 0.06 0.781± 0.144 0.483± 0.094 −0.249± 0.079 0.313 211.
2436759 30.1± 3.0 3.75± 0.18 0.834± 0.391 0.500± 0.122 −0.178± 0.187 0.231 –
2436814 24.9± 0.9 3.13± 0.02 0.903± 0.053 0.417± 0.033 −0.141± 0.021 0.086 –
2436818 96.1± 2.8 8.77± 0.09 1.225± 0.113 1.171± 0.150 −0.220± 0.170 0.222 54.
2436824 33.2± 0.7 3.87± 0.02 0.934± 0.033 0.519± 0.025 −0.129± 0.022 0.126 –
2436900 35.4± 1.5 4.05± 0.02 0.968± 0.034 0.499± 0.035 −0.186± 0.031 0.121 –
2436912 30.4± 1.4 3.78± 0.05 0.820± 0.112 0.480± 0.090 −0.319± 0.085 0.236 –
2437040 26.2± 0.6 3.07± 0.02 0.901± 0.051 0.394± 0.034 −0.170± 0.029 0.104 –
2437103 29.7± 1.7 3.79± 0.06 0.770± 0.133 0.325± 0.153 −0.242± 0.114 0.130 306.
2437240 44.3± 1.0 4.84± 0.02 1.035± 0.036 0.614± 0.032 −0.196± 0.034 0.179 –
2437270 69.8± 0.9 6.51± 0.02 1.107± 0.041 0.780± 0.055 −0.232± 0.042 0.216 43.
2437325 93.2± 1.2 8.50± 0.03 1.186± 0.042 1.080± 0.059 0.054± 0.153 0.217 61.
2437340 8.5± 0.2 1.36± 0.03 0.698± 0.126 0.191± 0.015 −0.078± 0.015 0.019 –
2437353 31.0± 1.1 3.85± 0.04 0.818± 0.080 0.555± 0.053 −0.272± 0.059 0.174 248.
2437394 164.3± 4.2 12.86± 0.81 1.378± 0.802 1.707± 0.354 −0.349± 0.288 0.339 –
2437402 45.6± 1.2 4.82± 0.02 1.019± 0.048 0.623± 0.029 −0.151± 0.028 0.185 –
2437444 18.9± 1.2 2.46± 0.02 0.877± 0.067 0.350± 0.027 −0.100± 0.031 0.097 –
2437488 64.1± 1.2 6.27± 0.03 1.096± 0.042 0.821± 0.039 −0.189± 0.041 0.229 –
2437496 4.3± 0.5 0.85± 0.19 0.701± 1.124 0.147± 0.049 −0.042± 0.025 – –
2437507 20.4± 0.5 2.60± 0.02 0.888± 0.055 0.351± 0.020 −0.128± 0.018 0.079 –
2437564 30.6± 1.3 3.83± 0.06 0.899± 0.127 0.479± 0.111 −0.239± 0.087 0.130 241.
2437589 46.5± 1.5 4.60± 0.03 1.026± 0.057 0.526± 0.042 −0.184± 0.038 0.186 39.
2437653 74.0± 1.4 7.00± 0.03 1.195± 0.044 0.896± 0.050 −0.188± 0.037 0.211 –
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Table B.1

KIC ID νmax (µHz) ∆ν (µHz) ε δν02 (µHz) δν01 (µHz) Γup
0 (µHz) ∆Pobs (s)

2437698 30.1± 1.5 3.75± 0.03 0.804± 0.068 0.507± 0.141 −0.250± 0.049 0.466 –
2437781 85.1± 1.6 7.83± 0.03 1.182± 0.045 1.029± 0.063 −0.046± 0.072 0.172 –
2437804 26.5± 1.6 3.35± 0.07 0.870± 0.165 0.478± 0.054 −0.266± 0.529 0.278 212.
2437805 30.0± 1.5 3.80± 0.05 0.837± 0.094 0.578± 0.045 −0.176± 0.054 0.174 –
2437816 17.9± 0.4 2.33± 0.02 0.929± 0.051 0.309± 0.037 −0.087± 0.016 0.083 –
2437933 107.7± 1.5 9.38± 0.05 1.252± 0.066 1.071± 0.106 −0.281± 0.274 0.230 53.
2437957 90.5± 1.8 8.52± 0.03 1.178± 0.033 1.036± 0.073 −0.156± 0.114 0.239 48.
2437965 8.3± 0.7 1.31± 0.04 0.525± 0.182 0.199± 0.028 −0.120± 0.039 – –
2437972 84.6± 1.3 7.83± 0.05 1.196± 0.064 0.976± 0.074 −0.089± 0.093 0.204 50.
2437976 89.1± 1.6 8.14± 0.05 1.221± 0.067 1.015± 0.106 −0.108± 0.073 0.242 51.
2437987 29.3± 1.3 3.76± 0.08 0.830± 0.159 0.444± 0.124 −0.239± 0.084 0.585 224.
2438038 62.1± 1.3 6.15± 0.02 1.085± 0.036 0.795± 0.041 −0.206± 0.034 0.187 46.
2438051 30.7± 2.1 3.70± 0.10 0.832± 0.229 0.339± 0.106 −0.409± 0.102 0.116 207.
2438140 69.3± 1.1 6.74± 0.02 1.129± 0.031 0.794± 0.038 −0.234± 0.053 0.169 –
2438333 61.2± 0.9 6.07± 0.02 1.107± 0.038 0.737± 0.039 −0.259± 0.035 0.251 46.
2569055 31.4± 2.4 3.76± 0.08 0.791± 0.175 0.517± 0.094 −0.229± 0.088 0.208 –
2569360 22.0± 0.7 2.73± 0.03 0.933± 0.092 0.360± 0.051 −0.143± 0.031 0.089 –
2569618 55.0± 1.2 5.65± 0.02 1.119± 0.037 0.773± 0.040 −0.179± 0.035 0.180 –
2569935 5.5± 0.8 1.01± 0.12 0.613± 0.629 0.140± 0.036 −0.099± 0.042 – –
2569945 29.1± 1.0 3.75± 0.07 0.984± 0.140 0.536± 0.158 −0.262± 0.087 – 253.
2570094 67.2± 0.9 6.50± 0.02 1.146± 0.034 0.817± 0.040 −0.148± 0.036 0.174 56.
2570172 73.6± 2.3 7.03± 0.03 1.173± 0.046 0.863± 0.086 −0.235± 0.051 0.246 –
2570244 103.0± 2.8 9.29± 0.23 1.142± 0.273 1.124± 0.117 −0.143± 0.157 0.241 56.
2570384 64.3± 1.4 6.36± 0.03 1.161± 0.048 0.841± 0.088 −0.232± 0.063 0.183 44.
2570518 45.9± 1.2 4.94± 0.02 1.053± 0.031 0.632± 0.034 −0.143± 0.029 0.146 –

Table B.2: Asymptotic parameters for the Cluster NGC 6811.

KIC ID νmax (µHz) ∆ν (µHz) ε δν02 (µHz) δν01 (µHz) Γup
0 (µHz) ∆Pobs (s)

9534041 107.4± 2.2 8.40± 0.04 1.022± 0.067 0.837± 0.061 −0.247± 0.063 0.409 142.
9655101 98.2± 2.4 7.86± 0.04 1.060± 0.061 0.889± 0.053 −0.034± 0.085 1.072 98.
9655167 100.3± 8.7 8.07± 0.04 1.034± 0.065 0.803± 0.064 −0.511± 0.115 0.342 –
9716090 101.4± 5.9 8.56± 0.06 1.001± 0.078 0.852± 0.167 0.059± 0.123 – 172.
9716522 54.9± 1.0 4.85± 0.04 0.973± 0.083 0.592± 0.102 −0.116± 0.099 0.435 154.

Table B.3: Asymptotic parameters for the Cluster NGC 6819.

KIC ID νmax (µHz) ∆ν (µHz) ε δν02 (µHz) δν01 (µHz) Γup
0 (µHz) ∆Pobs (s)

4937056 43.4± 1.0 4.76± 0.06 0.974± 0.118 0.581± 0.172 −0.213± 0.091 0.236 211.
4937576 31.1± 1.6 3.56± 0.02 0.913± 0.047 0.415± 0.032 −0.109± 0.027 0.129 –
4937770 93.8± 2.4 7.82± 0.08 1.119± 0.116 0.808± 0.117 −0.096± 0.071 0.345 109.
5023732 26.9± 1.1 3.11± 0.02 0.892± 0.061 0.353± 0.045 −0.122± 0.031 0.145 –
5023845 108.6± 1.1 8.90± 0.02 1.223± 0.031 1.050± 0.048 −0.143± 0.099 0.242 –
5023931 50.1± 2.4 4.93± 0.04 0.968± 0.082 0.585± 0.058 −0.194± 0.048 0.322 –
5023953 50.0± 1.1 4.76± 0.02 0.936± 0.043 0.700± 0.057 −0.009± 0.361 0.208 214.
5024043 55.9± 0.5 5.59± 0.02 1.108± 0.039 0.700± 0.032 −0.132± 0.029 0.187 –
5024143 111.3± 8.9 9.66± 0.03 1.201± 0.038 1.139± 0.082 −0.049± 0.227 0.255 –
5024240 153.7± 2.9 11.97± 0.05 1.262± 0.050 1.485± 0.150 −0.152± 0.293 0.364 –
5024297 46.1± 0.5 4.57± 0.02 1.047± 0.051 0.517± 0.037 −0.091± 0.030 0.142 –
5024312 93.6± 3.3 8.12± 0.02 1.136± 0.031 0.892± 0.049 −0.116± 0.103 0.274 –
5024327 43.9± 1.8 4.73± 0.08 0.977± 0.155 0.687± 0.053 −0.049± 0.100 0.372 211.
5024404 48.9± 0.7 4.86± 0.13 0.835± 0.261 0.689± 0.095 −0.122± 0.072 0.144 181.
5024405 96.4± 1.6 8.28± 0.02 1.141± 0.030 0.933± 0.044 −0.161± 0.076 0.399 –
5024414 77.1± 1.5 6.49± 0.06 1.013± 0.102 0.720± 0.072 −0.220± 0.143 0.297 178.
5024476 67.0± 1.7 5.69± 0.10 1.138± 0.201 0.656± 0.152 −0.203± 0.234 0.999 199.
5024512 73.9± 2.6 6.68± 0.03 1.096± 0.044 0.784± 0.039 −0.072± 0.064 0.318 –
5024517 50.0± 1.8 4.91± 0.03 1.043± 0.059 0.569± 0.055 −0.044± 0.061 0.163 –
5024582 46.3± 2.0 4.78± 0.14 0.945± 0.287 0.692± 0.129 −0.173± 0.114 0.192 248.
5024583 38.1± 0.8 3.91± 0.02 0.931± 0.047 0.515± 0.025 −0.080± 0.035 0.132 –
5024601 31.8± 1.7 3.70± 0.03 0.862± 0.065 0.498± 0.061 −0.140± 0.107 0.162 –
5024750 11.7± 0.6 1.76± 0.04 0.946± 0.162 0.198± 0.047 −0.109± 0.034 0.131 –
5024851 4.6± 0.2 0.75± 0.03 0.580± 0.241 0.087± 0.016 −0.026± 0.016 0.006 –
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KIC ID νmax (µHz) ∆ν (µHz) ε δν02 (µHz) δν01 (µHz) Γup
0 (µHz) ∆Pobs (s)

5024967 46.9± 1.7 4.72± 0.06 0.964± 0.131 0.595± 0.073 −0.181± 0.136 0.414 194.
5111718 135.2± 1.4 10.52± 0.04 1.264± 0.050 1.144± 0.066 −0.112± 0.078 0.320 –
5111940 51.9± 1.1 5.18± 0.02 1.041± 0.039 0.597± 0.033 −0.044± 0.039 0.178 –
5111949 48.7± 1.1 4.96± 0.06 0.672± 0.125 0.746± 0.068 −0.001± 0.111 0.639 235.
5112072 125.0± 1.3 10.01± 0.03 1.262± 0.040 1.154± 0.059 −0.102± 0.082 0.288 –
5112288 47.8± 1.8 4.81± 0.03 0.892± 0.062 0.618± 0.051 −0.146± 0.082 0.191 –
5112361 67.4± 1.4 6.18± 0.03 1.066± 0.044 0.712± 0.066 −0.102± 0.048 0.259 75.
5112373 43.7± 1.1 4.67± 0.06 0.849± 0.123 0.623± 0.047 −0.118± 0.113 0.205 187.
5112387 45.7± 1.3 4.75± 0.05 0.868± 0.105 0.585± 0.059 −0.287± 0.102 0.489 208.
5112401 38.2± 0.7 4.05± 0.06 0.892± 0.148 0.476± 0.082 −0.169± 0.069 0.142 209.
5112403 138.8± 2.0 11.09± 0.05 1.313± 0.061 1.264± 0.153 −0.314± 0.259 0.331 –
5112467 46.3± 1.1 4.71± 0.05 1.061± 0.108 0.760± 0.072 −0.222± 0.088 0.241 220.
5112481 4.9± 0.6 0.88± 0.06 0.894± 0.352 0.133± 0.025 −0.020± 0.017 0.247 –
5112491 45.0± 1.9 4.68± 0.04 0.984± 0.079 0.732± 0.042 −0.031± 0.134 0.197 240.
5112730 45.7± 0.9 4.55± 0.04 0.997± 0.079 0.631± 0.052 −0.028± 0.160 0.317 232.
5112734 40.7± 0.9 4.13± 0.03 1.008± 0.076 0.443± 0.065 −0.141± 0.046 0.152 –
5112744 45.4± 1.0 4.42± 0.02 1.022± 0.050 0.569± 0.046 −0.061± 0.037 0.278 –
5112786 8.3± 0.8 1.14± 0.04 0.781± 0.274 0.146± 0.025 −0.072± 0.035 0.030 –
5112880 26.3± 0.7 2.81± 0.02 0.859± 0.059 0.320± 0.043 −0.057± 0.027 0.072 –
5112938 44.1± 1.2 4.75± 0.07 0.940± 0.145 0.706± 0.175 −0.089± 0.089 0.338 257.
5112948 43.3± 0.8 4.28± 0.02 1.024± 0.046 0.546± 0.029 −0.116± 0.033 0.209 –
5112950 42.8± 1.3 4.30± 0.04 1.082± 0.083 0.584± 0.104 0.010± 0.181 0.166 249.
5112974 41.3± 0.7 4.36± 0.04 0.874± 0.097 0.655± 0.115 0.064± 0.073 0.369 239.
5113041 37.7± 0.9 3.97± 0.02 1.020± 0.052 0.485± 0.035 −0.160± 0.035 0.130 –
5113441 154.8± 2.2 11.71± 0.03 1.271± 0.032 1.360± 0.068 −0.087± 0.128 0.323 56.
5200152 46.3± 0.9 4.79± 0.06 0.866± 0.113 0.685± 0.050 0.032± 0.133 0.372 236.
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C Numerical Methods in

Statistical Analysis

In this appendix we discuss some interesting numerical methods used in frequentist and Bayesian
statistical analysis, the latter in particular referred to Chapter 6. In the first part of this ap-
pendix we highlight the differences between the frequentist definition of confidence intervals
and the counterpart Bayesian credible intervals, the latter representing one of the fundamen-
tal information arising from a Bayesian parameter estimation. In Section C.1, we show how
confidence intervals are directly related to the χ2 distribution and how they can be derived
in the case of a maximum likelihood estimator (MLE). In Section C we focus on the meaning
of credibility intervals and on the numerical method adopted to derive them for the analysis
presented in Chapter 6. Lastly, in Section C.3 we present an useful numerical method that has
been adopted for computing the Bayesian evidence in the low dimensional problems (k ≤ 4)
discussed in Chapter 6.

C.1 Confidence intervals

In the present section we shall describe some details of parameter estimation in the frequentist
approach. Referring to the definitions given in Section 5.3, let us consider a sampling distribu-
tion of a statistic S, with mean µs and standard deviation σs. Assuming S to be an unbiased
estimator of the population mean, then its mean value is equal to the population mean. Thus,
if the sampling distribution of S is approximately a normal distribution, then we can expect to
find S lying in the intervals µs−σs to µs+σs, µs−2σs to µs+2σs, or µs−3σs to µs+3σs about
68.27 %, 95.45 %, and 99.73 % of the time, respectively. Equivalently, we can expect to find,
or be confident of finding, µs in the intervals S − σs to S + σs, S − 2σs to S + 2σs, or S − 3σs
to S + 3σs about 68.27 %, 95.45 %, and 99.73 % of the time, respectively. For this reason, the
intervals considered are called the 68.27 %, 95.45 %, and 99.73 % confidence intervals (CI) for
estimating µs, respectively [281]. The end points of these intervals (S ± σs, S ± 2σs, S ± 3σs)
are known as confidence limits or fiducial limits, while the percentage confidence is often named
confidence level (CL).

Therefore, given some quantity to be normal distributed, it is possible to find a correlation
between the percentage of the area under the distribution (e.g. 100 %→ p = 1 if one considers
the entire area) and the product zcσ between the standard deviation σ of the normal distribution
and the so called confidence coefficient zc. Some of the most used values of the confidence
coefficient, expressed in units of standard deviation, and the corresponding confidence levels
are listed in Table C.1. We should note that the definition of confidence intervals, limits, levels
and coefficients only holds in the frequentist approach to statistics, although their introduction
is mandatory for properly defining and understanding the case of Bayesian inference. The
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Table C.1: Most used confidence levels and their corresponding confidence coefficients zc.

CL 50 % 68.27 % 90 % 94.45 % 99 % 99.73 %

zc (σ) 0.6745 1.00 1.645 2.00 2.58 3.00

Bayesian point of view will be discussed in Section C.2.

C.1.1 Confidence Limits for a χ2 Distribution

In cases where the sampling distribution is not a normal distribution, appropriate modifications
to confidence intervals introduced above are easily made. In particular, we shall discuss the
case of a chi-square distribution, which for x ≥ 0 is given by

P (χ2 ≤ x) =
1

2ν/2Γ(ν/2)

∫ x

0
u(ν/2)−1e−u/2du (C.1)

and P (χ2 ≤ x) = 0 for x < 0, where ν is the number of degrees of freedom (d.o.f) and Γ is the
gamma function1. The corresponding density function reads

fν(x) =

{
1

2ν/2Γ(ν/2)
x(ν/2)−1e−x/2 x > 0

0 x ≤ 0
(C.2)

and is shown in Figure C.1 for some degrees of freedom.

Figure C.1: Probability density function fν(x), where ν is the number of degrees of freedom.

The chi-square distribution is of particular interest when dealing with quantities that are
Gaussian distributed. In fact, the minimization of a chi-square function is an useful and
practical method for the derivation of the best model parameters. Consider a model M with
ν free parameters ξj in order to fit a set of N independent and identically distributed (i.i.d.)
random variables, namely the observations {diobs}, having uncertainties {σi} corresponding
to the standard deviation of their normal distributions. Then, the χ2 function to be built is
represented by

χ2 (ξ1, ξ2, . . . , ξν) =

N∑

i=1

[
di

obs − dith (ξ1, ξ2, . . . , ξν)

σi

]2

, (C.3)

1The gamma function is defined as Γ(n) =
∫∞

0
tn−1e−tdt, con n > 0.
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Table C.2: Most useful values of ∆χ2 for the first three degrees of freedom. Corresponding confidence
levels and confidence coefficients are also reported.

CL zc (σ) ∆χ2
ν=1 ∆χ2

ν=2 ∆χ2
ν=3

50 % 0.6745 0.46 1.39 2.37
68.27 % 1.00 1.00 2.30 3.53

90 % 1.645 2.71 4.60 6.25
94.45 % 2.00 4.00 6.18 8.02

99 % 2.58 6.64 9.21 11.34
99.73 % 3.00 9.00 11.83 14.16

where dith is the value derived according to the model adopted, which clearly depends on the
ν free parameters ξj . Hence, the chi-square function here considered has ν d.o.f..

In analogy to the values presented in Table C.1, it is possible to correlate the probability
given by the area under the chi-square distribution (namely the confidence level if we refer to an
area expressed in percentage), and the increasing amount in χ2 from its minimum, represented
by the x parameter of Eq. (C.1) and usually known as the percentile ∆χ2 (see Figure C.2).
Intuitively, the more we increase ∆χ2, hence a larger confidence level, the higher becomes the
probability that by repeating our measurements infinite times (N → ∞), the limit result will
have a value of χ2 laying in the interval χ2

min to χ2
min +∆χ2. Computations to derive confidence

levels for the chi-square distribution can be easily made for different d.o.f. and are shown in
Table C.2 for some of the most useful cases, as derived with a small IDL code developed by the
author for this purpose2. Tables reporting values of ∆χ2 as a function of the number of d.o.f.
and the confidence level can be found in [281, 252]. It is clear that by increasing the number
of d.o.f. the chi-square distribution flattens and therefore the percentile required for attaining
the same confidence level becomes larger.

C.1.2 Confidence Limits for a Gaussian Likelihood Distribution

Now that the definition of confidence level has been introduced, and the computation in the
case of chi-square distribution given, we focus on an application of particular interest for the
statistical inference that will be of help for a proper understanding of the Bayesian point of
view, i.e. the calculation of confidence levels in the case of a likelihood function. Let us assume
we have a model M, whose hypotheses are formalized with the ν free parameters ξj (briefly the
parameter vector ξ), and a set of N i.i.d. measurements {di}, whose distributions we denote
as p(di | ξ), for i = 1, 2, . . . , N . The likelihood function L (ξ | d,M) of the ν free parameters
ξj , given the N measurements d1, d2, . . . , dN , is then built according to the definition of the
joint probability that N independent events occur simultaneously, namely the product of the
probabilities that each single event occurs

L(ξ | d,M) =
N∏

i=1

p(di | ξ) . (C.4)

Assuming that each measurement di is normally distributed with variance σi, as it may happen
in most of the cases when dealing with measurements of some physical quantity, then the

2The results were derived by integrating Eq. (C.2) with a direct Romberg integration over a fine grid of
2 · 103 values of ∆χ2, in the interval 0 to 15. The choice of this range of values allows to cover approximately
the entire interval of the distribution for a number of d.o.f. up to ν = 3. The integration produces a cumulative
distribution function for each d.o.f.. The desired ∆χ2 value arising from a given CL is then derived by means
of a cubic interpolation of the cumulative distribution function considered.
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Figure C.2: Probability density function f3(x) for a chi-square with three degrees of freedom. Con-
fidence levels of 68.27 % (1σ) and 94.45 % (2σ) are drawn. Percentile values of χ2 are also reported
with an arrow at the end of the interval considered.

likelihood function is built as a product of N Gaussian distributions and is expressed as3

L(ξ | d,M) =
N∏

i=1

1√
2πσi

exp

[
−1

2

(
di
σi

)2
]

=

N∏

i=1

1√
2πσi

exp


−1

2

(
di

obs − dith (ξ)

σi

)2

 ,

(C.5)

where we put di = di
obs − di

th(ξ), namely the difference between the observations and the
predictions for a given physical quantity4. The main property of the likelihood function is that
the position of its maximum in the parameter space built according to the free parameters
ξj , is an estimate of the most likely value of ξ = (ξ1, ξ2, . . . , ξν), hereafter denoted as ξ̄ =(
ξ̄1, ξ̄2, . . . , ξ̄ν

)
. This is done by solving the maximization problem of the likelihood function,

3As already mentioned in Section 5.3, the likelihood function ought to reflect the nature of the data, i.e. the
way data are collected by the observer. In most of the cases, the residuals arising from the difference between
observations and predictions appear to be normal distributed, leading us to the choice of a Gaussian likelihood
as the best representative one. However, Gaussian likelihoods also rely on the assumption that the uncertainties
involved in the problem are correct, that is we consider them to be derived properly, which might not be always
the case especially when dealing with quantities that suffer from some model-dependent method to be measured.
Any systematic contained in the data would be responsible of distorting the Gaussianity of each of the i.i.d.
random variables considered. In order to overcome the problem of the uncertainties, more robust functional
forms of the likelihood function ought to be chosen, as for instance the Median likelihood introduced by [132]
and also adopted in [38] for cosmological studies.

4Referring to the notation used in the text, when measuring some physical quantity di, the least assumption
we can do is to consider our set of observations diobs to be log-normal distributed, which ensures us to deal
correctly with the uncertainties of the problem (see also the discussion in Chapter 6).
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which results into the set of ν equations

∂L

∂ξj
= 0 j = 1, 2, . . . , ν . (C.6)

A more useful method, and of much easier numerical handling, is represented by the mini-
mization of the so-called log-likelihood function5 Λ ≡ lnL (e.g. see [43, 302, 259, 303] for
more details). In fact, by considering the natural logarithm of L we arrive at the Gaussian
log-likelihood

Λ (ξ) = −
N∑

i=1

ln
√

2πσi −
1

2

N∑

i=1

[
di

obs − dith (ξ)

σi

]2

. (C.7)

The first term on the right-hand side of Eq. (C.7) is a constant, hereafter Λ0, while the second
term, in case the variances do not depend upon the free parameters ξj , represents the χ2

function with ν degrees of freedom given by Eq. (C.3). Hence, briefly Λ (ξ) = Λ0 − 1
2χ

2 (ξ).
The inference problem becomes

∂χ2

∂ξj
= −2

∂Λ

∂ξj
= −2

∂ lnL

∂ξj
= − 2

Lmax

∂L

∂ξj
j = 1, 2, . . . , ν , (C.8)

where Lmax = L(ξ̄). Therefore, when σi 6= σi(ξj) for any j and i, the χ2 function, and
the Gaussian likelihood and log-likelihood functions are directly correlated, hence their choice
becomes equivalent for estimating the most likely set of values ξ̄. The properties of the chi-
square distribution (including the derivation of the confidence limits) can be either applied
to the case of a likelihood or log-likelihood function. In this manner confidence intervals for
parameter estimation are derived by simply converting the likelihood function into a chi-square
function with the relation mentioned above. A given confidence level will correspond to a region
in parameter space where the likelihood (or log-likelihood) drops (or increases) by a specified
amount (see Table C.2). The correlation discussed is of great utility for methods based on
likelihood functions, e.g. the Maximum Likelihood Estimation (MLE) method [43, 302, 259].

For the sake of completeness, we consider a one-dimensional case of a parameter φ that
represents the hypotheses of a given model. Let us assume to take into account a function
of the parameter, f(φ). As the confidence intervals are random variables themselves in the
context of frequentist parameter estimation, given they are known for φ, one can derive the
corresponding confidence intervals for f(φ) by means of the error propagation law, which yields

σf =

(
df

dφ

)
σφ , (C.9)

where we denoted as σφ the confidence intervals for φ and with σf the corresponding confidence
intervals for f(φ).

C.2 Credible intervals

As mentioned at the end of the section above, an important feature of the frequentist approach
is that confidence intervals are considered random variables themselves, i.e. they provide a

5In statistical inference the log-likelihood function is greatly more favored than the likelihood one because
it is computationally easier to handle with logarithmic quantities since very high values (or conversely very low
values) are then flattened. This allows to overcome underflow and overflow errors. A practical example of this
case is described in Section C.3 below.
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range of values within which we expect our parameter to fall in a known percentage of the
times by repeating our measurements N → ∞ times. Conversely, in the Bayesian context we
refer to so-called credible intervals, which are evaluated only from the marginal PDF, obtained
as described in Section 5.3. In this case, if a credible interval contains for example the 94.45 %
of the posterior probability mass (i.e. the area under the distribution), then it represents our
degree of belief about the value of the parameter itself. It often happens that credible intervals
are termed confidence intervals because when adopting Gaussian likelihoods, as in most of the
cases, the two results are formally identical, though their interpretation is profoundly different
(see Section C.2.1 for a practical example).

But how can we compute credible intervals from a marginal PDF of some physical quantity?
We shall turn into that in a moment. Before proceeding with the discussion, it is worth to
highlight an important difference between the frequentist and the Bayesian minded way of
considering the proper estimator for a given parameter. Assuming to have some marginal PDF
of a quantity to be estimated, according to the Bayesian’s principle of the degree of belief, the
outcoming value of interest for a Bayesian is not the one corresponding to the modal value of
the distribution (i.e. the most likely value of the parameter, as conversely frequentists do), but
the mean value (or first momentum) of the distribution, also called the expectation value or
simply the expectation of the parameter [44]. Nonetheless, some authors consider the median
value of the marginal PDF (e.g. see [303]) — found as the value that divides the area under the
distribution into two equal parts — as the most credible one despite of its more complicated
derivation. The choice of the latter one usually depends upon the skewness of the distribution,
which is responsible for making median and mean values differ from one another. Although,
in general, the median estimator is able to provide a result that is less affected than the mean
by the presence of any outliers in the distribution, the latter represents in any case the best
parameter estimate that a Bayesian may claim for, as discussed in [44]. The most common
estimators are defined in the following for the one-dimensional case of a quantity φ:

φmodal : p(φmodal) = max
φ

p(φ) (C.10)

φmedian :

∫ φmedian

φmin

p(φ)dφ =

∫ φmax

φmedian

p(φ)dφ =
1

2
(C.11)

φmean =

∫ φmax

φmin

p(φ)φdφ , (C.12)

where p(φ) is the marginal PDF of the parameter.
Once this preamble has been done, we are now able to describe how to derive numerically

the credible intervals of some marginal PDF. Related to this derivation, it important to mention
that different definitions of Bayesian credible intervals are available in literature, as noted by
[44]. For the computation presented in this dissertation we adopt the definition of the shortest
credible intervals, which consist in estimating the intervals by starting from the maximum of
the marginal PDF. In this manner, we ensure to include the largest values of the distribution
for first, hence the resulting credible intervals will be the shortest possible6. For simplicity, we
consider the example of a dimensionless quantity φ, defined in the interval [2, 12].

6Other authors define the credible intervals by starting from the tail points of the distribution, which makes
them the largest intervals possible because the smallest values of the marginal PDF are considered for first.
However, the shortest credible intervals represent the most common choice for most of the Bayesian minded
statisticians.
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C.2.1 Gaussian Marginal PDFs

As a first case, let us assume that the marginal PDF p(φ) is a simple Gaussian function. This
situation is often encountered when adopting Gaussian likelihood functions and flat priors,
as for the Bayesian parameter estimation described in Chapter 6. For our purpose here, we
consider the Gaussian marginal PDF

p(φ) =
1√

2πσφ
exp

[
−1

2

(
φ− φ0

σφ

)2
]

(C.13)

where we put φ0 = 7 and σφ = 1. The result is shown in the left panel of Figure C.3, where
the expectation value of φ is marked with a dashed line. For this symmetric case, we have that
φmean = φmodal = φmedian. The shortest Bayesian credible region marked with a shaded band
is identified by the credible limits (red points) found with our numerical method. The quantity
h denotes the dropping amount in height of the marginal PDF from its maximum to the value
delimited by the credible limits (red line). The ordinates of the upper and lower credible limits
must be the same because they identify equal values of the PDF by definition.

The cumulative histogram of the marginal PDF given by Eq. (C.13), namely the area under
the distribution, denoted as P1, is shown as a function of the height h in the right panel of
Figure C.3. The function P1(h) can be expressed as

P1(h) =

∫ φmodal

φc1 (h)
p(φ)dφ+

∫ φc2 (h)

φmodal

p(φ)dφ (C.14)

whose values are probabilities, hence normalized to unity. The terms φc1(h) and φc2(h) repre-
sent the ordinates of lower and upper credible limits, respectively, which clearly depend upon
the height h. The integral is split into two parts for highlighting the inclusion of the modal value
of the distribution within the range of the credible intervals. The integral can be computed
numerically by means of a simple trapezoidal summation over the range [c1(h), c2(h)]. The
parameter h is chosen in the range [0,maxφ p(φ)], which allows us to compute all the possible
values of P1(h), varying from 0 to 1.

Therefore, we first compute P1(h) for each value of h, assuming a step ∆h ∼ 10−3 maxφ p(φ).
As a second step, supposed we are interested in 68.27 % credible intervals, we identify the
value h∗ corresponding to P1(h∗) = 0.6827 in the cumulative histogram by means of either
a cubic or linear interpolation. Afterwards, we divide the marginal PDF into two parts, the
first ranging from φmin to φmodal (left distribution) and the second from φmodal to φmax (right
distribution). The 68.27 % credible limits φ∗c1 and φ∗c2 are found by means of either a cubic
or linear interpolation to the left and right distributions, respectively, in order to satisfy the
condition

p(φ∗c1) = p(φ∗c2) = max
φ

p(φ)− h∗ . (C.15)

The expectation value φmean is then reported together with the credible intervals φ±CI =∣∣φmean − φ∗c1
∣∣ =

∣∣φmean − φ∗c2
∣∣, which are symmetric with respect to the mean (or equivalently

the mode). For the marginal PDF given by Eq. (C.13), the 68.27 % Bayesian credible intervals
are formally identical to the frequentist 1σ confidence interval computed for the same distribu-
tion, although their meanings remain completely different from one another. In particular, we
describe a substantial difference between the two definitions (frequentist and Bayesian ones) by
considering once again the case of a function f(φ) for which we want to estimate the credible
intervals. In fact, by adopting Eq. (5.9) introduced in Chapter 5, we have that

p (f) = p(φ)

∣∣∣∣
dφ

df

∣∣∣∣ , (C.16)
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Figure C.3: Left panel: Gaussian (symmetric) marginal PDF of a dimensionless parameter φ. 68.27
% Bayesian credible region is marked with a shaded band. The mean value of φ is reported with a dashed
vertical line. Red points represent the credible limits to the shaded region, while the arrow indicates the
dropping amount in height of the distribution from its maximum (black point) to the value corresponding
to the credible limits (red line). Right panel: Cumulative distribution of the area under the marginal
PDF as computed from its maximum (h = 0). The shaded region corresponds to the amount in h that
gives the 68.27 % of the total area (red point and red dashed line).

namely, since we are dealing with PDFs, first we must evaluate the corresponding marginal PDF
p [f(φ)], then we apply to it the method described above. As it appears clear, this procedure
is completely different from the one described for the frequentist case in Section C.1.2. In fact,
Bayesian credible intervals are not random variables: they represent our degree of belief upon
the model investigated or, in simpler words, the “elbow” of the model.

C.2.2 Generalization to Asymmetric Marginal PDFs

We have seen the case of a symmetric marginal PDF, which is clearly the simplest situation
we can deal with. In fact, it may happen that the Bayesian inference problem involves either
non-uniform priors or a likelihood function that differs from the Gaussian one. This may lead
us to a final marginal PDF having an irregular shape. For treating this case, we consider the
example of an asymmetric marginal PDF for the parameter φ, expressed as

p(φ) =
1

2
√

2π

{
1

σφ,1
exp

[
−1

2

(
φ− φ1

σφ,1

)2
]

+
1

σφ,2
exp

[
−1

2

(
φ− φ2

σφ,2

)2
]}

(C.17)

where we put φ1 = 7, σφ,1 = 1, φ2 = 6, σφ,2 = 0.4. The result is shown in the left panel
of Figure C.4, which adopts the same notation to that used for Figure C.3. As one can see
immediately, the expectation value of φ (dashed vertical line) is now differing from φmodal

(black dot) because the distribution is not symmetric anymore.
Altogether, we are still able to compute the confidence limits with the same method used

for the symmetric case, because we are able to evaluate the cumulative distribution P1(h)
straightforwardly (right panel of Figure C.4). The only difference to the previous case is
that now the values φ∗c1 and φ∗c2 are not symmetric with respect to φmodal. Therefore, the
expectation value φmean has to be reported with two different credible intervals, computed as
φ−CI = φmean − φ∗c1 and φ+

CI = φ∗c2 − φmean. It is obvious that, for this asymmetric case the
analogy with the Gaussian confidence limits does not hold anymore.
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Figure C.4: Left panel: asymmetric marginal PDF of a dimensionless parameter φ. 68.27 % Bayesian
credible region is marked with a shaded band. The mean value of φ is reported with a dashed vertical
line. Red points represent the credible limits to the shaded region, while the arrow indicates the dropping
amount in height of the distribution from its maximum (black point) to the value corresponding to the
credible limits (red line). Right panel: Cumulative distribution of the area under the marginal PDF as
computed from its maximum (h = 0). The shaded region corresponds to the amount in h that gives the
68.27 % of the total area (red point and red dashed line).

C.3 Computing the Bayesian evidence

In most of the problems encountered in Bayesian statistics, we are often unable to compute
analytically he Bayesian evidence introduced by Eq. (5.29), hereafter EM. This happens be-
cause the integrand function of Eq. (5.29) has usually a complicated dependence upon the free
parameters of the problem, and because a large number of free parameters, i.e. of dimensions,
is taken into account. A nice example concerning this aspect is given can be found in the case
of a likelihood function given by Eq. (6.27), which was used for the set of amplitude measure-
ments investigated in Chapter 6 . In fact, a particular numerical method has been adopted for
computing EM in the k-dimensional cases up to k = 4, as we shall describe in the following.
From now on, we shall adopt the same notation used in Chapter 6, referring to the parameter
vector ξ = {ξ1, ξ2, . . . , ξk} and to the models there discussed, which we will simply denote as
M in general.

First of all, in order to avoid underflow errors in our computations, we consider a modified
version of the log-likelihood Λ(ξ) given by Eq. (C.7), which is

Λ̂(ξ) ≡ Λ(ξ)− Λmax , (C.18)

where Λmax is simply the maximum value of Λ found in the inference problem (see Section 6.3).
Since Λ shows very negative values (∼ −103 dex), as reported in Tables 6.2, 6.3, and 6.4, by
subtracting its maximum we can deal with larger values, numerically easier to be handled.
Thus, the likelihood function L(ξ) can be expressed as

L(ξ) = A exp
[
Λ̂(ξ)

]
= A L̂(ξ) , (C.19)

where A = exp (Λmax) is a constant and L̂(ξ) is the modified likelihood function.
After this preliminary manipulation, we can comeback to the problem of computing EM.

Let us assume to include flat priors (i.e. uniform priors made proper, see the discussion in
Chapter 5) in our problem, as it happens in many cases studied indeed, especially for the one
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Table C.3: Natural logarithms of Bayesian evidence lnEM for each model as derived by means of
Eqs. (C.22) and for the three cases of sample considered in Chapter 6. The shaded row shows the model
having the largest evidences among the others.

Model lnEM lnE
(SC)
M lnE

(LC)
M

M1 −3544.7 −331.1 −808.8
M1,β −2507.2 −213.0 −750.3
M2 −4171.4 −453.5 −778.6
M4 −962.4 −105.9 194.4
M4,β 145.2 2.9 284.7
M5 −930.8 −87.5 −363.1
M5,β −796.9 −89.1 −318.0
M6 −735.6 −86.8 −363.9
M6,β −735.4 −70.4 −318.6

dealing with the amplitude scaling relations discussed in Chapter 6. Since flat priors have to
satisfy the normalization condition

∫

ΩM

π (ξ |M) dξ = 1 (C.20)

we obtain that π(ξ |M) = V−1
M , where

VM = (ξmax
1 − ξmin

1 ) · (ξmax
2 − ξmin

2 ) . . . (ξmax
k − ξmin

k ) . (C.21)

is the hyper-volume of the parameter space ΩM, namely the simple product of the intervals
considered for the free parameters. As a note of caution, one should keep in mind that when
computing the evidence for a set of models, the intervals of the free parameters must be the
same for all the models considered. In addition, the hyper-volume VM depends upon the
dimensionality of the model because the corresponding parameter space ΩM may differ from
one model to another according to the free parameters involved.

Therefore, taking into account the advantage of having flat priors, and by means of Eq. (C.19),
Eq. (5.29) can be rearranged to provide a logarithmic expression of the evidence, i.e.

lnEM = ln

∫

ΩM

L̂(ξ)dξ + Λmax − lnVM . (C.22)

which is extremely useful for our computations. In fact, the integral appearing in the right-hand
side of Eq. (C.22), namely the multidimensional integral of the modified likelihood function
over the entire parameter space, can be evaluated with a direct numerical integration for up to
k = 4 dimensions at least, as we shall discuss in the section below.

Referring to the study described in Chapter 6, the natural logarithms of the evidence, lnEi,
for each model Mi, have been computed according to the method described in this section and
are listed in Table C.3 for the three samples described in Chapter 6, Section 6.1.

C.3.1 Multidimensional Integration

As discussed in [259], multidimensional integrals are often a very difficult task by a numerical
point of view. However, the problem can be addressed in most of the cases, depending on
the complexity of the boundary of the region of integration, the smoothness of the integrand
function and the accuracy level one wants to reach [259].
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For the analysis described in Chapter 6, we deal with a very simple boundary, namely the one
of the parameter space ΩM given by Eq. (5.12), a smoothed function (i.e. a multidimensional
Gaussian profile), and we aim at reaching a good accuracy level in our computations as it is
fundamental for a reliable model comparison. According to the numerical methods described
in [259], we split the multidimensional integration into a series of one-dimensional integrals,
which represent one of the most effective and fast methods to adopt for solving our problem.
For explaining the method in more detail, let consider the example of a function f(ξ1, ξ2, ξ3),
depending on the three free parameters ξi. Suppose we are interested in estimating the three-
dimensional integral

I ≡
∫∫∫

ΩM

f(ξ1, ξ2, ξ3)dξ1dξ2dξ3

=

∫ ξmax
1

ξmin
1

dξ1

∫ ξmax
2

ξmin
2

dξ2

∫ ξmax
3

ξmin
3

f(ξ1, ξ2, ξ3)dξ3

(C.23)

where we considered the simple parameter space

ΩM =
[
ξmin

1 , ξmax
1

]
×
[
ξmin

2 , ξmax
2

]
×
[
ξmin

3 , ξmax
3

]
. (C.24)

We can define a function g(ξ1, ξ2) that does the innermost integral, namely

g(ξ1, ξ2) =

∫ ξmax
3

ξmin
3

f(ξ1, ξ2, ξ3)dξ3 , (C.25)

and subsequently another function h(ξ1) that does the integral of g(ξ1, ξ2)

h(ξ1) =

∫ ξmax
2

ξmin
2

g(ξ1, ξ2)dξ2 . (C.26)

The integral I is then simply computed as the one-dimensional integral

I =

∫ ξmax
1

ξmin
1

h(ξ1)dξ1 . (C.27)

This method can be, in principle, extended to any dimension by defining iteratively new func-
tions that depend upon a reduced number of free parameters. For each one-dimensional compu-
tation, we have adopted the IDL routine int_tabulated, which evaluates one-dimensional
integrals for tabulated functions, i.e. a given vector containing the values of the function to be
integrated. In particular, for the evidence given by Eq. (C.22), the integrand function L̂(ξ) is
basically that of Eq. (6.27) — apart from the constant term exp (−Λmax) — which we tabu-
lated for a grid of values for all the models described in Chapter 6. Thus, the method described
above can be applied to the case of L̂(ξ) — given in the form of a multidimensional matrix —
by simply passing to the routine a one-dimensional matrix depending on the free parameter we
want to integrate for, and repeating this procedure iteratively within a loop that fixes at each
step different values of the remaining variables upon which the function depends.

The method has proved to be very efficient and fast for up to 106 tabulated values of
the integrand function. The resulting integrals have been compared to those derived from
integrations made by means of MCMC simulations to the posterior PDF, showing a very good
agreement.
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C.3.2 The Newton-Cotes Formulas

For gaining more feeling about the integration technique implemented in the IDL routine
int_tabulated we will explain it in the following. The routine exploits the so-called five
point Newton-Cotes formula over a closed intervals of values. Such formula belongs to the family
of Newton-Cotes formulas7, or quadrature formulas, of numerical integration techniques, and
it is also known as the Boole’s rule.

We consider the general example of a function f(x) to be integrated over the closed interval
[a, b]. For a n-point Newton-Cotes formula, we divide the integral into n − 1 parts having
same length, h = (b − a)/(n − 1), which determines the points x1 = a, x2 = a + h, x3 =
a + 2h, . . . , xn−1 = a + (n − 2)h, xn = a + (n − 1)h = b. We then define the function in the
regularly spaced points xi so that fi = f(xi). Thus, we have the analytical expression

∫ b

a
f(x)dx =

∫ xn

x1

Pn(x)dx = h
n∑

i=1

Hn,ifi , (C.28)

where

Hn,r+1 =
(−1)n−r

r!(n− r)!

∫ n

0
t(t− 1) . . . (t− r + 1)(t− r − 1) . . . (t− n)dt . (C.29)

In particular, Pn(x) is the so-called Lagrange Interpolating Polynomial8 and it is a polynomial
of degree ≤ (n−1) that passes through the n points defined, in order to reproduce the function
f(x) in the given range. We have that

Pn(x) =
n∑

j=1

Pj(x) , (C.30)

where

Pj(x) =

n∏

k=1,k 6=j

x− xk
xj − xk

fj (C.31)

In the case of n = 5, which is used by int_tabulate, the Boole’s rule is then expressed as

∫ b

a
f(x)dx =

∫ x1+4h

x1

P5(x)dx =
2

45
h [7(f1 + f5) + 32(f2 + f4) + 12f3] , (C.32)

where the function is replaced by the fourth-order Lagrange interpolating polynomial, P5(x).
When adopting grids that present a large number of values (e.g. n > 100), int_tabulated
computes a new grid of values having nnew > n so that (nnew mod 4) = 0, by means of a cubic-
spline interpolation to the values of the tabulated function. Subsequently, the Boole’s rule is
applied consecutively to each group of five points of the new grid of values, from x1 to xnnew .
Since the method is repeated m = nnew/4 times, the final integral is thus given as

∫ b

a
f(x)dx =

m−1∑

i=0

∫ x1+(i+1)4h

x1+i4h
P5(x)dx . (C.33)

7Weisstein, Eric W. "Newton-Cotes Formulas." From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Newton-CotesFormulas.html.

8Archer, Branden and Weisstein, Eric W. "Lagrange Interpolating Polynomial." From MathWorld–A Wol-
fram Web Resource. http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html.
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C.3 Computing the Bayesian evidence

In cases the integrand function is not very smooth within each interval [x1 + i4h, x1 +(i+1)4h],
the adoption of a larger number of grid points for the input tabulated function may be required.
Lastly, the error to a single application of the Boole’s rule is given by

8

945
h7f (6)(ξ) , (C.34)

ξ being a value within the closed interval [a, b] and f (6) the sixth-order derivative of f(x). For
the case described above, having a grid of nnew points, the corresponding error in the total
integral is

8

945
mh7f (6)(ξ) , (C.35)

namely m-times the error of a single application, with m the number of groups containing
5-points each.
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D Principal Component Analysis

Although numerical techniques for the exploration and sampling of high-dimensionality param-
eter spaces, such as the MCMC method described in this dissertation, have nowadays reached
a high level of performance for attaining the outcomes, it is sometimes useful to optimize their
efficiency by introducing analysis techniques that deal with multivariate statistics and whose
notion is presented in this appendix. The method described here is known as Principal Com-
ponent Analysis (PCA). Our choice to dedicate an appendix to this method relies on the fact
that it is employed within the Bayesian star spot modeling described in Chapter 7. However,
the reader should note that this argument can be treated separately from the discussion about
Bayesian statistics and that PCA represents a numerical technique aimed at improving the
computational speed of the calculations (thus not essential to bring off an entire analysis).

PCA is in origin a mathematical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated variables (e.g. the parameters of a model)
into a set of values of uncorrelated variables that are called principal components (PCs). Clearly,
the number of principal components is less than or equal to the number of original variables.
This transformation is defined in such a way that the first principal component has as high a
variance as possible (that is, accounts for as much of the variability in the data as possible),
and each succeeding component in turn has the highest variance possible under the constraint
that it be orthogonal to (uncorrelated with) the preceding components.

It is generally accepted that the earliest descriptions of PCA were given in 1901 by Karl
Pearson [253] and in 1933 by Harold Hotelling [156]. PCA is now mostly used as a tool
in exploratory data analysis and for the developing of predictive models. It is analytically
performed through an eigenvalue decomposition (ED) of a data covariance matrix, although
it can be numerically computed by a singular value decomposition (SVD) of a data matrix.
Moreover it is the simplest of the true eigenvector-based multivariate analyses. Often, its
operation can be thought of as a revealing of the internal structure of the data in a way
which best explains the variance in the data. If a multivariate dataset is visualized as a set of
coordinates in a high dimensional data space (one axis per variable, as in the case of parameter
spaces used within Bayesian inference), PCA can supply the user with a lower-dimensional
picture, a "shadow" say, of this space as viewed from its most informative viewpoint. This
is done by using only the first few principal components so that the dimensionality of the
transformed data is reduced.

However, for an exhaustive explanation of PCA the introduction of some new statistical
notions is required, which we briefly illustrate below [143]. In probability theory and statistics,
the multivariate normal distribution or multivariate Gaussian distribution, is a generalization
of the one-dimensional (univariate) normal distribution to higher dimensions. A random vector
x of elements x1, x2, . . . , xp is said to be multivariate normally distributed if every linear combi-
nation of its components y = a1x1+a2x2+· · ·+apxp has a univariate normal distribution. That
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is, for any constant vector a ∈ Rp, such that a = (a1, a2, . . . , ap), the random variable y = a′x,
where a′ denotes the transpose, is normally distributed. The multivariate normal distribution
is often used to describe, at least approximately, any set of (possibly) correlated real-valued
random variables, each of which clusters around a mean value. The reason for introducing these
definitions relies on the fact that PCs are guaranteed to be independent only if the data set is
jointly normally distributed. This means that, considering two random vectors x and y to be
jointly normally distributed, the pair (x,y) must have a bivariate (two-dimensional) normal
distribution. Lastly, it is a common notation to refer to a multivariate normal distribution of a
p-dimensional random vector x = (x1, x2, . . . , xp) as x ∼ N(µ,Σ), where µ is the p-dimensional
vector of the mean values and Σ is the (p × p) covariance matrix. In a two-dimensional case
the bivariate density function of two vectors x and y, having mean values µx, µy and standard
deviations σx and σy respectively, is given by

f(x, y) = A exp

[
− 1

2(1− ρ2)

(
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µ− x)(y − µy)
σxσy

)]
, (D.1)

where
A =

1

2π
√

(1− ρ2)σxσy
,

and ρ is the correlation term of the associated covariance matrix

Σ =

(
σ2
x ρσxσy

ρσyσx σ2
y

)
.

D.1 Principal Components

As already announced, the central idea of PCA is to reduce the dimensionality of a dataset
consisting of a large number of interrelated variables, while retaining as much as possible of
the variation contained in the data. This is achieved by transforming the old set of parameters
into a new set of variables (PCs), which are completely uncorrelated and ordered so that the
first few retain most of the variation present in all of the original variables.

For the purpose of providing an exhaustive and pivotal explanation of the argument, we will
follow the mathematical approach used in [176]. Suppose that x is a vector of p random variables
(e.g. the parameters of a spot modeling) and the structures of covariances or correlations
between the p variables are of interest. Therefore, let be x ∈ Mp, where Mp ⊂ Rp is a p-
dimensional vector space of multivariate normally distributed random vectors. Unless p is
small, or the structure is very simple, it will often not be very helpful to simply look at the p
variances and all of the 1

2p(p − 1) correlations or covariances. Alternatively one can look for
a few (� p) derived variables that preserve most of the information given by these variances
and correlations or covariances. PCA represents an alternative that concentrates on variances,
although covariances and correlations are not ignored.

The first step consists in finding a linear function of the elements of x (i.e. a linear com-
bination of its elements) having maximum variance, which we will denote as z1(x), or briefly
z1, where z1 : Mp 7→ R. By adopting a vector a1 ∈ Rp, of p constants a11, a12, . . . , a1p, we can
write the function z1(x) as the product a′1x, where a′1 is the transpose, so that

z1(x) = a′1x = a1x1 + a2x2 + · · ·+ apxp =

p∑

j=1

a1jxj . (D.2)
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Figure 1.1. Plot of 50 observations on two variables x1,x2.

Although PCA does not ignore covariances and correlations, it concen-
trates on variances. The first step is to look for a linear function α′

1x of
the elements of x having maximum variance, where α1 is a vector of p
constants α11, α12, . . . , α1p, and ′ denotes transpose, so that

α′
1x = α11x1 + α12x2 + · · · + α1pxp =

p∑

j=1

α1jxj .

Next, look for a linear function α′
2x, uncorrelated with α′

1x having max-
imum variance, and so on, so that at the kth stage a linear function α′

kx
is found that has maximum variance subject to being uncorrelated with
α′

1x, α′
2x, . . . ,α′

k−1x. The kth derived variable, α′
kx is the kth PC. Up to

p PCs could be found, but it is hoped, in general, that most of the vari-
ation in x will be accounted for by m PCs, where m ! p. The reduction
in complexity achieved by transforming the original variables to PCs will
be demonstrated in many examples later in the book, but it will be useful
here to consider first the unrealistic, but simple, case where p = 2. The
advantage of p = 2 is, of course, that the data can be plotted exactly in
two dimensions.

Figure D.1: Plot of the 50 observations on two variables x1, x2.

The next step is to look for a linear function z2(x) = a′2x, uncorrelated with z1(x), having
maximum variance, and so on, so that at the kth stage a linear function zk(x) = a′kx is
found to have maximum variance subject to being uncorrelated with z1(x), z2(x), . . . , zk−1(x).
Therefore, the kth derived variable, a′kx is the kth PC. Of course, up to p PCs could be found,
but it is hoped in general that most of the variation in x will be accounted for by m PCs, where
m � p. The reduction in complexity attained by transforming the original variables to PCs
can be demonstrated by adopting an unrealistic, but simple, case where p = 2. The advantage
of p = 2 is, of course, that the data can be plotted exactly in two dimensions. Assume we
have a series of 50 observations1 on two highly correlated variables x1, x2 and that there is
a considerable variation in both variables, though rather more in the direction of x2 than x1,
as shown in Figure D.1. If we transform the variables to the PCs z1, z2 we obtain the plot
shown in Figure D.2. It is clear that most of the variation occurs in the direction of z1 than in
either of the original variables, but very little variation in the direction of z2. More generally,
if p (> 2) random variables have significant correlation among them, then the first few PCs
will account for most of the variation in the original variables. Conversely, the last few PCs
identify directions in which there is a very little variation; that is, they identify near-constant
linear relationships among the original variables.

D.2 PCs as ED of a Covariance Matrix

Having defined PCs, it is useful to know how to derive them analytically. Let us consider the
case where the vector of random variables x has a known covariance matrix Σ. The element
Σij is the (known) covariance between the ith and jth elements of x when i 6= j (Σij = σiσj),

1We generally use the name observations for indicating any type of input information. In the case of star
spot modeling presented in this thesis, the observations correspond to the sampling points of the posterior pdf.
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Figure 1.2. Plot of the 50 observations from Figure 1.1 with respect to their PCs
z1, z2.

Figure 1.1 gives a plot of 50 observations on two highly correlated vari-
ables x1, x2 . There is considerable variation in both variables, though
rather more in the direction of x2 than x1. If we transform to PCs z1, z2,
we obtain the plot given in Figure 1.2.

It is clear that there is greater variation in the direction of z1 than in
either of the original variables, but very little variation in the direction of
z2. More generally, if a set of p (> 2) variables has substantial correlations
among them, then the first few PCs will account for most of the variation
in the original variables. Conversely, the last few PCs identify directions
in which there is very little variation; that is, they identify near-constant
linear relationships among the original variables.

As a taster of the many examples to come later in the book, Figure 1.3
provides a plot of the values of the first two principal components in a
7-variable example. The data presented here consist of seven anatomical
measurements on 28 students, 11 women and 17 men. This data set and
similar ones for other groups of students are discussed in more detail in
Sections 4.1 and 5.1. The important thing to note here is that the first two
PCs account for 80 percent of the total variation in the data set, so that the

Figure D.2: Plot of the 50 observations with respect to their PCs z1, z2.

and variance of the jth element of x when i = j (Σjj = σ2
j ). In the more realistic case, where

Σ is unknown, such matrix is replaced by a sample covariance matrix2 S. However, it turns
out that for k = 1, 2, . . . , p, the kth PC is given by zk = a′kx where ak is an eigenvector of Σ
corresponding to its kth largest eigenvalue λk. Furthermore, if ak is chosen to have unit length,
i.e. a′kak = 1, then the variance of zk gives var [zk] = λk.

The following derivation of PCs is the standard one discussed in many multivariate text-
books. To derive the form of PCs, consider first the product a′1x, as for the definition; the
vector a1 must maximize the variance var [a′1x] = a′1Σa1. It is clear that, as it stands, the
maximum will not be achieved for a finite a1 so a normalization constraint must be imposed.
The constraint used in this derivation3 is a′1a1 = 1, that is, the sum of squares of elements of
a1 equals 1. To maximize a′1Σa1 subject to a′1a1 = 1, the standard approach is to use the
technique of Lagrange multipliers. Maximize

a′1Σa1 − λ(a′1a1 − 1) , (D.3)

where λ is a Lagrange multiplier. Differentiation with respect to a1 gives

Σa1 − λa1 = 0 , (D.4)

or
(Σ− λIp)a1 = 0 , (D.5)

2A thorough discussion about this case goes beyond the arguments we intend to fulfill. Further details can
be found in [176].

3Other constraints can be used, as for example maxj | a1j | may be more useful in other circumstances.
However, the use of constraints other than a′1a1 = 1 in the derivation leads to a more difficult optimization
problem, and it will produce a set of derived variables different from the PCs.
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where Ip is the (p× p) identity matrix. Thus, λ is an eigenvalue of Σ and a1 its corresponding
eigenvector. Since we considered a p-dimensional problem, p different eigenvectors will be then
derived. To decide which of them gives a′1x with maximum variance, note that the quantity
to be maximized is

a′1Σa1 = a′1λa1 = λa′1a1 = λ , (D.6)

so λ must be as large as possible. Thus, a1 is the eigenvector corresponding to the largest
eigenvalue of Σ, and var [a′1x] = a′1Σa1 = λ1, the largest eigenvalue.

In general, the kth PC of x is a′kx and var [a′kx] = λk, where λk is the kth largest eigenvalue
of Σ, and ak its corresponding eigenvector. This will now be proved for k = 2; the proof for
k ≥ 3 is slightly more complicated, but very similar. Obviously, the second PC, a′2x, maximizes
a′2Σa2 subject to being uncorrelated with a′1x, or equivalently subject to cov [a′1x,a′2x] = 0,
where we denoted as cov(x, y) the covariance between the two random variables x and y.
Anyhow we should keep in mind that

cov
[
a′1x,a′2x

]
= a′1Σa2 = a′2Σa1 = a′2λ1a1 = λ1a

′
2a1 = λ2a

′
1a2 . (D.7)

Thus, any of the equations a′1Σa2 = 0, a′2Σa1 = 0, a′2a1 = 0, λ2a
′
1a2 = 0 could be used to

express zero correlation between the two PCs. By choosing the last equation (arbitrary choice)
we have to maximize the quantity a′2Σa2, but subject to the conditions a′2a2 = 1 and a′2a1 = 0.
By adopting the technique of the Lagrange multipliers once more, we have to maximize the
quantity

a′2Σa2 − λ(a′2a2 − 1)− φa′2a1 , (D.8)

where λ and φ are the two Lagrange multipliers. Differentiation with respect to a2 gives

Σa2 − λa2 − φa1 = 0 , (D.9)

and by multiplying on the left by a′1 we have

a′1Σa2 − λa′1a2 − φa′1a1 = 0 , (D.10)

which, since the first two terms on the right-hand side are zero and a′1a1 = 1, reduces to φ = 0.
Hence, we obtain again the eigenvalues problem Σa2−λa2 = 0 or equivalently (Σ−λIp)a2 = 0,
so λ represents once more an eigenvalue of Σ, and a2 its corresponding eigenvector.

Since λ = a′2Σa2, so λ has to be as large as possible. Assuming that Σ does not have
repeated eigenvalues, λ cannot equal λ1. If it did, it follows that a2 = a1, violating the
constraint a′1a2 = 0. Hence λ is the second largest eigenvalue of Σ, and a2 is the corresponding
eigenvector.

As stated above, it can be shown that the for third, fourth, ..., pth PCs, the vectors of
coefficients a3,a4, . . . ,ap are the eigenvectors of Σ corresponding to λ3, λ4, . . . , λp, the third
and fourth largest, ..., and the smallest eigenvalue, respectively. Furthermore

var
[
a′kx

]
= λk for k = 1, 2, . . . , p . (D.11)

D.3 Singular Value Decomposition

We shall now discuss a powerful method used to perform numerically a dimensionality reduction
of a given parameter space (represented by the dataset mentioned above) accordingly to the
PCA here described. Thus, we shall discuss about the singular value decomposition. SVD,
which is usually the method of choice for solving most linear least-squares problems. We will
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outline its relevant theory in this section, in order to furnish a general understanding of the
problem, since a depth discussion about the argument goes beyond our scope4. SVD methods
are based on the following theorem of linear algebra, whose proof will not be provided in this
work:

Theorem 2. Any m×n matrix A can be written as the product of an m×n column-orthogonal
matrix U, an n × n diagonal matrix M with positive or zero elements (the singular values),
and the transpose of a n× n orthogonal matrix V.

Depending on the dimensionality of the problem, the SVD of a matrix A, expressed as

A = UWVT , (D.12)

can produce an overdetermined situation of more equations than unknowns, m > n, or con-
versely an undetermined situation of fewer equations than unknowns, m < n. Moreover, the
matrix V is orthogonal in the sense that its columns are orthonormal,

n−1∑

j=0

vjkvjl = δk,l ,
0 ≤ k ≤ n− 1

0 ≤ l ≤ n− 1
(D.13)

that is, VTV = 1. Since V is square, it is also row-orthonormal, VVT = 1. The rows of
the matrix VT contain the elements of the right singular vectors, {vp}, for p = 0, 1, . . . , n− 1.
When m ≥ n, the matrix U is also column orthogonal,

n−1∑

j=0

ujkujl = δk,l ,
0 ≤ k ≤ n− 1

0 ≤ l ≤ n− 1
(D.14)

that is, UTU = 1. The columns of U are called the left singular vectors, {uq}, for q =
0, 1 . . . ,m− 1. In the case of an undetermined problem, m < n, then two possibilities rise up:

• The singular values wj , i.e. the elements of the diagonal matrix W, for j = m,m +
1, . . . , n− 1, are all zero.

• The corresponding columns of U are also zero. Eq. (D.14) then only holds for k, l ≤ n−1.

A remarkable note about the strength of the SVD analysis is that the decomposition A =
U W VT can always be done, no matter how singular the matrix is. By convention, the
ordering of the singular vectors is determined by high-to-low sorting of singular values, with
the highest singular value in the upper left index of the W matrix. Also note that for a square,
symmetric matrix A, singular value decomposition is equivalent to diagonalization, or solution
of the eigenvalue problem.

D.4 Calculation of SVD

Therefore, we can now proceed in describing how to calculate SVD and associate the singular
vectors to the PCs defined above5 by adopting some practical case.

Taking the advantage of the notation introduced in the section before, let A denote a m×n
real-valued data matrix of rank r, where, without loss of generality,m ≥ n and r ≤ n. Moreover,

4For further details and a computational treatment of SVD we refer to [259].
5More details and applications can be found in [314] and references therein.
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we denote as gi, for i = 0, 1, . . . ,m− 1 the n-dimensional vector formed by the elements of the
ith row of A and in the same way aj , for j = 0, 1, . . . , n− 1, the m-dimensional vector formed
by the elements of the jth column of A. Therefore, the singular value decomposition of A is
represented by Eq. (D.12). Thus, W = diag (w0, w1, . . . , wn−1) with wk > 0 for 0 ≤ k ≤ r − 1
and wk = 0 for r ≤ k ≤ n− 1.

One way to calculate the SVD is to first calculate VT and W by diagonalizing the n × n
matrix ATA, and then to calculate U. In fact, since (UWVT )T = VWTUT , we have that

ATA = VWTUTUWVT = VW2VT , (D.15)

where clearly UTU = 1 and WTW = W2. Hence U can be evaluated as follows

U = AVW−1 , (D.16)

where the r, . . . , n− 1 columns of V for which wk = 0 are ignored in the matrix multiplication
of Eq. (D.15). Choices for the remaining n − r singular vectors in V or U may be calculated
using the Gram-Schmidt orthogonalization process or some other extension method. On the
other hand one can decide to calculate U and W by diagonalizing the m×m matrix AAT and
then calculate VT instead. This yields to

AAT = UWVT (UWVT )T = UWVTVWTUT = UW2UT , (D.17)

equivalently to Eq. (D.15). Therefore we can derive VT as

VT = W−1UTA . (D.18)

However, a direct relation between PCA and SVD occurs in the case where principal com-
ponents are calculated from the covariance matrix (see Section D.2) and we investigate it
here. If one conditions the data matrix A by centering each column6, then the n × n matrix
ATA = gTi gj =

∑n−1
k=0 g

k
i g

k
j is proportional to the n×n covariance matrix of the column vectors

ak. In fact, since the covariance between two m-dimensional vectors ai and aj is given as

C(ai,aj) =
1

m− 1

m−1∑

k=0

(aki − 〈ai〉)(akj − 〈aj〉) , (D.19)

where aki denotes the kth element of the column vector ai and 〈ai〉 its mean value (which is
chosen to be zero in this case), we have the n× n covariance matrix Σn as

Σn = ‖C(ai,aj)‖ for i, j = 0, 1, . . . , n− 1 . (D.20)

By means of Eq. (D.15) diagonalization of ATA yields VT , which also yields the principal
components of the set of n-dimensional row vectors {gi}. So, the right singular vectors {vk}
are the same as the principal components of {gi}, being the eigenvectors of ATA. Moreover,
its eigenvalues are given by w2

k, for k = 0, 1, . . . , n− 1, which are proportional to the variances
of the principal components. From Eq. (D.12) the matrix UW then contains the principal
component scores, which are the values of the new set of coordinates {vk} with respect to the
old set {gk}, in the space of principal components.

If instead each row of A is centered, then the m×m matrix AAT = aia
T
j =

∑m−1
k=0 a

k
i a
k
j is

proportional to the m×m covariance matrix of the row vectors gk, which is given as

Σm = ‖C(gi,gj)‖ for i, j = 0, 1, . . . ,m− 1 , (D.21)
6Centering a vector means to apply a linear transformation that shifts its elements in order to give a zero

mean.
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where the covariance between two n-dimensional vectors gi and gj is expressed as

C(gi,gj) =
1

n− 1

n−1∑

k=0

(gki − 〈gi〉)(gkj − 〈gj〉) , (D.22)

in which again gki denotes the kth element of the row vector gi and 〈gi〉 its mean value (zero). In
this case the left singular vectors {uk} are the same as the principal components of the set ofm-
dimensional column vectors {ak}, since they are the eigenvectors of AAT . The eigenvalues w2

k

for k = 0, 1, . . . ,m−1 are once more proportional to the variances of the principal components.
Hence, as Eq. (D.12) suggests the matrix WVT contains again the principal component scores,
which are the values of the new set of coordinates {uk} with respect to the old set {ak}, in the
space of principal components.

The application of PCA and SVD to Bayesian modelings consists in having a data matrix
formed by the values of the posterior probability density function and hence the set of coordi-
nates we are interested in reducing in number refers to the set of free parameters that formalize
the hypotheses of our model. Therefore, the purpose becomes to reduce the dimensionality
of the parameter space in order to simplify its exploration and sampling by means of MCMC
when high-dimensionality problems have to be addressed. In the case of the Bayesian spot
modeling presented in this dissertation it was empirically proved that PCA furnishes a very
helpful method for reducing the computational effort required for the exploration of parameter
space in the case of a large number of free parameters (N > 100).
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