
 Università degli Studi Di Catania

Dipartimento di Ingegneria

 Informatica e delle Telecomunicazioni

DOTTORATO DI RICERCA IN INGEGNERIA

INFORMATICA E DELLE TELECOMUNICAZIONI

XXIII CICLO

A Semantic-Based and Adaptive

Architecture for Automatic

Multimedia Retrieval Composition

Carmelo Pino

Il Coordinatore

Prof. O. Mirabella

Il Tutor

Prof.ssa D. Giordano

Abstract

In this thesis, we present a MMR (Multimedia Retrieval) system that is multi-

domain and task independent. The use of MMR systems for different domains

and tasks poses several limitations, mainly related to poor flexibility and

adaptability to the different domains and user requirements. Therefore, it is

desirable to have systems capable to automatically adapt to the domain they

deal with. Another issue with MMR systems regards the relevance of the

results that, as is known, depends strongly on the specific task. In order to

address that, a retrieval system must be able to adapt automatically to a specific

context and domain respecting the constraints imposed by the user and by the

notion of relevance that one would like to apply. This, of course, implies that

the system must understand what are the low-level features that fit a given

purpose and which sequence of steps may produce satisfying results. In this

thesis, a semantic-based system that uses ontologies for describing not only the

application domain but also the algorithm‘s steps to be performed for

respecting user‘s and domain requirements is proposed. More in detail, an

ii Abstract

ontological model, defined by the user, allows the system to adapt the retrieval

mechanism to the application domain. Specifically, a user, by his/her requests,

can choose from a set of predefined OWL ontology models and can add

constraints/concepts to these models in order to formulate accurate and specific

requests. According to the instances generated for each request, the system

generates the interfaces (GUI) for the retrieval system specific for the domain

(e.g. music, video, images) by a procedure self-guided by the defined ontology.

Some examples of ontology-based GUI auto-composition and their related

performance will be shown. Finally, the proposed architecture is scalable and

flexible because of 1) a mechanism that allows an easy definition of new

multimedia processing algorithms and 2) the use of semantic web-oriented

technologies.

iii

Acknowledgments

I would like to thank my supervisor, Prof. Daniela Giordano for her guidance

while undertaking this challenging work, especially for introducing to me the

problem to research and for the many ideas that she has given me to

explore. Much gratitude goes to Giordano Buscemi and Giuseppe Santoro,

respectively, for setting up the first prototype of the architecture and for the

feature modeling part. Thanks are also due to my friends and collaborators

Isaak and Concetto who have always supported me in realizing this thesis. A

very special thank goes to my parents, my sister Danila, and my beloved Laura

for having always believed in me.

iv

Contents

1. Introduction ... 1

1.1 Research questions ... 2

1.2 Requirements ... 3

1.3 Thesis Overview .. 4

2. Literature Review.. 5

2.1 Multimedia Information Retrieval ... 5

2.1.1 Music Retrieval ... 6

2.1.2 Image Retrieval ... 8

2.1.3 Video Retrieval ... 9

2.1.4 Semantic Based Information Retrieval 11

2.1.5 Ontologies ... 12

2.1.6 Semantic Maps and Networks .. 13

2.1.7 Semantic Web ... 13

2.1.8 The Future ... 14

2.2 MMR Systems: Applications and Design Methodology 15

2.2.1 Design Of Content-Based Retrieval Systems 16

2.2.2 Feature Extraction And Representation 17

2.2.3 Indexing .. 19

2.2.4 Query Specifications ... 20

2.3 Research Issues And Trends .. 22

2.4 MMR Architecture and Application domains 24

3. System Overview ... 27

3.1 Requirements of a Multi-Domain MMR System 27

v

3.2 System Architecture ... 32

3.3 Processing Layer .. 36

3.3.1 Using Processing Layer .. 38

3.4 Okkam Layer ... 40

3.4.1 Okkam Interaction ... 40

3.5 Repository Layer .. 45

3.6 Technical Details.. 46

4. Features Model Layer .. 49

4.1 Feature models ... 49

4.1.1 Feature diagram example .. 50

4.1.2 Feature diagram entities .. 51

4.1.3 Feature diagram notation .. 53

4.2 Feature Models in Owl ... 56

4.2.1 Feature model ontology .. 57

4.3 Feature Model Ontology Framework ... 60

4.3.1 SVGDiagramBuilder ... 61

4.4 Selectionengine .. 63

4.4.1 Selection Algorithm .. 64

4.4.2 SWRL rules ... 65

4.5 Implementation .. 70

5. Case study of MMR composition with the

framework: a music retrieval system 73

5.1 The adopted features model ... 75

5.2 Use Case: Search .. 76

5.3 Use Case: Insert ... 78

vi

5.4 Music Ontology ... 78

6. Interface Autocomposition 83

5.2 Interface for Expert user .. 83

6.1.1 Wizard Interface ... 85

6.2 Interface for simple user .. 87

7. Conclusion and Future Work 88

8. Appendix A .. 91

RDF (Resource Description Framework) .. 91

9. Appendix B .. 95

OWL (Web Ontology Language) .. 95

10. Appendix C .. 105

Okkam 105

11. Appendix D .. 107

Implemented Methods ... 107

12. Appendix E .. 113

Related Technologies ... 113

Visual Attention for Implicit Relevance Feedback in CBIR 113

Distributed architecture for sharing and retrieving medical images 122

13. Bibliography .. 131

Chapter 1

Introduction

Nowadays, the management of the large amounts of multimedia content

generated every day in most of the companies has become not only an urgent

need but also a success feature. Often the information is disorganized and not

always the functionality offered by the software in use receive positive

feedback from the user. The goal of every modern retrieval system is to provide

a unique tool, simple, intuitive, able to meet the user‘s needs. Domain Specific

Systems are often inflexible when the user request is more elaborated.

Moreover, a query will produce different results in systems designed for

different application domains. This thesis aims at developing a platform that is

an innovation in the field of multimedia retrieval, combining the concepts of

multimedia search with aspects of semantics and the benefits of indexing based

on RDF. The system allows the execution of a personalized retrieval process.

The user requests are mapped and interpreted and used to derive the sequence

of steps for processing and retrieval of multimedia content. The user should be

able to integrate into the system its reference model to conduct a search

consistent with its expectations. In this work we have developed a system able

to map the application domain requested by the user, based on ontological

models built by the same user. In other words, each application domain can be

seen as an ontology that the expert user can design. The proposed system will

be able to map ontologies and algorithms for processing and matching features,

adapting to user requests. Such architecture is composed of several elements

2 Chapter 1. Introduction

whose integration allows the correct functioning. To achieve the final goal and

the development of each element, a preliminary study was carried out to

understand the issues that affect the architecture itself.

1.1 Research questions

The use of MMR systems turns to be problematic whenever the system has to

meet the requirements dictated by the application domain. Searches of the same

type of content return different results based on the types of constraint defined

during the search stage that are in place and on the sequence of algorithms used

for the extraction of features. As a starting point, several research questions

were formulated for this thesis:

 Is there a tool that can adapt to the user‘s requests?

 Is it possible to use the benefits of semantics to design a system

that can adapt to the user interest domain?

 Can algorithms for features extraction designed for the elaboration

of media in an application domain, be used for the same type of

media but in a different application context?

 Can features extraction algorithms implemented for a given media,

be adapted for the extraction of features from another media?

 Modeling the reality of interest, is it possible to integrate into the

system a variety of application domains related to the same media?

These are talking about a system that is able to integrate different models and

search for the media following the most appropriate model.

On the basis of this, other questions arise:

1.2 Requirements 3

 In such system, can only one input interface and output satisfy user‘s

needs?

 Is it possible to create automatically an interface for each model that is

integrated into the system?

1.2 Requirements

Platform that can adapt to application domains need different requirements:

 Following the specification of constraints the system must be able to

change the sequence of steps to perform processing of the media.

Also, the system can be used by:

 Expert users who can change its configuration in terms of algorithms

and constraints.

 Novice users who will use the system from interfaces designed ad-hoc

for a given application domain.

For the second type of users, we can derive the following requirements: rapid

response, accuracy, simplicity in the formulation of the request, simple and

intuitive interface, system reliability in terms of precision and recall, efficiency

of the algorithms used for retrieval. In detail, the system requires more

interfaces for:

 The creation and integration of ontology in the system.

 The creation of input interfaces that allow the user to express

constraints based on the ontological model that the user wants to

integrate.

 Output interface linked to the ontological model.

4 Chapter 1. Introduction

It also recognizes the following needs:

 Ontologies for each application domain.

 Repositories for user requests and for the results obtained from a

given query.

 Web services for exposing the services available to components in

the architecture.

1.3 Thesis Overview

The thesis is organized in chapters, providing first some background for the

problem, then an overview of the implemented framework, followed by the

descriptions of the components in more detail. Finally, experimental findings

and future directions conclude the thesis. The outline of the thesis is as follows:

Chapter 2 contains the literature review and state-of-the-art. Starting with an

overview of MMR systems, and then turning to MMR systems application

specific, some existing architectures are surveyed. Chapter3 presents

information about the architecture of the developed system. It discusses in

detail each section of the system, layer by layer. Chapter 4 overviews the

functionalities of the system, in particular, with emphasis on the functionality

of interface auto composition. Chapter 5 contains a detailed explanation of the

layers namely the model developed for feature modeling, which is an important

part of this project. Chapter 6 exemplifies the system by discussing the case of

the model developed for audio retrieval and the ontology developed. Chapter 7

concludes the thesis and outlines possible future developments.

Chapter 2

Literature Review

Multimedia information retrieval deals with finding media other than text, i.e.

music, pictures, and videos. With the explosion of digital media that is

available on the Internet and present on users‘ computers techniques for

quickly and accurately finding the desired media is important. Semantic-based

information retrieval goes beyond classical information retrieval and uses

semantic information to understand the documents and queries in order to aid

retrieval. Semantic based information retrieval goes beyond standard surface

information by using the concepts represented in documents and queries to

improve retrieval performance. In this section we talking about MMR designed

for Music, Images, Video retrieval. We will see the concepts and the use of

semantic and ontologies in MMR. Moreover we will see the details of MMR

architecture.

2.1 Multimedia Information Retrieval

Multimedia information retrieval (MIR) involves searching for a variety of

media, such as video, music and images [49]. With the growing amount of

music, video, and photos on users‘ computers and on the Internet the need for

efficiently searching for desired media is rapidly growing. This section will

take a look at the history of MIR and some of the more recent research. The

earliest research on MIR was based on computer vision research [45].

6 Chapter 1. IntroductionLiterature Review

Recently, researchers have been moving away from feature-based retrieval to

content-based retrieval (in which try to give meaning to content mapping the

LLF). There is also an increased effort to make the systems more human-

centered, paying more attention to the user‘s satisfaction. Many users have

started using some type of MIR, through Google Video and Image Search,

Altavista Audio search, etc. While not state-of-the-art, these systems are

bringing MIR to the average user. There are numerous conferences and

workshops on MIR. Some of the more prominent conferences include ACM

SIGMM and the International Conference on Image and Video Retrieval. In

addition, there are special tracks in multimedia conferences, computer vision

conferences, etc. dealing with MIR. Lew et al. [45] pointed out two

fundamental needs for MIR systems: searching and ―browsing and

summarizing a media collection‖. The methods for achieving these needs fall

mainly into two categories: feature-based and category-based. Recently,

category-based methods have become increasingly popular, because they

express the semantics of the media, which allows for better retrieval. With the

two needs for MIR systems in mind, this section will continue as follows. First,

we will give a look at current research in music retrieval. Next, we will look at

the research on image retrieval. Then, we will look at research on video

retrieval. Finally, we will talk about the future of MIR.

2.1.1 Music Retrieval

In the past 5 years there has been an explosion of music made available through

services such as iTunes, Napster, eMusic, etc. Even the most casual user is

quickly acquiring gigabytes of music data on their computers. And there is

2.1 Multimedia Information Retrieval 7

easily petabytes of available data on the Internet. Because of this, music

retrieval is a hot topic. Downie [20] listed a number of challenges to music

information retrieval including the interaction between features such as pitch

and tempo. In addition, he pointed out that the representation scheme

determines the computational costs, such as bandwidth. Byrd and Crawford [6]

said that the same methods used in text IR, such as ―conflating units of

meaning‖, are necessary for music IR They went on to say that music IR is

much harder, because there is no agreed upon definition of what a unit of

meaning is and segmentation is even much harder than segmenting Chinese [6].

What features (pitch, tempo, etc), how to represent them, and what is the basic

unit of music are still in debate and being researched. Another problem is the

method for querying a music database. One of the increasingly standard and

popular querying methods is ―query by humming.‖ This method allows users to

find songs by humming a small portion of it. One of the earlier works done by

Ghias et al. [29] focused on monophonic data and used pitch in the melodic

track for representation. They converted user input data into a symbolic form

based on pitch and used this form to search a database of MIDI music. Pickens

et al. [60], then extended the querying technique to deal with polyphonic music

data. They used a language model framework for retrieval of music performed

by piano and used various methods of representation. One notable approach to

music IR is to borrow from research in text IR. The previously mentioned

research by Pickens et al. used the standard text IR approach of language

modeling. Uitdenbogerd and Zobel [79], built an architecture using n-grams

and approximate string matching. They found that using melody information

was enough for practical systems and that each of the methods, n-grams and

approximate string matching, worked well for certain types of music data.

8 Chapter 1. IntroductionLiterature Review

Another active area of research is music filtering. This area deals with

determining which music from a collection the user may enjoy. Research has

been done on automatic playlist generation [62] and music recommendation

[7]. Recently, work has been done by Hijikata et al. [37] on a content-based

filtering system that has a user editable profile. They employed decision trees

to learn profiles of users and then allow the users to edit the trees in an online

environment. They used varying features such as tempo and tonality.

2.1.2 Image Retrieval

In the past few years digital photography has started to overtake traditional

print photography. With the growing amount of digital images, it makes sense

to have an easy and effective way to search for what is desired. Instead of

looking through thousands or millions of photos it would be easier just to ask

―Show me all the pictures of red cars‖ and get the desired set of images. Image

retrieval really started in the 1970s with research done by researchers in

computer vision and database management [66]. In these early days and up

until the last 15 years or so, the predominant method for searching was to first

annotate each image in the collection with text and then use standard text IR

methods, such as [11]. Recently, as with the other areas in multimedia IR,

content-based retrieval has been heavily researched. Smeulders et al. [73] broke

image retrieval applications down into three categories of user views: search by

association, targets the search, and category search. ―Search by association‖ is

when there is no real goal except for trying to find new interesting images.

―Targets the search‖ is when the user has a specific image or object they are

looking for. ―Category search‖ is when users just want a picture, anyone, from

2.1 Multimedia Information Retrieval 9

a category of objects, i.e. ―a car picture.‖ With these three categories in mind,

the following paragraphs will take a look at some of the research done in the

area in the last few years. Corridoni et al. [15] looked at retrieving images

based on color semantics, such as warmth, accordance, contrast etc. The system

allowed the users to specify certain color semantics and find images that match.

Kato et al. [39] developed a system that takes a sketch done by the user and

finds similar images. Bujis and Lew [4] developed the imagescape application

that also allows the users to sketch in images and find images similar to it.

Natsev et al. [54] used multiple signatures per image to help in computing the

similarity between the given image and the images in the database. They found

that this approach yielded more semantically accurate results than traditional

methods. Chang et al. [10] showed that statistical learning methods help

improve the performance of visual information retrieval systems They found

that they needed to introduce new algorithms to deal with sparse training data

and imbalance in the type of training data. Rui et al. [67] added relevance

feedback to their MARS system to allow the user to guide the system in order

to improve the search results Tieu and Viola [78] created a framework that uses

many features and a boosting algorithm to learn queries in an online manner.

They were able to achieve good results with only a small amount of training

data, because they used selective features.

2.1.3 Video Retrieval

Recently, television shows, movies, documentaries, etc. have become available

for download from a number of sites. In addition, digital video and home

editing is becoming the norm. Video retrieval aims to help the user in finding

10 Chapter 1. IntroductionLiterature Review

the video they seek, whether it be a full video or just a scene. Like image

retrieval some of the earliest approaches were to annotate video data and use

standard IR techniques. This is still being used in modern day online video

systems, such as YouTube and Google. However, with growing collections that

are automatically collected from broadcast or other means, annotation is

impossible. As such, automatic techniques are needed. Wactlar et al. [82]

created a terabyte sized video library, and used automatically acquired

descriptors for indexing and segmentation. Researchers have also tried to

mimic text IR techniques in the video domain. Sivic and Zisserman [72] made

analogies between text IR and video IR Their goal was to create a fast system

that works on video as well as Google does on text. They pushed the analogy in

every facet by doing such things as building a visual vocabulary and using stop

list removal, and found that while there are still some problems the analogy to

text IR worked well and appear to be promising. Video retrieval involves such

tasks as content analysis and feature extraction; also, one of the most important

parts of video retrieval is segmentation or partitioning [1]. Zhang et al. [89]

used multiple thresholds on the same histogram to detect gradual transitions

and camera breaks. Gunsel et al. looked at the use of syntactic and semantic

features for unsupervised content-based video segmentation [34]. Sebe et al.

list semantic video retrieval, learning and feedback strategies, and interactive

retrieval as some of the new techniques used [69].

In the following some of the research done using these three techniques is

covered. Naphide and Huang used a probabilistic framework to map low level

features into semantic representations [53]. The semantic representations were

then used for indexing, searching and retrieval. Snoek et al. developed a

semantic value chain that extracts concepts from videos [74]. They used a 32

2.1 Multimedia Information Retrieval 11

concept lexicon and were able to achieve very good performance in the 2004

TREC Video Track. Browne and Smeaton incorporated various relevance

feedback methods and used object-based interaction and ranking [2]. Yan et al.

used negative pseudo-relevance feedback for the 2002 TREC Video Track

(TRECVID) [86]. They found that this approach increased performance over

standard retrieval. Yan and Hauptman introduced a boosting algorithm called

Co-Retrieval for determining the most useful features [85]. Gaughan et al. built

a system that incorporates speech recognition and tested it in an interactive

environment [28]. Girgensohn et al built a system focused on the user interface

and used story segmentation with both text and visual search [31]. Their system

was one of the best at TRECVID.

2.1.4 Semantic Based Information Retrieval

Semantic information retrieval tries to go beyond traditional methods by

defining the concepts in documents and in queries to improve retrieval. In the

previous section on multimedia information retrieval, we saw that there is a

current trend toward content based, or semantic, retrieval. In a similar manner

semantic based information retrieval is the next evolution of text IR. Some of

the earliest work on semantic based IR was done by Raphael in 1964 [63]. He

built the SIR system which broke down different queries/questions into

different subroutines for processing. In a similar vein to Raphael, Li et al.

looked at using semantic information for learning question classifiers [46].

Researchers have been bridging research done in semantic based IR and

traditional natural language processing research fields. Li et al. used multiple

information resources to help measure the semantic similarity between words

12 Chapter 1. IntroductionLiterature Review

[47]. Varelas et al. looked at semantic similarity methods based on WordNet

and how these apply to web based information retrieval [81]. The main

methods for accomplishing semantic based IR are ontologies, semantic

networks, and the semantic web. Ontologies and semantic networks can bring

domain specific knowledge that allows for better performance. The semantic

web, which has been a big buzz word for the past years, promises to bring

semantic information in the form of standardized metadata. This section will

continue as follows. First, we will take a look at how ontologies are being used

in IR. Next, we will look at research that has used semantic maps or networks.

Then, we will look at the semantic web. Finally, we will talk about the future of

semantic based information retrieval.

2.1.5 Ontologies

One common form of semantic information used in information retrieval is

ontology. Ontologies represent knowledge by linking concepts together and

typically results in hierarchical classification. Khan et al. used an ontology

model to generate metadata for audio and found an increase in performance

over traditional keyword approaches [40]. Gomez-Perez et al. used an ontology

for a legal oriented information retrieval system [32]. They found that the

ontology helped guide the user in selecting better query terms. Soo et al. used

an ontology as domain specific information to increase the performance of an

image retrieval system [75]. Cesarano et al. used an ontology to help categorize

web pages on the fly in their semantic IR system [9].

2.1 Multimedia Information Retrieval 13

2.1.6 Semantic Maps and Networks

Semantic networks, which represent concepts as nodes and relations as edges in

a directed graph, are a common method used for knowledge representation.

They have many uses and have been used widely in semantic based IR. Cohen

and Kjeldsen developed the GRANT system that used constrained spreading

activation to help in the retrieval of funding sources [14]. They found that it

gave a boost to recall and precision over previous systems and had a higher

level of user satisfaction. Tang et al. examined self-organizing semantic

overlay networks in peer-to-peer information retrieval [77]. Lin et al. examined

self-organizing semantic maps [48]. They created a semantic map based on

Kohonen‘s self-organizing map algorithm and applied it to a set of documents.

The information gained from the maps allowed for easy navigation of

bibliographic data.

2.1.7 Semantic Web

The semantic web opens a realm of new possibilities for web oriented

information retrieval. Shah et al. described an approach for retrieval using the

semantic web [70]. They developed a prototype that allows the users to

annotate their queries with semantic information from a couple of ontologies.

Using this extra information they were able to significantly increase the

precision of retrieval over standard text based methods. As with other semantic

information, semantic web technology can help describe domain specific

information that can help improve results. Mukherjea et al. used a semantic

web for biomedical patents for an information retrieval and knowledge

14 Chapter 1. IntroductionLiterature Review

discovery system [52]. Yu et al. looked at bringing the power of the semantic

web to personal information retrieval using web services [87]. One of the main

problems with the semantic web is the need for annotation. However, research

such as [41], [18] and [19] is working on automatic annotation methods. Dingli

et al. looked at unsupervised information extraction techniques to create seed

documents which are then used to bootstrap the learning process [19]. Dill et

al. built the SemTag system that was designed to automatically tag large

corpora with semantic information [18].

2.1.8 The Future

There are a two major problems facing semantic based IR. The first is the

availability of semantic information sources. In English, this is not so much of

a problem, but in other languages like Chinese, semantic resources are still

scarce. The second problem is that, typically, algorithms dealing with

semantics are much slower than the standard IR algorithms. In the future, as

researchers in natural language processing progress in their own research on

semantics these problems may not be so big. If the semantic web is able to

reach its goal and automatic annotation methods are able to work precisely then

in the future there should be no reason not to use semantic based IR, at least for

the web.

2.2 MMR System Applications and Design Methodology 15

2.2 MMR Systems: Applications and Design

Methodology

Content-based retrieval has been proposed by different communities for

various applications. These include:

 Medical Diagnosis: The amount of digital medical images used in

hospitals has increased tremendously. As images with the similar

pathology-bearing regions can be found and interpreted, those images

can be applied to aid diagnosis for image-based reasoning. For

example, Wei & Li (2004) proposed a general framework for content-

based medical image retrieval and constructed a retrieval system for

locating digital mammograms with similar pathological parts.

 Intellectual Property: Trademark image registration has applied

content-based retrieval techniques to compare a new candidate mark

with existing marks to ensure that there is no repetition. Copyright

protection also can benefit from content-based retrieval, as copyright

owners are able to search and identify unauthorized copies of images

on the Internet. For example, Wang & Chen (2002) developed a

content-based system using hit statistics to retrieve trademarks.

 Broadcasting Archives: Every day, broadcasting companies produce a

lot of audiovisual data. To deal with these large archives, which can

contain millions of hours of video and audio data, content-based

retrieval techniques are used to annotate their contents and summarize

the audiovisual data to drastically reduce the volume of raw footage.

16 Chapter 2. Literature Review

For example, Yang et al. (2003) developed a content-based video

retrieval system to support personalized news retrieval.

 Information Searching on the Internet: A large amount of media has

been made available for retrieval on the Internet. Existing search

engines mainly perform text-based retrieval. To access the various

media on the Internet, content-based search engines can assist users in

searching the information with the most similar contents based on

queries. For example, Hong & Nah (2004) designed an XML scheme

to enable content-based image retrieval on the Internet.

2.2.1 Design Of Content-Based Retrieval Systems

Before discussing design issues, a conceptual architecture for content-based

retrieval is introduced and illustrated in Figure 1. Content-based retrieval uses

the contents of multimedia to represent and index the dat. In typical content-

based retrieval systems, the contents of the media in the database are extracted

and described by multi-dimensional feature vectors, also called descriptors.

The feature vectors of the media constitute a feature dataset. To retrieve desired

data, users submit query examples to the retrieval system. The system then

represents these examples with feature vectors. The distances (i.e., similarities)

between the feature vectors of the query example and those of the media in the

feature dataset are then computed and ranked. Retrieval is conducted by

applying an indexing scheme to provide an efficient way to search the media

database. For the design of content-based retrieval systems, a designer needs to

consider four aspects: feature extraction and representation, dimension

2.2 MMR System Applications and Design Methodology 17

reduction of feature, indexing, and query specifications, which will be

introduced in the following sections.

Figure 1 A conceptual architecture for content based retrieval

2.2.2 Feature Extraction And Representation

Representation of media needs to consider which features are most useful for

representing the contents of media and which approaches can effectively code

the attributes of the media. The features are typically extracted off-line so that

efficient computation is not a significant issue, but large collections still need a

long time to compute the features. Features of media content can be classified

into low-level and high-level features.

 Low-Level Features

Low-level features such as object motion, color, shape, texture, loudness,

power spectrum, bandwidth, and pitch are extracted directly from media in the

database. Features at this level are objectively derived from the media rather

than referring to any external semantics. Features extracted at this level can

answer queries such as ―finding images with more than 20% distribution in

18 Chapter 2. Literature Review

blue and green color,‖ which might retrieve several images with blue sky and

green grass. Many effective approaches to low-level feature extraction have

been developed for various purposes.

 High-Level Features

High-level features are also called semantic features. Features such as timbre,

rhythm, instruments, and events involve different degrees of semantics

contained in the media. High-level features are supposed to deal with semantic

queries (e.g., ―finding a picture of water‖ or ―searching for Mona Lisa Smile‖).

The latter query contains higher-degree semantics than the former. As water in

images displays the homogeneous texture represented in low-level features,

such a query is easier to process. To retrieve the latter query, the retrieval

system requires prior knowledge that can identify that Mona Lisa is a woman,

who is a specific character rather than any other woman in a painting. The

difficulty in processing high-level queries arises from external knowledge with

the description of low- level features, known as the semantic gap. The re-

trieval process requires a translation mechanism that can convert the query of

―Mona Lisa Smile‖ into low- level features. Two possible solutions have been

proposed to minimize the semantic gap. The first is automatic metadata

generation of the media. Automatic annotation still involves the semantic

concept and requires different schemes for various media. The second uses

relevance feedback to allow the retrieval system to learn and understand the

semantic context of a query operation. Feedback relevance will be discussed in

the Relevance Feedback section.

 Dimension Reduction Of Feature Vector

2.2 MMR System Applications and Design Methodology 19

Many multimedia databases contain large numbers of features that are used to

analyze and query the database. Such a feature-vector set is considered of high

dimensionality. High dimensionality causes the ―curse of dimension‖ problem,

where the complexity and computational cost of the query increases

exponentially with the number of dimensions (Egecioglu et al., 2004).

Dimension reduction is a popular technique to overcome this problem and

support efficient retrieval in large-scale databases. However, there is a tradeoff

between the efficiency obtained through dimension reduction and the

completeness obtained through the information extracted. If each data is

represented by a smaller number of dimensions, the speed of retrieval is

increased. However, some information may be lost. One of the most widely

used techniques in multimedia retrieval is Principal Component Analysis

(PCA). PCA is used to transform the original data of high dimensionality into a

new coordinate system with low dimensionality by finding data with high

discriminating power. The new coordinate system removes the redundant data

and the new set of data may better represent the essential information.

2.2.3 Indexing

The retrieval system typically contains two mechanisms: similarity

measurement and multi-dimensional indexing. Similarity measurement is used

to find the most similar objects. Multi-dimensional indexing is used to

accelerate the query performance in the search process.

 Similarity Measurement

To measure the similarity, the general approach is to represent the data features

as multi-dimensional points and then to calculate the distances between the

20 Chapter 2. Literature Review

corresponding multi-dimensional points. Selection of metrics has a direct

impact on the performance of a retrieval system. Euclidean distance is the most

common metric used to measure the distance between two points in multi-

dimensional space. However, for some applications, Euclidean distance is not

compatible with the human perceived similarity. A number of metrics (e.g.,

Mahalanobis Distance, Minkowski-Form Distance, Earth Mover‘s Distance,

and Proportional Transportation Distance) have been proposed for specific

purposes.

 Multi-Dimensional Indexing

Retrieval of the media is usually based not only on the value of certain

attributes, but also on the location of a feature vector in the feature space. In

addition, a retrieval query on a database of multimedia with multi-dimensional

feature vectors usually requires fast execution of search operations. To support

such search operations, an appropriate multi-dimensional access method has to

be used for indexing the reduced but still high dimensional feature vectors.

Popular multi-dimensional indexing methods include R-tree and R*-tree. These

multidimensional indexing methods perform well with a limit of up to 20

dimensions.

2.2.4 Query Specifications

Querying is used to search for a set of results with similar content to the

specified examples. Based on the type of media, queries in content-based

retrieval systems can be designed for several modes (e.g., query by sketch,

query by painting [for video and image], query by singing [for audio], and

query by example). In the querying process, users may be required to interact

2.2 MMR System Applications and Design Methodology 21

with the system in order to provide relevance feedback, a technique that allows

users to grade the search results in terms of their relevance. This section

describes the typical query by example mode and discusses relevance feedback.

 Query by Example

Queries in multimedia retrieval systems are performed, typically, by using an

example or series of examples. The task of the system is to determine which

candidates are the most similar to the given example. This design is generally

termed Query By Example (QBE) mode. The interaction starts with an initial

selection of candidates. The initial selection can be formed by randomly

selected candidates or meaningful representatives selected according to specific

rules. Subsequently, the user can select one of the candidates as an example,

and the system will return those results that are most similar to the example.

However, the success of the query in this approach heavily depends on the

initial set of candidates. A problem exists in how to formulate the initial panel

of candidates that contains at least one relevant candidate. This limitation has

been defined as the page zero problem. To overcome this problem, various

solutions have been proposed for specific applications.

 Relevance Feedback

Relevance feedback was originally developed for improving the effectiveness

of information retrieval systems. The main idea of relevance feedback is for the

system to understand the user‘s information needs. For a given query, the

retrieval system returns initial results based on predefined similarity metrics.

Then, the user is required to identify the positive examples by labeling those

that are relevant to the query. The system subsequently analyzes the user‘s

22 Chapter 2. Literature Review

feedback using a learning algorithm and returns refined results. Among the

learning algorithms frequently used to update iteratively the weights‘

estimation are the ones developed by Rocchio (1971) and Rui and Huang

(2002). Although relevance feedback can contribute retrieval information to the

system, two challenges still exist:

 the number of labeled elements obtained through relevance feedback is

small when compared to the number of unlabeled elements in the

database;

 relevance feedback iteratively updates the weight of high-level

semantics but does not automatically modify the weight for the low-

level features.

To solve these problems, Tian et al. (2000) proposed an approach for

combining unlabeled data in supervised learning to achieve better

classification.

2.3 Research Issues And Trends

Since the 1990s, remarkable progress has been made in theoretical research and

system development for MMR. However, there are still many challenging

research problems. This section identifies and addresses some issues in the

future research agenda.

 Automatic Metadata Generation

Metadata (data about data) is the data associated with an information object for

the purposes of description, administration, technical functionality, and so on.

Metadata standards have been proposed to support the annotation of

2.3 Future Research Issues and Trends 23

multimedia content. Automatic generation of annotations for multimedia

involves high-level semantic representation and machine learning to ensure

accuracy of annotation. Content-based retrieval techniques can be employed to

generate the metadata, which can be used further by the text-based retrieval.

 Establishment of Standard Evaluation Paradigm and Test-Bed

The National Institute of Standards and Technology (NIST) has developed

TREC (Text REtrieval Conference) as the standard test-bed and evaluation

paradigm for the information retrieval community. In response to the research

needs from the video retrieval community, the TREC released a video track in

2003, which became an independent evaluation (called TRECVID). In music

information retrieval, a formal resolution expressing a similar need was passed

in 2001, requesting a TREClike standard test-bed and evaluation paradigm. The

image retrieval community still awaits the construction and implementation of

a scientifically valid evaluation framework and standard test bed.

 Embedding Relevance Feedback

Multimedia contains large quantities of rich information and involves the

subjectivity of human perception. The design of content-based retrieval

systems has turned out to emphasize an interactive approach instead of a

computer-centric approach. A user interaction approach requires human and

computer to interact in refining the high-level queries. The research issue

includes the design of the interface for relevance feedback with regard to

usability and learning algorithms, which can dynamically update the weights

embedded in the query object to model the high-level concepts and perceptual

subjectivity.

24 Chapter 2. Literature Review

 Bridging the Semantic Gap

One of the main challenges in multimedia retrieval is bridging the gap between

low-level representations and high-level semantics. The semantic gap exists

because low-level features are more easily computed in the system design

process, but high-level queries are used at the starting point of the retrieval

process. The semantic gap is not only the conversion between low-level

features and high-level semantics, but it is also the understanding of contextual

meaning of the query involving human knowledge and emotion. Current

research intends to develop mechanisms or models that directly associate the

high-level semantic objects and representation of low-level features.

2.4 MMR Architecture and Application domains

We have seen what the typical features of a MMR system are, considering that

currently multimedia retrieval systems are either domain or task specific. In

addition to the examples of application domains previously surveyed, other

intelligent multimedia retrieval systems have been proposed recently for

different applications, e.g. sport, medicine, law, etc. and for different types of

multimedia contents (audio, video, 3D Model, etc..). Examples are: Zhang et al

in [91] retrieves personalised sports video by integrating semantic annotation

and user preference acquisition. MMR systems are therefore often domain

specific, i.e., they are designed and developed for specific contexts. When a

domain specific MMR is developed, the functionality is not based on the

development of a set of features for a given media, but is based on a set of

choices for indexing and searching of media in the given domain. Some

example such as (Adaptive content-based music retrieval system) suggests

2.4 MMR Architecture and Application Domain 25

how to make a special purpose leads to precise design choices. Many of the

seen systems, (as functional and performance), report a lack of flexibility and

adaptability for search in other contexts. Today we understand that the

flexibility and scalability are important especially for such a system, both for

systems performance and for exploit the hard work of planning behind the

implementation of each MMR system.

26 Chapter 2. Literature Review

Chapter 3

System Overview

In accordance with what was seen previously, we understand the need for

systems capable of processing the media referring to a given application

context. There are cases where some systems are designed for a given

application domain (e.g. AUDIO retrieval) and for a given task e.g. audio

speech retrieval. In this section we will see an overview of the developed

system, explaining the layers functionality.

3.1 Requirements of a Multi-Domain MMR System

To derive the requirements for a multi-domain MMR system, let‘s consider the

case of a MMR designed for audio speech processing. If we decide to use the

same platform to process both audio from speech and audio from music, we

have several problems:

 The platform designed for audio speech processing performs audio

processing according to a precise sequence of steps. (fig 2).

 If we use the same platform to process music tracks, we see that the

sequence required for the processing of a musical piece requires more

steps, or requires a different sequence.

 Moreover, the platform handles a set of features that might be

insufficient for the processing a segment of music track (fig 3).

28 Chapter 3. System Overview

Figure 2 Example of MMR for Audio speech processing

Figure 3 Example of MMR for Audio music processing

Platform that can adapt to application domains need different requirements:

 the system must be able to change the sequence of steps to perform

processing of the media, following constraints specified by the user.

3.1 Requirements of a Multi-Domain MMR System 29

Also the system can be used by:

 Expert users, who can change its structure in terms of algorithms and

constraints.

 Novice or occasional users, who will use the system with interfaces

designed ad-hoc for a given application domain.

Figure 4 Example of processing with customizable process

The proposed system is a multi-domain MMR system. The functionalities of

this system are targeted to the user that uses the system in order to search

content, and to the developer that uses the system to create a model of MMR

for its domain of interest.

30 Chapter 3. System Overview

Figure 5 Example of processing with customizable process

The advantages of such system are:

 The user makes the requests and obtains a customized processing.

 The developer creates a model for its application domain.

The models developed within the systems are scalable: at any time the

developer can add new features or new algorithms. The proposed system is

designed to meet the needs and requirements of a MMR multi domain system.

Broadly, we can identify the following components in the system architecture:

 User Layer

 Server Layer

 Repositories Layer

 Processing Layer

 Ontology Layer

 Okkam Layer

3.1 Requirements of a Multi-Domain MMR System 31

The user interacts with the system through the User Layer; this layer provides

the necessary tools (interfaces and functionality) to formulate a request as

accurately as possible. The User Layer forwards the requests to the Server

Layer that makes them understandable to the Ontology layer. The Ontology

layer contains various modules and related OWL ontological models uploaded

by the users. It will interpret the constraints imposed by the user in order to

return the most appropriate sequence of steps to perform the retrieval. The

sequence obtained by the ontology layer will be returned to the server layer,

this will proceed to the elaboration using the processing layer. The processing

layer exposes a set of methods that are used for the processing of features. The

Server Layer uses a sequence of these methods to implement the retrieval

mechanism. The data returned from the processing will be formalized in RDF

and stored in suitable repositories. Finally, taking into account the broader

context of semantic web, there are some advantages that can be obtained by

binding the entities with a unique identifier. In this way, the process

information can be integrated with any other data source that identifies Web

resources using the same globally recognized identifier. This is achieved by the

Okkam Layer.

32 Chapter 3. System Overview

3.2 System Architecture

The proposed system architecture is sketched in figure 6.

User

Layer

Server

Layer

Repository Layer

Sesame

Services

RDF

Repository

Features

Repository

Media

Repository

Repository

Connector

Ontology Layer

OWL Models Reasoner

Processing

Layer

Processing

Interface

Okkam

Layer

Okkam

Services

Figure 6 System architecture

In the following we point out the operation of each of these entities, and then a

more detailed analysis will be performed.

3.2 System Architecture 33

 User Layer

It‘s the system access point. The user can search content or insert it.

This level should save the data in an understandable format at a global

level, so it implements a function that creates an RDF file using the

specific adopted syntax. These contents will be sent to the repository

layer for storage. The user layer, also includes a module for creating

user interfaces for domain specific MMR.

 Server Layer

This Layer exposes a range of services for the User Layer. When one

searches for a content of a given media type, the user layer refers to the

server layer to perform the needed operations. This layer handles all the

operations starting from the input of the media content. It uses

Ontology layer (or features model) to derive the algorithm more

suitable, it calls the processing layer for low level features elaboration

and finally stores these in the repository data store (features

repositories).

 Okkam Layer

This level makes the entities universally identifiable. The information

will be totally integrated with others placed in different contexts. A

search is performed in the Okkam (see Appendix C) data store in order

to establish if the media already has an Okkam Id. Then simply return

the ID if it already exists, or allow the user to create a new entity. From

figure 6 it can be seen that this level has only interactions with the user

level. This is because the returned identifier is inserted in the RDF file

created by User Layer.

34 Chapter 3. System Overview

 Repository Layer

This layer is responsible for all the content stored in the system.

There are three repositories:

o Repository of media file

This repository will allow direct access to the media file, if is

needed to recalculate the features or just to preview the file.

The content is identified using the RDF file that contains,

among other things, the path of the media file. To get this

property the system accesses the RDF repository files through

an appropriate RDF query.

o Features repositories

This repository contains the computed features of each file.

When new media content is inserted, its features will be

included in this repository. As with the repository of media

files, an RDF file is needed in order to access the features.

Basically, the system will once again access the RDF

repository; this happens whenever it is necessary to retrieve

information quickly and correctly.

o RDF repository

When the user enters new media content, an RDF file is

created.. contextually indexing the entities using unique

identifiers derived by the Okkam Layer.

3.2 System Architecture 35

 Ontology Layer

This layer is responsible to retrieve, using an ontology specified from

time to time through a model, what are the steps involved for the media

features elaboration. The user may wish that its requests are answered

as quickly as possible, or as accurately as possible; this level will call

each time the algorithm that best fits the user's wishes. Based on a set

of constraints that can be chosen from one of the available (or

generated) models, the list of relevant features will be returned to the

server level. From this list of features that must be calculated, the

server layer invokes the services exposed from Processing Layer. The

result will be the computed values for the features, to be placed into the

repository. This layer makes use of a basic module (Features Model)

that is discussed explicitly in chap. 4.

 Processing Layer

This level exposes the methods that correspond to the algorithms to be

used for the features elaboration. These functions are often very

similar, differing only by the precision with which elaboration is

performed. The functions to be applied are as operational blocks that,

starting from a set of input data, provide a set of output data. The server

will only apply these functions recursively taking the data out of a

block and placing them in the next entry. The functions to be used (and

in what order) are dictated by the Ontology Layer. The processing layer

provides only to the features elaboration.

36 Chapter 3. System Overview

3.3 Processing Layer

A processing algorithm can be seen as a "black box". Thus, from a set of input

data, we get another set of data produced by the box; in our case: the features.

The constituent elements of the processing algorithm are very important. Each

algorithm in fact, whatever it is, consists of a set of basic steps. For

preprocessing functions we intend all those functions that act before the

features elaboration. In certain situations it may be necessary to emphasize

distinctive elements of our media content, such as the signal at certain

frequencies or specific time intervals, etc..; when one wants to improve the

quality of content before process one must apply the special preprocessing

functions. After pre-processing, it will be possible to execute the features

elaboration. This phase influences the performance of the algorithm in terms of

accuracy and speed, and usually consists of several sub-blocks (fig. 7). This is

also true for the functions of preprocessing, in fact, it is possible to apply

different functions according to a completely arbitrary flow: cascade, parallel

or any combination thereof. At the end of the process, we get the features.

3.3 Processing Layer 37

Sampling Pre-Processing
Features

elaboration

Pre-Proc.

Function 1

Pre-Proc.

Function 2

Function A Function B Function N

Figure 7 Processing steps

In the Processing Layer, there are operational blocks; the functions receiving a

set of input data, apply it to one or more operations (dependent on the nature of

the block) and then pass the result to the next block. In this system, we want to

allow the dynamic creation of an algorithm thanks to the Ontology Layer. This

Layer receives the user-specific information to create a feature diagram, i.e., a

graph that links all the operations that we can do. From this graph, developed

taking into account the constraints imposed, a list of functions is selected to be

applied to the media content. This list is a set of steps, constituting the

algorithm. This block can be reused in different applications altogether. Its

capacity is only performing the operations that are required.

38 Chapter 3. System Overview

3.3.1 Using Processing Layer

The Server layer will require to the Features Model Ontology Layer to derive

an algorithm and once receiving the list of functions to be applied, it will call

the processing layer, which will perform the required elaborations on data sent.

The features are the result of the last operation. The Server invokes a particular

processing method indicating the input data, output data and the name of the

method to be applied according to the following schema:

Calculate(Input, Output,Method)

Media Content

(eg. Audio) Features

Figure 8 Processing flow

The output of a block will coincide with the input of the next. Finally, we will

have in output the features. Figure 9 depicts the layer interaction.

3.3 Processing Layer 39

Server

Layer

Ontology

Layer

Processing

Layer

Send the user‘s

constraints

Extract an instance

from ontology

Server receive a list

of methods.

Invokes method

through Processing

Layer Execute the

methods and

perform features

elaboration.

Receive the

features from

processing layer

Figure 9 Sequence diagram for the user‘s request elaboration

The ontology layer, according to the diagram created and the constraints

imposed, will generate a list of different sequences of functions and,

consequently, a different algorithm. This is a key feature of the system because

instead of setting on a single, preferred algorithm, the user has freedom of

choice and action.

40 Chapter 3. System Overview

3.4 Okkam Layer

In the context of the Semantic Web it is essential that each entity is identified

unambiguously. It will be necessary to use special identifier, uniquely defined

and widely recognized. These identifiers will be included in the RDF file. Any

external source can access to repository through query using the ID provided

by Okkam, to be sure to get all the available data. For information about the

internal structure of Okkam see appendix C.

3.4.1 Okkam Interaction

Within the system there is a Layer implemented as a Web Service (the Okkam

Layer) that calls several external APIs. The exposed methods are used by the

WSDL file at:

http://api.okkam.org/okkam-core/services/WebServices?wsdl

The operations that we provide in our system are relatively simple. When the

user inserts a new content, it must be ensured that the identifiers used during

the storage of the media are the Okkam id. In the example of music ontology

treated in chapter 5, we see that the entity for which identification was used are

the musical artists, however, the same approach can be applied to the music

tracks, albums or other information.

When a new content is inserted, if an identifier already exists, then it will be

used, else a new entity is created and then the new obtained identifier is used.

Among the different system features, there is also a set that covers the

http://api.okkam.org/okkam-core/services/WebServices?wsdl

3.4 Okkam Layer 41

possibility to execute queries on the Okkam data store. It is sufficient to invoke

a particular method:

MatchingCandidate[] candidate = findQuery(query)

The method takes as input a string containing the query and returns an array

(sorted by relevance) of candidates. For each candidate it is possible to trace

the identifier and a coefficient sim indicating the element similarity. It is

assumed that, if the search is successful, candidate structure is not empty and

also the element in the first position is the one searched. We present the

structure of the query used for the music ontology system, as example:

QUERY { name=singerName tag=singer }

METADATA{ entityType=person matchingModule=gl };

The user inserts the singer name (singerName), the system insert all the other

parameters, valid for any query. The check is not performed only on the basis

of this query; the author could be a band and not a solist, so the most

appropriate entity Type is organization and not person. Also, the matching

mechanism can be changed. Consequently, the comparison is made through a

combination of queries. If a positive matching exists the id of the first

candidate will be selected. The returned identifier is used during storage as

resource id in the RDF file, otherwise the candidate structure value is null.

Clearly, it is possible that the searched artist is not present, then we create a

new entity and use the identifier returned. While research is a task for which

you do not need special permission (do not change anything, read-only

operations), the creation of a new entity is different. In that case we are altering

the Okkam data store.

42 Chapter 3. System Overview

Adding a new entity to the system, means performing write operations. There

are several ways to create an entity, including the use of particular API

designed for this task. Since we are conducting operations so-called

"protected", we must maintain a certain level of security. This is achieved

through authentication with a certificate downloaded on purpose. Using the

API means performing the following steps:

 Set Username, Password and location of the certificate for the

credentials;

 Create an ENS (Entity Name System) client;

 Set the characteristics of the entity that we want to create, this implies

attributes, alternative identifiers or equivalent and external references;

 Validate the entity (check if the entity already exists). In this case

a merging is performed (merging the new inserted information with

those already existing); this will not create a new entity but will return

the id of the already existing entity;

 If the validation was successful, a new entity is created. In this case the

id of the new entity is returned.

However, it must be taken into account that the Okkam project is evolving, the

safety policies may change, as well other settings of the project. It‘s possible to

move part of processing on the server side. In this way our client work even in

case of any changes to the server side. This approach is based on a particular

page:

https://api.okkam.org/EnsWebToolKit/oec-wizard.jspx

3.4 Okkam Layer 43

This page contains an interface that provides all the tools to create a new entity.

At the end of the development, a message is displayed that informs us that the

new entity was created, adding the id. In our system this interface is called

from the application itself; to ensure that this happens we must follow some

steps. The application that allows us to create a new entity is actually a stateful

service. In fact we have implemented an hash table that, by session identifiers,

allow us to "remember" the received requests. First a session id must be

retrieved. To do this the following page must be invoked:

http://api.okkam.org/EnsWebProxy/getSession

In this way we obtain an id session. Now we call the creation wizard adding

two parameters: sid and create; sid is associated with the session id previously

obtained, create should be set to true. In this way the creation interface realizes

that it was called in the context of another application. At this point the user

interface can be accessed and, once creation has been completed, the server

associates the session ID to the created entity Okkam ID. Now, to get the id

okkam the following call must be executed:

http://api.okkam.org/EnsWebProxy/getEnsId

passing, as a parameter, sid (the session identifier values).

The Server returns the Okkam Id required. All steps are shown in figure 10

below.

44 Chapter 3. System Overview

Figure 10 Okkam and ENS

In the first stage, the user indicates the author, the system, using the query

mechanism discussed above to check if the artist is present. If the author is

present, the first value of the structure candidates is returned. At this point the

creation page is opened. Through the technique described above the client will

know the Okkam id.

3.5 Repository Layer 45

3.5 Repository Layer

Once obtained, the RDF file that describes the audio content must be inserted

into the system store. What is needed is a "container" of RDF files: in other

word a repository. The repository is in general, an element with high capacity

of digital storage that can handle any changes made on the data. Inside the

proposed system there is a layer dedicated exclusively to perform this task.

There are many frameworks available for this purpose, developed and designed

in a different way. We use the SESAME RDF repository. This is a Java

framework for storing and querying RDF data type.

Figure 11 Interaction between some applications and repositories

A service that exposes several methods that allows interacting with different

repositories was created.

Application 1

Application 2

Application 3

Code for

repository 1

Code for

repository 2

Code for

repository 3

Repository

1

Repository

2

Repository

3

46 Chapter 3. System Overview

Figure 12 Interaction between some applications and repositories

trough web-service

By this approach we get a service usable from any application written in any

language. Furthermore, the user will not create explicit connections, to handle

exceptions or write queries to interrogate the repository; the web service will

take care of all these aspects.

3.6 Technical Details

Almost all layers have been implemented using the .NET framework. Some

levels are applications implemented in Java, but the application uses the .NET

interoperability, guaranteed through the use of web services. Several additional

libraries have been used, each of which with a different and specific scope. In

the example exposed in chapter 5, we will see a music retrieval system created

by our architecture. The user layer receives an input audio content, makes some

processing operations, and finally sends it to Server. To allow the processing,

Application 1

Application 2

Application 3

Web

service

Repository

1

Repository

2

Repository

3

3.6 Technical Details 47

preview, and content filtering, two libraries designed for managing audio files

have been developed. AudioLab is a set of components for fast audio

processing. This library allows to capture, reproduce, display, and perform

audio mix of audio track. For the audio track processing another low-level

library was used: irrKlang. In summary, an audio content will be presented and

processed through AudioLab thanks to irrKlang. After processing the audio

content, the user level creates the RDF file, using a special instrument:

SemWeb.NET. This library, written in C#, allows the reading and writing of

RDF files, and has also defined mechanisms for querying. The API defined in

SemWeb.NET are very simple and flexible, they also allow a greater

understanding of the file structure. One could simply use the methods that

allow the writing of XML files, without additional tools, but this approach does

not provide a full and comprehensive view of the created file. Each element of

an RDF file is a triplet: Subject Properties Object, and when an item to include

in our file is created, the API defined in SemWeb.NET receive in input these

three parameters defined as an entity. Once the RDF file has been created, it is

sent to a RDF repository. A set of functions will be used to perform the query.

Sesame is an open source Java framework for storing and querying RDF data.

The language of the library is different from (C#), so the approach based on

Web services was chosen. The user layer calls the exposed service, that are

based on the Sesame API to store the created RDF file. The level Server will

need to relate to user services that are exposed as methods for querying the

repository. The approach based on Web services enables high reusability of the

code, since different applications can uses the system and external services.

Another advantage of this approach is the considerable simplification of

operations used from the application.

48 Chapter 3. System Overview

Chapter 4

Features Model Layer

In this section we describe a functionality of an important section of our system

the Features Model Layer. Our system uses a module for the creation and

modeling of ontological models. This layer exposes a set of services to interact

with ontologies created to represent the reality of interest. Note that it is not a

module for modeling LLF (Low Level Features), as the name might suggest, in

this case for features we intends the an important property of a concept of the

domain of interest. Generally features models are used to describe common and

variable properties of families of related software systems referred as SPL

(Software Product Line). Every program in an SPL is identified by a unique

and legal combination of features called feature configuration. There is no

formal semantic for describing a feature model and no standard tool for

building and validate a feature configuration. In this section we present an

OWL-based approach for building and editing feature models together with an

OWL-based inferential engine for creating a feature configuration and check its

consistency.

4.1 Feature models

A feature is defined as ―an important property of a concept‖ [16] where by

concepts, we mean anything in the domain of interest. ―Feature modeling is the

activity of modelling the common and the variable properties of concepts and

50 Chapter 4. Features Model Layer

their interdependencies and organizing them into a coherent model referred to

as a feature model.‖[16]. A feature model consists of a tree diagram called

feature diagram with some additional textual information, such as a semantic

description. A feature diagram is made up of nodes, directed edges and edge

decorations, where the root node represents the subject we want to describe,

formally called concept, and the remaining nodes are its features. Features are

further connected by edges to sub-features in a hierarchical structure. Formally

an instance of a feature diagram is known as a concept description or a feature

configuration and is defined valid if does not break feature constraints and

inclusion rules The rest of this section is organized as follows. In section II-A

we explain feature models through a simple example. Section II-B explains

each feature diagram entity and inclusion rules for building a valid feature

configuration. Section II-C introduces our formalism.

4.1.1 Feature diagram example

The example we are going to discuss has been taken from [16] and describes

commonalities and differences among instances of a Car (see Fig. 13).

Figure 13 Feature Model example (taken from [16])

4.1 Feature Models 51

In order to represent this example, we have chosen to use Czarnecki‘s notation

with decorated edges, because it is the best know formalism in the literature.

The concept Car is described by features Car body, Transmission, Engine and

Pulls trailer. The Transmission feature is described further by the sub-features

Automatic and Manual; an Engine is described by the sub-features Electric and

Gasoline. Without a way to add some restrictions on the feature model this

diagram also describes invalid cars like one with a transmission that is both

automatic and manual. Semantic restrictions like those are provided by

different edge decorations. A valid feature configuration of this example can be

described by the features: Car body, Transmission, Automatic, Engine,

Electric. Such a configuration do not violate model restrictions and so a car

with a car body, an automatic transmission and an electric engine can be

manufactured. Besides this one, such diagram allows cars that pull a trailer and

hybrids cars, i.e., cars with an engine that is both electric and gasoline.

4.1.2 Feature diagram entities

Many variations to the original feature model notation FODA (Feature

Oriented Reuse Method) [38] have been proposed, such as FORM (Feature

Oriented Reuse Method) and FeatuRSEB [68], but none of them has been

accepted as a standard. In this module we have chosen to use Czarnecki‘s

notation without edges decoration as a starting point and we introduced some

new feature constraints. We give here a brief description of each feature type

and their selection rules with Czarnecki‘s notation with decorated edges. In

fact, feature types and inclusion rules are the same for both two notations.

Besides with this formalism we have also the occasion to explain why we

preferred this one over the others. As in FODA, Czarnecki distinguishes

52 Chapter 4. Features Model Layer

between mandatory, alternative and optional features, but he introduces also or

features. A Mandatory Feature (see Fig. 13 at features Engine or Car body) is

included in a feature configuration if and only if its parent is included as well.

It is represented graphically by a simple edge without decorations ending with

a filled circle. An Optional Feature (see Fig. 13 at feature Pulls Engine) may be

included in a feature configuration if and only if its parent is included. It is

represented by a simple edge without decorations ending with an empty circle.

Only one feature in a set of Alternative Features (see Fig. 13 at features

Automatic and Manual) can be included in a configuration. Alternative

Features are represented by edges connected by an arc. In a set of Or Features

(see Fig. 13 at features Electric and Gasoline) any non-empty subset of features

can be included in a configuration. Or Features are represented by edges

connected by a filled arc. Besides these features, we have also Optional

Alternative Features, when there is at least one optional Feature in a set of

Alternative Features (see the left side of normalization at Fig. 14), and Optional

Or Features, when there is at least one optional feature in a set of Or Features

(see the left side of normalization at Fig. 15).

Figure 14 Optional Alternative Features normalisation

4.1 Feature Models 53

Figure 15 Optional Or Features normalisation

A feature diagram with one or more Optional Alternative Feature is normalized

into a diagram with all Optional Alternative features (see Fig. 14). A feature

diagram with one or more Optional Or features is normalized into a diagram

with all Optional Or features which is equivalent to have all features optional

(see Fig. 15). So the category of Optional Or features equivalent to the category

of Optional features.

4.1.3 Feature diagram notation

In this section we introduce our new formalism with a representation of the

running example (see Fig. 16).

54 Chapter 4. Features Model Layer

Figure 16 Car example without edge decorations

This notation comes from Czarnecki‘s [16] feature diagram notation without

edge decorations but contains also some new features constrains. Every feature

model created with the previous formalism can be converted to an equivalent

feature diagram without edge decorations. We used this formalism, even if it is

less concise than the other one, because of its simpler structure and a simpler

analysis required. The simpler structure is due to type information not stored in

a feature itself but in its parent node, so that every such node has an

homogeneous set of subfeatures. As consequence of this structure, if one starts

using it from the beginning, no normalisation is ever required. In this notation

concepts, parent nodes of mandatory features and leaf features (features

without sub-features) are represented like a filled circle (see Fig. 16 at features

4.1 Feature Models 55

Car, Car And and Body); parent nodes of optional features with an empty circle

(see Fig. 16 at feature Car Opt); parent nodes of alternative features with two

concentric circle, where the internal one is filled (see Fig. 16 at feature

Transmission); parent nodes of optional alternative features are represented like

alternative features but with the internal circle empty; parent nodes of or-

features are represented with a more complex figure (see Fig. 16 at feature

Engine). In this new diagram there are two new nodes Car And and Car Opt

that were not there in the previous one. These nodes do not represent an entity

of the world but are only used for grouping features under a common feature

type. This kind of node is called feature group and like every other node with

child features (also called node feature) has a particular representation

depending on the type of sub-features. Selection rules with this notation are

equivalent to those introduced in section II-B, but now rules on a parent node

influences selection of its children. Besides a concept node and all its direct

features are always selected in a feature configuration. Feature type rules are

not the only restrictions that influences feature configuration construction.

Constraints can exists between features in different branches of a diagram tree.

Czarnecki [16] enriched the original FODA notation with two kind of feature

constraints: mutual-exclusion constraints and requires constraints, renamed

here respectively excludes constraints and implies constraints. Those two types

of constraints are modified to be unidirectional but maintains same semantic.

We introduced in our formalism two other kind of constraints avoid and

default. Implies and excludes constraints are binary and unidirectional ones

whereas avoid and default are unary. In a feature model A implies B means that

the existence of a feature A in a feature configuration implies the existence of a

feature B; whereas A excludes B means that if a feature A is included in the

56 Chapter 4. Features Model Layer

configuration feature B should be not included; Avoid A means that the feature

A should not be in the feature configuration and default A means that the

feature A should be in a configuration by default.

4.2 Feature Models in Owl

In this section we want to illustrate the OWL-based approach we developed to

represent and manage feature models. OWL stands for Web Ontology

Language and is the de facto standard for the semantic web. ―Its expressive

power and formal semantics made it usable in many other domains‖ [88]. It

consists of three increasingly expressive sublanguages: OWL Lite, DL and

Full. We use the OWL DL dialect because we want to infer a valid feature

configuration using a DL reasoner. In the literature we found two main

approaches for representing a feature model through an OWL ontology and

checking its consistency. The first approach [83] represents features in a

diagram like an OWL class and every feature relations like an object property.

For example, in order to represent a car with a transmission (see and Fig. 13)

you should create two OWL classes Car and Transmission and an object

property hasTransmission for representing this relation. This approach does not

represent features in a configuration as instances of classes (OWL individual)

as intuitively one would think. OWL classes are used to simulate features in

order to use TBox (terminological box or class-level) reasoning for checking

consistency. This solution was justified by limitations of the OWL reasoner

RACER [35] in 2005. At that time RACER was only able to detect ABox

(assertional box or instance level) inconsistencies but not which classes has

caused them. The second approach [88] represents feature models in a

4.2 Feature Models in OWL 57

descriptive way, mapping every feature in a model or in a configuration with an

instance of class Feature or one of its subclasses. This solution was proposed in

2008 with another reasoner called Pellet [71], [14]. This reasoner was already

capable of both ABox and TBox reasoning and debugging, overtaking every

limitation of the previous approach. We have chosen to use the latter approach

because it simplify the representation of feature hierarchies and more important

because it make possible to express SWRL consistency rules on OWL classes

and infer a valid feature configuration through SWRL rules.

4.2.1 Feature model ontology

Every feature model or configuration is an instance of a schema defined in an

OWL file. Such schema describes vocabulary, structure and type restrictions of

feature models (see Fig. 17), i.e. features cannot be added as children of a

diagram node.

Figure 17 Feature model ontology classes

58 Chapter 4. Features Model Layer

The main ontology class of this schema is Feature, which represents all kind of

nodes in a feature diagram except for the root node which is a concept. In this

ontology we distinguish between leaf and node feature. Because of the Open

World Assumption only node features are described in our ontology (see Fig.

17 at the NodeFeature class). Every feature that is not a node feature is

considered a leaf feature. Our formalism without edge decoration enables to

represent edges like a normal parent/child relation without any type

information through object properties hasChild and hasParent. In order to

ensure that a feature diagram is a tree and not a graph we introduced some

restrictions on these properties: hasParent is defined as a functional property,

meaning that an individual of its domain can only have one parent; hasChild is

defined as an inverse functional property, specifying that two different parents

cannot share the same child node; both these properties are declared irreflexive,

which avoids that an individual has itself as a child or a parent. Feature type

information are stored on diagram node with the object property

hasFeatureType. It is defined functional because it can connect a Feature

instance with only one of the individuals of class FeatureType (see Fig. 17 at

the FeatureType class): Mandatory, Optional, Alternative, Or and

OptionalAlternative. The main subclass of Feature is NodeFeature, which

represents a feature with at least one subfeature. A NodeFeature instance can be

further classified according to feature types in: MandatoryFeature,

OptionalFeature, AlternativeFeature, OrFeature and

OptionalAlternativeFeature. This new formalism introduces a new feature

diagram entity called FeatureGroup (see Fig. 17 at the FeatureGroup class), this

does not represents a real diagram entity but only a way to group features under

4.2 Feature Models in OWL 59

a common feature type. A feature group inherits from the super class

NodeFeature and must have at least a child feature.

Features can be classified in SelectedFeature and Default-Feature respectively,

according to the properties isSelected and default. To the first group belong

features that have been selected by the user to be in a feature configuration. To

the second group belong features that the user want to be selected automatically

by the inferential engine during the feature diagram construction. Besides the

feature class, we introduce two other classes: Concept and Diagram. A concept

must contain at least a child node of type FeatureGroup, while a diagram must

contain at least a concept. In fact, a feature model can be described by multiple

diagrams related by inter-relation feature constraints. In order to support

feature constraints, we introduced the following properties: implies, excludes,

default and avoid. Implies and excludes are object properties and they connect

two instances of the Feature class. They are declared irreflexive, so that a

feature cannot imply or exclude itself. Avoid and default are boolean data

properties and they do apply only to feature instances. Both these properties are

declared functional, so that they cannot be declared twice on the same feature

instance. Avoid property is used to define which feature we want to deselect

from a feature model. It differs from setting the property is Selected to false,

because it can be used also during model construction. Default properties are

used to define a feature that will be automatically selected by the inferential

engine. This property is very useful for or, alternatives and optional alternative

features in order to select automatically one of the sub-features. It is useless

upon mandatory features where every feature is selected anyway. We provide

also two other object properties: next and previous, which enable sorting

60 Chapter 4. Features Model Layer

features in a diagram. They are defined irreflexive so that a feature cannot be in

such relation with itself.

4.3 Feature Model Ontology Framework

Our feature model framework consists of five modules:

ModelManager, ModelBuilder, InconsistencyChecker, SelectionEngine and

SVGDiagramBuilder. ModelManager is the main module of the entire

application and it is used by every other module in order to load and save local

or remote feature models. This module allows also to obtain an OWL DL

reasoner used for building the inferential engine or to serialise a feature model

to a string. ModelBuilder is used for building a new feature ontology model or

editing an existing one. Some common allowed operations are:

 creating/deleting diagram nodes, i.e. diagram, concept, leaf node,

feature group.

 adding/removing a parent/child relation between two nodes, i.e. add a

concept to a diagram or remove a leaf feature to a node feature.

 setting/changing the feature type of a feature node.

 adding/removing feature constraints between two features, i.e. implies,

excludes, avoid or default constraints.

 selecting/deselecting a feature in a feature configuration, i.e. set the

data property isSelected to true/false.

Every operation is followed by a inconsistency check, in order to detect model

or OWL conflicts, i.e., adding to a diagram a feature instead of a concept or

adding an irreflexive feature constraint between a feature and itself. Such

conflicts are induced by OWL restrictions in the feature model schema. If a

4.3 Feature Model Ontology Framework 61

conflict is detected, an exception is launched with the OWL individual, which

cause the inconsistency, and the SWRL (Semantic Web Rule Language) rule

violated. Such exceptions are raised also for additional user defined

inconsistency (see InconsistencyChecker) and selection rules inconsistency

(see Section V). The InconsistencyChecker module is used to check additional

SWRL inconsistencies rules on a feature model. SWRL rules files can be

loaded/removed dynamically at runtime and inconsistency is checked through a

OWL DL reasoner, which you can get with the ModelManager module.

4.3.1 SVGDiagramBuilder

This module is optional and it is used only to get a graphic representation of a

feature diagram. It takes as input the URI of a feature diagram within an OWL

ontology file and produces an SVG vectorial image. Building such graphic

representation requires three steps: loading the feature model to which the

diagram belongs; building with the language Graphviz/DOT [33] a textual

representation of the diagram (see Fig. 18); compiling the DOT representation

into an SVG image (see Fig. 19 for the textual representation and Fig. 16 for

the graphical representation).

62 Chapter 4. Features Model Layer

Figure 18 DOT representation of a feature diagram

Figure 19 SVG representation of a feature diagram

4.3 Feature Model Ontology Framework 63

The first step is performed by the module ModelManager, and it requires the

URI of the OWL file containing the feature diagram. Building a DOT

representation of the diagram implies mapping each node in feature diagram

into a node with a label, representing the name of the feature, and an image,

representing the type of node. In a feature configuration, two different colours,

i.e. grey and black, represent deselected/selected features or concepts (see Fig.

20, 21, 22 and 23). The last step is performed with the command dot-Tsvg. One

can use this command specifying an input DOT file and an output SVG file,

but we preferred not to create intermediate DOT files. Thus we use this

command writing our DOT diagram to the standard input and getting the SVG

representation from the standard output. SVG images are vectorial images

serialised in an XML dialect. We have chosen to create SVG images instead of

raster images for two main reason. First of all, vector graphics allow scaling

images indefinitely without degrading quality, so that big SVG feature

diagrams can be displayed in small screen piece by piece and labels yet be

readable. The second reason is that vector graphics represents images with

geometrical primitives such as points, lines, curves, and shapes or polygon(s) in

a textual format. This representation allows editing a vector image through its

textual representation. In particular you can change an object colour, shape or

position in an SVG image with an XSLT transformation.

4.4 Selectionengine

This is the main module of the application and it consists of three parts: a

general algorithm, an OWL DL reasoner, which is available from within the

ModelManager module, and some SWRL rules. The SelectionEngine has the

objective of creating automatically a valid feature configuration from some

64 Chapter 4. Features Model Layer

users defined features. In order to be defined valid, such feature configuration

should not violates SWRL selection rules and OWL model. A feature

configuration is created selecting/deselecting some features in a feature model,

thus model consistency is verified during the feature model construction.

4.4.1 Selection Algorithm

The algorithm used by the SelectionEngine requires as input an inconsistency

free feature model optionally with some feature constraints. In fact, every

model inconsistency does not allow the OWL reasoner to be used. This

algorithm is made of the following steps:

1) The user requires to select/deselect a feature or a concept (see Fig. 20

and 22) from the feature model.

2) The SelectionEngine selects/deselects the required node (see Fig. 21

and 23) according to the SWRL rules, verifying that it does not contain

inconsistencies caused by selection rules or feature constraints (i.e.

more than a feature selected in a set of alternative features or the user

attempts to select a feature with an avoid constraint)).

3) Steps 1 and 2 are repeated until every features/concepts required by the

user are selected/deselected or an inconsistency is detected. In this

latter case, the selection engine cannot go further and it launches an

exception. Such exception describes the OWL individual that has

generated the inconsistency, and the SWRL rule not verified. The

feature model has to be modified by the user in order to solve all the

conflicts.

4) The user asks to end the selection procedure.

4.4 Selectionengine 65

5) The SelectionEngine selects all the default features not already

selected, removes all the features that do not have their concept

selected and calculates a set of selected features.

6) The user can get only the selected leaf features, all the selected features

(leaf + node features) or all the selected entities (leaf feature + node

feature + concepts). This last option can be used to obtain an SVG

diagram from a feature configuration.

4.4.2 SWRL rules

An SWRL (Semantic Web Rule Language) [57] rule is a rule that has an

antecedent part defining a condition to check and a consequent part that

declares a classification or a property to set upon individuals of the antecedent

part. SWRL rules are used through the entire module in order to calculate

derived OWL properties or for checking OWL model consistency. Here we

describe the rules we used to create a valid feature configuration and to check

its consistency. All the SWRL rules can be divided in two groups, selection

rules and consistency rules. To the first group belong all the rules that

implement feature type selection restrictions, i.e. no more than a selected

feature in a set of alternative features or a feature with an avoid constraint

should not be selected. To the second group belong rules that check for model

consistency, i.e. a mandatory feature should be selected. Here we give an

ordered list of SWRL rules and describe their meaning. Rules 1 to 9 are

selection rules whereas rules 10 to 14 are consistency rules.

1) Concept(?y), SelectedFeature(?x), hasParent(?x, ?y) Selected(?y)

2) Feature(?y), SelectedFeature(?x), hasParent(?x, ?y) Selected(?y)

66 Chapter 4. Features Model Layer

3) Concept(?x), MandatoryFeature(?y), Selected(?x), hasChild(?x, ?y)

 Selected(?y)

4) Feature(?y), MandatoryFeature(?x), SelectedFeature(? x), hasChild(?x,

?y) Selected(?y)

5) DefaultFeature(?y), OrFeature(?x), SelectedFeature(?x), hasChild(?x,

?y) Selected(?y)

6) AlternativeFeature(?x), DefaultFeature(?y), Selected-Feature(?x),

hasChild(?x, ?y) Selected(?y)

7) SelectedFeature(?x), implies(?x, ?y) SelectedFeature(?y)

8) SelectedFeature(?x), excludes(?x, ?y) isSelected(?y, false)

9) avoid(?x, true) isSelected(?x, false)

10) Feature(?y), MandatoryFeature(?x), SelectedFeature(?x),

hasChild(?x,?y), isSelected(?y, false) Nothing(?y)

11) Concept(?x), isSelected(?x, false) Nothing(?x)

12) AlternativeFeature(?x), SelectedFeature(?x), SelectedFeature(?y),

SelectedFeature(?z), hasChild(?x,?y), hasChild(?x,?z),

DifferentFrom(?y, ?z) Nothing(?x)

13) OptionalAlternativeFeature(?x),

SelectedFeature(?x),SelectedFeature(?y), SelectedFeature(?z),

hasChild(?x,?y), hasChild(?x,?z), DifferentFrom(?y, ?z) Nothing(?x)

14) Feature(?x), MandatoryFeature(?y), hasParent(?x, ?y) avoid(?x, true)

 Nothing(?x)

In the previous list, rules 1 to 9 are selection rules whereas rules 10 to 14 are

consistency rules. Rules 1 and 2 declare that if a feature X is selected its parent

node (a feature or a concept) should be selected as well. The effect of this rule

is that a concept in a feature configuration must be always selected. Thus, for

4.4 Selectionengine 67

example, if a leaf feature is selected (see Fig. 20) its parent node will be

selected, as well as every node till the concept node (see Fig. 21 at nodes

Engine, Car And and Car). During these steps every rule in this list can be

triggered selecting other features (see Fig. 21 at Body feature selected as the

result of the rule 4).

Figure 20 Electric feature selected by user

68 Chapter 4. Features Model Layer

Figure 21 Inferred features by inferential engine

Rule 3 says that if a concept is selected every child feature of type mandatory

should be selected as well. The user during the selection can select only the

concept. Thus every mandatory feature group will be selected and thanks to the

rule 4 also their child features (see Fig. 22 and 23). Rule 4 declares that if a

mandatory feature is selected, every child feature should be selected (see Fig.

21 and 23 at Car And and Body nodes).

4.4 Selectionengine 69

Figure 22 Concept node selected

Figure 23 Diagram after rules application

70 Chapter 4. Features Model Layer

Rules 5 and 6 say that if a node X is selected and it has a child feature Y of

type Or or Alternative with a subfeature Z, which has a default constraint, that

feature Z should be selected. Rules 7 and 8 are used to select/deselect a feature

according to the feature constraints implies and excludes. If a feature X is

selected and it has an implies/excludes constraint with a feature Y, Y should be

selected/deselected. Rule 9 says that an avoid constraint on a feature implies

that feature to be deselected. Rule 10 says that if a mandatory features is

selected and at least one of its child feature is not selected an inconsistency is

detected. Rule 11 says that a concept cannot be deselected otherwise an

inconsistency is detected. Rules 12 and 13 state that no more that a feature can

be selected in set of Alternative/OptionalAlternative features. Rule 14 says that

if an avoid constraint is defined on a feature X and this feature has a mandatory

feature parent an inconsistency is detected.

4.5 Implementation

In this module we created a Java framework for creating and editing feature

models using an OWL ontology. We used the latest version of OWL (i.e.,

OWL 2) because it affords a better expressiveness through some new

properties restrictions like irreflexive and asymmetric. For creating, parsing

and serialising an OWL ontology we used the library OWLAPI, a Java

implementation of an OWL/XML parser. This library supplies also Reasoner

interfaces for working with reasoners such as FaCT++, HermiT, Pellet [71],

[14] and Racer [35]. Pellet is an open source Java implementation of an OWL

DL reasoner and it is capable of both ABox (instance level) and TBox (class

level) reasoning and debugging. This module uses three OWL ontologies: fm-

4.5 Implementation 71

schema.owl, fmrules. owl and fm-select.owl. We have chosen to use three

different OWL ontologies to make this subsytem modular and allow any

optional OWL ontology to be replaced dynamically. The fm-schema ontology

contains the description of the feature model ontology schema and it is required

whenever a feature model or a configuration has to be created or modified. The

fm-rules ontology is used by the InconsistencyChecker for additional

inconsistency rules. The fm-select ontology is used to store selection rules for

the SelectionEngine module. Both fm-rules and fm-select can be modified

dynamically at runtime to support new SWRL rules. Every ontology in this

module has been designed with Protege 4.1 alpha [61]. The developed

framework is distributed as a Java library in a single jar file except for the

SVGDiagramBuilder that is in another jar. In fact this module is optional and in

its current implementation uses the command line program dot [33].

72 Chapter 4. Features Model Layer

Chapter 5

Case study of MMR composition

with the framework: a music

retrieval system

The proposed MMR composition framework can be used with any type of

media. An example of use has been performed for music retrieval, so the use

cases presented in this section address the interaction with this type of data

(audio file). A features model has been designed to define all the steps basically

involved in music audio processing. An interface related to defined model has

been developed using some audio library. This is only an example of use of this

system, however it‘s possible to use images of audio or video, simply adding

the appropriate features and create a suitable features model. The defined

operations are insert and search. By inserting the user enriches the data store

system and, through search, the user searches for a music content. Logically the

two operations may be considered very different, but they are not different at

the operational level. In both cases, we need to calculate the features, and

while in the insert they will be added to the data store, in the case of search

they will be compared with the other stored in the system. We will examine

first the case of a user searching for a song, then the insertion of a track in the

data store system.

74 Chapter 5. Case Study of MMR Composition with the framework: a music retrieval system

Figure 24 Ontology designed for music processing

5.1 The adopted features model 75

5.1 The adopted features model

The Ontology layer extracts features as an instance from the feature diagram

defined, starting from the constraints imposed by the user interface. As can be

seen from figure 24 there are different types of nodes. The root defines the

main concept, i.e. Audio. The main concept‘s children have the task of

grouping different types of features, such as pre-processing and processing

(see chapter on Processing Layer). There is also another group called the

performance criteria, it represents the type of processing required by the user.

Through this group, the user can specify the constraints to obtain a custom

processing. In accordance with the input parameters and other factors, the user

can choose an elaboration oriented to accuracy (High Performance), execution

time (Fast Processing) or a middle ground between the two (Balanced accuracy

and processing time). Moreover, the Performance Criteria group is an

alternative type, this implies that exactly one of the features below must be

selected. Pre-processing and Elaboration are OrFeatures. With OrFeatures one

can select none, one or more features below. The leaf node represents the

features to extract, the algorithm used for a specific low level features

processing. We must also enter some constraints that, in this context, are

expressed through the directed edges. In the reported example "Balanced

Accuracy implies ―Big Overlap‖, ―mediumCoeff‖ and other features to extract;

in the previous figure we can see an arrow from node ―Balanced Accuracy‖ to

all the features included. The letter ‗I‘ denotes the inclusion relationship.

Clearly, it would have beeen possible to have other types of constraints:

exclusions, default and Avoid, however in this context they were not needed.

The presented diagram here is simple: the operation executable on a music file

76 Chapter 5. Case Study of MMR Composition with the framework: a music retrieval system

are hundreds, grouped by many types of features. In this work, we use a few

features, since the focus has been placed in creation of the entire architecture.

In the example, the selection Engine will start by first selecting the "Balanced

Accuracy", this will include several features, each of which will be returned

according to the group. For example, from the group "On Window" the valid

features will be considered "FFT" and one between "MakeWindow" and

"DCT". Which one to choose depends on the constraints imposed by the

performance criteria selected. The features ―FFT‖ include ―Abs‖, then ―Abs‖

will be considered in the returned configuration. Ultimately, applying all the

rules displayed in the graph, the sequence of features is: BigOverlap, FFT, Abs,

Mel and MedCoeff.

5.2 Use Case: Search

At this stage the user logs on to the system through an interface that allows

different settings. The interface created for music retrieval includes a set of

functionality that allows to customize a search task and to define the system

performance. The source of our audio file can be either memory or the

microphone. Accordingly with the specific selection will be chosen a more or

less fast function (and therefore more or less accurate), that will compose the

algorithm for audio processing. At this point the user starts the search sending

the files and the criteria to the server layer.

 Server Layer: Receiving data

At this point the system proceeds to calculate the features from the selected

audio file, using the user‘s constraint. The server will collect the data sent

5.2 Use Case: Search 77

from the user level, then it will change a lot in order to interact with the

Ontology Layer. The selection of the features set is made from an instance

of the features model, calculated from the server layer through the

invocation of the methods exposed by the Ontology Layer.

 Server Layer: received algorithm

Upon receiving the list from the Ontology Layer, the server layer may

calculate the features. The low level features algorithms are physically

present on the processing layer that exposes a methods for data elaboration.

The Server Layer invokes the processing layer methods.

 Processing Layer: features elaboration

The processing layer receives the server requests, invokes methods and

sends the results. This operation is done through a dynamic libraries

linking.

 Server Layer: Matching

At this point the Server will be able to compare the features calculated with

the features contained in the data store. The comparison is usually based on

a given distance, and compares the different values of this distance. We can

use different distances, such as the Euclidean or the Mahalanobis ones. It is

also possible to add new algorithms for matching.

The Server Layer, before comparing the features, accesses the repository of

RDF files to know what algorithm has been used for the stored features. If

78 Chapter 5. Case Study of MMR Composition with the framework: a music retrieval system

the features calculated correspond to the features stored in repository, they can

be compared. If the features do not correspond with the features stored in

repository, then the server Layer has to elaborate a request to the processing

layer to perform a features extraction . The features obtained will be added to

repository.

5.3 Use Case: Insert

Once the musical track has been uploaded, the system will be able to

automatically acquire basic information regarding the audio content, such as

duration, resolution and sampling frequency. Now the user adds other

information such as name, song title and album. A newly added content must

have a unique, globally recognized identifier. For this reason, after inserting the

files and information, the RDF file will be created. During this phase, we will

invoke the methods exposed by the Okkam Layer. Once created, the RDF file

will be included in the Sesame repository.

5.4 Music Ontology

A description of content has to follow certain rules: for example, the type and

the correlations with internal and external content must be defined

unambiguously. There is therefore a need for a common vocabulary that can

identify and link together all the resources for audio content, i.e, a need for an

ontology. We use and extended music ontology. The Music Ontology is an

attempt to provide a vocabulary for linking wide range music-related

information, and to provide a democratic mechanism for doing so. Anybody

5.4 Music Ontology 79

can publish Music Ontology data and link it with existing data, in order to help

create a music-related web of data. For example, John Doe may publish some

information about a performance he saw last night (like the fact that he was

there, and a review). Mary Doe may publish the fact that she attended the same

performance, that she recorded it using her cell-phone, and that the

corresponding item is available in her podcast. The Music Ontology provides a

vocabulary to express information ranging from this example to the following:

In this performance a particular arrangement of the Quintet by Franz

Schubert was interpreted.

This work was performed ten times, but only two of these

performances were recorded.

Ten takes of this particular track have been recorded, each of which

with a particular microphone location.

"Come as You Are" by Nirvana was released on a single and the

"Nevermind" album.

During this gig, the band played ten songs. During the last one (a cover

of "Eight days a week"), the drummer from the support band joined

them to play with them.

The Music Ontology is divided in three levels of expressiveness - from the

simplest one to the more complex one. Everything is clustered around the

following categories:

 Level 1: aims at providing a vocabulary for simple editorial

information (tracks/artists/releases, etc.)

80 Chapter 5. Case Study of MMR Composition with the framework: a music retrieval system

 Level 2: aims at providing a vocabulary for expressing the music

creation workflow (composition, arrangement, performance, recording,

etc.)

 Level 3: aims at providing a vocabulary for complex event

decomposition, to express, for example, what happened during a

particular performance, what is the melody line of a particular work,

etc.

The Music Ontology definitions presented here are written using a computer

language (RDF/OWL) that makes it easy for software to process some basic

facts about the terms in the Music Ontology, and consequently about the things

described in Music Ontology documents. A Music Ontology document, unlike

a traditional Web page, can be combined with other Music Ontology

documents to create a unified database of information.

This specification serves as the Music Ontology "namespace document". As

such it describes the Music Ontology and the terms (RDF classes and

5.4 Music Ontology 81

properties) that constitute it, so that Semantic Web applications can use those

terms in a variety of RDF-compatible document formats and applications. This

document presents the Music Ontology as a Semantic Web vocabulary or

Ontology. The Music Ontology is straightforward, pragmatic and designed to

allow simultaneous deployment and extension, and is therefore intended for

widescale use. The Music Ontology is identified by the namespace URI

'http://purl.org/ontology/mo/'. Revisions and extensions of Music Ontology are

conducted through edits to the namespace document, which by convention is

published in the Web at the namespace URI. The properties and types defined

here provide some basic concepts for use in Music Ontology descriptions.

Other vocabularies (e.g. the Dublin Core metadata elements for simple

bibliographic description, FOAF, etc.) can also be mixed in with the Music

Ontology terms, as can local extensions. The Music Ontology is designed to be

extended, and modules may be added at a later date.

82 Chapter 5. Case Study of MMR Composition with the framework: a music retrieval system

Figure 25 Extended music ontology

Chapter 6

Interface Autocomposition

The architecture of the proposed system has many advantages, but to be usable,

it must be equipped with appropriate interfaces to ensure optimal interaction.

In design phase, we needed to develop interfaces for:

 The creation and integration of ontology in the system.

 The creation of input interfaces that allow expressing constraints based

on the ontological model that the user wants to integrate.

As mentioned in the beginning, we recognize two types of users of the system:

 A first category comprises expert users able to model their ontology

and domain of interest.

 A second category comprises people who use the functionality

provided by the system to get results without making the integration of

new elements.

Let's see in detail how these two types of users can interact with the system.

5.2 Interface for Expert user

The expert user can use the system to model an MMR system based on the

application domain. Our system allows creating a model of MMR and its

interface. The processing layer will be able to adapt the sequence of steps to

84 Chapter 6. Interface Auto-Composition

perform by referring to the interface choosen by the user and to the imposed

constraints. The user can use the system to design a model and to design the

interface for its system. We must ensure the follows functionality to design a

MMR system and its related interface:

 Design suitably the related ontology.

 If the ontology already exists, specify for extensions.

 Develop the required algorithms and add them to the processing layer

(if they are not already included).

 Design the GUI for user queries.

First step is modeling the domain application using an ontology in OWL. The

ontology will have to explain all the possible processing sequences that the

model allows. The ontology must be validated by a reasoner to check the

absence of ambiguity in the constraints. In the ontological model (that

represents the application domain modeling) in addition to the possible

sequence of steps, the algorithms used by the model created must be specifed.

A first interface allows loading the ontological model and to associate to it

algorithms for processing features (Fig. 26).

6.1 Interface for Expert User 85

Figure 26 Interface for associating algorithms to ontological model by drag &

drop

However, before the association we must create the algorithms for processing

in dll. The dll files, represents the set of algorithms stored in our system. The

files are stored in a repository and are used from processing layer to perform

the elaboration required. The next step will be the interface for the retrieval

used a wizard procedure. A wizard procedure, assist the user for the creation of

the interface for a specific domain.

6.1.1 Wizard Interface

During this phase one of the most important things is the possibility to create

links that allows the formulation of the search criteria. How is it possible to

associate the constraints with the wizard interface? The problem is solved by

mapping properly the constraints selected from the ontological model creator.

86 Chapter 6. Interface Auto-Composition

The model should be designed in order to have the option branches where the

choice is dependent from the constraints that the reasoner will accept. The

reasoner returns as output an instance of the ontology that represents the

sequence of steps to get the retrieval according with the imposed constraints.

During the creation of wizard interface, we need a tool that allows us to map

the constraints that the ontological model proposes onto interface objects.

Figure 27 Binding between model OWL constraint and interface object

In summary, through the user interface, the expert can:

 Upload a model described in OWL.

 Bind the low level features processing algorithm with the OWL model.

 Create an interface for the proposed model by:

6.2 Interface for simple User 87

o Adding graphical objects.

o Mapping the objects with possible constraints presents in the

ontological model.

6.2 Interface for simple user

The created interface, will enable searching the MMR system through query by

example. The user chooses from a window the type of media to search and type

of task related to that media. In other words, the user chooses among the

models that have been uploaded by the expert. Then a dedicated interface

allows the users to perform the search.

Figure 28 Example of interface created for music retrieval

Chapter 7

Conclusion and Future Work

This thesis has demonstrated how multimedia retrieval can be performed

efficiently and adaptively according to the domain‘s features and users

requirements. In detail, a novel architecture for general purpose automatic

multimedia retrieval, based on some key technologies, i.e. ontology, features

modeling and interface auto-composition, was devised and implemented. The

hybrid architecture (in that it combines both modeling and retrieval features)

was introduced in Chapter 3, followed by the features modeling sub-system

(Chapter 4), an use case on audio retrieval enhanced with a specific domain

ontology (Chapter 5) and, finally, by the interface autocomposition

functionalities (Chapter 6). The integrated architecture, herein presented,

results in a semantic-rich and flexible mechanism for generating automatically

any type of multimedia retrieval system. Of course, this is beneficial for the

scientific, research and application communities.

The main strengths of the proposed architecture are its flexibility, adaptability

and integration capabilities in creating multimedia retrieval application

according to the user needs and to the domain constrains. In fact, one of the

main peculiarities of the proposed architecture is its adaptability to 1) a specific

domain, simply through the design of a proper ontology, as, for instance, it has

been demonstrated in the audio retrieval use case previously presented and 2)

the user needs, by creating on-line instances of the developed ontologies for

 89

the specific domain, wherein the reasoner follows the user‘s specified

constraints. The flexibility of the system was achieved by the Interface auto-

composition. The user interfaces are created according to the instances of the

ontology that describes the domain the user is dealing with. Moreover, for each

auto-composed interface, the media processing algorithms that better adapt to

the user requirements and domain constrains are chosen. The system ensures

integration with existing applications by adopting the philosophy of the global

and fully interconnected web of data: in fact, the entities are structured by

ontologies universally recognized, the identifiers used are unique and the

databases are usable from any external application.

Finally, in the thesis an OWL-based approach for building and editing ontology

feature models together with an OWL-based inferential engine for creating a

feature configuration and checking ontology consistency has been presented.

While the approach that has been used to design and implement this MMR

architecture has several prominent features, at the current stage, it has some

limitations. First, the computational capability of the system depends only on

the performance of the machine that hosts the implemented services. However,

the architecture may adapt easily to a distributed context e.g. in a web, Grid or

Cloud services since it relies on semantic web technologies. Indeed, one next

step will be to test it in a distributed environment, such as the one described in

Appendix E, especially with respect to storage and processing issues.

Currently, the system does not contain enough processing algorithms for

creating different use cases (e.g. video, image, 3D models…), although the

built-in flexibility allows the users to include easily new ones (e.g., the

relevance feedback algorithm in Appendix E). Once the collection of available

90 Chapter 8. Conclusion and Future Works

processing algorithms will be enriched, it will be possible to evaluate more

systematically the added value of the proposed adaptive compositional

capabilities from the user‘s perspective and system‘s performance point of

view.

 91

Appendix A

RDF (Resource Description Framework)

The Resource Description Framework (RDF) is a general-purpose language for

representing information in the Web. This specification is one of several [RDF-

PRIMER] [RDF-SYNTAX] [RDF-CONCEPTS] [RDF-SEMANTICS] [RDF-

TESTS] related to RDF. The reader is referred to the RDF schema chapter in

the RDF Primer [RDF-PRIMER] for an informal introduction and examples of

the use of the concepts specified in this document. This specification introduces

RDF's vocabulary description language, RDF Schema. It is complemented by

several companion documents which describe RDF's XML encoding [RDF-

SYNTAX], mathematical foundations [RDF-SEMANTICS] and Resource

Description Framework (RDF): Concepts and Abstract Syntax [RDF-

CONCEPTS]. The RDF Primer [RDF-PRIMER] provides an informal

introduction and examples of the use of the concepts specified in this

document. First, let us describe the RDF Schema Specification, based on [W3C

1999b], in order to discuss and point out some unconventional design decisions

taken in this specification. We will try to make this chapter self-contained, but

a working knowledge of [W3C 1999b] will help to understand the discussion in

this section. The prefixes rdf: and rdfs: indicate, whether a resource is part of

the RDF Data Model [W3C 1999a] or the RDF Schema Specification [W3C

1999b]. RDF schemas are used to define the structure of the metadata that are

used to describe WWW resources (i.e. WWW pages or parts of WWW pages,

92 Appendix A. RDF (Resource Description Framework)

referenced by an URL). The RDF Schema Specification consists of some basic

classes and properties, and can be extended by others to fit possibly any given

domain. Classes are arranged hierarchically, and the use of properties can be

constrained to members of certain classes. The root of the class hierarchy is

rdfs:Resource, rdfs:Class is subclass of rdfs:Resource.

Figure 29 RDF Classes and Resources as Sets and Elements

Properties are defined by the rdf:Property class and can be seen as attributes,

that are used to describe resources by assigning values to them. Properties are

resources themselves. The RDF Schema Specification defines four specific

properties (rdfs:subClassOf, rdf:type, rdfs:range, rdfs:domain) that have, unlike

other predefined or self-defined properties, certain constraints. These four

properties are both used to define the other RDF schema constructs and also as

constructs defined in the RDF schema. Additional predefined properties such

 93

as rdfs:seeAlso and rdfs:comment are used to specify resources with related

subjects, or to give a human readable description of a resource. The fact, that

these properties are predefined can be seen as a convenience, they are not

needed for the definition of other properties. Figure 43, 44 and 45 (which we

have reproduced from [W3C 1999b]) show the RDF schema specification as a

set of pictures. We will use an abbreviated description of these pictures based

on the text in [W3C 1999b] and discuss the design issues we want to address in

our alternative RDF schema specification model. Figure 1 shows RDF classes,

subclasses and resources as sets, subsets and elements. A class is depicted by a

rounded rectangle, a resource is depicted by a large dot. Arrows are drawn from

a resource to the class it defines. A sub-class is shown by having a rounded

rectangle (the sub-class) completely enclosed by another (the super-class). If a

resource is inside a class, then there exists either an explicit or implicit rdf:type

property of that resource whose value is the resource defining the containing

class. The constraint properties rdfs:range and rdfs:domain are distinguished

from the other predefined properties. The property rdf:type is present both as a

specific property and depicted as an arrow, rdfs:subClassOf both as a specific

property and depicted as set containment. Figure 44 shows the same

information about the class hierarchy as in figure Figure 43, but does so using a

„nodes and arcs― graph representation of the RDF data model. If a class is a

subset of another, then there is an rdfs:subClassOf arc from the node

representing the first class to the node representing the second. Similarly, if a

Resource is an instance of a Class, then there is an rdf:type arc from the

resource to the node representing the class.

94 Appendix A. RDF (Resource Description Framework)

Figure 30 Class Hierarchy for the RDF Schema

Again, rdfs:subClassOf is present both as a specific property and a primitive

construct (an arrow labelled with „s―), rdf:type as specific instance of property

and as primitive construct (an arrow labelled with „t―).

Appendix B

OWL (Web Ontology Language)

The expressivity of RDF and RDF Schema is deliberately very limited: RDF is

(roughly) limited to binary ground predicates, and RDF Schema is (again

roughly) limited to a subclass hierarchy and a property hierarchy, with domain

and range definitions of these properties. However, the Web Ontology Working

Group of W3C3 identified a number of characteristic use-cases for Ontologies

on the Web which would require much more expressiveness than RDF and

RDF Schema. A number of research groups in both America and Europe had

already identified the need for a more powerful ontology modeling language.

This lead to a joint initiative to define a richer language, called DAML+OIL4

(the name is the join of the names of the American proposal DAML-ONT5,

and the European language OIL6). DAML+OIL in turn was taken as the

starting point for the W3C Web Ontology Working Group in defining OWL,

the language that is aimed to be the standardized and broadly accepted

ontology language of the Semantic Web. In this chapter, we first describe the

motivation for OWL in terms of its requirements, and the resulting non-trivial

relation with RDF Schema. We then describe the various language elements of

OWL in some detail.

Requirements for ontology languages

Ontology languages allow users to write explicit, formal conceptualizations of

domains models. The main requirements are:

96 Appendix B. OWL (Web Ontology Language)

1. a well-defined syntax

2. a well-defined semantics

3. efficient reasoning support

4. sufficient expressive power

5. convenience of expression.

The importance of a well-defined syntax is clear, and known from the area of

programming languages; it is a necessary condition for machine-processing of

information. All the languages we have presented so far have a well-defined

syntax. DAML+OIL and OWL build upon RDF and RDFS and have the same

kind of syntax. Of course it is questionable whether the XML-based RDF

syntax is very user-friendly, there are alternatives better suitable for humans

(for example, see the OIL syntax). However this drawback is not very

significant, because ultimately users will be developing their ontologies using

authoring tools, or more generally ontology development tools, instead of

writing them directly in DAML+OIL or OWL. Formal semantics describes

precisely the meaning of knowledge. \Precisely" here means that the semantics

does not refer to subjective intuitions, nor is it open to different interpretations

by different persons (or machines). The importance of formal semantics is

well-established in the domain of mathematical logic, among others. One use

of formal semantics is to allow humans to reason about the knowl- edge. For

ontological knowledge we may reason about:

 Class membership: If x is an instance of a class C, and C is a subclass

of D, then we can infer that x is an instance of D.

 97

 Equivalence of classes: If class A is equivalent to class B, and class B

equivalent to class C, then A is equivalent to C, too.

 Consistency: Suppose we have declared x to be an instance of the class

A. Further suppose that - A is a subclass of B \ C - A is a subclass of D

- B and D are disjoint Then we have an inconsistency because A

should be empty, but has the instance x. This is an indication of an

error in the ontology.

 Classification: If we have declared that certain property-value pairs are

sufficient condition for membership of a class A, then if an individual

x satisfies such conditions, we can conclude that x must be an instance

of A.

Semantics is a prerequisite for reasoning support: Derivations such as the

above can be made mechanically, instead of being made by hand. Reasoning

support is important because it allows one to

 check the consistency of the ontology and the knowledge; Web

Ontology Language: OWL 3

 check for unintended relationships between classes.

 automatically classify instances in classes

Automated reasoning support allows one to check many more cases than what

can be done manually. Checks like the above are valuable for

 designing large ontologies, where multiple authors are involved;

 integrating and sharing ontologies from various sources.

98 Appendix B. OWL (Web Ontology Language)

Formal semantics and reasoning support is usually provided by mapping an

ontology language to a known logical formalism, and by using automated

reasoners that already exist for those formalisms. We will see that OWL is

(partially) mapped on description logic, and makes use of existing reasoners

such as FaCT and RACER. Description logics are a subset of predicate logic

for which efficient reasoning support is possible.

Limitations of the expressive power of RDF Schema

RDF and RDFS allow the representation of some ontological knowledge. The

main modeling primitives of RDF/RDFS concern the organization of

vocabularies in typed hierarchies: subclass and subproperty relationships,

domain and range restrictions, and instances of classes. However a number of

other features are missing. Here we list a few:

 Local scope of properties: rdfs:range defines the range of a property,

say eats, for all classes. Thus in RDF Schema we cannot declare range

restrictions that apply to some classes only. For example, we cannot

say that cows eat only plants, while other animals may eat meat, too.

 Disjointness of classes: Sometimes we wish to say that classes are

disjoint. For example, male and female are disjoint. But in RDF

Schema we can only state subclass relationships, e.g. female is a

subclass of person.

 Boolean combinations of classes: Sometimes we wish to build new

classes by combining other classes using union, intersection and

complement. For example, we may wish to define the class person to

be the disjoint union of the classes male and female. RDF Schema does

not allow such definitions.

 99

 Cardinality restrictions: Sometimes we wish to place restrictions on

how many distinct values a property may or must take. For example,

we would like to say that a person has exactly two parents, and that a

course is taught by at least one lecturer. Again such restrictions are

impossible to express in RDF Schema.

 Special characteristics of properties: Sometimes it is useful to say that

a property is transitive (like \greater than"), unique (like \is mother

of"), or the inverse of another property (like \eats" and \is eaten by").

So we need an ontology language that is richer than RDF Schema, a language

that offers these features and more. In designing such a language one should be

aware of the tradeof between expressive power and efficient reasoning sup-

port. Generally speaking, the richer the language is, the more inefficient the

reasoning support becomes, often crossing the border of non-computability.

Thus we need a compromise, a language that can be supported by reasonably

efficient reasoners, while being sufficiently expressive to express large classes

of ontologies and knowledge.

Compatibility of OWL with RDF/RDFS

Ideally, OWL would be an extension of RDF Schema, in the sense that OWL

would use the RDF meaning of classes and properties (rdfs:Class,

rdfs:subClassOf, etc), and would add language primitives to support the richer

expressiveness identified above. Unfortunately, the desire to simply extend

RDF Schema clashes with the trade-of between expressive power and efficient

reasoning mentioned be- fore. RDF Schema has some very powerful modelling

primitives, such as the rdfs:Class (the class of all classes) and rdf:Property (the

class of all properties). These primitives are very expressive, and will lead to

100 Appendix B. OWL (Web Ontology Language)

uncontrollable computational properties if the logic is extended with the

expressive primitives identified above.

Three species of OWL

All this as lead to a set of requirements that may seem incompatible: efficient

reasoning support and convenience of expression for a language as powerful as

a combination of RDF Schema with a full logic. Indeed, these requirements

have prompted W3C's Web Ontology Working Group to define OWL as three

different sublanguages, each of which is geared towards fulfilling different

aspects of these incompatible full set of requirements:

 OWL Full: The entire language is called OWL Full, and uses all the

OWL languages primitives (which we will discuss later in this

chapter). It also allows combining these primitives in arbitrary ways

with RDF and RDF Schema. This includes the possibility (also present

in RDF) to change the meaning of the pre-defined (RDF or OWL)

primitives, by applying the language primitives to each other. For

example, in OWL Full we could impose a cardinality constraint on the

class of all classes, essentially limiting the number of classes that can

be described in any ontology. The advantage of OWL Full is that it is

fully upward compatible with RDF, both syntactically and

semantically: any legal RDF document is also a legal OWL Full

document, and any valid RDF/RDF Schema conclusion is also a valid

OWL Full conclusion. The disadvantage of OWL Full is the language

has become so powerful as to be undecidable, dashing any hope of

complete (let alone efficient) reasoning support.

 101

 OWL DL: In order to regain computational efficiency, OWL DL (short

for: Description Logic) is a sublanguage of OWL Full which restricts

the way in which the constructors from OWL and RDF can be used.

We will give details later, but roughly this amounts to disallowing

application of OWL's constructor's to each other, and thus ensuring that

the language corresponds to a well studied description logic. The

advantage of this is that it permits efficient reasoning support. The

disadvantage is that we loose full compatibility with RDF: an RDF

document will in general have to be extended in some ways and

restricted in others before it is a legal OWL DL document. Conversely,

every legal OWL DL document is still a legal RDF document.

 OWL Lite: An ever further restriction limits OWL DL to a subset of

the language constructors. For example, OWL Lite excludes

enumerated classes, disjointness statements and arbitrary cardinality

(among others). The advantage of this is a language that is both easier

to grasp (for users) and easier to implement (for tool builders). The

disadvantage is of course a restricted expressivity.

Ontology developers adopting OWL should consider which sublanguage best

suits their needs. The choice between OWL Lite and OWL DL depends on the

extent to which users require the more-expressive constructs provided by OWL

DL and OWL Full. The choice between OWL DL and OWL Full mainly

depends on the extent to which users require the meta-modeling facilities of

RDF Schema (e.g. defining classes of classes, or attaching properties to

classes). When using OWL Full as compared to OWL DL, reasoning support is

less predictable since complete OWL Full implementations will be impossible.

102 Appendix B. OWL (Web Ontology Language)

There are strict notions of upward compatibility between these three sub-

languages:

 Every legal OWL Lite ontology is a legal OWL DL ontology.

 Every legal OWL DL ontology is a legal OWL Full ontology.

 Every valid OWL Lite conclusion is a valid OWL DL conclusion.

 Every valid OWL DL conclusion is a valid OWL Full conclusion.

OWL still uses RDF and RDF Schema to a large extent:

 all varieties of OWL use RDF for their syntax

 instances are declared as in RDF, using RDF descriptions and typing

in- formation

 OWL constructors like owl:Class, owl:DatatypeProperty and

owl:ObjectProperty are all specialisations of their RDF counterparts.

Figure 1 shows the subclass relationships between some modelling

primitives of OWL and RDF/RDFS. 6 Grigoris Antoniou and Frank

van Harmelen rdfs:Class owl:Class owl:ObjectProperty

owl:DatatypeProperty rdf:Property rdfs:Resource

 103

Figure 31 Subclass relationships between OWL and RDF/RDFS

The original hope in the design of OWL was that there would be a down- ward

compatibility with corresponding re-use of software across the various layers.

However, the advantage of full downward compatibility for OWL (that any

OWL aware processor will also provide correct interpretations of any RDF

Schema document) is only achieved for OWL Full, at the cost of computa-

tional intractability.

 105

Appendix C

Okkam

The OKKAM project aims at enabling the Web of Entities, namely a virtual

space where any collection of data and information about any type of entities

(e.g. people, locations, organizations, events, products, ...) published on the

Web can be integrated into a single virtual, decentralized, open knowledge base

(like the Web did for hypertexts, readhere what Tim Berners-Lee says on this

parallel). OKKAM will contribute to this vision by supporting the convergence

towards the use of a single and globally unique identifier for any entity which

is named on the Web. The intuition of the project is that the concrete

realization of the Web of Entities requires that we enable tools and practices for

cutting to the root the proliferation of unnecessary new identifierss for naming

the entities which already have a public identifier (the OKKAM's razor).

Therefore, OKKAM will make available to content creators, editors and

developers a global infrastructure and a collection of new tools and plugins

which support them to easily find public identifiers for the entities named in

their contents/services, use them for creating annotations, build new network-

based services which make essential use of these identifiers in an open

environment (like the Web or large Intranets). To realize this vision, OKKAM

proposes the following roadmap:

providing a scalable and sustainable infrastructure, called the Entity Name

System (ENS), for making the systematic reuse of global and unique entity

106 Appendix C. Okkam

identifiers not only possible, but easy and straightforward. The ENS will be a

distributed service which permanently stores identifiers for entities and

provides a collection of core services (e.g. entity matching, ID mapping and

resolution) needed to support their pervasive reuse;

bootstrapping and enabling the fast growth of Web of Entities by fostering the

creation of OKKAMized content (i.e. content where entities are named or

annotated with OKKAM IDs) in OKKAM-empowered applications (i.e.

applications which can interact with the ENS for getting and reusing

identifiers); showcasing the benefits of enabling the Web of Entities and, more

in general, of an entity-oriented approach to content and knowledge

management by building relevant applications on top of the new infrastructure

in three important areas: information retrieval and semantic search, content

authoring (more specifically, in scientific publishing andnews production) and

organizational knowledge management.

The impact of the proposed infrastructure cannot be easily overestimated. Not

only it will provide a general service for entity-level integration of virtually any

type of data and service into the global Web of Entities; but it will also provide

the solid foundation for a whole generation of new applications and services

which will benefit from the use of global identifiers in large collections of

OKKAMized content and data.

Appendix D

Implemented Methods

Now we're going to expose some of the functions implemented. For some of

the features proposed exists different versions, to differentiate the performance

levels. It‘s possible to study audio content according to different criteria:

Windows (overlap)

Some operations, especially preprocessing operations, are usually performed on

the entire audio, while others using the intervals of the incoming content. It‘s

necessary that the input file is divided into sections called windows. When a

window is created it‘s possible to have overlapping. Suppose we make a simple

division of an audio content:

The signal is partitioned into fixed-length windows. According to this approach

the problem is given by the extremes of the windows. In the extremes it‘s

possible to lose some important elements of audio, especially in subsequent

processing. In this case, can be useful to have some overlap between windows

108 Appendix D. Implemented Methods

(overlapping). It‘s possible to variate the overlapping windows in accordance

with the requirements of accuracy and speed of execution.

Audio (No overlapping)

Window 1 Window 2 Window 3 Window 4 Window 5

Audio (overlapping 50%)

Window 1 Window 3

Window 2

Window 5

Window 4

Audio (overlapping 100%)

Window 1 Window 3 Window 5

Window 2 Window 4

Figure 32 Overlapping Examples

The percentage of overlapping indicated refers to the amount of each window

subject to overlap. In the last section we see that every window is subject to

overlap in all samples, so the value will be 100%. Have overlapping, as

mentioned above, provides a reasonable assurance of not losing important data.

Inside our system there are several overlapping modes that coincide with those

see in the picture. The processing layer implements the operation of three

 109

possible overlapping in different ways. The Ontology Layer select which of

those overlapping oerations, best adapted to the user requests.

FFT

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete

Fourier transform (DFT) and its inverse. There are many distinct FFT

algorithms involving a wide range of mathematics, from simple complex-

number arithmetic to group theory and number theory; this article gives an

overview of the available techniques and some of their general properties,

while the specific algorithms are described in subsidiary articles linked below.

A DFT decomposes a sequence of values into components of different

frequencies. This operation is useful in many fields (see discrete Fourier

transform for properties and applications of the transform) but computing it

directly from the definition is often too slow to be practical. An FFT is a way to

compute the same result more quickly: computing a DFT of N points in the

naive way, using the definition, takes O(N2) arithmetical operations, while an

FFT can compute the same result in only O(N log N) operations. The

difference in speed can be substantial, especially for long data sets where N

may be in the thousands or millions—in practice, the computation time can be

reduced by several orders of magnitude in such cases, and the improvement is

roughly proportional to N / log(N). This huge improvement made many DFT-

based algorithms practical; FFTs are of great importance to a wide variety of

applications, from digital signal processing and solving partial differential

equations to algorithms for quick multiplication of large integers.

110 Appendix D. Implemented Methods

Conversion in Mel scale

The mel scale, proposed by Stevens, Volkman and Newman in 1937 is a

perceptual scale of pitches judged by listeners to be equal in distance from one

another. The reference point between this scale and normal frequency

measurement is defined by equating a 1000 Hz tone, 40 dB above the listener's

threshold, with a pitch of 1000 mels.

Above about 500 Hz, larger and larger intervals are judged by listeners to

produce equal pitch increments. As a result, four octaves on the hertz scale

above 500 Hz are judged to comprise about two octaves on the mel scale. The

name mel comes from the word melody to indicate that the scale is based on

pitch comparisons. A popular formula to convert f hertz into m mel is:

 111

Discrete Cosine Transform

A discrete cosine transform (DCT) expresses a sequence of finitely many data

points in terms of a sum of cosine functions oscillating at different frequencies.

DCTs are important to numerous applications in science and engineering, from

lossy compression of audio and images (where small high-frequency

components can be discarded), to spectral methods for the numerical solution

of partial differential equations. The use of cosine rather than sine functions is

critical in these applications: for compression, it turns out that cosine functions

are much more efficient (as explained below, fewer are needed to approximate

a typical signal), whereas for differential equations the cosines express a

particular choice of boundary conditions.

Appendix E

Related Technologies

Visual Attention for Implicit Relevance Feedback

in CBIR

In this section we propose an implicit relevance feedback method with the aim

to improve the performance of known Content Based Image Retrieval (CBIR)

systems by re-ranking the retrieved images according to users‘ eye gaze data.

This represents a new mechanism for implicit relevance feedback, in fact

usually the sources taken into account for image retrieval are based on the

natural behavior of the user in his/her environment estimated by analyzing

mouse and keyboard interactions. In detail, after the retrieval of the images by

querying CBIRs with a keyword, our system computes the most salient regions

(where users look with a greater interest) of the retrieved images by gathering

data from an unobtrusive eye tracker, such as Tobii T60. According to the

features, in terms of color, texture, of these relevant regions our system is able

to re-rank the images, initially, retrieved by the CBIR. Performance evaluation,

carried out on a set of 30 users by using Google Images and ―pyramid‖ like

keyword, shows that about the 87% of the users is more satisfied of the output

images when the re-raking is applied.

114 Appendix E. Related Technologies

Figure 33 Implicit Relevance Feedback for the new Ranking Method in web-based CBIR.

The Proposed System

In order to improve the ranking provided by the search on a CBIR

environment, a system that uses an eye tracker to capture an implicit relevance

feedback and to classify the images in a different order of relevance has been

created. The aim of this is to capture, by an eye tracker, the user‘s gaze

fixations in order to identify the characteristics of the images s/he declares to

be of her/his interest. This will allow the tool to retrieve automatically further

relevant images. The tool may be also able to discover in an unsupervised way

 115

the characteristics of the images of potential user interest. Indeed, it is able to

derive the characteristics of the images of user interest by considering the

images, which mainly captured the user attention, e.g., by taking into account

the user visual activity over the analyzed images. In the former case the tool

learns how to select further relevant images, whereas in the latter case it could

be also able to reclassify the images already examined by the user suggesting to

her/him of reconsidering more deeply some potentially relevant images.

Although the system proposed has been only tested on Google images to

improve the precision of the retrieval, it may be applied to improve the

precision of the retrieval of any document on the basis of the images featuring

the documents. Figure 29 shows the general architecture of proposed implicit

relevance feedback, where we point out the system ability of rearranging the

images initially retrieved from a web-based CBIR (e.g. Google Images)

without any user supervision, i.e., only on the basis of the user gaze fixations.

A fine tuning of the characteristics to be possessed by the images may be

carried out by the system on the basis of the user agreement for a better

rearrangement of the images or for extracting relevant images from other

datasets. In detail, the re-ranking mechanism is composed of the following

steps:

 First Image Retrieval. The user enters some keywords on the used

CBIR and observes the results. During this phase, the eye tracker

stores gaze fixations on the thumbnails of the retrieved images, which

most captured the user attention and her/his eye movements;

 Features Extraction. One of the crucial point in CBIR is the choice

of low-level features, to be used to compare the image under test with

the queried image. The features combination determines the

116 Appendix E. Related Technologies

effectiveness of research. The extracted features can be related to the

entire image, so we are talking about global features, or to its portion,

then we are talking about local features. The local features extraction

is more complex, because it requires a first step for the detection of the

important regions of the image, such as clustering algorithms and

object recognition, but it permits a considerable reduction of

computational complexity of search algorithms. In our case the

detection is simplified by the eye tracker, which allows us to identify

the regions of major interest. The local features, considered for

describing image content, are:

o Brightness;

o Smoothness;

o Contrast;

o Correlation;

o Energy;

o Homogeneity;

o Gabor filters.

 Therefore, in the proposed system, the images returned by the CBIR

and the file containing the data taken by the eye tracker are processed

in order to identify the most relevant images and their features.

 Re-Ranking. The values of the extracted features, which should be

possessed by the images to best fit the user interest, are then processed

to produce a ranking of the images initially retrieved. In detail, we

compute similarity scores (which represents a sort of implicit

relevance feedback) between the most relevant images, detected at the

previous step, and the images retrieved at the first step (see fig. 30).

 117

The metrics to evaluate the similarity is based on the concept of

distance,

Figure 34 System Architecture.

measured between the features of the most salient images (extracted at the

previous step) and the features of the images initially retrieved (at step 1). The

images are re-ranked by using these similarity scores.

118 Appendix E. Related Technologies

Figure 35 Eye Tracker with the implicit relevance feedback produces an image input for CBIR
system.

The relevance feedback detected by the eye tracker could be improved by

taking into account the ranking carried out by other methods, e.g., by the ones,

which model the user behavior during the phase of image analysis from how

the user operates on the mouse and keyboard.

User Interface and Experimental Results

The system has been implemented by integrating the functionality of the Tobii

Studio to Matlab 7.5 responsible for processing the output provided from the

eye tracker. The Tobii studio makes possible to register a web browsing, setting

appropriate parameters such as the URL and the initial size of the window on

the web browser. By default the web browsing is set to

 119

http://images.google.com/ as homepage, whereas the window size and

resolution are put equal to the entire screen and the maximum resolution

allowed by the monitor. After a proper training phase of the instrument, the

user is authorized to start regular recording sessions that terminate by pressing

the F10 key on the keyboard. At the end of the session the user should confirm

the export in textual form of the two files related to fixations and events needed

for the computation of the relevance feedback. Thus, the information

representing the gaze fixations and the one related to the images, which are

merged in the same picture, are actually separated into two files. To evaluate

the effectiveness of the proposed system for increasing the precision of the

information retrieval carried out by Google Images, we will show below how

the system rearranges significantly the collection of images proposed by

Google in response to the word ―pyramid‖ and we will evaluate the

performance increase as perceived by a set of 30 users. Indeed, such collection

is proposed without any knowledge of the user interest by merging images of

pyramid where the subject is either a monument or a geometric solid (see fig.

32). With the eye tracker we may go insight the user interests, by discovering,

for example that s/he is more interested in the pyramids as monuments since

the more fixed images are related to the Egyptian pyramids (see fig. 33). With

this information at hand it is relatively easy for the system to discover, after the

recording session, the images relevant for the user following the processing

procedure pointed out in the previous section. Fig. 34 shows the collection of

the images as re-proposed by our system. The new ranking correctly suggests a

sequence that favors the pyramids more similar to those observed and then

120 Appendix E. Related Technologies

Figure 36 Google Ranking for “Pyramid” Keyword.

Figure 37 Gaze Fixations on the Images retrieved by Google using the “Pyramid” keyword.

 121

requested by the user. The users will was caught with an implicit relevance

feedback by taking into account that s/he was particularly attracted by a picture

with the Sphinx in the foreground and the pyramid in the background. The

proposed system was then able to discover meaningful information from how

the perception process has been carried out by the user. Indeed, by the new re-

proposed ranking, at the top two places there are images with the pyramid and

the Sphinx.

Figure 38 New Images Pyramid Ranking according to the Eye Tracker feedback given by the
user.

122 Appendix E. Related Technologies

Distributed architecture for sharing and retrieving

medical images

Large amounts of images (SPECT, PET, etc…) in nuclear medicine field have

been routinely produced in the last years. In this section we propose an image

management system that allows nuclear medicine physicians to share the

acquired images and the associated metadata both locally (i.e. within the same

medical institute) and globally with other physicians located in any part of the

world by using GRID services for data (LFC) and metadata (AMGA) storage.

The proposed system guarantees medical data protection by anonymization that

aims at removing most sensitive data for unauthorized users and encryption

that guarantees data protection when it is stored at remote sites. Another

important issue is that often nuclear medicine data is associated with other

medical data (e.g. neurological data) for diagnosis and therapy follow-up. In

order to correlate images with other clinical information, the common metadata

are enriched by developing a controlled vocabulary, which integrates known

standards such as FOAF, CCR and GeneOntology. All the metadata are stored

in an RDF (Resource Description Framework) repository in order to make the

system fully compatible with existing metadata storage systems following the

semantic web‘s philosophy.

 123

Figure 39 Architecture for Local and Global Data Storage and Sharing

Storage and sharing System Overview

In order to develop a distributed environment for image and information

sharing to support the diagnosis, the treatment of patients and for statistical

evaluation the system is provided with two levels of storage and sharing: the

first is locally managed by a client-server architecture, deployed in the medical

institute nuclear medicine physicians belong to, whereas the second one is on

Grid and allows global data sharing, i.e. data may be shared among researchers

within the same medical institute by using a client-server architecture or among

different institutes using the services offered by the GRID computing. Fig. 35

shows the local and global data sharing. The typical use case is the following: a

user, using a suitable interface, can store the images and the metadata of a

performed examination in its own local database (located in his/her computer).

Afterwards, the client creates an anonymous version of the data removing all

the confidential information so they can be sent to the main server avoiding

124 Appendix E. Related Technologies

privacy issues. Additionally, the client allows users to define the set of

metadata he/she wants to share both in GRID and in his/her medical institute.

The data transmission between client and server runs asynchronously in order

1) to make the system robust because if no internet connection is available, data

are locally stored and subsequently sent to the main server and to GRID when

the connection will be available again and 2) to avoid doctors to have the

perception of the actual time needed for the data transfer. The server contains

the data and metadata repositories where

Figure 40 Local Data Storage and Sharing

all the data/metadata produced within the same institute are stored. The

communication with GRID is delegated to it, thus optimizing the bandwidth‘s

use. A. Local Data Storage and Sharing Inside a medical institute, data are

stored and shared using a standard client-server architecture, as shown in fig.

36. The client and the server are connected by a local network or a VPN

(Virtual Private Network). The client contains the user interface and

implements the logic communication with the GRID infrastructure. It also

contains a file repository (for image storage) and a SESAME server 1 (for RDF

 125

metadata storage), in order to save patient‘s data locally. The server also

includes a file and a SESAME metadata repository for the data produced by all

the physicians in the institute. Data are sent from the client to the server using

FTP, whereas metadata is transmitted using SOAP requests since we

implement a webservice for metadata storage in SESAME, as shown in fig. 36.

By using the client interface a nuclear medicine physician can record and

manage patients, add information to patient‘s clinical history (according to the

schema shown in the next section), include any relevant documents (textual

reports, generic images, DICOM images, etc..), run queries locally or on GRID

data, associate the metadata deriving from the queries to the data locally stored

and perfom statistical analysis on set of data and virtual data (i.e. coming from

the main institute center or from GRID).

Figure 41 Global Data Storage and Sharing middleware2.

126 Appendix E. Related Technologies

Figure 42 Interaction with Medical Institute - GRID Infrastructure server.

High Level Features

In order to provide useful information about the stored images and to make

available them and the related metadata to the nuclear medicine community,

the system is provided with high level features. More in detail, the system

contains three processing levels:

 127

 A semantic layer which aims at enriching patient metadata by

constructing a controlled vocabulary using RDF/XML standard. This

level guarantees the interoperability existing frameworks;

 A image processing layer that aims at analyzing the stored images.

This is an important layer, since sometime is very useful to share only

the processing results and not the entire image. This level performs the

image analysis and interacts with the semantic layer for processing

results storage in RDF/XML;

 Query Composition for performing complex queries both locally and

on GRID. This module allows users to search useful information by

processing only the metadata available locally or in GRID.

The interaction between the three levels and the system‘s architecture is shown

in fig. 38. A. Semantic Layer Usually nuclear medicine images (PET,

SPECT,..) are stored in DICOM format, containing the metadata provided with

the standard. These metadata are not sufficient for describing the clinical

history of patients. For this reason we enrich the information available in order

to give the nuclear medicine physician the possibility to better figure out a

specific disease by developing a model that represents the medical data so that

it can be analyzed by semantic tools. In detail, the system stores concepts,

specifies typed relationships between these concepts using RDF (Resource

Description Framework) with XML syntax format. More in detail, we enrich

the DICOM metadata by developing a controlled vocabulary that includes:

128 Appendix E. Related Technologies

Figure 43 High Level Features

 Personal data by using FOAF ontology;

 Generic Health Information according to the CCR standard such as:

Problems/diagnoses, Allergies, Medication list, Immunizations,

 129

Family history, Social history, Vital signs, Procedures, Symptoms,

Plan of care, Functional status, Biosignals (EEG, ECG, etc...);

 Genetic Information using GeneOntology;

 Neurological detailed information by using Mesh;

 Image Processing information that represent the output of the

implemented image processing algorithm and which introduces a new

semantic level to the stored metadata.

It is notable that the above information are inserted by the users, but they can

be easily obtained by querying systems that share data using RDF. For

instance, personal data in FOAF can be derived from a generic social network

or by using a vcard; generic health information can be obtained by the user‘s

Google Health Account3 or other systems that aim at storing online health care

data. Metadata storage has been carried out by using SESAME server so that

these information may be available also for other purporses. The sensitive data,

such as Name, Surname, SSN, etc ... must be available only for the physician

who carries out the examination, and are not exported in RDF in order to

ensure data privacy. 3https://www.google.com/health/ B. Image Processing

Layer This level is provided with a set of image processing utilities for SPECT

and PET image analisys. The output of this processing is stored according to

the semantic layer and is related to the specific processed image. This allows

users to also share the results of the processing avoiding to send the original

images when it is not required, resulting in less bandwidth occupation. The

functions present for image analysis are:

 Measurement of distances, angles and some parameters within the

images;

130 Appendix E. Related Technologies

 The contrast absorption curve over time;

 Image Texture and Image Contour Analysis for specific organs;

 Pattern recognition for identifying brain structures.

Therefore when a user performs one of the above methods, the output will be

treated as metadata and stored in the SESAME server. C. Query Composition

The query composition level aims at building complex query both locally and

on GRID. The queries are performed only on the metadata (stored in the

SESAME server and in the AMGA server) since content based image retrieval

module is not present. This level receives users query (by using a controlled

GUI) and interacts both with the local storage performing SPARQL query on

the SESAME server and with the GRID.

Bibliography

[1] Aslandogan, Y. A. and C. T. Yu, Techniques and systems for image and

video retrieval, Knowledge and Data Engineering 11 (1999), pp. 56–63.

[2] Browne, P. and A. F. Smeaton, Video information retrieval using objects

and ostensive relevance feedback, in: SAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing (2004), pp.1084–1090.

[3] Buckley, C., M. Mitra, J. A. Walz and C. Cardie, Using clustering and

superconcepts within SMART: TREC 6, Information Processing and

Management 36 (2000), pp. 109–131.

[4] Buijs, J. M. and M. S. Lew, Visual learning of simple semantics in

imagescape, in: Proceedings of the Third International Conference on Visual

Information and Information Systems, 2003.

[5] Bush, V., As we may think, Atlantic Monthly 176 (1945), pp. 101–108.

132 Bibliography

[6] Byrd, D. and T. Crawford, Problems of music information retrieval in the

real world, Information Processing and Management: an International Journal

38 (2002), pp. 249–272.

[7] Cano, P., M. Koppenberger and N. Wack, An industrial-strength content-

based music recommendation system, in: SIGIR ’05: Proceedings of the 28th

annual international ACM SIGIR conference on Research and development in

information retrieval (2005), pp. 673–673.

[8] Carbonell, J., Y. Yang, R. Frederking, R. Brown, Y. Geng and D. Lee,

Translingual information retrieval: A comparative evaluation, in: Proceedings

of the Fifteenth International Joint Conference on Artificial Intelligence, 1997,

pp. 708–715.

[9] Cesarano, C., A. d‘Acierno and A. Picariello, An intelligent search agent

system for semantic information retrieval on the internet, in: WIDM ’03:

Proceedings of the 5th ACM international workshop on Web information and

data management (2003), pp. 111–117.

[10] Chang, E., L. Beitao, G. Wu and K. Goh, Statistical learning for effective

visual information retrieval, in: IEEE International Conference on Image

Processing, 2003.

[11] Chang, S. and T. Kunii, Pictorial database systems, IEEE Computer 14

(1981), pp. 13–21.

 133

[12] Chen, A. and F. C. Gey, Combining query translation and document

translation in cross-language retrieval, in: 4th Workshop of the Cross-

Language Evaluation Forum, 2004, pp. 108–121.

[13] Clark and Parsia, ―Pellet: Owl 2 reasoner for java,‖ http://clarkparsia.

com/pellet/, June 2009.

[14] Cohen, P. R. and R. Kjeldsen, Information retrieval by constrained

spreading activation in semantic networks, Inf. Process. Manage. 23 (1987),

pp. 255–268.

[15] Corridoni, J., A. D. Bimbo and P. Pala, Image retrieval by color

semantics, Multimedia Systems 7 (1999), pp. 175–183.

[16] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,

Tools, and Applications. Addison-Wesley Professional, June 2000,

ch. 5. [Online]. Available: http://www.worldcat.org/isbn/0201309777

[17] Dalrymple, P. W. and D. L. Zweizig, Users’ experience of information

retrieval systems: An exploration of the relationship between search experience

and affective measures, Library and Information Science Research 14 (1992),

pp. 167–81.

[18] Dill, S., N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo,

S. Rajagopalan, A. Tomkins, J. A. Tomlin and J. Y. Zien, Semtag and seeker:

http://www.worldcat.org/isbn/0201309777

134 Bibliography

bootstrapping the semantic web via automated semantic annotation, in: WWW

’03: Proceedings of the 12th international conference on World Wide Web

(2003), pp. 178–186.

[19] Dingli, A., F. Ciravegna and Y. Wilks, Automatic semantic

annotation using unsupervised information extraction and integration, in:

Proceedings of the K-CAP 2003 Workshop on Knowledge Markup and

Semantic Annotation, 2003.

[20] Downie, J., Music information retrieval, Annual Review of Information

Science and Technology 37 (2003), pp. 295–340.

[21] Dumais, S. T., T. A. Letsche, M. L. Littman and T. K. Landauer,

Automatic cross-language retrieval using latent semantic indexing, in: AAAI

Spring Symposium on Cross-Language Text and Speech

Retrieval, 1997.

[22] A. Faro, D. Giordano, C. Pino, C. Spampinato, “Visual Attention for

Implicit Relevance Feedback in a Content Based Image Retrieval”, ETRA

2010

[23] Flynn, R., editor, ―Computer Sciences: Macmillan Science Library,‖

Macmillan Reference USA, 2002.

[24] Fuji Ren, David B. Bracewell,―Advanced Information Retrieval",

Electronic Notes in Theoretical Computer Science 225 (2009) 303–317

 135

[25] Fukui, M., S. Higuchi, Y. Nakatani, M. Tanaka, A. Fuji and T. Ishikawa,

Applying a hybrid querytranslation method to japanese/english cross-language

patent retrieval, in: ACM SIGIR 2000 Workshop on Patent Retrieval, 2000.

[26] Gao, J. and J.-Y. Nie, A study of statistical models for query translation:

finding a good unit of translation, in: SIGIR ’06: Proceedings of the 29th

annual international ACM SIGIR conference on Research and development in

information retrieval (2006), pp. 194–201.

[27] Gao, J., M. Zhou, J.-Y. Nie, H. He and W. Chen, Resolving query

translation ambiguity using a decaying co-occurrence model and syntactic

dependence relations, in: SIGIR ’02: Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in

information retrieval (2002), pp. 183–190.

[28] Gaughan, G., A. F. Smeaton, C. Gurrin, H. Lee and K. McDonald, Design,

implementation and testing of an interactive video retrieval system, in: MIR

’03: Proceedings of the 5th ACM SIGMM international workshop on

Multimedia information retrieval (2003), pp. 23–30.

[29] Ghias, A., J. Logan, D. Chamberlin and B. C. Smith, Query by humming:

musical information retrieval in an audio database, in: MULTIMEDIA ’95:

Proceedings of the third ACM international conference on Multimedia (1995),

pp. 231–236.

136 Bibliography

[30] D. Giordano, C. Pino, C. Spampinato, M. Fargetta, D. Distefano,

“Nuclear Medicine Image Management System for Storage and Sharing by

using GRID services and Semantic Web”, BIOSTEC 2010

[31] Girgensohn, A., J. Adcock, M. D. Cooper and L. Wilcox, A synergistic

approach to efficient interactive video retrieval, in: INTERACT 2005, 2005, pp.

781–794.

[32] Gomez-Perez, A., F. Ortiz-Rodriguez and B. Villazon-Terrazas, Ontology-

based legal information retrieval to improve the information access in e-

government, in: WWW ’06: Proceedings of the 15
th
 international conference on

World Wide Web (2006), pp. 1007–1008.

[33] ―Graphviz - graph visualization software,‖ http://www.graphviz.org/,

2010.

[34] Gunsel, B., A. Ferman and A. Tekalp, Temporal video segmentation using

unsupervised clustering and semantic object tracking, Journal of Electronic

Imaging 7 (1998), pp. 592–604.

[35] P. D. V. Haarslev, P. D. R. M¨oller, K. Hidde, and M. Wessel, ―Racer

pro,‖ http://www.sts.tu-harburg.de/r.f.moeller/racer/, June 2009.

 137

[36] Hedlund, T., E. Airio, H. Keskustalo, R. Lehtokangas, A. Pirkola and K.

Jrvelin, Dictionary-based cross-language information retrieval: Learning

experiences from clef 2000-2002, Information Retrieval 7 (2004), pp. 99–119.

[37] Hijikata, Y., K. Iwahama and S. Nishida, Content-based music filtering

system with editable user profile, in: SAC ’06: Proceedings of the 2006 ACM

symposium on Applied computing (2006), pp. 1050–1057.

[38] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, Feature-

Oriented Domain Analysis (FODA) Feasibility Study, 1990.

[39] Kato, T., T. Kurita, N. Otsu and K. Hirata, A sketch retrieval method for

full color image databasequery by visual example, in: Proceedings of the 11th

IAPR International Conference on Computer Vision and Applications, 1992.

[40] Khan, L., D. McLeod and E. Hovy, Retrieval effectiveness of an ontology-

based model for information selection, The VLDB Journal The International

Journal on Very Large Data Bases 13 (2004), pp. 71–85.

[41] Kiryakov, A., B. Popov, I. Terziev, D. Manov and D. Ognyanoff,

Semantic annotation, indexing, and retrieval., J. Web Sem. 2 (2004), pp. 49-79.

[42] Korfhage, R. R., ―Information Storage and Retrieval,‖ John Wiley and

Sons, 1997.

138 Bibliography

[43] Lavrenko, V., M. Choquette and W. B. Croft, Cross-lingual relevance

models, in: SIGIR ’02: Proceedingsof the 25th annual international ACM

SIGIR conference on Research and development in information retrieval

(2002), pp. 175–182.

[44] Levow, G.-A., D. W. Oard and P. Resnik, Dictionary-based techniques for

cross-language information retrieval, Information Processing and

Management: an International Journal 41 (2005), pp. 523–547.

[45] Lew, M. S., N. Sebe, C. Djeraba and R. Jain, Content-based multimedia

information retrieval: State of the art and challenges, ACM Trans. Multimedia

Comput. Commun. Appl. 2 (2006), pp. 1–19.

[46] Li, X., D. Roth and K. Small, The role of semantic information in learning

question classifiers, in: The First International Joint Conference on Natural

Language Processing, 2004.

[47] Li, Y., Z. A. Bandar and D. McLean, An approach for measuring semantic

similarity between wordsusing multiple information sources, IEEE

Transactions on Knowledge and Data Engineering 15 (2003), pp. 871–882.

[48] Lin, X., D. Soergel and G. Marchionini, A self-organizing semantic map

for information retrieval, in: SIGIR ’91: Proceedings of the 14th annual

international ACM SIGIR conference on Research and development in

information retrieval (1991), pp. 262–269.

 139

[49] Maybury, M. T., editor, ―Intelligent Multimedia Information Retrieval,‖

AAAI Press, 1997.

[50] McCarley, J. S., Should we translate the documents or the queries in

cross-language information retrieval?, in: Proceedings of the 37th annual

meeting of the Association for Computational Linguistics on Computational

Linguistics (1999), pp. 208–214.

[51] McNamee, P. and J. Mayfield, Comparing cross-language query

expansion techniques by degrading translation resources, in: SIGIR ’02:

Proceedings of the 25th annual international ACM SIGIR conference on

Research and development in information retrieval (2002), pp. 159–166.

[52] Mukherjea, S., B. Bamba and P. Kankar, Information retrieval and

knowledge discovery utilizing a biomedical patent semantic web, IEEE

Transactions on Knowledge and Data Engineering 17 (2005), pp. 1099–1110.

[53] Naphide, H. and T. Huang, A probabilistic framework for semantic video

indexing, filtering, and retrieval, IEEE Transactions on Multimedia 3 (2001),

pp. 141–151.

[54] Natsev, A., R. Rastogi and K. Shim, Walrus: a similarity retrieval

algorithm for image databases, IEEE Transactions on Knowledge and Data

Engineering 16 (2004), pp. 301–316.

140 Bibliography

[55] Nie, J.-Y., M. Simard, P. Isabelle and R. Durand, Cross-language

information retrieval based on parallel texts and automatic mining of parallel

texts from the web, in: SIGIR ’99: Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in

information retrieval (1999), pp. 74–81.

[56] Oard, D. W., A comparative study of query and document translation for

cross-language information retrieval, in: AMTA ’98: Proceedings of the Third

Conference of the Association for Machine Translation in the Americas on

Machine Translation and the Information Soup (1998), pp. 472–483.

[57] Och, F. J. and H. Ney, A systematic comparison of various statistical

alignment models, Computational Linguistics 29 (2003), pp. 19–51.

[58] Parsia and Sirin, ―Cautiously approaching swrl,‖ http://www.mindswap.

org/papers/CautiousSWRL.pdf, 2005.

[59] Picard, R. W., ―Affective Computing,‖ MIT Press, 2000.

[60] Pickens, J., J. P. Bello, G. Mont, M. Sandler, T. Crawford, M. Dovey and

D. Byrd, Polyphonic score retrieval using polyphonic audio queries: A

harmonic modeling approach, Journal of New Music Research 32 (2003), pp.

223 – 236.

[61] ―Protegè‖, http://protege.stanford.edu/, 2010.

 141

[62] Ragno, R., C. J. C. Burges and C. Herley, Inferring similarity between

music objects with application to playlist generation, in: MIR ’05: Proceedings

of the 7th ACM SIGMM international workshop on Multimedia information

retrieval (2005), pp. 73–80.

[63] Raphael, B., Sir: A computer program for semantic information retrieval,

Technical report, Cambridge, MA, USA (1964).

[64] Resnik, P. and N. A. Smith, The web as a parallel corpus, Computational

Linguistics 29 (2003), pp. 349–380.

[65] Rogati, M. and Y. Yang, Multilingual information retrieval using open,

transparent resources in clef 2003, in: CLEF 2003, 2003, pp. 133–139.

[66] Rui, Y., T. Huang and S. Chang, Image retrieval: current techniques,

promising directions and open issues, Journal of Visual Communication and

Image Representation 10 (1999), pp. 39–62.

[67] Rui, Y., T. S. Huang, S. Mehrotra and M. Ortega, A relevance feedback

architecture for content-based multimedia information retrieval systems, cbaivl

00 (1997), p. 82.

[68] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps,

―Generic

142 Bibliography

semantics of feature diagrams,‖ Comput. Netw., vol. 51, no. 2, pp. 456–

479, 2007.

[69] Sebe, N., M. S. Lew, X. Zhou, T. S. Huang and E. M. Bakker, The state of

the art in image and video retrieval, in: Image and Video Retrieval, 2003.

[70] Shah, U., T. Finin and A. Joshi, Information retrieval on the semantic web,

in: CIKM ’02: Proceedings of the eleventh international conference on

Information and knowledge management (2002), pp. 461–468.

[71] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, ―Pellet:

A practical owl-dl reasoner,‖ Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, June 2007.

[72] Sivic, J. and A. Zisserman, Video google: a text retrieval approach to

object matching in videos, in: Proceedings of the Ninth IEEE International

Conference on Computer Vision, 2003.

[73] Smeulders, A. W. M., M. Worring, S. Santini, A. Gupta and R. Jain,

Content-based image retrieval at the end of the early years, IEEE Trans.

Pattern Anal. Mach. Intell. 22 (2000), pp. 1349–1380.

[74] Snoek, C. G., M. Worring, J.-M. Geusebroek, D. C. Koelma and F. J.

Seinstra, The mediamill TRECVID 2004 semantic video search engine, in:

Proceedings of the 2th TRECVID Workshop, 2004.

 143

[75] Soo, V.-W., C.-Y. Lee, C.-C. Li, S. L. Chen and C. chih Chen, Automated

semantic annotation and retrieval based on sharable ontology and case-based

learning techniques, in: JCDL ’03: Proceedings of the 3rd ACM/IEEE-CS joint

conference on Digital libraries (2003), pp. 61–72.

[76] Systran, Systran language translation technology, [Online],

http://www.systransoft.com.

[77] Tang, C., Z. Xu and S. Dwarkadas, Peer-to-peer information retrieval

using self-organizing semantic overlay networks, in: SIGCOMM ’03:

Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications (2003), pp. 175–

186.

[78] Tieu, K. and P. Viola, Boosting image retrieval, International Journal of

Computer Vision 56 (2004), pp. 17–36.

[79] Uitdenbogerd, A. L. and J. Zobel, An architecture for effective music

information retrieval, Journal of the American Society for Information Science

and Technology 55 (2004), pp. 1053–1057.

[80] Utsuro, T., K. Hino, M. Kida, S. Nakagawa and S. Sato, Integrating cross-

lingually relevant news articles and monolingual web documents in bilingual

lexicon acquisition, in: Proceedings of Coling 2004 (2004), pp. 1036–1042.

http://www.systransoft.com/

144 Bibliography

[81] Varelas, G., E. Voutsakis, P. Raftopoulou, E. G. Petrakis and E. E. Milios,

Semantic similarity methods in wordnet and their application to information

retrieval on the web, in: WIDM ’05: Proceedings of the 7th annual ACM

international workshop on Web information and data management (2005), pp.

10–16.

[82] Wactlar, H. D., M. G. Christel, Y. Gong and A. G. Hauptmann, Lessons

learned from building a terabyte digital video library, Computer 32 (1999), pp.

66–73.

[83] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, ―A semantic web

approach to feature modeling and verification‖ In Workshop on

Semantic Web Enabled Software Engineering (SWESE‘05, 2005).

[84] Chia-Hung Wei, Chang-Tsun Li, ―Content-Based Multimedia Retrieval”

[85] Yan, R. and A. Hauptman, Co-retrieval: a boosted reranking approach for

video retrieval, Vision, Image and Signal Processing 152 (2005), pp. 888– 895.

[86] Yan, R., A. G. Hauptmann and R. Jin, Negative pseudo-relevance

feedback in content-based video retrieval, in: MULTIMEDIA ’03: Proceedings

of the eleventh ACM international conference on Multimedia (2003), pp. 343–

346.

 145

[87] Yu, H., T. Mine and M. Amamiya, An architecture for personal semantic

web information retrieval system–integrating web services and web contents,

in: IEEE International Conference on Web Services, 2005, pp. 329–336.

[88] L. A. Zaid, G. Houben, O. D. Troyer, and F. Kleinermann, ―An owl-based

approach for integration in collaborative feature modelling,‖ in SWESE 2008,

4th Workshop on Semantic Web Enabled Software Engineering, workshop at

ISWC 2008, the International Semantic Web Conference 2008, Karslruhe,

Germany, Oct. 2008, pp. 93–100.

[89] Zhang, H., A. Kankanhalli and S. W. Smoliar, Automatic partitioning of

full-motion video, Multimedia Syst. 1 (1993), pp. 10–28.

[90] Zhang, Y. and P. Vines, Using the web for automated translation

extraction in cross-language information retrieval, in: SIGIR ’04: Proceedings

of the 27th annual international ACM SIGIR conference on Research and

development in information retrieval (2004), pp. 162–169.

[91] Zhang,Y., Xu, C., Zhang, X., Lu, X., Personalized retrieval of sports

video based on multi-modal analysis and user preference acquisition,

Multimedial Tools and Applications, vol. 44, pp. 305-33, 2009.

