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Abstract

High throughput technologies have become a key tool in cancer research.
The analysis of gene expression profiles can give insights into changes in
proteins pathways that occur during malignant transformation and cancer
progression. Transcriptional expression profiling has proven to be a useful
and reliable tool for classifying cancers into subgroups that reflect different
histopathological characteristics as well as differential prognostic outcome.
In the last decades several studies have demonstrated the crucial role of
microRNAs (miRNAs) in human disease in particular in cancer. MiRNAs
are small non-protein coding RNAs, able to regulate gene expression at post-
transcriptional level, binding the 3’UTR of target genes. A single miRNA
can regulate the expression of hundreds of target genes, resulting in either
theirs degradation or translational repression. The genome-wide profiling of
gene expression and microRNAs will allow investigation of genomic changes
in cancer development. When mRNA and microRNA levels are measured
in the same sample, an integrative analysis can be performed to compare
both profiles and determine their interactions. Here I present the integrated
analysis of mRNA and miRNAs expression in tumor, adjacent non-tumor
(normal) and lymph node metastatic lesion (mets) tissues, from 251 women
with Triple Negative Breast Cancers (TNBC). Tissue specific deregulated
miRNAs and mRNAs were identified for normal vs tumor vs mets com-
parisons. We linked specific miRNA signatures to patient overall survival
(OS) and distant disease free survival (DDFS). By multivariate analysis
the signatures were independent predictors for OS and DDFS. We used
miRNA/mRNA anti-correlations to identify clinically and genetically diffe-
rent TNBC subclasses. We also identified miRNA signatures as potential re-
gulators of TNBC subclass-specific gene expression networks defined by ex-
pression of canonical signal pathways using IPA Ingenuity software. mRNA
expression profiling resulted in clustering of genes expression into 4 molecular
subclasses with different expression signatures anti-correlated with the pro-
gnostic miRNAs. Our findings suggest that miRNAs have a key role in
triple negative breast cancer development probably through their ability to
regulate fundamental pathways such as: cellular growth and proliferation,
cellular movement and migration. The results also define microRNA expres-
sion signatures that characterize and contribute to the phenotypic diversity
of TNBC and its metastasis.
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Chapter 1

Introduction

1.1 Cancer Biology

In a healthy condition our natural system controls the generation, growth and death
(apoptosis) of cells in perfectly balanced equilibrium. In the natural cycle of their life,
cells divide to make new tissues as older cells die. Cancer is a heterogeneous group
of diseases where this natural system does not work right and cells do not die at the
normal rate. This growing mass of cells, the tumor, can skip the entire cell checkpoints
and grow uncontrolled. Cancers are generally classified by the type of cells or organ
from which they originate. Since malignant growth can occur in virtually all locations
of the body, there are over 100 different types of cancers. Cancer is an immensely
complex and diverse disease; however, a set of characteristics are shared among almost
all malignancies. Those characteristics, named hallmarks of cancer, are a unified set
of capabilities that are acquired during tumorigenesis (Figure 1.1). The originally

Figure 1.1: The Hallmarks of Cancer. - Left: The original set of hallmarks of cancer).
Right: Emerging Hallmarks and Enabling Characteristics. From Hanaham et al. 2000 (1)
and Hanaham et al. 2011 (2).

proposed hallmarks of cancer include: growth signals, insensitivity to growth-inhibitory
signals, evasion of programmed cell death, limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis (2). As a tumor grows, it develops
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1. INTRODUCTION

amazing capabilities to survive, enlarge and spread. It promotes the growth of new
blood vessels (angiogenesis) to bring in the oxygen and nutrients it needs. Cancer cells
can leave the tumor site and travel through the blood stream and lymphatic system
(the network connecting lymph nodes throughout the body) to other parts of the body,
such as the liver, lungs or bones. In the new site, cancer cells again may begin to divide
and create new tumors. The list of cancer hallmarks has been further extended with
newly discovered properties of the tumor such as: deregulating cellular energy balance,
decoy immune response, tumor promoting inflammation and genome instability and
mutation (2).

1.2 Causes of Cancer

Cancer is often described as the disease of the genome because it acquires its hallmarks
through the accumulation of DNA mutations and genome instability (1). Cells can go
through uncontrolled growth if there are damages or mutations in their DNA which
might compromise the function of the genes involved in cell division. Four types of
genes are responsible for the cell division process:

• oncogenes, tell cells when to divide

• tumor suppressor genes, tell cells when not to divide

• suicide genes, control apoptosis and tell the cell to kill itself if something goes
wrong

• DNA-repair genes, instruct a cell to repair damaged DNA

Cancer might occurs when mutations allow cells to skip one of these check points,
mutations that inhibit oncogene and tumor suppressor gene functions will lead to
uncontrolled cell growth. As we age, there is an increase in the number of possible
cancer-causing mutations in our DNA. This makes age an important risk factor for
cancer. However, it is estimated that only 5-10% of cancer are caused by inherited
traits and the remaining 90-95 % are either caused or contributed to by environmental
factors (Figure 1.2).

A wide range of substances, Carcinogens, are directly known to be responsible
for damaging DNA, promoting or aiding cancer: tobacco, asbestos, arsenic, radiation
such as gamma and x-rays. Cancer can also be the result of an inherited genetic
predisposition, inherited from family own members. Some mutations are transmittable
to the siblings which will make them statistically more likely to develop cancer later
in life. Another possible cause of cancer can be virus infections. Worldwide, around
18% of cancers are caused by virus infections such as: human papillomavirus (a cause
of cervical cancer), hepatitis B and C (a causes of liver cancer), and Epstein-Barr
virus (a cause of some childhood cancers). Human immunodeficiency virus (HIV) -
and anything else that suppresses or weakens the immune system, inhibits the body’s
ability to fight and so increases the chance of developing cancer.
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1.2 Causes of Cancer

Figure 1.2: The impact of genes and environment on the development of cancer.
- A) The percentage contribution of genetic and environmental factors to cancer. B)
Numbers represent familial risk ratios - an age-adjusted risk ratio to first-degree relatives
of cases compared with the general population. C) Numbers represent the attributable-
fraction of cancer deaths due to the specified environmental risk factor. From Anand et
al. 2008 (3).
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1. INTRODUCTION

1.3 microRNA in Human Cancer

1.3.1 Bio-genesis and action of microRNAs

MiRNAs are non-coding single-stranded RNAs which are typically 20-25 nucleotides
long. As non-coding genes, they are transcribed from DNA, but are not translated
into proteins. The mature miRNA molecules are produced in a multi-step process.
The DNA sequence is transcribed by RNA polymerase II into a single stranded RNA
molecule by hairpin structures known as primary transcripts or pri-miRNAs. The
primiRNAs are processed (cutted) into the nucleus by RNAse III Drosha into 70100
nucleotides long fragments called pre-miRNAs.

Figure 1.3: A model for the miRNA biogenesis pathway and its action
mechanism in mammals. - From Wienholds et al. 2005 (4)

The pre-miRNA molecule is then actively transported to the cytoplasm by a carrier
protein. Here, an additional step mediated by the Dicer, generates a double strand
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1.3 microRNA in Human Cancer

RNA (dsRNA) approximately 22 nucleotides long, including the mature miRNA guide
(3p arm) and the complementary passenger strand (5p arm). Once completed the
processing steps, through this mechanism that is not fully characterized yet, the mature
miRNA is able to regulate gene expression at post-transcriptional level, binding through
partial complementarity the 3’ untranslated region (3’ UTR) of the target mRNA, and
mainly leading to either mRNA degradation or translation inhibition (5). Depending
on the targeted mRNAs, the miRNA action ultimately results in reduced protein
levels and profound consequences on cellular homeostasis. Recent bioinformatics and
experimental reports suggest that over 30% of human genes are direct targets of
miRNAs (5), indicating their key roles in almost every biological process, including:
cell cycle regulation, cell growth, apoptosis, cell differentiation and stress response.
Recent genome-wide analyses have identified dysregulated miRNA expression in human
malignancies (5), giving them an oncogenic (Table 1.2) or tumor suppressor role (Table
1.1) (6).

Table 1.1: Representative examples of Tumor-suppressor miRNAs in the most
common human cancers. From Di Leva et al. 2012 (6).

miRNA Targets Tumor Impact on
metastasis

Description

miR-
15/16

BCL2 CLL BCL2 repression by these microRNAs
induces apoptosis in a leukemic cell line
model

COX-2 Colon
cancer

miR-16 as a central post-transcriptional
regulator of COX-2 and shows the ability
of elevated levels of HuR to antagonize
miR-16 function

CHEK1 Follicular
lymphoma

Distinct microRNA profiles are asso-
ciated with an increased proliferative
capacity and a late germinal center B-cell
phenotype

CEBP,
CDC25a,
CCNE1

Fibroblast Upon cell cycle re-entry, the rapid decay
of miR-16 alleviates repression of target
genes, allowing proper resumption of the
cell cycle

VEGF,
VEGFR2,
FGFR1

Fibroblast miR-16 plays important roles in regulating
cell-intrinsic angiogenic activity of
endothelial cells

FGF2,
FGFR1

Cancer-
associated
fibroblast

Down-regulation of miR-15 and miR-16
in cancer-associated fibroblasts (CAFs)
promotes tumor growth and progression

Continued on next page
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1. INTRODUCTION

Table 1.1 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

CCNE1 miR-15 and miR-16 families as novel
transcriptional targets of E2F, which, in
turn, modulates E2F activity

FGFR1,
PI3KCa,
MDM4,
VEGFa

Multiple
myeloma

Deletion of miR-15/16 is commonly
observed in early stages of multiple
myeloma

WIP1 Role of miR-16 in the regulation of Wip1
phosphatase in the DNA damage response
and mammary tumorigenesis

BMI-1 Ovarian
cancer

Bmi-1 is down-regulated by miR-15a or
miR-16 expression and leads to reduction
in ovarian cancer cell proliferation and
clonal growth

CCND1,
CCND2,
CCNE1

Lung
cancer

Overexpression of miR-15/16 induces
arrest in G(1)-G(0)

miR-31 ITGA5,
RDX,
RhoA,
FZD3,
M-RIP,
MMP16

Breast
cancer

Suppresses miR-31 uses multiple mechanisms to
oppose metastasis

SATB2 Cancer-
associated
fibroblast

New insights into tumorstroma
interaction and involvement of miR-
31 in regulation of tumor cell motility

miR-34 SIRT1 Colon
cancer

miR-34 suppression of SIRT1 leads to
apoptosis only in colon cancer cells with
wild-type p53

BCL2,
NOTCH,
HMGA2

miR-34-mediated suppression of self-
renewal is related to the direct modulation
of the downstream targets Bcl-2, Notch,
and HMGA2

MYC Fibroblast During senescence, miR-34a targets the
proto-oncogene MYC and co-ordinately
controls a set of cell cycle regulators

AXL Lung
cancer

Axl receptor is regulated by miR-34a
and miR-199a/b, suppressed by promoter
methylation in solid cancer

Continued on next page
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1.3 microRNA in Human Cancer

Table 1.1 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

MET Ovarian
cancer

MET is a critical effector of p53, and
inhibition of MET may be an effective
antimetastatic approach to treat cancers
with p53 mutations

NANOG,
SOX2,
MYCN

Embryonic
fibroblast

Suppression of reprogramming by miR-
34a due to repression of pluripotency
genes

SNAIL Colon
cancer

A new link between p53, miR-34, and
Snail1 in the regulation of cancer cell EMT
programs

miR-
143/145

KRAS,
RREB1

Pancreatic
cancer

miR-143/miR-145 are suppressed by
KRAS through RREB1, revealing a
feed-forward mechanism that potentiates
Ras signaling

KRAS,
MYC,
CCND2,
CDK6,
E2F3

Colon
cancer

EGFR suppresses miR-143 and miR-145
in murine models of colon cancer

BCL2 Cervical
cancer

Promotion of apoptosis by miR-143
through the suppression of BCL2

PAI1 Bladder
cancer

miR-145 and PAI1 as clinically relevant
biomarkers in bladder cancer

PRC1,
PLK1

Liposarcoma The down-regulation of PRC1 and its
docking partner PLK1 suggests that miR-
143 inhibits cytokinesis in these cells

MLL-AF4 ALL Therapeutic promise of up-regulating
miR-143 expression for MLL-AF4 B-cell
ALL

MMP-13 Osteosarcoma Down-regulation of miR-143 correlates
with the lung metastasis of human
osteosarcoma cells by promoting cellular
invasion, probably via MMP-13 up-
regulation

ERK5 Burkitt
lymphoma

miRs-143 and -145 may be useful
as biomarkers that differentiate B-cell
malignant cells from normal cells

Let-7
family

KRAS Lung
cancer

The let-7 family negatively regulates let-
60/RAS in C. elegans and lung tumors

Continued on next page
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1. INTRODUCTION

Table 1.1 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

HMGA2 Chromosomal translocations associated
with human tumors disrupt repression of
high mobility group A2 (Hmga2) by let-7
miRNA

MYC Burkitt
lymphoma

Dysregulation of let-7 participates in
genesis and maintenance of Burkitt
lymphoma and other MYC-dysregulated
cancers

IMP-1 Let-7-oncofetal proteins could be novel
therapeutic targets and potential
biomarkers for cancer treatment

DICER Existence of a regulatory loop to regulate
the equilibrated state of Dicer and various
miRNAs

CDC-34 Fibroblast Let-7 represses Cdc34, stabilizes Wee1
kinase, and increases a fraction of cells in
G(2)/M in primary fibroblasts

IL6 Breast
cancer

Inflammation activates a positive feedback
loop that maintains the epigenetic trans-
formed state

E2F2,
CCND2

Prostate
cancer

Let-7a acts as a tumor suppressor in
prostate cancer by down-regulating E2F2
and CCND2

BCL-XL Liver
cancer

Let-7 suppresses Bcl-xL expression in
hepatocellular carcinomas and potentiates
sorafenib-induced apoptosis

PLC1 Breast
cancer

Tumor-suppressor function by negatively
regulating EGF-driven cell invasion,
viability, and cell cycle progression in
breast cancer

miR-200
family

ZEB1,
ZEB2

Breast
cancer

Suppresses Down-regulation of the miR-200 family
may be an important step in tumor
progression

ERRFI-1 Bladder
cancer

miR-200 is sufficient to restore EGFR
dependency at least in some of the
mesenchymal bladder cancer cells

ZEB1,
CTNNB1

Nasopharyngeal
carcinoma

The inhibitory effects of miR-200a on
cell growth, migration, and invasion are
mediated by distinct targets and pathways

Continued on next page
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1.3 microRNA in Human Cancer

Table 1.1 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

BMI-1 Pancreatic
cancer

ZEB1 links EMT and stemness
maintenance by suppressing the miR-200
family and thereby promotes migration

PLC1 Breast
cancer

Tumor-suppressor function by negatively
regulating EGF-driven cell invasion,
viability, and cell cycle progression in
breast cancer

FAP1 miR-200c sensitizes cells to apoptosis
mediated by CD95

SUZ12 Breast
cancer

The miR-200b-Suz12-cadherin pathway is
important for cancer stem cell growth and
invasive ability

FLT1 Lung
cancer

miR-200 suppresses lung adenocarcinoma
metastasis by targeting Flt1 in tumor cells

JAG1,
MALM2,
MALM3

These findings explain increased Notch
signaling in some types of cancers, where
mutations in Notch pathway genes are
rare

FN1,
LEPR,
NTRK2,
ARHGAP19

Breast and
endometrial
cancer

miR-200c actively represses a program of
mesenchymal and neuronal genes involved
in cell motility and anoikis resistance

p38 Ovarian
cancer

miR-200a-dependent stress signature
correlates with improved survival of
patients in response to treatment
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1. INTRODUCTION

Table 1.2: Representative examples of OncomiRs in the most common human
cancers. From Di Leva et al. 2012 (6).

miRNA Targets Tumor Impact on
metastasis

Description

miR-
106a
363,
miR-
106b
25

BIM, p21 Gastric
cancer

The miR-106b-25 cluster is involved in
E2F1 post-transcriptional regulation and
may play a key role in the development of
TGF resistance in gastric cancer

E2F1 Prostate
cancer

microRNA expression becomes altered
with the development and progression
of prostate cancer. Some of these
microRNAs regulate the expression of
cancer-related genes in prostate cancer
cells

PTEN Prostate
cancer

Proto-oncogenic miRNA-dependent
network for PTEN regulation

miR-21 PTEN Cholangiocar. Promotes miR-21 modulates gemcitabine-induced
apoptosis by phosphatase and the tensin
homolog deleted on chromosome 10
(PTEN)-dependent activation of PI3-
kinase signaling

TPM1 Breast
cancer

Suppression of miR-21 can inhibit tumor
growth

PDCD4 Breast
cancer

The tumor suppressor protein
programmed cell death 4 (PDCD4)
is regulated by miR-21, and it has
been demonstrated that PDCD4 is a
functionally important target for miR-21
in breast cancer cells

SPRY1 miR-21-null mice show a significant
reduction in papilloma formation
compared with wild-type mice due to
the up-regulation of its tumor-suppressor
targets

RECK,
TIMP3

Glioblastoma The inhibition of miR-21 provides a novel
therapeutic approach for physiological
modulation of multiple proteins whose ex-
pression is deregulated in cancer

Continued on next page
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Table 1.2 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

p63, JMY,
TOPORS,
TP53BP2,
DAXX,
HNRPK,
TGFRII

Glioblastoma miR-21 targets multiple important
components of p53, transforming growth
factor- (TGF), and mitochondrial
apoptosis tumor-suppressive pathways

MARKS Prostate
cancer

miR-21 could promote apoptosis
resistance, motility, and invasion in
prostate cancer cells

ANP32A,
SACA4

Prostate
cancer

miR-
10a/10b

HOXB1,
HOXB3

Pancreatic
cancer

Promotes miR-10a is a key mediator of metastatic
behavior in pancreatic cancer that
regulates metastasis via suppression of
HOXB1 and HOXB3

HOXD10 Breast
cancer

TWIST transcription factor induces ex-
pression of a specific microRNA that
suppresses its direct target and in turn
activates another pro-metastatic gene,
leading to tumor cell invasion and
metastasis

KLF4 Esophageal
cancer

A significant correlation of miR-10b level
with cell motility and invasiveness

TIAM1 Breast
cancer

A mechanism for the regulation of Tiam1-
mediated Rac activation in breast cancer
cells

Nf1 Ewing’s
sarcoma

miR-10b may play an important role
in NF1 tumorigenesis through targeting
neurofibromin and RAS signaling

miR-
107/103

DICER Breast
cancer

Promotes Dicer inhibition drifts epithelial cancer
toward a less-differentiated, mesenchymal
fate to foster metastasis

miR-9 PRDM1 Lymphomas Promotes miRNA-mediated down-regulation of
PRDM1/Blimp-1 may contribute to the
phenotype maintenance and pathogenesis
of lymphoma cells by interfering with
normal B-cell terminal differentiation

CDH1 Breast
cancer

Continued on next page
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Table 1.2 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

CAMTA Glioblastoma miR-9 is highly expressed in glioblastoma
cancer stem cells and reduces the levels of
CAMTA tumor-suppressor

miR-
1792

TSP-1,
CTGF

Colon Promotes Up-regulated in colonocytes coexpressing
K-Ras, c-Myc and p53 impaired activity

E2F2, E2F3 Prostate/Burkitt
lymphoma/testis
carcinoma/

Presence of an autoregulatory feedback
loop between E2F factors and miR-17/92

BIM,
PTEN

c-Myc-
induced
lymphoma

Transgenic mice with higher expression of
miR-17/92 in lymphocytes

HIF1 Lung
cancer

Intricate and finely tuned circuit involving
c-myc, miR-17/92, and HIF1

PTPRO Cervix
tumor cell
line

PTPRO gene is co-regulated by
both E2F1 and miR-17/92 at
transcriptional and post-transcriptional
level, respectively

p63 Myeloid
cells

miR-92 increases cell proliferation by ne-
gative regulation of an isoform of the cell
cycle regulator p63

BIM,
PTEN,
PRKAA1,
PPP2R5e

T-cell acute
lymphoblastic
leukemia

Functional genomics approach reveals
a co-ordinate clamp-down on several
regulators of phosphatidylinositol-3-OH
kinase-related survival signals by the
leukemogenic miR-19

JAK1 Endothelial
cells

The miR-17/92 family may provide
an interesting therapeutic perspective
specifically to enhance therapeutic
angiogenesis

HBP1 Breast
cancer

The miR-17/92 cluster plays an important
role in breast cancer cell invasion and
migration by suppressing HBP1 and
subsequently activating Wnt/-catenin

p21(WAF1) Ras-
induced
senescent
fibroblasts

Disruption of senescence by miR-17/92
or its miR-17/20a components leads to
enhanced oncogenic transformation by
activated Ras in primary human cells

Continued on next page
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Table 1.2 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

TGFII SA4 Glioblastoma miR-17/92 attenuates the TGF signaling
pathway to shut down clusterin expres-
sion, thereby stimulating angiogenesis and
tumor cell growth

MnSOD,
GPX2,
TRXR2

Prostate miR-17/92 may suppress tumorigenicity
of prostate cancer through inhibition of
mitochondrial antioxidant enzymes

miR-
221/222

p27kip1 Glioblastoma,
prostate
and thyroid
carcinoma

Promotes Certain cancer cell lines require high
activity of miR-221/222 to maintain
low p27kip1 levels and continuous
proliferation

p57kip2 Normal
fibroblast

Up-regulation of miR-221/222 is tightly
linked to the initiation of S phase with
growth factor signaling pathways that
stimulate cell proliferation

PTEN,
TIMP3

Non-small
cell lung
cancer and
hepatocellular
carcinoma

miR-221/222, by targeting PTEN and
TIMP3 tumor suppressors, induce TRAIL
resistance and enhance cellular migration.
The MET oncogene is involved in miR-
221/222 activation through the c-Jun
transcription factor

FOXO3A Breast
cancer

The miR-221/222 cluster targets
FOXO3A to suppress p27kip1 also
at a transcriptional level

KIT Endothelial
cells

Interaction between miR-222 and c-Kit is
likely to be part of a complex circuit that
controls the ability of endothelial cells to
form new capillaries

ESR1 Breast
cancer

Modulation of ER is associated with
antiestrogen therapy

PUMA Glioblastoma miR-221/222 directly regulate apoptosis
by targeting PUMA in glioblastoma

TRSP1 Breast
cancer

miR-221/222 promote EMT and
contribute to the more aggressive clinical
behavior of basal-like breast cancers

PTP Glioblastoma miR-221/222 regulate glioma
tumorigenesis at least in part through the
control of PTP protein expression

DICER Breast
cancer

Dicer is low in ER-negative breast cancers,
since such cells express high miR-221/222

Continued on next page
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Table 1.2 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

APAF1 Non-small
cell lung
cancer

miR-221/222 are modulated by both
epidermal growth factor (EGF) and MET
receptors, and, by targeting APAF1,
miR-221/222 are responsible for gefitinib
resistance

miR-155 SOCS1 Breast
cancer

miR-155 is an oncomiR in breast cancer,
and it has been suggested that miR-
155 may serve as a bridge between
inflammation and cancer

CEBPB,
PU.1,
CUTL1,
PICALM

AML miR-155 as a contributor to physiological
GM expansion during inflammation and
to certain pathological features associated
with AML

BACH1,
ZIC3

The induction of miR-155 by EBV
contributes to EBV-mediated signaling
in part through the modulation of
transcriptional regulatory factors

ETS1,
MEIS1

Human
cord blood
CD34+

miR-155 is required for megakaryocytic
proliferation and differentiation

C-MAF Lymphocytes bic/microRNA-155 plays a key role in the
homeostasis and function of the immune
system

HGAL Diffuse
large B-cell
lymphoma

Cell dissemination and aggressiveness is a
phenotype of DLBCL typically expressing
high levels of miR-155 and lacking HGAL
expression

JMJD1A Nasopharyngeal
carcinoma

Up-regulation of miR-155 is partly driven
by LMP1 and LMP2A, and results in
down-regulation of JMJD1A, associated
with N stage and poor prognosis

WEE1 Breast
cancer

miR-155 enhances mutation rates by
decreasing the efficiency of DNA
safeguard mechanisms by targeting
of cell cycle regulators such as WEE1

TP53INP1 Pancreatic
cancer

TP53INP1 expression is repressed by the
oncogenic micro RNA miR-155, which
is overexpressed in pancreatic carcinoma
cells

Continued on next page
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Table 1.2 – Continued from previous page

miRNA Targets Tumor Impact on
metastasis

Description

SMAD1,
SA5,
HIVEP2,
CEBPB,
RUNX2,
MYO10

Role for miR-155 in controlling BMP-
mediated cellular processes

FOXO3a Breast
cancer

Molecular links between miR-155 and
FOXO3a affect cell survival and response
to chemotherapy in breast cancer

hMSH2,
hMSH6,
and hMLH1

Colon
cancer

Inactivation of mismatch repair is induced
by miR-155

SMAD5 Diffuse
large B-cell
lymphoma

Highlighted a hitherto unappreciated role
of SA5 in lymphoma biology and defined
a unique mechanism used by cancer cells
to escape TGF’s growth-inhibitory effects

Alterations in the expression of miRNAs were initially identified in B-cell leukemia
(7), now are considered a common characteristic of all human tumors. Genome-wide
profiling showed that miRNA expression signatures (miRNome) allowed different types
of cancer to be discriminated with high accuracy (8)(9). Iorio et al. in 2005 (10)
compared normal breast tissue with breast cancer tissue using microRNA profile. The
overall miRNA expression could clearly separate normal versus cancer tissues; they also
could identify miRNAs whose expression was correlated with specific breast cancer bio-
pathologic features, such as estrogen and progesterone receptor expression, tumor stage,
vascular invasion, or proliferation index.

1.3.2 Genetic abnormalities and miRNAs

Having addressed the strong association between miRNA levels and human diseases, the
precise control of miRNAs levels is essential in maintaining normal cellular homeostasis.
Genomic abnormalities, such as chromosomal rearrangements, genomic amplifications,
deletions or mutations, can alter miRNA genes too reflecting their affects on protein
coding genes down stream. In 2004, an in silico study showed that more than half of
miRNAs map to genomic regions that are frequently altered in cancer (11):

• loss of heterozygosity regions (LOH) (e.g. miR-15a/16-1)

• amplified regions (e.g. miR-17-92 cluster, miR-155)
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• breakpoint regions and fragile sites (FRA) (e.g. let-7 family members)

Amplification of miRNAs might also occurs in cancer, this is exemplified by the human
oncogenic cluster miR-17-92, which is located at chromosome 13q31 (12). Overex-
pression of miR-17-92 increases MYC-induced lymphomagenesis, and this region is
preferentially amplified in cancers such as DLBCL, follicular lymphoma, mantle cell
lymphoma and primary cutaneous B-cell lymphoma.

1.3.3 Epigenetics and miRNAs

It is now recognized that cancer is mainly a genetic disease, however, genetic lesions
alone cannot explain the complexity of the aberrations that arise in cancer cells.
Epigenetic, defined as heritable change in gene activity that is independent of DNA
sequence, play a prominent role in the initiation and progression of cancer. Three main
epigenetic events regulate tumor-associated genes:

• aberrant hypermethylation of tumor-suppressor genes

• global DNA hypomethylation item post-translational modifications of histones

MiRNAs can be target of epigenetic events that, in some instances, can explain the
perturbation of miRNA expression in cancer (13). An extensive analysis of genomic
sequences of miRNA genes have shown that approximately half of them are associa-
ted with CpG islands, suggesting that they could be subjected to this mechanism
of regulation (Weber et al, 2007). The miRNAs might not only be regulated by
epigentic mechanisms, but miRNAs can also regulate enzymes that are involved in the
methylation of the CpG islands in tumor suppressor genes. In conclusion, epigenetic
changes complemented by genetic inactivation due to mutation or deletion can shed
light on the mechanisms that partially account for the miRNA dysregulation in cancer.
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Chapter 2

Data analysis

2.1 High-throughput profiling in Cancers

The development of powerful and scalable methods to analyze nucleic acids has transfor-
med biological inquiry and has the potential to alter the practice of medicine (14),(15).
The application of such technologies, together with powerful computational methods
in human disease and animal models has facilitated the study of both normal and
disease-affected tissues in a manner previously not possible. The cellular and molecular
heterogeneity of cancer and the large number of genes involved in controlling cell
growth, death, and differentiation emphasize the importance of studying multiple genetic
alterations in concert. Gene expression profiling allows the simultaneous measurement
of the activity (expression) of thousands of genes in a cancer cell. Molecular profiling is
an emerging concept in clinical decision making that involves classification of biological
specimens such as tumors or other tissues into groups based on multiple changes at the
genomic and transcriptomic levels. In the last decade, molecular profiling technologies
have advanced our knowledge of cancer biology. Early cancer genome analysis has
already led to the discovery of new targets for cancer therapy and new insights about
specific genetic mutations and clinical response, as well as new approaches useful for
diagnosis and prognosis. These initial efforts have motivated large-scale coordinated
cancer genomic efforts to obtain complete catalogs of the genomic alterations in specific
cancer types (The Cancer Genome Atlas [TCGA, http://cancergenome.nih.gov). Mi-
croarray technology enables simultaneous measurement of thousands of messenger RNAs
transcripts (mRNA). Since all proteins in the cells are produced by the translation of
mRNA, the mRNA expression levels provide a good approximation of the abundance
of proteins (Figure 2.1).

.

A variety of different approaches are being used to profile the mRNA/microRNA ex-
pression levels. They generally involve the amplification of DNA templates by PCR and
the physical binding of template DNA to a solid surface or to tiny beads called micro-
beads. These techniques are often referred to as massively parallel DNA sequencing,
because thousands or millions of sequencing reactions are run at once to greatly speed
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2. DATA ANALYSIS

Figure 2.1: The transfer of genetic information from DNA, through mRNA to
proteins. - The genetic mutations are translated into dysregulation of cellular pathways,
which in turn can impact transcription and/or translation. The biological processes are
influenced by environmental context. From Kreeger et al. 2010 (16)

up the process. All next generation sequencing systems use clonal cluster sequencing.
The process, which begins with a single target molecule, involves creation of a clonal
target during an intermediate amplification step. Multiple identical copies are required
to produce a high signal-to-noise-ratio. Next generation sequencing (NGS) technologies
provide a digital expression profiling readout that is fundamentally different than analog
measurement systems like microarrays. The NanoString company (Seattle, WA, USA)
recently introduced a new concept of digital platform; it is not biased by enzymatic
steps such as cDNA synthesis and amplification by PCR. The Nanostring technology
can be used to detect any type of nucleic acid in solution and could be modified with
appropriate recognition probes to detect other biological molecules as well. It is based
on direct digital measurement of gene expression through target-specific color coded
probes with high level precision and sensitivity at less than one transcript copy per cell
(17). Choosing the best platform for mRNA/microRNA profile is always difficult; and
it should best based on experience, experimental conditions in laboratory, and more
important on goals of research.

2.2 Normalization of expression profiles

All of the most popular and widely used profiling methods face significant introduction
of bias due to differences in sample RNA preparation, dye labelling, hybridization and
washing efficiency, peculiarities of print tip, spatial or hybridization specific effects
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or pre-amplification of extracted RNA. For these reasons normalization is an essential
aspect of data processing. It can minimize systematic technical or experimental variation.
This variation has significant impact on the detection of differentially expressed molecu-
les between two or more conditions. Inappropriate normalization of the data can lead to
incorrect conclusions. Rigorous normalization of miRNA data may even be more critical
than that of other RNA functional classes since relatively small changes in miRNA ex-
pression may be biologically and clinically significant (18),(19). There is no consensus
normalization method for the three miRNA profiling approaches cited above. Several
normalization techniques are currently in use, of which some are similar to mRNA
profiling normalization methods, while others are specifically modified or developed
for miRNA data. The characteristic nature of miRNA molecules, their composition
and the resulting data distribution of profiling experiments challenges the selection
of adequate normalization techniques. Several studies pointed out that selection of
the data preprocessing method can have great impact on the resulting data outcome
(20)(21)(22)(23),(24). Thus, prior to normalization, data pre-processing step could be
useful. It includes platform and vendor specific steps, such as e.g., baseline adjustment
and threshold setting for RT-qPCR analyses, background correction for microarray
technology, or filtering for small RNA-sequence data. Following these very first steps
of raw data preprocessing, the researcher has to choose the optimal normalization
strategy to correct for systematic and technical variation enabling a better estimation
of the biological variation.

2.2.1 Normalization approaches for RT-PCR

RT-PCR is generally accepted as gold standard for microRNA measurement and nor-
malized microRNA RT-PCR profiling data is used for evaluation of the goodness of
miRNA microarray normalization methods (25)(21). The signal intensities may depend
on reverse transcription and PCR reaction efficiencies, thus normalization of profiling
data is needed for reflecting true miRNA levels. The common normalization methods
for microRNA RT-PCR profiling are based on

• predefined invariant endogenous controls

• reference miRNAs

• small nuclear and small nucleolar RNA

.
Vandesompele et al. (26) argued that it is best to normalize molecules with reference

molecules belonging to the same RNA class because the use of small non-coding RNAs
other than miRNAs does not mirror the physicochemical properties of miRNA mole-
cules. Using non-miRNA reference genes for qPCR normalization is not suitable when
the overall abundance of miRNA varies, e.g., in experiments affecting the miRNA
processing machinery or in comparisons involving multiple tissues or combinations of
tissues and cell lines (27). Selection of invariant miRNAs identified by algorithms
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specifically developed for reference gene evaluation and selection was superior over
small non-coding RNA based normalization (28)(18). These algorithms are based on
reference gene ranking and stepwise elimination of the least stable gene (26) or repeated
pair wise correlation and regression analysis (29), or statistical linear mixed-effects
modelling (30) of the respective experimental data. Moreover invariant microRNAs can
be selected based on a distinguishable low standard deviation and high-mean population
as suggested for miRNA microarray preprocessing for RT-qPCR profiling experiments
as well (22). Basically, the use of more than one reference gene increases the accuracy of
quantification compared to the use of a single reference gene(26)(30). A new interesting
and debated method is the calculation of a plate normalizing factor for RT-qPCR based
expression profiling platforms; A scaling method has been suggested by Wang in 2009,
which uses the average of eight selected miRNA expression values from a descending
sorted list (31). Plate-normalizing factor corresponds to an enlargement of percentile
normalization and needs further validation by independent datasets prior to judge the
robustness of this method. For large scale microRNA expression profiling studies the
mean expression value normalization outperformed the current normalization strategy
that makes use of stable small RNA controls, such as e.g., snoRNAs proposed by
manufacturers, in terms of better reduction of technical variation (28). However,
the selection of a limited number of miRNAs or small RNA controls that resemble
the mean expression value can be successfully used for normalization in follow-up
studies where only a limited number of miRNA molecules are profiled to allow a more
accurate assessment of relevant biological variation from a miRNA RT-qPCR profiling
experiment (28)(19).

2.2.2 Normalization methods for microarray experiments

Different normalization methods have been used on miRNA microarray expression
profiling data sets, but there is currently no clear consensus about their relative per-
formances [(22). Some have even chosen to omit this key step [(32),(33),(34) but
comparative studies on the relative performance of different methods within a miRNA
microarray platform have emphasized the need for evaluating and identifying appropriate
normalization algorithms (35)(22)(21). Indeed signal intensities of miRNA microarray
experiments may be biased by differences in sample RNA preparation, dye labelling,
hybridization and washing efficiency, peculiarities of print tip, spatial or hybridization
specific effects or pre-amplification of extracted RNA. miRNA microarrays can be
single-color or dual-color systems calling for different normalization approaches. Single-
color miRNA microarrays have been predominately used, while dual-colour hybridization
systems are less frequently prevalent (35). Both can be observed with respect to intra-
array normalization for the correction of dye effects and inter-array approaches for the
balance of the distribution differences among experiments (36). The first normalization
methods to be used with miRNA array data employed centering to median values (37)
or scaling based on total array intensities (38). Certain methodologies currently used
for large-scale genome arrays have been adapted to and modified for miRNA arrays such
as Quantile (39) and LOESS (Locally Weighted Regression and Smooting Scatterplots)
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reviewed in (40). Various assumptions are often taken by normalization methods.
Scaling, LOESS and Quantile are based on two assumptions,

• only a small portion of spots is differentially expressed,

• differentially expressed spots are homogeneously distributed with respect to both,
over- and under-expressed miRNAs (23).

These assumptions could fail for miRNA platforms as they are printed with a relatively
small number of selected sequences (23)(21). There are relatively few known microRNAs
for any species (approximately 1000 for humans), and the proportion of microRNAs
expressed in a given sample tends to be much smaller than for mRNAs (reflected in
the tissue-specific expression pattern of many microRNAs) (24). Because of this, the
proportion of miRNAs that are differentially expressed (among those expressed at all)
is much larger than that observed when profiling global mRNA expression (24). Thus,
it needs to verify whether these assumptions hold true for the respective datasets and
one should choose e.g., a normalization method that make only minimal assumption
about the presence of a set of constant miRNAs like invariant-based normalization
(22). Alternatively, a normalization method free of assumption e.g., the majority of
algorithms for variance stabilization normalization (41) or even an assumption free
approach (42) can be utilized.

2.2.2.1 Quantile Normalization

Quantile normalization is a transformation method originally proposed by Bolstad et al.
(39) for oligonucleotide arrays. It is now widely used for one-color miRNA microarrays
as well and was confirmed as one of the most robust methods (21)(22)(35),(43). It
is an inter-array approach and equalizes the distributions of expression intensities
across arrays. Thus, quantile normalization assumes that the overall distribution of
signal intensity does not change. While this assumption likely holds true for the
comparison of p53 overexpressing versus control cells (22) or even for brainheart com-
parisons according to Rao et al. (35) where only 5% of miRNAs were differentially
expressed, it may not hold true in case large numbers of miRNAs are differentially
expressed in only one direction. Such cases may be e.g., knockouts of essential miRNA
biogenesis proteins which lead to a dramatic reduction in steady state miRNA levels
by blocking production of mature miRNAs (35). Rao at Al. in 2008 (35) compare the
performance of several normalizations on miRNA single channel microarray profiling
showing a better performance of quantile normalization.

2.2.2.2 LOESS Normalization

Between the transformation based methods, LOESS normalization and its variants
(35)(21)(23) are the most used. They use local regression via locally weighted scatter
plot smooth. It is advisable to introduce weights that penalize outliers because these
values can strongly influence the local regression curve. Local regression via LOESS
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uses a quadratic polynomial weighted regression function with Tukeys biweight function
[(40) of the log ratios Cy3

Cy5 on overall spot intensity Cy3 × Cy5 (the LOESS smoother
for the so called MA-plots) (23). Hua et al. in 2008 (21) compared 15 normalization
methods using microarray data and RT-PCR data. It was found that microRNA
noramalized data by print-tip LOESS method were most consistent with the RT-
PCR results. In addition, the two channel data normalization (using both Cy3 and
Cy5 channels) is better than one-channel (using Cy3). Print-tip LOESS normalizes
each M value by subtracting the corresponding value on the tip-group LOESS curve
from the raw data (21). However, in a similar study, (24) did not find significant
differences between print-tip LOESS and other normalizations. A variant of LOESS
normalization called LOESSM was proposed by Risso et al. (23). This non-parametric
normalization scales the expression data on the global median expression rather than
on zero. This modification relaxes the assumption of symmetry among up- and down-
regulated genes and it was shown that LOESSM, in case of absence of channel-effect, has
better performance (23). In addition, LOESS combined with Generalized Procrustes
Analysis (GPA)- an assumption free inter-array normalization (((42)) - improved its
results and outperformed the other normalizations in terms of sensitivity and specificity
(23). LOESS normalizations and its variants emerged as being robust in the reduction
of non-biological bias.

2.2.2.3 Variance stabilization normalization

Variance stabilization normalization (VSN), an inter-array transformation method, is
widely used for microRNA microarray data (24) (22). It was developed for mRNA
arrays and is based on a parameterized arsinh transformation instead of a logarithmic
transformation that calibrates sample-to-sample variations and renders variance ap-
proximately independent of the mean intensity (41). Spike-in VSN normalization as
described restricts the model fit to spike-in spots. Normalization intensities for all
miRNAs are then obtained by applying the resulting transformation to all spots of
interest on the array (24). One limitations of this approach is that reliable results
can only be obtained for intensities within the range covered by the spike-in used and
that excludes targets that are not expressed. Pradervand et al. (22) proposed a linear
regression method to select a set of miRNAs with constat expression (invariants) and
used these invariants to calculate VSN parameter (VSN-INV). The invariant probes are
those that have mediaum-high mean intesity and low variance across samples. VSN
used with default parameter settings assumes that most genes are not differentially
expressed whereas the invariant-based regression only assumes that a subpopulation of
expressed genes does not change. So, VSN-INV is if a significant fraction of miRNAs
is expected to be differentially expressed since, (22). Based on theirs comparisons,
Pradervand et al. (22), found that VSN-INV and quantile normalization were the most
robust normalization methods compared to VSN with default parameter or scaling. In
general, one should note that VSN strongly affects the distribution of the large fraction
of miRNAs whose expression is near or at background, resulting in the large increase
of variability for those microRNAs (22).
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2.2.2.4 Scaling normalization

The first normalization methods for mRNA microarray were based on the selections of
predefined and stably expressed housekeeping genes as described by Garzon et al. (44)
and Perkins at al. (45). Most commercially available miRNA microarrays do not have
controls for endogenous RNAs that have been shown to be robustly invariant between
various different tissue samples or conditions (35). To date, there is no consensus
on the existence and reliability of reference gene miRNAs. The selection of reference
genes to normalize miRNA levels depends on bioinformatic analysis of the respective
data (as shown for mRNA (26)(30) and is otherwise still rather empirical due to the
lack of robust reference miRNAs (46), although a universal reference miRNA reagent
set has been proposed (24). Bargaje et al. (43) identified constitutively expressed
miRNAs across tissues. The mean of expression levels of a set of 16 microRNAs showing
minimum variability was reasonably successful as a normalization factor for comparing
datasets generated by the same platforms. However, normalization using constitutive
microRNAs was ineffective when comparing bead-based and microarray-based datasets.
In these cases quantile and Z-score normalization were both successful in transforming
the data sets generating comparable means and scale (43). The scaling methods like
Z-score (43), mean, median (reviewed in (21)), or 75th percentile (20) assume that
different sets of intensities differ by a constant global factor and all raw intensity values
are multiplied with one common (i.e., global) scaling factor. The Z-score provides a
mean-centered rank for the expression level in units of standard deviation. Z-scores
thus provide an index of the expression level of the miRNA with respect to the cellular
pool of miRNA. Unlike other normalization methods Z-scores are not influenced by the
addition of new datasets allowing flexible cross-platform validation of miRNA microar-
ray profiling experiments (43). Recently, Wang et al. (47) suggested the pre-evaluation
of the overall miRNA expression pattern by a panel of miRNAs using RT-qPCR assays
to build a logistic regression model based on these results. The personalized logistic
regression model based on 29 miRNAs efficiently calibrated the variance across arrays
and improved miRNA microarray discovery accuracy compared with different scaling
methods, LOESS or quantile normalization (47).

2.3 Identification of differentially expressed genes and miRNA

Several methods have been applied to the identification of differentially expressed
genes and microRNA in microarray data. The simplest method is to evaluate the
log ratio between two conditions (or the average of ratios when there are replicates)
and consider all the genes that differ by more than an arbitrary cut-off value to be
differentially expressed. This is not a statistical test, and there is no associated value
that can indicate the level of confidence in the designation of genes as differentially or
not differentially expressed. It is considered to be unreliable (48) because statistical
variability is not taken into account and is susceptible to outliers. More sophisticated
statistical methods have been proposed. The classification success is affected by the
choice of the method, the number of genes in the gene list, the number of cases (samples)

23



2. DATA ANALYSIS

and the noise in the data set. Different methods produce dissimilar gene lists, which
can produce dramatically different discrimination performance when trained as gene
classifiers. The gene lists produced by the feature selection methods can be grouped
broadly according to the manner in which they treat gene variance.

2.3.1 t-statistic

The simplest statistical method for detecting differential expression is t test. It can
be used to compare two conditions when there is replication of samples. With more
than two conditions, analysis of variance (ANOVA) can be used. The t-test calculates
the observed t-statistic for each gene. The idea is to compare between-group difference
and within-group difference and then to calculate the probability value (p-value) of
t-statistic for each gene from t-distribution. The output of the analysis is a p-value for
each gene. It represents the chance of getting the t-statistic as large as, or larger than
the observed one, under the hypothesis of no differential expression (null hypothesis). A
small p-value indicates that the hypothesis of no differential expression is not true and
the gene is differentially expressed. The t-statistic methods perform relatively poorly
when there are high levels of noise in microarray data together with low samples sizes.
In this case, the variance estimate can be skewed by the genes which have a low variance.
Due to the large numbers of genes present in microarray data sets, there will always
be some genes which have a low standard deviation by chance. Thus, these genes will
have a large t-statistic and will be falsely predicted to be differentially expressed.

2.3.2 SAM

Several modified t-statistics have been proposed to address this problem. SAM (49)61
is one of the most popular. It performs moderately well except when applied to data
with low sample size and to the noisy data sets. SAM uses a moderated t-statistic,
whereby a constant is added to the denominator of the t-statistic. The addition of this
constant reduces the chance of detecting genes which have a low standard deviation by
chance. The constant is estimated from the sum of the global standard error of the
genes (50),(51),(52).

2.3.3 Empirical bayes method (Limma)

The empirical bayes method provides a more complex model of the gene variance.
The gene standard error is estimated as a representative value of the variance of the
genes at the same level of expression as the gene of interest (? ) 65. In training sets
with a large number of cases, the empirical bayes method performed comparably with
ANOVA. Importantly, unlike most other methods, the empirical bayes t-statistic proved
equally robust with low numbers of cases. The Bayesian statistic also provides p-values
and has the advantage that it can be expanded to deal with datasets that have more
then two classes. Limma provides advanced statistical methods for linear modelling
of microarray data and for identifying differentially expressed genes. It fits a linear
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model to the data and uses an empirical Bayes method for assessing differential expres-
sion (53). One or two experiment definition matrices need to be specified during the
analysis: a design matrix defining the RNA samples and a contrast matrix (optional
for simple experiments) defining the comparisons to be performed. When there are
more than two conditions in an experiment, a more general concept of relative ex-
pression is needed. One approach that can be applied to cDNA microarray data from
any experimental design is to use an analysis of variance model (ANOVA) to obtain
estimates of the relative expression (VG) for each gene in each sample (54)(55). In the
ANOVA model, the expression level of a gene in a given sample is computed relative to
the weighted average expression of that gene over all samples in the experiment. The
microarray ANOVA model is not based on ratios but it is applied directly to intensity
data; the difference between two relative expression values can be interpreted as the
mean log ratio for comparing two samples (as logA − logB = log(AB )), where logA
and logB are two relative expression values). Alternatively, if each sample is compared
with a common reference sample, one can use normalized ratios directly. This is an
intuitive but less efficient approach to obtain relative expression values than using the
ANOVA estimates. Direct estimates of relative expression can also be obtained from
single-color expression assays (56). The set of estimated relative expression values,
one for each gene in each RNA sample, is a derived data set that can be subjected
to a second level of analysis. There should be one relative expression value for each
gene in each independent sample. The distinction between technical replication and
biological replication should be kept in mind when interpreting results from the analysis
of a derived data. If inference is being made on the basis of biological replicates and
there is also technical replication in the experiment, the technical replicates should be
averaged to yield a single value for each independent biological unit. The derived data
can be analyzed on a gene-by-gene basis using standard ANOVA methods to test for
differences among conditions.

2.3.4 ROC

Classifiers built using gene lists from the ROC method outperform all other methods
when applied to large datasets. High RCI scores are observed even when only a few
of the most highly ranked genes are examined. These high RCI scores are maintained
when the number of genes examined is increased. It is possible to obtain p-values using
this method (57). ROC, like the t-statistic methods, loses power when the number
of samples is reduced. It ranks a gene based on its power to discriminate between
the groups given a threshold false positive rate. This means that it ignores the level
of expression of the gene in the two groups. Therefore as the training size decreases,
the likelihood of a gene with low variance and no biological meaning being a good
discriminator by chance increases. ROC is an unsuitable method when the sample size
is below 30 (class size of 15).
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2.3.5 Rank Product

The Rank Product is a non-parametric method described in (52) and It generates a
list of up- or down-regulated genes based on the estimated percentage of false positive
predictions (pfp), which is also known as false discovery rate (FDR). The attractiveness
of this method is its ability to analyse data sets from different origins (e.g. laboratories)
or variable environments. Rank product assumes constant variance across all samples.
It compares the product of the ranks of genes in a class with the product of the ranks
of genes in the second class. For each gene in the data-set, rank products sorts the
genes according to the likelihood of observing their ranked positions on the lists of
differentially expressed genes just by chance.

2.4 Clustering

Clustering algorithms are widely used in the analysis of microRNA profiling data. In
clinical studies, they are not only used to cluster microRNA into groups of co-regulated
miRNA, but also for clustering patients, and thereby defying novel disease entities based
on miRNA expression profiles. A reliable and precise classification of tumors is essential
for successful diagnosis and treatment of cancer. Current methods for classifying human
malignancies rely on a variety of morphological, clinical, and molecular variables. In
spite of recent progress, there are still uncertainties in diagnosis. Also, it is likely that
the existing classes are heterogeneous and comprise diseases which are molecularly
distinct and follow different clinical courses. microRNA microarray datasets have been
used to characterize the molecular variations among tumors by monitoring microRNA
expression profiles on a genomic scale. This led to more reliable classification of
tumors and to the identification of marker miRNA that distinguish among these classes.
Eventual clinical implications include an improved ability to understand and predict
cancer survival. However, there are three main types of statistical problems associated
with tumor classification:

• The identification of new tumor classes using microRNA expression profiles unsupervised
learning

• The classification of malignancies into known classes supervised learning

• The identification of marker microRNA that characterize the different tumor
classes feature selection

Clustering can answer these problems. It is possible to cluster rows, columns or
both. Rows (miRNA) clustering can identify groups of co-regulated miRNA, spatial or
temporal expression patterns, reduce redundancy (cf. feature selection) in prediction,
and detect experimental artifacts. On the other hand columns clustering allows to
identify new classes of biological samples, new tumor classes or new cell types. Moreover,
it allows to detect experimental artifacts. In order to perform clustering, a way to
measure how similar or dissimilar two objects are is needed. The feature data are
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often transformed to an n × n distance or similarity matrix, D = dij , for the n
objects to be clustered. Features correspond to expression levels of different microRNAs
and possible classes include tumor types or clinical outcomes (survival, non-survival).
Other information such as age and sex may also be important and can be included
in the analysis. The most popular distances are Euclidean distance and Manhattan
distance. Hamming distance is used for ordinal, binary or categorical data. Clustering
procedures can be divided into 3 categories: Hierarchical, Partitioning (K-means K-
medoids/partitioning around medoids) and Model based approaches. The first one is
either divisive or agglomerative and provides a hierarchy of clusters, from the smallest,
where all objects are in one cluster, through to the largest set, where each observation
is in its own cluster. One must often also dene a distance measure between clusters
or groups of miRNA and the linkage methods used are single, complete, average,
distance between centroids and Ward Linkage. Hierarchical clustering methods produce
a tree or dendrogram. The partitions are obtained from cutting the tree at different
levels. The tree can be built in two distinct ways bottom-up (agglomerative clustering)
or top-down (divisive clustering). Examples of Hierarchical clustering methods are
Self-Organizing Tree Algorithm SOTA (58) and DIvisive ANAlysis DIANA (59).
Partitioning methods require the specification of the number of clusters. A mechanism
for apportioning objects to clusters must be determined, and then data is portioned
into a prespecied number K of mutually exclusive and exhaustive groups and iteratively
reallocated to clusters until some criterion is met, e.g., minimize within-cluster sums-
of-squares. Examples of partitioning methods are k -means and its extension to fuzzy
k -means, Partitioning Around Medoids PAM, Self-Organizing Maps SOM and
model-based clustering (59). An important feature of partitioning methods consists
in satisfying an optimality criterion (approximately), however they need an initial
K and long computation time. Hierarchical methods are computationally fast (for
agglomerative clustering) but rigid, since they cannot later correct for earlier erroneous
decisions. Most methods used in practice are agglomerative hierarchical methods. In
large part, this is due to the availability of efficient exact algorithms that implement
them. Model based approaches assume that data are ’generated’ from a mixture
of K distribution. They try to fit a model to the data and try to get the best
fit. A classic example is a mixture of Gaussians (mixture of normals). They take
advantage of probability theory and well-defined distributions in statistics. In microar-
ray experiments is also useful to detect the presence of outliers. Outlier detection is an
important step since they can greatly affect the between-cluster distances. Simple tests
for outliers should be identifying observations that are responsible for a disproportionate
amount of the within-cluster sum-of-squares. Most features in high dimensional data-
sets will be uninformative, examples are unexpressed genes, housekeeping genes, and
’passenger alterations’. Clustering (and classification) has a much higher chance of
success if uninformative features are removed. Simple approaches to feature selection
are: selecting intrinsically variable genes or requiring a minimum level of expression in
a proportion of samples. Clustering can be also employed for quality control purposes.
The clusters that are obtain from clustering samples/microRNA should be compared
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with different experimental conditions such as batch or production order of the arrays,
batch of reagents, microRNA amplification procedure, technician, plate origin of clones,
and so on. Any relationships observed should be considered as a potentially serious
source of bias.

2.5 Integrated analysis of miRNA and gene expression

miRNAs down-regulate their mRNA targets and this effect has shown to play a key
role in different biological processes. miRNA regulatory mechanisms are complex and
there is still no high-throughput experimental technique for miRNA target prediction.
Although, in the last years several computational methods based on sequence comple-
mentarity of the miRNA and the mRNAs have been developed, their predictions are
inconsistent and their expected false positive rates are large. Recently, new computa-
tional methods based on the joint analysis of miRNA and mRNA expression for the
filtering of sequence-based putative targets have been proposed. Nevertheless, their
expected false positive rates are still large and predictions of different methods do not
match at all. Some of these methods combine both expression data with sequence
analysis. The integration of miRNA and mRNA expression data have shown to be
a good method for filtering sequence-based putative predictions. The algorithms to
develop this integration can be categorized into three groups:

• dependence-based methods (Pearson and Spearman correlation and MI)

• MLR and regularized least squares (MLR, Lasso, Ridge and Elastic-net)

• Bayesian inference methods (GenMiR, HCtarget and a Bayesian graphicalmethod)

Although huge advances have been made in miRNA target prediction, there is still
much work to do. Until high-throughput experimental techniques reach the market,
computational methods will continue to be of high importance. Combination of ex-
pression data with sequence based prediction have shown to be feasible. Although,
the number of predicted targets is still high, these methods have marked new future
working lines. In this respect, models that combine more heterogeneous experimental
data (i.e. TF, protein, time-course data, miRNA transfection effects on mRNA and
proteins) could be more reliable on the predicted miRNAmRNA interactions.

2.6 Survival prediction model for cancer prognosis using
gene expression

Cancer survival studies are commonly analyzed using survival-time prediction models
for patients prognosis. Survival models consists of two parts: the underlying hazard
function, describing how the hazard (risk) changes over time at baseline levels of
covariates; and the effect parameters, describing how the hazard varies in response to
explanatory covariates. The effect of covariates estimated by any proportional hazards
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model can thus be reported as hazard ratios. The Cox proportional hazards model
(60) is the most common survival prediction model for cancer prognosis. Sir David Cox
observed that if the proportional hazards assumption holds (or, is assumed to hold) then
it is possible to estimate the effect parameter(s) without any consideration of the hazard
function. This approach to survival data is called application of the Cox proportional
hazards model. Often, demographic and clinical covariates are combined in a Cox
model to predict a patients survival in order to improve treatment recommendations
(61) (62) (63). Many studies have shown an association between patient survival and
gene expression profiles 8-10, thus some recent papers have investigated the use of mi-
croarray gene expression data alone or in combination with clinical covariates (64) (65)
(66) as an improvement to estimate patient survival risk. Research in gene expression
profiling of cancer data has focused on binary class prediction, where patients survival
times have been dichotomized to form two classes (64) (67) (68). With this approach,
a prediction model is built and used to distinguish between the low-risk and high-risk
classes. Dimensionality reduction techniques are often performed prior to applying the
Cox model to improve prediction performance. A practical approach is to select a
smaller set of relevant genes from the entire gene set as initial step; a dimensionality
reduction technique is then applied to the selected gene set (69). Evaluation of the
ability of a survival model to predict future data is the most important consideration
in the development of prediction model. The Hazard ratios between high- and low-
risk groups defined by dichotomized risk scores are a common metric to assess the
performance of survival prediction models. The KaplanMeier method (70) can be used
to estimate survival curves for the two groups from the observed survival times without
the assumption of an underlying probability distribution. The method is based on the
basic idea that the probability of surviving k or more periods from entering the study
is a product of the k observed survival rates for each period

S(k) = p1 × p2 × p3 × . . .× pk

Here, p1 is the proportion surviving the first period, p2 is the proportion surviving
beyond the second period conditional on having survived up to the second period, and
so on. The proportion surviving period i having survived up to period i is given by:

pi =
ri − di
ri

Where ri is the number alive at the beginning of the period and di the number
of deaths within the period. Comparison of two or more survival curves can be done
using a statistical hypothesis test known as log rank test (71). The null hypothesis of
the test is that there is no difference between the population survival curves. The test
statistic for two curves is calculated as follows:

χ2 =
(O1 − E1)

2

E1
+

(O2 − E2)
2

E2

Where the O1 and O2 are the total numbers of observed events in groups 1 and 2,
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respectively, and E1 and E2 the total numbers of expected events. The total expected
number of events for a group is the sum of the expected number of events at the time of
each event. The expected number of events at the time of an event can be calculated as
the risk for death at that time multiplied by the number alive in the group. Under the
null hypothesis, the risk of death (number of deaths/number alive) can be calculated
from the combined data for both groups.
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Chapter 3

Triple Negative Breast Cancer

3.1 Breast Cancer

After cardiovascular diseases, tumors represent the first cause of death in worldwide.
Breast cancer is the most common type of malignancy diagnosed in the United States
and Italy, after skin cancer. It is the second leading cause of cancer deaths in women
today, after lung cancer. According to the American Cancer Society, more than 230,000
women will be diagnosed with breast cancer annually in the United States, and more
than 39,000 will die from the disease. Official data from the Italian Ministry of Health
have estimated the total breast cancer incidence at 37,300 new cases in year 2005,
with an overall prevalence of 416,000 cases (women living with the cancer) [(72). The
number of deaths due to breast cancer in the Italian female population represented
about 18% of the total cancer mortality rate in 1998 and ten years later a total of
11.000 deaths were attributable to it. The risk of developing breast cancer is related to
a number of factors including the events of reproductive life and lifestyle factors that
modify endogenous levels of sex hormones (73). Diet has been also found to play an
important role in the etiology of breast cancer (74). Tumors in the breast tend to grow
slowly. By the time a lump is large enough to feel, it may have been growing for as
long as 10 years. However, some tumors are aggressive and grow much more rapidly.
Although breast cancer is often referred to as one disease, there are actually many
different types of breast cancer. A major sub classification of breast cancer diving this
tumor in invasive and non invasive (DCIS), is determined by the pathologist once he
will analyze the tissue under microscope.

3.1.1 Invasive and Non-Invasive breast cancer

The Invasive breast cancer has spread from the original site (either the milk ducts
or the lobules) into the surrounding breast tissue and possibly spread to the lymph
nodes and/or other parts of the body forming metastasis. For this reason, invasive
breast cancers have a poorer prognosis than DCIS. The invasive breast cancer can be
further subdivided,and the most common is the invasive ductal carcinoma (also called
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infiltrating ductal carcinoma and less commonly, invasive carcinoma of no special type
or invasive carcinoma not otherwise specified). Invasive ductal carcinoma accounts for
50 to 75 percent of all breast cancers (75). Instead, Tubular carcinoma and mucinous
(colloid) carcinoma are less common types of invasive breast cancer that tend to have a
good prognosis (75). Ductal carcinoma in situ (DCIS) is a non-invasive breast cancer.
In DCIS, the abnormal cells are contained in the milk ducts of the breast and have
not spread into the surrounding breast tissue. Although DCIS is non-invasive, without
treatment, the abnormal cells could turn into invasive breast cancer over time. That is
way this is also called pre-invasive breast carcinoma to describe DCIS.

3.2 Molecular Subtype

If the previous sub classifications where mainly based on location and morphogenesis of
the breast cancer cells and the tumor mass, comparing different types malignancy at the
molecular level (mRNA, miRNA or protein) on a global scale could sub classify them
resulting in one of the most striking discoveries of all the times; Subclassifing allowed the
development of new therapies that save countless lives so far. Researchers have shown
that microarray profiles could divide the breast cancers in different groups based, not
on their morphology or location but on their dysregulated expressed genes. Perou et
al. first identified distinct molecular sub types of breast cancer using unsupervised
hierarchical clustering analysis of gene expression pattern differences (76). Similar
classifications of breast cancers, using different unsupervised clustering analyses, have
been seen by others (77),(78),(79). In 2009, a 50-gene signature (PAM50) was proposed
to standardize breast cancer sub typing. The PAM50 gene set has high agreement in
classification with larger ’intrinsic’ gene sets previously used for sub typing (76)(80)(81).
So far breast cancers are subdivided at the molecular scale because they differentially
express fundamental proteins involved in tumor growth (but not only) like: ER (Estrogen
Receptor), PR (progesterone Receptor), HER2 (Human Epidermal Growth Factor
Receptor 2), Ki67 (Antigen KI-67)and EGFR 3.1:

Subtype These tumors tend to be Prevalence

Luminal A ER+ and/or PR+, HER2-, low Ki67 40%
Luminal B ER+ and/or PR+, HER2+ (or HER2- with high Ki67) 20%
Triple negative/basal-like ER-, PR-, HER2-, cytokeratin 5/6 + and/or HER1+ 15-20%
HER2 type ER-, PR-, HER2+ 10-15%

Table 3.1: Breast Cancer molecular sub-types

The ER is a member of the nuclear hormone family of intra cellular receptors, it
is a DNA-binding transcription factor which regulates gene expression (82). There are
two different forms of ER, referred as and , each encoded by a separate genes, the
isoform by the ESR1 on chromosome 6 (6q25.1) and the isoform by the ESR2 gene on
chromosome 14 (14q). These two forms of ERs are co-expressed in various tissues and
they are over-expressed in around 70% of breast cancer cases, and are referred to as ’ER
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positive’. Binding of estrogen to ER stimulates proliferation of mammary cells, with
the resulting increase in cell division and DNA replication and increases mutation rate.
This causes disruption of the cell cycle, apoptosis and DNA repair processes eventually
leading to tumor formation.

The progesterone receptor (PR) is an intracellular steroid receptor that binds pro-
gesterone. PR is encoded by the PGR gene which lies on chromosome 11 (11q22).
About 65% of ER-positive breast cancers are also PR-positive and about 5% of breast
cancers are ER-negative and PR-positive. If cells have receptors for both hormones
or receptors for one of the two hormones, the cancer is considered hormone-receptor
positive. Co-regulators of PR either enhance or suppress transcription activity and
thereby modulate its function.

The Human Epidermal growth factor Receptor 2 (HER2/neu or ERBB2) is a protein
located at the long arm of chromosome 17 (17q11.2-q12). HER2/neu belongs to a
family of four trans membrane receptor tyrosine kinases involved in signal transduction
pathways that regulate cell growth and proliferation (83). Over-expression of this
receptor in breast cancer is associated with increased disease recurrence and worse
prognosis.

These three proteins are the main biomarkers used and besides them Ki-67 and
EGFR (HER1) has become a very important predictive and prognostic marker for
breast cancer. Antigen KI-67 (Ki-67) is a protein encoded by the MKI67 gene on
chomosome 10. Ki-67 is a associated with and may be necessary for cellular proliferation;
Patients with high Ki-67 expression responds better to chemotherapy (84)(85)(86)(87),
but is associated with poor prognosis (88)(89)(90)(91). EGRF is a trans membrane
glycoprotein that is a member of the protein kinase super family. It is a receptor
for members of the epidermal growth factor family. EGFR is a cell surface protein
that binds to epidermal growth factor and has a key role in cell proliferation. Recent
molecular profiling of these tumors has revealed a high frequency of its dysregulation,
among other abnormalities. EGFR status correlates negatively with survival in patients
with triple-negative breast cancers, and thus focus has turned on this receptor as a
potential clinical target.

Researchers are now focusing their attention on finding new molecular breast cancer
subtypes, based not only on different protein expression levels, but also on different
miRNAs expression levels. This further classification is fundamental in order to develop
more targeted treatment and therapies.

3.3 Triple negative breast

Triple-negative breast cancer (TNBC) patients are clinically negative for expression of
estrogen and progesterone receptors (ER/PR) and HER2 protein. These are proteins
that control cell functions, such as cell growth or death. Also, it seems to recur more
often than other subtypes of breast cancer. It usually has a poorer prognosis than breast
cancers that are hormone receptor-positive because lacks of specific, targeted treatment.
TNBC is characterized by its unique molecular profile, aggressive behavior, distinct
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patterns of metastasis, and lack of targeted therapies. Although not synonymous, the
majority of triple-negative breast cancers carry the basal-like molecular profile on gene
expression arrays. Basal-like tumors have cells with features similar to those of the
outer (basal) cells lining the mammary ducts. Basal-like tumors tend to express HER1
and/or cytokeratin 5/6 proteins and most contain p53 mutations (92),(? ). Most triple
negative tumors are basal-like and most basal-like tumors are triple negative. However,
not all triple negative tumors are basal-like and not all basal-like tumors are triple
negative (as shown in the 3.1).

Figure 3.1: Venn Diagram between triple negative and basal-like tumors. -
Triple-negative breast cancers are sometimes classified into ”basal-type”; About 75% of
basal-type breast cancers are triple negative.

About 15 to 20 percent of breast cancers are triple negative or basal-like (92),(93),(94),(95).
Epidemiologic studies illustrate a high prevalence of triple-negative breast cancers
among

• Younger women

• African descent

• Women who have BRCA1 mutations

Triple negative/basal-like tumors are often aggressive and have a poorer prognosis
(at least within the first five years after diagnosis) compared to the estrogen receptor-
positive subtypes (luminal A and luminal B tumors) (92)(93)(94)citeFan06. Although
sensitive to chemotherapy, early relapse is common and a predilection for visceral
metastasis, including brain metastasis, is seen. Targeted agents, including EGFR,
vascular endothelial growth factor (VEGF), and poly (ADP-ribose) polymerase (PARP)
inhibitors, are currently in clinical trials and hold promise in the treatment of this
aggressive disease.
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3.4 Integrated microRNA and mRNA Signatures Asso-
ciated with Survival in Triple Negative Breast Cancer

Cascione L, Gasparini P, Lovat F, Carasi S, Pulvirenti A, Ferro A, Alder H, He G,
Vecchione A, Croce CM, Shapiro CL, Huebner K. Paper submitted in PLoS One.

There is a major need to better understand the molecular basis of TNBC and to
develop effective treatments for this aggressive type of breast cancer. More extensive
genomic, molecular, and biological analyses of TNBCs are required to understand the
complexity of the disease and to identify molecular drivers that can be therapeutically
targeted. We compiled an extensive number of TNBC mRNA and microRNA profiles
with the intent of linked specific miRNA signatures to patient survival and used miRNA
anti-mRNA correlations to identify TNBC subclasses associated with expression of
canonical signal pathways. We have used the nanoString nCounter platform (Seattle,
WA, USA) to profile miRNA and mRNA expression in tumor, adjacent non-tumor
(hereafter referred to as normal) and lymph node metastatic lesion (mets) tissues, from
women with TNBCs; RNA was isolated from formalin-fixed paraffin-embedded (FFPE)
tissue cores of 165 primary tumors, 59 adjacent normal and 54 lymph node metastatic
samples and expression of 664 miRNAs and 230 cancer-associated mRNAs. The tissues
studied are also represented on a tissue microarray with a database of associated clinical
features and expression scores for some proteins that are differentially expressed in
basal and non-basal TNBCs. Our analyses confirmed some observations from previous
studies (96)(97) and revealed specific miRNA signatures as new potential biomarkers
for distant-disease free (DDFS) and overall survival (OS). By multivariate analysis
the risk signatures were independent predictors. We emphasized the joint analysis
of miRNA and mRNA data, and analyzed correlations between miRNA and mRNA
expression data. We show that particular cellular processes are significantly enriched
in the co-regulated clusters, suggesting a central role for miRNAs in regulating these
pivotal pathways. This study reveals specific miRNA expression profiles across the
range of breast cancer patient-derived tissues. The identification of several molecular
drivers provides great insight to the heterogeneity of this disease and provides preclinical
platforms for the development of effective treatment.
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Chapter 4

Research Papers

During my PhD program, I focused my research interests in the new and emerging
research field of non coding RNAs and microRNAs. I focused my efforts on the
investigating of the role of these short non coding RNAs in human tumors. During
my PhD I had the opportunity of spending two years in Dr. Carlo M. Croce’s lab at
The Ohio State University in Columbus (USA).

As a member of Alfredo Ferro’s Lab as well as member of Carlo Croce’s Lab I
have been involved in several projects. Many of them have been published in pear
review journals. The following summary will illustrate how I maximized the excellent
resources and opportunities available at the University of Catania and at The Ohio
State University with a highly productive and sustainable research program.

4.1 Papers

Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F,
Alder H, Condorelli G, Engelman JA, Ono M, Rho JK, Cascione L, Volinia S, Nephew
KP, Croce CM. EGFR and MET receptor tyrosine kinase-altered microRNA
expression induces tumorigenesis and gefitinib resistance in lung cancers.
Nature Medicine 2011.

In this project we aimed to identify EGFR- and MET-regulated miRNAs in non small
cell lung cancer (NSCLC); I contributed to this work performing analysis, visualization
and interpretation of high-throughput microRNA expression data. Appling bioinforma-
tics and statistical methods we found that four miRNAs are modulated by both EGF
and MET receptors, whereas two miRNAs are controlled only by MET. We showed
that these miRNAs have important roles in gefitinib-induced apoptosis and epithelial-
mesenchymal transition of NSCLC cells in vitro and in vivo. Our findings suggested that
modulation of specific miRNAs may provide a therapeutic approach for the treatment
of this particular kind of lung cancer. This paper was published in Nature Medicine
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(98).

Ranganathan P, Heaphy CE, Costinean S, Stauffer N, Na C, Hamadani M, Santhanam
R, Mao C, Taylor PA, Sandhu S, He G, Shana’ah A, Nuovo GJ, Lagana A, Cascione L,
Obad S, Broom O, Kauppinen S, Byrd JC, Caligiuri M, Perrotti D, Hadley GA,
Marcucci G, Devine SM, Blazar BR, Croce CM, Garzon R. Regulation of acute
graft-versus-host disease by microRNA-155. Blood 2012.

In collaboration with members of Ramiro Garzons Lab. at The Ohio State University
I had the opportunity to be be a part of this project. We investigated the miR-
155 involvement in the modulation of acute graft-versus-host disease (aGVHD) the
major complication of allogeneic hematopoietic stem cell transplant (alloHSCT). We
found that miR-155 also affected aGVHD severity and prolonged survival in mice after
alloHSCT. Our work discovered the role of miR-155 in the regulation of GVHD and
pointed to miR-155 as a novel target for therapeutic intervention. In this work, I
analyzed the data collected in the lab performed bioinformatics and statistical analyses.
This paper was published in Blood (99).

Balatti V, Lerner S, Rizzotto L, Rassenti LZ, Bottoni A, Palamarchuk A, Cascione L,
Alder H, Keating MJ, Kipps TJ, Pekarsky Y, Croce CM. Trisomy 12 CLLs progress
through NOTCH1 mutations. Leukemia 2012.

In this research, we investigated the molecular consequences of the constantly active
expression of Notch1 protein in trisomy 12 B-cell chronic lymphocytic leukemia, one of
the most common adult leukemia in Western societies. This gene has an important role
in cell differentiation, proliferation and apoptosis, leading to transcriptional activation
of multiple target genes, including MYC. Using Affymetrix microarray we compared
the genome-wide mRNA expression of NOTCH1 Wild Type and NOTCH1-mutated
samples. The clustering of samples showed a different expression pattern between
the two categories (NOTCH1 WT and NOTCH1-mutated). The enriched analysis of
dysregulated mRNAs reveled that the activation of NOTCH1 appears to be involved
in downregulation of tumor suppressor and apoptotic key factors. accelerating the
progression of the disease. The NOTCH1 mutations are associated with CLL progression
leading to more aggressive form of the disease with poor outcome. This manuscript
was published in Leukemia (100).

Lagana A, Paone A, Veneziano D, Cascione L, Gasparini P, Carasi S, Russo F, Nigita
G, Macca V, Giugno R, Pulvirenti A, Shasha D, Ferro A, Croce CM.
miR-EdiTar: A database of predicted A-to-I edited miRNA target sites.
Bioinformatics 2012.

The misexpression of microRNAs has been linked to altered cell behavior and the
establishment and maintenance of malignant phenotypes (Croce 2009; Lagan et al.
2010; Sato et al. 2011). A-to-I editing is an important epigenetic mechanism that can
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affect miRNA function by changing either their sequence or their binding sites on the
targets (Nishikura 2010). Many of the edited sites are found in the mature miRNA
sequences and some are located in the seed region, thus potentially altering target
recognition. For example, a seed-edited version of miR-376 in mouse was proved to
target a different set of genes than its unedited form (Kawahara 2007). We created
miR-EdiTar, a database of predicted miRNA binding sites affected by A-to-I editing
and novel binding sites genereted by this epigenetic mechanism. In this work we also
provided a proof of principle validation of a novel miRNA binding site created by editing
events and suggesting some plausible scenarios of the involvement of editing in miRNA
activity. This paper was finally accepted for the publication in Bioinformatics (101).

Romano G, Acunzo M, Garofalo M, Di Leva G, Cascione L, Zanca C, Bolon B,
Condorelli G, Croce CM. MiR-494 is regulated by ERK1/2 and modulates
TRAIL-induced apoptosis in nonsmall-cell lung cancer through BIM down-
regulation. PNAS 2012.

In this paper we accessed a functional relationship between the ERK1/2 pathway and
BIM expression through miR-494. The ERK1/2 pathway has a key role in several
cellular processes and cancer development and is responsible for the transcription of
several important miRNAs. After ERK1/2 inactivation through the overexpression
protein PED/PEA15, miR-494 was the most down-regulated microRNA . We alse found
that this miRNA induced Tumor necrosis factor (TNF)-related apoptosis-inducing
ligand (TRAIL) resistance in nonsmall-cell lung cancer (NSCLC) through the down-
modulation of BIM. Elucidation of this undiscovered ERK1/2 pathway that regulates
apoptosis and cell proliferation through miR-494 in NSCLC will greatly enhance our
understanding of the mechanisms responsible for TRAIL resistance and will provide
an additional arm for the development of anticancer therapies. This paper has been
published in Proc. Natl. Acad. Sci. USA. (102).

Pichiorri F, Palmieri D, De Luca L, Consiglio J, You J, Rocci A, Talabere T, Piovan
C, Lagana A, Cascione L,Guan J, Gasparini P, Balatti V, Coppola V, Hofmeister
C, Marcucci G, Byrd J, Volinia S, Shapiro C, Freitas M, Croce CM. In vivo NCL-
targeting affects breast cancer aggressiveness through miRNA regulation .
Journal of Exper. Medicine 2013.

In this project we found that the Nucleolin (NCL), a major nucleolar protein, post-
transcriptionally regulates the expression of a specific subset of miRNAs (miR-21, miR-
221, miR-222, and miR-103). These small non-coding RNA are causally involved in
breast cancer initiation, progression and drug-resistance. We also shown that NCL
is commonly overexpressed in human breast tumors, and its expression correlates
with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding
guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target
genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These
findings illuminate a path to novel therapeutic approaches based on NCL-targeting
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aptamers for the modulation of miRNA expression in the treatment of breast cancer.
Our manuscript was accepted for the publication in Journal of Experimental Medicine
(103).

4.2 Abstracts in Meeting

Rocci A, Hofmeister CC, Omed P, Geyer S, Bringhen S, Cascione L, Bingman A,
Gambella M, Stiff A, Isaia G, De Luca L, Guan J, Rossi D, Corry J, Gentili S, Efebera Y,
Uccello G, Benson DM, Ria R, Talabere T, Benevolo G, Murnan K, Callea V, Magarotto
V, Boccadoro M, Croce CM, Palumbo A, Pichiorri F. Circulating microRNA in
multiple myeloma: differences with healthy subjects and correlation with
biological parameters. 17th Congress of the European Hematology Association,
June 14-17 2012, Amsterdam - Netherlands.

The presence of microRNAs in many body fluid opens to their possible use as biomarkers.
A comprehensive profile of circulating miRNA in multiple myeloma (MM) patients
and a comparison with healthy subjects is still lacking. We identified the expres-
sion pattern of 654 miRNAs in 104 newly diagnosed MM patients and 60 from age-
matched healthy subjects using nCounter technology (NanoString, Seattle, USA). We
correlate the microRNAs expression profile with biological characteristics of multiple
myeloma patients. Univariate analysis showed correlation between specific miRNAs
and predictors of poor prognosis (ISS stage, FISH risk, high beta2-microglobulin values
and low hemoglobin (Hb) levels). A diffuse reduction in miRNAs levels was observed in
MM patients compared with healthy subjects and a low expression of specific miRNAs
correlates with adverse prognostic factors in MM patients. Our observations strongly
demonstrate a specific profile of circulating miRNAs in MM, opening the discussion on
their role in the pathogenesis of the disease (104).

Shapiro CL, Cascione L, Gasparini P, Lovat F, Carasi S, Pulvirenti A, Ferro A,
Huebner K. Use of microRNA (miR) expression profiling to identify distinct
subclasses of triple-negative breast cancers (TNBC). 2012 American Society of
Clinical Oncology Annual Meeting, June 1-5 2012, Chicago (IL) - USA.

To sub-classify TNBC we performed microRNA (miRNA) expression profiles using
the nanoString nCounter platform) and linked them to patient overall survival. The
consensus-clustering algorithm (ConsensusClusterPlus, Bioconductor) identified five
distinct subclasses; 1 clustering with normal breast miRNA expression whereas the
other 4 each had a unique pattern of deregulated miRNAs. The median overall survivals
were significantly different across the 5 cancer subclasses (log-rank p=0.028). The
miRNA expression profiling identifies and discriminates 5 TNBC subclasses, which do
not coincide with those identified as basal and non-basal by IHC. Molecular analyses
are ongoing to associate the miRNA-based subclasses with specific clinical features or
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the expression of specific pathways (105).

Costinean S and Bottoni A, Cascione L, Teknos T, Ozer E, Old M, Agrawal A, Croce
CM, Iwenofu OH. Differential microRNA Expression Signatures in Salivary
Duct Carcinomas Versus Her2/Neu 3+ Positive Hormone Receptor Nega-
tive Invasive Ductal Breast Carcinomas and High Grade Breast Ductal Car-
cinoma In Situ.United States and Canadian Academy of Pathology’s 101st Annual
Meeting, March 17-23 2012, Vancouver - Canada.

Salivary duct carcinoma (SDC) is highly lethal salivary gland tumor, histologically and
immunohistochemically indistinguishable from invasive high grade Her2/Neu positive
ductal breast carcinoma (IDBC). Herein, we sought to investigate whether common
histopathologic and immunophenotypic features of the SDC and Her2/Neu 3+ positive
IDBC have a similar molecular basis, in terms of microRNA expression. The expres-
sion patterns of Her2/Neu 3+ IDBC and SDC were strikingly similar and much less
so with high grade DCIS. SDCs are more similar to Her2/neu 3+ IDBC than the high
grade DCIS. Only two microRNAs were differentially expressed compared to IDBC
and four microRNAs differentially expressed compared to the high grade DCIS. One
of the microRNA differentially expressed - miR10a - was consistently higher in both
high grade DCIS and Her2/Neu 3+ IDBC compared to the SDCs suggesting that this
miRNA is breast specific and is increased from an early point of the tumorigenesis
(106).

4.3 Chapter in book

Cascione L, Ferro A, Giugno R, Pigola G., Pulvirenti A. Algorithms and Methods
for Expression Proling Data Classication and Biomarkers Identication.Book
Title: Biological Knowledge Discovery Handbook: Preprocessing, Mining and Po-
stprocessing of Biological Data, Wiley Book Series on Bioinformatics: Computational
Techniques and Engineering

Microarray is a well established technology to analyze the expression of many genes and
have recently become a basis for diagnosis and prognosis predictions in cancer research.
In this chapter we first review the most reliable methods for expression profiling analysis
and classification. We also present a comparative analysis on statistical tests on a case
of study. Moreover, we present a new method for the computation of patterns of
discriminant expressions genes for outcome prediction, called MIDClass. An experi-
mental analysis show the effectiveness of this method compared to the most prominent
classification approaches (107).

Cascione L, Ferro A, Giugno R, Pigola G., Pulvirenti A, Veneziano D. Elucidating
the role of microRNAs in cancer through data mining techniques. Book Title:
miRNA Cancer Regulation: Advanced Concepts, Bioinformatics and Systems Biology
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Tools, Springer New York.

A new topic on bioinformatics miRNA research relies on the integration of heterogeneous
data such as miRNA target predictions and expression profiles. It could be used
to infer miRNA/phenotype associations and for the generation of network models of
miRNA function. In this chapter we review the most important and recent methods
for the analysis of miRNA expression profiles and the tools available on the web for
functional analysis of miRNAs. Particular emphasis is given to the integration of
heterogeneous data, including target predictions and expression profiles, which can
be used to infer miRNA/phenotype associations and for the generation of network
models of miRNA function. In particular, we describe the most used miRNA profiling
technologies, together with the computational and statistical methods for the analysis
of the related data. Emphasis is given to data normalization, the identification of
differentially expressed microRNAs, clustering and the role of miRNAs as biomarkers.
In addiction we given an overview of the most popular target prediction tools available
on the web and finally we present a series of tools for functional analysis of miRNAs
(108).
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Chapter 5

Conclusion

5.1

To better understand the molecular basis of cancer, high throughput technologies are
nowadays essentials. They generate a huge amount of biological data that needs compu-
tational and machine learning methods to handle it. The high throughput profiling ex-
pression studies have shown that miRNAs are dysregulated in a wide variety of human
cancers (9) (10). In some instances, the expression of selected miRNAs or specific
miRNA signatures was found to correlate with diverse clinico-pathological features
and to predict patient clinical outcome and/or response to treatment (109) (110).
Such findings have highlighted the potential of miRNAs as new diagnostic or pro-
gnostic/predictive biomarkers. Moreover, the role of miRNAs functioning as oncogenes
and tumor suppressors, as emerged from functional studies in experimental models
(111) (112) has generated great interest in their possible use as novel targets or tools
for anticancer therapies. I make use of the microRNAs and genes profile to uncover
biological relevant mechanisms that are disrupted or modified in the case of triple nega-
tive breast cancer. This study reveals also valuable insights in the prognosis of patients.
We identified two microRNAs signatures able to predict the Distant Disease Free and
Overall Survival. There is a substantial amount of original results that broadens our
understanding of triple negative breast cancer and parts of the results confirm what
has been previously published for TNBC. We also were able validated our results in
three independent data sets. This kind of analysis is important to understand the
molecular bases of human cancer, in order to develop treatments that can target specific
molecular drivers. It is also crucial to identify specific bio-markers that will lead to early
diagnosis of cancer. A better understanding of the role exerted by specific miRNAs in
the development and progression of triple negative breast cancer is needed, as is a
precise definition of their targets relevant to the disease. However, based on available
findings, a possible role for miRNAs as novel bio markers and new therapeutic targets
or intervention tools can be envisioned. This project leads to a substantial amount of
results in the form of lists of differentially expressed microRNA, mRNA transcripts and
affected protein-protein interaction network, which can be used as an inspiration for
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5. CONCLUSION

a more targeted, experimental research. The microarray technology has now reached
a mature state in terms of development, ease of use, costs and speed of analysis that
makes it suitable for routine clinical use. Together with next generation sequencing, and
other advanced data generating techniques, I believe that computer-aided diagnosis,
personalized medicine and efficient data management must all be connected. The
inter-disciplinarily of these research fields should be considered and promoted in order
to have the best results that at the end will be reflected in terms of better life for cancer
patients.
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