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Quando le persone care ci lasciano,
non so realmente dove vanno.

Ma so perfettamente dove restano.

Ciao nonno...



Quando la tempesta sara finita,
probabilmente non saprai neanche tu
come hai fatto ad attraversarla

e ad uscirne vivo.

Anzi, non sarai neanche sicuro

se sia finita per davvero.

Ma su un punto non c’e dubbio.

Ed ¢ che tu, uscito da quel vento,
non sarai lo stesso che vi € entrato.

Haruki Marukami
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Chapter 1

Introduction

Rainbow is the term which indicates the coloured arc seen in the sky during the rain
when the sunlight is not completely obscured by the clouds. This atmospheric phe-
nomenon attracted the interest of many scientists during the decades, and a meaningful
theory of the rainbow was developed only recently [7]. Nowadays, it is well known that
the processes that led to the formation of this bright arc in the sky are connected to
the wave nature of the light and involve absorption-free processes, in particular the
refraction-reflection-refraction mechanism undergone by a light ray when it enters a
raindrop.

From the nuclear physics point of view, it is well known that nuclei can display wave
properties, since they can be diffracted, refracted and be subject of interference. If
the elastic scattering process is investigated, and a system characterized by a small
absorption is chosen, then, maintaining the similarity with the atmospheric case, it is
possible to look for a “rainbow” also in the nuclear case.

The first attempts in this direction were realized by Goldberg et al. [4, 8, 9], consider-
ing the elastic scattering process of alpha particles on different nuclei. In the measured
elastic cross section angular distributions, a clear evidence of a well developed nuclear
rainbow was observed for the first time. In the measured distributions, in fact, a huge
bump in the elastic cross section at the largest scattering angles was observed, and a
behaviour of the data similar to the square of the Airy function, adopted to describe
the atmospheric rainbow, was identified. The enhancement of the elastic cross section
at the largest scattering angles is what now is commonly referred to as nuclear rainbow.

Several years later, the rainbow phenomenon was observed in heavier systems, like the



elastic scattering of 2C on 2C [10-12] and 190 on 190 [1, 13, 14]. The latter represents
one of the best systems in which a fully developed rainbow structure has been observed
in a wide range of incident energies. Anyhow, the strong absorption which acts when
two heavy nuclei come in close contact tends to hide the refractive component of the
scattering process. As a consequence, nuclear rainbows were thought to be very difficult
to be observed in systems heavier than 10 + 160.

It is clear that the nuclear potential is the key quantity to deal with for the understand-
ing of this particular feature of the nuclear scattering process. The interaction potential
U(R) among the colliding partners can be expresses as the sum of a real part V(R),
describing the elastic scattering mechanism, and an imaginary part W(R), which takes
into account all those processes which remove flux from the elastic channel. Therefore,
only those system for which V(R) is the dominant contribution of the overall potential
U(R) will have some chance to manifest a rainbow pattern when the elastic scattering is
investigated. At the same time, the observation of a rainbow mechanism in the elastic
angular distribution gives access to the real part of the nuclear interaction, allowing
its investigation at small distances, where a deep overlap among the nuclear densities
of the colliding nuclei is reached. Thus, it becomes evident how the observation of a
nuclear rainbow pattern when dealing with an elastic scattering process can provide
very useful, precise and, to some extent, unexpected information about the nuclear
structure.

In the present work the 160 + 27Al elastic scattering process at an incident energy of
280 MeV is presented. It is organized as follows. In Chapter 1, a general overview of
the rainbow phenomenon is given, treating both the atmospheric and the nuclear case.
The latter is discussed in details, showing, in particular, the central role of the optical
potential for a good comprehension of the phenomenon. It is shown how the conven-
tional approach of the optical model analysis based on a Wood-Saxon shape for the
interaction potential is replaced by a more sophisticated description based on the dou-
ble folding model of the real potential. In this model, the nucleus-nucleus interaction
is described in terms of realistic wave functions for the projectile and the target and
is strongly dependent on a proper choice of the effective in-medium nucleon-nucleon
interaction. This will be shown to be the link between the nuclear rainbow and the
equation of state (EOS) of cold nuclear matter.

A description of the theoretical approach used for the data analysis is given in Chapter



2. The experimental elastic angular distributions are compared with a new generation
of parameter-free calculations based on the Coupled Channels (CC) formalism [15],
using the Sao Paulo potential (SPP) [16]. This is nothing else but a particular version
of the double folding approach for the optical potential, in which the effect of the Pauli
non locality is taken into account through a velocity-dependent exponential factor. The
SPP/CC model was successfully tested for different systems (O + 27Al, 58Ni, 5ONj,
Ni + 1248n, 6.7Li + 120Sn) in a wide energy range. In particular, for the 60 + 27Al
system, the experimental fusion, deep-inelastic and quasi-elastic cross sections are in
agreement with the theoretical calculations for Fjq,(1%0) < 90 MeV. Moreover, the
SPP/CC calculations predict [17] a nuclear rainbow pattern in the angular distribution
for the elastic scattering of 60 on 27Al at 100 MeV (or higher) incident energy, which
is strongly connected to the coupling with low-lying target excitations. This is to some
extent a surprising result, since, due to the strong absorption, no rainbow features are
expected for such a heavy-ion system.

In order to verify these theoretical predictions, an 60 + 27Al elastic scattering experi-
ment was recently performed at the INFN-LNS in Catania, using an 60 beam delivered
by the TANDEM accelerator at 100 MeV incident energy. Evidences of nuclear rainbow
formation were recognized in the experimental elastic angular distribution of the inves-
tigated system. This experiment represents the guideline for the further investigation
of the 150 + 27Al reaction at 280 MeV discussed in the present work.

The MAGNEX magnetic spectrometer [18], whose characteristics and principle of op-
eration are described in detail in Chapter 3, is the experimental device used to perform
the investigation of the 160 + 27Al system. The experiment was performed at the Cata-
nia LNS-INFN laboratory using a 280 MeV energy 60O Cyclotron beam impinging on
a 109 ug/cm? thick 27Al target. The ejectiles were momentum analysed by MAGNEX
and detected by its Focal Plane Detector (FPD) [19]. Five different angular settings
were chosen, with the spectrometer optical axis located at 9?55 = 10°, 13°, 18°, 26°
and 34° in the laboratory reference frame with respect to the beam direction. Due to
the large angular acceptance of MAGNEX (-0.090 rad, +0.110 rad horizontally, £0.125
rad vertically in the spectrometer reference frame), these settings cover a whole angular
range of about 5° < 6, < 40°.

Chapter 4 is devoted to the description of the adopted data reduction technique. This

is a very complex procedure made up of several steps. The first one consists in the



identification of the 60 ejectiles, since the 27A1(*60,160)27 Al reaction is studied. The
identification procedure is based on the standard AE — E technique for the atomic
number (Z), while the mass number (A) is determined by the correlation between
the measured ion positions at the focus and its kinetic energy. Once the ions track
are measured at the focal plane position, it is possible to optimize the spectrometer
transport map up to the 10 order. The whole procedure completely characterizes the
investigated event, providing the ion kinetic energy and scattering angle in the labo-
ratory reference frame. Starting from these quantities, the excitation energy spectra
and angular distributions of the 27Al target are constructed. Spectra up to 85 MeV
excitation energy were extracted, showing the population of the ground state and low-
lying excited states of the residual nucleus. In particular, the spectra obtained in the
9?5; = 10° configuration show the population of large structures in a narrow angular
range at relatively-high excitation energy, corresponding to the excitation of collective
modes of the target nucleus, i.e. Giant Resonances. These modes were observed also
in the past in the 2425:26Mg and 27Al inelastic « scattering [20].

In the final chapter the experimental findings are discussed. A model-independent
analysis is presented, showing how the measured elastic angular distribution manifests
a rainbow pattern at the largest scattering angles, since the data definitively deviate
from the exponential decrease characterizing a strong absorptive system. Then the re-
sults of the comparison of the data with the SPP/CC calculations are discussed, both
for the elastic and the inelastic distributions. The calculations were performed using
the computer code FRESCO [21], which is described in some details. It is shown how
the standard rotational model, adopted in the code to describe the coupling potential
among the states of the projectile and the target, is not suitable in the case of the 27Al
target. Instead, a better agreement with the data is obtained when the weak coupling
model [22] is used. Within such a model, the 27Al ground state and the first low lying
excited states (1/2%, 3/2%, 5/2%, 7/27, 9/27) are described as a 1d5/2 proton hole
coupled with the 22Si 0 ground state and 2% (1.779 MeV) excited state, respectively.
Finally, the huge bumps and the broader structures observed in the 27Al excitation
energy spectrum measured at forward angles are discussed. These excitations of the
target nucleus appear in an energy region which is compatible with the population of the
Giant Monopole and Quadrupole Resonances, and their effect can play an important

role in the calculation of the theoretical elastic and inelastic distributions.



Chapter 2

The physics of the rainbow

2.1 Atmospheric rainbow

The term “rainbow” is commonly associated with the atmospheric phenomenon ob-
served in the sky during the rain when the sunshine is not completely obscured by the
clouds. The scientific description is often supposed to be a simple problem in geomet-
rical optics: actually, this is not the case, since a satisfactory quantitative theory of the
rainbow has been developed only in the past few years and involves a deep knowledge
about the nature of light.

The single bright arc seen after a rain shower or in the spray of a waterfall is the pri-
mary rainbow. Due to the wavelength dependence of the refractive index, the white
sunlight is splitted into its constituent spectral colours: in the primary bow the same
sequence is always observed, with violet innermost and red outermost. Higher in the
sky than the primary bow is the secondary one, in which the colors appear in reversed
order. Careful observation reveals that the region between the two arcs is considerably
darker than the surrounding sky. Even when the secondary bow is not clearly seen,
the primary one shows a lighted side and a dark side. The latter has been given the
name Alexander’s dark band, since the Greek philosopher Alexander of Aphrodisias,
who first described it in about A. D. 200.

Historically, the first attempt to rationally explain the appearance of the rainbow was
made by to Aristotle, who described the phenomenon as due to the reflection of sun-
light by the clouds. He correctly explained the circular shape of the bow through the

reflection of the light at a fixed angle and perceived that this arc is not a fixed material
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Figure 2.1: Schematic description of the primary rainbow formation. The paths of several
light rays entering a spherical droplet with different impact parameters are schematically
drawn. The ray numbered 7 is the rainbow ray and defines the minimum angle of deflection
in the primary bow (around 42°).

object with a definite location in the sky but rather a set of directions along which light
is strongly scattered into the eyes of the observer.

The first modern explanation of the atmospheric rainbow was given by Descartes in
1637 in his book Les Meteores. Descartes showed that the primary rainbow is made
up of rays entering a water droplet and reflected once from the inner surface. The
secondary bow consists of rays which have undergone two internal reflections. In each
reflection some light is lost, explaining the reason why the secondary bow is fainter
than the primary one. A schematic view of the process is reported in Fig. 2.1.

The light rays undergo a process of refraction-reflection-refraction when entering
and leaving the water droplet. The dependence of the deflection angle as a function of
the impact parameter is clearly seen in the figure, with rays ranging from the head-on
one, with a deflection angle of 180°, to the rainbow ray, with a minimal deflection at
about 138°. In terms of negative deflection angles ©, the rainbow angle is the comple-
mentary of this value, ©r ~ 42°. The interesting physics effect is the concentration
of many light rays near the rainbow angle ©p resulting in an enhanced light intensity

followed by a shadow region. From a classical point of view [23], the shadow is due to
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the maximum of the deflection function © (b), since the intensity of the scattered light

is proportional to the first derivative of © (b):

do b
aa Zb: sin ©(b) | dO(b)/db | (21)

where b is the classical impact parameter. Equation (2.1) has a divergence at ©p: this
is often referred to as caustic in optics and represents the envelope of a system of rays,
always associated with an intensity highlight.
Descartes’s theory of the rainbow was inadequate in explaining the existence of this
divergence. Moreover, it was unable to explain the presence of a series of alterna-
tively bright and dark bands inside the primary bow, called supernumerary bows. The
presence of these bows is due to the interference of those rays which have an impact
parameter slightly different from the one associated with the rainbow angle. Two rays
scattered in the same direction by a raindrop are strictly analogous to the light passing
through the two pinholes in Young’s experiment. At angles very close to O the two
paths through the droplet differ only slightly, and so the two rays interfere construc-
tively. As the angle increases, the two rays follow paths of increasingly different length,
until they interfere destructively, when their difference equals half of the wavelength.
The result is a periodic variation in the intensity of the scattered light, a series of alter-
nately bright and dark bands, giving rise to the supernumerary bows. The pattern of
these supernumerary arcs, in contrast to the rainbow angle, is therefore dependent on
the droplet size, because the scattering angles at which the interference is constructive
are determined by the difference between two path lengths.
It was the 19th century when George B. Airy provided the first mathematical model
of the rainbow based on the light wave diffraction and interference [7]. The starting
point of the Airy’s model was the Huygens’ principle which regards every point of a
wave front as being a source of secondary spherical waves, whose envelopment defines
a new wave front and hence describes the propagation of the wave. Airy was then able
to express the intensity of the scattered light in the rainbow region in terms of a new
mathematical function, nowadays known as Airy’s function A;(z), reported in Fig. 2.2.
He demonstrated the self-interference of the wave front as it becomes folded onto
itself during the refraction and reflection within the raindrop: as a consequence, the

primary rainbow is the first interference maximum, while the second and third maxima
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Figure 2.2: The Airy function A;(z). The argument z is proportional to © —©g. Positive
z is on the dark side of the rainbow, located at x = 0. Below the intensity of the scattered
light, proportional to A;(z)2. The primary bow, as well as the supernumerary ones, are

clearly visible.

correspond to the supernumerary bows. Moreover, Airy’s model removed the divergence

of the light intensity at the rainbow angle (see Fig. 2.3 for a comparison with other

models).
i
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Figure 2.3: Predicted light intensity for the atmospheric rainbow. While the classical
solutions by Descartes, Newton and Young give a divergence of the light intensity at the
rainbow angle, Airy’s model relocates the peaks in the intensity curve providing an expla-

nation for the gradual fading of the rainbow into shadow.

Although more sophisticated models have been developed in the 20" century, Airy’s
approach remains a very realistic description of the rainbow pattern, widely used to

identify the rainbow features in molecular, atomic and nuclear scattering [23, 24].
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2.2 Nuclear rainbow

Nuclei are composite objects which can also display wave properties, just like the sun
light, therefore they can be refracted, diffracted and be subject of interference. As a
consequence, the nucleus-nucleus scattering may also display rainbow features depend-
ing on the scattering conditions and binding structure of the partners of the reaction.
The atmospheric rainbow is due to processes which do not involve the absorption of
light, i.e. reflection and refraction. Following this similarity, the nuclear rainbow is
expected to manifest itself mainly in the elastic scattering channel, if a system with
small absorption is considered.

The first observation of a rainbow pattern was obtained in the elastic scattering of
alpha particles on nuclei at Ejq =~ 140 MeV by Goldberg et al [4, 8, 9], and later on
in the elastic scattering of strongly bound nuclei such as 12C + '2C [10-12] and 60 +
160 [1, 13, 14]. For these systems, the absorptive component of the nuclear potential
was sufficiently weak for the rainbow effect to appear.

Qualitatively, a nuclear rainbow can be identified by the resemblance of the angular
distribution shape to the square of the Airy function followed by an exponential falloff,
just as in the case of semiclassical rainbow scattering. An example for the 10 + 0
at 350 MeV is shown in Fig. 2.4.

The most important physics input in the study of the nuclear rainbow scattering is
the nucleus-nucleus potential V(R), used in the optical model to describe the scattering
process. It is directly connected with the refractive index of nuclear matter, according
to:

n(R) = /1 - V(R)/E (2.2)

Since the potentials are attractive, (V(R) < 0), the refractive index is larger than unity.
Due to the dependence of n(R) on the nucleus-nucleus optical potential, the nuclear
rainbow pattern is much more difficult to detect and identify with respect to its optic
counterpart. Contrary to more common diffraction scattering, which is sensitive only
to the nuclear periphery, the dominance of the refraction means that the interaction
in the nuclear interior is important: if observed, nuclear rainbows become a unique
instrument for studying the nucleus-nucleus interaction at small distances, where the
density overlap between the two colliding nuclei can reach values up to twice the nuclear

matter saturation value pg.
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Figure 2.4: Angular distribution of the elastic scattering of 10 + 0 at 350 MeV. The
full line and dashed line correspond to optical model calculations with a double folding
and a Wood-Saxon potential, respectively. In the lower part of the figure the square of the
Airy function A;(x)?, with z = 0.0943(6 — 85°) is shown.

2.2.1 Strong vs incomplete absorption

In general, elastic scattering experiments with heavy ions reveal the presence of a strong
absorption, i.e. the partial loss of flux from the elastic channel into various non elastic
reactions during the collision. In analogy with optics, in which the absorption of light
is described through a complex refractive index, the nucleus-nucleus optical potential
can be written as the sum of a real part V(R), describing elastic scattering, and an

imaginary part W(R), which describes the absorption from the elastic channel:

U(R) = V(R) + iW(R) (2.3)
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2.2 Nuclear rainbow

This absorption can suppress significantly the refractive structure of the elastic scat-
tering, a situation which is typical for the most heavy ion systems [25], especially those
involving medium to heavy nuclei.
The weight of the absorption can be estimated through the elastic S matriz. This
appears in the quantum mechanical expansion of the elastic nucleus-nucleus scattering
amplitude into partial waves series [15]:
F(0) = fo(©) + 5 > (20 + 1)e? (1 = ) Py(cos ©) (2.4)
!
where fo(O) is the amplitude of the Coulomb scattering, o; is the Coulomb phase
shift, k is the wave number and Pj(cos©) is the Legendre polynomial associated to
the angular momentum [. 5; is the scattering matrix element for the /th partial wave,
defined as:
Sy = me* 0<m<1 (2.5)

where the reflection coefficient 7; and the nuclear phase shift J; are both real. In this
contest, |S;| gives the measure of the absorption strength at a given impact parameter
or internuclear distance R =~ (I + 1/2)h/k. For a strong absorbing system usually is
1S;] < 107* for | < I, ~ kR,, where R, is the critical or grazing radius at which
the colliding pair begin to experience the strong nuclear interaction that acts between
them.
The situation is different when dealing with light heavy ion systems, such as 12C +
2C or 10 + 160, where the refractive rainbow pattern has been observed. In such
cases, the weaker absorption makes possible the observation of elastic scattering events
occurring at sub-surface distances, with [ < ;. The elastic angular distribution does
not show a simple exponential decrease, characteristic of the strong absorptive systems.
Conversely, it is larger at large scattering angles, and carries information on the nucleus-
nucleus interaction at smaller distances.
In the semiclassical representation, a weak absorption allows to keep the underlying
trajectory picture for the scattering system. Some typical trajectories for the elastic
wave scattered by an attractive nuclear potential plus a repulsive Coulomb potential
are shown in Fig. 2.5.

In the right side of Fig. 2.5 the scattering angle as a function of the impact param-

eter b or angular momentum (I + 1/2h) = kb is the deflection function ©(l) already
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2.2 Nuclear rainbow

Figure 2.5: Classical picture of the elastic scattering process. Left: trajectories of the
nuclear waves elastically scattered by a short-range attractive nuclear potential plus a
long-range repulsive Coulomb potential. Right: the corresponding deflection function.

seen in eq. 2.1. Classically, the deflection function is given by [26]:

e’} 2
-2 b/r dr
i \/1 —02/r2 =V (r)/Eem

where V(r) and E.,, represent the central potential and total energy in the center of

o) = (2.6)

mass reference frame, respectively. The r,,;, parameter is the turning point of the
trajectory.
In the semiclassical or Wentzel-Kramers-Brillouin (WKB) approximation of quantum

scattering, the deflection function is related to the real nuclear phase shifts (1) through:

o(l) = 2d‘;(ll) (2.7)

Looking at the deflection function plot on the right side of Fig. 2.5 and considering
again the analogy with optics, the two extrema of ©([) can be identified as the Coulomb
(@%O)) and nuclear (G)%N)) rainbow, respectively. The former is well described in terms
of interplay between the Coulomb potential and nuclear potential at the nuclear surface.
The nuclear rainbow, on the other hand, is much more difficult to identify and can be
properly described only if a realistic choice of the real part of the nucleus-nucleus optical

potential is taken also for the internal part.

2.2.2 Nearside-farside decomposition of the scattering amplitude

In the classical picture of Fig. 2.5 more than one trajectory can contribute to the

scattering amplitude at a fixed observation angle ©, as shown in Fig. 2.6.

12



2.2 Nuclear rainbow

Figure 2.6: Schematic representation of the nearside and farside trajectories, with three
semiclassical trajectories that result in the same scattering angle. The right-hand part
suggests how the resulting angular distribution is analogous to a three-slit interference
pattern.

This figure shows three different trajectories that contribute to the same scattering
angle even if deflected from opposite sides of the target nucleus. Those trajectories
with positive ©, which are dominated by the Coulomb repulsion, contribute mainly to
the nearside scattering while those bent to negative angles, which have undergone the
nuclear attraction, contribute to the farside scattering. Thus, the more pronounced
the nuclear rainbow, the stronger the farside component and the more information on
the real part of the nuclear potential can be deduced from the analysis of the elastic
scattering process.

It is possible to consider explicitly the contribution of the nearside and farside trajecto-
ries to the elastic scattering amplitude using a method developed by Fuller [27]. If the
standing wave Pj(cos ©) is decomposed into waves travelling in © running in opposite

ways around the scattering center, the total scattering amplitude can be written:

f(®) = fC?ul(@) + fnucl(g) = fN(®) + fF(G) (28)

() = fen(©) = o2 D2+ 1)e? ™ (Si = 1)Q; (cos©) (29)
l

Fr(0) = for(©) — 217; (2 + 1) (S, — 1)Q;f (cos ©) (2.10)
l

where fon(©) and forp(O) are the nearside and farside components of the Coulomb

amplitude and

Ql(qt)(cos )= % {Pl(cos )+ %Ql(cos 0) (2.11)

13



2.2 Nuclear rainbow

with @Q;(cos ©) Legendre functions of the second kind.
An example of the nearside/farside decomposition using the Fuller’s method is shown

in Fig. 2.7 for the 160 + 160 elastic scattering at 350 MeV [2].
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Figure 2.7: Example of the nearside/farside decomposition method. The unsymmetrized
160 + 160 elastic scattering cross section is decomposed in the nearside (dotted lines)
and farside (solid lines) components using the Fuller’s method for two different incident
energies. A(k) indicates the k-th order of the Airy minimum. WS2 is the Woods-Saxon
squared potential used to fit the data.

The angular distribution in Fig 2.7 can be fully understood in terms of near-

side/farside components of the elastic cross section. The well known Fraunhofer os-
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2.2 Nuclear rainbow

cillation pattern observed at small angles is due to the interference of the nearside
and farside amplitude in forward direction. On the other hand, the behaviour of the
distribution at large angles is dominated by the farside amplitude, with a well pro-
nounced series of Airy minima both at 124 MeV and at 145 MeV. These minima are
due to the interference between the [ and [~ components of the farside amplitude (see
Fig. 2.6), which correspond to trajectories scattered at the same angle © with angular
momenta [ < Ig and [ > [g, where [g is the angular momentum associated with the
rainbow angle ©p. The [ component corresponds to small impact parameters (from
the relation (I + 1/2h = kR) smaller than the one related to the rainbow angle. As a
consequence, the [ amplitude is more efficiently absorbed than the [~ one. Thus, in a
strong absorptive system, the [ contributions are deeply suppressed and the angular
distributions do not show any interference pattern at large angles, just decreasing with
an exponential shape. In terms of the complex nucleus-nucleus optical potential U(R)
(6.2), it is possible to observe a nuclear rainbow pattern in the angular distribution
only if the absorptive imaginary part W(R) is weak enough for the [ component to
survive in the scattering process, being, at the same time, the real part V(R) strong
enough to deflect the trajectories to large negative angles O, giving rise to the Airy
interference between [ and [~ components.

The nuclear rainbow pattern is therefore produced by the farside trajectories which
are governed by the attractive part of the nuclus-nucleus potential. This is the reason
why this phenomenon is absent in any scattering process that does not involve a strong
nuclear interaction, like the scattering of electrons by atoms.

In the quantal approach, the nearside/farside decomposition can be done exactly using
the Fuller’s method. However, the oscillating interference pattern at small angles can
also be treated in a semiclassical way, using a method based on the strong absorption
model [15, 28]. In this model, the nearside and farside components of the scattering

amplitude are given by:

V27sin © f(0) ~ 9O (-1 (0-0y) (2.12)
V27 sin © fr(0) ~ 9O (777 (O+6) (2.13)

where ©, is the grazing angle associated with the grazing angular momentum A\, =

h(ly +1/2). As already said, the oscillating pattern observed at small angles is due to
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Figure 2.8: The unsymmetrized 90 + 60 elastic scattering cross section decomposed in
the nearside (dotted lines) and farside (solid lines) components using the Fuller’s method

with two different depths of the absorptive imaginary part of the folded potential. The
Fraunhofer crossover is associated with the deep minimum at © = 10°.

the interference between fy(©) and fr(0), which is governed by the slope parameters
v~ and yp and has a typical spacing of A® ~ w/\,. The effect of a real attractive
nuclear potential is to enhance fr(0) over fy(©) giving rise to the so called Fraunhofer

crossover obtained for an angle

© =04~ +7r)/(IN —TF) (2.14)

at which |fn(©)] = |fr(©)], maximizing the amplitude of the oscillations. For periph-

eral impact parameters, for which © < ©, the nearside component is dominant, with
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positive-angle scattering due to the repulsion from the scattering centre. Conversely,
for small impact parameters (© > ©), the farside amplitude becomes dominant, with
negative-angle scattering caused by the attraction towards the scattering centre. From
an experimental point of view, the Fraunhofer crossover manifests itself in the elastic
angular distribution as a deep interference minimum (see Fig. 2.8 at small angles).
Thus, an accurate experimental measurement of the Fraunhofer crossover can provide
an estimation of the refractive and attractive strength of the real optical potential

causing it.

2.3 The optical potential

2.3.1 General features

In the previous paragraphs the optical nucleus-nucleus potential has been shown to be
the key quantity to be investigated for a deep comprehension of the nuclear rainbow
phenomenon. Thus, it is necessary to give a more detailed description of the main
approaches used in the treatment of the realistic heavy-ion nuclear interaction.

From a theoretical point of view, the treatment of the elastic scattering reduces to the

resolution of the Schrédinger equation:

h2
2

where p is the reduced mass of the colliding nuclei, F is the energy of the relative

V24 UR)+Vo(R)— E| x(R)=0 (2.15)

motion in the center of mass system and Vo (R) is the Coulomb potential. U(R) is the
complex nucleus-nucleus optical potential, whose imaginary part takes into account
the absorption due to all the open inelastic channels during the collision. Using the
solution x(R) of equation 2.15 and imposing the appropriate boundary conditions, it is
possible to obtain the cross section for the elastic scattering process investigated [15].
The choice of the effective nuclear interaction U(R) is the crucial problem to deal with.
The simplest way is to adopt a phenomenological potential, in which some parameters
can be adjusted in order to obtain the best fit with the experimental cross sections.
Among the potentials, the Woods-Saxon shape has been the most widely used in the
past, nowadays replaced by its squared version (WS2), which is more physical and

closer to the shape of the microscopic approach for the real nuclear optical potential.
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2.3 The optical potential

A microscopic description of the nucleus-nucleus interaction requires two fundamental
ingredients: i) a realistic choice of the nucleon-nucleon interaction for the colliding
system and ii) realistic wave functions for the projectile and the target. Even if the
two conditions are satisfied, there still remain the inconvenient that the interaction
between two composite nuclei is a complicated many-body problem and, therefore, it is
not possible to perform a truly microscopic theory like in the nucleon-nucleon case. Only
an approximated approach is possible within the framework of the Feshbach reaction
theory [29].

In the scattering process between the projectile nucleus a on a target nucleus A the

total wave function of the system can be written as:
U= men R) (€)M (€a) (2.16)

where xpn(R) describes the relative motion of the colliding system when projectile
and target are in states labelled by m and n, respectively. With this notation, the
elastic scattering is described by xpo(R), since m = 0 and n = 0 are the labels for
the ground states of both the projectile and the target. Inserting this expansion in
equation (2.15) and integrating over the internal coordinates &, and 4, an infinite
set of coupled equations for y,;,,(R) is obtained. The solution yoo(R) for the elastic
scattering process can be obtained using the Feschbach projection operators [15, 29].
The final result is an expression for the effective interaction between the colliding nuclei

in the elastic channel only:

/ 1
= li ol —— - 2.1
= o+ iy S Voo () Vo @1

where V. is the first order interaction between the two nuclei, with the label « in-
dicating a pair of internal nuclear states mn. The primed sum runs over all the pair
states with the exclusion of the ground state a = 00. The first term of equation (2.17)
is real and can be evaluated using a double-folding approach [2, 25, 30]:

Voo = Vir = (g IV Ind ) (218)

where w(()a) and wéA) are the ground state wave functions of the projectile and the

target, respectively, and the round brackets denote integration over all their internal
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coordinates £, and 4. Equation (2.17) can be written as:
U=Vp+ AU (2.19)

In this equation, AU represents the dynamic polarization potential (DPP), which takes
into account all the contributions due to the couplings to the non-elastic channels. The
imaginary part ImAU is the main source of absorption, since it describes transitions to
the open non-elastic channels, while its real part, ReAU, also contributes to the total
optical potential, even if it is much smaller than Vg [23, 31]. Moreover, AU is non
local, i. e. AU = AU(R,R’), because the system that is excited into a non-elastic
channel at the position R returns in general to the elastic channel at another position
R’ # R.

The first term Vjo in equation (2.17) is the key quantity for the description of the
nuclear interaction when the elastic scattering process is treated. Vo can be evaluated
within the double folding approach [15, 30, 32]. Indeed, in this model the real part of

the nucleus-nucleus optical potential is given by:

VF(R) = /p1 (Tl)pg(’l”g)vNN(R -1+ I'Q) dI'1 dI‘2 (2.20)

where R is the distance between the center of the interacting nuclei, p; are the respective
nucleon density distributions and vy (r) is the effective nucleon-nucleon interaction.

It is clear that the success of the folding model can only be judged meaningfully if i)
the effective nucleon-nucleon interaction employed is truly realistic and ii) the nuclear
density distributions for the projectile and the target are properly chosen, either directly
from electron-nucleus scattering data or from nuclear structure models. A more detailed
description of the double folding approach will be given in next chapters, since this
method has been adopted in the analysis of the experimental data presented in this

work.

2.3.2 The choice of a deep real optical potential

As discussed above, a strong absorption due to the imaginary part of the nucleus-
nucleus interaction is usually present when dealing with heavy-ion scattering processes.
This is the main reason why the depth of the optical potential has been uncertain for

decades. However, careful studies about the rainbow mechanism in a-nucleus [3, 4, §]
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and light heavy-ion [23, 33] scattering seem to support the choice of a deep real part of
the optical potential.

The optical model analysis of the elastic a-nucleus scattering data has been performed
using different shapes of the potential, ranging from the standard Woods-Saxon [4, 9]
to those deduced from a model-independent analysis (MIA). Irrespective of the used
approach, the result is always a weakly absorbing imaginary potential plus a deep real
potential which is close to that predicted by the folding model. The real part of the
optical potential for a+*°Ca system at 104 MeV using the MIA approach and the
double folding one is shown in Fig. 2.9.
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Figure 2.9: Radial shape of the real optical potential for the a+*°Ca system at 104 MeV.
Model-independent analysis (hatched area) and double folding approach (lines) obtained
with different density-dependent nucleon-nucleon interactions. The K values are the nuclear
incompressibilities in the Hartree-Fock calculation of nuclear matter.

The comparison between the two approaches shows that the MIA potential agrees
best with the double folding potential when most realistic density-dependent nucleon-

nucleon interactions are chosen (CDM3Y6 and BDM3Y1, corresponding to realistic
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values of the incompressibility K of nuclear matter). Such a comparison is very helpful
in justifying the validity of the double-folding approach as a reliable tool to predict the
real nucleus-nucleus optical potential.

Even if the strong absorption starts to play a role when increasing the mass numbers
of the colliding partners, a rather unique systematization of the optical potential is
possible for light heavy-ion systems, like 12C + 2C or 60 4 160 [24, 33]. In ref. [33] it
is shown that, in the energy range of 6-100 AMeV, the central depth of the real optical
potential is V(R) =~ 100 — 300 MeV and the ratio of the real to the imaginary part
is V(R)/W(R) =~ 1 in the surface region, being V(R)/W(R) > 1 for both small and
large distances R. Actually, such a deep real potential is in agreement with the results
obtained with a double folding approach [30, 34, 35], at least when standard values
(200 MeV < K < 300 MeV) of the nuclear incompressibility are used.

The choice of a deep real optical potential is also needed to correctly describe the shape
of the low-energy resonances as well as the bound 2C + 2C cluster states in Mg [36]
and the 0 + 160 cluster states in 32S [37]. In these systems, only a deep real potential
can generate the correct number of nodes for the total not Pauli-forbidden cluster state
wave function. Therefore, a consistent description of the low-energy resonances as well
as the bound cluster states has been achieved only with a deep real optical potential
which is a continuation of the deep real potential necessary to explain the nuclear

rainbow scattering at higher energies.

2.4 Nuclear rainbow and the connection with EOS

In the refractive elastic scattering process, two nuclei are brought into strong overlap
in their ground states during the collision. For elastic scattering at intermediate energy
it can be assumed that the densities overlap without disturbance, obtaining a density
profile for small internuclear distances which reaches twice the saturation density pg
of nuclear matter. This feature is unique for a quantal system and is not related to
compression, which would simultaneously heat up the system. At these small distances,
where large density overlaps of the scattered nuclei occur, the folding potential (2.20) is
very sensitive to the details of the effective nucleon-nucleon interaction. Moreover, it has
been shown [30, 34, 35, 38] that a consistent description of the data can only be obtained

with a distinct but rather weak dependence of the nucleon-nucleon interaction on the
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2.4 Nuclear rainbow and the connection with EOS

density of the nuclear medium. Thus, it can be argued that the density dependence
of the nucleon interaction can be probed via the nucleus-nucleus potential, described
by (2.20), if the nuclear rainbow is observed, because it scans the nucleus-nucleus
interaction at small distances. Moreover, the density dependence of vy (r,p) enters
in the determination of the saturation properties of nuclear matter in Hartree-Fock
calculations. As a consequence, the study of refractive nucleus-nucleus scattering gives
a unique access to the study of the Equation Of State (EOS) of cold nuclear matter.
In Fig. 2.10 a schematic view of this link is sketched.

The EOS describes the variation of the total energy as a function of the nuclear
matter density p or, more specifically for a finite system, the binding energy per nucleon
E/A as a function of density (and temperature). The variation of E/A over a region
of densities p/pp = 0.0 to 4.0 relative to the saturation value pg is shown in Fig. 2.11.

The saturation point of nuclear matter is given by E/A = 17.2 MeV at py =
0.17 fm~3. The variation of E/A(p) close to pg can be well described by a quadratic
function. The examples shown in Fig. 2.11 have been calculated with an effective
nucleon-nucleon interaction which is density dependent. This allows to reproduce the
correct saturation value at pg and gives various curvatures around this point, the second
derivative defining the incompressibility parameter K through the relation:

[E/A]

d2
K = 9p° 02 (2.21)

p=po
Different types of the EOS are usually distinguished by different values of the nu-
clear incompressibility K. Some information on reliable K values are obtained from
the analysis of transverse flows and fragments spectra in high energy central heavy ion
collisions [39]. However, it turned out that the folding model analysis of high-precision
nuclear rainbow scattering data can be used as an independent method to determine
the nuclear incompressibility K [35].
A constraint on the K value comes from the observed neutron star masses [40, 41], as
shown in Fig. 2.12. The plot in the figure shows the correlation between the radius
and the mass of a neutron star given by three model calculations which differ from each
other through the nuclear incompressibility K value [41]. Since it is known, from the
observed radio pulsar masses, that the mass of a neutron star is about 1.5 solar masses,

a realistic K value should lie in the range 210 — 300 MeV, as shown in Fig. 2.12. The K
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Figure 2.10: The link between the experimental data on elastic scattering, nucleus-
nucleus optical potentials, nuclear densities and effective nucleon-nucleon interaction con-
structed by different theoretical models.
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Figure 2.11: Binding energy per nucleon, E/A(p), as a function of the density p for nu-
clear matter, obtained by Hartree-Fock calculations. Different density dependent effective
nucleon-nucleon interactions, corresponding to different K values, are chosen in order to

reproduce the correct saturation energy of nuclear matter.

values extracted from high-energy central heavy ion collisions are, on the other hand,
higher, with a typical value of K ~ 290 + 50 MeV [39].
As discussed above, the nuclear rainbow is linked to the equation of state of cold nu-
clear matter through the double folding procedure adopted to describe the real part
of the optical nucleus-nucleus potential. It is at this stage that the effective nucleon-
nucleon interaction comes into play, and different K values are associated with different
parametrizations of the in-medium nucleon-nucleon interaction. As an example of this
connection, the 150 + 160 system at 350 MeV, which shows one of the clearest nuclear
rainbow in the elastic angular distribution (see Fig. 2.14), is reported in Fig. 2.13.
The figure shows how different parametrizations of the effective nucleon-nucleon
interaction generate double folded real optical potential which differ mainly at smallest
distances, where the density overlap of the colliding partners is larger. The corre-

sponding elastic angular distribution, Fig. 2.14, shows how the CDM3Y6 interaction
[35] gives the best fit to the experimental data.
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Figure 2.13: The real part of the optical potential for the 150 + 160 system at 350
MeV [1] predicted by the double folding model using four different parametrizations (the
same used in Fig. 2.11) for the effective nucleon-nucleon interaction. The corresponding

K values are reported in parentheses.

When this best fit version of the density dependent M3Y-Paris interaction is used in
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Figure 2.14: Elastic angular distribution for the 10 + 60 system at 350 MeV [1]. The
optical potential is composed by a real part given by the double folded potential with the
density dependent nucleon-nucleon interactions indicated in the picture. The absorptive
imaginary part is taken from [2]. The best fit to the data is obtained with the CDM3Y6
interaction which gives K ~ 252 MeV.

the Hartree-Fock calculation of symmetric nuclear matter, a nuclear incompressibility
K ~ 252 MeV is obtained [35]. This value lies in the realistic range 210 — 300 MeV
found from the neutron star mass constraint and therefore returns a “soft” equation of
state for cold nuclear matter. A similar result is also obtained in the folding analysis
of the refractive elastic a-nucleus scattering data [35, 42].

Thus, it becomes evident how the observation of a nuclear rainbow pattern when dealing
with an elastic scattering process can provide very useful, precise and, to some extent,

unexpected information about the nuclear structure.

2.5 Brief systematics on nuclear rainbow systems

The final section of this chapter is devoted to a brief review of the main systems in
which the nuclear rainbow features were recognized. As already discussed, the pioneer-

ing experiment that led to the first observation of the nuclear rainbow was the study
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2.5 Brief systematics on nuclear rainbow systems

of the av — nucleus elastic scattering at Ej,, ~ 140 MeV by Goldberg et al. [4, 9]. Sev-
eral years later, Put and Paans [3] performed an high-precision a +% Zr experiment,
which showed the evolution of the rainbow structure with the incident beam energy

(see Fig. 2.15). In the angular distributions shown in figure 2.15 the far-side compo-
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Figure 2.15: Elastic a +% Zr scattering data [3] at several incident energies (the last
setting at 141.7 MeV is extracted from [4]). The data are compared with optical model
calculations using different parametrizations (solid and dashed lines, respectively).
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2.5 Brief systematics on nuclear rainbow systems

nent of the scattering amplitude dominates the large angle scattering region already at
59.1 MeV, determining a very pronounced rainbow shoulder at 79.5 MeV. Moreover, a
rainbow shift toward smaller scattering angles with increasing beam energy is clearly
seen. These data, together with those measured at 141.7 MeV [4], give a very accurate
test ground for theoretical models of the v — nucleus optical potential.

A well developed rainbow structure was also observed in the '2?C+12C elastic scattering
in a wide energy range, from about 6 MeV/u up to 200 MeV /u [23]. The main prob-
lem when dealing with systems like this is the Mott interference caused by the boson
symmetry between two identical nuclei, which results in rapidly oscillating elastic cross
sections at angles around ©.,, = 90°, distorting the original Airy structure.

The Mott interference does not affect the elastic scattering of '°0 on 2C, and very pre-
cise cross section angular distributions for this system were measured by Oglobin et al.
[5, 43] at several bombarding energies. Their results are presented in Fig. 2.16. These
data indicate clearly the diffractive an refractive structure of the angular distributions
at small and large scattering angles, respectively. The distributions at Ej,;, = 132 and
170 MeV show an enhancement of the cross sections at the largest angles (see Fig.
2.16). This behaviour was explained [44] in terms of o — transfer between the colliding
nuclei, which results in additional interference structures at the largest angles. Due
to the rather weak absorption, this system was consistently described by the energy-
dependent real optical potential given by the folding model.

Finally, evidences of rainbow-like structures were also observed in the elastic scattering
of %7Li at energies up to about 50 MeV /u [45-47] and ?Be at 18 MeV/u [48]. In the
latter, the optical model analysis of the elastic angular distributions [48] have identified
a strongly damped Airy structure at large angles, which was referred to as the “rain-
bow ghost”. For these light systems the reduced strength of the rainbow pattern, when
compared to the a — nucleus case, is mainly due to a stronger absorption associated
with the break-up of these a-clustered projectiles [49].

The role of the strong absorption is expected to be more and more important when
increasing the masses of the colliding nuclei. Its action naturally tends to hide the rain-
bow structure in the angular distributions due to the removal of flux from the elastic
channel. As a consequence, the rainbow mechanism was thought to be very unlikely
for the elastic scattering of systems heavier than 60 + 160.

In this work, it will be shown how this is not always true, since a nuclear rainbow
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Figure 2.16: 60 412 C elastic angular distributions at Ej, = 132, 170, 200 and 230
MeV. The data are compared with two optical model calculations based on two different
families of Wood-Saxon potential [5].

structure is identified for the 60 4 27Al elastic scattering at 100 and 280 MeV, as it

will be discussed in next chapters.
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Chapter 3

Motivation of the experiment

As discussed in the previous Chapter, nuclear rainbow is a very peculiar phenomenon
which reveals the nuclear interaction at small distances, where the projectile and target
density overlaps can reach values up to twice the nuclear matter saturation value py.
Moreover, it was emphasized how the strong absorption, always present in heavy-ion
collisions, tends to hide the refractive component of the scattering process. This rep-
resents the main reason why the rainbow features were thought to be very unlikely for
systems heavier than 60 + 160.

Recently, a new generation of parameter-free calculations, using the Sao Paulo Poten-
tial (SPP) [16] combined with Coupled Channels (CC) formalism, has been developed.
These calculations take into account dissipative and surface processes in the continuum,
like deep-inelastic or break-up reactions, by the introduction of a parameter-free imag-
inary potential, which is based on the Glauber model. Different systems (160 + 27Al,
98Ni, 60Ni, %Ni 4 1248n, 67Li 4 120Sn) were used to test the model in a wide energy
range. In particular, for the 10 + 27Al system, the experimental fusion, deep-inelastic
and quasi-elastic cross sections are in agreement with the theoretical calculations for
E1(1°0) < 90 MeV. Moreover, the SPP/CC calculations predict [17] a nuclear rain-
bow pattern in the angular distribution for the elastic scattering of 10 on 27Al at
100 MeV (or higher) incident energy, which is strongly connected to the coupling with
low-lying target excitations.

In order to verify these predictions, a 150 + 27Al elastic scattering experiment was
recently performed at the INFN-LNS in Catania, using a ‘0 beam delivered by the

TANDEM accelerator at 100 MeV incident energy. First evidences of nuclear rainbow
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3.1 The Sao Paulo parameter-free double folding potential

formation were recognized in the experimental elastic angular distribution of the inves-
tigated system.

In this Chapter, the experimental results obtained at 100 MeV incident energy will be
shown. This experiment, in fact, is the guideline for the further investigation of the
160 + 27TAl reaction at the energy of 280 MeV discussed in this work. Before showing
the experimental results at 100 MeV, a short description of the theoretical framework
used for the comparison with the data, i.e. the Sao Paulo Potential and the Coupled

Channel formalism, will be given for a better comprehension of the results.

3.1 The Sao Paulo parameter-free double folding poten-
tial

In a general treatment, the complex and energy dependent nucleus-nucleus potential
can be described as the sum of the real bare (or nuclear) and polarization potentials,
the latter containing the contribution arising from non-elastic couplings. In principle,
the bare potential between two heavy ions can be associated with the fundamental
nucleon-nucleon interaction folded into a product of the nucleon densities of the nuclei
[25] (see eq. (2.20)). Both the nuclear and the polarization contributions appear in the

integro-differential equation used to describe the motion of the colliding system [16]:

—ZZVQ\II(R)—F Vo(R) + Vipoi(R, E) + i Wyo (R, E)] ¥(R)
(3.1)
+ / UR,R)¥(R)dR’ = E¥(R)

U(R) is the total wave function of the system and V¢ (R) is the Coulomb interaction,
assumed to be local. Vi (R, E) and Wy, (R, E) are the real and imaginary parts of
the polarization potential and, as already stated, contain the contribution arising from
non-elastic channel couplings. U(R,R’) is the bare interaction. The dependence on
R and R’ means that the interaction is non-local and the non locality here is solely
due to the Pauli exclusion principle (Pauli non locality) which involves the exchange of
identical nucleons between the projectile and the target.

In this context, the Sdo Paulo potential consists in a particular version of the bare

nuclear potential. In its standard formulation, the Sao Paulo parameter-free double
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3.1 The Sao Paulo parameter-free double folding potential

folding potential is expressed in the local equivalent (LE) version [16]:

Vie(R,E) = VF(R)e_4(U<cR )’

(3.2)
where v(R) is the local relative velocity between the colliding nuclei, given by:
9 2 2
v (R) = ;Ek(R) = [E —Vo(R) — Vie(R, E)] (3.3)

with p the reduced mass of the system.

The exponential term in eq. (3.2) is the local velocity dependent correction for Pauli
non-locality (PNL), which can also be interpreted as the absolute normalization of the
potential [16]. Therefore, in this formulation the effect of the Pauli non locality is
equivalent to a velocity-dependent nuclear interaction. Vg(R) is the double folding
potential of eq. (2.20), where the heavy-ion nuclear densities are taken from Dirac-
Hartree-Bogoliubov (DHB) calculations [50] and from electron scattering experiments
[51, 52].

The imaginary part of the potential, which takes into account dissipative processes,
is assumed to be simply related to the real one through a proportionality coefficient,

independently of the energy and system [17]:
W(R,E)=0.6-Vrg(R, E) (3.4)

The reason why it is possible to consider the above proportionality relation can be
understood considering a rather physically simple energy window, around E/A ~ 200
MeV, where Pauli Blocking (PB) becomes small and PNL is also reduced due to the
loss of correlations associated with nucleon exchange between target and projectile for
increasing temperature of the composite system. In this energy region [53, 54], the

mean free path A(R) approaches the classical relation:

AR) = aNNlO(R) (3.5)

where o is the free nucleon-nucleon cross section and the overlap function O(R) is
given by:
o) = [ ¥ (r)p} (R~ m)d*n (3.
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3.2 The Coupled Channel formalism

with péy (rj) the ground state nucleon densities and R the distance between the centers
of the colliding nuclei.
From the quantum mechanical point of view, the mean free path is related to the
imaginary potential W (R) through:

h%k

Mm:iﬁﬁ% (3.7)

where k is the wave number and p the reduced mass of the system. Comparing eq.
(3.5) with eq. (3.7), the radial dependence of W (R) is the same as that of O(R).
In the zero-range nucleon-nucleon version of the Sao Paulo potential [16], the overlap

density function is related to the double folding potential through:
Vr(R) = VWO(R) = Vo/pl (r1)p2(R — r1)d>r (3.8)

where Vj = —456 MeV and p;(r;) are the nuclear matter densities. Thus, from the
above equations, the imaginary part of the nuclear potential is found to be related to

the folding potential simply by:
W(R) =nVr(R) (3.9)

where 1 has been estimated to be n ~ 0.6 [17].
The final form of the Sao Paulo potential, used in the CC calculations, contains also a

scaling factor n, for the real part of the interaction:

4 ®)?
Vepp (R, B) = Ve(R)e () (0, 4 0.61) = Vip(R, B)(ne + 0.64) (3.10)
where n, assumes the values of n, = 1 or n, = 0.6 in the case of collisions with

tightly-bound or weakly-bound nuclei, respectively.

3.2 The Coupled Channel formalism

In general, the nuclear interaction between a projectile nucleus a and a target nucleus
A is fully described by the total wavefunction ¥, which obeys the complete Schrédinger
equation:

(E— H)U =0 (3.11)
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3.2 The Coupled Channel formalism

Starting from the internal states 1, (z,) and ¥ 4(z4) of the projectile and the target,
respectively, where the internal variables have been denoted by z, the total wavefunction

¥ can be expanded as:

U=> &(re)ta(za) (3.12)

where the sum runs over all the internal states of some particular partition a« = a + A
and the coefficients £, (r,) describe the relative motion of the two nuclei ¢ and A when
they are in the internal states described by .

The sum over « is complete and includes states of @ and A in the continuum. Clearly,
when dealing with a practical case, it is not possible to take into account the full infinite
expansion (3.12). As a consequence, the usual choice is to consider the entrance channel
plus a small subset of terms which are supposed to be strongly coupled to it. This means

that the total wavefunction ¥ is replaced by a model wavefunction W,,,q.;, defined as:

Vinodel = Z/ ua(ra)wa(xa) (313)

a

where the prime index indicates a limited sum. The exact relative motion wavefunctions
€a(ry) are replaced by the uq(ry) functions: even if they have the same asymptotic
behaviour at large r, they can differ considerably at short distances.

Since just few terms of the infinite expansion (3.12) are included in (3.13), the model
may only represent a small part of the total wavefunction. The coupling between
the model part and the rest is represented in an average way by the use of collective
interactions, in particular by the use of complex optical potentials.

Starting from this background, the Coupled Channel (CC) method consists in the
solution of a relatively small set of coupled equations that results from considering a
model wavefunction with a limited number of terms. In the usual scattering situation,
some boundary conditions are adopted for the relative motion wavefunctions &,(ry). In
particular, &, for the entrance channel has the asymptotic form of a plane incident wave
plus outgoing spherical waves while all the other £, have outgoing waves only. The
total Hamiltonian of the system is expressed as the sum of the internal Hamiltonians
for the nuclei ¢ and A, the kinetic energy of their relative motion and their mutual
interaction:

H=Hy+ Ko+ V, (3.14)
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3.3 The 2"Al(*60,'6 0)?" Al reaction at Ej,, = 100 MeV

Multiplying from the left by one of the ¢}, integrating over the internal x, coordinates

and using the orthonormality property of the ¢,:

(Valthw) = [ 620 )er (50) 0 = B (3.15)

the infinite set of coupled equations for the channel function &,(r,) is obtained, of

which a representative one is:

(B~ €o = Ko = (aVala)] €a(ra) = Y (alVala) ur(ra) (3.16)
aFa!
The interaction matrix elements, responsible for the excitation from the initial state «

to the final state o/, are given by:

(a|Va|O/) = /@b;(ﬂ:a)va(ra,:Ea)ipa/(:va)dma = Voo (ra) (3.17)

The N-state approximation of the CC method is derived from eq. (3.16) considering
a finite number N of equations, chosen depending on the physics of the investigated
phenomenon. Of course, this is equivalent to keeping only N terms in the expansion
(3.12), i.e. using the model function (3.13). In this case, a finite set of coupled equations

is obtained, having the form:

[E —eq — Ko — (a|Va|a)] ua(re) = Z (a|Vale) uar(ra) (3.18)

atal
The interaction matrix elements have the same form as in (3.17), except that V, is now
the model effective interaction in the « channel corresponding to the model function
(3.13). In practical CC calculations N is generally small, often N = 2: even in this
case, the partial wave expansion may result in a very large number of partial-wave

coupled equations to be solved.

3.3 The ?"A1(1°0, 0)?"Al reaction at Ej,;, = 100 MeV

As already discussed, CC calculations performed with the Sao Paulo optical potential
predict a nuclear rainbow structure for the 60 +27 Al system at 100 MeV. In order

to verify the reliability of the theoretical predictions, the 160 427 Al elastic scattering
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3.3 The 2"Al(*60,'6 0)?" Al reaction at Ej,, = 100 MeV

process was experimentally investigated at the INFN-LNS in Catania. The 608%F
primary beam was accelerated at 99.2 MeV incident energy by the Tandem Van de
Graaff accelerator and focused on a self-supporting 27Al thin target. The 60 ejectiles
were momentum analysed by the MAGNEX magnetic spectrometer [18]. Exploiting its
large momentum (20%) and solid angle (50 msr) acceptance, very accurate excitation
energy spectra, elastic and inelastic angular distributions were obtained. A complete
description of the apparatus and of the adopted data reduction procedure will be given
in next Chapters.

The experimental elastic angular distribution for the 90 427 Al system at Ej,; = 100
MeV is shown in Fig. 3.1.
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Figure 3.1: Experimental elastic angular distribution for 60 427 Al at 100 MeV. The

dashed line is a linear fit in the 22° < 6., < 35° angular interval. Airy-like minima are

indicated by the arrows. The inset shows elastic angular distribution data for 0 +28 Si at

75 MeV | extracted from ref. [6], together with a linear fit in the 10° < 0., < 70° angular
interval (solid line).

The straight line in the figure corresponds to a linear least squares fit to the elastic
cross sections in the 22° < 6., < 35° angular range, where the cross section oscilla-
tions are connected to the Fraunhofer diffraction pattern. The slope of the angular

distribution systematically deviates from the straight line for increasing backward an-
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3.3 The 2"Al(*60,'6 0)?" Al reaction at Ej,, = 100 MeV

gles, starting from about 6., ~ 40°. The observed minima, indicated by the arrows,
followed by broad structures are consistent with the far-side component of the nuclear
rainbow phenomenon. Such behaviour is not present in the 22Si case at Ejp, = 75 MeV
(see the inset in Fig. 3.1), the largest energy for which there are experimental data in
a sufficiently wide angular range up to now. Anyhow, CC calculations with the Sao
Paulo potential predict, also in this case, the appearance of a rainbow structure at
higher energies, at least 6 MeV /u.

The elastic and inelastic angular distributions were compared with the CC/SPP the-
oretical predictions obtained using the computer code FRESCO [21]. The results are
shown in Fig. 3.2. Considering the absence of adjustable parameters, the agreement
between the experimental data and the theoretical predictions is good. A slight dif-
ference in the phase of the oscillations is observed in both the elastic and inelastic
distributions. The coupled channels calculations were performed considering four of
the first five low lying collective states of the 27 Al target (1/2%, 3/2%, 7/2F and 9/27T).
These states can be described by the weak coupling model [22], considering a 1ds /o
proton hole coupled with the 2% rotational state of the 28Si core. The 5/2% excited
state was not included in the calculations, as it was assumed to have a minor role in
the coupling scheme due to level repulsion from the 27Al ground state, having same
spin and parity.

In the upper panel of Fig. 3.2 the comparison between the CC results (solid line) and
the standard OM predictions (dashed line, no couplings) is shown. The comparison
shows clearly the crucial role of the inelastic couplings for a better description of the
data. In fact, the CC results remain in the same landing 1075 < 0 /0 gy, < 107 over
a large angular region, starting from 6., ~ 60°, while the OM calculations present an
exponentially decreasing behaviour. It was then concluded that such a rainbow-like
pattern is a consequence of the couplings [55].

Additional calculations including the Pauli Blocking (PB) effect, which reduces the
imaginary absorptive potential, were performed and the results are shown in the insets
of Fig. 3.2 for the angular range 20° < 6., < 35°. The introduction of the PB effect
improves the agreement with the phase of oscillations at forward angles, but fails at the
backward ones, corresponding to smaller impact parameters, where the density overlap
between the colliding nuclei is larger.

The calculated S-matrices for the inelastic and elastic scattering as a function of the
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Figure 3.2: Experimental angular distributions for the (A) elastic and (B) inelastic (*7Al
low-lying states) scattering, as compared with the corresponding theoretical CC predictions
(solid lines) and with OM calculations without couplings (dashed line). The insets show
expansion regions for which Pauli Blocking (PB) corrected calculations (dashed lines) are
also presented (see text).

orbital angular momentum L are shown in Fig. 3.3. The elastic S-matrix was calcu-
lated within the CC approach (closed squares) and the standard OM approach (open
squares). A difference of almost two orders of magnitude is observed in the region of
low angular momenta, dominated by the strong absorption. The reduction of the ab-
sorption predicted by the CC calculations with respect to the OM results corresponds
to an addition of flux in the elastic channel, which gives rise to the bump in the angu-
lar distribution at the largest angles (see Fig. 3.2, upper panel), thus generating the
rainbow structure.

In the lower panel of Fig. 3.3 the deflection function (eq. (2.7)) for the 160 427 Al
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Figure 3.3: Panel A): the inelastic S-matrix for the 160 +27 Al reaction at FEj,; = 100
MeV. Panel B): the elastic S-matrix for the same reaction, given by CC calculations (closed
squares) and OM calculations (open squares). Panel C): the corresponding deflection
function calculated in the CC approach. The nuclear and Coulomb rainbow angles are

indicated as ©r and O¢, respectively.

system calculated within the CC approach is shown. For the purpose of comparison,
the classical deflection function (eq. (2.6)), obtained considering only the real part of

the optical potential, is reported in the inset. An almost orbiting process is observed
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3.3 The 2"Al(*60,'6 0)?" Al reaction at Ej,, = 100 MeV

for L = 35, corresponding to © &~ 350° (some classical trajectories for fixed ¢ values are

shown in Fig. 3.4). The deflection function derived from the CC calculation, including

1 5 I ! I 4 I 4 I ! I ' I ' I

15 -10 -5 0 5 10 15
Z (fm)

Figure 3.4: Classical trajectories for some ¢ values as indicated in the figure. An almost
orbiting condition is reached for £ = 35, which results in nearly the same scattering angle
0 corresponding to £ = 36. The closed circle represents the scattering center.

the imaginary part of the optical potential, is very different from its classical coun-
terpart. The orbiting feature, in this case, is completely suppressed due to the strong
absorption. A local maximum is observed around Lr = 25, corresponding to Op ~ 63°.
This L value is close to the angular momentum for which the maximum in the inelastic
S-matrix is observed (Fig. 3.3, panel A). Therefore, within the CC approach the nu-
clear rainbow scattering arises from inelastic couplings and consequently it is related
to a positive contribution to the overall nucleus-nucleus imaginary potential due to the
polarization.

The oscillation pattern in the experimental angular distribution of Fig. 3.1 is better
seen in the expansion region shown in Fig. 3.5. As discussed in Chapter 1, the Airy-
like minima observed in the data are expected when a system with small absorption
is considered. Thus, the occurrence of this oscillation pattern for the 60 427 Al sys-
tem at Ej,, = 100 MeV can be related to a decrease of absorption, probably linked
to the previously discussed Pauli Blocking effect or to other in medium effects [56].

The decomposition of the scattering amplitude in the nearside and farside components,
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Figure 3.5: An expansion of the elastic angular distribution of Fig. 3.1. The observed
Fraunhofer oscillations and Airy-like minima are indicated by the arrows. A decomposi-
tion of the scattering amplitude in the near/far side components, based on standard OM
calculations, is also shown. The inset in the figure shows the real (solid line) and imaginary
(dashed line) parts of the trivially equivalent polarization potential obtained from the CC
calculations.

obtained from standard OM calculations (no coupling), is also shown. In this context,
the Fraunhofer oscillations are explained in terms of interference between the nearside
and the farside amplitude in forward direction. On the other hand, the behaviour of
the distribution at large angles is dominated by the farside amplitude. The trivially
equivalent polarization potential (TELP), obtained from the CC calculations, is shown
in the inset of Fig. 3.5. This potential represents an average over the L-dependent
polarizations. Strong oscillations of the real and imaginary components of the poten-
tial are observed near the barrier radius (~ 5 fm). The effect is particularly significant
for the imaginary part, where the inclusion of the polarization effectively reduces the
overall absorption around 5 fm, creating an absorption-free region, while increasing it
around 6 fm. This behaviour is compatible with that observed for the elastic S-matrix
(see Fig. 3.3, panel B), in which more absorption (when comparing the CC results with
the OM ones) at large L-values and less absorption at small L-values is expected.

The results obtained for the 60 +27 Al system at Fj,, = 100 confirm the reliability
of the SPP/CC calculations in this energy regime. Starting from these findings, the

same elastic scattering process at the increased energy of 280 MeV is investigated in the
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present work, since the SPP/CC calculations predict a nuclear rainbow structure in the
elastic cross section angular distribution. The experimental set-up and data reduction

technique, as well as the obtained results will be discussed in the following chapters.
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Chapter 4

Experimental set-up

The experiment discussed in this thesis work has been performed at the Laboratori
Nazionali del Sud (LNS-INFN) in Catania on February 2012. The primary 1603* ions
were produced by the Electron Cyclotron Resonance source (SERSE) and then acceler-
ated by the k800 Superconducting Cyclotron (CS) at an energy of 280 MeV. The beam
current was varied during the experiment according to the angular setting investigated,
from the lowest value of about 5 enA at forward angles to the highest value of about 80
enA at large angles. The beam was shaped by the use of a collimation system, giving
a beam spot size of about 1.2 mm horizontally and 2.3 mm vertically, guaranteeing a
good matching with the optical properties of the MAGNEX spectrometer [18], used to
analyse the reaction products.

The collimation system is made up of two main parts. The first one is composed of four
slits, two for the horizontal and two for the vertical phase space, which can be elec-
trically moved and are located along the beam line, 2 m upstream from the entrance
of the scattering chamber. The second part is located inside the scattering chamber,
upstream the target ladder, and is made up of a rectangular diaphragm (1 x 2 mm?)
mounted 15 cm far from the target and a 5 mm hole diaphragm, used as anti-scattering
screen, mounted at a distance of 5 cm from the target. Both diaphragms are aligned
with the beam axis. Thanks to this collimation system, it was possible to obtain hori-
zontal and vertical beam divergences of ~ 0.8 mrad and ~ 3 mrad, respectively.

An accurate optical alignment is needed in order to make the beam hitting the target at
the object point of the spectrometer. This request was fulfilled by the use of a bubble

level, which made it possible to align the target ladder with the collimation system and
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the beam line, with a precision within 0.1 mm.

The measurement of the beam current, necessary to retrieve the absolute cross section,
was accomplished by a 8 mm Faraday cup, mounted inside the scattering chamber
downstream the target ladder along the beam direction. An electron suppressor, nega-
tive polarized at -200 V, was used at the entrance hole of the cup in order to enhance
the efficiency of the charge collection. The current signal was then sent from the exper-
imental room to the acquisition room to a Digital Integrator [57]. The current values
were stored in the memory of a Latching Scaler [58], monitoring, in this way, the beam
intensity for the entire acquisition time.

The target used in the experiment was a 109 ug/cm? thick self-supporting 27Al foil,
mounted in the second position from the top of the target ladder.

A picture of the scattering chamber with the collimation system, the target ladder and

the Faraday cup is shown in Fig. 4.1.

ITTY Tl
!

Figure 4.1: A picture of the scattering chamber. The collimation system, the target
ladder and the Faraday cup are visible.

The 190 ejectiles were momentum analysed by the MAGNEX spectrometer (see

4.1) working in full acceptance mode. This configuration corresponds to a solid angle
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4.1 The MAGNEX magnetic spectrometer

coverage of 2 ~ 50 msr and a momentum range Ap/p ~ 24%. Since the main target
of the present experiment was the measurement of the elastic and inelastic angular dis-
tributions of the 10 + 27Al system, 5 different angular settings were chosen in order
to have wider distributions. In particular, the spectrometer optical axis was located
at «9[0‘;3 = 10°, 13°, 18°, 26°, 34° in the laboratory reference frame. Due to the large
angular acceptance of the spectrometer (—5.16°, +6.3° horizontal, +7.16° vertical),
these angular settings correspond to a whole angular coverage 5° < 64, < 40° in the

laboratory frame.

4.1 The MAGNEX magnetic spectrometer

4.1.1 General features

MAGNEX [18, 59] is a large acceptance magnetic spectrometer installed at the LNS-
INFN in Catania. It is a high-performance device, offering a high angular, mass and
energy resolution, which can be employed for studies in different fields of nuclear re-
search, ranging from nuclear structure to the characterization of reaction mechanisms
in a wide interval of energies and masses [60]. Thanks to a good hardware and software
compensation of the strong aberrations produced by the large acceptance elements,
MAGNEX is able to merge the advantages of the traditional magnetic spectrometry
[61] with those of a large angular and momentum acceptance device (50 msr the former,
—14.3%, +10.3% the latter).

From the mechanical point of view, MAGNEX is composed of two large aperture mag-
nets, a quadrupole (Q) followed by a 55° dipole (D), and a Focal Plane Detector (FPD)
for the detection of the focused reaction products. A picture of the apparatus is shown
in Fig 4.2.

The quadrupole magnet provides the focusing strength in the vertical plane, while
the dipole gives the dispersion and the horizontal focusing strength through a rotation
of —18° of the entrance and exit dipole boundaries. The accepted magnetic rigidities
range from 0.2 to 1.8 Tm, corresponding to energies of the detected ions ranging from
0.2 to 40 AMeV, depending on their mass and charge.

The requirements of large acceptance strongly constrained the design of MAGNEX.

Severe limitations arise from the manufacture of the elements, from space limitations
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4.1 The MAGNEX magnetic spectrometer

Figure 4.2: The MAGNEX spectrometer installed at LNS-INFN. The two large magnets,
the dipole (white-red) and the quadrupole (blue-white) are visible. The focal plane detector
is located after the quadrupole, on the right side of the picture.

and from the disturbing effects on the optics of higher-order aberrations, always present
when dealing with huge magnets. All these effects reduce the available phase space,
that is the range of the detected angles and momenta with the required resolution.
A sizeable improvement in the correction of aberrations is obtained by using special
algorithms to reconstruct the relations between the initial phase space coordinates of
the ions with those measured at the position of the focal plane detector. A detailed
description of the method is reported in ref. [59]. The main actual parameters of
MAGNEX, resulting from the best compromise between the calculated configuration

described in [59] and the effective construction requirements, are reported in table 4.1.

4.1.2 The reference frame, matrix formalism and aberrations

Usually, the description of the motion of a beam of charged particles is done choosing
one of them as the reference particle. Then, the momenta and paths of all the other
particles through the magnetic elements are referred to those of the reference one,

labelled as pg and ly. The reference moomentum pg is also used to set the strength

46



4.1 The MAGNEX magnetic spectrometer

Optical characteristics Actual values
Maximum magnetic rigidity (Tm) 1.8
Solid angle (msr) 50
Horizontal angular acceptance (mr) —90,+110
Vertical angular acceptance (mr) +125
Momentum acceptance —14%,+10%
Central path length (cm) 596
Momentum dispersion (cm/%) 3.68
First order momentum resolution 5400
Focal plane rotation angle (degrees) 59.2
Focal plane length (cm) 92
Focal plane height (cm) 20

Table 4.1: Main optical characteristics of the MAGNEX spectrometer.

of the bending magnets. In this way, it is possible to define a reference frame (t,x,y),
with t defining the direction along the reference trajectory and the transverse axis x
and y perpendicular to it. A schematic view of the reference frame adopted is shown
in Fig 5.5.

In this reference frame, the momentum of a particle of the beam is decomposed in
its p, and p, components along the x and y directions and the fractional deviation §
from the reference momentum, defined as 6 = (p — pg)/po. However, the quantities
x' = py/p: and y' = p,/p; are usually chosen, where p; is the momentum longitudinal
component along the reference trajectory. Since p, and p, are small when compared to
pt, ' and y' can be approximated to the horizontal § and vertical ¢ angles with respect
to the reference trajectory (see Fig. 5.5). To have a complete phase space coordinate
set it is necessary to have three more quantities: the two transverse distances of the
particles from the central trajectory, z and y, and the path length difference between
a given trajectory and the reference one, [. The path length is defined as the distance,
along the particle trajectory, from the starting point of the beam line, i. e. the tar-
get position for magnetic spectrometry, to the intersection between the trajectory of
the particle and a plane normal to the reference trajectory, at a fixed . Summariz-
ing, the complete phase space coordinate set for a generic particle can be written as
P=(z,0,y,0,1,0).

Using this phase space representation, the motion of a charged particle beam, under

the action of an external magnetic field, can be described as the dynamical evolu-
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4.1 The MAGNEX magnetic spectrometer

reference trajectory

Figure 4.3: The reference frame adopted for the description of the motion of a beam of
charged particles in a magnetic field.

tion of the hyper-volume occupied by the system. In particular, the final position
Py = (xs,0f,y7,¢7,15,05) is obtained from the initial position P; = (x;, 0;, vs, ¢4, li, 6;)
through a general non-linear transport relation, characteristic of the particular optical
system:

F: P — Py (4.1)

The evolution of each single coordinate is given by:

= I (i, 0%, vi, b3, i, 0;)

= Fy (x4, 0;, i, ¢, 1iy 04)

= F3 (x4, 0:,9i, bi, iy 0;)

= Fy (v, 0, yi, $i, li, 6i)

lf = Fy (w4, 0;, i, b3, i, 6i)
5; =6

(4.2)

where the last equation expresses the conservation of the ion momentum modulus in a

magnetic field, when electric fields and degrading elements are absent. The F; functions
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4.1 The MAGNEX magnetic spectrometer

completely describe the motion of the particles in the beam and are, in general, non
linear functions. The [; parameter is essentially constant for thin targets, so it will not
be considered in the following. Exploiting the tensor notation, eq. (4.2) can be written

in terms of Taylor expansion as:
Z Rjpay(i Z 1k (4 )+ (4.3)

where z; is the generic phase space coordinate and Rj; and T} are the first and
second order transfer matrix elements, respectively. The coefficients of the second and
higher order terms in eq. (4.3) are usually referred to as aberrations [62], since they
determine deviations from the ideal first order optical properties. They are called
chromatic aberrations if they contain derivatives respect to the momentum (i.e., if
they are momentum dependent), otherwise they are just geometrical aberrations. The
main advantage when using the tensor formalism lies in the fact that, for a complex
magnetic system, R and T are given by the product of the corresponding tensors of each
single magnetic element [63]. In general, these systems are solved through numerical
algorithms.

For small deviations from the reference trajectory and momentum, eq. (4.3) can be
written as:

P;~ RP, (4.4)

where R is the first order transport matrix:

(zlz) (2]6) (zly) (z[@) (z[l) («]0)
(Ola) (616) (6ly) (Blg) (611) (6]9)

po | W) WO ly) o) ) (o) (4.5)
(@lz) (4l6) (oly) (glo) (4l) (¢]0) '
Uz) (@6) (ly) (o) ) (19)
(o) (d6) (dly) (dlg) (4]1) (3]0)

where the notation (a|b) = (Oay/0b;)o

The R matrix returns a good description of the particles dynamics only if the first order
approximation of the Taylor expansion (4.3) is valid. This is true when beam lines or
magnetic spectrometers with small angular and momentum acceptance are considered.
Conversely, higher order terms of the expansion (4.3) are needed when dealing with

large-acceptance spectrometers, like MAGNEX [64].
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4.2 The MAGNEX Focal Plane Detector

An important feature of the R matrix (4.5) is the possibility to direct link most of its
first order elements to general properties of the beam transport line. As an example,
the elements of the 6" column are related to the effects caused by the momentum de-
pendence, thus they are referred to as dispersive terms. In particular, the Rig = (x|9)
element gives the horizontal dispersion D, which corresponds to the horizontal sepa-
ration, after a dispersive region, between two trajectories for which the difference in
momentum is 1%. The Rjs parameter is fundamental for the characterization of a
spectrometer, since it determines the horizontal position resolution required for the
focal plane detector to obtain the aimed momentum resolution.

The crucial problem of aberrations is faced in MAGNEX using hardware tricks and
sophisticated software algorithms. From the hardware point of view, a partial com-
pensation of the aberrations has been obtained with a carefully shaping the magnets,
choosing, for example, the best effective field boundaries for the dipole, and using other
specific solutions, like the rotation of the Focal Plane Detector with respect to the spec-
trometer optical axis, a system to shift it of +10 ¢m and the introduction of correction
coils inside the dipole [18]. Anyhow, hardware solutions cannot solve alone the problem
of aberrations, so a sophisticated software correction has been implemented, based on
a fully algebraic approach in determining the ion trajectories inside the spectrometer
[65]. The technique, called Ray-Reconstruction technique, requires an accurate mag-
netic fields mapping of the spectrometer [66-69], the use of powerful algorithms to solve
high-order transport equations [70] and a precise measurement of the ions positions and

directions at the FPD, described in the next Section.

4.2 The MAGNEX Focal Plane Detector

The MAGNEX Focal Plane Detector is a gas-filled hybrid detector with a wall of 60 Si
detectors at the back, designed for measuring the horizontal and vertical coordinates
and angles of each incident particle, the energy loss in the gas region and the residual
energy released in the silicon detectors wall. A detailed description of the detector is

reported in ref. [19]. The FPD main features are discussed in the following Sections.
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4.2 The MAGNEX Focal Plane Detector

4.2.1 FPD layout

The detector is basically made up of a proportional drift chamber divided in five sec-
tions, four of which are position-sensitive, and a wall of silicon detectors at the back
in order to stop the focused reaction products [71, 72]. A schematic view of the FPD
detector is given in Fig. 4.4. The FPD is placed 1.91 m downstream the exit pole face
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Figure 4.4: Schematic side (a) and top (b) views of the MAGNEX Focal Plane Detector.

of the dipole magnet. According to ion optics calculations [59, 64], this is the position
at which the focal plane of the spectrometer is defined. The FPD vessel is mounted
on a movable carriage which can translate of +0.08 m along the spectrometer optical
axis, in order to match the detector position to different focus conditions. The FPD

entrance surface is rotated of an angle 0y;;; = 59.2° with respect to a plane normal to
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4.2 The MAGNEX Focal Plane Detector

the central reference trajectory. As already said, the rotation of the FPD is a hardware
solution in order to reduce the effect of chromatic aberrations [64].

The drift chamber active volume is 1360 mm wide x 200 mm high x 96 mm deep. The
cathode plate is located at the bottom of the chamber. The applied working voltages
are usually in the range —(900+ 1500) V. The typically used gas is 99.95 % pure isobu-
tane at pressures between 5 and 100 mbar, depending on the experimental conditions.
The gas purity and pressure are preserved through a continuous flowing system. A 1.5
wm Mylar entrance window separates the gas region from the vacuum region. This

2 area, is supported by 20 silicon coated stainless multistrand

window, of 920 x 220 mm
wires 0.5 mm in diameter, arranged horizontally and spaced 1 cm from each other.
The Frisch grid, connected to the ground and placed in the opposite side with respect
to the cathode plate, is made up of 10 gold-plated tungsten wires, 50 wm in diameter,
spaced 5 mm between centers. A partition grid, consisting of 41 rectangular rings par-
allel to the cathode and arranged at 5 mm one to the other, guarantees the uniformity
of the electric field in the 200 mm high drift region between the cathode and the Frisch
grid.

The proportional counter section includes 5 sets of gold-plated tungsten amplifying
wires, sequentially defined as DC1, DC2, PC, DC3, DC4 (see low panel of Fig. 4.4),
located 20 mm above the Frisch grid and spaced 8 mm apart. Each DC wire is a unique
amplifying wire 20 pm diameter, while the PC wires, made up of 8 single wires con-
nected in common, are thicker (100 pm). The working voltages, varying in the range
+(600 = 1300) V, are provided by a common power supply.

A set of 224 induction pads, parallel to the spectrometer optical axis, is located 5 mm
above each DC proportional wire. The entire patterned electrode is engraved on a
six-layered 6 mm thick printed circuit board. Each pad is 8 mm long and 5.9 mm wide,
separated by 0.1 mm from its neighbour. A picture of the anodic plate is shown in Fig.
4.5.

The residual energy of the focused ions is measured by a wall of 60 silicon pad
detectors placed at the back of the FPD. The detectors, with an active area of 70 mm
height x 50 mm width and 500 pum in thickness, are arranged in 20 columns and 3 rows,
rotated in order to have the active area perpendicular to the spectrometer reference

trajectory, as shown in Fig. 4.6.
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Figure 4.5: Picture of the anodic plate showing the segmented strips and the DC and
PC proportional wires.

The columns are mechanically supported and electrically connected by a mother
board built on a 6 mm thick multi-layer printed circuit. The motherboard also hosts the

charge preamplifiers [73], which therefore operate in the low pressure gas environment.

4.2.2 Operating mode

When the ions deflected by the dipole enter the FPD gas region, they produce ionized
atoms and primary electrons along their path (see upper panel of Fig. 4.4). Under the
action of the uniform electric field of about 50 V/cm, these electrons are accelerated
towards the Frisch grid, with velocities varying according to the pressure and voltage
conditions [74]. Beyond the grid, a secondary electrons production takes place due to
a growing electric field, which reaches higher values in the proximity of the DC and
PC wires, where a multiplication factor of about 100-200 for each primary electron
can be reached. The avalanche produces a signal proportional to the ions energy loss
in each section, thus providing five measurements for each event (AE;, AEy, AEcp,
AE3, AE4). Charge sensitive preamplifiers with a sensitivity of 200 mV/MeV (silicon

equivalent) [75] are used to shape the signals, which have typical rise time of about 150
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4.2 The MAGNEX Focal Plane Detector

Figure 4.6: The MAGNEX FPD silicon detectors. The columns are rotated in order to
let the detectors show their active area perpendicular to the reference trajectory.

ns. Then a 16-channels NIM module splits the amplified signals before sending them
to a shaping amplifier and a Constant Fraction Discriminator with a 200 ns delay time.
The shaped output, proportional to the energy loss and with a shaping time of 6 ps, is
used for the particle identification, while the logic output, extracted only for the DC
wires, is used as the stop signal for the electrons drift time measurement. A scheme of
the electronic chain for the read-out of the detector signals is shown in Fig. 4.7.

The information on the horizontal position and angle (Xyoc, 0f0c) of the ion track
at the focal plane is retrieved thanks to the signal induced by the electron avalanche
on the closest induction pads. These signals are pre-amplified and shaped by an analog
multiplexed read-out system based on 16-channels GASSIPLEX chips [76] and digitally
converted by C-RAMS modules [77]. A dedicated algorithm [78] is used to extract the
center of gravity of the charge distribution at each DC section. Exploiting the regular
pattern of the segmented electrode, it is possible to obtain a unique correspondence
between the measured centroid and the horizontal position X, X5, X3, X4 in meter
units.

The silicon wall at the back of the FPD provides the measurement of the residual energy
of the impinging ions. The logic outputs are used as multi-purpose timing signals of

MAGNEX. The logic OR, for example, is used as start signal for the electrons drift
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Figure 4.7: Schematic diagram of the read-out electronic chain of the E,cgiq, A, and Y;
measurements.

time, as trigger for the data acquisition and to generate the ADC gate signal for the
AFE and drift time measurements. The four vertical positions Y7, Y3, Y3 and Y, are
extracted from the measurement of the electron drift time in the gas region, given by the

time interval between the signal generated by the silicon detectors and the DC wires,
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4.3 Spectrometer settings

measured via a standard TAC - ADC read-out system. Thanks to an almost constant
drift velocity of the electrons in the gas, the vertical positions and angles (Yo, @ foc)

at the focal plane are thus determined.

4.3 Spectrometer settings

4.3.1 Quadrupole and dipole magnetic fields

The choice of the correct magnetic fields settings for the quadrupole and the dipole
is imposed by the condition of focusing the 90O ions corresponding to the ground
state of the 27Al residual nuclei at the focal plane position. These magnetic fields are
calculated using the COSYsetup program [79], specifically designed for searching the
best parameters to set-up large magnetic apparata. When the kinematic parameters of
the studied reaction and the desired § (6 = 0.05 in the present case) are given as input,
the COSYsetup program searches the correct magnetic field settings among a sample
of tabulated values, calculated for several different configurations. The current value
of the quadrupole magnetic field is determined from the high precision measurement
of the supplied current. Moreover, four permanent Hall probes, placed at 0.1815 m
from the quadrupole symmetry axis, are used to monitor long term drifts and possible
hysteresis effects. The dipole magnetic field is measured by a NMR probe inserted in
a socket of the magnetic vacuum chamber. A detailed map of the field given by the
manufacturer makes possible to extract the magnetic field strength at each point of the
beam envelope, with an estimated error of ~ 0.1% [67]. The spectrometer parameters

for each angular setting investigated are reported in table 4.2.

Setting 6% (deg) Bp (Tm) Bg (Tm)

1 10 0.71782 0.66754
2 13 0.71280 0.66098
3 18 0.70326 0.65031
4 26 0.68113 0.62640
) 34 0.68113 0.62640

Table 4.2: Dipole and quadrupole magnetic fields for each investigated setting.
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4.3 Spectrometer settings

4.3.2 FPD settings

The Focal Plane detector was filled with the 99.95% pure C4Hjo isubutane gas at a
pressure of 15.06 mbar. The cathode plate was supplied with -1200 V, whereas the
Frisch grid was grounded. The voltage applied to the proportional wires DC1, DC2,
DC3, DC4 and to the PC wires was +750 V, while a separated generator supplied
the lateral shaping partition grid between the Frisch grid and the proportional wires
with -430 V. The silicon detectors at the back of the FPD were powered with 60 V
in a full depletion mode. Finally, a -0.09 m shift of the FPD was adopted for all the

measurements.
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Chapter 5

Data reduction

Data reduction is a complex procedure made up of several steps. A basic issue, charac-
teristic of MAGNEX is that the horizontal and vertical positions and angles measured
by the FPD must be transformed in the three-dimesional reference frame where the
objects points and the magnetic field maps are defined. This condition, which is a
pre-requisite to solve the equation of motion of the detected particles, is achieved by
proper calibrations of the data based on accurate optical and mechanical measure-
ments. In addition, the 0 ejectiles must be identified, since the elastic scattering
process 27A1(*60,60)27 Al is investigated in this work. The identification procedure is
based on the standard AE — E technique for the atomic number (Z). Then the mass
number (A4) is determined by the correlation between the measured ion positions at
the focus and the kinetic energy. Once the ions track are measured at the focal plane
position, it is possible to optimize the spectrometer transport map up to the 10" or-
der. This procedure, later described in detail, completely characterizes the investigated
event, providing the ion kinetic energy and scattering angle in the laboratory reference
frame. Moreover, it allows to take into account the loss of the transmission efficiency
through the spectrometer. This aspect is of fundamental importance in order to extract

the absolute cross section values of the investigated reaction.
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