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Abstract

We investigate the onset of thermal convection in fluid layers and layers

of fluids saturating a porous medium, when the temperature field is subject

to the so called “natural” or Newton-Robin boundary conditions. Special

attention is devoted to the limit case of fixed heat flux boundary conditions,

corresponding to Neumann conditions on the temperature. Several interest-

ing results, both from a physical and a mathematical point of view, appear

when such conditions, coupled with one or more stabilizing fields (rotation,

solute and magnetic field), are considered. The transition from fixed tem-

peratures to fixed heat fluxes is shown to be destabilizing in all cases.

In Part I, we study fluids modeled by the Oberbeck-Boussinesq equations.

When further fields are considered, additional equations and terms are in-

cluded. In Part II, flows in porous media are described by the Darcy law,

with and without the inclusion of an inertial term. Even for this system some

stabilizing effects are considered.

In Chapter 3 we study the rotating Bénard problem. The wave number

of the critical perturbations is shown to be zero, but only up to a threshold

of rotation speed (depending on the kinetic boundary conditions).

In Chapter 4 the Bénard problem for a binary fluid is investigated. In

this case, the stabilizing effect of a gradient of solute is totally lost for fixed

heat fluxes. In Chapter 5 it is shown that, when the same system is rotating,

the solute field is again stabilizing, and the critical wave number is positive

in some regions of values of rotation and concentration gradient.

A more complex interaction, between rotation and magnetic field, is

briefly discussed in Chapter 6. Again, zero and non-zero wave numbers
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appear for different values of the parameters.

The solute Bénard problem is also investigated in Chapter 7, along the

lines of the classical book of Chandrasekhar (1961), in a fully algebraic way.

Here, finite slip boundary conditions, and Robin conditions on the solute

field are also taken into account.

Flow in a rotating porous layer, and flow of a binary mixture in a porous

layer, are studied in Chapters 8 and 9, with results qualitatively similar to

those obtained for the Bénard system. The effects of inertia and rotation are

investigated in Chapter 10, with a detailed analysis of the region in parameter

space corresponding to the onset of stationary convection or overstability.

For most of the above systems, an asymptotic analysis for vanishing wave

numbers was also performed, providing support to numerical calculations

and some explicit analytic results.
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Chapter 1

Introduction

Landau and Lifshitz write in their book (Landau and Lifshitz, 1959) on Fluid

Mechanics

“Yet not every solution of the equations of motion, even if it is

exact, can actually occur in Nature. The flows that occur in

Nature must not only obey the equations of fluid dynamics, but

also be stable.”,

to underline the extreme relevance of the study of stability in the context of

mathematical physics.

The object of this thesis is the study of stability/instability of fluid layers,

both free fluids described by the Oberbeck-Boussinesq equations, and fluids

saturating a porous medium, modeled by the Darcy law.

We show how boundary conditions, and in particular, conditions on the

temperature field, can have a dramatic effect on the onset of convection in

these systems. Other than simply produce a shift of the critical temper-

ature gradient, some boundary conditions change in a qualitative way the

convective motion of the fluid, or can compete with some stabilizing effects.

Here we recall first some basic results about convection in fluids and

porous media.
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Introduction

1.1 Convection in fluids (classical results)

The space-time evolution of a motion of a Newtonian fluid is governed by the

Navier-Stokes equations. One of the most widely used models in the theory

of thermal convection - both for a homogeneous fluid and a mixture of fluids

- is that given by the Oberbeck-Boussinesq equations. This last model is an

approximation to the full thermo-mechanical equations which describe the

motions of compressible viscous fluids.

From a mathematical point of view, both the Navier-Stokes (NS) equa-

tions and Oberbeck-Boussinesq (OB) equations are systems of partial differ-

ential equations which must be solved under suitable initial and/or boundary

conditions.

They are non linear, and their well-posedness is still an open problem

of fluid dynamics in the general case (see e.g. Flavin and Rionero (1996);

Galdi (1994); Ladyzhenskaya (1969); Lions (1996); Temam (1979)). Well-

posedness has been proved only for particularly symmetric cases, which can

be reduced to two-dimensional problems (Galdi, 1994; Ladyzhenskaya, 1969;

Temam, 1979). For the full three-dimensional problem, uniqueness has been

proved for small initial data or for limited time intervals (Galdi, 1994; La-

dyzhenskaya, 1969; Temam, 1979).

Determination of solutions is a still harder task, and only very rarely

it is possible to find an explicit solution of these problems (Berker, 1963).

Excluding these rare cases, if one wishes to study the characteristics of the

solution one can either use approximate methods (e.g., numerical methods,

asymptotic methods) or apply differential inequality techniques (qualitative

analysis).

1.1.1 Oberbeck-Boussinesq equations

The Oberbeck-Boussinesq approximation to the full thermo-mechanical equa-

tions (the compressible Navier-Stokes equations) undoubtedly is the most
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1.1 Convection in fluids (classical results)

widely used model of stratified fluids and thermal convection, (Chandrasekhar,

1961; Hills and Roberts, 1991; Joseph, 1976; Straughan, 2004). In the usual

circumstance the temperature differences which are imposed at the bound-

ary of a region of space occupied by a fluid (homogeneous fluid or a fluid

mixture) may induce convection currents. Because of the presence of density

gradients (induced by heating the fluid), the gravitational potential energy

can be converted into motion through the action of buoyant forces. These

forces appear when a fluid element in a gravity field is hotter (and then less

dense) than its neighbor. There are many, physically important, situations

in which the variations of density in a fluid are produced by variations in the

temperature (and also in concentration of solute in the case of a mixture) of

only moderate amounts and not by pressure differences. This happens e.g.,

in the case of water and in all convective motions of an essential isochoric

kind (see Chandrasekhar (1961); Hills and Roberts (1991); Joseph (1976);

Straughan (2004)). The NS equations for compressible fluids can be sim-

plified considerably in these cases. The origin of the simplifications is due

to the smallness of the coefficient of volume expansion: for water at 25 ◦C

and 1.02 atmospheres of pressure, we have α = −(1
ρ
∂ρ
∂T

)p = 2.6 × 10−4 ◦C−1

(here T is the absolute temperature and ρ is the density), for gases and other

liquids α ∈ (10−4, 10−3) ◦C−1. For variations in temperature not exceeding

10◦, the variations in the density are at most 1 per cent. The same is for

the variations in the other coefficients (kinematic viscosity, shear viscosity,

specific heat). These small variations can, in general, be ignored. There

is only one exception: the variability of ρ in the external force term in the

momentum equation ρ f , (see Chandrasekhar (1961)). Accordingly, we may

treat ρ as a constant in all terms in the equations of motions except the one in

the external forces; this is because the acceleration resulting from this force

can be quite large. This is the Oberbeck-Boussinesq approximation. In this

approximation the equation of state for the density is, (cf. Chandrasekhar

(1961); Joseph (1976)):

ρ = ρ0[1− α(T − T0)], (1.1)
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Introduction

where ρ0 is the density at the reference temperature T0 and α is the volume

expansion coefficient (at a constant pressure):

α = −
(

1

ρ

∂ρ

∂T

)
p

.

With this state equation, the Oberbeck-Boussinesq equations for the basic

flow are


vt + v · ∇v = −∇

(
p

ρ0

)
+ [1− α(T − T0)] g + ν∆v

Tt + v · ∇T = κ∆T in Ω× (0, T ?)

∇ · v = 0

(1.2)

where v is the velocity field, Ω is the domain of motion (typically a layer,

see below), g is the external force per unit mass, typically gravity, ν is the

kinematic viscosity, and κ is the coefficient of the thermometric conductivity,

T ? ∈ (0,∞].

To (1.2) we add the initial conditions

v(x, 0) = v0(x), T (x, 0) = T0(x) on Ω (1.3)

and the boundary conditions

v(x, t) = vσ(x, t), T (x, t) = Tσ(x, t) on ∂Ω× [0, T ?). (1.4)

We note that we are interested in classical solutions to (1.2)-(1.4), i.e. (v, T ) ∈
C2(Ω̄× [0, T ?)) and then some compatibility conditions are assumed on the

boundary and initial data.

1.1.2 Conduction solution of the Oberbeck-Boussinesq

equations

Let d > 0 and Ω = R2 × (−d/2, d/2). A stationary solution of (1.2)

with boundary conditions T (−d/2) = TH , T (d/2) = TL, is given by the

4



1.1 Convection in fluids (classical results)

conduction-solution:

v̄ = 0, T̄ = Ta − βz, ρ̄ = ρ0(1 + αβz),

p̄ = p0 − gρ0(z + 1
2
αβz2)

(1.5)

where β = (TH − TL)/d is the gradient of the temperature field, Ta = (TH +

TL)/2, and p0 a constant.

We observe that this solution exists for any value of the gradient of the

temperature. In the next sections we shall study the stability of this solution

(the stability of the simple Bénard problem) and its stability in the presence

of a rotation field, a solute field, and a magnetic field.

1.1.3 Stability of a Newtonian incompressible fluid

Let m = (v(x, t), T (x, t), p(x, t)) be a (sufficiently smooth) motion of a fluid

F , i.e., a solution to the system (1.2)-(1.4) corresponding to given (regular)

initial and boundary data v0(x), T0(x) and vσ, Tσ, and external body force

per unit mass f . We call m a basic motion or basic flow.

Assume that the basic motion is perturbed at the initial instant (t = 0) in

such a way that v and T are varied by a certain amount u0, ϑ0. Therefore the

fluid will perform a new motion m′ corresponding to the same boundary data

and the same external forces as m, but with initial condition v0 +u0, T0 +ϑ0.

The motion m′ will be given by (v(x, t) + u(x, t), T (x, t) + ϑ(x, t), p(x, t) +

π(x, t)) where u(x, t), ϑ(x, t) and π(x, t) are the perturbations to the kinetic,

temperature and pressure fields, respectively. As the motion m′ must satisfy

the Oberbeck-Boussinesq equations, by subtraction with the basic motion,

we obtain that the perturbation (u(x, t), ϑ(x, t), π(x, t)) satisfies the following

IBVP:

ut + u · ∇u + v · ∇u + u · ∇v = −∇π − αϑg + ν∆u in Ω× (0,∞)

∇ · u = 0 in Ω× (0,∞)

ϑt + v · ∇ϑ+ u · ∇T + u · ∇ϑ = κ∆ϑ in Ω× (0,∞)

u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x) on Ω

u(x, t) = 0, ϑ(x, t) = 0 on ∂Ω× [0,∞).

(1.6)
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Introduction

The stability problem of the basic flow m is then reduced to studying the

time evolution of the perturbation (u(x, t), ϑ(x, t)), π(x, t)), i.e., to studying

the IBVP (1.6). In the sequel we shall suppose that problem (1.6) is well

posed for any t ≥ 0 and that the solution u(x, t) is classical, moreover we

suppose that u0, ϑ0 ∈ L2(Ω) and u(x, t), ϑ(x, t) ∈ L2(Ω)),∀t ≥ 0 and are

bounded.

1.1.4 Definitions of energy-stability

According to the classical energy method (Lyapunov method) introduced by

Serrin (1959) and Joseph (1965, 1966), we give the following definitions:

Definition 1.1. The motion m is (energy) stable (with respect to perturba-

tions in the initial data) if and only if

∀ε > 0 ∃δ(ε) > 0 :∫
Ω

(u2
0 + ϑ2

0) dΩ < δ ⇒ supt∈[0,∞)

∫
Ω

(u2(x, t) + ϑ2(x, t)) dΩ < ε.

Definition 1.2. The motion m is unstable if and only if it is not stable.

Definition 1.3. The motion m is asymptotically stable if and only if it

is stable and moreover

∃ γ ∈ (0,∞] :∫
Ω

(u2
0 + ϑ2

0) dΩ < γ ⇒ limt→∞
∫

Ω
(u2(x, t) + ϑ2(x, t)) dΩ = 0.

If γ ∈ R, then m is said conditionally asymptotically stable. If γ = ∞,

then m is unconditionally (or globally) asymptotically stable.

From the previous definitions it appears that we can choose as Lyapunov

function

V = ‖u(x, t)‖2 + ‖ϑ(x, t)‖2,

with ‖ · ‖ the L2(Ω)-norm.
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1.1 Convection in fluids (classical results)

1.1.5 The linearized system

From the definitions of the previous chapter it appears that the rigorous

study of the stability of a basic flow is reduced to investigating - through

of the energy-Lyapunov function - the time evolution of solutions to (1.6).

However, because of the presence of the nonlinear term in (1.6), for a quite

long time this research was a very difficult problem and only qualitative

results were obtained in this sense, (see Kampe de Feriet (1949); Orr (1907);

Reynolds (1895); Thomas (1943)).

Therefore, in order to simplify the problem and to obtain meaningful

quantitative estimates, in the wake of work of Reynolds (1895) and Rayleigh

(1916), the so-called linearized instability method has been used. Here, briefly

recall the main points of this method. For a complete bibliography on

this subject, see the monographs of Chandrasekhar (1961); Drazin and Reid

(1981); Lin (1955).

Let m0 = (w(x), T (x), p(x)) be a stationary flow of a viscous incompress-

ible fluid F satisfying (1.2)-(1.4). Let

m′ = (w(x) + u(x, t), T (x) + ϑ(x, t)), p(x) + π(x, t))

another motion obtained by perturbing (at the initial instant) m0. Then, as

we have seen, the perturbation (u(x, t), ϑ(x, t)), π(x, t)) satisfies the following

system

ut + u · ∇u + w · ∇u + u · ∇w = −∇π − αϑg + ν∆u in Ω× (0,∞)

∇ · u = 0 in Ω× (0,∞)

ϑt + u · ∇ϑ+ w · ∇ϑ+ u · ∇T = κ∆ϑ in Ω× (0,∞)

u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x) on Ω

u(x, t) = 0, ϑ(x, t) = 0 on ∂Ω× [0,∞).

(1.7)

Assume that |u|, |∇u| and |∇ϑ| are small in such a way that we can neglect

in (1.7) the nonlinear terms u ·∇u and u ·∇ϑ. We thus obtain the linearized

system

7
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

ut + w · ∇u + u · ∇w = −∇π − αϑg + ν∆u in Ω× (0,∞)

∇ · u = 0 in Ω× (0,∞)

ϑt + w · ∇ϑ+ u · ∇T = κ∆ϑ in Ω× (0,∞)

u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x) on Ω

u(x, t) = 0, ϑ(x, t) = 0 on ∂Ω× [0,∞).

(1.8)

System (1.8)1−3 is linear and autonomous and therefore we may look for

solutions of the following form (see e.g. Chandrasekhar (1961)):

u(x, t) = e−σtu0(x), π(x, t) = e−σtπ0(x), ϑ(x, t) = e−σtϑ0(x) (1.9)

with σ a priori a complex number. Substituting (1.9) in (1.8), we have:
−ν∆u0 + w · ∇u0 + u0 · ∇w +∇π0 = σ u0 in Ω× (0,∞)

−κ∆ϑ0 + w · ∇ϑ0 + u · ∇T = σ ϑ0 in Ω× (0,∞)

∇ · u0 = 0 in Ω

u0(x) = 0, ϑ0(x) = 0 on ∂Ω.

(1.10)

The problem (1.10) is an eigenvalue problem in which σ and (q(x) =

(u0(x), ϑ0(x)) are eigenvalue and eigenvector, respectively.

Assume that problem (1.10) admits a nonempty set Σ of eigenvalues σ

and let q be a corresponding (4−dimensional) eigenvector satisfying (1.10).

As the time evolution of the solutions (1.9) of linearized problem (1.8) de-

pends on σ, the linear stability-instability problem is reduced to studying

problem (1.10).

1.1.6 Definitions, the region which contains the eigen-

values

Definition 1.4. A stationary motion m0 is said to be linearly stable if and

only if

∃ k > 0 such that Re(σ) ≥ k ∀σ ∈ Σ,

8



1.1 Convection in fluids (classical results)

m0 is linearly unstable if and only if

∃σ? ∈ Σ such that Re(σ?) < 0,

where σ = Re(σ) + i Im(σ), and i is the imaginary unity.

As far as the solvability of problem (1.10) is concerned, we observe that,

if the domain Ω is bounded or if it is bounded at least in one direction

and we restrict ourselves to eigenfunctions periodic along the directions in

which Ω is unbounded (normal modes), it can be proved, as was shown in the

isothermal case by Prodi (1962); Sattinger (1970) (see also Galdi and Rionero

(1985); Straughan (2004)), that, when the solution (w, T, p) is sufficiently

smooth, problem (1.10), set up in suitable function spaces, admits an at most

countable number of eigenvalues {σn}n∈N. Precisely, let H̃(Ω) = X̃(Ω) ×
W 1,2(Ω), where X̃(Ω) is the completion in the norm of L̃2(Ω) of the space

D̃(Ω) of all solenoidal vectors with complex valued components which are in

C∞0 (Ω), and W 1,2(Ω) is the usual Sobolev space, then the following theorem

holds (see Prodi (1962); Sattinger (1970)).

Theorem 1.5. Let Ω be a bounded domain of R3, ∂Ω ∈ C2, and let w, T ∈
C1(Ω̄). The eigenvalue problem (1.10), set up in a suitable subspace of H̃(Ω),

admits a discrete set of eigenvalues Σ = {σn}n∈N in the complex plane, each

of finite multiplicity, which can cluster only at infinity. The eigenvalues lie

in the parabolic region

c1[Im(σ)]2 = Re(σ) + c2

where c1 and c2 are some fixed positive constants. Moreover, the eigenvalues

may be ordered in the following way

Re(σ1) ≤ Re(σ2) ≤ Re(σ3) ≤ · · · ≤ Re(σn) ≤ · · · .

The corresponding eigenfunctions {qn}n∈N are complete in H̃(Ω). That is,

the class of all finite linear combinations of them is dense in H̃(Ω).
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Introduction

1.1.7 Critical parameter of linearized stability

As we have seen above, the problem of linear stability-instability is reduced

to a study of the sign of Re(σ1). Sometimes this is not a simple problem:

for example the study of linear stability of the plane parallel Couette and

Poiseuille flows is reduced to the classical Orr-Sommerfeld equation which

is an ordinary differential equation with complex numbers coefficients which

depend on independent variables. Therefore the solution is very complicated

(see the monograph of Drazin and Reid (1981) for a complete examination)

and a qualitative analysis or a numerical method must be used.

We also note, and this will be important in our study in this thesis, that

the eigenvalues σi strongly depend on the boundary conditions on velocity

and temperature. We will see in the next section the only (known) case

in which an analytic solution can be found, that is the case of stress free

conditions and fixed temperatures on both boundaries. For all other bound-

ary conditions, numerical methods are required to evaluate eigenvalues and

eigenfunctions of the problem.

Another difficulty arises when the domain is unbounded (in this case we

cannot apply a priori Theorem 1.5). In the case when a domain is unbounded

but bounded at least in one direction it is possible to consider perturbations

which are periodic in the directions in which the domain is unbounded. Then

the stability is studied in a suitable cell of periodicity which is a bounded

domain. Although at first sight this hypothesis could appear restrictive,

nevertheless the stability results that are reached in this way are, in many

cases, in good agreement with the experiments, (cf. Chandrasekhar (1961);

Joseph (1976)).

We notice that Re(σ1) depend, in general, on the basic flow through a

dimensionless positive parameter P , say, such as Reynolds, Taylor, Rayleigh,

or Chandrasekhar numbers, and, in the case of periodic perturbations, also on

the associated wave number a (see below in the case of the Bénard problems).

One wishes to find the least value Pc (critical parameter) of the parameter

P for which Re(σ1) = 0, namely, the value of P at which instability sets in.

10



1.1 Convection in fluids (classical results)

One also physically expects that P < Pc for Re(σ1) > 0, while P > Pc for

Re(σ1) < 0. Though this seems reasonable, it is not always true and the

dependence of Re(σ1) on P must in principle be ascertained from case to

case (cf. Drazin and Reid (1981), pp.11–12).

Sometimes, as we shall see in the case of the simple (or standard) Bénard

problem with stress-free boundaries, it is easy to compute Pc. Actually, let

us rewrite (1.10) as

Lq = σq (1.11)

where L is a suitably defined linear operator which depends on P and, for

periodic perturbations, also on the wave number a. Thus, in general, we have

L = L(P , a).

Assume that the (strong) principle of exchange of stabilities (PES) holds,

(Chandrasekhar, 1961):

Re(σ1) = 0 ⇒ Im(σ1) = 0 (1.12)

namely, the first eigenvalue σ1 is real at criticality. In this case (1.11) gives

L(P , a)q1 = 0, (1.13)

where q1 is the eigenvector corresponding to the eigenvalue σ1. The meaning

of this equation is the following: for each fixed a, equation (1.13) is an

eigenvalue problem in P . Solving this problem we get P = P(a) and therefore

the critical linear (in)stability parameter is given by

Pc = min
a
P(a).

We remark that, from the physical point of view, whenever the PES

(1.12) holds, the instability sets in as a secondary stationary motion. As

we shall see in the next chapters, there are many cases where (1.12) can be

proved, and this happens, for instance, when the operator L is symmetric

or symmetrizable. However, there are also other cases, such as the Bénard

problem with rotation (for Prandtl numbers less than 1) where (1.12) is

violated. In these cases, at the onset of instability an oscillatory motion

prevails: one says that one has a case of overstability.

11
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1.1.8 Linear instability of the Bénard problem

The problem of thermal stability-instability of the conduction solution of a

horizontal layer of a fluid heated from below is known as the Bénard problem

after the experiments of Bénard, (cf. Bénard (1900, 1901)).

Consider an infinite horizontal layer of viscous fluid in a gravity field,

initially at rest, confined between two heat conducting planes. A constant

adverse temperature gradient β is maintained between the walls by heating

from below. The temperature gradient thus maintained is qualified as ad-

verse since, on account of thermal expansion, the fluid at bottom is lighter

than the fluid at the top; and this is a top-heavy arrangement which is po-

tentially unstable.

T(x,y,-d/2,t) = TH

T(x,y,d/2,t) = TL

If the temperature gradient is small, the fluid remains at rest and heat

is transported through the fluid only by conduction (the conduction-solution

to the OB equations). However, when the temperature gradient is increased

beyond a certain critical value, the fluid undergoes time independent motions

called convection currents. Heat is now transported through the fluid by con-

vection as well as conduction. The experiments (see Bénard (1900, 1901);

Koschmieder (1993); Rossby (1969)) show that the fluid arranges itself in a

regular cellular pattern, and motion takes place only within the cells. The

shape of the cells seems to depend strongly on the container, Koschmieder

(1993). (In his famous experiment, Bénard found that the cells align them-

selves to form a regular hexagonal pattern).

12



1.1 Convection in fluids (classical results)

T(x,y,-d/2,t) = TH

T(x,y,d/2,t) = TL

A simple qualitative explanation of this phenomenon is the following.

The fluid at the bottom expands because of the heating and becomes less

dense than the fluid at the top. It therefore tends to rise. However, the

fluid, being viscous, resists this buoyancy force. If temperature gradient β is

small the viscous forces are dominant and the fluid remains at rest, heat being

transported only by conduction. When a certain critical adverse temperature

gradient βc is exceeded, the buoyancy becomes large enough to overcome the

viscosity of the fluid and the gravity, and convection begins.

The theoretical foundations for a correct interpretation of the foregoing

facts were laid by Lord Rayleigh in a fundamental paper, Rayleigh (1916).

Rayleigh showed that the correct non-dimensional parameter which decides

the stability or instability is the number (now called Rayleigh number)

R2 =
gαβ

κν
d4

whereR2 is the Rayleigh number, the other parameters have been introduced

in section 1.1.1. Rayleigh showed that whenever

R2 > R2
c ,

where R2
c is the critical Rayleigh number, instability sets in and at the onset

of convection a stationary secondary motion begins.

In the remaining part of this section we shall determine, in the case of

stress-free boundaries, and for fixed temperatures at the boundaries, the

critical Rayleigh number R2
c . For this, let us consider the OB equations and

the conduction-solution given above. Let us consider a perturbed motion

13
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v̄+u, T̄ +ϑ, p̄+π, to the conduction solution (1.5). The perturbation u, ϑ, π

satisfies the system
ut + u · ∇u = −∇ π

ρ0

+ αgϑk + ν∆u

ϑt + u · ∇ϑ = βw + κ∆ϑ in Ω× (0,∞),

∇ · u = 0

(1.14)

where k denotes the unit vector (0, 0, 1). By introducing the non-dimensional

variables (cf. Straughan (2004))

t = t?
d2

ν
, p?1P = π, P =

ν2ρ0

d2
, Pr =

ν

κ
,

u = u?U, ϑ = ϑ?T ], T ] = U

√
d
βν

κgα
, R =

√
αgβd4

κν
,

x = x?d, y = y?d, z = z?d, U =
ν

d
,

where Pr is the Prandtl number and u = (u, v, w), multiplying (1.14)1 by

d3/ν2, (1.14)2 by
√

(d6gα/βν3k) and (1.14)3 by ν, then the system (1.14)

(dropping, as it is usual, the stars) becomes
ut + u · ∇u = −∇p1 +Rϑk + ν∆u

Pr(ϑt + u · ∇ϑ) = Rw + ∆ϑ in Ω1 × (0,∞),

∇ · u = 0

(1.15)

where Ω1 = R2 × (−1/2, 1/2).

To this system we must add the boundary conditions which depend on the

nature of the bounding surfaces. We shall distinguish two kinds of bounding

surfaces, (Chandrasekhar, 1961): rigid surfaces on which no slip occurs and

stress-free surfaces on which no tangential stresses act.

On rigid surfaces we require (cf. Chandrasekhar, 1961, pp. 21–22)

u = 0, ϑ = 0, on z = ±1/2, (1.16)

on stress-free surfaces we require

w = 0, ϑ = 0, uz = vz = 0 on z = ±1/2. (1.17)
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1.1 Convection in fluids (classical results)

We assume that the perturbations are periodic functions in x and y of periods

2π/ax, 2π/ay, respectively, with ax > 0, ay > 0, and introduce the wave

number a =
√

(a2
x + a2

y) and the periodicity cell Ω0 = (0, 2π/ax)×(0, 2π/ay)×
(0, 1).

The linearized version of (1.15) is
ut = −∇(p1) +Rϑk + ∆u

Prϑt = Rw + ∆ϑ in Ω1 × (0,∞),

∇ · u = 0

(1.18)

By supposing that the perturbations have the forms:

u(x, t) = e−σtu(x), ϑ(x, t) = e−σtϑ(x), p1(x, t) = e−σtp1(x),

then system (1.18) becomes
−σu = −∇p1 +Rϑk + ∆u

−σPrϑt = Rw + ∆ϑ

∇ · u = 0

(1.19)

with boundary conditions (1.16) or (1.17) depending on the nature of the

planes bounding the layer.

Now we prove that all the eigenvalues are real, and therefore the principle

of exchange of stabilities is valid. Indeed, multiplying (1.19)1 by ū and (1.19)2

by ϑ̄ (where ϑ̄ denotes the complex conjugate of ϑ), integrating over Ω0 and

taking into account the solenoidality of the perturbation to the velocity field

and the boundary conditions, it follows that{
−σ‖u‖2 = R(ϑ,w)− ‖∇u‖2

−σPr‖ϑ‖2 = R(w, ϑ)− ‖∇ϑ‖2,

where (f, g) =
∫

Ω0
fḡ dΩ and ‖f‖ = (

∫
Ω0
|f |2 dΩ)1/2 denote the inner product

and the norm in the space L̃2(Ω). By adding the last two equations and by

taking the imaginary part of both sides of the equation so deduced, we have

Im(σ)(‖u‖2 + Pr‖ϑ‖2) = 0
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which implies Im(σ) = 0. Therefore, all the eigenvalues of (1.19) are real.

In order to eliminate ∇p1 in (1.19), we take the curl of both sides of

(1.19)1, then we project on the z-axis. Moreover, we take the double curl of

(1.19)1 and the z-component of the equation so obtained. We easily get:
−σζ = ∆ζ

−σ∆w = R∆∗ϑ+ ∆∆w

−σPrϑ = Rw + ∆ϑ,

(1.20)

where ζ = ∇ × u · k is the third component of the vorticity and ∆∗ =

∂2/∂x2 + ∂2/∂y2.

To system (1.20) we must add the boundary conditions

w = 0, ϑ = 0, ζ = 0, wz = 0 on z = ±1/2

for rigid-rigid boundaries, and

w = 0, ϑ = 0, ζz = 0, wzz = 0 on z = ±1/2

for stress-free boundaries.

Looking for solutions to (1.20) of normal-modes kind (see Chandrasekhar

(1961)): 
ζ = Z(z) exp(i(axx+ ayy))

w = W (z) exp(i(axx+ ayy))

ϑ = Θ(z) exp(i(axx+ ayy)),

we have 
−σZ = (D2 − a2)Z

−σ(D2 − a2)W = −Ra2Θ + (D2 − a2)2W

−σPrΘ = RW + (D2 − a2)Θ,

(1.21)

where D denotes the derivative with respect to z. The boundary conditions

become

W = 0, Θ = 0, Z = 0, DW = 0 onz = ±1/2
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1.1 Convection in fluids (classical results)

in the rigid-rigid case, and

W = 0, Θ = 0, DZ = 0, D2W = 0 on z = ±1/2

for stress-free planes.

At criticality we have σ = 0, and therefore system (1.21) gives:
(D2 − a2)Z = 0

−Ra2Θ + (D2 − a2)2W = 0

RW + (D2 − a2)Θ = 0,

(1.22)

First equation of (1.22) and the boundary conditions show that, at the crit-

icality, Z(z) ≡ 0. By eliminating Θ from the remaining equations we get

(D2 − a2)3W = −R2a2W. (1.23)

The last equation, with boundary conditions

W = 0, (D2 − a2)2W = 0, DW = 0 onz = ±1/2

in the rigid-rigid case, and

W = 0, (D2 − a2)2W = 0, D2W = 0 on z = ±1/2

in the free-free case, for any fixed a2, can be considered as an eigenvalue

problem for the Rayleigh number R2.

As we have said before, the critical value of linear stability-instability

theory is obtained in this way: for any fixed a2 we determine the minimum

eigenvalue for R2; the minimum with respect to a2 of the eigenvalue so ob-

tained is the critical value we seek.

Now we shall solve (1.22) in the case of stress-free boundaries. Although

this problem is not very useful for the laboratory experiments, nevertheless

it is important from a theoretical point of view since it permits to find in a

very simple analytical way the solutions.

In the stress - free case, assuming that W (z) ∈ C∞, from the boundary

conditions and from equation (1.23) we easily obtain that

D(2m)W = 0 for z = 0, z = 1 and m = 1, 2, . . .

17
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From this it follows that

W = W0 sin nπz (n = 1, 2, . . .),

where W0 is a constant different from zero and n is a positive natural number.

By substituting this solution in (1.23) we get the characteristic equation

R2 = R2(a2, n2) =
(n2π2 + a2)3

a2
.

For any fixed a2 the minimum R2 is obtained when n = 1, then

R2(a2, 1) =
(π2 + a2)3

a2
.

Therefore the critical Rayleigh number of linear instability is given by

R2
c = min

a2>0

(π2 + a2)3

a2
=

27

4
π4 ' 657.511

and the corresponding wave number is ac = π/
√

2 ' 2.221.

When both the surfaces are rigid or one rigid and the other stress - free,

by using a numerical analysis (cf., e.g., Straughan (2004), Appendix 2, or

Chandrasekhar (1961), pp. 36–43), it can be found that

R2
c ' 1707.76, ac ' 3.117,

for rigid-rigid planes, and

R2
c ' 1100.65, ac ' 2.682,

for one rigid plane and the other stress-free.

1.1.9 The “insulating” case

When the simple Bénard system is subject to Neumann boundary condition

on the temperature, some peculiar phenomena appear. By recalling the

Fourier on heat propagation, this condition can be also called of fixed heat

flux. This condition is not devoid of physical meaning, on the contrary, it is
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1.2 Stabilizing effects

RR RF FF

R2
c 720 320 120

Table 1.1: Critical Rayleigh number of the Bénard system for fixed heat

fluxes and combinations of Rigid and Free boundaries.

the correct boundary condition to employ when the the media surrounding

the fluid has a very low conductivity (with respect to the fluid), as we discuss

in Chapter 2. This conditions are equally appropriate to describe a surface

subject to irradiation, and every case in which a constant flux of thermal

energy enters (or exits) through a boundary.

It is known (see e.g. (Busse and Riahi, 1980; Chapman and Proctor,

1980)) that in this case the characteristic dimension of the convective cells

tends to be infinite. This means that, in a practical experimental setup, the

cells will tend to have the largest possible extension. Moreover, the critical

Rayleigh number R2
c can be explicitly calculated, and it tends to the integer

values 720, 320, 120, respectively for Rigid-Rigid, Rigid-Free, and Free-Free

boundary conditions,

Most of this thesis is dedicated to investigate the effect of such boundary

conditions when the system (Bénard system, or a flow in a porous medium)

is subject to further physical, generally stabilizing, fields.

1.2 Stabilizing effects

In section 1.1.8 we recalled the main results on the onset of convection in the

simple Bénard system. In many physical circumstances it is appropriate to

include other fields and effects in the description of the system. Such effects

are called stabilizing when they increase the critical temperature gradient

needed to destabilize the conduction state.

A well known case is the rotating Bénard problem, which is relevant to

many geophysical and industrial applications (e.g., crystal growing).
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Another stabilizing effect is due to a solute dissolved in the fluid, in such

a way that the solute density is decreasing from bottom to top in the layer.

Finally, when the fluid is electrically conducting, a magnetic field (di-

rected along the vertical) is also stabilizing.

1.2.1 Rotation

The rotating Bénard problem attracted, in the past and increasingly today,

the attention of many writers, (see Chandrasekhar (1961); Chandrasekhar

and Elbert (1955); Flavin and Rionero (1996); Galdi and Padula (1990);

Galdi and Straughan (1985); Kloeden and Wells (1983); Koschmieder (1967);

Mulone and Rionero (1989); Nakagawa and Frenzen (1955); Niiler and Bis-

shopp (1965); Rossby (1969); Straughan (2004); Veronis (1959, 1966, 1968)).

The stabilizing effect of rotation has been predicted by linear stability theory

for any value of the Prandtl number Pr, (see Chandrasekhar (1961)), and has

been confirmed by experiments, Koschmieder (1967); Nakagawa and Frenzen

(1955); Rossby (1969).

For stress-free boundaries and fixed temperatures, and assuming the va-

lidity of PES (which can be proved for Pr> 0.6766, Chandrasekhar (1961)),

the critical Rayleigh number can be explicitly calculated as

R2
c = min

a2>0

(π2 + a2)3 + π2T 2

a2
,

where T is the non dimensional number (Taylor number) related to the

rotation speed Ω̂ by

T 2 =
4Ω̂2d4

ν2
.

The minimum of R2 is obtained for a critical wave number which is solution

of the cubic

2(a2)3 + 3π2(a2)2 − π2(π4 + T 2) = 0.

The Rayleigh number so obtained is an increasing function of T , and the

same can be proved for Pr< 0.6766 when overstability is also possible.
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1.2.2 Solute (and rotation)

The problem of a fluid layer heated and salted from below (the Bénard prob-

lem for a mixture) is studied for his relevance in geophysical applications,

for example in the “salt pond” system, Tabor (1963); Tabor and R. (1965);

Weinberger (1964).

The main effect of the solute is to induce a variation of density of the

fluid. Even this density variation can be modeled as in (1.1), by adding a

further term which depends on the solute concentration C, and, in a first

approximation, on a reference density C0 and a (positive) linear coefficient

of density variation αC ,

ρ = ρ0[1− α(T − T0) + αC(C − C0)].

In the OB approximation this expression introduce a further term in the

body force. Transport of the solute inside the fluid should be also accounted

for, by adding a new equation to the system

Ct + v · ∇C = κC∆C,

with κC a diffusion coefficient. Note that this equation has the same form of

(1.2)2. In the basic motionless state, even this field present then a constant

vertical gradient βC (depending, in general, on the boundary conditions on

the field). In a non dimensional form (see Section 4.1), the new system of

equations for a perturbation to the base state depend on the solute Rayleigh

number C, and the Schmidt number Pc

C2 =
αCβCgd

4

νκC
, Pc = ν/κC .

At a difference from the simple Bénard system, overstability can now appear

(see e.g. Joseph (1976)). For stress free kinetic boundary conditions, and for

fixed temperatures, the effect of the solute field can be explicitly calculated

in the linear case, giving a simple additive term (for stationary convection)

to the critical Rayleigh number

R2
c = R2

c,B + C2
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where R2
c,B = 27π4/4 is the critical Rayleigh number in the absence of solute.

Analytic formulas for the case of overstability can also be obtained ((Joseph,

1976).

It is also known, for fixed boundary temperatures (see e.g. Pearlstein

(1981); Rionero and Mulone (1989)), that when the Bénard is subject to

both rotation and a (stabilizing) solute gradient, both effects continue to be

independently stabilizing. This is investigated in Chapter 5 for more general

boundary conditions.

1.2.3 Magnetic field (and rotation)

When the fluid is an electrical conductor, an external magnetic field has also

a stabilizing effect on the Bénard system. At a difference from the previous

case (a solute field), when the system is also subject to rotation the total

effect is not always stabilizing with respect to both fields. This phenomena

are described, e.g., in Chandrasekhar (1961). In Chapter 6 this competition

between the stabilizing effects is briefly discussed in the case of Newton-Robin

and Neumann boundary conditions on the temperature.

1.3 Equations for flows in porous media

A porous medium is any matrix of a material that allows a flow of fluid (liquid

or gas) through its interconnected internal voids, see e.g. Nield and Bejan

(2006); Straughan (2008). Many materials exhibit such property, like sand,

soil, concrete, various filters, hair, to name a few. Motion of a fluid inside

such materials is clearly irregular, since the motion of the fluid particles is

continuously influenced by the interaction with the medium.

Even if a microscopical description would be difficult, it is still possible to

describe the system in terms of some average quantities, where the average

is taken over a sufficiently large representative volume of material.

A typical quantity characterizing such media is the porosity, defined as
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the average fraction of volume which is void. This quantity can range from

values close to 0 for very compact materials, like concrete, to large values for

fiberglass or hair. Typical values for granular mixtures like sand or soil are

in the range 0.4–0.6.

The average velocity of the fluid v, seepage velocity or filtration velocity

is the natural quantity to describe the motion of the fluid. The most elemen-

tary law for this velocity (or momentum) originates from Darcy (1856), and

applies to a steady flow in a homogeneous and isotropic medium,

v =
K

µ
∇P

where ∇P is the gradient of pressure, K is a quantity depending on the mi-

croscopic geometry of the porous medium, called intrinsic permeability, and

µ is the coefficient of dynamic viscosity of the fluid. Such law was empirically

deduced by Darcy, but it has also been derived from general dynamic prin-

ciples (see e.g. Rajagopal (2009); Straughan (2008) and references therein).

Note that the Darcy law describes a steady state of flow, and this is gener-

ally appropriate in the description of the system. In some cases, however,

transient behaviors of the fluid can be relevant, and the inclusion of some

terms describing inertia of the fluid is necessary. A widely accepted form for

this term is given by
ρ

ε

∂v

∂t
,

where ρ is the fluid density, and ε is the porosity of the medium (see e.g.

Vadasz (1998a)).

Even for this systems, it is possible to study thermal instability of a

layer heated from below, and take into account the effect of stabilizing fields.

The same considerations made for the Bénard system about an appropriate

choice of thermal boundary conditions apply here. In several cases, Newton-

Robin or fixed heat flux boundary conditions are required, and their effect is

discussed in Chapters 8, 9, 10 of this thesis.
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1.4 Numerical methods

The linear instability analysis performed on the various system described in

this thesis follows the same general lines of the procedure described in Sec-

tion 1.1.8, reducing finally the analysis to the solution of (ordinary) differen-

tial boundary value problems, similar to (1.21), together with its boundary

conditions, that we rewrite here (for the case of rigid boundaries and fixed

temperatures) 
−σZ = (D2 − a2)Z

−σ(D2 − a2)W = −Ra2Θ + (D2 − a2)2W

−σPrΘ = RW + (D2 − a2)Θ,
(1.24)

Θ = W = DW = (D4 − a2)2W = 0 on z = ±1/2.

These differential equations, and their boundary conditions, are homoge-

neous, and then for general values of the parameters (σ,R, a and Pr) only

the identically null solution Z = W = Θ = 0 exists. By fixing all parame-

ters except one, we get an eigenvalue problem for the free parameter, which

generally can not be solved analytically.

We study numerically such eigenvalue problems with a Chebyshev tau

method, and solve the resulting algebraic generalized eigenvalue problem

with the QZ algorithm according to the method described in Dongarra et al.

(1996); Straughan (2004). The Newton-Robin thermal boundary condition,

and the other homogeneous conditions on the solute density, velocity, and

magnetic field, can be easily incorporated in the method.

The accuracy of the method has been checked by evaluation of the tau

coefficients and, where possible, by comparison with known or analytical re-

sults. For an additional check, the simplified systems obtained when PES

holds where also solved, in some cases, by shooting methods and compound

matrix methods (Straughan, 2004). The compound matrix method is use-

ful in the case of small values of a, since the algebraic eigenvalue problem

obtained for the Chebyshev tau method becomes singular for a → 0. In
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particular, the threshold values presented in section 3.6 were obtained with

a compound matrix method.

Once solved the algebraic eigenvalue problem, further elaborations are

necessary. When the PES is not assumed, as in the case of system (1.24),

the quantity that is treated as eigenvalue is clearly σ, which in general is

complex, with σ = Re(σ) + iIm(σ) = r+ is. The eigenvalues so obtained are

then sorted according to their real part r, as described in Section 1.1.6 for

the spectrum of the full differential operator, obtaining in this way r1. The

Rayleigh number R is then be varied, until it is r1 = 0, meaning that the

system is at criticality and the Rayleigh number so obtained is the critical

Rayleigh number. This procedure is necessarily done for a fixed values of

all the other parameters involved, in particular the wave number a, so the

critical Rayleigh number so found is really a R(a). It is then necessary to

minimizeR(a) with respect to a to finally obtain theRc and ac corresponding

to the onset of convection.
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Chapter 2

Boundary Conditions

2.1 Newton-Robin

The most common boundary conditions for the temperature are thermostatic

boundary conditions. They are used, for example, in the classical works of

Chandrasekhar (1961). The system we are investigating is a layer of fluid,

bounded by the planes z = ±d/2, and we can then suppose in this case that

the value of the temperature is fixed at the boundaries

T = TH , on z = −d/2
T = TL, on z = d/2,

(here TH and TL denote a Higher and a Lower temperature).

In general, boundary conditions for a physical quantity depend, just like

equations, on the knowledge of the physical phenomena involved. In this

case, boundary conditions on the temperature are physically justified by a

description of heat transfer inside the media surrounding the fluid.

The case of a thermostat described above corresponds more closely to a

solid body of high conductivity (with respect to the fluid) and high thermal

capacity. But note that to maintain a fixed temperature, infinite conductivity

and infinite thermal capacity of such media are ideally required.

In many physically relevant cases, however, the media surrounding the

fluid are not (more of less ideal) thermostats (e.g. Sparrow et al. (1963)).
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Boundary Conditions

We can have, for example, a solid of relatively low conductivity, or a fluid

conducting heat mainly by convection. In describing such situations we don’t

want, to a first approximation, to include these media in our system, but we

just want to summarize the phenomena in new boundary conditions.

To describe a finite system we can suppose, for example, that the exter-

nal media (low-conductivity solid, fluid, etc.) are, in turn, in contact with a

thermostat, having fixed temperatures, say T+, T−.

- d/2 d/2

Z

Temp.

T+

T_

For solids, heat transfer is described in the contest of the theory of ther-

mal circuits, and we suppose that the heat flux is constant inside the solid

bodies. For fluids we can use empiric laws, such us the Newton’s law of cool-

ing (Chapman and Proctor, 1980). This law is based on the assumption that

the speed of cooling of a system depends linearly on the difference between

the system temperature and an external temperature.

In both cases the heat flux Q at a boundary will be

Q ∝ (T − Texternal),

where Texternal denotes one of the temperatures T+, T−. We can then recall

the Fourier law, which in one dimension is simply

Q ∝ ∂T

∂z
.
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2.1 Newton-Robin

From the previous expressions we have

∂T

∂z
∝ (T − Texternal),

or, say,
∂T

∂z
= krel(T − Texternal) at a boundary.

These boundary conditions are linear expressions in the normal derivative

of the temperature at a boundary and the temperature itself. These kind of

conditions, which can be regarded as a combination of Dirichlet and Neumann

conditions, are generally called “Robin” in the mathematical literature.

In the case of temperature, because of the connection to the Newton law

of cooling mentioned above, they are commonly referred to as Newton-Robin

boundary conditions.

2.1.1 Preserving the basic solution

We are looking for motionless solutions of our system. The equation for the

temperature inside the fluid is then (see eq. (1.2)2)

∆T (x, y, z) = 0, x, y ∈ R, z ∈ [−d/2, d/2],

subject to the most general Newton-Robin boundary conditions

a
∂T

∂z
+ bT + c = 0, z = −d/2,

a′
∂T

∂z
+ b′T + c′ = 0, z = d/2,

(2.1)

where all coefficients are constants (i.e. independent of the x, y coordinates).

The only admissible solutions for this problem are linear functions of z

T = Az +B
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Boundary Conditions

- d/2 d/2

Z

Temp.

T+

T_

We can find the exact expression of T (z), that is, determine the two

unknowns A and B, using the two linear boundary conditions, since we have

just two linear equations in two unknowns, but the general solutions for A,

B are not simple functions of the constants a, b, c, a′, b′, c′. This implies also

that the base solution is, in this way, affected by the boundary conditions.

Since we are just interested in the effect of Newton-Robin boundary con-

ditions on the stability of the system, it is really not important how they

affect the base solution, which is in any case a linear function of z. So it

is preferable to reduce the degrees of freedom in the choice of the boundary

conditions by imposing a fixed form of the base solution. Namely, we want

to obtain a base solution with a given adverse gradient β and a given mean

temperature T0, that is

T = −βz + T0.

By imposing this condition on both (2.1), taking also into account that ex-

pressions (2.1) are homogeneous in their three coefficients, we are left with

just one free parameter for each of the two boundary conditions. We intro-

duce then the two quantities TH = T0 + βd/2 and TL = T0 − βd/2, which

are respectively an higher (H) and a lower (L) temperature, and the two free
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2.1 Newton-Robin

parameters αH , αL ∈ [0, 1], and express our boundary conditions as

αH

(
∂T

∂z
+ βd

)
+ (1− αH)(TH − T ) = 0, on z = −d/2

αL

(
∂T

∂z
+ βd

)
+ (1− αL)(T − TL) = 0, on z = d/2.

(2.2)

- d/2 d/2

Z

Temp.

TH

TL

T0

T+

T_

It would still be possible to express such boundary conditions in terms

of external reference temperatures (like the temperatures T+, T− introduced

above) and effective conductivity of the bounding media, but this would not

have influence on the formulation of the problem and its solution, so in the

remaining part of this thesis we will use the above form of the boundary

conditions, without using explicitly any external reference temperature.

We will consider also the case of a boundary at which the heat flux is fixed.

This case is generally described as a limit case of Newton-Robin boundary

conditions for very low conductivity of the surrounding media, but it is also

closely approximate by a surface subject to irradiation. Note that we can

not obtain this kind of boundary condition directly from

Tzkrel(T − Texternal),

by sending the proportionality constant to zero. Imposing this, on one or

both boundaries, leads to a base solution with a constant temperature.
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Boundary Conditions

2.1.2 Interpretation of the thermal boundary condi-

tions

For α ∈ (0, 1) conditions (2.2) are equivalent to the many Newton-Robin

boundary conditions used in the literature, but, as we said, they ensure that

the basic solution is always given by

T̂ (x, y, z) = −βz + T0,

this, in turn, ensures that the Rayleigh number is a quantity independent

from the choice of boundary conditions, and allow us to discuss the net effect

of boundary conditions on the solutions of our stability problem.

Conditions (2.2) include also the limit cases of fixed temperatures and

fixed heat fluxes, respectively for α = 0 and α = 1.

2.2 Solute field

As is noted e.g. in Joseph (1976), boundary conditions for a solute dissolved

in a fluid need not to be given just as fixed concentrations. If we suppose

that solute migrates inside the media surrounding the fluid, which appears

reasonable, by considerations similar to the case of temperature discussed

above, we are lead (to a first approximation) to boundary conditions with a

similar form, that is

γH(Cz + βC)d+ (1− γH)(CH − C) = 0, on z = −d/2
γL(Cz + βC)d+ (1− γL)(C − CL) = 0, on z = d/2,

where γH , γL ∈ [0, 1], βC is a concentration gradient, and CH = C0 + βCd/2,

CL = C0 − βCd/2 are respectively an higher (CH) and lower (CL) density,

with C0 a reference density. With this choice, the basic motionless solution

has a fixed concentration gradient βC , and fixed average C0,

Ĉ(x, y, z) = −βCz + C0.
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2.3 Finite slip

2.3 Finite slip

In Chapter 7 we study a system (solute Bénard system) subject to the above

general boundary conditions on temperature and solute concentrations. We

consider also a general expression of the kinetic boundary conditions, which

include the stress-free and rigid conditions given by (1.17) and (1.16) as

particular cases.

Rigid boundary conditions describe the interaction between a fluid and

a solid boundary by prescribing that the fluid is at rest at the boundary

(or, generally, it has the same velocity of the boundary). This condition is

called also the no-slip boundary condition, and it is generally used in the

description of fluid dynamic phenomena. In some cases, especially for gases,

this condition is not verified when the geometry of the system has dimension

of the order of the mean free path of the molecules. This effect appears even

in liquids, as some recent results (Baudry and Charlaix, 2001; Craig et al.,

2001; Priezjev et al., 2005; Webber, 2006) show.

In all cases, there appear to be a relation between tangential velocity at

a boundary, and the shear strain of the fluid. Suppose the fluid is bounded

from above by an horizontal surface Σ, then a horizontal component (say the

component u1 ≡ u) of the velocity is given by

u|Σ = −λε1jnj|Σ

where εij is the shear strain tensor, λ is a constant, n is the unit vector

normal to the surface, given by (0, 0, 1). The shear strain tensor is given by

εij = ∂jui + ∂iuj and then we get

u = −λ∂xu.

When this boundary conditions are used, the velocity will still decrease at

a boundary, but it will reach there a finite value. By extending the velocity

profile inside the boundary, it can be seen the velocity goes (ideally) to zero

at a distance exactly equal to λ inside the boundary, for any boundary value.
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Boundary Conditions

This parameter is for this reason called slip length. For incompressible fluids,

it can be easily verified that this condition translates into

∂zw = λ∂2
zw,

where w is the z component of the velocity (see also Chapter 7 for details).
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Fluid layers
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Chapter 3

Rotating Bénard system

3.1 Fluid equations

We consider an infinite layer Ωd = R2 × (−d/2, d/2) of thickness d > 0

filled with an incompressible homogeneous newtonian fluid F , subject to the

action of a vertical gravity field g. We also assume that the fluid is uniformly

rotating about the vertical axis z with an angular velocity Ω̂k, and denote

by Oxyz the cartesian frame of reference (with unit vectors i, j, k) rotating

about z with the same angular velocity Ω̂. The equations of the fluid in the

Boussinesq approximation are given by (see Chandrasekhar (1961)):
vt + v · ∇v = −∇p

?

ρ0

+ [1− α(T − T0)]g − 2 Ω̂ k× v + ν∆v

∇·v = 0

Tt + v · ∇T = k∆T

(3.1)

where v, T , p? are the velocity, temperature and pressure fields, respectively,

and the field p? includes the centrifugal force term. Further ρ0, α, ν and k

are positive constants which represent the density of the fluid at a reference

temperature T0, the coefficient of volume expansion, the kinematic viscos-

ity and the thermometric conductivity, ∇ and ∆ are the gradient and the

Laplacian operators, respectively, and the suffix “t” denotes the partial time

derivative.
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Rotating Bénard system

For the velocity field, we assume that the boundaries are either rigid or

stress free, and then

v = 0, on rigid boundaries,

k · v = ∂z(i · v) = ∂z(j · v) = 0, on stress free boundaries.
(3.2)

Here we study the effect of more general boundary conditions on the tem-

perature, besides the “thermostatic” boundary conditions used, for example,

in the classical works of Chandrasekhar. In many physically relevant cases

the media surrounding the fluid does not have the properties of a thermo-

stat, as it could be, for example, a solid of relatively low conductivity, or a

fluid conducting heat mainly by convection. The boundary conditions that

can be derived for these systems are linear expressions in the normal deriva-

tive of the temperature at a boundary and the temperature itself, known as

Newton-Robin boundary conditions.

Another case, which can be considered a limit case of Newton-Robin

boundary conditions for very low conductivity of the surrounding media, is

that of a boundary at which the heat flux is fixed (see e.g. Busse and Riahi

(1980); Chapman and Proctor (1980)).

In the literature, many explicit forms of the Newton-Robin boundary

conditions are used, but we find convenient to chose them in such a way that

the basic solution is preserved:

αH(Tz + β)d+ (1− αH)(TH − T ) = 0, on z = −d/2
αL(Tz + β)d+ (1− αL)(T − TL) = 0, on z = d/2,

(3.3)

where αH , αL ∈ [0, 1], β > 0, and TH = T0 + βd/2, TL = T0 − βd/2 are

respectively an higher (TH) and lower (TL) temperature.

By choosing the values of αH , αL in the above expressions, we can obtain

the various boundary conditions for the temperature cited above. In partic-

ular, if we choose αH = αL = 0 we obtain the infinite conductivity boundary

condition, in which we fix the value of the temperature at the boundaries.

For values of αH or αL belonging to the open interval (0, 1) we get the cases

of finite conductivity at the corresponding boundary, or Newton-Robin con-

ditions (Chapman and Proctor, 1980; Nield, 1964; Sparrow et al., 1963). For
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3.2 Equations of linear instability

αH = 1 and αL = 1 we get the insulating boundary conditions (Busse and

Riahi, 1980; Clever and Busse, 1998), with a fixed heat flux q directed along

the z axis at one or both boundaries, with q = βk.

The most important property of conditions (3.3) is that they preserve the

basic solution, simplifying further analysis of the system. It can be easily

verified, in fact, that problem (3.1) with the boundary conditions (3.2)-(3.3)

and any choice of αH and αL has always a motionless solution, v = 0, with

the following expressions for the temperature field and the pressure field

T̂ (x, y, z) = −βz + T0, p∗ = p0 + ρ0g(z +
1

2
αβz2), (3.4)

with p0 a real constant. This form of T implies also T̂ (x, y,−d/2) = TH ,

T̂ (x, y, d/2) = TL, meaning that TH and TL are the temperatures of the fluid

in static conditions at the lower and upper boundaries, respectively. In the

case αH = αL = 1, corresponding to a fixed heat flux at both boundaries, any

function of the form T (x, y, z) = −βz + C, with C arbitrary real constant,

is a solution. In this case we add to the system the following supplementary

condition
1

d

∫ d/2

−d/2
T̂ (x, y, z) dz = T0

and obtain the same solution (3.4).

3.2 Equations of linear instability

A linear analysis of the stability of the motionless solution (3.4) of (3.1)

can be done following the classical work of Chandrasekhar (1961), see also

Straughan (2004). If we denote by u = (u, v, w), θ, p1 the perturbations of

the velocity, temperature and pressure fields, respectively, and by ζ = k·∇×u

the z component of the vorticity field, we obtain the (linearized) system
∆wt = R∆∗θ − T ζz + ∆∆w

ζt = T wz + ∆ζ

Pr θt = Rw + ∆θ,

(3.5)

39



Rotating Bénard system

where ∆∗ is the two-dimensional Laplacian, the quantities R2, T 2, and Pr

are the Rayleigh, Taylor and Prandtl numbers, respectively

R2 =
gαβd4

νk
, T 2 =

4 Ω̂2d4

ν2
, Pr =

ν

k
.

As usual, we assume that the perturbation fields are sufficiently smooth and

are periodic functions in the x and y directions. We denote by

Ωp = (0, 2π/ax)× (0, 2π/ay)× (−1/2, 1/2)

the periodicity cell, and by a = (a2
x+a2

y)
1/2 the wave number (this is not a re-

striction as we can choose any other plane tiling pattern in the x, y directions,

see Straughan (2004)). In the case of stress-free boundary conditions, in or-

der to ensure uniqueness of the basic solution, we also require the “average

velocity conditions” (Kloeden and Wells, 1983)∫
Ωp

u dΩp =

∫
Ωp

v dΩp = 0.

Following the standard analysis in normal modes of the system, we search

then solutions of (3.5) in the form
w = W (z) exp{ i (axx+ ayy) + p t}
ζ = Z(z) exp{ i (axx+ ayy) + p t}
θ = Θ(z) exp{ i (axx+ ayy) + p t}

(3.6)

where p = σ + iτ is a complex constant, with Re(p) = σ and Im(p) = τ .

Substituting expressions (3.6) into system (3.5) we obtain
(D2 − a2)2W − T DZ −R a2 Θ = p (D2 − a2)W

(D2 − a2)Z + T DW = pZ

(D2 − a2)Θ +RW = pPr Θ,

(3.7)

where “D” represents the operator of derivation along the z axis. In the

absence of rotation, that is for T = 0, field Z (that is linearly a stabilizing

field) decouples from the other two fields. It is then possible to study the

instability of the solutions through the following reduced system{
(D2 − a2)2W −R a2 Θ = p (D2 − a2)W

(D2 − a2)Θ +RW = pPr Θ.
(3.8)
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3.3 Sufficient conditions for PES

In these new variables, the hydrodynamic and thermal boundary conditions

become

on a rigid surface W = DW = Z = 0,

on a stress-free surface W = D2W = DZ = 0,

on z = −1/2 αHDΘ− (1− αH)Θ = 0,

on z = 1/2 αLDΘ + (1− αL)Θ = 0.

(3.9)

We note that, in the case of FF boundaries, from (3.7)2 it follows that σ < 0

or
∫ 1/2
−1/2

Z dz = 0. System (3.7), subject to various combinations of the above

boundary conditions, is an eigenproblem for the corresponding fields in which

a, R, T , Pr, αH and αL are treated as parameters and p as the eigenvalue.

From the definitions (3.6) we see that a perturbation, satisfying (3.7) or (3.8),

will grow exponentially if σ > 0 for the corresponding eigenvalue.

If we denote by p1 = σ1 + i τ1 the eigenvalue with the largest real part

in the spectrum of our problem (for the existence of such an eigenvalue see

Straughan (2004)), criticality is obtained for σ1 = 0. If at criticality it is also

τ1 = 0 (and then p1 = 0) we say that the principle of exchange of stabilities

(PES) holds. If it is known (for example by analytical considerations, by

previous calculations, or even by experimental data) that PES holds for some

range of values of the parameters, then the study of (3.7) and (3.8) can be

greatly simplified, since it is sufficient to consider the systems obtained for

p = 0, which are also independent of Pr (see e.g. Chandrasekhar (1961)).

3.3 Sufficient conditions for PES

Theorem 3.1. Let us consider system (3.8), which is obtained in the ab-

sence of rotation, with any combination of boundary conditions (3.9). It can

be easily shown that the strong PES holds, i.e. all the eigenvalues are real

numbers.

Proof. We multiply eq. (3.8)1 by W and eq. (3.8)2 by −Θ (where A denotes

the complex conjugate of a field A) integrate over z on the interval [−1/2, 1/2],
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Rotating Bénard system

and obtain ‖(D
2 − a2)W‖2 −Ra2(Θ,W ) + p (||DW ||2 + a2 ||W ||2) = 0

||DΘ||2 + a2 ||Θ||2 −R(W,Θ) + pPr ||Θ||2 + S(Θ) = 0,

where

S(Θ) =
1− αH
αH

|Θ(−1/2)|2 +
1− αL
αL

|Θ(1/2)|2,

||A|| and (A,B) =
∫ 1/2
−1/2

AB dz denote the usual norm and scalar product in

L2([−1/2, 1/2]). The term S(Θ), which is real (and non-negative), originates

from the thermal boundary conditions (3.9)3,4. If we multiply the second

equation by a2 and add it to the first, we obtain an equation whose imaginary

part is

τ(||DW ||2 + a2 ||W ||2 + a2Pr ||Θ||2) = 0 .

It is then necessarily τ = 0, i.e. all the eigenvalues p must be real. We

conclude that, as is already well known for fixed boundary temperatures, for

T = 0 the strong PES holds.

Now we consider system (3.7) (with T 6= 0) and proceed as in Banerjee

et al. (1985) and Chandrasekhar (1961). We multiply (3.7)1 by W , (3.7)2 by

Z, (3.7)3 by −a2Θ, integrate over [−1/2, 1/2] and sum. The imaginary part of

the equation so obtained is

τ(||DW ||2 + a2 ||W ||2 + a2Pr ||Θ||2 − ||Z||2) = 0 . (3.10)

As before, Newton-Robin boundary conditions contribute with the real term

S(Θ), which does not appear in the above equation. For any eigenvalue that

has an imaginary part τ 6= 0, (3.10) implies

||Z||2 = ||DW ||2 + a2 ||W ||2 + a2Pr ||Θ||2 . (3.11)

Now we take the real part of the equation obtained multiplying (3.7)2 by Z

σ ||Z||2 = T Re(DW,Z)− (||DZ||2 + a2 ||Z||2)
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3.4 Numerical methods

At criticality (σ = 0), we can construct the following chain of inequalities

||DZ||2 + a2 ||Z||2 = −T Re(W,DZ) ≤ T ||W || ||DZ|| ≤

≤ T
2

(
ε ||W ||2 +

1

ε
||DZ||2

)
≤ T

2

(
ε

π2
||DW ||2 +

1

ε
||DZ||2

)
≤

≤ T
2

(
ε

π2
||Z||2 +

1

ε
||DZ||2

)
≤ T

2

(
ε

π2C2
+

1

ε

)
||DZ||2 ,

(3.12)

where ε is a positive number. The constant C2 appearing in the last inequality

is the Poincaré constant, C2 = π2 for FF and RR boundaries, C2 = π2/4 in

the RF case. By choosing for ε the optimal value π C, from (3.12) and (3.11)

we obtain(
1− T

πC

)
||DZ||2 + a2 ||DW ||2 + a4 ||W ||2 + a4Pr ||Θ||2 ≤ 0 , (3.13)

We see that the previous equation cannot be satisfied if T 2 < π2C2, thus the

following theorem holds.

Theorem 3.2. For system (3.7) with thermal boundary conditions (3.9)3,4

and any αH , αL, the principle of exchange of stabilities holds if T 2 < π4

for FF and RR hydrodynamic boundary conditions, or T 2 < π4/4 in the RF

case.

Remark 3.3. We note that inequality (3.13) implies also the general validity

of PES for large Prandtl numbers.

Remark 3.4. In the case FF, our numerical computations (see Sec. 3.7)

show that the condition T 2 > π4 implies overstability, at least for Pr→ 0 and

fixed heat fluxes. In this case, the condition given by Theorem 2 is optimal.

3.4 Numerical methods

The solution of eigenproblems (3.7), (3.8) as it is well known, can be found

analytically in terms of simple trigonometric functions in the case of free-free

boundary conditions and fixed boundary temperatures (see Chandrasekhar
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Figure 3.1: Values of ac as a function of the parameter L for selected values

of T 2 for RR and FF boundary conditions. Notice the different behaviour

for L → 0 of the curves T 2 ≤ 1850 and T 2 ≥ 1900 for RR boundaries, and

T 2 ≤ 179 and T 2 ≥ 183 for FF boundaries.

(1961); Straughan (2004)). For other boundary conditions there is no simple

analytical solution, and the problems must be solved numerically.

We study numerically systems (3.7-3.8), with a Chebyshev tau method,

and solve the resulting algebraic generalized eigenvalue problem with the QZ

algorithm (Dongarra et al., 1996; Straughan, 2004).

3.5 Results for Newton-Robin boundary con-

ditions

We consider first the case “finite” conductivity, that is boundary conditions

(3.9)3,4 for αH , αL ∈ (0, 1). Even if different combination of values of αH , αL

can be considered, we observed the most interesting effects for αH , αL → 1,

then for the sake of simplicity, we show here the cases of “symmetric” bound-

ary conditions, that is αH = αL ≡ α. For an easy comparison with previous

works (e.g. Nield (1964); Sparrow et al. (1963)), we use in the following the

quantity L = (1− α)/α. In Fig. 3.1 we observe the asymptotic behaviour of

the critical wave numbers for L → 0 and L → ∞, for RR and FF hydrody-

namic boundary conditions. We see that, in both cases, ac → 0 as L → 0,
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Figure 3.2: Values of ac as a function of T 2 for selected values of L ranging

from L = ∞ (fixed temperatures) to L = 0 (fixed heat fluxes), RR and FF

boundary conditions.

for a sufficiently small Taylor number. In the RR case, for example we see

that ac goes asymptotically to zero for T 2 ≤ 1869.

We investigate now more closely the behaviour of ac for small values of

L. As shown in Fig. 3.1, below some threshold value of T 2, depending on

the hydrodynamic boundary conditions, ac seems to go to zero as L→ 0. To

better understand this behaviour, it is useful to represent ac as a function

of T 2 for a range of values of L, as we do in Fig. 3.2 for the case of RR

and FF boundaries. The figure includes even the limit case L = 0, that

is discussed more extensively in the next section. We see then clearly that

ac → 0 as L→ 0 below a certain value of T 2. The same qualitative behaviour

is observed also for RF boundaries.

Fig. 3.3 represents the dependency of the Rayleigh number R2 on a, and

underlines the big difference between the L = 0 and L > 0 cases. We see

(in the limited range of the graphics) that for L > 0, R2 diverges to +∞
for a → 0, for any value of T 2, and so clearly the minimum of R2 is always

reached for some a > 0. On the other hand, for L = 0, R2 is always finite

for a = 0, even when the minimum is reached for a positive value of a.
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Figure 3.3: Values of R2 as a function of a for L = 0 and L = 10−4 for RR

boundary conditions. In both graphics, the continuous curves are computed

for T 2 = 1500, 1600, . . . , 3000, from bottom to top. The dash-dotted lines

are the loci of critical points (ac,R2
c), and so they intersect the continuous

curves in their respective minima.

3.6 Results for fixed heat fluxes

We consider here the case αH = αL = 1 for the three combinations of surfaces

RR, RF, FF, for moderate values of the Taylor number T 2. It is known (Busse

and Riahi, 1980; Chapman and Proctor, 1980) that in absence of rotation

(T 2= 0), when the thermal boundary conditions approach the “insulating”

case, the critical wave number ac tends to a minimum value equal to zero,

and the corresponding critical Rayleigh numbers R2
c tend to the exact integer

values of 720, 320, 120 for RR, RF, FF respectively. In Fig. 3.4 we show the

dependency of the critical wave number ac on T 2, in the RR, RF, and FF

cases, noting that the critical wave number departs from zero in all three

cases above some value of T 2.

The approximate threshold values of T 2 at which ac becomes greater than

zero are given in Table 3.1.

Note that ac becomes positive for small values of the Taylor number for

both FF and RF boundary conditions and that ac becomes positive first for

the RF boundary conditions. R2
c is an increasing function of T 2, and ac is

increasing for T 2 > T 2
a . For T 2 = T 2

a the dependency of the critical Rayleigh
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Figure 3.4: Critical wave number and Rayleigh number as a function of T 2

for fixed heat fluxes at both boundaries. Note how the critical wave number

is equal to zero only up to a certain threshold in all three cases.

Table 3.1: Approximate threshold values of T 2 such that ac = 0 for T 2 . T 2
a .

Boundaries RF FF RR

T 2
a 77.32 180.15 1868.86

number R2
c on T 2 remains regular (see right panel of Fig. 3.4).

3.7 Overstability

In Sec. 3.3 we have shown that for the rotating Bénard problem, PES holds

for any Pr and for values of T 2 < π4 (RR and FF boundaries) or T 2 < π4/4

(RF boundaries), or for any T 2 and large values of Pr.

The validity of PES in the general case (a ≥ 0, T 2 ≥ 0, and any Pr)

is an open problem. To complete our analysis, we have investigated with

numerical methods the validity of PES for a wide range of values of T 2 and

Pr in the presence of Newton-Robin and “insulating” boundary conditions.

Our computations confirm that, as expected, PES holds for sufficiently large

Prandtl numbers for every combination of boundary conditions. Moreover,

even for Pr→ 0, the limits for overstable convection derived in Sec. 3.3 are

satisfied. In particular, we find that for fixed heat fluxes and Pr→ 0, PES
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Figure 3.5: Left figure: the solid lines show the critical wave number as a

function of T 2 for fixed heat fluxes at both boundaries, RF and FF bound-

ary conditions, and Prandtl number Pr = 0.025. The vertical dotted lines

indicate a discontinuity in ac, corresponding to the transition from simple

convection to overstability. Right figure: curve R2(a) for FF boundaries

at T 2 = 219.635, showing the transition between convective and overstable

regime; the length of the vertical lines is equal to the imaginary part τ of the

exponent p at the corresponding critical points.

holds for T 2 less then ≈ 46.1,≈ 97.5,≈ 1654, respectively for RF, FF, RR

boundaries. We observe that for FF boundaries, the analytical threshold

derived in Sec. 3.3 appears to be the best estimate, since the numerical value

is very close to π4 ' 97.41.

In Fig. 3.5 we show some results obtained for the physically relevant

case of mercury (Pr= 0.025) in the limit case of fixed heat fluxes at both

boundaries. We see, in the left panel, the transition from simple convection

to overstability, corresponding to a sudden decrease of ac for RF boundaries,

and an increase in the FF case. The dashed lines correspond to the convective

cases already presented in the previous section.

In the right figure we show a detail of the critical curve R2(a) for the FF

case at the transition between convection and overstability.
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3.8 Main results

3.8 Main results

We have studied the rotating Bénard system subject to a variety of bound-

ary conditions, with a particular attention toward thermal boundary condi-

tions different from the common thermostatic conditions. For Newton-Robin

boundary conditions, and, especially, in the limit case of fixed heat fluxes at

both boundaries (the so-called insulating boundary conditions), the system

stability exhibits a qualitative dependence on the Taylor number T 2. We

observe, in fact, that below a certain threshold of rotation speed the critical

wave number tends to be zero, while, above that threshold, it is an increasing

function of T 2. This threshold should be experimentally observable and rel-

evant even for boundary conditions close to the limit conditions of fixed heat

fluxes, i.e. for poorly conducting boundaries. From a physical point of view,

we expect that up to some threshold of rotation speed, the convection cells

would probably be the largest allowed by the experimental setup, and their

dimension should start to decrease when the rotation speed is increased above

the threshold. A similar effect, in the case of Marangoni-Bénard convection,

has already been observed (Mancho et al., 2002).

The nonlinear stability of the rotating Bénard problem for FF bound-

ary conditions and fixed temperatures at the boundaries has been studied

by many writers both with a weakly nonlinear method (Veronis, 1968) and

Lyapunov functions (Flavin and Rionero, 1996; Mulone and Rionero, 1989,

1997; Straughan, 2004). The stabilizing effect of rotation on the onset of

convection has been shown. A possible extension of our results is the study

the nonlinear stability of the Bénard problem subject to the thermal bound-

ary conditions considered here with a Lyapunov method by using also the

new method introduced in Lombardo et al. (2008); Mulone and Straughan

(2006).
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Chapter 4

Solute field

In the simple Bénard problem the instability is driven by a density differ-

ence caused by a temperature difference between the lower and upper planes

bounding the fluid. When the temperature gradient reaches a critical value

the fluid gives rise to a regular pattern of motion (onset of convection).

If the fluid layer additionally has a solute dissolved in it, we have a binary

fluid mixture and the phenomenon of convection which arises is called double

diffusive convection. The study of stability and instability of motions of

a binary fluid mixture heated and salted from below is relevant in many

geophysical applications (Baines and Gill, 1969; Nield, 1967; Veronis, 1965)

(see also Joseph (1976); Straughan (2004) and the references therein). It has

been studied both in the linear and nonlinear case.

Here we consider the problem of a layer heated and salted from below.

This means that in the motionless basic state we have a positive concentration

gradient, having a stabilizing effect. The critical linear instability thresholds

have been studied in the case of rigid and stress-free boundaries and for

fixed temperatures and concentrations of mass. Here we consider more gen-

eral boundary conditions on temperature and solute, in the form of Robin

boundary conditions, which are linear expressions in the temperature (or so-

lute concentration) and its normal derivative at a boundary. These boundary

conditions are physically more realistic then simply fixing the value of the

51



Solute field

fields at a boundary, and they have a profound influence on the threshold

of stability. A peculiarity of these boundary conditions for the temperature

is that in the limit case of fixed heat fluxes the wavelength of the critical

periodicity cell tends to infinity. In this work we investigate the influence of

the solute field on this long-wavelength phenomenon, with the striking result

that the critical parameters become totally independent from the solute field.

This last aspect and non linear stability will require further analysis of the

systems.

4.1 Bénard system for a binary mixture

We denote by Oxyz the cartesian frame of reference, with unit vectors i, j,

k, and we consider an infinite layer Ωd = R2× (−d/2, d/2) of thickness d > 0

filled with a newtonian fluid F , subject to a vertical gravity field g = −gk.

We suppose that the density of the fluid depends on temperature T and on

a solute concentration C according to the linear law ρf = ρ0[1 − αT (T −
T0) + αC(C − C0)], where ρ0, T0 and C0 are reference density, temperature

and concentration, and αT , αC are (positive) density variation coefficients. In

the Oberbeck-Boussinesq approximation, the equations governing the motion

of the fluid are given by (see Joseph (1976))

vt + v · ∇v = −∇ p

ρ0

+
ρf
ρ0

g + ν∆v,

∇ · v = 0,

Tt + v · ∇T = κT∆T,

Ct + v · ∇C = κC∆C,

where v and p are the velocity and pressure fields. Further, ν and κT , κC are

positive constants which represent kinematic viscosity and the thermal and

solute diffusivity. ∇ and ∆ are the gradient and the Laplacian operators,

respectively, and the subscript “t” denotes the partial time derivative.

For the velocity field, we assume that the boundaries are either rigid or
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4.1 Bénard system for a binary mixture

stress free, and then

v = 0, on rigid boundaries,

k · v = ∂z(i · v) = ∂z(j · v) = 0, on stress free boundaries.

For temperature we use Newton-Robin boundary conditions, which de-

scribe the physically relevant cases in which the media surrounding the fluid

is not an ideal thermostat (see e.g. Joseph (1976)). In the literature, many

explicit forms of the Newton-Robin boundary conditions are used, but we

find convenient to choose them in such a way that, by varying a single coef-

ficient, different thermal boundary conditions can be obtained, but the basic

(motionless) solution is preserved:

αH(Tz + βT )d+ (1− αH)(TH − T ) = 0, on z = −d/2
αL(Tz + βT )d+ (1− αL)(T − TL) = 0, on z = d/2,

(4.1)

where αH , αL ∈ [0, 1], βT > 0, and TH = T0 + βTd/2, TL = T0 − βTd/2 are

respectively an higher (TH) and lower (TL) temperature. For αH , αL = 0,

we obtain the infinite conductivity boundary condition, in which we fix the

value of the temperature at a boundary. For αH , αL ∈ (0, 1) we get the

cases of finite conductivity at the corresponding boundary, or Newton-Robin

conditions (Chapman and Proctor, 1980; Nield, 1964; Sparrow et al., 1963).

For αH , αL = 1 we get the insulating boundary conditions (Busse and Riahi,

1980; Chapman and Proctor, 1980; Clever and Busse, 1998), with a fixed heat

flux q directed along the z axis at one or both boundaries, with q = βTκT .

For the solute field, by similar considerations (Joseph, 1976), we use

boundary conditions depending on both concentration of solute and its nor-

mal derivative at the boundary surfaces. Again, to obtain a range of bound-

ary conditions (from fixed concentrations to fixed fluxes of solute) depending

on a single parameter on each boundary, while maintaining the basic solution,

we use the following expressions

γH(Cz + βC)d+ (1− γH)(CH − C) = 0, on z = −d/2
γL(Cz + βC)d+ (1− γL)(C − CL) = 0, on z = d/2,

(4.2)

53



Solute field

where γH , γL ∈ [0, 1], βC > 0, and CH = C0 + βCd/2, CL = C0 − βCd/2 are

respectively an higher (CH) and lower (CL) density.

The steady solution in whose stability we are interested is the motionless

state, which, for any choice of the αH , αL, γH , γL parameters, is

v = 0, T = −βT z + T0, C = −βCz + C0. (4.3)

Note that in (7.1) βT , βC are the temperature and concentration gradients.

The non-dimensional equations — here we use the non-dimensional form

given in Joseph (1976), §56 — which govern the evolution of a disturbance

to (7.1) are Joseph (1976)
ut + u · ∇u = −∇p1 + (Rϑ− Cγ)k + ∆u, ∇ · u = 0,

Pθ(ϑt + u · ∇ϑ) = Rw + ∆ϑ,

Pc(γt + u · ∇γ) = Cw + ∆γ,

(4.4)

where u ≡ (u, v, w), ϑ, γ, p1 are the perturbations to the velocity, tempera-

ture, concentration and pressure fields, respectively. The stability parameters

in (4.4) are the Rayleigh numbers R, C for heat and solute, and Pθ and Pc

are the Prandtl and Schmidt numbers (as defined in Joseph (1976)), and are

given respectively by

R2 =
αTβTgd

4

νκT
, C2 =

αCβCgd
4

νκC
. (4.5)

Moreover

Pθ = ν/κT and Pc = ν/κC

are the Prandtl and Schmidt numbers. Note that in (4.4) we have made use

of the transformation Rϑ = ϑ1, Cγ = γ1 and we have omitted the subscript

“1”.

4.2 Linear instability equations

We perform a linear instability analysis of systems (4.4).
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4.2 Linear instability equations

We follow the standard analysis of Chandrasekhar (1961), applying twice

the curl operator to the first equation. We then consider only the linear

terms of the resulting systems and obtain
∆wt = R∆∗ϑ− C∆∗γ + ∆∆w

Pθϑt = Rw + ∆ϑ,

Pcγt = Cw + ∆γ.

(4.6)

where ∆? = ∂2/∂x2 + ∂2/∂y2. We assume, as usual, that the perturbation

fields are sufficiently smooth, and that they are periodic in the x and y

directions (this is not a restriction, see Straughan (2004)). We denote by

a = (a2
x + a2

y)
1/2 the wave number. We search then solutions of both systems

in the form

f = F (z) exp{ i (axx+ ayy) + p t} (4.7)

for fields w, ϑ, γ, where p = σ + iτ is a complex constant. By substituting

expressions (4.7) in (4.6) we obtain the following system for the perturbation

fields W,Θ,Γ
p (D2 − a2)W = (D2 − a2)2W + Ca2 Γ−Ra2 Θ

pPθ Θ = (D2 − a2)Θ +RW,
pPc Γ = (D2 − a2)Γ + CW,

where “D” represents the derivation along z. In this new variables, the

hydrodynamic, thermal and solute boundary conditions become

on a rigid surface DW = W = 0,

on a stress-free surface D2W = W = 0,

on z = −1/2 αHDΘ− (1− αH)Θ = 0, γHDΓ− (1− γH)Γ = 0,

on z = 1/2 αLDΘ + (1− αL)Θ = 0, γLDΓ + (1− γL)Γ = 0.

When the principle of exchange of stabilities (PES) holds, a simplified form

of both systems is obtained (Chandrasekhar, 1961).
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4.3 Some results

It is well known (Busse and Riahi, 1980; Chapman and Proctor, 1980) that in

the Bénard system, for Newton-Robin BCs approaching fixed heat fluxes on

both boundaries, the critical wave number of the perturbations goes to zero

(and so the wavelength goes to infinity), and the critical Rayleigh numbers

R2
c tend to the integer values 720, 320, 120, respectively for RR, RF, and FF

boundary conditions. This has been verified (Falsaperla et al., 2010a) also

for a Darcy flow in a porous medium, with R2
c = 12. We check here how a

solute field affects the stability of a fluid under Newton-Robin or fixed heat

flux BCs.

In general, the eigenvalue problems obtained for this kind of boundary

conditions must be solved numerically. We solved our eigenvalue problems

with a Chebyshev Tau method (see Straughan (2004) and Dongarra et al.

(1996)). The accuracy of the method has been checked by evaluation of the

tau coefficients, by comparison with known or analytical results, and, when

PES holds, comparing the solutions of PES and non-PES problems.

We performed a series of computations for different choices of Prandtl and

Schmidt numbers, and thermal and hydrodynamic BCs. In the following we

present some results for stress free boundaries. In this case the analytic

solution is known (see e.g. Lombardo and Mulone (2002)) for thermostatic

boundaries, and overstability phenomena are present for Pc/Pθ > 1. We show

graphics obtained for Pc = 3 and Pθ = 1. The same qualitative behavior

appears also for more physically meaningful values, such as Pc = 670 and

Pθ = 6.7 (for sea water).

We see in Fig. 4.1 that the overstability region disappears during the

transition from fixed temperatures to fixed heat fluxes, (at a smaller value

of α for sea water). The solute, as expected, has a stabilizing effect, but

we note that in the limit case of fixed heat fluxes the stabilizing effect is

totally lost, since the critical Rayleigh number becomes independent of the

concentration gradient. This result is somehow surprising, and will require

further investigation. (In the case of the rotating Bénard system we observed
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Figure 4.1: R2
c as a function of C2 for thermal BCs going from fixed tem-

peratures (α = 0) to fixed heat fluxes (α = 1), FF boundaries.

a stabilizing effect of rotation even for fixed heat fluxes). The result is nev-

ertheless correct: an asymptotic analysis of the system for a → 0 confirms

that R2
c = 120 (for FF boundaries), independently of C. A point to note

is that, since the critical Rayleigh number is independent of the concentra-

tion for fixed heat fluxes, we can use the classical non-linear energy stability

analysis in the absence of a solute. The critical value R2
c ensures then global

stability (w.r.t. the classical energy norm) for any solute gradient. In Fig.

4.2 we show the critical wave number corresponding to the critical Rayleigh

numbers of Fig. 4.1. For fixed heat fluxes, and for any stabilizing solute

gradient (C2 > 0) the wave number is equal to zero. For fixed temperatures

the critical wave number ac is the constant π/
√

2. At the transition between

stationary convection and overstability, for non-thermostatic boundaries, the

wave number has a discontinuity. Fig. 4.3 shows the influence on stability

of the boundary conditions on the solute. The results for fixed solute con-

centrations are analytically known (see e.g. Joseph (1976); Lombardo and

Mulone (2002)), and are linear both in the convective and overstable regime.
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Figure 4.2: Critical wave number ac as a function of C2 for thermal boundary

conditions going from fixed temperatures (α = 0) to fixed heat fluxes (α = 1),

FF boundaries. The vertical segments are added as a guide for the eye.
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4.4 Conclusions

From the numerical results shown in the figure, the dependence on C2 seems

linear also for Robin boundary conditions on the solute field, so we can sus-

pect that an analytical solution exists even in this case. We observe also

that in the convective regime the most stable condition is always obtained to

fixed solute fields, while the situation is reversed in the case of overstability.

The solute field remains in any case a stabilizing field. Contrary to the case

of fixed heat fluxes, for fixed solute fluxes the critical Rayleigh number does

not become independent on the solute gradient. Moreover, the corresponding

critical wave number is not zero, so the long wavelength phenomenon seems

linked only to a fixed flux of the destabilizing field.

4.4 Conclusions

The stability of a binary fluid layer subject to Neumann boundary conditions

on the temperature, i.e. subject to fixed heat fluxes, results totally indepen-

dent on the solute field. A clear physical interpretation of the phenomenon is

yet to be found. The most stabilizing thermal boundary conditions, at least

for stationary convection, are thermostatic boundaries. A better analysis of

the transition between stationary convection and overstability is required,

and a nonlinear stability analysis for the general Newton-Robin case is in

progress.
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Chapter 5

Solute and rotation

The stabilizing effect of uniform rotation has been predicted by Chandrasekhar

(1961) in the rotating Bénard problem. A stabilizing effect is obtained even

by salting the fluid layer from below (Joseph, 1976). Two or more simulta-

neously acting stabilizing effects allow observation of a very rich variety of

phenomena often surprising. As is known, a cooperative behaviour has been

showed among the rotation and salt concentration field (when the mixture is

salted from below) (Lombardo, 2008). Here we study how the boundary con-

ditions influence the interaction of rotation and salt (supplied from below),

in particular Robin and Neumann boundary conditions on temperature. Nu-

merical results are obtained with a Chebyshev-tau method (Dongarra et al.,

1996).

5.1 The Bénard problem of a rotating mix-

ture

Let Oxyz be a cartesian frame of reference with unit vectors i, j, k respec-

tively, rotating at the constant velocity Ω̄k. Let d > 0 and assume that a

newtonian fluid is confined in the layer Ωd = R2 × (−d/2, d/2), and sub-

ject to a gravity field g = −gk. We assume also that the density of the

fluid depends linearly on temperature T and concentration C of a solute
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Solute and rotation

according to ρf = ρ0[1 − αT (T − T0) + αC(C − C0)], with αT , αC positive

coefficients of volume expansion and T0, C0 reference temperature and con-

centration (Chandrasekhar, 1961; Joseph, 1976; Mulone and Rionero, 1998).

For the temperature field we assume Newton-Robin boundary conditions,

which are linear combination of the temperature at a surface and its normal

gradient. This boundary conditions describe the physical cases in which the

media surrounding the fluid are not thermostatic (Falsaperla and Mulone,

2010; Joseph, 1976). The limit cases of fixed temperatures or fixed tempera-

ture gradients (and hence fixed heat fluxes) are also considered. We use the

following general form of the thermal boundary conditions:

αH(Tz + βT )d+ (1− αH)(TH − T ) = 0, on z = −d/2
αL(Tz + βT )d+ (1− αL)(T − TL) = 0, on z = d/2,

(5.1)

where αH , αL ∈ [0, 1], βT > 0, and TH = T0 + βTd/2, TL = T0 − βTd/2

are respectively an higher (TH) and lower (TL) temperature. Note that,

from (5.1), we obtain fixed temperature, fixed heat flux, or a Newton-Robin

boundary condition (Chapman and Proctor, 1980; Nield, 1964; Sparrow et al.,

1963) at z = d/2, when αL is equal to 0, 1 or 0 < αL < 1, respectively. The

same observations apply to αH and the boundary z = −d/2. For the velocity

field, we assume that the boundaries are either rigid (v = 0) or stress free

(k · v = ∂z(i · v) = ∂z(j · v) = 0) (Chandrasekhar, 1961). Concentrations at

the boundaries are C(x, y,−d/2) = C0 + βCd/2, C(x, y, d/2) = C0 − βCd/2,

where βC is an assigned concentration gradient. The form of (5.1) ensures

that for any choice of αH , αL, (and rigid or stress-free boundaries) the basic

solution m0 is the same, simplifying further analysis

v = 0, T (x, y, z) = −βT z + T0, C(x, y, z) = −βCz + C0.

The non-dimensional evolution equations of a perturbation to the basic mo-

tionless state m0 are (Lombardo, 2008)
ut + u · ∇u = −∇p∗ + (Rϑ− Cγ)k + ∆u + T u× k,

∇ · u = 0, PT (ϑt + u · ∇ϑ) = Rw + ∆ϑ,

PC(γt + u · ∇γ) = Cw + ∆γ
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Figure 5.1: R2
c and ac as a function of C2 for fixed heat fluxes. Taylor

number is equal to 106, 105, . . . , 10 from top to bottom in both graphics. For

T 2 = 10, 100, ac is identically equal to zero for any C.

in Ω1 × (0,∞) where Ω1 = R2 × (−1/2, 1/2). In this system u = ui +

vj + wk, ϑ, γ and p∗ are functions of (x, y, z, t) which represent the per-

turbations of the velocity, temperature, concentration and pressure fields,

respectively; ∇ is the gradient operator and ∆ is the Laplacian. The pa-

rameters R2, C2, T 2, PT , PC are the standard Rayleigh number for heat and

solute, Taylor number, Prandtl and Schmidt numbers, respectively (Chan-

drasekhar, 1961; Joseph, 1976).

5.2 Instability equations

We study the linear instability of the basic motion, following Chandrasekhar

(1961). We assume for the perturbation fields the general form, periodic in

x, y, f = F (z) exp{ i (axx + ayy) + p t}, where f denotes any of the fields

w, ζ(= k · ∇ × u), θ, γ and p = σ + iτ . Then, following standard cal-

culationsChandrasekhar (1961); Lombardo (2008), and adopting a suitable
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Solute and rotation

rescaling of fields, we can derive the equations

p (D2 − a2)W = (D2 − a2)2W − T DZ + Ca2 Γ−Ra2 Θ

pZ = T DW + (D2 − a2)Z

pPT Θ = (D2 − a2)Θ +RW,
pPC Γ = (D2 − a2)Γ + CW,

(5.2)

where a = (a2
x + a2

y)
1/2 is the wave number, and Dn denotes the n-th partial

derivative respect to z. The boundary conditions for system (5.2) are W =

Γ = 0 on z = ±1/2, D2W = DZ = 0 on stress-free boundaries, DW =

Z = 0 on rigid boundaries, αHDΘ − (1 − αH)Θ = 0 on z = −1/2 and

αLDΘ + (1 − αL)Θ = 0 on z = 1/2. When the Principle of Exchange of

Stabilities (PES) holds (σ = 0 ⇒ τ = 0), for stress-free and thermostatic

boundaries, it is possible to find (Lombardo, 2008) for the critical Rayleigh

number

R2
1 =

(1 + x)3

x
+
T 2

1

x
+ C2

1 , (5.3)

where R1 = R/π2, x = a2/π2, C1 = C/π2, and T1 = T /π2. In (5.3),

the second and third term are exactly the stabilizing contributes appearing

when only one of the two fields is present (Chandrasekhar, 1961; Joseph,

1976), moreover the critical wave number appears independent of C.

5.3 Results and conclusions

We consider the case of fixed heat fluxes, stress-free boundaries and PT =

PC = 1. At a difference from the case T = 0 (Falsaperla and Mulone, 2009),

where R2 is constant (R2 = 120, dashed line in Fig. 1a), now the Rayleigh

number is an increasing function of C and T , and so the stabilizing effect of

the solute is restored. Angular points correspond to a transition to a region

of vanishing values of ac. Moreover, we observe (Fig. 1b) a “competition” on

the wave number between rotation and concentration gradient, in the sense

that the wave number, for any fixed T , becomes zero for sufficiently large

values of C; on the other hand, for fixed C and sufficiently large T , it is ac > 0.
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5.3 Results and conclusions

The same figure shows that, for large values of T , C, the region ac = 0 is very

closely defined by C2 > T 2.

It is possible to check that the concentration and rotation fields remain

cooperative in their stabilizing effects, for any αH , αL ∈ [0, 1], and different

values of PT , PC . For PC > PT overstability effects appear. At least for

stationary convection, thermal boundary conditions are more destabilizing as

the parameters αH , αL increase, i.e. in the transition from fixed temperatures

to fixed heat fluxes.
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Chapter 6

Magnetic fluids

A stabilizing effect for the Bénard problem is obtained immersing it in a

normal magnetic field, if the fluid is electrically conducting, Chandrasekhar

(1961). As is known, unexpected conflicting tendencies among rotation and

magnetic field have been found by Chandrasekhar. Here we study the in-

teraction of magnetic field and rotation, coupled with Robin and Neumann

boundary conditions on temperature.

6.1 The rotating magnetic Bénard problem

The magnetic Bénard problem deals with the onset of convection in a hor-

izontal layer of a homogeneous, viscous, and electrically conducting fluid,

permeated by an imposed uniform magnetic field normal to the layer, and

heated from below (Chandrasekhar, 1961; Thompson, 1951).

We suppose here that the system has the same geometry considered in the

previous section, and the corresponding fields are subject to the same bound-

ary conditions. Following the procedure of Chandrasekhar (1961), Chapter

V, we arrive to the linear instability analysis system: where X and K are
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Figure 6.1: R2
c and ac as a function of Q2

1 for T 2
1 = 104. Thermal boundary

conditions vary in both graphics from fixed temperatures (top curves) to

fixed heat fluxes (bottom curves), with αH = αL = 0, 0.2, 0.4, 0.6, 0.8, 1. The

vertical segments in the ac graphs correspond to transitions from overstability

to stationary convection. The same transition appears as a discontinuity in

the slope of the R2
c graphs.

the perturbations

(D2 − a2)(D2 − a2 − p)W +D(D2 − a2)K −DZ − a2 Θ = 0,

(D2 − a2 − p)Z + T 2DW +DX = 0,

(D2 − a2 − Pmp)X +Q2DZ = 0,

(D2 − a2 − Pmp)K +Q2DW = 0,

(D2 − a2 − PTp)Θ +R2W = 0,

(6.1)

to the third component of current density and H (the imposed magnetic

field), Q2 and Pm are the Chandrasekhar and magnetic Prandtl numbers

(Chandrasekhar, 1961). When PES holds, it is possible to set p = 0 and

eliminate field K from (6.1). The same elimination is possible for Pm = 0

(this happens to a good approximation (Chandrasekhar, 1961) for liquid

metals, e.g. mercury), and our stability analysis is performed under this

hypothesis. On X, we impose DX = 0 or X = 0 for electrically conducting

or non-conducting boundaries, respectively (Chandrasekhar, 1961).

In the analytically solvable case of stress-free, thermostatic and non-

conducting boundaries, Chandrasekhar finds (see Chandrasekhar (1961), Chap.
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V eq. 59) for stationary convection

R2
1 =

(1 + x)3

x
+
T 2

1

x
+

(1 + x)Q2
1

x
− Q2

1T 2
1

x((1 + x)2 +Q2
1)
,

where Q1 = Q/π. The second and third terms in the previous expression can

be found when the system is subject only to rotation or a magnetic field (see

Chandrasekhar (1961), Chap. III eq. 130, Chap. IV eq. 165). The presence

of the last term shows that the two effects are not simply additive.

6.2 Results and conclusions

For stress free boundaries and PT = 0.025 (mercury), competition of mag-

netic field and rotation is enhanced by the new thermal boundary conditions,

and appears clearly in Fig. 2a where the slope becomes negative. We can

observe also in Fig. 2b a dramatic reduction of the critical parameter ac when

heat flux is prevalent. We note that ac = 0 in a finite range of values of Q
for Neumann conditions on temperature.

A more extensive study of the system, for different values of the Prandtl

numbers and other hydrodynamic and magnetic boundary conditions will be

the subject of a future work.
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Chapter 7

Analytic approach to the solute

Bénard system

The solute Bénard problem (introduced in the previous chapters) depends

on many physical parameters, which are related to properties of the fluid,

and to characteristics of the boundaries. Here, in particular, we assume very

general boundary conditions: finite–slip conditions on the velocity (Baudry

and Charlaix, 2001; Craig et al., 2001; Navier, 1823; Webber, 2007), Newton–

Robin conditions on the temperature (Busse and Riahi, 1980; Chapman and

Proctor, 1980; Clever and Busse, 1998; Hurle et al., 1966; Nield, 1964) and

Robin conditions on the solute concentration (Joseph, 1976).

This problem admits a motionless solution in which temperature and con-

centration have constant vertical gradient. A typical method to discuss the

stability of a solution, is to investigate its linear instability by computing the

equations of its perturbations. Such equations reduce, after some manipula-

tions, under the standard assumption of periodicity in the x, y directions, and

assuming the validity of the principle of exchange of stabilities, to a linear

system depending on three essential non–dimensional parameters: the wave

number a, the Rayleigh number R and the solute Rayleigh number C. The

problem also depends on additional parameters appearing in the boundary

conditions.
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Analytic approach to the solute Bénard system

Our goal is to write analytic equations to describe the region in param-

eter space where a change of stability can possibly happen; such region is

called marginal region. More precisely, we show that the marginal region is

the zero level–set of analytic functions, that we call marginal functions. Such

functions depend on the parameters (a,R,C) via algebraic functions (poly-

nomial and radicals) composed with circular and hyperbolic functions, and

depend on boundary parameters linearly. Considering these last parameters

as accessory, we investigate marginal functions for particular choices which

correspond to extremal cases: rigid, stress-free, fixed temperature, fixed heat

flux, fixed solute concentration, and fixed flux of solute. We also deduce the

asymptotic behavior of the marginal region for vanishing wave number; in

particular, we show that the marginal region approaches the axes a = 0

only for fixed temperature gradient at both boundaries (see Falsaperla and

Giacobbe, 2010).

7.1 Equations and boundary conditions

In a cartesian frame of reference Oxyz with unit vectors i, j, k, consider a

layer Ωd = R2
x,y × (−d/2, d/2)z of thickness d > 0, filled with a newtonian

fluid, and subject to the gravity field g = −gk. In the Oberbeck-Boussinesq

approximation, the equations governing the motion of the fluid are given by

(see Joseph, 1976)

(u, v, w)t + (u, v, w) · ∇(u, v, w) +
∇p
ρ0

− ρ

ρ0

g = ν∆(u, v, w)

∇ · (u, v, w) = 0

ϑt + (u, v, w) · ∇ϑ = κϑ∆ϑ

γt + (u, v, w) · ∇γ = κγ∆γ

where (u, v, w) is the velocity, ϑ is the temperature, γ is the solute concentra-

tion, and p is the pressure, while ν, κϑ, and κγ are positive constants which

represent kinematic viscosity, and thermal and solute diffusivity. The equa-

tions are written making the assumption that the fluid density ρ depends on
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7.1 Equations and boundary conditions

temperature and solute concentration according to the linear law

ρ(ϑ, γ) = ρ0[1− cϑ(ϑ− ϑ0) + cγ(γ − γ0)],

obtained by a Taylor expansion of the density function about a reference

temperature ϑ0 and concentration γ0. Here ρ0 is the reference density, and

cϑ, cγ are positive density variation coefficients for temperature and concen-

tration respectively. Gradient, Laplacian and derivative with respect to time

are represented respectively by the symbols ∇, ∆, and the subscript “t”.

Other than the containment condition w = 0 on both boundaries, a rea-

sonably simple and yet very general set of boundary conditions for the ve-

locity field is the so called finite–slip condition (Baudry and Charlaix, 2001;

Craig et al., 2001), which are u− λ−(∂xw + ∂zu) = 0, v − λ−(∂yw + ∂zv) = 0, on z = −d/2,
u+ λ+(∂xw + ∂zu) = 0, v + λ+(∂yw + ∂zv) = 0, on z = d/2.

The limit condition λ± = 0 is the rigid boundary condition, and imposes

zero tangential velocity at the corresponding boundary. The limit λ± = ∞
is the stress free condition, and imposes vanishing tangential stresses at the

corresponding boundary. For temperature, a general set of boundary condi-

tions are the so called Newton–Robin boundary conditions (Hurle et al., 1966;

Nield, 1964), which describe the physically relevant cases in which the media

surrounding the fluid is not an ideal thermostat (see also Joseph (1976)). In

the literature, many explicit forms of the Newton–Robin boundary condi-

tions are used, but we find convenient to choose them in such a way that,

by varying a single coefficient, different thermal boundary conditions can be

obtained, but the basic motionless solution is preserved:{
α−(ϑz +Gϑ)− (ϑ− ϑ±) = 0, on z = −d/2,
α+(ϑz +Gϑ) + (ϑ− ϑ±) = 0, on z = d/2.

Here, α± and Gϑ are non–negative real numbers, ϑ− = ϑ0+Gϑd/2, ϑ+ = ϑ0−
Gϑd/2 are respectively the temperatures at the lower (ϑ−) and higher (ϑ+)

73



Analytic approach to the solute Bénard system

boundaries and ϑ0 is the reference temperature (observe that the boundary

conditions depend on α± and on two other parameters not on three, as it may

seem). The limit α± = 0 is the infinite conductivity boundary condition, in

which is fixed the value of the temperature at the corresponding boundary,

while the limit α± = ∞ is the insulating boundary condition (Busse and

Riahi, 1980; Chapman and Proctor, 1980; Clever and Busse, 1998), with a

fixed heat flux q of norm q = Gϑκϑ and directed along the z-axis at the

corresponding boundary. The cases in which α± is finite and positive are

cases of finite conductivity at the corresponding boundary.

For the solute field, by similar considerations (Joseph, 1976), we use

boundary conditions depending on both concentration of solute and its nor-

mal derivative at the boundary surfaces. Again, to obtain a range of bound-

ary conditions (from fixed concentrations to fixed fluxes of solute) depending

on a single parameter on each boundary, while maintaining the basic solution,

we use the expressions

{
β−(γz +Gγ)− (γ − γ±) = 0, on z = −d/2,
β+(γz +Gγ) + (γ − γ±) = 0, on z = d/2,

where β±, Gγ are non–negative real numbers, γ+ = γ0 − Gγd/2, γ− = γ0 +

Gγd/2 are respectively the concentration of solute at the lower (γ−) and

upper (γ+) boundary, and γ0 is the reference density.

The steady solution whose stability we wish to investigate is, for any

choice of the parameters α±, β±, the state (ū, v̄, w̄, ϑ̄, γ̄, p̄) with

ū = v̄ = w̄ = 0, ϑ = ϑ0 −Gϑz, γ = γ0 −Gγz,

p̄ = p0 − ρ0gz −
ρ0g

2
(cϑGϑ − cγGγ)z

2.
(7.1)

Note that in (4.3) Gϑ, Gγ are the temperature and concentration gradients.
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7.1 Equations and boundary conditions

The equations which govern the evolution of a disturbance to (4.3) are

(U, V,W )t + (U, V,W ) · ∇(U, V,W ) +
∇Π

ρ0

+

+(cϑΘ− cγΓ)g = ν∆(U, V,W ),

∇· (U, V,W ) = 0,

Θt + (U, V,W ) · ∇Θ = GϑW + κϑ∆Θ,

Γt + (U, V,W ) · ∇Γ = GγW + κγ∆Γ,

where (U, V,W ), Θ, Γ, Π are the perturbations to the velocity, temperature,

concentration, and pressure fields, respectively.

Following the standard linear instability analysis of Chandrasekhar (1961),

applying twice the curl operator to the first equation, and then considering

only the linear terms of the resulting systems, one obtains

∆Ut = −gcϑΘxz + gcγΓxz + ν∆2U,

∆Vt = −gcϑΘyz + gcγΓyz + ν∆2V,

∆Wt = g∆∗(cϑΘ− cγΓ) + ν∆2W,

Θt = GϑW + κϑ∆Θ,

Γt = GγW + κγ∆Γ,

(7.2)

where ∆? = ∂2/∂x2 +∂2/∂y2. The last three equations are autonomous, and

the system is solved by determining the solution fields W,Θ,Γ and then sub-

stituting them in the first two equations, that can always be solved (Chan-

drasekhar, 1961, II §10). The boundary condition for the three functions

W,Θ,Γ are{
W = 0, ∂zW − λ−∂2

zW = 0, Θ− α−∂zΘ = 0, Γ− β−∂zΓ = 0,

W = 0, ∂zW + λ+∂
2
zW = 0, Θ + α+∂zΘ = 0, Γ + β+∂zΓ = 0,

(7.3)

respectively on z = ±d/2. As a last step assume, as usual, that the pertur-

bation fields are sufficiently smooth, and that they are periodic in the x and

y directions. Substituting the functions W,Θ,Γ in (7.2) with functions of the

form

W (z)ei (kxx+kyy)e(σ+iτ) t, Θ(z)ei (kxx+kyy)e(σ+iτ) t, Γ(z)ei (kxx+kyy)e(σ+iτ) t
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Analytic approach to the solute Bénard system

(with some abuse of notation), and denoting by k = (k2
x + k2

y)
1/2 the wave

number, one obtains the following system of ODE for the perturbation fields

W,Θ,Γ, which are now functions of z only and where D is the derivation

with respect to z
(σ + iτ) (D2 − k2)W = −gk2(cϑΘ− cγΓ) + ν(D2 − k2)2W,

(σ + iτ) Θ = GϑW + κϑ(D2 − k2)Θ,

(σ + iτ) Γ = GγW + κγ(D
2 − k2)Γ.

(7.4)

A change in the stability of the purely conducting solution can take place

only for a choice of parameters for which there exists a solution to the equa-

tions (7.4), (7.3) in which the real part σ of the eigenvalue is equal to zero.

It is hence possible to explicitly define the marginal region as the subset of

parameter space in which there exist non–zero solutions of equations (7.4),

(7.3) with σ = 0. Naturally, the points that separate linear stability from

instability are a subset of the marginal region. Here, we determine marginal

states which satisfy the further assumption that the principle of exchange of

stabilities holds, that is, marginal states at which both σ = 0 and τ = 0.

By posing dz1 = z, a = kd, W1 = νW/d2, Θ1 = gcϑΘ, Γ1 = gcγΓ, in-

troducing R2 = gcϑGϑd
4/(νκϑ), C2 = gcγGγd

4/(νκγ) (the Rayleigh number

and the solute Rayleigh number respectively), and eliminating the subscript

from z1,W1,Θ1,Γ1, equations (7.4) can be cast in the non–dimensional form

given in §56 of Joseph (1976),
0 = −a2Θ + a2Γ + (D2 − a2)2W,

0 = R2W + (D2 − a2)Θ,

0 = C2W + (D2 − a2)Γ.

(7.5)

The set of points (a,R,C) of the parameter space for which there exist

non–zero solutions to equations (7.5) satisfying boundary conditions

W = 0, DW ± λ±D2W = 0, Θ± α±DΘ = 0, Γ± β±DΓ = 0 (7.6)

on z = ±1/2 (with λ, α, β substituted by their non–dimensional version), is

the object of our investigation.

76



7.2 A general approach to linear boundary value problems

The original content of the following results consists in calculating ana-

lytic functions (the marginal functions) whose zero level–set is the marginal

region and in using the equations to obtain information on such region. We

postpone computation and investigation of the marginal functions to Section

7.3, while we devote Section 7.2 to the technique that allows us to compute

such functions.

7.2 A general approach to linear boundary

value problems

A real linear boundary value problem is the system of equations

V ′(z) = AV (z), (7.7a)

V (−1/2) ∈ C−, V (1/2) ∈ C+ (7.7b)

where V (z) : [−1/2, 1/2]→ Rn is a vector–valued function, A is a real n×n
matrix, C−, C+ are two subspaces of Rn of dimension n−, n+ respectively. Our

goal is to give conditions on the matrix A and the subspaces C± under which

non–zero solutions to (7.7) exist. We will show that the existence of a non–

zero solution is granted by the vanishing of analytic expressions depending

on the matrix A and the vector spaces C±.

Remark 7.1. In the problem we wish to investigate, the matrix A depends

on a,R,C, the vector space C− depends on λ−, α−, β−, and the vector space

C+ depends on λ+, α+, β+.

7.2.1 The general case

The general solution to the linear differential equation (7.7a) is of the form

ezAv, where v ∈ Rn. It is hence straightforward that a non–zero solution to

(7.7a) also satisfies (7.7b) if and only if eAC− ∩ C+ 6= {0}.
The fact that eAC− and C+ have at least a one–dimensional intersection

implies that, letting B be a n×n− matrix whose columns form a basis of C−,
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Analytic approach to the solute Bénard system

and letting P be a (n − n+)×n matrix whose rows are a basis of C⊥+ , there

exists a non–zero w ∈ Rn− such that PeABw = 0.

Assume now that n = 2m, and that n− = n+ = m. Then the matrix

PeAB is a m×m matrix, and the existence of a non–zero w in its kernel is

equivalent to the determinant being zero. Hence,

det(PeAB) = 0 (7.8)

is the existence condition of non–zero solutions to (7.7).

Remark 7.2. In our case, the vector spaces C± depend linearly on the re-

spective parameters λ±, α±, β± (each with the corresponding sign), and such

parameters appear in only one entry of the matrices P and B. It follows

that det(PeAB) is a function that depends linearly on λ±, α±, β±. The de-

pendence of det(PeAB) on (a,R,C) is due to eA, and is a composition of

algebraic functions with circular or hyperbolic functions.

7.2.2 The parity preserving case

There is a yet more sophisticated method to adopt, that yields much simpler

existence conditions. In the hypothesis that n = 2m, let J be the diagonal

matrix whose entries in the diagonal are an alternating sequence of +1 and

−1, i.e. J = diag(1,−1, . . . , 1,−1). We then say that

Definition 7.3. The boundary value problem is parity–preserving if JAJ =

−A and JC− = C+.

The matrix JAJ has entries in position i, j equal to those of A when i−j
is even, and entries in position i, j opposite to those of A when i− j is odd.

It follows that JAJ = −A if and only if A has non–zero entries only in the

positions i, j such that i− j is odd. Parity–preserving linear boundary value

problems are typical: every differential equations which contains only even

derivatives has associated system of differential equations which is parity–

preserving. It is immediate to prove the following fact.

78



7.2 A general approach to linear boundary value problems

Proposition 7.4. Let V (z) be a solution of a parity–preserving linear bound-

ary value problem. Then the functions Ve(z) = (V (z) + JV (−z))/2, Vo(z) =

(V (z)− JV (−z))/2 are also solutions of the linear boundary value problem.

We call such expressions respectively the even and odd part of V (z).

Proof. Assume that the vector–valued function V (z) is a solution of equation

(7.7a). Then, necessarily, V (z) = ezAv, and hence Ve(z) = (ezA +Je−zA)v/2.

Computing the z-derivative of Ve(z) one obtains that

V ′e (z) =
1

2
(AezA − JAe−zA)v =

1

2
(AezA + AJe−zA)v = AVe(z).

If moreover V (z) satisfies the boundary conditions (7.7b), that is V (−1/2) ∈
C− and V (1/2) ∈ C+, it follows that

Ve

(
−1

2

)
=

1

2

(
V

(
−1

2

)
+ JV

(
1

2

))
∈ C− + JC+ = C−,

Ve

(
1

2

)
=

1

2

(
V

(
1

2

)
+ JV

(
−1

2

))
∈ C+ + JC− = C+.

This, with an identical argument for the odd part, concludes the proof.

Given a vector valued function V (z), the vector valued function Ve(z) is

the one whose even entries are the odd part of the corresponding entries of

V (z) and whose odd entries are the even part of the corresponding entries

of V (z) (for Vo(z) the same statement is true with the words even and odd

exchanged). This observation is commonly used when dealing with systems

of differential equations which contain only even derivatives (e.g. in Chan-

drasekhar (1961)). In such a situation, the space of solutions is the direct

sum of even and odd solutions.

From the proposition above, we can conclude that all even (respectively

odd) solutions of a parity–preserving boundary value problem are linear com-

binations of the columns of the matrices ezA + Je−zA (respectively ezA −
Je−zA), that we call even generators (respectively odd generators). A simple

algebraic computation proves that the even generators are simply the odd

columns of ezA, while the odd generators are the even columns of ezA. They

both generate a m–dimensional space.
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Let us denote by E1, . . . , Em the even generators and by O1, . . . , Om the

odd generators. As in the previous section, there exists a non–zero even

solution wiEi(z) (with implicit summation over the index i) to the linear

boundary value problem if and only if there exists a non–zero m–dimensional

vector w such that wiEi(1/2) ∈ C+. This is equivalent to the fact that,

denoting by E the n×m matrix whose columns are the vectors Ei(1/2), and

denoting by P the m×n matrix whose rows are a basis of C⊥+ , there must exist

a w such that PEw = 0. Taking into account also the odd counterpart, the

existence of a non–zero w in the kernel, is equivalent to the scalar conditions

det(PE) = 0, det(PO) = 0, (7.9)

which are the refined version of the existence conditions found in the previous

section. These two equations are typically much simpler functions of the

parameters.

Remark 7.5. Observe that to compute equations (7.9) one needs not compute

the matrix ezA (which satisfies e0 = In), but only determine m independent

even (respectively odd) generators of the space of solutions. On the other

hand, computation of ezA typically requires the pre and post composition with

the A-diagonalizing matrix and its inverse, which is not necessary with this

approach.

7.3 Applications to the solute Bénard prob-

lem

Let us finally apply the arguments above to the solute Bénard problem. The

general case produces formulas too long to be written, for this reason, we

devote Subsection 7.3.1 to the parity–preserving case, which requires that the

boundaries have the same characteristic constants (λ+ = λ− = λ, α+ = α− =

α, β+ = β− = β). Once computed the equations for the general marginal

region, we draw them in some particular cases. In Subsection 7.3.2, we use
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the general approach to discuss the asymptotic behavior of the marginal

region as a tends to zero.

At the end of Section 7.1, we deduced that a point in the effective pa-

rameter space R+
a ×R+

R×R+
C is a marginal state (under the assumption that

the principle of exchange of stabilities holds) when and only when there ex-

ist non–zero solutions of the linear system of equations (7.5) with boundary

conditions (7.6).

Denoting V = (W,DW,D2W,D3W,Θ, DΘ,Γ, DΓ), the 8×8 matrix asso-

ciated to the linear system of equations (7.5) is

A =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−a4 0 2a2 0 a2 0 −a2 0

0 0 0 0 0 1 0 0

−R2 0 0 0 a2 0 0 0

0 0 0 0 0 0 0 1

−C2 0 0 0 0 0 a2 0


,

and its characteristic polynomial is(
λ2 − a2

) ((
λ2 − a2

)3
+ a2

(
R2 − C2

))
.

Denoting by b the only real cubic root of a2(R2 −C2), the eigenvalues of

the matrix A are square roots of

a2, a2 − b,
(
a2 +

b

2

)
± ib
√

3

2
.

It is hence clear that, excluding the degenerate cases b = 0, i.e. R = C (in

which case the characteristic polynomial has two quadruple roots equal to

±a and the Jordan form of A has two rank four Jordan blocks), and b = a2

(in which case 0 is a double eigenvalue and the canonical form of A has a

rank two Jordan block), the matrix A has always two real eigenvalues ±a,

four complex eigenvalues ±ep ± iem, where
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ep =

√
2d+ b+ 2a2

2
, em =

√
2d− b− 2a2

2
, d =

√
a4 + a2b+ b2,

and two eigenvalues that are real if a2 − b > 0 or pure imaginary if

a2 − b < 0. Let us denote c =
√
a2 − b, with the understanding that c is

either positive real or purely imaginary with positive imaginary part.

7.3.1 Applications of the parity–preserving formula:

marginal equations and marginal regions

The matrix A is obviously parity preserving, assuming λ− = λ+ = λ, α− =

α+ = α and β− = β+ = β, also the parity requirement on the boundary

conditions is satisfied, and the system is parity–preserving. The matrix P

introduced in Subsection 7.2.1 is

P =


1 0 0 0 0 0 0 0

0 1 λ 0 0 0 0 0

0 0 0 0 1 α 0 0

0 0 0 0 0 0 1 β


while, a basis of the even solutions introduced in Subsection 7.2.2 are

E1 =



0

0

0

0

cosh(az)

a sinh(az)

cosh(az)

a sinh(az)


, E2 =



b cosh(cz)

bc sinh(cz)

bc2 cosh(cz)

bc3 sinh(cz)

R2 cosh(cz)

cR2 sinh(cz)

C2 cosh(cz)

cC2 sinh(cz)



E3 =



2b cos(zem) cosh(zep)
2b(ep cos(zem) sinh(zep)−em sin(zem) cosh(zep))

b((2a2+b) cos(zem) cosh(zep)−
√

3b sin(zem) sinh(zep))
−2b(ep(−2a2−b+d) cos(zem) sinh(zep)+em(2a2+b+d) sin(zem) cosh(zep))

−R2(
√

3 sin(zem) sinh(zep)+cos(zem) cosh(zep))
0

−C2(
√

3 sin(zem) sinh(zep)+cos(zem) cosh(zep))
0

 ,
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E4 =



2b sin(zem) sinh(zep)
2b(em cos(zem) sinh(zep)+ep sin(zem) cosh(zep))

b((2a2+b) sin(zem) sinh(zep)+
√

3b cos(zem) cosh(zep))
2b(em(2a2+b+d) cos(zem) sinh(zep)+ep(2a2+b−d) sin(zem) cosh(zep))

R2(
√

3 cos(zem) cosh(zep)−sin(zem) sinh(zep))
0

C2(
√

3 cos(zem) cosh(zep)−sin(zem) sinh(zep))
0

 .

The vectors O1, ..., O4 have very similar expressions, which we do not

write here. A computation carried over with computer assisted algebra 1

yields a marginal function that is, in the even case, the function

C2pα(a)qβ,λ(a,R
2 − C2)−R2pβ(a)qα,λ(a,R

2 − C2), (7.10)

where

pα = cosh
a

2
+ α a sinh

a

2

qα,λ = cosh
c

2

[
(3bλ+ dα) cosh ep + (3bλ− dα) cos em+

+ (
√

3em + (2bαλ+ 1)ep) sinh ep + (
√

3ep − (2bαλ+ 1)em) sin em

]
+

+ c sinh
c

2

[
(bαλ− 1) cos em + (bαλ− 1) cosh ep+

+ α(
√

3em − ep) sinh ep + α(
√

3ep + em) sin em

]
In the odd case, the marginal function has the same structure but the func-

tions p, q are

pα = α a cosh
a

2
+ sinh

a

2

qα,λ = sinh
c

2

[
(3bλ+ dα) cosh ep − (3bλ− dα) cos em+

+ (
√

3em + (2bαλ+ 1)ep) sinh ep − (
√

3ep − (2bαλ+ 1)em) sin em

]
+

− c cosh
c

2

[
(bαλ− 1) cos em − (bαλ− 1) cosh ep+

− α(
√

3em − ep) sinh ep + α(
√

3ep + em) sin em

]
(7.11)

1Wolfram Research Inc.: Mathematica Version 7.
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Remark 7.6. To provide a homogeneous treatment, we do not distinguish

the cases in which c is real or purely imaginary. Given the fact that the

problem is real-defined, this implies that the functions we obtained can be

either real valued or purely imaginary valued. In fact, function (7.11) is

purely imaginary valued in the region b > a2.

Cases in which α = β

It is easy to observe that, whenever α = β, the marginal function (7.10)

assumes the form (C2−R2)pα(a)qλ,α(a,R2−C2), and is hence a function of

a and R2−C2 only, see Joseph (1976). This is the direct consequence of the

fact that equations (7.5) can be recast as a system of equations for the fields

W,Φ = Γ−Θ,Ψ = Γ + Θ
(D2 − a2)

2
W − a2Φ = 0

(D2 − a2) Φ + (C2 −R2)W = 0,

(D2 − a2) Ψ + (C2 +R2)W = 0,

When α = β, also the boundary conditions become functions of W,Φ,Ψ.

Solutions of the system can be found solving its first two equations. Hence,

existence conditions depend on a,R2 − C2 only, and are those of the simple

Bénard problem. The extreme cases are listed below.

A. Rigid boundaries (λ = 0) and fixed temperature and concentration

(α = β = 0): the marginal equations for the even and odd case are respec-

tively

c tanh
c

2
=

(
√

3ep − em) sin em + (
√

3em + ep) sinh ep
cos em + cosh ep

,

c coth
c

2
=

(
√

3ep − em) sin em − (
√

3em + ep) sinh ep
cos em − cosh ep

.

B. Stress–free boundaries (λ =∞) and fixed temperature and concentra-

tion flows (α = β = 0): the marginal equations for the even and odd case

are respectively cosh[c/2] = 0 and sinh[c/2] = 0.

84



7.3 Applications to the solute Bénard problem

C. Rigid boundaries (λ = 0) and fixed temperature and concentration

flows (α = β = ∞): the marginal equations for the even and odd case are

respectively

d

c
coth

c

2
=

(em +
√

3ep) sin em + (
√

3em − ep) sinh ep
cos em − cosh ep

,

d

c
tanh

c

2
=

(em +
√

3ep) sin em + (
√

3em − ep) sinh ep
cos em − cosh ep

.

D. Stress-free boundaries (λ =∞) and fixed temperature and concentra-

tion flows (α = β = ∞): the marginal equations for the even and odd case

are respectively

c

2
tanh

c

2
=
em sin em − ep sinh ep

cos em + cosh ep
,

c

2
coth

c

2
=
em sin em + ep sinh ep

cos em − cosh ep
.

Cases in which α 6= β

The remaining relevant cases are those in which the boundary conditions on

temperature and concentration are extremal but different. A quick overview

of (7.10) shows that the exchange of α with β in the boundary conditions

yields an exchange of R2 with C2 in the equation. We hence write only

two cases, with the understanding that the other two can be obtained by

substituting R2/C2 with C2/R2.

E. Rigid boundaries (λ = 0), fixed heat flow and fixed concentration

(α =∞, β = 0)

R2

C2

[
c tanh

c

2
[(em +

√
3ep) sin em + (

√
3em − ep) sinh ep]− d(cos em − cosh ep)

]
=

a tanh
a

2

[
(
√

3ep − em) sin em + (
√

3em + ep) sinh ep − c tanh
c

2
(cos em + cosh ep)

]
,

R2

C2

[
c coth

c

2
[(
√

3em−ep) sinh ep−(em+
√

3ep) sin em]+d(cos em+cosh ep)
]

=

a coth
a

2
[(em−

√
3ep) sin em+(

√
3em+ep) sinh ep+c coth

c

2
(cos em−cosh ep)].
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0 2 4 6 8 10 12

0

50

100

150

200

250

300

a

R

Figure 7.1: The marginal region associated to existence of even solutions

(continuous lines) and odd solutions (dashed lines) with rigid, fixed temper-

ature, and fixed solute boundary conditions, and with C = 20.

F. Stress–free boundaries (λ = ∞), fixed heat flow and fixed concentra-

tion (α =∞, β = 0)

3a
R2

C2
tanh

a

2
= c tanh

c

2
− 2

em sin em − ep sinh ep
cos em + cosh ep

,

3a
R2

C2
coth

a

2
= c coth

c

2
− 2

em sin em + ep sinh ep
cos em − cosh ep

.

Plots of significant parity–preserving cases

The formulas above can be used to draw plots in a,R–space with fixed C.

We use these plots to illustrate graphically some properties of the marginal

regions. Figure 7.1 represents the typical structure of the marginal region

when α 6= ∞. The plot shows an alternation of non–intersecting curves

associated to even and odd solutions.

Figure 7.2 shows that in the case α = β the marginal function depends on
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Figure 7.2: Lower branch of the marginal region in the space a,R2 for C = 0

(continuous) and C = 30 (dashed). On the left, a case in which α = β shows

the dependence on R2 − C2, on the right, a case in which α 6= β.

a and R2−C2 while, in the case α 6= β, such property fails. In particular, only

in the first case the marginal region in the a,R2 space is vertically translated

by changes of C and hence the a coordinate of the minimum is independent

of C. The left frame corresponds to rigid boundaries, and fixed temperatures

and solute concentrations, the right frame corresponds to rigid boundaries,

fixed temperatures, and fixed solute fluxes. In both frames only the lowest

branch, corresponding to even solutions, is shown for C = 0 and C = 30.

When the boundary condition is that of fixed heat flux, the marginal

region significantly changes. In fact, the lowest branch of the marginal region

approaches the R-axis at a finite value. Details of this case are given in

Subsection 7.3.2.

For every boundary condition on velocity and solute except that of fixed

solute flow, such limit turns out to be independent of C. We show this fact in

Figure 7.3. We finally show, in Figure 7.4, that when the boundary conditions

are of fixed heat flux and fixed solute flux, the asymptotic behavior is again

dependent on C.
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Figure 7.3: The asymptotic for a→ 0 of the marginal regions for fixed heat

flow, fixed concentration, and C = 10 (continuous) or C = 25 (dashed). The

left frame corresponds to rigid boundary conditions while the right frame

corresponds to stress-free boundary conditions.

7.3.2 Application of the general formula: an investiga-

tion around a = 0

One of the striking features of marginal regions is that, under some bound-

ary conditions (see Figures 7.3, 7.4), they have a finite asymptotic when a

tends to zero. This phenomenon has already been described in Falsaperla

and Lombardo (2009); Falsaperla and Mulone (2009, 2010); Falsaperla et al.

(2010a). In this section we use the analytic expression obtained with the

approach for non–symmetric boundaries to show that such asymptotic be-

havior takes place when and only when dealing with fixed heat flux at both

boundaries.

The proof of this fact requires a Taylor expansion of the marginal function

(7.8) around a = 0. A computation shows that the powers of the matrix A up

to five have terms that are not divisible by a, while the power A6 is divisible

by a2. It follows that a2i divides Ak for k ≥ 6i. Therefore, the coefficient of

a0 in a Taylor expansion of the marginal function can be computed using the
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Figure 7.4: Asymptotic for a → 0 in the rigid case, for fixed temperature

flow and fixed concentration flow. In this picture, C = 20.

truncation of eA to order five, which means that it suffice to compute

det

(
P

(
I8 + A+

A2

2
+ · · · A

5

5!

)
B

)
.

With a slight change in the convention on matrices P,B, that is writing

boundary conditions (7.6) as convex combinations

(1− λ±)DW ± λ±D2W = (1− α±)Θ± α±DΘ = (1− β±)Γ± β±DΓ = 0,

the coefficient of a0 turns out to be

(α−α+ − 1) (β−β+ − 1) (1 + 3λ+ + 3λ−5λ+λ−) /12,

and it is obviously zero only when α+ = α− = 1 or β+ = β− = 1 (that

correspond to fixed heat flux or fixed solute flow). Which means that in all

other cases, the marginal region will not approach the R axis.
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Assuming to be in the case of fixed heat flux, one has to investigate the

coefficient of a2 of the Taylor expansion. Such term can be computed using

the truncation of the exponential eA up to order eleven, and it turns out to

be

β−β+ − 1

8640

(
R2 − 720 + 8

(
R2 − 270

)
(λ− + λ+) + 5

(
11R2 − 720

)
λ−λ+

)
.

The expression above can be zero if

R2 = 720
1 + 3(λ+ + λ−) + 5λ+λ−
1 + 8(λ+ + λ−) + 55λ+λ−

, (7.12)

which is, surprisingly, independent from C. So the solute does not have

a stabilizing effect for any value of the gradient C2. This independence

was shown numerically in Falsaperla and Lombardo (2009); Falsaperla and

Mulone (2009). The other possibility is that β+ = β− = 1. Assuming

this, equating to zero the coefficient of a4 one obtains an asymptotic limit

which has the same expression of (7.12) with R2 replaced by R2 − C2. The

dependence of the limit on R2−C2 is expected, as observed at the beginning

of Section 7.3.1.

In the last case yet to analyze (β+ = β− = 1, but one of the α 6= 1), the

marginal region does not approach the a axis. In fact, the coefficient of a2

is never zero. This fact would completely change if the fluid was salted form

above.

90



Part II
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Chapter 8

Rotation

The problem of thermal convection in a rotating fluid layer is a well studied

one with many applications, cf. Chandrasekhar (1961). The analogous prob-

lem in a rotating layer of a fluid saturated porous medium is one studied more

recently, see Govender and Vadasz (2007); Malashetty and Heera (2008);

Nield (1999); Sunil and Mahajan (2008b); Sunil et al. (2006); Vadasz (1997,

1998a,b), but nevertheless one with many mundane applications. When the

boundary conditions on the temperature field are such that the temperature

is fixed on the upper and lower horizontal planes then for zero inertia and

Darcy’s law, the linear instability and nonlinear stability problems are com-

pletely resolved and, in fact, coincide, cf. Straughan (2008); Vadasz (1998a).

The subject of this chapter is to analyze linear instability and global non-

linear stability for thermal convection in a rotating horizontal layer of satu-

rated porous material but when the boundary conditions are not just these

of Dirichlet type but Newton-Robin boundary conditions. This is not simply

a mathematical exercise generalizing the work of Vadasz (1997, 1998a,b) or

Straughan (2001, 2004, 2008). In applications, such as in geophysics, fixed

temperature might be appropriate under cloudy conditions, but in strong

sunlight prescription of heat flux is certainly necessary. Thus, Newton-Robin

boundary conditions are likely to provide realistic forms for the temperature.

We discover a very interesting novel physical effect. In particular, for Neu-
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mann boundary conditions on the temperature field, i.e. heat flux prescribed,

we find that rotation has a pronounced effect on the critical wave number at

which convection commences. For small rotation the critical wave number

is zero. However, at a transition value of the rotation (Taylor number) in-

stability switches and convection initiates with non-zero wave number. The

exact values of the transition and the behavior of the critical Rayleigh num-

ber are calculated by a weakly nonlinear stability analysis. Equations for

more general forms of convection in porous media are derived by Kannan

and Rajagopal (2008); Rajagopal et al. (2009); Subramanian and Rajagopal

(2007) and it will be interesting to study analogous effects in these theories.

We also include a global nonlinear stability analysis by means of an energy

stability method, cf. Hill (2005); Sunil and Mahajan (2008a,b,c); Venkata-

subramanian and Kaloni (2002). This is very important since we show the

linear instability critical Rayleigh numbers and the global nonlinear stabil-

ity Rayleigh numbers are the same. Thus, we can assert that a linearized

instability analysis correctly predicts the physics of the onset of thermal con-

vection.

8.1 Basic equations

Let us consider a layer of a porous medium bounded by two horizontal planes,

z = ±d/2, and rotating about a vertical axis z, heated from below. Let d > 0,

Ωd = R2 × (−d/2, d/2) and Oxyz be a cartesian frame of reference with

unit vectors i, j, k, respectively. We assume that the Oberbeck-Boussinesq

approximation is valid and the flow in the porous medium is governed by

Darcy’s law. The basic equations are:


∇P = −ρfgk−

µ1

K
v − 2

ρ0

ε
ω × v

∇ · v = 0

1

M

∂T

∂t
+ v · ∇T = k∆T,

(8.1)

94



8.1 Basic equations

where ρf = ρ0[1 − α(T − T0)], P = p1 − 1
2
ρ0[ω × x]2, p1 is the pressure,

ω= ωk is the angular velocity field, and x = (x, y, z). The last term of (8.1)1

is the Coriolis acceleration. We have denoted with ε,v = (U, V,W ) and T

the porosity, the seepage velocity and the temperature, respectively. The

derivation of equations (8.1) may be found in Nield and Bejan (2006), pages

9, 24, 29. The quantities µ1 and ρf are the viscosity and density of the fluid,

and K denote the permeability of the medium. Further, g is the gravitational

acceleration, k and M are respectively the effective thermal conductivity and

the ratio of heat capacities, as defined in Nield and Bejan (2006).

Since the fluid is bounded by the two planes z = ±d/2 we assume for the

velocity field the following boundary condition

v · k = 0 on z = ±d/2

For the temperature, we use the following general boundary conditions

αH(Tz + β)d+ (1− αH)(TH − T ) = 0, on z = −d/2
αL(Tz + β)d+ (1− αL)(T − TL) = 0, on z = d/2,

(8.2)

where αH , αL ∈ [0, 1], β > 0, and TH = T0 + βd/2, TL = T0 − βd/2 are

respectively an higher (TH) and lower (TL) temperature. Note that for α = 0

or α = 1, boundary conditions (8.2) imply respectively fixed temperature or

fixed heat flux at a boundary. For α ∈ (0, 1) they are “finite conductivity”

or Newton-Robin boundary conditions. Their form ensures that the basic

solution for the thermal field is

T = −βz + T0,

for any choice of αH , αL.

We introduce the non-dimensional quantities defined by

(x̃, ỹ, z̃) ≡ x̃ =
x

d
, t̃ =

kM

d2
t, ṽ =

d

k
v,

T̃ =
T − T0

TH − TL
, P̃ =

K(P + ρ0gz)

µ1k
.
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Omitting all tilde, the governing equations now take the following form
∇P = R2Tk− v − T k× v

∇ · v = 0

∂T

∂t
+ v · ∇T = ∆T

(8.3)

where T 2 and R2 are respectively the Taylor-Darcy number and the thermal

Rayleigh number

T = 2
Kω

εν
, R2 =

αgβdK

νk
,

and ν = µ1/ρ0 is the kinematic viscosity.

We shall study the stability of the motionless solution of (8.3)

m0 = (v, T, P )

given by

v ≡ 0, T = −z, ∇P = −R2zk.

Thus, the non-dimensional perturbation equations for a disturbance (u, θ, p)

to m0 have the form: 
∇p = Rθk− u + T u× k

∇ · u = 0

∂θ

∂t
+ u · ∇θ = Rw + ∆θ,

(8.4)

(here we have made use of the transformation Rθ = θ1 and we have omitted

the subindex “1”).

The boundary conditions for the velocity field are

u · k = 0, at z = −1/2, z = 1/2.

For the temperature field we have

αHθz − (1− αH)θ = 0 at z = −1/2

αLθz + (1− αL)θ = 0 at z = 1/2.
(8.5)
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The initial condition is given by

θ(x, y, z, 0) = θ0(x, y, z).

We also assume that u, θ, p satisfy plane tiling periodic boundary conditions

in x and y and we denote by V the periodicity cell V = [−1/2, 1/2] ×
[0, 2π/a1]× [0, 2π/a2], a1 > 0, a2 > 0 and a = (a2

1 + a2
2)1/2.

To facilitate the analysis we take the third components of the curl and

the double curl of (8.4)1 to obtain:
0 = −ζ + T wz
0 = −R∆?θ + ∆w + T ζz
∂θ

∂t
+ u · ∇θ = Rw + ∆θ,

(8.6)

where ∆? =
∂2

∂x2
+

∂2

∂y2
and ζ = k · ∇×u is the third component of the

vorticity. An important aspect of this work is to establish global stability

bounds for the nonlinear stability problem. In this regard it is advantageous

to first consider the question of the principle of exchange of stabilities.

8.2 Exchange of stabilities

The linear equations associated to (8.6) are
0 = −ζ + T wz
0 = −R∆?θ + ∆w + T ζz
∂θ

∂t
= Rw + ∆θ.

(8.7)

For a linearized analysis we consider solutions to (8.7) of the form

w(x, t) = w(x)eσt, θ(x, t) = θ(x)eσt, ζ(x, t) = ζ(x)eσt,
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where the eigenvalue σ is a priori a complex number. Thus, the linearized

perturbations satisfy the equations
0 = −ζ + T wz
0 = −R∆?θ + ∆w + T ζz
σθ = Rw + ∆θ.

(8.8)

Now we prove that all the eigenvalues of (8.8) are real numbers, i.e.

the strong principle of exchange of stabilities holds. We follow the lines

of Straughan (2001), assuming that the quantities σ, w and θ are complex.

We take the ∆? of eq. (8.8)3, multiply it by the complex conjugate θ of θ,

and integrate over V

σ‖∇?θ‖2 = R(∇?w,∇?θ)− (∆?∆θ, θ),

here (·, ·) and ‖·‖ denote the scalar product and norm in the complex Hilbert

space L2(V ) and ∇? ≡ (∂/∂x, ∂/∂y, 0). By taking into account boundary

conditions (8.5), the last term in the previous equation can be rewritten as

(∆?∆θ, θ) = ‖∇θx‖2 + ‖∇θy‖2 + 1−αL

αL
‖∇?θ‖2

Σ+
+ 1−αH

αH
‖∇?θ‖2

Σ−

where Σ+ and Σ− are respectively V ∩ {z = 1/2} and V ∩ {z = −1/2}, and

‖A‖Σ± denote the complex L2-norm of a field A over the surfaces Σ±, i.e.

‖A‖2
Σ±

=
∫

Σ±
|A|2 dΣ. We denote the general expression of the sum of the

two surface integrals (which is a real non-negative quantity) by

S(A,αH , αL) =
1− αL
αL

‖A‖2
Σ+

+
1− αH
αH

‖A‖2
Σ− ,

obtaining finally

σ‖∇?θ‖2 = R(∇?w,∇?θ)− ‖∇θx‖2 − ‖∇θy‖2 − S(∇?θ, αH , αL). (8.9)

Further, we multiply (8.8)2 by w and, using also (8.8)1, we derive

0 = R(∇?θ,∇?w)− ‖∇w‖2 − T 2‖wz‖2. (8.10)
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8.3 Linear instability

By summing (8.9) and (8.10) we obtain

σ‖∇?θ‖2 = R[(∇?θ,∇?w) + (∇?w,∇?θ)]− ‖∇w‖2 − T 2‖wz‖2+

−‖∇θx‖2 − ‖∇θy‖2 − S(∇?θ, αH , αL).

(8.11)

If we take the imaginary part of (8.11), and write σ as σr + iσi, we obtain

σi‖∇?θ‖2 = 0.

This implies σi = 0, and thus the strong form of exchange of stabilities

holds, unless ‖∇?θ‖ = 0, i.e. θ independent of x, y. In Straughan (2001)

it is stated that ‖∇?θ‖2 is always a non-null quantity for critical states, as

demonstrated in Vadasz (1997). This condition, however, depends on the

choice of the thermal boundary conditions, and we will see in the following

that it is not satisfied for fixed heat fluxes at the boundaries. To consider

the case ‖∇?θ‖ = 0, we observe that, by means of eq. (8.8)3, this implies also

‖∇?w‖ = 0. We start again from system (8.8) which, after the elimination

of ζ, becomes  (1 + T 2)wzz = 0

σθ = Rw + θzz.

The first equation, because of the boundary conditions on w, implies w = 0

and then

σθ = θzz.

We multiply by θ and integrate over V

σ‖θ‖2 = −S(θ, αH , αL)− ‖θz‖2

and so σ ∈ R, σ ≤ 0.

8.3 Linear instability

Because of the validity of the principle of exchange of stabilities, at criticality,

we have σ = 0. Thus, we must solve the system
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Figure 8.1: Critical Rayleigh number and critical wave number ac as a func-

tion of T 2 for different combination of thermal boundary conditions.


−ζ + T wz = 0

−R∆?θ + ∆w + T ζz = 0

Rw + ∆θ = 0.

By eliminating ζ we obtain ∆w + T 2wzz −R∆?θ = 0

∆θ +Rw = 0.

We assume that the solutions are of the form

w = W (z)g(x, y), θ = Θ(z)g(x, y), where ∆∗g + a2g = 0. (8.12)

Substituting these periodic solutions into the system we then obtain the

eigenvalue problem (1 + T 2)D2W − a2W +Ra2 Θ = 0

(D2 − a2)Θ +RW = 0
(8.13)

with boundary conditions

W = 0, at z = ±1/2,

αHDΘ− (1− αH)Θ = 0, at z = −1/2,

αLDΘ + (1− αL)Θ = 0, at z = 1/2,

(8.14)
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8.4 Nonlinear stability

where “D” denotes the derivative along the z axis. For such boundary condi-

tions it is not possible to obtain simple analytic solutions. We present in the

following some numerical results obtained with the Chebyshev tau method

described in Straughan (2001).

In Fig. 8.1 we show how the critical parameters depend on the rotation

speed for different combinations of fixed temperature (T) and fixed heat flux

(H) thermal boundary conditions. We observe that in all three cases rotation

has a stabilizing effect on the system and that the maximum stability is

obtained for thermostatic boundary conditions.

The critical wave number shows a qualitatively different behavior in the

case of fixed heat fluxes, being equal to zero below a threshold of rotation

speed.

Fig. 8.2 shows the dependency of ac on T 2 for Newton-Robin boundary

conditions, i.e. for αH , αL ∈ (0, 1). We note that the same threshold effect

observed for fixed heat fluxes is approximately present also for small values

of αH , αL.

We examine then in detail the case of fixed heat fluxes at both bound-

aries, corresponding to the choice of αH = αL = 1 in the thermal boundary

conditions. To better understand the behavior of ac, in Fig. 8.3 we show the

critical curves R2(a) for fixed heat fluxes and different values of T 2. We note

that R2 is finite for a = 0, and the value R2(0) increases regularly in all the

range of values of T 2. From Fig. 8.3 and Fig. 8.1b there is clearly a threshold

in T 2 such that instability changes from occurring at zero wave number to

non-zero one. This is examined analytically by weakly nonlinear theory in

the next section.

8.4 Nonlinear stability

The exact value of R2(0) and the threshold T 2
a can be derived by an asymp-

totic expansion of the quantities appearing in system (8.13) in powers of a2,

i.e. via a weakly nonlinear analysis, cf. Roberts (1985).
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line). We consider here symmetric boundary conditions with αH = αL ≡ α

and we have defined L = (1− α)/α.
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We assume for W,Θ,R2 the following expansions in a2

W (z) = W0(z) + a2W2(z) + a4W4(z) + · · · ,
Θ(z) = Θ0(z) + a2Θ2(z) + a4Θ4(z) + · · · ,
R2 = R2

0 + a2R2
2 + a4R2

4 + · · · .
By standard analysis, cf. Roberts (1985), we find

R2
0 = 12 (1 + T 2), R2

2 =
2

35
(20− T 2).

Note that R2
2 is positive for T 2 < 20, so R2(a) has a (at least local) minimum

for a = 0 in this range of values of T 2. For T 2 > 20, the point a = 0 becomes

a local maximum, and so R2(a) is minimum for some a > 0. This is in exact

agreement with the numerical calculations.

We now construct a nonlinear energy stability analysis to verify how ac-

curate the linear instability results are. Following the approach of Straughan

(2001), we multiply eq. (8.7)3 by θ, and integrate over the periodicity cell,

obtaining
1

2

d

dt
‖θ‖2 = R(w, θ) + (∆θ, θ).

Again, boundary conditions (8.5) imply that the last term gives rise to a

surface term,

(∆θ, θ) = −‖∇θ‖2 − S(θ, αH , αL).

We take now eq. (8.7)2, multiply it by w and integrate again over the cell,

using also (8.7)1, and obtain

0 = R(∇∗θ,∇∗w)− ‖∇w‖2 − T 2‖wz‖2.

We can then form the identity

1

2

d

dt
‖θ‖2 = RI −D, (8.15)

where
I = (w, θ) + (∇∗θ,∇∗w)/λ,

D = ‖∇θ‖2 + S(θ, αH , αL) + (‖∇w‖2 + T 2‖wz‖2)/λ,
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8.4 Nonlinear stability

and λ > 0 is a parameter to be selected. We define RE by

1

RE

= max
H

(
I

D

)
, (8.16)

where H is the space of admissible solutions. From (8.15) we find then

1

2

d

dt
‖θ‖2 ≤ −D

(RE −R
RE

)
. (8.17)

For αH , αL ∈ (0, 1], we can write the following chain of inequalities

D ≥ ‖∇θ‖2 + S(θ, αH , αL) ≥ cαc0‖θ‖2,

where

cα = min

{
1,

1− αH
αH

,
1− αL
αL

}
and c0 is the constant appearing in the Friedrichs’ inequalities

‖θ‖2 ≤ ‖θ‖2
W 1,2 ≤ 1

c0

(
‖∇θ‖2 +

∫
Σ±

|θ|2 dΣ

)
.

So, for R < RE, and αH , αL not both equal to 1, (8.17) implies ‖θ(t)‖ → 0

at least exponentially. From eq. (8.4)1, multiplying by u and integrating over

V , we have also

‖u‖2 = R(θ, w), which implies ‖u‖ ≤ R‖θ‖

so even ‖u(t)‖ is guaranteed to go to zero exponentially. To determine the

stability threshold we need to solve the variational problem (8.16). It is

important to note the the contribution of the surface term S appearing in D

does cancel out in the evaluation of the Euler-Lagrange equations of problem

(8.16), so we obtain the same E-L equations of Straughan (2001):

RE(λθ −∆∗θ) + 2(∆w + T 2wzz) = 0

RE(λw −∆∗w) + λ∆θ = 0

Taking the double curl of the first equation, and assuming again solutions of

the form (8.12), we obtain finally the system for W and Θ 2[(1 + T 2)D2 − a2]W +RE(λ+ a2) Θ = 0

2λ(D2 − a2)Θ +RE(λ+ a2)W = 0,
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with boundary conditions (8.14). We note that the previous system reduces

exactly to the system of linear instability (8.13) for λ = a2 and then R = RE

for this choice of λ (this is obviously confirmed by the numerical optimiza-

tion of RE w.r.t. λ). We can then affirm that the critical Rayleigh number

obtained by a linear analysis is the real threshold of stability.

The last point is very important. It shows that the linear instability and

the global nonlinear stability boundaries are the same. Thus, sub-critical

instabilities will not arise and a linear instability analysis correctly captures

the physics of the onset of convection.
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Chapter 9

Binary fluid

Double diffusive convection in porous layers has many applications (Mulone

and Straughan, 2006; Nield and Bejan, 2006; Straughan, 2008).

Here we consider the problem of a porous layer heated and salted from

below. The motionless basic state has then a positive concentration gradient,

having a stabilizing effect, and instability thresholds for this system have

been studied for fixed temperatures and concentrations of mass. Here we

consider more general boundary conditions on temperature and solute, in

the form of Robin boundary conditions. As seen in Chapter 8, in the limit

case of fixed heat fluxes the wavelength of the critical periodicity cell tends

to infinity. In this work we investigate the influence of the solute field on

this long-wavelength phenomenon, with the striking result that, as was the

case for the Bénard system (see Chapter 4), the critical parameters become

totally independent from the solute field.

9.1 Equations for a binary mixture

We assume that the layer has the same geometry used in the previous chapter

and that the flow in the porous medium is governed by Darcy’s law. Moreover

we assume that the Oberbeck-Boussinesq approximation is valid with the

same formal dependency of density on the temperature and the concentration
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of solute.

Under these assumptions, we follow the derivation of Mulone and Straughan

(2006) (see also Nield and Bejan (2006); Straughan (2008)). Since the fluid

is bounded by the two planes z = ±d/2 we assume for the velocity field the

boundary condition k · v = 0 on z = ±d/2. For the temperature and con-

centration fields, we use the same boundary conditions (4.1), (4.2) described

previously.

We introduce the non-dimensional quantities defined in Straughan (2008),

(x̃, ỹ, z̃) ≡ x̃ =
x

d
, t̃ =

kM

d2
t, ṽ =

d

k
v,

T̃ =
T − T0

TH − TL
, C̃ =

C − C0

CH − CL
, p̃ =

K(p/ρ0 + gz)

νκT
.

Omitting all tilde, the governing equations now take the following form

obtaining the following equations
∇p = (R2 T − C2C)k− v, ∇ · v = 0,

Tt + v · ∇T = ∆T,

εLeCt + Le v · ∇C = ∆C,

where

ε = εM, R2 =
αTβTgd

2K

νκT
, C2 =

αCβCgd
2K

νκT

are the normalized porosity, and the thermal and solute Rayleigh numbers.

Finally, Le = κT/κC is the Lewis number. We note that the two Rayleigh

numbers definitions are slightly different from (4.5), but we retain the same

symbols for ease of writing.

We shall study the stability of the motionless solution of (8.3) given by

v ≡ 0, T = −z, C = −z, ∇p = (−R2 + C2)zk. (9.1)

In this way we obtain the following non-dimensional perturbation equations
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9.2 Linear instability equations

for a disturbance (u, ϑ, γ, p1) to (9.1)

∇p1 = (Rϑ− Le C γ)k− u,

∇ · u = 0

ϑt + u · ∇ϑ = Rw + ∆ϑ,

εLe γt + Le u · ∇γ = Cw + ∆γ,

(9.2)

(quantities R and C appearing in Eq. 11 of Mulone and Straughan (2006) are

respectively equal to quantities R2 and C2 used in the previous equation, and

the changes of variables Rϑ→ ϑ, Cγ → γ where performed). The quantities

appearing in (9.2) have the same meaning of those used in the previous

paragraph, Le = κT/κC is the Lewis number and ε is the normalized porosity

(Mulone and Straughan, 2006).

9.2 Linear instability equations

We follow the standard analysis of Chandrasekhar (1961), applying twice the

curl operator to the first equation. We then consider only the linear terms

of the resulting systems and obtain
0 = R∆∗ϑ− LeC∆∗γ −∆w

ϑt = Rw + ∆ϑ,

εLeγt = Cw + ∆γ.

(9.3)

where ∆? = ∂2/∂x2 + ∂2/∂y2. We assume, as usual, that the perturbation

fields are sufficiently smooth, and that they are periodic in the x and y

directions (this is not a restriction, see Straughan (2004)). We denote by

a = (a2
x + a2

y)
1/2 the wave number. We search then solutions of the systems

in the form

w = W (z) exp{ i (axx+ ayy) + p t}
ϑ = Θ(z) exp{ i (axx+ ayy) + p t}
γ = Γ(z) exp{ i (axx+ ayy) + p t}

(9.4)
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for fields w, ϑ, γ, where p = σ + iτ is a complex constant. By substitut-

ing expressions (9.4) in (9.3) we obtain the following ODE system for the

perturbation fields W,Θ,Γ
0 = (D2 − a2)W +Ra2 Θ− LeCa2Γ

pΘ = (D2 − a2)Θ +RW,
p εLe Γ = (D2 − a2)Γ + CW.

where “D” represents the derivation along z. In this new variables, the

hydrodynamic, thermal and solute boundary conditions become

on z = −1/2 αHDΘ− (1− αH)Θ = 0, γHDΓ− (1− γH)Γ = 0,

on z = 1/2 αLDΘ + (1− αL)Θ = 0, γLDΓ + (1− γL)Γ = 0.

When the principle of exchange of stabilities (PES) holds, a simplified form

of the system is obtained (Chandrasekhar, 1961).

9.3 Results

Results for porous media are qualitatively very similar, with respect to the

dependence on thermal BCs, and also in the limit case of fixed heat fluxes.

We present only a graphic for the critical Rayleigh number, for a choice of

the Lewis number Le = 1 and of the normalized porosity ε = 2 such that

overstability is present for fixed temperatures. The same comments made on

Fig. 4.1 apply to Fig. 9.1. The critical Rayleigh number becomes independent

of the concentration gradient for fixed heat fluxes. An asymptotic analysis for

a→ 0 confirms, even in this case, thatR is constant, R2
c = 12, independently

of C. Also in this case we obtain global stability (w.r.t. the classical energy

norm) for fixed heat fluxes and any solute gradient.
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Figure 9.1: R2
c as a function of C2 for thermal BCs going from fixed tem-

peratures (α = 0) to fixed heat fluxes (α = 1).
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Chapter 10

Rotation, including inertia

effects

Thermal convection in a rotating fluid layer is a very well studied area of

applied mathematics, cf. Chandrasekhar (1961); Mulone and Rionero (1994,

1997). The analogous problem in a rotating porous layer is one with many

applications but is less well studied and analyses are more recent, see eg.

Govender and Vadasz (2007); Malashetty and Heera (2008); Nield and Bejan

(2006); Sunil and Mahajan (2008c); Sunil et al. (2006); Vadasz (1997). The

prescribed boundary conditions on the temperature field, the instability and

nonlinear stability problems are completely resolved when Darcy’s law is

adopted with zero inertia, cf. Straughan (2008); Vadasz (1998a).

Falsaperla and Mulone (2010) studied the problem of instability in a

rotating layer of fluid when instead of simply prescribing the temperature

field on the boundary, one employs Newton-Robin boundary conditions. For

prescribed heat flux they found a striking result. For zero or low values of

rotation they confirmed known results that instability occurs for zero wave

number. However, they discovered that as the rotation rate is increased

a critical value is reached and for a rotation rate beyond this convection

commences for a non-zero wave number. Analyses of double-diffusion in a

rotating layer employing similar boundary conditions are given by Falsaperla

113



Rotation, including inertia effects

and Lombardo (2009) and by Falsaperla and Mulone (2009). Falsaperla et al.

(2010a) analyzed the analogous problem in a Darcy porous medium with

zero fluid inertia. They also discovered a critical rotation rate above which

rotation commences with non-zero wave number. These writers explained

this transition explicitly by means of a weakly nonlinear analysis.

In another development, Vadasz (1998a), discovered that the inclusion

of fluid inertia in a rotating Darcy porous medium, with prescribed bound-

ary temperatures, can lead to oscillatory instabilities (overstable convection)

which are not present when inertia is zero. This is a striking result and

because of this we now include inertia into the analysis of Falsaperla et al.

(2010a). This is, however, a highly non-trivial extension. The mathematical

problem is much more complicated and the physical picture is considerably

richer. Given that we find (Falsaperla et al., 2010b) the inclusion of inertia

can lead to much lower convection thresholds we believe this is a worth-

while area of convection to analyze. Experimental results on rotating porous

convection should account for the possibility of inertia effects when being

interpreted.

Even though the fluid inertia is often neglected in porous convection prob-

lems, continuum mechanical derivations of Darcy’s law do show that, a pri-

ori, the fluid inertia should accounted for. Rajagopal (2009) derives general

equations for non-isothermal motion in a porous medium by starting with

the general equations of a mixture of a viscous fluid and an elastic material.

He shows how models such as those of Darcy and Brinkman may be derived

from this general theory. Derivation of Darcy equations with the fluid inertia

term present are also given in Straughan (2008).

10.1 Basic equations

We consider a layer of porous medium bounded by two horizontal planes, z =

±d/2. This layer rotates about a vertical axis z. The equations governing the

velocity field and temperature in the layer {(x, y) ∈ R2}×{z ∈ (−d/2, d/2)},
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10.1 Basic equations

for the case where we are not far from the axis of rotation, are given by Vadasz

(1998a), see also Nield and Bejan (2006).

The relevant equations incorporating fluid inertia, in the Oberbeck-Bous-

sinesq approximation, are
ρ0

ε

∂v

∂t
= −∇P − ρfgk−

µ1

K
v − 2

ρ0

ε
ω × v

∇ · v = 0

1

M

∂T

∂t
+ v · ∇T = k∆T,

(10.1)

where ω = ωk is the angular velocity of the layer, ρf = ρ0[1− α(T − T0)] is

the fluid density, linear in temperature. ρ0 is the fluid density at a reference

temperature T0, and α is the thermal expansion coefficient of the fluid. The

term ε is porosity, v = (U, V,W ), g is gravity, k = (0, 0, 1), v being the

seepage velocity. Also, k,M are the effective thermal conductivity and the

ratio of fluid to solid heat capacities. On the boundaries z = ±d/2 we

suppose no throughflow

v · k = 0 on z = ±d/2,

and for the temperature

αH(Tz + β)d+ (1− αH)(TH − T ) = 0, z = −d/2
αL(Tz + β)d+ (1− αL)(T − TL) = 0, z = d/2,

both αH , αL being constants between 0 and 1, and where Tz = ∂T/∂z. Ad-

ditionally β is a positive constant with

TH = T0 +
βd

2
, TL = T0 −

βd

2
,

where TH , TL are constants with TH > TL. The limiting cases α = 0 or

α = 1, yield prescribed temperature and prescribed heat flux, respectively.

The basic motionless solution whose instability is to be investigated is given

by

T = −βz + T0.
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Equation (10.1) may be non-dimensionalized with the scale

(x̃, ỹ, z̃) ≡ x̃ =
x

d
, t̃ =

kM

d2
t, ṽ =

d

k
v,

T̃ =
T − T0

TH − TL
, P̃ =

K(P + ρ0gz)

µ1k
,

Va =
d2µ1ε

ρ0kMK
, T = 2

Kωρ0

εµ1

, R2 =
αgβdKρ0

µ1k
.

The tilde variables are non-dimensional, Va is the Vadasz number, T 2 = Ta

is the Taylor number, and R2 = Ra is the Rayleigh number.

Dropping the tilde, the non-dimensional version of equations (10.1) be-

come 
1

Va

∂v

∂t
+ T k× v + v = −∇P +R2Tk

∇ · v = 0,

∂T

∂t
+ v · ∇T = ∆T.

(10.2)

Henceforth, our goal is to study the onset of convection and to this end

we investigate the instability of the motionless solution to (10.2),

v ≡ 0, T = −z, ∇P = −R2z k.

The equations for a perturbation (u, θ, p) to this basic solution which arise

from (10.2) are then
1

Va

∂u

∂t
= −∇p− u− T k× u +R2θk,

∇ · u = 0,

∂θ

∂t
+ u · ∇θ = w + ∆θ.

(10.3)

The appropriate boundary conditions become

u · k = 0, z = ±1/2

αHθz − (1− αH)θ = 0, z = −1/2

αLθz + (1− αL)θ = 0, z = 1/2

116



10.1 Basic equations
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Figure 10.1: Critical Rayleigh number R2 as a function of the wave number

a, at different values of the scaled Vadasz number γ = Va/π2. Temperature

is fixed at the boundaries.

In addition, u, θ, p are assumed periodic in the x, y directions.

To analyze linear instability we linearize (10.3) and take curl and curl

curl of (10.3)1. Retaining only the third components of the two equations so

obtained, we are led to the system of equations



1

Va

∂ζ

∂t
+ ζ = T wz,

1

Va

∂

∂t
∆w + ∆w + T ζz = −R∆?θ,

∂θ

∂t
= w + ∆θ,

(10.4)

where ζ = (curl u)3, w = u3.
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Figure 10.2: Same quantities of figure 10.1, for some values of the inertia

coefficient γ. Heat fluxes are fixed at both boundaries.

10.2 Instability

To develop an instability analysis we convert equations (10.4) to an eigenvalue

problem. Thus, we suppose w, ζ, θ can be written in the form

w = eσtW (z)f(x, y), ζ = eσtZ(z)f(x, y), θ = eσtΘ(z)f(x, y),

where we mean a real Fourier series of such terms but because we only require

instability one Fourier mode will suffice. The function f(x, y) is a planform

which tiles the plane, cf. Chandrasekhar (1961), §16.

If we denote by D = d/dz and a is a wave number such that ∆?f = −a2f ,

∆? being ∆? = ∂2/∂x2 + ∂2/∂y2, then equations (10.4) become

σ

Va
Z + Z = T DW

σ

Va
(D2 − a2)W + (D2 − a2)W = −T DZ −R2a2Θ

σΘ = W + (D2 − a2)Θ.

(10.5)

It is worth noting that we do not need boundary conditions on Z since

we may eliminate Z from (10.5)1 and (10.5)2 to leave an eigenvalue prob-
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10.2 Instability

lem which is nonlinear in σ, but the boundary conditions are sufficient to

determine the solution.

To solve (10.5) in a practical manner we introduce the functions χ and

Φ in such a way that χ = (D2 − a2)W and Φ = DZ. Then, we may rewrite

equations (10.5) as the system

(D2 − a2)W − χ = 0

(D2 − a2)Θ +W = σΘ

χ+ T Φ +Ra2Θ = − σ

Va
χ

T χ+ T a2W − Φ =
σ

Va
Φ.

(10.6)

System (10.6) is an eigenvalue problem for the eigenvalues {σn} and is to be

solved subject to the boundary conditions

W = 0, z = ±1/2,

αHDΘ− (1− αH)Θ = 0, z = −1/2,

αLDΘ + (1− αL)Θ = 0, z = 1/2.

(10.7)

The four boundary conditions (10.7) are sufficient to solve (10.6) since the

last two equations of (10.6) can be regarded as identities. System (10.6,10.7)

is solved numerically by means of the Chebyshev tau-QZ algorithm method,

cf. Dongarra et al. (1996). Before presenting the numerical results we develop

a weakly non linear analysis for (10.6,10.7) with αH = αL = 1, i.e. heat flux.

The analysis works only for V a = 0, although the numerical results are also

given for V a 6= 0. Thus, expand W,χ,Θ,Φ and R2 in a series in a2, i.e.

W = W0 + a2W2 + a4W4 + · · ·
χ = χ0 + a2 χ2 + · · ·
Θ = Θ0 + a2 Θ2 + · · ·
Φ = Φ0 + a2 Φ2 + · · ·
R2 = R2

0 + a2R2
2 + · · · .

Next, solve the O(1) and O(a2) problems recollecting the solution is gener-

ally complex, i.e. equating real and imaginary parts. Equations (10.6)3 and
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Figure 10.3: Critical curve R2(a) for fixed heat fluxes and γ = 0.2. Taylor

number varies from 0 to 10.

(10.6)4 lead to the result

R2
0(1 + iτ) = 12[(1 + iτ)2 + T 2], (10.8)

where σ = r + iτ . Note also that R2
0 is just the value of R2 for a = 0. Then

we obtain the two cases

τ = 0 → R2
conv. ≡ R2

0 = 12(1 + T 2),

τ 6= 0 → R2
over. ≡ R2

0 = 24, τ 2 = T 2 − 1.

Since τ 2 > 0, this implies overstability can only occur for T 2 > 1. Moreover,

for T 2 > 1 we have R2
conv. > R2

over., so overstability will be dominant.

10.3 Numerical results

In Fig. 10.1 we effectively repeat results of Vadasz (1998a). This shows that

for fixed boundary temperatures and T 2 = 5 then overstability does occur

once γ = Va/π2 is less than a certain threshold (dependent on Va). This

means that as Va decreases the system convects sooner, i.e. is less stable.
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Figure 10.5: Critical curve R2(a) for fixed heat fluxes and γ = 0. Taylor

number varies from 0 to 6, from bottom to top.
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Rotation, including inertia effects

Since the inertia coefficient is 1/Va this means increasing inertia leads to

convection occurring more easily.

Fig. 10.2 presents the analogous situation when T 2 = 5 but θz = 0 on

z = ±1/2. Again, we observe that increasing the inertia coefficient leads to

oscillatory convection being the dominant mode of instability and a lowering

of the convection threshold.

Figs. 10.3–10.5 show R2 against a for fixed heat flux boundary conditions

and various values of T 2. The quantity γ = Va/π2 decreases from 0.2 to 0.1

to 0 in figures 10.3–10.5.

Fig. 10.5 confirms the analytical result that overstability occurs only for

T 2 > 1 for fixed heat flux boundary conditions. The overstable part of the

critical curve is the same for all the values of T 2, for T 2 > 1. Note that the

theoretical values R2 = 12 for stationary convection at T = 0, and R2 = 24

for overstability and T 2 ≥ 1, are confirmed numerically.

Figs. 10.6–10.8 show R2 against a with γ increasing, T 2 = 5, but for

various thermal boundary conditions, α = αH = αL increasing from 0 to 1.

In particular, in figures 10.8 we see the R2 minimum is lower on some of

the stationary convection curves. This corresponds to being in the region of

stationary convection, a = 0, in figure 10.8b, with T 2 = 5. Only for γ = 0

and fixed heat fluxes (Fig. 10.6) has the overstability curve a minimum for

a = 0.

Finally, in figure 10.9 we show the dominant mode of instability in the

(Va, T 2) plane for θz = 0 on the boundary. This curve is non-trivial to obtain

and is obtained by computing R2 against a, as in figure 10.10, and varying

T 2 and Va. Figure 10.10 shows the situation where the stationary convection

curve has the same minimum value as the oscillatory convection one for the

sample values T 2 = 5, 10, 15, 20, 25 and 30. For T 2 ≤ 20 the stationary

convection minimum is obtained for a = 0. For T 2 > 20 the minimum on

the left is for a value of a with a > 0, as was shown in Falsaperla et al.

(2010a) without inertia.
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Figure 10.6: Critical curve R2(a) for a sample value of the Taylor number

T 2 = 5, and boundary conditions going from fixed temperatures (α = 0,

top curve) to fixed heat fluxes (α = 1, bottom curve). These curves are

computed in the limit case γ = 0.
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Figure 10.7: Same curves of Fig. 10.6, for γ = 0.1 and γ = 0.2.
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Figure 10.8: Same curves of Fig. 10.6, for γ = 0.4 and γ = 0.6.

10.4 Conclusions

We have analyzed a model for thermal convection in a layer of porous ma-

terial which is rotating about an axis which is orthogonal to the layer. In

particular, we have incorporated the fluid inertia coefficient into the analysis

and we have analyzed the effect of this coefficient in the context of thermal

boundary conditions of Newton-Robin type. In this way we extend the fun-

damental work of Vadasz (1998a) who used prescribed temperature boundary

conditions, and the investigations of Falsaperla et al. (2010a) who neglected

inertia.

The effect of inertia together with different thermal boundary conditions

of Newton-Robin type leads to interesting physical behaviour. Indeed, the

overall effect of including inertia is to lower the convection instability thresh-

old. One also needs to have detailed knowledge of the thermal boundary

conditions. However, if in an experiment lower instability threshold values

are observed, lower than what might have been expected, then one ought to

consider the inclusion of fluid inertia (often the inertial term is neglected in

the engineering literature).

To obtain exact instability threshold one needs to consult the Rayleigh

number curves presented here. However, figure 10.9 is of particular relevance.

For fixed heat flux boundary conditions, this curve clearly delineates regions

in (Va,Ta) space where overstability is the dominant instability mechanism,
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10.4 Conclusions

where stationary convection with zero wave number is observed, and where

stationary convection with positive wave number will be found.
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Figure 10.9: Mode of instability of the system for fixed heat fluxes, for

different combinations of the Vadasz and Taylor numbers.
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Figure 10.10: Critical curveR2(a), for T 2 = 5, 10, 15, 20, 25, 30 from bottom

to top. The Vadasz number for each curve is such that the local minima in

the stationary convection and overstable part of the curve have the same

value of R2.
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Chapter 11

Conclusions and open problems

In this thesis the effect of Newton-Robin (NR) boundary conditions on the

temperature on layers of fluids and fluid saturating a porous medium is in-

vestigated. In all the considered cases, fixed temperatures have the most

stabilizing effect, while for fixed heat fluxes we have the lowest values of the

critical temperature gradient.

In Chapter 3 we investigate the rotating Bénard system. It is shown that

for zero rotation, the principles of exchange of stabilities still holds for NR

conditions. Thresholds of rotation for the appearance of overstability are

derived, T 2 < π4 for RR and FF boundaries, and T 2 < π4/4 for RF bound-

aries (T 2 is the non dimensional Taylor number, proportional to rotation).

It is shown numerically that the result for FF boundaries is optimal, since in

the limit of vanishing Prandtl number and for fixed heat fluxes, overstability

appears for T 2 > π4. For fixed heat fluxes, the critical wave number, which is

zero without rotation, is positive above some thresholds T 2
a of rotation, with

T 2
a ≈ 77.32, T 2

a ≈ 180.15, T 2
a ≈ 1868.86 for RF, FF, RR kinetic boundaries

respectively. Rotation is confirmed to be stabilizing.

In Chapters 4 and 9 we study the stability of a layer of binary fluid, in the

Bénard system and in porous media. In this case a striking result is obtained:

in a transition from fixed temperatures to fixed heat fluxes the stabilizing
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Conclusions and open problems

effect of the solute is progressively reduced, and, for fixed heat fluxes, it is

totally lost. This holds independently of the concentration gradient, and it is

for this reason a very conterintuitive effect. An asymptotic analysis confirms

nonetheless this result.

Chapters 5 and 6 study the joined effects of solute and rotation, and

magnetic field and rotation, respectively. It is shown that, as is well known

for fixed temperatures, solute and rotation continue to be independently

stabilizing, while in some cases magnetic field and rotation are competitive,

i.e. they are in same cases destabilizing. Same peculiar phenomena about

the wave number appear also in these cases. In Chapter 5 is observed that

the wave number is zero for low rotation speed, but in a region described

very closely by the condition T > C (C2 is the solute Rayleigh number,

proportional to the solute gradient). Moreover, for any rotation number,

the stabilizing effect of the solute is recovered. In Chapter 6 it is shown

that vanishing wave numbers do not occur necessarily below a threshold

rotation value, but also above. In the right panel of figure 6.1, for example,

we note that the wave number is zero approximately for logQ2
1 ∈ (1.86, 2.64),

and positive outside this interval. Here π2Q2
1 is the Chandrasekhar number,

proportional to the external magnetic field.

An algebraic computation is developed in Chapter 7, showing that it is

still possible to perform analytic computation even in the presence of different

boundary conditions and stabilizing effects. The analytical results shown,

contain as particular cases the classical results of Chandrasekhar (1961) for

FF boundaries, but also those for the RR and RF cases. Moreover, all the

intermediate cases, which correspond to finite slip effects, are included. Even

if it is dubious that such computations can be further expanded, for example

by including rotation effects, this technique is nonetheless useful, and will be

probably applied again in future calculations.

In Chapter 3 convection in a rotating porous layer is investigated, and

effects similar to those described in 3 are observed. In this case, for fixed heat

fluxes, wave number is zero exactly for T 2 < 20, and in this region of values

128



of T ?, the critical Rayleigh number is given by R2
c = 12(1 + T 2). This latter

results are derived by an asymptotic analysis of the system. This system is

then studied in the case of non-negligible inertia effects in Chapter 10. Over-

stability, which was never present in the absence of inertia, now appears,

and inertia is shown to be generally destabilizing. A detailed analysis of the

region in the parameter space where stationary convection or overstability

appear is performed in the case of fixed heat fluxes.

It will be interesting to extend all the above computations with a non

linear stability analysis, which will permit to investigate the influence of

boundary conditions on the basin of attraction of the basic motionless solu-

tion.

The stability of secondary convective flows will also be strongly influenced

by thermal boundary conditions, and would be a phenomenon worthy of

investigation.

The influence of boundary conditions on non stationary basic motions,

could be also an interesting field of study, e.g. for a Couette or Poiseuille

flow.

Finally, the study of convection in compressible fluids, modeled by the

Navier-Stokes equations, in layers or more complicated geometries, could also

lead to novel results for different thermal boundary conditions.
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Appendix A

Asymptotic formulas

We report here asymptotic analyses of some of the eigenvalue problems de-

scribed in the previous chapters, when the thermal boundary conditions are

of prescribed heat flux.

A.1 Sample detailed computation

As an example of asymptotic analysis, we want to derive explicitly formula

(10.8) of Chapter 10. We start from system (10.6), which we rewrite here

(D2 − a2)W − χ = 0

(D2 − a2)Θ +W = σΘ

χ+ T Φ +Ra2Θ = − σ

Va
χ

T χ+ T a2W − Φ =
σ

Va
Φ,

(A.1)

subject to fixed heat flux boundary conditions

W = DΘ = 0 on z = 0, 1.

Here, for ease of computation, we have translated the domain from [−1/2, 1/2]

to [0, 1]. We do not assume the validity of PES, so at criticality the eigen-

values σ are purely imaginary. We want also to study the limit case of large

inertial effects, corresponding to Va → 0, so it is convenient to introduce
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Asymptotic formulas

the real quantity τ such that σ/Va = iτ . System (A.1) then becomes, for

Va→ 0, 

(D2 − a2)W − χ = 0

(D2 − a2)Θ +W = 0

χ+ T Φ +Ra2Θ = −iτχ
T χ+ T a2W − Φ = iτΦ.

(A.2)

We want to study solutions of this system for a → 0, and in particular we

want some explicit expression for the critical curve R2(a). So we assume that

all fields and R2 can be expanded in powers of a2 as follows

W (z) = W0(z) + a2W2(z) + a4W4(z) + · · ·
χ(z) = χ0(z) + a2 χ2(z) + · · ·
Θ(z) = Θ0(z) + a2 Θ2(z) + · · ·
Φ(z) = Φ0(z) + a2 Φ2(z) + · · ·
R2 = R2

0 + a2R2
2 + · · · .

If we substitute the above expressions into (A.2), and retain only the zeroth

order terms, we obtain 

D2W0 − χ0 = 0

D2Θ0 +W0 = 0

(1 + iτ)χ0 + T Φ0 = 0

T χ0 − (1 + iτ)Φ0 = 0.

(A.3)

If we consider the last two equation, in the fields χ0 and Φ0, we see that the

determinant of this sub-system is given by T 2 +(1+ iτ)2 or T 2 +1+2iτ−τ 2.

This complex quantity can be equal to zero only for τ = 0 and T 2 + 1 = 0,

but this is impossible since T is real. We have then Φ0 = χ0 = 0, and

from the first (differential) equation of (A.3), and the boundary conditions

W0(0) = W0(1) = 0, we get W0 = 0. The remaining equation becomes

D2Θ0 = 0 which, because of the boundary conditions DΘ0 = 0, implies

Θ = C, where C is an arbitrary complex constant. We can assume simply

C = 1, without loss of generality, and then our zeroth order solution is

W0(z) = χ0(z) = Φ0(z) = 0, Θ0(z) = 1.
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A.1 Sample detailed computation

We consider now the system obtained from (A.2), by retaining only the terms

which are of second order in a,

D2W2 −W0 − χ2 = 0

D2Θ2 −Θ0 +R2W0 +R2
0W2 = 0

(1 + iτ)χ2 + Θ0 + T Φ2 = 0

T χ2 + TW0 − (1 + iτ)Φ2 = 0.

Note that in this system appear also some of the zeroth order functions,

which we can then substitute, obtaining

D2W2 − χ2 = 0

D2Θ2 − 1 +R2
0W2 = 0

(1 + iτ)χ2 + T Φ2 = −1

T χ2 − (1 + iτ)Φ2 = 0.

We consider again the last two equation, which are now a non-homogeneous

system, and obtain

χ2 = − 1 + iτ

(1 + iτ)2 + T 2
≡ A.

Then, by integrating the first equation, with W2(0) = W2(1) = 0, we find

W2(z) =
A

2
(z2 − z).

Finally, from the second equation

D2Θ2(z) = 1 +R2
0

A

2
(z2 − z),

integrating once we obtain

DΘ2(z) = z +R2
0

A

2
(
z3

3
− z

2
) + c,

where c is an other arbitrary quantity. Imposing then the boundary condi-

tions on DΘ we get c = 0 and

R2
0 = −12

A
,
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Asymptotic formulas

that is

(1 + iτ)R2
0 = 12[(1 + iτ)2 + T 2].

The real and imaginary part of this equation are

R2
0 = 12(1 + T 2 − τ 2)

τR2
0 = 24τ,

from which we can derive the final results of section 10.2.

A.2 Electrically conducting fluid

We consider system (6.1), describing the thermal instability of a rotating

layer of electrically conducting fluid, subject to an external vertical magnetic

field. We assume the validity of PES, and derive our formulas for the case of

a non-rotating layer. Then, by setting p = 0 and T = 0, we obtain

(D2 − a2)2W +D(D2 − a2)K −DZ − a2 Θ = 0,

(D2 − a2)Z +DX = 0,

(D2 − a2)X +Q2DZ = 0,

(D2 − a2)K +Q2DW = 0,

(D2 − a2)Θ +R2W = 0,

and we can then eliminate field K, obtaining

(D2 − a2)2W −Q2D2W −DZ − a2 Θ = 0,

(D2 − a2)Z + T 2DW +DX = 0,

(D2 − a2)X +Q2DZ = 0,

(D2 − a2)Θ +R2W = 0.

We consider the three combinations of rigid (R) and free (F) boundary con-

ditions RR, RF and FF, non conducting boundaries, and fixed heat fluxes at

both boundaries, so the system is subject to

W = X = DΘ = 0 on both boundaries,

D2W = DZ = 0 on free boundaries,

DW = Z = 0 on rigid boundaries.
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A.2 Electrically conducting fluid

By expanding the fields and the Rayleigh number in powers of a2, and after

some lengthy calculations, we obtain the following expression of the critical

Rayleigh number for a→ 0

R2
0 =

12Q4(1− eQ)

12 + 6Q+Q2 − eQ(12− 6Q+Q2)

for the RR case,

R2
0 =

12Q5(1 + e2Q(Q− 1) +Q)

−24− 24Q+ 4Q3 +Q4 − 24 eQ(Q2 − 2)− e2Q(24− 24Q+ 4Q3 −Q4)

for the RF case, and

R2
0 =

12Q5

−12Q+Q3 + 12 sinh(Q)− 24 sinh(Q/2)2 tanh(Q/2)

for the FF case.

Expanding the above three results in a Taylor series in Q we get also the

respective expressions

R2
0 = 720 +

120

7
Q2 − 1

49
Q4 +O(Q6),

R2
0 = 320 +

320

21
Q2 − 88

3969
Q4 +O(Q6),

R2
0 = 120 +

85

7
Q2 − 5

3528
Q4 +O(Q6),

which confirm that these formulas have the correct limits for Q → 0, corre-

sponding to the known values for the simple Bénard system of 720, 320, 120.

The magnetic field, as expected, has a stabilizing effect in all three cases,

since the three values of R2
0 are increasing functions of Q.
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