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Introduction

The aim of this work is to propose a new methodider to efficiently produce high-

resolution maps relevant to the three-dimensionalion of Earth’s surface by combining
information from sparse Global Position System (BRP&asurements and Differential
Interferometric Synthetic Aperture Radar (DInSARjal

The use of DINSAR and GPS data to monitor grounbradetions on the same active
tectonic or volcanic areas are extensively us€d Plate Boundary Observatory (PBO) web-

pages at UNAVCttp://pboweb.unavco.orfy/

Nevertheless, each technique has some signifitemtcomings when used in a stand-alone
mode. Although GPS is the most suitable techniguerfeasuring ground deformation with
sub-cm accuracy level, it provides a point wise @Bplacement vector referring to the
specific geodetic benchmark where the antennat ispgseconsequently, the spatial resolution
of the measurement of the ground deformations dipen the network geometry and thus is
usually low (in the order of a few points / knin the optimal conditions). DINSAR provides
displacement measured along the Line Of Sight (L@S)veen the Earth’s surface and the
sensor; for satellite systems, which have off-nadigles of about 20°-40 °, this implies that
DINSAR measurements are more sensitive to thecaétomponent of the deformation than
to the horizontal ones. Since the DINSAR measul@sgaa specific direction (LOS), the
dimension of the information on the ground defoiorats a scalar. The DINSAR surveys
provide maps of the Earth’s movements having psxa in the order of 20 m x 20 m; thus
the spatial resolution is higher than the GPS netwdhe accuracy of the DINSAR
measurements is in the order of the cm, being tiesviedge of the orbits, the accuracy of the

DEM and the propagation thought the atmosphererti@ sources of errors. Except for the



first two, which can be reduced by adopting spediffocedures, the atmosphere (and in
particular the troposphere) is at the origin of thain unpredictable perturbing effects. The
variations of the troposphere may affect the grodatbrmation measurements over ten of
centimetres in very unfavourable conditions due,ristance, to turbulences on mountainous
areas [2]. However, the atmospheric signal folloarsthe whole, the power law distribution
and in general we may expect effects in the orfi@& %1 interferometric fringe (e.g. ~ 1.5-3
cm, for a C-band SAR [3,4Bonforte et al.,2001, Mattia et al., 2007]. Several techniques
have been proposed during the last decade to remfuelminate the tropospheric effects on
DInSAR data [5, 6, 7], but none of these can besiclamed as definitive and each of these has
pro or cons depending on the specific experimeraatlitions. .

The integration of DINSAR (scalar) data with the SGRvector) data should provide
information on the ground deformations by takingadage of the positive features of both
these techniques, i.e. the high spatial resolufadhe DINSAR, the 3D measurements and the
sub-cm accuracy level of GPS. This integrated mfdron should be able to give a more
reliable interpretation of the geophysical phenocangroducing ground deformations.

Recently, a few methods aimed at integrating tieekinds of data have been published [8,
9]. Gudmundsonn et al. [8] applied a Bayesianstasl approach and Markov Random Field
(MRF) theory to derive 3-D velocity maps, while Samov and Tiampo [9] introduced an
analytical optimization of interferometric obseneat and GPS dataset. Apart from the
differences in the algorithms used for combining data, these two methods have two points
in common: the first is the preliminary interpotatistep in which sparse GPS measurements
are interpolated in order to fill in GPS displacenseat the DINSAR grid and the second one
Is that the optimization techniques used to combeedifferent datasets are not based on the

physics of the deformations (i.e. from the elastitheory).



The interpolation technique typically used in these methods is the kriging which requires
for each component to be interpolated, the choi@@ppropriate theoretical semivariogram
model. This choice is one of the main critical gpeim geostatistics [10] and it is usually
performed by supervising a preliminary statistialgsis of the experimental data.

Here we propose the SISTEM (Simultaneous and latedrStrain Tensor Estimation from
geodetic and satellite Measurements) method, a MégiglLeast Square (WLS) approach
totally based on the elastic theory, to simultasgointegrate GPS and DINSAR data without
requiring the preliminary step of the GPS interfiola In this way, the dependence on the
choice of the theoretical semivariogram model, megu by the kriging interpolator, is
avoided. Furthermore, this method computes thdtsesn each point of the Earth’s surface
and, being based on elastic theory, it provides 3Destrain and the rigid body rotation
tensors. The estimated standard errors computedebWLS for each computation point are
also provided to assess the reliability of the ltssu

Furthermore 3D ground deformation maps, obtaineddght the SISTEM method, were used
in the framework of the inversion problem. In tk@ntext an inversion procedure based on
the joined use of a Particle Swarm Algorithm ane @auss-Newton optimization methods
was used to solve the inversion problem relevaréc2009 Abruzzo earthquake. Moreover,
other novelty of this work, a neural network baspgroach aimed to estimate more realistic
volcanic source shape instead of perfect geomstucce shape was proposed.

This work is organized as follows. In chapter 1 stete of the art relevant to the integration
of geodetic and satellite data to obtain 3D motiwgps over the whole investigated area is
reported. In particular the methods developed b&&mundsson and F. Sigmundsson [8],
Three-dimensional surface motion maps estimategh frombined interferometric synthetic

aperture radar and GPS dataand the method developed by Samsonov and Tia@po [



Analytical optimization of INSAR and GPS datasetfrivation of three-dimensional surface
motion are reported. Chapter 2 describes the new metledthave developed in order to
integrate geodetic and satellite data. Chapterdgweted to the inversion modeling problem.
In chapter 4 a new method based on Artificial Nedvatwork aimed to estimate a more

realistic volcanic source shape is proposed. Kirth# conclusions of this work are drawn.



Chapter 1

State of the art

The S. Gudmundsson and F. Sigmundsson method

In the following we report the method proposed bys8dmundsson and F. Sigmundsson for
fusion of INSAR and GPS data to achieve three-dsioeal surface motion map. This
method uses Markov Random Field (MRF) based regaléon and simulated annealing
optimization [11, 12]. In MRF regularization, antopal image is interpreted as a realization
of a random variable, where the value of each pixéhe image grid is only dependent on its
nearest neighbors. This provides a convenient Wwammadeling image texture and spatial
correlation of image pixels. Furthermore, simulatadnealing optimization of MRF
regularization is a very suitable and effective metto use in image reconstruction.

This methodology can be used to construct 3-D moti@aps of various types of surface
movements. Such motion maps can be useful e.g¢ display data and provide a consistent
view of 3-D motion fields, (2) to derive strain eahaps that can be used to study the buildup
of crustal stresses related to future earthquakes, (3) to infer volume of surface

uplift/subsidence by integration of vertical defation fields.

Problem formulation

An InSAR interferogram can be related to the 3Dugadeformation components as

V/gs = [ViX;Viy,Viz][Sx,Sy; SZ]T (1)



wherei is a pixel number, vix,viy andv';are the east, north and vertical components of
deformation, respectively, anl = [SX,Sy;SZJ IS a unit vector pointing from ground toward
satellite. The aim is to estimate the three motioap v,, v, andv, from the knownV ¢

interferogram and sparse GPS observation valueg,,of, andv,. The authors rewrite the

three-dimensional equation as the two equivalemtdinensional terms for computational

convenience

Vios =M ¥ 8,8 T 2)

where

S =S+ S @

ViL = M (4)

The second termv; is the deformation in the horizontal look direatiof the satellite.
Equation (2) can be first used as a basis to determ,V, . Then the east and north motion
maps,v,, v, can be found by utilizing equation (4) or by rewgt equation (1) as

Vl_ios - SvVv = [V;’Vly][sx J Sy]T (5)

The authors adopt the following general formulandequation (2) and (5):
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v =[i]ls.s ] 6)

where vy, is known for all pixeli, x and x,are only known at sparse locations and
S andS, are constants. By using equation (6), the problémptmizing three motion maps
in equation (1) is simplified to optimization ofetltwo motion mapx, andx,. Hence the same
optimization algorithm can be used when optimizigg V, and x,=V,, in equation (2), and
x, =V and x,=V,, in equation (5). This simplifies the optimizatialyorithm, since only two
instead of three motion maps are optimized at &ineestime. This does though requife and

V, to be optimized previous td. andV, .

An introduction to the Markov Random Field Regularization and Simulated Annealing

Optimization

S. Gudmundsson and F. Sigmundsson use a MRF nodejularize the construction of the
x, and x, motion maps in equation (6). The regularizatioropgimized with a simulated
annealing iteration process. According to the MREButarization, an optimal image is
interpreted as a realization of a random fiédd The authors adopt a maximum a posteriori
(MAP) estimate in order to represent an optimalizadon imagex for a given imagey .

The MAP estimation is given as

X = argmaxP(X =x|Y = y) @)

11



For convenienceP(X = x) will be written as P(x) when expressing the likelihood. The

Bayesian theorem [13] gives

Wﬂy):fg%%%ﬁgmpwﬁxwx> ®)

where P(x) represent prior expectations about the randord tiel
A Markov random field X is characterized by the important property thas iefined with

respect to its neighborhood system, such that @ padue on an image grid is assumed to be
conditionally dependent on its neighboring pixetdyo This is the Markov property, which
gives a local definition of the random field. Thetteors use this property when a simulated
annealing is adopted to optimize the MRF reguléiorma which results in a very effective
image optimization process. By using the Hammer€lEyord theorem [14], the density

function in equation (8) can be written as the Gibdndom field

P(x]y)=P(x]y) O ex;{—%u (x| y)j = exr{—%ul(x)jexp(—%uz(w X)j =

- exf -

where U(x| y) is an energy function defined with respect toribeghbourhood structure of

=~

MM+%WMU 9)

the image x, (i.eU,(x) ) and the relationship of the imagéo the imagey (i.e. U,(x) ), and

T is a temperature. The Hammersley-Clifford theoggwes a global definition of the random

12



field, and hence the MRF modeling can be regardededining a suitable energy function
that takes its minimum energy stage for the optir@alization image.

As T - oo the distribution in equation (9) becomes uniformmoag all possible energy states
and as T - 0, the distribution becomes uniform among the mimmenergy states. The
simulated annealing optimization can be descriteed gaampling of the density in equation

(9), where the temperatufiestarts at some “high” valueT, > @nd falls toward O during

the iteration steps. If the temperature is lowesieavly enough, then equation (9) will assign
the maximum probability to the MAP image [15]. Owoiethe great advantages of using the
simulated annealing optimization process is itatretly low risk of running into a local

minimum compared to other optimization algorithms.

Construction Process

The authors start their construction process wnitiiai motion maps created from interpolated
GPS observations. The motion maps are then optihiim¢her with MRF regularization and
the simulated annealing algorithm.

The initial motion maps are used as initial guedsefere optimizing the 3-D motion field
with the MRF regularization. Various methods exastinterpolation of sparse data [16]. The
effectiveness of each method may depend on theacteaistics of the sparse data. A
reasonable chose of interpolation method neede® tcohsidered with respect to each sparse
data set. The authors demonstrate the method egl¢otinterpolate the sparse data and
discuss some other possible alternatives.

In particular S. Gudmundsson and F. Sigmundssdedeseveral interpolation methods for
the sparse GPS data from the Reykjanes Peninstuk.alithors found ordinary kriging

algorithm given by [17] to be simple and appromigtriging algorithms use geostatistical

13



measurements to find an optimal set of weights digethe interpolation, calculated from a
semivariogram (inverse related to the covarianamated from the data. The ordinary
kriging algorithm requires the motion field to betlb first and second order stationary [18],
and the estimated semivarograms of each of the tBRS components to be fitted with a
Gaussian semivariogram model [17]. The Gaussianivagimgram model includes a
preconception about the shape of the semivariogham the amplitude of the semivariogram
increases with distance). Based on the observafidime GPS vectors, the authors argue that
the motions at the Reykjanes Peninsula are eastasesnted and anisotropic. Furthermore,
the vertical motions are partly localized, e.g.thwsome local subsidence at Svartsengi [19].
Hence the motion field is in general not stationaryd thus the averaged semivariograms do
not produce the appropriate shape that is needethédoGaussian semi- variogram model.
However the authors highlight that the averagedismmgrams strongly indicate that the
motion field is approximately first and second ardetionary within a distance of at least
200 pixels (18 km) from any arbitrary chosen lomaffpoint) at the Reykjanes Peninsula area.
Hence an appropriate shape for the Gaussian seagr@n modeling can be achieved by
only using semivariogram data within a distanc@J pixels. The spatial consistency of the
GPS data is preserved in the kriged motion mapsh&umore, both the east-west tendency of
the horizontal motions and the localized subsidepattern at Svartsengi appears to be
preserved. Accurate interpolation of the subsidgratéern at Svartsengi is also supported by
previous studies of the motion field at the aref].[TThe authors report an example of
consistency between the interpolated GPS datarg®@R data . The good agreement of the
two independent complementary data sets indicatasceessful interpolation of the sparse
GPS data. The ordinary kriging algorithm may netaals be applicable. This was the case in

the study of ice flow by [20], where motions weiigtty anisotropic and localized. In their

14



case, both time series of digital elevation map&NIS) of the ice surface and aerial
photographs were available. Thus they found it eyate to use cubic spline fits of available
sparse ground observations, together with knowlexigbe surface patterns from the aerial
photographs and by assuming smoothly varying hotaace flow parallel to flow lines with

the aid of the DEMs. Another type of localized aawisotropic surface movements are
discontinuities because of seismic or aseismic rdeton. Often, there exists a physical
model that describes the general patterns of sumions. One possibility is to remove the
model from the GPS observations, interpolate tis&doals (e.g., with the ordinary kriging

algorithm) and add back in the model. Such resglaa¢ expected to be approximately a

stationary random field, which is the most apprateriform for kriging algorithms.

Energy Functions
The authors propose the following general form ¢btal energy function used to optimize

the two motion maps and x, in equation (6):

U (%% |Y) =U, (%0 %) + U, (y [ %, %,) =

U, (%) +U (%) +U,(y [ %, %,) (10)

where the former step is an extension of the en&rggtions in equation (9), and the later

step is achieved by assuming independence betweelikelihoods of x, and x,. U, (Xx)
and U,,(x,) are then related to the neighbourhood structure aind x,, respectively, and
U,(y|x,x%,) expresses the relationship of the two-dimensiomedtion field to the

unwrapped INSAR imagg as given in equation (6). Then the author progbseefollowing

energy function to optimize equation (6):

15



U (¥ 1% %) = ¥ s + [ Xon [ 0] J (11)

wheren is a pixel number ang, is a constant.
The authors invoke the smoothness of the firstveévies of x, and x,, implemented as a

penalization on the second derivative [12], with #pproximations

2

U9 = 2 D s * Xy =B %1+ %5 00) (12)
i

2
U,,(%) = yZZZZ(XZi—l,j X "% T X T X2i,j+1) (13)

L

wherei,j are the row and column numbers, respectively, gpdnd y,, are constants. By
using equation (12) and (13), the authors havenasguthe motion field to be smoothly
varying. The smoothness requirements were the pnty expectations about the random
field used in their work. It serves the importanirgmse of preserving the correlated
relationship of the image pixel values. T term in equation (10) may consist of various
types of prior expectations. As an example, in wtodl ice flow [20], authors used an

assumption of having horizontal ice flow parallelhe flow lines at the surface, implemented

with aid of digital elevation map.
The energy function in equation (10) utilizes takationship of the motion field images to the

known imagey. Sparse values of the motion field imagesand x, are known from the GPS

16



observations and are used to initialize the procElss interpolated initial motion maps (the

GPS observations) can also be utilized into the MRi¥gels by extending equation (10) as

U (%, %, |leil,Xi2,) =U, (%, %) +U5(Y, X0, %, |X],X2,) =

=Up (%) +U (%) +U, (Y [%,6) #U 11 (6, [ %) ++U (%, [ %) - (14)

where x,, and x,, are the estimated initial values of and x, respectively. As in equation
(10), independence is assumed between the likel$obx, and x, , which leads to the final
step in equation (14).

The expected spatially variable accuracy of theerpulation (kriging) results can be
incorporated in the regularization by introducing ‘aincertainty image” w. Authors use a
method introduced by [17] to create the uncertaimigge along with the kriging of the sparse
motion field measurements. In his method, the kggresults are expected to be most
accurate at, and close to, pixels correspondingh&éo GPS locations but become more
uncertain with distance from them. No uncertaingy assigned to pixels with GPS
observations and the certainty then decreases &aaythem. In the uncertainty image, a
value of one means no uncertainty and a value of meeans no certainty. The spatial
accuracy of the interpolation may also depend aralbke uncertainty assigned to each GPS
vector. It is possible to incorporate those vagadirors in the uncertainty image, by assigning
suitable uncertainty value to pixels with GPS obagons. The initial values and the
uncertainty image are utilized into the MRF reguiation by penalizing the motion maps for
deviating from the initial results. The penalizatics then weighted with the uncertainty

image. This is done by using the energy terms

17



U (X1 1%) = yllZ( n(xiln - Xln)Z) (15)

Up(X2 %) = yIZZ(WZn(XiZn - X2n)2) (16)
n
for the motion field imagex, and x,, respectively, where is pixel number,x, and x, are
the initial values at the pixel, w,, and w,, are the estimated uncertainty of the initial values
at the pixeln and y,, and y,, are constants. Because of the uncertainty imagdes, t

penalization in equations (15) and (16) becomeasngtst at and close to pixels with GPS
values and decreases with distance from them. mbegg function in equation (14) has the
advantage of utilizing both the relationship of thetion maps to INSAR and GPS

observations.
Simulated Annealing Optimization

The simulated annealing algorithm proposed by &I@undsson and F. Sigmundsson for the

optimization of the two realization images and x, is the following:

1. Choose initial imagesx, and x,, (e.g., by kriging) and set the initial temperatur
T=T,.

2. k=2, wherek is a pixel number.

3. Increase or decreasg, with equal probability by a value akx, which gives a new

image x.

18



4. Calculater,, = [pT(xi)/ pT(xl)]= exp{— [U (x)-U (xl)]/T} :
5. 1f r, > [01], thenx, =x,; otherwisex,, = X, .

6. k=k+1 if k<M, go to step 3; otherwise, go to the next sdpgthe total number of

pixels).
1. X =X
8. k=1

9. Increase or decrease, with equal probability by a value akx, which gives a new
image X, .

10. Calculater,, =|p; (%)/ pr (%,)] = exg~ U (%) U (%) |/ T}

11. r,, > 1[01], thenx,, = X,,; otherwisex,, = X,

12. k=k+1 if k€M, go to step 9; otherwise, go to the next step seq.

13. X, =X, .

14. T =T xcool, where cool <1 is a constant.

15. Go to step 2.

The authors separated the optimization into twpsst€irst x, is updated for givernx,, and
then x, for a given x,. Then these steps are repeated until a satisfactsult is achieved.

The energy functiorJ is given by either equation (10) or (14). The alfpon uses a

nonrecursive update of the pixel values . The MR&deh favors low energy states by
associating them with high probabilities. The Marlgvoperty of the random field is utilized
when calculating the ratio of the image probabibtates with and without updated pixel
value (steps 4 and 10 in algorithm 1). As the audrmphasizes all terms in the probability

formulation not directly related to the pixel undemnsideration disappear due to the Markov
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property. This is evident when implementing theoagged energy functions into the

calculation of the image probability ratio in stepand 10, i.e., all terms in the summation in
equations (11), (12), (13), (15), and (16) notctiserelated to the updated pixel value cancel
out in the probability ratio. Furthermore, the ayeterms in equations (13) and (16) (energy

terms not related tog) cancel out in step 4 and in equations (12) asjl (&nergy terms not
related to x,) in step 10. In the aIgorithm,u[O,l] Is a random number ranging from O to 1,
selected from a uniform random generator. This kted annealing algorithm chooses a new
energy stage if the probability ratio is largerrnthamandom number within the [0,1] interval.
This allows the algorithm to explore various conations of the motion maps, and hence
avoid local minima. AsT - 0, the effects from the random generator vanish. ddrestant
cool in algorithm 1 establishes the temperaturie Adter full annealing, the algorithm selects

the motion maps with the highest probability.

Parameters

As highlighted by the authors the ratio of tlecoefficients represents combination of both
scaling and weighting of each of the energy termshe optimization. Indeed the energy
functions represent different types of quantitfasithermore, evaluation of suitable values for
these parameters is not a simple task. By usingpwsrexperiments, the authors found
¥, =10 in equation (11),);, =1and y,, =1 in equations (12) and (13), respectively, and
Vi1 = Vi, =10 in equations (15) and (16), to work well for theliata. Relationship of the

motion maps to the INSAR observations is reflecteequation (11), i.e., projection of the
motion maps on a unit vector is known at all pix@lsus, the energy term in equation (11) is

given a relatively strong weight in the optimizatiocAn infinite set of solutions exists for

20



equation (11). Hence, the authors use as an adalittwnstraint (a prior expectation about the
motion field) an assumption of having a smoothlgts varying motion field (equations (12)
and (13)). Those smoothness requirements also eetthgc effects of high frequency noise
errors in the INSAR data. A smoothly varying motfaid is not always the case, e.g., when
there are discontinuities due to seismic deformat®trong smoothness requirements can
result in oversmoothing of narrow deformation featu Here they keep the weights of
equations (12) and (13) small but under the conaiaben of achieving acceptable spatial
correlation in the output motion maps. The eneggyns in equations (15) and (16) express
the relationship of the output motion maps to tharse GPS data. Those energy terms also
tend to smooth the output data. The smoothing &ffeie though small compared to those of
equations (12) and (13). Here we keep the constirmequations (15) and (16) much weaker
than in equation (11). [25] The weights may dependhe nature of the data. In [20] authors

found the same values of,, y,,, and y,, to be suitable to optimize 3-D motion maps at the

1996 Gjalp eruption site in Vatnajoull, Iceland.g@pite to the author GPS data, their sparse
ground observations of the vertical, east, andhnoomponents of the motion field were not
all conducted at the same locations. Because sf ithivas better to use only half the values

we use for y;, and y,, in that case. The author usg = , @x=0.1, and cool= 099in

algorithm 1, and the process is terminatedTor . 0.1
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Figure 1. S. Gudmundsson and F. Sigmundsson se€in [8])

In figure 1 ground movements at the Reykjanes Refaninferred by using the GPS
measurements and 4.17 years interferogram are sfidwerresults are show of using only the
relationship to the INSAR observation in equatid®)( and the relationship to both the INSAR
and GPS observations in equation (14), in the M&fularization. (a), (c), (e) The vertical,

east, and north motion maps, respectively, infelng@dptimizing equation (10). (b), (d), (f)
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The same from optimizing equation (14). (g) Redidemor between the 4.17 years
interferogram and projection of the images in Feguta, 1c, and le into the slant range of the
SAR satellite, and the mean value (m) and standexdation (s) of the residuals. (h) The

same for the images in Figures 1b, 1d, and 1f.

The Samsonov and Tiampo method

The method proposed by Samsonov and Tiampo is basea random field theory and

Gibbs—Markov random fields equivalency within Bagesstatistical framework. It is slightly

different from the method proposed by S. Gudmundssal F. Sigmundsson. This method
minimizes the energy function without the smootlsnesiteria, and thus without the

smoothness term thus allowing an analytical opttnin of the Gibbs function.

Theoretical background

Samsonov and Tiampo start their paper giving arodhiction to the Bayesian inference.
Bayesian inference is a theory of fundamental irigmme in estimation and decision-making.
It is based on the Bayes theorem, which relatetepos and prior probabilities according to

the following equation:

P(x| y):% 0 POIP(Y] %) 17)

where P(x|y) is the posterior distributionP(x) is the prior distribution,P(y|x) is the
conditional probability or the likelihood of the sdrvationd, and P(y) is the density ofd

which is constant whedhis given and therefore can be skipped in the futi@révations.
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The authors highlight that in Bayes estimation,isk is minimized to obtain the optimal

estimate. The Bayes risk of estimafeis defined as
R(x* ) = me C(x* : x)P(x | y)dx (18)

where C(x*,x) is a cost function defined as

* _{o, it [X-x<o
C(x ,x)— (19
1, otherwise

where d is any small constant.

The Bayes risk can be calculated by substitutiof1®f in (18)

R(x* ) = L:HX* s P(x|y)dx=1- P(x| y)dx (20)

X:HX* —std’
As J - 0 the above equation can be approximated by theviolg:
R(X')=1-kP(x|d) (21)

wherek is the volume of the space containing all poiotsvhich Hx - XH < d. Therefore, the

minimization of (21) is equivalent to maximizatioh P(x| y).
The poster distributiorP(x| y) can be calculated from the prior distribution dikélihoods

in a way given by Bayes theorem (17). The priotriigtion can be presented according to

the Hammersley-Clifford theorem in a form
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P(x)= 2 el (22)

whereU is the energy function of corresponding Gibbs candield and

z=Y et (23)

xOX

IS a normalization constant callgzhrtitioning functionand T is a temperaturewhich is
assumed to be equal to one and skipped in latavatiens. Then likelihoods can be

calculated in a similar way by

gl (ylx) (24)

where the energy function is

U(y|x):i2::()g2_—0_?2/‘)2 125

The authors rewrite the total energy function inftilowing form:

U(x|y)=U(y|x)+U(x):g%+U(f) (26)
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GPS and DInSAR analytical integration

The author’s goal is to calculate three componehthe velocity vector at each grid point
from three known datasets: ascending and descerdin§AR interferograms and GPS
velocities at the sparse locations. In order twesdhis problem is needed to opportunely
define the correct Gibbs energy. The prior distidouof (26) is the initial assumption about
the authors’ model, which in general may be corogcincorrect. As focused by Samsonov
and Tiampo, if the assumption is incorrect and ttarsies some misleading information then
the posterior distribution will be misleading alsbJeast in part. Therefore, since the accuracy
of initial assumptions is unknown here, Samsonow BEampo propose not to use it and draw
all information from the data only.

Two DINSAR interferograms can be related to comptsef the velocity vector according to

the following equation:

Ve =gt sts

Vs =[visvi v, st s 27)

where V1 andV/ are the known interferograms defined on a gritll gints, [v‘x;viy,vin

are unknown components of the velocity vector 484S}; S| and |S2,S%SZ| are unit

vectors pointing from the ground toward the satelli

The GPS velocities are known only at a few location

V' = vix;viy,vin (28)
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Some interpolations technique such as krigingeauired by the authors in order to fill in
GPS velocities at the DINSAR grid points. Krigirsga method of interpolation which predicts
unknown values from data observed at known locatidiis method uses a variogram to
express the spatial variation, and it minimizes émeor of predicted values, which are
estimated by spatial distribution of the predictatues [21], [22].

Samsonov and Tiampo rewrite the Gibbs energy fanam the following form, where the

first two terms correspond to DINSAR and the |ast¢ terms correspond to GPS:

Z X "X Z

Ul v,iv,) =3 CEvES - S, - Sivt - S F + G2y, - S - Siv, - S +
i=1

cilvi -v.f +cylvi -v f +cilv) -vif (29)
with coefficients
1 — 1 2i - 1 (- 1 = 1 i — 1
“TdF ARy “Tdaf A Aoy

whereo’s are standard deviations of the measurements.
Equation (13) is a function of variabl@x N variable [v'xv'yv'ZJ whereN is the number of

grid points. It consists dfl nonnegative terms corresponding to the same indeerefore,

the functionu(vx,vy,vz) reaches its global minimum when each subgroup tghsame index

i is minimal, and the first partial derivativési/dv,, du/dv,, du/dv,, are equal to zero.
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2 = 208! Mlos = SIV - S}V, - Siv2) - 26287 Mos ~ SV, - 7Y, - S2)
-2c,\v; - v)
2 = 2025 Mos ~ SV, - SIY, - S - 228 os - SV - 7V, - 52
y
-2C,v; -v,)
2 =208t Mlos = SIV - S}V, - S1v.) - 26287 (os ~ SV, - 7Y, - S1)

-26,v; -v) (1)

This set of three linear equations with three unkm® can be constructed for each grid point.
The author emphasize that it is always solvable nwtiee determinant of the matrix of
coefficients is not zero. It can be shown that tbendition is always true when the
coefficients (30) are not zeros. Because thisascise in every instance, the exact analytical
solution can be easily calculated.

The solution of the set of (31) is the standarceise problem of the fornX = Au. Matrix

A in this equation is nonsingular and the inversérimad™ is continuous on any point where

C..C,C, are not null at the same time, which occurs imcatt all cases. Therefore, a unique,

stable solution always exists. However, in numérgaculations, the fact thatletA can
become very small when errors are big gives inktigsi of the type 0/0 and the limit, which

always exists, must be calculated carefully.
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Figure 2. Samsonov and Tiampo results from [9]

In figure 2 results relevant to a synthetic caselsiperformed by Samsonov and Tiampo is
shown. In the first row original modeled componeoitsurface velocity field that are to be
restored are reported. In the second row the caemgs of the velocity field interpolated
from sparse GPS locations by ordinary kriging i®veh. In the third row the restored

components of the velocity field after applying GBBRSAR optimization are reported.
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Chapter 2

The SISTEM method

Introduction

In this chapter the mathematical formulation of tB&TEM method is reported. The
proposed methodology was tested on both syntheticeaperimental data. In particular the
latter from GPS and DINSAR measurements carriedoaut. Etna during the 2003-2004
time interval. In order to appreciate the resultsuaacy standard estimated errors are
provided. These tests also allow optimising theiadoof specific parameters of this
algorithm.

Both methodology and results reported in this olagtave been submitted to IEEE

Geoscience and Remote Sensing [23] and are undewre

Mathematical Background

In this section we set out a few well known poirfitem continuum mechanics and geodesy,
which are fundamental to implement the method fdegrating GPS and DInSAR data
introduced in this paper.

Let us assume that a geodynamic process (e.gsiotigiof magma or earthquakes) deforms a
portion of Earth’s surface; under the hypothesignbhitesimal and homogeneous strain we
define an arbitrary poir, having positior=(X10, X0, X30), andN surrounding experimental
points (EPs) whose positions and displacementsemgectively Xmn=(X1n), Xom) Xsm) and

Uny=(U1my Uy W) Wheren=1..N. Under such a hypothesis, adopting a linear agprdae
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problem of estimating the displacement compon&htgi=1..3) of the pointP, from the

experimental datam=(U1n), Wn), Wn), can be modelled by tHé equations [24]:

where Axjn=Xin-Xjo are the components of the vector distance betwéen if' EP

experimental points and the arbitrary point P, ehi ijzgi are the elements of the

Xj
displacement gradient tensor. In equation (1) trerimH can be broken down into a
symmetric and an anti-symmetric partlsE+Q. The symmetric park is the well known

strain tensor defined as:

1 &1 & &3
E=g¢ =E(Hij +Hji)imi= Ep &y &3 (2)
13 &3 E33

and the antisymmetric pa®t is the rigid body rotation tensor defined as

1 0 -w w
Q= :E(Hij_Hji)ﬁmiz s 0 -w )
W W 0

Here g is the canonical base vector of the Cartesiarrerée system andl is the tensor

product.
It is straightforward to show that ti3& equations of type (1) give a linear matrix equatbn

the following form:
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Al =u 4)

whereA is the3N*12 design or coefficient matrix [25]7] U; U2 U3z €11€12 €13622 €23€33M1 M2
w3]" is the column vector of unknown parameters arfliy Uy .. Um)' is the column
observation vector, usually referring to displacetmeectors measured d geodetic
benchmarks.

Assuming a uniform strain field and re-writing theevious linear equation (4) #d=u+e,
wheree is the residual vector that models the stochamsditare of the estimation problem
suitable method to solve the system is the Weighesst Squares (WLS) which gives the

expression (5) as a suitable formula to estimataittknown vector

| = (A'WA) ™ A™WU (5)

whereW is the inverse of the data covariance marix
According to the modified least squares (MLS) appto proposed by [25], based on the
adjustment of the covariance matrix , we use thgix@&’ which is a weighted version of the

matrix C. Following the suggestion given by [25, 26], theighting is given as:

Cc =C exp(—%) (6)

whered, is the distance between th€ EP and the arbitrary point P, adglis a distance-
decaying constant defining the “level of localityf the estimation; hereafter, the parameter

dois defined as “locality”.
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Likewise most previous methods [27, 28, 29] the] [2pproach is used to interpolate the
strain among benchmarks of geodetic networks whesand deformations are measured by

comparing geodetic surveys.

The Simultaneous and Integrated Strain Tensor Estiration from geodetic and satellite

deformation Measurements (SISTEM) approach

In this section we describe the SISTEM method ftingating the gradient displacements
tensor taking into account both tha situ geodetic measurements and the satellite
deformation measurements. In particular, we implanteis method for the simultaneous
integration of the 3D components of displacemeneasured by a GPS network and the
DINSAR LOS displacement map, but it can be eastgraed to other kind of terrestrial
geodetic measurements.

A DInSAR interferogram can be related to the congms of the displacement vector of an

arbitrary pointP according to the following equation:

.
Dioe =[U,, U, U[ST, S, 8] 7)
where D/, is the LOS displacements, at the point P on théhBasurfacelJ; U, andUz are

the unknown displacements vector components,[Sﬁ&f SP] is a unit vector pointing from

the pointP toward the satellite. In order to create a higidgurate surface motion map, with
the same spatial resolution of DINSAR image, weehiz¢luded the DINSAR data into the
global strain estimation methods previously introgtlt It is straightforward to demonstrate

that for integrating GPS and DInSAR data, these iasthe form defined by (7), the
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estimation problem can be expressed in the usual Ad=u+e where the coefficient matrix

A assumes the following structure:

1 0 0 Axy DXy Axy, 0 0 0 0
0O 1 O 0 DXy 0 DXyyy DXy 0 = DXy
0O 0 1 0 0 DXy, 0 DXyyy DXy DXy

A=
1 0 0 Ay Dy By, 0 0 0 0
0O 1 O 0 DXy 0 DXy DXy 0 ARSI
0 0 0 Axi( N) 0 AXZ(N) Axg(N) AXZ(N)
SXP Syp SZP 0 0 0 0 0 0 0

While the measured data vector assumes the form:

_ p
u= [u1(1) U qy Ugggy - - Uygmy Upgny Uz Dlos] "

Ax3(1)
0
- X

1(1)

Axg( N)
0]

= DXy
0

- sz(l)

- sz( N)

Axl(l)

(8)

AX1(N)

9)

It should be observed that the A matrix consist8M#1 rows: the first3N rows can be

viewed asN blocks of three equations which represent inforomabn the GPS position of

each single EP with respect to the arbitrary pé&intwhile the last equation refers to the

corresponding DINSAR data. The interested readarwerify that expressions (8) and (9)

have been resembled from those given by [25], wraeéers to the GPS measure only.

We emphasize that the SISTEM method is a point-siigated approach. This means that, at

the unknown pointP, SISTEM solves the WLS problem by taking into acto the

surrounding GPS points and only the DINSAR dataadent with the poinP. Therefore the

spatial correlation of DINSAR data is not takeroiatcount. Finally, the point-wise approach
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implies that for areas where DINSAR data is migged. low coherency, decorrelated areas,
etc.) the SISTEM does not provide the integratddrdeations.

In order to solve the problem by using the WLS rodtht is necessary to modify the
covariance matrix structure of observation by agdire variance of DINSAR data points. For
this purpose we estimated the variance of the DR8Ata directly from the interferogram by

using a sample semi-variograih.) (eq. 10) [30, 31]

1 T
yh) = > [d(r)-d(s)] (10)

i=1

whereh. is a classified separation distance.

The weight function (7) has been used only on G&S3,decause for each arbitrary pdmt
the D[, measurement is known.

In this method, the only parameter that needs tappeopriately chosen is the paramekgn
order to define the level of locality of the estima. As suggested by [26] we have relatigd
with the mean inter-distance between neighbourosisit In particular leN be the number of
EPs point of the network ari] bethe set of M nearest stations in the circle cedtatethel
station. It is obvious that the radius of this ldrdepends om. We propose the following

empirical formula to evaluate:d

6=t 34 (11)
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The optimal value oM depends on the topology of the network; basedeveral trials, we
have empirically found that for random configuoas M ranges between 4 and 6.

It should be noted that the effects of the localigyare the following: only the points closer
than aboutyto P give a significant contribution to its estiioat the uniform distribution of
the strain is required only in a neighbourhood athe computation point; for points P far
away the EPs the DINSAR data becomes the dominBortmation source.

In order to estimate the goodness of the SISTEMhaotttwe have used the estimated

standard error provided by the WLS approach.

A Synthetic case study
The SISTEM method is firstly tested on synthetiteiferograms and displacement fields
obtained by assuming a specific strain pattern lapdusing a synthetic topography. As

proposed by [9]; the topography is computed adngraiith

Z(x,y) = z,e )l (12)

wherez(x,y)is the elevation at a point {x,y} is the initial maximum elevation to the central
point, andw is a form factor used to adjust the slope andsthe of the hill (Fig.1). In our
casezo =1000 m anav =1.

The synthetic dataset was generated by assuminmagressure source [18, 1] (Mogi, 1958;

Dzurisin, 2007) defined by:
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u, [z (13)

Whereu; (j=1,3) are the displacements along the three directistisiated at the point P {(x

Xz, d), -d is the depth of the pressure source &/ x’ +x; +d” is the radial distance of

the point P from the centre of the pressure sourcandp are the Lame’s constants. The
pressure source was embedded in an elastic hommgemoissonian half-space (Poisson’s
ratio = 0.25, i.eA = p), and, to take into account the effect of the gypphy, the simple
varying-depth model proposed by [32] was adoptddclvconsists of assuming a differedt

at each computation point.

Figure 1. Synthetic topography used for the test
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Through the tests the pressure source was centredd®0x450 grid (cell-size 100 m x 100
m) with p=30 GPa, depth = 5000 m (with respect to the b&s$keotopography) and with a
“strength” parameter {AP ) = 16’ Pa*nT. The synthetic data set consists of the 3D
displacements computed at the EPs and the synth&grferogram relevant to the considered
domain (40 km x 45 km). In the tests we considerERs as GPS stations. A Gaussian noise
of a form N=(0,6=5 mm) and N=(0¢=10 mm) for the horizontal and vertical composent
respectively were added to the GPS synthetic dRagerring the DINSAR synthetic data, in
order to be as realistic as possible we have addgzhtial correlated noise with a variance of
3mm calculated on the basis of a fixed covariana&rimnby assuming an exponential decay
with scale length of 500 meters [33].

In order to estimate the covariance matrix of thatlsetic GPS points we have firstly
generated a time series representing the presalure of the Mogi source in the range 010
Pa*nT at different time instants. This was necessaryesthe original Mogi model is a static
one. According with expression (13) we generatedethime seriesi(t), ux(t) andus(t) to
evaluate the covariance matrix of the synthetia dat.

Fig. 2 reports the results of the test obtainedsigig 100 Experimental Points (EP) randomly

located assuming a localitgip) of 2000 m..
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Figure.2 In the frames a,b,c are reported respectivelyEthst, North and Up components of the displacement

field while on the frame d is reported the LOS gatex on the synthetic topography; the frames a, b,
and d are obtained by using the Mogi source (norexdded). The frames e, f, g and h represent the
three displacement components and the LOS displmsnealculated by SISTEM integration method
(for details see the text). In the frames i, |, nd an are reported the residuals of the East, Naith,
components and LOS respectively. In the lower roe r@ported the normalized histograms of the
corresponding residual errors, the mean valeafd standard deviatiow). The red point represents

the locations of the EPs used for integration.réfiorted values are in mm.

The original horizontal displacement componentsehagymmetric shape and range from -30
mm to 30 mm, while the vertical component is vetigep at the center area, where it reaches

a maximum of about 70 mm.
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The components of the displacements calculated hiey proposed method are in good
agreement with the original data and produce redsdibetween +6mm for all the
components. The highest residuals are generalblibed in areas where both the density of
EPs is low and the magnitude of expected deformatie high. The residuals of the vertical
component are lower than those relevant to thebotal ones. The pattern of the residuals of
the LOS displacements is peculiar showing a rirgpshfeature, around the center area of the
image, with the highest residuals on the steedepes of the topography. Apart from the
scarcity of EPs in these areas, at the originisfglculiar feature it should be the effect of the
difference in considering the distances among pdietween the models used for computing
the synthetic data set [18, 19] and the SISTEM, Y are, indeed, intrinsically planar, i.e.
the distances among points are computed as hoaizavttile SISTEM is intrinsically 3D; this
difference may produce severe effect on steepeges! In order to avoid similar artifacts, in
future works we will test the correction proposed[B5], which is more precise than that
proposed by [32], but it is more complex and reggiimore computation time.

The distributions of the errors, reported in th& l@w of Fig. 2, are slightly biased for all 3D
component, but not for the LOS deformations. Thesoa of such a behavior is due to the
random distribution of the EPs. Indeed, by perfoigna huge number of experiments we
found that the best performance is obtained whesgalar grid of GPS point is considered.
This is rather obvious and has been pointed oubthgr authors [36]However, since we
think that the random distribution of EPs depidie tactual cases more than a regular
distribution, we prefer to maintain these resudtgn if biased.

Although the integration of DINSAR and GPS datadbtaining the 3D displacement maps is

the primary goal of this work, we emphasize thabther important issue of the SISTEM
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methodology is to provide the strain tensor compts€i1 €12 €13 €22 €23€33 ) and the body
rotation tensord; w, 3 ) .

For simplicity we show the three meaningful invatga of the 3D strain field [37]: the
“dilatation”, the “differential rotation magnitudeind the maximum shear strain” (see Fig.3).

The dilatation is the only linear invariant andsitefined as follows:

lei‘gﬁ 41

n i=1

whereg; are the diagonal elements of the strain tensorixn@j. The differential rotation

magnitude invariant is a quadratic invariant and diven by the following expression:
Q% =w’ +w’ +w’ (15)
Finally the maximum shear strain is given by
M=A_ —-A_ (16)

where Amax and Amin are respectively the largest and the smallestngajaes of the strain

tensor matrix (2).

The shape and magnitude of the three invariantsirasgreement with the Mogi source

adopted for this synthetic case.
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A further aim of the synthetic test is to investeg#he distribution of RMSE as a function of
the number of EPs considered in the range of 11560 In order to assess from the statistical
point of view the RMSE we have performed an appab@rnumber of simulations. In
particular we have considered the following seqeesfqoints: 12,20,30, ... , 140, 150. For a
fixed number of EP we have randomly generated T0fdérent configurations of EP in the
rectangular domain considered and evaluated thespmnding locality parameteg.dlhis
means that for a fixed number of EPs a range afegls obtained as show in Fig. 4. As

obvious for increasing number of EP both the raangthe mean values of decreases.
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Figure.3 Strain invariants for the synthetic case studye THdilatation” (a) , the “differential rotation

magnitude” (b) and the maximum shear strain”(d) gantities are dimensionless.
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Figure.4 Locality (d)) in meter vs. number of Experimental Points (ER®)the synthetic case of study. The
do value is calculated using 5000 random configuretjdor each number of EPs, on an area of 2006, Km

according to the equation (11).

The behavior of the RMSE vs the number of EP isnte in Fig. 5. It is possible to see that,
as expected, the RMSE decreases (and thus theaagocof the method increases) as the
number of EP point increases. However the platasible in Fig. 5 suggests that in the
considered synthetic case study a good trade-offden accuracy and number of EPs can be
obtained by using 50-60 EPs. Indeed, for a numbé&tRs greater than 50-60 there are no
significant improvement of the performance. We hdiit that the magnitude of the RMSE

are comparable with those reported by [9, 38].
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One finding of this test is that the vertical comenot has, in general, accuracies better than
the horizontal ones. This result was somehow erplediearing in mind that the DINSAR
images have an average vertical directional cosiredbbout 0.90 and therefore are particular
sensitive to vertical movements.

Furthermore we have characterized the dependentieeafrrors of each component of the
obtained 3D displacement map as a function of tie&SBR error, as proposed by [38]. Fig. 6
shows the results of the dependence of the erréurasion of the DINSAR error, assuming
70 EPs randomly located@here is a marked influence of the DINSAR erroiiaraze in the Up
components whereas the East and North componests issensitive to the noise level. This
is another confirmation of the effect of the sewgit of the DINSAR to the Up component of

the deformations.
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Figure.5 Mean RMSE vs. number of EP. In blue and red tham®MSE for the horizontal and
vertical components are reported respectively. damh dataset is reported the corresponding

standard deviation .
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Figure 6. Variation of the optimized displacements errorsthie DINSAR errors for the synthetic case

of study

A real case study performed on the Mt Etnha area

In this section, we apply the SISTEM method to catap3D high-resolution surface
displacement maps of Mt. Etna related to groundrmdehtions observed by GPS and InSAR
in the period 2003-2004.

The GPS data used in this work refer to July 2008ly 2004 period and were analyzed and
modeled by [39]. This GPS dataset shows a sigmifiaaflation affecting the western and
upper flanks, with a maximum of about 5 cm locavedthe upper southern flank, coupled

with an eastward movement of the benchmarks locatethe eastern flank of the volcano

(Fig. 7).
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Figure 7. Displacement vectors and height variations from ¢bmparison between July 2003 and
July 2004 (redrawn from [39]). The arrows repregdet horizontal displacement vectors, while the
vertical displacement is presented by a contouohgolor fringes obtained by interpolating the
measurements relevant to each benchmark. In theisnegported the schematic geometry of the

Pernicana fault system (1). The triangle represéetéocation of IIV station.

In order to integrate the GPS and the DINSAR dataappropriate pair of ascending ERS2
SAR images was selected; they refer to the 20 ARQB3 to 30 June 2004 interval and have
a 70 m of perpendicular baseline (which producesight of ambiguity of about 126 m). This
interferogram was processed using the Jet Propullsadboratories (JPLs)/Caltech Repeat
Orbit Interferometry Package (ROI_PAC, version 3.Big. 8 shows the corresponding

displacements map in LOS, obtained by unwrappiegrtterferogram.
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In order to have the two dataset (i.e. GPS and PR)Semporally consistent, we scaled the
observed values under the assumption of a lineglugon of the ground deformation pattern
through time. It means to assume a simple prinagblgearly partitioning, by scaling the
DINSAR data to the time span of the GPS dataset rfidhths). The GPS ground
displacements refer to the 1V station (locatedtbe city of Catania (fig. 7), which was
assumed as fixed from 2003 and 2004. Since thefenbgram has no absolute reference
datum, we shifted the LOS displacements in ordeietd to the IIV station. Furthermore, we

resampled the LOS displacements into a regular4fyitk450 with a pixel size of 100 meters

(Fig. 8).

0 g, - o™ . -
Ty 2= b
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Figure 8. Resampled Line of sight (LOS) displacement mapmillimeters, calculated for the

unwrapped interferograms relevant to the ERS2ralicg pair 20 August 2003 to 30 June 2004.

47



Fig 9(a)-(c) show the results of the integratiomtigh SISTEM of the GPS and DINSAR data
set reported in Fig. 7 and Fig. 8, by assundgefL500; the corresponding estimated standard
errors are shown in Fig. 9(a)-(c).

According the knowledge of the volcanic activitytbe volcano through this period and the
results of the previous studies [39], two main mimeana characterize the dynamic of the Mt.
Etna between the July 2003 and the July 2004 dbkarging of the deep plumbing system
centered below the upper western flank [40] (auaBe8 km b.s.l.) and the ESE sliding of the
eastern and southeastern flank (the faster measlnedg the last decade). Thus, in the
results of SISTEM, we expect to find the effectsh@fse phenomena.

The East component map shows an evident displacenighe eastern flank of Mt. Etha
bounded northward by the Pernicana fault systera {gp 7) as expected form the ESE
sliding of the north-eastern flank [41], while dmetwhole western flank SISTEM measure
westward movements, due to the effects of the desgmatic sources [40]. The ESE sliding
of the eastern flank is also evident on the Nodmgonent of the south-eastern flank, as a
negative value, while on the northern and the anwhole western flank the North-South
component shows clear evidence of deformation dukde deep magmatic sources. The most
evident vertical movement (uplift) is localizedtime summit western area according with the
recharging phase of the plumbing system of thearmddentified by [39]. This excludes that
the high LOS displacements observed in Figure 8 bmarattributed to topographic and/or
atmospheric effects, as it might be suggested hgidering the interferogram alone.

All these features are hence compatible with theadyic of the volcano during the

investigated period [39].
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The estimated standard error maps of the horizaatalponents (figures 9a’ and 9b’) have
similar patterns each other while that relevantthe vertical component (figures 9c’) is

different.

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Figure 9. GPS and DInSAR data integration results. In tlengs (a), (b), and (c) are reported the

calculated East, North and Up components of digpleents respectively. In the right column the
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corresponding estimated standard errors of EastNarth (b’) and Up (c’) components are reported.

The red crosses represent the GPS stations.

Furthermore, we observe that the magnitude of @recal errors are, in general, lower than
those of the horizontal components. In order tolarpthese results, which conform with
those relevant to the synthetic test, we have twsider that the estimated standard errors
provided by the SISTEM come out from an optimizatpyocess (i.e. the WLS). This means
that both observations and covariance matrices plagle in estimating them. Thus the
figures 9a’, 9b’ and 9¢’ may be explained bearmgnind that: i) the variance of the DINSAR
data is a scalar, thus it weights the three compsneith the same value; ii) the variances of
the East and North components of GPS data areasintilus they give similar contributions
to the corresponding estimated error maps (9a’ @oigt iii) the DINSAR data is more
sensitive to the vertical deformations thus it f@ices the estimation of the vertical
component, reducing the magnitude of the vertisah®ated standard error (figure 9¢’).

A direct comparison between the GPS componentshendomponents estimated by applying

the SISTEM method is here provided (Figure 10).
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Figure 10.a) RMSE (in mm) between the SISTEM output and@RS data calculated at the
GPS site locations as a function of the number B8 Gtations; §, b,) and B) show the values
of the discrepancy relevant to the East, North \dedical components respectively, computed

for the whole network configuration (i.e. 52 GPtistas).
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The purpose of this comparison is twofold: to chtaze the accuracy of the SISTEM
approach as a functions of the number of GPS poamd to evaluate how the combined
DINSAR+GPS components differ from the GPS companalune.

In order to carry out this comparison, we perfoemesal runs, by increasing the number of
GPS points from 12 to 52. For each number of GPiStgowe performed 100 numerical
simulations, so that we consider 100 different satworks, each configuration randomly
chosen within the whole GPS network, in order tseasa statistically significant mean
RMSE. In these tests, the RMSE is computed atitbdacations of the whole GPS network
(i.e. 52 points) by comparing the SISTEM output #melmeasured deformations.

Figure 10a shows that, in general, the RMSE deeseas the number of GPS stations
increases, confirming the results of the synthtdst (compare Fig. 4). In particular it is
possible to appreciate that by increasing the nurab&PS points from 12 to 52 the RMSE
decrease of about 1.0, 1.6 and 2.3 cm respectivelthe Up, East and North components.
The main difference with the synthetic test is it discrepancy measured by using actual
GPS data is higher for the vertical component tloarthe horizontal ones. This is due to the
fact that, differently than the synthetic data,uattGPS data suffer of a low accuracy in the
vertical component. Fig. (1@p clearly indicates that SISTEM “correct” the GPS$ U
components much more than the East and North coemp®n(Figure 10pband 10b).
Furthermore, this analysis shows that the integmatf the DINSAR and GPS data affect
more the East than the North component, since tbereppancies between SISTEM and
original GPS are negligible for the North compon@agure 10b) while some variations are
appreciable for the East component (Figure;L0b

All these results highlight the role of the DInSAI&ta in the integration and, in general, the

tradeoff between DINSAR and GPS data in the intemranethod, the former influencing
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much more the components where the latter is “weakl’ vice versa. This is certainly due to
the intrinsic capability of the WLS to compensdte original measurements and confirm that

the aim to exploit the complementary nature of @RS and DINSAR measurements is fully

achieved.
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Chapter 3

Modeling

Introduction

We present a strategy aimed to modeling large sktaf 3D complex ground deformation
patterns obtained by integrating sparse Globaltidagig System (GPS) measurements of
deformations and Differential Interferometric Syetih Aperture Radar (DINSAR) maps of
movements of the Earth’s surface through the SIST&&thod. In order to find the optimal
model a Particle Swarm Optimization (PSO) algoritisnfirst used to locate optimal regions
of complex search spaces. Then a derivative-basgbaoah, in particular the Gauss-Newton
one, is used to refine results. The proposed glyatas tested on synthetic datasets in order
to assess the performance. Furthermore it was tasetbdel the 3D ground displacements
map derived by integrating GPS and DINSAR dataiedmwut on the Abruzzo region during

the 2009 earthquake.

An Inverse Modeling method based on Particle Swarm®ptimization

The problem of inverse modelling consists of estingasource geometry from the observed
surface displacements. Surface displacemérndan be related to the source geometry by a

functiong of the source model parameters

d=g(m)+e (1)
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whereg is the vector of observation errors.

We use a two steps inversion approach in ordantbthe optimal source modei* related to
the 3D ground deformation map provided by the SIgTRethod. In particular we first use a
PSO algorithm [42] in order to locate the valleymtt contain the best models; then a
derivative-based method, the Gauss-Newton onesed to reach the bottom of each valleys
in order to determine the optimal source model thetimize the misfit between 3D ground
deformation map and prediction.

PSO is an iterative-heuristic, population-basedalsearch algorithm used for optimization
of continuous nonlinear functions. It models theiglbbehaviour of bird flocking or fish
schooling in the attempt to converge to the glamimum. PSO works with a population of
interacting particles. Each particle is defined himit the context of a topological
neighbourhood comprising itself and some otheriglag in the population. Each particle
moves in the parameter space with an auto-adapgiarity whose value depends on the
move experiences of its own and those of its commpan In particular each particle
remembers both its best previous posifgs(pi1, P2, ..., o) and the neighbourhood’s best
positionpg=(Pg1, P2, ---» @D)- In this work the particle positions are manipuliaéecording to

the following equations:

Vin :C(Vi +cr(p, _Xi)+C2r2(pg _Xi)) (2)

Xig =X tViy (3)

where the position and the velocity of tffeparticle are represented respectivelyia$xis,

X2, ..., Xo) andvi=(vi1, Viz, ..., b ), C1 andc; are two positive constants taking into account
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respectively the influence of each particle’s knedge (cognitive parameter) and that of the
whole swarm (social parameter). Paramete@ndr, are random number, which are chosen
uniformly within the intervalO, 1], used to add an element of randomness to the mesm
of the particles. Finall\C is a constriction function used to limited theoaty values to a
fixed range.

At each iteration the adopted objective functiorevaluated for each particle position, the
vector parameterg; andpy are update, the particle velocities are manipdlatccording to
eg. (1) and (2) and an appropriate stopping coiteis checked. Detailed information are
provided in [43-45].

In this work the PSO is basically used to find diptimal region of the parameters space, thus
providing a set of good initial conditions for t@@auss-Newton derivative-based method that
is used in the attempt to reach the global minimtihese initial conditions are represented by
the best particle of each neighbour of the swarhe advantages of using this strategy are
that the PSO algorithms are very simple — theid@mgntation requires few lines of code -, is
able to localize very fast the optimal regions loé tparameters space. Furthermore they
provide a set of good initial guesses to the déxigebased method thus ensuring it good
performance. Indeed it is well known that derivathased methods work well only when the
initial guess is near the global minimum.

In order to assess the performance of the proptgedteps approach we have carried out
several inversion tests on synthetic dataset. Inicoéar we have generated 3D ground
deformation maps by using the Mogi [34] and the @kpt6] forward models within a 60x52
regular grid (cell-size 500 m x 500 m). To stataty evaluate the accuracy of inversion,
100 models with uniformly distributed parameterfioge values were fixed in ranges that

resemble likely cases in volcanic area, were im¢ertn order to asses the goodness of the
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inverse modelling approach, the Mean Absolute Pe¢acgee Error (MAPE) was calculated for

each model parameteg,P

N

MAPE :%Z

i=1

PCi B PTi
Fei

(4)

where N is the number of the considered mod#s, is the generidth parameter of the
calculated model anié; is the corresponding true parameter.

For all inversion problems, as first step, we hased a population of sixty agents subdivided
in three groups of twenty. Then the Gauss-Newtothatewas run with initial guess being,
respectively, the best agent of each group.

We have found a very IoMAPE index for all the model parameters (less than riceat)

thus ensuring the suitability of the proposed isi@r strategy.

The Abruzzo earthquake case study

In order to perform the inversion modeling of grduwheformation observed in the Abruzzo
region during the 2009 earthquake, both GPS an& A data were preliminary integrated
by using the SISTEM method in order to derive 3Dugid deformation map over the whole
investigated area. GPS data were provided by th@r€éazionale Terremoti. DINSAR
interferograms were processed by the ROI_PAC 30ftivare developed by Jet Propulsion
Laboratory/California Institute of Technology .

This is a very interesting application of the SISTEmethod, indeed three different
interferograms respectively AIOS (fig. 1), Envisacending (fig. 2) and Envisat descending

(fig. 3) are simultaneously integrated with GPSadat
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Thanks are due to the ESA, which made quickly abéel the satellite images just after their
acquisition in the framework of the Earth Watchprgject. We have produced the ascending
and descending Envisat interferograms that showe giround deformation due to the
earthquake. In particular we have produced the datndescending Interferogram refers to
27/04/2008 — 12/04/2009 pfte = 350 days; Rwp = 44 m) and the Envisat-ascending
Interferogram refers to 11/03/2009 - 15/04/200@4t 35 days; Bep= 227 m). Furthermore
an ALOS PALSAR interferogram produced with imageguared along the 638 ascending
tracks and relevant to the 3/7/2008 - 21/5/200@ timierval ( tbline = 322 days; Bperp = 665

m ) was processed.

Figure 1. ALOS PALSAR interferogram.
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In order to achieve high accuracy three-dimensiauaface motion maps, related to the
L’Aquila earthquake, we have exploited the standfmdnulation of SISTEM approach,

taking in account DINSAR data with ascending aretdeding geometry (fig. 4).

1 0 0 A, A, Axg, 0 0 0 0 Avy, = Ay,
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Figure 4. SISTEM formulation combining GPS data and threerferograms.

The results of the SISTEM method (fig . 5) showattthe reconstructed deformation pattern
Is compatible with the surface evidences of theaRmg fault system, whit a mainly Dip-Slip
(Dh max =- 22 cm + 1cm) and a minor dextral movenoénhe fault system.

The 3D displacements map derived by the SISTEM atethas used to estimate the source
geometry. We assume that the fault can be appraednaith dislocation in a homogeneous
elastic half-space [46]. The adopted cost funcisothe following Root Mean Square Error

(RMSE)
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wherex={East, North, Up} O andP;* indicate the observed (SISTEM integration resah)

the simulated values respectively and the tewyisepresent the estimated standard errors
provided by the SISTEM method.

In table 1 the estimated parameters are reporteesel parameters are in agreement both to
the kinematic and to the geological evidences efRhganica fault system with a mainly dip-

slip component and dextral strike-slip.

Depth 5144 m
Strike 132 gradi
Dip 67 gradi
Length 11970 m
Width 13000 m
Strike-slip -0.04 m
Dip-slip -0.9m
Opening 0.2m
Xs 37487385*10"6
Ys 4.6877719*10"6

Table 1.Estimated parameters values
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Figure 5. In the first row are reported respectively thestEalorth and Up ground deformation map.
In the second row the relevant estimated standaodseare reported. Finally the volumetric dilatati

the differential magnitude and the max shear saegnshown.
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Chapter 4

Toward a more realistic volcanic source shape

In geophysical science choosing an analytical anemical model in order to gain a better
understanding of the observed surface displacenenisually based on a preliminary visual
inspection of the ground deformation patterns. éalléhe model-maker, based on its own
experience gained in the inversion modeling frant&ws usually able to presuppose and
associate a model to a particular ground deformagiaitern. Then an optimization algorithm

is used to estimate the source geometry parameters.

In this chapter we propose an automatic methoddbaséArtificial Neural Networks (ANN)

in order to provide a valid support to the chookthe source model. In particular, given a 3D
ground deformation pattern the ANN is used in thienapt to build the relevant three

dimensional volcanic source shape in the discreididean space. The methodology was

tested both on synthetic and real datasets.

Introduction

In geophysics the problem of estimating the soyrammeters from the observed ground
deformation data is known as inverse modelings laivery important task and attract the
interest of many researchers. The inverse modgmglem requires the assumption of an
analytical or numerical forward model. This modsl basically chosen based on the
experience of the model-maker. Indeed a crucia stehe inverse modeling problem is the
visual inspection of ground deformation patternsorder to select the theoretical forward
model that in a more reliable way will be ableitdtie observations. In the attempt to emulate

this kind of human thought process by a soft-comgutechnique, an approach based on the
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Artificial Neural Networks (ANNS) is proposed. Then of this study is to show that given a

generic 3D ground deformation pattern due to acpressure, an opportunely trained ANN
is able to build the relevant three dimensionakrsewshape. Furthermore will be emphasized
the ability of the ANN to generalize this assaoatfor both single, multi sources and source
pressure model different from those used durindgaming phase.

In order to derive 3D ground deformation patterrerothe whole investigated area the
SISTEM was used. A brief introduction to the aei#dl neural network is given. Then the

methodology and the first preliminary results aghgk on synthetic datasets are reported;

Finally a real case study and the conclusions@htlethodology are reported.

Artificial Neural Network background

Artificial Neural Networks (ANNs) due to its leang and generalization capabilities are
widely used in several fields of science and ergjing. These interesting features make
them an attractive tool for application to some gig®ics problems. In particular an

important application of ANNs has been the solubbreophysical inverse problems. Some
examples reported in literature are the locatiorsudfsurface targets from electromagnetic
field data [47], the inversion of seismic wavefodaita [48, 49]'and the integrated inversion
of geophysical data of different types [50].

Roughly speaking an ANN can be described as a memanli function aimed to provide a

mapping between known input—output patterns fonvergproblem. Consider a nonlinear

input-output mapping described by the functiondtrenship:

d=f(x (1)
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wherex andd are the input and output vectors, respectivelye Véctor-valued function f()
can be considered to be unknown, but it is assuimada set of pair§x,d), referred to as
examples in typical neural network terminology,a#sng our knowledge about the function
f() are given. A typical way of approximating staiystem using the popular single-hidden-

layer multilayer perceptrone (MLP) [51-53] is tlodldwing:
NH
yk(x):ch¢(ij X+t,) +c, o
=1

where yi(x) is the kth entry of the approximated function() is a sigmoid function (i.e.,
0(z)=1/(1+€"), x is the input vectorg; is the vector of coefficients; andt; are additional
adjustable coefficients.

The approximation problem has an inverse that spoe$iconstructing a system that produces

the vectoix in response to the vectdr The inverse system may thus be described by
x=f(d)
3)

where the vector-valued function denotes the irevefd. The theoretical aspects concerning
the use of MLPs for function approximation lie dretso-called Universal Approximation
Theorem [54], which can be invoked to prove thatMitP with a single hidden layer is
sufficient to compute a uniform approximation tgigen training set represented by the set of
inputs(xy, ... ) and a desired (target) outd(y, ... ,X%,) with a prefixed degree of accuracy.
The problem we want to solve by using the ANNsoibaild the source shape of a pressure

source in a Euclidian discrete space given thevagit ground deformation pattern. This
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problem can be formulated in the following mann&t P be a generic pressure source shape
andD the associated ground deformation pattern. Asktia@eP varies a different patteri

is obtained. This concept can be expressed in siyfol as

f(P) - D (4)

Using (x), which is known, it is therefore possilbdeproduce a population of paifd,P) that
represent the whole “data space” observed. Thislptpn will be used as the training set for
the neural network.

Building the source shape on the basis of the dbserved using a neural approach thus

means finding an approximated function of the iseeasf (4), as indicated in (5)

f_l(D) - P (5)

It should be remarked that, to approximate a famctising multilayer perceptron (MLP)
ANNs and ensure that the approximation error isnbled, it is necessary to assume that the
function to approximate exists and is both contimiand smooth. However, it is evident
from the equations of the mathematical model useet t{Okada—Murakami—Fittermann—
Ehrismann), that this is not easy to prove. To iobs&me indications, it was considered
useful to “test” the inverse function using numafitechniques of proven accuracy and
robustness in the inversion of geophysical daté siscthe SA optimization method [55,56].

However, it is necessary to stress that it isqusindication, not analytical proof.
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Methodology

The goal of this work is totally focused on the meushape investigation. In particular the
aim of this paper is to reconstruct a 3D estimatdrthe source shape based on ground
deformation observations. We stress here the diffe between this approach and the
traditional inverse modeling problem. The formeedrto build a reliable shape source in a
Euclidean discrete space, the latter is aimedni thhe optimal parameters afpriori chosen
source model.

To reach our goal an ANN was opportunely trainedraher to learn the relationship between
a given ground deformation pattern and the rele@@nsource shape. The dataset used for the

training phase has been generated by using the &ipherical pressure source model [57]:

Heee ROy I

whereu, v, ware displacements at the po{mty,0) ¢c=(0,0,-d) and a are respectively the
centre and the radius of the spheres/x? +y?+2? is the radial distance from the centre of

the sphere to a point on the surfadB,is the pressure change in the sph&és the shear
modulus ana is the Poisson’s ratio.

The inputs of the ANN consist of the North, Eastl &ip displacement components of each
point of the investigated area. 1000 input patteras 1000 3D ground deformation map each
of which being a20x20 pixels grid, have been generated with uniformlgtributed

parameters whose values were fixed in ranges élsatnble likely cases in volcanic area.
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In order to build the source shape each oufpuif the ANN is associated to a pofs,y,Z)

of the Euclidean discrete space. The ou@us set to “1” if the corresponding point belongs
to the source shape, “0” otherwise. Obviously th&tial resolution affect both the number of
the outputs and the accuracy of the shape. A gaolé-toff is needed.

According to the finite spherical shape of the Mplé model, the output patterns have been

prepared by using the following equations:

2

{P(&.yi.zi)=1 (4 =%0)" + (Y = Yo)* +(z ~ %) <@ 7)
P4, Y,2) =00f (% =%)* +(¥, —¥o)* +(3 —2,)" >a’

In figure 1 an example of input-output patternhis\sn.

* * et et
100 200 300 400 SO0 GO0 700 00 800 1.0004.400

Figure 1. An example of an input-output pattern. The inpaitgrn (left) consist on the displacement
components of each point of the grid, East, Nonith dp respectively. The output pattern is the

relevant 3D source shape reconstruction in a dis&eclidian space.

The network was tested on a free noise synthetigsda In figure 2 results referring to a
small, medium and big spherical source respectigedyshown. It is evident that although the
coarse grain space resolution of a 20x20x20 descretclidian space the shapes

reconstruction resemble spherical shapes in akthases.
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Figure 2. Reconstruction of a small, medium and big sphesoalce shape performed by the NN on

the basis of their associated ground deformatidtepes.

We have also tested the network with pattern dedition generated in a multi-source

framework. In particular two and three sphericalrses were considered. It was an
experiment of great importance because the NN wagr@ned with this type of patterns, so

it was a good test to investigate about the capalmf generalization of the NN. Results

relevant to two spherical sources are shown inréddu As we can see from this figure the NN
was able to detect and reconstruct the two sowttage. The importance of this result is also
emphasized by the nonuniqueness of the inversehgsimal problems. Indeed this neural

network based approach providaspriori useful information (for example the volume)

concerning the geometry of the sources into thergign problem. Thisa priori information

plays a key role in order to acquire a realistid egliable solution.
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Figure 3. Input deformation pattern generated by two fispherical sources pressure (left). Output

reconstruction of the spherical source shape pagdrby the neural network.

We have also tested the network with several pettdeformation generated by an ellipsoidal
pressure source [58]. Although the NN was traingdubing only finite spherical source
shapes, results had shown that it was able to strwa the ellipsoidal shape relevant to the
ground deformation pattern derived by the Davis ehodhis was an ulterior considerable
evidence of the capability of generalization of the. An example is reported in figure 4

where the reconstructed ellipsoidal-like shapddarty visible.

T T T
200 400 G000 ={lu] 1.000

Figure 4. A test performed with a pattern deformation (lefgnerated by the Davis model.

The output of the NN resembles the relevant ellgcsource shape.
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Before showing a real application of the propossthmnique (Sec. V), we briefly reports in the
next section the method we have used in ordeetivel 3D ground deformation pattern from

geodetic and satellite data.

Case study

In this section a real case study is reported. pitoposed approach was applied on 3D
ground deformation map of Mt. Etna derived by th&egration of GPS and DINSAR data
through the SISTEM method.

The GPS dataset used in this work refers to Jub820July 2004 period and was analyzed
and modeled in [39]. This GPS dataset shows afgignt inflation affecting the western and
upper flanks, with a maximum of about 5 cm locabedthe upper southern flank, coupled
with an eastward movement of the benchmarks loaatetie eastern flank of the volcano.
The DINSAR data was calculated on the basis ofpgnogriate pair of ascending ERS2 SAR
images; they refer to the 20 August 2003 to 30 J20@4 interval and have a 70 m of
perpendicular baseline (which produces a heiglanabiguity of about 126 m). The relevant
interferogram was processed using the Jet Propulsaboratories (JPLs)/Caltech Repeat
Orbit Interferometry Package (ROI_PAC, version 3.0)

In figure 5 the East, North and Up components ted relative estimated standard errors

derived by the SISTEM method are shown.
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Figura 5. SISTEM results: East, North and Up displacemembpganents (first row) and relevant

estimated standard errors (second row).

As we can see in figure 5 the displacement dataoisknown in every point due to both
geometrical aspects and low coherence affecting SAR images. Therefore we have
extracted a bi-dimensional binary mask from thesg@sn(1 if there is the data, O elsewhere)
in order to build the patterns to train the NN.e&kfthe NN was tested we have given the 3D
SISTEM ground deformation map as input for the Nist obtaining the volcanic source
shape shown in figure 6. It is quite evident tha source shape suggested by the NN
resembles something like a spherical shape loda¢eéath the summit area. Such kind of
source was used by [39] in order to model the Bmit inflation affecting the western and
upper flanks. As we can see in figure 6 this metthoels not provided an ideal shape, rather a
deformed shape, we think a more reliable sourcpeshi@ocessed based on both real ground
deformation pattern and the knowledge gained fiteerNN during the learning phase.

The 3D ground deformation pattern derived by th8 THHM method is also affected by a

marked eastward movement of the eastern flankef/tdhcano. The neural network was not
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able to suggest a source shape associate to thisrmpalndeed such kind of ground
deformation patterns are not due to sources predsuirthey are attributable to dislocation
faults [46]. Therefore it was an expected reshitt tthe NN trained solely with sources
pressure generated patterns was not able to reegnpattern due to a totally different

mechanism, the fault dislocation one, from thoseNIN had been trained with.
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Figure 6. 3D ground deformation pattern derived by integ@BPS and DINSAR data in the period

2003-2004 (left); source shape estimation provigethe NN (right).
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Conclusions

In order to derive three-dimensional surface motmaps, which take into account both
sparse GPS measurements and DINSAR interferog@meyel least square approach was
proposed; the approach is named SISTEM as acrofy@imultaneous and Integrated Strain
Tensor Estimation from geodetic and satellite defiiron Measurements.

The novelty of the SISTEM method is that it is lwhem the elastic theory and that, with
respect to previous methods known in literatureloés not require the preliminary step of
interpolating sparse GPS measurements in ordell to GPS displacements at the DINSAR
grid but integrates them simultaneously.

In the proposed method, the mathematical relatiemvéen the unknown vector parameter
(strain) and observation vector (displacements)aisnatrix linear equation. Thus the
estimation problem can be suitable solved by usiegWeighted Least Square approach,
hence avoiding complicated search schemes suchinadated annealing optimization
algorithm. Since SISTEM is based on the small deétion theory, it provides the gradient
displacements tensor estimation and the 3D compafahe deformations within the entire
investigated area.

First of all, SISTEM was tested on synthetic datauating the deformations produced by a
point pressure source below a volcanic-shaped tapbg. After having evaluated the
capability of SISTEM to reconstruct the completathgtic deformation field (i.e. the 3D plus
the LOS displacements), these tests allow fixifigwamain points concerning the use of this
new approach, such as how to assess the localiéyngser from the actual geodetic network
configuration, the minimum number of GPS points dre of which the accuracy do not

change significantly (in the range of 50-60 in dwmsidered domain, which in the synthetic
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case in 40 km x 45 km) and the dependence of tia dirrors from the error of DINSAR data.
The synthetic tests confirm that the final accuracierms of RMSE is in the order of 3-4 mm
for the horizontal components and 2 for the vektmae, which are comparable with the
performances of previous approaches having siraitas.

The proposed SISTEM method was then applied efffigieon the Mt. Etna area where the
coverage of the GPS network is good and DINSAR detaavailable. The results (Fig. 9)
show that the reconstructed deformation patternfotcon with the geophysical and
volcanological knowledge of the dynamic of Mt. Etdaring the 2003-2004 period. The
displacement pattern obtained by applying the natiggn method are hence promising for
future studies aimed at improving the knowledgeparticular aspects of the dynamic of this
volcano (e.g. the plumbing system, the flank dyramic.).

The analysis of the accuracy, in terms of the estoh standard errors, highlight that it is in
general lower than 4-5 mm, except for limited aredmere the discrepancy between the
original data is high probably due to local effe@@gy. time difference between GPS survey
and SAR passes; high errors in GPS surveys, d@tee).analysis of the RMSE, for the case
study of Mt Etna, allows to estimate the benefitialv can be achieved by increasing the
number of GPS points in the considered area. Thealel@ analysis on the RMSE confirms
that SISTEM reinforces the Up component of the GR®& by effectively exploiting the
DINnSAR information. Widen this comment, we can etttat the experiment on Mt. Etna
confirms that SISTEM fully exploits the intrinsiomplementarity of the DINSAR and GPS
data for determining the ground deformations.

Among the potentiality of SISTEM we emphasize tlsatce it is based on the theory of the
elasticity, we may include additional datasets lisa€ leveling data, EDM, Tilt, and DInSAR

data taken from different geometry or by differ&&R sensor, e.g. ENVISAT or ALOS), by
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using similar formulations, based on the same uwkiso These potentialities will be fully
exploited in future developments of the presentethods.

The great amount of data provided by the SISTEMhowktwas successfully used in the
framework of the inversion problem. In particulaetseismic source associated to the 2009
Abruzzo earthquake was estimated by using a Pa&elarm Optimization algorithm. In this
case study the potentiality of the SISTEM methodiniegrated different interferograms
(ALOS, Envisat Ascending, Envisat Descending) wqsated.

Furthermore a method to investigate the volcaniar@® pressure shape using neural
techniques was proposed. More specifically a nengabork was opportunely trained in order
to build, in the discrete Euclidian space, the shapurce associated to a given 3D ground
deformation pattern generated by several souraesspre. The most relevant result was the
capability of generalization of the NN shown ontbeingle and multi sources synthetic case
studies. Indeed the NN trained by using patternsegged through single Mogi sources
provided good results when used with multiple Msgiirces and with patterns generated by
the ellipsoidal Davis model. The test performedaaeal case study highlighted the suitability
of the NN to detect source shape relevant to gradefdrmation pattern due to pressure
source. However the NN was not able to suggestuececshape associated to the marked
eastward movement of the eastern flank of the walc&his was expected because such kinds
of patterns are not due to sources pressure byatigerelative to dislocation faults. This limit
could be overcome by a new NN opportunely trainétl gpecific pattern deformation due to
dislocation sources. Otherwise future efforts cookdalso devoted to train a NN by using
both pressure sources and dislocation faults iratteenpt to recognize both kinds of source.
The proposed methodology could be a valid supporthe framework of the inversion

problem which are known to be nonunique. Indeqalatvided aa priori information about
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the geometric shape, for instance the volume,dbalid be successful used in order to acquire
a reliable solution. Furthermore the output netwookld be processed by the Non-Uniform

Rational B-Splines (NURBS) algorithm in order t@yide a more reliable source shape that

could be used in the framework of the Finite Eletddadeling (FEM).
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Appendix

A new method based on the Lagrange multipliers toeduce phase error
affecting DINSAR data

Here a new method to reduce phase errors affettimgnterferometric signals is shown. In
particular, in a multi-interferogram framework, aatmematical optimization based on the
method of Lagrange multipliers is used to redueephase contributions caused by the error
in the DEM, the baseline and temporal decorrelaion the thermal noise effects. A

preliminary synthetic test is provided.

Problem formulation
Let N be the number of SAR images relative of the ingastd area and acquired at the
ordered timegty, t, ..., &). A generic interferogram;; computed in the pixel of azimuth and

range coordinate&,r) from the SAR acquisitions at tinteandt; is given by
4
8, 061) = =7[d(t 060 = A D] B X0 = Gamlt kD] + 6 +0y (@)

wherel is the system wavelengtti(t; x,r) andd(t x,r) are the cumulative displacements in the

direction of the Line Of Sight (LOS) at timgsndt; with respect to the instaitassumed as

. . BPAz
a reference] pam(tj X,n-pan(ti X,r)] is the atmospheric phase compone@t,:%” !

is the

rsing
phase contribution due to possible eutain the DEM ;" is the perpendicular baselireis
the sensor target distance ahds the look angle) and, finallyy; is the phase contribution

caused by the baseline and temporal decorrelatidritee thermal noise.
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Starting from the following simple relations relegiat each pixglx,r) it is possible to define

an optimization problem in order to reduce the pr@mtribution due to the termsandn:

P12+ QP23+ ..+ QIN-DN™ PIN = €12+ €23+ . +EN-DN- EIN + N2 + M3+ .+ NN-1)N- N
Q12+ P23+ ...+ QN-2)(N-1)~ PLN-1) = €12 + €23 + .. +EN-2)(N-1F ELN-1) + M2 + M3+ .+ MN-2)(N-1)~ My(N-

1)

@ (N-2)(N-1) +@ (N-1)N= P(N-2)N= E(N-2)(N-1) + EN-DN = EN-2)N +N(N-2)(N-1) + NN-1)N= N(N-2)N

2)

Indeed the minimum of the multivariate function

f(Pr2:Pras D ngn) = z Z((ﬁu - ¢; )? 3)

i=1 j=i+l
subject to the following constraints

9 9 +¢-23+"'+¢-(N—1)N P =0
O, Pt Pyt F Diygyngy =0

| ) @)
O - ¢-23+¢_34+"'+¢-(N—1)N _¢_2N =0

On : Pin-2n-y T Pnegn — Pin-gn =0
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provides an estimate of the interferogramsfor which the phase contributions due to the

terms g; andn; are strongly reduced.
This constraint optimizatiors suitably solved by the method of Lagrange mlidip. This
method involves the introduction of so many vaalil, called the Lagrange multipliers, as

there are constraints and the study of the Lagréunggion defined by
M
A(¢-121¢-13""’¢-(N—1)N ’/]11/‘2’---1/]M )= f(@z,(—lfla,---,%-lm) + z/]i Ui (512’@3’---@-(N—1)N) (5)
i=1

A synthetic case study

The proposed methodology was tested on a syntataset. For the sake of simplicity we
have generated four acquisition scel(iel, i=1..4) by using different Mogi sources and
calculated all the possible six interferograms adiog to ;j(x,r)= M;(x,r)-Mi(x,r)+ns (i=1..4,
j=2..3, j>i), wherensis additive uniformly distributed white noise .

In figure 1 an example of the obtained resulteorted. Two interesting advantages can be
emphasized: 1) the optimized interferogram is simerothen the synthetic one; 2) the residual
errors of the optimized interferogram exhibit a €aan distribution with zero mean. These
performances clearly suggest the suitability efphnoposed method to reduce noise affecting

interferograms
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Figure 1. In the first row the initial synthetic interfera@gn, the noise added and the noise distribution

are respectively reported. In the second row resftdr the application of the Lagrance multipliers

based method are reported.
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