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Introduction 

 

The aim of this work is to propose a new method in order to efficiently produce high-

resolution maps relevant to the three-dimensional motion of Earth’s surface by combining 

information from sparse Global Position System (GPS) measurements and Differential 

Interferometric Synthetic Aperture Radar (DInSAR) data. 

The use of DInSAR and GPS data to monitor ground deformations on the same active 

tectonic or volcanic areas are extensively used  [1];  Plate Boundary Observatory (PBO) web-

pages at UNAVCO http://pboweb.unavco.org/]. 

Nevertheless, each technique has some significant shortcomings when used in a stand-alone 

mode. Although GPS is the most suitable technique for measuring ground deformation with 

sub-cm accuracy level, it provides a point wise 3D displacement vector referring to the 

specific geodetic benchmark where the antenna is set up; consequently, the spatial resolution 

of the measurement of the ground deformations depends on the network geometry and thus is 

usually low (in the order of a few points / km2, in the optimal conditions). DInSAR provides 

displacement measured along the Line Of Sight (LOS) between the Earth’s surface and the 

sensor; for satellite systems, which have off-nadir angles of about 20°-40 °, this implies that 

DInSAR measurements are more sensitive to the vertical component of the deformation than 

to the horizontal ones. Since the DInSAR measures along a specific direction (LOS), the 

dimension of the information on the ground deformation is a scalar. The DInSAR surveys 

provide maps of the Earth’s movements having pixel size in the order of 20 m × 20 m; thus 

the spatial resolution is higher than the GPS network. The accuracy of the DInSAR 

measurements is in the order of the cm, being the knowledge of the orbits, the accuracy of the 

DEM and the propagation thought the atmosphere the main sources of errors. Except for the 
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first two, which can be reduced by adopting specific procedures, the atmosphere (and in 

particular the troposphere) is at the origin of the main unpredictable perturbing effects. The 

variations of the troposphere may affect the ground deformation measurements over ten of 

centimetres in very unfavourable conditions due, for instance, to turbulences on mountainous 

areas [2]. However, the atmospheric signal follows, on the whole, the power law distribution 

and in general we may expect effects in the order of 0.5-1 interferometric fringe (e.g. ~ 1.5-3 

cm, for a C-band SAR [3,4] [Bonforte et al., 2001, Mattia et al., 2007]. Several techniques 

have been proposed during the last decade to reduce or eliminate the tropospheric effects on 

DInSAR data [5, 6, 7], but none of these can be considered as definitive and each of these has 

pro or cons depending on the specific experimental conditions. . 

The integration of DInSAR (scalar) data with the GPS (vector) data should provide 

information on the ground deformations by taking advantage of the positive features of both 

these techniques, i.e. the high spatial resolution of the DInSAR, the 3D measurements and the 

sub-cm accuracy level of GPS. This integrated information should be able to give a more 

reliable interpretation of the geophysical phenomena producing ground deformations.  

Recently, a few methods aimed at integrating these two kinds of data have been published [8, 

9]. Gudmundsonn et al. [8] applied a Bayesian statistical approach and Markov Random Field 

(MRF) theory to derive 3-D velocity maps, while Samsonov and Tiampo [9] introduced an 

analytical optimization of interferometric observation and GPS dataset. Apart from the 

differences in the algorithms used for combining the data, these two methods have two points 

in common: the first is the preliminary interpolation step in which sparse GPS measurements 

are interpolated in order to fill in GPS displacements at the DInSAR grid and the second one 

is that the optimization techniques used to combine the different datasets are not based on the 

physics of the deformations (i.e. from the elasticity theory). 
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The interpolation technique typically used in these two methods is the kriging which requires 

for each component to be interpolated, the choice of an appropriate theoretical semivariogram 

model. This choice is one of the main critical points in geostatistics [10] and it is usually 

performed by supervising a preliminary statistic analysis of the experimental data. 

Here we propose the SISTEM (Simultaneous and Integrated Strain Tensor Estimation from 

geodetic and satellite Measurements) method, a Weighted Least Square (WLS) approach 

totally based on the elastic theory, to simultaneously integrate GPS and DInSAR data without 

requiring the preliminary step of the GPS interpolation. In this way, the dependence on the 

choice of the theoretical semivariogram model, required by the kriging interpolator, is 

avoided. Furthermore, this method computes the results on each point of the Earth’s surface 

and, being based on elastic theory, it provides the 3D strain and the rigid body rotation 

tensors. The estimated standard errors computed by the WLS for each computation point are 

also provided to assess the reliability of the results. 

Furthermore 3D ground deformation maps, obtained thought the SISTEM method, were used 

in the framework of the inversion problem. In this context an inversion procedure based on 

the joined use of a Particle Swarm Algorithm and the Gauss-Newton optimization methods 

was used to solve the inversion problem relevant to the 2009 Abruzzo earthquake. Moreover, 

other novelty of this work, a neural network based approach aimed to estimate more realistic 

volcanic source shape instead of perfect geometric source shape was proposed.  

This work is organized as follows. In chapter 1 the state of the art relevant to the integration 

of geodetic and satellite data to obtain 3D motion maps over the whole investigated area is 

reported. In particular the methods developed by S. Gudmundsson and F. Sigmundsson [8], 

Three-dimensional surface motion maps estimated from combined interferometric synthetic 

aperture radar and GPS data, and the method developed by Samsonov and Tiampo [9], 
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Analytical optimization of InSAR and GPS dataset for derivation of three-dimensional surface 

motion, are reported. Chapter 2 describes the new method we have developed in order to 

integrate geodetic and satellite data. Chapter 3 is devoted to the inversion modeling problem. 

In chapter 4 a new method based on Artificial Neural Network aimed to estimate a more 

realistic volcanic source shape is proposed. Finally the conclusions of this work are drawn. 
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Chapter 1 

State of the art 

 

The S. Gudmundsson and F. Sigmundsson method 

 
In the following we report the method proposed by S. Gudmundsson and F. Sigmundsson for 

fusion of InSAR and GPS data to achieve three-dimensional surface motion map.  This 

method uses Markov Random Field (MRF) based regularization and simulated annealing 

optimization [11, 12]. In MRF regularization, an optimal image is interpreted as a realization 

of a random variable, where the value of each pixel in the image grid is only dependent on its 

nearest neighbors. This provides a convenient way of modeling image texture and spatial 

correlation of image pixels. Furthermore, simulated annealing optimization of MRF 

regularization is a very suitable and effective method to use in image reconstruction.  

This methodology can be used to construct 3-D motion maps of various types of surface 

movements. Such motion maps can be useful e.g., (1) to display data and provide a consistent 

view of 3-D motion fields, (2) to derive strain rate maps that can be used to study the buildup 

of crustal stresses related to future earthquakes, and (3) to infer volume of surface 

uplift/subsidence by integration of vertical deformation fields. 

 

Problem formulation 

 
An InSAR interferogram can be related to the 3D ground deformation components as 

 

                                                 [ ][ ]Tzyxz
ii

y
i
x

i
LOS SSSvvvV ;,,;=                                          (1) 
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where i is a pixel number,  z
ii

y
i
x vandvv , are the east, north and vertical components of 

deformation, respectively, and [ ]zyx SSSS ;,=  is a unit vector pointing from ground toward 

satellite. The aim is to estimate the three motion map zyx vandvv , from the known LOSV  

interferogram and sparse GPS observation values of zyx vandvv , . The authors rewrite the 

three-dimensional equation as the two equivalent two-dimensional terms for computational 

convenience 
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The second term i
Lv  is the deformation in the horizontal look direction of the satellite. 

Equation (2) can be first used as a basis to determine VL vv , . Then the east and north motion 

maps, yx vv , can be found by utilizing equation (4) or by rewriting equation (1) as 
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The authors adopt the following general formulation of equation (2) and (5): 
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                                                              [ ][ ]Tiii SSxxy 21211 ,;=                                            (6) 

 

where iy1  is known for all pixel i, ix1 and ix2 are only known at sparse locations and 

21 SandS are constants. By using equation (6), the problem of optimizing three motion maps 

in equation (1) is simplified to optimization of the two motion map 21 xandx . Hence the same 

optimization algorithm can be used when optimizing LVx =1  and VVx =2  in equation (2), and 

EVx =1  and NVx =2  in equation (5). This simplifies the optimization algorithm, since only two 

instead of three motion maps are optimized at the same time. This does though require LV  and 

VV to be optimized previous to EV  and NV . 

 

An introduction to the Markov Random Field Regularization and Simulated Annealing 

Optimization 

 

S. Gudmundsson and F. Sigmundsson use a MRF model to regularize the construction of the 

1x and 2x  motion maps in equation (6). The regularization is optimized with a simulated 

annealing iteration process. According to the MRF regularization, an optimal image x  is 

interpreted as a realization of a random field X . The authors adopt a maximum a posteriori 

(MAP) estimate in order to represent an optimal realization image x  for a given image y . 

The MAP estimation is given as 

 

                                                   ( )yYxXPx
x

=== |maxargˆ                                             (7) 
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For convenience ( )xXP =  will be written as ( )xP  when expressing the likelihood. The 

Bayesian theorem [13] gives 

 

                                          ( ) )|()(
)(

)|()(
| xyPxP

yP

xyPxP
yxP ∝=                                    (8) 

 

where ( )xP  represent prior expectations about the random field X .  

A Markov random field X  is characterized by the important property that it is defined with 

respect to its neighborhood system, such that a pixel value on an image grid is assumed to be 

conditionally dependent on its neighboring pixels only. This is the Markov property, which 

gives a local definition of the random field. The authors use this property when a simulated 

annealing is adopted to optimize the MRF regularization, which results in a very effective 

image optimization process. By using the Hammersley-Clifford theorem [14], the density 

function in equation (8) can be written as the Gibbs random field 
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where ( )yxU |  is an energy function defined with respect to the neighbourhood structure of 

the image x, (i.e. ( )xU1  ) and the relationship of the image x to the image y (i.e. ( )xU2  ), and 

T is a temperature. The Hammersley-Clifford theorem gives a global definition of the random 
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field, and hence the MRF modeling can be regarded as defining a suitable energy function 

that takes its minimum energy stage for the optimal realization image. 

As ∞→T  the distribution in equation (9) becomes uniform among all possible energy states 

and as 0→T , the distribution becomes uniform among the minimum energy states. The 

simulated annealing optimization can be described as a sampling of the density in equation 

(9), where the temperature T starts at some ‘‘high’’ value 00 >T  and falls toward 0 during 

the iteration steps. If the temperature is lowered slowly enough, then equation (9) will assign 

the maximum probability to the MAP image [15]. One of the great advantages of using the 

simulated annealing optimization process is its relatively low risk of running into a local 

minimum compared to other optimization algorithms. 

 

Construction Process 

 
The authors start their construction process with initial motion maps created from interpolated 

GPS observations. The motion maps are then optimized further with MRF regularization and 

the simulated annealing algorithm. 

The initial motion maps are used as initial guesses before optimizing the 3-D motion field 

with the MRF regularization. Various methods exist for interpolation of sparse data [16]. The 

effectiveness of each method may depend on the characteristics of the sparse data. A 

reasonable chose of interpolation method needs to be considered with respect to each sparse 

data set. The authors demonstrate the method selected to interpolate the sparse data and 

discuss some other possible alternatives. 

In particular S. Gudmundsson and F. Sigmundsson tested several interpolation methods for 

the sparse GPS data from the Reykjanes Peninsula. The authors found ordinary kriging 

algorithm given by [17] to be simple and appropriate. Kriging algorithms use geostatistical 
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measurements to find an optimal set of weights used for the interpolation, calculated from a 

semivariogram (inverse related to the covariance) estimated from the data. The ordinary 

kriging algorithm requires the motion field to be both first and second order stationary [18], 

and the estimated semivarograms of each of the three GPS components to be fitted with a 

Gaussian semivariogram model [17]. The Gaussian semivariogram model includes a 

preconception about the shape of the semivariogram (how the amplitude of the semivariogram 

increases with distance). Based on the observation of the GPS vectors, the authors argue that 

the motions at the Reykjanes Peninsula are east-west oriented and anisotropic. Furthermore, 

the vertical motions are partly localized, e.g., with some local subsidence at Svartsengi [19]. 

Hence the motion field is in general not stationary, and thus the averaged semivariograms do 

not produce the appropriate shape that is needed for the Gaussian semi- variogram model. 

However the authors highlight that the averaged semivariograms strongly indicate that the 

motion field is approximately first and second order stationary within a distance of at least 

200 pixels (18 km) from any arbitrary chosen location (point) at the Reykjanes Peninsula area. 

Hence an appropriate shape for the Gaussian semivariogram modeling can be achieved by 

only using semivariogram data within a distance of 200 pixels. The spatial consistency of the 

GPS data is preserved in the kriged motion maps. Furthermore, both the east-west tendency of 

the horizontal motions and the localized subsidence pattern at Svartsengi appears to be 

preserved. Accurate interpolation of the subsidence pattern at Svartsengi is also supported by 

previous studies of the motion field at the area [19]. The authors report an example of 

consistency between the interpolated GPS data and InSAR data . The good agreement of the 

two independent complementary data sets indicates a successful interpolation of the sparse 

GPS data. The ordinary kriging algorithm may not always be applicable. This was the case in 

the study of ice flow by [20], where motions were highly anisotropic and localized. In their 
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case, both time series of digital elevation maps (DEMs) of the ice surface and aerial 

photographs were available. Thus they found it appropriate to use cubic spline fits of available 

sparse ground observations, together with knowledge of the surface patterns from the aerial 

photographs and by assuming smoothly varying horizontal ice flow parallel to flow lines with 

the aid of the DEMs. Another type of localized and anisotropic surface movements are 

discontinuities because of seismic or aseismic deformation. Often, there exists a physical 

model that describes the general patterns of such motions. One possibility is to remove the 

model from the GPS observations, interpolate the residuals (e.g., with the ordinary kriging 

algorithm) and add back in the model. Such residuals are expected to be approximately a 

stationary random field, which is the most appropriate form for kriging algorithms.  

 

Energy Functions 

The authors propose the following general form of a total energy function used to optimize 

the two motion maps 1x  and 2x  in equation (6): 

 

                                          ( ) ( ) =+= 21221121 ,|,)|,( xxyUxxUyxxU  

                                                = ( )212222111 ,|)()( xxyUxUxU ++                                       (10) 

 

where the former step is an extension of the energy functions in equation (9), and the later 

step is achieved by assuming independence between the likelihoods of 1x  and 2x . )( 111 xU  

and )( 222 xU  are then related to the neighbourhood structure of 1x  and 2x , respectively, and 

),|( 212 xxyU  expresses the relationship of the two-dimensional motion field to the 

unwrapped InSAR image y as given in equation (6). Then the author propose the following 

energy function to optimize equation (6): 
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                                          [ ][ ]( )22121212 ,,),|( ∑ +=
n

T
nnn uuxxyxxyU γ                                  (11) 

 

where n is a pixel number and 2γ  is a constant. 

The authors invoke the smoothness of the first derivatives of 1x  and 2x , implemented as a 

penalization on the second derivative [12], with the approximations 

 

 

                          ( )21,11,1,1,11,1111111 4)( ∑∑ +−+− ++−+=
i j

jijijijiji xxxxxxU γ                            (12) 

 

                          ( )21,21,2,2,12,1222222 4)( ∑∑ +−+− ++−+=
i j

jijijijiji xxxxxxU γ                        (13) 

 

where i,j  are the row and column numbers, respectively, and 11γ and 22γ  are constants. By 

using equation (12) and (13), the authors have assumed the motion field to be smoothly 

varying. The smoothness requirements were the only prior expectations about the random 

field used in their work. It serves the important purpose of preserving the correlated 

relationship of the image pixel values. The 1U  term in equation (10) may consist of various 

types of prior expectations. As an example, in study of ice flow [20], authors used an 

assumption of having horizontal ice flow parallel to the flow lines at the surface, implemented 

with aid of digital elevation map.  

The energy function in equation (10) utilizes the relationship of the motion field images to the 

known image y. Sparse values of the motion field images 1x  and 2x  are known from the GPS 
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observations and are used to initialize the process. The interpolated initial motion maps (the 

GPS observations) can also be utilized into the MRF models by extending equation (10) as 

 

 

=+= )|,,(),(),|,( ,2,1213211,2,121 xxxxyUxxUxxyxxU iiii  

)|()|(),|()()( 222111212222111 xxUxxUxxyUxUxU IIII +++++=     (14) 

 

where 21 II xandx  are the estimated initial values of  1x and 2x respectively. As in equation 

(10), independence is assumed between the likelihoods of 1x and 2x , which leads to the final 

step in equation (14). 

The expected spatially variable accuracy of the interpolation (kriging) results can be 

incorporated in the regularization by introducing an ‘‘uncertainty image’’ w. Authors use a 

method introduced by [17] to create the uncertainty image along with the kriging of the sparse 

motion field measurements. In his method, the kriging results are expected to be most 

accurate at, and close to, pixels corresponding to the GPS locations but become more 

uncertain with distance from them. No uncertainty is assigned to pixels with GPS 

observations and the certainty then decreases away from them. In the uncertainty image, a 

value of one means no uncertainty and a value of zero means no certainty. The spatial 

accuracy of the interpolation may also depend on variable uncertainty assigned to each GPS 

vector. It is possible to incorporate those variable errors in the uncertainty image, by assigning 

suitable uncertainty value to pixels with GPS observations. The initial values and the 

uncertainty image are utilized into the MRF regularization by penalizing the motion maps for 

deviating from the initial results. The penalization is then weighted with the uncertainty 

image. This is done by using the energy terms 
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                                              ( )( )∑ −=
n

ninII xxwxxU
n

2
11111111 )|( γ                                         (15) 

 

                                             ( )( )∑ −=
n
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2
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for the motion field image 1x  and 2x , respectively, where n is pixel number, 
nIx 1 and 

nIx 2 are 

the initial values at the pixel n, nw1  and nw2 are the estimated uncertainty of the initial values 

at the pixel n and 1Iγ and 2Iγ are constants. Because of the uncertainty images, the 

penalization in equations (15) and (16) becomes strongest at and close to pixels with GPS 

values and decreases with distance from them. The energy function in equation (14) has the 

advantage of utilizing both the relationship of the motion maps to InSAR and GPS 

observations. 

 

Simulated Annealing Optimization 

 

 The simulated annealing algorithm proposed by S. Gudmundsson and F. Sigmundsson for the 

optimization of the two realization images 1x and 2x  is the following: 

1. Choose initial images  1x  and 2x , (e.g., by kriging) and set the initial temperature  

0TT = . 

2. 2=k , where k  is a pixel number. 

 3. Increase or decrease kx1  with equal probability by a value of x∆ , which gives a new 

image '
1x . 
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4. Calculate [ ] [ ]{ }TxUxUxpxpr TTk /)()(exp)(/)( 1
'
11

'
11 −−==   .  

5. If [ ] ktkktkk xxotherwisexxthenr 11
'
111 ;,1,0 ==> µ . 

6. ,,1 Mkifkk ≤+=  go to step 3; otherwise, go to the next step (M is the total number of 

pixels). 

7. .11 txx =  

8. .1=k  

9. Increase or decrease kx2  with equal probability by a value of x∆ , which gives a new 

image '
2x . 

10. Calculate [ ] [ ]{ }TxUxUxpxpr TTk /)()(exp)(/)( 2
'
22

'
22 −−==  

11. [ ] ktkktkk xxotherwisexxthenr 22
'
222 ;,1,0 ==> µ  

12. ,,1 Mkifkk ≤+=  go to step 9; otherwise, go to the next step next step. 

13. .22 txx =  

14. ,coolTT ×=  where cool <1 is a constant. 

15. Go to step 2. 

The authors separated the optimization into two steps. First 1x  is updated for given 2x , and 

then 2x  for a given 1x . Then these steps are repeated until a satisfactory result is achieved. 

The energy function U is given by either equation (10) or (14). The algorithm uses a 

nonrecursive update of the pixel values . The MRF model favors low energy states by 

associating them with high probabilities. The Markov property of the random field is utilized 

when calculating the ratio of the image probability states with and without updated pixel 

value (steps 4 and 10 in algorithm 1). As the author emphasizes all terms in the probability 

formulation not directly related to the pixel under consideration disappear due to the Markov 
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property. This is evident when implementing the associated energy functions into the 

calculation of the image probability ratio in steps 4 and 10, i.e., all terms in the summation in 

equations (11), (12), (13), (15), and (16) not directly related to the updated pixel value cancel 

out in the probability ratio. Furthermore, the energy terms in equations (13) and (16) (energy 

terms not related to 1x ) cancel out in step 4 and in equations (12) and (15) (energy terms not 

related to 2x ) in step 10. In the algorithm, [ ]1,0µ  is a random number ranging from 0 to 1, 

selected from a uniform random generator. This simulated annealing algorithm chooses a new 

energy stage if the probability ratio is larger than random number within the [0,1] interval. 

This allows the algorithm to explore various combinations of the motion maps, and hence 

avoid local minima. As 0→T , the effects from the random generator vanish. The constant 

cool in algorithm 1 establishes the temperature fall. After full annealing, the algorithm selects 

the motion maps with the highest probability. 

 

Parameters 

 
As highlighted by the authors the ratio of the γ  coefficients represents combination of both 

scaling and weighting of each of the energy terms in the optimization. Indeed the energy 

functions represent different types of quantities. Furthermore, evaluation of suitable values for 

these parameters is not a simple task. By using various experiments, the authors found 

102 =γ  in equation (11), 111 =γ and 122 =γ  in equations (12) and (13), respectively, and 

101211 == γγ  in equations (15) and (16), to work well for their data. Relationship of the 

motion maps to the InSAR observations is reflected in equation (11), i.e., projection of the 

motion maps on a unit vector is known at all pixels. Thus, the energy term in equation (11) is 

given a relatively strong weight in the optimization. An infinite set of solutions exists for 
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equation (11). Hence, the authors use as an additional constraint (a prior expectation about the 

motion field) an assumption of having a smoothly spatial varying motion field (equations (12) 

and (13)). Those smoothness requirements also reduce the effects of high frequency noise 

errors in the InSAR data. A smoothly varying motion field is not always the case, e.g., when 

there are discontinuities due to seismic deformation. Strong smoothness requirements can 

result in oversmoothing of narrow deformation features. Here they keep the weights of 

equations (12) and (13) small but under the consideration of achieving acceptable spatial 

correlation in the output motion maps. The energy terms in equations (15) and (16) express 

the relationship of the output motion maps to the sparse GPS data. Those energy terms also 

tend to smooth the output data. The smoothing effects are though small compared to those of 

equations (12) and (13). Here we keep the constraint in equations (15) and (16) much weaker 

than in equation (11). [25] The weights may depend on the nature of the data. In [20] authors 

found the same values of 2γ , 11γ , and 22γ  to be suitable to optimize 3-D motion maps at the 

1996 Gjalp eruption site in Vatnajoull, Iceland. Opposite to the author GPS data, their sparse 

ground observations of the vertical, east, and north components of the motion field were not 

all conducted at the same locations. Because of this, it was better to use only half the values 

we use for 1Iγ  and 2Iγ  in that case. The author use 00 =T , 1.0=∆x , and 99.0=cool in 

algorithm 1, and the process is terminated for 1.0<T . 
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Figure 1. S. Gudmundsson and F. Sigmundsson  results (from [8]) 

 

 

In figure 1 ground movements at the Reykjanes Peninsula inferred by using the GPS 

measurements and 4.17 years interferogram are shown. The results are show of using only the 

relationship to the InSAR observation in equation (10), and the relationship to both the InSAR 

and GPS observations in equation (14), in the MRF regularization. (a), (c), (e) The vertical, 

east, and north motion maps, respectively, inferred by optimizing equation (10). (b), (d), (f ) 
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The same from optimizing equation (14). (g) Residual error between the 4.17 years 

interferogram and projection of the images in Figures 1a, 1c, and 1e into the slant range of the 

SAR satellite, and the mean value (m) and standard deviation (s) of the residuals. (h) The 

same for the images in Figures 1b, 1d, and 1f.  

 

The Samsonov and Tiampo method 

The method proposed by Samsonov and Tiampo is based on a random field theory and 

Gibbs–Markov random fields equivalency within Bayesian statistical framework. It is slightly 

different from the method proposed by S. Gudmundsson and F. Sigmundsson. This method 

minimizes the energy function without the smoothness criteria, and thus without the 

smoothness term thus allowing an analytical optimization of the Gibbs function.  

 
Theoretical background 

Samsonov and Tiampo start their paper giving an introduction to the Bayesian inference. 

Bayesian inference is a theory of fundamental importance in estimation and decision-making. 

It is based on the Bayes theorem, which relates posterior and prior probabilities according to 

the following equation: 

 

                                          ( ) )|()(
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)|()(
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xyPxP
yxP ∝=                                       (17) 

 

where ( )yxP |  is the posterior distribution, ( )xP  is the prior distribution, ( )xyP |  is the 

conditional probability or the likelihood of the observation d, and ( )yP  is the density of  d  

which is constant when d is given and therefore can be skipped in the future derivations. 
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The authors highlight that in Bayes estimation, a risk is minimized to obtain the optimal 

estimate. The Bayes risk of estimate *x  is defined as 
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where ( )xxC ,*  is a cost function defined as 
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where δ is any small constant. 

The Bayes risk can be calculated by substitution of (19) in (18) 
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As 0→δ  the above equation can be approximated by the following: 

 

                                                      ( ) ( )dxkPxR |1* −=                                                        (21) 

 

where k is the volume of the space containing all points for which δ≤− xx* . Therefore, the 

minimization of (21) is equivalent to maximization of ( )yxP | . 

The poster distribution ( )yxP |  can be calculated from the prior distribution and likelihoods 

in a way given by Bayes theorem (17). The prior distribution can be presented according to 

the Hammersley-Clifford theorem in a form 
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where U is the energy function of corresponding Gibbs random field and 
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is a normalization constant called partitioning function and T is a temperature which is 

assumed to be equal to one and skipped in later derivations. Then likelihoods can be 

calculated in a similar way by 
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where the energy function is 
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The authors rewrite the total energy function in the following form: 
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GPS and DInSAR analytical integration  

The author’s goal is to calculate three components of the velocity vector at each grid point 

from three known datasets: ascending and descending DInSAR interferograms and GPS 

velocities at the sparse locations. In order to solve this problem is needed to opportunely 

define the correct Gibbs energy. The prior distribution of (26) is the initial assumption about 

the authors’ model, which in general may be correct or incorrect. As focused by Samsonov 

and Tiampo, if the assumption is incorrect and thus carries some misleading information then 

the posterior distribution will be misleading also, at least in part. Therefore, since the accuracy 

of initial assumptions is unknown here, Samsonow and Tiampo propose not to use it and draw 

all information from the data only. 

Two DInSAR interferograms can be related to components of the velocity vector according to 

the following equation: 
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where   i
LOSV1  and i

LOSV 2  are the known interferograms defined on a grid of N points,  [ ]z
ii

y
i
x vvv ,;  

are unknown components of the velocity vector and [ ]111 ;, zyx SSS  and [ ]222 ;, zyx SSS  are unit 

vectors pointing from the ground toward the satellite. 

The GPS velocities are known only at a few locations  
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 Some interpolations technique such as kriging is required by the authors in order to fill in 

GPS velocities at the DInSAR grid points. Kriging is a method of interpolation which predicts 

unknown values from data observed at known locations. This method uses a variogram to 

express the spatial variation, and it minimizes the error of predicted values, which are 

estimated by spatial distribution of the predicted values [21], [22]. 

Samsonov and Tiampo rewrite the Gibbs energy function in the following form, where the 

first two terms correspond to DInSAR and the last three terms correspond to GPS: 
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with coefficients 
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where σ’s are standard deviations of the measurements. 

Equation (13) is a function of variables N×3 variable [ ]i
z

i
y

i
x vvv ,,  where N is the number of 

grid points. It consists of N nonnegative terms corresponding to the same index i. Therefore, 

the function ( )zyx vvvu ,,  reaches its global minimum when each subgroup with the same index 

i is minimal, and the first partial derivatives i
xvu ∂∂ / , i

yvu ∂∂ / , i
zvu ∂∂ / , are equal to zero. 
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This set of three linear equations with three unknowns can be constructed for each grid point. 

The author emphasize that it is always solvable when the determinant of the matrix of 

coefficients is not zero. It can be shown that this condition is always true when the 

coefficients (30) are not zeros. Because this is the case in every instance, the exact analytical 

solution can be easily calculated. 

The solution of the set of (31) is the standard inverse problem of the form uAX 1−= . Matrix 

A in this equation is nonsingular and the inverse matrix 1−A  is continuous on any point where 

zyx CCC ,,  are not null at the same time, which occurs in almost all cases. Therefore, a unique, 

stable solution always exists. However, in numerical calculations, the fact that Adet  can 

become very small when errors are big gives instabilities of the type 0/0 and the limit, which 

always exists, must be calculated carefully. 
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Figure 2. Samsonov and Tiampo results from [9] 

 

 

In figure 2 results relevant to a synthetic case study performed by Samsonov and Tiampo is 

shown. In the first row original modeled components of surface velocity field that are to be 

restored are reported. In the second row  the components of the velocity field interpolated 

from sparse GPS locations by ordinary kriging is shown. In the third row the restored 

components of the velocity field after applying GPS-DInSAR optimization are reported. 
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Chapter 2 

The SISTEM method 

 
Introduction  

 

In this chapter the mathematical formulation of the SISTEM method is reported. The 

proposed methodology was tested on both synthetic and experimental data. In particular the 

latter from GPS and DInSAR measurements carried out on Mt. Etna during the 2003-2004 

time interval. In order to appreciate the results accuracy standard estimated errors are 

provided. These tests also allow optimising the choice of specific parameters of this 

algorithm. 

Both methodology and results reported in this chapter have been submitted to IEEE 

Geoscience and Remote Sensing [23] and are under review. 

 

Mathematical Background 

 

In this section we set out a few well known points, from continuum mechanics and geodesy, 

which are fundamental to implement the method for integrating GPS and DInSAR data 

introduced in this paper.  

Let us assume that a geodynamic process (e.g. intrusions of magma or earthquakes) deforms a 

portion of Earth’s surface; under the hypothesis of infinitesimal and homogeneous strain we 

define an arbitrary point P, having position x0=(x10, x20, x30), and N surrounding experimental 

points (EPs) whose positions and displacements are respectively  x(n)=(x1(n), x2(n), x3(n)) and 

u(n)=(u1(n), u2(n), u3(n)) where n=1..N. Under such a hypothesis, adopting a linear approach, the 
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problem of estimating the displacement components Ui (i=1..3) of the point P, from the 

experimental data u(n)=(u1(n), u2(n), u3(n)), can be modelled by the N equations [24]: 

 

                                                )3..1,()( )()( =+∆= jiUxHxu injijni                                              (1) 

 

where ∆xj(n)=xj(n)-xj0 are the components of the vector distance between the nth EP 

experimental points and the arbitrary point P, while 
j

i
ij x

u
H

∂
∂

=  are the elements of the 

displacement gradient tensor. In equation (1) the matrix H can be broken down into a 

symmetric and an anti-symmetric part as H=E+Ω. The symmetric part E is the well known  

strain tensor defined as: 
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and the antisymmetric part Ω is the rigid body rotation tensor defined as: 
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Here ei is the canonical base vector of the Cartesian reference system and ⊗  is the tensor 

product. 

It is straightforward to show that the 3N  equations of type (1) give a linear matrix equation of 

the following form: 
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                                                                   uAl =                                                                   (4) 

 

where A is the 3N*12 design or coefficient matrix [25], l=[ U1 U2 U3 ε11 ε12 ε13 ε22  ε23 ε33 ω1 ω2 

ω3]
T is the column vector of unknown parameters and u=[u(1) u(2) … u(n)]

T is the column 

observation vector, usually referring to displacement vectors measured at N geodetic 

benchmarks.   

Assuming a uniform strain field and re-writing the previous linear equation (4) as Al=u+e, 

where e is the residual vector that models the stochastic nature of the estimation problem, a 

suitable method to solve the system is the Weighted Least Squares (WLS) which gives the 

expression (5) as a suitable formula to estimate the unknown vector l  

 

                                                          WuAWAAl TT 1)(ˆ −=                                                      (5) 

 

where W is the inverse of the data covariance matrix C.  

According to the modified least squares (MLS) approach proposed by [25], based on the 

adjustment of the covariance matrix , we use the matrix C’ which is a weighted version of the 

matrix C. Following the suggestion given by [25, 26], the weighting is given as: 
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where d(n)  is the distance between the nth EP and the arbitrary point P, and d0 is a distance-

decaying constant  defining the “level of locality” of the estimation; hereafter, the parameter 

d0 is defined as “locality”.  
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Likewise most previous methods [27, 28, 29] the [25] approach is used to interpolate the 

strain among benchmarks of geodetic networks where ground deformations are measured by 

comparing geodetic surveys.  

 

The Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite 

deformation Measurements (SISTEM) approach 

 

In this section we describe the SISTEM method for estimating the gradient displacements 

tensor taking into account both the in situ geodetic measurements and the satellite 

deformation measurements. In particular, we implement this method for the simultaneous 

integration of the 3D components of displacements measured by a GPS network and the 

DInSAR LOS displacement map, but it can be easily extended to other kind of terrestrial 

geodetic measurements. 

A DInSAR interferogram can be related to the components of the displacement vector of an 

arbitrary point P according to the following equation: 
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where P
LOSD  is the LOS displacements, at the point P on the Earth’s surface, U1, U2 and U3 are 

the unknown displacements vector components, and ][ P
z

P
y

P
x SSS  is a unit vector pointing from 

the point P toward the satellite. In order to create a highly accurate surface motion map, with 

the same spatial resolution of DInSAR image, we have included the DInSAR data into the 

global strain estimation methods previously introduced. It is straightforward to demonstrate 

that for integrating GPS and DInSAR data, these last in the form defined by (7), the 
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estimation problem can be expressed in the usual form Al=u+e  where the coefficient matrix 

A assumes the following structure: 
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While the measured data vector assumes the form: 
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It should be observed that the A matrix consists of 3N+1 rows: the first 3N rows can be 

viewed as N blocks of three equations which represent information on the GPS position of 

each single EP with respect to the arbitrary point P, while the last equation refers to the 

corresponding  DInSAR data. The interested reader can verify that expressions (8) and (9) 

have been resembled from those given by  [25], which refers to the GPS measure only. 

We emphasize that the SISTEM method is a point-wise oriented approach. This means that, at 

the unknown point P, SISTEM solves the WLS problem by taking into account the 

surrounding GPS points and only the DInSAR data coincident with the point P. Therefore the 

spatial correlation of DInSAR data is not taken into account. Finally, the point-wise approach 
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implies that for areas where DInSAR data is missed (e.g. low coherency, decorrelated areas, 

etc.) the SISTEM does not provide the integrated deformations. 

In order to solve the problem by using the WLS method it is necessary to modify the 

covariance matrix structure of observation by adding the variance of DInSAR data points. For 

this purpose we estimated the variance of the DInSAR data directly from the interferogram by 

using a sample semi-variogram γ(hc) (eq. 10) [30, 31]   
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where hc is a classified separation distance. 

The weight function (7) has been used only on GPS data, because for each arbitrary point P 

the P
LOSD  measurement is known. 

In this method, the only parameter that needs to be appropriately chosen is the parameter d0 in 

order to define the level of locality of the estimation. As suggested by [26] we have related d0 

with the mean inter-distance between neighbour stations. In particular let N be the number of  

EPs point of the network and Ki be the set of M nearest stations in the circle centered at the i 

station. It is obvious that the radius of this circle depends on i. We propose the following 

empirical formula to evaluate d0: 
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The optimal value of M depends on the topology of the network; based on several trials, we 

have empirically found  that for random configurations M ranges between 4 and 6. 

It should be noted that the effects of the locality d0 are the following: only the points closer 

than about d0 to P give a significant contribution to its estimation; the uniform distribution of 

the strain is required only in a neighbourhood of each computation point; for points P far 

away the EPs the DInSAR data becomes the dominant information source. 

In order to estimate the goodness of the SISTEM method, we have used the estimated 

standard error provided by the WLS approach. 

 

A Synthetic case study 

The SISTEM method is firstly tested on synthetic interferograms and displacement fields 

obtained by assuming a specific strain pattern and by using a synthetic topography. As  

proposed by [9]; the topography  is computed according with 
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where z(x,y) is the elevation at a point {x,y}, z0 is the initial maximum elevation to the central 

point, and w is a form factor used to adjust the slope and the size of the hill (Fig.1). In our 

case z0 =1000 m and w =1. 

The synthetic dataset was generated by assuming a point pressure source [18, 1] (Mogi, 1958; 

Dzurisin, 2007) defined by: 
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Where uj (j=1,3) are the displacements along the three directions estimated at the point P (x1, 

x2, d), -d is the depth of the pressure source and 22
2

2
1 dxxR ++= is the radial distance of 

the point P from the centre of the pressure source; ν and µ are the Lame’s constants. The 

pressure source was embedded in an elastic homogeneous Poissonian half-space (Poisson’s 

ratio = 0.25, i.e. λ = µ), and, to take into account the effect of the topography, the simple 

varying-depth model proposed by [32] was adopted, which consists of assuming a different -d 

at each computation point.  

 

 

Figure 1. Synthetic topography used for the test 
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Through the tests the pressure source was centred on a 400x450 grid (cell-size 100 m x 100 

m) with µ=30 GPa, depth = 5000 m (with respect to the base of the topography) and with a 

“strength” parameter (a3∆P ) = 1017 Pa*m3. The synthetic data set consists of the 3D 

displacements computed at the EPs and the synthetic interferogram relevant to the considered 

domain (40 km x 45 km). In the tests we consider the EPs as GPS stations. A Gaussian noise 

of a form  N=(0, σ=5 mm) and N=(0, σ=10 mm) for the  horizontal  and vertical components 

respectively were added to the GPS synthetic data. Referring the DInSAR synthetic data, in 

order to be as realistic as possible we have added a spatial correlated noise with a variance of 

3mm calculated on the basis of a fixed covariance matrix by assuming an exponential decay 

with scale length of 500 meters [33]. 

In order to estimate the covariance matrix of the synthetic GPS points we have firstly 

generated a time series representing the pressure value of the Mogi source in the range 0-1017 

Pa*m3 at different time instants. This was necessary since the original Mogi model is a static 

one. According with expression (13) we generated three time series u1(t), u2(t) and u3(t) to 

evaluate the covariance matrix of the synthetic data set. 

Fig. 2 reports the results of the test obtained by using 100 Experimental Points (EP) randomly 

located assuming a locality (d0) of 2000 m..  
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Figure.2 In the frames a,b,c are reported respectively the East, North and Up components of the displacement 

field while on the frame d is reported the LOS generated on the synthetic topography; the frames a, b, c 

and d are obtained by using the Mogi source (no error added). The frames e, f, g and h represent the 

three displacement components and the LOS displacements calculated by SISTEM integration method 

(for details see the text). In the frames i, l, m and n are reported the residuals of the East, North, Up 

components and LOS respectively. In the lower row are reported the normalized histograms of the 

corresponding residual errors, the mean value (µ) and standard deviation (σ).The red point represents 

the locations of the EPs used for integration. All reported values are in mm. 

 

The original horizontal displacement components have a symmetric shape and range from -30 

mm  to 30 mm, while the vertical component is very steep at the center area, where it reaches 

a maximum of about 70 mm. 
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The components of the displacements calculated by the proposed method are in good 

agreement with the original data and produce residuals between ±6mm for all the 

components. The highest residuals are generally localized in areas where both the density of 

EPs is low and the magnitude of expected deformations is high. The residuals of the vertical 

component are lower than those relevant to the horizontal ones. The pattern of the residuals of 

the LOS displacements is peculiar showing a ring-shape feature, around the center area of the 

image, with the highest residuals on the steepest slopes of the topography. Apart from the 

scarcity of EPs in these areas, at the origin of this peculiar feature it should be the effect of the 

difference in considering the distances among points between the models used for computing 

the synthetic data set [18, 19] and the SISTEM. [32, 34] are, indeed, intrinsically planar, i.e. 

the distances among points are computed as horizontal, while SISTEM is intrinsically 3D; this 

difference may produce severe effect on steepest slopes. In order to avoid similar artifacts, in 

future works we will test the correction proposed by [35], which is more precise than that 

proposed by [32], but it is more complex and requires more computation time. 

The distributions of the errors, reported in the last row of Fig. 2, are slightly biased for all 3D 

component, but not for the LOS deformations. The reason of such a behavior is due to the 

random distribution of the EPs. Indeed, by performing a huge number of experiments we 

found that the best performance is obtained when a regular grid of GPS point is considered. 

This is rather obvious and has been pointed out by other authors [36]. However, since we 

think that the random distribution of EPs depicts the actual cases more than a regular 

distribution, we prefer to maintain these results, even if biased.  

Although the integration of DinSAR and GPS data for obtaining the 3D displacement maps is 

the primary goal of this work, we emphasize that another important issue of the SISTEM 
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methodology is to provide the strain tensor components (ε11 ε12 ε13 ε22  ε23 ε33 ) and the body 

rotation tensor (ω1 ω2 ω3 ) .  

For simplicity we show the three meaningful invariants of the 3D strain field [37]: the 

“dilatation”, the “differential rotation magnitude” and the maximum shear strain” (see Fig.3). 

The dilatation is the only linear invariant and it is defined as follows: 
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where εii are the diagonal elements of the strain tensor matrix (2). The differential rotation 

magnitude invariant is a quadratic invariant and it is given by the following expression: 

 

                                                        
2

3
2

2
2

1
2 ωωω ++=Ω                                     (15) 

 

Finally the maximum shear strain is given by 

 

                                                             minmax λλ −=M                                    (16) 

 

where  λmax and λmin are respectively the largest and the smallest eigenvalues of the strain 

tensor matrix (2). 

 

The shape and magnitude of the three invariants are in agreement with the Mogi source 

adopted for this synthetic case. 
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A further aim of the synthetic test is to investigate the distribution of RMSE as a function of 

the number of EPs  considered in the range of 12 to 150. In order to assess from the statistical 

point of view the RMSE we have performed an appropriate number of simulations. In 

particular we have considered the following sequence of points: 12,20,30, … , 140, 150. For a 

fixed number of EP we have randomly generated 5000 different configurations of EP in the 

rectangular domain considered and evaluated the corresponding locality parameter d0. This 

means that for a fixed number of EPs a range of values is obtained as show in Fig. 4. As 

obvious for increasing number of EP both the range and the mean values of d0 decreases.  

 

 

 

Figure.3 Strain invariants for the synthetic case study. The  “dilatation” (a) , the “differential rotation 

magnitude” (b)  and the maximum shear strain”(c). All quantities are dimensionless. 
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Figure.4 Locality  (d0)  in meter vs.  number of Experimental Points (EPs), for the synthetic case of study. The 

d0 value is calculated using 5000 random configurations, for each number of EPs,  on an area of 2000 Km2, 

according to the equation (11). 

 

 

The behavior of the RMSE vs the number of EP is reported in Fig. 5. It is possible to see that, 

as expected, the RMSE decreases (and thus the accuracy of the method increases)  as the 

number of EP point increases. However the plateau visible in Fig. 5 suggests that in the 

considered synthetic case study a good trade-off between accuracy and number of EPs can be 

obtained by using 50-60 EPs. Indeed, for a number of EPs greater than 50-60 there are no 

significant improvement of the performance. We highlight that the magnitude of the RMSE 

are comparable with those reported by [9, 38]. 
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One finding of this test is that the vertical component has, in general, accuracies better than 

the horizontal ones. This result was somehow expected, bearing in mind that the DInSAR 

images have an average vertical directional cosine of about 0.90 and therefore are particular 

sensitive to vertical movements. 

Furthermore we have characterized the dependence of the errors of each component of the 

obtained 3D displacement map as a function of the DInSAR error, as proposed by [38]. Fig. 6 

shows the results of the dependence of the error as function of the DInSAR error, assuming 

70 EPs randomly located. There is a marked influence of the DInSAR error variance in the Up 

components whereas the East and North components seem insensitive to the noise level. This 

is another confirmation of the effect of the sensitivity of the DInSAR to the Up component of 

the deformations. 

 

 

Figure.5 Mean RMSE vs. number of EP. In blue and red the mean RMSE for the horizontal and 

vertical components are reported respectively. For each dataset is reported the corresponding 

standard deviation .  
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Figure 6. Variation of the optimized displacements errors vs. the DInSAR errors for the synthetic case 

of study 

 

 

A real case study performed on the Mt Etna area 

In this section, we apply the SISTEM method to compute 3D high-resolution surface 

displacement maps of Mt. Etna related to ground deformations observed by GPS and InSAR 

in the period 2003-2004.  

The GPS data used in this work refer to July 2003 - July 2004 period and were analyzed and 

modeled by [39]. This GPS dataset shows a significant inflation affecting the western and 

upper flanks, with a maximum of about 5 cm located on the upper southern flank, coupled 

with an eastward movement of the benchmarks located on the eastern flank of the volcano 

(Fig. 7). 
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Figure 7. Displacement vectors and height variations from the comparison between July 2003 and 

July 2004 (redrawn from [39]). The arrows represent the horizontal displacement vectors, while the 

vertical displacement is presented by a contouring of color fringes obtained by interpolating the 

measurements relevant to each benchmark. In the map is reported the schematic geometry of the 

Pernicana fault system (1). The triangle represents the location of IIV station. 

 

In order to integrate the GPS and the DInSAR data, an appropriate pair of ascending ERS2 

SAR images was selected; they refer to the 20 August 2003 to 30 June 2004 interval and have 

a 70 m of perpendicular baseline (which produces a height of ambiguity of about 126 m). This 

interferogram was processed using the Jet Propulsion Laboratories (JPLs)/Caltech Repeat 

Orbit Interferometry Package (ROI_PAC, version 3.0). Fig. 8 shows the corresponding 

displacements map in LOS, obtained by unwrapping the interferogram. 
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In order to have the two dataset (i.e. GPS and DInSAR) temporally consistent, we scaled the 

observed values under the assumption of a linear evolution of the ground deformation pattern 

through time. It means to assume a simple principle of yearly partitioning, by scaling the 

DInSAR data to the time span of the GPS dataset (12 months). The GPS ground 

displacements refer to the IIV station (located on the city of Catania (fig. 7), which was 

assumed as fixed from 2003 and 2004. Since the interferogram has no absolute reference 

datum, we shifted the LOS displacements in order to tie it to the IIV station. Furthermore, we 

resampled the LOS displacements into a regular grid 400x450 with a pixel size of 100 meters 

(Fig. 8). 

 

 

Figure 8. Resampled Line of sight (LOS) displacement  map in millimeters, calculated for the 

unwrapped interferograms relevant  to the ERS2 ascending pair 20 August 2003 to 30 June 2004.  
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Fig 9(a)-(c) show the results of the integration through SISTEM of the GPS and DInSAR data 

set reported in Fig. 7 and Fig. 8, by assuming d0=1500; the corresponding estimated standard 

errors are shown in Fig. 9(a)-(c). 

According the knowledge of the volcanic activity of the volcano through this period and the 

results of the previous studies [39], two main phenomena characterize the dynamic of the Mt. 

Etna between the July 2003 and the July 2004: the recharging of the deep plumbing system 

centered below the upper western flank [40] (at about 3-8 km b.s.l.) and the ESE sliding of the 

eastern and southeastern flank (the faster measured during the last decade). Thus, in the 

results of SISTEM, we expect to find the effects of these phenomena.  

The East component map shows an evident displacement of the eastern flank of Mt. Etna 

bounded northward by the Pernicana fault system (see fig. 7) as expected form the ESE 

sliding of the north-eastern flank [41], while on the whole western flank SISTEM measure 

westward movements, due to the effects of the deep magmatic sources [40]. The ESE sliding 

of the eastern flank is also evident on the North component of the south-eastern flank, as a 

negative value, while on the northern and the on the whole western flank the North-South 

component shows clear evidence of deformation due to the deep magmatic sources. The most 

evident vertical movement (uplift) is localized in the summit western area according with the 

recharging phase of the plumbing system of the volcano identified by [39]. This excludes that 

the high LOS displacements observed in Figure 8 can be attributed to topographic and/or 

atmospheric effects, as it might be suggested by considering the interferogram alone.  

All these features are hence compatible with the dynamic of the volcano during the 

investigated period [39].  
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The estimated standard error maps of the horizontal components (figures 9a’ and 9b’) have 

similar patterns each other while that relevant to the vertical component (figures 9c’) is 

different.  

 

Figure 9. GPS and DInSAR data integration results. In the frames (a), (b), and (c) are reported the 

calculated  East, North and Up components of displacements respectively. In the right column the 
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corresponding estimated standard errors of East (a’), North (b’) and  Up (c’) components are reported. 

The red crosses represent the GPS stations. 

 

Furthermore, we observe that the magnitude of the vertical errors are, in general, lower than 

those of the horizontal components. In order to explain these results, which conform with 

those relevant to the synthetic test, we have to consider that the estimated standard errors 

provided by the SISTEM come out from an optimization process (i.e. the WLS). This means 

that both observations and covariance matrices play a role in estimating them. Thus the 

figures 9a’, 9b’ and 9c’ may be explained bearing in mind that: i) the variance of the DInSAR 

data is a scalar, thus it weights the three components with the same value; ii) the variances of 

the East and North components of GPS data are similar, thus they give similar contributions 

to the corresponding estimated error maps (9a’ and 9b’); iii) the DInSAR data is more 

sensitive to the vertical deformations thus it reinforces the estimation of the vertical 

component, reducing the magnitude of the vertical estimated standard error (figure 9c’). 

A direct comparison between the GPS components and the components estimated by applying 

the SISTEM method is here provided (Figure 10).  
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 Figure 10. a) RMSE (in mm) between the SISTEM output and the GPS data calculated at the 

GPS site locations as a function of the number of GPS stations; b1), b2) and b3) show the values 

of the discrepancy relevant to the East, North and Vertical components respectively, computed 

for the whole network configuration (i.e. 52 GP stations).  
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The purpose of this comparison is twofold: to characterize the accuracy of the SISTEM 

approach as a functions of the number of GPS points, and to evaluate how the combined  

DInSAR+GPS components differ from the GPS components alone.  

In order to carry out this comparison, we perform several runs, by increasing the number of 

GPS points from 12 to 52. For each number of GPS points, we performed 100 numerical 

simulations, so that we consider 100 different sub-networks, each configuration randomly 

chosen within the whole GPS network, in order to asses a statistically significant mean 

RMSE. In these tests, the RMSE is computed at the site locations of the whole GPS network 

(i.e. 52 points) by comparing the SISTEM output and the measured deformations.  

Figure 10a shows that, in general, the RMSE decreases as the number of GPS stations 

increases, confirming the results of the synthetic test (compare Fig. 4). In particular it is 

possible to appreciate that by increasing the number of GPS points from 12 to 52 the RMSE 

decrease of about 1.0, 1.6 and 2.3 cm respectively for the Up, East and North components. 

The main difference with the synthetic test is that the discrepancy measured by using actual 

GPS data is higher for the vertical component than for the horizontal ones. This is due to the 

fact that, differently than the synthetic data, actual GPS data suffer of a low accuracy in the 

vertical component. Fig. (10b3) clearly indicates that SISTEM “correct” the GPS Up 

components much more than the East and North components (Figure 10b1 and 10b2). 

Furthermore, this analysis shows that the integration of the DINSAR and GPS data affect 

more the East than the North component, since the discrepancies between SISTEM and 

original GPS are negligible for the North component (Figure 10b2) while some variations are 

appreciable for the East component (Figure 10b1).  

All these results highlight the role of the DInSAR data in the integration and, in general, the 

tradeoff between DInSAR and GPS data in the integration method, the former influencing 
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much more the components where the latter is “weak” and vice versa. This is certainly due to 

the intrinsic capability of the WLS to compensate the original measurements and confirm that 

the aim to exploit the complementary nature of the GPS and DInSAR measurements is fully 

achieved.  
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Chapter 3 

Modeling 
 

 

Introduction 

 
We present a strategy aimed to modeling large data set of 3D complex ground deformation 

patterns obtained by integrating sparse Global Positioning System (GPS) measurements of 

deformations and Differential Interferometric Synthetic Aperture Radar (DInSAR) maps of 

movements of the Earth’s surface through the SISTEM method. In order to find the optimal 

model a Particle Swarm Optimization (PSO) algorithm is first used to locate optimal regions 

of complex search spaces. Then a derivative-based method, in particular the Gauss-Newton 

one, is used to refine results. The proposed strategy was tested on synthetic datasets in order 

to assess the performance. Furthermore it was used to model the 3D ground displacements 

map derived by integrating GPS and DInSAR data carried out on the Abruzzo region during 

the  2009 earthquake. 

 

An Inverse Modeling method based on Particle Swarm Optimization 

 

The problem of inverse modelling consists of estimating source geometry from the observed 

surface displacements. Surface displacements d can be related to the source geometry by a 

function g of the source model parameters m: 

 

               ε+= )(mgd              (1) 
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where ε is the vector of  observation errors.  

We use a two steps inversion approach in order to find the optimal source model m* related to 

the 3D ground deformation map provided by the SISTEM method. In particular we first use a 

PSO algorithm [42] in order to locate the valleys that contain the best models; then a 

derivative-based method, the Gauss-Newton one, is used to reach the bottom of each valleys 

in order to determine the optimal source model that minimize the misfit between 3D ground 

deformation map and prediction.  

PSO is an iterative-heuristic, population-based global search algorithm used for optimization 

of continuous nonlinear functions. It models the social behaviour of bird flocking or fish 

schooling in the attempt to converge to the global optimum. PSO works with a population of 

interacting particles. Each particle is defined within the context of a topological 

neighbourhood comprising itself and some other particles in the population. Each particle 

moves in the parameter space with an auto-adaptive velocity whose value depends on the 

move experiences of its own and those of its companions.  In particular each particle 

remembers both its best previous position pi=(pi1, pi2, …, piD)  and the neighbourhood’s best 

position pg=(pg1, pg2, …, pgD). In this work the particle positions are manipulated according to 

the following equations: 

 

                                            ( ))()( 22111 igiiii xprcxprcvCv −+−+=+                                 (2) 

 

                                                             11 ++ += iii vxx                                                           (3) 

 

where the position and the velocity of the i th particle are represented respectively as xi=(xi1, 

xi2, …, xiD) and vi=(vi1, vi2, …, viD ), c1 and c2 are two positive constants taking into account 
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respectively the influence of each particle’s knowledge (cognitive parameter) and that of the 

whole swarm (social parameter). Parameters r1 and r2 are random number, which are chosen 

uniformly within the interval [0, 1] , used to add an element of randomness to the movements 

of the particles. Finally C is a constriction function used to limited the velocity values to a 

fixed range. 

At each iteration the adopted objective function is evaluated for each particle position, the 

vector parameters pi and pg  are update, the particle velocities are manipulated according to 

eq. (1) and (2) and an appropriate stopping criterion is checked. Detailed information are 

provided in [43-45].  

In this work the PSO is basically used to find the optimal region of the parameters space, thus 

providing a set of good initial conditions for the Gauss-Newton derivative-based method that 

is used in the attempt to reach the global minimum. These initial conditions are represented by 

the best particle of each neighbour of the swarm. The advantages of using this strategy are 

that the PSO algorithms are very simple – their implementation requires few lines of code -, is 

able to localize very fast the optimal regions of the parameters space. Furthermore they 

provide a set of good initial guesses to the derivative-based method thus ensuring it good 

performance. Indeed it is well known that derivative-based methods work well only when the 

initial guess is near the global minimum. 

In order to assess the performance of the proposed two steps approach we have carried out 

several inversion tests on synthetic dataset. In particular we have generated 3D ground 

deformation maps by using the Mogi [34] and the Okada [46] forward models within a 60x52 

regular grid (cell-size 500 m x 500 m).  To statistically evaluate the accuracy of inversion, 

100 models with uniformly distributed parameters, whose values were fixed in ranges that 

resemble likely cases in volcanic area, were inverted. In order to asses the goodness of the 
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inverse modelling approach, the Mean Absolute Percentage Error (MAPE) was calculated for 

each model parameter PCi : 
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where N is the number of the considered models, PTi  is the generic ith parameter of the 

calculated model and PCi is the corresponding true parameter. 

For all inversion problems, as first step, we have used a population of sixty agents subdivided 

in three groups of twenty. Then the Gauss-Newton method was run with initial guess being, 

respectively, the best agent of each group. 

We have found a very low MAPE index for all the model parameters (less than 1 per cent) 

thus ensuring the suitability of the proposed inversion strategy. 

 

The Abruzzo earthquake case study 

 

In order to perform the inversion modeling of ground deformation observed in the Abruzzo 

region during the 2009 earthquake, both GPS and DInSAR data were preliminary integrated 

by using the SISTEM method in order to derive 3D ground deformation map over the whole 

investigated area. GPS data were provided by the Centro Nazionale Terremoti.  DInSAR 

interferograms were processed by the ROI_PAC 3.0.1 software developed by Jet Propulsion 

Laboratory/California Institute of Technology . 

This is a very interesting application of the SISTEM method, indeed three different 

interferograms respectively AlOS (fig. 1), Envisat ascending (fig. 2) and Envisat descending 

(fig. 3) are simultaneously integrated with GPS data. 
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Thanks are due to the ESA, which made quickly available the satellite images just after their 

acquisition in the framework of the Earth Watching project. We have produced the ascending 

and descending Envisat interferograms that show  the ground deformation due to the 

earthquake. In particular we have produced the Envisat-descending Interferogram refers to 

27/04/2008 – 12/04/2009 (tbline = 350 days; Bperp = 44 m) and the Envisat-ascending 

Interferogram  refers to 11/03/2009 - 15/04/2009 (tbline = 35 days; Bperp = 227 m). Furthermore 

an ALOS PALSAR interferogram produced with images acquired along the 638 ascending 

tracks and relevant to the 3/7/2008 - 21/5/2009 time interval ( tbline = 322 days; Bperp = 665 

m ) was processed. 

 

 

Figure 1. ALOS PALSAR interferogram. 
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Figure 2. Envisat-Descending interferogram. 

 

 

Figure 3. Envisat ascending 
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In order to achieve high accuracy three-dimensional surface motion maps, related to the 

L’Aquila earthquake, we have exploited the standard formulation of SISTEM approach, 

taking in account DInSAR data with ascending and descending geometry (fig. 4).  

 

 

Figure 4. SISTEM formulation combining GPS data and three interferograms. 

 

The results of the SISTEM method  (fig . 5) show that the reconstructed deformation pattern 

is compatible with the surface evidences of the Paganica fault system, whit a mainly Dip-Slip 

(Dh max =- 22 cm ± 1cm) and a minor dextral movement of the fault system. 

The 3D displacements map derived by the SISTEM method was used to estimate the source 

geometry. We assume that the fault can be approximated with dislocation in a homogeneous 

elastic half-space [46]. The adopted cost function is the following Root Mean Square Error 

(RMSE) 
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where x={East, North, Up}, Oi
x and Pi

x indicate the observed (SISTEM integration result) and 

the simulated values respectively and the terms wi
x
 represent the estimated standard errors 

provided by the SISTEM method.  

In table 1 the estimated parameters are reported. These parameters are in agreement both to 

the kinematic and to the geological evidences of the Paganica fault system with a mainly dip-

slip component and dextral strike-slip. 

 

Depth 5144 m 

Strike 132 gradi 

Dip 67 gradi 

Length 11970 m 

Width 13000 m 

Strike-slip -0.04 m 

Dip-slip -0.9 m 

Opening 0.2 m 

Xs 37487385*10^6 

Ys 4.6877719*10^6 

 

Table 1. Estimated parameters values 
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Figure 5.  In the first row are reported respectively the East, North and Up ground deformation map. 

In the second row the relevant estimated standard errors are reported. Finally the volumetric dilatation, 

the differential magnitude and the max shear strain are shown.  
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Chapter 4 

Toward a more realistic volcanic source shape 

 
In geophysical science choosing an analytical or numerical model in order to gain a better 

understanding of the observed surface displacements is usually based on a preliminary visual 

inspection of the ground deformation patterns. Indeed the model-maker, based on its own 

experience gained in the inversion modeling framework, is usually able to presuppose and 

associate a model to a particular ground deformation pattern. Then an optimization algorithm 

is used to estimate the source geometry parameters.  

In this chapter we propose an automatic method based on Artificial Neural Networks (ANN) 

in order to provide a valid support to the choose of the source model. In particular, given a 3D 

ground deformation pattern the ANN is used in the attempt to build the relevant three 

dimensional volcanic source shape in the discrete Euclidean space.  The methodology was 

tested both on synthetic and real datasets.  

 

Introduction 

 
In geophysics the problem of estimating the source parameters from the observed ground 

deformation data is known as inverse modeling. It is a very important task and attract the 

interest of many researchers. The inverse modeling problem requires the assumption of an 

analytical or numerical forward model. This model is basically chosen based on the 

experience of the model-maker. Indeed a crucial step in the inverse modeling problem is the 

visual inspection of ground deformation patterns in order to select the theoretical forward 

model that in a more reliable way will be able to fit the observations. In the attempt to emulate 

this kind of human thought process by a soft-computing technique, an approach based on the 
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Artificial Neural Networks (ANNs) is proposed. The aim of this study is to show that given a 

generic 3D ground deformation pattern due to a source pressure, an opportunely trained ANN 

is able to build the relevant three dimensional source shape. Furthermore will be emphasized 

the ability of the  ANN to generalize this association for both single, multi sources and source 

pressure model different from those used during the learning phase. 

In order to derive 3D ground deformation pattern over the whole investigated area the 

SISTEM was used.  A brief introduction to the artificial neural network is given. Then the 

methodology and the first preliminary results achieved on synthetic datasets are reported; 

Finally a real case study and the conclusions of the methodology are reported.    

 

Artificial Neural Network background 

Artificial Neural Networks (ANNs) due to its learning and generalization capabilities are 

widely used in several fields of science and engineering. These interesting  features make 

them an attractive tool for application to some geophysics problems. In particular an 

important application of ANNs has been the solution of geophysical inverse problems. Some 

examples reported in literature are the location of subsurface targets from electromagnetic 

field data [47], the inversion of seismic waveform data [48, 49]´and the integrated inversion 

of geophysical data of different types [50].  

Roughly speaking an ANN can be described as a nonlinear function aimed to provide a 

mapping between known input–output patterns for a given problem. Consider a nonlinear 

input-output mapping described by the functional relationship: 

 

                                                               )(xfd =                                                                (1) 
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where x and d are the input and output vectors, respectively. The vector-valued function f() 

can be considered to be unknown, but it is assumed that a set of pairs (xi,di), referred to as 

examples in typical neural network terminology, describing our knowledge about the function 

f() are given. A typical way of approximating static system using the popular single-hidden-

layer multilayer perceptrone (MLP) [51-53] is the following:   
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where yk(x) is the kth entry of the approximated function, φ() is a sigmoid function (i.e., 

φ(z)=1/(1+e-αz), x is the input vector, ωj is the vector of coefficients, cj and tj are additional 

adjustable coefficients. 

The approximation problem has an inverse that consist of constructing a system that produces 

the vector x in response to the vector d. The inverse system may thus be described by 

 

                                                               )(1 dfx −=                                                         (3) 

 

where the vector-valued function denotes the inverse of f. The theoretical aspects concerning 

the use of MLPs for function approximation lie on the so-called Universal Approximation 

Theorem [54], which can be invoked to prove that an MLP with a single hidden layer is 

sufficient to compute a uniform approximation to a given training set represented by the set of 

inputs (x1, … ,xm) and a desired (target) output f(x1, … ,xm) with a prefixed degree of accuracy.  

The problem we want to solve by using the ANNs is to build the source shape of a pressure 

source in a  Euclidian discrete space given the relevant ground deformation pattern. This 
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problem can be formulated in the following manner. Let P be a generic pressure source shape 

and D the associated ground deformation pattern. As the shape P varies a different pattern D 

is obtained. This concept can be expressed in symbol form as 

 

                                                                DPf →)(                                                            (4) 

 

Using (x), which is known, it is therefore possible to produce a population of pairs (d,P) that 

represent the whole “data space” observed. This population will be used as the training set for 

the neural network. 

Building the source shape on the basis of the data observed using a neural approach thus 

means finding an approximated function of the inverse of (4), as indicated in (5) 

 

                                                             PDf →− )(1
                                                        (5) 

 

It should be remarked that, to approximate a function using multilayer perceptron (MLP) 

ANNs and ensure that the approximation error is bounded, it is necessary to assume that the 

function to approximate exists and is both continuous and smooth. However, it is evident 

from the equations of the mathematical model used here (Okada–Murakami–Fittermann– 

Ehrismann), that this is not easy to prove. To obtain some indications, it was considered 

useful to “test” the inverse function using numerical techniques of proven accuracy and 

robustness in the inversion of geophysical data such as the SA optimization method [55,56]. 

However, it is necessary to stress that it is just an indication, not analytical proof. 
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Methodology 

The goal of this work is totally focused on the source shape investigation. In particular the 

aim of this paper is to reconstruct a 3D estimation of the source shape based on ground 

deformation observations. We stress here the difference between this approach and the 

traditional inverse modeling problem. The former tries to build a reliable shape source in a 

Euclidean discrete space, the latter is aimed to find the optimal parameters of a priori chosen 

source model.   

To reach our goal an ANN was opportunely trained in order to learn the relationship between 

a given ground deformation pattern and the relevant 3D source shape. The dataset used for the 

training phase has been generated by using the finite spherical pressure source model [57]: 
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where u, v, w are displacements at the point (x,y,0), c=(0,0,-d) and α are respectively the 

centre and the radius of the sphere, 222 zyxR ++=  is the radial distance from the centre of 

the sphere to a point on the surface, ∆P is the pressure change in the sphere, G is the shear 

modulus and υ is the Poisson’s ratio.  

The inputs of the ANN consist of the North, East and Up displacement components of each 

point of the investigated area. 1000 input patterns, i.e. 1000 3D ground deformation map each 

of which being a 20x20 pixels grid, have been generated with uniformly distributed 

parameters whose values were fixed in ranges that resemble likely cases in volcanic area. 



 68

In order to build the source shape each output Oi of the ANN is associated to a point P(xi,y,zi) 

of the Euclidean discrete space. The output Oi is set to “1” if the corresponding point belongs 

to the source shape, “0” otherwise. Obviously the spatial resolution affect both the number of 

the outputs and the accuracy of the shape. A good trade-off is needed. 

According to the finite spherical shape of the McTigue model, the output patterns have been 

prepared by using  the following  equations: 
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In figure 1 an example of input-output pattern is shown. 

 

 

Figure 1. An example of an input-output pattern. The input pattern (left) consist on the displacement 

components of each point of the grid, East, North and Up respectively. The output pattern is the 

relevant 3D source shape reconstruction in a discrete Euclidian space. 

 

The network was tested on a free noise synthetic dataset. In figure 2 results referring to a 

small, medium and big spherical source respectively are shown. It is evident that although the 

coarse grain space resolution of a 20x20x20 discrete Euclidian space the shapes 

reconstruction resemble spherical shapes in all three cases. 
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Figure 2. Reconstruction of a small, medium and big spherical source shape performed by the NN on 

the basis of their associated ground deformation patterns. 

 

 

We have also tested the network with pattern deformation generated in a multi-source 

framework. In particular two and three spherical sources were considered. It was an 

experiment of great importance because the NN was not trained with this type of patterns, so 

it was a good test to investigate about the capability of generalization of the NN. Results 

relevant to two spherical sources are shown in figure 3. As we can see from this figure the NN 

was able to detect and reconstruct the two sources shape. The importance of this result is also 

emphasized by the nonuniqueness of the inverse geophysical problems. Indeed this neural 

network based approach provides a priori useful information (for example the volume) 

concerning the geometry of the sources into the inversion problem. This a priori information 

plays a key role in order to acquire a realistic and reliable solution. 
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Figure 3. Input deformation pattern generated by two finite spherical sources pressure (left). Output 

reconstruction of the spherical source shape performed by the neural network. 

 

We have also tested the network with several patterns deformation generated by an ellipsoidal 

pressure source [58]. Although the NN was trained by using only finite spherical source 

shapes, results had shown that it was able to reconstruct the ellipsoidal shape relevant to the 

ground deformation pattern derived by the Davis model. This was an ulterior considerable 

evidence of the capability of generalization of the NN. An example is reported in figure 4 

where the reconstructed ellipsoidal-like shape is clearly visible.  

 

 

Figure 4. A test performed with a pattern deformation (left)  generated by the Davis model. 

The output of the NN resembles the relevant ellipsoidal source shape. 

 



 71

Before showing a real application of the proposed technique (Sec. V), we briefly reports in the 

next section  the method we have used in order to derive 3D ground deformation pattern from 

geodetic and satellite data. 

 

Case study 

 

In this section  a real case study is reported. The proposed approach was applied on 3D 

ground deformation map of Mt. Etna derived by the integration of GPS and DInSAR data 

through the SISTEM method.  

The GPS dataset used in this work refers to July 2003 - July 2004 period and was analyzed 

and modeled in [39]. This GPS dataset shows a significant inflation affecting the western and 

upper flanks, with a maximum of about 5 cm located on the upper southern flank, coupled 

with an eastward movement of the benchmarks located on the eastern flank of the volcano. 

The DInSAR data was calculated on the basis of an appropriate pair of ascending ERS2 SAR 

images; they refer to the 20 August 2003 to 30 June 2004 interval and have a 70 m of 

perpendicular baseline (which produces a height of ambiguity of about 126 m). The relevant 

interferogram was processed using the Jet Propulsion Laboratories (JPLs)/Caltech Repeat 

Orbit Interferometry Package (ROI_PAC, version 3.0).  

In figure 5 the East,  North and Up components and their relative estimated standard errors 

derived by the SISTEM method are shown.  
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Figura 5. SISTEM results: East, North and Up displacement components (first row) and relevant 

estimated standard errors (second row). 

 

As we can see in figure 5 the displacement data is not known in every point due to both 

geometrical aspects and low coherence affecting the SAR images. Therefore we have 

extracted a bi-dimensional binary mask from these maps (1 if there is the data, 0 elsewhere)  

in order to build the patterns to train the NN. After the NN was tested we have given the 3D 

SISTEM ground deformation map as input for the NN thus obtaining the volcanic source 

shape shown in figure 6. It is quite evident that the source shape suggested by the NN 

resembles something like a spherical shape located beneath the summit area. Such kind of 

source was used by [39] in order to model the significant inflation affecting the western and 

upper flanks. As we can see in figure 6 this method does not provided an ideal shape, rather a 

deformed shape, we think a more reliable source shape, processed based on both real ground 

deformation pattern  and the knowledge gained from the NN during the learning phase. 

The 3D ground deformation pattern derived by the SISTEM method is also affected by a 

marked eastward movement of the eastern flank of the volcano. The neural network was not 
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able to suggest a source shape associate to this pattern. Indeed such kind of ground 

deformation patterns are not due to sources pressure but they are attributable to dislocation 

faults [46].  Therefore it was an expected result that the NN trained solely with sources 

pressure generated patterns was not able to recognize a pattern due to a totally different 

mechanism, the fault dislocation one, from those the NN had been trained with. 

 

 

Figure 6. 3D ground deformation pattern derived by integrating GPS and DInSAR data in the period 

2003-2004 (left); source shape estimation provided by the NN (right). 
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Conclusions 

 

In order to derive three-dimensional surface motion maps, which take into account both 

sparse GPS measurements and DInSAR interferograms, a novel least square approach was 

proposed; the approach is named SISTEM as acronym of Simultaneous and Integrated Strain 

Tensor Estimation from geodetic and satellite deformation Measurements.   

The novelty of the SISTEM method is that it is based on the elastic theory and that, with 

respect to previous methods known in literature, it does not require the preliminary step of 

interpolating sparse GPS measurements in order to fill in GPS displacements at the DInSAR 

grid but integrates them simultaneously. 

In the proposed method, the mathematical relation between the unknown vector parameter 

(strain) and observation vector (displacements) is a matrix linear equation. Thus the 

estimation problem can be suitable solved by using the Weighted Least Square approach, 

hence avoiding complicated search schemes such as simulated annealing optimization 

algorithm. Since SISTEM is based on the small deformation theory, it provides the gradient 

displacements tensor estimation and the 3D component of the deformations within the entire 

investigated area. 

First of all, SISTEM was tested on synthetic data simulating the deformations produced by a 

point pressure source below a volcanic-shaped topography. After having evaluated the 

capability of SISTEM to reconstruct the complete synthetic deformation field (i.e. the 3D plus 

the LOS displacements), these tests allow fixing a few main points concerning the use of this 

new approach, such as how to assess the locality parameter from the actual geodetic network 

configuration, the minimum number of GPS points beyond of which the accuracy do not 

change significantly (in the range of 50-60 in the considered domain, which in the synthetic 
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case in 40 km x 45 km) and the dependence of the final errors from the error of DInSAR data. 

The synthetic tests confirm that the final accuracy in terms of RMSE is in the order of 3-4 mm  

for the horizontal components and 2 for the vertical one, which are comparable with the 

performances of previous approaches having similar aims.  

The proposed SISTEM method was then applied efficiently on the Mt. Etna area where the 

coverage of the GPS network is good and DInSAR data are available. The results (Fig. 9) 

show that the reconstructed deformation pattern conform with the geophysical and 

volcanological knowledge of the dynamic of Mt. Etna during the 2003-2004 period. The 

displacement pattern obtained by applying the integration method are hence promising for 

future studies aimed at improving the knowledge on particular aspects of the dynamic of this 

volcano (e.g. the plumbing system, the flank dynamic, etc.).  

The analysis of the accuracy, in terms of the estimated standard errors, highlight that it is in 

general lower than 4-5 mm, except for limited areas where the discrepancy between the 

original data is high probably due to local effects (e.g. time difference between GPS survey 

and SAR passes; high errors in GPS surveys, etc.). The analysis of the RMSE, for the case 

study of Mt Etna, allows to estimate the benefits which can be achieved by increasing the 

number of GPS points in the considered area. The detailed analysis on the RMSE confirms 

that SISTEM reinforces the Up component of the GPS data by effectively exploiting the 

DInSAR information. Widen this comment, we can state that the experiment on Mt. Etna 

confirms that SISTEM fully exploits the intrinsic complementarity of the DInSAR and GPS 

data for determining the ground deformations.  

Among the potentiality of SISTEM we emphasize that, since it is based on the theory of the 

elasticity, we may include additional datasets (such as leveling data, EDM, Tilt, and DInSAR 

data taken from different geometry or by different SAR sensor, e.g. ENVISAT or ALOS), by 
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using similar formulations, based on the same unknowns. These potentialities will be fully 

exploited in future developments of the presented methods. 

The great amount of data provided by the SISTEM method was successfully used in the 

framework of the inversion problem. In particular the seismic source associated to the 2009 

Abruzzo earthquake was estimated by using a Particle Swarm Optimization algorithm. In this 

case study the potentiality of the SISTEM method to integrated different interferograms 

(ALOS, Envisat Ascending, Envisat Descending) was exploited. 

Furthermore a method to investigate the volcanic source pressure shape using neural 

techniques was proposed. More specifically a neural network was opportunely trained in order 

to build, in the discrete Euclidian space, the shape source associated to a given 3D ground 

deformation pattern generated by several sources pressure. The most relevant result was the 

capability of generalization of the NN shown on both single and multi sources synthetic case 

studies. Indeed the NN trained by using patterns generated through single Mogi sources 

provided good results when used with multiple Mogi sources and with patterns generated by 

the ellipsoidal Davis model. The test performed on a real case study highlighted the suitability 

of the NN to detect source shape relevant to ground deformation pattern due to pressure 

source. However the NN was not able to suggest a source shape associated to the marked 

eastward movement of the eastern flank of the volcano. This was expected because such kinds 

of patterns are not due to sources pressure but they are relative to dislocation faults. This limit 

could be overcome by a new NN opportunely trained with specific pattern deformation due to 

dislocation sources. Otherwise future efforts could be also devoted to train a NN by using 

both pressure sources and dislocation faults in the attempt to recognize both kinds of source.  

The proposed methodology could be a valid support in the framework of the inversion 

problem which are known to be nonunique. Indeed it provided a a priori information about 
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the geometric shape, for instance the volume, that could be successful used in order to acquire 

a reliable solution. Furthermore the output network could be processed by the Non-Uniform 

Rational B-Splines (NURBS) algorithm in order to provide a  more reliable source shape that 

could be used in the framework of the Finite Element Modeling (FEM). 
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Appendix 

A new method based on the Lagrange multipliers to reduce phase error 

affecting DInSAR data 

 

Here a new method to reduce phase errors affecting the interferometric signals is shown. In 

particular, in a multi-interferogram framework, a mathematical optimization based on the 

method of Lagrange multipliers is used to reduce the phase contributions caused by the error 

in the DEM, the baseline and temporal decorrelation and the thermal noise effects. A 

preliminary synthetic test is provided. 

 

Problem formulation 

Let N be the number of SAR images relative of the investigated area and acquired at the 

ordered times (t1, t2, …, tN). A generic interferogram φij  computed  in the pixel of azimuth and 

range coordinates (x,r) from the SAR acquisitions at time ti and tj is given by 
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where λ is the system wavelength, d(tj,x,r) and d(ti,x,r) are the cumulative displacements in the 

direction of the Line Of Sight (LOS)  at times tj and ti with respect to the instant t0 assumed as 

a reference, [φatm(tj,x,r)-φatm(ti,x,r)]  is the atmospheric phase component, 
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=  is the 

phase contribution due to possible error ∆z in the DEM (Bij
p is the perpendicular baseline, r is 

the sensor target distance and θ is the look angle) and, finally, nij  is the phase contribution 

caused by the baseline and temporal decorrelation and the thermal noise. 
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Starting from the following simple relations relative at each pixel (x,r) it is possible to define 

an optimization problem in order to reduce the phase contribution due to the terms εij and nij: 

 

φ 12 +  φ23 +  … +  φ(N-1)N - φ1N  =  ε12 +  ε23 + …+ ε(N-1)N - ε1N + n12 +  n23 +…+  n(N-1)N - n1N 

φ 12 +  φ23 +  … +  φ(N-2)(N-1) - φ1(N-1)  =  ε12 +  ε23 + …+ ε(N-2)(N-1)- ε1(N-1) + n12 +  n23 +…+  n(N-2)(N-1) - n1(N-

1) 

... …. 

φ23 + φ34 +  … +  φ(N-1)N – φ2N  =  ε23 +  ε34 + …+ ε(N-1)N - ε2N + n23 +  n34 + …+  n(N-1)N - n2N 

… … 

φ (N-2)(N-1) + φ (N-1)N - φ(N-2)N = ε(N-2)(N-1) +  ε(N-1)N  - ε(N-2)N  + n(N-2)(N-1)  +  n(N-1)N - n(N-2)N               
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provides an estimate of the interferograms ijϕ  for which the phase contributions due to the 

terms  εij and nij are strongly reduced.  

This constraint optimization is suitably solved by the method of Lagrange multipliers. This 

method involves the introduction of so many variables λi, called the Lagrange multipliers, as 

there are constraints and the study of the Lagrange function defined by 
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A synthetic case study 

 

The proposed methodology was tested on a synthetic dataset. For the sake of simplicity  we 

have generated four acquisition scenes (Mi, i=1..4) by using different Mogi sources and 

calculated all the possible six interferograms according to φij(x,r)= Mj(x,r)-Mi(x,r)+ns (i=1..4, 

j=2..3, j>i) , where ns is additive uniformly distributed white noise .  

In figure 1 an example of the obtained results is reported. Two interesting advantages can be 

emphasized: 1) the optimized interferogram is smoother then the synthetic one; 2) the residual 

errors of the optimized interferogram exhibit a Gaussian distribution with zero mean. These 

performances clearly suggest the suitability  of the proposed method to reduce noise affecting 

interferograms   
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Figure 1. In the first row the initial synthetic interferogram, the noise added and the noise distribution 

are respectively reported. In the second row result after the application of the Lagrance multipliers 

based method are reported.  
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