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Basic notions

In this Chapter, we recall several preliminar notions. We follow stan-
dard notations and definitions from [39], [50].

The following set-theoretic notation is adopted: κ, λ and τ are cardinal
numbers, α, β and γ are ordinal numbers; i and n are non-negative integers,
ω is the smallest infinite ordinal and cardinal, ω1 is the smallest uncountable
ordinal and cardinal, κ+ is the smallest cardinal greater than κ.

Let E be a set. Then |E| is the cardinality of E, P(E) is the power set of
E, [E]≤κ is the collection of all subsets of E of cardinality ≤ κ, and [E]n =

{A : A ⊆ E, |A| = n}. A subset A of a partially ordered set (P,<) is cofinal
if for every p ∈ P there exists some a ∈ A such that p ≤ a. The cofinality of
(P,<) is the smallest size of a cofinal set.

The following theorem from combinatorial set-theory plays an impor-
tant role in cardinal functions.

Theorem 0.0.1 (Erdös-Rado). Let κ be an infinite cardinal, let E be a set
with |E| > 2κ, and suppose [E]2 =

⋃
α<κ Pα. Then there exists α < κ and a

subset A of E with |A| > κ such that [A]2 ⊆ Pα.

X always denotes a non-empty topological space. The following topo-
logical notions and conventions are used. A cover of a set X is a family
{As}s∈S of subsets of X such that

⋃
s∈S As = X , and that, if X is a topolo-

gical space, {As}s∈S is an open (closed) cover of X if all sets As are open
(closed). A cover B = {Bt}t∈T refines another cover A = {As}s ∈ S of the
same set X if for every t ∈ T there exists an s ∈ S such that Bt ⊂ As; equi-
valently, we say that B is a refinement of A. A cover A′ = {A′s}s∈S′ of X is
a subcover of another cover A = {As}s∈S of X if S′ ⊂ S and A′s = As for
every s ∈ S′. In particular, any subcover is a refinement.

A topological space X is compact if every open cover of X has a finite
subcover.
The following theorem represents a well known characterization of a com-
pact space.

Theorem 0.0.2. A Hausdorff space X is compact if and only if every family
of closed subsets of X which has the finite intersection property has non-
empty intersection (recall that a family F = {Fs}s∈S of subsets of a set X
has the finite intersection property if F 6= ∅ and Fs1 ∩ Fs2 ∩ . . . ∩ Fsκ 6= ∅ for
every finite set {s1, s2, . . . , sκ} ⊂ S).
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A topological space X is called a countably compact space if every count-
able open cover of X has a finite subcover. Thus, every compact space is
countably compact.
A topological space X is said to be Lindelöf if every open cover of X has
a countable subcover. From the definitions, it follows that every compact
space is a Lindelöf space, and it is easy to see that, in the class of countably
compact spaces, compactness and Lindelöfness are equivalent properties.
A common generalization of compactness and Lindelöf property is given
by paracompactness: a topological space X is called a paracompact space if
every open cover of X has a locally finite open refinement.

A linearly ordered topological space (LOTS) is a triple (X, T , <), where <
is a linear ordering of X and T is the open interval topology of the given
ordering. Generalized ordered spaces (GO-spaces) are exactly those spaces
that can be homeomorphically embedded in some LOTS.

A topological space X is called topologically homogeneous, briefly homo-
geneous, if for all points x, y ∈ X there is a homeomorphism f : X → X

such that f(x) = y. In a topologically homogeneous space X , a topological
property which holds at one point of X also holds at all other points (see
for example [11, 21, 38]).

A space X is of countable type if every compact subspace P of X is con-
tained in a compact subspace F ⊂ X which has a countable base of open
neighborhoods in X [4]. All metrizable spaces, and all locally compact
Hausdorff spaces, as well as all Čech-complete spaces, are of countable
type.

For every Tychonoff spaceX , by a remainder of a spaceX we understand
the subspace bX \X of a compactification bX of X . A space X is a p-space
[4] if in any (in some) compactification bX of X there exists a countable
family {γn : n ∈ ω} of families γn of open subsets of bX such that x ∈⋂
{St(x, γn) : x ∈ ω} ⊂ X , for each x ∈ X . Every p-space is of countable

type and every metrizable space is a p-space. Paracompact p-spaces [4] are
preimages of metrizable space under perfect mappings. A Lindelöf p-space
is a preimage of a separable metrizable space under a perfect mapping.

The following standard examples in topology are frequently mentioned
in the thesis:

• the linearly ordered space ω1 of all countable ordinals. ω1 is countably
compact, not paracompact, neither metacompact;

• the Alexandroff duplicate ofX . For every spaceX , consider a disjoint
copy X1 of X and the union A(X) = X ∪X1. Let π : X → X1 be the
natural bijection. TopologizeA(X) by letting sets of the formU∪π(U\
{x}), where U is a neighborhood of x in X , be basic neighborhoods of
a point x ∈ X and declaring points of X1 to be isolated;
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• the Isbell-Mrówka space Ψ. Let A be a maximal infinite family of
infinite subsets of ω such that the intersection of any two members of
A is finite, and letD = {ωA}A∈A a set of distinct points. Ψ is the space
ω∪D, where the points from ω are isolated and a basic neighborhood
for ωA consists of the sets of the form {ωA} ∪ (A \ F ), where F is a
finite subset of A. Ψ is Hausdorff, locally compact, pseudocompact,
but it is not countably compact;

• Cp(X,Y ), the set of all continuous function of X to Y with the point-
wise convergence topology. In particular, if Y = R, we simply write
Cp(X);

• The Baire space ωω, which is homeomorphic to the space of irrationals
P.

Below, we recall the cardinal functions that we will use in the thesis (see
[49, 50, 53]). Every cardinal function is required to take on only infinite
cardinals values.

A net for a topological space X is a collection N of subsets of X such
that every open set in X is the union of elements ofN . The net weight of X ,
denoted nw(X), is the smallest infinite cardinality of a net for X . A π-base
for X is a collection V of non-empty open sets in X such that if R is any
non-empty open set in X , then V ⊆ R for some V ∈ V . The π-weight of
X , denoted π − w(X), is the smallest infinite cardinality of a π-base for X .
The diagonal degree of a T1 space X , denoted ∆(X), is the smallest infinite
cardinal κ such that X has a collection {Vα : 0 ≤ α < κ} of open covers
such that

⋂
α<κ St(p,Vα) = {p} for each p ∈ X , equivalently ∆(X) is the

smallest infinite cardinal κ such that the diagonal ∆ of X is the intersection
of κ open sets in X × X . Thus, if ∆(X) = ω, one says that X has a Gδ-
diagonal. Let X be a topological space, let V be a collection of non-empty
open sets in X , let p ∈ X . Then V is a local π-base for p if for each open
neighbourhoods R of p, one has V ⊆ R for some V ∈ V . If in addition one
has p ∈ V for all V ∈ V , then V is a local base for p. Finally, if p ∈ V for all
V ∈ V , and

⋂
{V : V ∈ V} = {p}, then V is a pseudo-base for p. The character

of X at p, χ(p,X), is the smallest infinite cardinality of a local base for p, the
π-character of X at p, πχ(p,X), is the smallest infinite cardinality of a local
π-base for p, the pseudocharacter of X at p, ψ(p,X), is the smallest infinite
cardinality of a pseudo-base for p. Taking the suprema of these functions,
we obtain the definitions of the character χ(X), the π-character πχ(X) and
the pseudocharacter ψ(X) of X .

The tighness t(X) of a space X is the least cardinal number κ with the
property that if A ⊂ X and x ∈ A, then there exists some set B ∈ [A]≤κ

such that x ∈ B.
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Introduction

As the title suggestes, this thesis consists of two chapters: in the first
one (Chapter 1), we investigate some selective and monotone versions of
covering properties, in the second chapter (Chapter 2), we introduce some
bounds on the cardinality of a topological space. Both of the topics are
active areas of research in General Topology. In particular, many important
topological properties can be defined or characterized in terms of selection
principles, by monotonicity, a lot of classical results can be generalized, and
the problem to find new cardinal inequalities which bound the size of a
topological space is a well known problem in literature.

The importance of the Theory of selection principles does not concern
only General Topology, but encompasses several branchs of Mathematics,
for example Game Theory, Ramsey Theory, Analysis, and so on.

Selection principles appear for the first time in measure theory and ba-
sis theory in metric space. In 1924, K. Menger [66] defined the Menger ba-
sis property for metric spaces: “A metric space (X, d) has the Menger basis
property if there is for each base B of X a sequence (Bn : n ∈ ω) of sets
from the basis such that limn→∞ diamd(Bn) = 0, and {Bn : n ∈ ω} is a
cover for X". In 1925, W. Hurewicz proved that the metric space (X, d) has
the Menger basis property if and only if for every sequence (Un : n ∈ ω)

of open covers of X there is a sequence (Vn : n ∈ ω) of finite sets such that
for each n, Vn ⊆ Un, and

⋃
n∈ω Vn is an open cover of X . This property is

called Menger property. In 1938, F. Rothberger in his study of Borel measure
zero introduced the following statement: “For each sequence (Un : n ∈ ω)

of open covers of X there is a sequence (Un : n ∈ ω) such that for every n,
Un ∈ Un, and {Un : n ∈ ω} is an open cover of X". F. Rothberger pointed
out that if a metric space has this property (called Rothberger property), then
it has Borel measure zero, and the converse does not hold. These two selec-
tion principles, Menger property and Rothberger property, are the classical
selection principles. Also, there is a third one, introduced by W. Hurewicz
in 1925, but this property could be included in the Rothberger-type. Later,
several covering properties were defined in terms of selection principles.

In Section 1.1, we study two selective properties: the selective absolute
star-Lindelöfness, defined by S. Bhowmik in [25], and the selective strong star-
Menger property. These properties are both between absolute countable
compactness and absolute star-Lindelöfness. In particular, selectively ab-
solute star-Lindelöfness is weaker than selective strong star-Menger, and
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an example of a selectively absolute star-Lindelöf space which is not selec-
tively strongly star Menger, is given.

It is easy to distinguish selective absolute star-Lindelöfness from abso-
lute countable compactness. Whereas, it turns out to be not so simple to
find an example to distinguish selective absolute star-Lindelöfness from
absolute star-Lindelöf. In order to do this, we construct “ad hoc" a space
(Example 1.1.4). Moreover, we investigate which spaces have the selective
absolute star Lindelöf property. We obtain that every star-Lindelöf space of
countable fan tightness with respect to dense subspaces, every space with a
countable π-base and every absolute star-Lindelöf space having cardinality
less than d are selectively absolutely star-Lindelöf spaces. We also inves-
tigate the behaviour of selective absolute star Lindelöfness with respect to
closed subspaces, dense subspaces, and finite union.

M. V. Matveev and M. Bonanzinga, respectively, showed that both ab-
solute countable compactness and ablosute star-Lindelöfness are preserved
by varpseudo-open maps (see Definition 1.1.2). Motivated by the paral-
lelism between these properties with selective absolute star-Lindelöfness,
we study if the continuous images of selective absolute star-Lindelöf spaces
are selective absolute star-Lindelöf. It turns out that, also in this case, the
property is preserved by varpseudo-open maps. We conclude the study
of the selective star-Lindelöf property, showing that the product of a selec-
tive absolute star-Lindelöf countable metacompact space with convergent
sequence is a selectively absolutely star-Lindelöf space and that the prod-
uct of a selectively absolutely star-Lindelöf space and a compact Hausdorff
first countable space need not be selectively absolutely star-Lindelöf.

The last part of Section 1.1, is devoted to the study of the selective
strong star Menger property. In particular, it is proved that this property
is a weaker form of Menger property, and that in the class of paracom-
pact Hausdorff spaces, the gap between several Menger-type properties
(Menger, selective strongly star Menger, absolute strong star Menger, se-
lective strong star Menger and star Menger) disappears. Furthermore, mo-
tivated by the parallelism between the selective strong star Menger prop-
erty with the selective absolute star-Lindelöfness, we study its behaviour
with respect to particular subspaces, continuous images and finite union.
Unfortunately, we can not say anything about the product of a selectively
strongly star Menger space with a compact first countable space.

In Section 1.2, we define and study several properties related to mono-
tone normality. Recall that a space X is monotonically normal if and only if
for each open set U ⊂ X and x ∈ U , one can assign an open set Ux contain-
ing x satisfying the following condition:

Ux ∩ Vy 6= ∅ ⇒ x ∈ V or y ∈ U.
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We give a characterization of monotone normality in terms of monotone
function. This provides a monotone version of the well known Urysohn’s
Lemma. Another important characterization of normality was given in
terms of stars. It is known that, for a space X the properties X is nor-
mal, every two-element open cover of X has an open star-refinement and
every finite open cover of X has a finite open star-refinement are equiva-
lent. The monotone version of this result does not hold. In fact, we define
2-monotone star-normality and finitely-monotone star-normality and prove that
every 2-monotonically star-normal space is monotonically normal and that
monotone normality and finite-monotone star-normality are not equivalent
conditions. An important result by M. E. Rudin, I. Stares and J. E. Vaughan
states that every monotonically normal space has the property (a). In order
to give a monotone version of this result, we define a monotone version of
property (a). Indeed, depending on the way in which the monotone oper-
ator works, we can give four monotone versions of property (a). It is nev-
erthless shown that none of these definitions satisfies our original request
(actually, we show the senselessness of two of them), but it turns out that
one of these, property ma, has interesting relations with other monotone
covering properties: every space having property ma is monotonically star
closed and discrete. Finally, motivated by the well-known results which
states that in the class of Hausdorff space, "countable compactness together
with property (a)“, is equivalent to absolute countable compactness, we de-
fine property monotone absolute countable compact and prove the monotone
version of the previous result.

A long standing problem in General Topology is to give bounds to the
cardinality of a topological space, and has its roots in the following ques-
tion, asked by P. Alexandroff and P. Urysohn in 1923: does every compact
first countable Hausdorff space have cardinality at most 2ω? The solution to the
problem was obtained in 1969 by A. V. Arhangel’skii, who proved, by us-
ing cardinal functions, his beautiful inequality “|X| ≤ 2L(X)χ(X)", for every
Hausdorff space X . In 1967, A. Hajnal and I. Juhasz had already used car-
dinal invariants to prove two inequalities which are now regarded as fun-
damental to the theory of cardinal functions: (1) |X| ≤ 2c(X)χ(X) for every
Hausdorff space X and (2) |X| ≤ 2s(X)ψ(X) for every T1 space X . A long
list of generalizations or variations of the inequalities of Hajnal and Juhasz
and of the Arhangel’skii’s inequality has been obtained in literature.

In Chapter 2, we continue this line of investigation and proved several
new bounds to the cardinality of a topological space.

In Section 2.1 we give three variations of the Hajnal and Juhasz’s in-
equality |X| ≤ 2c(X)χ(X), for every Hausdorff X :
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• |X| ≤ 2n−Uc(X)χ(X), where X is n-Urysohn, n ∈ ω and n − Uc(X) is
the n-Urysohn cellularity of X ,

• |X| ≤ 2n−c(X)χ(X), where X is n-Hausdorff, n ∈ ω and n− c(X) is the
n-cellularity of X ,

• |X| ≤ 2Uc(X)πχ(X), if X is a power homogeneous Urysohn space.

Clearly, for every space X , Uc(X) ≤ c(X) and, if Uc(X) ≤ κ, then
n− c(X) ≤ κ for every n ∈ ω.

In Section 2.2, we consider the inequality of A. Charlsworth
|X| ≤ psw(X)L(X)ψ(X), for every T1 space X and give an analogous of this
inequality in Hausdorff case. It turns out that, in the case of Hausdorff sepa-
ration property, the point separating weight and the Lindelöf degree should
be replaced, respectively, by the Hausdorff point separating weight (see Defini-
tion 2.2.1) and the almost Lindelöf degree with respect to closed subspace.
Moreover, we naturally raised the question concerning whether the Lin-
delöf degree can be replaced with the weakly Lindelöf degree with respect
to closed sets: we should add the very strong hypothesis that the space is al-
most regular and has a π-base consisting of open subsets having a compact
closure.

We end the treatment taking into account cardinal inequalities in topo-
logical groups.

Topological Algebra is an active area of research in General Topology. A
lot of results in this connection have been obtained by A. V. Arhangel’skii,
who began a systematic study of properties of topological groups, their
subspaces, and cardinal invariants in such spaces. An important prob-
lem in topology is to study how properties of a space X are related to the
properties of some or all remainders of X . An extensive study by A. V.
Arhangel’skii shows that the remainders of topological groups are much
more sensitive to the properties of topological groups than the remainders
of topological spaces are in general. Of course, there is an important ex-
ception to this rule: the case of locally compact topological groups. Indeed,
every locally compact non-compact topological group has a remainder con-
sisting of exactly one point. In particular, A. V. Arhangel’skii and J. van Mill
recently studied the problem concerning whether a topological group has
a first-countable remainder and proved that if G is a non locally-compact
group with a compactification bG such that Y = bG \ G is first countable,
then χ(G) ≤ ω1 and |G| ≤ 2ω1 . This result only solves the countable case
of a much more general problem. Motivated by this, we study topological
groups with a remainder, in some compactification, of character κ, where κ
is an infinite cardinal. We show that the method of A. V. Ahangel’skii and
J. van Mill works also in the case of a general infinite cardinal κ: if G is a
non locally-compact group with a remainder in some compactification of
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character κ, then the character of the space G does not exceed κ+ and the
size of G is at most 2(κ

+).

The author express graditude to Professor M. Bonanzinga, who made
the drafting of this thesis possible, and to Professors N. Carlson, M. Sakai,
D. Stavrova and J. van Mill for their useful suggestions and communica-
tions.
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1 Some selective and monotone
versions of covering properties

In this Chapter, we are taking into account some covering properties
and their generalizations in two different areas of interest: selectivity and
monotonicity. In particular, in the first Section, we study two properties
that lie between absolute countable compactness [64] and absolute star-
Lindelöfness [24, 25]: selective absolute star-Lindelöf and selective strong star-
Menger, which represent, respectively, selective versions of absolute star
Lindelöfness and strongly star Menger property. In the second Section, we
investigate several properties close to monotone normality [62].

Some of the results that we discuss are included in [18], [27] and [29]. In
the treatment the following definitions play a notable role.

LetA = {As}s∈S be a cover of a setX , the star of a setM ⊂ X with respect
to A is the set St(M,A) =

⋃
{As : M ∩ As 6= ∅}. The star of a one-point set

{x} with respect to a cover A is called the star of the point x with respect to A
and is denoted by St(x,A). We say that a cover B = {Bt}t∈T of a set X is a
star refinement of another cover A = {As}s∈S of the same set X if for every
t ∈ T there exists an s ∈ S such that St(Bt,B) ⊂ As; if for every x ∈ X there
exists an s ∈ S such that St(x,B) ⊂ As, then we say that B is a barycentric
refinement of A. Many important topological properties are defined or can
be characterized in terms of stars with respect to open covers.

The following theorem gives the star characterization of countable com-
pactness.

Theorem 1.0.1. [40, 75] A Hausdorff space X is countably compact if and
only if is starcompact, i.e. for every open cover U there exists a finite subset
F ⊂ X such that St(F,U) = X .

This criterion of countable compactness motivated M. V. Matveev to in-
troduce the following definition.

Definition 1.0.1. [64] A spaceX is absolutely countably compact (briefly acc) if
for every open cover U of X and every dense subspace D ⊂ X there exists
a finite subset F ⊂ D such that St(F,U) = X .

Clearly, this property is stronger than countable compactness. A natural
generalization of absolute countable compactness is given by the following
definition.
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Definition 1.0.2. [65] A spaceX is an (a) space, or has property (a) if for every
open cover U and every dense D ⊂ X there is a closed in X and discrete
F ⊂ D such that St(F,U) = X .

In countably compact space closed and discrete means finite. So, prop-
erty (a) is the extension of acc outside of the class of countably compact
spaces:

acc⇔ (a) + cc,

where cc means countable compact space.
If in the definition of star compactness, “finite subset" is replaced by

“countable subset", we obtain a natural generalization of star compactness.

Definition 1.0.3. A topological spaceX is star Lindelöf (see [84] where it was
called strongly 1-star-Lindelöf) if for every open cover U of X there exists a
countable subset C of X such that St(C,U) = X .

In [24, 25], M. Bonanzinga introduced a property which is stronger than
star Lindelöfness and represents the countable version of absolute star com-
pactness.

Definition 1.0.4. [24, 25] A space X is absolutely star-Lindelöf (briefly, a-star-
Lindelöf ) if for any open cover U of X and any dense subset D of X , there is
a countable set C ⊂ D such that St(C,U) = X .

Every countably compact a-star-Lindelöf space is acc.

Several important classes of topological spaces can be characterized us-
ing selection principles.
Selection principles appear for the first time in measure theory and basis
theory in metric space. In 1924, K. Menger [66] introduced a metric notion
that in 1925 W. Hurewicz [51] pointed out that is equivalent to the following
topological notion.

Definition 1.0.5. [51] A space X is said to have the Menger property (or is
Menger) if for every sequence (Un : n = 1, 2, . . .) of open covers of X there
is a sequence (Vn : n = 1, 2, . . .) such that for each n, Vn is a finite subset of
Un, and such that

⋃
n∈ω Vn is a cover of X .

If a topological space is Menger, then it has the Lindelöf property.
The Menger property, together with the Hurewicz property [51] and the

Rothberger property [72], represents the classical selection principles.

All selection principles are defined in terms of the possibility to select
from a given sequence of open covers of some sort, an open cover of some,
possibly different, sort. In [77], M. Scheepers, who pioneered the systematic
study of selection principles, defined in wider terms selection principles by
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schemas of the sort where classes A and B of covers are given, as well as
some procedure Π for generating from a sequence (Un : n = 1, 2, . . .) of
covers from A, a cover from B. A space is said to have property Π(A,B)

if for every sequence (Un : n = 1, 2, . . .) of covers from A, one can build,
using procedure Π a cover of X which belongs to B.

The importance of selection principles theory lies in its deep connection
with several branches of Mathematics (for example Set Theory and General
Topology, Game Theory, Ramsey Theory and so on). So there was a lot of
papers about selection principles, see for example [19, 20, 30, 54, 55, 56, 58,
76, 77, 78, 79].

In this Section, we study two properties defined in terms of selection
principles. In particular, we study the selective absolute star-Lindelöf prop-
erty, introduced by S. Bhowmik in [23] (where it was called selective star-
Lindelöfness) as a generalization of star-Lindelöfness. In fact, we note that
selective absolute star-Lindelöfness is between acc property [64] and abso-
lute star-Lindelöfness [24, 25]. We study the general properties of selective
absolute star-Lindelöfness, give several examples, study the behaviour of
selective absolute star-Lindelöfness with respect to particular subspaces,
continuous images and finite union, prove that the product of a selective
absolute star-Lindelöf countable metacompact space with convergent se-
quence is a selectively absolutely star-Lindelöf space and that the product
of a selectively absolutely star-Lindelöf space and a compact Hausdorff first
countable space need not be selectively absolutely star-Lindelöf. Moreover,
we introduce the selective strong star-Menger property. It is a selective ver-
sion of strong star-Menger property [33, 57]. We study its connection with
absolute countable compactness and selective absolute star-Lindelöfness,
give examples distinguishing these properties and study the behaviour of
selective strong star-Menger property with respect to subspaces, continu-
ous images and finite union.

The importance and interest of monotonicity in topology find their most
meaningful representative in monotone normality [17, 37, 41, 62, 67, 68, 73,
75], which was the first monotone version of a topological notion that was
defined. Monotone normality was used unnamed for the first time by C. J.
R. Borges in 1966. In 1971 was named by P. L. Zenor and in 1973 appears
the first study about monotone normality by D. J. Lutzer, R. W. Heath and
P. L. Zenor. In a general way, a space X is monotonically P if X has P in a
manner that respect set inclusion. Recall the original definition of mono-
tone normality.

Definition 1.0.6. [62] A space X is monotonically normal if for each pair
(H,K) of disjoint closed subsets of X , one can assign an open set r(H,K)

such that
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(1) H ⊂ r(H,K) ⊂ r(H,K) ⊂ X \K;

(2) if H1 ⊂ H2 and K1 ⊃ K2 then r(H1,K1) ⊂ r(H2,K2).

The function r is called a monotone normality operator for X and witness-
ing the normality of the space in a monotonic manner.

A considerable number of characterizations of monotone normality
spaces have been obtained. In particular, the following is very usefull.

Proposition 1.0.1. [74] A topological space X is monotonically normal pro-
vided X is T1 and, for all open U in X and x ∈ U , there is an H(x, U) such
that:

(a) H(x, U) ∩H(y, V ) 6= ∅ implies either x ∈ V or y ∈ U (normality);

(b) U ⊆W implies H(x, U) ⊆ H(x,W ) (monotonicity).

Equivalently, one can request in proposition above only (a) and get an-
other H satysfying also (b), see [44, Theorem 5.19].

Metric spaces and linearly ordered spaces (as well as their subspaces)
are monotonically normal and monotonically normal spaces are countably
paracompact. But there are no implications between paracompactness and
monotone normality. Compact spaces need not be monotonically normal.
Also, linearly ordered spaces fail to be paracompact if and only if they have
a closed subspace homeomorphic to a stationary subset of a regular un-
countable cardinal. Z. Balogh and M. E. Rudin proved in [17] that mono-
tonically normal space share the previous property with linearly ordered
spaces. Moreover, in [17] the authors studied how paracompactness can
fail in monotonically normal spaces.

The idea behind monotone normality applied to paracompact spaces
was given by P. M. Gartside and P. J. Moody, which in [41] defined a space
X to be monotonically paracompact if there exists a function r which assigns
to every open cover U an open star-refinement r(U) such that if U refines V
then r(U) refines r(V). They also proved that for a T1 space X monotone
paracompactness and having a continuous monotonically normal operator
are equivalent conditions.

The definition of monotone paracompactness showed the way forward
to monotone versions of various covering properties. The most general
definition of monotone property P , where P is a covering property, was
given by K. P. Hart in [47].

Definition 1.0.7. [47] Let P be a covering property that states that every
cover of class A has a refinement of class B. A space X is monotonically P
if one can assign to every cover U of class A a refinement r(U) of class B so
that r(U) refines r(V) whenever U refines V .
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Depending on the choice of the covering property P , we can obtain its
monotone version. For example, a space X is monotonically compact if one
can assign to each open cover U a finite open refinement r(U) such that r(V)

refines r(U) whenever V refines U ; a space X is monotonically Lindelöf if one
can assign to each open cover U a countable open refinement r(U) such that
r(V) refines r(U) whenever V refines U .

Recently, monotonically Lindelöf spaces have been extensively stud-
ied, see for example [22, 59, 60, 61, 63]; all second countable spaces, all
separable metrizable spaces, the one point Lindelöfication of the discrete
space of cardinality ω1, all separable GO spaces, some non-separable GO
spaces, for example, the lexicographic square of [0, 1], (consistently) some
non-metrizable countable spaces are monotonically Lindelöf. On the other
hand, such “good” Lindelöf spaces as the one point Lindelöfication of the
discrete space of cardinality ω2, the one point compactification of the dis-
crete space of cardinality ω1, or a dense countable subset in 2ω1 are not
monotonically Lindelöf. The Alexandroff duplicate of X is monotonically
Lindelöf if and only if X is second countable (J. Vaughan, unpublished).

In [45], G. Gruenhage answering a question of M. V. Matveev proved
that every monotonically compact Hausdorff space is metrizable. C. Good,
R. Knight and I. Stares, in [42], defined monotonically countably metacompact
and monotonically countably paracompact spaces. In [69], S. G. Popvasillev de-
fined a space X to be monotonically countably compact if there is an operator
r that assigns to every countable open cover U a finite open refinement r(U)

that covers X , and such that if V refines U then r(V) refines r(U). If r(U) is
only required to be point-finite instead of finite then X is called monotoni-
cally countably metacompact.

In this Section, motivated by the growing interest in monotonicity, we
also investigate several monotone version of known results. In particu-
lar, we give a characterization of monotone normality in terms of functions
and a partial solution to the problem to find monotone version of a star-
characterization of normality.
Furthermore, motivated by the following result,

monotone normality ⇒ property (a),

we study the problem to find a monotone version of the previous implica-
tion. It turns out that we can define a monotone version of property (a) in
four different ways, but none of these gives a positive answer to the prob-
lem. Further, we study some monotone version of properties involving
property (a).
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1.1 On selectively absolutely star Lindelöf and selec-
tively strongly star-Menger spaces

1.1.1 Selective absolute star-Lindelöfness

Recently, S. Bhowmik [23] introduced the following notion as a variation
of star-Lindelöfness and call it selectively star-Lindelöfness.

Definition 1.1.1. [23] A space X is selectively absolutely star-Lindelöf (briefly,
selectively a-star-Lindelöf ) if for any open cover U of X and any sequence
(Dn : n ∈ ω) of dense subsets of X , there are finite sets Fn ⊂ Dn (n ∈ ω)
such that St(

⋃
n∈ω Fn,U) = X .

This notion lies between absolute countable compactness [64] and ab-
solute star-Lindelöfness [25]. Every Lindelöf space is obviously selectively
a-star-Lindelöf.

In this Chapter, we distinguish absolute star-Lindelöfness from selective
absolute star-Lindelöfness, and study the general properties of selectively
absolutely star-Lindelöf spaces.

By the definitions above, we have immediately the following implica-
tions:

acc⇒ selectively a-star-Lindelöf⇒ a-star-Lindelöf⇒ star-Lindelöf.

Examples

We will give examples provided that, in general, the converse of the
previous implications does not hold.

Example 1.1.1. A selelctively a-star-Lindelöf space not acc.
The discrete space ω is Lindelöf and not countably compact, hence it is a
selectively a-star-Lindelöf space which is not acc.

Example 1.1.2. A star-Lindelöf space not a-star-Lindelöf.
The space ω1 × (ω1 + 1) is countably compact, so it is star-Lindelöf. But
it is not a-star-Lindelöf [25, p.82]. Indeed, consider the open cover U =

{ω1 × ω1} ∪ {[0, α]× [α, ω1] : α < ω1} of ω1 × (ω1 + 1) and the dense subset
D of all isolated points in ω1× (ω1 + 1). Then, for any countable set C ⊂ D,
we can easily see St(C,U) 6= ω1 × (ω1 + 1).
Moreover, the space ωω1 gives another example of a star-Lindelöf space not
a-star-Lindelöf. Indeed it is separable (hence star-Lindelöf), but not a-star-
Lindelöf [25, Theorem 7.1].

Example 1.1.3. A T2 non-regular a-star-Lindelöf space of cardinality 2c

which is not selectively a-star-Lindelöf.
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Proof. We recall [25, Example 3.18]. Let (Ic, T ) be the Cartesian product of
c-many closed unit intervals I, and T be the topology. Fix a countable dense
subset D in (Ic, T ). We define a new topology T ′ on Ic as follows: if x ∈ D,
a basic open neighborhood of x is of the form D ∩ U , where x ∈ U ∈ T ; if
x ∈ Ic \ D, a basic open neighborhood of x is of the form {x} ∪ (U ∩ D),
where x ∈ U ∈ T . The space X = (Ic, T ′) is T2 non-regular, and not a-star-
Lindelöf as noted in [25]. We see thatX is not selectively a-star-Lindelöf. By
[20, Proposition 2.3(3)], D is not selectively separable, so there is a sequence
(Dn : n ∈ ω) of dense subsets in D such that for any finite sets Fn ⊂ Dn,⋃
{Fn : n ∈ ω}D 6= D. Enumerate all sequences (Fn : n ∈ ω) of finite sets

such that Fn ⊂ Dn as follows: F = {(Fα,n : n ∈ ω) : α < c}. For each
α < c, we take a point xα ∈ Ic \ D and an open neighborhood Uα of xα in
X inductively. Let γ < c and assume that points {xα : α < γ} are already
taken. By the condition

⋃
{Fγ,n : n ∈ ω}D 6= D, we can take some U ∈ T

such that U ∩ (
⋃
{Fγ,n : n ∈ ω}) = ∅. We take a point xγ ∈ U \ (D ∪ {xα :

α < γ}) and let Uγ = {xγ} ∪ (U ∩ D). We define an open cover U of X as
follows:

U = {Uα : α < c} ∪ {X \ Y }, where Y = {xα : α < c}.

Let (Fn : n ∈ ω) be any sequence of finite sets Fn ⊂ Dn. Then (Fn : n ∈ ω) =

(Fγ,n : n ∈ ω) for some γ < c. Hence, we have xγ /∈ St(
⋃
n∈ω Fn,U).

In order to give an example of a Tychonoff a-star-Lindelöf space, not se-
lectively a-star-Lindelöf, in view of Proposition 1.1.1 (see below), we have
to find an a-star-Lindelöf space which is not of countable fan tightness with
respect to dense subspaces. The following lemma follows from [19, Theo-
rem 21, Proposition 25]. The symbol D is the space of the two points 0 and
1, and Cp(X,D) is the space of all D-valued continuous functions onX with
the topology of pointwise convergence.

Lemma 1.1.1. Let X be a zero-dimensional separable metric space.
If Cp(X,D) has countable fan tightness with respect to dense subspaces, X
is Menger.

Recall the well known theorem of Cantor-Bendixon:

Theorem 1.1.1 (Cantor-Bendixon). [39] Every second-countable space can
be rapresented as the union of two disjoint sets, of which one is perfect and
the other countable.

For functions ϕ,ψ ∈ ωω, ϕ ≤ ψ stands for ϕ(n) ≤ ψ(n) for all n ∈ ω. The
minimal cardinality of a cofinal subset in (ωω,≤) is denoted by d [83].

Example 1.1.4. There exists a Tychonoff a-star-Lindelöf space of cardinality
d which is not selectively a-star-Lindelöf.
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Proof. Let P be the space of irrationals. Take any non-Menger subspace
X ⊂ P of cardinality d (for instance, consider the Baire space ωω which is
homeomorphic to P, and take a cofinal subset of cardinality d. It is well
known that any cofinal subset of ωω is not Menger). We may assume that
X is dense-in-itself. Indeed, by the Cantor and Bendixson theorem, we can
put X = X0 ∪ X1, where X0 is dense-in-itself and X1 is countable. Then
X0 is a dense-in-itself non-Menger space of cardinality d. By Lemma 1.1.1,
there are a sequence (Dn : n ∈ ω) of dense subsets of Cp(X,D) and a point
f ∈ Cp(X,D) such that for any finite subsets Fn ⊂ Dn, f /∈

⋃
{Fn : n ∈ ω}.

Since Cp(X,D) is hereditarily separable and homogeneous, we can assume
that each Dn is countable and f = 0, where 0 is the constant function with
the value 0. Note that each Dn is dense also in DX , because Cp(X,D) is
dense in DX . For each x ∈ X , we define a function fx ∈ DX as follows:
fx(y) = 1 if y = x; fx(y) = 0 if y 6= x. Since X is dense-in-itself, each fx

is discontinuous, so {fx : x ∈ X} ∩ Cp(X,D) = ∅. Obviously, {fx : x ∈
X}∪{0} is homeomorphic to the one-point compactification of the discrete
space of cardinality d. Enumerate Dn as Dn = {dn,m : m ∈ ω}. Let {ϕγ :

γ < d} be a cofinal subset of ωω. For each γ < d, we put Eγ = {dn,m : n ∈
ω,m ≤ ϕγ(n)}. Fix a γ < d, and assume that points {xα : α < γ} ⊂ X are
already taken. Note that the condition 0 /∈ Eγ implies Eγ ∩ {fx : x ∈ X} is
finite. Hence, we can take a point xγ ∈ X \ {xα : α < γ} such that fxγ /∈ Eγ .
Let Uγ be an open neighborhood of fxγ in DX such that Uγ ∩ Eγ = ∅ and
Uγ ∩ {fx : x ∈ X} = {fxγ}.
Now consider the subspace

Z = {fxα : α < d} ∪
(⋃
{Dn : n ∈ ω}

)
of DX . If D is a dense subset of Z, then D \ {fxα : α < d} is a countable
dense subset of Z. Therefore, Z is a-star-Lindelöf. We observe that Z is not
selectively a-star-Lindelöf. Consider the open cover U = {Uα ∩ Z : α <

d} ∪ {
⋃
n∈ωDn} of Z and the sequence {Dn : n ∈ ω} of dense subsets of Z.

If Fn is a finite subset of Dn for each n ∈ ω, there is some γ < d such that⋃
{Fn : n ∈ ω} ⊂ Eγ . Since Uγ is the only one member of U containing fxγ ,

we have fxγ /∈ St(Eγ ,U), so fxγ /∈ St(
⋃
n∈ω Fn,U). Thus, Z is not selectively

a-star-Lindelöf.
Additionally, we note that Zω is a-star-Lindelöf. Since Z is separable,

so is Zω, hence Zω is star-Lindelöf. Since Z is locally countable, so is
every finite power of Z. Therefore, Zω has countable tightness. Since a
star-Lindelöf space of countable tightness is a-star-Lindelöf [25, Proposition
3.17], Zω is a-star-Lindelöf.
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A sufficient condition

Recall that a space X has countable fan tighness with respect to dense sub-
spaces [19] if for every x ∈ X and every sequence (Dn : n ∈ ω) of dense
subspaces ofX , there are finite sets Fn ⊂ Dn (n ∈ ω) such that x ∈

⋃
n∈ω Fn.

We give a sufficient condition for a space to be selectively a-star-Lindelöf.

Proposition 1.1.1. Every star-Lindelöf space of countable fan tightness with
respect to dense subspaces is selectively a-star-Lindelöf.

Proof. LetX be a star-Lindelöf space of countable fan tightness with respect
to dense subspaces. Let U be an open cover of X and let (Dn : n ∈ ω)

be a sequence of dense subsets of X . By star-Lindelöfness of X , there is
a countable subset C ⊂ X such that St(C,U) = X . Using countable fan
tightness with respect to dense subspaces, we can take finite sets Fn ⊂ Dn

with C ⊂
⋃
{Fn : n ∈ ω}. This implies St(

⋃
n∈ω Fn, U) = X .

Note that, having countable fan tightness with respect to dense sub-
spaces and selective a-star-Lindelöfness are indipendent properties. In-
deed, a space having countable fan tightness with respect to dense sub-
spaces need not be selectively a-star-Lindelöf: consider, for example, any
uncountable discrete space. Also, Cp(ωω) is Lindelöf, hence selectively a-
star-Lindelöf, but it has not countable fan tightness with respect to dense
subspaces.

Relation with selective separability

A space X is said to be selectively separable [20] if for any sequence (Dn :

n ∈ ω) of dense subsets of X , there are finite sets Fn ⊂ Dn (n ∈ ω) such
that

⋃
n∈ω Fn is dense in X . S. Bhowmik also showed that any selectively

separable space is selectively a-star-Lindelöf and the converse is not true
(see [23, Theorem 2.7 and Example 2.9]). We want to observe that another
example of this fact is given by [20, Example 2.10]: the space Cp(ωω) is
Lindelöf hence selectively a-star-Lindelöf, but it is not selectively separable.
We can easily see that every space with a countable π-base is selectively
separable and a space is selectively separable if and only if it is separable
and of countable fan tightness with respect to dense subspaces.

Hence, we have the following result.

Corollary 1.1.1. A selectively separable space is selectively a-star-Lindelöf.
In particular, a space with a countable π-base is selectively a-star-Lindelöf.

Any Lindelöf non-separable space is a selectively a-star-Lindelöf space
which is not selectively separable.
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A characterization

Proposition 1.1.2. Every a-star-Lindelöf space of cardinality less than d is
selectively a-star-Lindelöf.

Proof. Let X be an a-star-Lindelöf space of cardinality less than d. Let U be
an open cover of X and let (Dn : n ∈ ω) be a sequence of dense subsets
of X . Using a-star-Lindelöfness, we take a countable set Cn = {cn,m : m ∈
ω} ⊂ Dn such that St(Cn,U) = X . For each x ∈ X and n ∈ ω, there are
U(x, n) ∈ U and m(x, n) ∈ ω such that {x, cn,m(x,n)} ⊂ U(x, n). For each
x ∈ X , define a function ϕx ∈ ωω by ϕx(n) = m(x, n). Since {ϕx : x ∈ X} is
not cofinal in (ωω,≤), there is a ψ ∈ ωω such that for each x ∈ X , there is an
nx ∈ ω with ψ(nx) > ϕx(nx). Let Fn = {cn,m : m ≤ ψ(n)} for each n ∈ ω.
Then we have St(

⋃
n∈ω Fn,U) = X . Indeed, if x ∈ X , then ψ(nx) > ϕx(nx).

This implies U(x, nx) ∩ Fnx 6= ∅.

By Example 1.1.4 and Proposition 1.1.2, we have the following result.

Corollary 1.1.2. The following assertions are equivalent:

(1) ω1 < d holds;

(2) Every a-star-Lindelöf space of cardinality ω1 is selectively a-star-Lin-
delöf.

Behaviour with respect to subspaces

Now we are going to analyze the behaviour of selective a-star Lindelöf-
ness with respect to particular subspaces.

Selective a-star-Lindelöfness is not closed hereditary. Indeed, consider
the Isbell-Mrówka space Ψ = ω ∪R, whereR is an infinite maximal almost
disjoint family of infinite subsets of ω. Since Ψ has a countable π-base, it
is selectively a-star-Lindelöf (see Corollary 1.1.1), but R is an uncountable
closed discrete subspace of Ψ. The space ω1 × (ω1 + 1) can be a regular
closed subset of an acc space [64, Example 4.4]. Therefore, selective a-star-
Lindelöfness is not hereditary even for a regular closed subset.

It is easy to see that selective-a-star-Lindelöfness is not hereditary also
with respect to dense subspaces, consider a compactification βX of a space
X wich is not selectively a-star-Lindelöf. Indeed, βX is compact and hence
is selectively a-star-Lindelöf, X is dense in βX and it is not selectively a-
star-Lindelöf.
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Continuous images

In [25], it is proved that the perfect image and preimage of an acc space
need not be a-star-Lindelöf. This implies that the perfect image and preim-
age of a selectively a-star-Lindelöf space need not be selectively a-star-Lin-
delöf.

Definition 1.1.2. [64] A map f : X → Y is varpseudo-open if IntY (f(O)) 6= ∅
for any non-empty open set O ⊂ X .

Easily we can check that a continuous map f : X → Y is varpseudo-
open if and only if for every dense subspace D of Y , f−1(D) is dense in
X , and a closed irreducible map is varpseudo-open. In [25] and [64], it
is proved that acc property and a-star-Lindelöfness, respectively, are pre-
served by varpseudo-open maps.

Proposition 1.1.3. Selective a-star-Lindelöfness is preserved by varpseudo-
open maps.

Proof. Let f : X → Y be a varpseudo-open onto map from a selectively a-
star-Lindelöf spaceX . Let U be an open cover of Y and let (Dn : n ∈ ω) be a
sequence of dense subspaces of Y . Then, U0 = {f−1(U) : U ∈ U} is an open
cover of X and, since f is varpseudo-open, (f−1(Dn) : n ∈ ω) is a sequence
of dense subspaces of X . Then there are finite sets Fn ⊂ f−1(Dn) (n ∈
ω) such that St(

⋃
n∈ω Fn,U0) = X . Hence, we have St(

⋃
n∈ω f(Fn),U) =

Y .

Corollary 1.1.3. [23] Selective a-star-Lindelöfness is preserved by open maps.

Corollary 1.1.4. Selective a-star-Lindelöfness is preserved by closed irre-
ducible maps.

Sum

The union of two star-Lindelöf spaces is star-Lindelöf. However, the
union of two acc spaces need not be a-star-Lindelöf. As described in Exam-
ple 1.1.1, ω1 × (ω1 + 1) is not a-star-Lindelöf. Let Y = ω1 × {ω1} and let
Z = ω1 × ω1, then ω1 × (ω1 + 1) = Y ∪ Z, Y is a closed acc subspace of X
and Z is an open dense acc subspace of X .

In this Section, we examine when the union of two selectively a-star-
Lindelöf spaces is selectively a-star-Lindelöf.

Definition 1.1.3. A subspace Y of a space X is selectively a-star-Lindelöf in
X if for any open cover U of X and any sequence (Dn : n ∈ ω) of dense
subsets in X there are finite sets Fn ⊂ Dn such that Y ⊂ St(

⋃
n∈ω Fn,U).

Lemma 1.1.2. Let Y ⊂ X . If Y is Lindelöf, or regular closed in X and
selectively a-star-Lindelöf, then Y is selectively a-star-Lindelöf in X .
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Proof. Let U be an open cover of X and let (Dn : n ∈ ω) be a sequence
of dense subsets of X . If Y is Lindelöf, take a countable family {Un : n ∈
ω} ⊂ U covering Y , and take points xn ∈ Un ∩ Dn. Then, we have Y ⊂
St(
⋃
n∈ω{xn},U). If Y is regular closed inX and selectively a-star-Lindelöf,

consider the open cover {Y ∩U : U ∈ U} of Y and dense subsets (IntXY )∩
Dn in Y , and apply selective a-star-Lindelöfness of Y to them.

Theorem 1.1.2. LetX = Y ∪Z. If Y is closed and selectively a-star-Lindelöf
inX andZ is selectively a-star-Lindelöf, thenX is selectively a-star-Lindelöf.

Proof. Let U be an open cover of X and let (Dn : n ∈ ω) be a sequence of
dense subsets of X . Since Y is selectively a-star-Lindelöf in X , there are fi-
nite setsFn ⊂ Dn such that Y ⊂ St(

⋃
n∈ω Fn,U). We put V = St(

⋃
n∈ω Fn,U).

For each point x ∈ Z \ V , take a member Ux ∈ U with x ∈ Ux. We put

C = {Z ∩ V } ∪ {Ux \ Y : x ∈ Z \ V },

and
En = (Dn \ Y ) ∪ (Y ∩ Z) for all n ∈ ω.

Since Y is closed inX , C is an open cover of Z and eachEn is a dense subset
of Z. Hence, there are finite sets Gn ⊂ En such that Z = St(

⋃
n∈ω Gn, C).

Then, we can see X \ V ⊂ St(
⋃
n∈ω(Gn \ Y ),U). Hence, if we put Hn =

Fn ∪ (Gn \ Y ), we have Hn ⊂ Dn and X = St(
⋃
n∈ωHn,U).

By Lemma 1.1.2 and Theorem 1.1.2, we have the following result.

Corollary 1.1.5. Let X = Y ∪ Z and let Z be selectively a-star-Lindelöf.
If Y is closed and Lindelöf, or regular closed in X and selectively a-star-
Lindelöf, then X is selectively a-star-Lindelöf.

Question 1.1.1. Let X = Y ∪ Z. If both Y and Z are closed and selectively
a-star-Lindelöf , then is X selectively a-star-Lindelöf?

Product

The product of a T2 acc space with a first-countable compact space is acc
[64, Theorem 2.3], and the product of a star-Lindelöf space with a separable
compact space is star-Lindelöf [84, p.100]. In particular, if X is a T2 acc
(respectively, star-Lindelöf) space, then X× (ω+ 1) is also acc (respectively,
star-Lindelöf).

As described in the first Section, ω1 is acc (hence, selectively a-star-
Lindelöf). However, ω1 × (ω1 + 1) is not a-star-Lindelöf: see Example 1.1.1.
Therefore, the product of a selectively a-star-Lindelöf space with a compact
space need not be a-star-Lindelöf, where this fact answers in the negative
to Problem 2.14 in [23]. In fact, we may prove even more, as the following
example shows.
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Example 1.1.5. The product of a selectively a-star-Lindelöf space with a
compact first-countable space which is not a star-Lindelöf space.

Proof. Recall the selectively a-star-Lindelöf space Ψ = ω ∪R (i.e., the Isbell-
Mrówka space) described in the first Section. Let |R| = c. Let Y = I× D be
the Alexandroff duplicate [86] of the unit interval I. Obviously, Y is com-
pact and first-countable. Note that the quotient space obtained by identify-
ing all points in I× {0} is homeomorphic to the one-point compactification
A(c) of the discrete space of cardinality c. It is known [84, Example 3.3.4]
that Ψ × A(c) is not star-Lindelöf. Since every continuous image of a star-
Lindelöf space is star-Lindelöf, Ψ× Y is not star-Lindelöf.

For a (selectively) a-star-Lindelöf spaceX , we do not know ifX×(ω+1)

is (selectively) a-star-Lindelöf. In this Section, we show that if a space X is
countably metacompact and a-star-Lindelöf, X × (ω + 1) is a-star-Lindelöf.
Unfortunately we know nothing about selective a-star-Lindelöfness of X ×
(ω + 1).

Recall that in [52], F. Ishikawa proved the following theorem.

Theorem 1.1.3. [52] A space X is countably paracompact if and only if for
every decreasing sequence {Fi} of non-empty closed sets Fi with vacuous
intersection there exists a decreasing sequence Gi of open sets such that
their closures Gi have vacuous intersection and Gi ⊃ Fi.

In [52] it was given, without proof, the following result. For sake of
completeness, we give the proof of it.

Corollary 1.1.6. A space X is countably metacompact if and only if for
every decreasing sequence {Fi} of non-empty closed sets Fi with vacuous
intersection there exists a decreasing sequenceGi of open sets with vacuous
intersection such that Gi ⊃ Fi.

Proof. Let X be countably metacompact and let {Fi} be a decreasing se-
quence of closed subsets of X , then {X \ Fi} is a countable open cover
of X , therefore it has a point finite refinement B. For each open set W
of B let g(W ) be the first X \ Fi containing W , and let Vi be the union
of all W for which g(W ) = X \ Fi. Then Vi is open and Vi ⊂ X \ Fi,
{Vi} is a point finite cover of X . Put: Gi =

⋃∞
n=i+1 Vn. Then Gi is open,

Gi ⊃ X \ (V1 + ...+ Vi) ⊃ X \ (X \Fi) = Fi, hence Gi ⊃ Fi. For every point
x ∈ X , x belongs only to a finite number of Vi. Then there exists an i such
that x /∈

⋃∞
n=i+1 Vn, that is, x /∈ Gi. Hence

⋂
Gi = ∅.

Conversely, let X be a space and let {Ui}i∈ω a countable open cover
of X . Put Fi = X \

⋃i
n=1 Un. Then, {Fi}i∈ω is a decreasing sequence of

closed subsets of X such that
⋂∞
i=1 Fi = ∅. Therefore, for the hypothesis,

there exist open sets Gi such that Gi ⊃ Fi, G1 ⊃ G2, . . . and
⋂
i∈ω Gi = ∅.
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Put X \ Gi = Ei. Then Ei is obviously closed and Ei ⊂
⋃i
n=1 Un. Finally

put: Vi = Ui \ Ei−1. Then Vi is clearly open and Vi ⊂ Ui. Moreover, since
Vi = Ui \ Ei−1 ⊃ Ui \

⋃i−1
n=1 Un, we have

⋃∞
i=1 Vi ⊃

⋃∞
i=1(Ui \

⋃i−1
n=1 Un) =⋃∞

i=1 Ui = X , thus {Vi} is a refinement of {Ui}. Finally, for every x ∈ X let
i be the first index such that x /∈ Gi. Then x ∈ X \Gi = Ei. But x ∈ Ei and
then x /∈ Vi+j for every j = 1, 2, . . .. Therefore {Vi} is point finite.

The previous corollary is equivalent to the following condition.

Corollary 1.1.7. A space X is countably metacompact if and only if for any
increasing open cover {Un : n ∈ ω} of X , there is an increasing cover {An :

n ∈ ω} of X consisting of closed subsets in X such that An ⊂ Un for all
n ∈ ω.

Theorem 1.1.4. For a space X , the following assertions are equivalent.

(1) X × (ω + 1) is a-star-Lindelöf;

(2) For any open cover U =
⋃
n∈ω Un of X with Un ⊂ Un+1 and any se-

quence (Dn : n ∈ ω) of dense subsets in X , there are countable sets
Cn ⊂ Dn (n ∈ ω) such that

⋃
{St(Cn,Un) : n ∈ ω} = X .

Proof. (1)→(2): Let U =
⋃
n∈ω Un be an open cover ofX with Un ⊂ Un+1 and

let (Dn : n ∈ ω) be a sequence of dense subsets in X . For each n ∈ ω, we
put

Pn = {U × [n, ω] : U ∈ Un},

and
P = {X × ω} ∪

⋃
{Pn : n ∈ ω}.

Then P is an open cover of X× (ω+1). Applying a-star-Lindelöfness of
X×(ω+1) to the open cover P and the dense subsetD =

⋃
{Dn×{n} : n ∈

ω} in X× (ω+ 1), we have countable sets Cn ⊂ Dn such that St(
⋃
n∈ω(Cn×

{n}),P) = X × (ω + 1). We see
⋃
{St(Cn,Un) : n ∈ ω} = X . Let x ∈ X .

By (x, ω) ∈ St(
⋃
n∈ω(Cn × {n}),P), there are some n,m ∈ ω and a member

U ∈ Un such that (x, ω) ∈ U × [n, ω] ∈ Pn and (U × [n, ω])∩ (Cm×{m}) 6= ∅
(in particular, n ≤ m). Hence, x ∈ U ∈ Un ⊂ Um and U ∩ Cm 6= ∅, so
x ∈ St(Cm,Um).

(2)→(1): Let V be an open cover of X × (ω + 1) and let D be a dense
subset inX×(ω+1). Without loss of generality, we may assumeD ⊂ X×ω,
because X × ω is open and dense in X × (ω + 1). Let

Dn = {x ∈ X : (x, n) ∈ D},

Un = {U : U is open in X,U × [n, ω] ⊂ V for some V ∈ V},

and
U =

⋃
n∈ω
Un.
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Then eachDn is dense inX and U is an open cover ofX with Un ⊂ Un+1.
Hence, there are countable sets Cn ⊂ Dn such that

⋃
{St(Cn,Un) : n ∈ ω} =

X . Let C =
⋃
{Cn × {n} : n ∈ ω}. We show X × {ω} ⊂ St(C,V). Let

x ∈ X . Then, there are some n ∈ ω and U ∈ Un such that x ∈ U and
U ∩ Cn 6= ∅. The condition U ∈ Un means U × [n, ω] ⊂ V for some V ∈ V ,
and we have V ∩ C ⊃ (U × [n, ω]) ∩ (Cn × {n}) = (U ∩ Cn) × {n} 6= ∅.
Thus (x, ω) ∈ St(C,V). Note that our assumption (2) implies that X is a-
star-Lindelöf, indeed consider the case that all Un are identical and all Dn

are identical. Hence, there are countable sets C ′n ⊂ Dn such that X × {n} ⊂
St(C ′n×{n},V). Let C ′ =

⋃
{C ′n×{n} : n ∈ ω}. Finally C∪C ′ is a countable

subset of D and we have St(C ∪ C ′,V) = X × (ω + 1).

Corollary 1.1.8. If a spaceX is countably metacompact and a-star-Lindelöf,
then X × (ω + 1) is a-star-Lindelöf.

Proof. We examine the condition (2) in Theorem 1.1.4. Let U =
⋃
n∈ω Un be

an open cover of X with Un ⊂ Un+1 and let (Dn : n ∈ ω) be a sequence
of dense subsets in X . Applying countable metacompactness of X to the
increasing open cover {

⋃
Un : n ∈ ω} of X , we have an increasing cover

{An : n ∈ ω} ofX consisting of closed subsets inX such thatAn ⊂
⋃
Un for

all n ∈ ω. We define an open cover Vn of X as follows: Vn = {X \An} ∪ Un.
Applying a-star-Lindelöfness of X to Vn and Dn, we have a countable set
Cn ⊂ Dn such that St(Cn,Vn) = X . We see

⋃
{St(Cn,Un) : n ∈ ω} = X .

Let x ∈ X . Then x ∈ An for some n ∈ ω, and for this n, x ∈ St(Cn,Vn). This
means that there is some U ∈ Un such that x ∈ U and U ∩ Cn 6= ∅. Thus we
have x ∈ St(Cn,Un).

An acc space is, of course, countably metacompact. However not every
selectively a-star-Lindelöf space is countably metacompact. Since a space
with a countable π-base is selectively a-star-Lindelöf, we have only to find
a space with a countable π-base which is not countably metacompact. The
space Nω1 is nowhere dense and closed in Rω1 , and it is not countably meta-
compact. Take a countable set D ⊂ Rω1 \ Nω1 which is dense in Rω1 . Con-
sider the subspace D ∪ Nω1 ⊂ Rω1 , and let X be the space obtained by
isolating all points of D in D ∪ Nω1 . Then X is a Tychonoff space we need.

1.1.2 Selective strongly star Menger property

Recall that a space X is said to be strongly star-Menger [33, 57] (briefly
SSM) if for every sequence (Un : n ∈ ω) of open covers of X there exists a
sequence (Fn : n ∈ ω) of finite subsets of X such that

⋃
n∈ω St(Fn,Un) = X .

We introduce the following property.

Definition 1.1.4. A spaceX is selectively strongly star-Menger (briefly selSSM)
if for each sequence (Un : n ∈ ω) of open covers of X and each sequence
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(Dn : n ∈ ω) of dense subspaces of X , there exists a sequence (Fn : n ∈ ω)

of finite subsets Fn ⊂ Dn, n ∈ ω, such that
⋃
n∈ω St(Fn,Un) = X .

This property is between acc and selectively a-star-Lindelöfness and
represents a selective version of SSM property.

Note that another selective version of SSM was given by A. Caserta, G.
Di Maio and L. Kočinac.

Definition 1.1.5. [35] A space X is absolutely strongly star-Menger (briefly
aSSM) if for each sequence (Un : n ∈ ω) of open covers of X and each dense
subspace D of X , there exists a sequence (Fn : n ∈ ω) of finite subsets of D
such that

⋃
n∈ω St(Fn,Un) = X .

The implications in the following diagram are easy to see:

acc selSSM selectively a-star-Lindelöf

a-star-LindelöfaSSM

SSM

- -

?

?

@
@
@
@R

�
�
�
�	

Examples

In the diagram above, almost all the implications which involve selSSM,
in general, are not invertible, as we will see with the following examples.

Example 1.1.6. A selectively a-star-Lindelöf space which is not SSM (hence
not aSSM neither selSSM).

Proof. Let X = Ψ(A) = ω ∪ A be the Isbell-Mrwóka space, where A is the
maximal almost disjoint family of infinite subsets of ω with |A| = c. By
Proposition 2 in [31] we have that X is not SSM. On the other hand, since
X has a countable π-base, it is selectively a-star-Lindelöf ([29]).

Example 1.1.7. A selSSM space which is not acc.

Proof. The countable discrete space is a selSSM not cc, hence not acc, space.
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The following problem remains open.

Main Problem Is there an aSSM not selSSM space?

Relations with Menger-type properties

The selSSM property is a weaker form of Menger property.

Property 1.1.1. Every Menger space is selSSM.

Proof. Let X be a Menger space and let (Un : n ∈ ω) be a sequence of open
cover of X and (Dn : n ∈ ω) be a sequence of dense subspaces of X. Then
there are finite families Vn ⊂ Un, n ∈ ω, such that

⋃
n∈ω Vn is a cover for

X . Put Vn = {Vn1 , Vn2 , ..., Vnk} and Fn = {xni : i = 1, 2, ..., k} ⊂ Dn, where
xni ∈ Vni ∩Dn, ∀i = 1, 2, ..., k. We want to show that X =

⋃
n∈ω St(Fn,Un).

Let x ∈ X and Vn ⊂ Un such that x ∈
⋃
Vn. Since

⋃
Vn ∩ Fn 6= ∅, a fortiori

there exists an Un ∈ Un such that Un ∩ Fn 6= ∅, and so x ∈ St(Fn,Un).

The converse of Property 1.1.1 is not true, as confirmed in the next ex-
ample.

Example 1.1.8. A selSSM not Menger space.

Proof. X = ω1 is a cc space which has countable tightness. So, X is an acc
space [64, Theorem 1.8], then selSSM. Moreover, it is not Menger since is
not Lindelöf.

Also recall that [57] a space X is star-Menger (briefly SM) provided for
every sequence (Un : n ∈ ω) of open covers of X , there is a sequence
(Vn : n ∈ ω) such that for every n ∈ ω, Vn is a finite subset of Un and
{St(

⋃
Vn,Un) : n ∈ ω} is an open cover of X .

We have that:

M −→ selSSM −→ aSSM −→ SSM −→ SM.

Since in the class of paracompact Hausdorff spaces, M and SM are equi-
valent properties (see [57]) we have that in the class of paracompact Haus-
dorff spaces all the previous Menger-type properties are equivalent.

Some easy results and questions

It can be proved the following property.

Property 1.1.2. Every selSSM space has countable fan tightness with respect
to dense subspaces.
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Proof. Let (X, τ) be a topological space, (Dn : n ∈ ω) be a sequence of dense
subspaces of X and x ∈ X . Let (Un : n ∈ ω) be a sequence of open covers
of X . Put Un = τ , ∀n ∈ ω.

Since X is selSSM, there exist (Fn : n ∈ ω) where, for every n ∈ ω, Fn
represents a finite subset of Dn such that⋃

n∈ω
St(Fn,Un) = X (∗).

We want to prove that x ∈
⋃
n∈ω Fn, that is U ∩ (

⋃
n∈ω Fn) 6= ∅,∀U ∈ τ .

From (∗) it is clear that there exists n ∈ ω such that x ∈ St(Fn,Un) =⋃
{U ∈ Un : U ∩ Fn 6= ∅}. So we are done.

Taking into account Proposition 1.1.1, it is natural to pose the following
question.

Question 1.1.2. Is every SSM space having countable fan tightness with
respect to dense subspaces a selSSM space?

Now we define the following technical notion which represents a selec-
tive version of property (a).

Definition 1.1.6. A space X has the selective strong property (a) provided
for every sequence (Un : n ∈ ω) of open covers of X and every sequence
(Dn : n ∈ ω) of dense subspaces of X there exist Fn ⊂ Dn such that Fn are
closed and discrete in X for every n ∈ ω and

⋃
n∈ω St(Fn,Un) = X .

It turns out that:

Proposition 1.1.4. Every cc space with the selective strong property (a) is
selSSM.

Remark 1.1.1. In [35] the authors called a space X selectively (a) if for every
sequence (Un : n ∈ ω) of open covers ofX and every dense subspaceD ofX
there exist Fn ⊂ D such that Fn are closed and discrete inX for every n ∈ ω
and

⋃
n∈ω St(Fn,Un) = X . It is easy to see that selective strong property (a)

implies selective property (a), but we know nothing about the converse.

Relation with selective separability

The next two examples show that selective separability and selSSM are
indipendent properties.

Example 1.1.9. A selSSM space which is not selectively separable.

Proof. The space of Example 1.1.8 gives a selSSM not separable (hence not
selectively separable) space.

Example 1.1.10. A selectively separable space which is not selSSM.
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Proof. The spaceX of Example 1.1.6 is a selectively separable space because
it has a countable π-base (see [20, Proposition 2.3]).

Remark 1.1.2. In order to give an answer to the main problem, we need a
separable not selectively separable space (this will give a not selSSM space)
which is not paracompact.

Behaviour with respect to subspaces

We can investigate the behaviour of selSSM with respect to particular
subspaces. In [81] it was proved that the property aSSM is not hereditary
with respect to Gδ subspaces and with respect to regular-closed subspaces.
Since the space that the author considered is acc, we may conclude that
selSSM is not a hereditary property with respect to Gδ subspaces and with
respect to regular-closed subspaces.

Moreover, selSSM is not hereditary also with respect to dense subspaces.
In fact, consider the one-point compactification α(X) where X is the space
of Example 1.1.6.

Continuous images

In [81, Example 3.11] it was proved that the continuous image of an acc
(therefore selSSM) space need not be aSSM. So we can say that the contin-
uous image of a selSSM space need not be selSSM. This allows us to study
the behaviour of selSSM respect to varpseudo-open maps.

Proposition 1.1.5. Let X and Y be topological spaces and f : X → Y be
a varpseudo-open and surjective map. If X is a selSSM space then Y is a
selSSM space.

Proof. Let (Un : n ∈ ω) a sequence of open covers of Y and (Dn : n ∈ ω)

a sequence of dense subspaces of Y . For every n ∈ ω, let Vn = {f−1(U) :

U ∈ Un}. So {Vn : n ∈ ω} is a sequence of open covers of X . Being f

varpseudo-open, f−1(Dn) = D
′
n is a dense subspace of X .

Since X is selSSM, there exist finite subsets En of D
′
n ∀n ∈ ω, such that

X =
⋃
n∈ω St(En,Vn). Put Fn = f(En), ∀n ∈ ω where Fn is a finite subset

of Dn, ∀n ∈ ω. We have that

Y = f(X) = f

(⋃
n∈ω

St(En,Vn)

)
=
⋃
n∈ω

f (St(En,Vn)) =
⋃
n∈ω

St(Fn,Un),

and so we are done.

As a consequence of the proposition above, we have the following re-
sult.
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Proposition 1.1.6. Let X and Y be topological spaces. If X × Y is selSSM
then X and Y are selSSM.

The converse of the previous proposition does not hold. In fact, in [25]
it was showed that the product ω1 × (ω1 + 1) is not a-star-Lindelöf.

In [64], it was proved that the product of a Hausdorff acc space with
a first countable compact space is acc. It is natural to pose the following
question.

Question 1.1.3. Is the product of a selSSM space with a compact first count-
able space a selSSM space?

Sum

In this Section, we examine when the union of two selSSM spaces is
selSSM. We will follow the same idea in Theorem 1.1.2.

Definition 1.1.7. A subspace Y of a spaceX is selectively strongly star-Menger
in X if for every sequence of open cover (Un : n ∈ ω) of X and every se-
quence (Dn : n ∈ ω) of dense subsets in X , there are finite sets Fn ⊂ Dn

such that Y ⊂
⋃
n∈ω St(Fn,Un).

Theorem 1.1.5. Let X = Y ∪ Z. If Y is closed and selectively strongly star-
Menger in X and Z is selSSM, then X is selSSM.

Proof. Let (Un : n ∈ ω) be a sequence of open cover ofX and let (Dn : n ∈ ω)

be a sequence of dense subsets of X . Since Y is selectively strongly star-
Menger in X , there are finite sets Fn ⊂ Dn such that Y ⊂

⋃
n∈ω St(Fn,Un).

We put V =
⋃
n∈ω St(Fn,Un). For each point x ∈ Z \ V , take a member

Unx ∈ Un with x ∈ Unx . We put

Cn = {Z ∩ V } ∪ {Unx \ Y : x ∈ Z \ V },

and
En = (Dn \ Y ) ∪ (Y ∩ Z) for all n ∈ ω.

Since Y is closed inX , Cn is an open cover of Z for every n ∈ ω and each
En is a dense subset of Z. Hence, there are finite sets Gn ⊂ En such that
Z =

⋃
n∈ω St(Gn, Cn). Then, we can seeX\V ⊂

⋃
n∈ω St(Gn\Y,Un). Hence,

if we put Hn = Fn∪ (Gn \Y ), we have Hn ⊂ Dn and X =
⋃
n∈ω St(Hn,Un).



1.2. Monotone normality and related properties 31

1.2 Monotone normality and related properties

A characterization of monotone normality in terms of funcions

Recall that, by Urysohn’s Lemma, X is normal if and only if for every
pair of disjoint non-empty closed sets F and H there is an f ∈ C(X, I) such
that f(x) = 0 for every x ∈ F and f(x) = 1 for every x ∈ H .

The following theorem gives a characterization of monotone normality
in terms of monotone functions.

Theorem 1.2.1. A space X is monotonically normal if and only if one can
assign to every pair of disjoint non-empty closed sets F and H a function
fF,H ∈ C(X, I) so that

(1) fF,H(x) = 0 for every x ∈ F and fF,H(x) = 1 for every x ∈ H ;

(2) fF2,H2 ≤ fF1,H1 whenever F1 ⊂ F2 and H1 ⊃ H2.

Proof. Suppose that the function fF,H such as in the theorem is given. De-
fine

r(F,H) = f−1F,H([0, 1/2)).

Assume that we have two pairs of disjoint closed sets F1, H1 and F2, H2

such that F1 ⊂ F2 and H2 ⊂ H1. Then if p ∈ r(F1, H1) we have fF1,H1(p) <

1/2. It means that fF2,H2(p) ≤ fF1,H1(p) < 1/2, i.e., p ∈ r(F2, H2).
For the other one, fix an enumeration {qn : n ∈ N} of Q = Q ∩ [0, 1]; we

assume that all qn are different and moreover that q1 = 0 and q2 = 1. Let F
and H be arbitrary disjoint closed subsets of X . As in the standard proof of
Urysohn’s Lemma, we will construct for every n ∈ N an open subset Vqn of
X such that

1. V qn ⊂ Vqm whenever qn < qm,

2. F ⊂ Vq1 and H ⊂ X \ Vq1 .

We put Vq1 = r(F,H) and Vq2 = X \H . Then (1) and (2) are clearly satisfied.
Let n > 2 and assume that Vqi are defined for all i < n. Put

r = max{qi : i < n, qi < qn} and s = min{qi : i < n, qn < qi}.

Then, by our inductive hypothesis we have V r ⊆ Vs. Put Vqn = r(V r, X \
Vs). Then, our inductive hypotheses are clearly satisfied. We now define, as
in the proof of Urysohn’s Lemma, the function fF,H by the formula:

fF,H(x) =

inf{qn ∈ Q : x ∈ Vqn} if x ∈ Vq2 ,

1 if x /∈ Vq2 .

Furthermore, fF,H is continuous.
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To prove that this assignment of functions is ‘monotone’, consider two
pairs of disjoint closed sets F1, H1 and F2, H2 such that F1 ⊂ F2 and H2 ⊂
H1. For F1, H1 we use the above notation Vqn , and for F2, H2 we use the
notation Wqn . Observe that Vq1 = r(F1, H1) and Vq2 = X \ H1. Moreover,
Wq1 = r(F2, H2) and Wq2 = X \H2. Observe that

Vq1 ⊂Wq1 andVq2 ⊂Wq2 .

Claim. For every n ∈ N, Vqn ⊂Wqn .
For n = 1, 2 there is nothing to prove. Let n > 2 and assume that we

have what we want for all i < n. In the above inductive construction, we
put

r = max{qi : i < n, qi < qn} and s = min{qi : i < n, qn < qi},

and Vqn = r(V r, X \ Vs) and Wqn = r(W r, X \Ws). By our inductive hy-
pothesis we have

Vr ⊂Wr andVs ⊂Ws,

hence
V r ⊂W r andX \Ws ⊂ X \ Vr,

and so
Vqn = r(V r, X \ Vs) ⊂ r(W r, X \Ws) = Wqn .

This completes the proof of the claim.
Now assume that x ∈ X . We want to prove that fF2,H2(x) ≤ fF1,H1(x).

Assume first that fF1,H1(x) < 1. If x 6∈ Vq2 , then fF1,H1(x) = 1, which is
impossible. Hence x ∈ Vq2 and so x ∈ Wq2 . For every qn such that x ∈ Vqn
we also have that x ∈Wqn . From this we see that

{qn ∈ Q : x ∈ Vqn} ⊂ {qn ∈ Q : x ∈Wqn},

and so

fF2,H2(x) = inf{qn ∈ Q : x ∈Wqn} ≤ inf{qn ∈ Q : x ∈ Vqn} = fF1,H1(x).

If fF1,H1(x) = 1, then there is nothing to prove and so we are done.

Monotone star-normality

As we already noted, there are a lot of properties that can be defined or
characterized in terms of stars. The following theorem gives a star charac-
terization of normality.
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Theorem 1.2.2. [39] The following conditions are equivalent for a topolo-
gical space X

(1) X is normal;

(2) Every two-element open cover of X has an open star-refinement;

(3) Every finite open cover of X has a finite open star-refinement.

In order to give a monotone version of the previous theorem, we define
monotone versions of (2) and (3) in Theorem 1.2.2:

Definition 1.2.1. A space X is 2-monotonically star-normal if there exists an
operator that assigns to every two-element open cover U an open star re-
finement r(U) so that r(U) refines r(V) whenever U refines V . The function
r is called 2-monotone star-normality operator for X .

Definition 1.2.2. A spaceX is finitely-monotonically star-normal if there exists
an operator that assigns to every finite open cover U a finite open star re-
finement r(U) so that r(U) refines r(V) whenever U refines V . The function
r is called finite-monotone star-normality operator for X .

Note that both the previous definitions are weak form of monotone
paracompactness.

For a cover A of a set X , let Ab = {St(x,A) : x ∈ X}. Introduce the
following useful definition.

Definition 1.2.3. A space X satisfies property (∗) if for each binary open
cover U of X there is an open cover r(U) of X such that r(U)b refines U (i.e.,
r(U) is a barycentric open refinement of U) and r(V) refines r(U) whenever
V refines U .

The following fact easily follows from Definition 1.2.3.

Proposition 1.2.1. A 2-monotonically star-normal space has property (∗).

Proposition 1.2.2. A space with property (∗) is monotonically normal.

Proof. For a point x ∈ X and an open neighborhood U of x, consider the
binary open cover U(x, U) = {U,X \ {x}}. Let H(x, U) = St(x, r(U(x, U))).
Obviously x ∈ H(x, U) ⊂ U . Let U be an open neighborhood of x ∈ X

and let V be an open neighborhood of y ∈ X . Assume y /∈ U and x /∈ V .
We show H(x, U) ∩ H(y, V ) = ∅. Consider the binary open cover W =

{X \ {x}, X \ {y}}. Since both U(x, U) and U(y, V ) are refinements of W ,
both r(U(x, U)) and r(U(y, V )) are refinements of r(W). Hence, we have
H(x, U)∩H(y, V ) ⊂ St(x, r(W))∩St(y, r(W)). Assume that there is a point
z ∈ St(x, r(W)) ∩ St(y, r(W)). Then there are some W0,W1 ∈ r(W) such
that {x, z} ⊂W0 and {y, z} ⊂W1. Since r(W) is a barycentric refinement of
W , St(z, r(W)) is contained in X \ {x}, or X \ {y}. This is a contradiction,
because {x, y} ⊂ St(z, r(W)).
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Corollary 1.2.1. A 2-monotonically star-normal space is monotonically nor-
mal.

Question 1.2.1. Does monotone normality imply property (∗)?

By propositions 1.2.1 and 1.2.2, a negative answer to Question 1.2.1 per-
mits to prove that monotone normality and 2-monotone star-normality are
not equivalent conditions.

Now introduce the following useful definition.

Definition 1.2.4. A space X has property (∗∗) if for each finite open cover U
of X , there is an open cover r(U) of X such that r(U)b refines U , and r(V)

refines r(U) whenever V refines U .

Also in this case, the following fact easily follows from Definition 1.2.4.

Proposition 1.2.3. A finitely-monotonically star-normal space has property
(∗∗).

In [68], the authors introduced the concept of acyclic monotonically nor-
mal operator.

Definition 1.2.5. [68] A space X is acyclically monotonically normal if there is
an operator r which assigns to each x and open set U containing x an open
set r(x, U) containing x which satisfies

(1) r(x, U) ⊆ r(x, U ′) whenever U ⊆ U ′,

(2) r(x,X \ {y}) ∩ r(y,X \ {x}) = ∅ if x 6= y,

(3)
⋂n−1
t=0 r(xt, X \ {xt+1}) = ∅ whenever n ≥ 2, x0, . . . , xn−1 are distinct

and xn = x0.

The operator r is called acyclic monotonically operator for X .

Observe that (3) implies (2) and that (1) and (2) are precisely the condi-
tions for a space to be monotonically normal.

Using a quite similar argument of Proposition 1.2.2, we have the fol-
lowing result.

Proposition 1.2.4. A space with property (∗∗) is acyclically monotonically
normal.

Since M. E. Rudin [73] constructed a monotonically normal space which
is not acyclically monotonically normal, monotone normality does not im-
ply property (∗∗) (hence finite monotone star-normality).

Then, monotone normality and finite-monotone star-normality are not
equivalent conditions.

The following question is still open.

Question 1.2.2. Are 2-monotone star-normality and finite-monotone star-
normality equivalent conditions?
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Monotone versions of property (a) and related spaces

It is easy to see that like normality, property (a) follows from paracom-
pactness. In fact, property (a) is rather close to normality (it is very difficult
to distinguish between property (a) and normality in the class of countably
compact space). M. V. Matveev asked if monotonically normal spaces have
property (a). M. E. Rudin, I. Stars and J. Vaughan in [75] answered in the
affirmative to this question.

Theorem 1.2.3. [75] Monotonically normal spaces satisfy property (a).

Motived by the previous result it is natural to pose the following ques-
tion.

Question 1.2.3. Is it possible to define a monotone version of property (a)
in order to prove that monotone normality implies such a property?

Clearly, depending on the way in which the monotone operator works,
we obtain different monotone version of property (a). We want to weight
up all the options. The following results leave out two possibilities.

Proposition 1.2.5. Let X be a space. If there exists a function r that assigns
to every open cover U of X and every dense D ⊂ X a closed in X and
discrete r(U , D) ⊂ D such that St(r(U , D),U) = X and if U refines V then
r(U , D) ⊆ r(V, D). Then X is discrete.

Proof. Let X be a space, D a dense subset of X and r be the same as in the
hypothesis. Let U = {X} be the trivial cover of X and F = r(U , D) be the
closed in X and discrete such that St(F,U) = X .

Claim: X = F .
Assume the contrary and fix a ∈ X \F . Put V = X \{a} and U = X \F .

Clearly, the sets U and V are open in X and C = {U, V } covers X . Since
C refines U , from the hypothesis, we have E ⊂ F , where E = r(C, D).
Therefore, St(E, C) 6= X , since St(E, C) does not contain the point a. Then
St(F,U) 6= X , a contradiction.

Corollary 1.2.2. Let X be a space. If there exists a function r that assigns to
every open cover U ofX and every denseD ⊂ X a closed inX and discrete
r(U , D) ⊂ D such that St(r(U , D),U) = X and if U refines V and D ⊆ E

then r(U , D) ⊆ r(V, E). Then X is discrete.

There are still two options.

Definition 1.2.6. A space X is:

• sm(a) or has strongly monotone property (a) if there exists a function r that
assigns to every open cover U of X and every dense D ⊂ X a closed
in X and discrete r(U , D) ⊂ D such that St(r(U , D),U) = X and if U
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refines V and D ⊆ E then r(U , D) ⊇ r(V, E). The function r is called
sm(a) operator for X .

• m(a) or has monotone property (a) if there exists a function r that assigns
to every open cover U of X and every dense D ⊂ X a closed in X and
discrete r(U , D) ⊂ D such that St(r(U , D),U) = X and if U refines V
then r(U , D) ⊇ r(V, D). The function r is called m(a) operator for X .
A space having property m(a) is called m(a) space.

Obviously every monotone version of property (a) implies property (a).
The converse is not true: consider ω1 (see Proposition 1.2.5 and Example
1.2.2). Clearly, sm(a)⇒m(a) .

We will show that none of the previous definitions gives a positive answer
to Question 1.2.3, in particular by the next examples 1.2.1 and 1.2.2, we
answer in the negative Question 1.2.3.

Example 1.2.1. A monotonically normal space which is not sm(a).

Consider the real line, E = R. Suppose E be a sm(a) space, and r be
a sm(a) operator for E. Let V = {R}, then there exists a closed in R and
discrete r(V, E) ⊂ E. Let U = {R} and let D = R \ r(V, E). Clearly D

is dense in R and then there exists a closed in R and discrete r(U , D) ⊂
D. Therefore, since D ⊆ E, by hypothesis we have r(U , D) ⊃ r(V, E); a
contradiction since r(U , D) ⊂ D = R \ r(V, E).

Among monotone versions of covering properties, there is the defini-
tion of monotonically star closed-and-discrete that was given by S. G. Pop-
vasillev and J. E. Porter.

Definition 1.2.7. [70] A space X is monotonically star closed-and-discrete if
there exists an operator r which assigns to each open cover U a subspace
r(U) ⊆ X such that r(U) is closed and discrete in X , St(r(U),U) = X and if
U refines V , then r(U) ⊇ r(V).

In [65], M. V. Matveev observed that every space is star closed-and-
discrete (i.e. for every open cover U there is a closed and discrete subset
F ⊆ X such that St(F,U) = X). However, monotone version of star closed-
and-discrete turns out to be interesting since protometrizable spaces (recall
that a protometrizable space is a paracompact space with an orthobase. In
[41], P. M. Gartside and P. J. Moody showed that a space is protometrizable
if and only if it is monotone paracompact) are monotonically star closed-
and-discrete and the following propositions hold.

Proposition 1.2.6. [70] Monotonically star closed-and-discrete GO spaces
are paracompact.
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Proposition 1.2.7. Every m(a)−space is monotonically star closed-and-dis-
crete.

Example 1.2.2. A monotonically normal space which is not a m(a).

Since ω1 is not paracompact, by propositions 1.2.7 and 1.2.6 it is a GO-space
(hence a monotonically normal space) which is not m(a).

Recall that (see [65]) in the class of Hausdorff spaces countable compact-
ness is equivalent to star-compactness.

The following definition of monotonically star-compact space was in-
troduced in [70] and called monotonically star-finite space.

Definition 1.2.8. [70] A space X is monotonically star-compact (briefly msc)
if there exists a function r that assigns to every open cover U of X a finite
subset ofX r(U) such that St(r(U),U) = X and such that if U refines V then
r(U) ⊇ r(V).

It is natural to pose the following question.

Question 1.2.4. Is monotone countable compactness equivalent to mono-
tone star-compactness in the class of Hausdorff spaces?

Note that ω1 is not monotonically star-compact (by Proposition 1.2.6)
neither monotonically countably compact [69].

A countable compact space X which is not monotonically star-compact
is given in [70, Example 21]. If such a space X is mcc then this example
permits to give a negative answer to Question 1.2.4.

For sake of completeness, note that another possible monotone version
of star-compactness could be given requiring that:

(2) there exists a function r, called 2-operator, that assigns to every open
cover U of X a finite subset r(U) of X such that St(r(U),U) = X and
if U refines V then r(U) ⊆ r(V).

However the following result proves the absurdness of the previous
definition.

Theorem 1.2.4. Every space X having property (2) is finite.

Proof. Let X be a space having property (2) and r be the 2-operator. Let
U = {X} be the trivial cover of X . Put F = r(U).

Claim: X = F .
Assume the contrary, and fix a ∈ X \ F . Put V = X \ {a} and U =

X \ F . Clearly, the sets U and V are open in X and C = {U, V } covers X .
Since X has property 2 and C refines U , we have E ⊂ F , where E = r(C).
Therefore, St(E, C) 6= X , since St(E, C) does not contain the point a. Then,
St(F,U) 6= X , a contradiction.
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Recall the following theorem.

Theorem 1.2.5. In the class of Hausdorff spaces, property acc is equivalent
to property (a) plus countable compactness.

In order to give a monotone version of the previous theorem, we intro-
duce the following monotone version of acc property.

Definition 1.2.9. A space X has property monotone acc if there exists a func-
tion r that assigns to every open cover U of X and every dense D ⊂ X a
finite subset r(U , D) of D such that St(r(U , D),U) = X and such that if U
refines V then r(U , D) ⊇ r(V, D). A space having property macc is called
macc space.

The following proposition gives a monotone version of Theorem 1.2.5.

Proposition 1.2.8. In the class of Hausdorff spaces, property macc is equiv-
alent to property m(a) plus monotone countable compactness.

Proof. ⇒) By hypothesis, there exists an operator r that assigns to every
open cover U of X and every dense subset D ⊂ X , a finite set r(U , D) ⊂ D

such that St(r(U , D),U) = X and if U refines V , then r(U , D) ⊇ r(V, D). By
Hausdorfness, r(U , D) is closed and discrete and then X is a m(a) space.
⇐) Let X be a countable compact m(a) space. Then there exists an

operator r that assigns to every open cover U of X and every dense D ⊂ X
a closed in X and discrete r(U , D) ⊂ D such that St(r(U , D),U) = X and
if U refines V then r(U , D) ⊇ r(V, D). Since X is mcc, hence countable
compact, every closed and discrete subset is finite and hence it is macc.

Obviously every macc space is an acc space. The converse is not true, as
the following example shows.

Example 1.2.3. ω1 is acc but not a mcc [69], hence not macc.
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2 Some results on the
cardinality of a topological
space

The aim of this Chapter is to obtain bounds on the cardinality of topo-
logical spaces in terms of cardinal functions. We focus our attention on
particular classes of topological spaces: n-Hausdorff and n-Urysohn spaces
and topological groups. In [80], the author investigated the inequality of
A. Hajnal and I. Juhasz |X| ≤ 2c(X)χ(X) where X is Hausdorff [46], for
Urysohn spaces replacing the bound on cellularity c(X) ≤ κ with a bound
on Urysohn cellularity Uc(X) ≤ κ, which is a weaker condition, because
Uc(X) ≤ c(X). In the first Section, we introduce the n-Urysohn cellular-
ity n-Uc(X) and prove that the previous inequality is true in the class of
n-Urysohn spaces replacing the cellularity with the n-Urysohn cellularity.
In this connection we also show that |X| ≤ 2Uc(X)πχ(X) if X is a power
homogeneous Urysohn space.

In the second Section, we introduce the Hausdorff point separating
weight Hpw(X), and prove that

(1) for a Hausdorff space X , |X| ≤ Hpsw(X)aLc(X)χ(X),

(2) and for a a Hausdorff space with a π-base consisting of compact sets
with non-empty interior, |X| ≤ Hpsw(X)wLc(X)ψ(X)..

The inequality (1) is a Hausdorff version of A. Charlesworth’s inequality
|X| ≤ psw(X)L(X)χ(X) [36]. These results are contained in the submitted
paper [32].

In [14], it is proved that the character of a non-locally compact topo-
logical group with a first countable remainder does not exceed ω1 and, as
a consequence, that if G is a non-locally compact topological group with
a first countable remainder, then |G| ≤ 2ω1 . Moreover, a non-locally com-
pact topological group of character ω1 having a compactification whose re-
minder is first countable is given. In the third Section, we generalize these
results in the general case of an arbitrary infinite cardinal κ. The obtained
results are contained in [28].

We recall below several important cardinal functions.
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The following properties represent weaker forms of the Lindelöf degree
L(X) = min{κ : ∀ open cover U of X,∃ U0 ⊂ U : |U0| ≤ κ}. The weak
Lindelöf degree of X , denoted wL(X), is the smallest infinite cardinal κ such
that for every open cover V of X , there is a subcollection V0 of V such that
|V0| ≤ κ and

⋃
V0 covers X . The almost Lindelöf degree of X , denoted aL(X),

is the smallest infinite cardinal κ such that for every open cover V of X ,
there is a subcollection V0 of V such that |V0| ≤ κ and {V : V ∈ V0} covers
X . For every regular space X , aL(X) = L(X). The almost Lindelöf degree of
X with respect to closed sets, denoted aLc(X), is the smallest infinite cardinal
κ such that for every closed subset H of X and every collection V of open
sets in X that covers H , there is a subcollection V ′ of V such that |V ′| ≤ κ

and {V : V ∈ V ′} covers H . The weak Lindelöf degree of X with respect to
closed sets, denoted wLc(X), is the smallest infinite cardinal κ such that for
every closed subset H of X and every collection V of open sets in X that
covers H , there is a subcollection V ′ of V such that |V ′| ≤ κ and H ⊆

⋃
V ′.

The relationships between these cardinal functions are:

aL(X) ≤ aLc(X) ≤ L(X) and equality holds for regular spaces

and
wLc(X) ≤ aLc(X) ≤ L(X).

The closed pseudo-character of a space X , denoted ψc(X), is the smallest in-
finite cardinal κ such that for each x ∈ X , there is a collection {V (α, x) : α <

κ} of open neighborhoods of x such that
⋂
α<κ V (α, x) = {x}. The Hausdorff

pseudo-character of X , denoted Hψ(X), is the smallest infinite cardinal κ
such that for each x ∈ X , there is a collection {V (α, x) : α < κ} of open
neighborhoods of x such that if x 6= y, then there exist α, β < κ such that
V (α, x) ∩ V (β, y) = ∅. These two cardinal functions are defined only for
Hausdorff spaces. The Urysohn pseudo-character of X , denoted Uψ(X), is
similar to Hψ(X) except that we require that V (α, x) ∩ V (β, y) = ∅. This
cardinal function is defined only for Urysohn spaces. The following hold.

ψ(X) ≤ ψc(X) ≤ Hψ(X) ≤ Uψ(X) ≤ χ(X).

An important role is played by the point separating weight.
A point separating open cover S for a spaceX is an open cover ofX having

the property that for each pair of distinct points x and y in X there is S in S
such that x is in S but y is not in S. The point separating weight of a T1 space
X is the cardinal

psw(X) = min{τ : X has a point separating cover S such that each point

ofX is contained in at most τ elements of S}.
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If psw(X) = ω, one says that X has a point-countable separating open cover.
A set S = {pα : α ∈ ν} ⊂ X is a free sequence of lenght ν in X if for each

α ∈ ν we have
{pβ ∈ α} ∩ {pβ : β ∈ ν \ α} = ∅.

We put F (X) = sup{κ : there exists a free sequence of lenght κ in X}.

2.1 Variations of the Hajnal and Juhasz inequality |X| ≤
2c(X)χ(X) for Hausdorff spaces

The inequality of A. Hajnal and I. Juhasz |X| ≤ 2c(X)χ(X) for Haus-
dorff spaces [46] is well known in literature. Several generalizations of the
previous inequality were given. In [25], the author defined the Hausdorff
number of X , denoted H(X), as the smallest cardinal τ such that for ev-
ery subset A ⊂ X, |A| ≥ τ , there exist neighborhoods Ua, a ∈ A, such that⋂
a∈A Ua = ∅. A space X is said to be n-Hausdorff if H(X) = n. For every n-

Hausdorff spaceX , the n-Hausdorff pseudocharacter ofX , denoted n-Hψ(X),
is the smallest κ such that for each point x there is a collection {V (α, x) : α <

κ} of open neighborhoods of x such that if x1, x2, . . . , xn are distinct points
from X , then there exist α1, α2, . . . , αn < κ such that

⋂n
i=1 V (αi, xi) = ∅.

Then, using these definitions, it was proved that the inequality of Hajnal
and Juhasz holds replacing the character with the Hausdorff pseudocharac-
ter, and that for every 3- Hausdorff space the inequality |X| ≤ 22

c(X)3-Hψ(X)

holds. Moreover, I. Gotchev proved that the last inequality is true for every
space X having finite Hausdorff number, [43]. In [80], the author inves-
tigated the inequality of Hajnal and Juhasz for Urysohn spaces replacing
the bound on cellularity c(X) ≤ κ with a bound on Urysohn cellularity
Uc(X) ≤ κ, which is a weaker condition, because Uc(X) ≤ c(X) (i.e. J.
Schröder proved that for a Urysohn space X , |X| ≤ 2Uc(X)χ(X)). It seems
natural to ask if the previous inequality could be restated for n-Urysohn
spaces. We prove that this is possible provided the Urysohn cellularity is
replaced by the n-Urysohn cellularity (Theorem 2.1.1 below).

An analogue of the inequality of Hajnal and Juhasz in the setting of ho-
mogeneous spaces was established in [34]. In [34, Theorem 2.3] N. Carlson
and G. J. Ridderbos use the Erdös-Rado’s theorem to show that if X is a
power homogeneous Hausdorff space then |X| ≤ 2c(X)πχ(X). This result
can be modified in the setting of Urysohn spaces to give the homogeneous
analogue of Schröder’s result. We prove that if X is an Urysohn power
homogeneous space then |X| ≤ 2Uc(X)πχ(X).

Recall that, a pairwise disjoint collection of non-empty open sets in X is
called a cellular family. The cellularity of X is the supremum of the cardinal-
ity of cellular families in X .
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In [80], J. Schröder gives the following definition.

Definition 2.1.1. [80] Let X be a topological space. A collection V of open
subsets of X is called Urysohn-cellular, if O1, O2 in V and O1 6= O2 implies
O1 ∩O2 = ∅. The Urysohn-cellularity of X , Uc(X), is defined by

Uc(X) = sup{|V| : V is Urysohn-cellular }+ ω.

Moreover, he gave the following variation of the Hajnal and Juhasz in-
equality in the class of Urysohn spaces: |X| ≤ 2Uc(X)χ(X).

We generalize the definition of Uryshon cellularity in order to general-
ize the previous inequality.

Recall that, in [26], the authors define the Urysohn number U(X) of a
spaceX as the smallest cardinal τ such that for every subsetA ⊂ X, |A| ≥ τ ,
there exist neighborhoods Ua, a ∈ A, such that

⋂
a∈A Ua = ∅. A space X is

said to be n-Urysohn if U(X) = n.
We introduce the following definition.

Definition 2.1.2. Let X be a topological space. A collection V of open sub-
sets of X is called n-Urysohn-cellular , where n ∈ ω, if O1, O2, . . . , On in V
and O1 6= O2 6= . . . 6= On implies O1 ∩ O2 ∩ . . . ∩ On = ∅. The n-Urysohn-
cellularity of X , n-Uc(X), is defined by

n - Uc(X) = sup{|V| : V is n- Urysohn-cellular }+ ω.

Clearly, if V is a Urysohn cellular collection of open subsets, then V is
n-Urysohn cellular for every n ∈ ω. Also if Uc(X) ≤ κ, then n-Uc(X) ≤ κ

for every n ∈ ω.

Question 2.1.1. Is there a space X such that (n + 1)-Uc(X) = κ and n-
Uc(X) 6= κ?

Recall that the θ-closure of a set A in the space X is the set clθ(A) = {x ∈
X : for every neighborhood U 3 x, U ∩A 6= ∅} [85].

Proposition 2.1.1. Let {Aα}α∈A be a collection of subsets of X , then

⋃
α∈A

clθ(Aα) ⊆ clθ

(⋃
α∈A

Aα

)
.

Proof. If x ∈
⋃
α∈A clθ(Aα), then there exists α ∈ A such that x ∈ clθ(Aα).

Therefore for every neighborhood Ux we have Ux ∩ Aα 6= ∅, then Ux ∩
(
⋃
α∈AAα) 6= ∅. This implies x ∈ clθ(

⋃
α∈AAα).

The next lemma represents a modification of Lemma 7 in [80].
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Lemma 2.1.1. Let X be a topological space and µ = n-Uc(X). Let (Uα)α∈A

be a collection of open sets. Then there are B1, B2, . . . , Bn−1 ⊆ A with

|Bi| ≤ µ ∀i = 1, 2, . . . , n− 1

and ⋃
α∈A

Uα ⊆ clθ

 ⋃
α∈B1∪B2∪...∪Bn−1

Uα

 .

Proof. Let V = {V ⊂ X : V is open and ∃α ∈ A such that V ⊆ Uα}. By
Zorn’s Lemma, take a maximal n-Urysohn-cellular family W ⊆ V and
|W| ≤ µ.

For every W ∈ W take Uβ ∈ {Uα : α ∈ A} such that W ⊆ Uβ . We
may assume β ∈ B = B1 t B2 t . . . t Bn−1, Bi ⊆ A and |Bi| ≤ µ, ∀i =

1, 2, . . . , n− 1.
We want to prove that

⋃
α∈A

Uα ⊆ clθ

 ⋃
α∈B1

Uα

 ∪ . . . ∪
 ⋃
α∈Bn−1

Uα

 .

Assume the contrary, then there exists x ∈
⋃
α∈A Uα and

x /∈ clθ

 ⋃
α∈B1

Uα

 ∪ . . . ∪
 ⋃
α∈Bn−1

Uα

 .

Then we can find α0 ∈ A and a neighborhood Ux of x such that x ∈ Uα0

and

Ux ∩

 ⋃
α∈B1

Uα

 ∪ . . . ∪
 ⋃
α∈Bn−1

Uα

 = ∅.

Then
(Uα0 ∩ Ux) ⊆ Ux

and
(Uα0 ∩ Ux) ∪W

is a n-Urysohn cellular family containingW , a contradiction.

Corollary 2.1.1. [80] Let X be a topological space and µ = Uc(X). Let
(Uα)α∈A be a collection of open sets. Then there is B ⊆ A with |B| ≤ µ and⋃
α∈A Uα ⊆ clθ

⋃
α∈B Uα.

We can restate Lemma 2.1.1 in the following way.
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Lemma 2.1.2. Let X be a topological space and µ = n-Uc(X). Let F be a
collection of open sets. Then there are G1,G2, . . . ,Gn ⊆ F with

|Gi| ≤ µ ∀i = 1, 2, . . . , n

and ⋃
F ⊆ clθ

(
n⋃
i=1

(⋃
Gi
))

.

Theorem 2.1.1. Let X be a n-Urysohn space. Then

|X| ≤ 2n−Uc(X)χ(X).

Proof. Set µ = n-Uc(X)χ(X). For every x ∈ X let B(x) denote an open
neighbourhood base of xwith |B(x)| ≤ µ. Construct an increasing sequence
{Cα : α < µ+} of subsets of X and a sequence {Vα : α < µ+} of open
collections of open subsets of X such that:

1. |Cα| ≤ 2µ for all α < µ+;

2. Vα =
⋃
{B(c) : c ∈

⋃
τ<αCτ}, α < µ+;

3. If {Gγ1,γ2,...,γn−1 : (γ1, γ2, . . . , γn−1) ⊆ µ} is a collection of subsets of X
and each Gγ1,γ2,...,γn−1 is the union of closures of ≤ µ many elements
of Vα and ⋃

{γ1,γ2,...,γn−1}⊆µ

clθGγ1,γ2,...,γn−1 6= X

then
Cα \

⋃
{γ1,γ2,...,γn−1}⊆µ

clθGγ1,γ2,...,γn−1 6= ∅.

The construction is by transfinite induction. Let x0 be a point of X and
put C0 = {x0}. Let 0 < α < µ+ and assume that Cβ has been constructed
for each β < α. Note that Vα is defined by 2. and Vα ≤ 2µ. For each
collection {Gγ1,γ2,...,γn−1 : (γ1, γ2, . . . , γn−1) ⊆ µ} of subsets ofX where each
Gγ1,γ2,...,γn−1 is the union of closures of ≤ µ many elements of Vα and⋃

{γ1,γ2,...,γn−1}⊆µ

clθGγ1,γ2,...,γn−1 6= X,

choose a point of X \
⋃
{γ1,γ2,...,γn−1}⊆µ clθGγ1,γ2,...,γn−1 . Let Hα be the set of

points choosen in this way, (clearly, |Hα| ≤ 2µ) and letCα = Hα∪(
⋃
β<αCβ).

It is clear that the family {Cα : 0 < α < µ+} constructed in this way satisfies
condition 1., 2. and 3..

Let C =
⋃
α<µ+ Cα. We shall show that C = X . Assume there is y ∈ X \

C. For every Bγ1 , Bγ2 , . . . , Bγn−1 ∈ B(y), with |Bγi | > 1 ∀i = 1, 2, . . . , n − 1
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and γ1, γ2, . . . , γn−1 ⊆ µ define

Fγ1,γ2,...,γn−1 = {Vc : c ∈ C, Vc ∈ B(c), Vc ∩Bγ1 ∩Bγ2 ∩ . . . ∩Bγn−1 = ∅}.

Since X is n-Urysohn, we have

C ⊆
⋃

{γ1,γ2,...,γn−1}⊆µ

⋃
Fγ1,γ2,...,γn−1 .

By Lemma 2.1.2, we find for every {γ1, γ2, . . . , γn−1} ⊆ µ subcollections

Gγ1 ,Gγ2 , . . . ,Gγn−1 ⊆ F{γ1,γ2,...,γn−1}, |Gγi | ≤ µ ∀i = 1, 2, . . . , n− 1

such that ⋃
F{γ1,γ2,...,γn−1} ⊆ clθ

n−1⋃
i=1

(⋃
Gγi
)
.

Note y /∈ clθ
⋃n−1
i=1 (

⋃
Gγi). Indeed, since(

n−1⋃
i=1

(⋃
Gγi
))
∩Bγ1 ∩Bγ2 ∩ . . . ∩Bγn−1 = ∅,

and then (
n−1⋃
i=1

(⋃
Gγi
))
∩ (Bγ1 ∩Bγ2 ∩ . . . ∩Bγn−1) = ∅.

Find α < µ+ such that
⋃
{γ1,γ2,...,γn−1}⊆µ(Gγ1 ∪ Gγ2 ∪ . . .∪ Gγn−1) ⊆ Vα. Then

y /∈
⋃

{γ1,γ2,...,γn−1}⊆µ

clθ

n−1⋃
i=1

(⋃
Gγi
)

but

Cα ⊆ C ⊆
⋃

{γ1,γ2,...,γn−1}⊆µ

⋃
Fγ1,γ2,...,γn−1 ⊆

⋃
{γ1,γ2,...,γn−1}⊆µ

clθ

n−1⋃
i=1

(⋃
Gγi
)
.

Put Gγ1,γ2,...,γn−1 =
⋃n−1
i=1

(⋃
Gγi
)
. This contradicts 3.

The Schröder’s result can be now obtained as a corollary of the previous
theorem.

Corollary 2.1.2. [80] Let X be a Urysohn space. Then

|X| ≤ 2Uc(X)χ(X).

Quite naturally we also raised the question concerning what happens in
the n-Hausdorff case. It turns out that the inequality of Hajnal and Juhasz



46 Some results on the cardinality of a topological space

can be restated in the class of n-Hausdorff spaces provided cellularity is
replaced by n-cellularity.

Definition 2.1.3. LetX be a topological space, C a collection of open subsets
ofX and n ∈ ω. We say that C is a n-cellular family if for everyO1, O2, . . . , On

∈ C we have that O1 ∩O2 ∩ . . . ∩On = ∅.
We define the n-cellularity of X as:

n - c(X) = sup{|C| : C is an n-cellular family of X}+ ω.

Clearly, if C is a cellular family, then C is a n-cellular family for every
n ∈ ω.

Lemma 2.1.3. Let X be a topological space and n-c(X) = κ, where n ∈ ω.
Let (Uα)α∈A be a collection of subsets ofX . Then there existB1, B2, . . . , Bn−1

⊆ A such that |Bi| ≤ κ for every i = 1, 2, . . . , n− 1 and

⋃
α∈A

Uα ⊆
n−1⋃
i=1

⋃
α∈Bi

Uα.

Proof. Let G be the collection of all non-empty open sets in X which are
subsets of some element of V . Use Zorn’s Lemma to obtain a maximal n-
cellular family G′ ⊆ G. Then, |G′| ≤ n-c(X) = κ. For every G ∈ G′ take
Uβ ∈ {Uα : α ∈ A} such that G ⊆ Uβ . We may assume

β ∈ B = B1 tB2 t . . . tBn−1, Bi ⊆ A

and |Bi| ≤ κ, for every i = 1, 2, . . . , n− 1. We want to prove that

⋃
α∈A

Uα ⊆
n−1⋃
i=1

⋃
α∈Bi

Uα.

Assume the contrary, then there exists x ∈
⋃
α∈A and x /∈

⋃n−1
i=1

⋃
α∈Bi Uα.

Then we can find α0 ∈ A such that x ∈ Uα0 and a neighborhood Ux of x
such that

Ux ∩
n−1⋃
i=1

⋃
α∈Bi

Uα = ∅.

Then (Uα0∩Ux)∪G′ is a n-cellular family containing G′, a contradiction.

Theorem 2.1.2. Let X be a n-Hausdorff topological space, then

|X| ≤ 2n−c(X)χ(X).
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Proof. Let n− c(X)χ(X) = κ, and for each p ∈ X let Vp be a local base for p
with Vp ≤ κ. Construct a sequence {Aα : 0 ≤ α < κ′} of subsets of X and a
sequence {Vα : 0 < α < κ′} of open collections in X such that:

1. Aα ≤ 2κ, 0 ≤ α < κ′;

2. Vα = {V : V ∈ Vp, p ∈
⋃
β<αAβ}, 0 < α < κ′;

3. if {Gγ1,γ2,...,γn−1 : γ1, γ2, . . . , γn−1 ⊆ κ} is a collection of ≤ κ open
sets of X , each of which is the union of ≤ κ elements of Vα and⋃
γ1,γ2,..,γn−1⊆κGγ1,γ2,..,γn−1 6= X , then Aα \ (

⋃
γ1,γ2,...,γn−1

Gγ1,γ2,...,γn−1)

6= ∅.

Let A =
⋃
α<κ′ Aα. The proof is complete if A = X . Suppose not, let

q ∈ X \ A, and let {Bγ : 0 ≤ γ < κ} be a local base at q. For every
γ1, γ2, . . . , γn−1 ⊆ κ let

Wγ1,γ2,...,γn−1 = {V ∈ Vp, p ∈ A, V ∩Bγ1 ∩Bγ2 ∩ . . . ∩Bγn−1 = ∅}.

Note that for each p ∈ A, there exist γ1, γ2, . . . , γn−1 such that

p ∈
⋃
Wγ1,γ2,...,γn−1 .

By the previous Lemma, there are Gγ1 ,Gγ2 , . . . ,Gγn−1 ⊆ Wγ1,γ2,...,γn−1 , with
|Gγi | ≤ κ for every i = 1, 2, . . . n−1, such that

⋃
Wγ1,γ2,...,γn−1 ⊆

⋃n−1
i=1

⋃
Gγi .

Let Gγ1,γ2,...γn−1 =
⋃n−1
i=1

⋃
Gγi and note that

A ⊆
⋃

γ1,γ2,...,γn−1⊆κ

n−1⋃
i=1

⋃
Gγi

and

q /∈
⋃

γ1,γ2,...,γn−1⊆κ

n−1⋃
i=1

⋃
Gγi .

Choose α < κ′ such that Gγ1,γ2,...,γn−1 ⊆ Vα for all γ1, γ2, . . . , γn−1 ⊆ κ. By
3., Aα \ (

⋃
γ1,γ2,...,γn−1⊆κGγ1,γ2,...,γn−1) 6= ∅. This contradicts

A ⊆
⋃

γ1,γ2,...,γn−1⊆κ
Gγ1,γ2,...,γn−1 .

Recall that a topological space X is said to be quasiregular provided for
every open set V , there is a non-empty open set U such that the closure of
U is contained in V . We observe the following properties.
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Lemma 2.1.4. If X is a quasiregular space, then for every cellular family
U such that |U| = κ there exists an Urysohn cellular family U ′ such that
|U ′| = κ.

Proof. Let U be a cellular family with |U| = κ. For every U ∈ U there exists
an open set VU ⊂ U such that VU ⊂ U . Clearly, if U1 and U2 are distinct
elements of U such that U1 ∩ U2 = ∅, we have VU1 ∩ VU2 = ∅. Hence U ′ =

{VU : U ∈ U} is an Urysohn cellular family for X such that |U ′| = κ.

Property 2.1.1. If X is a quasiregular space, c(X) = Uc(X).

Proof. Clearly, Uc(X) ≤ c(X). Let Uc(X) = κ and suppose that c(X) > κ.
Then by Lemma 2.1.4 there exists an Urysohn cellular family U such that
|U| > κ; a contradiction.

Recall the following theorem.

Theorem 2.1.3. [43, Corollary 3.2] Let X be a space with H(X) finite. Then
|X| ≤ 2c(X)χ(X).

The previous result together with Property 2.1.1 gives the following
corollary.

Corollary 2.1.3. If X is a quasiregular n-Hausdorff space, |X| ≤ 2χ(X)Uc(X).

We end this Section with a new cardinality bound for power homoge-
neous Urysohn spaces involving the Urysohn cellularity Uc(X). It is well
established that cardinality bounds on a topological space can be improved
if the space possesses homogeneous-like properties. The first result in this
direction was obtained by E. van Douwen in 1978. He proved that the car-
dinality of any power homogeneous space is at most 2πw(X). Afterwards, J.
van Mill proved that for every compact, power homogeneous space X , the
inequality |X| ≤ 2c(X)πχ(X) holds. In 2006, R. De la Vega answered a long-
standing question of A. V. Arhangel’skii by proving that the cardinality of
a compact homogeneous space is at most 2t(X). A. V. Arhangel’skii, J. van
Mill, and G. J. Ridderbos improved this result by showing that the same
bound holds for compact power homogeneous spaces. In 2008, N. Carl-
son and G. J. Ridderbos [34] have shown that if X is power homogeneous
then |X| ≤ 2c(X)πχ(X). This result represents both an improvement of van
Douwen’s theorem and an analogue of the Hajnal and Juhasz’s inequality
|X| ≤ 2c(X)χ(X) (where X is Hausdorff), for power homogeneous spaces.
By modifying this result, we show below that an analogous result holds for
Urysohn power homogeneous spaces when Uc(X) is used in place of c(X).

We recall the following Carlson and Ridderbos’ theorem.

Theorem 2.1.4. [34] If X is a homogeneous space, then

|X| ≤ 2πχ(X)c(X).
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We restate the previous result in the case of an Urysohn or quasiregular
space.

Theorem 2.1.5. If X is a homogeneous Hausdorff space that is Urysohn or
quasiregular then

|X| ≤ 2Uc(X)πχ(X).

Proof. Let X be a homogeneous Hausdorff space. If X is quasiregular, then
Uc(X) = c(X) and the result follows from Theorem 2.1.4. Now we assume
X is Urysohn. Let κ = Uc(X)πχ(X), fix p ∈ X , and let B be a local π-base
at p such that |B| ≤ κ. As X is homogeneous, for all x ∈ X there exists a
homeomorphism hx : X → X such that hx(p) = x.

As X is Urysohn, for all x 6= y ∈ X there exist open sets U and V

such that x ∈ U , y ∈ V and U ∩ V = ∅. Then p ∈ h−1x [U ] ∩ h−1y [V ], an
open set. As B is a local π-base at p, there exists B(x, y) ∈ B such that
B(x, y) ⊆ h−1x [U ] ∩ h−1y [V ]. Thus, hx[B(x, y)] ⊆ U , hy[B(x, y)] ⊆ V , and

(hx[B(x, y)]) ∩ (hy[B(x, y)]) = ∅.

The existence ofB(x, y) for each x 6= y ∈ X defines a functionB : [X]2 → B.
Suppose by way of contradiction that |X| > 2κ. As |B| ≤ κ, we can

apply the Erdös-Rado Theorem to the function B. Thus, there exists Y ∈
[X]κ

+
and A ∈ B such that B(x, y) = A for all x, y ∈ Y .

Observe that for every x 6= y ∈ Y , we have

(hx[A]) ∩ (hy[A]) = (hx[B(x, y)]) ∩ (hy[B(x, y)]) = ∅.

This shows {hx[A] : x ∈ Y } is a Urysohn cellular family. However,

|{hx[A] : x ∈ Y }| = |Y | = κ+ > Uc(X),

which is a contradiction. Thus, |X| ≤ 2κ = 2Uc(X)πχ(X).

Moreover, N. Carlson and G. J. Ridderbos proved in [34], that Theorem
2.1.4 is also valid for power homogeneous spaces.

Theorem 2.1.6. [34] If X is power homogeneous, then

|X| ≤ 2c(X)πχ(X).

To establish this more general theorem in the Urysohn or quasiregular
cases, we adapt the proof Theorem 2.3 in [34].

Whenever µ is a cardinal number and A ⊆ µ, then by πA we denote the
projection of Xµ onto XA. If α ∈ µ, then we write πα for π{α}, which is the
projection on the α-th coordinate. This notation is ambiguous because α is
also a subset of µ. As a rule, we will always use πα and πβ as projections on
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the respective coordinates and for κ ⊆ µ, we will use πκ for the projection
onto Xκ. Finally, if x ∈ Xµ, then we write xA instead of πA(x), and π is
always the projection onto the first coordinate, i.e. π = π0. By ∆(X,κ), we
denote the diagonal in Xκ which is given by

{
x ∈ Xκ : ∀α, β ∈ κ(xα = xβ)

}
.

We will call a spaceXµ ∆-homogeneous if for all points x, z ∈ ∆(X,µ) there
is a homeomorphism of Xµ mapping x onto z. A space X is power homo-
geneous if and only if there is a cardinal µ such that Xµ is ∆-homogeneous
(G. J. Ridderbos, [71]). Let X be a power homogeneous space and let µ be a
cardinal number such that Xµ is ∆-homogeneous. Let κ be a cardinal num-
ber such that πχ(X) ≤ κ. Without loss of generality, we may assume that
κ ≤ µ. Fix p ∈ ∆(X,µ) and a local π-base U at π(p) in X . For B ⊆ A ⊆ µ,
let πA→B be the projection of XA onto XB . For A ⊆ µ, define U(A) by

{
π−1A→B

[
Πb∈BUb

]
: B ∈ [A]<ω, ∀b ∈ B(Ub ∈ U)

}
.

Note that U(A) is a local π-base at pA in XA. We also need the following
Lemma from [34].

Lemma 2.1.5. [34] For every x ∈ ∆(X,µ) there is a homeomorphism hx :

Xµ → Xµ such that hx(p) = {x} and the following conditions are satisfied.

(1) for all z ∈ Xµ, if zκ = pκ, then π(hx(z)) = π(x),

(2) for all U ∈ U(κ), there is a point q(U) (depending on x) ∈ π−1κ [U ] and
a basic open neighborhood Ux of hx(q(U))κ in Xκ such that

(a) q(U)α = pα for all α ∈ µ \ κ and

(b) π−1κ [Ux] ⊆ hx[π−1κ [U ]].

Theorem 2.1.7. If X is a power homogeneous Hausdorff space that is
Urysohn or quasiregular then

|X| ≤ 2Uc(X)πχ(X).

Proof. Let X be a power homogeneous Hausdorff space. If X is quasi-
regular then again Uc(X) = c(X) and the proof follows directly from The-
orem 2.1.6. So we assume X is Urysohn.

Let κ = Uc(X)πχ(X) and fix µ > κ such that Xµ is homogeneous. For
every x ∈ ∆(X,µ), we fix an homeomorphism hx : Xµ → Xµ as in Lemma
2.1.5. For x ∈ ∆(X,µ) and U ∈ U(κ), the open set Ux is a basic open subset
of Xκ, so we may fix a collection {Ux,α : α ∈ κ} of open subsets of X such
that

Ux =
⋂
α<κ

π−1α [Ux,α].
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For every α ∈ κ, we also fix a local π-base {V (x, U, α, β) : β < κ} of the
point hx(q(U))α in X . We first observe the following claim.
Claim 1. Whenever x 6= y ∈ ∆(X,µ), there is U ∈ U(κ) and α, β < κ such
that

V (x, U, α, β) ⊆ Ux,α and V (x, U, α, β) ∩ Uy,α = ∅.

Since π(x) 6= π(y) we have that h−1y (x)κ 6= pκ. As Xκ is Urysohn, fix an
open neighbourhood W of pκ in Xκ such that h−1y (x)κ 6∈ clθ(W ) and let

W =
{
U ∈ U(κ) : U ⊆ W

}
.

Note that W is a local π-base at pκ in Xκ and h−1y (x)κ 6∈ clθ(
⋃
W). So we

have the following, as in the proof of Theorem 2.3 in [34]:

x ∈
{
hx(q(U)) : U ∈ W

}
. (2.1)

As h−1y (x)κ 6∈ clθ(
⋃
W), there exists a basic open set S in Xκ containing

πκh
−1
y (y) such that S ∩

⋃
W = ∅. As πκh−1y (y) ∈ S, we have

x ∈ hyπ−1κ [S] ⊆ hyπ−1κ [S] = hyπ
−1
κ [S].

Now suppose hyπ−1κ [S] ∩ π−1κ [Uy] 6= ∅ for some U ∈ W . Then, as π−1κ [Uy] ⊆
hyπ

−1
κ [U ], we have

hyπ
−1
κ [S ∩ U ] = hyπ

−1
κ [S] ∩ hyπ−1κ [U ] 6= ∅.

But this is a contradiction as S ∩ U ⊆ S ∩ (
⋃
W) = ∅. Thus, (hyπ

−1
κ [S]) ∩

π−1κ [Uy] = ∅ for all U ∈ W , and

x /∈ clθ
⋃
{π−1κ [Uy] : U ∈ W} = clθ

(
π−1κ

[⋃
{Uy : U ∈ W}

])
.

Choose a basic open set T in Xµ such that x ∈ T and

T ∩ π−1κ
[⋃
{Uy : U ∈ W}

]
= ∅. (2.2)

Now, by (2.1) above there exists U ∈ W such that hx(q(U)) ∈ T , where q(U)

is as in Lemma 2.2 in [34]. As T is basic-open, it follows from (2.2) that
πκ[T ] ∩ [Uy] = ∅. As πκhx(q(U)) ∈ πκ[T ], we see that

πκ[hx(q(U))] /∈ clθ(Uy).

Thus there exists a basic-open set Z in Xκ containing πκ[hx(q(U)] such that
Z∩Uy = ∅. By the definition of Uy and the fact that both Z and Uy are basic-
open, there exists an α < κ such that πα[Z] ∩ Uy,α = ∅. Thus, πα[hx(q(U)] /∈
clθ(Uy,α).
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Therefore, πα[hx(q(U))] ∈ Ux,α \ clθ(Uy,α). There exists an open set A in
X containing πα[hx(q(U))] such that A∩Uy,α = ∅. Thus A∩Ux,α is an open
set containing πα[hx(q(U))]. Since {V (x, U, α, β) : β < κ} is a local π-base at
hx(q(U))α in X , there exists β < κ such that

V (x, U, α, β) ⊆ A ∩ Ux,α.

Thus, V (x, U, α, β) ⊆ A and V (x, U, α, β)∩Uy,α = ∅. As V (x, U, α, β) ⊆ Ux,α,
this completes the proof of the claim.

Assume that |X| > 2κ. We fix a well-ordering ≺ on X and define a map
G : X2 → U(κ)× κ× κ as follows: let {x, y} ∈ [X]2 and assume that x ≺ y.
Applying the previous claim, we may let G({x, y}) = 〈U,α, β〉 be such that

V (x, U, α, β) ⊆ Ux,α and V (x, U, α, β) ∩ Uy,α = ∅.

Here we have identified ∆(X,µ) withX . Note that |U(κ)×κ×κ| = κ. Since
|X| > 2κ, we apply the Erdös-Rado Theorem to find Y ⊆ X and 〈U,α, β〉 ∈
U(κ) × κ × κ such that |Y | = κ+ and for all {x, y} ∈ [Y ]2, G({x, y}) =

〈U,α, β〉. By possibly removing the ≺-largest element from Y , we may
assume that for all y ∈ Y , V (y, U, α, β) ⊆ Uy,α. Consider the collection
C = {V (x, U, α, β) : x ∈ Y } of open subsets of Xκ. If x, y ∈ Y are different
with x ≺ y, then we have V (x, U, α, β) ∩ Uy,α = ∅ and V (y, U, α, β) ⊆ Uy,α,
and therefore {V (x, U, α, β) : x ∈ Y } is a Urysohn cellular family. However,

|C| = |Y | = κ+ > Uc(X),

which, a contradiction. Thus |X| ≤ 2κ = 2Uc(X)πχ(X).

The above result shows that Schröder’s cardinality bound 2Uc(X)χ(X) for
Urysohn spaces can be improved in the power homogeneous setting.

Question 2.1.2. If X is power homogeneous and n-Urysohn, is

|X| ≤ 2n−Uc(X)πχ(X)?

2.2 Bounds on cardinality of a space involving the Haus-
dorff point separating weight

In this Section, we give a partial solution to Arhangel’skii’s problem [5,
Problem 5.2] concerning whether the continuum is an upper bound for the
cardinality of a Hausdorff Lindelöf space having countable pseudochar-
acter. In [36], the author gave a partial solution to this question proving
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that |X| ≤ psw(X)L(X)ψ(X) for every T1 space X , where psw(X) is the min-
inum infinite cardinal κ such that X has an open cover S (called separat-
ing open cover) having the property that for each pair of distinct points x
and y in X there is an S ∈ S such that x ∈ S and y /∈ S and such that
each point of X is in at most κ elements of S. In [32], we gave the analo-
gous of psw(X) for Hausdorff space, denoted Hpsw(X), and prove that for
Hausdorff spaces, |X| ≤ Hpsw(X)aLc(X)χ(X). Also it is proved that for a
Hausdorff space with a π-base consisting of compact sets with non-empty
interior, |X| ≤ Hpsw(X)wLc(X)ψ(X)..

Definition 2.2.1. A Hausdorff point separating open cover S for a spaceX is an
open cover of X having the property that for each pair of distinct points x
and y in X there is S in S such that x is in S but y is not in S. The Hausdorff
point separating weight of a Hausdorff space X is the cardinal

Hpsw(X) = min{τ : X has a Hausdorff point separating cover S such

that each point of X is contained in at most τ elements

of S}+ ω.

We say thatX has a Hausdorff point-continuum separating open cover if and
only if Hpsw(X) ≤ c. Clearly, if X is a Hausdorff space, then psw(X) ≤
Hpsw(X). In [36], A. Charlesworth proved the following theorem.

Theorem 2.2.1. [36, Theorem 2.1] If X is T1, then nw(X) ≤ psw(X)L(X).

As a consequence of the previous result, he proved that

|X| ≤ psw(X)L(X)ψ(X).

We prove the following theorem.

Theorem 2.2.2. If X is a Hausdorff space, then nw(X) ≤ Hpsw(X)aLc(X).

Proof. Let aLc(X) = κ and let S be a Hausdorff separating open cover forX
such that for each x ∈ X we have |Sx| ≤ λ, where Sx denotes the collection
of members of S containing x and such that if x and y are different points
of X then there exists U ∈ S such that x ∈ U and y /∈ U . We first show that
d(X) ≤ λκ. For each α < κ+ construct a subset Dα of X such that

1. Dα ≤ λκ;

2. If U is a subcollection of
⋃
{Sx : x ∈

⋃
β<αDβ} such that |U| ≤ κ and

X \
⋃
U 6= ∅, then Dα \

⋃
U 6= ∅.

Such a Dα can be constructed since the number of possible U ’s at the α-th
stage of construction is ≤ (λκ · κ · λ)κ = λκ. Let D =

⋃
α<κ+ Dα. Clearly
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|D| ≤ λκ. Furthermore, D is a dense subset of X . In fact, if there is a
point p ∈ X \ D, since Hpsw(X) ≤ λ, for every x ∈ D there exists an
open set Vx ∈ Sx such that x ∈ Vx and p /∈ Vx. Moreover, since x ∈ D,
we have Vx ∩ D 6= ∅, then there exists y ∈ Vx ∩ D and then Vx ∈

⋃
{Sy :

y ∈ D}. Put W = {Vx : x ∈ D} ⊆
⋃
{Sy : y ∈ D}. Clearly, W is an

open cover of D. Using aLc(X) ≤ κ we can select a subcollection W ′ ⊆
W, |W ′| ≤ κ such that D ⊆

⋃
{V : V ∈ W ′} and p /∈

⋃
{V : V ∈ W ′}.

This contradicts 2. Since d(X) ≤ λκ we have that |S| ≤ λκ. Let N =

{X \ S|S is the union of at most κ members of S}. Then |N | ≤ λκ and N is
a network for X .

Theorem 2.2.3. If X is a Hausdorff space, then |X| ≤ Hpsw(X)aLc(X)ψ(X).

Proof. It is known that if X is a T1 space, |X| ≤ nw(X)ψ(X). Then by Theo-
rem 2.2.2, we have |X| ≤ Hpsw(X)aLc(X)ψ(X).

Corollary 2.2.1. If X is a Hausdorff space with L(X) = ω, ψ(X) = ω and
Hpsw(X) ≤ c, then |X| ≤ c.

The previous corollary gives a partial solution to Arhangel’skii’s prob-
lem [5, Problem 5.2] concerning whether the continuum is an upper bound
for the cardinality of a Hausdorff Lindelöf space having countable pseu-
docharacter.

Remark 2.2.1. Using Remark 2.5 in [36] we note that countable pseudochar-
acter is essential in Corollary 2.2.1: if X is the product of 2ω copies of the
two point discrete space, then X is Hausdorff, Lindelöf and ψ(X) > ω but
|X| > 2ω.

The following theorem, under additional hypothesis, gives a result sim-
ilar to Theorem 2.2.2 in which the weakly Lindelöf degree with respect to
closed sets takes the place of the almost Lindelöf degree with respect to
closed sets.

Theorem 2.2.4. If X is a Hausdorff space with a π-base consisting of com-
pact sets with non-empty interior, then nw(X) ≤ Hpsw(X)wLc(X).

Proof. Let wLc(X) = κ and let S be a Hausdorff point separating open
cover for X such that for each x ∈ X we have |Sx| ≤ λ, where Sx denotes
the collection of members of S containing x. Without loss of generality, we
can suppose that the family Sx is closed under finite intersection. We first
show that d(X) ≤ λκ. For each α < κ+ construct a subset Dα of X such
that:

1. Dα ≤ λκ.
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2. If U is a subcollection of
⋃
{Sx : x ∈

⋃
β<αDβ} such that |U| ≤ κ and

X \
⋃
U 6= ∅, then Dα \

⋃
U 6= ∅.

Such a Dα can be constructed since the number of possible U ’s at the αth
stage of construction is (≤ λκ · κ · λ)κ = λκ. Let D =

⋃
α<κ+ Dα. Clearly

|D| ≤ λκ. Furthermore D is a dense subset of X . Indeed if D 6= X , X \D is
a non-empty open set. Since X has a π-base consisting of compact sets with
non-empty interior, we can find a non empty open subset W ⊆ X such that
W is compact andW ⊂ X\D, henceW∩D = ∅. Fix x ∈ D. For every p ∈W
there exists an open subset Vp ∈ Sx such that p /∈ Vp. Then, we can find a
family {Vp : p ∈W} of open subsets ofX such that

⋂
{Vp : p ∈W}∩W = ∅.

So, for the compactness of W the family {Vp ∩W : p ∈W} can not have the
finite intersection property. So put Fx = Vp1 ∩ ...∩ Vpk , where p1, ..., pκ ∈W
are such that Fx ∩ W = ∅. Put Gx = Vp1 ∩ ... ∩ Vpk . Since Sx is closed
under finite intersection, Gx ∈ Sx and Gx ∩W = ∅. Since Gx ∈ Sx then
Gx ∈ Sy for some y ∈ D. Clearly, V = {Gx : x ∈ D} is an open cover
of D. Using wLc(X) ≤ κ we can select a subcollection V ′ ⊆ V, |V ′| ≤ κ

such that D ⊆
⋃
{V : V ∈ V ′}. For every U ∈

⋃
V ′, U ∩ W = ∅, hence⋃

V ′ ∩W = ∅. Since W is a nonempty open set,
⋃
V ′ ∩W = ∅ and then

X \
⋃
V ′ 6= ∅. This contradicts 2. Since d(X) ≤ λκ we have that |S| ≤ λκ.

Let N = {X \ S|S is the union of at most κ members of S}. Then |N | ≤ λκ

and N is a network for X .

Then we have the following result.

Corollary 2.2.2. If X is a Hausdorff space with a π-base consisting of com-
pact sets with non-empty interior, then |X| ≤ Hpsw(X)wLc(X)ψ(X).

2.3 On the cardinality of a topological group

In this Section, by space, we mean a Tychonoff space.
Topological groups represent an area of Topological Algebra that is well

developed and has a long tradition, see for example [13, 82].
A group (G, ·) provided with a topology τ is a topological group if the

multiplication mapping (x, y) → x · y and the inverse x → x−1 are con-
tinuous with respect to τ . This is equivalent to saying that the mapping of
G × G to G, where G × G carries the usual product topology, defined by
(x, y)→ x · y−1 is continuous.

Every topological group is homogeneous. If the topological space (G, τ)

is compact, one says briefly compact group.
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For A,B ⊂ G and p ∈ G we write

AB = {a · b : a ∈ A, b ∈ B},

A2 = AA, An+1 = AAn(2 ≤ n < ω),

Ap = A{p}, pA = {p}A.

We note that the relation An = {an : a ∈ A} is false. The identity or
neutral element of a group G is denoted by e. For a topological group G and
p ∈ G, we denote by NG(p) or N (p) the set of open neighborhoods of p in
G. In particular, N (e) is the open neighborhood system at e, and we have

N (p) = {pU : U ∈ N (e)} = {Up : U ∈ N (e)} ∀p ∈ G.

The presence of an algebraic structure nicely related to a topology changes
dramatically the relationship between topological invariants. Important
classical results in this direction are well known. For example, it is impor-
tant to mention Birkhoff-Kakutani’s theorem that first countability is equi-
valent to metrizability in topological groups, Pontryagin’s theorem that
every topological group which satisfies the T0 separation property is a Ty-
chonoff space, and Bourbaki’s theorem that every locally compact topolo-
gical group is paracompact.

Theorem 2.3.1. [82] Let G be a topological group.

(i) If α ≥ ω and there is S ⊂ G such that intS 6= ∅ and χ(S) = α, then
χ(G) = α;

(ii) if G has a dense, first countable subspace, then G is first countable.

Theorem 2.3.2. [82] Every locally compact topological group G with |G| <
2ω is discrete.

Cardinal functions behave much better in topological groups than in
topological spaces. Another particular phenomenon is the coincidence of
some cardinal functions in the class of topological groups while they are
different even for compact spaces, for example, the following theorem can
not be extend to compact spaces.

Theorem 2.3.3. [7] Every topological group G satisfies the inequalities:

(1) w(G) ≤ d(G) · χ(G);

(2) w(G) ≤ L(G) · χ(G).

The following theorem from [7] shows that the differences between sev-
eral cardinal functions disappear in the realm of topological groups.

Proposition 2.3.1. [7] Let G be a topological group. Then
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(1) χ(G) = πχ(G);

(2) w(G) = πw(G).

For a locally compact Hausdorff group G we always have that t(G) =

w(G). In particular, a locally compact Hausdorff group of countable tight-
ness is metrizable.

Some relations between cardinal invariants of topological groups dis-
appear in the general case of Tychonoff spaces. These relations play an
important role in the study of topological groups. For example, the cardi-
nality of a topological group G can be estimated by the cellularity and the
pseudocharacter as well as by the Lindelöf number and the pseudochar-
acter: |G| ≤ 2L(G)ψ(G) and |G| ≤ 2c(G)ψ(G). For a Tychonoff spaces these
inequalities are not always satisfied (for any cardinal τ there exists a Ty-
chonoff space X whose cardinality is larger than τ while its pseudocharac-
ter and cellularity are countable). It is interesting and important to know,

how properties of a space X are related to the properties of some or all re-
mainders of X . In particular, when does a space X have a compactification
with a remainder belonging to a given class of spaces? A famous classical
result in this direction is the following theorem of M. Henriksen and J. Isbell
[48].

Theorem 2.3.4. [48] A space X is of countable type if and only if the re-
mainder in any, or in some, compactification of X is Lindelöf.

It follows from the theorem of Henriksen and Isbell that every remain-
der of a metrizable space is Lindelöf and hence, paracompact. Arhangel’skii
studied in deep the previous question, in particular those spaces whose re-
mainders are close, in some sense, to being metrizable, and obtained a lot
of results in this direction, see [1, 2, 3, 8, 9, 12, 14, 15, 16]. It turns out to
be much easier to answer this question for topological groups than in the
general case. For example, every remainder of a Lindelöf p-space is a Lin-
delöf p-space. However this statment does not generalize to paracompact
p-spaces: the remainders of such spaces need not be paracompact p-spaces.
However, Arhangel’skii established that if a topological group G has a re-
mainder that is a paracompact p-space, then G is a paracompact p-space.

The following represents a Dichotomy theorem.

Theorem 2.3.5. [12] For any topological group G, any remainder of G in a
compactification bG of G is either pseudocompact or Lindelöf.

Using this theorem, Arhangel’skii noted that no Dowker space can be a
remainder of a topological group, and that normality is equivalent to collec-
tionwise normality in remainders of topological groups. Perfect normality
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of a remainder Y of a topological group is shown to be equivalent to hered-
itary Lindelöfness of Y . Moreover, Arhangel’skii proved that a non-locally
compact topological group G is separable and metrizable if (and only if)
some remainder Y of G has locally a Gδ-diagonal.

Arhangel’skii’s results show that the remainders of topological groups
are much more sensitive to the properties of topological groups than the
remainders of topological spaces are in general. Of course, there is an
important exception to this rule: the case of locally compact topological
groups. Indeed, every locally compact non-compact topological group has
a remainder consisting of exactly one point. Thus, we will be interested
only in the case of non-locally compact topological groups.

The basic problem is: when does a topological group have a first-countable
remainder? The early results suggested the following conjecture: Does a non-
locally compact topological group G have a first-countable remainder if and only if
G is metrizable?

The early results by Arhangel’skii suggested a positive answer.

Theorem 2.3.6 (Arhangel’skii [2]). Let G be a non-locally compact topolog-
ical group such that Gω has a first-countable remainder. Then G is metriz-
able.

Theorem 2.3.7. [Arhangel’skii [2] (MA¬CH)] Suppose that G is a σ-com-
pact topological group with a remainder of countable tightness. Then either
G is locally compact, or G is metrizable.

The last result is very surprising. Under a very strong set theoretical
assumption, the basic problem can be solved for the class of all σ-compact
groups. In particular, for the class of all countable topological groups.

Taking into account the Birkhoff-Kakutani’s theorem, the basic problem
can be formulated as follows. If G is a non-locally compact topological
group, are the statements

1. χ(G) = ω (G is metrizable),

2. G has a compactification bG such that χ(bG \G) = ω

(bG \G is first-countable)

equivalent? If true, this would have been a very elegant result.
In a series of papers, Arhangel’skii and van Mill [14, 15, 16] solved the

basic problem. Their first result gives information on topological groups
with a first-countable remainder, and their second result gives a negative
answer to the basic problem.

In particular, in [14], Arhangel’skii and van Mill, answer in the negative
to the following problem.

Problem 2.3.1. [14, Problem 1.1] Suppose that G is a non-locally compact
topological group with a first countable remainder. Is G metrizable?
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Also, the following necessary condition for a non-locally compact topo-
logical group to have a first countable remainder is established.

Theorem 2.3.8. [14, Theorem 2.1] Suppose that G is a non-locally compact
topological group with a first countable remainder. Then the character of
the space G does not exceed ω1.

As a consequence of the previous result, the following theorem holds.

Theorem 2.3.9. [14, Theorem 2.4] If G is a non-locally compact topological
group with a first countable remainder, then |G| ≤ 2ω1 .

In [14], it is proved that Theorem 2.3.8 is the best possible giving the
following example.

Example 2.3.1. [14, Section 3] A non-locally compact topological group G

of character ω1 which has a compactification bG such that bG \ G is first
countable.

In this Section, we show that the methods used by Arhangel’skii and
van Mill permit to generalize Theorem 2.3.8 and Example 2.3.1 in the case
of an arbitrary infinite cardinal κ.

We show that Arhangel’skii and van Mill’s proof of [14, Theorem 2.1],
works in the general case of an arbitrary infinite cardinal κ.

Theorem 2.3.10. Let κ be an infinite cardinal and let G be a non-locally
compact topological group. Assume that G has a compactification such
that its remainder bG \G has character κ. Then the character of the space G
does not exceed κ+.

To prove Theorem 2.3.10, we need the following propositions 2.3.2 and
2.3.3. In particular, Proposition 2.3.2 is known (see for example [10], also
note that the concept of free sequence was introduced in [6]). We include
the proof of Proposition 2.3.2 for completeness of the exposition.

Proposition 2.3.2. Suppose that Y is a space with tightness t(Y ) = κ satis-
fying the following condition:

(s) for any subset A of Y such that |A| ≤ κ+, the closure of A in Y is compact.

Then Y is compact.

Proof. Striving for a contradiction, assume that Y is not compact and let X
be a compactification of Y . Pick an arbitrary point x ∈ X \ Y . Then:
Fact 1. Every non-empty Gκ-subset P of X that contains x meets Y .

Indeed, let P =
⋂
{Vα : α < κ}, where each Vα is open. For each α

take an open set Uα in X such that x ∈ Uα ⊆ Vα. Put {Uα : α < κ} = U .
We may assume without any loss of generality that U is closed under finite
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intersections. For any U ∈ U pick a point yU ∈ U ∩ Y and let A = {yU : U ∈
U}. By condition (s), the set S = A

Y is compact. As the family F = {U ∩S :

U ∈ U} has the finite intersection property, we must have
⋂
F 6= ∅. Since⋂

F ⊆ P ∩ Y , we are done.
Using Fact 1, we define a sequence (Pξ, yξ) for every ξ < κ+ such that

(Pξ)ξ∈κ+ is a decreasing sequence and yξ ∈ Pξ, as follows. Let y0 be any
element of Y , and put P0 = X . Now assume that ξ < κ+, and that the
points yβ ∈ Y and the closed Gκ-subsets Pβ of X have been defined for
every β < ξ. Denote by Fξ the closure of the set {yβ : β < ξ} in X . Then,
by condition (s), Fξ ⊆ Y and x /∈ Fξ. Since Fξ is closed in X and X is
Tychonoff, it follows that there exists a closed Gδ-subset V of x in X such
that x ∈ V and V ∩ Fξ = ∅. Put Pξ = V ∩

⋂
β<ξ Pβ . Clearly, x ∈ Pξ, and Pξ

is a closed Gκ-subset of X . By Fact 1, have Pξ ∩ Y 6= ∅. This completes the
transfinite construction.

Obviously, the following statements hold for any ξ < κ+ (Fact 4 follows
directly from facts 2 and 3).
Fact 2. {yβ : β < ξ} ∩ Pξ = ∅.
Fact 3. {yβ : ξ ≤ β < κ+} ⊆ Pξ.
Fact 4. {yβ : β < ξ} ∩ {yβ : ξ ≤ β < κ+} = ∅.

Fact 4 implies that η = {yξ : ξ < κ+} is a free sequence in X . Its closure
is compact and is contained in Y . Hence this contradicts the fact that the
tightness of Y is at most κ (For every compact and Hausdorff space X ,
t(X) = F (X), [53]).

Following the argument from [14, Proposition 2.3], and using Proposi-
tion 2.3.2 instead of [14, Proposition 2.2] we obtain the following result.

Proposition 2.3.3. Suppose that X is a nowhere locally compact space with
remainder Y such that χ(Y ) = κ, where κ is an infinite cardinal. Then the
π-character of the space X does not exceed κ+ at some point of X .

Proof of Theorem 2.3.10. It follows from Proposition 2.3.3 that there exists a
π-baseP ofG at the neutral element e ofG such that |P| ≤ κ+. Then, clearly,
the family µ = {UU−1 : U ∈ P} is a base of G at e such that |µ| ≤ κ+.

Theorem 2.3.11. If G is a non-locally compact topological group with re-
mainder Y such that χ(Y ) = κ, then |G| ≤ 2κ

+
.

Proof. Let bG be a compactification of the space G such that the remainder
Y = bG\G has character κ. By Theorem 2.3.10, the character of the space G
does not exceed κ+. Since χ(Y ) = κ and Y and G are both dense in bG, we
conclude that χ(bG) ≤ κ+. Since bG is compact, it follows that |bG| ≤ 2κ

+
.

Hence, |G| ≤ 2κ
+

.

Following the method in [14, Section 3] we construct the following ex-
ample.
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Example 2.3.2. A non-locally compact topological group G of character κ+

which has a compactification bG such that bG \G has character κ.

Let X be a space with a dense subset D and consider the subspace

X(D) = (X × {0}) ∪ (D × {1})

of the Alexandroff duplicate of X .
Observe that X(D) is compact if X is compact.

The idea used by authors in [14, Section 3] is to consider the space
X(D,Y ), obtained by replacing every isolated point of the form (d, 1) in
X(D) by a copy of a fixed non-empty space Y . Also they note that if bothX
and Y are compact, then so isX(D,Y ) and that the function π : X(D,Y )→
X×{0} that collapses each set of the form {d}×Y ×{1} to (d, 0) is a retrac-
tion.

Let κ ≥ ω and let K = 2κ(2κ), i.e., the Alexandroff duplicate of the
Cantor cube 2κ. Following the idea used in [14, Section 3] and using this
building block repeatedly, we will construct an inverse sequence of compact
spaces Xα, α < κ+.

In particular following step by step [14, Section 3] and defining X0 = 2κ

instead of 2ω, we construct all Xα, where α < ω1 and Xω1 = lim←−{Xα, π
α
β}.

Let πω1
α : Xω1 → Xα denotes the projection for all α < ω1.

Also the points p ∈ Xω1 , for which πω1
α (p) is isolated for every successor

ordinal number α < ω1, form a dense subspace H in Xω1 .
Now put Xω1+1 = Xω1(H), and let πω1+1

ω1
be the standard retraction.

We continue as before, replacing each isolated point by a copy of K, etc.
Let Xω1+ω1 be the inverse limit of spaces Xω1+β, β < ω1. Continuing in
this way for all α < ω2, we get an inverse sequence {Xα, π

α
β} of compact

spaces having character equal to κ. Let Xω2 = lim←−{Xα, π
α
β}with retractions

πω2
α : Xω2 → Xα for all α < ω2.

Continuing in this way for all α < κ+, we get an inverse sequence
{Xα, π

α
β} of compact spaces having character equal to κ.

Let Xκ+ = lim←−{Xα, π
α
β}with retractions πκ

+

α : Xκ+ → Xα for all α < κ+.
The following fact holds.
If p ∈ Xκ+ and there exists a successor ordinal number α < κ+ such that

πκ
+

α (p) is not isolated, then

(πκ
+

α )−1({πκ+α (p)}) = {p}.

Hence, Xκ+ has character equal to κ at p.
The points p ∈ Xκ+ , for which πκ

+

α (p) is isolated for every successor
ordinal number α < κ+, form a dense subspace G in Xκ+ . The space G is
easily seen to be homeomorphic to the space (2κ)κ

+
with the Gκ-topology
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(where the topology on 2κ is the standard product topology). The reason
that we get the Gκ-topology is clear: because if p ∈ G, then, for every α <

κ+, we have that πκ
+

α+1(p) is isolated. Hence, G is a topological group, and
so we are done.

It seems natural to pose the following question.

Question 2.3.1. Is it possible to generalize Theorem 2.3.10 and Example
2.3.2 in other class of topological groups?

In particular, since the theory of paratopological groups is quite differ-
ent from the theory of topological groups, in fact, many concepts in the
theory of paratopological groups have no analogues in topological groups
at all, it seems to be interesting to study the previous question in the case of
paratopological group. (Recall that a groupG provided with a topology τ is
a paratopological group if multiplication in G is continuous as a mapping of
G×G to G, where G×G carries the usual product topology. It is clear from
the definitions that every topological group is a paratopological group.)
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